
Gliwice, September 2013

Silesian University of Technology
Faculty of Automatic Control, Electronics and Computer Science

Institute of Computer Science

Thesis for the degree of Doctor of Philosophy

in Computer Science

Quaternions based human motion analysis

algorithms implemented with data flow
processing framework for Motion Data

Editor software

Mateusz Janiak

Thesis Advisor: prof. dr hab. inż. Konrad Wojciechowski

Consultants: dr inż. Agnieszka Szczęsna
 dr inż. Janusz Słupik

Contents

1 Introduction 1

2 Background knowledge 7
2.1 Motion analysis . 7
2.2 Motion data . 7
2.3 Acquisition equipment . 9
2.4 Data storage . 10

2.4.1 File formats . 12
2.4.2 Personal data protection 12

2.5 Available motion analysis tools 15

3 Motion Data Editor 19
3.1 Data processing pipeline . 21

3.1.1 Browse . 21
3.1.2 Load . 21
3.1.3 View . 22
3.1.4 Process . 23
3.1.5 Save . 23

3.2 System architecture . 23
3.2.1 Core data types . 25
3.2.2 Core processing logic components 35
3.2.3 Core functionality . 41
3.2.4 Managers . 49
3.2.5 Code organization . 63

3.3 Built-in plug-ins . 67
3.3.1 c3d . 67
3.3.2 communication . 68
3.3.3 kinematic . 69
3.3.4 chart . 70
3.3.5 timeline . 71
3.3.6 subject . 73

i

3.3.7 video . 73
3.3.8 python . 74

3.4 Implementation and development 75
3.5 Future work . 82

4 Data flow processing and visual programming 84
4.1 Introduction to data flow processing 84

4.1.1 Data flow graph concept 84
4.1.2 Data flow model design 86
4.1.3 Data flow model processing extensions 88
4.1.4 Data flow processing logic 90

4.2 General purpose data flow processing library 93
4.2.1 Processing logic characteristic 93
4.2.2 Public interfaces . 94
4.2.3 Processing logic details 96
4.2.4 Executing processing logic 101

4.3 Data flow plug-ins for Motion Data Editor (MDE) 102
4.3.1 Data exchange mechanism 102
4.3.2 Optimal computational resources utilization 103
4.3.3 Visual programming 103

4.4 Future work . 108

5 Motion analysis 110
5.1 State of the art . 110
5.2 Quaternions . 111

5.2.1 Introduction . 111
5.2.2 Unit quaternions . 113
5.2.3 Quaternion functions 114
5.2.4 Rotations . 114
5.2.5 Interpolation . 116

5.3 Multi-resolution analysis . 117
5.3.1 Introduction . 117
5.3.2 Lifting scheme . 118

5.4 Lifting schema for quaternions 120
5.4.1 Rotation average value 120
5.4.2 Proposed lifting schemes 122

5.5 Applications . 131
5.5.1 Noise reduction . 131
5.5.2 Data compression . 131

5.6 Tests . 132
5.6.1 Test data . 132

ii

5.6.2 Comparing results . 133
5.6.3 Signal reconstruction 135
5.6.4 Noise reduction . 141
5.6.5 Compression . 148

5.7 Implementation overview for MDE 154
5.8 Summary and future work . 160

6 Summary and final conclusions 162

Appendix 166

Streszczenie 167

List of Figures 188

List of Tables 190

List of Algorithms 191

List of Acronyms 193

Bibliography 194

iii

Chapter 1

Introduction

Nowadays, due to the possibility of collecting great amount of different kind
of data about the surrounding world, the topic of simple and efficient data
analysis became very important. Simple - because analysis is not done any
more only by scientists and engineers, but also by less qualified stuff in the
field of mathematical analysis and computer science. Efficient - as analysis
does not cover any more only scalar (numerical) values, but also complex
digital data like images, audio or video, which require much larger storage
space with memory and greater processing power.

For managing and analysing big data specialized solutions exist, based on
a dedicated software with database servers and data warehouses [36, 30, 69].
For processing small and medium data size there are much more possibil-
ities, starting with general purpose applications like spreadsheets, through
computer algebra systems [73, 74, 44] and dedicated scientific programming
languages [21, 17], ending with custom solutions, fit to the particular needs
of their users. However, going through many different software and technolo-
gies, there are very few, that are oriented on flexible, intuitive to use, general
data processing. Even less solutions supporting motion data processing can
be found. The lack of dedicated motion analysis tools slows down and limits
significantly research and development in areas like:

� medicine (orthopaedics and neurologists),

� sport (training progress measurement, personal training programs, tech-
nique/strategy comparison),

� security (recognition of people based on their moves, detection of pos-
sibly dangerous situations),

1

� entertainment (more realistic computer games, avatars, augmented re-
ality).

In this thesis a new software - Motion Data Editor (MDE) developed at
Polsko-Japońska Wyższa Szkoła Technik Komputerowych (PJWSTK) - for
general purpose data processing is presented. It is shown, how this appli-
cation supports complete data processing pipeline, from data loading, man-
agement and normalization, browsing and visualizing, up to data processing
and results reporting. Its architecture and logic are described at conceptual
level, with limited code examples, as they can be implemented with various
programming languages based on different technologies. The most important
framework features are presented with delivered out-of-the-box functionali-
ties, where some of them are dedicated explicitly to motion data analysis.

I am one of the core programmers developing presented framework. I
have designed most of its architecture and logic presented in this thesis. My
most important and original work in the field of MDE development is:

� creating DataChannel generic type for time indexed data with various
helper classes for time specific operations,

� parsers functionality decomposition on custom input/output (I/O) op-
erations and data stream support, optimizing performance of data load-
ing,

� designing lazy initialization mechanism based on parsers functionality
for data loaded from files and streams,

� proposing meta-data extension for novel mechanism handling data in
an uniform manner, independently from data types,

� designing hierarchical messages logging system architecture,

� decomposition of core system elements functionalities on public and
private,

� proposition of concepts supporting efficient and optimal data process-
ing: thread pool, job and jobs manager,

� introduction of application context,

� design of plug-ins initialization procedure with specialised application
contexts,

2

� proposition of abstraction layer for time operations for hierarchically
organised time based data (Timeline),

� concept of abstract application object, initializing complete framework
logic with graphical user interface (GUI) and application launching
procedure,

� data management functionality decomposition on independent man-
agers: supported data types, data objects, files and streams,

� concept of transactions, offering isolation for application state modifi-
cations, increasing their performance in multi-threaded environment,

� design of flexible and efficient data processing module in form of data
flow,

� concept of hierarchical motion data organization,

� introduction of well known design patterns [54] to most of the presented
objects,

� design of Continuous Integration (CI) process [29, 16] supporting MDE
development.

This thesis also summarizes and extends information about novel tools
for motion analysis presented in [67, 66, 68]. My most important and original
work in this field is:

� designing an universal mechanism for loading medical data,

� proposing testing framework and general purpose tools for various ex-
periments with real and synthetic motion data,

� designing lifting scheme based on squad interpolation method,

� proposition of motion data compression based on multi-resolution data
representation,

� designing developed tools to work with MDE software.

For the clarity and completeness, all proposed motion analysis tools are
described in this work with their applications. Their development and this
work were supported by the European Union from the European Social Fund
(grant agreement number: UDA-POKL.04.01.01-00-106/09-02).

3

Additionally, in this thesis I give a brief overview of motion analysis re-
search field. I point out potential problems, that I have encountered taking
part in different projects connected with human motion. Based on gained
experiences, I give some guides and hints to those problems in form of general
concepts, that were applied in MDE.

There are formulated two thesis statements:

Thesis 1 MDE software is designed as a general purpose data processing
application. It allows simple customizations to particular users needs
with a dedicated plug-in system. MDE supports complete, well defined,
data loading procedure. Application ensures efficient and uniform data
management, providing tools for optimal utilization of local computer
computational resources. Data browsing is standardized for all sup-
ported data types to present them at various perspectives.

Thesis 2 Proposed tools for motion analysis, based on multi-resolution anal-
ysis and quaternion signal representation, provide good motion data de-
composition properties for noise reduction and compression algorithms.
Moreover, they can be easily implemented for MDE software, making
various experiments extremely easy to perform. Very few work must
be done to adopt already developed solutions to presented data pro-
cessing framework and utilize automatically all available computational
resources for custom calculations.

The goal of this thesis is to present in the first step the power and flexibil-
ity of developed data processing framework, which come from MDE design
and provided functionalities. This is presented in Chapter 3 and Chapter 4.
Secondly, I want to implement and present developed tools for motion anal-
ysis to work inside MDE. This is elaborated in Chapter 5.

As thesis presents not only my work, but I have precisely pointed out
my most important and original work, I am using ”we” along the rest of the
thesis to underline team work in the following areas:

� MDE development,

� motion analysis research work.

Finishing the introduction, the following thesis structure is given:

Chapter 2 This chapter gives a brief introduction to motion analysis do-
main. We describe the most important data types, their various for-
mats and technologies allowing to record them. Available motion data

4

sources are pointed out. Potential problems with storing motion data
are presented. We show currently available software dedicated to mo-
tion analysis. We describe their limitations, which make them incom-
plete in therms of data analysis. This chapter presents the motivation
to create a general purpose data processing and analysis software with
dedicated motion analysis solutions.

Chapter 3 In this chapter MDE software is presented. Elaborating sys-
tem logic and architecture only general concepts are described, skip-
ping most of the technical and implementation details. We want to
familiarize potential users and developers with application structure
by presenting its main features and advantages over other solutions.
Sophisticated diagrams are given to make the logic and concepts un-
derstanding easier.

To show application flexibility, several built-in plug-ins are presented
with a plug-in system itself. Additionally, application development pro-
cess is described to show, how small, geographically spread developers
team members can co-operate to produce high quality software, limit-
ing costs of development and its risk to minimum.

We describe a new data storage and management concept for C++
programming language [42, 33], considering data representation in pro-
gramming languages like Java [50] or C# [3], where all types have
a common base type called Object. To prove MDE is a general data
processing tool with great support for motion analysis a generic time
indexed data type is presented.

This chapter presents capabilities and advantages of MDE over other
motion analysis tools. We want to encourage interested in researchers
and developers to think about MDE in terms of their own work and find
its features useful enough to try it out. This chapter is mostly dedicated
for software developers who would like to contribute in development of
different kind of plug-ins for MDE and MDE application itself. Also
a general list of application features is given with a brief summary,
pointing out further software development directions.

Chapter 4 A concept of a simple, yet efficient data processing in form of
data flow is presented. To make it easy to use for various users (espe-
cially those without programming skills and mathematical background)

5

an extension is given in form of a visual programming environment.
This part presents additional MDE functionality that simplifies data
analysis procedure. It is shown how easily such feature can be imple-
mented for MDE, based on MDE core architecture. Similarly to Chap-
ter 3, most sections are written for engineers and software developers
with intermediate knowledge level in topics of parallel programming
and data processing. In the end a short summary should give the final
impression, how to use the data flow hidden behind intuitive GUI.

Chapter 5 In this chapter a new approach to motion analysis is presented.
It is based on multi-resolution techniques for motion data in a quater-
nion representation of rotations. Additionally, we propose applications
of presented algorithms for data compression and noise reduction. It
is described how various tests and experiments of developed tools were
implemented for MDE, introducing custom solutions to a general data
processing framework through dedicated plug-in system.

Chapter 6 This chapter recapitulates thesis work. MDE main features,
supporting general purpose data processing and analysis, are collected
and recalled. Proposed tools for motion analysis are summarized and
their further research directions are proposed. Also their implementa-
tion for MDE is recalled to underline simplicity of creating new func-
tionalities and their usage in MDE.

Appendix A description of content and structure of attached CD is pre-
sented in this short chapter.

6

Chapter 2

Background knowledge

This chapter is dedicated to readers getting familiar with motion data and
analysis, giving a rough introduction to this topic. For readers having ex-
perience in motion analysis it is suggested to move forward to Chapter 3, if
they are interested in MDE software and its features, or to Chapter 5, if they
are only interested in novel approach to motion data analysis tools.

2.1 Motion analysis

Motion analysis is a wide research area. By motion analysis we consider
analysis of hierarchical models representing human (potentially other living
being) musculo-skeletal system (Figure 2.1). They are built up with seg-
ments (bones), connected through different type of joints. In particular, it is
possible distinguish two types of motion analysis:

� basic - covering only rigid body kinematics and kinetics [28, 76],

� extended - trying additionally to analyse correlation between mechan-
ical and medical data [48, 53].

It is explained in Section 2.2, what kind of medical data can be used for
extended motion analysis. We do a research in that direction, but we are
concentrating mainly on the basic analysis, as firstly its superb understanding
is required in this field. As an example, a research on Parkinson’s disease
was done [55].

2.2 Motion data

Motion analysis concerns variety of motion-specific physical measurements
with different representations. Most of motion data types are presented in

7

Figure 2.1: Human musculo-skeletal system
(http://tylersmusculoskeletalsystem.weebly.com/uploads/1/7/2/8/
17289344/465421_orig.jpg)

Table 2.1: Motion data types

Data type Description
video Video streams are crucial source of information

about motion presenting its general view.

electromyography
(EMG)

This data describes how muscles were activated
during the motion either by electrical or neuro-
logical signals. Generally, several such signals are
recorded for different body parts connected to-
gether (i.e. arm and fore-hand).

ground reaction forces
(GRF)

Measure the force vectors applied to the ground
(typically by the feet). They allow to analyse ki-
netics of body mainly during different gait phases.

linear and angular veloc-
ities with accelerations

Represent local relations between segments in hi-
erarchy or their global behaviour.

points cloud Positions in a 3D space of a well defined set of
points on the body.

8

Table 2.2: Basic motion recording equipment

Equipment Recorded data
video camera video recordings, usually High Definition (HD),

minimum one stream, typically four streams from
different perspectives (left, right, front, back), af-
ter post-processing 3D reconstruction is possible

infra-red cameras Distance measure: depth map, points cloud
electrocardiograph EMG data, usually analogue, several streams on

connected body parts (i.e. arm and forearm)
ground reaction force
plates

GRF stream, 3D vector describing force that feet
generates when touching the plate, minimum one
platform required, but usually two platforms are
used in gait analysis to capture complete gait cycle

inertial measurement
unit (IMU)

Provides angular velocities, accelerations and mag-
netic field vectors, additionally can provide orien-
tations according to fixed reference coordinate sys-
tem

Table 2.1. The number of presented types underline motion multi-modal
characteristic and reveals complexity of motion analysis.

Despite variety of data types describing the motion, there are also many
different kind of meta-data, that need to be delivered to make motion descrip-
tion complete. One of such meta-data might be skeletal model with proper
data mapping, connecting raw physical measurements with musculo-skeletal
system. Also, properties of recorded values must be given. Some of them
describe registration frequencies, value ranges and units. Those properties
make motion analysis even more complicated, as all data must be normalized
and this is not a trivial task, especially when different skeleton models and
hardware are used. What is also very important, motion data are indexed
with time and that forces analysed data to be synchronized in time. This task
also might be very difficult, as many different types of recording equipment
are used with different characteristics and synchronization techniques.

2.3 Acquisition equipment

As already mentioned, many different types of hardware can be used to record
motion. Now we briefly present how to obtain particular motion measure-
ments. Table 2.2 presents basic measurement devices with data types they

9

can provide. Complex solutions are presented in Table 2.3, where composi-
tion of basic measurement devices allows more detailed motion registration.
If someone is not interested in recording motion data, there are also some
free, open-source databases in the Internet. The most know motion databases
are:

� the Carnegie Mellon University Library - http://mocap.cs.cmu.edu

� Kitchen Challenge - http://kitchen.cs.cmu.edu

� the ACCAD Motion Capture Lab Library - http://accad.osu.edu/
research/mocap

� the EYES JAPAN library - http://www.mocapdata.com

� the Motion Capture Club motions - http://www.mocapclub.com

� the Universität Bonn Mocap Database HDM05 - http://www.mpi-inf.
mpg.de/resources/HDM05

Using them, however, require great care, as their quality might be poor
and not all required information to use the data might be given explicitly or
not at all. It is always a good solution to take data from specialized motion
laboratories.

A short note about complex motion measurement solutions must be given.
Although they are very advance, they always require specific calibration pro-
cedures. They involve usually a set of well defined moves, which allow par-
ticular systems to fit built-in skeletal model to the person being actually
recorded and to define precisely initial recording state. Those exercises might
seem to be simple, but they should be done with great care to obtain reliable
data. Despite calibration procedure and the advance of technology, it might
be still required to fill or improve some of the recorded data. This procedure
is called post-processing, it is done by a qualified stuff, as hardware might
sometimes miss data samples because of technological limitations and par-
ticular recording conditions (i.e. MoCap systems, when particular marker is
not visible by the required, minimal number of cameras).

2.4 Data storage

This section discuss topic of storing motion data. Two main problems are
presented - large amount of possible file formats and law regulations about
personal, private data security in Poland.

10

Table 2.3: Complex motion recording systems

System Provided data
Motion controllers points cloud in space based on the distance mea-

sure with stereo infra-red cameras, usually simple
skeleton is given

Vision system 2D images from different cameras in known loca-
tions and orientations are used to reconstruct 3D
environment, depth maps, silhouettes or skeletons
can be obtained

motion capture (MoCap)
system

Usually complete set of data from points cloud,
through EMG, GRF and video. Usually based
on infra-red distance measure, which limits more
complex motions. Additionally motion must be
recorded in particular place, where its dimensions
might limit its application (cycling, skiing)

Acquisition costume Dedicated clothing with built-in IMUs and other
required hardware. In contradiction to MoCap
systems it provides recording of almost any kind
of motion, as it is mobile. Provided data quality
depends on previous calibration process and envi-
ronment (magnetometer measurements vulnerable
to metal objects)

11

2.4.1 File formats

Despite different kinds of registered motion data types, it is possible to choose
between many specialized data formats to store this data. There is no one,
well defined format allowing to store all of motion data. This forces to store
different data types separately, although they describe logically the same mo-
tion. There were developed many formats to handle particular data indepen-
dently or in some specified combinations, but in the end it is very confusing
to manage and use them together. In Table 2.4 the most known motion data
formats are presented based on the Biomechanical ToolKit (B-tk) library
capabilities.

Table 2.4 omits video data formats purposely, as this is completely dif-
ferent topic and it is not relevant for this work, although it also has to be
considered while storing motion data. Also file formats for describing skele-
tal model and data bindings between model and recorded data were skipped
in this summary, but they also must be delivered for reliable motion analy-
sis. Choice of accepted formats affects software performance. Based on our
experience and general trends in motion analysis we suggest using C3D as
a container for most motion data (despite video). It allows storing custom
data, making it universal and flexible for almost any application.

We also suggest to develop a dedicated motion data storage system for
efficient and secure motion data sharing. As an example a Human Mo-
tion Database (HMDB) [19] can be given, developed in parallel to MDE
at PJWSTK. It combines Web Services with File Transfer Protocol (FTP)
and file database to provide motion data. HMDB manages all motion data
recorded in Human Motion Laboratory (HML) (http://hml.pjwstk.edu.
pl/hml.pjwstk.edu.pl), that PJWSTK poses. It is worth mentioning that
PJWSTK plans to offer through the HMDB a set of free motion data on-line
for common use. With such an approach it can be noticed, that PJWSTK
provides complete solutions for motion analysis from data acquisition and
storage to data processing software.

2.4.2 Personal data protection

It must be mentioned, that motion data require special treatment. This is
caused by the law regulations, defining various data types as being sensitive
data, which must be secured from an unauthorized access and usage. In
particular, the law regulations treat video recordings with people faces to be
sensitive data. As this is one of the most fundamental data types describing
motion, storing it forces some additional solutions to ensure its protection.

12

Table 2.4: Different file formats for storing motion data

File Format Comments
ANB Motion Analysis binary file format containing analogue channel

data
ANC Motion Analysis ASCII file format containing analogue channel

data
ANG1 BTS Bioengineering (Elite) binary file format containing (joint)

angles
ASC2 AMTI ASCII file format containing FxFyFzMxMyMz data
C3D Most common used file format. Supports storing MoCap data as

well processed data and custom analogue channels and other custom
scalar data. More informations on http://www.c3d.org

CAL Motion Analysis ASCII file format for force platform calibration
CLB Contec Inc. binary file format containing analogue channel data
EMF Ascension Technology Corporation ASCII file format containing 3D

trajectories
EMG Delsys Inc. binary file format containing EMG data
EMG BTS Bioengineering (Elite) binary file format containing EMG data
GR*3 BTS Bioengineering (Elite) binary file format containing force plat-

form data
MOM4 BTS Bioengineering (Elite) binary file format containing joints’ mo-

ments
MDF Charnwood Dynamics Ltd (Codamotion) binary file format con-

taining 3D trajectories, analogue data and force platform geometry
PWR BTS Bioengineering (Elite) binary file format containing joints’

powers
RAH BTS Bioengineering (Elite) binary file format containing joints’

powers
RAW BTS Bioengineering (Elite) binary file format containing 3D tra-

jectories
RIC BTS Bioengineering (Elite) binary file format containing 3D tra-

jectories
RIF BTS Bioengineering (Elite) binary file format containing 3D tra-

jectories
TDF BTS Bioengineering binary file format containing 3D trajectories,

analogue data and force platform geometry
TRB Motion Analysis binary file format containing 3D trajectories
TRC Motion Analysis ASCII file format containing 3D trajectories
XLS Motion Analysis ASCII file format exported from the software Or-

thotrack
XMOVE Charnwood Dynamics Ltd (Codamotion) XML file format contain-

ing 3D trajectories, analogue data and force platform geometry13

One way to overcome this problem is to introduce anonymity to videos,
so that faces can not be recognized any more in such materials. There are
two approaches to this problem - editing videos before storing them, so that
faces can not be recognized, or implement an abstraction layer, which would
apply face blurring during the playback and grant original recording for video
analysis (i.e. face micro-expressions). For our applications first solution is
used - dedicated tools and algorithms blur people faces before storing video
files.

Despite motion data, there can be stored also some additional personal
data, especially when we consider medical patients. In this case even greater
care must be taken to secure those data, as they might contain people names,
surnames, birth dates, health security identifiers, addresses. In Poland main
sources of knowledge about law regulations for personal, private data protec-
tion can be found in:

� Ustawa z dnia 29 sierpnia 1997 r. o ochronie danych osobowych -
http://isip.sejm.gov.pl/DetailsServlet?id=WDU19971330883

� Rzecznik Praw Obywatelskich - http://www.brpo.gov.pl

� Generalny Inspektor Ochrony Danych Ososbowych - http://www.giodo.
gov.pl/

Information provided by this sources and regulations they are imposing
should be strictly obeyed to ensure required data security and prevent any
legal charges against stored informations.

When such data are collected and managed in any way, a good idea is to
separate motion data and personal data from each other as much as possible
(connected only through some artificial indexes). Access to both of them
must be verified, however access to private, personal data should be limited
to minimum number of users. Simple information, however, might be shared
publicly. This could be gender, age, height and weight of recorder people to
allow basic statistical analysis of human motion, not violating private data
protection regulations. To get more information about this topic a contact
with presented organizations or specialized lawyer is suggested.

14

Table 2.5: Motion analysis tools comparison

Application
Feature Vicon Polygon 4 Mokka (Motion kine-

matic & kinetic ana-
lyzer)

Platforms Windows 7 (x86 and x64) Cross-platform
License Commercial Free

Video browsing l l

EMG browsing l l

GRF browsing l l

IMU browsing m l

Reports l m

Time line and events l l

2D charts l l

3D scenes and models l l

Data import formats ASF/AMC, C3D, on-line
from Vicon systems

as B-tk

Data export formats ASF/AMC, C3D as B-tk
Custom user layouts l l

Motion database m m

Plug-ins m m / l (partial)
Data processing m m / l (partial)

Scripting m m

Translations m m

Custom style sheets m m

2.5 Available motion analysis tools

Currently there are only two applications in the field of motion analysis,
mature enough and reliable that are worth mentioning:

� Vicon Polygon 4 (http://www.vicon.com/Software/Polygon)

� Mokka (http://b-tk.googlecode.com/svn/web/mokka/index.html).

Other solutions, generally small applications dedicated to particular problem
connected with motion analysis, are not developed any more and their sta-
bility and usability are at a very low level.

Table 2.5 presents complete comparison of Vicon Polygon 4 and Mokka.
Later we describe MDE according to the same criteria, to show its advan-

15

tages and improvements in comparison to those applications.

Comparing Mokka and Vicon Polygon 4 we were interested in a number
and types of platforms they support, as different users might have various
preferences in this field. We take into account capability to manage dif-
ferent motion data formats and motion data types. We are also considering
browsing data at different perspectives (as 2D charts and 3D scenes), because
many motion data might be presented in both ways. Very important aspect
of motion analysis is efficient time data management and synchronization.
Reporting features, data export and analysis results exchange between users
are also verified. Applications flexibility in extending built-in functionalities
with custom ones is taken into account. Software scripting capabilities are
investigated, as they might speed up process of data analysis offering more
general and flexible solutions. We score possibility of motion data process-
ing, which we find to be one of the most important features. In the end
application language translations and custom styling capabilities are verified
as the least important features.

As it can be noticed both applications are oriented mainly on browsing
motion data at different perspectives. Mokka offers some possibility to cre-
ate a processing pipelines through the B-tk library, but it is hard to use it
for a custom data processing, as it supports only strictly defined data for-
mat and requires programming skills. It also does not consider utilization of
all available processing power, offering only sequential data processing. The
lack of functionality supporting efficient data processing limits application of
presented tools for complex research in motion analysis.

Vicon Polygon 4 provides some custom extensions, supporting their hard-
ware for motion acquisition. Mokka however offers support for more data
formats (including Vicon) and it is open-source, what makes it possible to
modify Mokka to fit custom requirements. Vicon does not offer any plug-
in system and it is impossibility to extend its functionality. Mokka on the
other hand provides possibility to support new file formats for reading mo-
tion data. This might be useful, when custom format must be used, but
as B-tk offers already a support for the most commonly used motion data
formats, this it not so valuable feature. Team work and users data exchange
is considered partially in Vicon as creating reports from loaded data and
current browsing perspective. Mokka does not consider user data exchange
at all despite simple motion data export. Although both projects are under
heavy development, they offer very limited list of features supporting com-
plete analysis procedure. None of them provides scripting capabilities. Only

16

Figure 2.2: Vicon Polygon
sources:
http://www.youtube.com/watch?v=TRYM8lCGFFU
http://www.youtube.com/watch?v=6g0mQpWkCdI
http://www.helmar-ms.pl/helmar-bis/biblioteka/polygon__helmar_
vicon_motion-capture_video_system_mocap_przechwytywanie_
ruchu01_lrg.jpg

data files on local computer are handled, while non data streams and devices
are supported by both applications. Both of them do not provide support for
other languages than English. They provide limited support for customiz-
ing application appearance. Figure 2.2 and Figure 2.3 present screen-shots
of Vicon Polygon and Mokka. For more information about those products
please refer to provided producers web pages.

17

Figure 2.3: Mokka
https://b-tk.googlecode.com/svn/web/mokka/index.html

18

Chapter 3

Motion Data Editor

Motion Data Editor (MDE) is a software developed at PJWSTK since 2008.
Application was supported by the Polish National Science Centre, grant
agreements number:

� NN 516475740,

� NN 518289240.

MDE was designed firstly as a medical application, supporting orthope-
dist in motion data browsing. Since then it has undergone quite a long way
of re-designing and re-factoring to become a mature, general purpose data
processing and analysis tool.

The goal of this chapter is to present main MDE concepts and make soft-
ware developers familiar with the MDE underlying data processing frame-
work. We limit technical details to minimum, as they are implementation
specific and not relevant for presenting main application features. For read-
ers interested in MDE application public interface (API) we encourage them
to look at the technical documentation and software development kit (SDK)
available on attached CD. We also want to encourage potential MDE users
to give it a try as a base platform for their research and advance data pro-
cessing. We show, that application is built with very simple, clear and well
decomposed components. They provide users basic, but reliable functionality
for data management and processing. After this chapter it should be clear,
how it is possible to utilize application capabilities to own research needs
and how to extend it with users custom solutions through a simple plug-in
system. Later, in Chapter 5, a simple example of an implementation for
MDE data processing framework is given, presenting how to wrap custom
solutions to fit this general framework.

19

Table 3.1: MDE features

Feature MDE
Platforms Cross-platform (Windows, Linux)
License Educational
Video browsing l

EMG browsing l

GRF browsing l

IMU browsing l (custom IMU sensors and costume for mo-
tion acquisition)

Reports l

Time line and events l

2D charts l

3D scenes and models l

Data import formats as B-tk
Data export formats as B-tk
Custom user layouts l

Motion database l (dedicated plug-in)
Plug-ins l

Data processing l

Scripting m / l (partial, dedicated plug-in, in devel-
opment)

Translations l

Custom style sheets m / l (user interface (UI) still in re-design
phase)

Similarly to previously presented tools, supporting motion data analysis,
the MDE characteristic is presented in Table 3.1. In Section 3.2 grounds
for presented features are given in form of system architecture and logic
description.

Skipping most of implementation details, it has to be mentioned here,
that application is written in C++ programming language, which provides
high computations performance, when used correctly, but has also per-design
limitations for uniform data management. We present a novel concept for
general and efficient data storage in Section 3.2.1, that we have developed
to address strong C++ variables typing making management of variety of
data types difficult. Presented solution simplifies efficient data management
significantly, what is one of the core tasks for data processing application.

20

Figure 3.1: Common data processing pipeline

Before we describe in more details system logic and architecture, it is
necessary to explain the process of data analysis, that is supported by MDE.

3.1 Data processing pipeline

Each data processing can be described as a sequence of specified set of op-
erations repeated every time the data analysis is performed. It is possible
to enumerate different processing stages, which are presented in Figure 6.2.
Developed solutions are addressed to such a data processing scheme, decom-
posing it even more, to smaller, independent steps.

3.1.1 Browse

This step usually covers browsing local hard drive for particular files. In more
complex cases it might require browsing Internet resources, FTP, querying
database or web services, connecting to different devices. At this stage user
is getting familiar with data available for further analysis. Some sources
might require user authentication or additional settings (web page address,
IP address, port number, transfer protocol) to gain access to requested data
description.

3.1.2 Load

Data loading is a complex task. It covers data downloading (when required)
from different sources, unpacking data and normalization procedure. It is
also responsible for efficient data management.

3.1.2.1 Acquisition

Data can be delivered in different containers by various sources. Those are
usually files or some kind of connections and streams. Usually, obtaining

21

data can be as simple as pointing out files on a local hard drive or more
complicated, like downloading files from web pages or FTP. Different data
formats and technologies are used to support data transfer and have to be
handled to retrieve this data completely and securely.

3.1.2.2 Parse

This stage extracts essential data for analysis from previously obtained con-
tainers. Having connection (file path, buffer address, query result) with
obtained data we have to unpack encapsulated data. For local files it can be
simple XML parser, for connections with web cameras it might be conversion
from stream representation (buffer) to a sequence of images.

3.1.2.3 Conversion

When specific data have been parsed to their custom formats, some stan-
dardization must be done to have ability to compare and analyse this data
together. This is required as different sources can deliver logically data of
the same type but in different representations. This is usually hard to find a
common representation for a large amount of data types, but still they should
be as uniform as possible. Special care should be given to data indexed with
time, keeping in mind their time synchronization and resolutions. This stage
is very important, as it delivers to the user data in their standardized format
for further processing.

3.1.2.4 Management

Standardized data must be loaded to application for further processing. Ef-
ficient data querying should be ensured for fast data retrieval. It has to
be noted that intelligent memory management is required, when large data,
like videos, are used. Usually some centralized application data storage is
provided to perform those tasks.

3.1.3 View

Visualization is required to present data to the users. They usually watch the
data to have an idea about data structure, making their mind about further
actions in analysis. Observing data allows also to compare data visually,
when obtained numerical results are hard to interpret. It must be pointed
out, that some data types can have various viewing perspectives, and users
might require to go see all of them. As a simple example a 3D vector for
a point position in time can be given. One perspective would be simple 2D

22

chart with all 3D position components plot independently, on the other hand
3D scene with point trajectory can be given as a curve or point movement
in time can be animated.

3.1.4 Process

This is the core step in the whole data processing pipeline. User defines what
operations are performed on particular data, providing optionally different
sets of parameters to those operations. Data operations are chosen with
respect to the data types they are going to be applied on. Input data is
picked up from a set of loaded data. Based on basic operations users may
create more complex algorithms, which they may want to save for further
usage to limit analysis time and share those algorithms with other users.

3.1.5 Save

When processing has been finished, data must be saved for further analy-
sis and possibly to share it with other users. Data serialization should be
delivered allowing to store and load processing results. Although this step
seems to be trivial, it can be hard to realize, as different data might require
different storage formats. In general, creating one, universal format for all
data types can be impossible. Also processed data serialization might be
computationally very difficult task (i.e. video encoding, data compression).

3.2 System architecture

To address presented processing pipeline, a dedicated system architecture
has been designed and developed. Proposing MDE logic we were following
two main rules:

simplicity We wanted to decompose processing pipeline to fine grained, in-
dependent modules with very limited functionality and responsibility.
Based on such components we wanted to propose simple, yet complete
API for data processing. This allowed to create architecture with very
limited dependencies between logic elements, making application main-
tenance and extension easy.

stability As described in [49], one of the most important software features
is its API stability. Users prefer stable APIs more than continuously
and rapidly changing ones, offering old functionalities in a new form,
forcing users to upgrade their code with every release. Our goal was to

23

Figure 3.2: System architecture overview

provide since the beginning a stable and reliable API, not limiting users
in any way in data processing and creating custom functionalities.

To achieve both those goals it was decided to provide very limited access
to particular logic functionalities, only where it is strictly required, based
on processing logic elements responsibilities and destination. There were
proposed two levels of accessibility to core functionalities:

public globally available to any framework and client code,

private specific only for particular elements, which are eventually responsi-
ble for sharing them further only when required.

Such approach clearly defines what are particular logic elements responsi-
bilities and capabilities. It keeps system logic simple with minimal number of
rules, making it easy to familiarize with application architecture. This topic
is elaborated in Section 3.2.4, where application core logic, organized with
different managers, is presented. Figure 6.1 presents general architecture
overview. Three components can be pointed out:

core data types basic MDE data types, offering fundamental functionali-
ties like efficient memory management and standardized, generic time
data representation,

24

Figure 3.3: Core data types

core functionality provide abstraction layer for platform specific opera-
tions, they create base for data processing and other utility tools,

core processing logic elements objects in application responsible for dif-
ferent stages of data processing, joined together with simple rules create
logical data pipeline and data flow in the system.

3.2.1 Core data types

Starting description of MDE in more details, presentation of the most im-
portant data types must be given first. Figure 6.3 presents five basic types.
Now only two of them are presented, as they are crucial for data processing
logic and whole system design is based on them. Other core data types are
described later, when particular built-in, general purpose functionalities are
presented.

The most important type in the whole application is ObjectWrapper
(OW). It is developed to support unified data storage and management
for any kind of data type in strongly typed C++ programming language. It
might be thought, that encapsulation with help of simple template program-
ming in combination with Real-Time Type Info (RTTI) might be enough,
however we will show, that our solution has a greater potential. It follows
a concept of the common base class for all types known from languages like
Java or C#. Second core class, or rather group of classes, is dedicated to
manage in a uniform way any kind of time indexed data.

25

3.2.1.1 ObjectWrapper

C++ programming language is strongly typed. During compilation static
type checks are done. Based on a well defined Plain Old Data (POD) types
it is possible to define custom types according to specified rules. Although a
void pointer could be used to store any data, it looses information about data
type. This makes impossible to access data, when more types are stored with
such an approach. To address this problem a simple functionality is offered
by boost::variant type and other similar template based constructions using
typeid functionality. They however do not offer comfortable type informa-
tion and data management, as only exact types can be extracted. Applying
modern C++ programming techniques a novel solution to this problem has
been developed. It is based on template programming [70] with behaviour
policies [4], allowing flexible functionality customization at compile time for
any types.

Main OW features are now pointed out, with their short descriptions:

type hierarchy information Provides information not only about wrapped
data type, but also about its wrapped base types (currently only linear
hierarchies are supported, for multi-base inheritance single base classes
can be used)

meta-data Each data beside its raw values (scalars, images, ...) might
contain some additional information in form of [key → value] string
pairs (i.e. source of data in form of a source file path, web page address,
label).

lazy initialization Object does not have to contain any data to provide
complete information about its type. An initializer object can be given,
which is used to deliver OW data. It is used when OW is requested
to unpack wrapped data and it is empty (not unpacked and initial-
ized already). Figure 3.5 presents general concept of lazy initialization
procedure on data query.

easy data wrapping and unpacking Simple methods for storing and un-
packing data are provided, with automated types conversion through
wrapped class hierarchies.

customizable behaviour through policies Wrapped data types differ in
two behaviours. This are: pointer policy, defining how data is stored in
OW, and cloning policy, providing appropriate data copy functionality.

26

Figure 3.4: OW class hierarchy

compile time guards and traits At compile time verifications are made
against proper usage of OW with different types. They allow to detect
potential problems with usage of OW as soon as possible. Complemen-
tary checks are made on run-time.

Figure 3.4 presents OW class hierarchy. The main idea is to have a
base class, providing common interface for accessing data type information
and data itself, for any kind of properly wrapped data type. There are no
limitations in data types, which can be handled by OW mechanism, making it
possible to apply for both C++ built in types (PODs) and custom data types.
Differences can occur in realization of particular operations and properties
for those types, but they are covered with policies described in Table 3.2.
Using OW data handling abstraction layer causes memory and data access
overhead, but from data analysis and application design point of view, those
penalties are completely acceptable, as there are much more valuable benefits
from using so proposed data handling. Additionally, we have found out those
overheads to be negligibly small in comparison to maintained data size and
data operations complexity in real applications.

To make using OW simpler, a dedicated trait class is given, providing the
most important information about particular, wrapped data types:

27

Figure 3.5: OW lazy initialization on data query

28

Table 3.2: OW policies

Policy Description
Pointer policy Defines what kind of pointer is used to store

particular data type. In general two types
of pointers can be used: raw, built-in point-
ers and smart pointers. Smart pointers
might have two different schemes: intrusive
and non-intrusive, where mixing them should
never take place. Also mixing raw pointers
with smart pointers is very dangerous oper-
ation. Depending on type implementation
proper pointer policy must be used, fixed
for particular type. It is suggested to use
smart pointers policies, as they guarantee
safe memory management.

Clone policy Different types are design to offer their copy
in a different way. Some use copy construc-
tor, some have virtual clone method, some
does not provide copying at all. This prop-
erty is also specific and fixed for particular
type. It is important for ensuring copying
capabilities for OW, to make them behave
similarly to the wrapped types.

29

� if type was wrapped with OW,

� what types of pointers are used to store the data,

� what clone policy does it use.

One disadvantage of such approach is, that whenever we want to use par-
ticular OW type traits their definition must be visible, therefore it might be
required to include many headers files defining wrappers for particular types.
This is however solved in the system architecture, so that type traits can be
skipped, if some information about wrapped types is required. It is described
in more details in Section 3.2.4.2, where data management functionality is
presented.

Beside template implementation of OW functionality in class
ObjectWrapperT for properly wrapped types, a default implementation for

any other type is given, preventing this mechanism usage with not properly
wrapped types. It causes static assertions at compile time, when given type
would be used with OW.

Sometimes, additionally to raw data some its more general description
must be given. It is possible to create global mapping between different
data and their description, but it would be affecting query performance,
when more objects appear. To address this problem OW was designed to
handle meta-data through a simple mechanism of storing strings in form of
[key → value] pairs. Now, additional data description is strictly connected
with the data itself within OW, with an immediate access to both of them.

In contradiction to simple implementations of boost::variant type, based
on typeid functionality, OW allows to trace wrapped types hierarchies. There
is a dedicated template specialization, where derived, wrapped types are ex-
tended with information about their wrapped base types. This allows to
extract from the wrapped derived type its wrapped base types by automatic
down-casting. In contradiction, for boost::variant type implementation exact
type must be queried first and then downcast to the base type. Addition-
ally, OW gives a possibility to query if particular type can be extracted
from wrapped data. This is very useful when filtering for particular data
type. Similar mechanism is used for assigning data to a wrapper. Tracing
hierarchy information is one direction only feature - derived classes have in-
formation about their base classes, but base classes can not be extended with
information about their derived classes in current implementation.

30

Figure 3.6: DataChannel types

For simple data query Return Type Resolver (RTR) idiom is used (http:
//en.wikibooks.org/wiki/More_C%2B%2B_Idioms/Return_Type_Resolver).
Static types verification is done at compile time with methods call paths op-
timizations, based on the type traits. Analogically, run-time checks are per-
formed, throwing exceptions, when necessary (i.e. when OW is still empty
after initialization).

It has to be mention very clearly, that application implementation is
completely based on OW mechanism. One drawback of this mechanism is
that it is still based on typeid functionality, which for different compilers
might provide different results. Using cross-compiled libraries or libraries
built by different compilers might cause fatal errors. We, however, decided
not to perform and support such builds and therefore this solution is perfectly
functional and reliable under those terms.

3.2.1.2 DataChannel

Motivation for DataChannel development was to handle time indexed data
in an uniform way. Its design addresses mainly time based physical mea-
surements, but we wanted to provide general functionality for also other
combinations defining custom indexing type and corresponding value type.

Figure 3.6 presents two types of DataChannel according to indexing val-
ues:

� with uniform indexes (constant distance between indexes),

� with irregular indexes (variable distance between indexes).

This property is used to provide efficient index based data access (con-
stant for uniform indexes and O(log(N)) for irregular indexes). Data load

31

Figure 3.7: DataChannel concept

to DataChannel must be done in the ascending order for index values. Dat-
aChannel does not allow to modify index values, but gives full access to
associated data values. Data can be accessed with various, intuitive meth-
ods:

� by indexing type values (time),

� by internal data sample indexes (samples indexing with non-negative
integer values starting from 0 up to number of samples− 1)

� through iterators - Standard Template Library (STL) approach.

DataChannel mechanism is developed completely with templates using
mix-ins of abstract interfaces and their proper functionality implementation.
Figure 3.7 presents basic structure of DataChannel. There are two indepen-
dent implementations covering both DataChannel types, based on common
storage functionality - DataChannelStorage . Such approach allows to cre-
ate easily adapters for reading data, making them behave as DataChannels
with different data type without copying their content. Template approach
allows automatic value passing optimizations based on the type traits to give
DataChannels maximal efficiency. Table 3.3 provides complete description
of DataChannel properties and requirements.

32

Table 3.3: DataChannel properties

Property Description
Template based Generic approach for any pair of index type

and value type (some special functionality
for index type is required). Strong compile
time type check with value pass optimiza-
tions based on type traits.

Mix-ins implementations Abstract interfaces for data access, separated
from their implementation offer simple pos-
sibility for changing data representation (one
3D time based signal can be represented by
three independent 1D time based signals op-
erating on the same data).

Intuitive data accessors Data access through internal integer samples
indexes, defined index type value or iterators.

Ascending index type
values

While data loading only ascending order of
index type values allowed to ensure efficient
data storage and access. This enforces index
type to be comparable.

Unique index type values Index type values must be unique. This
property was decided to be introduced, as
in most physical measurements it never hap-
pens, that for the given index (usually time)
two different measurements are collected for
particular observation.

Constant index type val-
ues

Only corresponding values can be modified,
order of samples in channel must be un-
changed.

State-less DataChannel beside contained data values
does not have any additional state.

Simple time queries Methods for DataChannel samples duration
and whole channel length according to index-
ing values are provided.

33

Data accessors Idea behind data accessors objects arise because of dis-
crete data representation, when sometimes their continuous interpretation is
required (i.e. when browsing data in a greater resolution than provided in
raw data). Additionally, some algorithms might require querying for data
outside of DataChannel (for integer and time index values range). Dat-
aChannels provide only fixed number of samples and query for index values
not present explicitly in data, although fitting its index value range, fails.
Idea of data accessors is to provide abstraction layer, allowing to treat any
kind of discrete DataChannel (although sometimes with index values with
very high resolutions) as continuous. Data accessors can be provided for
any DataChannel. Those objects behave like interpolation and extrapolation
operators. For extrapolation several built in models are delivered:

exception Exception is thrown when querying for index value outside of the
channel (default behaviour),

border Always first or last sample is returned depending on index value
outside of DataChannel range,

periodic Index value is clamped to DataChannel range creating periodic
signal impression.

For interpolation operator several implementations are provided:

piecewise constant interpolation the closest value is always chosen for
given index,

linear linear interpolation is done between two closest covering values (dif-
ference and division operations must be provided for DataChannel
value type),

polynomial missing value is interpolated with the given polynomial func-
tion (multiplication operation must be defined for DataChannel value
type).

Timers Timers introduce time state (for example during a playback) for
DataChannel objects. This allows to save memory, when using the same
data with different time modifications (offset, scale). This is very important
feature of DataChannel, as some data types (videos, audio) might require
great amount of memory. Further, it is possible to join time based data with
Timer object to provide easy extraction of data from DataChannel according
to the current time in Timer object.

34

Figure 3.8: Core processing logic elements

3.2.2 Core processing logic components

Keeping in mind the idea of addressed data processing procedure and appli-
cation fundamental data types, it is possible to present now the MDE logic.
Figure 6.4 presents basic application processing architecture elements. Five
fine grained elements, providing simple, independent data processing func-
tionality were proposed as a base of MDE. Additionally, one of the most
important application modules is a dedicated plug-in system. It allows MDE
users to extend application functionality to fit their requirements, based on
provided logic. Now description of core logic elements, loadable by plug-ins,
is given.

3.2.2.1 Parser

Description The most important role for parsers is to unpack data from
particular data containers and deliver them in an uniform format. This
cover conversion of processed data and wrapping them with OW mechanism.
Parsers must deliver:

� a description of supported data sources (files, Internet protocols, com-
puter devices),

� possible to extract data types from supported containers.

Source of data is represented as a string, therefore regular expressions are
used for source verification and description. As an example "file://path"
pattern is used, similarly to Uniform Resource Locator (URL)s, for file paths

35

or "hw://interface/deviceID" pattern for local computer hardware de-
vices. It has to be noticed, that different data types from the same source
can be delivered by different parsers, supporting particular source. For ex-
ample, some parser might provide only video from motion sensor for pattern
recognition, while other would provide raw depth map for motion detection.
As those two approaches are independent for various applications, probably
non of them would implement the other functionality, because it is not re-
quired. However, both can work with the same source, extending its set of
available data types in application. On the other hand, it would be probably
a better solution to develop parser providing complete set of data types for
particular data source, to keep its functionality complete and encapsulated
in one place.

Although parsers have a common interface for querying unpacked data
and supported sources, they can be divided into two categories based on their
capabilities in processing particular data sources:

� stream based - considering STL data streams,

� custom I/O based - reading data source in a custom, specialized way,
performing all low level operations on data.

Valid parser should support functionality of minimum one of those groups.
In case of files as data sources, this gives the application opportunity to
decide, which parser behaviour to use for particular data and context, if both
functionalities are provided. This mechanism allows to increase application
performance, by loading files once to memory and operate on them many
times in form of streams, despite performing independent I/O operations on
files by different parsers.

Logic accessibility and instancing In terms of processing logic elements
accessibility, parsers do not require any additional access to core functionality
beyond publicly available logic. Parsers hoverer must provide clone function-
ality, because when loaded through the plug-in system, they are treated as
unmodifiable, prototype objects. They are created each time, when new data
is loaded to application to unpack supported sources.

3.2.2.2 Visualizer

Description The goal of visualizers is to deliver a uniform way of present-
ing data to the users. As application support many different data types,
viewing mechanism must also support this types diversity. Each visualizer

36

therefore provides a description of supported types it can handle. Presented
data are organized in visualizers in form of data series objects. They offer
simple description for shown data:

� name - descriptive name for the data, providing information what does
it represent,

� data that is presented, wrapped with OW,

� desired data type representation, as particular data might support more
perspectives based on their class hierarchy.

Visualizers might limit the amount of data series they can handle because
of particular data type characteristic. Visualizers can support:

� single data series (for video playback, as playing two video streams on
one scene is not a common approach for video players),

� finite number of series (to maintain scene view clarity),

� unlimited number of series (in the end limited by the range of integer
types, but still it is hard to imagine more than 10 curves in one plot).

Visualizers introduce a concept of active data series, representing data
currently managed by the user, when some additional operations for this
data might be provided. Visualizers offer different operations for managing
data series:

� addition (with respect to potential limitations in supported series num-
ber),

� removal,

� cloning (creating identical series from already created to manipulate its
parameters and compare both of them),

� setting active series (turn on some additional functionalities for associ-
ated data, that visualizer might provide).

Visualizers are expected to provide functionality for making screen-shots
of their current scene state. This is required for reporting mechanism, based
on currently viewed data. This mechanism is described later in Section 3.2.4.7.

Despite such simple data management in form of data series, there is also
an extended representation for data series considering time. When particular

37

data has time indexed representation and visualizer can handle it, then time
aware series should be provided by visualizer for this data type. Such series
in comparison to the basic series representation offer additional properties
connected with time management:

� setting current time of the series,

� scaling the data in time,

� setting time offset to data.

This functionality is used for time indexed data time synchronization and
manipulations for all visualizers in an unified manner with a dedicated Time-
line service (Section 3.3.5).

Graphically, each visualizer delivers its own window, where it is presenting
the data. Application only choose the place, where this window is initially
placed, and from where users can start managing it. Such window might
provide additional visualizer functionality, which is handled by visualizer,
independently from the rest of the application logic responsible for presenting
the data.

Logic accessibility and instancing Visualizers, similarly to parsers, do
not require any additional access to the logic elements, as they provide simple,
closed functionality supplied with all required data on run-time. They are
also considered to be prototypes when loaded with plug-ins, therefore they
must provide cloning functionality.

3.2.2.3 Services

Description By a service a new application functionality is considered,
that users might introduce according their needs. As services can depend on
each other, a simple mechanism of their initialization is provided. This is a
two step operation, where firstly services are initialized independently, not
knowing if other, required services were already initialized. In the second
pass services are guaranteed, that all other services have already been ini-
tialized and they can start interacting with each other. Similar mechanism
is used for finalizing services in application, but the order of operations is
reversed - in the first step a service is asked to finalize its interaction with
all other services and later it is finalized alone.

Services can provide three graphical windows to:

38

� present users their current state,

� allow users to control their behaviour,

� set-up their configuration.

Not all windows must be provided, only those the service can utilize. They
are handled in a well defined manner in GUI, offering users well organized
access to all application windows.

Logic accessibility and instancing As services provide new functional-
ity, they have access to all logic functionalities. This is required, so they do
not limit any potential features that users might want to introduce. This
makes services the most privileged processing logic elements. They can pro-
vide access to complete application logic further for other objects, but they
are responsible for offering minimal access to the private functionality, only
when it is really required. Application was design to limit such situations, or
ideally - they should not occur at all. Services do not need to provide cloning
functionality, as they provide unique new features to application.

3.2.2.4 Data sources

Description Data sources are delivering new data to application. They
offer users possibility to browse available data, provided by a supported stor-
ages, and load them to application. Data sources must provide information
about data types that they can deliver. This feature is used for filtering,
when user is interested in processing particular data type. Each data source
is responsible for two operations:

� load - deliver data from various containers and load them to application,

� unload - remove data from application and potentially free containers
resources (remove file i.e.).

Those operations should be realized in terms of provided system logic re-
sponsible for memory management and data loading, presented later in this
chapter.

As sources may also cooperate together, they are using the same two stage
initialization and finalization procedures as services. They can provide the
same set of windows as services. Data source is a very general logic concept
and an example of a data source can be found in Section 3.3.2.

39

Listing 3.1: Example plug-in definition with provided macros

CORE_PLUGIN_BEGIN (”ExamplePlugin” , ←↩
core : : UID : : GenerateUniqueID (”{3C0CD7AF−9351−46CC−A5FE−52AA182E1279}”)) ;
CORE_PLUGIN_ADD_PARSER (ExampleParser) ;
CORE_PLUGIN_ADD_VISUALIZER (ExampleVisualizer) ;
CORE_PLUGIN_ADD_OBJECT_WRAPPER (ExampleDataType) ;
CORE_PLUGIN_ADD_SERVICE (ExampleService) ;

CORE_PLUGIN_END ;

Logic accessibility and instancing Similarly to services, data sources
also do not have to provide cloning functionality and can deliver well defined
windows. Because data sources are delivering new data to application in
different form they have access to private application managers responsible
for loading data (Section 3.2.4.2).

3.2.2.5 Plug-ins

Description Plug-ins are also considered to be the core processing logic
elements, as they allow to deliver described so far core objects to applica-
tion in a standardized way. They are used as containers allowing to load
dynamically to MDE the following elements:

� data types - new data types supported by application,

� parsers - providing data from particular resources,

� visualizers - presentations capabilities for particular data types,

� services - allowing to extend application with custom functionalities,

� data sources - providing new data, that are managed by application.

Data types are represented as empty OWs. They are treated as proto-
types and creating their new instances is done with cloning functionality of
OW objects.

Plug-in objects are created with provided macros making it easy to con-
struct plug-in with desired new features. They can be queried for particular
object types. Each plug-in is uniquely identified with dedicated identifier.
Plug-ins might have some additional description in form of a name and in-
formation, what functionality do they provide. They are used to present

40

users, what extensions are currently loaded. Plug-ins are compiled as inde-
pendent shared libraries. By dedicated macros plug-ins are extended with
maintenance informations, required for their proper management and veri-
fication (Section 3.2.4.6). Listing 3.1 presents example plug-in created with
delivered macros. First line begins a new plug-in with the given name and
unique identifier, based on sixteen characters literal string. Next, presented
set of macros are used to embedded example parser, visualizer, service and
data type to the plug-in to be registered in the application, when plug-in is
loaded.

Logic accessibility and instancing Plug-ins are providing public MDE
logic functionalities to all delivered elements. They are also initialized with a
dedicated application context (Section 3.2.4.6), uniquely identifying plug-in
and its components.

3.2.3 Core functionality

Figure 6.5 presents built-in system features, providing abstraction layer for
common, platform specific operations. This are also various helper utilities
supporting data processing logic. Beside described core data types and pro-
cessing logic elements, this general purpose operations were developed to
support efficient data management, data processing, data loading and con-
version, application initialization and plug-ins handling.

3.2.3.1 File system

Path To unify local file paths representation and deliver common path op-
erations, a dedicated data type Path was developed. Due to a different rep-
resentations and conversions between various literal paths representations,
we decided to standardize it in the application. Path provides simple de-
composition of path to a list of the following directories and disks in their
hierarchical order. It allows to query for a file name, extension, parent folder
and the root folder for the given path. Additionally, path creation is intuitive
and independent from file system - user does not have to worry about using
slash (/) or backslash (\) characters, as simple operator for concatenating
paths is given. In the end conversion to and from different literals is provided,
verifying path correctness.

Operations As most application perform different file system operations,
which are platform specific, we decided to uniform also this functionality.

41

Figure 3.9: Core functionality

Dedicated abstraction layer is proposed, offering basic files and folders ma-
nipulation methods. Simple file and folder management is provided (cre-
ate/delete) with advanced folders content listing and filtering. It is also
allowed to query particular file system properties, as time of creation for
file/folder, last modification or disk remaining space and capacity with re-
spect to the current user rights and quota.

3.2.3.2 Application paths

Most of applications manage some well known file resources and paths. De-
spite unifying file paths representation and file system functionality, also the
most important paths from application point of view are delivered in a com-
pact way in form of a ApplicationPaths object. Table 3.4 presents all MDE
specific paths.

3.2.3.3 Log

Since the beginning of MDE development, we found it very important to pro-
vide a simple to use, flexible and efficient logging mechanism. We proposed a
dedicated Log that allows to present users application specific messages and
information. We considered it also as a support for application debugging
tool at runtime. Logged data can have different, independent destinations:

42

Table 3.4: Application paths

Path Description
User data Path to user data, where its results, settings

and other data are stored. This path is rel-
ative to the currently logged system user on
particular machine.

Application data Private application space. MDE configura-
tions and files requiring edition privileges are
stored here.

User application data Application private user space. MDE writes
here user data, which are private for applica-
tion and user does not have to know about
their existence. Such approach guarantees
user public space clarity and provides higher
stability, as important data are secured from
accidental deletion and modification.

Resources data Application resources. Mainly resources for
GUI: images, translations, additional static,
read-only data.

Temporary data Directory, where application temporary data
can be stored. It is guaranteed, that it would
be cleaned on MDE exit or failure (as much
data is deleted as possible).

Plug-ins Root directory, where user plug-ins are
placed. This directory is browsed during ap-
plication launch to provide additional plug-
ins. This way user can easily manage custom
plug-ins.

43

GUI, file, console. Our log system gives flexibility in choosing desired outputs
for log messages. Moreover, logged information can have different informa-
tion levels, where user can globally define minimal information level to be
notified about. Informations with lower levels are automatically ignored.
Logging system allows to create hierarchies of loggers. This provides greater
clarity of information, as complete, detailed message context can be presented
with detailed message source description. Figure 3.10 present different log-
ger outputs presenting basic diagnostic data when starting application and
loading data. Listing 3.2 presents messages logging for plug-ins with default
plug-in logger.

Listing 3.2: Plug-in logging macros examples
PLUGIN_LOG_DEBUG (”Plug−in debug message logged in d e f au l t plug−in l o gg e r ”) ;
PLUGIN_LOG_ERROR (”Plug−in e r r o r message logged in d e f au l t plug−in l o gg e r ”) ;
PLUGIN_LOG_INFO (”Plug−in in fo rmat ion message logged in d e f au l t plug−in ←↩

l o gg e r ”) ;
PLUGIN_LOG_WARNING (”Plug−in warning message logged in d e f au l t plug−in ←↩

l o gg e r ”) ;

3.2.3.4 Threading

Efficient computational power utilization and management are the the most
important aspects of data processing applications. On a modern hardware
a processing unit can be represented with a traditional Central processing
unit (CPU) or, more often this days, by a high-end Graphics processing
unit (GPU), offering huge processing power with massive hardware paral-
lelism. Nevertheless, as a CPU is organized in independent physical cores,
which provide basic computation resources, their efficient utilization must
be ensured. This is achieved by creating specific number of threads, usually
equal to number of physical CPU cores multiplied by factor of two (current
CPU producers declare, that with different technologies their hardware can
process two or more threads simultaneously on one physical core). As we
are providing cross-platform solution and threading is platform specific, we
provided a dedicated abstraction layer for threading and synchronization.

Thread First step was to create a custom representation of a thread. We
developed a Thread object allowing to:

� start,

� join,

44

Console

XML file

GUI

Figure 3.10: Various logger outputs

45

� detach,

� cancel

thread execution. Moreover, it allows to set the following thread proper-
ties:

� priority (operating system specific),

� stack size.

Computations performed in a Thread object must be encapsulated in
form of IRunnable interface (abstract class in C++ nomenclature), which
has a single method, taking no parameters, called run. This method is exe-
cuted by newly created thread when it is started.

While writing this thesis, the new C++ standard, called C++11, already
offers language native threading support, but not all compilers are offering
its complete implementation and functionality. Therefore, presented custom
solution has been proposed, but in the future it would be probably exchanged
to language built-in features, when most compilers would support it. This
would limit application external dependencies and necessity of maintaining
additional functionality.

ThreadPool Standardization of thread representation at application level
is just a first step in efficient thread management. Using too many threads
may cause application to work slower in comparison to sequential code exe-
cution. This is caused by an overhead, that is connected with thread context
switching on CPU and system level [75]. To address this problem, we have
decided to control number of threads used in MDE by providing ThreadPool
object. Its main roll is to deliver new threads when required and when speci-
fied maximum number of threads has not been reached yet. If limit is reached
no more threads can be created until some already created threads will fin-
ish their work and free computing resources. Despite controlling maximum
number of threads available in the application, ThreadPool preserves some
minimum number of threads as a buffer, to eliminate necessity of creating
new threads, as this system specific operation is usually time consuming. To
save this computation time for data processing, threads are reused, when
possible, to save as much resources as possible. Algorithm 3.1 and Algo-
rithm 3.2 describe logic of acquiring new threads and releasing thread after
it has finished its job.

46

Provided threads are assumed to perform simple operations and to sleep
most of the time, handling some special events in the logic they are executing.
Only some of them are used for data processing, utilizing maximum available
computational power, but this is explained in the following sections.

Algorithm 3.1: Requesting ThreadPool for threads
Data: requestedThredsCount
Result: collection of threads
if requestedThredsCount + currentThreadsCount >=
maxThreadsCount then

throw(”Not enough thread resources”);
else

collection ret;
int useFreeCount = min(requestedThredsCount,
freeThreads.size());
ret.insert(freeThreads.begin(), freeThreads.begin() +
useFreeCount);
freeThreads.erase(freeThreads.begin(), freeThreads.begin() +
useFreeCount);
int diff = requestedThredsCount - useFreeCount;
for i=1 to diff do

ret.push back(threadFactory.getThread());
end
currentThreadsCount += requestedThredsCount;
return ret;

end

Algorithm 3.2: Releasing unused thread
Data: releasedThread
if freeThreads.size() < minThreadsCount then

freeThreads.push back(thread);
end
currentThreadsCount -= 1;

3.2.3.5 Data processing

Efficient data processing is a separate and wide topic. It covers issues from
low level code optimization for specific hardware, through numerical stability

47

of calculations, up to optimal problem decomposition into smaller, indepen-
dent parts running possibly in parallel. As those optimizations are problem
specific, we decided to provide easy to use, general tool to manage processing
of already decomposed problem pieces. This is how concept of Job and Job-
Manager was developed. Its main role is to manage available computational
resources efficiently for processing smaller jobs, solving various problems.

Job Job is supposed to be reasonably small part of the problem, that can
be processed independently from other Jobs solving this or other problems.
Similarly to threads, reasonably small means, that overhead caused by such
abstraction layer should be relatively small to the performed computations.
Otherwise, poor performance can be met, as with too many threads. Job can
be also thought to be a small, independent thread, with limited creation cost
penalty. It must also provide a functionality of IRunnable interface, where
whole processing must be done. Jobs can be queried about their status of
execution to check if they are:

� pending,

� being processed,

� finished.

It is necessary to provide such information, as Job delivered for processing
need not to be processed immediately, as there might be not enough process-
ing resources, when it was pushed to the JobManager.

JobManager As already mentioned, when describing threads and the thread
pool, they are not considered for heavy computations explicitly. To handle
such functionality JobManager has been developed. Its main role is to con-
trol processing of all delivered Jobs. It is responsible for collecting Jobs for
further processing and scheduling them, as soon as processing resources are
available.

Figure 3.11 gives and overview of JobManager functionality. For pro-
viding great efficiency JobManager is implemented in terms of threads and
thread pool. Specific number of threads are automatically reserved for Job-
Manager at application launch from the ThreadPool. Their number is equal
to the maximal threads count CPU can handle effectively, where one of them
is not realizing Jobs processing. This specific thread is responsible for moni-
toring other processing threads and restarts them, if they have failed or been

48

Figure 3.11: JobManager overview

terminated unexpectedly. Such approach leaves always resources for provid-
ing GUI minimal processing time and responsiveness. JobManager provides
two main operations:

� public addJob, allowing to push new Jobs for processing,

� private takeJob, used by processing threads to query for next Job for
processing.

Both those operations are synchronized, as Jobs might be added for pro-
cessing from different threads and queue consistency must be guaranteed,
when inserting and taking next Jobs.

3.2.4 Managers

Now it is explained, how particular logic elements are managed in MDE.
Figure 3.12 present core managers, providing system functionality and sup-
port for data processing. Generally, for each presented architecture object a
dedicated manager is designed, where some of them were already presented.
Most of managers have their functionality divided in two separate functional
groups:

� reading - mostly publicly available for other component, not modifying
state of the manager

� writing - private, provided only to components requiring such function-
ality, modifying state of manager.

49

Figure 3.12: Core managers

This is the realization of discussed in Section 3.2 concept of providing
particular core logic functionality, where it is required according to system
architecture design.

3.2.4.1 Parsers

As parsers can deliver various data from different sources, their efficient
management is required. Parsers manager offer functionality for register-
ing parsers in application and querying for parsers providing particular data
type. It allows querying for parsers supporting particular data source. Ad-
ditionally, querying for information about all possible to extract types from
particular source is possible. In the end, detailed queries can be made for
parser supported functionality - if it supports stream parsing or custom I/O
operations. This is useful to perform optimizations while data are initialized.
Resulting parsers are always delivered as prototypes in unmodifiable form.
They must be cloned to be used. Querying functionality is publicly available,
but registration operations are hidden in private implementation for core ap-
plication components use only, when plug-ins are read and unpacked and for
other data specific managers, presented in the following sections.

50

3.2.4.2 Data

Smart data management is the key to efficient data processing application.
This makes data managers one of the most important part of the MDE. As
data in application might be loaded from different sources and dedicated
parsers are used to extract the data, data managers are divided in four cat-
egories:

� types hierarchy manager,

� memory manager,

� files manager,

� streams manager.

Types hierarchy manager provides basic functionality for registering and
querying supported data types, wrapped with ObjetWrappers. Memory data
manager stores the data for processing in form of OW. It is MDE central
database, providing efficient data access and management. File data manager
offers functionality for simple loading files and extracting their data to mem-
ory data manager. Streams data manager provides analogical functionality
to files data manager.

Types hierarchy This manager is responsible for registering supported by
application data types, wrapped with OW. Moreover, on registration addi-
tional data is extracted for new types, investigating already registered types,
to provide complete types hierarchy information based on OW functionality.
This procedure is dedicated to the lack of such functionality in OW mecha-
nism for types, for which derived types were registered. Figure 3.13 presents
new data types registration procedure.

With help of types hierarchy manager it is possible check at runtime,
if two types are in hierarchical relationship and what is the direction of
this relationship without use of dynamic casting each time relationship is
tested. Provided requests are based on OW mechanism and might be limited
in contradiction to real class hierarchies because of provided OW hierarchy
description. Types hierarchy manager functionality helps to organize and
manage supported data types. All querying operations are public, while
registering operations are reserved for private implementation, responsible
for unpacking data types from plug-ins.

51

Figure 3.13: Registering new data type

52

Memory Memory data manager is a central data storage in the applica-
tion. It stores data wrapped with OW. Provided functionality allows to:

� add and remove data,

� query, if data is managed by memory data manager,

� query for data of particular type,

� query for data supporting particular type.

As application supports multi-threading, all operations are guaranteed to
be thread-safe. Moreover, when lots of queries and operations on data man-
ager are done, transactions are introduce to limit synchronization overhead
to minimum, providing isolation for all performed operations. Read transac-
tions are always considered as correct and complete, but write transactions
may fail. Transaction which caused failure is rolled back, returning memory
data manager its initial state before the transaction has been started (adding
and removing particular data modified during the transaction).

Data stored in memory data manager are delivered as read only data.
They are treated as prototypes for further processing. It might be however
necessary to modify such data, which is also possible through a dedicated
functionality. Such editions should, however, occur very rarely, because of
efficiency reasons - each edition is guaranteed to be thread-safe. Moreover, to
allow capturing data edition by other application elements, and in general,
monitoring memory data manager state, a notification system is introduced.
It is possible to subscribe to memory data manager for it state changes, but
it has to be ensured, that no edition is done from within the notification, as
this would cause application to break (recursive, infinite notification). Very
frequent data editions would cause many notifications to be emitted, what
could drastically lower overall application performance.

Data querying functionality is offered publicly, but data management is
available only to Services and DataSources. Also private implementation of
other data managers have access to those operations, what is presented in
next two paragraphs.

Files As most of the data comes from different types of files stored on local
hard disk, we found it necessary to provide mechanism for simple file load-
ing, their data extraction and management. For files manager operations
of files addition, removal and querying are possible. Procedures of addition

53

Figure 3.14: Extracting data from file

54

and deletion are strongly connected with parsers, where parsers manager is
extensively used.

File addition procedure overview is presented in Figure 3.14. Firstly, sim-
ple check is done, if particular file was already managed, as there is no need
for any file to be processed more than once by file manager. If file is not
already managed, parsers are collected, that can possibly extract data from
this file. It has to be recall, that parsers can provide different files handling
through streams and custom I/O. File data manager always prefers stream
access over custom I/O, where file read optimization can be done. Also, if
parser supports both file handling techniques, only one of them is used, as
they both should provide the same set of possible data types. Having all
parsers that can potentially extract data from the file, they are queried for
uninitialized data for this file. This is part of data lazy initialization proce-
dure, where we do not provide data immediately, only when user explicitly
query OW for encapsulated data. Empty OWs are supplied with dedicated
initializers, causing data parsing on data query, when data is not available
yet. Such data might be released later to save memory, if not used. Next
query will cause initializer to launch once again initialization procedure. Fig-
ure 3.15 presents data lazy initialization with parsers.

Question arise, what happens, when parser can not deliver particular data
type from the parsed file. OW, which should deliver this data returns empty
pointer (comparable to null pointer) on extraction. It would not cause any
further data parsing and it would be removed from both memory and files
manager, as not providing any data.

File removal causes deletion of all connected with file data from memory
manager. Next, all associated parsers are removed and destroyed and file is
removed from file manager. Similarly to memory manager, all operations are
guaranteed to be thread-safe. Also similar transactional system is provided
with notification mechanism. It is possible to observe changes in managed
files. Additionally, file data manager traces management of delivered to
memory manager data and response on them. In specific, it removes loaded
files, if all their data have been removed from memory manager. Such file is
treated as unused, as no references to it exist any more. It must be added to
files manager once again if we want to use its data.

55

Figure 3.15: File data lazy initialization

56

3.2.4.3 Visualizers

Browsing various data types in different perspectives can be difficult to han-
dle. Visualizers manager is design to support this type of operation. Similarly
to parsers manager, it is possible to query for visualizer handling particular
data type. To support GUI functionality, methods for observing visualizer
manager are provided. Notification mechanism was proposed, notifying sub-
scribers each time new visualizer is created or destroyed. This functionality
is useful for finding visualizers with particular data type. Visualizer man-
ager always return visualizers prototypes. Thread-safety of all operations is
guaranteed. During notifications it is impossible to create or destroy new
visualizers. Last, but very important functionality realized by visualizers
manager is updating all visualizers instances to refresh their scenes accord-
ing to a defined constant time intervals. This behaviour is required by some
visualizers, not having their own source of time. Visualizers with custom
source of time and scene refresh mechanism can ignore this update calls.

Visualizers registration functionality is private, available only for plug-in
system. All querying methods are publicly accessible.

3.2.4.4 Service

As services are designed to provide new functionality to the application it is
hard to define any common behaviour for theme. Therefore, their manager
is limited to very few and simple operations. First of all, service manager
can register new services in the application. Secondly, it is possible to query
for services. Querying can be done in two different ways:

� query by index, according to number of registered services,

� query for particular service by its type (interface).

In the second approach, each service is tested against support of particular
type with dynamic casting and returned, if such casting is successful. If there
are more services supporting particular type, querying by index must be done
to obtain their instances, as query by type returns first service matching the
given type. In contrast to visualizers or parsers, returned results contain
requested services instances instead of their prototypes, as they are treated
to be unique, standalone functionalities in application. Once again, service
registration is a private operation, used for plug-in unpacking, and querying
is publicly available.

57

3.2.4.5 Data source

Sources are very similar to the services, therefore their manager is behaving
in a similar way as manager for services. For additional information please
refer to the previous paragraph.

3.2.4.6 Plug-ins

Plug-ins manager control process of loading plug-ins to application. It is a
fundamental MDE element, as plug-in system is thought to be one if its most
valuable features, giving users flexibility in extending application with their
own solutions.

Figure 3.16 presents procedure for loading plug-ins. Plug-ins in MDE are
thought to be dynamic libraries providing well defined methods for applica-
tion extensions extraction and plug-in verification. Verification of plug-ins is
crucial for application stability, as external libraries might be built against
different libraries than application itself. Exchanging data of the same type,
but with different application binary interface (ABI) may quickly cause ap-
plication to be unstable and crash, as stack objects might have different sizes.
To address this problem, plug-ins are automatically extended with informa-
tion about their build type (debug or release) and used libraries versions.
During plug-in load procedure those values are compared with the same in-
formation embedded in the application. Plug-ins are processed further only
if this data match.

When plug-in dependent libraries verification is successful, plug-in is
tested against its interface compatibility with application. Whenever MDE
public API changes, a value describing public interface version is increased.
To ensure that provided plug-in interface is compatible with the same inter-
face at application side those values are compared. Plug-in can be loaded
only when both interfaces versions are compatible.

Plug-in unpacking is based on looking for a well defined exported func-
tion, which creates plug-in defined class wrapper for all new functionalities.
When expected entry point for plug-in is not found, such library is skipped
from further processing. Loaded plug-ins can be queried further for unpack-
ing core processing logic elements and register them in application within
dedicated managers. To make delivered elements easier to identify plug-ins
must have their unique identifier and optionally a name with a short descrip-
tion. During initialization, plug-in is supplied with required data to work.
This is described in the next paragraph about application context. Plug-in

58

Figure 3.16: Loading plug-ins

59

Figure 3.17: Unpacking and registering plug-in content

extraction procedure is presented in Figure 3.17. For clarity, only new data
types, parsers and data sources are presented, as visualizers and services are
handled in the same way.

ApplicationContext Application context provides description of current
and logically complete application state. It delivers all so far defined man-
agers and functionality with application paths to initialize plug-ins. This
information must be provided at plug-in level, so that log system, all man-
agers and other core functionality are available to elements delivered with
plug-ins. Each plug-in obtains its custom ApplicationContext, supplied with
dedicated logger and customized paths. Delivered logger is already extended
with plug-in information (name, identifier, description), so it is clear, which

60

plug-in is providing particular log entries, even if different plug-ins have the
same internal loggers hierarchies. Each plug-in has its own folder for re-
sources and other data, where it has full read/write rights. It has to be
noted, that delivered managers in ApplicationContext are publicly available
at any place in a plug-in and, according to presented design rules, most of
them are limited in their functionality for read only operations. Write func-
tionalities are delivered only to elements strictly requiring them according to
already presented architecture design rules.

3.2.4.7 UI

As application is designed to provide simple data processing functionality, it
must also provide intuitive GUI for users. For this reason different UI utili-
ties classes are provided, from basic docking windows, through their managers
(organizing windows in logical groups), dedicated console window (presented
when different forms of message logging were discussed), simple actions, but-
tons, tool bars with many other useful GUI functionalities standardizing UI
creation and development. We want to present here only one specific GUI
class - text editor, which is a core part of proposed reporting functionality,
as UI layer is being currently re-design to offer general purpose mechanism
for managing GUI, according to simple rules.

CoreTextEditWidget and reporting mechanism As MDE was firstly
design to support orthopaedics in browsing patients data, it was clear, that
reporting functionality would be very useful. It should allow medics to create
custom documents with fragments of viewed data and attached comments to
exchange knowledge with other colleagues or save their current work state
for further analysis. This is how a concept of standalone, rich text editor
have been developed. Figure 3.18 presents example editor window with a
short report based on viewed data.

Provided editor offers most of the functionality available in classical text
editing tools. Despite text, users can extend documents with screen-shots
from visualizers. Text can be easily formatted - size, colour, spacing, font,
style all customizable. Moreover, users can create hierarchies of paragraphs
with enumerations. For reports predefined document layouts can be used
in form of document templates. Users can also apply custom style sheets
to documents, automatically formatting text. Documents can be printed or
saved directly from editor. Two main export formats are supported - PDF or
ODF, as they provide good document portability and for ODF also further

61

Figure 3.18: Text editor and reporting

62

edition in other supporting it tools.

Reporting mechanism in MDE is very simple. User browsing the data in
visualizers create their screen-shots. They are captured in a dedicated area,
presenting thumbnails of so far saved visualizers scenes. User can manage
them if required - in particular remove them, when they are no more needed.
When user collects all required images for a new report, he simply chose
which report template to instantiate, or just creates an empty document.
Now he can load images directly to the report and extend it with additional
text. This utility allows simple work state description exchange between
users.

3.2.5 Code organization

Many different data types and functionalities were introduced so far. Last
step step to familiarize developers with provided solutions is to present, how
those concepts are organized across different libraries. Generally, four groups
of application logic can be determined:

� private core logic (implementation),

� public functionalities and API (abstract interfaces, utility classes and
general purpose functionalities),

� UI utilities,

� application views.

3.2.5.1 corelib

This dynamic library provides all public MDE API and some general purpose
functionalities. Interfaces for all enumerated logic elements are given. List
of all classes is presented in Table 3.5. Most of class names are consistent
with presented system architecture concepts.

63

Table 3.5: corelib exported classes

Classes and Interfaces Description
ObjectWrapper Unified data storage and management
Path, File system and
IPaths

Complete file system management with ap-
plication paths access

IApplication Interface for ApplicationContext providing
all publicly accessible logic elements

I{X}Manager with
IThreadPool

Group of interfaces for accessing different
managers and data processing logic

IJob, IThread and
IRunnable

Interfaces for processing logic elements

ILog Interface for message logging system
ITransaction Abstraction layer for different transactions

provided by managers
IParser Interface for delivered parsers
IDataSource Interface for delivered data sources
IService Interface for delivered services
IVisualizer Interface for delivered visualizers
Visualizer Wrapper for IVisualizer providing basic data

series functionality implementation
Other Interfaces for common functionality respon-

sible for example for data serialization, de-
scription and identification

3.2.5.2 coreui

This dynamic library contains dedicated, general purpose tools for MDE UI
creation. Specialized classes for managing user actions, data presentation
and organization of available operations in a simple, intuitive way are given.
Table 3.6 presents complete class list exported in coreui library. We are
skipping UI design description, as it is still developed. It is worth mentioning
that UI is based on the Qt framework as it offers multi-platform support,
also mobile devices with touch screens, which we consider to support in the
near future.

64

Table 3.6: coreui exported classes

Classes and Interfaces Description
CoreAction Helper class for delivering windows custom op-

erations to manage them in an uniform way,
usually represented by different buttons

CoreWidgetAction Similar to CoreAction, but custom widget can
be provided instead of action, text and icon

ICoreActionSection Additional interface for actions providing infor-
mation about actions organization within vari-
ous actions groups

CoreTitleBar Custom title-bar implementation with actions
on the left and the right side. It can be used
vertically and horizontally

CoreConsoleWidget Implementation for widget presenting logger
messages. Messages are styled depending on
their type

CoreTextEditWidget Widget allowing custom documents creation
and text editions. Supports styles and tem-
plates. Base for reporting functionality

CoreDockWidget Implementation for widget that user can grab
and position in application main window ac-
cording to his needs

CoreDockWidgetSet Widget for many CoreDockWidgets. Limits
their maximal number to maintain clear view

CoreDockWidgetManager Manager for groups of CoreDockWidgets. Cre-
ates new groups and stack them if current
groups do not have any free space left

CoreFlexiToolBar Implementation for flexible toolbar where ac-
tions can be grouped together. Groups orga-
nized in sections can be moved around toolbar

CoreFlexiToolBarSection Implementation for sections managing groups of
action in FlexiToolBar

CoreSplittableDockWidget Implementation for widget having capability to
split their content either by cloning or other spe-
cific behaviour

Continued on next page

65

Table 3.6 – Continued from previous page
Classes and Interfaces Description

CoreVisualizerWidget Dedicated class for managing Visualizer view.
Presents all Visualizer actions in attached
CoreTitleBar in an organized manner or in ap-
plication CoreFlexiToolBar, depending on us-
age context

CoreCompoundVisualizerWidget Widget managing many visualizers allowing to
switch between them and reloading their con-
text and actions

CoreMainWindow Base class for any new view handling processing
framework. Instance is initialized with AppIni-
tializer on start-up

3.2.5.3 corelib

This is a static library, where private implementation for most of the core
functionality can be found. All managers are instantiated from within this
library with complete core logic initialization. Processing framework is con-
trolled through dedicated Application class and its initializer with a template
method for starting different application views. Initial ApplicationContext is
created here at start-up. This static library is dedicated to be compiled with
different, higher level processing logic with dedicated views, presented in the
next section. For clients only AppInitializer class is exported to initialize data
processing framework. Starting logic with a new view is as simple as pre-
sented in the Listing 3.3, where CustomMainWindowClass represents class
derived from CoreMainWindow realizing custom UI. It has to be mentioned,
that this library must not be linked with any other libraries, except new views
(executables), as this would introduce ambiguities, which compiled-in set of
managers instances should be used.

Listing 3.3: Starting data processing framework with a dedicated UI logic
i n t main (i n t argc , char * argv [])
{

r e turn core : : AppInitializer : : runApp<CustomMainWindowClass>(argc , argv) ;
}

66

3.2.5.4 views

Based on core functionality different views can be proposed. They are dedi-
cated to particular user needs, having common, standardized low-level mod-
ules. This are main application executables being compiled with corelib li-
brary and initializing application with specific UI. Currently we are support-
ing two views of applications:

� MDE as our leading project for medicine,

� so called OldView for tests, where very little higher level logic is intro-
duced to verify core functionalities.

View logic must be developed by creating classes derived from CoreMain-
Window, which is a bridge between user and data processing logic. It intro-
duces graphical windows context (Qt) to data processing architecture.

3.3 Built-in plug-ins

Beside core logic presented so far, based on plug-in system, we are developing
built-in plug-ins, giving users some out-of-the-box additional functionality.
This section presents provided MDE plug-ins.

3.3.1 c3d

As already mentioned, some of our solutions are dedicated to motion data
analysis. One of the presented motion data formats was C3D and a special-
ized plug-in was created to support it. Plug-in provides various motion time
based data in DataChannel representation:

� EMG,

� GRF,

� markers positions,

� moments,

� forces,

� joint angles,

� powers,

67

Figure 3.19: Communication data source

� video time offsets according to other measurements time,

� ground reaction force plates positions,

� events.

Provided events describe motion in terms of gait analysis, where swing
and stance phases can be pointed out. Plug-in registers presented data types
and a dedicated parser for a C3D files.

3.3.2 communication

We have mentioned at the beginning of this chapter that despite provid-
ing MDE as a data processing software, we have also developed additional
technologies supporting motion data storage. Plug-in communication is ded-
icated to provide motion data from HMDB. It provides a dedicated data
source, which main role is to give user an easy access to the centralized
motion database. Communication data source allows browsing stored data
according to granted data privileges and download data of interest to user
computer. Later, downloaded files are passed through the core functionality
of data loading procedure with help of files and streams managers. Loaded
data are organized in a well defined hierarchy proposed by plug-in Subject,
presented later in this section. Communication hides completely network

68

Figure 3.20: Kinematic visualizer

communication layer and web services querying. Its base functionality for
motion database communication is delivered as an independent, standalone
library, giving users possibility to access motion data also from their own
applications. Despite provided library and a dedicated SSL certificate for
a server authentication, a simple registration procedure must be completed
to subscribe for a new account. It has to be mentioned, that stored data
have large volumes and their download may take longer time. Figure 3.19
presents Communication data source view in MDE. Provided data can be
vied at different perspectives, allowing to filter motion data according to
various criteria.

3.3.3 kinematic

Plug-in kinematic provides dedicated data types for representing motion in
form of a hierarchical skeleton model. For each joint motion data (rotation-
s/orientations) are represented in form of quaternions or Euler angles time
series encapsulated with DataChannel. Skeleton structure and data are sepa-
rated, allowing to supply different motions of the same person to its dedicated
skeleton model configuration. All mapping between joints data and skeletal
model is done automatically, based on joints description. Plug-in delivers
also a specialised visualizer for 3D scenes, which has the following features:

� complete 3D scene manipulation,

� skeleton model manipulation (rotation, translation, scaling),

69

� customizable skeleton ghost mode, presenting its previous, current and
future states in time domain,

� support for many skeletons on the scene (multiple data series),

� marking currently selected scene element (skeleton, markers, force plates),

� ground reaction force plates visualization,

� GRF vector visualization at position where feet touch the plates,

� joints and markers trajectories visualization,

� predefined skeleton perspectives (left, right, top, bottom, front, back),

� selective data presentation (chose which joints, segments and markers
to present),

� data time cropping (limiting viewed data to a particular time range).

Figure 3.20 presents example of kinematic visualizer.

3.3.4 chart

Chart plug-in provides a visualizer for scalar, time based data. It exports a
simple DataChannel interface for supported data. Beside simple data plot-
ting it has many additional features:

� managing visibility of data series,

� simple data statistics,

� value preview (displaying data value under current cursor position),

� value marker (displaying data value in particular position for chosen
data),

� vertical range marker (displaying time difference of two chosen data
samples),

� horizontal range marker (displaying value difference of two chosen data
samples),

� data manipulation (scaling, translating),

� data series legend,

70

Figure 3.21: Chart visualizer

� axis description,

� plot description (title with values units),

� gait analysis perspectives (for left and right leg),

� time events presentation (stance and swing phases),

� automatic plot fit to data range,

� automatic gait perspectives switching on data series time change.

It is planed to extend chart giving users access to chart scene to introduce
custom graphical chart elements and functionality. Figure 3.21 presents chart
visualizer example.

3.3.5 timeline

Analysis of time based data requires time synchronization, or more generally,
time domain to be normalized, as sometimes data with different frequencies
and time resolutions have to be processed. To ensure uniform time based
data handling in the time domain, plug-in timeline was developed. Most of
its features are time operations on delivered signals, where original data are
never modified explicitly. Dedicated abstraction layer was proposed, handling
all time manipulations. Timeline is implemented as a dedicated MDE service.
Time based data have to be wrapped with provided time channel interface.

71

Figure 3.22: Timeline playback controller

Timeline allows to organize time data in a hierarchical structure, combining
particular data in virtual time channels with two simple operations:

� add channel to hierarchy (introducing virtual channels in hierarchy
when required),

� remove channel from hierarchy (removing empty virtual channels in
hierarchy).

It allows to apply time modifications to each channel separately automat-
ically propagating their results through the channels hierarchy:

� offset - shifting channel in time,

� scale - changing channel time resolution,

� split - creates two separate virtual channels from one channel in a given
splitting point,

� merge - joins two separate virtual channels to a one channel.

Timeline offers possibility to present graphically time events for particular
channels. This is very usefully when user wants to analyse time data in
some specific time range defined with particular events. Timeline supports
data playback. It can be used as a base for visualizers to manage their
time aware data series in a synchronized manner. With such approach chart
plot, kinematic scene and video can be viewed in parallel for the same time.
Data can be played forward and backward. Dedicated slider with current
time input widget offer users manual time manipulation during playback
and when timeline is stopped. Quick jumps to the end and the beginning
of the managed time range are provided. Timeline automatically controls,
if current playback time is within data channels range (after applying all
external and local time modifications in hierarchy). If this time is in the
channel time range, then it is applied to the channel, else, when channel
data range has been reached, its time modification is not required any more,
until time returns to the covered range. Figure 3.22 presents timeline visual
playback controller and time manipulators.

72

Figure 3.23: Subject hierarchy and data grouping

3.3.6 subject

The idea of plug-in subject it to organized motion data in a scheme provided
by the HMDB. Data is grouped into motions and sessions for different actors
(subjects). This service provides a general functionality for other MDE mod-
ules, which may also deliver data in a similar scheme or can be reorganized
to fit it. Introduced grouping ensures, that all provided subjects, sessions
and motions have unique identifiers, which in general are independent from
identifiers delivered by the HMDB. Such data organization allows to present
data clearly to users. Also data processing should be easier, as data is al-
ready grouped and logically consistent. Plug-in subject provides therefore
new data types and service, handling (creating) particular instances of group
categories with proper identifiers. They are extensively used in MDE view for
data presentation, querying and filtering. This is presented in Figure 3.23,
where data are grouped according to subject hierarchy and data types.

3.3.7 video

Video plug-in functionality is self-explanatory. Simple DataChannel interface
with time indexed images is provided. It can be used to deliver video data to
application from various sources. A dedicated visualizer is provided to watch
loaded videos. This visualizer supports single data series per visualizer, as
managing more videos at once is not a standard behaviour. Additionally to
mentioned interface and visualizer itself, a dedicated parser is given, that can

73

Figure 3.24: Video visualizer

handle many different video formats efficiently. This parser behaves slightly
different then already presented parsers, as it extracts new data from attached
video, when data channel is queried for particular time values. Parser reads
from particular file a fixed size buffer, containing data for the given time
and several nearby frames. Next queries do not perform any I/O operations,
as long as queried time is still present in the current buffer. This optimizes
sequential video reading for playback purpose. This approach is implemented
to save memory, as video files usually use lots of storage space, depending on
their quality, duration, format and compression. Figure 3.24 presents video
visualizer.

3.3.8 python

To give users a flexible way of interacting with the application independently
from GUI, we decided to provide scripting languages binding. In the firs step
only simple python binding is offered. It is integrated with system console
allowing to pass custom scripts to python interpreter. Currently only plain
python environment is available, as plug-in is still developed and python
wrappers for core elements are being prepared. Plug-in system gives us an
easy way to provide also other scripting languages bindings when required,
but as this is an additional feature, not crucial for data processing, we decided
to reschedule it for a later time. Figure 3.25 presents python environment

74

Figure 3.25: Python environment

inside MDE.

3.4 Implementation and development

Now we shortly describe process of application development. We want to
show, how geographically spread team can efficiently communicate, plan fur-
ther work and verify project overall progress. We want to present developed
CI process, that supports application development. In this section also sev-
eral other tools are presented, that support us in code development. We start
with a short project description.

Project overview Major part of presented solutions were developed within
a period of two years - from 2010 till 2012. During this time different applica-
tion concepts were tried and developed in parallel. Their various parts were
combined together and reorganized to become a mature and reliable process-
ing logic presented in this thesis. MDE was developed by varying number of
developers, starting from 3, up to 7 in total. There has been always one team
leader, coordinating all other members actions and overall project progress.
As involved people presented different programming and engineering skills,
some steps had to be taken to ensure developed application quality. Also this
steps have evolve in time, bringing us to the present time, when we think the
right habits and methodology were achieved and introduced to the process
of software development.

75

Work scheduling and team cooperation It was decided to use the
Assembla (https://www.assembla.com) as an on-line project space, which
provides a great support in project leading and management. To provide
globally an information, how project is advancing, each developer is report-
ing his everyday work with short message, called stand-up, containing three
simple informations about:

� what he did particular day,

� what he plans to do next day,

� what are potential pitfalls, that might delay his work and may require
wider team discussion.

With such simple approach each team member is always aware of the
current work done by other colleagues. To organize and schedule applica-
tion development stages, each job is divided into smaller tasks, attached to
particular programmers. Tasks are called tickets, and responsible developers
are accepting next tickets, when they finish their current work. Any knowl-
edge exchange, connected with particular ticket is done in the tickets space,
providing comprehensive history of different concepts and topics, giving an
overview how particular module design has changed in time. Assembla of-
fers also a possibility to create project wiki, where fixed, general information
about the project and future plans can be shared in an organized manner.
Additionally, one of its services is hosting Source Version Control (SVN)
repositories for team projects. They are fully backed up in the cloud, pro-
viding secure, continuous access to the repository.

Cross-platform projects As project is written in C++, since the be-
ginning it was considered to be a cross-platform application. To handle
project solutions under different operating systems and Integrated Devel-
opment Environment (IDE)s, CMake (http://www.cmake.org) was chosen.
It provides simple scripting language to describe project configuration, de-
livering generators for most platforms and development environments, from
simple makefiles to complex Visual Studio or Eclipse solutions. As its basic
syntax requires creation of large, complex and in general similar projects de-
scriptions, we have developed custom framework to handle our projects on
CMake basis. This framework offers many advantages over built-in CMake
capabilities, providing methods for simple project configuration, external li-
braries handling and inter-project dependencies management. This allowed
us to minimize time spend on defining new, or extending existing projects

76

with CMake basic syntax. Additionally, our solution handles process of arte-
facts management and installers generation. It is worth mentioning, that this
framework is treated as a completely independent project with its own space
on the Assembla. It is a base project for all other projects. CMake provides
also testing tool, called CTest which we also use. Installers are handled by
an integrated with CMake module called CPack.

Developer tools For different platforms variety of developer tools and
compilers are available. For Linux platforms open-source Eclipse IDE (http:
//www.eclipse.org) is used with gcc and g++ compilers (http://gcc.gnu.
org). For debugging gdb (https://www.gnu.org/software/gdb) was cho-
sen with simple graphical layer. Under Windows operating system Microsoft
Visual Studio 2010 is used. Windows platform is the main development
platform. Programming under Linux is done, when some tests fail for this
platform or application is crashing in this environment. Such approach was
dictated by simpler and more efficient development tools for Windows. To
increase developers productivity and code quality plug-in for VisualStudio
is used - VisualXAssist (http://www.wholetomato.com) - which speeds up
overall code development, especially code browsing and re-factorization.

External libraries To prevent developing common functionalities from a
scratch for different platforms and maintaining them to ensure their stability
and functionality, it was decided to use well tested and commonly used exter-
nal libraries and frameworks. As project covers wide range of programming
problems, such approach allowed us to build MDE core as an integration
and composition of already existing solutions. This is how such relatively
small team was able to develop so complex product. When the project
started, C++0x and C++11 standards were not finished and available in
modern compilers. Boost (http://www.boost.org) library was used to pro-
vide missing functionality. Firstly, it was only memory management with
smart pointers, but currently whole file system and unique elements iden-
tifiers are based on its components. Next important decision to make was
choice of GUI framework. As it had to be a cross-platform solution written
in C++, the Qt tool-kit (http://qt-project.org, [59, 8]) was chosen, as
the most user friendly and mature framework. Today we know it was a good
decision as new versions of this set of libraries extend supported platforms
on mobile devices, which we start to consider as a next target for our upcom-
ing products and solutions. Last such a big choice has been done choosing
OpenSceneGraph (http://www.openscenegraph.org) library for managing
3D scenes. It is rapidly developing, but stable, general purpose 3D engine,

77

supporting whole rendering process with many optimizations and support
for common scene operations and modern hardware. Moreover, it is very in-
tuitive even for users not keen in computer graphics, with great community,
offering additional support, when needed. Other libraries worth to mention
here are:

� FFmpeg for video decoding (http://www.ffmpeg.org),

� TinyXML for xml data processing (http://www.grinninglizard.com/
tinyxml2/index.html),

� log4cxx as logging framework base (http://logging.apache.org/log4cxx),

� cUrl for handling network data transfers (http://curl.haxx.se/),

� OpenSSL for secure connections handling (http://www.openssl.org),

� Sqlite with SqlCipher as application one-file local database (http://
www.sqlite.org, http://sqlcipher.net),

� Qwt as base for chart functionality (http://qwt.sourceforge.net),

� B-tk as parser for most motion data formats (http://code.google.
com/p/b-tk),

� cppunit as a unit testing framework (http://sourceforge.net/projects/
cppunit).

Continuous integration Providing such a large number of libraries for
different platforms it was difficult since the beginning. As their number was
growing in time because of different external dependencies like:

� zlib (http://www.zlib.net),

� jpeglib (http://www.infai.org/jpeg),

� libTIFF (http://www.libtiff.org),

� giflib (http://giflib.sourceforge.net)

and many others, it was clear to us, that some automated system is re-
quired to handle their build process. From that point of time it was quite a
long way to reach the present time, when we have developed mature, fully
automated system for obtaining external libraries, building them for differ-
ent platforms and delivering build artefacts to developers. Additionally, it

78

provides functionality for managing also our projects, making their periodic
builds with respect to the delivered external libraries. Any failures in ex-
ternal builds or custom projects are immediately reported to developers, so
potential problems are caught and resolved as soon as possible. Having such
a great tool, it was just matter of time to extend it with different code quality
measure features, reporting quantitative, well defined code status of devel-
oped projects, allowing to keep the code clean, safe and efficient. It is also
used for scheduling re-factoring tasks for too complex modules, which could
cause many problems in the future with their maintenance and extending
their functionality. In the end, whole procedure of projects testing is han-
dled, which starts generation of product installers, if all test have passed.
Any testing failures are reported immediately to developers. For all those
functionalities historical progress can be traced to detect bad trends in the
software quality. Presented functionality is covered by two tools:

� Hudson (main CI tool, external libraries and custom project builds,
testing, installers and documentation generation, http://hudson-ci.
org),

� Sonar (code quality measures, http://www.sonarqube.org).

Figure 3.26 presents general schema for CI. Figure 3.27 shows how compli-
cated dependencies can occur between different external libraries and custom
projects with intermediate build stages.

Development standards As modern functionalities becomes more and
more complex, despite a good architecture design is it important to maintain
high programming standards. In our development work we use different kind
of design patterns for well known and defined programming problems, start-
ing with Private Implementation (PIMPL) idiom, going through Resources
Acquisition Is Initialization (RAII) pattern, ending on visitor patters and
advanced template meta-programming. Combination of all those techniques
allowed us to provide high quality code, based on best programming practices
[61, 60], ensuring us in the right development direction. They also allow to
maintain application great flexibility for new features, keeping its high perfor-
mance. Such approach limits debugging process time, decomposing problems
to individual behaviours, making bugs easier to trace and fix. Despite usage
of different design patterns we have introduced internal coding standards.
They cover detailed code comments, dedicated mainly for public headers.
Files are commented in an hierarchical order - firstly general overview of
file content is given, with optional examples and explanations for more com-
plex algorithms. They might contain author information and date, when

79

Figure 3.26: CI process overview

80

Figure 3.27: External libraries hierarchy with custom projects dependencies
81

particular file was created and for what purpose. Later, particular classes,
methods, free functions and new data types are defined and described. Doxy-
gen (http://www.stack.nl/~dimitri/doxygen) style is used for comments
with Doxygen tool itself for generating technical documentation based on
developed code. Documentation generation is automated as a part of CI
process.

3.5 Future work

There are two areas, where we have scheduled new features and additional
work. First one covers presented CI process. Second one is connected explic-
itly with new application functionalities and improvements.

CI For continuous integration procedure we want to introduce a bug track-
ing tool. We believe, that this is the last element, missing in developed
automated procedures of building, testing and developing custom projects.
Our goal is to expand number of users working with MDE and testing it,
giving them tool to report application errors. Additionally, we are thinking
about automated reporting module for MDE, which on different application
errors would try to send application log for verification. Such notifications
could be later scheduled with other development work, allowing to plan bet-
ter new activities.

Moreover, we still see several improvements for the current CI process.
Now separate servers are maintained for Linux and Windows platforms,
building almost identical set of external libraries. We want to join both
those servers into one general solution to schedule various CI procedure stages
work to dedicated machines in a uniform manner. Currently each of those
servers updates external libraries source code independently. This have lead
us several times to a situation, where on one platform libraries with the same
version number were build from different code revisions, causing application
to crash on the other platform. As we are now aware of this dangerous sit-
uation, we can quickly solve it by forcing particular library refresh on both
platforms manually. Our goal is to have one dedicated machine for updating
code and scheduling builds on other machines based on the same, common
source code.

MDE For MDE several improvements were already mentioned. This are in
the first step scripting languages and utilities for general UI management and
design for data processing. New functionality for chart plug-in is planned,

82

allowing users access plotting scene and extend charts general capabilities.
Similar operation is thought for kinematic and video visualizers, where access
to the 3D scene and current video frame is considered.

The greatest changes are planned for plug-in communication. We want
to offer additional services supporting team work and knowledge exchange.
As we have gained lot of experience with providing motion data through a
dedicated HMDB, we want to extend its functionality to allow users to store
their processing results specific data in centralized database. This would be
done through a dedicated user space, where users might upload their work
results. Later on, they could share those results with other users, by explic-
itly sharing particular resources to defined users and groups of users. Some
data might be marked to be visible to all system users, for example to give
a short overview of research work they do. This would allow other users to
contact them, if they are also interested in those particular topics. Despite
knowledge exchange we would like to introduce tools for group management
which will support organizing users in particular teams. Most of our efforts
would be focused on this functionality in nearby future, as we claim that data
processing is generally a team work task and efficient work results sharing
and knowledge exchange have the highest priority.

For JobManager it is considered to implement more advanced Job schedul-
ing system, where synchronization delays for processing threads would be lim-
ited by independent work queues and work stealing approach, as presented
in [9, 1, 23, 15]. It has been proven that this solution improves calculations
performance, as logically connected jobs can better utilize CPU cache, when
similar data are processed. It would also introduce an order, where it is
explicitly known, which thread is processing particular Job, allowing more
flexible jobs management.

As data management was standardized with OWs and dedicated data
managers, a functionality similar to garbage collection can be proposed,
based on OW lazy initialization features. Memory data manager can be
extended to trace the time of last data access during various data queries.
Based on such information it is possible to release resources not used for a
longer time, when there exist a dedicated initializer object, for example for
data extracted from files and streams with parser specific initializers. Such
data would be release only if no more references to it are present in applica-
tion (investigating reference count for smart pointers). This would allow to
save application memory.

83

Chapter 4

Data flow processing and visual
programming

4.1 Introduction to data flow processing

We want to describe data processing as a concept of data flow, which we find
to be very intuitive. It allowed us to develop very simple, yet efficient tool for
designing and realizing general purpose data processing. Firstly, we introduce
in details data flow idea with all logic elements it covers. Additionally, data
flow independent functionality layers are pointed out. We discuss required
operations, that need to be provided to execute so defined processing. Later,
we present developed library for general purpose data processing based on
data flow concept. We give examples of abstract interfaces, that need to be
provided to use developed data processing. In the end, we describe, how
this general purpose processing library is wrapped to deliver complete data
processing functionality for MDE, based on provided core functionalities.

4.1.1 Data flow graph concept

Generally speaking, data flow structure might be compared to a graph. The
following logical mapping between graph elements and data processing can
be given:

� vertexes - represent operations performed on provided data,

� edges - describe data propagation structure between various operations,
define the direction of data flow.

Such description must be however extended, as it is not accurate enough
for data processing. In data flow nomenclature vertexes are called nodes and

84

Figure 4.1: Example data flow structure for a given graph

edges are called connections. In contradiction to graphs, where vertexes are
explicitly connected with each other, in data flow logic additional elements
are introduced - pins. They are integral part of nodes, allowing nodes to
connect to each other. Moreover, three types of nodes can be pointed out,
according to data processing logic they provide:

� source nodes - providing new data for processing,

� processing nodes - working on delivered data and providing processing
results,

� sink nodes - consuming processed results for further usage, ending data
propagation.

Pins are also divided in two categories, depending on their role in nodes:

� input pins - delivering data to node,

� output pins - propagate processing results to connected nodes.

Figure 4.1 presents comparison of a simple graph and corresponding ex-
ample of data flow model.

In graphs edges might be either one direction or bi-directional links be-
tween vertexes. In data flow connections are represented as strongly ordered
pairs of pins:

� source pin - output pin,

� destination pin - input pin.

85

where presented order defines connection direction, consistent with data flow
nature - from sources to sinks. Such approach forces basic rule for connecting
pins - only pins of different type can be connected, as linking two input pins
or two output pins makes no sense, because they do not provided comple-
mentary processing functionality.

Thinking about data processing with data flow, two independent func-
tionality layers can be pointed out:

� designing data flow processing graph,

� executing data flow processing.

Building processing graph defines, how data is going to be processed
in terms of sequence of executed operations on the data. It can be a simple
linear pipeline or a complex graph with recursions. Executing data processing
defines, how this procedure is going to be realized in terms of:

� data passing between particular operations,

� when new data is delivered for further processing,

� when whole processing should be finished.

4.1.2 Data flow model design

For building processing graph a general purpose functionality for model cre-
ation can be given. It is responsible for managing nodes and connections.
Model manages well defined nodes instances and connections between them,
based on nodes pin configurations. It might additionally introduce some con-
nectivity rules, limiting possible connections combinations to a set of valid
connections in term of a dedicated problem. Model provides functionality for
querying about managed nodes and connections, allowing to traverse model
structure from particular node or connection in both directions, according to
fixed order of pins, handled by connections. Now particular model elements,
with model itself, are presented in details, to explain how graph structure
management can be realized.

4.1.2.1 Nodes

Nodes provide simple functionality for querying the attached pins configura-
tion:

� number of input/output pins,

86

� input/output pin at the given position (unique internal index).

Only processing nodes allow to query for both pin types, other nodes
offer querying for one particular pin type. What is very important, nodes
after creation must not change their pins characteristics. Without such rule
maintaining model consistent would be hard and complicated logic will have
to be developed to handle such functionality. Additionally, such behaviour
does not seems to be natural for graph elements. Node provides additionally
information about number of connected pins and if it is connected at all. It
can be queried about its type for easier management in the model.

4.1.2.2 Pins

Pins provide functionality for checking their connectivity status:

� if they are connected,

� for how many connections they are used,

� connection for given internal index (position).

This operations are sufficient for node to define its own connectivity sta-
tus. Each pin is aware of node, to which it is attached, making it possible to
follow data flow graph structure from input pin, through node to output pins
with well defined connection direction. Additionally, information about pin
type is available, to make connecting procedure easier. This functionality is
however private and reserved for model only, as it must have an opportunity
to verify particular connections with provided connectivity rules, disallowing
connections violating those rules.

4.1.2.3 Connections

Connection allows to query for linked pins: source pin and destination pin.
It can not be reconnected to another output or input pin explicitly - firstly
old connection must be removed and new one must be created to verify its
correctness. Based on those simple operations reconnection logic might be
easily developed, if necessary.

4.1.2.4 Model

Model manages nodes and connections. Its main operations are:

� node addition,

87

� node removal,

� connecting nodes,

� disconnecting nodes.

Model provides also its state description in form of managed nodes,
grouped according their types, with the list of current connections. It must
guarantee that node management operations are consistent, that is node re-
moval will also remove all node connections. Additionally, adding new node
with unknown connections is not allowed, as model did not verified those
connections according to custom connectivity rules.

Different models can introduce new rules for connections, for example
allowing or disallowing recursion in their structure, depending on a logical
structure they are going to describe and problem which would be solved. It
can be noticed, that introduction of pins to graph structure maintained graph
functionality, making its representation more fine grained and well suited to
describe data processing.

4.1.3 Data flow model processing extensions

Designing data flow model for processing requires some extensions to pins
and model concepts. Model elements must handle minimal set of operations
allowing to:

� deliver new data for processing,

� process data,

� store processed data,

� pass data between nodes.

To describe them clearly, we want to introduce an analogy for data flow
processing to a procedural programming, where well defined paths of ex-
ecution are given. They cover not only order of execution for particular
operations, but also operations signatures, defining their input and output
data. Keeping that in mind data flow processing can be defined as a sequence
of function calls, where some of them:

� do not have any input data and provide output data,

� require specific input data and providing output data,

88

� require input data, but do not produce any output data.

This analogy gives a clear mapping between data flow nodes and func-
tion signatures. It is consistent with nodes types and their responsibilities.
We discuss now extensions to pin elements, allowing data flow structure to
describe function calling mechanism with model additional verification rules
for data processing realization.

4.1.3.1 Data flow pins

According to introduced procedural programming analogy, pins can now be
compared to function parameters and their returned values. Such interpre-
tations makes it also clearer, why nodes must not change their pins config-
uration after creation, as most of programming languages do not allow to
change function signatures after compilation. For data processing purpose
pins are extended with additional properties:

� input pins can be marked as required or optional,

� output pins might depend on input pins.

First property allows nodes to represent functions with default param-
eters, where not all input parameters have to be provided as their default
values will be used instead. Second property allows to describe internal data
transition inside of the function, defining what kind of outputs can be ex-
pected, when particular inputs are provided. Both those attributes are used
by a model to verify model correctness.

4.1.3.2 Data flow model verification

Having extended pins properties, model can verify those additional connec-
tivity rules. First of all, in a valid data flow all required pins must be con-
nected. Secondly, when particular output pin is connected and it depends on
some input pins, all those input pins must also be connected. This ensures
that described data processing pipeline is correct in terms of functions sig-
natures, their internal data transitions and call paths. Additionally, for data
flow model input pins are limited to be a part of a single connection, while
output pins can create any number of connections. This might be compared
to calling a function, when a fixed, well defined argument must be provided
as an input, while resulting data might be used or copied by any number of
functions. In the end, all model nodes with input pins must have at leas one
input pin connected. Also source nodes must have connected at least one
output pin. Otherwise, there could be some free functions in the pipeline,

89

that would never execute their functionality or executing it would not affect
overall data processing, as either there are no inputs for them, or produced
data would not have any recipients. Model keeps structure clean and simple,
forbidding existence of unused and inactive nodes.

4.1.4 Data flow processing logic

Having properly constructed model describing data processing steps, under-
stood as function call paths, data flow processing logic can be elaborated.
Before proposing custom approach to processing logic, several important
questions have to be answered about its requirements:

� what processing scheme should be used,

� which data propagation model to apply,

� what are the rules for loading new data to data flow,

� how data is going to be exchanged between nodes,

� when data flow finishes data processing.

Each of this points in details defines data processing realization for pro-
vided data flow model. They all explicitly affect data flow efficiency and im-
plementation, therefore we want to give their overview in next paragraphs,
before we present our solution for this task.

4.1.4.1 Processing scheme

Two processing schemes can be pointed out, according to parallelism of nodes
work:

� sequential,

� parallel.

Sequential data processing is simpler in implementation. Nodes process
the data one by one in the well defined order, starting from sources, going
forward in the model structure as long as required data are available. When
there are missing some data, the processing returns to previous nodes on
the given path, continuing from a place, where data is available and have
not been processed yet. This however limits drastically utilization of modern
hardware computational power, where many tasks can be processed in paral-
lel. To ensure efficient processing power utilization, parallel data processing

90

approach should be chosen. Different nodes can work in parallel, when they
have all necessary data. Their ancestor nodes in the model obtain required
data faster for processing, making overall data processing more efficient. This
solution however is harder to implement, as complex processing logic requires
careful synchronization between particular data processing stages, avoiding
potential dead-locks between different tasks in the processing logic.

4.1.4.2 Data propagation

Two basic operations, despite data processing itself, in the data flow can be
pointed out:

� load - delivers new data to node for processing,

� propagate - processed data are delivered to ancestor nodes.

Those features describe, how processing logic is scheduling execution of
ancestor nodes tasks in the model. Independently from parallel scheme, two
approaches are possible:

� prefer new data to be loaded to model and then process data, if model
nodes are maximally loaded with data,

� prefer data to be processed as far as possible in model, before loading
new data.

In the first approach nodes closer to data sources can be preferred in the
first place to process the data and then processing logic approaches forward
to the ancestor nodes, so they are always guaranteed that all data is already
present for processing. Such approach tries to load new data to the model
as soon as possible, keeping data flow pipeline maximally loaded with data
to process. Second approach is based on opposite behaviour - going as far
forward with data processing in the model as it is possible and returning
back to nodes at previous levels, only if there are not enough data for further
processing at current level. This makes loading of new data delayed until is
is required to continue further processing because lack of data. With this
approach potential results should be obtained earlier.

4.1.4.3 Loading new data to model

Next question to be answered is, how long data is delivered to the model with
the source nodes. It can happen that sources may provide different number
of data for processing. Two solutions can be chosen:

91

� as long as any source can provide new data,

� as long as all sources can provide new data.

First approach tries to process data in the model as long as any of the
sources can deliver new data for processing. It gives a chance for more data
to be processed, although at some processing stage it might occur, that fur-
ther processing is impossible. It can happen because of lack of required data
being delivered by a processing branch starting with other source, that could
not provide more data. Second approach finishes data loading, when any
of sources can not provide more data for processing. This also introduces
synchronization among data sources to verify at each data load stage, that
sources still can provide more data. In this approach only complete input
data sets are introduced for further processing, allowing to process the data
through the whole data flow model. Second approach seems to be more rea-
sonable and natural to choose, but there might be some specific applications,
when first approach would fit better.

This property is also important as it explicitly affects stopping criteria
for data flow, when decision is made, if data processing should be finished.
This is elaborated in one of the following paragraphs.

4.1.4.4 Data exchange between nodes

It has to be defined very clearly, how nodes exchange their input and output
data. Strict rules for pins, connections and nodes must be given. Data
passing is a very important stage of data processing pipeline, as it affects
explicitly efficiency of data processing. Data passing logic must fit previous
decisions about processing schema and data propagation. Different dedicated
data passing functionalities must be provided for data flow elements, as they
represent different levels of a model (model-node-pin-connection hierarchy).
Exact moments of data copying and processing must be defined. Objects
initializing data exchange must be pointed out. Set of requirements and
conditions, allowing data exchange, must be specified. Data consumption
and data sharing create unique communication protocol between nodes.

4.1.4.5 Finishing data processing

Previously made decisions define, how processing logic should monitor its
execution to finish correctly data flow processing. There must be defined a
set of rules that will verify if:

� model is still processing data,

92

� there are still data in the model, but their further processing is impos-
sible,

� all data have been processed.

This topic is quite simple in case of the sequential execution, as there
is a well defined path for processing logic, which itself introduces some stop
criteria, based on chosen data loading scheme. This is however harder to
provide and monitor data flow finish for parallel execution, when different
tasks are processing data independently, with others waiting for their result-
ing data. Simple check, if thread is still working might be not enough, as it
may sleep on some synchronization object, waiting for new data to come or to
be consumed. A dedicated mechanism, monitoring amount of data delivered
to the model and data that have left model, must be given, to provide reli-
able information about execution status of parallel data flow and its correct
finalization.

4.2 General purpose data flow processing li-
brary

Now we present our solution to general purpose data processing based on data
flow concept. We present simple interfaces as a ground for easily customizable
data processing framework, presented in the previous sections. Presented
logic is based on two layer approach, where first layer defines processing
model and second one runs data processing based on the model structure.

4.2.1 Processing logic characteristic

We provide processing logic supporting utilization of all available computa-
tional resources by implementing parallel processing schema for nodes tasks.
Sources are delivering new data to the model according to the rule all-or-
none, stopping new data to be load as soon as one of the sources can not
provide more data. Model prefers always to load new data first, before pass-
ing processed data forward for further processing. This approach allows to
keep model maximally loaded with data to utilize effectively all available
computational power. We do not force any mechanism for data passing, as
it is specific for the problem that is solved with the data flow processing.
Users are free to implement specialized and optimized data passing function-
alities fitting their internal requirements, as long they follow general data
flow concept and rules. Defining data passing mechanism requires from users

93

Listing 4.1: Input pin interface for data processing

// ! Input pin i n t e r f a c e
c l a s s IDFInput
{
pub l i c :

// ! \\param pin Output pin with provided data to copy
v i r t u a l void copyData (const IDFOutput * pin) = 0 ;

} ;

to implement methods for binding particular data to input and output pins,
and later to unpack this data from pins for processing. All other processing
logic, with threading and synchronization is already provided, therefore users
do not need to implement and control them manually. Data flow automat-
ically handles proper processing finish, observing current state of data flow
execution. Next sections present very simple interfaces that particular data
flow model elements must provide to process the data. Additionally, logic of
each element is described in details with attached state charts. We do not
provide any internal implementation details as this is not relevant for getting
familiar how to use so proposed data flow library. With presented detailed
descriptions it is possible to develop custom data flow processing library.

4.2.2 Public interfaces

Now we present interfaces that have to be provided additionally to particular
data flow elements functionalities to allow data processing.

4.2.2.1 Pins

We decided that input pins are responsible for copying data from output
pins. Listing 4.1 presents input pin interface that has to be implemented.
With such approach users can customize mechanism of data passing between
nodes, making it optimized to their requirements and data representation.
This solution does not force any data types nor mechanisms used for data
exchange.

4.2.2.2 Nodes

As different nodes provide various data processing roles, three interfaces are
proposed, each for particular node type, equivalent to its functionality. List-
ing 4.2, Listing 4.3 and Listing 4.4 present required nodes interfaces. This

94

Listing 4.2: Data source node interface

// ! Data source i n t e r f a c e
c l a s s IDFSource
{
pub l i c :

// ! \ r e turn True i f source has no more data to prov ide
v i r t u a l const bool empty () const = 0 ;
// ! Method prov id ing new data f o r p ro c e s s i ng by s e t t i n g up output p ins
v i r t u a l void produce () = 0 ;

} ;

Listing 4.3: Data processing node interface

// ! Data p ro c e s s i ng node i n t e r f a c e
c l a s s IDFProcessor
{
pub l i c :

// ! Method p ro c e s s i ng data from input p ins and s e t t i n g up output p ins ←↩
with proce s sed data

v i r t u a l void process () = 0 ;
} ;

Listing 4.4: Data sink node interface

// ! Data s ink node i n t e r f a c e
c l a s s IDFSink
{
pub l i c :

// ! Method p ro c e s s i ng data a v a i l a b l e in input p ins (po s s i b l y data ←↩
s e r i a l i z a t i o n)

v i r t u a l void consume () = 0 ;
} ;

95

Listing 4.5: Input pin wrapper internal data copy
// get wrapped input pin from the model
auto wrappedPin = getWrappedPin () ;
// ex t r a c t attached connect ion (only one i s ava i ab l e accord ing to data ←↩

f l ow model c on s t r a i n t s f o r input p ins)
auto connection = wrappedPin−>getConnection () ;
// c a l l copying f u n c t i o n a l i t y d e l i v e r e d by c l i e n t s f o r attached output ←↩

pin , be ing data source now
wrappedPin−>copyData (connection−>getSourcePin ()) ;

high abstraction level allows to implement various mechanisms for data load-
ing, processing and storing. Users are not bound to any specific data types
and can freely customize this behaviour to the nature of the problem they
are processing. Presented methods must however ensure proper data up-
date in output pins, so that further data copying to input pins can be done
successfully. Similarly, before data processing, users must unpack data from
attached input pins. This can be easily implemented with various techniques,
as data flow node offers required methods for querying about attached pins.

4.2.2.3 Model

As various data types might be processed with this universal data processing
framework, it might be required to provide additional connectivity rules for
a model, to verify particular data types compatibility with provided opera-
tions. It should ensure model logical consistency, because some general data
operations might not be applicable to particular data types (i.e. squaring
image instead of scalar values). This can be achieved by extending basic
model functionality responsible for connections verification.

4.2.3 Processing logic details

Processing logic is based on dedicated wrappers for data flow elements. Based
on model structure and nodes configurations, complete wrapped model clone
is created with injected processing logic. Now we present wrapper objects
for the model elements.

4.2.3.1 Pins wrappers

Input pin wrapper Input pin wrapper is responsible for delivering new
data to the node from attached output pin. It starts data processing in its
initial state - waiting for new data to be delivered. When output pin wrapper

96

Figure 4.2: Input pin wrapper state chart

notifies input pin wrapper about availability of new data, input pin wrapper
informs attached node, that it is ready to deliver new data. Next, input
pin wrapper waits until node consumes provided data for further processing.
This operation internally extracts wrapped input pin from the model with
attached connection and linked output pin, calling public API, responsible
for user defined data copying operation. Listing 4.5 presents pseudo code
for this operation. When data is copied, input pin wrapper informs output
pin wrapper that data is already consumed and starts waiting for new data.
This allows predecessor nodes to deliver new data for processing, while cur-
rent ones are being processed. Figure 4.2 presents state chart for input pin
wrapper.

Output pin wrapper Output pin wrapper is responsible for propagating
new or processed data for further processing in data flow. Its initial state is
waiting for new data to propagate. When node delivers new data, it is his
responsibility to set them to output pins. When data is already available to
output pins, output pin wrappers notify all connected input pin wrappers
about data availability. This is different than for input pin wrappers, as they
are limited to a single connection and output pins can deliver new data to

97

Figure 4.3: Output pin wrapper state chart

potentially unlimited number of input pins at once. This allows to optimize
data sharing procedure (i.e. by using smart pointers instead of real data
values copying) and to observe data changes at some intermediate steps of
data processing. When all input pin wrappers are informed, output pin
wrapper waits for all of them to consume the provided data. If all connected
input pins have copied the data, output wrapper pin notifies node, that it
is ready to provide new data. Next it starts waiting for new data from the
node to propagate them and repeat the cycle. Figure 4.3 presents state chart
for output pin wrapper.

4.2.3.2 Nodes wrappers

Source node wrapper Source node wrapper states are defined with a pre-
vious decisions about the way we load new data to the model. Such approach
enforces source nodes to work synchronously, sharing information about their
available data to deliver. Assuming all source nodes in the model can pro-
vide data at the beginning of data flow run, their corresponding wrappers
start with producing new data. At this stage new data are delivered to the
model and they have to be set up to output pins, so they can be copied
further for processing. Next, each source node wrapper is waiting until all

98

Figure 4.4: Source node wrapper state chart

99

Figure 4.5: Processing node state chart

attached output pin wrappers notify, that the data they have been providing
was successfully consumed. Data source wrapper starts to wait for other data
sources to finish propagation of their provided data. If all sources wrappers
reach this stage, they check if all can provide new data. If yes, they move
to their initial state, producing new data. Otherwise, process of loading new
data to data flow is stopped and processing logic starts to monitor for data
flow to finish data processing. Figure 4.4 presents state chart for source node
wrapper.

Processing node wrapper Processor node wrapper starts waiting for
inputs to be ready to provide new data for processing. When all connected
input pins notify about available data, processing node wrapper checks, if
previously produced data have been already consumed. Processing node
can not provide any new data, if previous one have not been copied by the
ancestor nodes. Wrapper waits until all connected output pins notify, that

100

Figure 4.6: Sink node wrapper state chart

provided data have been properly consumed by all attached nodes. During
the first run of processor node wrapper, output pins are already in their initial
state, waiting for new data to propagate, therefore this step is immediately
skipped forward and data processing can be done. In the next runs however,
it might force processor node to wait with data processing, despite available
input data, until output data is consumed. Figure 4.5 presents state chart
for processing node wrapper.

Sink node wrapper Sink functionality is the simplest among all nodes.
Sink node wrapper starts in an initial state, waiting for all input pins to be
ready to provide new data for consuming. When all input pins notify that
data is available, sink node process provided data and returns to its initial
state, once again waiting for input data. Figure 4.6 presents state chart for
sink node wrapper.

4.2.4 Executing processing logic

Executing defined processing logic is done through a dedicated ModelRunner
class. It delivers methods for starting, stopping, pausing and resuming data
flow processing. Additionally, it allows joining data processing, which stops
current tread execution until data flow processing is finished. ModelRunner
internally verifies data flow model structure according to its basic constrains
for nodes and connections. If model is considered to be correct it is encap-
sulated with described wrappers to create its cloned version with embedded
processing logic. Node wrappers offer functionalities to be run in separate
threads. To start a model execution, it is required to deliver threads fac-
tory object. With its help ModelRunner tries to create required number of
threads, one per node. Such simple approach might seem to be naive, as al-

101

ready explained in Section 3.2.3.4, because too many threads can slow down
processing instead of accelerating it. As it will be shown later, this approach
is completely acceptable, as it offers to manage processing power in an op-
timal way with just a small implementation improvements to processing logic.

When required number of threads has been obtained, nodes process-
ing logic is launched within particular threads and data processing starts.
Processing logic tracks continuously for data processing to finish, stopping
threads execution and releasing their resources when suitable. Also possible
failures in user implementation cause data flow to stop its execution and re-
port errors. Threads joining data flow processing are waken up on data flow
finish, to continue their execution. User can pause data flow execution, which
would pause individual nodes processing logic execution after current data
processing stage. User might resume processing, which will allow threads
to continue executing their processing logic. Stopping data flow cause im-
mediate stop of all processing threads and finish data flow in an undefined
state.

4.3 Data flow plug-ins for MDE

Now we present how data flow processing is provided in MDE. We have
developed two dedicated plug-ins. First of them provides basic data flow el-
ements, model and processing logic in form of a service for MDE (vdf). Sec-
ond one (dfElements) provides helper classes for universal sinks, sources and
pins based on templates, which automatically translate information about
accepted and provided data types to OW mechanism, description accepted
by the MDE logic. Similarly to visualizers or parsers, data flow elements
prototypes are registered within provided service to give centralized access
to all processing elements. We present how particular processing logic has
been implemented for delivered data flow model and runner.

4.3.1 Data exchange mechanism

To pass data efficiently MDE provides data representation in form of OWs.
It is used in the processing logic to copy smart pointers to OWs encapsulating
required data, instead of copying data itself. All output data is propagated
in unmodifiable form (const modifier), therefore they have to be cloned ex-
plicitly, when particular functionality requires to modify them locally. Any
processed data must be wrapped with OWs before propagation. Data pro-
cessing requires unpacking encapsulated data from OWs. This mechanism

102

is also used for verification if particular pins can be connected, as each pin
is now represented by one particular data type, described with OW. All
processed types must be registered in application, so it is possible to verify
different data types compatibility. When such mechanism is not sufficient for
converting data from one representation to another, users can still provide
custom processing nodes realizing required conversions, for example splitting
3D vector data to three independent scalar channels.

4.3.2 Optimal computational resources utilization

General purpose data flow processing library uses naive approach in threads
utilization, allowing each thread to process particular node tasks and logic
functionality. To address this problem and ensuring optimal processing re-
sources utilization provided in MDE threading and job processing function-
alities are used. Application thread pool is wrapped to behave as a threads
factory for creating threads responsible for data flow processing logic execu-
tion. Instead of using all of created threads to process data flow operations,
each node processing task is wrapped to a Job object and passed to JobMan-
ager for processing. Attached data flow processing logic is then suspended
in an assigned to node processing logic thread, until particular Job is not fin-
ished. When Job is processed, attached data flow processing logic is resumed
and continues executing data flow logic. With such simple improvement we
have ensured, that data flow is utilizing optimally processing power and it
process data in an standardized manner, along with other data processing
tasks in MDE. One drawback of this approach is that creating complex data
flows might require setting high value for maximal number of threads pro-
vided with ThreadPool, but as those threads are going to sleep most of the
time it should not affect overall application performance.

4.3.3 Visual programming

Visual programming concept was proposed to simplify process of software de-
velopment by manipulating graphically logic blocks, instead of writing their
equivalent code. It was thought to speed up overall software creation pro-
cess, but as it occur, changing programming languages and rising software
complexity caused this idea to be abandoned. This approach has however
been applied with success for other areas. Tools like:

� LabView (dedicated to scientist and engineers, http://poland.ni.
com/labview),

� Blender (free image and video processing http://www.blender.org),

103

� Lego NXT-G (tools for programming autonomous robots, http://
mindstorms.lego.com/en-us/default.aspx)

use extensively visual programming. This approach allows their users
to create easily complex processing pipelines according to predefined model
rules. With help of visual environments users not keen in programming can
create dynamically specialized processing graphs realizing particular func-
tionality (video rendering, robot steering) based on delivered solutions. This
concept provides clear overview of processing schema, giving a good feeling,
how data would be processed in the next steps. Figure 4.7 presents examples
of different visual programming environments.

We decide to provide users with similar visual programming environment,
despite processing model and logic, to simplify and speed up process of data
flow creation. It allows users to dynamically create new data flows without
need of writing new fragments of code and compilation procedure, based on
delivered nodes functionality. They can now define and launch data flows
without any knowledge about programming. Visual data flow environment
supports user in creating data flow by presenting graphically available nodes.
It guides users, how particular nodes can be connected according to basic
model rules and data types compatibility. Required and dependent pins are
marked graphically with different styles to point out user those places in the
model, where connections are still required to make model complete. In the
end any model verification failures are also presented to the user, with de-
tailed description of elements and actions leading to fix those problems.

Visual programming introduces higher abstraction layer for model cre-
ation. New operations like merging and splitting nodes groups are proposed,
allowing to create more complex algorithms and store them for further use,
serializing internal groups connections and settings. Whole data flows can
be stored and loaded to provided ready to use processing schema to run with
different data sets. Visual data flow environment is oriented on users try-
ing to process data based on the delivered operations with no programming
skills at all. It does not limit however software developers who want to have
full control over created model and execution procedure, introducing new,
custom functionalities. Visual data flow is also perfect for scripting, making
it even simpler to create and run models from a console with short commands.

For MDE visual data flow is delivered as a dedicated widget loaded with
registered nodes, grouped according to their types for easier browsing. Sim-
ple drag‘n‘drop mechanism allows to instantiate particular node in a data
flow model and position it on a scene. To connect nodes user have to click

104

(a) Blender (b) NXT-G

(c) LabView

Figure 4.7: Examples of visual programming environments
sources: http://upload.wikimedia.org/wikipedia/commons/thumb/
2/26/Working_with_Nodes_Blender.PNG/800px-Working_with_Nodes_
Blender.PNG
http://www.letu.edu/opencms/export/sites/default/_Academics/
Engineering/Media_Room/LEGO_toy_adaptations/programming.jpg
http://www.computer-solutions.co.uk/gendev/images/Example_
LABview_diagram.png

105

Figure 4.8: Visual data flow environemnt exmaple for MDE

106

Listing 4.6: Nodes configuration window interface
// ! Node g raph i c a l c on f i gu r a t i on i n t e r f a c e
c l a s s INodeConfiguration
{
pub l i c :

// ! V i r tua l d e s t ru c t o r
v i r t u a l ˜INodeConfiguration () {}
// ! \ r e turn Conf igurat ion widget
v i r t u a l QWidget* getConfigurationWidget () = 0 ;

} ;

particular pin, what starts connecting procedure. Proposed connection is
draw from chosen pin to the actual cursor position on the scene. To finish
connecting particular pins, user should move mouse cursor above desired pin
to connect and release mouse button. If pins are compatible and no con-
nectivity rules are violated a new connection is introduce to the model with
selected pins. To remove connection, user must click chosen connection and
press delete key on keyboard or press right mouse button and chose Remove
connection option. It is also possible to select group of nodes and move them
around the scene. Graphical connection representations are updating their
appearance automatically. As there can be many nodes on a scene, user is
supported in managing those nodes by disallowing stacking them, so that
some of them might be covered by others, becoming invisible. When this
situation occur, dragged node is moved back to its initial position and it is
ensured, that newly placed nodes can not collide with each other. Service
allows to create many visual data flows and manage them independently,
but all of them are utilizing the same pool of computing resources. Running
in parallel several data flows would extend their running time. Figure 4.8
present visual data flow environment for MDE.

For visual programming a simple interface can be implemented addition-
ally for each node, to deliver its optional settings, that user might edit from
the GUI. Listing 4.6 presents this configuration interface. Widget with set-
tings is automatically handled by the visual programming environment in an
uniform manner for all nodes, when user interacts with particular node.

Additionally, a simple node validation interface is proposed, that will be
used to validate nodes configuration independently from model validation.
Listing 4.7 presents this interface.

Nodes are registered with helper macros within particular plug-in. During
registration client has possibility to deliver nodes extended description, used
to present nodes to the user in a graphical manner in the nodes browser and

107

Listing 4.7: Nodes additional validation interface
// ! Node va l i d a t i o n i n t e r f a c e
c l a s s INodeValidation
{
pub l i c :

// ! V i r tua l d e s t ru c t o r
v i r t u a l ˜INodeValidation () {}
// ! \ r e turn True i f node ` s c on f i gu r a t i on i s va l id , o the rw i se f a l s e
v i r t u a l bool isNodeValid () = 0 ;
// ! \ r e turn I f node va l i d a t i o n f a i l s , shor t d e s c r i p t i o n can be given
// ! what i s wrong
v i r t u a l QString getErrorMessage () = 0 ;

} ;

on the scene (node instances). For each node an icon can be given, with a
short node description. Listing 4.8 presents example node registration macro.
It consists of two parts - first creates node group that is delivered with plug-
in, later particular nodes are registered within this group. Dedicated macros
for sources, sinks and processors are given. They verify if registered nodes
provide required interfaces. Registering new node its type is given first, later
name or a short description, then unique identifier and in the end an icon.

Listing 4.8: Macro for data flow node encapsulation within plug-in
VDF_SERVICE_BEGIN (ExampleNodesGroup , ←↩

”{C354FD3F−3559−4990−830D−57BA5E5BC813}”)

VDF_ADD_DATA_PROCESSOR (
ExampleDataProcessor ,
”Example Data Proces sor ” ,
”{1143D447−2F76−458A−ADEB−4A669E487023}” ,
QIcon (” : / nodeIcon . png”)

) ;

VDF_SERVICE_END (ExampleNodesGroup)

4.4 Future work

We see a great potential in presented data flow processing, therefore many
new ideas were introduced for its possible applications. The major develop-
ment directions are:

� utilizing JobManager work-stealing scheduler,

� utilizing GPU computational power,

108

� scheduling and distributing work in clusters environment.

First solution is based on extended JobManager functionality, where new
Jobs scheduler is proposed, allowing more flexible Jobs assignment for par-
ticular working threads. Based on data flow processing structure it would
be possible to automatically schedule work in such a way, that a probability
of optimal utilization of processor cache would be maximized, what should
improve genera data flow performance.

Second idea requires extending functionality of JobManager, so that addi-
tional Job category could be introduced, representing GPU tasks. It could be
easily done by adding internally second queue (or multiple queues) for this
type of Jobs. Probably additional maintenance thread would be required
to service GPU tasks queue processing, scheduling work to available GPU
devices. Such Jobs might cover universal OpenCL (http://www.khronos.
org/opencl) implementation or dedicated solutions for particular vendors
like CUDA (http://www.nvidia.com/object/cuda_home_new.html) from
NVIDIA.

Third improvement assumes to use data flow for initialization and control
of computations in cluster environments. Such application might look as
follows:

1. User connects to particular cluster.

2. Cluster configuration is read.

3. User builds processing graph.

4. Processing graph is translated to fit cluster capabilities and architec-
ture.

5. All required resources are loaded to cluster and initialized on cluster
nodes.

6. Data processing is started on cluster.

After the processing is finished, data might be collected back to user
local computer to browse results and analyse them. There might be also
some dedicated data source managing produced results at cluster side, not
requiring to download them all to a local computer, as their volume might
be too big. This approach is currently only a rough idea how data flow
with visual environment might be used to automate and speed up cluster
computing.

109

Chapter 5

Motion analysis

5.1 State of the art

Many multi-resolution tools were developed to support motion analysis. The
background for those solutions are usually classical digital signal processing
techniques. Great amount of those tools process orientation data, describ-
ing particular joints move as three uncorrelated signals represented by Euler
angles. Quoted solutions consider usually data correlation in time domain
between particular angles, not including joints hierarchical description in
skeleton.

In [26] motion data smoothing with B-spline wavelet for unit quaternion
is used. Similarly, in [27] based on the Daubechies wavelets (D10) smooth-
ing of each component of a unit quaternion with soft and hard thresholding
methods is proposed. Rotation smoothing is formulated as a non-linear opti-
mization problem in [37]. A series of fairness functions defined on orientation
data are used to derive smoothing operators. Spatial filters for orientation
data are proposed in [38, 39]. Similar solution, based on the digital filter
bank technique, can be found in [10]. In [18] a low-pass filter is applied to
the estimated angular velocity of an input signal to reconstruct a smooth,
angular motion by integrating filter responses.

Multi-resolution techniques are also applied for effective feature detec-
tion. Extraction of easily comparable features, unique and robust for motion
data is one of the main goal of motion analysis. Such features are fundamen-
tal for motion phases description with set of reliable parameters, allowing
to predict human motion based on previous observations. An example for
such approach can be found in [7], where the Haar wavelet transform for the

110

extraction of appropriate features from kinematic data (joint trajectories) is
used. Multi-scale smoothing of input data is combined with with an features
extraction, which characterize transitions between various, well defined mo-
tion phases.

Motion data compression is another application for multi-resolution tech-
niques. In general, presented solutions remove high frequencies details of the
signals, which usually contains noise. This is done especially for the joints
not important for particular move. The joints importance is defined based
on a joint position in the skeleton hierarchy and motion type. To compress
skeletal motion data lifting scheme blocks implementing the cubic interpolat-
ing bi-orthogonal wavelet basis are used in [6]. With such wavelet transform
temporal coherence is exploited. In [40] it is proposed to combine forward
kinematics and wavelet transform. The cubic B-Spline wavelets are used in
[2]. Usage of an anisotropic diffusion process for smoothing all degrees of
freedom of a motion windows, which are later divided into segments at fea-
ture discontinuities, is proposed in [41]. The cubic Bezier curves are used
to approximate each degree of freedom for particular segments. Application
of the anisotropic diffusion process smooths low-frequency parts of the data
and preserve perceptually important high-frequency parts of the data. In [5]
high level of compression comes at the expense of smoothing high frequency
details in the motion. The short clips of motion sentences can be also repre-
sented as cubic Bezier curves and clustered principal component analysis can
be used to reduce their dimensionality. This technique utilizes temporal co-
herence (fitting Bezier curves) and correlation between all degrees of freedom.

Our goal is to use multi-resolution tools for motion data in the quaternion
representation, to capture rotation data correlations in the time domain, in-
stead of analysing independent signals for three Euler angles. We believe that
this is the right approach, as quaternions algebra better describes the nature
of rotations. With multi-resolution techniques we want to decompose motion
data to a simpler representation, which would allow reliable motion features
description and extraction, being an input for further motion analysis tools.

5.2 Quaternions

5.2.1 Introduction

Quaternions [52, 58, 24] are the number system extending capabilities of the
complex numbers. They describe vectors relations in 3D space - rotation and

111

scaling - as follows:

~va
~vb

= qab → ~vbqab = ~va

where qab denotes quaternion and ~va, ~vb ∈ R3. Quaternions are represented
as a pair of a 3D vector (imaginary part, Img) and scalar (real part, Re)
according to Equation 5.1. Also quaternion interpretation as a 4D vector is
used.

q = [~v, s] = [(x, y, z) , w] (5.1)

There are several well defined quaternions operations and properties:

multiplication There are two methods for multiplying quaternions:

� First one uses a 4D vector quaternion representation and produces
simple component by component multiplication as presented in
Equation 5.2.

qa ∗ qb = ~qa · ~qb = [xa ∗ xb, ya ∗ yb, za ∗ zb, wa ∗ wb] (5.2)

It does not have any geometrical explanation and in general should
not be used.

� Second approach defines quaternion multiplication as an geometric
operation, allowing to combine different vector transformations.
It is done according to the Hamilton product presented in Equa-
tion 5.3.

qa ∗ qb = [xa, ya, za, wa] ∗ [xb, yb, zb, wb] =
= [xa ∗ xb − ya ∗ yb − za ∗ zb − wa ∗ wb,

xa ∗ yb + ya ∗ xb + za ∗ wb − wa ∗ zb,
xa ∗ zb − ya ∗ wb + za ∗ xb + wa ∗ yb,
xa ∗ wb + ya ∗ zb − za ∗ yb + wa ∗ xb]

(5.3)

It has to be noted, that in this case multiplication is not commu-
tative, so in general:

qa ∗ qb 6= qb ∗ qa
This is a very important property of quaternions algebra. Quater-
nion division is realized with so defined multiplication and quater-
nion inverse (reciprocal) operation.

112

conjugate Quaternion conjugate is defined as:

q∗ = [~v, s]∗ = [−~v, s]

It represents a quaternion with a negated vector part and unchanged
scalar value. Conjugate can be used to extract scalar and vector part
by proper addition and subtraction, followed by a division with a factor
of two. Applying conjugate twice will return the original quaternion:

(q∗)∗ = [−~v, s]∗ = [~v, s]

norm This property is usually interpreted as a length of a quaternion. Equa-
tion 5.4 presents norm definition. It is a square root of quaternion dot
product with its conjugate.

||q|| =
√
q ∗ q∗ =

√
q∗ ∗ q =

√
x2 + y2 + z2 + w2 (5.4)

reciprocal (inverse) With help of this property it is possible to introduce
quaternion division. Equation 5.5 defines quaternion reciprocal - a
normalized conjugate.

q−1 =
q∗

||q||
(5.5)

5.2.2 Unit quaternions

There is a well defined subset of quaternions, called unit quaternions. This
subset is denoted as H1. Its elements are quaternions which have the following
property:

∀q∈H1||q|| = 1

It is possible to introduce an additional representation for unit quater-
nions, which makes particular operations, presented later, easier to perform.
Equation 5.6 presents unit quaternion trigonometric form.

q =
[
~v‘sin(θ), cos(θ)

]
,

~v‘ ∈ R3,
θ ∈ [−π, π]

(5.6)

113

5.2.3 Quaternion functions

It is possible to define additional functions for quaternions. They allow to
map quaternions from S4 hypersphere to R3 space and backward. They also
introduce possibility of applying particular vector transformation multiple
times (composition, power function), just a quotient of a transformation or
interpolation between pairs of transformations.

logarithm This operation transforms quaternion from S4 hypersphere to R3
space (quaternion tangent space) as presented in Equation 5.7. After
the transformation unit quaternion is represented by its vector part,
scaled according to its angle in trigonometrical representation.

log (q) = log
([
~v‘sin(θ), cos(θ)

])
=
[
θ~v‘, 0

]
(5.7)

exponent It is an inverse operation for logarithm. It allows to transform
a vector from R3 space back to S4 hypersphere following the Equa-
tion 5.8.

exp (q) =
[
~v‘sin(θ), cos(θ)

]
, q =

[
θ~v‘, 0

]
, θ ∈ R, ~v‘ ∈ R3 (5.8)

power Based on logarithm and exponent functions it is possible to define
quaternion power function. Power function for quaternions allows to
combine particular vector transformation multiple times or just apply-
ing some quotient of this transformation. Equation 5.9 present the
definition for power function. This operation is extensively used for
quaternion interpolation.

qt = exp (t ∗ log (q)) , t ∈ R (5.9)

Despite elaborated operations there is also a well defined differential cal-
culus for quaternions, allowing more detailed and complex rotations analysis.
We do not present it here, as it is not relevant for presented solutions, but we
find it very important to mention it. Further information about differential
calculus for quaternions can be found in [22].

5.2.4 Rotations

Quaternions use simpler representation for rotations than Euler angles. In-
stead of three independent rotations along particular axis, that Euler angles
do, quaternions perform single rotation by a given angle, around particular

114

axis, going through the centre of the coordinate system with well defined
rotation direction, according to the right hand rule. This can be explicitly
connected with quaternion representation, where a 3D vector is given, repre-
senting axis direction, and the scalar part, representing rotation angle. The
following actions have to be made to rotate a vector ~v around a given axis ~r
by an angle α:

1. transform vector ~v to a quaternion form according to Equation 5.10,

∀~v∈R3qv = [~v, 0] (5.10)

2. create rotation quaternion qr for the given axis r and rotation angle α
with Equation 5.11,

qr =
[
~vsin

(α
2

)
, cos

(α
2

)]
(5.11)

3. perform rotation in quaternion space as presented in Equation 5.12

q‘v = qrqvq
−1
r (5.12)

4. extract resulting vector from obtained quaternion as described in Equa-
tion 5.13

v‘ = Img part
(
q‘v
)

(5.13)

It has to be mentioned, that quaternion q and −q represent the same ro-
tation. This property is called antipodality. This dual nature of quaternions
can be easily observed applying the right hand rule, switching both axis and
angle direction to opposite values. Additionally, as quaternions multiplica-
tion allows to combine more vector operations at once, it is also possible to
apply more than one rotation to a vector, keeping in mind that multiplication
is not commutative. Equation 5.14 presents general structure for applying
more than one rotation to a vector according to presented scheme.

qn = q1q2...qn

qin = qnqn−1...q1

q‘v = qinqvq
−1
n

(5.14)

Quaternion qn represents composition of rotation quaternions in a well
defined order. Quaternion qin represents composition of the same rota-
tion quaternions in reverse order. Other symbols have the same meaning

115

as already presented. Resulting quaternion q‘v will represent vector rotated
according to provided rotation quaternions in their specific order. This ap-
proach can be generalised also for a combination of rotation and scaling
transformations.

Representing rotations and orientations with quaternion has many ad-
vantages over classical approach with Euler angles, although both represen-
tations are equivalent. Quaternions are free from gimbal-lock problem, which
may occur using Euler angles, when one degree of freedom can vanish. Also,
quaternion representation is uniquely representing rotation, when using Euler
angles different notations and combinations are possible. Mangling various
Euler angle notations and managing them can introduce serious problems
when analysing motion data. Quaternions can be easily transformed to ro-
tation matrices and Euler angles. Different rotation representation, their
advantages and disadvantages with conversion from one representation to
the others are presented in [14, 71, 72].

5.2.5 Interpolation

Pointing out quaternion advantages over Euler angle, quaternion interpola-
tion techniques have to be mentioned. With Euler angles three independent
data series have to be interpolated, in general loosing their correlation. As
unit quaternions are compact representation for rotations it is easier to in-
terpolate them considering their spacial properties.

t ∈ [0; 1]

interpolate (qa, qb, t = 0) = qa

interpolate (qa, qb, t = 1) = qb

(5.15)

Recalling basic interpolation properties in Equation 5.15, the following
quaternion interpolation methods are available, satisfying those rules:

lerp Although this technique treats quaternion as a 4D vector, it can be suc-
cessively used for simple quaternion interpolation. After interpolating
rotations additional normalization is required to maintain proper rota-
tion representation in form of unit quaternion. Equation 5.16 presents,
how to interpolate quaternions with this approach.

lerp (qa, qb, t) = qa + (qb − qa) t =
= [xa + (xb − xa) t, ya + (yb − ya) t, za + (zb − za) t, wa + (wb − wa) t]

(5.16)

116

slerp This interpolation technique does not require results to be normalized.
Slerp values follow shortest path on a great arc on H1 hypersphere
between given quaternions according to Equation 5.17.

slerp (qa, qb, t) = qa (q
∗
aqb)

t (5.17)

squad Applying Bezier curves interpolation idea to quaternions we obtain
squad interpolation. It requires four quaternions for interpolation, two
of them are used as a interpolation range, with other two used to gen-
erate control points ensuring smooth and differentiable interpolation
curve. We now index quaternions to make their role clear in the interpo-
lation. Equation 5.18 presents complete description for this technique.
Quaternions qi and qi+1 are used as a key frames and quaternions si
and si+1 are control points. Equation 5.19 describes how control points
are generated.

squad (qi, qi+1, si, si+1, t) = slerp (slerp (qi, qi+1, t) , slerp (si, si+1, t) , 2t (1− t))
(5.18)

si = qiexp

(
−
log
(
q−1i qi+1

)
+ log

(
q−1i qi−1

)
4

)
(5.19)

Detailed information about particular interpolation methods and their
derivation can be found in [11]. It presents the properties and effects of
interpolation methods in a well defined and visual manner.

5.3 Multi-resolution analysis

5.3.1 Introduction

The main idea of the multi-resolution analysis is to represent a signal in
form of a coarse to fine hierarchy. Analysed signal is decomposed into gen-
eral data description (global pattern of the signal) and a hierarchy of signal
details (coefficients). Obtained multi-resolution representation can be a base
for many already presented algorithms, tools and applications. This type
of signal representation allows much better signal behaviour understanding
by presenting its overview at different detail levels in time domain, in com-
parison to frequency characteristic of signal provided by the Fourier analysis
[56]. Main tool for multi-resolution analysis is the wavelet transform [46].

117

It has very strong mathematical and analytical background, providing well
defined procedure for data decomposition. Although wavelet usage offers
all multi-resolution features for decomposing signal, it is based on complex
mathematical theorems and therefore sometimes it is hard to ensure all its
requirements. Also very often proposing proper mother wavelet function is
not a trivial task and proving that so proposed mother wavelet function ful-
fils all wavelet transformation requirements might be hard or impossible. To
dedicate those problems a new approach to the wavelet transform and multi-
resolution analysis has been proposed. It is called lifting scheme, also know
as a second generation wavelets [31].

5.3.2 Lifting scheme

The lifting scheme [62, 63] is a simple, yet powerful tool to construct the
wavelet transform. The main advantage of this solution is the possibility
of building the wavelet analysis for complex structures of data (irregular
samples, curves, surfaces), additionally keeping three valuable properties [57,
13, 64]:

� speed,

� good ability of approximation,

� low memory consumption.

Wavelets proposed by the lifting scheme, in contradiction to classical
wavelet transform, are not necessarily translated and dilated versions of one
function (mother wavelet). In this meaning lifting scheme also considers
non-linear and data-adaptive multi-resolution decompositions. It is rather
engineering approach to the wavelet transform and multi-resolution analysis,
as a general lifting scheme is built up with three well defined and simple
operations:

Split splits input dataset into two disjoint sets of even indexed samples and
odd indexed samples. The definition of lifting scheme does not impose
any restrictions on how the data should be split nor on the relative size
of each subset.

Predict predicts samples with odd index based on even indexed samples.
Next the odd indexed input value is replaced by the difference (detail)
between the odd value and its prediction (detail, coefficient).

118

Figure 5.1: Lifting scheme forward transform

Figure 5.2: Lifting scheme inverse transform

Update updates the output, so that coarse-scale coefficients have the same
average value as the input samples. This step is necessary for stable
wavelet transform [31].

Overview of the lifting scheme can be seen in Figure 5.1. Decomposition
algorithm for forward transform is run recursively. Updated even samples
are used as an input for next algorithm run, until single, global signal aver-
age value is reached, with signal coefficients for all decomposition levels. All
that calculations can be performed in-place. In all stages input samples for
next stage can be overwritten by output of the current step, which means no
additional buffers for temporary data are required. Inverse transform is easy
to find by reversing the order of operations and flipping the building block
operation signs (inverting their operations). It allows to reconstruct signal to

119

its original representation, when no modifications were made to decomposed
details and average, or to see, how such modifications are propagated and
affect the signal after the reconstruction.

Figure 5.2 presents an overview for lifting scheme inverse transform. Split
operation is exchanged by a merge operation, which reorders samples from
the current level and joins two separate sets of odd and even samples into
one set, where proper input samples order is guaranteed to be maintained
during the reconstruction.

5.4 Lifting schema for quaternions

We propose a new tool for motion analysis based on the lifting schema and
quaternion representation for joints rotation data. We present building blocks
of various lifting schemes for quaternion signals. Based on so proposed motion
analysis tool, possible applications are pointed out with their description. We
believe that combination of multi-resolution techniques and quaternions pro-
vide informative motion description allowing to realize more complex tasks
in the field of motion analysis.

5.4.1 Rotation average value

There have been proposed many different interpretations and definitions for
rotation (quaternion) averages [51, 45, 43, 20, 25]. This is a very wide topic,
covering proper distance metric that must be chosen to fit particular appli-
cations. In general, there are two approaches to define rotation average value
for a series of rotations:

Euclidean This approach to rotation average is defined as an optimization
problem, where average rotation is obtained as a rotation matrix min-
imizing cumulative Frobenius norm (Euclidean distance) of differences
between current average value and given rotations in matrix repre-
sentation. Equation 5.20 presents Frobenius norm of matrix R with
dimensions m× n. Equation 5.21 describes proposed average concept,
where RF denotes resulting average rotation matrix for a series of N
rotation matrices Ri.

||R||F =

√√√√ m∑
i=1

n∑
j=1

|r2ij| (5.20)

120

RF = argminR

N∑
i=1

||Ri −R||2F (5.21)

Riemannian In Riemannian approach rotations mean is formulated as the
angle-based optimization problem, where an arc length between given
rotations and their average should be minimized. A dedicated distance
measure is used to calculate arc-length between particular rotation ma-
trices as presented in Equation 5.22. Based on this distance measure
a general solution to the problem is presented in Equation 5.23. It is
a matrix representation for the slerp interpolation, where log function
is expanded as presented in [45], which seams to be generally a better
approach to the rotation average than Euclidean version.

dR (R1, R2) =
1√
2
||log

(
RT

1R2

)
||F (5.22)

RR = argminR

N∑
i=1

||log
(
RT

1R2

)
||F (5.23)

As already mentioned, for multi-resolution analysis with the lifting scheme
average value of the input signal must be maintained by its lower resolution
representations for all algorithm steps. Average value interpretation is not
important in this case and averaging operator might be defined in various
ways to fit particular lifting scheme applications. We decide to use straight
forward averages, fitting best presented quaternion interpolation techniques.
Proposing lifting schemes prediction and update blocks we have concentrated
on guaranteeing constant signal average value over all resolutions and not on
the average operation interpretations. To simplify analysis and proving that
proposed averages fill this condition we assume that a simple recursive pro-
cedure for calculating average value of a signal according to a chosen average
operation maintains constant average for all signal resolutions. Now its de-
scription is given.

5.4.1.1 Recursive average

We assume that usage of the following procedure for calculating rotation sig-
nal average according to provided averaging operation for two nearby sam-
ples, maintains signal average value at all resolutions:

121

Algorithm 5.1: Average recursive algorithm
Data: inputSignal, averageFunction
Result: signalAverage
int half = inputSignal.size() / 2;
while half != 0 do

for i=1 to half do
inputSignal[i] = averageFunction(inputSignal[2(i-1)],
inputSignal[2(i-1)+1]);

end
half =/ 2;

end
return inputSignal[0];

It can be noticed, that with such average approach, obtaining average
value for the current resolution requires signal lower resolution average value
to be calculated first. Algorithm continues until single value is obtained,
which represents signal global average value. We were following this rules
designing update blocks for proposed lifting schemes. One limitation of so
defined average procedure is that the averaged signal must contain number
of samples equal to a power of two. This might require truncating signal
samples count to the greatest power of two, smaller or equal to the initial
samples number, or extending signal with some neutral and artificial values,
until number of elements reach the closest power of two greater than initial
number of elements.

5.4.2 Proposed lifting schemes

We present the concepts of six different lifting schemes. Provided algorithms
are based on general quaternion interpolation techniques and properties. De-
veloped solutions are divided into different categories, based on the amount
of samples used for prediction step. Proposing those lifting schemes we tried
to treat quaternions as 4D vectors to verify, if this approach might be used
successfully with multi-resolution tools for rotations, as they explore in gen-
eral local signal differences.

Before we give detailed equations for particular lifting scheme blocks we
must introduce used nomenclature for clarity. Odd and even samples are
described as:

� oji ,

� eji

122

where i index describes particular sample index in group of odd or even
samples after split operation (relative order of samples before splitting is
maintained). Index j describes the level of the signal resolution. Higher res-
olutions have greater j values with 0 representing global signal average value.
Additionally, as split operator divides samples on odd and even ones, anal-
ysed signal must contain number of samples described with Equation 5.24.
It overlaps the condition for proposed recursive average value calculation
procedure.

n = 2k,

k ∈ C
(5.24)

5.4.2.1 Single sample prediction

Linear Haar lifting scheme The Haar approach to the lifting scheme is
the simplest one to design. It uses nearby even samples to approximate odd
samples values. Quaternions are treated as 4D vectors, therefore following
steps can be defined:

� predict

oji = oj+1
i − ej+1

i

� update

eji = ej+1
i +

oji
2

Analogically, backward transform (signal reconstruction given the coeffi-
cients and coarse signal) is given with equations:

� undo-predict

oj+1
i = oji + ej+1

i

� undo-update

ej+1
i = eji −

oji
2

123

After each transformation all quaternions must be normalized to repre-
sent valid rotations. Simple lerp interpolation is used for recursive average
value calculations. It can be noticed indirectly in update step, where firstly
original odd value is retrieved from even sample used to predict the odd
sample and stored difference, and later those values are averaged. After
simplifications only even sample and calculated detail are used. For all fol-
lowing transforms idea is similar, therefore we would only mention, which
average method is used, skipping the derivations for update steps to show
this behaviour explicitly.

Quaternion Haar lifting scheme In contradiction to previous schema,
now proper quaternion algebra is used to describe quaternion differences.
Proposed forward transform can be written as:

� predict

oji = oj+1
i ∗

(
ej+1
i

)−1
� update

eji =
(
oji
)0.5 ∗ ej+1

i

Inverting operations with respect to quaternion algebra, the following
backward transform can be obtained:

� undo-predict

oj+1
i = oji ∗ e

j+1
i

� undo-update

ej+1
i =

(
oji
)−0.5 ∗ eji

No quaternion normalization need be done, as quaternion algebra on unit
quaternions guarantees to produce unit quaternion results. Order of multi-
plying quaternions should be underlined, as already mentioned - this is not
a commutative operation in quaternion space in general. Introduced average
value is analogical to the linear algebra version - power function is used to
retrieve the quotient (0.5) of composition for rotation pairs (average).

124

5.4.2.2 Two samples prediction

Now lifting schema using two nearest samples for prediction block are pre-
sented.

Linear quaternion lerp lifting scheme In this approach lerp interpo-
lation is used, representing quaternions as 4D vectors. Forward transform
equations are:

� predict

oji = oj+1
i −

ej+1
i + ej+1

i+1

2

� update

eji = ej+1
i +

oji + oji+1

4

Backward transform equations are written as:

� undo-predict

oj+1
i = oji +

ej+1
i + ej+1

i+1

2

� undo-update

ej+1
i = eji −

oji + oji+1

4

Once again, after each transformation all quaternions must be normalized
to represent valid rotations, as linear algebra is applied instead of proper
quaternion algebra. Lerp interpolation is used for pairs of nearby samples
to calculate signal average value. To retrieve original odd samples values
for average calculation, more complicated computations must be done in
comparison to Haar transform due to an applied prediction step, involving
two even samples to estimate surrounded odd sample.

125

5.4.2.3 Slerp lifting scheme

Applying proper quaternion interpolation technique, considering quaternion
properties and algebra, the following lifting scheme blocks are obtained:

� predict

oji = oj+1
i ∗ slerp

(
ej+1
i , ej+1

i+1 , 0.5
)−1

� update

eji = slerp
(
oji , o

j
i+1, 0.5

)
∗ ej+1

i

Similarly, inverse transform is defined as follows:

� undo-predict

oj+1
i = oji ∗ slerp

(
eji + eji+1, 0.5

)
� undo-update

ej+1
i = slerp

(
oji , o

j
i+1, 0.5

)−1 ∗ eji
As quaternion algebra is applied there is no need to apply additional

results normalization. For average we also use slerp interpolation.

5.4.2.4 Four samples prediction

Squad lifting scheme Based on squad interpolation, the following forward
transformations can be given:

� predict

oji = oj+1
i ∗ squad

(
ej+1
i , ej+1

i+1 , si, si+1, 0.5
)−1

� update - In this case update step could not be solved analytically in
quaternion space, as squad control points calculations mix quaternion
algebra and 4D vector linear algebra. It prevented finding algebraical
solution to retrieve original odd sample value from calculated detail and
surrounding even samples used for prediction. We have dedicated a new
approach to to this problem, presented in the next lifting scheme ap-
proach. Based on obtained analytical solution for presented quaternion

126

tangent space interpolation, we propose to use the following equation
for update step, through an analogy to the tangent space solution:

eji+1 =
(
oji
)0.5

ei+1

To perform signal reconstruction the following equations should be used:

� undo-predict

oj+1
i = oji ∗ squad

(
ej+1
i , ej+1

i+1 , si, si+1, 0.5
)

� undo-update

ej+1
i =

(
oji
)−0.5

ei

This is a new solution, not presented in our previous works. Proposed
test will verify its correctness and applicability for various tasks and compare
obtained results with other lifting schemes.

Tangent space lifting scheme To address the problem of designing for-
ward transform for squad interpolation, we propose a new approach to use
this quaternion interpolation technique as a prediction block for the lifting
scheme. The idea is to transform squad operation to the quaternion tangent
space - R3 - and perform all required operation there. After that, the signal
is transformed back to its original quaternion form. Converting values from
quaternion space to R3 and backward can be done with log and exp func-
tions, as already presented. Question arise how to transform slerp and squad
operations, so they operate on R3 vectors (points).

Starting description of new lifting scheme we want to show, that for any
pair of unit quaternions qa and qb the following equation is always true:

slerp (qa, qb, 0.5) =
lerp (qa, qb, 0.5)

||lerp (qa, qb, 0.5) ||
Figure 5.3 presents lerp interpolation along circle chord and slerp inter-

polation along circle curve. We can further reformulate this equation by
expanding slerp to obtain such form:

slerp (qa, qb, 0.5) = qa (q
∗
aqb)

0.5 = qaq
∗0.5
a q0.5b = qaq

−0.5
a q0.5b = q0.5a q0.5b = (qaqb)

0.5

127

Lerp interpolation, v‘12
represents correct, normalized

rotation result

Slerp interpolation,
normalization not required

Figure 5.3: Lerp and slerp rotations interpolations comparison

Applying logarithm and exponent functions we can obtain:

slerp (qa, qb, 0.5) = exp
(
log (qaqb)

0.5) = exp (0.5 ∗ log (qaqb)) = exp

(
log (qa) + log (qb)

2

)
(5.25)

Equation 5.25 shows, how to do the slerp interpolation in the quater-
nion tangent space, as all operations are done according to logarithm values
and obtained result is transformed with exponent function to the quaternion
space. Applying it for squad we can perform this type of interpolation in
R3 space, based on simple vector linear algebra, and then return back to the
quaternion space. Now a description of forward transform in the quaternion
tangent space is given.

Firstly, we introduce an average value for a signal in the quaternion tan-
gent space according to proposed method for averaging transformed signal
values. We propose simple average method for a series of points in R3, which
is later transformed to the quaternion space, as presented in Equation 5.26.

avg = exp

(
1

n

n∑
i=1

log (qi)

)
(5.26)

Secondly, the squad interpolation is based on applying Bezier curve in-
terpolation for H1 hypersphere. As signal is transformed to R3, we propose
to use classical Bezier interpolation, where for any pair of points p1, p2 and

128

Figure 5.4: Prediction diagram for squad interpolation in tangent space

control points X, Y (p1, p2, X, Y ∈ R3) interpolated points are described with
Equation 5.27. We already show how slerp can be calculated in the tangent
space, therefore introducing it to squad in the tangent space provides straight
forward analogy to the following equation:

lerp (p1, p2, h) = lerp (lerp (p1, p2, h) , lerp (X, Y, h) , 2h (h− 1)) ,

whereh ∈ [0; 1]
(5.27)

We obtain average value for pair of points in R3 with so proposed inter-
polation according to:

lerp (p1, p2, 0.5) = 0.5 (0.5 (p1 + p2) + 0.5 (X + Y)) =
p1 + p2 +X + Y

4
(5.28)

For smooth Bezier curve interpolation values X, Y are obtained according
to the following equations for any pair of interpolated points pi and pi+1:

X = pi +
1

4
(pi+1 − pi−1)

Y = pi+1 −
1

4
(pi+2 − pi)

Equations for control points are analogical to squad control points pre-
sented in Equation 5.19. Figure 5.4 presents visually proposed schema for
interpolating odd sample with nearby even samples for the lifting scheme
using squad interpolation in tangent space. Applying Equation 5.28 for pre-
diction step we obtain the following formula:

oji = oj+1
i − 0.5625 ∗ ej+1

i+1 − 0.5625ej+1
i+2 + 0.0625 ∗ ej+1

i + 0.0625 ∗ ej+1
i+3 (5.29)

Calculating update, it must be ensured that average value remains con-
stant according to Equation 5.30.

129

1

n

n/2∑
i

(
ej+1
i + oj+1

i

)
=

2

n

n/2∑
i

eji (5.30)

Reorganizing summation in Equation 5.30 and extending odd values ac-
cording to Equation 5.29 its simpler form can be obtained:

eji+1 = ei+1 + 0.5 ∗ oji
This is straightforward description for the update step, that guarantees

constant average value and uses only one sample for averaging, although four
were used for prediction.

To obtain backward lifting scheme transform we simply change signs, as
proposed for general lifting scheme construction, leading to:

� undo-predict

oj+1
i = oji + 0.5625 ∗ eji+1 + 0.5625eji+2 − 0.0625 ∗ eji − 0.0625 ∗ eji+3

� undo-update

ej+1
i = eji − 0.5 ∗ oji

So proposed lifting scheme allows to do forward and backward lifting
scheme transform for quaternions according to squad interpolation in the
quaternion tangent space with an application of Bezier curves interpolation.
One drawback of this method is that proposed average value assumes that
signal is periodic, as values required for calculating this average might be
taken from outside of the signal range. When signal is really periodic this
will guarantee correct average values, but in practice it does not have to be
periodic. This might cause at the borders of the interpolated range to occur
greater and unnatural differences between averaged values. To eliminate such
behaviour we suggest to duplicate signal border values, what should lead to
a more reliable average values at the borders. Similar behaviour is applied to
lerp and slerp lifting schemes, but for them only single sample can be queried
from outside valid range.

130

5.5 Applications

We propose two applications for the developed motion analysis tool:

� noise reduction

� compression.

In all cases extracted coefficients are used to modify motion data. In
noise reduction a simple quaternion threshold method is proposed. For com-
pression a removal of high-resolution details is used.

5.5.1 Noise reduction

To eliminate noise in motion data represented by quaternions we propose a
simple threshold method based on the signal coefficients obtained with multi-
resolution tools. To eliminate high-frequency noise, which would be mostly
visible in high-resolution signal details, we remove details with significantly
small rotation angles by substituting them with the zero rotation quaternion
q = [(0, 0, 0) , 1]. Lower resolutions should not be modified in general, as
small details at this levels are propagated to higher resolutions, with great
probability affecting resulting signal structure significantly. We propose to do
the soft thresholding for the decomposed signal details (in quaternion form)
according to a given rotation cut-off angle α, where α is given in radians in
range 0 < α < 0.5 according to formula:

c =

{
c if α < v < 1− α
[(0, 0, 0) , 1] otherwise

where v = arccos(c.w)
π

. Such approach eliminates small rotations (close to 0◦

rotation angle, not changing body orientation significantly) and great rota-
tions (close to 360◦ rotation, which brings the body very close to its initial
orientation). As rotation quaternions are always represented as cosine of half
desired rotation angle, therefore α values were limited to the given range.

After modifying particular coefficients levels, signal should be recon-
structed with proper backward lifting scheme transform. Resulting signal
is expected to be less noisy than before proposed modifications.

5.5.2 Data compression

We propose a simple lossy data compression technique. Compressed signal
is stored in form of decomposed lifting scheme details and global signal aver-
age value, allowing to reconstruct signal structure, where some of the detail

131

resolutions are removed completely. Those resolutions would be filled with
zero rotation quaternion during signal reconstruction. Question arise, which
coefficients levels should be deleted. We propose to remove several highest
resolutions, picked up with a rule of thumb, but we believe, that there exist
particular moves characteristics, allowing to estimate precisely sets of best
resolutions to be removed (be the least informative for this move). It is
highly probable that such characteristic might be given for particular joints
in human musculo-skeletal model for a given motions. As highest coefficient
levels contain most of the decomposed signal data, removing only the highest
resolution provides compression ratio of 50%. To limit number of values re-
quired to store quaternions in comparison to Euler angles, logarithm function
might be used additionally, to represent quaternions only with three, instead
of four values. During decompression those values would be extracted back to
quaternion space. Removed coefficient levels should not disturb significantly
input signal structure.

5.6 Tests

To verify that proposed tools work correctly, we planed several tests. First
of all, we want to see if proposed lifting schemes transformations allow to re-
construct the decomposed signal to its original form, when no modifications
were made to the coefficients. Secondly, we want to verify that developed
lifting schemes can be used successfully for proposed applications. In this
step only those lifting schemes are tested, that allowed correct signal recon-
struction based on the results of the first test. This chapter presents detailed
description of used motion data, experiments configurations, obtained results
and their comments.

5.6.1 Test data

For all proposed tests motion data recorded at HML is used. Left knee joint
has been extracted from delivered skeleton motion (healthy, 26 years old
male). Recorded data set samples count was equal to 812, but for experi-
ments first 512 samples are used, as this is the closes power of two. Data were
recorder with 100Hz resolution what gives recording duration approximately
equal to 5 seconds - long enough to capture several steps. Figure 5.5 presents
knee rotations in time as Euler angles for clarity. Angle values are truncated
to a range of 〈−180◦; 180◦). All results are also presented in this form. Ad-
ditionally, showing lifting schemes results also unmodified samples, indexed
with values equal or greater to 512 are presented for comparison. Presenting

132

Figure 5.5: Test data - left knee of 26 years old and healthy male

lifting schemes decomposition details of all resolutions are shown on a single
chart, where lower resolutions can be observed by recursive subdividing chart
plot on half, moving from right to left. On the left side the lowest resolutions
details are presented up to the highest resolution coefficients on the right
half of the plot. Moreover, we give the following mapping between colour
and rotation axis:

� red → x-axis,

� green → y-axis,

� blue → z-axis.

Time axis presents values always in seconds.

5.6.2 Comparing results

To compare obtained results we introduce a simple distance measure for
quaternion signals. It is similar to Riemannian approach for rotation distance
as a length of the shortest great-arc between rotations. Lets define:

dq (qa, qb) = arccos
(
Re
(
qaq
−1
b

))
It can be noticed, that when both rotations are close, this distance would

be small, in particular, it is equal to zero, when two identical rotations are

133

compared. With so defined distance measure difference between two quater-
nion signals QA, QB, with number of elements equal to N is defined as:

Dq =
N∑
i=1

dq (QAi, QBi)

The greater the difference between particular signals elements the greater
the distance value is.

134

5.6.3 Signal reconstruction

5.6.3.1 LinHaar

Figure 5.6: LinHaar details after forward transform

Figure 5.7: LinHaar signal reconstruction

135

5.6.3.2 QuatHaar

Figure 5.8: QuatHaar details after forward transform

Figure 5.9: QuatHaar signal reconstruction

136

5.6.3.3 lerp

Figure 5.10: Lerp details after forward transform

Figure 5.11: Lerp signal reconstruction

137

5.6.3.4 slerp

Figure 5.12: Slerp details after forward transform

Figure 5.13: Slerp signal reconstruction

138

5.6.3.5 squad

Figure 5.14: Squad details after forward transform

Figure 5.15: Squad signal reconstruction

139

5.6.3.6 tangentSpace

Figure 5.16: TangentSpace details after forward transform

Figure 5.17: TangentSpace signal reconstruction

5.6.3.7 Summary

Presented signal reconstruction results show that linear approach to quater-
nions does not allow to analyse signals with multi-resolution tools, as they do
not allow to reconstruct decomposed signals to their original form. Although

140

Table 5.1: Noisy signals distances to original signal

Noise (σ[◦]) Distance (radians)
0.5 2.330736673
2 9.323036076
5 23.30663269

so proposed approach tries to capture signal details in R4 space, the extracted
rotation details converge to value [[0, 0, 0) , 0] for identical rotations, which
does not represent valid rotation (unit quaternion), instead of [[0, 0, 0) , 1],
representing neutral quaternion, not modifying vector in any way. Normal-
ization for such results additionally introduces errors, as rotation angles are
interpolated with linear function, not handling at all rotation periodic be-
haviour.

Test have proven correct squad lifting scheme construction, as its de-
composed details are almost identical with dedicated tangent space trans-
formation. Additionally, squad approach allowed to reconstruct previously
decomposed signal to its original form.

Signal reconstruction test indicates, that only quaternion algebra should
be applied for multi-resolution motion analysis.

5.6.4 Noise reduction

To test application of lifting schemes for noise reduction we had to add
artificial noise to the test data. This is due to a data post-processing done in
the laboratory, where data are collected. In this stage most of the noise for
recorded data is removed and signal is smoothed. We decided to add three
levels of white Gaussian noise for rotations in Euler angles representation,
independently for each angle, with σ equal to:

� 0.5◦,

� 2◦,

� 5◦.

Figure 5.18 presents data after noise addition. Distances of generated
noisy data to its original form are collected in Table 5.1 according to intro-
duced quaternion signals distance measure.

141

Gaussian noise with σ = 0.5◦

Gaussian noise with σ = 2◦

Gaussian noise with σ = 5◦

Figure 5.18: Noisy test data

142

Each lifting scheme was used for noise reduction according to three sets
of filtered details resolutions:

� 8,

� 7 and 8,

� 6, 7 and 8.

with three values of rotation threshold value for each set:

� 0.5◦,

� 2◦,

� 5◦.

Only the best results for particular signal noises for all lifting schemes
are presented. In Section 5.6.4.5 Table 5.2 presents the best results for this
experiment with distances of filtered signals to the original data to verify
their effectiveness.

143

5.6.4.1 QuatHaar

σ = 0.5◦, threshold value = 0.2◦, resolutions: 8

σ = 2◦, threshold value = 2◦, resolutions: 8

σ = 5◦, threshold value = 2◦, resolutions: 7, 8

Figure 5.19: QuatHaar lifting scheme noise reduction best results

144

5.6.4.2 slerp

σ = 0.5◦, threshold value = 0.5◦, resolutions: 8

σ = 2◦, threshold value = 2◦, resolutions: 7, 8

σ = 5◦, threshold value = 2◦, resolutions: 6, 7, 8

Figure 5.20: Slerp lifting scheme noise reduction best results

145

5.6.4.3 squad

σ = 0.5◦, threshold value = 0.5◦, resolutions: 7, 8

σ = 2◦, threshold value = 2◦, resolutions: 6, 7, 8

σ = 5◦, threshold value = 2◦, resolutions: 6, 7, 8

Figure 5.21: Squad lifting scheme noise reduction best results

146

5.6.4.4 tangentSplines

σ = 0.5◦, threshold value = 2◦, resolutions: 7, 8

σ = 2◦, threshold value = 2◦, resolutions: 6, 7, 8

σ = 5◦, threshold value = 2◦, resolutions: 6, 7, 8

Figure 5.22: TangentSpace lifting scheme noise reduction best results

147

Table 5.2: Noise reduction results

Lifting scheme Noise
(σ[◦])

Threshold
angle (◦)

De-noise
details
resolutions

Distance
(radians)

QuatHaar 0.5 0.2 8 2.2
QuatHaar 2 2 8 7.4
QuatHaar 5 2 7, 8 14.5

Slerp 0.5 0.5 8 1.8
Slerp 2 2 7, 8 6.8
Slerp 5 2 6, 7, 8 16.0
Squad 0.5 0.5 7, 8 1.6
Squad 2 2 6, 7, 8 5.6
Squad 5 2 6, 7, 8 13.3

TangentSpace 0.5 2 7, 8 1.6
TangentSpace 2 2 6, 7, 8 5.6
TangentSpace 5 2 6, 7, 8 13.5

Table 5.3: Compression ratios

Removed resolutions Compression ratio (%)
8 50

7, 8 75
6, 7, 8 87.5

5.6.4.5 Summary

Comparing presented results in Table 5.2 with noisy data distance to original
signal in Table 5.1 it can be seen, that all lifting schemes have improved signal
quality by reducing the noise level. The more complex interpolation method
(using more data samples) in prediction step, the better noise reduction
results for all noise levels are achieved. Once again results for squad and
tangent space lifting schemes are almost identical, proving proper structure
for squad lifting scheme.

5.6.5 Compression

Testing compression abilities according to proposed compression method,
three levels of compression were proposed for each lifting scheme describing
removed details resolutions from decomposed signal.

148

Table 5.3 presents removed details resolutions configurations and corre-
sponding compression ratios. To compare compression quality for proposed
lifting schemes, the distance of decompressed and reconstructed signal to
original data is measured.

149

5.6.5.1 QuatHaar

compressed resolutions: 8

compressed resolutions: 7, 8

compressed resolutions: 6, 7, 8

Figure 5.23: QuatHaar compression quality loss

150

5.6.5.2 slerp

compressed resolutions: 8

compressed resolutions: 7, 8

compressed resolutions: 6, 7, 8

Figure 5.24: Slerp compression quality loss

151

5.6.5.3 squad

compressed resolutions: 8

compressed resolutions: 7, 8

compressed resolutions: 6, 7, 8

Figure 5.25: Squad compression quality loss

152

5.6.5.4 tangentSpace

compressed resolutions: 8

compressed resolutions: 7, 8

compressed resolutions: 6, 7, 8

Figure 5.26: TangentSpace compression quality loss

153

Table 5.4: Compression results

Lifting scheme Removed resolutions Distance (radians)
QuatHaar 8 2.5
QuatHaar 7, 8 5.0
QuatHaar 6, 7, 8 10.0

Slerp 8 0.2
Slerp 7, 8 0.6
Slerp 6, 7, 8 2.8
Squad 8 0.006
Squad 7, 8 0.08
Squad 6, 7, 8 1.3

TangentSpace 8 0.009
TangentSpace 7, 8 0.09
TangentSpace 6, 7, 8 1.3

5.6.5.5 Summary

Table 5.4 presents comparison of various lifting schemes used for compression
with different details resolutions levels removed. It can be seen that applying
slerp, squad or tangent pace lifting schemes allows to limit data up to only
12.5% of its original size with almost unnoticeable lose of quality. This allows
to limit significantly recorded motion data in form of rotation signals, still
providing very detailed signal description. It is noticeable especially for squad
and tangent space lifting schemes, based on their decomposed signal details,
where first few details levels do not carry any relevant signal information (all
Euler angles very close to zero).

5.7 Implementation overview for MDE

I have implemented all presented lifting schemes with their applications for
noise reduction and compression as elements of MDE data flow processing
framework. All tests were done with help of visual data flow environment.
Presented graphical results were produced by MDE built-in chart visualizer.
Only data flow specific implementations are presented, skipping general pur-
pose code for lifting scheme and quaternion operations, available in separate,
general purpose libraries: QuatUtils and GeneralAlgorithms. Both libraries,
with source code, are available on attached CD.

154

Data format converters As built-in data source for data flow delivers
joint rotation data in Euler angles format, denoted in degrees (◦), four pro-
cessors were implemented to convert data to quaternion format and backward
to Euler angles:

� EulerDegreesToRadiansConverter,

� EulerRadiansToDegreesConverter,

� QuaternionToEulerConverter,

� EulerToQuaternionConverter.

First two converters changes angles values representation from degrees
(◦) to radians and backward. This is required for further rotation represen-
tation change to quaternions, for which next two converters are dedicated.
They change rotation representation from Euler angles denoted in radians
to quaternions and backward, so that data can be processed with proposed
lifting schemes and visualized with chart visualizer.

Noise generator To generate noisy data based on Euler angle represen-
tation, a dedicated processor EulerNoiseAdderProcessor was developed. It
allows to set up custom noise level with a simple configuration widget. Con-
figured noise is added to each sample in the time series. Noise is added
independently for each Euler angle.

Lifting schemes To implement various lifting schemes and their coeffi-
cients modifications there was proposed an universal, generic data processor
- QuaternionProcessorT. It accepts as a template parameter types offering
specific static method - process(JointAnglesInputPin * in, JointAnglesOut-
putPin * out), taking input and output pin with data in quaternion form,
that are going to be processed and propagated. Provided helper template
class TransformProcessorT implements such behaviour for all lifting schemes,
taking two template parameters:

template<bool forward , c l a s s LS>
c l a s s TransformProcessorT ;

First of the parameters defines lifting scheme transformation direction, as
all lifting schemes implement common interface. Second parameter defines
lifting scheme that is going to be used to decompose and reconstruct the
processed data.

155

Compression and noise reduction tools To test applications of devel-
oped motion analysis tools for noise reduction, a processors realizing signal
de-noising was proposed - QuaternionDenoiseProcessor. It has configurable
details resolutions, for which noise removal would be performed according
to chosen threshold value. For compressing and decompressing motion data
two classes were proposed:

� QuaternionCompressorProcessor,

� QuaternionDecompressorProcessor.

QuaternionCompressorProcessor is a configurable processor, allowing to
define compression ratio as a number of highest resolutions to remove. Quater-
nionDecompressorProcessor automatically reconstructs signal to its origi-
nal form (resolution) based on data format used to store compressed sig-
nals. Both QuaternionDenoiseProcessor and QuaternionCompressorProces-
sor work on decomposed signals details provided by various lifting schemes.
Additionally, to measure the distance between signals in quaternion form
a processor QuaternionDistanceProcessor was developed, returning scalar
value representing signals distance.

Data types In header file Types.h various types are defined, representing
input and output pins for data flow, wrapping particular data types. Also
several new types are wrapped with OW to be supported by the MDE:

� kinematic::JointAngleChannel - motion data in quaternion format,

� QuatUtils::QuatLiftingCompressor::CompressedSignal - compressed mo-
tion data format exchanged by QuaternionCompressorProcessor and
QuaternionDecompressorProcessor,

� core::ConstObjectsList - aggregate of data wrapped with OW mecha-
nism to deliver an aggregate of test results.

In the end all lifting schemes type definitions are given, to simplify their
usage with TransformProcessorT template, when creating forward and back-
ward transforms processors.

Classes diagram Presented processors with dedicated helper classes are
shown in Figure 5.27. As it can be noticed, all processors implement mini-
mum two interfaces:

156

Figure 5.27: Quaternion based motion analysis data processors

157

Figure 5.28: Pins data wrappers

� one for data flow connectivity logic and model definition (df::ProcessingNode)

� second for data flow processing logic to control processing execution
(df::IDFProcessor).

Helper classes delivered with plug-in dfElements provide wrappers for
pins with various data types, implementing complete data exchange based
on OW mechanism. Proper pin type definitions can be seen in Figure 5.28.

Example quaternion processor Now a simple quaternion processor ex-
ample is presented for logarithm function. Only processor constructor, cre-
ating node pins configuration for data flow model, and processing method for
data flow processing logic are given. Listing 5.1 provides node declaration,
where nodes pins configuration can be seen. Listing 5.2 presents processor
constructor and Listing 5.3 shows data unpacking from input pins, creation

158

Listing 5.1: Procesing node declaration
#inc lude ”Types . h” // de f ined p ins
#inc lude <d f l i b /Node . h> //data f low model node (p ins c on f i gu r a t i on)
#inc lude <d f l i b /IDFNode . h> //data f low pro c e s s i ng l o g i c

c l a s s QuaternionLogProcessor : pub l i c df : : ProcessingNode , pub l i c ←↩
df : : IDFProcessor

{
pub l i c :

// ! Defau l t con s t ruc to r
QuaternionLogProcessor () ;
// ! V i r tua l d e s t ru c t o r
v i r t u a l ˜QuaternionLogProcessor () ;
// ! Implementation f o r p r o c e s s i ng l o g i c
v i r t u a l void process () ;
// ! Implementation f o r p r o c e s s i ng l o g i c
v i r t u a l void reset () ;

p r i va t e :
// ! Output pin with quatern ion data
JointAnglesOutputPin* outPinA ;
// ! Input pin with quatern ion data
JointAnglesInputPin* inPinA ;

} ;

of output data, data processing and propagation of output data with out-
put pins. More examples with full source code for presented solutions and
tests can be found on attached CD. To simplify experiments a general class
performing all test was proposed - CompleteTestProcessor.

Listing 5.2: Procesing node constructor
QuaternionLogProcessor : : QuaternionLogProcessor ()
{

//Pins are tak ing r e f e r e n c e so that they know which node to inform ,
//when data i s ready to consume (input) , or data i s consumed (output)
inPinA = new JointAnglesInputPin (t h i s) ;
outPinA = new JointAnglesOutputPin (t h i s) ;
//Pins are added to node − c r e a t e i t s c on f i g u r a t i on f o r model
addInputPin (inPinA) ;
addOutputPin (outPinA) ;

}

159

Listing 5.3: Processing node data modification
void QuaternionLogProcessor : : process ()
{

//Extract data from input pin
auto inQuatData = inPinA−>getValue () ;

// output data c r e a t i on − copy o f input data p r op e r t i e s
kinematic : : JointAngleChannelPtr outQuatData (new ←↩

kinematic : : JointAngleChannel (inQuatData−>getSamplesPerSecond ())) ;
outQuatData−>setName (”Quaternion log channel ”) ;
outQuatData−>setTimeBaseUnit (inQuatData−>getTimeBaseUnit ()) ;
outQuatData−>setValueBaseUnit (inQuatData−>getValueBaseUnit ()) ;

// data ed i t i o n with ex t e rna l l i b r a r y f o r quatern ion f u n c t i o n a l i t y
f o r (kinematic : : JointAngleChannel : : size_type i = 0 ; i < ←↩

inQuatData−>size () ; ++i) {
outQuatData−>addPoint (osg : : QuatUtils : : log (inQuatData−>value (i))) ;

}

// output data i s set−up in output pin f o r propagat ion
outPinA−>setValue (outQuatData) ;

}

5.8 Summary and future work

This chapter presented new tools for motion analysis based on multi-resolution
approach in form of lifting scheme and quaternion representation for rota-
tion data. New lifting scheme based on squad interpolation was given, which
correct construction was verified with various tests. Additionally, it has been
shown that custom solutions for motion analysis can be easily implemented
in MDE data processing framework, what standardizes already developed
tolls and provide out-of-the-box optimal computational resources utilization,
data visualization and data loading.

As presented, test have proven very good features of proposed lifting
schemes in areas of motion data compression and noise reduction. Those
techniques can be extended with dual quaternions [34] approach, where de-
spite rotations, also translation can be investigated. This would provide
additional motion description, characteristic for particular actor. Developed
lifting schemes can be also used for other dual quaternion applications like
ones presented in [12, 47, 35]. Proposed technique for interpolating quater-
nions in tangent space can be used to explore wider range of quaternion
interpolation techniques, based on B-splines over greater amount of samples.
This should improve even more compression ratios without loose of data qual-
ity and noise reduction ability of presented tools. We believe that proposed

160

motion data decomposition can be effectively used to improve work on nat-
ural animations presented in [32]. Our tools explore in more details motion
characteristics, providing grater level of accuracy for motion blending, where
particular details resolutions could be morphed independently. Additionally,
presented motion data decomposition can be used to send this data effec-
tively over the network, where firstly signal coarse description is transmitted
and then details, allowing to reconstruct signal with requested quality. This
might be compared to interlaced technique for images coding. More detailed
description for this idea, applied for surface meshes, can be found in [65].

161

Chapter 6

Summary and final conclusions

Motion Data Editor (MDE) In this thesis a new software - Motion Data
Editor (MDE) - dedicated to general data processing, developed at Polsko-
Japońska Wyższa Szkoła Technik Komputerowych (PJWSTK), was pre-
sented. Detailed application architecture and logic description have shown,
that this software is very mature and reliable to use for various research work
and computations. Elaborated logic elements and dedicated plug-in system
show, how users can easily extend application with custom solutions and
functionalities. Moreover, it has been presented that MDE provides built-
in, cross-platform functionalities, supporting development of new features.
Elaborated logic for threads management and efficient computations based
on jobs manager concept provide reliable and standardized solution for var-
ious data processing tasks, optimally utilizing available processing power.
Users can concentrate on implementing essential algorithms, instead of de-
veloping threads management and synchronization. Described procedure for
loading data with data sources, parsers and dedicated data managers shows
how easily new data can be delivered to application. A novel solution for
uniform data handling, independently from data types has been described
for strongly typed C++ language. It was presented how such mechanism,
despite wrapping any data types, can also provide comprehensive type infor-
mation about encapsulated data. A possibility of data lazy initialization was
described for raw data and data loaded with dedicated file and stream man-
agers, what significantly reduces application memory consumption, as data
is loaded to memory only when required. A mechanism for simple report-
ing was elaborated, allowing to summarize work results by storing visualizer
scenes with proper comments in form of rich text documents with template
and styles support. It has been shown how presented logic was implemented
along various libraries and how to to use described libraries to introduce cus-
tom GUI logic based on presented data processing framework.

162

Despite architecture and logic, designed for efficient and easy data pro-
cessing, a dedicated plug-in for flexible composing of various processing
blocks in more complex processing schemes, based on data flow represen-
tation, was presented. It provides application users simple mechanism of
designing custom processing pipelines, with well defined data sources, pro-
cessing element and data sinks. Such models can be created within dedicated
graphical environment, following the concept of visual programming. This
approach introduces also higher abstraction level for data processing model
design with more general operations like nodes grouping to create more com-
plex algorithms, reusable in the future, based on simpler data operations. It
has been shown, how this mechanism is implemented for MDE, fitting pro-
posed data processing logic with threads and jobs concept.

To prove MDE quality, stability and reliability, a whole procedure of
software development was described. All most important tools supporting
development process, with tools managing projects configuration for vari-
ous platforms were presented. Proposed CI process was described in details,
showing the right direction for automating commonly performed operations,
minimizing risk of potential errors because of various human mistakes. It
has been shown how to develop such procedure and extend it with additional
functionalities like testing, generating installers and validating code quality.
Various well tested and commonly used external libraries and frameworks
were presented as a background for a low level modules implementation.
Different programming techniques, used for application development, have
been pointed out, which are considered as good practices for modern soft-
ware development, minimizing application maintenance costs and improving
its flexibility for new functionalities.

Further development directions for different application elements were
proposed along with CI process. They cover new functionalities for visual-
izers, providing access to their scenes, giving opportunity to introduce new
functionalities and elements to visualized data scene. Also new scheduling
mechanism for job manager was presented, which should improve overall data
processing performance by limiting delays on single jobs queue operations
synchronization. New services for users data sharing have been proposed, to
improve team work cooperation and knowledge exchange, changing applica-
tion to general purpose research platform.

163

Quaternion lifting schemes This work has presented new approach for
motion data analysis with multi-resolution tools for joints rotation data in
quaternion form. Provided test results for data noise reduction and compres-
sion has proved very good properties for proposed data decomposition and
representation for those applications, allowing to reduce signal noise signifi-
cantly, providing high compression ratios with very limited signal distortions
levels. Given new lifting scheme based on squad quaternion interpolation
was tested for correct signal decomposition. Presented results have shown,
that this lifting scheme works properly, allowing to reconstruct previously
decomposed signal to its original form. Compression results and noise reduc-
tion properties are almost identical to another lifting scheme, with equivalent
interpolation technique in quaternion tangent space. Application of second
generation wavelets on quaternion signals opens new directions for motion
analysis tools. It was proposed to extend lifting schemes application for dual
quaternions to analyse additionally actor specific data according to his skele-
tal features. We have proposed also application of developed tools for more
efficient and realistic motion blending. Proposed motion data decomposition
can be used to create more reliable and descriptive motion features, used
further for motion classification, recognition and prediction.

To perform presented tests a dedicated library was developed, based on
MDE functionality and its dedicated data flow processing framework. Pre-
viously implemented solutions were wrapped with delivered helper classes
to fit data flow model and logic. With this approach time required for
obtaining results has been limited significantly, due to a well defined pro-
cedure of loading new data for processing and automated utilization of all
available computation resources. Custom libraries have been automatically
standardized, offering great flexibility in their usage with other application
components and features. Moreover, moving to new data analysis tool made
research easier, as all required tools are available in one application. Pre-
viously various standalone software (gnuplot, spread sheets, custom testing
framework for quaternion based lifting schemes) for different tasks were used,
what required many data formats conversions and manual operations. Now
whole procedure is maximally simplified in MDE, providing great support
for general purpose data processing with dedicated solutions, making motion
analysis much simpler, efficient and reliable.

Summary It has been proven with a detailed description of MDE architec-
ture and logic, along with presented extensions allowing simple and flexible
creation of complex data processing models that MDE is a mature, efficient

164

and easily expandable data analysis tool. This statement is additionally
proven with presented software development methodology and work organiza-
tion. Proposed novel approach to motion data analysis with multi-resolution
tools for quaternions provides great results in the field of data compression
and noise reduction. Presented technique opens new directions in motion
analysis, opening new directions for development of new motion analysis tech-
niques. Presented research results were obtained with help of MDE software,
proving that it can be easily adopted for custom solutions, rising their quality
and standardizing them for cooperation with other built-in functionalities,
making data analysis simpler and faster. Having proved those statements all
thesis goals have been achieved with success. Additionally further research
in motion analysis is now supported with MDE application, standardizing
current tools and algorithms.

165

Appendix

The structure of attached CD is as follows:

� thesis - contains electronic version of this thesis in pdf format,

� application - contains a demo version of MDE application (installer),

� libraries - contains all libraries required to develop custom solutions for
MDE, libraries are packed with 7zip format,

� tools - contains tools required to configure provided projects,

� src - contains source code for presented implementation

– plug-in - contains source code for MDE plug-in with wrapped tools
for motion analysis,

– utilities - contains general purpose algorithms (lifting scheme) and
quaternions operations (interpolations, functions).

� results - experiments results in Excel format with presented charts,

� instructions - contains instructions how to configure plug-in projects,
build them and test with application.

Application is delivered with built-in, demo user account, with limited
access to motion data. Test data, used for experiments are already provided.
Application installer provides automatically presented plug-in with motion
analysis tools described in the thesis.

166

Streszczenie

1 Wprowadzenie

Nowe technologie pozwalają rejestrować coraz dokładniej dane o otaczają-
cym nas świecie. To bezpośrednio przekłada się na zwiększone wymagania
dla mocy obliczeniowych do przetwarzania dużych zbiorów danych oraz dla
przestrzeni dyskowych niezbędnych do ich przechowywania. Proponuje się
specjalizowane rozwiązania dla zbiorów danych o różnych wielkościach. Dla
dużych zbiorów - tak zwanych big data [69] - stosuje się hurtownie danych i de-
dykowane, rozproszone bazy danych. Dla średnich i małych zbiorów propono-
wane są systemy algebry komputerowej (Computer Algebra Systems (CAS)
[73]), arkusze kalkulacyjne oraz specjalizowane, naukowe języki programowa-
nia [21].

Obecnie analiza danych wykonywana jest nie tylko przez wykwalifiko-
waną kadrę w dziedzinie analizy matematycznej z doświadczeniem z zakresu
programowania, ale również przez mniej doświadczonych użytkowników w
tych dziedzinach, którzy bazują na gotowych rozwiązaniach i opracowaniach
interesujących ich zagadnień statystyki.

Na rynku jest niewiele aplikacji dedykowanych ogólnemu przetwarzaniu
danych, które wspierałyby użytkowników w często powtarzanych operacjach
na danych: ładowanie, konwersja, proces przetwarzania czy raportowanie
rezultatów analiz. Taki stan rzeczy spowalnia i utrudnia postęp w prowadzo-
nych badaniach, ograniczając przy tym przepływ wiedzy pomiędzy członkami
grup badawczych. Pociąga to za sobą potrzebę stworzenia nowych narzędzi,
łatwych w użyciu i umożliwiających automatyczne, optymalne wykorzysta-
nie dostępnych mocy obliczeniowych. Ich celem jest pomóc użytkownikom
skupić się na celach, które chcą osiągnąć, a nie na technologiach i środkach,
jakimi można te cele osiągnąć.

Przeglądając dostępne aplikacje wspierające analizę ruchu można zauwa-

167

żyć znaczące braki w ich funkcjonalności w zakresie przetwarzania danych.
Pozwalają one jedynie na przeglądanie zgromadzonych danych i proste rapor-
towanie. Uderza to w sporą grupę potencjalnych użytkowników, obejmującą
lekarzy, trenerów sportowych i naukowców. Brak kompletnych rozwiązań dla
analizy i przetwarzania ruchu ogranicza rozwój następujących dziedzin:

� medycyna (ortopedzi, neurochirurdzy i neurolodzy),

� sport (nowe miary postępu w treningach, spersonalizowane treningi,
porównywanie techniki zawodników),

� bezpieczeństwo (rozpoznawanie osób po ich ruchach, wykrywanie po-
tencjalnie niebezpiecznych sytuacji),

� rozrywka (realistyczne animacje syntezowanego ruchu, rozszerzona rze-
czywistość).

Aby udostępnić użytkownikom kompletne narzędzia dla analizy danych
w PJWSTK stworzono aplikację MDE. Jest ona zorientowana na wsparcie
ogólnego przetwarzaniu danych, niezależne od ich formatu, typu i charakteru.
MDE wprowadza dobrze zdefiniowane standardy dla efektywnego przetwa-
rzania i analizy danych.

Bazując na wielorozdzielczych narzędziach zaproponowano nowe podej-
ście dla analizy i przetwarzania danych ruchu w reprezentacji kwaternionowej
[52] aby wesprzeć badania nad ruchem ludzkiego ciała. Metoda ta jest roz-
winięciem obecnych rozwiązań [26, 27, 37, 38, 39, 10, 18, 7, 6, 40, 41, 5],
operujących głównie na klasycznej analizie falkowej rotacji zapisanych jako
niezależne kąty Eulera.

Celem pracy jest zaprezentowanie architektury i logiki aplikacji MDE -
wyjaśnienie w jaki sposób standaryzują one procedurę analizy i przetwarza-
nia danych przy pomocy wbudowanych funkcjonalności. Aby zweryfikować
zalety MDE oraz możliwość łatwego użycia tego rozwiązania dla własnych
potrzeb, spróbowano zaimplementować i przetestować zbiór nowych narzę-
dzi dla analizy ruchu, opartych na wielorozdzielczej analizie danych ruchu w
zapisie kwaternionowym.

2 Tezy pracy

W pracy sformułowano dwie tezy:

168

Teza 1 Aplikacja MDE jest dojrzałym, stabilnym narzędziem, opartym na
ogólnym szkielecie (framework) dla przetwarzania danych. MDE może
być elastycznie rozszerzany i konfigurowany na potrzeby specyficznych
wymagań użytkowników poprzez dedykowany mechanizm wtyczek (plu-
gins). Narzędzie to wspiera pełną, dobrze zdefiniowaną procedurę ła-
dowania danych. Gwarantuje wydajne zarządzanie danymi w zunifi-
kowany sposób, niezależnie od ich typu, oferując mechanizmy automa-
tycznego i optymalnego wykorzystania dostępnych zasobów obliczenio-
wych. Przeglądanie danych jest znormalizowane dla wszystkich ob-
sługiwanych typów danych, przedstawiając je z różnych perspektyw,
specyficznych dla danego typu.

Teza 2 Zaproponowane narzędzia dla analizy ruchu, oparte o wielorozdziel-
czą analizę danych ruchu w reprezentacji kwaternionowej, oferują bar-
dzo dobre właściwości dekompozycji danych dla zastosowań odfiltro-
wywania szumów oraz kompresji. Algorytmy te, zrealizowane w for-
mie bibliotek ogólnego przeznaczenia, można w bardzo prosty spo-
sób zaimplementować w ramach aplikacji MDE. Niezbędne dane do
analizy oraz otrzymane wyniki eksperymentów są automatycznie ob-
sługiwane przez specjalizowane moduły aplikacji, umożliwiając łatwe
definiowanie i realizację badań wraz z analizą wyników. Wykorzysta-
nie wcześniej przygotowanych bibliotek wymaga niewielkiego nakładu
pracy programistycznej, dostosowując istniejące rozwiązania do akcep-
towalnych przez MDE interfejsów. Taka implementacja automatycznie
gwarantuje optymalne wykorzystanie wszystkich zasobów obliczenio-
wych bez samodzielnego zarządzania wątkami.

3 Charakterystyka aplikacji Motion Data Edi-
tor

Architektura MDE oparta jest na trzech podstawowych komponentach (Ry-
sunek 6.1). Podstawowe typy danych obejmują:

� zunifikowany mechanizm przechowywania i zarządzania danymi w pa-
mięci, niezależnie od ich typów dla języka programowania C++,

� generyczny typ dla danych o charakterze czasowym,

� typy danych narzędziowych ogólnego przeznaczenia.

169

Rysunek 6.1: Ogólna architektura aplikacji

Rysunek 6.2: Ogólna procedura przetwarzania i analizy danych

MDE dostarcza dedykowany moduł pozwalający optymalnie wykorzystać
wszystkie dostępne zasoby obliczeniowe na potrzeby realizacji różnych obli-
czeń. Dodatkowo, możliwe jest zunifikowane logowanie wiadomości na te-
mat aktualnego stanu aplikacji. Dostarczone rozwiązania wspierają tworze-
nie i projektowanie specjalizowanych widoków dla realizowanej logiki prze-
twarzania. Aplikacja oferuje mechanizm wtyczek, pozwalający rozszerzać
jej funkcjonalność o nowe możliwości. Wbudowane mechanizmy zarządza-
jące elementami logiki przetwarzania danych wspierają proces analizy danych
(Rysunek 6.2). Podstawowe elementy logiki przetwarzania danych obejmują
obiekty dostarczające i ładujące dane do aplikacji (źródła i parsery), wi-
zualizujące dane (wizualizatory) oraz szeroko pojęte nowe funkcjonalności
aplikacji w formie serwisów.

170

Rysunek 6.3: Podstawowe typy danych

3.1 Podstawowe typy danych

Dwoma najważniejszymi typami danych w MDE są OW oraz DataChannel.
Przedstawiona architektura aplikacji jest w całości oparta na tych obiektach
oraz ich właściwościach. Wspierają one uniwersalny mechanizm zarządzania
dowolnymi typami danych oraz standaryzują obsługę danych o charakterze
czasowym. Rysunek 6.3 przedstawia wszystkie bazowe typy danych MDE.

3.1.1 ObjectWrapper

OW wprowadza nowe podejście dla ogólnego zarządzania danymi dowolnych
typów dla języka programowania C++. Koncepcja oparta jest na wspólnym
typie danych dla wszystkich obiektów, znanym z takich języków programo-
wania jak C# oraz Java, gdzie bazą dla wszystkich danych jest ogólny typ
Object. OW oparty jest na programowaniu generycznym. Wprowadza jed-
nolity interfejs dla zapytań o informację o typach dla opakowanych danych,
wypakowywanie danych oraz ich inicjalizację. Dodatkowo OW wspiera me-
chanizm leniwej inicjalizacji danych oraz system meta-danych w formie pary
literałów [klucz, wartosc]. Mechanizm OW jest konfigurowalny w ramach
dwóch polityk:

� wskaźnika - typ wskaźnika używanego do przechowywania danego typu
danych,

� klonowanie - sposób tworzenia kopii danych.

Opcje te pozwalają dostosować OW do obsługi dowolnych typów danych,
od wbudowanych podstawowych typów dla języka C++, po własne typy
danych, zdefiniowane na potrzeby konkretnych zastosowań. OW wspiera in-
formację o hierarchii opakowanych typów. Ta funkcjonalność działa tylko

171

dla typów pochodnych, dla których opis hierarchii typów bazowych jest do-
stępny. Obecna implementacja tej funkcjonalności pozwala obsługiwać je-
dynie liniowe hierarchie typów, więc dla dziedziczenia wielobazowego tylko
jeden typ bazowy może być użyty. Mechanizm ten wykorzystywany jest do
filtrowania danych według typu oraz przedstawiania danych z różnych per-
spektyw, wynikających z ich hierarchii dziedziczenia.

3.1.2 Dane o charakterze czasowym

Generyczny typ DataChannel wprowadzono aby zunifikować obsługę danych
o charakterze czasowym. Pozwala on na przechowywanie próbek w formie
[indeks(czas) → wartosc], gdzie indeksy są unikalne i mają ściśle zdefinio-
waną relację mniejszości. Indeksy są ponadto niemodyfikowalne, ponieważ
porządkują dane w domenie czasu. Ładowanie danych do obiektów typu Da-
taChannel musi odbywać się w porządku rosnącym dla czasu, ponieważ we-
wnętrznie dane są dodatkowo opatrzone indeksami reprezentowanymi przez
liczby całkowite, odpowiadające numerom próbek w kolejności w jakiej zo-
stały załadowane. DataChannel oparty jest na łączeniu interfejsów oraz de-
dykowanych im implementacji (mix-ins). Pozwala to zmieniać charakter da-
nych bez potrzeby ich kopiowania, poprzez przykrywanie instancji danych de-
dykowanym interfejsem, zmieniającym typ przechowywanych w DataChannel
wartości. Obiekty typu DataChannel można podzielić na dwie kategorie ze
względu na wartości znaczników czasu:

� równo-odległe indeksy czasu - stała różnica pomiędzy czasami kolejnych
próbek danych,

� nieregularne indeksy czasu - zmienna różnica pomiędzy czasami kolej-
nych próbek danych.

Ta własność używana jest do optymalnego dostępu do wartości dla zapy-
tań poprzez indeks czasowy danych.

Jako rozszerzenie dla obiektów DataChannel zaprojektowano kilka po-
mocniczych typów, pozwalających traktować dane dyskretne w sposób ciągły.
Oferują one gotowe metody interpolacji oraz możliwość dostarczania wła-
snych interpolatorów. Klasy te są używane kiedy DataChannel przeglądany
jest w większej rozdzielczości niż wynika to z surowych danych. Struktura
wielu algorytmów wymaga zapytań o indeksy próbek spoza danego zakresu.
Aby wesprzeć tego rodzaju operacje zaprojektowano kilka schematów ekstra-
polacji dla DataChannel :

172

Rysunek 6.4: Bazowe elementy logiki przetwarzania danych

� wyjątki - przy zapytaniu o dane spoza dostępnego zakresu rzucane są
wyjątki,

� wartości brzegowe - odpowiednio najmniejsza lub największa próbka są
powielane dla wszystkich zapytań spoza zakresu,

� symulacja periodyczności danych - zapytanie o dane spoza zakresu jest
zaokrąglane do właściwego przedziału danych na podstawie odległości
pomiędzy brzegowymi próbkami.

Obiekty z danymi czasowymi często są rozszerzane o stan opisujący ich
aktualny czasu. Dla DataChannel wprowadzono typ Timer. Łączy on stan
czasu z DataChannel pozwalając pobierać dane dla aktualnie ustawionego
w Timer czasu. Dodatkowo umożliwia on prowadzenie niezależnego stanu
czasu dla tych samych danych bez potrzeby ich kopiowania.

3.2 Bazowe elementy logiki przetwarzania danych

Rysunek 6.4 przedstawia podstawowe elementy logiki przetwarzania danych.
Odpowiedzialne są one za ładowanie nowych danych do aplikacji, przegląda-
nie danych oraz rozszerzanie MDE o nowe funkcjonalności poprzez dedyko-
wany mechanizm wtyczek.

3.2.1 Parsery

Koncepcja parserów powstała aby znormalizować proces wypakowywania da-
nych z różnych źródeł (najczęściej plików bądź strumieni). Każdy parser
dostarcza informacji o obsługiwanych źródłach oraz typach danych, które

173

potencjalnie może z nich dostarczyć. Ponadto, każdy parser musi charak-
teryzować się minimum jedną z dwóch funkcjonalności obsługujących różne
sposoby dostępu do danych:

� indywidualne operacje wejścia wyjścia - parser sam wykonuje niskopo-
ziomowe operacje dostępu do danych,

� obsługa strumieni danych - parser dostarcza danych z ściśle zdefinio-
wanych strumieni danych.

Taka realizacja parserów pozwala na optymalizację ładowania danych dla
plików. Plik może być wczytany raz do pamięci i dostarczony w formie stru-
mienia do parsera. Możliwe jest również obsłużenie pliku przez kilka parse-
rów, wzajemnie się uzupełniających pod kątem wypakowywanych danych.

Mechanizm parserów współpracuje z mechanizmem leniwej inicjalizacji
OW, gdzie faktyczne parsowanie przeprowadzane jest w momencie odpyty-
wania OW o dane. Pozwala to ograniczyć potrzebną dla danych pamięć, gdyż
nie wszystkie dane muszą być używane podczas analizy i przetwarzania.

3.2.2 Źródła danych

Idea źródeł danych (DataSource) została zaproponowana, aby ujednolicić
sposób przeglądania dostępnych danych na potrzeby analizy i przetwarza-
nia. Obiekty tego typu odpowiedzialne są za wskazywanie i dostarczanie
danych w ich kontenerach (ścieżka do lokalnego pliku, ściągnięcie archiwum
z serwera FTP, odpytanie bazy danych, otwarcie połączenia z danym urzą-
dzeniem) oraz ładowanie danych z kontenerów do aplikacji (najczęściej z
pomocą parserów i dedykowanych menadżerów). Źródła danych pozwalają
MDE obsługiwać specyficzne sposoby dostarczania danych, których przykła-
dem może być HMDB [19] - scentralizowana usługa dostarczająca danych
ruchu nagranych w HML.

3.2.3 Wizualizatory

Koncepcja wizualizatorów (Visualizer) wprowadza warstwę abstrakcji dla
przeglądania danych. Obiekty tego typu obsługują mechanizm serii danych,
pozwalających przeglądać rożne typy danych. Zaproponowane rozszerzenie
dla serii danych umożliwia prezentację danych o charakterze czasowym, dla
których wprowadzono dodatkowe operacje: skalowanie w czasie (scale), prze-
sunięcie w czasie (offset) oraz modyfikację aktualnego czasu dla danych w
serii. Wizualizatory mogą wspierać różne ilości serii danych, zależnie od

174

charakteru prezentowanych danych i właściwości wizualizatora. Wśród serii
danych można wyróżnić aktywną serię danych, aktualnie zarządzaną przez
użytkownika, dla której wizualizator może dostarczać dodatkowych funkcjo-
nalności, specyficznych dla danego typu. Każdy wizualizator jest opisany
typami danych, które może obsłużyć, co ułatwia użytkownikom przeglądanie
danych za pomocą różnych wizualizatorów, prezentujących inne perspektywy
danych.

3.2.4 Serwisy

Serwisy wprowadzono jako uogólnienie nowych, szeroko pojętych funkcjo-
nalności aplikacji. Trudno jest zaproponować zbiór wspólnych operacji dla
serwisów, ponieważ mogą one prezentować całkowicie odmienne rozszerzenia
aplikacji. Z tego też powodu serwisy są najbardziej uprzywilejowanymi ele-
mentami logiki MDE, mającymi dostęp do wszystkich modułów logiki aplika-
cji, aby umożliwić tworzenie różnorodnych, nowych funkcjonalności aplikacji.

3.2.5 Wtyczki

Każda analiza danych operuje na innych typach danych oraz narzędziach w
ramach ściśle zdefiniowanej, powtarzalnej procedury. Aby ułatwić użytkow-
nikom dostosowywanie uniwersalnego mechanizmu wspierającego przetwa-
rzanie danych, opartego na logice zaimplementowanej w MDE, wprowadzono
system wtyczek, pozwalających rozszerzać możliwości aplikacji. Wtyczki po-
zwalają rejestrować w aplikacji nowe typy danych, parsery, wizualizatory, źró-
dła danych i serwisy. Ponieważ wtyczki reprezentowane są jako niezależne,
dynamiczne biblioteki, ładowane podczas startu aplikacji, należało wpro-
wadzić dedykowane rozwiązania, weryfikujące ich kompatybilność z MDE.
Brane są tutaj pod uwagę wersje bibliotek zależnych, używanych w aplika-
cji i rozwiązaniach dostarczanych z wtyczkami, wersja publicznego interfejsy
aplikacji oraz wersja interfejsu użyta do budowy wtyczki. Dodatkowo spraw-
dzany jest typ kompilacji wtyczki i aplikacji (debug lub release).

Timeline Jedną z najistotniejszych wtyczek dla MDE jest Timeline. Ser-
wis ten pozwala na synchronizację danych o charakterze czasowym w ramach
ściśle zdefiniowanej hierarchii. Timeline umożliwia edycję właściwości czasu
dla danych, bez konieczności ich kopiowania. Wszystkie operacje na cza-
sie są automatycznie propagowane na całą hierarchię. Nowymi operacjami
Timeline są:

� podziel - tworzone są dwa niezależne zestawy danych dla zadanego
punktu podziału,

175

Rysunek 6.5: Wbudowane funkcjonalności

� scal - dwa niezależne zestawy danych są połączone w zadanej kolejności.

Operacje te pozwalają ograniczyć zakres analizowanych danych w dome-
nie czasu do zadanego okna czasu. Timeline dostarcza również mechanizmu
do odtwarzania danych o charakterze czasowym w wizualizatorach.

3.3 Wbudowane funkcjonalności

Rysunek 6.5 przedstawia wbudowane funkcjonalności MDE, tworzące war-
stwę abstrakcji dla operacji specyficznych dla systemów operacyjnych, syste-
mów plików oraz tworzenia GUI.

3.3.1 Obsługa systemu plików

Zaproponowano zunifikowany typ do obsługi ścieżek dla systemu plików -
Path, ponieważ większość danych dostarczana jest w formie plików. Jest
on bazą dla zbioru podstawowych operacji na plikach i folderach. MDE
dostarcza w ten sposób informacji o specyficznych zasobach aplikacji.

3.3.2 Log

Aby umożliwić prezentację istotnych komunikatów użytkownikowi, zaprojek-
towano mechanizm hierarchicznych logów. Oparty jest on na kilkupozio-

176

mowym statusie informacji, gdzie użytkownik może zdefiniować minimalny
poziom, o którym ma być powiadamiany. Pozostałe informacje są automa-
tycznie filtrowane i usuwane. Log ma konfigurowalne ujścia dla informacji,
od prostej konsoli, przez sformatowane pliki tekstowe, po graficzne okno.
Każda wtyczka inicjowana jest dedykowanym poziomem loga, pozwalającym
zidentyfikować źródło i kontekst wiadomości.

3.3.3 Wielowątkowość

Optymalne wykorzystanie zasobów obliczeniowych komputera wymaga po-
prawnego użycia wątków do równoległej realizacji zadań. Ponieważ zarządza-
nie wątkami jest operacją specyficzną dla systemów operacyjnych, w MDE
wprowadzono typ Thread, tworzący warstwę abstrakcji niezależną od użytko-
wanej platformy. Aby kontrolować ilość tworzonych wątków dla celów diagno-
stycznych oraz zapewnienia stabilności i wydajności aplikacji, wprowadzono
typ ThreadPool. Obiekt ten pozwala na tworzenie ściśle zdefiniowanej ilości
wątków. Kiedy wartość ta zostanie osiągnięta, nie można utworzyć nowych
wątków do momentu ukończenia obliczeń przez już stworzone wątki i zwolnie-
nia ich zasobów. Aby zminimalizować narzut związany z tworzeniem nowych
wątków, ThreadPool utrzymuje zdefiniowaną, minimalną ilość wolnych wąt-
ków jako bufor dla najbliższych zapytań o nowe wątki, starając się ponownie
wykorzystać wątki, które zakończyły swoje zadania.

3.3.4 Przetwarzanie danych

Ciągłe tworzenie nowych wątków oraz inicjowanie ich działania może dra-
stycznie pogorszyć wydajność aplikacji. Aby temu zapobiec zaprojektowano
mechanizm zarządzający i kolejkujący zadania do wykonania. Ściśle zdefi-
niowana grupa wątków odpowiada za przetwarzanie zleconych zadań. Job i
JobManager pozwalają efektywnie wykorzystać dostępne zasoby obliczeniowe
dzięki utrzymywaniu optymalnej ilości wątków przetwarzających, która dla
współczesnych procesorów wynosi rdzenie procesora ∗ 2 − 1. Jeden z wąt-
ków pozostaje wolny na potrzeby obsługiwania graficznego interfejsu użyt-
kownika. Zadania pobierane są ze wspólnej kolejki przez wyznaczone wątki,
w kolejności w jakiej zostały dodane.

3.3.5 Menadżery

W centrum logiki aplikacji leżą dedykowane menadżery dla podstawowych
elementów logiki przetwarzania i analizy danych. Część z nich została już
omówiona (wątki i zadania). Funkcjonalność menadżerów została zdekom-
ponowana na operacje niemodyfikujące i modyfikujące dany obiekt. Takie

177

podejście pozwala udostępniać globalnie niemodyfikującą część operacji oraz
dostarczać lokalnie funkcjonalności pozwalające zmieniać stan menadżerów
do ściśle zdefiniowanych elementów architektury, gdzie takie zachowanie zo-
stało przewidziane. Taka dekompozycja wprowadza porządek w logice, okre-
ślając dokładnie obszary odpowiedzialności poszczególnych modułów oraz
ich potencjalne możliwości, eliminując niepotrzebne udostępnianie wszyst-
kich funkcjonalności.

Operacje na menadżerach są synchronizowane. Aby zwiększyć wydajność
grupy operacji na danym menadżerze oraz wprowadzić izolację dla tych ope-
racji zaprojektowano mechanizm transakcji. Szeregują on inne operacje na
danym obiekcie do momentu zakończenia aktualnej transakcji. Efekty trans-
akcji mogą być zatwierdzone - stan obiektu zostaje trwale zmodyfikowany,
lub mogą zostać wycofane, gdzie wszystkie zmiany na danym obiekcie są
anulowane, a jego stan sprzed transakcji jest przywrócony.

3.4 Proces Ciągłej Integracji (CI)

MDE oparte jest na wielu zewnętrznych bibliotekach, co pozwoliło zaoszczę-
dzić czas na implementowanie dobrze znanych i przetestowanych rozwiązań.
Niestety, ilość zależności stopniowo utrudniała rozwój aplikacji, gdyż kom-
pilacja potrzebnych bibliotek zajmowała coraz więcej czasu i była miejscem
wielu błędów ludzkich. Procedurę CI wprowadzono, aby w pierwszej kolejno-
ści zautomatyzować budowę zewnętrznych bibliotek. Potem rozszerzono ją
o budowę własnych projektów, testy i kontrolę jakości kodu. Dla poprawnie
zweryfikowanych artefaktów CI generuje instalatory gotowych produktów,
udostępniając je użytkownikom do instalacji i aktualizacji. Dodatkowo two-
rzona jest też dokumentacja techniczna wewnętrznych bibliotek.

3.5 Rozwój aplikacji

Aby zapewnić wysoką jakość kodu dla MDE wprowadzono zbiór dobrze zde-
finiowanych i zalecanych praktyk programistycznych:

� programowanie generyczne,

� wzorce projektowe,

� dekompozycja i minimalna zależność między modułami,

� minimalne komentarze nagłówków,

178

� samo-komentujący się kod implementacji wraz z ściśle zdefiniowanym
stylem kodowania,

� dostarczanie prostego, minimalnego, ale kompletnego API dla użytkow-
ników aplikacji.

Zastosowanie tych metod pozwoliło utrzymać elastyczność MDE na nowe
rozwiązania, ograniczyć możliwości potencjalnych błędów oraz skrócić czas
na poprawę błędów.

4 Potokowe przetwarzanie danych

Celem zapewnienia użytkownikom konfigurowalnego, łatwego w użyciu na-
rzędzia do projektowania i realizacji dowolnych schematów przetwarzania
danych opracowano dedykowaną wtyczkę. Wprowadza ona do MDE serwis
pozwalający tworzyć dobrze zdefiniowane potoki przepływu danych. Ich mo-
dele oparte są na strukturze grafu. W ramach modelu można wyróżnić trzy
typy węzłów ze względu na ich funkcję:

� źródła - dostarczają nowych danych do potoku,

� procesory - odpowiadają za przetwarzanie danych,

� terminatory - utrwalają wyniki przetwarzania.

W przeciwieństwie do grafów, węzły w potoku nie łączą cię bezpośrednio
ze sobą. Wprowadzono nowy element - tak zwany pin - poprzez który węzły
mogą być ze sobą łączone. Każdy węzeł opisany jest stałą konfiguracją pi-
nów, którą można porównać do sygnatury funkcji w językach programowania.
W ten sposób rozumiane piny opisują listę parametrów wejściowych funkcji
oraz jej zwracane wartości. Aby dokładniej odzwierciedlić definiowane wę-
złów jako funkcje wprowadzono dodatkowe rozszerzenia do opisu modelu na
poziomie pinów, gdzie można scharakteryzować piny dodatkowymi właści-
wościami:

� wymagany - pin wejściowy musi być połączony z innym pinem, aby
zapewnić minimalną funkcjonalność węzła (argument wymagany),

� zależny - na danym pinie można spodziewać się rezultatów wyłącznie
jeśli jego piny zależne są podłączone.

Dostosowanie opracowanych już algorytmów przetwarzania danych na po-
trzeby potoków polega na opakowaniu ich interfejsami węzłów (najczęściej

179

procesorów). Logika przetwarzania gwarantuje, że przetwarzanie w potoku
jest automatycznie zrównoleglone, poprzez delegowanie obliczeń w formie za-
dań do JobManagera. Dzięki temu użytkownik otrzymuje narzędzie standa-
ryzujące proces przetwarzania i automatycznie wykorzystujące całą dostępną
moc obliczeniową na potrzeby własnych obliczeń, bez potrzeby indywidual-
nego tworzenia i zarządzania wątkami oraz ich synchronizacji.

Aby uprościć wykorzystanie potokowego przetwarzania danych użytkow-
nikom mniej biegłym w programowaniu, zaprojektowano graficzne środowi-
sko programowania. Moduł ten umożliwia wizualną realizację modeli prze-
twarzania poprzez łączenie prostych bloków funkcyjnych, realizujących po-
szczególne zadania. Użytkownik informowany jest na bieżąco o możliwo-
ściach łączenia pinów, wynikających z kompatybilności typów danych które
reprezentują i reguł łączenia modelu. Wizualne środowisko pozwala również
na grupowanie połączonych i skonfigurowanych już węzłów, tworząc bardziej
rozbudowane funkcjonalności, które można użyć w późniejszym czasie bez
potrzeby ponownego ich tworzenia. Takie złożone węzły mogą być wymie-
niane pomiędzy użytkownikami.

5 Wielorozdzielcza analiza danych ruchu w
zapisie kwaternionowym

Zaproponowano nowe podejście do analizy danych ruchu na bazie falek dru-
giej generacji - schemat liftingu [62] i kwaternionowego zapisu rotacji dla
stawów. Schemat liftingu pozwala na dekompozycje danych do wielopozio-
mowej reprezentacji, przedstawionej jako sumę reprezentacji szczegółowych i
zgrubnych. Operacja ta oparta jest na trzech krokach, powtarzanych rekur-
sywnie:

blok podziału dzieli dane na dwa podzbiory dla próbek indeksowanych
wartościami parzystymi i nieparzystymi,

blok predykcji estymuje próbki indeksowane wartościami nieparzystymi przy
pomocy próbek indeksowanych wartościami parzystymi. Estymowana
próbka zastępowana jest różnicą pomiędzy jej wartością a proponowaną
estymatą.

blok uaktualnienia aktualizuje wartości próbek parzystych, aby ich śred-
nia odpowiadała wejściowej średniej sygnału.

180

W porównaniu do kątów Eulera, kwaterniony opisują rotacje w sposób
kompaktowy, oferując przy tym lepsze metody interpolacji [11] z punktu
widzenia realizacji rotacji:

� slerp,

� squad.

Na bazie tych metod i własności kwaternionów zaproponowano szereg
schematów liftingu. Głównym problemem przy tworzeniu tych algorytmów
wydaje się być miara odległości oraz interpretacja wartości średniej dla kwa-
ternionów, które nie są jednoznacznie określone [45]. Schemat liftingu wy-
maga jednak tylko zachowania wartości średniej dla danych na każdym po-
ziomie rozdzielczości, dlatego można przyjmować dowolne interpretacje dla
średniej, aby najlepiej pasowały do poszczególnych zastosowań. Zapropono-
wane schematy operują również na kwaternionach rozumianych jako wektory
przestrzeni R4, aby zweryfikować ich poprawność i możliwość zastosowania
dla analizy ruchu. Ponadto przedstawiona metoda interpolacji kwaternionów
w przestrzeni stycznej (R3) wskazuje kierunek dla nowych metod interpola-
cji dla kwaternionów na bazie większej ilości próbek dla osiągnięcia gładkiej
reprezentacji ruchu.

Aby zweryfikować zaproponowane narzędzia wielorozdzielczej analizy ru-
chu wprowadzono pojęcie odległości pomiędzy dwoma seriami danych w re-
prezentacji kwaternionowej. Odległość ta oparta jest na skumulowanej war-
tości kątów obrotu dla różnicy (iloraz) pomiędzy kolejnymi parami kwater-
nionów w obu seriach danych. Wartość ta przedstawiona jest w radianach
i jest tym mniejsza im kwaterniony przedstawiają bardziej zbliżone obroty,
zmierzając do 0 dla identycznych danych.

5.0.1 Testy

Wykonano szereg testów sprawdzających poprawność wszystkich transfor-
mat - jakość detali oraz rekonstrukcja sygnału po dekompozycji. Rysunek 6.6
przedstawia dane testowe. Dodatkowo, przetestowano zastosowanie rezulta-
tów dekompozycji dla redukcji szumów oraz kompresji danych ruchu. Ry-
sunek 6.7 przedstawia detale danych dla schematu liftingu opartego na in-
terpolacji metodą squad. Po zastosowaniu proponowanej stratnej metody
kompresji na przedstawionych detalach osiągnięto poziom kompresji równy
87.5% przy średnim zniekształceniu sygnału po dekompresji na poziomie
0.002 radiana na kąt obrotu kwaternionu (Rysunek 6.10). Równie dobrze
wypadają testy odfiltrowywania szumów. Dla zniekształconych danych po

181

Rysunek 6.6: Dane testowe - lewe kolano 26-letniego, zdrowego mężczyzny

dodaniu białego szumu opisanego funkcją Gaussa dla σ = 5◦ (Rysunek 6.8)
udało się zrekonstruować dane ze zredukowanymi zakłóceniami o blisko 50%
(Rysunek 6.9). Przedstawione wyniki obejmują cały zakres sygnału, chociaż
schemat liftingu operował tylko na części początkowych próbek, będącej naj-
większą możliwą potęgą liczby 2, wynikającą z binarnego podziału w bloku
split. Dla porównania przedstawiano również niezmodyfikowaną część da-
nych.

5.0.2 Implementacja

Wszystkie zaproponowane schematy liftingu zostały zaimplementowane w
formie algorytmów ogólnego użytku. Zostały one opakowane interfejsami dla
węzłów przetwarzających potokowego przetwarzania danych w MDE. Dane
do analizy pobrano z dostępnej bazy danych ruchu (HMDB) poprzez wbu-
dowane źródło danych. Eksperymenty i wyniki powstały w ramach możliwo-
ści oferowanych przez MDE. Dedykowany wizualizator pozwolił przedstawić
dane w formie kątów Eulera, które są łatwiejsze do analizy wizualnej od
kwaternionów.

6 Oryginalne wyniki

Jako główne, autorskie elementy przedstawione w pracy należy wymienić
następujące zagadnienia:

182

Rysunek 6.7: Detale wszystkich rozdzielczości dla interpolacji metodą squad

Rysunek 6.8: Zniekształcone dane przez dodanie białego szumu Gaussa z
σ = 5◦

183

Rysunek 6.9: Odfiltrowany szum schematem liftingu opartym na squad dla
wartości progowej kątów obrotu = 2◦ i zmodyfikowanych rozdzielczościach:
6, 7, 8

Rysunek 6.10: Wyniki dekompresji dla schematu liftingu opartego na squad
po usunięciu wszystkich detali dla rozdzielczości: 6, 7, 8 (87,5% wszystkich
danych)

184

� dla rozwoju aplikacji MDE:

– zaprojektowanie architektury i logiki dla MDE, które unifikują
proces analizy i przetwarzania danych,

– wprowadzenie koncepcji DataChannel z pomocniczymi funkcjo-
nalnościami, które standaryzują obsługę danych o charakterze cza-
sowym,

– zaproponowanie procedury leniwej inicjalizacji poprzez parsery
oraz ich dualnej natury dla obsługi źródeł danych, które pozwalają
przyspieszyć ładowanie danych do aplikacji,

– opracowanie obiektu typu ThreadPool w ramach MDE, pozwala-
jącego kontrolować ilość wątków aplikacji,

– wprowadzenie koncepcji przetwarzania danych opartej o Job i Job-
Manager umożliwiającej automatycznie wykorzystywać wszystkie
dostępne zasoby obliczeniowe,

– zaprojektowanie Timeline jako warstwy abstrakcji dla operacji na
czasie,

– opracowanie procedury weryfikacji kompatybilności ładowanych
wtyczek z aplikacją oraz ich inicjalizacji kontekstem aplikacji,

– wprowadzenie koncepcji hierarchicznego modelu logowania wiado-
mości,

– zaprojektowanie elastycznego i prostego w użyciu modułu potoko-
wego przetwarzania danych wraz z graficznym środowiskiem pro-
gramowania,

– wprowadzenie procesu Ciągłej Integracji, wspierającego rozwijanie
własnych projektów poprzez automatyzacje wielu zadań,

– opracowanie dedykowanych skryptów na potrzeby konfiguracji no-
wych projektów, wspierających proces wyszukiwania i używania
bibliotek zewnętrznych oraz zarządzania zależnościami pomiędzy
projektami

� dla badań nad analizą ruchu:

– opracowanie nowego podejścia do analizy danych ruchu na bazie
schematu liftingu oraz interpolacji kwaternionów metodą squad,

– opracowanie testów i ich wyników dla porównania różnych schema-
tów liftingu na kwaternionach orz ich zastosowania dla kompresji
i filtrowania szumu,

185

– przykładowa implementacja własnych narzędzi w ramach potoko-
wego przetwarzania danych dla MDE.

7 Podsumowanie

W pracy przedstawiono w jaki sposób aplikacja MDE stworzona w PJWSTK
wspiera ogólne przetwarzanie i analizę danych. Opisano standardy dla ana-
lizy ruchu, jakie wprowadza MDE poprzez zaproponowaną architekturę i
logikę. Omówiono mechanizmy wspierające wydajne przetwarzanie danych
z automatycznym wsparciem dla wielowątkowego przetwarzania oraz nowym
mechanizmem jednolitego przechowywania i zarządzania danymi dowolnego
typu dla C++. Rozwiązania te dowodzą doskonałych właściwości MDE jako
platformy dla różnego typu projektów badawczych, gdzie wydajne i proste
przetwarzanie danych stanowią kluczowym element badań. Ponadto poka-
zano jak prosto można rozszerzać możliwości aplikacji o własne rozwiązania
poprzez dedykowany mechanizm wtyczek. W tym celu zaprezentowano moż-
liwość prostego dostosowania zewnętrznych bibliotek na potrzeby potoko-
wego przetwarzania danych w ramach MDE (wcześniej stworzone biblioteki
ogólnego użytku z przedstawionymi schematami liftingu zostały opakowane
niezbędnymi interfejsami dla potokowego przetwarzania danych). Wszyst-
kie przedstawione eksperymenty i ich rezultaty zostały przeprowadzone w
graficznym środowisku programowania, ułatwiającym tworzenie schematów
przetwarzania danych. Implementując gotowe rozwiązania udało się dodat-
kowo zdekomponować je na prostsze operacje, kompatybilne z innymi modu-
łami przetwarzającymi. Ponadto uzyskano optymalne wykorzystanie zaso-
bów obliczeniowych bez dodatkowych nakładów pracy, co pozwoliło znacząco
skrócić czas potrzebny na dostosowanie się do nowego mechanizmu przetwa-
rzania danych, jak i czas potrzebny na przeprowadzenie niezbędnych testów.

Postawione w pracy tezy zostały udowodnione poprzez szczegółowy opis
architektury oraz pozytywne wyniki przeprowadzonych testów dla propono-
wanych narzędzi analizy ruchu. Udało się również osiągnąć wszystkie po-
stawione w pracy cele implementując istniejące wcześniej rozwiązania w ra-
mach MDE i przeprowadzając testy za pomocą potokowego przetwarzania
danych. Przedstawione rezultaty pracy mogą być użyte jako baza dla wielu
istniejących algorytmów przetwarzania danych ruchu. Pokazano szereg zalet
i zastosowań dla danych w reprezentacji wielorozdzielczej z użyciem propo-
nowanych schematów liftingu. Ponadto, przedstawiono możliwości zastoso-
wań MDE na potrzeby prac badawczych, jako narzędzia wielofunkcyjnego,
wspierającego ładowanie, przetwarzanie i analizę dowolnego rodzaju danych.

186

Wskazano również nowe kierunki dla rozwoju MDE w niedalekiej przyszłości,
które jeszcze bardziej uproszczą proces analizy i przetwarzania danych oraz
umożliwią swobodną wymianę wiedzy pomiędzy użytkownikami aplikacji.

187

List of Figures

2.1 Human musculo-skeletal system 8
2.2 Vicon Polygon . 17
2.3 Mokka . 18

3.1 Common data processing pipeline 21
3.2 System architecture overview 24
3.3 Core data types . 25
3.4 OW class hierarchy . 27
3.5 OW lazy initialization on data query 28
3.6 DataChannel types . 31
3.7 DataChannel concept . 32
3.8 Core processing logic elements 35
3.9 Core functionality . 42
3.10 Various logger outputs . 45
3.11 JobManager overview . 49
3.12 Core managers . 50
3.13 Registering new data type . 52
3.14 Extracting data from file . 54
3.15 File data lazy initialization . 56
3.16 Loading plug-ins . 59
3.17 Unpacking and registering plug-in content 60
3.18 Text editor and reporting . 62
3.19 Communication data source 68
3.20 Kinematic visualizer . 69
3.21 Chart visualizer . 71
3.22 Timeline playback controller 72
3.23 Subject hierarchy and data grouping 73
3.24 Video visualizer . 74
3.25 Python environment . 75
3.26 CI process overview . 80
3.27 External libraries hierarchy with custom projects dependencies 81

188

4.1 Example data flow structure for a given graph 85
4.2 Input pin wrapper state chart 97
4.3 Output pin wrapper state chart 98
4.4 Source node wrapper state chart 99
4.5 Processing node state chart 100
4.6 Sink node wrapper state chart 101
4.7 Examples of visual programming environments 105
4.8 Visual data flow environemnt exmaple for MDE 106

5.1 Lifting scheme forward transform 119
5.2 Lifting scheme inverse transform 119
5.3 Lerp and slerp rotations interpolations comparison 128
5.4 Prediction diagram for squad interpolation in tangent space . 129
5.5 Test data - left knee of 26 years old and healthy male 133
5.6 LinHaar details after forward transform 135
5.7 LinHaar signal reconstruction 135
5.8 QuatHaar details after forward transform 136
5.9 QuatHaar signal reconstruction 136
5.10 Lerp details after forward transform 137
5.11 Lerp signal reconstruction . 137
5.12 Slerp details after forward transform 138
5.13 Slerp signal reconstruction . 138
5.14 Squad details after forward transform 139
5.15 Squad signal reconstruction 139
5.16 TangentSpace details after forward transform 140
5.17 TangentSpace signal reconstruction 140
5.18 Noisy test data . 142
5.19 QuatHaar lifting scheme noise reduction best results 144
5.20 Slerp lifting scheme noise reduction best results 145
5.21 Squad lifting scheme noise reduction best results 146
5.22 TangentSpace lifting scheme noise reduction best results . . . 147
5.23 QuatHaar compression quality loss 150
5.24 Slerp compression quality loss 151
5.25 Squad compression quality loss 152
5.26 TangentSpace compression quality loss 153
5.27 Quaternion based motion analysis data processors 157
5.28 Pins data wrappers . 158

189

List of Tables

2.1 Motion data types . 8
2.2 Basic motion recording equipment 9
2.3 Complex motion recording systems 11
2.4 Different file formats for storing motion data 13
2.5 Motion analysis tools comparison 15

3.1 MDE features . 20
3.2 OW policies . 29
3.3 DataChannel properties . 33
3.4 Application paths . 43
3.5 corelib exported classes . 64
3.6 coreui exported classes . 65

5.1 Noisy signals distances to original signal 141
5.2 Noise reduction results . 148
5.3 Compression ratios . 148
5.4 Compression results . 154

190

List of Algorithms

3.1 Requesting ThreadPool for threads 47
3.2 Releasing unused thread . 47

5.1 Average recursive algorithm . 122

191

List of Acronyms

MDE Motion Data Editor

PJWSTK Polsko-Japońska Wyższa Szkoła Technik Komputerowych

HML Human Motion Laboratory

HMDB Human Motion Database

IMU inertial measurement unit

EMG electromyography

GRF ground reaction forces

MoCap motion capture

FTP File Transfer Protocol

STL Standard Template Library

SVN Source Version Control

HD High Definition

B-tk Biomechanical ToolKit

RTTI Real-Time Type Info

POD Plain Old Data

RTR Return Type Resolver

CPU Central processing unit

GPU Graphics processing unit

CI Continuous Integration

192

API application public interface

GUI graphical user interface

SDK software development kit

I/O input/output

OW ObjectWrapper

ABI application binary interface

UI user interface

IDE Integrated Development Environment

PIMPL Private Implementation

RAII Resources Acquisition Is Initialization

URL Uniform Resource Locator

CAS Computer Algebra Systems

193

Bibliography

[1] Umut A. Acar, Guy E. Blelloch, and Robert D. Blumofe. The data
locality of work stealing. Theory of Computing Systems, 35(3):321–347,
2002.

[2] A. Ahmed, A. Hilton, and F. Mokhtarian. Adaptive compression of
human animation data. In Proceedings of EuroGraphics Conference,
Saarbrucken, Germany, 2002.

[3] Joseph Albahari and Ben Albahari. C# 5.0 in a Nutshell: The Definitive
Reference. O’Reilly Media, 5 edition, 6 2012.

[4] Andrei Alexandrescu. Modern C++ Design: Generic Programming and
Design Patterns Applied. Addison-Wesley Professional, 1 edition, 2 2001.

[5] Okan Arikan. Compression of motion capture databases. In ACM Trans-
actions on Graphics (TOG), volume 25, pages 890–897. ACM, 2006.

[6] Philippe Beaudoin, Pierre Poulin, and Michiel van de Panne. Adapting
wavelet compression to human motion capture clips. In Proceedings of
Graphics Interface 2007, pages 313–318. ACM, 2007.

[7] Thomas Beth, Ingo Boesnach, Martin Haimerl, Jörg Moldenhauer,
Klaus Bös, and Veit Wank. Characteristics in human motion–from ac-
quisition to analysis. In IEEE International Conference on Humanoid
Robots, pages 56–75, 2003.

[8] Jasmin Blanchette and Mark Summerfield. C++ GUI Programming with
Qt 4 (2nd Edition) (Prentice Hall Open Source Software Development
Series). Prentice Hall, 2 edition, 2 2008.

[9] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded
computations by work stealing. Journal of the ACM (JACM), 46(5):720–
748, 1999.

194

[10] Armin Bruderlin and Lance Williams. Motion signal processing. In
Proceedings of the 22nd annual conference on Computer graphics and
interactive techniques, pages 97–104. ACM, 1995.

[11] Erik B. Dam, Martin Koch, and Martin Lillholm. Quaternions, inter-
polation and animation. 1998.

[12] Konstantinos Daniilidis. Hand-eye calibration using dual quaternions.
The International Journal of Robotics Research, 18(3):286–298, 1999.

[13] Ingrid Daubechies, Igor Guskov, Peter Schröder, and Wim Sweldens.
Wavelets on irregular point sets. Philosophical Transactions of the Royal
Society of London. Series A: Mathematical, Physical and Engineering
Sciences, 357(1760):2397–2413, 1999.

[14] James Diebel. Representing attitude: Euler angles, unit quaternions,
and rotation vectors. 2006.

[15] James Dinan, Brian Larkins, Ponnuswamy Sadayappan, Sriram Krish-
namoorthy, and Jarek Nieplocha. Scalable work stealing. In Proceedings
of the Conference on High Performance Computing Networking, Storage
and Analysis, page 53. ACM, 2009.

[16] Paul M. Duvall, Steve Matyas, and Andrew Glover. Continuous Integra-
tion: Improving Software Quality and Reducing Risk. Addison-Wesley
Professional, 1 edition, 7 2007.

[17] John W. Eaton, David Bateman, and Soren Hauberg. Gnu Octave Ver-
sion 3.0.1 Manual: A High-Level Interactive Language For Numerical
Computations. CreateSpace Independent Publishing Platform, 1 edition,
3 2009.

[18] YC Fangt, CC Hsieh, MJ Kim, JJ Chang, and TC Woo. Real time mo-
tion fairing with unit quaternions. Computer-Aided Design, 30(3):191–
198, 1998.

[19] Wiktor Filipowicz, Piotr Habela, Krzysztof Kaczmarski, and Marek Kul-
backi. A generic approach to design and querying of multi-purpose hu-
man motion database. In ICCVG (1), pages 105–113, 2010.

[20] Johan Fredriksson and Carl Olsson. Simultaneous multiple rotation
averaging using lagrangian duality. In Computer Vision–ACCV 2012,
pages 245–258. Springer, 2013.

195

[21] Amos Gilat. MATLAB: An Introduction with Applications. Wiley, 4
edition, 12 2010.

[22] Klaus Gürlebeck, Wolfgang Sprössig, and Klaus Guerlebeck. Quater-
nionic and Clifford Calculus for Physicists and Engineers. Wiley, 2
edition, 6 1998.

[23] Yi Guo, Jisheng Zhao, Vincent Cave, and Vivek Sarkar. Slaw: A scal-
able locality-aware adaptive work-stealing scheduler. In Parallel & Dis-
tributed Processing (IPDPS), 2010 IEEE International Symposium on,
pages 1–12. IEEE, 2010.

[24] Andrew J. Hanson. Visualizing Quaternions (The Morgan Kaufmann
Series in Interactive 3D Technology). Morgan Kaufmann, 1 edition, 1
2006.

[25] Richard Hartley, Khurrum Aftab, and Jochen Trumpf. L1 rotation av-
eraging using the weiszfeld algorithm. In Computer Vision and Pat-
tern Recognition (CVPR), 2011 IEEE Conference on, pages 3041–3048.
IEEE, 2011.

[26] Chung-Chi Hsieh. B-spline wavelet-based motion smoothing. Computers
& industrial engineering, 41(1):59–76, 2001.

[27] Chung-Chi Hsieh. Motion smoothing using wavelets. Journal of Intelli-
gent and Robotic Systems, 35(2):157–169, 2002.

[28] L. Huang. A Concise Introduction to Mechanics of Rigid Bodies: Mul-
tidisciplinary Engineering. Springer, 2012 edition, 11 2011.

[29] Jez Humble and David Farley. Continuous Delivery: Reliable Software
Releases through Build, Test, and Deployment Automation (Addison-
Wesley Signature Series (Fowler)). Addison-Wesley Professional, 1 edi-
tion, 8 2010.

[30] O’Reilly Media Inc. Big data now: 2012 edition, 10 2012.

[31] Maarten H. Jansen, Patrick Oonincx, and Patrick J. Oonincx. Second
generation wavelets and applications. Springer, 2005.

[32] Michael Patrick Johnson. Exploiting quaternions to support expressive
interactive character motion. PhD thesis, Massachusetts Institute of
Technology, 2002.

196

[33] Nicolai M. Josuttis. The C++ Standard Library: A Tutorial and Refer-
ence (2nd Edition). Addison-Wesley Professional, 2 edition, 4 2012.

[34] Bert Jüttler. Visualization of moving objects using dual quaternion
curves. Computers & Graphics, 18(3):315–326, 1994.

[35] Ladislav Kavan, Steven Collins, Jǐŕı Žára, and Carol O’Sullivan. Ge-
ometric skinning with approximate dual quaternion blending. ACM
Transactions on Graphics (TOG), 27(4):105, 2008.

[36] Ralph Kimball and Margy Ross. The Data Warehouse Toolkit: The
Definitive Guide to Dimensional Modeling. Wiley, 3 edition, 7 2013.

[37] JeHee Lee and Sung Yong Shin. Motion fairing. In Computer Anima-
tion’96. Proceedings, pages 136–143. IEEE, 1996.

[38] Jehee Lee and Sung Yong Shin. A coordinate-invariant approach to
multiresolution motion analysis. Graphical Models, 63(2):87–105, 2001.

[39] Jehee Lee and Sung Yong Shin. General construction of time-domain
filters for orientation data. Visualization and Computer Graphics, IEEE
Transactions on, 8(2):119–128, 2002.

[40] Shiyu Li, Masahiro Okuda, and Shin ichi Takahashi. Compression of
human motion animation using the reduction of interjoint correlation.
Journal on Image and Video Processing, 2008:2, 2008.

[41] Yi Lin and Michael D. McCool. Nonuniform segment-based compression
of motion capture data. In Advances in Visual Computing, pages 56–65.
Springer, 2007.

[42] Stanley B. Lippman, Josée Lajoie, and Barbara E. Moo. C++ Primer
(5th Edition). Addison-Wesley Professional, 5 edition, 8 2012.

[43] Landis F. Markley, Yang Cheng, John Lucas Crassidis, and Yaakov Osh-
man. Averaging quaternions. Journal of Guidance, Control, and Dy-
namics, 30(4):1193–1197, 2007.

[44] Douglas B. Meade, S.J. Michael May, C-K. Cheung, and G.E. Keough.
Getting Started with Maple. Wiley, 3rd edition, 3 2009.

[45] Maher Moakher. Means and averaging in the group of rotations. SIAM
journal on matrix analysis and applications, 24(1):1–16, 2002.

197

[46] Donald B. Percival and Andrew T. Walden. Wavelet Methods for Time
Series Analysis (Cambridge Series in Statistical and Probabilistic Math-
ematics). Cambridge University Press, 1 edition, 2 2006.

[47] Alba Perez and Michael McCarthy. Dual quaternion synthesis of con-
strained robotic systems. Journal of Mechanical Design, 126:425, 2004.

[48] David C. Preston and Barbara E. Shapiro. Electromyography and Neu-
romuscular Disorders: Clinical-Electrophysiologic Correlations (Expert
Consult - Online and Print), 3e. Saunders, 3 edition, 12 2012.

[49] Martin Reddy. API Design for C++. Morgan Kaufmann, 1 edition, 2
2011.

[50] Herbert Schildt. Java, A Beginner’s Guide, 5th Edition. McGraw-Hill
Osborne Media, 5 edition, 8 2011.

[51] Inna Sharf, Alon Wolf, and MB Rubin. Arithmetic and geometric solu-
tions for average rigid-body rotation. Mechanism and Machine Theory,
45(9):1239–1251, 2010.

[52] Ken Shoemake. Animating rotation with quaternion curves. ACM SIG-
GRAPH computer graphics, 19(3):245–254, 1985.

[53] Peter Siao, Didier Cros, and Steve Vucic. Practical Approach to Clinical
Electromyography. Demos Medical Pub, 1 edition, 1 2011.

[54] Jason McC. Smith. Elemental Design Patterns. Addison-Wesley Pro-
fessional, 1 edition, 4 2012.

[55] Magdalena Stawarz, Andrzej Polański, Stanisław Kwiek, Magdalena
Boczarska-Jedynak, Łukasz Janik, Andrzej Przybyszewski, and Kon-
rad Wojciechowski. A system for analysis of tremor in patients with
parkinson’s disease based on motion capture technique. In Leonard
Bolc, Ryszard Tadeusiewicz, Leszek J. Chmielewski, and Konrad W.
Wojciechowski, editors, ICCVG, volume 7594 of Lecture Notes in Com-
puter Science, pages 618–625. Springer, 2012.

[56] Elias M. Stein and Rami Shakarchi. Fourier Analysis: An Introduction
(Princeton Lectures in Analysis). Princeton University Press, 3 2003.

[57] Eric J. Stollnitz and Tony D. De Rose. Wavelets for computer graphics:
theory and applications. Morgan Kaufmann, 1996.

198

[58] A. Sudbery. Quaternionic analysis. In Math. Proc. Camb. Phil. Soc,
volume 85, pages 199–225. Cambridge Univ Press, 1979.

[59] Mark Summerfield. Advanced Qt Programming: Creating Great Software
with C++ and Qt 4 (Prentice Hall Open Source Software Development).
Prentice Hall, 1 edition, 7 2010.

[60] Herb Sutter. Exceptional C++: 47 Engineering Puzzles, Programming
Problems, and Solutions. Addison-Wesley Professional, 11 1999.

[61] Herb Sutter and Andrei Alexandrescu. C++ Coding Standards: 101
Rules, Guidelines, and Best Practices. Addison-Wesley Professional, 1
edition, 11 2004.

[62] Wim Sweldens. Lifting scheme: a new philosophy in biorthogonal
wavelet constructions. In SPIE’s 1995 International Symposium on Op-
tical Science, Engineering, and Instrumentation, pages 68–79. Interna-
tional Society for Optics and Photonics, 1995.

[63] Wim Sweldens. The lifting scheme: A construction of second generation
wavelets. SIAM Journal on Mathematical Analysis, 29(2):511–546, 1998.

[64] Agnieszka Szczęsna. The multiresolution analysis of triangle surface
meshes with lifting scheme. In Computer Vision/Computer Graphics
Collaboration Techniques, pages 274–282. Springer, 2007.

[65] Agnieszka Szczęsna. Multiresolution processing of irregular surface
meshes using second generation wavelets. PhD thesis, Silesian University
of Technology, 2007.

[66] Agnieszka Szczęsna, Janusz Słupik, and Mateusz Janiak. Motion data
denoising based on the quaternion lifting scheme multiresolution trans-
form. Machine graphics & vision, 20(3):238–249, 2011.

[67] Agnieszka Szczęsna, Janusz Słupik, and Mateusz Janiak. Quaternion
lifting scheme for multi-resolution wavelet-based motion analysis. In
ICONS 2012, The Seventh International Conference on Systems, pages
223–228, 2012.

[68] Agnieszka Szczęsna, Janusz Słupik, and Mateusz Janiak. The smooth
quaternion lifting scheme transform for multi-resolution motion analy-
sis. In Proceedings of the 2012 international conference on Computer
Vision and Graphics, ICCVG’12, pages 657–668, Berlin, Heidelberg,
2012. Springer-Verlag.

199

[69] O’Reilly Radar Team. Big data now: Current perspectives from o’reilly
radar, 8 2011.

[70] David Vandevoorde and Nicolai M. Josuttis. C++ Templates: The Com-
plete Guide. Addison-Wesley Professional, 1 edition, 11 2002.

[71] John Vince. Quaternions for Computer Graphics. Springer, 2011 edition,
6 2011.

[72] John Vince. Rotation Transforms for Computer Graphics. Springer,
2011 edition, 1 2011.

[73] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Alge-
bra. Cambridge University Press, 3 edition, 6 2013.

[74] Paul Wellin. Programming with Mathematica®: An Introduction. Cam-
bridge University Press, 4th revised edition edition, 2 2013.

[75] Anthony Williams. C++ Concurrency in Action: Practical Multithread-
ing. Manning Publications, 1 edition, 2 2012.

[76] Adam Świtoński, Andrzej Polański, and Konrad Wojciechowski. Human
identification based on gait paths. In Advances Concepts for Intelligent
Vision Systems, pages 531–542. Springer, 2011.

200

