I.—PROPERTIES OF METALS

(Continued from pp. 197-212.)

The Annealing of Pure Aluminium and Its Possible Utilization as a Criterion of the Purity of this Metal. J. Calvet (Light Metals Research, 1935, 3, 368-370).—Translated from Compt. rend., 1935, 200, 66-68. See Met. Abs., this volume, p. 137.—J. C. C.

On the Plasticity of Crystals. [Torsion Tests on Polycrystalline Copper and Single Crystals of Copper.] Pol Duwez (Phys. Rev., 1935, [ii], 47, 494-501).—A theory of plastic distortion is developed by assuming the existence of the secondary structure postulated by Zwicky. [Note by Abstractor: the criticisms of the theory of Zwicky by Buerger and Taylor should be read in this connection.] Gliding in crystals is assumed to take place on the π planes which characterize the secondary lattice at shearing stresses much smaller than those derived from the theory of ideal lattices. This is illustrated by a mechanical model consisting of springs (representing elastic forces) connected by flat plates which glide over one another. The stress-strain curve is obtained as an exponential law involving the torsional modulus, the elastic limit, and the maximum stress that can be applied without producing rupture. The equations are confirmed by the results of torsion experiments on polycrystalline copper, and also on a single crystal.—W. H.-R.

The Creep Fracture and Fracture of Lead and Lead Alloys. Herbert F. Moore, Bernard B. Betty, and Curtis W. Dollins (Univ. Illinois Bull. No. 272, 1935, 9-47).—The materials used in this investigation were: commercially pure lead (A); and alloys thereof with 2% tin (B); 0.75% antimony (C); and 0.04% calcium (D). In no case is there an absolute limiting tensile stress below which no creep occurs; at room temperature under a stress of 180 lb./in.² creep occurs at a rate varying from 0.3% per annum for D to 0.6% per annum for A, and at 65°C the corresponding figures are 0.6 and 1.4%. Extrapolated from the results of tests over 1000 hrs. the approximate creep at room temperature under 1 year of steady tensile stress is as follows: 200 lb./in.², (A) 0.7, (B) 0.6, (C) 0.4, (D) 0.3%; 300 lb./in.², (A) 1.6, (B) 1.1, (C) 0.7, (D) 0.4%; 400 lb./in.², (A) 3.9, (B) 1.9, (C) 1.0, (D) 0.6%; 500 lb./in.², (A) 5.0, (B) 3.2, (C) 1.4, (D) 0.8%. These figures show that the addition of calcium and antimony has a very marked effect in reducing the creep of lead at high stresses. The lowest stress under which fracture occurs under long continued load is 600 lb./in.² for A, B, and C and 1000 lb./in.² for D, the corresponding times to fracture being about 36, 148, 262, and 333 days, respectively. Under reversed flexural stresses of 200 lb./in.² about 10⁸ cycles are necessary to produce fracture of (A), the weakest of the metals tested. Microscopic examination of lead and its alloys after subjection to long-continued steady loads indicates that there is distortion by rotation of at least the surface crystals, whereas in short time tests distortion occurs by slip within the crystal grains, large-grained metal appearing to resist creep better than fine-grained metal. In creep tests on single crystals distortion occurs along certain definite atomic planes and there appears to be a limiting resolved shearing stress along these planes below which creep is very slow, but above which it occurs rapidly.

—A. R. P.

*Absorption and Adsorption of Hydrogen by Nickel. J. Smittenberg (Rec. trav. chim., 1934, 53, 1065–1083).—The absorption and adsorption of hydrogen by nickel at low pressures was studied with a long thin nickel wire. The absorption or solution of hydrogen in solid nickel is proportional to the square root of the pressure, and increases at constant pressure with increasing temperature, obeying the equation: \[\log a = A - \frac{B}{T}. \] The heat of absorption amounts to \(-2.62\) kg.-cal. per grm. mol. of hydrogen.—C. E. H.

*The Atomic Heat of Nickel at Liquid Helium Temperatures. W. H. Keesom and C. W. Clark (Physica, 1935, 2, 230).—[In English.] In this preliminary note, K. and C. state that they have measured the atomic heat, \(C\), of nickel from \(1.1^\circ\) to \(20^\circ\) abs. It appears that as a limiting law at liquid helium temperature, \(T(1^\circ - 4^\circ\) abs.), \(C = T \times \text{const}\). The contribution to the atomic heat attributable to a variation of magnetization with temperature is, theoretically, proportional to \(T^{3/2}\). The experimental values are largely in excess of this amount, and follow another law. The atomic heats of nickel are many times larger than the values deduced from Sommerfeld's formula based on the existence of free electrons. These larger values may be associated with an abnormally small value of the limiting electronic energy. —J. S. G. T.

*Platinum–Helium Compound Probably as Large as Colloidal Particles. Horacio Damianovich (Anales soc. cient. Santa Fe, 1934, 6, 17–19; C. Abs., 1935, 29, 2814).—Failure to obtain photomicrographs of individual particles of the platinum–helium compound leads to the belief that they may be of colloidal size. Calculations indicate that Pt\(_6\)He is the first compound of the series of possibilities likely to give molecules of colloidal size.—S. G.

*Microstructure of Platinum Subjected to the Action of Helium, Oxygen, and Hydrogen under the Influence of the Electric Discharge. Horacio Damianovich (Anales soc. cient. Santa Fe, 1934, 6, 20–22; C. Abs., 1935, 29, 2814).—Photomicrographs of platinum surfaces subjected to electric discharges in atmospheres of hydrogen and helium are reproduced. Very curiously different protuberances appear in each case. These phenomena will be investigated in different conditions.—S. G.

*The Thermionic Properties of Tantalum. Alvin B. Cardwell (Phys. Rev., 1935, [ii], 47, 628–630).—Prolonged outgassing of tantalum at 2200° K. produced an apparently stable condition (cf. Cardwell, ibid., 1931, [ii], 38, 2041), and a final stable condition was only obtained at 2500° K. For the final condition, the constants of the Richardson equation are \(b = 47,500^\circ\) K., \(h = 4.10\) v., \(A = 37.2\) amp./cm.\(^2\) degree\(^2\). Comparison with previous results shows that the value of the photoelectric work-function determined by Fowler's method agrees with the value of the thermionic work-function of the same surface, regardless of whether the surface is completely outgassed or not.—W. H.-R.

*Electrical Resistances and Volume Changes up to 20,000 Kg./cm.\(^2\) [Tellurium, Lithium, Sodium, Potassium]. P. W. Bridgman (Proc. Nat. Acad. Sci., 1935, 21, 109–113).—The resistance of tellurium, and the pressure-volume-temperature relations of lithium, sodium, and potassium have been studied at pressures up to 20,000 kg./cm.\(^2\). Measurements of the volume
changes of these alkali metals revealed a serious error in the results previously published. On increasing the pressure from 2000 to 20,000 kg./cm.², the mean coeffs. of linear expansion (0°–95°) of lithium, sodium, and potassium decreased from 0·0000515 to 0·0000273, 0·0000622 to 0·0000233, and 0·0000670 to 0·0000125, respectively.—C. E. H.

*The Elastic Properties of Single and Multiple Tin Crystals. W. Boas (Helv. Phys. Acta, 1934, 7, 878–883; Sci. Abs., 1935, [A], 38, 236).—[In German.] The dependence on orientation of the moduli of elasticity and torsion of the crystal of tin is described. The method employed was that given by Huber and Schmid (Met. Abs., this volume, p. 208). By summation of average values over the whole region of orientation the moduli of the quasi-isotropic multiple crystal are calculated, and comparison is made with experiment.—S. G.

*New Method of Preparing Pure Vanadium. André Morette (Compt. rend., 1935, 200, 1110–1112).—Vanadium tetrachloride, obtained by the action of chlorine at 500°–600° C. on cast vanadium and free from oxychlorides, is passed with a current of pure hydrogen over pure magnesium filings in a magnesia boat, the temperature being increased progressively in 2½ hrs. to 700° C. On cooling, a grey powder containing 99·3% of vanadium is obtained. Alternatively, vanadium dichloride, obtained by the action of hydrogen on the tetrachloride at 750°–800° C., is reduced by magnesium (2 parts of dichloride to 1 of magnesium filings) by heating in a magnesia boat in vacuo, in argon, or in pure hydrogen at 700° C. for 1–2½ hrs. A grey powder containing 98·9–99·5% of vanadium results after cooling, washing, and cold-drying the product. The metal thus prepared burns with brilliant sparks when thrown into a Bunsen burner flame. It reacts violently with concentrated nitric acid, giving, after dessication, a substance possessing the characteristics of vanadium anhydride; it is soluble in hydrofluoric acid and is unattacked by hydrochloric acid.—J. H. W.

*Work in the Charlottenburg Cryoscopic Laboratory on Superconductivity and on the Hydrogen Isotope [Vanadium; Molybdenum]. W. Meissner (Helv. Phys. Acta, 1933, 6, 414–418; C. Abs., 1935, 29, 2413).—Vanadium and molybdenum become superconducting at 4·3° and 1·1° K., respectively. Arsenic–lead alloys become superconducting at the transition point of lead.

*The Exact Measurement of the Specific Heats of Solid Substances at High Temperatures. VI.—The Specific Heats of Vanadium, Niobium, Tantalum, and Molybdenum. F. M. Jaeger and W. A. Veenstra (Rec. trav. chim., 1934, 53, 677–687).—See also Met. Abs., 1934, 1, 227. The specific heats of these 4 metals were determined at various temperatures up to about 1550° C., by the method previously described (ibid., 1932, 51, 2). The exactness and reproducibility of the measurements proved to be 0·1–0·2% of the values indicated. From the results, equations connecting specific and atomic heats with temperature were developed for the various metals, and thus values were calculated for temperatures from 0° to 1600° C., at 100° C. intervals. In the case of niobium, specific heats at constant volume were also calculated.—C. E. H.

*Mosaic Zinc Crystals. E. P. T. Tyndall and W. K. Schilling (Proc. Iowa Acad. Sci., 1933, 40, 156; C. Abs., 1935, 29, 2415).—Crystals of a distinctly mosaic type (that is, a group of polycrystals with almost identical orientations) were grown with great frequency during 1931 and 1932.—S. G.

*Resistivity of Mosaic Zinc Crystals. W. J. Poppy (Proc. Iowa Acad. Sci., 1933, 40, 156; C. Abs., 1935, 29, 2415).—See also Met. Abs., this volume, pp. 5 and 46. Zinc mosaics depart from the resistivity–orientation relation characteristic of a true single crystal. They show marked increases in resistivity after strain with a decline to the original, or lower values, on annealing.—S. G.

Elasticity of Zinc Crystals. A. W. Hanson (Proc. Iowa Acad. Sci., 1933, 40, 156; C. Abs., 1935, 29, 2415).—See also J. Inst. Metals, 1933, 53, 692 and
The apparatus for the determination of elastic constants was improved. Incomplete tests seem to show that crystals with distinct mosaic structure differ only slightly, if at all, in elastic properties from true single crystals.—S. G.

—Cf. following abstract. Single crystals of zinc were prepared from 3 sources of exceedingly pure metal, and their linear compressibilities for different orientations measured by B.'s method (Proc. Amer. Acad. Sci., 1923, 58, 166). No difference within the experimental error could be correlated with the source of the metal. This is in marked contrast to the conclusions of Hanson (Phys. Rev., 1934, [ii], 45, 324) who calculated the elastic constants and compressibilities from the results of bending and torsion experiments. Some of B.'s specimens were made from the same blocks of metal used by Hanson, and it is concluded that the differences found by the latter are due to internal strains. The following improved values are found for the compressibility of zinc: 90° orientation, $\Delta l/l_0 = 1.57 \times 10^{-7} p - 0.75 \times 10^{-12} p^2$, 0° orientation, $\Delta l/l_0 = 13.50 \times 10^{-7} p - 7.68 \times 10^{-12} p^2$, volume compression, $-\Delta V/V_0 = 16.64 \times 10^{-7} p - 9.62 \times 10^{-12} p^2$, at 30°C., p in kg./cm.².—W. H.-R.

Note on the Probable Values of the Elastic Constants of the Zinc Crystal. E. P. T. Tyndall (Phys. Rev., 1935, [ii], 47, (5), 398–399).—The work of Bridgman (preceding abstract) is accepted as disproving the conclusion of Hanson (Phys. Rev., 1934, [ii], 45, 324) that the elastic constants and compressibilities of zinc crystals are markedly affected by minute traces of impurities. One set of Hanson's measurements is, however, not only self-consistent, but also in good agreement with Bridgman's compressibility data, and the following values for the elastic constants are considered to be the most probable: $s_{11} = 7.70$, $s_{12} = 0.83$, $s_{13} = -6.93$, $s_{33} = 27.66$, $s_{44} = 24.40$, all $\times 10^{13}$ cm.²/dyne.—W. H.-R.

Factors Influencing Creep. R. W. Carson (Machinist (Eur. Edn.), 1935, 79, 261–263).—The various factors influencing creep are reviewed, and it is suggested that creep at normal temperature is closely related to high-temperature creep, although the controlling factors are different. Copper alloys have more creep than nickel or Monel metal, but age-hardening alloys are an important exception to this generalization.—J. H. W.

Transparency of Thin Metallic Films in the Ultraviolet. H. Harold Hartzler (J. Opt. Soc. Amer., 1934, 24, 339–341).—Measurement of transmission of light of different wave-lengths was made on metallic films of varying thicknesses by means of the vacuum prism spectograph (Cario and Schmidt-Ott). The metals copper, silver, gold, magnesium, tin, lead, arsenic, antimony, and bismuth were deposited on thin films of celluloid by evaporation in a vacuum tube. The individual numerical results are given. Zinc and cadmium failed to give suitable films; the films were porous and fern-like in structure. Poor films were also given by the alkaline earth metals and those of the iron group.—R. G.

Action of Nitrogen on the Metals. Electrical Discharges at Low Pressures. G. Berraz (Anales soc. cient. Santa Fe, 1933, 5, 54–58; C. Abs., 1935, 29, 2861).—Cathodic sputtering of silver in nitrogen at reduced pressure resulted in fixation of very little nitrogen, and it is doubtful whether any NAg₃ was formed. Similar results were obtained with gold. Lead gave an easily pulverizable deposit which gave NH₃ in moist air: it is probably N₂Pb₃, which reacts as follows: $\text{N}_2\text{Pb}_3 + 3\text{H}_2\text{O} = 2\text{NH}_3 + 3\text{PbO}$.—S. G.

I.—Properties of Metals

The Effect of Slow Electrons on Metal Surfaces. J. B. Philipson (Proc. Iowa Acad. Sci., 1933, 40, 150-151; C. Abs., 1935, 29, 2452).—The impact of electrons on a metal surface alters the chemical properties of the surface in such a way that certain subsequent chemical treatments will make the exposed portions visibly different from the unexposed portions.—S. G.

*The Influence of Cold-Work on the Thermal Conductivity of Metals. G. Tamman and W. Boehme (Ann. Physik, 1935, [v], 22, 500-506).—The thermal conductivity of metal wires drawn to 98% reduction is less than that of similar wires in the annealed state by the following amounts: silver 5-8, copper 1-6, iron 3-2, nickel 5-4, aluminium 0, 77 : 23 silver-zinc alloy 22, 72 : 28 brass 22%. These values correspond almost exactly with the increase in electrical resistance, and the curves showing change in electrical and thermal resistance with annealing temperature are also similar. The thermal conductivity of rolled sheets of iron, nickel, silver, copper, and aluminium shows no anisotropy.—v. G.

*Thermo[electric] Force and [Electrical] Resistance. L. Nordheim and C. J. Gorter (Physica, 1935, 2, 383-390).—[In German.] Any perturbation introduced into the atomic system of a metal will give rise to an increased electrical resistance and to a change in its thermoelectric power. In certain conditions a parallelism between such changes is to be anticipated. Theoretical formulæ relating to these two physical quantities are reviewed briefly and the effects of perturbations as shown by solid solutions, ferromagnetic materials, cold-worked metals, and liquid metals are briefly discussed both theoretically and with reference to experimental results. Parallelism between the two phenomena apparently exists in some cases, but the observations require considerable amplification. Such data when available promise to extend very considerably our knowledge of the metallic state.—J. S. G. T.

*The Superconductivity of Thin Films. E. F. Burton, J. O. Wilhelm, and A. D. Misener (Trans. Roy. Soc. Canada, 1934, [iii], 28, Sect. III, 65-79).—Experiments were carried out on thin films of tin, deposited on wires of a non-superconducting metal. It was found that the superconducting point was approximately the same whether the tin was deposited on Constantan, nickel, steel, phosphor-bronze, or manganese. The method of application of the tin (wiping, hot-dipping, or electrodeposition) was also without important effect. With decreasing thickness of the tin layer, the films become superconducting at lower temperatures, and are more sensitive to current strength. When the film of tin is covered by an electrodeposited layer of copper or nickel, the superconducting point is depressed considerably. It appears that a definite thickness of metal and a free surface are necessary for superconductivity.—C. E. H.

*Effective Permeability of Superconductors. F. G. A. Tarr and J. O. Wilhelm (Trans. Roy. Soc. Canada, 1934, [iii], 28, Sect. III, 61-63).—Describes an experiment on a block tin tube, verifying the findings of W. Meissner and R. Ochsenfeld (see Met. Abs., 1934, 1, 289), that on lowering the temperature of a superconductor, its permeability becomes zero below the transition point.—C. E. H.

*The Course of the Penetration of a Transverse Magnetic Field into a Superconductor. W. J. de Haas and J. M. Casimir-Jonker (Physica, 1934, 1, 291-296; Comm. K. Onnes Lab. Leiden, No. 229d).—[In German.] Bismuth at
liquid helium temperatures shows marked resistance changes in a magnetic field; it was used as indicator for the field strength inside a tin single crystal at or near the superconducting transition point. A cylindrical single-crystal tin wire (7 mm. in diameter, 8 mm. long) was provided with 3 parallel glass capillaries, one in the axis, 2 others 1 mm. under the skin of the wire. Inside the capillaries bismuth wires, 1-2 cm. long, with copper potential and current leads were introduced. The tin cylinder was cooled below the transition point without magnetic field, a transverse field was then applied and increased in strength until the superconductivity of the tin was again destroyed. During the latter period the bismuth resistance was measured repeatedly. Up to a threshold value for the external field the bismuth resistance did not change; the threshold value was higher for the central wire than for the outside ones. The curve of bismuth resistance (changing with local field strength) versus the external field strength for the enclosed wires is entirely different from the normal one for bismuth. The sudden increase above the threshold value extends to a value above the normal curve and is followed by a gradual approach of the latter. It is concluded that the external magnetic field induces persistent currents which compensate the field strength inside the superconductor. From a certain field strength on the surface superconductivity is destroyed, the persistent currents disappear and this destruction gradually penetrates into the tin metal with increasing field strength, the interval between the initial and total destruction being 3 gauss. Above 32 gauss, the value for complete destruction, the bismuth resistance returns to normal. For a longitudinal field the resistance changes of the 3 bismuth wires are all identical and simultaneous; the curve has the same character as above. On cooling a tin wire in a constant field it was observed that the field disappears from the superconductor near the outer bismuth wires, the central bismuth wire showed a field increase at the transition point.—S. G.

*Superconduction and Diamagnetism. F. and H. London (Physica, 1935, 2, 341–354). [In German.] Contrary to the usual conception that an electric current in a superconductor cannot exist without the coexistence of a magnetic field, the super-current is here conceived as a kind of diamagnetic volume current, and is maintained by a magnetic field which can be generated by the current itself. The mathematical analysis of the phenomenon is developed along these lines and is extended to the case where both superconducting and normal electrons are present.—J. S. G. T.

†Electronic Structure of Metals. J. C. Slater (Rev. Modern Physics, 1934, 6, 203–280).—The first usable electronic model of the electron was that of Lorentz. It conceived a metal as consisting of empty space containing hard spherical atoms, between which the electrons moved subject to 2 forces only, viz. any external applied electric fields and forces of elastic collision with atoms. This model, characterized by a beautiful simplicity, requires modification in the light of present-day knowledge of atomic structure, and Lorentz’s theory of the metal state has been superseded by the extremely complicated present-day theories. Here, the modern mathematical theory of the metallic state is presented. The subjects discussed comprise (1) Fermi statistics and free electrons, and (2) the wave mechanical theory. The treatment throughout is mathematical. A bibliography of 118 references is appended.—J. S. G. T.

Quantitative Calculation of the Proper Functions of Electrons in Metals. H. Bethe (Helv. Phys. Acta, 1934, 7, Suppt. II, 18–23; C. Abs., 1935, 29, 2833).—Only qualitative explanations of the energy levels of metal electrons and physical properties of metals can be given by theory. This is because of the rigid requirements made by either a free-electron theory or by an atomic proper function (valency force) theory. Free electrons in the alkali metals, the cohesion of metals and the absorption of light by metals are discussed.

—S. G.

The Statistical Basis of the Electron Theory of Metals. R. Peierls (Helv. Phys. Acta, 1934, 7, Suppt. II, 24–30; C. Abs., 1935, 29, 2834).—Assumptions must be made in the statistical treatment of the electron theory of metals which are not fulfilled for metals at high temperatures. This case can be treated by using other simplifications which give good results.—S. G.

Application of the Electron Theory of Metals to the Study of Alloys. H. Jones (Helv. Phys. Acta, 1934, 7, Suppt. II, 84–87; C. Abs., 1935, 29, 2835).—The physical properties of bismuth and its alloys are considered from the point of view of Brillouin zones. The magnetic susceptibilities are calculated and compared with experimental values.—S. G.

The Liquid State. W. H. Rodebush (Phys. Rev., 1935, [ii], 47, 513).—A note. Analogies between the electrons in a metal and the molecules in a liquid are pointed out. Superheating of a solid above its melting point does not occur because the heat of activation for fusion is small, and presumably no greater than the heat of fusion, but with transition points superheating is possible, because a heat of activation essentially equal to the heat of vaporization is required.—W. H.-R.

Hall Coefficients of Alkali Metals [Electron Theory of Metals]. Clarence Zener (Phys. Rev., 1935, [ii], 47, 636).—A note. Recent values for the Hall coeff. show good agreement with theory for sodium, fair agreement for potassium and caesium, and a poor agreement for lithium. The theoretical implications are discussed.—W. H.-R.

II.—Properties of Alloys (Continued from pp. 212–219.)

Contraction of Aluminium and Its Alloys on Solidification.—I. L. Losana (Alluminio, 1934, 3, 321–327; C. Abs., 1935, 29, 2133).—The changes in volume of aluminium and some of its alloys have been measured by the hydrostatic balance method (cf. Gazz. chim. ital., 1923, 53, 89–94). The contraction in volume on solidification, which is 6% for pure aluminium, is reduced to 5·9% and 5·6%, respectively, by the addition of 1 and 2% iron. Similarly, additions of 0·7, 1·4, and 1·6% silicon reduce the contraction to 5·8, 5·2, and 4·6%. Further addition reduces the contraction in proportion, up to 20% silicon, the limit studied. Addition of 1, 2, 5, and 7% copper reduces the contraction to 5·8, 5·4, 4·3, and 3·6%, respectively. Further addition of copper produces very little change.—S. G.

Transformations in Iron–Aluminium Alloys. C. Sykes and H. Evans (Iron Steel Inst. Advance Copy, 1935, 1–23).—In conditions of slow cooling, atomic rearrangement (“ordering”) occurs in alloys of the approximate composition Fe₃Al (13·9% of aluminium). The heat evolution due to this process starts at about 560° C. and continues over a considerable range of temperature, probably down to 200°–250° C., depending on the rate of cooling. The critical temperature can be obtained from the measurement of the resistivity of samples quenched from various temperatures and, so obtained, is in good
agreement with the results of thermal methods. The magnetic change points of alloys containing 11-17% of aluminium were determined, from which it appears that the ordering process can in certain cases affect the magnetization-temperature curve.—J. H. W.

*On the Low Temperature Diffusion of Solid Aluminium into Iron. Leo G. Hall (Phys. Rev., 1935, [ii], 47, 418-419).—A note. Aluminium will diffuse into steel or cast iron at 300° C. provided that both surfaces are clean, and sufficient pressure exists to ensure full contact of the surfaces. Penetration without substantial pressure has not been observed below the melting point of aluminium. The rate of diffusion is a direct function of the pressure, whilst the pressure necessary to produce a given rate of penetration decreases with increase of temperature. When a bar of iron is immersed in molten aluminium, the aluminium diffuses upward at the rate of 1-2 cm./day, and some iron dissolves in the aluminium. Some properties of iron impregnated with aluminium are described briefly.—W. H.-R.

*The Alloys Formed by the Aluminium-Magnesium Solid Solution. G. Chaudron and R. Dandres (Compt. rend., 1935, 200, 1324-1326).—The variation of the mechanical properties of the aluminium-magnesium alloys (containing up to 15% of magnesium) in sheet form, as a function of the magnesium content, has been investigated. The breaking load increases regularly, but the elongation decreases rapidly from 55 to 32% at 2% of magnesium, and thereafter remains approximately constant or slightly increases up to the limit of the solid solution. Certain impurities have the same effect as small quantities of magnesium in considerably modifying the deformability of pure aluminium. For instance, 0-15% of silicon largely increases the resistance and diminishes the elongation, and similar effects are caused by 0-45 and 0-1% of manganese. The sum of the breaking load and the elongation of these alloys is practically constant for the same magnesium content. The mechanical properties of the solid solution are not altered by 1% of zinc or cadmium, which crystallize in the same system as magnesium. Annealing experiments showed that the Al₃Mg₂ crystals cause a considerable diminution of the elongation without appreciably raising the breaking load. Metallographically, the precipitation of the β-crystals is seen at first between the grains, and then within them. These alloys have, after annealing, a more electro-negative potential than the β-crystals.—J. H. W.

*The Variation of the Mechanical Properties of an Aluminium-Magnesium Alloy as a Function of the Purity. Henri Fournier (Compt. rend., 1935, 200, 1398-1400).—The effect on the mechanical properties of cast aluminium-magnesium alloys of various refining fluxes and gases used in melting has been investigated. Chlorine was eliminated by the addition of fluorides. The alloys, of commercial purity, were treated as follows: (1) addition of salt fluxes; (a) sodium fluosilicate, (b) mixtures of fluxes, as that of the chloride and cryolite type: BaCl₂ 35, KCl 23, NaCl 18, CaCl₂ 17, and AlNa₃F₈ 7%; (2) chlorides of metals susceptible to reduction by alloying; (a) manganese chloride, (b) molybdenum chloride, (c) titanium chloride; (3) gas treatments, (a) dry nitrogen, (b) nitrogen followed by chlorine and nitrogen; (4) addition of metals more electro-positive than aluminium-sodium. The treatments were given at a temperature of 750° C., and the alloy cast at 730°-750° C. into either dry sand or chill moulds. The breaking load, apparent elastic limit, limit of proportional elasticity, and the modulus of elasticity were measured. The properties with these alloys were inferior to those of alloys made with pure metals, and were maximum in sand castings after using a flux, such as cryolite or titanium chloride. In the case of several melts, lower values were found for the limit of proportional elasticity and the modulus of elasticity than have been elsewhere recorded, but in other cases, normal values were obtained. Further experiments are necessary to explain this fact.—J. H. W.
II.—Properties of Alloys

Aluminium Alloys. W. C. Devereux (Machinery (Lond.), 1935, 46, 7-11, 140-143).—Read before the Scottish Local Section of the Institute of Metals and the Coventry Branch of the Royal Aeronautical Society. Comparative tests on various alloys cast in "R.R." and B.S.I. type moulds illustrate that the feeding methods employed affect the properties of different alloys in different ways. The importance of investigating methods of feeding, running, and chilling for each individual casting is emphasized. Heat-treatment is not recommended for intricate and large castings. For impact-testing levers, a machine is described which delivers a series of blows, the tup being raised between each until fracture occurs. By this means, the advantage of low modulus of elasticity in absorbing shock is taken into account, and material with high elastic limit shows up the best. Over-fluxing light alloys may give large grain-size. Defects arising in wrought material, particularly those due to the growth of large crystals, are discussed, and reference made to the effect of heat-treatment after cold-working.—J. C. C.

†Advances and Researches in the Field of Light Metals. — (Metallwirtschaft, 1935, 14, 192-194).—A review of the literature.—v. G.

The Hall Effect and Some Other Physical Constants of Alloys. IV.—The Bismuth–Cadmium Series of Alloys. S. Gabe and E. J. Evans (Phil. Mag., 1935, [vii], 19, 773-787).—The electrical resistivity at 0°C., and its temperature coeff. over the range 0°C.-100°C., the density, thermoelectric power relative to copper, Hall effect, and the specific heats of carefully annealed alloys (18) of the bismuth–cadmium series have been determined over the complete range of compositions. The density (d), specific heat (s), resistivity (ρ), and thermoelectric power (P), of an alloy containing χ% of bismuth are given by the following equations:
\[d = 8.64 + 1.16\chi \times 10^{-2}; \quad s = 0.0559 - 2.58\chi \times 10^{-4}; \]
\[\rho = 6.83 + 0.16\chi + 0.00270\chi^2 + 56.2\chi^6,10^{-12}; \quad P = 1.701 - 0.130\chi - 0.0380\chi^2 - 15.1\chi^6,10^{-14}. \]

The resistivities decrease on annealing the alloys, the change being greatest for the alloy containing 14.9% by weight of bismuth. The bismuth–cadmium alloys exhibit no reversal of sign over the range of magnetic field strengths 3096-8424 oerstedt, contrary to what is found to occur in the bismuth–tin and bismuth–lead series of alloys. The Hall coeff. of all the bismuth–cadmium alloys examined are negative, and diminish as the magnetic field strength is increased. A large negative value of the Hall coeff. corresponds with a high resistivity. The thermoelectric power–composition curve follows the general trend of the Hall coeff. composition curve.—J. S. G. T.

Cadmium–Silver Bearing Metal on New Pontiacs [Motor Cars]. — (Amer. Metal Market, 1935, 42, (28), 2).—A short note. The engine bearings are made of a silver–copper–cadmium alloy (cadmium 87.5, silver 2.25, copper 0.25%) having a melting point of 610°F. (321°C.) and a Brinell hardness of 40 at room temperature and 16.5 at 310°F. (154°C.). A chill-cast section, \(\frac{1}{4} \) in. thick, withstands 135° cold bend without cracking and at 400°F. (204°C.) can be bent flat on itself without cracking. The tensile strength is approximately 22,000 lb./in.². The alloy shows low frictional characteristics comparable to tin-base Babbitt and is non-scoring to steel shafts. Owing to its higher melting point and greater hardness at operating temperatures, the life of bearings of this alloy is several times that of tin-base Babbitt bearings.—J. M.
The Beta Transformation in Copper Alloys. I. Obinata (Kinzoku, 1934, 4, 289–291, 333–335).—[In Japanese.] In the binary systems copper–zinc, copper–tin, and copper–aluminium there is a $\beta \rightarrow \beta'$ transformation, and in the β-phase there is a eutectic transformation resembling the α_1 transformation in steel. During this transformation, a metastable intermediate phase is formed. In the case of the copper–zinc system the β-phase is stable at room temperature and there is no eutectic transformation; below room temperature, however, this eutectic transformation may take place.—S. G.

The Ternary System Copper–Silver–Cadmium. L. Losana and C. Goria (Industria chimica, 1934, 9, 1603–1615; C. Abs., 1935, 23, 2061).—The composition and cooling curves of the system copper–silver–cadmium were studied completely, and the results of studies of several of the binary systems were combined. The equilibrium diagram is very complex. Several useful alloys are indicated: (a) cadmium 81, silver 12, copper 7%, melting at 490°–505° C.; (b) cadmium 57, silver 6.5, copper 36.5%, melting at 535°–550° C.; (c) cadmium 39, silver 40.5, copper 20.5%, melting at 670° C. These alloys are resistant to oxidation, but are fragile, especially (c). They are useful for fusible safety plugs, &c.—S. G.

High-Tin Bronze. C. H. Tonamy (Kinzoku, 1934, 4, 401–402).—[In Japanese.] Even in heat-treated gun-metal a tensile strength of 20 tons/in.2 is obtainable; when high-strength copper alloys are required, therefore, heat-treated high-tin bronze is recommended in place of manganese-brass and aluminium-bronze.” Three specimens, containing 20, 22, and 24% tin, respectively, held at 650° C. for 1½ hr. and then quenched in water, had the following tensile strengths and elongations, respectively: 26.21 tons/in.2, 12.5%; 26.80 tons/in.2, 3.0%; 25.00 tons/in.2, 2.0%.—S. G.

Non-Metallic Inclusions in Ferro Alloys. B. Matuschka (Iron Steel Inst. Advance Copy, 1935, 1–8).—The structure and physico-chemical behaviour of the slag inclusions in liquid and solid steel are considered in general terms and the nature, occurrence, and behaviour of non-metallic inclusions in ferro-alloys with tungsten, chromium, nickel, molybdenum, cobalt, vanadium, manganese, silicon, aluminium, and copper are described.—J. H. W.

†Lead Bearing Metals: Present Position of Their Technique and the Knowledge of Their Applications. Fr. Witte (Z.V.d.L, 1935, 79, 98–100).—The characteristic properties of lead-base bearing metals are described and their future development is discussed with especial reference to the attempts which are being made to improve their stability by addition of heavy metals.—K. S.

New Alloy Melts at Temperature of 116° F. — (Amer. Metal Market, 1935, 42, (88), 5).—A brief note. The discovery of a new low-melting point alloy is announced by Professor S. J. French of Colgate University, U.S.A.; its composition is not given. Since its melting point is only slightly above that of the human body, it may find use in making finger print and surgical moulds.—I. M.

The Nature of the Diffusion of Mercury on Tin. T. Alty and A. R. Clark (Trans. Faraday Soc., 1935, 31, 648–659).—The diffusion of mercury in tin consists of a rapid surface diffusion accompanied by a much slower volume diffusion. A detailed study of the surface process shows it to be a true diffusion in that it obeys an ordinary diffusion equation. The variation of the rate of diffusion with the temperature obeys the same law as that of an adsorbed film, and the energy of activation of the mobile atoms on a pure tin surface is 1920 grm.-cal./grm.-atom. The rate of diffusion in water is greater and that in oil slower than in air; at 60° C, the rate in water is 1.081,
and at 15·3° C. 1·076 times that in air, whilst at 60° C. the rate in light liquid petroleum is 0·77 times that in air. The diffusion of mercury on a surface of a tin amalgam containing 8 atomic.% mercury decreases with rise in temperature, and the energy of activation of the mobile atoms on the amalgam surface is — 328 grm.-cal./grm.-atom.—A. R. P.

X-Ray and Hardness Tests on Nickel-Rich Nickel–Tin Alloys. Eric R. Jette and Erich Fetz (*Metallwirtschaft*, 1935, 14, 165-168).—The alloys with 0·33% tin were melted in a vacuum furnace, then homogenized, powdered, annealed at various temperatures, quenched, and examined by X-rays. The results gave the following values for the solubility of tin in nickel: 500° C. 1·9; 700° C. 8·8; 900° C. 17·7; and 1100° C. 19·8%. Consequently these alloys are capable of being precipitation-hardened, the 10% alloy to a Brinell hardness of 290 and the 20% alloy to a hardness of 490.—v. G.

On the Glow-Electric Effect of Palladium–Silver Alloys Saturated with Hydrogen. J. Schniedermann (*Ann. Physik*, 1935, [v], 22, 425–442).—Adsorption of hydrogen increases the electron emission of all palladium–silver alloys, the effect being at a minimum at 40% silver as is the case with all other properties.—v. G.

Solidification Diagrams of Alloys Formed by Two Alkali Metals: The Potassium–Rubidium Alloys. E. Rinck (*Compt. rend.*, 1935, 200, 1205–1206).—A continuation of the work done on the alloys of sodium with potassium, rubidium, and caesium (see *Met. Abs.*, this volume, p. 54). Potassium and rubidium are completely miscible in the solid state. The liquidus and solidus are very close, and show a flat minimum at 32·8° C., corresponding exactly to K + 2 Rb. Microexamination showed that these 2 metals form a single series of solid solutions.—J. H. W.

Are Not Liquid Sodium Amalgams Colloidal? R. M. Joshi (*Indian J. Research*, 1934, 9, 153–159; *C. Abs.*, 1935 29, 2814).—The probability that colloidal system is present is greater than Bent (*J. Inst. Metals*, 1933, 53, 493) admits.—S. G.

Magnetoresistance of Liquid Sodium–Potassium Alloy. J. E. Armstrong (*Phys. Rev.*, 1935, [ii], 47, 391–392).—Cf. *Met. Abs.*, this volume, p. 218. The effect of a magnetic field on the resistance of a liquid sodium–potassium alloy containing approximately 35% of sodium has been studied for field-strengths up to 16,000 gauss. A definite magnetoresistance effect exists apart from any secondary effects due to motions in the liquid. A longitudinal magnetic field produces a larger effect than a transverse field, although, in non-ferromagnetic crystalline solids, the converse is true. Above 2000 gauss there is a linear relation between the magnetoresistance (dR/R) and the field-strength.—W. H.-R.

†Alloys—Old and New. (Sir) H. C. H. Carpenter (*Iron Steel Inst. Advance Copy*, 1935, 1–19).—Presidential Address. The various meanings of the term “alloy” are explained, and the history of the development of alloys from the earliest times is briefly set out. In relating the properties of an alloy with its previous treatment, it is necessary to consider (1) its composition, (2) its constitution, (3) its structure, and (4) its condition. These factors, as well as the properties and treatment, are so inter-related that they cannot be considered entirely independently. Composition varies greatly in importance with the properties, and is determined chiefly by the electric, magnetic, and chemical properties required of the alloy. The constitution and structure are determined more by the mechanical properties desired, and their study is based on the equilibrium diagram, the 4 principal types of which are here classified, and the structure characteristic of each is described. The trans-
formations in solid alloys are explained with examples of the gold-copper, aluminium-iron, and magnesium-silicon systems, and the hypotheses put forward to account for age-hardening are critically reviewed.—J. H. W.

On the Rate of Precipitation-Hardening of Alloys. Erich Söhnchen (*Metallwirtschaft*, 1935, 14, 205–208).—The effect of addition of other elements, of variations in grain-size and degree of deformation, and of magnetic fields on the rate of precipitation-hardening of various alloys has been determined, and the results are discussed with reference to the literature. Magnetic fields have no influence on aluminium or magnesium alloys.—v. G.

Progress in Metals. Albert J. Dornblatt (*Heat-Treating and Forging*, 1935, 21, 129–131).—The composition of a number of alloys for various applications in transportation equipment and the specific properties required in each case are tabulated.—J. H. W.

"Iso-Elastic." A New Alloy for Springs. — (*Amer. Metal Market*, 1934, 41, (225), 5).—A brief note. The alloy is intended for use in measuring apparatus, and conforms to Hooke's law under widely varying conditions. It is a modification of Elinvar, but the composition is not given.—I. M.

On Ferromagnetic Alloys and Their Conformity to Laws. A. Kussmann (*Chem. Zeit.*, 1935, 59, 285–287).—Recent work on the relation between constitution and magnetic properties is reviewed with special reference to the stress theory of the magnetization curve and to the development and uses of new magnetic alloys with high nickel or cobalt contents.—A. R. P.

Curves of Fusion of Solid Solutions Accompanied by the Formation of a Chemical Combination. A. Mlodziejowski (*Physica*, 1935, 2, 159–168).—[In French.] M. has already derived an expression for the radius of curvature of a curve of fusion of a binary system at the melting point, for the case of binary systems forming a single liquid phase which on solidifying yields only crystals not containing the components in solid solution (*Arch. Neér.*, 1931, 111, A, 196). Here the analysis is extended to the case where a solid solution is formed.—J. S. G. T.

III.—STRUCTURE

(Metallography; Macrography; Crystal Structure.)

(Continued from pp. 220–226.)

Metallographic Films. E. O. Bernhardt and H. I. Wiester (*Z. V.d.I.*, 1935, 79, 7–11).—The apparatus, technique, uses, and results of filming the changes which take place in the structure of metals at high temperatures, e.g. the process of recrystallization, are described.—K. S.

Microstructure of Aluminium and Its Alloys. H. Nishimura (*Kinzoku*, 1934, 4, 179–184, 321–326).—[In Japanese.] The microstructures of the aluminium—copper, aluminium—silicon, aluminium—magnesium, aluminium—zinc—copper, and aluminium—silicon—copper alloys were investigated. A new equilibrium diagram is put forward for the aluminium—copper system.—S. G.

Affinity in the Hume-Rothery Phases. U. Dehlinger (*Metallwirtschaft*, 1935, 14, 145–149).—The principles of the Hume-Rothery rule for the formation of intercrystalline phases are discussed on thermodynamical considerations.—v. G.

*Factors Influencing the Formation and Structure of Hot-Dipped Tin Coatings.
Edward J. Daniels (Faraday Soc. Advance Copy, 1935, Mar., 5 pp.; and Tech. Publ. Internat. Tin Res. Development Council, 1935, [A], 17), 1-10. — Theories of the mechanism of the formation of hot-dipped coatings are reviewed and it is suggested that the prime factor in wetting is the attraction between the solid and liquid metals, the affinity between the two metals resulting generally in the formation of an intermetallic compound or solid solution at the interface; many examples of these phenomena are discussed, and in the case of tin coatings on copper and iron the effects of additions of various metals on the nature of the intermediate layer are described. The action of fluxes in promoting union of the liquid and solid metals is briefly outlined, and it is shown that hydrogen can act as a true flux in the tinning of copper since it reduces the oxides of both metals below 300°C. and thus provides clean surfaces. Steel cleaned with emery can also be tinned by immersion in molten tin containing only 0.05% phosphorus without the use of any flux. Addition of 0.04% cobalt or 0.1% of nickel to tin entirely prevents rippling of the coating on steel, and addition of more than 3.7% silver or 1.1% copper to tin has the same effect on coatings on copper; it is suggested that deposition of tiny crystals of an intermetallic compound, e.g., Ni₃Sn₂, Cu₆Sn₅, or Ag₅Sn, evenly over the surface of the coated metal, acts as a "grit" in the molten metal, preventing the movements which, when unimpeded, produce ripples. If the tinning temperature is too low the "grit" crystals become too large and the coating is pimply, but if the temperature is too high rippling occurs since the "grit" is dissolved in the hot metal. Bright, unrippled coatings can also be obtained by a suitable quenching operation.

—A. R. P.

*Determination of the Phase Structure of Metallic Protective Coatings by Anodic Dissolution.
A. Glazunov (Faraday Soc. Advance Copy, 1935, Mar., 3 pp.). — The thickness of zinc coatings and of the various intermediate layers on galvanized iron may be determined by anodic dissolution of the coating in a saturated solution of zinc sulphate. If \(d \) is the thickness of the layer, \(e \) the electrochemical equivalent, \(I \) the current intensity, \(t \) the time, \(\gamma \) the sp. gr. of the metal, and \(s \) the area, then \(d = \frac{e \cdot I \cdot t}{\gamma \cdot s} \). If the voltage of the cell is plotted against the time a graph will be obtained consisting of one or more horizontal sections connected by sloping lines. Since each phase of constant composition has its own potential which remains constant during its dissolution, and since the potential changes regularly during the dissolution of a solid solution, from the lengths of the individual potential values (horizontal positions in the graph) and of the intervals between them the thickness of the various layers and their composition can be determined with the aid of the above equation if the course of the potential curves of the binary system in question is known. Thus galvanized coatings have been shown to contain Zn₃Fe and probably also ZnFe₂. —A. R. P.

†The Determination of the Structure of Electrodeposits by Metallurgical Methods.
D. J. Macnaughtan and A. W. Hothersall (Faraday Soc. Advance Copy, 1935, Mar., 6 pp.). — Recent work on the determination of the structure of electrodeposits of nickel, chromium, and other metals by micrographic methods and by physical tests, especially hardness determinations, is described and critically reviewed, photomicrographs of nickel deposits made under various conditions are shown and discussed and the effect of annealing on the crystal structure is briefly outlined. —A. R. P.

†The Effects of Film Formation on the Structure of Electrodeposited Metallic Coatings.
Contribution to the Experimental Study of the Influence of the Support or Cathode on the Structure of Electrolytic Deposits Obtained in Aqueous Solution.

Albert M. Portevin and Michel Cymboliste (Faraday Soc. Advance Copy, 1935, Mar., 7 pp.).—From experiments on nickel- and chromium-plating and from a review of the published results of other investigators it is concluded that the structure of electrodeposits may be influenced by the crystal structure of the cathode but also depends on the rate of formation \((N_c)\) of crystal nuclei and on their rate of growth \((V_c)\) which are functions of the concentration of the electrolyte in contact with the cathode, the current density, and the temperature. Crystalline continuity between the deposit and the cathode requires the absence of surface films on the cathode and of the hardened amorphous layer produced by polishing. If \(N_c\) is large, e.g. in fine-grained deposits, compared with the number \((n)\) of crystals per unit area of cathode, the effect of the surface of the latter is small since \(n\) is negligible compared with \(N_c\), whereas if \(N_c\) is very small the nature of the cathode surface determines the grain-size of the deposits. In general the grain-size decreases with increase in \(N_c\) and increases with increase of \(V_c\). The effect of various conditions on the nature of nickel and chromium plates is shown in a series of 23 photomicrographs.—A. R. P.

Influence of the Basis Metal on the Structure of Electrodeposits. A. W. Hothersall (Faraday Soc. Advance Copy, 1935, Mar., 5 pp.).—Examination of the structure of deposits of copper on cold-rolled copper, annealed silver, and nickel, and cast 98 : 2, 90 : 10, 70 : 30, 60 : 40, and 54 : 46 brasses, of tin on cast tin, cast 1% antimony–tin alloy, and annealed copper, and of nickel on annealed nickel and iron, and filed electrodeposits of nickel (micrographs of all are reproduced) shows that continuation of a basis metal structure in an electrodeposited is possible when both belong to the same crystal system and the lattice parameters vary by from, e.g., \(-2\%\) to \(+12\%\), and when both belong to different systems. Thus tetragonal tin continues the microstructure of face-centred cubic copper, and copper continues the structure of body-centred cubic brass. Distortion of the lattice by cold-work or by the introduction of an element in solid solution does not restrict continuation of microstructure during electrodeposition of another metal. It is unlikely, therefore, that co-deposition of hydrogen in solid solution has any effect on the grain-size of electrodeposits. The high degree of adhesion obtainable with electrodeposited coatings is probably associated with their ability to continue the crystal lattice of the basis metal even if only to a limited thickness.—A. R. P.

Electrode Potentials and the Form of Electrodeposited Metals. Samuel Glassstone (Faraday Soc. Advance Copy, 1935, Mar., 3 pp.).—From a critical analysis of recent work on the deposition of silver from cyanide baths, and of zinc and nickel from sulphate baths, it is concluded that there must be some connection between the form of an electrodeposited metal and the potential at the cathode during deposition, but that the relation is difficult to determine exactly owing to the effect of numerous other factors, some of which work in opposite directions.—A. R. P.

Factors Affecting the Structure and Grain-Size of Electrodeposited Cadmium. S. Wernick (Faraday Soc. Advance Copy, 1935, Mar., 4 pp.).—In neutral potassium cadmicyanide baths the grain-size of the deposits becomes finer as the cadmium content is increased from 8 to 40 grm./litre, but owing to the absence of free cyanide the anode tends to darken and become "foul." Addition of free cyanide to a bath with 30 grm./litre of cadmium gradually improves the nature of the deposit until with 100% excess cyanide a white, compact, and very fine-grained deposit is obtained; with a larger excess of cyanide considerable gassing occurs at the cathode. The presence of 1–2% of free alkali hydroxide in the bath increases the conductivity, has a restraining influence on the anode dissolution, and materially assists in maintaining the
III. — Structure

287

colour and uniformity of the deposit. In a bath containing cadmium 30 grm./litre, free cyanide 100%, and caustic soda 15 grm./litre increase in current density from 10 to 15 amp./ft.² causes the original white deposit to become greyer and more crystalline, while at 30 amp./ft.² the deposits are "burnt," and at 40 amp./ft.² dark, nodular, and large-grained, all of these defects being, however, overcome by stirring the electrolyte. Increase in temperature above 30°–35° C. increases the crystal size of the deposits and makes them loose, granular, and poorly adherent. In sulphate electrolytes the deposit is finer the higher the p_H up to about 6-6, good fine-grained plates being obtained from M-cadmium sulphate solutions buffered to p_H 5-5–6-6 by addition of boric acid 30, and sodium chloride 5-85 grm./litre, and operated at 35–40 amp./ft.² with stirring; the plates are, however, not so fine-grained as those obtained from cyanide baths, although they can readily be buffed to a good colour. Increase in temperature from 22° to 50° C. reduces the crystal size but darkens the deposit, but a further increase to 80° C. makes the deposit more crystalline, but whiter. Addition of 0-04% dextrin, or better 0.1–0.2% gelatin, reduces the grain-size to that obtainable in cyanide baths.—A. R. P.

*Structure and Properties of Nickel Deposited at High Current Densities.

William Blum and Charles Kasper (Faraday Soc. Advance Copy, 1935, Mar., 5 pp.).—The tensile strength, elongation, hardness, and structure of nickel deposits obtained at 100° C. with current densities of 22–45 amp./dm.² in 4N-nickel solutions of p_H 1–2 have been determined, and the results are shown in a table and in a series of photomicrographs. Deposits from chloride solutions have a fine-grained structure and are relatively smooth, strong, hard, and brittle, whereas those from sulphate solutions under the same conditions are rough, coarse-grained, soft, and ductile. In mixed solutions in which at least 25% of the nickel is present as chloride the deposits are similar to those obtained from pure chloride solutions. Change in p_H from 1 to 2 has no effect in chloride solutions, but in sulphate solutions an increase in p_H increases the hardness and reduces the ductility. Boric acid additions slightly soften deposits made from sulphate baths but have no effect on those made from chloride baths. The cathode efficiency is higher in chloride than in sulphate baths, especially at the higher current densities.—A. R. P.

*The Crystallization of Thin Metallic Films.

E. N. da C. Andrade (Faraday Soc. Advance Copy, 1935, Mar., 4 pp.).—The nature of thin gold and silver films produced by cathodic sputtering has been investigated and their behaviour on heating in vacuo examined by optical methods with light- and dark-field illumination and with polarized light. In films about 50 atoms thick silver begins to crystallize at 250°–280° C. and gold at about 400° C.; at these temperatures the eye can detect no change, but under the microscope spherulitic crystals of about 1 μ can be distinguished. As the temperature is increased the number and size of the spherulites increases, and eventually they coalesce to true crystals of the ordinary form. The nature of the original sputtered films cannot be definitely established by microscopic examination, but if they are crystalline the size of the crystals is beyond the resolving power of the microscope. Whilst it is possible that the spherulites are the end products of a process of gathering together of minute sub-microscopic crystals and not the result of an association of un-ordered atoms, it appears to be more likely that the original film is amorphous and the spherulites are formed by the motion of the surface layer to the depth of a few atoms with the production of a spherulitic aggregate which later grows in size and crystallizes.

—A. R. P.

*Optical Research on Evaporated Metal Layers.

L. S. Ornstein (Faraday Soc. Advance Copy, 1935, Mar., 10 pp.).—Optical research on metallic films produced by evaporation from tungsten filaments in vacuo gives valuable information on the structure of the metal in thin layers and on the effect of
various reagents thereon. The mathematical and experimental bases of the procedure are explained in detail and some results obtained with antimony, tin, silver, gold, and copper are described. The mechanism of the condensation of the metal vapour on a cooled glass plate appears to be as follows: at first small crystalline nuclei are formed by condensation of the monatomic vapour at various random points, and these then act as centres of condensation for the growth of small crystals. A method of determining the reflectivity of tungsten as a function of the temperature is summarized and its mathematical basis is explained.—A. R. P.

The Validity of Drude's Optical Method of Investigating Transparent Films on Metals. Leif Tronstad (Faraday Soc. Advance Copy, 1935, Mar., 4 pp.).—The theoretical principles of Drude’s method are explained mathematically and possible sources of error in applying it to the investigation of thin oxide and other films on metals are discussed at some length, together with possible ways of overcoming them.—A. R. P.

The Thickness of the Amorphous Layer on Polished Metals [Gold]. H. G. Hopkins (Faraday Soc. Advance Copy, 1935, Mar., 3 pp.).—Examination of the polished layer on gold by the electron diffraction method, after removing various thicknesses of the metal by cathodic sputtering, has shown that the amorphous Beilby layer has a thickness of about 30 A. and that there is a gradual increase in crystal size below the polished surface.—A. R. P.

The Structure of Polished Metal Surfaces. C. S. Lees (Faraday Soc. Advance Copy, 1935, Mar., 3 pp.).—Polished surfaces of gold and copper have been examined by electron diffraction after electrolytic etching to remove various thicknesses. The results show that the Beilby layer produced by polishing is separated from the unoriented polycrystalline interior of the metal by a thin layer of oriented crystals and the thicknesses of these 2 layers have been measured. The orientation of the intermediate layer is probably due to deformation of the crystals by compression, but the actual surface layer, which is 20–40 A. thick, is shown to be either a pseudo-liquid or to consist of minute unoriented crystals smaller than 15 A.—A. R. P.

Differences in the Structure of Electrodeposited Metallic Coatings Shown by X-Ray Diffraction. W. A. Wood (Faraday Soc. Advance Copy, 1935, Mar., 3 pp.).—The lines in the X-ray spectrum of a metal are of 3 types: in the first they are broken and spotted, in the second continuous and sharply resolved, and in the third broad and diffuse; these correspond roughly with grain-sizes greater than 10^{-3} cm., between 10^{-3} and 10^{-4} cm., and finer than 10^{-5} cm., respectively. Annealed metals and electrodeposits of copper and similar metals give the first type, most commercial metals give the second type, and strain-hardened metals and alloys of the interstitial solid solution class the third type. Since electrodeposited nickel and chromium coatings belong to the third type they are abnormal, chromium coatings in particular giving extremely diffuse lines, corresponding with grain-sizes of $8-10 \times 10^{-7}$ cm. This abnormality is the more pronounced since cold-working of the compact metal, e.g. nickel, never produces a spectrum of the third type, and it is concluded, therefore, that the subnormal grain-size of electrodeposited nickel and chromium is due to the presence of very high stresses which inhibit grain-growth, and are probably caused by the presence of occluded atoms of hydrogen or oxygen. Lattice distortion is also present in nickel deposits, and is to some extent the cause of line broadening; its presence is clearly demonstrated by a weakening of the high order reflections relative to the earlier orders, thus the (311) and (420) lines which are especially strong in spectra of the normal metal photographed with copper K_a radiation are abnormally weak in the spectra of electrodeposits. Another characteristic of electrodeposited coatings is the tendency for the grains to grow with a given crystallographic axis in a preferred direction; thus in very lustrous chromium deposits made at 50°C.
with current densities of 25–500 milliamp./cm.², the (200) line is absent and the (211) line very strong, whereas in dull deposits made at 15° C. the intensity ratio of these lines is normal. Attention is also drawn to a relation between the line-broadening and the hardness of the deposits of chromium and nickel.

Electron Diffraction and Surface Structure. G. I. Finch, A. G. Quarrell, and H. Wilman (Faraday Soc. Advance Copy, 1935, Mar., 14 pp.).—A description is given of types of precision electron-diffraction cameras and of the auxiliary apparatus, of the technique of their operation, and of various methods of preparing specimens for examination. This is followed by a mathematical explanation of the electron diffraction by reflection from a crystal face and by transmission through single crystals and polycrystalline aggregates. Finally some applications of the process to the study of metal films and surfaces are described. A bibliography of 27 references is appended.—A. R. P.

Inner Potentials of Crystals and the Electron Diffraction. W. E. Laschkarew (Faraday Soc. Advance Copy, 1935, Mar., 7 pp.).—The subject is discussed theoretically and mathematically on the basis of results obtained by numerous investigators, chiefly on non-metallic substances.—A. R. P.

*X-Ray Investigations on α-Tin Bronzes. T. I. Isawa and I. Obinata (Metallwirtschaft, 1935, 14, 185–188).—If. Met. Abs., this volume, p. 56. X-ray examination of bronzes with up to 18% tin which had been homogenized by rolling, annealing, and quenching from various temperatures gave the following values for the solid solubility of tin in copper: at 200°–400° C., 13.9; 500° C. 15.5; 525° C. 16.0; 600° C. 15.7; 700° C. 15.2, and 780° C. 14.1%. The solubility line thus has a point of inflection at the eutectoid temperature (525° C.).—V. G.

*Texture of Rolled α-Brass. V. I. Iveronova and G. S. Zhdanow (Tech. Physics U.S.S.R., 1934, 1, 64–79).—[In German.] See Met. Abs., this volume, p. 100.—S. G.

*The Crystal Structures of LaSn₃ and LaPb₃. A. Rossi (Gazz. chim. ital., 1934, 64, 832).—Two corrections to a previous paper (see Met. Abs., 1934, 1, 299).—S. G.

The Theoretical Constitution of Metallic Lithium. Frederick Seitz (Phys. Rev., 1935, [ii], 47, 400–412).—Theoretical. The modern electron theory of metallic crystals is further developed for metallic lithium, and a better agreement between the calculated and observed values of the lattice constant and binding energy is obtained.—W. H.-R.

On the Space-Lattice of Berthollides. A. Glazunov (Coll. trav. chim. Tchécoslon., 1935, 7, 76–83).—From a discussion of the nature of various intermetallic compounds the name “berthollides” is adopted for chemical compounds having their own space-lattice in which the atoms are distributed statistically, and the name “daltonides” for those in the lattice of which the atoms are arranged regularly according to a definite law. Intermetallic phases intermediate between these two types are stated to be of a certain “degree of berthollidicity.”—A. R. P.

†Description of the Binding Forces in Molecules and Crystal Lattices on Quantum Theory. F. Hund (Internat. Conference Physics, 1934, (II), 36–45).—The nature of the binding forces in matter is discussed. Among matters briefly treated are included: why is sodium a metal and chlorine a gas though both are monovalent?; how are the transition elements arsenic, antimony, silicon, selenium, and tellurium to be classified?—J. S. G. T.

*About the History of Load of Deformed Crystals [X-Ray Method for the Examination of Slip-Bands]. Wolfgang F. Berg (Z. Krist., 1934, 89, 286–294).—An X-ray method for the examination of slip-bands is described, and is applied in detail to the examination of slip-bands on cleavage faces of rock-salt.—W. H.-R.
Shear-Hardening and Recrystallization of Aluminium Single Crystals, with an Appendix on "Transformation-Hardening." W. G. Burgers (Internat. Conference Physics, 1934, (II), 139–160).—An extensive series of investigations on the deformation and recrystallization of aluminium crystals is reviewed. Transformation-hardening occurs on transition of a solid metal from one phase to another. In such a process the specimen may become harder, unlike a strained test-piece, which becomes annealed on recrystallization.

Plasticity, Crystallographic and Non-Crystallographic. E. Schmid (Internat. Conference Physics, 1934, (II), 161–170).—Experimental data relating to crystal plasticity are reviewed. Among the subjects discussed are: Cauchy's relations for the elasticity of crystals, typical cases of crystal and non-crystallographic plasticity.

[Discussion on] Plasticity and Strain-Hardening in Crystals.—(Internat. Conference Physics, 1934, (II), 171–183).—Discussion following the reading of papers by Burgers and by Schmid (see preceding abstracts).—J. S. G. T.

Experimental Evidences of Group Phenomena in the Solid Metallic State. Alexander Goetz (Internat. Conference Physics, 1934, (II), 62–71).—Experiments affording evidence of the existence of a higher structural periodicity than the primary crystal lattice in the solid metallic state are critically reviewed. The word "group" is taken to mean an agglomeration of a limited number of molecules in crystalline array; inside the group the stability of a molecule is different from what it is outside, and the size of the group is a physical constant of the type of crystal considered. Thus a group structure neither accepts nor rejects the "secondary structure" discussed by Zwicky. Evidence for the existence of groups comprise: etch figures on the cleavage planes of bismuth, phenomena occurring at the transition from solid to liquid, the behaviour of crystals formed partly within and partly without a magnetic field, the distribution of the last traces of impurities, and comparison of the coeff. of thermal expansion as measured macroscopically and by X-ray methods. A bibliography of 31 references is appended.—J. S. G. T.

The Cause of the Low Value of Mechanical Strength. A. Joffé (Internat. Conference Physics, 1934, (II), 72–76).—Experimental values of the mechanical strength of materials are usually many thousand times lower than those to be anticipated from the theory of crystal lattices. Amorphous substances exhibit similar discrepancies. Two kinds of rupture are distinguished, viz., plastic rupture, in which there is a reduction of area at some point before fracture occurs, and brittle rupture. The influence of plastic deformation on mechanical strength is discussed. Brittleness occurs if the elastic limit, increased either by previous plastic deformation or by reduction of temperature, reaches the value of the practical tensile strength. Two types of explanation have been advanced to account for this, viz., internal faults and surface crevices. Experimental results with rock-salt are described, and it is concluded that practical weakness is due essentially to sharp discontinuities present on the surface.—J. S. G. T.

The Mechanism of Brittle Rupture. A. Joffé (Internat. Conference Physics, 1934, (II), 77–80).—Experimental evidence indicating that the weakness in tension of materials such as quartz and glass is due to superficial irregularities is reviewed. It is shown that dissolving away a layer from the surface of a glass rod has the same effect on tensile strength as drawing it down in a gas flame. Irregularities distributed throughout the volume of the material affect the strength of the material only when they reach the surface.

—J. S. G. T.
†The Rupture of Plastic Crystals. E. Orowan (Internat. Conference Physics, 1934, (II), 81–92).—Sensitive processes start from nuclei, e.g. rupture can be initiated at Griffith's cracks. The sensitivity depends on two circumstances, viz. the intensity of the external influence necessary to start growth from the nuclei may depend on the size or quality of the nuclei, and the whole process may be initiated by one or a few nuclei. An important difficulty of the crack propagation theory has hitherto been the enormous crack lengths required by the Griffith's formula for explaining the tensile strength of plastic crystals. Besides the statical notch-effect discussed by Griffith, there exists, however, the possibility of the development of cracks due to plastic slip. The necessity of assuming the existence of unduly large crack lengths can thus be avoided, and the crack propagation theory of rupture can then be considered satisfactory. Proofs are given that no secondary or block structure theory of tensile strength is possible.—J. S. G. T.

†The Structure-Sensitive Properties of Rock-Salt. Adolf Smekal (Internat. Conference Physics, 1934, (II), 93–109).—A structure-sensitive property is one which has different values for different specimens of the same crystal, the actual states of a crystal being of a characteristic metastability. The observed metastability of an actual crystal for small changes of temperature indicates that the crystal preserves the state in which crystallization occurred. In the formation of crystals, growth, in general, takes place tangentially to certain definite planes; the molecular character of the growth produces gaps and local variations in orientation; the presence of impurities leads to the incorporation of foreign atoms. These are all characterized as primary flaws, and are statistically distributed along the principal planes of growth. Secondary flaws result from alteration of primary flaws or are produced by mechanical or thermal treatment of crystals. They may attain much greater size than primary flaws. The relations to be anticipated between flaws and structure-sensitive properties are discussed. The second section of the paper deals with experimental results relating to the structure-sensitive properties of rock-salt.—J. S. G. T.

[Discussion on] The Deviations of Real Crystals from the Ideal Lattice Structure. —— (Internat. Conference Physics, 1934, (II), 109–135).—A discussion following the reading of papers by Ewald and Renninger, Goetz, Joffé, Orowan and Smekal (see preceding abstracts).—J. S. G. T.

*The Thomas–Fermi Method for Metals. J. C. Slater and H. M. Krutter (Phys. Rev., 1935, [ii], 47, 559–568). Theoretical. The Thomas–Fermi method is applied to solid metals in its simple form, and in a more correct manner introducing the effect of exchange. It is concluded that neither method gives results of sufficient accuracy to use for investigating the energy in the neighbourhood of equilibrium. On the other hand, the potential field, momentum distribution, and other features may be of value as first approximations in more accurate treatments of metals.—W. H.-R.

IV.—CORROSION

(Continued from pp. 226–231.)

On a Rapid Method of Testing the Corrosion-Resistance of Aluminium and Aluminium Alloys. H. Carlsohn and W. Voigt (Chem. Fabrik, 1935, 8, 126–127).—The metal is coated with an oxide film, e.g. by the M.B.V. process, and a scratch through this film is made with a sharp point. The resistance of the
exposed metal to corrosion is then measured by the time required to produce a reaction with a filter paper impregnated with a morin or sodium alizarin-sulphonate indicator dissolved in the corrosive medium, e.g. 3% sodium chloride solution.—A. R. P.

*Corrosion of Aluminium in the Brewing Industry.—I. Marc H. van Laer (Ann. zymol., 1933, [ii], 1, 201–213; C. Abs., 1935, 29, 2293).—Cf. Met. Abs., 1934, 1, 240. Corrosion tests were carried out on a number of samples of aluminium (new metal) subjected to various heat-treatments, and also on samples procured from aluminium brewing equipment which had been more or less corroded in service. The Mylius test (loss in weight in mg./dm.² on exposure to the action of an oxidizing saline solution) is better suited to the evaluation of the resistance to corrosion likely to be encountered in the brewing industry than either the temperature increase or gas evolved in treating with hydrochloric acid. Of the samples taken from equipment, 4 were of decidedly inferior quality, but the equipment from which they were procured was not so badly corroded as some made from metal that withstood the corrosion tests much better; in all cases the greater corrosion occurred in equipment (tanks) encased in concrete and having some copper parts. This shows the importance of having aluminium electrically insulated and out of contact with other metals.—S. G.

*Corrosion of Aluminium in the Brewing Industry. R. de Wilde (Ann. zymol., 1934, [iii], 1, 365–387; C. Abs., 1935, 29, 2294).—Further tests were carried out on the previously-used (see preceding abstract) aluminium samples (annealed, quarter-hard, semi-hard, cold-hardened): corrosion potentials of aluminium in a suitable electrolyte were determined by measuring the decrease in potential of each electrode separately relatively to a comparison electrode (saturated Hg₂Cl₂); the variation in the potential of aluminium, and also the current intensity, during the course of fermentation were measured by determining directly the difference in potential of 2 aluminium electrodes. The results are given in detail and discussed. The conclusions are as follows: In an aluminium fermentation tank, if differences in structure exist in different parts of the metal, in certain unfavourable conditions (imperfect insulation, presence of a copper coil) severe local corrosion can take place, as the differences in potential which are set up in time result in the formation of primary cells. It is impossible to assign a definite potential to a given sample of aluminium, as it becomes less noble in time owing to the increasing activity of aluminium as corrosion progresses. The current intensities with aluminium–copper electrodes were approximately 2000 times greater than those with 2 aluminium electrodes. Cold-hardened aluminium is particularly sensitive to electrochemical corrosion; a well-annealed metal containing at least 99-6% aluminium should be used. Aluminium tanks should be well insulated, e.g. bare tanks mounted on porcelain insulators should be used.—S. G.

The Effect of Sulphur on Aluminium Cars. — Railway Mech. Eng., 1934, 108, 83–84).—Aluminium hopper cars used for transporting high-sulphur coal have given satisfactory service for 2 years. They show no appreciable corrosion, although steel often fails very rapidly under the same conditions.—C. E. H.

*The Interpretation of the Negative Difference Effect [in Aluminium and Magnesium]. W. O. Kroenig and V. N. Uspenskaja (Korrosion u. Metallschutz, 1935, 11, 10–16).—The negative difference effect is the name given to the phenomenon observed when an aluminium electrode is short-circuited with a platinum cathode in dilute hydrochloric acid; instead of a reduction in the volume of hydrogen evolved at the aluminium surface, there is an increase. Experiments are described which show that the effect is due to the presence of an oxide film on the metal; the more complete is this film the greater is the effect, and the complete removal of the film, e.g. by amal-
gamation or by replacement of the acid solution by sodium hydroxide, renders the effect positive. Magnesium and aluminium alloys behave similarly to aluminium. The effect is attributed to breakdown of the oxide film by the intensification of the formation of ions by contact with the more noble metal.

—A. R. P.

X-Ray Examination of the Mechanism of Corrosion of Solid Solutions [Copper—Gold]. L. Graf (*Korrosion u. Metallschutz, 1935, 11, 34–42*).—X-ray examination of the surfaces of various copper–gold alloys after corrosion with strong and weak oxidizing agents shows that if the ionization potential of the ions in the corrosive medium suffices to ionize the more noble atoms rendered unstable by the break-up of the solid solution lattice, the resistance limit of the alloy in that medium will lie at 50 atomic-%, the newly ionized atoms of the more noble metal being then re-precipitated on the surface to form a protective film which prevents further attack of the medium. If the latter is not powerful enough to ionize the unstable noble atoms the resistance limit in that medium will lie at 25 atomic-% of the noble metal.

—A. R. P.

The Improvement of Drainage and Water Pipes by the Use of Lead Alloys. Kenneth Gray (*Munic. Eng. Sanit. Record, 1935, 95, 105–107; C. Abs., 1935, 29, 2493*).—Some old lead pipes laid down about the first century A.D. to bring water to the old Roman baths at Chester were remarkably well preserved after nearly 2000 years underground. Modern pipes sometimes fail after a few years’ use. The purity of the old pipe, determined spectroscopically, was no greater than that of good commercial lead now available. Weak acids produce a sort of intercrystalline cracking or penetration in modern pipe. The scouring lines in extruded pipe due to die and core are considered to be starting points for corrosion. Oxide inclusions from the skin of the bath of the extruding machine are also causes of corrosion. The old Roman pipe was cast. The use of alloying constituents to improve corrosion-resistance is discussed.—S. G.

The Dissolution of Magnesium in Aqueous Salt Solutions. L. Whitby (*Trans. Faraday Soc., 1935, 31, 638–648*).—The rate of dissolution of magnesium that has been exposed to air for periods up to 3 weeks has been measured in N, 0.01N, and 0.001N-solutions of sodium sulphate and sodium chloride; the results show that the film of hydroxide formed by atmospheric corrosion has no protective action in any of the solutions tested. In N-sodium chloride the presence of the 3-weeks’ film actually increases the rate of corrosion, but this is not the case in the corresponding sulphate solution since the film is almost completely dissolved thereby owing to the higher solubility of magnesium hydroxide in N-sodium sulphate solutions. The increase in the rate of corrosion of magnesium by increasing the concentration of dissolved salt is comparable with the increase in the solubility of magnesium hydroxide in the solutions, but the position of the maximum rate of dissolution depends on the composition of the metal and on the time of immersion. The curves obtained under various conditions provide additional evidence in favour of the theory of primary preferential hydroxyl ion discharge. Dissolution/time curves for the rate of dissolution of magnesium in 0.01–4N-lithium, sodium and potassium chloride solutions are given.—A. R. P.

Colouring of Cheese by Tin-Foil. J. Gangl and F. Becker (*Milchwirtschaft. Forsch., 1933, 15, 281–283; C. Abs., 1934, 28, 2803*).—Pasteurized cheese of sufficient acidity ($p_H < 5.0$), if a suitable oxidizing medium is present, will dissolve tin from tin-foil whether it is pure or contains antimony or lead. The black stain on such a cheese is due to finely divided antimony or lead, the grey stain to tin. A method is described for determining antimony in tin-foil.—S. G.

Metallurgical Abstracts

Russian.] Iron plates, galvanized under various conditions, were placed in water saturated with oxygen, and the time of appearance of corrosion noted. With zinc coatings of 0·0044 grm. or more zinc per cm.², rust appeared after 5 days. With lighter coatings (0·0012 grm. zinc per cm.²) resistance to corrosion depended on the method of electrolytic deposition of the zinc. The resistance was greater for coatings deposited slowly and at low current densities.—S. G.

Examples of Corrosion from Practice, Their Causes and Prevention [Zinc Sheet; Lead Pipe]. Karl Mandl (Mitt. tech. Versuchsamt., 1934, 23, 41–46).—The development of local pits and perforations in a zinc sheet covering the parapet of a brick wall was traced to the presence of condensed moisture which dissolved sodium sulphate from the mortar used and this solution then acted as an electrolyte, the lead inclusions (0·91%) in the zinc acting as anodes; the trouble was stopped by providing free aeration between the zinc and the bricks. A case of corrosion of lead pipes by the free lime in the mortar of a new wall against which they were laid is also described.—A. R. P.

The Corrosion of Metals Covered by Electrolytic Deposits. J. Liger (Galvano, 1935, (35), 16–18).—Conclusion of a serial article; for previous parts see Met. Abs., this volume, p. 162. The merits and fields of application of silver, nickel, chromium, cadmium, and zinc coatings are considered. Silver is the only one recommended for coating articles of copper and copper alloys to be used in contact with food. Nickel can give good protection against atmospheric influences and against acids and alkalis, but there is too strong a tendency to-day to cheapen the work at the expense of quality. When appearance is secondary, steel is preferably coated with zinc or cadmium. —C. E. H.

Photoelectric Fatigue and Oxidation. J. S. Hunter (Phil. Mag., 1935, [vii], 19, 958–964).—The progress of the superficial oxidation of copper, silver, bismuth, and nickel is discussed by means of results obtained by photoelectric measurements. The results suggest that when a clean metallic surface is exposed to air there is an instantaneous adsorption of gas by the surface. The rate at which oxygen from the air is adsorbed by the surface governs the subsequent time interval before true oxidation of the surface commences. In the case of iron this interval appears to be very small; in the case of copper, silver, bismuth, and nickel the interval is relatively large at ordinary temperatures. The subsequent rate of oxidation depends on the rate of condensation on the oxide/oxygen surface.—J. S. G. T.

*The Corrosive Actions of Different Cooling Brines on Combined Metals. W. Mohr and R. Kramer (Molkerei-Zeit. (Hildesheim), 1934, 48, 2160–2162, 2184–2187; C. Abs., 1935, 29, 2136).—Experiments are reported involving the selection of refrigerants which do not attack metals and alloys, and the selection of metals and alloys resistant to all brines. The brines studied were those previously used (Met. Abs., 1934, 1, 586) and in addition Reinhartin, 22° (Bé) and Frietin, 22°. Tests were carried out by immersing metals in brines and noting loss in weight and surface corrosion. When two different metals are in contact and immersed in a brine, galvanic action greatly increases the corrosion. Common metals undergo a marked electrolytic corrosion when used with noble metals. The measurable electric current generated is a criterion of the galvanic corrosion. Corrosion is proportional to brine temperature. Air, owing to its oxygen content, increases corrosion markedly, e.g. when the brine is stirred. Corrosion is increased about 100% when the concentration of Reinhartin is changed from 28° (Bé) to 22°. Frigisol, 22°, causes corrosion in increasing order in V2A steel, aluminium, tinmed copper, brass, cast iron, copper, iron, and zinced iron. A calcium chloride brine causes more corrosion in an aluminium and copper combination than in aluminium alone. In a stirred Frigisol brine, 22°, a nickel and aluminium combination
produces an electric current smaller (less than 0.1 milliamp.) and more constant than that produced by a nickel and zinc combination (0.2–0.6 milliamp.) or a copper and iron combination (0.06–0.5 milliamp.). Corrosion at the cathode is usually negligible; that at the anode is relatively great. Lead is especially susceptible to galvanic corrosion. Chromium–copper undergoes little galvanic corrosion; electrolytic chromium–copper undergoes none. Nickel is very resistant; it is corroded slightly in Frigodur, Kühlsoleen, and Frietin. V2A steel is better than nickel. In a nickel and V2A steel combination the steel acts as the anode and is decomposed slightly by only one brine, Frigodur. Nicorros, like nickel, is very resistant. Copper and its alloys are slightly corroded and the surface may become coated or coloured. Tin, tinned copper, tinned brass, iron, and cast iron are similar in resistance and are less resistant than copper and its alloys. Lead is still less resistant. Soldered tin is more resistant than lead. Aluminium is more resistant than iron; it becomes porous, however, in all brines, and its volume loss is similar to that of lead. Zinc and zinced-iron are non-resistant. Addition of chromate to Reinhartin greatly reduces its corrosive action; it is one of the best brines. Molkereisole is very non-corrosive; Frigosol is slightly more corrosive. Chromate-free Reinhartin, 28°, and special Kühlsoleen, 20°, are intermediate. Chromate-free Reinhartin, 22°, and Eisol, 22°, are more corrosive. The most corrosive brines are magnesium chloride, Frigodur, calcium chloride, sodium chloride, Thermolyt, Kühlsoleen, and Frietin, all 22° Bé.—S. G.

*Corrosion Phenomena in Sugar House Evaporators.—II. M. Garino (Industria zucchifera italiana, 1935, 28, 1–11; C. Abs., 1935, 29, 2380).—See also Met. Abs., this volume, p. 227. Juices sampled from the individual evaporators were tested for the presence of iron, and the % of chlorine, and the temperatures of the juices were determined. The temperature–percentage of chlorine curves, representing actual operations, define the conditions of freedom from corrosion, danger from corrosion, and definite corrosion. Other factors are involved which do not disturb materially the criteria, except the scaling of the evaporator tubes, in which case the temperature and % of chlorine at the surface of the tubes are not those of the juice. When the scale contains more than 2% Fe₂O₃ there is corrosion. Photographs are given of 18 corroded tubes.—S. G.

*Alkaline Corrosion of Metals in the Production of Dyes. Z. N. Suirkin (Anilinokrasnochnaya Prom., 1934, 4, 570–573; C. Abs., 1935, 29, 2494).—[In Russian.] Cf. Suirkin and Smirenskii, Met. Abs., 1934, 1, 500. Tabulated results are given of the preliminary tests of corrosion of various grades of cast iron, steel, and copper alloys in the laboratory production of β-C₈H₇OH and PhOH by alkaline fusion of the respective sulphonic acids.—S. G.

Corrosion of Petrol Containers. — (Oel u. Kohle, 1935, 11, 259–260).—In referring to a statement by M. P. Graempe, to the effect that fuels containing alcohol exert marked corrosive action on metallic containers, it is stated that the phenomena described might equally be due to the presence of sulphur compounds or of minute traces of copper. The sulphur compounds found in petrol and benzole are known to attack lead rapidly, whilst the porosity of most galvanized zinc coatings renders this material unsuitable. The experience of a commercial undertaking employing over 600 large vehicles is quoted in support of the non-corrosive character of alcohol–petrol mixtures.

—P. M. C. R.

Testing Cracked Petrols for Corrosion. P. A. Sentsov and L. F. Chadaeva (Groznenskii Neftyanik, 1934, 4, (6/7), 37–40; C. Abs., 1935, 29, 2719).—[In Russian.] Elementary sulphur is the most corrosive form of sulphur. Hydrogen sulphide and mercaptans are also corrosive, although to a lesser extent; they are the basic substances for the formation of elementary sulphur. Sulphides and disulphides are but little active and may be considered as non-
corrosive sulphur ingredients. Thiophenes are not corrosive. Treatment with sulphuric acid yields non-corrosive petrels. Preliminary treatment of the oil with sodium hydroxide makes it non-corrosive and prevents the corrosion of equipment.—S. G.

*Elimination of Corrosive Substances from Cracked Petrels. L. Sel’skii (Groznesskii Neftyanik, 1934, 4, (8), 45-49; C. Abs., 1935, 29, 2719).—[In Russian.] The corrosion of distilling apparatus was prevented by introducing a sodium hydroxide solution into the pipe-line used for the pressure distillate; the sodium hydroxide was recycled until spent. The use of a solution of calcium hydroxide on refinery scale is accompanied by the formation of emulsions, while satisfactory results could not be obtained with NH₃.—S. G.

A Method for an Accelerated Determination of the Corrosive Properties of Cracked Petrol. L. A. Aleksandrov (Groznesskii Neftyanik, 1934, 4, (5), 52-53; C. Abs., 1935, 29, 2719).—[In Russian.] A. recommends carrying out the copper-strip test for cracked petrels at 150° C. for 15 minutes, using a flask with a reflux condenser on an oil-bath. These conditions are equivalent to 3 hrs. at 100° C., the loss of light fractions being insignificant.—S. G.

V.—PROTECTION
(Other than Electrodeposition.)

(Continued from pp. 231-234.)

Considerations on the Possibility of the Protection of Metals from Corrosion. M. Straumanis (Korrosion u. Metallschutz, 1935, 11, 49-53).—The possibility of reducing the rate of corrosion of a metal by alloying it with a small quantity of another metal is discussed with reference to the earlier work of S. on the effects of small additions of cadmium or mercury on the rate of dissolution of pure zinc and alloys of zinc with small amounts of other metals in dilute acids. These results show that protection from corrosion is afforded by alloying a metal (A) with another (B) which forms a complete series of solid solutions or definite compounds with the impurities present, which has a higher overvoltage than A and which is only slightly miscible with A in the solid state; the alloy must be cooled sufficiently rapidly to ensure even distribution of B throughout A.—A. R. P.

†On the Applications of Oxide Films on Aluminium. W. Birett (Metallwirtschaft, 1935, 14, 188-190).—The properties of oxide films on aluminium produced by the Eloxal process are described, and the various uses of the coated metal in the chemical industry, in electrotechnology, and for architectural purposes are enumerated.—v. G.

†Surface Ennoblement of Aluminium and Its Alloys. G. Elsner (Chem.-Zeit., 1935, 59, 213-215, 235-237).—Recent work on the plating of aluminium and on the production of protective oxide films on the surface is described at some length and the value of the coatings is discussed.—A. R. P.

Tarnish-Resistant Films on Silver. K. Assmann (Chem.-Zeit., 1935, 59, 217).—The tarnishing of standard silver articles on exposure to the air may be prevented by immersing them for about 5 minutes in a 10% solution of potassium dichromate whereby the metal becomes coated with a thin practically invisible film of silver chromate, which in no way, however, detracts from the display value of the articles.—A. R. P.

How Effective is a Cadmium Coating? J. S. Hoffman and L. J. George (Steel, 1934, 94, (18), 23-25).—The minimum useful thickness of a cadmium coating on steel is 0.0002 in., but for outdoor conditions at least 0.0004 in. is
needed. The thickness is determined by a stripping test, which is described without disclosing the composition of the stripping solution.—C. E. H.

The Homogeneous Coating of Apparatus with Lead. — (Illust. Zeit. Blechindustrie, 1935, 64, 298-299).—To produce a non-porous, homogeneous coating of lead on metallic and other objects, the surface must be cleaned with wire brushes or by sand-blasting, and the object pickled, thoroughly rinsed, dipped in a concentrated solution of zinc ammonium chloride, and at once transferred to the lead plating bath, which is maintained at 350° C. with a surface flux of borax or zinc ammonium chloride. The intermediate bath secures satisfactory adhesion. Modifications of the treatment are described for objects of exceptional size. A lead-base alloy containing 15% of tin is satisfactory for many purposes, but its melting point is comparatively low. The strength of lead coatings may be increased by the addition of aluminium and arsenic in the respective proportions of 5 and 0.03%.

—P. M. C. R.

†On Electrolytic Tinning. See p. 301.

*Protecting Ferrous Materials from Corrosion by Electrodeposits of Zinc and Cadmium. F. Pietrafesa (Metallurgia italiana, 1934, 26, 937-948; C. Abs., 1935, 29, 2136).—The resistance of cadmium- and zinc-plated iron to the corrosive action of a spray of 20% salt solution has been determined. Cadmium gives better protection, as its corrosion product tends to prevent further action. Thus, the rate of corrosion is directly proportional to the time of exposure for zinc, and to the cube root of the time for cadmium. The minimum thickness of plating required for protection against the action of salt-spray for 60 days is 0.0075 and 0.015 mm., respectively, for cadmium and zinc. Cadmium is best deposited from alkaline baths, and zinc from acid baths.—S. G.

Materials and Methods Used to Protect Galvanized Iron. I.—Painting. Wallace G. Imhoff (Amer. Metal Market, 1934, 41, (220), 6, 8).—Adhesion of paint to newly galvanized iron is ensured by sandblasting the surface; the best primer coat appears to be a paint containing a 4 : 1 mixture of zinc dust and zinc oxide as pigment.—A. R. P.

Materials and Methods Used to Protect Galvanized Iron.—II. Wallace G. Imhoff (Amer. Metal Market, 1934, 41, (229), 6, 8).—The formation of “white rust” on galvanized iron may be prevented by dipping the metal in a solution of chromic acid or potassium dichromate, or both. Various lacquer and similar coatings of a proprietary nature can also be used.—A. R. P.

Adjustment, Refinement, and Co-ordination as Factors in Lengthening the Life of Hot-Dip Galvanizing Pots. Wallace G. Imhoff (Amer. Metal Market, 1934, 40, (169), 3, 8; (183), 3, 6; (185), 3, 4).—A detailed description of the hot-dip galvanizing process is given, with practical hints on the operation of the pot to obtain the best results and longest life.—A. R. P.

Mechanical Galvanizing. I.—Mechanical Galvanizing of Sheets. A. Forny (Galvano, 1935, (36), 24-27).—In this process the weight of coating can be reduced to 350 grm./m.² on both sides, as compared with 1200 grm. in hand-dipping. A sketch of a complete installation for pickling, washing, and galvanizing is given, together with data on the consumption of acid, flux, zinc, and fuel. The sheets are fed into the galvanizing bath through a flux box, being then gripped by a pair of rolls entirely submerged in the zinc, and ejected from another pair of rolls partially submerged at the surface. To obtain a good spangle a little tin should be added, but aluminium is detrimental in this process.—C. E. H.

plant dealing with 300 sheets per hr. is described. The sheets are pickled in a pickling machine, rinsed, immersed in zinc chloride, and passed on a conveyor through a drying oven. As they emerge from the oven they are dropped vertically into the zinc bath, over which a hood is arranged to carry off the fumes produced. They are withdrawn from the other side of the bath by mechanically operated pincers, and allowed to cool. No flux cover is used for the zinc bath. The coating is of good quality, but more dross is produced than in the wet process.—C. E. H.

Zinc-Coated Wire by a New Process. — (Amer. Metal Market, 1934, 40, (173), 3).—A brief note. Zinc is deposited on the wire, directly from a zinc-bearing ore, by an electrolytic process. The coating obtained is more adherent and will not crack or chip.—I. M.

Electro-Galvanizing. See p. 301.

New Method of Galvanizing Affords Uniform Coating. J. L. Schueler (Steel, 1934, 95, (9), 40–41).—The usual type of wiper for removing the excess coating from wire is replaced by a coating regulator of unspecified design. The galvanized wire after passing through this regulator is subjected to a flame, which smooths and evenly distributes the coating, and also seals up pores.—C. E. H.

Chemistry of Using Glycerin as Flux Conditioner in Hot Galvanizing. Wallace G. Imhoff (Steel, 1934, 94, (21), 23–25).—Glycerin provides a medium for supplying and holding water in the flux. This is essential, as a perfectly dry flux is ineffective. It also keeps the flux light and puffy, thus adequately removing moisture from articles during immersion, and preventing explosions.—C. E. H.

A Review of the Developments in Cleaning, Pickling, Fluxing, and Hot-Dip Galvanizing for 1934. Wallace G. Imhoff (Amer. Metal Market, 1935, 42, (9), 3, 8; (12), 3, 5).—A brief review of the journal and patent literature for 1934, with notes on the more outstanding advances made.—A. R. P.

Protection of Steel Structures from Rusting by Means of Zinc Coatings. Hans M. Forstner (Chem.-Zeit., 1935, 59, 293–295).—A review of recent work, with a bibliography containing 41 references to articles on the dipping, plating, and spraying processes, and to methods of testing the efficiency of the coatings.—A. R. P.

Increasing the Efficiency of Resistances. — (AEG. Mitt., 1935, (4), 161–162).—A brief account of the improved performance and durability of resistance wire which has been coated with a glaze containing a mixture of nickel and chromium oxides as one of its ingredients.—P. M. C. R.

Anti-Corrosive Paints Made from Coal-Tar or Coal-Tar Oil with and without Pigmentation with Aluminum. Luc Choupin (Peintures, pigments, vernis, 1935, 12, 38–39; C. Abs., 1935, 29, 3177).—Protective paints (so-called Vernicolors), which have desirable physical properties and unusual resistance to chemical agents, and which can be applied to various surfaces, can be prepared from various coal-tar fractions by mixing with suitable solvents and bituminous resins either with or without addition of metallic aluminium pigment.—S. G.

VI. ELECTRODEPOSITION

(Continued from pp. 235–238.)

Electrolytic Deposition of Cadmium. Antonio Ríus and Luis Quintero (Anales soc. espan. fis. quim., 1934, 32, 1077–1089; C. Abs., 1935, 29, 2858).—The composition of the bath is cadmium oxide 39–4, potassium cyanide 128–2, sodium sulphate 50–0, and nickel sulphate 1–0. Cathodic deposits from this bath are dull, but addition of small quantities of soap (Lipofor), licorice, or saponin give brilliant deposits at a current density of 2 amp./dm.². Anodic
current density has an influence on cathodic brilliance in dilute baths. With commercial baths containing 4–5% cadmium, no such influence is observed. In conditions which give brilliant cathodic deposits, the anode becomes brilliant.—S. G.

*Factors Affecting the Structure and Grain-Size of Electrodeposited Cadmium. See p. 286.

*Cadmium–Zinc Alloy Plating from Acid Sulphate Solutions. Colin G. Fink and C. B. F. Young (Electrochem. Soc. Preprint, 1935, 133–156).—The factors affecting the composition of the deposit obtained from slightly acid baths containing zinc and cadmium sulphates have been investigated. To obtain an alloy plate the ratio of zinc to cadmium in the bath must be about 70 : 25 using a cadmium anode. The cadmium content of the deposit is increased by rotation of the cathode or circulation of the electrolyte and by increasing the temperature, while the zinc content of the deposit is increased by increasing the cathode current density, by increasing the acidity, and by addition of salts such as aluminium sulphate, or organic compounds such as caffeine. The most satisfactory plating baths contain zinc 55–75, cadmium 5–30, hydrated aluminium sulphate 15–20 grm./litre, caffeine or gelatin 3–6 mg./litre, and sufficient free sulphuric acid to give pH 4; the best operating conditions are 25°C and 1–2 amp./dm.². Corrosion tests by intermittent immersion in 20% sodium chloride solution showed that the 50:50 alloy is the most resistant, followed by pure zinc.—A. R. P.

*Studies in the Theory of Chromium Electrodeposition. Raymond R. Rogers (Electrochem. Soc. Preprint, 1935, 1–22).—A systematic investigation of the range of electrolyte compositions within which bright chromium plates may be obtained has been made and the results are shown in a ternary diagram: Na–SO₄–CrO₄. The results show that there appears to be a definite acidity range within which chromium deposits may be obtained; at low sulphate concentrations this varies between that of pure chromic acid and that of a very slightly acid solution of sodium dichromate, whilst at high sulphate concentrations more chromic acid is required to obtain a bright deposit since sodium sulphate tends to increase the pH. As the acidity of the bath is increased the current density must be increased to obtain a good deposit, and with a given composition of the bath each current density requires a definite temperature range. Examination of the deposits formed from various solutions as the current density is increased indicates that at low current densities in acid solutions chromous hydroxide is deposited, and at high current densities a frosted deposit containing much hydrogen. From these and other observations it is concluded that to obtain good chromium deposits the pH of the liquid film adjacent to the cathode must be high enough to cause precipitation of chromous hydroxide, the concentration of the atomic hydrogen at the cathode must be great enough to reduce this hydroxide, and the rate of the first reaction must be smaller than that of the second.—A. R. P.

Influence of Bath Concentration on Chromium Hardness. R. J. Piersol (Metal Cleaning and Finishing, 1935, 7, 73–76; C. Abs., 1935, 29, 2857).—Experimental results indicate that the most efficient chromic acid concentration for hard chromium plating is 250 grm./litre when the bath is operated with a sulphate content of 2.5 grm./litre and equilibrium value of Cr³⁺ as maintained with lead anodes, at a temperature of 46°C. Such a concentration also gives the most rapid rate of deposition for a given current density. —S. G.

Black Chromium Plating. Heinz Endrass (Chem.-Zeit., 1935, 59, 338).—The black chromium plate produced by the method described by Pollack (Met. Abs., this volume, p. 105) contains only 70–80% of metallic chromium, the remainder being an oxide of uncertain composition. To produce these coatings it is not necessary to keep the temperature of the bath below 15°C;
good black deposits can be obtained at 30° C. under the correct current conditions.—A. R. P.

Copper Plating of Iron at High Current Densities. N. P. Lapin, V. N. Kharlamov, and G. S. Goniev (Trans. State Inst. Applied Chem. (U.S.S.R.), 1934, (21), 46-56; C. Abs., 1935, 29, 2455).—[In Russian.] Thick copper coatings were obtained on iron samples from a copper acetate bath at an anode density of 5 amp./dm.². A higher current density resulted in a coarse, crystalline deposit. In corrosion tests carried out by placing in sodium chloride and acetic acid solutions hot-tinned iron plates covered with copper coatings 0-02, 0-03, and 0-04 mm. thick, the copper coating had to be at least 0-04 mm. thick to protect the iron against corrosion. Iron samples coated with copper were placed in an acid copper cell containing 250 grm. copper sulphate and 75 grm. sulphuric acid per litre of water, with mechanical stirring. Fine crystalline copper deposits were obtained at 5-18 amp./dm.². The addition of 1 grm./litre of phenol-sulphonic acid solution improved the appearance of the deposit. Experiments were also carried out with univalent copper salts such as CuCl + NaCl, CuCl + HCl, CuCN + NaCN, but with little success. Experiments on the deposition of thick copper coatings (0-15 mm.) from a Hull and Blum cell, on top of a cyanide copper flash coat, gave adherent, but coarsely crystalline, deposits.—S. G.

The Electrodeposition of Copper, Nickel, and Zinc Alloys from Cyanide Solutions. II.—Discussion of the Results in I. Charles L. Faust and Geo. H. Montillon (Electrochem. Soc. Preprint, 1935, Mar., 299-315).—From a critical discussion of the results previously obtained (Met. Abs., 1934, 1, 308) it appears that the relative rate of ion diffusion has not such a large effect on the relative concentration of the metal ions at the cathode as has the degree of ionization of the complex ions. Increasing the temperature of the cyanide solutions increases the degree of dissociation of the complex metalocyanide ions to a maximum at 25° C. for the zincocyancide, at 50° C. for the nickelycyanide, and at above 70° C. for the cupricyanide ion. Increase in current density has a much larger effect on the composition of the alloy plate at low than at high temperatures.—A. R. P.

Gold Plating Baths of Gold Fulminate. M. Vaudroz (Galvano, 1935, (35), 28-29).—A typical bath contains gold fulminate 8, sodium phosphate 7.5, sodium cyanide 15 grm., and water 1 litre. The advantage of converting the gold into this form and then dissolving in cyanide, rather than converting the aqua regia solution of gold direct to cyanide, is that in the former case undesirable alkali salts can be eliminated. The chemistry of the fulminate and its production are described.—C. E. H.

Are Angled Electrodes of Advantage in [Nickel] Electroplating Baths? Eugen Werner (Oberflächenotechnik, 1935, 12, 1).—The advantages and disadvantages of angled nickel anodes over flat and cylindrical anodes are discussed. The latter type of anode has a smaller tendency to form nickel peroxide, and gives a better distribution of the current; angled anodes corrode just as rapidly as other types in the middle and leave a much larger and less usable residue. Although a higher current density can be used with angled anodes the composition of the solution limits this. The causes of pitting and of the production of rough and cracked deposits is discussed at some length; addition of 01 oz. of sodium chloride per gall. is much more effective in preventing pitting and rough deposits than is the addition of hydrogen peroxide, sodium perborate, or nitrates.—A. R. P.

Structure and Properties of Nickel Deposited at High-Current Densities. See p. 287.

Control in Nickel Plating. E. E. Halls (Machinist (Eur. Edn.), 1935, 79, 189-190x).—The regular control of nickel plating in order to obtain a regular product is discussed.—J. H. W.
VI.—Electrodeposition

Automobile Bumpers are Polished, Plated, and Buffed Rapidly. John M. Bonbright (Steel, 1934, 95, (10), 23–25).—An illustrated description of the nickel and chromium plating of bumpers at the Chevrolet plant.—C. E. H.

Nickel and Chromium Plating of Sheet Zinc and Zinc-Base Die-Castings. B. Trautmann (Metallwaren-Ind. u. Galvano-Tech., 1935, 33, 119–120).—After electrolytic degreasing in trisodium phosphate solution the metal is plated with copper for 15 minutes at 0·3–0·4 amp./dm.² and 3·4 v. in a bath containing copper acetate 20, sodium carbonate crystals 20, sodium bisulphite 20, and potassium cyanide 20 grm./litre. The best nickel-plating solution contains nickel sulphate 75, sodium sulphate 75–100, ammonium chloride 15–23, and boric acid 75 grm./litre; this bath gives soft deposits free from hydrogen, which can readily be chromium-plated in the usual bath.—A. R. P.

Electroplating with Rhodium and Rhenium. H. Anderssen (Chem.-Zeit., 1935, 59, 375–376).—Brief notes on recent work, especially that of Fink and his collaborators.—A. R. P.

On Electrolytic Tinning. Max Schlotter (Metallwirtschaft, 1935, 14, 247–250).—Wire and sheet metal can be electrolytically tinmed by a process devised by S. No details are given, but the method is claimed to be as economical as the hot-dipping process and to yield coatings with satisfactory mechanical properties.—V. G.

Comparative Study of Various Electro-Galvanizing Solutions and of the Properties of the Zinc Coatings Obtained. N. P. Lapin, E. T. Vit’yanovich, and M. V. Dmitrieva (Trans. State Inst. Applied Chem. (U.S.S.R.), 1934, (21), 56–67; C. Abs., 1935, 29, 2456).—[In Russian.] The following bath compositions were compared: (1) ZnSO₄·7H₂O 200 grm., Na₂SO₄·10H₂O 70 grm., KAl(SO₄)₂·12H₂O 30 grm., H₂O 1 litre; (2) ZnSO₄·7H₂O 3%, H₂BO₃ 1%, KAl(SO₄)₂ 2%, Na₂S₂O₃·5H₂O 0·1%, Na₂SO₄·10H₂O 1–2%; (3) ZnSO₄·7H₂O 360 grm., NH₄Cl 30 grm., NaOAc·3H₂O 120 grm., H₂O 1 litre; (4) ZnO 45 grm., NaCN 75 grm., NaOH 15 grm., H₂O 1 litre; (5) ZnSO₄·7H₂O 250 grm., MgSO₄·7H₂O 45 grm., H₂BO₃ 45 grm., H₂O 1 litre, plus a little liquorice root extract. Samples of roof sheet iron, carefully cleaned and dipped in 5–7% sulphuric acid, were placed in these various baths, and a zinc coat obtained in conditions of room temperature and a current density of 1 amp./dm.². A comparison of results was made on the basis of ease of operation, rate of solution of zinc coat in a hydrochloric acid solution, mechanical adhesion of deposit and micrographic analysis. Cell (4) had better dispersing ability and gave better and thicker coatings on articles of irregular shape. Cell (1) gave almost as good results. Results with cell (2) are comparable with those with (1), but difficulties are encountered in (2) owing to fine control of acidity. With cell (5) the coating was uneven, and special precautions were required in cleaning the surface to be coated. The best results were obtained from (4) and also from (5) on a sample with a zinc undercoat from a cyanide bath.

—S. G.

Improved Coating Applied to Wire by Electrogalvanizing. —— (Steel, 1934, 95, (26), 22–24).—An illustrated description of a plant for the continuous electrodeposition of zinc on steel wire. The process is capable of giving coatings two or three times as thick as those obtained by hot-dipping. A high current density of 700–1400 amp./ft.² is employed.—C. E. H.

Zinc Plating. James Higgins (Monthly Rev. Amer. Electroplaters’ Soc., 1935, 22, (4), 58–59).—Smooth bright deposits of zinc having a high resistance to the salt-spray test can be obtained by plating at 15 amp./ft.² for 15 minutes at 40°–45°C. in a bath containing zinc 5, sodium cyanide 17·5–18·5, and sodium...
hydroxide 5 oz./gall. with 1% of corn syrup as a brightener. The best anodes consist of an alloy of zinc with aluminium 2 and mercury 0.5%.—A. R. P.

The Adherence and the Causes of Non-Adherence of Electrolytic Deposits. Vittorio P. Sacchi (Galvan., 1935, (33), 20–25; (35), 19–25; (36), 20–23).—After describing the mechanism of adhesion, the author discusses the causes of non-adherence under the following headings: (1) preparation of the basis metal—degreasing, pickling, rinsing, gas occlusion; (2) properties of the basis metal—position in the electrochemical series, passivity, structure, heat-treatment; (3) properties of the electrolyte and of the deposit—electrochemical and ionic properties, current density, temperature, concentration and agitation of the solution, and the corresponding structure of the deposit; (4) effects of thermal expansion. Both theoretical and practical aspects are considered.—C. E. H.

The Adhesion of Electrodeposits. M. de Kay Thompson (Metal Cleaning and Finishing, 1935, 7, 83–85).—General discussion.—S. G.

Some Further Principles of Electrochemistry Applied to Electrodeposition. IV.—Ostwald's Law of Dilution. V.—Mixed Electrolytes. VI.—Coulometers. VII.—Complex Salts. Samuel Field (Met. Ind. (Lond.), 1934, 45, 473–475; 1935, 46, 103–104, 199–200, 389–390).—(V.—) The conductance of acid copper solutions and the method of calculating the throwing power are discussed. (VI.—) The use of gas, copper, and silver coulometers for the measurement of the current used in electrodeposition is described, and the use of lead and mercury for coulometers and the substitution of a solution of silver perchlorate for silver nitrate in silver coulometers are discussed. (VII.—) The meaning and significance of transport numbers, their use in the study of complex salts and in particular of the double cyanides are discussed.—J. H. W.

VII.—ELECTROMETALLURGY AND ELECTROCHEMISTRY

(Other than Electrodeposition.)

*The Cathodic Film in the Electrolytic Reduction of Aqueous Chromic Acid Solutions. Erich Müller [with Donald W. Light] (Faraday Soc. Advance Copy, 1935, Mar., 5 pp.).—Very pure chromic acid solutions are not reduced at smooth platinum cathodes but reduction occurs up to quite high current densities at carbon cathodes; in the first case addition of SO4 ions to the electrolyte causes reduction to take place at the cathode, but only at a much higher potential than the normal. These facts have been investigated by means of cathodic potential curves and oscillograms, and on the basis of the results obtained a theoretical explanation of the phenomena is put forward.

—A. R. P.

*Sodium Discharge Potential at the Mercury Cathode. W. W. Stender, M. M. Stroganov, and P. B. Zhivotinsky (Electrochem. Soc. Preprint, 1935, 23–33).—The sodium discharge potentials at amalgam cathodes varies from 0.1 to 0.15 v. at current densities from 2.88 to 30 amp./dm.2 in 4.28 N-sodium chloride solutions at 15°–70° C.; the sodium content of the cathodes varies under these conditions from 0.02 to 0.4%. During electrolysis at high cathode current densities and when the sodium concentration in the amalgam is high, a hard crystalline amalgam forms on the surface and a sudden rise in the cathode potential occurs which may be sufficient for hydrogen to discharge.

—A. R. P.
IX.—Analysis

(Continued from pp. 241-245.)

Nephelometry in the Metal Industry. Julius Grant (Met. Ind. (Lond.), 1935, 46, 457, 459).—A brief description is given of nephelometry and, in particular, of the use of the photoelectric cell in measuring turbidity. The applications of this method of analysis are described for the determination of Ag, Zn, As, Al, Hg, Mg, Pb, and Cu.—J. H. W.

The Analysis of Elektron. Ivo Ubaldini and Giuseppina Mirri (Industria chimica, 1934, 9, 1476-1480; C. Abs., 1935, 29, 2114).—The methods for determining Zn, Al, Sn, Si, Cu, and Pb, as they occur in Elektron, are reviewed, and the best methods noted.—S. G.

Rapid Determination of Nickel and Chlorides in Nickel Plating Solutions. Walter R. Meyer (Met. Ind. (N.Y.), 1934, 32, 306-307).—To 10 c.c. of the filtered solution in a 250 c.c. flask, add 50 c.c. of a solution containing 40 grm. KI, 35 c.c. of concentrated NH₄OH, and 50 grm. Na₄P₂O₇ per litre and titrate with approximately 6% KCN solution containing 0-34% AgNO₃, until no turbidity remains. Standardize the KCN solution against solutions containing known quantities of Ni which have been treated in the same way. To determine Cl⁻, take another 10 c.c. of solution, add 50 c.c. of 0-2% Na₂CrO₄·10H₂O and titrate with 0-1N AgNO₃ to a buff colour.—S. G.

†The Analysis of Plating Solutions and Deposits. Walter R. Meyer (Metal Cleaning and Finishing, 1935, 7, 61-64, 68; C. Abs., 1935, 29, 2884).—A critical review of recently developed methods of analysis of Sn (Thompson, Met. Abs., 1934, 1, 389), Cu (Hamburger, Zeit. deut. Buchdrucker, 1932, 44, 523-524; Wick, Met. Abs., 1934, 1, 430), Ag (Lochmann, Met. Abs., 1934, 1, 356), Ni (Meyer, preceding abstract), Cd (Halls, Met. Abs., 1934, 1, 307), and Zn plating solutions. The latter can be determined nephelometrically by precipitating with K₄Fe(CN)₆ after removal of Fe and Cu, according to the method of Grant (Met. Abs., 1934, 1, 356). A pH of 2.3 should be maintained. This method has been used also for Ag, Ca, P, and As. The drop test (Clarke, Analyst, 1934, 59, 525-528; Glazunov and Ktivohlavy, Met. Abs., 1934, 1, 430; Millot, Met. Abs., 1934, 1, 507), Preece test (Grosbeck and Waldrup, Met. Abs., 1934, 1, 427), electrical methods, and stripping methods (Glazunov, Met. Abs., 1934, 1, 428) of determining the thickness of electrodeposits are described.—S. G.

* Determination of Sulphuric Acid in Chromium Plating Baths. M. Günthel (Metalwaren-Ind. u. Galvano-Tech., 1935, 33, 139-142).—Methods recently proposed for the determination of the SO₄²⁻ content of Cr-plating baths have been critically examined and shown to give erratic results when the solution tested contains impurities such as Fe³⁺ salts derived from the plating operation. Satisfactory results (± 2.5% of the actual SO₄²⁻ content) are obtained only by removing the impurities before reducing the CrO₃ to Cr⁺⁺ salt. The best procedure comprises treating 25 c.c. of the plating solution with 2-5 c.c. of HCl, and a few drops of HNO₃ to oxidize the Fe⁺⁺ to Fe⁺⁺⁺, heating to boiling, adding Na₂CO₃ until a faint opalescence appears, then 2-3 drops of HCl, diluting to 150 c.c., adding Na₂HPO₄ solution until no further precipitate forms, boiling for 5 minutes, and just neutralizing with Na₂CO₃. After filtration, the clear solution is boiled with HCl and HCHO or C₂H₅OH and kept overnight at 100°C. on the hot plate, treated with the requisite amount of boiling BaCl₂ solution, set aside for 4-6 hrs., and filtered. The BaSO₄ is washed with warm 0-01N-HCl, then with hot H₂O, ignited, and weighed. This procedure obviates loss of SO₄²⁻ in basic sulphates and absorption of other metals by the BaSO₄.—A. R. P.
*Qualitative Detection of Bismuth with Sulphur-Containing Organic Compounds.—IV. J. V. Dubský, Arn. Okáč, and J. Trtílek (Z. anal. Chem., 1935, 100, 408-419).—The reactions of Bi with numerous complex organic compounds containing S are described. —A. R. P.

Potentiometric Estimation of Copper with Sodium Sulphide. C. Prasad and J. B. Jha (J. Indian Chem. Soc., 1935, 12, 1-3).—The estimation of Cu as CuSO₄ in NaC₂H₃O₂-C₂H₄O₂ buffers can be made potentiometrically with Na₂S without adding free acid. The best pH range is 3-5.—R. G.

*A Volumetric Determination of Lead in Alloys Containing Zinc, Copper, and Antimony. N. A. Tananaeff (Z. anal. Chem., 1935, 100, 394-396).—The alloy is dissolved by boiling with concentrated H₂SO₄, and the PbSO₄ collected in the usual way, washed free from acid with C₂H₅OH and converted into PbCO₂ by boiling with a measured volume of 0.1N-Na₂CO₃. The precipitate is filtered off and washed with hot H₂O, the excess of Na₂CO₃ in the filtrate being determined by titration with 0.1N-H₂SO₄ or HCl, and the remainder calculated to Pb.—A. R. P.

A Rapid Determination of Lead on Lead-Coated Iron. Erich Kasper and Paul Slawik (Chem.-Zeit., 1935, 59, 308).—A strip of the metal is degreased by washing with C₂H₆OH and after drying it is weighed and immersed in a warm 5% solution of NaOH containing 0.5 grm. of Na₂O₂. The solution is slowly heated to boiling to dissolve the Pb coating and any Sn which was used to tin the Fe before applying the Pb. The loss in weight of the strip gives the sum of the Sn and Pb. The solution is rendered strongly acid with HCl, the SnIV reduced with Fe filings, and the SnII titrated with 0.1N-I.

—A. R. P.

*Rapid Quantitative Spectroscopic Determination of Metals. I.—Estimation of Lithium. A. P. Snessarew (J. prakt. Chem., 1934, 141, 327-330).—A definite amount of a solution of the material to be analyzed is taken on a Pt spiral and dried, and the spiral is then introduced into a flame. The flame is observed through a spectroscope to determine whether the characteristic Li lines are visible. The solution is diluted until this is no longer the case. It has been determined that the Li lines cease to be visible when the solution taken contains less than 0-0000010728 grm./c.c. of Li, so the Li content of the original material can be calculated from the dilution. The chief advantage of the method is that other metals need not be separated from the solution. —C. E. H.

Manganese Determination on Chrome Cobalt Alloys and Ferrocobalt Stellites and Cobalt High-Speed Steels. H. A. Kar (Chemist-Analyst, 1935, 24, (2), 6-7).—The sample is dissolved in a suitable acid or acid mixture, any insoluble residue being collected, ignited, fused with Na₂O₂, and added to the main solution, which is then treated with an excess of ZnO emulsion and made up to a definite volume in a graduated flask. Half the solution is then filtered through a dry paper and poured into an excess of NH₄OH sufficient to dissolve the Zn(OH)₂ first precipitated; on boiling with (NH₄)₂S₂O₈ the Mn is precipitated as MnO₂ whilst the Co remains in solution as a Co₃⁺ ammine. The precipitate is collected, washed, and dissolved in HNO₃ and NaN₂O₃ and the Mn determined by the bismuthate method.—A. R. P.

*On the Question of the Deposition of Manganese at the Mercury Cathode. Victoria M. Zvenigorodskaya (Z. anal. Chem., 1935, 100, 267-271).—In sulphate solutions containing an excess of NH₄H₂SO₄, Mn is deposited only incompletely at a Ag cathode and hence Mn interferes in the separation method based on the deposition of Fe, Cr, Zn, Cd, &c., on a Hg cathode since it contaminates both the deposit and the solution.—A. R. P.

*The Quantitative Determination of Thorium with Picrolonic Acid. Friedrich Hecht and Walter Ehrmann (Z. anal. Chem., 1935, 100, 87-98).—From a hot, solution of Th(NO₃)₄, made slightly acid by CH₃COOH and free from Na, K,
and \(\text{NH}_4 \) salts, Th is quantitatively precipitated as crystalline hydrated \(\text{Th}(\text{C}_9\text{H}_6\text{ON})_4\cdot\text{C}_9\text{H}_7\text{ON} \) by addition of \(\text{O-O}1\text{A}\text{-picrolonic acid} \). The precipitate after drying at 105° C. contains 17.82% Th.—A. R. P.

The Quantitative Determination of Thorium with 8-Hydroxyquinoline. Friedrich Hecht and Walter Ehrmann (Z. anal. Chem., 1935, 100, 98–103).—The precipitation is made in a boiling neutral nitrate solution of the metal containing 2–5% of \(\text{CH}_3\text{-CO}_2\text{H} \), the red crystals of \(\text{Th}(\text{C}_9\text{H}_6\text{ON})_4\cdot\text{C}_9\text{H}_7\text{ON} \) being collected and dried at 105° C.; they contain 24-347% Th.—A. R. P.

The Determination of Small Quantities of Tellurium in Lead. E. Kroner (Chem.-Zeit., 1935, 59, 248).—The Pb (20 grm.) is dissolved by boiling with 1:1 HNO\(_3\), a little Br being added at the end of the reaction to oxidize any oxides of N. The solution is evaporated until crystallization commences, cooled, diluted to 500 c.c., and titrated with 0-02N-KMnO\(_4\) (1 c.c. = 0.00102 grm. Te).—A. R. P.

Rapid Determination of Tin, Copper, and Antimony in Babbitt Metal. I. V. Tananaev (Zhurnal Prikladnoi Khimii (J. Applied Chem.), 1934, 7, 223–228; C. Abs., 1935, 29, 2474, and (abstract) Chim. et Ind., 1934, 32, 585–586).—In Russian.] Digest 1 grm. of the alloy with 35 c.c. of concentrated HC1 and a little KC\(_8\)O\(_4\). Make up to exactly 100 c.c. and use 20 c.c. for the determination of Cu. Shake with Bi-Hg at about 50° C. until all the Cu\(^{++}\) is reduced to Cu\(^+\) in an atmosphere of CO\(_2\). Add a crystal of KBrO\(_3\), and as soon as the colour is gone filter rapidly and titrate with K\(_2\)Cr\(_2\)O\(_7\) to an end point with diphenylamine. In another aliquot determine Sn + Cu similarly. In this case heat with Bi-Hg for 30 minutes at 60°–80° C. To determine Sb, digest 0.5 grm. of alloy in 15 c.c. of concentrated H\(_2\)SO\(_4\), dilute and filter off PbSO\(_4\). Dilute with water, add 10–15 c.c. of concentrated HCl, boil for 5 minutes, dilute, and titrate hot with KBrO\(_3\) until methyl orange indicator is decolorized.

Quinaldinic Acid as an Analytical Reagent. II.—The Determination of Zinc in the Presence of Iron, Aluminium, Uranium, Beryllium, and Titanium. Priyadarajan Rây and Anil Kumar Majundar (Z. anal. Chem., 1935, 100, 324–327).—The method previously described (Rây and Bose, Met. Abs., 1934, 1, 194) is carried out in the presence of an alkali tartrate to prevent precipitation of the elements mentioned in the title.—A. R. P.

X.—LABORATORY APPARATUS, INSTRUMENTS, &c.

(See also "Testing" and "Temperature Measurement and Control").

(Continued from pp. 243–246.)

An Apparatus for Electron Diffraction at High Voltages. G. P. Thomson (Faraday Soc. Advance Copy, 1935, Mar., 2 pp.).—An apparatus for obtaining electron diffraction patterns of thin metal films is described which works well over the range of 45–85 kv.; it is based on the principle of two-stage acceleration, which has been much used for positive ions. The mechanical arrangement and electrical lay-out are illustrated diagrammatically, but the paper must be consulted for details.—A. R. P.

XI.—PHYSICAL AND MECHANICAL TESTING, INSPECTION, AND RADIOLOGY

(Continued from pp. 246–249.)

American Institute of Aeronautical Sciences. Engineering materials used in aeronautical construction are subjected by actual service stresses to tests far more severe than those applied by ordinary testing appliances. The conditions of use differ from those of static testing principally in the importance assumed by surface conditions, e.g. by small superficial defects and stress concentrations. The material must be free from discontinuities, and the load must be kept below the fatigue limit of the material.—P. M. C. R.

*Impact Strength Tester. Burrows Moore (J. Sci. Instruments, 1935, 12, 108-111).—Describes the construction of a small portable self-contained instrument designed for impact tests on test-specimens in the form of 3-in. cubes. The instrument is of the falling-weight type, and was designed for tests on silica.—W. H.-R.

XII.—TEMPERATURE MEASUREMENT AND CONTROL

(Continued from pp. 249-250.)

A Simple Means for the Temperature Measurement of Aluminium Ingots. A. von Zeerleder (Aluminium, 1935, 17, 199-201).—The use of thermocouples of the usual type for measuring the temperature of aluminium ingots during heat-treatment may lead to errors of up to 20° C., which may cause trouble later owing to incorrect heat-treatment; in addition there is also a very appreciable time lag even when the junction is inserted in a hole in the metal. These difficulties may be overcome by the use of a square block of heat insulating material fitted with a handle and with stout wires of nickel and nickel-chromium, forming the two elements of the couples, protruding just through the block on the opposite side to the handle and sharpened to points. By pressing these points into the metal so that they penetrate the oxide skin the temperature of the ingot can be read off from the galvanometer in 1-2 seconds with great accuracy.—A. R. P.

*Standard Tables for Chromel-Alumel Thermocouples. Wm. F. Roeser, A. I. Dahl, and G. J. Gowens (J. Research Nat. Bur. Stand., 1935, 14, 239-246; Research Paper No. 767).—Tables have been prepared giving the thermal e.m.f. of Chromel P versus Alumel, Chromel P versus platinum, and Alumel versus platinum at various temperatures in the range — 310°-2500° F. (— 190°-1372° C.). The values in the range 0°-2500° F. are based on the calibration of 15 representative No. 8 gauge Chromel–Alumel thermocouples selected after preliminary tests on 50 heats of each alloy made by the method regularly used. The tables give the temperature—e.m.f. relation of the thermocouples now being manufactured as closely as the wires can be reproduced at the present time. The guarantee limits have been fixed by the manufacturer at ± 5° F. in the range 0°-660° F. (— 18°-349° C.) and ± 0.75% in the range 660°-2300° F. (349°-1260° C.). The methods used in calibrating the thermocouples in the various temperature ranges are described briefly.—S. G.

Methods of Testing Thermocouples and Thermocouple Materials. Wm. F. Roeser and H. T. Wensel (J. Research Nat. Bur. Stand., 1935, 14, 247-282; Research Paper No. 768).—Describes various methods used for testing thermocouples and thermocouple materials, and the precautions which must be observed in order to attain various degrees of accuracy. In particular, the methods developed and used at the (U.S.) Bureau of Standards are described in detail. The paper provides some guidance in the selection of the method which is best adapted to a given set of conditions.—S. G.

Non-Metallic Thermo-Elements. G. Keinath (Arch. tech. Messen, 1935, 4, (46), 155).—The upper working limit of the platinum/platinum–rhodium thermocouple is about 1400° C., the exact value depending on the nature of the protecting tube. The substitution of carbon for one of the metals
produced too small a thermoelectric effect, as did the carbon-graphite couple. The carbon-Silic (silicon carbide) element, however, has a thermoelectric power about 30 times that of the platinum/platinum-rhodium couple, and its effective temperature range is considerably greater; temperatures of 1800° C. may be measured by the use of this couple, which may be immersed in molten metals if necessary. Two drawbacks inherent in the element are its high electrical resistance, and the high thermal conductivity of the carbon, which necessitates the water-cooling of the cold-junction. — P. M. C. R.

A Useful Method of Graph Plotting. M. O'C. Horgan (J. Sci. Instruments, 1935, 12, 123-124). — A note, describing the advantages of sloping axes for plotting calibration curves of instruments, which may be adjusted for different ranges. The method prevents confusion arising from the overlapping of different curves. — W. H. R.

XIII.—FOUNDRY PRACTICE AND APPLIANCES

(Continued from pp. 250-252.)

Recent Advances in the Founding of Aluminium Alloys. I. G. Slater (Met. Ind. (Lond.), 1935, 46, 379-382, 415-418, 433-436; and Found. Trade J., 1935, 52, 201-203, 221-223, 276; discussion, 255-256). — Read before the London Branch of the Institute of British Foundrymen. The circumstances guiding the choice of aluminium alloys to serve any particular purpose, the properties of the more commonly used alloys, and the melting practice, particularly as regards their liability to gas absorption, the formation of aluminium oxide, and contamination by impurities are described. The applications of electric crucible and open-hearth furnaces, and comparative costs with coke-furnace melting are given. The effect of the quality of the ingot metal on the density and the appearance of pinholes, various methods for the removal of gases from defective melts, casting technique as regards chill castings, gravity and pressure die-castings and sand castings, mould materials, design and testing of castings are discussed. The discussion centred on the use of aluminium moulding boxes, casting under pressure, making the metal sound, the Arrehbitt process, use of proprietary fluxes, relation between shrinkage and pinholes, and hydrogen inclusion. — J. H. W.

Notes on the Founding of Phosphor-Bronze. R. C. Stockton (Met. Ind. (Lond.), 1935, 46, 503-505). — The various factors governing the production of "cast-on" test-bars, the effect of phosphorus on bronze, the heat-treatment and hardness of phosphor-bronzes, and the treatment of centrifugally-cast bronze are discussed. — J. H. W.

men. The design, mould building and drying, furnaces used, casting, and finishing in the manufacture of large propellers (up to 55\textfrac{1}{2} tons cast weight) in manganese–bronze are described, and the principal mechanical properties of the alloys used are given. Experiences with other alloys and defects liable to occur in large propeller castings are discussed.—J. H. W.

The Production of Marine Propellers. — (Machinery (Lond.), 1935, 46, 93–97).—An account of the methods used for building the moulds, melting, and casting in making large manganese–bronze propellers at the works of J. Stone and Co., Ltd., Deptford.—J. C. C.

Sodium–Zinc Alloy [as Deoxidizer for Brasses]. B. A. Weimer (Du Pont Magazine, 1935, 29, (4), 18–19, 24).—A sodium–zinc alloy containing 2% sodium is used for deoxidizing brasses and preventing porosity. Its melting point is 140° C. above that of pure zinc. It has the advantage of introducing no undesirable constituents into the brass, since the sodium is oxidized and eliminated when it has done its work.—C. E. H.

Reconditioning Worn Car Journal Bearings. J. W. Lemon (Railway Mech. Eng., 1934, 108, 24–25).—After thorough cleaning of the bearing shells the old Babbitt metal is bored out, and the flat surfaces of the bearings ground off. The shells are then dipped into a flux consisting of hydrochloric acid and ammonium chloride, and "tinned" in a solder bath. The relining with new white metal is then carried out immediately. Various precautions to be observed in pouring the linings are detailed, and the recovery of old white-metal borings is described.—C. E. H.

Gravity Die-Casting. E. C. Lewis (J. Coventry Eng. Soc., 1934, 15, 152–166).—An illustrated description of works’ practice in the production of gravity die-castings of aluminium and magnesium alloys, die designs and manufacture, and foundry equipment.—R. G.

Recent Die-Casting Developments Open New Field for Product. Sam Tour and F. J. Tobias (Steel, 1934, 94, (6), 25–27, 30).—See Met. Abs., this volume, p. 178.—C. E. H.

XV.—FURNACES AND FUELS

(Continued from pp. 252–255.)

Measurements of the Specific Furnace Characteristics Associated with Oil Firing. E. Graf (Feuerungstechnik, 1935, 23, 37–40).—Discusses type of oil burner used, characteristics of the combustion and furnace chambers including the efficiencies of combustion and utilization achieved, the degree of fineness of atomization, and effect of viscosity on the size of oil drop.—J. S. G. T.

The Electric Arc Null-Potential Furnace. S. E. Heuland (Bull. Soc. franç. Élect., 1935, [v], 5, 481–512).—A full account is given of the development and construction of the Heuland arc furnace. The water-cooled electrodes project downwards into the interior of the furnace, and their design and mounting, which are claimed completely to eliminate losses at the joints and to minimize
electrode consumption, constitute the main feature of the new plant. Certain older types of furnace may be adapted to Heuland electrodes, endurance tests on which are described.—P. M. C. R.

XVI.—REFRACTORIES AND FURNACE MATERIALS

(Continued from pp. 255–256.)

Acid and Basic Bottoms of Copper-Refining Furnaces. Edmund R. Thews (Met. Ind. (Lond.), 1935, 46, 464–465, 513–514).—The requirements of material for the hearths of copper-refining furnaces are set out, the use of magnesite bricks and silica hearths and their advantages and disadvantages are discussed. Neutral refractories have not given complete satisfaction for the purpose. The nature of fluxing materials, the sintering temperature, and the final preparation of the hearth are explained.—J. H. W.

*New Ceramic Materials as Aids for Research on Technically Important Fused Salt Electrolyses. Heinz Borchers (Metallwirtschaft, 1935, 14, 149–151).—Alumina crucibles burned at 1975° C. in an oxidizing atmosphere can be used up to 1350° C. in electrolysis of fused salts for the production of aluminium and magnesium.—v. G.

XVII.—HEAT-TREATMENT

(Continued from pp. 256–257.)

Quenching in Water, Brine, and Oil. I. N. Zavarine (Metal Progress, 1935, 27, (4), 43–46).—Photographic studies of the behaviour of water, oil, and brine when used as quenching media show that both water and oil permit the formation of continuous envelopes of vapour around the quenched pieces. In both cases these envelopes are in a constant state of agitation while quenching proceeds, the water vapour film appearing to be thinner and to be in more rapid motion than that of oil vapour. A salt solution instantly forms a steam film, and simultaneously deposits on the surface of the object a thin film of salt. The violent and repeated rupture of this solid layer leads to the continuous destruction of the vapour envelope; this agitation by the salt crystals is believed to account for the high quenching efficiency of brine solutions.

—P. M. C. R.

XVIII.—WORKING

(Continued from pp. 257–259.)

*Distortion Characteristics Associated with Wire-Drawing. Erich Siebel (Mitt. K.W.-Inst. Eisenforschung, 1934, 16, 213–216).—The distortion of a copper rod of initial diameter 24 mm. after wire-drawing through a die of angle either 24° or 40° so that the diameter is decreased about 30% is investigated. The experimental results are based on a comparison of the form of a rectangular network ruled on the rod before drawing through the die with the form of the network after drawing. The results confirm the conclusion reached by Taylor and Quinney, viz. that the additional slip produced in the external zones of the drawn material decreases with the number of draws. This result is attributed to a difference in the nature of the hardening effected in the external zones and the core of the rod. It was assumed by Siebel and Hühne that the principal axes of deformation coincide with the principal stress axes. This is now found to be true only of the initial period of deformation.—J. S. G. T.
Lubrication as Affected by Physical Properties of Lubricants. Robert C. Williams (Wire and Wire Products, 1935, 10, (4), 145–146, 160).—W. records values of the coeff. of friction determined by drawing 0.0253 in. soft copper and 0.0250 in. 18-8 stainless steel wire at a speed of 30 cm./minute through a 0.0225-in. tungsten carbide die with a die angle, θ, of 18° (half-angle of throat 9°), using as lubricants various solid waxes and wax-like substances of moderately low melting point. The coeff. of friction was calculated from the equation:

$$\text{Die pull} = (\text{myp})(\Delta - a)(1 + \cot \frac{\theta}{2} \cdot cf)$$

in which $\text{myp} =$ mean yield-point of wire (assumed equal to ultimate tensile strength of undrawn wire); $\Delta - a =$ reduction in area of cross-section effected; and $cf =$ coeff. of friction. The coeff. of friction is less with solid waxes (0.07–0.15) than with mineral oils (0.21–0.29), but the value increases when the die is heated to the melting point of the wax until it equals that for mineral oils. Waxes of higher melting point become effective at temperatures approaching their melting points. W. concludes that, in order to realise the enhanced lubrication given by solid waxes in wire-drawing, the lubricant must adhere strongly to the surface of the wire or die or both, must be solid until it enters the region of high pressure between the wire and the bearing of the die, and must yield a fairly mobile liquid between the surfaces of wire and die while reduction is taking place. He believes that the coeff. of friction for a solid lubricant which meets these conditions depends on the viscosity and thickness of the film of lubricant rather than on the chemical nature of the lubricant, wire, and die, and attributes the lack of exact parallelism between the coeffs. found with copper and stainless steel to differences in adhesion of the lubricants to the two metals, to the influence of the temperature attained at the metal/die interface, and to the effect of points of asperity on wire and die.—W. E. A.

Diamond Die Manufacture. —— (Wire Industry, 1935, 2, 61–63).—An account of the manufacture of diamond dies at the Parkstone (Dorset) works of the British Diamond Wire Die Co., Ltd., with practical hints on the precautions to be observed by users of such dies (cf. following abstract).—W. E. A.

Composition Dies. —— (Wire Industry, 1935, 2, 93–94).—The economies offered by the use of composition dies instead of steel and chilled iron dies are outlined. Consideration of the shape of such dies, of their lubrication, and of the importance of correct preparation of the rods prior to drawing and of proper leading of the wire to and from the dies, with avoidance of shock loads on the latter, is followed by a description of methods of re-boring and re-polishing (cf. preceding abstract).—W. E. A.

Wire Cloth Manufacture. Activities of the United Wire Works, Ltd. —— (Wire Industry, 1935, 2, 43–45).—Editorial. A short, popular account of the manufacture of wire-cloth and gauze for paper-making and screening purposes, as carried on by the United Wire Works, Ltd. Fine brass and bronze wires for paper-machine cloths are diamond-drawn at speeds of 2000–3500 (feet, presumably: the length unit is omitted) per minute, and are bright-annecled in thermostatically-controlled electric furnaces.—W. E. A.

The Early History of Wire. F. C. Thompson (Wire Industry, 1935, 2, 159–162).—T. cites a Biblical reference to the production of wire by beating into plates, cutting into strips, and hammering on an anvil; quotes Guild regulations governing 8 wire-drawing establishments in Paris about A.D. 1270, and a Latin MS. of A.D. 1000 or earlier ascribed to Theophilus, in which occurs the earliest known reference to the wire-drawing die; and attributes the first application of mechanical power to wire-drawing to Rudolph of Nuremberg about 1350. Wire-drawing was introduced into England in 1565 as the result of an invitation to German wire-drawers by Queen Elizabeth, and its development was greatly influenced by the importance of card wire in the woollen industry. The old French method of production of draw-plates from wrought
XIX.—Cleaning and Finishing

Developments in Electrolytic Pickling. A. E. Chester and C. J. Krister (Metal Cleaning and Finishing, 1935, 7, 30–33; C. Abs., 1935, 29, 2858).—A brief description of the Madsenell, the Hanson–Munning, the Bullard–Dunn, and the “Ferrolite” electro-pickling methods.—S. G.

The Removal of Vapours and Waste Gases in Pickling, Acid Brightening, and Metal Coating Works. R. Tiquet (Galvano, 1935, (34), 26–30; (36), 28–32).—The characteristics of the various fumes and gases likely to be encountered are described, and a number of different systems for drawing them off and cleaning the polluted air are discussed. The choice of materials for the construction of the ducts, &c., is also touched upon.—C. E. H.

Hydrogen-Ion Concentration of the Saliva of Picklers (Metal Cleaning). I. V. Hecker (Arch. Hyyg., 1934, 5, 255–262; C. Abs., 1935, 29, 2488).—In pickling plants where sulphuric acid or hydrochloric acid is used, the excellent condition of the gums and teeth of the workers were remarkable, in spite of the injurious effect of the gases on the health of the men. The investigation showed an increase of alkalinity of the saliva, the buffer property of which hindered a decalcifying action of the acid.—S. G.

Deposition of Metallic Copper on Antique Silver Coins During Electrolytic Cleaning and a Method for Its Removal. Earle R. Caley (Tech. Studies Field Fine Arts, 1935, 3, 123–132; C. Abs., 1935, 29, 2455).—A simple method, suitable for nearly all cases, for the safe removal of metallic copper deposited on silver coins during electrolytic cleaning consists in immersing the coins for 5–10 minutes in a 5% silver nitrate solution in a shallow vessel that is given a gentle rocking motion, each coin being turned over with forceps at frequent intervals, they are then washed with running water, rubbed with moist sea-sand or a stiff brush, and can finally be given a high finish with a polishing powder or paste. With silver coins having incrustations containing a considerable proportion of copper compounds, only electrolysis in alkali cyanide solution combines effective cleaning with complete avoidance of copper plating; the method is slower, however, than with the silver nitrate method for removing copper plating.—S. G.

Cleaning of Tinned Surfaces. Edwin Klika (Metal Cleaning and Finishing, 1935, 7, 76; C. Abs., 1935, 29, 2890).—The tarnish which develops on tinned articles on ageing can be removed and the finish restored to its original lustre by immersing the articles for 2–3 minutes in palm oil heated to 150°C. After draining, the excess oil is blown off the articles with an air blast. When larger articles are to be treated it is recommended to preheat these in boiling water before immersion to obviate excessive cooling of the oil. Another method consists in immersing the articles in 2% nitric acid, and is most efficient if the articles are preheated. The acid dip is immediately followed by a rinse in kerosene oil. The duration of the acid dip must be determined experimentally. Too short a dip does not restore the lustre and too long a dip increases the
tarnish and produces a spangle effect. The dip and the rinse are operated at room temperature. The drying of the articles is best accomplished in heated sawdust.—S. G.

Controlling Cleaning Baths. H. C. Roberts (Metal Cleaning and Finishing, 1935, 7, 34–36; C. Abs., 1935, 29, 2890).—Discusses the colorimetric determination of the PH of alkaline cleaning baths for the purpose of controlling the maximum cleaning efficiency.—S. G.

Coloured Etching of Metal [e.g. Copper] Letters, Indicators, and Decorations of All Kinds. — Rostosky (Metallwaren-Ind. u. Galvano-Tech., 1935, 33, 161–162).—Smooth velvety-black finishes can be obtained on copper, brass, steel, &c., by etching in a mixture of hydrochloric acid (d 1.15), antimony tellurite 40 grm., bismuth selenite 80 grm., and water 580 c.c. The strongly adherent film formed on the metal consists of a mixture of the selenides and tellurides of bismuth and antimony.—A. R. P.

Metal Colouring. A. Busser (Metallwaren-Ind. u. Galvano-Tech., 1935, 33, 162–163).—The composition of various solutions for colouring copper, zinc, brass, aluminium, nickel, iron, and gold are given.—A. R. P.

Polishing and Buffing Articles of Copper, Light Metals, and Tinplate. Rudolf Plücker (Metallwaren-Ind. u. Galvano-Tech., 1935, 33, 165).—Practical hints and suitable polishing and buffing media are given.—A. R. P.

Japanning Metal Parts [Brass, Steel]. William J. Miskella (Met. Ind. (N.Y.), 1935, 33, 45–47).—A modern American plant is described and illustrated with details of the procedure used.—A. R. P.

Alarcar Treatment of Aluminium. Producing Case-Hardened, Coloured Aluminium with Insulating and Heat-Resisting Properties. — (Elect. Times, 1935, 87, (2255), 42).—This process produces a different microscopic structure of the oxide, compared with earlier methods, and is in a spongy form which is readily susceptible to dyeing and sealing. It is capable of taking a high polish, but may be given a matt finish. The aluminium parts are cleaned and immersed in a special electrolytic bath (composition not given). Coatings up to 1500 in. can be deposited, and may subsequently be dipped into a dye bath. The case-hardened skin is exceptionally hard, resistant to all forms of corrosion, and maintains its polish indefinitely. It is also heat-resistant.—I. M.

XX. JOINING

(Continued from pp. 260–261.)

A Simple Method of Making Contacts with Thin Metal Foil [and of Joining Two Pieces of Thin Foil]. R. V. Jones (J. Sci. Instruments, 1935, 12, 122–123).—Methods are described for making electrical connection to thin metal foil in cases where soldering is impracticable or adds appreciably to the heat capacity of the foil. To join thin gold foil to a piece of clean metal, the surface of the latter may be moistened with alcohol, and the foil allowed to fall on the moistened surface, when the surface tension of the alcohol pulls the foil into such intimate contact that it is impossible to strip the foil when the alcohol has evaporated. Two pieces of foil may be joined similarly using a dilute solution of pyroxylin in amyl acetate. The electrical resistances of such junctions remain constant to 0.25% over periods of days.—W. H.-R.

Economies in Tin Solders by the Use of New Alloys and New Methods. Erich Lueder (Z. V.d.I., 1935, 79, 100–103).—Discusses the development, use, and value of new German solders designed to economize in tin consumption.—K. S.

Aluminium Joints in High-Tension Cables. L. Lux (Aluminium, 1935, 17, 202–208).—Methods of joining lengths of aluminium cables by soldering and welding and by the use of special clamps are described with reference to illustrations.—A. R. P.
Gas Welding of Aluminium Tank Structures. G. O. Hoglund (Welding J., 1935, 32, 50-52).—Modern developments in aluminium welding are briefly discussed with reference to transport tanks, brewery, dairy, and chemical equipment, furniture, and architecture.—H. W. G. H.

Special Problems in the Welding of Aluminium. — (Canad. Mach., 1935, 46, (4), 35-37).—The importance of proper support, oxide removal, and joint preparation is emphasized, and special methods in connection with the oxy-acetylene welding of sheet metal are described. For cast materials a welding rod containing a small % of silicon is recommended, as eliminating the puddling rod. Bench methods of testing temperature are briefly described.—P. M. C. R.

Advances in Electric Welding of Light Metals. O. Haase and O. Plass (Aluminium, 1935, 17, 209-216).—Modern types of welding machines are described and illustrated, and the microstructures of characteristic welds in various light alloys are shown in photomicrographs.—A. R. P.

The Fuller Carbo-Flux Arc Method of Light Sheet-Metal Working. — (Welding J., 1935, 32, 12, 22-24).—A manual carbon-arc process is described in which the electrode holder produces a magnetic field round the arc, ensuring arc stability. Coated filler rods are used, the flux being designed to ionize the arc stream as well as to protect the metal. Welding speed and current curves are given for steel up to 16 G., but the process is also recommended for aluminium and copper.—H. W. G. H.

The Joining of Lead Cable-Sheaths by Lead Burning, Known as Duct Splicing. W. A. Adams (Post Office Elect. Eng. J., 1935, 28, (1), 37-39).—A full description is given of the method perfected by the Birmingham P.O. Testing Branch for the replacement of lead sheathing by oxy-acetylene welding (“burning”) the new sections into position.—P. M. C. R.

The Hard Alloy “Armite.” S. B. Kocharov (Neft, 1933, 4, (11), 11; C. Abs., 1935, 29, 2133).—[In Russian.] The properties and application of the American alloy Armite (chemical composition not disclosed) are discussed. This alloy is manufactured in 4 types: (1) Armite arcweld, a powder; (2) Armite autoweld, in rods; (3) Armite inserts and compounds, chips; and (4) Armite hard facing rod. All these alloys are suitable for brazing drilling bits.—S. G.

Bronze Welding. C. H. S. Tupholme (Met. Ind. (Lond.), 1935, 46, 431-432).—Bronze welding and brazing of cast iron, steel, wrought iron, and copper are described, and the use of a manganese-bronze welding rod in cases of surfaces exposed to severe wear is explained.—J. H. W.

Development and Progress of Bronze-Welding. R. Meslier (Rev. Soud. Autogène, 1935, 27, (252), 7-12).—The rapid development of the process, particularly for steel and cast iron, is described. Some applications for copper and brass are illustrated. For copper, the method is recommended for thin sheets, in preference to welding: for brass, on the other hand, for material of thickness greater than 4 mm. A copper vessel is illustrated after hydraulic test, in which it had deformed to spherical shape without failure of any of the bronze-welded seams. The circumferential elongation was about 36%.—H. W. G. H.

Welding in the Automotive Industry. E. J. Raymond (Modern Engineer, 1935, 9, 68-72).—The gas-welding of zinc-base die-castings, aluminium and magnesium alloys, for repair work is discussed.—H. W. G. H.

Methods of Welding. — (Soudure et Oxy-Coupage, 1935, 12, 243).—In the leftward method of welding, complicated movements of blowpipe and filler-rod are often executed by the operator. These are unnecessary and even harmful: movement of the blowpipe tip and the rod should be confined as far as possible to a steady progress along the line of the seam.—H. W. G. H.

The Practical Side of Resistance Welding. H. S. Jeffs (Welding Ind., 1935, 3, 23-29; discussion, 65-67).—Spot-, seam-, butt-, and flash-welding are discussed, with especial reference to correct setting-up of the machines, pre-
paration of the material, handling of the work in the machine, minimizing of distortion and marking of the work. In replying to the discussion, J. maintained that resistance welds in ferrous metals were not fusion welds.—H. H.

Butt-Welding Theory. P. W. Fassler (Welding Eng., 1935, 20, (2), 26-28).—A method is described for calculating the heat and current requirements for butt-welding (not flash-welding).—H. W. G. H.

Spot-Welding. K. B. White (Wire and Wire Products, 1935, 10, 143-144, 156).—W. summarizes in a table the present position with regard to the spot-welding of 250 pairs of metals and alloys, the majority of which are non-ferrous. The classification used is: good weld, completely miscible but brittle weld, poor weld, no weld. The usual method for making a spot-weld is described, and the vital importance of working with clean metal parts is emphasized. The choice of material for electrode tips is discussed; copper tips are recommended for high-resistance materials such as iron, nickel, Nichrome, and nickel-brass, and copper-rich copper-tungsten alloy tips if greater strength or longer life is required; for welds between low-resistance materials, like copper and aluminium, tungsten tips are best. Modifications of the method for spot-welding parts of widely different thickness, electrical resistance, or melting point are discussed, and a means of further localizing the area of intense heating by projection welding is outlined. Possible ill effects of intense local heating are minimized by the use of a high current for a short time and by welding under a suitable liquid.—W. E. A.

XXI.—INDUSTRIAL USES AND APPLICATIONS

(Continued from pp. 251-255)

†**Free Conductors of Aluminium and Aluminium Alloys.** Herbert Wiesforthaler (Z.V.d.I., 1935, 79, 105-110).—The properties of Aldrey and steel-cored aluminium conductors are described.—K. S.

Influence of Aluminium on the Reproduction, Respiration, and Fermentation of Yeast. K. Trautwein (Z. ges. Brau., 1934, 57, 65-67, 69-71; C. Abs., 1935, 29, 2296).—Bottom-fermenting yeast was rapidly killed by treatment with 0.01M Al₂(SO₄)₃. A 0.001M concentration exerted a distinct inhibition on growth, while lower dilutions had no noticeable effect. Such high concentrations (0.01M corresponds to 6.7%), however, which are harmful to yeast never occur in brewing practice. Respiration was not affected by concentrations up to 0.01M, but fermentation proved to be very sensitive to aluminium salts. A 0.0001M concentration in a solution made up from sugar and inorganic salts reduced the velocity of fermentation by 50%. In wort the harmful effect was not apparent, owing to precipitation of aluminium by the phosphates of malt.—S. G.

Aluminium with Regard to Textile Dyeing and Finishing Machinery. G. L. Atkinson (Textile Colorist, 1934, 56, 129-130; C. Abs., 1934, 28, 2910).—Points out the advantages of more frequent use of aluminium for textile finishing machinery, in place of iron and steel.—S. G.

Aluminium Awnings. — (American Press Cutting, 1935, Mar. 18; Light Metals Rev., 1935, 1, 430).—Folding aluminium corrosion-resisting awnings have been introduced. They are simply operated, are durable, and fire-proof.—I. M.
Aluminium for Furniture Construction. W. Gratwicke (Cabinet Maker, 1935, Mar. 30).—I. M.

Cellulose-Coated Aluminium Record. — (Thomas's Register (N.Y.), 1935, April; Light Metals Rev., 1935, 1, 436).—Reproduction sound records of cellulose-coated aluminium can be cut in any transcription recording with sapphire points.—I. M.

Powdered aluminium in Road Surfacing. — (Municipal J., 1935, Mar. 8; Light Metals Rev., 1935, 1, 431).—It is reported from Germany that the addition of powdered aluminium to tar and bituminous surfacings gives high reflecting power and tends to keep the temperature of the surface considerably below the normal point, thereby checking softening in hot weather. —I. M.

New aluminium Paint. — (Amer. Metal Market, 1935, 42, (22), 5).—A brief note. A new flexible aluminium paint which gives a scale-like metal sheathing for longer protection and has a smooth, brilliant finish, has recently been perfected. Dirt and dust do not attach themselves readily to the surface. Because of excellent water-resistant qualities (including salt-water) it withstands washing, and also chemical fumes, humid atmospheres, corrosion, rust, and decay. The one standard grade may be used in- and out-doors. One application covers stained and discoloured surfaces completely.—I. M.

Structural aluminium. R. L. Templin (Metal Progress, 1935, 27, (5), 34-39).—A brief review of special methods for forming and fabricating structural members in light alloys, and a discussion of the effect of the use of such members on design. The dimensions, weight, strength, and stiffness of a 5 in. standard I-beam in steel are compared with those of 5 corresponding beams of varying sizes in "17 S.T." alloy. The use of light alloys to minimize dead-weight is illustrated by a description of the Smithfield Street Bridge at Pittsburgh (see Met. Abs., 1934, 1, 215), and a description is given of the reconstruction of the Brooklyn Suspension Bridge, New York, the new decks and trusses for which will be of "27 S.T." alloy.—P. M. C. R.

Duralumin in Aircraft Construction. F. P. Laudan (Metal Progress, 1935, 27, (4), 39-42).—The preparation of Duralumin for use as longerons, skin stiffeners, bulkheads, and skin covering in modern aircraft is described, appropriate dimensions and mechanical properties being stated in each case. All Duralumin is anodically oxidized, whilst steel members are plated with cadmium or chromium.—P. M. C. R.

*Strength Tests of Thin-Walled Duralumin Cylinders in Combined Transverse Shear and Bending. Eugene E. Lundquist (Tech. Notes Nat. Advis. Ctee. Aeronautics, No. 528, 1935, 18 pp.).—In these tests if the magnitude of the shear is V, the moment M, and the radius of the cylinder r it is shown that M/rV is descriptive of a definite stress condition. When M/rV is large, failure of thin-walled Duralumin cylinders occurs in bending by a sudden collapse of the compression half of the cylinder, and the stress on the extreme fibre and the size of the wrinkles formed are both equal to their respective values for a similar cylinder in pure bending. When M/rV is small, failure occurs in shear by the formation of diagonal wrinkles on the side of the cylinder of a similar size and shape to those which occur in torsion tests. As M/rV approaches zero the shearing stress or the neutral axis at failure is approximately 1.25 times the allowable shearing stress in torsion. At intermediate values of M/rV there is a transition from failure by bending to failure by shear accompanied by a reduction in strength. A chart is given for calculating the strength of thin-walled cylinders in transverse shear and bending in which this reduction is allowed for.—A. R. P.

Light Metals and Their Use in Railway Work. F. Reidemeister (Aluminium, 1935, 17, 217-220).—Comparative cost data of aluminium alloy and steel for railway wagons are given.—A. R. P.
A New Use for Cobalt. C. C. Downie (Rayon and Melliand Textile Monthly, 1935, 16, 35; C. Abs., 1935, 29, 2361).—Mordanting of fabrics by electrolysis has been carried out successfully with cobalt anodes (prepared by hot-rolling cobalt on to nickel plates) and platinum cathodes.—S. G.

The Action of Copper on Yeast (Copper in the Brewery). M. H. van Laer (Ann. zymol., 1934, [ii], 1, 287-304).—See Met. Abs., this volume, p. 124.—S. G.

Manufacturing Economies Open Wide Market for Pre-Chromed Copper Sheet. (Bull. Copper Brass Res. Assoc., 1935, (82), 6).—The use of "Chrom-copper", a material which can be bent, drawn, or formed after the chromium-plating process is completed, for the construction of petrol pumps and kitchen sinks is illustrated.—J. S. G. T.

Further Deterioration of Famous Stadium Halted by Covering of Sheet Copper. (Bull. Copper Brass Res. Assoc., 1935, (80), 5).—The protection of the concrete structure of the Lewisohn Stadium, New York, U.S.A., by sheet copper coloured with "Cabra" patina treatment is illustrated.—J. S. G. T.

Lead-Coated Copper Specified by Philadelphia Architects for Important Structures. (Bull. Copper Brass Res. Assoc., 1935, (80), 13).—The use of lead-coated copper for the construction of gutter linings, eaves, pipes, &c., is illustrated.—J. S. G. T.

Shimmering Copper Mesh Accessories Lacelike in Delicacy. (Bull. Copper Brass Res. Assoc., 1935, (82), 7).—The use of copper and bronze mesh material for the construction of bags, hats, belts, collars, &c., is referred to and illustrated.—J. S. G. T.

Gigantic Boulder Dam Project to Provide Vast Electric Power and Water Resources for Far West will Require over 30,000,000 Pounds of Copper for Transmission Lines. (Bull. Copper Brass Res. Assoc., 1935, (79), 12-13).—The copper requirements in connection with the construction of Boulder Dam, U.S.A., are referred to.—J. S. G. T.

New Materials [Bronzes] for Sliding Contact Bearings. (Demag News, 1934, 8C, 33-36).—The sliding properties of 2 new bearing alloys, "Demag Edelbronze K" and "Special Bronze D.K.S. 35" (compositions not given) are shown graphically and discussed.—A. R. P.

The Bronzes as Engineering Materials. F. Johnstone Taylor (Met. Ind. (Lond.), 1935, 46, 453-456).—The use of bronze sheet in engineering, its resistance to corrosion, the manufacture and properties of bronzes with a copper-tin base, of nickel-bronzes, "aluminium-bronze," and of alloys of the solid solution type are discussed. The recommended foundry practice, casting with nickel-bronze and silicon-copper, the importance of gaging, and the method of ensuring a pressure-tight casting are described.—J. H. W.

Lining of Chemical Apparatus with Lead. A. M. Ginstling (Khim. Mashino-stroenie, 1934, (5), 30-31).—A review.—S. G.

Nickel and Its Non-Ferrous Applications. Robert C. Stanley (Met. Ind. (N.Y.), 1935, 33, 52-54).—A brief outline is given of the uses of pure nickel and its non-ferrous alloys in industry.—A. R. P.

The Electro-Catadyn Process. A. Salmony (Bull. Assoc. Suisse Élect., 1935, 26, 206-207).—The sterilization of water through agitation with silvered objects was discovered by Naegli and subsequently confirmed by Krause. The action of infinitesimal quantities of silver in destroying not only existing bacteria, but similar organisms gaining access to the solution over a considerable subsequent period, is now applicable to large-scale processes, e.g. the sterilization of mineral waters and swimming baths. An apparatus for this purpose is described.—P. M. C. R.

Lubrication of Anti-Friction Bearings: Conclusions. I. F. Leister (Machinist (Eur. Ed.), 1935, 79, 198–200).—Experiments have been carried out to determine the effect of temperature and grease quantity on the lubrication of anti-friction bearings, using various greases. It was found that with a great many greases, the early operating temperature may be high, and that the greater the quantity of grease used, the higher the temperature reached and the earlier it becomes apparent.—J. H. W.

Influence of Metals on the Flavour of Condensed-Milk Products. Z. D. Roundy and H. C. Jackson (Wisconsin Agric. Exper. Sta. Bull. No. 428, (Ann. Rep. 1932–1933), 1934, 35–36; C. Abs., 1935, 29, 3053).—Ten different samples of milk were condensed in pans of copper, nickel, and stainless steel, and examined for their copper content. The copper, nickel, and stainless steel pans yielded milk containing, respectively, 3.53, 1.26, and 0.56 mg. of copper per litre of evaporated milk. Lots of condensed milk or condensed ice-cream mixes which had been prepared in the copper pan and stored for 3 months at 6° developed a distinct tallowy flavour. Ice-cream made from this mix was off-flavoured.—S. G.

Cooling Tanks [in the Brewery]. F. Dieterlen (Brasserie & Malterie, 1935, 24, 377–384; C. Abs., 1935, 29, 3105).—An address, discussing the metal, shape, installation, and manner of use of cooling tanks in the brewery.—S. G.

The Influence of Iron [and other Metals] on the Colouration of the Fibres in the Retting [of Flax and Hemp] by Bac. Felsinus. III. D. Carbone (Boll. soc. internat. microbiol., Sez. ital., 1933, 5, 339–340; C. Abs., 1934, 28, 2909).—Several non-oxidizing steels and other metals were tested with good results (except for aluminium) in the retting of flax. All the metals examined gave good results for hemp.—S. G.

The Influence of Iron and Other Metals in the Microbiological Retting of Flax and Hemp. IV. D. Carbone and A. Moggi (Boll. soc. internat. microbiol., Sez. ital., 1935, 7, 30–35; C. Abs., 1935, 29, 3168).—Cf. preceding abstract. Copper, zinc, lead, and iron exert an injurious action in the microbiological retting of flax and hemp; copper, iron, and lead even affect the colour of the fibres, which become dark green or grey. Aluminium is harmless. Tin, which does not act on the colour, hinders the anaerobic retting of the hemp, but not the aerobic retting of hemp or either retting of flax.—S. G.

Spark Plugs and Their Improvement. Hans Navratiel (Brennstoff- u. Wärmewirt., 1935, 17, 21–25; C. Abs., 1935, 29, 3069).—The ionizing power of the plug can be increased by coating the insulator with a radioactive substance and coating the platinum or tungsten electrodes with alkali or alkaline earth metal oxides.—S. G.

Deposition of Metals on Glass in Vacuo. H. W. Lee (Glass Ind., 1934, 15, 271–272).—S. G.

XXII.—MISCELLANEOUS

(Continued from p. 265.)

Work of the British Non-Ferrous Metals Research Association. A. Brandt (Plumbing Trade J., 1935, 14, 326–329).—An account of the Association’s work on the casting of metals, welding of copper, testing and corrosion of galvanized equipment, solders, freezing of water pipes, and development of the B.N.F. ternary alloys of lead for cable sheathing and water pipes.—C. E. H.

Metallurgical Research. B. H. Moore (Met. Ind. (Lond.), 1934, 27, 89–91).—Portion of a paper read before the Kalgoorlie Branch of the Australian Institute of Mining and Metallurgy, outlining the use of the technical library,
the personnel of the research staff, the form of research (pure or applied), and publication of reports.—J. H. W.

Chemical Investigations of the Ancient Metallic Implements in the Orient. V.—The Ancient Chinese Bronze Implements.—4. Tsurumatsu Dono (Nippon Kwagaku Kwaı Shi (J. Chem. Soc. Japan), 1935, 56, 52–56; C. Abs., 1935, 29, 2889).—The bronze implements from north China were analyzed. They seem to have been brought over from western Siberia.—S. G.

Lead Poisoning in a Scrap-Iron Warehouse [Cutting Lead-Coated Iron]. Kappe (Arbeitsschutz, 1934, 165; Chim. et Ind., 1935, 33, 359; C. Abs., 1935, 29, 3067).—Lead poisoning was observed with workmen who cut, with a hydrogen or acetylene blast, iron that was coated with lead, intoxication being due to absorption of lead oxide vapours. Air collected in the neighbourhood of the flame contained 29–35 mg. lead/m.³. Precautions are indicated which made it possible to avoid any signs of intoxication over a period of 4 months.—S. G.

Nickel—Past and Present. Robert C. Stanley (Canad. Min. Met. Bull. (Transactions Section), No. 277, 1935, 176–208).—The history of the extraction and applications of nickel is traced from early times to the present day. A list of the forms of nickel commercially available is given together with their chief characteristics, and the proportions of the world’s output of nickel absorbed in different applications are tabulated. The paper also contains data on price and output over a number of years.—C. E. H.

The Development of the Evaporation Process. Robley C. Williams (Sibley J. Eng., 1934, 48, (7), 99–100, 111).—A survey is given of the development of the process of depositing metallic films by evaporation. Aluminium is the most suitable material in every respect except that of hardness, the harder chromium possesses a comparatively low reflectivity. A satisfactory coating is made by depositing over a thin film of chromium a thicker layer of aluminium (“Chromaluminium” film). A bibliography is appended.—P. M. C. R.

XXIII. BIBLIOGRAPHY

(Publications marked * may be consulted in the Library.)

(Continued from pp. 265–270.)

Carboloy Company. *Carboloy Cemented Carbides.* Pp. 36. Detroit: Carboloy Co.

Copper Development Association. *Some Facts about Copper for those Interested in Houses,* concerning the Use of Copper for (1) Roofing; (2) Window Sills and Drips; (3) Rainwater Gutters and Pipes; (4) Damp-Proof Courses; (5) Wall Sheathing, &c. 9 in. + 5 in. Pp. 23, illustrated. [1935.] London: Copper Development Association, Thames House, Millbank, S.W.1.

[Reprint of a paper read before the Faraday Society; see *Met. Abs.*, this volume, p. 285.]

[Contains a report on the Alloys of Iron Research.]

[Contains simple, well-illustrated exercises in benchwork, tinplate, copperwork, and forging.]

[See Met. Abs., this volume, p. 306.]

[See Met. Abs., this volume, p. 306.]

NEW PERIODICALS.

Boletín de la Faculte des Sciences franco-chinoise de Peiping. No. 1 (Nov. 1934). In French. University, Peiping, China.

Chemistry (China). In Chinese. Volume I, No. 1 (Jan. 1934). Contains—in addition to articles, news, &c.—"Chinese Chemical Abstracts." Address: c/o Mr. An-Pang-Tai, Department of Chemistry, University of Nanking, China. Published Quarterly. Mex. $3.00.

Contributions from the Institute of Chemistry, National Academy of Peiping. No. 1 (1934). In French (mostly) or English, with some abstracts in Chinese. National Academy, Peiping, China.

Contributions from the Institute of Physics, National Academy of Peiping. Vol. 1 (Dec. 1933). In French or English. National Academy, Peiping, China. Published irregularly.

La chimica e l'industria. A combination of Giornale di chimica industriale ed applicata and L'Industria chimica. Volume 17, No. 1 (first issue under new title, Jan. 1935). Published at: Via S. Paolo 10, Milano, Italy. Lire 100 per annum.

XXIV.—BOOK REVIEWS

(Continued from pp. 271–272.)

The reading of this book requires time and deliberation, which are amply repaid by the pleasure and inspiration received, and the intending reader may be warned that he will be so interested as to feel impelled to traverse at least some chapters a second time. Cornell University deserves much gratitude for giving us this volume, which comes at a time when up-to-date surveys by the few who are capable of a wide enough perspective are vitally necessary to the enlightened progress of learning, teaching, and research in metallurgy. The volume is described as containing the substance of the lectures delivered by the author, which deal with selected topics and indicate the directions in which research is proceeding. This is true, but gives no adequate impression of the completeness of the work, or of the stimulus which it must give to the great majority of specialized scientific workers, especially in metallurgy, who find the inevitable difficulty in maintaining their knowledge on a broad enough basis.

The introductory lecture is something of a surprise, dealing as it does with philosophic and historical considerations, and many of the views put forward are deserving of a wider public than the book is likely to reach. A plea for the historical teaching of science and the scientific teaching of history is well worth stressing, and indeed without both it is impossible to visualize the ultimate social value of science. In asking whether the chemist must not seek to become a sociologist (in that he cannot divest himself of responsibility for the uses to which science is put), the author is probably preaching to the converted, since the scientist, by the habit of scientific thinking, is naturally led to a consideration of his work in relation to the community. Beyond this, however, the scientist is surely not responsible for the use of his results by others, any more than the pharmacist is responsible for the use of his weed killer for the closing of family feuds. The responsibility for the proper humanitarian use of scientific advance appears to lie finally with education, and the scientist may well be active in pressing for a modification of the present system of unscientifically teaching the young who will apply the science of to-morrow.

The author's refusal to admit the "principle of uncertainty" in science is impressive, and should be suggestive to those who, even in scientific papers, sometimes appear to regard anomalous results as accidents not necessarily demanding explanation or inquiry.

The various chapters deal with the constitution of solids, the growth of crystals, adsorption and crystal habit, the crystal boundary, etch figures, mosaic structure, surface films, passivity, abrasion and corrosion-fatigue, diffusion in solids, the Widmanstätten structure, the martensitic structure, the ageing and age-hardening of alloys, intermetallic compounds, the possible production of a vitreous phase by deformation, chemical changes in solids, the layered lattice, and fibre structure. All these subjects are fascinatingly surveyed and discussed, with experimental facts from all sources, many of which are possibly unfamiliar to applied science. The level of interest and judgment is so well maintained that it is scarcely possible to select any outstanding features for special remark.

Each of the chapters would serve admirably as a basis for a discussion, and little criticism could be made regarding the clarity with which the experimental facts are described and explained. In the chapter on crystal growth, however, the varying velocities of growth from arbitrarily ground faces of a crystal might have been made more easily comprehended by anticipating the chapter on mosaic structure. By this means the "non-crystalline" faces would be shown as jagged surfaces presenting a relatively large active area and, therefore, likely to be of rapid growth.

The matter is admirably set out and printed, and the proof reading has evidently been in most capable hands. The book should be widely read. — R. Gendens.

The plastic state! How we have advanced in our knowledge of the tensile properties of matter since the days when Hooke, desirous of securing priority of discovery, published his well-known law of proportionality between stress and strain in the form of a jumble of letters which when properly sorted out made up the Latin sentence ut tensio sic vis! Why even as recently as the period of my schooldays, what happened in the range of stresses and strains
outside the elastic limit was apparently one of the inscrutable mysteries! The subject of crystal plasticity has advanced with giant strides within the last 20 years. The subject is one of great technical importance. The subject of "creep" in metals, to which the late Dr. Rosenhain devoted so much time, is but one of its many aspects. It is one that has thrown much light on the subject of crystal structure, but its theoretical and experimental aspects are very far from being completely worked out. Of the expert in crystal plasticity it can be truly said that he must necessarily get to know "more and more about less and less"—the subject has so many ramifications. Well, here is an excellent review of the subject which gives an account of developments up to 1934. The subjects discussed include crystallographic fundamentals, elasticity, production of crystals, crystal orientation, mechanism of deformation, plasticity and tenacity of metal and ionic crystals, theories of plasticity, and the properties of poly-crystalline technical materials. There is a bibliography of 703 references and an adequate subject-index. The book is well printed on good strong paper, the illustrations are clear and first-class. The price is rather high, taking the rate of exchange into account; even so, the book is one that I can heartily recommend to all metallurgists interested in the physical aspects of their science.

—J. S. G. Thomas.

The discussions at the International Conference on Physics held in London and Cambridge in 1934 were organized in two sections, the one dealing with the physics of the atom, the other dealing with the solid state of matter. The Conference was attended by about 600 members, and 31 papers were read by well-known experts and discussed by equally well-known experts. All the material was, therefore, available for the production of first-class books reviewing subjects which are now very much to the fore in the literature of physics and metallurgy. The Physical Society has earned the thanks of metallurgists by its publication of Vol. II of these Reports. The papers contained in this volume review matters of extreme importance to metallurgical physics, e.g. the structure of molecules and of the ideal lattice; the deviations of real crystals from the ideal lattice structure; plasticity and strain-hardening in crystals. Most of the papers have been abstracted elsewhere in this volume (see pp. 289—291). The papers contained in Vol. I (Nuclear Physics) are of such immediate importance to metallurgists; they are, however, the daily bread of physicists. The subjects treated comprise: quantum theory, natural β-decay, artificial radioactivity, disintegration and synthesis of nuclei and particles, cosmic radiation. I especially commend the address of welcome delivered with characteristic humility by Sir F. Gowland Hopkins, and the prefatory remarks delivered by Lord Rutherford and Sir Wm. Bragg to the notice of all metallurgists. They will find the last mentioned an admirable summary of the work of the section devoted to the solid state. Sir William had evidently read and understood all the papers in this section—a very rare achievement surely in these slap—dash days. The main points of interest to metallurgists so far as the volume devoted to symbols, units, and nomenclature is concerned are that it is recommended and be called the oerstedt and not the gauss as is now common practice. The name gauss is reserved from being completely worked out. Of the expert in crystal plasticity it can be truly said that he must necessarily get to know "more and more about less and less". The subject has so many ramifications. Well, here is an excellent review of the subject which gives an account of developments up to 1934. The subjects discussed include crystallographic fundamentals, elasticity, production of crystals, crystal orientation, mechanism of deformation, plasticity and tenacity of metal and ionic crystals, theories of plasticity, and the properties of poly-crystalline technical materials. There is a bibliography of 703 references and an adequate subject-index. The book is well printed on good strong paper, the illustrations are clear and first-class. The price is rather high, taking the rate of exchange into account; even so, the book is one that I can heartily recommend to all metallurgists interested in the physical aspects of their science.

—J. S. G. Thomas.

The present volume of the eighth edition of Gmelin's handbook deals with the chemistry of molybdenum and its derivatives, and as with the elements which have been dealt with in the earlier volumes, the work opens with an account of the discovery of the element, and this is followed by a description of the occurrence of molybdenum minerals in various parts of the world. The methods of working up molybdenum ores and by-products and the commercial preparation of intermediate products, such as molybdate acid, molybdates, and the lower oxides of molybdenum are detailed. Some nine methods for the production of metallic molybdenum are given. The preparation of special forms of the metal, including pyrophoric, colloidal,
single crystal, and mirror molybdenum, are described together with the working and uses of the metal. Then comes an account of the physical properties of the metal, which includes the properties of the atom, crystallographic, mechanical, thermal, optical, magnetic, and electrical properties. The electrochemical behaviour and the chemical behaviour of the metal with gases, common reagents, and metal are described. The detection and estimation of the element, including microchemical and electro-analytical methods, and the separation of molybdenum from the metals which are usually found with it are given in great detail. The alloys of molybdenum with antimony, bismuth, zinc, mercury, aluminium, aluminium, titanium, thorium, tin, lead, tantalum, and chromium are described at length. Then follows a full account of the compounds of molybdenum with oxygen, including the molybdates, molybdenum blue, and molybdenum bronze, compounds with nitrogen, fluorine, chlorine, bromine, iodine, sulphur, selenium, tellurium, boron, carbon, silicon, phosphorus, arsenic, and bismuth. The molybdates and complex hetero-molybdates of most metals are described. The material in this volume has been well chosen, it is accurate and concisely recorded, so that a very complete account of the present position of the chemistry of molybdenum, together with a very large number of references to the original literature is presented. The volume is a very useful one, which will be of great value to chemists. It is a book to be warmly recommended.

—JAMES F. SPENCER.

After a short introduction, reviewing modern theories of the mechanism of corrosion, the book is divided into three sections dealing with the three groups into which the author classifies methods of protection. The first and longest section describes electrolytic methods. The theories and laws of electrolysis are explained; methods and plant used in industry are described; brief details are given of copper, cadmium, nickel, and chromium deposition; the degree of protection afforded by such coatings, and methods of testing are discussed. The second section deals with non-electrolytic methods, amongst which are included hot-dipping processes, "clad" cementation processes (nitriding, Sherardizing, Calorizing), sprayed coatings, chemical processes (Parkerizing, Bonderizing), anodic oxidation, and vitreous enamelling. The last section is devoted to paints and varnishes.

This is a useful survey of a wide subject. It is not written for the corrosion specialist, but the various processes are discussed in sufficient detail to enable a fairly accurate estimate of their scope to be drawn: their efficacy is also indicated, but no comparative figures are given.—H. W. G. HIGGITT.

Although the greater part of the volume under review is devoted to the production of nitride coats and highly carbonized layers on steel, it contains numerous sections which concern the non-ferrous metallurgist. The mutual diffusion of several pairs of non-ferrous metals is illustrated by some good photomicrographs, and interesting information is provided regarding the cementation of iron with chromium, molybdenum, tungsten, uranium, vanadium, tantalum, titanium, and cobalt. Of these, titanium is said to give best protection against oxidation up to 1000°C, whilst molybdenum considerably reduces the attack upon iron by hydrochloric acid. Much of the chapter on Sherardizing is based on early work by Sang, Burgess, and others, researches, which—although now over 20 years old—have not altogether lost their value. The chapter devoted to calorizing contains an account of the process of Martin, based on heating in aluminium chloride vapour, and that of Métrèr, in which the articles are heated in powdered iron-aluminium alloy. An appendix gives a summary of a paper by Nikonoff on the cementation of iron by molten aluminium, and reproduces a large part of a paper by Böhring on the same subject; these features may be welcome to those who read Russian and German less easily than they read French.

The printing is satisfactory, and the numerous illustrations, culled from sources which are in each case acknowledged, are well reproduced; but, as in the case of so many excellent volumes which reach us from across the Channel, the purchaser is expected, before commencing his studies, to spend a strenuous quart d'heure with the paper-knife.—U. R. EVANS.

This is an interesting work and is intended for the information of manufacturers and others who are considering the employment of die-castings, rather than a guide to the producer of die-
castings. The first two chapters, comprising 96 pages with many excellent illustrations, give arguments for the use of this type of manufacture and numerous examples of its successful application. In fact, it is so suggestive that this section of the book might well be adopted as the basis of a very comprehensive die-casters' illustrated catalogue.

A chapter on alloys for die-casting is good. It reviews the zinc, aluminium, copper, tin, lead, and magnesium alloys. Copious extracts from A.S.T.M. reports, particularly in respect to Zamak alloys, are included, relating to corrosion-resistance and the effect of ageing and heat-treatment of zinc-base alloys.

The aluminium alloys receive considerable attention, and the information on the copper and the magnesium alloys is useful and authoritative. Lead and tin alloys are noticed more briefly. Chapter IV devotes 65 pages to design of die-castings, the author wisely advises the designer to consult an experienced die-caster before preparing a final design, he also gives some valuable hints based upon the general principles of the art, which serve to make the detailed instructions intelligible and reasonable. The formation of screw threads, effects of shrinkage, trapped air, and porosity and the provision of draft allowances, coring, undercuts, and inserts are advised upon. Tolerances in general and specific designs are mentioned. Then follows a number of reproductions of drawings on reduced scale of actual typical die-casting jobs.

There is a short but useful chapter on specifications, inspection, and tests, again drawing freely from the A.S.T.M. publications. This deals with composition of alloys, sampling, physical properties, testing and visual inspection, including measurement of growth of castings under steam tests.

The final chapter is of considerable interest for it contains much valuable and practical information with respect to finishes for die-castings. It is pointed out that many castings are used without any applied finish, with advantage, but on the other hand there are numerous cases in which polishing, plating, and enamelling are desired for protection from corrosion and for decorative purposes, grinding, polishing, plating with copper, nickel, chromium, cadmium, black plating, anodic coating, and the application of organic finishes are briefly but usefully noted, and lacquering and enamelling are touched upon.

The book is a useful addition to the literature on the subject, but it does not give instructions on the art of die-casting or die-making, nor does it claim to do so.—A. H. Munday.

This handy little book is intended for ready reference by those engaged in grey iron, malleable iron, and the non-ferrous casting industries. The first 80 pages are devoted to a consideration of moulding sands with special reference to the products of the Albany Sand Company. The succeeding pages deal with the metallurgical data, first cupola operation and recommended iron mixtures for a wide range of applications, followed by non-ferrous alloys, notes on pyrometry, coremaking, fluxes, and brief notes on the commonest non-ferrous metals. Then come further notes on cast-iron mixtures, followed by the usual conversion tables and general information.

For a reference book to be of real value the data should be assembled and indexed in such a manner that no time is lost in locating the information sought, and this book contains so much that is useful that its value would be greatly enhanced by a more thoughtful planning and more complete indexing. For example, pp. 96–102 set out the iron mixtures recommended by the A.F.A., while pp. 179–190 give further lists covering the same products in many cases, but in which the compositions vary slightly. Again, on three separate pages, pp. 103, 126, and 211, there are given "Bright Dips for Brass," each are different, and only one is referred to in the index. On p. 156, under the heading of "Aluminium Bronze," appears one quaint remark, which seems out of place in a modern book of this type, "Place risers on heavy parts and cover same so no air escapes from mould while pouring."

The few typographical errors are not serious and the book is well printed, but to British readers the price of 2 dollars will appear high for a book of this class.—J. E. Newsom.

In this new edition this useful little book appears to have been thoroughly revised and somewhat enlarged. It contains a large number of practical recipes for producing coloured finishes of all types on iron, steel, and the common base metals and alloys and should prove of considerable interest and value to those engaged in the production of decorative metal articles. There is an excellent account of the principles underlying the various methods of producing coloured films, e.g. plating, heat tinting, etching, pickling, anodic oxidation, friction methods, diffusion processes, &c., and much information on the avoidance of defects. The book is well written and well produced and its price is reasonable.—A. R. Powell.

An introductory section to the book deals with the fundamentals of the various processes and the properties of the materials for which they can be used. Copper, brass, bronze, aluminium and its alloys, lead, zinc, Monel metal, and the noble metals receive brief mention. Section II is a concise review of resistance welding, sufficiently up-to-date to include thyatron control of spot-welding machines, and comprehensive so far as German practice goes. A definite omission is the induction controller for seam-welding. Section III deals with arc welding. The characteristics of d.c. and a.c. arc and of the principal types of welding machines are carefully explained. Electrodes, technique, weld properties, and applications for mild steel welding are discussed at some length. Alloy steels and non-ferrous metals are more briefly considered, the difficulties in the case of the latter—high heat conductivity, hot-shortness, ready oxidation and gas absorption—being pointed out. Then follows a concise survey of the gas-electric methods, shielded-arc, atomic hydrogen, and Arecogen. Electrolytic welding, electrical soldering, and arc cutting are briefly described and then there is an admirable section (VIII) on weld testing, including some remarks concerning modern research on weld stresses. The final section deals with the economics of welding, the various processes being compared.

This is a well-balanced book which can be recommended as a text-book for students or as a reference book for welders: it is well printed and illustrated, and even a very shaky knowledge of German enables one to discern that it is well written. It is a pity that there is no bibliography. —H. W. G. Hignett.

Once more we sadly note the absence of information on the welding of non-ferrous metals. Can it be that the intensive publicity campaigns of this, that, or the other "development association" have failed to reach the editors of this Year-Book? The omission can scarcely be due to lack of space; the thirst-provoking Fig. 22 and several catalogue illustrations can well be spared. The most valuable part of the book is that devoted to design and the testing of welds, where the editors are "on their home ground." —H. W. G. Hignett.

In this booklet, the author describes the application of a technique, developed mainly on machining problems, to the hammer-welding of tubes on automatic machines, fitted with water-gas burners. In the first part of the book, the results of the time-study are set forth and interpreted. They throw considerable light on the technical aspects of the process, notably the size of water-gas burners most advantageous for different thicknesses of material. In the second part, the supervision and control of the process are considered. The work is of wider interest than its title indicates, for it clearly shows the great possibilities of this method of investigation of problems in all welding processes. —H. W. G. Hignett.

Although everyone should be able to extract some amusement from this book, only the psychologist is likely to find it instructive. According to Dr. Turner, the whole of modern science from the theory of elasticity to the theory of relativity is founded on a series of gross errors, most of which Dr. Turner is at pains to expose. Unmathematical students will be pleased to learn that none of the natural laws of the universe involves anything more complicated than the rule of three; but the ease with which Dr. Turner deduces all the properties of metals and alloys from such simple data as the specific heats of the elements may give metallurgists an uneasy feeling that their profession must shortly disappear. Dr. Turner's logic is not strong, but his arguments are occasionally specious. A little profit may perhaps be extracted from the book in the exercise of detecting the fallacies in some of the more outrageous arguments. Otherwise the book should find a place on our shelves between Stephen Leacock and P. G. Wodehouse. —H. L. Cox.
This book gives a good, reasonably concise, and systematic account of the sources, production, and uses of materials in Egypt, Babylonia, Assyria, the Aegean, Asia Minor, Persia, Syria, and Palestine from the earliest times to the end of the Bronze Age. The first 212 pages are devoted to Egypt; here an extremely interesting account is given of the sources, extraction, methods of working, and uses in ancient Egypt of gold, electron, silver, copper, bronze, tin, lead, brass, zinc, antimony, mercury, platinum metals, iron, steel, ceramics, glass, pigments, and various salts. Accounts are given of the processes of dyeing and embalming, followed by an excellent section on the papyri dealing with medicine and surgery. The Egyptian section concludes with the treatment of wood, beer, vinegar, wine, bread, leather, ivory, and ink.

Similar detailed treatment is accorded to Babylonia and Assyria in 108 pages, the Aegean civilization, Troy and Cyprus in 50 pages, Asia Minor in 13 pages, Persia in 38 pages, Phoenicia in 33 pages, and Palestine in 66 pages. Numerous analyses of metal, pottery, glazes, and glass are included in the text, and much of the information connected with the discovery, extraction, and uses of metals in the early civilizations given in existing works is corrected. The descriptions of the places where ores were worked in ancient times is particularly interesting, since some of these have been re-discovered and re-exploited on a considerable scale. The work, therefore, has a definite economic interest.

This is a masterly production, which testifies alike to the assiduous work and the profound scholarship of the author. Care is evidenced on every page. The author in his preface voices the fear that his time, opportunities, and general equipment would lead to a book which falls short of the ideal. Whilst appreciating the difficulties Professor Partington has overcome, the reviewer cannot admit anything but excellence in the finished work. Whether or no the book is ideal he cannot say, never having met the ideal. The book, as written, does what the ideal could never do, it stimulates the reader in all manner of ways. The 25,000 references given as footnotes make it comparatively simple for those interested in the subjects to pursue the study of any portion which may interest them particularly. That the author has tracked down the material to which he refers and that he has read his material in the original is very clear, and this fact enhances the value of the work. The use of the volume is rendered very easy by the voluminous and accurate indexes. The reviewer has never before met a book so completely indexed, some 63 pages are required for the printing of the five indexes, which are: authors and publications, persons and nations, places, subjects, and Greek.

Professor Partington, being a chemist, doubtless wrote for chemists. He has produced for them a fascinating story of the early development of their science; in addition his work contains much which will be of interest and importance to the geologist, archeologist, historian, and the general reader. All will find the book interesting, readable, and inspiring.

—JAMES F. SPENCER.

This very excellent work of reference opens with a section on first-aid treatment of accidents and a list of antidotes for poisons, then follows a table of hazardous chemicals, in which the life and fire risks are stated together with the suitable type of storage for some 67 substances. Twenty-two pages are devoted to a description of the characteristics of the elements. Then follow a very long series of tables, which include, amongst numerous others, tables of isotopes, radii of atoms and ions, physical constants of the elements, radioactive elements and their constants, properties of minerals, synonyms of mineral names, radio-detector minerals, heavy liquids for mineral analysis, physical constants of inorganic compounds, composition of natural water, wood, coal, ignition temperature of gases, composition and physical properties of alloys, melting point and composition of fusible alloys, corrosion and heat-resistant alloys, etching solutions for ferrous and non-ferrous alloys, material for construction, resistance of wires, calibration of thermocouples, fusion points and composition of pyrometric cones, glossary of ceramic terms, shrinkage tables, classification of crystals, X-ray emission spectra of the K, L, and M series, wavelength of the principal lines in the emission spectra of the elements, electro-potentials, electrometric determination of H ions, acid and base indicators, organic reagents for inorganic analysis, concentration of laboratory solutions, solubilities of inorganic compounds, density of aqueous solutions, ionization constants of acids and bases, electro-conductivity of aqueous solutions, vapour pressure of various substances, orthobaric density of various substances, heats of solution, van der Waals' constants for gases, critical constants, specific heats of elements and compounds, heat conductivity of metals,
alloys, solids, liquids and solutions, heats of combustion and formation, conductivity of commercial insulators, heat of fusion and heat of vaporization of elements and compounds, free energies, surface tension and viscosity of liquids, compressibility and cubical expansion of liquids, value of \(y \) at various stations. Then follow sections in which the commoner physico-chemical equations are described, chemical terms are defined, laboratory recipes and a number of conversion tables of various kinds are given. The appendix contains mathematical formulae, logarithms, anti-logarithms, and other mathematical tables.

This book stands by itself in the amount of data which it contains, every table in the work is far more comprehensive than the corresponding table in any existing handbook of the kind, and many of the tables included here are not to be found in other handbooks. Not only in the tables is this work so excellent, but also in the small items of interest and use which one finds throughout on all manner of subjects. The book is to be warmly recommended to all chemists and physicists.—James F. Spencer.

Crystals and the Polarizing Microscope. A Handbook for Chemists and Others.

This little book has been written with the dual object of making the application of the polarizing microscope to chemical problems more widely known and of providing the chemist with a handbook in which the method of examining crystals by the polarizing microscope is treated with special reference to his particular problems. The book opens with a description of the crystalline state, which is followed by an adequate account of the morphology of crystals. The optical properties of crystals come next under review; the theoretical treatment here is simple and sufficiently complete for the present purpose. The construction and use of the polarizing microscope, together with a description of four well-known modern microscopes, constitutes the material of the fifth chapter. The two following chapters deal with the microscopic examination of crystals: (i) with parallel light, and (ii) with convergent light. These are very useful chapters, and contain detailed and carefully considered accounts of a large number of optical measurements, together with a general discussion of interference figures. The seventh chapter gives examples of the use of the polarizing microscope in chemical practice. Here actual examples, taken from the chemical literature, have been used, and the ease with which the particular problems were solved is demonstrated. The concluding chapter is eminently practical, it is entitled "Method of Attack and Experiments." The authors describe in detail exactly how the optical examination of crystals is to be carried out in order to gain the maximum of information from it. They then propose 14 experiments, which the beginner is invited to perform, full working details are given in each case. A short summary is given at the end of each chapter. The book is written in a fascinating manner and it is very fully illustrated; its contents are clear and accurate. Without doubt the authors have achieved their object, for this book will do much in furthering Dr. Hartshorne's missionary enterprise. The book may be recommended most warmly to all chemists.

—James F. Spencer.

The first edition of this useful little book was reviewed in *J. Inst. Metals*, 1933, 53, 687; this edition follows closely the lines of the first, but, since the subject-matter has been revised and amplified and monographs dealing with the use of eight new reagents have been added, it contains 46 more pages than its predecessor. The description of the analytical procedures are, in general, excellent, but the reviewer feels bound to protest against the tendency to multiply the number of rather expensive reagents recommended for some of the metals, e.g. there are six reagents for copper and four for cadmium, and some of these are admittedly much inferior to others. Again a whole page is devoted to the determination of iron by cupferron when much cheaper processes are available; the use of this reagent for the determination and separation of some of the rarer metals is of much greater importance and interest. A fuller description might also have been given of the use of dimethylglyoxime for the separation and determination of palladium; incidentally in the brief account given it is stated that the metal must be in the quadrivalent form, whereas, of course, it is the divalent form which is precipitated. It is stated on p. 33 that the palladium glyoxime compound has no definite formula, but Gilchrist (*J. Res. Nat. Bur. Standards*, 1934, 15, 687) has recently shown that the dried compound is analogous to that of nickel and contains 31.67 per cent. of the metal. The reviewer suggests that in a future edition the monographs on dihydroxytartaric acid for sodium, allyl iodide hexamidine and \(\beta \)-napthaquinoline for cadmium, thioglycollic acid for iron and sodium 6-chloro-5-nitrotoluene-3-sulphate might be omitted and that monographs on phenylhydrazine
and tannin be included. The latter is a very inexpensive organic reagent which has been shown by Schoeller and his collaborators to be the only reagent which affords a satisfactory separation of titanium from zirconium, and of tantalum from columbium, two of the most difficult problems in the analytical chemistry of the metals prior to this work.—A. R. Powell.

This book represents a very successful attempt of the author to collect together under one cover and in a logical sequence the results of his own researches and those of other workers in the field of potentiometric analysis and to indicate to the industrial analyst the value of this new weapon and technique in solving some of his everyday problems. The theoretical side of the subject is described only briefly, but sufficiently lucidly to allow of the novice obtaining an adequate understanding of the principles on which his work is based and a thorough grasp of the functions of the various parts of the apparatus employed. The middle 60 pages of the book contain descriptions of methods for the potentiometric determination of the rare and common metals, both singly and in various mixtures, and of a considerable number of anions, while the final 25 pages are devoted to the application of the method in technical analysis, e.g. the analysis of alloys, smelter products, and plating baths. The production of the book is fully up to the usual high standard of the publishers.—A. R. Powell.

This work is mainly concerned with the spectrographic detection of 31 common metals of metallurgical interest and the principal feature is the Arc Spectrum Atlas (Visual Atlas), consisting of 20 plates showing the positions of the lines in the spectra of these metals in relation to the iron spectrum. Plates 1-10 cover the range 2796-3425 A.; Plates 11-20 the range 5055-5670 A., and there are 4 charts of iron spectra with the wave-lengths marked on them.

The author, who is Professor of Metallurgy at Stanford University, finding that the Atlas previously published by J. Bardet in 1926 was not entirely satisfactory, undertook the compilation of an improved Atlas of arc spectra.

In conjunction with the charts, a "Metallurgical Spectrum Analysis," the equipment and the use of the carbon arc or Pfund iron arc in analysis are described. A grating spectrograph was used, and reasons for using this type of instrument in preference to the more generally used prism spectrograph are put forward. The scale of the reproductions is such that the direct comparison of enlargements of spectra with the charts facilitates the recognition of the spectrum lines.

A bibliography and an adequate index are given. A few errors have been noted (some mistakes in the references quoted and incorrect designation of the cyanogen bands in the carbon spectrum), but these are not serious.

In conjunction with the charts, a list of "Prominent and Persistent Arc Spectrum Lines," followed by a "Table of Arc Spectrum Lines" containing some 9500 lines in the two regions studied have been compiled. (Tables of lines in the range 2800-3400 A. were published by the same author in 1933, and these have now been revised and extended.)

Professor Crook has brought enthusiasm to a laborious task, resulting in a valuable contribution to the literature on the subject. The printing and arrangement of matter are good.

—D. M. Smith.

Although the greater part of this book deals with the use of the spectroscope in medical diagnoses it contains useful sections on the use of this instrument in the examination of tellurium, copper, and antimony, in the determination of tellurium in bismuth, and in the testing of platinum, iridium, rhodium, aluminium, silver, zinc and lead for the presence of impurities, the characteristic lines and methods for exciting them being given in all cases. A useful bibliography occupies the last 6 pages. The book is well printed on excellent paper and the spectrographs shown are extremely clear and instructive.—A. R. Powell.

There is little need to describe this valuable pocket-book in detail, for all who have to translate or read German chemical literature must already look upon "Patterson" as an old and well-tryed friend in all their difficulties. This new edition will, therefore, be welcome especially as, since the first edition appeared in 1917, great advances have been made not only in the experimental side of chemistry but also on the theoretical, entailing the coinage of many new words. This growth is evidenced by the expansion of the book from 316 to 411 pages despite the attempt which has been made to keep the size within reasonable limits by adopting the paragraph style for entries beginning with the same word element, and by omitting some uncommon and non-technical words which appeared in the first edition as well as all words which have the same or a similar spelling in both languages. Altogether about 42,000 entries are included and many additional meanings are given to old words. We can thoroughly recommend those who have a copy of the old edition, probably now almost worn out, to throw it away and buy the new, and those who have never had a copy to buy one now; it is an excellent investment.—A. R. Powell.

This newcomer among the many technical dictionaries which have been published during recent years breaks a good deal of new ground not covered by any other similar work in that it is intended almost exclusively for the use of miners. Practically every mining term appears to be included, even archaic terms and those used in local mining parlance; the reviewer must confess that many of the English words given are quite strange to him and could be understood only by the aid of the German equivalent. The English miner in German-speaking countries will undoubtedly find this dictionary of great value.—A. R. Powell.

A comprehensive compilation of 100,000 words and expressions used in all branches of science and technology. Each basic root-word forms a nucleus round which are grouped its derivatives and compounds, and every effort is made not only to give the Russian technical equivalent, but to render the meaning clear to unscientific or untrained readers. This method sometimes detracts from the conciseness of the text.

The method for using the dictionary as well as various peculiarities of English grammar are explained in the preface, which also gives advice to would-be translators. A comparative list of the more commonly used English and American terms is attached. The text gives the impression of being compiled without a thorough knowledge of the English language: a number of the terms and expressions are incorrect, and the spelling is not infrequently faulty. Unless, therefore, the user exercises discretion, he will be liable to be misled; this is particularly so in the glossary of so-called usual abbreviations at the end of the volume. The volume is poorly set-out, the inferior quality of the paper and ink producing a blurred effect, which renders quick reference difficult.

With all its faults, however, the dictionary should be of considerable use as a general technical reference in the two languages, which was urgently required.—M. Zvegintzov.

Contains 34,000 words from all the principal branches of technology, together with an explanation of the method of using the volume. This dictionary within its more limited range is markedly superior to the Anglo-Russian dictionary of Chernukhin (preceding review), both as regards conciseness, accuracy, print, and general set-out. This is in part due to the better knowledge of German as a technical language and greater experience in compiling and printing such reference books.—M. Zvegintzov.
The Directory of Shipowners, Shipbuilders, and Marine Engineers, 1935.
Thirty-Third edition. Compiled under the direction of the Editor of
London: The Directory Publishing Co., Ltd., 33 Tothill Street, West­
minster, S.W.1. (20s. net.)

This Directory covers the principal features connected with the shipping, shipbuilding,
and marine engineering industries. On the shipping side it gives information as to the owner­
ship of any specific vessel, who built the ship, who constructed the engines, and the year of
its going into commission. In addition, there are the gross, net, and deadweight tonnages;
the cubic capacities of the holds, in the case of a large number of cargo ships; the passenger
accommodation, the draught, speed, and so on. The shipbuilding section gives details of the
shipyards and marine engineering establishments, including output capacity and ship-repairing
facilities. The value of the entries is enhanced by the inclusion of the names of directors or
partners, managers, marine superintendents, superintending engineers, naval architects, and
other officials according to business carried on by the respective firms.

At the end is a list of consulting marine engineers and naval architects and of societies,
associations, and federations connected with the industries. Government departments which
deal with marine work and the classification societies of the world form a separate section.
There are more than 25,000 individual references, all indexed.

The whole matter has been carefully revised and includes the important changes which
have occurred in shipping managements during the past year.