EDITORIAL STAFF
E. L. Shaner

Edifor-in-Chiel
E. C. Kreutzberg Editor
A. J. Hain

Maraging Editor E. F. Ross

Engineering Editor
Guy Hubeard
Machine Tool Editor
D. S. Cadot

Art Editor

ASSOCIATE EDITORS

G. H. Manlove J. D. Knox
W. J. Campbell

New York
I. H. Such \quad B. K. Price L. E. Browne

Pittsburgh
Chicago
R. L. Hartfoxd J. F. Powell Detroit

Washisgton
A. H. Allen
L. M. Lamm

London
Vincent Delport
ASSISTANT EDITORS
A. R. Finley

Jay DeEulis
I. C. Sullivan

La Verne Nock

George Urban

New York
John H. Caldwell
BUSINESS STAFF
G. O. Hays

Business. Manager
C. H. Bailey

Advertising Service
New York. E. W. Kheutzberg

	B. C. Snell
Chicago..	. S. H. Jasper
Cleveland	R. C. Jaznke
	D. C. Kiefer

J. W. Zuber

Circulation Manager
MAIN OFFICE
Penton Building, Cleveland

BRANCH OFFICES

New York. 1 IIO East 42nd St.
Chicaga....... 520 North Michigan Ave. Pittsburght Koppers Building Detroit 6560 Cass Ave. Washington. National Press Building Cincinnati 1734 Carew Tower San Francisco. inoo Norwood Ave.

Onkland, Calif., Tel. Glencourt 7559 Caxton House Westminster, S.W. I

Publisted by The Penton Pumbishing Co..
Ponton Building, Cleveland PENTON, Chatrman of Board: Ohlo. JonN A. Prosident and Treasurer: G. O. HAYs, Vice Membent; F. G. Eteinerici, Sccretary.
Member, Audit Bereau of Circulations; AssoIlshers' Association
Publlshed avery
Uublted States, Monday, Subscription in the yenr \$4, two Cears scexico and Canadn, one countridea, one year $\$ 10$. European and forelgn 1asucs) 2 je
Entertad as Becond class matier at the postofice Coderigtand, 1940 by the Act of Mrarch 3 , 1878. Codyriget 1940 by the Penton Pilbishling Co.

May 13, 1940

Producinc pressure ressels to meet A. S.T. M. specifications, Black, Sivalls \& Bryson, Oklahoma City, says, "Provided only that simple necessary precautions are used in fabricating, $21 / 2 \%$ Nickel steel pressure vessels can be welded with complete success at the same speed as mild steel, with greatly improved strength, safety and durability in the completed structure." With Murex $21 / 4 \%$ Nickel Steel electrodes, smooth, sound welds are made in $21 / 2^{\prime \prime}$ thick $2.00 / 2.75 \%$ Nickel low carbon plates used in fabricating 24^{\prime} accumulators.

FACTS...for the asking

Preheating, stress relieving, tensile strengths, impact resistance, shop practices . . . these important facts about the weldability of Nickel steels are yours for the asking. Simply write for your copies of "Welding Nickel Steels" and "The Working of S. A. E. Nickel Alloy Steels." Consultation on problems involving the use of Nickel is invited.

As the Editor Views

1 STEEL production last week (p. 27) moved up 3 points to $661 / 2$ per cent of ingot capacity and appears due for a further rise this week. The uptrend results from further moderate improvement in domestic business. Demand for sheets and strip is heavier. Some other products also reflect improved volume. Building construction is more active. On the other hand (p. 91), some recession in volume is seen for the third quarter-unless foreign buying of iron and steel is intensified. A trend in this direction is foreseen as a result of the war's spread to Belgium and the Netherlands. Finished steel prices are steadier. Scrap prices are rising more rapidly.

With the federal old-age program taking adequate care only of those employed who earn less than $\$ 1300$ a year, the problem of providing security for its most valued workers is an important one

Pension Plans Pay

 management. Eugene M. Klein (p. 21) says it can be solved by supplemental pension plans which -if set up intelligently-actually may lessen payroll outgo. The problem has another important aspect-that of retiring aged workers to make room for youth. . . . This subject of finding employment for youth also came up for major discussion (p. 24) at last week's annual meeting of the American Foundrymen's association. Industry, it was held, must do something about the matter.The war (p. 38) is tightening the supply of South African industrial diamonds; prices have begun to ascend. . . . More than 25 per cent of the machine tools produced for domestic use (p.

Tools for
 Aircraft

 35) now are being delivered to aircraft builders or their suppliers. . . . Open-house at Ryerson's steel warehouse (p. 90) in Chicago attracted a large attendance. . . . Plan for reorganization of Follansbee Bros. Co. as Follansbee Steel Corp. (p. 90) has court approval. The company will spendabout $\$ 1,270,000$ for new equipment. . . . Further temporary national economic committee hearings (p. 32) have been postponed until November. Wageshours law revision (p. 34) is regarded as dead for this session.
"A good safety program is good business," reports G. W: Cannon. His company (p. 46) obtained beneficial results of a diversified character from a thoroughgoing safety campaign-ob-

Saving By Safety

 taining savings, incidentally, that paid for its entire cost. . . . Alec-trification-in conjunction with bydraulics, to which it is becoming more and more closely allied-is, according to Guy Hubbard (p. 50), the most powerful traditionsmashing factor which ever has penetrated the machine tool industry. He explains why, . . . Fred Stewart (p. 76) describes a flame cutting and arc welding setup developed for production of industrial trucks. Bends reduce the amount of welding needed.When tin-contaminated steels run rather high in tin, says Paul McKimm (p. 68), they can be used for deep drawing sheets and strip, permitting lowercost scrap to be charged. He disLowering Casting Costs drawing properties. ... Steel cast 70) by proper design of the casting itself. To this end, says H. L. McClees, close cooperation between producer and user of the casting is essential. . . . A. N. Kugler (p. 71) offers practical suggestions on splicing steel beams of varying crosssections. . . . A malleable foundry effects production savings (p .52) by making different castings in a single mold.

Sheet Forming and Fabrication Costs Reduced!

MANY manufacturers are cutting production costs, making finer products, and beating competition with Inland special sheets and strip. They get these results because Inland metallurgists determine the kind of sheets best suited to their purpose -and, then work with the mill to produce the exact sheet specified.

Users of Inland Sheets can definitely count
on superior forming qualities, constant uniformity, and fewer rejects, from beginning to end of production runs.

Inland metallurgists, with their broad experience, will also be pleased to help you by developing a tailor-made sheet or strip that will lower costs and improve your finished product. This Inland service is yours for the asking-without cost or obligation.

Eugene M. Klein
An outstanding authority on industrial pension plans, Mr. Klein prepared for his carcer as a student at Western Reserve and Cleveland law school, Cleveland. Following his graduation in 1911 he studied employe-employe relationships as a part of his legal work for several industrial companies. In 1929 he installed a pension plan and became so interested that he decided to specialize in such work. Since then he probably has installed more pension plans than any other man in the country.

[^0]
WHAT PR:CE

 OLD ACE?
By EUGENE M. KLEIN

Eugene M. Klein and Associates
Cleveland

IFith the federal old-age program laking adequate care of only those employes earning less than $\$ 1300$ a year, the problem of providing security for ils most valued workers is a vital one to management. Sound business reasons necessitatea solution

A ALMOST every industrial organization-in every industry-is losing money or other values because it has not paid effective attention to the matter of retiring employes who have reached the age when they no longer are able to produce efficiently. Many companies do not even realize that they have a problem of this kind. Many dismiss it casually, taking the attitude that employes who have been in the service over a long period of years must be kept on the payroll.

In carrying on along such lines many companies go to unusual kengths. At the office of an Eastern manufacturer of rubber sundries, for example, are to be found four elderly men whose sole job is to push a carpet sweeper across the lobby rug. They are on the active payroll at $\$ 45$ a week each. A man who has been 58 years in the employ of a casket manufacturer spends half a day, each day, in compiling figures which are thrown into the waste basket the moment he leaves the office. These cases are unusual-but modifications of them are to be found throughout industry.

For a number of reasons the average age of workers on industrial payrolls is increasing. Insurance statistics reveal that 20 to 40 per cent more workers today will live beyond the retirement age of 65 than has been the case in the past. Another factor is widespread unemployment. This has placed a premium on jobs, so that an employed person does not think lightly about leaving his job. Still another factor is the social security system. This impels employers to place a premium on employment stability, causing them to seek methods that will crable them to keep their men steadily at work. The net effect is that the problem of disposing of older, less efficient employes is growing and will continue to grow in importance.

Many companies in the past have set up pension plans. Industrial pension plans, in fact, date back as far as 50 years-so that there is nothing new about the pension idea. More than $5,000,000$ employes today are covered by private pension plans operated by more than 1200 companies. These plans have demonstrated their value in many ways. They are powcrful preventives of ill-considered labor agitation. Statistics of the Tax

[^1][^2]Research institute show that companies with pension plans have fewer labor disputes than those operaing without such plans. These statistics reveal that where a pension plan is in effect there is less labor turnover and fewer requests are made for wage increases-they reveal that there is less breakage of machinery: more care in handling products, greater loyalty to the company, better employe attendance.

Recently a large company explained, as follows, its reason for adopting a pension system: "The corporation has recently suffered the loss of several important and valuable employes who, based upon inducements of various kinds, including the right to participation in pension plans, have lefi the corporation to enter the service of other companies."

Experience amply demonstrates that a wisely devised pension plan is an assct to an industrial organization in many ways. With the problem of old age becoming a more important one for industry, it is only logical to assume that more companies will feel impelled to adopt such plans. This is particularly the case under the federal program.

It should be understood the federal old-age program in no circumstances affects the operation of private pension plans adversely. On the contrary, the federal old-age program presents a means by which an employer's old-age pension program may be lightened. The federal old-age program takes care of employes in the low-income group. It takes adequate care only of those who earn less than $\$_{1300}$ annually.

The fact that clearly should be borne in mind by the executive who is concerned with the security of his retired workers is that the federal old-age program does not take care of his employes in the higher income groups. It does not provide security to an acceptable degree for the men who are of greatest value to him and who constitute the backbone of the business. It is these men that he must have in mind in revising his pension plan or setting one up under today's conditions.

The pension problem that confronts the typical manufacturer is rerealed in a study in an Ohio company of employes' ages, salaries and the federal old-age benefirs to which they are entitled at retirement age. It shows, for example, that a married man 29 years old and earning $\$ 800$ a year will be entitled to a yearly benefit of $\$_{545} 50$ on retirement at age 65 , or 68.2 per cent of his salary-provided his salary remains at that level. That amount may be regarded as satisfactory from the standpoint of security, because under pension plans it generally is considered fair to retire an employe on a pension equivalent to 50 per cent of his salary.

As the value of an employe grows and his compensation increases. his position under the federal old-age program rapidly deteriorates. For example, a man in the $53000-54000$ class who is now 30 to 34 years old can receive under the federal program an amount that is only 24.3 per cent of his salary at retirement.

Many people-including some that ordinarily are well-informed-regard a pension plan as a humanitarian measure. It is true that a pension plan has a humanitarian aspect. No organization, however, would te justified in setting up a pension plan from that point of view only. Basically, a pension plan should coincide with the real objective for which a corparation exists-the profit motive. Only when it has been derermined that a pension plan will benefit the corporation. its employes and stockholders should the plan be approved for adoption.

Under a wisely conceired pension system, devised so that it will supplement the federal oldage pregram, an employer has unusual latitude in retiring the older, less efficient men, and of effecting payroll saw-
ings and unwarranted payroll expense in so doing. This applies to the great majority of employers-for it is practically impossible to discover a payroll that does not include salaries to employes who, from the standpoint of productive efficiency, really constitute a musance value. In evaluating his employes an cmployer is justilied in depreciating them just as he depreciates his machinery and other equipment. And he can do so with full measure of fairness to the men involved if he has a proper pension system.

An example of the results that can be obtained through intelligent action is afforded by the case of a large chemical company. It had approximately 35,000 employes on its payroll. After careful study it decided to retire 294 employes who, at time of retirement, were receiving $\$ 592,000$ annually. By redistributing duties, it replaced them with 180 new employes. Payroll for the replacements averaged only 56.8 per cent of the retired workers' compensation, so that net reduction in the payroll was $\$ 245,42$. The pension progranz of this company costs $\$ 4{ }^{6} 29$ less than the savings on the payroll.

The same problem was tackled by a Pennsylvania steel company. On retiring 300 old employes, it found that, through climinating or redistributing duties, it was able to replace them with int younger workers. It paid the younger men a somewhat lower average salary-with the result that its payroll saving exceeded the pension expense.

In both these companies the approach on this problem took the form of a study in which the age structure was related to output per dollar of payroll, thus selting up an efficient measuring stick that met every condition of employment. This measuring stick quickly located the instances in which older employes were receiving wages not commensurate with the services they rendered.

While plant conditions and the possibilities of redistributing duties vary, this same type of approach can bring equally desirable results in most industrial organizations. The main thing is to recognize the problem and then set about its solution. Benefits can be obtained immediately by taking advantage of the FOAP to retire workers in the less-than- $\$$ I $300-$ a-year income group. A certain amount of time may be necessary to retire those in the higher-income group. This might result from the necessity of accumulating funds over a period for the purpose of creating a reserve out of which pension payments can be made suggesting, of course, the wisdom of early rather than delayed attention to the problem.

In addition to creating an outlet for employes over 65 , effective action under the FOAP and private pension plans has a desirable effect in another direction. It opens new opportunities to youths. Unemployment among youths to the extent of $2,600,000$ seems possible of considcrable amelioration when it is recalled that $2,500,000$ now employed in industry are more than 65 years of age and ready for retirement. This is a matter of no small significance to industry when it is remembered that on the youth of today devolves the responsibility for the industry of tomorrow. It also is of significance in view of the fact that unemployment among youth incites discontent that adds to the menace on the social and political front.

Considered in that light, every man over 65 now active in industry is the cause of a certain amount of dissatisfaction which expresses itself in one way or another-frequently in the form of votes for political candidates who, no matter how unsound their proposals regarding business and economics may be, are loud and impressive with their promises.
". . . It is practically impossible to discover a parroll that does not include salaries to employes who. from the standpoint of productive efficiency, really constitute a nuisance value."
"In addition to creating an outlet for employes over 65 ... it opens new opportunities to youths."
". . . $2.500,000$ now employed in industry are more than 65 years of age and ready for retirement."

Lester N. Shannon
Elected president, Amertcan Foundr:men's association

Frederick A. Melmoth
Reclpient of Joseph S. Seaming gold medal

Charles E. Wilson
Presented A.F.A. board of awards lecture

ㅁ. DIVERTING its attention temporarily from strictly technical subjects, the American Foundrymen's association holding its forty-fourth annual convention at the Palmer House, Chicago, May 6-10, laid emphasis on the training and preparation of youth that it may be able to find and assume a place in industry. In line with all industry, the foundry field is maintaining its record for technological progress, even though beset on all sides by economic and political maladjustment. To continue this progress, youth must be encouraged in developing clear thinking and leadership.

Holding of a Foundry and Allied Industries show in International Amphitheatre proved an attraction which stimulated attendarice at convention sessions. Registration for the week totaled 7000. The show with nearly 225 exhibits of foundry equipment and supplies, was one of the largest which the association has conducted and was by far the most attractive. Open on the first five days of the week and the preceding Saturday, it had much to offer in the way of new products brought out in the two years since the last show in Cleveland in 1938.

Visit Steelworks

Convention sessions, extending over five days, featured meetings, round-table luncheons and discussions, dinners, shop operation courses, lectures, and committee meetings covering all phases of the steel, gray iron, malleable and nonferrous branches of castings production. In addition, sessions were conducted on apprentice training, foreman training, job analysis and costs.

An organized inspection trip on May 6 took approximately 300 foundrymen to the Wisconsin Steel Works of International Harvester Co., South Chicago, Ill., where they saw blast furnace, coke oven, steelmaking and rolling operations. On
the return trip, a stop was made at the Museum of Science and Industry to see the recently installed foundry department.

In his presidential address before the annual business meeting, May 8 , Henry S. Washburn, president and treasurer, Plainville Casting Co., Plainville, Conn., cited the rapid pace of technical improvements as a challenge to the foundry industry, a challenge which can be met in part if foundrymen will accept their responsibility of membership in the industry's technical society and thus promote the beneficial exchange of ideas.

"Fresh Thinking" Needed

He stressed the importance of encouraging "fresh thinking" young men to take their proper place in the industry, and urged that such young men be given an opportunity to test their ideas before they slipped into the rut of orthodox experience and thinking.
"Give them this chance," he concluded, "and use the A. F. A. as a clearing house for ideas; then we can face the future with confidence."

Urging industry to make determined efforts to restore hope, ambition and morale among young men seeking positions, to take renewed interest in curricula of schools and colleges to the end that young people may be better prepared for positions in industry, and to make further special attempts to provide places for young men in plants, Charles E. Wilson, executive vice president, General Motors Corp., Detroit, presented the feature address at the business meeting.

His remarks constituted the third in a series of annual presentations sponsored by the A. F. A. board of awards to stimulate discussion of non-technical problems of general interest.
Mr. Wilson's address was keyed to the theme of the meeting which was

Herbert S. Simpson
Flected vice president, American Foundrymen's assoclation

Nathanlel K. B. Pateh
Recipient of John A. Penton rold medal

Frederick K. Vial
Recipient of J. H. Whiting gold medal
focused on opportunities for youth, and industry's responsibilities in providing therefor. Recalling his own personal experience as a young man seeking employment, he emphasized the changed conditions which confront young people today and the fact that they are bearing more than their share of current unemployment.
"Thirty or forty years ago, industry and working activities were not on such a formal and large scale, and it was much easier for a boy or young man to see what men did when they worked, and, even before they were old enough themselves to work, to begin to understand how to do things."
Mr. Wilson observed that parents today are too prone to conclude that a formal education is a guarantee for their offspring's economic security and place in society. Figures attest the widespread increase in education over the past 20 years. For example, in 1920 there were 311,266 high school graduates and in 1938 there were 1,075,000. In 1920 there were 48,622 college graduates; in 1938 there were 147,500.
Despite this emphasis on education, unemployment among young people is serious, leading to the conclusion that book learning alone, without the knowledge of how or the willingness to do some of the simpler jobs ultimately proves a handicap.

Industry Helping Youth

Mr. Wilson noted that industry in many cases has recognized the problems of youth seeking employment and he commended the efforts being made to solve them. Apprentice training programs, such as the A. F. A. has sponsored for many years, are a definite step toward alleviating the distress of idle youtl?.
As a token of association appreciation, President Washburn at the conclusion of the address presented Mr. Wiison with a cast bronze horse
executed by a Chicago sculptress.
Lester N. Shannon, vice president and works manager, Stockham Pipe Fittings Co., Birmingham, Ala., was elected president to succeed Mr. Washburn. He served in the capacity of vice president during the past year, and for three vears prior to that as a director.

Born in Carbon Hill, Ala., in 1893, Mr. Shannon attended public schools there and later Birmingham Southern college from which he graduated with a B.S. degree in 1912. Immediately thereafter he became associated with the Stockham company in whose service he has risen to his present position. He was instrumental in organizing and was the first chairman of the Birmingham district chapter, American Foundrymen's association. Mr. Shannon also is a member of the American Society of Mechanical Engincers and American Society for Testing Materials.

Five Directors Elected

Herbert S. Simpson, president, National Engineering Co., Chicago, and a past director of the association, was elected vice president for one year. Born in Minneapolis in 1884, he moved to Chicago when a young boy. Completing his education, he engaged in the manufacture of clayworking machinery, later becoming assistant to the president, HatfieldPenfield Steel Co., Bucyrus, O. In 1917 he left that company to associate himself with the National Engineering Co., manufacturer of foundry equipment, of which organization he has been president.
Mr. Simpson is a past president, Foundry Equipment Manufacturers association, and for many years has supported various research activities of A.F.A. and has been active in other ways. He is past president, Kiwanis Club of Chicago, a former alderman of Evanston, Ill., and at
present a trustee of that city's library board. In recent years he has traveled widely in Australia, South America, Mexico and Europe.

Five directors to serve three-year terms were elected as follows: George W. Cannon, vice president, Campbell, Wyant \& Cannon Foundry Co., Muskegon, Mich.; L. P. Robinson, sales manager, Werner G. Smith Co., Cleveland; Harold J. Roast, vice president, Canadian Bronze Co., Montreal, Canada; B. D. Claffey, manager, gray iron division, General Malleable Corp., Waukesha, Wis.; and Retiring President Henry S. Washburn.

Medals Awarded

Four medals for 1940 and an honorary life membership were presented at the business meeting. The John A. Penton gold medal was awarded to Nathaniel K. B. Patch, secretary, Lumen Bearing Co., Buffalo; the J. H. Whiting gold medal to Frederick K. Vial, director and vice president, Griffin Wheel Co., Chicago, and director and vice president, Association of Manufacturers of Chilled Car Wheels, Chicago; the W. H. McFadden gold medal to Harry W. Dietert, president, Harry W. Dietert Co., Detroit; and the Joseph S. Seaman gold medal to Frederick A. Melmoth, vice president and works manager, Detroit Steel Casting Co., Detroit.

The honorary life membership was conferred upon George A. T. Long, in charge of the foundry service department, Pickands, Mather \& Co., Chicago, for the past 37 years.
The four medals were established by the association in 1920 through funds donated by four past presidents whose names are associated with the medals. Awards are made upon recommendation of a board composed of the last seven living past presidents.

Mr. Patch received the Penton

medal "in recognition of his contributions to the foundry industry." Associated with the Lumen Bearing Co. since 1901, he has been prominent in technical organizations connected with the brass founding industry. He was one of the original organizers of the American Brass Founders' association, was one of its first directors, and was president in 1911.

Mr. Patch also served as chairman of the committee on nonferrous metals of the American Society for Testing Materials and has been a member of the American Chemical society; Electrochemical society; Institute of Metals (British); Institute of Metals division, American cal Engineers; and Buffalo Engineering society. He has been active in the A.F.A. many years, serving on many committees, as a director in 1926, vice president in 1929, and president in 1930-31. He has written many articles on foundry practice.

Basis of the Whiting medal award to Mr. Vial was "his outstanding contribution to the development of cupola melting." Becoming affiliated with the Griffin Wheel Co. in 1902 after extensive experience in the railroad field, he was named consulting engineer for the Association of Manufacturers of Chilled Car Wheels when it was organized in 1906.

As a member of the A.F.A., American Society for Testing Materials, Western Society of Engineers and Air Brake association, Mr. Vial has presented an extensive list of technical papers relating to research, car wheels, railway problems and cupola melting processes. He also has collaborated in the preparation of research bulletins of the University of Illinois, Purdue university, Massachusetts Institute of Tech-

- Climax to special activities of the American Foundrymen's association annual convention in Chicago last week was the banquet at the Palmer House. May 9. Nearly 1000 members and guests of the organization attended
nology and Battelle Memorial institute.

Many patents are credited to Mr. Vial, dealing largely with car wheels, molding methods and melting processes. For his achievements, he already has been recognized by many organizations through medals and honorable mention. His activities

Harry W. Dietert
Recipient of W. H. McFadden gold medal
have had a profitable influence on improvements in railway appliances and foundry methods.

The McFadden medal was given to Mr. Dietert "in recognition of his valuable contribution in promoting foundry sand research and control." After two years in the Philadelphia works of Westinghouse Electric \& Mfg. Co., a brief period as in-
structor in charge of shops at Rice institute, Houston, Tex., and a year of graduate work at the University of Illinois, in 1923 Mr . Dietert became a research engineer for the U. S. Radiator Corp., Detroit, and here was instrumental in developing the sand control methods of that company. Later serving as chief engineer, he resigned to organize his own company for the manufacture of sand testing equipment, although retaining his connection with U. S. Radiato: Corp. as consultant.

Mr. Dietert has served on the A.F.A. sand research committee since the committee was started in 1921 and has played a prominent part in developing sand control methods, in research work, in presenting papers on sand control and in lecturing on that subject before practically all foundry groups in the United States.

As a member of the sand research committee, he has worked on the committee on conservation and reclamation, committee on tests, subcommittee on core tests, subcommittee on hardness testing and mold permeability, subcommittee on durability, subcommittee on grading and fineness and subcommittee on physical properties of sands at elevated temperatures. In addition to the A.F.A., he is a member of the American Society of Mechanical Engineers and American Association for the Advancement of Science.

Presentation of the Seaman medal to Mr. Melmoth was "in recognition of his outstanding contributions to the advancement of the steel casting industry." Born and educated in England, he had extensive experience in the steel and foundry industries before coming to the United States in 1930 to become affiliated with the Detroit Steel Casting Co., of which he is now vice
president. He has written extensively for the technical press on various phases of steelmaking, steel founding and malleable iron.
Mr. Melmoth is a member of the A.F.A. policy committee on Handbook revision, the executive committee of the steel division, and the committee on methods of producing steel for castings. He was recently awarded a diploma of the Institute of British Foundrymen for his exchange paper presented at the 1939 International Foundry congress in London. In addition to the A.F.A., Mr. Melmoth is a member of the American Society for Metals, and through his company the Steel Founders Society of America.
The honorary life membership to Mr. Long was conferred "in recognition of his many years in the cupola, pig iron and coke consulting field." In his capacity with Pickands, Mather \& Co. over 37 years, he has been in a position to render an unique and invaluable service to foundrymen of the Central Western section. Mr. Long takes particular pride in the fact that he has attended every convention of the A.F.A. since the first one in Philadelphia in 1896.
In addition to Mr. Long, life memberships were conferred upon Retiring President Washburn, and upon Messrs. Vial, Dietert and Melmoth, three of the four medallists. Mr. Patch, the fourth medallist, already held life membership as a past president.

The annual banquet was served at the Palmer House on May 9, with approximately 1000 attending. Varying from custom of previous years, the program consisted of entertainment and dancing.
(For resume of technical sessions see pages 52-54.)

Most Beautiful Bridge Contest To End June 1

American Institute of Steel Construction, 101 Park avenue, New York, last week invited bridge builders and owners to enter its twelfth annual contest for the most beautiful steel bridge erected during 1939. Photographic entries must be made not later than June 1.
Stainless steel plaques will be awarded bridges adjudged most beautiful in their division. Class A includes bridges costing $\$ 1,000,000$ or more to build; class B, $\$ 250,000$ to $\$ 1,000,000$; class C, less than $\$ 250$,000 ; and class D, all movable bridges.

Following data should accompany photographs submitted: Name of bridge, location, total cost, engineer, fabricator, owner, date completed, date opened to traffic, span length, and roadway width.

IRIIUCTIDN... Up
8 STEELWORKS operations last week rose 3 points to 66.5 per cent, highest rate since the end of February. Seven districts showed increases, one a decline and four were unchanged. A year ago the rate was 47 per cent; two years ago it was 30 per cent.

Chicago-Increased 6 points to $651 / 2$ per cent, the sharpest upturn since September, carrying the rate to the level of late February. Car-negie-Illinois Steel Corp. added a blast furnace at South Works, making a total of six active at that plant. Six are also in blast at the Gary works.

Birmingham, Ala.-Unchanged at 83 per cent for the third consecutive week, with 18 open hearths active.

Pittsburgh—Up $3^{1 / 2}$ points to $611 / 2$ per cent. Jones \& Laughlin Steel Corp. has resumed production at two stacks of Eliza furnace, Pittsburgh. In the district 32 of 50 stacks are blowing. Steelmaking will advance to 65 per cent this week.

Wheeling-Slight curtailment at two plants dropped the rate 6 points to 88 per cent.

Buffalo-Advanced 14 points from the average of the previous week,

Percentage of Ingot Capacity In Leading Districts				
	Week ended		Sam	
	May 11	Change	1939	1938
Pittsburgh	61.5	+3.5 +6	36	25
Chicago	65.5	+	46.5	31.5
Eastern Pa.	57	None	37	27.5
Youngstown	53	+ 3	42	27
Wheeling	88	-6	64	38
Cleveland	71	+1	45.5	23
Buffalo	58	+14	35	28
Birmingham	83	None	55	66
New England	53	None	45	30
Cincinnati	61	+8	52	25
St. Louis	45	+2.5	51	33.3
Detroit	70	None	59	18
Average	66.5	+ 3	47	30

to 58 per cent, six open hearths being added in the past ten days.

Central eastern seaboard-Held at 57 per cent, with no change indicated for this week.

New England-Steady at 53 per cent, slight curtailment at two plants being balanced by an increase by another.

St. Louis-Regained $2^{2 / 2}$ points to 45 per cent. A leading producer added one open hearth.

Cleveland-Gained 1 point to 71 per cent. Expansion by one inter. est more than offset a small reduction by another.
Cincinnati-Jumped 8 points to 61 per cent, with some producers at 70 per cent.

Detroit-Continued at 70 per cent, with indications this rate will continue for some time.
Youngstown, O.-Rose 3 points to 53 per cent as three open hearths were added. Three bessemers and 48 open hearths are in production. Outlook for this week is for steady operation or possibly a slight rise.

Five New Directors

Elected by Institute

- Five new members have been elected to the board of directors of American Iron and Steel institute to fill vacancies.
New directors are: Thomas R. Akin, president, Laclede Steel Co., St. Louis; Elton Hoyt II, managing partner, Pickands, Mather \& Co., Cleveland; W. H. Sommer, president, Keystone Steel \& Wire Co., Peoria, Ill.; John T. Whiting, president, Alan Wood Steel Co., Conshohocken, Pa.; and D. A. Williams, president, Continental Steel Corp., Kokomo, Ind.

Machine tool engineers and executives hear latest on electrification at Westinghouse forum at Easl Pittsburgh, Pa.

New Developmentsin Machine'Tool

 Clectrification Described at Forrunn

 Clectrification Described at Forrunn}

- FOR the fifth time since 1936, engineers and many executive heads of the leading American machine tool building companies met at the Westinghouse plant in East Pittsburgh, Pa., on May 6, 7 and 8, to participate in a Machine Tool Electrification Forum. It is indicative of the importance of this trend in machinery drive and control that, at a time when their industry is operating at peak capacity, more than 100 key men representing more than 80 organizations believed it worth while literally "to go back to school," for three days to get themselves up to date on the theory and practice of electrification.
The program included 14 papers, of which nine were presented by representatives of the electrical industry, while five were by members of the machine tool industry. While, as might be expected, the majority of the papers were highly technical in character, there were very interesting ones which broke away from the purely engineering phases. One of these, by D. L. Hadley, consulting designer of the Westinghouse company, dealt with the methods followed in so-called "streamlining" of electrical equipment, and the remarkable dollars-and-cents advantages achieved thereby. Two other speakers, W. K. Bailey, sales manager, Warner \& Swasey Co., Cleveland, and C. D. Moore, supervisor of trades training for Westinghouse, dealt with methods of basic train ing and of improving the skill of industrial workers, including machine tool operators.

Other speakers included J. C. Wil son, engineer, Thompson Grinder Co, Springfield, O.; R. S. Elberty, electrical engineer, Landis Tool Co., Waynesboro, Pa.; D. K. Frost, elec
trical engineer, Mattison Machine Works, Rocrefard, Ill.; A. H. Platt, electrical engineer, Bullard Co., Bridgeport, Conn.; and W. I. Bendz, S. B. Britain, W. M. Moody, C. B. Steinback, C. W. Drake, R. W. Owens and O. G. Rutemiller and Bernard Lester of the Westinghous? organization.
During an open forum devoted to discussion of problems not covered by the regular program, August H. Tuechter, president, Cincinnati Bickford Tool Co., Cincinnati, acted as spokesman for the machine tool industry in a spirited defense of the industry as far as deliveries are concerned at a time like the present when the builders are striving to be fair to all when operating under terrific pressure for production.

Exports Dislocated by Extension of War

- News of Germany's invasion of Holland, Belgium and Luxemburg brought steel export business to those countries to a temporary halt. For the past fortnight, inquiries from those countries and from neutrals in the Balkan and Mediterranean areas have been dwindling -the result of belief war would spread before deliveries could be made.

Considerable pig iron inquiry has been held up, as has a large scrap inquiry from Italy. Plate sellers particularly have felt the shrinkage in demand from Holland and Scandinavia.

American exports of iron and steel products to Belgium, including Luxemburg, totaled 13,102 tons during 1939. Iron and steel exports
to The Netherlands aggregated 116,262 tons last year. United States imported, in the same period, 73,524 tons of iron and steel products from Belgium, compared to 15,385 tons from The Netherlands.
Iron and steel trade to these countries increased materially dur ing first quarter this year. Exports of these products to Belgium totaled 10,595 tons in first three months; to The Netherlands, 52,160 tons. United States' imports from Belgium in first 1940 quarter ag. gregated 1465 tons, from The Neth erlands, eight tons.

Machinery exports to The Netherlands during 1939 totaled $\$ 3,284,000$; to Belgium and Luxemburg, $\$ 1,882$, 437.

Steel Corp. Shipments

In April Off 2.5\%

- April shipments of finished steel by the United States Steel Corp. totaled 907,904 net tons, a decrease of 24,001 tons, 2.5 per cent, from 931,905 tons shipped in March, but an increase of 136,152 tons over April shipments last year. For four months total shipments were $3,994,657$ tons this year, compared with $3,235,153$ tons in the same period, 1939.
U. S. Steel Corp. Shipments
(Inter-company shipments not included)

Net Tons			
1940	1939	1938	1937
Jan. 1.145.592	870.866	570,264	1,268,403
Feb. 1,009,256	747.427	522,395	1,252,845
March 931,905	845,108	627,047	1,563,113
April 907,904	771.752	550.551	1,485,231
May	795,689	509,811	1.443,478
June	807.562	524.994	1.406.078
July	745,364	484,611	1,315,353
Aug.	885,636	615,521	1, 162113
Sept.	1,086,683	635,645	1,161,133
Oct.	1,345,855	730,312	876,972
Nov.	$1,406,205$ $1.443,969$	749,328 765,868	539,553
Total, by			
Months	11,752,116	7,286,347	14,181,772
Adjustment	* 44,865	+29,159	-87,106
Total 11,707,251 7,315,506			
\dagger Increase.	ecrease.		

- E. A. BERRY has been elected treasurer, Koppers Co., Pittsburgh, to succeed S. T. Brown, who retired recently due to illness. Mr. Berry has been an assistant treasurer. Myron T. Herreid, superintendent of Koppers Co. Minnesota division, St. Paul, has been elected vice president of Koppers Co., in charge of Minnesota division. He succeeds E. L. Smith, who has temporarily withdrawn from active management of the Minnesota plant. R. G. McKinney, of the Pittsburgh office, has been named assistant secretary and assistant treasurer of Koppers Co., Bartlett Hayward division, Baltimore. He succeeds George E. Probest Jr. and H. H. Vordemberg, who have retired.

Charles S. Bradeen has been appointed executive vice president, Canadian Fairbanks-Morse Co. Ltd., Montreal, Canada. Since May, 1938, he has been assistant to Col. Robert H. Morse, president of Fairbanks, Morse \& Co., Chicago, and before that was located in Montreal with the Canadian organization as secretary.
B. O. Smith has been appointed director of purchases, Hayes Mfg. Corp., Grand Rapids, Mich.

Frank B. Thacher, assistant general manager, Interlake Iron Corp., Chicago, resigned May 1.

John R. Fuller has been appointed general purchasing manager, Hygrade Lamp division, Hygrade Sylvania Corp., Salem, Mass.
G. E. Hunt, identified with Cut-ler-Hammer Inc., Milwaukee, about 20 years, serving at various times in the New York, Philadelphia, Milwaukee and Cleveland sales offices,

G. F. Munt

Charles S. Bradeen
has been placed in charge of the company's Indianapolis office located at 307 North Pennsylvania avenue. This office is under direct supervision of C. J. Maloney, manager, Chicago district sales territory.
E. R. Waiker has been named manager, air conditioning division, Fedders Mfg. Co., Buffalo.

Giles E. Hopkins has been named technical director, United States Asbestos division of Raybestos-Manhattan Inc., Passaic, N. J.
A. L. Struble, the past year assistant sales manager, Fruehauf Trailer Co., Detroit, has been named general sales manager.

Thomas S. Hammond, president, Whiting Corp., Harvey, Ill., has been elected a director, American Airlines Inc., Chicago.
R. F. Heath, heretofore in charge of the Houston, Tex., territory for Manning, Maxwell \& Moore Inc., Bridgeport, Conn., has been transferred to New Orleans, replacing Jack Schuyler.

William M. Neal has been elected secretary, Sloss-Sheffield Steel \& Iron Co., Birmingham, Ala., and will also serve as assistant treasurer. W. S. Wilson has been made treasurer and assistant secretary.

James C. Gray, formerly superintendent of Tennessee Coal, Iron \& Railroad Co.'s Wylam coal mine, has been appointed chief inspector, coal mines division. He succeeds Angus R. Brown, who has become superintendent of ventilation, coal mines division. William M. Lacey,
heretofore superintendent, Edgewater coal mine, succeeds Mr. Gray as superintendent at Wylam. Mr. Lacey is succeeded by Ralph B. Watt, his former assistant at the Edgewater mine.
L. Martin Krautter has been appointed advertising and sales promotion manager, Crosley Corp., Cincinnati. He formerly was copy chief, Cramer-Krasselt Co., Milwaukee advertising agency.

Percy D. Siverd has become manager of sales, bolt, nut and rivet division, Pittsburgh Screw \& Bolt Corp., Pittsburgh. He has been with the company in various capacities since 1916.

Clyde E. Lowe, of Pittsburgh, has been appointed representative in that area for Cowles Detergent Co., Cleveland, maker of industrial alkalies and soaps. He will work with Apex Soap \& Sanitary Co., McKees Rocks, Pa., a Cowles distributor.

George W. Walker, industrial designer and stylist, has moved to new and larger offices at 513 New Center building, Detroit. Kurt Wittke and Theodore Ornas are on his staff at the new location.

John D. Thompson, formerly assistant to the vice president, Stanley Works, Bridgeport, Conn., has been appointed works manager, John A. Roebling's Sons Co., Trenton, N. J.

Dean D. Francis, formerly vice president, National Bronze \& Aluminum Co., and president, WheelerSchebler Carburetor Co., is president and treasurer of Sheet-Wire Corp., Detroit, recently formed to enter

into manufacture, with steel mills and nonferrous fabricators, of rods, bars and wire by an entirely new and lower cost process (Steel, Jan. 29, p. 28).

By the new process, wire, bars and rods-round, flat or polygonalare produced by continuous slitting of sheets into many strands instead of requiring the use of multiple drawing dies, standard practice today. Plans for the first installation are already under way with an important steel producer.

Other officers are: Vice presidents, F. E. Birch, former chief engineer, Buffalo Pressed Steel Co.; F. L. Armstrong, formerly vice president, Thorne Motor Corp. and Gas-Elec tric Corp., Chicago; secretary and assistant treasurer, Athel F. Denham, president, Denham \& Co., Detroit.

Geo:ge F. Emanuels has been appointed district sales representative in the southern California territory for Columbia Steel \& Shafting Co., Pittsburgh, with headquarters in Los Angeles.

Lawrence H . Wilson, product de signer and stylist, has opened new offices at 913 Stephenson building, Detroit. In recent years Mr. Wilson served as head stylist for Norge and Detroit Vapor Stove divisions of Borg-Warner Corp.

George A. Duden has joined Standard Tube Sales Corp., New York, exclusive eastern agent for Detroit Seamless Steel Tubes Co., Detroit, and Standard Tube Co., Detroit. Mr. Duden has been associated with numerous warehouses and distributors of steel tubing over 40 years.

John Fox, manager, pressed steel department, American Car \& Foun dry Co., Milton, Pa., has been made chief metallurgist at the recently re-opened Buffalo plant. John O. Kline, formerly general foreman of the car department, has bsen made superintendent, pressed steel department.

Wilfred A. Clabault has been named advertising manager, RollerSmith Co., Bethlehem, Pa., maker of electrical measuring and protective devices. Mr. Clabault, who also will be engaged in sales, formerly was a member of Westinghouse Electric \& Mfg. Co.'s advertising department.

Harlow H. Curtice, general manager, Buick Motor division, General Motors Corp., and Paul Garrett, director of public relations department, General Motors, have been appointed vice presidents of the corporation. Mr. Curtice has spent all of his business career in the automotive industry, starting, with the AC Spark Plug Co. in 1914 as an ac-

A. G. Bussmamn

Who has been elected general sales manager, Wickwire Spencer Steel Co., New York, as reported in Stefl., May 6, page 24. He succeeds R. L. Foster, retired
countant and advancing to the presidency in 1929. He became general manager of Buick in 1933. Mr. Garrett, with General Motors since 1931. has held several posts in research and financial writing. He was with the bureau of municipal research in New York. New Jersey state chamber of commerce, war industries board, American International Corp. and from 1925 to 1931 was financial editor, The New York Evening Post.
A. W. Limont Jr. has joined the Titusville processing equipment division of Struthers-Wells-Titusville Corp., Titusville, Pa. Mr. Limont, a mechanical engineering graduate of Cornell university, was for many years with E. I. du Pont de Nemours \& Co., specializing in chemical plant equipment, and as a project engineer on chemical plant design.

Elliott C. Paddock, associated with Corbin Screw Corp., New Brit-

Charles W. Trust
Whose appointment as general trafic manager of United States Steel Corp subsidiaries was announced in STEEL subsidiaries was announced 40
ain, Conn., since June, 1939, as assistant sales manager, has been named sales manager. He succeeds E. E. Baldwin, resigned. Before joining Corbin Screw Corp., Mr. Paddock was assistant sales manager, Greenfield Tap \& Die Corp., Greenfield, Mass.
L. Clayton Hill, formerly manufacturing manager, has been elected vice president in charge of manufacturing, Murray Corp. of America, Detroit. David Widman, heretofore secretary-treasurer, has been made vice president in charge of finance. H. W. Wurster sucoeeds Mr. Widman as secretary-treasurer
S. W. Gibb has been promoted to general sales manager, Philadelphia division, Yale \& Towne Mfg. Co., Stamford, Conn. He succeeds James C. Morgan, who has become general manager of all Philadelphia operations. He joined the company in 1920 as district sales manager at Pittsburgh; in 1929 was promoted to Pacific coast sales manager, and in 1931 was made assistant general sales manager at Philadelphia.

Paul E. Hovgard, veteran test pilot and engineer, has joined Glenn L. Martin Co., Baltimore, as chief research engineer. He succeeds John B. Wheatley, who now assumes responsibility for the company's development work.

Joseph V. Santry, since 1933 executive vice president, Combustion Engineering Co. Inc., New York, has been elected president, to succeed Frederic A. Schaff, who has become vice chairman of the board. George L. Bourne has been re-elected chairman of the board. Mr. Bourne is also chairman of the company's parent organization, Su perheater Co., of which Mr. Schaff is president.
Robert M. Gates, vice president in charge of sales since 1933, has resigned to become president, Air Preheater Corp., New York, an affiliated company of Superheater Co. Martens H. Isenberg, heretofore vice president in charge of production, succeeds Mr. Santry as executive vice president, and Albert C. Weigel, formerly assistant to the president, has been made a vice president.

Harold H. Berry, John Van Brunt, F. H. Rosencrants, Charles H. True, and John S. Skelly have been re-elected vice presidents, Other officers re-elected: Harold H. Berry, treasurer, George D. Ellis, secretary and controller. I. B. Swigart has been reappointed assistant secretary and assistant treasurer, and Thomas F. Morris, assistant secretary. Frank R. Fitzpatrick has been named assistant to vice chairman.

Activities of Steel Users, Makers

- ROLLER-SMITH CO., Bethlehem, Pa., has transferred its switchboaro division to a recently acquired plant in Allentown, Pa. The air and oil circuit breaker and instrument divisions will remain in Bethlehem. J. E. Bevan will be manager of the division, with supervision over engineering and manufacturing. W. R. Swoish will continue in charge of sales. Approximately 60 men will be employed at the new location.

Metallizing Engineering Co., Long Island City, N. Y., has named Rickard \& Co., New York, advertising and merchandising counsel.

Ward Leonard Electric Co., Mount Vernon, N. Y., has opened a branch office in the Hearst Tower building, Baltimore, with Wilson K. Winbigler in charge.

Ransome Concrete Machinery Co., Dunellen, N. J., has appointed Ebbert \& Kirkman Co., Birmingham, Ala., exclusive sales representative for its welding tables and positioners in Alabama and part of Florida.

Western Precipitation Corp., Los Angeles, has opened a sales and engineering office at 1137 Marquette building, Chicago. A. W. Robinson, associated with the firm many years, is in charge of operations in the central states.

Davison Chemical Corp., Baltimore, manufacturer of Silica Gel, has completed arrangements whereby C. M. Kemp Mfg. Co., Baltimore, will manufacture and market through its sales organization a complete line of Silica Gel drying units for industrial dehydration.

Thomas C. Wilson Inc., maker of tube and pipe cleaning equipment, is now occupying the new office and manufacturing quarters it leased at 47-28 Thirty-seventh street, Long Island City, N. Y. The company was formerly located at 55 Vandam street, New York.

Northern Equipment Co., Erie, Pa., has appointed Meleney Engineering Co., Washington, district representative for its line of Copes feed water regulators, differential valves, pump governors, desuperheaters, pressure reducing valves and allied equipment.
J. B. Trotman, manager, turbine pump division, Roots-Connersville Blower Corp., Connersville, Ind., has appointed the following territorial representatives: Kent-Ervin Engi-
neering Co., Builders Exchange building, Minneapolis, covering Minnesota and North and South Dakota; J. T. McKinney, 1122 Pointview street, Los Angeles, southern California; P. J. O'Meara Co., 5 Haw. thorne street, San Francisco, northern California and most of Nevada; L. S. Pawkett \& Co., San Antonio, Tex., south central Texas; Power Machinery Co., Tulsa, Okla.; H. K. Wilson, St. Petersburg, Fla.

Died:

- SAMUEL WILEY WAKEMAN, a vice president and director, Bethlehem Steel Co., in New York, May 8. He was in charge of Bethlehem's shipbuilding activities since 1926. After graduation from Cornell university he joined Newport News Shipbuilding \& Dry Dock Co., Newport News, Va., following which he became associated with New York Shipbuilding Corp., Camden, N. J. When the Fore River Shipbuilding Co. was taken over by Bethlehem in 1914, he was made general superintendent, later becoming general manager. He also was in charge of the plant at Squantam, Mass., and the Buffalo turbine and Providence boiler shops.

William H. Quinn, 48, New York manager for Chain Belt Co., Milwaukee, May 5 at his home in Munsey Park, L. I.

Charles H. Johnson, 58, executive vice president and director, Gisholt Machine Co., Madison, Wis., April 23. His entire life was spent in the machine tool industry, having started with Gisholt Machine Co. as a machinist in 1897. Later he went to Europe as a demonstrat-

Charles H. Johnson
or and assistant in sales; then he was made European manager, with headquarters at Cologne, Germany. Returning to Madison in 1918 he became a vice president, and in 1932, executive vice president.

Frank E. Fisher, 81, inventor of the Fisher self-starter for automobiles, and prominent in fraternal affairs in Detroit for half a century, in that city, April 30.

Charles T. Evans, 82, former general manager of steelworks, Henry Disston \& Sons Inc., Philadelphia, April 30 at his home in Swarthmore, Pa. He retired in 1926 after 40 years service with the company.

James W. Wilson, 65, retired official of National Tube Co., McKeesport, Pa., April 27. At one time he was superintendent of steelworks and blast furnace department, and later assistant to the president. He also was superintendent of the company's continental works.

Robert F. Carpenter, 66, president and treasurer, Carpenter Metal Products Co., Cleveland, May 4, at his home in Cleveland Heights, O. In 1916 Mr. Carpenter founded the Sanymetal Products Co., predecessor of Sanymetal Co. Inc. He left Sanymetal in 1933 and formed Carpenter Metal Products Co.

William R. Mitchell, 61, executive vice president, National Acme Co., Cleveland, at his home in Cleveland Heights, O., May 8. Associated with National Acme since 1902, when the company was established in Cleveland following removal from Hartford, Conn., he was its oldest employe in term of service. As a product division superintendent in 1916, he supervised plans and construction of the present Coit road plant. Several years later he was made general superintendent of the entire product division, a post he held until he became manager of the Detroit sales division in 1924. After three years in Detroit he returned to Cleveland as a vice president, becoming executive vice president in 1933.

David Barker Rushmore, 66, last week. Prior to his retirement in 1925 he was chief engineer, power and mining department, General Electric Co., Schenectady, N. Y., for 20 years. He was a member, American Society for the Advanoement of Science, American Society of Civil Engineers, American Society of Mechanical Engineers, American Institute of Mining and Metallurgical Engineers, and many others.

Windows of WASHINGTON

By L. M. LaMM
Washington Editor, SteEl

WASHINGTON

- LABOR department's ruling on minimum steel wage for government work, recently upheld by United States Supreme Court in its decision against Lukens Steel Co., Coatesville, Pa., and others, will go into effect on or about May 24. Supreme Court attaches and government counsel explain exact date ruling goes into effect depends upon completion of court formalities.

Mandate, declaring Madame Perkins' steel wage ruling in accordance with the Walsh-Healey act, and enjoining Lukens Steel Co. and the other plaintiffs to abide by it, will be handed down to a lower court, May 24. Thence a further mandate must go to a second lower court. For this reason, it is explained, it is impossible to say when the new wages become effective.

Counsel for Lukens and the others involved has but one alternative as result of Supreme Court's decision, and that is filing of petition for reargument. Such petition must be filed not later than May 24. Court officials explain that only very rarely does Supreme Court grant reargument. Steel counsel stated here late last week it had not yet decided to ask reargument. Petition for reargument must be filed on or before May 24.

REPUBLIC STEEL PETITIONS SUPREIE COURT FOR REVIEW

Republic Steel Corp., Cleveland, has petitioned Supreme Court to review former's labor board case growing out of the little steel strike. Supreme Court, April 8, had denied Republic's first review petition.

Petition asks Supreme Court to reconsider its decision in view of a recent circuit court decision published May 6, which is squarely in conflict with circuit court's decision in Republic's case on an important question of federal law:

Third circuit court of appeals upheld labor board's order requiring

Republic to reimburse work relief projects for wages paid by such projects to striking employes. Meanwhile, Republic's petition points out, second circuit court of appeals held, in Leviton Mfg. Co.'s labor board case, that labor board has no authority to require an empliyer to make such reimbursement.

LOGAN-WALTER BILL PASSES SENATE JUDICIARY COMMITTEE

Senate judiciary committee last week unanimously decided to push Logan-Walter bill to final senate vote before this session of congress adjourns. Committee decision was made despite personal appeal by Senator Barkley, majority leader, for a delay.

Shortly before committee acted Senator Barkley urged its members to give measure further study and to await findings of the attorney general's committee on the bill's effects. Majority leader argued there is confusion as to measure's scope, justifying further hearings.

Course he suggested would have sidetracked bill for this session, however, since attorney general's study, requested by the President, is not expected to be completer before June 1. Senator Barkley said report would be completed in late summer or early fall.

Chairman Ashurst said 16 of the committee's 18 members were present and added:
"This committee was close to militant, and I asked each member for his judgment . . . It seemed to be the unanimous opinion of the committee that this responsibility should be met and not dodged and I personally agree."

In spite of administration opposition, bill passed house several weeks ago by a vote of better than 2 to 1 , with a large contingent of Democrats supporting it.

Bill is expected to provoke extend-
ed debate on the floor but its supporters are confident it will pass. Senator Barkley indicated in the senate a few days ago he would advise presidential veto if it passes.

TNEC POSTPONES HEARINGS UNTIL AFTER ELECTION

Temporary national economic committee last week accepted its executive committee's recommenda. tion and has postponed further hearings until after November election. Committee also decided to file with congress, before present session adjourns, a progress report showing number of hearings held, industries studied to date and outlining future plans.

With present session of congress drawing to a close and congressional members under pressure of other duties, committee agreed it has become impractical to hold further hearings until November. It proposes to hold an economic forum, at that time, at which outstanding business leaders and economists will be asked to give benefit of their experience and thinking in discussion of the nation's problems.

INVENTORY EXPANSION ARRESTED IN MARCH

Expansion of manufacturers' inventories, a major factor in the domestic business situation since the war started, was halted in March, according to commerce department.

Value of manufacturers' inventories April 1 was lower than March 1. Department's index stood at 110.3 April 1 as against 110.5 on March 1 (Jan. 1, $1939=100$).

Survey reveals the inventory expansion which began last autumn added over $\$ 1,200,000,000$ to the value of manufacturers' stocks.

March shipments were only 11 per cent larger than in March 1939, as compared to January and Feb-

ruary shipments which ran better than 20 per cent ahead of the same months a year ago. Aggregate shipments for the durable goods industries have been maintained at a rate higher than incoming business by deliveriez against orders booked during previous months. March shipments in the major durable goods industries-where unfilled order backlogs are of particular sigmficance in current operationsranged from 13 to 23 per cent above a year ago, except for the transportation equipment group (including aircraft) which showed a rise of more than 80 per cent over March, 1939. In contrast, shipments in most of the important nondurable goods industries did not exceed their 1939 volume by as much as 10 per cent.

WAGNER PROPOSES BENEFITS FOR DISABLED WAGE EARNERS

Senator Wagner, New York, sponsor of the oliginal social security act, has introduced a bill providing insurance benefits for wage earners permanently and totally disabled lor causes not arising out of their employment. He says:
"This bill, providing systematic insurance protection for wage earners totally and permanently disabled before they reach the retirement age, would meet the economic needs of those who have hitherto been forgotten men of our social security system. The bill, with necessary technical changes, follows closely the proposal which I introduced last year when the revision of the social security act was under consideration. Benefits are payable to wage earners totally and permanently disabled, and covered by old-age and survivors insur. ance. Benefits are geared into the old age insurance system, including the allowances for dependents. For at least ten years, the added cost of these benefits would be comparatively small, and would be met out of the existing old age and survivors' insurance fund without any increase in the schedule of contributions by employers and employes in the present law."

GOVERNMENT BUYS 2104 SHORT TONS OF PIG TIN

Award of four contracts for an aggregate of $210 \pm$ short tons of pig tin, under the provisions of the strategic materials act, have been announced by the procurement division. Awards:
Caswell, Strauss \& Co., New York. 112 short tons at 46.93 cents per pound; total $\$ 1,051,232$, subject to $a=$ of 1 per cent discount.
Wah Chang Trading Corp., New York, 100 short tons at 46.15 cents per pound; total $\$ 93,500$.
C. S. Trench \& Co., New York, 784 short tons at 47.20 cents per pound; total $\$ 740,096$, subject to a $1 / 2$ of 1 per cent discount.

American Metal Co. Ltd., New York, 100 short tons at 47.50 cents per pound; total $\$ 95,000$. This award is contingent upon the contractor furnishing Amco brand tan smelted in this country from Bolivian ore.

WAGE-HOUR AMENDMENTS SHELVED BY HOUSE

House of representatives has recommitted to the labor committee all proposed amendments to the wagehour act. After seven days debate the house voted down any action on the amendments and by sending them back to the committee has killed them for the present session.
The action is considered a major victory for the administration.

Completely ignoring party lines, the house first defeated, 211 to 171 , a bill embodying alterations to the wage-hour act so drastic that it was estimated that a total of 3,000 , 000 workers would be withdrawn from protection of the wages and hours provisions. Then by a vote of 205 to 170 , the original mild amendments introduced more than a year ago to alleviate hardship cases, were sent back to the labor committee.

EXPORTS TO SOUTH AMERICA ADVANCE it PER CENT

United States exports to the 20 republics of Latin America during the first six months of the European war amounted to $\$ 359,665,000$, a gain of $\$ 125,464,000$, or 54 per cent, as compared with the peace-time period from Sept. 1, 1938, to Feb. 28,1939 , according to the commerce department. Although all groups of commodities shared in the gen eral increase, the gains were by no means uniform and were largely based on a higher volume of trade rather than on any sharp rise in unit values.

Greatest increase was in sales of metals and metal manufactures, which rose approximately $\$ 44,000$, 000 , accounting for more than onethird of the total increase. Exports of machinery and vehicles, which generally represent the largest single classification in sales to the Latin American countries, showed a somewhat smaller gain than did metals.

The advance in these lines was retarded by the decline in shipments of farm machinery and implements and automotive units to Argentina, by the difference in types of aviation equipment being purchased by the several Latin American govern. ments, and the prior orders for air-
craft placed by the Allies in the United States. There was a sharp gain in orders for railway replacements and new rolling stock representing direct diversion of orders to the United States.

GERMANY LEADS WORLD IN PIG IRON PRODUCTION

Although no official statistics have been issued, it is known that industrial production in Germany during 1939 attained record levels in many instances, according to a report from the office of the American commercial attache, Berlin. Semiofficial estimates recently published in the German press place pig iron output of the old Reich last year at approximately 20,000 , 000 tons, which compares with production of 18,512,C00 tons in 1938. To the 1939 total, however, should be added the production of Bohemia, Moravia and Poland, which amounted to $2,850,000$ tons in that period. According to the press, the aggregate pig iron output of the German "sphere of interest" now amounts to more than 22 per cent of world production and exceeds that of any other country, including the United States.

Steel ingot output of Germany, including territories added to the German "sphere of interest" in 1939 , is estimated at $30,950,000$ tons, a volume which is said to be second only to that of the United States. Germany's production of aluminum in 1939 is estimated at 185,000 tons, oi approximately 30 per cent of total world production of this metal.

The value of Germany's machine. ry output is estimated by semiofficial sources at $6,750,000,000$ marks in 1939, a total which compares with $5,500,000,000$ marks in 1938 and $4,500,000,000$ marks in 1937.

GOVERNMENT WALSH-HEALEY PURCHASES TOTAL \$732,855

During the week ended April 27, the government purchased $\$ 732$,845.34 worth of iron and steel products under the Walsh-Healey act as follows: American Car \& Foundry Co., New York, $\$ 247,390$; Tophams Inc., Washington, S41,128.45; Virginia Bridge Co., Roanoke, Va., \$22,616; Peco Mfg. Corp., Philadelphia, S23,287.34; United States Pipe \& Foundry Co., New York, S12, 541.90; Stevens Walden Inc., Worcester, Mass., S23,622.08; Oliver Iron \& Steel Corp., Pittsburgh, \$37.216.70; Whitehead \& Kales, Detroit, \$38,010; MacWhyte Co., Kenosha, Wis., $\$ 32,100.20$; Warren Webster \& Co., Camden, N. J., $\$ 34,656.37$; Simonds Saw \& Steel Co., Boston, \$14,027.24; Chrysler Corp., Detroit. $\$ 178,348.50$; Troy Chain Co., Tror. N. Y., S14.150.56; and James B. Clow \& Sons, Chicago, \$13,750.

Machine Tools Aid Planemakers

 Achieve Mass Production5 AIRCRAFT manufacturers-turning from hand to mass production methods as rapidly as possibleare buying an increasing volume of machine tools. Conservative estimates are that more than 25 per cent of all machine tools produced for domestic use are delivered to planemakers or their suppliers. Several companies interviewed by Steel reported between 35 and 40 per cent of their domestic sales were to the aircraft industry; one large company said 85 per cent of current deliveries are for aircraft account.

Many toolmakers say the aircraft industry now is shading the automakers in machine tool demand. Estimated needs of the plane builders now is for 4000 tools to cost about $\$ 35,000,000$.

How rapidly the aircraft industry has grown as a tool market is indicated by the fact it took only 2 per cent of domestic sales in 1937; 10 per cent in 1938; and 20 per cent in 1939.

Typical of alrcraft companies' expanding operations, Vultee Aircraft Inc., Downey, Calif., is planning production of its trainer, combat and pursuit planes to take full advantage of every production tool. In the last expansion program, floor space was increased from 150,000 to 335,000 square feet and $\$ 650,000$ worth of machine tools was purchased.

Besides buying standard machine
tools, Vultee has developed successfully for itself special purpose tools which give indications of becoming standards in the industry. These machines present further opportunities to machine tool and machinery builders.

A radial router has been developed with a rotary work table having four setup positions. Production was increased 250 per cent as this arrangement permits loading one position while work is being done at another and unloading at a third.

Rotary Feeding Platforms Used

The motorized rotary feeding platform idea was also applied to a three-column hydraulic press and synchronized for automatic cycle operation. Loading platform has three positions-one for loading, one for pressing and one for unloading. Pressing operation is entirely automatic, with pressing head claimed to move 250 per cent faster than any previously used for aircraft work. As head rises after pressing operation, rotary table automatically swings around to bring loaded set of dies into pressing position.

A high-speed milling machine for light metal alloys also has been developed which is powered by a high-frequency electric motor to drive cutters at speeds up to 10,000 revolutions per minute compared to 2500 revolutions per minute on con-

Aircraft Diesel Engine Offers New Economy

图 This new Guiberson diesel aircraft engine made by Guiberson Diesel Engine Co., Dallas, Tex., recently flew a piane 1500 miles from Dallas to New York at an average speed of 142 miles per hour and at a total fuel cost of \$11.05, or at less than three-quarters of a cent per mile. Engine is rated at 310 horsepower and weighs only 620 pounds compared to the 320 horsepower gasoline engine weighing 570 pounds which it replaced. Estimated fuel cost with the gasoline engine would have been about 4 cents a mile. NEA photo
ventional metalworking mills. This machine has cut milling time on one piece from 30 hours to 115 minutes.
Inasmuch as the average plane requires around 45,000 rivets, much attention is being paid to automatic riveting. Vultee has installed an Erco automatic riveter which punches the hole, inserts the rivet and heads the rivet in one operation, doubling output per man. Several other aircraft companies are purchasing similar machines.
Although not a machine tool, but indicative of the trend to mass production and assemblies, the master jig is finding increasing application in aircraft plants. Through use of special jigs, steel tube frames can be arc welded without appreciable distortion. Vultee is using large cantilever frame type master jigs for electric welding of fuselage tubing which incorporate, besides the master jig, two sets of smaller jigs on rollers to permit work on both sides of the fuselage at once.

First Quarter Aircraft

Exports Total \$66,816,208
[First quarter American aircraft. exports reached a new high of $\$ 66$,816,208 according to Secretary of Commerce Harry L. Hopkins. This is a 225 per cent gain over same quarter 1939. March exports werc valued at $\$ 20,735,688$, or 4 per cent above February. First quarter shipments to leading buyers:
France
\$32,741,917

Australia	7,746,773
England	7,609,266
Canada	4,400,640
Finland	3,181,687
Sweden	2,357,470
Turkey	1,597,794
Norway	1,471,276
China	1,126,560
utch	745,233

Piper Plane Production

 Up 49% in First Cuarter* Production of private planes by Piper Aircraft Corp., Lockhaven, Pa., during first quarter of 1940 increased 49 per cent over same period of 1939, according to T. V. Weld, vice president. Total 1939 sales, highest achieved by a civil airplane manufacturer, was 1806 planes in the $\$ 1000$ to $\$ 2000$ price range. This represented 48.6 per cent of the 3715 civilian planes produced in United States last year, and 56 per cent of civil planes of less than 100 horsepower. Piper has scheduled production for 2500 "Cub" planes for 1940.
To stimulate private flying, company is offering a free 8 -hour course of dual flight instruction by govern. ment-licensed instructors with each plane purchased, in the purchased plane.

Always READY FOR ACTION wherever these better bearings serve

HYATT WOUND ROLLER TYPE and HYLOAD SOLID ROLLER BEARINGS shown opposite. Inherent design advantages, uniformity and aceuracy along with their capacity for heavy loads account for the widespread application of thesa belfer bearings.

At all times of the year, day or night, you can be assured that Hyattized equipment will carry through. Weather conditions, heavy loads, shocks, long hours or extreme speeds make no difference to Hyatt Roller Bearings. They have the staying power to keep equipment going, to prolong machine life.

You'll find Hyatt-protected machinery everywhere always ready for action. Hyatt Bearings Division, General Motors Sales Corporation, Harrison, New Jersey; Chicago, Pittsburgh, Detroit and San Francisco.

By A. H. ALLEN
Detroit Editor, STEEI

DETROIT

ACTIVITY in body die shops throughout the country is at fever pitch, and convincing proof is available that changes in new models are widespread. Even with the vast improvements in die fabrication methods which have taken place in the past few years, these shops are loaded to the gunwales with work this spring, and they will have to use extra pressure to meet deadlines for tryouts.
It may be interesting to review briefly the operations involved in shaping up some of the larger body dies, such as those for turret tops, fenders, wheel housings and the like. The first step in making a large punch and die set is the preparation of models. These are nearly all made of a special type of quick drying cement these days, instead of wood which has come to be too expensive and time-consuming to handle. A cement model can be made from the full-size clay model which styling departments build up before new car models go into production. The clay model is covered with a special grease to prevent sticking of the cement, a box is built up around the certain section for which a die is going to be made, and the cement poured over the pattern.

Cement for Die Molding

Since this cement costs as high as $\$ 50$ a ton, and some models may weigh as much as 5 tons, every effort is made to conserve on cement; hence it is either cored out behind the impression, or only a thin layer is cast over the impression and steel rods are set into the cement to support the model when on the diecutting machine.

Occasionally a wood pattern will

[^3]be made for either the punch or die, alter wh.ch the cement can be poured over the pattern to make the other half of the set. These patterns are shaped up by expert patternmakers, usually working from sheet metal templets giving the proper contours at different sections across the piece.

Different Methods Used

Several tvpes of equipment arc used by die shops to "trace" or duplicate the cast iron die from the plaster model. One is the familiar Keller machine, in use now for almost 20 years for this type of work, though only recently refined to its present state of perfection and installed in both large and small shops. Another method involves use of standard types of machine toolsborint mills, lathe, milling machines -with special attachments to link the cutter with a tracer which move; across the face of the model, usually mounted adjacent to the work and in the same plane.

Chief difference between the two types is that the Keller machine provides accurate electrical control of three motions of the cutter, while the attachments usually only control one motion, leaving the other two to the machine operator. The latter ordinarily involve hydraulic control and have the advantage of being adaptable to standard types of machine tools and of being easily removed, while the Keller machine, considerably more expensive, is a single-purpose tool, completely automatic.

One type of hydraulic control is that made by Turchan Follower Machine Co. here in Detroit and shown in the accompanying illustration. An average size unit sells for around $\$ 3000$ and there are perhaps 50 of them in use at the present time in various shops. Essentially, it comprises a tracer for following the
contour of the model, the tracer point bearing against the model with 8 -ounce pressure and being proportional in size to that of the cutter. Through a system of hydraulic valves, controls and pumps, the in-and-out motion of the tracer is transferred to identical motion of the cutter on the die. Speeds and feeds are regulated by the operator.

A third type of attachment is known as a universal duplicator and combines electric and hydraulic means to duplicate a die from a model. It is portable and may be attached easily to a lathe, planer, shaper, die sinker, boring mill, etc. Built by Detroit Universal Duplicator Co., the operation is essentially as follows: A motor-driven cam keeps a contact point in high speed vibration between two contact points in the tracer head. As the tracer finger follows the pattern, any movement brings the vibrating points into greater contact with one of two contact points. One of two solenoids, each connected with its corresponding point, controls the up or down position of a hydraulic valve plunger. This plunger valve diverts fluid under pressure from the hydraulic pump to the hydraulic motor. A driveshaft connected to this motor is connected with the feed of the machine tool it is operating.

Die Surface Is Hand-Finished

Even when the tracer is following a section of the pattern requiring no feed, electrical impulses continue and keep the solenoids in slight movement. However, these impulses are of such short duration and in such rapid sequence that they tend to neutralize each other so that no motion is transmitted to the machine tool.

Using either the completely automatic Keller machines, or the duplicating attachments, practice in form-

MIRRORS OF MOTORDOM-Continued

ing the large automotive dies is to make two series of cuts, roughing and finishing. Roughing cuts may be spaced as far apart as several inches and give the effect of a serie; of parallel gouges extending either horizontally or vertically across the die. After completely rough cutting the surface, the finishing cuts are started and are spaced much more closely together, with a smaller cutter used. Finish cuts are spaced somewhere around $1 / 2$-inch apart if the roughing cuts are, say, 2 inches apart.

After the finish cuts, the surface still shows the seriez of closely spaced parallel gouges, the base or deepest part of each cut being the true surface of the finished die and thus providing a series of gage lines for the final grinding operations. Portable grinders are used to smooth down the "corrugated" surface to the point where the gage lines just show. Then large hand files must be used to get the surface down to its final smoothness.

At this point, the ingenuity of the skilled diemaker comes into play, for it is a long, tedious task to get a perfect fit between punch and die. The practiced die man can run his hand over the smooth iron surface and tell quickly where there is the slightest waviness. Prussian blue is smeared on the surface and the dies are placed in a tryout press. The dies are closed and opened, traces of blue being left where the two surfaces do not meet perfectly. Grinding, filing and rubbing are necessary to put the final touches on the dies before the first stampings are tried, and even then readjustment often is necessary because of wrinkling of the steel, or some difficulty.
One set of dies usually is sufficient for a model run, and these days

Automobile Production

Passenger Cars and Trucks-United States and Canada

By Department of Commerce

	1938	1939	1940
Jan.	226,952	356,962	449,314
Feb.	202.597	317.520	421,820
March	238,447	389,495	439,911
April.	237,429	354,266	
May	210,174	313,248	
June	189,402	324,253	
July.	150,450	218,494	
Aug.	96,946	103,343	
Sept.	89,623	192,678	
Oct.	215,286	324,688	
Nov.	390,405	368,541	
Dec.	406,960	469,120	
Year	2,655,171	3,732,608	

Estimated by Ward's Reports

week ended:	1940	$1939 \dagger$
April 13.	101,940	88,050
Aprll 20.	103,725	90,280
Aprll 27.	101,405	86,640
May 4	99,305	71,420
May 11	98.480	72.375

duplicate sets are seldom held in reserve, because precision diemaking and finishing has practically ruled out breakage. Where large runs are encountered and at severe wear points in dies, the practice often is resorted to of putting in steel inserts. This is another laborious job, as the inserts must be doweled into place and must fit the die perfectiy.
While the fabrication of large automotive dies is still a long drawn out affair, and a task full of headaches, machining practice today has eliminated much of the time formerly required, when surfaces
had to be hogged down with an air chisel, with the only guide a templet and the ope ator's good judg. ment.
\& RESTRICTIONS placed on South African diamonds as a result of the European war have been reflected here in tighter supplies, 20 to 25 per cent higher prices, but no marked reduction in their use. All the motor companies, parts manufacturers, tool shops and other plants make some use of "bortz"the technical term identifying industrial diamonds-in grinding, boring and similar operations. South African diamond supplies are controlled by a wealthy London syndicate which distributes them to brok. ers and dealers in Amsterdam and Antwerp. Embargoes have been placed on shipments from Antwerp and England, but supplies still are available from Amsterdam.

Pontiac Motor division, for example, reports use of "nearly a pound" of diamonds a year, which is a lot of diamonds, running 2300 carats to the pound and the average industrial diamond being 3 carats.

Brazilian diamonds, including the Brazilian carbonado or black diamond, are used to some extent industrially, but cost about 20 to 25 per cent more than African diamonds and are not available in as large quantities. Prices of these diamonds have increased "in sympathy" with the prices of African diamonds. Prices on African diamonds range from $\$ 1.28$ per carat for crushing bortz, used in grinding wheels, up to $\$ 35$ a carat for the high-grade stones. All industrial diamonds are actually rejects from stones examined for gem purposes.

Diamond sales interests in this country are "co-operating" with the British in preventing resale of industrial diamonds to enemy industry, although obviously there can be no strict regulation or licensing of domestic transactions.

Motor truck sales, while heavier than at this time last year, are not maintaining the increased pace of passenger car sales. Chevrolet reports for the first quarter show sales of 48,509 commercial cars, a gain of 3970 units or around 9 per cent over the same period last year.

- Die duplicaling altachment on large Giddings δ Lewis boring mill, with pattern and die for hold-down ring of turret top die assembly mounted on the bed. Note tracer al center of lower edge of plaster model mounted above the cast iron die on which roughing cuts have just been completed. Photo courtesy Turchan Follower Machine Co., Detroit

Inventor of the BUILT-IN SEAL

Over 14 million N-D-Seal bearings have been used to simplify design, keep dirt out, keep lubricant in, and reduce installation and maintenance costs.

New Departure, Bristol, Connecticut.

NEW DEPARTURE SELF-SEALED. BALL BEARINGS

Technology Opening New Fields. GiN's Guests at Fair Told

- AGGRESSIVE capitalization of technological progress is the only solution to the problem of higher living standards, asserted Alfred P. Sloan, General Motors Corp. chairman, last week. Addressing more than 550 executives, educators and college students at a dinner in the General Motors building, New Yozk world's fair, marking beginning of the corporation's fair activities for 1940, Mr. Sloan declared only in that manner could workers' productivity be increased. This would enable industry to pay higher wages, and reduce prices of goods and services so that they could be brought within reach of an increasing number of people, he said.
Supported in his views by William S. Knudsen, General Morors president; General Hugh S. Johnson; Charles F. Kettering, General Motors vice president; Dr. Karl T. Compton, president, Massachusetts Institute of Technology; and Dr. Ernest M. Hopkins, president, Dartmouth college, Mr. Sloan reassured the college students that industrial progress built on research and technological advances will open new opportunities for the present seneration far greater than in the past.
Intelligent management of affairs, said Mr. Sloan, will determine extent to which benefits available will be
obtained. That $10,000,000$ are unemployed today, that living standard is falling, and that industry's expansion has become decelerated is all the inevitable result of the nation's own actions, he pointed out.
"Sooner or later," stated Mr. Sloan, "we will learn that we are all a part of the same economy. We cannot penalize one group to provide a higher standard of living for the other. The only way the standard of living of the less privileged part can be advanced is to improve the standard of living of all other parts."

In addition to Mr. Sloan, Mr. Kettering and Mr. Knudsen spoke briefly on American youth's future opportunities. Pointing to past generations' inability to foresee the tremendous advance in modern industry Mr. Kettering stated it is futile "for us to try to imagine what the future will be like, let alone plan it. All we can do is prepare ourselves to take full advantage of what the future will bring. Our over-all ability is the only thing that really counts."
Mr. Kettering, the two college presidents and General Johnson constituted a board that undertook to answer questions submitted by the students. Provocative of lively discussion was the query: "Is it reason-

[^4]able to expect expansion in industry alone to absorb the millions reported unemployed, plus college and high school graduates?"

Mr. Kettering declared that not only could proper industrial expan. sion take up all unemployment, but that if a lot of new things got under way, a shortage would result. General Johnson pointed out that if nurmal business expansion of 4.4 per cent annually had continued after 1929, industry alone would have found employment for additional $6,000,000$ without taking into account associated services.

U. S. Steel Subsidiaries

Show New Film at Fair

m "Men Make Steel," a new tech. nicolor film relating the story of steelmaking, will be shown at frequent intervals throughout the summer at the air-conditioned moving picture theater added to United States Steel subsidiaries' exhibit, New York world's fair. Picture depicts actual operations in manufacture of steel, from ore mines to rolling mills and finished forms.
Dioramas visualizing possible future developments in steel application are also exhibited. Pre-fabricated steel housing, an imaginative hydrophonic tomato farm representation, and a working model of the future city are featured.

Research section illustrates by actual demonstration important role research plays in steel manufacture. Other displays, including a mural executed in steel sheets, show many uses of steel and its importance in modern life.

April Ingot Output Down 7 Per Cent from March

- Open-hearth and bessemer steel ingots produced in April totaled 3,974,706 net tons, a decline of 7 per cent from March, but 19 per cent more than in April, 1939, according to the American Iron and Steel institute. Revised figure for March was $4,264,755$ net tons and for April, 1939, it was $3,352, \pi 4$ tons.

April production was at the rate of 61.04 per cent of capacity, compared with revised rates of 63.42 per cent in March and 51.11 per cent in April, last year. Steel ingot production averaged 926,505 tons per week in April.

Production for four months this year totaled 18,303,811 net tons, compared with $14,139,679$ tons in the corresponding period last year.

In the accompanying table the institute has revised all figures for 1939 and 1940, based on the new capacity figures announced late in February. iSteel, March 4, page 33,)

U. S. Steel's Export Business

13 Per Cent of Total Shipinents

- EXPORT business is contributing increasingly to United States Steel Corp.'s bookings, Edward R. Stettinius Jr., chairman, told stockholders at corporation's annual meeting in Hoboken, N. J., last week. Fin ished steel exports in 1939, he said, aggregated approximately 9 per cent of total tonnage shipments, compared with about 13 per cent to date this year.
Mr. Stettinius said the corpora tion exported 705,000 tons of steel in first eight months last year and 582,000 in remaining four. Export shipments during first 1940 quarter totaled 462,000 tons. It is noteworthy, he commented, that much of the increase has been due to diminishing competition from foreign sources in neutral countries as a result of war, rather than to belligerents' direct war needs.

Although it spent $\$ 26,000,000$ for property improvements last year, United States Steel Corp. has not, nor is planning to alter or enlarge its facilities for war business, Mr. Stettinius assured stockholders. He said that if all steel tonnage contemplated under the government's naval armament program over next few years were placed with the corporation it would absorb only about 1 per cent of latter's finishing capacity as of last year.

Among items included in the corporation's expansion activities last year Mr. Stettinius mentioned acquisition of properties and assets of Boyle Mfg. Co., Los Angeles, steel drum, pail and barrel manufacturer. It was recently decided, Mr. Stettinius continued, to round out and complete the corporation's modernization program in connection with tin plate facilities at Birmingham, Ala., Pittsburgh and Chicago districts. In the Pittsburgh district, cold-reduced black plate production at Irvin works will be increased by installation of another cold-reduction mill and processing equipment. At Birmingham, plan calls for additional processing and finishing equipment in the tin mills.

Carnegie-Illinois Steel Corp., in Chicago district, will install additional processing and finishing equipment at Gary, Ind., sheet and tin mill. It is negotiating for purchase of tinning equipment from Continental Can Co., New York, but does not intend to enter canmaking business.

Rapid development of the corporation's stainless steel division was cited by Mr. Stettinius. Since it was formed, in 1936, to co-ordinate manu
facturing and sales activities of all subsidiaries engaged in that field, corporation has moved from tenth to third position in tonnage volume. Stainless steel shipments to consumers have multiplied about 600 per cent since 1932.
R. E. Zimmerman, vice president, outlined for stockholders present the corporation's advancement in research. Development of appropriate steel types for use in construction of houses, aircraft and rolling stock was furthered during 1939. New magnetic mechanism, which employs wholly new features for lean ore concentration, now under development and "showing outstanding promise in connection with the problem," was discussed by Mr. Zimmerman.

He also referred to: Austempering, a new heat treating process; use of "sponge iron" for powder metallurgy; improvement in silicon

Watch

for an important announcement in
STEEL Soon!
alloy steel magnetic properties; ferrostan, an electrolytically coated tin plate; pyrometer, a device for measuring temperature of liquid steel in open hearth furnaces.

Direct continuous casting of semifinished steel is also important, he said, along with use of oxygen in blast furnaces, elimination of surface defects from ingots, development of new alloys for high temperature service and production of rolls with greatly superior surfaces.

It is necessary, said Mr. Zimmerman, for steel research engineers, to keep a weather eye on all significant developments in competitive fields involving not only nonferrous metals, but materials such as synthetic resins and plywood as well.

One stockholder, J. N. Blackman, contended stockholders, as well as management and employes, were entitled to collective bargaining, and urged the management to fight more aggressively for their rights. Questioned by him as to reason for recent price reduction, Mr. Stettinius declared it was necessary for
the corporation to maintain its competitive position.
Replying to another question anent development of a steel plant in Brazil Mr. Stettinius reported United States Steel Corp. is not planning to proceed with development of a steelworks in that country.

Major Steelmaking Units

 Incurred Loss in 1939- Principal steelmaking subsidiaries of United States Steel Corp., New York, and Bethlehem Steel Corp., Wilmington, Del., incurred net losses in 1939, according to reports filed with the securities and exchange commission.

Carnegie-Illinois Steel Corp., U. S. Steel's subsidiary and largest steel manufacturing unit in the world, recoraed a loss totaling $\$ 18,888,206$. American Steel \& Wire Co., another large subsidiary, reported a $\$ 4,537$,820 loss. Bethlehem Steel Co. of Pennsylvania, Bethlehem Steel Corp.'s subsidiary, last year had a loss of $\$ 490,338$ after interest payments. Bethlehem Steel Co. of Delaware lost $\$ 121,534$; Bethlehem Steel Export Co., $\$ 20,871$; and Fore River Railroad Co., $\$ 4000$.

United States Steel Corp. received cash dividends aggregating $\$ 39,536$,312 from its subsidiaries last year, in earnings of which companies the parent corporation had an equity totaling $\$ 34,217,095$. Largest dividend payment, $\$ 5,883,043$, came from Tennessee Coal, Iron \& Railroad Co.; Duluth, Missabe \& Iron Range Rail. way Co. contributed $\$ 5,140,625$; Pittsburgh Steamship Co., $\$ 4,914,000$; Lake Superior Consolidated Iron Mines, $\$ 3,000,000$; National Tube Co., $\$ 2,800,000$; Neville Iron Mining Co., $\$ 2,000,000$; Bessemer \& Lake Erie Railroad Co., \$2,500,000; Elgin, Joliet \& Eastern Railway, $\$ 1,910,000$; Columbia Steel Co., $\$ 1,600,000$; Universal Atlas Cement Co., $\$ 1,470,000$ and Minnesota Iron Co., $\$ 1,000,000$.

Bethlehem Steel Corp., the holding company, derived $\$ 29,176,320$ income from interest payments on promissory notes and other obligations from subsidiaries. Largest profit came from Bethlehem-Chile Iron Mines, $\$ 1,055,084$. Other profits included Calmar Steamship Corp., $\$ 829,089$; South Buffalo Railway, $\$ 474,098$; Bethlehem-Cuba Iron Mines, $\$ 472,006$ and Bethlehem International Supply Co., $\$ 385,891$.

- Westinghouse Electric \& Mfg. Co., East Pittsburgh, Pa., will award service emblems to more than 21 ,000 employes in recognition of ten or more years' service with the company. Eight employes have been with Westinghouse 50 or more years; 184 at least 40 years; and 6062 for 15 years or more.

For a Chicken in Every Pot

- IN A thought-provoking article in the May issue of Readers Digest, Franzy Eakin and William Hard declare that an "Economic Congress" is needed to combine all our economic elements in "progressive cooperative energy against governmental totalitarianism".

Saying the country needs true economic leadership, they hold we cannot have it as long as manufacturers of consumer goods, manufacturers of producer goods, wholesalers, retailers, rail carriers, motor carriers, water carriers, AFL labor, CIO labor, milk farmers, cotton farmers, other sorts of farmers, work at cross-purposes or fight each other.

Under such conditions, they point out, the only leadership we really have is political leadership. They fear that "political leadership ultimately will swallow all our economic elements into the stomach of the state unless in private economic life we have a concerted leadership that can stand up against it".

Many Problems Press for Solution By Proposed Economic Congress

The suggestion is made by the authors that the $\$ 80,000,000,000$ national income which the President has held up as the ideal objective-because it would produce tax revenue that would balance the budget -would not be sufficient to elevate the standard of living to what they call the "Middle American Ideal". Carefully figuring all expenses for an average American family they calculate that the national income required to support the plane of living on this standard would require an income of at least $\$ 105,000,000,000$.

In order to achieve such an objective the authors believe that an Economic Congress would have to reach agreement on such questions as: What should we do about investment? What should we dc about improved industrial plants? What should
we do about improved labor power? What should we do about improved agricultural markets? What should we do about inproved transportation facilities? What should we do to make all our economic elements mesh together as a gear-train that will turn and not stall?

While this idea is not wholly new, it probably never before has been presented so intriguingly. To many, the suggestion of an Economic Congress--representing industry, capital, labor, the farmer and business in general-may seem fantastic. But is it?

Influence of Pressure Groups Could Be Removed from Political Arena

As a matter of fact much progress already has been made along these lines. Take, for example, a typical annual meeting of the National Association of Manufacturers. The speakers will include not only manufacturing executives, but a liberal assortment representing other activities, such as one or two government men, an educator, a research worker, a dirt farmer, a banker and the like. The same is true of many other gatherings.

Properly organized, an Economic Congrass might well prove to be an effective means for consolidating the position of business as a whole with respect to the national policy. It might be the means of compromising selfish desires of many existing pressure groups and, by eliminating such issues from politics, make it possidle for candidates for public office to be less subservient to pressures of one kind or another. The idea is worthy of serious consideration. Such an Economic Congress undoubtedly could be organized effectively if a comparatively small number of influential men would initiate the movement and then vigorously push it on to realization.

Some Business Indicators Record Moderate Gains

\% ADDITIONAL improvement in some industrial lines developed last week, indicating a more pronounced leveling off of the general business trend with the possibility of an upward movement starting soon.

Particularly significant at this time is the encouraging improvement recorded in steelmaking operations the past two weeks. However, too much stress should not be placed on the recent upturn in
the national steel rate, for it is probable that a considerable portion of the sheet and strip orders placed in recent weeks have been at the expense of business later on this year.

Sterl's index of activity gained 0.5 point to 103.3 during the latest period and compares favorably with the 85.1 level recorded by the index in the corresponding week last year. Improvement in revenue
freight carloadings and steolworks operations more t^{2}.an offset the seasonal tapering off in electric power consumption and automobile production during the week ended May 4.

Other encouraging factors in the current outlook are the slight improvement in steelworks scrap composite and the increase in private construction awards placed during April.

STEESS indcx of activity gamed 0.5 pointio to 103.3 in the weed chated May a :

Week Ended	1940	1939	Mo. Data	1940	1939	1938	1937	1936	1935	1934	1933	1932	1931	1830	1829
Feb. 24	105.4	89.3	Jan.	114.7	91.1	73.3	102.9	85.9	74.2	58.8	48.6	54.6	69.1	87.6	104.1
Mar. 2	105.6	91.5	Feb.	105.8	90.8	71.1	106.8	84.3	82.0	73.9	48.2	55.3	75.5	99.2	111.2
Мат.		91.5	March	104.1	92.6	71.2	114.4	88.7	83.1	78.9	44.5	54.2	80.4	98.6	114.0
Mar. 16	104.7 104.9	92.7	April	1027	89.8	70.8	116.6	100.8	83.0	83.6	52.4	52.8	81.0	101.7	122.5
Mar. 23	103.7	93.3	May		83.4	67.4	121.7	101.8	81.8	83.7	63.5	54.8	78.6	101.2	122.9
Mar. 30	103.2	93.2	June		90.9	63.4	109.9	100.3	77.4	80.6	70.3	51.4	72.1	95.8	120.3
Apr.	101.8	90.0	July		83.5	66.2	110.4	100.1	75.3	63.7	77.1	47.1	67.3	79.9	115.2
Арг. 13	101.8	80.0	Aug.		83.9	68.7	110.0	97.1	76.7	63.0	74.1	45.0	67.4	85.4	116.9
Apr. 20	103,4	89.7 90.4	Sept.		98.0	72.5	96.8	86.7	69.7	56.9	68.0	46.5	64.3	83.7	110.8
Арг. 27.		90.4	Oct		114.0	83.6	98.1	94.8	77.0	56.4	63.1	48.4	59.2	78.8	107.1
May 4		89.2	Nov.		116.2	95.9	84.1	106.4	88.1	54.9	52.8	47.5	54.4	71.0	92.2
-	103.3	85.1	Dec.		118.9	95.1	74.7	107.6	88.2	58.9	54.0	46.2	51.3	64.3	78.3

May 13, 1940

Steel Ingot Operations
（Per Cent）

Weals	ended	1940	19：35	1938	1937
Feb．	3.	76.5	53.0	31.0	79.5
Feh．	10.	71.0	54.0	30.0	81.0
Feb．	17.	69.0	55.0	31.0	83.0
Feb．	24.	67.0	55.0	30.5	84.0
Mar．	2	65.5	56.0	29.5	86.0
Mar．	9	63.5	56.5	30.0	87.0
Mar．	16.	62.5	56.5	32.0	89.0
Mar．	23.	62.5	55.5	35.0	90.0
Mar．	30.	61.0	54.5	36.0	91.5
A pr：	6.	61.5	53.5	32.0	91.5
Apr．	13.	61.0	51.5	32.0	91.5
Apr．	20	61.5	50.5	32.5	91.5
Apt：	$2 ⿻ コ 一^{2}$	$61 . \overline{\mathrm{v}}$	49.0	32.0	91.0
May	4.	63.5	49.0	31.0	91.0

Auto Production

（1000 Units）

Week endial	1940	1939	1438	1937
Feb． 3	101.2	79.4	51.4	72.3
Frol． 10	9\％．ก	84.5	57.8	72.8
Feb． 17	95.1	79.9	59.1	95.7
Feb． 24	102.6	75.7	57.0	111.9
Mar． 2	100.9	78.7	54.4	127.0
Mar． 9	103.6	84.1	57.4	101.7
Mar． 16.	105.7	86.7	57.5	99.0
Mar． 23.	103.4	89.4	56.8	101.0
Mar． 30.	103.4	86.0	57.5	97.0
Apr． 6.	101.7	87.0	70.0	99.2
Apr． 13	101.9	88，0	62.0	125.5
Apr． 20.	103.7	90.3	60.6	133.2
Apr． 27.	101.4	86.6	50.7	139.5
May 4.	99.3	71.4	53.4	140.2

Industrial Production Federal Reserve Board's Index

	$(1923-25=100)$				
	1940	1939	1938	19:37	1936
Jan.	119	101	80	114	98
Feb.	109	99	79	116	94
Mar.	103	98	79	118	93
April	. . .	92	77	118	98
May		92	76	118	101
June		98	77	114	103
July		101	83	114	107
Aug.		103	88	117	108
Sept.		111	90	111	109
Oct.		120	96	102	109
Nov.		124	103	88	114
Dec.		128	104	84	121
Ave.		106	86	110	105

United States
Foreign Trade
(Unit: $\$ 1,000,000)$
Exports Imports $1940 \quad 1939 \quad 1040 \quad 1939$

Jın.	\$368.6	\$212.9	\$241.9	\$178.2
Fel.	347.0	218.6	199.8	158.0
Mar.	352.3	267.8	216.7	190.5
April		231.0		186.3
May		249.5		202.5
June		236.1		178.9
July		229.6		168.9
Aug.		250.8		175.8
Sepl.		288.6		181.5
Oct.		332.1		215.3
Nov.		292.7		235.4
Dec.		367.8		247.0
Total		2,177.0	* \times.	2,318.3

Pig Iron Production
Dally average blast furnace Net Tons - Rate (\%)$1940 \quad 1939 \quad 1938 \quad 194019391938$ $\begin{array}{llllllll}\text { Jan } & 129,825 & 78,596 & 52,201 & 85.4 & 51.0 & 33.6\end{array}$ Feb. $113,943 \quad 82,407 \quad 52,254 \quad 75.053 .5 \quad 33.6$ Mar. 105,502 $86,46553,117 \quad 69.5 \quad 56.1$ Apr. $104,635 \quad 76,732 \quad 51,819 \quad 68.949 .8 \quad 33.4$ May 62,052 $45,556 \ldots .40 .229 .4$ June $79,12539,601$.... 51.425 .5 July $85,12143,827$.... 55.028 .2 $\begin{array}{llrlr}\text { Sept. } & 107,298 & 62,835 & \ldots . & 69.7 \\ \text { Se. } & 40.5\end{array}$

Oct.	No.	131,053	74,697	\ldots	85.2	48.0
Nov		138,883	85,369	\ldots	90.3	55.0

Class I Railroads
Net Operating Income
(Unit: $\$ 1,000,000)$

	1940	1939	1038	-
Jan.	\$45.57	\$.32		
Feb.	32.62	18.59	1.91*	38.78
Mar.	36.73	34.32	14.73	69.88
April		15.26	9.40	48.36
May		25.10	16.67	44.24
June		39.10	25.16	59.35
July		49.01	38.43	60.99
Aug.		54.59	45.42	50.76
Sept.		86.43	50.36	59.62
Oct.		101.62	68.57	60.86
Nov.		70.35	49.67	32.44
Des.		60.95	49.37	25.99
Average		\$49.02	\$31.02	\$49,18

[^5]

Always Pays

This company saved 30 per cent in insurance costs and, with its 'good housekeeping" program, reduced its visiting nurse's calls 50 per cent. Savings netted paid for the entire campaign

A GOOD safety program is good business-that is how Campbell, Wyant \& Cannon Foundry Co., Muskegon, Mich., summed it up after five years of success with a safety and health campaign that netted a 30 per cent saving in insurance costs and, from a humanitarian viewpoint which interests this company most, has created a happier, healthier group of workmen.

In many cases, the only opposition to acceptance of an organized medi-

By G. W. CANNON
Vice President
Campbell, Wyant \& Cannon Co. Muskegon, Mich.
cal and hygiene program is the belief it is economically impossible for any but the largest companies. This plan, however, not only reduced the cost of liability insurance, but created a saving sufficient to pay

Doctors check carefully results of X-ray examinations and dictate findings for a permanent record
for the entire health and safety program.

No matter how this subject is ap-proached-whether from a humanitarian viewpoint or whether from the standpoint of a net saving in operating expense, records of Campbell, Wyant \& Cannon prove that a well organized health, safety and good housekeeping program actually pays. In addition, it brings about a more closely knit organization. Employes like it. They realize the company has their interests at heart.
Because of the vigilance exercised by this company's supervision and medical department, the visiting nurse's calls have been reduced approximately 50 per cent in the pasi three years-and she still calls on every absentee. Much illness has been prevented and many lives saved because the service takes care of employes before a health or accident problem becomes serious.

Even before the prospective employe is hired, the employment department in co-operation with the medical division checks carefully his physical condition. The company found it is more important to fit the man with a job according to his physical attributes, than to place him properly after a casual exterior "once over" as the practice had been.

In order that the company might have the best possible system of making health examinations, the methods by employers of 500,000 men were checked, including both the nation's large and small indus-

[^6]tries. Then it went beyond what some of them do. This is particularly true on rechecking men, and on blood tests.
An instance showing how deep an obligation this company feels towards each of its employes is the one concerning the man who came to them not knowing he had a hernia. The company first made him sign a statement acknowledging his condition. Next, he became a member of the Aid association, paying in $\$ 1$ a month for its benefits. He then was put to work for the next six weeks. At the end of that time he was eligible for the benefits of the association.

Receives Benefits

He was operated on by a surgeon of his own choice. During his absence he received benefits of $\$ 2$ per day. When fully recovered, he came back to work, a useful man.

Payment for his operation was then deducted from his regular pay check at the rate which he could afford to pay.

The medical attendants always strive to make workers feel welcome. They try to impress on them that they are there to help them. Incidentally, this department is run as ethically as any good doctor's of. fice and enjoys the good will of the profession throughout the city.

Preliminary examinations are divided into three parts-the history, physical examination and the laboratory procedure. The man's history is taken on a regular form signed by the applicant and verified for

Prospective employe's history is taken by a medical clerk, signed by applicant and verified for the company's records by the attendant

advice and assistance from the company medical department for mild disorders, the medical department attempts to perform a function in diagnosing disease.

Many of these disorders are insignificant but some signify the beginning of a dangerous condition. It is in these cases the industrial physician has an opportunity for early diagnosis, preventing worse developments. Practice of the company in a case of this kind is to refer these patients to their family physician and see by follow-up that they consult him.

For the past five years the company has been educating its employes on the personal value to them of the shop slogan "Safety Always Pays." That they are becoming increasingly conscious of this fact is indicated by the following record: In 1935 its per cent of hours lost to hours worked was 1.73 per cent. In 1938 this was down to 0.04 of 1 per cent and 0.02 of 1 per cent in the first 10 months of 1939.

Lost time acciderts were as follows: In 1935, 213, to 49 in 1938 and only 30 in the first 10 months of 1939 , or $1 / 7$ of the number of accidents in 1935.

For 10 months in 1939 the man hours have been increased by some 125,000 over the total for 1938 in spite of which the hours lost due to accident as compared to hours worked is just one half of the 1938 record. The safety department maintains that this record is largely a result of the physical examination.
To secure "no lost time" accident
records a spirit of competition has been developed. Because of their desire to keep a good safety rate, the employes now even help newcomers until they have mastered their jobs.

Knowing that a safety program cannot be successful without "good housekeeping," the company also stresses this phase of its campaign equally as hard as the safety program.

Each department is furnished with a "good housekeeping" record card marked daily by the safety inspector. Monthly prizes with a letter of commendation, plus the privilege of displaying a bronze plaque for winning first, second or third place, creates a competitive spirit that keeps the contestants alert and interested.

Proper lighting, heating and ventilation are carefully checked. Light meters assist in maintaining proper illumination. Sufficient heat must be furnished to create bodily comfort. General plant ventilation is under the control of a trained man for each shift. Dust counts are taken by a staff chemist and control corrections are made continuously.
Brightly illuminated rest rooms, often repainted, have stopped previous malicious destruction of fixtures. A large portable vacuum cleaner removes dust and dirt throughout the foundry, creating better, healthier working conditions and a decreased occupational disease coverage cost.

The company insists that all injured employes go to the First Aid
department regardless of how slight the injury. This applies equally to any employe suspected of running a temperature.

The Aid society is entirely inde. pendently operated and controlled by the employes. Membership costs each man $\$ 1$ per month. He can receive beneflts totaling $\$ 120$ a year for three years. At the end of 90 days continuous active service, each man gets $\$ 500$ group life insurance. In 9 months this is increased to $\$ 750$; in 15 months to $\$ 1000$-all of this at no added cost. His dollar each month is supplemented by an equal contribution from the company.

Nurse Also Aids Families

As part of the aid service, a nurse calls at the employe's home when he is absent from work. If necessary, she suggests that the family physician be called. The association arranges for financial and medical help when needed. The nurse calls each day or as needed until the employe recovers. She also helps out in illness of the wives and children. For this service the employes and their families have only the highest praise to offer.

Safety and safe working conditions are a matter of education and

One of the most important steps this company takes in selling its health and salety campaign to the employes is publicity. It carries on a campaign in its shop magazine assisted by other devices such as the bulletin board below
must have the wholehearted support and co-operation of management, supervision and workers.
One of the important steps this company takes in selling its program is through the columns of its monthly shop magazine. Here, beside shop material, much of the N.A.M. information on suggestions for improved health and safety methods is used as well as similar material found in other magazines.
All this activity has brought the company's workers and management closer. The employes like the program and seem anxious to correct physical defects found in the course of the examinations.

As a result of this program the foundry is actually insuring its entire liability at a lower net cost besides enjoying an immense amount of satisfaction for the many lives and homes saved.

Size Finding Scale

- A device whereby the most suitable washer size can be selected to satisfy a given design or assembly requirement, is announced by Wrought Washer Mfg. Co., 2100 South Bay street, Milwaukee. Offered without charge to rated firms, it makes possible a speedy comparison of the complete range of washer specifications available for an individual size requirement in each of the several standard and semistandard washer classifications.

THE WORKMAN USING THIS
HAMMER WAS FLIRTING WITH TROTJTLE

$$
\begin{aligned}
& \text { MEAT EXHAUSTION } \\
& \text { LEARH MOKG GHENTO USE }
\end{aligned}
$$

Photo shows the Super-Diamond Pattern of "A.W." Rolled Steel Floor Plate. Provides safe tread from any angle, under any condition.
On busy floors . . . "A.W." Rolled Steel Floor Plate is a practical solution to floor maintenance problems on busy traffic aisles, stair treads, factory floors and refinery towers. With "A.W." Floor Plate, the first cost is always the last cost. Oil-proof, heat-proof, crack-proof... permanently safe. No worn and slippery surfaces to endanger men on foot. No cracks or ridges to upset floor trucks. Can be cut to any shape and installed almost over-night--that isn't a catch phrase, it's a fact. Write for folder.

ALAN WOOD STEELCOMPANY

MAIN OFFICE AND MILLS, CONSHOHOCKEN, PENNA. : : SINCE $1826:$: district offices and representatives-Philadelphia, New York Boston, Atlanta, Buffalo, Chicago, Cincinnati,Cleveland, Denver, Detroit, Houston, New Orleans,St.Paul. Pittsburgh, Roanoke, Sanford, N.C.,St.Louis

Machine Tool Electrification Smashes Traditions

By GUY HUBBARD

Machine Tool Editor

- MACHINE TOOL engineering today is an extremely broad and at the same time a very exacting field of technical activity, as compared to what it was 25 years ago. Then, design was concerned to a large degree with mechanical devices. The profession was to a large extent conducted on a basis of ingenuity plus practical shop experience plus empirical rules involving only relatively simple mathematics.

Today-while ingenuity and practical experience continue to be undiminished in importance - they must be supported by sound theoretical knowledge of mechanisms and materials, plus highly specialized knowledge of electrical and hydraulic principles and apparatus, plus courage to break with any engineering traditions whenever those traditions say: "It can't be done!"

Electrification - in conjunction with hydraulics, to which it is becoming more and more closely allied-is, to my way of thinking, the most powerful tradition-smashing factor which ever has penetrated the machine tool industry. As practiced in this industry, it not only has smashed machine tool engineering traditions, but also it has smashed many deeply entrenched electrical engineering traditions.

There were not a few old-line machine tool designers with little or no understanding of electricity, who shied away from it violently and - with almost superstitious dread. Younger designers, however, who did understand its basic principles and who realized its tremendous possibilities, did not get any too much encouragement from some of the old-line authorities in the electrical industry. Those older electrical engineers had in many cases
done remarkable things with electrification in "large packages"heavy locomotives and rolling mill drives for instance-but when it came to envisioning the "smaller packages of power" required for individual machine tool electrification, their imaginations seemed to fail.

Imagination Was Needed

This lack of imagination also extended to the manufacturers of electrical equipment. Just so long as those manufacturers offered to machinery builders nothing more suitable than power plant and building electrification equipment, electrification of machine tools remained relatively in about the same condition as did household electrification during that transition period when it was limited to the wiring of old gas fixtures.

The writer is of the opinion that the first real break toward real electrification of machine tools came about when technical schools began to break down the artificial barriers between their mechanical and their electrical engineering courses. At least 30 years ago, the late Forrest E. Cardullo, at that time professor of mechanical engineering in an eastern college, was confidently predicting to his students just such electrical developments in machine tools as he himself as chief engineer of the G. A. Gray Co., was destined many years later to be influential in carrying out. When Mr. Cardullo was making his early predictions, hardly one new machine tool in a hundred was being built with individual motor drive, yet he lived to see the day when hardly one new machine tool out of a hundred was not electrified.

Today there is hardly a machine
tool plant of any importance in America where electrical engineers do not rate in importance with mechanical engineers in the engineering department, or where at least one capable man does not combine the functions of an electrical and mechanical (and often a hydraulic) expert. There is hardly a plant of such caliber which does not at least once a year have one or more of its engineers spend some time in conference with leaders of the electrical industry - as for instance during the Machine Tool Electrification Forum.
There is no leading manufacturer of industrial motors and control apparatus who has not developed or who is not developing (usually in close collaboration with engineers of the machine tool industry) equipment especially suited for machine tool electrification. The electrical industry has awakened to the fact that here is an industrial market worthy of special and intensive cultivation.

Just to illustrate how far electrification has gone in the machine tool industry-even though the possibilities in many directions have as yet only been scratched-there are presented herewith some photo. graphs of well engineered machine tools, both of the past and of the present. Of these, Fig. 1 shows the Pan American model electrically driven planer as introduced by the G. A. Gray Co. in 1901. For its time this really was a beautiful job, despite the fact that its designers had to work with ordinary switchboard control apparatus, which hardly could be built-in, and had to use one of the cumbersome motors of that era in conjunction with the squeal-

Fig. 1. (Above)-Gray planer with electric drive, as developed in 1901

Fig. 2. (Right)-Recent model Gray openside planer with variable voltage drive

Toundrynnen Discuss Methods for Production of Better Castings

- PROBLEMS of shop practice, production control, heat treatment and physical properties were chief among many considered at two technical sessions and a roundtable luncheon of the malleable division While the papers were prepared largely from the malleable foundry man's point of view, their implications proved of interest to purchasers and users of castings.
Usual practice in malleable foundries producing castings for the automotive industry is to make large quantities of identical castings on each type of molding machine equipment. Saginaw Malleable Iron division, General Motors Corp., Saginaw, Mich., has found it advantageous to deviate from this practice by grouping various assem blies of parts which go on the same car. For example, the carrier housing, differential case and a spring hanger lend themselves to production as a composite assem bly in one mold. As many as 14 units are made in a single mold.
How composite molding is engineered and carried out in the Saginaw plant was described by S. W Healy, assistant to works manager He pointed out that numerous econ omies are achieved in scrap control, gating, foundry operations and production control. An added advantage is that of permitting a workman the opportunity of remaining on a given job for a longer period, which from an employe relation standpoint is most desirable. Development in size of equipments has been limited in scope to the size of molds which can be handled manually. A distinct advantage, Mr. Healy said, has been found in material handling through the continuity gained by annealing and processing in closer ratio to the assembly of parts as used by customers.

Malleable Iron

- An unusual structure in malleable iron, namely, what is termed an inverse chill fracture-the outside shell being black and the core white-was discussed and an explanation advanced by Prof. Enrique Touceda, consulting engineer, Malleable Founders' society, Albany, N. Y. Incidentally, he regarded the terminology "inverse chill" as a misnomer-it has come into use because it is the opposite of the structure obtained when gray iron is cast against a chill.

Some samples of inverse chill
malleable were submitted to Professor Touceda for examination. Inspection indicated in all cases that the cores were unsound. Some specimens showed segregations, others did not, thus segregation could not be accepted as an explanation for the condition. No light could be thrown on the matter by comparison with the structure of gray iron.
Therefore, Professor Touceda was forced to conclude that the peculiar structure was a matter of free cementite and pearlite which prevented the core from malleabilizing. The trouble, he felt, was caused by the porous condition. This porosity probably was not caused by gas conditions, but probably by bleeding of the mold. Working on this theory, he has attempted to reproduce the inverse chill struc-

PRESENTED on this and succeeding pages are reports of various technical sessions held during the forty-fourth annual convention of the American Foundrymen's association in Chicago, May 6-10. Additional reports will appear in STEEL next week
ture by casting test bars in a bled mold. Only partial success has been achieved, thus far, consequently proof of the theory is not entirely clear. He seems positive, however, that the structure can not be produced by heat treatment, as one speaker suggested.

Effect of manganese on second stage graphitization was the subject of one paper by D. P. Forbes, P. A. Paulson and G. K. Minert, Gunite Foundries Corp., Rockford, Ill. Pưpose of this investigation was to show that manganese serves as a graphitization retardant and carbide stabilizer. Samples of malleable containing $0.45,0.91$ and 1.28 per cent rranganese, respectively, were studied and all were annealed at 1300 degrees Fahr. Results indicated that more than 1 per cent of this element definitely retards graphitization. This influence is beneficial, Mr. Minert explained, because it prevents minor variations in commercial malleablizing condi tions from exerting an influence on physical properties obtained.

Discussion of the paper reflected rather general agreement with the authors' contention although few
malleable foundries produce iron containing over the usual commer cial contents of manganese. R. J. Cowan, metallurgical engineer, Surface Combustion Corp., Toledo, O., however, raised a question as to why a temperature of 1300 degrees Fahr. was used as the annealing temperature of all three analyses. He pointed out that since manganese changes the critical point of the iron, it might have been well to determine the critical point of each analysis and to anneal each at this temperature. Then, he said, the results obtained for the three irons might have been more nearly comparable. Mr. Minert explained that the 1300 degree temperature had been used in the investigation because this is the temperature employed in commercial spheroidization.

Austempering Discussed

Carl F. Joseph, metallurgist, Saginaw Malleable Iron division, General Motors Corp., Saginaw, Mich., stated that in his experience high manganese is not used in malleable because this element adversely af fects machinability and machinability is an important factor in automotive malleable iron.

Results obtained by subjecting pearlitic malleable iron used for commercial camshafts to an austempering treatment were shown micrographically in a paper contributed by Mr. Cowan. He pointed out that by carefully regulating the temperature of the quenching bath and the time of immersion, it is possible to control the hardness desired. Pearlitic malleables thus treated were shown to possess superior wearresisting characteristics. A hardened structure may be confined to the surface areas of a heavy section while the remainder of the piece will receive a heat treatment that will have a toughening effect.

Considerable difference of opinion was expressed in discussion of Mr . Cowan's paper as to the desirability of using the austempering treatment for malleable iron. Chief difficulty seemed to be the size and cost of the equipment required, because of the necessity of using the lead or salt bath quench, and because of the longer time involved in the treatment. Mr. Cowan pointed out that this was a continuous process and eliminates the heating of cold material for the customary draw. Discussion veered off onto the subject of wear which is a controversial topic. It was made clear that it is not possible to coordinate wear properties of malleable and steel simply on the basis of hardness. Examples were related where because of the nature of malleable, hardness of this material can be reduced considerably from that which steel must possess for

Soaking Pit Covef

Blaw-Knox Soaking Pit Covers in prominent steel plant.

THE SEAL THMT

The Blaw-Knox (patented) pit cover embodies a entirely new idea.

The sealing is done, not by a ponderous vertic movement of the entire cover weighing 15 or mor tons, but by the smooth vertical action of a separa sand sealing apron, weighing less than 1,000 pound

The massive cover moves smoothly back and fort on an absolutely level track.

With perfect sealing no heat attacks the vulnerab parts of the cover or track girder. Water cooled se troughs are a valuable feature of the design.

Let us give you further details.

Crystallization

[Although the theory of crystallization, that is, the transition of materials from the melted to the solid state, is well known, probably only a comparatively few have a vivid and concrete picture of what actually takes place. Consequently, a demonstration by microprojection of the growth of crystals proved a popular feature of the convention. This demonstration, conceived and developed by Dr. C. W. Mason, professor of chemical microscopy and metallography, Cornell university, Ithaca, N. Y., was made on several occasions.

Projecting on the screen what transpired under a microscope when certain nonmetallic materials changed from the liquid to the solid state, Dr. Mason enabled the audience to observe crystal formation. Since the behavior of metals is known to be the same in general principle as that of nonmetals, it was not difficult for the observer to believe that he actually was witnessing the freezing of molten metals. The experiments were simple and served well to illustrate crystallization phenomena.

Illustrated in the demonstration was the formation of dendrites, segregation of impurities and other phenomena. Allotropic transforma. tions, eutectics and numerous other cases of phase studies also were simulated. Di. Mason similarly showed how plastic deformation or cold work causes grain growth.

Many who have witnessed the
demonstration pronounce it a most interesting and enlightening educational feature for those seeking information on metals.

Nonferrous

图 Brief resume of the "Tentative Recommended Practices for Sand Cast Foundry Bronzes, Red and Semi-red Brasses," sponsored by the nonferrous division of the A.F.A., was presented by G. K. Eggleston, metallurgist, Detroit Lubricator Co., Detroit. In discussion of these, Sam Tour, vice president, Lucius Pitkin Inc., New York, questioned a number of points relative to the limiting amounts of such elements as silicon, sulphur, aluminum and antimony, stating that he believed them to be too high. He asserted that he believed specifications given should conform to those of the American Society for Test. ing Materials.

New officers for the nonfercous division ware elected as follows: Chairman, W. J. Laird, metallurgist, Westinghouse Electric \& Mfg. Co., East Pittsburgh, Pa.; vice chairman, W. H. Romanoff, technical superintendent, H. Kramer \& Co., Chicago; and members of the advisory board, H. B. Gardner, chemical metallurgist, national bureau of standards, Washington; E. F. Hess, Ohio Injector Co., Mansfield, O.; and J. W. Kelin, assistant sales manager, Federated Metals Civision, American Smelting \& Refining Co., St. Louis.

Apprentice Training

R Reviewing the historical details

Foundrymen of the United States and Canada spent six busy days last week inspecting the more than 200 displays of equipment and supplies at the Foundry and Allied Industries show in Intemational Amphitheatre, Chicago, during the forty-fourth annual convention of the American Foundrymen's association. The view here is in the arena where considerable of the heavy machinery was localed. Last previous show was in Cleveland in 1938
of apprentice training from the time of the craft guilds in the fourteenth century and tracing the changes through the years, A. L. Armantrout South Works, CarnegieIllinois Steel Corp., Chicago, examined the elements of an adaptable apprentice program in the light of today's needs.

Careful consideration of a training program, close adherence to the original plan, formation of a super. visory apprentice committee working in co-operation with the management and with foremen, development of an accurate and complete system of records of apprentices' progress and careful selection of instructors for apprentices are some of the essentials of any intelligent program.

Mr. Armantrout observed that apprentice instruction outside the shop can make or break the complete training program and he advised close attention to provision of textbooks and instruction sheets. In routing apprentices through various phases of the shop, he said the best plan was to follow raw material through the plant from the receiving dock to the finished product.

Federal Aid Possible

He pointed out that small plants not able to afford a complete apprentice training program can combine with other plants in this work, and can obtain federal funds under the Smith-Hughes act for carlying out the training.

Wage rates for apprentices should be proportional to their ability to do productive work. At the South Works, they are started at 55 per cent of the going journeymen's wage and are advanced by 5 -point steps until 90 per cent of the journeymen's rate is reached. Then apprentices are given an examination which, if passed, entitles them to the full rate.

Careful selection of apprentices is vital. First choice usually is confined to sons of employes, providing they can pass routine physical and mental ability tests. Mechanacil aptitude ranks equally high with mental ability in rating apprentices.
"Training of foundry apprentices is the kind of education that will perpetuate the foundry industry on a high competitive level, the kind of education that will pay big dividends to the foundries which sponsor it, and the kind of education that will give our economic society many happy, useful and purposeful citizens," said A. H. Wornom, instructor of foundry training, Newport News Shipbuilding \& Drydock Co., Newport News, Va., in a resume of the technique of training foundry apprentices. His company has had a training system
(Please turn to Page 90)

TAMED by Grinnell prefabricated piping!

Recent specifications of a large steam power plant called for a complex piping system to carry pressure equivalent to a 5542 -foot head of water . . . pressure 33 times that of Niagara Falls!

This super-pressure piping presented new problems in prefabrication. To insure interpretive engineering of these problems with expert laboratory collaboration, engineers "gave the plans to Grinnell." They chose the most efficient way to obtain "on time" deliveries of accurate, tested subassemblies requiring minimum field-fabrication.

Unusual prefabrication is but one of the many services that make Grinnell the leading name
"whenever piping is involved." Others include: automatic sprinkler fire protection systems, Thermolier unit heaters, Amco industrial humidifiers, pipe fittings and pipe hangers. For detailed information on these services, write to Grinnell Co., Inc., Executive Offices, Providence, Rhode Island.

Grinnell Company, Inc. . . Grimncll Company of the Pacifie Grinuell Camparsy of Canda, Lid. . . General Fire Extinguigher Comr. pany . . American Moistering Compary . . . Columbia Malleable Custings Corporation . . . The Onturio Malleable Iron Company, Lid. GRINNELL whenever PIPING is invoived

[^7]Automatic Spriakiern
Pipe Fittings
Pipe Hanyers
Amse Indusisial Hemistifer

- Say fellers:

Wanta hear a good story chuck full of facts-somethin' like the Alger yarns we used to read 'bout when we were kids? Remember? All right, close the door 'cause you can't hear when "Boney" Dugan is changin" stoves.

Remember the little Princess stack on the James river few miles south of Clifton Forge down in Virgini'? Only made 90 tons of iron a day. And say, fellers, you could jump off the top of 'er and never scratch your shins. She was owned by a well-known iron interest down in Cinci, O. The boys got in financial difficulties during the depression followin' 1914 so they put this little furnace 'long with other properties up as security with a banker in Cinci.

Attention, Please

And say, fellers, let me plug a little word of 'dvice in your ears-some confidential stuff like you hear 'bout when the sheet mill boys start rockin' the boat. I know you didn't ask for it, but as Tony Costello over at the pig machine would say: "Lenda me for one of your ears like Billy Shake-aSpear he all the time asks for you to do and you wasa do it."

This is what I want to say: If you've ever run a merchant blast furnace, you can bet your neck that durin' periods of activity the feller who makes the best showin' in pig iron is the feller who knows least 'bout the business of makin' iron. You 'gree with me, huh? Glad to know it. You're strokin' par, son.

Well anyway, since the president of this bank, a shrewd flipper and hopper of Uncle Sam's greenbacks, didn't know what a monkey bed or a skimmer was 'round a blast furnace, 'twas a foregone conclusion he could make a lotta jack operatin' the property. And say, fellers, that's 'xactly what he did.
'Long 'bout August, 1915 he puts the blast on the little pot and starts pilin' iron. He calls in some brokers and he says: "Hey, you dispensers of cast iron, see that pile of pirgs out in the yard? Well, boys, you can start sellin', but keep the price $\$ 2$ higher than the market." And the boys thought the banker was cuckoo, probably 'cause he did most of his work back of a cage, I guess. Maybe he was, but they didn't lock 'im up.
The winter of 1916 rolled 'round. Pig iron jumped to $\$ 18.50$ and then slumped off to 'round $\$ 7.50$. And you know, fellers, while everyone else was sellin' ahead as far as they could get customers to make a contract, this little furnace bumped its authorized price to $\$ 25$ and kept on pilin' iron.

BETWEEN HEATS wirt Shorty

Jus' 'magine that. Sure looked like they shoulda dusted off the padded cell ready for 'nother one to move in, huh?

And then to complicate matters worse-when the robins started comin' back in 1917 and the price of iron was $\$ 25$, the Princess price was $\$ 30$, though the company did condescend to take some mail order business at this figur'. Sounds cockeyed, doesn't it? But 'tain't, fellers, so keep readin' and watch 'em go to town.

Later, when consumers were scramblin' for tonnage, and the price was pegged close to $\$ 50$, the boys workin' little Princess stack were sittin' pretty back of the counter with graphite all over their workin' clothes, 50,000 tons of iron in the palm of their hand and sayin' without battin' an eye, "Come and get 'er, fellers, at 50 bucks per."

Path Too Narrow

Y' think the fellers took the hint. Y' suppose the little path wendin' its way down to the furnace and out to the storage yard was wide 'nough? T'was not. Couple of 'xcavators changed 'er into a super-highway, so to speak, and the boys started goosesteppin' with their cloghoppers 'til there was no use operatin' the red light up at the corner. Looked jus' like as though Heinie Hitler told his go-gettum gang to see if there was nough pigs to make a few watch fobs so they wouldn't miss the boat.

Y' ever hear the story 'bout the mousetrap out in the woods? Well, sir, y' ain't heard nothin'. Colored boys at the furnace put on their handleathers and all you could hear was the metallic clang of the pigs droppin' in the cars. The iron carrier's wives spent many a weekend with a darner in one hand and darnin' cotton in the other, fixin' holes in the back of their ol' man's socks. Many a carload of pig iron passed over the scales, and I never counted the bill-of-ladin' pads they used down in the scale house. They sure had trouble keepin' points on their lead pencils, though.

Well, boys, pigs is pigs and the cash registers started ringin' like those in the 5 and ro's. And by the end of 19 F 7 this little furnace which had only
been able to turn over a reasonable profit when operatin' under real hope-to-die furnacemen, had paid off all debts and obligations of its 'riginal owners and had released both itself and the other properties 'trusted to the bank for securities. Y' wanta know how much they put away in the till? Somethin' like $\$ 1,250,000$. Not a bad day's work, huh?

So that's the story, fellers, and I'm feelin' sorry I can't chin with you a little longer but there's an ore car off the track on the highline so gotta go. But before I shove off, I wanta say somethin' to you fellers breathin' slag fumes and fue dust all day-you fellers watchin' funny little skip cars go up and down and you who keep listenin' for the sound of the check whistle-I wanta ask you this, "Y" know where we can find a couple of guys like that banker in Cinci?"
If you do, give me a ring 'cause l'll sure like to play a tune on the boss' cash register. Course the sheet mill boys broke the bell on the cash box few weeks ago when they took in some I.O.U.'s, but we fixed 'er again and she's jus' waitin' to go to the dell with some more ding dongs.

So if you ever get your peepers on an iron merchandizer like the go-getter I jus' tol' you 'bout, let me know and reverse the charges. Well, I'll be seein' you.
"Shorty" Long

Transparent Document

Protectors Announced

- A new, transparent, waterproof page protector of Pliofilm, a rubber hydrochloride, is announced by Protex Products Co., Newark, N. J. It is designed to preserve important papers, documents, photographs, etc., which are subjected to frequent handling.

Protectors slip over pages easily and are punched on the open ends so they will fit binder rings, or posts. They are flexible, odorless and noninflammable.

UNITED

FORGING PRESSES

 STEAM HYDRAULIC AND STRAIGHT HYDRAULIC ALSO •• PIERCING, DRAWING AND EXTRUSION PRESSES
SINGLE fraME TPPE

 150 TON and 300 TON SILESFOUR

COLUMN

TVPF
and ALTERNATE SILES
.500

Residual Tin in Steel

Investigation discloses higher tin-contaminated steels can

 be used for deep drawing, permitting lower cost scrap to be charged. Effect of other alloys on drawing variesFOLLOWING the test as described in Part I, several test heats were made in an endeavor to obtain high tin in the bath and thus avoid adding virgin tin to the mold. The open-hearth charge was purposely made to include irons containing tin and an increased quantity of bundled tin scrap. Several high tin heats were obtained having a ladle analysis of carbon 0.07, 0.08 and 0.09 per cent, manganese 0.29 to 0.34 , and tin $0.18,0.21$, and 0.12 . A check analysis on the 0.12 per cent tin heat was made from three crop tests, one at the top, middle and bottom of the ingot, each being test-

By PAUL McKIMM
Cleveland
PART II
ed at the middle and edge. Test results were as follows:

Element	Top Top Middle Ladle middle edge middle -Per Cent			
Carbon	0.08	0.05	0.03	0.04
Manganese	0.32	0.31	0.30	0.30
Phosphorus	0.007	0.009	0.006	0.008
Sulphur	0.032	0.041	0.022	0.038
Copper	0.40	0.44	0.40	0.44
Tin	0.12	0.20	0.10	0.20
Chromlum	0.048			
Nickel	0.11			

A heat of the following analysis was processed in all respects including annealing and the 0.005 -inch skin pass according to ordinary routine procedure:

Element	Middle edge	Bottom middle -Per cent	Middle edge
Carbon	0.03	0.04	0.03
Manganese	0.29	0.30	0.28
Phosphorus	0.007	0.008	0.007
Sulphur	0.024	0.031	0.024
Copper	0.40	0.40	0.40
Tin	0.12	0.14	0.12

The physical test conformed to normal standards and after skin passing, further tests were taken 72, 168 and 336 hours later. The physical change conformed to that existant at that plant, namely, an increase of 3 points in Rockwell, B scale. This material was then applied to several severe drawing parts and the performance was all that could be desired.

In order to determine the effects of the tin content on the physical

Fig. 4-Surface of split ingot before being drilled
propertie; of hot-rolled material, one of the high tin heats was processed into hot strip for a deep-drawing hot strip specification of 0.08 to 0.12 per cent carbon. This heat analyzed:

Element Carbon		Per cent	
			0.10
Manganese			0.30
Phosphorus			0.007
Sulphur			0.031
Tin			0.21
After rolling into slabs a crop test			
was taken at the end of each slab			
of two ingots. The analysis for tin follows:			
Top of	$\%$	Top of	\%
Ingot	Tin	ingot	Tin
1	0.18	6	0.19
2	0.22	7	0.24
3	0.24	8	0.24
4	0.26	9	0.25
5	0.29	10	0.27

These slabs were rolled to 0.126 . gage $\times 7 \frac{1}{1}$ and 7% inch multiples where the width was 4 multiples or $29 \frac{1}{2}$ inches wide allowing for edge slitting. The strip delivering from the mill at 1560 degrees Fahr. was cooled on the hot bed, uncoiled.

The following table shows the physical values of high tin (0.21 per cent) and regular material:
0.21% Tin Regular
Elastic limit, p.s.i. 39,230-41,350 40,000
Ultimate, p.s.1. ... 52,800-54,620 52,000 Elongation,
$\%$ in $4^{\prime \prime}$
38-42
Rockwell, B scale
53
40
57
It is obvious that the high tin physical values compare favorably with average results on the same gage material of normal tin content, and having identical treatment.

Ordinarily in average open-hearth steel production the tin content will be relatively low, say 0.020 to 0.025 per cent, or perhaps as high as 0.035

SINCE PERSHING MARCHED INTO MEXICO

THESE TOWERS HAVE REMAINED IN PERFECT CONDITION
 in 1916 are in as good condition today as they were when they were erected 24 years ago, indicating many years of perfect service to come. The owner of them, The Connecticut Power Company, writes: "Our experience over a long period of years indicates the wisdom of insisting on Hot Dip Galvanizing for outdoor steel construction" . . . Yes it's true where rust is a factor, nothing serves so long for so little as Hot Dip Galvanizing. Hot Dip Galvanizing guarantees an adequately thick coating of zinc and a union between zinc coating and base metal that makes each an inseparable part of the other . . . Buy from members of this association and be sure that you are getting a genuine Hot Dip job, handled in accordance with our high and rigid standards and delivered at a reasonable cost. Write for Specification Sheet. American Hot Dip Galvanizers Association Incorporated, American Bank Building, Pittsburgh, Pennsylvania.

FROM OUR PILES-CASE NO. 0652. Transmission sowers of The Connecticut Power Ca. between Cramuell and Brissol. salvanized by Wilcox, Crissenden $\& C_{0}$, in 1916

IF IT CARRIES THIS SEAL IT'S A JOB WELL DONE

Acme Galvanizing, Inc., Milwaukee, Wis. \star Acme Steel \& Malleable Iron Workb, Buffalo, N. Y. „ American Tinning \& Galvanizing Co., Erie, Pa. \star Buffalo Galvaniz ing \& Tinning Wks., Inc., Buffalo, N. Y. \star Diamond Expansion Boit Co., Inc., Garwood N. J. \star The Fanner Mig. Company, Cleveland, Ohio. \star John Finn Metal Works, San Francisco, Cal. đ Thomas Gregory Galvanizing Works, Maspeth, N. Y \star Hanlon-Gregory Galvanizing Co., Pittsburgh, Pa. „ Hubbard \& Co., Oakland,
 Cal. \& Independent Galvanizing Co., Newark, N. J. \# International Derrick \& Equipment Co., Columbus, O. \star Joslyn Co. of California, Los Angeles, Cal. \star Joslyn Mig. \& Supply Co., Chicago, Ill. \star L. O. Koven \& Brother, Inc., Jersey City, N. J. \& Lehigh Structural Steel Co., Allentown, Pa. \star Lewis Bolt \& Nui Company, Minneapolis, Minn. \star Missouri Rolling Mill Corp., St. Louis, Mo. \star The National Telephone Supply Co., Cleveland, Ohio. \star Riverside Foundry \& Galvanizing Co., Kalamazoo, Mich. Ł San Francisco Galvanizing Works, San Francisco, Cal. 太 The Sanitary Tinning Co., Cleveland, O. \& Standard Galvanizing Co., Chicago, Ill. \star Wilcox, Crittenden \& Co., Inc., Middletown, Conn. \star The Witt Cornice Co., Cincinnati, O.

YOU GET EXACTLY WHAT YOU ASK FOI

U•S•S Carilloy Alloy Steels

are produced in special alloy plants, by steel craftsmen drilled to think first and

always of QUALITY Y quality we mean the dependable uniformity that characterizes U•S•S Carilloy Alloy Steels. Vital to every user, it is something that doesn't "just happen." We assure it by giving every alloy steel order individual care and control.

With us, the making of alloy steels is a precise and painstaking process. To give you the exact grade of steel that will do the best job for you, and to give you that steel in any quantity and as often as your orders call for, we have established separate plant facilities devoted exclusively to the production and handling of fine alloy steels. Here the finest and most modern equipment is matched by the skill of experienced operating and metallurgical personnel.

In U•S•S Carilloy Steel production, temperatures are rigidly controlled through each process. Special roll pass formations help to eliminate possible mechanical defects. Constant chemical and metallurgical checks are maintained. In melting, rolling, finishing, heat-treating, testing - in every step from furnace to final inspection, Carnegie-Illinois Alloy Steel production is on a controlled quality basis.
$\mathrm{U} \cdot \mathrm{S} \cdot \mathrm{S}$ Carilloy Alloy Steels produced under these rigid methods assure you consistently economical fabrication and insure the dependable performance of your product. Our metallurgical advice in their proper selection and application is yours for the asking.

CARNEGIE-ILIINOIS STEEL CORPORATION Pillsburgh and Chicago

Columbin Steel Company, San Francisco, Pacific Coast Distributars
United States Steel Export Company, New York

ALLOY STEDLS

per cent or a little higher therefore, the average steelworks will seldom encounter high tin heats unless they charge partially detinned scrap in large quantities. It is always possible, however, to encounter high tin contamination although improbable.

In order to further elucidate the effects of tin on the physical characteristics of cold-reduced stripsheets for extra deep drawing, it appeared feasible to charge a heat as previously described with tin-contained bundled scrap, anticipating a tin content higher than ordinarily attained.

This heat had a ladle analysis as follows:

Element	Per cent
Carbon	0.08
Manganese	0.30
Phosphorus	0.008
Sulphur	0.029
Copper	0.16
Tin	0.07
Nickle	0.06
Chromlum	0.046

This heat was produced according to standard open-hearth practice and teemed into $24 \times 381 / 2$-inch molds. The steel was of the effervescent type, deoxidation being accomplished by an aluminum addition to the ladle of 0.04 -pound per ton or 6 pounds for the heat. Aluminum pellets were added during teeming in order to control the rimming characteristics. This additional aluminum amounted to 0.008 pound per ton or 12 pounds for the heat, making a total addition in both ladle and mold of 0.12 -pound per ton or 18 pounds per heat.

Tested for Segregation

An ingot from this heat was slit so that a segregation test could be made. The method of slitting was to radiograph the ingot in the $381 / 2$ inch direction about 2 inches off the center line. The face was machined $11 / 4$ inches leaving the section $3 / 4$. inch over half so that drillings would conform to the absolute center of the ingot. Fig. 4 shows the split ingot before drilling.

This extremely solid ingot is free of any honey-combed blowholes or those pencil-like cavity cross sections. The ingot was nearly free of the usual blowholes, the few that did exist being about 4 inches in from the wall. The dark spot area to the left side about 2 inches up from the butt was due to the radiograph torch cutting in. Although this is an exceptionally solid ingot it would have been somewhat better if a little less aluminum had been added to the mold. Of course, these ingot features have no bearing on the tin effect on ultimate results.

The ingot was drilled so as to obtain samples for analysis along a line 2 inches from the edge, $21 / 2$ inches from the bottom line and then 6 inches center to center of the drill
holes in the vertical direction and $53 / 4$ inches in the horizontal direction. The location and analysis for carbon, manganese, phosphorus, sulphur, copper and tin are graphically exhibited in Fig. 5. It will be noticed that in this 0.07 per cent tin heat, the tin varied from 0.05 to 0.26 per cent tin.

If varying percentages of tin affect the physical properties of the subject material it would be noticeable in tests corresponding to different locations in the ingot, that is, from the butt to the top where the greatest tin concentration exists. Therefore, the balance of this heat was processed according to the usual practice identifying each slab weighing 1745 pounds each and measuring $4 \times 32 \times 64^{1 / 2}$ inches. The slabs were hot reduced to $0.090 / 0.110$ gage and cold rolled to 0.0375 gage and cut to 120 -inch lengths.

Two annealing practices were followed one being the standard at time of processing the test which was approximately 1340 degrees Fahr., at the high temperature points and 1300 degrees Fahr. at the low point. The other set of sheets was annealed at 1280 degrees Fahr. at the high point, and 1260 degrees Fahr, at the low point.

The physical tests were taken in duplicate so that one set of each anneal could be tested immediately after pinch passing and the other

after age-hardening for six weeks at room temperature. Each tensile test was analyzed for tin; of course the analysis did not conform to that of the ingot. Each tensile test folded upon itself showed a variation of 0.086 to 0.124 per cent in the tin content.
The test values of the high temperature annealed material immediately after pinch passing were under 41 to 46 Rockwell, B scale, and over 0.422 up to 0.436 Olsen. Elongation was approximately 54.7 per cent in 2 inches, 45.4 per cent in 4 inches and 36.3 per cent in 8 inches.

The physical values of the lower temperature annealing system had Rockwell values up as high as 50 , B scale, and Olsens around 0.428 to tion per cents were around 45.4 in one reaching 0.450 while the elonga2 inches, 35.4 in 4 inches and 26.3 in 8 inches.

Hardness Increased

In both cases after six weeks of age-hardening the Rockwell hardness increased 3 points except in one instance when it reached 5 points, the Olsen values decreased an average of 0.015 -inch.

Some of the sheets were skin passed before they cooled down to room temperatures after annealing, while the standard practice is to skin pass at room temperature. In this respect it was shown that material skin passed with some heat in it would show an increased Rockwell hardness over that processed cold and that age hardening would be 'both rapid and extensive. We found after ageing that the Rockwell would increase anywhere between 15 and 20 points.

This investigation clearly indicates that there is considerable tin segregation in low-carbon rimmed steel and that increased tin content up to 0.124 per cent does not noticeably affect the physical values and, hence, the workability of the material. Tin contamination, however, may affect the work hardenability or/and the stiffness which has not been investigated.

Tin contamination can be far more extensive than previously contended. How high this concentration can exist before it causes difficulty in the performance of extra deep drawing sheets is not fully defined. One thing is conclusively shown, namely, higher tin contaminated steels can be applied thus permitting a lower cost scrap being utilized in openhearth charges within reasonable limits. An intensive study of copper contamination in steel sheets failed to reveal any effect of this element

Fig. 5-Segregation test of a 24×39 inch ingot showing analysis at the various locations

Q. What new system of sulfate drying is completely continuous and produces a better product with lower moisture and acidity at a lower power consumption?

A. Check the attached card for the folder on "Continuous Ammonium Sulfate Driers."
Q. What coals are best suited to coke production? Which are best for gas? Which coals yield most tar? What is the ash, sulfur and phosphorus content of your coke oven coals?

A. Check off the coal folders on the attached card and send it to us.
Q. What type of flexible couplings should you use to reduce length of mill shutdowns in event of motor failures?

A. Send the card for the folder on Fast's Self-aligning Couplings.
Q. How can you have a study made of your power requirements to determine possibilities of substantial savings?

A. Send the card for the Kopeers fellders on Boiler Plants and Electrical C. \boldsymbol{r}^{2} tracting.

KOPPERS

cann build you a Cetten

Bengol PPluat ... moro cconomically

KOPPERS PRODUCTS FOR THE STEEL INDUSTRY: COKE PLANTS - KOPPERS COAL • INDUSTRIAL POWER STATIONS • FAST'S SELF-ALIGNING COUPLINGS KOPPERS D-H.S HIGH TENSILE BRONZE - IRON CASTINGS • SELF-DUMPING HOT METAL TRANSFER GARS • COAL WASHING, DRYING, DEDUSTING PLANTS AMERICAN HAMMERED PISTON RINGS AND CYLINDER PACKING - COAL TAR ROOFING AND WATERPROOFING • BITUMINOUS-BASE PAINTS - PRESSURE-TREATED ties, platforms, posts, flooring and other timber products - drydock facilities, barges, etc.

Koppers can build your benzol plant better and more economically because this organization has been carrying an extensive research into the problems of light oil recovery and refining. This research has resulted in simplified design of equipment, materially reduced investment and operating costs and, above all, greatly improved quality
of products. The Koppers plants have flexibility of operation to suit variations in marke demands.

The Koppers plants produce motor fuel as wel as nitration grade benzol continuously from ligh oil without redistillation, and pure benzol and homologues meeting most rigid specifications

SEND COUPON FOR THE REPORT

ON THIS SEMI-CONTINUOUS LIGHT OIL PROCESS

KOPPERS COMPANY
901 Koppers Building, Pittsburgh, Pa.
Please send me a copy of your bookler on the semi-continuous Light Oil Process.

Your Name.

Title.

Company

Address.

This is what the "Techni" Process means to you, Mr. Steel Man. It means rolls which give you exceptional tonnage. This statement has been proved over a period of years, n every type of rolling operation.
As applied to Strip Mill Work Rolls, these rolls are ougher, have fine grained necks and bodies, denser chill, and ideal response to heat. The method by which we get this extra quality in our work rolls is the use of the 'Techni" Process developed exclusively by Mackintosh-

Hemphill, which regulates the quality and grain size of the rolls with as much exactness as the best modern steel practice regulates the quality of steel.

And back of every roll we produce is the experience of 117 years of being first in quality products for the steel industry.

Let us help you get the most for every roll dollar you spend-wire, write or telephone for a Mackintosh engineer. Do it today. No obligation.

MACKINTOSH-HEMPHILL COMPANY P Pittsburgh and Midland, Pa.

OTHER MACEINTOSH-HEMPHILL COMPANY PHODUCTS:
Rolling Machinery . . . Shape Straighteners . . . Strip Coilers . . Shears . . . Levellers . . . Pinions . . . Special Equipment . . . Iron-Steel Castings . . . The New Abramsen Straightener . . . Improved Johnston Patented
upon physical values of the steel. Effects of chromium and nickel on the physical properties of deep drawing sheets were investigated to some extent. Steels having a chromium content up to 0.10 per cent and nickel up to 0.10 per cent apparently have no effect upon the physical properties of this grade of material. One thing seems apparent and that is an increase in stiffness. With identical physical values for Rockwell, Olson, elastic limit, ultimate strength and elongation existing in steels high and relatively low in alloy contamination, those having the higher alloy content were much stiffer to the sense of feel than the others. It is with regret that samples were not tested for stiffness.

Effect Is Problematical

One plant utilizing considerable quantities of fairly high arsenic ores in the blast furnace encountered difficulty with drawing qualities. The Rockwell values were high and the Olsen low with a fracture indicative of embrittlement. Inasmuch as the high arsenic content was thought to be a contributing factor toward failure, these ores were omitted from the blast furnace burden. The resultant steel sheets showed no improvement in physical results; in fact, the trouble was found to be with the annealing system. Whether or not testing for effects of arsenic content at plants utilizing such ores is warranted is problematical.
Fig. 6 shows location of tests on the individual sheet.
Chemical determinations of the heat were made by a rapid method so that they could be obtained between the melting time and the tapping time; these determinations were checked by the standard long method. This system also shows the short method to be fairly accurate. Several rapid methods were tried but were found to be inaccurate with steels containing high copper. Some criticism exists regarding the short method but it answered the purpose here; perhaps an improvement can be made which will influence the other elements.
The rapid method used in these tests is as follows:

Dissolve: 5 grams of sample in 50 cc or 1:1 HCl in a 500 ce Erlenmeyer fiask.
Dilute: to 200 cc and add ammonia dropivise until a slight but permanent precipitate forms. Too much precipitate dereats the object sought, i.e., the separation of iron.
Add: 2 grams of 10 mesh granulated Zinc and digest at bolling temperature lor ine minutes
Remove: from hot plate and nlter on a 11 cm , No. 1 whatman paper; do not
Return; The paper and contents to the Hask and add 75 ec of concentrated HCl . Boll untli the metallic zinc is integrated. Dilute
Dilute: to 250 ml . and add 0.25 grams

Fig. 6. (Upper)-Location on sheet at which test pieces were taken. (Lower) -Tensile test strip
of flnely powdered metallic antimony Connect by means of a 2-hole stopper and tubes to a source of CO_{2} or N_{2} and keep the flask and contents at the boiling temp. for 15 minutes while passing in suificient inert gas to insure a reducing atmosphere.

Remove: Flask and gas supply from heat and transfer to a cooling bath while continuing the CO_{2} or N_{2}. When while continuing the CO_{2} or N_{2}. When cool remove stopper and tube from fosk and frepared cunnel containing a cotton plug. into a 500 ml Erlenmeyer flask containing a few grams of NaHCO:
Add: A few ml. of starch solution and titrate immediately with poiasslum iodate solution to a permanent blue. The jodate is the solution used for sulphus In steel and contains 8.03 gms . KlO_{3} per 16 liters of solution, 48.15 gms . Kl, and 5.00 gms. NaOH. A blank should be analyzed and deducted, usIng a tin free sample such as fron by hydrogen or electrolytic iron.

Standardize the lodate as follows:
Dissolve: 0.6 gms. of C.P. tin and 2 gms. of $\mathrm{K}_{2} \mathrm{SO}_{4}$ in 20 ml of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ and dilute to 100 ml in a vol$\mathrm{H}_{2} \mathrm{SO}_{4}$ and dilute to 100 ml in a a voladd to several blanks, and run by the add to several blank
method as outlined.
1 cc of thls tin solution $=0.006 \mathrm{gms}$. sulphur
1 ce of the lodate solution $=0.0012$ gms. sulphur (approx.)

Predicts 11 Per Cent

Building Gain in 1940
Continued recovery gains in reinforcing steel business depends on whether private construction can continue to increase in sufficient volume to offset declines in public construction activity, Thomas S. Holden, vice president, F. W. Dodge Corp., told 100 producers and distributors of reinforcing bars at the sixteenth annual meeting of Concrete Reinforcing Steel institute, at Hot Springs, Va., recently.
"The Dodge estimate of an 11
per cent construction gain in 1940 seems very likely to be attained, or even bettered," Mr. Holden said.

New officers elected: President, James D. Maitland, Colorado Builders' Supply Co., Denver; vice president, Blair M. Boisseau, Virginia Steel Co., Richmond, Va.; vice president, Ralph F. Healy, Igoe Brothers, Newark, N. J.; directors: James F. Curley, Concrete Steel Co., New York City; J. R. Fenstermaker, Hugh J. Baker \& Co., Indianapolis; H. D. Jolley, Ceco Steel Products Corp., Omaha, Neb.; Charles M. Gunn, Gunn, Carle \& Co., San Francisco; and E. W. Langdon, Joseph T. Ryerson \& Son Inc., Chicago.

Directors whose terms have not expired are: H. E. Calves, TaylorDavis Inc., Philadelphia; H. G. Daley, Sweet's Steel Co., Williamsport, Pa.; John D. Roberts, Central Texas Iron Works, Waco, Tex.; Ralph T. Rowles, Jones \& Laughlin Steel Corp., Pittsburgh; F. H. Sparks, Knoxville Iron Co., Knoxville, Tenn.; W. H. Stewart, Truscon Steel Co., Youngstown; and S. V. Taylor, Concrete Steel Fireproofing Co., Detroit.

Warehouse Chapters

Elect Officers

[Additional chapters of the American Steel Warehouse association have elected officers:

Pacific Northwest: President, William R. Case, Seattle Steel Co., Seattle; vice president, William A. Haseltine, J. E. Haseltine \& Co., Portland, Oreg.; secretary-treasurer, Everett W. Hawkins, Portland, Oreg.; national director, R. P. Mercer, Jacobs \& Gile Inc., Portland, Oreg.

Wisconsin: President, George Gibbs, Gibbs Steel Co.; vice president, L. R. Moise, Moise Steel Co.; secretary - treasurer, George W. Smith, Jos. T. Ryerson \& Son Inc., all of Milwaukee. Mr. Moise will also serve as national director.

Light Weight Alloy Is Welded Easily

(2) A light-weight, high strength, rustproof alloy, No. 301, is now offered by Colonial Alloys Co., Colonial Philadelphia building, Philadelphia. It has good forming and drawing qualities and lends itself to gas, spot, seam and are welding, brazing, soldering and reaction soldering. The metal has an ultimate tensile strength of 72,110 pounds per square inch and polishes to a silvery chromium-like appearance. Also, it is nonmagnetic and nonsparking. It can be furnished in sheet, plate, rod, bar, wire, pipe, tubing and extruded forms, in a long range of gages and sizes.

Steel Casting Costs

> Proper design of the casting itself is most important for minimum cost. Proper pattern equipment also essential. Low costs require utmost co-operation between user and producer of the castings

- BRING together a group of engineers or executives, give them a production problem to solve and the question of costs is almost certain to be the major topic under discussion. This brings up an important problem of the steel casting indus-try- -the cost of steel castings to the user. This problem. to an extent seldom appreciated by the user, is one of great importance for it includes not only the initial cost of the castings but the cost of labor, material, etc. required to incorpo rate them into the user's finished products.

Careful examination of steel casting costs proves that two important factors are not always given sufficient consideration. These factors are: The proper design for cast construction and proper construction of the pattern equipment from which the castings are to be made.

Proper design is undoubtedly the

By H. L. McCleES
Crucible Steel Casting Co.* Landsdowne, Pa .
most important element entering into the successful casting of steel structures. Naturally it affects steel casting costs. Such things as strength of materials. stresses, factors of safety, etc. lie strictly within the domain of the designing engineer. This is not the foundryman's forte. His talents and experience cover certain natural laws governing the solidification of molten steel, and its action in a sand mold. The foundryman is largely interested in the matter of design only insofar as it affects his ability to produce satisfactory castings. His judgment regarding specific changes in design

[^8]
will always be tempered with reason and compromise and will be based upon his knowledge of the fundamental laws governing the casting process, plus his experience in contending with their various limitations.

To further assist the steel foundryman in producing good steel castings economically, proper pattern equipment is essential. In too many instances, inadequate patterns are furnished so he must apply his skill and knowledge of castings to make a perfect replica, regardless of how its construction conflicts with sound and economical molding or coremaking practice.

In the design of drop forged products, there exists a far greater degree of co-operation between user and supplier. The forging plant builds or has built to its specifications the dies needed to produce a satisfactory product. The proporents of welded construction made their greatest strides after demanding a free hand to redesign proposed structures in such a way as to get the best results out of the welding process.

When a mutually uneconomical situation exists between two interdependent industrial groups, there is usually a reason for it. The reason may be either good or bad but in either case its effects cannot be overlooked. The reason for the lack of closer co-operation between the steel foundry and the consumers' representatives may be due to habit acquired over a long period of years -a misconception that the two groups problems are not of mutual importance.

In the case of the steel casting in-

Consultation between the desigring engineer and the steel foundryman is urgently recommended
dustry and its customers, the responsibility for lack of full co.operation regarding adequate pattern equipment and satisfactory designs rests pretty largely upon the shoulders of the steel casting industry which has been too willing to pit its ingenuity against the odds of difficult and often impossible designs and the use of defective patteril equipment.

Service of Castings Increased

Continued increase in the use of steel castings is of economical importance to all of the durable goods industries. Steel castings have thoroughly justified their growing acceptance by industry. Great strides have been made in increasing their serviceability. Users have asked for maximum strength with minimum sections, higher physical properties at elevated temperatures or at subzero temperatures, minimum machining allowances, close unmachined casting tolerances, increased specification requirements and more critical inspection generally. The steel casting industry itself, through competition between producers, is largely responsible for such improvements in the industry's products.
The demand on the part of steel casting users for more intricate and complex structures subject to higher specification demands, etc. tends to increase steel foundry costs. Prevention of further increases in cost is a joint problem for both user and foundry. When a part is designed or redesigned, consultation with the foundry is recommended so best possible results may be obtained from standpoint of both user and producer.

Steel foundrymen are thoroughly aware that decreased costs may be achieved by increasing volume. This

The steel foundry can offer helpful advice regarding adequate cost-saving pattern equipment
economic principle increases the ability of goods to move more speedily from production toward the point of need. To this extent, cost is important. But due to the great variety of products required of the steel foundry, mass production methods are seldom possible. How, then, can the cost of steel casting be lessened or the volume increased?
The quality of material and workmanship must not be sacrificed. Rather, continued improvement is necessary. The solution of this mu-
tual problem would seem to lie pretty largely in increased co-operation between buyer and seller to protect and promote their joint interests.

Full co-operation will be found to pay dividends. This is a plea to both foundrymen and users for a tolerant and receptive attitude in matters of design and pattern construction. Such an attitude will benefit each of the interested parties both as regard improved quality of products and by keeping down production costs.

Ream Splicing by Welding

- OFTEN in construction work it is desirable to splice structural seams of various cross sections. In such instances it is necessary to determine the size of plate to use.

A completely welded butt joint might be satisfactory for connecting an I-beam according to A. N. Kugler, mechanical engineer, Air Reduction Sales Co., 60 East Forty-second street, New York. He points out, however, that it would be more costly than splicing with straps and plates. The completely welded butt jeint would probably receive consideration only when the straps and cover plates could not be permitted.

However, in general the splice with straps and plates can be used. Where no limitation of bending at Jess than the safe resistance of the beam can be assured, the splice should have the same bending moment as the beam.

Shear strength should be calculated for the maximum load when the splice occurs adjacent to a column support. Connections of this type should be investigated carefully for positive and negative bending moments, particularly if any continuity is involved in the beams.

Beam to be spliced is designed for

bending moment M and shear S . The cross section of the top bars and cross section of the bottom bars should each be sufficient for tension or compression equal to M divided by the depth of the beam. Fillet welds connecting these bars to the beam flanges are made sufficient in size and length to transmit the same stress.

Two Bars More Economical

A single bar could be used instead of two bars along top flange, but a single bar would have to be twice as long or be attached by welds of double size because a single bar would eliminate two of the four longitudinal lines of welding. For large beams, use of a single top bar would be decidedly uneconomical due to excessive bar weight or volume of welding or both. Several trial calculations may be necessary to determine the most economical length of bars.
The web splice is designed for the shear S, the weld size and length being calculated and the splice plate thickness being made the same as the weld size. This is the way plate thickness is determined. Vertical welds only should be figured as resisting the shear S. Horizontal welds are assumed to act only in resisting the moment of the couple formed by the vertical weld stresses.

Width of splice plates should be at least six times their thickness to avoid abrupt changes in direction of stress. Abutting parts of the beam should not be in contact at any point.

No welding code today, so far as is known, has set up standards for splicing beams by the use of welding.

A rough method of approximating the desired splice strength is to make the cross section area of the straps equal to or slightly more than the beam flange areas and to make the web cover plates on each side somewhat more than half the web thickness.

Antomatic Batch Carburizing

New method found to reduce operating costs substantially, to give case of any specified depth desired. Work is done at high speed. Uniformity excellent. No packing is needed

- WHEN carburizing by a new batch method, the operator has control of various factors entering into the operation. Any of them can be varied while the rest are held constant, thus making it possible to improve successive batches of parts untll conditions that give ideal case structure are determined. Once these conditions are found, they can be repeated automatically batch after batch by the new method. This procedure is particularly adapted for high-speed mass-production work. Low cost is assured since rejects are practically eliminated.
The method utilizes comparatively small furnaces of the vertical circular type in which a fan located at the bottom of the furnace just below the load is employed to swirl the carburizing gas at full carburizing temperature into every crevice of work. This short-path forcedconvection method develops the carburized case at a rapid predictable rate that is practically the same for
parts of any size, regardless of the density with which they are packed into the furnace which is built by Leeds \& Northrup Co., 4901 Stenton avenue, Philadelphia.

While the short-path forced-convection furnace itself is not new in heat-treating work, being widely used for hardening, tempering and nitriding, its use as a carburizing furnace is comparatively new. Fig. 2 shows typical arrangement of various portions of the equipment. What converts this furnace to carburizing work is the introduction of a specially prepared hydrocarbon

Fig. 1. (Left)-This furnace is carburizing typewriter ball bearing races which are quenched directly from the carburizing temperature

Fig. 2. (Right)-Sectional view showing equipment involved in carburizing method described here. Photos courtesy Leeds \& Northrup Co., 4901 Stenton avenue. Philadelphia
fluid to the chamber where it is cracked inside the furnace into a gas rich in carbon and uniform in chemical analysis. Fig. 2 shows tank of fluid connected to motordriven injector pump which is set to give the flow desired.
Flow of carburizing fluid to the furnace is controlled by a dial on the injector pump. This dial is calibrated in fractions of pints per hour. The control permits any desired rate of flow to be maintained within extremely close limits. The flow can be observed through a peep-gage at the furnace.
The complex chemistry of the carburizing process makes necessary a carburizing gas of known and constant composition. Much of the success of the new method is due to the chemical dependability of the carburizing gas made in this furnace by cracking the specially prepared hydrocarbon fluid. Procedure here is to inject this fluid into the furnace as soon as the parts are

STABILITY

for ECONOMY in

 Backing-Up InsulationB\&W K-16 Insulating Firebrick combine both high insulating value and stability-in fact they are the nearest approach to the ideal for backing-up to 2000 F.

Made of special Georgia kaolin, by an exclusive

This Bulletin - R-18 - gives authoritative information on backing-up to 2000 F.

Write for a copy.
 process, B\&W K-16's are a fired-clay refractory. Because they combine exceptional insulating value with great stability, less material is needed for a given heat-flow-hence savings up to 40 per cent can be made by selecting K-16's for industrial furnaces.

Technical proof is yours for the asking-without obligation, of course.

THE BABCOCK \& WILCOX COMPANY REFRACTORIES DIVISION: 85 LIBERTY ST., NEW YORK, N. Y.

BABCOCK \& WILCOX

hot enough for a carburizing atmosphere to be effective. Provision is made so amount of fluid injected and thus the character of the carburizing atmosphere can be regulated closely and can be changed at any time to meet the needs of either an actively carburizing cycle or a diffusion cycle as may be desired.

In the furnace the carburizing gas is wazhed directly into and through the load by a big high-pressure fan in the base of furnace. Gas thus is swirled into every possible crevice of the load, obtaining both uniform gas distribution and temperature throughout.

Carburizing by this method requires no packing of the work as parts are put into the furnace bare for exposure to the carburizing gas. Large parts are loaded either in the furnace baskets or on fixtures. Small parts simply are dumped inir, baskets or trays. Uniform carburizing action occurs with parts touching each other in any way except, of course, with flat surfaces in direct snug contact. Also, due to the rapid circulation through the load,
each part develops a uniform case all over, regardless of whether it is at top, side, center or bottom of the load in the furnace.

This is demonstrated by the photomicrographs, Fig. 3, which indicate well the uniformity of the case produced. The specimens numbered 1 to 6 were taken from portions of the load at the locations diagrammed in sketch accompanying Fig. 4. As will be noted, these include three points near the outer edge of the furnace at top, center and bottom and also three points near center of charge at top, center and bottom. If any variation were to occur, it should show in a comparison of test pieces from these six different locations. However, referring to Fig. 3, it will be seen the micrographs are practically identical, showing the uniformity of case obtained by this method. Depth of case is marked alongside micrographs to give a ready comparison between the six different specimens.

Similarly, tests were run to determine temperatures at these six different points by locating a thermocouple at each of these six places

and recording the temperatures as the load was brought up to heat. As can be seen in Fig. 4 where the numbers show temperatures at the various locations plotted against time, it is interesting to see how closely these are grouped, even when the load is coming up to heat. When load has reached temperature desired, it will be noted there is less than 10 degrees maximum difference between any two points in the charge. These tests possibly are the most severe that could be applied as the load used consisted of 1200 pounds of 1×6-inch rounds of SAE 1020 steel simply dumped at random into the furnace basket and held at 1700 degrees Fahr. for four hours.

Since total amount of carburizing gas produced in the furnace as well as rate at which it is produced can be controlled with utmost exactness by means of the injector pump, it is possible to apply automatically any carburizing cycle desired.

Furnace Heated Electrically

Similarly, automatic control of temperature is provided. Furnace is heated electrically by heavy chromium nickel ribbon which hangs on hooks embedded in the wall shown in sketch, Fig. 2. Basic design con sists of work surrounded by heater, which in turn is surrounded by exceptionally thick and continuous insulation to produce a unit with high thermal efficiency. The floating wali retort is self-sealed in sand seals at both top and bottom. Since retort is entirely inside the furnace and surrounded from top to bottom by the heating unit, transfer of heat is extremely uniform and is assisted by the proper proportioning of furnace parts. The design also minimizes radiation to outside air. Furnace is protected against overheating from any cause by a gold fuse at bottom of furnace heating chamber, Fig. 2. This fuse will melt to shut down the entire equipment before a dangerous temperature is reached

Thermocouple registering temperature is located in the base near the
(Please tum to Page 82)

Fig. 3. (Upper left)-Micrographs showing grain structure at depths below surface noted along right margin. Taken at the six different points in the load shown below, these tests are evidence of excellent uniformity in depth and character of case

Fig. 4. (Below and at right)-Chart record of temperatures at the six different points in the dense load of 1200 pounds of 1×6-inch rounds of SAE 1020 steel held at 1700 degrees Fahr. for 4 hours. Note how closely readings coincide alter warm-up period

Industrial Trucks

Units are completely arc welded from sheared, flame cut or saved steel plate. Bends reduce amount of welding needed. Embossing die is made economically by welding, heat treating

- HEAVY power-driven industrial trucks in a large variety of sizes, shapes and styles are made at the Yale \& Towne plant, 4530 Tacony street, Philadelphia, using arc welding entirely as the fabricating meth-
od and steel plate as the material for frames, platforms and many parts.
The welding shop occupies a rectangular area about 65×200 feet extending north and south along

By FRED STEWART

Foreman, Welding Department Yale \& Towne Mig. Co. Philadelphia
one side of the plant. Several tons of steel plate from $1 / 8$ to 4 inches in thickness are stored about half way down one side of the room. At the north end of the shop are a number of punch presses. The one in the northeast corner handles holes up to 13/16-inch in diameter in $1 / 2$-inch sheet and the large one in the northwest corner handles up to $31 / 2$-inch diameter holes in $5 / 16$-inch material. In addition, there is a third smaller punch and notching unit used to shear corners and angles.

Fig. 1 shows view looking to the north in the plate-preparing center. In immediate foreground is a pantograph oxyacetylene cutting unit which is capable of operating two torches simultaneously. No stack cutting work is done here as production of industrial truck frames is not on a quantity basis but rather is done one or two at a time. Truck frames in many instances are designed and constructed to fit a particular set of working condi-

Fig. 1. (Upper) - Plate preparation Pantograph oxyacetylene cutting outfit at near right. punching-trimming presses shown in rear

Fig. 2. (Lower)-Heavy presses shape many parts, thus minimizing number of welds required in an assembly. Units also used in straightening and embossing operations

EXTRA! STRESSPROOF No. 2 it tho trade name for La Salle's new cold finished orr stecl possessing remarkable wearshility, high strength, frea machinability, and non-warping qualitice right in ahe bar. It requires ne heat treating or carburizing.

SPENDS \$24 MORE FOR STEEL AND SAVES \$550

Machine Tool Maker Replaces SAE 1045 for Lead Screws

Positive that production costs on a certain type of lead screws were running unnecessarily high, a midwest machine tool company several months ago determined to try a different grade of steel. Four bars of STRESSPROOF were ordered out and machined for lead screws approximately the full length.

Detailed cost records were kept, and when analyzed, disclosed results nothing short of spectacular.

Saving of 31 Per Cent

For the total cost of the four screws, which had run up to $\$ 1,800$ when using SAE 1045, had dropped to about $\$ 1,250$-a clear saving of $\$ 550$ or about 31 percent. More interesting still, the material cost of STRESSPROOF was shown to have been $\$ 24$ higher than that of the former grade.
The scnsational saving was attributed mainly to STRESSPROOF'S resistance to warpage. Its remarkable uniformity of hardness across the section kept warpage in machining to a minimum and so eliminated several costly straightening operations. Moreover, because the STRESSPROOF bars could be machined at higher speeds, a significant saving in time resulted. These savings, plus the fact that the new steel has adequate strength and resistance for the purpose, have produced another loyal STRESSPROOF user.

R.G.Haskins Uses New Bar Steel in Air Controlled Tapping Machine
 Famous Machine Tool Maker Turns to STRESSPROOF For Improved Performance

From the fles of the R. G. Haskins Company, Chicago, comes another dramatic account of what happens when a firm keeps a constant look-out for ways of maintaining and improving quality of product and holding down production costs.

The Haskins Company, it need hardly be said, is one of the Nation's leading manufacturers of high speed tapping machines and flexible shaft equipment. For many years the company's products have held the respect of industry throughout the World for their dependability and service.

With a reputation like that to guard, Haskins' engineers naturally take a thorough look at every new development that might be of help. So when they heard about STRESSPROOF, and the many claims made for this new Cold Finished Bar Steel, they decided on a thorough in-vestigation-particularly in view of certain difficulties with the shafting then being used in their high speed tapping machines.

The Heat Treated SAE 4140 used for pulley drive shaft (shown below) had been behaving badly. It warped excessively dur-

LEFT: Haskins Air Controlled Tanping Machine in operation. Machines like this aro in use all over the world. Hy replncing steels formerly used for shafts with STRESSPROOF the Haskins Contpany maintalued rigid atandarda of quality at sulastantial production savings.

RIGGT: Cut-away view of the tap head of Haskina Tappligg Machine. The two shafts indicated are currently being mado of STRESSPROOF.
ing machining and rejections because of cracks were running high. It machined slowly and was tough on tools. STRESS. PROOF looked like a "natural" and was given a trial. Here are the results:

Machinability was immediately increased 25 surface feet per minute. Even cutting in the spline was accomplished without frequent sharpening of the hob. Warpage during machining - and therefore several straightening operations - was eliminated. And together with all these qualities-a high degree of machinability, resistance to warpage, a lower material cost - the strength of the STRESSPROOF shafts was more than sufficient to carry the strain of high speed, heavy duty tapping.

A second example where STRESSPROOF Cold Finished Steel Bars solved a cost and quality problem for this company was the splined drive shaft (shown in the illustration below). Here the use of SAE X-1314 left much to be desired in the way of accuracy and straightness. To get the necessary wearing qualities, the part was, of course, case carburized. This caused distortion in the shaft, which in turn made necessary several costly straightening operations. When STRESSPROOF was substituted, straight shafts were produced without difficulty. With a high degree of resistance
(Continued on Page 2, Col. 1)

When Not to Use

STRESSPROOF No. 2

STRESSPROOF No. 2 by reason of its unique wearing qualitien can be substituted for case
carburized steel in many applications. It should carburized, steel in many applications. It ahould
be noted, however, that STRESSPROOF No. 2 has a Yield Strength of 100,000 Ibs. p.s.f. minhmum, and therefore, is not auitabio for parts caso carburized and subjected to high unit pressures and levere Brinolling action.

Close-up views of shafts used in tap head of Haskins equipment. The top one is the splined drive shaft, formerly made of Carburized X-1314; the bothom one is the pulley drive shaft, formerly made of Heat Treated 4140 . Both steels were replaced with STRESSPROOF.

HASKINS ENGINEERS ARE SOLD ON NEW BAR STEEL

Replace H. T. 4140, Carburized X-1314, SAE X-1112

(Contimued from Page 1, Col. 3)
to abrasive wear right in the bar as reccived, case hardening and sabsequent straightening and cleaning were naturally no longer required. Broaching and splinno onger required as excellent. And the savings in time and reduction of rejects lowered parts costs beyond all expectations! Haskins reports finding in STRESS.
rese PROOF the solution to still another problem - this time in connection with their flexible shaft machines. The shafts on this equipment take a terrific beating at the high speeds - often up to 7,500 R. P.M.at which machines are operated. The core ends of shafts were the seat of the trouble. With the steel formerly used, SAE X-1112, core ends got so hot that they turned purple, and virtually twisted off. Because of thinness of the section the use of heat treated or hardened steels with greater torsional shear stress values was out of the question. With such stecls warpage would invariably occur.
A trial of STRESSPROOF No. 2 on this killing application soon proved this new all-purpose steel could stand the gaff. With its minimum yield point of $100,000 \mathrm{lbs}$. p.s.i and tensile strength of $125,000 \mathrm{lbs}$. $\mathrm{p} . \mathrm{s}, \mathrm{i}$, it proved to be the only steel with the required torsional shear stress values that could be satisfactorily used in this application. The STRESSPROOF core ends didn't twist. And the freedom from warp. age experienced with STRESSPROOF eliminated all worry about distortion.

Photo of a few of the many different kinds of parts being produced by repair and maintenance departments from a single grade of steel, STESSPROOF Colaces alloys, requires no heat treating,

More Shops Simplify Maintenance, Cut Costs by Adopting "All-Purpose" Steel Bar for Repairs
 bolts and pins that are used on the repairs

Replace Cold Drawn, Heat Treated Carbon, Alloy Shaftings

Recent reports from every part of the country indicate that the troublesome problem of replacing broken parts is being solved by a constantly increasing number of shops with one word: "STRESSPROOF"," According to the men in charge of repair and maintenance, this one grade of steel meets just about every requirement of the ideal shafting and machinery steel. It's strong. It's unusually free from warpage. It's easy to machine. It doesn't have to be heat treated. It wears remarkably well. And, for most parts, it's a more economical steel to use than any of the other shafting steels such as a cold drawn, a heat treated carbon, or an alloy.
Engineers who have used it in place of cold drawn shafting maintain that STRESSPROOF often doubles the service life of parts, thereby reducing costly breakdowns and down-time losses. They report-no trouble with warpage, and a step-up in machinability. In many instances where it has replaced alloys and heat treated carbon steels-at no sacrifice in service life of parts-material costs have been pulled down, warpage troubies eiliminated, anò machining made easier and speeded up.
One prominent manufacturer has put into writing his experience with STRESS PROOF. His letter reads:
"As you know, we have always experienced considerable breakage of various

LEFT: Haskins Type HS.7 Flexible Shaft Equipment, one of many related machines produced by the firm. The line includes equipment made to de liver speeds of 7.500 R.P.M.

HELOW: Flexible Shaft Core as used in Haskins equipment. Core ends are made of STRESSPROOF, As formerly made of SAE X-1112, the core ends twisted off because of intense heat generated in operation. STRESSPROOF completely solved this operaino.
problem.
of screw machines. Heretofore, we have been using 3140 Heat Treated for this class of work, but at the suggestion of your Mr. James we tried your Stressproof which we find gave us at least ten to twelve times the service that we obtained from 3140. We are very well satisfied with the performance of this material for all applications where hardness is not required with strength.
"You may be interested to know that the bolts which we returned were used for pivots for the collet closing arm on a Model No. 53 and 55, four spindle screw machine and these of course are always subject to considerable strain."
A composite comment of the experience of users of STRESSPROOF for shop repair parts would run something like this: ${ }^{\text {"We've entirely }}$ forgotten problems like hardening, warpage and machining. We no longer worry about what steel to use for each application. STRESSPROOF is suited for just about any maintenance job we run into."

Quick Service on STRESSPROOF

 Assured Users by Jobber StocksIt's serious enough to be "out of stock" on steel used for repair parts when a machine breakdown occurs. But it's even more serious when you can't get prompt delivery of a new supply. To help maintenance and repair men sidestep such hazards, La Salle Steel has established jobber stocks of STRESSPROOF at strategic locations all over the country. So when plants standardize on STRESSPROOF as a maintenance steel, they not only simplify inventories and cut part costs, but they insure themselves of prompt service on emergency requirements. That's a point no plant can afford to overlook when purchasing steel for production uses.

Manufacturers of the Most Complete Line of Cold Finished Steel Bars in America

Address:

Dept. 5A, Box 6800-A CHICAGO, ILL.
tions. Few units are made for stock due to these conditions. Thus multiple stack cutting of parts is unnecessary. However, a large number of steel templets are used as they facilitate exact reproduction of similar parts. The cutting torch is manually guided over the templet as in Fig. 1.
Shown in the background in Fig. 1 are two of the punching and notching presses. Between the pantograph cutting bench and the punches is a bench for cutting operations using hand torches.
Fig. 2 is a view of the two large bending brakes employed to form various portions of the trucks. Ex tensive use of bending brakes has done much to minimize the total amount of welding required, thus reducing cost of manufacturing operations. These two brakes are located end to end and extend lengthwise the shop near its center. Thus they are not only handy to the stock of plates but material which has been cut at the back of the shop can be formed as it is passed toward the front of the shop for assembly. Brake in foreground, Fig. 2, is a 10 -foot unit with a capacity of 200 tons. Other brake is 12 -foot unit with 300 -ton capacity. Just beyond this second brake is a 10 -foot shear, capable of cutting \%-inch plate. Farther up toward the front of the shop are the welding and grinding stations. At the latter, welded frames are finished by grinding off welds and cleaning up the metal surfaces.

A large portion of the steel used

Fig. 3-Operator below is shown tinishing welds by grinding

Fig. 4. (Right)-Welding heavy plate to make frame for a power truck. Operator is using electric arc
is SAE 1020 but certain portions such as frame bars are SAE 3140.
About 30 per cent of the platethat is, most work up to $1 / 2$-inch in thickness -is sheared to the shape desired.

Flame cutting is employed largely to cut to shape about 50 per cent of the work, material in the thickness range from $1 / 2$ to $3 \frac{1}{2}$ inches. The remaining 20 per cent is usually sawed.

Bearing Blocks Are Torch Cut

Only a small amount of the steel is machined, most of it going directly to welding stations after being cut to shape and bent. One exception is pieces for bearing blocks which first are torch cut from heavy plate and then machined all over.

Wherever possible, subassemblies are utilized. As many of the smaller pieces as possible are welded to form a subassembly before these subassemblies in turn are welded together to form a completed truck.
In welding certain subassemblies, it is difficult to avoid some distortion, which subsequently is taken out on one of the large bending brakes or heated with a torch to bring it back to proper shape.

Certain portions of the trucks are heat treated. For instance, frame bars are heat treated to strengthen them. Bushings are carburized to reduce wear.

Wheels for Yale trucks are made here also. The circular wheel disk firt is cut from alloy manganese steel plate. The tire rim is made by rolling a thinner plate which subsequently is welded to the disk, bearing mountings welded in place and the entire piece machined for tire and bearings.

Assembly work is done on bed-
plates as shown in Fig. 4. Pieces first are tack welded in correct position and then welds completed. Few jigs are used, the individual pieces being positioned separately as they are assembled into the structure.
All welding is done with the electric arc, using coated electrodes.
After welding, structures go to the nearby grinding department, Fig. 3, where welds are ground smooth and all rough edges smoothed up in preparation for painting. Various portions of the truck such as platform, hoist guides, main frame and understructure then are sent to the assembly department ready for assembly.
An interesting application of welding was worked out in this shop. It was desired to emboss the heavy plates forming certain portions of the truck with the name "Yale." To do this a heavy embossing die was needed. It was made by taking heavy plate and punching through it the letters to form the name desired. These punchings then were drilled and plug welded on the face of a second plate to form the male section of the die.
Lugs were put on the back of the plate to fit one of the heavy bending brakes which is utilized to give the required pressure for embossing.
'The first plate from which the punchings were taken is used as the backing-up plate for the female section of the die. Both portions were carburized to give the hard surfaces desired to minimize wear.
This rather unusual embossing die has given excellent service, although its cost was ext:emely low, judging its periormance.

Overhead Chain Conveyor

West coast enameling plant installs 270 -foot continuous trolley conveyor to serve new 3-zone 85 -foot enameling furnace, one of the largest installations west of the Mississippi

- A LEADING producer of porcelain enameled products on the west coast is U. S. Porcelain Enamel Co., 4635 East Fifty-second drive, Los Angeles.

Quite recently this plant installed what is said to be the largest single-flow enameling furnace yet placed in service west of the Mississippi river. Designed and built by Albert J. Boland Co., St. Louis, this furnace utilizes a LinkBelt overhead trolley conveyor for carrying the parts into, through and out of the furnace, the furnace itself being 68 feet long.

Porcelain enameled products made by this company include signs ranging from house numbers and street signs in two colors to extremely large ones with multicolored designs, decorations and even lifelike pictures; also such items as stove parts, refrigerator linings, casings, trimmings, washing machine tubs,
coffee urns and a wide variety of other items.
In enameling a stove part, for instance, the stock used is a special enameling iron having an analysis of less than 0.142 per cent impurities. Refining such material on the open hearth takes about twice as long as making most steel. Such sheet is specially heat treated, pickled and inspected besides receiving rigid metallurgical tests in its manufacture. Its point of warpage under heat is much higher. While these features add to cost, they cut finished product losses and so are advantageous.

Cutting and bending to shape are done on a 10 -foot power shear. Fabricating department is equipped to handle almost any conceivable size or shape other than that requiring die pressing. There are 30 -ton and 100 -ton punch presses, shears that cut circles up to 72 inches in diame-

ter, a 4 -foot roll, electric spot welder and gas welding equipment.
Upon completion of fabrication, units go to pickling room nearby where they are placed in monel metal baskets. These subsequently are picked up by a hoist running on an endless tramrail. This hoist places the baskets in a metal tank, 11 feet long, 43 inches wide and 43 inches deep, in which a heavy-duty commercial detergent removes every vestige of grease. Degreasing solution is kept at boiling point. After a cold water rinse, the basket is placed in a cypress tank of the same size containing a 5 per cent sulfuric acid solution with temperature maintained at from 120 to 130 degrees Fahr.

After a few mintes of pickling in this solution, metal surface is completely cleansed of all dirt and im. purities. It is followed by a cold water rinse and hot neutralizing alkaline solution dip. Material then goes to a drier.
A circular drier conveyor also is used in applying the first ground coat enamel to small parts. After dipping in the enamel liquid, parts are hung on the conveyor to drain and are pushed forward a short dis. tance. Excess enamel drains off on a board, leaving an even coat on the work before it passes from the drainboard. After completing the circuit past gas burners, the pieces are dry and ready for firing the first coat.

At the same time, larger units are

Single-llow enameling furnace and overhead chain conveyor for handing parts through furnace at U. S. Porcelain Enamel Co.. Los Angeles. New automatically controlled 85 -foot 3 -zone furnace was installed at cost of approximately 560,000

STEEL

Get these

Airplane Landing Gear Parts SAFETY-Through uniform structure, greater strength-shock and stress resistance.

Gas Engine Cylinder Head LESS MACHINING-Streamlined appearance-lower manufacturing cost.

Hydroelectric Turbine Runner INTRICATE SHAPES cast as units save finishing and assembly timereduce costs.

Diesel Engine Frame and Base SCIENTIFIC WEIGHT DISTRIBUTION - Maximum strength exactly where needed, with minimum weight.

High Pressure Pump Casing RESISTANCE TO PRESSURE high temperature-wide range of chanical properties available.

Excavator Gears and Pinions CAST TO FINAL SHAPE-Little or no excess metal to pay for or trim off.

Whatever you manufacture, you can improve and modernize your product with Steel Castings, and often reduce substantially your production costs.

Your local foundry will gladly consult with you, or you may write-without obligation, of course-to Steel Founders' Society, 920 Midland Building, Cleveland, Ohio.

Power Shovel Truck Frame HIGH RIGIDITY, minimum de tion under stress, accurate alignm better fit.

Steel Mill Rolls and Housings RESISTANCE TO SHOCKS stresses. Any desired heat treatr available.

STRENGTH PLUS ECONOMY WITH

D E

being dipped into a large tank and sent through a drier while suspended from an overhead chain-type trolley conveyor. Extremely large signs have the ground coat sprayed on in a booth especially adapted for spray equipment.

After ground-coated units are dry, they are placed on hangers of the Link-Belt overhead trolley conveyor which travels slowly through the single-flow continuous enameling furnace. The furnace assures dent ically perfected enameled parts made at a high rate.
The furnace is over 85 feet long, which compares with 12 feet for the old type oven. It will produce five to six times the volume of work. Main chamber of the continuous furnace is 7 feet high and $321 / 2$ inches wide. First 30 feet of travel takes place in the preheat chamber where the temperature gradually rises to nearly 1600 degrees Fahr. In the second or firing chamber, which is 31 feet long, temperature is maintained at 1600 degrees. Af ter leaving the firing chamber, work continues to travel through the furnate in a cooling chamber where the product is gradually brought down to lower temperature. Cool ing chamber is 20 feet long.
The preheat and cooling chambets have been found valuable in speeding production and protecting the metal against too fast a change in temperature

As temperature of firing chamber, 1600 degrees Fahr., is quite high and the metal becomes quite soft, adequate support for the work is most essential. Flat sheets, of course, can be suspended from hooks on the chain but formed and assembled ware of odd shapes must be hung on fixtures carefully designed to avoid distortion.
One period of baking or burning is used for the ground coat. Then furnace temperature is reset for subsequent coats which require a little lower temperature.

Conveyor carrying work through the large continuous furnace is 270 feet in length. The endless conveyor chain of drop-forged steel is suspended from trolleys running on the bottom flange of an I-beam track.

Batch Carburizing

(Concluded from Page 74)

fan as shown in Fig. 2. The large fan draws gas down through the work and forces it up along the sides with a swirling motion as shown by arrows in Fig. 2. By locating the thermocouple as shown, heating is controlled by the femperature of the work as gases pass directly from work over the thermoscouple before encountering heating
surface. This permits fast heating of the charge, yet prevents overshooting of the temperature

This method thus permits the opaerator to vary any factor while holding the rest constant. As previously mentioned, he thus is able to make improvements in successive batches of parts until conditions are established that give ideal case structure to the particular work at hand. Once these conditions are known, they then are secured automatically in batch after batch. It is this fee tore that makes this method espe cially suitable for high-speed high production work where high quality is essential. Elimination of rejects means the operation is done at low overall cost, savings up to 80 per cent being recorded.

Control equipment is mounted on a panel which in most instances is wired at the factory and thus ready to operate immediately. Instruments include a recording controller with time clock and other simple

$\overline{\underline{\underline{\underline{n}}}} \star \underline{\underline{\underline{n}}}$
 A New Service by
 STEEL
 COMING SOON:

accessories. A typical unit is seen in Fig. 1 against the wall in the rear of the room. This equipment eliminates entirely the human alement in determining results. This method thus can be relied upon to eliminate rejects and improperly treated parts. All this makes for lower overall carburizing costs.
In addition, a number of other operating refinements have been incorporate in the equipment which facilitate the work. For instance there is no cover for either basket or trays, thus nothing to fasten together in loading the furnace. Also, the furnace lid is not bolted or fastened down. It simply swings over the furnace, is lowered into place in the sand seal ring where it is turned slightly by means of a bar inserted in a socket to cause the ring to cut deeply into the sand under its own weight, forming a tight seal.
Another convenience is the stampling vent shown at top of the furnate in Fig. 2. When carburizing a new steel or a new part, it is easy to follow the development of the case because samples can be withdrawn through the lid at the samp ling vent. In this instance, the parts are hung by wires through the vent,
permitting them to be withdrawn as desired. In normal operation, the vent is covered by a cap with a small exhaust port opening near a pilot burner which burns any exhaust gases coming from the furnate.
As the lid swings entirely aside from the furnace, loads can be inserted and removed easi by using overhead handling equipment. In fact, parts to be quenched can be taken directly from carburizing heat and placed in the quench tank immediately as though they came from a hardening furnace.

The round shape of the furnace aids in removing either large parts or furnace fixtures loaded with smaller parts for quenching directly from the furnace.
The remarkable speed with which the lid can be opened and closed enables the heat treater to remove and quench parts one at a time, while those awaiting their turn are held in the furnace at full temperacure and in the carburizing atmos where. A folding shield protects the operator against heat yet permits him to look into the hot furnate while placing tongs, hooks, etc., for removal of work.
On the other hand, where slow cooling is desired, the work can be placed in a separate unit equipped with a gastight metal hood and insulated throughout. The hood is placed over the work in the basket as soon as the furnace is opened to prevent oxidation while the basket is being placed into the slow-cooling unit nearby. One of these cooling units is shown at right in Fig. 1. During cooling, work is protected from the air by illuminating gas.

Linde Publishes Booklet On Sheet Metal Welding

- A new 16 -page booklet, "Sheet Metal Welding Fundamentals", has been published by The Lind Air Products Co., unit of Union Carbide \& Carbon Corp., 30 East Forty-secand street, New York. It covers such subjects as design factors; control of expansion and contraction, use of jigs, weldability of the material and welding procedure.
The booklet is aimed at fabricators of light-gage metal sheet or light-wall tubing. It also includes a supplementary outline for teach ing welding of sheet metal and tubing.
Recommended as an aid for instructors in welding schools and colleges, the outline contains suggestions for lectures, demonstralion $ミ$, shop work and study references for 30 lessons.

PITTSBURGH STEEL COMPANY • 1653 GRANT BLDG. PITTSBURGH, PA.
NEW YORK DETROIT CHICAGO
HOUSTON LOS ANGELES TULSA
Stocks carried by Distributors in Principal Cities

Seamless

STEEL MECHANICAL TUBING

THERE IS NOTHING EQUAL TO SEAMLESS

Stereoscopic Microscopes

- Spencer Lens Co., Scientific Instrument division of American Optical Co., 19 Doat street, Buffalo, has introduced a series of stereoscopic microscopes for detecting fractures in castings and defects in worked metals. Vivid stereoscopic image, a great depth of focus, an exceptionally large object field and a high degree of resolution of fine detail are outstanding characteristics of the instruments. Equally noteworthy are mechanical improvements which facilitate focusing on large or small specimens, and provide for quick changes in magnification. Objective lenses are held in a dustproof revolving objective holder. Base with mirror provides for work requiring transmitted light. Instruments are offered in four mechanical arrangements. Magnifications range from 6.3X to 144X. Seven different powers in paired objectives and four differ-

ent powers in paired eye-pieces provide 28 different magnifications. Angle between axes of the two elements of the paired objectives is 12 degrees. In the prism boxes,
each line of light is bent 2 degrees toward the center so that the convergence at the eye-pieces is but 8 degrees.

Compression Molder

- Watson-Stillman Co., Roselie, N. J., has introduced a 50 -ton automatic compression molding machine for molding thermosetting materials. It also is adapted to thermoplastics. Machine is self-contained and furnished completely equipped. It consists essentially of cme vertical and one horizontal cylinder, a hydraulic power unit and a feed and an ejector mechanism operated automatically and timed to function in proper sequence. All successive operations are controlled automatically, from feeding of loose granular or preformed material into

hopper, to final ejection of molded parts and compressed air-cleaning of dies. Control over predetermined quantities of feed, timing, ejection, etc., is safeguarded by special devices.

Vertical Profiler
 And Milling Machine

new York Tool Co. Inc., 410 Broome street, New York, has introduced No. 12 M high speed vertical profiler and milling machine for manufacturing small parts roquiring accurate interchangeability. It is of 2 -spindle type driven independently by dynamically balanced vertical motors. Cross rail is designed so slide castings carrying spindles and the motors are in balance. Design of machine allows table to be dropped to increase distance from spindle end to a maximum height of 12 inches. Large levers, convenient to operator for independent vertical movement of spindle slides are counter-balanced by a new type of combined spring suspension and weight concealed in
the housing. Positive vertical micrometer adjustable stops also are provided for each spindle, with dials

graduated in 0.001 -inch. Copying pins are carried in blocks which have a taper attachment, controlled by a screw to simplify the final setting.

Spray Line Marker

- Binks Mfg. Co., 3114 Carroll ave. nue, Chicago, has introduoed No. 240 spray line marker for marking of traffic lines for highways, city streets, warehouses, airports, stee]

mills and other plants. It is operated by one man and will lay down a stripe from 2 to 6 inches in width at the rate of one to four miles per hour. Equipped with a π_{4}. horsepower gasoline engine and four pneumatic tires, the unit is easy to handle. Operator has a clear view of the old stripe at all times. A 12 .

gallon material pressure container keeps the spray gun supplied with material.

Pillow Block

- Randall Graphite Products Corp., 609 West Lake street, Chicago, announces a larger pillow-block with onepiece housing for shafts of $11 / 16$ to $15 / 16$-inch diameters. Its features include quiet operation, selective mounting positions, constant self-alignment, self-lubrication and one-third less weight. Entire assembly, consisting of three parts-the

one-piece steel housing, mew machine cast iron ball with large oil leservoir and bronze bushing with graphite filled grooves to provide ample lubrication. The assembly is cadmium plated in order to resist comrosion.

Wire Rope Terminals

- Macwhyte Wire Rope Co., Kenosha, Wis., announces Safe-Lock wire rope terminals available in eye end, fork end, turnbuckle end and stud end types. Terminals are small and compact. Metal in terminal is "married" to wire rope, thus incorporating full strength of the rope.

Units are made in both stainless steel and nickel steel and can be supplied attached to wire ropes of stainless steel and monel metal, as well a any standard steel rope speci fied by the user.

Crane Light

网 Holophane Co. Inc., 342 Madison avenue, New York, announces a crane light made to withstand severe service. Unit, known as Cranelite, is installed under the catwalk and is relamped by raising up a section of catwalk floor. It is fastened to the crane by a 10 -inch diameter, $1 / 2$-inch thick steel plate. Weight of unit is suspended from this plate by 3 compound double acting steel springs so that in case of failure of any or all of the springs, the unit will not fall. Springs ab-
sorb shock up and down and in any lateral direction, thereby elim-

inating shock and whip. Units with 1000 -watt lamps, spaced on 20 -foot centers with height to bottom of crane of 40 feet, will give 20 footcandles on the floor. The price of the crane unit is $\$ 47.50$, list.

Combination Starter and Motor Disconnect Switch

- Cutler-Hammer Inc., 315 North Twelfth street, Milwaukee, announces combination No. 9589 across-the-line starter and motor disconnect switch for use with

squirrel cage and single phase motors.

Front operation allows close gang. ing of a number of units in compact width and height multiples. All-in-one construction, combining across-the-line starter and motor disconnect switch and fuses in one enclosure, saves wiring and conduit work. Dust Safe vertical contacts which are interchangeable with the across-the-line starter con-
tacts are embodied in the unit, and overload protection is provided by the Eutectic alloy thermal overlo d relay which permits working the motor up to maximum limit safely. Overload heater coils and operating coils can be interchanged very readily.

Mechanical door interlock prevents opening of door when disconnect switch is closed. Starter is available with either three or four poles in five sizes.

Electrode Tong

Morse \& Liddell, Oakland, Calif., have introduced an electrode tong, Safe-T.Tong, for arc welding. It enables operator to reach into tight

places with hood up, to change electrodes without danger of shock and to lay the tongs on grounded or hot material with safety. Simple handle switch of the tong makes or breaks the current. Switch is of the indicating type and has positive snap action. It compensates automatically for wear and snuffs the arc if current is broken under load. The tong weighs but 25 ounces in the 300 ampere size.

Oil Immersion Heaters

Westinghouse Electric \& Mfg. Co., Mansfield, O., has announced an automatic dry-type electric glue pot, featuring a snap action thermostat which maintains a temperature of between 150 and 160 degrees Fahr.
Roughly, only 30 to 50 minutes is required to heat a full two quart container to 150 degrees Fahr. Removable glue container is approximately 7^{3}. inches in diameter and 9 inches high. Glue pots have a rating of 250 watts and operate at either 115 or 230 volts. Heavy insulation between inner and outer vessel prevents heat loss, and mica insulation protects nickel-chromium heating element from outer wall. Each unit is furnished with 8 feet of heavy rubber insulated electric cord.

\cdots HEPPFIL LITERRTURE

(1)-Extrusion Presses

Beatty Machine \& Manufacturing Co. -8 page fllustrated folder No. 100HEP. Motor drlven hydraulle extrusion presses for welding electrode coating are described. Advantages are given and methads of operation are covered. Interchangeable packing heads, a time-saving feature, are described.
(2)-Air Cylinders and Valves

Hannifin Manufacturing Co.- 20 page illustrated bulletin No. 34-S, presents features of double acting, leakproof air cylinders in types and sizes for practically every purpose; "Pack-Less" air control valves in all models; and pressure regulating valves for compressed air and hydraulic service.

(3)-Milling Machines

Cincinnati Milling Machine Co.-28 page illustrated bullettn No. M-868, describing new dial type milling machines bullt in three sizes and in plain, unlversal and vertical styles. Quick set-up and case of operation are features. Specifications and reatures are covered in detall.

(4)-Metal Gadgets

Townsend Co.-6 page illustrated folder shows 199 actual size special metal gadgets such as screws, nalls, bolts, rivets, hooks, and pins of all descriptlons. These products are avallable in any size and any metal for almost any purpose.

(5) -Alloys for Pumps

Ampco Metal, Inc.-Engineering data sheet No. 69 in which selection of alloys for use in pump service where corrosive liquids and abrasive bearing materials are handled, are described. Recommendations of alloys for various parts of pumps in such services are included.

(6)-Insulating Firebrick

Babcock \& Wllcox Co.-4 page illustrated bulletin No. R-18, deseribing the new K-16 insulating firebrick, clalmed to have greater stabllity, unusually light weight, high insulating value and made to withstand temperatures of 1600 degrees F. on direct exposure and 2000 degrees F . for backing up.

(7)-Bending Presses

24 page illustrate \& Engincering Co.24 page llustrated catalog No. 2002-A covering complete Ine of "Steelweld" bending presses which produce straight accurate bends and permit performing a great varlety of work. Illustrates typlcal bends and shows how to make them. Presents specifications and operat-
mg data.

(8)-Turret Lathe Tools

Gisholt Machine Co.- 40 page Illustrated catalog No. 1059B, describes entire line of standard tools for ram type turret lathes, Including the new multiple cutter turners and slide tools. Information on selection of correct tool for particular work. Tools adaptable to wide range of work and can be used on other makes of turret lathes.

(9)-Leather Packings

E. F. Houghton \& Co.-20 page lllustrated catalog No. 2-166. "Vim" leather packings for hydraulic and pneumatic use are described. Applications, methods of impregnating and moulding, and a complete price list are given. One section deals with "Twelve Don'ts for PackIng Users."

(10)-Magnesite Refractory

Baslc Dolomite, Inc.- 4 page illustrated bulletin describing "Basifrit," a magnesite refractory for general furnace maintenance and for resurfacing and new construction. Advantages of its use are given. A map showing steel furnaces in which "Basifrit" is used is included.

(II)_Tool Steel Tubing

Bissett Steel Co.- 6 page folder stock list of "Bisco" non-shrinking oll hardening tool steel tubing for such applications as blanking dies, punches, collets, collars, rolls, ring gauges, spacers, slitters, and cutting tools. Welght per foot, inside and outside dimensions are listed.

(12)-Blast Furnace Control

Leeds \& Northrup Co.-20 page illustrated catalog N-33A-642, showing complete line of temperature measuring and controlling equipment to enable precise application of blast furnace heat. Chart records illustrate efflcient operation. Large diagram of typical blast furnace with temperature-detecting points is Included.
(13)-Rotary Pumps

Geo. D. Roper Corp.-16 page 1llustrated catalog No. 939, describing the complete new line of rotary hydraulically balanced pumps with spring loaded packing box, conventional packing box, or mechanlcal seal, in 8 serles for capacities of from 1 to 1000 gallons per minute, in pressures up to 1000 pounds. Selection chart, 21 different drives and mountings, and dimensions are included.

(14)-Board Drop Hammers

Erle Foundry Co.-24 page illustrated bulletin No. 328, showing construction detalls and specifications of board drop hammers in ratings from 400 to 10,000 pounds. Pictorial trlp through Erle's shops shows machining operations.

(15)-Adult Education

International Correspondence Schools24 page illustrated bulletin No. 7114. Numerous features and articles describe advancement possible through application of adult education. Authors include Wllliam S. Knudsen, Harold E. Reed, C. S. Welchel, and others. Personnel problems are discussed.

(16)-Heavy Duty Trucks

Marmon-Herrington Co., Inc.- 8 page Illustrated bulletin No. 400307, describIng the new series DSD heavy-duty, all-wheel-drlve trucks that are avallable in 33 different models with gross capacities up to 70,000 pounds. General descrlption, specifications and a summary of important features are given.

(17)-Grinding and Finishing

Norton Co.-24 page illustrated book No. 1328. Growing use of portable equipment for grinding and finishing metals is discussed and recommendations for varlous types of work are made. Advantages of various abrasives are covered.

(18)-Process Control Valves

Foxboro Co. 6 page illustrated folder No. DMF 789. "Stabilfio" valves for use in process control are described, including the new gulded plunger construction and other improvements. Types of plungers include: wide range V-port, parabollc and wide ratio turned plug. Flow curves are included.

(19)-Hydraulic Torque Unit

Twin Disc Clutch Co.- 12 pagé 11 lustrated bulletin No. 119-A, glving information on the series 11500 hydraullc torque converter for use in connection with prime movers to permit constant speed of engine regardless of speed of driven unlt. Speciflcations and engineering data presented on this fluid drive.

(20)-Crane Lowering Device

Electric Controller \& Manufacturing Co.-Illustrated leaflet No. 990, describing a high speed lowering device for increasing light load and empty hook speeds. Can be used with any face-plate or drum-type dynamic lowering controller. Dimenslonal data, ratings and welghts are covered and information on installation and use are included.

(21)-Fire Extinguishers

Pyrene Manufacturing Co.-Illustrated circular No. AD215 tells about classes of property for whlch 1 and $11 / 2$ quart vaporizing llquid type hand pump extingulshers are recommended. Glves construction detalls of shock absorblng pump mounting of heavy duty type.

STEEL

Readers' Service Dept.
1213 West Third St.,
Cleveland, Ohio

Send me the literature I have circled below.

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | | |
| 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | | | |

Name
2c POSTAGE WILL BE PAID BY-
Company
(22)-Needle Bearings

Torrington Co.-26 page illustrated apiral bound bulletin No. 1159, presentIng application data on needle bearings for automotive, aircraft, power transmission, production tools, textlle machinery and miscellaneous industrial uses. Includes bearing selection and installation information.

(23)-Metal Cleaners

Cowles Detergent Co. 12 page 11lustrated booklet, giving information on and applications of line of cleaners for castings, steel, brass, die castings, and aluminum; strippling lacquers, enamels and paints from steel and rubber molds; emulsifying and wetting agents for degreailng; and special cleaners.

(24)-Roller Bearings

Dodge Manutacturing Corp. -20 page illustrated bulletin No. A-325. Newly announced Dodge-Timken double interlock roller bearings covering the entire range of industrial bearing requirements are described. Designed for 30,000 hour service. A unique cut-away view of an expansion type bearing is shown. Selection tables are included.

(25)-Alloy Tubes

Babcock \& Wllcox Tube Co.-TTechnical bulletin No. 12-A includes condensed technical data on high temperling steels, including revised useful information on B \& W seamless alloy tubes and pipe for high pressure and high temperature service. Characteristics and engIneering curves are included.

(26)-Soldering Fluxes

American Chemical Paint Co.-4 page bulletin No. 5, descrlbing "Flosol" soldering fluxes, avallable in llquid, paste or cream form. They are claimed to clean and fux in a single operation and to wet olly surfaces. Other products made by this company are also described by this

(27)-Safety Goggles

Amerlcan Optical Co.-Illustrated bulletin describing the proper care and use of goggles, including methods of sterilizing to avold face and eye infection. Methods of adjustment to avold discomfort and "loopholes" which may lead to injury are also covered.

(28)-Metal Stamping

Lansing Stamping Co.-Portiolio of elght illustrations showing facllities for handling metal stamping. Examples of small and large stampings handled are Illustrated. Spot welding, enameling and tapping are also covered.

(29) - Miller and Die Sinker

Reed-Prentice Corp.-6 page Illustrated clrcular No. 18-301-9, describing the No. $3 V$ vertical milling and die sinking machine. Shows detalls of parts and glves specifcations of thls preclsion machine tool.

«HElPfulw LIIERFIUBE

(Continued)

(30)-Hobs-Tools-Reamers

Barber-Colman Co.-264 page fllustrated pocket-size catalog "K" describIng hobs, milling cutters and flat turning tools, reamers and machine tools. A full explanation of spline shaft hobs and their uses, including the recently developed elongated tooth hob and taper spline hob, is glven. Engineering tables and an improved tooth form are included.
(31)-Heavy Duty Carburizer

Hevi Duty Electric Co.-20 page 11 lustrated bulletln No. HD-937, describing the "Carbonol" process for carburizing steels In the "Hevi Duty Carburizer." Complete specifications of carburizing equipment. Penetration rate is shown and results of process are given. Cost comparisons of this electric-gas furnace method with other methods are presented.

(32)-Fans and Blowers

Hartzell Propeller Fan Co.- 32 page Illustrated catalog No. 12, describing entire line of propeller-type fan and blowers. Contalns alr-dellvery tables on each type. New models shown include the "Tear-Drop" propeller line, and fans and blowers with motors entirely out of alr stream.

(33) -Stock Tools

Weldon Tool Co. -80 page illustrated case-bound catalog No. 8, describing and glving prices of a wide range of milling tools and tool holders. A second section of the catalog covers a wide selection of special tools for cutting. Engineering tables are also glven.

(34)-Fire Clay

Inland Fire Brick Co.-4 page lllustrated folder No. C-3, describing Inland Blue fire clay for use in steel ladles and gray iron and malleable cupolas. Analysis and fusion of this clay are covered. Other clays for foundry and metal melting practlce are also described.
(35)-All-Iron Gate Valves

Bartlett Hayward Div., Koppers Co.-4 page lllustrated bulletin No. 808. Lowpressure all-iron gate valves for water gas, coke oven, chemical and power plants and other industrial applications are covered. A table glving specificatlons of valves from four to 48 inches in size is included.

(36)-Steel

Republic Steel Corp.- 40 page illustrated catalog No. 353. Republic double strength steel, a high tensile, low alloy product, is described. Methods of fabrication, resistance to corrosion and fatigue, welding and cutting, machining, forms avallable and pictures of numerous typlcal applications are covered.

(37) - Hydraulic Presses

A. B. Farquhar Co., Ltd.-24 page n. lustrated loose-leaf type catalog describing hydraullc production presses from 75 to 4000 tons capacity. Specifications are glven. Crimping, scarfing, flanging, joggling, laboratory, embossing, stralghtening, stamping, forming and molding presses are described.

(38)-Heating System

Lee Engineering Co.-16 page Illustrated bulletin describing the Lee direct warm air heating system, combining heating and ventllating, for all types of industrial plants. Case studies show advantages of this system. A list of installations is glven.
(39)-Flame Descaling

Air Reduction Sales Co.-6 page fllustrated folder No. ADG-1068. The "Atrco Flame-Descaling Process" for use in steel mills, forge shops and foundries is described. Light weight portable equipment is used. Advantages and methods of use are covered.

(40)-Lubricating Bushings

Moccasin Bushing Co.-47-page 11lustrated catalog describing self-lubricating oll-distributing bushings that have in-built wooden feeders that malntain lubrication by caplllary attraction. Design, manufacture and typlcal uses are described. Engineering tables complete the book.

(41)-Flange-Jacks

Garlock Packing Co.-4 page illustrated bulletin No. 129, presenting and describing a new tool for replacing gaskets in fianged plpe lines. Speed, salety and economy are claims made for it. Method of operation and prices are given.

(42)-Engine-Driven Welder

Lincoln Electric Co. 4 page illustrated bulletin No. 336, describing englnedriven "Shleld-Arc Junior" welder, with a current range of 40 to 250 amperes. Gives specifications and appllcations of this unit in stationary and portable types.

(43)-Flexible Couplings

Lord Manufacturing Co.-4 page 11lustrated bulletin No. 200. Bonded rubber, fractional horsepower flexible couplings are described. Advantages, 1eatures, specifications and dimensions are given. Other bonded rubber products are also shown.

STEEL

Readers' Service Dept.
1213 Woat Third St.,
Cloveland, Ohio
Send me the literature I have circled below.

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | | |
| 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | | | |

Name

E
5-13-40

FIRST CLASS
PERMIT No. 36
(Sec. 510 P.L. \&R.)
Clevelaad, Ohio

Smashes Traditions

(Concluded from Page 50) ing belt forward and reverse mechanism.
In contrast to this consider Fig. 2, which shows a recent model of the Gray openside planer with variable voltage drive which has eliminated the noisy and troublesome belts, which gives fingertip control at the strategic operating position and over an infinite range of speeds and feeds, and which gives maximum production because of the tremendous cutting power and quick return which this drive makes possible.
As an example of complete electrification with motors and control apparatus actually built into the machine-which is a growing trend --consider the Brown \& Sharpe electric milling machine depicted by Figs. 3 and 4. Driving power of this machine is subdivided electrically. That is, individual built-in motors are provided for spindle, table and coolant pump. The table and spindle motors, which must start and stop frequently, are stopped by the dynamic braking system known as "plugging." They are electrically reversed and suddenly brought to rest by the reverse torque thus devel. oped-being electrically disconnected at almost the exact instant of zero revolution.
Climb milling is made possible on this machine by means of a backlash takeup device on the table feed screw. This is released automatically by a solenoid device at the instant that the table rapid traverse is engaged.
The manner in which relays, contactors and other electrical control apparatus has been concentrated and neatly hidden within the hollow column of this machine is clearly indicated by Fig. 4 which shows this "control column" with its covers removed. Much of the apparatus within this column was not available to machinery builders a few years ago. This apparatus not only is extra ordinarily compact, but is long lived, thoroughly dependable and instantaneous in action. Without it modern achievements in machine tool electrification would not be possible.

Device Computes Sales

E Eddy-Rucker-Nickels Co., Cambridge, Mass., announces a vest. pocket Profit-O-Meter designed as an aid in stabilizing prices. Working on the sliding rule principle, it shows at a glance, without computation, the added dollar or unit sales necessary to offset a given price-cut and maintain dollar profits.
Inasmuch as sales increases required vary, both with the amount of the pricecut and the original gross profit margin, the device

Analyses of Flame-Hardenable Cast Irons

Tool Carbon	Combined Carbon	Sllicon	Manganese	Phosphorus	Sulphur	Nickel	Chromium	Molybdenum
3.44	0.87	1.35	0.70	0.116	0.094			
3.44	0.69	1.51	0.87	0.194	0.087			
2.97	0.66	1.62	0.78			nil	0.045	
3.14	0.80	1.60	0.80			nil	0.04	
3.15	0.70	2.00	0.90	… \cdot	1.37		
3.19	0.84	1.22	.			1.11	0.10	0.76
2.87	0.84	1.87	\ldots			0.18	0.21	\ldots
3.22	0,65	1.75	0.75	0.212	0.089			0.47
			Pearl	Mallea	1e Iron			
2.11	0.41	1.00	...	0.125	0.108			
2.10	0.35	1.07		0.122	0.100			

- Omitted inadvertently from the article. "Flame Hardening Cast Iron." STEEL. May 6. p. 46, the accompanying table is the tabulation to which reference was made. It lists some of the many known cast irons that can be flame hardened successfully. Under no circumstances is it to be considered as a complete list. for other combinations have been treated with good results and probably many more are suitable for the process
shows instantly the effect of both variables in one figure.

U. S. Navy Standardizes Aircraft Pump Tests

To provide standardized testing in overhauling aircraft pump equip. ment at its score of air bases and its aircraft carriers, United States
navy has ordered from Pump Engineering Service, Cleveland, an instrument panel and steel bench on which are mounted the six or seven necessary instruments for conducting complete tests.

Panel will test fuel, oil and vacuum pumps. Oil pumps are tested for calibration for capacity, relief valves for balance and regulation. About 25 panels will be built.

Cleaning and Plating Small Parts

A variety of small parts, too difficult to clean by dipping basket method, are cleaned in the illustrated hopper type barrel plating machine installed recently at the Chrysler-Plymouth plant in Detroit by Hanson-Van Winkle-Munning Co.. Matawan. N. J. Parts are run through a cleaning cycle. from hopper to hopper. and finally plated in the same series. Production through these hoppers, provided they are loaded continuously, is one hopper load into the dryer every 110 sec onds. Plating cylinders take from 75 to 200 pounds at a time. depending upon size and shape of parts

Follansbee IReqrganization Plan Connpleted: To Spend $\$ 1,270,000$

■ JUDGE Robert M. Gibson in the United States district court at Pittsburgh last week signed an or. de: directing final consummation and providing for procedure in carrying out the Follansbee Bros. Co. reorganization plan.

Order gave effect to the company's plan approved by the court Jan. 6 and directed the trustees to transfer all assets of Follansbee Bros. Co. to Follansbee Steel Corp., the successor company.
The company will spend about $\$ 1,270,000$ for new equipment at its Follansbee, W. Va., plant, where modern cold-reducing mills and necessary auxiliary equipment will be installed. This plant modernization, a vital part of the reorganization, will place the company in a
competitive position on cold reduced products. It also will enhance the company's specialties. Open-hearth furnaces at its Toronto, O., plant will continue to be operated.
John Follansbee, board chairman, announced new equipment will be ready for operation by early fall. Company's principal product will continue to be tin plate, electrical steel sheets, black sheets and metal roofing.

Aviation Partsmaker Builds New Plant

* Modern machine shop for the N. A. Woodworth Co., aviation parts manufacturer, at 1501 Jarvis avenue, Ferndale, Mich., is being built

4000 Inspect Ryerson's Warehouse

- "OPEN WAREHOUSE" party held by Joseph T. Ryerson \& Son Inc., Chicago, Saturday, May 11, attracted a crowd of more than 4000 manufacturers, steel men, customers and other guests to the company's Chicago warehouse, Sixteenth and Rockwell streets.
The Chicago warehouse is claimed to be the world's largest steol service plant, both from a floor space and a tonnage standpoint. Between 50,000 and 70,000 tons of steel are in stock. Guests, many of them brought from the loop by chartered buses, were conducted to the top floor of the main office building, and from there through the offices
and out into the various plant buildings and shops to view the large stocks and many new facilities. Experienced guides met guests at various points en route to explain the functions of each department.

Visitors also were given the opportunity to meet and talk with company executives and other members of the organization. Doors wene opened at $11 \mathrm{a} . \mathrm{m}$., with the open house continuing till 4 p. m. Buffet lunches and refreshments were served.

Shown below is one of the warehouse bays, where structural shapes are stored.

by the Austin Co. of Cleveland.
More efficient layout in this modern plant is said to make possible reduction of company's investment in capital equipment.
The development will represent a total expenditure of about $\$ 50,000$, and is scheduled for completion in three weeks. Building will have a 40 -foot monitor aisle and two 30 foot side aisles, with overall area of 10,000 square feet.

Discuss Castings

(Concluded from Page 54)
ever since it was organized in 1888. the essence of it consisting of the well-known three H 's-the hand, the head and the heart.
By the term "hand" is meant physical movements of all parts of the body necessary for doing a job. The term "head" covers the student's mental ability and training he receives in classrooms and shops. The "heart" phase deals with the young man's enthusiasm.
The Newport News training program is built around Richards' formula which states that effective training (E) is the result of the proper combination of the five requirements of a good mechanicmanipulative skill (M), technical knowledge (T), auxiliary information (I), trade judgment (J) and craft morale (Mo). These elements do not carry equal weight and in the final formula are arranged as follows:

$$
\mathrm{E}=4 \mathrm{M}+\mathrm{T}+2 \mathrm{I}+\mathrm{J}+2 \mathrm{Mo}
$$

Inasmuch as each apprentice represents a considerable financial investment, great care is exercised in selecting candidates, Mr. Wornom noted.

An interesting slant on apprentice training was presented by a graduate apprentice himself, C. W. Wade, Caterpillar Tractor Co., Peoria, Ill.
Mr. Wade, in company with 11 other boys, began a three-year apprentice program in foundry work in 1934. No full-time instructors were provided at that time to supervise the training program which was left largely to plant foremen. This did not work out so well, as the foremen did not place the boys on enough different jobs to acquaint them fully with plant operations. Hence the system was changed to a four-year course in 1935 and a fulltime instructor hired who corrected defects in the old system and devoloped new technique. The plant now has 24 indentured apprentices in the foundry, receiving individual instruction in both classroom and shop. Three supervisory men are provided, working in co-operation with foremen. The young men spend time in each division of the foundry, according to the production sequence.

Output lifises Further: Demand Tendineg Upward

European developments seen additional stimulus to foreign buying. Building activity expands. Scrap up sharply

Demand

Slightly heavier; sheet and strip releases expand.

prices.

Most products steadier; scrap quotations higher.

production

Up 3 points to $66^{1 / 2}$ per cent.

LATEST European developments appear likely to intensify foreign demand for steel and munitions in this country.

While United States exports to the Netherlands and Belgium will be affected adversely, spreading of the war will not only cripple steel markets recently served by the latter but also will expand the Allies' requirements of material and equipment.

Belgium and the Netherlands had increased sharply their imports of iron and steel from the United States this year. First quarter receipts totaled 62,755 tons, compared with 129,364 tons in all of 1939. Imports here from those countries were only 1473 tons the first three months of 1940 , while 88,909 tons was received in all of last year.

Business in domestic steel markets continues to improve moderately, with ingot production up 3 points to $66 \frac{1}{2}$ per cent in the sharpest rise so far this year. A further increase is indicated for the coming week. Since buyers already have fairly large inventories and unchanged prices are in immediate prospect, there is less occasion than prevailed last September for future coverage in anticipation of effects of the European situation. Nevertheless, it seems probable that stocks will not be permitted to decline as far as might have occurred had the foreign stalemate continued.
Heavier demand for sheets and strip and small gains, principally seasonal, in sales of other products furnish most of the impetus to the upturn in steelmaking. Output last week was nearly 20 points above the rate a year ago, when operations were at practically the 1939 low but were preparing to start a sustained advance which moved above 90 per cent during the warinspired fourth quarter boom.

Scrap prices are rising more rapidly, although latest strengthening is not attributable directly to war influences. Higher quotations at Pittsburgh and Chicago advanced the scrap composite 75 cents last week to $\$ 16.83$, highest since early February.
Attempts of mills to complete shipments by June 30 of all flat-rolled steel business taken at cut prices are quickening production but will result in lessened
activity next quarter, unless heavier demand for other products is forthcoming the next seven weeks.

Another adverse factor in the third quarter outlook is the prospective letdown in automotive needs during that period. Motor car assemblies still are relatively active, the recent decline being more gradual than was expected. Last week's output of 98,480 units was a decrease of 825 but compares with 72,375 units a year ago.

Building construction is more active, some districts noting a sharp upturn in private work recently. 'Most of such jobs are small, although last week's structural shape awards included five large lots, totaling 17,785 tons, which brought aggregate bookings to the highest. level in many weeks. Outstanding orders included 7500 tons for the Rainbow bridge, Niagara Falls, 6000 tons for a Syracuse, N. Y., grade crossing, 1750 tons for a New York viaduct, 1400 tons for a hangar, LaGuardia field, New York, and 1135 tons for blast furnace rebuilding, Youngstown, 0 .

Rumors of increased buying of railroad equipment have yet to materialize and backlogs of freight car builders and material suppliers continue to decline. Six small orders were reported last week for 446 cars. April freight car orders involved 2077 units, compared with 3014 in March and 3095 a year ago. Awards the first four months totaled 6688 cars, against 6157 a year ago, 829 in the 1938 period and 40,705 in 1937.

Finished steel prices generally are steadier. Sheet and strip quotations, including galvanized material, have moved back to levels originally announced for this quarter. Some shading continues in certain secondary markets.

Except for a 6-point drop to 88 per cent at Wheeling, most districts recorded higher steelmaking rates last week. Gains included $31 / 2$ points to $61^{1 / 2}$ per cent at Pittsburgh, 6 points to $651 / 2$ at Chicago, 14 points to 58 at Buffalo, 3 points to 53 at Youngstown, $21: \%$ points to 45 at St. Louis, 1 point to 71 at Cleveland and 8 points to 61 at Cincinnati. Unchanged were eastern Pennsylvania at 57, New England at. 53, Birmingham at 83 and Detroit at 70 .

Iron and Steel Composite:-Ply iron, scrap, billets, sheet bars, wire rods, tin plate, wire, sheets, plates, shapes, bars, black hot strip. nails, tin plate. pipe. Steelworks Scrap composite:-Heavy melting steel and compressed sheets.

COMPARISON OF PRICES

Representative Market Figures for Current Week; Average for Last Month, Three Months and One Year Ago

Finished Material	$\begin{gathered} \text { May } 11, \\ 1940 \end{gathered}$	$\begin{aligned} & \text { April } \\ & 1940 \end{aligned}$	$\begin{aligned} & \text { Feb. } \\ & 1940 \end{aligned}$	$\begin{aligned} & \text { May } \\ & 1939 \end{aligned}$	Pig Iron	May 11, 1940	$\begin{array}{r} \text { April } \\ 1940 \end{array}$	Feb. 1940	May 1939
Steel bars, Plttsburgh	2.15 c	2.15 c	2.15 c	2.20 c	Bessemer, del. Pittsburgh	\$24.34	\$24.34	\$24.34	S22.34
Steel bars, Chicago	2.15	2.15	2.15	2.15	Basic, Valley	22.50	22.50	22.50	20.50
Steel bars, Philadelphia	2.47	2.47	2.47	2.52	Basic, eastern, del. Philadelphia	24.34	24.34	24.34	22.34
Iron bars, Chicago	2.25	2.25	2.30	2.10	No. 2 foundry, Pittsburgh.	24.21	24.21	24.21	22.21
Shapes, Pittsburgh	2.10	2.10	2.10	2.10	No. 2 foundry, Chicago	23.00	23.00	23.00	21.00
Shapes, Philadelphia	2.215	2.215	2.215	2.215	Southern No. 2, Birmingham	19.38	19.38	19.38	17.38
Shapes, Chicago	2.10	2.10	2.10	2.10	Southern No. 2, del. Cincinnati	22.89	22.89	22.89	20.89
Plates, Pitsburgh	2.10	2.10	2.10	2.10	No. 2X, del. Phila. (differ av.).	25.215	25.215	25.215	23.21
Plates, Philadelphia	2.15	2.15	2.15	2.15	Malleable, Valley	23.00	23.00	23.00	21.00
Plates, Chicaro	2.10	2.10	2.10	2.10	Malleable, Chicago	23.00	23.00	23.00	21.00
Sheets, hot-rolled, Pittsburgh	2.10	2.00	2.10	2.05	Lake Sup., charcoal, del. Chicago	- 30.34	30.34	30.34	28.34
Sheets, cold-rolled, Pittsburgh.	3.05	2.95	3.05	3.10	Gray forge, del. Pittsburgh.	23.17	23.17	23.17	21.17
Sheets, No. 24 galv.. Plitsburgh	3.50	3.50	3.50	3.50	Ferromanganese, del. Plttsburgh	105.33	105.33	105.33	85.33
Sheets, lot-rolled, Gary	2.10	1.95	2.10	2.03				105.3	
Sheets, cold-rolled, Gary	3.05	2.90	3.05	3.08	Scrap				
Sheets, No. 24 galv., Gary	3.50	3.50	3.50	3.50					
Bright bess., basic wire, Pitts.	2.60	-2.60	2.60	2.60 5.60	Heavy melt. steel No. 2, E. Pa	15.50	$\$ 16.45$ 15.50	$\$ 17.75$ 16.30	$\$ 14.55$ 12.75
Tin plate, per base box. Pitts.	S5.00	\$5.00	\$5.00	\$5.00	Heavy melting steel, Chicago.	16.25	15.20	16.30 15.75	12.75
Wire mails, Pittsburgh	2.55	2.55	2.55	2.45	Ralls for rolling, Chicago.	19.25	18.65	18.25	17.25
					Railroad steel spectaltles, Chicag	19.00	18.05	18.50	14.75
et bass, Plttsburgh. Chi					Coke				
Slabs, Pitisburgh. Chicaso	34.00	34.00	34.00	34.00	Connellsville, furnace, ovens	\$4.75	\$ 4.75	\$ 4.75	\$ 3.75
Rerolling billets, Piltsburgh	34.00	34.00	34.00	34.00	Connellsville, foundry, ovens.	5.75	5.75	5.75	5.00
Whe rods, No. 5 to ${ }^{\text {g }}$-inch, Pitts.	2.00	2.00	2.00	1.92	Chicago, by-product fdry., del.	11.25	11.25	11.25	10.50

STEEL, IRON, RAW MATERIAL, FUEL AND METALS PRICES

Buffalo
Birmingham
Gulf ports
Pacinc Coast ports
[ron
Chicago
ron
Philadelphia, del. 237 c

Terre Haute, Ind. 2.15 c Reinforcing
Now Billet Bars, Base Chicago, Gary, Buffalo,

Cleve., Birm., Young.,
Sparrows Pt.,
pitts.
$1.60-1.90 \mathrm{c}$
Gulf ports.
$1.95-2.25 \mathrm{c}$
Paclife Coast ports. . $2.00-2.30 \mathrm{c}$
Rail Steel Bars, Base
illtsburgh, Gary Chi-
rago. Burtalo, Cleve-
land, Blrm. $1.60-1.90 \mathrm{c}$
Gulf ports 1.95-2.25c
Paciflc Coast ports. . $2.00-2.30 \mathrm{c}$
The above represent average going prices. Last quotations 2.15 c , mill base, for billet bars and 2.00 c for rail steel.

Wire Products

Pitts-Cleve.-Chigago-Birm. base per 100 lb . keg in carloads Standard and cement coated wire nalls $\begin{gathered}\text { (Per pound) }\end{gathered}$
Polished fence staples
Annealed rence wire.
Galv. fence wire
Woven wlre fencing (base
C. L. column)

Single toops male ther
(base C.L. column)
56
Galv. barbed wire,
80 -rod spools, base
column
Twisted barbless
wire, column
To Manufacturin' Trade
Base, Pitts. - Clevt. - Chicago-
Birmingham (ed.eept spring
Bright bess.. hasle wire.
2.60 c Galvanized wir
3.20 c

Spring wire

orcester, Mass., $\$ 2$ higher on
bright basic and spring wire.

Cut Nails

Carload, Pittsburgh, keg. . $\$ 3.85$
Cold-Finished Bars

Alloy Bars (Hot)

(Base, 20 tons or over)
Pittsburgh, Buffalo, Chl-
cago, Massillon, Can-
ton, Bethlehem
Detrolt, dellvered

46000.20 to 0.30 Mo 1.20-
2.00 NL .

5100 0.80-1.10 Cr.
5100 Cr . spring flats
6100 bars
co spring 0ats
Cr. N.. Van.
9200 spring flats
9200 spring rounds $0.1 \overline{5}$
Electrle furnace up 50 cents.
3.55 c
3.05 c
3.40 c

67
56

70
70
.
2.70 c
2.80 c

Strip and Hoops
(Base. hot strip. 1 ton or over; cold. 3 tons or over
Hot Strip, 12 -inch and less
Pittsburgh, Chicago,
Gary, Cleveland.
Youngstown, Middle-
town, Birmingham.
town, Brmingham.... 2.10 c
Detroit, del.
Philadelphia, del.
New York, del
Pacifle Coast ports
Cooperage hoop, Young..
Pitts.; Chilcago, Birm. 2.20c Cold strip, 0,25 carbon and under, Pittsburgh. $\begin{array}{lll}\text { Cleveland, Youngstown } & 2.80 \mathrm{c} \\ \text { Chicago } & \ldots & 2.90 \mathrm{c}\end{array}$ Detroit, del.......... 2.90 c
Worcester, Mass. 3.00 c
Curbon
Cleve., Pitts.

U.51-0.75	4.30 c
0.76-1.00	6.15c

Over 1.00 8.3 ธ̆
Worcester, Mass. $\$ 4$ higher.
Commodity Cold-Rolled Strip
Pitts.-Cleve.-Youngstown 2.95 c

Chicago

3.05 c

Detrolt, del. 3.05 c
Worcester, Mass. 3.35 c
Rails, Fastenings
Standard (Gross, Tons) $\quad \$ 40.00$
Relay ralls, Plttsburgh
20-100 lbs. $32.50-35.50$
Light ralls, bllet qual.,
Pltts.. Chicago, Bham. $\$ 40.00$
Do., rerolling quallty.. 39.00
Cents per pound
Angle bars, billet, mills
Do., axle steel
Spikes, R. R. base
Track bolts, base
Car axles forged, Pitts.,
Chicago, Birmingham. 3.15 c
Tle plates, base $\ldots \ldots \ldots$...... 2.15 c
Base, light ralls 25 to 60 lbs ., 20 lbs., up $\$ 2 ; 16$ lbs. up $\$ 4 ; 12$ lbs. up $\$ 8 ; 8$ lbs. up $\$ 10$. Base rallroad spikes 200 kegs or more; base plates 20 tons.

Bolts and Nuts

F.o.b. Pittsburgh, Cleveland, Birmingham, Chicago. Discounts for carloads additional 5%, full containers, add 10%. Carriage and Machine
$1 / 2 \times 6$ and smaller 68.5 off Do. larger, to $1-1 \mathrm{n}$. 66 off Do. $1^{1 / 3}$ and larger.... 64 off Tire bolts

Stove Bolts
In packages with nuts separate 72.5 off; with nuts attached add 15%; bulk 83.5 off on 15,000 of 3 -inch and shorter, or 5000 over $3-\mathrm{in}$.
Step bolts
60 off
plow bolts
Nuts
Semifinished hex. U.S.S. SAE
$1 / 2-$ Inch and less.
\therefore-1-inch
11/8-13/2-Inch k/8 and larger
llexaron $\begin{array}{cc}\text { 67.S. } & 70 \\ 64 & 65 \\ 62 & 62\end{array}$ llexaron Cap Screws
Upset, 1-1n., smaller.... 70.0 off Square Ilead Set Screws
Upset, 1-In., smaller.... 75.0 oft Headless set screws . . . 64.0 off

Piling

Pltts.. Chgo.. Buffalo ... 2.40c
Gulf ports 2.85 c
Pacillc Coast ports 2.95 c
Rivets, Washers
F.o.b. Pitts., Cleve., Chgo.,

Structural
forinch and under65-10 oft wrought washers, Pitts.
Chl. Phila., to Jobbers
and large nut, bolt mers. 1.c.1. $\$ 5.40$; c.1. $\$ 5.75$ off

Welded Iron,

Steel Pipe
Base discounts on steel pipe. Pitts., Lorain, O., to consumers In carloads. Gary, Ind., 2 points less on lap weld, 1 point less on butt weld. Chicago dellvery $24 / 2$ and $13 / 2$ less, respectively. Wrought pipe, Plttsburgh base.

Butt Weld		
In.	Blk.	
3	63 \%	54
\%	66\%	58
1-3	681/5	$60^{1 / 3}$
Iron		
\%	30	13
1-1\%	34	19
$14 / 2$	38	214
2	37\%	21

2
$21 / 2$
$31 / 2$
7
Steel
$31 / 2-6$
9 and 10
11 and 12

52\%
 70c c

Lo 3 , butt weld
2. lap weld
$21 / 2$ to 3, lap weld
3 3/2 to 6 , lap weld
7 and 8, lap weld
10 -inch lap weld
12-inch, lap weld
Iron

* butt weld

1 and 1% butt weld
1 12, butt weld
2 butt weld
1 1/2 lap weld
$21 / 2$ to $31 / 2$ lap weld
4 lap weld
$41 / 2$ to 8 lap weld
9 to 12 lap weld 23%

Boiler Tubes

Carloads minimum wall seamless steel boiler tubes, cut lengths 4 to 24 feet; 1.o.b. Pittsburgh, base price per 100 feet subject to usual extras.

Inp Welded

Gage
13
13
13
13
12
12
12
12
11
10

Blk. Galv.

2"O.D
 214 "O.D.
 $2 \% " O . D$.
 3" O.D
 $31 / 2$ NO.D.
 412 "O.D. $5^{\prime \prime}$ O.D.

$13 \quad 13.04$

15.03

Cast Iron Pipe

Class B Pipe-Per Net Ton 6-In., \& over, Birm..\$45.(v)-46.UU 4-in., Birmingham .. 48.00-49.00 4-in., Chicago 56.80-57.80 6-in. \& over, Chicago 53.8U-54.80
6-in. \& over, east fay. 49.00

$$
\text { Do., 4-in. } 5
$$

Class A Plpe 53 over Class B
Stnd. fltgs., Blim., base $\$ 100.00$

Semifinished Steel

IRerolling Billets, Slabs (Gross Tons)
Pittsburgh, Chicago, Gary,
Cleve., Buffalo, Young.,
Birm., Sparrows Point. . $\$ 34.00$
Duluth (billets) 36.00
Forplng Quality Billets
Pitts., Chi., Gary, Cleve.
Young., Buffalo, Birm. . 40.00
Duluth
Sheet IBurs
Pltts., Cleveland, Young.,
Sparrows Point, Buf-
falo, Canton, Chicago.
Detrolt, dellvered 36.00
Wire Rods
Pitts., Cleveland, Chicago,
Birmingham No. 5 to $\frac{9}{2}$
inch incl. (per 100 lbs .) $\$ 2.00$ Do., over $\frac{9}{2}$ to $\frac{1}{7}$-in. Incl. 2.15 Worcester up $\$ 0.10$; Galveston up $\$ 0.25$; Pacifle Coast up \$0.50.
Pitts., Chl., Youngstown,
Coatesville, Sparrows Pt. 1.90c

Coke

rice Per Nel Ton

Beelilve Ovens
Connellsville, fur... \$4.35- 4.60
Connellsville, fdry.. 5.00-5.75
Connell. prem. idry. 5.75-6.25
New River fdry. . . . 6.25-6.50
Wise county fdry... 5.50-6.50
Wise county fur. ... 5.00-5.25
By-Product Foundry
Newark, N. J., del.. . 11.38-11.85
Chicago, outside del. 10.50
$\begin{array}{ll}\text { Chicago, dellvered. } & 11.25 \\ \text { Terre Haute, del. . . } & 10.75\end{array}$
Mllwaukee, ovens. .. 11.25
New England, del... 12.50
St. Louls, del. 11.75
$\begin{array}{lr}\text { Birmingham, ovens. } & 7.50 \\ \text { Indianapolis, del. . . } & 10.75\end{array}$
$\begin{array}{ll}\text { Indianapolis, del. .. } & 10.75 \\ \text { Cincinnati, del. } & 10.50\end{array}$
Cleveland, del. ... 11.05
Buffalo, del
Detrolt, del.
11.25
Philadelphía, del. .. . 11.15

Colke By-Products
Spot, gal.. freigint allowed east of Omaha
Pure and 90% benzol... 16.00 c
Toluol, two degree 25.00c
Solvent naphtha 27.00c
Industrial xylol 27.00c
Per lb. t.o.b. Frankford and
Phenol (less than 1000 lbs.)
Do. (1000 lbs. or over) 13.75 c
Eastern Plants, per $1 b$.
Naphthalene flakes, balls,
bbls. to jobbers 7.00c Per ton, bulk, f.o.b. port
Silphate of ammonia. ... $\$ 28.00$

Pig Iron
Dellvered prices Include switching charges only as noted． No． 2 foundry is $1.75-2.25$ sil；； 25 c diff，for each 0.25 sil．above 2.25 sil．； 50 c diff，below 1.75 sll ，Gross tons．

Buslug Points：	No． 2 Fdry．	Malle－ able	Basic	Besse－ mer
Bethlehem，Pa．	\＄24．00	\＄24．50	\＄23．50	\＄25．00
Blrdsboro，Pa．	24.00	24.50	23.50	25.00
Blimingham，Ala．s	19.38		18.38	24.00
Buttalo	23.00	23.50	22.00	24.00
Chicago	23.00	23.00	22.50	23.20
Cleveland	23.00	23.00	23.50	23.50
Detroit	23.00	23.00	22.50	23．50
Duluth	23.50	23.50		24.00
Erle，Pa．	23.00	23.50	22.50	24.00
Everett，Mass．	24.00	24.50	23.50	25.00
Granlte City，Ill．	23.00	23.00	22.50	23.50
Hamilton， 0.	23.00	23.00	22.50	2.50
Nevllle Island，Pa．	23.00	23.00	22.50	23．50
Provo，Utah	21.00			23.50
Sharjsville，Pa，	23.00	23.00	22.50	23.50
Sparrow＇s Point，Mid，	24.00		23.50	23.50
Swetleland，Pa．	24.00	24.50	23.50	25.00
Tolerlo，O．．．．	23.00	23.00	22.50	23.50
Youngstown． 0.	23.00	23.00	22.50	23.50

tSubject to 38 cents deduction for 0.70 per cent phosphorus or higher

Wellvered from lianing Points：			
Akron，O．，from Cleveland．．．．．． 24.39	24.39	23.89	24.89
Baltimore from Birmingham．．．． 24.78		23.66	
Boston from Blrmingham．．．．．． 24.12			
Boston from Everett，Mass．．．．．． 24.50	25.00	24.00	2ธ．50
Boston（rom Burtalo ．．．．．．．．．． 24.50	25.00	24.00	25.50
Brooklyn，N．Y．，from Bethlehem 26．50	27.00		
Canton，O．，from Cleveland．．．．．． 24.39	24.39	23.89	24.89
Chicago from Blrmingham．．．．．$\dagger 23.22$			
Clnclnnatl from Hamilton，O．．．． 23.24	24.11	23.61	
Cincinnati from Blrmingham．．．． 23.06		22.06	
Cleveland from Birmingham．．．． 23.32		22.52	
Mansfleld，O．，from Toledo，O．．．． 24.94	24.94	24.44	24.44
Milwaukee from Chicago．．．．．．． 24.10	24.10	23.60	24.60
Muskegon，Mich．，from Chlcago， Toledo or Detrolt			
Newark，N．T．，from Birmingham 25．15		2.69	9
Newark，N．J．，from Bethlehem 25.53	26.03		
Phlladelphia from Birmingham 24.46		23.96	
Phlladelphata from Swedeland，Pa． 24.54	25.34	24.34	
Pittsburgh district from NevillefNeville base，plus 69c，84c． Island land $\$ 1.24$ preight			
Saglnaw，Mich．，from Detroit．．．． 25.31	$\begin{aligned} & 24 \text { fr } \\ & 25.31 \end{aligned}$	24t.	25.81

	No． 2 Fdry．	Malle－ able	Bastic	Besse－ mer
St．Louls，northern	23.50	23.50	23.00	
St．Lotid from Blrmingham	＋23．12		22.62	
St．Daul from Duluth	25.63	25.63		26.13

Low Phos．

Basing Polnts：Blrdisboro and Steelton，Pa．，and Buffalo，N．Y．， \＄28．50，base；$\$ 29.74$ delivered Philadelphia．

Gray Forge

Charcoal
Valley furnace
Pltts．dlst fur ．．．．．．．．．．．．$\$ 22.50$ Lake Superior fur．
$\$ 27.00$
Pltts．dlst．fur．．．．．．．．．． 22.50 do．，del，Chlcago ．．．．．． 30.34 Lyles，Tenn．
30.34
26.50
tsilvery
Jackson county，O，base：6－6．50 per cent $\$ 28.50$ ；6．51－7－\＄29．00；
$7-7.50-\$ 29.50 ;$
$9.9 .50-\$ 1.50 ;$
7uftolo，$\$ 30.00 ; 8-8.50-\$ 30.50 ; ~ 8.51-9-\$ 31.00: ~$ 9－9．50－$\$ 31.50$ ；Buffalo，$\$ 1.25$ higher．

Bessemer Ferrosilicon \dagger

Jackson county，O．，base；Prices are the same as for sllverles， plus SI a ton．
tThe lower all－rall dellvered price from Jackson，O．，or Buffalo is quoted with frelght allowed．
Manganese differentials in sllvery iron and ferrosllicon， 2 to $\mathbf{3 \%}$ ． $\$ 1$ per ron add．Each unlt over 3% ，add $\$ 1$ per ton．

Refractories Iadle Irrick

Per 1000 f．o．b．Works，Net Prices
（Pa．，O．，W．Va．，Mo．）
Dry press ．．．．．．．．．．．．．． 828.0
Wire cut $\ldots \ldots$.
Fire Clay Brick

Grains，net ton f．o．b．
Chewelah，Wash．，net
Pa．，Ill．，Md．，Mo．，Ky．． 47.50 ton．bulk ．．．．．．．．．．．．．． 22.00
$\begin{array}{ll}\text { Alabama，Georgia ．．．．．．} & 47.50 \text { net ton．bigs ．．．．．．．．．．．} \\ \text { New Jersey ．．．．．．} 26.00\end{array}$
Second Quality
Pa．，Ill．．Ky．．Md．，Mo．
Georgia．Alabama．
New Jersey
Ohlo
First quality ．．．．．．．．．．． 39.90
Intermedlate ．．．．．．．．．．．． 36.10
Second quallty ．．．．．．．． 31.35
Malleable Bung Brlck
All bases ．．．．．．．．．．．．．．．S56．05
Sillea Brick
Washed gravel，f．o．b．
Pennsyivanla ．．．．．．．．．．$\$ 47.50$ carloads，all rall．
Jollet．E．Chicago ．．．．．$\overline{5} 5.10$ Do，barge ．．．．．．． 22.00
Birmingham，Ala．．．．．．． 47.50 No． 2 lump ．．．．．．．．．．．$\quad 22.00$

Ferroalloy Prices

Ferrathangaterae， $78-82 \%$ \％ lump and bulk，carlots tIde．，duty pd．．．．．．．．．$\$ 100.00$ Ton lons
tess ton lols
．ess ton hols ．．．．．．．．． 113.50
Less 200 lli．lots．．．．．． 118.00
Do．，carlots del．Pitts． 105.33
Splegelelsent．19－21\％dom．
Palmerton，Pa．，spot．
Do．，26－28\％
Ferrowllion，50\％frelght allowed，c．l．
Do．，ton lot
Do．， 75 per cent．．．．．． 126.00
Do．ion lots
Spot， 85 a ton higher．
Slleommagutiose，e．l．， 24 per cent carbon．
En entbon 10500，15， 103.00
，1\％，11S．00
comtract ton price
\＄12．50 higher；spot $\$ 5$ over contract．
Forrothugeten，stand．．Jh．
con．del．cars ．．．．．．1．90－2．00
Ferrovamadium， 35 to 40% ，1b．，cont．．2．70－2．80－2．90
Ferrophosphorus，gr．ton， c．l．，17－18ヶ Rockdale． Temn．．basls． 18 c．$\$ 3$ unitage． 58.50 ：electric iurn．，per ton．e．l．，33－ 26% r．o．b．Mt．Fleasant， Tenn． 24 ¢ 53 unllage 73.00
Ferrochrome，66－70 chro－ milum，4－6 cartoon．cis
lb．．contalned cr．，del
carlots ．．．．．．．．．．．．．．．11．00c Do，spot
Do．，ton ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 14500
Do．，lesston lots … 11．75c Do，contract ton lots 145.00
बт－ร2\％low carbon：
15－18\％ti．， $3-5$ ¢．carbon，
carlots，contr．，net ion 157.50
Do，spot
Do，contract，ton lots． 160.00
Do．spot，ton lots ．．．． 165.00
Alsifer，contract carlots，
I．o．b．Nlagara Falls，lb．7．50c
Do，ion lots ．．．．．．．．． 8.00 c
Do，lesstion lots ．．．．．．S．50c
Spot if c lb．higher
Ferromolybdenum．5ラ－
6 a $_{6}$ molyb．cont．，f．o．b．
mill， 16.
Calclum molyhdate．ib
0.95 Chrominm Briquets，con－
tract，irelght allowed
r－lyb．cont．，f．o．b．mill
0.80 lb，spot carlots，bulk 7.00 c

Do．，ton lots ．．．．．．．． 7.50 c
Do．，less－ton lots ．．．． 7.75 c
Fernutitanium．40－45c． tb．，con．th．，t．o．b．Niag－ ara Falls，ton lots． Do．．less－ton lots $20-25 \%$ carbon． 0.10 max．，ton lots．Ib．．． Do．less－ton lots．．．．
ミpot 5 c highe：
Ferrocolumbium．50－60\％． contract．lb．con col． fo．b．Nlagara Falls． Do．．less－ton lots

Soot is 10c highe：
Technical molybdenum trioxide． 53 to 60 ¢ mo－ ！ybdenum．Jb．molyb． cont．．1．o．b．mill．．．
Ferra－carbon－titanium，15－

carlots，contr．，net ton．$\$ 142.50$
123 Do．，less 200 lbs．．．．S．00

$$
\begin{aligned}
& \text { Spot 知 higher }
\end{aligned}
$$

Sheon lifiquets，contract carloads，bulk，freight allowed，ton Ton lots

S60．50
Less－ton lots，ib．．．．．．3．7．
Less 200 lb lots，ib．4．0ire Spot 3 －cent higher．
Manganese lifitueis．
contract carloads．
bulk frelght allowed． lb．

Less－ton lots ．．．．．．．． Spot he higher
スircoulam Nllog．12－15\％
＂ontract．rarloads． bulk，gross ton ．．．．．．s97．50 Do．syot 102.50

34－40 0_{c} ．contrač．はみГ－ loads．lb．．alloy ．．．．．14．1月к Do．ion lots ．．．．．．lis．uus Do，less－ton lots ．．． 1 ti．n0c
Ennt ¿s hiwher
 99cc．C．o．b．York．Pa． 200－1b．kegs，lb， 13 Do． $100-200 \mathrm{ib}$ lots． 2.75
Do．under $100-1 \mathrm{~b}$ ．Ints 3.00
It ulybdenum Oxide Briguts．HE－52cr mo－ lybrienum．per pnund mпtained．f．o．b．pro－ ducers＇plant ．．．．．．．．．so．00c

WAREHOUSE STEEL PRICES

BASE QUANTITIES

Soft Bars. Bands. Honns. Plates. Shanes. Floor Plutes. Hot Rolled Sheets and SAE 1035-1050 Bars: Base, 400-1999 pounds; 30U-1499 pounds in Lus angeles; tuu-dy,yyy (huops, U-2Yy) in San Francisco; 300-4999 pounds in Portland, Seattle; 400-14,999 pounds in Twln Citles; 400-3999 pounds in Birmingham.

Cold Rolled Sheets: Base, 400-1499 pounds in Chicago, CincInnati, Cleveland, Detroit, New York, Kansas Clty and St. Louls; '450-3749 in Boston: 500-1499 in Buffalo; 1000-1999 in Philadelphia, Baltimore; 300-4999 in San Franctsco, Portland; any quantity in Twin Cities; 300-1999 in Los Angeles.

Galvanized Sheets: Base, 1500-3499 pounds, New York; 1501499 in Cleveland. Pittsburgh, Baltimore. Norfolk: 150-1049 in Los Angeles; 300-4999 in Portland, Seattle, San Franclsco; 450-3749 in Boston; 500-1499 in Birmingham, Buffalo, Chicago, Cincinnati, Detroit, Indianapolis, Milwaukee, Omaha, St. Louls, Tulsa; 1500 and over in Chattanooga; any quantity in Twin Cities; 750-1500 in Kansas City; 150 and over In Memphis; 10 to 49 bundles in Philadelphia.

Cold Rolled Strip: No base quantity; extras apply on lota of all slze.

Cold Finished Bars: Base, 1500 pounds and over on carbon. except 0-299 in San Francisco, 1000 and over in Portland, Seattle; 1000 pounds and over on alloy, except 0-4999 in San Francisco.

SAE Hot Rolled Alloy Bars: Base, 1000 pounds and over, except n-4999. San Francisco; 0-1999, Portland, Seattle.

CURRENT IRON AND STEEL PRICES OF EUROPE

Dollars at Rates of Exchange, May 9

Export Prices f.o.b. Port of Dispatch-

Bu Cable ar lirdia

IRON AND STEEL SCRAP PRICES

Corsected to Friday night．Gross tons delivered to consumers，except where otherwise stated；tindicates brokers prices

HEAVY MELTING STEEL

Bumblogham，No． 1. Bos．dock No．I exp． New Eng．del，No． 1 Buftalo，No． 1. Butialo，No． Chicago，auto，no allos Cincinnath，tealers． Cleveland，No． 1 Cleveland，No． 2. Detrolt，No． 1 Detrolt，No． 2
Eactern Pa．，No． 1. Esstera Pa．，No．g． Federal，Ill．No． 2

Granlte City，R．R．
No． 1 ．．．．．．．．．． $13.50-14.00$ Cranite City，No．2．12．50－13．00 Los Ang．，No．1，net 11．50－12．00 Los Ang．，No．1，net 11．50－12．00 $\begin{array}{ll}\text { Los Ang．No．2，net } & \text { 10．50－11．00 } \\ \text { N．צ．dock No．} 1 \text { exp．} & 18.75\end{array}$ Plts．．No． 1 （R．R．I．18．50－19．0） plitsburgh，No．1．．．17．50－18．00
 St．Louls，No． $1 \ldots+13.50-14.00$ St．Louls，Nio． 2 ．．．．． $112.25-12.75$ San Fran．，No．1，net 11．50－12．00 San Fran．，No． 2, net 10．50－11．00 Seattle，No． 1 ．．．．．14．50－15．5u Toronto，dlrs．．No． $1 \quad 11.00$ Valless，No． 1 ．．．．．18，00－18．50
COMIRK心NE！SHEETS
Butralo，new ．．．．． $15.00-15.50$
Chicago，ractors Chleaso，dealers Cincimnati，dealers Cleveland
Detroit
E．Pr．，new mat． E．Pa．，old mat． Los Angeles，net． Pittshurinh

St．Louis

San Francisco，net
Valless
RTNDEEN SHFRTS

Buñalo，No． 1	14．50－15．00
BuIIalo，No．	13．00－13．50
Cleveland	$12.501-13.00$
Plttsluarg	16，0\％0－16．5．5）
St．Louls	19．00－9．50
Toronto，de，	

SHEET CIIPPINGS LOOSE

Chicaso	11.50012 .00
Cincinnat	5．50）－9．00
Detroit	\＄11．00－11．50
St．Louls	＋8．00－ 5.50
Toronto，	

HUSHELING

Eirmingham，No， $1 \quad 13.00$
Butalo，No，1．．．．14．00－14．50 Chicsgo No．1．．．．14．00－14．50 Cincin．No． 2 deal．3．50 4．0k
 Deinit．No，1．new－18－5̄ー14：25 Valleys．new．No． 1 1rimothisu Toronto，dealers ．．．5．50－ $\mathbf{5 0 0}$

MACHINE THENINGS（LonE，

Birmungham

Butfalo

15.00

15.00 16．50－17．00 14．50－15．00 16．00－16．50）
$15,00-15.50$ 13．00－13．50 16．50－17．（0） 15．50－16．（4） †13．75－14． 25 12．50－13．00 16．50－17．00
15.50 ．50－13．00 Cincinna
Cincinati，dealers． Cleveland，no alloy Retrolt
Eastern Pa．
Los Angeles
New York
Pittsburgh
St．Louls
San Francisco
Toronto，dealers
valleys．

shoveling turnings

Buffalo

Cleveland
Chicago
Chicago ．．．．．．．．．．．10．00－10．50
Chjcaso，spel，anal．．13．00－13．50 Detroit 18．00－8．50

BORENGS AND TURNINGS For Blast Furnace Ese

Boston district

Buftalo
CIncinnatl，dealers
Cleveland
Eastern Pa．
Detrolt
New York
Pittsburgh
Toronto，dealers
AIEE TURNTNGS

Burtalo

Boston district
Chitazo，elec．fur．
East．Pa，elec．fur．
15．00－16．50 Toronto …．．．．．．．． $19.25-9.75$ CAST IRON BORNGS

firmingham

7.50

Boston dist．chem．．．is．25－$\$.50$
Buftalo
Chicargo
Cincinnati，dealers
Clucinnati，
Detrolt
＋5．25－8－5
F．Pa．，chemical ．．．14．50－15．00
New York
St．Louls ．．．．．．．．．
10．00－10．50
$\div 3.75-4.00$
10．00－10． E 0
4．25－4．25

CALLROAD SIECIALTIES
Chicago ．．．．．．．．．．．．18．75－19．25
ANGLE BARE—VTEEL
Chicago
EL $19.50-20.00$ St．Louis springs
Buffalo
Sumaio ．．．．．．．．．．19．50－20．00
Chicago，coil … ．．．19．00－19．50
Chicago，leaf ．．．．．．．18．50－19．4 Eastern Pa ． Pittsburgh
St．Louis STEEL RAILS．SHORT
Birmingham ．．．．．． 16.50
Buffio
Chicara（3 11．）
$21.50-22.00$
Chlerso 12 ft － Cincinnati，dealers．15．50－19．00 Detroit …．．．．．． $119.50-20,00$ Pitts， 3 fi，and less $22(0)-2 y=0)$ St．Louts， 2 rt．s less it $1 \mathrm{~S} 00-15.50$ STEEL RAILS，SCRAP
Birningham
Boston district ．．．．．1：－50－15．00

18．00－18．50 17．00－17．50 19．00－19．50 19．0n－in＝n
＋15．00－15．50
18．00－18．50

11．50－12．0n
10．25－10．75

13．00－13．50
11．00－11．50
8．50－9．00
15．00－15．50
$\dagger 10.50-11.00$
9．50－10．00

RAILROAD WROUGHT

Birmingham
14.00

Boston district
＋9．50－10．00
Eastern Pa．，No．1．．18．00－18．50
St．Louls，No．1．．．．10．00－10．50
St．Louls，No．2．．．．12．50－13．00

FORGE FLASHINGS

Boston district ．．．$\dagger 10.00-10.25$
Butialo ．．．．．．．．．．．14．00－14．50
Cleveland ．．．．．．．．．15．00－15．50
Detroit ．．．．．．．．．．．．．．$\dagger 13.50-14.00$
Pittsburgh ．．．．．．．．15．50－16．00
FORGE SCRAP
Boston district $\ldots . . \begin{array}{r}7.00\end{array}$
Chicago，heavy．．．．．19．00－19．50

LOW PHOSPHORCS

Cleveland．crops ．．．22．50－23．00
Eastern Pa．crops．．21．00－21．50
Pltts．，bllet，bloom，
slab crops ．．．．．．．．22．50－23．00
LOIF PHOS．PUNCHINGS
Buffalo
19．50－20．00 15．50－19．00
18．50－19．00
21．00－21．50
21．50－22．00
114．25－14．75
RAILS FOR ROLLLIG
5 feet and over

Chicago ．．．．．．．．．．．．．．19．00－19．50
New Fork ．．．．．．．．．15．50－16．00
Fastern Pa．．．．．．．．20．00－20．5n
St．Louls ．．．．．．．．．$\dagger 17.50-18.00$
STEEL CAR AXLES
Birmingham.....$\quad 18.00$
Boston district $\cdot{ }^{16}+16.00-16.50$
Chicago，net ．．．．．．． $21.50-\frac{16.50}{20.00}$
Eastern Pa．．．．．．．．

St．Louls
LOCOMOTIVE TIRES
Chicaso（cut ．．．．．19．00－19．50
St．Louis，No．1．．．．14．75－15．25

SH．AFTING

Buston district
New York

Eastern Pa．
St．Louis， 1 喿 -3 学
22．50－23．00

CAR UVIIEELS
Birmingham，iron．． 13.00
Boston dist．．iron ．．†13．00－13．25
Buffalo，steel ．．．．．．21．00－21．50
Chicago，iron ．．．．．．．17．00－17．50
Chicago，rolled steel 18．50－19．00
Cincin．，iron，deal．．．16．75－17．25
Eastern Pa．，iron ．．20．00－20．50
Eastern Pa．，steel．．20．00－20．50
Plttsburgh，iron．．．19．50－20．00
Pittsburgh，steel ．．22．00－22．50
st．T．nuis．Iron ．．．．14．50－15．nn
St．Louis，steel
NO． 1 CAST SCRAP
Birmingham
Boston，No． 1 mach．．$\uparrow 15.00-15.50$
N．Eng．del．No．2．．14．00－14．50
N．Ene．del．textile $17.00-17.50$
Buffalo，cupola ．．．17．50－18．00
Buffalo，mach．．．．．18． $50-19.00$
Chicago，agri．net．．13．50－14．00
Chicago，auto net． $16.00-16.50$
Chicago，railroad net 14．50－15．00
Chicago，mach．net．15．50－16．00
Cincin．，mach．deal．．16．50－17．00
Cleveland，mach．－20．50－21．00
Detroit．rupola，net．$+15.50-16.00$
Eastern Pa．，cupola．20．00－20．50
E．Pa．，No． 2 yard．．$\quad 16.50$
E．Pa．，vard idry．．．16．50－17．00
Los Angeles
Pittsburgh cupola
17．50－18．00
Sentle
St．La
15．75－16．25
St．L．，No． 1 mach ．． $116.25-16.75$ Toronto，No． 1
mach．，net dealers 18．00－18．50

HEAVT CAST

Boston dlst．break．．．12．75－13．25
New England，del．．．14．50－15．00 Buftalo，break ．．．．15．00－15．50 Cleveland，breas，net 15．50－16．00 Detroit，zuto net．．．$\quad=16.00-16.50$ Detroit．break ．．．．．$\uparrow 13.00-13.50$ Eastern Pa．．．．．．．．．18．50－19．00
Los Ang．，auto，net．13．00－14．00
New York break ．．．$\ddagger 14.00$
Plttsburgh，break ．．15．00－15．50
stove plate
Birmingham
Birmingham
Boston district $\ldots . . .+10.50-12000$
Butralo ．．．．．．．．．．．． $1 \div 50-15.00$
Micaso，net $10.50-11.00$
Cincinnati，dealers．．S．75－9．25
Detroit，net ．．．．．．$\div 9.50-10.00$
Eastern Pa．．．．．．．．．．．15．00－15\＄0
New York fdry．．．．．10．75－11．25
St Louis
Toronto
dealers net $19.5 n-11.00$
$1000-12.50$
3LALIEABLE
New England，del．
Buffalo
Chicago，R．R．
$20,00-20.50$
Clevelsnd., deal．13．5－14．5
Eastern Pa P P
Los Angeles
Pittsburgh．rail ．．．21．50－2200
St Louis，R．P．．．． $16.00-16.50$

Ores

Lake Superior Iran Ore
Grass fow，52 5
Leses Laide Porss

Ohd ringe besseme：

Messul nanbesserner
Hyb phospharis
Mesad besseme－
old rance ronbesseme：

Ensiern Lacal Ore
Cents heit，del E．Pa
Foundry and bssie

Forelgn Ore
（Prices nominal）
54.5
4.45
4.25
4.00
$4 .(2)$

Cenis pet winif cimi，dilumic
Wnenenvenous are，
にようヶ Fe．．トーブに
Mn．

North African low phos，．．．．．．．．．．．．．．	16.00
Snurien．No Afriran besic， 50 to 60% ．	16.00
Chinese wolframite， short inn unit， duty peld	． 00
Scheelite，Imp．	53.00

Manganese Ore

Including was risi but not duty，cents per unit carge lots Caucaslan． $50-52 \sigma_{\text {．．}}$ 4500－50．00 So．Africsn，50－52\％49．00－50．00 Indian，49－50\％．．．nom
 Cuban， $50-51 \%$ ．dut！free 61.20 Molrbdenam
Sulphide conc per
1b．Mo．cont．
mines
50.75

Sheets, Strip

Sheet \& Strip Prices, Page 92, 93
Pittsburgh-Releases against recent blanket orders have been fair but generally are for current consumption rather than the start of inventory additions. The latter will start shortly, in view of mills' determination to hold to the June 30 deadline for shipments of low-price tonnage. Export business is fairly active, mostly from South America. Foreign orders represent about 10 per cent of total volume. Sheet mill operations are slightly heavier, being close to 60 per cent. Galvanized output also is up a trifle but stili is below 50 per cent.

Cleveland-Sheet and strip production is rising on better releases of material booked at recent price concessions. Heavy schedules are indicated the next seven weeks, particularly in June. Quiet in new business is expected to continue into third quarter, as a portion of recent coverage is destined for stock. Galvanized sheet prices are back to 3.50 c , base, following a brief period of lower quotations.

Boston - Having covered well through this quarter with blanket contracts at lower prices late last month, buying of narrow cold strip at restored quotations is meager. Specifications against this volume are gradually mounting, resulting in moderately heavier production schedules, but there has been no scramble to get on rolling schedules.

New York - Sheet specifications are expanding slowly, due in part to pressure of sellers for releases. The new reinstated prices are holding fairly well, barring some occasional sniping. Specifications against low-priced cold strip tonnage are spotty. The extent of specifications for shipment by June 30 is expected to depend largely on the firmness of prices during the next few weeks.
Philadelphia - Emphasizing that June 30 would be the deadline for shipment of orders booked at the $\$ 4$ concession prior to May 1, sellers are meeting moderate success in speeding up specifications. Mean. while, consumption is a shade better, reflecting principally miscellaneous seasonal influences.

Buffalo-With the end of price reductions, buying of sheet and strip steel has receded. Releases are expected to be well spread over an extended period.

Cincinnati--Backlogs assure high operations through June, provided material on order is released. Mills are attempting to obtain specifications this month in order to even shipments the remainder of the
quarter and are aiming at clearing books of current orders by June 30 .

Birmingham, Ala.-While below expectations, production of sheets remains fairly active at approximately 80 per cent. Strip output has picked up considerably.

Toronto, Ont.-Sheet demand is steady, with no outstanding orders. Mills now are booked to the end of July and are quoting current prices through June. Large tonnage orders are pending from automobile makers which recently closed contracts for motor vehicles for war
purposes, but it is understood that most of this business will go to United States mills. Ordinary domestic demand for sheets largely is being taken care of by Canadian mills although consumers in need of quick delivery are obtaining supplies either from warehouse or from the United States.

Don W. Buckshorn, formerly man. ager of the Cincinnati office, Louisville \& Nashville railroad, has been appointed traffic manager, Crosley Corp., Cincinnati.

FOR HOT RUNS

LUBRICANTS FOR THE STEEL INDUSTRY SINCE 1885

Plates

I Inte Prices, Page 0 ?
Pittsburgh - Demand generally is well sustained, with orders for light plates and floor plates slightly heavier. Some additional plate orders are being placed for freight cars, these having been specified for some time but not released. New inquiries for freight cars are being rumored, and if they materialize such business would keep shops busy most of this year. Shipbuild-
ing releases have been good, while the rearmament program is occupying forge shops at capacity on heavy plate. Export demand is active, with prices steady.

Chicago - Plate bookings have declined slightly. Considerable tonnage is required for bridges and petroleum industry construction work. Large industrial and outdoor machinery requirements also are prominent, but railroad needs lag. Prices are firmer, following some weakness recently.

Boston - Sustained improvement

THIS FABRICATOR'S WORK TELLS ITS OWN STORY

- There's bell-ringing sales appeal, for fabricator and retailer alike, in an attractive clean-cut job like this. For the retailer Anmco Stainless Steel equipment means more customers, less upkeep and longer service life. And that means fabricators find it's easier to sell.

Equally important, you can save money with Anmco Stainless Steel through consistently low production costs. It works freely, welds and solders readily, brings out the best points of design and construction. Whether you use a cold rolled finish or an extremely high polish, it
will give you the kind of surface you want.

Another thing, you'll find a ready market for products made of Armico Stainless. More than 25 years of national advertising has convinced millions of people that the name "Armco" stands for highest quality in sheet metal products.

What do you say we talk it over? -how you and your customers can save money and make money with the correct grade or grades of Armco Stainless Steels. Write The American Rolling Mill Company, 1700 Curtis Street, Middletown, O.
in plate demand has not developed and buying remains spotty. Miscellanoous users account for most orders, mostly in less-than-car lots for prompt delivery. Shipyard specifications are steady, but not widely distributed. Railroad releases are disappointing. Specified work, including tanks, is limited to a few water storage projects and little tonnage is coming from the oil or paper-pulp industries. Structural and boiler shop demands are light.

New York - Miscellaneous plate buying is slightly heavier, but large inquiries are few. General building requirements have increased and in some measure offset further shrinkage in railroad demand. With bids postponed until June 18 on two luxury liners for the United States maritime commission, action on about 30,000 tons of plates has been delayed correspondingly.

Bids will be opened by the navy June 5 on one, two or three submarines of 1500 tons displacement. Should all three be placed, approximately 2000 tons, mainly plates and involving much alloy steel, will be required.
Philadelphia-More than 50,000 tons of ship steel, mainly plates, is expected to be distributed soon by a district yard. In addition, approximately 750 tons are pending for two cruisers, on which the New York Shipbuilding Corp., Camden, N. J., is low. A moderate tonnage also will be required for one or more steel tugs under contemplation by United States army engineer, Philadelphia. Sun Oil Co., Chester, Pa., is figuring 700 tons for a cracking unit for the Tide Water Oil Co., at Bayonne, N. J. A mild improvement in miscellaneous demand is reported by some platemakers, but lack of railroad specifications is being seriously felt. Prices are steady.

Birmingham, Ala.-Tank manufacturers, some railroad business and requirements for shipbuilding hold plate production to a remarkably steady pace. Much of the tonnage is going to Pacific coast points.

Seattle - Important projects are lacking, shops reporting a fair volume of small tonnages, tanks, boilers, service stations and smokestacks. National Guard, Camp Murray, Wash., will take bids May 15 for a $75,000-$ gallon water tank on tower. Salem, Oreg., Percy A. Cupper, engineer, plans a 500,000 gallon elevated steel water tank.

San Francisco-No plate awards of size were reported. Pending business calls for more than 7300 tons. The largest pending project involves 4200 tons for large-sized welded steel or reinforced concrete pipe for Los Angeles, up for bids May
14. So far this year 23,760 tons have been placed, compared with 16,330 tons for the same period a year ago.
Toronto, Ont.-Heavy covering in plates for shipbuilding needs in this country earlier in the year is taking care of most current needs and new demand has slackened. With praclically all Canadian plate output booked for the remainder of the year, new business is passing to United States companies. Imports continue in good volume, mostly against contracts.

Plate Contracts Placed

1100 tons. steel penstocks, Parker Power dam, Callfornia-Arizonit, to Chicago Bridge \& Iron Co., Chleago.
310 tons, 60,000-barrel and 17,640-barrel tanks, Kendall Reflning Co., Bradford, N. Y., to Fiammond Iron Works, Warren, Pa.
100 tons, gasoline supply, welded barge for United States ensincer, Bonneville, to Commercial Iron Works, Portland, Oreg.

Plate Contracts Pending

Unstated tonnage, one steel barge and Equipment, United States englncer, St. Paul, Dravo Corp., Pilislourgh, Jow, $\$ 89.550$, bid under pro. 44.
Unstated tonnare, one or more allwelded 56-root desel powered steel tugs, United States engineer, Plibaticlphia.

Bars

Bar Prices, Page 92
Pittsburgh - Demand for most grades is heavier; although coldfinished bars are slightly less active, due to reduced needs of automotive interests. Export business is sustained, accounting for about 15 per cent of total volume. Prices usually are firm, although some irregularities have appeared in extras. Jobbers' releases and miscellaneous needs are fair. Consumer stocks generally are moderate, but with steady prices in prospect buy ers are not inclined to cover for ward needs.
Prices of cold-drawn carbon and alloy steel bars and shafting were reaffirmed fo: the third quarter by a prominent producer here. This covers material for delivery to and including Sept 30.
Chicago-Carbon and alloy bar demand has been increased slight ly. Automotive interests continue to participate actively. Farm machinery makers, while not as strong as a month or two ago, are still prominent as a source of demand. Forgers are operating at consistent rates, with most business coming from aircraft, petroleum and diesel engine sources. Bar prices are reasonably firm, ranging between 2.60 c and 2.10 c , with considerable portion
of present business going at the latter figure.

Boston-Demand for alloy bars covers a wide range of specifications and is well maintained, particula:ly by machine tool builders and the aircraft industry. Deliveries on some highly-finished alloys are slow, but hot-rolled carbon bar shipments are practically normal. Crucible Steel Co. of America was awarded by lot the last 170 tons of nickel steel bars for chainmaking, for Boston navy yard, at $\$ 16,178.20$ delivered.

New York-Active demand con-
tinues from machine tool builders. Automotive equipment manufacturers also are busy, and business from bolt and nut makers is slightly heavier. Miscellaneous requirements are fair, but railroad specifications are light. Prices are steady. Deliveries on plain carbon bars hold at three to four weeks.
Philadelphia-Commercial bar demand is well sustained, with small forgers specifying the most freely of any consuming group. Deliveries on plain carbon bars average around three weeks, a shade better than recently. Jobbers still have

To secure greater load-carrying capacity and quiet operation, Toledo Machine \& Tool Company equipped the press shown above with Farrel-Sykes continuous tooth herringbone gears. This is a double-action press with two slides, an outer slide for holding the work and an inner slide or plunger. It is $38^{\prime} 7^{\prime \prime}$ high, $128^{\prime \prime}$ between uprights and weighs about 450,000 pounds. The herringbone teeth of the Farrel - Sykes gears provide greater bearing surface, which is responsible for their greater strength and ability to carry heavier loads. The overlap and creeping engagement of the teeth, together with the inclined
line of pressure, make the gears wear much longer. Throughout their entire life they retain their involute profile and correct tooth action.
Opposed helices balance and absorb axial thrust within the gear member, preventing harmful thrust loads and resultant stresses on other parts of the machinery.
With extra strength and smooth, quiet operation Farrel-Sykes gears also offer the advantages of less weight and smaller size. They are built for every type of service and for any capacity. Full information will be sent on request.

fair stonks, but consumers have cleaned up excess stocks.

Buffalo - Mills quickened rolling schedules slightly last week on a minor increase in miscellaneous buying. Motormakers, machine manufacturers and suppliers of motor parts were in the market for slightly more tonnage. Mills report consumers genarally seek immediate delivery, indicating that consumers' inventories generally are light.

Toronto, Ont.-Mining companies provided a large part of the bar
business closed during the past week. Manufacturing concerns furnish steady flow of small tonnage orders. Future delivery booking by Canadian mills has run to good volume for current quarter, although bar deliveries on new orders are obtainable in less than a month in some instances.

Ferroalloys

Ferroalloy Prices, Page 94
New York-Domestic ferromanganese shipments reflect improved

ROLLER BEARINGS

There's no roller-bearing application in your plant that is too severe for the American Super Heary Duty. 'The "Super" is built for strength and ruggedness, yet it operates smoothly and flawlessly, reducing friction to the minimum. Let the specialized skill and experience of American Bearing engincers show you how this super bearing will save you grief and money in your next heavyduty bearing installation. Write for literature or ask our engincering departinent for specifie recommendations. No obligation.

THE AMERICAN ROLLER BEARING CO., Pittsburgh, Pa.
Pacific Canst Officr: 321 W. Pica St.. Los Anades. Calif.

steelmaking operations, with prices steady at $\$ 100$, duty paid, Atlantic and Gulf ports. Domestic spiegel. eisen, 19 to 21 per cent, is holding at $\$ 32$, Palmerton, Pa., and 26 to 28 per cent, at $\$ 39.50$.

Pipe

Pipe Prices Page 93

Pittsburgh-Pipe demand gener ally is unchanged, although oil country goods are more active. Movement from southern ware. houses to the oil fields is at the best rate this year. Demand for merchant pipe, mechanical tubing and pressure tubing is steady. Prices are relatively firm, except on merchant items in secondary mar. kets, where reports of shading persist.

Boston-Merchant steel pipe requirements for building are slightly heavier in some districts, but little improvement is noted around Boston. Resale prices are mixed. Plumbing supply buying continues to lag. Small orders and contracts for cast iron pipe are numerous, but total tonnage is below normal. with utilities and the oil industry placing little.

New York-Department of purchase will advertise for bids on 10,641 tons, 4 to 20 -inch cementlined cast pipe for the New York city stock yards, the largest inquiry in many months. Meanwhile domestic buying is light with export inquiry well sustained. Westover field, army base, Chicopee, Mass.. closes May 16 on 18,000 feet small diameter steel pipe.

Scovill Mfg. Co., Waterbury, Conn., is low on 147,200 pounds cop-per-nickel alloy condenser tubes for the Puget Sound navy yard, Washington, at $\$ 52,903.68$ delivered, schedule 1328, bids April 30.

Philadelphia - Between 600 and 700 tons of stainless tubing is being figured by the Sun Oil Co., Chester, Pa, for an oil refining unit at Bayonne, N. J., for the Tidewater Oil Co. Merchant pipe business shows only slight seasonal improvement. with resellers competing sharply.

Birmingham, Ala.-Pipe tonnage is distinctly disappointing. One of the district's largest plants has one shop down, but is operating the other four or five days a week, but mostly on small scattered lots. Utilities are out of market and the available tonnage is mostly from municipalities, with some scattered government contracts.

Seattle-After 60 days of activity, demand for cast iron pipe has dropped and no important projects are pending. Several cities are con-

—The Market Week-

sidering major improvements but plans are not completed. Spokane city council has approved a WPA water system improvement to cost $\$ 290,569$, involving 17 miles of water mains, materials estimated at $\$ 147$,364.

San Francisco - Cast iron pipe lettings were confined to lots of less than 100 tons. To date this year 11,690 tons have been placed, compared with 10,058 tons for the corresponding period in 1939.

Cast Pipe Pending

$15 S$ tons, 6 and 12 -inch, San Diego, Callf.: United States Pipe \& Foundry Co., Burlington, N. J., low.
120 tons, 8 -inch, cement-lined, Panama, sehedule 4022, bids May 7; Lynchburg Foundry Co., I,ynchburg, Va.. Iow.

Rails, Cars

Track Material Prices, Page 93

Freight car buying this year is holding its own, April purchases totaling 2077 units. compared with 3104 for March. For four months this year the aggregate is 6688 units, against 6157 for the same period last year. Further comparisons follow:

	1940	1939	1938	1937
Jan.	360	3	25	17,806
Feb.	1,147	2,259	109	4,972
March.	3,104	800	680	8,155
April	2,077	3,095	15	9,772
4 mos .	6,688	6,157	829	40,705
May		2,051	6,014	4,732
June		1,324	1,178	548
July.		110	0	1,030
Aug.		2,814	182	1,475
Sept.		23,000	1,750	1,216
Oct.		19,634	2,537	1,355
Nov.		2,650	1,232	275
Dec.		35	2,581	275
Total		57,775	16,303	51,611

Some small buying is being done, 446 cars being placed last week, in six lots. Several important lots are pending, including 1250 for the Gulf, Mobile \& Northern, Nashville, Chattanooga \& St. Louis 250, and Denver \& Rio Grande Western 500.

Colorado Fuel \& Iron Corp., Denver, has booked 100,000 tie plates for the Panama railroad, at $\$ 25,000$.

Car Orders Placed

Cambria \& Indiana, 200 hopper cars, to Bethlehem Steel Co., Bethlehem, Pa.
Chesapeake \& Ohlo, 100 fifty-foot flat cars, to Pullman-Standard Car Mrg. Co., Chleago.
Detroit \& Mackinac, 5 box cars, to Pull-man-Standard Car Mfg. Co., Chicago.
Louisville $\&$ Nashville, 50 seventy-ton nopper cars, to Pullman-Standard Car Mig. Co., Chicago.
New York Central, one stainless steel passenger car, to Edward G. Budd Mig. Co., Philadelphia.
Pennsylvania railroad, 100 seventy-ton
nopper cars

Altoona, Pa., shops; part of program announced last fall, for whlch steel has been purchased.
Southern Rallway, 75 seventy-ton all steel covered cement cars, to PullmanStandard Car Mrg. Co., Chicago.
Tennessee Coal, Iron \& Rallroad Co., 16 flrty-yard dump cars, to Pressed Steel Car Co., McKees Rocks, Pa.

Car Orders Pending

Louisville \& Nashville, 25 to 100 cement cars; contemplated.

Locomotives Pending

United States army engineer, Washing-
ton, one s-ton and one 20-ton gasolinemechanical drive locomotive; bids May 9.

Wire

Wire l'rices, Page 93
Pittsburgh-With nearly all merchant buyers covered on wire nail requirements, prices are back to normal. Other merchant wire products are steady, with volume moderate. Releases against manufacturers' wire commitments are light,

BRASSERT SELEGTIVE BLAST FURNACE CHARGER

THE BRASSERT Selective Blast Fumace Charger gives complete freedom of choice. with regard to location of materials in the top of the furnace. The illustration shows how the limestone charge may be directed to the center in whole or in part, and so make available in the hearth excess lime for sulphur control, while at the same time securing the free and regular operation which accompanies a lean slag. This is one of many desirable alternatives afforded by this selective charger. It may be used at will in the ordinary way or as a center charger. Mechanical complication is reduced to a minimum.

For particulars address:

and new buying is largely hand-tomouth. Prices are firm on manufactuiers' items. Export volume is good with prices strong.

Cleveland - Business is fairly steady in both manufacturers' wire and merchant products. Both wire and rods are active in the export market. Moderately heavy domestic business was done in nails recently at price concessions which have since been withdrawn.

Chicago-Wire and wire product demand shows minor expansion, though in general there is no notable change in sales.

Automotive requirements continue important and agricultural implement needs, especially for tractors, have held up somewhat better than expected.

New York-Wire buying, well diversified, is gradually mounting with more general replacement orders appearing in addition to well maintained fill-in volume. Incoming tonnage is baing booked in excess of last month with indications consumer inventories have been worked down materially, notably manufacturers' wire.

Boston-Wire demand is slightly

Perkins Man Coolers create refreshing recirculation of air without chilling drafts.
Perkins Man Coolers help to maintain production schedules in the hottest places.

Perkins Man Coolers decrease labor turnover and help to make contented workers.
PERKINS MAN COOLERS ARE MADE IN OSCILLATING AND STATIONARY TYPES, BOTH PORTABLE.
B. F: PERKINS \& SON, INC. HOLYOKE, MASS. Engineers and Manufacfurers

improved, numerous specialties and manufacturers' wire making moderate gains. Buying is well diversified and some broader replacement orders are included, with tonnage above last month. Finishing mill operations for this district as a whole are heavier than ingot ouiput, around 60 per cent, slightly better in some instances.

Birmingham, Ala.-Some slackening has been evident in wire products and production has tapered measurably. Improvement, however, is anticipated since weather conditions have become more suitable for outside work.

Shapes

Structural Shape Prices, Page 92
Pittsburgh-Demand is sustained as domestic construction is aided by a number of public jobs, as well as by a steady flow of new private business. Prices are fair on fabricated goods, while export market is active at steady prices.

Chicago-Orders are increasing, with structural shops generally operating at a fair rate. Improved feeling is noted among fabricators, due to increased activity in building construction and more private sponsorship. A few smali state bridges are pending.

Boston - Hoosic river bridge, North Adams, Mass., closing May 21 with the department of public works, Boston, takes 1200 tons, the largest bridge inquiry in the district this year. Bids close May 28 on a plate girder span, Hardwick, Mass., approximately 150 tons. Awards are slightly more numerous with no large tonnages involved, a bus garage at South Boston taking 250 tons.

New York - Structural tonnage placed is substantially higher, although the aggregate total is influenced by a few large projects, including 7500 tons for the Rainbow bridge, Niagara Falls, N. Y., and

Shape Awards Compared

	Tons
Week ended May 11	32,341
Week caded May 4	13,409
Week ended April 27	11,204
This week, 1939	34,765
Weekly average, year, 1940	17,47\%
Weekly average, 1939.	22,411
Weekly average, April.	10,851
Total to date, 1939	439,347
Total to date, 1940.	332,066
Includes awards in United 100 tons or more.	os of

grade crossing work at Syracuse, N. Y. Putchase is also expected this weak of 7000 tons for two sections, Atlantic avenue grade crossing for the Long Island railroad, Brooklyn, N. Y. New inquiry slackened again.
Philadelphia-Several large structural jobs are being figured, including 2000 tons for a factory building for Celanese Corp., Narrows, Va.; 1700 tons for the District of Columbia armory in Washington; and 800 tons of tunnel ribs for the Youghiogheny dam, Confluence, Pa.

Buffalo-After starting the year with fairly good inquiry, interest in the structural steel market seems to have slackened. A few small industrial projects are pending, but aggregate tonnage is not substantial.

San Francisco - The structural shape market was active and 4690 tons were placed, bringing the aggregate for the year to 66,553 tons, compared with 49,626 tons for the corresponding period in 1939. Columbia Steel Co. secured 1500 tons of sheet piling for a graving dock at the navy yard, Mare Island, Calif. Moore Drydock Co. took 1300 tons for a new plant in Oakland, Calif., for Loose-Wiles Biscuit Co.

Toronto, Ont.-Structural awards continue high. Awards for the week were over 3000 tons, with about 7000 tons pending. No outstanding contracts were reported during the past week or ten days, most awards being under 500 tons.

Shape Contracts Placed

7500 tons, arch bridge, main span, l ainbow bridge, Niagara Falls, N. Y., to Bethlehem Steel Co., Bethlehem, Pa., \$1,451,823, through Niagara Falls Bridge commission.
6000 tons, grade crossing eliminations, Delaware, Lackawanna \& Western railroad, Syracuse, N. Y., to American Brldge Co., Pittsburgh; Elmhurst Contracting Co., New York, general contractor.
1900 tons, structural steel caisson gates and accessorles for dry dock No. 2, navy yard, Pearl Harbor, T. H. and dry dock No. 5, Puget Sound navy yard, Bremerton, Wash., to Moore Dry Dock Co., Saı Francisco, $\$ 525,070$; bids, Aprli 24, spec. 9440, ehief, bureau of yards and docks, navy department, Washington.
1750 tons, viaduct, New York Central rallroad, Eleventh avenue and Thirtyfifth street, New York, to Lehigh Structural Steel Co., Allentown, Pa.; Duffy Construction Co., New York, general contractor.
1500 tons, sheet plling, graving dock, navy yard, Mare Island, Calif., to Columbla Steel Co., San Francisco.
1400 tons, hangar, LaGuardia Field, New York, to Bethlehem Steel Co., Bethlehem, Pa.; bids May 6, procurement dlvision, treasury department, New York.
1300 tons, plant for Loose-Wlles Biscuit Co., Oakland, Calir., to Moore Dry Dock Co., Oakland, Calif.
1135 tons, rebullding blast furnace G,

Youngstown Sheet \& Tube Co., Youngstown, O., to William B. Pollock Co., Youngstown.
sso tons, two pot rooms, for Aluminum Co. of America, Vancouver, Wash., to Bethlehem Steel Co., Bethleliem, Pa.
725 tons, shop building, City Machine \& Tool Co., Toledo, O., to R. C. Mahon Co., Detroit.
600 tons, press bullding, for Hydraulic Press Mfg. Co., Mit. Gilead, O., to Fort Pitt Bridge Works, Pittsburgh.
565 tons, three bridges for Northern Pacille rallway, Yakima county, Wash., reported to American Bridge Co.
520 tons, extenstons to warehouses 1 and 3 and loading platform, for Owens-I1linois Glass Co., Streator, Ill., to Bethlehem Steel Co., Bethlehem, Pa.

450 tons, addition for Maitland Spinning Mills, Listowel, Ont., to Hamilton Bridge Co. Ltd., Hamilton, Ont.
422 tons. Blue river bridge, Kansas City, Mo., to Kansas City Bridge Co., Kansas City, Mo.
410 tons, coal handling system, Central New York Power Corp., Oswego. N. Y., 10 Jackawanna Steel Construction Co., Buffalo.
400 tons, gates for Sepulveda dam, Los Angeles, speciflcation 74. to तo: Am: cial Iron Works, Portland, Oreg.
400 tons, bullding, Robins Conveyor Belt Co., Burlington, N. J., to Lehigh Structural Steel Co., Allentown, Pa.
330 tons, underpass near Davis, Solano county, Calif., for state, to Bethlehem Steel Co., San Francisco.

Handling FERROMANGANESE from cars to stock pile this Blaw-Knox Bucket unloads an average of 7 cars per eight hour shift. The former cost of $\$.65$ per ton was reduced to $\$.25$ per ton.

This bucket handles LIMESTONE in pieces ranging from $6^{\prime \prime}$ to $12^{\prime \prime}$ from dock to $50-60$ ton gondola, filling car in an average time of 20 minutes.

It unloads SPIEGEL from 50-60 ton car in $11 / 2$ hours without teeth, and handles PIG IRON from stock pile at the rate of about $3 / 4 \mathrm{Cu}$. Yds. per grab.

Blaw-Knox Buckets are designed to meet Steel Mill requirements-put your bucket problems up to Blaw-Knox.

[^9]325 tons, addition for Canadian Westinghouse Co. Ltd., Hamilton, Ont., to McGregor \& McIntyre Iron Works Ltd.. Toronto, Ont.
300 tons. buildings for Douglas C. Greey, $\overline{5} 6$ Esplanade. Toronto, to Standard Iron Works Ltd.. Toronto, Ont.
301 tons, National Research Laboratory, Ottawa, Ont.. to Donifinion Reinforcing Steel Co., Montreal, Que.
3100 tons, church and rectory, Etobicoke, Ont., to John T. Hepburn Litd., Toronto, Ont.
280 tons, state highway bridge, Chase county, Kans.. to Plttsbureh Des Molnes Steel Co., Pittsburgh.
280 tons, technical service building, Sunnyvale, Calif., for United States government, to Moore Dry Dock Co., San

Francisco.
264 tons, state highway bridge, Neosho Raplds, Kans., to Missouri Vailey Bridge \& Iron Co., Leavenworth, Kans. 240 tons, whaduct FAGS-81, Clarks, Nebr. for state, to St. Joseph Structural Steel Co., St. Joseph, Mo.

240 tons, bus garage, offices and paint shop, New England Greyhound llnes, South Boston, Mass-, to Amerlan Bridge Co., Pitisburgh.
220 tons, Morey machine shop, Astoria, N.Y., to Jones \& Laughlln Steel Corp., Pittsburgh.
210 tons, addition. furnace building No. 5. National Carblde Corp., Ivanhoe, Va., to Carolina Iron \& Steel Co., Greensboro, N. C.

VOLUME

Galled for Modernization . . .

 and Modernization Galled for Fairbanks ScalesColorado Fuel and Iron Corporation's Minnequa plane uses six Fairbanks Scales, Give of which are equipped with of which are equipped with
Printomatic weighers. The scale shown is a Fairbanks Type "S." \{our-section. 50. ton-per-section Platform Scale equipped with Printomatic Dial.

WHEN increased volume made it necessary for the Colorado Fuel and Iron Corporation to enlarge their Minnequa plant, the modernization program called for new equipment to insure speed and accuracy in weighing. Specifications were rigid-so six Fairbanks Scales were chosen.
Two 4 -section, 50-ton-per-section Eairbanks Type "S" Platform Scales were installed in the finishing department. Three Fairbanks Plate Fulcrum Scales equipped with Printomatics were pur in the merchant shipping and finishing de-
partments to check-weigh finished products. At the south end of the plant, a Fairbanks Type "S" 4-section, 100-ton-per-section Railroad Track Scale weighs carload orders, scrap, transfer, and trap cars. Weighing inaccuracies cost money -and it costs money to be slou. Fairbanks Scales have eliminated those drains in hundreds of plants-just as they can in yours. W'rite Fairbanks, Morse \& Co., Department 96, 600 S. Michigan Ave., Chicago, Ill. Branches and service starions throughout the Unied States and Canada.

FAMBBANKE-MORSE

thett tacims
Hups
titeracit mematit
ramines seites
tatzone claipatat

trance, Keweenaw waterway, Michigan: bids May 14, U. S. enginecr, Duluth, pro. 41.
1290 tons, piling, substructure, bridge for United States army engineers, St. Georges, Del., blds May 27; also approximately 1000 tons of reinforeing bars.
1000 tons, beam bridges, various lacat tions, Georgia, for state.
S43 tons, steel sheet piling, flood protection, Brookport, Ill.: bids June 1.
i50 tons, plant for Leslie Salt Co., Centerville, Callf.; blds being taken.
T18 tons. dam, Kanapolis, Kans., United States engincer's office, Kansas City. Mo.; bids May 10.
7CO tons, publle school 99, New York: Skolnick Construction Co., New York, low, bids May 6.
Ho tons, four highwav briclges, state of Arkansas; bids May 9.
450 tons, factory for O'Bear-Nester Glass Co., Enst St. Louis, Ill.: George A. Barnes. East st. Louls, Ill., general contractor.
tio tons. Mississippl river guard wall extensions. locks and dams Nos. 11, 16 , 18,20 and 21 ; bids postponed to May 17, to United States engineer's office, Rock Island, Ill.; also 175,950 square feet steel sheet piling.
410 tons, including H-piles, Forge Road railroad bridge, Warwick, R. I.; blds May 23, Herman H. Landgraf, division of purchase, Providence.
368 tons, spillway operating bridge, Watts Bar dam; bids May 29 to Tennessee Valley Authority, Knoxville, Tenn:
365 tons, bridge, UnIon Pacille rallroath, Los Angeles, for army engineers.
360 tons, state highway bridge. Erle counts, Pennsylvania; bids May 10.
350 tons, embedted metalwork, specincation $1358-\mathrm{D}$, Friant, Callf., for bureau of reclamation.
?50 tons, fertlizer plant, Wilmington, Del.: blds May 7.
330 tons, pler plates and trusses, specllleation 1362-D, Friant, Callf., for bureau of reclamation.
330 tons, plant and office building, for Eastern States Farmers exchange, Wilmington, Del.
$32 \overline{5}$ tons, building, Kings County hospital, Brooklyn.
Soo tons, tunnel ribs, Youghiogheny dam, Confluence, Pa.; bids May 8.
280 tons, state highway brldge, Moreat Junction, S. Dak.; bids May 14.
270 tons, repairs to viaduct, Richmond, Va., for Chesapeake \& Ohio railway.
250 tons, cell block, Auburn state prison, Auburn, N. Y.; bids May 23.
225 tons, state highway bridge, Oglesby, Ill.; bids in.
225 tons, tube mili, American Bras: Co. Waterbury, Conn.
220 tons, crane tracks metalwork, specilleatlon 1365-D, Odair, Wash.. for bureau of reclamation.
220 tons, headworks structure metalwork, specflication 1360-D, Knightsen, Callf., for bureau of reclamation.
220 tons, annealing furnace building, for Timken Roller Bearing Co., Canton, O .
207 tons, bearing piles, two bridges at Pescadero, San Mateo county, Calif., for state: bids opened.
200 tons, warehouse, bureau of reclamation, Odair, Wash.; bids May 17.
200 tons, Lamokin housing project, Chester, Pa,; Stofflet \& Pillotson, Phil245 adia, low on general contrace 245 tons of bars also required.

175 tons, extraction and preparation building, for Buckeye Cotton Oll Co., Louisville, Ky.
175 tons, public school 30, West New Brighton, Staten Island, New York.
165 tons, bridge Murphysboro, Ill., for Illnois Central system.
150 tons, steel for gun racks, Bellevue, D. C., for United States navy.

130 tons, bridge over Indian river, Alaska, for Alaska railroad.
130 tons, building, for Chevrolet Motor Co., Norwood, 0.
126 tons, (also 73 tons reinforcing and castings) repairs to Celilo canal locks, Columbia river; bids to United States englneer, Bonneville, May 29.

125 tons, building, Corning Fibre Box Corp., Corning, N. Y.
125 tons, bullding, for W. H. Hofman, Oneonta, N . Y.
120 tons, power station extenslon, for Marion-Reserve Power Co., Marion, O.
103 tons, bulkhead gate tracks, spectilcation 1351-D, Grand Coulee dam, Washington; bids opened.
100 tons, state highway bridge, Rossville, Ill.; bids in.
Unstated Lonnage, structural steel units, sliding and rolling gates and gate lirtIng devlees for special projects 9, Panama Canal; Bethlehem Steel Co., Bethlehem, Pa., low $\$ 92,316$, schedule 4027, bids May 8 , Washington.

for

HYDRAULIC

ACCUMULATORS
Here's important news. Variable pressure for air ballasted hydraulic accumulators. A significant development pioneered by Elmes one in which the pressure may be increased or decreased-quickly and easilyby means of a small lever on a control panel. Users are gratified by the savings made in time, labor and operating outlay and by the speeding up of plant operations.

Variable pressure with panel control adds another advantage to the following features of Elmes Air Ballasted Hydraulic Accumulators: (1) Much less space required than with weighted accumulators; (2) line shocks eliminated; (3) uniform pressure maintained by correct ratio between air and liquid; (4) no special foundations needed; (5) no internal packing; no internal moving parts.

Ask for particulars today.

CHARLES F $-L \mathcal{L} 2$ ENGINEERING WORKS

243 n.mobcanst. Qhicaga
SINGE 1851

Reinforcing

Reinforcing Bar Prices, Page 93
Pittsburgh Market is active but prices lack firmness, quotations being mostly 1.60 c to 1.90 c , although some rail bars have been sold as low as 1.40 c . Export market is active. with prices steady at 2.10 c after having been at 2.15 e for some time. Domestic inquiry is good. Bookings, while not heavy, are causing caution on delivery promises.

Chicago - Pending busines is slightly heavier, with most individual jobs small. An outstanding exception is the superstructure of Northwestern university's new technical school, involving 1500 tons. Better activity in private construction is providing numerous small orders.

Boston-Highway mat requirements are heavier for Connecticut and Rhode Island projects, most of 550 tons for the former state having been placed and close to 200 tons is included in another opening this week. Awards also include 112 tons for a bridge, Milford, Conn. Except for housing construction, most pending inquiry and purchases are for smali lots with concrete bar prices, both billet and re-rolled steel, weak.

New York-Award of 1680 tons of concrete bars for the East River housing project, New York, is outstanding. Pending work is heavier, but contractor-buyers, taking full advantage of sagging prices, are shopping for further concessions and in some instances are slow to close.

Seattle-Absence of major state highway projects in the Pacific Northwest, is reflected in the depressed state of the reinforcing market. No outstanding tonnages are pending and rolling mills are on reduced schedules. Backlogs generally have been cleaned up.
Philadelphia - Although reinforcing bar orders are light, several large jobs are being figured. Thomas F. Gibson, Philadelphia, is taking figures on 1500 tons for a plant

Concrete Bars Compared

	Tons
Week ended May 11	7,945
Week ended May 4	7,859
Week ended April 27	1,725
This week, 1939	9,997
Weekly average, year, 1940	8,063
Weekly average, 1939....	9,197
Weekly average, April	9,875
Total to date, 1939	200,809
Total to date, 1940	153,20\%
ncludes awards in United	tes or

-The Market Week-

addition for the Campbell Soup Co., Camden, N. J., and United States army engineers are taking bids, opening May 27 , on a bridge at St. Georges, Del., requiring 1000 tons of reinforcing steel and 1290 tons of piling.

San Francisco-Of special interest was the opening of bids on 4780 tons for improvement work on the Los Angeles river channel between Fourth street and Olympic boulevard, Los Angeles. Pending business calls for more than 15,000 tons. Bids have also been taken on 181 tons for two bridges at Pescadero, San Mateo county, Calif.

Reinforcing Steel Awards

2000 tons, Sinepuxent bay bridge, Occan City, Md. divided between Bethlehem Steel Co. and unstated interest.
1680 tons, East River housing project, New York, to Carroll-McCreary \& Co. Inc., Brooklyn; George F. Driscoll Co., Brooklyn, general contractor.
1200 tons, grade crossing elimination, Delaware, Lackawanna \& Western rallroad, Syracuse, N. Y., to Bethlehem Steel Co., Lhrough Eimhurst ContractIng Co., New York.
800 tons, Grady Homes housing project, Atlanta, Ga., to Southern General Fireproor Co., Atlanta; Virginia Engincering Co., Newport News, Va., general contractor.
750 tons, Clearwater reservoir, Pledmont, Mo., to Laclede Steel Co., St. Louls; United Construction Co., Winona, Minn., contractor.
265 tons, billet, Manchester avenuc bridge, Kansas City, Mo., to Sheffield Steel Corp., Kansas City, Mo.
250 tons, bureau of reclamation, invitation B-38,246-A, Odair, Wash., to Bethlehem Steel Co., Seattle.
225 tons, bullding, Andrew Jergens Co. Belleville, N. J., to Bethlehem Steel Co., Bethlehem, Pa.; James Stewarl \& Co., New York, general contractor.
185 tons, rail, Hubbard Ice \& Fuel Co. Cedar Raplds, Iowa, to Laclede Steel Co.. St. Louis.
150 tons, substructure East Chester creek bridge, Now York, to Bethlehem Steel Co. through Northeastern Construction Co., New Yurk.
130 tons, addilion, public school No. 30 , Staten Island, N. Y., to Lehigh Structural Steel Co., Allentown, Pa., through Lynn Construction Co., New York.
10.5 tons, gymnasium and auditorium, Albany, Calif., to Truscon Steel Co., San Francisco.
105 tons, Hutchinson river parkway section, Westchester county, New York, to Seahoard Steel Products Corp., New York.
100 tons, annex buildings and hangar, Chanute Fleld, Ill, to Laclede Steel Co., St. Louls; Manhattan Construction Co.. Muskogee, Okla., general contractor.

Reinforcing Steel Pending

4780 tons, improvement Los Angeles river channel between Fourth street and Olympic boulevard, Los Angeles: Morrison-Knudsen Co., 411 West Fifih street. Los Angeles, low on general contract at $\$ 911,037$.
2100 tons, armory, Washington.
1500 tons, plant addition, Campbell Soup Co., Camden, N. J.; bids asked through Thomas F. Gibson, Philadelphia, con-
tracting engineer.

1250 tons. Mississippi river guard wall extensions, locks and dams Nos. 11, 16, 18, 20 and 21: bids postponed to May 17. United States engineer's office, Rock Island, Ill.
1000 tons, bridge for United States army engineers, St. Georges, Del.; blds May 27: atso 1290 tons of piling.
700 tons, repairs and extension to shipways No. 2 and No. 3, navy Yard, Philadelphia; bids May 15.
493 tons, federal flood control project. Walla Walla, Wash.; bids in to U. S. engineer, Portland, Oreg.
460 tons, overpass, Nickel Plate railroad, Kingsville, 0 .
400 tons, warehouse, Calvert Distillery Co., Relay, Md.; bids May 14.
245 tons, Lamokin housing project. Chester, Pa.; Stofflet \& Pillotson, Philadelphia, low on general contract; 200 tons of shapes also required.
227 tons, four highway bridges, state of Arkansas; bids May 9.
15) tons, state bridges in Wasco and Umatilia counties, Oreg.; bids in.

135 tons, including 90 lons of piling. tunnel, Frankford arsenal, Philadelphia; bids May 9.
135 tons, levee embankment, Golondi, Ill., bids May 28 to U. S. engineer. Louisvtlle, Ky. Work also takes 14. tons stecl sheet plling.
125 tons, highway mats, additional section, Fairneld, Conn.; bids May 13.
120 tons, steel sheet piling, flood protection work, Mounds and Mound City, Ill., bids May 31 to United States engineer, Louisville, Ky.
117 tons, llood protection, Brookport, Ill.; bids June 1.
115 tons, bridge, Vermont Central railroad, Wilmingion, Conn.

Tin Plate

Tin Plate Prices, Page 9:
Tin plate operations were steady the past week at 65 per cent. Sell-

These pontoons, designed for an important job, were welded with Page Hi-Tensile " C " because Hi -Tensile "C" produces a weld that is made in record time, that has great strength and ductility and that passes most rigid tests.

In addition Hi-Tensile " C " is fast, steady, quiet-running. Just the rod for horizontal, vertical and overhead welding, and for work in close quarters.

On test it shows tensile strengths of 65,000 to 75,000 pounds and elonga-
tion of 20 to 30 per cent -30 to 70 foot pounds impact resistance and 28,000 to 32,000 pounds fatigue resistance per unit.

Your local Page distributor will be glad to give you further interesting information.

BUY ACCO QUALITY in Page Welding Electrodes; Page Wire Fence; Tru-Lay Preformed Wire Rope; Reading-Pratt \& Cady Valves; Campbell Abrasive Cutting Machines; American Chains; Wrisht Hoists, Trolleys and Cranes.

page steel and wire division - monessen, pennsylvania

AMERICAN CHAIN \& CABLE COMPANY, Inc.

Amemican Chand division AMERCAN CAMLE DVYSION foad chan mock divigon
hazaro way rope onision maney manuracturing dinsion OWEN SILENT SFANG COMPANT,INC.
PAGE SEEI AND WIRE DVISION
heading-part 2 Cady drision
reading siel casting orviion whieht manufacturing aivision \rightarrow

In COMOSIION CHAN COMPANY, ITD
In Enthond' WIRE productis, lto.

THROUGH

 1000 PLATING CYCLES WITHOUT BREAKDOWN

A prominent metal working plant ran an actual test on "Unichrome" Rack Coating-W** the new rack coating developed by United Chromium. Here's what this user had to say:

- The test rack left with us in January was used at keast 1000 times before we look it out of service, because the rack needed repair. At that time. Hhe conting was still in as sorviceable condition (May).
Jeur consins moterial is the best tre hate over sried".
Thorouphly proved on installalions in many leading platins plants. "Unichrome" liark Coating- W* * has the following outstanding adramtages:

1. Withotamat tmiline cleaners and य111 plating sulutions
-. Touzh-withatands wear and tear 3. Contains no intiry
2. Comains no ingrediente harmful Cuany plating solution
f. Cula costs-ly treatly reduring
3. Fiany to appli-h rexedinge
4. Fany to apply-ley "dip and forco. dry method
h. Hieht in rolome tos nequ hate
-. Any part of rack can le recomita
\because hny part of rack can lor rewated mithout necrsisity of remoitint Hrite for
Containing for hrellepin No. 30 Platere willout rack dippinge and Irying facilitien msy have their rach ruated with - Unichrome" Huek Co:lt ing- W\% by making arrangements with Chromium Corporation of Ammrica16ta Wen Chirazo Arnur. Chieags. 1II.. Belke Munufarturing Company. 71. Yorth (itero ive.. Chicazo. llt.. or La: Manufacturinie Co.. of Waterburv.

UNITED CHROMIUM

INCORPORATED
51 East d2nd Street, New York. N.Y. 2751 E. Jefferson Ave., Detroit, Mich. Waterbury. Conn.

- Trade Mark

Reg H.S. Pal Nat.

-The Market Week-

ers expect increases in domestic business shortly, as well as continued good volume from the export markets. Most of the current export business is now South Amer ican, but there is fair volume from other sources.

Pig Iron

Plg Iron Prices, Page 94

Pittsburgh - Merchant iron de. mand is fair. Business gradually is being put on the $\$ 23$ basis, although some contiacts are being extended. Releases are fair, but new buying is hand-to-mouth. Steel foundries lead gray iron units in activity, although radiator companies report fair activity.

Cleveland-Shipments are moderately heavier than a month ago and are expected to maintain this margin throughout May. Buying still is light but improved slightly as additional consumers find inventory replacement necessary. Foundry operations generally are well sustained. Export inquiries continue to reach this district, but prices that can be realized make them unattractive.

Chicago - Buying the past three to four weeks has been heavier than during the previous two months but still is not large. Inventories of some consumers are low, this being an important factor in stimulating purchases. Shipments are steady, with little change expected in the May movement. A like situation prevails in foundry coke.

Boston - Pig ion shipments against orders are maintained, but new buying has not developed in volume, with small spot lots for prompt delivery making up most new business.

New York - Domestic buying is light, but specifications are slightly more active, reflecting seasonal influences. Demand from soil pipe manufacturers has improved noticeably. Danger of war has curtailed inquiries from the Balkans, held up action on inquiries already being figured and reduced new specifications.

Philadelphia-The foundry melt is expanding slowly, but sufficient$1 y$, it is believad, to place May specifications fiom domestic consumers at the high peak of the year to date. Foreign inquiry has declined, due primarily to the tense Mediterranean situation, which has delayed action on inquiries from Italy and some Balkan states.

Buffalo-Shipments do not reflect the increase in ingot operations, being down slightly. Sellers expect consumers back in the market
soon. Foundry operations continue spotty as some melters aro operating three days a week, while others, working on government munition orders, are maintaining full five-day weaks.

St. Louis - Shipments have expanded this month, with considerable improvement over April ex. pected for May as a whole. Stove foundries are operating an average of three to four days weekly but are expected to increase schedules in June in anticipation of fall deliveries.

Cincinnati-Specifications point to little change in shipments this month compared with April. Business of jobbing plants is spotty. Stove production is disappointing, but output of machine tool castings continues heavy.

Toronto, Ont.-Merchant pig iron sales show little change. Melters are taking iron in lots up to 300 tons, aithough inquiries indicate early increase in demand. Melters on the Great Lakes are preparing to replenish supplies and are expected to close fairly large tonnage orders for water delivery soon.

Scrap

Scrap Prices, Page 9n

Pittsburgh-Scrap markets continue strong, with principal grades substantially higher. Both railroad and No. 1 steel moved up $\$ 1.50$, with railroad specialties up 50 cents. Open-hearth shops are showing a little more interest now that opera. tions are increasing. Steel foundry activity has been the real backbone of the market, although one mill has bought heavy melting steel at $\$ 18$.

Cleveland - Heavy steelmaking grades have advanced $\$ 1$ per ton here and in the Valley and bo:ings and turnings have advanced 50 cents. Consumers are not buying but dealers are holding stocks and taking in all offerings. A cargo by lake from Duluth has docked here.

Chicago - Despite absence of active mill buying, scrap prices continue to rise. Last consumer purchase of No. 1 heavy melting steel was at $\$ 16$, but with brokers paying up to $\$ 16.50$, the market is 50 cents higher. A number of other grades also are up 50 cents, including borings, turnings and specialties.

Boston-While there is no general upswing in scrap prices, the tone is firmer and a few grades have advanced slightly, busheling 50 cents a ton to $\$ 9.25$, shipping point. No. 1 bundles bring $\$ 11.50$ to $S 12$, with demand fairly strong. Foundries are buying sparingly, No. 1 cast being quoted $\$ 17.50$ to $\$ 18.50$, delivered,
depending on freight charges. New York-Higher prices in other districts are not being reflected in brokers' buying quotations in this area. Shipments to eastern consumers are slightly heavier, though buying is light. No. 1 heavy melting steel commands 50 cents higher in northern New Jersey than in New York.

Philadelphia - While prices generally are unchanged, offerings are heavier as export demand appears less promising. Involvement of Italy in the war would remove a leading foreign buyer from the market, and England appears disposed to purchase semifinished steel and pig iron rather than scrap, in view of the shortage of ships.
Buffalo-Strength in the iron and steel scrap market is more pronounced as sales were reported in other areas at higher levels. It was indicated too, that mills may even have difficulty obtaining substantial tonnage at the recently advanced range of $\$ 16.50$ to $\$ 17$ a ton for No. 1 heavy melting steel.

Detroit - The market continues buoyant, bolstered by good dealer buying and moderate purchasing for consumption, but is viewed as spotty in some quarters as large buyers continue out of the market. Price advances of 50 cents are reg. istered on most grades.

Cincinnati - Market is strengthened by apparent searcity of wanted grades, which, combined with dealer reluctance to free material, is handicapping broker coverage of mill specificatians. Dealers have raised buying prices 25 cents on all grades.
St. Louis_Prices are unchanged. While no sales have been made to district mills, several transactions are reported pending. The market also is strengthened by higher prices in eastern areas.

Toronto, Ont.- There has been no abatement of interest in the iron and steel scrap markets, both melters and dealers seeking supplies to meet growing demand. Cast scrap and stove plate are in strong demand, with heavy buying reported by Toronto melters.

San Francisco-Scrap prices are unchanged and movement continues slow. The flow of scrap from outlying districts is practically at a standstill, due to low prices. No. I heavy melting steel, f.o.b. cars, metropolitan district of San Francisco and Los Angeles, continues to hold at $\$ 11.50$ to $\$ 12$ a net ton, with No. 2 at $\$ 10.50$ to $\$ 11$. Borings and turnings are unchanged at $\$ 5$ to $\$ 5.50$, with compressed sheets $\$ 9$ to $\$ 9.50$. No change in dealers' buying prices is reported and $\$ 8.50$ to $\$ 9$ a net ton on No. 1 heavy melting steel prevails.

Warehouse

Warehouse I'rices, Page 95
Chicago-Business is unchanged at a rate distributors generally regard as satisfactory. No marked variation is in early prospect.

New York - To meet a highly competitive situation in galvanized sheets, subject to widespread price shading recently, leading warehouses have reduced quotations $\$ 4$ or more a ton. For No. 24 gage, 150 pounds and under, 5.30 c is now quoted; 150 to 1499 pounds, 4.30 c ; 1500 to 3499 pounds, 4.05 c , and 3500 pounds and over, 3.90 c . Aggregate volume with jobbers holds at least to the April rate and incoming business with some sellers is slightly ahead of last month.

Philadelphia-Distributors here have reduced galvanized sheets, No. 24 gage, approximately $\$ 5$ a ton, following reductions a fortnight or so ago in hot and cold-rolled sheets and strip. They have also modified quantity classifications on galvanized sheets, with present schedules calling for 4.25 c per pound on 50 bundles and over; 4.50 c on lots of 10 to 49 bundles, inclusive, and 4.75 c on less than 10 bundles. The 4.50 c price affects the
lots most comparable to those which recently took the price of 4.75 c per pound.

Buffalo - Iron and steel warehouse items display a steady undertone around the level of the previous month. Munition orders were cited as the reason for a minor pickup in heavy lines.

St. Louis-Warehouses have retained the reduction of $\$ 4$ a ton in sheet and strip prices, following withdrawal of this cut by mills.

Cincinnati-Sales recently have tended downward slightly. Lower prices on flat-rolled products are being maintained despite subsequent mill action.

Steel in Europe

Foreign Steel Prices, Pake 95
Lendon - (By Cable) - Prices of steel and iron scrap in Great Britain have been advanced 9 d to 1 s 6 d per ton. Maximum available steel and iron output is fully absorbed by current demand. Light foundries are the only dull spot, attributed to depression in the building trades. Tin plate export trade is fair.

Belgium and Luxemburg report little change in conditions. Scan-

HANNIFIN MANUFACTURING COMPANY 621-631 SOUTH KOLMAR aVENUE - Chicago, illinois

ENGINEERS - DESIGNERS • MANUFACTURERS • Pneumatic and Hydraulic Production Tool Equipment

TWO STEPS FROM ANYWMERE
Is COMFORTABLE hotel cleveland weith

A friendly welcome．

Food that is famous．

Instant，willing service．

Rooms with every detail planned for restful comforr．

Convenience that saves time and raxi fare．Hotel Cleveland adjoins the
 Union Terminal and Union Terminal and
Terminal group，and is at the very heart of Cleveland，Oho．
dinavian trade has been diverted to Britain and France．Prices are firm，the domestic markets active and works well occupied．

Nonferrous Metals

New York－Invasion of the Lowlands by German forces creat－ ed turbulent trading in nonferrous metal markets．The new move threatened to reduce the flow of tin from producing centers，to increase the demand for American zinc，and to close additional outlets for export copper．There was also the possi－ bility that spread of the war would cause ultimately a general advance in prices．Sterling exchange on Fri－ day sold at a new all－time low of \＄3．05．

Copper－Custom smelters and re－ sellers advanced the price of elec－ trolytic to the primary mine pro－ ducers＇level of 11.50 c ，Connecticut． Casting copper rose $1 / 4$－cent to $11.12 \% \mathrm{c}$ ．Brass and bronze ingot prices rose grades with the exception of No． 1 yellow which rose 1 －cent．Copper sales were moderately active．

Zinc－Undertone of the market strengthened on heavier demand but the close was unchanged at 5.75 c ， East St．Louis．

Lead－Demand increased on

Friday after moderate business earlier in the week with some sell－ ers drawing on reserves．Prices held unchanged at 4.85 c ，East St．Louis．

Tin－Prices rose sharply in the domestic and London markets while holding steady in the East．Straits spot jumped to 53.50 c a pound from $47.62 \% \mathrm{c}$ ．Sellers were reluctant，as they were in September，to dispose of their holdings until they could de－ termine if the Dutch East Indies would be able to carry on operations uninterruptedly and if there would be any drastic curtailment of ship． ping from the East．The Far East produces about 60 per cent of the world＇s tin．

Antimony－No change was not－ ed in the market here with only routine business reported at un－ changed price levels．

Equipment

Chicago－Machinery and machine tool business shows improvement since the first of the month，and May has started out better than April．Inquiries have increased， large interests assert．Business is unusually well diversifled．Tank makers and airplane parts manu－ facturers are active in the west and southwest．

Nonferrous Metal Prices

	Electro． del．	Coppe Lake． del．	Casting．	$\begin{aligned} & \text { Sua } \\ & \text { New } \end{aligned}$	s TIn. York		Lead East	Zinc	Alumi－	Anti－ mony Amer．	Nickel Cath－
April	Conn．	Midwest	refinery	Spot	Fut	N．Y．	St．L．	St．L．	99\％	Spot，N．Y゙．	
\downarrow	＊11．12 ${ }^{1 / 2}$	11.50	10.57 ！	47.37%	－6．57！	5.10	4.95	5.75	19.00	14.00	35.00
6	－11．12	11.50	10.56	47．12\％	46.75	5.00	4.85	5.75	19.00	14.00	35.00
－	${ }^{\text {c }} 11.12{ }^{2}$	11.50	$10.55^{2}=$	47.50	$47.12 \underline{ }$	5.00	4.85	5.55	19.00	14.00	35.00
s	211．12	11.50	10．51：	－47．62	－17．12 4	5.00	4.85	5.75	19.00	14.00	35.00
9	－11．00	11.50	$10.5{ }^{1}{ }^{1}$	47.62%	17．12\％	5.00	4.55	5.75	19.00	14.00	35.00
10	11.50	11.50	11.12^{1} ²	53.50	53.50	5.00	4.85	5.75	19.00	14.00	35.00

＊Based on sales by custom smelters：mine producers unchanged at 11.50 c ．

111．1．PRODCCTS

F．o．b．mill base，cents per lb．，except as specified．Copper brass products based on 11.50 c Conr．copper

Sheets

Yellow brass（high）	15．31
Copper，hot rolled	20.12
Lead．cut to jobbers	8.25
Zinc， 100 lb ．base	11.00
Tubes	
High sellow brass	21.06
Seamless copper	20.62
Rods	
High yellow brass	14.26
Copper，hot rolled	16.62
Anode	
Copper，untrimmed	7.37
Wire	

Yellow brass（high）
$15 . \overline{5} 6$

O1．D METAIS

Nom．Dealers＇Buying Prices

So． 1 Composition Red Bras，

New York	$6.87{ }^{2}-7.121$ 年
Cleveland	S．00－8．25
Chicago	7．00－7．75
St．Louis	7．55－8．2

St Louis ．．．．．．．．．．．．．．．．．．．．．．．．．
Heavy Copper and thire
New York．No． 1 ．．．．．．．．．．．．．．．． $5 . \overline{50-5.75}$
Cleveland．Nio． 1.
9．00－9－25

Cites Industry's Growth In Natural Gas Regions

- More than $\$ 300,000,000$ in new industrial equipment, plus employment for 85,000 new workers has resulted from influx of new industrial enterprise into, and expansion of existing industries within natural gas territories representing half the natural gas industry, according to Elmer F. Schmidt. Vice president, Lone Star Gas Co., Dallas, Tex., and chairman, American Gas association's natural gas section, Mr. Schmidt last week addressed the association's convention at Houston, Tex.
"Expanding availability of natural gas," said Mr. Schmidt, "is exerting a powerful influence upon geographic distribution of, expansion of, and employment of labor by American industry." Approximately 2000 new plants, he continued, and 2400 significant expansions of existing plants have been made since 1934 in the 55 per cent of the natural gas supplied territories covered by reports received.

Bopp Steel Co. To
 Expand Dearborn Plant

- Contracts for design and construction of a 28,000 -square foot addition to the Bopp Steel Co.'s plant at 7951 Maple street, Dearborn, Mich., have been awarded to the Austin Co., Cleveland.
Increased demands upon its facilities for cold rolling of strip steel for automotive and kindred industries are responsible for the expan. sion which will involve the investment of approximately $\$ 100,000$. It will include extensions of the pickling and annealing buildings and construction of a mill building addition 105×160 feet.

Detroit Stamping Co. Starts New Plant

a Construction of a complete new plant for the Detroit Stamping Co. on Midland avenue, Highland Park, Mich., is to be started this week by the Austin Co., Cleveland, who designed the structure. It is scheduled for completion early this summer.
The building will represent an investment of $\$ 80,000$ and will have an area of approximately 35,000 square feet. Plant will be of welded steel and face brick construction.

Westinghouse 1939 Taxes Average $\$ 238$ Per Employe

[Westinghouse Electric \& Mfg. Co., East Pittsburgh, Pa., last week reported to its employes they had
"worked six weeks for the tax collector in 1939."
Distributed to each employe, the statement pointed out Westinghouse's tax bill had increased from $\$ 2,532,000$ in 1930 to $\$ 10,390,000$ in 1939. Based on tax bill's relation to average wage or salary paid employes, 1939 taxes totaled $\$ 238$ for each employe, compared to $\$ 55$ in 1930.

Highest aggregate tax bill was in 1937, when $\$ 14,046,000$ was accrued; this was equal to $\$ 269$ per employe. Tax bill in 1936 was $\$ 8,946,000$, equal to $\$ 215$ per employe; in 1938, \$7,095,000 or $\$ 167$ per employe.

Tinnerman Products Inc. To Build Plant Addition

- Addition of 12,000 square feet of floor space to its factory facilities, to cost $\$ 100,000$, was announced last week by Tinnerman Products Inc., Cleveland. The new two-story brick and steel building represents the third addition, making a total of over 40,000 square feet of factory space the company has added since 1937.

Cleveland Observatory Will Be Enlarged

A $\$ 75,000$ contract for construc. tion of an addition to the Warner and Swasey observatory, Case School of Applied Science, Cleveland, has been awarded to The Gillmore - Carmichael - Olson Co., Cleveland. Contract provides for the construction of the Warner memorial auditorium, a central exhibi-
tion hall, the supporting piers for the new 36 -inch reflector telescope, and other incidental parts of the building, together with the re-arrangement of the grounds, including driveway and walks.

Purchase Terre Haute Iron and Steel Mill

- New ownership of the Highland Iron and Steel mill, Terne Haute, Ind., became effective May 8 . The plant, which had been owned and operated for 19 years by American Chain \& Cable Co. Inc., was being considered for sale or dismantling, but was purchased by Highland Iron \& Steel Inc. with the aid of the chamber of commerce and public-spirited Terre Haute residents.

Active management, including sales, purchasing and plant operations will be carried on by the same employes as under the previous ownership.

Scrap Institute To Meet

 In Buffalo June 22-23: Institute of Scrap Iron and Steel Inc., New York, will hold its midyear meeting July $22-23$ at the Hotel Statler, Buffalo. Business sessions will be held both mornings, with a sightseeing trip around Buffalo and to Niagara Falls scheduled for the first afternoon, and the annual golf tournament the second afternoon. Nathan H. Jacobs, Buffalo House Wrecking \& Salvage Co., president of the western New York chapter, is general chairman of the convention committee.

Machine Tool Show To Be Held in Detroit in 1941

© Annual Machine \& Tool Progress exhibition for 1941 will be held in Detroit, March 24-29, 1941, in conjunction with the annual convention of the sponsoring organization, the American Society of Tool Engineers. Exhibits will be at conven-

Construction

(211:

CLEVELAND-Industrial Machine Co. 1432 East Forty-seventh street, has let contract to J. L. Hunting Co., Ninth Chester bulding, for a plant addition to cost $\$ 8000$.
CLEVELAND-Edward G. Hoentr, 5005 Euclid avenue, engineer, is in charge or plans for a factory building 60×200 feet on Lakeside avenue for undisclosed clicnt. Plant will be brlek and steel will include flve-ton crane and cost about $\$ 25,000$.

CLEvELAND-Wedge Wire Corp has been formed by officials of Alr-Maze Corp., 5200 Harvard avenue, and is manufacturing in a small way a new ype of grill for coal washing, covered by an Engltsh patent for which the company has American rights. Additional space of new plant is planned wher demand has been incretsed.

CLEVELAND-American Tank \&Fabricating Co., 2284 Scranton road, has been organized to manuracture stacks, lanks, breeching and similar articles. Plant with 20,000 square feet floor space has been laken. John J. Ripich is president.

CLEVELAND-Radart Corp., 13229 Shaw avenue, manufacturer of small electric equipment and auto radio set cquipment, L. K. Wildberg, president, will move Sept. 1 to new quarters at Barber-
tion hall. Ford H. Lamb, 2567 West Giand boulevard, Detroit, is executive secretary.

Stow Mfg. Co. Inc., Binghamton, N. Y., has acquired rights to manufacture and sell Whirlflex, a mechanical cleaner for piping in paper mills, from Whirlflex Co., Buffalo, which holds all patents to the device.
and Enterprise

Ion avenue and West Slxty-second strect, to occupy a plant with 35,000 square reet floor space.

CLEVELAND-AustIn Co., 16112 Euclid avenue, has been awarded contract by Vickers Inc., 1400 Oakman boulevard, Detroit, for a plant addition to cost about $\$ 500,000$. Company manufactures hydraulic controls and other equlpment for aircraft and machine tool industries.
KENTON, O.-Kroger Grocery \& Daking Co. has purchased 102 acres near Kenton and is considering erection of canning plant here. Witliam Campbell, Cincinnatl, vice prestdent of the Kroger Co. is in charge.
PIQUA, O.-Jackson Steel Tube Co., Rodiney strcet and Kent avenue, Brooklyn, N. Y., Samuel E. Jackson, president, has bought part of the former plant of Favorlte Stove \& Range Co. and will establish a plant for production of steel tubing for bleycle frames, furniture and similar purposes. Buflding is 140 300 feet. New equipment will be installed.

Connecticut

HARTFORD, CONN.-Connecticut Mutual Insurance Co., Hartford, will build an addition to its office bullding. Structural steel contract has been let to Harris Structural Steel Co., New York.
NOlRWALK, CONN.--Superlor Castings

Co. has let contract to Hewlett Construction Co., 1385 Iranistan avenue, for construction of plant on Meadow street, 74 $x 210$ feet, with wing 20×27 feet. Plans by Leo F. Caproni, New Haven, Conn.

New York

Camillus, N. Y.-Camillus Cutlery Co. will bulld an addition to cost about $\$ 40,000$.

ELMIRA, N. Y.-Thatcher Mfg. Co., Kingsbury avenue, is rebuilding two furnaces, construction of which has been let to Wellman Engineering Co., 7000 Central avenue, Cleveland.
FAIRPORT, N. Y.-American Can Co. 230 Park place, New York, has let contract to John T. Adams Co. Inc., 30 Rockefeller Plaza, New York, fon a warehouse to cost about $\$ 100,000$.

FARMINGDALE, N. Y.-Ranger Engineering Corp., is buliding an additional plant building. Structural steel has been let. to Belmont Iron Works, Philadelphia.
SCHENECTADY, N. Y.-Clty plans caisson well and pumping station, to cost about $\$ 370,000$. M. Pirnie, 25 West Forty-third street, New York, Is englneer

Pennsylvania

LOCK HAVEN, PA.-Pennsylvania Woven Wire Co., J. W. Dlckey, plan! manager, will build a 1 -story plant, 25 . 60 fect, to cost about $\$ 40,000$.

PHILADELPHIA-City has voted $\$ 18$,000,000 loan for waterworks rehabilitation. Morris Knowles Inc., Westinghouse bullding, is engineer. (Noted Aprll 1.)

PITTSBURGH-Philadelphia Coke Co.. 4501 Richmond street, Philadelphla, has let contract to Koppers Co., engineering and construction division, Koppers bullding, Plttsburgh, for a plant for production of light oils and motor fuel
ROCKAWAY, PA.-Rockaway Glass Co., R. L. Warren, president, Beadle building, will bulld a 1,2 and 3 -story plant, 110×622 feet, costing about $\$ 500,000$. Frazler-Simplex Inc., 436 Eas Beau street, Washington, Pa., is engiпеег.

Michigan

DETROIT-Michigan Chrome Co has given general contract to W. J. C. Kauf mann Co. for construction of a plant in Detroit.
DETROIT-Albert Kahn Inc., Detrolk, architect and engineer, is preparing plans for a plant bullding 400×1000 feet, on Oakland boulevard, Highland Park, Mlch., for the Chrysler Corp.

DETROIT-Lincoln Brass Works, Detroit, will build an addition to its plant on Twelfth street, 95×105 feet. E. B. Arnold, Detroit, is architect.
DETROIT-Perry Curley Sales Corp has been incorporated to deal in ma chinery and tools, with capital of $\$ 50,000$, by Leo T. Curley, 5045 Trumbull avenue, Detrolt.

MT, PLEASANT, MICH.-Essex Renning Co., E. E. Brehm, manager, recently incorporated, is having plans made for an oll rellnery on Saginaw river, north of Essexvlle, Mich.

Alabama

MOBILE, ALA.-Alabama Dry Dock \& Shipbuflding Co., D. R. Dunlap, prest dent, will extend shipways 150 feet at Pinto Island plant, to accommodate bullding of larger vessels. Cost will be atbout $\$ 45,000$,
WENONAH, ALA. - Tennessee Coai, Iron \& Rallroad Co., Brown Marx buld-

JAMES CRISWELL COMPANY

Furnace Engineers \& Contractors
Open Hearth, Soaking Pits and heating furnaces

Keenan Bldg.

Pittsburgh, Pa.

SINCE 1892

QUAMITY OEARS

We make all types of dependable gears-spur. bevel, mitre, worm, rack, internal, etc. We use cast and forged steel, grey iron, bronze, aluminum, bronze and monel metal.

ALSO silent gears, fabricated from steel, rawhide and bakelite. Inquiries faithfully answered.

THE SIMONDS GEAR \& MFG. CO.

25TH STREET, PITTSBURGH, PA.

JIGS - FIXTURES - SPECIAL MACHINES -PUNCHES-DIES-"to your measure"!

l.et our trained engimeers apply our it years' experience to your equipment problem. Our successes in other plants of all types, and proved methods assure a solution of any question involving production machinery. Write us in detail without oblieation.
THE COLUMBUS DIE, TOOL AND MACHINE CO. COLUMBUS, OHIO

CUT GEARS
All Types and Sizes
Baldwin Roller Chain and Sprockets
Heat Treated Alloy Steel Gears to Customer's Specifications
Special Gears and Special Gear Units
PITTSBURGH GEAR \& MACHINE CO.
2680-2700 Smallman Sts., Pittsburgh, Pa.

-Consiruction and Enterprise-

ing. Birmingham, Ald., will build a 1 story chemical laboratory and office building 31×81 feet.

Maryland

BALTIMORE-Fustless Iron and Steel Co., 2400 East Chase street. will build a melting department at cost of about \$600,000.

District of Columbia

WASHINGTON-Bureau of supplies and accounts, navy department, will take bids as follows: May 21, schedule 1458, motor-driven straight bevel gear generator for Washington navy yard: May 24, schedule 1578, motor-drlven milling machine for San Djego, Calif.; May 24, schedule 1590, three diesel engine-driven crane tractors, varlous deliveries; May 24 , schedule 1599 , planer and jolnter machine and motor-driven circular and band saw, varlous dellveries.

Wisconsin

MARSHFIELD, WIS.-City will take bids soon for 1 -story power plant addition 40×100 feet to house turbine and other equipment, including 25 -ton traveling crane, total cost about $\$ 100,000$. E. F. kipp is superintendent of electric department. Helmick, Edeskuty \& Lutz, Essex building, Minneapolis, are engineers.

Minnesota

COKATO, MINN.-Bonds for $\$ 90,000$ have been approved for sewage disposal mlant. A. M. Anderson is city clerk.

HOPKINS, MINN.-MInneapolis-Moline Power Implement Co., Minneapolis, will rebuild burned harvest machinery assembly shop and tin shop at plant here. Much ruined machinery equipment must be replaced.

KEEWATIN, MINN.-Bond issue for $\$ 32,000$ has been approved for construction of a sewage disposal plant. John Rebrovich is village clerk.

LITTLE FALLS, MINN.-City council, Otto L. Plettl, clerk, has ordered survey for sewage disposal plant to cost about
\$250,000. Arthur R. Marquardt is city engincer.

MANKATO, MINN,-Automatle Electric Mig. Co., J. Fred Krost, president, has glven contract to A. R. Kleinschmidt Construction Co. for 1 -story plant on State street for manufacture of time switches, Interval IImers and flashers.

MINNEAPOLIS-Chicago, Milwaukee, St. Paul \& Pacifle railroad will make imjrovements to shops here at cost of $\$ 150,000$, including enlargement of locomotive machine shop, addition of large boring mill, replacing transfer table and changes to facllitate heavy repairs to new types of locomotives.

ST. PAUL-Northern States Power Co., 15 South Fifth street, Minneapolls, plans construction of 67,000 -horsepower steam generating plant.

STILLWATER, MNN.-S tillwater Plowshare Co. has been incorporated to manufacture plowshares, plowpoints and simllar products by W. E. Rumble, E. A. Vaughan and associates.

Kansas

CHANUTE, KANS. - CIty, Ralph Reeves, city englneer, plans addition to sewage disposal plant to cost about $\$ 100,000$, to meet requirements of state health board.

LARNED, KANS.-City, C. L. Frizzell, mayor, is taking blds for two steam generating unlts, Including boilers, settings, superheaters and other equipment. Black \& Veatch, 4706 Broadway, Kansas City, Mo, are consulting engineers.

Lowa

BROOKLYN, IOWA - City, Jennie Schmilz, clerk will hold election May 23 on proposal to purchase electric distributlon system now in city, as part of plan to construct municipal light plant. Total cost will be about $\$ 135,000$. Stanley Englneering Co., Muscatine, Iowa, is consulting engineer.
CRESCO, IOWA-Air-Turbine Mfg. Co has been incorporated to manufacture

The only accepted Chrome Plated Standard-made by the Originators of Chrome Plated Gage Blocks ...

DEARBORN GAGECOMPANY
 Otiginators of Chromium 'Plated Gage Blocks"

 2037 BEECH STREET DEARBORN, MICH.alf-turbines for gasoline motors. by J. E. Mckitrick and Roy W. Frank.

SIOUX CITY, IOWA-rocklin Mrg. Co. has been incorporated to manufacture tractor saws and other machinery, by I. J. and R. A. Rocklln.

WATCERLOO, IOWA-Iowa Public Service Co., H. M. Smith, assistant general manager, will bulld a cylinder gasholder, 110 reet high, 40 feet in diameter, to cost about \$40,000.

Montana

MISSOULA, MONT.-Findell Lumber Co., E. A. Findell, president, will rebuild sawmill and power plant recently burned, with loss of $\$ 175,000$.

California

LOS ANGELES--Unlted Steel Products Corp. has been organized with $\$ 25,000$ capital, represented by Friedman \& Katzev, 416 West Eighth street, Los Angeles.

LOS ANGELES-Southern California Edison Co. Ltd., Los Angeles, has given contract to Stone \& Webster Engineering Corp., New York, for construction of 220-kilovolt steel tower transmission line from Boulder dam to Los Angeles and interconnecting lines to a total of 335 miles; also includes new switching station and additions to substations.

Washington

SEATTLE-Preservailve Paint Co., 5410 Alrport way, Frank West, president, has awarded contract to H. E. Carlbom for bollerhouse and steam plant. Addltional tanks and stills will be installed later.

VANCOUVER, WASH.-Vancouver Plywood \& Veneer Co., John Powell, man. ager, is preparing to install $1500-\mathrm{kw}$. generator and steam turbine.
WALLA WALLA, WASH.-Continental Can Co. Is having plans prepared for a can manufacturing plant here.

Canada

HAMILTON, ONT.-Steel Co. of Canada Ltd., is instaling a universal plate mill and tin plate dipping plant here at cost of about $\$ 6,000,000$.

HAMILTON, ONT.-Canadian Westinghouse Co. Ltd., 286 Sanford avenue North, is building plant addition on Aberdeen avenue. Pigott Construction Co. Ltd., 36 James street South, is general contractor.
PORCUPINE, ONT.-Broulan Porcuplne Mines Ltd., 372 Bay street, Toronto, Ont., will bulld 300 -ton mill unit here. General Engineering Co. of Canada Ltd., 100 Adelalde street West, Toronto, is engineer.

SAULT STE. MARIE, ONT.-Public utilities commission, Queen street East, W. M. Cornell, manager, is taking blds for a substation costing $\$ 40,000$ at wellIngton and Church streets.
TORONTO, ONT.-John T. Hepuurn Ltd., 18 Van Horne street, structural steel fabricator, is having plans prepared for a $\$ 20,000$ addition to plant on Van Geary avenue.

MONTREAL, QUE. - Kennedy Construction Co. has been awarded contract for $\$ 150,000$ superstructure for a section of Canadian National Railways' terminal vladuct here.

NOIRANDA, QUE.- Powell Rouyn Gold Mines Ltd., 617 Confederation Life building, Toronto, Ont., is having plans made by J. C. Rogers for milling plant to cost $\$ 260,000$.

SCREENS of Perforated Metal

Hive It Galvanized by-

Joseph P. Cattie \& Bros., Inc. Gaul \& Letterly Sts., Philadelphia, Pa.
Philadelphia's Oldest, The Country's Largest Hot Dip Job Galvanizer
Galvanized Products Furnished
 ANY SHAPE-ANY MATERIAL FREE COMPLETE FACILITIES Forblan pail Forder.
 Helpiah, taite tolay'
Write
J. H. WILLIAMS \& CO.
"The Drop-Forging Pcople"
400 vulcan st.
BuFFALO, N. Y.

FREE CATALOG Conlains Basic Engineering Information! Thix calalon will help vou lo cul power transmission costs and improve operulion of marhines? L-1\% Comptings require no lubrication- Many typus and sizas. Write lor free nopy

4923 WEST LAKE STRFET
 EमाCACO

RYERSON CERTIFIED STEELS
 represent the highest quality obtainable in each

 class and type of material. All kinds from standard carbon grades to special alloys in stock for Immediate Shipment. Write for Slock List. Joseph T. Ryerson \& Son, Inc. Plants at: Chicago, Milwaukee, St. Louis,Cincinnati, Detroit, Cleveland, Buffalo, Boston, Philodelphia, Jersey City.

B ELMONT $\frac{R \text { O N }}{\text { PHILADELPHIA }}$ NEW YORK $\frac{0 R K S}{\text { EDDYSTONE }}$ Engineers - Contractors - Exporters

 STRUCTURAL STEEL-BUILDINGS \& BRIDGES Hivetei-Arc WeldedBflmont Interlocking Channel Floor
Main Otfice-Phila., Pa. Prite Jor Catalogue

SMALL ELECTRIC STEEL CASTINGS
 (Capacity 500 Tons Per Manth)

WEST STEEL CLEVELAND

"He Profirs Moss
Who Serves Best

CASTING CO.
OHIO, U.S.A.

BBDIK PIC IRON
 D. © Go BRDOET IRON CO. BIRDSBORO, PENNA.

mpgrs of

 High grade
FOUNDRY

BASIC
GREY FORGE Malleagle BESSEMER LOW PHOS

TOLEDO STAMPINGS
 Our Engineering Department has had

 lung experience in working out difficult stamping problems. We want to work with you on your development work as we have had great success in clianging over expensive parts and units into steel stampings. Our producrion facilities can amply take care of almost all stamping requirements. Give us the opporrunity of working with you.
Fe Solicit Your Prines and Inquiries

Toledo Stamping and Manufacturing Co.

Detroit Office Stormg Blid., Toledo,
Chetroit Office: Stormfeltz-Lovely Bldg., Detroit, Mich.

$\begin{array}{llllllllll}C & L & A & S & S & I & F & I & E & D\end{array}$

Positions Wanted

SALES ENGINEER-STANLLESS STEEL experience almost exclusively for the last flve years. Familiar with physical and corrosive applications, speciflcations for all grades of stainless, with fabricating problems and thelr solutions. Experienced in technical sales service and development problems involving customer and mill. Address Box 205, STEEL, Penton Bldg., Cleveland.
PERSONNEL MANAGER. TECHNICAL graduate with production management background. Thoroughly experienced in all phases of personnel relations including selection, classiffcation, job rating, occu-
Dational classiflcation, time and pational classiflcation, time and rate study, apprentice training and dealing with skilled and unskilled labor. Address Box 210. STEEL, Penton Bldg., Cleveland. DESIGNING ENGINEER - UNIVERSITY and ive years experience. Now cmployed as assistant chier engineer, Desires change. Will conslder any location in United States. Address Box 213. STEEL, Penton Bldg., Cleveland.
BRICKLAYER DESIRES POSITION WITH forge plant. Expertenced furnace builder. Address Box 211, STEFL. Penton Bldg., Cleveland.

Is It Your Job . . .

to see that the personnel of your company is tip-top in efficiency and that all departments are sufficiently staffed to function to the best advantage?
If you need a man to flll a specinc job-that is where Steel can help. Our readers include trained and experienced men in all branches of the metalworking industry who are ever on the alert for new opportunities. Tell them what you have to offer Wrough an advertisement in the Help

PRODUCTION OR PERSONNEL, MAN 38 with unusual ability. Graduate industrial and personnel management. 3 years mechanical engineering, also accounting. 20 years in steel. Address Box 195, STEEL. Penton Bldg., Cleveland.
ROLLER-BAR-GDIDE MILLL EXPERIence 18 years. 800 sections, 1800 sizes outside meh, 4 years. Can install mill and other machinery. Age 16. Address Box 197, STEEL, Penton Bidg.. Cleveland.

Positions Wanted

STEHEL COMIPANY EXECUTIVE seeks administrative dosition with steel or other industria company having man agement problems or nnancial dimicuities dustry. Experlenced in and allied innnancing and securities. Address Box 179 STFFF. Perion Blde.. Cleveland.
ORDNANCE PRODUCTION-HGH GRADE technical graduate experienced in stee melting, forging and machining shrapnel and shells and heavy industrial forgings wishes position as manager. engineer or superintendent. Now employed. Address Box 198, STEEL, Penton Bldg., Cleveland.

WIRE SPECLAKIST
Experienced in coarse and fine wire, rerrous and nonferrous, hot galvanizing. finning and heat treating. Metallurgical background. Address Box 204, STEEL, Penton Bldg., Cleveland.
TREASURER - CONTROLLER, OFFICE Manager, Credit Manager, college graduate. Forty years old, married. Bad debt losses one-sixth one per cent, credit rating increased. Experience with steel manuiacturer. Dependable capable unusual abllity. Begin work immediately your salary Address Box 194, STEEL, Penton Bldg.. Cleveland.

Employment Service

SALARIED POSITIONS
$\$ 2,500$ to $\$ 25,000$

This thoroughly organized advertising service of 30 years' recognized standing and reputation, carries on preliminary negotiations for positions of the caliber indicated above, through a procedure individualized to each cllent's personal requirements. Several weeks are required to negotiate and each individual must finance the moderate cost of his own campaign. Retaining fee protected by refund provision as stlpulated in our agreement. Idenlity is covered and, if employed, present position protected. If your salary has position protected. If your salary has address for details. R. W. Bixby, Inc., 110 address for details. R. W. Bix
Delward Bldg., Buffalo, N. Y.

Help Wanted

EXPERIENCED IN SALIES, DESIGN AND estlmating plate work. Must have pleasing personality, energetic, willing to work. Capable of expediting shop work. Address Box 201, STEEL, Penton Bldg., Cleveland.

HELI WANTED: SALES MANAGER AND experienced salesman by alloy steel foundry to help build up sales in stainless steel and other steel alloy castings. Also carbon steel castings. Must be able to make good in the following territoriesMetropolitan New York, New England, and States of New York, Pennsylvanla, Delaware and New Jersey. Must be acquainted and be able to make proper contacts with tirms using such castings. Address Box 207. STFEL. Penton Bldg., Cleveland.

SAIES ENGINEER, EXPERIENCED IN sales, design and estimating structural steel and plate work, for assistant to sales manager. Must be good correspondent and of pleasing personality with good address, energetic and willing to work hard. Glve full experlence, tralning, references and compensation desired in first letter. All replies to be treated confldentially. Address Box 196, STEEL, Penton Bldg., Cleveland.

EXPERIENCED GALVANIZING FOREMAN FOR JOB GALVANIZING PLANT Capable of handling men; informed on technical and practical problems that may arise in the process of pickling and galMust be and maintenance of equipment, Must be capable of organizing the work efficiently, so as to get the maximum production. Application must state name, address, age, married or single, race, experlence, name of last employer and salary expected. All information submitted will be treated confidentlally. Address Box 200, STEEL, Penton Bldg.. Cleveland.
Wor heat and FOUNDRY REPRESENTATIVE for heat and corrosion nickel chrome alloy castings. District of Cincinnati, Daydress Box York. Commission basis. Address Box 212, STEEL, Penton Bldg.,
Cleveland.

[^10]
Accounts Wanted

STEEL SAYES EXECUTIVE NOW CONtacting all large manufacturers in Detrolt and adjacent territory is interested in add ing kindred lines with large volume and repeat possibilities, dreferably anything in steel including stainless. Natlve Detrojter with very broad acquaintance and excellent entree. Have been associated with the automotive industry since its inception. Address Box 193, STEEL, Penton Bldg. Cleveland.

Distributors Wanted

WANTED

Recognized manufacturer of electrieally welded steel tubing and fabri. eated parts desipes to nerotiate witla afents or distributors for raprese
tion in the following territories. Boston
Metropolitan New Yorls Philadelphia Baltimore Washineton, D. C.
Only those duly ausilfied will bo miven consideration. All replies held in conflience. Write Box 20f, STEELA, Punton IBly., Cleveland.

Castings

0110

THE VEST STEEL CASTING CO., Cleveland. Fully equipped for any production problem. Two $1 / 2$ ton Elec. Furnaces Makers of high grade light steel castings, also alloy castings subject to wear or high hedt.

PENNSYLVANIA

NORTH WALES MACHINE CO.. INC. North Wales. Grey Iron, Nickel, Chrome, Molybdenum Alloys, Seml-steel. Superiut quallty machine and hand molded sand blast and tumbled.

Bids Wanted

Federal Works Agency, Public Buildings Administration. Washington, D. C., May 8, 1940.-Sealed proposals in duplicate will be publicly opened in this office at 1 P.M., Standard Time, June 11, 1940, for construction of the U. S. P. O., Perrysbure, Ohlo. Upon application, one set of drawings and speclfeations will be supplied free to each General Contractor interested in submitting a proposal. The above drawings and specincations MUST be returned lo this office. Contractors requirIng additional sets may obtain them by purchase from this office at a cosi of $\$ 5$ per set. which whll not be returned. per set. which will not be returned. and specincations must be made payable and specincations must be made payable to the order of the Treasurer, not be furnished to contractors who have consistently falled to submit proposals. One set upon request, and when considered in the intenests of the Government, will be furnished, in the discretion of the Commissioner, to builders' exchanges, chambers of commerce or other organizations who will guarantee to make them avallable for any sub-contractor or material hrm Interested. and to quantily surveyors, wut sels are not returned after they have accomplished their purpose. W. E. Reynolds, Commissloner oi Public Bulldings. Federal Works Agency.

Duplicate Parts

WELDED STEEL FABRICATION

Specialists in duplication of castIngs and machinery parts with rolled steel shapes.
Send blue prints and speciflcations for quotation.
MORRISON METALWELD PROCESS INC.
1438 Bailey Ave., Buffalo, N. Y.
Equipment For Sale

36". $42^{\prime \prime}$ and $62^{\prime \prime}$ Vertical Boring Mills

No.' 9 W\&W Bulldozer, B.D.
28" ${ }^{\prime} 76{ }^{\prime \prime}$ Farrel Roll Grinder, M.D
2 AA and 3 A W\&S Turret Lathe, S.P.D. 150-tan Unlted St -Hyd. Forging Press. $2^{\prime \prime}-4^{\prime \prime}-6^{\prime \prime}-8^{\prime \prime}-12^{\prime \prime}$ Wm. Pipe Mach., M.D
No. 5 H\&J Gulll. Shear 4 ," rd. MLD.
 18"' W-F \& 36" Yoder Gang Silters, M.D. WEST PENN MACHINERY CO.
1208 House BIdg.
Pittsburgh, p

-REBUILT-

BLOWERS - FANS - EXHAUSTERS
Connersville-Roots positive blowers Centrifugals for gas and oll burnlng Ventilathg fans nind roof ventilators.
GENERAL BLOWER CO.

FOR SALE

One used Pangborn Type

GH Sandblasting Barrel

- Inchular separator and motor drive complete In goud condition. hasing been lu use only short thene

Address Box 208, STEEL
Cleveland

PLATE SHEAR

No. 5 Hilles \& Jones. Capacity $90^{\prime \prime} \mathrm{x}$ \% ft. Throat 36 ". Hold down-gauges. Motor drive. A-1 condition. In stock.

LANG MACHINFRY CO.
28th © A.V.R.I.
Plttsburgh, Pa.

Rails-" 1 Ton or $\mathbf{1 0 0 0 " ~}$

VEWH RAILS-5000 tons-All Sections- All Sizes. All sizer. practicnlly 25 good ns New.
ACCESSORIES-Eyery Track Accessory carrled in stock-Angle and Spllee Bars, Bolts, Nuth.
Frogs. Swhthes, The Plates. Frogs. from One Source-Sare
L. B. FOSTER COMPANY, IMC.
CITSBURGE
YEN YORK

For Sale:

2-FORCED CONVECTION ELECTIRIC TEMPERING FURNACES
Formerly used by large airplane manufac${ }^{\text {turer }}$ Size $213 /{ }^{\prime \prime}$ diameter X $48^{\prime \prime}$ deep. kets. Maximum temperature $1200^{\circ} \mathrm{F}$. Good operating condition.

Write Box 178, STEEL.
Penton Bidg., Cleveland

ADVEIRTISING INDEX

Where-to-Buy Products Index carried in first issue of month.

Abrasive Co.. Division of Simonds Saw \& Steel Co.
Abrasive Products, Inc.
Accurate Spring Mrg. Co.
Acme Galvanizing, Inc.
Acme Steel \& Malleable Iron Works
Air Reduction
A, Jax Electrothermic Corp.
Ajax Flexible Coupling Co
Aiax Manufacturing Co.
Alan Wood Steel Co.
Allen-Bradley Co.
Allis-Chalmers Mrg. Co. Inside Front Cover
Alrose Chemical Co.
American Agile Corp.
American Brake Shoe \& Foundry C...........
American Brake shoundry Co. -
American Brass Co., The
American Bridge Co.
smerican Chaln \& Cable Co., Inc., American Chain Division
American Chaln \& Cable Co., Inc., Ford Chain Block Division
American Chain \& Cable Co., Inc.,
Page Steel \& Wire Division
Amerlcan Chain Division of Amerlcan
Chain \& Cable Co., Inc.
Amerlean Chemical Paint Co.
Amerlcan Engineering $C 0$.
American Forge Division of the American Brake Shoe and Foundry Co.
American Foundry Equipment Co., The
Amerlcan Gas Assoclation
American Hot Dip Galvanlzers Assoclation
American Lanolin Corp.
American Monorail Co.
American Nickeloki Co.
American Pulverizer Co
American Roller Bearing Co.
American Rolling Mill Co., The
American Shear Knife Co.
American Steel \& wire Co.
American Tinning \& Galvanizing Co.
Ames Bag Machine Co.
Ampeo Metal, Inc.
Andrews Stecl Co., The
Apollo Steel Co.
Armstrong-Blum Mirg. Co
Armstrong Cork Co.
Allantic Stamping Co.
Atlas Car \& MIg. Co.
Allas Dron Forge Co.
Atlas Lumnlte Cement Co.

3

Babonck \& Wileox Co.
Balley, Wm. M., Co
Baker-Raulang Co.
Baldwin-Durkworth Division of Chain Belt Co.
Baldwln Southwark Division of The Baldwin Locomotlve Works
Bantam Bearings Corp.
Barber-Colman Co.
Barnes, Wallace, Co., The, Division of Assoclated Spring Corporation
Barnes, W, F. and John, Co
Basic Dolomite, Inc.
Bay City Forge Co.
Beatty Machine \& Mrg. Co.
Bellevue-Stratcord Hotel
Belmont Iron Works
Berger Manuracturing Div., Republie Steel Corp.
Bethlehem Stcel Co.
I3Irdsboro Steel Foundry \& Machine Co.
Bissett Steel Co., The
Blanchard Machine Co.
Blaw-Knox Co.
Blaw-Knox Dlvision, Blaw-knox Co Co.,
.53,
now
Blaw-Knox Sprinkler Div., Blaw-Knox Co_{3}
Bliss \& Lauzhilin, Inc
Bliss, E. W., Co.
Brassert, H. A., \& Co
Bridgeport Brass Co

Page
Brooke, E. \& G., Iron Co.
116 Irrookmire Corporation Brosius. Edgar E., Inc. -
Brown \& Sharpe Mrg. Co.
Fairbanks Morse \& Co.
Fanner Meg. Co.
Mrg. Co. 10
Farquhar, A. B., Co., Limlted
Farrel-Birmingham Co., Inc.
Farval Corp., The
Ferleral Machine \& Werder Co.
Finn, John, Metal Works
Firth-Sterling Steel Co.
Flinn \& Dreffein Co.
Flood Co., The
Ford Chain Block Division of Ameri-
can Chain \& Cable Co. Inc.
Fort Pltt Spring Co.
Foster, L. B., Inc.
Foxboro Co., The
G
Garden City Fan Co.
Gardner Displays
Garlock Packing Co., The
General Blower Co.
General Electric Co.
13
General Electric Co., Lamp Dept
Globe Brick Co., The
Gordon Lubricator Division, BlawKnox Co.
Granite City Steel Co.
Grant Gear Works
Graybar Electric Co.
Great Lakes Steel Corp.
Greenfleld Tap \& Die Corp.
Gregory, Thomas, Galvanizing Works
Grinnell Co., Inc.
Gulf Oil Corporation
Gulf Reflning Co.

H

Hagan, George J., Co.
Hallden Machine Co.
Hanlon-Gregory Galvanizing Co.
Hanna Furnace Corp.
Hannifly Mfg. Co.
Harnischreger Corp.
Harnischfeger Corp. 113
Harrington \& KIng Perforating Co. ... 115
Harter Corp., The
Hays Corp., The
Heald Machine Co., The
Helmer-Staley, Inc.
Heppenstall Co.
Hevi Duty Electric Co.
Hiliside Fluor Spar Mines
Hindley Mfg. Co.
Hobart Bros.
Hodell Chaln Co., The
Hollands Mifg. Co.
Horsburgh \& Scott Co.
Hubbard \& Co.
Hubbard, M. D.. Spring Co.
Huther Bros. Saw Mig. Co
Hyatt Bearings Division, General aio-
tors Sales Corporation
36
Hyde Park Founciry \& Machine Co. ... -
Hygrade Sylvania Corp.
I
Illinois Clay Products Co.
Independent Galvanizing Co.
Industrial Brownhoist Corp.
Ingersoll-Rand Co.
Inland Steel Co.
International Corrcspondence Schools
International Derrick \& Equipment Co.
International Nipkel Co., Inc.

Jackson Iron \& Steel Co., The

James, D. O., Mrg. Co.
J-B Engineering Sales Co.
Jeffrey Manufacturing Co.
Jessop Steel Co.
Jessop. Wm., \& Sons, Ine.
Johns-Manville Corp
Johnson Bronze Co.
Jones \& Lamson Machine Co.
Jones \& Laughlin Steel Corp.
Jones, W. A., Foundry \& Machine Co.
Joslyn Co. of California
Josly'n Mfg. \& Supply Co.
K
Kardong Brothers. Ine.
Keagler Brick Co. The
Page

Inc

Buftalo Galvanizing \& Tinning Works,
andier Products Co.
Chicago Rawhide Mrg. Co.
Cinclnnati Grinclers, Inc.
, The

55

Clark Tructractor, Div. of Clark Equlpment Co.
Cleveland-Clims Screw Co
Cleveland Crane \& Engineering Co
Cleveland Hotel
.

Cleveland Punch \& Shear Works Co.
Cledand Tramia Division, Cleve
land Crane \& Engineering Co.
Cleveland Worm \& Gear Co., The
Inside Back Cover
Climax Molybdenum Co.
Colonial Broach Co.
Columbian steel Tank Co.
Columbla steel Co.
Columbus Die, Tool \& Machine Co. .. 113
Continental Roll \& Steel Founciry Co. -
Continental Screw Co
Corbin Screw Corp.
Cowles Tool Co.
Crane Co.
Crucible Steel Company of America
Cullen-Friestedt Co.
Cunningham, M. E., Co. 115
Curtis Pneumalic Machinery Co.
Cutler-Hammer, Inc
Cyclone Fence Co.

I)

Damascus Steel Casting Co.
Darwin \& Minner, Inc.
Dayls Brake Beam Co.
Detroit Leland Hotel
Dlamond Expansion Boll Co., Inc.
Dietzel Lead Burning Co.
Dravo Corp., Engineering Works Div.
Dravo Corp., Machinery Division
\mathbf{E}
Elastic Stop Nut Corp
Electric Controller \& Mig. Co.
Electric Furnace Co., The
Electric Storage Battery Co
Electro Metallurgical Co.
Elmes, Charles F., Englnecring Works 105
Engineering and Construction Dlvision Koppers Co.
Enterprise Galvanizing Co.
Eric Foundry Co.
Eina Machine Co., The .
Eureka Fire Brlck Works
Ex-Cell-O Corp.

- ADVERTISING INDEX

Where-to-Buy Products Index carried in first issue of month.

Kemp, C. M., Mfy. Co. Kimball Sarety Products Co. King Fifth Wheel Co. KInnear Mrg. Co. Koppers Co. Koven, L. O., \& Brother, Inc. Kron Co., The

Laclede steel Co.
Lake City Malleable Co.
Lamson \& Sessions Co., The
Londls Machine Co., Inc.
Landis Tool Co.
Lang Machinery Co.
117
Lansing Stamping Co.
La Salle Steel Co.
77, 78
LeBlond, R. K., Machine Tool Co., The
Back Cover
Leeds \& Northrup Co
Lee Spring Co., Ine.
Lehigh Structural Steel Co.
Lenco Laboratories
Leschen, A., \& Sons Rope Co.
Lewis Bolt \& Nut Co.
Lewis Foundry \& Machine Division of Blaw-Knox Co.
Lewis Machine Co., The
Lincoln Electric Co., The
Lincoln Hotel
LIncle Air Products Co., The
Lindemuth, Lewis B.
Link-Belt Co.
Lintern Corp., The
Loftus Engineering Corp.
Logemann Bros. Co.
Lord Baltimore Hotel, The
LoveJoy Flexible Coupling Co.
Lovejoy Flexible Coupling Co
Ludlow-Saylor Wire Co., The
MeKay Machine Co.
McKenna Metals Co.

M

Mackintosh-Hemphill Co
Macwhyte Co.
Marr-Galbreath Machinery Co.
Mathews Conveyer Co.
Maurath, Inc..
Medart Co., The
Mesta Machine Co.
Metal \& Thermit Corp.
Midvale Co., The
Missourl Rolling Mill Corp.
Moltrup Steel Products Co .-
Monarch Machine Tool Co., The
Morgan Construction Co.
Morgan Engineering Co.
Morrison Metalweld Process, Inc.
Morton Salt Co.
$\stackrel{N}{\text { The }}$
National Acme Co., The
National Alloy Steel Co.
National Bearing Metals Corp.
National Broach \& Machine Co.
National Carbon Co., Inc.
National Cyllnder Gas Co.
National-Erie Corp.
National Forge \& Ordnance Co.
National Lead Co.
National Roll \& Foundry Co.
National Screw \& Mrg. Co.
National Steel Corp.
National Telephone Supply Co., rinc. Natuonal Tube Co,
New Departure Division General Motors Sales Corp.
New Jersey Zinc Co.
New York \& New Jersey . .
Nlagara Machine \&
Niles Steet Machine \& Tool Works
Steel Cot Products Div., Republic Steel Corp.
Nllson, A. H., Machine Co., The
Nitralloy
Normey Corp., The
Norma-Hoffmann Bearings Corp.
Northern Engineering Works
Norton Co., The
Ohlo Electric Mfg. ${ }^{\mathbf{O}}$
Ohio Ferro-Alloys Corp.

8
8

Pitisburgh Rolls Division of BlawKnox Co.
Pittsburgh Steel Co. 83
Plymouth Locomotlve Works, Div.
The Fate-Root-Heath Co.
Poole Foundry \& Machine Co.
Power Piping Division of Blaw-knox Co.
Pressed Steel Car Co., Inc.
Pressed Steel Tank Co.
Prest-O-Lite Co., Inc., The
Production \& Machlne Tool Show
Progressive Mfa. Co.
Pure oll Co., The
R
Raymond Mfg. Co., Division of Associated Spring Corp.
Reliance Electrle \& Engineering Co. Republic Steel Corp.
Revere Copper and Brass, Inc.
Rhoades, R. W., Metaline Co., Ine.
Riverside Foundry \& Galvanizing Co.
Roebling's, John A.. Sons Co.
Ross Operating Valve Co.
Russell, Burdsall \& Ward Bolt \& Nut Co.
Jeyerson, Joseph T., \& Son, Ine. \mathbf{S}
St. Joseph Lead Co.
Salem Englncering Co.
Samuel, Frank, \& Co., Inc.
San Francisco Galvanizing Works. Sanitary Tinning Co., The
Sawyer Electrical Mrg. Co.
Scovill Mrg. Co.
Scully Steel Products Co.
Semet-Solvay Engineering Corp
Seneca Wire \& Mfg. Co., The
Shafer Bearing Corporation
Shakeproof Lock Washer Co
Shaw-Box Crane \& Hoist Division,
Manning, Maxwell \& Moore. Inc.
Shell Oll Co., Inc.
Shenango Furnace Co., The
Shenango-Penn Mold Co.
Shepard Niles Crane \& Hoist Corp.
Shoop Bronze Co., The
Shuster, F. B., Co., The
Simonds Gear \& Mig. Co.
Simonds Saw \& Steel Co.
Sinton Hotel
SKF Industries, Inc
Snyder, W. P., \& Co.
Socony-Vacuum Oil Co., Inc.
Sorbo-Mat Process Engineers
South Bend Lathe Works
Sping Washer Industry
Sta-Brite Mfg. Co.
Standard Arch Co.
Standard Galvanizing Co.
Standard Steel Works Co.
Stanley Works, The
Steel \& Tubes Division, Republic Steel Corp.
Steel Founders' Society of America
Stewart Furnace Division, Chicago
Flexible Shaft Co.
Streine Tool \& Mifg. Co.
Strom Steel Ball Co.

Page
113
Strong Steel Foundry Co.
Sturtevant, B. F. Co.
Sun Oil Co.
Superior Steel Corp.
Surface Combustion Corp
Sutton Ensincering Co.
Swindell-Dressler Corp.

T

Tennessee Coal, Iron \& IRailroad Co
Thomas Steel Co., The
Thompson-Bremer \& Co.
Tide Water Associated Oil Co
Timken Roller Bearing Co.
Timken Steel \& Tube Dlvision, The Timken Roller Bearing Co.
Tinnerman Products, Inc.
Toledo Scale Co.
Toledo Stamping \& Mfs. Co. 116
Tomkins-Johnson Co.
Torrington Co., The
Towmotor Co.
Townsend Co.
Treadwell Construction Co.
Tri-Lok Co., The
Trufio Fan Co.
Truscon Steel Co
Tube Reducing Corp.
Twin Dise Clutch Co.
Union Carbide \& Carbon Corp.
Union Drawn Steel Div., Republic
Steel Corp.
10, 11
Union Steel Castings Co.
United Chromium, Inc. 10 .
United Engineering \& Foundry Co. . .58, 59 United States Rubber Co,
United States Steel Corp., Subsidiarles
62, 63
American Bridge Co.
American Steel \& Wire Co.
Atlas Lumnite Cement Co.
Carnegie-Illinois Steel Corp
Columbia Steel Co
Cyclone Fence Co.
Federal Shipbuilding \& Dry Dock Co.
National Tube Co.
Oil Well Supply Co.
Scully Steel Products Co.
Tennessec Coal, Iron \& Railroad Cn.
United States Steel Export Co.
Universal Atlas Cement Co.
VIrglnia Bridge Co.
Linited States Steel Export Co.
Valley Mould \& Iron Corp.
Vanadium-Alloy Steel Co.
Vanadium Corporation of America
Voss. Edward W.
Waldron, John, Corp.
Warner \& Swasey Co
Washburn Wire Co.
Wean Engincering Co., Inc
Weinman Pump \& Supply Co., The
Weirton Steel Co
Welding Equipment \& Supply Co.
Westinghouse Electric \& Mfg. Co
West Penn Machinery Co.
west Steel Casting Co
Wheeling Steel Corporation 116
Whitcomb Locomotive Co., The
Whitehead Stamping Co.
Wickwire Brothers
Wickwire Spencer Steel Co.
Wilcox, Crittenden \& Co., Inc
Williams, J. H., \& Co.
Wilson, Lee, EngIncering Co.
Wilson Welder \& Metals Co., Inc.
Wisconsin Steel Co.
Witt Cornice Co., The
Worthington Pump \& Machinery Corp.
Worth Steel Co.
Wyekoff Drawn Steel Co.
Yale \& Towne Mrg. Co.
Youngstown Alloy Casting Corp.
Youngstown Sheet \& Tube Co., The
Zeh \& Hahnemann Co.

Low Cost Mardening of intricate steel parts ... with GAS

Lead, salt or cyanide pot furnaces, gas-fired, provide a most ceonomical means of uniformly hardening small or intricate stecl parts, according to the experience of the Reading Screw Company, Norristown, Pa.

The illustration shows the operator inserting a basket of screws to be hardened in a cyanide hath. Temperature is automatically controlled and the charge is rapidly and uniformly heated to the desired temperature and then quenched. The screws are used for metal fastening in the

manufacture of automobiles, refrigerators and metal furniture.

Graphic temperature records afford a means to trace the heat treatment of all batches run and automatic control relieves the operator of furnace attention. One more evidence of the time-saving, labor-saving efficiency of Gas.

Why not investigate Gas and the latest developments in Gas-fired equipment for your own heat treating problems? Consult your Gas company for full information.

AHERICAN GAS ASSOCIATION

INDUSTRIAL GAS SECTION

420 LEXINGTON AVENUE, NEW YORK CITY

[^0]: "Basically, a pension plan should coincide with the real objective for which a corporation exists - the profit motive."

[^1]: ". . . Average age of workers on industrial payrolls is increasing."

[^2]: ... Companies with pension plans have fewer labor dispules than those operating without such plans."

[^3]: Materlal appearing in this department is fully protected by copyright, and its use in any form whatsoever without permission is prohibited.

[^4]: The percentages of capacity for 1939 are calculated on weekly capacilies of 1 . 392.331 net tons open hearth ingots and 136,918 net tons Bessemer ingots, lotal 1,529,249 net tons; based on annual capacities as of Dec. 31. 193S, as follows: Open hearth ingots. T2.596, 153 net tons: Bessemer ingots, 138,050 net tons.

 1 The percentages of capacity operated for 1940 are calculated on weelly capacities of $1,402.599$ net tons open hearth ingots and 114,956 net tons Bessemer ingots, total hearth ingots. $73,33,54$ bed on annual capacities as of Dec. 31,1939 as follows: Open hearth ingots. $73.343 .5 \%$ net tons; Bessemer ingots, $6,009,920$ net tons,

[^5]: *Indicates defelt.

[^6]: From a paper presented at the National Association of Manufacturers Congress of American industry, Waldorf As toria hotel, New York, December 1939.

[^7]: Thermolier Lalf Heaiers

[^8]: "Member. Steel Founders" Society of America.

[^9]: BHAW-RNOX
 BLAW-KNOX DIVISION
 OF ELAW-KNOX CO. Farmers Bank Bldg. - Pittsburgh, Pa. "en BUCRETS

[^10]: SALESMAN-EXPGRIENCED IN WAREhouse sales, tool-steel and tool-steel tubledge Must have experience and knowtails product and use. Write in full details about self, location, experience, etc also whether free to travel or move, Address Box 209. STEEL, Penton Bldg.,

