Jerzy KUDŁA

MODELE MATEMATYCZNE
MASZYN ELEKTRYCZNYCH PRĄDU PRZEMIENNEGO
UWZGLĘDNIJĄCE
NASYCENIE MAGNETYCZNE RDZENI
Jerzy KUDŁA

MODELE MATEMATYCZNE
MASZYN ELEKTRYCZNYCH PRĄDU PRZEMIENNEGO
UWZGLĘDNIAJĄCE
NASYCENIE MAGNETYCZNE RDZENI

Gliwice

2005
Opiniodawcy
Prof. dr hab. inż. Grzegorz KAMIŃSKI
Prof. zw dr hab. inż. Tadeusz Jan SOBCZYK

Kolegium redakcyjne
Redaktor naczelny – Prof. dr hab. inż. Andrzej BUCHACZ
Redaktor działu – Prof. dr hab. inż. Marian PASKO
Sekretarz redakcji – Mgr Elżbieta LEŚKO

Redakcja
Mgr Kazimiera SZAFIR

Redakcja techniczna
Alicja NOWACKA

PL ISSN 0072-4688
© Copyright by Jerzy KUDŁA
Gliwice 2005

SPIS TREŚCI

WYKAZ WAŻNIEJSZYCH OZNACZEŃ ... 11
1. WPROWADZENIE. CEL I ZAKRES PRACY ... 17
2. STAN ZAGADNIENIA. PRZEGLĄD LITERATURY ... 20
3. TEZY PRACY .. 23
4. STRUMIENIE SPRZĘŻONE UZWOJEŃ STOJANA I WIRNIKA DLA POLA MAGNETYCZNEGO GŁÓWNEGO ... 27
4.1. Strumienie sprzężone uzwojeń dla pola magnetycznego głównego w modelach obliczeniowych maszyn o wyidealizowanej strukturze rdzeni.... 28
4.1.1. Okład prądowy uzwojeń stojana i wirnika, zastępcze uzwojenia magnesujące, fazor przestrzenny prądu magnesującego... 28
4.1.2. Strumienie sprzężone uzwojeń dla pola magnetycznego głównego. Fazor przestrzenny strumienia sprzężonego pola głównego 33
4.1.3. Pole magnetyczne główne w modelach obliczeniowych o wyidealizowanej strukturze rdzeni.. 36
4.1.3.1. Równania pola magnetostatycznego w wyidealizowanych modelach obliczeniowych.. 37
4.1.3.2. Wyniki obliczeń rozkładów przestrzennych pola magnetycznego głównego.. 38
4.1.4. Składowe osiowe fazora przestrzennego strumienia sprzężonego pola głównego. Syntetyczne charakterystyki strumieni sprzężonych pola głównego.. 42
4.1.4.1. Wyznaczenie składowych osiowych fazora przestrzennego strumienia sprzężonego pola głównego za pomocą funkcji koenergii magnetycznej......................... 42
4.1.4.2. Wyznaczenie składowych osiowych fazora przestrzennego strumienia sprzężonego pola głównego na podstawie rozkładu składowej promieniowej wektora indukcji magnetycznej... 47
4.2. Strumienie sprzężone uzwojeń dla pola magnetycznego głównego w modelach obliczeniowych uwzględniających rzeczywistą strukturę rdzeni.... 51
4.2.1. Wyniki obliczeń rozkładu obwodowego składowej promieniowej wektora indukcji magnetycznej w szczelinie powietrznej................. 53
4.2.1.1. Wyniki obliczeń dla silnika indukcyjnego klatkowego................. 54
4.2.1.2. Wyniki obliczeń dla turbogeneratora.. 57
4.2.1.3. Wyniki obliczeń dla hydrogeneratora... 61
4.2.2. Fazor przestrzenny strumienia sprzężonego pola głównego i jego składowe osiowe. Syntetyczne charakterystyki strumieni sprzężonych pola głównego... 64
5. STRUMIENIE SPRZĘŻONE UZWOJEŃ STOJANA I WIRNIKA DLA POLA ROZPROSzenia ... 73
5.1. Koenergia pola magnetycznego rozproszenia. Strumienie sprzężone uzwojeń stojana i wirnika dla pola rozproszenia................................. 73
5.2. Modele obliczeniowe stosowane przy wyznaczaniu pola magnetycznego rozproszenia żłóbkowego ... 77
5.3. Właściwości koenergi pola magnetycznego rozproszenia żłobkowego

5.3.1. Wyniki obliczeń koenergi pola magnetycznego rozproszenia żłobkowego

5.4. Fazory przestrzenne strumienia sprzężonego uzwojenia stojana i wirnika dla pola rozproszenia żłobkowego

5.5. Modele obliczeniowe maszyny indukcyjnej stosowane przy wyznaczaniu pola rozproszenia żłobkowego

5.6. Właściwości fazorów przestrzenne sprzężonego uzwojenia stojana i wirnika dla pola rozproszenia żłobkowego i szczelinowego

5.7. Fazory przestrzenne sprzężonego pola rozproszenia stojana i wirnika

6. INDUKCYJNOŚCI STATYCZNE I DYNAMICZNE MASZYN ELEKTRYCZNYCH PRĄDU PRZEMIENNEGO. SPRZĘŻENIE SKROŚNE STATYCZNE I DYNAMICZNE

6.1. Indukcyjności magnesujące statyczne maszyny synchronicznej. Sprzężenie skrośne statyczne

6.2. Indukcyjności magnesujące dynamiczne maszyny synchronicznej. Sprzężenie skrośne dynamiczne

6.3. Indukcyjności dynamiczne i statyczne maszyny asynchronicznej dla pola głównego i pola rozproszenia

7. MODELE MATEMATYCZNE MASZYN ASYNCHRONICZNYCH UWZGLĘDNIJĄCE NASYCENIE MAGNETYCZNE RDZENI

7.1. Wprowadzenie

7.2. Równania maszyn asynchronicznych we współrzędnych fazowych

7.2.1. Równania napięciowe stojana i wirnika

7.2.2. Równania strumieni sprzężonych uzwojenia stojana i wirnika

7.2.3. Moment elektromagnetyczny

7.3. Równania maszyn asynchronicznych wyrażone za pomocą fazorów przestrzennych

7.4. Równania stanu elektrodynamicalnego maszyn asynchronicznych przy wyborze prądów stojana i wirnika jako zmienionych stanu. Schematy zastępcze maszyn asynchronicznych w stanach dynamicznych

7.5. Równania i schematy zastępcze maszyny indukcyjnej w stanach ustalonych symetrycznych

8. WYNIKI BADAŃ SYMULACYJNYCH MASZyny INDUKCYJNEj

9. WYZNACZENIE PARAMETRÓW ELEKTROMAGNETYCZNYCH MODELI MATEMATYCZNYCH MASZYN INDUKCYJNEJ

9.1. Schematy zastępcze parametryczne maszyny indukcyjnej w stanach ustalonych i nieustalonych

9.2. Metodyka wyznaczania parametrów modelu matematycznego maszyny indukcyjnej na podstawie pomiarów

9.3. Opis stanowiska laboratoryjnego, metodyka przeprowadzenia pomiarów

9.3.1. Pomiarowe wyznaczenie mocy chwilowej i chwilowej mocy biernej stojana

9.3.2. Pomiarowe wyznaczenie charakterystyk statycznych maszyny indukcyjnej

9.4. Algorytm estymacji parametrów modelu matematycznego maszyny na podstawie wyników pomiaru charakterystyk statycznych

9.5. Wyniki estymacji parametrów na podstawie pomiaru charakterystyk statycznych

9.6. Ocena wiarygodności wyznaczonych parametrów modelu matematycznego maszyny indukcyjnej

9.7. Algorytm i wyniki estymacji parametrów modelu matematycznego maszyny indukcyjnej na podstawie wyników pomiaru przebiegów dynamicznych

9.8. Metodyka wyznaczania parametrów modelu obwodowego maszyny indukcyjnej na podstawie wyników obliczeń poło-bo-obwodowych

9.9. Obliczenia charakterystyk statycznych za pomocą metody elementów skończonych

9.10. Estymacja parametrów obwodowego modelu maszyny indukcyjnej

9.11. Wnioski

10. MODELE MATEMATYCZNE MASZYN SYNCHRONICZNYCH UWZGLĘDNIJĄCE NASYCENIE MAGNETYCZNE RDZENI

10.1. Wprowadzenie

10.2. Równania napięciowe oraz równania strumieni sprzężonych uzwojenia stojana we współrzędnych fazowych i dwuosobowych

10.3. Równania napięciowe oraz równania strumieni sprzężonych uzwojenia wzbudzenia i zastępczych obwodów elektrycznych wirnika

10.4. Równania strumieni sprzężonych pola magnetycznego głównego oraz pola rozproszenia stojana uwzględniające nasycenie magnetyczne rdzeni

10.5. Równania maszyny synchronicznej przy wyborze prądów stojana i wirnika jako zmienionych stanu. Schemat zastępczy maszyny synchronicznej w stanach dynamicznych

10.6. Równania i schemat zastępczy maszyny synchronicznej w stanach ustalonych symetrycznych

10.7. Linearizacja równań algebraiczno-różniczkowych maszyny synchronicznej

10.8. Wyznaczenie przyrostów składowych osiowych fazora przestrzennego strumienia sprzężonego pola głównego

10.9. Zlinaeryzowane równania różniczkowe napięciowo-prądowe. Schemat zastępczy maszyny synchronicznej dla wielkości przyrostowych

11. WYNIKI BADAŃ SYMULACYJNYCH MASZYN SYNCHRONICZNYCH

12. WYZNACZENIE PARAMETRÓW ELEKTROMAGNETYCZNYCH MODELI MATEMATYCZNYCH MASZYN SYNCHRONICZNYCH

12.1. Wprowadzenie

12.2. Metodyka wyznaczania charakterystyk syntetycznych strumieni sprzężonych pola głównego

12.2.1. Wyznaczenie charakterystyk syntetycznych strumieni sprzężonych pola głównego w sposób bezpośredni na podstawie krzywych V
12.2.2. Wyznaczanie charakterystyk syntetycznych strumieni sprzężonych pola głównego w sposób pośredni na podstawie krzywych V.............. 171
12.3. Wyznaczanie parametrów skupionych modelu matematycznego maszyny na podstawie testu zaniku prądu stojącej w osi d₁q.................. 174

13. PODSUMOWANIE.. 178
LITERATURA... 182
ZAŁĄCZNIKI.. 195
STRESZCZENIE.. 202

CONTENTS

LIST OF PRINCIPAL SYMBOLS
1. INTRODUCTION. PURPOSE AND SCOPE OF THE WORK................................. 17
2. THE STATE-OF-THE-ART IN THE PROBLEM. THE OVERVIEW
OF LITERATURE... 20
3. THE THESES OF THE WORK.. 23
4. MAIN FLUX LINKAGES OF THE STATOR AND ROTOR WINDINGS.................. 27
 4.1. Main flux linkages of windings in computational models of machines of
 idealized core structure... 28
 4.1.1. Current density of the stator and rotor windings, equivalent
 magnetizing windings, space phasor of the magnetizing
 current... 28
 4.1.2. Main flux linkage of the windings. Main flux linkage space
 phasor... 33
 4.1.3. Main magnetic field in computational models of idealised core
 structure... 36
 4.1.3.1. Magnetic field equations in idealised computational
 models.. 37
 4.1.3.2. Results of the computations of the main magnetic field
 space distributions.. 38
 4.1.4. Axis components of the main flux linkage space phasor Synthetic
 characteristics of the main flux linkages............................ 42
 4.1.4.1. Determination of the axis components of the main flux
 linkage space phasor by means of the magnetic coenergy
 function.. 42
 4.1.4.2. Determination of the axis components of the main flux
 linkage space phasor basing on the radial component
 distribution of the magnetic flux density vector................. 47
 4.2. Main flux linkages of the windings in computational models taking into
 account the real core structure... 52
 4.2.1. Results of the computations of the spatial distribution of the
 magnetic flux density radial component in the air gap............ 53
 4.2.1.1. Results of the computations for the squirrel-cage
 induction motor... 54
 4.2.1.2. Results of the computations for the turbogenerator............. 57
 4.2.1.3. Results of the computations for the hydrogenerator............ 61
 4.2.2. Main flux linkage space phasor and its axis components. Synthetic
 characteristics of the main flux linkages.................................. 64
 5. LEAKAGE FLUX LINKAGES OF THE STATOR AND ROTOR WINDINGS 73
 5.1. Magnetic leakage field coenergy. Flux linkages of the stator and
 rotor windings for the leakage fields... 73
 5.2. Computational models used for determining the slot magnetic leakage
 field... 77
 5.3. Properties of coenergy of the slot magnetic leakage field..................... 78
12.3. Determination of the lumped parameters of the machine mathematical model on a basis of the stator current decay test in d and q axis

13. CONCLUDING REMARKS

REFERENCES

APPENDICES

SUMMARY

WYKAZ WAŻNIEJSZYCH OZNACZEŃ

A, A – wektorowy potencjał magnetyczny i jego składowa wzdłuż osi układu współrzędnych

α_s, α_r – okład prądowy uzwojenia stojana, wirnika

B – wektor indukcji magnetycznej

B_s, B_ϕ – składowa promieniowa i obwodowa wektora indukcji magnetycznej

B_x, B_y – składowa wzdłuż osi x, y wektora indukcji magnetycznej

B_{st}, B_{r1} – amplitudy zespolone podstawowej harmonicznej rozkładu obwodowego składowej promieniowej wektora indukcji magnetycznej na powierzchni stojana (s) i wirnika (r)

B_{st} – moduł amplitudy zespolonej podstawowej harmonicznej składowej promieniowej wektora indukcji magnetycznej na średnim promieniu stojana i wirnika

H – wektor natężenia pola magnetycznego

E_c – koenergia magnetyczna

E_{cm} – koenergia pola magnetycznego głównego

E_{cat}, E_{car} – koenergia pola magnetycznego rozproszenia stojana, wirnika

E_{cat}, E_{car} – koenergia pola magnetycznego rozproszenia żłобkowego stojana, wirnika

E_{cat}, E_{car} – koenergia pola magnetycznego rozproszenia żłobkowego i szczelinowego stojana, wirnika

i_{st}, i_{ar} – wektor chwilowych prądów uzwojen stojana, wirnika

i_s, i_r – prady chwilowe uzwojeń stojana, wirnika

i_p, i_{s}, i_{q} – prąd chwilowy l-tego oczka wirnika sprowadzony na stronę stojana

i_{ps}, i_{ps}, i_{pq} – prąd chwilowy uzwojenia wzbudzenia, oraz prady chwilowe zastępczych uzwojeń wirnika w osiach d i q

i_p, i_{ps} – prąd chwilowy l-tego pręta wirnika

L_s, L_{st}, L_{ab} – fazor przestrzenny prądu stojana i jego składowe osiowe w układzie współrzędnych związany ze stojanem

L_{s}, L_{st}, L_{xy} – fazor przestrzenny prądu wirnika i jego składowe osiowe w układzie współrzędnych z wirnikiem

L_s, L_{st}, L_{xy} – fazor przestrzenny prądu stojana i jego składowe osiowe w układzie współrzędnych (x,y)

L_r, L_{ar}, L_{axy} – fazor przestrzenny prądu wirnika i jego składowe osiowe w układzie współrzędnych (x,y)

L_{st0}, L_{st1} – fazory przestrzenne prądu stojana i wirnika w chwili $t=0$

L_s, L_r – moduł fazory przestrzennego prądu stojana, wirnika
I_d, I_q — składowe osiowe fazora przestrzennego prądu stojana maszyny synchronicznej w układzie współrzędnych d,q

L_m — fazor przestrzennego prądu magnesującego sprowadzony na stronę stojana

L_{pl} — fazor przestrzennego prądu magnesującego sprowadzony na stronę wirnika

l — moduł fazora przestrzennego prądu stojana sprowadzony na stronę wirnika

L_{pl} — fazor przestrzennego prądu i-tego zastępczego obwodu pręta wirnika sprowadzony na stronę stojana

L_i — fazor przestrzennego prądu i-tego zastępczego obwodu wirnika sprowadzony na stronę stojana

j, j — wektor gęstości prądu, składowa wektora gęstości prądu wzdłuż osi z układu współrzędnych

J — masowy moment bezwładności

k_w, k_r — współczynnik uzwożenia stojana, wirnika dla podstawowej harmonicznej

$k_{of}, k_{ofi}, k_{ofd}, k_{ofq}$ — współczynnik uzwożenia wzbudzenia i zastępczych uzwożeń wirnika w osiach d i q dla podstawowej harmonicznej

L_{ss}, L_{sr}, L_{rr} — macierze indukcyjności własnych i wzajemnych uzwożeń

L_{md}, L_{mq} — indukcyjności magnesujące statyczne główne w osiach d i q maszyny synchronicznej

L_{mdl}, L_{mqi} — indukcyjności magnesujące statyczne własne i wzajemne w osiach d i q- maszyny synchronicznej

L_{mdl}, L_{mdq} — indukcyjności magnesujące dynamiczne własne i wzajemne w osiach d i q maszyny synchronicznej

L_{md}, L_{mq} — indukcyjności dynamiczne magnesujące własne i wzajemne w osiach x, y maszyny asynchronicznej

L_{ed}, L_{ec} — indukcyjność statyczna rozproszenia stojana

L_{cr} — indukcyjność statyczna rozproszenia wirnika lub zastępcza indukcyjność rozproszenia wirnika silnika głębokożłobkowego (nie uwzględnia strumieni rozproszenia wokół prętów wirnika)

$L_{DmA}, L_{DmB}, L_{DmC}$ — indukcyjności dynamiczne rozproszenia własne i wzajemne stojana

$L_{DmA}, L_{DmB}, L_{DmC}$ — indukcyjności dynamiczne rozproszenia własne i wzajemne wirnika

$L_{DmA}, L_{DmB}, L_{DmC}$ — indukcyjności dynamiczne rozproszenia własne i wzajemne wirnika

L_{Q1}, L_{Q2} — indukcyjność rozproszenia uzwożenia wzbudzenia, indukcyjności rozproszenia różnicowego (f_1, f_2), indukcyjności zastępczych obwodów elektrycznych w wirniku w osi d i q sprowadzone na stronę stojana

L_{Q1}, L_{Q2}, L_{Q3} — indukcyjności rozproszenia człu uzwożeń stojana, wirnika, indukcyjność rozproszenia spowodowana skosem złóbków

L_{Q1}, L_{Q2}, L_{Q3} — indukcyjność rozproszenia segmentu pierścienia zwierającego oraz części pręta wirnika występującego poza pakiet rdzenia sprowadzone na stronę stojana

L_{cr} — indukcyjność zastępcza rozproszenia nieaktywnych części wirnika

L_{cr} — indukcyjność rozproszenia i-tego zastępczego obwodu reprezentującego aktywną część pręta wirnika

L_{cr} — rezystancja i indukcyjność rozproszenia i-tego obwodu zastępczego wirnika

l_e — długość idealna maszyny

m_p, m_t — liczba symetrycznych faz stojana i wirnika

n_s, n_r — gęstości zwojowe uzwojeń stojana, wirnika

n_{f1}, n_{f2}, n_{f3} — gęstości zwojowe uzwożenia wzbudzenia oraz i-tych zastępczych uzwożeń wirnika w osiach d i q

n_{p} — przekładnia między stojanem a wirnikiem

N — liczba szeregowo połączenych zwojów uzwożenia

N_s, N_r — liczba szeregowo połączenych zwojów uzwojenia stojana, wirnika

N_{f1}, N_{f2}, N_{f3} — liczba szeregowo połączenych zwojów uzwożenia wzbudzenia i zastępczych uzwożeń wirnika w osiach d i q

p — liczba par biegunów

p_s, p_t — moc chwilowa stojana, moc czynna stojana

q_s, Q_s — moc chwilowa bierna stojana, moc bierna stojana

Q_r — liczba żłóbków wirnika

R_s, R_t — macierze rezystancji uzwożeń stojana, wirnika

R_s — rezystancja uzwożenia stojana

R_t — rezystancja uzwożenia wirnika silnika pierścieniowego, zastępcza rezystancja uzwożenia wirnika silnika klatkowego, rezystancja zastępcza nieaktywnych części wirnika silnika głębokożłobkowego

R_s, R_t, R_D — rezystancja uzwożenia stojana, uzwożenia wzbudzenia, zastępczych obwodów elektrycznych w wirniku w osi d i q w maszynie synchronicznej

R_{Q1}, R_{Q2}, R_{Q3} — rezystancja stojana pręta i segmentu pierścienia zwierającego wirnika

R_{pr}, R_{cr} — rezystancja części pręta wirnika występującego poza pakiet rdzenia wirnika, rezystancja segmentu pierścienia zwierającego wirnika
\[R_{p_i} \] - rezystancja \(i \)-tego zastępczego obwodu reprezentującego aktywną część pręta wirnika sprowadzona na stronę stojana

\[R_m \] - rezystancja \(i \)-tego obwodu zastępczego obwodu wirnika sprowadzona na stronę stojana

\[r_s, r_r, r_{sr} \] - promień wewnętrzny stojana i zewnętrznzy wirnika, promień średni stojana i wirnika

\[s \] - poślizg wirnika, pole przekroju poprzecznego

\[s_y, s_y^* \] - wrażliwość względna mocy czynnej oraz mocy biernej stojana na zmianę \(i \)-tego parametru

\[T_s, T_r \] - moment elektromagnetyczny, moment mechaniczny

\[\Psi_{sr} \] - wektor chwilowych napięć uzupełniań stojana, wirnika

\[U_{w}, U_{w'} \] - napięcie chwilowe uzupełnień stojana, wirnika

\[U_{i1}, U_{i2} \] - fazor przestrzenny napięcia stojana, wirnika

\[U_{s1}, U_{s2}, U_{r1}, U_{r2} \] - składowe osiowe fazora przestrzennego napięcia stojana, wirnika maszyny asynchronicznej w układzie współrzędnych \((x, y)\)

\[U_{d1}, U_{d2}, U_{q1}, U_{q2} \] - składowe osiowe fazora przestrzennego napięcia stojana w układzie współrzędnych \((d, q)\)

\[u_f \] - napięcie chwilowe uzupełnień wzbudzenia

\[u_{pin} \] - fazory przestrzenne chwilowe czynnej części pręta wirnika głębokożłobkowego

\[W_s, W_r \] - fazory przestrzenne dowolnych wielkości elektromagnetycznych stojana i wirnika w układach współrzędnych związanych ze stojanem i wirnikiem

\[\varphi_s, \varphi_r \] - współrzędne kątowe stojana i wirnika

\[\varphi \] - współrzędna kątowa stojana i wirnika we wspólnym układzie współrzędnych \((x, y)\)

\[\gamma_s, \gamma_r \] - argument fazora przestrzennego prądu stojana, prądu wirnika w układzie współrzędnych związanych ze stojanem, wirnikiem

\[\gamma_1, \gamma_2 \] - argument fazora przestrzennego prądu stojana, prądu wirnika w układzie współrzędnych \((x, y)\)

\[\gamma_m \] - argument fazora przestrzennego prądu magnesującego

\[\mu \] - przemiennikowość magnetyczna

\[n \] - odwrotność przemiennikowości magnetycznej

\[\sigma \] - przewodność elektryczna materiału pręta wirnika

\[\vartheta, \vartheta_x \] - kąt elektryczny obrotu wirnika względem stojana, kąt elektryczny obrotu układu współrzędnych \((x, y)\) względem stojana

\[\omega, \omega_x, \omega_1 \] - prędkość kątowa elektryczna wirnika oraz prędkość kątowa wirowania układu współrzędnych \((x, y)\) względem stojana, pulsacja napięcia stojana

\[\Omega_{as}, \Omega_{ar} \] - prędkość kątowa mechaniczna wirnika

\[\psi_{as}, \psi_{ar} \] - wektor chwilowych strumieni sprzężonych uzupełnień stojana, wirnika

\[\psi_{ms}, \psi_{mr} \] - wektory chwilowych strumieni sprzężonych uzupełnień dla pola rozproszenia stojana i wirnika oraz dla pola głównego

\[\psi_{as}, \psi_{ar} \] - strumienie sprzężone chwilowe uzupełnień stojana dla pola głównego oraz dla pola rozproszenia stojana

\[\psi_{ms}, \psi_{mr} \] - strumienie sprzężone chwilowe uzupełnień wirnika dla pola głównego oraz dla pola rozproszenia wirnika

\[\psi_{as}, \psi_{ar} \] - strumienie sprzężone chwilowe uzupełnień wzbudzenia oraz zastępczych obwodów elektrycznych w wirniku w osi \(d \) i \(q \) maszyny synchronicznej

\[\psi_{as}, \psi_{ar} \] - składowe osiowe fazora przestrzennego strumienia sprzężonego stojana w osi \(d \) i \(q \)

\[\psi_{as}, \psi_{ar} \] - fazory przestrzenne strumienia sprzężonego pola głównego, pola rozproszenia stojana, pola rozproszenia wirnika w układach współrzędnych związanych ze stojanem lub wirnikiem

\[\psi_{as}, \psi_{ar} \] - fazor przestrzenny w układzie współrzędnych zastępczych obwodów elektrycznych dla pola głównego, fazor przestrzenny strumienia sprzężonego pola głównego

\[\psi_{as}, \psi_{ar} \] - fazor przestrzenny strumienia sprzężonego uzupełnień stojana, wirnika dla pola głównego, fazor przestrzenny strumienia sprzężonego pola głównego

\[\psi_{as}, \psi_{ar} \] - składowe osiowe \(d \) i \(q \) fazora przestrzennego strumienia sprzężonego pola głównego i pola rozproszenia stojana

\[\psi_{as}, \psi_{ar} \] - fazor przestrzenny w układzie współrzędnych zastępczych obwodów elektrycznych dla pola głównego i jego składowe osiowe

\[\psi_{as}, \psi_{ar} \] - fazory przestrzenne strumieni sprzężonych pola rozproszenia wirnika i jego składowe osiowe

\[\psi_{as}, \psi_{ar} \] - fazory przestrzenne strumieni sprzężonych pola rozproszenia stojana, wirnika w układzie współrzędnych \((x, y)\)

\[\psi_{as}, \psi_{ar} \] - fazory przestrzenne strumieni sprzężonych pola rozproszenia żłobkowego stojana i wirnika w układzie współrzędnych zastępczych \((s)\) i \(z \) wirnikiem \((r)\)

\[\psi_{as}, \psi_{ar} \] - fazory przestrzenne strumieni sprzężonych pola rozproszenia żłobkowego i szczelinowego stojana oraz wirnika w układzie współrzędnych zastępczych \((s)\) i \(z \) wirnikiem \((r)\)

\[\psi_{as}, \psi_{ar} \] - strumień sprzężony oczka wirnika dla pola rozproszenia wirnika (nie uwzględnia strumieni rozproszenia żłobkowego wokół czynnych części prętów wirnika)

\[\psi_{as}, \psi_{ar} \] - fazor przestrzenny strumienia sprzężonego pola rozproszenia czynnych części wirnika w układzie współrzędnych zastępczych \((s)\) i \(z \) wirnikiem (nie uwzględnia strumieni rozproszenia żłobkowego wokół czynnych części prętów wirnika)
\[\Psi_m(I_m), \Psi_m^l(I_m) \Psi_m^{\text{d}l}(I_m) \] syntezytyczne charakterystyki strumieni sprzężonych pola głównego

\[\Psi_r(I_r), \Psi_r^l(I_r) \] syntezytyczne charakterystyki strumieni sprzężonych pola rozproszenia stojana i wirnika

\[\Psi_{\alpha z}(I_z), \Psi_{\alpha z}^l(I_z) \] syntezytyczne charakterystyki strumieni sprzężonych pola rozproszenia żłobkowego stojana i wirnika

\[\Psi_{\alpha z k}(I_z), \Psi_{\alpha z k}^l(I_z) \] syntezytyczne charakterystyki strumieni sprzężonych pola rozproszenia żłobkowego i szczelinowego stojana, wirnika

Uwaga:

Fazory przestrzenne dowolnych wielkości elektromagnetycznych, ich moduły, argumenty oraz składowe osiowe są funkcjami czasu.

Kropką oznaczono wielkości sprowadzone na stronę stojana, dwiema kropkami oznaczono wielkości sprowadzone na stronę wirnika.

1. WPROWADZENIE. CEL I ZAKRES PRACY

Badania oraz analizy właściwości eksploatacyjnych maszyn elektrycznych prądu przemiennego: asynchronicznych i synchronicznych, pracujących w systemach elektromechanicznych i elektroenergetycznych, przeprowadzane są najczęściej za pomocą komputerów oraz specjalistycznego oprogramowania. Oprogramowanie to, wykorzystując zaimplementowane w odpowiednim języku algorytmicznym modele matematyczne maszyn elektrycznych oraz elementów składowych badanych systemów, umożliwia przeprowadzenie wszelkich eksperymentów symulacyjnych otwarzających różnorodne stany pracy systemów oraz maszyn elektrycznych, w tym także stany awaryjne. Ilościowe oceny właściwości eksploatacyjnych maszyn elektrycznych w postaci przebiegów i charakterystyk, otrzymane w wyniku eksperymentów symulacyjnych, mogą być wykorzystane:

• przy projektowaniu nowych maszyn elektrycznych oraz przy projektowaniu zmian konstrukcyjnych eksploatacyjnych maszyn,
• do analizy i syntez układów zasilania i sterowania maszyn elektrycznych,
• do oceny ich prawidłowej pracy jak również do analizy przyczyn ich awarii.

Do ważnych aspektów związanych z badaniami symulacyjnymi należą:

• wiarygodność otrzymywanych wyników obliczeń i wyciąganych na ich podstawie wniosków,
• pracochłonność przygotowania i wykonania badań symulacyjnych przy użyciu typowego sprzętu komputerowego.

Wiarygodność badań symulacyjnych, której miarą mogą być obserwowane różnice między wynikami pomiarowymi a wynikami obliczeń komputerowych, zależy od:

• dokładności odwzorowania w modelach matematycznych maszyn elektrycznych zjawisk elektromagnetycznych, mechanicznych i cieplnych decydujących o właściwościach eksploatacyjnych maszyn,
• dokładności wyznaczonych na drodze pomiarowej lub obliczeniowej parametrów (współczynników) równań tworzących modele matematyczne,
• dokładności stosowanych algorytmów numerycznych,

Pracochłonność przygotowania i wykonania badań symulacyjnych zależy głównie od:

• liczby oraz charakteru równań algebraiczno-różniczkowych opisujących stany dynamiczne maszyn (równania różniczkowe o pochodnych cząstkowych, równania różniczkowe o pochodnych zwyczajnych, równania algebraiczne, równania nieliniowe, liniowe itp),
• liczby oraz rodzaju współczynników występujących w modelach matematycznych, w tym także liczby i rodzaju danych geometrycznych i materiałowych,
• efektywności zaimplementowanych algorytmów numerycznych,
• jakości oprogramowania, w tym zwłaszcza graficznego interfejsu użytkownika,
• wydajności obliczeniowej sprzętu komputerowego.

Wiarygodność oraz pracochłonność wykonywanych badań symulacyjnych zależą więc przede wszystkim od rodzaju stosowanych modeli matematycznych maszyn elektrycznych i innych elementów składowych rozpatrywanych systemów. Opracowanie efektywnych modeli matematycznych maszyn elektrycznych wymaga osiągnięcia kompromisu pomiędzy złożonością modeli a pracochłonnością ich wykorzystania.
Przy opracowaniu modeli matematycznych maszyn elektrycznych kompromis ten osiąga się dokonując analizy procesów fizycznych występujących w maszynach oraz korzystając z doświadczeń i intuicji inżynierskiej popartych gromadzonymi przez wiele lat wynikami badań analiz. Ograniczając dalsze rozważania do maszyn elektrycznych prądu przemiennego można przyjąć, że dokładność odzworzenia ich właściwości elektromagnetycznych i elektrodynamicznych zależy od sposobu uwzględnienia w modelach matematycznych tych maszyn:

- wypierana prądów w różnych elementach maszyn (uzwożenia, kliny, elementy lite itp),
- nasycenia magnetycznego rdzeni stojana i wirnika,
- rozłożenia uzwożeń w złożkach stojana i wirnika,
- zmian grubości szczeliny powietrznej między stojanem a wirnikiem spowodowanej obecnością żłóboków.

Łączne uwzględnienie wszystkich wymienionych zjawisk jest możliwe w polowo-obwodowych modelach maszyn elektrycznych. Modele polowo-obwodowe odzwierciedlają właściwości maszyn w sposób najbardziej dokładny, są one równocześnie najbardziej złożone, a ich wykorzystanie jest możliwe tylko przy użyciu specjalnych metod numerycznych (np. metody elementów skończonych) oraz szybkich komputerów.

Złożoność modeli polowo-obwodowych jak i pracochłonność przygotowania i wykonania przy ich użyciu obliczeń powoduje, że modele te są wykorzystywane jeszcze w ograniczonym zakresie i praktycznie nie są stosowane w badaniach i analizach wielomasażnych systemów elektromechanicznych i elektroenergetycznych. W konsekwencji prowadzone są w dalszym ciągu prace naukowo-badawcze, których celem jest opracowanie dokładniejszych modeli obwodowych maszyn elektrycznych. Przy opracowywaniu obwodowych modeli maszyn elektrycznych prądu przemiennego wymienione powyżej zjawiska elektromagnetyczne uwzględnia się zwykle oddzielnie, pomijając tym samym ich wzajemną interakcję.

Celem niniejszej pracy jest przedstawienie zagadnień dotyczących:

- opracowania modeli matematycznych maszyn elektrycznych prądu przemiennego o parametrach skupionych uwzględniających nasyczenie magnetyczne rdzeni stojana i wirnika,
- oceny wpływu nasycenia magnetycznego rdzeni na wybrane charakterystyki i przebiegi dynamiczne badanych maszyn,
- wyznaczania parametrów elektromagnetycznych opracowanych modeli matematycznych na podstawie wyników pomiarów lub wyników obliczeń polowo-obwodowych.

W pracy nie uwzględnia się zjawisk spowodowanych wyższymi harmonicznymi rozkładu przestrzennego okładu prądowego uzwożeń oraz zjawisk spowodowanych zmianą grubości szczeliny powietrznej między stojanem a wirnikiem wynikającą z ułożenia obwodów rdzeni maszyny. Opracowane modele dotyczą więc tak zwanym monoharmonicznych modeli matematycznych maszyn elektrycznych. Rozważania w pracy ograniczono do typowych maszyn elektrycznych prądu przemiennego, a więc maszyn asynchronicznych i synchronicznych w układzie elektromagnetycznym.

Praca jest podzielona na 13 rozdziałów. Rozdział drugi zawiera przegląd literatury naukowo-technicznej dotyczącej sposobów uwzględnienia nasycenia magnetycznego rdzeni w modelach matematycznych maszyn elektrycznych prądu przemiennego. Przy omawianiu przeglądu literatury szczególną uwagę skupiono na obwodowych modelach maszyn elektrycznych prądu przemiennego. W rozdziale trzecim przedstawiono ogólny model matematyczny wielofazowej symetrycznej maszyny elektrycznej we współprądnych naturalnych, pokazując w jaki sposób nasycenie magnetyczne rdzeni utrudnia stosowanie tego modelu. W rozdziale tym sformułowano tezy pracy wskazujące, że przyjmując zasadę rozdziału...
2. STAN ZAGADNIENIA. PRZEGLĄD LITERATURE

Potrzeba uwzględnienia nasycenia magnetycznego rdzeni maszyn elektrycznych prądu przemiennego w obliczeniach projektowych oraz w modelach matematycznych maszyn elektrycznych stosowanych w badaniach symulacyjnych jest znana od wielu dziesiątków lat. Przeprowadzane badania eksperymentalne maszyn elektrycznych prądu przemiennego w stanach ustalonych i nieustalonych, w różnych warunkach zasilania i obciążenia, pokazywały rozbieżności pomiędzy wynikami pomiarów a wynikami obliczeń projektowych i wynikami badań symulacyjnych. Jako jeden z powodów obserwowanych rozbieżności wyników obliczeń oraz wyników pomiarów uznano pominięcie lub uwzględnienie w sposób niedostatecznie dokładny nasycenia magnetycznego rdzeni maszyny.

W konsekwencji, od wielu dziesiętków lat zagadnieni opracowania modeli matematycznych maszyn elektrycznych prądu przemiennego, uwzględniających nasyczenie magnetyczne rdzeni, są przedmiotem zainteresowania zespołów badawczych w wielu ośrodkach naukowych w kraju i za granicą, o czym świadczy dołączony do pracy spis literatury.

W początkowym okresie rozwoju teorii maszyn elektrycznych prądu przemiennego nasyczenie magnetyczne rdzeni uwzględniane było głównie w obliczeniach projektowych. Na podstawie wyników badań doświadczalnych oraz obliczeń korygowano niektóre parametry schematów zastępczych maszyn asynchronicznych oraz synchronicznych, tak aby obliczone charakterystyki maszyn w analizowanych stanach pracy były zbliżone do charakterystyk wyznaczonych z pomiarów.

Rozwój teorii maszyn elektrycznych, metod numerycznych w szczególności w zakresie obliczeń pól elektromagnetycznych, dostępność coraz szybszego sprzętu obliczeniowego spowodowało, że w ciągu ostatnich 20-30 lat wypracowane zostały sposoby uwzględniania nasyczenia magnetycznego rdzeni w modelach obwodowych maszyn elektrycznych prądu przemiennego. Modele te są przedmiotem badań w wielu ośrodkach naukowych, w kraju i za granicą, a towarzyszyły też szerokością zastosowań, które są przedmiotem zainteresowania zespołów badawczych w wielu ośrodkach naukowych, w kraju i za granicą, a towarzyszyły też szerokością zastosowań, które są przedmiotem badań w wielu ośrodkach naukowych, w kraju i za granicą, a towarzyszyły też szerokością zastosowań, które są przedmiotem badań w wielu ośrodkach naukowych, w kraju i za granicą, a towarzyszyły też szerokością zastosowań, które są przedmiotem badań w wielu ośrodkach naukowych, w kraju i za granicą, a towarzyszyły też szerokością zastosowań, które są przedmiotem badań w wielu ośrodkach naukowych, w kraju i za granicą, a towarzyszyły też szerokością zastosowań, które są przedmiotem badań w wielu ośrodkach naukowych, w kraju i za granicą, a towarzyszyły też szerokością zastosowań, które są przedmiotem badań w wielu ośrodkach naukowych, w kraju i za granicą, a towarzyszyły też szerokością zastosowań, które są przedmiotem badań w wielu ośrodkach naukowych, w kraju i za granicą, a towarzyszyły też szerokością zastosowań, które są przedmiotem badań w wielu ośrodkach naukowych, w kraju i za granicą, a towarzyszyły też szerokością zastosowań, które są przedmiotem badań w wielu ośrodkach naukowych, w kraju i za granicą, a towarzyszyły też szerokością zastosowań, które są przedmiotem badań w wielu ośrodkach naukowych, w kraju i za granicą, a towarzyszyły też szerokością zastosowań, które są przedmiotem badań w wielu ośrodkach naukowych, w kraju i za granicą, a towarzyszyły też szerokością zastosowań, które są przedmiotem badań w wielu ośrodkach naukowych, w kraju i za granicą, a towarzyszyły też szerokością zastosowań, które są przedmiotem badań w wielu ośrodkach naukowych, w kraju i za granicą, a towarzyszyły też szerokością zastosowań, które są przedmiotem badań w wielu ośrodkach naukowych, w kraju i za granicą, a towarzyszyły też szerokością zastosowań, które są przedmiotem badań w wielu ośrodkach naukowych, w kraju i za granicą, a towarzyszyły też szerokością zastosowań, które są przedmiotem badań w wielu ośrodkach naukowych, w kraju i za granicą, a towarzyszyły też szerokością zastosowań, które są przedmiotem badań w wielu ośrodkach naukowych, w kraju i za granicą, a towarzyszyły też szerokością zastosowań, które są przedmiotem badań w wielu ośrodkach naukowych, w kraju i za granicą, a towarzyszyły też szerokością zastosowań, które są przedmiotem badań w wielu ośrodkach naukowych, w kraju i za granicą, a towarzyszyły też szerokością zastosowań, które są przedmiotem badań w wielu ośrodkach naukowych, w kraju i za granicą, a towarzyszyły też szerokością zastosowań, które są przedmiotem badań w wielu ośrodkach naukowych, w kraju i za granicą, a towarzyszyły też szerokością zastosowań, które są przedmiotem badań w wielu ośrodkach naukowych, w kraju i za granicą, a towarzyszyły też szerokością zastosowań, które są przedmiotem badań w wielu ośrodkach naukowych, w kraju i za granicą, a towarzyszyły też szerokością zastosowań, które są przedmiotem badań w wielu ośrodkach naukowych, w kraju i za granicą, a towarzyszyły też szerokością zastosowań, które są przedmiotem badań w wielu ośrodkach naukowych, w kraju i za granicą, a towarzyszyły też szerokością zastosowań, które są przedmiotem badań w wielu ośrodkach naukowych, w kraju i za granicą, a towarzyszyły też szerokością zastosowań, które są przedmiotem badań w wielu ośrodkach naukowych, w kraju i za granicą, a towarzyszyły też szerokością zastosowań, które są przedmiotem badań w wielu ośrodkach naukowych, w kraju i za granicą, a towarzyszyły też szerokością zastosowań, które są przedmiotem badań w wielu ośrodkach naukowych, w kraju i za granicą, a towarzyszyły też szerokością zastosowań, które są przedmiotem badań w wielu ośrodkach naukowych, w kraju i za granicą, a towarzyszyły też szerokością zastosowań, które są przedmiotem badań w wielu ośrodkach naukowych, w kraju i za granicą, a towarzyszyły też szerokością zastosowań, które są przedmiotem badań w wielu ośrodkach naukowych, w kraju i za granicą, a towarzyszyły też szerokością zastosowań, które są przedmiotem badań w wielu ośrodkach naukowych, w kraju i za granicą, a towarzyszyły też szerokością zastosowań, które są przedmiotem badań w wielu ośrodkach naukowych, w kraju i za granicą, a towarzyszyły też szerokością zastosowań, które są przedmiotem badań w wielu ośrodkach naukowych, w kraju i za granicą, a towarzyszyły też szerokością zastosowań, które są przedmiotem badań w wielu ośrodkach naukowych, w kraju i za granicą, a towarzyszyły też szerokością zastosowań, które są przedmiotem badań w wielu ośrodkach naukowych, w kraju i za granicą, a towarzyszyły też szerokością zastosowań, które są przedmiotem badań w wielu ośrodkach naukowych, w kraju i za granicą, a towarzyszyły też szerokością zastosowań, które są przedmiotem badań w wielu ośrodkach naukowych, w kraju i za granicą, a towarzyszyły też szerokością zastosowań, które są przedmiotem badań w wielu ośrodkach naukowych, w kraju i za granicą, a towarzyszyły też szerokością zastosowań, które są przedmiotem badań w wielu ośrodkach naukowych, w kraju i za granicą, a towarzyszyły też szerokością zastosowań, które są przedmiotem badań w wielu ośrodkach naukowych, w kraju i za granicą, a towarzyszyły też szerokością zastosowań, które są przedmiotem badań w wielu ośrodkach naukowych, w kraju i za granicą, a towarzyszyły też szerokością zastosowań, które są przedmiotem badań w wielu ośrodkach naukowych, w kraju i za granicą, a towarzyszyły też szerokością zastosowań, które są przedmiotem badań w wielu ośrodkach naukowych, w kraju i za granicą, a towarzyszyły też szerokością zastosowań, które są przedmiotem badań w wielu ośrodkach naukowych, w kraju i za granicą, a towarzyszyły też szerokością zastosowań, które są przedmiotem badań w wielu ośrodkach naukowych, w kraju i za granicą, a towarzyszyły też szerokością zastosowań, które są przedmiotem badań w wielu ośrodkach naukowych, w kraju i za granicą, a towarzyszyły też szerokością zastosowań, które są przedmiotem badań w wielu ośrodkach naukowych, w kraju i za granicą, a towarzyszyły też szerokość
Dalsze prace w tym zakresie dotyczyły maszyn synchronicznych, w których wymienione fazory nie są kolinearne [18, 19, 33, 36, 44, 55, 63, 66, 67, 80, 87, 92, 95, 105, 109, 112, 118], [135, 142, 143, 154, 158, 160, 162, 173, 178, 184, 195, 202, 203]. W pracach tych sformułowano modele matematyczne maszyn synchronicznych wykorzystując w tym celu charakterystyki składowych osiowych fazora przestrzennego strumienia sprzężonego pola głównego w funkcji składowych osiowych fazora przestrzennego prądu magnesującego lub też modułu i argumentu tego fazora.

Oprócz problematyki uwzględnienia w modelach obwodowych maszyn elektrycznych nasyżenia magnetycznego rdzeni przez pole główne, przedmiotem badań były także zagadnienia uwzględnienia w tych modelach nasyżenia magnetycznego rdzeni przez pole rozproszenia stojana i wirnika. W pracach tych, analizując rozkład przestrzennego pola magnetycznego w obszarze podziałki źłobkowej, podziałki biegunowej, wyznaczano nieliniowe charakterystyki strumieni sprzężonych uzwojeń maszyn dla tych pól [10, 16, 19, 26], [52, 69, 71, 94, 103, 125, 145, 153, 192, 199, 200, 237]. Podejmowane były także próby uwzględnienia w modelach obwodowych maszyn nasyczenia oraz wypierania prądu w prętach wirnika [10, 204, 223].

Równolegle z badaniami symulacyjnymi podjęto pracę nad wyznaczeniem parametrów opracowanych modeli na podstawie danych konstrukcyjnych i pomiarów. Rozwój metod elementów skończonych spowodował, że charakterystyki strumieni sprzężonych oraz parametry skupione typu (R, L) wyznaczane są na podstawie obliczeń rozkładów przestrzennych i przestrzenno-czasowych pola elektromagnetycznego w maszynach [2, 41, 51, 76, 86, 97], [98, 102, 113, 114, 119, 136, 137, 139, 152, 169, 170, 171, 172, 179, 180, 182, 197, 207].

Dostępność specjalistycznego sprzętu pomiarowego z komputerową akwizycją i analizą sygnałów pomiarowych spowodowała możliwość estymacji parametrów opracowanych modeli na podstawie wyników pomiaru przy wykorzystaniu głównie metod najmniejszych kwadratów oraz gradientowych i genetycznych algorytmów optymalizacji [37, 40, 64, 88, 101, 111], [121, 122, 123, 124, 127, 141, 147, 148, 149, 151, 163, 164, 224, 230, 230, 237, 239].

W wyniku prowadzonych badań, opracowano dokładniejsze obwodowe modele maszyn elektrycznych prądu przemiennego, uwzględniające nasycenie magnetyczne rdzeni. Model te zaimplementowane w programach komputerowych umożliwiają badania symulacyjne maszyn elektrycznych prądu przemiennego pracujących w systemach elektroenergetycznych i elektromechanicznych.

3. TEZY PRACY

Model matematyczny maszyny elektrycznej o parametrach skupionych, uwzględniający zjawiska elektromagnetyczne i elektromechaniczne, tworzą:
- układ równań różniczkowych o pochodnych zwyczajnych wyrażający stan napięciowy uzwojeń;
- układ równań algebraicznych określający strumienie sprzężone uzwojeń;
- równanie ruchu wirnika.

Rys. 3.1. Schemat ideowy symetrycznych uzwojeń stojana i wirnika Fig. 3.1. Schematic diagram of electrical machine stator and rotor symmetrical windings

Dla maszyny elektrycznej, w której występuje m_s galwanicznie wyodrębnionych symetrycznych uzwojeń stojana oraz m_r galwanicznie wyodrębnionych symetrycznych uzwojeń wirnika (rys. 3.1), równania napięciowe uzwojeń mają następującą postać macierzową:
- dla uzwojeń stojana
- dla uzwojeń wirnika

$$u_s = R_s i_s + \frac{d\Psi_s}{dt},$$

$$u_r = R_r i_r + \frac{d\Psi_r}{dt}. $$

Strumienie sprzężone uzwojeń stojana i wirnika są funkcjami chwilowych prądów w uzwojeniach oraz kąta obrotu wirnika względem stojana. Funkcje te można przedstawić w postaci:
- dla stojana
- dla wirnika

$$\Psi_s = \Psi_s (i_s, i_r, \vartheta),$$

$$\Psi_r = \Psi_r (i_s, i_r, \vartheta).$$

(3.3)
Równanie ruchu wirnika zależy od struktury układu mechanicznego maszyny oraz zewnętrznego układu mechanicznego, z którym maszyna elektryczna współpracuje. W pracy przyjęto, że układ mechaniczny maszyny elektrycznej i maszyny roboczej jest ciałem sztywnym, stąd równanie ruchu wirnika można zapisać w następującej postaci:

\[J \frac{d\Omega_m}{dt} = T_e - T_m \quad \text{lub} \quad J \frac{d\omega}{dt} = \frac{\tau_e}{p} - \frac{\tau_m}{p} \quad \text{lub} \quad \frac{\tau_e}{p} = \frac{\tau_m}{p} \frac{\partial \phi_m}{\partial \omega} \text{,} \]

gdzie:

- \(\tau \) - wektory chwilowych napięć, prądów, strumieni sprzężonych uzwojen stojana (s) i wirnika (r),
- \(R_s, R_r \) - macierze rezystancji uzwojeń stojana i wirnika,
- \(T_e, T_m, E_c, J \) - moment elektromagnetyczny, moment mechaniczny, koenergia magnetyczna, masowy moment bezwładności,
- \(\phi_s, \phi_r, \phi_m, \phi, \omega_s, \omega_r, \omega_m, p \) - prędkość kątowa wirnika mechaniczna, elektryczna, kąt obrotu wirnika mechaniczny, elektryczny, liczba par biegunów.

Pomijając nascenie magnetyczne rdzeni, poprzez przyjęcie liniowych charakterystyk magnesowania materiałów magnetycznych tworzących rdzenie (określonych na podstawie części niesuniaczej charakterystyki magnesowania) oraz poprzez określenie stałych wartości przenikalności magnetycznych w określonych strefach rdzeni (strefa zębów stojana i wirnika, strefa jarzma itp.) strumienie sprzężeń uzwojeń stojana i wirnika są funkcjami liniowymi chwilowych prądów w uzwojeniach oraz w ogólnym przypadku określonym funkcjami kąta obrotu wirnika względem stojana. W rezultacie strumienie sprzężone uzwojen wyraża się za pomocą macierzy indukcyjności własnych i wzajemnych uzwojeń zależnych jedynie od kąta obrotu wirnika względem stojana.

\[\Psi_s = \Psi_s(i_s, \omega_s, \theta_s) = L_{ss}(\theta_s)i_s + L_{sr}(\theta_s)i_r \]
\[\Psi_r = \Psi_r(i_r, \omega_r, \theta_r) = L_{rs}(\theta_r)i_s + L_{rr}(\theta_r)i_r \]

gdzie:

- \(L_{ss}(\theta_s) \), \(L_{sr}(\theta_s) \), \(L_{rs}(\theta_r) \), \(L_{rr}(\theta_r) \) - macierze indukcyjności własnych i wzajemnych uzwojeń.

Korzystając z zasady superpozycji, elementy macierzy indukcyjności można wyznaczyć na podstawie rozkładów przestrzennych pola magnetycznego w maszynie, obliczonych dla dyskretnych wartości kąta obrotu wirnika względem stojana, przyjmując dowolną wartość prądu w odpowiednich uzwojeniach. Indukcyjności obliczone dla dyskretnych wartości kąta obrotu wirnika można następnie aproksymować za pomocą funkcji sklejanych lub za pomocą szeregów Fouriera.

W przypadku gdy nie pomija się nascenia magnetycznego rdzeni, do rozwiązania równań magnesowej konieczna jest znajomość nieliniowych charakterystyk strumieni sprzężonych uzwojeń. Określenie tych charakterystyk w postaci tabelarycznej lub analitycznej jest zagadnieniem trudnym, zwłaszcza jeśli liczba uzwojeń maszyny jest duża (np. maszyna indukcyjna klatkowa, maszyna synchroniczna). Wymaga to bowiem przeprowadzenia obliczeń strumieni sprzężonych uzwojen dla wszystkich podstawowych wartości chwilowych prądów oraz dla wszystkich wartości kąta obrotu wirnika względem stojana. Przezprowadzenie takiej ilości obliczeń a następnie analiz stanu czasochłonne a praktycznie możliwe do przeprowadzenia tylko dla maszyn elektrycznych, w których występuje kilka uzwojeń (np. maszyn reluktancyjnych bez klatki rozruchowej, maszyn reluktancyjnych przełączalnych).

Dla pozostałych maszyn elektrycznych prądów przełączalnych konieczne jest więc poszukiwanie innego sposobu wyznaczenia charakterystyk strumieni sprzężonych uzwojeń. Najczęściej charakterystyki strumieni sprzężonych uzwojeń wyznacza się bazując na stosowanej teorii maszyn elektrycznych zasadzie rozdziału wypadowego pola magnetycznego w maszynie na pola składowe: pole główne oraz pola rozproszenia stojana i wirnika oraz na uproszczającym założeniu, że pola te wzajemnie nie wpływają na stan nascenia rdzeni magnetycznych maszyny.

Podstawę takiego sposobu postępowania jest jakościowy podział linii pola magnetycznego na dwie zasadnicze kategorie różniące się zarówno drogą ich przebiegu w maszynie, jak i rodzajem powodowanych sprzężeń magnetycznych uzwojeń maszyny. Wyodrębnia się więc:

- linie pola tworzące pole magnetyczne główne, przebiegające z wirnika do stojana oraz z powrotem ze stojana do wirnika poprzez szczelinę powietrzną maszyny magnetycznej, maszyna synchroniczna),
- linie pola tworzące pola rozproszenia stojana i wirnika, przebiegające w obrębie rdzeni stojana lub wirnika oraz ich przyszczelinowych powierzchni.

Istota wymienionego podziału pole magnetycznego w maszynie polega nieco jednak na wyodrębnieniu pól składowych, a między innymi na pola magnetycznego, lecz na ich oddzielonym wyznaczeniu na podstawie specjalnie opracowanych modeli obliczeniowych, w których pola te występują samodzielnie bądź też są dominujące.

Podstawową korzyścią takiego sposobu postępowania jest zmniejszenie liczby prądów decydujących o rozkładzie przestrzennym pól składowych, co pozwala na łatwiejszą analizę strumieni sprzężonych uzwojeń dla pól tych pól oraz na ich wyrażenie w postaci prostszych zależności funkcyjnych.

Wyznaczone w ten sposób strumienie sprzężone uzwojeń maszyny umożliwiają opracowanie przybliżonych modeli matematycznych maszyn elektrycznych uwzględniających nascenie magnetyczne rdzeni. Wiarygodność modeli przybliżonych można ocenić weryfikując w sposób porównawczy lub obliczeniowy wyniki badań. Weryfikacja taka polega na porównaniu wyników badań symulacyjnych z wynikami pomiarów lub wynikami obliczeń symulacyjnych przeprowadzonych za pomocą bardziej dokładnych modeli połowowo-obowiązujących.

Skorzystanie z podziału wypadowego pola magnetycznego na pola składowe umożliwia zapisanie następujących zależności:

\[\Psi_s = \Psi_s(i_s, \omega_s, \theta_s) = \Psi_{sm}(i_s, \omega_s, \theta_s) + \Psi_{mr}(i_s, \omega_s, \theta_s) \]
\[\Psi_r = \Psi_r(i_r, \omega_r, \theta_r) = \Psi_{sr}(i_r, \omega_r, \theta_r) + \Psi_{ms}(i_r, \omega_r, \theta_r) \]

gdzie:

- \(\Psi_{sm}, \Psi_{mr}, \Psi_{ms}, \Psi_{sr} \) - wektory chwilowych strumieni sprzężonych uzwojeń dla pola rozproszenia stojana i wirnika oraz dla pola głównego.

Jako wynika z przedstawionych wzorów, strumienie sprzężone uzwojeń maszyny dla pól rozproszonych są funkcjami prądów płynących tylko w uzwojeniach stojana oraz tylko w uzwojeniach wirnika, a strumienie sprzężone dla pola głównego są zależne od prądów stojana i wirnika oraz kątu obrotu wirnika.

W przypadku monoharmonicznych modeli matematycznych maszyn elektrycznych prądów przełączalnych, czyli takich, w których uzwojenia stojana i wirnika są rozłożone sinusoidalnie, w konsekwencji sprzężone są ze sobą za pośrednictwem tylko podstawowej harmonicznej składowej promieniowej wektora indukcji magnetycznej w szczelinie powietrznej maszyny,

Niniejsza praca bazuje na głównych ideach podanych przez wymienionych autorów a zawarte w niej rozważania oraz wyniki są ich rozszerzeniem. Głównym celem pracy jest uzasadnienie następujących tez:

1. W monoharmonicznych modelach matematycznych maszyn elektrycznych prądu przemiennego (asynchronicznych i synchronicznych) strumienie sprzężone uzwojeń dla pola magnetycznego głównego można wyznaczyć za pomocą fazora przestrzennego strumienia sprzężonego pola głównego, który jest nieliniową funkcją modułu i argumentu fazora przestrzennego prądu magnesującego.

2. Składowe osiowe fazora przestrzennego strumienia sprzężonego pola głównego można z dobrym przybliżeniem wyrazić za pomocą niewielkiej liczby syntetycznych charakterystyk strumieni sprzężonych pola głównego, które są funkcjami tylko modułu fazora przestrzennego prądu magnesującego.

3. W symetrycznych stanach pracy maszyn asynchronicznych strumienie sprzężone uzwojenia stojana i wirnika dla pola rozproszenia można wyznaczyć za pomocą fazorów przestrzennych strumieni sprzężonych pola rozproszenia stojana lub wirnika, które są nieliniowymi funkcjami modułu i argumentu fazora przestrzennego odpowiednich prądów:
 • prądu stojana,
 • prądu wirnika.

4. W symetrycznych stanach pracy maszyn synchronicznych strumienie sprzężone uzwojenia stojana dla pola rozproszenia stojana można wyznaczyć za pomocą fazora przestrzennego strumienia sprzężonego pola rozproszenia stojana, który jest nieliniową funkcją modułu i argumentu fazora przestrzennego prądu stojana.

5. Składowe osiowe fazorów przestrzennych strumieni sprzężonych pola rozproszenia stojana i wirnika można z dobrym przybliżeniem wyrazić za pomocą syntetycznych charakterystyk strumieni sprzężonych pola rozproszenia, które są funkcją tylko modułu fazorów przestrzennych odpowiednich prądów.

6. Stosując teorię fazorów przestrzennych oraz wykorzystując syntetyczne charakterystyki strumieni sprzężonych można sformułować monoharmoniczne modele matematyczne maszyn elektrycznych prądu przemiennego, które uwzględniają nascenie magnetyczne rdzeni przez pole główne i pola rozproszenia stojana i wirnika.

7. Syntetyczne charakterystyki strumieni sprzężonych oraz parametry skupione występujące w opracowanych modelach matematycznych maszyn można wyznaczyć na podstawie pomiarów lub obliczeń.

4. STRUMIENIE SPRZĘŻONE UZWOJEŃ STOJANA I WIRNIKA DLA POLA MAGNETYCZNEGO GŁÓWNEGO

W celu wyznaczenia strumieni sprzężonych uzwojen stojana i wirnika dla pola magnetycznego głównego do rozważań przyjęto dwa zasadnicze typy modeli obliczeniowych maszyn asynchronicznych i synchronicznych:

- modele obliczeniowe o wyidealizowanej, pozbawionej złobków, strukturze rdzeni magnetycznych stojana i wirnika (rys. 4.6),
- modele obliczeniowe o rzeczywistej - użłobkowanej strukturze rdzeni magnetycznych stojana i wirnika (rys. 4.19, 4.20)

Rys. 4.1. Uzwojenia stojana i wirnika maszyn asynchronicznych
Fig. 4.1. Stator and rotor windings of asynchronous machines

W modelach obliczeniowych maszyn synchronicznych w stojanie i wirniku występują symetryczne odpowiednio m_s- i m_r- fazowe uzwożenia. Natomiast w modelach obliczeniowych maszyn synchronicznych, w stojanie występuje symetryczne m_s- fazowe uzwojenie, a w wirniku znajduje się uzwojenie wbudowania oraz n_d i n_q umyślnych-fikcyjnych (wirtualnych) uzwojeń reprezentujących w przybliżeniu wpływ prądów indukowanych w przewodzących elementach wirnika na właściwości maszyny. Każde uzwojenie rozpatrywanych maszyn: rzeczywiste oraz umyślone-fikcyjne scharakteryzowano w sposób jednolity przez liczbę szeregowo połączonych zwojów N_s współczynnik uzwojenia dla podstawowej harmonicznej obwodowej k_w oraz oś magnetyczną położenia uzwojenia. Uzwożenia analizowanych maszyn elektrycznych w sposób
ideowy przedstawiono na rys. 4.1 - 4.2. Przy wyznaczaniu pola magnetycznego w obu typach modeli obliczeniowych przyjęto, że pole magnetyczne w rozpatrywanych modelach jest polem 2 - wymiarowym.

4.1. Strumienie sprzężone uzupełnie dla pola magnetycznego głównego w modelach obliczeniowych maszyn o wyidealizowanej strukturze rdzeni

W modelach obliczeniowych maszyn o wyidealizowanej strukturze rdzeni przyjmuje się, że uzupełnienia stojana i wirnika mają postać nieskończenie cienkich łusek prądowych, które są rozłożone sinusoidalnie wzdłuż obwodu powierzchni walcowych, przylegających doewnętrznej powierzchni stojana i zewnętrznjej powierzchni wirnika lub też stycznych do zewnętrznjej powierzchni wirnika (maszyny synchroniczne z wydatnymi biegunami).

Wyidealizowane modele obliczeniowe umożliwiają przeprowadzenie jakościowej analizy strumieni sprzężonych uzupełnie dla pola magnetycznego głównego. Wykorzystując uproszczone modele obliczeniowe wprowadzi się do rozważań pojęcia: zastępczych uzwojeń magnesujących maszyny, fazora przestrzennego prądu magnesującego oraz fazora przestrzennego strumienia sprzężonego uzupełnie dla pola głównego. Dla fazora przestrzennego strumienia sprzężonego oraz jego składowych osiowych określone zostaną ich charakterystyczne właściwości.

4.1.1. Okład prądowy uzupełnie stojana i wirnika, zastępcze uzwojenia magnesujące, fazor przestrzenny prądu magnesującego

W wyidealizowanych modelach obliczeniowych prądy chwilowe w uzwojeniach maszyny wytwarzają okład prądowy uzwojenia stojana i wirnika

\[\alpha_s(\varphi_s) = n_s(\varphi_s)i_s, \quad \alpha_r(\varphi_r) = n_r(\varphi_r)i_r, \]

gdzie:
- \(\alpha_s(\varphi_s), \alpha_r(\varphi_r) \) - rozkłady obwodowe okładu prądowego stojana, wirnika,
- \(n_s(\varphi_s), n_r(\varphi_r), i_s, i_r \) - rozkłady obwodowe gęstości zwojowych uzwojenia stojana i wirnika, prądy chwilowe w uzwojeniach stojana i wirnika.

Dla symetrycznych i sinusoidalnie rozłożonych uzwojenia stojana i wirnika maszyny asynchronicznej rozkłady obwodowe gęstości zwojowych dla k-tej fazy stojana i l-tej fazy wirnika mają postać

\[n_{\alpha_s}(\varphi_s) = \text{Re}\left\{ \frac{2}{\pi} N_s k_{\alpha_s} e^{-i\varphi_s} \right\}, \quad n_{\beta_s}(\varphi_s) = \text{Re}\left\{ \frac{2}{\pi} N_s k_{\beta_s} e^{-i\varphi_s} \right\}, \]

\[n_{\gamma_s}(\varphi_s) = \text{Re}\left\{ \frac{2}{\pi} N_s k_{\gamma_s} e^{-i\varphi_s} \right\}, \]

gdzie:
- \(N_s, N_r, k_{\alpha_s}, k_{\beta_s}, k_{\gamma_s}, p \) - liczba symetrycznych faz stojana i wirnika, współczynniki uzwojenia stojana i wirnika dla podstawowej harmonicznej przestrzennej, liczba par biegunów,
- \(m_s, m_r \) - liczba symetrycznych faz stojana i wirnika,
- \(\varphi_s, \varphi_r \) - współrzędne kątowe stojana i wirnika.

Biorąc pod uwagę, że uzwojenia w wirniku maszyny synchronicznej są uzupełniami o rozłożeniu sinusoidalnym, rozkłady obwodowe gęstości zwojowych uzwojenia wzbudzenia oraz i-tej zastępczych uzupełnie wirnika w osiach d i q mają postać:

\[n_f(\varphi_r) = \text{Re}\left\{ \frac{2}{p} N_f k_{nf} e^{-i\varphi_r} \right\}, \]

\[n_D(\varphi_r) = \text{Re}\left\{ \frac{2}{p} N_D k_{nd} e^{-i\varphi_r} \right\}, \]

\[n_Q(\varphi_r) = \text{Re}\left\{ \frac{2}{p} N_Q k_{nq} e^{-i\varphi_r} \right\}, \]

gdzie:
- \(n_f(\varphi_r), n_D(\varphi_r), n_Q(\varphi_r) \) - obwodowe rozkłady gęstości zwojowych uzupełnie wzbudzenia, oraz i-tej zastępczych uzupełnie wirnika w osiach d i q.

Korzystając z definicji fazorów przestrzennych [17, 23, 29, 30] dowolnych wielkości elektromagnetycznych uzwojenia fazowych stojana - w układzie współrzędnych związanym ze
stojanem (s) oraz dowolnych wielkości elektromagnetycznych uzupełnień fazaowych wirnika – w układzie współrzędnych związanym z wirnikiem (r)

\[W^s_1 = \sqrt{\frac{2}{m_s} \sum_{k=1}^{m_s} b_{(k-1)} W_{sk}^s}, \quad W^r_1 = \sqrt{\frac{2}{m_r} \sum_{l=1}^{m_r} b_{(l-1)} W_{rl}^r}, \]

(4.10)

założności (4.6) - (4.7) przyjmują postać:

\[\alpha_{ms}(\varphi_s) = \text{Re} \left\{ \frac{2}{\pi} \frac{N_s k_{ms}}{p} \sqrt{\frac{m_s}{2}} I_s^p e^{-j\varphi_s} \right\}, \]

(4.11)

\[\alpha_{mr}(\varphi_r) = \text{Re} \left\{ \frac{2}{\pi} \frac{N_r k_{mr}}{p} \sqrt{\frac{m_r}{2}} I_r^p e^{-j\varphi_r} \right\}, \]

(4.12)

gdzie:

- \(W^s_1, W^r_1 \) - fazory przestrzenne dowolnych wielkości elektromagnetycznych stojanu i wirnika
- \(I_s^p, I_{sa}, I_{sb} \) - fazory przestrzenne prądu stojanu i jego składowe osiowe w układzie współrzędnych związanym ze stojanem,
- \(I_r^p, I_{rd}, I_{rq} \) - fazory przestrzenne prądu wirnika i jego składowe osiowe w układzie współrzędnych związanym z wirnikiem.

Założności (4.11) - (4.12) pokazują, że wypadkowy okład prądu fazaowych uzupełnień stojana i wirnika maszyny asynchronicznej oraz stojana maszyny synchronicznej można zastąpić okładem prądu fazaowych dwóch zastępczych uzupełnień stojanu i wirnika, których osie pokrywają się z osiami \((a, \beta)\) i \((d, q)\) odpowiednich układów współrzędnych, co pokazano na rys. 4.3.

Rys. 4.3. Zastępcze uzupełnienia dwufazowe stojana i wirnika
Fig. 4.3. Stator and rotor equivalent two-phase windings

Zastępcze uzupełnienia mają \(\sqrt{\frac{m_s}{2}} \) i \(\sqrt{\frac{m_r}{2}} \) razy większą liczbę zwojów, a prądy w tych uzupełnieniach są składowymi osiowymi fazora przestrzennego prądu stojana i wirnika.

W wyidealizowanych modelach obliczeniowych maszyn synchronicznych rdzeń stojana i wirnika mają kształt walców, grubość szczeliny roboczej jest stała i właściwości materiałowe rdzeni magnetycznych są jednorodne i izotropowe. W konsekwencji rozkład pola magnetycznego w tych modelach zależy tylko od wzajemnego położenia i amplitudy rozkładów obwodowych wypadkowego okładu prądu fazaowego uzupełnień stojana i wirnika, a nie zależy od usytuowania tych rozkładów względem rdzeni stojana i wirnika.

W rezultacie do rozwiązań można wprowadzić wspólny dla stojana i wirnika układ współrzędnych prostokątnych \((x, y)\)

(rys.4.4) wyróżniający względem stojana z prędkością kątową elektryczną \(\omega_e \). Pomiędzy współrzędnymi prostokątnymi w układach współrzędnych związanymi ze stojanem \(\varphi_s \), z wirnikiem \(\varphi_r \), współrzędną \(\varphi \) w układzie współrzędnych \((x, y)\) oraz kątem obrotu wirnika \(\theta \) i kątem obrotu układu współrzędnych \(\theta_s \) zachodzi następujące zależności:

\[\varphi = \varphi_s + \theta_s, \quad \varphi_r = \varphi + \theta_s - \theta. \]

(4.13)

Stąd chwilowe obwodowe rozkłady wypadkowych okładów prądowych uzupełnień stojana i wirnika maszyny asynchronicznej we wspólnym układzie współrzędnych \((x, y)\) wynoszą:

\[\alpha_{ms}(\varphi) = \text{Re} \left\{ \frac{2}{\pi} \frac{N_s k_{ms}}{p} \sqrt{\frac{m_s}{2}} I_s^p e^{-j\varphi + \omega_s t} \right\} = \text{Re} \left\{ \frac{2}{\pi} \frac{N_s k_{ms}}{p} \sqrt{\frac{m_s}{2}} L_s e^{-j\omega_s t} \right\}, \]

(4.14)

\[\alpha_{mr}(\varphi) = \text{Re} \left\{ \frac{2}{\pi} \frac{N_r k_{mr}}{p} \sqrt{\frac{m_r}{2}} I_r^p e^{-j\varphi - \omega_s t} \right\} = \text{Re} \left\{ \frac{2}{\pi} \frac{N_r k_{mr}}{p} \sqrt{\frac{m_r}{2}} L_r e^{-j\omega_s t} \right\}, \]

(4.15)

\[L_s = L_s^p e^{-j\omega_s t} = I_{sx} + jI_{sy}, \quad L_r = L_r^p e^{-j(\omega_s - \theta) t} = I_{rx} + jI_{ry}, \]

(4.16)

gdzie:

- \(L_s, L_{sa}, L_{sb}, L_r, L_{rd}, L_{rq} \) - fazory przestrzenne prądu stojana i wirnika i ich składowe osiowe w układzie współrzędnych \((x, y)\),
- \(\omega_s, \theta_s \) - prędkość kątowa elektryczna wirowania układu współrzędnych \((x, y)\) względem stojana, kąt elektryczny zawarty między osią z układu współrzędnych a osią fazy s/l stojana.

W wyidealizowanych modelach obliczeniowych maszyn synchronicznych rdzeń wirnika ma wydatne bieguny i grubość szczeliny roboczej nie jest stała. W konsekwencji rozkład pola
magnetycznego zależy od amplitudy i usytuowania względem wirnika rozkładów obwodowych wypadkowego okładu prądowego uzwojeń stojana i wirnika, natomiast rozkład ten nie zależy od ich usytuowania względem stojana. W konsekwencji w maszynach synchronicznych jako wspólny dla stojana i wirnika można przyjąć układ współrzędnych \((x,y)\), w którym oś \(x\) pokrywa się z osią \(d\) wirnika, a oś \(y\) pokrywa się z osią \(q\) wirnika.

W tym układzie współrzędnych wypadkowy okład prądowy uzwojeń stojana i uzwojeń wirnika wynosi:

\[
\alpha_{m}(\varphi) = \alpha_{ms}(\varphi) + \alpha_{mr}(\varphi) = \frac{2}{\pi} \left[N_{kw} \frac{m_s}{p} I_s e^{-j\varphi} + \frac{N_{kw}}{p} I_d e^{-j\varphi} \right],
\]

(4.17)

Przyjmując, że promień wewnętrzny stojana \(r_s\) i zewnętrzny wirnika \(r_r\) są bliskie sobie \((r_s \approx r_r)\) można przyjąć, że uzwojenia stojana i wirnika umieszczone są na wspólnej powierzchni walcowej określonej przez średni promień \(r_s\) stojana i wirnika, co umożliwia sumowanie obu wypadkowych okładów prądowych, otrzymując w ten sposób wypadkowy okład prądowy uzwojeń stojana i wirnika, zwany okładem prądowym magnesującym. Dla uzwojeń stojana i wirnika maszyny asynchronicznej

\[
\alpha_{ms}(\varphi) + \alpha_{mr}(\varphi) = \frac{2}{\pi} \left[N_{kw} \frac{m_s}{p} I_s e^{-j\varphi} + \frac{N_{kw}}{p} I_d e^{-j\varphi} \right],
\]

(4.19)

Po sprowadzeniu uzwojenia na stronę stojana otrzymuje się:

\[
\alpha_{m}(\varphi) = \frac{2}{\pi} \left[\frac{N_{kw}}{p} I_s e^{-j\varphi} + \frac{N_{kw}}{p} I_d e^{-j\varphi} \right],
\]

(4.20)

gdzie:

\[
I_{s} = \sqrt{\frac{m_s}{m_s} N_{kw} I_s}, \quad I_{d} = \sqrt{\frac{m_d}{m_d} N_{kw} I_d}, \quad I_{m} = I_{s} + I_{d},
\]

(4.21)

- sprowadzony na stronę stojana fazor przestrzenny prądu wirnika,

- fazor przestrzenny prądu magnesującego sprowadzony na stronę stojana.

Dla uzwojeń stojana i wirnika maszyny synchronicznej w podobny sposób otrzymuje się:

\[
\alpha_{ms}(\varphi) = \frac{2}{\pi} \left[\frac{N_{kw}}{p} I_s e^{-j\varphi} + \frac{N_{kw}}{p} I_d e^{-j\varphi} \right],
\]

(4.22)

\[
I_{md} = I_{md} + \sum_{i} I_{di}, \quad I_{mq} = I_{mq} + \sum_{i} I_{qi},
\]

(4.23)

gdzie:

\[
i_{ds} = \frac{N_{kw}}{m_s} I_{ds}, \quad i_{dq} = \frac{N_{kw}}{m_s} I_{dq}, \quad i_{qs} = \frac{N_{kw}}{m_q} I_{qs}, \quad i_{q} = \frac{N_{kw}}{m_q} I_{q},
\]

(4.24)

(4.25)

gdzie:

\[
i_{ds} = \frac{N_{kw}}{m_s} I_{ds}, \quad i_{dq} = \frac{N_{kw}}{m_s} I_{dq}, \quad i_{qs} = \frac{N_{kw}}{m_q} I_{qs}, \quad i_{q} = \frac{N_{kw}}{m_q} I_{q},
\]

(4.26)

(4.27)

Z sinusoidalnie rozłożonymi uzwojeniami maszyny sprzęga się tylko podstawowa harmoniczna składowej promieniowej wektora indukcji magnetycznej.
Stąd uwzględniając (4.2) i (4.3) dla uzwojeń stojania i wirnika maszyny asynchronicznej oraz stojanu maszyny synchronicznej otrzymuje się:

\[\Psi_{\text{msk}} = \text{Re} \left\{ \frac{2}{p} N_{k_s} k_{ws} r_e l_e B_r^* e^{-i(k-1)} \right\}, \quad (4.26) \]

\[\Psi_{\text{mrl}} = \text{Re} \left\{ \frac{2}{p} N_{k_r} k_{wr} r_e l_e B_r^* b^{-i(k-1)} \right\}, \quad (4.27) \]

gdzie:

- \(\Psi_{\text{msk}}, \Psi_{\text{mrl}} \) - strumienie sprzężone chwilowe k-tej fazy uzwojenia stojanu i l-tej fazy uzwojenia wirnika,
- \(B_r(r_s, \varphi_s), B_r(r_r, \varphi_r) \) - obwodowe rozkłady wartości chwilowych składowej promieniowej wektora indukcji magnetycznej na powierzchni walowej stojana, wirnika,
- \(r_s, r_r, l_e \) - promień wewnętrzny stojana i zewnętrzny wirnika, długość idealnej maszyny,
- \(B_{r1}^*, B_{r1}^r \) - amplitudy zespólone podstawowej harmonicznej przestrzennej składowej promieniowej wektora indukcji magnetycznej na powierzchni walowej stojana (s) i wirnika (r).

Wprowadzając do rozważań fazory przestrzenne strumieni sprzężonych uzwojeń stojania i wirnika maszyny asynchronicznej oraz uzwojenia stojanu maszyny synchronicznej w układzie współrzędnych związanym ze stojanem (s) i z wirnikiem (r):

\[\Psi_{\text{ms}}^* = \frac{m_s}{2} \frac{2}{p} N_{k_s} k_{ws} r_e l_e B_{r1}^*, \quad (4.28) \]

\[\Psi_{\text{mr}}^r = \frac{m_r}{2} \frac{2}{p} N_{k_r} k_{wr} r_e l_e B_{r1}^r, \quad (4.29) \]

otrzymuje się:

\[\Psi_{\text{msk}} = \text{Re} \left\{ \frac{2}{m_s} \Psi_{\text{ms}}^* e^{-i(k-1)} \right\}, \quad (4.30) \]

\[\Psi_{\text{mrl}} = \text{Re} \left\{ \frac{2}{m_r} \Psi_{\text{mr}}^r b^{-i(k-1)} \right\}, \quad (4.31) \]

Uwzględniając, że amplitudy zespólone podstawowej harmonicznej składowej promieniowej wektora indukcji magnetycznej w układzie współrzędnych \((x,y)\) wynoszą:

\[B_{r1s} = B_{r1}^* e^{-i\theta_s}, \quad B_{r1r} = B_{r1}^r e^{-i(\theta_r-\theta)}, \quad (4.32) \]

fazory przestrzenne sprzężonych stojania i wirnika w tym układzie współrzędnych mają postać:

\[\Psi_{\text{ms}} = \sqrt{\frac{m_s}{2}} \frac{2}{p} N_{k_s} k_{ws} r_e l_e B_{r1s} = \Psi_{\text{ms}}^* e^{-i\theta_s}, \quad (4.33) \]

\[\Psi_{\text{mr}} = \sqrt{\frac{m_r}{2}} \frac{2}{p} N_{k_r} k_{wr} r_e l_e B_{r1r} = \Psi_{\text{mr}}^r e^{-i(\theta_r-\theta)}. \quad (4.34) \]

W konsekwencji strumienie sprzężone uzwojen stojania i wirnika określone są przez następujące wyróżnienia:

\[\Psi_{\text{msk}} = \text{Re} \left\{ \frac{2}{m_s} \Psi_{\text{ms}}^* e^{-i(k-1)} \right\}, \quad (4.35) \]

\[\Psi_{\text{mrl}} = \text{Re} \left\{ \frac{2}{m_r} \Psi_{\text{mr}}^r b^{-i(k-1)} \right\}. \quad (4.36) \]

Z zależności (4.35) – (4.36) wynika, że strumienie sprzężone uzwojen stojania i wirnika maszyny asynchronicznej oraz uzwojenia stojanu maszyny synchronicznej dla pola magnetycznego głównego można w sposób jednoznaczny określić na podstawie fazorów przestrzennych sprzężonych uzwojen stojania i wirnika.

Wektor indukcji magnetycznej w szczelinie powietrznej rozpatrywanych modeli obliczeniowych ma oprócz składowej promieniowej także składową obwodową. Uwzględniając, że długość promieniowa szczeliny powietrznej jest dużo mniejsza od promieni zewnętrznego wirnika, można założyć, że składowa promieniowa wektora indukcji magnetycznej w szczelinie powietrznej jest znacznie większa od składowej obwodowej wektora indukcji magnetycznej.

Przyjmując, że przy małej grubości szczeliny powietrznej strumień magnetyczny przenikający przez podziałkę biegunową na powierzchni walowej stojana, wirnika oraz powierzchni wyznaczonej przez średni promień stojana i wirnika są w przybliżeniu takie same:

\[r_s B_{r1s} = r_r B_{r1r} = r_v B_{r1} \]

oraz sprostując uzwojenie wirnika na stronę stojanu, otrzymuje się w rezultacie fazor przestrzenny strumienia sprzężonego uzwojen stojania dla pola głównego, który w dalszej części pracy nazywany będzie także w skrócie fazorem przestrzennym strumienia sprzężonego pola głównego

\[\Psi_{\text{m}} = \Psi_{\text{ms}} = \Psi_{\text{mr}}^* = \sqrt{\frac{m_s}{m_r}} \frac{2}{p} N_{k_s} k_{ws} N_{k_r} k_{wr} \Psi_{\text{ms}}^* \quad \text{oraz} \quad (4.38) \]

gdzie:

- \(\Psi_{\text{ms}}, \Psi_{\text{mr}}, \Psi_{\text{ms}}^*, \Psi_{\text{mr}}^* \) - fazor przestrzenny strumienia sprzężonego uzwojen stojania, wirnika, fazor przestrzenny strumienia sprzężonego uzwojen wirnika sprowadzony na stronę stojanu, fazor przestrzenny strumienia sprzężonego uzwojen maszyny dla pola głównego,
Podobne rozważania można przeprowadzić dla uzwojeń wirnika maszyny synchronicznej. Strumienie sprzężone sinusoidalnie rozłożonych uzwojeń wirnika wynoszą:

\[\Psi_{mf} = \text{Re}\left(\frac{2}{p} J_{k_{mf}} r_{l} e^{i \theta} B_{r} \right), \]

\[\Psi_{md} = \text{Re}\left(\frac{2}{p} J_{k_{md}} r_{l} e^{i \theta} B_{r} \right), \quad \Psi_{mQ} = \text{Re}\left(\frac{2}{p} J_{k_{mQ}} r_{l} e^{i \theta} B_{r} \right), \]

\[\Psi_{mO} = \text{Re}\left(\frac{m_{z}}{2} N_{k_{mO}} e^{i \theta} \right) \]

Wprowadzając do rozważań wspólne dla uzwojeń stojana i wirnika układ współrzędnych (d,q) oraz sprowadzając uzwojenia wirnika na stronę stojana otrzymuje się:

\[\Psi_{mf} = \Psi_{md} = \Psi_{mQ} = \Psi_{mO} = \text{Re}\left(\frac{m_{z}}{2} N_{k_{mO}} e^{i \theta} \right) \]

Z przeprowadzonych rozważań przedstawionych w rozdziałach 4.1.1 i 4.1.2 wynikają następujące wnioski:

- W uproszczonych modelach obliczeniowych pole magnetyczne główne można wyznaczyć przyjmując, że rdzenie magnetyczne stojana i wirnika są względem siebie nieruchome, a uzwojenia stojana i wirnika zastąpione są zastępczym dwufazowym uzwojeniem magnesującym, w którym prądy są składowymi osiowymi fazora przestrzennego prądu magnesującego.
- Fazor przestrzenny prądu magnesującego jest w sposób jednoznaczny określony za pomocą chwilowych prądów fazowych.
- Strumienie sprzężone zastępczych uzwojeń magnesujących dla pola magnetycznego głównego są składanymi osiowymi fazora przestrzennego strumienia sprzężonego pola głównego.
- Strumienie sprzężone uzwojeń fazowych stojana i wirnika dla pola magnetycznego głównego można w sposób jednoznaczny określić za pomocą fazora przestrzennego strumienia sprzężonego pola głównego.

4.1.3. Pole magnetyczne główne w modelach obliczeniowych o wyidealizowanej strukturze rdzeni

Rozkłady przestrzenne pola magnetycznego w rozpatrywanych modelach obliczeniowych zostają wyznaczone w wyniku rozwiązania w sposób numeryczny za pomocą metod elementów skończonych równania pola magnetostatycznego.

\[\text{div} \mathbf{B} = 0, \quad \text{rot} \mathbf{H} = 0, \]

\[\text{div} \mathbf{A} = 0, \quad \text{rot} \mathbf{v} \cdot \text{rot} \mathbf{A} = 0. \]

Równanie (4.43) można zapisać:

\[\text{rot}(\mathbf{v} \cdot \text{rot} \mathbf{A}) = 0. \]

Uwzględniając, że dla pół 2 - wymiarowych zachodzi

\[\mathbf{A} = 1, \]

w układzie współrzędnych cylindrycznych równanie (4.45) przyjmuje postać:

\[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial A}{\partial r} \right) + \frac{1}{r} \frac{\partial}{\partial \varphi} \left(\varphi \frac{\partial A}{\partial \varphi} \right) = 0 \]

gdzie:

\[\mathbf{H}, \mathbf{B}, \mathbf{A}, I_{z} \] - wektory natężenia pola magnetycznego, indukcji magnetycznej, wektorowego potęgę pola magnetycznego, wersor wzdłuż osi z układu współrzędnych,

\[B_r, B_{\varphi}, B, A \] - składowa promieniowa i obwodowa wektora indukcji magnetycznej, moduł wektora indukcji magnetycznej, składowa wzdłuż osi z wektorowego potęgę pola magnetycznego,

\[\mu, \nu \] - przenikalność magnetyczna, odwrotność przenikalności magnetycznej.

W rozpatrywanych modelach obliczeniowych można wyróżnić trzy obszary o jednorodnych właściwościach materiałowych zestawione w tabl. 4.1:

<table>
<thead>
<tr>
<th>Właściwości magnetyczne obszarów w modelach obliczeniowych</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obszar</td>
</tr>
<tr>
<td>Rdzenie ferromagnetyczne stojana i wirnika</td>
</tr>
<tr>
<td>Rdzenie ferromagnetyczne stojana i wirnika</td>
</tr>
<tr>
<td>Szczelina powietrzna przy stojanie i wirnik</td>
</tr>
</tbody>
</table>

Dodatkowy podział szczeliny powietrznej wynika z umieszczenia na powierzchni walcowej wyznaczonej przez średni promień stojana i wirnika nieskończenie cienkiego sinusoidalnie rozłożonego uzuwienia magnesującego.
Na granicach jednorodnych obszarów spełnione są następujące warunki:

- na granicy oddzielającej rdzeń stojana od szczeliny powietrznej przy stojanie
 \[A_\theta(r,\phi) = A_\phi(r,\phi), \quad \left(v_0 \frac{\partial A_\theta(r,\phi)}{\partial r} - v_\phi(B) \frac{\partial A_\phi(r,\phi)}{\partial r} \right)_{r=r_s} = 0, \quad (4.49) \]

- na granicy oddzielającej rdzeń wirnika od szczeliny powietrznej przy wirniku
 \[A_\phi(r,\phi) = A_\theta(r,\phi), \quad \left(v_\phi(B) \frac{\partial A_\phi(r,\phi)}{\partial r} - v_0 \frac{\partial A_\theta(r,\phi)}{\partial r} \right)_{r=\rho} = 0, \quad (4.50) \]

- na granicy oddzielającej szczelinę powietrzną przy stojanie i przy wirniku
 \[A_{\phi_1}(r_s,\phi) = A_{\theta_1}(r_s,\phi), \quad v_0 \frac{\partial A_\phi(r_s,\phi)}{\partial r} - v_\phi(B) \frac{\partial A_\theta(r_s,\phi)}{\partial r} = \alpha_\phi(\phi) . \quad (4.51) \]

Na brzegu zewnętrznym maszyny określonym przez promień zewnętrzny stojana \(r_s \), zachodzi:
\[A_\phi(r_s,\phi) = 0, \quad (4.52) \]

gdzie:
- \(A_\phi, A_\theta, A_{\phi_1}, A_{\theta_1} \) - składowa w kierunku osi z wektorowego potencjału magnetycznego w rdzeniu stojana, w rdzeniu wirnika, w szczelinie powietrznej od strony stojana i od strony wirnika.

Przedstawione powyżej równania pola magnetostatycznego rozwiązać można za pomocą metody elementów skończonych.

4.1.3.2. Wyniki obliczeń rozkładów przestrzennych pola magnetycznego głównego

Dla modeli obliczeniowych maszyny asynchronicznej o mocy znamionowej 1 500 W oraz maszyny synchronicznej o mocy znamionowej 530 kW przedstawionych na rys. 4.6 przeprowadzono obliczenia pola magnetostatycznego. Parametry uzwojeń obydwu maszyn zestawiono w tabl. 4.2.

Rys. 4.6. Wyidealizowane modele obliczeniowe maszyn elektrycznych prądu przemiennego

<table>
<thead>
<tr>
<th>Parametry uzwojeń badanych maszyn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silnik indukcyjny o mocy 1 500 W</td>
</tr>
<tr>
<td>(N_s = 288), (k_w = 0.9598), (p = 2),</td>
</tr>
<tr>
<td>(l_e = 0.1 \text{ m}, l_{m(odn)} = \sqrt{3} \ 3.42 \text{ A})</td>
</tr>
</tbody>
</table>

Rys. 4.7. Izolinie wektorowego potencjału magnetycznego oraz rozkład obwodowy składowej promieniowej wektora indukcji magnetycznej w szczelinie powietrznej maszyny indukcyjnej

Fig. 4.7. Magnetic vector potential isolines and spatial distribution of the magnetic flux density radial component in the air gap of the induction machine

Na rysunkach 4.7 - 4.8 przedstawiono przykładowe wyniki obliczeń dla silnika indukcyjnego. Na rysunku 4.7 pokazano rozkład izolinii wektorowego potencjału magnetycznego oraz rozkład obwodowy składowej promieniowej wektora indukcji magnetycznej wzdłuż obwodu określonego przez średni promień stojana i wirnika. Obliczenia wykonano przyjmując \(I_{m(r)} = 1.8 \), \(\gamma_m = 0 \).

Rys. 4.8. Widmo harmonicznych rozkładu obwodowego składowej promieniowej wektora indukcji magnetycznej oraz charakterystyki modułu amplitudy zespolonej podstawowej harmonicznej składowej promieniowej wektora indukcji magnetycznej w funkcji modułu fazora przestrzennego prądu magnesującego

Fig. 4.8. Harmonic spectrum of the spatial distribution of the magnetic flux density radial component and the module of the complex fundamental harmonic amplitude of the magnetic flux density radial component versus the magnetizing current space phasor module
Na rysunkach 4.9 - 4.11 przedstawiono przykładowe wyniki obliczeń dla silnika synchronicznego. Na rysunku 4.9 pokazano rozkład przestrzenny izolinii wektorowego potencjału oraz rozkład obwodowy składowej promieniowej wektora indukcji magnetycznej obliczone dla kilku argumentów fazora przestrzennego prądu magnesującego przyjmując, że jego moduł $I_m = 1.5$.

Na rysunku 4.10 przedstawiono widma harmonicznych rozkładu obwodowego składowej promieniowej wektora indukcji magnetycznej w szczelinie powietrznej.

Na rysunku 4.11 pokazano charakterystyki modulu i argumentu amplitudy współczynnikowej podstawowej harmonicznej składowej promieniowej wektora indukcji magnetycznej w funkcji modulu fazora przestrzennego prądu magnesującego, obliczone dla parametrycznie zmiennego jego argumentu.
Przedstawione przykładowe wyniki obliczeń pola magnetycznego głównego w modelu obliczeniowym silnika synchronicznego pokazują, że rozkład pola magnetycznego oraz rozkład obwodowy składowej promieniowej wektora indukcji magnetycznej zależą od modułu i argumentu fazora przestrzennego prądu magnesującego. W konsekwencji widno harmonicznych oraz amplituda zespołona podstawowej harmonicznej składowej promieniowej indukcji magnetycznej są funkcjami modułu i argumentu fazora przestrzennego prądu magnesującego.

4.1.4. Składowe osiowe fazora przestrzennego strumienia sprzężonego pola głównego.

Syntetyczne charakterystyki strumieni sprzężonych pola głównego

Fazor przestrzenny strumienia sprzężonego pola głównego można wyznaczyć, obliczając składowe osiowe fazora na podstawie:
• funkcji koenergii pola magnetycznego głównego,
• rozkładu obwodowego składowej promieniowej wektora indukcji magnetycznej w szczelinie powietrznej maszyny.

4.1.4.1. Wyznaczenie składowych osiowych fazora przestrzennego strumienia sprzężonego pola głównego za pomocą funkcji koenergii magnetycznej

Koenergię pola magnetycznego głównego można wyznaczyć za pomocą następującej zależności:

\[E_{cm} = l_i \int_0^H \left[\mathbf{B} \cdot d \mathbf{H} \right] d s, \]

gде:

\(E_{cm} \), \(s \) – koenergia magnetyczna pola magnetycznego głównego, pole przekroju poprzecznego modelu obliczeniowego.

Uwzględniając, że rozkład przestrzenny indukcji magnetycznej zależy od zmiennych przestrzennych oraz od modułu i argumentu fazora przestrzennego prądu magnesującego, można napisać:

\[B = B(r, \varphi, I_m, \gamma_m). \]

Stąd

\[E_{cm} = E_{cm}(I_m, \gamma_m). \]

W modelu obliczeniowym maszyny asynchronicznej koenergia magnetyczna zależy jedynie od modułu fazora przestrzennego prądu magnesującego, nie zależy natomiast od jego argumentu

\[E_{cm} = E_{cm}(I_m). \]

Na rysunku 4.12 przedstawiono charakterystykę koenergii pola magnetycznego głównego w funkcji modułu fazora przestrzennego prądu magnesującego obliczoną dla silnika indukcyjnego.

Natomiast w modelu obliczeniowym maszyny synchronicznej o okresowo zmiennej grubości szczeliny powietrznej koenergia magnetyczna zależy od modułu i argumentu fazora przestrzennego prądu magnesującego

\[E_{cm} = E_{cm}(I_m, \gamma_m), \]

przy czym ze względu na symetrię modelu obliczeniowego funkcja koenergii spełnia warunki:
• warunek okresowości względem argumentu \(\gamma_m \)

\[E_{cm}(I_m, \gamma_m) = E_{cm}(I_m, \gamma_m + \pi), \]

• warunek parzystości względem argumentu \(\gamma_m \)

\[E_{cm}(I_m, \gamma_m) = E_{cm}(I_m, -\gamma_m). \]

Uwzględniając powyższe zależności można funkcję koenergii pola magnetycznego głównego przedstawić w postaci szeregu Fouriera:

\[E_{cm}(I_m, \gamma_m) = \sum_{k=0,2,4,...} E_{cmk}(I_m) \cos(k\gamma_m). \]

Funkcje \(E_{cmk}(I_m) \) można nazwać syntetycznymi charakterystykami koenergii pola magnetycznego głównego.

dla \(k = 0, 2 \) i aproksymowanych za pomocą syntetycznych charakterystyk. Maksymalny błąd aproksymacji nie przekracza 2,5%.

![Graph 1](image1)

Rys. 4.13. Koenergia pola głównego w funkcji modułu fazora przestrzennego prądu magnesującego i parametrycznie zmienionego jego argumentu, charakterystyka koenergii w funkcji argumentu fazora przestrzennego prądu magnesującego

Fig. 4.13. Coenergy of the main magnetic field vs the module and parametrically variable argument of the magnetizing current space phasor, characteristic of coenergy vs the argument of the magnetizing current space phasor

Uwzględniając tylko dwa pierwsze wyrazy w szeregu otrzymuje się:

\[
E_{cm}(I_m, \gamma_m) = E_{cm0}(I_m) + E_{cm2}(I_m) \cos(2\gamma_m). \tag{4.61}
\]

Na rysunku 4.14 przedstawiono syntetyczne charakterystyki koenergii magnetycznej, a na wybranej charakterystyce pokazano jakość aproksymacji funkcji koenergii.

![Graph 2](image2)

Rys. 4.14. Syntetyczne charakterystyki koenergii pola głównego, porównanie funkcji koenergii obliczonej za pomocą metody elementów skończonych (MES) oraz aproksymowanej za pomocą syntetycznych charakterystyk koenergii (APR)

Fig. 4.14. Synthetic characteristics of the main field coenergy; comparison of the coenergy function computed by means of the finite element method (MES) with that approximated by the coenergy synthetic characteristics (APR)

Strumienie sprzężone zastępczych uzwojeń magnesujących pola głównego można wyznaczyć z zależności [28, 35]:

\[
\Psi_{\text{md}} = \frac{\partial E_{cm}}{\partial I_{md}} , \quad \Psi_{\text{mq}} = \frac{\partial E_{cm}}{\partial I_{mq}} . \tag{4.62}
\]

Uważając, że funkcja koenergii ma postać:

\[
E_{cm} = E_{cm}(I_m, \gamma_m), \tag{4.63}
\]

oraz, że amplituda i argument fazora przestrzennego prądu magnesującego powiązane są z prądami osiowymi według następujących zależności:

\[
I_m = I_m(I_{md}, I_{mq}) = \sqrt{I_{md}^2 + I_{mq}^2} , \quad \gamma_m = \gamma_m(I_{md}, I_{mq}) = \arctg \left(\frac{I_{mq}}{I_{md}} \right) , \tag{4.64}
\]

otrzymuje się:

\[
\Psi_{\text{md}} = \frac{\partial E_{cm}(I_m, \gamma_m)}{\partial I_m}(I_m, \gamma_m) \frac{\partial I_{md}}{\partial I_m} + \frac{\partial E_{cm}(I_m, \gamma_m)}{\partial \gamma_m}(I_m, \gamma_m) \frac{\partial \gamma_m}{\partial I_{md}} , \tag{4.65}
\]

\[
\Psi_{\text{mq}} = \frac{\partial E_{cm}(I_m, \gamma_m)}{\partial I_m}(I_m, \gamma_m) \frac{\partial I_{mq}}{\partial I_m} + \frac{\partial E_{cm}(I_m, \gamma_m)}{\partial \gamma_m}(I_m, \gamma_m) \frac{\partial \gamma_m}{\partial I_{mq}} . \tag{4.66}
\]

Obliczając pochodne cząstkowe

\[
\frac{\partial I_m}{\partial I_{md}} = I_m \cos(\gamma_m) , \quad \frac{\partial I_m}{\partial I_{mq}} = I_m \sin(\gamma_m) , \tag{4.67}
\]

\[
\frac{\partial \gamma_m}{\partial I_{md}} = -\frac{1}{I_m} I_{mq} = -\frac{1}{I_m} \frac{l_{mq}}{I_m} = -\frac{1}{I_m} \sin(\gamma_m) , \quad \frac{\partial \gamma_m}{\partial I_{mq}} = \frac{1}{I_m} I_{md} = \frac{1}{I_m} \frac{l_{md}}{I_m} = \frac{1}{I_m} \cos(\gamma_m) , \tag{4.68}
\]

otrzymuje się:

\[
\Psi_{\text{md}} = \frac{\partial E_{cm}(I_m, \gamma_m)}{\partial I_m} \cos(\gamma_m) - \frac{1}{I_m} \frac{\partial E_{cm}(I_m, \gamma_m)}{\partial \gamma_m} \sin(\gamma_m) , \tag{4.69}
\]

\[
\Psi_{\text{mq}} = \frac{\partial E_{cm}(I_m, \gamma_m)}{\partial I_m} \sin(\gamma_m) + \frac{1}{I_m} \frac{\partial E_{cm}(I_m, \gamma_m)}{\partial \gamma_m} \cos(\gamma_m) . \tag{4.70}
\]

Aproksymując funkcje koenergii magnetycznej pola głównego za pomocą syntetycznych charakterystyk koenergii magnetycznej otrzymuje się:
dla maszyny asynchronicznej

\[
\psi_{md} = \frac{\partial E_{cm}(I_m)}{\partial I_m} \cos(\gamma_m), \quad \psi_{mq} = \frac{\partial E_{cm}(I_m)}{\partial I_m} \sin(\gamma_m),
\]

(4.71)

\[
\psi_{md} = \sum_{k=0,2,4,\ldots} \left\{ \frac{\partial E_{cm}(I_m)}{\partial I_m} \cos(k\gamma_m) \cos(\gamma_m) + \frac{k}{I_m} E_{cm}(I_m) \sin(k\gamma_m) \sin(\gamma_m) \right\},
\]

(4.72)

\[
\psi_{mq} = \sum_{k=0,2,4,\ldots} \left\{ \frac{\partial E_{cm}(I_m)}{\partial I_m} \cos(k\gamma_m) \sin(\gamma_m) - \frac{k}{I_m} E_{cm}(I_m) \sin(k\gamma_m) \cos(\gamma_m) \right\},
\]

(4.73)

Końcowa postać wyrażeń określających strumienie sprzężone uzwojeń magnesujących dla \(k=0,2 \) wynosi:

\[
\psi_{md} = \psi_{md1}(I_m) \cos(\gamma_m) + \psi_{md3}(I_m) \cos(3\gamma_m),
\]

(4.74)

\[
\psi_{mq} = \psi_{mq1}(I_m) \sin(\gamma_m) + \psi_{mq3}(I_m) \sin(3\gamma_m),
\]

(4.75)

gdzie:

\[
\psi_{md1}(I_m) = \frac{\partial E_{cm}(I_m)}{\partial I_m} + \frac{1}{2} \frac{\partial E_{cm2}}{\partial I_m} + \frac{E_{cm2}}{I_m},
\]

(4.76)

\[
\psi_{mq1}(I_m) = -\frac{1}{2} \frac{\partial E_{cm2}}{\partial I_m} - \frac{E_{cm2}}{I_m},
\]

(4.77)

\[
\psi_{md3}(I_m) = \psi_{mq3}(I_m) = \frac{1}{2} \frac{\partial E_{cm2}}{\partial I_m},
\]

(4.78)

Zależności (4.74) i (4.75) pokazują, że skła\l{}owe osiowe fazora przestrzennego strumienia sprzężonego zastępczych uzwojeń magnesujących dla pola magnetycznego głównego można wyznaczyć za pomocą niewielkiej liczby nieliniowych charakterystyk, które w pracie nazwano synte\l{}tycznymi charakterystykami strumieni sprzężonych pola głównego. Na rysunku 4.15 dla silnika synchronicznego pokazano przykładowe charakterystyki skła\l{}owych osiowych fazora przestrzennego strumienia sprzężonego zastępczych uzwojeń magnesujących dla pola głównego w funkcji modułu fazora przestrzennego prądu magnesującego oraz parametrycznie zmieniennego jego argumentu. Charakterystyki przedstawione na rys. 4.15 obliczono za pomocą wzorów (4.76) – (4.78).

Rys. 4.15. Skła\l{}owe osiowe fazora przestrzennego strumienia sprzężonego pola głównego w funkcji modułu fazora przestrzennego prądu magnesującego oraz parametrycznie zmieniennego jego argumentu

Fig. 4.15. Axis components of the main flux linkage space phasor vs the module and parametrically variable argument of the magnetizing current space phasor

Na rysunku 4.16 przedstawiono wykresy synte\l{}tycznych charakterystyk strumieni sprzężonych pola głównego w osiach \(d \) i \(q \) obliczonych za pomocą wzorów (4.76) – (4.78).

Rys. 4.16. Charakterystyki synte\l{}tyczne strumieni sprzężonych pola głównego

Fig. 4.16. Synthetic characteristics of the main flux linkages

4.1.4.2. Wyznaczenie skła\l{}owych osiowych fazora przestrzennego strumienia sprzężonego pola głównego na podstawie rozkładu skła\l{}owej promieniowej wektora indukcji magnetycznej

Rozpatrując modele obliczeniowe analizowanych maszyn można zauważyć, że:

• w modelu maszyny asynchronicznej (o stałej grubości szczeliny powietrznej) kształt rozkładu obwodowego skła\l{}owej promieniowej indukcji magnetycznej w szczelinie powietrznej nie zależy od argumentu fazora przestrzennego prądu magnesującego,

• w modelu maszyny synchronicznej (o zmiennej od strony wirnika grubości szczeliny powietrznej) kształt rozkładu obwodowego skła\l{}owej promieniowej indukcji magnetycznej jest jednakowy dla następujących argumentów fazora przestrzennego prądu magnesującego.
\[\gamma_m, \quad -\gamma_m, \quad \gamma_m + \pi. \]

W konsekwencji moduł oraz argument amplitudy zespolonej \(\nu \)-tej harmonicznej obwodowego rozkładu składowej promieniowej wektoru indukcji magnetycznej (\(\nu = 1,3,5,.. \)) spełniają następujące zależności:

- w maszynach asynchronicznych
\[B_{rv}(I_m,\gamma_m) = B_{rv}(I_m), \quad \beta_v(I_m,\gamma_m) = \nu \gamma_m, \quad (4.79) \]

- w maszynach synchronicznych
\[B_{rv}(I_m,\gamma_m) = B_{rv}(I_m), \quad B_{rv}(I_m,\gamma_m + \pi) = B_{rv}(I_m,\gamma_m), \]
\[\beta_v(I_m,\gamma_m) = -\beta_v(I_m,\gamma_m), \quad \beta_v(I_m,\gamma_m + \pi) = \beta_v(I_m,\gamma_m) + \nu \pi. \quad (4.80) \]

Uwzględniając powyższe wzory w równaniach określających składowe osiowe amplitudy zespolonej \(\nu \)-tej harmonicznej
\[B_{r\nu d}(I_m,\gamma_m) = B_{rv}(I_m,\gamma_m) \cos(\beta_v(I_m,\gamma_m)), \]
\[B_{r\nu q}(I_m,\gamma_m) = B_{rv}(I_m,\gamma_m) \sin(\beta_v(I_m,\gamma_m)), \quad (4.81) \]

otrzymuje się:

- dla maszyn asynchronicznych
\[B_{r\nu d}(I_m,\gamma_m) = B_{rv}(I_m) \cos(\nu \gamma_m), \quad B_{r\nu q}(I_m,\gamma_m) = B_{rv}(I_m) \sin(\nu \gamma_m), \quad (4.82) \]

- dla maszyn synchronicznych
\[B_{r\nu d}(I_m,\gamma_m) = B_{rv}(I_m,\gamma_m), \quad B_{r\nu d}(I_m,\gamma_m + \pi) = -B_{r\nu d}(I_m,\gamma_m), \]
\[B_{r\nu q}(I_m,\gamma_m) = -B_{r\nu q}(I_m,\gamma_m), \quad B_{r\nu q}(I_m,\gamma_m + \pi) = -B_{r\nu q}(I_m,\gamma_m). \quad (4.83) \]

Składowe osiowe amplitudy zespolonej \(\nu \)-tej harmonicznej w maszynach synchronicznych można więc przedstawić w postaci szeregu Fouriera:
\[B_{r\nu d}(I_m,\gamma_m) = \sum_{k=1,3,..} B_{r\nu d k}(I_m) \cos(k \gamma_m), \quad (4.84) \]
\[B_{r\nu q}(I_m,\gamma_m) = \sum_{k=1,3,..} B_{r\nu q k}(I_m) \sin(k \gamma_m). \]

Ograniczając dalsze rozważania do podstawowej harmonicznej (\(\nu = 1 \)) otrzymuje się:

- dla maszyn asynchronicznych
\[B_{r1 d}(I_m,\gamma_m) = B_{r1}(I_m) \cos(\gamma_m), \quad B_{r1 q}(I_m,\gamma_m) = B_{r1}(I_m) \sin(\gamma_m), \quad (4.85) \]

- dla maszyn synchronicznych
\[B_{r1 d}(I_m,\gamma_m) = \sum_{k=1,3,..} B_{r1 d k}(I_m) \cos(k \gamma_m), \]
\[B_{r1 q}(I_m,\gamma_m) = \sum_{k=1,3,..} B_{r1 q k}(I_m) \sin(k \gamma_m). \quad (4.86) \]

Na rysunku 4.17 dla silnika synchronicznego przedstawiono przykładowe charakterystyki składowych osiowych amplitudy zespolonej podstawowej harmonicznej składowej promieniowej wektoru indukcji magnetycznej w szczelinie powietrznej w funkcji modułu fazora przestrzennego prądu magnesującego dla wybranych jego argumentów.

Rys. 4.17. Składowe osiowe amplitudy zespolonej podstawowej harmonicznej składowej promieniowej wektoru indukcji magnetycznej w szczelinie powietrznej w funkcji modułu fazora przestrzennego prądu magnesującego i parametrycznie zmienionego jego argumentu

Fig. 4.17. Axis components of the complex fundamental harmonic amplitude of the magnetic flux density radial component in the air gap vs the module and parametrically variable argument of the magnetizing current space phasor

Uwzględniając wyrażenie na fazor przestrzenny strumienia sprzężonego pola głównego
\[\Psi_m = \sqrt{\frac{m_z}{2}} N_s k_{ns} r_{sr} l_B r_{s} = \sqrt{\frac{m_z}{2}} N_s k_{ns} r_{sr} l_B (B_{r1 d} + j B_{r1 q}) = \Psi_{md} + j \Psi_{mq}, \quad (4.87) \]

oraz zależności (4.85) – (4.86) otrzymuje się:

- dla maszyn asynchronicznych
\[\Psi_{md} = \Psi_m (I_m) \cos(\gamma_m), \quad \Psi_{mq} = \Psi_m (I_m) \sin(\gamma_m), \quad (4.88) \]

- dla maszyn synchronicznych przyjmując (\(k=1,3 \))
\[\Psi_{md} = \Psi_{md 1}(I_m) \cos(\gamma_m) + \Psi_{md 3}(I_m) \cos(3 \gamma_m), \quad (4.89) \]
\[\Psi_{mq} = \Psi_{mq 1}(I_m) \sin(\gamma_m) + \Psi_{mq 3}(I_m) \sin(3 \gamma_m). \quad (4.90) \]
4.2. Strumienie sprzężone uzwojeń dla pola magnetycznego głównego w modelach obliczeniowych uwzględniających rzeczywistą strukturę rdzeni

Obliczenia strumieni sprzężonych uzwojeń maszyn elektrycznych prądu przemiennego dla pola magnetycznego głównego, przy uwzględnieniu rzeczywistej użłobkowanej struktury rdzeni magnetycznych stojącego i wirnika, przeprowadzono dla trzech maszyn elektrycznych o różnych mocach znamionowych: maszyny indukcyjnej klatkowej o mocy znamionowej 1 500 W, turbogeneratora o mocy znamionowej 235 MV-A oraz hydrogeneratora o mocy znamionowej 150 MV-A. Modele obliczeniowe wymienionych maszyn przedstawiono na rys. 4.19 i 4.20, zaś ich dane znamionowe oraz podstawowe dane konstrukcyjne zestawiono w załącznikach do niniejszej pracy.

Rys. 4.18. Składowe osiowych fazora przestrzennego strumienia sprzężonego pola głównego w funkcji modułu fazora przestrzennego prądu magnesującego i parametrycznie zmiennego argumentu fazora przestrzennego prądu magnesującego.

Rys. 4.19. Model obliczeniowy maszyny indukcyjnej
Fig. 4.19. Computational model of induction machine

Rys. 4.20. Modele obliczeniowe maszyn synchronicznych
Fig. 4.20. Computational models of synchronous machines
W rozpatrywanych modelach obliczeniowych zastępcze dwufazowe uzwojenie magnesujące może być umieszczone na powierzchni walcowej w środku szczeliny powietrznej w taki sam sposób jak w wyidealizowanych modelach obliczeniowych lub też może być zastąpione przez wielofazowe uzwojenie magnesujące, które w przypadku maszyny asynchronicznej może być umieszczone w złobkach stojana lub wirnika, a w przypadku maszyny synchronicznej może być umieszczone w złobkach stojana. Obecność złobków w rdzeniach stojana i wirnika powoduje dodatkową zmianę grubości szczeliny powietrznej, umieszczenie zaś uzwojenia magnesującego w złobkach stojana lub wirnika sprawia, że uzwojenia te są sprzężone ze sobą nie tylko przez pole magnetyczne główne, ale także przez pole rozproszenia.

Biorąc powyższe pod uwagę, przy wyznaczaniu pola magnetycznego głównego oraz strumieni sprzężonych uzwojeń dla tego pola, w rozpatrywanych modelach obliczeniowych przyjęto, że:
- strumienie sprzężone zastępczych uzwojeń magnesujących dla pola magnetycznego głównego tworzy podstawowa harmoniczna rozkładu obwodowego składowej promieniowej wektora indukcji magnetycznej określona na powierzchni walcowej przyлегającej lub stycznej do rdzenia wirnika (gdy uzwojenia magnesujące umieszczone są w stojanie) lub na powierzchni walcowej przyлегającej do rdzenia stojana (gdy uzwojenia magnesujące są w wirniku),
- pomija się wpływ wzajemnego położenia złobków stojana względem złobków wirnika na moduł i argument amplitudy współosiowej podstawowej harmonicznej rozkładu obwodowego składowej promieniowej indukcji magnetycznej.

Rozkład przestrzenny pola magnetycznego w rozpatrywanych modelach obliczeniowych można wyznaczyć rozwiązując równanie pola magnetostatycznego (4.45), które w układzie współrdznych prostokątnych \((x,y)\) ma postać:
\[
\frac{\partial}{\partial x} (\nu(B) \frac{\partial A}{\partial x}) + \frac{\partial}{\partial y} (\nu(B) \frac{\partial A}{\partial y}) = -j, \tag{4.91}
\]
gdzie:
\[
B = \sqrt{B_x^2 + B_y^2}, \quad B_x = \frac{\partial A}{\partial x}, \quad B_y = -\frac{\partial A}{\partial y}, \quad \nu(B) = \frac{1}{\mu(B)}, \tag{4.92}
\]

gdzie:
\(B_x, B_y\) - składowe wektora indukcji magnetycznej w układzie współrdznych \((x,y)\).

W równaniu (4.91) wartości przenikalności magnetycznej wynikają z właściwości materiałów w jednorodnych obszarach maszyn, zaś wartości gęstości prądu wynikają z chwilowych prądów w zastępczych uzwojeniach magnesujących oraz z kierunku ich przepływu w bokach uzwojenia, co dla maszyny indukcyjnej przedstawiono w tab. 4.2. Przy określaniu gęstości prądu przyjęto, że w stojanie i wirniku umieszczone jest uzwojenie jednowarstwowe.

Wartości chwilowych prądów w fazach zastępczych uzwojenia magnesującego wyrażone za pomocą wartości przenikalności magnetycznej wynikają:
- dla \(k\)-tej fazy uzwojenia magnesującego umieszczoną w złobkach stojana
\[
i_{m_k} = \text{Re} \left\{ \frac{2}{m_k} I_m^{*k} \right\}, \tag{4.93}
\]

gdzie:
\(I_m^{*k}\) - fazor przestrzenny prądu magnesującego stojana sprowadzony na stronę wirnika.

Jednorodne obszary w modelu obliczeniowym maszyny indukcyjnej

<table>
<thead>
<tr>
<th>Obszar maszyny</th>
<th>Przenikalność magnetyczna (\mu)</th>
<th>Gęstość prądu (j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rdzenie magnetyczne stojana i wirnika</td>
<td>(\mu_s(B))</td>
<td>(j=0)</td>
</tr>
<tr>
<td>Złobki stojana lub wirnika</td>
<td>(\mu_0)</td>
<td>(j=0)</td>
</tr>
<tr>
<td>Szczelina powietrzna</td>
<td>(\mu_0)</td>
<td>(j=0)</td>
</tr>
</tbody>
</table>

Gdzie:
\(I_{zsk,irj}\) - gęstość prądu w złobkach stojana \(k\)-tej fazy i w złobkach wirnika \(l\)-tej fazy,
\(S_{2z,r}\) - pole powierzchni złobka stojana, wirnika.

Rozwiązując równanie (4.91) w poszczególnych obszarach modelu obliczeniowego uwzględnia się:
- jednorodny warunek brzegowy Dirichleta \(A=0\) na brzegu zewnętrznym modelu obliczeniowego maszyny,
- warunki okresowości dodatniej lub ujemnej na brzegach powstałych wskutek podziału przekroju poprzecznego maszyny na symetryczne segmenty,
- warunki brzegowe na granicach jednorodnych podobszarów \((k,l)\)
\[
A_k = A_s = - \frac{1}{\mu_k} \frac{\partial A_k}{\partial n} = - \frac{1}{\mu_s} \frac{\partial A_s}{\partial n}, \tag{4.95}
\]

4.2.1. Wyniki obliczeń rozkładu obwodowego składowej promieniowej wektora indukcji magnetycznej w szczelinie powietrznej

Obliczenia numeryczne rozkładu przestrzennego pola magnetycznego przeprowadzono, zmieniając parametrycznie moduł i argument fazora przestrzennego prądu magnesującego. Wybrane wyniki obliczeń przedstawiono w postaci:
- rozkładu izolinii wektorowego potencjału magnetycznego (linii pola magnetycznego),
- rozkładu obwodowego składowej promieniowej wektora indukcji magnetycznej w szczelinie powietrznej,
- widma harmonicznych rozkładu obwodowego składowej promieniowej wektora indukcji magnetycznej,
- charakterystyk modułu i argumentu amplitudy współosiowej podstawowej harmonicznej rozkładu obwodowego składowej promieniowej wektora indukcji magnetycznej.
4.2.1.1. Wyniki obliczeń dla silnika indukcyjnego klatkowego

Obliczenia pola magnetycznego głównego w silniku indukcyjnym klatkowym przeprowadzono dla trzech przypadków umieszczenia zastępczego uzwojenia magnesującego: w złobkach stojana, w złobkach wirnika oraz w postaci łuski prądowej na powierzchni walcowej w środku szczeliny powietrznej (rys. 4.21)

Rys. 4.21. Sposoby umieszczenia zastępczego uzwojenia magnesującego

<table>
<thead>
<tr>
<th>Uzwojenie magnesujące umieszczone w stojanie</th>
<th>Uzwojenie magnesujące umieszczone w wirniku</th>
</tr>
</thead>
</table>

| Uzwojenie magnesujące w postaci łuski prądowej umieszczone w szczelinie powietrznej |

Uzwojenie magnesujące w żłobkach stojana

Uzwojenie magnesujące w żłobkach wirnika

Uzwojenie magnesujące umieszczone w stojanie

Uzwojenie magnesujące umieszczone w wirniku

Uzwojenie magnesujące umieszczone na powierzchni walcowej w środku szczeliny powietrznej

Rys. 4.22. Wykresy izolinii wektorowego potencjału magnetycznego w silniku indukcyjnym

Fig. 4.22. Isolines of the magnetic vector potential in induction motor

Z przeprowadzonych obliczeń wynika, że moduł amplitudy zespolonej podstawowej harmonicznej obwodowego rozkładu składowej promieniowej wektora indukcji magnetycznej w analizowanych przypadkach jest praktycznie taki sam, niezależnie od tego, czy zastępcze uzwojenie magnesujące umieszczone jest w żłobkach stojana czy też w żłobkach wirnika oraz jest mniejszy, gdy uzwojenie magnesujące w postaci łuski prądowej umieszczone jest w środku szczeliny powietrznej.

Rys. 4.23. Rozkład obwodowy składowej promieniowej wektora indukcji magnetycznej na powierzchni wirnika oraz widmo jego harmonicznych

Fig. 4.23. Spatial distribution of the magnetic flux density vector radial component on the rotor surface and spectrum of its harmonics
Uzwojenie magnesujące umieszczone w żłobkach wirnika

Rys. 4.24. Rozkład obwodowy składowej promieniowej wektora indukcji magnetycznej na powierzchni stojana oraz widmo jego harmonicznych
Fig. 4.24. Spatial distribution of the magnetic flux density vector radial component on the stator surface and spectrum of its harmonics

Uzwojenie magnesujące w postaci łuski prądowej umieszczone w środku szczeliny powietrznej

Rys. 4.25. Rozkład obwodowy składowej promieniowej wektora indukcji magnetycznej w środku szczeliny powietrznej oraz widmo jego harmonicznych
Fig. 4.25. Spatial distribution of the magnetic flux density vector radial component in the middle of the air gap and spectrum of its harmonics

W dalszych rozważaniach w pracy przyjęto więc zasadę, że pole magnetyczne główne w analizowanych modelach obliczeniowych maszyn elektrycznych wyznacza się umieszczając zastępcze uzwojenie magnesujące w stojanie. Na rysunku 4.26 przedstawiono wykresy modułu amplitudy zespolonej podstawowej harmonicznej składowej promieniowej wektora indukcji magnetycznej w funkcji modułu fazora przestrzennego prądu magnesującego oraz w funkcji jego argumentu.

Z przedstawionych wykresów wynika, że moduł amplitudy zespolonej składowej promieniowej wektora indukcji magnetycznej jest praktycznie tylko funkcją modułu fazora przestrzennego prądu magnesującego. Przeprowadzone obliczenia potwierdziły także, że argument amplitudy zespolonej podstawowej harmonicznej składowej promieniowej wektora indukcji magnetycznej w maszynach asynchronicznych jest praktycznie równy argumentowi fazora przestrzennego prądu magnesującego.

4.2.1.2. Wyniki obliczeń dla turbogeneratora

Obliczenia pola magnetycznego głównego w turbogeneratorze przeprowadzono umieszczając zastępcze uzwojenie magnesujące w żłobkach stojana.

Rys. 4.26. Moduł amplitudy zespolonej podstawowej harmonicznej składowej promieniowej indukcji magnetycznej w funkcji modułu i argumentu fazora przestrzennego prądu magnesującego
Fig. 4.26. Module of the complex fundamental harmonic amplitude of the magnetic flux density radial component vs the module and argument of the magnetizing current space phasor

Rys. 4.27. Izolinie wektorowego potencjału magnetycznego dla kilku argumentów fazora przestrzennego prądu magnesującego
Fig. 4.27. Isolines of the magnetic potential vector for several arguments of the magnetizing current space phasor
Rys. 4.28. Rozkłady obwodowe składowej promieniowej indukcji magnetycznej na powierzchni wirnika
Fig. 4.28. Spatial distributions of the magnetic flux density vector radial component on the rotor surface

Rys. 4.29. Widma harmonicznych rozkładu składowej promieniowej wektora indukcji magnetycznej na powierzchni stojana i wirnika
Fig. 4.29. Harmonic spectra of the magnetic flux density radial component distribution on the stator and rotor surface
Na rysunku 4.28 przedstawiono wykresy rozkładu obwodowego składowej promieniowej wektora indukcji magnetycznej na powierzchni wirnika dla stanu nienasyconego $I_{m(r)} = 0,1$ i dla stanu dużego nasycenia $I_{m(r)} = 1,8$ oraz kilku argumentów fazora przestrzennego prądu magnesującego. Z przedstawionych wykresów można wnioskować jak nasycenie magnetyczne rdzeni wpływa na zmianę kształtu wymienionych rozkładów.

Na rysunku 4.29 pokazano widma harmonicznych rozkładu obwodowego składowej promieniowej wektora indukcji magnetycznej na powierzchni stojana i wirnika.

Na podstawie zaprezentowanych wykresów można stwierdzić, że ze względu na dużą grubość szczeliny powietrznej moduł amplitudy zespolonej podstawowej harmonicznej składowej promieniowej wektora indukcji magnetycznej na powierzchni wirnika jest większy niż na powierzchni stojana. Ze względu jednak na mniejszy promień zewnętrzny wirnika od promienia wewnętrzного stojana strumień magnetyczny przenikający przez podziałkę biegunową na powierzchni wirnika jest mniejszy niż na powierzchni stojana. Z tego też względu w pracy przyjęto, że strumień sprzężony uzwojeń magnesujących umieszczonych w stojanie dla pola głównego powoduje podstawową harmoniczną składową promieniowej wektora indukcji magnetycznej na powierzchni wirnika.

Wykresy modułu i argumentu amplitudy zespolonej podstawowej harmonicznej składowej promieniowej wektora indukcji magnetycznej na powierzchni wirnika w funkcji modułu fazora przestrzennego prądu magnesującego przedstawiono na rys. 4.30.

![Rys. 4.30. Moduł i argument amplitudy zespolonej podstawowej harmonicznej składowej promieniowej wektora indukcji magnetycznej w funkcji modułu fazora przestrzennego prądu magnesującego i parametrycznie zmiennego jego argumentu](image)

Przedstawione na rys. 4.30 charakterystyki pokazują, że w maszynie synchronicznej cylindrycznej w wyniku obecności tak zwanego dużego zęba w wirniku oraz nasycenia magnetycznego moduł oraz argument amplitudy zespolonej podstawowej harmonicznej przestrzennej składowej promieniowej wektora indukcji magnetycznej jest nieliniową funkcją modułu i argumentu fazora przestrzennego prądu magnesującego.

W przypadku gdy fazor przestrzenny prądu magnesującego pokrywa się z osią $d (\gamma_m = 0)$ lub z osią $q (\gamma_m = \pi/2)$, argument amplitudy zespolonej podstawowej harmonicnej przestrzennej składowej promieniowej wektora indukcji magnetycznej jest również równy 0 lub $\pi/2$ niezależnie od stanu nasycenia rdzeni. Przy małych nasyceniach oraz także przy dużych nasyceniach rdzenia magnetycznego wirnika wpływ obecności dużego zęba na omawiane charakterystyki maleje.

4.2.1.3. Wyniki obliczeń dla hydrogeneratora

Obliczenia pola magnetycznego głównego w hydrogeneratorze przeprowadzono umieszczając zastępcze uzwojenie magnesujące w żłobkach stojana. Obliczenia wykonano zmieniając moduł oraz argument fazora przestrzennego prądu magnesującego.

Na rysunku 4.31 pokazano przykładowy rozkład linii pola magnetycznego dla kilku wybranych argumentów fazora przestrzennego prądu magnesującego.

![Rys. 4.31. Izolinie wektorowego potencjału magnetycznego dla kilku wartości argumentu fazora przestrzennego prądu magnesującego](image)
Rys. 4.32. Rozkłady obwodowe składowej promieniowej indukcji magnetycznej na powierzchni wirnika

Fig. 4.32. Spatial distributions of the magnetic flux density vector radial component on the rotor surface

Rys. 4.33. Widma harmonicznych składowej promieniowej indukcji magnetycznej na powierzchni wirnika

Fig. 4.33. Harmonic spectra of the magnetic flux density radial component on the rotor surface
Na rysunku 4.32 przedstawiono wykresy rozkładu obwodowego składowej promieniowej wektora indukcji magnetycznej na powierzchni wirnika dla stanu nienasyconego $I_m(r) = 0,1$ oraz dla stanu dużego nasycenia $I_m(r) = 1,8$ i kilku argumentów fazora przestrzennego prądu magnesującego. Na rysunku 4.33 pokazano widmo harmonicznych rozkładu obwodowego składowej promieniowej wektora indukcji magnetycznej na powierzchni wirnika.

Na podstawie zaprezentowanych wykresów widma harmonicznych można stwierdzić, że w hydrogeneratorze moduł podstawowej harmonicznej i wyższych harmonicznych rozkładu obwodowego składowej promieniowej wektora indukcji magnetycznej przy zmianach argumentu fazora przestrzennego prądu magnesującego zmieniają się w większym zakresie niż w turbogeneratorze. Jeste to wynikiem większej zmiany grubości szczeliny powietrznej spowodowanej wydatnymi biegunami wirnika hydrogeneratora.

4.2.2. Fazor przestrzenny strumienia sprzężonego pola głównego i jego składowe osiowe.

Syntetyczne charakterystyki strumieni sprzężonych pola głównego

Znając moduł i argument amplitudy zespolonej podstawowej harmonicznej składowej promieniowej wektora indukcji magnetycznej w funkcji modułu fazora przestrzennego prądu magnesującego oraz dla stanu nienasyconego $I_m(r) = 0,1$ i kilku argumentów fazora przestrzennego prądu magnesującego, można za pomocą relacji (4.86) wyznaczyć fazor przestrzenny strumienia sprzężonego pola głównego i jego składowe osiowe.
 Jerzy Kudła

b) charakterystyki strumieni sprzężonych, wyznaczone w wyniku minimalizacji błędów średniokwadratowych określonych dla osi d i q za pomocą zależności:

\[
\begin{align*}
\sum_{j,k} \left(\psi_{md}^{(mes)}(I_{my}, \gamma_{mk}) - \sum_{i=1,..,3} \psi_{md}(I_{my}) \cos(i\gamma_{mk}) \right)^2 &= \text{min}, \\
\sum_{j,k} \left(\psi_{mq}^{(mes)}(I_{my}, \gamma_{mk}) - \sum_{i=1,..,3} \psi_{mq}(I_{my}) \sin(i\gamma_{mk}) \right)^2 &= \text{min}.
\end{align*}
\] (4.99)

Wykorzystując procedurę minimalizacji błędu średniokwadratowego wyznaczono dwie syntetyczne charakterystyki strumieni sprzężonych w osi d i q, (i=1,3) Na rysunku 4.37 przedstawiono syntetyczne charakterystyki strumieni sprzężonych pola głównego dla turbogeneratora obliczone według podanych wyżej zasad.

Rys. 4.37. Syntetyczne charakterystyki strumieni sprzężonych pola głównego turbogeneratora
Fig. 4.37. Synthetic characteristics of the turbogenerator main flux linkages

Wykorzystując obydwa rodzaje syntetycznych charakterystyk strumieni sprzężonych wyznaczono charakterystyki strumieni sprzężonych \(\psi_{md}, \psi_{mq} \). Na rysunkach 4.38–4.39 porównano charakterystyki składowych osiowych fazora przestrzennego strumienia sprzężonego pola głównego obliczone za pomocą metody elementów skończonych oraz aproksymowane za pomocą syntetycznych charakterystyk strumieni sprzężonych obliczonych według zależności (4.98) lub (4.99).

Rys. 4.38. Porównanie charakterystyk składowej w osi d fazora przestrzennego strumienia sprzężonego pola głównego turbogeneratora, obliczonych (MES) oraz aproksymowanych (APR) za pomocą syntetycznych charakterystyk wyznaczonych według (4.98), rozkład błędów aproksymacji
Fig. 4.38. Comparison of the characteristics of the main flux linkage space phasor component in d axis of the turbogenerator computed (MES) and approximated (APR) by the synthetic characteristics determined from (4.98), distribution of approximation errors
Za miarę jakości aproksymacji przyjęto rozkład względnych błędów aproksymacji określonych przez następujące zależności:

$$
\varepsilon_{\text{med}}\% = \frac{\sum_{i=1}^{3} \Psi_{m(i)}(I_m, \gamma_m) \cos(i\gamma_m)}{\Psi_{\text{med}}(I_m, \gamma_m)} \cdot 100\% ,
$$

$$
\varepsilon_{\text{med}}\% = \frac{\sum_{i=1}^{3} \Psi_{m(i)}(I_m, \gamma_m) \sin(i\gamma_m)}{\Psi_{\text{med}}(I_m, \gamma_m)} \cdot 100\% .
$$

(4.100)

Z wykresów przedstawionych na rys. 4.38 – 4.39 wynika, że dla turbogeneratora przyjęcie jako syntetycznych charakterystyk strumieni sprzężonych pola głównego, charakterystyk składowych osiowych fazora przestrzennego strumienia sprzężonego pola głównego, obliczonych dla dwóch szczególnych położeń fazora przestrzennego prądu magnesującego $\gamma_m = 0, \gamma_m = \pi /2$, prowadzi do dość dużych niedokładności aproksymacji charakterystyk. Błędy te są szczególnie duże przy aproksymacji charakterystyk w osi d (maksymalny błąd wynosi 15%) oraz mniejsze przy aproksymacji w osi q (maksymalny błąd wynosi 8%). Błędy aproksymacji wzrastają przy dużych nasyceniach rdzeni magnetycznych.

Z wykresów przedstawionych na rys. 4.40 – 4.41 wynika, że syntetyczne charakterystyki strumieni sprzężonych dla turbogeneratora, wyznaczone w wyniku minimalizacji błędów średniokwadratowych, w zadowalająco sposób aproksymują charakterystyki strumieni sprzężonych w osi d i q w całym zakresie zmian modułu fazora przestrzennego prądu magnesującego. Maksymalny błąd aproksymacji charakterystyk w osi d nie przekracza 5% a charakterystyk w osi q 3%.

Na rysunkach 4.43 – 4.46 porównano charakterystyki składowych osiowych fazora przestrzennego strumienia sprzężonego pola głównego hydrogeneratora obliczone za pomocą metody elementów skończonych oraz aproksymowane za pomocą syntetycznych charakterystyk strumieni sprzężonych pola głównego obliczonych według (4.98) lub (4.99).
Rys. 4.42. Syntetyczne charakterystyki strumieni sprzężonych pola głównego hydrogeneratora
Fig. 4.42. Synthetic characteristics of the hydrogenerator main flux linkages

Rys. 4.43. Porównanie charakterystyk składowej w osi d fazora przestrzennego strumienia sprzężonego pola głównego hydrogeneratora obliczonych (MES) oraz aproksymowanych (APR) za pomocą syntetycznych charakterystyk wyznaczonych według (4.98), rozkład błędów aproksymacji
Fig. 4.43. Comparison of the characteristics of the main flux linkage space phasor component in d axis of the hydrogenerator computed (MES) and approximated (APR) by the synthetic characteristics determined from (4.98), distribution of approximation errors.

Z wykresów przedstawionych na rysunkach 4.43 - 4.44 wynika, że syntetyczne charakterystyki strumieni sprzężonych pola głównego hydrogeneratora, wyznaczone w wyniku minimalizacji błędów średniokwadratowych w zadowalająco sposób aproksymują charakterystyki strumieni sprzężonych pola głównego w osi d i q w całym zakresie zmian modułu fazora przestrzennego prądu magnesującego. Maksymalny błąd aproksymacji nie przekracza 3-4%, przy czym dla większości punktów charakterystyk jest mniejszy niż 1%.

Rys. 4.44. Porównanie charakterystyk składowej w osi q fazora przestrzennego strumienia sprzężonego pola głównego hydrogeneratora obliczonych (MES) oraz aproksymowanych (APR) za pomocą syntetycznych charakterystyk wyznaczonych według (4.98) oraz rozkład błędów aproksymacji
Fig. 4.44. Comparison of the characteristics of the main flux linkage space phasor component in q axis of the hydrogenerator computed (MES) and approximated (APR) by the synthetic characteristics determined from (4.98), distribution of approximation errors.

Z przedstawionych na rysunkach 4.45-4.46 wykresów wynika, że syntetyczne charakterystyki strumieni sprzężonych pola głównego hydrogeneratora, wyznaczone w wyniku minimalizacji błędów średniokwadratowych w zadowalająco sposób aproksymują charakterystyki strumieni sprzężonych pola głównego w osi d i q w całym zakresie zmian modułu fazora przestrzennego prądu magnesującego. Maksymalny błąd aproksymacji nie przekracza 3-4%, przy czym dla większości punktów charakterystyk jest mniejszy niż 1%.

Rys. 4.45. Porównanie charakterystyk składowej w osi d fazora przestrzennego strumienia sprzężonego pola głównego hydrogeneratora obliczonych (MES) oraz aproksymowanych (APR) za pomocą syntetycznych charakterystyk wyznaczonych według (4.99), rozkład błędów aproksymacji
Fig. 4.45. Comparison of the characteristics of the main flux linkage space phasor component in d axis of the hydrogenerator computed (MES) and approximated (APR) by the synthetic characteristics determined from (4.99), distribution of approximation errors.
5. STRUMIENIE SPRĘŻONE UZWOJEŃ STOJANA I WIRNIKA DLA POLA ROZPROSzenia

Pola magnetyczne rozproszenia uzwojeń stojana i wirnika są reprezentowane przez linie pola, które sprzęgają się tylko z uzwojeniami stojana lub tylko z uzwojeniami wirnika. W konsekwencji [8,12,23,31,32,34] wyróżnia się następujące składniki pól rozproszenia stojana i wirnika:

- pole magnetyczne rozproszenia żłobkowego stojana lub wirnika,
- pole magnetyczne rozproszenia czół uzwojeń stojana i wirnika.

W monoharmonicznych modelach matematycznych maszyn elektrycznych prądu przemiennego do pola rozproszenia zalicza się dodatkowo:

- pole magnetyczne rozproszenia szczelinowego stojana i wirnika spowodowane wyższymi harmonicznymi rozkładu okładu prądowego uzwojeń stojana i wirnika,
- pole magnetyczne rozproszenia spowodowane skosem żłóbów stojana i wirnika.

Wyznaczenie pól rozproszenia oraz strumieni sprzężonych uzwojeń maszyny z tymi polami wymaga opracowania modeli obliczeniowych, w których pola te są wyodrębnione lub też są dominujące. Opracowanie modeli obliczeniowych, w których występują wszystkie wymienione składniki pól magnetycznych rozproszenia, jest trudne, dlatego też opracowuje się oddzielne modele obliczeniowe do wyznaczenia wyodrębnionych składników pola rozproszenia. W pracy rozważania ograniczono do wyznaczenia pól magnetycznych rozproszenia żłobkowego i rozproszenia szczelinowego oraz strumieni sprzężonych uzwojeń dla tych pól. Wyniki badań i analiz wykorzystano do wyznaczenia strumieni sprzężonych uzwojeń stojana i wirnika maszyny indukcyjnej oraz uzwojeń stojana maszyny synchronicznej z wirnikiem cylindrycznym. Biorąc pod uwagę, że stojan maszyny synchronicznej ma podobną budowę do stojana maszyny indukcyjnej, rozważania przedstawiono dla maszyny indukcyjnej klatkowej.

5.1. Koenergia pola magnetycznego rozproszenia. Strumienie sprzężone uzwojeń stojana i wirnika dla pola rozproszenia

Strumienie sprzężone uzwojeń stojana i wirnika dla pól rozproszenia wygodnie jest wyznaczać korzystając z koenergii pola magnetycznego rozproszenia. Pomijając wpływ zmiany położenia żłóbów wirnika względem stojana na wartość koenergii pola magnetycznego rozproszenia można przyjąć, że zależy ona tylko od prądów fazowych stojana lub wirnika. Dla 3 - fazowego stojana oraz Qr - fazowego wirnika można napisać:

\[E_{c\alpha s} = E_{c\alpha s}(I_{s1}, I_{s2}, I_{s3}), \quad E_{c\sigma r} = E_{c\sigma r}(I_{r1}, I_{r2}, \ldots, I_{rQr}) \]

(5.1)

gdzie:

\[E_{c\alpha s}, E_{c\sigma r}, Qr \] - koenergia pola magnetycznego rozproszenia stojana i wirnika, liczba żłóbów wirnika.
Przyjmując, że wartości chwilowe prądów fazowych stojana oraz prądów fazowych wirnika są określone przez ich fazory przestrzenne, dla fazorów przestrzennych określonych w układach współrzędnych związanych odpowiednio ze stojanem i wirnikiem prądy fazowe wynoszą:

\[
I_{\alpha,\beta} = \sqrt{2/3} I_{\rho} \cos \left(\gamma_\rho - \frac{2\pi}{3}(k-1) \right) = \sqrt{2/3} \left(I_{\alpha,\beta} \cos \left(\frac{2\pi}{3}(k-1) \right) + I_{\rho} \sin \left(\frac{2\pi}{3}(k-1) \right) \right),
\]

(5.2)

\[
I_{\epsilon,\gamma} = \frac{2}{\sqrt{Q}} I_{\rho} \cos \left(\gamma_\rho - \frac{2\pi p}{Q}(l-1) \right) = \frac{2}{\sqrt{Q}} \left(I_{\epsilon,\gamma} \cos \left(\frac{2\pi p}{Q}(l-1) \right) + I_{\rho} \sin \left(\frac{2\pi p}{Q}(l-1) \right) \right),
\]

(5.3)

Stąd

\[
i_{\alpha,\beta} = i_{\alpha,\beta} \left(I_{\alpha,\beta}, I_{\gamma_\rho,\gamma_\rho} \right), \quad i_{\epsilon,\gamma} = i_{\epsilon,\gamma} \left(I_{\epsilon,\gamma}, I_{\rho} \right).
\]

(5.4)

Uwzględniając (5.1) i (5.4) koenergia pola magnetycznego rozproszenia stojana i wirnika jest zależna od modułu i argumentu fazorów przestrzennych odpowiednich prądów lub ich składowych osiowych.

\[
E_{\alpha,\beta} = E_{\alpha,\beta} \left(I_{\alpha,\beta}, I_{\gamma_\rho,\gamma_\rho} \right), \quad E_{\gamma,\epsilon} = E_{\gamma,\epsilon} \left(I_{\gamma,\epsilon}, I_{\rho} \right).
\]

(5.5)

Strumienie sprzężone uzwojeń fazowych stojana i wirnika z polami rozproszenia można zatem wyznaczyć na podstawie następujących zależności:

- dla k-tej fazy uzwojenia stojana

\[
\Psi_{\alpha,\beta, k} = \frac{\partial E_{\alpha,\beta} \left(I_{\alpha,\beta}, I_{\gamma_\rho,\gamma_\rho} \right)}{\partial I_{\alpha,\beta}} = \frac{\partial E_{\alpha,\beta} \left(I_{\alpha,\beta}, I_{\gamma_\rho,\gamma_\rho} \right)}{\partial I_{\alpha,\beta}} \frac{\partial I_{\alpha,\beta}}{\partial I_{\alpha,\beta}} + \frac{\partial E_{\alpha,\beta} \left(I_{\alpha,\beta}, I_{\gamma_\rho,\gamma_\rho} \right)}{\partial I_{\alpha,\beta}} \frac{\partial I_{\gamma_\rho,\gamma_\rho}}{\partial I_{\gamma_\rho,\gamma_\rho}},
\]

(5.6)

- dla l-tej fazy uzwojenia wirnika

\[
\Psi_{\alpha,\beta, l} = \frac{\partial E_{\alpha,\beta} \left(I_{\alpha,\beta}, I_{\gamma_\rho,\gamma_\rho} \right)}{\partial I_{\alpha,\beta}} = \frac{\partial E_{\alpha,\beta} \left(I_{\alpha,\beta}, I_{\gamma_\rho,\gamma_\rho} \right)}{\partial I_{\alpha,\beta}} \frac{\partial I_{\alpha,\beta}}{\partial I_{\alpha,\beta}} + \frac{\partial E_{\alpha,\beta} \left(I_{\alpha,\beta}, I_{\gamma_\rho,\gamma_\rho} \right)}{\partial I_{\alpha,\beta}} \frac{\partial I_{\gamma_\rho,\gamma_\rho}}{\partial I_{\gamma_\rho,\gamma_\rho}},
\]

(5.7)

gdzie:

\[
\Psi_{\alpha,\beta, k}, \quad \Psi_{\alpha,\beta, l}, \quad \text{chwilowe strumienie sprzężone k-tego uzwojenia stojana i l-tego uzwojenia wirnika dla pola rozproszenia.}
\]

Uwzględniając wyrażenia na składowe osiowe fazorów przestrzennych prądu stojana i wirnika

\[
I_{\alpha,\beta} = \sqrt{2/3} \sum_{k=1}^{3} \text{Re} \left(a^{(k-1)} \right) I_{\alpha,\beta}, \quad I_{\beta,\alpha} = \sqrt{2/3} \sum_{k=1}^{3} \text{Im} \left(a^{(k-1)} \right) I_{\alpha,\beta}, \quad a = e^{\frac{2\pi}{3}},
\]

(5.8)

\[
I_{\rho} = \sqrt{2/3} \sum_{k=1}^{3} \text{Re} \left(b^{(k-1)} \right) I_{\epsilon,\gamma}, \quad I_{\gamma,\rho} = \sqrt{2/3} \sum_{k=1}^{3} \text{Im} \left(b^{(k-1)} \right) I_{\epsilon,\gamma}, \quad b = e^{\frac{2\pi p}{Q}}.
\]

(5.9)

Pochodne tych składowych względem prądów fazowych stojana i wirnika wynoszą:

\[
\frac{\partial I_{\alpha,\beta}}{\partial I_{\alpha,\beta}} = \sqrt{2/3} \text{Re} \left(a^{(k-1)} \right), \quad \frac{\partial I_{\beta,\alpha}}{\partial I_{\alpha,\beta}} = \sqrt{2/3} \text{Im} \left(a^{(k-1)} \right),
\]

(5.10)

\[
\frac{\partial I_{\rho}}{\partial I_{\epsilon,\gamma}} = \frac{2}{\sqrt{Q}} \text{Re} \left(b^{(k-1)} \right), \quad \frac{\partial I_{\gamma,\rho}}{\partial I_{\epsilon,\gamma}} = \frac{2}{\sqrt{Q}} \text{Im} \left(b^{(k-1)} \right).
\]

(5.11)

Podstawiając wyrażenia (5.10-5.11) do wyrażeń (5.6-5.7) oraz uwzględniając tożsamości:

\[
\text{Re} \left(a^{(k-1)} \right) = \text{Re} \left(a^{(1-k)} \right), \quad \text{Im} \left(a^{(k-1)} \right) = \text{Re} \left(j b^{(k-1)} \right),
\]

(5.12)

\[
\text{Re} \left(b^{(k-1)} \right) = \text{Re} \left(b^{(1-k)} \right), \quad \text{Im} \left(b^{(k-1)} \right) = \text{Re} \left(j a^{(k-1)} \right),
\]

(5.13)

otrzymuje się wyrażenia na strumienie sprzężone uzwojeń stojana i wirnika dla pol rozproszenia:

- dla stojana

\[
\Psi_{\alpha,\beta, k} = \sqrt{2/3} \text{Re} \left(\left(\frac{\partial E_{\alpha,\beta} \left(I_{\alpha,\beta}, I_{\gamma_\rho,\gamma_\rho} \right)}{\partial I_{\alpha,\beta}} + j \frac{\partial E_{\alpha,\beta} \left(I_{\alpha,\beta}, I_{\gamma_\rho,\gamma_\rho} \right)}{\partial I_{\gamma_\rho,\gamma_\rho}} \right) \right),
\]

(5.14)

- dla wirnika

\[
\Psi_{\alpha,\beta, l} = \frac{2}{\sqrt{Q}} \text{Re} \left(\left(\frac{\partial E_{\alpha,\beta} \left(I_{\alpha,\beta}, I_{\gamma_\rho,\gamma_\rho} \right)}{\partial I_{\alpha,\beta}} + j \frac{\partial E_{\alpha,\beta} \left(I_{\alpha,\beta}, I_{\gamma_\rho,\gamma_\rho} \right)}{\partial I_{\gamma_\rho,\gamma_\rho}} \right) \right).
\]

(5.15)

Korzystając z definicji fazora przestrzennego w układzie współrzędnych związanych ze stojanem oraz z zależności (5.14) i tożsamości:

\[
\frac{2}{3} \sum_{k=1}^{3} \text{Re} \left(a^{(k-1)} \right) = \frac{2}{3} \sum_{k=1}^{3} \text{Im} \left(a^{(k-1)} \right) = \frac{2}{3} \sum_{k=1}^{3} \frac{1}{2} = 1,
\]

(5.16)

\[
\frac{2}{3} \sum_{k=1}^{3} \text{Re} \left(b^{(k-1)} \right) = \frac{2}{3} \sum_{k=1}^{3} \text{Im} \left(b^{(k-1)} \right) = \frac{2}{3} \sum_{k=1}^{3} \frac{1}{2} = j,
\]

(5.17)

otrzymuje się wyrażenie na fazor przestrzenny strumienia sprzężonego uzwojen stojana dla pol rozproszenia i jego składowe osiowe:

\[
\Psi_{\alpha,\beta} = \left(\frac{\partial E_{\alpha,\beta} \left(I_{\alpha,\beta}, I_{\gamma_\rho,\gamma_\rho} \right)}{\partial I_{\alpha,\beta}} + j \frac{\partial E_{\alpha,\beta} \left(I_{\alpha,\beta}, I_{\gamma_\rho,\gamma_\rho} \right)}{\partial I_{\gamma_\rho,\gamma_\rho}} \right) \Psi_{\alpha,\beta} + j \Psi_{\alpha,\beta}.
\]

(5.18)
Wykonując podobne działania dla uzwojen wirnika otrzymuje się wyrażenie na fazor przestrzennego strumienia sprzężonego uzwojen wirnika dla pola rozproszenia i jego składowe osiowe:

\[\Psi_{\sigma r} = \left(\frac{\partial E_{car}(I_{rd}, I_{rq})}{\partial I_{rd}} + j \frac{\partial E_{car}(I_{rd}, I_{rq})}{\partial I_{rq}} \right) = \Psi_{\sigma rd} + j \Psi_{\sigma rq}, \]

(5.19)

gdzie:
\[\Psi_{\sigma sa}, \Psi_{\sigma sb}, \Psi_{\sigma sb} - \text{fazor przestrzenny strumienia sprzężonego uzwojen stojan dla pola rozproszenia stojana i jego składowe osiowe w układzie współrzędnych związanym ze stojanem,} \]
\[\Psi_{\sigma ra}, \Psi_{\sigma rd}, \Psi_{\sigma rq} - \text{fazor przestrzenny strumienia sprzężonego uzwojen wirnika dla pola rozproszenia wirnika i jego składowe osiowe w układzie współrzędnych związanym z wirnikiem.} \]

Uwzględniając (5.18) i (5.19) zależności (5.14) i (5.15) można przedstawić w postaci:

\[\Psi_{\sigma sa} = \sqrt{\frac{2}{3}} \text{Re}(\hat{\Psi}_{\sigma sa}), \quad \Psi_{\sigma rd} = \sqrt{\frac{2}{3}} \text{Re}(\hat{\Psi}_{\sigma rd}), \]

(5.20)

Uwzględniając w dalszych rozważaniach, że:
\[I_{sa} = I_s \cos(\psi_s), \quad I_{sb} = I_s \sin(\psi_s), \quad I_{rd} = I_r \cos(\psi_r), \quad I_{rq} = I_r \sin(\psi_r), \]

(5.21)

składowe osiowe fazorów przestrzennych strumienia sprzężonego pola rozproszenia można także zapisać w postaci:

- dla stojana
\[\Psi_{\sigma sa} = \frac{\partial E_{car}(I_{sa}, I_{sb})}{\partial I_{sa}} = \frac{\partial E_{car}(I_{sa}, I_{sb})}{\partial I_{sa}} + \frac{\partial E_{car}(I_{sa}, I_{sb})}{\partial I_{sb}} \]

(5.22)

- dla wirnika
\[\Psi_{\sigma rb} = \frac{\partial E_{car}(I_{rd}, I_{rq})}{\partial I_{rd}} = \frac{\partial E_{car}(I_{rd}, I_{rq})}{\partial I_{rd}} + \frac{\partial E_{car}(I_{rd}, I_{rq})}{\partial I_{rq}} \]

(5.23)

Obliczając odpowiednie pochodne otrzymuje się następujące wyrażenia:

- dla stojana
\[\Psi_{\sigma sa} = \frac{\partial E_{car}(I_s, \psi_s)}{\partial I_s} \cos(\psi_s) - \frac{1}{I_s} \frac{\partial E_{car}(I_s, \psi_s)}{\partial \psi_s} \sin(\psi_s), \]

(5.24)

5.2. Modele obliczeniowe stosowane przy wyznaczaniu pola magnetycznego rozproszenia żłobkowego

W celu wyznaczenia pola rozproszenia żłobkowego uzwojen stojana i wirnika do rozważań przyjęto modele obliczeniowe maszyny indukcyjnej przedstawione na rys. 5.1 Przy obliczeniach pola rozproszenia żłobkowego przyjęto, że boki zezwojów uzwojen całkowicie wypełniają żłobki stojana i wirnika oraz założono równomierny rozkład wektora gęstości prądu w przekroju poprzecznym każdego boku uzwojenia. Przy takim założeniu chwilowe rozkłady przestrzenne pola rozproszenia żłobkowego stojana i wirnika można wyznaczyć rozwiązując zagadnienie magnetostatyczne, określone w rozdziale 4.2, przyjmując jednorodny warunek brzegowy Dirichleta na brzegu wewnętrznym stojana i brzegu zewnętrznym wirnika.

W obliczeniach rozkładów przestrzennych pola magnetycznego przyjęto, że w uzwojeniach stojana i wirnika występują prądy, których wartości chwilowe wynikają z wartości chwilowych fazorów przestrzennych prądu stojana i wirnika.

\[i_{ks} = \sqrt{\frac{2}{3}} I_s \cos(\psi_s - \frac{2\pi}{3}(-1-k)), \quad i_{rl} = \sqrt{\frac{2}{3}} I_r \cos(\psi_r - \frac{2\pi}{3}(-1-l)). \]

(5.32)

Przy czym moduł fazora przestrzennego prądu wirnika określono przyjmując, że:
\[I_s = I_s^* = \sqrt{\frac{3}{Q}} N_{k_s} k_{ar} I_r, \]

(5.33)

gdzie:
\[I_s^* - \text{moduł fazora przestrzennego prądu stojana sprowadzonego na stronę wirnika.} \]
Jako prąd fazowy wirnika przyjęto prąd płynący w oczku wirnika utworzonym przez dwa sąsiednie pręty oraz segmenty pierścieni zwierających. W konsekwencji wartości chwilowe prądów płynących w prętach wirnika określa się na podstawie relacji:
\[i_{prl} = i_{l} - i_{l-1}, \]
(5.34)
gdzie:
\[i_{prl}, i_{l}, i_{l-1} \] - chwilowy prąd w \(l \)-tym pręcie wirnika, chwilowe prądy w \(l \)-tym i \(l-1 \) oczku wirnika (prądy fazowe wirnika).

Rys. 5.1. Modele obliczeniowe maszyny indukcyjnej o mocy znamionowej 1 500 W stosowane przy obliczeniu pola rozproszenia żłobkowego stojana i wirnika

Fig. 5.1. Computational models of 1 500 W induction machine used for computing the slot leakage field of the stator and rotor

5.3. Właściwości koenergii pola magnetycznego rozproszenia żłobkowego

Właściwości koenergii pola magnetycznego rozproszenia żłobkowego można określić rozpatrując relacje występujące pomiędzy wartościami chwilowymi prądów fazowych a modułem i argumentem fazorów przestrzennych odpowiednich prądów oraz uwzględniając strukturę rozpatrywanych modeli obliczeniowych. Uwzględniając relację (5.2) otrzymuje się:
\[i_{s1}(I_{s} - \gamma_{s}) = i_{s1}(I_{s}, \gamma_{s}), \]
(5.35)
\[i_{s2}(I_{s} - \gamma_{s}) = i_{s2}(I_{s}, \gamma_{s}), \]
(5.36)
\[i_{s3}(I_{s} - \gamma_{s}) = i_{s3}(I_{s}, \gamma_{s}), \]
(5.37)
W konsekwencji zmiana na przeciwny argument fazora przestrzennego prądu stojana powoduje zmianę kolejności faz prądów w uzuwieniach stojana, natomiast zmiana tego argumentu o kąt 60 deg, oprócz zmiany kolejności faz, powoduje także zmianę na przeciwny znaku prądów fazowych. Stąd, uwzględniając strukturę modelu obliczeniowego, koenergia magnetyczna pola rozproszenia żłobkowego stojana jest funkcją okresową i parzystą względem argumentu fazora przestrzennego prądu stojana.
\[E_{c\sigma_{st}}(I_{s}, \gamma_{s}) = E_{c\sigma_{st}}(I_{s} - \gamma_{s}), \quad E_{c\sigma_{st}}(I_{s}, \gamma_{s}) = E_{c\sigma_{st}}(I_{s}, \gamma_{s} + \frac{\pi}{3}). \]
(5.38)

Rozwijając tę funkcję w szereg Fouriera otrzymuje się:
\[E_{c\sigma_{st}}(I_{s}, \gamma_{s}) = \sum_{k=0,1,2} E_{c\sigma_{st}}(I_{s}) \cos(k\gamma_{s}), \]
(5.39)

Uwzględniając natomiast zależność (5.3) dla prądów fazowych wirnika można napisać:
\[i_{r1}(I_{r} - \gamma_{r}) = i_{r1}(I_{r}, \gamma_{r}), \quad i_{r1}(I_{r}, \gamma_{r}) = \frac{2\pi}{O_{r}} = i_{r3}(I_{r}, \gamma_{r}), \]
(5.40)
\[i_{r2}(I_{r} - \gamma_{r}) = i_{r2}(I_{r}, \gamma_{r}), \quad i_{r2}(I_{r}, \gamma_{r}) = \frac{2\pi}{O_{r}} = i_{r3}(I_{r}, \gamma_{r}), \]
(5.41)
\[i_{r3}(I_{r} - \gamma_{r}) = i_{r3}(I_{r}, \gamma_{r}), \quad i_{r3}(I_{r}, \gamma_{r}) = \frac{2\pi}{O_{r}} = i_{r3}(I_{r}, \gamma_{r}). \]
(5.42)

Rozwijając tę funkcję w szereg Fouriera otrzymuje się:
\[E_{c\sigma_{tr}}(I_{r}, \gamma_{r}) = \sum_{k=0,1,2} E_{c\sigma_{tr}}(I_{r}) \cos(k\gamma_{r}), \]
(5.43)

gdzie:
\[E_{c\sigma_{st}}, E_{c\sigma_{tr}} \] - koenergia pola magnetycznego rozproszenia żłobkowego stojana i wirnika

5.3.1. Wyniki obliczeń koenergii pola magnetycznego rozproszenia żłobkowego

Obliczenia koenergii pola magnetycznego rozproszenia żłobkowego stojana i wirnika przeprowadzono dla modeli obliczeniowych silnika indukcyjnego o mocy 1 500 W przedstawionych na rys. 5.1.

Na rysunku 5.2 przedstawiono przykładowe rozkłady izolinii wektorowego potencjału magnetycznego w stojanie i w wirniku obliczone dla dwóch argumentów fazora przestrzennego prądu stojana i wirnika.

Zaprezentowane na rysunku 5.2 obrazy linii pola magnetycznego potwierdzają okresowość koenergii pola magnetycznego. Z kolei na rys. 5.3 i 5.4 przedstawiono wykresy koenergii pola magnetycznego rozproszenia żłobkowego w funkcji argumentu fazora przestrzennego prądu stojana i argumentu fazora przestrzennego prądu wirnika dla dwóch wartości modułów fazora przestrzennego prądu stojana oraz prądu wirnika.
Jerzy Kudło

80

Rys. 5.2. Rozkłady izolinii wektorowego potencjału magnetycznego dla dwóch argumentów fazora przestrzennego prądu stojana i wirnika

Fig. 5.2. Distributions of the magnetic vector potential isolines for two arguments of the stator and rotor current space phasor

Rys. 5.3. Koenergia pola rozproszenia złobkowego stojana w funkcji argumentu fazora przestrzennego prądu stojana

Fig. 5.3. Coenergy of the stator slot leakage field vs the space phasor argument of the stator current

Rys. 5.4. Wykresy koeNegii magnetycznej pola rozproszenia złobkowego wirnika w funkcji argumentu fazora przestrzennego prądu wirnika

Fig. 5.4. Magnetic coenergy of the rotor slot leakage field vs the space phasor argument of the rotor current

Z przedstawionych wykresów wynika, że z dobrą dokładnością można założyć, że koenergia pola rozproszenia złobkowego stojana jest funkcją modułu fazora przestrzennego prądu stojana, a koenergia pola rozproszenia złobkowego wirnika jest funkcją modułu fazora przestrzennego prądu wirnika.

\[E_{co_{st}} = E_{co_{st}}(I_s), \quad E_{co_{rot}} = E_{co_{rot}}(I_r). \] \hspace{1cm} (5.45)

Uwzględniając powyższe wnioski na rys. 5.5 przedstawiono wykresy koeNegii pola rozproszenia stojana i wirnika w funkcji modułu fazora przestrzennego prądu stojana i wirnika.

Rys. 5.5. Wykres koeNegii pola rozproszenia złobkowego stojana i wirnika w funkcji modułu fazora przestrzennego prądu stojana i wirnika

Fig. 5.5. Magnetic coenergy of the stator and rotor slot leakage field vs the space phasor module of the stator and rotor current

5.4. Fazory przestrzenne strumienia sprzężonego uzwojen stojana i wirnika dla pola rozproszenia złobkowego

Przyjmując, że koenergia pola magnetycznego rozproszenia złobkowego stojana i wirnika zależy od modułu fazora przestrzennego odpowiednich prądów na podstawie zależności (5.30) i (5.31) można wyznaczyć fazory przestrzenne strumieni sprzężonych uzwojeń stojana i wirnika dla pola rozproszenia złobkowego.
gdzie:

\[\psi'_{\sigma_{st}}, \psi'_{\sigma_{sr}} \] - fazory przestrzenne strumieni sprzężonych uzwojen stojana i wirnika dla pola rozproszenia żłobkowego oraz syntetyczne charakterystyki strumieni sprzężonego pola rozproszenia żłobkowego stojana i wirnika.

Występujące we wzorach (5.45) - (5.46) funkcje \(\psi'_{\sigma_{st}}(I_s), \psi'_{\sigma_{sr}}(I_r) \) można nazwać syntetycznymi charakterystykami strumieni sprzężonego uzuwowań stojana i wirnika dla pola rozproszenia żłobkowego, które w skrócie nazywać się będzie syntetycznymi charakterystykami strumieni sprzężonego pola rozproszenia żłobkowego stojana lub wirnika.

Na rysunku 5.6 przedstawiono wykresy syntetycznych charakterystyk strumieni sprzężonych pola rozproszenia żłobkowego. Z przedstawionych poniżej wykresów wynika, że dla rozpatrywanych konstrukcji żłobków stojana i wirnika nasycenie magnetyczne rdzeni nie jest duże.

\[\psi_{\sigma_{st}}(I_s), \psi_{\sigma_{sr}}(I_r) \] - charakterystyki strumieni sprzężonego pola rozproszenia żłobkowego stojana i wirnika.

Wyznaczenie jedynie pola rozproszenia szczelinowego w maszynach elektrycznych przy uwzględnieniu nasycenia rdzeni jest trudne. W pracy przyjęto do rozważań modele obliczeniowe, w których występują łącznie pola rozproszenia żłobkowego i szczelinowego. W celu uproszczenia analizy stojan i wirnik w modelach obliczeniowych maszyny są względem siebie nieruchome. Rozpatrywane modele obliczeniowe przedstawiono na rys. 5.9.

Przy obliczaniu pola rozproszenia szczelinowego stojana przyjęto, że wypadkowy fazor przestrzenny prądu stojana oraz prądu w łusce prądowej jest równy zero. Podobnie, przy obliczaniu pola rozproszenia żłobkowego i szczelinowego wirnika przyjęto, że wypadkowy fazor przestrzenny prądu wirnika oraz łyski prądowej jest równy zero.
5.6. Właściwości fazorów przestrzennych strumieni sprzężonych uzwojeń stojana i wirnika dla pola rozproszenia żłobkowego i szczelinowego

Przyjmując, że w rozpatrywanych modelach obliczeniowych występuje kompensacja pola magnetycznego głównego, pole magnetyczne w tych modelach składa się z pola rozproszenia żłobkowego oraz szczelinowego stojana lub wirnika. Na rysunku 5.10 przedstawiono przykładowe rozkłady linii pola magnetycznego w rozpatrywanych modelach. Z obrazu linii pola magnetycznego wynika, że pole rozproszenia szczelinowego wnika do wirnika lub stojana.

Koenergia pola magnetycznego w rozpatrywanych modelach obliczeniowych jest w ogólnym przypadku zależna od modułu i argumentu fazora przestrzennego prądu stojana lub prądu wirnika. Przeprowadzone obliczenia pokazały, że koenergia pola magnetycznego zależy praktycznie od modułu fazora przestrzennego prądu stojana lub prądu wirnika. W konsekwencji fazory przestrzenne strumieni sprzężonych uzwojeń stojana i uzwojeń wirnika dla pola rozproszenia żłobkowego i szczelinowego wynoszą:

$$\psi_{\sigma_{sth}} = \frac{\partial E_{\sigma_{sth}}(I_s)}{\partial I_s} e^{j\varphi_I} = \psi_{\sigma_{sth}}(I_s) e^{j\varphi_I},$$

$$\psi_{\sigma_{shr}} = \frac{\partial E_{\sigma_{shr}}(I_r)}{\partial I_r} e^{j\varphi_I} = \psi_{\sigma_{shr}}(I_r) e^{j\varphi_I},$$

gdzie:

$$E_{\sigma_{sth}}, E_{\sigma_{shr}}$$ - koenergia magnetyczna pola rozproszenia żłobkowego i szczelinowego stojana, wirnika,

$$\psi_{\sigma_{sth}}(I_s), \psi_{\sigma_{shr}}(I_r)$$ - syntetyczna charakterystyka strumieni sprzężonych pola rozproszenia żłobkowego i szczelinowego stojana, wirnika.

Rys. 5.11. Koenergia pola rozproszenia żłobkowego i szczelinowego stojana i wirnika w funkcji modułu fazora przestrzennego prądu stojana i prądu wirnika. Na rysunku 5.11 przedstawiono wykresy koenergii pola magnetycznego rozproszenia żłobkowego i szczelinowego stojana i wirnika w funkcji modułu fazora przestrzennego prądu stojana i prądu wirnika. Natomiast na rys. 5.12 przedstawiono wykresy syntetycznych charakterystyk strumieni sprzężonych uzwojeń stojana i wirnika dla pola rozproszenia żłobkowego i szczelinowego.
5.7. Fazory przestrzenne strumieni sprzężonych pola rozproszenia stojana i wirnika

Przeprowadzone dotychczas rozważania można uzupełnić przyjmując uproszczające założenie, że przy wyznaczaniu pól rozproszenia czołów uzwojeń stojana i wirnika oraz pól rozproszenia spowodowanych skosem żłóbów stojana lub wirnika można pominąć nasycenie magnetyczne rdzeni. W rezultacie fazory przestrzenne strumieni sprzężonych uzwojeń stojana i wirnika dla pól rozproszenia stojana lub wirnika mają postać:

\[\Psi_{\alpha \sigma} = (\Psi_{\alpha \phi} (I_s) + L_{\alpha z} I_z) e^{j\gamma_s} = \Psi_{\alpha} (I_s) e^{j\gamma_s}, \]

\[\Psi_{\sigma \sigma} = (\Psi_{\sigma \phi} (I_r) + (L_{\sigma r} + L_{\sigma \sigma}) I_r) e^{j\gamma_r} = \Psi_{\sigma} (I_r) e^{j\gamma_r}, \]

w których:

- \(L_{\alpha z}, L_{\alpha \sigma}, L_{\sigma r} \) - indukcyjności rozproszenia czół uzwojeń stojana, wirnika, indukcyjność rozproszenia spowodowania skosem żłóbów,
- \(\Psi_{\alpha}, \Psi_{\sigma} \) - syntetyczne charakterystyki strumienia sprzężonego pola rozproszenia stojana, wirnika.

Syntetyczne charakterystyki strumienia sprzężonego pola rozproszenia stojana i wirnika zależą tylko od modułów fazorów przestrzennych odpowiednich prądów, co pozwala przedstawić zależności (5.50) i (5.51) we wspólnym układzie współrzędnych \((x,y)\):

\[\Psi_{\alpha s} = \Psi_{\alpha s} (I_s) e^{j\gamma_s}, \]

\[\Psi_{\sigma r} = \Psi_{\sigma r} (I_r) e^{j\gamma_r}, \]

\[\gamma_s = \gamma_s^f - \theta_s, \quad \gamma_r = \gamma_r^f - (\theta_s - \varphi), \]

gде:

- \(\Psi_{\alpha s}, \Psi_{\sigma r} \) - fazory przestrzenne strumieni sprzężonych uzwojeń stojana, wirnika w układzie współrzędnych \((x,y)\).

Zależności (5.52) i (5.53) pokazują, że przy przyjętych założeniach fazory przestrzenne strumieni sprzężonych uzwojeń stojana i wirnika dla pól rozproszenia stojana i wirnika w dowolnym układzie współrzędnych można określić za pomocą syntetycznych charakterystyk strumieni sprzężonych pola rozproszenia stojana lub wirnika zależnych od modułów fazorów przestrzennych prądów stojana lub wirnika.

Właściwość ta ułatwia sformułowanie modeli matematycznych maszyn elektrycznych prądu przemiennego, które uwzględniają nasycenie magnetyczne rdzeni.
6. INDUKCYJNOŚCI STATYCZNE I DYNAMICZNE MASZYN ELEKTRYCZNYCH PRĄDU PRZEMIENNEGO. SPRZĘŻENIE SKRÓSNE STATYCZNE I DYNAMICZNE

Przy formułowaniu równań różniczkowych napięciowo-prądowych maszyn elektrycznych prądu przemiennego zachodzi potrzeba obliczenia pochodnych względem czasu strumieni sprzężonych uzupełniając dla pola magnetycznego głównego i dla pól rozproszenia oraz wyrażenia tych pochodnych za pośrednictwem pochodnych względem czasu odpowiednich prądów. W tym celu wprowadza się do rozwiązań parametry maszyny zwane indukcyjnościami dynamicznymi. Równocześnie także często strumieni sprzężone uzupełnia się za pośrednictwem odpowiednich prądów oraz nieliniowych współczynników mających wymiar indukcyjności i nazywanych indukcyjnościami statycznymi. Jeśli w rozważaniach nie uwzględnia się nasycenia magnetycznego rdzeni, indukcyjności statyczne i dynamiczne są równe oraz stałe. Pochodne strumieni sprzężonych oraz strumienie sprzężone można określić dla uzupełniających fazowych stojana i wirnika otrzymując wówczas zbiór indukcyjności statycznych i dynamicznych tych uzupełnień. Pochodne strumieni sprzężonych oraz strumienie sprzężone można także określić dla odpowiednich składowych osiowych fazorów przestrzennych sprzężonych, wyprowadzając wówczas zbiór indukcyjności statycznych i dynamicznych w odpowiednich osiach układów współrzędnych. Indukcyjności statyczne i dynamiczne maszyn elektrycznych prądu przemiennego w dwuosiowych układach współrzędnych będą przedmiotem rozważań w dalszej części pracy.

Fazory przestrzenne strumieni sprzężonych pola głównego i pola rozproszenia stojana i wirnika oraz ich składowe osiowe mają następujące postaci:

- dla maszyny synchronicznej
 \[
 \Psi_m = \Psi_m(l_m, \gamma_m) = \Psi_{md}(l_m, \gamma_m) + j \Psi_{mq}(l_m, \gamma_m),
 \]
 (6.1)
 \[
 \Psi_s = \Psi_s(l_s, \gamma_s) = \Psi_{sd}(l_s, \gamma_s) + j \Psi_{sq}(l_s, \gamma_s),
 \]
 (6.2)
- dla maszyny asynchronicznej
 \[
 \Psi_m = \Psi_m(l_m, \gamma_m) = \Psi_{md}(l_m, \gamma_m) + j \Psi_{mq}(l_m, \gamma_m),
 \]
 (6.3)
 \[
 \Psi_s = \Psi_s(l_s, \gamma_s) = \Psi_{sd}(l_s, \gamma_s) + j \Psi_{sq}(l_s, \gamma_s),
 \]
 (6.4)
 \[
 \Psi_r = \Psi_r(l_r, \gamma_r) = \Psi_{rd}(l_r, \gamma_r) + j \Psi_{rq}(l_r, \gamma_r).
 \]
 (6.5)

Z uwagi na podobną strukturę przedstawionych relacji w dalszej części pracy w sposób szczegółowy wyprowadzone zostaną zależności określające indukcyjności statyczne i dynamiczne związane z polem głównym maszyny synchronicznej, natomiast dla indukcyjności dynamicznych i statycznych związanych z polami rozproszenia podane zostaną ostateczne wzory.

6.1. Indukcyjności magnesujące statyczne maszyny synchronicznej. Sprzężenie skrósne statyczne

Podobnie jak dla liniowych obwodów elektrycznych, składowe osiowe d i q fazor przestrzennego strumienia sprzężonego pola głównego można wyrazić za pomocą nieliniowego układu równań algebraicznych zapisanego w postaci macierzowej:

\[
\begin{bmatrix}
\Psi_{md} \\
\Psi_{mq}
\end{bmatrix} =
\begin{bmatrix}
L_{mds}(l_m, \gamma_m) & L_{mdq}(l_m, \gamma_m) & I_{md} \\
L_{mdq}(l_m, \gamma_m) & L_{mqq}(l_m, \gamma_m) & I_{mq}
\end{bmatrix}
\]

lub

\[
\begin{bmatrix}
\Psi_{md} \\
\Psi_{mq}
\end{bmatrix} =
\begin{bmatrix}
L_{mds}(l_m, l_m) & L_{mdq}(l_m, l_m) & I_{md} \\
L_{mdq}(l_m, l_m) & L_{mqq}(l_m, l_m) & I_{mq}
\end{bmatrix}
\]

gdzie:

\[L_{mds}, L_{mdq}, L_{mqq} \] - indukcyjności statyczne magnesujące w osiach d i q maszyny.

W równaniach tych nieliniowe współczynniki wiążące składowe osiowe fazora przestrzennego strumienia sprzężonego pola głównego z odpowiednimi składowymi osiowymi fazora przestrzennego prądu magnesującego noszą nazwę indukcyjności magnesujących statycznych, zwanych niekiedy także indukcyjnościami nasyconymi bądź nieliniowymi [11,28].

W pracy rozpatrzono dwa typy indukcyjności statycznych magnesujących:

- indukcyjności statyczne magnesujące główne przyjmując, że
 \[L_{mdq}(l_m, \gamma_m) = L_{mqq}(l_m, \gamma_m) = 0, \]
 (6.8)
 stąd
 \[L_{mds}(l_m, \gamma_m) = L_{mdq}(l_m, \gamma_m) = L_{mqq}(l_m, \gamma_m) = 0, \]
 (6.9)
- indukcyjności statyczne magnesujące wyrażające skrośne sprzężenie magnetyczne przyjmując, że:
 - indukcyjności statyczne magnesujące własne
 \[L_{mds}(l_m, \gamma_m) = \frac{\Psi_{ms}(l_m, \gamma_m)}{l_m \cos(\gamma_m)}, \]
 (6.10)
 \[L_{mdq}(l_m, \gamma_m) = \frac{\Psi_{mq}(l_m, \gamma_m)}{l_m \sin(\gamma_m)}, \]
 (6.11)
 - indukcyjności statyczne magnesujące wzajemne
 \[L_{mdq}(l_m, l_m) = \Delta \Psi_{md}(l_m, l_m) - \Psi_{md}(l_m, l_m) = \frac{\Psi_{md}(l_m, l_m) - \Psi_{md}(l_m, l_m)}{l_m}, \]
 (6.12)
Indukcyjności magnesujące statyczne wzajemne określają dodatkowe strumienie sprzężone zastępczych uzwojeń magnesujących. Strumień sprzężony każdego zastępczego uzwojenia zależy nie tylko od wartości prądu tego uzwojenia, ale także od wartości prądu w drugim uzwojeniu. Występowanie prądu w drugim uzwojeniu powoduje zmniejszenie strumienia sprzężonego w rozpatrywanym uzwojeniu. Na rysunku 6.3 pokazano różne strumienie sprzężonych zastępczych uzwojeń magnesujących spowodowane występowaniem prądu w drugim uzwojeniu.

Przedstawione wykresy wskazują na występowanie skrośnego statycznego sprzężenia magnetycznego zastępczych uzwojeń magnesujących. Strumień sprzężony każdego zastępczego uzwojenia zależy nie tylko od wartości prądu tego uzwojenia, ale także od wartości prądu w drugim uzwojeniu. Występowanie prądu w drugim uzwojeniu powoduje zmniejszenie strumienia sprzężonego w rozpatrywanym uzwojeniu. Na rysunku 6.3 pokazano różne strumienie sprzężonych zastępczych uzwojeń magnesujących spowodowane występowaniem prądu w drugim uzwojeniu.

Zdefiniowane wyżej indukcyjności statyczne wyznaczyć można wprost z charakterystyk strumieni sprzężonych w osi d i q, bądź też korzystając z syntetycznych charakterystyk. W tym drugim przypadku statyczne indukcyjności magnesujące określane są w następujący sposób:

- indukcyjności magnesujące statyczne główne

\[L_{md}(I_m, \gamma_m) = \sum_{i=1,3,5,...} \Psi_{md,i}(I_m) \cos(i\gamma_m) = \sum_{i=1,3,5,...} L_{md,i}(I_m) \cos(i\gamma_m), \]
\[L_{mq}(I_m, \gamma_m) = \sum_{i=1,3,5,...} \Psi_{mq,i}(I_m) \sin(i\gamma_m) = \sum_{i=1,3,5,...} L_{mq,i}(I_m) \sin(i\gamma_m), \]

- indukcyjności statyczne wyrażające skrósne statyczne sprzężenie magnetyczne

\[L_{mdq}(I_m, \gamma_m) = \sum_{i=1,3,5,...} \Psi_{mdq,i}(I_m) \cos(i\gamma_m) \]
\[L_{mdd}(I_m, \gamma_m) = \sum_{i=1,3,5,...} \Psi_{mdd,i}(I_m) \cos(i\gamma_m) - L_{mdq}(I_m) \tan(\gamma_m), \]
\[L_{mqd}(I_m, \gamma_m) = \sum_{i=1,3,5,...} \Psi_{mqd,i}(I_m) \sin(i\gamma_m) \]
\[L_{mqq}(I_m, \gamma_m) = \sum_{i=1,3,5,...} \Psi_{mqq,i}(I_m) \sin(i\gamma_m) - L_{mqd}(I_m) \tan(\gamma_m). \]
Wyznaczone za pomocą syntetycznych charakterystyk strumieni sprzężonych indukcyjności magnesujące statyczne główne turbogeneratora przedstawiono na rysunku 6.4.

Rys. 6.4. Indukcyjności magnesujące statyczne główne turbogeneratora

Fig. 6.4. Main static magnetizing inductances of turbogenerator

Na rysunku 6.5 przedstawiono indukcyjności magnesujące statyczne własne i wzajemne uwzględniające skrośne sprzężenie magnetyczne

Rys. 6.5. Indukcyjności magnesujące statyczne własne i wzajemne

Fig. 6.5. Self- and mutual static magnetizing inductances

6.2. Indukcyjności magnesujące dynamiczne maszyny synchronicznej. Sprzężenie skrośne dynamiczne

W stanach nieustalonych moduł jak i argument fazora przestrzennego prądu magnesującego są funkcjami czasu, stąd pochodne składowych osiowych fazora przestrzennego sprzężonego pola głównego względem czasu wynoszą:

\[
\frac{d\Psi_{md}}{dt} = \frac{\partial \Psi_{md}(I_m, \gamma_m)}{\partial I_m} \frac{dI_m}{dt} + \frac{\partial \Psi_{md}(I_m, \gamma_m)}{\partial \gamma_m} \frac{d\gamma_m}{dt},
\]

\[
\frac{d\Psi_{mq}}{dt} = \frac{\partial \Psi_{mq}(I_m, \gamma_m)}{\partial I_m} \frac{dI_m}{dt} + \frac{\partial \Psi_{mq}(I_m, \gamma_m)}{\partial \gamma_m} \frac{d\gamma_m}{dt}.
\]

Uwzględniając, że:

\[I_m = I_m e^{j\gamma_m}, \quad I_m^* = I_m e^{-j\gamma_m},\]

\[
\frac{dI_m}{dt} = \text{Re}\left\{e^{j\gamma_m} \frac{dI_m}{dt}\right\}, \quad \frac{d\gamma_m}{dt} = \frac{1}{I_m} \text{Im}\left\{e^{-j\gamma_m} \frac{dI_m}{dt}\right\},
\]

zależności (6.19-20) można zapisać w postaci macierzowej:

\[
\frac{d}{dt} \begin{bmatrix} \Psi_{md} \\ \Psi_{mq} \end{bmatrix} = \begin{bmatrix} L_{Dmd}(I_m, \gamma_m) & L_{Dmq}(I_m, \gamma_m) \\ L_{Dmq}(I_m, \gamma_m) & L_{Dmq}(I_m, \gamma_m) \end{bmatrix} \frac{d}{dt} \begin{bmatrix} I_m \\ \gamma_m \end{bmatrix},
\]

w której:

\[
L_{Dmd}(I_m, \gamma_m) = \frac{\partial \Psi_{md}(I_m, \gamma_m)}{\partial I_m} \cos(\gamma_m) - \frac{1}{I_m} \frac{\partial \Psi_{md}(I_m, \gamma_m)}{\partial \gamma_m} \sin(\gamma_m),
\]

\[
L_{Dmq}(I_m, \gamma_m) = \frac{\partial \Psi_{mq}(I_m, \gamma_m)}{\partial I_m} \sin(\gamma_m) + \frac{1}{I_m} \frac{\partial \Psi_{mq}(I_m, \gamma_m)}{\partial \gamma_m} \cos(\gamma_m),
\]

\[
L_{Dmq}(I_m, \gamma_m) = \frac{\partial \Psi_{mq}(I_m, \gamma_m)}{\partial I_m} \sin(\gamma_m) + \frac{1}{I_m} \frac{\partial \Psi_{mq}(I_m, \gamma_m)}{\partial \gamma_m} \cos(\gamma_m),
\]

\[
L_{Dmq}(I_m, \gamma_m) = \frac{\partial \Psi_{mq}(I_m, \gamma_m)}{\partial I_m} \cos(\gamma_m) - \frac{1}{I_m} \frac{\partial \Psi_{mq}(I_m, \gamma_m)}{\partial \gamma_m} \sin(\gamma_m),
\]

gdzie:

\[
L_{Dmd}, L_{Dmq}, L_{Dmq}, L_{Dmq}, \quad \text{indukcyjności magnesujące dynamiczne własne i wzajemne.}
\]
Aproksymując charakterystyki składowych osiowych fazora przestrzennego strumienia sprzężonego pola głównego za pomocą charakterystyk syntetycznych otrzymuje się:

\[L_{Dmq}(I_m, \gamma_m) = \sum_{i=1}^{3} \left(\frac{d \Psi_{mq}(I_m)}{d I_m} \cos(\gamma_m) \cos(\gamma_m) + i \frac{d \Psi_{mq}(I_m)}{d I_m} \sin(\gamma_m) \sin(\gamma_m) \right), \]

\[L_{Dmq}(I_m, \gamma_m) = \sum_{i=1}^{3} \left(\frac{d \Psi_{mq}(I_m)}{d I_m} \sin(\gamma_m) \sin(\gamma_m) + i \frac{d \Psi_{mq}(I_m)}{d I_m} \cos(\gamma_m) \cos(\gamma_m) \right), \]

\[L_{Dmq}(I_m, \gamma_m) = \sum_{i=1}^{3} \left(\frac{d \Psi_{mq}(I_m)}{d I_m} \cos(\gamma_m) \sin(\gamma_m) - i \frac{d \Psi_{mq}(I_m)}{d I_m} \cos(\gamma_m) \cos(\gamma_m) \right), \]

\[L_{Dmq}(I_m, \gamma_m) = \sum_{i=1}^{3} \left(\frac{d \Psi_{mq}(I_m)}{d I_m} \sin(\gamma_m) \cos(\gamma_m) - i \frac{d \Psi_{mq}(I_m)}{d I_m} \sin(\gamma_m) \sin(\gamma_m) \right). \]

W przypadku gdy charakterystyki składowych osiowych fazora przestrzennego strumienia sprzężonego pola głównego aproksymuje się tylko za pomocą jednej w każdej osi syntetycznej, charakterystyki strumienia sprzężonego wyrażenia na indukcyjności dynamiczne magnesujące ulegają uproszczeniu.

\[L_{Dmq}(I_m, \gamma_m) = \frac{d \Psi_{mq}(I_m)}{d I_m} \cos^2(\gamma_m) + i \frac{d \Psi_{mq}(I_m)}{d I_m} \sin^2(\gamma_m), \]

\[L_{Dmq}(I_m, \gamma_m) = \frac{d \Psi_{mq}(I_m)}{d I_m} \sin^2(\gamma_m) + i \frac{d \Psi_{mq}(I_m)}{d I_m} \cos^2(\gamma_m), \]

\[L_{Dmq}(I_m, \gamma_m) = \frac{1}{2} \left(\frac{d \Psi_{mq}(I_m)}{d I_m} \Psi_{mq}(I_m) \right) \sin(2\gamma_m), \]

\[L_{Dmq}(I_m, \gamma_m) = \frac{1}{2} \left(\frac{d \Psi_{mq}(I_m)}{d I_m} \Psi_{mq}(I_m) \right) \sin(2\gamma_m). \]

Na rysunku 6.6 przedstawiono wykresy indukcyjności magnesujących dynamicznych własnych i wzajemnych turbogeneratora w funkcji modułu fazora przestrzennego prądu magnesującego przy parametrycznie zmiennym jego argumentie. Obliczenia wykonano przyjmując jako syntetyczne charakterystyki strumieni sprzężonych pola głównego turbogeneratora charakterystyki \(\Psi_{mq, d}, \Psi_{mq, q} \), przedstawione w rozdziale 4.2.2.

Rys. 6.6. Indukcyjności dynamiczne magnesujące własne i wzajemne turbogeneratora
Fig. 6.6. Self and mutual dynamic magnetizing inductances of turbogenerator

\[\frac{d}{dt} \left[\begin{array}{c} \Psi_{md} \\ \Psi_{mq} \end{array} \right] = \left[\begin{array}{cc} L_{Dmd} & L_{Dmdq} \\ L_{Dmq} & L_{Dmq} \end{array} \right] \left[\begin{array}{c} I_{md} \\ I_{mq} \end{array} \right], \]

Indukcyjności magnesujące dynamiczne wzajemne powodują dodatkowe skośne dynamiczne sprzężenie magnetyczne zastępczych uzwojeń magnesujących w osi \(d \) i \(q \) maszyny. Skośne sprzężenie dynamiczne [155] podobnie jak skośne sprzężenie statyczne nie występuje, gdy właściwości magnetyczne materiałów tworzących rdzenie są liniowe. Skośne sprzężenie dynamiczne powoduje dodatkową zmianę pochodnej względem czasu strumienia sprzężonego zastępczego uzwojenia magnesującego w jednej osi spowodowaną pochodną względem czasu prądu występującego w zastępczym uzwojeniu magnesującym w drugiej osi. Występowanie skośnego sprzężenia dynamicznego uzwojen symbolicznie przedstawiono na rys. 6.7.

Rys. 6.7. Ilustracja skośnego sprzężenia dynamicznego uzwojeń
Fig. 6.7. Illustration of the dynamic cross coupling of windings
6.3. Indukcyjności dynamiczne i statyczne maszyny asynchronicznej dla pola głównego i pola rozproszenia

Przedstawione dotychczas zależności dotyczyły maszyny synchronicznej. Podobne wyrażenia można przedstawić także dla maszyny indukcyjnej.

\[
\frac{d\psi_{mx}}{dt} = \left[L_{Dmx}(I_m, \gamma_m) L_{Dmy}(I_m, \gamma_m) \right] \frac{dI_m}{dt},
\]

(6.36)

przy czym indukcyjności magnesujące dynamiczne maszyny indukcyjnej mają postać:

\[
L_{Dmx}(I_m, \gamma_m) = L_{Dm}(I_m)\cos^2(\gamma_m) + L_{m}(I_m)\sin^2(\gamma_m),
\]

(6.37)

\[
L_{Dmy}(I_m, \gamma_m) = L_{Dm}(I_m)\sin^2(\gamma_m) + L_{m}(I_m)\cos^2(\gamma_m),
\]

(6.38)

\[
L_{Dmyx}(I_m, \gamma_m) = \frac{1}{2}(L_{Dm}(I_m) - L_{m}(I_m))\sin(2\gamma_m) = L_{Dmy}(I_m, \gamma_m),
\]

(6.39)

gdzie:

\[
L_{Dm}(I_m) = \frac{\partial \psi_{m}(I_m)}{\partial I_m}.
\]

(6.40)

Uwzględniając, że fazor przestrzenny strumienia sprzężonego pola głównego można przedstawić w postaci:

\[
\psi_{m} = \psi_{m}(I_m) e^{j\gamma_m} = \frac{\psi_{m}(I_m)}{I_m} I_m = L_m(I_m) I_m,
\]

(6.41)

a nieliniowy współczynnik \(L_m(I_m) \) można nazwać indukcyjnością magnesującą statyczną, składowe osiowe fazora przestrzennego strumienia sprzężonego pola głównego wynoszą:

\[
\begin{bmatrix}
\psi_{mx} \\
\psi_{my}
\end{bmatrix} = \begin{bmatrix}
L_{m}(I_m) & 0 \\
0 & L_{m}(I_m)
\end{bmatrix} \begin{bmatrix}
I_{mx} \\
I_{my}
\end{bmatrix}.
\]

(6.42)

Postępując w podobny sposób dla fazorów przestrzennych strumieni sprzężonych pola rozproszenia stojana i wirnika można napisać zależności na indukcyjności dynamiczne i statyczne rozproszenia stojana i wirnika:

- indukcyjności dynamiczne rozproszenia stojana

\[
L'_{Dmx}(I_s^*, \gamma_s) = L'_{Dmx}(I_s^*)\cos^2(\gamma_s) + L'_{m}(I_s^*)\sin^2(\gamma_s),
\]

(6.44)

\[
L'_{Dmy}(I_s^*, \gamma_s) = L'_{Dmy}(I_s^*)\sin^2(\gamma_s) + L'_{m}(I_s^*)\cos^2(\gamma_s),
\]

(6.45)

\[
L'_{Dmyx}(I_s^*, \gamma_s) = \frac{1}{2}(L'_{Dm}(I_s^*) - L'_{m}(I_s^*))\sin(2\gamma_s) = L'_{Dmy}(I_s^*, \gamma_s),
\]

gdzie:

\[
L'_{Dm}(I_s^*) = \frac{\partial \psi_{s}(I_s^*)}{\partial I_s^*}
\]

(6.46)

Indukcyjności magnesujące i rozproszenia statyczne oraz dynamiczne można wyznaczyć za pomocą odpowiednich syntetycznych charakterystyk strumieni sprzężonych. Dla maszyny indukcyjnej o mocy znamionowej 3 kW syntetyczne charakterystyki strumieni sprzężonych pola głównego oraz pola rozproszenia stojana przedstawiono na rysunku 6.8.

Rys. 6.8. Charakterystyki syntetyczne strumienia sprzężonego pola głównego i pola rozproszenia stojana maszyny indukcyjnej

Fig. 6.8. Synthetic characteristics of the main and stator leakage flux linkage of the induction machine

Syntetyczne charakterystyki aproksymowano funkcjami przedstawionymi w rozdziale 8 i za ich pomocą wyznaczono indukcyjności statyczne i dynamiczne dla pola głównego i pola rozproszenia.

Na rysunku 6.9 przedstawiono wykresy indukcyjności statycznych maszyny dla pola głównego i pola rozproszenia stojana w funkcji modułu fazora przestrzennego prądu magnesującego i prądu stojana.
7. MODELE MATEMATYCZNE MASZYN ASYNCHRONICZNYCH UWZGLĘDNIAJĄCE NASYCENIE MAGNETYCZNE RDZENI

7.1. Wprowadzenie

Modele matematyczne maszyn elektrycznych w naturalny sposób formułuje się we współrzędnych fazowych, następnie stosując odpowiednie założenia i transformacje [18, 23, 24, 28] równania tworzące modele przekształca się do prostszych postaci, które łatwiej można rozwiązać i analizować.

W taki sam sposób opracowane zostaną także modele matematyczne maszyn asynchronicznych uwzględniających nasyczenie magnetyczne rdzeni.

W pracy zostaną sformułowane modele matematyczne maszyn asynchronicznych o wirniku pierścieniowym, klatkowym zwykłym, w którym można pominać zjawisko wypierania prądu w prętach wirnika oraz klatkowym głębokożłobkowym, w którym zjawisko to należy uwzględnić.

Przy formułowaniu równań wymienionych maszyn przyjęto następujące założenia:

- Charakterystyki magnesowania rdzeni magnetycznych stojana i wirnika są nieliniowe i jednoznaczne.
- Wypadkowe pole magnetyczne w maszynie jest sumą pola głównego oraz pola rozproszenia stojana i wirnika.
- Pole magnetyczne główne oraz pola rozproszenia stojana i wirnika magnesują w sposób niezależny rdzenie maszyny.
- Uzwojenia stojana i wirnika są symetryczne.
- Uzwojenia stojana i wirnika są ze sobą sprzężone przez podstawową harmoniczną rozkładu obwodowego składowej promieniowej indukcji magnetycznej w szczelinie powietrznej maszyny.
- Prądy fazowe stojana i wirnika są określone jednoznacznie za pomocą fazorów przestrzennych odpowiednich prądów.
- Strumienie sprzężone uzwożeń stojana i wirnika (sprowadzone na stronę stojana) dla pola magnetycznego głównego są określone w jednoznaczny sposób przez fazor przestrzenny strumienia sprzężonego pola głównego.
- Strumienie sprzężone uzwożeń stojana dla pola rozproszenia stojana są określone jednoznacznie przez fazor przestrzenny strumienia sprzężonego pola rozproszenia stojana.
- Strumienie sprzężone uzwożeń wirnika dla pola rozproszenia wirnika są określone jednoznacznie przez fazor przestrzenny strumienia sprzężonego pola rozproszenia wirnika.
- Moduły fazorów przestrzennych strumieni sprzężonych pola głównego, pola rozproszenia stojana oraz pola rozproszenia wirnika są funkcjami nieliniowymi modułów fazorów przestrzennych odpowiednich prądów: prądu magnesującego, prądu stojana i prądu wirnika.

Przedstawione powyżej zależności określające parametry elektromagnetyczne maszyn elektrycznych prądu przemiennego – indukcyjności statyczne i dynamiczne zależne od stanu nasycenia rdzeni magnetycznych zostaną wykorzystane przy formułowaniu modeli matematycznych maszyn elektrycznych prądu przemiennego.
7.2. Równania maszyn asynchronicznych we współrzędnych fazowych

Równania opisujące stany elektrodynamiczne nieustalone maszyn asynchronicznych wyrażone we współrzędnych fazowych składają się z:
- układu równań napięciowych stojana i wirnika,
- układu równań strumieni sprzężonych uzwojeń stojana i wirnika,
- równania ruchu.

W pracy wymienione równania zostaną wyprowadzone przyjmując, że uzwojenia wirnika sprowadzone na stronę stojana według wzoru:

\[u_r^* = n_{sr} u_r, \quad \Psi_r^* = n_{sr} \Psi_r, \quad i_r^* = \frac{i_r}{n_{sr}}, \quad P_r^* = n_{sr}^2 P_r, \quad (7.1) \]

gdzie:
- \(n_{sr} = \sqrt{\frac{m_{sr} N_{mr}}{m_r N_{sr}}} \) - przekładnia między stojanem a wirnikiem,
- \(u_r^* \) - chwilowe napięcie wirnika sprowadzone na stronę stojana,
- \(i_r^* \) - chwilowy prąd wirnika sprowadzony na stronę stojana,
- \(\Psi_r^* \) - chwilowy strumień sprzężony uzwojenia wirnika sprowadzony na stronę stojana,
- \(P_r^* \) - dowolny parametr skupiony wirnika sprowadzony na stronę stojana.

7.2.1. Równania napięciowe stojana i wirnika

W stojanie maszyn asynchronicznych występuje 3-fazowe symetryczne uzwojenie (rys. 7.1). Równania napięciowe uzwojeń stojana mają postać:

\[u_{sk} = R_s i_{sk} + \frac{d\Psi_{mk}}{dt} + \frac{d\Psi_{mk}^*}{dt}, \quad k \in (1,2,3), \quad (7.2) \]

dzieć:
- \(u_{sk} \), \(i_{sk} \) - chwilowe napięcia i prądy fazowe stojana,
- \(\Psi_{mk} \), \(\Psi_{mk}^* \) - chwilowe strumienie sprzężone uzwojeń stojana dla pola głównego oraz dla pola rozproszenia stojana,
- \(R_s \) - rezystancja uzwojenia stojana.

W wirniku pierścieniowym maszyny indukcyjnej pręty wirnika są połączone ze sobą galwanicznie za pomocą segmentów pierścieni zwierających, tworząc zamknięte obwody elektryczne (rysunek 7.2).

Równania napięciowe utworzonych w ten sposób można określić obierając jako prądy fazowe: prądy oczkowe oraz prąd płynący w oczku utworzonym przez jeden z pierścieni zwierających. Przyjmując, że w symetrycznych stanach pracy prąd oczkowy \(i_{O-1}^* = 0 \), dla \(l \)-tego oczka wirnika można napisać następujące równanie:
gdzie:
- i^*_r - chwilowy prąd l-tęgo oczka wirnika sprowadzony na stronę stojana,
- Ψ^*_{mel}, Ψ^*_{crl} - chwilowy strumień sprzężony l-tęgo oczka wirnika dla pola głównego i dla pola rozproszenia wirnika sprowadzony na stronę stojana,
- R^*_{pr}, R^*_{cr} - rezystancja pręta i segmentu pierścienia zwierającego wirnika sprowadzone na stronę stojana.

W prętach wirnika klatkowego głębokożłobkowego występuje zjawisko wypierania prądu, które powoduje nierównomierny rozkład wektora gęstości prądu w przekroju poprzecznym prętów. Wypieranie prądu w prętach wirnika oraz nasycenie magnetyczne rdzenia wirnika przez pole rozproszenia można uwzględnić w sposób przybliżony przyjmując dodatkowo następujące założenia:
- pole rozproszenia wirnika nasyca rdzeń wirnika tylko w strefie przyszczelinowej,
- nasycenie magnetyczne strefy przyszczelinowej rdzenia wirnika zależy tylko od prądów płynących w prętach wirnika, a nie zależy od rozkładu gęstości tych prądów w przekroju poprzecznym prętów,
- obszary rdzenia wirnika przylegające bezpośrednio do prętów wirnika są magnetycznie nienasycone i można przyjąć uproszczenie, że ich przenikalność magnetyczna jest niekończenie duża (rys. 7.3),
- pole magnetyczne w szczelinie żłobkowej bezpośrednio przylegające do pręta wirnika jest równomierne.

Przyjmując te założenia, czynne części prętów wirnika, w których występuje wypieranie prądu, można zastąpić na schemacie ideowym oczka wirnika napięciami prętowymi (rys. 7.3).

Rys. 7.3. Schemat ideowy oczka wirnika klatkowego głębokożłobkowego oraz przekrój poprzeczny pręta wirnika z warunkami brzegowymi

Fig. 7.3. Schematic diagram of the deep-bar squirrel-cage rotor loop and cross section of the rotor bar with the boundary conditions

Napięcia prętowe wirnika powiązane są z prądami prętowymi za pomocą równań pola elektromagnetycznego wewnątrz prętów wirnika [9,21]:

\[
\frac{\partial}{\partial x_r} \left(\nu \frac{\partial A_r}{\partial x_r} \right) + \frac{\partial}{\partial y_r} \left(\nu \frac{\partial A_r}{\partial y_r} \right) = \sigma \frac{\partial A_r}{\partial t} - \frac{\partial}{\partial x_r} \left(\nu \frac{\partial i_{prl}}{\partial r} \right),
\]

\[
i_{prl} = i_r(l-1) - i_r(l) = \int_{s_p} \left[\frac{\partial i_{prl}(r)}{\partial r} + \sigma \frac{\partial A_r}{\partial t} \right] ds_p,
\]

\[
u_{prl}(l) = \frac{1}{n_{prl}} \nu_{prl}(l), \quad i_{prl} = n_{prl} i_{prl} = i_r(l) - i_r(l-1) = n_{prl}(i_r(l) - i_r(l-1)),
\]

gdzie:
- A_r - składowa wzdłuż osi z wektorowego pola magnetycznego w przekroju poprzecznym czynnej części pręta,
- i_{prl} - długość czynnej części pręta wirnika,
- σ - przewodność elektryczna materiału pręta wirnika,
- s_p - pole powierzchni przekroju poprzecznego pręta wirnika.

Uwzględniając założenia można przyjąć, że na części brzegu pręta otoczonego materiałem magnetycznym o nieskończenie dużej przenikalności magnetycznej występuje jednorodny warunek brzegowy Neumana, a na części brzegu stykającym się ze szczeliną żłobkową występuje jednorodny warunek brzegowy Dirichleta (rys. 7.3).

7.2.2. Równania strumieni sprzężonych uzwojeń stojana i wirnika

Strumienie sprzężone uzwojeń stojana są sumą strumieni sprzężonych uzwojeń dla pola głównego oraz dla pola rozproszenia stojana.

- Dla k-tej fazy stojana można napisać:

\[
\Psi_{sk} = \Psi_{sk} + \Psi_{mak}, \quad k \in (1,2,3),
\]

Dla l-tego oczka wirnika równania napięciowe wynoszą:

\[
0 = \left(2R^*_{pr} + 2R^*_{cr}\right)i^*_r - R^*_{pr} \left(i^*_r(l-1) + i^*_r(l) \right) + \frac{d\Psi^*_{mel}}{dt} + \frac{d\Psi^*_{crl}}{dt} \left(u^*_{prl(l)} - u^*_{prl(l-1)} \right),
\]

gdzie:
- $u^*_{prl(l)}$, $i^*_r(l)$ - chwilowe napięcie czynnej części pręta i chwilowy prąd l-tego oczka wirnika,
- Ψ^*_{mel}, Ψ^*_{crl} - chwilowy strumień sprzężony l-tego oczka wirnika dla pola głównego i dla pola rozproszenia wirnika sprowadzony na stronę stojana. (pole rozproszenia obejmuje: pole rozproszenia żłobkowego przyszczelinowej części wirnika, pole rozproszenia segmentów pierścieni zwierających i części prętów wirnika występujących poza pakiet rdzenia wirnika, pole rozproszenia szczelinowego),
- R^*_{pr}, R^*_{cr} - rezystancja części pręta wirnika występującego poza pakiet rdzenia wirnika, segmentu pierścienia zwierającego wirnika sprowadzone na stronę stojana.

Rys. 7.3. Schemat ideowy oczka wirnika klatkowego głębokożłobkowego oraz przekrój poprzeczny pręta wirnika z warunkami brzegowymi

Fig. 7.3. Schematic diagram of the deep-bar squirrel-cage rotor loop and cross section of the rotor bar with the boundary conditions
przy czym:

\[\psi_{\text{cik}} = \frac{2}{3} \text{Re} \left(a^{-\left(l-1\right)} \psi_{\text{cik}}^\ast (I, \gamma_{\text{cik}}) \right), \quad \psi_{\text{ml}} = \frac{2}{3} \text{Re} \left(a^{-\left(l-1\right)} \psi_{\text{ml}}^\ast (I, \gamma_{\text{ml}}) \right). \] (7.10)

Strumienie sprzężone uzwożeń wirnika pierścieniowego są takŜe sumą strumieni sprzężonych uzwożeń dla pola głównego oraz dla pola rozproszenia wirnika.

- Dla l-tej fazy wirnika pierścieniowego zachodzi:

\[\psi_{\text{cik}}^\ast = \psi_{\text{cik}}^\ast + \psi_{\text{ml}}^\ast, \quad \text{l} \in \{1, 2, 3\}, \] (7.11)

przy czym

\[\psi_{\text{cik}}^\ast = \frac{2}{3} \text{Re} \left(a^{-\left(l-1\right)} \psi_{\text{cik}}^\ast (I, \gamma_{\text{cik}}) \right), \quad \psi_{\text{ml}}^\ast = \frac{2}{3} \text{Re} \left(a^{-\left(l-1\right)} \psi_{\text{ml}}^\ast (I, \gamma_{\text{ml}}) \right), \] (7.12)

gdzie:

\[\psi_{\text{cik}}^\ast, \psi_{\text{ml}}^\ast, \] - fazory przestrzenne sprzężone uzwożeń pola głównego, pola rozproszenia stojana, pola rozproszenia wirnika spradowane na stronę stojana w układach sprzężenia sprzężonych uzwożeń stojana i wirnika, pola rozproszenia sprzężenia sprzężonych uzwożeń stojana i wirnika spradowane na stronę stojana.

Podobne relacje obowiązują dla strumieni sprzężonych oczek wirnika klatkowego i wirnika klatkowego głębokożłobkowego.

- Dla l-tego oczka wirnika klatkowego

\[\psi_{\text{cik}}^\ast = \left(2I_{\text{cik}} + 2I_{\text{oper}}\right) e^{\left(l_{\text{cik}} + i_{\text{cik}}\right)} + \frac{2}{Q_r} \text{Re} \left(b^{-\left(l-1\right)} \psi_{\text{cik}}^\ast (I, \gamma_{\text{cik}}) \right), \] (7.13)

\[\psi_{\text{ml}}^\ast = \frac{2}{Q_r} \text{Re} \left(b^{-\left(l-1\right)} \psi_{\text{ml}}^\ast (I, \gamma_{\text{ml}}) \right), \quad \text{l} \in \{1, ..., Q_r\}, \] (7.14)

gdzie:

\[\psi_{\text{cik}}^\ast, \psi_{\text{ml}}^\ast, \] - fazory przestrzenne sprzężone uzwożeń pola rozproszenia czynnych części oczek wirnika klatkowego, oczek wirnika klatkowego głębokożłobkowego.

- Dla l-tego oczka wirnika klatkowego głębokożłobkowego

\[\psi_{\text{cik}}^\ast = \left(2I_{\text{cik}} + 2I_{\text{oper}}\right) e^{\left(l_{\text{cik}} + i_{\text{cik}}\right)} + \frac{2}{Q_r} \text{Re} \left(b^{-\left(l-1\right)} \psi_{\text{cik}}^\ast (I, \gamma_{\text{cik}}) \right), \] (7.15)

\[\psi_{\text{ml}}^\ast = \frac{2}{Q_r} \text{Re} \left(b^{-\left(l-1\right)} \psi_{\text{ml}}^\ast (I, \gamma_{\text{ml}}) \right), \quad \text{l} \in \{1, ..., Q_r\}, \] (7.16)

gdzie:

\[\psi_{\text{cik}}^\ast, \psi_{\text{ml}}^\ast, \] - fazory przestrzenne sprzężone uzwożeń pola rozproszenia żłobkowego przy szczelinowej części wirnika oraz pola rozproszenia szczelinowego wirnika spradowane na stronę stojana (w układzie współrzędnych prostokątnych związanych z wirnikiem).

W równaniach strumieni sprzężonych uzwożeń stojana i wirnika dla pola głównego oraz dla pola rozproszenia stojana i wirnika występują fazory przestrzenne odpowiednich strumieni sprzężonych zaleŜne od modułów i argumentów fazorów przestrzennych odpowiadających prądowi i argumentom fazorów przestrzennych prądów pola rozmieszczonych wirnika i wirnika, na których nie dokonując dalszych przekształceń można przyjąć, Ŝe równania strumieni sprzężonych uzwożeń fazowych stojana i wirnika stanowią nieliniowy układ równań algebraicznych, wiąŜący strumienie sprzężone uzwożeń stojana i wirnika z prądami fazowymi stojana i wirnika.

7.2.3. Moment elektromagnetyczny

Równanie ruchu wirnika maszyny indukcyjnej jest takie samo jak równanie (3.4), przy czym moment elektromagnetyczny maszyny wynosi:

\[T_r = p \frac{\partial E_{cm}}{\partial \omega}. \] (7.17)

7.3. Równania maszyn asynchronicznych wyrażone za pomocą fazorów przestrzennych

Korzystając z definicji fazorów przestrzennych, równania różniczkowe napięciowe stojana i wirnika oraz równania algebraiczne strumieni sprzężonych uzwożeń stojana i wirnika można pomnożyć kolejno przez \(\frac{2}{\sqrt{3}} \left(l_{\text{cik}} e^{-i_{\text{cik}}} \right) \) oraz przez \(\frac{2}{\sqrt{3}} b^{-\left(l-1\right)} e^{-i_{\text{cik}}} \), a następnie zsumować [23]. W wyniku otrzymuje się przykładowo:

- sumę równań różniczkowych napięciowych stojana

\[\sum_{k=1}^{3} \left(b^{-\left(l-1\right)} u_k e^{-i_{\text{cik}}} \right) = R_s \sum_{k=1}^{3} \left(b^{-\left(l-1\right)} u_k e^{-i_{\text{cik}}} \right) + e^{-i_{\text{cik}}} \frac{d}{dt} \left(\frac{2}{3} \sum_{k=1}^{3} a^{-\left(l-1\right)} y_k \right), \] (7.18)

- sumę równań różniczkowych napięciowych wirnika klatkowego

\[2R_s^* + 2R_m^* \left(\frac{2}{Q_r} \sum_{i=1}^{Q_r} b^{-\left(l-1\right)} t_{\text{cik}} e^{-i_{\text{cik}}} \right) = R_m \left(\frac{2}{Q_r} \sum_{i=1}^{Q_r} b^{-\left(l-1\right)} t_{\text{cik}} e^{-i_{\text{cik}}} \right) + \frac{2}{Q_r} \sum_{i=1}^{Q_r} b^{-\left(l-1\right)} t_{\text{cik}} e^{-i_{\text{cik}}} + e^{-i_{\text{cik}}} \frac{d}{dt} \left(\frac{2}{3} \sum_{k=1}^{3} b^{-\left(l-1\right)} y_k \right). \] (7.19)

Wykonując odpowiednie przekształcenia, równania (7.18) i (7.19) przyjmują postać:

- równania napięciowych stojana wyrażonych przez fazory przestrzenne stojana

\[U_s = R_s I_s + j \omega L_s = \frac{d}{dt} U_s. \] (7.20)

- równania napięciowych wirnika klatkowego wyrażone przez fazory przestrzenne wirnika

\[0 = R_m I_m + j \omega L_m = \frac{d}{dt} U_m. \] (7.21)
gdzie:

\[
R^* = \left(2R^e_\text{per} + 4R^e_\text{per} \sin^2 \left(\frac{\theta_p}{Q_r} \right) \right) - \text{zastępcza rezystancja wirnika sprowadzona na stronę stojana.}
\]

Przeprowadzając podobne działania dla pozostałośc rówień maszyn asynchronicznych otrzymuje się następujące równania:

- dla stojana maszyny indukcyjnej pierścieniowej i klatkowej

\[
\begin{align*}
U_s &= R_s L_s + \frac{dU^*}{dt} + j\omega U^*, \\
\Psi_s &= \Psi_s^{\text{ext}}(l_s, \gamma_s) + \Psi_s^{\text{int}}(l_s, \gamma_s),
\end{align*}
\]

(7.22)

- dla wirnika maszyny indukcyjnej pierścieniowej

\[
U^* = R^e_\text{per} L^e_\text{per} + \frac{dU^*}{dt} + j(\omega - \omega)U^*,
\]

\[
\Psi^* = \Psi^*_{\text{per}}(l^e_\text{per}, \gamma_r) + \Psi^*_m(l_m, \gamma_m),
\]

(7.24)

- dla wirnika maszyny indukcyjnej klatkowej

\[
0 = R^e_\text{per} L^e_\text{per} + \frac{dU^*}{dt} + j(\omega - \omega)U^*,
\]

\[
\Psi^* = \Psi^*_{\text{per}}(l^e_\text{per}, \gamma_r) + \Psi^*_m(l_m, \gamma_m),
\]

(7.26)

gdzie:

\[
I^*_{\text{op}} = \left(2L^*_{\text{op}} + 4L^*_{\text{op}} \sin^2 \left(\frac{\theta_p}{Q_r} \right) \right) - \text{zastępcza indukcyjność rozproszenia nieaktywnych części wirnika głębokożłobkowego sprowadzona na stronę stojana.}
\]

Przeprowadzając podobne działania dla pozostałośc rówień maszyn asynchronicznych otrzymuje się następujące równania:

- dla stojana maszyny indukcyjnej pierścieniowej i klatkowej

\[
\begin{align*}
U_s &= R_s L_s + \frac{dU^*}{dt} + j\omega U^*, \\
\Psi_s &= \Psi_s^{\text{ext}}(l_s, \gamma_s) + \Psi_s^{\text{int}}(l_s, \gamma_s),
\end{align*}
\]

(7.22)

- dla wirnika maszyny indukcyjnej pierścieniowej

\[
U^* = R^e_\text{per} L^e_\text{per} + \frac{dU^*}{dt} + j(\omega - \omega)U^*,
\]

\[
\Psi^* = \Psi^*_{\text{per}}(l^e_\text{per}, \gamma_r) + \Psi^*_m(l_m, \gamma_m),
\]

(7.24)

- dla wirnika maszyny indukcyjnej klatkowej

\[
0 = R^e_\text{per} L^e_\text{per} + \frac{dU^*}{dt} + j(\omega - \omega)U^*,
\]

\[
\Psi^* = \Psi^*_{\text{per}}(l^e_\text{per}, \gamma_r) + \Psi^*_m(l_m, \gamma_m),
\]

(7.26)

gdzie:

\[
U^*_{\text{pr}} = \left(2L^*_{\text{op}} + 4L^*_{\text{op}} \sin^2 \left(\frac{\theta_p}{Q_r} \right) \right) - \text{zastępcza indukcyjność rozproszenia zewnętrznnej w stosunku do rdzenia wirnika części klatki wirnika.}
\]

W przypadku maszyny indukcyjnej z wirnikiem głębokożłobkowym przyjmuje do rozważań układ współrzędnych związany z wirnikiem. W tym układzie współrzędnych równania mają postać:

- dla stojana maszyny indukcyjnej głębokożłobkowej

\[
\begin{align*}
U_s &= R_s L_s + \frac{dU^*}{dt} + j\omega U^*, \\
\Psi_s &= \Psi_s^{\text{ext}}(l_s, \gamma_s) + \Psi_s^{\text{int}}(l_s, \gamma_s),
\end{align*}
\]

(7.28)

- dla wirnika maszyny indukcyjnej głębokożłobkowej

\[
0 = R^e_\text{per} L^e_\text{per} + \frac{dU^*}{dt} + j(\omega - \omega)U^*,
\]

\[
\Psi^* = \Psi^*_{\text{per}}(l^e_\text{per}, \gamma_r) + \Psi^*_m(l_m, \gamma_m),
\]

(7.30)

gdzie:

\[
U^*_{\text{pr}} - \text{fazor przestrzenny napięć oczkowych wynikający z napięć prętowych w oczkach wirnika sprowadzony na stronę stojana,}
\]

\[
I^*_{\text{pr}} - \text{fazor przestrzenny prądów oczkowych wirnika sprowadzony na stronę stojana,}
\]

\[
R^*_{\text{pr}} = \left(2R^e_\text{per} + 4R^e_\text{per} \sin^2 \left(\frac{\theta_p}{Q_r} \right) \right) - \text{rezystancja zastępcza nieaktywnych części wirnika silnika głębokożłobkowego sprowadzona na stronę stojana,}
\]

(7.31)

W konsekwencji otrzymuje się nieskończenie układ równań różniczkowych pochodnych zwyczajnych. Równanie różniczkowe dla i-ego dwójnika ma postać:
przy czym zachodzi

\[L'_{pr} = \sum_{i=1}^{n} L'_{pr}^{i}, \quad i \in \{1, \ldots, \infty\}, \]

(7.36)

gdzie:

- \(L'_{pr}^{i} \) - fazor przestrzenny prądu \(i \)-tego zastępczego obwodu prądu wirnika sprowadzony na stronę stojana,
- \(R'_{pr}^{i} \), \(L'_{opi}^{i} \) - rezystancja i indukcyjność rozproszenia \(i \)-tego zastępczego obwodu reprezentującego aktywną część pręta wirnika, sprowadzone na stronę stojana.

Ugładniając (7.32) równania (7.35) i (7.36) można przedstawić w postaci:

\[-U'^{r} = (1 - b^{-1}) \frac{1}{2} (R'_{pr}^{i} L'_{pr}^{i} + L'_{opi}^{i}) \frac{dL'_{opi}^{i}}{dt} = 4 \sin^{2} \left(\frac{n\Phi}{Q} \right) \left(R'_{pr}^{i} L'_{pr}^{i} + L'_{opi}^{i} \right) \]

(7.37)

oraz

\[L'_{pr}^{i} = (1 - b) L_{pr}^{i}, \quad L'_{r} = \sum_{i=1}^{n} L'_{r}^{i}. \]

(7.38)

Przyjmując oznaczenia

\[R'_{e}^{i} = 4 \sin^{2} \left(\frac{\pi \Phi}{Q} \right) R_{r}^{i}, \quad L'_{opi}^{i} = 4 \sin^{2} \left(\frac{\pi \Phi}{Q} \right) L_{opi}^{i}, \]

(7.39)

otrzymuje się równanie:

\[-U'^{r} = R'_{e}^{i} L'_{pr}^{i} + \frac{dL'_{opi}^{i}}{dt}, \]

(7.40)

Podstawiając równanie (7.40) do równania (7.30) oraz uwzględniając (7.31) otrzymuje się równanie różniczkowe dla \(i \)-tego zastępczego obwodu wirnika.

\[0 = R'_{e}^{i} \sum_{i=1}^{n} L'_{pr}^{i} + \frac{dL'_{opi}^{i}}{dt}, \]

(7.41)

gdzie:

- \(R'_{pr}^{i} \), \(L'_{opi}^{i} \) - rezystancja i indukcyjność rozproszenia \(i \)-tego zastępczego obwodu reperzentującego aktywną część pręta wirnika, sprowadzone na stronę stojana,
- \(R'_{r} \), \(L'_{opi}^{i} \) - rezystancja i indukcyjność rozproszenia \(i \)-tego obwodu zastępczego obwodu wirnika sprowadzone na stronę stojana,
- \(L'_{r} \) - fazor przestrzenny prąd \(i \)-tego zastępczego obwodu wirnika sprowadzony na stronę stojana.

Uwzględniając dotychczasowe rozważania równania stanu elektromagnetycznego rozpatrywanych maszyn można przedstawić w następującej postaci:

- dla maszyny indukcyjnej pierścieniowej i klatkowej zwykłej

\[\begin{bmatrix} 0 \\ R_{e}^{i} \end{bmatrix} = \begin{bmatrix} L_{pr}^{i} + L_{opi}^{i} \\ R_{r}^{i} \end{bmatrix} \begin{bmatrix} \Psi_{e}^{i} \\ \Psi_{m}^{i} \end{bmatrix} + \begin{bmatrix} j \omega_{s} \end{bmatrix} \begin{bmatrix} 0 \\ \Psi_{s}^{i} \end{bmatrix}, \]

(7.43)

- dla maszyny indukcyjnej z wirnikiem klatkowym głębokozłobkowym przy uwzględnieniu dwóch zastępczych obwodów w wirniku

\[\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} R_{e}^{i} + R'_{r} + R_{s}^{i} + R_{s}^{i} \\ R_{r}^{i} \end{bmatrix} \begin{bmatrix} \Psi_{e}^{i} \\ \Psi_{m}^{i} \end{bmatrix} + \begin{bmatrix} j \omega_{s} \end{bmatrix} \begin{bmatrix} 0 \\ \Psi_{s}^{i} \end{bmatrix}, \]

(7.45)

Dla wszystkich rozpatrywanych maszyn równanie ruchu wirnika jest opisane za pomocą równania (3.6). Moment elektromagnetyczny maszyn można wyznaczyć uwzględniając, że koenergia pola magnetycznego głównego jest funkcją modułu fazora przestrzennego prądu magnesującego. W konsekwencji otrzymuje się:

\[T \equiv p L_{m} \left(I_{m} \right) \left(\Psi_{s}^{i} \right) Re(j \omega_{s} \left(L_{m} \right)). \]

(7.46)

Równania stanu elektrodynamiki maszyn asynchronicznych przy wyborze prądów stojana i wirnika jako zmiennych stanu. Schematy zastępcze maszyn asynchronicznych w stanach dynamicznych

Równania stanu elektrodynamicznego maszyn asynchronicznych przy wyborze prądów stojana i wirnika jako zmiennych stanu. Schematy zastępcze maszyn asynchronicznych w stanach dynamicznych

Równania algebraiczno-różniczkowe maszyn indukcyjnych przedstawione w rozdziale 7.3 przekształca się zwykle do układu równań różniczkowych, obierając fazory przestrzenne (lub ich składowe osiowe) prądów lub strumieni sprzężonych stojana i wirnika jako zmienną stanu elektromagnetycznego. W przypadku modeli matematycznych maszyn asynchronicznych
uwzględniających nasycenie magnetyczne rdzeni jako zmienne stanu wygodnie jest wybrać składowe osiowe fazorów przestrzennych prądów stojana i wirnika.

Obierając składowe osiowe fazorów przestrzennych prądów stojana i wirnika jako zmienne stanu konieczne jest przekształcenie równań algebraiczno-różniczkowych maszyny. Przykładowo dla maszyny indukcyjnej klatkowej równania stojana i wirnika należy przekształcić do postaci:

- równania dla stojana
\[
\begin{bmatrix}
U_{sx} \\
U_{sy}
\end{bmatrix} =
\begin{bmatrix}
R_s & 0 & L_{smx} \\
0 & R_s & L_{smy}
\end{bmatrix}
\begin{bmatrix}
I_{sx} \\
I_{sy}
\end{bmatrix}
+ \frac{d}{dt}
\begin{bmatrix}
\psi_{sx} \\
\psi_{sy}
\end{bmatrix}
+ \omega_s \begin{bmatrix}
\psi_{sx} \\
\psi_{sy}
\end{bmatrix}
\]

(7.50)

\[
\begin{bmatrix}
\psi_{sx} \\
\psi_{sy}
\end{bmatrix} =
\begin{bmatrix}
\psi_{sx}^{*} \\
\psi_{sy}^{*}
\end{bmatrix}
+ \omega_s \begin{bmatrix}
\psi_{sx} \\
\psi_{sy}
\end{bmatrix}
\]

(7.51)

- równania dla wirnika
\[
\begin{bmatrix}
0 \\
0
\end{bmatrix} =
\begin{bmatrix}
R_r & 0 & L_{rmx} \\
0 & R_r & L_{rmy}
\end{bmatrix}
\begin{bmatrix}
I_{rx} \\
I_{ry}
\end{bmatrix}
+ \frac{d}{dt}
\begin{bmatrix}
\psi_{rx}^{*} \\
\psi_{ry}^{*}
\end{bmatrix}
+ \omega_s \begin{bmatrix}
\psi_{rx} \\
\psi_{ry}
\end{bmatrix}
\]

(7.52)

\[
\begin{bmatrix}
\psi_{rx}^{*} \\
\psi_{ry}^{*}
\end{bmatrix} =
\begin{bmatrix}
\psi_{rx}^{*} \\
\psi_{ry}^{*}
\end{bmatrix}
+ \omega_s \begin{bmatrix}
\psi_{rx} \\
\psi_{ry}
\end{bmatrix}
\]

(7.53)

Uwzględniając, że pochodne składowych osiowych fazorów przestrzennych strumieni sprzężonych powiązane są z pochodnymi składowych osiowych fazorów przestrzennych prądów za pomocą indukcyjności dynamicznych, otrzymuje się:

- pochodne składowych osiowych fazora przestrzennego strumienia sprzężonego pola głównego
\[
\frac{d}{dt} \begin{bmatrix}
\psi_{sx} \\
\psi_{sy}
\end{bmatrix} =
\begin{bmatrix}
L_{Dmsx}(I_{sx}, Y_m) & L_{Dmsy}(I_{sx}, Y_m) \\
L_{Dmsx}(I_{sx}, Y_m) & L_{Dmsy}(I_{sx}, Y_m)
\end{bmatrix}
\begin{bmatrix}
I_{sx} \\
I_{sy}
\end{bmatrix}
\]

(7.54)

- pochodne składowych osiowych fazora przestrzennego strumienia sprzężonego pola rozproszenia stojanja
\[
\frac{d}{dt} \begin{bmatrix}
\psi_{sx}^{*} \\
\psi_{sy}^{*}
\end{bmatrix} =
\begin{bmatrix}
L_{Dmsx}(I_{sx}^{*}, Y_m) & L_{Dmsy}(I_{sx}^{*}, Y_m) \\
L_{Dmsx}(I_{sx}^{*}, Y_m) & L_{Dmsy}(I_{sx}^{*}, Y_m)
\end{bmatrix}
\begin{bmatrix}
I_{sx}^{*} \\
I_{sy}^{*}
\end{bmatrix}
\]

(7.55)

- pochodne składowych osiowych fazora przestrzennego strumienia sprzężonego pola rozproszenia wirnika spradowane na stronę stojana
\[
\frac{d}{dt} \begin{bmatrix}
\psi_{rx}^{*} \\
\psi_{ry}^{*}
\end{bmatrix} =
\begin{bmatrix}
L_{Dmsx}(I_{rx}^{*}, Y_r) & L_{Dmsy}(I_{rx}^{*}, Y_r) \\
L_{Dmsx}(I_{rx}^{*}, Y_r) & L_{Dmsy}(I_{rx}^{*}, Y_r)
\end{bmatrix}
\begin{bmatrix}
I_{rx}^{*} \\
I_{ry}^{*}
\end{bmatrix}
\]

(7.56)

Biorąc pod uwagę, że składowe osiowe fazorów przestrzennych strumieni sprzężonych powiązane są ze składowymi osiowymi fazorów przestrzennych prądów za pomocą indukcyjności statycznych, otrzymuje się:

- składowe osiowe fazora przestrzennego strumienia sprzężonego znego pola głównego
\[
\begin{bmatrix}
\psi_{sx}^{*} \\
\psi_{sy}^{*}
\end{bmatrix} =
\begin{bmatrix}
L_{m}(I_m) & 0 \\
0 & L_{m}(I_m)
\end{bmatrix}
\begin{bmatrix}
I_{sx}^{*} \\
I_{sy}^{*}
\end{bmatrix}
\]

(7.57)

- składowe osiowe fazora przestrzennego strumienia sprzężonego pola rozproszenia pola rozproszenia stojana
\[
\begin{bmatrix}
\psi_{sx}^{*} \\
\psi_{sy}^{*}
\end{bmatrix} =
\begin{bmatrix}
L_{s}(I_s) & 0 \\
0 & L_{s}(I_s)
\end{bmatrix}
\begin{bmatrix}
I_{sx}^{*} \\
I_{sy}^{*}
\end{bmatrix}
\]

(7.58)

- składowe osiowe fazora przestrzennego strumienia sprzężonego pola rozproszenia wirnika spradowane na stronę stojana
\[
\begin{bmatrix}
\psi_{rx}^{*} \\
\psi_{ry}^{*}
\end{bmatrix} =
\begin{bmatrix}
L_{s}(I_s) & 0 \\
0 & L_{s}(I_s)
\end{bmatrix}
\begin{bmatrix}
I_{rx}^{*} \\
I_{ry}^{*}
\end{bmatrix}
\]

(7.59)

Podstawiając zależności (7.54) – (7.59) do równań (7.50) – (7.53), po przekształceniach otrzymuje się układ równań różniczkowych:

\[
\begin{bmatrix}
U_s \\
0
\end{bmatrix} =
\begin{bmatrix}
R_s & R_s & L_{DSS} & L_{DSR} & 0 \\
R_s & R_s & L_{DSS} & L_{DSR} & 0
\end{bmatrix}
\begin{bmatrix}
I_s \\
I_r
\end{bmatrix}
\]

(7.60)

W równaniu macierzowym (7.60) wektory i macierze wynoszą:

- wektory
\[
U_s = [U_{sx} U_{sy}]^T, \quad I_s = [I_{sx} I_{sy}]^T, \quad 0 = [0 \ 0]^T, \quad I_r = [I_{rx} I_{ry}]^T
\]

(7.61)

- macierze zawierające rezystancje i indukcyjności statyczne
\[
R_s = \begin{bmatrix}
R_s & -\omega_s (L_{co}(I_s) + L_m(I_m)) \\
\omega_s (L_{co}(I_s) + L_m(I_m)) & R_s
\end{bmatrix}
\]

(7.62)

- macierze zawierające rezystancje i indukcyjności dynamiczne
\[
R_{SR} = \begin{bmatrix}
0 & \omega_s L_m(I_m) \\
\omega_s L_m(I_m) & 0
\end{bmatrix}
\]

(7.64)

- macierze zawierające indukcyjności dynamiczne
\[
L_{DSS} = \begin{bmatrix}
L_{Dmsx}(I_{sx}, Y_m) + L_{Dmsy}(I_{sx}, Y_m) \\
L_{Dmsx}(I_{sx}, Y_m) + L_{Dmsy}(I_{sx}, Y_m)
\end{bmatrix}
\]

(7.66)

- macierze zawierające indukcyjności dynamiczne
\[
L_{DSS} = \begin{bmatrix}
L_{Dmsx}(I_{sx}, Y_m) + L_{Dmsy}(I_{sx}, Y_m) \\
L_{Dmsx}(I_{sx}, Y_m) + L_{Dmsy}(I_{sx}, Y_m)
\end{bmatrix}
\]

(7.67)

- macierze zawierające indukcyjności dynamiczne
\[
L_{DSR} = \begin{bmatrix}
L_{Dmsx}(I_{sx}, Y_m) + L_{Dmsy}(I_{sx}, Y_m) \\
L_{Dmsx}(I_{sx}, Y_m) + L_{Dmsy}(I_{sx}, Y_m)
\end{bmatrix}
\]

(7.68)
Układ równań (7.60) uwzględniając (7.61) - (7.68) można przyporządkować schemat zastępczy maszyny indukcyjnej przedstawiony na rys. 7.5.

Rys. 7.5. Schemat zastępczy maszyny indukcyjnej uwzględniający nasycenie magnetyczne rdzeni

W podobny sposób przekształca się równania maszyny indukcyjnej z wirnikiem klatkowym głębokożłobkowym, w których uwzględniono dwa zastępcze obwody w wirniku. W wyniku otrzymuje się układ równań różniczkowych o podobnej strukturze jak w równaniu (7.60), przy czym wektory i macierze występujące w tym układzie mają postać:

- wektory
 \[U_s = [U_{sx} \ U_{sy}]^T, \quad I_s = [I_{sx} \ I_{sy}]^T, \quad \theta = [0 \ 0 \ 0 \ 0]^T, \quad I_R = [I_{r1x} \ I_{r1y} \ I_{r2x} \ I_{r2y}]^T, \quad (7.69) \]

- macierze zawierające rezystancje i nieliniowe indukcyjności statyczne
 \[
 R_{ss} = R_S + \Omega_s I_{ss}, \quad R_{rs} = \Omega_s L_{sr}, \\
 R_{sr} = \Omega_s I_{sr}, \quad R_{rr} = R_R + \Omega_r I_{rr}, \\
 R_S = \begin{bmatrix} R_S & 0 \\ 0 & R_S \end{bmatrix}, \quad \Omega_S = \begin{bmatrix} 0 & -\omega_s \\ \omega_s & 0 \end{bmatrix}, \\
 L_{ss} = \begin{bmatrix} L_{cm}(I_s) + L_m(I_m) & 0 \\ 0 & L_{cm}(I_s) + L_m(I_m) \end{bmatrix}, \\
 L_{sr} = \begin{bmatrix} L_m(I_m) & 0 \\ 0 & L_m(I_m) \end{bmatrix}, \\
 L_R = \begin{bmatrix} R_{r1} + R_{r2}^* & 0 & 0 & 0 \\ 0 & R_{r1} + R_{r2}^* & 0 & 0 \\ 0 & 0 & R_{r2}^* & 0 \\ 0 & 0 & 0 & R_{r2}^* + R_{r2}^* \end{bmatrix}, \\
 L_{RR} = L_{arr} + L_{arr}(I_r^*) + L_{mr}(I_m), \\
 L_{arr} = \text{diag}(L_{arr1}, L_{arr2}, L_{arr3}, L_{arr4}), \\
 \quad L_{arr}(I_r^*) = \begin{bmatrix} L_{arr1}(I_r^*) & 0 & 0 \\ 0 & L_{arr1}(I_r^*) & 0 \\ 0 & L_{arr1}(I_r^*) & 0 \\ 0 & L_{arr1}(I_r^*) & L_{arr2}(I_r^*) \end{bmatrix}, \quad (7.71) - (7.79) \]

Macierze rezystancji i indukcyjności są określone wzorami:

- rezystancje
 \[R_S = R_R + \sum_{i} R_{r1} + R_{r2}^* + R_{r2}^* + R_{r2}^* + R_{r2}^* \]

- indukcyjności statyczne
 \[L_{ss} = L_{cm}(I_s) + L_m(I_m), \quad L_{sr} = L_m(I_m), \quad L_R = \text{diag}(L_{arr1}, L_{arr2}, L_{arr3}, L_{arr4}), \quad L_{RR} = L_{arr} + L_{arr}(I_r^*) + L_{mr}(I_m) \]
macierze zawierające nieliniowe indukcyjności dynamiczne

\[
L_{DSS} = \begin{bmatrix}
L_{Dm}(I_m) & 0 & L_{m}(I_m) & 0 \\
0 & L_{m}(I_m) & 0 & L_{m}(I_m) \\
L_{m}(I_m) & 0 & L_{m}(I_m) & 0 \\
0 & L_{m}(I_m) & 0 & L_{m}(I_m)
\end{bmatrix},
\]
(7.81)

- macierze zawierające nieliniowe indukcyjności dynamiczne

\[
L_{DSS} = \begin{bmatrix}
L_{Dm}(I_1, \gamma_1) + L_{Dm}(I_1, \gamma_m) & L_{Dm}(I_1, \gamma_1) + L_{Dm}(I_1, \gamma_m) \\
L_{Dm}(I_1, \gamma_1) + L_{Dm}(I_1, \gamma_m) & L_{Dm}(I_1, \gamma_1) + L_{Dm}(I_1, \gamma_m)
\end{bmatrix},
\]
(7.82)

\[
L_{DRR} = L_{orr} + L_{ory},
\]
(7.83)

\[
L_{Dor}(r'_r, \gamma_r) = \begin{bmatrix}
L_{Dm}(I'_r, \gamma'_r) & L_{Dm}(I'_r, \gamma'_r) \\
L_{Dm}(I'_r, \gamma'_r) & L_{Dm}(I'_r, \gamma'_r)
\end{bmatrix},
\]
(7.84)

\[
L_{Dmr}(I_n, \gamma_m) = \begin{bmatrix}
L_{Dm}(I_n, \gamma_m) & L_{Dm}(I_n, \gamma_m) \\
L_{Dm}(I_n, \gamma_m) & L_{Dm}(I_n, \gamma_m) \\
L_{Dm}(I_n, \gamma_m) & L_{Dm}(I_n, \gamma_m) \\
L_{Dm}(I_n, \gamma_m) & L_{Dm}(I_n, \gamma_m)
\end{bmatrix},
\]
(7.85)

\[
L_{DSR} = \begin{bmatrix}
L_{Dm}(I_n, \gamma_m) & L_{Dm}(I_n, \gamma_m) & L_{Dm}(I_n, \gamma_m) & L_{Dm}(I_n, \gamma_m) \\
L_{Dm}(I_n, \gamma_m) & L_{Dm}(I_n, \gamma_m) & L_{Dm}(I_n, \gamma_m) & L_{Dm}(I_n, \gamma_m)
\end{bmatrix},
\]
(7.86)

Układowi równań (7.60) uwzględniając (7.69) – (7.86) przyporządkować można schemat zastępczy maszyny indukcyjnej głębokożłobkowej przedstawiony na rys. 7.6.

Na schemacie zastępczym oznaczono:

\[
E_{\omega_{1,2}} = -(\omega - \alpha)I_{r1,2}I_{r1,2}, \quad E_{\omega_{1,2}} = (\omega - \alpha)I_{r1,2}I_{r1,2}.
\]
(7.87)

Równania stanu elektromagnetyczne uzupełnia się równaniem ruchu wirnika (3.5) uwzględniając, że moment elektromagnetyczny wynosi:

\[
T_e = pL_m(I_{my})I_{my},
\]
(7.88)

przy czym:

- dla maszyny z jednym obwodem w wirniku

\[
I_{mx} = I_{sx} + I_{sax}, \quad I_{my} = I_{sy} + I_{sy},
\]
(7.89)

- dla maszyny z dwoma zastępczymi obwodami w wirniku

\[
I_{mx} = I_{sx} + I_{sax} + I_{s2x}, \quad I_{my} = I_{sy} + I_{s1y} + I_{s2y},
\]
(7.90)
Sformułowane modele matematyczne maszyn indukcyjnych uwzględniające nasycenie magnetyczne rdzeni różnią się od modeli maszyn, w których nasycenie pominięto. Różnice pomiędzy tymi modelami są konsekwencją:

- obecności różniących się między sobą indukcyjności statycznych i dynamicznych,
- zmian wartości indukcyjności statycznych i dynamicznych spowodowanych zmianami modułów i argumentów fazorów przestrzennych prądów,
- występowaniem sprzężenia magnetycznego obwodów elektrycznych maszyn w osiach x, y, spowodowanych nasyceniem rdzeni magnetycznych przez pole główne i pola rozproszenia stojana i wirnika.

Wymienione różnice wyróżniono ideowo na schematach zastępczych maszyn.

7.5. Równania i schematy zastępcze maszyny indukcyjnej w stanach ustalonych symetrycznych

W stanach symetrycznych stojan maszyny indukcyjnej zasilany jest z 3-fazowego symetrycznego źródła napięcia sinusoidalnie zmiennego w czasie o pulsacji ω_s. Fazor przestrzenny napięcia stojana

$$U_{a0} = U_{s0} e^{j(\omega_s t - \psi_{s0})}, \quad U_{s0} = U_{a0} e^{j\omega_s t}$$

ma stały moduł niezależny od czasu. W konsekwencji można przyjąć, że w stanach ustalonych symetrycznych:

- fazory przestrzenne prądów i strumieni sprzężonych stojana oznaczone ogólnym symbolem W_s,

$$W_s = W_{s0} e^{j(\omega_s t - \psi_{s0})}, \quad W_{s0} = W_{s0} e^{j\omega_s t},$$

- fazory przestrzenne prądów, napięć i strumieni sprzężonych wirnika pierścieniowego i wirnika klatkowego oznaczone ogólnym symbolem W_r,

$$W_r = W_{r0} e^{j(\omega_s t - \psi_{r0})}, \quad W_{r0} = W_{r0} e^{j\omega_s t},$$

- fazory przestrzenne prądów i strumieni sprzężonych załączonych obwodów wirnika klatkowego głębokożłobkowego

$$W_{r1} = W_{r10} e^{j(\omega_s t - \psi_{r10})}, \quad W_{r10} = W_{r10} e^{j\omega_s t},$$

$$W_{r2} = W_{r20} e^{j(\omega_s t - \psi_{r20})}, \quad W_{r20} = W_{r20} e^{j\omega_s t},$$

gdzie:

W_{s0}, W_{r0}, W_{s10}, W_{r20} - fazory przestrzenne dowolnych wielkości elektromagnetycznych stojana i wirnika dla chwili czasu $t=0$.

Podstawiając zależności (7.92) – (7.95) do równań (7.43) i (7.44) po przekształcaniach otrzymuje się dla maszyny indukcyjnej pierścieniowej i klatkowej:

$$\begin{bmatrix} U_{s0} \\ 0 \end{bmatrix} = \begin{bmatrix} R_s & 0 \\ 0 & R_r \end{bmatrix} \begin{bmatrix} L_s & 0 \\ 0 & L_r \end{bmatrix} \begin{bmatrix} I_{s0} \\ I_{r0} \end{bmatrix} + j\omega_s \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} \psi_{s0} \\ \psi_{r0} \end{bmatrix},$$

(7.96)

stąd:

$$\begin{bmatrix} U_{s0} \\ 0 \end{bmatrix} = \begin{bmatrix} R_s + j\omega_s L_s(I_{s0}) + L_m(I_{m0}) \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ j\omega_s L_r(I_{r0}) \end{bmatrix},$$

(7.97)

$$\begin{bmatrix} U_{s0} \\ 0 \end{bmatrix} = \begin{bmatrix} R_s + j\omega_s L_s(I_{s0}) + L_m(I_{m0}) \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ j\omega_s L_r(I_{r0}) \end{bmatrix}.$$

(7.98)

gdzie:

$$s = \frac{\omega_s - \omega_r}{\omega_s}$$ - poślizg wirnika.

Układ równań (7.98) można przyporządkować schemat zastępczy przedstawiony na rys. 7.7.

Rys. 7.7. Schemat zastępczy maszyny indukcyjnej w stanie ustalonym

Fig. 7.7. Equivalent circuit of induction machine under steady state conditions

Postępując w podobny sposób, równania (7.45) i (7.46) przyjmują postać:

$$\begin{bmatrix} U_{s0} \\ 0 \end{bmatrix} = \begin{bmatrix} R_s + j\omega_s L_s(I_{s0}) + L_m(I_{m0}) \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ j(\omega_s - \omega_r) \end{bmatrix}.$$

(7.99)

$$\begin{bmatrix} U_{s0} \\ 0 \end{bmatrix} = \begin{bmatrix} R_s + j\omega_s L_s(I_{s0}) + L_m(I_{m0}) \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ j(\omega_s - \omega_r) \end{bmatrix}.$$

(7.100)

U_{s0}, L_{s0}, L_{m0}, L_{r0} - współczynniki indukcyjności elektromagnetyczne stojana i wirnika dla chwili czasu $t=0$.

Podstawiając zależności (7.92) – (7.95) do równań (7.43) i (7.44) po przekształcaniach otrzymuje się dla maszyny indukcyjnej pierścieniowej i klatkowej:

$$\begin{bmatrix} \psi_{s0} \\ \psi_{r0} \end{bmatrix} = \begin{bmatrix} L_s + L_m(I_{m0}) \\ L_r + L_m(I_{m0}) \end{bmatrix} \begin{bmatrix} I_{s0} \\ I_{r0} \end{bmatrix},$$

(7.97)

$$\begin{bmatrix} U_{s0} \\ 0 \end{bmatrix} = \begin{bmatrix} R_s + j\omega_s L_s(I_{s0}) + L_m(I_{m0}) \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ j\omega_s L_r(I_{r0}) \end{bmatrix}.$$

(7.98)

$$\begin{bmatrix} U_{s0} \\ 0 \end{bmatrix} = \begin{bmatrix} R_s + j\omega_s L_s(I_{s0}) + L_m(I_{m0}) \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ j\omega_s L_r(I_{r0}) \end{bmatrix}.$$

(7.100)
W rezultacie otrzymuje się układ równań algebraicznych nieliniowych:

\[
\begin{align*}
U_{s0} &= (R_s + j\omega L_{\sigma\sigma}(I_{s0}))L_{s0} + j\omega L_{m}(I_{m0})(L_{r10} + L_{r20}) \\
0 &= (R_{r1}^{*} + js\omega L_{\sigma\sigma}^{*}(I_{r10}))L_{r10} + (R_{r2}^{*} + js\omega L_{\sigma\sigma}^{*}(I_{r20}))L_{r20} + j\omega L_{m}(I_{m0})(L_{r10} + L_{r20}) \\
0 &= (R_{r1}^{*} + js\omega L_{\sigma\sigma}^{*}(I_{r10}))L_{r10} + (R_{r2}^{*} + js\omega L_{\sigma\sigma}^{*}(I_{r20}))L_{r20} + j\omega L_{m}(I_{m0})(L_{r10} + L_{r20}).
\end{align*}
\] (7.101)

Przedstawionemu układowi równań przyporządkować można schemat zastępczy pokazany na rys. 7.8.

Rys. 7.8. Schemat zastępczy maszyny indukcyjnej głębokożłobkowej w stanie ustalonym.

Rys. 8.1 - 8.4 przedstawiono przebiegi wybranych wielkości elektromagnetycznych i elektrodynamicznych silnika podczas rozruchu. W obliczeniach przyjęto, że silnik załączono do sieci o napięciu znamionowym.

8. WYNIKI BADAŃ SYMULACYJNYCH MASZyny INDUKCYJNEJ

Model matematyczny maszyny indukcyjnej uwzględniający nasycenie magnetyczne rdzeni wykorzystano do badań symulacyjnych typowych stanów nieustalonych oraz stanów ustalonych. Celem badań symulacyjnych było porównanie przebiegów dynamicznych i charakterystyk statycznych silnika wyznaczonych przy uwzględnieniu i pominięciu nasycenia magnetycznego rdzeni. Badania symulacyjne przeprowadzono dla silnika indukcyjnego klatkowego o danych znamionowych:

\[
P_n = 3 kW, U_{sm} = 220/380 V, I_{sm} = 11,5/6,7 A, \cos(\phi_{sm}) = 0,82, n_n = 1430 obr/min.
\]

Do obliczeń przyjęto parametry skupione oraz syntezy charakterystyki strumieni sprzężonych silnika wyznaczone na podstawie pomiarów stanu jadalnego i zwarcia. W badaniach symulacyjnych, w których pominięto nasycenie magnetyczne rdzeni, jako parametry stanu niesąsownego przyjęto wartości maksymalnych odpowiednich indukcyjności statycznych:

\[
R_s = 2,0 \Omega, R_{r1}^{*} = 1,65 \Omega, L_{\sigma\sigma} = 0,01 H, L_{\sigma\sigma}^{*} = 0,01 H, L_m = 0,281 H, J = 0,01 kgm^2.
\]

Syntetyczne charakterystyki strumieni sprzężonych pola głównego oraz pola rozproszzenia przedstawiono na rys. 8.1.

Rys. 8.1. Charakterystyki syntetyczne strumieni sprzężonych pola głównego i pola rozproszenia stojana.

Syntetyczne charakterystyki aproksymowano funkcjami:

\[
\begin{align*}
\Psi_{\sigma\sigma}(I_{m}) &= A_m \arctg(B_m I_{m}) + C_m I_{m}, \\
\Psi_{\sigma\sigma}(I_{s}) &= A_s \arctg(B_s I_{s}) + C_s I_{s},
\end{align*}
\]

oraz przyjęto, że

\[
\Psi_{\sigma\sigma}^{*}(I_{r}) = A_s \arctg(B_s I_{r}) + C_s I_{r} = \Psi_{\sigma\sigma}(I_{r}),
\]

przy czym współczynniki funkcji wynoszą:

\[
A_s = 0,097 Wb, A_m = 1,30 Wb, B_{sm} = 0,07 A, B_{s}\sigma = 0,226 A, C_{im} = 0,0045 Wb/A.
\]

Na rysunkach 8.3 - 8.4 przedstawiono przebiegi wybranych wielkości elektromagnetycznych i elektrodynamicznych silnika podczas rozruchu. W obliczeniach przyjęto, że silnik załączono do sieci o napięciu znamionowym.
Modele matematyczne maszyn elektrycznych prądu przemiennego

Na rysunkach 8.5 - 8.6 przedstawiono charakterystyki silnika indukcyjnego w stanie ustalonym zasilanego z sieci o napięciu znamionowym.

W celu określenia wpływu współczynników funkcji aproksymujących syntetyczne charakterystyki strumieni sprzężonych na charakterystyki silnika obliczono wrażliwość mocy czynnej i biernych stojąca na zmiany współczynników. W pracy rozpatrzono charakterystyki wrażliwości względnej zdefiniowane w następujący sposób:

$$
S_{P_m} = \frac{\partial P_m}{\partial P_m} \cdot \frac{P_m}{P_m}, \quad S_{Q_s} = \frac{\partial Q_s}{\partial Q_s} \cdot \frac{P_m}{Q_s}
$$

(8.4)

gdzie:

- $P_m = [A_m \ B_m]^T$ - wektory zawierające współczynniki funkcji aproksymujących syntetyczne charakterystyki strumieni sprzężonych pola głównego i pola rozproszenia,
- $P_{m,i} = [A_{m,i} \ B_{m,i} \ C_{m,i}]^T$ - i-ty parametr syntetycznej charakterystyki pola głównego i pola rozproszenia,
Charakterystyki wrażliwości umożliwiają ocenę względnych zmian parametrów na względne zmiany mocy czynnej i biernej stojana. Na podstawie charakterystyk wrażliwości można ocenić wpływ na charakterystyki maszyny w stanie ustalonym nasycenia magnetycznego rdzeni przez pole główne i pola rozproszenia.

Na rysunku 8.7 przedstawiono charakterystyki wrażliwości mocy czynnej i biernej na zmianę współczynników określających syntetyczną charakterystykę strumienia sprzężonego pola głównego. Na rysunku 8.8 przedstawiono charakterystyki wrażliwości mocy czynnej i biernej na zmianę współczynników określających syntetyczną charakterystykę strumienia sprzężonego pola rozproszenia.

Przedstawione wybrane wyniki badań wykazały potrzebę uwzględnienia nasycenia magnetycznego rdzeni w modelu matematycznym maszyny asynchronicznej. Porównania przebiegów, obliczonych przy uwzględnieniu i pominięciu zjawiska nasycenia w modelu matematycznym maszyny, wskazały na istnienie rozbieżności między przebiegami. Przykładowo, różnice między wartościami maksymalnymi modułu fazora przestrzennego prądu stojana wynoszą około (5-18)%, a maksymalne różnice między wartościami maksymalnym momentu elektromagnetycznego wynoszą 30%. Podobne różnice można zaobserwować na charakterystykach silnika w stanie ustalonym. Główną przyczyną obserwowanych rozbieżności jest nasycenie rdzeni maszyny przez pole rozproszenia. Nasycenie magnetyczne rdzeni przez pole magnetyczne główne nie ma istotnego wpływu na wartości maksymalne przebiegów w początkowym okresie procesu rozruchu. Wpływ tego nasycenia zaznacza się przy poślizgach wirnika maszyny zbliżonych do zera. Potwierdzają te wnioski charakterystyki wrażliwości mocy czynnej i biernej na zmianę współczynników określających syntetyczną charakterystykę strumienia sprzężonego pola głównego. Wpływ nasycenia rdzeni przez pole główne można zaobserwować na przebiegach silnika zainstalowanego przy podwyższonym napięciu zasilania silnika. Na rysunku 8.9 przedstawiono porównanie wyników obliczeń przebiegów silnika podczas rozruchu, wyznaczonych przy znamionowym oraz powiększonym o 50% napięciu zasilania. W prezentowanych wynikach obliczeń pominięto nasycenie rdzeni maszyny przez pole rozproszenia.
9. WYZNACZENIE PARAMETRÓW ELEKTROMAGNETYCZNYCH
 MODELI MATEMATYCZNYCH MASZYN INDUKCYJNYCH

Modele matematyczne maszyn indukcyjnych uwzględniające nasycenie magnetyczne rdzeni można wykorzystać w badaniach symulacyjnych, gdy znane są:
• charakterystyki syntetyczne strumieni sprzężonych pola głównego oraz pola rozproszenia stojana i wirnika, za pomocą których wyznacza się indukcyjności statyczne i dynamiczne maszyny,
• parametry skupione: rezystancja stojana oraz rezystancja wirnika sprowadzone na stronę stojana - w przypadku maszyn indukcyjnych klatkowych i klatkowych, a także w przypadku maszyn indukcyjnych klatkowych głębokożłobkowych,
• parametry skupione: rezystancja stojana oraz rezystancje i indukcyjności rozproszenia zastępczych obwodów wirnika sprowadzone na stronę stojana - w przypadku maszyn indukcyjnych pierścieniowych i klatkowych

Wymienione charakterystyki i parametry skupione można wyznaczyć na podstawie:
• danych konstrukcyjnych korzystając z metodyki obliczeń przedstawionej w rozdziałach 4, 5, 6 oraz zależności projektowych [3, 6, 8, 12, 29, 31, 32, 34],
• wyników pomiarów wybranych wielkości wejściowych i wyjściowych maszyn indukcyjnych w stanach ustalonych lub nieustalonych,
• wyników obliczeń symulacyjnych wybranych stanów ustalonych lub nieustalonych maszyn asynchronicznych wykonanych za pomocą modeli polowo-obwodowych.

W pracy zostaną wyznaczone charakterystyki syntetyczne strumieni sprzężonych oraz parametry skupione dwóch silników indukcyjnych o mocy znamionowej 3 kW i 1,5 kW. Charakterystyki i parametry skupione silnika indukcyjnego o mocy 3 kW zostaną wyznaczone na podstawie wyników pomiarów, natomiast silnika o mocy 1,5 kW na podstawie wyników obliczeń symulacyjnych polowo-obwodowych.

Najprostszym sposobem wyznaczenia syntetycznych charakterystyk strumieni sprzężonych oraz parametrów skupionych modeli matematycznych maszyn asynchronicznych o wirniku pierścieniowym i klatkowym zwykłym jest wykonanie pomiarów lub symulacji w stanie jałowym i w stanie zwarcia. Na ich podstawie wyznaczana jest wartość rezystancji wirnika sprowadzonej na stronę stojana (rezystancja stojana wyznaczana jest metodą techniczną) oraz w postaci tabelarycznej syntetyczne charakterystyki strumieni sprzężonych. Wyznaczone w ten sposób parametry skupione oraz syntetyczne charakterystyki odzwierciedlają właściwości eksploatacyjne maszyn w innych stanach pracy niezbyt dokładnie.

Modele maszyn indukcyjnych przedstawione w rozdziale 7 nie są w pełni modelami parametrycznymi, obok bowiem stałych parametrów skupionych, występują w modelu indukcyjności statyczne i dynamiczne, których wartości zależą od stanu nasycenia rdzeni maszyny i są wyznaczane za pomocą charakterystyk syntetycznych. Bezpośrednie wyznaczenie tych charakterystyk w postaci tabelebcyjnej jest trudne, dlatego też wygodnie jest je aproksymować za pomocą funkcji o nieznanych „a priori” współczynnikach, które uzupełniając zbior parametrów modeli matematycznych maszyn indukcyjnych powodują, że modele te są parametryczne.

9.1. Schematy zastępcze parametryczne maszyny indukcyjnej w stanach ustalonych i nieustalonych

Aproksymując charakterystyki syntetyczne strumieni sprzężonych pola głównego oraz pola rozproszenia stojana i wirnika funkcjami:
\[\Psi_{\alpha}^*(I_s) = A_{\alpha} \arctg(B_{\alpha} I_s) + C_{\alpha} I_s, \]
\[\Psi_{\sigma}^*(I_s) = A_{\sigma} \arctg(B_{\sigma} I^\star) + C_{\sigma} I^\star, \]
\[\Psi_{\sigma}^*(I_m) = A_{\sigma} \arctg(B_{\sigma} I_m), \]

indukcyjności statyczne maszyny określone są przez następujące zależności:
\[I_{\alpha}^*(I_s) = A_{\alpha} \arctg(B_{\alpha} I_s) + C_{\alpha} I_s, \]
\[I_{\sigma}^*(I^\star) = A_{\sigma} \arctg(B_{\sigma} I^\star) + C_{\sigma} I^\star, \]
\[I_{m}^*(I_m) = A_{\sigma} \arctg(B_{\sigma} I_m), \]
zaś indukcyjności dynamiczne maszyny przedstawione w rozdziale 6.3 można obliczyć korzystając z następujących zależności:
\[L_{D\alpha}^*(I_s) = \frac{A_{\alpha} B_{\alpha}}{1 + B_{\alpha}^2 I_s^2} + C_{\alpha}, \]
\[L_{D\sigma}^*(I^\star) = \frac{A_{\sigma} B_{\sigma}}{1 + B_{\sigma}^2 I^\star} + C_{\sigma}, \]
\[L_{m}^*(I_m) = \frac{A_{\sigma} B_{\sigma}}{1 + B_{\sigma}^2 I_m^2}. \]

Fig. 9.1. Schemat zastępczy parametrycznego modelu matematycznego maszyny indukcyjnej w stanach ustalonych

Uwzględniając wzory (9.3) – (9.6) zbior parametrów modelu matematycznego maszyny indukcyjnej o wirniku jednoklatkowym ma następującą postać:
\[P = [P_R \ P_{\alpha} \ P_{\sigma} \ P_m]^T, \]
\[P_R = [R_s \ R_{\alpha}^\star]^T, \]
\[P_{\alpha} = [A_{\alpha} \ B_{\alpha} \ C_{\alpha} \ C_{\alpha}]^T, \]
\[P_m = [A_m \ B_m]^T, \]
9.2. Metodyka wyznaczania parametrów modelu matematycznego maszyny indukcyjnej na podstawie pomiarów

Parametry modelu matematycznego maszyny indukcyjnej można wyznaczyć na podstawie pomiarów charakterystyk statycznych lub przebiegów dynamicznych. W pracy parametry maszyny wyznaczono na podstawie pomiarów charakterystyk statycznych mocy czynnej i biernej stojącej w funkcji prędkości obrotowej wirnika oraz pomiarów przebiegów mocy chwilowej i mocy chwilowej biernej w stanach dynamicznych.

W procedurze wyznaczania parametrów wykorzystano metodę najmniejszych kwadratów, polegającą na takim doborze parametrów modelu, które powodują minimalizację błędu średniokwadratowego między charakterystykami lub przebiegami zmierzonymi oraz obliczonymi za pomocą modelu. Schemat ideowy ilustrujący procedurę wyznaczania parametrów na podstawie charakterystyk statycznych przedstawiono na rys. 9.3.

9.3. Opis stanowiska laboratoryjnego, metodyka przeprowadzenia pomiarów

W badaniach pomiarowych wykorzystano stanowisko laboratoryjne, składające się z badanego silnika indukcyjnego połączonego za pośrednictwem sprzęgła z układem wirujących tarcz o różnych momentach bezwładności (rys. 9.4). Pomiary wykonano za pomocą trójfazowego analizatora mocy firmy LEM-NORMA D 6100, gwarantującego bardzo dobrą dokładność pomiaru mierzonych sygnałów elektrycznych. Sterowanie procesem pomiarowym, akwizycję mierzonych sygnałów oraz ich obróbkę i wizualizację wykonano za pomocą
mikrokomputera oraz opracowanego przez autora programu komputerowego pracującego
w środowisku LABVIEW.

![Schemat ideowy stanowiska laboratoryjnego](image1)

Rys. 9.4. Schemat ideowy stanowiska laboratoryjnego

Na stanowisku laboratoryjnym przeprowadzono pomiary charakterystyk maszyny
w stanach quasi-ustalonych oraz przebiegów dynamicznych.

9.3.1. Pomiarowe wyznaczenie mocy chwilowej i chwilowej mocy biernej stojana

Moc chwilową stojana oraz moc chwilową bierną stojana można wyznaczyć korzystając
z następujących zależności:

\[
p_s = \text{Re}(U_s^* I_s^*) , \quad q_s = \text{Im}(U_s^* I_s^*) \tag{9.9}
\]

Fazory przestrzenne napięcia i prądu stojana można wyznaczyć dokonując pomiaru
prądów fazowych oraz napięć międzyprzewodowych stojana.

\[
I_s^* = \sqrt{2/3} \left(i_{1} + a i_{2} + a^2 i_{3} \right), \quad U_s^* = \sqrt{2} \cdot \frac{1}{1-a} \left(u_{i12} + a u_{i23} + a^2 u_{i31} \right) \tag{9.10}
\]

Przykładowe wyniki pomiarów przebiegu prądu fazowego i napięcia międzyprzewodowo-
we podczas rozruchu silnika indukcyjnego o mocy znamionowej 3 kW przedstawiono na
rys. 9.5.

![Rys. 9.5. Przebieg prądu fazowego i napięcia międzyprzewodowego stojana podczas rozruchu silnika](image2)

Wyznaczone na podstawie zależności (9.10) przebiegi hodografów fazorów
przestrzennych prądów i napięcia stojana oraz ich modułów podczas rozruchu silnika
przedstawiono na rys. 9.6 i 9.7.

![Rys. 9.6. Hodograf fazora przestrzennego prądu i napięcia stojana](image3)

![Rys. 9.7. Przebiegi modułu fazora przestrzennego prądu i napięcia stojana](image4)

Wyznaczone na podstawie zależności (9.10) przebiegi hodografów fazorów
przestrzennych prądów i napięcia stojana oraz ich modułów podczas rozruchu silnika
przedstawiono na rys. 9.6 i 9.7.
Na rysunku 9.8 przedstawiono obliczone na podstawie zależności (9.9) przebiegi mocy chwilowej i mocy chwilowej biernej stojana.

9.3.2. Pomiarowe wyznaczanie charakterystyk statycznych maszyny indukcyjnej

Charakterystyki statyczne maszyn indukcyjnych można wyznaczyć tradycyjnymi metodami, obciążając maszynę hamownicą oraz dokonując pomiaru odpowiednich wielkości w całym zakresie pracy silnikowej. Pomiary takie zazwyczaj są przeprowadzane w laboratoriach badawczych oraz na stacjach prób fabryk wytwarzających maszyny elektryczne. Trudno jest pomiary takich charakterystyk wykonać w normalnych warunkach eksploatacji. W warunkach przemysłowych można wyznaczyć charakterystyki statyczne silników indukcyjnych na podstawie pomiaru przebiegów wielkości elektrycznych i mechanicznych podczas rozruchu lub nawrotu silnika, przyjmując że moment bezwładności układu mechanicznego silnika jest na tyle duży, że można założyć, że przebieg dynamiczny występujący w silniku jest na tyle wolny, że można je uznać za quasi-ustalone.

W konsekwencji uwzględniając przebieg prędkości obrotowej podczas rozruchu silnika przedstawiony na rys. 9.9 można rozpatrywać przebiegi przedstawiający funkcję prędkości obrotowej, otrzymując quasi-statyczne charakterystyki maszyny indukcyjnej w funkcji prędkości obrotowej (rys. 9.10).

Rys. 9.9. Przebieg prędkości obrotowej wirnika podczas rozruchu silnika
Fig. 9.9. Waveform of the rotor speed during motor starting

Rys. 9.10 Charakterystyki quasi-statyczne silnika indukcyjnego o mocy znamionowej 3 kW
Fig. 9.10. Quasi-static characteristics of 3 kW induction motor

Uśredniając quasi-statyczne charakterystyki za pomocą procedury uśredniania (średnia ruchoma) otrzymuje się charakterystyki statyczne silnika przedstawione na rysunku 9.11.

Rys. 9.11. Charakterystyki statyczne mocy czynnej i biernej stojana w funkcji prędkości obrotowej wirnika
Fig. 9.11. Static characteristics of the stator active and reactive power vs the rotor speed

9.4. Algorytm estymacji parametrów modelu matematycznego maszyny na podstawie wyników pomiaru charakterystyk statycznych

Na podstawie analizy wrażliwości wpływu parametrów elektromagnetycznych maszyny na jej charakterystyki przedstawione w rozdziale 8 przyjęto, że:
• współczynniki opisujące syntetyczną charakterystykę strumienia sprzężonego pola głównego wyznaczy się z charakterystyki biegu jałowego maszyny,
pozostałe parametry wyznaczy się na podstawie charakterystyki mocy czynnej i biernej stojącej w funkcji prędkości obrotowej wirnika.

W celu ułatwienia obliczeń zmodyfikowano postaci niektórych parametrów:

\[A_m = \omega_1 A_m, \quad A_p = \omega_1 A_p, \quad C_s = \omega_1 C_s \]

(9.11)

oraz przyjęto, że współczynniki opisujące syntetyczne charakterystyki strumieni sprzężonych pola rozproszenia stojana i wirnika są sobie równe.

W procesie estymacji parametrów jako miarę zgodności modelu matematycznego maszyny z maszyną rzeczywistą przyjęto błąd średniokwadratowy wyznaczony dla mocy czynnej i biernej stojana:

\[\varepsilon(P) = \frac{1}{n_k} \sum_{p=1}^{n_k} \left(\frac{P_{s(p)}(n_k) - P_{s(m)}(P,n_k)}{P_{s(p)}(n_k)} \right)^2 + \left(\frac{Q_{s(p)}(n_k) - Q_{s(m)}(P,n_k)}{Q_{s(p)}(n_k)} \right)^2 \]

(9.12)

dzięki:

\[P_{s(p)}, Q_{s(p)}, P_{s(m)}, Q_{s(m)} - moc czynna i bierna stojana zmierzona (p) oraz obliczona (m) za pomocą modelu.

\[G_{0} = \omega_1 G_{0}, \quad B_{0} = \omega_1 B_{0} \]

9.5. Wyniki estymacji parametrów na podstawie pomiaru charakterystyk statycznych

Estymację parametrów elektromagnetycznych przeprowadzono dla silnika indukcyjnego klatkowego o mocy 3 kW, w którym, jak wynika z pracy [141], praktycznie można pominąć zjawisko wypierania prądu w wirniku. Dane znamionowe badanego silnika wynoszą:

\[P_n = 3 \, kW, \quad U_{sn} = 220/380 \, V, \quad I_{sn} = 11.5/6.7 \, A, \quad \cos(\varphi_{sn}) = 0.82, \quad n_s = 1430 \, obr/min. \]

Współczynniki opisujące syntetyczną charakterystykę strumienia sprzężonego pola głównego wyznaczono z biegu jałowego silnika \(A_m = 411,234 \, V, \quad B_m = 0.225 \, 1/A. \)

Estymacje pozostałych parametrów przeprowadzono w dwóch etapach. W pierwszym etapie na podstawie charakterystyk silnika zasilanego z sieci o napięciu 380 V i przyczużystości algorytmu genetycznego wyznaczono zbiór wstępnych parametrów maszyny traktując go jako punkt startowy dla drugiego etapu, w którym wykorzystano algorytm gradientowy. Przy stosowaniu algorytmu genetycznego [1] przyjęto binarny system kodyzowania oraz postępuje zbieżność (dla podgrup złożonych z 2 osobników) jako sposób selekcji. Do obliczeń wybrano algorytm genetyczny z ustalonym stanem (steady State), w którym przyjęto, że 11% procent populacji jest przekazywane do następnej generacji, bez stosowania operatorów reprodukcji. Pozostałe parametry algorytmu genetycznego oraz wynik końcowy zestawiono w tabl. 9.1.

Tablica 9.1

<table>
<thead>
<tr>
<th>Parametry algorytmu genetycznego</th>
<th>Parametry maszyny</th>
<th>Górny zakres</th>
<th>Dolny zakres</th>
<th>Wyniki końcowe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liczność populacji</td>
<td>31</td>
<td>(A_m) V</td>
<td>60,00</td>
<td>10,00</td>
</tr>
<tr>
<td>Liczba generacji</td>
<td>1500</td>
<td>(B_{0}) 1/A</td>
<td>0,200</td>
<td>0,020</td>
</tr>
<tr>
<td>Prawdopodobieństwo krzyżowania</td>
<td>0,77</td>
<td>(C_s) 1/Ω</td>
<td>5,00</td>
<td>0,50</td>
</tr>
<tr>
<td>Prawdopodobieństwo mutacji</td>
<td>0,0077</td>
<td>(R_s) 1/Ω</td>
<td>5,00</td>
<td>0,50</td>
</tr>
</tbody>
</table>

Podane w tablicy górny i dolny zakres wartości zmian parametrów określają obszar poszukiwań, a liczba znaków po przecinku tych liczb oznacza dodatkowo rozdzielczość.
Łącznie decydują one o liczbie genów, za pomocą których jest zakodowany poszukiwany parametr oraz w konsekwencji o długości chromosomu odpowiadającemu wektorowi parametrów. Algorytm genetyczny wykorzystano do wyznaczenia czterech parametrów. Liczba genów reprezentująca poszczególne parametry wynosiła: $A_0^* = 13$, $B_0 = 8$, $C_0^* = 9$, $R_0^* = 9$, zaś długość chromosomu była równa 39.

Przy wstępnym wyznaczaniu parametrów za pomocą algorytmu genetycznego wartość rezystancji stojąca przyjęto z pomiarów metodą techniczną ($R_s = 2,1 \Omega$). Na rysunku 9.13 przedstawiono przebieg minimalnej wartości funkcji celu dla kolejnych generacji.

Rys. 9.13. Wykres minimalnej wartości funkcji celu dla kolejnych generacji
Fig. 9.13. The minimum value of the objective function for successive generations

W drugim etapie do wyznaczenia ostatecznych wartości parametrów modelu matematycznego maszyny zastosowano algorytm gradientowy, w którym ograniczono obszar poszukiwań parametrów poprzez zadanie dolnego i górnego zakresu ich zmian.

W ten sposób wyznaczono ostateczne parametry maszyny dla różnych napięć zasilania stojąca. Wyniki tego etapu estymacji zestawiono w tabl. 9.2 umieszczając w niej również wartości dolnych i górnych zakresów zmian parametrów.

Tablica 9.2

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Dolny zakres</th>
<th>Górnny zakres</th>
<th>$U_s=380 \text{ V}$</th>
<th>$U_s=300 \text{ V}$</th>
<th>$U_s=220 \text{ V}$</th>
<th>$U_s=150 \text{ V}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_0^* V</td>
<td>5,00</td>
<td>60,00</td>
<td>43,105</td>
<td>43,295</td>
<td>42,456</td>
<td>40,789</td>
</tr>
<tr>
<td>B_0 1/A</td>
<td>0,010</td>
<td>0,400</td>
<td>0,076</td>
<td>0,069</td>
<td>0,062</td>
<td>0,064</td>
</tr>
<tr>
<td>C_0^* Ω</td>
<td>0,300</td>
<td>5,00</td>
<td>1,167</td>
<td>1,091</td>
<td>1,064</td>
<td>0,964</td>
</tr>
<tr>
<td>R_s Ω</td>
<td>2,00</td>
<td>2,50</td>
<td>2,255</td>
<td>2,401</td>
<td>2,436</td>
<td>2,50</td>
</tr>
<tr>
<td>R_0^* Ω</td>
<td>1,20</td>
<td>1,65</td>
<td>1,258</td>
<td>1,251</td>
<td>1,251</td>
<td>1,20</td>
</tr>
<tr>
<td>ε</td>
<td>0,0178</td>
<td>0,253</td>
<td>0,0813</td>
<td>0,140</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Jakość odwzorowania charakterystyk maszyny przez jej model matematyczny i wyznaczone dla tego modelu parametry można ocenić porównując ze sobą charakterystyki zmierzone i obliczone, co przedstawiono na rys. 9.14.

Rys. 9.14. Porównanie charakterystyk mocy czynnej i biernej stojącej zmierzonych (p) i obliczonych za pomocą wyznaczonych parametrów (m)
Fig. 9.14. Comparison of the stator active and reactive power characteristics measured (p) and computed (m) by means of the calculated parameters
Z porównania charakterystyk dla różnych napięć zasilania wynika dobra zgodność charakterystyk maszyny rzeczywistej z charakterystykami wyznaczonymi za pomocą modelu.

9.6. Ocena wiarygodności wyznaczonych parametrów modelu matematycznego maszyny indukcyjnej

Na rysunkach 9.15-9.16 przedstawiono przebiegi prądu fazowego stojana (zmierzone i obliczone) podczas rozruchu silnika zasilanego z sieci o napięciu 380 V oraz z sieci o napięciu 220 V. W celu łatwiejszego porównania wyników pomiarów i symulacji przebiegi te przedstawiono na początku i końcu rozruchu. Z porównania przebiegów dla różnych napięć zasilania stojana wynika dobra zgodność przebiegów maszyny rzeczywistej z przebiegami wyznaczonymi na podstawie modelu. Pojawiające się rozbieżności pomiędzy wynikami symulacji oraz pomiarów, szczególnie widoczne pod koniec rozruchu, spowodowane są dynamicznie zmianą prędkości obrotowej wirnika. Wolniej narastająca prędkość obrotowa wirnika w rzeczywistym silniku indukcyjnym w porównaniu z prędkością obrotową obliczoną z symulacji (rys. 9.17) może być spowodowana niewystarczającym modelu maszyny zjawisk pasażowych, które powodują zniekształcenie charakterystyki momentu elektromagnetycznego silnika oraz niedokładnym oszacowaniu momentu wynikającego ze strat mechanicznych.

Rys. 9.15. Przebieg prądu stojanu silnika podczas rozruchu silnika zmierzony i obliczony
Fig. 9.15. Waveform of the motor stator current during motor starting measured and computed

Rys. 9.16. Przebieg prądu stojana silnika podczas rozruchu silnika zmierzony i obliczony
Fig. 9.16. Waveform of the motor stator current during motor starting measured and computed

Rys. 9.17. Przebieg prędkości obrotowej wirnika podczas rozruchu silnika zmierzony i obliczony
Fig. 9.17. Waveform of the rotor speed during motor starting measured and computed
9.7. Algorytm i wyniki estymacji parametrów modelu matematycznego maszyny indukcyjnej na podstawie wyników pomiaru przebiegów dynamicznych

Parametry modelu matematycznego maszyny indukcyjnej można także wyznaczyć na podstawie pomiarów przebiegów dynamicznych. W procesie wyznaczania parametrów jako miarę zgodności modelu matematycznego maszyny z maszyną rzeczywistą przyjęto także błąd średniokwadratowy wyznaczony na podstawie określonych w dyskretnych chwilach wartości mocy chwilowej i mocy chwilowej biernej stojana:

$$\varepsilon(P) = \sum_k \left(\frac{P_s(p)(t_k) - P_s(m)(P^k)}{P_s(p)(t_k)} \right)^2 + \left(\frac{q_s(p)(t_k) - q_s(m)(P^k)}{q_s(p)(t_k)} \right)^2.$$ (9.13)

Poszukiwany zbiór parametrów modelu matematycznego maszyny otrzymuje się w wyniku minimalizacji powyższego błędu. Do minimalizacji funkcji celu wykorzystano algorytm gradientowy. W procesie minimalizacji błędu średniokwadratowego dla każdego potencjalnego zbioru parametrów konieczne jest numeryczne rozwiązanie układu równań różniczkowych tworzących model matematyczny maszyny i wyznaczenie wartości chwilowych mocy wynikających z modelu matematycznego.

Podstawą procesu estymacji były wyniki pomiaru rozruchu silnika zasilanego z sieci o napięciu 380 V. Wyniki estymacji parametrów przedstawiono w tabl. 9.3

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Parametry startowe</th>
<th>Ograniczenia górne</th>
<th>Ograniczenia dolne</th>
<th>Parametry końcowe</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_s, Ω</td>
<td>2,255</td>
<td>5,00</td>
<td>1,00</td>
<td>2,270</td>
</tr>
<tr>
<td>$R*$, Ω</td>
<td>1,258</td>
<td>3,00</td>
<td>0,50</td>
<td>1,238</td>
</tr>
<tr>
<td>$A_{\alpha} = A_{\sigma}$, Wb</td>
<td>0,1372</td>
<td>0,30</td>
<td>0,05</td>
<td>0,138</td>
</tr>
<tr>
<td>$B_{\alpha} = B_{\alpha}$, 1/A</td>
<td>0,076</td>
<td>0,20</td>
<td>0,010</td>
<td>0,077</td>
</tr>
<tr>
<td>$C_{\alpha} = C_{\sigma}$, Wb/A</td>
<td>0,00372</td>
<td>0,01</td>
<td>0,0005</td>
<td>0,0037</td>
</tr>
<tr>
<td>A_m, Wb</td>
<td>1,309</td>
<td>2,00</td>
<td>0,70</td>
<td>1,277</td>
</tr>
<tr>
<td>B_m, 1/A</td>
<td>0,225</td>
<td>0,50</td>
<td>0,10</td>
<td>0,223</td>
</tr>
</tbody>
</table>

Rys. 9.18. Przebiegi mocy chwilowej, mocy chwilowej biernej, prądu fazowego stojana i prędkości obrotowej podczas rozruchu zmierzone i obliczone na podstawie wyznaczonych parametrów

Fig. 9.18. Waveforms of the instantaneous power, instantaneous reactive power, stator phase current and rotational speed measured and computed basing on the calculated parameters
9.8. Metodyka wyznaczania parametrów modelu obwodowego maszyny indukcyjnej na podstawie wyników obliczeń polowo-obwodowych

Dla nowo projektowanych silników indukcyjnych lub silników o znanych danych geometrycznych i materiałowych parametry modelu matematycznego maszyny można wyznaczyć na podstawie charakterystyk statycznych lub przebiegów dynamicznych obliczonych za pomocą metody elementów skończonych. Rozwój metody elementów skończonych oraz związanego z nią oprogramowania spowodował, że w obliczeniach polowo-obwodowych można uwzględniać zarówno napięciowe zasilanie uzwojeń stojana, jak i ruch wirnika względem stojana. W konsekwencji wyniki obliczeń polowo-obwodowych w dużym stopniu odwzorowują rzeczywiste warunki pracy maszyny.

W pracy parametry modelu matematycznego maszyny wyznaczono za pomocą zbioru charakterystyk statycznych wyznaczonych za pomocą odpowiedniego opracowania quasi-ustalonych przebiegów dynamicznych obliczonych za pomocą metody elementów skończonych. Rozwój metody elementów skończonych oraz związanego z nią oprogramowania spowodował, że w obliczeniach polowo-obwodowych można uwzględniać zarówno napięciowe zasilanie uzwojeń stojana, jak i ruch wirnika względem stojana. W konsekwencji wyniki obliczeń polowo-obwodowych w dużym stopniu odwzorowują rzeczywiste warunki pracy maszyny.

W pracy parametry modelu matematycznego maszyny wyznaczono za pomocą zbioru charakterystyk statycznych wyznaczonych za pomocą odpowiedniego opracowania quasi-ustalonych przebiegów dynamicznych obliczonych za pomocą metody elementów skończonych. Rozwój metody elementów skończonych oraz związanego z nią oprogramowania spowodował, że w obliczeniach polowo-obwodowych można uwzględniać zarówno napięciowe zasilanie uzwojeń stojana, jak i ruch wirnika względem stojana. W konsekwencji wyniki obliczeń polowo-obwodowych w dużym stopniu odwzorowują rzeczywiste warunki pracy maszyny.

9.9. Obliczenia charakterystyk statycznych za pomocą metody elementów skończonych

Podczas nawrotu silnika z odpowiednio powiększonym momentem bezwładności prędkość obrotowa wirnika zmienia się na tyle wolno, że procesy elekromagnetyczne występujące w silniku są quasi-ustalone. W konsekwencji pomijając początkowy stan nieustalony można przyjąć, że zmiany quasi-ustalonych przebiegów spowodowane są głównie zmianami prędkości obrotowej wirnika. Przebiegi quasi-ustalone analizowanych wielkości zawierają składowe stałe oraz składowe przemienne. Składowe stałe można wyodrębnić z przebiegów quasi-ustalonych za pomocą uśrednienia, stosując procedurę średnią ruchomą. Dodatkowo, podczas wyodrębniania składową średnią w funkcji prędkości obrotowej otrzymuje się charakterystyki statyczne maszyny.

Procedura obliczenia charakterystyk statycznych maszyny indukcyjnej za pomocą metody elementów skończonych składa się z dwóch etapów obliczeń:
- w etapie pierwszym przeprowadza się obliczenia polowo-obwodowe stanów dynamicznych silnika występujących podczas nawrotu i wyznacza się przebieg odpowiednich wielkości elekromagnetycznych i mechanicznych,
- w etapie drugim pomija się początkowy stan nieustalony i uśrednia się (średnia ruchoma) obliczone przebiegi, a następnie przedstawia się je w funkcji prędkości obrotowej.

W programie Maxwell-2D w wyniku obliczeń polowo-obwodowych wyznacza się bezpośrednio między innymi wartości chwilowe prądów stojana, momentu elekromagnety-
cznego oraz prędkości obrotowej. Potrzebne do estymacji parametrów silnika przebiegi chwilowej mocy stojana i chwilowej mocy biernej stojana oraz fazora przestrzennego prądu stojana wyznacza się według wzorów (9.9) - (9.10).

Obliczenia wykonano dla silnika indukcyjnego o następujących danych znaniowych:

\[P_n = 1500 \text{ W}, \quad U_{sN} = 400/230 \text{ V}, \quad I_{sn} = 3,4/5,4 \text{ A}; \]

\[\cos(\varphi_{sn}) = 0,79, \quad n_n = 1400 \text{ obr/min}; \quad T_{em} = 10,25 \text{ N}\cdot\text{m}. \]

W obliczeniach nawrotu silnika z powiększonym momentem bezwładności metodą prób przyjęto jako zadowalający podział modelu obliczeniowego maszyny na około 12 tys. elementów skończonych, a krok całkowania równań w dziedzinie czasu ustalono na 0,0001s. Na rysunku 9.21 przedstawiono siatkę elementów skończonych oraz dane szczegółowe dotyczące siatki.

![Rys. 9.21. Siatka elementów skończonych oraz dane dotyczące siatki (model obliczeniowy nie obejmuje obszaru tła - background)](image)

Fig. 9.21. Finite element mesh and its data (the computational model does not include the background area)

Na rysunku 9.22 przedstawiono przykładowe wyniki obliczeń polowych w postaci przebiegu izolinii wektorowego potencjału magnetycznego dla dwóch wybranych chwil czasu podczas nawrotu silnika zasilanego z sieci 400V.

![Rys. 9.22. Wykresy izolinii wektorowego potencjału magnetycznego dla a) t=0,05 s, n=-1195,34 obr/min, dla b t=0,25 s, n=130,923 obr/min](image)

Fig. 9.22. Isolines of the magnetic vector potential for a)t=0,05 s, n=-1195,34 r.p.m., b) t=0,25 s, n=130,923 r.p.m.

Obliczenia charakterystyk quasi-statycznych maszyny indukcyjnej przeprowadzono dla różnych napięć zasilania uzwojeń stojana. Wyniki obliczeń charakterystyk mocy chwilowej stojana oraz mocy chwilowej biernej stojana oraz modułu fazora przestrzennego prądu stojana podzielenego przez \(\sqrt{3} \) oraz opracowane na ich podstawie rodziny charakterystyk statycznych przedstawiono na rys. 9.23b.

![Rys. 9.23. Charakterystyki quasi-statyczne i statyczne maszyny indukcyjnej wyznaczone z nawrotu silnika](image)

Fig. 9.23. Quasi-static and static characteristics of induction machine computed from the motor reverse
9.10. Estymacja parametrów obwodowego modelu maszyny indukcyjnej

W procesie estymacji parametrów modelu matematycznego maszyny indukcyjnej jako miarę zgodności rodziny charakterystyk statycznych wyznaczonych za pomocą modelu polowo-obwodowego z rodziną charakterystyk statycznych wyznaczonych za pomocą modelu obwodowego przyjęto błąd średniokwadratowy wyznaczony dla mocy czynnej, biernej oraz prądu fazowego stojąca.

\[e(p) = \sum_{n} \left(\frac{P_s(\text{pm}) - P_s(\text{om})}{P_s(\text{pm})} \right)^2 + \left(\frac{Q_s(\text{pm}) - Q_s(\text{om})}{Q_s(\text{pm})} \right)^2 \]

(9.14)

dzie: \(P_s(\text{pm}) \), \(P_s(\text{om}) \), \(Q_s(\text{pm}) \), \(Q_s(\text{om}) \), \(I_s(\text{pm}) \), \(I_s(\text{om}) \) - moc czynna, bierna oraz prąd fazowy stojany wyznaczone z modelu polowo-obwodowego (\(\text{pm} \)) oraz modelu obwodowego (\(\text{om} \)) dla różnych napięć stojanów \(U_{\text{pm}} \) i różnych prędkości wirnika \(n_k \) w zakresie pracy silnikowej.

Poszukiwany zbiór parametrów otrzymuje się w wyniku minimalizacji powyższego błędu, stanowiącego funkcję celu. Do minimalizacji funkcji celu zastosowano algorytm gradientowy.

Jako początkowy zbiór parametrów przyjęto parametry wyznaczone z charakterystyk biegu jałowego i zwarcia wyznaczonych na podstawie modelu polowo-obwodowego. W celu uproszczenia obliczeń zmodyfikowano niektóre parametry oraz przyjęto, że syntetyczne charakterystyki strumieni sprzężonych pola rozproszenia stojana i wirnika są identyczne.

\[A_m^* = \omega_m A_m^*, \quad A_m^* = \omega_m A_m^*, \quad C_m^* = \omega_m C_m^* \]

(9.15)

Rezystancję stojana przyjęto z obliczeń projektowych (\(R_s = 6.608 \Omega \)). Wyniki estymacji parametrów zestawiono w tabl. 9.4. W tablicy tej podano także wartości startowe poszukiwanych parametrów oraz przyjęte ograniczenia dolne i górne zmian parametrów.

Tablica 9.4

<table>
<thead>
<tr>
<th>(P) (potraktowane)</th>
<th>(P) (startowe)</th>
<th>(P) (dolne)</th>
<th>(P) (górne)</th>
<th>(P) (estymowane)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_0^*) (V)</td>
<td>71,268</td>
<td>30,0</td>
<td>150,0</td>
<td>70,683</td>
</tr>
<tr>
<td>(B_0) (1/\Lambda)</td>
<td>0,047</td>
<td>0,02</td>
<td>0,1</td>
<td>0,051</td>
</tr>
<tr>
<td>(C_0^*) (\Omega)</td>
<td>1,06</td>
<td>0,50</td>
<td>3,0</td>
<td>1,116</td>
</tr>
<tr>
<td>(A_m) (V)</td>
<td>356,573</td>
<td>300,0</td>
<td>600,0</td>
<td>469,258</td>
</tr>
<tr>
<td>(B_m) (1/\Lambda)</td>
<td>0,641</td>
<td>0,10</td>
<td>2,0</td>
<td>0,258</td>
</tr>
<tr>
<td>(R_s^*) (\Omega)</td>
<td>4,37</td>
<td>4,0</td>
<td>6,0</td>
<td>4,365</td>
</tr>
</tbody>
</table>

Rys. 9.24. Porównanie charakterystyk statycznych obliczonych za pomocą modelu polowo-obwodowego i modelu obwodowego

Fig. 9.24. Comparison of the static characteristics computed by means of the field-circuit and circuit model.
Porównując charakterystyki statyczne silnika indukcyjnego wyznaczone za pomocą modelu polowo-obwodowego z charakterystykami obliczonymi za pomocą modelu obwodowego można zauważyć dobrą zbieżność charakterystyk mocy czynnej oraz prądu stojącego w funkcji poślizgu oraz nieco gorszą zbieżność charakterystyk mocy biernej. Szczególnie wyraźne są rozbieżności charakterystyk dla poślizgów mniejszych od 0,3. Analizując wartości otrzymanych parametrów można zauważyć, że parametry opisujące syntetyczną charakterystykę strumienia sprzężonego pola rozproszenia są bliższe parametrom startowym określonym ze stanu zwarcia, natomiast parametry opisujące syntetyczną charakterystykę strumienia sprzężonego pola głównego znacznie odbiegają od parametrów startowych określonych ze stanu jałowego. Jest to jeden z powodów rozbieżności charakterystyk modelu obwodowego obserwowanych dla małych poślizgów. Przyczyną rozbieżności są także założenia upraszczające przyjęte przy konstruowaniu obwodowego modelu maszyny, dotyczące głównie rozdzielnego traktowania zjawisk nasyżenia rdzeni magnetycznych przez pole główne oraz pola rozproszenia.

9.11. Wnioski

Zaproponowana w pracy metodyka wyznaczania parametrów modelu matematycznego maszyny indukcyjnej, uwzględniającego nasycenie magnetyczne rdzeni (współczynników opisujących analityczne postaci syntetycznych charakterystyk strumieni sprzężonych oraz rezystancji stojana i wirnika), na podstawie zmierzonych lub obliczonych charakterystyk statycznych i przebiegów dynamicznych umożliwia wyznaczenie parametrów modeli matematycznych maszyn indukcyjnych pracujących w przemyśle przy wykorzystaniu dostępnego sprzętu pomiarowego w postaci analizatorów mocy lub kart przetworników analogowo-cyfrowych, jak również dla maszyn będących na etapie projektowania przy wykorzystaniu programów metody elementów skończonych.

Zastosowana procedura estymacji parametrów, wykorzystująca korzystne cechy zarówno algorytmu genetycznego (brak konieczności określenia punktu startowego, praca na populacji parametrów), jak i algorytmu gradientowego (szybkość obliczeń), może być także z powodzeniem zastosowana do estymacji parametrów modeli matematycznych maszyn indukcyjnych głębokożłobkowych.

Opracowane w pracy obwodowe modele matematyczne maszyn indukcyjnych uwzględniające nasycenie rdzeni magnetycznych z dobrą dokładnością odwzorowują właściwości eksploatacyjne maszyn w stanach ustalonych i nieustalonych przy zmieniających się warunkach nasyżenia rdzeni.
10. MODELE MATematyczne maszyn synchronicznych UWZGłĘDniaJąCE nasyCenie MAGNETyczne RĐzeni

10.1. Wprowadzenie

Przedmiotem rozważań są modele matematyczne maszyn synchronicznych dużych mocy - turbogeneratorów i hydrogeneratorów stanowiących podstawowe źródło energii elektrycznej w systemie elektroenergetycznym. Maszyny te charakteryzują się:
- złożoną strukturą geometryczną i materiałową, którą tworzą:
 - pakietowane rdzenie magnetyczne stojana o nieliniowych właściwościach magetycznych,
 - pakietowane lub lite rdzenie magnetyczne wirnika o nieliniowych właściwościach magnetycznych,
 - uzwojenia stojana oraz wzuwienia wzmocnienia,
 - klatka tłumiąca i kliny żłobkowe,
- złożoną strukturę elektromagnetyczną występującą w maszynach, spowodowaną nasięcaniem magnetycznym rdzeni oraz indukowaniem się prądów w elementach przewodzących wirnika (blok lity, klatka tłumiąca, kliny przewodzące).

Wymienione cechy powodują, że właściwości dynamiczne tych maszyn można w sposób naturalny opisać za pomocą modeli polowo-obwodowych. Opracowanie zaś ich uproszczonych obwodowych modeli matematycznych, uwzględniających zarówno nasięczenie magnetyczne rdzeni jak i indukowanie się prądów w przewodzących, wymaga przyjęcia założeń upraszczających. Do najbardziej podstawowych założeń należy przyjęcie struktury modelu fizycznego maszyny, w którym występują uzwojenia stojana i wzmocnienia wbudowane jak indukowane się prądów w wąskiej przestrzeni wirnika, wymaga przyjęcia założeń upraszczających. Do najbardziej podstawowych założeń należy przyjęcie struktury modelu fizycznego maszyny, w którym występują uzwojenia stojana i wzmocnienia wbudowane jak indukowane się prądów w wąskiej przestrzeni wirnika, wymaga przyjęcia założeń upraszczających. Do najbardziej podstawowych założeń należy przyjęcie struktury modelu fizycznego maszyny, w którym występują uzwojenia stojana i wzmocnienia wbudowane jak indukowane się prądów w wąskiej przestrzeni wirnika, wymaga przyjęcia założeń upraszczających. Do najbardziej podstawowych założeń należy przyjęcie struktury modelu fizycznego maszyny, w którym występują uzwojenia stojana i wzmocnienia wbudowane jak indukowane się prądów w wąskiej przestrzeni wirnika, wymaga przyjęcia założeń upraszczających. Do najbardziej podstawowych założeń należy przyjęcie struktury modelu fizycznego maszyny, w którym występują uzwojenia stojana i wzmocnienia wbudowane jak indukowane się prądów w wąskiej przestrzeni wirnika, wymaga przyjęcia założeń upraszczających. Do najbardziej podstawowych założeń należy przyjęcie struktury modelu fizycznego maszyny, w którym występują uzwojenia stojana i wzmocnienia wbudowane jak indukowane się prądów w wąskiej przestrzeni wirnika, wymaga przyjęcia założeń upraszczających. Do najbardziej podstawowych założeń należy przyjęcie struktury modelu fizycznego maszyny, w którym występują uzwojenia stojana i wzmocnienia wbudowane jak indukowane się prądów w wąskiej przestrzeni wirnika, wymaga przyjęcia założeń upraszczających. Do najbardziej podstawowych założeń należy przyjęcie struktury modelu fizycznego maszyny, w którym występują uzwojenia stojana i wzmocnienia wbudowane jak indukowane się prądów w wąskiej przestrzeni wirnika, wymaga przyjęcia założeń upraszczających. Do najbardziej podstawowych założeń należy przyjęcie struktury modelu fizycznego maszyny, w którym występują uzwojenia stojana i wzmocnienia wbudowane jak indukowane się prądów w wąskiej przestrzeni wirnika, wymaga przyjęcia założeń upraszczających. Do najbardziej podstawowych założeń należy przyjęcie struktury modelu fizycznego maszyny, w którym występują uzwojenia stojana i wzmocnienia wbudowane jak indukowane się prądów w wąskiej przestrzeni wirnika, wymaga przyjęcia założeń upraszczających. Do najbardziej podstawowych założeń należy przyjęcie struktury modelu fizycznego maszyny, w którym występują uzwojenia stojana i wzmocnienia wbudowane jak indukowane się prądów w wąskiej przestrzeni wirnika, wymaga przyjęcia założeń upraszczających. Do najbardziej podstawowych założeń należy przyjęcie struktury modelu fizycznego maszyny, w którym występują uzwojenia stojana i wzmocnienia wbudowane jak indukowane się prądów w wąskiej przestrzeni wirnika, wymaga przyjęcia założeń upraszczających. Do najbardziej podstawowych założeń należy przyjęcie struktury modelu fizycznego maszyny, w którym występują uzwojenia stojana i wzmocnienia wbudowane jak indukowane się prądów w wąskiej przestrzeni wirnika, wymaga przyjęcia założeń upraszczających. Do najbardziej podstawowych założeń należy przyjęcie struktury modelu fizycznego maszyny, w którym występują uzwojenia stojana i wzmocnienia wbudowane jak indukowane się prądów w wąskiej przestrzeni wirnika, wymaga przyjęcia założeń upraszczających. Do najbardziej podstawowych założeń należy przyjęcie struktury modelu fizycznego maszyny, w którym występują uzwojenia stojana i wzmocnienia wbudowane jak indukowane się prądów w wąskiej przestrzeni wirnika, wymaga przyjęcia założeń upraszczających. Do najbardziej podstawowych założeń należy przyjęcie struktury modelu fizycznego maszyny, w którym występują uzwojenia stojana i wzmocnienia wbudowane jak indukowane się prądów w wąskiej przestrzeni wirnika, wymaga przyjęcia założeń upraszczających. Do najbardziej podstawowych założeń należy przyjęcie struktury modelu fizycznego maszyny, w którym występują uzwojenia stojana i wzmocnienia wbudowane jak indukowane się prądów w wąskiej przestrzeni wirnika, wymaga przyjęcia założeń upraszczających. Do najbardziej podstawowych założeń należy przyjęcie struktury modelu fizycznego maszyny, w którym występują uzwojenia stojana i wzmocnienia wbudowane jak indukowane się prądów w wąskiej przestrzeni wirnika, wymaga przyjęcia założeń upraszczających. Do najbardziej podstawowych założeń należy przyjęcie struktury modelu fizycznego maszyny, w którym występują uzwojenia stojana i wzmocnienia wbudowane jak indukowane się prądów w wąskiej przestrzeni wirnika, wymaga przyjęcia założenia:
- Rdzenie magnetyczne stojana i wirnika są pakietowane tak, że można pominać wpływ indukowanych w nich prądów.
- Charakterystyki magnesowania rdzenia magnetycznego stojana i wirnika są nieliniowe i jednoznaczne.
- Wypadkowe pole magnetyczne w maszynie jest sumą pola magnetycznego głównego oraz pól rozproszzenia stojana i wirnika.
- Pole magnetyczne główne oraz pół rozprożenia w sposób niezależny od siebie magnesują rdzenie magnetyczne.
- Uzwojenia stojana oraz wzbudzenia oraz fikcyjne uzwojenia reprezentujące wzbudzenie obwody elektryczne w wirniku są uzwojeniami o rozłożeni sinusooidalnym, tak że są sprzężone ze sobą za pomocą podstawowej harmonicznej składowej promieniowej indukcji magnetycznej w szczelinie roboczej maszyny.
- Uzwojenia stojana są symetryczne.
- Prądy fazowe stojana są jednoznacznie określone za pomocą fazora przestrewnego prądu stojana.
- Strumienie sprzężone uzwojenia stojana i wirnika (sprawdzone na stronę stojana) dla pola głównego można w sposób jednoznaczny określić za pomocą fazora przestrewnego strumienia sprzężonego pola głównego.
- Strumienie sprzężone uzwojenia stojana dla pola rozprożenia stojana można w sposób jednoznaczny określić za pomocą fazora przestrewnego strumienia sprzężenia pola rozprożenia stojana.
- Zastępcze obwody wirnika są sprzężone z uzuwieniem wzbudzenia za pośrednictwem dodatkowych strumieni rozprożenia różnicowego.
10.2. Równania napieciowe oraz równania strumieni sprzężonych uzwojeń stojana we współrzędnych fazowych i dwuosiowych

Rozpatrząc model fizyczny maszyny przedstawiony na rys. 10.1 można sformułować układ równań różniczkowych opisujących stan równowagi napięciowej uzwojeń stojana, uzwojenia wzbudzenia oraz zastępczych obwodów elektrycznych w wirniku. Równania te tworzą:

- równania napieciowe uzwojeń stojana
 \[u_k = R_i^k + \frac{d\psi_{mk}}{dt} + \frac{d\psi_{ek}}{dt}, \quad k \in (1,2,3), \] \[(10.1) \]
- równania strumieni sprzężonych uzwojeń stojana
 \[\psi_k = \psi_{\sigma k} + \psi_{mk}, \quad k \in (1,2,3), \] \[(10.2) \]

gде:
 \(u_k, i_k, R \) - chwilowe napięcia, prądy fazowe stojana, rezystancja uzwojenia stojana,
 \(\psi_{mk}, \psi_{ek} \) - chwilowe strumienie sprzężone uzwojeń stojana dla pola głównego oraz dla pola rozproszenia stojana.

W rozpatrywanym modelu podobnie jak w przypadku maszyny asynchronicznej równania napieciowe stojana oraz równania strumieni sprzężonych można zapisać prościej stosując zapis w postaci fazorów przestrzennych. Ze względu na strukturę rdzeni magnetycznych wirnika i uzwojeń wirnika jedynym układem upraszczającym strukturę równań jest układ związanym z wirnikiem. W konsekwencji otrzymuje się następujące równania:

- równania napieciowe stojana w układzie współrzędnych \(d,q \)
 \[U = RL + \frac{d\psi_d}{dt} - j\omega\psi_q, \] \[(10.3) \]
 \[U_d = RL_d + \frac{d\psi_d}{dt} - \omega\psi_q, \]
 \[U_q = RL_q + \frac{d\psi_q}{dt} + \omega\psi_d, \] \[(10.4) \]
- równania strumieni sprzężonych uzwojeń stojana w układzie współrzędnych \(d,q \)
 \[\psi_d = \psi_{ed} + \psi_{md}, \]
 \[\psi_q = \psi_{eq} + \psi_{mq}, \] \[(10.5) \]

gде:
 \(U_d, U_q, I_d, I_q, \psi_d, \psi_q \) - składowe osiowe fazora przestrzennego napięcia, prądu, strumienia sprzężonego stojana,
 \(\psi_{md}, \psi_{mq}, \psi_{ed}, \psi_{eq} \) - składowe osiowe fazora przestrzennego strumienia sprzężonego pola głównego i pola rozproszenia stojana,
 \(\omega \) - prędkość kątowa elektryczna wirnika.

10.3. Równania napieciowe oraz równania strumieni sprzężonych uzwojeń wzbudzenia i zastępczych obwodów elektrycznych wirnika

W rozpatrywanym modelu fizycznym maszyny uzwojenie wzbudzenia oraz zastępcze obwody elektryczne umieszczone są w osiach \(d \) i \(q \) wirnika, nie ma więc potrzeby ich transformacji do nowego układu współrzędnych. W konsekwencji równania tych obwodów można traktować jako zapisane w naturalnym układzie współrzędnych. Równania te tworzą:

- równania napieciowe dla uzwojenia wzbudzenia oraz zastępczych obwodów elektrycznych w wirniku
 \[U_f = R_f^i + \frac{d\psi_f}{dt}, \]
 \[0 = R_Q^i + \frac{d\psi_Q}{dt}, \] \[(10.6) \]
 \[0 = R_Q^q + \frac{d\psi_Q}{dt}, \] \[(10.7) \]
 \[0 = R_Q^d + \frac{d\psi_Q}{dt}, \] \[(10.8) \]
- równania strumieni sprzężonych uzwojenia wzbudzenia i zastępczych obwodów elektrycznych w wirniku
 \[\psi_f = \psi_{f1} + \psi_{f2} + \psi_{f3} + \psi_{md} + \psi_{mq}, \] \[(10.9) \]
 \[\psi_Q = \psi_{Q1} + \psi_{Q2} + \psi_{Q3}, \] \[(10.10) \]
 \[\psi_D = \psi_{D1} + \psi_{D2} + \psi_{D3} + \psi_{md} + \psi_{mq}, \] \[(10.11) \]

10.4. Równania strumieni sprzężonych pola magnetycznego głównego oraz pola rozproszenia stojana uwzględniające nasyщение magnetyczne rdzeni

W przedstawionych powyżej równaniach wyodrębniono składniki zależne od nasyщения magnetycznego maszyny. Uwzględniając nasyщение magnetyczne rdzeni przez pole magnetyczne rozproszenia stojana oraz pole magnetyczne główne, składowe osiowe fazorów przestrzennych strumieni sprzężonych dla tych pól można wyznaczyć za pomocą charakterystyk syntetycznych strumieni sprzężonych, które zależą od modulu i argumentu fazora przestrzennego odpowiednich prądów:

- prąd magnesującego - dla pola głównego
 \[\psi_{md} = \psi_{md}(I_m, \gamma_m) = \sum_{i=1,3} \psi_{md}(I_m) \cos(i\gamma_m), \] \[(10.12) \]
 \[\psi_{mq} = \psi_{mq}(I_m, \gamma_m) = \sum_{i=1,3} \psi_{mq}(I_m) \sin(i\gamma_m), \] \[(10.13) \]
- prąd stojana - dla pola rozproszenia stojana
 \[\psi_{ed} = \psi_{ed}(I_s, \gamma_s) = \psi_{ed}(I_s) \cos(\gamma_s), \] \[(10.14) \]
\[\Psi_{mq} = \Psi_{eq}(I_s, \gamma_s) = \Psi_{eq}(I_s) \sin(\gamma_s), \]
(10.15)

gdzie:

\[I_m = \sqrt{(I_{md})^2 + (I_{mq})^2}, \quad \gamma_m = \arctan \left(\frac{I_{mq}}{I_{md}} \right), \]
(10.16)

\[I_{md} = I_d + I_d^* + I_{d1} + I_{d2}, \quad I_{mq} = I_q + I_q^* + I_{q1} + I_{q2} + I_{q3}, \]
(10.17)

\[I_s = \sqrt{(I_d^*)^2 + (I_q^*)^2}, \quad \gamma_s = \arctan \left(\frac{I_q^*}{I_d^*} \right). \]
(10.18)

dane:

\[u^*, i^*, \Psi^* \] - chwilowe napięcie, prąd, strumień sprzężony uzwojenia wzbudzenia sprowadzone na stronę stojąca,
\[i_{d1}, i_{d2}, \Psi_{d1}, \Psi_{d2}, i_{q1}, i_{q2}, i_{q3}, \Psi_{q1}, \Psi_{q2}, \Psi_{q3} \] - chwilowe prądy i strumienie sprzężone zastępczych obwodów elektrycznych w wirniku w osi d i q sprowadzone na stronę stojąca,
\[R^*, R'_R, R_{d1}, R_{d2}, R_{q1}^*, R_{q2}^*, R_{q3}^* \] - rezystancja stojąca, uzwojenia wzbudzenia, zastępczych obwodów elektrycznych w wirniku w osi d i q sprowadzone na stronę stojąca
\[L_{d1}, L_{d2}, L_{d3}, L_{q1}, L_{q2}, L_{q3}, L_{d1}, L_{d2}, L_{q1}, L_{q2}, L_{q3} \] - indukcyjność rozproszenia uzwojenia wzbudzenia, indukcyjności rozproszenia różnicowego, indukcyjności zastępczych obwodów elektrycznych w wirniku w osi d i q sprowadzone na stronę stojąca.

10.5. Równania maszyny synchronicznej przy wyborze prądów stojącej
i wirnika jako zmiennej stanu. Schemat zastępczy maszyny
synchronicznej w stanach dynamicznych

Podobnie jak w przypadku maszyny asynchronicznej przy wyprowadzaniu równań
maszyny, w których prądy stojaną i wirnika w osiach d i q są zmiennymi stanu, zachodzi potrzeba obliczenia pochodnych składowych osiowych fazorów przestrzennych strumieni sprzężonych połata głównego oraz pola rozproszenia stojana względem czasu i wyrażenia ich za pomocą odpowiednich indukcyjności statycznych oraz składowych osiowych fazorów sprzężonych odpowiednich prądów.

\[\frac{d}{dt} \begin{bmatrix} \Psi_{md} \\ \Psi_{mq} \end{bmatrix} = \begin{bmatrix} L_{md} & L_{mdq} \\ L_{mq} & L_{mqq} \end{bmatrix} \begin{bmatrix} I_{md} \\ I_{mq} \end{bmatrix}, \]
(10.20)

\[\frac{d}{dt} \begin{bmatrix} \Psi_{ed} \\ \Psi_{eq} \end{bmatrix} = \begin{bmatrix} L_{ed} & L_{edq} \\ L_{eq} & L_{eqq} \end{bmatrix} \begin{bmatrix} I_d \\ I_q \end{bmatrix}. \]
(10.21)

gdzie

\[\begin{bmatrix} U_d \\ U_q \end{bmatrix} = \begin{bmatrix} R_{d} & \Omega_{Q} I_{Q} \\ \Omega_{Q} I_{Q} & R_{q} \end{bmatrix} \begin{bmatrix} I_{d} \\ I_{q} \end{bmatrix} + \begin{bmatrix} L_{DD} & L_{DDQ} \\ L_{DDQ} & L_{QQ} \end{bmatrix} \frac{d}{dt} \begin{bmatrix} I_{d} \\ I_{q} \end{bmatrix}, \]
(10.22)

gdzie wektory i macierze występujące w powyższym układzie równań przyjmują postać:

- wektory
 \[U_d = \begin{bmatrix} U_{d} \\ U_{f} \\ 0 \\ 0 \end{bmatrix}, \quad I_{d} = \begin{bmatrix} I_{d} \\ I_{d}^* \\ I_{d1} \\ I_{d2} \end{bmatrix}, \]
(10.23)

- macierze rezystancji
 \[R_{d} = \text{diag} \left(R, R_{d1}^*, R_{d2}^*, R_{q1}^*, R_{q2}^*, R_{q3}^* \right), \]
(10.24)

- macierze indukcyjności statycznych maszyny, zawierające statyczne indukcyjności magnesujące i rozproszenia
 \[L_{d} = \text{diag} \left(L_{d1}, L_{d2}, L_{d3}, L_{q1}, L_{q2}, L_{q3} \right), \]
(10.25)

- macierze indukcyjności dynamicznych maszyny, zawierające indukcyjności magnesujące dynamiczne zależne od stanu nasycenia rdzeni magnetycznych stojana i wirnika
 \[L_{Dd} = \text{diag} \left(L_{Dd1}, L_{Dd2}, L_{Dd3} \right), \]
(10.26)

Składowe osiowe fazorów przestrzennych strumieni sprzężonych pola głównego oraz pola rozproszenia stojana można także wyrazić za pomocą odpowiednich indukcyjności statycznych głównych oraz składowych osiowych fazorów sprzężonych odpowiednich prądów:

\[\begin{bmatrix} U_{d} \\ U_{q} \end{bmatrix} = \begin{bmatrix} R_{d} & \Omega_{Q} I_{Q} \\ \Omega_{Q} I_{Q} & R_{q} \end{bmatrix} \begin{bmatrix} I_{d} \\ I_{q} \end{bmatrix} + \begin{bmatrix} L_{DD} & L_{DDQ} \\ L_{DDQ} & L_{QQ} \end{bmatrix} \frac{d}{dt} \begin{bmatrix} I_{d} \\ I_{q} \end{bmatrix}, \]
(10.27)

gdzie

\[\begin{bmatrix} U_{d} \\ U_{q} \end{bmatrix} = \begin{bmatrix} R_{d} & \Omega_{Q} I_{Q} \\ \Omega_{Q} I_{Q} & R_{q} \end{bmatrix} \begin{bmatrix} I_{d} \\ I_{q} \end{bmatrix} + \begin{bmatrix} L_{DD} & L_{DDQ} \\ L_{DDQ} & L_{QQ} \end{bmatrix} \frac{d}{dt} \begin{bmatrix} I_{d} \\ I_{q} \end{bmatrix}, \]
(10.28)

gdzie

\[\begin{bmatrix} U_{d} \\ U_{q} \end{bmatrix} = \begin{bmatrix} R_{d} & \Omega_{Q} I_{Q} \\ \Omega_{Q} I_{Q} & R_{q} \end{bmatrix} \begin{bmatrix} I_{d} \\ I_{q} \end{bmatrix} + \begin{bmatrix} L_{DD} & L_{DDQ} \\ L_{DDQ} & L_{QQ} \end{bmatrix} \frac{d}{dt} \begin{bmatrix} I_{d} \\ I_{q} \end{bmatrix}, \]
(10.29)
Opracowany model matematyczny maszyny synchronicznej różni się od modelu matematycznego maszyny, w którym pominięto nasycenie rdzeni. Różnice między tymi modelami wynikają:

- z obecności różniących się między sobą macierzy indukcyjności statycznych i dynamicznych,
- z występowania dodatkowego sprzężenia magnetycznego między obwodami elektrycznymi maszyny w osi d i q,
- ze zmian wartości statycznych i dynamicznych indukcyjności magnesujących i rozproszenia stojana.

Wymienione różnice są widoczne na schematach zastępczych maszyny synchronicznej przedstawionych na rys. 10.2.

10.6. Równania i schemat zastępczy maszyny synchronicznej w stanach ustalonych symetrycznych

Maszyny synchroniczne pracują w stanach symetrycznych, gdy jako prądnice pracujące samotnie obciążone są symetrycznym odbiornikiem 3-fazowym lub też gdy współpracują równolegle z symetrycznym systemem elektroenergetycznym reprezentowanym często przez symetryczną siatkę szywą. W stanach ustalonych symetrycznych przepływy elektromagnetyczne uzupełniono symetryczne i sinusoidalnie zmienne w czasie, natomiast przepływy elektromagnetyczne w stypnionych są stałe w czasie, a prędkość kątowa elektromagnetyczna wirnika jest stała i równa pulsacji przebiegów elektromagnetycznych w stojanie. W takim stanie pracy nie płyną prądy w zastępczych obwodach wirnika. W stanach ustalonych można pominać nasycenie rdzenia stojana przez pole rozproszenia, przyjmując do rozważań tylko nasycenie magnetyczne rdzenia przez pole magnetyczne główne.

W konsekwencji równania maszyny synchronicznej w stanie ustalonym symetrycznym przyjmują postać:

$$
U_d = R I_d + \alpha_\sigma L_d q(I_d q) I_d q,
$$
$$
U_q = \alpha_\sigma L_q(I_q q) I_q q,
$$
$$
\frac{d}{dt} I_d = \begin{bmatrix} R & -\alpha_\sigma L_d q \\ \alpha_\sigma L_q q & R \end{bmatrix} I_d + \begin{bmatrix} -\alpha_\sigma W_{\text{mag},d}(I_m q, \gamma_m q) \\ \alpha_\sigma W_{\text{mag},q}(I_m q, \gamma_m q) \end{bmatrix},
$$

(10.42)

gdzie:

$$
I_m = \sqrt{(I_{d0} + I_{f0})^2 + I_{f0}^2},
$$
$$\gamma_m = \arctg \left(\frac{I_{q0}}{I_{d0} + I_{f0}} \right).$$

(10.43)

Przedstawione równania można zapisać również w innej postaci, wykorzystując w tym celu definicje statycznych indukcyjności magnesujących. Uwzględniając wyrażenia określające główne statyczne indukcyjności magnesujące, równania maszyny synchronicznej w stanie ustalonym przyjmują następujące równoważne postaci:

Rys. 10.2. Schemat zastępczy maszyny synchronicznej w osi d i q w stanach dynamicznych

Fig. 10.2. Equivalent circuit of synchronous machine in d and q axis in dynamic states
Przedstawionemu układowi nieliniowych równań algebraicznych przyporządkować można schematy zastępcze maszyny przedstawione na rysunku 10.3, na których zaznaczono parametry i wielkości zależne od stanu nasycenia.

10.7. Linearyzacja równań algebraiczno-różniczkowych maszyny synchronicznej

Badania symulacyjne właściwości dynamicznych generatorów synchronicznych pracujących w systemie elektroenergetycznym przy małych zakłócenach ustalonego stanu pracy przeprowadza się wykorzystując zlinearyzowane równania różniczkowe maszyny. Badania takie wykonywane w dziedzinie czasu, w dziedzinie częstotliwości oraz w dziedzinie modalnej wykorzystywane są do oceny stabilności lokalnej generatorów synchronicznych oraz do doboru struktury oraz parametrów układów sterowania.

W rozważaniach przyjęto, że maszyna synchroniczna współpracuje z siatką sztywną, przy czym zarówno amplituda jak i częstotliwość napięcia sieci mogą ulec niewielkim zmianom.

Linearyzacją równań opisujących stan dynamiczny maszyny synchronicznej można przeprowadzić w dwojaki sposób:

- przekształcając równania maszyny, w których niewielkie zmiany wielkości elektromagnetycznych i mechanicznych wokół ustalonego stanu pracy reprezentowane są za pomocą odpowiednich przyrostów (pomijając przy tym składniki zawierające iloczyny przyrostów),
- rozwijając w szeregu Taylora występujące w równaniach funkcje wyrażające wielkości elektromagnetyczne i mechaniczne oraz pomijając w tym szeregu wyrazy wyższych rzędów.

Stosując oba te sposoby dla modelu maszyny, w którym uwzględniono w sposób przybliżony zjawisko nasycenia dla pola rozproszenia stojącego i pola głównego oraz zawierającego dwa zastępcze obwody tłumiące w osi d i trzy zastępcze obwody tłumiące w osi q, otrzymano:

- układ napięciowych równań różniczkowych dla wielkości przyrostowych

\[\Delta U_{d} = R \Delta I_{d} + \frac{d}{dt} \Delta \Psi_{d} - \omega_{0} \Delta \Psi_{q} - \Psi_{q0} \Delta \omega + U_{q0} \Delta \delta, \]
\[\Delta U_{q} = R \Delta I_{q} + \frac{d}{dt} \Delta \Psi_{q} + \omega_{0} \Delta \Psi_{d} + \Psi_{d0} \Delta \omega - U_{d0} \Delta \delta, \]
\[\Delta \Psi_{d} = R_{m} \Delta I_{d} + \frac{d}{dt} \Delta \Psi_{d}^{*}, \quad 0 = R_{q1} \Delta \Psi_{q1} + \frac{d}{dt} \Delta \Psi_{q1}, \]
\[0 = R_{q2} \Delta \Psi_{q2} + \frac{d}{dt} \Delta \Psi_{q2}, \]
\[0 = R_{q3} \Delta \Psi_{q3} + \frac{d}{dt} \Delta \Psi_{q3}, \]

- układ równań algebraicznych strumieni sprzężonych dla wielkości przyrostowych

\[\Delta \Psi_{d} = \Delta \Psi_{d0} + \Delta \Psi_{md}, \quad \Delta \Psi_{q} = \Delta \Psi_{q0} + \Delta \Psi_{mq}, \]
\[\Delta \Psi_{d}^{*} = L_{sd} \Delta \Psi_{d} + \Delta \Psi_{d}^{*}, \quad \Delta \Psi_{q}^{*} = L_{sq} \Delta \Psi_{q} + \Delta \Psi_{q}^{*}, \]
\[\Delta \Psi_{d1}^{*} = L_{sd1} \Delta \Psi_{d1} + \Delta \Psi_{d1}^{*}, \quad \Delta \Psi_{q1}^{*} = L_{sq1} \Delta \Psi_{q1} + \Delta \Psi_{q1}^{*}, \]
\[\Delta \Psi_{d2}^{*} = L_{sd2} \Delta \Psi_{d2} + \Delta \Psi_{d2}^{*}, \quad \Delta \Psi_{q2}^{*} = L_{sq2} \Delta \Psi_{q2} + \Delta \Psi_{q2}^{*}, \]
\[\Delta \Psi_{q0}^{*} = L_{sq0} \Delta \Psi_{q0} + \Delta \Psi_{q0}^{*}, \quad \Delta \Psi_{q2}^{*} = L_{sq2} \Delta \Psi_{q2} + \Delta \Psi_{q2}^{*}, \]

- równania ruchu dla wielkości przyrostowych

\[\frac{J}{p} \frac{d}{dt} \Delta \omega = p \left(\Delta \Psi_{d0} \Delta \omega - \Delta \Psi_{q0} \Delta \delta + \Psi_{d0} \Delta \Psi_{md} - \Psi_{q0} \Delta \Psi_{mq} \right) + \Delta \tau, \]
\[\frac{d}{dt} \Delta \delta = \Delta \omega_{q} - \Delta \omega.\]
10.8. Wyznaczenie przyrostów składowych osiowych fazora przestrzennego strumienia sprzężonego pola głównego

W równaniach (10.46) wyodrębniono przyrosty składowych osiowych fazorów przestrzennych strumieni sprzężonych pola rozproszenia stojana oraz pola głównego, co wynika z uwzględnienia w nieliniowym modelu matematycznym maszyny nasycenia rdzeni magnetycznych dla obu tych pól. Przyjmując, że w ustalonym stanie pracy prądy stojana nie przekraczają wartości znamionowych, można w dalszych rozważaniach pominąć zjawisko nasycenia dla pola rozproszenia stojana przyjmując, że:

\[\Delta \Psi_\text{ad} = L_a \Delta I_d, \quad \Delta \Psi_\text{aq} = L_a \Delta I_q. \] (10.48)

W konsekwencji więc w zlinearyzowanym modelu matematycznym maszyny uwzględniono jedynie zjawisko nasycenia dla pola głównego.

Wyznaczenie przyrostów składowych osiowych fazora przestrzennego strumienia sprzężonego pola głównego wygodnie jest przeprowadzić rozwijając w szereg Taylora funkcje strumieni sprzężonych, które zależą od amplitudy i argumentu fazora przestrzennego prądu magnesującego.

\[\psi_{md} = \psi_{md}(I_m, \gamma_m), \quad \psi_{mq} = \psi_{mq}(I_m, \gamma_m), \] (10.49)

\[I_m = \sqrt{(I_{md})^2 + (I_{mq})^2}, \quad \gamma_m = \arctg \left(\frac{I_{mq}}{I_{md}} \right). \] (10.50)

Uwzględniając tylko dwa pierwsze wyrazy w szeregu Taylora otrzymuje się:

\[\Delta \psi_{md} = \left(\frac{\partial \psi_{md}}{\partial I_m} \right)_{I_m} \Delta I_m + \left(\frac{\partial \psi_{md}}{\partial \gamma_m} \right)_{I_m} \Delta \gamma_m, \] (10.51)

\[\Delta \psi_{mq} = \left(\frac{\partial \psi_{mq}}{\partial I_m} \right)_{I_m} \Delta I_m + \left(\frac{\partial \psi_{mq}}{\partial \gamma_m} \right)_{I_m} \Delta \gamma_m, \] (10.52)

\[\Delta I_m = \frac{I_{md0}}{I_{m0}} \Delta I_{md} + \frac{I_{mq0}}{I_{m0}} \Delta I_{mq}, \quad \Delta \gamma_m = -\frac{I_{mq0}}{I_{m0}} \Delta \gamma_{md} + \frac{I_{md0}}{I_{m0}} \Delta \gamma_{mq}. \] (10.53)

Podstawiając (10.52) do (10.51) oraz uwzględniając, że:

\[I_{md0} = \cos(\gamma_{m0}), \quad I_{mq0} = \sin(\gamma_{m0}), \] (10.54)

otrzymuje się wyrażenia:

\[\Delta \psi_{md} = L_{Dmd0}(I_{m0}, \gamma_{m0}) \Delta I_{md} + L_{Dmq0}(I_{m0}, \gamma_{m0}) \Delta I_{mq}, \] (10.55)

\[\Delta \psi_{mq} = L_{Dmq0}(I_{m0}, \gamma_{m0}) \Delta I_{md} + L_{Dmd0}(I_{m0}, \gamma_{m0}) \Delta I_{mq}. \] (10.56)

10.9. Zlinearyzowane równania różniczkowe napięciowo-prądowe.

Schemat zastępczy maszyny synchronicznej dla wielkości przyrostowych

Obierając prądy stojana i wirnika jako zmienne stanu, układ równań algebraiczno-różniczkowych (10.45-10.47) przy uwzględnieniu relacji (10.48),(10.54) można sprowadzić do następującego układu równań różniczkowych:

\[\begin{bmatrix} \frac{d U_0}{dt} \\ \frac{d \Delta I_d}{dt} \end{bmatrix} = \begin{bmatrix} R_0 & -\Omega L_0 \\ \Omega L_0 & R_0 + \Omega^2 L_0 \end{bmatrix} \begin{bmatrix} \Delta I_d \\ \Delta \delta \end{bmatrix} + \begin{bmatrix} \Delta I_d \\ \Delta \delta \end{bmatrix} + \begin{bmatrix} 0 \\ -U_{dq0} \end{bmatrix} \Delta \delta, \] (10.57)

\[\begin{bmatrix} \frac{d \Delta \omega}{dt} \end{bmatrix} = \begin{bmatrix} J / p \\ 0 \end{bmatrix} \begin{bmatrix} \psi_{m0} \Delta I_q - \psi_{m0q} \Delta I_d + I_{d0} \Delta \psi_{mq} - I_{d0} \Delta \psi_{mq} \end{bmatrix} + \frac{\Delta T_m}{J}. \] (10.58)

gdzie:

\[\Delta \Psi_{md} = L_{Dmd0}(A_{md} + A_{md1} + A_{md2}) + L_{Dmq0}(A_{mq} + A_{mq1} + A_{mq2} + A_{mq3}), \] (10.59)

\[\Delta \Psi_{mq} = L_{Dmq0}(A_{md} + A_{md1} + A_{md2}) + L_{Dmd0}(A_{mq} + A_{mq1} + A_{mq2} + A_{mq3}). \] (10.60)

Występujące w układzie równań (10.55) wektory i macierze mają postać:

- wektory

\[\Delta U_D = [\Delta U_{d0}, \Delta U_{f}, 0, 0]^T, \quad \Delta M_D = [\Delta I_d, \Delta I_f, \Delta I_{d1}, \Delta I_{d2}]^T, \] (10.61)

\[\Delta U_Q = [\Delta U_{q0}, 0, 0, 0]^T, \quad \Delta U_Q = [\psi_{d0}, 0, 0, 0]^T, \] (10.62)

- macierze rezystancji

\[R_Q = \text{diag}(R_{q1}, R_{q2}, R_{q3}), \] (10.63)

- macierze indukcyjności

\[L_{D0} = L_{D0} + L_{Dmd0} K_D, \quad L_{Dq0} = L_{Dq0} + L_{Dmq0} K_Q, \] (10.64)

\[L_{Ddq0} = L_{Ddq0} + L_{Dmd0} K_Q. \] (10.65)
Opracowany model matematyczny generatora synchronicznego uwzględniający zjawisko nasycenia dla pola magnetycznego głównego i pola rozproszenia stojąca można wykorzystać w badaniach stanów dynamicznych generatorów synchronicznych pracujących w systemie elektroenergetycznym. Uwzględnienie zjawiska nasycenia dla pola rozproszenia umożliwia dokładniejszą analizę zjawisk zwarcowych występujących w generatorze i w systemie. Natomiast uwzględnienie zjawiska nasycenia dla pola głównego umożliwia dokładniejsze wyznaczenie stanu ustalonego generatorów synchronicznych pracujących w systemie, przyczyniając się tym samym do precyzyjniejszych badań stabilności dynamicznej i lokalnej systemu.

Równaniem (10.55) można przyporządkować schemat zastępczy maszyny, który przedstawiono na rys. 10.4.
11. WYNIKI BADAŃ SYMULACYJNYCH MASZyny SYNCHRONICZnej

Opracowany model matematyczny maszyny synchronicznej uwzględniający nasycenie magnetyczne rdzeni przez pole magnetyczne główne i pole rozproszenia stojana wykorzystano w badaniach symulacyjnych typowych stanów pracy generatora synchronicznego współpracującego z siecią sztywną. Przedmiotem badań był generator synchroniczny o następujących danych znamionowych:

\[S'=235,3 \text{ MVA}, \quad P'=200 \text{ MW}, \quad U_n=15,75 \text{ kV}, \quad I_n=8625 \text{ A}, \cos \varphi_n=0,85. \]

Badania przeprowadzono dla modelu typu (3,3). Jako parametry skupione modelu matematycznego przyjęto:

\[
\begin{align*}
R_f(r) &= 0,00181, \\
R_D(r) &= 0,00122, \\
R_1(r) &= 0,00413, \\
R_2(r) &= 0,00316, \\
L_{0f}(r) &= 0,09469, \\
Z_{0f}(r) &= 0,15866, \\
L_{0D}(r) &= 0,00002, \\
L_{1f}(r) &= 0,154, \\
L_{1D}(r) &= 0,1655 - \text{dla stanu nienasyconego}.
\end{align*}
\]

Indukcyjności statyczne i dynamiczne związane z polem magnetycznym głównym oraz polem rozproszenia wyznaczono korzystając z syntetycznych charakterystyk strumieni sprzężonych przedstawionych na rys. 11.1.

Rys. 11.1. Syntetyczne charakterystyki strumieni sprzężonych pola głównego i pola rozproszenia stojana

Fig. 11.1. Synthetic characteristics of the main and stator leakage flux linkages
Obliczenia wykonano dla stanów nieustalonych przy dużych i małych zakłócenach stanu równowagi oraz dla stanów ustalonych na rysunkach 11.2 - 11.4 przedstawiono przebiegi prądu stojana w osi d i q i prądu wzbudzenia po przemijającym zwarciu trójfazowym symetrycznym (czas trwania zwarcia $t_z=0.2$ s) przy uwzględnieniu i pominięciu nasycenia rdzeni maszyny. Wyniki obliczeń przedstawiono dla generatora obciążonego mocą czynną $P_{sw}=0.8$ i bierną $Q_{sw}=0.6$.

Na rysunku 11.5 pokazano charakterystyki kątowe generatora synchronicznego współpracującego z siecią zywną. Natomiast na rys. 11.6 przedstawiono krzywe V generatora współpracującego z siecią zywną. Na rysunku 11.7 przedstawiono także wynikające z warunków pracy określonych przez krzywe V charakterystyki składowych osiowych fazora przerzutnego strumienia sprzężonego pola głównego w funkcji modułu fazora przerzutnego prądu magnesującego.

Rys. 11.5. Charakterystyki kątowe mocy czynnej generatora synchronicznego obliczone przy uwzględnieniu i pominięciu nasycenia magnetycznego rdzeni

Fig. 11.5. Load angle characteristics of the synchronous generator active power computed when taking into account or neglecting magnetic saturation of cores

Rys. 11.6. Krzywe V generatora synchronicznego obliczone przy uwzględnieniu i pominięciu nasycenia magnetycznego rdzeni

Fig. 11.6. V curves of synchronous generator computed when taking into account or neglecting magnetic saturation of cores

Badania symulacyjne przy małych zakłóceniach ustalonego stanu pracy przeprowadzono przyjmując jako zakłócenia:
- skok napięcia wzbudzenia o 5%,
- skok momentu turbiny o 10%.

Wyniki badań symulacyjnych w postaci wykresów przebiegów wybranych wielkości elektromagnetycznych generatora (prądów stojana, prąd wzbudzenia oraz kąta obciążenia) przedstawiono na rys. 11.8. W obliczeniach przyjęto, że w stanie pracy ustalonej generator pracował w warunkach znamionowych ($U_{sw}=1$, $P_{sw}=-0.85$, $Q_{sw}=-0.527$).

Przeprowadzone badania symulacyjne oraz przedstawione wybrane wyniki badań wykazały potrzebę uwzględnienia w modelu matematycznym maszyny synchronicznej zjawiska nasycenia rdzeni magnetycznych przez pole magnetyczne główne i pole rozproszenia stojana. Uzyskane wyniki badań oraz dokonane porównania przebiegów wielkości elektromagnetycznych i elektromechanicznych maszyny w stanie nieustalonym oraz charakterystyk w stanie ustalonym wskazały na istnienie rozbieżności między przebiegami i charakterystykami obliczonymi przy uwzględnieniu i pominięciu nasycenia magnetycznego.

Rozbieżności te są szczególnie duże w początkowym okresie zwarcia, co spowodowane jest przede wszystkim uwzględnieniem nasycenia magnetycznego rdzeni przez pole rozproszenia stojana. Uwzględnienie nasycenia magnetycznego rdzeni przez pole magnetycznego głównego ma niewielki wpływ na te przebiegi.

Wpływ uwzględnienia nasycenia magnetycznego rdzeni przez pole magnetyczne główne można zaobserwować na krzywych V (różnice między wartościami maksymalnymi prądu stojana wynoszą około 10%) oraz w stanach dynamicznych przy małych zakłócenach stanu ustalonego (maksymalne różnice między przebiegami wynoszą: 10-20% dla prądu stojana, 5-10 % dla prądu wzbudzenia, 1-2% dla kąta obciążenia).

Wykorzystanie w badaniach symulacyjnych generatorów synchronicznych obwodowego modelu, w którym uwzględnia się nasycenie magnetyczne rdzeni przez pole główne i pole rozproszenia, stojan w dokładniejszy sposób odzwierciedla właściwości eksploatacyjne maszyny przy dużych i małych zakłócenach stanu ustalonego oraz w stanach ustalonych.
12. WYZNACZENIE PARAMETRÓW ELEKTROMAGNETYCZNYCH MODELI MATEMATYCZNYCH MASZYN SYNCRONICZNYCH

12.1. Wprowadzenie

Modele matematyczne maszyn synchronicznych uwzględniające nasycenie magnetyczne rdzeni można wykorzystać w badaniach symulacyjnych, gdy znane są:

- charakterystyki syntetyczne strumieni sprzężonych pola głównego w osi d i q oraz syntetyczna charakterystyka strumienia sprzężonego pola rozproszenia stojana,
- rezystancja uzuwienia stojana, rezystancja uzuwienia wzburzenia oraz rezystancje zastępczych obwodów elektrycznych w wirniku sprowadzone na stronę stojana,
- indukcyjność rozproszenia uzuwienia wzburzenia oraz indukcyjności rozproszenia zastępczych obwodów elektrycznych w wirniku sprowadzone na stronę stojana.

Wymienione charakterystyki i parametry skupione wyczerpany można na podstawie:

- danych konstrukcyjnych korzystając z metody obliczeń przedstawionych w rozdziale 4 oraz zależności projektowych [6,8,20],
- wyników pomiarów wybranych wielkości wejściowych i wyjściowych maszyny synchronicznej w stanach ustalonych i nieustalonych,
- wyników obliczeń wybranych wielkości wejściowych i wyjściowych maszyny w stanach ustalonych i nieustalonych wykonanych za pomocą modeli polowo-obwodowych.

W literaturze naukowo-technicznej wyróżnia się dwie zasadnicze metody pomiarowego wyczerpania parametrów modeli matematycznych maszyn synchronicznych:

- pomiary wykonane na postoju maszyny,
- pomiary wykonane przy wirującej maszynie.

Na postoju maszyny wykonuje się pomiary charakterystyk częstotliwościowych maszyny synchronicznej lub pomiary przebiegu zaniku prądu stojana w osi d i q. Pomiary na postoju przeprowadzone są w warunkach, w których rdzenie magnetyczne maszyny są nienasycone, dlatego na ich podstawie nie można wyczerpywać charakterystyk syntetycznych strumieni sprzężonych.

Pomiary przy wirującym wirniku wykonuje się podczas normalnej pracy maszyny synchronicznej. W konsekwencji na ich podstawie oprócz parametrów skupionych można także wyczerpywać syntetyczne charakterystyki strumieni sprzężonych. W tej grupie testów do szczególnie ważnych i możliwych do przeprowadzenia w elektrowni należą pomiary w stanach ustalonych krzywych V oraz pomiary w stanach nieustalonych przebiegów po tak zwanym zrzucie obciążenia maszyny [23]. W pracy ograniczono się do przedstawienia metody wyczerpywania:

- charakterystyk syntetycznych strumieni sprzężonych pola głównego na podstawie wyników pomiaru lub obliczeń krzywych V,
- parametrów skupionych typu R, L, na podstawie pomiaru zaniku prądu stojana.

Opracowaną metodłę wykorzystano do wyczerpywania parametrów modelu matematycznego turbogeneratora oraz siłnika synchronicznego. Charakterystyki i parametry skupione turbogeneratora wyczerpywano na podstawie wyników obliczeń polowo-obwodowych, natomiast charakterystyki i parametry skupione silnika synchronicznego wyczerpywano na podstawie wyników pomiarów wykonanych w laboratorium.
12.2. Metodyka wyznaczania charakterystyk syntetycznych strumieni sprzężonych pola głównego

Przedstawione w rozdziale 4.2.2 rozważania pokazały, że charakterystyki składowych osiowych fazora przestrzennego pola głównego przy dużych zmianach modułu fazora przestrzennego prądu magnesującego \((I_{\text{m}}) = 0 + 1,8\) z dobrą dokładnością można aproksymować za pomocą czterech syntetycznych charakterystyk strumieni sprzężonych (po dwie charakterystyki syntetyczne w każdej osi). Przy mniejszych zmianach modułu fazora przestrzennego prądu magnesującego dobrą aproksymację uzyskuje się dla dwóch syntetycznych charakterystyk strumieni sprzężonych. Obliczenia krzywych V pokazały, że przy znamionowym napięciu stojana moduł prądu magnesującego badanego turbogeneratora zmienia się w przedziale \((I_{\text{m}}) = 0,5 + 0,8\) i dlatego w dalszej części pracy ograniczono się do wyznaczenia tylko tych dwóch charakterystyk. W pracy przedstawiono dwie metody wyznaczania syntetycznych charakterystyk strumieni sprzężonych:

- metodę opartą na aproksymacji gromady syntetycznych charakterystyk strumieni sprzężonych wyznaczonych w sposób bezpośredni na podstawie pomiarów lub obliczeń krzywych V,
- metodę opartą na poszukiwaniu charakterystyk strumieni sprzężonych, które najlepiej w sensie błędu średniokwadratowego aproksymują zmierzone lub obliczone krzywe V.

W obu metodach przyjęto, że syntetyczne charakterystyki strumieni sprzężonych w osiach \(d\) i \(q\) wyrażone są za pomocą funkcji:

\[
\Psi_{\text{md}}(I_m) = A_{\text{md}} \arctan(B_{\text{md}} I_m) + C_{\text{md}} I_m, \quad \Psi_{\text{mq}}(I_m) = A_{\text{mq}} \arctan(B_{\text{mq}} I_m) + C_{\text{mq}} I_m.
\]

Wyznaczanie syntetycznych charakterystyk strumieni sprzężonych polega więc na określaniu zbioru następujących parametrów:

\[
P_{\text{md}} = [A_{\text{md}} \quad B_{\text{md}} \quad C_{\text{md}}]^T, \quad P_{\text{mq}} = [A_{\text{mq}} \quad B_{\text{mq}} \quad C_{\text{mq}}]^T,
\]

gdzie:

- \(A_{\text{md}}, B_{\text{md}}, C_{\text{md}}\) - współczynniki funkcji określających syntetyczne charakterystyki strumieni sprzężonych pola głównego w osi \(d\) i \(q\).

Przy wyznaczaniu syntetycznych charakterystyk strumieni sprzężonych pola głównego przyjęto, że znane są wartości rezystancji stojana, indukcyjności rozproszenia stojana oraz współczynnika sprowadzenia prądu wzbudzenia na stronę stojana.

12.2.1. Wyznaczanie charakterystyk syntetycznych strumieni sprzężonych pola głównego w sposób bezpośredni na podstawie krzywych V

Charakterystyki syntetyczne strumieni sprzężonych pola głównego można wyznaczyć w sposób bezpośredni na podstawie krzywych V. Wymaga to dodatkowego wyznaczenia kąta obciążenia maszyny. Znając kąt obciążenia maszyny dla każdego punktu krzywych V można określić składowe osiowe fazora przestrzennego napięcia i prądu stojana i w konsekwencji także składowe osiowe oraz moduł i argument fazora przestrzennego prądu magnesującego:

\[
I_{\text{md}} = I_d + i_f^*, \quad I_{\text{mq}} = I_q,
\]

W konsekwencji na podstawie równania maszyny synchronicznej w stanie ustalonym

\[
\begin{bmatrix}
U_d \\
U_q
\end{bmatrix} = \begin{bmatrix}
R - \omega L_{\sigma} & -\omega L_{\sigma} \\
\omega L_{\sigma} & R - \omega L_{\sigma}
\end{bmatrix} \begin{bmatrix}
I_d \\
I_q
\end{bmatrix} + \begin{bmatrix}
\omega \Psi_{\text{md}}(I_m, \gamma_m) \\
\omega \Psi_{\text{mq}}(I_m, \gamma_m)
\end{bmatrix},
\]

przyjmując, że

\[
\Psi_{\text{md}}(I_m, \gamma_m) = \Psi_{\text{md}}(I_m) \cos(\gamma_m), \quad \Psi_{\text{mq}}(I_m, \gamma_m) = \Psi_{\text{mq}}(I_m) \sin(\gamma_m),
\]

dla każdej krzywej V wyznaczonej dla stałej mocy czynnej stojana \(P_m\) można obliczyć charakterystyki:

\[
\Psi_{\text{md}}(I_m, P_m) = U_d - \omega L_{\sigma} I_d - R I_q, \quad \Psi_{\text{mq}}(I_m, P_m) = \frac{-U_d + R I_d - \omega L_{\sigma} I_q}{\omega \sin(\gamma_m)}.
\]

Otrzymaną w ten sposób rodzinę charakterystyk aproksymuje się funkcjami (12.1) – (12.2), a współczynniki tych funkcji wyznacza się minimalizując błąd średniokwadratowy.

\[
e_{\text{md}}(P_m) = \sum_{k=1}^{n} \left[\Psi_{\text{md}}(I_{m}, P_{s_k}) - \Psi_{\text{md}}(I_{m}, P_{m, k}) \right]^2, \quad e_{\text{mq}}(P_m) = \sum_{k=1}^{n} \left[\Psi_{\text{mq}}(I_{m}, P_{s_k}) - \Psi_{\text{mq}}(I_{m}, P_{m, k}) \right]^2,
\]

\(n, m(k)\) – liczba krzywych V, liczba punktów dla k-tej krzywej V.

Schemat ideowy ilustrujący procedurę wyznaczania współczynników funkcji aproksymujących syntetyczne charakterystyki strumieni sprzężonych wyznaczonych bezpośrednio na podstawie krzywych V obliczonych za pomocą modelu polowo-obwodowego przedstawiono na rys. 12.1.

\[
L_m = \sqrt{(I_d + i_f^*)^2 + (I_q^*)^2}, \quad \gamma_m = \arctan\left(\frac{I_q}{I_d + i_f^*}\right).
\]
Do minimalizacji błędu średniokwadratowego wykorzystano algorytm genetyczny. Na rysunku 12.2 przedstawiono krzywe V turbogeneratora wyznaczone za pomocą modelu polowo-obwodowego [50]. Natomiast na rysunku 12.3 przedstawiono obliczone na ich podstawie punkty należące do rodziny charakterystyk \(\Psi_{m}(I_{m}, P_{s}) \), \(\Psi_{mq}(I_{m}, P_{s}) \). Przy wyznaczaniu gromady charakterystyk przyjęto jako znane następujące parametry:

\[
R_{(r)} = 0.00181, \quad L_{m(r)} = 0.15.
\]

Obliczone charakterystyki nie pokrywają się ze sobą, ponieważ model obwodowy jest przybliżeniem modelu polowego i syntetyczne charakterystyki strumieni sprzężonych w przybliżeniu aproksymują charakterystyki składowych osiowych fazora przestrzennego strumienia sprzężonego pola głównego. Na rysunku 12.3 przedstawiono wyznaczone na podstawie zbioru punktów syntetyczne charakterystyki strumieni sprzężonych. Syntetyczne charakterystyki strumieni sprzężonych wyrażone za pomocą funkcji (12.11) i (12.12) mają postać:

\[
\Psi_{m}(r) = 1.062 \arctan(2.453I_{m(r)}),
\]

\[
\Psi_{mq}(r) = 0.586 \arctan(2.682I_{m(r)}) + 0.33I_{m(r)}. \tag{12.12}
\]

Z wykresów przedstawionych na rys. 12.2 wynika, że model obwodowy maszyny synchronicznej, wykorzystując wyznaczono syntetyczne charakterystyki strumieni sprzężonych, w zadowalając sposób aproksymuje krzywe V turbogeneratora wyznaczone za pomocą modelu polowo-obwodowego. Na podstawie rys. 12.4 można zauważyć, że wiarygodność wyznaczonych charakterystyk jest ograniczona, co wynika z ograniczonego zakresu zmian modułu fazora przestrzennego prądu magnesującego. Zakres wiarygodności charakterystyk jest jednak wystarczający do symulacji stanów ustalonych i nieustalonych maszyny synchronicznej przy znamionowym napięciu stojącego i normalnych warunkach obciążenia.

12.2.2. Wyznaczanie charakterystyk syntetycznych strumieni sprzężonych pola głównego w sposób pośredni na podstawie krzywych V

Przedstawionej powyżej metody nie można stosować, gdy nie dysponuje się przyrządem do pomiaru kąta obciążenia maszyny. W takim przypadku syntetyczne charakterystyki strumieni sprzężonych można wyznaczyć na podstawie krzywych V w sposób pośredni. Wyznaczenie syntetycznych charakterystyk strumieni sprzężonych odbywa się w dwóch etapach:

- w pierwszym etapie na podstawie krzywej V dla mocy czynnej stojącej \(P_{s} = 0 \) wyznacza się współczynniki określające analityczną postać charakterystyki syntetycznej strumienia sprzężonego w osi d \(\Psi_{m}(I_{m}) \),
- w drugim etapie na podstawie pozostałych krzywych V wyznacza się współczynniki określające analityczną postać charakterystyki syntetycznej w osi q \(\Psi_{mq}(I_{m}) \).

W obu etapach współczynniki funkcji analitycznych wyznacza się minimalizując błąd średniokwadratowy pomiędzy krzywymi V obliczonymi lub zmierzonymi, a krzywymi V wyznaczonymi na podstawie modelu matematycznego maszyny.

\[
\varepsilon_{md} = \sum \left[I_{m}^{(*), P_{s} = 0} - I_{m}^{(\text{ap}), P_{s} = 0, P_{m}} \right]^2, \tag{12.12}
\]
\[\varepsilon_{mq}(P_{mq}) = \sum_{k} \sum_{i} \left| I_{sp}(I_{f}, P_{sk}) - I_{sm}(I_{f}, P_{sk}, P_{mq}) \right|^2, \]
(12.13)

gdzie:

- \(I_{sp}, I_{sm} \) - moduł fazora przestrzennego prądu stojąca dla zadanego prądu wzbudzenia oraz mocy czynnej stojąca wyznaczony za pomocą pomiarów (\(p \)) oraz na podstawie modelu obwodowego (\(m \)) maszyny.

Schemat ideowy ilustrujący procedurę wyznaczania współczynników funkcji określających syntezytyczne charakterystyki strumieni sprzężonych za pomocą aproksymacji krzywych V wyznaczonych z pomiarów przedstawiono na rys. 12.5.

Rys. 12.5. Schemat ideowy procedury wyznaczania współczynników funkcji określających syntezytyczne charakterystyki strumieni sprzężonych za pomocą aproksymacji krzywych V

Na rysunku 12.6. przedstawiono krzywą V dla \(P_{s} = 0 \) oraz wyznaczoną na jej podstawie syntetyczną charakterystykę strumienia sprzężonego w osi d. Dla porównania na tym samym rysunku przedstawiono również zmierzoną charakterystykę biegu jałowego.

Rys. 12.6. Krzywa V silnika synchronicznego dla \(P_{s} = 0 \) oraz zmierzona charakterystyka biegu jałowego

Rys. 12.7. Porównanie krzywych V silnika synchronicznego wyznaczonych (model) i zmierzonych (pomiar).

Przedstawioną metodykę wykorzystano do wyznaczania charakterystyk strumieni sprzężonych na podstawie wyników pomiarów i obliczeń za pomocą modelu obwodowego maszyny. Z przedstawionych rysunków wynika, że model obwodowy wyrównane za pomocą syntetycznych charakterystyk strumieni sprzężonych \(\Psi_{mq}(I_{m}) \) oraz \(W_{mq}(I_{m}) \) w zadowalają sposób aproksymuje krzywe V silnika synchronicznego.

Rys. 12.7. Porównanie krzywych V silnika synchronicznego wyznaczonych (model) i zmierzonych (pomiar).

Jako parametry znane wyznaczone z dodatkowych pomiarów przyjęto:

- \(R_{(r)} = 0,06 \), \(L_{(r)} = 0,15 \), \(n_{f} = 0,19 \) - współczynnik sprowadzenia prądu wzbudzenia na stronę stojącej.

Wyznaczone na podstawie wyników pomiarów syntezytyczne charakterystyki strumieni sprzężonych pola głównego wyrażone za pomocą funkcji (12.11) i (12.12) mają postać:
\[\psi_{md}(r) = 1,538 \arctan(1,236 I_{m(r)}) \], \\(\psi_{mq}(r) = 1,873 \arctan(0,36 I_{m(r)}) \).

12.3. Wyznaczanie parametrów skupionych modelu matematycznego maszyny na podstawie testu zaniku prądu stojącej w osi d i q

Metoda wyznaczania parametrów skupionych maszyn synchronicznych na podstawie pomiaru zaniku prądu stojącej w osi d i q jest znana i opisana w literaturze [23]. Dlatego w pracy ograniczono się do zaprezentowania końcowych wyników badań. Metodę wyznaczania parametrów przetestowano na podstawie przebiegów zaniku prądu stojącej w osi d i q wygenerowanych za pomocą modelu matematycznego turbogeneratora, przy czym jako parametry skupione modelu przyjęto parametry podane w pracy [51]. Parametry te wyznaczono na podstawie charakterystyk częstotliwościowych turbogeneratora obliczonych za pomocą metody elementów skończonych. Przy aproksymacji krzywej zaniku prądu stojącej w osi d i q jako funkcję celu przyjęto błędy średniokwadratowe zdefiniowane w następujący sposób:

- zanik prądu stojącej w osi d
 \[\varepsilon(P_d) = \sum_{i=1}^{n} \left[I_{dp}(t_i) - I_{dm}(t_i, P_d) \right]^2 + \left[I_{dp}(t_i) - I_{fm}(t_i, P_d) \right]^2, \],

- zanik prądu stojącej w osi q
 \[\varepsilon_q(P_q) = \sum_{i=1}^{n} \left[I_{qp}(t_i) - I_{qm}(t_i, P_q) \right]^2, \]

gdzie:
\[I_{dp}, I_{qp}, I_{fm} \] - składowe osiowe fazora przestrzennego prądu stojącej w osi d i q oraz prąd wzbudzenia sprowadzony na stronę stojąną, wyznaczone z pomiaru,
\[I_{dm}, I_{qm} \] - składowe osiowe fazora przestrzennego prądu stojącej w osi d i q oraz prąd wzbudzenia sprowadzony na stronę stojanę wyznaczony z modelu.

Przy wyznaczaniu parametrów skupionych pominięto nasycenie magnetyczne rdzenia ze względu na małe wartości prądów występujących stojącej. Poszukiwany zbiór parametrów skupionych w osi d i q zależy od typu modelu matematycznego turbogeneratora synchronicznej [2,19]. Dla klasycznego modelu matematycznego typu (2,2), będącego przedmiotem testów, zbiór ten obejmuje następujące parametry:

\[P_d = [I_{md}, R_{q1}^*, I_{q1}^*, R_{d1}^*]^T, \quad P_q = [I_{mq}, R_{q2}^*, I_{q2}^*, R_{d2}^*]^T. \]

Do minimalizacji funkcji celu wykorzystano algorytm gradientowy z ograniczeniem dolnego i górnego obszaru poszukiwań parametrów.

Zbiór poszukiwanych parametrów modelu matematycznego turbogeneratora przedstawiono w tabl. 12.1. W tablicy zamieszczono także wyniki estymacji parametrów dla jednego z wybranych testów algorytmu, w którym badano jego zbieżność przy zmianie początkowego zbioru parametrów. Za początkowy zbiór parametrów przyjęto parametry rzeczywiste turbogeneratora, które następnie powiększono lub zmniejszono o 50% i 100%.
Na rysunku 12.8 pokazano przykładowe wzorcowe przebiegi zaniku prądu stojana w osi \(d \) i \(q \) wygenerowane na podstawie znanych parametrów modelu generatora oraz przebiegi obliczone za pomocą początkowych wartości parametrów. We wszystkich zaprezentowanych wynikach testów przebiegi obliczone na podstawie wyznaczonych w procesie estymacji parametrów pokrywały się z przebiegami wzorcowymi.

Przebiegi prądu stojana w osi \(d \) i \(q \) oraz prądu wzbudzenia obliczone za pomocą wyznaczonych parametrów pokrywają się z przebiegami wzorcowymi.

Rys. 12.8. Wzorcowe przebiegi prądu stojana w osi \(d \) i \(q \) oraz prądu wzbudzenia obliczone za pomocą wyznaczonych parametrów.

Przetestowaną procedurę wyznaczania parametrów wykorzystano do estymacji parametrów silnika synchronicznego. Na podstawie przeprowadzonych badań i analiz do rozważań przyjęto model typu (2,0) badanego silnika. Wyniki estymacji parametrów w osi \(d \) przedstawiono w tabl. 12.3.

<table>
<thead>
<tr>
<th>(L_{md}(r))</th>
<th>(R_s^*(r))</th>
<th>(L_{df}(r))</th>
<th>(R_{Dq}(r))</th>
<th>(L_{Dq}(r))</th>
<th>(L_{mg}(r))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,584</td>
<td>0,00707</td>
<td>0,219</td>
<td>0,0337</td>
<td>1,00</td>
<td>0,667</td>
</tr>
</tbody>
</table>

W celu dokonania oceny jakości obliczonych parametrów na rys. 12.9 przedstawiono porównanie przebiegów pomiarowych zaniku prądu stojana w osi \(d \) silnika z przebiegami obliczonymi za pomocą modelu przy wykorzystaniu wyznaczonych parametrów.

Na podstawie porównania przebiegów można stwierdzić dobrą zbieżność wyników i tym samym dobrą jakość wyznaczonych parametrów.

Zaprezentowana w pracy metodyka wyznaczania syntetycznych charakterystyk strumieni sprzężonych pola głównego na podstawie pomiarów w stanie ustalonym oraz pozostałych parametrów skupionych na podstawie przebiegów dynamicznych może być zastosowana do wyznaczania parametrów modeli matematycznych generatorów synchronicznych pracujących w systemie elektroenergetycznym. Zaproponowane pomiary są łatwe do przeprowadzenia i nie powodują zagrożenia dla pracy generatorów w systemie elektroenergetycznym.
13. PODSUMOWANIE

Przedmiotem pracy było opracowanie modele obwodowych maszyn elektrycznych prądu przemiennego uwzględniających nasycenie magnetyczne rdzeni maszyny i w konsekwencji udowodnienie sformułowanych w rozdziale 3 tez pracy.

Modele obwodowych maszyn elektrycznych prądu przemiennego opracowano stosując konsekwentnie teorię fazorów przestrzennych oraz bazując na trzech podstawowych założeniach:

- wypadkowe pole magnetyczne w maszynie jest sumą pola magnetycznego głównego oraz pola rozproszenia stojana i wirnika, przy czym pola te w sposób niezależny magnesują rdzenie stojana i wirnika,
- sprzężenia magnetyczne uwożeń maszyny dla pola magnetycznego głównego spowodowane są tylko przez podstawową harmoniczną przestrzenną składową indukcji magnetycznej w szczelinie roboczej maszyny,
- chwilowe prądy fazowe stojana i wirnika w sposób jednoznaczny wyznaczane są przez odpowiednie fazory przestrzenne prądu stojana i prądu wirnika.

Stosując zasadę podziału wypadkowego pola magnetycznego w maszynie na pola magnetyczne główne oraz pola magnetyczne rozproszenia, w pracy przedstawiono modele obliczeniowe maszyn elektrycznych, w których wymienione pola składowe występują samodzielnie bądź też są dominujące.

Modele obliczeniowe maszyn wykorzystano do wyznaczenia rozkładów przestrzennych polu magnetycznego oraz do wyznaczenia strumieni sprzężonych uwożeń dla tych pól. Strumienie sprzężone uwożeń maszyny dla odpowiednich pól wyznaczono obliczając pochodne koenergii magnetycznej względem odpowiednich prądów lub obliczając podstawową harmoniczną składową indukcji magnetycznej w szczelinie powietrznej maszyny oraz stosując odpowiednie zależności analityczne. Uwzględniając strukturę geometryczno-materiałową modeli obliczeniowych oraz cechy charakterystyczne rozkładu przestrzennego uwożeń, przeprowadzono analizę jakościową właściwości fazorów przestrzennych strumieni sprzężonych oraz ich składowych osiowych.

W celu wyznaczenia pola magnetycznego głównego w pracy zaproponowano dwa typy modeli obliczeniowych:

- modele obliczeniowe o wyidealizowanej – pozbawione żłobków – strukturze geometrycznej rdzeni magnetycznych stojana i wirnika, zawierające nieskończenie cienkie uwożenia o rozłożeniu sinusoidalnym, umieszczone na przyszczelninowych powierzchniach walczowych stojana i wirnika,
- modele obliczeniowe o rzeczywistej strukturze rdzeni magnetycznych stojana i wirnika oraz uwożeń umieszczonych w żłobkach maszyny.

Wyidealizowane modele obliczeniowe wykorzystano do wprowadzenia do rozważań następujących pojęć: zastępczego uzwojenia magnesującego, fazora przestrzennego prądu magnesującego, fazora przestrzennego strumienia sprzężonego pola magnetycznego głównego.

Uwzględniając cechy charakterystyczne struktury geometrycznej i materiałowej modeli obliczeniowych oraz sinusoidalny rozkład składow przestrzennych uzwożeń magnesujących, przeprowadzono analizę jakościową właściwości składowych osiowych fazora przestrzennego strumienia sprzężonego pola magnetycznego głównego. Do analizy jakościowej wykorzystano cechy charakterystyczne funkcji koenergii pola magnetycznego głównego oraz cechy charakterystyczne rozkładu obwodowego składowej promieniowej wektora indukcji magnetycznej w szczelinie powietrznej maszyny. Na podstawie analizy pokazano, że:

- charakterystyki składowych osiowych fazora przestrzennego strumienia sprzężonego pola głównego są w ogólnym przypadku funkcjami modułu i argumentu fazora przestrzennego prądu magnesującego,
- charakterystyki składowych osiowych fazora przestrzennego strumienia sprzężonego pola głównego można z dobrą dokładnością wyznaczyć za pomocą niewielkiej liczby syntetycznych charakterystyk strumieni sprzężonych pola magnetycznego głównego.

Wyniki analizy jakościowej potwierdzono w pracy za pomocą odpowiednich wyników obliczeń, które przedstawiono w postaci wykresów rozkładów linii pola magnetycznego, rozkładów obwodowych składowej promieniowej wektora indukcji magnetycznej w szczelinie powietrznej oraz odpowiednich charakterystyk.

Wnioski wynikające z analizy zastosowano w modelach obliczeniowych maszyn elektrycznych prądu przemiennego, w których uwzględniono rzeczywistą strukturę rdzeni maszyny. Dla wybranych maszyn elektrycznych prądu przemiennego: silnika indukcyjnego, turbogeneratora i hydrogeneratora wyznaczono rodziny charakterystyk składowych osiowych fazora przestrzennego strumienia sprzężonego pola głównego oraz wyznaczono na ich podstawie biorące charakterystyczne charakterystyki strumieni sprzężonych pola głównego.

Przy wyznaczaniu pola rozproszenia stojana i wirnika oraz strumieni sprzężonych uzwożeń stojana i wirnika dla tych pól skorzystano z założenia, że chwilowe prądy fazowe stojana i wirnika są jednoznacznie określone przez fazory przestrzenne odpowiednich prądów: prądu stojana lub prądu wirnika. W konsekwencji także koenergia pola rozproszenia stojana i pola rozproszenia wirnika oraz fazory przestrzenne strumieni sprzężonych uwożeń stojana lub wirnika dla tych pól są funkcjami modułu i argumentu fazorów przestrzennych odpowiednich prądów.

W celu wyznaczenia pola rozproszenia stojana i wirnika zaproponowano modele obliczeniowe maszyny, w których występują tylko pole rozproszenia żłobkowego stojana i wirnika oraz modele obliczeniowe, w których występują łącznie pole rozproszenia żłobkowego i pole rozproszenia szczelinowego. Dla obu typów modeli przeprowadzono odpowiednie analizy i obliczenia, które pokazały, że fazor strumienia sprzężonych uwożeń stojana i uzwożeń wirnika dla odpowiednich pól jest praktycznie tylko funkcją modułu fazora przestrzennego prądu stojana lub prądu wirnika. Przyjęcie takiego wniosku umożliwiło transformację fazorów przestrzennych strumieni sprzężonych uzwożeń stojana lub wirnika do układu współrzędnych (x,y), co uzupełniło model matematyczny maszyny.

Zależności matematyczne określające fazory przestrzenne strumieni sprzężonych uzwożeń stojana i wirnika dla pola głównego oraz dla pola rozproszenia stojana lub wirnika wykorzystano przy definiowaniu indukcyjności statycznych i dynamicznych maszyny, związanych z odpowiednimi polem. W pracy pokazano, że indukcyjności statyczne i dynamiczne są w ogólnym przypadku funkcją modułu i argumentu fazora przestrzennego odpowiednich prądów oraz że indukcyjności statyczne nie są jednoznacznie określone i w ogólnym przypadku nie spełniają zasady wzajemności.

Definiując indukcyjności statyczne i dynamiczne, zwrócono uwagę na zjawisko skrośnego sprzężenia magnetycznego zastępczych uzwożeń magnesujących, które są wprowadzane w modelach obliczeniowych indukcyjności magnetycznych rdzeni. Wyróżniono dwa typy sprzężeń: sprzężenie skrośne statyczne i dynamiczne oraz wskazano, że sprzężenia te nie występują, gdy pomija się nasycenie rdzeni, przyjmując dla nich liniowe charakterystyki magnesowania.
Znając właściwości fazorów przestrzennych strumieni sprzężonych uzwojeń stojana i wirnika dla pola głównego oraz dla pół rozproszenia stojana i wirnika wyprobowano równania maszyny asynchronicznej pierścieniowej i klatkowej zwykle zapisując końcowe równania za pomocą fazorów przestrzennych. Równania maszyny wyprobowano w tradycyjny sposób, rozpoczynając od równań maszyny we współrzędnych fazowych.

Modele matematyczne maszyn asynchronicznych uzupełniono o model matematyczny maszyny indukcyjnej klatkowej o wirniku głębokożłobkowym. Przy wyprowadzaniu tego modelu założono, że wypieranie prądu w pręcie wirnika spowodowane jest polem rozproszenia wokół jego żłoba, który dla uproszczenia otożsamołiczno warstwie materiału o nieskończenie dużej przekraczalności magnetycznej. Przyjęcie takiego założenia umożliwiło opracowanie modelu matematycznego, który jednocześnie uwzględnia nasyczenie magnetyczne rdzeni oraz wypieranie prądu w pręciach wirnika. W opracowanym modelu relacje między fazorami przestrzennymi napięć i prądów prętowych wirnika aproksymowano skończoną liczbą zastępczych obwodów elektrycznych w wirniku.

Opracowanym modelom matematycznym przyporządkowano odpowiednie schematy zastępcze maszyn obowiązujące w stanach nieustalonych oraz ustalonych. Na schematach tych wskazano elementy, których wartości zależne są od nasyczenia magnetycznego rdzeni.

Sformułowanie modelu matematycznego maszyny synchronicznej poprawiono poprzez przyjęcie liczby wirtualnych zastępczych obwodów elektrycznych w osi d i q wirnika. Opracowany model matematyczny maszyny synchronicznej uwzględnia nasycone magnetyczne rdzenie przez pole magnetyczne główne i pole rozproszenia stojana. Modelem maszyny synchronicznej obowiązującym w stanach ustalonych i nieustalonych przyporządkowano schematy zastępcze, pokazując także elementy zależne od nasycenia magnetycznego rdzeni maszyny.

Opracowane modele obwodowe maszyn asynchronicznych i synchronicznych wykorzystano w badaniach symulacyjnych typowych stanów nieustalonych i ustalonych. Obliczenia przeprowadzono uwzględniając nasycenie magnetyczne rdzeni lub też je pomijając. Przy pominięciu nasycenia magnetycznego rdzeni do obliczeń przyjęto stałe wartości odpowiednich indukcyjności równie indukcyjnościom statycznym dla nienasyconego stanu rdzeni maszyny.

Modele matematyczne maszyn elektrycznych uwzględniające nasyczenie magnetyczne rdzeni można wykorzystać w badaniach symulacyjnych, gdy znane są syntetyczne charakterystyki strumieni sprzężonych pola głównego i pola rozproszenia stojana i wirnika oraz parametry skupione, obejmujące rezystancje i niektóre indukcyjności rozproszenia.

W celu wyznaczenia syntetycznych charakterystyk strumieni sprzężonych przeprowadzono parametryzację modeli matematycznych, aproksymując syntetyczne charakterystyki strumieni sprzężonych za pomocą funkcji nieliniowych o nieznanych współczynnikach. W pracy zaproponowano kilka testów pomiarowych umożliwiających wyznaczenie parametrów maszyn elektrycznych. Parametry modeli matematycznych maszyn asynchronicznych i synchronicznych wyznaczono na podstawie obliczeń charakterystyk w stanie ustalonym oraz na podstawie przebiegów dynamicznych.

Ze względu na trudności w określeniu zbioru początkowych parametrów, w tym zwłaszcza wartości współczynników funkcji aproksymujących syntetyczne charakterystyki strumieni sprzężonych, przy wyznaczaniu parametrów zastosowano algorytmy genetyczne lub algorytmy genetyczne i gradientowe.

W pracy pokazano także, że parametry modeli matematycznych maszyn można wyznaczyć na podstawie danych konstrukcyjnych przy wykorzystaniu wyników odpowiednich obliczeń polowo-obwodowych. Dla maszyny indukcyjnej przedstawiono metodę takich obliczeń oraz podano wyniki estymacji odpowiednich parametrów. Zaproponowany sposób wyznaczania parametrów można wykorzystać w obliczeniach projektowych maszyn elektrycznych, uzupełniając zbiór typowych parametrów o nowe parametry, które uwzględniają nasyczenie magnetyczne rdzeni maszyny.

Niniejsza praca jest wynikiem wieloletnich badań własnych autora [132-152] w omawianym zakresie.

Za oryginalny wkład własny autor uważa następujące elementy pracy:

- analizę właściwości składowych osiowych strumieni sprzężonych uzwojeń maszyn synchronicznych dla pola głównego przy wykorzystaniu funkcji koenergii magnetycznej oraz funkcji rozkładu obwodowego składowej promieniowej indukcji magnetycznej,
- wprowadzenie do rozważań pojęć syntetycznych charakterystyk strumieni sprzężonych i syntetycznych charakterystyk koenergii magnetycznej oraz ich wyznaczenie w maszynach synchronicznych,
- analizę oraz określenie właściwości funkcji koenergii i fazorów przestrzennych strumieni sprzężonych uzwojeń stojana i wirnika dla pół rozproszenia żłóbkożłobkowego i szczelinowego,
- konsekwentne stosowanie teorii fazorów przestrzennych zarówno przy analizie strumieni sprzężonych uzwojeń, jak i przy wyprowadzaniu modeli matematycznych maszyn elektrycznych, w tym także przy wyprowadzaniu równań maszyny indukcyjnej o wirniku głębokożłobkowym,
- opracowanie metodyki pomiarowej wyznaczania syntetycznych charakterystyk strumieni sprzężonych oraz innych parametrów skupionych na podstawie wyników pomiarowych,
- zastosowanie algorytmów genetycznych do wyznaczania trudnych do wstępnego oszacowania parametrów funkcji aproksymujących syntetyczne charakterystyki strumieni sprzężonych,
- wykorzystanie wyników obliczeń modeli polowo-obwodowych do wyznaczania parametrów opracowanych modeli już na etapie projektowania maszyn,
- opracowanie programów komputerowych w środowisku Mathcad, Matlab, LabView wykorzystanych do badań i analiz zagadnień przedstawionych w pracy.
LITERATURA

Książki, monografie

Artykuły

Jerzy Kudła

Kudła J.: Determination of Static and Dynamic Nonlinear Inductances of an Induction Machines. International Workshop on Electrical Machines, 8-9 September 1999, Prague, pp. 77-86.

SILNIK TM90-4M

Dane znamionowe

<table>
<thead>
<tr>
<th>Parametr</th>
<th>wartość</th>
</tr>
</thead>
<tbody>
<tr>
<td>moc silnika</td>
<td>1,5 kW</td>
</tr>
<tr>
<td>napięcie zasilania</td>
<td>400 V</td>
</tr>
<tr>
<td>moment znamionowy</td>
<td>10,155 Nm</td>
</tr>
<tr>
<td>współczynnik mocy</td>
<td>0,805</td>
</tr>
<tr>
<td>prąd znamionowy</td>
<td>3,42 A</td>
</tr>
<tr>
<td>prąd biegu jałowego</td>
<td>1,96 A</td>
</tr>
<tr>
<td>krotność prądu rozruchowego</td>
<td>5,30</td>
</tr>
<tr>
<td>krotność momentu rozruchowego</td>
<td>2,647</td>
</tr>
<tr>
<td>liczba par biegunów</td>
<td>1410,5 obr/min</td>
</tr>
<tr>
<td>prędkość znamionowa</td>
<td>50 Hz</td>
</tr>
<tr>
<td>częstotliwość napięcia zasilania</td>
<td>3</td>
</tr>
<tr>
<td>liczba faz stojącej</td>
<td>14 W</td>
</tr>
</tbody>
</table>

Wymiary geometryczne

<table>
<thead>
<tr>
<th>Parametr</th>
<th>wartość</th>
</tr>
</thead>
<tbody>
<tr>
<td>długość idealna silnika</td>
<td>100 mm</td>
</tr>
<tr>
<td>średnica zewnętrzna stojana</td>
<td>135 mm</td>
</tr>
<tr>
<td>średnica wewnętrzna stojana</td>
<td>84 mm</td>
</tr>
<tr>
<td>grubość szczeliny powietrznej</td>
<td>0,25 mm</td>
</tr>
<tr>
<td>zewnętrzna średnica wirnika</td>
<td>83,5 mm</td>
</tr>
<tr>
<td>wewnętrzna średnica wirnika</td>
<td>30 mm</td>
</tr>
<tr>
<td>liczba żłobków stojana</td>
<td>36</td>
</tr>
<tr>
<td>liczba żłobków wirnika</td>
<td>28</td>
</tr>
<tr>
<td>liczba zwojów stojana</td>
<td>28</td>
</tr>
<tr>
<td>liczba zwojów wirnika</td>
<td>28</td>
</tr>
</tbody>
</table>

Uzwojenie stojana

Liczba zwojów w żłobku	96
Liczba przewodów w żłobku	286
Liczba zwojów jednej fazy	1
liczba warstw uzwojenia	9
poskok	0,530 mm
średnica przewodu	0,3 mm
izolacja żłóbka	63,01 %
wypełnienie żłóbków stojana	0,959795
współczynnik uzwojenia dla podstawowej harmonicznej	0,959795
Rys. Z.1. Przekrój poprzeczny rdzenia stojaka silnika wraz z wymiarami geometrycznymi

Rys. Z.2. Przekrój poprzeczny żłobka stojaka silnika wraz z wymiarami geometrycznymi

Rys. Z.3. Przekrój poprzeczny rdzenia wirnika silnika wraz z wymiarami geometrycznymi
Załącznik 2

TURBOGENERATOR TWW-200-2

Dane znamionowe

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Wartość</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_n</td>
<td>235,3 MV·A</td>
</tr>
<tr>
<td>P_n</td>
<td>200 MW</td>
</tr>
<tr>
<td>U_n</td>
<td>15,75 kV</td>
</tr>
<tr>
<td>I_n</td>
<td>8625 A</td>
</tr>
<tr>
<td>$\cos \varphi_n$</td>
<td>0,85</td>
</tr>
<tr>
<td>$2p_b$</td>
<td>2</td>
</tr>
<tr>
<td>m</td>
<td>3</td>
</tr>
<tr>
<td>n_o</td>
<td>3000 obr/min</td>
</tr>
<tr>
<td>f_r</td>
<td>50 Hz</td>
</tr>
<tr>
<td>η</td>
<td>98,6 %</td>
</tr>
</tbody>
</table>

Dane rdzenia stojana

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Wartość</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_s</td>
<td>2500 mm – średnica zewnętrzna blach stojana</td>
</tr>
<tr>
<td>D_t</td>
<td>1235 mm – średnica wewnętrzna</td>
</tr>
<tr>
<td>l_o</td>
<td>3348 mm – efektywna długość rdzenia stojana</td>
</tr>
<tr>
<td>D_{sz}</td>
<td>2500 mm – średnica zewnętrzna blach stojana</td>
</tr>
<tr>
<td>D_s</td>
<td>1235 mm – średnica wewnętrzna</td>
</tr>
<tr>
<td>d_{l}</td>
<td>160 mm – długość beczki wirnika</td>
</tr>
<tr>
<td>δ</td>
<td>80 mm – szczelina powietrzna</td>
</tr>
</tbody>
</table>

Dane uzwojenia stojana

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Wartość</th>
</tr>
</thead>
<tbody>
<tr>
<td>n_{al}</td>
<td>2 – liczba przewodów elementarnych na szerokości żłobka</td>
</tr>
<tr>
<td>n_{a}</td>
<td>2 – liczba przewodów (zwojów, prętów) w żłobku</td>
</tr>
<tr>
<td>m_1</td>
<td>12 – liczba poziomych warstw drutów w pręcie (pełnych)</td>
</tr>
<tr>
<td>m_{al}</td>
<td>6 – liczba poziomych warstw drutów w pręcie (drążonych)</td>
</tr>
<tr>
<td>q_{al}</td>
<td>160,32 mm² – przekrój miedzi pręta</td>
</tr>
<tr>
<td>l_{al}</td>
<td>2878,8 mm – długość czół półzwoju</td>
</tr>
<tr>
<td>l_{al}</td>
<td>14358 mm – długość zwoju</td>
</tr>
</tbody>
</table>

Dane uzwojenia wzbudzenia

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Wartość</th>
</tr>
</thead>
<tbody>
<tr>
<td>n_{al}</td>
<td>2 – liczba przewodów elementarnych na szerokości żłobka</td>
</tr>
<tr>
<td>n_{a}</td>
<td>2 – liczba przewodów (zwojów, prętów) w żłobku</td>
</tr>
<tr>
<td>m_1</td>
<td>12 – liczba poziomych warstw drutów w pręcie (pełnych)</td>
</tr>
<tr>
<td>m_{al}</td>
<td>6 – liczba poziomych warstw drutów w pręcie (drążonych)</td>
</tr>
<tr>
<td>q_{al}</td>
<td>160,32 mm² – przekrój miedzi pręta</td>
</tr>
<tr>
<td>l_{al}</td>
<td>2878,8 mm – długość czół półzwoju</td>
</tr>
<tr>
<td>l_{al}</td>
<td>14358 mm – długość zwoju</td>
</tr>
</tbody>
</table>

Układ połączeń: gwiazda

<table>
<thead>
<tr>
<th>Przepływ prądu w fazie</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_s</td>
</tr>
<tr>
<td>d_s</td>
</tr>
</tbody>
</table>

Dane uzwojenia wzbudzenia

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Wartość</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_s</td>
<td>1 – liczba gałęzi równoległych</td>
</tr>
<tr>
<td>s_{p2}</td>
<td>7 – liczba prętów w żłobku</td>
</tr>
<tr>
<td>z_s</td>
<td>63 – liczba zwojów uzwojenia wzbudzenia na jednym biegunie</td>
</tr>
</tbody>
</table>

Szczelina powietrzna

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Wartość</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_s</td>
<td>1075 mm – zewnętrzna średnica blach wirnika</td>
</tr>
<tr>
<td>Z_s</td>
<td>56, Z_2 = 52 – liczba podziałek żłobkowych</td>
</tr>
<tr>
<td>l_s</td>
<td>4,25 mm – długość beczki wirnika</td>
</tr>
<tr>
<td>d_s</td>
<td>120 mm – otwór centralny wału (średnica)</td>
</tr>
</tbody>
</table>

Biegun wirnika:

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Wartość</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p=21.5 \times 10^{-8} \Omega \cdot m$ – rezystywność stali rdzenia wirnika</td>
<td></td>
</tr>
</tbody>
</table>

Dane rdzenia wirnika

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Wartość</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_s</td>
<td>1 – liczba gałęzi równoległych</td>
</tr>
<tr>
<td>s_{p2}</td>
<td>7 – liczba prętów w żłobku</td>
</tr>
<tr>
<td>z_s</td>
<td>63 – liczba zwojów uzwojenia wzbudzenia na jednym biegunie</td>
</tr>
</tbody>
</table>
HYDROGENERATOR ADV-566 M

Dane znamionowe

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Wartość</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_n</td>
<td>150 MVA</td>
</tr>
<tr>
<td>P_n</td>
<td>135 M W</td>
</tr>
<tr>
<td>U_n</td>
<td>13800 V</td>
</tr>
<tr>
<td>f_n</td>
<td>50 Hz</td>
</tr>
<tr>
<td>n_r</td>
<td>600 obr/min</td>
</tr>
<tr>
<td>$\cos \varphi_n$</td>
<td>0,9</td>
</tr>
<tr>
<td>I_r</td>
<td>6276 A</td>
</tr>
<tr>
<td>$2p$</td>
<td>10</td>
</tr>
</tbody>
</table>

Dane rdzenia stojana

- D_1 = 5660 mm - średnica zewnętrzna
- D_i = 4280 mm - średnica wewnętrzna
- L_r = 1621 mm - całkowita długość rdzenia
- Blacha magnetyczna: EP14 0,5
- EP23 - płyty dociskowe

Żłobek stojana

- $21 (20,6)$
- $196 (195,8)$
- $1,5$
- $2,54$
- $6,35$
- $0,8$

Dane uzwojenia stojana

- $n_d=17$ - liczba przewodów elementarnych na wysokości zwoju
- $n_p=34$ - liczba drutów w przewodzie (przewodów równoległych w zwoju)
- $n_q=4$ - liczba przewodów (zwojów) w żłobku
- $n_a=136$ - liczba drutów w żłobku

Szczelina powietrzna

$\delta=20$ mm (w środku bieguna)
MODELE MATEMATYCZNE MASZYN ELEKTRYCZNYCH PRĄDU PRZEMIENNEGO UWZGLĘDNIJĄCE NASYCENIE MAGNETYCZNE RDZENI

STRESZCZENIE

Przedmiotem pracy są zagadnienia związane z opracowaniem modeli obwodowych maszyn elektrycznych prądu przenośniego (asynchronicznych i synchronicznych) uwzględniających nasycenie magnetyczne rdzeni oraz zagadnienia dotyczące wyznaczania parametrów elektromagnetycznych opracowanych modeli.

Przy opracowaniu modeli matematycznych maszyn przyjęto trzy zasadnicze założenia:
- Wypadowe pole magnetyczne w maszynie jest sumą pola magnetycznego głównego oraz pola rozproszenia stojana i wirnika, przy czym pola te w sposób niezależny magnesują rdzenie stojana i wirnika.
- Strumienie sprzężone użwojeń maszyny spowodowane polem magnetycznym głównym wywołane są tylko przez podstawową harmoniczną przestrzennej składowej promieniowej wektora indukcji magnetycznej w szczelinie roboczej maszyny.
- Chwilowe prądy fazowe stojana i wirnika w sposób jednoznaczny wyznaczane są przez odpowiednie fazory przestrzenne prądu stojana i prądu wirnika.

Stosując zasadę podziału wypadkowego pola magnetycznego w maszynie na pole magnetyczne główne oraz pola magnetyczne rozproszenia, w pracy opracowano modele obliczeniowe maszyn elektrycznych, w których wymienione pola występują samodzielnie bądź też są dominujące. Modele obliczeniowe maszyny wykorzystano do wyznaczenia rozkładów przestrzennych pól magnetycznych oraz do wyznaczenia strumieni sprzężonych użwojeń spowodowanych przez te pola. Strumienie sprzężone użwojeń maszyny wyznaczono obliczając pochodne koenergii magnetycznej względem odpowiednich prądów (pole magnetyczne główne i pól rozproszenia) lub obliczając podstawową harmoniczną przestrzennej składowej promieniowej indukcji magnetycznej w szczelinie maszyny i stosując odpowiednie zależności analityczne (pole magnetyczne główne).

Uwzględniając strukturę geometryczno-materiałową modeli obliczeniowych oraz charakterystyczne cechy rozkładu przestrzennego użwojeń, przeprowadzono analizę jakościową właściwości fazorów przestrzennych strumieni sprzężonych użwojeń spowodowanych polem głównym oraz polami rozproszenia. Wyniki analizy jakościowej potwierdzono oraz uzupelniono w oparciu o wyniki obliczeń numerycznych. Na podstawie przeprowadzonych badań i analiz w pracy wykazano, że:

- W monoharmonicznych modelach matematycznych maszyn elektrycznych prądu przenośniego (asynchronicznych i synchronicznych) strumienie sprzężone użwojeń spowodowane polem magnetycznym głównym można wyznaczyć za pomocą fazez przestrzennego strumienia sprzężonego pola głównego, który jest nieliniową funkcją modułu i argumentu fazaş przestrzennego prądu magnesującego.

Składowe osiowe fazory przestrzennego strumienia sprzężonego pola głównego można z dobrym przybliżeniem wyrazić za pomocą niewielkiej liczby syntetycznych charakterystyk strumieni sprzężonych, które są funkcją tylko modułu fazaş przestrzennego prądu magnesującego.

W symetrycznych stanach pracy maszyny elektryczne prądu przenośniego, strumienie sprzężone użwojeń stojana (maszyny asynchroniczne i synchroniczne) i strumienie sprzężone użwojeń wirnika (maszyny asynchroniczne) spowodowane polami rozproszenia można wyznaczyć za pomocą fazaş przestrzennych strumieni sprzężonych pól rozproszenia, które są nieliniowymi funkcjami modułu i argumentu fazaş przestrzennego odpowiednich prądów: prądu stojana, prądu wirnika.

Składowe osie fazorów przestrzennych strumieni sprzężonych pola rozproszenia stojana i wirnika można wyrazić za pomocą syntetycznych charakterystyk strumieni sprzężonych, które są funkcją tylko modułu fazaş przestrzennych odpowiednich prądów.

Zależności matematyczne określające fazory przestrzenne strumieni sprzężonych pola magnetycznego głównego oraz pól rozproszenia stojana lub wirnika wykorzystano przy definiowaniu indukcyjności statycznych i dynamicznych maszyny, związanych z odpowiednimi polami. Przy analizie indukcyjności statycznych i dynamicznych zwrócono uwagę na zjawisko skrośnego sprzężenia magnetycznego zastępczych użwojeń magnesujących, które spowodowane jest nasyceniem magnetycznym rdzeni. Wyróżniono dwa typy sprzężeń: sprzężenie skrośne statyczne i dynamiczne oraz wskazano, że sprzężenia te nie występują, gdy pomija się nasycenie rdzeni, przyjmując liniowe charakterystyki magnesowania.

Znając właściwości fazorów przestrzennych strumieni sprzężonych pola magnetycznego głównego i pól rozproszenia stojana i wirnika oraz odpowiednie indukcyjności statyczne i dynamiczne, sformułowano modele matematyczne maszyn asynchronicznych (pierścieniowej, klatkowej zwykłej i głębokożłobkowej oraz maszyn synchronicznych).

Opracowanym modelom matematycznym przyporządkowano schematy zastępcze obowiązujące w stanach nieustalonych oraz ustalonych. Na schematach zastępczych pokazano elementy, których wartości zależą są od nasycenia magnetycznego rdzeni. Opracowane modele obwodowe maszyn asynchronicznych i synchronicznych wykorzystano w badaniach symulacyjnych typowych stanów nieustalonych i ustalonych. Obliczenia przeprowadzono uwzględniając nasycenie magnetyczne rdzeni lub też je pomijając.

W celu pomiarowego wyznaczenia syntetycznych charakterystyk strumieni sprzężonych przeprowadzono parametryzację modeli matematycznych, aprofesjum syntezy schema zastępczego strumieni sprzężonych za pomocą funkcji nieliniowych o nieznanych współczynnikach. W pracy zaproponowano kilka testów pomiarowych umożliwiających wyznaczenie odpowiednich współczynników oraz innych parametrów skupionych modeli matematycznych maszyn elektrycznych. Parametry modeli matematycznych maszyn asynchronicznych i synchronicznych wyznaczono na podstawie charakterystyk maszyn w stanie ustalonym oraz na podstawie przebiegów dynamicznych. Do wyznaczenia parametrów zastosowano algorytmy genetyczne i gradientowe.

W pracy pokazano także, że parametry modeli matematycznych maszyn elektrycznych prądu przenośniego można wyznaczyć na podstawie danych konstrukcyjnych przy wykorzystaniu wyników odpowiednich obliczeń połowego lub obwodowych. Dla maszyny indukcyjnej przedstawiono metodyk takich obliczeń oraz podano wyniki estymacji odpowiednich parametrów. Zaproponowany sposób wyznaczania parametrów można wykorzystać w obliczeniach projektowych maszyn elektrycznych, uzupełniając zbior typowych parametrów o nowe parametry, które uwzględniają nasycenia magnetyczne rdzeni.
Basing on the investigations and analyses performed, it was proved that:

properties of the flux linkages space phasors of the machine winding for the main and leakage field and characteristic features of the winding space distribution, the qualitative analysis of the machine air-gap and using the suitable analytical relationships.

computing the fundamental harmonic of the magnetic flux density radial component in the coenergy of with respect to the appropriate currents, or for the main magnetic field by the main field and leakage fields were determined by computing derivatives of the magnetic flux linkages of the windings for these fields. The flux linkages of the machine windings for the computational models were used for calculating space distributions of the magnetic fields and the leakage magnetic field, there were worked out the computational models of parameters of the worked out models.

magnetic saturation of cores and problems concerned with determining electromagnetic parameters of the equivalent magnetising windings caused by magnetic saturation of the cores. Two kinds of couplings are distinguished: static and dynamic cross-coupling. It was shown that they do not occur when saturation of the cores is neglected and linear magnetising characteristics are assumed.

Basing on the knowledge of the flux linkage space phasors of the main field as well as the stator and rotor leakage fields together with the appropriate static and dynamic inductances, the mathematical models of asynchronous (wound rotor, squirrel-cage and deep-bar squirrel-cage) and synchronous machines were formulated.

There were developed the equivalent circuits for transient and steady states corresponding to the mathematical models worked out. The elements whose values depend on magnetic saturation of the cores are shown in these circuits. The developed circuit models of asynchronous and synchronous machines were used for simulation investigations of the typical transient and steady states. The computations were made when taking into account magnetic saturation of the cores or neglecting it.

In order to determine the synthetic characteristics of flux linkages by measurements, parametrisation of the mathematical models was carried out. It consisted in approximation of the synthetic characteristics of flux linkages by means of nonlinear functions of unknown coefficients. Several measuring tests enabling determination of these coefficients and other lumped parameters of the mathematical models of electrical machines have been proposed in the monograph. The parameters of the mathematical models of asynchronous and synchronous machines were determined on the basis of the machine characteristics in steady state and the waveforms in transient state. Genetic and gradient algorithms were used for determining the parameters.

It has also been shown in the monograph that the parameters of the mathematical models of alternating current electrical machines can be determined basing on constructional data when using the results of the appropriate field-circuit computations. The methodology of such computations has been presented for induction machine. The results of estimation of the appropriate parameters have been given as well. The proposed way of determining parameters can be used in design computations of electrical machines, as a supplement for the set of typical parameters with the new ones which take into account magnetic saturation of the machine cores.