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1

Introduction

In the late 1850s Charles Darwin and Alfred Wallace (32, 33) introduced a new theory

of evolution based on the natural selection and changed the human perspective on the

origin of life. A few years later Gregor Mendel formulated his Laws of Inheritance

giving a foundation of genetics (127). Philosophical and religious controversies of the

newly announced theories were not conducive to rapid progress of studies. Only in

the beginning of the 20th century scientists ”rediscovered” this discipline of science.

We can notice increased scientific activity to explain mechanisms behind the evolution

taking place in that time. These studies gave a birth of population genetics. In the

beginning, the population genetics focused on the statistical aspects of the evolution

forces leading to very simplified, but important, theorems (i.e., the Hardy-Weinberg

principle (31)) and models (i.e. the Wright-Fisher model (52, 187)). Discovering the

coalescent theory (90, 110, 171) in the 1980s along with popularization of computer

calculations were another milestone in genetic studies leading to many Monte-Carlo

simulation (128, 129) models and methods. Constant development of computers and

biology, especially DNA sequencing methods, caused that currently more and more

complex models, including those operating on real data, can be applied. Currently,

medical significance of the possible results of population genetics projects determine

enormous financial and intellectual support. At least a few of these recent projects

deserve to be mentioned due to their contribution in our knowledge of the human

genetics and huge resources spent on them. The Human Genome Project (1, 95, 96)

gave us a database with more than 20000 identified human genes. The International

HapMap Project (2, 25) goal is to identify and catalog entire haplotype map of the
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1. INTRODUCTION

human genome. The goal of The 1000 Genome Project (3, 26), started in 2008, is

to develop a deep human genetic variation catalogue. All of three mentioned above

projects deliver us open-access real data that we can use in our analysis.

As we see, despite a huge progress that has been made over last several decades,

population genetics is still a very young discipline of science. Some aspects of the main

evolution forces (such as natural selection, mutation or recombination) are already

known very well but details of their interaction are unclear. Unfortunately, any realistic,

and for this reason very complex, models tend to be too complicated for mathematical

and statistical analysis even with use of computing power.

In this dissertation the attention is focused on the complex analytical stochastic

systems refined by specialized computer algorithms. We present three such models

investigating some aspects of interactions between recombination, mutation, genetic

drift and population growth. The models are used to prove the following dissertation

theses:

• It is possible, using a non-simulation approach applied to the mathematical Moran

model, to answer the question of the recombination identifiability, at least in

the means of the relationships limited to a set of distributions, which jointly

characterize allelic states at a number of different loci.

• It is possible, using a recursive algorithm, to calculate the exact distribution of

the time to the MRCA of a large sample from a population evolved under any

growth scenario with the time efficiency of the method allowing for analysis of

large human populations.

• It is possible to build a non-simulation model of demographic interactions be-

tween many populations or species that can, in some applications, replace the

simulation-based approach.

The first model describes the asymptotic behavior of a well-known Moran model (44)

with mutation, genetic drift and recombination along multiple loci. The second model

investigates the distribution of the time to the most recent common ancestor (MRCA)

of a sample in the Wright-Fisher model with variable population size. Finally, the last

model is a demographic network of populations with time-varying sizes experiencing

merges, splits and migration events. All of these models are theoretical models too

2



complicated for common statistical or mathematical analysis. We deliver specialized

computer algorithms that allow us to explain interesting properties of these models and

obtain valuable results.

The dissertation begins, in Chapter 2, with description of the basic evolutionary

mechanisms along with methods of modeling them. In this chapter we also present

usually used approaches for modeling of the evolution of genetic systems.

Chapter 3 contains the formulation of the aim and the theses of this dissertation

along with the explanation of the reasoning behind each investigated model.

Chapters 4, 5 and 6, containing the main contribution of the dissertation, present

all studied models. Each of these chapters is dedicated to a specific model and contains

detailed description of the model along with all methods and computer programs used

to examine these models and obtained results. Chapter 4 describes the mathematical

preliminaries and asymptotic behavior of the refined Moran model with mutation, ge-

netic drift and recombination along multiple loci. We deliver a computer program that

allows us to analyze the model for non-trivial cases (with number of loci greater than

two). We also present obtained results, including spectral gap analysis and numerical

studies of the asymptotic behavior, and compare this model with the Hudson’s Wright-

Fisher coalescent model (90, 91). In Chapter 5 we introduce a new method, which is

a computer algorithm based on the dynamic programming (15, 29), to calculate the

exact distribution of the time to the MRCA for a sample drawn from a population

with time-varying size. We use our method on different data sets including real human

populations, artificially generated populations with bottleneck events and populations

evolved according to the branching process. In Chapter 6 we present a computer pro-

gram realizing a complex demographic network model. The model takes into account

the most important demographic events, such as splits, merges and migrations. We do

not assume any specific mutation model. We allow for mutation rates and population

sizes change over time. We also discuss several model extensions useful for several

commonly-used mutation models and show the example applications of the model.

In the last chapter of the dissertation, Chapter 7, we sum up and discuss results of

the thesis.
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2

Preliminaries

2.1 Main evolutionary mechanisms and their models

In this section we discuss the basics of several evolutionary forces along with methods

used to model them. We do not describe all known evolutionary mechanisms but we

concentrate on the most influential instead. We do not know many aspects of these

omitted mechanisms yet. Moreover, the interactions between discussed forces seem to

be very complex and usually extremely hard to model efficiently. Therefore, almost all

existing models skip all non-listed in this paragraph forces.

2.1.1 Mutation

Mutations are considered as one of the most important genetic force. The reasoning of

this statement is simple, mutations are the main force that adds genetic diversity to the

gene pool of a population. The strength of mutation can be measured by the mutation

rate parameter, denoted by µ, which is the probability that a mutation event occurs

in a single individual (or gene) in one generation. We also assume that θ = 4Neµ is

the population mutation rate, where Ne is the effective population size. The average

human mutation rate was estimated to be equal to about 2.5 · 10−8 mutations per

nucleotide site (135). Detailed studies showed that the value of mutation rate changes

between different regions and there are regions with extremely high mutation rate, i.e.

the mutation rate of human mitochondrial DNA is estimated, depending on the used

method, to be equal to between 3 · 10−6 (99) and 2.7 · 10−5 (89, 148). Moreover, the

mutation rate can significantly vary even in the range of the same region, especially in
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2. PRELIMINARIES

the present of recombination hotspots (81, 88). Unfortunately, the interactions between

mutation and recombination are still very unclear and we do not know any method to

estimate such region-varying mutation rate. Thus, we usually assume that the mutation

rate in a model is constant and depends on the modeled region. Such average mutation

rate can be estimated by using two well-known estimators, Watterson’s estimator (181)

or Taijma’s estimator (172).

Two main models of mutation are usually considered. The most commonly used

model is the Single-nucleotide polymorphism (SNP) model where all possible mutation

positions (and sometimes also their variations) in a DNA fragment are described. A

single mutation event in the model is a point mutation that replaces one nucleotide with

another. We can distinguish many variants of this model. The most general division

contains an infinite-site model, a finite-site model and an infinite-allele model. The

second kind of models is the microsatellite model based on repeats of a short DNA

sequence called tandem repeats.

A mutation model applied to the model of population determines the allelic space

of individuals. Throughout the dissertation we denote the countable set of allele types

as A and the number of allele types as NA.

Infinite-site model

Mutation in this model can occur at any site of a long DNA sequence, but only once

per site. Hence, a new mutation always determines a new variable site (SNP) and

two different individuals can have the same mutation only via inheritance. Usually we

assume that each site can take only two possible alleles and we describe an individual

as a sequence of 0s and 1s (where, i.e., 1 stands for an occurrence of mutation at the

site and 0 otherwise). Sometimes we add the exact position of the SNP, usually as a

number from the [0,1] range. There are no recurrent mutations allowed and the number

of mutations is equal to the number of variable sites. From the biological point of view

the model is justified by an assumption that the probability of mutation is very low

and it is unlikely that two or more mutations occur at the same position.

Finite-site model

A finite-site model is the most popular model of mutation. In this model we know the

exact number and positions of sites and we assume that a mutation can occur at any
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2.1 Main evolutionary mechanisms and their models

site. We usually allow for recurrent mutations and we almost always do not assume

any difference between sites. The number of sites may differ from few (even one) to

a very large number (for, i.e., a long haplotype DNA sequence). A finite-site model

with many enough sites is a good and commonly-used approximation of the infinite-site

model. The model allows for any finite number of alleles per site but this number is

usually equal to two. A very important Kimura K80 model (109) adapts a finite-site

model with four possible allele states per site and different transition probabilities.

Infinite-allele model

In this model we assume that an occurrence of mutation in any individual creates a

completely new, not observed before, allele. Thus, all we know from the model is which

individuals have identical alleles. This model is biologically inspired by isozymes, which

are differently charged forms of an enzyme (80).

Microsatellite model

Microsatellite regions consist short tandem repeats. The number of repeats varies from

10 to 100 and each repeat contains 1-6 DNA base pairs. Microsatellites were the first

genetic markers ever used and they are still very popular. The main reasons for that

are wide existence of microsatellite regions across the genome (especially CA repeats)

and a large polymorphism of allele lengths at a microsatellite loci. Thus, microsatellites

are commonly used to determine paternity, solve pedigree linkage problems, identify

individuals or even as neutral mendelian markers (98).

Constructing of the population genetics model with tandem repeats requires a mi-

crosatellite mutation and an evolution model to be established (40). The most widely

used model is the stepwise mutation model (SMM). The model assumes that a single

mutation either adds or removes exactly one repeat from the current length of the

microsatellite allele (144). The SMM model assumes the same probability for a single

forward or backward step in the allele length omitting any other molecular dynamics

factors having impact on the mutation. This simplicity causes that we cannot obtain

the stationary distribution of allele sizes from the SMM model. Therefore, many ex-

tensions to the basic SMM model have been added. These refined models, named as

a general stepwise mutation models (GSSM), can be obtained, i.e., by: allowance of

multiple steps in a single mutation event (106, 138), introduction of the upper limit

7



2. PRELIMINARIES

of the length of allele (47, 137), introduction of asymmetric probabilities for possible

directions of a single step (106, 188).

2.1.2 Genetic drift

Genetic drift is a mechanism that stays behind changes of the allele frequencies in a

population caused by mating of individuals from that population (coalescence events).

In the early models the effect of the drift was discarded by assuming an infinite size of

population. In that case, and under a few other assumptions, the allele frequencies are

in equilibrium and depend on the genotype frequencies (the Hardy-Weinberg principle

(31)). If we assume a more realistic model, where the population size is finite, we can

notice that mating changes the allele frequencies in two ways. Mixing of the genotypes

of two individuals allows to spread some alleles in the gene pool. On the other hand,

coalescence causes the extinction of some number of lineages (and genes) leading to

an average decrease of the heterozygosity by 1
2Ne

per generation (161). As we see, the

effect of genetic drift depends on the size of population and can be very strong for

small populations. If the mentioned heterozygosity decrease is balanced by the effect

of mutations, we say that the population is in mutation-drift equilibrium.

We need to introduce a sampling scheme to the model in order to model genetic

drift. This scheme is usually uniformly random (the Wright-Fisher model, the Moran

model). A non-random sampling scheme can cause effects similar to the ones created by

a non-neutral selection. Thus, one should use neutral mutation models only to analyze

the genetic drift.

2.1.3 Recombination

Recombination is yet another very important evolutionary mechanism. We distinguish

two main types of the recombination events: crossover and gene conversion. Crossover

is an exchange of a DNA fragment between paired chromosomes inherited from each

of one’s parents. These events may be very useful for geneticists to track the linkage

between genes (genes situated closely to each other should be a part of the same re-

combining fragment more often than the one’s that are far from each other). Gene

conversion is a replacement of a DNA fragment of one chromosome by a fragment from

the second paired chromosome. Recombination events usually occur at the specific

location, named as a recombination hotspot (84).
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2.1 Main evolutionary mechanisms and their models

Unfortunately, our knowledge about recombination is still relatively small. We

can point at population genetics effects that are, with high probability, caused by

recombination (i.e., the loss of SNPs density after human departure out of Africa (169))

but we cannot explain them yet. Recombination, being a very complex mechanism, is

also hard to model and analyze. There exist several methods, mostly the backward-time

models of a crossover recombination, that allow us to study recombination. Griffiths

(66) and Hudson (90) introduced recombination into the coalescent theory by allowing

a coalescence event to be, with the recombination rate r, a crossover recombination. We

assume that the recombination rate r is the probability that two individuals experience

a recombination event during their coalescence. Based on the mentioned models, a

few new backward-time models of recombination have been developed (38, 80, 179).

Current forward-time recombination analysis rely on computer simulations (152). In

the recent studies geneticists try to develop a method to estimate the recombination

rate from the real data. Hudson (92) described a method based on the coalescent theory

that uses an approximation of the likelihood surface. McVean improved this method

by introducing recurrent mutations (125), by allowing for the variable recombination

rate over the DNA region (126) and finally, by adding the recombination hotspot model

(7). There are only few developed models that are used to explain mechanisms behind

the recombination (i.e., the loss of the SNPs density (164)).

2.1.4 Migration

Migration (called also as gene flow) is a transfer of genetic material between populations.

Migration may lead to introducing or reintroducing genes to the population, increasing

the genetic variation of that population. By moving genes around, migration can make

distant populations genetically similar to each another, hence reducing the chance of

speciation. The less gene flow between two populations, the more likely that two

populations will evolve into two species.

Although migration is often a continuous process between two populations, we

usually model it as a single event when a part of one population merges with the

second population. This approach allows to sustain the main effects of the migration

without unnecessary complication of the model.

9
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2.1.5 Natural selection

We know that alleles of genes of individuals that are better suited to the environment

(by possessing better phenotype features) will increase their frequencies in the gene

pool. An evolutionary mechanism that stays behind this process is called as natural

selection. The ability of individual to increase its allele frequency can be measured by

the fitness parameter, usually denoted as w. In the early studies fitness was identified

with the ability to survive. In the more recent years this point of view has changed

and the ability to reproduce is considered now to be the main factor of the fitness.

The fitness value depends also on the number of individuals in a population and on the

frequencies of various alleles (44).

Natural selection is the key of the evolutionary process. The fundamental theorem

of natural selection (52) claims that the rate of increase in fitness of any organism at

any time is equal to its genetic variance in fitness at that time. In fact, the mean

fitness increase may not be true if we consider a non-random mating or a multiple

loci dependance mating (45). Biologically we interpret natural selection as a form of

egoism where individuals prefer a survival of units of selection (kin groups) with the

same genes (23, 34, 75, 76).

2.2 Basic evolutionary population models

In this section we shortly describe several models of evolution of a population. All

presented models are basic, well-known and commonly used concepts and require sig-

nificant refinement to be applied in order to model any more sophisticated aspects of

the evolution. Each of the described models is a base for models used in our studies.

In Chapter 4 we will introduce the Moran model with mutation and recombination

and compare some aspects of this model to the Wright-Fisher model. Our genetic drift

(Chapter 5) and demographic (Chapter 6) models use the Wright-Fisher approach for

modeling of the genetic drift. We will also discuss and present results of applying our

algorithm calculating the time to the MRCA to the Galton-Watson branching process

(Chapter 5).
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2.2.1 Wright-Fisher model

The Wright-Fisher model (52, 179, 187) describes the transmission of genetic material

in a population over the generations. The population has constant size and usually

consists 2N genes corresponding to N diploid or 2N haploid individuals. Rarely, a

haploid population consists only N individuals. In a diploid population the number

of female individuals Nf does not have to be equal to the number of male individuals

Nm = N − Nf . Generations in the model are discrete and do not overlap. In case of

human population we usually assume that one generation lasts 25 years. All individuals

from the population in generation i are replaced in generation i+1 by their descendants.

In the haploid model each individual in daughter generation is chosen by random draw

with replacement from the population in mother generation. In the diploid model,

each individual from daughter population has two randomly chosen (with replacement)

ancestors from mother population (one male and one female) but inherits only one

gene, either from mother or from father. The probabilities of inheriting from mother

and from father are equal.

In the basic Wright-Fisher model we assume that individuals in a population are

not affected by any other evolutionary force. In particular we assume that there is

no recombination between genes and genes cannot be changed by mutation. Also all

individuals in the population are equally fit to the environment conditions (selection

has no effect).

The probability that two individuals in generation i+ 1 have the same ancestor in

generation i is equal to 1
2N . Thus, the average time to the MRCA of two individuals is

equal to 2N generations. The probability distribution of the number of descendants v in

generation i+ 1 of the individual from generation i is given by a binomial distribution:

P (v = k) =

(
2N

k

)(
1

2N

)k (
1− 1

2N

)2N−k
(2.1)

Therefore, the mean number of descendants is equal to 1 with the variance 1− 1
2N .

2.2.2 Moran model

The Moran model (132, 179) is a model very similar to the Wright-Fisher model.

The only difference between these two models lays in the fact that the Moran model

allows for overlapping generations with only one coalescent event per generation. In

11
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continuous-time approach of the Moran model each individual has its own lifetime

usually determined by a Poisson distribution. The probability that two individuals

share the MRCA in the previous generation is equal to 1

(2N2 )
= 1

N(2N−1) . Thus, the

time to the MRCA is a geometric distribution with mean equal to N(2N − 1).

2.2.3 Branching process

The branching process (6, 78, 105) is a stochastic process that models the growth of a

population of particles. We start at time t = 0 with a population of size Z(t) = 1. In

most branching processes, when one of the particles (lets say, ith) from the population

dies, the particle is replaced by its progeny. Other processes, so called Jagers-Crump-

Mode branching processes (97), allow for production of a new particle during a lifetime

of its parent. We will exclude these models from further discussion.

Each new particle begins a new branching process. The number of progeny ζi is

usually given by a Poisson distribution. Depending on the value of the mean number

of progeny m = E(ζi), we define supercritical (m > 1), critical (m = 1) and subcritical

(m < 1) branching processes. The probabilities of extinction of subcritical and critical

branching process are equal to 1 and are lesser than 1 in the case of supercritical process.

The expected asymptotic values of the population size for supercritical, critical and

subcritical branching processes are ∞, 1 and 0, respectively.

In the most general case, the branching process is time-continuous and age-dependent.

It means that each particle has its own time of life given by the lifetime distribution

function G(t). Such process is called as a Bellman-Harris branching process (16). The

Bellman-Harris process is, with two exceptions, a non-Markovian process. The first

exception occurs when the G(t) function is exponential and the second exception is

a Galton-Watson branching process (51). The Galton-Watson process is the most

commonly used branching process with discrete states and discrete generations with

constant lifetime of all particles.

Using branching process is a simple method to model parent death - progeny birth

dynamic. Thus, branching processes found a wide application in modeling populations

of biological cells, genes or biomolecules. Branching processes were firstly used by

Watson and Galton to estimate the probability that a human family extinct (180).

Other well known results obtained by using branching process are the derivation of a

formula for the probability of fixation of a new advantageous mutation (73) or applying

12
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O’Connell model (141) to the estimation of the time to when the female ancestor of

modern humans (mitochondrial Eve) lived. For more example see (105).

2.3 Classic methods of modeling of genetic system’s evo-

lutionary dynamic

In this section we describe the most important methods used to build the genetic evo-

lutionary systems. Each of these methods is a basic foundation that needs to be refined

before applying in order to receive a complete solution of a specific problem. We begin

with dividing of all genetic systems into two groups with respect to the chosen approach

to the time change in the model. Backward-time and forward-time methods signifi-

cantly differ from each other and it is important to understand how these differences

affect the model. Next, we present the coalescent theory – the main backward-time

method of modeling. We will use this approach to compare our Moran-based model to

the standard Hudson’s Wright-Fisher model. The coalescent theory stays also behind

the derivation of the population dynamic model in our demographic network. Mod-

els based on a Markov process are very common in the population genetics. We will

discuss several aspects of these methods, especially that the main model described in

this dissertation widely uses the theory of Markov chains. Monte Carlo methods are

very often used to obtain results from computer simulations. We will use this approach

several times in this dissertation (i.e., to compare our algorithm calculating the time

to the MRCA with simulation methods). Finally, the diffusion approximation is an

important mathematical concept that requires to be shortly explained in this thesis,

although we will not use it explicitly in any of our models.

2.3.1 Difference between backward-time and forward-time methods

When we construct a model of the evolution of genetic system we need to decide which

approach guarantees us obtaining desired results in the most efficient way. If modeled

population changes over time, we can model it either by backward-time or forward-time

method.

Backward-time approach focuses not on a whole population, but on a sample chosen

from this population, usually at the present time. Applying backward-time model

requires two steps to be executed. In the first step we build the coalescent tree to the

13
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MRCA of the sample. To obtain the tree we use a stochastic process characterized by

evolutionary forces that we take into consideration in the model. In the second step

we begin from the found MRCA of the sample and apply forward-time process that

assigns genetic information to individuals in the tree.

Forward-time approach in turn is a completely population-based method. It starts

with the initialization of the population and follows with generation-to-generation evo-

lution to the final generation (usually being the present time). In most cases the sample

is chosen from the last generation.

Forward-time methods are more intuitive and allow to model evolutionary mech-

anisms in a much simpler way. Unfortunately, they require a whole population to be

managed. Thus, computer simulations based on these methods may be extremely time

and memory inefficient. Backward-time approaches omit this problem with the cost of

computational complexity. Most of the evolutionary forces have already been applied

to the coalescent backward-time models (i.e., recombination (66, 90) or simple selection

(27, 114)). Although, more complex problems (like realistic human diseases (151, 162))

can only be modeled by the forward-time methods. Finally, the backward-time methods

are often based on approximations and equilibrium assumptions and are supposed to

work only for certain parameter ranges (178), such as low recombination and mutation

rates. The limits of the backward-time approach and constant increase of the computer

powers justify development of the forward-time methods (simuPop (152), EASYPOP

(11), TreesimJ (143)).

2.3.2 Coalescent-based methods

Development of the coalescent theory (66, 90, 110) revolutionized the methodology of

modeling of the population evolution. Before that time the only available approach per-

formed the generation-to-generation whole-population forward-time calculations. As we

mentioned earlier, the coalescent theory focuses on a sample constructing the coales-

cent tree of this sample to its MRCA. Thus, we narrow calculations down to only few

generations and individuals that contain any genetic information from the individuals

from the sample. Most coalescent approaches adapts the Wright-Fisher model. Based

on the knowledge of the population size, the expected life length and mating scheme,

we can estimate the mean and the distribution of the time (counting backward from the

14
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present) to the first coalescent event in the sample. For example for standard Wright-

Fisher model and the sample of size n (n � 2N) this time is equal to 4N
n(n−1) leading

to the following formula for the expected time to the MRCA (TMRCA):

E(TMRCA) =
n∑
i=2

4N

i(i− 1)
(2.2)

Hence, obtaining of the genealogy tree of the sample (and introducing genetic drift

to the model) is straightforward.

The most common method of adding mutation to the model is by calculating of the

total length of branches of the obtained genealogy tree. The mutation rate µ usually

describes a chance for mutation appearance in one individual in one generation time,

what is equivalent to the total length of branches equal to 1 (generation). Therefore,

estimating the total number of mutation events in the history of sample is easy by

applying a random (usually Poisson) distribution with a given parameter. Then, all

mutation events are distributed over the tree branches according to the lengths of these

branches (the length of the branch is proportional to the probability that the mutation

event will occur on this branch). The value of the expected total length of branches

TBL is twice the sum of the average waiting times for each coalescent event (74):

E(TBL) =
n−1∑
i=1

4N

i
(2.3)

We can also introduce other evolutionary mechanisms to the coalescent model by

refining the first step of the model (tree building). Hudson (90) described a method of

introducing recombination to the model. We can distinguish a second kind of events in

the sample – recombination events between the individual from the sample and other

individual (sometimes we assume that n� 2N and the second recombining individual

is chosen from outside of the sample). These events lead to the shortening of the average

time to any event in the sample. When the event occurs, we can decide (based on the

value of the recombination rate and the sizes of the population and of the sample) which

kind of event we deal with and act according to that. In order to model recombination

we usually distinguish more than one locus in each individual and the recombination

event leads to the separation of the genealogical lineages of different loci from the same

individual (chosen from the current generation).
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The coalescent theory allowed to develop likelihood methods based on the estimation

of the probability of occurrence of a given genealogy tree G under a given population

model. For example, in the standard Wright-Fisher model

P (G|N) =
n∏
i=2

exp

(
−ui

1(i− 1)

4N

)
1

2N
, (2.4)

where ui is the time interval between two consecutive coalescent events (i−1)th and ith

(counted from the MRCA) (110). Likelihood methods allow us to estimate the values

of the different model parameters even in very complicated models (50). The likelihood

L(a) of the parameter a is given by the formula (36):

L(a) =
∑
G

P (Data|G)P (G|a) (2.5)

We usually use Bayesian (12, 115) or Monte Carlo (125) methods for likelihood analysis.

2.3.3 Markovian stochastic processes

A Markovian process (122) is a stochastic process that satisfies the Markov property.

Informally it means that the future probabilities of the process are determined only by

its most recent values. Assume that at time t a stochastic process X can take, with

some probability, a value Xt = x(t). We denote the times for which the Markov process

is defined as t0 < t1 < ... < tn−1 < tn, where tn−1 is the present time and tn is the

future time. Satisfying of the Markov property means that the following formula holds

(147):

P (Xtn = x(tn)|x(tn−1), x(tn−2), ..., x(t0)) = P (Xtn = x(tn)|x(tn−1)) (2.6)

Markov chain is a Markov process with a finite number of states. In the dissertation

we distinguish discrete-time Markov chains (if the chain is defined for a discrete set of

times) and continuous-time Markov chains (otherwise).

Let the transition probability matrix P (t) = {pij(t)} be a square stochastic matrix

with the elements being the probabilities that X moves from the state i to the state j

in the time interval equal to t: pij(t) = P (Xt = j|X0 = i). Based on the Chapman-

Kolmogorov equation (185), we get

P (Xtn = x(tn)|x(ts)) =

∫ ∞
−∞

P (Xtn = x(tn)|x(tr))P (Xtr = x(tr)|x(ts))dx(tr), (2.7)
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where n > r > s. Thus, P (t+ s) = P (t)P (s).

As we can notice, the Markovian process (and the mathematical theory that stays

behind it, especially the analysis of the ergodicity) is a perfect method to model the

evolution of the population. In that case the population size is considered as a Markov

process state and the removal or addition of the individual as a change of the state.

The discrete-time process is usually applied if the time between the change of the state

models a single generation. Described process is called as the population process (133).

Most of the branching processes are population processes (105).

Markov process is not limited to modeling the population growth only, i.e., we

can use Markov process to model mutation (SMM microsatellite model (144)). In

this dissertation we use Markov chain to describe the dynamic of the distribution of

individuals in population modeled by the Moran model with mutation, recombination

and drift.

2.3.4 Monte Carlo methods, MCMC method

Monte Carlo method (128, 129) is a mathematical paradigm that allows us to obtain

accurate results from the model even if the exact calculations cannot be applied due

to efficiency or complexity issues. The method was firstly used by Ulam in 1946. The

basic idea of the method relies on averaging of the results obtained from sample, ran-

domly generated single realizations of the model. The accuracy of the method strongly

depends on the number of averaged experiments and is of the order of
√
k, where k is

the number of experiments (183). Monte Carlo methods are broadly used in many com-

putational simulations including computational biology (131), applied statistics (166)

or genetics (68). We will use this method to calculate the distribution of the time to

the MRCA in the Galton-Watson branching process (Chapter 5).

One of the most important application of this method to the population genetics

is the Markov Chain Monte Carlo method (MCMC) (58, 77). The MCMC method

uses the theory of ergodicity of Markov chains. Assume that Ω is a complex finite

probability space with the stationary distribution π. The MCMC method builds (sim-

ulates) an irreducible non-periodic Markov chain with a given state space S = Ω, a

simple transition matrix P and a stationary distribution π. As a result of the MCMC

method realization we obtain a set of fair samples. The basic idea (known as Metropolis
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MCMC) was introduced by Nicholas Metropolis (130). Since that time many modifi-

cations of this method has been used (i.e., Metropolis-Hastings (79) or Gibbs sampling

(56)).

2.3.5 Diffusion approximation

Assume that we have a discrete Markovian process with the transition probability ma-

trix P = {pij} and transition probability densities given by Q(t) = {qij(t)}. Then,

we can approximate this process by a continuous-time process using diffusion approxi-

mation. The prototype for diffusion processes is the Brownian motion (or the Wiener

process) (147). It is a process with normally distributed increments. Einstein showed

(39) that the densities of this process satisfy the following equation:

∂qij(t)

∂t
=

1

2
b
∂2qij(t)

∂i2
, (2.8)

where bt is a variance of the process. We introduce the general discrete-jump process

and postulate that the moments of the change δi, given the current value i at time t,

satisfy the equations (44, 49):

E(δi) = a(i)δt+ o(δt) (2.9)

Var(δi) = b(i)δt+ o(δt) (2.10)

E(|δi|3) = o(δt) (2.11)

,

where a and b are functions of i, often identified as infinitesimal velocity (a) or in-

finitesimal variance (b). It leads to the forward Kolmogorov (or Fokker-Planck) equation

(44):

∂q·i(t)

∂t
= − ∂

∂i
(a(i)q·i(t)) +

1

2

∂2

∂i2
(b(i)q·i(t)) (2.12)

If we denote the initial value of the diffusion variable by j, then we obtain the

backward Kolmogorow equation (44):

∂qji(t)

∂t
= a(j)

∂qji(t)

∂j
+

1

2
b(j)

∂2qji(t)

∂j2
(2.13)
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One may usually obtain both functions a and b from the process and use either For-

mula (2.12) or Formula (2.13) to approximate the discrete process. Using continuous-

time approach often decreases the complexity of the calculations, but one need to be

aware that, in some cases (i.e., when the population size is small), the diffusion approx-

imation may cause significant accuracy errors.
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Problem statement

3.1 Aim of the dissertation

In the previous chapter of the dissertation we have shortly described the main ap-

proaches used in modeling of the evolution of genetic systems. Most of the recently

developed theoretical stochastic models are either very simplified or too complex to

obtain any exact results leading to the necessity of applying effective and sophisticated

computer simulations or heuristic algorithms. A significant majority of these methods

rely on the statistical analysis of real or artificially generated (sampled) data. The

Monte Carlo based approaches are commonly used in order to obtain averaged results

of simulations. The quality of the results obtained from mentioned methods strongly

depends on the quantity and the quality of the data and is a compromise between

the complexity of the model and the time spent on simulations. The non-simulation

approaches have similar, but little different in details, limits. In both cases we cannot

improve the data we are working on, but the time necessary to obtain the results that

satisfy our quality requirements depends on different factors. The simulation-based

methods allow to build much more complex models but require many single experi-

ments to be carried out, often with additional heuristics involved.

Other important issue with the simulation-based methods is that they require much

more careful verification. The simulations are usually used for the cases that are impos-

sible to analyze by any analytical approaches. Therefore, the simplified non-simulation

methods may deliver a test platform for these methods.

In this dissertation we focus on the non-simulation based genetic systems that model
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non-trivial aspects of the evolution. These systems, in order to generate any useful and

interesting results, require often an application of very complex calculations, impossible

to solve by any analytical methods. We want to show that these systems can

be successfully used if they are refined by sophisticated, specially devel-

oped computer algorithms. Moreover, the genetic systems built in such a way can,

for specific problems, achieve better results (faster obtained and more accurate) than

simulation-based approaches. We will present (in Chapters 4-6) three different models

realizing such systems. In the following sections of this chapter we shortly discuss the

reasoning behind each model. Although all of the presented models conduct the exact

calculations, we will also use simulation methods, usually applied in order to compare

both kinds of systems or to demonstrate sample results that can be obtained from our

models. The complete list of algorithms is included at the end of the dissertation.

3.2 Moran model with recombination, mutation and drift

The studies of the interactions between mutation, drift and recombination has been

dramatically widened in the recent years. Most of these studies explain the effect of re-

combination in the context of the backward-time coalescent theory (8, 38, 66, 90, 179).

The backward-time approach, much faster than the forward-time solution, does not

allow to model accurately more complex recombination aspects, especially if a sys-

tem with multiple linked loci is considered. Thus, with the dramatic increase of the

computer power, the forward-time approaches become currently feasible to model re-

combination and many forward-time (11, 71, 83, 87, 143, 152) or mixed (146) simulation

packages have been developed in the last decade. However, there are some aspects of

the population genetics under recombination that are still to be clarified. One of them

is the question of the identifiability, i.e., if the population can reach a stage at which it

is indistinguishable from the population evolving solely under drift and mutation. In

this dissertation we prove that it is possible, using a non-simulation approach

applied to the mathematical Moran model, to answer the question of the

recombination identifiability, at least in the means of the relationships lim-

ited to a set of distributions, which jointly characterize allelic states at a

number of different loci.
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3.3 Genetic drift model in populations with time-varying

size

The knowledge of the exact or the distribution of the time to the most recent common

ancestor of a given population provides us with information about evolutionary history

of this population. We can also use this knowledge to estimate other significant pa-

rameters of the population. As an example, the time to the MRCA is closely related

to the relatedness of sampled individuals. Finding of the time to the MRCA of a sub-

population may also be useful in analyzing the whole population. Thus, determining

the time to the MRCA has been under extensive mathematical analysis since a long

time (65, 110, 120). Many aspects of the calculation of the time to the MRCA for sim-

ple models have been studied in details and are very well known (179). In the simple

coalescent models, especially based on the Wright-Fisher model, the population size

either is constant or it changes over time according to a specific growth rate (usually

exponential). Recently, more complex models have been used in investigating the time

to the MRCA. As an example, we can mention diffusion methods applied to the Wright-

Fisher models (155, 167) or to the branching models (43). An interesting problem is the

study of a population without assuming any specific population growth model. In this

dissertation we provide a method which shows that it is possible, using a recursive

algorithm, to calculate the exact distribution of the time to the MRCA of a

large sample from a population evolved under any growth scenario with the

time efficiency of the method allowing for analysis of large human popula-

tions. The change of the population size over time is the only information necessary

to apply our model.

3.4 Demographic network

Traits of interactions between many sets of different species or different populations

(including extinct ones) in the same species can be found in the genoms of their indi-

viduals. The reasons for studying of these interactions vary from the curiosity about

common history of these species/populations to more important reasons providing in-

sights into the genealogy of mutations that may be used in the development of gene

mapping of rare (Mendelian) disease mutations methods (186). However, explaining all
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of details of these interactions based on a given sample (usually containing not enough

number of individuals) is not an easy task. Available approaches (72) try to estimate

parameters that describe these interactions by simulating samples that fits the given

data set. Demography is usually assumed by scientists and tested by the comparison

of the obtained by simulations results to the data derived from real samples.

We claim that it is possible to build a non-simulation model of demographic

interactions between many populations or species that can, in some applica-

tions, replace the simulation-based approach. In this dissertation we introduce a

method to model such a complex demography network. Besides the demography events

(such as a split of a single population into two populations, a merge of two populations

or a migration event between populations), the basic version of our approach can de-

scribe the genetic drift inside the population, change of the population size over time

and any Markovian-like mutation model. This model can also be refined by introducing

other evolutionary forces. The result of our model is a joint distribution of pairs of indi-

viduals sampled from two populations (possibly the same). Based on the knowledge of

the exact values of this distribution one can easily obtain other interesting parameters

describing interactions between modeled populations (i.e., ascertainment bias (177) or

pairwise difference (24)). The main advantages of our approach are: (i) capability to

model a very complex demography in efficient way (ii) obtaining the exact values of

the distribution without necessity of simulations and (iii) capability to model a great

variety of population models.
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Moran model with drift,

mutation and recombination

4.1 Mathematical preliminaries

4.1.1 Markov semigroup theory

Distribution

We assume that L1(X,
∑
, f) stands for the space of absolutely summable sequences

(ξi)i∈A, with the norm ‖(ξi)i∈A‖ =
∑

i∈A |ξi|. The elements ej = (δij)i∈A, j ∈ A, where

δij is the Kronecker delta, form the basis of L1. Any (ξi)i∈A ∈ L1 may be represented

as (ξi)i∈A =
∑

i∈A ξiei. We define the vector (ξi)i∈A ∈ L1 as a distribution if and only

if ξi ≥ 0, i ∈ A, and
∑

i∈A ξi = 1.

Mn, where n is an integer, is the space of absolutely summable n-dimensional

matrices m = (ai1,...,in)i1,...,in∈A with the norm
∑

i1,...,in∈A |ai1,...,in |. We term the matrix

m ∈ Mn as a distribution if and only if its entries are non-negative and add up to 1.

The distributions in Mn are distributions of n-tuples of A-valued random variables.

Thus, Mn is a tensor product of n copies of L1 : Mn = (L1)n⊗.

Strongly continuous semigroup and its generator

A family of operators {S(t), t ≥ 0} in a Banach space X is called a strongly continuous

semigroup (42) if and only if satisfies the following conditions for all x ∈ X (163):

• S(0) is the identity operator
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• S(t)S(s) = S(t+ s)

• limt→0 S(t)x = x

The infinitesimal generator G of S(t) is defined by:

Gx = lim
t→0

1

t
(S(t)− I)x (4.1)

whenever the limit exists. The domain of G is the set of x ∈ X for which this limit

exist. The domain is a linear subspace and G is linear on this domain (149). The

generator G is the expected infinitesimal change of x applied onto process described by

semigroup. Thus, the infinitesimal generator is the measure of behavior of the process.

Markov semigroup

A strongly continuous semigroup in L1 is termed a Markov semigroup if and only if

all S(t) operators are Markov operators. A Markov operator is an operator that maps

distribution into distribution. Thus, ‖S(t)‖ = 1. Markov operators are usually given

by a transition probability function (82).

If {Si(t), t ≥ 0}, i = 1, . . . , n are strongly continuous semigroups of Markov opera-

tors in L1, then {S1(t)⊗ · · · ⊗ Sn(t), t ≥ 0} is a strongly continuous Markov semigroup

in Mn and it is the tensor product of {Si(t), t ≥ 0}, i = 1, . . . , n.

The Cartesian product Mm
n of m copies of Mn provides a way of gathering in-

formation on distributions of m n-tuples of A-valued variables. We may see this

space as a direct sum of m copies of Mn. We say that x ∈ Mm
n is a distribution

if and only if it is a convex combination of m distributions in Mn. Any operator in

Mm
n is a Markov operator mapping distributions into distributions. If {Ti(t), t ≥ 0},

i = 1, . . . ,m are Markov semigroups in Mn, then {
⊕m

i=1 Ti(t), t ≥ 0}, defined as⊕m
i=1 Ti(t)(

∑m
i=1mi) =

∑m
i=1 Ti(t)mi is a Markov semigroup in Mm

n . The domain of the

infinitesimal generator G of this semigroup is the Cartesian product of domains of gen-

erators Gi of {Ti(t), t ≥ 0} and we have G(mi)i=1,...,m = (Gimi)i=1,...,m for (mi)i=1,...,m

in this domain.
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4.1.2 Markov chains

Ergodicity

Irreducible Markov chain is a Markov chain in which for each pair of states (i, j) the

following condition is satisfied:

∃k≥1P
k(i, j) > 0 (4.2)

where P (i, j) is the entry of the transition probability matrix of the given Markov chain

describing the probability of moving from state i to state j.

Irreducible Markov chain is either periodic or ergodic. If the chain is periodic, then

for each pair of states i, j exists period k ≥ 2 that P k(i, j) = P (i, j). The values of

the period for each pair of states in periodic Markov chain are the same. If all entries

P (i, j) of an irreducible Markov chain are positive, then this Markov chain is ergodic.

If an irreducible Markov chain with transition probability matrix P and k states

is aperiodic (ergodic), then there exists a vector π : {πi}, i = 1, . . . , k, called as a

stationary or an equilibrium distribution, that satisfies the following conditions:

• πi > 0, where 1 ≤ i ≤ k

•
∑

i=1,...,k πi = 1

• ∀1≤i,j≤k limx→∞ P
x(i, j) = πj

Dobrus̆in’s coefficient

For a Markov chain with the transition probability matrix P = {P (i, j)}, where 1 ≤
i, j ≤ k, we define the Dobrus̆in’s coefficient of ergodicity β (37) given by the following

formula:

β = β(P ) = min1≤i,j≤k

k∑
m=1

min(P (i,m), P (j,m)) (4.3)

If the value of the Dobrus̆in’s coefficient β(P ) > 0, then the given Markov chain

is ergodic and the value of the coefficient describes the speed of convergence to the

stationary distribution (the greater the value, the faster it converges):

‖P x −Π‖ ≤ (1− β(P ))x (4.4)

where ‖ · ‖ denotes the maximum of all absolute values of entries of the matrix.
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Spectral theory

By definition (165), the spectral gap of the transition probability matrix P of a Markov

chain is equal to the smallest nonzero eigenvalue of the matrix Q = I− 1
2(P+P ∗), where

I is an identity matrix and P ∗ is the transition matrix of the time-reversed process.

Each entry of the matrix P ∗(i, j) is defined as: P ∗(i, j) = P (j, i)
πj
πi

, where π is the

stationary distribution of the matrix P .

Analysis of the values of the spectral gap allow us to obtain information about

behavior of the process described by the given Markov chain. The higher value of the

spectral gap is indicative of faster convergence to the equilibrium (134).

4.2 Generalization of 2 loci Kimmel-Polańska-Bobrowski

model

The model of our interest was firstly introduced by Kimmel and Polańska (108) to

model pairs of repeat-DNA sequences (microsatellites). The model included recom-

bination between two loci along with genetic drift and mutations. More aspects of

this simple version of the model, regarding asymptotic behavior under different demo-

graphic scenarios, were discussed in (18). However, all these studies were conducted

only for the most basic model of recombination and cannot be generalized for a model

with greater number of loci.

4.2.1 Model description

Mutation model

We assume that modeled population is composed of 2N individuals. Each individual

consists s loci which leads to s − 1 possible recombination sites. Individuals are rep-

resented as s-tuples of A-values random variables (Xa,b)1≤a≤2N,1≤b≤s, where a is the

individual number and b is the index of locus on a chromosome. We assume that these

tuples are exchangeable and that each of them evolves in time as non-explosive Markov

chains, independent of the other ones, but with the same transition probabilities. This

models mutation at all loci of a chromosome in each individual. The process of muta-

tion at the locus b in each individual is described by means of a strongly continuous

semigroup {SXḃ(t), t ≥ 0} of Markov operators in L1. This means that if x ∈ L1 is
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the distribution of allele types at time 0 then SXḃ(t)x is the distribution of allele types

at time t. The tensor product semigroup {S(t), t ≥ 0}, S(t) = SX1̇
(t) ⊗ · · · ⊗ SXṡ(t),

describes evolution of distributions at s loci, provided mutations at these loci occur

independently.

Mating scheme

We incorporate recombination and genetic drift in the model by assuming that each

individual’s life-length is an exponential random variable with a parameter 2
λ and that

at the moment of individual’s death, the s-tuple by which it is represented is replaced by

another s-tuple in the following manner. Three numbers j, k,m are randomly chosen

with replacement from 1, 2, . . . , 2N . The j value indicates the deceased individual

being the s-tuple (Xj1, Xj2, . . . , Xjs), j = 1, . . . , 2N . With probability 1 − r, where

r =
∑s−1

i=1 ri with ri ∈ [0, 1] such that r ∈ [0, 1], being the given parameters, one of the

s-tuples (Xk1, Xk2, . . . , Xks), k = 1, . . . , 2N replaces the deceased one. With probability

ri, 1 ≤ i ≤ s − 1, the recombination event occurs after the ith locus. In this case the

i-tuple (Xk1, . . . , Xki), k = 1, . . . , 2N is drawn at random first and the (s − i)-tuple

(Xm(i+1), . . . , Xms), m = 1, . . . , 2N is drawn next independently from the first draw. As

a consequence, a new s-tuple becomes one of the already existing s-tuples (including the

one just deceased) (Xj1, . . . , Xjs), each of them with probability (1− r) 1
2N + r 1

(2N)s−1 ,

or one of the s − 1 types of “mixed ones”: either (Xj1, . . . , Xji, Xk(i+1), . . . , Xks), j 6=
k, 1 < i ≤ s each with probability ri

1
(2N)s−1 .

If the s-tuples (Xi1, . . . , Xis) are exchangeable, then, because of the sampling scheme,

it is obvious that so are the newly formed s-tuples immediately after individual’s death.

This fact follows from Lemma 1 in (18) if we note that for the recombination af-

ter the jth locus (1 ≤ j < s) both: the j-tuple (Xi1, . . . , Xij) and the (s − i)-tuple

(Xi(j+1), . . . , Xis) can be treated as a single compound locus. Therefore, exchangeabil-

ity is preserved in the model.

Distribution’s relations on the individual’s death

Let (Xa1, . . . , Xas) and (X̃a1, . . . , X̃as), a = 1, . . . , 2N be the s-tuples representing indi-

viduals in the population immediately before and immediately after individual’s death.

The total number of tuples is equal to (2N)s which is large enough to make any analysis

of the population impossible. Fortunately, based on exchangeability, we can reduce the
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number of states in our model. By exchangeability of (Xa1, . . . , Xas), a ∈ 1, . . . , 2N,

the distribution of (Xa11, . . . , Xass) where 1 ≤ ai ≤ 2N does not depend on the choice

of ai but only on the mutual relations between ai values (their equalities). For ex-

ample the distribution of (X51, X32, X53) (where first and third loci descended from

the same individual) is exactly the same as (X21, X12, X23) or any (Xa1, Xb2, Xa3)

where 1 ≤ a, b ≤ 2N, a 6= b. We will denote these new distributions by Da1...as . The

corresponding Ds with tilde denote distributions in the population immediately after

individual’s death. Equality of ai = aj in the index of D means that the ith and the

jth loci descended from the same individual from the first generation.

To order all Da1...as distributions involved in the model we introduce multi-indexes

(a1 . . . as) that satisfies the following properties:

1. a1 is 1,

2. aα ≤ max(a1, . . . , aα−1) + 1, α ≥ 2;

We call such multi-indexes regular. The first distribution of the regular multi-index

is D11...1 and the last one is D123...s. There are $s regular multi-indexes, where $s

is the Bell number, the number of ways to partition a set of s elements into subsets

(63). For, with every partition we have a natural order of its elements (subsets) where

the first subset is the one containing element 1 and the kth is the one containing the

smallest number not included in the previous k − 1 subsets (provided such number

exists). To such naturally ordered partition we assign a regular multi-index by labeling

elements of the kth subset with label k, and this map is injective. On the other hand,

given a regular multi-index, we obtain a partition by collecting all numbers with the

same index into one subset. Such an assignment of partition is injective, since the

multi-index agrees with the labeling obtained from the natural order.

Finally, we arrange all distributions Da1...as in lexical order, thus forming vector

D. Similarly, we form the vector D̃ of distributions D̃a1,...,as , and consider the way

coalescence/recombination event influences it. Suppose the recombination occurred

after the ith locus, we are interested in D̃a1,...,as and we know that the jth individual

died to be replaced partly by the kth and partly by the mth. Then, D̃a1...as equals

Dk1...ks where the multi-index (k1, . . . , ks) is formed as follows. First, all occurrences of

j at up to and including ith place in (a1, . . . , as) are replaced by k, and all the remaining
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occurrences are replaced by m. Then, the newly formed multi-index is transformed into

a regular multi-index as follows. First, we change all occurrences of a1 to 1, if the first

condition of regularity is not yet met. Next, we look for the first place, say aα, where

the second requirement is not met. If there is no such place, we are done. Otherwise,

we replace aα and all its occurrences by the smallest integer larger than all aβ preceding

aα, and we continue this procedure until the multi-index is regular.

As a result, D̃a1...as is a convex combination of all possible Dk1...kn ’s. Each choice of

j, k and m adds the term 1
(2N)3

Dk1...ks to this combination (all choices of j, k and m are

equally likely). All coefficients of this combination are themselves linear combinations

of 1, b, b2 and b3 where b = (2N)−1.

Hence, there exists a $n ×$n transition matrix Θ of a Markov chain such that

D̃ = ΘD. (4.5)

The Θ matrix is a convex combination of s transition matrices, corresponding to the

cases of no recombination (Θ0) and of recombination events after the ith locus (Θi, 1 ≤
i < s):

Θ = (1− r)Θ0 +
s−1∑
i=1

riΘi (4.6)

4.2.2 Simple cases

In this section we present an exact value of the Θ matrix for the simplest cases (s ≤ 3),

along with the explanation of how these values were obtained. Since $s is a fast growing

sequence ((63) p.693, e.g. $4 = 15, $5 = 52, and $9 = 21147), finding an explicit form

of Θ for s ≥ 4 can be done only by using of the computer program.

We assume that the death/birth process is described by three numbers 1 ≤ j, k,m ≤
2N (individual j dies and is replaced by individual k recombining, with probability r,

with individual m). To obtain the distribution Db1...bs from which the distribution

D̃a1...as was obtained under the given (j, k,m) triple, firstly we need to change the

values of all ai = j, 1 ≤ i ≤ s into: (i) k if there is no recombination or ith locus is

located before recombination site or (ii) m otherwise. After these changes, the newly

formed multi-index may not be regular and thus, we need to restore his regularity

obtaining the final (b1, . . . , bs) index.
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Two loci model

In this case Θ = (1−r)Θ0 +rΘ1. Since $2 = 2, we have only two possible distributions

D11 and D12. The first distribution describes individuals with both loci descended from

the same individual and the second distribution describes all other cases. If there is

no recombination, the only possibility to change the distribution in the death/birth

process occurs when either j = 1, k = 2 or j = 2, k = 1. In this case D̃12 = D11 leading

to:

Θ0 =

(
1 0
2

(2N)2
1− 2

(2N)2

)
(4.7)

When the recombination occurs, it is possible that D̃11 = D12 (if j = 1 and k 6= m)

or D̃12 = D11 (if j = 1 and k = 2 or j = 2 and m = 1). This leads to:

Θ1 =

(
1− 2N−1

(2N)2
2N−1
(2N)2

2
(2N)2

1− 2
(2N)2

)
(4.8)

Finally, we get:

Θ =

(
1− r 2N−1

(2N)2
r 2N−1

(2N)2
2

(2N)2
1− 2

(2N)2

)
(4.9)

Three loci model

In this case Θ = (1 − r)Θ0 + r1Θ1 + r2Θ2. Vector D contains $3 = 5 distributions

listed in lexical order: D = [D111, D112, D121, D122, D123]T .

If there is no recombination, none of D112, D121 and D122 has changed unless j =

1, k = 2 or j = 2, k = 1. In this last case D̃112 = D̃121 = D̃122 = D111. Hence,

Θ0 =


1 0 0 0 0
2

(2N)2
1− 2

(2N)2
0 0 0

2
(2N)2

0 1− 2
(2N)2

0 0
2

(2N)2
0 0 1− 2

(2N)2
0

0 2
(2N)2

2
(2N)2

2
(2N)2

1− 6
(2N)2

 (4.10)

where the form of the last row is justified as follows. If j = 1, k = 2, then (X̃11, X̃22, X̃33) =

(X21, X22, X33) and so D̃123 = D112. Similarly we show that this equality is true when

j = 2 and k = 1. Analogously, D̃123 = D122 if either j = 2, k = 3 or j = 3, k = 2, and

D̃123 = D121 if either j = 3, k = 1 or j = 1, k = 3. In the remaining cases D̃123 = D123.
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Table 4.1: Calculation of Θ1. If j = 1 and recombination took place after the first

locus, (X̃11, X̃12, X̃13) = (Xk1, Xm2, Xm3) and so (X̃11, X̃22, X̃13) = (Xk1, X22, Xm3). Con-

sidering all possible cases for k and m we obtain four entries in the middle row of the table.

The remaining entries in the table are obtained similarly.

j 6= 1, 2 j = 1, j = 1, j = 1, j = 1, j = 2, j = 2,

k 6= 2, k = 2, k = 2, k 6= 2, m 6= 1 m = 1

m 6= 2 m 6= 2 m = 2 m = 2

D̃112 D112
D112, k = m

D123, k 6= m
D121 D111 D122 D112 D111

D̃121 D121
D121, k = m

D123, k 6= m
D112 D111 D122 D121 D111

D̃122 D122 D122 D111 D111 D122 D122 D111

To find the three rows in the middle of Θ1 we consider recombination between the

first two loci by listing the possible cases in Table 4.1. This gives Θ1 in the form:
1− 2N−1

(2N)2 0 0 2N−1
(2N)2 0

2N+1
(2N)3

2N−2
2N + 2N−1

(2N)3 + 2N−1
(2N)2

2N−1
(2N)3

2N−1
(2N)3

(2N−1)(2N−2)
(2N)3

2N+1
(2N)3

2N−1
(2N)3

2N−2
2N + 2N−1

(2N)3 + 2N−1
(2N)2

2N−1
(2N)3

(2N−1)(2N−2)
(2N)3

2
(2N)2 0 0 1− 2

(2N)2 0

0 2
(2N)2

2
(2N)2

2
(2N)2 1− 6

(2N)2

 .

(4.11)

Obtaining the first row here is straightforward (similarly to two loci case) , and the

last row is obtained by noting that:

• for j = 1, D̃123 = D112 provided that k = 2, D̃123 = D121 provided that k = 3,

and D̃123 = D123 in the remaining cases

• for j = 2, D̃123 = D112 provided that m = 1, D̃123 = D122 provided that m = 3,

and D̃123 = D123 in the remaining cases

• for j = 3, D̃123 = D121 provided that m = 1, D̃123 = D122 provided that m = 2,

and D̃123 = D123 in the remaining cases

• for j ≥ 4, D̃123 = D123

To cover the case of recombination after the second locus we note that our model is

symmetric with respect to numbering loci. More specifically, if the loci were numbered
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from the last one to the first, the distributions D111, D112, D121, D122, D123 would have

become D111, D122, D121, D112, D123, which amounts to transposition of D112 and D122.

Since such a numbering transposes recombination loci, the following lemma is correct:

Lemma 4.1. For s = 3 the matrix Θ2 may be obtained directly from Θ1 by interchang-

ing columns 2 and 4 and, next, interchanging rows 2 and 4.

4.3 Asymptotic behavior

4.3.1 The general case

All distributions D form a complete system in that their evolution in time depends

merely on their initial conditions, matrix Θ and the semigroup {S(t), t ≥ 0} in Ms.

For, if we let G be the generator of {S(t), t ≥ 0} and G be the generator of the Cartesian

product {S(t), t ≥ 0} of $s copies of {S(t), t ≥ 0} in M$s
s , then writing D(t) for the

(column-) vector of D we have

dD(t)

dt
= GD(t) + λNΘD(t)− λND(t), t ≥ 0 (4.12)

provided that D(0), the initial state of the distributions, belongs to D(G), for example

if all of its coordinates belong to D(G). In other words, D(t) = T(t)D(0) where the

semigroup {T(t), t ≥ 0} is generated by G + λNΘ − λN . The proof of these facts is

analogous to that given in (18) where the case of two loci is treated. Moreover, Θ

commuting with S(t) gives us following formula (64):

T(t) = S(t)e−λNteλNtΘ (4.13)

The result is intuitively clear: in the absence of genetic drift, where the members of

the population evolve without influencing one another, the behavior of D is governed

by (4.12) with λ = 0. In this case (4.12) is an uncoupled system of $s independent

equations (λ = 0 gives infinite life-time of an individual). The process of birth-death

events is then treated as a perturbation of the uncoupled system and these events

occur at an exponential rate λN (since there are 2N individuals, each of them having

independent exponentially distributed life-lengths with parameter 2
λ).

Following lemma determines the ergodicity of the matrix Θ.

Lemma 4.2. For any number of loci the transition matrix Θ = (θij) where i, j are in

{1, . . . , $s} is ergodic.
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Proof. The Dobrus̆in’s coefficient value β of the matrix Θ is equal to 0 if s ≥ 4 and

thus it cannot be used directly to prove the ergodicity of the matrix. If we treat 2s− 2

steps of the Markov chain described by Θ as a single step, we get a Markov chain with

transition probability matrix Θ(2s−2). The egrodicity of this new Markov chain follows

with the ergodicity of the basic Markov chain. Two facts are true:

• It is possible to move from the 1, . . . , 1 state to any other state in at most s− 1

steps. To prove this, let a1, . . . , as be an arbitrary regular multi-index. Consider

a recombination event: let i be the recombination site number, j be the number

of an individual to be replaced, k be the number of an individual supplying the

loci with numbers 1 through i, and m be the number of an individual supplying

the loci with numbers i + 1 through s. Taking i = 1, j = k = 1 and m = a2

we jump from (1, . . . , 1) to (a1, a2, . . . , a2), a1 equaling 1 by assumption. After

arriving at (a1, a2, . . . , ab, . . . , ab), b ≥ 2 we choose i = l, j = k = ab, m = ab+1

to jump to (a1, a2, . . . , ab, ab+1, . . . , ab+1). Hence, after s − 1 jumps, we arrive at

a1, . . . , as.

• It is possible to move from any a1, . . . , as state to the 1, . . . , 1 state in at most s−1

steps. Starting from a1, . . . , as, we choose i = s−1, j = k = as,m = as−1 to jump

to (a1, . . . , as−2, as−1, as−1). After arriving at (a1, . . . , as−b−1, as−b, . . . , as−b), 1 ≤
b ≤ s − 2 we choose i = s − b − 1, j = k = as−b and m = as−b−1, to jump

to (a1, . . . , as−b−2, as−b−1, . . . , as−b−1). Hence, after s − 1 jumps we arrive at

(a1, . . . , a1) = (1, . . . , 1),.

These facts show that any two states 1 ≤ i, j ≤ $s communicate with each other in at

most 2s − 2 steps (by moving from ith state to 1, . . . , 1 firstly and then to jth state).

Thus θ
(2s−2)
ij > 0 for each 1 ≤ i, j ≤ $s leading to β(Θ(2s−2)) > 0 which proves our

claim.

Based on the ergodicity of the transition probability matrix Θ, we define Π as a

$s ×$s matrix with all rows equal to a stationary distribution of the matrix Θ such

that limt→∞ ‖e−λNteNtΘ −Π‖ = 0.

As a result we obtain Theorem (4.1)

Theorem 4.1. For any number of loci limt→∞ ‖T(t)D(0)− S(t)ΠD(0)‖ = 0.

The most interesting practical consequence of Theorem 4.1 is that for large t, the dis-

tribution D1...1(t) in the model with drift and recombination is asymptotically the same

as that in the model without drift and recombination provided that initial condition
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in the latter is the appropriate convex combination involving stationary distribution of

the matrix Θ:

D1(t) ∼ S(t)

$s∑
ι=1

πιDι(0),

where instead of Da1...as we write Dι where ι = ι(a1, . . . , as) denotes the position of

Da1...as in D (for example ι(1, . . . , 1) = 1 and ι(1, 2, . . . , s) = $s). In other words,

recombination influences the model merely through this stationary distribution and

this is regardless of the way mutations are modeled.

4.3.2 Simple case – three loci model

For the model with three loci both, Lemma 4.2 and Theorem 4.1 apply but the knowl-

edge of the exact forms of matrices Θi, 0 ≤ i ≤ 2 allows us to formulate more accurate

Theorem 4.2.

Theorem 4.2. For the model with three loci limt→∞ ‖T(t)D(0)− S(t)ΠD(0)‖ = 0 and

the speed of convergence is exponential.

Proof. To estimate the Dobrus̆ in’s coefficient of Θ we note that α = 2−2β (which is the

maximum appearing in (4.3)) is a convex function of Θ, and so β is concave. Therefore,

β(Θ) ≥ (1− r)β(Θ0) + r1β(Θ1) + r2β(Θ2). Since, for Θ0 this maximum is attained for

rows i = 1 and j = 5, and equals 2, β(Θ0) = 0. Similarly, the maximum for Θ1 is

attained simultaneously for (i, j) = (1, 2), (1, 3), (1, 5), (2, 4), (3, 4) and (4, 5) (provided

2N ≥ 3), and equals 2 − 1
N2 . Hence, β(Θ1) = 2

(2N)2
. Finally, since interchanging rows

and columns does not influence the value of β and based on Lemma 4.1, β(Θ2) = β(Θ1).

Hence, β(Θ) ≥ rβ(Θ1) ≥ 2r
(2N)2

> 0.

By (4.4) and (4.13) and Πx = Π, x ≥ 2, we have ‖eλNtΘ−eλNtΠ‖ ≤
∑∞

x=1
(λNt)x‖Θx−Π‖

x! ≤∑∞
x=1

(λNt)x(1−β(Θ))x

x! ≤ eλNt(1−β). Thus, ‖e−λNteλNtΘ − e−λNteλNtΠ‖ ≤ e−λNtβ(Θ). Us-

ing eλNtΠ = I + Π(eλNt − 1), we get

‖T(t)− S(t)Π‖ ≤ ‖e−λNteλNtΘ −Π‖

≤ ‖e−λNteλNtΘ − e−λNteλNtΠ‖+ ‖e−λNteλNtΠ −Π‖

≤ e−λNtβ(Θ) + e−λNt ≤ e−
λr
2N

t + e−λNt, (4.14)

proving our claim.

The knowledge of the exact forms of Θi, 0 ≤ i ≤ 2 allows us also to find an

explicit form of the stationary distribution π using Mathematica (4). Unfortunately,
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the formula is long and non-informative. However, if we disregard all the terms of(
N−2

)
order from Θ1 and Θ2, which for large populations are insignificant, and assume

r1 = r2 the formula simplifies to give:

π1 = a2 b(3b− 5)− 3a(2− 3b+ b2)

(ab− a− b)(6a2 + 5ab− 9a2b+ b2 − 4ab2 + 3a2b2)
,

π2 =
ab(a− 1)[3a(b− 1)− 2b]

(ab− b− 2a)(ab− a− b)(3ab− 3a− b)
,

π3 =
ab2(a− 1)

3a3(b− 2)(b− 1)2 − b3 + ab2(5b− 6) + a2b(18b− 7b2 − 11)
,

π4 =
ab(a− 1)[3a(b− 1)− 2b]

(ab− a− b)(6a2 + 5ab− 9a2b+ b2 − 4ab2 + 3a2b2)
,

π5 =
(a− 1)b2(3a− 1)

ab(5− 4b) + b2 + 3a2(2− 3b+ b2)
,

where b = r
2 , and a = 1

2N . In particular, if 1
2N � b, (π1, π2, π3, π4, π5) ≈ (0, 0, 0, 0, 1)

while if 2Nb→ c, then (π1, π2, π3, π4, π5) is approximately equal to

1
(c+1)(c+2)(c+3)(5c+ 6, c(3 + 2c), c2, c(3 + 2c), c(c+ 1)).

4.4 Model implementation

4.4.1 Computer programs

It was necessary to develop a computer program calculating Θ matrix in order to obtain

any numerical results for s ≥ 4. The program (named theta) is available on the disc

attached to the paper. The program realizes following functionality:

• calculates the explicit form of the Θi, 1 ≤ i ≤ s matrices; these matrices are

represented in symbolic way, each entry of the symbolic matrices is a triple of

linear combination coefficients of a, a2 and a3, where a = (2N)−1; these entries

either correspond exactly to the values of real Θi probabilities (if they are not on

the main diagonal) or require 1 to be added (otherwise – to the entries on the

main diagonal)

• calculates the numerical values of the Θi, 1 ≤ i ≤ s matrices; to achieve this, the

symbolic representation of the matrix along with the value of population size 2N

is required

• calculates the stationary distribution of the Θ (with a given precision)
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• calculates the Dobrus̆in coefficient, either the exact value (for the numerical ma-

trix) or the sign (positive or equal to 0 – for the symbolic matrix)

Mentioned functionality is available through Recombination class (see attached re-

sources for more details). Due to very large sizes of the Θ matrices even for small

s values, the program handles only one symbolic and one numerical matrix at once

(other matrices that are being used are kept as text files). The names of the result files

containing Θ matrices starts with the number (being the number of loci s) and follows

with a symbol of the matrix type (’S’ – symbolic, ’V’ – numerical), description of the

recombination site (string ’main’ – the main Θ matrix or string ’j..jk..k’ of the s length

where the j characters stands for the loci located on the left side of the recombination

site and k characters otherwise) and optional number x used only for the numerical

main matrix (it means that the presented matrix is equal to Θ2x). The program works

well for s ≤ 9 (for s ≥ 10 the size of Θ makes the task unmanageable even for a

computer).

We also attach two other computer programs. The first one, spectralGap, calculates

the spectral gap of the given transition probability matrix according to the formulas

presented in Section 4.1.2. To calculate the stationary distribution π, we apply the main

program described above. Eigenvalues of the matrix Q are obtained by the computer

program based on the QR algorithm (60).

The second program, coalcov, applies Monte-Carlo simulations to estimate the cor-

relation of the time to the MRCA at two loci in a sample of two-loci individuals under

a Moran model. The idea of the simulations is based on the Hudson’s simulations (90).

4.4.2 Algorithms

Distribution’s managing

We represent each of the possible $s distributions Da1...as (with a1 . . . as being the

regular multi-index) as a string of length s with each character equal to ai + 48, where

48 is an ASCII code of 0. Thus, for manageable cases s ≤ 9, each ai, 1 ≤ i ≤ s is a

digit. We store all distributions in an array in the lexical order, starting from ”11 . . . 1”

and ending with ”12 . . . s”. To obtain such a set of distributions A we use Algorithm

4.1.
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Algorithm 4.1 Representation of the distributions in the lexical order.

A← 1 ( the only d i s t r i b u t i o n f o r s = 1)

f o r i = 2 to s

B ← ∅
f o r each d i s t r i b u t i o n Da1...ai−1 ∈ A

σi = max(a1, . . . , ai−1)

f o r j = 1 to σi + 1

B ← Da1...ai−1j

endfor

endfor

A = B

endfor

We distinguish two basic operations on the distributions. The first one, termed

reverse, consists in reversing of the order of distribution’s multi-index from Da1...as to

Das...a1 . For example, reverse(D1213) = D3121. The second operation, termed reorder,

restores regularity of the distribution’s multi-index (i.e., after reverse operation). For

example, reorder(D3121) = D1232. Both of these basic operations are linear in the order

of s.

All distributions, being stored in an array in the lexical order, are indexed with

numbers from 0 to $s − 1. The key for fast managing of the distributions is to find a

method of very fast calculating of this index for a given distribution Da1...as . We will call

this operation as hash. Our hashing function requires an auxiliary array tab[x][y][z].

Each entry of the tab array corresponds to the offset in the given lexical order. Three

dimensions of this array represent triples (ai, i, σi), where σi = max(a1, . . . , ai−1) and

the entry of the tab is the index that the distribution Da1...as would have if the index of

Da1...ai−11...1 was 0. For example, the entry tab[4][6][3] represents the difference in

positions in the lexical order between distributions Da1...a51...1 (where max(a1, . . . , a5) =

3) and Da1...a541...1.

The array tab can be easily filled during the creation of the distribution’s repre-

sentation if we modify Algorithm 4.1 into recursive Algorithm 4.2 with the initial call

fun(D1,1)

Having tab initialized by Algorithm 4.2, all what we need to do to obtain the index
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Algorithm 4.2 Representation of the distributions in the lexical order – a recursive

algorithm with filling of the tab array.

fun (Da1...ai ,σi )

begin

k = 0

f o r j = 1 to σi + 1

tab[j][i+ 1][σi] = k

i f i+ 1 = s

A← Da1...aij

k = k + 1

e l s e

k = k + fun(Da1...aij ,max(σi, j))

e n d i f

endfor

re turn k

end

of the distribution Da1...as is to iterate over all indexes ai, 1 ≤ i ≤ s and sum up the

values of tab corresponding to these indexes. As we see, the hashing function is linear

in the order of s.

Θ calculation

In order to obtain Θ from (4.6), we need to calculate all Θi, 0 ≤ i < s, where i =

0 stands for a case with no recombination and each i > 0 stands for a case with

recombination after the ith locus. For a given recombination site, the probability

transition matrix may be obtained based on (4.5) by analyzing all possible coalescent

events in death/birth process. As we have already mentioned, these events are identified

by the triples (j, k,m), 1 ≤ j, k,m ≤ 2N , where j is the number of deceased individual

replaced by the individual made as a result of recombination of individuals k and m.

For a given distribution after coalescent event D̃i, 0 ≤ i < $s, each triple (j, k,m)

point at exactly one distribution Dj , 0 ≤ j < $s leading to this D̃i as a result of the

coalescent event. The probability of each triple is equal to 1
(2N)3

. Thus, the algorithm

to calculate Θi seems to be straightforward (Algorithm 4.3).
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Algorithm 4.3 Calculation of the matrix Θi. The function getDistr is a linear

function in the order of s that returns the distribution which, in a death/birth process

described by parameters, leads to the distribution given as a parameter.

A← d i s t r i b u t i o n s in l e x i c a l order ( indexed from 0 to $s − 1)

∀0≤x,y<$sΘi[x][y] = 0

fo r each D̃x ∈ A
f o r each (j, k,m), 1 ≤ j, k,m ≤ 2N

Dy ← g e t D i s t r (D̃x , (j, k,m) , i)

Ix = hash(D̃x)

Iy = hash(Dy)

Θi[Ix][Iy] = Θi[Ix][Iy] + 1
(2N)3

endfor

endfor

Unfortunately, in the Algorithm 4.3 we need to analyze all (2N)3 triples (j, k,m). It

causes two major problems: (i) depending on the value of population size makes it more

difficult to obtain the symbolic Θi matrix (which is independent of the 2N value) and

(ii) the algorithm is extremely time inefficient even for small populations. To overcome

these difficulties we can notice that there exist groups of triples that lead to the same

distribution’s changes. To see this, let σx be the number of distinct characters in the

multi-index corresponding to D̃x = D̃a1...as . Then, σx = max(a1, . . . , as). Note that

if j > σx, D̃x is Dx. Next, consider the recombination event described by (j, k,m)

where j ≤ σx, k > σx and k 6= m, and assume that it leads from D̃x to Dy. Then, any

recombination event (j, k′,m) where k′ > σx and k′ 6= m also leads from D̃x to Dy.

The same is true if roles of k and m are interchanged. Also if j ≤ σx, k = m > σx

and D̃x leads to Dy, then D̃x leads to Dy for all other events described by (j, k′,m′)

where k′ = m′ > σx. Hence, the triples (j, k,m) naturally divide into six classes and

the computation of Θi may be performed in the following six steps:

1. the case where j > σx

2. the case where 1 ≤ j, k,m ≤ σx

3. the case where 1 ≤ j, k ≤ σx and m > σx
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Table 4.2: Division of the 2N × 2N × 2N space of (j, k,m) triples into six distin-

guish classes. Each triple (j, k,m) describes a single death/birth process (individuals k

and m recombine and form a new individual that replaces deceased individual j). We apply

the division of the space of the triples for each distribution D̃a1...as
and σ = max(a1, . . . , as).

One can notice that the given probabilities can be represented as a linear combination of

a0, a1, a2 and a3 where a = 1
2N . Therefore, obtaining of the symbolic matrices Θi, 0 ≤ i < s

is straightforward by using slightly modified Algorithm 4.3.

Case Triple’s Number of Probability of

number requirements states each state

1 j > σ 1 1− σ
2N

2 1 ≤ j, k,m ≤ σ σ3 1
(2N)3

3 1 ≤ j, k ≤ σ,m > σ σ2 1
(2N)2

− σ
(2N)3

4 1 ≤ j,m ≤ σ, k > σ σ2 1
(2N)2

− σ
(2N)3

5 1 ≤ j ≤ σ, k = m > σ σ 1
(2N)2

− σ
(2N)3

6 1 ≤ j ≤ σ, k > σ,m > σ, k 6= m σ 1
2N −

2σ+1
(2N)2

+ σ2+σ
(2N)3

4. the case where 1 ≤ j,m ≤ σx and k > σx

5. the case where 1 ≤ j ≤ σx, and k = m > σx

6. the case where 1 ≤ j ≤ σx, k,m > σx and k 6= m

The total number of triples that need to be analyzed in each of these steps and the

probability values corresponding to each triple are presented in Table 4.2.

4.4.3 Time and memory complexity of the main program

The memory complexity M(s) is a sum of space used by two matrixes used in the

algorithm. The symbolic matrix is built of $2
s triples of coefficients of 4 bytes numbers

and the numerical matrix is obtained from the symbolic matrix by multiplying these

coefficients by consecutive powers of 1
2N (and 1 is added on the main diagonal). Hence,

M(s) = M(SymbolicMatrix) +M(NumericMatrix) = 12$2
s + 8$2

s = 20$2
s [Byte], each

number in the numerical matrix using 8 bytes. For example, M(8) = 340MB and

M(9) = 8.5GB.

We perform s3 iterations (actually, σ3 iterations) and we use s iterations to trans-

form a multi-index involved into its regular form during the computation of each row
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of the matrix. Hence, time-complexity of calculating each row is of the order of s4.

Taking into account the initialization process, we obtain that the time complexity is

O(s4$s +$2
s).

4.5 Results

4.5.1 Stationary distributions

We calculate the stationary distribution π by iteratively multiplying of the transition

matrix Θ by itself until we reach the matrix with each row being almost equal to any

other row of the matrix. The matrix after the kth iteration is equal to Θ2k . We assume

that the two rows of the matrix are considered equal if all the differences of the values

of the corresponding entries of both rows are lower than the chosen precision (usually

equal to 10−6).

The numerical calculations show that:

• as r =
∑s−1

i=1 ri increases and 2N is fixed, the role of π1 in the stationary distri-

bution decreases to 0, while that of π$s increases to 1 (Figure 4.1).

• with the growth of r, each πi where 1 < i < $s initially increases to a maximal

value, and then decreases to zero (Figure 4.2).

• if r1 = r2 = ... = rs−1, tuples of distributions related by symmetry, such as D11112

and D12222, reach the maximal value at the same time (Figure 4.2).

This suggests that with the growth of r, the probability mass tends to concentrate

close to π$s . This intuition is supported by Figure 4.3 where the expected number

of recombination events Er leading to a distribution in the stationary state is shown

to grow with r. The value is calculated as follow: Er =
∑$s

i=1 πiγi, where γi is the

number of recombination events needed to obtain the ith distribution. In this case we

assume that only one recombination event may appear after each locus. Then, for each

distribution, the number of recombination events leading to it may be calculated as the

number of the consecutive pairs of loci descended from the different individuals. For

example, to obtain distribution D1223 exactly two recombination events are required

(after the first and after the third locus).
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Figure 4.1: Values of the first (π1) and the last (π$s) entry of the stationary distribution

for the model with five loci as a function of the recombination rate with constant population

size 2N = 1000.
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Figure 4.2: Examples of values of entries of the stationary distribution as a function

of the recombination rate for constant population size 2N = 1000. Since we assume

r1 = r2 = ... = rs−1 the entries for the distributions related by symmetry (such as D11123

and D12333) are equal.
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Figure 4.3: Expected number of recombination events for the model with six loci as a

function of the recombination rate with constant population size 2N = 1000.

However, the role of distributions close to the last one in the lexical order may de-

crease quite slowly (see Figure 4.4). Finally, the speed (based on the number of discrete

generations) of reaching the stationary distribution of Θ is of the order of population

size (Figure 4.5). We assume that the matrix reaches the stationary distribution when

all its entries differ from the corresponding entries of the previously calculated station-

ary distribution by less than 10−6. This agrees well with the fact that the time to the

most recent common ancestor is of the order of population size.

4.5.2 Spectral gap

To calculate the spectral gap of the Θ we use separate computer program (see Section

4.4.1). The results obtained by us are intuitively clear: the speed of convergence

(indicated by the lower values of spectral gap) decreases when the number of loci

(Figure 4.6) or population size (Figure 4.7) increases.

4.5.3 Comparison with Wright-Fisher Hudson’s model

Hudson’s algorithm (90, 91, 93) is a well known standard coalescent approximation of

the Wright-Fisher model. Wright-Fisher model assumes constant finite population size

of 2N individuals and discrete generations with geometric distribution times between
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Figure 4.4: An entry D12343 of the stationary distribution close to the last distribution

in lexical order for five loci as a function of the recombination rate for constant population

size 2N = 1000.
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Figure 4.5: Number of discrete generations required for transition matrix Θ to reach, with

a given precision, the stationary distribution in each row, as a function of the population

size. We assume that the matrix reaches the stationary distribution when all its entries

differ from the corresponding entries of the stationary distribution by less than 10−6.
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Figure 4.6: The spectral gap of Θ as a function of 2Nr coefficient calculated for models

with different number of loci and constant population size 2N = 1000.
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Figure 4.7: The spectral gap of Θ for the model with five loci as a function of 2Nr, for

various population sizes. Notice that the population size has a significant influence on the

value of the spectral gap. Increasing the population size ten times results in decreasing the

value of the spectral gap by about hundred times.

adjacent events. These assumptions are true for both, our and basic Hudson’s model.
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The difference is that our model, being a Moran model, incorporates a lifetime of

each individual as an exponential random variable with parameter 2
λ . Mutations in

the Hudson’s model are incorporated into genealogy and placed randomly on branches

under infinite-sites model according to a Poisson process. Another model of mutations

may be considered only by using sampled gametes as input to other model (48). Our

model is not limited to any specific mutation model.

In both models a recombination event can occur between any two sites. The number

of these sites is finite, constant and specified by the user. An important difference in

the recombination model between both models lies in the fact that in the Hudson’s

model the recombination event is independent from the coalescent event.

Hudson (90), based on results obtained by Griffiths (66), gives the following formula

for the covariance of the number of segregating sites at two loci in a sample of n gametes:

Cov(c1, c2) = 4N2µ2Cov(t1, t2) = 4µ2Cor(t1, t2) (4.15)

where ci is the number of segregating sites at the ith locus, ti is the time (in units

of 4N) to the MRCA of the entire sample at the ith locus, R = 4Nr and

Cor(t1, t2) = f(R) =
R+ 18

R2 + 13R+ 18
. (4.16)

We conducted simulations using a modification of the Hudson’s algorithm in order

to estimate the correlation of the time to the MRCA at both loci in our model. Figure

4.8 presents results obtained for n = 2. The correlation in our model is higher than

the correlation derived by Hudson for his model. That is intuitively expected since

incorporating of the lifetimes of individuals provides dependence between individuals

from the sample. We applied the mean square error interpolation to our model and

received the following formula for the correlation:

Cor(t1, t2) =
R+ 32

R2 + 10R+ 32
. (4.17)

If we remove the information about times of birth of each individual from our model

and scale the recombination rate by the times between two events (the times generated

with an exponential distribution with parameter dependent on the sample size), then

we obtain exactly the same formula for the correlation of the time to the MRCA at

both loci as the one derived by Hudson (Figure 4.9).
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Figure 4.8: The correlation of the time to the MRCA at two loci in a sample of size 2 as a

function of R = 4Nr. Results for both models, our and Hudson’s, were obtained by Monte

Carlo coalescent method under assumption of n� 2N . Results obtained by simulations for

the Hudson’s model are consistent with theoretical results provided by the Griffiths-Hudson

formula (4.16). On the graph, expression (4.16) is depicted by a continuous line.

Figure 4.9: The correlation of the time to the MRCA at two loci in a sample of size 2

as a function of R = 4Nr. We removed from the model the information about times of

death and scaled the recombination rate by the times between adjacent events. In that

case the formula for the correlation in our model is similar to (4.16). The black squares

are estimates of the correlation obtained by simulations. The continuous line depicts the

relationship (4.16). Standard error intervals are indicated.
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We obtained the results presented in Figure 4.8 under assumption that n � 2N .

However, the correlation for small values of 2N (2N < 6n) slightly changes if we discard

this assumption (Figure 4.10).
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Figure 4.10: The correlation of the time to the MRCA at two loci in a sample of size

2 as a function of R = 4Nr obtained by a standard Monte Carlo coalescent method. We

can observe the influence of the n � 2N assumption for a small values of 2N (equal to 4

in this case).
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5

Genetic drift model in population

with time-varying size

5.1 Preliminaries

We assume that the population has evolved from time t = 1 to the present time T .

Population size at time t is denoted by Nt with N1 ≥ 1. The sequence {Nt}t∈{1,2,...,T}
is generally a discrete-time and discrete-state random process. To focus attention we

assume that it is a Markov chain. We also assume multinomial sampling from a given

generation’s pool conditional on the number of individuals in the generation.

By τi,t, 1 ≤ τi,t ≤ T − 1 we denote the time (counted backwards) to the MRCA of

a sample of i individuals living at time t. The distribution that we need to calculate is

{P (τn,T = t), t = 1, 2, . . . , T − 1}.

5.1.1 Wright-Fisher model with time-varying population size

We consider a coalescent tree built for a sample of size n randomly drawn from the

current generation of the population evolved by the Wright-Fisher model. The tree

contains n− 1 coalescent events and we denote the random coalescence times of these

events by Hn, Hn−1, . . . ,H2 and their realizations by hn, hn−1, . . . , h2. All times (in

generations) are counted backwards from the current generation at time 0. We assume

that h2 ≥ h3 ≥ · · · ≥ hn ≥ 0 = hn+1 and that N(t) is the effective population size

at time t. Then, according to (67), the joint probability density function of the times
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H2, H3, . . . ,Hn has the form:

p(h2, h3, . . . , hn) =

n∏
k=2

(
k
2

)
N(hk)

exp

(
−
∫ hk

hk+1

(
k
2

)
N(z)

dz

)
(5.1)

Equation (5.1) allows us to calculate the distribution P (τn,T = t) by averaging of the

p(h2, h3, . . . , hn) values over all possible realizations of the coalescent tree. Unfortu-

nately, this method can be extremely time inefficient for larger n or complex N(t)

dependency. Nevertheless, a modification of formula (5.1) yields the exact value of the

distribution P (τn,T = t) for a population with known time-varying size and for small

n. Below we consider the case n = 2.

For consistency we assume that population evolved from time t1 = 1 to the current

generation at time T . The population, over its evolution, may experience discrete

events leading to a change of the growth rate.We denote the number of these events

by m − 2 ≥ 0 and the times of their occurrence by t2, t3, . . . , tm−1, where 1 = t1 <

t2 < · · · < tm−1 < tm = T . The population size is equal to Ni(t) for t ∈ (ti, ti+1).

Functions Ni(t) may be chosen from families such that expression (5.1) is expressed

in the terms of elementary functions. As a result we obtain the following probability

density function for the time to the MRCA of a pair of individuals drawn from the

population at time T :

p(τ2,T = t) =
1

Nk(t)
exp

(
−
∫ tk+1

t

1

Nk(z)
dz

) m−1∏
i=k+1

(
exp

(
−
∫ ti+1

ti

1

Ni(z)
dz

))
, (5.2)

where tk ≤ t ≤ tk+1.

One may notice that if we set m = 2 and N1(t) = N, i.e., a constant size population,

then formula (5.2) gives us the well-known exponential distribution of the time to the

MRCA of a pair of chromosomes (181).

5.1.2 Bobrowski’s formula for the distribution of the time to the

MRCA

Let us consider the case of n = 2. Two individuals at generation t+ 1 are descendants

of the same member of generation t with probability pt = 1/Nt and with probability

qt = 1− pt they are descendants of two different individuals. As derived in (18),

P (τ2,T = t) =
T−1∏
k=T−t

qk −
T−1∏

k=T−t−1

qk = pT−t−1

T−1∏
k=T−t

qk, (5.3)
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where for mathematical consistency we set p0 = 1 and q0 = 0.

Let σi,t be the time to the first coalescence of the genealogical lineages of the sample

of i individuals of generation t. If σn,T = s and there are k distinct ancestors of the

sample at time T − s, where 1 ≤ s ≤ T − 1, then

τn,T = σn,T + τk,T−s (5.4)

and the summands are independent conditionally on {Nt}.
The probability that m members of generation t + 1 have exactly k ancestors at

generation t is ((17) p. 352):

qm,k,t =
Sm,k

(
Nt
k

)
k!

Nm
t

, (5.5)

where Sm,k = 1
k!

∑k
i=0(−1)i

(
k
i

)
(k − i)m is the Stirling number of the second kind (63).

Introducing pm,t = qm,m,t for m ≤ Nt, and pm,t = 0 otherwise (pm,t is the probability

of m members of generation t+ 1 having m ancestors at generation t), we obtain

P (σn,T = s) = qn,k,T−s

s−1∏
u=1

pn,T−u. (5.6)

Hence, summing over all k and s, we obtain based on (5.4),

P (τn,T = t) =
T−1∑
s=1

n−1∑
k=1

qn,k,T−s

s−1∏
u=1

pn,T−uP (τk,T−s = t− s), (5.7)

where 1 ≤ t ≤ T − 1.

5.1.3 Time to the MRCA in a Galton-Watson process

Assume that one has the knowledge of the complete genealogical history of the popula-

tion (full genealogical tree). Then, the simplest method to calculate the distribution of

the time to the MRCA of a sample of size n is by tracing back the lineages of all possi-

ble samples of that size to their MRCA and using the frequency graph as an estimate.

Unfortunately, this approach is extremely time-inefficient and cannot be used for larger

populations or larger sizes of sample – the exact number of samples to trace is equal

to
(
Nt
n

)
. In that case, the only method to estimate the distribution is to reduce the

number of examined samples using Monte-Carlo simulations. We can obtain the results

by averaging the times calculated for a fixed number of samples randomly drawn from
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the population. A sample of individuals drawn from a population evolved according to

the Galton-Watson process satisfies Lemma 5.1.

Lemma 5.1. τa1,a2,...,ai+1 = max(τa1,a2,...,ai , τa1,ai+1), where τ is the time to the MRCA

of a sample of individuals listed as indices.

Proof. Let us denote τa1,a2,...,ai = α, τa1,ai+1 = β, η1 is the MRCA of the sample

(a1, . . . , ai) and η2 is the MRCA of a pair (a1, ai+1). Following observations are based

on the fact that a1, η1 and η2 belong to the same lineage in the genealogical tree. If

β ≤ α, then η2 is a descendant of η1 and τaj ,ai+1 , for 1 ≤ j ≤ i, cannot be greater than

α. In that case τa1,a2,...,ai+1 = α. Otherwise, τη1,ai+1 = β, and τaj ,ai+1 = β for each

1 ≤ j ≤ i. Thus, τa1,a2,...,ai+1 = β.

Lemma 5.1 limits to n− 1 the number of calculations of the time to the MRCA of

two individuals required to calculate the time to the MRCA of a sample of size n.

5.2 Model derivation

As we have already mentioned, the well-known formula (5.1) does not allow us to obtain

the expected distribution of the time to the MRCA given by P (τn,T = t) for required

values of n, T or Ni. The Bobrowski’s formula (5.7) is also insufficient. Admittedly, it

gives us a direct method to calculate this distribution but the recurrence in the formula

and the use of the Stirling numbers make the calculation infeasible even for relatively

small T , n and Ni (i.e., if T ≈ 100 and n = 3, the calculation cannot be completed in

a feasible amount of time). However, the computation may be reorganized in order to

deal with the stated problem.

Let αt,k be the probability that the sample has exactly k ancestors at time t. Ob-

viously, αT,n = 1 and αT,i = 0, i 6= n. Hence, we get

αt,k =

n∑
i=k

αt+1,iqi,k,t (5.8)

where q values are given by (5.5).

Based on (5.8) we are able to calculate all α values if we know the values of the q

probabilities. Moreover, the probability that the MRCA of the sample exists at time t
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is equal to (αt,1 − αt+1,1), the difference between the probabilities that the sample has

one ancestor at times t and t+ 1. Hence,

P (τn,T = t) = (αT−t,1 − αT−t+1,1) (5.9)

The αt,i probabilities also define the distribution of the number of lineages ancestral

to a sample at time t. These values may be used, for example, in the methods that

estimate the whole population history based on the history of the sample(s) from that

population (124).

Finally, we get the following two theorems, Theorem 5.1 and Theorem 5.2. In

the proofs of these theorems we repeatedly use the two following recurrence relations:

Sn,1 = Sn,n = 1 and Sn,k = Sn−1,k−1 + kSn−1,k.

Theorem 5.1. The probability values qn,k,t satisfy the following equations:

q1,1,t = 1, 1 ≤ t ≤ T (5.10)

qi+1,i+1,t = qi,i,t
Nt − i
Nt

, 1 ≤ t ≤ T, 1 ≤ i < n (5.11)

qi+1,k,t =
Wi,k

Nt
qi,k,t, 1 ≤ t ≤ T, 1 ≤ k ≤ i < n (5.12)

where Wi,k =
Si+1,k

Si,k
.

Proof. Equation (5.10) is obvious from (5.5). Two other formulas may be obtained as

follow:

qi+1,i+1,t =
Si+1,i+1(Nti+1)(i+1)!

N i+1
t

=
1

Nt!
(Nt−i−1)!i!(i+1)

(i+1)!

N i
tNt

=
Si,i

Nt!
(Nt−i)!i!

i!(Nt−i)
N i
tNt

= qi,i,t
Nt−i
Nt

qi+1,k,t =
Si+1,k(Ntk )k!

N i+1
t

=
Si+1,k

Si,kNt

Si,k(Ntk )k!

N i
t

=
Wi,k

Nt
qi,k,t, where Wi,k =

Si+1,k

Si,k
.

In Theorem 5.1 we introduced the Wn,k sequences. The values of these sequences

are defined by Theorem 5.2.

Theorem 5.2. The values of Wn,k satisfy the following equations:

Wi,1 = 1, 1 ≤ i ≤ n (5.13)

Wi,i = Wi−1,i−1 + i, 2 ≤ i ≤ n (5.14)
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Wi,k = k +Wk−1,k−1

i−1∏
j=k

Wj,k−1

Wj,k
, 2 ≤ k < i ≤ n. (5.15)

Proof. Wi,1 =
Si+1,1

Si,1
= 1

Wi,i =
Si+1,i

Si,i
= Si,i−1 + iSi,i =

Si,i−1

Si−1,i−1
+ i = Wi−1,i−1 + i

Wi,k =
Si+1,k

Si,k
=

Si,k−1+kSi,k
Si,k

= k +
Si,k−1

Si,k
= k +

Si,k−1
Si−1,k−1

Si−1,k−1
Si−2,k−1

...
Sk,k−1
Sk−1,k−1

Sk−1,k−1

Si,k
Si−1,k

Si−1,k
Si−2,k

...
Sk+1,k
Sk,k

Sk,k
=

k +
Wi−1,k−1Wi−2,k−1...Wk,k−1Wk−1,k−1

Wi−1,kWi−2,k...Wk,k
= k +Wk−1,k−1

∏i−1
j=k

Wj,k−1

Wj,k

One may notice that Wn,k =
Sn+1,k

Sn,k
= k +

Sn,k−1

Sn,k
. From

Sn,k−1

Sn,k
strictly decreasing

with n → ∞ (21) and based on (5.14) we can obtain that Wn,k values are relatively

small satisfying the following estimate: Wn,k < n2.

5.3 Model implementation

The main algorithm uses Theorem 5.1 and Theorem 5.2 to calculate the distribution

P (τn,T = t) in an efficient way. Besides this algorithm, we developed a framework that

allows us to realize studies of the different scenarios of the population growth or mating

schemas with a particular respect to the Galton-Watson process.

5.3.1 Main algorithm

The main algorithm uses the dynamic programming method (15, 29, 111) multiple

times. The dynamic programming is a mathematical and computer algorithmic scheme

for solving optimization problems. The method builds the final solution by expanding

initial conditions (usually being the solutions for trivial cases) step by step into more

complex cases based on a given formula. Time-efficiency of the method is determined

by the number of states (equal to nT in our case) and the complexity of the final

formula and is greatly improved by memorization of the partial solutions and their use

in the succeeding steps. Thus, the dynamic programming is a perfect method to solve

recurrence equations with given initial conditions and a simple recurrence expression.
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Formulas (5.8) and (5.9) give us a direct expression that can be used to calculate

the expected distribution. Algorithm 5.1 presents the dynamic programming imple-

mentation that realizes this task. The Q array used in Algorithm 5.1 contains the q

probabilities given by (5.5).

Algorithm 5.1 Calculation of the distribution P (τn,T = t). The array A[t][k], 1 ≤ t ≤
T, 1 ≤ k ≤ n stores the values of αt,k defined by (5.8). The function calcQ(t) calculates

the q probabilities at time t and stores them in the array Q[m][k], 1 ≤ k ≤ m ≤ n.

∀1≤t≤T,1≤k≤nA[t][k] = 0

A[T ][n] = 1.0

f o r t = T − 1 downto 1

calcQ (t)

f o r k = 1 to n

f o r i = k to n

A[t][k] = A[t][k] +A[t+ 1][i] ·Q[i][k]

endfor

endfor

endfor

f o r t = T − 1 downto 1

P (τn,T = t) = A[t][1]−A[t+ 1][1]

endfor

To calculate all q probabilities, first we use dynamic programming to calculate all

qi,i,t probabilities based on the recursive formula given by Theorem 5.1. Subsequently

we extend these calculation to all qn,k,t. Algorithm 5.2 presents the implementation

of the calculation of the Q array used in Algorithm 5.1. By introducing the Wn,k

expression we avoid in our calculations the necessity of computing the Stirling numbers

Sn,k, which are very large even for small n and k. To calculate the Wn,k values we use

Theorem 5.2. Algorithm 5.3 presents details of these calculations.

The total time complexity of the algorithm is of the order of O(n3 +n2T ), where T

is the number of discrete generations and n is the sample size. Thus, one may obtain

the results in a short time even for n ≈ 103 and the time period comparable to the

time-span of modern humanity.
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Algorithm 5.2 Calculation of the q probabilities at time t. Nt is the population size

at time t.

calcQ (t)

begin

∀1≤i,j≤nQ[i][j] = 0

Q[1][1] = 1.0

f o r i = 2 to n

Q[i][i] = Nt−(i−1)
Nt

Q[i− 1][i− 1]

endfor

f o r k = 1 to n

f o r m = k + 1 to n

Q[m][k] = W [m−1][k]
Nt

Q[m− 1][k]

endfor

endfor

end

Algorithm 5.3 Calculation of the Wn,k values.

∀1≤i,j≤nW [i][j] = 0

f o r i = 1 to n

W [i][1] = 1.0

endfor

f o r i = 2 to n

W [i][i] = W [i− 1][i− 1] + 1

f o r j = 2 to i− 1

a = W [j − 1][j − 1]

f o r k = j to i− 1

a = W [k][j−1]
W [k][j] a

endfor

W [i][j] = j + a

endfor

endfor
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5.3.2 Framework structure

Our algorithm works well for any evolutionary scenario that assumes a multinomial

mating scheme. Thus, it may be possible to use our approach to examine different pop-

ulation models and compare results obtained by our method to other methods, usually

based on simulations. To make conducting such experiments possible, we developed a

framework that realize this task. The key feature of the program lies in the fact that

we deliver to the person using our framework a set of ready-to-use functions including

implementation of a few different generators of the pseudo-random values, calculation

of several evolutionary parameters along with the implementation of the algorithm de-

scribed in the previous section and sample implementation of a single genealogy. The

only thing that is required from the user is to write a code (based on a given sample)

that realizes the experiments. The user may also add his own mating scheme by de-

riving from Genealogy class. We attach a few examples describing of how to use our

program. The framework is written in the C++ programming language and consists

of four modules:

1. Module Distr contains implementation of the most commonly used distributions.

To generate a pseudo-random value we use the MZT generator (123) with the

period equal to 2144 ≈ 1043.

2. Module Genealogy contains implementation of a base class describing a single ge-

nealogy tree along with a very efficient implementation of the model of population

evolved according to the Galton-Watson process (see Section 5.3.2 for details).

3. Module Stats contains a set of functions calculating the values of a few evolution-

ary parameters. The most important part of this module contains an implemen-

tation of our algorithm calculating the distribution of the time to the MRCA.

4. Module GW performs experiments. Input genealogy data may be either delivered

by user or obtained during the experiment by using Genealogy module.

Galton-Watson process implementation

In order to compare our method with simulation approach we applied our algorithm to

the Galton-Watson process. We need the knowledge of the full generation-to-generation
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sampling scheme to calculate the time to the MRCA of a sample drawn from the

population evolved according to such a process. Unfortunately, for large populations,

it requires enormous amount of data to be stored and analyzed, limiting the possible

number of generations one can model in a feasible time. To solve this problem, we

reduce the description of the genealogy by finding the ”reduced” genealogy, limited to

the individuals who left descendants at T . Only information about individuals from

the last generation is stored. Each individual contains the specified additional data

that allows to track back its genealogy.

All individuals in the population and lineages in the genealogy are identified in each

generation by consecutive integer numbers starting from 1. Consecutive numbers are

assigned to the individuals being the offspring of the same individual from the previous

generation. Additionally, for each individual from the current generation with index

x, we store the time z when its genealogical lineage originated and lineage y from

which it evolved. Thus, each individual is described by the triple (X,Y, Z) = (x, y, z),

where x is unique for each individual from a given generation. We assume that if the

individual with X = i at generation t ≥ y has more than one descendant at generation

t+1, the descendant identified by the lowest number (say, i′) inherits all its genealogical

information, whereas other descendants (identified by i′+1, i′+2, and so on) are marked

as the individuals that originated in generation t+1 from the lineage i′. If, for example,

an individual (x, y, z) of generation t has exactly three descendants at generation t+ 1,

then these offspring will be identified by the following triples: (x′, y, z), (x′+1, t+1, x′)

and (x′ + 2, t + 1, x′). The only individual at the first generation is described by the

(1, 1, 1) triple and each first individual in the population at any generation is identified

by exactly the same triple (1, 1, 1). Figure 5.1 shows a sample genealogy tree built

in that way. Notice that the y value, corresponding to the direct ancestor of the

individual, indicates the lineage index from the current generation. As an example,

the 5th individual of the 4th generation in the figure evolved from the 5th individual

of the 3rd generation but its y = 4 due to the fact that the first descendant of the

ancestor has an index 4 in the 4th generation. This relation between x and y values

of individuals from the same generations allows us to reconstruct the full genealogy of

the Galton-Watson process of all non-extinct lineages.

As we can notice on Figure 5.1, assigning of a proper triple to the newly formed

individual in the generation-to-generation scheme may not be straightforward in the
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Figure 5.1: Sample genealogy tree evolved according to the Galton-Watson process. The

entries of a triple describing each individual correspond to: the index of a lineage (an

individual), the index of the ancestor and time when the individual originated.

case when its ancestral lineage extinct. Algorithm 5.4 demonstrates how these triples

are obtained by using of a specialized map of lineages.

To find the time to the MRCA of two individuals a and b identified at time t by the

triples (ia, xa, ya) and (ib, xb, yb) we need to perform an Algorithm 5.5. The algorithm is

very fast with pessimistic time complexity equal to O(NT + T) and logarithmic average

time complexity. To find the time to the MRCA of a sample of size n we can use Lemma

5.1 that allows us to obtain this time by executing Algorithm 5.5 n− 1 times.

5.4 Results

5.4.1 Time to the MRCA of a sample drawn from a population expe-

riencing a bottleneck event

As an example of the known time-varying size population we consider a population with

a single bottleneck event. Our population history model assumes a long term constant

population with the population size equal to N1 followed by a reduction (bottleneck) of

the population size to Nb (Nb ≤ N1) at generation Tb. Further on, the population grows

exponentially in size to the final (current) generation Tf reaching a size equal to Nf . In

the so-called hourglass scenario the reduction occurring in generation Tb is significant,

whereas at the so-called longneck scenario N1 ≈ Nb. Figures 5.2, 5.3 and 5.4 compares

the cumulative distributions of the time to MRCA for three different sizes of sample.
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Algorithm 5.4 Creation of a new generation of individuals in the Galton-Watson

process. Each individual a, 1 ≤ a ≤ Nt at time t is described by a triple (a, xa, ya).

We denote a set of all individuals from the population at time t by At. Each individual

a from the current generation has exactly wa descendants at the following generation.

We use the map L (being an array of size Nt) to map old lineages into new ones, the

entry of L with a value of −1 stands for an extinct lineage.

k = 0

fo reach a ∈ At
i f (wa = 0)

L[a] = −1

e l s e

k = k + 1

L[a] = k

z = (z, xz, yz)← a = (a, xa, ya)

whi l e (L[yz] = −1)

L[yz] = k

i f (yz = 0) //new l i n e a g e with the index 1 i s formed

xz = 1

break

e n d i f

z ← (yz, xyz , yyz)

endwhi le

yz = L[yz]

At+1 ← z

f o r j = 2 to wa

At+1 ← (k + j − 1, t, k)

endfor

k = k + wa − 1

e n d i f

endfor
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Algorithm 5.5 Calculation of the time to the MRCA of two individuals a and b in

the Galton-Watson process. We assume that ia < ib.

findMRCA(a = (ia, xa, ya) ,b = (ib, xb, yb))

begin

τ = xb

whi le ( ia 6= yb )

τ = min(τ, xb)

b← yb = (iyb , xyb , yyb)

i f ( ia > ib )

swap (a ,b)

e n d i f

endwhi le

re turn τ

end

All of presented populations starts 20000 generations in the past at the time T1 = 1

with constant population size equal to N1 = 10000. At the Tb = 10000th generation

two of these populations experience a bottleneck event followed by exponential growth.

Bottleneck event that appears at the Tbth generation reduces the size of populations to

Nb = 1000 and Nb = 9000 for hourglass and longneck scenarios, respectively. For both

of these populations the current population size is equal to Nf = N20000 = 35000. The

results presented in Figure 5.2 (a case with n = 2) agree with its theoretical prediction

calculated from the continuous-time approach based on expression (5.2).

5.4.2 Time to the MRCA of real populations

We apply our method to two real populations in order to calculate their distributions of

the time to the MRCA. Our method requires knowledge of the values of the population

size over the whole examined period. To meet that requirement, we assume that the

modern census population sizes of the World and of Poland are as presented in Figures

5.5 and 5.6. Appendix A includes the references that we have used to obtain these

estimates. The sources contain the World population size from the year 12000 BP

along with a single older entry at the year 106 BP and the population size of Poland

in the 1000 most recent years. One should be aware that the listed values, especially
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Figure 5.2: Time to the MRCA of a sample of size n = 2 in populations experiencing

a bottleneck event. Three demographic scenarios are presented: longneck and hourglass

bottleneck, and constant population size. In both populations experiencing the bottleneck

Tf = 20000, Nf = 35000 and Tb = 10000. In the longneck scenario the population size

decreases from N9999 = N1 = 10000 to N10000 = 9000. In the hourglass scenario we assume

N9999 = 10000 and N10000 = 1000. In the constant size population scenario N = 10000.

regarding the population size of the World B.C. and of Poland before the 1850s (when

the censuses began), may not be correct. For example, the estimates of the population

size of Poland in the late medieval centuries widely vary in different sources (even by

100%). The sizes at the prior times have been estimated using the growth rates listed

by Kremer (113). We assume the World population growth rate to be equal to 3 · 10−6

per year before the year 106 BP and the growth rate of Poland in the years before

1000 to be approximately proportional to the World’s growth. In order to calculate

the missing values of the population size, we divide (based on Figures 5.5 and 5.6 and

using Kremer’s ancient growth rates) the history of the World and of Poland into 8

and 4 time periods, respectively. In the case of Poland we assume years -10000, 1000

and 1850 as the boundaries. The boundary years for the World are as follows: -10000,

-4000, -1000, 200, 1100, 1400 and 1950. We assume that the population size in each of

these periods changes according to an exponential function. A single human generation

in our model is assumed to last 25 years. The three most recent generations, assumed
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Figure 5.3: Time to the MRCA of a sample of size n = 5 in populations experiencing

a bottleneck event. Three demographic scenarios are presented: longneck and hourglass

bottleneck, and constant population size. In both populations experiencing the bottleneck

Tf = 20000, Nf = 35000 and Tb = 10000. In the longneck scenario the population size

decreases from N9999 = N1 = 10000 to N10000 = 9000. In the hourglass scenario we assume

N9999 = 10000 and N10000 = 1000. In the constant size population scenario N = 10000.

to have originated in years 1950, 1975 and 2000, are based on exact census data. The

ratio of the human effective to census population size is usually estimated between 0.3

(101) and 0.5 (140). Taking into consideration the difference in the value of the effective

population size between panmictic haploid population and the real human population

(57) we assume the ratio to be equal to 0.25.

Figure 5.7 shows the result obtained for the population of Poland for recent 105

generations and Figure 5.8 depicts a similar result for the World population. The

model does not take into consideration recombination events. Therefore, the obtained

estimates of the expected time to the MRCA (1.5 · 106 years for the World population

and 1.5 · 105 years for the population of Poland) may apply only to non-recombining

fragments of the genome (scale of single genes or below).
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Figure 5.4: Time to the MRCA of a sample of size n = 2 in populations experiencing

a bottleneck event. Three demographic scenarios are presented: longneck and hourglass

bottleneck, and constant population size. In both populations experiencing the bottleneck

Tf = 20000, Nf = 35000 and Tb = 10000. In the longneck scenario the population size

decreases from N9999 = N1 = 10000 to N10000 = 9000. In the hourglass scenario we assume

N9999 = 10000 and N10000 = 1000. In the constant size population scenario N = 10000.

5.4.3 Time to the MRCA of the Galton-Watson population and com-

parison with direct simulation of the population process

We used our framework to generate a set of populations that have evolved according to

the standard Galton-Watson process. In Figure 5.9 we present the cumulative distribu-

tions of the time to the MRCA averaged over 5000 non-extinct populations simulated

over 100 generations. We arbitrarily assume that for each individual the number of its

offspring is a random variable with a Poisson distribution with the parameter ψ = 1.1.

In Figures 5.10, 5.11 and 5.12 we show how the time to the MRCA varies if we change

the value of ψ (starting from Figure 5.10 we set the following values of ψ: 0.95, 1.0, and

1.1); we consider the case of n = 3. The gray area indicates the 95% confidence interval.

Finally, in Figures 5.12 and 5.13 we compare two methods applied to the data used in

Figure 5.9: (i) our method calculating the exact expected distribution of the time to

the MRCA based on the population size history (Figure 5.12) and (ii) a Monte-Carlo
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Figure 5.5: Demography of the World.

simulation over complete genealogies (Figure 5.13). In the Monte-Carlo simulation we

calculate, for each of the 5000 genealogies, the time to the MRCA of 105 randomly

drawn samples of size n = 3. Hence, the Monte-Carlo simulations, unlike our method,

take into account the full genealogical history of the population. The mean values

of the distribution obtained by both methods show almost complete agreement. Our

method tends to decrease the variance. However, the results obtained by our method

for a single genealogy may substantially differ from the real values due to the great

variety of the possible genealogical histories observed for the Galton-Watson processes.
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Figure 5.6: Demography of Poland.
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Figure 5.7: Time to the MRCA of the population of Poland for different sizes of a sample.

The figure depicts the results for a period of recent 105 generations (counted backwards).

We assume that each generation lasts 25 years.
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Figure 5.8: Time to the MRCA of the World population for different sizes of a sample.

The figure depicts the results for a period of recent 105 generations (counted backwards).

We assume that each generation lasts 25 years.
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Figure 5.9: Cumulative time to the MRCA of a sample of size n from the population

evolved over 100 generations according to the Galton-Watson process. The figure presents

results for four different values of n. The results were averaged over 5000 non-extinct

genealogies. We assume the Poisson offspring distribution parameter equal to 1.1.
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Figure 5.10: Time to the MRCA of a population evolved under the subcritical Galton-

Watson process. The results were averaged over 5000 non-extinct genealogies evolved over

100 generations. n = 3 and ψ = 0.95. The gray area indicates the 95% confidence band.

(—–) mean
(- - -) median

20 40 60 80 100

0

0.1

0.2

0.3

generations from the present

P
(τ

=
t)

Figure 5.11: Time to the MRCA of a population evolved under the critical Galton-

Watson process. The results were averaged over 5000 non-extinct genealogies evolved over

100 generations. n = 3 and ψ = 1.0. The gray area indicates the 95% confidence band.
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Figure 5.12: Time to the MRCA of a population evolved under the supercritical Galton-

Watson process. The results were averaged over 5000 non-extinct genealogies evolved over

100 generations. n = 3 and ψ = 1.1. The gray area indicates the 95% confidence band.

Figure 5.13: Comparison with a Monte-Carlo method. The figure presents results ob-

tained by Monte-Carlo simulations for the case with n = 3 and ψ = 1.1. We determine the

time to the MRCA for each population by calculating the time to the MRCA many times

for different samples drawn from the last generation and averaging the results. The gray

area indicates the 95% confidence band.
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6

Demographic network model

6.1 Demographic network with merges, splits and migra-

tions between populations

6.1.1 Description of the network

We consider a demographic network of populations evolving from a single ancestral

population. The evolution of the network begins at time t0 = 0 and continues forward in

time. The network experiences three types of discrete events: merges of two populations

into one, splits of a single population into two populations and migrations between any

(possibly all) populations in the network. These events are chronologically ordered and

occur at times ti, 1 ≤ i ≤ I and ti ≤ ti+1, where tI is the present time. We allow more

than one event to occur at the same time, but these events are distinguished from each

other and are considered separately one after another according to a given order.

We denote the number of populations in the network in the time interval [ti, ti+1) as

κi ≥ 1, where κ0 = 1 and κi = κi−1 + γi and γi is an indicator of change of the number

of populations corresponding to the type of event occurred at time ti. Depending on

the type of event at time ti, γi is equal to:

γi =


−1 for split

0 for migration

1 for merge

(6.1)

Each population in the network is identified in the time interval [ti, ti+1) by a

single index k ∈ 0, 1, . . . , κi−1. The index of the population may change between two
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consecutive time intervals. If the index of the population is k, 0 ≤ k < κi, in the time

interval [ti, ti+1), then we denote it k′, 0 ≤ k′ < κi−1, in the previous time interval

[ti−1, ti). If at the time ti population x splits, then

k =


k′ k′ ≤ x
x+ 1 for a newly created population

k′ + 1 k′ > x.

(6.2)

If at the time ti two populations with indices x and y (x < y) merge, then

k =

{
k′ k′ < y

k′ − 1 k′ > y,
(6.3)

the merged population has an index k = x and the population with index k′ = y is

removed from the network.

Migration event that occurred at time t is described by the matrix M(t) = {mxy(t)},
0 ≤ x, y < κi with each entry mxy, 0 ≤ mxy ≤ 1, mxx = 0 equal to the migration rate

from population x to y. Migration does not change indices of the populations.

The population size of population k at time t ∈ [ti, ti+1) is a function of time Nik(t)

0 ≤ k < κi.

6.1.2 Relations between populations in the network

We assume that we are given a demographic network described in the previous section.

We consider a genetic feature associated with a haploid chromosome which can be

sampled from any population existing in the network. We can describe this feature

using an allelic space A containing NA allelic types indexed from 1 to NA. We want to

find an answer to the following question: What is the probability that a chromosome

randomly sampled from population a at time t has the genetic feature of type j and that

another individual from population b (a = b is admissible) has the feature of type k ?

These probabilities are entries of the joint distribution matrices Rab(t) = {rab[j, k](t)},
t ∈ [ti, ti+1), 0 ≤ a, b < κi and j, k ∈ A.

As above, if the index of the population is k, 0 ≤ k < κi, in the time interval

[ti, ti+1), then we denote it k′, 0 ≤ k′ < κi−1, in the previous time interval [ti−1, ti).

Thus, the matrices Rab(ti) and Ra′b′(ti−0) indicate the joint distributions between two

populations immediately after and immediately before the event occurred at time ti,

respectively.
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6.1 Demographic network with merges, splits and migrations between
populations

If a split event occurs at time ti, the allele on the chromosome in the splitting

population is inherited by both progeny populations. Hence, we obtain the following

identity for this case:

Rab(ti) = Ra′b′(ti − 0) (6.4)

If the event that occurs at time ti is a merge, the allele in the merged population is

sampled from the two merging populations x and y with respective probabilities p and

q = 1− p, where p =
N(i−1)x(ti−0)

N(i−1)x(ti−0)+N(i−1)y(ti−0) . This results in the following formula for

the joint distributions:

Rab(ti) =


Ra′b′(ti − 0) x 6= a′, x 6= b′

pRa′b′(ti − 0) + qRyb′(ti − 0) a′ = x, b′ 6= y

pRa′b′(ti − 0) + qRa′y(ti − 0) b′ = x, a′ 6= y

p2Rxx(ti − 0) + 2pqR+
xy(ti − 0) + q2Ryy(ti − 0) a′ = x, b′ = y

(6.5)

where 2R+
ab(t) = Rab(t) +Rba(t).

A single migration event from one population x to another y can be seen as a

merge of the whole destination population y with a part of the population x. Only

the distributions of the destination population are affected. Assuming that the event

occurred at time ti is described by the migration matrix M(ti), the size of the part of

population x contributing to the event is given by mxy(ti)N(i−1)x(ti − 0).

A migration event in the network describes all possible migrations between two

populations from the network. Therefore, a single population may be affected by many

different migrations taking place at the same time. It leads to very complex relation-

ships between joint distributions characterizing populations involved in the migration

waves. The simplest way to model such a migration event relies on the following two-

step scenario:

• Split each population from the network κi − 1 times in order to differentiate all

migrating subpopulations. The population size ratio parameters used in these

splits are given by the migration matrix M(ti).

• Merge all migrating subpopulations isolated in the previous step with proper

destination populations. It is not necessary to apply any particular order to

these merges.
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As we see, the described method requires κ2
i populations (and κ4

i joint distribu-

tions) to be stored at the same time. We can optimize this method by reordering the

scenario of splits and merges. For example, we can firstly isolate the joint migrating

subpopulations from each original population, and then, apply the splits and merges

scenario κi times, once for each isolated joint subpopulation. Each merge operations

should immediately follow the split. It leads to the necessity of managing at most

2κi + 1 populations at the same time.

However, if we assume that the migration rates are small, we can discard the re-

lationships between small migrating subpopulations. It allows us, with the cost of

introducing a small error to the results, to use much simpler computations to obtain

the Rab(ti) distributions after the migration event. We do so by treating each single

migration event as a merge event of a part of original population with the whole des-

tination population. In that case, as we see from (6.5), the joint distribution Rab(ti)

is modified by migrations from any population x, x ∈ 0, 1, . . . , κi−1, provided that

mxb(ti) > 0. Hence, based on (6.5), we calculate κi distributions Rab(ti). Each of these

distributions corresponds to the case that the only migration at time ti to the popula-

tion b took place from the population x ∈ 0, . . . , κi−1 and we denote these distributions

by R
(x)
ab (ti). Each migration from x to b changes the value of the joint distribution by

Cxab(ti) = R
(x)
ab (ti) − Rab(ti − 0). Then, we obtain the following formula for the joint

distributions under the migration event:

Rab(ti) = Rab(ti − 0) +
∑

0≤x<κi

Cxab(ti). (6.6)

We advice to use the optimized version of the first method unless the migration

rates are very small or the allelic space is very large.

The user may specify if the migration event changes the population sizes. In that

case the modified values of the population size satisfy the following formula:

Nix(ti) =
(

1−
κi−1∑
k=0

mxk(ti)
)
N(i−1)x(ti − 0) +

κi−1∑
k=0

mkx(ti)N(i−1)k(ti − 0) (6.7)
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6.2 Expression for evolution of a joint distribution of a pair of individuals
randomly sampled under any Markov mutation model

6.2 Expression for evolution of a joint distribution of a

pair of individuals randomly sampled under any Markov

mutation model

Current section follows derivations in Bobrowski et al. (19). We assume that each

chromosome evolves under genetic drift and mutation between two consecutive network

events. We assume that the mutation model is a time-homogenous Markov mutation.

Accordingly, the allelic state Xa(t) ∈ A of the chromosome sampled from population

a at time t evolves as a continuous-time non-negative Markov chain with transition

intensity matrix Qa = {q(a)
jk }, 1 ≤ j, k ≤ NA, where qjk ≥ 0, j 6= k and ∀j

∑
k qjk = 0.

Thus, rab[j, k](t) = P [Xa(t) = j,Xb(t) = k], where j, k ∈ A and 0 ≤ a, b < κi if

t ∈ [ti, ti+1). We assume that the matrix Qa stays unchanged between two demographic

events but may vary between different populations or different time intervals (the state

space of the chain remains the same). By Pa(t) = {p(a)
jk (t)}, 1 ≤ j, k ≤ NA we denote the

probability transition matrix corresponding to the matrix Qa. In the finite-dimensional

case (if A is finite) we obtain Pa(t) = eQat.

Let us assume that the MRCA of two randomly chosen individuals with allelic types

aj and ak (aj , ak ∈ A, 1 ≤ j, k ≤ NA) existed at time Tjk in the past, for example,

before the present time t. Given population size N(t) we obtain that P [Tjk > τ ] =

e−
∫ τ
0 N(t−u)du. The MRCA can be of any allelic type ai with index i (each one with

probability πi(Tjk) = P [X(Tjk) = ai]) and its descendants at the present time t have

types to aj and ak, respectively. Then, summing over all possible values of i and

following (19), we obtain:

r[aj , ak](t) =

∫ t

−∞

∑
1≤i≤NA

πi(τ)pij(t− τ)pik(t− τ)
1

N(τ)
e
−

∫ t
τ

du
N(u) dτ (6.8)

Expression (6.8) may be transformed into matrix notation and we can separate the

evolution of the population in the time interval before t = 0 and interpret it as the

initial conditions (19). This leads to the following equation:

R(t) = P T (t)R(0)P (t)e
−

∫ t
0

du
N(u) +

∫ t

0
P T (t− τ)Π(τ)P (t− τ)

1

N(τ)
e
−

∫ t
τ

du
N(u) dτ, (6.9)

where P T is the transpose of the matrix P and Π(t) is a diagonal matrix with

(Π(t)ii) = πi(t).
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R(t) given by expression (6.9) is a mild solution (150) of the following matrix

differential equation known as the Lyapunov equation (54):

dRab(t)

dt
= QTaRab(t) +Rab(t)Qb +

δab
Na(t)

(Π(t)−Rab(t)), (6.10)

where t ∈ [ti, ti+1), 0 ≤ a, b < κi and δab is the Kronecker delta. This equation has a

unique solution of the form of:

Rab(t) =

{
P Ta (t− ti)Rab(ti)Pb(t− ti)e

−
∫ t
ti

du
Na(u) + Sa(ti, t) a = b

P Ta (t− ti)Rab(ti)Pb(t− ti) a 6= b,
(6.11)

where Sa(ti, t) =
∫ t
ti
P Ta (t− τ)Π(τ)Pa(t− τ) 1

Na(τ)e
−

∫ t
τ

du
Na(u) dτ

We will use (6.10) rather than (6.11) to calculate the evaluation of the joint distri-

bution in the time interval between two adjacent events in the network.

6.3 Model refinements

6.3.1 Sample of size greater than 2

Formula (6.8) expresses the joint distribution of the pair of individuals randomly sam-

pled from the population. Unfortunately, as it follows from the de Finetti’s theorem

(35, 160), we cannot directly apply the values of this joint distribution to obtain re-

sults for a larger sample. Moreover, the joint distribution of all individuals from a

sample of size n is a n-dimensional array with the total number of entries equal to Nn
A .

Nevertheless, we can obtain this joint distribution for small values of n and NA.

We assume that each individual from the population is represented by a haplotype

sequence with two possible nucleotides at each position. We denote the joint probability

of n individuals (ith individual being of type ai, 1 ≤ i ≤ n, 1 ≤ ai ≤ NA) randomly

sampled from population at time t ∈ [ti, ti+1) by r
(n)
a1...an(t). Let us assume that the

MRCA of a pair of individuals from the given sample existed at time τ and that aj

and ak (1 ≤ j, k ≤ n, j < k) are the direct descendants of this MRCA in the current

generation. We describe the sample at time τ − 0 just before this coalescent event by

b1 . . . bn−1, where the ith individual becomes at time t either the individual of type ai

if i < k or of type ai+1 otherwise. The probability that individual of type x at time τ
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evolves into individual of type y at time t is given by the transition probability value

Pxy(t− τ). Thus, summing over all possible values of j, k and bi, 1 ≤ i < n, we obtain:

r(n)
a1...an(t) =

∫ t

−∞

∑
b1...bn−1

n−1∑
j=1

n∑
k=j+1

r
(n−1)
b1...bn−1

(τ)(
n
2

) k−1∏
i=1

Pbiai(t− τ)·

·Pbjak(t− τ)
n−1∏
i=k

Pbiai+1
(t− τ)

(
n

2

)
e
−(n2)

∫ t
τ

du
N(u)

N(τ)
dτ

(6.12)

The last step is to calculate the values of Pxy(t), 1 ≤ x, y ≤ NA. Assume that

haplotype sequences contain only one nucleotide (s = 1). Then, the mutation intensity

matrix is of the following form:

Q =

∣∣∣∣ −µ µ
µ −µ

∣∣∣∣ , (6.13)

where µ is the mutation rate.

For any matrix X, we define the matrix eX by (6.14) (118).

eX =
∞∑
k=0

1

k!
Xk (6.14)

Therefore, in order to obtain the Pxy(t) = eQxyt values, we firstly expand the P

matrix into the power series according to (6.14):

P (t) =

∣∣∣∣∣ 1− α α

α 1− α

∣∣∣∣∣ =

∞∑
k=0

(Qt)k

k!
=

∣∣∣∣∣ 1 0

0 1

∣∣∣∣∣+
∣∣∣∣∣ −µt µt

µt −µt

∣∣∣∣∣+ 1

2!

∣∣∣∣∣ 2µ2t2 −2µ2t2

−2µ2t2 2µ2t2

∣∣∣∣∣+. . . ,
(6.15)

where α is the probability that the nucleotide changes the allele type in the time interval

t. Expression (6.15) leads to the following formula for α:

1− α =

∞∑
k=0

(−2)k−1(µt)k

k!
= 0.5 + 0.5

( ∞∑
k=0

(−2µt)k

k!

)
. (6.16)

The sum from the right side of Formula (6.16) is the Maclaurin series of e−2µt. We

generalize the case for any number of nucleotides s and using formulas (6.15) and (6.16)

we obtain the final expression for Pxy(t):

Pxy(t) =
(
0.5 + 0.5e−2µt

)s−d(x,y) (
0.5− 0.5e−2µt

)d(x,y)
, (6.17)
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where d(x, y) stands for the number of positions with different nucleotides in two indi-

viduals x and y.

Formula (6.17) has been verified for longer haplotype sequences in both ways, ana-

lytically (up to s = 4) and numerically by applying the main model for s < 10.

6.3.2 Model complexity reduction for some mutation models

The main factor that determines the complexity and feasibility of computations is the

assumed model of mutation and, more precisely, the number NA of all possible allelic

types. Our approach works perfectly if we model a simple SNP mutation with not

very large number of nucleotides or if we model microsatellites which rarely exceed one

hundred tandem repeats in length. The problem appears when we try to approximate

an infinite-site mutation model by applying our method for long haplotype (i.e., long

SNP sequences). In this case NA = zs, where s is the number of bases and z is the

number of possible nucleotide variants at each base (usually z = 2). However, we can

reduce the complexity of the problem under the assumption that the distributions of

the mutation process are invariant under permutations of bases (exchangeable). We

obtain the reduction in this case as follows.

Let us assume that z = 2 and the nucleotide at each base is either wild-type or

mutated. We transform the allelic space A, containing 2s possible allelic types, into a

much smaller A′ set. For a given value of c, 1 ≤ c ≤ bs/2c, A′ contains all possible pairs

(a, b), where each pair (a, b), 0 ≤ a ≤ s, 0 ≤ b ≤ a groups all allelic types from A with

b mutated nucleotides at the first c bases and a − b mutations at the bases from the

(c+ 1)th to the sth. The total number of the (a, b) pairs depends on c and varies from

2s− 2 for c = 0 to s2/4 + s+ 1 for c = bs/2c. In order to retrieve the joint distribution

for original A space, we need to review values of c in the range from 0 to bs/2c. Table

6.1 presents an example of a A′ set and the Q matrix for the case with s = 4, c = 2,

with α being the mutation intensity at each base. We are able to obtain each value of

the joint distribution of a pair of individuals from A by using the proper entry of the

reduced joint distribution matrices divided by the total number of pairs grouped by

this entry. For example, to calculate the joint probability rate of two individuals of the

form of XxxX and XXXx (where X stands for a mutated nucleotide) we can use the

matrix obtained for a case s = 4, c = 2 and the joint probability rate of entries (3, 1)

and (2, 2) indicating the joint probability rate of two individuals with two and three
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Table 6.1: Reduction of A. The table presents the reduced mutation intensity (prob-

ability rate) matrix Q for the case of s = 4 and c = 2. The α value stands for a value of

the mutation intensity at each base.

(0, 0) (1, 0) (1, 1) (2, 0) (2, 1) (2, 2) (3, 1) (3, 2) (4, 2)

(0, 0) −4α 2α 2α 0 0 0 0 0 0

(1, 0) α −4α 0 α 2α 0 0 0 0

(1, 1) α 0 −4α 0 2α α 0 0 0

(2, 0) 0 2α 0 −4α 0 0 2α 0 0

(2, 1) 0 α α 0 −4α 0 α α 0

(2, 2) 0 0 2α 0 0 −4α 0 2α 0

(3, 1) 0 0 0 α 2α 0 −4α 0 α

(3, 2) 0 0 0 0 2α α 0 −4α α

(4, 2) 0 0 0 0 0 0 2α 2α −4α

mutations, respectively, including exactly one common mutation. At the end we need

to divide the value of the joint probability rate by 2 because there are exactly two ways

to represent a (3, 1) entry (as XxXX or as xXXX) and only one way to represent a

(2, 2) entry (as XXxx).

The reduction method described in this section allows us to obtain the results in

a reasonable amount of time even for a model with s ≈ 100. We may also use this

reduction for z > 2 but it requires a more complex enumeration of the states of the

A′ set. These divisions would be multi-dimensional, compared to the two-dimensional

case explained above, because of the necessity of taking into account the exact types

of nucleotides being changed in the mutation process.

6.4 Model implementation

The program attached to the thesis calculates the joint distribution in a demographic

network described by an input script file. Along with an executable version of the

program we also attach a complete source code including a few additional auxiliary

modules that improve the basic functionality of our program. We describe the program

in more details further in this section. Finally, we add an implementation of (6.12) that

allows to calculate the joint distribution of individuals based on a sample of size greater

than two. We use Newton-Cotes method (5) with Boole’s rule (176) for numerical
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integration given by formula (6.12). Despite of the complex recurrence dependency

and the multidimensional form of the joint distribution, we are able to obtain results

for small n > 2 and simple mutation models.

6.4.1 Program structure

The program simulates demography of a set of populations and calculates the joint

distribution of individuals from these populations according to a given input file (for

more details about input script file see Section 6.4.4). Thus, in the default version the

main part of the program analyzes the input file and executes a single experiment. It

may be easily changed in order to run more complex calculations, such as the reduction

of the model described in Section 6.3.2. Besides that, the program consists of six

modules:

1. Module Model contains description of the network and handles events occurring

in the network along with evolution of populations between the events.

2. Module Population contains the information about size and growth scenario of

a single population. In the default version we can choose either constant or

exponential growth of population size but we can also easily add any other model

of growth.

3. Module JointDistr stores a single joint distribution of individuals between any

two population.

4. Module Matrix implements our own representation of a matrix accomplishing

multiplication of sparse matrices in 2nd-order polynomial time complexity.

5. Auxiliary module Methods allows to add procedures that compute model param-

eters based on the obtained joint distributions.

6. Auxiliary module DataFile helps to create an input script file.

6.4.2 Algorithms

We store a set of populations as a vector and their joint distribution as a list of matrices.

Each discrete event in the network is implemented according to Formulas (6.4-6.6). The

chosen data representation allows fast and simple managing of population’s indices.
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Mutation and drift effect in the time interval between two events is computed ac-

cording to the Lyapunov equation (6.10). In order to numerically solve the ODE we use

the RK4 algorithm (Runge-Kutta 4th order method) (53, 55), with adaptive control of

the step size using the Cash-Karp method (22, 158).

The intensity matrixQ for large number of allele typesNA is usually a sparse matrix.

Moreover, the most time-consuming operation of the implemented Runge-Kutta algo-

rithm for our ODEs is the RQ multiplication. Thus, a proper matrix representation,

taking into account a fact that usually the matrix Q is a sparse matrix, significantly

improves the time complexity. We accomplish this by storing, for a matrix with the

percentage of non-zero entries not exceeding a limit value, all non-zero values in a set

of lists. Each list corresponds to a single row or column of the matrix. This structure

allow to achieve 2nd-order polynomial time-complexity of multiplication operation if at

least one of the multiplying matrix is a sparse matrix.

6.4.3 Time and memory complexity

Both time T and memory M complexities depend on the number of populations n

and the size of the allelic types space NA. The time complexity also depends on the

form of the mutation model. We assume that the intensity matrix Q is sparse with

the average of c � NA nonzero values per row (or per column). In each RK4 step we

need to execute exactly 12 matrix multiplication, each one with complexity cN2
A and

about 60 other operations running in cNA time but requiring the initialization of the

matrix. Thus, T = κ2kr(60 + 8c)N2
A, where k is a number of splits or merges and r is

the average number of steps in the RK4 algorithm for a single time interval (usually

r < 100, especially when we use an adaptive step control algorithm). The method is

feasible even for NA ≈ 1000 and κ > 10.

In the algorithm we need to store n intensity matrices and n2 joint distributions,

therefore M = 8(n2 + n)N2
A [Byte]. As we see, the memory limit should not be a

problem even for the largest feasible cases.

6.4.4 Sample input script

The program requires a single input file that describes the network. Since we assume

that we start with a single population at time t = 0, the file should contain the initial
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joint distribution of individuals from this ancestral population along with the popu-

lation size and growth scenario and the description of the mutation model given by

the intensity matrix Q. The model of mutation is constant but intensities may vary

among different time intervals or different populations. To simulate evolution in time,

we define the entry in the input file that allows us to move from the current to the

given generation. Thus, all events in the input file should be ordered chronologically.

Algorithm 6.1 is a sample input script for a demographic network with a single split

event and a simple SNPs mutation model.

Algorithm 6.1 Sample input script file.

mut 0 2 2 // mutation model and i n i t i a l Q matrix , NA = 2

−0.00000125 0.00000125

0.00000125 −0.00000125

r0 // i n i t i a l j o i n t d i s t r i b u t i o n

0 .36 0 .24

0 .24 0 .16

ps 0 4200 // s e t the populat ion s i z e o f populat ion 0

s 0 0 0 .5 // s p l i t populat ion 0

g 4300 //move in time

pg 0 e 0 .00106 // populat ion 0 grows e x p o n e n t i a l l y

pg 1 e −0.00585 // populat ion 1 sh r i nk s e x p o n e n t i a l l y

g 5040 //move in time

pg 0 e 0 .00880 // change the growth speed o f populat ion 0

g 6000 //move in time

pf out . txt // s t o r e the r e s u l t s

6.5 Sample applications

6.5.1 Equilibrium estimates

We model a population with constant size N = 1000. We consider two individuals

from the population and check allelic types at single specific homologous SNP in these

individuals (being one of the two nucleotides A or a that can occur at that SNP). We

also assume that each nucleotide can mutate at the rate 0.002 per generation. The
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population is in a mutation-drift equilibrium and using our program we obtain that in

equilibrium the values of the joint distributions are equal to: r[A,A](t) = r[a, a](t) = 5
18

and r[A, a](t) = r[a,A](t) = 0.5 − r[A,A](t) = 2
9 . These values may also be obtained

using asymptotic analysis of the Lyapunov equation (6.10).

Next, we assume that at time t = 0 the population splits into two populations.

The first population, with index 0, is the ancestral population. The second population,

with index 1, starts with 1000 individuals and grows exponentially with a parameter

0.001. Mutation rate in both population is unchanged. We want to analyze how

the demography affects the association between individuals from the same or different

populations. For this purpose we compute the value of the normalized Lewontin linkage

disequilibrium D′ between populations i and j (119): D′(t) = D(t)/Dmax(t), where

D(t) = rij [A,A](t) − p1q1 is a non-normalized linkage disequilibrium and Dmax(t) =

min(p1q1, p2q2) for D(t) < 0 or Dmax(t) = min(p1q2, p2q1) otherwise. Lewontin’s index

is usually applied to quantify dependence (linkage) between alleles of different loci of

the same chromosome. Here it is used to quantify dependence between the alleles

at the same locus of different chromosomes. By p and q we denote the constraint

distributions of the joint distributions as follows: p1 = rij [A,A](t) + rij [A, a](t), p2 =

rij [a,A](t) + rij [a, a](t), q1 = rij [A,A](t) + rij [a,A](t) and q2 = rij [A, a](t) + rij [a, a](t).

The results presented in Figure 6.1 are intuitively clear. The joint distribution in

population 0 stays constant while in population 1 it slowly evolves leading to a decrease

of the value of D′ – the force of drift decreases in a growing population. The common

association of homologous loci from two different populations after a split event rapidly

decreases.

6.5.2 Predictions and estimates of a common species and populations

history

Availability of the genetic data from different species and populations allows for var-

ious, often very sophisticated, intra- and inter-population analysis. Particularly, it is

possible to estimate a past demography of these populations, including interactions

between populations. The most common method to do so involves using the model-

based analysis (170). In this approach we may consider one or more past demographic

scenarios and either test or adjust them based on a given data. As an example of
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Figure 6.1: The Lewontin’s index in a constant size population (D′00), an exponentially

growing population (D′11) and between these two populations (D′10). Both populations

evolved from a common ancestral population, the split event occurred at time t = 0. The

ancestral population was in a mutation-drift equilibrium.

such a model we can mention works of the Barbujani’s group who studied the ge-

netical relationship between Etruscans and Tuscans (14) or between Neandertals (N),

Cro-Magnoid (CM) and modern Europeans (M) (13). In both papers the authors

calculated the values of several parameters (such as pairwise difference or haplotype

diversity) for samples drawn from populations simulated under about dozen hypothet-

ical demographic scenarios and compared them to the data obtained from the real

individuals. Our demographic network model perfectly suits this kind of approaches.

We apply our method to the scenarios used by Barbujani’s group in the second paper

in order to obtain the estimates of the pairwise difference between populations. The

models used in our calculations are listed in Table 6.2. All of these models assume that

N and CM lived 1700 and 960 generations ago, respectively. All models except L1.7

assume a single population with different growth rates. Model L1.1 is a constant size

population. In L1.2, the population grows after origin of CM. Models L1.3 and L1.4

introduce to L1.2 a small growing rate before origin of N; rapid expansion from CM to

M is assumed in L1.4. In L1.5 the population grows to the same large size as in L1.4,

but with more balanced growing rates in each time interval. L1.7 models the population
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Table 6.2: Pairwise difference calculations. The table presents the values of pair-

wise difference obtained by applying two different methods (simulation approach and our

method based on the demographic network) to three populations: Cro-Magnoid (CM), Ne-

anderthal (N) and modern European (M) under different demographic scenarios (explained

in Belle et al. paper). Infinite-site model, approximated by haplotype sequences consist

of 360 nucleotides, was assumed. Simulated approach required a fixed sample size to be

specified for each population (N – 6, CM – 2 and M – 558). The table presents median

values of the pairwise difference for simulation method and mean values for our method.

Method Population Demographic model

L1.1 L1.2 L1.3 L1.4 L1.5 L1.7 H1.1 H1.2 H1.3

N 1.9 1.9 0.9 1.5 12.9 3.9 15 7 4.7

Belle CM 1 1 1 1 11 4 12 10 7

M 1.7 2.4 1.9 2.3 13.6 4.7 18.6 14.6 13

N 2.2 2.2 1.1 1.7 17.1 1.9 20 7.8 5.2

Our CM 2.2 2.2 1.4 1.8 17.3 2.6 20 11.3 8.5

M 2.2 2.8 2.1 2.6 17.9 3.4 25.5 17.9 15.6

from L1.5 with an assumption that there existed a separated shrinking N population.

Models starting with H have ten times larger mutation rate assumed (0.5 per million

years per nucleotide instead of 0.05 as in models staring with L). Demography of H1.1

is the same as in L1.2. Demographies of H1.2 and H1.3 are slightly different versions

of L1.3. For more details see (13). Long haplotype sequences of 360 nucleotides with

two possible variants at each position are assumed. Given the joint distribution Rxx(t)

we can calculate the mean pairwise difference ϕx(t) in population x according to the

following formula:

ϕx(t) =
∑
i,j∈A

d(i, j)rxx[i, j](t), (6.18)

where d(i, j) is the number of positions on which the sequences of allelic types i and

j differ. Table 6.2 compares our results to those obtained by Belle and co-workers in

(13). Discrepancies between simulation and our methods, which are the largest for the

CM population, can be explained by a very small CM sample size (only 2 individuals),

and the fact that median (not mean) value was listed by Belle et al. The sample sizes

of N and M populations used in the simulation approach were equal to 6 and 558,

respectively.
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We use the demographic network model to study a common history of several East-

ern European populations based on the Y chromosome data. We are interested in the

history of relations between the Slavs occupying territory of the modern Poland and

the Central Balts – ancestors of the modern Lithuanians and Latvians. Both the Proto-

Slavs and the Balts are likely to have originated from nomad tribes that had left the

Indo-European homeland and gave birth to the most of the modern European cultures.

It is argued that both these groups came to Europe in the 2nd millenium BC (20, 62, 70),

but the exact chronology is unclear. Both populations, Polish and Lithuanian, are con-

siderably genetically distinctive (156) from other European nations. However, analysis

of the Y-chromosome haplogroups of the modern Eastern European citizens show that

other ancient populations should also be considered (69). The Baltic-Slavic branch of

the Indo-European genealogy belongs to the R1a haplogroup. However, about 45% of

the population of the modern Lithuania and Latvia belong to the N1c1 haplogroup,

which is a haplogroup of the North-European ancestors (the Finns) that entered Europe

during the Corded Ware period at the beginning of the 3rd millenium BC (10). The

Balts, after the split from other Indo-European groups, settled in the areas along the

south-eastern coast of the Baltic Sea and assimilated with the Finn tribes living there.

Our studies confirms that the influence of the N1c1 haplogroup cannot be discarded

from the Slavic-Balts analysis; the results obtained from the model that considers only

the Balts and the Slavs indicate much closer relationship between these two groups than

it follows from the genetic data. The exact times of splits of the Balts and the Slavs, or

the Finns from other Indo-European tribes, are unknown. Therefore, estimating them

becomes one of the aims of our studies. Another interesting aspect of the Balt-Slav

relationship concerns migration waves that took place between these two groups in the

6th, when the Slavs appeared on the territory of Poland for the first time, and in the

14th century, when the Commonwealth of Poland and Lithuania was formed. Figure

6.2 illustrates the modeled demographic scenario. We estimate the population sizes of

all groups based on Kremer’s population growth rates (113) as described in Section

5.4.2. Since the effective to census population size ratio in humans is estimated to be

equal between 0.3 (101) and 0.5 (140), and since considerating the Y-STR haplotype

chromosome introduces a factor 1/4 to this ratio (154), we assume that the effective

population size is ten times smaller than the census data size.
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Figure 6.2: Balt-Slav-Finn demographic model. The model includes the following pop-

ulations: Indo-Europeans (I), Finns (F), Slavs (S), Balts (B) and Poland (P). Population

sizes before the year 1AC are estimated using Kremer’s rates (the values listed on the left

– growth rates per generation with assumption that a single generation lasts 25 years).

Two bottleneck events indicate: (i) S and B tribes leaving the Indo-European homeland

and (ii) isolation of P from S. The strength of the bottlenecks only slightly changes the

value of RST provided that the population after the bottleneck has a size equal at most of

1/3 of the original size. Thus, we assume the following values of the bottleneck size ratios:

1/5 in the case of SB and 1/7 for P. Four parameters are varied: (i) T1 – time of split of

B and S, (ii) T2 – time of BS leaving the Indo-European homeland (iii) T3 – time of split

of I and F, and (iv) m – migration rate between B and P. The exact time of the migration

does not influence the RST value.

We use the RST Slatkin’s distance (168) to quantify distance between two popu-

lations. We calculate the RST distance between the Slavs and the Balts based on the

data from 919 unrelated male Polish individuals sampled from six geographical regions

of Poland and 297 Balts descendants (152 from Vilnius and 145 from Riga). Genetic

data at nine microsatellite loci is considered: DYS19, DYS389I, DYS389II, DYS390,

DYS391, DYS392, DYS393, DYS385a and DYS385b. The data can be obtained from

(103) or (94). We use the Arlequin program (46) to obtain normalized (61) value of

the Slatkin’s distance. We obtain that the RST value for samples of Poles and Balts is

equal to 0.03862.

89



6. DEMOGRAPHIC NETWORK MODEL

Our aim is to adjust the parameters of the scenario presented in Figure 6.2 in order

to obtain a realistic model explaining obtained value of the RST distance. We model

differences in the number of tandem repeats between two loci rather than the exact

numbers themself in the mutation model in the demographic network. Therefore, we

substitute the Lyapunov equation (6.10) by the following specialized equation:

dRab(s, t)

dt
= −(va + vb)

(
1− s

2
− 1

2s

)
Rab(s, t) +

δab
Nat

(
Π−Rab(s, t)

)
, (6.19)

where Rab(s, t) =
∑∞

i=−∞ s
irab(i, t), is the probability generating function of an

integer-valued random variableequal to the difference in allele size between individuals

sampled from populations a and b (0 ≤ a, b < κi) at time t ∈ [ti, ti+1), va and vb are

mutation intensities in both populations, Π is a vector of the same size as R(s, t) with

the value of 1 in the middle and all other entries equal to 0 and δab is the Kronecker

delta. Detailed description regarding obtaining expression (6.19) may be found in (107).

Given the values of Raa(s, t), Rbb(s, t) and Rab(s, t), one can calculate the average sum

of squared difference distance (RST distance) between populations a and b by using the

following formula:

RST =
2Vab(t)− Vaa(t)− Vbb(t)

Vab(t)
, (6.20)

where Vxy(t) is the variance of the allele size in joint populations x and y (x = y is

admissible) given by the following formula:

Vxy(t) =
∞∑

i=−∞
i2rxy(i, t) (6.21)

Figures 6.3-6.5 present estimates of the genetic distance between descendants of

the Slavs and the Balts for different times of splits and migration rates. As we see,

the required value of the the Slatkin’s distance may be obtained by more than one

set of parameter’s values. Therefore, although the estimates deliver useful information

about common history of modeled groups, they are not sufficient to determine the

exact scenario of the past demography. The other important issue that one needs to be

aware of is that these estimates are strongly dependent on the effective population sizes,

which cannot be precisely estimated. However, more complex analysis of the allele size

distributions and replacing the genetic drift model by the genetic draft model (59),
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which is unaffected by the effective population size, should suffice to overcome these

problems. We leave these investigations for further studies.
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Figure 6.3: RST distance between the Slavs and the Balts as a function of the Balt-Slav

split time T1. Populations evolve according to the model presented in Figure 6.2 with

T2 = −3500 and T3 = −15000. Results for four different values of the migration rate m

are depicted. Dotted line indicates the real data estimate of RST .

6.5.3 Ascertainment bias model for microsatellite loci

Microsatellite loci, due to their very high polymorphism, are commonly used as genetic

markers. Because of the predominant model of mutation (extensions and contractions of

the repeat sequence), a high polymorphism at a particular locus usually manifests itself

by presence of long repeat sequences at this locus. Thus, when we compare variability

between two species, we often analyze these microsatellite loci. When we choose highly

polymorphic loci based on the studies of species 1 and then compare the average number

of repeats at loci homologous ih species 1 and 2, we usually obtain that sequences from

species 1 are longer (30). This phenomenon can be explained by a tighter correlation

of the allele sizes between homologous loci in one species than in two different species.

We call this bias the ascertainment bias. Thus, when we obtain differences of lengths of

homologous loci from two populations, important question arises: Is the ascertainment
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Figure 6.4: RST distance between the Slavs and the Balts as a function of the time

T2 when the Balts and the Slavs left the Indo-European homeland. Populations evolve

according to the model presented in Figure 6.2 with T1 = −1500 and T3 = −15000.

Results for four different values of the migration rate m are depicted. Dotted line indicates

the real data estimates.

bias the sole explanation for this difference or not ? Recent studies show that these

differences between many species (i.e., between human and chimpanzee) may result

also from different demographies and mutation processes (28, 177). Therefore, it is

important to develop a method that can distinguish the effect of the ascertainment

bias from evolutionary factors. In the most basic method we obtain the results for

two scenarios. In each of them we consider polymorphic loci discovered in the other

population and at the end we compare these results. This approach is known as the

reciprocal study (41).

There are several methods that allow to estimate the value of ascertainment bias

(104). We model the ascertainment bias in the following way. Let us assume that

ancestral population (the common ancestor of both species that we analyze) evolves

from time t = 0 with the initial number of repeats equal to 1. At time t = T0 the

population splits into two species. Then, both species evolve until the current time

t = T . We denote the effective population sizes as N0 for ancestral species and N1 and
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Figure 6.5: RST distance between the Slavs and the Balts as a function of the Finn-Indo-

European split time T3. Populations evolve according to the model presented in Figure 6.2

with T1 = −1500 and T2 = −3500. Results for four different values of the migration rate

m are depicted. Dotted line indicates the real data estimates.

N2 for the first and the second current species, respectively. At time t = T we choose a

locus with the allele length Y0 greater than x from the first species and compare it with

allele lengths at the same locus, obtained independently from both species. We denote

these lengths by random variables Yi, where i ∈ 1, 2 is the species index. Finally, we

get the following formula for the expected value of the ascertainment bias B:

B = E[Y1|Y0 > x]− E[Y2|Y0 > x] =

∑
i≥x(E[Y1, Y0 = i]− E[Y2, Y0 = i])∑

i≥x P (Y0 = i)
. (6.22)

The value of B given by (6.22) is computed from the joint distributions R00(T ) and

R10(T ), where population 0 is the one from which we choose polymorphical loci:

B =

∑
i,j∈A,j≥x ir00[i, j](T )−

∑
i,j∈A,j≥x ir10[i, j](T )∑

i,j∈A,j≥x r00[i, j](T )
(6.23)

Our demography model can serve as the model of the human-chimpanzee genealogy.

We consider recent T = 5·105 generations (average generation lifetime is assumed equal

to 20 years). Thus, the split occurred at time T0 = 3 · 105 generations (85). We assume
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the effective population sizes as N0 = 5 · 104 for ancestral common population (85),

N1 = 1 · 104 for human (174) and N2 = 3 · 104 for chimpanzee (86). We assume that

during each realization of a single experiment the mutation model is a SMM model

with constant rate vi, i ∈ 0, 1, 2 for the ith species, which is not entirely accurate –

in fact longer loci may have a higher mutation rate (182), and asymmetry parameter

b = 0.55. This latter has been introduced to reduce the number of loci with the number

of tandem repeats decreasing to 0. We also set x = 12.

Figures 6.6 and 6.7 presents how the estimation of B depends on mutation rate and

population sizes.
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5v1 = v2 = 5v0
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Figure 6.6: Estimation of the ascertainment bias B as a function of the mutation rate.

We assume that T0 = 3 · 105, T = 5 · 105 generations, N0 = N1 = N2 = N and v0 = 10−4

mutations per generation.

Figure 6.9 shows reciprocal studies of the human-chimpanzee relationship. As we

can observe a marked difference in the differences between the average lengths of ho-

mologous loci sampled from human and chimpanzee under two scenarios in which we

choose loci either based on human data or chimpanzee data (28). This fact suggests

that the human’s microsatellite mutation rate is higher.

In order to explain the ascertainment bias phenomenon we should study the evo-

lution of microsatellites. We notice that ascertainment bias should not exist if a mi-
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Figure 6.7: Ascertainment bias B as a function of the population size. We assume that

T0 = 3 · 105, T = 5 · 105 generations, N0 = 5 · 104, N2 = 3 · 104 and v0 = v1 = v2 = 10−4

mutations per generation.
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Figure 6.8: Estimation of the ascertainment bias B with the upper limit for the length

u of a microsatellite in the second population. We assume that T0 = 3 · 105, T = 5 · 105,

N0 = N1 = N2 = 105, v0 = v1 = v2 = 10−4 and x = 12.
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Figure 6.9: Reciprocal studies in the estimation of the ascertainment bias B between

human and chimpanzee. We assume that T0 = 3 · 105, T = 5 · 105 generations, N0 =

5 · 104, human effective population size is equal to 1 · 104, chimpanzee effective population

size is equal to 3 · 104 and v0 = v2 = 10−4 mutations per generation. Continuous line

depicts results under the assumption that we choose a polymorphic locus from the human

population and a dashed line presents the case when the polymorphic locus from the

chimpanzee population is chosen.

crosatellite selected in one species is as likely to be longer as it is to be shorter than

its homologue in the mother species. It seems also interesting to consider an upper

boundary u > x of the length of microsatellite above which the microsatellite experi-

ences significant deletions or splits (177). Figure 6.8 presents results of a simulation of

the upper limit of microsatellite length. For given demographic data, microsatellites

longer than 30 tandem repeats occur so rarely that setting u for a value greater than

30 does not affect the value of the ascertainment bias.
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Discussion

The subject of the dissertation are complex stochastic genetic systems. The background

of this field of research is presented in Chapter 2. There we describe the main evolution-

ary forces and the basic methods used to model them. We also discuss the differences

between backward-time and forward-time approaches. We continue this discussion in

Chapter 3 by explaining the reasoning behind choosing between simulation and non-

simulation methods. In this dissertation we focus on the non-simulation approaches as

the aim of the dissertation concerns the useability of these methods and their refine-

ment by specialized computer algorithms. Three different non-simulation stochastic

genetic systems are introduced and examined in details in this dissertation (Chapters

4-6). The importance of each of these models along with the theses concerning them

are explained in Chapter 3. The theses formulated in the dissertation are as follows:

• It is possible, using a non-simulation approach applied to the mathematical Moran

model, to answer the question of the recombination identifiability, at least in

the means of the relationships limited to a set of distributions, which jointly

characterize allelic states at a number of different loci.

• It is possible, using a recursive algorithm, to calculate the exact distribution of

the time to the MRCA of a large sample from a population evolved under any

growth scenario with the time efficiency of the method allowing for analysis of

large human populations.

• It is possible to build a non-simulation model of demographic interactions be-

tween many populations or species that can, in some applications, replace the
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simulation-based approach.

With a constant development of analytical and simulation-based methods, increased

interest in studies of recombination may be observed. The first model, described in

Chapter 4, addresses some aspects of the dynamic behavior of recombination in a Moran

model. More precisely, we answer the question of the asymptotic identifiability of a

crossover recombination in the model with mutation and genetic drift. Similar analysis

of the dynamics of the crossover recombination in the Moran model, although concern-

ing other problems, may be found in (8, 9). Our model is a s-loci generalization of the

two-loci model introduced in (18, 108). We explore the algorithms enabling construc-

tion of the transition probability matrices of the Markov chain describing the process

(Section 4.4.2). Specialized hashing function based on the dynamic programming has

been developed to ensure fast managing of the distributions. Our method works in

O(s4$s + $2
s) time complexity with very restrictive 20$2

s [Bytes] memory complexity

(Section 4.4.3), which is enough to obtain results for s ≤ 9. Proper implementation

of the sparse matrix operations would increase, with the cost of the time complexity,

the feasible value of s. As a main result, we find that asymptotically the effects of

recombination become indistinguishable from the effects of mutation and genetic drift

(Theorem 4.1 and Section 4.3.1). This is very interesting, but rather paradoxical, re-

sult. However, one need to be aware that the result concerns asymptotic behavior only.

Also, the framework of distributions used in the model is not complete. A set of distri-

butions describing the relationships in the model jointly characterize allelic states at a

number of loci at the same or different chromosome(s) but do not jointly characterize

allelic states at a single locus on two or more chromosomes. As an example, probabil-

ities such as P [X11 = x11;X12 = x12;X23 = x23] are included in the system, whereas

probabilities such as P [X11 = x11;X21 = x21;X23 = x23] are not (Section 4.2.1). How-

ever, the system is sufficiently rich to allow computing all possible multipoint linkage

disequilibria under recombination, mutation and drift, as well as their variances and

covariances (Chapter 3 of (184)). Analysis of the Dobrus̆in’s coefficient in the case s = 3

(Theorem 4.2) and the spectral gap theory in the general case (Section 4.5.2) suggest

that the speed of convergence of the system is exponential. Comparison with the Hud-

son’s Wright-Fisher coalescence model with recombination shows that the Moran model

yields higher correlation of the time to the MRCA at two loci than the Wright-Fisher
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model. We quantify this rather intuitive fact, although by the interpolation of the

simulation results only (Section 4.5.3).

Chapter 5 contains description of the method that allows to calculate in a time

efficient way the expected distribution of the time to the MRCA for sample of any size

regardless of the population growth scenario {Nt}. The data required is population

size over population history. The total time complexity of the algorithm is of the order

of O(n3 +n2T ), where T is the number of discrete generations and n is the sample size

(Section 5.3.1). Therefore, one may obtain the results in a short time even for n ≈ 103

and the time period comparable to the time-span of modern humanity. Because of using

the exact discrete time approach, our method differs from the usually applied continuous

time diffusion approximation of the coalescence process. As an example, in Polański

et al. (157) such a model has been used to estimate the population history based on

the pairwise difference of individuals from the sample. Another interesting continuous

time diffusion approach is a model used by Takahata (173, 175), who estimated, based

on the coalescence process, the time to the MRCA in a constant size population under

a complex selection model. The values of gnk(t), the probabilities that a sample of n

alleles descended from exactly k distinct ancestral allelic lines t generations ago, are

estimated in the Takahata’s paper. Further on, these values are used in the analysis of

the survivability of the ancestral alleles. The gnk(t) values are closely related to the αtk

entries from our model (Expression (5.8) and Section 5.2). Our model is simple and

fast enough to be successfully used instead of these methods as long as the sample size

n is in the feasible range. Unlike a diffusion approximation, our model works well for a

small population size. Based on (5.8), our method can provide additional useful data.

The entries αt,k of the matrix α, being the probabilities that the sample has exactly k

ancestral lines at time t, give the exact distribution of the number of the ancestral lines

over time. These values may be used to estimate population history based on the history

of the sample(s) from that population (124) or to analyze the survivability of the ancient

lineages in the population (175). The method, and the matrix α in particular, may also

be used in studying the dynamics of the change of the MRCA over the time (155). As a

result of the coalescence events between two generations, some of the genealogy lineages

from the previous generation may not be continued in the following one. These deceased

lineages may affect the time when the MRCA appears. To analyze this variability one

needs to calculate and compare the distribution of the time to the MRCA for each
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generation from a given period of time. As evident from Section 5.4.3, there exists a

great variability of the estimated time to the MRCA distributions inferred from limited

size samples. This variability is intrinsic in the statement of the problem in the sense

that it reflects the wide mix of older and younger genealogies, which is affected by the

history of bottlenecks and expansions. This variability is likely to affect the results of

study of the age of founder mutations of genetic diseases and our method may be used

to help to discriminate between various alternative architectures of genetic diseases

based on population samples, as it was done in (153) using other methods. Studies of

the time to the MRCA in the Poland and World populations (Section 5.4.2) lead to

the apparently paradoxical finding that these times are longer than the time-span of

modern humanity. However, it has to be noticed that this only means that fragments

of the genome that did not recombine and were not under significant selection behave

this way. In the case of the absence of complete demographic information over the

whole period examined, the method can still be successfully applied provided that

the major demographic events from the population history are incorporated in the

growth scenario. The missing data between two consecutive modeled events can be

interpolated, for example by exponential function, which should not cause a substantial

impact on the results. The method can also be used as a testing platform to verify

unknown demographic scenarios using genetic data. Besides the main method, Chapter

5 contains also the results of studies of the time to the MRCA of the population

evolved according to the Galton-Watson process (Section 5.4.3). We obtain the Galton-

Watson genealogies using our framework (Section 5.3.2) with a new algorithm that

allows to store non-extinct genealogical lineages of the Galton-Watson process in a

time and memory efficient way (Section 5.3.2). Finally, in Section 5.4.2 we present how

to estimate an effective population size of real human population.

In Chapter 6 we present a model of demographic network that allow to calculate the

joint probability distribution of a pair of individuals of different allelic types drawn from

populations from the network. We model three types of discrete demographic events:

splits, merges and migrations. Between these events, the network evolves according to

the continuous-time coalescence model with mutation and genetic drift. Although the

allelic space (given by the mutation model) does not change, the mutation intensities

may vary between different populations or different time-intervals. We do not assume

any population growth scenario. Evolution of the population is given by the Lyapunov
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equation of the form of (6.10) but may be substituted by other continuous-time models

(i.e., the model of the differences in the number of tandem repeats is used in Section

6.5.2). Number of optimizations, such as using of an adaptive step control algorithm

in the Runge-Kutta method or a sparse matrix multiplication algorithm working in the

square time-complexity, are used in the implementation of the model (Section 6.4.2).

The complexity of the model strongly depends on the number of all possible entries

of the joint distribution equal to Nn
A , where NA is the number of allelic types and n

is a sample size (Section 6.4.3). Therefore, the model is usually used for n = 2 and

NA < 1000. However, sometimes the model can be used for larger samples (Section

6.3.1) or larger allelic spaces (Section 6.3.2). The model does not include two important

genetic forces: recombination or selection. Incorporating of the Hudson’s coalescent

recombination model (90) would lead to the change of Formula (6.10) into recursive

equation with the joint distribution for a sample of size n dependent on the value of the

distribution for a sample of size n + 1. However, our recombination model explained

in Chapter 4 can be used in the demographic network model by incorporating Formula

(4.12) into the model. Selection can added to the model in two ways (139) by using

either the ancestral selection graphs (114) or the structured coalescent (102). We skip

these refinements in the dissertation. Our model differs from the common simulation-

based approaches. The obvious advantage of our method is that we obtain the exact

results. One can calculate most of the genetic parameters that characterize populations

and their interactions from the joint probability distribution of the allelic types. Despite

its limits (especially the sample size and the length of the haplotype sequence that can

be feasibly modeled), our method can be used in many real data application. The

method works particularly well for the microsatellite mutation models (Sections 6.5.2

and 6.5.3). In Section 6.5 we present several example applications where our method

can be useful. The main use of such a model lies in estimating of the parameter

values under given demographic scenario. We estimate the equilibrium parameters

(including the linkage disequilibrium) for a simple SNP model (Section 6.5.1), the

pairwise difference in long haplotype sequences (Section 6.5.2), the Slatkin’s distance

between two populations (Section 6.5.2) and the ascertainment bias in a microsatellite

model (Section 6.5.3). The results obtained from the latter example suggest higher

microsatellite’s mutation rate in human than in chimpanzee. Another interesting results

concern the evolution of the microsatellite loci. We model the influence of the upper
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7. DISCUSSION

limit of the number of tandem repeats on the microsatellite locus on the value of the

ascertainment bias (177) and obtain that the limit set on the value greater than 30 does

not affect the ascertainment bias. The estimates from the demographic model may be

compared to the values obtained from genetic data and, therefore, can be used as

measures in testing of the past demographic scenarios (170). We use such an approach

to study of the common history of the Slavs and the Balts based on the Y-STR data

and Slatkin’s RST genetic distance (Section 6.5.2).

The results in this work can surely be a point of departure for further research. Our

Moran model does not assume any particular mutation model. Thus, it may be inter-

esting to study the dynamics of the model under specific mutation. The recombination

scheme used in this model can also be used in other models (i.e., in the demographic

network model). Model described in Chapter 5 can be used as a tool in many other

models. We have already mentioned in the previous section of this chapter the most

important applications, where this model can be useful (mainly as a testing platform

to verify different demographic scenarios or disease architectures). Our demographic

network model can be studied further on two levels: as a model or as a tool. On the

field of modeling we may increase the useability of the model by: (i) introducing new

genetic mechanisms to the model, (ii) optimizing performance of the model and (iii)

preparing specialized algorithms for specific cases (such as a compression algorithm

presented in Section 6.3.2). The real power of this model lies in using it as a tool in

studies of the past demographies of different populations or species. In Section 6.5 we

present several examples of such studies, but the real use of the model in this field is

much wider.
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Polański for allowing me to participate in his seminars and for sharing his

opinions on my work.

During my Ph.D. study I was employed in the Software Department of the

Silesian University of Technology. I am thankful for the possibility to work

in this team. Many thanks go to the manager Doctor Przemys law Szmal,

who motivated me in my work. I am not able to enumerate all the staff, so

I would like to give special thanks to my closest colleagues: Jacek Widuch,
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A. POPULATION SIZE OF POLAND AND OF THE WORLD

Table A.1: Population size of the World

year size [106] source

-1000000 0.125 Reference (113)

-10000 4 Reference (113)

-5000 5 Reference (113)

-4000 7 Reference (113)

-3000 14 Reference (113)

-2000 27 Reference (113)

-1000 50 Reference (113)

-500 100 Reference (113)

-200 150 Reference (113)

1 170 Reference (113)

200 190 Reference (113)

400 190 Reference (113)

600 200 Reference (113)

800 220 Reference (113)

1000 265 Reference (113)

1100 320 Reference (113)

1200 360 Reference (113)

1300 360 Reference (113)

1400 350 Reference (113)

1500 425 Reference (113)

1600 545 Reference (113)

1650 545 Reference (113)

1700 610 Reference (113)

1750 720 References (113, 136)

1800 900 References (113, 136)

1850 1200 References (113, 136)

1875 1325 References (113, 136)

1900 1625 References (113, 136)

1950 2519 References (113, 136)

1975 4068 References (113, 136)

2000 6070 Reference (136)
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Table A.2: Population size of Poland

year size [106] source

1000 1 Reference (121)

1375 1.9 Reference (116)

1400 4.2 Reference (145)

1575 7.5 Reference (117)

1650 11 Reference (117)

1750 12 Reference (100)

1775 12 Reference (100)

1800 9 Reference (112)

1850 11.1 Estimates available on the Internet based on the census

in Prussia in 1846 and censuses from the Kingdom of

Poland (Russia territory) and Galicja in 1870s-1890s

1900 20 Reference (159)

1925 35 Reference (159)

1950 25 Reference (142)

1975 34 Reference (142)

2000 38.2 Polish Demographic Yearbook 2000
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