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Objective

The objective of the research reported is to design and analyse optimal and adaptive feedback
control algorithms appropriate for attenuating acoustic noise at desired locations. A group of
acousto-electric plants characterised by small distances between the desired locations and

corresponding available real microphones, compared to the wavelengths of the acoustic noise,

is considered.

Structure

The monograph is organised as follows.

Chapter | constitutes an introduction. At the beginning the problem of acoustic noise is
addressed and the idea of its active control is presented. The activity in this field is briefly
summarised. Then, a group of acousto-electric plants is singled out. It will be dealt with in the
remaining chapters. Finally, required assumptions are collected.

In Chapter 2 the Internal Model Control system is addressed. Optimal control filters are
derived for this structure using polynomial, frequency-domain and correlation-based
approaches. However, contrary to most of the corresponding references imperfect plant
modelling is assumed. The problem is formulated using general notation to allow for direct
application to the systems designed in the next chapter. The optimal control systems are
analysed in terms of performance and stability. Solutions to improve stability are recalled.
Then, adaptive realisations are presented and analysed with focus on conditions for
convergence of the algorithms. Overlapping problems of stability of the feedback loop and
convergence of the adaptive algorithms are discussed. Methods for improving robustness are
also included.

In Chapter 3 three different structures of optimal and adaptive systems generating zones
of quiet at desired locations, referred to as the Virtual Microphone Control systems are
designed and analysed. First two of them use an estimate of the residual signal at the virtual

microphone. The last one is composed oftwo stages - the so-called tuning and control stages.
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Knowledge gained in the tuning stage is used to generate a command signal for the control
stage. The systems are compared, spatial distribution of attenuation is examined and an
alternative design methodology is abstracted. Finally, the problem of noise control at
locations far from the secondary source is addressed.

Chapter 4 briefly addresses multi-channel realisations of all the control systems.
Similarly to the previous chapters, the plant and disturbance are defined at the beginning and
main assumptions are made. Then, optimal systems are designed using different approaches.
Stability and performance of the systems is discussed and decentralised control is mentioned.
Afterwards, adaptive systems are addressed.

Chapter 5 concerns laboratory experiments. It begins with presentation of the real active
headrest - a representative of the considered group of acousto-electric plants. Properties
of this plant are discussed and basic characteristics are presented. Then, attenuation results
oftonal, multi-tonal and real noises obtained using the control systems in different
configurations are provided. They are illustrated in the form of spatial distribution

of attenuation areas.

In Chapter 6 the research is summarised and conclusions are drawn.

Appendix A provides basic definitions and theorems.

In Appendix B simulation analysis is performed. The data come from laboratory
experiments with the active headrest system. First, optimal control system designs using
polynomial, frequency-domain and correlation-based approaches are considered. Then,
adaptive systems are addressed. Influence of modelling errors, feedback loop and algorithm
parameterisation are analysed. Virtual Microphone Control systems are also compared.

In Appendix C simulation results of optimal and adaptive control of tonal and real
noises obtained using all the control systems are given. They are presented in the form of
spatial distribution of attenuation.

References and Glossary are also provided.

Finally, the monograph is recapitulated in Polish and captions to figures and tables are

presented in Polish.

All important conclusions drawn from the appendices are presented in the main text.
There are, however, several references to the appendices, where more details on

corresponding experiments can be found.

XV
Preface

Contribution

Theoretical results on optimal and adaptive Internal Model Control system designed using
different approaches are gathered, systemised and generalised to the case of imperfect plant
model. Some conclusions, important for noise control are also drawn. Then, optimal and
adaptive Virtual Microphone Control systems of different structures are designed and
analysed in a coherent way for a group of acousto-electric plants. Although the general idea of
such systems is known the presented solutions are new. Multi-channel structures of all the
systems are also addressed. The systems are verified by means of simulation and on a real-
world active headrest system characterised by non-minimum phase paths including significant
time-delays.

The main contribution can be thus summarised as development and analysis of feedback

control systems for generating zones of quiet at desired locations and their practical

verification.
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Chapter 1

INTRODUCTION

1.1 Acoustic noise

Sound may be defined as any pressure variations that the human ear can detect
[BruelKjaer OI], Sound is a common part of everyday life. It enables spoken communication,
provides enjoyable experience, permits to make quality evaluations and diagnoses, alerts or
warns. However, sometimes sound is unpleasant or unwanted and then it is called noise
[Crocker_97]. Noise increases together with development of industry and transport.
Generally, two types of noise can be distinguished in the environment - broadband and
narrowband [KuoM_96]. Broadband noise is caused, for example, by turbulence and therefore
distributes its energy across the frequency band. In turn, narrowband noise concentrates most
of its energy at specific frequencies. This noise is related to rotating or reciprocating
machines, so it is purely periodic (deterministic) or nearly periodic and may consist of one or
many tones.

In addition to loss of concentration and annoyance, many people suffer from severe
hearing damage due to high-level ambient noise in their working environment. Prolonged
exposure to loud sound causes damage to the hair cells with the result that hearing ability
becomes progressively impaired. Besides, it has also negative influence on other basic human
systems. It has the potential to: cause stress reactions, lead to pathological alterations in the
myocardium and the vascular walls [Ising_98], and deteriorate vision acuity [Harazin_98].
Therefore, it is justified to engage efforts in reducing noise reaching humans.

Commonly used passive barriers are practically unfeasible for low-frequency
(e.g. industrial or road) noise because of the dependence between acoustic wavelength of the
noise and thickness of the barriers required for absorption [NelsonE_94]. They are also not
applicable if the listener needs to move over a noisy environment. Therefore, active solutions

gain considerable interest in recent years.
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1.2 Active noise control

In active noise control (ANC) an additional secondary sound source is used to cancel noise
from the original primary source. The physical justification is given by Young’s interference
principle. According to this principle, interference of two out-of-phase sounds of equal
amplitudes results in their mutual cancellation. The secondary source can also change the
radiation acoustic impedance thereby reducing the sound power radiated [KuoM_96],
[HansenS_97], [Elliott O1]. This theory, although formally very simple, is difficult to be
directly applied in practice. There are many problems related to physical aspects of the
cancellation phenomenon as well as related to control. Therefore, the term ‘attenuation’ or
‘reduction’ should be rather used instead of ‘cancellation’. In control system terminology
primary noise constitutes an output disturbance that is to be suppressed. In fact, a residual
signal as the effect of primary and secondary sounds interference at a given point in space is
controlled in the mean-square or peak sense. The first approach, considered in this
monograph, directly corresponds to the primary goal, i.e. minimisation of the sound pressure
level [Rafaely_97], [Elliott O1]. It can, however, lead to significant reinforcement of some
frequency components of the disturbance. In turn, the second approach, barely mentioned,
tends to equalise contribution of all frequency components to the residual noise, making its
spectrum flatter. This may be perceived by the user as an unpleasant hissing noise.

In a diffuse acoustic field global active noise control in an entire enclosure is practically
unfeasible [NelsonE_94]. The solution is thus local control in a particular area or some areas
and creation of the so-called ‘local zones of quiet’, called further as the ‘zones of quiet’.
Actually, the control is performed at a given point in space and the attenuation propagates
from this point in the form of a zone. However, it is often impossible to place an observer
sensor at this point due to practical inconvenience or technological difficulty. Therefore,
another sensor, called error or residual sensor, placed as close as possible to the desired point
or area is used. The error sensor feeds back information about attenuation results, which can
also be used to drive the secondary source (feedback control). Sometimes it is beneficial to
employ a reference sensor to detect noise upstream, long before it reaches the area of interest
(feedforward control). 1f the control algorithms are required to adapt to changes of the noise
character or to variations of the plant physical properties the information from the error sensor
supervises an adaptation (Figure 1.1). In applications, the primary source is usually not
a loudspeaker and may often be distributed. It is rather a working mechanism or engine.

In turn, the secondary source is usually aloudspeaker (loudspeakers, in general) and the
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sensors are microphones providing a measure of the acoustic pressure at their location. If the
reference microphone in feedforward control were able to detect the secondary sound it would
introduce the so-called acoustic feedback, which might deteriorate the performance or even
lead to instability of the entire control system [KuoM_96]. If possible, it is then suggested to
substitute a tachometer or pyrometer for this microphone or employ a unidirectional
microphone [TokhiL_92],

Local active noise control near the secondary source deserves particular interest. It is
technologically feasible and acceptable. It requires small energy amount to drive the
secondary source and therefore is also economically efficient. Moreover, the direct
component of the secondary sound field dominates over the reverberant component. This
gives good coupling between the secondary source and the observation point, where
attenuation is desired [Rafaely_97], Therefore, acoustic pressure increase at other locations is
not significant. It should be, however, stressed that the error microphone is placed then in the
intense near-field of the vibrating secondary source diaphragm where energy is stored, what

can make the plant non-linear at low frequencies [BiesH_96].

Observation point

@®

Reference sensor

<Sf)

Primary source

Error sensor
o -

Secondary source
*

Feedback
control

Feedforward
control

Figure 1.1 Active noise control strategies.

The distance between the error microphone and the observation point (area) is nonzero
and can vary in time. As a consequence, the zone of quiet generated at the error microphone
can poorly propagate to the observation point, where, by assumption, the user ear is located.
Zones of quiet can have different and complicated shapes dependent on geometrical
properties of the ANC system [Ahuja_91], [TokhiL_92]. Their distribution has been
theoretically analysed for idealised conditions in [NelsonE_94], [Elliott_96], [GarciaEB_97],
[Rafaely_97, 01] using the spatial correlation function of diffuse sound field. It follows from

those considerations that these areas extend with respect to reinforcement areas when
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decreasing the frequency and increasing the distance from the secondary source. For instance,
the 10-dB zone of quiet may reach about one-tenth of a wavelength for pure-tone sound
fields. The zones of quiet additionally extend if they are generated at an acoustic barrier,
which imposes zero acoustic pressure gradient at its surface, what ‘flattens’ the secondary
sound field close to the barrier [GarciaEB_97], [RafaelyEG_99], [RafaelyE_99], They can be
further enlarged if the control system is set to operate on a pair or more closely spaced
positions [GarciaEB_96].

One of the examples of acousto-electric plants where local control near the secondary
source is performed is active headrest recognised as a test-plant in this monograph and
presented in details in Chapter 5. In aprototype of this plant the headrest of a chair is
equipped with loudspeakers generating secondary sounds for both channels, as well as
microphones sensing interference effects. Such a device is already known in the literature
[RafaelyGE_97], [GarciaEB_97], However, the shape and arrangement of the necessary
components of the headrest considered have been designed not to annoy the user and become
closer to a market acceptable solution with the general aim to improve acoustic comfort by
attenuating noise at the user ears.

Other examples of this type of plants are active headset and active phone. They are

briefly referred to.

1.3 State of the art

First ANC applications date back to Coanda [Coanda_30], Lueg [Lueg_36], and Olson and
May [01sonM_53]. Coanda’s idea was a phase-inverted cancellation but his project was
technically incorrect and therefore his work is rarely mentioned. Lueg attenuated a one-
dimensional acoustic wave in a duct using feedforward from an upstream microphone. Olson
and May applied feedback from a downstream microphone to attenuate ambient noise around
the headrest in a seat.

First-generation applications were based on analogue designs. Advances in
microelectronics, high-speed signal processors and filtering techniques during the 1980’s
precipitated a flurry of activity in digital control systems or hybrid - digital and analogue.
In Poland first researches on ANC were undertaken in University of Mining and Metallurgy
(AGH), Cracow (e.g. [Engel_84], [EngelK_95]), Central Institute for Labour Protection
(CIOP), Warsaw (e.g. [Zawieska_91], [Makarewicz_93]), and Silesian University
of Technology, Gliwice (e.g. [Ogonowski_94]).
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In ANC a feedforward architecture is of considerable interest. Then, the control system
is inherently stable if the control filter is stable. There are, however, two primary practical
limitations. The reference signal highly correlated with the output disturbance should be
available and it should not be influenced by the control signal. Violation of the first
assumption decreases the performance while not satisfying the second assumption introduces
a feedback loop that can become unstable during the adaptation [VaudreyBS_03]. The ANC
systems considered here are often subject to noises upcoming from different directions and
originating from various sources. On the other hand, they are designed to have a general
usage or to be used in mobile applications. Therefore, it has been assumed that the reference
signal coherent with such a noise is unavailable and the best-developed feedforward control
as originally suggested by Lueg cannot be employed. Thus, the idea of Olson and May has
been undertaken.

At the end of the 20th century Rafaely, Elliott and Garcia-Bonito have thoroughly
analysed both acoustical and control limitations existing in ANC systems. They have also
given recipes for optimal (fixed) controllers design using H2/Hx approach to overcome
stability and performance problems due to plant variations [RafaelyGE_97, 99],
[GarciaEB_97], [RafaelyE_99], [Rafaely_01], The analysis of generated zones of quiet leads
to conclusion that for low frequencies they are large enough to reach human ears. For higher
frequencies the researchers have put forward the idea of virtual microphones, which enables
to shift the zones. It relies on attenuating the acoustic noise at desired locations without
performing measurements at these locations.

The idea of virtual microphones has been extensively studied in recent years and some
algorithms have been designed. For example, Holmberg et al., has designed a robust
algorithm for cancelling noise at the desired location using the pole placement method
[HolmbergRS_02]. He has included in the controller a model of the disturbance incorporating
the Internal Model Principle. Tseng et al., has shown that best performance at the virtual
microphone gives a controller which is open-loop unstable [TsengRE_02], He has also
proposed a method of designing open-loop stable H2/Hx controllers, which is less
conservative than that based on the small-gain theory but results in a convex optimisation
problem. The researchers have verified their algorithms by implementing them on one active
headrest channel. Kestell and co-workers have applied a weighted microphone array to
estimate the sound pressure level or additionally particle velocity at a remote location using

a forward-difference prediction method [KestellCH_99, 00, 01], [KestellHC_00],
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[MunnCHK_02]. Such methodology can be used to control acoustic energy density, which
represents the total energy at a point, and not the potential energy only. Cazzolato has also
proposed to tune the microphone weights with the Least Mean Squares (LMS) algorithm and
has confirmed effectiveness of this approach by means of simulations [Cazzolato_02].

In case of fixed controllers, mainly based on the robust theory, independent systems can
often control individual channels of a plant, e.g. the active headrest (single input - single
output, or SISO approach) [RafaelyGE_97], [RafaelyEG_99], [RafaelyE_99], [TsengRE_02].

However, to the author knowledge, there is no multi-channel implementation of the H2///_

systems. In the references where this approach is addressed it is arbitrarily assumed that the
acoustic cross-coupling is negligible. Even single-channel version is usually verified only by
simulations with reduced requirements according to stability constraints in face of plant
perturbations, or with absence of analogue filtering.

In adaptive systems, due to existing acoustic coupling between the channels, a multi-
channel, also referred to as the multi input - multi output (MIMO), approach to control is
recommended for the sake of convergence as well as attenuation [Pawelczyk_02c, 02e¢].
Uncompensated paths usually varying in time create additional feedbacks in the control
system [Elliott O1]. In the non-linear system, which in fact any adaptive system is, the
feedbacks can generate a chaotic behaviour in along-time horizon [FigwerB_03]. Such
behaviour is particularly evident when the adaptive system is tuned to converge fast, what is
very important for practical success of many ANC applications. Moreover, as it will be shown
later, a MIMO system can provide higher noise attenuation. Furthermore, increasing the
number of secondary sources and microphones can enhance the performance

[Pawelczyk_03c].

1.4 Main assumptions

It is assumed that in Figure 1.1 the secondary source is a loudspeaker and the error and
observer sensors are microphones, called in the sequel as the real and virtual microphones,
respectively. Then, a sample acousto-electric plant with one secondary source and one real-

virtual microphone pair, digitised with sampling interval Ts, can be presented in details as in

Figure 1.2.
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Figure 1.2 Detailed block diagram ofthe plantcomposed ofrealand virtualacousto-electric paths.

The notation in Figure 1.2 is as follows:
Er, Ev - real and virtual microphones,
» DJ/A - digital-to-analogue converter,
* A/Dr,A/Dv- analogue-to-digital converters,
Pr- low-pass analogue reconstruction filter,
Ps - secondary source (a loudspeaker) with power amplifier,
e Par, Pay —real and virtual acoustic paths on the way from the loudspeaker to
respective microphones,
* Pmy, Pmy~ real and virtual microphones with voltage amplifiers,
e PAr, Payv~ low-pass analogue anti-aliasing filters,
u(t) - continuous-time control signal,
u(i) - discrete-time control signal,
* }pr(diyp.v(t) - primary noises (unwanted sounds) at the real and virtual microphones,
e Yar(t)yaAt) - secondary sounds generated by the secondary source at the realand
virtual microphones,
« yer(t),yeWt) ~ sounds being interference effect of the primary and secondary sounds at
the real and virtual microphones,
e >y(0>y-Xf) ~ continuous-time output signals of the real and virtual microphones,
* YyAO»y-kO - discrete-time output signals of the real and virtual microphones.
The low-pass analogue anti-aliasing and reconstruction filters are introduced to correctly
sample and reconstruct signals [MitraK_93], [BendatP_93], It is assumed that the filters are
properly designed and sufficiently suppress frequency components higher than the Nyquist
frequency. It should be mentioned here that the analogue filters could be omitted if a non-
uniform sampling and oversampling methods were applied, thereby reducing the phase lag of
the plant [MarvastiOl], [CzyzK_04]. However, non-uniform sampling requires extrapolation

of the samples to uniformly spaced ones before further processing or application of modified

transfer functions [Jury_70], [Gessing_96].
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It is convenient to consider the paths in Figure 1.2 in the form of an overall real path Sr
and virtual path Svwith corresponding output disturbances as in Figure 1.3. It is assumed for
the purpose of theoretical analysis that the paths are linear. Potential non-linear effects and

their influence on performance of active control systems are discussed in [PawelczykOl].

The paths are represented by rational transfer functions 5r(z_1), Sv(z~') of complex variable

z'1l or frequency responses, Sr(e~j0)Ts), Sv(e~0>I9, of the transfer functions, respectively.

Frozen transfer functions can also be considered and additionally indexed with discrete time i
if their parameters vary in time [Jury_70]. The output of each path can be computed as
a solution to corresponding discrete-time difference equation with parameters being
parameters of the transfer function and zA interpreted as a backward time-shifit operator. In the
signal processing literature an additional operator q xis sometimes used to distinguish from

the complex variable. Models ofthe paths are also linear and noted with hats, respectively.

Figure 1.3 Comprehensive block diagram ofthe plant.

It is additionally assumed in some sections that both the paths and their models have
finite impulse responses (FIR structure), even very long if necessary. This is a common
assumption in majority of the ANC publications [Michalczyk_04], Then, the paths and
similarly the models can be represented by finite-length, M, vectors of their impulse

responses, €.g.

> (1-1

[SV,0' Sv,I>">5v,M-I] = (1-2)

It is also assumed that the distance between the real and virtual microphones is much

less than the smallest wavelength in the disturbance. Then, the primary noise contribution to
the acoustic field at the positions of these microphones can be considered the same, so that the

output disturbance is [Rafaely_97]
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dy(i) =dr(i) =d(i). (1.3)
Secondary sound can be significantly different at these positions due to intense near field of
the secondary source. A case where (1.3) is not satisfied is addressed in Section 3.5.5.

If the disturbance is stochastic and wide-sense stationary ([ChenG 91] and
[BendatP_93]), it can be modelled as a zero-mean wide-sense stationary white noise signal,
(), passing through a minimum phase disturbance-shaping filter F (z[), sometimes called the
‘synthesis filter’ [BoxJ_70], i.e.

d(i) = F(z~Ne(i). (1.4)
F(z') can be generally a rational transfer function, although in majority of the ANC
publications it is assumed to be an FIR filter.

The filter in (1.4) can be derived by factoring (Auto-) Power Spectrum Density (PSD),

SM(z~")\__I=e_Ms, of d(i) into two components known as the spectral factors, F(z~I) and F(z),
where the latter is the time-reversed form of the former [ElliottOl]:

Sdd(z-1) =F(z~")F(2)\z* _"s. (1.5)
Because of a real-value signal SM(e~'nT% is real and non-negative, and hence it is usually
written as Sdd(ens) [NiederlinskiKF_97]. According to [Papoulis_77] the spectral factors can

be found provided SM(enTs) satisfies the discrete form of the Paley-Wiener condition
INnSddf{eM\d(oTs < ”. (1-6)
0

It should also be stressed here that there are 2degF different factorisations (1.5), where degF is
the degree of F(z~]), but there is only one resulting in minimum phase shaping filter
[Orfanidis_88], Such solution is only accepted here. By adjusting variance of the white noise
sequence the filter could be made of monic polynomials and then the factorisation is unique.
This is, however, not the case in this work, where unit variance ofe(i) is assumed.

There are also other methods to find the disturbance-shaping filters, e.g. by
stochastically modelling the disturbance [BoxJ_70], [NiederlinskiKF_93], performing Gram-
Schmidt orthogonalisation of the disturbance, or Cholesky factorisation of its correlation
matrix [Orfanidis_88]. However, they do not guarantee a minimum phase solution directly,
and usually require additional spectral factorisation.

It is additionally assumed, for generality, that there is no access to results of noise
control at the observation point, and the virtual microphone, Ev, is allowed to be used only for

measurements during control system tuning and monitoring (Figure 1.3). It is also assumed,
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for the same reason, that the noise source is distributed or it is impossible to place a sensor

next to it. Thus, in this research the real microphone, Er, is used exclusively in control.

1.5 Other assumptions

Optimal and adaptive control systems are designed and analysed in this research.
They, wherever referred, require corresponding assumptions:

1.1. The optimal control system is linear and time-invariant, and the signals
(the processes) are wide-sense stationary [Orfanidis_88], [BendatP_93], The plant
paths, their models and control filter are of IIR structure and they are represented
by rational transfer functions.

1.2. The adaptive system is linear and time-invariant, i.e. the trajectories are frozen or, in
practice, the plant and control filter variations are slow compared to the reference
and residual signals over the time-scale of the filter and plant impulse responses
[WangR_99b], The plant paths, their models and control filter are of FIR structure
and they are represented by vectors of impulse response parameters.

Exceptions to assumptions 1.1 and 1.2 will be commented.

For convergence analysis of the adaptive systems some of the following assumptions

must be satisfied:

J.I. The convergence coefficient is very small or vanishes to zero (a consequence of
frozen trajectories).

J.2. The control filter structure is known.

J.3. The control filter parameters are bounded.

J.4. The control filter input is persistently exciting.

J.5. The control filter input and variations of the control filter parameters are statistically
independent.

J.6. Perfect cancellation is possible.

J.7. The feedback loop does not destabilise the system.

1.6 Summary

This chapter constitutes an introduction to the remaining chapters. Therefore first, the
emerging problem of acoustic noise has been pointed out and the idea of active control has

been addressed. Although it dates back to seven decades the last advances in signal
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processing precipitated a flurry of activity in this field. This activity has been briefly
summarised. However, many more references are provided in the following chapters when
discussing particular problems. It has been emphasised that the global noise control is rarely
feasible and creation of local zones of quiet is usually of interest. Moreover, the zones of quiet
are of small dimensions, dependent, e.g. on noise wavelength and geometrical set-up of the
plant. Hence, if it is impossible due to any reason to place a sensor in the area of interest, it is
suggested to shift the zones using the idea of virtual microphones. An appropriate block
diagram ofthe discretised real and virtual paths of the plant has been presented.

In the plethora of many different acousto-electric plants it has been found justified to
single out a group that is characterised by small distances between considered points in space
compared to the noise wavelengths. It can be assumed that the noise is the same at these
points for such plants. PSD of the noise has been factored out into a disturbance-shaping
filter.

Finally, assumptions used in the sequel have been collected.



Chapter 2

Internal Model Control system

2.1 Internal Model Control system structure

Feedback control is considered in this monograph. Nevertheless, most well developed
adaptive algorithms for active noise control that give best results require a reference signal
[NelsonE_94], [KuoM_96], [HansenS_97]. Therefore, Internal Model Control (IMC)
structure is most willingly used, in which that signal is estimated (Figure 2.1) [MorariZ_89].
It is also sometimes called as the ‘feedback control with secondary path neutralisation’

[KuoM96],

Figure 2.1 Basic structure ofthe IM C system.

“The immediate advantage of the internal model structure for the feedback controller is that
the control filter that minimises the mean-square error can now be designed using the standard
Wiener technique” [ElliottO1], Namely, the reference signal can be a good estimate of the
disturbance and hence satisfy the two conditions for good performance and stable control
system, i.e. it can be highly correlated with the disturbance and uncontrollable [ElliottS_96].
The feedback system can be then reduced to a feedforward system, which is stable provided

the control filter is stable since the acousto-electric plant is stable.



14 Feedback Control of Acoustic Noise at Desired Locations

In this chapter the SISO IMC system is thoroughly analysed in the context of active
noise control for the considered group of acousto-electric plants. Available knowledge is
systemised and relevant conclusions are drawn. However, contrary to most of the related
references the entire analysis is performed for a practical case where the plant model is
imperfect. Optimal control is addressed in Section 2.2, whereas adaptive control is dealt with
in Section 2.3. The considerations of this Chapter constitute also the background for design
and analysis of control systems presented in Chapter 3. Multi-channel realisation is postponed

to Chapter 4.

2.2 Optimalcontrol

It is convenient for analysis of optimal control to present Figure 2.1 in the form as in

Figure 2.2.

d (o
Figure 2.2 Signalflow diagram in the IM C system.
It follows from Figure 2.2 that
yr(i) =d(i) +W(z-")Sr(z-")x(i), (2.1)
X(J) = yr(o, (2.2)
1+ W(z-")Sr(z~")
U(i) = oo yr(0=~H(z-")yr(2), (2.3)

I +W{z-")Sr{z~")
where H(zA) is the overall IMC controller written in negative feedback notation. In the

reminder the explicit dependence on the variable z"lis dropped, where it does not make

confusion to have a compact form of the equations. Taking (2.1) and (2.2) together gives
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yr0= TTYE sy =Vra (). (2.4)
I+ fF(Sr-Sr)
where Vr is the Real-Output Sensitivity Function. Properties of the sensitivity function are
discussed in [MorariZ_89].
Let the following general notation in (2.4) be introduced to allow for applying the

derivations to other control structures considered in the next chapter:

S,=Sr
S2=Sr-Sr (2.5)
y=yr

where y(i) denotes a general signal under control or, in other words, controlled output signal.
Then, relation (2.4) takes the form

YO= e 40 = VD). 2.6)

where V is the General-Output Sensitivity Function. Let the minimised cost function be
defined to correspond to minimisation of the sound pressure level [Crocker_97]. This can be
achieved by minimisation of the mean-square acoustic pressure. In the control system

terminology this can be performed by minimisation of mean-square value of the signal under
control, y(i):

L =E{y2()} @7)
or squared Hi norm of disturbance-weighted V [Orfanidis_88], [BendatP_93], [Rafaely_97].
In this definition E{.} stands for the expectation operator. In the frequency domain this cost

function corresponds to

Llo=\sje”)dcoTs, (2.8)

where S (e@s) denotes PSD of>(/)m

2.2.1 Polynomial-based approach

Taking (2.6) and (1.4) into account, the cost function (2.7) can be expressed as

. F+WSF 1
L=E{ —Aaei) (2.9)
1+ WS,
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Taking first derivative of the term within the curly brackets and making it equal to zero allows

to find the optimal control filter, which satisfies

P +W@SIF =0. (2.10)

For IMC (S1=Sr, see (2.5)) this result is analogous to the result of an optimisation problem
with perfect real path model, what is usually assumed in the literature [ElliottOl],
[SakaiM_03]. However, not necessarily perfect model appears explicitly here, instead of the
real path itself. This result is also similar to the result of feedforward system with perfect
cancellation of the intrinsic feedback [FraanjeVD_03]. The above analysis can also be
interpreted as assuming that the real path model is perfect, then designing the optimum
control filter and applying this filter to the case where the model is imperfect [AstromW_95].
A result equivalent to (2.10) can also be obtained if (2.6) is multiplied by (I + fFS*) and
a modified signal
Y,.(i) = (I+WS2)y(i) (2.11)
is controlled. This could be, however, incorrectly interpreted as implicitly shaping spectrum
of the residual signal. It is also worth stressing that although the cost function (2.9) has one
global minimum, which satisfies (2.10), it can exhibit different shapes in the vicinity of this
minimum, from very sharp if S2=0 (no modelling errors, see (2.5)) to very flat if S2 is
significant (large modelling errors).

The optimum control filter, which removes all contribution of d(i) to y(i) could be

directly found from (2.10) as
w* =-y - (2-12)

However, in this case the overall IMC controller, H in (2.3), would have infinite gain.
Moreover, if 5, were non-minimum phase including a time delay the filter Waop would be

unstable and non-causal (Appendix A.2). This is the case in ANC. One of the possible
solutions could be then the one presented in [NiederlinskiMO_95] and [Pawelczyk_99a] that
modifies the cost function to include a control weighting term (Weighted Minimum Variance
Control) or non-minimum phase part of the real path model (Minimum Variance Control for
Non-minimum Phase Plants). The Minimum Variance Control for noise attenuation has been
presented in details in [Pawelczyk_99a, 99b, 00a]. It has been found, however, to yield poorer
results compared to these obtained with the techniques described in this monograph and it will

not be considered further. It is also worth noting that in case of IMC not the real path itself is
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inverted in (2.12) but its model, since SI=Sr [VaudreyBS_03], Therefore, if possible,

aminimum phase no-delay model sufficiently well matching the non-minimum phase real
path with delay at frequencies of interest could be searched for. This would allow to obtain
perfect cancellation due to (2.10) and (2.12). Such a model is, however, very difficult to find
if broadband disturbance is considered.

To solve the problem given by (2.10) for general case, where the transfer function 5, is
non-minimum phase, this transfer function can be factorised into an inner and outer parts
(Appendix A.7), so that
Sl = 5,i)5 (o). (2.13)
The inner part, S}0, is an all-pass term and the outer part, S\a), is a minimum phase term
[Morariz_89], [Elliott OI], The methods for inner-outer factorisation by means of spectral
factorisation are presented, e.g. in [Vidyasagar_85], [Francis_87], [ZhangF_92], [AhlenS_94]
and [lonsescuO_96], Combining (2.10) and (2.13) results in

F +FWolSx9Sx) = 0. (2.14)
Multiplying both sides by the time-reversed term Sf'~z), which is H. norm-preserving
and does not change the cost function (2.9), and then taking into account that
56)(z-)5%0(z) = | yields

F(z-)S\i)(2) + F(z~" )W (z-D)S[0(z-) = 0. (2.15)
The causally-constrained sub-optimal control (Wiener-type) filter, Wopn(z~'), can be

therefore found from
{F(z-95,()(2)}++F(z-")WalHz-'K\z-") =0, (2.16)

what finally gives

KPAZ ) - ~F (z-i),Sk>@z-){'F(z "S1 =~ F(z~")S10)(z~) { 5,((z"*) }+* "AL>)
The symbol {}+ denotes that causal part is taken from {® (Appendix A.6). Hence, such
afilter is also called the single-sided filter [Orfanidis_88], [Elliott_01], [SakaiM_03],
[FraanjeVD_03]. The variables have been included in above equations to avoid
misunderstanding. This filter will be also called optimal in the sequel for simplicity.

With the presence of a perfectly modelled plant the term [F’B(0)]'1in (2.17) is referred

to in classical Wiener filtering as a whitening filter, which operating on the control filter input
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generates the process of innovations [Orfanidis_88], The signal obtained in such a way is not
the same as the white noise e(i) generating the disturbance signal (1.4) if the outer part differs
from the plant itself, i.e. if there is an inner part. Nevertheless, it has the property of being
uncorrelated from a sample to a sample, what is required to drive the optimal causal Wiener
filter [ElliottO1]. Hence, the optimal filter can also be derived using the prewhitening method
to design Wiener filter [Orfanidis_88].
Under optimal control and taking (2.13) and (2.16) into account, the minimum value of
the cost function (2.9) is
-i2
F
sl )
e(|) (218)
1 S2
Fsfojsfj+
where {} denotes non-causal part taken from {m} Now, let the system output under optimal

control be calculated. From (2.6), (2.13) and (2.17) there is

FS[o "
o)
YO)OP - SN e, (2.19)
1-
FS,0 [S» I

The numerator can be further expressed as

) 2.20
o | 50 s (2.20)

Since the following causal/non-causal decomposition is valid {}= {3}++ {-} , it finally gives

g©d-d .
y(Qmp = e(i). (2.21)
1--A F_
FS[og ISp

If for IMC the modelling error were negligible (S2=Sr-Sr=0, see (2.5)), the optimum

output signal would be

- >

yr(0 =St po €(i)m (2.22)

bpt,ér:S r

Furthermore, if a model of the real path were minimum phase, the non-causal part would be

zero and the output would be also zero. However in general, both the system output and cost
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function depend on the modelling error due to sub-optimality of the control filter (Figure 2.3).
Therefore, it may happen that the modelling error significantly increases the cost function
value and thereby reduces noise attenuation. However, it is also possible for a stable sub-
optimal control system to yield better performance due to imperfect modelling. In an ANC
application this results in generating higher attenuation for different acoustical conditions than

those present when estimating the plant model.

Figure 2.3 Influence of sub-optimal control and modelling errors on the cost function value.

The user is rather more interested in noise attenuation at the ear, i.e. at the virtual than at

the real microphone. It follows from Figure 2.2 that

yv(i) = SWx(i) +d (i), (2.23)
x(i) = - ! -d(i). (2.24)
1+W(Sr-Sr)

Taking (2.23) and (2.24) together gives

Sw d(iy=I1+w” : srts_Adi0=wd(i), (2.25)

y,(o - i+-
I+r(5r-57) I+fF(Sr-Sr)

where W is the Virtual-Output Sensitivity Function.

Implementation of the optimal filter given by (2.17) requires, in addition to the inner-
outer factorisation, extraction of the causal part. This operation can be performed with partial
fraction expansion or, faster, by using the contour inversion formula to compute impulse
response parameters for non-negative indices and then summing the series up [Orfanidis_88].

The causal Wiener filter can also be evaluated with a polynomial-based approach developed
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by Kucera [Kucera_79], For a given problem structure the equations have been derived there
using the method of ‘completing the squares’. However, this method often leads to tedious
calculations. The ‘completing the squares’ method has also been used in the frequency
domain, e.g. by Grimble [Grimble_85]. Another method to solve this problem is to apply
a variational approach utilizing orthogonality principle in the frequency domain [AhlenS_91].
An alternative direct polynomial-based solution to the optimal control filter can be obtained
by applying the method originally developed by Ahlen and Stemad for the special case of
input estimation problem [AhlenS_89], In that approach, followed from a technique presented
in [AstromW_84], the optimal causal control filter can be determined by solving
a Diophantine equation instead of the causal/non-causal decomposition, as it has also been
noted in [Grimble_85] and [AhlenS_91]. Because the methods yield equivalent results the
equations based on the causal/non-causal decomposition are only presented in the remainder

for coherence.

2.2.2 Frequency-domain approach

The optimal causal control filter minimising (2.7) and (2.8) can also be determined in the
discrete frequency domain by applying the methodology presented in [Haykin_96],

[KuoM_96] and [Elliott 01], and taking the considerations from the previous subsection into

account:
WEH") - ~ F(n)S[0Xn) |S f («)}+ (2°26)
where n is the frequency bin number. The causal part is calculated as [ElliottOl]

F(n

”( ) _ ®DFT ((n)WDFT F(M (2.27)

ST\") j+ KS?\n)
where

[ n>0

<wio»<o- <i28>

The Discrete Fourier Transform (DFT) and its inverse (IDFT) can be computed using one of
the Fast Fourier Transform (FFT) algorithms, provided the number of frequency bins, N, is
large enough for the causal part of the impulse response of the expression in curly brackets to
decay to zero before the N/2 sample [Orfanidis_88], [BendatP_93], Also the spectral

factorisation, (1.5), can be performed in the discrete frequency domain by using the cepstral
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method [OppenheimS_75], [Elliott Ol]. The minimum phase factor F(n) is then obtained

from its magnitude (square root of PSD ofthe disturbance) as

F(ri) = expd DFT £0(n) IDFT( IN(SJd(n)) j (2.29)
where
1 n>0
o(n) = 1/2 n=0. (2-30)
0 n<o0

Similarly, frequency response of the outer factor of the transfer function S\ is calculated as
SE'(«) =explz)F7" 2£,(»)m7Z)Fj( In(|S,(w)]) ) (2.31)

since it has the same magnitude as that of the transfer function S\. It further allows for easy
calculation of S~(n) (using (2.13)) required to determine the frequency response of the
optimal causal filter, (2.26). Impulse response parameters of a filter yielding such a frequency
response can be found by minimising the sum (weighted, if necessary) of the squared error
between the actual and the desired responses at frequency bins. This can be done using, e.g.
iterative search with the Gauss-Newton method, available in the Matlab package (imfreqzQ

function) [DennisS_83],

223 Correlation-based approach

The optimal causal control filter designed with the polynomial or frequency-domain approach
is unconstrained, i.e. it has infinite impulse response (HR). The unconstrained filter can
obviously be truncated or approximated by a constrained one, if necessary. Causal and
constrained (FIR) optimal control filter can be directly designed using the correlation-based
approach described, e.g. in [KuoM_96] and [Elliott OI], and correctly applied to control
system with the general output given by (2.6). It is assumed for the purpose of this approach
that the transfer function S, is of FIR structure of order M. The optimal constrained causal

control filter takes then the form

yva* = -ENI{i) r T{i)» (2-32)
where:

r(i) =sld(i), (2.33)
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and the vectors are defined as:

I (2.34)

= yreen ﬂ_A/A] > (235)
(- (2.36)
d(i) = [d(i),d(i-1),...,d (i-M +D)]r . (2.37)

According to (2.33) the signal r(i) is the disturbance signal filtered by Si and not simply the
real path. This is an important difference compared to solutions found in the literature, e.g.
[KuoM_96], [HansenS_97], [Rafaely_97], [ElliottOl]. The hats have been introduced to
indicate that Si is generally composed with path models - see (2.6) and respective equations
in Chapter 3. Even if the paths appear in some of the equations they are unknown and should
be substituted with their models. Such notation coincides also with the notation used for
adaptive systems (Section 2.3). The optimal filter, (2.32), is thus expressed in terms of the
inverted autocorrelation matrix of the filtered-disturbance signal and the vector of cross-
correlation between the filtered-disturbance signal and the disturbance itself. Practical
implementation of (2.32) in a feedback system requires estimation of these auto- and cross-
correlations, preferably from auto- and cross-spectral densities, respectively. The filter can
also be computed using, e.g. the Levinson’s algorithm [Orfanidis_88].

The optimal filter (2.32) could also be derived with the help of the ‘correlation
cancelling principle’, sometimes called the ‘orthogonality principle’ or ‘Wiener-Hopf
condition’. It aims at removing the correlation between the output signal and the control filter

input [Orfanidis_88],

2.2.4 Optimal control of deterministic disturbances

A correctly sampled, i.e. satisfying the Shannon-Kothielnikov theorem, periodic disturbance
can be represented (decomposed) as the finite sum of harmonics with frequencies being
integer multiples of the fundamental frequency of the signal [BendatP_93], In particular case
the signal can be a single harmonic, i.e. a tone originating from a rotating or reciprocating
machine, or a series of not related tones generated by several sources operating with different
frequencies. In the latter case there is no fundamental frequency. Hence, a periodic signal can

be generally written as
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d(i) =\/(_ljDisin(<y,7y+Yi), (2-38)

where P is the number of tones, and (@, D,, y/, are the angular frequency, amplitude and

phase, respectively, of the /-th tone. An optimal causal control filter minimising mean-square

value of the output signal (2.6) should therefore satisfy

fe{l,y P}I + WplH{e-MTs)S1(e~MTs) =0, (2.39)

regardless of the amplitude and phase of every tonal component. Representing complex

values of the responses of Wopt+and S\ in terms of magnitudes and phases gives

I * ' ial =
JE{, ;/ P) 1+ |1NCP+{e IWTs)|Ie I k(e MTS)LeJe 0, (2.40)

where % and 6\ are the phases of the optimal causal control filter and S\, respectively, at the
frequency o),. Provided the order of the control filter is sufficiently large, solution to the

problem given by (2.40) always exists and is not unique:

\Y (241)
=2 B\(pl =Q, + K+p,- {In)
where p, are integers. Because the above conditions need only to be satisfied at individual
frequencies, parameters pt can always be chosen to obtain acausal control filter of

sufficiently large order even if Si is non-minimum phase including a considerable delay
(see Appendix B.5 for an example). It is worth stressing here that for optimal IMC the
stationary multi-tonal noise can be perfectly cancelled regardless of plant modelling errors.
There are also other solutions to the problem of control of multiple tones. One of them
is to process the signal in a bank of parallel channels, each responsible for a single tone
selected with an appropriate band-pass filter. The tones are individually controlled by the so-
called ‘phase shifters’. Such approach has been extensively studied in [Pawelczyk_02a],
Another solution is to apply the Internal Model Principle by incorporating model of the

disturbance in the design [NiederlinskiMO_95], [BodsonJD_01], [BrownZ_04],

2.2.5 Stability and robustness of optimal control systems

Stability analysis can generally be performed using a number of methods [Kaczorek_93]. One

of them is to analyse zeros of the characteristic equation. For IMC it takes the form (see (2.4))

[+fsv-s V =0 (2.42)
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or, for the general notation (see (2.5))

\+S2W =0. (2.43)
However, if the exact transfer function S2 is unknown and the only knowledge on it is
available from experiments, the most suitable methods are based on Nyquist or Bode plots
of S2W . It also follows from (2.6) that the general system would tend to a feedforward-type
system, surely stable for stable plant and control filter, provided

S2W ~ 0. (2.44)

For IMC this means that the modelling error or strictly the term (Sr-S r)W should be close to

zero [Elliott_01]. Then, potential instability of the feedback loop would be avoided.
Therefore, it is of vital interest to protect against unjustified excessive rise of the filter
coefficients, particularly if modelling errors exist due to, e.g. changes in the acoustic
environment. The protection is also important for internal stability guaranteeing all signals
bounded in the control system. For IMC this is determined by the characteristic equation
(2.42) and the denominator of (2.3) (Appendix A.l). A limitation of the control filter gain can
be done by modifying the minimised cost functions (2.7) and (2.8) to respective forms

[KuoM_96], [Elliott 01]:

L=E\yXi)}+Py/w, (2.45)
Lm= ]J\SJe” )+p\w (e-")f 1dcoTs. (2.46)
O*-

Such method can also improve the numerical conditioning of the optimal solution, e.g. in case
of presence of dominating tones in the disturbance. The equations for the optimal control
filters in the polynomial, (2.17), and frequency-domain, (2.26), approaches retain the same
form with the exception that the spectral factors are obtained from

F(z-)F(z) =Sddz~)+ P (2.47)

1= P~j°srs
F(n) =expjiV-T * (»)IDFT( In(Sdd(«)+p/\Sx(n)|2) (2.48)

respectively, instead by using (1.5) (see [ElliottOl] for a similar problem). In turn, in the

correlation-based approach the control filter is calculated according to
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It can have a unique solution even if the disturbance signal is not sufficiently rich

(not persistently exciting [NiederlinskiKF_93]) and E<Hi)r'(i) \ is singular. This kind of

régularisation is equivalent to adding to the filtered-disturbance signal a low-level wide-sense
stationary white noise of variance /3, uncorrelated to e(i) (see [Orfanidis_88] for a similar

problem).
It follows from the equations for the optimal control filter, (2.17), (2.26), that if the

magnitude of frequency response of Si, being a real path model for IMC, had deep valleys at
some frequencies the filter would have high gains at those frequencies. Then, the overall
control system might become unstable due to (2.43) in case of changes in the plant response.
Therefore, if the bound of the plant perturbations, referred to as the uncertainty, is known it
can be reasonable to take it into account in the design procedure to guarantee robust stability
[MorariZ_89], [Elliott OIl], Following the reasoning, let the general plant S (for IMC S = Sr)
be described as the nominal plant SO with the multiplicative uncertainty SS [MorariZ_89],

[Weinmann_91], [DoyleFT_92]

S{eidfs) = SO(e**1)[1 +8S (e X )] (2.50)
and the upper bound of the uncertainty be

V ~5S(enTs) > \SS(e~jnils) |. (2.51)

Due to such properties of the ANC plant like possible significant changes of both magnitude
and phase this description of uncertainties is much more suitable then using the additive

uncertainty [MorariZ_89], [Rafaely_97], Conservatively, it can be assumed that all plant

responses at all frequencies are within a disc with centre S, (e~"Bn) and radius
£S(edfi)|SO(e~X0B)| (this describes a larger set of plants than practically possible). Then, the
well-known necessary and sufficient condition for robust stability is [MorariZ_89],
[DoyleFT_92]

[t; (e~Is]OS(ends)| <1, (2.52)
where |L denotes the H,, norm (Appendix A.5), and TO is the Complementary Sensitivity

Function for the nominal plant [MorariZ_89]. Assuming lack of modelling errors for the

nominal plant, i.e. S = S0, the expression (2.50) can be interpreted as adescription of
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uncertainty of a model for the perturbed plant. Then, in the particular case of IMC the

Complementary Sensitivity Function reduces to (Figure 2.2)

Tr0(e~)T) = -Sr(e~X* s)W(e~jaT-) (2.53)

and the condition (2.52) for robust stability becomes [MorariZ_89]
Sr(e~joirs] SSr{e, )W (e~aiFs)|| <1. (2.54)

This equation allows also to evaluate a bound on the control filter that guarantees assumed
stability margin. According to (2.44) and using the above notation the IMC system ‘tends’ to

a feedforward-type system provided

Sr(e~i*BjSSr (enS)W (e'm ) =0, (2.55)
although the problems of internal stability remain [MorariZ_89], It has been shown in
[Rafaely_97] that the uncertainty ((2.50) and (2.51)) constrains both achievable disturbance
attenuation and possible disturbance enhancement obtained in arobustly stable feedback
control system. One of the important conclusions from the analysis is that if the multiplicative
uncertainty is less than unity perfect cancellation is possible at corresponding frequencies in
a robustly stable control system and it is limited otherwise.

Description of the plant changes in terms of multiplicative uncertainty and related
constraints on robust stability allow formulating another cost function. Taking into account

that
SJe”)=\v(e-]dI")F(e-BP) f, (2.56)

it can be written [Rafaely_97]

2Ti- ~ 2

Lm=\ \v(e~ioiTS)F (e~imls)| +P2\To(e-J*)8S (ea™)\ dcoTs, (2.57)
0L J

where V(e~InTs) is the frequency response of the General-Output Sensitivity Function, isa

weighting coefficient, and PSD of the white noise is constant and unity. If F in (1.4) were
assumed to be made of monic polynomials, non-unity variance of the white noise should also
be taken into account. This cost function exhibits a trade-off between noise attenuation
(first term in the integral) and robust stability (second term). It has been motivated by the

condition for robust performance, which guarantees robust stability at the same time
[Morariz_89], [DoyleFT_92], [SkogestadP 96], In the polynomial-based approach the

optimal filter minimising (2.57) remains the same in form. However, the disturbance shaping
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filter, F(z']), is obtained now as a solution to the more general spectral factorisation, which for
IMC takes the form [Elliott O1]:

pJSAz-1)SSAz) =F(z-V (z)[_i= s. (2.58)

Similarly, in the frequency-domain approach it holds then
F(n)=exp FFT 2,(»MDFTT IN[sm(n)+p2|*SrCh)\) (2.59)

According to [ElliottS 96], minimisation of the cost function given by (2.57) is equivalent to
minimisation, in the mean-square sense, of the control system output described by (2.6) with
the control filter input being the disturbance signal added to additional exogenous white noise,
es(i) . This noise should be uncorrelated to e(i), have variance /?, and be shaped by the upper
bound of the multiplicative uncertainty. Then, in the correlation-based approach the optimal

causal and constrained control filter is

1
Eopl+= -E~ts()r3(i)[ £ jra(i)rf(0j, (2.60)
where
rs(i) =Sr[d(i) +5Sres(i)] (2.61)

(see [Rafaely_97] and [ElliottS 96] for asimilar problem). Better performance can be,
however, obtained if the H2 cost function without the robust term, (2.8), is minimised subject
to the H,, constraint (2.52). This strategy is known as the H2/Hx control problem. It has
been discussed in [MorariZ_89] and extensively studied for ANC in [Rafaely_97] and
[RafaelyE_99]. Searching for the solution is proposed there with the ‘sequential quadratic
programming - SQP’ method implemented under fminconQ) function of the Matlab package
[Grace_95], The general idea is to assume perfect plant model to obtain a simple form of the
Hi cost function subject to the H,, constraint, (2.52). For the SQP method the problem should
be formulated as a convex one to find the global solution [RobertsVV_73]. Another idea is to
design the optimal control filter without any constraints and then cascade it with a low-order
low-pass discrete filter [MorariZ_89],

It is worth noticing here that in the robustly stable designs presented in the quoted
references the cost function includes PSD of the disturbance in the form of F, which should
be known or estimated. A similar but more general problem can be defined as minimisation of

H2 or //,, norm of the sensitivity function itself, independently of the disturbance, over
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assumed frequency band. Such problem has been considered for continuous-time control in
[Pawelczyk_02b, 02d, 02g], It addresses also the case where the disturbance is non-stationary
or, if originating from many sources, may change due to switching on and off some of them.
An appropriate solution will be briefly referred to at the end of Chapter 3.

Some modifications of the H2 cost function, other than those given by (2.46) and (2.57),
can also be applied to enhance robustness of the optimal solution. One of the ways is to
include control signal weighting [NiederlinskiMO_95], [Pawelczyk_99a], Such approach is
less conservative than that with control filter weighting because it limits the power sent to the
loudspeaker, usually concentrated at some frequencies and not the entire filter [Rafaely_97].
In turn, in [StemadA_93] the optimal control filter solving the general LQ problem has been
found with the aid of the variational method in the frequency domain. Another solution could
be to transform the problem to a state-space form and design a Kalman filter even if the
measurements were non-stationary [AhlenS_91], A Wiener-type filter could also be designed
in such case by applying an approach based on the LU Cholesky factorisation of the

covariance matrix ofthe input [Orfanidis_88],

2.3 Adaptive control

The optimal control filter in the IMC system does not depend in fact on the plant but on its
model. Hence, it may seem that it can be successfully implemented in an application as
a fixed one, regardless of plant time variations. However, there are some additional aspects.
First, the optimal causal filter is defined for every frequency of the broadband disturbance.
Second, the causal filter is in fact sub-optimal for the non-minimum phase model. The first
problem makes the filter difficult to be implemented exactly even for a stationary disturbance.
In practice, parameters of the disturbance originating from an operating machine or vehicle
are at least slightly changing in time. Additionally, they cannot be measured with perfect
precision to perform optimal control. The second problem may be more serious. The sub-
optimal filter does not lead to the minimum of the cost function. According to (2.6) the cost
function may exhibit significantly different shapes at the minimum, dependent on the plant
modelling error (Figure 2.3). In most ANC applications and particularly these considered here
the acoustic field response being a part of the response of the acousto-electric plant is subject
to change. With the fixed control filter this may produce significantly different values of the
cost function, (2.18), and therefore attenuation results. The control filter implemented as

adaptive is tuned to satisfy the general purpose, namely to control the noise components that
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contribute mostly to the overall mean-square value of the output signal. Moreover, it can be
capable to retune in case of non-stationarity of the disturbance or changes of the plant
response. Hence, adaptive controller is often a remedy to the above problems.

In this section basic parameter-update algorithms are briefly presented with focus on the

most popular Filtered-Reference LMS. Then, convergence and stability problems are dealt

with.

2.3.1 Filtered-Reference LMS algorithm

The Filtered-Reference LMS algorithm has been originally developed for feedforward
systems, where the reference signal, x(i), being the control filter input and correlated with the
disturbance, d(i), is not estimated but is measured or synthesised. The derivation is presented
in many references, e.g. [Haykin_96], [KuoM_96], [HansenS_97], [Elliott_01]. It is briefly
reported below to set the background for the following analysis.

Under assumption 1.2 defined in Section 1.5 the order of the general path and the

control filter can be exchanged for analysis, as in Figure 2.4.

Figure 2.4 Exchanging the plant and control filter for analysis.

Then, the acoustic noise cancellation problem with the presence of acousto-electric path at the
control filter output can be considered as the classical electrical noise cancellation problem
with the control filter input being the reference signal filtered by the path response. Hence, the

output of the entire system can be expressed as

y(i) = d(i)+ wrr(i), (2.62)
where
r(i) = sTx(i) (2.63)

and appropriate vectors are defined withthe rules set in (2.34)-(2.37). Due to the above
assumption the cost function (2.7) is quadratic in terms of the filter parameters.

The parameters can be thenupdated in the opposite directionto the gradient of the cost

function, so that
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. . H dL
1) =
w(i+1) = w(i) 2 dw(i) (2.64)

where n is a greater than zero ‘convergence coefficient’ called also the ‘step size’ or

learning rate’ [HaykinW_03]. Taking (2.7) and (2.62) into account the gradient can be

calculated as

L o
d v =~2E{r(i)y(i)}. (2.65)

Estimation of the cross-correlation term would require a lengthy averaging procedure,
difficult to perform on-line. Therefore, a simplified alternative is used in the form of the LMS
algorithm where the gradient is estimated by the instantaneous value r(i)y(i), which is
a noisy but unbiased estimate [Morgan_80], [WidrowSS_81], [WidrowS_85], [Orfanidis_88],
[Haykin_96], [HaykinW_03], Then, the update equation becomes

\w(i+1) = w(i)-/jr(i)y(i)

U-sjM . ] & *>

In practice, the path impulse response, s, is unknown and the impulse response of its FIR

model, s, is used instead of it. Hence, the update equation (2.66) can be written as

y(i+1) = w(i) - flr(i)y(i)
(2.67)
r(i) =sTx(i).

This form of LMS is referred to as the Filtered-Reference LMS or, more commonly,

Filtered-x LMS (FXLMS) since the reference signal is usually denoted as x(i) (Figure 2.5).

Figure 2.5 The Filtered-Reference LMS algorithm.
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2.3.1.1 Convergence analysis

Before proceeding further it is now worth pointing to the underlying problem of convergence
of the adaptive algorithm. In stochastic systems convergence of two random variables can be
defined in different sense [ChenG_91], [Macchi_95]:

1) convergence ‘with probability one’ or ‘almost surely - a.s.’,

2) convergence ‘in probability’,

3) ‘weak’ convergence,

4) convergence ‘in the mean-square sense’,

5) convergence ‘in the mean’,

6) convergence ‘ofthe mean’.
Definitions and mutual relations of these convergence types are presented in Appendix A.8.
Nevertheless, it is worth mentioning that the convergence ‘with probability one’ is the

strongest, whereas the convergence ‘of the mean’ is the poorest.

Provided that the assumptions J.1-J.5 defined in Section 1.5 are satisfied and the plant is
perfectly modelled, the sufficient condition for convergence ‘of the mean’ of the control filter

parameters updated with the FXLMS algorithm to optimal filter parameters takes the form

H< — (2-68)
X

where Amx is the maximum eigenvalue of the correlation matrix E{r(i)rT(i)} [Macchi_95].

In the sequel, the notion ‘convergence of the algorithm (system)’, instead of ‘convergence of
the control filter parameters’ will be often used. Under the same assumptions the sufficient

condition for convergence of the algorithm ‘in the mean-square sense’ is stronger

[Macchi_95], [Elliott_01]

ju<————-- y --. (2-69)

It has been experimentally shown that the reliable upper bound of the convergence coefficient
should be modified to
2 (2.70)

M<
(N +Kk)E\r\i)

where k is the overall plant delay [ElliottN_89], [Elliott OI], It is convenient for

implementation purposes to rewrite the above equation using available quantities, i.e. estimate
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E y (Oj by averaging the data over the control filter length, so that

M < 2 (2.71)

(I+k/N)rr(i)r(i).

This leads to the Normalised FXLMS algorithm [KuoM_96]

w(i+l) =w(i)-/J,,-—-—- o)
Er(0£(0+<r

y(i) (2.72)
with the upper bound of its convergence coefficient being

Mn<~(uJ/N) A
and additionally included régularisation parameter 0 < ¢ « 1. A generalisation of Normalised

LMS algorithm is the Affine Projection Algorithm described, e.g. in [HaykinW_03].

The necessity of relying on a practically imperfect model instead of the plant itself may

lead to degradation of the correlation between the filtered-reference signal, r(i), and the

system output, y(i), which is responsible for updating the filter parameters in the proper

direction ((2.64) and (2.65)), what implies convergence [SnyderH_94]. Hence, the

eigenvalues A, (I = 1, 2, ..., N) of the cross-correlation matrix E<r(i)rT(i) | determine

behaviour of the adaptive algorithm. The classical FXLMS algorithm with imperfect

modelling, if convergent, converges to the following solution
h{<»)=-£jr(/)rr(i)j Ejr(i>/(/)]j, (2.74)

regardless weather it operates in a feedforward or feedback structure. However, it is different
than the optimal solution, (2.32), [ElliottOl]. If the assumptions J.1-J.5 hold and all the

eigenvalues A, (not entirely real) of the cross-correlation matrix have positive real parts the
sufficient condition for convergence ‘of the mean’ is [Morgan_80], [Elliott Ol]
2Re (™)
Y (2.75)
The convergence coefficient should be further limited if the plant is highly resonant or the
disturbance highly correlated [BoucherEN_ 91].
The above discussion on the upper bound of the convergence coefficient may seem to

violate the primary assumption of very slow adaptation required to derive the FXLMS
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algorithm. However, it turns out in practice that this algorithm “behaves more robustly than it
was originally assumed” [Elliott OI] (see Appendices B.7 and B.8 for examples).

Each eigenvalue, X, of the cross-correlation matrix can be associated with a mode of the
FXLMS algorithm [KuoM_96], [Elliott OI], It follows from the above evaluation that if for
an excited mode of the algorithm the corresponding eigenvalue has negative real part the
algorithm can diverge. Hence, it is important to provide an easily interpretable and reliable
convergence condition addressing the modelling problem. It has been shown in [WangR_99b]
that under the assumptions J.1-J.5 the sufficient but not necessary condition for convergence

‘with probability one’ of the FXLMS algorithm to the stable equilibrium point given by (2.74)

is that S(z-')/S(z-') is SPR (Appendix A.4), or equivalently
VRe\s(eiaqs)S\eidFs)S>0. (2.76)
as [

The proof has been performed using the Ljung’s Ordinary Differential Equations (ODE)
method [LjungS_83]. However, “the ODE method does not give information on the transient
behaviour of the algorithm”. If the assumption about vanishing to zero convergence
coefficient is not satisfied the control filter parameters converge to the stable equilibrium
point (2.74) ‘in probability’ [WangR_99b]. The condition (2.76) directly implies that the so-
called ‘phase error’ between the control-to-output path and its estimate (the plant and the
model, respectively, for feedforward control) must not exceed +n!2 at all frequencies

[WangR_99b]. Hence, the so-called ‘phase condition’ takes the form
Vo Z{S(e-mB)}- Z{S(e~ju®)} < |. (2.17)
glc

where zZ{.} stands for the phase of {.}. This condition is also valid for tonal disturbances, for
which it was derived much earlier [Morgan_80], [Burgess_81], [ElliottN_93],

After convergence, the value of the cost function differs form the minimal one obtained
with optimal control and the so-called ‘excess mean-square error’ is proportional to ju
[Orfanidis_88], [Macchi 95], [KuoM_96], [HaykinW_03]:

L,,~Lmm-<U. (2-78)
However, as it has been shown in many experiments, e.g. in [SaitoS_96] and [Elliott OlI], this
degradation is rather marginal for small /7 and feedforward systems, provided the modelling
errors are not so significant for the algorithm to diverge. For feedback systems and non-
minimum phase plants the adaptive system may even produce a smaller value of the cost

function due to sub-optimality of the fixed realisation (Figure 2.3). Moreover, the



34 Feedback Control of Acoustic Noise at Desired Locations

convergence coefficient (or both jun and g in the Normalised modification, (2.72)) can be

controlled to enable fast response in face of tracking necessity and small excess mean-square
error after convergence [HaykinW_03], Recent investigations show that for the adaptive
LMS-based algorithm the steady-state mean-square value can be reduced because of non-
linear effects, compared to that obtained with the optimal filter of the same length even for
minimum phase plants [HaykinW_03],

Average behaviour of the estimate of the mean-square value of the output signal,
associated with each stable /-th mode significantly excited to influence this value, can be

expressed by a time constant. The time constant takes the following form

for perfect plant model; time constant of the parameter update is doubled [HaykinW_03],
So the spread of the time constants can be written in terms of the spread of eigenvalues of the

cross-correlation matrix [Orfanidis_88], [Macchi_95], [Haykin_96], [ElliottOl]:

1:mr‘h Anax la n/\

Tmax ~ Xmm I (

The eigenvalue spread is further determined by spectral properties of the disturbance and

frequency response of the plant (or rather the perfect plant model):

max<" S (ems) SAen) J

L (2.81)
min< S(e~iaTs) sdd(eaTs)
"o

1

The inequality can be substituted by equality for long filters.

Convergence of the adaptive algorithm can be characterised by convergence time. It is
formally defined to be “the number of steps (samples) required for the power of the transient
error to decrease below the steady-state error level” [Macchi_95], However, practically, it is
often defined as the number of samples required for the cost function value to be acceptably
reduced [ElliottSN_87], Sometimes, it is also expressed as the number of samples
corresponding to an integer multiple (usually 3 or 4) oftime constants of the excited modes,
required for the cost function to differ marginally from its steady state value [Macchi 95],

Convergence time of an adaptive LMS-based algorithm depends strongly on //, which is

chosen dependent on properties of the plant and its model for a given disturbance.
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Conclusions drawn from experimental analysis for the IMC system are reported in
Section 2.3.5.

Another notion, often used to describe convergence is the ‘convergence rate’ defined in
different ways in the literature. For example, it is the Euclidean norm of the parameter
estimation error [ChenG_91], [Niederlinski_95], [Macchi_95], Next time, it is the reciprocal
of the time constant of the exponential-like trajectory [SastryB_89]. Sometimes it is simply
defined as the reciprocal of the time required for the error to decrease below an assumed level,

or the reciprocal of the convergence time.

2.3.1.2 Improvement of convergence
Convergence conditions for an adaptive control system with the FXLMS algorithm can be
relaxed if the cost function being minimised is redefined as in (2.45). This results in the

following parameter-update equation [KuoM_96], [Elliott OI]

w(i+1)=(1- Pn)w(i)- nr(i)y(i). (2.82)
Due to the first term on the RHS (0 « 1 - < 1) this algorithm is referred to in the literature

as the Leaky FXLMS. It converges provided real parts of the eigenvalues ofthe matrix

E~r(i)rT(i) +ySIN| are positive. In this case, the sufficient condition for convergence ‘with

probability one’, (2.76), modifies to [Elliott OlI]
V ReiS(e™"r)S" (<f)]+ >0 (2.83)
”S [ J

under the assumptions J.1-J.3, J.5 defined in Section 1.5. Hence, this algorithm is able to
converge even in case of significant phase errors provided the weighting coefficient /? is
large enough. It should be emphasised that the leakage improves robust stability but degrades
the performance. Hence, the weighting coefficient /? is a trade-off between performance and
robustness as in the optimal system. It has been mentioned while analysing the optimal
control that this modification of the cost function is equivalent to properly injecting an
exogenous white noise to the system [Rafaely_97].

Similar results to that of the Leaky FXLMS can be obtained with an adaptive realisation
of the optimal H2/ H,x approach. It is derived by transforming the constrained optimisation
problem to an unconstrained one using penalty or barrier functions in the frequency domain,
[Fletcher_87], and minimising the new cost function with the steepest descent method

[Rafaely_97]. The obtained algorithm adapts to non-stationary disturbance and is robust to
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plant perturbations. It may give important benefit. Properly designed it may protect against
unacceptable reinforcement of some frequency component, or obey other constraints. The
amplification of noise at some frequencies might sometimes be severe in classical
H2approach. However, the important drawback of the adaptive H2/ H.,, control system is its
complexity and computational load, what makes it rarely used.

The convergence and performance problems can also be relaxed to some extend by
applying to FXLMS some of the known modifications of the LMS algorithm that update the
convergence coefficient, e.g. Correlation LMS, Normalised LMS (with controlled relaxation
coefficient), Variable-step-size LMS or others [KuoM_96], [HaykinwW_03], The Correlation
FXLMS algorithm has been found particularly useful and successfully verified in

[Pawelczyk_03a, 04a], Control filter parameters are updated according to

Mi+1)= Mi)-ju(i)r(i)y(i)

I +1)= «*)) (2.84)

a(i+1) =vai2(i)+ (A—~v2r(i+i)y(i+2)
where vx is a “scale factor” and v2 is a “smoothing factor introduced to deal with the
nonstationary character of the adaptation error process” [KuoM_96], This modification allows
to keep tracking capabilities, reduce mean-square value of the controlled output in the steady
state and make the overall system stable in case of practical changes of the plant response and
disturbance non-stationarity [ShanK_88], [KuoM_96].

Convergence rate of the adaptive algorithm can be significantly improved (convergence

time reduced) by making the convergence coefficient a function inversely proportional to

PSD estimate of the filtered-reference signal,

S;: ()= S(n) S,,{n) (2.85)

([Orfanidis_88] and [BendatP_93]) or at least inversely proportional to |S (n)\2. Such
approach reduces the spread of time constants of the algorithm modes. It can be efficiently
performed using one of the following solutions:
» control filter update in the frequency domain - then an individual convergence
coefficient for each frequency bin, n, can be used ([KuoM_96]),
» control filter update in the time domain with the correction term transformed back
from the frequency domain, where it was calculated and decomposed to obtain

a causal part [ElliottR OQ],
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control filter update in the time domain, where instead of filtering the reference signal

by the plant model, S, itis filtered by s/\ S |2, which has the magnitude equal to that

ofthe inverse of S and the same phase [Michalczyk_04],

Another way to improve convergence rate is to apply the Newton LMS (however, the
initial convergence rate is higher for the LMS itself), Fast RLS (e.g. RLSL, FK, FAEST, FTF
- their computational complexity is of O(N), whereas for RLS itself the complexity is of
0(N2), Lattice RLS or Lattice LMS algorithms [Orfanidis_88], [HaykinW_03]. Obviously,
filtering the reference signal as in the FXLMS algorithm is still necessary. Among these
algorithms the Lattice ones deserve particular attention. Similarly to Newton LMS, their
convergence time is independent on the eigenvalue spread, (2.80), and therefore they respond
very fast [VeenaN_04], Moreover, they provide high computational efficiency, numerical
stability and accuracy. Additionally, due to modularity of structure, the filter order can be
easily changed, if necessary [MitrakK_93],

Recent investigations show that convergence rate of the LMS algorithm depends
significantly on initial conditions and for proper choice it can be significantly higher than for
the algorithms mentioned above [HaykinW_03], Moreover, LMS “is an algorithm that is
robust with respect to disturbance variation, a property of which RLS, for example, cannot
boast”, [HaykinW_03]. In fact, it has been proven to be an Ha optimal algorithm in this
sense [HassibiSK_96]. Although this optimality is not unique, LMS is the only algorithm that
is also risk-sensitivity optimal, i.e. “under Gaussian assumption of the disturbance, it
minimises the expected exponential of the prediction error energy” [HaykinW_03], The above

features justify widespread use of the LMS in adaptive filtering practice.

2.3.2 Other LMS-based algorithms

Dependent on the structure of the control filter, computational load and demands related to
the residual signal, some LMS-based algorithms and realisations have been developed. They

are briefly described in the following subsections.

2.3.2.1 Filtered Recursive LMS

The optimal control filter designed using the polynomial or frequency-domain approach is of
IIR structure (see (2.17) and (2.26), respectively). The denominator of this filter depends on
spectral properties of the disturbance and response of the path model (model of the control-to-

output path for IMC). In case of the considered group of acousto-electric plants frequency
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responses of their paths do not exhibit evident separate modes. However, the disturbance-
shaping filter can have zeros close to the unit circle. Therefore, generally, impulse response of
the optimal filter can have a large number of significant parameters that should be taken into
account if this filter is going to be correctly approximated by an FIR filter.

The IIR filter when implemented as adaptive should be updated with the Filtered
Recursive LMS algorithm. It is usually called as the Filtered-u LMS algorithm or FULMS
since the reference and control signals are often gathered in a common vector denoted as U.

FULMS has been originally developed by Eriksson and takes the form:
WN(i +12) = wN(/) - fir(i)y(i)
wD(i +1) =wD(i)~n uf (i)y(i)

(2.86)
r(i) =s Tx(i)
u/(i) =s Tu(i).
where and W° are numerator and denominator, respectively, of the overall control filter

(Figure 2.6) [ErikssonAG_87], [Eriksson_91], [KuoM_96],

Figure 2.6 The Filtered Recursive LMS algorithm.

The cost function, (2.7), is now non-quadratic with respect to control filter parameters, what
may results in convergence to a local minimum [Shynk_89]. A sufficient condition for global
convergence of the FULMS algorithm has been first derived in [WangR_99], Provided the

assumptions J. 1-J.6 defined in Section 1.5 are satisfied and

Re >0, (2.87)

K+s
then by Ljung’s ODE theorem the FULMS algorithm converges ‘with probability one’ to the

unique equilibrium point.
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In [JacobsonJMS_01], the authors claim that the problem of convergence in case of
modelling errors can be avoided by simply applying the Normalised Recursive LMS
algorithm ([KuoM_96]), instead of Filtered Recursive LMS. They have proven that if the
assumptions J.1-J.6 are satisfied and the plant is SPR, then the Normalised Recursive LMS
algorithm converges ‘with probability one’ to the global unique equilibrium point.
Unfortunately, the assumption about properties of the plant is unjustified for acousto-electric
plants, particularly belonging to the considered group.

Due to demanding convergence conditions, presence of local minima and higher
complexity of the Recursive LMS-based algorithms, a common practice in majority of active
control literature and also in this research is to implement the control filter as a sufficiently
long approximating FIR filter and apply the FXLMS algorithm for updating its parameters.
This coincides with the correlation-based approach. Potential loss in performance is marginal
[Michalczyk_04], Following subsections are devoted to some representations or extensions of

FXLMS.

2.3.2.2 Filtered-Error LMS

Any modifications to the adaptive algorithm, (2.67), should not substantially deteriorate the
estimate of the cross-correlation, (2.65), between the filtered-reference signal and the system
output to guarantee update of the control filter parameters in the opposite direction to the
gradient of the cost function, (2.64). This conclusion allows to derive an algorithm in which
the controlled output (error) is filtered instead of the reference signal (see [Pawelczyk_03e]
for detailed derivation and comparison to FXLMS). The adaptation is performed according to

the following law

1 (2.88)
yf(i) =sTy(il

where sf is the vector of flipped parameters of the general plant model, i.e. the vector of

z~MS(z) (Figure 2.7). This algorithm, derived using a different method is known in the
literature as the Filtered-Error LMS (FELMS) [KuoM_96], [Elliott OI]. It has, in fact, little
advantage over FXLMS for SISO systems, but it is often used for MIMO systems where if

properly implemented requires much less computations than FXLMS.
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Figure 2.7 The Filtered-Error LM S algorithm .

2.3.2.3 Shaped-Error LMS

In this subsection a modification of the FXLMS algorithm that allows to shape spectrum of
the output signal, y(i), in a desired way is considered. Such problem is important for two
reasons. First, warning or alarming sounds can be generated in the controlled frequency band.
With classical FXLMS they might be cancelled to the acoustic floor level as they are usually
tonal and therefore are well tackled by discrete adaptive systems. Second, the user may prefer
hearing less attenuated sound and not to be fed with a kind of very unpleasant wide-band
hissing noise. By applying the methodology mentioned in the previous subsection, an
appropriate algorithm can be derived (see [Pawelczyk_03e] for detailed derivation and

analysis). The adaptation procedure takes the form
w(i+1) = w(i)-jurq(i)ya(i)
mrq(i) =qTr(i) (2.89)

ya(i) = {Ty(i),

where q is the vector of impulse response parameters of the output-shaping filter,

Q (Figure 2.8).

Figure 2.8 The Shaped-Error LM S algorithm .

This algorithm, derived using a different method is known in the literature as the Shaped-
Error LMS (SELMS) [KuoM_96], [Elliott 01]).
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2.3.2.4 Frequency-domain FXLMS

Sometimes it can be beneficial to perform adaptation in the frequency domain [Shynk_92],
[Haykin_96], [KuoM_96], [Rafaely_97], [ElliottR_97, 00], [Elliott 01]. Then, blocks of data
as long as the control filter length must be acquired to perform FFT. Due to the block
processing frequency-domain implementation allows more accurate calculation of the
gradient of the cost function, (2.65), than using the instantaneous values provided both the
plant and disturbance properties do not change over the block length. The filter is updated
every block length and it remains constant over this horizon. Such way of implementation
significantly reduces the computational load, particularly for long filters, since convolution is
omitted. However, if the overall control algorithm is performed in frequency domain an
additional large delay of the block length is introduced because control signals are calculated
once for such time. To avoid this disadvantage the algorithm can be modified. So the control
filter can be updated in frequency domain once per block and then transformed back into time
domain. Finally, the control signal is calculated in each sample as convolution of impulse
response of the control filter with the reference signal (see the above references). During the
processing care should be taken to avoid circular effects and obtain causal implementations
[BendatP_93].

While performing adaptation in the frequency domain different convergence
coefficients can be used for different frequencies, what can significantly improve the
convergence rate (reduce the convergence time). On the other hand, having frequency
responses of the control filter and plant model, both the performance and stability can be

easily monitored and proper precautions undertaken.

233 Adaptive control of deterministic disturbances

“Although the Filtered-Reference LMS algorithm has been motivated by the need to control
stochastic disturbances, it can also provide a very efficient method of adapting a feedforward
controller for single-frequency disturbances” [Elliott Ol]. Indeed, it has been confirmed in
many references that this algorithm is suitable for any disturbance, stochastic or deterministic,
in any control structure provided there is a reference signal (measured, synthesised
or estimated), which is correlated with the disturbance (see Chapter 5 for results of real-world
experiments and Appendix C for simulation results) [Macchi_95]. The convergence condition
is then much weaker than that for stochastic disturbance because (2.77) needs only to be
satisfied for the individual frequencies. It had been derived much earlier than the condition for

stochastic disturbance [Morgan_80], [Burgess_81], [ElliottN_93].
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If the disturbance has only harmonic content it is also possible to design an adaptive
gradient algorithm directly updating the control signal. Such algorithm is particularly efficient
if the sampling frequency is properly chosen with respect to the fundamental frequency of the
disturbance [KuoM_96], [Elliott O1]. Another method is to apply individually a cosine-wave
generator for each tone and a two-parameter control filter updated with FXLMS minimising
a pseudo-error signal instead of the residual signal [KuoM_96], [DiegoGFP_04],

Adaptive control of deterministic disturbances in the form of multiple tones can also be
performed in a filter bank composed of parallel channels, each processing an individual
frequency [HaykinW_03]. Such solution has been originally suggested in [Conover_56] and
also extensively studied in [Pawelczyk_02a] in the context of feedforward systems. It has also
been shown that the adaptive algorithm can be significantly simplified to the form of
Delayed-x LMS algorithm, where instead of filtering the reference signal in (2.67) it is only
shifted by an integer delay [Pawelczyk OOc], The multi-rate signal processing technique with
octave filters have been applied additionally to widen the attenuation band.

There are also other solutions in literature to the problem of adaptive control of
deterministic disturbances. They are presented, e.g. in [NiederlinskiMO_95], [BodsonD_97],
[MarinoST_03], [BrownZ_04],

2.3.4 Adaptive IMC system analysis

In the proceeding sections different parameter update algorithms have been presented and
discussed, including FXLMS with some modifications or representations, and FULMS. In the
sequel the classical form of the FXLMS algorithm will be considered, bearing in mind that it
can be performed in one of the other forms, dependent on application. Hence, the assumption
1.2 as defined in Section 1.5 remains valid.

IMC in adaptive version has been first studied by Walach and Widrow [WalachW_83],

[Widrow_86]. Control filter parameters are updated using (2.67), where s=sr and the

reference signal is not measured but estimated as (Figure 2.2)

*(0=JV (0-|rw(0 (2.90)
Therefore, the overall adaptive IMC system with the FXLMS algorithm can be presented as in

Figure 2.9.
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Figure 2.9 The IMC system with the FXLMS algorithm.

A simplified analysis of the adaptive IMC system is presented below. Further discussion of
this system, including different convergence conditions and role of the convergence
coefficient, is postponed to the following subsection.

In order to take advantage of the results of adaptive feedforward control system analysis

it is convenient to redraw the system from Figure 2.9 to a feedforward-type structure with the

input d(i) as presented in Figure 2.10.

Figure 2.10 Adaptive feedforward-type structure.

According to this figure:
yv(i) = (1 + AW)d (i), (2.91)

¥r(i) = (1+ BW)d(i), (2.92)

r(i) = Cd(i). (2.93)

Taking (2.25) and (2.4) into account gives, respectively,
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A=- (294)
I+ fF(5r1-5 1)
Sr
B= (2.95)
\+W{Sr-Sr)

It follows from Figure 2.9 that

() = Srx(i). (2.96)

Combining (2.2) and (2.4) results in

. 1 1+ WSr . Sr .
r(i)=Sr- d(i) = d(i). (2.97)
I+WSr 1+fV(Sr-Sr) 1+ fV(Sr-Sr)
Taking (2.93) into account yields
C = N ommmmneen (2.98)

1+0% i-sr)

Finally, the block diagram from Figure 2.10 takes the form as in Figure 2.11.

Figure 2.11 The IM C system in adaptive feedforward-type structure.

In case of feedforward control with the FXLMS algorithm a convenient convergence
condition is given by (2.77). However, it is seen from Figure 2.11 that for the IMC system the
control filter modifies the control-to-output path and may have the impact on convergence of
the adaptive algorithm. This figure can be further rewritten by shifting the common
denominator of transfer functions A, B and C in front of the control filter as in Figure 2.12. So
it is clear that in this structure the assumption J.5 from Section 1.5 concerning independence
of the control filter input on the control filter, required to derive the convergence phase

condition, is not satisfied.
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Figure 2.12 The IM C system in adaptive feedforward-type structure - anotherrepresentation.

The convergence analysis can be then approximately tackled by adopting the method

presented in [VaudreyBS_03]. Let the so-called control path be defined as the path from the
control filter input to the system output in Figure 2.11, i.e.

Bn=BW. (2-99)
It is non-linearly dependent on control filter W for the structure considered. However, it can

be successfully approximated by a linear term of Taylor series expansion at a frozen WO

dB. (W-WD0). (2.100)
dw

This is justified under the assumption of frozen trajectories or very slow adaptation, in

practice. The terms Bw\w and WO can be shifted to the primary path as in Figure 2.13,

with no change of the convergence conditions.

Figure 2.13 The Linearised IMC system in adaptive feedforward-type structure.
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Then, Bw can be considered as linearly dependent on W because ~-1 is independent on W.

This makes the linearised control-to-output path independent on W. Hence, the convergence
analysis of [WangR_99b] can be applied (see also [Morgan_80] and [Burgess_81]).

Using the general notation the controlled output can be expressed in the following form
y{i) = (\+Bw)d(i) =Vd(i). (2.101)
Therefore, the gradient of the control path, Bw, with respect to the control filter, W, can be

calculated as the gradient of the General-Output Sensitivity Function, V, with respect to the

control filter, what according to (2.6) gives

dBw - dV S.-S2

dw  dw (i +Ws2)2"' (2.102)
For IMC itselfand recalling (2.5) the gradient takes the form

daB»

dw (2.103)

Let now the assumptions J.1-J.5, J.7 from Section 1.5 hold for the linearised system. Then,
following the reasoning from [WangR_99b] and [VaudreyBS_03], it suffices for convergence
of the FXLMS algorithm that the phase angle (Z) of gradient of the General-Output
Sensitivity Function does not differ from phase angle of filter C in Figure 2.11 and Figure

2.13 by more than %;r/2i.e.

Sr n
z A 2 —2< A <. (2.104)

1+~ (S ,-Sr) I+7(Sr-Sr)

N

For the purpose of further analysis it is convenient to rearrange this equation. The

convergence phase condition can be then expressed as

z{sr}-z|ir}-zji+~sr-sr (2.105)

Hence, in particular, if W(Sr-Sr)~ 0 the phase condition (2.105) is equivalent to the
classical one, (2.77), developed for a feedforward system. It should be noted that limitation of
the control filter gain, what is advantageous for stability of the feedback loop (see (2.44)),

may also reduce the phase error and protect against divergence of the FXLMS algorithm. On
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the other hand, the last term on the LHS of (2.105) may sometimes help to satisfy the phase
condition (see Appendix B.7 for an example).

The phase condition will also be useful for analysis of different control systems
designed in Chapter 3. It will allow choosing a suitable structure, in terms of convergence, for
given application.

While designing more sophisticated control structures it is not always clear what
transfer function should be used to filter the reference signal (Figure 2.9). Then, the above
analysis can be reversed to ease up the synthesis. First, the gradient (2.102) can be calculated
and then the filter C (as in Figure 2.10) sufficiently simple and providing small phase error

can be designed. Finally, the required transfer function used to filter the reference signal can

be found.

2.35 Convergence and stability of adaptive IMC system

Adaptive internal model-based systems (IMC and the control systems considered in
Chapter 3) are very difficult to be fairly analysed. They operate with non-stationary signals
due to the adaptation loop, have structural feedback loop and are generally employed to face
time variations of the plant and non-stationarity of the disturbance. Therefore, their analysis is
usually subject to a variety of constraints that often significantly limit practical application of
found conditions. Some of the conditions developed over last years are briefly summarised
below.

Convergence analysis of the IMC system with control filter parameters updated using
the FULMS algorithm has been provided in [FraanjeVD_03]. It is an extension of the analysis

of [WangR_99] performed there for systems where perfect noise cancellation is possible.

Assuming that: J.1-J.4, J.7 from Section 1.5 are satisfied, Sr and Sr have the same inner

factor, the transfer function has no poles on the unit circle, and

W A-W ”ASr-Sr Sr >0, (2.106)

then, by Ljung’s ODE theorem (see [LjungS_83]), the FULMS algorithm operating in IMC
structure converges ‘with probability one’ to the unique global equilibrium point.

A simplified convergence analysis for IMC with the FXLMS algorithm has been
presented in [SakaiM_03]. The proofhas been carried out in the frequency domain. Assuming

that J.1-J.4, J.7 are satisfied, the order of the FIR control filter tends to infinity (is much larger
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then the order of the FIR plant and its model), both the plant and its model are minimum

phase with the same known delay, and

Re S*(»)Sr(«) + |5(in-)

then the FXLMS algorithm converges ‘of the mean’ to a local stable equilibrium point (Q is

{16"F(»)}3+6*»Sr(n) Sr(n)-S,(n) >0, (2.107)

the basic frequency bin and n is the number ofa frequency bin).

In the previous subsection the phase condition for convergence ‘with probability one’,
(2.105), has been derived after linearising the control path. It has been found particularly
useful in analysis. It is a counter-part to the condition (2.107) but it is more general since the
latter is valid only for a minimum phase plant and its model. What is also important, under
comparable assumptions the phase condition refers to stronger convergence. Condition
(2.105) implicitly includes properties of the disturbance via W, whereas in (2.107) they are
included explicitly.

The above brief review demonstrates high complexity of the stability problems in
adaptive ANC systems related to imperfect modelling. It has been assumed hitherto in the
form of J.7 that presence of the feedback loop does not destabilise the overall system, namely
the modelling error is not too large. Taking into account other assumptions, it can be
concluded that any analysis known to the author is of limited value due to a variety of
restrictive constraints. It is believed that more reliable analysis can be approached using,
e.g. the tool presented in [ChenG_91] based on conditional expectations and particularly on
the martingale method. “The martingale method is a powerful tool for analysing recursive
identification algorithms and stochastic adaptive control systems”. It has been successfully
used, e.g. in [Niederlinski_95] and [FilatovU_04], Such analysis still remains an open
problem.

Another methodology to overcome the problems due to imperfect plant modelling is to
update the model simultaneously with adaptation of the control filter. Several algorithms have
been proposed for the on-line adaptation of the plant model. They usually require injecting to
the system additional wideband noise uncorrelated with the disturbance, what exhibits close
analogy to interpretation of the Leaky FXLMS algorithm (see (2.82), (2.83) and following
comments). Appropriate algorithms can be found, e.g. in [ErikssonA_89], [Rafaely_97],
[Figwer_03], [VeenaN_04], There are also some trials to identify the plant model without the
additional noise but the result is generally not unique [WidrowS_85], [TapiaK_90],
[NowlinGT_02], [ZhangG_04], Usefulness of the algorithms mentioned above is usually
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comparable to the Leaky FXLMS in terms of the convergence itself. They can, however,
improve the convergence rate. Some of them are particularly appreciated in feedback internal
model-based structures. Then, in addition to updating the control filter parameters the plant
model constitutes a part of the overall feedback controller. If changes of the plant are large
enough stability of the feedback loop may be impaired (see (2.43)). For changes of the plants
under consideration (Chapter 5), application of these algorithms is unnecessary and Leaky
FXLMS supported with the Correlation or Normalised modification suffices to overcome
stability-related problems. The on-line model identification algorithms will not be dealt with
in the sequel.

It has been assumed in J.I for the convergence analysis that the convergence coefficient
is very small or vanishes to zero. On the other hand, the adaptive system is also responsible
for responding to time-variations of the plant or non-stationarity of the disturbance. However,
since the model of the plant is required to adapt the controller as well as estimate the reference
signal variations of the plant are more crucial. In case oftoo small convergence coefficient the
so-called ‘lag effect’ may appear, which can degrade the performance, even if the system
remains stable [Macchi_95]. In turn, too large coefficient increases the excess mean-square
error or can even lead to divergence as the upper bounds demonstrate. It has been shown in
[Macchi_95] that the optimal coefficient is related to so-called ‘non-stationarity degree’
introduced to describe time variations, and the tracking capability of the LMS-based
algorithm behaves much better when facing random time-variations than a deterministic
trend.

A further insight into the stability related problems can be gained and behaviour of the
adaptive algorithm can be examined with simulation analysis. However, it should be
emphasised at the very beginning that stability, similarly to convergence, is an asymptotic
property of a system. Therefore, any analysis performed over a short time horizon can rather
refer to a tendency towards instability (or divergence) and the conclusions cannot be
straightforwardly generalised.

Three potential sources of instability of an adaptive LMS-based feedback ANC system
should be considered [VaudreyBS_03]:

1) the structural feedback loop,

2) the phase error violating the convergence condition,

3) too large convergence coefficient jd .



50 Feedback Control of Acoustic Noise at Desired Locations

The first two problems originate directly from imperfect modelling and sometimes can be
difficult to overcome. Moreover, they can influence each other. These problems have been
experimentally examined for a simulated minimum phase plant in [VaudreyBS_03] and for
non-minimum phase plant including time delay in Appendix B.7. For example, even if the
phase error (2.105) is small and the filter tends to converge to the optimal solution roots of the
characteristic equation (2.43) can leave the unit circle on the z plane during adaptation or,
equivalently, frequency response of the open loop can encircle the Nyquist point. Then, an
increase of the output signal results in a change of the control filter, what can further violate
the phase condition (2.105). It has been shown that due to presence of the adaptive filter such
condition can be self-correcting during adaptation and decrease the phase error. Moreover, it
can even be less conservative than in case of feedforward systems (2.77). It has also been
demonstrated that even in case of the phase error between the plant and the model
significantly exceeding n 12, the adaptive algorithm of the IMC structure can converge. This
is because the phase condition (2.105) may be satisfied, although instability due to the
feedback loop may appear [VaudreyBS_03], On the other hand, even very small phase error
between the plant and the model may lead to divergence, particularly for a larger convergence
coefficient.

The third potential source of instability, i.e. the convergence coefficient, has great
impact on the convergence itself and the convergence time (rate). This dependence has been
verified by means of simulations for the IMC system with imperfect modelling and reported
in Appendix B.8. In these investigations the convergence time has been defined as the number
of samples required for an examined tone of 250 Hz to be attenuated by 20 dB. It has been
found that for small convergence coefficient increase of its value decreases convergence time

and the dependence is reciprocal,

(2.108)
regardless of plant modelling error. For small values of // the plant dynamics has little effect
and only the plant gain and control filter length influence the scaling in (2.108). Then, there
exists an optimal value of  in terms of the smallest convergence time (highest convergence
rate). Minimum value of tc depends both on the plant gain and delay for agiven ju.
However, the optimum value of /u and the range of its values are mainly limited by the delay,

what corresponds to (2.73). This has been confirmed in analysis performed in [ElliottSN_87]
for a simplified case of a feedforward system with the plant being a pure delay and tonal

reference signal. It has been experimentally found there that the optimal fi is inversely
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proportional to the overall path delay expressed in samples. Continuing the analysis from
Appendix B.8, further increase of the convergence coefficient increases the convergence time
due to fluctuations of the residual signal (or excess mean-square error, (2.78)). Finally, after
crossing the critical value the adaptive system suddenly diverges.

Summarising the entire stability and convergence considerations, and potential related
problems it is suggested to support additionally the adaptive algorithm with a heuristic
supervisory loop, regardless of any modifications. This loop can be used to monitor the
convergence and performance, and reset the algorithm or change some settings, if necessary
(see Section 5.3.5.3 for an example). This is particularly important for the considered acousto-

electric applications to avoid any unpleasant and annoying sound effects.

2.4 Summary

In this chapter Internal Model Control system has been considered. It seems particularly
useful for active control if no reference signal correlated with the disturbance is available or
can be synthesised, because it allows to estimate the disturbance, the better the more accurate
the real path model is. Consequently, design and analysis methods similar to those used for
feedforward systems can be applied. This structure is also advantageous due to minimisation
of the effect of non-linearity caused by the D/A converter saturation [MorariZ_89], Examples
illustrating design and analysis of this system are presented in Appendices B.1-B.8. They
have been simulated on the basis of real data obtained from laboratory measurements.

First, optimal causal control filters minimising mean-square value of the residual signal
at the real microphone have been designed using different approaches. Polynomial-based
approach requires spectral factorisation of the disturbance PSD estimate, inner-outer
factorisation ofthe real path model and causal/non-causal decomposition (alternatively,
solving a Diophantine equation). Next, the frequency-domain and correlation-based
approaches have been employed. AIll the solutions have been found equivalent
(Appendices B.3 and B.4). It should be emphasised that the designs with all the approaches
have been performed, contrary to majority of the references, without assuming perfect plant
modelling. The problem of control of deterministic noise has been considered separately.
It has been explained and confirmed by simulations in Appendix B.5 that the solution to this
problem is not unique provided the control filter order is sufficiently large. Moreover, it does
not depend on the plant but only on its model. Then, stability of the feedback loop and

numerical conditioning of the optimal solution have been analysed. Literature-based
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modifications have been discussed. They generally involve including a weighting term due to
filter parameters, control signal, or upper bound of the multiplicative uncertainty, if it is
known.

Next, adaptive control systems have been addressed. The most commonly used
algorithm, known as FXLMS, has been presented. It has been stressed that its properties
depend on the choice of the convergence coefficient and plant modelling errors. Therefore,
various sufficient conditions for convergence defined in different sense have been provided.
Some modifications of this algorithm relaxing the conditions have also been presented.
Among them, the Leaky FXLMS algorithm deserves particular attention. Other LMS-based
adaptive algorithms have also been mentioned. Their choice is application-specific.
Afterwards, FXLMS has been applied for updating parameters of the control filter in the IMC
system. It has been emphasised that such system is very difficult for analysis due to
interacting problems of stability of the structural feedback loop and convergence of the
adaptive algorithm. Therefore, any analysis found in the available references requires
restrictive assumptions concerning the physical plant and signals, which usually do not
correspond to the ANC applications. Also the simplest and convenient convergence phase
condition derived for a feedforward system without intrinsic feedback cannot be directly
applied. It has been, however, shown that similar analysis can be performed after linearising
the control path. Then, a phase condition explicitly including the control filter has been
obtained. Its relevance has been confirmed by means of simulation experiments
(Appendix B.7). Moreover, its idea is helpful for designing FXLMS-based parameter update
procedures for other more complicated structures and comparing their convergence properties
for a given application. It has also been shown that the convergence coefficient, control filter
length, plant delay and gain have crucial impact on convergence time. The conclusions have
been supported by simulation experiments reported in details in Appendix B.8.

Both optimal and adaptive IMC systems respond similarly for frequencies contributing
to the noise being controlled and invariant plant. The attenuation results are also similar. In
case of changes of the plant the adaptive filter retunes accordingly (Appendices B.3-B.5). The
fixed optimal filter, although dependent on the unchanged plant model and not the plant itself
is in fact sub-optimal for non-minimum phase model. As aresult the system performance
depends strongly on the modelling errors.

Simulation analysis presented in Appendix C.2 demonstrates that the zones of quiet

generated by the optimal or adaptive IMC systems are located at the real microphone.
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For considered frequencies they are of small dimensions and propagate poorly. Hence, if they
are expected at other locations appropriate control systems should be designed.

The entire analysis presented in this chapter constitutes the background for following
chapters. Therefore, both the optimal and adaptive solutions have been expressed using

general symbols that can be substituted by symbols appropriate for the other algorithms.



Chapter 3

Virtual Microphone Control

systems

3.1 The idea of Virtual Microphone Control systems

The IMC system presented in Chapter 2 has been designed to minimise mean-square value of
the residual (output) signal at the real microphone. The secondary sound operates at the same
time on the acoustic noise at the position of the user ear. In the worst case this can result in
sound reinforcement at that position. In many applications placing another microphone
directly at the ears is not accepted. It is then justified to make efforts to design a dedicated
system. The purpose is to minimise the mean-square value of the noise at the desired location
while performing measurements of sound interference results at another location. This can be
done by employing the general idea of Virtual Microphone Control (VMC) systems (Figure
3.1). In this chapter optimal and adaptive VMC systems in three different structures are

designed for the considered group of acousto-electric plants.

Zone ofquiet

Primary Virtual
source microphone
X-
Plant \ It
>
Secondary Svy
source
< D- Real
microphone
Control
"(O algorithm yAi)

Figure 3.1 The idea of a VMC system.
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3.2 Structure 1l

In this section a VMC system structure, similar to that of [Rafaely_97] and [TsengRE_02] is
considered as presented in Figure 3.2. However, the approach to optimal control is completely
different in Subsection 3.2.1. Adaptive realisation, not addressed in the literature, is presented
in Subsection 3.2.2. For this system, referred to as the VMCL1 system, the controlled signal
being estimate of the residual signal at the virtual microphone constitutes also the control

filter input.

Figure 3.2 The VMC1 system with the FXLMS algorithm.

3.2.1 Optimal control

By analogy to IMC, it is convenient for analysis of optimal control to present the non-

adaptive (fixed) part of the system from Figure 3.2 in the form as in Figure 3.3. The model

AS in Figure 3.3 represents the so-called difference filter being a model of the difference path
AS =Sr-Sv. (3.1)
It can be identified directly, i.e. using the difference of measurements done with the real and
virtual microphones. The advantage of such notion is that for many active control
applications, e.g. for the active headrest, the change of Sr and Sv is generally in the same
‘direction’. Consequently, the change of the difference path is often much smaller than

changes of the paths themselves.
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d()
Figure 3.3 Signal flow diagram in the fixed part of the VMC1 system.

In this structure mean-square value of the estimated signal at the virtual microphone,

yv(i), is minimised. It follows from Figure 3.3 that:

1
yAO= -yrO), (3.2)
1+ WAS
u(i) =— yr(/) =-Hyr(/), (3.3)
I +WAS
yr(i)=d(i)+SMO, (3-4>

and H is the overall controller in negative feedback notation. Substituting for «(/) from

(3.3) into (3.4) gives
+
I+ WAS -d(i) = vrd(i). (3.5)
\+W (AS-Sr)
Taking (3.2) and (3.5) together and noticing that, after (3.1),
AS-Sr=Sr-Sr-Sv =AS-AS-SV, (3.6)

the signal being controlled is

! a(i). 3.7)
1+ FF(AS-AS-S\)

Making the following substitutions:
S2=AS-AS-SV (3.8)

y=yv

and taking (1.4) into account allows expressing this problem in a general compact form
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y(i) = 1 e(i). (3.9)
+ WS2 \

Thus, signal y(i) can be interpreted as the output of a negative feedback system with plant S2,
controller Wand output disturbance Fe(i). Equation (3.9) can be further rewritten as

Y(0 = ~WS2y(i) +Fe(i). (3.10)
Let now the disturbance-shaping filter F, assumed to be an FIR filter, be split using the
following Diophantine equation

F =Fl+z-kF2, (3.11)
where K is the time delay of S2 (a sampled acousto-electric path has always a time delay
ofone sample, at least). Degrees of the polynomials are (see also [NiederlinskiMO_95],
[PawelczykOOa])
fdegF[ = k- 1
faeg.F2=degF -k © (3-12)
The assumption about FIR structure of F is only for notational convenience and it does not
restrict the considerations. If F were a rational transfer function, both sides of (3.10) could be
multiplied by its stable denominator and only the numerator would be split. From these

equations it follows

y(i) =\-WS2y(i) +z-kF2e(i)] + M 0], (3.13)
where the two components separated by squared brackets are uncorrelated because S2contains
a delay of Kk samples and W is without delay. Therefore, the cost function (2.7) can be

expressed as
L =E{[-WS{i)+z-kF2e(ij\ '} +e {[F.e(i)]2}, (3.14)

where the second component on the RHS is unable to be controlled. Hence, the optimal filter

minimising the cost function is determined by
WP, = ar8 £ J[- WSy (i) + z~kF2e (i)\ }. (3.15)

Substituting for y(i) from (3.9) gives

W,B, =argmin E\ -WS2— — +z~kF2 €{i 3.16
i g 21+WS2 1 W ! ( )

Taking the first derivative of the term within the curly brackets and making it zero results in

the expression that can be used to derive the optimal filter:
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-W@S2F +2z~kF2+z-kF2Wq S2 =0. (3.17)

Taking (3.11) into account and rearranging yields

z-kF F-F
2= 1 (3.18)
o S2Fx s 2F;
However, due to non-minimum phase character of S2this filter is unstable and non-causal. To
solve this problem the methodology used for the IMC system can be applied. Therefore, the
transfer function S2is factorised into an inner and outer parts
S2=S"Sp). (3.19)
Then, applying the factorisation to (3.17) the (sub-) optimal stable and causal control filter

can be derived

°pt+  F S (0) A S 0) (3'20)
and the optimal estimated residual signal at the virtual microphone, (3.9), is
i),P= f . KO- 3-21
YOL= FE (3-21)
+ /N1 I
If the causality condition in (3.21) were removed the optimal signal would be
y(i)m * = F le(i) (3.22)

and it would have the smaller mean-square valuethesmaller the time delay of the transfer
function S2 were (see (3.8)).This coincideswith theresultof Minimum VarianceControl for
minimum phase plants [NiederlinskiMO_95], [Pawelczyk OQa].

The user is interested in noise control at the ear (virtual microphone) located often at
a position different than that where the models have been acquired. Therefore, it is necessary
to examine the Virtual-Output Sensitivity Function, W. Combining (3.3), (3.5) and (3.8)

results in
u(i) :-livc\jlsgi ). (3.23)

It follows from Figure 3.3 that
yv(i) =d(i) + Sw(i). (3.24)

Taking (3.23) and (3.24) together gives finally
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1+fV AS-AS
J*W (SI+S.)

. s, d{i) = Wd (i). (3.25)

I+W\AS-AS-S,,
For stability of the system the following characteristic equation (see (3.8))

l+m As-As-svko (3.26)

cannot have unstable zeros or W(AS-AS —S\) cannot encircle the Nyquist point, assuming

the control filter is stable. Hence, even if the modelling error, AS-AS, of the difference path
is negligible, the limitation is still restrictive due to Sv (for comparison see the condition for

the IMC system, (2.42)).

3.2.2 Adaptive control
For the adaptive VMC1 system, control filter parameters are updated according to (2.67),

where s =sv, y(i) =x(i) and the reference signal is estimated as

x(i)=yv(i)=yr(})-AsTu(i) (3.27)

(As is a vector of impulse response parameters of the difference filter).

It is convenient for analysis to redraw the system from Figure 3.2 to a feedforward-type

structure with input d(i), similarly as in Figure 2.10.

Figure 3.4 Adaptive feedforward-type structure.

According to the diagram from Figure 3.4:

yv(i) =(+AwW)d(i), (3.28)
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yv(i) = (I+BW)d(i), (3.29)

r(i) = Cd(i). (3.30)
Taking (3.25) and (3.7) into account gives, respectively,

A= S (331)

1+W\ AS-AS-S,

oo, AS-AS-SV (3.32)

H-tf*AAS-AS-S,
It follows from Figure 3.2 that
r(i) =Svx(i) =S,y v(i). (3.33)

Taking (3.7) into account yields

oo sv (3.34)

\+w(AS-AS-S,

Finally, the block diagram from Figure 3.4 takes the form as in Figure 3.5.

Figure 3.5 The VMC1 system in adaptive feedforward-type structure.

Then, the gradient of the control path with respect to the control filter, (2.102), can be

expressed as (see (3.8) and note that S{=0 here)

AS-AS+S
f;BW P (3.35)
W
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Following the reasoning from Section 2.3.4 and using (3.34) together with (3.35) it suffices

for convergence that

AS-AS+S.. Sv n
z -Z (3.36)

1+W (AS-AS-SV) I+W (AS-AS-SvV)
Rearranging, the convergence phase condition is
Z|AS - AS+Svj- Z |l +W(AS-AS- SV)J- Z JSV (3.37)

It has been assumed until now that the difference path is directly modelled, (3.1), and its
modelling error has been considered. However, the above phase condition can also be

equivalently written in terms of modelling errors of the real path by applying (3.6), so that
ZijSr-Sr+Svj-Zjl+PF(Sr-Sr-Sv)j-z{s (3.38)
Below some special cases are considered:

a) If AS = AS, then

Z{SV}-2jSvI-Z{I-PFSV} (3.39)

Thus, the phase condition differs from the condition valid for feedforward systems (2.77) by

the component of Z{1- WSv} and the fact that the phase error of the virtual path is present

here. Hence, at the beginning of adaptation this phase error remains.
b) If Sr = Sr, then
n
zI\-W Sv ) (3.40)
c) If W= 0, i.e. at the beginning of adaptation, then

n
Z S -Sr+Sv -Z Sv (3.41)

3.3 Structure 2

In this section a VMC system structure, referred to as VMC2, modified according to Figure
3.2 is considered. The difference is that the reference signal being the control filter input is an

estimate of the disturbance as in IMC, instead of the estimate of the residual signal at the
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virtual microphone (Figure 3.6) [Pawelczyk_03a, 03f]. Optimal and adaptive control systems

are addressed in Subsections 3.3.1 and 3.3.2, respectively.

Figure 3.6 The VM C2 system with the FXLMS algorithm.

3.3.1 Optimalcontrol

By analogy to IMC and VMC1 it is convenient for analysis of optimal control to present the

non-adaptive (fixed) part of the system from Figure 3.6 in the form as in Figure 3.7.

d(i)
Figure 3.7 Signal flow diagram in the fixed part of the VM C2 system.

It follows from Figure 3.7 that

yv(i) =x(i) + w'svx(i), (3.42)
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0 R — Ad (i). (3.43)

Hence, the controlled estimated residual signal at the virtual microphone is

o)=Y \rfo- (344)
I+07Sr-Sr

Making the following substitutions:

Sv =9[
Sr-Sr=52 (3.45)
k =y

and taking (1.4) into account allows to express this problem in the same compact form, (2.6),
as for IMC and use the derivations presented in Chapter 2.

Then, the optimum causal control filter minimising the mean-square value of the system
output is given by (2.17) (also by (2.26) and (2.32) for the other design approaches), the
overall controller in negative feedback notation - by (2.3), and the estimated residual signal at
the virtual microphone - by (2.21). For this particular structure the model of the virtual path

needs to be factorised into an inner and outer parts [Pawelczyk_05a]:

S1=Sv=S¢5S<°). (3.46)
It follows from Figure 3.7 that

yv(0 =d(i) +WSyx (i). (3.47)

Taking (3.43) into account gives

i+w(s +S) [+"[Sr-Sr+S,
yv(0= . vid(i) = W (1) =Wd(i). (3.48)
1+ M 2 |+ W SV-S,

If a model of the virtual path were minimum phase (and without a delay), the causality

operator in (2.17) could be omitted and the optimal filter would be

KPl=-— - (3.49)
Sv

Then, the controlled signal, (3.44), would be identically equal zero, although not the signal

MO-
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Due to similarity of the structures, stability of VMC2 is subject to the same constraints

as for IMC (Section 2.2.5).

3.3.2 Adaptive control

For the adaptive VMC2 system control filter parameters are updated according to (2.67),

where s =sv, y(i) =yjj) and the reference signal is estimated using (2.90).

It is convenient for analysis to redraw the system from Figure 3.6 to a feedforward-type

structure with input d(i), as in Figure 3.4. Taking (3.48), (3.44), (3.29) and (3.30) into

account gives

S (3.50)
1+~S ,-Sr
Sr—Sr+Sv (3.51)
I-~Sr-§,
It follows from Figure 3.6 that
r(i) = Svx(i). (3.52)
Taking (3.43) into account yields
C =-—----- . (3.53)

|+ fF(Sr-Sr)

Finally, the block diagram from Figure 3.4 takes the form as in Figure 3.8.

Figure 3.8 The VMC2 system in adaptive feedforward-type structure.
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Then, the gradient of the control path with respect to the control filter, (2.102), can be

expressed as (see (3.45))

a Sv-(Sr-Sr)

* 3.54
dW 2 (3.54)

I+W(Sr-Sr)

Following the reasoning from Section 2.3.4 and using (3.53) together with (3.54) it suffices

for convergence that

Sv-(Sr-Sr) _7 n (3.55)

I+ PF(Sr-Sr)

z
I+ FF(Sr-Sr)

Rearranging, the convergence phase condition is
7
ZjsV+Sr- Sr|- Zjl+W(Sr- Sr)J- Z jsvj ) (3.56)
Some special cases are considered below:
a) If Sr=Sr,then
Z|5v[-Z|5v]| =0. (3.57)

Thus, the phase error is equal zero, regardless of modelling errors in the virtual path.

b) If W= 0, i.e. at the beginning of adaptation, then

:z{5v+Sr-ij-z{S vl <y. (3.58)

c) If there were W = Waot - , possible only for minimum phase Sv, the phase condition

Sv
would be
SA\SV+S-Sr A
Sv K
-Z- 5 (3.59)
(Sv+Sr-Srf Sv+Sr—Sr

Hence, the phase error, would be equal zero regardless of modelling errors in the virtual and

real paths.
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3.4 Structure 3

The VMC systems considered hitherto minimise mean-square value of the estimated signal at
the virtual microphone. In optimal (fixed) realisation the noise model is explicitly present in
the control filter in the form of disturbance-shaping filter. Plant modelling error influences
also the system output. When being adaptive the systems are able to retune and in such sense
they have general character. There is, however, a number of applications where the noise can
be assumed stationary over a long time horizon, e.g. at the end of a ventilation duct, in some
workplaces like control rooms, etc. Therefore, it is justified to design a dedicated algorithm
for this type of environments.

In the algorithm considered here it is assumed that in the tuning stage (Figure 3.9) the
control filter, Wh is designed to minimise mean-square value of the signal at the virtual
microphone. At the same time a signal y'(i) is estimated as the difference of the signal at the
real microphone and estimated disturbance filtered by an additional filter K. It is known that
in a stable linear ANC system the disturbance is at least as ‘rich’ as the residual signal.
Therefore, if the filter K of sufficient order is designed or adapted to minimise mean-square
value of y'(i) it ‘stores’ the information what the signal at the real microphone is when the
noise at the virtual microphone is attenuated. In the control stage (Figure 3.10), by filtering
the estimate of the disturbance this filter is used to produce acommand signal to that

measured by the real microphone. Then, the error signal in the form of y'(i) is minimised in

the mean-square sense by the control filter Wc [Pawelczyk_03f, 04a].

Figure 3.9 The VMC3 system with the FXLMS algorithm - tuning stage.
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Figure 3.10 The VM C3 system with the FXLMS algorithm - control stage.

For generality, both the real and virtual paths in the tuning and control stages are
distinguished to account for different responses during tuning and actual operation. The
model of the real path remains the same for both stages. No model of the virtual path is used.
Optimal control is considered in Subsection 3.4.1 followed by adaptive control in Subsection

3.4.2.

3.4.1 Optimalcontrol

The main part of the system from Figure 3.9 and Figure 3.10 is analogous to the IMC system
(Figure 2.1) so the signal flow diagramfrom Figure 2.2 remains valid. However, an additional

signal, y (/'), is estimated. It follows from Figure 3.9 and Figure 3.10 that

y'()=yr(!)-Kx(i). (3.60)

Substituting for jo(i) from (2.2) gives

Y (0=yn0 -——-- N— yr(0. (3.61)

Taking (2.4) into account, this signal can be expressed in terms of the disturbance

y'(i) =— WSr~K d(i), (3.62)
I+ fF(SV-Sr)

where Sre {SrJ;Src}, dependent on the stage of operation.

In the tuning stage (Sr =SrJ, W= W,) mean-square value of>>’(0 is minimised with the

additional filter K satisfying (see also (1.4)) [Pawelczyk_05b]
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1+W,Sr-K i
Kol = argmin E Fe(i) (3.63)

I+2(5r-Sr()

Taking the first derivative of the term within the curly brackets and making it zero results in

optimal causal filter

Kg@=1+SrW,,opl+ (3.64)

Moreover, it is minimum phase no matter whether the paths and their models are minimum or

non-minimum phase because the polynomial 1+ SrW, must be minimum phase for/(/) to be
bounded - see (3.61) and Appendix A.l. It is assumed in (3.64) that the control filter, W,
minimising yv(/) in the meantime is optimal and causal, i.e. W, = Wlopl+

In the control stage (Sr =S¢ W= W, see also Figure 3.10) K =Kot is still valid, but
W is designed to minimise mean-square value of a different signal, i.e. y\i). According to

Figure 3.10, the following holds (see (3.62))

I+w/Sr-K
* d(i) m (3.65)
I+7(Sr-5r0

Substituting for Hop, from (3.64) yields

(K-w,,gfsr (3.66)
I+r c(Sr-Src)

y'(i)=

Hence, the optimal filter Woopl+ minimising mean-square value of >”(0 in the control stage,

i.e. [Pawelczyk_05b]

(w-wlgH)s (3.67)

W, ‘arg min E- -Fe(i)
I+We(Sr-Srd

takes the form
W, oper = Wiopts (3.68)
So it is exactly the same as the optimal filter WtopH minimising mean-square value ofy\(i) in
the tuning stage, regardless of d(i) and properties of the plant and modelling errors.

Because the main part in the tuning stage is exactly the same as in the VMC2 structure,

one may write (see (3.48))
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yv(i) =d(i)+-——-- L d(i) =1+W(Sr S" +S'-"]d (i) =Wd(i). (3.69)
1+7(S,-SV) I+W.iSr-S,,)

Making the following substitutions:

Sr-SrJ+Sv, =S|
Sr-Sr,=S2 (3.70)
yv=y

and taking (1.4) into account allows to express this problem in the same general compact form
as for IMC, (2.6), and benefit from the derivation presented in Chapter 2.

Then, the optimum causal control filter minimising the mean-square value of the system
output is given by (2.17) (also by (2.26) and (2.32) for the other design approaches), the
overall controller in negative feedback notation - by (2.3), and the residual signal at the
virtual microphone - by (2.21). For this particular structure the compound transfer function

needs to be factorised into an inner and outer parts

S,=Sr-SrJ+SV,=(Sr-Sr,+Sv,f\Sr-Sr, +Svl)(c. (3.71)

Because of (3.68)) the signal at the virtual microphone, y \i), is the same in both stages

if the modelling error is also the same, so that
y|\/| OP,,C: . (372)

Otherwise, taking (2.17), (2.19), (3.70) into account yields

Sr-Src+Svc \ F |
i5,<°) o(
yM)op,,c = rJ — e(0- (3.73)

FS[O  [S¥)J+

Due to similarity of the structures, stability of VMC3 is subject to the same constraints

as for IMC (Section 2.2.5).

3.4.2 Adaptive control

Due to (3.68) it seems not necessary to make the control filter adaptive in the control stage.

However, Wrad+ is sub-optimal only and the adaptivity is valuable to respond to changes in

the plant paths and to make the overall system stable, i.e. to guarantee that the polynomial
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1+Wc(Sr-Src) is stable.

In the tuning stage of the adaptive VMC3 system, control filter parameters are updated

according to (2.67), where s =sv, y(i) =yx{i) and the reference signal is estimated using

(2.90). In turn, in the control stage s =sr and y(i) =y (i).

It is convenient for analysis to redraw the main part of the system from Figure 3.9 and
Figure 3.10 to a feedforward-type structure with input d(i) [Pawelczyk_05b], Due to
similarity to the IMC structure and bearing in mind thatyw(i) is being controlled in the tuning
stage the transfer function, B,, is given by (2.95) (Figure 2.10). The transfer function C,, by

analogy to (2.98), is

) (3.74)
1+~ Sr-Sr,

Taking (3.70) into account, the gradient of the Sensitivity Function to the controlled signal

with respect to the control filter, Wt, (2.102), can now be expressed as

= S, (3.75)
oW r
©  1+7(S,-Sr)

Following the reasoning from Section 2.3.4 and using (3.74) together with (3.75), it suffices

for convergence that

2 -z Y (3.76)

1+ W, (Sr-Srd) I +W,(Sr-S rd)\

Rearranging, the convergence phase condition in the tuning stage is
z{sW-zI1™-zW (i-srn)}<]|. (3.77)

A special case can be considered for Sr= Srl, which is rather a reasonable assumption. Then,

the phase condition as that for a feedforward system, (2.77), is valid with the exception that

the phase error of the virtual path is present here. Filtering the reference signal by Sv in the

tuning stage (Figure 3.9) is thus straightforward.
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It is assumed for the control stage that the filter K has been rewritten according to (3.64)

when the control filter, W,, had converged to Wloo, or K has been adapted with an additional

LMS algorithm in the tuning stage (Figure 3.9). Then, the controlled signal, /(/"), is given by

(3.66) with IMal+ replaced by Wt<x Thus, the gradient of the Sensitivity Function to the

currently considered controlled output, /(/), with respect to the control filter, Wc, takes the

form

dv' Sr 1+fV, Mr-Srl

dfv (3.78)
1+Wce(Sr-Snd

Following the reasoning from Section 2.3.4 again and using (2.98) together with (3.78), it

suffices for convergence that

Z- -z
(3.79)
i+we(Sr-sij [+~ (Sr-sr
Rearranging, the convergence phase condition in the control stage is
+N N N - + A - N n
z |l 5 mMmJ-z|lI r-5r ) (3.80)

Some special cases can be considered.

a). If Sr=Srcor Wc in the control stage converges to Wcx =W Ix completely cancelling
y'(i), the phase error in (3.80) tends to zero.

b). If We= 0, i.e. at the beginning ofadaptation, it holds
. AQ .
A'+w”"Sr-s,,) (3.81)

Therefore, it is strongly recommended to start the adaptation in the control stage with initial
condition of the control filter being final value of the updated control filter in the tuning stage,

W,,~-
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3.5 Noise controlatthe virtual microphone -comments

3.5.1 Comparison of VMC systems

The VMC1 system exhibits features of the classical feedback system. In turn, VMC2 and
VMC3 have features similar to those of IMC. In VMC1 and VMC2 an estimate of the
residual signal at the virtual microphone is directly minimised in the mean-square sense,
whereas VMC3 is composed of two stages. Summarising the conditions for stability of the
feedback loop ((3.26) and (2.42)) and for convergence of the adaptive algorithm ((3.37) and
(3.56)) one can conclude that the VMC2 system is more appropriate to the problem of noise
control than VMCL1. For the data used for simulation optimal control filters in VMC1 and
VMC2 respond similarly, particularly for frequencies significantly contributing to the noise
(Appendix B.9). Attenuation and distribution of zones of quiet is also comparable
(Appendices C.3 and C.4). However, in case of adaptive realisation VMC2 outperforms
VMC1. It should be stressed here that for the FXLMS algorithm to properly update the
control filter, the reference signal being the control filter input should be correlated with the
disturbance. In VMCL1 the reference signal is equivalent to the controlled signal. Therefore, if
the algorithm tends to minimise this signal the correlation can be degraded, particularly for
deterministic disturbances, what can impair the adaptation and result in increasing the output
signal. Such process can be repetitive. It can be relaxed by using, e.g. the adaptive dual
control synthesis [FilatovU_04],

The VMC2 and VMC3 systems are substantially different. However, an important
relation between them can be found. For simplicity, one can assume that in the tuning stage of

VMC3, while neglecting estimation errors, the following relations are valid:

Sr=S
re'. (3.82)

Sv=Svl
Hence, the transfer function Si for both VMC2 and VMC3 is the same (compare (3.45) and
(3.70)). Consequently, the optimal control filters in these systems are then equivalent (both in
the tuning and control stages). Although the paths can differ from their models significantly in
the control stage, the equations for the residual signal at the virtual microphone are also
exactly the same for VMC2 and VMC3 (compare (3.48) and (3.69)). The potential of VMC3
is particularly evident in adaptive systems where the information stored in the additional

filter, K, and the proper initial condition of the control filter in the control stage allow for
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much higher convergence rate and stable operation for substantial changes in the path
responses (compare (3.56) and (3.80)). As simulation experiments demonstrate the signal

y'(i) in VMC3 can be attenuated to the quantization noise level even for a broadband

disturbance, whereas yv(i) in VMC2 can be then attenuated by barely a few dB. Zones of

quiet are of larger dimensions for VMC3 (Appendices C.4 and C.5). The condition for

stability of the structural feedback loop is the same for both systems and given by (2.43).

3.5.2 Attenuation interms of Sensitivity Function

Active noise control systems considered in this monograph aim generally at reducing mean-
squared pressure of the acoustic noise at the desired location, i.e. at the virtual microphone
[Rafaely_97], Taking Parseval’s Theorem or Wiener-Kinchine’s relationship into account it
can be proven that the overall attenuation of this quantity can be expressed in terms of the
Virtual-Output Sensitivity Function [Pawelczyk_02b]

jy v(en™ )fSdAe°,ddcoTs

./,=-10 log, [dB], (3.83)
Hs”rldcoTs

In turn, the frequency-dependent noise attenuation at the virtual microphone takes the

following form

Iv(<y) = -1010gi, 2V F2 2 -2010g10(JFv(e -« )|) [dB], (3.84)
SM(eaTs)

Concluding, the smaller |Fv(e jnT:)| over required frequency band the better attenuation of the

primary noise over that band (and the smaller sensitivity of the system to changes of the path
response [Horowitz_63]). Equations (3.83) and (3.84) can include SPL weighting to account
for different audibility of different frequency components. Analogous conclusions can be
drawn for the real microphone in terms ofthe Real-Output Sensitivity Function [Rafaely_97],
[Pawelczyk_02Db].

It has been found that the Virtual- and Real-Output Sensitivity Functions for respective
control systems can be related as [Pawelczyk_05a]
W= Vr(l+0V), (3.85)

where
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VMC1:
3.86,
1+ M JF I+ASIF
IMC, VMC2, VMC3:
s v : (3.87)

\+s,w I+i,»1
In the above equations SV can be interpreted as the multiplicative change of the Real-Output
Sensitivity Function due to the distance between the real and virtual microphones. Taking

(3.84) and (3.85) into account the frequency-dependent attenuation at the virtual microphone

can be expressed as

jjco) =-20 logO(\vr( e ~ )|+l+5VCe-M)|) =Jr(oo)- 20 logD(|ImS V (e I* )|). (3.88)
Thus the term -2010g,0(]l+ £K(e_-&)|) can be treated as the spatial attenuation gradient

(due to change of the virtual path) [Pawelczyk_05c],

3.5.3 Alternative design methodology

All the optimal causal and stable control filters designed above depend on the disturbance.
Therefore, they are valid only for (wide-sense) stationary noise. If the noise changes,
parameters of the filters must be recalculated. Global minimisation of the respective
Sensitivity Function mapping the disturbance to the controlled output, y(i), leads to non-
causal and unstable filters due to properties of the acousto-electric paths. One of the solutions
to cope with varying disturbances is to consider a general broadband disturbance (1.4)
modelled as a white noise shaped by a band-pass disturbance-shaping filter. This filter can be
a spectral factor (1.5) of an assumed PSD of rectangular shape covering frequency band of
interest. Presence of such a filter in all optimal control filters would allow controlling noise of
dominating components located in the assumed frequency band. This can also be interpreted
as weighting the Sensitivity Function [MorariZ_89]. Another solution to control noise over an
assumed frequency band has been presented and thoroughly analysed in [Pawelczyk_04b,
05c] for the VMC1 system. However, it does not coincide with the main design methodology
used in this research and, therefore, it is only briefly characterised below.

Taking advantage of (3.84) and using (3.7), the performance criterion is defined as

max L (W) = max-i V 20log,, I+ W(n)\AS(n) - AS{n)- Sv(n) (3.89)
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In this expression n is the frequency bin number, w is the vector of impulse response
parameters of W, and indices n, and nu denote bin numbers representing lower and upper

bounds, respectively, of the assumed frequency band. The following constraints are also

imposed for:

e stability margin

20log,,
-~ 727 <P =-x (3.90)

acceptable noise reinforcement above required frequency band

min|2010gl( 1+ w(n)*AS(W)-AS(n)~ Sv(n) +2... 0 (3.91)

acceptable noise reinforcement below required frequency band
min|20109,0 1+ W(n)\ AS(n)-AS(n)-Sv(n)

Parameter nx denotes the frequency bin number for which the phase of the open-loop system
equals — , nnmax represents the highest monitored frequency, %njn >0 (in [dB]) stands for the
stability margin, and Jninu<0 and Jmin/ < 0 (both in [dB]) limit noise reinforcement beyond

the assumed frequency band. Summing up attenuations for subsequent frequencies in (3.89)
and defining the stability constraint by a scalar stability margin (3.90) instead of using the
uncertainty description makes the requirements milder than in classical or mixed H2/Hn
designs presented in [Rafaely_97], [RafaelyGE_97], [TsengRE_02] (for known PSD estimate
of the disturbance). This allows to find a stable and causal control filter of a simpler structure.
The stability margin, Xmm in (3.90) is, however, suggested to be determined by analysing the

uncertainties. The problem defined by equations (3.89)-(3.92) can be simplified if under
nominal conditions the difference filter is perfect, AS=AS, or the modelling of the real path

is perfect, Sr = Sr (see (3.6)).

Due to the general disturbance it is important for this algorithm to reduce the delay of
the discretised plant. This can be obtained when executing the algorithm in the continuous-
time domain, where the analogue filters from Figure 1.2 strongly contributing to the overall
phase lag are absent. Further reduction ofthe delay can be obtained by decreasing the distance
between the loudspeaker and microphones. Therefore, the above algorithm has been verified

in the continuous-time domain to control noise over a wide frequency band in the VMC1
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structure for a phone [Pawelczyk_04b, 05c], in a classical feedback structure for an active
headset system [Pawelczyk_02b, 02g], and in a hybrid structure together with discrete-time
adaptive algorithm for an active headset system [PawelczykW Ol], [Pawelczyk_02d, 03b].
The assumptions made have been satisfied and high performance obtained.

The same strategy could also be applied for the VMC2 structure although the equations

(3.89)-(3.92) would be more complicated because of the form of (3.44).

3.5.4 Tracking a desired signal

All the presented structures and algorithms have been designed under the assumption that the
desired (command) signal at the position of the ear is zero, what denotes silence. In some
applications the desired signal should be, however, different from zero and correspond to
transmitted voice, music, warning or alarming signal, etc. The closed-loop system modifies
response from the loudspeaker to the user ear and, as experiments show, makes the signal not
understandable. Therefore, a feedforward filter shaping the desired signal and compensating
for influence of the control algorithm, thereby improving intelligibility of the transmitted
sound should be employed. The filter should be designed as the inverse of the transfer
function from the desired signal to the output signal at the virtual microphone. It can be
expected that for active control applications such filter is unstable and non-minimum phase.
However, if there is no acoustic interference with the transmitted voice, as e.g. for a phone,
phase response of the filter is not important. Then, spectral factorisation can be performed,
both on numerator and denominator, giving stable and minimum phase filter. Details on

design of such filter have been presented in [Pawelczyk_04b, 05c],

3.5.5 Noisecontrolatalarger distance

It has been assumed in Chapter 1that the distance between the real and virtual microphones is
much less than the smallest wavelength in the disturbance. To the author knowledge, such
assumption constitutes the explicit or implicit basis of any VMC system designs reported in
the literature, e.g. [Rafaely_97], [RafaelyGE_97], [ElliottOl], [TsengRE_02],
[HolmbergRS_02]. It implies that the primary noise at these microphones can be considered
the same as in (1.3). If the distance were larger the primary noise at the real and virtual
microphones could differ significantly. Therefore, a filter mapping the noise at the real

microphone to that at the virtual microphone should be used

dv(i) = Fudr(i). (3.93)
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Then, it would appear as a component of any Virtual-Output Sensitivity function discussed in
this chapter. Relation (3.93) has been addressed in [GarciaEB_96], [RoureA_99] and
[TsengRE_02], However, the authors admit that such filter depends on the acoustic
environment, and therefore it is difficult to be found in general case. To illustrate this problem
it suffices to consider a very practical example, where the direct acoustic wave generated by
the noise source dominates over reflected waves at the positions of the real and virtual
microphones, i.e. the source and the microphones are closer than the reverberation distance
[Rafaely OI], Then, if the real microphone is closer to the primary source, the noise at the

virtual microphone could be estimated with a causal filter (Figure 3.1 la).

Secondary
source
m . .
U U
Primary Real Virtual
source microphone microphone
Secondary
source
O U #
Real Virtual Primary
microphone microphone source

Figure 3.11 Sample arrangements ofthe realand virtual microphones with respectto the prim ary

source.

If, after a while, the virtual microphone becomes located closer to the primary source (e.g. the
user has turned), prediction is required to estimate the noise at the virtual microphone based
on measurements from the real microphone (Figure 3.11b). In this example the disturbance-
shaping filter, F, in (1.4) may also change what implies redesigning the optimal VMC
systems. However, adaptive systems are immune to this problem. In turn, change of the
Fvfilter affects estimate of the residual signal at the virtual microphone controlled in the

VMC1 and VMC2 systems, both in optimal and adaptive realisations
yAO =K [yM) ~Sr w(/)j+ Sru(i). (3.94)

In case ofthe VMC3 system the tuning stage should be repeated.
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In another example a reverberant enclosure can be considered. Then, mapping the
disturbance for a larger distance between the real and virtual microphones may be subject to
significant errors degrading performance of the control systems [NelsonE_94], To overcome
this problem an array of closely spaced real microphones might be used to estimate the sound
pressure level (and/or particle velocity, see Section 1.3) at the virtual microphone using
a forward-difference prediction method [KestellCH_99, 00, 01], [Kestell[HCOOQO],
[MunnCHK_02], [Cazzolato_02], To cope with varying acoustic environment the microphone
weights can be adapted. However, the authors of this concept limit the experiments to very
small distances from the array, e.g. 100 mm for a broadband noise of frequencies up to
300 Hz, what corresponds to about one-tenth of the largest wavelength [CazzolatoJ)2]. The
authors claim that this method has also the potential to predict noise at the virtual microphone
if it is placed upstream from the microphone array (compare Figure 3.11b), although it is
eased up, in fact, by the small distance.

Secondary
source

. 55558 5

Primary Array of real Virtual
source microphones microphone

Figure 3.12 Employmentofarray ofrealmicrophones to estimate noise atthe virtualmicrophone.

Concluding the above analysis, the idea of VMC systems is a powerful tool for
generating zones of quiet at desired locations for the considered group of acousto-electric
plants. If high attenuation is required at a larger distance from the secondary source it is
suggested to provide the user with a wireless real microphone and use the designed systems to
shift the zones by a shorter distance. It is also worth stressing here that ‘small distance’ is
arelative term referring to acoustic wavelength of the noise. For low-frequency industrial
noises generates by some devices the zones can be successfully shifted by more than 1m.
However, there is additional limitation. A larger distance between the primary source and the
microphones, even the wireless ones, results in a larger discrete-time delay and thereby poorer

performance for broadband broadband noise.
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3.6 Summary

In this chapter Virtual Microphone Control systems have been designed in three different
structures. The first one, VMC1, has the form of classical feedback with the controlled signal
being the control filter input. The second, VMC2, and the third, VMC3, systems are similar to
the Internal Model Control system, where estimate of the disturbance drives the control filter.
Therefore, if the real path is well modelled these systems exhibit features of the feedforward
system and therefore suitable design methods have been applied. The third structure has been
equipped with an additional filter that stores knowledge about the noise being controlled
together with the plant and is used to produce the command signal for the output measured by
the real microphone. This structure has been designed to cope with stationary noise better. In
turn, in VMC1 and VMC2 an estimate of the residual signal at the virtual microphone is
controlled.

For all the VMC systems the optimal control filters minimising mean-square value of
the considered signals have been designed first. In VMC1 the optimal solution requires
solving a Diophantine equation to split the disturbance-shaping filter. Assuming lack of
modelling errors the optimal control filters in VMC2 and VMC3 are equivalent. Although the
design presented in this chapter is based on the polynomial approach, both the frequency-
domain and correlation-based techniques presented in Chapter 2 can also be applied taking
advantage of the general notation. Moreover, the stability analysis methodology of Chapter 2
remains valid.

Next, the adaptive VMC systems that update control filter parameters with the FXLMS
algorithm have been considered. Similarly as in Chapter 2 convergence phase conditions have
been derived. It has been emphasised that the adaptive VMC1 system can operate less
effectively than the other systems. This is a result of the fact that the correlation between the
control filter input and the disturbance becomes degraded for VMC1 when the adaptive
algorithm converges. The VMC2 and VMC3 systems are immune to this problem provided
the modelling of the real path is sufficiently good. The convergence condition for VMC3 is,
however, weaker than that for VMC2. The considerations from Chapter 2 concerning
modifications of the FXLMS algorithm remain valid. Also the conclusions about dependence
of the convergence time on the convergence coefficient are similar (Appendix B.8).

Finally, the problem of noise control at the virtual microphone has been summarised.
Equations for the spatial attenuation gradient due to change of the virtual path have been

derived and alternative design methodology, particularly useful for continuous-time systems,
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has been briefly described. It has been shown that the optimal system efficiently controlling
non-stationary noise can be designed provided frequency band of the noise is known. The
problem of tracking a desired signal, e.g. guaranteeing intelligibility of the transmitted speech
has also been addressed. A special feedforward filter compensating for influence of the
control loop should be designed in such case. The chapter has been finished with discussion
of noise control at a distance larger than assumed in Chapter 1. In this case the primary noise
at the real and virtual microphones cannot be considered the same and a filter mapping the
noise from one position to another should be used in the design. It has been stressed that due
to physical aspects it is difficult to find such a filter for general case. Moreover, both optimal
and adaptive control systems should be redesigned even in case of change of position of the

primary source with respect to the microphones. Even application of an array of real

microphones does not solve the problem.



Chapter 4

Multi-channel control systems

4.1 Main assumptions

For many active noise control applications the use of a single pair of microphone and
loudspeaker does not suffice to obtain satisfactory performance, i.e. generate a zone of quiet
of acceptable dimensions [NelsonE_94]. Moreover, for some applications, presence of an
obstacle, e.g. the head in an active headrest system, constitutes a barrier for the zone of quiet
at one side to propagate to the other side. Therefore, more microphones and loudspeakers are
often necessary. In the most general case a coupling between subsequent pairs (channels)
should be taken into account resulting in a multi-channel system referred to also as the multi-
input multi-output (MIMO) system.
Let the following notation be introduced:
G - the number ofreal and virtual microphones (plant outputs),
» /-the number of secondary sources (plant inputs).

A sample plant with G -1-2 ispresented in Figure 4.1.

4,0 w( djj)

<4(0 »2(0 420

Figure 4.1 A plant with two inputs, and two real and two virtual outputs.
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Rational transfer functions of the real and virtual paths can be grouped together in polynomial

matrices, Sr(z_1) and Sv(z~‘), respectively, of dimension Gx I:

X fc-1) Srl2(z-9) «m srU(z-iy

Sr(z-1 = . Sr2(z-])
-~ " SIGI(z~)
Sz Svi(z-) e svi(z-)

sv(z- )= DA Sv2z-) <" Sv(z~) “)

mWz-) SWCz-) = SvGI(z-)

Model matrices of corresponding paths are indicated by hats. Theoretically, a more general
case could be considered where the number of real microphones were different than the
number of virtual microphones. This would, however, complicate description of the MIMO
systems. Particularly for the VMC systems application-specific transform matrices should be
developed to map signals measured by the real microphones to signals at the virtual
microphones (Chapter 3). On the other hand, practical importance of such considerations is
rather moderate.

Control filters are grouped together in matrix W (z_I) of dimension I x G, built in
a similar way to the plant matrices, so that

Wi(z-) Wn (z") Wx3z~")

W) = W2l(z~")  W22(z-") WI1G(z~") 4.2)

Wn(z-') WI2(z-') - WIG(z-")

Similarly to the SISO case, it is additionally assumed in some sections that both the
paths, their models and control filters have finite impulse responses (FIR structure), even very
long if necessary, what is a common assumption in majority of the ANC publications
(e.g. [SnyderH_94], [SaitoS_96], [Michalczyk_04]). Then the matrices (4.1) and (4.2) are
polynomial matrices with all elements being polynomials of degree M and N, respectively.
Polynomial matrices can be alternatively written in the form of matrix polynomials which,
e.g. for the control filter can be expressed as [AhlenS_91]

W (z-) = WO+W ,z-'+ ..+ W, I-<A, (4.3)

where W; are constant matrices of filter parameters
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W21j  W22j <+ m W2Gj (4-4)

wnj w123 n o WIGj_

Summarising, the matrix W (z') contains | G N parameters, and matrices Sr(z '),

Sv(z~*), Sr(z*) and Sv(z~‘) contain I G M parameters. A general plant characterised by

the matrix S will also be used. As in single-channel systems the explicit dependence on the
complex variable z"1will be dropped, where it will not lead to confusion.

Depending on the number of sensors and actuators a MIMO system is [Elliott O1]:

overdetermined (more sensors than actuators -G > 1),
fully-determined (the same number of sensors and actuators - G = 1),
e underdetermined (less sensors than actuators - G <lI).

The disturbances, if they are stochastic and wide-sense stationary, can be modelled as
uncorrelated wide-sense stationary white noise sequences with unity variances filtered by
a matrix of shaping filters, [Elliott 01], i.e.
d()=F(z-"e(0. (4-5)
The matrix F(z-1) can be found by performing spectral factorisation on the PSD matrix of the

disturbance [GrimbleJ_88], [NiederlinskiKF_97] (Appendix A.3)

S.(z-)=F(z-DFr(@)|z,=", (4.6)
where
dim(F(z-1))=G x G, (4.7)

provided SM(e~JaB) is analytic and positive definite for all o)TS [KailathSH OQ]. The

shaping filters in both the matrix F(z_1) and in its inverse are stable and causal [Elliott_01].
Methods for the factorisation are presented, e.g. in [Davis_63] and [Wilson_72],

In this chapter multi-channel versions of the single-channel IMC and VMC systems of
Chapters 2 and 3, respectively, are considered. The study of the MIMO IMC system,
including design of optimal filters using different approaches, stability analysis, and design
and analysis of the adaptive system will constitute the background for subsequent design and

analysis of MIMO VMC systems.

All the assumptions defined in Section 1.5 remain valid, accordingly.
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4.2 Internal Model Control system

Multi-channel realisation of the IMC system is presented in Figure 4.2, where x(7), u(/),

yr(0.y,(0.d(O are vectors composed of respective signals from all the channels at time

instant i, e.g.
x() = [X{(0,x2(/),...,xc ()]r . (4.8)

Optimal IMC system is considered in Section 4.2.1, whereas adaptive control is dealt with

in Section 4.2.2.

Figure 4.2 The MIMO IMC system.

4.2.1 Optimalcontrol

It follows from Figure 4.2 that
u() = Wx(/), (4.9)

x(0 =yr(0-Sru (/). (4.10)

Substituting for u(/) from (4.9) and rearranging gives
x(0: 1G+S,W y,(0- (4.11)
Combining again with (4.9) yields

u(0=w iG+srw yr(/)=-Hyr(0, (4.12)
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where H is the / x G matrix of the overall MIMO IMC controller in the negative feedback
notation and |G denotes squared unity matrix of dimension G.

The residual signal at the real microphone is
yr(0 =d(0 + Sru(/). (4-13)

Combining (4.12) and (4.13) results in

y.(0 = lc-SrW|I,+SrwW d(i). (4.14)

Assuming the square matrix 1G+SrW is non-singular the following matrix algebra can be

applied to (4.14):

y, (0= I1C+SW] [IC+S W] -s,.wfic+s,w d(o =
(4.15)
ic+|s,-srlw IG+Srw d(/)e
Hence, finally
y, (0= 1G+Srw lc+ s,-srw d(0=Vrd(i), (4.16)

where Vr is the matrix Real-Output Sensitivity Function. Taking the ‘complementarity
constraint’ into account (e.g. [MorariZ_89], [SeronBG_97]) and using similar matrix algebra

the matrix Real-Output Complementary Sensitivity Function is then
T =-s,W lc+|Sr-S, |w (4.17)

It is convenient for further analysis to write (4.16) in the general notation as

y(0 = (Ic +S,W)(Ic+ S2N)-TFe(0, (4.18)
where
S, =Sr
mS2=Sr-Sr. (4.19)
y=yr

Let the cost function be defined as

Z=trace £{y (0yr0)} « (4.20)
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In the frequency domain this corresponds to
La =traceSyy{e~iaB ) =traceE{y(e~i"s)yH(eTjs>I§\ , (4.21)

where {.\H denotes Hermitian, i.e. complex conjugate transpose. It should be mentioned that

the cost functions address a trade-off among control of the different system outputs.

4.2.1.1 Polynomial-based approach

The matrix of optimal causal control filters in the MIMO IMC system minimising (4.20) can
be immediately written by taking into account results of the general analysis of the SISO IMC
system presented in Chapter 2 and applying the analysis from [ElliottOl] and [MorariZ_89]

(made there for a simplified MIMO system with perfect plant model):
WQ, +(z-°) = -[S{O)(z"D]-1{[S})(z)]r F(z-*)}+F-*(z-). (4.22)
To calculate this matrix the following inner-outer factorisation must be performed
(Appendix A.7)
SY(z-1 = S{f)(z-)S<°>(z-]), (4.23)
where, for G>1 :
S|,|(z“D), Sjo)(z~") and [SjO)(z_1)] 1 are stable, i.e. elements of the matrices are stable
polynomials,

fdim(s5)(z'l)) = dim(SYz_)) =G x I,

/ (4.24)
[dim(s5°)(z-D) =/ x [/,
[S{°(z)]rS}(z1) =17, (4.25)
[s50)(z)]r SYO)(z_ )= (z)S,(z_)) . (4.26)

Relation (4.26) can be interpreted as spectral factorisation of Sf(z)S1(z“1) giving minimum

phase causal factor S|o)(z_l). After such factorisation has been performed, e.g. using the
methods described in [Davis_63], [Wilson_72] or [MorariZ_89], the inner matrix can be
easily found from (4.23) since the outer matrix is square and can be inverted if it is non-
singular.

Similarly to the SISO systems (Chapter 2) the equivalent polynomial-based method of
designing optimal Wiener filters with the aid of Diophantine equations and co-inner-outer
factorisation of the matrix S,, developed by Ahlén and Stemad, can also be applied to the

MIMO systems [AhlenS_91],
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The residual signal at the virtual microphone of primary interest to the user is
(Figure 4.2)
yv(0 =d(0 + Sw (0. (4-27)
Taking (4.12) and (4.14) together gives

y,(0= lg+lsr-s, +s, |w 1c+|s,-srjw d()=Wd(0, (4.28)
where Vv is the matrix Virtual-Output Sensitivity Function.

4.2.1.2 Frequency-domain approach

In this approach the cost function (4.21) is minimised. Similarly to the SISO system
(Chapter 2) the matrices of discrete frequency responses of the shaping filters, inner and outer
parts of the transfer functions, and finally causal control filters need to be calculated. The
problem of spectral factorisation in the discrete frequency domain in MIMO systems based on

eigenvalue / eigenvector decomposition has been considered, e.g. in [CookE_99].

4.2.1.3 Correlation-based approach

It is very difficult to express the optimal MIMO solution to the problem defined by the cost
function (4.20) in terms of the matrix form using the correlation-based approach. An easier
way is to present the cost function in an equivalent form as [Elliott Ol]

L=£{yr(0y(2)}. (4.29)
Similarly to the SISO case, it is assumed for the purpose of this approach that all the elements
of the matrix of general transfer functions Si are of FIR structure of order M. The vector of
parameters of optimal causal and constrained FIR feedforward control filters has been first
obtained by Whittle [Whittle_63], For the control of general outputs given by (4.18) and

(4.19), and including modelling errors, it can be expressed as
E\Rr(OR(0  e\Rr(i)d(/U. (4.30)

In this equation:

w is a concatenated vector of parameters of the control filters, oflength I G N,

given by
w=kwf...wj;Jr, (4.31)
Wi =k ,jW2)—W\GIW2lj- W,Gj]T, (4-32)

» d(i) is a vector of disturbances at time instant i, defined according to (4.8),
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R(i) is a block Toeplitz matrix, of dimension Gx(/ G N), defined as

R(/)= (4.33)
[/g(0 re(i-1) rg (i—JV+I)
where
o r.,(N= rmi()r2(/))...r;ic(0r2i(/)...r;ic()) (4.34)
o rimj(t) = s[Imajciy , (4.35)
o d/l) =[f,(»),</,(/-1),...dj (i-M +D]r . (4.36)

Because of the inverse operation in (4.30) none of the filtered-disturbance signals can be
perfectly correlated with another or a linear combination of other signals [Elliott_01]. Since in
the considered group of acousto-electric plants the disturbances at different microphones
differ practically only slightly the paths and consequently their models must differ enough.
However, in this group of plants the difference can also besmall.Therefore, some precautions

as briefly quoted in the following subsection should be considered.

4.2.1.4 Stability and robustness of feedback MIMO systems

Let all elements of the matrix of the general plant responses S (G x I) and matrix of the
overall negative feedback controllers H (/ x G; for IMC see (4.12)) be assumed stable. Then,
the overall MEMO control system is stable provided all roots of the determinant of the so-
called ‘return difference matrix’, i.e.

det[IG+SH] =0 (4.37)
lie in the unit circle [Maciejowski_89], [MorariZ_89], Under the same assumptions the

generalised Nyquist criterion requires the locus of the function
det[I G+ S(e~jals)H (e-jnils)] (4.38)

not to encircle the origin for cols changing from -n to k or, equivalently, locus of all the

eigenvalues

a
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not to encircle the Nyquist point. However, for MIMO systems there is no simple relation
between the above frequency responses and gains or phases of components of the matrices.
Therefore, geometrical analysis is generally impossible [Elliott O1].

Following the last interpretation of the generalised Nyquist criterion a conservative
sufficient condition for stability can be drawn. It claims that the modulus of the largest

eigenvalue (4.39), known as the ‘spectral radius’, should be less than one. This directly leads

to the ‘small-gain theorem’:

V <7{ S(e'jmms)}<7{H(e->->)}< 1, (4.40)

where <r{} stands for the largest singular value of a respective matrix [MorariZ_89],

[ElliottO1].
It is convenient for stability analysis in case of changes of a general MIMO plant, S, to

express the changes in terms of the structured (parametric) uncertainty (perturbations) or,
more conservatively, multiplicative unstructured output uncertainty of the nominal plant, SO,
or the plant model, S, [MorariZ_89], [Elliott Ol], i.e.

S(e~jmrs) =[lc + 5S(e~j(uTs)] SQe~jm). (4.41)

Then, the sufficient and necessary condition for robust stability is given by

|TO(e“M*]SS(edB)|* < 1, (4.42)
where
TO(e~ioiTs) = - [1G+ SO(e~j<oB)H(e"-"a7i)]”" SO(e“ya7i)H (e'-"07i) (4.43)

is the matrix Complementary Sensitivity Function for the nominal plant, and SS(eni) is the
upper bound of the uncertainties (strictly, it is the upper bound of the largest singular value of
the matrix of uncertainties, dS(e~J0irs)). The symbol ||Jm denotes the H_ matrix norm equal
to the largest of all singular values for any frequency (Appendix A.5) [MorariZ_89],
[Elliott OlI]. The matrix of uncertainties is a full matrix with the same dimension as S for

unstructured uncertainty or it has a specific structure for structured uncertainties. For the IMC

system, taking (4.17) into account, the condition (4.42) receives the simple form
|sr(e~¥XTs)W(e~m )SSr{e T <1. (4.44)

The robust stability condition can also be written in terms of the ‘structured singular

value - SSV’ of the ‘interconnection matrix’, i.e. the matrix nominal transfer function from
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the output of the perturbations to their inputs [MorariZ_89]. This leads to the ‘generalised
small-gain theorem’. Such description gives the tightest possible bound for stability due to
plant perturbations [BaiZ_04], However, the resulting so-called //-synthesis problem is more
difficult than the above formulation.

In order to improve robustness of MIMO control system the cost function
((4.20), (4.21), (4.29)) can be modified by including a weighting on control filter parameters,
e.g. [Elliott_01]

Z=£yr(i)y(0}+/?2wAv. (4.45)
In the polynomial-based approach this modifies the spectral factorisation of the disturbance,
(4.6), to

F(z-)Fr(z)=SdAz-)+~lc[. e ™, (4.46)
and similarly in the discrete-frequency domain. In turn, in the correlation-based approach

(4.30) is changed to

1-1
T

wo+=s EiRwm+fiilon £jR (0*1(0f- (4.47)
This solution is equivalent to adding uncorrelated white noise signals of variance /3 to the
reference signals being the disturbances for the case considered [Orfanidis_88], A less
conservative way than (4.45) is to include control signal weighting to the cost function.
Stability of the control system can also be improved by applying additional low-pass
filters to the H2 controllers designed for perfect plant model [MorariZ_89]. Another
methodology, not addressed here, is to directly design a robust controller that minimises
norm of the controlled outputs or matrix Sensitivity Function and maintains the robust
constraints [SkogestadP_96]. It has been argued in [MorariZ 89] that such approach protects

against large disturbance amplification at some frequencies that are possible for the

H2 controllers.

4.2.1.5 Decentralised control
From the point of view of implementation purposes and control system analysis it is
sometimes convenient to perform decentralised control, in which each secondary source is

individually adjusted to control noise at a given individual microphone. In this case the matrix

model Sr is diagonal, whereas the system matrix Sr can still be full. It has been shown in

[ElliottB_94] and [Elliott OI] that for a simplified case o f a symmetrical plant with two inputs
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and two outputs (S,, = S2 and SI2=S2I) belonging to the considered group of acousto-
electric plants, and tonal disturbances such control system is stable “provided a microphone is
closer to the loudspeaker controlling it than it is to the other loudspeaker”. In case of multiple
tones the control system can also be decoupled to independently operate on different
harmonics. This is justified if the measured (feedforward system) or estimated (feedback
system) reference signals are orthogonal [Elliott O1]. An extensive analysis of decentralised
control systems has been provided in [MorariZ_89]. It includes conditions for stability and

controllability as well as benefits of this approach, e.g. design and hardware simplicity, and

higher failure tolerance.

4.2.2 Adaptivecontrol

Multi-channel version of the FXLMS algorithm presented in Chapter 2 has been developed by
Elliott and co-workers in 1987 [ElliottSN_87] in a simplified form for one reference signal
and a number of secondary sources. It has been named the ‘Multiple error LMS algorithm’.
Since that time it has been extended for a more general case of many inputs and outputs for
both feedforward and feedback architectures, and some useful analyses of its properties have
been performed. There have also been several practical implementations of this algorithm,
e.g. to control noise in aircraft cabins [DorlingEMRS_89], [ElliottNSB_90], in 3-D
enclosures [Michalczyk _04] or in the group of plants under consideration [Pawelczyk 02c,

02e, 03a, 03d, 03e, 044a], [DiegoGFP_04],
Multi-Channel FXLMS called MIMO FXLMS has the form [ElliottN_85]

w(i+l)=w(/)-fjR (/)y(O. (4.48)
In this expression w(/) is the time-dependent concatenated vector of control filter parameters
((4.31), (4.32)). In turn, R(z)is the matrix ((4.33), (4.34)) of reference signals filtered by
models of plant paths

rimj(i) = s]mx j (i), (4.49)

since impulse responses of the plant paths are unknown in practice (see (2.67) for a SISO

case). Under assumptions J.1-J.5 defined in Section 1.5 the sufficient condition for

convergence ‘of the mean’ has the form
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2Re™eigEjkr (z')R(Z')}J
u< (4.50)
eigis Rr(z)R{E&d}

where ‘eig’ denotes eigenvalues of respective matrix and R(z) is the matrix of reference
signals filtered by plant paths [Elliott O1]. Similarly to the SISO case, if for an excited mode
of the algorithm corresponding eigenvalue has negative real part, then the algorithm can
diverge. So it is important to provide a reliable convergence condition addressing the
modelling problem. Assuming that J.1-J.5 are satisfied, then the sufficient condition for
convergence ‘with probability one’ of the Multi-Channel FXLMS algorithm is [WangR_99b],
[ElliottOl]

Veig s" (e~IB)S(e~jalfs) + S" {e~I5B) S(e~jm5) (. (4.51)

To the author knowledge, no corresponding condition for feedback systems has been derived
yet. Following the discussion from Chapter 2 the condition (4.51) can constitute only a rough
approximate of actual condition for feedback systems.

To improve convergence properties in face of modelling errors and complicated
dynamics of the plant a modification analogous to that of a SISO system is possible by using
the cost function (4.45). Then, Multi-Channel LFXLMS (Leaky FXLMS) is obtained
[KuoM_96], [Elliott OI]:

w(i+1)=(1- P/)Y/{i)-H Rr(0y(0 e (4.52)

The sufficient condition for convergence, (4.51), takes the form now
V eig s" (e~jn)T:)S{e~i@s) + S" (e~IB) S(e~jaT ) + 2pl. 0, (4.53)

under the assumptions J.1-J.3, J.5. Also the upper bound on the convergence coefficient is

modified accordingly.
Convergence rate o f the adaptive algorithm can be considered in terms o f time constants

of the algorithm modes. Similarly to the SISO system they depend on the eigenvalue spread

T
of £{F$A (z)R(z")}. In case of the MIMO system this spread can be much larger than for SISO
because it has more contributors [Elliott Ol], [ChenM_04]:

e spectral properties of the reference signals,

correlation between the reference signals,
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properties of matrices of the plant and its model including dynamics o f different paths

and their mutual dependence.
For the considered group o f acousto-electric plants the reference signals are highly correlated,
e.g. they are estimates of the disturbances for IMC. Moreover, differences between responses
of the plant paths are not significant. Therefore, some of the eigenvalues can be close to zero
whereas some of the others are large. By introducing the régularisation (4.45) and choosing
P correctly the eigenvalue spread of the regularised matrix can be substantially reduced
allowing for faster response of the slow modes. Obviously, the filter weighting term in the
cost function (4.45) affects the performance. However, experiments have demonstrated that
the attenuation is not meaningfully degraded [KuoM_96]. Another way of speeding up the
algorithm is, e.g. by distinguishing different convergence coefficients for different modes or
even for different frequency components, what is particularly efficient when performing the
control filter update in the frequency domain [Haykin_96], [KuoM_96].

It has been found convenient for interpretation, implementation and timing purposes to

express the Multi-Channel LFXLMS algorithm in another form using the polynomial matrices

[Pawelczyk _03a, 04a]

W(z+1)=(-#/7)W (z2)-/"Q AC<B>S®Y(2)jx(z), (4.54)
where
X(2) = [X(2),x(2),...,x(2)]r, (4.55)
G
* Y(O=[y0> y(@©, -, y(O]r, (4.56)

/
Q IXC- is a matrix weighting models of the cross paths by coefficient g; models of the
main paths are not weighted (e.g., Q GG= ql Gfor/= G),
® - denotes a product of corresponding matrix elements or blocks,

W (z) (strictly, W(z~',z)) is the time-dependent polynomial matrix defined by (4.2),

e S is the polynomial matrix of the models of general paths defined similarly to (4.1).
The weighting by Q has been introduced to reduce a hazardous effect that arise during
simultaneous adaptation of all control filters in the MIMO control system. The leakage

guarantees robustness. Additionally, convergence coefficient, A, can be updated as in the

Correlation FXLMS algorithm given by (2.84) [KuoM_96], [ShanK_98],



96 Feedback Control of Acoustic Noise at Desired Locations Chapter 4: Multi-channel control systems 97

In the adaptive IMC system parameters of the control filters are updated according to

(4.54), where S=Sr, y(/)=yr(/) and the reference signals are estimated as

X(0=yr(0O-Sru(0. (4.58)
For illustration, a double input - double output (DIDO) adaptive IMC system can be

schematically presented as in Figure 4.3 and Figure 4.4 by adopting the diagrams from

[KuoM_96].

4.3 Multi-channel Virtual Microphone Control systems

In this section multi-channel versions of the single-channel VMC systems considered in
Chapter 3 are designed. All the VMC systems aim at attenuating noise at a number

Figure 4.3 The DIDO IMC system.
of positions of virtual microphones using available measurements from respective real

microphones.

Wn(i)\ (@)
Xi(i) A () wii(z) + m (i) 4.3.1 Structure 1

SrU
A \ LMS[ o In the MEMO VMC1 system estimated residual signals at virtual microphones are minimised
sra ™m0 in the mean-square sense. The signals are also control filter inputs - Figure 4.5.
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Figure 4.4 The DIDO FXLMS algorithm. Figure 4.5 The MIMO VMC1 system.

With the above notation the control law takes the form
4.3.1.1 Optimal control
u(i) = W (2)x(0O, (4.57) ) ) )
For the MIMO VMC1 system the following relation can be derived
and the reference signals are estimated dependent on the control system structure. (4.59)
y(O=-S2Wy(0 +Fe(0, .
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where

S2=AS-Sr=AS-AS-S
(4.60)

y(0 =y\0

Applying the methodology used for SISO VMC1 the purpose is to split the matrix of
disturbance-shaping filters into two matrices to obtain uncorrelated components on the RHS
of (4.59). Similarly to Section 3.2.1, it is assumed that for notational convenience, without
loss of generality, the disturbance-shaping filters are of FIR structure. Because control filters
in matrix W are without delay, to the delay in each {/, /}-th element of S:W contribute
exactly all elements of the y'-th row of matrix S2 Therefore, let the following Diophantine
equation be applied

F(z-) =F|@z-)+Z®F2(z") , (4.61)
where Z is the matrix of backward-shift operators:

z z 1 ... 21

Z2'*%2 72"*2 eee 7-*2

z2'*° - eee z-R
kj = minkjt, (4.63)
and kj, is the discrete time delay of S2jl -th element of matrix S2. This defines dimensions

of elements of the matrices F,, F2 as

fdimFxj, =k j-1I

jdim F2j! = dim/7,,- Kj (4.64)
Combining (4.59) and (4.61) gives

y(i) = [- S2W y (i) + Z ® FZ2(i)]+[F,e(/)], (4.65)
where the two components in square brackets are uncorrelated. Then, continuing the

methodology of the SISO VMC1 system and performing some matrix algebra, the matrix of

optimal single-sided (sub-optimal) control filters can be found as
WAHz-) = [SD)(z-D]-L{ [S «(2)]r[F(z-.)-F . (z-)]}+Fr'(z-7), (4.66)

where the following inner-outer factorisation is used

S2(z-1 = S<)(z-1)S<">(z-9). (4.67)
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The residual signal at the virtual microphone takes the form

yMO = [IG+(S2+SV)w ][1G+ S2W ]-,d (0 = V\d (0. (4.68)

Stability of the MIMO VMCL1 system is determined by properties of the polynomial matrix

IG+S2W (Section 4.2.1.4).

4.3.1.2 Adaptive control

In the adaptive MIMO VMC1 system, parameters of the control filters are updated according

to (4.54), where S=5,.,

y(0 =yv0 =yr(0-ASu(/), (4.69)
and the reference signals are estimated as the residual signals at the virtual microphones,

i.e. x(i)=y(z). For properties of the adaptive system, required assumptions and related

comments see Section 4.2.2.

4.3.2 Structure 2

Inthe MIMO VMC2 system, estimated residual signals at virtual microphones are minimised

in the mean-square sense, whereas estimates of the disturbances are the control filter inputs

(Figure 4.6).

Figure 4.6 The MIMO VMC2 system.
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4.3.2.1 Optimal control

For the MIMO VMC2 system the following relation can be derived:

y(O=[lc+s,W][lc+S2wW fH (0, (4.70)
where
S, = Sv
eS2=Sr-Sr. (4.71)
y=yv

Applying the methodology used for the SISO VMC2 system and the general notation the
matrix of optimal single-sided control filters, W Q}+ is given by (4.22) with the inner-outer
factorisation defined by (4.23). The design can also be performed using the frequency-domain
or correlation-based approach as for the MIMO IMC system. The residual signal at the virtual

microphone takes the form
yv(0 = [lc +(S2+SVYW][IC+S2N]-'d(0 = VW (0. (4.72)
Due to similarity of the structures, stability of MIMO VMC2 is subject to the same

constraints as for MIMO IMC (Section 4.2.1.4).

4.3.2.2 Adaptive control

In the adaptive MIMO VMC2 system parameters of the control filters are updated according

to (4.54), where S = Sv, y(/) is given by (4.69), and the reference signals are estimated using

(4.58). For properties of the adaptive system, required assumptions and related comments see

Section 4.2.2.

4.3.3 Structure 3

In the VMC3 system the control algorithm is composed of two stages. In the tuning stage the
residual signals at virtual microphones are minimised in the mean-square sense (Figure 4.7).
Then, in the control stage the estimated signals being differences between the signals at real
microphones and the command signals obtained on the basis of knowledge gained in the
tuning stage in the form of filter matrix K are minimised (Figure 4.8). In both stages the

estimates o f the disturbances are the control filter inputs.
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Figure 4.7 The MIMO VMC3 system - tuning stage.

Figure 4.8 The MIMO VMC3 system - control stage.

4.3.3.1 Optimal control
For the MIMO VMC3 system the vector of signals minimised in the mean-square sense by

filters in matrix K in the tuning stage is

oy 1GHSTW -K  Ic+ Sr-SH{ w, d(0- (4.73)

Hence, assuming that the control filters in matrix W, are optimal and causal

= 1G+ Sr W (op+ .
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The vector o f controlled signals in this stage can be derived as

y(0 =[lc+S,W][IG+S2W]-1d(0 , 4.74)

where

S, =Sr-Sr,+SW¥

eS2=Sr-S 3 ) (4.75)

y=yv

Applying the methodology used for the SISO VMC3 system and the general notation the

matrix of optimal single-sided control filters, W, is given by (4.22) with the inner-outer

factorisation defined by (4.23). The design can also be performed using the frequency-domain
or correlation-based approaches as presented for the MIMO IMC system.

In the control stage the following signals are controlled

y‘(/): S!(WC_W 1(11]

<4'76)
Hence, the matrix o foptimal single-sided control filters takes the form

(4.77)

So it is exactly the same as the matrix of optimal filters minimising mean-square values of
yM/) in the tuning stage, regardless of d(i) and properties of the plant and modelling errors.

The residual signal at the virtual microphone becomes

y»(0= lc+ Sr=Src+S W |G,y grgrr w, d(0 = Vd (/). (4.78)

Due to similarity of the structures, stability of MIMO VMC3 is subject to the same
constraints as for MIMO IMC (Section 4.2.1.4).

4.3.3.2 Adaptive control
In the tuning stage of the MIMO VMC3 system parameters of the control filters are updated

according to (4.54), where S=Sv, y(0 =yv(z) and the reference signals are estimated using

(4.58). Filters in matrix K can also be updated using additional Multi-Channel LMS

algorithm. In the control stage, similarly, parameters of the control filters are updated

according to (4.54) and the reference signals are estimated using (4.58), whereas S= Sr and
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y(i) = y (/). For properties of the adaptive system, required assumptions and related

comments see Section 4.2.2.

4.4 Summary

In this chapter a multi-channel plant to be controlled has been defined. It has been assumed
for simplicity that the numbers of real and virtual microphones are the same. Paths of the
plant have been gathered in matrices, which for FIR structures can be interpreted as
polynomial matrices or matrix polynomials. Then, multi-channel versions of the control
systems defined in Chapters 2 and 3 have been considered. First, the control filters in the
Internal Model Control system have been designed using different approaches. The
polynomial and frequency-domain approaches require factorisation of the disturbance matrix
PSD and inner-outer factorisation of the matrix of real path models. In turn, in the correlation-
based approach a matrix of autocorrelations of disturbances filtered by the models must be
calculated. Stability analysis has been performed, and the sufficient and necessary condition
for robust stability in terms of the multiplicative output uncertainty has been presented. Then,
a modification to improve stability has been provided. Similarly as for the SISO system,
acontrol filter parameters weighting term is included to the cost function. The idea of
decentralised control, where each secondary source is individually adjusted to control noise at
a given microphone has also been recalled.

Next, adaptive realisation using the Multi-Channel FXLMS algorithm has been
addressed. A modification of this algorithm, Multi-Channel Leaky FXLMS, followed from
the modified cost function has also been presented in the form of updating polynomial matrix
of control filters. It has been supported by weighting models of the cross paths and the
Correlation modification. In case of the multi-channel systems this modification is
particularly useful because no full analysis of convergence of the FXLMS algorithm operating
in a feedback structure for a non-minimum phase MIMO plant including delay is available so
far. Only anecessary condition for convergence and an evaluation of the upper bound of the
convergence coefficient are known. It should be stressed that the conditions are stronger for
the MIMO system than for the SISO system.

A general notation has been applied in the design and analysis of the IMC system
to allow for application of the results to the multi-channel Virtual Microphone Control
systems, mainly VMC2 and VMC3. In turn, for VMC1, similarly to its SISO version, the

matrix of disturbance-shaping filters is split using a Diophantine equation including a matrix
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o f backward-shifit operators due to plant delays. Adaptive realisations of the VMC systems
have also been addressed. Formal analysis of convergence requires tedious research using,
e.g. the martingale method [ChenG_91], However, as for the SISO case, convergence

properties of the algorithm in the VMCL1 structure are expected to be poorer than those in the
VMC2 and VMC3 structures.

Chapter 5

Laboratory experiments

5.1 Active headrest system

An active headrest system is a good representative of the considered group of acousto-electric
plants (Chapter 1). A prototype available for experiments consists of a frame supporting the
head with four loudspeakers, G1 through G4, accompanied by two electret real microphones,
Erl and Er2. The microphones belong to the same horizontal surface as the user ears and are
located between two loudspeakers for each channel [FigwerOP_02]. Figure 5.1 adopted from
[Kociolek_02] shows details on geometrical arrangement of the loudspeakers and
microphones. Before designing the current fixed structure preliminary experience was gained
with astructure allowing easy change of position and angle of the loudspeakers and
microphones [Pawelczyk 02f, 0O4a]. Two primary goals have been formulated during the
design. First, the user cannot be annoyed at all. Therefore, the real microphones must be
‘hidden’ within the headrest, what additionally protects against direct contact of the user skin
with the electric components. Second, the shape of the active headrest should mimic the shape
of areal headrest. Therefore, the loudspeakers cannot be turned more towards the ears since in
many working environments such as assembly lines or control rooms the user needs to see a
wide surrounding area for safety. Obviously, such arrangement is not optimal from the control
point of view and may significantly deteriorate attenuation results. Hence, similar designs are
rarely met in literature (see, e.g. [HolmbergRS _02], [BrothanekJ 02]). Fortunately, a larger
distance between secondary sources and microphones can contribute to obtaining larger zones
of quiet [JosephEN_94]. A DS1104 board with MPC8240 processor of PowerPC 603
architecture and converters, a computer, power and voltage amplifiers, and a set of analogue
anti-aliasing and reconstruction filters are also embedded in the circuit (Figure 1.2). The
sampling frequency used to excite the plant inputs and measure its outputs is 2 kHz. It

suffices to control most of the industrial noise components covering frequencies up to 700 Hz
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and guarantees sufficiently long sampling period even for advanced algorithms with high
computational load. The analogue filters are 4th order Butterworth filters with cut-off
frequencies set to 650 Hz. This provides sufficient signal reduction at the Nyquist frequency
being half of the sampling frequency and does not introduce excessive phase lags and hence
large discrete time delays. The cut-off frequencies could be higher resulting in asmaller
overall discrete-time delay for considered frequencies, if the sampling frequency were higher.
However, the number of control filter parameters should be then larger to allow the
parameters to decay. This, together with a shorter sampling period, could make it difficult to
perform calculations for some algorithms. Virtual microphones, Evl and Ev2, are placed
during the laboratory experiments in locations where the attenuation is desired, i.e. at the user
ears. For the system considered they are generally in the distance of about 150 mm from
respective real microphones, whereas in most references they are much closer than 100 mm.
They are used for performance monitoring or in the tuning stage of some algorithms and are
not employed by control systems during actual operation. The loudspeaker generating the
primary noise is located about 2100 mm in front of the headrest. Recorded sounds or

generated signals have been used as the primary noise.

Figure 5.1 Geometrical arrangement of main components of the active headrest system used for

experiments (dimensionsin (mm|).

It is spectacular for this device that frequency responses of the real and virtual paths are
subject to variations mainly due to a change of the head position. Positions as presented in
Figure 5.2 are considered. This figure refers to the horizontal surface crossing the real
microphones and the ears, which will also be called as the basic surface. The nominal position

of the centre of the head is ‘Ob’.
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Figure 5.2 Measurement scheme; each box, of dimensions 60 x 60 mm, represents the position

of the centre of the head.

Families of magnitudes and phases of frequency responses of sample paths (real main path
Sru, real cross path Sr2\ and virtual main path SVn,) obtained for all positions on the basic
surface and a surface parallel to that but located 60 mm above are presented in Figure 5.3. Itis
seen that the magnitude can change significantly, whereas change of phase does not exceed
2 rad for the virtual paths and 1.5 rad for the real paths, for considered frequencies. In case of
optimal (fixed) control increase of the magnitude can result in violation of the stability
condition, whereas decrease of the magnitude can yield poor performance. In turn, in adaptive
control increase of the magnitude with a fixed convergence coefficient or phase error can
make the system divergent.

Upper bounds of multiplicative uncertainties for sample main real and virtual paths are
presented in Figure 5.4. It follows from this figure that large uncertainties are at frequencies
below 150 Hz, where the secondary loudspeakers used operate poorly, and at frequencies

above 550 Hz, fortunately less contributing to the industrial noise.
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Figure 5.3 Families of frequency responses of sample paths obtained for different head positions
(thick lines represent the nominal position ‘Ob’).
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Figure 5.4 Upper bounds of multiplicative uncertainties for sample main real (a) and virtual (b) paths.

Typical frequency responses of the real paths at the nominal position of the head are
presented in Figure 5.5a and those of the virtual paths in Figure 5.5b (see also Figure 5.1).
Comparing the responses of the real main and cross paths (Figure 5.5a) it is seen that
contribution of the cross paths to the system can be noticeable because the magnitude is

approximately three-four times lower under the same settings in the electronic circuit.

Figure 5.5 Frequency responses of sample real (a) and virtual (b) paths: main path from the
upper loudspeaker (solid), main path from the lower loudspeaker (dotted), and cross path from

the upper loudspeaker (dashed).

In case of virtual paths (Figure 5.5b) the cross paths damp the acoustic wave more, i.e. about
five times, than the main paths due to presence of the head recognised as an acoustic barrier.
The responses from two loudspeakers for the same headrest channel differ mainly due to

presence of the user torso (solid and dotted lines in Figure 5.5).
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For designing and parameterising the control systems it is important to know parametric
models of the plant paths. However, due to complicated coupled acoustic and electric
phenomena it is very difficult to build sufficiently precise phenomenological models.
Therefore, identification techniques have been employed [NiederlinskiKF_93],
[PawelczykOl, 02i], [Kasprzyk 03], [Figwer_04], Parametric models of FIR structures, i.e.
impulse response parameters, have been estimated with the LMS algorithm [KuoM_96] for
the nominal position of the head. It follows from Figure 5.5 that only a few acoustic modes
can be singled out for the frequency range considered, i.e. from over 60 Hz to 700 Hz.
Therefore, impulse responses decay fast and they are negligible after 64 samples (Figure 5.6).
Hence, 64 parameters are found enough for the path models. Lower structures do not allow
for successful control at low frequencies in that band. Larger structures are not necessary.
It follows from the obtained models that the real main paths have delay of 3 samples, the

virtual main paths - 4 samples, and both the real and virtual cross paths - 5 samples.

120 140

Figure 5.6 Impulse responses of sample real (a) and virtual (b) paths from GI: main path (solid),

and cross path (dashed).

Analysis of distribution of zeros of the models leads to conclusion that they are non-

minimum phase. In fact, two premises contribute to this phenomenon - the zeros outside the
unit circle are located both on the right and left-half planes, e.g. for Sn: {-1.75 £ j 1.89,

1.85+j2.23}, for 52:{-1.97 + j0.44, 1.84 + jl.64}, for 5v,: {-2.17, 1.96 + jl.95}, for

Sv21l: {-2.10 % jl.89, 2.53} [Pawelczyk _03c], Thus firstly, the physical system itself is non-

minimum phase due to multiple path interference in the reverberant three-dimensional

enclosure as well as due to presence of the microphones in acoustic near-fields of secondary
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sources [Elliott OIl], [Pawelczyk OI]. Secondly, non-minimum phase features emerge with
sampling and, consequently, the modelling [NiederlinskiKF_93]. It is well known that the
non-minimum phase phenomenon has negative influence on performance of the control
systems due to problems to design controllers perfectly cancelling the noise over entire

frequency band [Morari_89], [SeronBG_97], [Rafaely_97], [Pawelczyk_99a].

5.2 Performance evaluation

Preliminary real-world experiments have demonstrated that adaptive systems perform better
in the changing acoustic environment. Moreover, generally, the noise can also be subject to
change due to, e.g. switching on and off some of noisy devices. Therefore, results of adaptive
systems are presented in this chapter. Results obtained by means of simulations with Matlab
and Simulink for both optimal and adaptive control systems are presented in Appendix C.
The laboratory measurements have been performed with SVAN 912AE sound analyser and
Solartron-Schlumberger spectral analyser, after the adaptive systems converged. Control filter
parameters have been updated using the Multi-Channel FXLMS algorithm. According to
conclusions drawn from the analysis performed in Appendix B.8 there is a large set o f values
of the convergence coefficient that guarantees convergence of this algorithm in similar time,
no matter what the head position is. Nevertheless, the Leakage and Correlation modifications
have been applied to relax convergence conditions for the MIMO realisation and improve
performance after convergence.

At the beginning, experiments with tonal noise performed to verify necessity of
employment of the MIMO systems are reported. A series of individual pure tones of
frequencies differed by 10Hz is considered first. Multi-tonal sounds composed of two
(250 and 400 Hz), three (170, 250 and 400 Hz) and four (170, 250, 400 and 550 Hz) tones
serve also as test-noises because tonal components usually dominate in industrial noise - they
are generated by any rotating or reciprocating machines.

As the work reported concentrates mainly on generation of well located zones of high
attenuation, their surfacial distributions are presented in the sequel for two types of noise.
A 250 Hz tone is considered first, since tones of similar frequencies belong to the highly
audible noise components in vehicles [Park_02], [RamosSLM_02]. Another noise is a real-
world industrial recording (Figure 5.7). For the purpose of this presentation, measurements
have been performed with the sound analyser at about 300 points on the basic surface around

the head staying at the same position (in the midpoints the results are interpolated).
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Then, similarly acquired results of noise control at the right ear in face of changes of plant
response due to head movements are provided. This type of experiments has also been
recently reported for a different plant in [DiegoGFP_04]).

All results except distribution of zones of quiet are presented for one channel (real -
virtual microphones pair). They are similar for the other channel, which has been put into
operation at the same time. During all experiments the chair has been occupied by a test-user
because presence of the body, not only the head, reveals to significantly influence the results.
Unfortunately, the author have not had any appropriate standardised head and torso

mannequin, e.g. the 4100-type Bruel & Kjaer to his disposal and employment of an artificial

head does not suffice.

Figure 5.7 PSD estimate of the real industrial noise used for experiments.

Wavelength of the 250 Hz tone is about 1360 mm, whereas the smallest wavelength
contributing to the real noise is about 480 mm and the dominating one - about 1000 mm. The
smallest wavelength contributing to the multi-tonal noise is 620 mm. Hence, all the
wavelengths are significantly larger than the distance between the real and virtual
microphones, reaching 150 mm. Therefore, the basic assumption qualifying the headrest

system to the considered group of acousto-electric plants can be considered satisfied.

5.3 Experimental results

It is claimed in the literature that influence of the cross paths is negligible for the active
headrest system and two independent control systems operating on the two headrest channels
suffice [RafaelyE_99], [HolmbergRS_02], [TsengRE_02], Therefore, to the author

knowledge, SISO systems have only been tested. However, in the system considered
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(Figure 5.1) the loudspeakers are not directly turned towards the respective ears and operate
also for the other ear (Figure 5.5). Therefore, to verify necessity of employment of MIMO
systems including cross paths instead of simpler independent SISO systems (decentralised
control) appropriate experiments have been performed [FigwerOP_03], The IMC systems in
different configurations have been employed to attenuate a series of tonal noises of
frequencies from 60 to 700 Hz. They are: the SISO system operating for the right channel
only, two SISO systems operating independently for the two channels, and the MIMO system
operating for both channels. Results measured by the real and virtual microphones for the
right channel are presented in Figure 5.8. It is seen that attenuation obtained with the MIMO
system is higher of about 4 dB, in average, compared to that for two independent SISO
systems. Moreover, the MIMO system behaves better in a long time horizon being tuned to
converge with high rate (the tests have been performed for five horns for selected tones). Such
setting provides higher acoustic comfort when changes in the noise spectrum or in the plant
appear. Results of the MIMO system for the right ear are, however, close to the results
obtained for a single SISO system operating for the right channel. Summarising the analysis
one can say that the cross-coupling between the headrest channels is too large for the
decentralised control to yield performance comparable to the MIMO system. The full
structure compensates for influence of the cross paths and produces results similar, or with
little additional benefit, to those obtained when only one channel operates. Analogous
conclusions are drawn from experiments performed with other control systems considered
here [Pawelczyk 03a, 04a]. Hence, in the reminder of this chapter results of noise control

with MIMO systems are reported.

Figure 5.8 Attenuation at the real microphone (a) and at the user ear (b) for a sequence of pure

tone excitations: SISO (dotted), two independent SISO (dashed), and MIMO (solid) IMC systems.
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It also follows from the experiments that attenuation measured for the individual
frequency corresponding to a tone is much smaller compared to the overall attenuation
reported above [Pawelczyk 02f, 0O4a], This is aconsequence of presence of significant
broadband acoustic floor, additional noise components generated due to plant non-linearities
and remainings of inter-sample effects, as well as noise reinforcement at some other
frequencies.

Dependent on impulse response of the plant and noise to be controlled appropriate filter
order should be used. Whereas low order suffices for the tonal noise, it should be higher for
the multi-tonal or real noise. On the basis of analysis of impulse response of the optimal
filters designed for the real noise 128 parameters have been chosen for each of the control
filters. However, there are ANC applications where hundreds or thousands parameters are

necessary [Michalczyk_04]

5.3.1 Double input - double output IMC system

Distribution of zones of quiet for a 250 Hz tone, obtained with a double input - double output
(DIDO) IMC system (q = 0.9 in (4.54)) under the time-invariance condition (head in position
‘Ob’) is presented in Figure 5.9. It confirms the expectations that the zones are irregular,
[TokhiL_92] and [Pawelczyk _02c], and the highest attenuation is observed at the real
microphones. In fact, little noise reinforcement appears at the diaphragms of the loudspeakers.
However, it is not clearly evident from this figure as the diaphragms belong to a different
horizontal surface than the one considered. Although the highest possible attenuation reaches

30 dB, the ears are covered by the 11 dB zone only. Such attenuation also extends sidewards.

Figure 5.9 Distribution of zones of quiet for a 250 Hz tone and a DIDO IMC system.
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The attenuation decreases rapidly in front and at the distance of scarcely 50 mm a 7 dB zone
is present. The results remain in agreement with results of acoustical analysis presented in
[Garcia_96]. However, it is impossible to conclude from Figure 5.9 what can be the
attenuation at the ear for different head positions because the acoustic field distribution
changes then also. To answer this question additional experiments have been performed.
Figure 5.10 and Figure 5.11 present results of tonal and real noise control, respectively,
at the right ear for different positions of the head. A point in the figures corresponds to
geometrical position of the centre of the head (with respect to the headrest), for which

measurement has been done at the right ear. This way of presentation implies the shift in the

figures and lack of the head contour.

Figure 5.10 Control results of a 250 Hz tone with a DIDO IMC system under head movements.

Figure 5.11 Control results of the real noise with a DIDO IMC system under head movements.
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It is seen that the surfacial gradient of attenuation is lower than in case of the results reported
in Figure 5.9. The tonal noise is attenuated by 11 dB for the nominal position of the head. In
case of lateral movements to the left it drops down slowly. The gradient is much higher when
approaching the right loudspeaker because the magnitude of the main path response increases
(Figure 5.3) and the system must retune to guarantee stable operation. The attenuation suffers
at the same time. In case of the real noise the conclusions are generally similar. The
attenuation is, however, much lower but also the user perceives small change when moving
the head.

Results of multi-tonal noise attenuation are collected in Table 1 It is seen that this
type of noise is well suppressed at the real microphone, although the more tones the poorer

the performance.

Noise /Frequency [Hz] 250, 400 170, 250, 400 170, 250, 400, 550
J [dB] at the real micr. 27.7 24.2 19.0
J [dB] at the ear 9.6 81 6.4

Table 5.1 Control results of multi-tonal noise with a DIDO IMC system.

5.3.2 Double input - double output VMC1 system

Analysis of the VMC1 system (Chapters 3 and 4) leads to conclusion that its properties are
similar to properties of a classical feedback system. Such a system with the FXLMS
algorithm operates unsatisfactorily for the application considered here and other similar
applications. Although it works stably it reveals convergence problems, particularly for
deterministic disturbances (see comments in Chapter 3), or quasi-periodic bursts are
generated. The attenuation for a 250 Hz tone does not exceed 10 dB and for the real noise it is
less than 2 dB. Consequently, it is less suitable for the test-application, compared to the other
VMC systems. Therefore, results of its operation are not presented here. Simulation results
obtained with this system are reported in Appendix C.3. It follows from the experiments that,

contrary to adaptive realisation, optimal VMC1 performs similarly to VMC2 and VMC3.

5.3.3 Double input - double output VMC2 system

It follows from the identification results for the virtual paths (Figure 5.5b) that the

contribution of cross paths to the secondary sound at the virtual microphones is much less
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than that of the main paths. Therefore, models Sw and S,21 could be omitted in estimating

yvi(i) and yw(i) without significant loss in performance. However, rejecting the models

neither improves convergence nor saves much computational time. Therefore, if the signal
processor permits, it is recommended to take the virtual cross paths into account to guarantee
proper behaviour over a long-time horizon.

Distribution of zones of quiet for a 250 Hz tone, obtained with a double input - double
output VMC?2 system (q = 0.9 in (4.54)) is presented in Figure 5.12. It is seen that the areas of
highest attenuation are well located although the attenuation reaching 18 dB is significantly
lower than at the real microphones for the IMC system (Figure 5.9). This can be explained by
the modelling errors and the fact that the assumption about the same disturbance at the virtual
and real microphones underlying this algorithm has not been fully met in the laboratory
configuration. However, in this case presence of the head imposes zero pressure gradient at its
surface where the virtual microphones are located, what flattens the secondary field and
thereby extends the zones close to the head [GarciaEB_97], [RafaelyEG_99], [RafaelyE_99],

Attenuation higher than 13 dB is guaranteed for 150 mm sidewards and 100 mm in front.

Figure 5.12 Distribution of zones of quiet for a 250 Hz tone and a DIDO VMC2 system.

Figure 5.13 and Figure 5.14 present results of tonal and real noise control, respectively, at the
right ear changing its position. It is seen that changes of the head position result in gradual
decrease of attenuation compared to that obtained for the nominal position. Nevertheless, both
lateral and forward movements are possible without significant loss in performance. In case of

the real noise the ear is covered by a 3 dB zone over a large area. The attenuation at different
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positions in Figure 5.13 is generally higher than in case of the steady conditions reported in

Figure 5.12. This is due to movements of the head, at which the secondary field is flattened.

Figure 5.13 Control results of a 250 Hz tone with a DIDO VMC2 system under head movements.

Figure 5.14 Control results of the real noise with a DIDO VMC2 system under head movements.

Results of multi-tonal noise attenuation are collected in Table 5.2. It is seen that this
type of noise is well attenuated mainly at the assumed location, i.e. at the ear, although the
attenuation at the real microphone is also significant. However, similarly to the IMC system,

the more tones the poorer the performance.

Noise /Frequency [Hz] 250,400 170, 250, 400 170, 250, 400, 550
J [dB] at the real micr. 101 8.2 6.9

J [dB] at the ear 17.2 15.6 131

Table 5.2 Control results of multi-tonal noise with a DIDO VMC2 system.
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5.3.4 Double input - double output VMC3 system

Distribution of zones of quiet for a 250 Hz tone, obtained with a double input - double output
VMC3 system (q = 0.9 in (4.54)) is presented in Figure 5.15. The figure confirms that the
areas of highest attenuation are at desired locations. The attenuation reaches about 27 dB
directly at the ears and gradually decreases leaving subsequent zones. However, the 15 dB
zone covers the distance of about 110 mm to the left and 150 mm to the right. In front of the
ears the zones change more rapidly, i.e. the attenuation drops down faster until reaching

a5 dB zone, which extends widely.

Figure 5.15 Distribution of zones of quiet for a 250 Hz tone and a DIDO VMC3 system.

Figure 5.16 and Figure 5.17 present results of tonal and real noise control, respectively,

at the right ear changing its position.

_ HHA

Figure 5.16 Control results of a 250 Hz tone with a DIDO VMC3 system under head movements.
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Figure 5.17 Control results of the real noise with a DIDO VMC3 system under head movements.

It can be inferred that the zones are much larger and more uniformly distributed, compared to
those for the previous control systems. Moreover, the attenuation at the ears is higher.

Results of multi-tonal noise attenuation are collected in Table 5.3. It is seen that the
results are still better than for the previous systems. However, the conclusion that the more

tones the poorer the performance also remains valid.

Noise /Frequency [Hz] 250,400 170, 250, 400 170, 250, 400, 550
J [dB] at the real micr. 8.3 7.0 5.6

J [dB] at the ear 255 22.1 17.6

Table 5.3 Control results of multi-tonal noise with a DIDO VMC3 system.

5.3.5 Control systems with more microphonesor loudspeakers

In this section, zones of quiet obtained with some extended control systems are considered.
Increase of both the number of microphones and the number of secondary sources is
examined. Overdetermined, fully-determined and undetermined MIMO systems are presented
in subsequent subsections (properties o f these types of systems are explained in [Elliott OI]).
Such systems involve a larger number of acousto-electric paths to be identified and these

using more secondary sources involve more control filters to be updated.
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5.3.5.1 Quadruple input - double output VMC2 system

The prototype of the active headrest system is provided with additional real microphones.
They are located at the edges of the headrest. Also two additional virtual microphones are
applied. Arrangement of the microphones is presented in Figure 5.18. Appropriate models
have been identified. The full structure including all possible real and virtual paths as well as
control filters has been implemented.

Distribution of the zones of quiet for a 250 Hz tone, obtained with a quadruple input -
double output (QIDO) VMC2 system (q = 0.8 in (4.54)) is presented in Figure 5.18.
Compared to the DIDO VMC2 system (Figure 5.12) the zones of quiet are significantly
larger, although the attenuation is barely 2 dB lower. The enlargement is a result of the fact
that presence of more microphones for a headrest channel has the potential to reduce both the
acoustic pressure and its gradient, as theoretically analysed in [GarciaEB_97]. The zones are
shifted a little with respect to the assumed positions, due to modelling errors caused, e.g. by
changes in the acoustic environment. Results of further experiments demonstrate that
substantial position changes of the head are possible without significant loss in performance.
The system being overdetermined operates stably and the adaptive algorithm converges with

a high rate.
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Figure 5.18 Distribution of zones of quiet for a 250 Hz tone and a QIDO VMC2 system.

5.3.5.2 Quadruple input- quadruple output VMC2 system
An increase of the number of secondary sources to four loudspeakers in the VMC2 system
with four real and virtual microphones makes the system fully-determined. After performing

anumber of experiments it has been decided to simplify this algorithm by omitting
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contribution of the estimate of the reference signal in one path to control signals in the other
path. Consequently, only the control filters on the diagonal of W are considered, although
models of all cross paths are still used for estimating the reference signals. This modification
reduces convergence time from over 6 s to less than 3 s without significant change of
attenuation.

Distribution of the zones of quiet for a 250 Hz tone, obtained with a quadruple input -
quadruple output (QIQ0O) VMC2 system (g - 0.7 in (4.54)) is presented in Figure 5.19. Both
the zones are larger and the attenuation is higher compared to those for the respective system

with two loudspeakers (Figure 5.12).

Figure 5.19 Distribution of zones of quiet for a 250 Hz tone and a Q1QO VMC2 system.

5.3.5.3 Double input- quadruple output VMC2 system

If there are more secondary sources than controlled signals the system is said to be
undetermined. Then, VMC2 does not have, theoretically, a unique solution [Elliott 01]. It has
been, therefore, experimentally verified with a supervisory algorithm. The aim of this
algorithm is to simply monitor mean-square value of the output signal over a 1s time
window, i.e. 2000 samples, and reset the adaptation in case of increase of this value for
several windows or rapid increase within a window. This protects against unpleasant acoustic
effects if the adaptive system diverges. Slow and temporary increase is interpreted as a local
burst.

Similarly as in case of the DIDO VMC2 system all real and virtual paths are taken into

account to estimate the residual signals, yM (/) and y\2(i), although the contribution of cross

paths to the secondary sound at the virtual microphones is much less than that of the main
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paths (Figure 5.5). However, the system is simplified by neglecting the filters WA}, W2\ W32,
and W41 [Pawelczyk_03c], During laboratory experiments the adaptive system with the
LFXLMS algorithm including the Correlation modification has converged fast to similar
values in terms of control filter parameters when run several times for the same noise.
Distribution of zones of quiet for a 250 Hz tone, obtained with a double input -
quadruple output (DIQO) VMC2 system (q = 0.7 in (4.54)) is presented in Figure 5.20. The
areas of highest attenuation reaching 20 dB are located directly at the user ears as for the
DIDO VMC2 system (Figure 5.12). However, due to additional secondary sources the zones
are slightly larger. Also the attenuation gradient is lower. It is, however, much higher

compared to the systems employing more virtual microphones.

12

Figure 5.20 Distribution of zones of quiet for a 250 Hz tone and a DIQO VMC2 system.

The IMC system in the double input - quadruple output structure has also been verified
to check whether the zones of quiet generated at the real microphones reach the user ears.
They become larger, indeed, and an 18 dB zone touches the ears. However, even very small
head movements imply large attenuation gradient. This system has been reported in details in

[Pawelczyk 03a, 03c],

5.3.6 Other experiments

Additional experiments under different conditions than those considered hitherto have also

been performed. The results are reported in following subsections.
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5.3.6.1 Attenuation above the basic surface

Results of attenuation of a 250 Hz tone obtained with an adaptive DIDO VMC2 system,
measured 60 mm above the basic surface are presented in Figure 5.21. Comparing to Figure
5.12 some conclusions about propagation of the zones of quiet in the vertical direction can be
drawn. It is seen that the attenuation decreases by 4 dB, in average, and the zones of highest
attenuation extend less sidewards than on the basic surface. Nevertheless, they are sill

concentrated close to the ears. Areas of a little higher reinforcement are present.
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Figure 5.21 Distribution of zones of quiet on the surface located 60 mm above the basic surface for

a 250 Hz tone and a DIDO VMC2 system.

5.3.6.2 Attenuation with lower sampling frequency

Results of attenuation of a 250 Hz tone obtained with an adaptive DIDO VMC2 system
operating with 1 kHz sampling frequency, measured on the basic surface are presented in
Figure 5.22. This experiment has required a new setting of the cut-off frequency of the
analogue filters (to 300 Hz) and identification of new models of the plant paths. It is seen,
comparing to Figure 5.12, that the results differ a little. At some areas the attenuation is higher
by about 1dB, which can be due to the analogue filters that in this case suppress influence of

harmonics of the fundamental frequency.
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Figure 5.22 Distribution of zones of quiet on the basic surface for a 250 Hz tone and a DIDO

VMC2 system operating with 1 kHz sampling frequency.

5.3.6.3 Attenuation of a lower frequency tone

Results of attenuation of a 170 Hz tone obtained with an adaptive DIDO VMC2 system
operating with 2 kHz sampling frequency, measured on the basic surface are presented in
Figure 5.23. Comparing to Figure 5.12 it is seen that the attenuation areas are larger.
However, the attenuation itself is lower by about 6 dB. Enlargement of the areas is a direct
consequence of significantly lower frequency of the tone, whereas the decrease of attenuation
can be due to poor propagation of this frequency by the secondary sources (Figure 5.3) and

associated non-linear effects.

10

Figure 5.23 Distribution of zones of quiet on the basic surface for a 170 Hz tone and a DIDO

VMC2 system.



126 Feedback Control of Acoustic Noise at Desired Locations

54 Summary

In this chapter an active headrest system has been presented. It constitutes a good example of
the considered group of plants. There are no doubts that this system requires two channels,
each equipped with at least one secondary source and real microphone to overcome problems
of the acoustic shadow introduced by the head. Results of noise control with adaptive systems
discussed in this chapter come from laboratory experiments. Simulation results obtained with
optimal and adaptive systems, based on real data, are presented in Appendix C. Two main
types of noise have been considered —a 250 Hz tone and a real industrial recording, although
some experiments with multi-tonal noise have also been performed.

At the beginning it has been experimentally shown that two independent SISO control
systems operating for each channel degrade performance mutually. Hence, MIMO structures
have been considered. Improvement of the acoustic comfort of the user becomes
a challenging problem. It can be considered from the point of view of two comparably
important counterparts - the attenuation level and dimensions of the zones of quiet (the
problem of residual noise shaping has not been addressed in the experiments). Therefore, the
results have been presented graphically as distribution of the zones and attenuation at the ear
when changing position of the head. The conclusions are that the adaptive IMC system
(Chapters 2 and 4) provides high noise attenuation but only at the real microphones. At the
user ears the attenuation is much lower. Moreover, head movements imply perceiving high
attenuation gradient what annoys the user. To guarantee higher attenuation at the ears and
allow the user to move much more freely without rapidly leaving areas o f high attenuation the
adaptive VMC2 and VMC3 systems (Chapters 3 and 4), can be employed. The proposed
algorithms generate indeed the zones of quiet at the desired locations, i.e. at the ears.
Moreover, their dimensions are larger due to flattening the secondary field at the head. The
adaptive VMC3 system perfonns better, i.e. it converges faster, the attenuation is higher and
the zones are larger. However, the attenuation gradient is also higher. The adaptive VMC1
system vyields poor results because it reveals problems to converge, particularly for
deterministic disturbances. Optimal (fixed) realisation of this algorithm verified in
Appendix C operates satisfactorily.

It has been shown that the zones of quiet propagate well also in the vertical direction.
Increase of the number of microphones and secondary sources significantly extends them.
Moreover, the attenuation itself may be higher. Decrease of the sampling frequency does not

improve the results noticeably. It could, however, allow for employment of a slower, and
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therefore cheaper, processing unit. Contrary to expectations, a trial to attenuate a lower-
frequency have not produced better results in terms of attenuation and dimensions of zones
of quiet. The explanation comes from analysis of response of the acousto-electric plant,
namely the secondary loudspeakers used in the prototype poorly pass low frequencies.

The IMC, VMC2 and VMC3 adaptive control systems with Multi-Channel LFXLMS
including Correlation modification or normalisation operate stably. Even quite significant
head movements, or, moreover, exchange of persons occupying the chair during operation
of the algorithms does not lead to divergence of control filter parameters. This confirms that
the adaptive systems are able to compensate for significant changes in this particular plant.

Simulation results of the adaptive systems presented in Appendix C well coincide with
results of the laboratory experiments. The zones of quiet are distributed generally in the same
way. Also the attenuation is similar. The little differences are due to the fact that simulations
refer to a ‘closed world’. For instance, plant modelling errors for the nominal position of the
head are neglected and no changes of the plant during the experiment are considered, acoustic
floor is stationary, etc. Moreover, in the laboratory experiments a measurement (virtual)
microphone is placed in subsequent locations on the surface to monitor the performance, what
additionally changes the acoustic field to some extend.

In Appendix C simulation results obtained with optimal systems are also provided.
All of them, except VMC1 produce results comparable to their adaptive realisations. They
are, however, slightly worse in case of modelling errors and hence the zones of quiet are
smaller. The optimal VMC1 system operates much better than performed as adaptive.

Its results are close to results of the other optimal VM C systems for the data considered.



Chapter 6
Summary

The purpose of this research has been to design and verify feedback control algorithms
capable to attenuate acoustic noise at desired locations in a group of acousto-electric plants.
This group has been characterised by small distances between these locations and locations of
corresponding real microphones compared to the smallest acoustic wavelength significantly
contributing to the noise. Because the plants considered are non-minimum phase including
time delays complete noise cancellation is impossible with causal and stable controllers.
Among feedback structures, the Internal Model Control approach has been found particularly
useful. Although optimal control in this structure has been well examined in the literature, it
has been systematised here for active control and originally applied for the rarely mentioned
case of imperfect plant modelling. Design of the optimal Hi control filter has been performed
using the polynomial, frequency-domain and correlation-based approaches. It has been
confirmed by means of simulations that all the design methods lead to equivalent solutions,
although their complexity and convenience of usage is different. In case of the polynomial-
based approach inner-outer factorisation of the model of the non-minimum phase path with
delay and spectral factorisation of the disturbance PSD estimate are required. Also the causal
part of the optimal filter should be extracted or a Diophantine equation should be solved.
These operations are simpler when performed in the discrete-frequency domain. However,
such approach involves finally designing a time-domain control filter that well matches the
obtained frequency response. The alternative correlation-based approach requires, in turn,
calculating an autocorrelation matrix and a vector of cross correlation, what in fact is more
computationally efficient when performed in the frequency domain. The problem of optimal
control of deterministic disturbances has been considered separately. It has been shown that it
always has a solution, which is not unique, provided the filter length is sufficiently large. In
this case perfect, i.e. to the acoustic floor level, cancellation is possible regardless of

properties of the plant provided it does not have deep valleys in the response for the
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frequencies being controlled. A simplified stability analysis of the optimal control system has
been briefly addressed. It follows from the analysis that a solution, more robust to imperfect
modelling due to changes in the plant or insufficient excitation, can be obtained by modifying
the H2 cost function to include a parameter weighting term.

Adaptive control has been considered next. The FXLMS algorithm has been chosen for
updating parameters of the control filter of FIR structure. Different representations and
modifications of this algorithm have also been briefly reported. Sufficient conditions for
convergence defined in different sense of feedforward and IMC adaptive systems have been
provided. The latter involve assumptions not applicable for the acousto-electric plants.
Therefore, to take advantage of the results available for feedforward systems, the control path
is linearised allowing to obtain a convergence phase condition convenient for analysis. It has
been shown that this condition differs as compared to that for feedforward systems and is
dependent on the control filter. Moreover, it demonstrates a significant coupling between
stability of the structural feedback loop and convergence of the parameter-update algorithm.
The coupling is reduced if the real path model well matches the real path or magnitude of the
control filter is small. Then, the IMC system can be considered as a purely feedforward
system. A more reliable analysis of stability of such adaptive feedback systems is still an open
problem for research. It has been shown that modification of the cost function as for the
optimal algorithm can improve stability and convergence. The resulting Leaky FXLMS
algorithm has been found particularly useful.

Stability, convergence, convergence time (and rate), tracking and noise attenuation are
crucially influenced by the convergence coefficient in the FXLMS algorithm. It has been
shown that for small convergence coefficient there is areciprocal dependence between this
coefficient and convergence time, regardless of plant modelling error. Then, there is an
optimal value of the coefficient, which depends on the plant delay and the control filter
length. Further increase of the convergence coefficient increases the convergence time due to
fluctuations of the residual signal, and finally the adaptive system suddenly diverges.

The IMC system has also been considered for multi-channel plants. The design
methodology similar to that for single-channel systems has been applied. Both optimal and
adaptive solutions have been presented and discussed. The sufficient and necessary condition
for robust stability in terms of the output uncertainty has been quoted. Sufficient conditions
for convergence of the Multi-Channel FXLMS algorithm in an adaptive feedforward system
have been presented. However, there is no reliable analysis of convergence of this algorithm

operating in the feedback system for a non-minimum phase plant including a delay.
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Stability of such overall adaptive system is also not fully addressed. Then, a modification
appropriate for improving stability has been provided. This is the Multi-Channel Leaky
FXLMS algorithm supported by weighting models of the cross paths and Correlation update
ofthe convergence coefficient.

The IMC system has been experimentally verified for generating zones of quiet in
a prototype of the active headrest system. The active headrest is a good example of the group
of acousto-electric plants under consideration. Due to geometrical arrangement of its
components a significant coupling exists between the channels that can lead to instability
when performing a decentralised control. Moreover, it has been shown that the attenuation is
meaningfully degraded for this strategy, compared to fully multi-channel implementation.
Therefore, the latter has been chosen. Nevertheless, such a simplification has been used in the
literature. It has been demonstrated here by means of simulations of the optimal and adaptive
systems as well as real-world experiments with the adaptive system that, according to
expectations, the IMC system generates areas of the highest attenuation at the real
microphones mounted in the headrest. The attenuation at the user ears is significantly lower
and the attenuation gradient directly at the ears is high. As a result unpleasant effects are
heard even in case of little head movements.

It has been found on the basis of the above experiments that it is necessary to design
control systems capable to efficiently shift the zones of quiet to desired locations. The
properties of the considered group of plants allow for easy estimation of the residual signal at
the virtual microphone representing position of the user ear. In the first of the proposed
systems, VMC1, this signal is minimised in a classical feedback structure, i.e. it provides the
control filter input. Design of the optimal system requires solving a Diophantine equation to
split the disturbance-shaping filter. The inner-outer factorisation of a transfer function,
spectral factorisation of PSD estimate of the disturbance and extraction of the causal part are
also necessary. Adaptive realisation of the VMC1 system performed with the FXLMS
algorithm has turned out to require a strong convergence condition. Moreover, since the
correlation between the control filter input and the disturbance deteriorates when the system
tends to converge, the condition for good performance of this algorithm is ruined. This has
been confirmed by experiments. Therefore, results of the adaptive realisation are poor,
particularly for tonal signals, whereas the optimal system operates satisfactorily. The control
filter has also been designed alternatively as a solution to an optimisation problem. It has been

defined by aperformance index related to noise attenuation over required frequency band
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subject to constraints due to stability margin and acceptable noise reinforcement beyond that
band.

To overcome convergence problems of the adaptive realisation the structure has been
modified. In the VMC2 system the estimated residual signal at the virtual microphone is
minimised again, but an estimate of the disturbance is the control filter input. The optimal
solution has been found taking advantage of the derivations performed for the IMC system
and the general notation. The adaptive realisation requires much weaker conditions for
convergence compared to those for the VMC1l system. Experimental verification has
confirmed the expectations. For both optimal and adaptive control the zones of quiet are
generated at desired locations. Moreover, the attenuation gradient is much smaller compared
to that for the IMC system. Even for significant head movements the attenuation at the ears is
high. At the same time the attenuation at the real microphones is much smaller or noise
reinforcement is observed.

There are a number of ANC applications where the noise can be considered stationary
over a long time horizon and the plant changes are not crucial. Then, it is reasonable to
include knowledge about the noise and plant to the adaptive system and respond to the small
changes. Applying this idea, the VMC3 system has been proposed. It is composed of two
stages. In the tuning stage the signal at the virtual microphone is directly minimised. At the
same time the knowledge is gained in an additional filter. This filter is then used in the actual
operation, where the virtual microphone cannot be used, to produce a command signal to that
measured by the real microphone. This system has proven itself to operate successfully in
both optimal and adaptive realisations. The attenuation at the user ears is higher than in case
of the other systems and convergence conditions for the adaptive system are weaker.

For all presented control systems expressions for the spatial attenuation gradient due to
change of the virtual path have been derived. It has also been shown that higher attenuation
and larger zones of quiet can be obtained by increasing the number of microphones and
loudspeakers. However, such asolution makes the system complicated, increases
computational load and is less robust to plant perturbations. To minimise these difficulties the
algorithm can be simplified by omitting contribution of the estimate of the reference signal in
one path to control signals in the other path. However, models of all cross paths are still used
for estimating the reference signals.

The problem of noise control at locations larger than assumed at the very beginning has
also been addressed. In this case a filter mapping the noise reaching the real microphone to

noise at the position of the virtual microphone should be used in the design of both optimal
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and adaptive control systems. However, generally such a filter is difficult to find. It depends
strongly on location of the primary source with respect to the microphones, and acoustic
environment. Application of an array of real microphones does not solve the problem.
Therefore, if the zones are expected far from the secondary source, it is advised to use
awireless real microphone and then employ the VM C systems to shift the zones by a shorter
distance compared to the acoustic wavelength.

It has been assumed for the entire analysis that the plant is linear. This assumption is
generally satisfied. However, there are some applications where plant non-linearities can be
severe, particularly at very low frequencies and for very small distances between the
secondary source and real microphone [Pawelczyk 01]. Then, performance of the ANC
systems can be deteriorated when applying the linear approach to control. Non-linear control
techniques can be used to cope with this problem. In recent years, some researchers have tried
to employ neural networks. The major problem of the ANC systems with multilayer
perceptron neural networks is slow convergence (learning) rate. The algorithms can be
speeded up by adopting several strategies [BouchardOl]. The fuzzy neural networks and
fuzzy modelling techniques can also be used [ZhangG_04b], [BottoSC_05]. In addition, they

allow including linguistic information to support the numerical processing.



Appendix A

Definitions and theorems

Alinternal stability

A control system is internally stable if bounded signals injected at any point of the control
system generate bounded responses at any other point. A linear time-invariant control system
is internally stable if the transfer functions between any two points of the control system are

stable [MorariZ_89].

A2Proper and causal system

A SISO system S(z~') is proper (causal) if limS(z_1) is finite. A proper system is strictly
Z—0

proper if lim5(z') =0 and semi-proper if Ii[nlS(z_I)‘> 0. All SISO systems which are not

proper are called improper (non-causal) [MorariZ_89],
A MIMO system S(z") is proper (causal) if all its elements Sj/(z"]) are proper (causal).

All MIMO systems which are not proper are called improper (non-causal).

A3Spectral density matrix

The (auto) spectral density matrix between elements o f an /-length vector of ergodic discrete-

time random sequences of duration N samples is
SM(e~mly) = NI%)N E LX(e~J" )XH(em )}J'
where

X(e~Xo® = [X, (e idT9, X, (e XAry,..., X, (,eins8)]r
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is the vector of spectra of the sequences for an individual /-th set x(i) (or strictly x,(z)) and

the expectation is taken over the sets of data [GrimbleJ _88], [ElliottOl]. For notational

convenience the spectral density matrix is often written as

S, (e 1B) = E[X(e~XOB)X " (e~XHT8)].

Elements on the diagonal of this matrix are real-valued (auto) spectral densities of signals
being elements of X(e~jnis). The cross-spectral density matrix is then defined as

s*(e~4dds) = E \y(e~h8) X" (e~'nis)].

These definitions are slightly different than those in [BendatP_93] but are used for

convenience in algebraic manipulation.

If the Z-transform of \{i) exists (see [Jury_70], [OppenheimS_75], [BendatP_93]) and

is X (z_1) then the spectral density matrix can also be written in terms of the expectation over
the Z-transforms o f individual data samples o f lengths tending to infinity [GrimbleJ_88]

Sir(z-) = £{X(z-)Xr(z)}.
SX(z-1) is also the Z-transform of a matrix of autocorrelation function

(m) =i?{x(i + mM)\Ti)s.

A.4 Strictly positive real transfer function

A rational stable SISO transfer function S(z~') is called strictly positive real (SPR)
if [FraanjeVD_03]

Renref)}>0 0<®eTs<2n.
A matrix S(z_l) of rational functions with real coefficients is called SPR, if S(z_1) has no
poles in |z |< 1and [ChenG 91]

S(fi 'gs) +S" (e-jah) >0 0< (0TS<2n.

A.5 Vector and matrix norms
Any vector norm must obey the following conditions [SkogestadP 96]:

. H *°.

e |MI=0 ifandonly if all elements of x are zero,

Appendix A: Definitions and theorems

li6d1= 1] IMI for any complex a,

k- IV

Any matrix norm must obey, in addition to the above conditions,

- MMMIlyll-

1fX (z 1) is the Z-transform of a signal x(i) or describes a system with impulse response x,, then

the squared H2 norm is:

A

or, by Parseval’s theorem (subject to constraints in [MorariZ_89]),

In turn, the /7,, norm is
| X(z“)IL =max x|,
\\X(z-")\I=sup\X(e-M)\,

where ‘sup’ stands for supremum or least upper bound.

If X(z_]) is a system matrix then the respective norms are [SkogestadP_96], [Elliott Ol]:

Ix(O0 |[= ~T1£ "~ xk * )}~
zit-n'd

IX (z-")|L =supcr{x(e""'8Ji)].

A.6 Causal/non-causal decomposition

Let arational stable transfer function S(z“‘) be written as a Laurent series

5'(z"1)= Z 57z~
Then it can be decomposed into causal and non-causal parts [FraanjeVD_03]
5(z-9) ={5(z-D]1++{5(z-D}_,

where

{S(z_1)}+=~75,.z"" is stable,
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A 7 Inner- outer factorisation

SISO SYSTEM

A rational stable transfer function S(z~') (or briefly S) can be factorised into inner and outer
parts, i.e. [FraanjeVD_03]

S = S(i)S(0),

where the inner part SO) is stable and unitary, so that

5()(z_,)5(0(z) = 1.

The outer part Slo> and its inverse [5(0)]_| are stable. The inverse outer part is causal if and

only if S"™' (0) ~ 0 [AhlenS_92]. The following are also valid:

5(0)(z-,)5,0)(z) = 5(z-35(2),

MIMO sYSTEM
Let now a polynomial matrix S(z_1) (or briefly S) of dimension G x | and elements being
stable discrete-time rational transfer functions be considered. Then (see [Vidyasagar_85],

[AhlenS_92], [lonescuO_96], [OaraV_99])

e The matrix S, where G > 1 ,is ‘inner’ if SHS = /for almost all i]= 1. It is ‘co-inner’,
where G < | and SHS = | Gfor almost all ] = 1.
The matrix S for G < is ‘outer’ if and only if it has full rowrank G for all > 1
This means that it has no zeros in f]> 1.1t is ‘co-outer’, where G > 1 , if and only if it
has full column rank | for all > 1.

e The matrix S with full rank A= min{G,/} for all z=e"ad (no zeros on the unit
circle) has an ‘inner-outer factorisation’
“Gl~ "B >
with the ‘outer’ factor S<Q having a stable right inverse. It has a ‘co-inner-outer

factorisation’
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with the ‘co-outer’ factor S(c having a stable left inverse. If G <1 the co-outer

matrix is square and its inverse is unique.
The matrix S is co-inner (co-outer) if Sr is inner (outer). The outer and co-outer

matrices are stably invertible. The inverses are causal if the instantaneous gain matrices
S(°*(0) and S(ra)(0) have full rank N. Multiplication by a (co)inner matrix does not modify

PSD of as signal vector.

AS8cConvergence

Let
P be a probability measure on a cr -algebra of sets in the basic space of samples CT,

£and ,i=1,2,... be random variables,

F- (x)=P(0 : < X), Vxe R be the distribution function for random variable £

£{£} be the expectation of the random variable £.

Then (see [ChenG_91] and [Macchi_95]):

1 £ converges to £ ‘with probability one’ or ‘almost surely-a.s.’,i.e. £ —— as. if
P(z-*z)=1
2. £converges to £ ‘in probability’,i.e. £ — ifforany e>0

3. £'‘converges weakly’ to £ if for any x and continuous F”(x)

F&®X) i~TAFfix)

4. £converges to ” ‘in the mean-square sense’ if

5. 4 converges to n ‘in the mean’ if

6. ~converges to » ‘of the mean’ if
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Both convergence ‘with probability one’ as well as convergence ‘in the mean-square
sense’ imply convergence ‘in probability’, which implies, in turn, ‘weak convergence’
[ChenG_91], Convergence ‘in the mean’ follows from convergence ‘in the mean-square
sense’ due to Schwartz inequality. Convergence ‘of the mean’ is the poorest convergence,
because it only guarantees that expected value of the difference between the random variables
“oscillates in the vicinity of zero” [Macchi_95], Convergence ‘of the mean’ and convergence

‘in the mean’ follow from convergence ‘with probability’ if there exists an integrable random

variable J) such that fo<ij.

Appendix B

Simulation analysis

In this appendix results of simulation analysis are presented. The data come from the
prototype of the active headrest system discussed in Chapter 5. Spectral factorisation of the
disturbance and inner-outer factorisation of the path model are addressed, all the design
approaches are briefly verified, properties of the adaptive systems are analysed and the VMC

systems are compared.

B.1 Spectral factorisation of the disturbance

Figure B.l presents PSD estimate of the real noise used for experiments and squared
magnitude of the frequency response of a time-domain minimum phase causal FIR

disturbance-shaping filter obtained by factorisation of this PSD estimate.

Figure B.l Results of spectral factorisation of the real noise: PSD estimate of the real noise (blue),

and squared magnitude of the frequency response of a causal FIR disturbance-shaping filter

(red).
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B2Inner-outer factorisation of real path model

Figure B.2 presents magnitudes of frequency response of 64 parameter real path model
obtained for the nominal position of the head and frequency response of its time-domain outer
factor (minimum phase causal filter). It is seen that magnitudes of the responses well match

each other, whereas phase of the outer factor is much smaller. Magnitude of the inner part is

constant.

Figure B.2 Results of inner-outer factorisation of the real path model: frequency response of the

real path model (blue), and frequency response of the causal FIR filter modelling the outer part

(red).

R3control filters

Figure B.3a illustrates parameters of the optimal IMC control filters designed using the
polynomial, frequency-domain and correlation-based approaches to control the real noise
(Figure B.l) for the nominal position of the head. In turn, Figure B.3b presents parameters of
the adaptive control filter. It is seen that all the optimal filters are equivalent. Distribution of
parameters of the adaptive filter is similar, although the amplitude is different.

Figure B.4 presents magnitudes and phases of frequency responses of the optimal
control filter designed using one of the equivalent approaches to control the real noise (Figure
B.l), and the adaptive filter. It is seen that the adaptive filter well matches the optimal filter at
the contributing frequencies. The differences are mainly below 150 Hz and above 750 Hz,
where the plant responses a little due to quality of the loudspeaker and signal reduction by the

analogue filters, respectively.
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Figure B.3 Parameters of the optimal (a) and adaptive (b) control filters; in figure (a) the parameters

have been obtained using: polynomial (red), frequency-domain (blue), and correlation-based

approaches (green).

Figure B.4 Frequency responses of the optimal (red) and adaptive (blue) control filters; the arrow

points to the frequency mostly contributing to the real noise.

B4controlofthe real noise

Figure B.5 presents PSD estimates of the primary real noise and residual noise obtained with
a sample optimal (all the designs are equivalent) and adaptive IMC control systems for the
nominal position of the head. It is seen that results for the optimal and adaptive systems are
very similar. The little differences are noticeable at very low frequencies and at frequencies

above 750 Hz, i.e. where the noise components are negligible and analogue anti-aliasing and
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reconstruction filters suppress signals. The overall noise is attenuated barely by 2.7 dB.

However, attenuation o f the dominating tonal component exceeds 30 dB.

Figure B.S Results of the real noise control at the right real microphone: PSD estimate of the

primary noise (green), and PSD estimate of residual noise obtained with optimal (red) and
adaptive (blue) IMC systems.

B.5 Optimalcontrolof deterministic disturbances

Figure B.6 presents magnitudes and phases of four sample optimal FIR IMC filters satisfying
(2.41) for frequencies 200, 300 and 500 Hz. It is seen that although the filters are completely
different their magnitudes and phases are exactly the same at these frequencies. Thus, each of

them perfectly cancels all the tones of interest in the active headrest system.

Figure B.6 Frequency responses of four different optimal control filters cancelling three tones (dots).
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B.6 Influence of path response onthe control filter

The designed optimal IMC filters depend only on the path model and not the actual path
itself. Therefore, no matter what the head position in the active headrest system is the optimal
control filter remains the same, although shape of the cost function at its minimum can be
completely different. In turn, adaptive control is expected to retune in case of changes of the
path response, e.g. due to different head positions. Figure B.7 presents frequency responses of
the adaptive control filters after convergence to control the real noise (Figure B.l) for the
nominal head position (‘Ob’), head maximally moved forward (‘Of), head maximally moved
backward and to the left (‘3La’), head maximally moved backward and to the right (‘3Ra’) -
see Figure 5.2 for the notation. It is seen that, generally, the adaptive filter responses differ
and the further the head from the right loudspeaker (consequently the smaller the path gain)
the larger the control filter gain. As expected, the best matching of the responses appears for

the most contributing frequencies of the noise, i.e. 170 - 350 Hz.

Figure B.7 Frequency responses of adaptive control filters in the IMC system updated for the
following head positions: ‘Ob’- red, ‘Of - blue, ‘3La’- green, ‘3Ra’- yellow; the arrow points to

the frequency mostly contributing to the real noise.

B.7 Influence of feedback loop on the phase error

Figure B.8 presents the phase error evaluated according to the condition for feedforward
system (dashed, see (2.77)) and according to the condition for the IMC system (solid,
see (2.105)). They have been obtained after convergence of the adaptive filter controlling the

real noise (Figure B.Il) for ‘Of head position (Figure 5.2), i.e. a path significantly different in
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phase compared to the assumed model (identified for ‘Ob’ head position). It is seen that the
first condition is violated at low and high frequencies and adaptive feedforward system would
diverge. However, the second condition is satisfied and the adaptive IMC system works stably
provided it is updated slowly. Figure B.9 presents, in turn, change in time of the absolute
value of the maximal phase error for the adaptive IMC system. At the beginning of
adaptation, when the control filter starts from its zero initial value, the phase error in IMC is
equal to that of the feedforward system (compare (2.77) and (2.105)). Hence, the phase error
in Figure B.9 at t = 0 equals the maximal phase error from Figure B.8 for the feedforward
filter. After convergence the phase error from Figure B.9 tends to maximal phase error in
Figure B.8 for the IMC system. However, that error appears for frequencies not contributing
to the signal, i.e. below 50 Hz and above 950 Hz. For the contributing frequencies the error is

lower.

Figure B.8 Phase error calculated according to Figure B.9 History of the absolute value of the

the condition for feedforward (dashed, grey), maximum phase error for the IMC system,

and IMC (solid) systems; the dotted lines

represent phase error of +ji/2 and -ji/2.

B.8 Influence of modelling errors on the optimal convergence

COEFFICIENT AND CONVERGENCE TIME

It is obvious that convergence time of an adaptive LMS-based algorithm depends on the
convergence coefficient jx. This dependence has been verified by means of simulations for
different paths corresponding to: nominal head position (‘Ob’), head maximally moved
forward (‘Of), head maximally moved backward and to the left (‘3La’), and head maximally

moved backward and to the right (‘3Ra’) (Figure 5.2). It follows from Figure B.10 generated
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for a 250 Hz tone that the dependence is not monotonic. For a small convergence coefficient,

fi, increase of its value decreases the convergence time, tc, defined as atime for which the

residual signal is attenuated by 20 dB. The curves plotted in logarithmic scale (Figure B.IOb)
for different head positions are parallel for those values. Then, there is an optimal value of the
convergence coefficient in terms of the fastest convergence. Its further increase increases the
convergence time due to fluctuations of the residual signal, i.e. the so-called excess mean-

square error. After crossing the critical value (last point on each curve) the adaptive system

becomes suddenly divergent.

Figure B.10 Convergence time of the adaptive IMC system vs. the normalised convergence
coefficient, in linear (a) and logarithmic (b) scales, for the following head positions: ‘Ob’, ‘Or,

‘3La’, ‘3Ra’ (see the references in the figures).

It also follows from Figure B.lOa that there is a large set of values of the convergence
coefficient (NN e (0.4;0.8)) that guarantees convergence in similar time, no matter what path
is considered (what is the head position in the active headrest system). This conclusion is very
promising because it says that the convergence coefficient does not need to be updated for

changes of the head position.

The logarithmic dependence of the convergence time and normalised convergence

coefficient (Figure B.IOb) can be modelled for small values of the convergence coefficient
with a first-order polynomial
1°g( )= Pi ~og(jIN) + pO.

Parameters of the polynomials for different head positions are gathered in Table B.I.
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Head position Ob Of 3La 3Ra
Pi -1.02 -1.03 -1.02 -1.00
Po -1.78 -1.97 -1.91 -1.47

Table B.I Parameters of the first order polynomial modelling logarithmic dependence of the

convergence time and normalised convergence coefficient for different head positions; IMC system.

Because for all paths the parameter p] is close to unity, the following relation can be written
log(/c) =- log(//) - logN + pO,
and hence
tc ~M~
Analogous conclusions to those for the IMC system can be drawn for the VM C2 system

- see Figure B.l 1and Table B.2.

Figure B.Il Convergence time of the adaptive VMC2 system vs. the normalised convergence
coefficient, in linear (a) and logarithmic (b) scales, for the following head positions: ‘Ob’, ‘OP,

‘3La’, ‘3Ra’ (see the references in the figures).

Head position Ob of 3La 3Ra
=N -1.01 -1.03 -1.02 -1.00
Po -1.47 -1.71 -1.63 -1.13

Table B.2 Parameters of the first order polynomial modelling logarithmic dependence of the

convergence time and normalised convergence coefficient for different head positions;VMC2

system.
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It follows from the above analysis that the closer the head to the operating loudspeaker
is the larger convergence coefficient is required to provide the same convergence time. To tell
if this is due to the larger gain or shorter delay an additional experiment with the IMC system
has been performed. In simulations the same path ‘Ob’ has been artificially modified by
including additional one-sample delay, and separately by doubling the gain (Figure B.12).
The model has been the same every time and it has matched the original path. It is seen that
the larger the gain compared to the gain of the path model the larger the convergence
coefficient required to converge with the same rate. Minimum value o f the convergence time
depends both on the gain and delay (the larger the gain and the longer the delay the slower the
convergence). However, the optimum convergence coefficient is mainly due to the delay (the
longer the delay the smaller the optimum convergence coefficient). The time delay and path
gain influence also the range of values of the convergence coefficient responsible for
convergence of the adaptive algorithm (the larger the gain and the shorter the delay the larger
the range). The delay, however, has little influence for small values of the convergence

coefficient.

Figure B.12 Convergence time vs. normalised convergence coefficient in linear (a) and logarithmic
(b) scales, for the path under the nominal head position: original, with additional one-sample

delay, with doubled gain (see the references in the figures).

B.9 Comparison of the optimal VMC systems

Figure B.13 presents frequency responses of the optimal control filter in the VMC1 and
VMC2 structures designed to control the real noise (Figure B.l). Results of the control at the
right ear for the nominal head position are illustrated in the form of PSD estimates in Figure

B.14. Although the structures are substantially different the results are comparable. The main
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differences are noticeable at frequencies above 750 Hz, i.e. where the noise components are
negligible and analogue anti-aliasing and reconstruction filters suppress signals. The overall
attenuation is about 2.5 dB for both cases.

The optimal control filter in the VMC3 structure is the same as that in the VMC2

structure, when neglecting modelling errors. Therefore, control results are also the same.

Figure B.13 Frequency responses of the optimal control filters in the VMC1 (red) and VMC2

(blue) systems; the arrow points to the frequency mostly contributing to the real noise.

Figure B.14 Results of the real noise control: PSD estimate of the primary noise (green), and PSD

estimates of the residual noise obtained with the optimal VMC1 (red) and VMC2 (blue) systems.

Appendix C

Simulation results

C.1 Simulation

Attenuation results of a 250 Hz tone and the real noise (Figure 5.7) at the right ear, obtained
by means of simulation of optimal and adaptive systems for different head positions are
presented in this appendix. Sample results at the right real microphone are also reported to
justify necessity of the effort to shift the zones of quiet. They demonstrate how the attenuation
measured at one position, i.e. at the right real microphone changes when changing the head
position. For all the experiments presence of a 16-bit quantiser and saturation of the

converters have been simulated.

C.2 IMC sYSTEM

C.2.1 Optimalcontrol

3L 2L L 0 IR 2R 3R
09 j 14 28 17 ] 31 j 19 | 10
09 | 14 41 26 | 47 | 19 j 07

17 1 22 46 42 74 33 26

31 | 33 53 70 78 28 29

51 | 65 82 145 183 32 09

Figure C.I Attenuation of a 250 Hz tone at the right ear obtained with optimal IMC system.
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Attenuation at the right real microphone is the same for any registered head position and for C.3 VMC1 SYSTEM
a 250 Hz tone it is limited by the quantisation noise only.

C.3.1 Optimalcontrol

I IRoROR b) 8L 2L AL RoROR a) 3L 24 1 0 ®r 2R R a 3L 2L W 0 ®r 2 =R
.06 QI 06 0 08 0@ .12 f 24 25 21 25 26 26 24 t 14 35 62 48 75 58 19 f 22 28 36 34 38 35 33
03 -Ql 09 o4 14 04 03 23 25 21 23 27 27 27 e 10 27 70 64 16 s0 23 e 18 30 40 35 43 36 31
0 o 12 10 16 08 QO 26 26 28 26 271 27 26 ¢ 26 a7 102 es 26 8 a1 d 19 33 44 42 52 41 37
07 09 13 16 19 08 o3 25 26 27 28 28 28 26 ¢ 5o 71 123 15 26 64 33 ¢ 23 34 49 49 57 46 42
0B 13 20 21 21 13 o4 25 27 28 27 23 18 17 b 8  oa 04 31 280 72 31 b 31 38 55 60 70 71 59
10 14 19 23 25 14 11 26 27 28 25 20 16 15 a D8 ws 287 67 15 43 26 a 33 45 55 77 85 107 84
Figure C.2 Attenuation of the real noise at the right ear (a) and at the right real microphone (b),
obtained with optimal IMC system. Figure C.5 Attenuation of a 250 Hz tone at the right ear (a) and at the right real microphone (b)

obtained with optimal VMC1 system.

C.2.2 Adaptive control ay 3L 2 i 0 IR 2R 3R by 3L 2L L 0 IR 2R 3R
f Q 04 os 0 10 o7 03 f 00 30 09 32 -4 0 0l
3L 2L L 0 1R 2R 3R 3L 2L 1L 0 1R 2R 3R
03 14 28 15 31 19 05 02 o4 Q0 03 o090 o3 -08 e 0l o3 15 17 19 o7 Q2 e 02 =23 Q06 14 03 o5 04
07 13 33 21 a7 19 03 A QA w09 06 15 o4 QA d o5 -1 13 16 22 14 Q2 d QI 22 o3 06 1l oo Q8
15 22 46 42 74 33 07 02 06 14 11 20 10 o3 ¢c o7 06 12 25 23 18 9oz c o5 -10 05 09 13 oo (08
27 33 53 70 78 28 15 o7 10 14 19 21 o7 Q6 b oa Q2 16 25 22 14 Q8 b os Q1 Q8 13 11 02 o3
36 43 92 89 W6 42 37 10 w3 21 21 25 14 14 a 02 08 28 14 12 11 9oos a 04 10 23 14 16 15 14
47 65 8 ms 13 32 20 12 16 19 26 28 11 s
Figure C.6 Attenuation of the real noise at the right ear (a) and at the right real microphone (b)
Figure C.3 Attenuation of a 250 Hz tone at the Figure C.4 Attenuation of the real noise at the obtained with optimal VMC1 system.
right ear obtained with adaptive IMC system. right ear obtained with adaptive IMC system.
Attenuation at the right real microphone is the same for any registered head position and for C.3.2 Adaptive control

a 250 Hz tone it is limited by the quantisation noise only, whereas for the real noise it is . i i i
The VMC1 system with adaptation performed using the FXLMS algorithm reveals poor

2.9 dB.
results compared to the other VM C systems and they are not presented here.
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C.4VMC2 system C.4.2 Adaptive control
a) 3L 2 L 0 IR 2R 3R by 3L 2 L 0 IR 2R 3R
C.4.1 Optimalcontrol f 34 44 74 42 72 36 -10 f 19 22 27 29 33 31 32
ay 3L 2L 0 IR 2R 3R ay s 24 L 0 R x X e 39 41 86 3 120 45 Q2 e 21 23 31 29 38 33 32
15 45 77 44 68 44 oo 17 26 35
- 86 42 32 m d 57 63 123 102 26 76 34 d 20 24 39 36 47 36 37
30 42 89 65 120 46 18 22 30 37 38 43 34
) . : ' ; : 32
c 70 93 145 28 21 57 48 c 24 28 44 45 53 45 39
53 68 w3 101 267 75 42 25 32 41 43 53 37 36
b 95 125 198 229 187 75 65 b 26 33 52 59 67 71 70
83 99 153 23 276 57 45 27 34 50 48 56 46 36
a 177 234 184 54 64 46 41 a 35 38 49 73 83 14 48l
19 137 Al 91 187 75 38 27 38 53 63 71 69 49
151 251 198 57 a8 47 36 33 42 4.9 76 8 106 37 Figure C.9 Attenuation of a 250 Hz tone at the right ear (a) and at the right real microphone (b)

obtained with adaptive VMC2 system.

Figure C.7 Attenuation of a 250 Hz tone at the r|ght ear (a) and at the r|ght real microphone (b)
obtained with optimal VMC2 system.

a 3L 24 L 0 IR 2R 3R b) 3L 2 L 0 IR 2R 3R
f o7 13 17 12 19 06 Q2 f 02 o3 o7 @ L0 o9 08
ay st 2 L 0 IR 2R 3R by 3L 2L 1 0 IR 2R 3R e 09 14 16 18 24 12 Q8 e o3 o4 oo 08 12 10 10
o5 10 .
veooe e 0@ boos o oo 13 3ou d 14 19 24 23 27 19 1 d o3 o5 10 1 12011
05 13 19 14 23 10 o e
04 06 09 13 12 14 14 12 ¢ 18 23 24 27 27 15 13 c o4 06 o9 14 16 13 12
13 15 23 20 26 14 12 d 09 12 14 14 14 11 11
b 22 25 25 27 27 20 18 b o7 08 16 17 17 20 17
14 20 23 25 26 14 . c
14 12 12 15 15 14 14 12 a 16 24 s 6 18 15 10 a o5 10 14 20 21 25 14
20 23 25 26 25 19 16 b 12 13 15 15 11 15 13
15 24 26 14 11 15 06 a 13 13 15 16 11 0.9 08 Figure C.10 Attenuation of the real noise at the right ear (a) and at the right real microphone (b)
obtained with adaptive VMC2 system.
Figure C.8 Attenuation of the real noise at the ear (a) and at the right real microphone (b)

obtained with optimal VMC2 system.

C.5 VMC3 SYSTEM

C.5.1 Optimal control

The optimal VMC3 system yields the same results as the optimal VMC2 system under

assumption of lack of modelling errors for the nominal head position.
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C.5.2 Adaptive control
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Figure C.Il Attenuation of a 250 Hz tone at the right ear (a) and at the right real microphone (b)

obtained with adaptive VMC3 system.
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Figure C.12 Attenuation of the real noise at the right ear (a) and at the right real microphone (b)

obtained with adaptive VMC3 system.
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Zastosowanie uktadow regulacji

DO TLUMIENIA HALASU W ZADANYCH

POLOZENIACH

Streszczenie

Celem badan jest projektowanie i weryfikacja algorytméw sterowania ze sprzezeniem
zwrotnym, umozliwiajgcych ttumienie hatasu w zgdanych miejscach w przestrzeni dla grupy
obiektéw elektro-akustycznych. Grupa ta zostala scharakteryzowana niewielkimi
odlegtosciami pomiedzy tymi punktami, a miejscami umieszczenia odpowiadajagcych im
mikrofonéw rzeczywistych, w poréwnaniu do najmniejszej diugosci fali akustycznej istotnie
wptywajgcej na poziom cisnienia akustycznego hatasu.

Rozwazane obiekty sa nieminimalnofazowe (wlaczajac opoéznienie), i dlatego
osiaggniecie catkowitego ttumienia przy pomocy przyczynowego i stabilnego regulatora jest
niemozliwe. Ze wzgledu na swoje wiasciwosci wybrano strukture sterowania z modelem
wewnetrznym obiektu - IMC, w ktérej estymowany sygnat zakidcajacy wyjscie obiektu,
w tym przypadku hatas, stanowi wejscie tzw. filtru sterujgcego. Chociaz algorytmy
sterowania optymalnego w tej strukturze sa znane, w niniejszej pracy zostaly one
usystematyzowane pod katem aktywnego ttumienia hatasu. Projekt optymalnego filtru H2
przeprowadzono  korzystajgc z  podejscia  wielomianowego, czestotliwosciowego
i korelacyjnego, dla rzadko poruszanego w literaturze przypadku istnienia btedow
modelowania obiektu. Roéwnowazno$¢ (pod pewnymi warunkami) tych podejsc
zweryfikowano na drodze symulacji. Ich ztozono$¢ i przydatnosé zalezy od konkretnej
aplikacji. W przypadku podejscia wielomianowego wymagane jest przeprowadzenie
faktoryzacji modelu toru rzeczywistego obiektu na czes¢ minimalnofazowg
(tzw. wewnetrzng) i wszechprzepustowg (tzw. wewnetrzna), faktoryzacji oceny gestosci

widmowej mocy zaklocenia oraz ekstrakcji czesci przyczynowej filtru lub rozwigzanie
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rownania Diofantycznego. Operacje te sg mniej ztozone w dziedzinie czestotliwosci. Jednak
w tym przypadku nalezy znalez¢ parametry filtru sterujgcego o wyznaczonej odpowiedzi
czestotliwosciowej. Podejscie korelacyjne wymaga z kolei wyznaczenia macierzy oceny
autokorelacji i wektora oceny korelacji wzajemnej pewnych sygnatéw, co ze wzgledow
obliczeniowych  przeprowadza sie czesto korzystajgc z transformaty  Fouriera.
Zaprezentowano réwniez uproszczona analize stabilnosci optymalnego uktadu sterowania.
Wynika z niej, ze rozwigzanie bardziej odporne na btedy modelowania mozna uzyskac,
uwzgledniajgc w funkcji kosztéw na przyklad wazenie parametrow filtru sterujacego.

Oddzielnie potraktowano problem tlumienia hatasu deterministycznego. Pokazano, ze
rozwigzanie w postaci optymalnego przyczynowego filtru sterujgcego zawsze istnieje i jest
ono niejednoznaczne pod warunkiem, ze wybrano odpowiednio bogata strukture tego filtru.
Mozliwe jest wowczas catkowite ttumienie hatasu (do poziomu tta akustycznego) niezaleznie
od wilasciwosci obiektu, jesli tylko w jego odpowiedzi czestotliwosciowej nie ma gtebokich
dolin dla czestotliwosci odpowiednich tondéw.

W dalszej czesci rozwazano regulacje adaptacyjng. Do aktualizowania parametréow
filtru sterujacego o skonczonej odpowiedzi impulsowej (strukturze FIR) wybrano algorytm
FXLMS, najczesciej stosowany w literaturze poswieconej aktywnemu ttumieniu hatasu.
Zaprezentowano réwniez krétko inne reprezentacje i modyfikacje tego algorytmu, ktérych
wykorzystanie zalezy od konkretnej aplikacji oraz wspomniano inne algorytmy adaptacji.
Uporzadkowano takze znane z literatury wystarczajgce warunki zbieznosci (zdefiniowanej
w réznym sensie) tego algorytmu dla uktadéw kompensacji i IMC. Istotny z praktycznego
punktu widzenia tzw. fazowy warunek zbieznosci w ukladzie kompensacji mowi, ze btad fazy
pomiedzy modelem, a obiektem nie moze by¢ wiekszy od jd2 dla czestotliwosci obecnych
w widmie sygnatu. Warunki dotyczgce ukladéw ze sprzezeniem zwrotnym wymagaja niestety
zatozen, ktore nie sag spetnione przez obiekty elektro-akustyczne. Dlatego, aby skorzystac
z wynikéw uzyskanych dla uktadéw kompensacji, stosuje sie linearyzacje toru sterowania
(od wejscia filtru sterujgcego do wyjscia obiektu). Podejscie takie umozliwia wyprowadzenie
fazowego warunku zbiezno$ci, réznigcego sie od warunku dla ukladéw kompensacji
obecnoscia filtru sterujagcego. Warunek taki odzwierciedla istotng zaleznos$¢ pomiedzy
stabilnoscig strukturalnej petli sprzezenia zwrotnego, a zbieznoscia algorytmu adaptaciji,
wprowadzajgcego dodatkowa petle sprzezenia zwrotnego. Zaleznos¢ ta maleje w przypadku
niewielkich btedow modelowania i matego wzmocnienia filtru sterujgcego. Wéwczas ukiad
IMC mozna analizowaé, jak uktad kompensacji, pamietajac jednak o strukturze regulatora

zawierajgcej model obiektu izwigzanym z tym problemem dotyczacym wewnetrznej
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stabilnosci. Petna analiza takiego ukladu stanowi wcigz otwarty skomplikowany problem
badawczy. Zmodyfikowanie funkcji kosztéow, podobnie jak w przypadku algorytmow
optymalnych, moze poprawi¢ zbieznos¢ algorytmu adaptacji oraz stabilnos¢ catego
adaptacyjnego ukiladu sterowania. Uzyskany w ten sposéb algorytm Leaky FXLMS zostat
pozytywnie zweryfikowany w wielu aplikacjach.

Stabilnos¢, zbieznos¢, czas zbieznosci (w konsekwencji rowniez szybkos¢ zbieznosci),
Sledzenie i poziom tlumienia halasu zalezg w zasadniczy sposéb od doboru tzw.
wspoétczynnika zbieznosci (kroku) w algorytmie FXLMS. Pokazano, ze dla matych wartosci
tego wspoétczynnika istnieje odwrotna zalezno$¢ pomiedzy nim, a czasem zbieznosci,
niezaleznie od btedéw modelowania obiektu. Nastepnie wystepuje optymalna wartos¢ tego
wspoétczynnika, dla ktorej czas zbieznosci jest najmniejszy. Zalezy ona gtéwnie od opdznienia
w obiekcie i rzedu filtru sterujacego. Dalsze zwiekszanie wspoétczynnika zbieznosci powoduje
wzrost czasu zbieznosci na skutek fluktuacji sygnatu wyjsciowego i w konsekwencji
rozbieganie sie parametréw filtru. W literaturze dostepnych jest wiele modyfikacji algorytmu
FXLMS polegajacych na automatycznym strojeniu wartosci wspotczynnika zbieznosci
w trakcie adaptacji. WSréd nich szczeg6lnie przydatna okazata sie tzw. modyfikacja
korelacyjna - Correlation FXLMS.

Uktad IMC rozwazano réwniez dla obiektéw elektro-akustycznych o wielu wejsciach
i wielu wyjsciach (MIMO). Zastosowano podobng metodologie projektowg do wykorzystanej
dla obiektow o jednym wejsciu ijednym wyjsciu (SISO). Dyskutowano zaréwno rozwigzania
optymalne, jak i adaptacyjne. Przywotano warunki stabilnosci oraz modyfikacje stuzaca jej
poprawie. Zaprezentowano takze znany wystarczajacy warunek na zbieznos¢
wielokanatowego algorytmu FXLMS dla uktadéw kompensacji. Brak jest jednak zaréwno
odpowiedniego  warunku dla  ukladéw  regulacji w przypadku  obiektow
nieminimalnofazowych, jak i petnej analizy stabilnosci takiego uktadu.

Uktad IMC poddano weryfikacji eksperymentalnej w zastosowaniu do sterowania
aktywnym zagtowkiem fotela. Celem aktywnego zagtowka fotela jest generacja stref
najwiekszego ttumienia hatasu (tzw. stref ciszy) woko6t uszu osoby zajmujacej miejsce na
fotelu. Ze wzgledu na zastosowane rozmieszczenie geometryczne gtosnikéw i mikrofonow
nalezy on do rozwazanej grupy obiektéw elektro-akustycznych. Wystepuje w nim dodatkowo
silne oddziatywanie kanatdéw, ktére w przypadku sterowania zdecentralizowanego moze
prowadzi¢ do niestabilnosci. Przeprowadzone badania wykazaty, ze tlumienie hatasu
mierzone dla danego kanatu jest wowczas znaczaco mniejsze w poréwnaniu do uzyskiwanego

w przypadku sterowania uwzgledniajacego obecnos$¢ sprzezen skrosnych. Dlatego we
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wszystkich  eksperymentach laboratoryjnych stosowano struktury MIMO, chociaz
w literaturze powszechnie korzysta sie z niezaleznych uktadéw SISO. Na drodze symulacji
i eksperymentéw z obiektem rzeczywistym pokazano, zgodnie z oczekiwaniami, ze zaréwno
optymalny, jak i adaptacyjny uklad IMC generuje strefy ciszy w otoczeniu mikrofonéw
rzeczywistych umieszczonych w obudowie zagtéwka. Tiumienie w okolicach uszu
uzytkownika jest znacznie mniejsze. Ponadto przestrzenny gradient ttumienia jest wysoki, co
jest przyczyna nieprzyjemnych efektéw akustycznych odbieranych przez uzytkownika
w przypadku nawet niewielkich ruchéw gtowy.

Powyzsze wnioski uzasadniajg potrzebe projektowania uktadéw sterowania
umozliwiajacych generacje stref ciszy w zadanych miejscach, w ktérych umieszczenie
mikrofonéw rzeczywistych jest czesto z wielu powodoéw nie do zaakceptowania. Wiasciwosci
rozwazanej grupy obiektow elektro-akustycznych ulatwiajg jednak estymacje sygnatow
(efektow interferencji) w tych miejscach, zwanych sygnatami mikrofonéw wirtualnych,
w oparciu o pomiary dokonane mikrofonami rzeczywistymi.

W pierwszej z proponowanych struktur uktadu sterowania z mikrofonami wirtualnymi,
nazwanej VMC1, estymowany sygnat jest przetwarzany tak, jak w klasycznej strukturze ze
sprzezeniem zwrotnym. Z uwagi na zerowy sygnat zadany stanowi on wejscie filtru
sterujgcego i zarazem poddawany jest minimalizacji. Oprocz faktoryzacji pewnej
transmitancji na czes¢ minimalnofazowg i wszechprzepustowa, faktoryzacji oceny gestosci
widmowej zaktécenia i ekstrakcji czesci przyczynowej optymalnego filtru, projekt
optymalnego filtru sterujacego przeprowadzono, korzystajagc z réwnania Diofantycznego
»rozbijajagcego” minimalnofazowy filtr ksztattujgcy zaktécenie. Analiza adaptacyjnego uktadu
sterowania z algorytmem FXLMS udowodnita, ze do uzyskania zbieznosci algorytmu w tym
przypadku wymagane jest spetnienie silnego warunku fazowego. Ponadto, jedno z zatozen
niezbednych do wyprowadzenia tego warunku, dotyczace korelacji pomiedzy sygnalem
wejsciowym filtru sterujgcego, a zakléceniem, moze zosta¢ naruszone dla sygnatéw
deterministycznych lub waskopasmowych. Znalazto to potwierdzenie w przeprowadzonych
eksperymentach. W konsekwencji, mimo iz uklad optymalny generuje strefy ciszy
w zadanych miejscach, uklad adaptacyjny nie spetnia swego zadania. Dla tej struktury
zaproponowano rowniez inny projekt regulatora bazujacy na minimalizacji pewnego
wskaznika jakosci w zadanym pasmie czestotliwosci przy ograniczeniach dotyczacych zapasu
stabilnosci oraz maksymalnego dopuszczalnego wzmochnienia dzwieku poza tym pasmem.

Aby rozwigza¢ problem zwigzany z realizacjg adaptacyjng zmodyfikowano strukture

sterowania. W uktadzie YMC2 minimalizowany jest estymowany sygnat mikrofonu
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wirtualnego, ale wejscie filtru sterujgcego stanowi estymowany sygnat zakidcenia.
Optymalny filtr sterujacy zaprojektowano stosujgc te same podejscia, jak w przypadku uktadu
IMC. Wykorzystano do tego celu ogélng forme zapisu. Realizacja adaptacyjna w tym
uktadzie wymaga dla poprawnej pracy duzo stabszych warunkéw zbieznosci, niz
w przypadku ukladu VMC1l. Weryfikacja eksperymentalna réwniez potwierdzita
oczekiwania. Zarowno w przypadku ukladu optymalnego, jak i adaptacyjnego generowane
strefy ciszy ulokowane sg w zadanych miejscach. Dodatkowo, przestrzenny gradient
tlumienia jest znacznie mniejszy, niz w przypadku ukladu IMC. W konsekwencji, ttumienie
hatasu w okolicach uszu uzytkownika jest zadowalajace nawet wobec znaczacych ruchow
glowy. W tym samym czasie ttumienie przy mikrofonach rzeczywistych jest zdecydowania
mniejsze lub obserwowane jest nawet wzmocnienie dzwieku.

Istnieje wiele aplikacji aktywnego ttumienia hatasu, w ktérych zmiany zaréwno hatasu,
jak i parametréw obiektu sg niewielkie. Zaproponowano wiec uktad VMC3, w ktérym mozna
wyrézni¢ dwa etapy pracy. W etapie strojenia minimalizowany jest bezposrednio sygnat
z mikrofonu tymczasowo umieszczonego w zgdanym miejscu. W tym samym czasie strojony
jest dodatkowy filtr. Filtr ten jest nastepnie wykorzystywany w etapie sterowania, w ktérym
nie korzysta sie ze wspomnianych mikrofonéw, do wypracowania wartosci zadanej dla
sygnatu mierzonego przez mikrofon rzeczywisty. Dla ukladu VMC3 fazowy warunek
zbieznosci jest najstabszy. Zatem w ukiadzie tym mozliwe jest uzyskanie zbieznosci
algorytmu adaptacji w warunkach, dla ktérych w pozostatych ukladach algorytm taki jest
rozbiezny. Ukiad VMC3, zaréwno w wersji optymalnej, jak i adaptacyjnej, potwierdzit swoje
zalety w konfrontacji z obiektem rzeczywistym. Uzyskane ttumienie hatasu w zadanych
miejscach oraz strefy ciszy sg najwieksze.

Dla wszystkich omawianych uktadéw sterowania wyprowadzono zaleznos$¢ wyrazajaca
zmiany poziomu tlumienia hatasu w przestrzeni, zwigzane ze zmiang toru wirtualnego.
Pokazano réwniez, ze zwiekszenie liczby mikrofonow i glosnikéw umozliwia zwigkszenie
rozmiarow stref ciszy oraz poprawe ttumienia hatasu. Jednak takie rozwiazanie komplikuje
uklad sterowania, negatywnie wptywa na jego odpornos¢ w przypadku zmian parametrow
obiektu oraz istotnie zwieksza ztozonos¢ obliczeniowa.

Rozwazano roéwniez problem tlumienia hatasu w wiekszych odlegtosciach od
mikrofonu rzeczywistego, niz zatozono na samym poczatku. W takim przypadku, zaréwno
w projekcie uktadéw optymalnych, jak i adaptacyjnych nalezy zastosowac filtr pozwalajacy
na estymacje hatasu w punkcie mikrofonu wirtualnego na podstawie pomiaréw dokonanych

mikrofonem rzeczywistym. Jednak, filtr taki silnie zalezy od potozenia zrédta pierwotnego
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wzgledem tych mikrofonéw oraz od S$rodowiska akustycznego, co uniemozliwia jego
znalezienie w ogdllnym przypadku. Zastosowanie tablicy mikrofonéw rzeczywistych nie
rozwigzuje problemu. Dlatego, jesli zachodzi potrzeba ttumienia hatasu w wiekszej odlegtosci
od zZrédta  wtérnego, zaleca sie  zastosowanie  mikrofonu  bezprzewodowego
(na przyktad przymocowanego do ubrania), a nastepnie ewentualnie przesuwanie stref ciszy
o niewielkie odlegtosci wzgledem dtugosci fali z wykorzystaniem omawianych uktadéw
VMC.

Dla celéw projektowania i analizy omawianych algorytmow zatozono, ze obiekt jest
liniowy. Zatozenie to mozna uzna¢ zwykle za spetnione. Istniejg jednak pewne aplikacje,
w ktérych nieliniowosci obiektu moga miec¢ istotne znaczenie, szczegdlnie dla bardzo niskich
czestotliwosci hatasu oraz przy bardzo matej odlegtosci mikrofonu rzeczywistego od zrdédta
wtornego [Pawelczyk OIl]. Wéwczas, ttumienie uzyskiwane w wyniku pracy omawianych
algorytméw moze ulec pogorszeniu. Problem ten mozna rozwigzaé stosujgc nieliniowe
techniki sterowania. W ostatnich latach prowadzono prace nad wykorzystaniem sieci
neuronowych do zagadnien aktywnego ttumienia hatasu. Gtdwnym problemem jest wéwczas
powolny proces uczenia, ktéry mozna przyspieszy¢ stosujgc odpowiednie modyfikacje
[Bouchard OIl]. Mozna réwniez zastosowaé rozmyte sieci neuronowe oraz modelowanie
rozmyte [ZhangG_04b], [BottoSC_05], Umozliwiajg one wiaczenie informacji lingwistycznej

do procesu przetwarzania numerycznego.
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