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1 Introduction

Photodynamic diagnosis and tumor therapy was invented at the beginning of 80’.
Investigations of fluorescence from endogenous and exogenous molecules in cells
and tissues are very common, especially in vivo and ex vivo studies [1]. This is a
harmless method of cancer diagnosis and removal of infected structures. Specific
substances with fluorescent characteristic injected into bloodstream are collected
by the cancerous cells. They can be recognized by increased red color intensity, if
the light of specified wavelength is applied. Photofrin is the only one fluorophore
that was allowed to be used by the Food and Drug Administration. Fortunately,
there are also natural fluorophores in human tissues that fluoresces when the
laser light is applied. The contrast between neoplastic and non-neoplastic tissues
is characterized by changes related to several endogenous fluorophores. Their
distribution in the tissue is depth-dependent. The main fluorophores in the ep-
ithelial layer are tryptophan, reduced nicotinamide adenine dinucleotide (NADH)
and flavin adenine dinucleotide (FAD), while collagen is the primary fluorophore
in the stroma. Recent high resolution fluorescence imaging studies showed that
the intensity of fluorescence and distribution of fluorophores changes with car-
cinogenesis. For example, the fluorescence of collagen decreases within the stroma
of neoplastic tissues relatively to that of normal tissues. Within the epithelium,
the NADH fluorescence of dysplastic regions is increased relatively to that of
normal epithelial cells, while the opposite result is observed for FAD [2]. Changes
in their fluorescent properties can be helpful to locate and recognize cancerous
cells much faster e.g. by image processing methods [3]. That is why more and
more attention is attracted to understand the microscopic source and mechanism
of light-induced autofluorescence (LIF) in diseased and normal human tissues.
The growing interest in characterization of UV and VIS wavelength excitation
(250-520 nm) and fluorescence emission spectra (260-750 nm) of known and sus-
pected endogenous biological fluorophores and exogenous photosensitizer agents
contribute to increase the number of new methods simulating the behavior of
light in contact with fluorophores [4].

Recently, another method of cancer recognition was presented. After local,
oral or intravenous administration of 3-aminolaevulinic acid (ALA), as the result
of haem metabolic cycle, a very active protoporphyrin IX (PpIX) is accumulated
in cells. This leads to morphological changes of the cells and increased sensitivity
to light illumination. It turned out that malignant tumor produces more of that
fluorophore (PpIX) than healthy or non-malignant tissues. Type of enzymes regu-
lating haem cycle and their amount influence the concentration of protoporphyrin
IX [5]. This ability is very widely used during cancer monitoring and detection.
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4 CHAPTER 1. INTRODUCTION

Photodynamic diagnosis is of great interest for medicine [6].

According to [7] there is no quick, accurate and reliable method to diagnose
early states of cancerogenesis. However, fluorescence spectroscopy has a big po-
tential to play that role. It analyzes quantitatively the measure of various optical
features during fluorescence phenomenon. It describes a fluorescence quantum
yield and lifetime of biological molecules, when light of different wavelength is
applied like UV, VIS, near-infrared (NIR) or infrared (IR). It presumes that
fluorescence intensity of a molecule depends on its concentration, its absorbing
power for the initial wavelength and its quantum yield of the registered light [7].
Fluorescent spectroscopy analyzes the surface of the suspicious area, without the
necessity of cutting out the tissue sample. Additionally it can be utilized by endo-
scopes to diagnose internal parts of human body. If successfully applied it would
reduce the health care cost and minimize complications, since it is completely
noninvasive. Fluorescence spectroscopy has the potential to improve the number
of patients with positive outcome.

In order to understand better what is happening with light inside the tissue
during fluorescent phenomenon, a various methods for light propagation were
investigated. The laser, which produces non-ionising and monochromatic light
was available for medicine already in 1960’s. Its properties were quickly valued,
since it can be customized in such a way that the light is absorbed only by
specific molecules and the others remain unaffected. Laser light can form spots
of different shapes and sizes, and thus making the resulting energy more or less
intensive. This radiation can be further transformed in either thermal, mechanical
or chemical energy causing prompt or delayed cell death. This selectivity property
is the main advantage of this technique [8].

However, photodynamic therapy (PDT) still suffers from several drawbacks.
Different doses of light and photosensitisers should be applied during medical
treatment for different patients. There is no standardized way to calculate those
values. Another problem concerns accumulation of fluorophores also in healthy
cells, which introduce a danger to injure healthy and sensitive tissue regions
[9]. The efficacy of this method strongly depends on selective excitation of the
cancerous area. Analyzing the fluorescence lifetimes of photosensitizers collected
inside living cells may contribute to better understanding of in vivo PDT dosage
measurements using imaging and time-domain spectroscopy. Since only photofrin
and delta-aminolevulinic acid (ALA) induced protoporphyrin IX (PpIX) have
been approved for clinical use, their characteristics was investigated. Described in
literature time-domain methods may be good candidates for in vivo PDT dosage
monitoring [10]. Despite of that, it is still important to recognize the internal
structure of cancer, its development and progress. Gene mutations distort the
cellular phenotype and gene expression profile, causing changes in cell morphology
and metabolism. The relation between genetic changes and resulting biological



5

activity is very important from the point of understanding biology of the cancer
[11].

Those physical deformation influences the way light is reflected from the tis-
sue. The optics of human skin was widely described in [12]. During experiment the
tissue was divided into layers with different inherent optical properties, caused by
various concentration of blood, melanin and keratin. All of those substances have
different optical properties. Melanins and keratins in the epidermis, and elastin
and collagen fibers in the dermis were identified as the primary scatterers in skin.
Moreover, scattering efficiency does not change rapidly with wavelength. To the
group of main absorbers was included blood, melanosomes and keratin.

The effect of light polarization and fluorescence at the same time was sim-
ulated and presented in [13]. Light rays and polarization phenomenon can be
modeled as an electromagnetic wave of a given frequency. It propagates through
the scene as a discrete ray oscillating in a perpendicular plane to the ray di-
rection. Fluorescence phenomenon, on the other hand, is caused by the pigment
molecules, which re-emit the incident light at different, lower wavelengths. In
order to uniquely encode the energy transfer between different wavelengths, a
knowledge of a special material property is needed, which is called re-radiation
matrix (EEM). In this way it is possible to obtain an emission spectra for any
excitation wavelength.

Monte Carlo method is a technique that uses stochastic model to simulate
different physical processes. In order to simulate light propagation in skin tissue,
every light source emits small packets of energy called photons throughout the
scene and records their position changes. Thy are considered as neutral and their
wave nature is neglected. Once photon is launched it can be moved and reflected
or refracted from the tissue surface. When penetrating the internal part of the
tissue a packet can be absorbed, scattered or its wavelength can change if flu-
orescent phenomenon occurred [14]. Since every simulation is basing on actions
that happen randomly, the results of similar experiments do not give the same
results. Photons are traced in the scene until they escape the tissue or are termi-
nated. The simulation is finished when desired number of particles was emitted.
It enables then to calculate statistically such physical quantities as the absorption
distribution, time-of-flight or exiting position. In order to obtain appropriate pre-
cision a large number of packets needs to be traced [15]. The results and details
of such simulation were presented in [16]. A seven layer tissue model was pre-
sented, including absorption and scattering coefficient for different wavelengths.
Autofluorescence properties of a skin and distribution of excitation laser light in-
side the tissue were analyzed. Finally, very detailed simulations were performed
describing autofluorescence escape function, fluorescence efficiency and fractorial
contributions of different skin layers.

The final positions of photons on the tissue surface can be stored in a special
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structure called photon map. If the photon was reflected from the tissue, then its
new direction is computed using the BRDF of the surface. Reliable and accurate
images can be only rendered if the reflectance of surfaces is accurately simulated.
Physical reflectance measurements giving the bidirectional reflectance distribu-
tion function (BRDF) of an opaque surface, ensure the correctness of obtained
results [17]. In order to generate the final image of a simulated tissue it is nec-
essary to perform rendering by applying Monte Carlo ray tracing. Every pixel
radiance is calculated by emitting a ray from the camera through the pixel into
the scene. At the first surface intersection the algorithm finds nearest neighbor
sample estimates in the photon map and calculate their average [18].

As already said optical spectroscopy has the potential to reduce delays in
treatment and the number of unnecessary biopsies. However, this technique can
be additionally enhanced by utilizing the idea of multi-spectral imaging. It further
increase sensitivity of diagnosis and is able to identify early cancer symptoms not
visible with traditional white light sources [11].

Surface-spectral reflectance is a property of the object’s surface and provides
the spectral reflectance curve, which can uniquely describe materials it is made of.
It defines an object’s color, which can be however differently perceived by human
observers or camera devices. Surface reflectances are spectrally high dimensional
and cannot be properly detected by normal camera with only three color chan-
nels (RGB). Since light of different wavelength enters the skin to different level,
it is necessary to investigate each wavelength separately. Images taken for dif-
ferent wavelengths are called multi-spectral. They can also capture light from
frequencies not naturally visible by human e.g. infrared. Multi-spectral imaging
technology has a big potential. It enables to reproduce the original color very
accurately and recognize materials the object is made of independently from il-
lumination [19].

In many cases multi-spectral images contain distortions and noise coming
from imaging conditions or just measurement physics. However, they still en-
ables to detect a data corresponding to known or unknown material signatures.
Especially in fluorescence microscopy, multi-spectral imaging helps to identify un-
wanted background emission, spatial regions of autofluorescence and other tissue
components [20]. A list of applications is much longer and includes geological re-
search, plant and mineral identification, environmental and wetlands mappings,
bathymetry and many others. Processing of multi-spectral images requires re-
ducing the spectral dimensionality without loosing important information and
finally classify every image pixel to a material of known spectral parameters.
Such properties has a technique proposed by [21], which detects signatures of in-
terests and neglect unwanted components without loosing critical spectral data.
The orthogonal subspace projection (OSP) projects every pixel vector to the or-
thogonal subspace of undesired signatures and in such a way removes interfering
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components from the signal. By projecting the residual back to signature of in-
terest, the algorithm maximizes signal-to-noise ratio. As the result initial pixel
vector is represented by one-dimensional value representing classified material.
This approach can be extended to more than one signature of interest.





2 Motivation and Thesis

The primary goal of this dissertation is the application of fluorescence phe-
nomenon of human skin tissues in the process of harmless and non-invasive cancer
detection and enhancing that procedure by usage of multi-spectral images. Since
many factors contribute to the outcome of the image acquisition, it is very dif-
ficult to compare multi-spectral images for different cancer types and different
patients. Additionally, the cost and availably of optical devices limit the scope
of experiments and analysis of obtained results. Taking into account mentioned
difficulties it is necessary to improve and simplify the photodynamic diagnosis.
For this reason the following thesis were formulated:

• It is possible to create mathematical model of subsurface light
transport of chosen human tissue, defined by absorption, scatter-
ing and fluorescence phenomenon. This model should be characterized
by parameters, which are different for various tissue types. Those parame-
ters are commonly available and quite good described in literature. Tissue
defined in such a way, should be easy to enhance by additional physical phe-
nomenon (i.e. polarization) or components (i.e. blood vessels, mitochondria
etc.). The model should enable the analysis of light propagation in any
desired moment of time and the effect of fluorescence in details.
• It is possible create such a model, which basing on the Monte
Carlo method is able to generate multi-spectral images quali-
tatively compliant with real multi-spectral images taken during
photodynamic diagnosis. The validity of such a model is a fundamental
goal of this dissertation. The possibility of generation multi-spectral images
of similar properties like real images would enable a more detailed analy-
sis of data acquisition process from the point of view of simplification and
optimization. For this reason the next thesis can be formulated.
• The created model enables to optimize the chosen parameters
of image acquisition process like light incident angle, the light
source spectrum or the distance to the investigated tissue surface
and enables to unambiguously distinguish between cancerous and
healthy tissue sample. The optical device used during photodynamic
diagnosis is embedded into endoscope. Its position, distance, initial angle
or light source spectrum have a big importance on final result and data
analysis. Finding the optimal parameters of the endoscope should speed
up and simplify the diagnosis and at the same time provide more accurate
diagnosis.
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In order to prove that all thesis described above are true, it is necessary
to decompose them into smaller tasks, which are easier to analyze and draw
conclusions from. For this reason the following problems were defined:

1. Define parameters and optical model of human skin tissue,
2. Define types and concentration of natural fluorophores in human skin tissue,
3. Simulate the propagation of light rays in human skin tissue utilizing photon

maps,
4. Propose the most efficient light source parameters during photodynamic

diagnosis,
5. Propose the best angle of endoscopic device with respect to tissue surface

during photodynamic diagnosis,
6. Analyze quantitatively the process of light transport in human skin tissue

using photon map algorithm,
7. Investigate autofluorescence phenomenon and fluorescence of cancerous hu-

man skin tissue with photosensitisers,
8. Generate images representing human skin tissue with similar appearance

and properties like real tissue sample,
9. Analyze multi-spectral images and their properties,

10. Propose the most optimal methods of using multi-spectral images in pho-
todynamic diagnosis,

11. Compare multi-spectral images of human skin tissue with multispectral
images generated during photon mapping simulation.

All of this issues are going to be addressed in the next chapters and summa-
rized in conclusions.



3 Previous work

In literature the idea of non-invasive tumor diagnosis is very popular. For this
reason different method of light propagation are investigated like Monte Carlo
or diffuse model to better understand the tissue properties. Finding scattering
and absorption parameters and the concentration of each fluorophore for healthy
and diseased tissue is one of the main goals. Different ideas were analyzed. For
example in [22] a model for subsurface light transport in translucent materials was
introduced. It is the extension of bidirectional reflectance distribution function
(BRDF) that assumes that light entering a material leaves the it at the same
position. This approximation is valid for metals, but fails for translucent materials
which exhibit significant transport below the surface. That is why bidirectional
surface scattering distribution function (BSSRDF) was proposed to describe the
light propagation between two rays that hit the surface. However, adding to this
model a fluorescent behavior is not straightforward and cannot be used easily to
simulate such properties of tissues.

In [23] the optical effects of translucency and coloration due to the composition
of minerals near the surface was demonstrated for granite, marble and sandstone
models of statues. The simulation of the scattering of light inside the stone was
performed using a general subsurface Monte Carlo ray tracer.

Volume photon mapping that includes fluorescence phenomenon was pre-
sented in [24]. The Full Radiative Transfer Equation (FRTE) was solved. As
the next step Fermat’s law was applied to simulate a global illumination solution
which supports non-linear light paths. Physically-correct simulation of volume
fluorescence in participating media, caused by inelastic scattering and efficient
computation of caustics was introduced.

In [25] a new algorithm for rendering translucent materials that combines
photon tracing with diffusion was presented. Instead of sampling lighting at the
surface, photons are traced into the material and stored volumetrically at their
first interaction with the material. The proposed approach is as efficient as previ-
ous Monte Carlo sampling approaches based on the dipole or multipole diffusion
approximations and demonstrates that it is more accurate and captures several
illumination effects that was previously ignored.

The shading model that is able to efficiently and accurately render thin and
multi-layered translucent materials were described in [26]. The original multi-
dipole algorithm was extended to account rough surfaces and mismatched in-
dices of refraction. Diffusion profiles from translucent slabs were combined uti-
lizing Kubelka-Munk theory. Obtained multi-layered model of light diffusion was
successfully applied to leaf, paint, paper, human skin and other similar materials.
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The diffusion theory to describe steady-state light transport for point, line and
plane sources was applied in [27] and compared with Monte Carlo results. They
were able to accurately describe the shape of the fluence rate distributions due to
light sources, but the absolute values were difficult to calculate. The adaptation
of the method to fluorescence measurements and photodynamic therapy were
presented as well.

In order to better understand tissue properties, skin samples were frozen and
cut into pieces of about 10µm thick. Using microscope to excite the emission
of autofluorescence and Monte Carlo simulation, it was possible to reconstruct
in vivo skin autofluorescence spectrum. Seven-layer model with different opti-
cal parameters - like refractive index, scattering, absorption and regeneration of
fluorescence photons - for each layer and each wavelength was proposed. The
highest fluorescence detection efficiency in the skin was observed for dermis. Be-
sides the blood absorption bands, comparison of the measured spectra with the
reconstructed in vivo spectrum showed good agreement [28].

Fiber optic probe geometries to selectively measure fluorescence spectra from
different sublayers within human epithelial tissues was investigated in [2]. They
goal was to improve the endogenous fluorescence contrast between neoplastic
and nonneoplastic tissues. They proposed two basic fiber optic probe geometries,
which are called the variable aperture (VA) and multidistance (MD) approaches
and compared with fluorescence measurements from human cervical epithelial
tissues. They presented a simple tissue model and showed some numerical results
without rendering them graphically. The importance of fibre configuration was
also presented in [29], where the median sampling depth and photon pathlength
were calculated. For single fibre probe simulated with one-layered skin model, the
shallowest median sampling depth was found. It was suggested that the choice
of a probe with a small fibre separation is better when sampling depth is not so
important.

The Monte Carlo model was extended and verified in [30]. Now, the basic
idea was improved to account for the fluorescent behavior in tissues. The model
was validated with real experiments as well. An efficient method of Monte Carlo
simulation was also developed in [31]. They investigated how the converging laser
beam propagates in a turbid medium and noticed that steady-state distribution
of the photon density can be calculated depending on depth in the object.

Tissue properties and parameters like absorption, scattering and fluorescence
were measured and described in many in vivo investigations like [32] or [33].
Fluorescent properties of a tissue and contribution of different substances to final
spectrum intensity was described in [34].

Very precise optical model of port wine stain was presented in [35]. The data
was extracted from 6µm thick histology sections, which then were photographed
and digitized with 2µm per pixel resolution. The epidermis, dermis and blood were
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manually identified to create a three-dimensional matrix with values representing
tissue type. Having described internal structure of a skin deformation, it was
possible to perform Monte Carlo simulation and collect the energy deposition in
different parts of a tissue grid. The simulation executed for wavelengths 532nm
and 585nm showed that the greatest energy was accumulated in superficial blood
vessels. Moreover, more energy was deposited in dermis and blood for 532nm
rather than for 585nm. It was noted that big complexity of the model make it
difficult to interpret the results.

Morphological and biochemical changes discovered in cancerous tissue dis-
turb its absorption, scattering and fluorescence properties. In vivo optical spec-
troscopy can examine changes associated with pre-cancer phase. Im [11] there
was described a recent study in two key areas: characterizing nuclear morphology
using light scattering spectroscopy and investigating changes between epithelial
cells and stroma at early stages of carcinogenesis. It is needed to utilize both ap-
proaches as long as fluorescence and reflectance spectra contain complementary
information.

The identification of normal and cancerous colorectal tissues was performed in
[36] by applying autofluorescence spectroscopy. The reflectance spectra for exci-
tations in range from 280 to 400 nm with 10 nm steps was used. For each sample
the - so called - "two-peak ratio" value was computed to differentiate between
normal and cancerous tissues at different excitation wavelengths. By employing
the Student’s t-test and furthermore Receiver Operating Characteristic (ROC)
curves, the 330 nm excitation wavelength appeared to be the most optimal.

Laserinduced autofluorescence (LIAF) spectroscopy for colon tumours was
performed in [37]. The observation was taken for the healthy and adenocarcinoma
of human tissues. In range from 520-620nm, the spectral shapes of tumour and
normal tissue were very similar and the intensities of healthy tissues were three
times higher than those with cancer. The opposite difference in intensities was
measured for wavelengths in range from of 625-720nm. The investigation proved
that for excitation 457,9nm the intensity ratio of the emission at 580 nm to the
emission at 630nm or 680 can be used to distinguish cancerous tissue from the
normal one.

The comparison of the optical properties of normal and adenomatous hu-
man colon tissue was performed in [38]. For each tissue sample, three main op-
tical tissue parameters were estimated i.e. absorption and scattering coefficients
and anisotropy factor. Obtained differences indicated morphological changes in
healthy and adenomatous structures.

A technique for the study of diffuse reflectance spectra from normal and dis-
eased tissue by retrieving their optical properties was presented in [39]. A data
gathered from both types of tissues was fitted into model. The quantitative in-
formation about the tissue content, scattering and absorption properties of a
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medium was provided. Described technique could be applied to rapidly analyze
the condition of human skin in vivo in a noninvasive way.

Time-resolved fluorescence was investigated in experimental and theoretical
ways in [40]. A normal muscle tissue and a sarcoma tumor with porphyrin photo-
sensitizer in the middle was used. The fluorescence emission was studied by com-
paring fluorescence decay of photosensitizer in different stages of cancer growth.
It was noticed in the in vivo experiment that the fluorescence from the normal
tissue decayed more quickly than from the tumor structure. Decay is also de-
pendent on the tumor thickness - the thicker cancer, the more delayed decay.
On the other side, in [41] fluorescence decays were compared between males and
females and among people in age ranging from 10 to 70 years. Investigations were
performed on different locations i.e. the arm, the palm and the cheek. Obtained
results perfectly fit to three-exponential fluorescence decay model. This paper
is of particular interest with the possibility to monitor diseases and skin condi-
tions such as skin cancer and ulcers. Those information can be useful for tumor
diagnosis.

Problem of energy transport in scattering medium was solved in [42] using
Feynman approach. It utilizes path integrals method to obtain the most probable
way the light propagate in medium and provides results without making diffusion
approximation. Scattering events determined mainly by phase function make it
possible to calculate probability distribution function for a photon to follow a
given path between two point within given time. Data generated by Monte Carlo
simulation and compared to this analytical solution gives perfect agreement. Path
integral approach could be probably used to solve the inverse problem, where
having optical measurements of a tissue internal structure could be recognized.

Some ways of rendering fluorescent phenomenon in computer graphics were
described in [43]. It was noticed that the reflected light from the fluorescent
material depends on the angle of the incident light. The greater the angle, the
more visible the effect of frequency and color shifting. The phenomenon occurs
only if a photon interacts with colorant molecules. This implies a penetration of
the diffuse substrate resulting in radiant energy and spectrum changes. Finally, a
BRDF model based on the idea of a layered microfacet technique was provided.
Also a combination of Phong lobes and Lambert model were compared with
layered varnish model, which gave the best results.

Multi-spectral images were used in [44] to analyze whether gene amplification
in cells is morphologically or genetically related to prior tumor invasion. Very
useful for that purpose were Beltrami flow-based reaction-diffusion and direc-
tional diffusion filters. In [45] extended the Hidden Markov Chain (HMC) model
to perform a segmentation of multi-sepctral images. In order to keep mutual de-
pendence between the layers, the Independent Component Analysis (ICA) was
adopted. The outcome of unsupervised classification on a four bands SPOT-IV
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signal was presented. Also in [46] a method was proposed to design an automatic
classifiers for discrimination between cancerous and healthy tissue. It was sug-
gested that spectra is not sufficient to recognize fully between those two tissue
classes, however some high degree of discrimination is possible. In order to do that
spectral features should be selected carefully using either some kind of heuristic
or proposed Haar wavelet packet method.

The topic of cancer detection and recognition is very popular in the recent
years. This is why in the next chapters a model of human skin tissue will be an-
alyzed to find the best camera and light parameters to catch cancerous changes
quicker and earlier. Also a method basing on multi-spectral images will be pre-
sented as the most promising.





4 The optical model of human tissue

Translucent objects are very popular in our daily lives. All materials such as skin,
marble, wood, wax etc. exhibit this property. They are perceived as soft and
gentle due to the fact that light enters the object and is absorbed and scattered
inside. This process is known as subsurface scattering. The scattered light gets
diffused and blurs the effect of small geometric details on the surface, softening the
overall look. Moreover, scattered light can pass through translucent structures.
This effect is especially noticeable when the structure is lit from behind [47]. It
differs from the other models, where the light after interaction with the object is
scattered back according to BSDF. Here, the light leaves the object at different
position than it was initially captured. That is why the unique appearance of
translucent materials cannot be achieved with simple surface reflection models
[48].

Human tissue is a good example of material where the effect of translucence
is noticeable and dominant. The most popular morphological model assumes that
a human skin consists of seven layers [49]:

1. Stratum corneum
2. Epidermis
3. Papillary dermis
4. Superficial vascular plexus
5. Reticular dermis
6. Deep vascular plexus
7. Dermis

Over 15% of a total body mass is occupied by skin. It is considered as the one
of the largest human organ. Three main structures can be distinguished: outer
epidermis, the dermis and the subcutaneous tissue. It consists of blood vessels,
hair follicles, nerves and glands. The skin protects the body from the external
environment and radiation, prevents the water loss, regulates the temperature
and has good absorbing properties. It is also responsible for sensory perception
and is a tight immunological barrier.

The epidermis has no lymphatic or blood vessels. It is build mainly from
the multilayered and continously renewing epithelium. The stratum corneum or
horny layer is composed of dead cells. It can be characterized by high chemical
or mechanical resistance. It contains no water inside. The epidermal cells are
created by keratinocytes of the stratum malpighii. They are tranformed from
melanosomes produced by melanocytes residing in the basal layer. Melanin con-
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Figure 4.1: The 7-layer model of human skin tisue [16]

tained in the melanosomes is the complex protein of high UV radiation absorbing
properties. It attenuates the light before it reaches viable skin cells.

The dermis which lies below the epidermis contains collagen and elastic fibers
located in a viscous gel of water and mucopolysacharides. They protects both
layers from separation due to streching forces. The number of cells in the der-
mis is smaller in comparison to epidermis. The papillary dermis as the uppermost
dermal layer consists nerves, capillaries and lymphatics. Underlying reticular der-
mis has fewer cells, but contains more fibres and vessels. Two kind of plexuses
are observable in terms of the blood vessels distribution in a skin. One in pap-
illary dermis with branches toward the epidermis, the other near the bottom of
the dermis. It plays the role of heat regulator and cell feeder. The dermis does
not contain melanin. Collagen and elastin fibers show scattering properties, since
their diameters are larger than the UV light wavelengths. The collagen of type III
is contained in papillary dermis, where it is represented by small-diameter fibers.
Collagen of type I builds the recticular dermis. Finally, the dermis is supported
by subcutaneous fatty tissue, which is an insulator, a source of energy and force
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absorber [16].
The human tissue can be defined as infinitely long and wide multi-layered

structure with thickness long enough to absorb all the light. The key parameters
of each medium are the following:
• n - refractive index - a ratio of the speed of light in vacuum to that in the
given medium
• ua - absorption coefficient - a probability of photon being absorbed per unit
infinitesimal pathlength,
• us - scattering coefficient - a probability of photon being scattered per unit
infinitesimal pathlength,
• g - anisotropy factor - an average of cosine value of deflection angle

It is assumed that the top ambient medium is air with refractive index equal to 1.
This model was widely described in [50] and proved by laboratory investigations.

Optical properties of different tissues and the problem of light transport were
widely described in [51]. Multiple and strongly scattering tissues like brain and
skin tissues or vessel walls, and weakly scattering highly translucent structures
such as eye tissues were discussed. Main scatterers in biotissues are mostly cellular
organelles like mitochondria. Absorption mainly depends on the water content in
biotissues. To find optical parameters of biotissues the algorithms for solving the
inverse problem was described.

4.1 Absorption and scattering

The absorption of a light by tissue is strongly wavelength dependent. Various
absorbing molecules affects different regions of spectra. The energy absorbed by
chromophores is mainly converted to heat. However, it can be also converted to
fluorescent light wave or used for a photochemical reaction.

Water concentration in skeletal muscle is approximately 75% and in fatty tis-
sue it is on average 30%. Water absorbs in the ultraviolet up to about 200nm
wavelength. Then the absorption is low and equals to even 0.0001mm−1. Above
600nm it start rising by reaching its peak by 950nm when its absorption domi-
nates over other chromophores in tissue.

Haemoglobin as the oxygen-carrier in the red blood cells absorbs the light in
visible wavelength region. It is the strongest chromophore in human tissue. The
concentration of haemoglobin is usually only of a few percent of volume. The
highest absorption peak of oxy-haemoglobin is localized at about 411nm. Two
others are visible at 542nm and 577nm. Deoxy-haemoglobin has its maximum
absorption at 433nm and another peak at 556nm. These spectral differences be-
tween haemoglobin molecules binding oxygen can be used to determine changes
in haemoglobin saturation.
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The 18% and 29% in the normal male and female body respectively is the
average percentage of adipose (fatty) tissue. It contains of approximately 70% of
lipids, which fat droplets consume most of the volume of the adipose cells. Its
absorption spectrum has its highest peak at about 930nm and lower at 760nm.
In visible wavelength region lipids report low absorbing properties.

Melanin is a dark pigment which gives the color to for example hair and
skin. Its absorbtion spectrum decreases exponentially with the wavelength and
does not show any local peaks. The measuremnt of melanin optical properies is
difficult, becasue it cannot be dissolved or extracted from skin without changing
its physical parameters.

For breast tissue it is assumed that only some chromophores influences the
absorbing spectrum. In such a case the total absorbtion coefficient was calcu-
lated using oxy- and deoxy-haemoglobin concentrations of 20 µM and 10 µM
respectively, a fat concentration of 30% and water 70%. It turned out that the
absorption is quite low between 600nm and 1300nm. For shorter wavelengths the
influence of haemoglibin is critical. On the other hand for higher wavelengths the
water decreases light penetration. The optical window described above can be
used during medial diagnosis and treatment, since it enables reaching structures
deep below the tissue surface.

The scattering properies of tissue are not so wavelength dependent as it was in
case of absorbtion. The scattering coefficient decreases exponentially and reports
no sharp features. The scattering is strongly forward directed, non isotrapic and
typical value of anisotropy g for mammalian tissues is ranging between 0.7-0.95.
Since the medical diagnosis is using mainly the optical window, it is assumed that
the anisotropy factor is equal to 0.9 and the scattering coefficient to 1mm−1.

From the microscopic point of view the absorption is described by biomolecules
in the tissue, while scattering by larger microscopic structures with different re-
fractive index. The average refractive index of most tissues ranges between 1.38-
1.41 at 633nm wavelength, with 1% change per 100nm in the visible light band. To
the main scatterers belong the mitochondria, the cell membrane, the cell nucleus,
lysosomes and Golgi apparatus. It was proven that most of the scattering takes
place inside the cell rather than at the cell membrane. Mitochondria are respon-
sible for isotropic scattering. The influence of nucleus on large angle scattreing
and cell membrane on small angle scattering was determined in [32].

4.2 The fluorescence phenomenon

The physical phenomenon that changes light initial wavelength and happens in
many substances including biological tissues is called fluorescence. The molecules
that absorb the light and release the excess of energy by emitting light of different
wavelength are called fluorophores. Two kind of energy levels can be recognized:
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• singlet state (S) - if electron spins are paired
• triplet state (T) - if electron spins are unpaired

Singlet state is the ground state of most molecules - see figure 4.2. The incom-
ing photon can be absorbed if its energy corresponds to the energy difference
between an excited and the ground state of the molecule. Since the absorption
bands are very broad and overlap each other due to the strong interactions be-
tween molecules, the photon energy can be used for excitation to the higher
energy level of a molecule. During absorption of a photon, the molecule is excited
from the ground state S0 to vibrational level of S1. Then it is quickly relaxed to
zero vibrational state from which it can further return to initial state by gener-
ating heat (internal conversion) or emitting photon (fluorescence). As long as the
relaxation ends in any vibrational level in S0, the emitted spectra will be not a
sharp peak at a distinct wavelength, but will be broadly distributed. Moreover,
because some energy was lost during that process, the fluorescence will have lower
energy and longer wavelength than initial photon. It is also possible that through
intersystem crossing the molecule will be converted to the triplet state T1. Fi-
nally, it can be moved to the ground state again by the internal conversion or a
photon emission (phosphorescence). Also other processes like permanent struc-
ture change or chemical reaction of the excited molecule with the neighborhood
can occur [16].

Figure 4.2: Schematic diagram of processes occurring during fluorescence

Human skin also contains natural fluorophores such as NADH, tryptophan
(aromatic amino acid), collagen and elastin (structural proteins). This kind of flu-
orescence, which does not involve adding external fluorophores, is called autofluorescence.
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Differences in tissue structure between healthy and malignant tissue create a basis
for the diagnostic of possible demarcation in neoplastic tissue. This optical be-
havior makes the fluorescence spectroscopy a valuable tool to study the condition
of biological tissues [41]. Generally, tissue internal fluorophores undergo fluores-
cent phenomenon for the visible wavelength band and emits light in the UV and
near-UV region. Comparing tumor tissue with its healthy surrounding resulted in
higher intensity of autofluorescence for normal tissue [15]. The endogenous tissue
fluorophores can be divided into following groups involving:

• cellular energy metabolism
• structural proteins

Collagen and elastin contribute significantly to the fluorescence signal excited
by 337nm wavelength light. They are fibrous proteins present mainly in connective
tissue. There are several different types of collagen. Each of them has slightly
different optical properties and fluorescence maxima. Collagen I - composing 90%
of collagen in the body - is available in skin and internal organs. For excitation
340nm it has its maximum fluorescence peak at 395nm. Collagn of type IV occurs
in the basement of epithelial tissues membrane. On the other side elastin excited
with 337nm wavelength light fluoresces at 410nm.

NADH contributes significantly to the metabolism of a cell. About 80% of
NADH is located in the cells mitochondria, while the rest is situated in cyto-sol.
For the wavelength 350nm it has its maximum peak at 460nm. The oxidized form
of NADH does not show fluorescent properties when excited above 300nm.

In aqueous solution and excitation light equals 250nm, tryptophan emits pho-
tons of maximum intensity at 350nm. Its contribution to tissue fluorescence is
small when excited with light above 300nm. The amount of this amino acid can
be greater in premalignant states of a tissue than in normal tissue.

Flavins, lipofuscin and endogenous porphyrins are the other endogenous flu-
orophores in human tissue. [32]

The contrast between normal and malignant tissue can be further enhanced by
applying tumor selective drug. The diagnosis shouldn’t base only on the changes
in autofluorescence spectra, which result in overall intensity decrease in tissue
with cancer. The demarcation criterion can be improved utilizing a combination
of fluorescence from endogenous fluorophores and porphyrins accumulated in the
malignant cells [8]. Those substances have the property that their fluorescence
emission spectra is localized in red and near infrared wavelength region and be-
cause of that can easily distinguished from the normal blue-green autofluorescence
emission. To main tumor markers belong: hematoporphyrin derivatives (HpD),
meso-tetra-(hydroxyphenyl)-chlorin (MTHPC), pheophorbide-a, pthalocyanine,
benzoporphyrin derivative (BPD), hypercin and tin etiopurpurin (SnET2). In the
blue light wavelength region they show strong absorption characteristic. Generally
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they are administered orally, intravenously or topically and their accumulation
in the tumor is correlated with the vascularity of a tissue.

Another photosensitizing agent is the lutetium texaphyrin which is selectively
phototoxic to tumors and show absorption and fluorescence property in the near
infrared spectral region.

The other photosensitizers working as contrast agents has to fulfill safety and
toxicity criteria. This group of exogenous fluorophores contains Nile blue and its
derivatives, caretenoporphyrins, fluorescin angiography and indocyanine green
and are in routine clinical use. The latter two substances have fluorescence and
absorption characteristic in VIS and NIR spectral bands, respectively [7].

Protoporphyrin IX (PpIX) is a fluorescent tumor marker that naturally ex-
ist in the body. As the intermediate product of haem-cycle, an elevated PpIX
concentration can be obtained by administration of 5-aminolevulinic acid (ALA)
[15].

Figure 4.3: Mechanism of 5-ALA induced protoporphyrin IX fluorescence [52].

As the result, tumor cells are able to synthesise more PpIX than non-malignant
tissue, since they contain different amount of enzymes regulating the haem cycle
[5]. PpIX is widely used in PDT and excited at 405nm, it emits a fluorescence
spectra in red light region with peaks at 635nm and 705nm. For diagnostic pur-
pose much lower doses are necessary than during therapeutic procedures .

It needs to be stressed that the fluorescence spectra is strongly affected by
tissue optical properties and especially by those absorbers which influence excita-
tion or fluorescence light. They will decrease the overall intensity, but the shape
of the spectra will stay rather unchanged since the absorption coefficient is lower
in the visible region and higher for the light in violet and near-UV region [15].

The investigation performed for human colon tissue showed which fluorophore
dominates in fluorescent spectrum. They were preseted for three different phases
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of cancerogenesis.

Normal Hyperplasia Adenoma

Epithelial
cells no fluorescence no fluorescence

fluorescence
(probably
NADH)

Lamina
propria collagen signal increased col-

lagen signal
decreased colla-
gen signal

Submucosa collagen signal decreased col-
lagen signal

decreased col-
lagen signal
and increased
haemoglobin
absorption

Table 4.1: Reasons for different fluorescence spectra [32]

That observation can be utilized in the process of early cancer detection.
It was noticed that normal and pathologic structure of the tissue has different
fluorescence properties. In the colon tissue the mucosa is the top layer consisting
of tubular crypts which are surrounded by a connective tissue structure mostly
composed of collagen. Under the mucosa, approximately 450 µm below the tissue
surface there is the submucosa, a layer of connective tissue also mainly composed
of collagen. However in dysplastic tissue, the crypts are irregular in shape and
size and become disorganized. Dysplastic colon tissue proves similar morphology
to that of normal colon (flat dysplasia), or it can be characterized by additional
gross morphological changes (adenomatous polyp) [53].

Since each fluorescent molecule has different optical properties, its reaction
to the excitation light can vary. When light of specific wavelength is applied, the
fluorophore does not emit light at another frequency, but the resulting spectra is
widely distributed over the large region. Moreover, the emitted light cannot have
lower frequency than the initial impulse beam. If the excitation light contains
peaks at different wavelengths then the contribution from each wavelength needs
to be calculated. For more complicated spectral shapes the superposition principle
can be useful for calculating the final emission spectra. From the macroscopic
point of view it is necessary to find such a transformation that easily produces
the fluorescence spectrum for any given light interacting with molecule. For this
reason excitation-emission matrix (EEM) can be very helpful.

A fluorescence EEM is a two-dimensional contour plot, where each contour
identifies points of equal fluorescence intensity. It represents the fluorescence in-
tensities as a function of excitation and emission wavelengths [7]. Excitation-
emission matrix uniquely identifies how each fluorophore interacts with photon
and as the outcome what light will be produced. It describes how the emission
spectra changes for different light excitation spectrum.
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Figure 4.4: Example of EEM of a molecule. The highest values of intensity are
drawn in red color, the lowest in violet [4]

On the other hand the investigation and generation of EEM can be impor-
tant to indicate the differences between normal and tissue with cancer. Ranging
excitation wavelengths from 260 to 540 nm it was possible to obtain autofluo-
rescence and emission spectra of investigated areas for both cases. It resulted in
a three-dimensional matrices describing optical properties and concentration of
endogenous fluorophores. In [54], emission spectra of healthy and adenomatous
tissues at given excitation wavelengths were compared. The appearance of fluores-
cence peaks in both normal and cancerous tissues was explained by the existence
of various fluorophores that generates signal. It proves that laserinduced autoflu-
orescence is able to distinguish between normal and cancerous colonic tissues.
Low concentration of NAD(P)H and FAD and big influence of amino acids and
protoporphyrin IX define the malignant colonic tissues. It turned out that 340,
380, 460 and 540 nm are the best excitation wavelengths for diagnosis of colonic
cancer.

The emission-excitation values of mammalian cells outside the range of in-
trinsic protein fluorescence were measured and investigated in [55]. The obtained
effect of fluorescence was most noticeable in discrete cytoplasmic vesicles. The
fluorescence was low in freshly prepared cultures, growing to its maximum at
increased cell numbers. The spectra of whole cells was compared with spectra of
known cellular metabolites. It turned out that the fluorescence probably origi-
nates from NADH, riboflavin, flavin coenzymes and flavoproteins bound in the
mitochondria. In [56] Monte Carlo simulation and diffusion theory allowed to
compute spatially resolved fluorescence and excitation and emission reflectance.
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Using a point source model of fluorescence, the fluorophore concentration at the
given excitation wavelength was recovered with a accuracy of 11.4%. Obtained
results were consistent with published values.

4.3 Simplified model

The seven layer skin optical model was presented in [49]. All optical parameters
were registered for excitation light equal 520nm. For the simplicity of simulation,
the model will be not differentiated between various wavelengths. It was assumed
that all parameters are constant and independent from the light spectrum. The
composition of human skin and especially the epidermis was introduced also in
[57]. The information about biological dosimetry of the skin in vivo i.e. UVR
dose for a given solar wavelength at different tissue layer, is very valuable for skin
cancer risk assessment.

Layer Thickness
d [µm]

Refractive
index n ua[cm−1] us[cm−1] g

Stratum corneum 10 1.45 no data no data no
data

Epidermis 80 1.4 40 570 0.77
Papillary dermis 100 1.4 5 500 0.77
Superficial vascu-
lar plexus 80 1.39 24.5 500 0.79

Reticular dermis 1500 1.4 5 500 0.77
Deep vascular
plexus 70 1.34 181 500 0.96

Dermis 160 1.4 5 500 0.77

Table 4.2: Tissue parameters for seven layer skin for 520nm

Similar model of human skin tissue was presented in [58]. Absorption co-
efficients of oxy- and deoxy-hemoglobin, water and other parts of tissue were
calculated. All those factors contributed to compute total diffuse reflectance for
different wavelengths. The simulation outcome was compared with in vivo experi-
mental results and showed they are in good agreement with each other. Moreover,
it was noted that basing on reflectance spectra, the model fitting analysis using
multi-linear regression, could give quantitative amount of chromophores in human
skin.

Because of the fact that the fluorescence phenomenon plays important role
in tissue reflectance spectra, the light is not only absorbed and scattered under
the surface of the object, but also its spectrum changes relatively to material the
tissue consists of. In order to implement this behavior in the system an additional
parameter was introduced:

• d - the probability of interaction a photon sample with a fluorophore
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When that interaction occurs, a photon changes its optical properties accord-
ing to special matrix transformations. The excitation-emission matrix of main
natural fluorophores in human skin and exogenous fluorophores that enhance the
demarcation between tumor and healthy skin was presented in figure 4.5.

The simplest possible model of human tissue is proposed. It consists of in-
finitely long and wide single-layered structure characterized by the following pa-
rameters, that was calculated as the average of tissue parameters for 520nm:

nair nlayer ua[cm−1] us[cm−1] g dcol dpor
1 1.4 43 511 0.8 0.2 0.1

Table 4.3: Simplified tissue model and parameters

It means that the optical parameters of tissue like absorbing and scattering
coefficient or anisotropy factor are constant throughout the whole tissue profile.

The collagen is the main fluorophore that builds reticular dermis. Additionally
to simulate skin cancer and increase the contrast between healthy and neoplastic
skin, it was assumed that in the middle of the tissue is localized a small tumor
where protoporphyrin IX is concentrated.

All parameters describing probability of photon interaction (dcol, dpor) were
only a good guess, they are not proven by any laboratory investigations. However,
those assumption were good enough to simulate light propagation in human skin
tissue.

Extracting the intrinsic fluorescence properties of tissue is the main goal of
[59]. Monte-Carlo-based model was developed to obtain fluorescence spectra from
combined fluorescence and diffuse reflectance spectra i.e. independently from ab-
sorption and scattering properties of investigated medium. The proposed model
was verified using 11 phantom configurations containing blood as an absorber,
polystyrene as a scatterer and furan-2 as a fluorophore. The intrinsic fluorescence
spectra and intrinsic fluorophore intensity with an error not greater than 10%
were retrieved. By applying Monte Carlo simulations in [60], a liquid phantom
quantitative, measurements of fluorochrome concentrations were also possible to
calculate. A single optical fiber that transports excitation light and records fluo-
rescence seemed to be sufficient for most applications. It is additionally insensitive
to different concentrations of absorbers and scatterers within a tissue. Also using
Monte Carlo model it was possible in [61] to extract the influence of NADH and
collagen fluorescence, and scattering and absorption properties in cervical tis-
sue. The simulation showed the correlation with clinical data and indicated that
normal and dysplastic tissue differs mainly by increased NADH and decreased
collagen fluorescence.

In this publication [62], an eight-layer model of human skin was used. Optical
properties of tissue were considered as a function of wavelength (absorption and
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(a) EEM of Collagen I (b) EEM of Elastin

(c) EEM of NADH (d) EEM of tryptophan

(e) EEM of Protoporphyrin IX (f) EEM of MTHPC

Figure 4.5: Excitation-emission matrices of common fluorophores [4]
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scattering). Additionally microsphere fluorescent materials were implanted under
the tissue surface. Their excitation and emission spectrum were represented by six
discrete data points. The simulations were performed to predict the distribution
of excitation and fluorescent photons. Photons escaping the tissue were scored
in a positional matrix together with their respective wavelengths and weights. It
turned out that about 7% of input light is diffusely reflected. Moreover, about
20% of the input light that escaped the tissue surface was converted to fluores-
cence. Simulations indicated that the quantitative analysis of emitted photons is
possible. In [63] emission of fluorescence was presented as a function of the depth
of fluorescence generation and radial escape position. It turned out that deeper
layers also affect fluorescence, because only 35–40% of the remitted fluorescence
was caused by the photons initially directed downward. Obtained results were
compared with a heuristic model. Another investigation simulated signal from a
fluorophore submerged inside a tissue and tried to calculate fluorescence intensity
[64]. For fluorophore located in the tissue at various depths the relative difference
of signal was found to be at most 30%.





5 Light propagation in turbid media

There are two different theories describing the wave propagation in random me-
dia. The multiple scattering or analytical theory utilizes e.g. Maxwell equations to
obtain result for single particle tracking. It considers interactions between many
particles and calculate the statistical average. Differential equations can also in-
clude such fundamental effects like diffraction, interference or multiple scattering.
Unfortunately, since skin is not uniform in shape, it consists many layers, has hair
follicles and shows anisotropic properties, it cannot be used to obtain reasonable
solutions.

The radiative or transport theory, however, concentrates on the propagation
of intensities. It starts with the heuristic observations that results in differen-
tial equation similar to formulas describing kinetic theory of gases (Boltzmann
equation) or neutron transport theory. The methods needs only several parame-
ters: average absorption µa and scattering µs coefficients and phase function. All
of these values can be determined experimentally. This method was found very
useful for light propagation in tissue.

A short description of the radiative transport equation as a basis to all light
propagation models was introduced in [65]. Different approaches (direct, indi-
rect and iterative) for determination of optical properties were presented. The
Kubelka-Munk coefficients and the transport coefficients as the example of non
iterative ways to calculate tissue parameters were compared. It was suggested
that iterative procedures like diffusion theory, adding-doubling models and Monte
Carlo are too complicated to solve the transport equations.

The basic quantity in the transport equation is the radiance L(r, s) also called
the intensity. It is the average power flux density at position r from a specific
direction s per unit solid angle. It has the unit W · cm−2 · sr−1. The radiation
is isotropic, if it is independent of direction s. In such a case the power radiated
from the surface can be calculated from the Lambert’s cosine law. Since the tissue
exhibit anisotropic properties the phase function which describes the amount of
light scattered from direction s into the direction s′ will depend on anisotropy
factor g. [16]

The transport equation can be defined as:

(s · ∇) = −µtL(r, s) + µs

∫
4π
p(s, s′)L(r, s)dω′, (5.1)

where:
dω′ - differential solid angle in the direction s′,
µt - is the sum of absorption and scattering coefficients (µa + µs),
p(s, s′) - phase function.

31
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The equation describes the rate of change of the intensity at point r in the
direction s. It directly result from the energy conservation principle and can be
decomposed into the intensity lost due to absorption and scattering and the in-
tensity gained due to scattering from all directions into the direction s. Moreover,
the light emission from the whole volume due to fluorescence phenomenon can
additionally increase the radiance L(r, s).

The transport equation only holds true if the following assumptions are sat-
isfied [14]:

• the medium is homogeneous,
• each particle is independent of all others,
• scattering by all particles can be described by single function (phase func-

tion),
• the light is incident for longer than a few nanoseconds (steady state distri-

bution),
• there are no light sources in the medium.

5.1 Monte Carlo simulation

For the first time a Monte Carlo technique was referred by N. Metropolis and
S. Ulam in 1949. It builds a stochastic model to determine a value of physical
quantity using an expected value of random variable. This value is calculated by
averaging the number of independent samples representing the random variable.
In order to do that random numbers must follow the distribution of the estimated
variable [50].

In Monte Carlo simulation light is treated as a photon bundle, which does
not influence other molecules in the medium. Once entered the tissue, the photon
is moved a given distance where it may be absorbed, scattered, reflected inter-
nally or out of the tissue. To generate new scattering angles inside the object,
phase function may be utilized. The photon is repetitively moved until it either
is completely absorbed or escapes from the tissue. If the photon is absorbed, the
position of that incident is recorded. If the photon escapes from the tissue, the
transmission or reflection of the photon is stored. This procedure is repeated until
the desired number of photons have been traced and recorded. As the number of
photons propagated approaches infinity, the overall reflection, transmission, and
absorption profiles approach real values. This data can be later compared with
medical investigations for the tissue with similar optical properties [66].

Its propagation is divided into small movements calculated in the iterative
way. At each step the history of absorbing and scattering processes are recored.
The method describes local rules of light propagation expressed as probability
distribution functions. Thousands of different trajectories are necessary to com-
pute in order to obtain the desired accuracy of the solution. It is required to
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trace (∼ 106−109) photons to get the relative error less than a percent. Since the
accuracy is proportional to 1√

N
where N is the number of propagated photons,

the simulation needs large amount of computational time [14].
Monte Carlo simulation does not treat a photon as wave phenomenon. Such

properties as phase and polarization are simply ignored. Since light is scattered
and absorbed many times by tissue, features mentioned above get quickly random-
ized. The simulation concentrates on radiant energy transport in turbid medium
and is based on macroscopic optical properties that are equally distributed over
small unit of volume [50].

5.1.1 Launching a photon

Each photon can be characterized by three quantities. The current position in
Cartesian coordinate system is specified by x, y and z. The direction of photon
propagation is described by normalized vector r or by directional cosines:

µx = r · x′

µy = r · y′

µz = r · z′
(5.2)

where x′, y′ and z′ are the unit vectors along each axis. Each photon is additionally
initialized with weight equal unity, which represents the energy possessed by
packet.

This technique enables tracking many trajectories at the same time. Every
photon starts the simulation from the light source localized above the tissue. If
it is a laser beam, each packet will be assigned with the same initial direction
r. For point light sources the photon initial direction will be equally distributed
over the whole hemisphere around the light origin.

When the photon hits the surface it can be reflected or transmitted inside the
tissue. The Snell’s law indicates the relationship between the angle of incidence
αi and the angle of transmission αi.

sin(αi)
sin(αt)

= nt
ni
, (5.3)

where ni and nt are the refractive indices of the medium from which the photon
incidents and to which it is transmitted, respectively. αi can be calculated as
cos−1µz.

The probability that a photon will be reflected can be defined by the Fresnel
formula:

R(αi) = 1
2

[
sin2(αi − αt)
sin2(αi + αt)

+ tg2(αi − αt)
tg2(αi + αt)

]
, (5.4)
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(a) Photon relected or transmitted (b) Photon internally reflected or escaped

Figure 5.1: Light interaction at tissue boundary

In order to determine whether the packet is reflected back or enters the tissue
it is necessary to generate a random number ζ1 and compare it with incident
reflectance R(αi):

• For R(αi) ≥ ζ1 - the photon is internally reflected and its direction must
be updated by simple reflection µ′z = −µz,
• For R(αi) < ζ1 - the photon escapes the tissue. In this case all photon pa-
rameters are internally stored, but since it moves away, it is not propagated
any more and is terminated.

Since the photon undergoes the interaction with a tissue, its weight needs to
be changed:

W ′ = W −WR(αi), (5.5)

The same situation can also occur inside a tissue at the boundary between
layers with different optical properties or at tissue/air interface when a photon
will be either internally reflected or will escape the tissue. In such a case its
parameters are stored in the simulation memory.

5.1.2 Moving a photon

In every iteration a photon located under a tissue surface is moved. Monte Carlo
simulation outlines two different methods for calculating the new photon position:
variable and fixed stepsize method. The latter approach is slow since the photon
must be propagated many times before it is either absorbed or scattered. The
total distance before absorption occurs is rather long, what is not acceptable for
highly scattering media.
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Variable stepsize method does not have such disadvantages. Monte Carlo algo-
rithm varies the distance ∆s the photon is moved at every iteration. It is defined
in such a way that after a movement either absorption or scattering event must
occur. Basing on a sampling of the probability distribution function for photon’s
free path s ∈ [0,∞), the stepsize ∆s can be calculated.

By definition, the interaction coefficient µt is the probability of interaction
per unit pathlength in the interval (s′, s′ + ds′):

µt = −dP{s ≥ s
′}

P{s ≥ s′}ds′
, (5.6)

After integrating:

d(ln(P{s ≥ s′})) = −µtds′, (5.7)

Finally integrating over s′ in the range (0,∆s) results in:

ln(P{s ≥ ∆s})− ln(P{s ≥ 0}) = −µt ·∆s+ µt · 0, (5.8)

Since it is assumed that P{s ≥ 0} = 1, the following equation is obtained:

P{s ≥ ∆s} = e−µt∆s, (5.9)

Or rearranging:

P{s < ∆s} = 1− e−µt∆s, (5.10)

Now, a uniformly distributed random number ζ2 can be assigned to cumulative
distribution function:

∆s = −ln(1− ζ2)
µt

, (5.11)

After substituting ζ3 = 1− ζ2 and µt = µa + µs:

∆s = −ln(ζ3)
µa + µs

, (5.12)

Since the stepsize was calculated the photon can be moved in a desired direc-
tion:

x′ = x+ µx∆s
y′ = y + µy∆s
z′ = z + µz∆s

(5.13)

Skin tissue consist of many layers with different optical properties. It can
happen that a photon experiences a movement from one to another layer before
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the interaction occurs. In such a case the sampling equation can be obtained from
5.12:

∑
i

µti∆si = −ln(ζ1), (5.14)

where:
i - the index of the layer the photon propagates,
µti - the interaction coefficient of the i-th layer,
∆si - the step size in the specific layer [16].

5.1.3 Photon absorption or scattering

After a movement a photon is either absorbed or scattered. The probability it
is absorbed can be defined as a ratio of absorption and interaction coefficients.
In order to determine which of the event occurred another random number is
necessary:

ζ4 <
µa

µa + µs
, (5.15)

where ζ4 is uniformly distributed between zero and one.
The photon is absorbed if the inequality 5.15 holds true, otherwise the photon

is scattered. The change in the photon weight due to attenuation is calculated in
the following way:

W ′ = W −W µa
µa + µs

, (5.16)

If the scattering event occurred two different angles need to be sampled sta-
tistically. The deflection angle is defined by the angle θ in the interval [0, π).
Basing on probability density function proposed by the Henyey and Greenstein
the following equation holds, that helps to calculate the deflection angle:

p(cos(θ)) = 1− g2

2(1 + g2 − 2gcosθ)3/2 (5.17)

where the anisotropy g is defined in the interval [−1, 1].
A value of zero specifies isotropic scattering and the value near one a very for-

ward directed scattering. It was confirmed experimentally that Henyey-Greenstein
phase function can be applied for tissues very well in terms of scattering. The
value of anisotropy in the visible spectrum is often equal to ∼ 0.9.

The angular dependence of scattering in human dermis was investigated in
[67]. A goniometric apparatus and HeNe laser beam was used together with tissue
samples of various thicknesses. They presented the reflected and transmitted light
as a function of angles and specified the scattering phase function basing on
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Figure 5.2: Plots of Hanyey-Greenstein phase fuction for g equal to -0.35 and 0.67.
Negative anisotrophy value (solid line) describe phase function that primarily
scatter light back in the incident direction, and positive anisotrphy value (dashed
line) defines phase function that mainly scatter light forward [68]

Henyey-Greenstein approach. The computed average deflection angle was equal
to 35◦ for a scattering event and a total attenuation constant to 190−1.

The choice of cos(θ) can be expressed as a function of random number:

cos(θ) =


1
2g

[
1 + g2 −

(
1−g2

1−g+2gζ5

)2
]

for g 6= 0

2ζ5 − 1 for g = 0
(5.18)

The second angle describing the scattering event is the azimuthal angle which
is defined in the interval [0, 2π). This time the probability distribution function
is constant, so the angle is calculated by simple multiplication:

ψ = 2πζ6, (5.19)

Having both scattering angles (θ, ψ) calculated, the new direction of a photon
can be calculated by:

µ′x = sinθ√
1− µ2

z

(µxµzcosψ − µysinψ) + µxcosθ

µ′y = sinθ√
1− µ2

z

(µyµzcosψ − µxsinψ) + µycosθ

µ′z = −sinθcosψ
√

1− µ2
z + µzcosθ

(5.20)

If the angle is very close to the 90◦(|µz| > 0.99999), another formula should
be utilized:

µ′x = sinθcosψ

µ′y = sinθsinψ

µ′z = SIGN(µz)cosθ
(5.21)
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where SIGN(µz) returns 1 when µz is positive and -1 when negative.
In this way new direction of propagation was calculated and the photon can be

moved again by another ∆s. This process goes on until the photon is terminated.

Figure 5.3: Photon scattering - deflection and azimuthal angles

It is necessary to note that a photon undergoes interaction (absorption or
scattering) only at the end of the step.

5.1.4 Photon storing or termination

Photon originally launched from the light source can be terminated by reflection
or transmission out of a tissue. On the other side, the weight of the photon
propagating inside a medium is decremented during many iterations. If after
another photon attenuation the resulting weight is smaller than a given threshold
(likeWth = 0.0001) then there is no need to continue the photon movement, since
it does not contain any useful information. However, the photon cannot be easily
terminated, because still the energy conservation principle must be preserved. A
technique called Russian roulette provides the solution. It gives one chance in m
(e.g. m = 10) for a photon to survive with weight m ·W . Otherwise its energy is
set to zero and photon is terminated.

W =

mW if ζ7 ≤ 1/m
0 if ζ7 > 1/m

(5.22)

where ζ7 is uniformly distributed random number.
If photon survived and after many interactions reaches the air/tissue interface

and escaped then its weight, exit angle and position are stored in the memory.
This process continues by launching another light packet until desired number of
photons is collected on the tissue surface. In order to obtain total diffuse reflection
with acceptable precision for different light source shape, at least 100000 photons
need to be stored. For computer graphic application minimum one million photons
is necessary.

5.2 Photon mapping algorithm

A Monte Carlo model of light transport was chosen to simulate the photon distri-
bution and interaction with turbid media. It is very well tailored for quantitative
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analysis of light propagation. However, the default implementation of this tech-
nique describes the fluorescence phenomenon in very limited way. In order to
include the photon spectral properties to the Monte Carlo model and illustrate
graphically obtained results a particle-tracking algorithm called Photon Mapping
was applied.

The Photon Map algorithm was developed in 1993-1994. First papers about
this method were published in 1995. This is a comprehensive, a two-pass algorithm
that is able to simulate most of global illuminations effects like diffuse inter-
reflections, caustic and participating media in complex scenes. It has the same
flexibility as normal Monte Carlo ray tracing method, but computational time
is reduced. It assumes constructing paths from the light source and store at
each vertex the amount of incident energy represented by the photon. If required
number of samples were tracked and collected, this data is used at rendering time
to estimate final intensity and color of the queried position. The algorithm tries to
separate the representation of a scene from its geometry and collects illumination
information in an specially adjusted data structure [69].

Compared to other method of global illumination Photon Maps have many
advantages. Photon tracing step is independent from the computing measurement
part, recorded samples can be reused to generate images from different points of
view. It is relatively fast even for complex scenes and handles non-diffuse surfaces
and caustic effects. Low frequency noise, efficiency, quality of final images and
reasonable memory usage for storing the photons, make this algorithm one of the
most important in computer graphics. Normal Monte Carlo ray tracing methods
such as path tracing, bidirectional path tracing and Metropolis are out of date
[70].

The photon map algorithm has some desirable properties that makes it useful
in global illumination computations. It is relatively fast and simple to parallelize.
It can handle a mixture of specular, glossy, and diffuse reflection and transmission
including caustics effect. It can handle very complex scenes, since the photon map
is independent of surface representation [71].

5.2.1 Pass I - Photon emission

The point of photon tracing is to calculate indirect illumination on diffuse sur-
faces. This goal is reached by emitting particles of energy called photons from
the light sources, tracing them through the scene, and storing them at diffuse
surfaces. Each photon packet has assigned a spectrum with energy proportional
to the spectrum of the light source. That radiance of a photon, described by its
color spectrum, expresses its weight W . It is something that was not covered by
Monte Carlo method. Instead of assigning only a single value representing en-
ergy of a photon, additionally its whole spectrum described by 21 discrete values
specifying wavelengths from 400nm to 720nm with stepsize 16nm was initialized.
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The distribution of the photons should correspond to distribution of the emissive
power of the light source. In order to shoot the photons one has to know what
type of light source is involved:
• point light source - photons are emitted in uniformly distributed random

directions from the point,
• directional light source - all photons are emitted in the same direction, but

from origin outside the scene,
• area light source - photons are emitted from random positions on the sur-

face, with directions limited to hemisphere. The emission directions are
taken from cosine distribution. Moreover, they can be restricted to the
maximal angle they cannot exceed.

The artifacts related to the variation of the indirect illumination through the
image can be visible and arise to the serious problem. To reduce that variation
during rendering, it is desirable to emit the photons as evenly as possible, with
the uniform allocation. In this way also the effect of flickering is eliminated. This
is especially visible when few images are generated one after another of the same
scene, but photons are distributed from the light source in the random way.
Depending on complexity of the scene, the same parts of the objects will be illu-
minated in slightly different way. To get rid of those effects stratification of quasi
random sampling can be applied. In such a case, photons are evenly distributed
and ordered in repeatable manner. Radical inverse is one of the most simple
stratification methods. It bases on the idea that a positive integer value n can be
described in a base b with a sequence of digits dm...d2d1 uniquely determined by:

n =
∞∑
i=1

dib
i−1, (5.23)

The radical inverse function Φb in base b converts a nonnegative integer n by
reflecting these digits about the decimal point. As the result the floating-point
value in [0, 1) is obtained:

Φb(n) = 0.d1d2...dm, (5.24)

As the example van der Corput sequence is presented (base 2):

n dm...d2d1 Φ2(2)
1 1 0.1=1/2
2 10 0.01=1/4
3 11 0.11=3/4
4 100 0.001=1/8
5 101 0.101=5/8
... ... ...

Table 5.1: Calculation of van der Corput sequence
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In general case as the base of radical inverse function, one of the prime num-
bers is taken. It works perfectly also in a multidimensional case and ensures
high discrepancy [68]. In the scene with multiple light sources, photons should be
emitted from each light source separately. All photons have the same power, so
the only thing that distinguishes bright and dark light sources is the number of
photons emitted. Also the number of photons in the scene should be the same for
the scene containing single light source and for the scene with many light sources
(because each light take parts less in the overall illumination and fewer photons
need to be sent out) [70].

5.2.2 Pass I - Photon tracing

After the emission, the photon is traced through the scene using photon tracing.
Each photon has assigned its position, direction and color, which is generally
described by RGB values or spectrum (as it will be described later). It is an
iterative procedure of finding an intersection point of particle path with first
object in that direction. During a contact with a surface a packet deposits some
energy, before it is scattered in new direction. That information is stored in
photon map, which in the next pass will be used in rendering process. The main
advantage when computing an estimate of a given measurement is that, only
once samples are generated and traced through the scene. They can be reused to
compute the outcome for different scene conditions and camera positions.

There are three different outcomes as the result of hitting the object by the
photon. It can be reflected, absorbed or transmitted. The choice depends on
the Russian roulette technique, where random variable decides what interaction
occurred. The direction of the outgoing photons is described by the material
of the object the photon has hit - bidirectional scattering distribution function
(BSDF). It is a mathematical description of light scattering properties of a surface
[72]. Reflection follows the model of four different distributions: diffuse, glossy
specular, perfect specular and retro-reflective. Most real objects scatters light in
the way that is a mixture of those types. Diffuse surfaces reflect light equally in
all direction. There is no physical example of such a material, but very similar
properties exhibit matte paint and chalkboard. Glossy specular objects scatter
light in a set of reflected directions, what is perceived as blurry reflection of other
objects. Plastic or high-gloss paint can be treated as glossy specular surfaces.
Perfect specular surfaces like mirror or glass scatter light in only one outgoing
direction. Finally, retro-reflective objects reflects light mostly back to the incident
direction. As an example velvet and Earth’s moon can be mentioned.

A photon that arrived at the object carries the history of its interactions.
Depending on their types it participates in several types of object illuminations:
• direct illumination - ray of the light that hit the object directly without
being scattered previously,
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(a) Diffuse (b) Glossy specular

(c) Perfect specular (d) Retro-reflection specular

Figure 5.4: Different types of light reflection

• caustic illumination - ray of the light that intersected a nonspecular surface
after being reflected or transmitted by specular surfaces,
• indirect illumination - ray of the light that undergoes all other kind of
interactions.

On figure 5.5 some examples of typical photon paths were presented. Two first
paths generates caustic illumination, the last one indirect illumination:

• a - specular reflection, 2 diffuse reflections and absorption
• b - 2 specular transmissions followed by absorption
• c - 2 diffuse reflections and final absorption

Each intersection point contains the information about incident illumination
and weight, so that it is well know from which direction a packet arrived. Addi-
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Figure 5.5: Photon rays in the scene. Two balls are situated in the box, right one
is made of glass, another one is made of metal.

tionally photons are stored only at nonspecular objects, since particles collected
on specular surfaces would not give any useful information during rendering [68].

5.2.3 Pass I - Photon storing

Photons are only stored when they hit diffuse surface. It does not make any
sense to store photons for specular surfaces, because the probability of finding a
photon that matches the specular direction is equal to zero, so in this way it is
not possible to visualize e.g. mirror effects. For this situation standard ray tracing
is helpful [70].

Structure that contains all photons is called Photon Map. Each photon can
be stored more than once depending on number of interactions along the photon
path. A photon map is a data structure, usually a balanced kd-tree, created to
store information about photon hits. Each node of the kd-tree contains the data
about the coordinates of the hit point (x, y, z), color spectrum, incident direction
of the photon, and other important information. Interactions can happen not only
at object surfaces, volumes also take part in the light transport. This is often the
case when in the scene participating media occurs, like candle smoke or a fog.
The photons that hit participating media are stored in another structure called
volumetric photon map.

Depending on the place where the photon undergoes the interaction in the
scene, surface and volumetric photon map are created. Surface photon map for
photons located only on the surface of the object, volumetric photon map for
photons inside an object or located in participating media [69].

It is efficient to create even three photon maps. Each of them will be responsi-
ble for another illumination effect. Each of the photon maps is created separately
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in another photon tracing step:
• caustic photon map - contains photons that hit at least one specular surface

before being absorbed,
• global photon map - used for illumination of all diffuse surfaces,
• volumetric photon map - handles participating media (inside and outside

objects).

In literature volumetric photon mapping was used to simulate light propaga-
tion in smoke [73] and multi-scattering in human hairs [74]. Some optimization
methods were presented in [75].

It is profitable to store caustic photons in another structure, because in order
to obtain high quality of the image with this phenomenon, generally more photons
have to be traced than for example global illumination.

If the photon enters a medium like a fog, smoke or human tissue then it is not
stored in the photon map directly at the boundary. The packet travels through
the medium until it interacts with surrounding and changes its current direction.
Every time the scattering event occurs the photon is stored in volumetric photon
map and continues the propagation through the scene. The procedure is repeated
until it leaves the medium or hit the diffuse object and is stored in surface (global)
photon map.

Photons are only created during the first pass, in the second pass called ren-
dering they are used to calculate estimates of the incoming flux and the reflected
radiance at many different points in the whole scene. In order to make those
computations correctly it is necessary to find the nearest photon in the Photon
Map. This operation is done very often so it is important to invent a good way
for representing Photon Map, so that locating the nearest photons can be done
in the fastest possible way. The data structure has to be compact so that the
usage of memory is small and fast access to each record is ensured. It should also
allow fast searching of photons and handle non-uniform distributions. A natural
choice of data structure that fulfills all the requirements is a kd-tree. Since the
tree is created only once for a given scene and used many times during rendering
it is natural to consider balancing of the tree. The time needed to find a photon
in balanced kd-tree has the worst time performance of O(logN), where N is the
number of records allocated in the tree. Another advantage of this structure is
the property that a balanced kd-tree can be represented using heap-like model,
where element 1 is the root of the tree, and the element i has element 2i as left
child and element 2i+1 as right child. When the large number of photons is used,
this leads to significant savings in memory.

In order to balance a kd-tree, the splitting dimension has to be taken into
account. This is the only one difference between balancing kd-tree and normal,
binary tree. The algorithm starts with choosing a splitting dimension of a set.
After that the median of the points in that dimension has to be found. In other
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(a) Step 1 (b) Step 2

(c) Step 3 (d) Step 4

Figure 5.6: The process of generating balanced kd-tree

words the set is represented by the root node of the tree but the left and right
subtrees are created from the two sets divided by the median point. The dis-
tribution of points within the set decides how to select the splitting dimension.
The most popular criterion is the variance or the maximum distance between the
points. It is efficient to choose the largest maximum distance between the points
as the splitting dimension. The time complexity of the balancing algorithm is
O(NlogN).

The most important feature of the photon map method is the capability to
calculate the radiance estimates at any non-specular (diffuse) surface point in
any given direction. Photon map can be treated as a description of the incoming
flux. This information has to be integrated to compute the radiance:

Lr(x, ω) =
∫

Ωx
fr(x, ω, ωi)Li(x, ω)cosθidωi, (5.25)

where:
Lr - the reflected radiance at x in direction,
fr - the BRDF (bidirectional reflectance distribution function) at x,
Ωx - the (hemi)sphere of incoming directions,
Li - the incoming radiance.
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Because the photon map provides information about the incoming flux the
formula above can be rewritten to:

Lr(x, ω) =
∫

Ωx
fr(x, ω, ωi)

d2Φi(x, ωi)
dAi

, (5.26)

Using the photon map and locating the n photons that have the shortest
distance to x, the incoming flux Φi can be approximated.

Finally, by estimation of the integral, the following formula was obtained:

Lr(x, ω) ≈
n∑
i=1

fr(x, ω, ωi)∆Φi

πr2 , (5.27)

The accuracy depends on the number of photons stored in the photon map
and used in the formula. To find the nearest photons a disc is used. It can happen
that wrong photons will be taken into account for radiance computation. This
effect will be visible on sharp edges of the objects and in the corners. To get rid
of that effect additional filtering is needed. The main idea of filtering is to find
photons that are close to the point of interests x and increase their weight. Since
the photons are stored at surfaces that are two-dimensional, a 2d-filter which
is normalized over the region defined by the photons should be considered. The
most popular are 2 filters:

• the cone filter - basing on the distance dp between x and the photon p a
weight ωpc is assigned to each photon according to the formula:

ωpc = 1− dp
kr
, (5.28)

where:
k ≥ 1 - a filter constant,
r - the maximum distance.

• the Gaussian filter - uses the assumption about locally flat surfaces. It is
simple, image based Gaussian filter.

ωpg = α

1− 1− e−β
d2
p

2r2

1− e−β

 , (5.29)

where:
dp -the distance between photon p and x,
α and β - specific filter constants.

To obtain a good performance of the photon map algorithm it is critical to
efficiently find the nearest photons. Normally, for a given scene, the number of
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photon map queries can be very large. The search algorithm is a simple extension
of typical search functions for binary trees. It is connected to range searching
where kd-trees are commonly used because of good performance and their optimal
storage. The procedure that finds the nearest neighbors of the query point begins
at the root of the kd-tree. It goes down the tree and adds photons to a list if they
are not further away than a certain distance. In order to find n nearest neighbors
the list is sorted. The photon that is outside the given distance can be removed
if the list is full and a new, closer photon was found. If it is the case, in order
to adjust the range of the query, the distance d to the root element can be used.
Thus parts of kd-tree that are further away than d can be omitted. Instead of
normal distances a computation of squared distances can be used. Real distances
are not necessary, but calculations of square root are time consuming [70].

5.2.4 Pass II - Rendering

Having the photon map and being able to compute the radiance estimate from
it, rendering pass can be started. Photon map has very important feature - it
is view independent. It means that a single map has to be constructed for an
environment and the scene can be rendered from any desired view, by tracing
paths from the camera to the scene [76]. Photon map can be easily visualized by
computing the radiosity values at the vertices of the mesh.

The full global illumination approach can only be reached using distribution
ray tracing algorithm. The pixel radiance is calculated by averaging a number of
sample estimates. The sample is generated by tracing a ray from the camera eye
through each pixel of the image plane into the scene. In such a way a final image
is created.

The outgoing radiance Lo is the sum of the emitted Le and reflected radiance
Lr:

Lo(x, ω) = Le(x, ω) + Lr(x, ω), (5.30)

One of the ways for calculating Lr is Monte Carlo integration technique. How-
ever, this method is very costly in terms of rendering time. As already described
in previous chapter, more efficient algorithm can be found by using the knowledge
of the BRDF and the incoming radiance in combination with the photon map.
The BRDF can be divided into a sum of two components: a specular fr,s, and a
diffuse fr,d:

fr(x, ω, ωi) = fr,d(x, ω, ωi) + fr,d(x, ω, ωi), (5.31)

Additionally the incoming radiance can be determined using three compo-
nents:

Li(x, ω) = Li,l(x, ω) + Li,c(x, ω) + Li,d(x, ω), (5.32)
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where:

• Li,l(x, ω) - direct illumination - direct lighting coming from different light
sources

• Li,c(x, ω) - caustic - indirect illumination where the phenomenon of specular
reflection or transmission occurs.

• Li,d(x, ω) - indirect illumination - the situation where the photon has been
reflected diffusely at least once.

Finally we obtain the formula for reflected radiance:

Lr(x, ω) =∫
Ωx
fr(x, ω, ωi)Li(x, ω)cosθidωi+ Direct Illumination∫

Ωx
fr,s(x, ω, ωi)[Li,c(x, ω) + Li,d(x, ω)]cosθidωi+ Specular and glossy reflec-

tion∫
Ωx
fr,d(x, ω, ωi)Li,c(x, ω)cosθidωi+ Caustic∫

Ωx
fr,d(x, ω, ωi)Li,d(x, ω)cosθidωi+ Multiple diffuse reflections

(5.33)

Direct illumination is often the most significant term of the expression
and has to be computed precisely. It describes the contribution to the reflected
radiance by the direct illumination. Direct illumination is responsible for light
effects, to which the human eye is highly sensitive such as shadow edges. It
is quite simple to calculate the contribution from different light sources in ray
tracing based algorithms. At the query point shadow rays are sent towards the
light sources to check for possible intersection with objects. If shadow ray does not
hit any object, then the contribution from the light source is taken into account
in the integral computation, otherwise it is ignored.

Specular and glossy reflection is not calculated using photon map. The
integral is dominated by fr,s component, which has a narrow peak around the
mirror direction. In order to properly classify different directions within the nar-
row peak, a huge number of photons would be necessary. Typical Monte Carlo
ray tracing based on fr,s with importance sampling can be used instead of this
strategy. It is pretty efficient and relatively small number of sample rays has to
be traced for correct computations.

Caustic term is computed by using a radiance estimate from the caustic
photon map. Because the number of photons in caustic photon map is big, the
final effect will be of high quality. Caustic effects are never calculated using Monte
Carlo ray tracing. It would be very inefficient and result in the bad quality of
the final image. Approximate solution can be done using radiance estimate from
global photon map.
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Multiple diffuse reflections result in a very "soft" illumination. It repre-
sents incoming light that was reflected diffusely at least once after it left the
light source. As in the previous case the approximate solution can be evaluated
from the global photon map. The accurate result needs to be calculated using
Monte Carlo ray tracing that bases on BRDF with the estimate of the flux.
The information from the photon map is exploited to concentrate the samples
into the important directions only, instead of testing multiple bounces of indirect
illumination [70].

5.2.5 Pass II - Ray marching

Global illumination in scenes with participating media was introduced in [77]. The
algorithm is focused on bidirectional Monte Carlo ray tracing and uses photon
maps to reduce noise and increase efficiency. For this purpose a volume photon
map containing photons in participating media was used. It was also needed
to derive a new radiance estimate for photons in the volume photon map. This
method could effectively simulate effects such as multiple volume scattering, color
bleeding between volumes and surfaces, and volume caustics.

For the scenes with participating media, the radiance seen directly by the
observer Lo is the sum of the emitted Le and reflected radiance L′r through
participating media:

Lo(x, ω) = Le(x, ω) + L′r(x, ω), (5.34)

When a ray hits a given point on a surface, radiative transfer equation (RTE)
describes the process of light transport. It defines the radiance from direction ω
that reaches a camera located at position x. It is a sum of the incident illumination
of the intersected surface and the sum of in-scattered radiances along the ray
inside participating medium, which can be expressed as:

L′r(x, ω) ≈ Tr(x↔ xs)Lr(xs, ω) +
∫ s

0
Tr(x↔ xs)µs(xt)Li(x, ω)dt, (5.35)

where:
S - number of steps,
µt(xt) - extinction coefficient equal to µa+µs (assumed constant),
τ(x↔ xs) - optical thickness defined as

x∫
xs
µt(x)dx =

x∫
xs
µtdx = µt(xs − x) ,

Tr(x↔ xs) - transmittance defined as e−τ(x↔xs) ,
Lr(xs, ω) - illumination computed from ray tracing,
Li(xt, ω) - in-scattered radiance computed using photon maps.

The in-scattered radiance depends on radiance at xt from all directions ωt
can be described as:
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Figure 5.7: The total radiance is the sum of the radiance from the surface and
subsequent in-scattered radiance along the ray.

Li(xt, ω) =
∫

Ω4π
p(xt, ω, ωt)L(xt, ωt)dωt

=
∫

Ω4π
p(xt, ω, ωt)

d2Φi(xt, ωt)
µs(xt)dV

≈ 1
µs(xt)

n∑
p=1

p(xt, ωp, ωt)
∆Φp(xt, ωt,p)

4
3πr

3 , (5.36)

where:
∆Φp - power of photon p,
p(xt, ωp, ωt) - normalized phase function,
dV - the volume of the sphere containing the photons. It is worth to mention
that for surface photon map not sphere but disk area dA was used.
r - maximum radius where neighbor photons were found,
n - number of neighbor photons.

The presented idea is called Ray Marching, when at each step the contribution
of photons is calculated and summed up. However, during rendering numerical
integration is necessary:

L′r(x, ω) ≈ Tr(x↔ xs)Lr(xs, ω) +
s∑
t=0

Tr(x↔ xs)µs(xt)Li(xt, ω)∆x

≈ Tr(x↔ xs)Lr(xs, ω) +
s∑
t=0

Tr(x↔ xs)∆x
n∑
p=1

p(xt, ωp, ωt)
∆Φp(xt, ωp)

4
3πr

3 ,

(5.37)

where:
∆x - length of each segment (constant for every t).

Aggregation of density estimation along the ray requires searching for photons
within volumetric photon map. This double-iterative approach is quite expensive,



5.2. PHOTON MAPPING ALGORITHM 51

but still more efficient than simple path tracing technique. The ray marching
algorithm can be even more optimal if photons were not gathered twice as it is in
case of overlapping neighbor spheres or if the step size is small enough so that no
photon is omitted. Since such problems may occur quite often when performing
simulation, appropriate calibration is needed [75].

5.2.6 Tone mapping

The final part of rendering regards mapping of previously calculated radiosity
values to produce realistic images of captured scenes. It is not an easy task, since
the limitations presented by prints on photographic papers or display devices
enforce some knowledge about the object and environment. In order to properly
reflect the contrast in the scene, not only artistic but also technical experience is
needed. It is very difficult to create satisfactory images. The challenges found in
conventional photography are mainly the same as those faced during rendering
or capturing digital images. From the tone reproduction perspective the digital
images are "perfect" negatives, because the luminance data wasn’t lost due to the
film process restrictions [78].

Display devices, due to their internal structure, have limited dynamic range in
terms of producing realistic images. The problem of rendering artificial or natural
scenes is still observable in cinematography, photography, visualization and print-
ing. The best results are obtained when each situation is considered separately
and the image is tuned manually on the target display. The most challenging
task would be to replace the manual approach with a computational algorithm.
Many ideas are basing on the fact that the image reproduction procedure can
be described as an optimization problem. It tries to find the best fitting contrast
parameters in all ranges of a tone-scale.

A tone mapping algorithm should perform such a conversion so that the ob-
tained pixel values are in the range 0-255. The resulting tones displayed on par-
ticular devices of well defined capabilities are perceived as realistic and looks
convincing for the human. This problem is particularly important from the point
of recent research in display technologies (OLED, LCD etc.) and applications like
electronic books, home entertainment or mobile displays. Such crucial parame-
ters as contrast, peak brightness and black level, which additionally change due to
different light conditions (office light or sunlight). It means that the same image
displayed on different devices will not produce the expected appearance. In [79]
there was proposed a tone-mapping operator, which basing on the display device
characteristic is able to render the best images with the least possible visible
contrast distortions.

In the real world, it is very common for scenes to have radiance values in
range from 0.1 to 1000. It is five order of magnitude to display the brightest and
the darkest part of the environment. However, the human eye is more sensitive to
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changes in local contrast than to total brightness. It is very critical to find such
methods that compress those extra orders of magnitude. To the most popular
tone reproduction operators belong:

• maximum to white operator - it is one of the simplest possible tone mapping
operation. It iterates over all pixels in the image to find the one with the
highest value. This pixel is mapped to the maximum luminance value of
the display device. The rest of the pixels are proportionally scaled over
the whole range. One of its disadvantages concerns not basing on human
visual system at all. For example, exactly the same images are obtained for
initial and 100 times brighter light in the scene. Additionally, the another
drawback is more critical when rendering images using photon maps. Even
one pixel with very high luminance value can make the whole image looks
dark. However, it works good for scenes with low dynamic range in the
image.

• contrast-based scale factor - this operator concentrates on keeping the same
contrast in the generated image. It is basing on the idea that measures the
smallest change in luminance noticeable by human visual system, called
adaptation luminance or just noticeable difference (JND). The larger JND,
the larger change is needed in luminance to be perceived correctly by hu-
man. The algorithm implements a constant scale factor and tries to analyze
a given region of the initial image to find an area that is noticeably different
from the rest to the observer. Display pixel values are scaled appropriately,
so that different regions are noticeably different and the dynamic range
is not wasted. The formula for scale factor is described by the following
equation:

s =
(

1, 219 + (Y a
d )0.4

1, 219 + (Y a
w )0,4

)
, (5.38)

where:
Y a
d - adaptation luminance of a display,
Y a
w - adaptation luminance of a world.

The only unknown parameter here is the world adaptation luminance Y a
w ,

which should be computed basing on the part of the scene the observer is
looking at. Since this information cannot be available, the contrast-based
scale operator computes a logarithmic average of the whole luminance in
the original image. This kind of average does not allow small bright areas
to dominate over the rest of the image [68].
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5.3 Final algorithm as a consolidation of previous ideas

Human skin tissue was modeled as purely diffuse surface. It is an example of
object, which does not only reflect the light, but also transmit it inside. It means
that light penetrates the structure of skin just below the surface. Since the tis-
sue can be treated as a turbid medium, it is possible to apply a Monte Carlo
technique together with photon mapping to trace and store the packets of en-
ergy. Additionally ray marching can be utilized to render the effect of subsurface
scattering.

The most important effect that needed careful handling was fluorescence phe-
nomenon - figure 5.8. To accomplish this idea a couple of assumptions were nec-
essary:
• photon mapping algorithm was extended with Monte Carlo model of light
propagation in turbid media to describe the way volumetric photons are
gathered,
• since fluorescence phenomenon is dominant optical process in the human
tissue, only fluorescent photons are stored in photon maps. It means that
only photons that underwent interaction with fluorescent molecule in the
past are collected and used later during rendering.
• the implementation concentrated only on indirect illumination, which re-
sults in presenting light that was scattered under the tissue surface and had
a chance to contact fluorescent structures of a skin. Direct photon map is
neglected since it does not give any useful information about fluorescence,
because photons do not penetrate the object and are reflected back,
• in order to correctly visualize the tissue reflectance spectrum two photons
map were used: surface and volumetric photon map.

After specifying the foundation of the whole experiment, it is possible to
combine Monte Carlo model and photon mapping together, so that they perform
appropriate function in the desired way and order. Now it is possible to define
all steps performed in the first pass of algorithm.

1. Photon is generated, initialized with the spectrum of the light source and
launched

2. If it didn’t intersect any object then start from the beginning with new
photon

3. Check if photon was reflected utilizing equation 5.4 and start from the
beginning with new photon if this is true,

4. Update weight according to equation 5.5
5. Calculate new direction according to equation 5.3
6. Repeat the following steps until photon escaped the tissue:

• Move photon by a stepsize defined by equation 5.12
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Figure 5.8: Photons interact many times with molecules changing their direction.
Only some fraction of them escapes the tissue and is stored into surface photon
map (open dot). Others are completely absorbed. If the fluorescence phenomenon
occurs, what happens very rarely, the photon is stored into volumetric photon
map every time it interacts with tissue (closed dots)

• Make sure it didn’t escaped the object,

• Generate a random variable and check, what molecule the packet in-
teracted with (d coefficient),

• If the fluorescence occurs update the photon spectrum using excitation-
emission matrix. Mark the packet with "fluorescent" state flag.

• Generate another random variable to decide whether the photon is
absorbed or reflected. In case of absorption the energy of the photon
is reduced by the equation 5.16. If the photon is only scattered, then
its direction is updated by equation 5.18 and 5.19.

• If the photon is "fluorescent" then store it in the volumetric photon
map,

7. If the photon is "fluorescent" then store it in the surface photon map. The
photon is terminated.

8. Start the whole procedure from the beginning. Repeat the algorithm until
the desired number of photons is collected in surface and volumetric photon
map.

The presented flow of events can be described by the block diagram 5.9. Every
rectangle expresses a procedure that needs to be performed at a given moment.
Lines and arrows show the relationship between particular blocks and location of
the next step. Condition blocks represented by diamonds help to coordinate the
decision making.
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Figure 5.9: Flow diagram of proposed Monte Carlo model

In the second phase of simulation the rendering is performed. The first im-
portant observation from equation 5.35 is that component Lr(xs, ω) is equal to
zero. It was assumed that there is no illumination from behind the tissue object.
In other words the medium is so thick that light is not able to travel through the
whole skin to the camera.

The second assumption that was made is utilizing surface and volumetric
photon maps at the same time. To compute in-scattered radiance, first of all
the radiance at the medium surface is calculated using surface photon map and
then iteratively moving by a given stepsize radiance is accumulated along the ray.
Every time a volumetric photon map is used for partial computation. Taking all
those considerations into account the equation 5.37 was rewritten to:
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L′r(x, ω) ≈ Tr(x↔ xs)Lr(xs, ω) +
s∑
t=0

Tr(x↔ xs)µs(xt)Li(xt, ω)∆x

≈
s∑
t=0

Tr(x↔ xs)µs(xt)Li(xt, ω)∆x

≈ Li(x0, ω) +
s∑
t=1

Tr(x↔ xs)µs(xt)Li(xt, ω)∆x

≈
n∑
p=1

p(x0, ωp, ω0)∆Φp(x0, ωp)
πr2 +

s∑
t=1

Tr(x↔ xs)∆x
n∑
p=1

p(xt, ωp, ωt)
∆Φp(xt, ωp)

4
3πr

3 ,

(5.39)

Figure 5.10: Ray marching and photon gathering with constant step size. Open
dots represent photons in surface photon map, closed dot symbolize photons in
volumetric photon map

Figure 5.10 describes the ray marching idea with two photon maps. On the
tissue surface the predefined number of photons is gathered from surface photon
map. The circle shows the distance to the farthest localized photon from the
query point. Along the ray, at each sampling point, an in-scattered radiance is
computed by collecting specific number of photons that are located in the minimal
sphere around it. It can be observed that the size of a circle or sphere changes
with query point or with the position inside tissue.
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5.3.1 Calculating emission spectrum using EEM

The database containing the fluorescence EEMs of 35 possible endogenous flu-
orophores, was used. All data was measured using standard fluorescence spec-
trophotometer. For each excitation wavelength, EEM gives the emission spectrum
that needs to be normalized and then multiplied by the carried initial energy.
Moreover, the quantities in electronic database are discrete values; for example
the step size for excitation wavelengths is 10nm and the step size for the emission
wavelengths is 5nm [4]. Such a situation causes problems when the given excita-
tion wavelength cannot be mapped to the appropriate emission spectrum. This
inconsistency in sample rate was solved by duplicating the same spectrum to the
wavelengths located between sample points. It means that wavelengths 520nm
and 515nm (510nm and 505nm etc.) would have the same emission spectrum. In
this way the small error was introduced to the computations, but the sample rate
for excitation and emission wavelengths is the same now.

Figure 5.11: Specifying spectrum dimension

Figure 5.11 shows the part of EEM that was used during computation. Red
area expresses original EEM. Blue area defines visible light. Visible color spec-
trum starts at 360nm so there is no need to compute spectrum lower than that
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value. Data from EEM ends at 750nm so this value will be assumed as maximal.
Since emission dimension is defined in range 360-750m also dimension of excita-
tion spectrum should be in that range. For excitation wavelengths grater than
520nm the emission spectrum was set to zero, what is a good assumption for most
fluorophores. Green square indicates the matrix of transformations from excita-
tion to emission spectrum, that was utilized. Other wavelengths were omitted.

To calculate the emission spectrum, the superposition principle will be used.
It means that the partial emission spectrum for each excitation wavelength will
be computed and summed up. Partial emission spectrum for the given wavelength
is defined as the multiplication of excitation spectrum and appropriate emission
spectrum from EEM. It guarantees that total weight of emission spectrum is not
grater than the initial excitation weight.

Afterwards it is necessary to normalize all quantities. In order to do that
all values from EEM were summed up to obtain total energy and the result
was inverted. Finally, each value from emission spectrum was multiplied by the
obtained number and in such a way final spectrum was calculated.

5.3.2 Source code

The configuration file for PBRT simulation engine is very easy to read. The
input parameters changed frequently between separate experiments, but the gen-
eral overview is presented below. It contains photon mapping algorithm, camera,
sampler and image properties, including scene parameters like light sources and
tissue surface.

1 #Definition of photon mapping process
2 SurfaceIntegrator "photonmap"
3 "integer nused" [10] #Number of neighbor photons looked for
4 "integer causticphotons" [0] #Number of required caustic photons
5 "integer directphotons" [0] #Number of required direct illumination photons
6 "integer indirectphotons" [400000]#Number of required indirect illumination photons
7 "integer volumetricphotons" [0] #Number of required volumetric photons
8 "bool directwithphotons" ["true"] #Is direct illumination computed using photons?
9 "bool finalgather" ["false"] #Is final gathering needed?
10 "float maxdist" [0.1] #Maximum distance from query point
11
12 #Camera position and direction
13 LookAt 0 0 0 0 0 -1 0 -1 0
14 Translate 0 -0.2 0
15 Rotate 0 1 0 0
16 Translate 0.5 -2.5 -0
17
18 #Camera parameters
19 Camera "perspective"
20 "float fov" [90 ] #Field of view
21 "float hither" [0.001 ] #Distance to hither plane
22 "float yon" [1e+30 ] #Distance to yon plane
23 "float screenwindow" [-1 1 -1 1 ] #Screen coordinates
24
25 #Film parameters
26 Film "pngfilm"
27 "integer xresolution" [400 ] #Image width
28 "integer yresolution" [400 ] #Image height
29 "string tonemapper" "maxwhite" #Tone mapping method used
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30
31 #Sampling parameters
32 Sampler "stratified"
33 "integer xsamples" [2] #Filter width
34 "integer ysamples" [2] #Filter height
35 "bool jitter" ["false"] #No anti-aliasing by jittering
36
37 WorldBegin
38
39 #Area light source 1 parameters
40 AttributeBegin
41 AreaLightSource "area"
42 "float coneangle" [45] #Angle alpha
43 "integer nsamples" [2] #Number of samples
44 "float L" [50] #Initial photon energy
45
46 #Light position
47 Translate 0 2.5 0
48 Rotate -0 1 0 0
49 Rotate 180 1 0 0
50 Translate -0.65 0 -0
51
52 #Light shape and size
53 Shape "disk" "float radius" [0.1]
54 AttributeEnd
55
56 #Area light source 2 parameters
57 AttributeBegin
58 AreaLightSource "area"
59 "float coneangle" [45] #Angle alpha
60 "integer nsamples" [2] #Number of samples
61 "float L" [50] #Initial photon energy
62
63 #Light position
64 Translate 0 2.5 0
65 Rotate -0 1 0 0
66 Rotate 180 1 0 0
67 Translate -0.35 0 -0
68
69 #Light shape and size
70 Shape "disk" "float radius" [0.1]
71 AttributeEnd
72
73 #Material type (diffuse) and spectrum definition of human skin tissue
74 Material "matte" "color Kd" [
75 ...
76 #Here goes spectrum values
77 ...
78 ]
79
80 #Tissue layer parameters
81 LayerBegin
82 "float n" 1.4 #Tissue refractive index
83 "float ua" 43 #Tissue absorption coefficient
84 "float us" 511 #Tissue scattering coefficient
85 "float g" 0.8 #Tissue anisotropy factor
86 "float height" 1 #Tissue height
87
88 #Shape of the layer surface
89 Include "../../../scenes/geometry/tissue.pbrt"
90
91 #Definition of fluorophores, their density and location
92 #Component "Blood" "float density" 10
93 Component "CollagenVII" "float density" 20
94 #Component "NADH" "float density" 15
95 #Component "FAD" "float density" 5
96 Component "Protoporphyrin" "float density" 10 "point e" [-0.5 2.5 -1] "float radius" 0.25
97 LayerEnd
98
99 WorldEnd
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Listing 5.1: Configuration file for PBRT

Th listing below describes the method for calculating emission spectra after
photon interacts with fluorescent molecule. More details are available in 5.3.1.
Please note that the number of samples in excitation spectrum (step size 5nm)
is greater than in the EEM matrix (step size 10nm). For this reason values from
excitation values were duplicated so that they are equal.

1 bool PhotonIntegrator::UpdateFluorescence(Layer *l, Spectrum *a, Point iSect) {
2 bool is_fluorescent = false;
3 int i,j,k;
4 const int colSamples = Spectrum::GetColorSamples();
5 double len;
6
7 // Check if photon is inside one of the sphere containing fluorophore
8 for (k=0; k<l->components.size(); k++) {
9 len = ((Vector)l->components[k]->pnt-(Vector)iSect).Length();
10 if ((l->components[k]->radius != 0) &&
11 (len<l->components[k]->radius)) {
12 break;
13 }
14 }
15
16 float comp = RandomFloat()*100;
17 float part = 0;
18 for (i=0; i<l->components.size(); i++) {
19 // If photon is outside cancer region, then neglect fluorophore
20 if ((k==l->components.size()) && (l->components[i]->radius != 0)) {
21 continue;
22 }
23 // Check if fluorescent interaction occurred
24 part += l->components[i]->density;
25 if (part >= comp) {
26 break;
27 }
28 }
29 if (i >= l->components.size()) {
30 return false;
31 }
32
33 // Fluorescent interaction occurred - update spectrum
34 Spectrum out;
35 Component *cp = l->components[i];
36
37 // EEM array is written from back to beginning
38 // Calculate number of samples
39 int ex_num = (cp->ex_start-cp->ex_end)/cp->ex_step+1;
40 int em_num = (cp->em_end-cp->em_start)/cp->em_step+1;
41
42 // Since PBRT spectrum sarts from 360nm and EMM spectrum starts from 250nm
43 // Calculate excitation offset that is 360nm = 250nm + 10nm*11
44 int ex_offset = ex_num - 11;
45 // Calculate emission offset that is 360nm = 260nm + 20*5nm
46 int em_offset = 20;
47
48 // Set fluorescent flag
49 is_fluorescent = true;
50
51 // Calculate emission spectrum
52 // The second emission spectum is duplicated to cover the whole excitation range
53 for (i = 0; i < colSamples; ++i) {
54 for (j = 0; j < ex_offset; ++j) {
55
56 out.c[i] += a->c[j*2] * cp->eem[ex_offset-1-j][i+em_offset];
57 out.c[i] += a->c[j*2+1]* cp->eem[ex_offset-1-j][i+em_offset];
58 }
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59 }
60
61 // Normalize spectrum by the energy of the whole EEM and custom parameter (8)
62 for (i = 0; i < colSamples; ++i) {
63 out.c[i] = out.c[i] / cp->all / 8;
64 }
65
66 // Substitute result to photon spectrum
67 for (j = 0; j < colSamples; ++j) {
68 a->c[j] = out.c[j];
69 }
70
71 return is_fluorescent;
72 }

Listing 5.2: PBRT source code of emission spectrum calculation using EEM

The photon mapping algorithm was presented below. Only the most interest-
ing part of this method was presented e.i. photon tracing and storing phase. Ren-
dering procedure remains unchanged, so it was not described here. For simplicity
irrelevant parts of the source was removed. The listing starts from launching a
photon, finding intersection, moving, absorbing, scattering, calculating fluores-
cence and storing either to surface or volumetric photon map. The flow diagram
of this method is presented in 5.9.

1 void PhotonIntegrator::Preprocess(const Scene *scene) {
2 if (scene->lights.size() == 0) return;
3 // Initialize photon maps
4 ProgressReporter progress(nCausticPhotons+nDirectPhotons+
5 nIndirectPhotons+nVolumetricPhotons, "Shooting photons");
6 vector<Photon> indirectPhotons;
7 indirectPhotons.reserve(nIndirectPhotons);
8 vector<Photon> volumetricPhotons;
9 volumetricPhotons.reserve(nVolumetricPhotons);

10 vector<Photon> directPhotons;
11 directPhotons.reserve(nDirectPhotons);
12
13 // Initialize photon shooting statistics
14 static StatsCounter nshot("Photon Map",
15 "Number of photons shot from lights");
16 bool indirectDone = (nIndirectPhotons == 0);
17 bool volumetricDone = (nVolumetricPhotons == 0);
18 bool directDone = (nDirectPhotons == 0);
19
20 Intersection photonIsect;
21 Layer *currLayer;
22 Layer *nextLayer;
23 float ei, et;
24 Point newIsect;
25 Shape *a;
26 float step;
27 Vector wo, wi;
28
29 // Shoot photons until one of the maps is full
30 while ((!indirectDone) || (!volumetricDone) || (!directDone)) {
31 ++nshot;
32 bool fluorescent = false;
33 // Give up if we’re not storing enough photons after 500000 tracings
34 if (nshot > 500000 &&
35 unsuccessful(nIndirectPhotons,
36 indirectPhotons.size(),
37 nshot)) {
38 Error("Unable to store enough photons. Giving up.\n");
39 return;
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40 }
41 // Trace a photon path and store contribution
42 // Choose 4D sample values for photon
43 float u[4];
44 u[0] = (float)RadicalInverse((int)nshot+1, 2);
45 u[1] = (float)RadicalInverse((int)nshot+1, 3);
46 u[2] = (float)RadicalInverse((int)nshot+1, 5);
47 u[3] = (float)RadicalInverse((int)nshot+1, 7);
48 // Choose light to shoot photon from
49 int nLights = int(scene->lights.size());
50 int lightNum =
51 min(Floor2Int(nLights * (float)RadicalInverse((int)nshot+1, 11)),
52 nLights-1);
53 Light *light = scene->lights[lightNum];
54 float lightPdf = 1.f / nLights;
55 // Generate photonRay from light source and initialize its spectrum (alpha)
56 RayDifferential photonRay;
57 float pdf;
58 Spectrum alpha =
59 light->Sample_L(scene, u[0], u[1], u[2], u[3],
60 &photonRay, &pdf);
61 if (pdf == 0.f || alpha.Black()) continue;
62 alpha /= pdf * lightPdf;
63
64 if (!alpha.Black()) {
65 // Follow photon path through scene and record intersections
66 currLayer = NULL;
67 nextLayer = NULL;
68
69 while (Roulette(&alpha)) { // Russian roulette for photon termination
70 float phi = RandomFloat();
71 // Calculate step
72 if (currLayer != NULL) {
73 step = -log(phi)/(currLayer->ua+currLayer->us);
74 }
75 else {
76 step = INFINITY;
77 ei = 1;
78 }
79 // Calculate intersection of ray with photon
80 newIsect = photonRay.o + photonRay.d*step;
81 scene->Intersect(photonRay, &photonIsect);
82 if ((currLayer == NULL) && (photonRay.maxt >= INFINITY))
83 break;
84
85 // Check if photon intersects a tissue surface
86 if (step > photonRay.maxt) {
87
88 // If first photon/surface intersection then it is direct illumination
89 if (step == INFINITY) {
90 alpha *= scene->Transmittance(photonRay);
91 Photon photon(photonIsect.dg.p, alpha, -photonRay.d);
92 if (!directDone) {
93 directPhotons.push_back(photon);
94
95 // Store photon in direct photon map
96 if (directPhotons.size() == nDirectPhotons) {
97 directDone = true;
98 nDirectPaths = (int)nshot;
99 directMap =
100 new KdTree<Photon,
101 PhotonProcess>(directPhotons);
102 }
103 progress.Update();
104 }
105 }
106
107 BSDF *photonBSDF = photonIsect.GetBSDF(photonRay);
108 // Get photon direction
109 wo = photonRay.d;
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110 Vector lwo=photonBSDF->WorldToLocal(wo);
111 float cosi = CosTheta(lwo);
112 // Check if photon entered new tissue layer
113 bool entering = photonIsect.dg.nn.z < 0.;
114
115 // Initialize next layer
116 try {
117 a = ((GeometricPrimitive*)(photonIsect.primitive))->GetShape();
118 if (!entering) {
119 nextLayer = ((Triangle*)(a))->GetMesh()->layerDefUp;
120 }
121 else {
122 nextLayer = ((Triangle*)(a))->GetMesh()->layerDefDown;
123 }
124 }
125 catch (...) {
126 Error("It shouldn’t happen at all");
127 }
128
129 // Get refractive indices
130 if (currLayer == NULL) {
131 ei = 1;
132 }
133 else {
134 ei = currLayer->n;
135 }
136
137 if (nextLayer == NULL) {
138 et = 1;
139 }
140 else {
141 et = nextLayer->n;
142 }
143
144 // Compute transmitted ray direction - Snell’s law
145 float sini2 = SinTheta2(lwo);
146 float eta = ei / et;
147 float sint2 = eta * eta * sini2;
148 // Handle total internal reflection for transmission
149 if ((sint2 > 1.) && (entering)) {
150 break;
151 }
152 float cost = sqrtf(max(0.f, 1.f - sint2));
153 if (entering) cost = -cost;
154 float sintOverSini = eta;
155 Vector lwi = Vector(sintOverSini * -lwo.x,
156 sintOverSini * -lwo.y,
157 cost);
158 wi = -photonBSDF->LocalToWorld(lwi);
159 photonRay = RayDifferential(photonIsect.dg.p, wi);
160 float ai;
161 float at;
162 // Get incident and transmitted angle
163 if (entering) {
164 ai = acos(cosi);
165 at = acos(-cost);
166 }
167 else {
168 ai = acos(-cosi);
169 at = acos(cost);
170 }
171 // Calculate Fresnel formula
172 float R = 0.5f*((sin(ai-at)*sin(ai-at))/(sin(ai+at)*sin(ai+at)) +
173 (sin(ai-at)*sin(ai-at))*(cos(ai+at)*cos(ai+at))/
174 (sin(ai+at)*sin(ai+at))/(cos(ai-at)*cos(ai-at)));
175 float rand = RandomFloat();
176 // Check if photon enters a new layer
177 if ((rand>R) && (nextLayer != NULL)) {
178 currLayer = nextLayer;
179 // Udapte weight
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180 alpha=alpha-alpha*R;
181 continue;
182 }
183 else {
184 if (currLayer == NULL) {
185 wo.z = -wo.z; // Calculate direction when reflected
186 }
187 Photon photon(photonIsect.dg.p, alpha, wo);
188
189 // Store only fluorescent photons
190 if ((!indirectDone) && (fluorescent)){
191 indirectPhotons.push_back(photon);
192
193 // Store photon in indirect photon map
194 if (indirectPhotons.size() == nIndirectPhotons) {
195 indirectDone = true;
196 nIndirectPaths = (int)nshot;
197 indirectMap =
198 new KdTree<Photon,
199 PhotonProcess>(indirectPhotons);
200 }
201 progress.Update();
202 }
203 break; // Trace next photon
204 }
205 }
206 else {
207 // Propagate a photon inside a tissue
208 // Update fluorescence
209 if (!fluorescent)
210 fluorescent |= UpdateFluorescence(currLayer, &alpha, newIsect);
211
212 phi = RandomFloat();
213 float probAbsScat = currLayer->ua/(currLayer->ua+currLayer->us);
214
215 if (phi<probAbsScat) {
216 // Udapte weight
217 alpha=alpha-alpha*probAbsScat;
218 }
219 else {
220 // Or scatter
221 phi = RandomFloat();
222 float cosTheta;
223 // Calculate deflection angle
224 if (currLayer->g > 0) {
225 cosTheta = 1/(4*M_PI*currLayer->g)*(1+currLayer->g*currLayer->g-
226 (1-currLayer->g*currLayer->g)*(1-currLayer->g*currLayer->g)/
227 (1-currLayer->g+2*currLayer->g*phi)/
228 (1-currLayer->g+2*currLayer->g*phi));
229 }
230 else {
231 cosTheta = 2*phi-1;
232 }
233 float sinTheta = sqrt(1-cosTheta*cosTheta);
234
235 phi = RandomFloat();
236 // Calculate azimuthal angle
237 float cosAzi = cos(2*M_PI*phi);
238 float sinAzi = sin(2*M_PI*phi);
239 // Calculate new photon direction
240 if (abs(photonRay.d.z)>0.99999) {
241 wi.x = sinTheta*cosAzi;
242 wi.y = sinTheta*sinAzi;
243 wi.z = photonRay.d.z/abs(photonRay.d.z)*cosTheta;
244 }
245 else {
246 wi.x = sinTheta/sqrt(1-photonRay.d.z*photonRay.d.z)*
247 (photonRay.d.x*photonRay.d.z*cosAzi-photonRay.d.y*sinAzi)+
248 photonRay.d.x*cosTheta;
249 wi.y = sinTheta/sqrt(1-photonRay.d.z*photonRay.d.z)*
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250 (photonRay.d.y*photonRay.d.z*cosAzi+photonRay.d.x*sinAzi)+
251 photonRay.d.y*cosTheta;
252 wi.z = -sinTheta*cosAzi*sqrt(1-photonRay.d.z*photonRay.d.z)+
253 photonRay.d.z*cosTheta;
254 }
255 }
256
257 wi = Normalize(wi);
258 photonRay = RayDifferential(newIsect, wi);
259 Photon photon(photonRay.o, alpha, wi);
260
261 // Store only fluorescent photons
262 if ((!volumetricDone) && (fluorescent)) {
263 volumetricPhotons.push_back(photon);
264
265 // Store photon in volumetric photon map
266 if (volumetricPhotons.size() == nVolumetricPhotons) {
267 volumetricDone = true;
268 nVolumetricPaths = (int)nshot;
269 volumetricMap =
270 new KdTree<Photon,
271 PhotonProcess>(volumetricPhotons);
272 }
273 progress.Update();
274 }
275 }
276 }
277 }
278 BSDF::FreeAll();
279 }
280
281 progress.Done();
282 }

Listing 5.3: PBRT source code of photon mapping algorthm

For more details about source code please look into source code or PBRT
Guide here [68].





6 The application of Monte Carlo
simulation

Endoscopy is a medical procedure used to investigate the internal surfaces of an
organ by inserting a special device into the body. The endoscope consists of a thin
tube with fiber optics to transmit light. Illuminated structures are then viewed
through an eyepiece or video camera fixed to the tube [80]. The example of the
tip of the endoscope is presented below. Generally two light sources are available
and small camera.

Figure 6.1: Schema presenting the head of endoscope - bottom-view. Parameters
are similar to the real device and were used during simulations

The light sources can be treated as area lights with cone angle α = 45◦.
Moreover the head of endoscope may be rotated. Angle β specifies the deviation
from the completely perpendicular position with respect to tissue surface. In our
case β = 15◦.

The tool that was used in this work for generating images according to photon
mapping algorithm was PBRT engine. This is not commercial computer program
written in C++. PBRT is available with the source code and the book [68] that
gives highly detailed description of most of the functions. Efficiency was not
the goal of this software. It takes often minutes or even hours to render highly
detailed and complex images. All tissue images in this paper were rendered about
40 minutes on AMD SempronTM 2.00 GHz with 512 MB RAM and AtiRadeon
9600 graphics card. Unfortunately PBRT does not support subsurface scattering
model, but because of its simple plug-in architecture, the functionality could be
extended. Photon mapping algorithm was changed and revised to implement full
Monte Carlo model of Light Transport in turbid media.

67
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Figure 6.2: The head of endoscope during operation - side-view. Only first light
source is visible, the second one is behind.

6.1 The comparison of surface and volumetric photon
map

The first simulation was performed for completely flat tissue surface without any
distortions. The tip of the endoscope was located 1cm above and perpendicular
to the object β = 0◦. For such configuration three kind of experiments were
performed with the following setup parameters:

• number of photons collected in surface photon map - 50000 photons,
• number of photons collected in volumetric photon map - 50000 photons,
• only photons, which spectrum changed during interaction with fluorescent

molecules were stored,
• number of lookup photons - 20 photons,
• maximal distance during photon lookup - 0.1cm,
• the number of steps during volumetric rendering - 5
• step size during volumetric rendering is not constant. It is a distance from

intersection point to point 0.05cm below the tissue surface calculated along
the ray and divided by step size.

• tissue parameters described in table 4.3.

Every time two different tone reproduction operators were investigated: max-
imum to white and contrast-based scale operators. The results are presented in
Table 6.1.

For maximum to white operator surface photon maps works very well. The
number of rendered photons is big enough to cover the whole illuminated region. If
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Maximum to white
operator

Contrast-based scale
factor

Surface
photon
map

Time of rendering: 220s Time of rendering: 222s

Volumetric
photon
map

Time of rendering: 314s Time of rendering: 311s

Surface
and vol-
umetric
photon
map

Time of rendering: 460s Time of rendering: 435s

Table 6.1: The comparison of surface and volumetric photon maps usage for
different tone mappers
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only volumetric photon map was utilized, the number of visible photons decreased
drastically. This is because a couple of very bright photons make the rest of
the pixels proportionally scaled, which results in dark image. This is the main
disadvantage of using maximum to white operator for tone mapping procedure.
Additionally, when both surface and volumetric photons map are rendered at the
same time the similar behavior as in the previous case is noticeable. The image
looks dark, since it is overwhelmed by very bright pixels in different places.

For contrast-based scale operator the situation is completely different. Using
only surface photon map the image looks brighter and the contrast between colla-
gen and protoporhyrin region is greater. Even when only volumetric photon map
was used, the number of visible photons exceeds significantly the number of pho-
tons when maximum to white operator was used. Additionally all photons seems
to have similar intensity. It is an expected result, since their weight only depends
on the internal interactions in the tissue. When both photon maps are utilized at
the same time, the increased number of photons are visible on the image. That
was not a case for maximum to white operator. The image is still much brighter
than in opposite situation. This consideration can imply that better images can
be obtained when this operator is used.

Extending the usage of a surface photon map with volumetric map makes the
time needed for rendering even two times greater. However the results obtained
due to this effort are not impressing much. Both images looks very similar. This
is why it was decided to use only surface photon map for further investigation.
Volumetric photon map does not give any additional and useful information for
the further investigation.

6.2 The analysis of the influence of light source spectrum

The next simulation was performed for the different light source spectrum. This
time the quality of generated images is much better, since the number of photons
was increased noticeably. Here are the parameters of the experiment:

• number of photons collected in surface photon map - 400000 photons,
• no photons collected in volumetric photon map,
• only photons, which spectrum changed during interaction with fluorescent
molecules were stored,
• number of lookup photons - 350 photons,
• maximal distance during photon lookup - 0.1cm.
• tissue parameters described in table 4.3.

Very interesting effect was observed for the series of images 6.3a - 6.3e gen-
erated by laser beam. The peak spectrum of UV color light was moved from left
to right. It is visible quite good that the collagen photons are the brightest at
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the beginning, then constantly fade and their intensity is going down. The rea-
son comes from the shape of collagen EEM - figure 4.5a. For lower excitation
wavelengths the emission spectrum is higher, for higher excitation the emission
energy is going down and it is almost zero in the figure 6.3e. Similar effect is no-
ticeable for protoporphyrin photons, which intensity is low at the beginning and
then increases with higher excitation spectrum range, but not so fast. This is also
because of EEM of protoporphyrin - Figure 4.5e. The initial wave spectrum after
contact with fluorescent molecule still possesses some amount of energy, even for
higher wavelengths. When the collagen photons are almost invisible the protopor-
phyrin intensity is still big enough. It means that it is worth to find such a light
source spectrum that reduces the impact of collagen fluorescence and increases
the intensity of protoporphyrin. That is why the laser beam of wavelength equal
to 400nm - figure 6.3e - shows visually the advantage of UV light source, since it
concentrates only on one spectral wavelength and produces desired results.

Results presented in figure 6.3b and figure 6.3f can be also analyzed, although
energy carried by the ideal, white light source is much greater than for the ul-
traviolet laser beam. Basing on figure 5.11, most of the white light energy is
lost, since the EEM is defined only to maximal wavelength equal to 520nm. All
other excitation wavelength are neglected. Even if those excitations were taken
into account then for excitation wavelengths in range 600nm-750nm the emission
spectrum is still nearly zero, so it does not influence the final intensity. The most
interesting excitation range is in the beginning of the spectrum range. This part
influence the final color to the greater extent. Collagen fluoresces mostly for UV
color spectrum, it means that probably the best would be to apply light beam
with wavelengths in range 360nm-420nm.

Looking again at figure 6.3b and figure 6.3f it is noticeable that the color of
healthy part of tissue is different at these two pictures. In both situations it is
bluish. One can say that for the case where the white light source was used the
color of photons that contacted with collagen and protoporphyrin are to some
degree similar - protoporphyrin photons are red and collagen photons are violet.
This is because the white light source gives some energy to the whole spectral
range and the laser beam only to some part of the spectrum. If a contrast perspec-
tive is considered, for ultraviolet laser beam the contrast between protoporphyrin
and collagen is noticeable and the cancerous part of a tissue is better visible, de-
spite of the low brightness of the whole image. However from the intensity point
of view white light is more than better. Cancerous region of a tissue has the
greatest intensity and dominates over weak collagen photons.

Interesting result was noticed for the mercury lamp - figure 6.5. Protporphyrin
fluoresces in red color as it was expected, but the same color is visible also for
collagen. This is because the spectrum of mercury lamp has very small values
for ultraviolet wavelengths. It means that influence of the expected blue color
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(a) The output for laser beam of
360nm. Initial photon energy equals to
50000 a.u.

(b) The output for laser beam of
370nm. Initial photon energy equals to
50000 a.u.

(c) The output for laser beam of
380nm. Initial photon energy equals to
50000 a.u.

(d) The output for laser beam of
390nm. Initial photon energy equals to
50000 a.u.

(e) The output for laser beam of
400nm. Initial photon energy equals to
50000 a.u.

(f) The output for ideal light described
in range 360-750nm. Initial photon en-
ergy equals to 50000 a.u. for every
wavelength

Figure 6.3: Simulated human tissue for given excitation light.



6.2. THE ANALYSIS OF THE INFLUENCE OF LIGHT SOURCE SPECTRUM 73

Figure 6.4: The spectrum of xenon lamp [81].

is reduced at the cost of very high red color peak in mercury light spectrum.
That energy multiplied by emission values retrieved from EEM gives red color as
a dominant part of the resulting spectrum. It implies that mercury lamp is not
good enough to use during photodynamic diagnosis. The color similarity between
protoporphyrin and collagen part of a tissue make it not recommended for medical
usage.

Figure 6.5: The spectrum of mercury lamp [82].

Finally for xenon light collagen photons seem to be pink instead of blue color.
The reason of that effect is related with the shape of the spectrum. For UV
wavelengths the function is going up, after that it stays at almost the same level
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(a) The output image for mercury
lamp

(b) The output image for xenon lamp

Figure 6.6: Simulated human tissue for mercury and xenon excitation light.

to the end of the range. The contribution of those constant values is very small
due to the specific structure of collagen EEM. The most important is ultraviolet
part, which despite of low values has significant role in the final appearance. This
kind of light sources are widely used in endoscopes today.

6.3 The qualitative analysis of the influence of light source
incidence angle

The simulation was performed for different light position. Cancerous regions,
where protoporphyrin was concentrated (red color), give the most interesting
information for medicine. It is necessary to identify such situations as quick as
possible. The rest of structure contains collagen only (blue color). Applied light
source was a laser beam with 380nm wavelength.

For this tissue model six images were rendered for different angle of view β

every time. In order to obtain good looking results, the simulation was performed
for the following configuration:

• number of photons collected in surface photon map - 400000 photons,
• no photons collected in volumetric photon map,
• only photons, which spectrum changed during interaction with fluorescent

molecules were stored,
• number of lookup photons - 350 photons,
• maximal distance during photon lookup - 0.1cm.
• tissue parameters described in table 4.3.
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β
=

50
◦

Table 6.2: Tissue surface for different camera angle of view β

Best quality images were obtained for β between 0◦ and 30◦. For larger angles
images get darker and darker, what is especially visible on light borders. It means
that the number of photon traced in the scene should be changed for different
views of camera. That value cannot remain constant, otherwise the image is not
clear and smooth any more. Looking at red part of all pictures, where cancerous
structure was added and protoporhyrin concentrated, better results were obtained
for angles 20◦ and 30◦. Its appearance is rather uniform and that structure is
stronger illuminated. Quantitative analysis would give more accurate results, but
even now it seems that the best angle of view is not 0◦. Simulations point out that
for the best angle β, one should look somewhere else, probably around 20◦ − 30◦

interval. This is going to be the goal of other experiments.
In this publication [83], there was described how various angles of incidence

influence surface and subsurface components of the reflection model. They pre-
sented a model for subsurface scattering in layered surfaces in terms of one-
dimensional linear transport theory. The external appearance of a face and a
cluster of leaves from experimental data describing their layer properties, were
simulated. It also showed how volume or surface functions (BRDF and BTDF)
change for different values of anisotropy and thickness of the layer.

6.4 The quantitative analysis of the influence of light
source incidence angle

Although the light propagation in human tissue is rather good known topic de-
scribed in literature, the quantitative analysis of its properties and influence of
incident angle on absorption and scattering of photons need to be still investi-
gated. Simulations in this paper are going to propose the best initial angle of
light source, for witch energy reflected from the tissue to camera is the highest.
It is necessary to stress that the parameters of simulation strongly influence the
final result. For example for human colon tissue the outcome would be different.
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In the scene containing - as previously - cancerous and healthy part 12 simu-
lations were performed, each for different angle β. The influence of changing this
angle is going to be investigated. In each case 400000 photons were stored in sur-
face photon map. Both light sources are assumed to be UV area lights with cone
angle α = 15◦ and white light source. The experiment started for β = 0◦ and was
changed by 5◦ every time. It was assumed that the tissue surface is completely
flat, all distortions were neglected.

6.4.1 The influence of light source incidence angle on the number of
emitted photons

In order to store 400000 photons in surface photon map, it was necessary to
trace about 440000 photons in the scene. It does not matter whether photon is
fluorescent or not, it is always put into photon map. It means that about 9%
of them was absorbed by the tissue and after entering the structure, they never
escaped. Figure 6.7 describes how many photons were needed to store exactly 0.4
million of photons on the surface for different incident angle β.

Figure 6.7: Number of photons vs. angle of incidence.

For angles between β = 0◦ and β = 30◦, the number of photons taking part
in the simulation is more or less constant. When the angle exceeds 30◦, almost
perfectly linear behavior is observed. The graph is going up, which means that
greater number of photons is needed when the angle of view gets increased. For
small angles the tissue absorbs energy of the light rays to the lower extent than
for angels around β = 50◦. For maximal angle of incidence photons are more
often reflected without entering the tissue. The difference of number of photons
needed in boundary cases, tends to even 37%.
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6.4.2 The influence of light source incidence angle on the total energy
of emitted photons

Next, energy of photons were investigated. Each photon traced from the light
source has the same, constant energy. That energy changes during contact with
tissue - the photon can be absorbed, scattered or its spectrum (energy) may
be altered. In the end of simulation, the energy of each photon stored in the
surface photon map was summed up, giving the total power. The following graph
represents the overall energy of photons for different angle of camera in arbitrary
units. There is no direct relation between power of photon used in the simulation
and real physical quantities.

Figure 6.8: Total energy of photons vs. angle of incidence.

The investigation shows that the lowest energy was observed for angle β = 0◦.
It means that in such a situation packets of energy get involved into different in-
teractions inside tissue more often than for other angles. They lose their power
many times before they finally gets back to the tissue surface and escapes. It
proves again that for small angles the absorption is a dominant factor. The situ-
ation changes when the angle of incidence is increased. The amount of energy is
linearly rising, which means that tissue penetration is lower and the photons do
not interact with other molecules so many times. It turned out that total energy
for initial endoscope placement is about 21% smaller than for the final position.

If the total energy of photons stored in photons map is divided by the initial
energy of all photons traced in the scene, a very interesting graph is produced -
Fig. 6.9.

The investigation shows that for small angles the energy is rising and reaches
its maximum value somewhere around β = 30◦. The goal is to find the angle for
which the total energy of all photons is the greatest and the absorption is the
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Figure 6.9: Normalized energy of photons vs. angle of incidence.

smallest. Probably angles around this value should be investigated more deeply
during other experiments, but again, it will change if different tissue parameters
would be applied. At this moment, it gives medicine the first hint about the most
accurate angle of the head of endoscope in relation to tissue surface, for which
pathological changes inside the structure are the best visible.

6.4.3 The investigation of the specular reflection effect

Another experiment was concentrated on the directions of all photons stored on
the surface photon map. For each packet it was checked if it is visible on the
camera screen. If it is true, then the angle between photon exitant vector and
vector pointing from the packet to camera position was calculated. If that angle
was not greater than 15◦, that photon was assumed to play essential role in the
image rendering process and marked as important. Their influence should be
more noticeable, than contribution of photons pointing in other directions. The
more packets that are "important" were stored in photon map, the better quality
of the final image is going to be. Figure 6.10 shows how the number of photons,
we are interested in, changed for different angles the endoscope is working.

The plot above can be treated as linear again. It is interesting that in the best
case not even 6% of all the photons stored in the map, fulfill our criterion. For
angle β = 55◦ it is only about 3%. The function is decreasing, so the best looking
images should be obtained for endoscope perpendicular position. But it is not
necessarily true, because the investigation didn’t take into account the energy of
the photons. Probably some of them have proper exitant direction, but its energy
is so small that they can be neglected. This simulation needs additional power
related criterion in order to draw more accurate conclusions.
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Figure 6.10: The number of photons pointing to camera vs. angle of incidence.

6.4.4 The estimation of the quantum yield

The quantum yield (φ)is a measure of the energetic efficiency of radiative process.
In all light-dependent phenomenon it can be defined as the rate at which a desired
event occurs to the number of photons that was absorbed during the process. In
other words, a quantum yield is a measure of the efficiency describing the relation
between absorbed light and production of a particular effect [84]. In our case this
formula can be rewritten as:

φ = number of fluorescent photons
number of emitted photons , (6.1)

If all traced photons contacted the fluorescent molecule and were stored in
the surface photon map, then this efficiency would be equal to 100%. However,
this in not a case and 6.11 presents the results for different incident angle.

The obtained plot is constant in the beginning and then goes down quite
linearly and have greatest efficiency value for β = 0◦ equal to 77%. For β = 55◦

the quantum yield reaches the value of 55%. These two boundary values suggest,
that the greater the angle of incidence is the more photons get absorbed or
reflected from the tissue and the fluorescence phenomenon occurrence frequency
is smaller.

6.4.5 The estimation of the maximal penetration depth

In the next simulation for every photon the maximal penetration depth was
registered. It didn’t matter whether such particle escaped the tissue and was
stored in photon map or not. Only their deepest possible position was important.
In order to do that the tissue object was divided vertically into 0.001cm clusters
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Figure 6.11: The quantum yield vs. angle of incidence.

initiated with zero as default. If the maximal penetration depth of a photon
was found, then it was mapped to the appropriate interval and finally to cluster.
Associated values got incremented and the whole array was presented in the form
of graph 6.12.

Figure 6.12: The overall number of photons with given maximal penetration depth
vs. angle of incidence.

It is easy to notice that for low incident angle the plot is going up in the
beginning and then falls down to reach negligible values for 0.07cm. It is important
to stress it, that all plots for different incident angle are almost similar for depths
greater than 0.002cm. The most interesting part happens just below the tissue
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surface. It seems that for angles between 0◦ − 30◦ the number of photons that
penetrated the tissue shallowly is smaller than for the neighboring clusters. They
probably more often go down and are not reflected out the medium. This is why
their maximal penetration depth is so low. It also means that more photons are
going deeper and interacts with molecules inside more often. But because they
get absorbed, their energy is also falling, so that they were not able to penetrates
deeper.

For angles in interval 30◦ − 55◦ the inclination of the plot is so big that
photons do not penetrate the tissue so often. They go inside, get scattered once
or twice and finally get released out of the structure. This effect is dominant. The
influence of photons that got deeper in the tissue is not so noticeable. Described
phenomenon can be observed on the plots, where the number of photons is going
down all the time and no extremum value is marked.

Figure 6.13: The overall number of photons with maximal penetration depth
between 0-0.001mm vs. angle of incidence.

In order to prove the last concept the number of photons in the first cluster
were compared for different angle of incidence - Figure 6.13. It can be noticed
that the number of photons is going up quite linearly. Moreover, the value for 0◦

is five times smaller than for 55◦. It suggests that changing the angle of incidence,
photons spend a shorter time below a tissue surface and more often are escaping
the object. Some of them had probably no chance to interact with fluorescent
molecule, which means that the desired fluoresce phenomenon can occur more
rarely than for initial angles. This can be also confirmed by the quantum yield
graph - Figure 6.11.

In the one but last simulation some work has been done to investigate what
was the overall maximum depth the photon is able to go through. For each photon
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Figure 6.14: The overall maximal penetration depth vs. angle of incidence.

the deepest value was taken, but only the highest from all of them was drawn
on the plot. Figure 6.14 describes how the maximal depth of penetration changes
for different angle of view. Basically it does not change when increasing angle
of incidence and remains at the constant level of about -0.35cm. In particular
cases the values are greater or smaller from the mean depth, but no correlation
could be observed with the initial angle. This is a simulation error, which would
be smaller if the greater number of photons were traced. In such a case packets
would be distributed in the tissue more evenly and not only one - as it is now -
but many photons, would indicate the maximal depth the photon is able to enter.

6.4.6 The excitant angle investigation of photons stored in photon
map

During last experiment for each photon stored in the photon map it’s excitant
vector was placed in the center of hemisphere. The hemisphere was divided into
3D bins: vertically into 10 bins - each equal to 9◦, horizontally into 36 bins - each
equal to 10◦.

Each photon was then placed into one and only one bin in the hemisphere,
appropriate for the exitant direction. The number of packets in every bin was
counted and drawn in the polar coordinate system. First column represents ver-
tical angles in range between 0◦− 45◦, the second is for range between 45◦− 90◦.
Table 6.3 shows the distribution of exitant directions of photons in the tissue for
different angle of incidence β. For β = 0◦ each polar plot representing one vertical
direction looks like a circle, what means that for light perpendicular direction,
exitant vectors of all the photons are equally distributed. It proves that light
propagation algorithm is not biased in any way.
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Figure 6.15: Division of the hemisphere into bins 9◦ wide vertically and 10◦ wide
horizontally. Together 360 bins.

When the angle of incidence grows, small changes in the shape of each circle
are observed. They gets ellipsoidal in shape and shifted along vector pointing
180◦. It means that exitant photons are not directed towards the endoscope, but
in completely opposite direction. However, those changes start for small vertical
angles and after that other levels are affected. It means that distribution of angles
above 45◦ remains almost unchanged for different light views. Their shape on the
polar plot is only little ellipsoidal and the amplitude gets smaller. For the angle
of incidence equal to 50◦ there are 2 bins containing more than 2000 photons
pointing along horizontal 180◦ direction. These are photons with vertical angle
around 20◦ and 30◦. Then other ellipsoidal plots are visible with gradually smaller
distortions in shape. It is needed to stress out, that the effect described above is
observable for small view angles of light α only. The narrower the light beam is,
the more noticeable this effect appears. Here the cone angle of light was defined
as α = 45◦.

Legend

β = 0◦
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β = 10◦

β = 20◦

β = 30◦

β = 40◦
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β = 50◦

Table 6.3: The distribution of photon exitant directions

Monte Carlo simulations of light transport are widely described in literature.
In [85] predictions and diffusion models for homogeneous media were compared in
with properties characteristic of highly light-scattering tissues. Some graphs and
sketches were described showing radiance in different directions (relative to the
incident infinite beam) versus depth, depending on optical properties, influence
of albedo and relative index of refraction. Additionally polar plots of radiance at
different depths for a scattering medium were introduced.

6.4.7 Summary and conclusions

All of these experiments prove, that the tissue model and chosen algorithm of light
transport in turbid media are mathematically correct and give expected results.
Increasing the initial angle of incidence, more photons get absorbed and more of
them are reflected from the tissue. The shape of graph representing total energy of
photons vs. angle β, shows that this relation is also linear after β = 30◦. However,
the total illumination to the initial energy plot suggests that the maximal value of
this ratio occurs for β = 30◦. The tissue is better illuminated when the endoscope
is not perpendicular to the surface, but is rotated by some angle. By isolating
photons, that after exiting the tissue was directed to the camera location, it was
noticed that their number also changes in linear way. It is also correct, once
camera and light sources are in the same place, escaping photons should not
point back in the direction they entered the object. Quantum yield, on the other
hand, suggest that the fluorescence phenomenon occurs more often when the
angle β is small. Analyzing the maximal depth the packets penetrated the tissue
for different cases, it seems that it is constant as it was expected. However, further
investigations that concentrated on the vertical profile i.e. the distribution of the
deepest photons in the structure showed again, that for small angles photons
penetrates the tissue deeper before they escape. For larger angles the probability
of leaving the object is much higher.
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All of those observations, give some idea about what is going on inside the
tissue of a human skin. Consideration of the exitant vector distribution also gives
interesting result. It proved that the number of photons having vertical angle
greater than 45◦ does not change and is constant for different initial angle β.
On the other hand, number of packets directed along 180◦ horizontally increased
significantly. This quantitative analysis describes what is happening with photons
contacting with human tissue. It also proposes the range of angles β for which
the influence of photons on final image should be the highest. This conclusions
should be now compared with generated images and probably verified with real
images. But, even now a conclusion arises that the angle of incidence should be
greater than 0◦, since lots of photons get absorbed before escaping tissue for
such a small angle. It also shouldn’t be too big, because the effect of fluorescence
happens more and more rarely.

Monte Carlo simulations for different geometry or optical parameters can
provide very helpful qualitative as well as quantitative result for photodynamic
therapy. The dependence between the emission angle of photons from the linear
diffuser and mean radiance was described in [86] by simulating a cylinder hol-
low organ. Also fluence rate versus depth was recorded from tissue-simulating
phantom. Obtained results were validated with real tissue phantom.

6.5 The analysis of multispectral images

Images taken across the electromagnetic spectrum at different wavelengths are
called multi-spectral. Special filters or instruments sensitive to the required wave-
length, including ultra-violet or infrared light, are able to register only those data,
that are necessary for the desired image component. They are represented by us-
ing gray-scale images. Multi-spectral images help to detect additional surface
features and to capture information that are almost invisible for human eye. By
combining the contribution of each image, it is possible to obtain the discrete
color spectrum of each pixel.

This technique can be applied to identify cancerogeneus changes in the human
skin. The physical deformation influences the structure of the tissue, so that it
reflects light in different way. The optics of human skin was widely described in
[12]. Different concentration and localization of absorbers and scatterers in human
tissue results in various spectral reflectance. Skin without those substances ap-
pears diffusely white, because many skin components have dimensions larger than
the wavelengths of visible light. The color depends also on the skin illumination
i.e. the position and incident angle of the light rays. Changes in tissue structure
caused by tumor activities, can be recognized thanks to fluorescent properties of
substances the human skin is made of. Multi-spectral images help to understand
how the investigated area looks like in different wavelength, which one is the best
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to study deeper and which one gives the information that could be useful in case
of photodynamic diagnosis. Each image contains data, that wouldn’t be visible
with normal camera.

6.5.1 Multispectral images of skin tissue with cancer

Thanks to cooperation with Medical University of Silesia and the Center of Diag-
nostics and Laser Therapy of Tumors in Bytom, patients suffering from different
skin cancers could be investigated. As the result of medical treatment a widely
used photosensitizer in photodynamic diagnosis - endo-protoporphyrin IX - was
collected in diseased cells. A multi-spectral camera took images for wavelengths
in range 400-720nm and constant step size 16nm when white light source was ap-
plied. For this reason the Onco-LIFE OLCC from Xillix Technologies was used.
To this tissue sample there was assigned a signature 15674/1. Those images were
further compared with simulated multi-spectral images of simplified tissue model.
It assumes, that tissue consist of only one fluorophore - Protoporphyrin IX. The
simulated skin color was an average spectrum of analyzed human skin. The results
of comparison are presented in table 6.4.
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Table 6.4: The comparison of multi-spectral images of skin tissue (15674/1) and
simulated protoporphyrin IX for different wavelength λ

It is quite good visible that changes in real multi-spectral images are followed
by the simulation. Despite of the fact that slight errors are visible, generally the
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presented model behaves well and changes in the intensity are followed by the
simulated image. For 624nm the cancerous changes started to be visible and then
two peaks are observable - first for 624nm and second for 672nm. Both maxima
follow the characteristic of Protoporphyrin IX reflectance spectrum - see figure
6.18. The multi-spectral images don’t show a good contrast between cancerous
and healthy parts of a tissue. This is because the difference in intensities is too
small in comparison to simulated fluorophore. One can say that consecutive inten-
sity changes in multi-spectral images for real and simulated tissue are perceived
as similar.

It was also tried to create a color image from a set of multi-spectral images.
There is a couple of problems that occurred during processing:

1. All multi-spectral images were acquired manually. It means that an en-
doscope was held in somebody’s hand while taking all 21 photographs. It
results in images shifted with respect to other images, so that they do not
overlap each other. It can happen that pixel position in first image does not
correspond to the same position in another image. Although these incon-
sistencies are well visible, it was decided to neglect them, since the color
information will not change noticeably.

2. Multi-spectral images of some tissue samples were already normalized. This
is a problem since the information regarding intensity for each wavelength
was compressed. Generally, most of the images used in other experiments
were non-normalized and the information was not lost.

3. In order to make those images any better and to be able to compare them
in a reasonable way with simulated images, a contrast tone mapper was
applied. In such a way all multi-spectral images have some kind of a baseline.

4. Additionally a mapping was necessary to properly transform gray-scale im-
ages into color picture. The three-receptor model of color perception that
maps any input spectra to tristimulus values (RGB) can be calculated in
the following way:

R =
∫
λ
S(λ)X(λ)dλ ≈

n∑
i=1

XiSi,

G =
∫
λ
S(λ)Y (λ)dλ ≈

n∑
i=1

YiSi,

B =
∫
λ
S(λ)Z(λ)dλ ≈

n∑
i=1

ZiSi,

(6.2)

where:
n - number of samples,
S(λ) - input spectrum,
X(λ), Y (λ), Z(λ) - spectral matching curves, which determined by the Com-
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(a) Color image generated from multi-
spectral images

(b) Color image generated from multi-
spectral images with enhanced con-
trast

(c) Monte Carlo simulated image (d) Original image

Figure 6.16: Color images of real and simulated human skin tissue. Red color
indicates Protoporphyrin IX.

mission Internationale l’Eclairage (CIE), describe the color sensitivity of
human optics.

The input spectra is defined in the wavelength between 400nm-720nm with
step 16nm. However, the simulation system is working on spectras defined
in range 360nm-750nm and 5nm stepsize. Such discrepancy is the source of
additional errors, since it is necessary to perform a mapping from input to
system spectra in the beginning. Fortunately, this kind of inaccuracy does
not have a big influence on final colored image.

Generated images are presented in figure 6.16. The image obtained from multi-
spectral images does not look like the real image. Some important data is missing
when taking images of given wavelength and stepsize. The original picture cannot
be reconstructed any more. The red area in the middle was recognized by experts
as cancer. It is not well visible, so in order to see it better an another image
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(a) Spectrum from the multi-spectral
images

(b) Spectrum from the spectrometer

Figure 6.17: Comparison of two method for obtaining light spectrum

was created with increased the image contrast. Now, it can be compared with
simulated image, generated using Monte Carlo technique. In terms of color simi-
larity, the diseased regions show good agreement. Only the intensity is probably
different, but it is not a problem at all, since color is the most interesting part
of the experiment and the brightness of a light source could be adjusted in the
simulation environment.

6.5.2 The comparison of methods for obtaining the reflectance spec-
trum

By obtaining multi-spectral images for 21 different wavelengths, ranging from
400nm to 720nm with 16nm step it is possible to draw a plot representing spec-
trum of a given pixel. Images were not normalized, it means that the intensity of a
color directly represents a spectral radiance at a particular point. The choice of a
pixel is important as long as the tissue surface is not smooth. In the center of the
picture the grey value of 10x10 points were summed up and averaged giving the
intensity of a described region. In such a way the whole reflectance spectrum at
the investigated area was obtained. This method was verified with data obtained
from the spectrometer. As the spectrum normalization method "maximal value
normalization" was chosen - see 7.3.

It can be clearly seen on figure 6.17 that both graphs show rather good cor-
relation with each other. Data from spectrometer were sampled with greater
frequency. This is why some information is missing in multi-spectral images ap-
proach. The smaller peak at 488nm wavelength is well visible at the graph from
spectrometer, while on the other one, where the resolution is much lower, only
slight slope changes were observed. However, the region of saturation is almost
perfectly covered. It starts in both cases at 544nm and ends at 592nm for spec-
trum 6.17a and 596nm for spectrum 6.17b. Finally, plots are going down and
the value of spectral irradiance at 720nm wavelength was equal to 0,15. Such a
good agreement between graphs made it possible to use multi-spectral images in
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further analysis.

6.5.3 The comparison of human tissue with BCC

Basal Cell Cancer (BCC) is one of the most popular skin cancer. The sick rate
seems to show the relationship with the level of pigmentation. This is why Ul-
tra Violet Radiation (UVR) is the most common reason for BCC in all people
races. Also scars, ulcers, immunosuppression and genetic disorders are possible
risk factors for BCC occurrence. Most patients are elderly with similar clinical
symptoms. Single, translucent nodules with ulceration in the center are in many
cases difficult to diagnose, especially when BCC occurs in color of the skin. Inves-
tigations showed that 89% of all cases were aligned on the head and neck regions.
Mean survival rate for metastatic BCC is between 8 months and 3.6 years [87]

As the next task the multi-spectral images from patients with skin cancer
were gathered and compared (see table 6.5). Images for the other patients look
very similar.
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Table 6.5: Multi-spectral images of cheek skin for a white light

In each case 21 grey scale photos were taken for wavelengths between 400nm
and 720nm with step equal to 16nm. The luminance value can be treated as an in-
tensity. All images were non-normalized, which means that they were provided as
they are and without any changes. It guarantees that any important information
wasn’t lost during some preprocessing operations. In order to print them on the
paper, the contrast of separate images was enhanced. Otherwise they would look
totally black. Raw data is useful to analyze the content of pictures, but because
of lack of normalization, they cannot be viewed in popular image viewers. When
comparing columns from table 6.5, they look very similar. It is difficult to distin-
guish healthy and cancerous changes by human. This is why more complicated
apparatus is needed that will help in diagnosis.
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The reflectance spectrum can be created by choosing a point on multi-spectral
images and calculating its intensity. As the spectrum normalization method "nor-
malization by maximum possible value" was chosen - see 7.3.

Patient 1 Patient 2

Tissue
with Bcc

Healthy
tissue

Spectrum
difference

Table 6.6: Light spectrum obtained from multi-spectral images

The comparison of obtained graphs for two different patients with Basal Cell
Cancer is presented in table 6.6. It is remarkable for both patients that for BCC
spectrum a high peak at 624nm is visible. This way diseased and healthy tissue
can be distinguished. After subtracting both spectras from each other the graph
showing only differences occurs. It worth to mention that for patient 1 changes are
closely related to morphological cancer deformations in tissue and with spectrum
of protoporphyrin IX. Data obtained after spectrum subtraction for patient 2 are
not of good quality. However they again show that thanks to fluorescent properties
of tissue, cancer can be recognized by excessive intensity around 624nm.

This method is not very accurate. For carefully selected samples and pixels in
the image, this kind of comparison can be done. Most of the time it is not that
easy ad does not bring any reasonable conclusions.

6.5.4 The visualization of human tissue with BCC

Monte Carlo simulation utilizing photons penetrating human skin combined with
healthy tissue spectrum is going to display the predicted appearance of analyzed
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area. The process of rendering was performed basing on reflectance spectrum of
normal skin - signature 13952/2 and 13952/10. Tissue surface was modeled using
photon mapping as a flat semi-infinite plane with random distortions making it
more realistic. In the middle of the tissue surface a small structure containing
highly fluorescent substance - protoporphyrin IX - was injected to simulate the
reflectance spectrum of a cancer. Obtained results are presented on table 6.7.
The spectrum of cancer was calculated for one of the chosen red pixels. As the
spectrum normalization method "maximal value normalization" was chosen - see
7.3.

Patient 1 Patient 2

Image

Simulated
cancer

spectrum

Table 6.7: Image rendering of tissue with BCC for 2 patients - 13952/2 and
13952/10

Depending on how much light is reflected from the tissue, the area of highest
light intensity has different size. This effect causes that the details of a surface are
missing and only illumination is visible. The color of the skin for both patients
differs as well. As long as spectrum is calculated from multi-spectral images it is
not ideal. For patient 1 the color of a tissue is similar to that of a skin, but for
the second one it is closer to orange color. Actually it is not a problem, because
the peak effect in the reflectance spectrum is still observable.

The results of simulation can be compared with multi-spectral images ob-
tained for real tissues (see table 6.6). They are in good agreement with each
other and the influence of fluorophores are meaningful for final image appear-
ance. In both cases the spectral highest value can be observed somewhere around
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wavelength equal to 624nm. Other differences between original and rendered im-
ages are coming from the morphological changes caused by a tumor and cannot
be simply considered in the tissue model.

6.5.5 The fluorophore spectrum analysis

Additionally the spectrum of the only fluorophore was extracted from the image
after illuminating with white light source (see Figure 6.18). It has an important
property that the spectrum value for wavelengths less than about 590nm is equal
to zero. Then it goes to its maximum and after that it remains at almost constant
level around red color. Its influence is clearly observable on the simulated cancer
spectrum in Table 6.7. Having this shape well defined it is important now to
find other absorbers that influence the human skin reflectance spectrum. The
complete model would improve the analysis, but even now it is very useful and
shows the potential of multi-spectral images.

Figure 6.18: The spectrum of protoporphyrin IX obtained for white light.

6.5.6 The influence of endoscope position on the reflectance spec-
trum

Having a tool for obtaining reflectance spectrum of a given area, a set of multi-
spectral images was taken for human healthy wrist tissue. Experiment was per-
formed for three different situations. The camera is mounted, as usual, just below
the light source and they always point in the same direction. First, both devices
were placed perpendicularly to the surface and 1mm away from the skin. Then
the position of endoscope was moved 5mm away from the object without changing
its direction. Finally, the incident angle was set to 45◦, but this time the position
remained unchanged. In each situation multi-spectral images were taken and the
comparison of resulting averaged spectra for the whole image, were presented on
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(a) Reflectance spectrum for various
distance d

(b) Reflectance spectrum for various
incident angle α

Figure 6.19: Reflectance spectrum of human skin tissue for various light source
settings

(a) Spectral difference of spectra obtained
for various distance d

(b) Spectral difference of spectra obtained
for various incident angle α

Figure 6.20: Spectral difference of spectra obtained for human skin tissue and
various light source settings

figure 6.19 and figure 6.20. As the spectrum normalization method "normalization
by maximum possible value" was chosen - see 7.3.

The first graph shows human skin reflectance spectrum for light source 1mm
and 5mm away from the surface. It can be observed that for wavelengths between
500nm and 600nm plots differ by constant value. The same was noticed for range
600nm and 700nm, but this time the difference was grater. It means, that moving
away the light source from the investigated tissue surface, the changes in the re-
flectance spectrum do not occur linearly, but are strongly wavelength dependent.
It pays attention to the fact that probably there are 2 dominant absorbers in the
human skin, which attenuate the light intensity in a different way.

Another observation was made for reflectance spectrum, when the incident
angle of light source was changed from the direction completely perpendicular
i.e. 0◦ to 45◦. It is worth to stress out that also in this case there are remarkable
changes in skin spectrum. As it can be seen the intensity for wavelengths between
400nm and 550nm remains almost the same. The changes are only noticeable for
range 550nm to 675nm. It is probably due to the fact that scattering properties of
human skin tissue also depends on the wavelength. Moreover, light entering the
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tissue at greater angle penetrates the medium only shallowly before it escapes.
This results in the smaller photon absorption than for the case where the angle
was equal to 0◦ and the mean free path of photon was much longer.





7 The application of multispectral
images

Multi-spectral images can be also used in the other way. Since they provide a
detailed description of an image for a given wavelength, they can be combined
to deliver feature-rich picture for a desired property. In other words, it is needed
to specify what we are looking for and then display pixel by pixel the quantity
describing how strong this parameter influences this part of image. As the result
grayscale representation is obtained which can be further processed.

Multi-spectral images have a couple of disadvantages. Each of them needs to
be removed in a reasonable manner.

1. Every spectral image contains some noise. It is a high frequency noise, which
sums up and highly influence the final data. As the result picture does not
look smooth and pixel intensities are distorted.

2. Multi-spectral images enable to compute directly the whole spectrum for
every needed pixel. However, if sampling interval is too big, a significant
number of information can be lost. Currently 21 images representing range
from 400nm to 720nm was available with 16nm long step. It means that
whenever a spectrum property shorter than sampling interval is looked for,
it can be simply missed and not registered by multi-spectral camera.

3. Every spectral image is biased by the light illuminating the analyzed area.
Since multi-spectral images for human skin tissue are taken from distance
1mm - 5mm, one can observe that pixels in the middle are higher illuminated
than the rest ones. Such influence hides the original image features and adds
low frequency distortion.

4. Spectra obtained for pixels from images acquired for different tissue samples
are difficult to compare. There is no reference between them, since every
situation was illuminated in a bit different way. Also skin of every human
being varies. It causes the problem that very similar spectra looks different,
because one of them is more flattened, they may have completely different
maximal value or they can contain additional unimportant feature. It is very
difficult to remove those influences. If comparison of spectra from different
patients would be possible, it would be easy to detect cancerogenous changes
in the skin.

5. When creating a combined picture from many multi-spectral images it is
worth to consider, which tone mapping should be used. One of the most
popular operator is max-to-white, where pixels with higher intensities be-

101
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come white. This approach however can be problematic when images are
basing on spectra from subsequent pixels. Unimportant noise peaks in con-
stant color image will be magnified to white color, making them the most
visible. Such behavior is very undesired, since only important feature should
be recognizable.

All of those problems will be addressed in the next chapters. Also a final algo-
rithm for cancer recognition will be presented. But first two well known methods
will be described used for multi-spectral image processing and feature recognition.

7.1 Orthogonal Subspace Projection classification

A classification method widely used for multi- and hyper-spectral images is Or-
thogonal Subspace Projection (OSP). It bases on idea of linear unmixing of mixed
pixel vectors, containing a linear combination of endmembers. Individual com-
ponents can be quantified giving the number describing the amount of a given
property in pixel vector. In order for the OSP algorithm to be applicable, the
number of samples should be equal or greater than that for classified endmem-
ber. This assumption guarantees that there are enough dimensions to perform
orthogonal projections coming from separate signatures. In our case this con-
straint is totally fulfilled by multi-spectral images, since only two signatures was
analyzed i.e. isolated cancer spectrum and healthy skin [88].

The main idea of this classifier is to remove all undesired and unwanted sig-
natures in a pixel. Generally those components can be treated as a background.
In the end a matched filter is utilized to derive the expected spectral endmember
existing in that pixel.

Let’s formulate the problem and express a column vector ri as a mixed pixel
vector described by the linear model:

ri = Mαi + ni, (7.1)

where:
r - column vector l × 1,
l - number of samples,
i - pixel number in multi-spectral image,
M - matrix l × p containing columns of all endmembers,
p - number of distinct signatures,
αi - column vector p× 1 representing the fraction of the given endmember in r,
n - column vector l × 1 describing additive, white gaussian noise,

In order to separate desired from undesired spectral components, it is needed
to reformulate Mαi. For situation when only fraction on one endmember needs
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to be computed:
Mαi = dαp + Uγ, (7.2)

where:
d - column vector l × 1 containing signature of interest,
αp - faction of desired component,
U - matrix l× (p−1) composed of the remaining column from M or background,
γ - column vector (p− 1)× 1 containing the remaining fractions of α.

The goal of OSP classification is to find such P that eliminates the influence of
matrix of unwanted components U . This operator projects r onto a subspace that
is orthogonal to the columns of U by using a least squares optimal interference
rejection operator:

P = (I − UU †), (7.3)

where:
I - identity matrix,
U - pseudo inverse of U denoted by U † = (UTU)−1UT .

The task of operator P is to map d into a space orthogonal to the space
spanned by the undesired endmembers in U . Applying it to equation 7.1 and
gives:

Pri = Pdαd + PUγ + ni, (7.4)

Since operator P acting on U † reduces the whole component to zero, therefore
the above formula can be rewritten to:

Pri = Pdαd + ni, (7.5)

Now it is necessary to find matched filter xT for a desired endmember, such
that maximizes the signal-to-noise ratio (SNR).

λ =
xTPdα2

pd
TP Tx

xTPEnnTP Tx
, (7.6)

After solving generalized eigenvector problem (not showed here), it turned
out that xT maximizing SNR is:

xT = kdT , (7.7)

where:
k - arbitrary scalar.

Finally, an overall classification operator for a signature of interest in the
presence of background signature and white noise can be defined as:

qT = dTP, (7.8)
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By applying this operator to all of the pixels in a multi-spectral image, each
spectral vector is transformed to a scalar representing a measure of the presence of
the endmember of interest. Pixels with the highest intensity denote the existence
of the desired signature in the image [89].

7.2 Mean Shift segmentation

There is a number of different nonparametric clustering methods available in the
literature. All of them can be divided into two classes: hierarchical clustering and
density estimation. First technique generally accumulates, combines or divides
the data taking as a criterion some kind of internal measure. Those methods are
considered to be time consuming and inefficient. They also suffer from a difficulty
to define a good stop criterion during data processing. On the other hand the
density estimation clustering technique employs a feature space, which is treated
as the empirical probability density function of the chosen parameter. Local max-
ima of p.d.f. are directly related to the dense regions in the feature space. Basing
on their locations, proximity and structure in feature space, associated clusters
can be defined.

One of the most popular density estimation method is kernel density estima-
tion. Having a data points in d-dimensional space, the kernel density estimator
can be defined as:

f̂(x) = 1
nhd

n∑
i=1

K(x− xi
h

), (7.9)

where K(x) must by radially symetric and satisfy:

K(x) = ck(‖x‖2)), (7.10)

A good example of such a kernel is multivariate normal kernel:

K(x) = (2π)d/2exp(−1
2 ‖ x ‖

2), (7.11)

From equation (7.9) a density gradient estimation can be obtained, which is
proportional to the mean shift vector described as:

mh(yj) = yj+1 − yj =
∑n
i=1 xiexp(‖x−xih ‖

2)∑n
i=1 exp(‖x−xih ‖2)

, (7.12)

Stating that simply, estimate of the density gradient at point x is proportional
to the offset of the mean vector in the window from the center of the window:

∇̂f(x) ∼
(

ave
xi∈Sh,x

[xi]− x
)
, (7.13)
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where:
Sh,x - is the window centered in x and with radius h.

Recursively moving the window Sh,x by the mean shift vector, until it becomes
less than a very small threshold i.e. ∇f(x) ≈ 0, allows to determine local maxima
of density. This approach is guaranteed to converge.

However, when dealing with two-dimensional images an additional factor has
to be taken into account. The position of each pixel is defined in a spatial domain,
while its gray level or color is expressed in range domain. The different nature of
both domains needs to be handled by correct normalization. For this purpose a
multivariate kernel was defined as a product of two radially symmetric kernels:

Khs,hr(x) = C

h2
sh
p
r
k

(∥∥∥∥xshs
∥∥∥∥2)

k

(∥∥∥∥xrhr
∥∥∥∥2)

, (7.14)

where:
xs and xr - spatial and range part of feature vector,
hs and hr - kernel bandwidths.

Both bandwidth parameters control the size of each kernel and in such a way
also define the resolution of local maxima detection. The whole algorithm can be
described as:

1. For every pixel xi in the image:

• Initialize yi,1 = xi,
• Compute recursively mean shift vector, until it is equal to small thresh-
old according to equation (7.12),
• Assign to zi the point of convergence yi,c.

2. Group together all zi which are closer than the hs in spatial and closer than
hr in region domain. Grouped points represents clusters.

3. Assign to xi a cluster number it belongs to.
4. Optionally remove all regions in spatial domain that contains less than M

pixels.

The only parameters that are needed to define a priori are hs, hr and M

[90]. The process of segmentation can be additionally optimized by using edge
detection mechanism - synergistic segmentation. However, using only gradient
magnitude for segmentation is insufficient. In order to create a gradient map two
values needs to be defined:

• ρ is the gradient magnitude value. It can be understood as a thickness of
the edge. The greater ρ, the more visible the edge is.
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• η is the confidence in the presence of an edge in the assumed model, defined
in range from 0 to 1. It means that accurate step-edges would have very
large η.

This approach guarantees that regions with sharp but weak boundaries will
be detected and their boundaries adequately supported by the gradient. Now, for
every pixel in the image a weight wij can be calculated as:

wij = aij ∗ ρij + (1− aij) ∗ ηij , (7.15)

These calculated values can be easily integrated into mean shift segmentation
algorithm described earlier. During filtering phase a weighted average is used in
equation (7.13), with weights defined as 1 - wij . To further merge similar regions,
for every edge a "boundary strength" measure (e) is computed by averaging all
wij on the boundary between similar clusters. Finally, by defining t, whenever
e < t between neighbor regions, the transitive closure operation is performed.

Both image processing methods described above i.e. mean shift segmentation
and edge detection were integrated into Edge Detection and Image Segmentation
(EDISON) system. The application is implemented in C++ and the source code
is available on the web [91]. It can be run in Windows or command line mode.
The user needs to only specify hs, hr, M , ρ, η and threshold t and, as the result,
filtered, segmented or even gradient image will be generated.

7.3 Spectrum comparison problem

It is very important to remark the problem of spectra normalization. The question
arises how to compare two vectors representing color, but with different energy.
The goal is to have such a normalization method for which the difference of two
similar spectra is equal to zero vector. However, this task is quite tough. Three
normalization methods are described below:

1. Simple vector normalization - every vector element is divided by the length
of the whole vector.

x̂ ≡ x√∑n
i=1 x

2
i

, (7.16)

where:
n - dimension of vector space.

2. Normalization by maximum possible value - every vector element is divided
by the maximal value of the spectrum. For multi-spectral images every pixel
is defined in range from 0 to 65536. If the light and tissue conditions are
similar (for example the same patient) this method of normalization can be
reasonable.
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3. Maximal value normalization - every vector element is divided by the high-
est vector value. This operation will bring maximal peaks of two similar
spectra to the same level. But when the second spectra was completely
different, then anyway its maximal value will be set to one. If the energy
carried by the spectrum is important, this kind of function is not appropri-
ate, since it favors every peak value (even from the white noise).

x̂ ≡ x

max(x) , (7.17)

4. Energy preserving normalization - every vector element is divided by the
whole energy carried by the signal. However, if there are two signals with the
same spectrum, but one of them has bigger peak value, then after normal-
ization the base level of both spectra will not be the same any more. They
will be shifted with respect to each other and again cannot be compared
easily.

x̂ ≡ x∑n
i=1 xis

, (7.18)

where:
n - dimension of vector space,
s - the distance between two samples (in our case 16nm).

None of the operations listed above is good enough to use it for spectra com-
parison. In the succeeding computations, the first method was chosen, since it is
the easiest to implement. However both, simple vector normalization and energy
preserving normalization, exhibit the same disadvantages.

7.4 Algorithm

It is time to present the whole algorithm in action. As the input it takes 21 multi-
spectral images and as the result displays all processing steps, which finally show
the location of the places, where the cancer occurs. It is important to note that
when capturing a sequence of images, they should contain not only the suspected,
cancerous regions, but mainly healthy parts of tissue. If a cancer covers more than
50% of the recorded area, it would be not recognized as disease.

In the beginning of algorithm two fluorescence spectra were defined. It is a
fluorescence response of Protoporphyrin IX when illuminating with white or blue
light. Both diagrams were obtained from multi-spectral images of white fabric
illuminated with appropriate light. Since every pixel in the image is a vector, in
order to find an average image color, all vectors were summed up and divided
by the number of pixels. As the spectrum normalization method "simple vector
normalization" was chosen - see 7.3.



108 CHAPTER 7. THE APPLICATION OF MULTISPECTRAL IMAGES

Having defined a spectrum of white light in form of 21 samples from 400nm
to 720nm, it is necessary to convert this spectrum to 79 samples from 360nm to
750nm. Only this kind of spectrum can be read by the application presented in
chapters 5-6. In order to resample original spectrum, a simple interpolation was
performed.

Spectrum from white light (21
samples)

Spectrum from white light (79
samples)

Spectral response on white light of
Protoporphyrin IX (79 samples)

Spectral response on white light of
Protoporphyrin IX (21 samples)

Table 7.1: White light spectrum and the response of Protoporphyrin IX

In PBRT a model of human skin tissue was prepared, where the only fluo-
rophore available in the system was Protoporphyrin IX. For simplicity the color
of the skin was neglected. The application started tracing photons in the scene,
perform subsurface scattering, the fluorescence phenomenon occurred and finally
only photons that escaped the tissue was stored in photon map and rendered.
The spectrum of the Protoporphyrin IX was registered as a vector of 79 samples.
The shape of the spectrum and position of its maxima is exactly the same as in
[92]. It means the simulation gave correct results.

The image processing procedure, that is going to be described here, works di-
rectly on 21 multi-spectral images. It means that a fluorophore response spectrum
cannot be sampled 79 times in range 360nm to 750nm, but it needs to be down-
sampled. Again, a linear interpolation was applied, but this time the result has
some artifacts. For the wave components of higher frequency than the new sample
rate the signal is missing. It is very good visible for the main peak value around
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630nm, which after transformation was cut off drastically. However, the obtained
21 samples spectra is still good enough to use it in the further processing.

Exactly the same approach was followed for blue light. The most surprising
observation is the fluorophore response spectrum, since it looks very similar to
the white light response. The root-cause of such appearance can be explained by
looking at the structure of protoporphyrin Excitation Emission Matrix (EEM)
4.5e. This particular fluorophore has the biggest emission peak for excitation
wavelengths in interval 350nm-450nm. In this range white and blue light excita-
tion spectrum looks quite similar, however blue light shows higher values, because
of its blue peak around 464nm. For this reason also emission spectrum is higher,
but the shape is almost the same as for the white light.

Spectrum from blue light (21 samples) Spectrum from blue light (79 samples)

Spectral response on blue light of
Protoporphyrin IX (79 samples)

Spectral response on blue light of
Protoporphyrin IX (21 samples)

Table 7.2: Blue light spectrum and the response of Protoporphyrin IX

7.4.1 Idea 1 - Image filtering

After both light responses were defined a Matlab script reads a sequence of multi-
spectral images into a 3-dimensional matrix. All files should be located in the
current working directory and their name should follow the convention presented
here: 1_400.png, 2_416.png etc. where first number is the image number in range
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from 1 to 21, while the second number is the wavelength for which the photo was
captured. This is the original naming style of the camera device.

As the next step the Orthogonal Subspace Projection (OSP) transformation
will be utilized for every pixel in the image. As the result 2-dimensional matrix
is generated, where the value of every entry represents a measure of the presence
of the Protoporphyrin IX in the spectrum. In order to that every spectral vector
needs to be multiplied by the classification operator defined in equation 7.8.
However first rejection operator needs to be calculated, which needs the spectrum
of the healthy tissue as a background - see formula 7.3. Since in the beginning
the assumption was made that most of the analyzed region should be covered by
healthy skin, the spectrum of undesired spectral components can be calculated
as the average of all pixel vectors in the image. It turned out later that such an
approach gives acceptable results.

All values obtained after OSP transformation have to be transformed to in-
tensities, which can be displayed on the computer screen. For this reason max-
to-white operator was applied. It maps the lowest values to black color (0), the
highest to white color (1) and the rest are uniformly interpolated between those
two boundary values. Matrix after this operation could be finally stored on the
hard drive. Please refer to an image after applying OSP transformation here 7.1a.

Obtained image has a very noticeable, high frequency noise, which was elimi-
nated by applying median filter on the image of size 9x9 pixels 7.1b. Now every-
thing looks smoother and can be further analyzed.

Orthogonal Subspace Projection applied per pixel converts 23-dimensional
multi-spectral image (2-dimensions represents position, 21-dimensions describes
spectrum of each pixel) into 3-dimensional space. It can be imagined as terrain
landscape, where the higher the point is, the greatest is the level of fluorophore
concentration (see table 7.3). Because of this fact, only distinct pixels should be
isolated, which have a greater intensity than some threshold. A nonlinear trans-
formation was applied for each pixel that amplifies biggest value and suppress
the lowest ones. Every intensity defined in range from 0 to 1 was raised to the
power of four. This exponent gave the best value and was found by experiments
- figure 7.1c.

Looking at table 7.3 it is important to notice, that no matter whether investi-
gated area contains fluorescent substance or not, the OSP image exhibits similar
curvature to 2-dimensional Gaussian function. This bias comes from the center
of the skin illuminated by the light source. In the middle of the image the light
intensity is the highest, but decreases slowly with the distance to the midpoint.
This influence interfere the OSP calculation making low values much higher than
they really are. Despite of the fact that all vectors used by Orthogonal Subspace
Projection were normalized, the impact of higher energy spectrum is still sig-
nificant. Different spectra cannot be easily compared (see discussion in section
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(a) Image after OSP. (b) Image after median filtering.

(c) Image after nonlinear mapping. (d) High frequency image.

(e) Image after mean shift filtering. (f) Gradient image.

(g) Segmented image. (h) Image with merged regions.

Figure 7.1: Cancer recognition for tissue sample signature - 15674/1 (cancer).
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A
ft
er

O
SP

A
ft
er

no
nl
in
ea
r
m
ap

pi
ng

A
ft
er

lo
w

fr
eq
ue

nc
y
re
m
ov
al

Table 7.3: Comparison the process of filtering for healthy and cancerous skin
tissue
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7.3).
In order to avoid the effect of central region illumination, a frequency filter was

designed according to [93]. The cut off value K0 was chosen carefully, so that only
signal of low frequencies remained, but other signal components were removed.
Finally, the 2-dimensional Fourier transform was calculated, then multiplied by
filter and eventually 2-dimensional inverse Fourier transform computed. Obtained
in this way image was subtracted from the original one leaving only signal of high
frequency. As it can be seen in the last row of table 7.3, the bias was removed
and the remaining part is of big interest. In the end all pixel values below a
given threshold (t=0.05) were removed. Also a closing operator was applied to
the image to eliminate not smooth cancer edges. For the result please look at
figure 7.1d.

7.4.2 Idea 2 - Image segmentation

Instead of applying high pass filter to the OSP image also another approach was
investigated. Mean shift filtering with synergistic segmentation based on edge
detection mechanism was applied using EDISON application. As the input the
following configuration file was prepared:

1 //Specify mean shift parameters
2 SpatialBandwidth = 10;
3 RangeBandwidth = 8;
4 MinimumRegionArea = 50;
5 Speedup = MEDIUM;
6 GradientWindowRadius = 1;
7 MixtureParameter = 0.4;
8 EdgeStrengthThreshold = 0.6;
9

10 //Use synergistic segmentation
11 Synergistic ON;
12
13 //Load an image to be segmented
14 Load(’out3.pgm’, IMAGE);
15
16 //Segment the image
17 Segment;
18
19 //Save the result:
20
21 //The segmented image...
22 Save(’segmimage.pgm’, PGM, SEGM_IMAGE);
23
24 //The filtered image...
25 Save(’filtimage.pgm’, PGM, FILT_IMAGE);
26
27 //The gradient map...
28 Save(’gradmap.pgm’, PGM, GRADIENT_MAP);
29
30 //done.

Listing 7.1: Configuration file for EDISON - my.eds

All those parameters were found during many experiments and give the best
results for OSP images. For the reference please look at section 7.2, where the
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whole algorithm including input and output files was described in details. How-
ever, the relation between mathematical symbols and parameters was presented
in table 7.4.

Mathematical sybols EDISON parameters

hs SpatialBandwidth

hr RangeBandwidth

M MinimumRegionArea

ρ GradientWindowRadius

η MixtureParameter

t EdgeStrengthThreshold

Table 7.4: Relation between mathematical sybols and EDISON configuration pa-
rameters

It was decided to use Mean Shift Synergistic Segmentation, because it relies
on gradient vectors between separate pixels. If the gradient is too small, then
most probably adjacent points belong to the same cluster. This is the desired
behavior, since only rapid changes are of high importance and indicate the ap-
pearance of fluorophore in investigated area. This algorithm has also another
advantage. It enables to configure parameters of image filtering and segmenta-
tion in a handy manner. It is not known how many clusters there is going to be,
so popular k-means clustering technique couldn’t be used. Additionally basing
on the images generated by EDISON, even if the results are not satisfactory,
one can draw a proper conclusion about fluorophore concentration. Finally, mean
shift segmentation is fast and the outcome of image processing was successful.

It was decided to create filtered 7.1e, gradient 7.1f and segmented image
7.1g as the output files of application. Filtered image shows clustered image
before segmentation. It can be analyzed if segmentation phase was too greedy or
generous. Gradient image can be also very helpful, since bright and thick lines
indicate big changes in pixel intensities and can be analyzed as the potential
region of cancer. The only drawback of this approach is the direction of the
pixel value changes. From the point of view of feature recognition, only pixels
with higher values than background are interesting. However, gradient and also
segmented image will indicate not only "hills", but also "valleys" in OSP image.
Fortunately it didn’t have big influence on final results.

As the last step after image segmentation, additional merging of obtained
regions is performed. The idea behind that was to show only black and white
image, where white color corresponds to cancerous and black to healthy area. In
the beginning of merging operation a background color is found as the biggest
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region in the image. It will be located somewhere around black color. Again, if the
cancer covers the whole image, this area wouldn’t be that dark any more and the
merging would fail. Next, the second biggest region is determined and checked
if it covers more than 10% of the whole image. If it is true, then make this and
all darker colors black as well. Then, it was also necessary to check if regions of
brighter pixels have minimal area equals to at least 200 pixels and grayscale value
(defined in range from 0-255) grater than 100. If the condition is not fulfilled, the
area is merged to background. All those values were found during investigation
as they gave the best results.

Finally the number of merged regions is defined. It cannot be greater than the
size of color vector or constant parameter equal to four. As the maximum only
this number of closest regions to the brightest region are merged together. The
rest are treated as background. The resulting image is presented in figure 7.1h.

The procedure of connecting similar, brightest region could be seen as very
complicated. However, it was designed and adjusted especially for segmented
images of human skin tissue. The main problem that occurred during implemen-
tation was with finding background color, since bias from light illumination can
cause incorrect classification of healthy skin as cancer. This is why it is checked
how big that area is and if too large, then it is considered as background. The
presented logic has a disadvantage that minimal area or threshold values can be
invalid for some new images. In such a case still all previously generated pictures
will be able to identify cancerous changes.

7.4.3 Full Matlab source code

The full source code written in Matlab is available below:

1 %%%%%%%%%%%%%%%%%%
2 % Validate image %
3 %%%%%%%%%%%%%%%%%%
4 function main()
5
6 cancer_white = [0 0 0.0001 0.0003 0.0006 0.0009 0.002 0.0029 0.0023 0.0019 0.0018 0.0042 ...
7 0.0101 0.0337 0.6201 0.7799 0.1596 0.1963 0.2802 0.2446 0.0334]’; % Cancer spectrum
8
9 cancer_blue = [0 0 0.0002 0.0007 0.0019 0.003 0.0064 0.008 0.0056 0.0047 0.0041 0.0102 ...

10 0.0257 0.0853 1.5667 1.9685 0.406 0.5031 0.7108 0.6203 0.0853]’; % Cancer spectrum
11
12 cancer=cancer_white; % choose cancer response either for
13 % white or blue light
14 cancer = cancer/norm(cancer); % normalized cancer spectrum
15
16 tic; % start measuring time
17
18 B = load_images(path); % load multispectral images
19 res = osp(B, cancer); % calculate OSP
20 map_image(res); % map intensities
21 filter_image; % filter image
22 segment_image; % segment image
23 merge_image; % merge image
24
25 fprintf(’Done \n’);



116 CHAPTER 7. THE APPLICATION OF MULTISPECTRAL IMAGES

26
27 scrsz = get(0,’ScreenSize’); % get screen size
28 h = figure; % create window
29 axes(’position’, [0 0 1 1])
30
31 X1 = imread(’out.png’); % read OSP image
32 X2 = imread(’out2.png’); % read image after median filtering
33 X3 = imread(’out3.png’); % read image after nonlinear mapping
34 X4 = imread(’out4.png’); % read high frequency image
35 X5 = imread(’out5.png’); % read mean shift filtered image
36 X6 = imread(’out6.png’); % read gradient image
37 X7 = imread(’out7.png’); % read segmented image
38 X8 = imread(’out8.png’); % read image with merged regions
39
40 final = [X1 X2 X3 X4; X5 X6 X7 X8]; % concatenate final image
41 imshow(final); % display all images
42
43 pos = get(h,’Position’); % get its current position and size
44 set(h,’Position’,[(scrsz(3)-1000)/2 scrsz(4)/2 1000 380]); % set new position and size
45
46 toc; % display time of operation
47
48 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
49 % Load multispectral images. They have the following format 1_400.png, %
50 % 2_416 etc. for every wavelength from 400-720 (1-21) %
51 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
52 function B = load_images(path)
53 fprintf(’\nLoad images\n’);
54 num=1;
55 for img=400:16:720
56 file = strcat(int2str(img),’.png’); % concatenate wavelength with format
57 % (e.g 400.png 416.png etc.)
58 prefix = strcat(int2str(num), ’_’); % concatenate wavelength number with
59 % "_" (e.g 1_ 2_ etc.)
60 name = strcat(prefix, file); % create the filename as concatenation
61 % of previous strings (e.g. 1_400.png
62 % 2_416.png etc.)
63 A=imread(name); % read multispectral image
64 B(:, :, num) = A; % store the image in 3D matrix
65 num=num+1; % increase the counter
66 end
67
68 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
69 % Caclulate OSP for every valid pixel %
70 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
71 function res = osp(B, cancer)
72 fprintf(’Calculate OSP \n’);
73
74 [Y,X,Z]=size(B); % get image height and width
75
76 V = double(reshape(B(:,:,:),Y*X,21)’); % create matrix of vectors
77 z = sqrt(sum(V.*V)); % caclulate length of every vector
78 V = V ./ z(ones(size(V,1), 1), :); % normalize matrix of vectors
79
80 base = sum(V,2)’; % calculate the sum of all vectors
81 base = base/norm(base); % normalize it
82
83 P = eye(21) - base’*pinv(base’); % caclulate P matrix (look at OSP)
84 res = cancer’*P*V; % calculate intensities (look at OSP)
85 res = reshape(res, Y, X); % reshape to size of the image
86
87 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
88 % Map intensities to image colors %
89 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
90 function map_image(res)
91 fprintf(’Write intensity images \n’);
92
93 maximum = max(max(res)); % find maximum for further mapping
94 minimum = min(min(res)); % find minimum for further mapping
95
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96 color = (res - minimum) / (maximum - minimum); % perform mapping, so that minimal
97 % value has intensity 0 and maximal
98 % value has intesity 1
99 imwrite(color, ’out.png’); % write intensity image
100
101 oMap = medfilt2(color, [9 9]); % apply median filter of size 9x9
102 imwrite(oMap, ’out2.png’); % write intensity image
103
104 oMap = oMap.ˆ4; % add non-linear mapping (xˆ4) to
105 % supress small values and intensify
106 % big values
107 imwrite(oMap, ’out3.png’); % write intensity image
108 imwrite(oMap, ’out3.pgm’); % write image in PGM format
109 % recognizable by EDISON
110
111 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
112 % Remove low frequency signal from the image %
113 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
114 function filter_image()
115 fprintf(’Apply filter \n’);
116 oFil = double(imread(’out3.png’)); % read input file
117
118 img = oFil./255; % normalize image
119
120 [Y,X]=size(img); % get image height and width
121
122 dx = 1; % sampling interval
123 dy = 1; % sampling interval
124
125 KX0 = (mod(1/2 + (0:(X-1))/X , 1) - 1/2); % caclulate discrete grid step in X
126 KX1 = KX0 * (2*pi/dx);
127 KY0 = (mod(1/2 + (0:(Y-1))/Y , 1) - 1/2); % caclulate discrete grid step in Y
128 KY1 = KY0 * (2*pi/dx);
129 [KX,KY] = meshgrid(KX1,KY1); % convert wavenumbers into standard
130 % matrix format
131 K0 = 0.06; % cut off value
132 T = (KX.*KX + KY.*KY $<$ K0ˆ2); % filter formulation
133
134 g = ifft2(T.*fft2(img)); % calculate 2D Fourier transform, apply
135 % filter and then calculate 2D inverse
136 % Fourier transform
137 oFil = real(img - g); % remove low freq signal from the image
138
139 oFil(oFil$<$0.05) = 0; % cut off all values below 0.05
140
141 maximum = max(max(oFil)); % find maximum for further mapping
142 if (maximum~=0)
143 oFil = oFil/maximum; % normalize image
144 end
145
146 se = strel(’disk’,2); % create a mask for edge smoothing
147 oFil = imerode(oFil,se); % erode the image
148 oFil = imdilate(oFil,se); % dilate the image
149
150 imwrite(oFil, ’out4.png’); % write filtered image
151
152 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
153 % Perform mean shift segmentation %
154 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
155 function segment_image()
156 fprintf(’Perform segmentation \n’);
157 system(’edi.exe my.eds’); % run EDISON
158
159 imwrite(imread(’filtimage.pgm’), ’out5.png’); % convert the filtered image file to
160 % standard PNG file
161 imwrite(imread(’gradmap.pgm’), ’out6.png’); % convert the gradient map file to
162 % standard PNG file
163 imwrite(imread(’segmimage.pgm’), ’out7.png’); % convert the output image file to
164 % standard PNG file
165
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166 %%%%%%%%%%%%%%%%%%%%%%%%%
167 % Merge similar regions %
168 %%%%%%%%%%%%%%%%%%%%%%%%%
169 function merge_image()
170 fprintf(’Perform merging \n’);
171
172 oMer = imread(’out7.png’); % read input file
173 [Y,X]=size(oMer); % get image height and width
174 oMer = reshape(oMer(:,:,1),Y*X,1); % create greyscale image as a vector
175 u = unique(oMer); % find unique colors
176 h = histc(double(oMer),u); % find histogram
177
178 threshold = 100; % the maximal pixel value
179 min_area = 200; % the minimal region
180
181 % find background
182 oMer(oMer$<$=u(find(h==max(h)))) = 0; % treat biggest (darkest)
183 % area as background
184 u = unique(oMer); % find unique colors
185 h = histc(double(oMer),u); % find histogram
186
187 m = max(h(2:size(u,1))); % get the peak of histogram,
188 % but neglect first value (background)
189 if (m/Y/X$>$0.1) % if the peak covers more than 10%
190 % of whole image then
191 pos = find(h==m); % find color of that peak
192 for i=2:pos
193 oMer(oMer==u(i)) = 0; % treat those and darker pixels
194 % as background too
195 end
196
197 for i=(pos+1):size(h,1) % for the rest of the colors
198 if ((h(i)$<$min_area) || (u(i) $<$ threshold)) % check if they are big
199 % and bright enough
200 oMer(oMer==u(i)) = 0; % if not, then remove them
201 end
202 end
203
204 u = unique(oMer); % find again unique colors
205 h = histc(double(oMer),u); % find again histogram
206 end
207
208 %merge regions
209 merge = min(size(u,1)-2, 4); % caclulate the number
210 % of merged regions
211 for i=1:merge
212 oMer(oMer==u(size(u,1)-i)) = u(size(u,1)); % replace all merged regions near the
213 end % brighest one with the brightest color
214 oMer(oMer~=u(size(u,1))) = 0; % substitute the black color
215 % to the rest of the pixels
216 oMer = reshape(oMer, Y, X); % create greyscale image as matrix
217 imwrite(oMer,’out8.png’); % write merged image
218
219 % Delete temporary files
220 delete(’out3.pgm’); % delete unneeded files
221 delete(’segmimage.pgm’); % delete unneeded files
222 delete(’filtimage.pgm’); % delete unneeded files
223 delete(’gradmap.pgm’); % delete unneeded files

Listing 7.2: Matlab source code of the whole algorithm

7.5 Results

The algorithm described in previous chapters was successfully applied for different
tissue signatures and different light sources. The results are presented in the next
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sub-chapters.

7.5.1 White light source

When white light source was applied the results of cancer recognition process
looks in the following way.
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(a) Image after OSP. (b) Image after median filtering.

(c) Image after nonlinear mapping. (d) High frequency image.

(e) Image after mean shift filtering. (f) Gradient image.

(g) Segmented image. (h) Image with merged regions.

Figure 7.2: Cancer recognition for tissue sample signature - 15674/5 (healthy).
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(a) Image after OSP. (b) Image after median filtering.

(c) Image after nonlinear mapping. (d) High frequency image.

(e) Image after mean shift filtering. (f) Gradient image.

(g) Segmented image. (h) Image with merged regions.

Figure 7.3: Cancer recognition for tissue sample signature - 15674/7 (cancer).
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(a) Image after OSP. (b) Image after median filtering.

(c) Image after nonlinear mapping. (d) High frequency image.

(e) Image after mean shift filtering. (f) Gradient image.

(g) Segmented image. (h) Image with merged regions.

Figure 7.4: Cancer recognition for tissue sample signature - 15674/9 (cancer).
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(a) Image after OSP. (b) Image after median filtering.

(c) Image after nonlinear mapping. (d) High frequency image.

(e) Image after mean shift filtering. (f) Gradient image.

(g) Segmented image. (h) Image with merged regions.

Figure 7.5: Cancer recognition for tissue sample signature - 15674/11 (healthy).
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(a) Image after OSP. (b) Image after median filtering.

(c) Image after nonlinear mapping. (d) High frequency image.

(e) Image after mean shift filtering. (f) Gradient image.

(g) Segmented image. (h) Image with merged regions.

Figure 7.6: Cancer recognition for tissue sample signature - 13602/5 (healthy).
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(a) Image after OSP. (b) Image after median filtering.

(c) Image after nonlinear mapping. (d) High frequency image.

(e) Image after mean shift filtering. (f) Gradient image.

(g) Segmented image. (h) Image with merged regions.

Figure 7.7: Cancer recognition for tissue sample signature - 13602/7 (cancer).
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(a) Image after OSP. (b) Image after median filtering.

(c) Image after nonlinear mapping. (d) High frequency image.

(e) Image after mean shift filtering. (f) Gradient image.

(g) Segmented image. (h) Image with merged regions.

Figure 7.8: Cancer recognition for tissue sample signature - 13602/9 (cancer).
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(a) Image after OSP. (b) Image after median filtering.

(c) Image after nonlinear mapping. (d) High frequency image.

(e) Image after mean shift filtering. (f) Gradient image.

(g) Segmented image. (h) Image with merged regions.

Figure 7.9: Cancer recognition for tissue sample signature - 13952/8 (cancer).
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(a) Image after OSP. (b) Image after median filtering.

(c) Image after nonlinear mapping. (d) High frequency image.

(e) Image after mean shift filtering. (f) Gradient image.

(g) Segmented image. (h) Image with merged regions.

Figure 7.10: Cancer recognition for tissue sample signature - 13124/5 (cancer).
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(a) Image after OSP. (b) Image after median filtering.

(c) Image after nonlinear mapping. (d) High frequency image.

(e) Image after mean shift filtering. (f) Gradient image.

(g) Segmented image. (h) Image with merged regions.

Figure 7.11: Cancer recognition for tissue sample signature - 13124/7 (cancer).
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(a) Image after OSP. (b) Image after median filtering.

(c) Image after nonlinear mapping. (d) High frequency image.

(e) Image after mean shift filtering. (f) Gradient image.

(g) Segmented image. (h) Image with merged regions.

Figure 7.12: Cancer recognition for tissue sample signature - 13124/11 (healthy).
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(a) Image after OSP. (b) Image after median filtering.

(c) Image after nonlinear mapping. (d) High frequency image.

(e) Image after mean shift filtering. (f) Gradient image.

(g) Segmented image. (h) Image with merged regions.

Figure 7.13: Cancer recognition for tissue sample signature - 13124/12 (cancer).
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(a) Image after OSP. (b) Image after median filtering.

(c) Image after nonlinear mapping. (d) High frequency image.

(e) Image after mean shift filtering. (f) Gradient image.

(g) Segmented image. (h) Image with merged regions.

Figure 7.14: Cancer recognition for tissue sample signature - 13002/1 (cancer).
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(a) Image after OSP. (b) Image after median filtering.

(c) Image after nonlinear mapping. (d) High frequency image.

(e) Image after mean shift filtering. (f) Gradient image.

(g) Segmented image. (h) Image with merged regions.

Figure 7.15: Cancer recognition for tissue sample signature - 13002/4 (cancer).
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(a) Image after OSP. (b) Image after median filtering.

(c) Image after nonlinear mapping. (d) High frequency image.

(e) Image after mean shift filtering. (f) Gradient image.

(g) Segmented image. (h) Image with merged regions.

Figure 7.16: Cancer recognition for tissue sample signature - 0/4 (healthy).
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(a) Image after OSP. (b) Image after median filtering.

(c) Image after nonlinear mapping. (d) High frequency image.

(e) Image after mean shift filtering. (f) Gradient image.

(g) Segmented image. (h) Image with merged regions.

Figure 7.17: Cancer recognition for tissue sample signature - 0/5 (healthy).
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(a) Image after OSP. (b) Image after median filtering.

(c) Image after nonlinear mapping. (d) High frequency image.

(e) Image after mean shift filtering. (f) Gradient image.

(g) Segmented image. (h) Image with merged regions.

Figure 7.18: Cancer recognition for tissue sample signature - 0/7 (healthy).
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Sample
signature

Description

15674/1 Skin tissue classified by experts as cancer. Already at OSP
image some discontinuities are visible. After removing low
frequency disturbance a cancer is clearly visible. The tight
concentration of bright edges on gradient image also enabled
to find tissue anomalies by mean shift segmentation. How-
ever not everything was detected.

15674/5 Skin tissue classified by experts as healthy. No malforma-
tion in OSP image, also on high frequency image no can-
cer symptoms were observed. Gradient image contained only
mild edges and finally mean shift segmentation after region
merging didn’t detect anything. That was the same patient
as for tissue 15674/1.

15674/7 Skin tissue classified by experts as cancer. OSP image did
not give any unambiguous information. Frequency filtered
image gave some suspicion about the location of small re-
gions with cancer. However, mean shift segmentation was
more greedy and indicated the bigger area of fluorophore
concentration.

15674/9 Skin tissue classified by experts as cancer. That was the same
patient as for tissue 15674/7. OSP image looked smooth and
safe. However, both filtered and segmented images denoted
many cancerous deformations. Gradient image was not very
helpful.

15674/11 Skin tissue classified by experts as healthy. Again the same
patient as in 15674/7 and 15674/9. Image after OSP trans-
formation looks very smooth. In this case both applied tech-
niques gave the expected result i.e. no cancerous regions of
skin were detected.

13602/5 A scar after removal of Basal Cell Carcinoma. Since no
histopathology was performed, the condition of skin is un-
known. OSP image showed however a place, where cancer
was previously located. After filtering or segmenting the im-
age there is no indication that a tissue still suffers from BCC
disease.
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13602/7 Skin tissue with suspicion of cancer, but histopathology was
not available. Already OSP image indicates some areas with
higher pixel intensities. After low frequency signal removal
there was no doubts that in the left hand side of the im-
age fluorescence phenomenon occurred. The same conclu-
sion could be drawn after looking at segmented or gradient
image.

13602/9 Again skin tissue with potential of cancer, but without
histopathology investigation. Clear evidence of skin malfor-
mation in the left hand part of the image. All utilized algo-
rithms gave very good results.

13952/8 Skin tissue on the nose classified by experts as cancer. Bright
point on the OSP image indicated that there is a risk of
disease. After frequency filtering or synergistic segmentation
a white dot was not eliminated. It suggests that cancerous
changes were detected.

13124/5 Suspicious wart on skin tissue. Generally region was classi-
fied as healthy. OSP image didn’t give precise information
about skin condition. However, high frequency and gradient
image denoted exact parts where cancerogenesis occurred.
For synergistic segmentation those regions were very weak
and as a result merged to the background color.

13124/7 Leukoplakia located on the bottom lip. It isn’t usually dan-
gerous, but a small percentage of incidents show early signs
of cancer. As in the previous case the best results were ob-
tained for filtered and gradient image. Changes detected by
mean shift segmentation were again too low and disappeared
during merging.

13124/11 A part of tissue in the oesophagus. It was very difficult to
take sharp and unblurred multi-spectral images. The result
is presented on OSP image, which together with the rest of
generated images, didn’t give any useful information about
cancer occurrence and location.

13124/12 A part of tissue in the oesophagus classified by experts as
cancer. As before OPS image is very noisy, but despite of
that it is possible to localize brighter regions, which can po-
tentially signalise cancerous regions. Intensity changes were
too low to be distinguished by image filtering or mean shift
segmentation.
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13002/1 Skin tissue on the human back classified by experts as Mor-
bus Bowen cancer. OSP image with nonlinear mapping gave
quite good indication where cancer is located. The rest of
the job is done by removing low frequency signal from the
image. Also synergistic segmentation denotes precisely the
position of cancerous changes.

13002/4 Skin tissue on the human chest classified by experts as Basal
Cell Carcinoma. Already OSP image denoted some discon-
tinuities in the tissue reflectance spectrum. After removing
low frequency perturbation a cancer is very well visible.
Two circle areas depicted by gradient image weren’t how-
ever found by mean shift segmentation. The left hand side
region was to weak and wasn’t detected by the algorithm.

0/4 Skin tissue on my wrist taken from distance of 1mm. OSP
image looked quite smooth and coherently. Very small bright
dots were observer for filtered image, however mean shift
segmentation was not so sensitive and classified the tissue
as unhealthy.

0/5 Skin tissue on my wrist taken from distance of 5mm. The
position of camera didn’t make any difference. As in the
previous case, frequency filtering detected tiny dots of po-
tential interests, but this time only in the number of two
occurrences. With high probability they can be treated as
an error. Synergistic segmentation gave correct results and
this method seems to be less noise sensitive.

0/7 Skin tissue on my wrist taken from distance of 5mm and
angle 45◦. The direction of the camera also didn’t influence
the results. Both filtering and image segmentation gave good
results and correct indication of no cancer in the tissue.

Table 7.5: The analysis of results for white light

The analysis from table 7.5 gave very optimistic results. All of the presented
tissue examples were classified correctly by either image filtering or mean shift
segmentation. It was proven that the algorithm is able to recognize healthy and
cancerous skin for different and also for the same patient. It was also able to lo-
calize diseased tissue on the image very accurately. As the advantage, the process
of recognition has several steps. Each of them can help to provide more accurate
and reliable diagnosis. Sometimes even single OSP image is enough to get good
understanding of tissue condition. In all 18 cases filtering always correctly recog-
nized cancerous changes. Synergistic segmentation was however successful in 16
cases, which is still very good.
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It is needed to note that it is difficult to take a multi-spectral photograph of
a skin tissue illuminated with white light. Among 27 available samples only 18
could be used. The rest didn’t contain any useful information or was very noisy.
It means that only 66% of provided samples could be analyzed.

7.5.2 Blue light source

When blue light source was applied the results of cancer recognition process looks
in the following way.
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(a) Image after OSP. (b) Image after median filtering.

(c) Image after nonlinear mapping. (d) High frequency image.

(e) Image after mean shift filtering. (f) Gradient image.

(g) Segmented image. (h) Image with merged regions.

Figure 7.19: Cancer recognition for tissue sample signature - 13602/6 (cancer).
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(a) Image after OSP. (b) Image after median filtering.

(c) Image after nonlinear mapping. (d) High frequency image.

(e) Image after mean shift filtering. (f) Gradient image.

(g) Segmented image. (h) Image with merged regions.

Figure 7.20: Cancer recognition for tissue sample signature - 13602/8 (cancer).
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(a) Image after OSP. (b) Image after median filtering.

(c) Image after nonlinear mapping. (d) High frequency image.

(e) Image after mean shift filtering. (f) Gradient image.

(g) Segmented image. (h) Image with merged regions.

Figure 7.21: Cancer recognition for tissue sample signature - 13602/10 (cancer).
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(a) Image after OSP. (b) Image after median filtering.

(c) Image after nonlinear mapping. (d) High frequency image.

(e) Image after mean shift filtering. (f) Gradient image.

(g) Segmented image. (h) Image with merged regions.

Figure 7.22: Cancer recognition for tissue sample signature - 13124/6 (cancer).
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(a) Image after OSP. (b) Image after median filtering.

(c) Image after nonlinear mapping. (d) High frequency image.

(e) Image after mean shift filtering. (f) Gradient image.

(g) Segmented image. (h) Image with merged regions.

Figure 7.23: Cancer recognition for tissue sample signature - 13124/8 (cancer).
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(a) Image after OSP. (b) Image after median filtering.

(c) Image after nonlinear mapping. (d) High frequency image.

(e) Image after mean shift filtering. (f) Gradient image.

(g) Segmented image. (h) Image with merged regions.

Figure 7.24: Cancer recognition for tissue sample signature - 13002/2 (cancer).
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(a) Image after OSP. (b) Image after median filtering.

(c) Image after nonlinear mapping. (d) High frequency image.

(e) Image after mean shift filtering. (f) Gradient image.

(g) Segmented image. (h) Image with merged regions.

Figure 7.25: Cancer recognition for tissue sample signature - 13002/3 (cancer).
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Sample
signature

Description

13602/6 A scar after removal of Basal Cell Carcinoma. That was the
same patient as for tissue 13602/5 and again there was no
histopathology performed before. The camera was in slightly
different position than for the white light and already OSP
image showed some place of medical interest. Image filter-
ing, gradient image and segmentation method indicated that
even after cancer removal BCC was not completely elimi-
nated.

13602/8 Skin tissue without histopathology, but with suspicion of
cancer. That was the same patient as for tissue 13602/7. In
OSP image some discontinuities are visible, however of very
low intensity. Low frequency removal was able to extract
those changes. The second technique is not so sensitive and
didn’t detected a cancer.

13602/10 Skin tissue classified by experts as cancer, but there was
no data from histopathology. That was the same patient as
for tissue 13602/9. As in the previous cases, only frequency
filtering was able to emphasise cancerous changes. Synergis-
tic segmentation was not powerful enough, even with good
gradient image.

13124/6 Suspicious wart on skin tissue. The region around was clas-
sified as healthy. That was the same patient as for tis-
sue 13124/5. Some indication about possible cancerogenesis.
Two image processing methods that were applied, denoted
very precisely a places of fluorophore concentration. Both
techniques gave good results, but filtering was more accu-
rate.

13124/8 Again Leukoplakia located on the bottom lip. That was the
same patient as for tissue 13124/7. Already OSP image pre-
sented a couple of places with very bright pixels. Further
analysis using filtering, gradient image and mean shift seg-
mentation confirmed that there were two regions, which with
high probability can be classified as cancer.
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13002/2 Skin tissue classified by experts as Morbus Bowen cancer.
That was the same patient as for tissue 13002/1. OSP im-
age looked very smooth and couldn’t say anything about
tissue condition. However, high frequency image gave more
accurate results and also positions of cancerous changes. Im-
age segmentation was not that good any more and classified
the tissue incorrectly as healthy.

13002/3 Skin tissue classified by experts as Basal Cell Carcinoma.
That was the same patient as for tissue 13002/4. Cancer is
very well visible after low frequency removal or performing
image segmentation. Also gradient image gave very good
indication about the localization of fluorophores.

Table 7.6: The analysis of results for blue light

First of all it turned out that it is extremely difficult to take a multi-spectral
photograph of a skin tissue illuminated with blue light. Among 21 available sam-
ples only 7 could be used by image recognition algorithms. It is only 33% of all
obtained samples. The rest of them was very noisy or there was no data at all.
It means that it is easier to take the photo of tissue illuminated with white light.
Probably for blue light it is more difficult to find proper camera configuration
and obtain sharp images. Also important seems to be the distance to the skin.

The rest of the images were examined in table 7.6 and the outcome is also
very satisfactory. Removal of low frequency disturbances always correctly classi-
fied skin samples and gave exact position of diseased parts of a tissue. However,
mean shift segmentation wasn’t that good as for the white light and only for 4
among 7 cases gave the expected results. It seems that for blue light illumina-
tion synergistic segmentation cannot correctly recognize intensity changes on the
image. Most probably another parameters settings would be needed.

7.5.3 Cancer detection on simulated human skin tissue

As the final experiment a photon mapping algorithm was run, so that fluorescence
of Protoporphyrin IX occurred in the middle of the simulated skin structure. The
skin tissue was rendered using direct illumination model. Contrast tone mapping
algorithm was used. Cancerous changes was modeled with 1000 subsurface pho-
tons, which entered the object and left it in different place after a contact with
fluorophore. To find a pixel intensity value, 50 neighbor photons were gathered
and their influence calculated. The rest of the skin was simulated as direct illu-
mination in order to get consistent appearance. The tissue color spectrum was
calculated as the average of all multi-spectral vectors for two tissue samples with
different signatures. The skin was illuminated with white light. As the result of
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experiment 21 multi-spectral images were created, which were eventually pro-
cessed by image recognition procedures i.e. frequency filtering and mean shift
segmentation.

Surprisingly, the generated color image does not contain cancerous changes.
The influence of fluorophore is so low that the skin seems to be healthy. However
after applying image processing procedures, already OSP image shows Protopor-
phyrin IX in the middle and eliminates the tissue color - figure 7.26. After removal
of low frequency disturbances only subareas of higher intensities are displayed.
More general location of cancer presents synergistic segmentation, which merged
also most similar clusters.

This experiments proved again that Monte Carlo model of skin tissue is phys-
ically correct and gives expected results also for multi-spectral images. It also
shows how difficult it is to find and diagnose the cancer with the unaided eye. In
many cases fluorescence effect is simply invisible. In other situations the suspi-
cious area can be a non-dangerous wart or a skin disease not related with cancer.
The presented method was able to solve both problems.

As a comparison the same simulation was performed for another tissue color
spectrum calculated from different skin signature - figure 7.27. Again cancerous
changes are not visible, but the image recognition procedure is able to detect
interesting parts of tissue. It also correctly classified images generated for other
tissue signatures, but not presented here. It means that the algorithm is able
to detect cancer and healthy skin correctly, no matter what color spectrum the
background tissue has.

It is important to note that images obtained during image processing for
both skin signatures are almost the same. It is because the shape of the surface
is in both cases the same and photons have exactly the same localizations and
intensities.



7.5. RESULTS 151

(a) Generated image. (b) Image after OSP.

(c) Image after nonlinear mapping. (d) High frequency image.

(e) Image after mean shift filtering. (f) Gradient image.

(g) Segmented image. (h) Image with merged regions.

Figure 7.26: Cancer recognition for tissue sample generated using skin background
of signature - 13124/7 (cancer detected).
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(a) Generated image. (b) Image after OSP.

(c) Image after nonlinear mapping. (d) High frequency image.

(e) Image after mean shift filtering. (f) Gradient image.

(g) Segmented image. (h) Image with merged regions.

Figure 7.27: Cancer recognition for tissue sample generated using skin background
of signature - 13602/9 (cancer detected).



8 Conclusions

The novel aspect of this dissertation is that simulation of light transport in human
tissue together with multi-spectral imaging can be applied to find most optimal
parameters of endoscope and detect photosensitizer accumulation in cancerous
cells simpler and quicker. In order to provide satisfactory results, it was necessary
to achieve the goals from chapter 2:

1. Define parameters and optical model of human skin tissue - in chap-
ter 4.3 the simplified optical model of human skin tissue was presented. It is
a one-layered structure that consists of absorbing, scattering and fluorescent
elements. It was assumed that all of those parameters can be calculated as
an average of real tissue coefficient. The provided model gave satisfactory
results.

2. Define types and concentration of natural fluorophores in human
skin tissue - in chapter 4.2 all fluorophores existing in human skin tis-
sue were described, including their excitation-emission matrices. However,
there is no valid documentation describing how much of given fluorophore a
unit volume contains. This value was necessary to compute the probability
of photon interaction with fluorescent molecule for the photon mapping al-
gorithm. It was decided to guess those values and analyze obtained results.
Since the frequency of occurrence of fluorescence phenomenon is not that
important, but the reflectance spectra is the most critical, the proposed
simplification was acceptable.

3. Simulate the propagation of light rays in human skin tissue uti-
lizing photon maps - in chapter 5 the Monte Carlo algorithm of light
transport in turbid media was presented. This technique could be easily
converted to photon mapping simulation, including the fluorescence phe-
nomenon. Two types of photon maps were introduced i.e. surface and vol-
umetric. In order to obtain better looking results ray marching method
was described. As the important parameter of rendering procedure vari-
ous types of tone mapping techniques was used. Each of them was later
applied in different situations. For the purpose of fluorescence simulation
the excitation-emission matrix was defined, which expresses the changes in
light spectrum after contact with fluorescent molecule. The whole idea was
further used to perform simulation and analyze quantitatively and qualita-
tively obtained results.

4. Propose the most efficient light source parameters during pho-
todynamic diagnosis - chapter 6.2 shows the simulated human skin tis-

153
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sue when different light sources were applied. For blue laser light beam,
the biggest contrast between collagen and protoporphyrin was obtained for
wavelength equals 400nm. Ideal white light source or Xenon lamp also gave
good results, but the level of discrimination is much lower - the influence
of collagen is still noticeable. The worst outcome was obtained for Mer-
cury lamp, where both fluorophores were red color. However, it needs to
be stressed that collagen is not the only natural fluorophore influencing
reflectance spectra, but dominates over the rest components.

5. Propose the best angle of endoscopic device with respect to tissue
surface during photodynamic diagnosis - the dependence between the
light source incident angle and the image quality was presented in chapter
6.2. Generated images suggest that the best position of endoscope is not
the angle β equal to 0◦. The optimal direction is also not greater than
30◦. Only quantitative analysis described in chapter 6.4.2 provides better
understanding of situation. From the point of view of total energy collected
on the tissue surface the maximum value is located somewhere around β =
30◦.

6. Analyze quantitatively the process of light transport in human
skin tissue using photon map algorithm - the influence of light initial
angle of incidence on simulation outcome was presented in quantitative
way in chapter 6.4. The number of emitted photons, their total energy,
excitant direction, quantum yield and penetration depth were analyzed.
General conclusion that can be drawn is that when increasing the angle
of incidence more photons get absorbed or reflected from the medium. In
such a case more photons energy is stored on the tissue surface and they
penetrate the medium less and less deeply. The excitant direction of the
photons is opposite to the initial light direction, which is also the expected
behavior. Obtained data prove that the mathematical model of human skin
tissue and chosen algorithm are mathematically correct and give not biased
results. The data investigation also suggest that the best angle of incidence
is not 0◦, since for the angle the greatest number of photons get absorbed.

7. Investigate autofluorescence phenomenon and fluorescence of can-
cerous human skin tissue with photosensitisers - chapter 6.5.3 com-
pare the multispectral images for healthy and tissue with Basal Cell Cancer.
By simply looking at images a human observer is not able to directly recog-
nize and fully diagnose a cancerous changes. It is better to find a suspicious
area, plot its spectrum and compare it with the spectrum of the region that
for sure is healthy. If the cancer spectrum contains a characteristic peak
around 624nm, then it can suggests that some protporphyrin was there ac-
cumulated. Also simple spectrum difference can be done to detect tumor,
when as the result almost clean photosensitizer spectrum is obtained. But



155

it is important to note, that it is not always clear, where healthy or can-
cerous changes are located. This is why this method is not good enough for
photodynamic diagnosis. Additionally in chapter 6.5.6 the reflectance spec-
trum of healthy human skin from different endoscope configuration was
presented. They show that human skin tissue parameters like absorption
and scattering influence differently various wavelengths of reflected spec-
trum. This phenomenon was not taken into account in tissue model to keep
the algorithm quick and simple.

8. Generate images representing human skin tissue with similar ap-
pearance and properties like real tissue sample - the result of pho-
ton mapping algorithm as a fully rendered human tissue skin sample was
presented in 6.5.4. The aim of this dissertation was not to generate photo-
realistic images, but some kind of the presentation that enables to decide
whether obtained results are reasonable and can be used in further analysis
or not. The most important feature is the spectrum of every rendered pixel.
By comparing the reflectance spectra of simulated and real protoporphyrin
IX, the similarity is quite good visible. It again proves that proposed model
gave physically correct results.

9. Analyze multi-spectral images and their properties - the beginning
of chapter 7 presents all problems and concerns about multi-spectral images.
It is worth to also mention that every image is taken manually by human
and slightly from different position, because of camera shaking. This effect
is noticeable from image to image, but cannot be removed easily. In order
to detect the accumulation of protoporphyrin IX in the human skin in
chapter 7.1 Orthogonal Subspace Projection classifier was presented. For
every pixel it calculate a measure describing the content photosensitizer
in the pixel spectrum. This method is very promising and was used as
a basis for further image processing and cancer detection. The choice of
classification method was dictated by no information where the cancer is
located and if at all it is somewhere. It is difficult to prepare training set,
so supervised classification methods couldn’t be applied.

10. Propose the most optimal methods of using multi-spectral images
in photodynamic diagnosis - after pixel classification presented in chap-
ter 7.1 it was necessary to separate regions with cancer from healthy parts
of a tissue. For that purpose two unsupervised classifying techniques were
presented. The first idea covered non-linear mapping with low frequency
signal removal. The second conception utilized mean shift segmentation en-
hanced with edge detection for better region recognition. Both proposals
gave successful results, as it can be seen in chapters 7.5.1 and 7.5.2.

11. Compare multi-spectral images of human skin tissue with mul-
tispectral images generated during photon mapping simulation
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- finally in chapter 7.5.3 human tissue samples was simulated by photon
mapping and as the result also multi-spectral images were produced. Those
sequences of spectral images were the subject of cancer recognition meth-
ods described in previous chapters. In both cases the proposed techniques
were able to correctly detect diseased regions. It again proves that Monte
Carlo simulation of light transport in human skin tissue was implemented
correctly and give accurate results.

By finishing all those tasks, it was possible to prove and show the correctness
of all thesis formulated in chapter 2. The list of tasks that were fulfilled in the
scope of given thesis is presented below. The successful realization of all of them
can be considered as a proof of selected thesis.

1. It is possible to create mathematical model of subsurface light
transport of chosen human tissue, defined by absorption, scatter-
ing and fluorescence phenomenon.

• Define parameters and optical model of human skin tissue,
• Define types and concentration of natural fluorophores in human skin

tissue,

2. It is possible create such a model, which basing on the Monte
Carlo method is able to generate multi-spectral images quali-
tatively compliant with real multi-spectral images taken during
photodynamic diagnosis.

• Simulate the propagation of light rays in human skin tissue utilizing
photon maps,
• Analyze quantitatively the process of light transport in human skin
tissue using photon map algorithm,
• Investigate autofluorescence phenomenon and fluorescence of cancer-
ous human skin tissue with photosensitisers,
• Generate images representing human skin tissue with similar appear-
ance and properties like real tissue sample,
• Analyze multi-spectral images and their properties
• Compare multi-spectral images of human skin tissue with multispec-
tral images generated during photon mapping simulation

3. The created model enables to optimize the chosen parameters
of image acquisition process like light incident angle, the light
source spectrum or the distance to the investigated tissue surface
and enables to unambiguously distinguish between cancerous and
healthy tissue sample.

• Propose the most efficient light source parameters during photody-
namic diagnosis,
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• Propose the best angle of endoscopic device with respect to tissue
surface during photodynamic diagnosis,
• Propose the most optimal methods of using multi-spectral images in
photodynamic diagnosis

Summarizing it was possible to provide good human skin tissue model with
properties similar to real skin signatures. The Monte Carlo algorithm extended
by light optical properties, photon mapping and fluorescence phenomenon gave
accurate details about processes that happen below the tissue surface. Observa-
tions about reflected spectrum could be utilized to apply Orthogonal Subspace
Projection on real multi-spectral images. The algorithm was able to correctly
detect tumor and healthy human skin tissue in almost 100% cases for white and
blue light sources. The obtained results are very promising. As the future work it
would be challenging to adjust this method to internal parts of the human body
like oesophagus or stomach.





9 Streszczenie

Pojęcie diagnozy fotodynamicznej zostało wprowadzone już na początku lat 80’.
Diagnoza fotodynamiczna wykorzystuje zjawisko fluorescencji w cząsteczkach
endo- i egzogennych występujące w tkankach ludzkich. Specjalne substancje o
właściwościach fluorescencyjnych są wprowadzane do krwiobiegu, a następnie gro-
madzone w komórkach rakowych cechujących się szybszą przemianą materii. Pod
wpływem oświetlenia o odpowiedniej długości fali, tkanki rakowe mogą być roz-
poznawane poprzez zwiększone natężenie koloru czerwonego w widmie odbitym.
Substancja odpowiedzialna za to zjawisko to Protoporfiryna IX występująca w
procesie syntezy hemoglobiny. Istnieją także naturalne substancje występujące w
tkankach ludzkich, które pod wpływem światła laserowego wykazują właściwości
fluorescencyjne. Kontrast między tkanką zdrową a rakową wynika z różnego roz-
proszenia endogennych cząsteczek fluorescencyjnych w tkance oraz innego widma
emisji światła. Głównymi fluoroforami w warstwie nabłonkowej są tryptofan, di-
nukleotyd nikotynamidoadeninowy (NADH) oraz dinukleotyd flawinoadeninowy
(FAD), natomiast w skórze właściwej są to włókna kolagenowe.

W celu dokładnego zbadania zjawiska fluorescencji w tkance ludzkiej za-
proponowany został matematyczny model, który wiernie odzwierciedla proces
transportu, załamania, rozproszenia i absorpcji światła. Zdefiniowano parametry
tkanki skóry, substancje wchodzące w jej skład, ich właściwości, ilość oraz macie-
rze EEM (Excitation Emission Matrix) pozwalające określić widmo emitowanego
światła dla danego widma światła pobudzenia. Symulacja wykorzystuje metodę
Monte Carlo polegającą na śledzeniu promieni wysłanych ze źródła światła, po
których przemieszcza się cząsteczka nazywana umownie fotonem. W momencie,
gdy dojdzie do kontaktu pomiędzy fotonem a powierzchnią rozpraszającą, jego
położenie, kierunek oraz energia zapisywana jest w specjalnej strukturze zwanej
mapą fotonową. Jeśli wymagana liczba promieni została wyemitowana oraz zgro-
madzona odpowiednia liczba fotonów , to otrzymane w ten sposób dane mogą
zostać użyte w procesie renderingu i wyliczania koloru piksela w określonym miej-
scu na ekranie. Metoda ta jest szeroko używana przez grupę algorytmów wyko-
rzystujących techniki śledzenia promieni, włączając w to mapowanie fotonów.

W celu zwiększenia dokładności algorytmu, poza mapami fotonowymi zawie-
rającymi dane dotyczące oświetlenia na powierzchni tkanki, wprowadzono także
mapy wolumetryczne. Posiadają one informacje o energii fotonów wewnątrz ba-
danej struktury. Otrzymane w ten sposób dodatkowe informacje pozwalają na
lepsze zrozumienie zjawiska fluorescencji w tkance ludzkiej oraz przeprowadzenie
analizy jakościowej i ilościowej wygenerowanych obrazów.

Badania pokazały, że dla wiązki laserowej w kolorze niebieskim największy
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kontrast pomiędzy kolagenem a cząsteczkami protoporfiryny zaobserwowano dla
długości fali wynoszącej 400nm. Idealne światło białe oraz lampa xenonowa także
dały zadowalające wyniki, jednakże gorsze od światła laserowego. Z uwagi na
znaczne podobieństwa w widmie odbitym, lampa typu Merkury nie nadaje się do
tego rodzaju badań.

Przeprowadzono także ilościowe badania wpływu kąta padania promieni świa-
tła na wyniki symulacji. Liczba emitowanych fotonów, energia całkowita, kąt
opuszczenia tkanki, wydajność kwantowa oraz głębokość to parametry, których
rozkład został przeanalizowany. Im większy kąt początkowy, tym większa energia
fotonów i większa ich liczba odbija się od powierzchni tkanki, a ich kąty wyjścia
są skierowane w kierunku odpowiadającym odbiciu lustrzanemu. Otrzymane wy-
niki nie są zaskakujące i sugerują, że najlepszy kierunek padania promieni światła
to nie 0◦, kiedy to największa liczba fotonów ulega absorpcji. Biorąc pod uwagę
jakość wygenerowanych obrazów i dane ilościowe dotyczące energii całkowitej
zgromadzonej na powierzchni skóry sugerowany kąt to około 30◦.

Opisany model w połączeniu z obrazami wielospektralnymi znajduje zasto-
sowanie w medycynie i pozwala na szybkie wykrycie oraz zdiagnozowanie zmian
nowotworowych tkanki ludzkiej skóry. Specjalne filtry podatne tylko na wybraną
długość fali są w stanie zarejestrować natężenie światła dla jednej tylko jej skła-
dowej. Powstające w ten sposób obrazy wielospektralne zawierają informacje nie-
widoczne w normalnych warunkach dla ludzkiego oka. Zdjęcia, które były do-
stępne w czasie badań posiadały tę właściwość, że każdemu pikselowi odpowia-
dało widmo światła odbitego zdefiniowane pomiędzy 400nm-720nm i częstotliwo-
ścią próbkowania wynoszącą 16nm.

W ten sposób porównano widma tkanki skóry dla różnych konfiguracji źródła
światła, czyli odległości od powierzchni i kąta padania. Przygotowano także ze-
stawienie widma tkanki zdrowej z widmem tkanki dotkniętej zmianami nowotwo-
rowymi po zaaplikowaniu fotouczulacza. Charakterystyczna wartość szczytowa
w okolicach 624nm jasno sugerowała lokalizację fragmentu tkanki ze zmianami
nowotworowymi. Co więcej, porównano widmo protoporfiryny z obrazów wielo-
spektralnych z widmem wygenerowanym metodą map fotonowych. Podobieństwo
było bardzo widoczne. Sugeruje to ponownie, że proponowany model tkanki skóry
z fizycznego punktu widzenia jest poprawny.

Jednakże nie zawsze da się w prosty sposób wskazać miejsca co do których
istnieje podejrzenie nowotworu. W tym celu wykorzystano metodę Orthogonal
Subspace Projection, która dla każdego piksela oblicza miarę określającą zawar-
tość widma protoporfiryny w danym widmie sumarycznym. Otrzymany w ten
sposób czarno-biały obraz poddano dalszej obróbce graficznej. Między innymi
poprzez segmentację oraz usuwanie niektórych składowych obrazu udało się wy-
izolować zmiany nowotworowe w tkance. Metodę tę zastosowano z powodzeniem
dla próbki około 25 rzeczywistych obrazów wielospektralnych. Opisany algorytm
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także prawidłowo wykrywa obszary nowotworowe w obrazach wygenerowanych
metodą Monte Carlo. Po raz kolejny pokazuje to słuszność i dokładność przed-
stawionego modelu ludzkiej skóry.

W wyniku wszystkich przeprowadzonych badań udało się wykazać, że moż-
liwe jest stworzenie matematycznego modelu podpowierzchniowego transportu
światła w wybranych fragmentach tkanki ludzkiej, obejmującego zjawiska absorp-
cji, rozpraszania, a także fluorescencji. Dzięki stworzeniu symulacji komputerowej
opartej na metodzie Monte Carlo, udało się wygenerować obrazy wielospektralne,
które są jakościowo zgodne z rzeczywistymi obrazami powstałymi w czasie dia-
gnozy fotodynamicznej. Uzyskanie zgodności pomiędzy obrazami otrzymanymi w
wyniku symulacji a realnymi obrazami wielospektralnymi, pozwoliło na dokład-
niejszą analizę procesu akwizycji zdjęć w celu jej uproszczenia oraz optymalizacji.
Z tego powodu wpływ takich parametrów jak m.in. kąt padania promieni świa-
tła na tkankę, widmo optyczne źródła światła i jego odległość od badanej tkanki
został poddany szczególnej analizie. W połączeniu z metodami przetwarzania ob-
razów wielospektralnych udało się w znaczący sposób przyspieszyć przygotowanie
diagnozy oraz jednoznacznie rozróżnić tkankę zdrową od chorej. Ma to szczególne
znaczenie, gdyż wszystkie badania zmierzające do ustalenia optymalnych para-
metrów obrazowania wymagają zebrania danych oraz akwizycję zdjęć od rzeczy-
wistych pacjentów cierpiących z powodu rożnego rodzaju zmian nowotworowych.
Na podobieństwo, bądź też unikalność otrzymanych zdjęć wpływają dodatkowo
warunki przeprowadzonych badań, które nie zawsze mogą być jednakowe. Dodat-
kowo koszt odpowiedniej aparatury i jej dostępność znacząco ogranicza możliwo-
ści przeprowadzania eksperymentów oraz analizy otrzymanych wyników. Biorąc
pod uwagę wszystkie wymienione czynniki, zaproponowany model tkanki i trans-
portu światła pozwoli na lepsze zrozumienie procesów i zjawisk zachodzących
zaraz pod powierzchnią tkanki i zoptymalizowanie diagnozy fotodynamicznej bez
konieczności angażowania w tym celu lekarzy, pacjentów i kosztownej aparatury.
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