EDITORIAL STAFF
E. I. Sulaner Editor-in-Chief
E. C. Kreutzberg Editor
A. J. Haln Managing Editor E. F. Ross

Enginerring Editor Guy Hubbard
Machine Tool Editor

> D. S. CAdot Art Editor

ASSOCIATE EDITORS

(i. H. Manlove: W. G. Gibe	J. D. Knox
	G. W. Birdsall
W. J. Camprell	
New Yord	
1. 17. Sucn	B. K. Price
Pitsburgh	Chicago
R. L. Hartford	1. F. Powell
Detroit	Washington
A. H. Allen	L. M. Lamm
L.ondon	
Vincent Delport	
ASSISTANT EDITORS	
A. R. Finley Jay DeEulis J. C. Sullivan La Verne Nock	
George Urbay	
New York	
John H. Caldwell	
BUSINESS	STAFF

G. O. Hays

Business Manager
C. H. Balley

Advertising Service
Nru: York.E. W. Kreutzbere B. C. SNell

Pitsburgh S. H. Jasper

Chicago L. C. Pelott
R. C. Jaenke D. C. Kiefer
J. W. Zubfr

Circulation Manager
MAIN OFFICE
Penton Ruilding, Cleveland

BRANCH OFFICES

New York
IIo East 42 nd St.
Chicago 520 North Michigan Ave.
Puttsburgh Koppers Building
Detroit. 6560 Cass Ave.
WashingtonNational Press Building Cincinnati …........ 1734 Carew Tower San Francisco 1100 Norwood Ave. Oakland. Calif., Tel. Glencourt 7559 Caxton House Westminster, S.W. 1

Publehed by The Penton jeublishing
Peaton Rullding, Cleveland OMLISHing Co
Prwas, Chalrman of Board; E. I. Sorin A Presdent and Treasurer: G. O. Ha Ms, Vice President: F. G. Stivivebich, Secretary.
Member, Audit Bureau of Circulatlons: AssoI whbers' Assochation. Papers Inc, and National PutPublished every
United States, Cubsenday, Subseription in the Jese st, twes, Cuba, Mexica and Canada, one countries one year $\$ 10$; Single coples (curesnit sewups) 250
Fit Cledevelaracond claws matter at the postomee Copyrighe 1040 by the Pet of Maren $3,1879$.

Tib

Volume 107-No. 7

READER COMMENTS
HKBHLJGHTING THIS ISSUE NEWS

Building Up American Tin Smelting Industry. National Defense Plan
Excess Profits Tax To Apply to Ouly jo,0oo Companies
Week's Record of Contracts Awarded by War and Navy Departments
Canada To Add $\$ 40,000,000$ to War Plant Construction Work
Iron and Steel Exports Increase 200 Per Cent in First Halt
Steclworks Operations for Week

August 12, 1940

Men of Industry

Obituaries35Activities of Steel Users, Makers 35
Finished Steel Exports 15.8 Per Cent of June Output 40
Financial 41
Meetings 91
WINDOWS OF WASHINGTON 32
MIRRORS OF MOTORDOM 37
EDITORIAL-Steel Has a Real Profits Prohlem 42
THE BUSINESS TREND 43
TECHNICAL.
Designing for Failure-By R. V. Sutherland 46
Profits from Waste-By F. A. Buldra 64
Control for Gas Radiants-By James Kiniveton 70
Three Ways of Obtaining Louvres Shown, Production Cost Reduced 73
Better Finishing Methods Give Improved Cutter Elficiency-By V. 11. Ericson 80
Progress in Stectmaking
Controls Soaking Pit Temperature and Atmosphere Automatically +9
-6
Bright Anncaling 7^{-6}
Materials Handling
Controlling Deformation in Handling Large Structures-By W. A. Sandbery 50
Metal Finisting
New Po-celain-Enameling Plant 54
loining and Welding
Forming Cuts Coss-By E. W. P. Smith 62
INDUSTRIAL EQUIPMENT 84
HELPFLL, LITERATURE 93
M.ARKFT REPORTS AND PRICES 95
BEHIND TIE SCENES 108
CONSTRUCTION AND ENTERPRISE 116
INDEN TO ADVERTISERS 124

STEELWELD Bending Presses

2 Steelweld Presses

OW SERVING THE

IRCRAFT InDUSTRY

HIGHLIGHTING THIS ISSIIE

8 STEELMAKING units last week began to feel the effects of the strain of recent activity， and shutdowns for repairs prevented a further gain in production．Output was unchanged （p．29）at $901 / 2$ per cent of ingot capacity． The unfilled order backlogs，instead of being reduced by recent heavy shipments（p．95），are as large as before and tend to become larger． Deliveries of certain products have fallen some－ what farther into the future．With defenst ${ }^{2}$ needs increasing and with the bulk of 1941 au－ tomobile requirements still to be purchased more extended deliveries by fall seem certain． Despite expectations，dealers are having no trouble in exporting No． 1 heavy melting steel under licenses（p．23）；they report new Japan－ ese orders．

Government armament awards continue to gain in volume and last week＇s list（pp．25－26） was impressive．General Motors Corp．and Chrysler Corp．have been

Arsenals on Three Shifts

 asked（ p .34 ）to operate two proposed，government－owned， aircraft cannon plants．The war department＇s six ord－ nance manufacturing arsenals（p．23）now are operating with three shifts．Canadian indus－ trial expansion for purposes of war（ p .27 ）is being accelerated．．．Anaconda Copper Mining Co．（p．23）will furnish 240,000 gross tons of concentrated manganese ore to the govern－ ment．．．A．B．Einig and Donald M．Laflin（p．34） have been appointed machine tool technicians of the national defense commission，under Mr． Knudsen．United States，using nearly 50 per cent of the world＇s virgin tin and producing virtually none，apparently（ p .21 ）is getting ready to have a tin smelting industry

Smelting

Tin in L．S． of its own；in the meantime no impending shortage of this strategic metal is seen．．． Senate labor commitee will begin hearings Aug． 13 （p．32）on the house amendments to the national labor relations
act．．．Hearings on the contemplated excess profits bill were begun last week（ p .24 ）before a joint committee of the house and senate．．． Finished steel exports in June comprised（p．40） 15.8 per cent of output．．．Scrap prices are up （p．94）for the second successive week．．．Newly arrived commission in New York（p．27）wants assistance in building a steel plant in Brazil．

In designing to produce failure the engineer＇s approach is entirely different than when he is interested in preventing failure．R．V．Suther－ land（p．46）discusses the

Design for Failure

 procedure followed in produc－ ing＂bursting disks＂．．．．By a new control system ingots at an eastern steel plant（p． 49）are maintained at soaking temperature with－ in plus or minus 5 degrees Fahr．．．．W．A． Sandberg（ p .50 ）describes the use of hydraulic jacks in aligning parts of huge tanks during field erection；the method permits turning the tanks for downhand welding．．．．F．A．Buldra （p．64）cites examples to show that large profits can be made through a systematic plan for sal－ vaging waste materials in manufacturing op－ erations．E．W．P．Smith（p．62）discusses design changes which reduce costs through utilizing more forming and less welding．．．．James Kniveton（p．70）discusses re－

Reducing Costs

 cent developments which make it possible to get better results with radiant heating units．．．．A new control sys－ tem（p．76）permits automatic correction of variations in the air－gas ratio of protective atmospheres used in bright annealing．．．．V． H．Ericson（p．80）shows how longer life of cutting tools more than compensates for the ex－ pense of giving them a higher surface finish．． ．．Modern in every detail（p．54）is a new porce－ lain enameling plant at Mansfield，O．．．．A new 15－ton mine－haulage locomotive（p．69）is only 26 inches high．
REJECTIONS CUT $2 / 3$

on difificull draw!

Heart of the newest Automatic Gear Shift is thisvacuum cylinder, a 4 -inch diameter cup, drawn to a $41 / 2$-inch depth. And the call is for 8000 parts per day.

Ordinary sheets caused tremendously high breakage rates. An acceptable rejection figure was fixed at three per cent. When Inland Hot Rolled Sheets were used, the breakage was brought down to an average of less than one per cent!

That kind of performance is nothing new with Inland Sheets. That's why manufacturers come to depend on Inland Sheets to reduce production costs. They do the job better. They cut waste to the bone. They help you keep output right on schedule. Inland metallurgists are available to work out similar economies for you. Write us today.

SHEETS • STRIP • TINPLATE • BARS • PLATES • FLDOR PLATES STrUCTURALS • PILIMG • RAILS • TRACK ACCESSORIES REINFORCING BARS

Production cost went down when Inland Hot Molled Sheets were used to form this vacuum cylinder.

1. First draw. Blank and cup.

2. Second draw. Draw to $41 / 2$ inches.

3. Trim flash.

4. Embossed, punched and drilled.

Building Up
 American Tin Smelting Industry.
 In National Defense Plan

Bolivian Ore, One of Chief Sources, Now Shipped to Britain, May
Come Here Direct-Nation Requires Half of World's Production, Produces Practically None-50 Per Cent of U.S. Consumption Used
In Making Tin Plate

NEW YORK
ALTHOUGH the United States normally accounts for nearly 50 per cent of the wo:ld's consumption of virgin tin-while producing little or none-no serious shortage of this strategic metal is in prospect.
Plans apparently are under way for establishing a full-fledged tin smelting industry in this country. In addition, the government sponsored Metals Reserve Co. has concluded arrangements (Stefi., July 29, p. 23) with the international tin cartel for $75,0 \mathrm{C} 0$ tons of tin at 50.00 c per pound, c.i.f. American ports, for national defense.
Position of the United States on tin is readily discernible by noting it used 70,460 gross tons out of the world total of 166,500 tons last year, while producing a mere 34 tons from virgin materials out of 183,800 tons. Control of the producing industry, in which United States had no part, was inaugurated approximately seven years ago and resulted in lifting tin prices from a low of around 18.50 c to more than 50.00 c .

Control by the International Tin committee, representing leading tin producing countries, including Malaya, Siam, Dutch East Indies, Bolivia and Nigeria, covers approximately 90 per cent of world producing capacity. Furthermore, about 43 per cent of the world's developed capacity is regulated under British political control and is the principal basis for the dominant position of Great Britain in the tin industry.
Dependence of the United States upon the outside world made it imperative, as a preliminary step in the national defense program, to set up reserves of tin as well as
other strategic materials such as manganese, chromium and rubber. The agreement signed with the International Tin committee provides for the purchase of 75,000 tons of metal within one year and as rapidly as it can be made available. The committee also agrees to maintain production until July 1, 1941, at 130 per cent of so-called standard tonnages which were fixed at 207,970 tons July 1, 1938, as the basis for controlling production.

The Metals Reserve Co. will release tin from its stock upon request for use by the United States government and to private consumers in event of a national emergency which in the opinion of the company requires such release. After three years the company will be free to

Charles B. Henderson
President of the RFC-sponsored Metals Reserve Co. He also is a director of the Reconstruction Finance Corp. and a former Unlted States senator from vevada.
liquidate its stocks lhrough sales to private consumers but at the rate of no more than 5000 tons per quarter.

Smelters in England, of course, account for a large part of the tin produced, but in the event that country is invaded it is believed deliveries could be maintained from plants in Malaya and Dutch East Indies, which now are the principal sources for the type of tin required in the United States. These plants are taxed to capacity since the ore from Dutch East Indies formerly treated by the large smelter in Arnhem, Holland, now is being diverted to them. Ore from Siam and French Indo-China also is smelted in Malaya. Production faclitles are being increased in the Belgian Congo to treat local ores formerly shipped to Hoboken, Belgium. The Congo interest already has an annual capacity of 10,000 to 12,000 tons.

The last complete investigation of the tin situation by a congressional committee brought forth the recommendation the United States should conduct a thorcugh prospecting of possible sources for tin in this country, as well as the establishment of a tin smelting industry and a government-flnanced research for substitutes.

As for tin supplies from domestic ore, prospects appear slim. Alaska supplied almost the entire output of 34 gross tens and it is indicated the present known properties will be exhausted within four or flve years. Small quantities of ore also have been produced in South Dakota, Montana and New Mexico.

For years Straits brands produced in Malaya have been preferred by users of tin plate in the United

States. Other grades, such as Dutch and English refined, are said to be suitable but Straits brands generally are specified.

Th: bureau of mines reports the tin plate trade purchased 41,492 tons of tin in 1939, of which 83 per cent or 34,410 tons was Straits, 10 per cent or 4170 tons English refined, and 3 per cent or 1167 tons Katanga (Belgium Congo). Banka tin accounted for 905 tons and Tulip for 545 . Both are Dutch brands. Chinese metal was sixth at 153 tons.
When tin was produced in this country from Bolivian ores at the time of the last war, most of it went into babbitt, solder and the like and comparatively little to the tin plate trade which now accounts for more than half of total used. Now, some in consumers at least regard Bolivian ore fully suitable for tin plate. Although the ore is high in arsenic and antimony, one large user points out that conversion into acceptable tin is simply a matter of good smelting practice. English tin smelted from Bolivian ore has been used in conjunction with Straits metal without difficulty although the former ran high in arsenic.

Fears that outside supplies might be cut off are linked with reports that the materials division of the national defense advisory commission already has held conferences with four leading metal producing companies working toward the erection of a tin smelting plant in the United States.

So far, it is reported, plans for such a smelter have not reached the formative stage. It is considered more likely that moves would be made in the direction of expanding small production facilities recently set up in the United States. Late in 1939 it was reperted that Phelps Dodge Corp, and the Ameriran Metal Co. Ltd. were establishing plants for treatment of Bolivlan and other available ores.

Large Ore Supp!y In Bolivia

At the same time it was said contracts had been concluded for importing several thousand tons of ore. From the amount of ore brought in so far, however, it is evident production has been small. It is understood that each of these plants has a capacity of about 50 tons monthly and is capable of producing metal acceptable to the tin plate industry.

Bolivia is one of the leading tin producing countries and would be the logical scurce for ore. In 1939, Bolivia accounted for production of 27,215 tons of tin compared with 55,590 tons for Malaya and 31,281 tons for Dutch East Indies. Bolivian production probably could be stepred up if nesessary as indleated by the
fact that it has been running below the permissible total set up under the cartel scheme.

Whether Bolivian ores can be made available in quantity, remains a question inasmuch as the 50 per cent of the properties involved are controlled by Patino Mines \& Enterprises Consolidated, closely affiliated with Consolidated Tin Smelters Ltd., large British refining interest.

"Still Cheaper in England"

Particularly significant is the statement made recently by Simon I. Patino, president, Patino Mines:
"Our company's tin, together with that of other companies in which I am personally interested, as well as practically all the high-grade concentrates produced in Bolivia, continues to be smelted in England, where in spite of increased costs caused principally by insurance against war risks, it is still cheaper than elsewhere to smelt and refine in. This only serves to emphasize the fact that in normal times tin smelting in England is far more economical than in any other center."

Despite the above statement, it is inclicated that Senor Patino, who also is Bolivian minister to France, sloortly will arrive in the United States for the express purpose of discussing erection of a smelter, in-
asmuch as shipment of ore to Eng. land may be interrupted by the war. Reports from Bolivia also indicate the government favors direct shipment of ore to the United States, thus short-circuiting the trip to Britain. In any event, it is believed ore supplies could be obtaired from independent mines.

The United States actually has produced no primary tin on a quantity basis since the period during and just after the World war. In 1916 the American Smelting \& Refining Co. placed a plant in operation at Perth Amboy, N. J., with a capacity of about 11,000 tons per year. The company employed a fire-refining method with a secondary electrolytic process for the production of high-grade metal.

American Smelting made a determined effort to establish itself as a tin smelter and refiner over a period of nine years from 1916 to 1924, producing 45,190 tons of marketable tin, of which 7452 tons was smelter production and 37,738 tons was first smelted and then e'ectrolytically refined.

According to Charles Earl, vice president, operations were profitable in 1916 and 1917 but were decidedly unprofitable during the remaining seven years due to inability to mect competition of foreign smelters by reason of higher labor costs. For

Tin Consumption in United States

American Bureau of Metal Statistics.

World Production of Tin

	1931	1932	1933	1934	1935	1936	1937	1938	1939
Malaya	54,908	29,742	24,904	34,059	45.955	66,806	77,542	43,247	55,945
Boliviat	30,739	20.584	14,725	20,634	27,168	24,074	25,024	25,371	27,185
Dutch E. I.t	27.480	15,683	14.406	18,678	24,719	31,684	39,825	21,024	31,281
Slamt	12.447	9,261	10,324	10,587	9,779	12,678	16,494	13,520	16,991
Nigerlat	7.772	4,263	3.762	4,996	7.029	9,634	10,468	7,305	10,855
China	6.236	7,125	8,200	7,878	9,500	10,500	10,500	11,000	11,540
Belgian Congo		689	1.956	4,356	6.118	7,302	9,024	7,471	9,778
Indla (Burmia	2.979	3.168	3,153	4,061	4,102	4,547	4,636	4,000	4,600
Australia	1,750	2.138	2810	2,986	3,130	3,028	3,253	3,500	3,435
Great Britain	598	1,337	1,543	1,999	2,050	2,099	1,987	2,010	1,890
Others	4,741	4,866	4,897	5,598	7.422	8,057	9,524	9,412	9,670
Totals	149,65)	98,856	90,680	115,832	146,972	180,409	208,277	147,860	183,170

[^0]the entire period the tin smelting operations resulted in a loss of $\$ 2$, 160,085 , and electrolytic refining in a loss of $\$ 292,705$.
In 1918, Williams, Harvey \& Co., a New York corporation, placed a smelter in eperation at Jamaica Bay on Long Island using Bolivian ore, with an annual output of about 12,000 tons of tin. Williams, Harvey \& Co. Ltd., of England, National Lead Co., New York, and the Patino interests were associated with this nroject. The plant is reported to have achieved a high degree of technical efficiency but finally was closed in 1923 when it was decided various interests could be served to better advantage by producing metallic tin in the plants of Williams, Harvey \& Co. in England. The English company now is associated with Consolidated Tin Smelters Inc., with plants both in England and Penang, Straits Settlement.

In case of an extreme emergency it is indicated production of metallic tin from secondary sources could he stepned uo sharply for a short time. Tin has been recovered from tin plate scrap for many years, the principal interests being the Metal \& Thermit Corp., New York, and the Vulcan Detinning Co., Sewaren, N. J. Last year detinners recovered 4200 tons, of which 3600 was in the form of metallic tin and 600 tons in chemicals.
Approximately 20,000 tons of secondary tin also is recovered annually from other sources such as babbitt and solder, but only about 70 per cent of this total is in the form of metallic tin, remainder being combined with ether metals or in the form of chemicals. It is indicated that if necessary a larger proportion of metallic tin could be turned out. Germany, which had access to some Bolivian ore before the war, is deriving most of lts tin requirements from secondary sources, it is said.

Tin Substitutes Sought

As mare than 50 per cent of the tin imported into the United States is consumed in the tin plate trade, technical developments affecting con. tainers are especially important. Considerable experimental work is under way looking toward the development of satisfactory substitutes for tin-coated steel for containers. So far no satisfactory substitute has been found for general adoption.

However, it appears a number of developments may have a cumulative effect on the consumption of tin, particularly in the event of an emergency.

At least two companies now are producing plate with the tin applied by electrodeposition which permits
coatings as light at 0.5 pound per base box compared with 1.5 pounds for standard plate, representing a saving of two-thirds. Scme of the large can companies have been using this light-coated plate for two years in the making of cans for such purposes as paints, oils and other liquids of a noncorrosive nature and dry-pack products, including drugs, cocoa, coffec, tea and the like. The same plate is said to have even wider application if the interiors of the containers are coated with lacquer.

It also is reported that lacquercoated steel may be used for many purposes, permitting the complete elimination of the tin under-coat. The steel is given a bright finish with tungsten carbide or other types of hard rolls and subsequently lacquered.

At least one of the can companies is producing beer containers fabricated from black plate and coated with a clear lacquer inside and al-uminum-base lacquer outside. Experiments also have been made with silver nickel and aluminum coatings. Germany is reported to be using the latter metal successfully.

Progress also has been made outside the tin plate field. As an example, Buick will use steel-backed sintered copper-nickel connecting rod bearings with a thin wearing surface of high lead-babbitt in its 1941 engines. Cadmium and copperlead bearings also are proving successful.
Substitutes are important, but at their present stage of development are far from solving the problem of tin supplies in case of an emergency. It is an essential metal in the manufacture of certain munitions and ordnance for the army and navy among which are a number of specific items as follows:
Army equipment-Machine guns, pistols, rifles, projectors, gun carriages, wagons, cars, fuse setters, adjustment and deflection boards, height and range finders, angle and observation instruments, repair kits, sound locators, gun predicators, time interval recorders, telescopes, tanks, trailers, tripods, trumpets, boilers and covers, dippers, refligerators, cameras, thermometers, compasses, tractors, helmets, band instruments, water bags, buckets, tableware, engines, batteries, tachometers, machine gun mounts.
Navy equipmenit--Engines, bronzes for journals, gun mounts, rods, pipes, bomb fuses, propeller shafts, radio condenser casings, condenser heads, binnacles, cables, condenser tubes, torpedo tubes, valves, food containers, bomb cases, electrical connections, generators, radio circuits, compasses.

In addition there are many other
products common to commercial manufacture, from containers on through a long list of items for defense purposes, all requiring tin.

MANGANESE ORE ORDERED FOR GOVERNMENT STOCK

Anaconda Copper Mining Co., Anaconda, Mont., has received contract to furnish 240,000 gross tons of concentrated manganese ore to Metals Reserve Co., a government corporation, delivery to be at the rate of 80,000 tons annually. The ore will come mainly from Emma mine in Butte, operated under lease by Anaconda but owned by Butte Copper \& Zinc Co. Arrangements have been made to ship the ore to government supply depots to establish a stock pile of manganese concentrates.

Anaconda will begin constructing immediately a $\$ 1,000,000$ smelting plant at Anaconda, and will be in production on the contract in six to nine months. The plant will have an annual capacity of approximately 100,000 tons of conerntrates.

Continue Exporting No. 1 Scrap; Japan Buys More

PHILADELPHIA团 While independent steel producers last week were preparing to petition the government to place all scrap exports under license control, dealers reported they had no difficulty in obtaining licenses to export No. 1 heavy melting, as covered in President Roosevelt's recent proclamation.
Japan has purchased several additional round lots, paying $\$ 18.50$ for No. 1 heavy melting, and $\$ 17.50$ for No. 2. The domestic market shows further strength.

An official definition of "No. 1 heavy melting scrap" makes it clear no other grade was intended to be included in license requirements. The definition was issued through the state department last week to collectors of customs. It is the same as that contained in a booklet on simplifed commersial practice published by the bureau of standards, department of commorce, entitled "Classification of Iron and Steel Scrap."
This booklet prepared in cooperation with representatives of the serap industry was issued originally in 1928, and the recommendations were reaffimed in October, 1935, and again in January this year. The definition follows:
"No 1 heavy melting steel scrap: Steel scrap L_{2}-inch and over in thickness, not over 18 inches in width, and not over 5 feet long. Individual pieces must be cut into such shape that they will be free from attach ments and will lie flat in a charging
box. Cut boiler plate must be practically clean and free from stay bolts and not over 3 feet long and lie reasonably flat in charging box. Smaller dimensions of plate scrap may be required upon mutual agreement between buver and seller
"May include structural shapes, angle bars and plates, steel castings, heavy chain, carbon tool steel, heavy forgings, forge butts and similar heavy material.
"This grade may also include new mashed pipe ends, original diameter 4 inches and over, thoroughly flattened, sheet bars, billets, blooms, rail ends, railroad steel, and wrought scrap, such as angles, splices, cou plers, knuckles, short rails, draw bars, cut cast-steel bolsters, coil and leaf springs (all coil springs "-inch or larger in diameter).
"Does not include needle or skeleton plate scrap, agricultural shapes,
annealing pots, boiler tubes, grate bars, cast iron, malleable iron, or curly or unwieldy pieces."

3.ธ26,000 TONS OF SCRAP CONSUMED IN JULY

- Domestic consumption of iron and steel scrap in July, estimated at $3,526,000$ gross tons by the Institute of Scrap Iron and Steel Inc., New York, practically equaled the 1940 monthly high of $3,581,000$ tons in January. In July, 1939, the melt was only $2,247,000$ tons.

Average monthly consumption thus far in 1940 has been $3,165,000$ tons, compared with $2,703,000$ tons in 1939, and $1,794,000$ tons in 1938. Indications are that 1940 consumption will be close to the prior record of $38,006,000$ tons, established in 1937.

Excess Profits Tax Expected To

Apply to (Dnly 70,000 Companies

WASHINGTON

Hearings on the excess profts tax bill were begun last weak before a joint committee of the house ways and means committee and the senate finance committee. The bill is expected to provide for five-year amortization and to repeal the Vin-son-Trammell act limiting profits on airplanes and naval vessels. It is understood the bill proposes to collect $\$ 300,000,000$ during the first year, and more in later years. Effort is being made to expedite passage, on urgent appeal from the national defense advisory committee.
Tax plan agreed upon by the ways and means subcommittee will apply to corporations alone, and only to about 70,000 of the nation's 475,000 corporations. Most of them will escape the heavy levy by exemption of the first $\$ 5000$ excess profts.

Alternative Plan Offered

Taxpayer would have the choice of two plans, one offered by experts of the joint congressional committee on internal revenue taxation and the other by the treasury.

Under the first alternative a corporation would pay the excess profts levy on those profts in excess of average profits for the base period 1936-1939 inclusive.

Under the second plan, offered by the treasury, a corporation would not have to pay excess profts taxes on earnings less than 6 per cent of the first $\$ 500,000$ of invested capital and 4 per cent of capital beyond that.

Aside from these minimum ex-
emptions of 6 and 4 per cent, the excess profts rates would apply to profits exceeding the average proft for the base period 1936-1939, if that average profit was not more than 10 per cent of capital. The new rates would apply to proflt above the 10 per cent level, irrespective of past carnings.

Rates which would be applicable to whichever of the two plans the taxpayer might choose begin at 25 per cent of the excess profits in the first bracket, are 30 per cent in the second, and 40 per cent after that.

Brackets are based on the amount of excess profits credit which is granted to the taxpayer. Excess profits not above 10 per cent of the excess profits credit are in the first bracket, those not above 20 per cent are in the second, and the balance are in the third.
"Immediate amendment of the tax law to allow companies to recover the cost of special plants and equipment needed to meet our military and naval needs and to prevent 'profteering' would remove a serious bottleneck now holding back progress in the defense program," it was stated last week by the National Association of Manufacturers.
H. W. Prentis Jr., president, transmitted the association's views to the members of the house committee. The statement continued:

Prompt passage of a nine-point cost-recovery amortization provision would encourage the erection of factories and machinery which must be built to satisfy urgent national defense needs although these new facilities would be entirely worth-
less at the end of the emergency period.

If the pending excess-profits tax cannot be hastened because of its complex nature, a sound amortization provision should be considered the first order of business and put into law at once. It is generally accepted that the recovery of capital losses on defense facilities and the tax upon excess profts will both apply to this year's earnings so that they need not necessarily be linked together in a single bill.
Since the very beginning of the national emergency, business men have made clear their objections to "profiteering." A new excess profts tax unless carefully drawn with due consideration for all the factors involved, might not necessarily prevent "profteering," and could seriously interfere with production..

An N. A. M. government finance subcommittee after careful study suggests as a necessary safeguard to companies who during recent depression years have suffered losses or had abnormally low earnings that an option be granted of computing excess profits on the basis of elther invested capital or prior earnings. Invested capital should take into consideration all actual capital used in the business, with proper protection glven to companies financing operations with borrowed funds.

INTEREST COST ALLOWED IN NAVY, AIRCRAFT CONTLACTS

Secretary of the Treasury Morgenthau last week announced a bureau of internal revenue ruling affecting the Vinson-Trammell act that will enable contractors to include as a cost the interest paid on money borrowed for the acquisition of special facilities in connection with contracts under the national defense program. The Vinson-Trammell act limits the profits on contracts and subcontracts for naval vessels, army and navy aircraft and portions thereof.

Ruling, covering circumstances not contemplated when the original regulations governing the act were issued, is expected to facilitate th? furnishing of capital and credit to industries desiring to participate in the defense program. It also will make it possible for small contractors to receive the same net profit on emergency orders for the war and navy departments as contlactors with ample liquid capital. Interest on working capital necessarily required to operate emergency facilities also will be allowed as a cost, with the rate limited in both cases to 4 per cent.

For the interest cost to be allowed, the bureau of internal revenue will require certification from the secretary of war or the secretary of the navy that the money has been borrowed to pur-
chase equipment or erect facilities necessary during the existence of the national emergency declared by the President on Sept. 8, and that the government will have priority in the use of such facilities through. out their life.

COMMERCLAL TREATY WITH RUSSLA RENEWED FOR YEAR

Commercial agreement between United States and Union of Sovlet Socialist Republics which became effective Aug. 6, 1937, and was twice renewed for successive periods of one year was again continued, last week, until Aug. 6, 1941.
As in previous agreements, the Soviet government stated its economic organizations intend to purchase during the next 12 months American goods to the value of at lease $\$ 40,000,000$. The agreement takes into account possibility various export restrictions imposed by United States in carrying out its national defense program may make it impossible for these organiza. tions to carry out their intentions.
United States undertakes to continue according Soviet Union commerce unconditional most-favorednation treatment, with a reservation in respect to coal, deemed neces-
sary because of coal-tax provisions in the revenue act of 1932 .

Pittsburgh Coke \& Iron

Increases Ore Holdings

- Pittsburgh Coke \& Iron Co., Pittsburgh, has acquired a controling intenest in the Davidson Ore Mining Co., Buffalo, which has three mines in the Iron River area of the Menominee range. The Davidson company also owns a minority interest in the Struthers Iron \& Steel Co., Struthers, 0. Pittsburgh Coke \& Iron Co. will have one director on the Struthers board of five members. The Davidson mines are underground and have produced 300,000 to 400,000 tons per season in years of heavy demand. In 1939 output was 50,784 tons.

Evergieen Mines Co., Crosby, Minn., has leased the Greenway mine on the Mesabi range, near Grand Rapids, Minn., owned by the Greenway Mining Co., P. H. Nelson, Duluth, president. Dewatering and further stripping will be done before actual production is started. Initial shipments will be ditect but much of the ore will be benefliciated. Available ore in the mine is estimated at $1,679,979$ tons.

Contracts Awarded by Navy and
 War Departments

- United States navy department, bureau of supplies and accounts, last week awarded the following contracts:

Tjmken Holler Bearing Co., Steel and Tube division, Canton, O., alloy steel bar, \$40,939.63.

Natlonal Tube Co., Washington, alloy steel tubing, $\$ 28,415.73$.

Unlted Alreraft Corp., Pratt \& Whitney Alrcraft division, East Hartford, Conn., alrcraft engine parts, $\$ 11,94 \%$.

Babcock \& Wllcox Co., Barberton. U, bladed alloy cones, $\$ 16,103$.

Robins Dry Dock \& Repair Co., New York, conversion of U. S. S. Laramie, $\$ 656,460$.

Ylckers Inc., Detrolt, hydraulie pumps, \$185,754.80.
Buda Co., Washinglon. deesel engines, $\$ 261.938 .50$.

National Supply Co.. Holmesburg, Philadelphla, marine diesel engine, \$91:25. Aluminum Co. of America, Washingtun, pistons, $\$ 5316.98$
Latrobe Electrle Steel Co., New York, tool sterl, $\$ 56,605.75$.
Great Lakes Steel Curp., Ecorse, Detrolt, sheet steel, \$5257.74.
American Rolling Mill Co., Mhdletown. O., sheet steel, \$5467.51.

Intand Steel Co., Chtcago, sheet steel, \$39,579.78.
Weirton Steel Co., Weirton, W. Va.. sheet steel, $\$ 17,840.51$.
Moris, Wheeler \& Co. Inc., Philauejphia, sheet steel, $\$ 120,514,31$.
Cructble Steel Co. of America, New rork, tool steel, $\$ 45,592.04$.

Imperial Electric Cu., Akron, O., motor-generator sets, $\$ 10,764$.

Kollsman Instrument ditision of Square D Co., Elmhurst, N. Y., horsepower meters, $\$ 6000$.
E. I. du Pont de Nemours \& Co.. Smokeless Powder division Wilminiton, Del., nitric acld equipment, \$412.472.

Foundry Equipment Co.. Cleveland, core and mold ovens, $\$ 26,400$.
Carnegle-Illinals Steel Corp., Washington, steel, $\$ 135,980.87$.

Jessop Steel Co., WashIngton. Pa., steel, $\$ 13,060.21$

Carnegle-Inlnols Steel Corp., Washing ton, steel, \$76,078.52.
Timken Roller Bearing Co., Steel \& Tube division Canton, O., steel, \$18,730.60. American [rolling Mill Co., Mlddetown, O., steel, $\$ 60,988.39$.

Ollver Farm Equipment Sales Co. Chicago, tractors, \$5032.
C-O-Two Flre Equlpment Co., Newark, N. J., fire extingulshers, $\$ 8435.18$.

Monarch Machine Tool Co., Sldney, U. engines lathes, $\$ 6478$.

Aldrich Pump Co., Allentown, Pa., centrifugal pumps, \$6691.
Ajax Mfg. Co.. Cleveland, rorging, bolt and rivet machines, $\$ 21,768$.

Ltonel Corp. New York, compensating binnacles, $\$ 15,000$.

Atlas Imperial Dlesel Englne Co., Chicago, generator unlt \$9824.01.

American Laundry Machinery Co. Cinclnnati, single geared washers $\$ 28,489$

Following contracts were awarded by bureau of yards and docks, navy department:

Arundel Corp. and Consolidated Eingl-
neering Co., Baltimure, aviation fackities at naval air station, San Juan, P. R., and Charlotte Amalie, V. I., $\$ 3,272,040$.

Hawallan Dredging Co., Ltd., Raymond Concrete Plle Co. and Turner Construe tion Co., aviation faclittles at naval ajr station, M1dway Island, \$1.337,500
Slems Spokane Co., Johnson, Drake \& Plper, Inc., and Puget Sound Hridge \& Dredging Co., aviation faciltles at naval air stations, Kodiak, Alaska, And Unataska, Alaskil, $\$ 4,305,000$.
Lee T. Turner, Washington, plant addition to Washington navy yard, $\$ 95.676$
Two Ar Compressors at navy yard. New York, to Hardle-Tynes Mrg. Co., Birmingham, Ala., \$47,300.

Boller repairs and plping at naval Hospital, Washington, to Continental Contracting Co., Fort Denge, Inwit, $\$ 7550$.

Navy department also awarded these contracts:

Improvement of power phants at navy yards, Phlladelphia, and Charleston, S. C and Marine Barracks, Parris Island, S. C. to United Engineers and Construe tors Inc., Philadelphia, $\$ 1,260,000$.

Torpedo shop and storage al nuval mine depot, Yorktown, Va., to U. T. Giraham \& Co. Ine., Richmond, Va., $\$ 68.700$.

United States war department last week awarded the following contracts:

Ordmance department IWards
White Motor Co., Cleveland, O., automotive equipment, $\$ 5,491,188$.

Barnard Avlation Equipment Co. Inc., Ashley, Pa., ammunition accessories, $\$ 933,550$.
Bendix Avlation Corp., Elmira, N. Y.. aiscraft weapons, $\$ 2,545,0(4)$.

Aetna-Standard Engineering Co., Youngstown, O., gun carriages, \$1,703,050.24.
Doehler Dle Casting Co. Pottstown, Pa, ammunition parts, $\$ 141,946.70$.

Pollak Mfr. Co., Arlington, N. J., ammunition parts, $\$ 955,350$.
Stewart-Warner Corp.. Chicago, antmunltion parts, \$506,001.60.
Sarety Car Heating \& Lighting Co., Inc., New York, military equipment $\$ 129,396.09$.
Bullders Iron Foundry, Irovidence, R. I., milltary equipment, $\$ 29,501$.

Piarish Fressed steel Co., Reading, 以', artillery carriages, $\$ 1,427,296$.

American Brass Co., Waterbury, Conn. metal for cartrldge cases, $\$ 60,424.40$.
Stewart-Warner Corp., Chleaso, ammunition parts, $\$ 865,359.44$.

Corps of Engineers Awards

General Electrie Co., Schenectady, N. X., anti-aircraft equipment. $\$ 4,671,090$. Amertcan Car \& Foundry Co., New York, ponton caulpment, \$9124.47.
Electric Wheel Co., Quincy, H1, parts for trallers, $\$ 84^{\prime 27.20}$.
Flour City Ornamental Iron Co., Minne apolls, parts for footbridges, $\$ 9143.09$.
Amerlcan Britge Co., Ambridge. Pu., lield fortilleation equipment. sil,592.

Virginia Eridge Co., Roanoke, Va. parts for loading bridges, $\$ 20,056$.
Wood Roadmixer Co., Cheyenne, Wyo. road construction equipment, \$8964.

American Car \& Foundry Co., New York, ponton equipment, $\$ 17.15 \%$.

Ens!gn-Blekford Co., Simstury, Conn. demolition equipment, 534,780 .

Evinrude Motors, Milwaukee, motors, $\$ 29,246.44$.
CInclnnati Tool Co.. Cincinnati, ponon equipment, $\$ 15,412.07$.
Sperry Gyroscope Co. Inc., Brookisn, N. Y.. military equipment, $\$ 7.060,650$.

Ingersoli-Rand Co., Washington, circular saws, \$91,938.

La Crosse Traller \& Equipment Co.

Ar Corps Awards

Leece-Naville Co.s Cleveland, - alrplane parts, $\$ 217,420$.
reepuble Aviation Corp. Farmingdale,
L. I.. N. Y., airplane parts, $\$ 114,636.84$.

Hell Co., Mhwaukec, trallers, $\$ 235,980$.
Ploneer Instrument division Bendix Avhation Corp., Bendix, N. J., alrplane parts. ${ }^{\text {\$ }} 24,567$.

Simaal Coriy Awards

Stramberg-Carison Telephone Mrg. Co, Robchester, N. Y., fleld telephones, ST: $38,000$.
Graybar Electre Co., New York, Held telephones, $\$ 162,000$.

Circle Wire \& Cable Co., Maspeth. I. I., N. Y., wire, $\$ 2 \overline{2} 4,966$.

Phelps Dodge Copper Products Co., New York, wlre, \$183,413.31.

Graybar Filectric Co. Inc., New York, wire, \$382,800.

Muter Vehicle Awards

General Motors Corp., Chevrolet division, Detrolt. trucks, $\$ 33,910.8 \%$.
Yellow Truck \& Coach Mrg. Co., I'ontlac, Milch., trucks, $\$ 15,254,786.04$

Quartermanster Corps Awards

J. B. Bertrand, Inc, and Peter Klewit Sons Co., Denver, runway for Lowry Field, Colo., $\$ 32,966$
A. T. Berkett, Oakland, Callf, radlo operations building for MeChord Field. Wash., \$9400.
Industral Heating \& E:ngineering Co, Milwaukee, air corps oll storage and Ulspensing system for Chanute Fleld, 111., $\$ 9480$.

Plttsburgh-Des Molnes Steel Co., New York, elevated steel tank for Westover Field, Mass., $\$ 35,800$
Moore Electric Co., Los Angeles, street lighting system for Hill Field, Ulah, $\$ 118,786$.

Foster \& Crefghton Co. Inc., Nashville. Tenn., Supply bullding and engine renair shop for Southeast Air Depot, Tampa, Fla., $\$ 1,433,400$.

Watt and Sinclair of Florida Ine., Palm Beach, Fla., temporary buildings at Orlando Airport, Fla., 8155,130 .
Ward Construction Co., Tampa, Fla., barracks and mess buldings at Orlando Alrport, Fla., \$137,700.

Douglas-Loeffler Co., Detrolt, gasoline fueling system at Selfridge Fleld, Mich., $\$ 76,370$.

Vulcanlzed Rubber Co., New York, safety razors, $\$ 20,760$.

Medical Debartment Awards

Westinghouse X-Ray Co. Inc., Long Island City: N. Y., X-ray machines, $\$ 3570$.
Kelley-Koett Mfg. Co. Inc., Washington, radiographle tluoroscopic machines, $\$ 7400$.

American Sterllizer Co., New York, sterllizing equipment. \$5317.50.
Royal Typewriter Co. Inc., Washington, typewriters, $\$ 12,481$.
Servel Inc. New Xork retrigerators, $\$ 7300.80$.
Standard Surgical Instruments Co., New York, suralcal instruments, \$7930. William Lansbein \& Bros., Brooklyn. N. Y., operating knives, $\$ 7950$.

Chemical Warfare Gervice Awards

Wlekwire Spencer Steel Co., New York, tinplate, $\$ 26,828$.
N. Y. Thread Grinding Corp., New York, gisges, $\$ 7746$.

Ingersoll Rand Co., Phlladelphla, alr conipressors, $\$ 2953.75$.
lhhlip F. Lenderking, Baltimore, ventilating systems, $\$ 1640$,

Chas, Fisher Spring Co., Brooklyn, N. X., wire clamps, $\$ 1100$.

Aluminum Cu. of America, WashIngton, supplies. \$1037.50.

Beckley Perforating Co., Garwood, N. J., perforated inplate, $\$ 3750$.

Purchases Under Walsh-Healey Aet
(In week ended July 2\%) Iron and Steel Products

Western Pipe \& Steel Co. of Callf., San Francisco
Carnegle-Illinols Steel Corp., Washington
Duchler Dle Casting Co., Pottstown, Pa.
H. H. Robertson Co., Pittsburgh

Parker Appllance Co., Cleveland
Seattle Chain is Mig. Co., Seattle
sichay Co., Pitusburgh
Stanley Works, New Britain, Conn.
Welker Mig. Co., Cromwell, Conn.
Independent Iron Works Ltd., Oakland, Calif.
American Cast Iron Plpe Co., Birmingham, Ala.
Tayior-Davis Ine., Philadelphia
Leach Co., Oshkosh. Wise.
Facitle Gear \& Tool Works inc., Los Angeles
Charles Mundt \& Sons, Jersey City, N. J.
Parrish Pressed Stecl Co., Reading, Pa.
Colson Corp., Elyria, 0.
Gllbert \& Barker Mifg. Co., Springlleld, Mass. Otis Elevator Co., Buffalo
Willam Serimgcour, Washington
Keystone Steel \& Wire Co., Peorla, Ill.
Truscon Steel Co., Los Angeles
Carnegle-lllinois Steel Corp., Pittsburgh
U. S. Sterl Export Co., Washington
S. Bliekman Ine., Werhawken, N. J.

Total
Commorlity
Runss
Bar steel
Angletubes
Skylight material
Fittings
Chains, flttings
Chains, bittings
Valve guards
Strap buckles
Steel
Cust-Iron plpe
Relnforcing bars
freel unit
Gate holsts
Tinplate
Towing bars
Stand assemblles
Water chests
Steel castings
Seaplane equipment
Nalls, wire
Steel
Steel
Amount
$\$ 109,742.50$
76.091.3:
$82,660.00$
10,649.00
19,257.00
$19,8201,2^{2}$
123,728.15
16,000.00
24,750.00
$10,469.85$
18,185,00
-9,432.36
378,150.c6
98, 976. 00
32,564.04
11,772.24
33,281.25
28,685.84

- 11,247.91)

25,479.16
-15,340.00

Coffe urns, tables $i 35,7$ hī. 18
\$1,240,024.2\%

Nonferrous Metals and Alloys

International Nickel Co. Inc., New York
Nickel alloy
\$31,800.00
Bohn Aluminum \& Brass Corp., Detrolt
Aluminum
Rlverside Metal Co., RIverside, N. J.
One cent blanks
Copper
:116,345.5.)
Kennecott Sales Corp., New York
Revere Copper \& Brass Inc., Baltimore
32,250.00
Phelps Dodse Copper Products Corp., New York
Condenser tubes $11,2,42.69$
Amerlan Brass Co., Waterbury, Conn.
Gllding metal bands 33,966.00
American-LaFrance-Foamite Corp., Fimira, N. Y.
Fire extinguishers tincletinite

Fyr-Fyter Co., Dayton, O.
General Fire Truck Corp., Detroit
Phister Mrg. Co., New York
Pserene Mfg. Co., Newark, N. J.
Fire extinguishers Inclellnite

Aluminum Gonas Mirg. Co., Manitowoc Wisc
Chase Beass \& Copper Co. Inc., Waterbury, Conn
Scovill Mrg. Co., Waterbury, Conn
American Metal Co, Ltd., New York
Internatlonill Silver Co., New York
Bridgeport Bass Co., Bridgeport. Conn.
Extingulshers
Indelinite
Fire extingulshers Indetnle
Fire extinguishers indelinite
Aluminum pitchers $21,170.04$
Brass 118,417.80
Cartridge cases $\quad 115,744.16$
Copper $\quad 33,150.00$
Silver-plated ware $\quad 86,676.16$
Citring
Cartridge cases
554, $9(6) .90$
Total
$\$ 1,193,1690,69$

Machinery and Other Equipment

Fairbanks, Morse \& Co., Chleago
Ingersoll-Rand Co., New York
Peter Peff, Superior Alr Products Co., Newark, N. J. Gardner Denver Co., Wiashington
Tobe Deutschmann Corp., Canton, Mass,
Allis-Chalmers Mig. Co., Milwaukee
Bay City Shovels Inc.. Bay City, Mich.
Caterpllar Tractor Co., Peoria. Ill.
Gallon Iron Works \& Mifg. Co., Gation, O.
Gar Wood Industrles inc., Detroit
International Harvester Co. Ine., Washington
Caterpillar Tractor Co., Peorla, Ill.
Worthington Pump \& Machinery Corp., Kansas City, Mo.
Kearney \& Trecker Corp., Milwaukee
E. C. Brown Co., Rochester. Ni, Y.

Ex-Cell-O Corp., Detro:t
Swind Machinery Co., Phlladelphis
Nlles-Bement-Pond Co., Pratt \& Whitney division West Hartford, Conn.
Heald Machine Co., Worcester, Mass
Cinclnnatl Millimg Machine \& Cincinnatl Grinders Inc Chelnnati
Kingsbury Machine Tool Corp., Keene, N. II.,
Erown \& Sharpe Mrg. Co., Frovidence, R. 1.
E. C. Fuller Co., New York

Leland-Gifford Co., Worcester. Mass.
Austin-Hastines Co. Inc., Cambridge, Mass.
Browning Crane \& Shovel Co., Cleveland
Jones \&e Lamson Machine Co., Springlleld, Via.
Falrbanks, Morse \& Co.. Chicago
Austin-Hastings Co. Inc., Cambridge, Mass.
Total
Grand Total

. $\$ 1,435,350 .(0)$	
Pneumatic tools	tooks 36.877.27
Oxygen equipment	ulpment 12,8880.(0)
Compressors	s 22,061.14
Flltering equipment	quipment 2-1,152.00
Tractors	44,381.25
Machlners parts	parts inderinite
Machinery parts	parts Indetinite
Machinery parts	parts tindefinite
Machlnery parts	parts tinderinile
Tractors	50,021.22
Tractors	28,356.10
Air compressors	essors 10.081.001
Milling machines	achines $\quad 51,160.60$
Demustardizing apparatus	l2lng $63,470.00$ 180
Shell turning mach.	ng mach. 68,047. 56
Planer	19,962. (0)
Drills, lathes	es 162,550.00
Cyllnder grinders	rinders $59,280.00$
slliling machines	achines 128,056.101
Machines	20,799.(0)
Billing machines	achines $107,325.143$
Sewing machines	chines 67,357.50
Dritling machines	achlnes $\quad 25,951,(x)$
Planer-shapers	pers $22,862.881$
Cranes	199,200.011
Shell turning mach	ng mach. 41,461.301
Propelling machlnery	ma- 2.850,461.00
Planers	51,837.00
	$\begin{aligned} & \$ 5,603,939.71 \\ & \$ 8,037,624,12 \end{aligned}$

*Fstimated. Purchases to be made when und if necded.

Camada To Adil $940.000,000$ to

 War Ilan Constrinction Womek

 War Ilan Constrinction Womek}

TORONTO
E EXPENDITURES made or author:zed for new plants or plant extensions for manufacture of war materials in Canada now total $\$ 130$, 000,000 , according to C. D. Howe, minister of munitions and supplies. His department is planning additisnal construction work to cost $\$ 40$,600,000 . It estimates that when the $\$ 170,000,000$ construction program is completed facilities will have been created for an annual production of mor? than $\$ 300,000,000$ worth of war materials.

At end of March, capital cost of plant construction in Canada had been assumed by 30 companies. By end of June some 50 new Canadian plants or extensions were being built on behalf of the two governments. In July, work was started on several more plants.

Canada's aluminum production, now 100,000 net tons annually, will be raised to 180,000 tons by plant additions under way.

Brass output is to be increased by a $\$ 12,000,000$ plant expansion at Montreal. To fabricate aluminum into shests and shapes, $\$ 20,000,000$ is being spent.

A government sponsored company which provides machine tools purchased $\$ 1,300,000$ worth of such equipment on its own account and $\$ 15,000,000$ for government contrac tors last month.

Orders for 3200 planes costing $\$ 110,000,000$ have been placed with eight Canadian companies. Output of airplanes in Canada early next year is expected to be at the rate of 360 per month.
Orders for ammunition of all types, including parts, total $\$ 70,000$, 000.

Nova Scotia Steel \& Coal Co., New Glasgow, N. S., has received an order from the British purchasing com mission for 100,000 shells. Four to six months will be required to install machinery and make alterations for their production.

Department of munitions and supply, Ottawa, last week placed 1295 orders totaling $\$ 14,941,292$. Most important contract awarded during the week was to Jacobs Aircraft Engine Co., Pottstown, Pa., totaling \$7,941,120. Contracts awarded to Canadian companles were as follows:
Mechanleal transport: George W. Reed \& Co. Ltd., Montreal, s183,000; Eastern Steel Protucts Litd., Montreal, $\$ 65,120$ Laurentide Equipment Co. L.td., Montreal, \$18,154: Walter Ktude \& Co. of Canada Ltti., Muntreal, \$14,793; Dominion Rubber Co. Lidd, Ottawa, 838,442 ; W. D. Beath \& Son Letd., Toronto, $\$ 82,632$; Dunlop Tire \& Rubber Goods Co. Lad., Toronto, $\$ 337.045$:

Goodyear Tire \& Rubber Co. of Canada Ltd., Toronto, $\$ 799,772$; Massey-Hurris Co. Ltd., Toronto, $\$ 122,590$; Firestone Tire \& Rubber Co. of Canada Ltd., Hamilton, \$812,500; Cockshutt Plow Co. LidI.. Brantford, Ont., $\$ 16,500$; Gar Wood Industries of Canudn Led., Windsor, Ont., $\$ 39,111$: Gotfredson Ltd., WIndsor, $\$ 58,125$; Kelsey Wheel Co. Ltd., Windsor, $\$ 312,233$.

Aircraft supplies: Jacobs Alrcraft Engine Co., Pottstown, P'a., $\$ 7,941,120$; Ir vin Air Chute Lid., Fort Erie, Ont., s184.287; Fleet Alreraft Lid., Fort Erle, \$23,222 : Nathonal Steel Car Corp. Ltd., Malton, Ont., $\$ 20,871$; Coulter Copper \& Brass Co. Lid., Toronto, $\$ 27,966$: De Haviland Aircraft of Canada Letd., Toronto, $\$ 41,940$; G. H. Wood \& Co. Lid., Toronto, $\$ 7250$; MacDonnld Bros. Alreraft L.td. Ottawa, 21,485

Electrichl equimmont: Canada Wire \& Cable Co. Ltd., Montreal, $\mathbf{5 6 7 . 7 4 6}$; Canadian National Telegraph Co. Litd., Montreal, $\$ 7150$; Canadian General Flectric Co. Litd., Ottawa, \$31.860: Northern Electrte Co. Lid., Ottawa, $\$ 29,220$; A. Sheppard, Ottawa, 542,336; Federal Wire \& Cable Co. Lid., Guelph, Ont., $\$ 7128$.

Miscellaneous: Ottawa Car \& Alreraft Ltd. Oitawa, $\$ 6712$; J. F. Williamson Itd. Saint John, N. B., \$15,056: Canada Car \& Foundry Co. Ltd., Montreal, \$8570: Dominton Rubber Co. Ltd., Ottawa, \$48,250: General Steel Wares Lid., Ottawa, $\$ 7523$; RCA Victor Co. Ltd., Ottawa $\$ 22,680$; Mil ner Rubber Co. Litd., Granby, Que., \$48, 250; Bentty Bros. Lidi., Fergus, Ont., st2.680; Canadian Bufralo sled Co. Litd. Preston, Ont., $\$ 7560$; St. John Dry Dock \& Shipbuilding Co., Saint John, N. B., \$10.356; Clarke Stermship Co. Ltd., Montreal, $\$ 19,412$; W. D. Beath \& Son Lid., Toronto, $\$ 6014$.

Munitions: Aluminum Co. of Canada Ltd. Montreal, \$111,300; Consolidated Mining \& Smeiting Co, of Canata Latd. Montreal. $\$ 276,768$

Brazilian Steelworks Commission Arrives

(A commission from Brazil seeking financial and technical assistance to establish a steelworks in that country, arrived in New York last week. United States' Export. Import bank, as reported in Steel, Aug. 5, p. 32 , authorized a $\$ 10,000$. 000 loan to be used for purchase of equipment in America for the plant.

The plant is to have an annual ingot capacity of approximately 300,000 tons. Fin'shed stiel output is to be devoted mainly to certain basic products, particularly structural shapes,
Heading the commission's technical corps is Col. Edmundo de Macedo Soares e Silva, who expects to spend about three months studying American enginsering and production methods. He plans to return with a corps of technical experts to
in establishing the plant. Presi pof the edfmission is Dr. GuilherméGuinle, at leading fydustrial ist and Capancier. Another member is Dr. Ary F_{y}. Torin, gn induggal
engineer. Commission mephers polat out that Braziy possesses naturizl resources essemtal to Csteel intlus try, including oroore, eoz, limestone and manganasc.
they say, is hematije continpog
upwards of 62 per cent iron. Cord? munication with sources of coal is. possible through rail and water transportation and manganese deposits are located close to the iron ore bodies, several of which are 350 miles or less from the coast.

Recommends Specific Job Training Program

A Industry, needing more trained workers to expedite the national defense program, must teach many thousands how to perform one task on one machine, according to George T. Trundle Jr., president, Trundle Enginecring Co., Cleveland. There is no time, he pointed out in an article published by the Association of Consulting Management Engineers Inc., New York, to make highly skil!ed mechanics of all new workers.

With proper instruction, Mr. Trun dle continued, four to six weeks' training is sufficient. Declaring men can't be trained in classrooms, he advocated direct learning, on the job, from $m=n$ skilled in machine operation and capable of teaching others.
Mr. Trundle declared false the general assumption we cannot even start a broad defense production program without vast cuantlics of new machines. There are, he asserted, thousands of machines now idle. Many are old, but may be adapted to single-purpose production required by national defense. Others, he said, could be easily rebuilt or repaired.

Rebuilding of Follansbee Plant Nears Completion

E Construction work on the $\$ 1,270$, 000 modernization program of Follansbee Stcel Corp., Pittsburgh, preparatory to installation of equipment is nearing completion, accord ing to John Follansbce, chairman.
"Revamping of the company's old open hearth building at Follansbee, W. Va., into a modern 63×168-foot brick, glass, and steel structure for housing two new cold-reducing mills has been completed. Foundations for one new mill are already installed, and those for the second mill will be completed this week," Mr. Follansbee said.

Iron and Steel Exports in First

Half Increase 200 Per Cent

- IRON and steel exports, serap excluded, reached new heights in June with shipments of 617,678 gross tons, valued at $\$ 38,794,157$, according to the metals and minerals division, department of commerce. They were more than 30 per cent larger than the May total, 471,481 tons, valued at $\$ 31,217,379$, and three times as great as those of June, 1939-189,968 tons, valued at \$13,789,887.

For the first half, 1940 exports were $2,770,614$ tons, valued at $\$ 197$,970,212 , compared with 923,275 tons, valued at $\$ 70,254,297$ in same period last year, tonnage up 200 per cent.

Exports to Europe, North and Central America, the West Indies and the Far East were larger in Junc than in May but slight losses were shown in trade with South America and Arica. Shipments to Europe, retlecting a marked rise in exports to the United Kingdom, rose from 192,744 tons in May to 262,007 tons in June; trade with North and Central America increased to 119,420 tons from 80,812 tons and exports to the Far East totaled 112,609 tons, compared with 69,338 tons in May. Decrease of 2100 tons in shipments to South Amsrica, 100,580 tons in June against 102,683 tons in May, and the 2900 tons reduction in exports to Africa, 23,062 tons in June, 25,904 tons in May, were too small to indicate a trend.

United Kingdom 1.eads

Non-alloy steel ingots were the largest item in point of tonnage, 206,403 tons, of which 178,641 tons went to the United Kingdom, 12,781 tons to Canada and 10,291 tons to Japan. Second in volume was the 48,852 -ton trade in non-alloy black sheets, Canada taking 20,619 tons, France 8246 tons and China 3023 tons. Tin plate exports totaled 33,386 tons, Argentina taking 4894 tuns, Brazil 3585 tons, China 3174 tons and Japan 3120 tons.

The United Kingdom was the largest market in June, its purchases totaling 231,094 tons, with Canada second, 90,421 tons, Argentina third with 38,540 tons, China fourth with 27,129 tons and Japan fifth with 26,668 tons. Each of these markets took more tonnage in June than in May.
Scrap exports, 318,369 tons, valued at $\$ 5,261,321$, were slightly larger than the 312,483 tons, valued at $\$ 5,199,424$, exported in May but were far bolow the June, 1939, total of 398,888 tons, valued at $\$ 5,692$,273. Cumulative scrap exports for six months, $1,481,105$ tons, valued at
$\$ 25,128,578$, were substantially less than in the comparable period in $1939,1,788,752$ tons, valued at $\$ 26$,262,850 . Of the June, 1940, iron and steel scrap exports, 317,202 tons, the United Kingdom received 155,364 tons, Japan 56,766 tons and Canada 55,317 tons.

First half scrap exports include 459,449 tons to the United Kingdom, compared with 154,401 tons in the like 1939 period. Japan, second largest market, took 415,016 tons, compared with $1,039,257$ in first half, 1939. Italy received 320,923 tons in the first six months this year, compared with 274,843 in the like period in 1939.

UNTED STATEA EXPORTS OF IRON			
			through June
Articles	19410	1940	1940
Ferromanganese and splegeleisen	777	3,4.1	10,097
Other lerroalloys	3.1087	759	5.857
Ingots, bloums, etc.:			
Not containing alloy	206,403	129,3	0
Alloy, incl. statitess	9,525	3,940	18,208
teel bars, cold 1 n .	2.815	3,210	$\because 1,562$
bars, fron	1,363	471	8.360
Other steel bars:			
Not contalning	29,4i3	,901	. 421
Stainless steel	33	156	324)
Alloy, not stal	3,006	2,805	14.105
Ire rods	-,036	16.799	03.184
Buller plate	754	802	3.512
Other plates, nut fab.:			
Not containing alloy	48.551	716	655
Stainless steel	107	25	236
Alloy, not statn	125	301	1.344
Skelp. iron or stee	11,290	4.799	31,421
Sheets, ealv, iron	1,102	847	4.844
Sheets, galy. steel	13,200	961	4,828
Sheets, "black" steel:			
Not containing alloy	48,852	31.9ㅆㅕㅢ	226.507
Stainless steel	151		982
Alloy, not stain	509	308	3.58*
Sheets, black irun	2.239	1,839	6,852
Strip steel, cold-rolled: 4.217 3.645 2.4 .57			
Not containing alluy	, 317	645	. 574
Stainless steel	49	41	321
Alloy, not stalntess	: 5	$\underline{29}$	
Strlp steel, hot-rolled:			
Not contalning alloy	10,1228	8,560	3. 468
Stainless steel			
Alloy, not stainless	53		297
Tin plate, tagzers' in	33,336	(2).537	519
Terne plate fincluding			
long ternes)	688	727	3,125
Tanks, except lined	2.516	1.477	14.194
apes, not fabricated	26.777	15,766	106,695
Shapes, Pebricated	9,12:4	6,650)	38,721
Plates, fabricated	1,560	1.063	8,862
Metal lath	31	228	51
Frames and sa	59	373	909
Sheet piling	3,105	1,009	6,870
Rails, 60 lbs .	2.227	11.589	40,248
Ralls, under 601	$\underline{2.635}$	4.100	11.924
alts, relaying	180	1,182	6,078
Rail fastenings	129	1.333	4,85?
Switches, frogs, er	135)	169	1,979
Rairroad spikesRalload bolts, nuts,			
etc.	187	.2937	1.255 0,331
Fipe:			
Seamless casing andoll Ilne........7,08; 11,108			
Do., welded	1.040	1,47?	19,703
Seamless bl	3,455	. 05	
Pipe fitings:			
Mall. Iron screwed	306	H21	4 L
Cast -iron screwed	:69	239	1.524
Plpe and fittings for:			
Cast-Iran pressure.	5.727	9,74;	7.2
Cast-Iron soll	1.513	1.75:2	i, \%

U. S. FOIREIGN TRADE IN IRON AND STEEI, INCLUDING SCRAP

E June farm equipment exports were valued at $\$ 7,179,482$, compared with $\$ 9,555,833$ in May, a decrease of approximately 25 per cent, due mainly to seasonal influences. In June, 1939, the exports were $\$ 7,334$, 077. According to the machinery division, department of commerce, tillage implements were exported to the value of $\$ 788,038$, compared with $\$ 958,004$ in May and $\$ 550,760$ in June, 1939.

Tractor exports in June were valued at $\$ 4,414,809$, in May $\$ 7,139,935$ and in June, last year, $\$ 4,387,011$.

|PIB(1) UCTICN...

Sieady

- STEELWORKS operations last week held unchanged at 90 per cent of capacity. Three districts advanced, six had fractional losses and three held the preceding week's rate. A year ago the rate was 62 per cent; two years ago, 40 per cent.

Defroit-Repair work on two open hearths caused a decline of 6 points to 93 per cent.
St. Iouis-Unchanged at 62 垠 per cent. An additional open hearth this week will raise the rate to 65 per cent.
Cleveland-Rose $4 / 2$ points to 85 per cent on small gains by all producers.
Cincinnati-Declined 3 points to 78 per cent, with an upturn indicated shortly.
Birmingham, Ala.-Steady at 88
per cent, 21 open hearths active.
Youngstown, 0.-Down 3 points to 82 per cent as two open hearths were taken off for repairs, 65 remaining in operation, with three bessemers. This week an advane? of 2 points is scheduled.

Plttshurgh-Loss of $1 / 2$-point to 86 per cent is result of vacations at some works. Another slight drop this week is expected.

Chicago Off $1 / 2$ point to 96 per cent due to furnace changes and repairs. One small interest in-

Steel Ingot Statistics

[^1]
District Steel Rates

Percentage of Ingot Capacity Enaaged In Leading Districts

Week	Same
ended	week

Pittsburgh
Chicago
Eastern Pa.
Youngstown
Wheeling
Cleveland
Buffalo
Birmingham
New England
Cincinnat
St. Louls
Detrolt
Average

ug. 10	Change	1939	1938
86	-0.5	52	30
96.5	-0.5	56	33.5
89	+1	43	30
82	-3	55	43
99	+1	79	54
85	-4.5	80	34
88.5	-2	60.5	42
88	None	70	50
80	None	70	40
78	-3	57	65
62.5	None	54.5	30
93	-6	64	52
90.5	-	-	-10

3.

creased output substantially but small curtailments by other producers more than offset this. Three plants are above theoretical ca. pacity.

Central eastern seaboard-With one large interest operating at 101 per cent of theoretical capacity the district rate is up 1 point to 89 per cent, which is expected to continue this week.

Wheeling Moved up 1 point to 99 per cent, with no change indicated for this week.

Bulfalo-Off 2 points to 88 per cent. Open hearths under repair will resume this week. Hanna Furnace Corp. has blown in its last blast furnace, giving National Steel Corp., its parent organization, 100 per cent operation. The Buffalo furnace produces merchant iron.

New England-Steady at 80 per cent, with the same rate expected this week.

July Ingot Output Up Despite Holiday Break

- July open-hearth and bessemar steel ingot production totaled 5 .595,070 net tons, according to the American Iron and Steel institute, This was slightly greater than the June output of $5,532,910$ tons, despite holiday and vacation shutdowns in July, and 57 per cent above the $3,564,827$ tons made in July, 1939.

Calculated weekly ingot output in July was $1,265,853$ tons, slightly less than the June weekly average of $1,289,723$ tons. In July, 1939, the weekly average was 806,522 tons.

In July production was at an av erage rate of 83.40 por cent of capacity, compared with 84.97 per cent in June and with 52.74 per cent in July, 1939.

Total output for seven months this year is $34,273,194$ tons, com. pared with $24,523,550$ tons in the like period last year, an increase of approximately 40 per cent.

MEN of INDUSTRY

a CHARLES R. MILLER JR. has been appointed director of purchases, United States Steel Corp. of Delaware, with headquarters at Pittsburgh. He takes over the duties, with respect to purchases, of Charles H. Rhodes, vice president, who as noted in Steel, Aug. 5, p. 30, has been transferred to Chicago.

Frank J. Rief, purchasing agent, Chicago district, Carnegie-Illinois Steel Corp., will assume responsibilities of all purchases for Carnegie- \bar{f} Illinois, effective Aug. 15. He will continue to have his office in Chicago, and will be assisted in Pittsburgh by R. L. Van Cleve, and in Chicago by H. G. Elder.

Mr. Rief has been with the corporation 28 years, first at the South Chicago works and since 1916 in Chicago in the purchasing department. Mr. Van Cleve has been assistant purchasing agent, Pittsburgh district, under Mr. Miller, while Mr, Elder has been assistant purchasing agent, Chicago district.

Craig Hampton is now superintendent of maintenance, Copperweld Steel Co., Warren, O. He previously was identified with the steel and tube division of Timken Roller Bearing Co., Canton, O.

Charles L. MeCuen, general manager, Oldsmobile division, General Motors Corp., Lansing, Mich., has been named vice president of the corporation and has been transferred to the central office in charge of enginecring activities. In his new post he succeeds O. E. Hunt, who has been made a member of the policy committee with specially assigned dutics. Announcement of these and other changes was made by Alfred P. Sloan Jr., chairman,

Charles R. Mitler Jr.
following a recent board of directors meeting. Both Mr. McCuen and Mr. Hunt are former members of the engineering staff of Packard Motor Car Co.

Sherrod E. Skinner, general manager, Ternstedt division of General Motors, has been appointed general manager of Oldsmobile, succeeding Mr. McCuen. He has been active with Ternstedt since 1930. He is succeeded there by Joseph W. Jackson, works manager.

Frederick C. Kroeger; general manager, Delco-Remy division of General Mstors, Anderson, Ind., and lately directing activities of the Allison Enginearing division in Indianapolis, has been named general manager of Allison. Mr. Krocger succeeded C. E. Wilson, now acting president of General Motors, as head of Delco-Remy.

Cllic V. Badgley, factory manager at Delco-Remy, becomes general manager there. H. H. Curtice, vice president of the corporation and
general manager of Buick Motor division, has been elected a director to succeed Seward Prosser, resigned.
R. G. Justus has been named manager of industrial sales, Westinghouse Air Brake Co., with headquarters at Wilmerding, Pa. He joined the air brake company in 1911 as clerk at its St. Louis office and later was promoted to indus. trial representative. Since 1932 he has been representative in the southwestern district.
M. J. Tennes Jr., the past several years vice president and sales man. ager, Shafer Bearing Corp., Chicago, has been elected president. A H. Williams, heretofore chief engineer, has been made vice president, and Ray P. Tennes, assistant secretary and treasurer, has become secretary and treasurer.
S. C. Merrill has been named assistant general sales manager, automotive division, Timken Roller Bearing Co., with headquarters in Detroit. Mr. Merrill joined the New York office of Timken in 1922 and was in charge of sales there. In 1936 he was transferred to the automotive division at Detroit as district manager of sales.

Col. L. B. Lent, engineer, inventor, and trade association executive, has been appointed executive secretary, American Engineering council, Washington, and will assume his new duties immediately. He succeeds Frederick M. Feiker, who as noted in Steel, July 22, p. 31, has become dean of engineering at Gcorge Washington university.

Colonel Lent is a native of Brew-

Charles In McCuen

Fredprick C. Kroeger

Sherrod E: Skinner
ster, N. Y., and a graduate of Stevens Institute of Technology, Hoboken, N. J. After five years as associate editor of the magazine Power, he became associated with the Riverside Engine Co., Oil City, Pa. The installation by this firm of several large engines for the Ford Motor Co. resulted in his employment by Mr. Ford as assistant chieí engineer of construction and maintenance.

American Steel \& Wire Co., Cleveland, announces the following changes in operating personnel, to be effective Sept. 1:
Harry H. Lumley, manager of operations in the Duluth district, is being transferred to Chicago where he will be assistant manager of operations. B. E. Pheneger, heretofore general superintendent, Cleveland coke works and Central furnaces and docks, will succeed

13. E. Pherneger

Mr. Lumley as Duluth district manager, while H. A. Byrns, superintendent of blast furnaces at Duluth, will become general superintendent of Cleveland coke works and Central furnaces and docks. James A. Gates, general foreman at Central furnaces and docks, has been appointed superintendent.
J. C. Witherspoon, assistant general superintendent at Donora Steel and Wire works, is being transferred to the steel division at Duluth, where he will be general superintendent. Harold Cope, superIntendent of blast furnaces at Donora, is being appointed assistant general superintendent of Donora Steel and Wire works, succeeding Mr. Witherspoon. H. O. Johnson will succeed Mr. Cope, as superintendent of blast furnaces at Donora, while H. B. Burke, turn foreman at Donora blast furnaces, will replace Mr. Johnson as general foreman of that department.
J. V. McCartney has joined the New York office of H. A. Brassert

1I. A. 13yris
\& Co. Inc., with headquarters at 60 * East Forty-second street. Mr. McCartney recently returned to this country from the London office of the company where he was engaged as chief engineer in charge of the iron and steelworks development recently completed at Karabuk, Turkey. This development required about three years to construct and comprises a complete plant for production of approximately 150,000 tons of rolled steel annually.

Ralph F. Hess has been elected vioe president in charge of operations, North American Refractories Co., Cleveland. He has been production manager since formation of the company in 1929. Howard H. Hopwood, sales manager since 1936, has been promoted to vice president and general sales manager, while Stephen M. Swain has been appointed director of research. Mr. Swain has been chief ceramic engineer since 1934.

William P. Laseter, heretofore assistant manager, export division, Oil Well Supply Co., Dallas, Tex., and president of Cia. Consolidada "Oilwell," S. A., Mexican subsidiary of

Whlliam 1P. Laveter

Oil Well Supply, has become associated with John A. Roebling's Sons Co., Trenton, N. J., as manager of its newly created export division, with headquarters at 19 Rector street, New York. Since 1919 Mr. Laseter has been identified with Latin-American trade, the greater portion of his 21 years in the export business having been spent in Cuba and Mexico.

Carl L. Westin has been named southwestern district service manager for Westinghouse Electric \& Mfg. Co., with headquarters in St. Louis. He will be in charge of service plants in St. Louis, Houston, Tex., Denver, and Kansas City, Mo. Since 1938 he has been assistant northwestern district service manager at Chicago.
W. J. Koehring has resigned as president, Koehring Co., Milwaukee. He has been succeeded by George E. Long, secretary and treasurer, who also will continue as general manager. Mr. Kochring becomes chairman of the board. Peter P. Graser is the new secretary-treasurer, while C. A. Koehring will continue as vice president in charge of sales.
O. W. Baldwin has been appointed assistant chief chemist, Gary works, Carnegie-Illinois Steel Corp. He formerly was turn foreman. Other changes at the Gary works: J. N. Quinlan, heretofore assistant division superintendent, has been made division superintendent, west mills; H. H. Bushong has been transferred from the MeDonald mills, Youngstown, O., where he had been superintendent since 1935, to Gary as first assistant division superintendent of the west mills; and $S . R$. Stanier, heretofore superintendent, merchant mill strip mills, has become second assistant division superintendent, west mills.

Charles J. Marks has been appointed chief tool engineer, United Aircraft Corp., East Hartford, Conn. He will assist the vice president in charge of operations in co-ordinating the planning of facilities and tooling by the several divisions. Mr. Marks has been production engineer for Pratt \& Whitney Aircraft division since 1925.

Arthur A. Merry and Frederick L. Woodcock have been appointed to the positions of chief tool engineer of Pratt \& Whitney Aircraft division and Hamilton Standard Propellers division, respectively. Since June, 1940, Mr. Merry has been assistant production engineer of Pratt \& Whitney, while Mr. Woodcock formerly was in charge of tool designing with Hamilton Standard Propellers division.

By L. M. LAMM
Washington Editor, STEEL

Bill Extending Bank's Lending Authority Approved.

Committee To Hold Labor Board Amendment Hearings.
Navy Department Collaborates on Labor Supply.
Mamufacturers' Orders Increased Il Per Cent in June.

WASHINGTON

- SENATE committee on banking and currency last week ordered a favorable report on S. 4204 which provides for increasing lending authority of the Export-Import Bank of Washington by $\$ 500,000,000$. Introduced by Senator Wagner, New York, the bill is in accordance with a request recently made by the President.
Assistance in development of resources, stabilization of economies and "orderly marketing of products of the countries of the Western Hemisphere" is specified. Provision is made that through written request by the federal loan administrator, with President's approval, the Export-Import bank be allowed to make loans to any government and its central banks of the Western Hemisphere. Such loans, according to the bill, may be made and administered as the bank may determine.

Jesse Jones, federal administrator, also appeared before the house banking and currency committee last week in favor of a similar bill pending in the lower house.
Mr. Jones declared "the increased lending capacity will place the bank in a position to assist in the good neighbor policy and at the same lime ald American manufacturers and exporters who will meet ever increasing competition from other parts of the world, particularly when the war is over."

Mr. Jones told the committee
further that "the legislation will place the bank in a position to continue financing exports from the United States on a somewhat broader scale, particularly to the Latin American countries, and, where possible, to assist these countries to develop their natural resources, to produce more of the things we import from them and which are not competitive with our own products."

Ask Early Action on Amendments

Hearings before the senate labor committee on amendments to the national labor relations board act which have already passed the house will begin Aug. 13. Senate may take action during the present session of congress.
In line with its decision to hold hearings, Senator Thomas, chairman, said the committee will hold a series of closed sessions to review the legislation with William Green, president, American Federation of Labor; John L. Lewis, president, Congress of Industrial Organizations; a National Association of Manufacturers' representative and others.

National Association of Manufacturers asked for early action on the amendments in view of increased powers which the labor board would obtain under the pending national guard and conscription bills.
H. W. Prentis Jr., president of the association, telegraphed committeemen that the proposal to make it
an unfair labor practice not to re. employ men called for military service made immediate amendment of the Wagner act "even more necessary."

House amendments would abolish the present labor board and set up a new three-member agency to exercise only judicial functions. Administrative dutles would be turned over to an administrator appointed by the President.

Senator Taft, Ohio, forecast controversy over a provision which would let a craft union obtain recog. nition as a bargaining unit within any plant. This provision was objectionable to the CIO, he said, which in most cases represents workers without regard to craft lines.

War department has announced that to inerease employment and facilitate production, the six ordnance manufacturing arsenals will be put on a three shift basis Aug. 10.

Arrangement is authorized temporarily to obtain maximum production of needed war supplies. During the continuance of the program laborers and mechanies will be paid time and a half for time over 40 hours per week. Result will be three shifts of 8 -hours per day, six days a week.

STEEL MANUFACTUREIRS JUNE INVENTORIES INDEX 116.6

Index value of iron and stect manufacturers' inventories, based on Dec. 31, 1938, as 100 , was 116.6 for June, compared with 113.6 in May and 99.3 in June last year. according to commerce department's monthly industry survey.

Taking January, 1939, as 160 , index value of new orders received by such manufacturers in June was 162.9 compared with 144.6 in May and 101.3 in June last year.

June index of iron and steel shipments was 151.5 against 132.7 in

On Landing Gear Strut Cylinders you can write a new production schedule with Fay Automatics

These Airplane Landing Gear Strut Cylinders are machined from Chrome Nickel Molybdenum Steel Forgings. Until recently, the outside diameters were turned by tools on a turret lathe slide, while the inside bores were being roughed out with heavy drills on the turret.

Dissatisfied with production, this manufacturer turned for help to Jones \& Lamson Engineers.

Long familiarity with turrel lathe work suggested that, on this job, the only operations that could be done to advantage on a furret lathe were the linish cuts on the inside diameter, and that a new production plan should be written for the piece.

Today the outside diameters are roughed on one $12^{\prime \prime}$ Fay Automatic and finished with much the same tooling on another. One man runs both machines, completing a piece every 17 minutes with high speed steel tools.

Between operations on the Fay the pieces are heat treated.

Inside diameters are rough bored on special heavy duty boring equipment and finished on a furret lathe.

With this new combination of Fay Automatic and Turret Lathe a former day's production is now little more than an hour's work.

Write today to Jones \& Lamson and see what such intelligent combinations can do to earn unexpected dividends for you.

JONES \& LAMSON MACHINE CO.

SPRINGFIELD,
$V E R M$
O NT
U. 5

MANUFACTURERS OE: SADDLE \& RAM TYPE UNIVERSAL TURRET LATHES . . . FAY AUTOMATIC LATHES . . . AUTOMATIC DOUBLE-END MILLING \& CENTERING MACHINES . . . AUTOMATIC THREAD GRINDING MACHINES . . COMPARATORS . . . TANGENT AND RADIAL, STATIONARY AND REVOLVING DIES AND CHASERS
"Profit Producing Machine Tools"

May and 109.4 in June last year. with January, 1939, as 100.
Value of iron and steel manufacturers' unflled orders increased 10.9 per cent over May and 63.9 per cent over June, 1939.

For the entire group of manufacturers, tabulations for June reveal a gain in new orders of more than 11 per cent over the May volume, increases spread over both durable and nondurable goods industries.

Advance in new business carried the department's new order index from 121.3 in May to 134.9 in June.
Incoming business exceeded shipments even more than in May, with a further rise in order backlogs. Unflled orders increased about 7 per cent in durable goods, comparing with an increase of $3^{1 / 2}$ per cent in May, when the first appreciable rise of the year was noted.
Manufacturers' shipments in June were 3 per cent above the previous month, approximately the same increase as in May. Increases in shipments were general in nondurable goods from May to June, amounting to $4^{1 / 2}$ per cent, while gains in durable goods were more limited, the average being a little more than 1 per cent. Advance in durable goods shipments was centered principally in iron and steel, with a rise of 14 per cent. Machinery industries also showed a modtrate ris?, while most other durable goods declined without adjustment for seasonal influences.

Rise in manufacturing production and shipments extending over May and June occurred without general inventory accumulation.

KNOX CAUTIONS AGAINST "PIRATING" OF LABOR

Navy department has recently entered into contracts for large amounts of shipbullding, shore construction and other work on the national defense program, according to Secretary of the Navy Knox. He said that "additional contracts will be made from time to time to conform to the progressive requirements of national defense, and as appropriations therefore are made to the navy department by congress.
"It is already evident that in certain localities and in certain specialized trades and occupations a shortage of skilled labor exists. The navy department is collaborating with other federal agencies and with organized labor to meet this situation. The secretary of the navy takes this opportunity to urge all naval contractors to foresee their labor requirements and to inform, as far in advance as possible, state and federal employment services and others concerned of such needs in order that there may be as little delay as possible in supplying the re-
quired personnel and to avoid un. necessary migration of labor.
"It is also urged that recognition be given to the importance of diminishing the ranks of the unem. ployed and to prevent by all practicable means the 'pirating' or 'scamping' of labor, that is, enticing men from one employer to work for another, both of whom may be engaged on work of equal importance to the nation as a whole. Such pirating of labor always leads eventually to uneconomical and disastrous results.
"The present shortage in certain skilled mechanical trades is due in no small degree to the failure to maintain apprentice training in private establishments during the lean years following 1929. Since about 1936 the navy department has been building up its apprentice training in its navy yards and its own industrial establishments. In 1939 it had about 2000 apprentices under training and expects to reach nearly 4000 before the end of 1940. I urge private industry to start apprentice courses, where none now exist, and to increase the number of apprentices where such courses are now being maintained."

kNUDSEN APPOINTS ADDITIONS TO STAFF

William S. Knudsen, head of the dofense commission's production division, has announced the following additions to his staff:

Mason Britton, vice president, McGraw-Hill Publishing Co., to be supervisor of machine tools in the machine tool section.
A. B. Einig, general manager, Motch \& Merryweather Machinery Co., Cleveland, and Donald M. Laflin, Giddings \& Lewls Machine Tool Co., Fond du Lac, Wis., to be machine tool technicians.
W. V. Kohler, chief engineer, Hllinois Bell Telephone Co., Chicago, and Stephen F. Voorhess, senior partner of Voorhees, Walker, Foley and Smith, architects in design and construction, New York, as consultants to W. H. Harrison, head of the construction section.

IOINT CLO, AFI, COMMITTEE PLEDGED TO DEFENSE WORK

Sidney Hillman, national defense advisory commission member in charge of labor supply, last week announced the labor policy advisory committee, representing AmerIcan Federation of Labor, Congress of Industrial Organizations and Railway Brotherhoods, has adopted the following resolution:
"In view of the necessity in maintaining the continuation of production of all goods and services required for national defense, and, inasmuch as the welfare of labor may best be forwarded by
amicable adjustment of such internal problems, which if not adjusted may affect national defense, therefore:
" Be it resolved: That a commit. tee of four, consisting of two representatives of the A. F. of L. and two of the CIO, be appointed to endeavor to adjust any difficulties which may arise between organizations affiliated with the A. F. of L. and CIO which may in any way affect the continuation of operations on any projent or in any plant engaged in work affecting the national defense program."
Members designated by Mr. Hillman to serve on this committee:

Van A. Bittner, United Mine Workers of America; Emil Rieve, president, Textile Workers Union of America; H. W. Brown, international president, International Association of Machinists; and George Q. Lynch, general president, Pattern Makers League of North America.

AUTOMOBLLE BUILDERS ASKED TO OPERATE CANNON PLANT

Government is negotiating with General Motors and Chrysler Corp. for operation of two aircraft cannori factories which it will erect, according to information here.
Negotiations became known when executive hearings before the house appropriations committee, in connection with the pending $\$ 5,000,000$,000 appropriations for the defense program, were made public.
Maj. Gen. C. M. Wesson, chief of ordnance, reported contracts will be let about Sept. 1 for aircrait cannon plants costing $\$ 14,000000$.

Meanwhile, he said, the army is "getting an order started" with Bendix Corp., Bendix, N. J. Rather than build a new plant there, near the Atlantic coast, it will construct two in the Middle West. Bendix facillties may be expanded, however.

For immediate requirements, Gen. Wesson said, the army also is seeking to place an order with Chrysler, prior to construction of new fac. tories. Chrysler and General Motors would operate the new plants, under present plans.
Gen. Wesson said it would require two and a half to three years to complete enough guns to outfil planes being purchased for armynavy aircraft expansion.
Some $37-\mathrm{mm}$. cannon are now being manufactured by the Colt Arms Co., which received an order for $\$ 2$, 000,000 or more last week, but its facilities are limited, Gen. Wesson pointed out. New plants are necessary, he added.
"Information coming from abroad," he said, "indicates that we have got to have guns of higher power on airplanes than we have had in the past, which were .30 and .50 caliber."

Activities of Steel Users, Makers

- CHAIN BELT CO., Milwaukeo, has completed moving manufactur. ing operations of its screw conveyor and light steel bucket divisions from its Chicago plant to the West Milwaukee works. Personnel has also been transferred to West Milwaukee and the Chicago plant has been discontinued.

Lewls B. Lindemuth has moved his offices from 134 East Forty-seventh street, New York, to 140 Cedar street.

Offices of Bakelite Corp. and Halowax Corp. have been moved from 247 Park avenue, New York, to the Carbide \& Carbon building, 30 East Forty-second street.

Cowles Detergent Co., Cleveland, will move its executive and general offices Aug. 31 from 10525 Carnegie avenue to larger quarters at 7016 Euclid avenue.

Koppers Co., Pittsburgh, has developed a wholly automatic domestic coke stoker. Bryant Heater Co., Cleveland, has been selected to manufacture the device.

American Asphalt Paint Co., Chicago, and its subsidiary, Marietta Paint \& Color Co., Marietta, O., have been consolidated and are now operating as the American-Marietta Co., with headquarters at 43 East Ohio street, Chicago.

Bastian-Blessing Co., Chicago, has appointed National Cylinder Gas Co., Chicago, distributor in Michigan, Ohio and Indiana, for its line of welding and cutting equip. ment under the name Rego.

Evidence of increazed construction activity is cited in an announcement by Pettibone Mulliken Corp., Chicago, that during the first five months of 1940 its sales of welded dippers for power shovels exceeded those in the entire year 1939.

Hartley Wire Die Co. has moved from Waterbury, Conn., to larger quarters at Thomaston, Conn., increasing its floor space by approximately 15,000 square feet. The company recently celebrated its ninetisth anniversary.

In the patent infringement suit instituted by Ajax Mfg. Co., Cleveland, against Natlonal Machinery Co., Tiffin, O., which has been panding in the United States distict court for the western district of

Ohio for some time, the parties have concluded a settlement and the suit has accordingly been dismissed without prejudice.

Jones \& Laughlin Steel Corp. has awarded contract to Peabody Engineerlng Corp,, New York, for modernization of two blast furnace gas washers, located at the Eliza fur' naces, Pittsburgh works. The new equipment is scheduled for installation late in September.

Ferro Enamel Corp., Cleveland, has entered the synthetic-finish fleld, and through Liquid Plastic Corp., Cleveland, a wholly owned subsidiary, will offer a line of "Vedoc" finishes for use on sheet metal products of all types.

Weldon Tool Co., Cleveland, is now the exclusive manufacturer and distributor of the Tu-Lip counterbore formerly made by Gopher Machine \& Tool Works Co., Minneapolis. It will henceforth be sold under the name Weldon Tu-Lip ccunterbore.

Died:

- MICHAEL F. TIGHE, 82, for 17 years president of the Amalgamated Association of Iron, Steel and Tin Workers until his retirement several years ago, in Pittsburgh, Aug. 5. At the age of 10 he went to work for a cut nail factory in Wheeling. He learned to puddle iron and was employed by the Wheeling Steel \& Iron Co. Later he became a subordinate officer in the Pittsburgh offioss of the Amalgamated assoclation, and was elected its president in 1919. When the Amalgamated affiliated with the Steel Workers Organizing committee of the CIO Tighe refused to stand for re-election.

Simpson C. Leonard, 73, in Detroit, Aug. 2. He was for many years sec:etary-treasurer, Western Bar Iron association. Previous to going to Detroit from Youngstown in 1896, he had puddled iron in Mahoning valley mills where he had reached the position of puddle boss. He took a metallurgical course in Ohio State university, then went to the Buffalo Iron \& Steel Co. as assistant chemist. In 1896 he joined American Car \& Foundry Co., becoming general manager of the company's wrought fron bar mills in Detrolt and St. Louls. He
retired from American Car \& Foundry in 1925, and founded Michigan Leather Packing Co., of which he was president untll his illness some months ago. Meanwhile, he had been manager of Rich Tool Co., now a division of Eaton Mfg. Co., Cleveland.

Karl W. Johnson, 79, president, Commonwealth Screw Co., Worcester, Mass., in that city, July 31.

William Horton Woodhall, 47, for 18 years metallurgist with Harrison Steel Castings Co., Attica, Ind., July 19, in Indianapolis.

William A. Buettner, 61, president. Buettner \& Shelburne Machine Co., Terre Haute, Ind., at his home in that city recently.

Douglas F. Fesler, 65, formerly general manager and owner of Alemite Die Casting \& Mfg. Co., recently in Beverly Hills, Calif. He retired in 1938.

William A. James, 69, Aug. 2 at Chautauqua, N. Y. He was chlef engineer of the Lackawanna, N. Y., plant of Bethlehem Steel Co., having been with that plant since 1901, when it was known as Lackawanna Steel Co.
T. W. Lux, 60, assistant secre-tary-treasurer, Acme Steel Co., Chicago, July 25 in that city. He had been with Acme about 27 years. Mr. Lux introduced a cost accounting system, the basis of which is still employed.
W. C. Martin, president, Vulcan Rivet \& Bolt Corp., Tarrant, Ala., recently at his home in Birmingham. At one time he was chief engineer, Woodward Iron Co. and helped organize the Superior Pipe Co., Bessemer, Ala.

Claiborne Morrison James, 68, construction engineer, July 30 in Cumberland, Md. He was president, Tri-Stat? Engineering Co., Cumberland, which he helped organize, and previously had spent a number of years as construction engineer with the Baltimore \& Ohio rallroad and the Atlantic Coast line.

Christian Rasmussen, 54, plant engineer, International Harvester Co., Mllwaukee, in Milwaukee, recently. Born in Denmark, Mr. Rasmussen was engag?d in engineering work in Russia when he joined International Harvester in 1912, staying in Moscow for six years and then going to Milwaukee in 1918. He had been superintendent in charge of plant operations many years.

WITH G.T.D. HIGH SPEED TAPS

Do you want faster production? This company did - on these heavy duty cast brase elbows. They got it, too, when they adopted G. T. D. Greenfield High Speed Ground Thread $7 / 16-24$ Taps. Average production was stepped up from 1050 to 1220 per hour, a 16% increase. And production per tap went from 9.000 to 12.000 , up $331 / 3 \%$. These increases represented clear savings
because they used the same machine, and even the same cutting lubricant.
G. T. D. Greenfield solicit the opportunity to make equally good in your plant. Our standard and special threading tools are backed by the accumulated experience of over 75 years all of which is at vour disposal. Get in touch with your local distributor or with a G. I. D. Engineer.

GREENFIELD TAP \& DIE CORPORATION, Greenfield, Mass.
Thetroit Ilant: 210. West Fort St. Warchousen in New York, Chieaso, Ins Anvelez and OTOMREENFIEL

By A. H. Allen
Detroit Editor, STEEL

Buick Capacity Increased to 1500 Cars Daily.

Dual Carburetion Features 1941 Engine.

MeCuen, Olds Manager, To Head GM Enginecring. Chrysler, Dodge Prepare Plants for Arms Orders.

Revolutionary Shell Lathe Reported in Planning Stage.

DETROIT
 - WHEN Harlow H. "Red" Curtice

 lifts the drapes from his 1941 Buick models in Flint this Tuesday he will be opening officially what it is hoped will be an even greater year than the past model year. Extenslons, changes and improvements in plant and equipment have boosted Buick daily capacity from 1300 to 1500 , and output of 1941's is being aimed at 350,000 , compared with 285,000 during the year just concluded.At that, it is reported, Buick dealers could have sold another 20,000 cars this summer had they been available, so intense was the lastminute rush among buyers. This shortage of new models was not peculiar to Buick, however, for others found a similar situation. Even Cadillac was reported to have been about 2000 short, and Pontiac an estimated 15,000 .
Just how these shortages are figured is not known, but the fact that there were any deficlencies of new models at all is the unusual thing. Ordinarily at this time of the year dealers have to resort to various types of "pressuring" of buyers to clean up stocks.
Mr. Curtice discloses that Buick plants aperated consistently throughout the 1940 model season two full shifts and a skeleton third shift every day with the exception of Saturdays, Sundays and legal holidays. More than 15,800 employes worked an average of 2050 hours each during the past year, with virtually no fluctuation in employment and at an average wage of better than $\$ 1$ per hour. He adds that inventory periods have
been reduced to a minimum this year, with a staggered schedule for closing various manufacturing departments and a minimum period of shutdown. As a result, during the changeover period employment has held consistently above 90c0 and resumption of normal operatlons now is nearly complete.

Buick's expansion and retooling program includes new tools and equipment in every manufacturing department, incident to design change and capacity increase. Among major construction projects which have been completed to handle 1941 output were expansion in the sheet metal department, involving construction of a large addition and extensive rearrangement of machinery; a new axle plant; removal of gear manufacturing to a new building and a new manufacturing layout for the production of auto engine connecting rods.

Additional equipment installations were made in the foundry, forge, transmission and final assembly line. All these changes have been mentioned briefly in previous issues of Steel.

Among engine innovations for 1941 is the dual carburetion system developed for Buick power plants. Manifold design is reported to have been completely reworked and two separate carburetors used to proportion fuel to engine. Proving ground tests are said to have shown improved gaso-

[^2]line economy ranging from 3 to $\overline{5}$ miles to the gallon.

Buick engineers have been working closely with army techniclans, reports Mr. Curtice, on armament projects intended to adapt the Buick valve-in-head engine to milltary uses. He indicated that any arms production would be collateral to passenger car output.

Over at the Oldsmobile plant in Lansing, the big news is the departure of general manage: C . L. McCuen, who has been at the helm of this division for seven years and now leaves to head up engincering activitles of the General Motors Corp. in Detroit. The change is recognition of the high regard in which Mr. McCuen is held by GM chief executlves, and behind the scenes he is being touted as eventual timber for the top ranks.

In the past model year Olds turned out close to 200,000 cals, the best sales year in lts history. Current stocks of new cars in deal ers hands amount to about 20,000 cars. Some 15 per cent of Olds buyers have taken cars equipped with the Hydra-Matic drive, Indicaling production of 30,000 of these units. This was far below demand for the unit, and plans for 1941 are being based on 50 per cent of all Oldsmobiles being equipped with the automatic transmission.

Eyes of the industry are being focused on the new Olds press shop which is now being outntted for production of forgings. Originally it was understood all forgings in this: new plant were going to be made by the press method, but modifications have been made to include a number of forging hammers of the lighter variety. Indications still point the likelihood that crankshafts will be attempted by the press forging method.

Olds also has installed a number of new broaching machines for finishing engine block surfaces.

Buick likewise has made instal lation of an appreciable number of broaching machines to handle connecting rod machining. Four
builders participated in this order, some of the machines ranging up to 10 tons in size.
Departure of Mr. McCuen from Olds brings in a new general manager, Sherrod E. Skinner, hitherto in charge of the Ternstedt division of General Motors. Mr. Skinner served in the submarine service during the World war, came to Ternstedt in 1930.
In his new post as vice president in charge of engineering for GM, Mr. McCuen can give full rein to his flair for pioneering new developments in motor car building. He succeeds Ormond E. Hunt, who has been transferred to the corporation's policy committee with spesially assigned duties. Both Hunt and McCuen at one time were associated with the engincering staff of Packard, Hunt leaving in 1918 to become chiaf engineer in charge of Liberty aircraft engine design and production and later chief engineer for Chevrolet. McCuen left Packard in 1922 to become experimental engineer for Rickenbacker Motor Co., four years later going to Olds.

- CONSIDERABLY more activity among motor plants in lining up thelr position in armament production is going on than is apparent supurficially. Actual orders, of course, are few, but figuring on various types of equipment is fucious, to say the least. Chrysler's special ordnance manufacturing division personnel have practically vacated their Highland Park offices, moving to No. 4 Dodge plant on Conant road and the former Dodge truck plant on Lynch road. The latter has been equipped to handle some special shell orders of relatively small size, but soon may be the scene of some important manufacturing operations on cartridge cases.

One of the most important phases of armament production now under consideration is that being lined up for Dodge involving manufac. ture of recoil mechanisms and gun carriages. No actual orders for this equipment have been placed, it is understood, but the extent of current planning indicates they may mature shortly. There have even been discussions of an entire new plant to be erected by the Dodge division to handle this production and to be in operation within eight months. Location and size have not been revealed.

As an alternative to building a new plant, the suggestion has been made that De Soto production be transferred from the present plant on Wyoming avenue to the Chrysler Jefferson avenue plant, releas. ing the assembly plant on Wyo. ming for armament production. The latter plant is an old one, pre-
vious occupants having been Buick and La Salle.

Bulk of operations in the new plant would be of a machining nature and steps are reported to have been taken to clear the way fo: supplying the necessary large volume of machinery, particularly milling machines, the plant would require.

Detroit city council has been informed by Packard that the com. pany proposes to use property adjoining its plant at Harper and Mount Elliott avenues for construction of a test house for Rolls-Royce engines to be made under contract now pending with the government. In the effort to forestall the possibility of later complaints developing from residents in the area over

Automobile Production

Passenger Cars and Trucks-United States and Canada

	1938	1939	1940
Jan.	226,952	356,692	449,492
Feb.	202,597	317,520	422,225
March	238,447	389,495	440,232
April.	237,929	354,266	452,433
May.	210,174	313,248	412,492
June	189,402	324,253	362,566
6 mos	1,305,501	2,055,744	2,539,440
July	150,450	218,494	
Aug.	96,946	103,343	
Sept.	89,623	192,678	
Oct.	215,286	324,688	
Nov.	390,405	368,541	
Dec.	406,960	469,120	
Year	2,655,171	3,732,608	

Week ended:	1940	1939 \dagger
July 13	62,176	61,610
July 20	53,020	47,420
July 27.	34,822	40,595
Au\%. 3	17,373	28,250
Aug. 10	12,635	24,875

noise and vibration, the council has been asked to have one of its members visit the Allison Engineering division plant in Indianapolis to inspect similar test houses.

Modern methods of construction, involving double walls, reinforced concrete, insulation and spring suspension of the engine under test, are said to have eliminated, for all practical consideration, the noise and vibration problems such plants might propose.

Reports of consideration being given to plans for building a revolutionary type of shell-turning lathe in quantities running up into the thousands are heard in this territory. Utmost seerecy is claimed to surround the plan which is about as follows: Lathes would be built up with base, headstock and tail-
stock a single casting, cored out for gears and shafts and requiring no finishing. Bushings to receive gears and shafts would be located and anchored in place with expanding alloy. No hardened and ground ways would be necessary and a complete lathe could be assembled in a couple of weeks. Assembly would be handled by some plant not affiliated with the machine tool industry. The first lot would include several thousand. Cost would be low, productive life might be short.

One-man strike at City Auto Stamping Co., Toledo, O., was the peculiar outgrowth of a fairly even division of the working force between the A. F. of L. and the CIO, although the former had been awarded the bargaining rights, Jules Guese, metal polisher, was laid off under seniority provisions of the union contract. Being a CIO member, he charged discrimination and started a one-man picket line. Then fellow CIO men joined him and refused to enter the plant. A.F. of L. men continued to work and were given protection against pickets by A. F. of L. workmen from a nearby water system construction job who took a "holiday" from their jobs to join in the fun. Finally, after court orders, injunctions and other legal procedures, a truce was brought about and the case submitted to the NLRB for judgment.

Cast Steel Crankshafts

Proponents of the cast steel crankshaft for motor cars use as one of their chief arguments for this type of shaft over the forged steel shaft the reduction in number and cost of machining operations necessary on the steel shaft. For example, on the Chrysler crankshaft better than 50 operations are required to turn the rough forging into a finished shaft, and 26 gages, costing in excess of $\$ 250,000$, are used to check these operations for accuracy. Rough forging weighs 110 pounds, finished shaft 90 pounds. Statically and dynamically balanced, the shaft has nine inte-grally-forged counterweights and a Lancaster vibration dampener.

Continuous casting of plate glass will be carried out in a plant now being erected by Libbey-Owens-Ford Glass Co., Toledo, O., on the site of one of the original Edward Ford Plate Glass Co., dismantled a decade ago. The new plant will include furnaces, batching house and equipment for continuous casting. Present facilities including pot fu:naces and the Bicheroux method of casting will be retained for special types of plate glass heat tempered (used in automobile reas windows) and vitrolite. Construction work on the new unit will require about a year.

polvi 2 of movarchis platform

 * * * INDUSTRY SHUULD TRAIN YOUNG MEN No employment without experience ... no experience without employment. That has been the sad state of American youth in many fields since the Great Depression. Whirling in a vicious circle . . . thrown bewildered into a struggle for security-easy prey for any "ism" that comes along.Industry owes an obligation to itself and to society, to assume its share of the responsibility for guiding these young Americans along the way to a more useful life. Training must be provided in order that skilled hands can be developed for tomorrow's production requirements . . . so that a second generation of leaders will be ready to assume responsibility when the time comes.

Monarch provides for the development of its skilled workers by conducting specialized, voluntary training groups which, over a period of time, mold another generation of master craftsmen. The Monarch Machine Tool Company, Sidney, Ohio.

Finished Steel Exports 15．8\％of June Output

－Finished steel made for sale in June amounted to $3,802,485$ net tons，compared with $3,576,860$ tons In May and $3,005,218$ tons in April， according to the American Iron and Steel institute．In June 252，141 tons was shipped to members of the industry for conversion into further finished products．In May，the cor－ responding figure was 289,653 tons．

Finished steel exported in June totaled 601，688 tons，compared with 476.761 tons in May and 371,532 tons
in April．June exports constituted 15.8 per cent of total production， while for entire first half exports were 13.3 per cent，indicating the increasing proportion of flnished steed going abroad．

Practically every classification showed an increase over May，out－ put of standard steel rails being an exception，dropping from 136,705 tons in May to 120,235 tons in June．Bars increased from 544,258 tons to 625,242 tons；plates from 281,806 to 317,981 ；heavy structur－ als from 209,604 to 234,451 tons； sheets from 740,642 to 773,993 tons； hot－rolled strip from 110,597 to

116，737 tons；cold－rolled strip from 45,229 to 56,463 tons．

Production for six months this year totaled $20,657,771$ tons，com－ pared with $14,273,988$ tons in first half，1939．After deducting ship ments to other members of the in dustry for further conversion the net total was $19,556,180$ tons，this representing 73.2 per cent of finish－ ing capacity，against $12,958,629$ tons， at 53.4 per cent of capacity in the 1939 period．Finished steel expots in first half this year were $2,752,775$ tons， 13.3 per cent of production， and for the first six months，1939， 777,768 tons， 5.45 per cent．

NMERICAN IRON AND STESI INSTTTUTE Capantiy and Produetian for San I Iran and Semel Producta									Sune．－ 1940			
									－Dum 16 mathe 2900			
				－250	max	\pm	5	＝	－			－2itic
	Imput bemat	8					36	${ }^{188,128}$	2， $2 \times 2,985$		$\xrightarrow{720.553}$	15
		$\frac{8}{4}$			24，4，43 16,506				$\xrightarrow{1,254,775}$	－${ }^{\frac{4}{48.6}}$		
	${ }_{\text {cosem }}$	19		5，655，4，40		（85，${ }^{2}$	${ }_{\substack{47,34 . \\ 14,25}}$			${ }_{\text {S }}^{\text {S2，}}$	2050，922	， 10.38
		6			－120，235	50，			－ 906575	${ }^{50,0}$		
		$\frac{-6}{2}$			退	4．1．	2，186					
	Mater				－41，20		57，604	$\frac{2 \times x \times \times x}{}$	－314，069			$\frac{1+20 \times 2}{130,32}$
		－13		잦ㄴ	－	자	${ }^{22,326}$		${ }^{560,665}$	（\％：		
				\％	－ 47 ¢7， 85	iri	${ }_{7}^{1,429}$		303,333 409,656	ix		｜ix
	Nar－hat wiblex	$\frac{15}{5}$			cis	：	${ }^{1}$			ix	cin	
		53			620，242	＋1．	92， 214	30，574		＋14．	400，303	$\frac{1 \times 10}{17,713}$
		$\frac{15}{13}$		110，200	5，864		${ }^{4628}$	$\underline{1 \times 2 \times \times 2}$	${ }^{32,8828} 4$	${ }^{\frac{60.0}{49.3}}$	${ }_{-2,30,29}^{40,217}$	
	＊－M．	${ }_{10}^{13}$		$\frac{1,25,850}{1,246,240}$	cen	${ }^{\frac{1223}{}}$			－			
	satik	${ }_{25}{ }^{2}$		－ $3,315,520$	coiche	54．4	${ }^{2} \mathbf{2}, 3,4918$		－119，206	${ }_{\text {32，}}^{34.2}$	${ }^{12,591}$	
	Metural	${ }_{2} 6$	2		5，776		2， 212		${ }_{31}{ }^{3128,727}$		590	
	th	19		${ }_{121020}$	，95，987		${ }^{28,330}$	16，535	453.55	${ }^{\text {ra }}$	127， 880	
5	Sathem mopic	$\frac{3}{39}$	${ }_{27}$	－2，091	53，698						352	
	Sterex mitued	15	${ }^{23}$	－	${ }_{\substack{2}}^{2,728}$	cien	6，9238		101，42	$\frac{46.5}{3,6}$		
	\％	1	${ }_{0}$	H12，	2， 2 ，34				30，	50：9	143	
		${ }_{13}^{6}$	2	${ }^{274,485}$	－1，006	${ }^{\text {che }}$	79		${ }^{28,26}$	－	443	
	，mee	12	\％		31，666	59.1	i1，307	5，221	188，4	58．0	19，275	－55，235
		10	${ }_{5}^{2}$	${ }^{1,2,20,90}$	－	85．7	${ }^{3} 3,651$		1，128，001	${ }^{48.1}$	226，569	\％
	Hatreat	－ 26	${ }^{*}$	T．	cist，	\％		3，439	$\frac{1,4,48,838}{2,68,410}$	in：		（tan
		cis	\％		－1，		－		1， $1.654,45$	mix	${ }^{-45} 5$	
		$\frac{15}{27}$	${ }^{\circ}$	$\frac{\text { \％121217 }}{13,25,120}$	－423，003	${ }^{12}$	6， 6,628	2，43	4， $4.45,6$	$\frac{18.4}{624}$	${ }_{398,3,58}$	
	Hotmed		${ }^{1}$	－3，522，${ }^{\text {a }}$	${ }^{126,737}$	40.2	6，733	12，261		${ }^{37}$		67
		32		1，	50，403	22.	1，203		30，0，32	50		
	Namar lar	5	${ }^{\prime}$	47		13.6	6		41，	17.	1，721	
	come	$\frac{11}{3}$	${ }_{6}$	$\xrightarrow{331,275} 9$	${ }^{3}, 234$	30.8 38.0	－ 128		57，476	${ }^{35.3} 10.3$	2，318	
	torn	䢒	，	12：	3，002，405	$\frac{x}{12 x}$	601，668	，	20，657．771	．	2， 252,1	

	Py ison，lerro Ingot mould	$\frac{27}{4}$	50	如从xixi	$\begin{array}{r} 448,870 \\ \quad 40,266 \\ \hline \end{array}$	＊$\times 1$	$\begin{array}{r} 42,200 \\ -\quad 359 \\ \hline \end{array}$		$\begin{array}{r} 2,547,501 \\ 196,562 \\ \hline \end{array}$	：2x	177，423	818188
		10	51	160，600	2，224	16.9	8	275	13，713	17．2	${ }^{2}$	左
	Pppe ans tuber	3	52	109，2377	3， 373	37.6			17.613	32.4	541	\％
	All ocher．	3	53	11，180	87	12.0	149	267	5.892	16.6	998	4
	TM Inow rmoucts（tm	12	54	276，247	6,474	28.6	238	542	37， 218	27.1	1，633	811

[^3]
STEEL INDUSTRY'S RATE OF RETURN AMONG LOWEST

- ANNUAL rate of return on net worth for the first half, 1940, for 400 companies averaged 10.9 per cent, compared with 7 per cent in the first half of 1939, according to the National City Bank of New York. Iron and steel companies were among the lowest earners in the bank's compilations.
Ten automobile builders, other than General Motors Corp., had the highest return for the period of any industrial group, 22.2 per cent. Lowest return on net worth in the manufacturing division, including

334 companies, was earned by the leather and shoe industry. It was 5 per cent, compared with 5.6 per cent a year ago.

Average rate of return for the manufacturing companies was 11.4 per cent, compared with 7.2 per cent in the first half, 1939. Fifty-six nonmanufacturing companies' rate of return was 8 per cent, against 6.7 per cent in the period last year Latter percentages are computed from the bank's statistics and exclude coal mining

Annual rate of return is based on net proflts as reported by the corporations, after depreciation, interest, taxes and other charges and reserves, but before dividends. Net worth includes book value of out

Steel Consumers' Earnings Statements

FIRST half, 1940, net income reported by 124 iron and steel consumers aggregated $\$ 122,992,478$, compared with $\$ 64,492,386$ total net income earned by the same companies in corresponding perlod last year. Only five in curred a loss for the six months, against 25 reporting defficts for first half, 1939. Previous tabulations in Steen, July 22, p. 20 and July 29, p. 14 listed 69 companies; the following includes 55 . All flgures are net earnings except where asterisk denotes loss:

	$\begin{aligned} & \text { Secund } \\ & 1940 \end{aligned}$	$\begin{gathered} \text { Second } \\ 1939 \end{gathered}$	$\begin{aligned} & \text { FIrst } \\ & 1940 \end{aligned}$	
	Quarter	Quarter	Half	Mal
Aldressugraph-Mulligraph Curp.,			\$497,218	\$429,490
Alls-Chalmers Mrs. Co., Mitwaukee	1.639,849	900. 145	2,609,75\%	1.700.422
American Steel Foundries Chicago	405.566 \ddagger	218,549	1,64i6.5\%	114,342
Atlas Drop Forge Co., Lansing. Mi			12,280	6,415
Rabexck \& Wilcox Co., New York	645,340\%	123,930*	1.474.905	(6, $36,6290^{\circ}$
Black \& Derker Mcg. Co., Towson, Md	:289,3,39	179,0637	523,674	316,488!
Bower Roller Eearing Co., Detrolt	300. 791	208,382	666, 3111	-128,34if
Bripes \& Stratton Corp., Mllwaukee	271,693!	2018,189?	1770,5813	552, 377
Brockway Motor Co. Inc., Cortland.			78,012	70,77\%
Cuxper-Bessemer Corp., 3it. Vernon, 0			271,105	13,5333
Crosley Corp., Cincinnati..............	[53,854]	193,141	95,661	402,057
Detrut Gusket \& Mrg. Co., Detro	140.788:	113.003	299,788	2941,103
Dresser Mifg Cu., Bradfund, Pi.	242,063!	102,264)!	733,634	$81.38: 1$
Drwer-Harrls Co., Harrison, N.	88,440	61,020	231,476	95,664
Easy Washing Machine Corp., Syracu	81,295	47,3727	180, 346	143,242
Electric Auto-Llte Cu. Toledio, 0 .	1,393,386	1.210,022	1.878.666	8.40,935
Electrolux Cord. New York	-376, 136	. 374.6 .97	897,5(H)	818.611
Eureka Vncuum Cleaner Cu., Detroi	51,641*	43,572*	83,7ふ8	80,656*
Falrkanks Co., New York	5,32!	872	1-1.744	3,089
Falrbanks, Morse \& Co., Chleagn			18,177	18,397
General Fireproofing Co., Youngstown.			521,205	2rib.5!
General Rallway Signal Co., Rochester, N.	122,037	35,579	237,919	36.238°
General Steel Castings Curp.. Exddystone, F	4.032°	1100, 105	72,958	514, T (1)
(ililette Safety Razor Co., Buston	637,004	696,447	1.423,451	
Greenlleld Tap \& Die Curp., Greenlield,	97.628	22,565	21-2.261	57.702
line \& Co. Ine., R., New York	10-1,847 \dagger	-4,317	110,493\%	151,549
International Buslness Machines Corp., New York	2,0.07,978	2.147.53	1, $3,55,4 \times 2$	4.352, 3136
Kalamazos Stove \& Furnace Cu., Kalamazon, Mia Kingston Pruducts Corp., Kokomo, Ind.	174,687	$5,4.37^{\prime \prime}$	65,481 53, 8 :3 ${ }^{*}$	$\begin{aligned} & 129,9222^{*} \\ & 46,239 \end{aligned}$
Lunkenhelmer Cu., Cincinnati				5
Marchant Calculating Machine Co., Emeryville, Call	152,766t	192,557	+107.761	:361,451
Marin Co., Glenn L., Baltmore	2,128,820	285, 127	4,291, 4(\% 4	(677,624
Mleromatic Hone Corp., Detroit	- 45,133	14,52.7.	102. 120	29,801)
Muskeron Motor Speclaltes Co.. Muskegn,			126,74.3	111.137
Nash-Kelvinator Cord., Kenosha, Wis.	!01,939	108, 2 \%	1,284,880	4-48, 769)
National Acme Cu. Cleveland	721.504	55.900	1,2ャ7, (1)	109, 736
National Cash Register Cu, Billin	618,960	701.344	1, (0x+3, 8; ${ }^{\text {a }}$	1.188, $36!$
New Idea Inc., Coldwater, 0 .	21.1881	154, 720t	475,522	238,6411
Notult-Sparks Industries Jne., Columbus, Ind	165,017	193,7425	451.0636	232, 31318
North American Avtation Inc., Inglewomi, Cal	1,846,979	1,4<5, 7:3	2,367,6:38	2,781.682
Otis Elevatur Co., New York	(662, 6 (\%)	620,530	1,783, $\mathrm{fr}^{(20)}$	1,547,157
Packard Motor Car Co., Detro	140.773*	1,270,9+5*	1(r) , 3f66	1,04:4, 616*
Pressed Steel Car Cu. Inc., Irt	537.5100	177.564*	917,414	
Hlchmond Radiator Co., U'́n			56,	9, 5
Smmons Co., New Yurk			1, 0 \% 5.541	
Square D Col. Detrolt	54,272	181.781	(1) 1301	308, 381
Studebaker Corp.. South Bend. Ind	4-5, \% $\times 1$	717.401	(557, 304)	T-4,314
Sundstrand Machine Toul. Co., Reekford, III		(7.1m	707,676	45.192
Taslor-Wharton Irum \& Sieel Co., High Bridge. N. J.			106, 73, +	202.549^{*}
United-Carr Fastener Corp., Cambridge, Mass.	10:3,513	87,241 :	261,612	22, 248
Wited States Plpe \& Foundry Co., Burlington, N. .			783,018	1,434,916
Whaworth Co. Niew York	132, $7: 37$	97.258*	204, 415	$1-5.62$
Whilvertetor Cu., Cleveland			743,54.3	439,045 ${ }^{\text {\% }}$
Wiverine Tube Ca, Detroit	141,6077	ix, Skil	-22.71:3	175.0948
O Pump \& Machinery Curp. Marrisun. N.	526, 117:	119,	1,17R.922	35,164*

[^4]standing preferred and common stock and surplus account at the beginning of each year.

		Annual Rite of Return	
		Flist	Half
No.	Industrial Groups	1989	$19-10$
G	Baking	8.5	7.9
19	Foud problucts-misc.	11.2	11.6
7	Beverages	11.8	13.6
14	Textiles and apparel.	7.5	10,5
4	Shoes and leather	5.6	5.0
7	Woomd promucts	0.4	5.5
11	Paper probucts	4.5	10.1
26	Chemlcals, drugs, etc.	11.0	14.7
12	Petroleum products	2.8	8.5
15	Stone, clay and plass	7.8	10.5
1	Irun and steel-U. S. Steel.	0.16	5.5
- 1	Irin and steel-ather.	1.4	6.2
12	Building equlpment	2.1	7.1
17	Electricul equipmen!	8. 7	13.8
12	Hardware, tools, ete.	7.11	12.11
10	Ilousehold equipment	111.1	12.1
311	Machlnery . .	5.11	12.8
10	Office equinment	4.9	12.5
10	Railway equipment	1.8	11,2
1	Autumoblle Generil Milors	19.7	21.6
10	Autumobile-nther.	17.1	22.2
-2	Autw equipment	13.6	31.7
2, ${ }^{1 /}$	Metal praclucts-misc.	10.5	2 U .0
17	Mlse. minufacturing.	8.1	7.11
:bis 1	Tutal manufacturims	7.1	11.4
10	Cosil mining		
11	Metal minine	6.2	4.7
9	Minlnk, quarrying miss.	11.8	11.6
21	Trade (whalesalk and retall)	5.9	6.f
16	Servire and tonsiruchion	(i. 1	13.3
(1) ${ }_{\text {(1) }}$	Toth!	7.11	111.4

AMERICAN ROLLING MHLI, CO. SELIS $\$ 7,500,000$ DEBENTURES

American Rolling Mill Co., Mid dletown, O., has contracted to sell an aggregate of $\$ 7,500,000$ principal amount of 10 -year, 3 per cent debentures, of which $\$ 5,000,000$ were issued early last week. Two insurance companies were purchasers.

The money is to be used for reduction of $\$ 2,000,000$ principal amount of 4 per cent first mortgage notes, payment of $\$ 1,500,000$ of bank loans and for additional working capital.

CRUCIBLE STERA. CO.

Crucible Steel Co. of America. New York, earned $\$ 2,404,883$ net profit in first half, 1940, after depreciation, depletion, interest, amor tization and federal income taxes under existing rates. This was equal, after dividend requirements on the company's 7 per cent preferred stock, to $\$ 3.52$ per share on common. In first six months last year, net income was $\$ 350,821$ or $\$ 1.47$ per share on the 7 per cent preferred.

Net profit for the quarter ended June 30 was $\$ 1,211,727$, equal to $\$ 1.78$ per common share, and compared with $\$ 1,193,156$ or $\$ 1.74$ a share on common in the preceding period.

Special stockholders' meetling has been called for Oct. 3 to consider a plan for payment of the accumulated arrearages in preferred dividends, $\$ 40.75$ per share, and to merge the company's principal subsidiary, Pittsburgh Crucible Steel Co., with the parent concern. Pro-

Please turn to Page 92)

Steel Has a Real Profits Problem

- SUFFICIENT time has elapsed to permit careful examination of the returns on industrial investment during the first half of 1940 . Now available is the National City bank's comparison of earnings by different industries. This tabulation shows, in the main, that a large portion of industry enjoyed good profits during this period

As usual, the automobile industry led the profits parade with more than 21 per cent. Manufacturers of "miscellaneous metal products" returned 20 per cent. Those that averaged 10 to 15 per cent included the manufacturers of food products, beverages, textiles, apparel, paper products, chemicals, drugs, stone, clay, glass, electrical equipment, hardware, tools, household equipment, machinery, office equipment, railway equipment.

At the bottom of the list, along with leather, shoes and wood products, stands steel, with 5.5 per cent for the United States Steel Corp. and 6.2 for the rest of the iron and steel industry. This was the showing on a comparatively satisfactory volume of output, for steel production during first half averaged 72.64 per cent of ingot capacity.

Steelmaking Profitable Only When

Production Is Near Capacity

Yet this return is a good one for steelin the light of returns over a period of years. During the decade 1930-1939 steel's net profit, as compiled by Steel, averaged only 1.899 per cent on invested capitaland even this figure fails to reflect fully the dismal earnings picture because it represents the profit before deducting fixed charges such as preferred stock dividends and bond interest.

Present indications are that steel earnings should be somewhat better in the second half than in the first. This ex-
pectancy is predicated on the likelihood that production will average considerably higher and that less steel will be sold at reductions from published prices. At the same time there are factors of uncertainty. Collapse of England, for example, would reduce tonnage requirements sharply. Then, too, it seems likely that costs may be increased further, due to imposition of higher taxes by the revenue bill now in the formative stage in congress.

What the steel industry has arrived at in recent years is a selling price-cost relationship which permits a profit of approximately 6 per cent only when steel consumption is at peak-that is, when it is able to distribute overhead expense over a large amount of tonnage and when it feels under less compulsion to offer cut prices in order to get business.

Future not Bright Unless Industry

Adjusts To Meet Inevitable Lean Years

From an earnings standpoint, the future of the steel industry must be viewed with some apprehension. Lean times will come again-that is inevitable. If the relation of selling prices to cost remains as at present-when even under today's favorable conditions certain important steel products are in the red-profits of the industry as a whole again will be practically nil. This is a chief problem facing management in the steel industry. Difficult as it is, it is to be hoped that it can be solved. If it is not solved it will be only a matter of time when the industry will cease to attract investors and when it will be shunned by ambitious young men eager to launch successful careers.

The BUSINESS TREND

Activity Well Sustained In Durable Industries

- THE sharp seasonal decline in automobile production throughout July was the chief factor in forcing Steel's index to lower levels for the period. Gains in steelmaking operations, electric power consumption and revenue freight carloadings were more than offset by the seasonal recession in motor car assemblies.

During the latest week ended Aug. 3, Steel's index declined 3.7 points to 99.7 , against 103.4 for the week of July 27 and 83.5 in the corresponding 1939 period.

In the week ended Aug. 3 steelmaking operations
and electric power consumption moved into new high levels for this year. Revenue freight carloadings recorded a less than seasonal decline, while automobile production was below half the previous week's total as additional interests closed down preparatory to 1941 model production.

The high level of operations in the durable goods industries is expected to be sustained for some months, reflecting the expansion in order backlogs in most industrial lines and prospects of additional large scale requirements arising from our domestic rearmament program.

STEEL'S inder of activity declined 3.7 points to 99.7 in the week ended Aug. 3:

Week Emuled	1940	1939	$\begin{aligned} & \text { Mo. } \\ & \text { Data } \end{aligned}$	1940	1939	1938	1937	1936	1935	1934	1353	1938	1931	1930	1998
May 25	109.1	85.4	Jan.	114.7	91.1	73.3	102.9	83.9	74.2	58.8	48.6	54.6	69.1	87.6	104.1
June 1	99.2	75.9	Feb.	105.8	90.8	71.1	106.8	84.3	82.0	73.9	48.2	55.3	75.5	99.2	111.2
June	1119	88.2	March	104.1	92.6	71.2	114.4	88.7	83.1	78.9	44.5	34.2	80.4	98.6	114.0
June 15	114.9	88.2	April	102.	89.8	70.8	116.6	100.8	85.0	83.6	52.4	52.8	81.0	101.7	122.5
June 22	114.8	93.0	May	104.6	83.4	67.4	121.7	101.8	81.8	83.7	63.5	54.8	78.6	101.2	122.9
June 29	115.3	91.0	June	114.2	90.9	63.4	109.9	100.3	77.4	80.6	70.3	51.4	72.1	95.8	120.3
July 6	11.5 .3	-31.4	July	102.4	835	66.2	110.4	100.1	75.3	63.	77.1	47.1	67.3	79.9	115.2
July 13	108.5	${ }^{7} 8.8$	Aug.	83.9	68.7	110.0 96.8	86.1	69.1	63.0 36.9	68.0	45.0	67.4	88.4	110.8
July 20.	106.0	88.8	Sedt	.	98.0 1140	82.3	98.1	94.8	77.0	56.4	63.1	48.4	59.2	78.8	107.1
July 27.	103.4	86.8	Nci.		114.0	83.6 95.9	88.1	106.4	88.1	54.9	52.8	47.3	54.4	71.0	92.2
AUg. 3	99.7	83.5	Dec		118.9	95.1	74.7	107.6	88.2	38.9	54.0	46.2	31.3	64.3	78.3

Steel Ingol Opmerallons
(Per Cent)

$\begin{array}{llrrrr}\text { May } 4 \ldots . & 63.5 & 49.0 & 31.0 & 91.0\end{array}$
$\begin{array}{lllll}\text { May 11.... } & 66.5 & 47.0 & 30.0 & 89.0\end{array}$
$\begin{array}{lllll}\text { May } 18 \ldots . & 70.0 & 45.5 & 30.0 & 91.5\end{array}$
$\begin{array}{llllll}\text { June } 1 \ldots . & 75.0 & 48.0 & 28.5 & 75.0 \\ \text { J.2. } & 28.0 & 2.5 & 10.11\end{array}$
$\begin{array}{lllll}\text { June } 8 \ldots & 81.5 & 53.5 & 25.5 & 74.0 \\ \text { June } 15 & \ldots . & 86.0 & \mathbf{5 2 . 5} & 27.0 \\ \text { Jun.5 }\end{array}$
$\begin{array}{lllll}\text { June } 22 \ldots & 88.0 & 54.5 & 28.0 & 74.0\end{array}$
$\begin{array}{lrrrrr}\text { June } 29 \ldots . & 89.0 & 54.0 & 28.0 & 77.5 \\ \text { July } & 6 \ldots & 75.0 & 42.0 & 24.0 & 74.0\end{array}$

July	$6 \ldots$	75.0	42.0	24.0	74.0
July	13	\ldots	88.0	50.5	32.0
July	20		88.0	56.0	

$\begin{array}{llllll}\text { July } 20 & \cdots & 88.0 & 56.5 & 36.0 & 81.0 \\ \text { July } 27 & \cdots & 89.5 & 60.11 & 37.0 & 84.11\end{array}$

Freight Car loudinga
(1000 Cars)

Weakemerdi	1948	1989	1988	1937
May 4	666	573	536	67
May 11	681	555	542	774
May 18.	679	616	346	779
May 25	687	628	562	795
June 1.	639	568	503	694
June 8.	703	635	554	754
June 15.	712	638	556	756
June 22	728	643	5.5	774
June 29.	752	666	589	806
July 6.	637	559	501	682
July 13.	740	674	602	770
July 20	730	$6{ }^{6} 56$	581	771
July 27	718	660	589	783
	718	661	58.3	77

Clectric Power Output (Mlllion KWH)

N'erk	rindral	1940	1939	1938	1937
Mry	4	2,386	2,164	1,939	2,176
May	11	2,388	2,171	1,968	2,195
May	18	2,422	2,170	1,968	2.199
May	25	2,449	2,203	1,973	2,207
June	1	2,332	2,114	1.879	2,131
June	8	2,453	2,257	1.992	2,214
June	15	2,516	2,265	1.991	2,214
June	22	2,509	2,285	2,019	2,2\%88
June	29	2,514	2,300	2,015	2,238
July	6	2,265	2.088	1.881	-3,096
July	13.	2,483	2,324	2.084	2,298
July	20.	2,524	2,295	2.085	2,259
July	27.	2,601	2,342	2.094	2,256
\ug.	3	2,6153	2,32.	11,116	2,262

A ute I'ruduceluss

(1006) Units)

Wra-k	minlmal	1940	1948	1938	1931
3ay	4	99.3	71.4	53.4	140.2
May	11	98.4	72.4	47.4	140.4
May	18.	99.0	80.1	46.8	131.3
Mny	25	96.8	67.7	45.1	131.4
June	1	61.3	3:2.4	27.0	101.7
June	8	95.6	63.3	40.2	118.8
June	15	93.6	78.3	41.8	111.5
June	22	90.1	81.1	40.9	121.0
Iune	29	87.6	70.7	40.9	122.9
July	6	52.0	42.8	25.4	101.0
July	13	62.2	61.6	42.0	115.4
Iuly	21	52.30	47.4	32.1	88.1
July	27	34.8	40.6	30.4	8.4
Aบg.	3	17.4	28.3	14.8	78.4

Mreight Car Awards

	(llundreds of Cars)			
	1940	1939	1938	1937
Jan	3.60	. 03	. 2.5	178.06
Feb.	11.47	22.59	1.09	49.72
Mar.	31.04	8.00	6.80	81.55
April	20.77	30.95	. 15	97.2.
May.	20.10	20.51	60.14	47.32
June	74.75	13.24	11.78	5.48
Juty.	57.36	1.10	. 00	10.30
Aug.		28.14	1.82	14.75
Sept.		230.00	17.50	12.16
Oct.		196.34	25.37	13.55
Nov.		26.50	12.32	2.75
Dec..		. 35	25.81	2.75

Class I Railroads Net Operating Income
(UnIt: $\$ 1,000,000$)

	1940	1939	1938	1937
Jan.	\$45.57	\$32.89	\$7.14	\$38.87
Feb.	32.62	18.59	1.91*	38.78
Mar.	36.73	34.312	14.73	59.88
April	38.82	15.32	9.40	48.36
May	47.08	25.10	16.67	44.24
June	17.42	39.10	25.16	59.35
July		49.01	38.43	60.99
Aug.		54.59	45.42	50.76
Sept.		86.43	50.36	59.62
Oct.		101.62	68.57	60.86
Nov.		70.35	49.67	32.44
Dec.		60.95	49.37	25.99
Average		849.02	\$31.02	9. 1

- Indlcates dencit

Pig Iron Production

Daity average Minst furnuce $1940 \quad 1939 \quad 1938$-Nate 104019391948 Jan. $129,825 \quad 78,596 \quad 52,20185.451 .033 .6$ Feb. $113,943 \quad 82,407 \quad 52,254 \quad 75.0 \quad 53.5 \quad 33.6$ Mar. 105,502 86,465 53,117 $69.5 \quad 56.1 \quad 34.2$ Apr. $104,6375 \quad 76,732 \quad 51.81968 .949 .8 \quad 33.4$ $\begin{array}{lllllllllllll}\text { May } & 112,811 & 62,052 & 45,556 & 74.2 & 40.2 & 29.4\end{array}$ $\begin{array}{lllllllll}\text { June } & 127,103 & 79,125 & 39,601 & 83 . f & 51.4 & 15.5\end{array}$
 Aug. $96,12254,031 \ldots . .64 .434 . m$ Sept. 107,298 62,835 69.740 .5 Oct. 131,053 74,697 85.248 .0 Nov. 138,883 85,369 30.355 .0 Av. $\ldots . . \overline{86,375} 51,752 \ldots .685 \overline{37.3}$

United States
Foreign Trade
(Wint: $\$ 1,000,000$)

			Int	
	1931	1939	1940	1939
Jan.	\$368.6	\$212.9	\$241.9	\$178.2
Mar	347.0	218.6	199.8	158.0
April	352.3	267.8	216.7	190.5
May	324.0	231.0	212.2	186.3
June	325.3	249.5	211.4	202.5
July	350.4	236.1	211.4	178.9
Aug.		229.6		168.9
Sept.		250.8		175.8
Oct.		288.6		181.5
Now.		332.1		215.3
Dec.		292.7		235.4
		367.8		247.0
otal		3,177.0		3

Abstract

When an engineer must design to produce failure instead of to prevent failure, an entirely new approach is required. Design values determined by direct experiment, so include all factors

- IN DESIGNING a structure or machine, engineers commonly determine as accurately as possible just What stress will be carried by each component. Then actual loads or stresses are multiplied by a factor of 3,4 or 5 and the parts made sufficiently strong to withstand these higher values. Use of such a "factor of safety" is a distinct benefit as it affords valuable insurance against failure from unforeseen causes, excessive loads or unusual conditions.

It is possible to say with great certainty that a structure or machine so designed will sustain a given "safe load" indefinitely. However, when an engineer is required to design to produce failure instead of prevent failure, a new approach is required.

For such work, there is no factor of safety to fall back on for unknown or undetermined loads or conditions. A more accurate knowledge of both stress and material is required.

Suppose, for instance, it is necessary to know exactly the number of pounds of cast iron required to load the George Washington bridge to make it crash into the Hudson. It is extremely doubtful if any amount of mathematics would give the exact answer. Even if it were possible to determine mathematically the exact stress to which each member would be subjected, it would not be possible to determine the capacity of the materials actually used to resist these stresses.

However, there is an extremely simple way to determine the exact breaking load. Just pile pig iron on the bridge, keeping count of the amount added, until the structure collapses into the river. While this method obviously is so impractical as to be ridic-

[^5]ulous, the fact remains that the method not only is simple but also an extremely accurate one.

Such a method actually is employed as the basis for design of "bursting disks." As the name implies, a bursting disk is a device made to burst at predetermined pressure. In so doing it provides an opening to relieve pressure. In its most desirable shape it consists of a preformed diaphragm clamped between suitable flanges. A typical disk before and after bursting is shown in accompanying illustrations. The preformed spherical-surface type of disk has been found by far the most successful.

It has been aptly described as a "pressure fuse." As such, it is an extremely effective device for relief of excess pressure because it features extremely large comparative capacity, positive operation and simplicity of construction. It can be used effectively in combination with a conventional relief valve where it is desired to reseal a pressure vessel after a desired pressure drop has been attained through bursting of the disk.

Assume that it is desired to produce a disk which will burst at, say, a pressure of 300 pounds per square inch. The procedure found most practical is the "bridge method." A disk is selected, pressure applied and the bursting point noted. Then it simply is necessary to select a disk whose "identical twin" bursts at 300 pounds. While a somewhat expensive method, it is simple and accurate. In practice, the process consists of making a number of disks from the same piece of material and deliberately bursting one out of, say, every ten made. This is done in a safety chamber, the special air compressor setup embodying accurate indicating and recording gages. The

entire lot of disks then is stamped with the mean bursting pressure of those tested. The result is a controlled accuracy guaranteed to be within plus or minus 5 per cent. Actually it will be well within that limit. The thousands of disks already made afford an extensive amount of test data so it now is possible precisely to predict the results to be expected from a certain material of a given thickness.

While mathematical analyses and solution of the stress in bursting disks have been made, there cannot be any mathematical solution taking into account the variations in material. Experience proves that these variables apparently can be determined in no simpler or better way than by fabrication and bursting of a sample disk. However, the production and use of bursting disks is not so simple as one might imagine from this, there being a number of other unusual problems involved both in their manufacture and use.

Safety-Heads, a trade name describing the patented combination of bursting disk and flanges as made by Black-Sivalls \& Bryson Inc., are made in sizes from 10 to 24 inches in diameter with bursting pressures from 5 to 20,000 pounds per square inch, and that range is being extended. Apparently there is an almost unending variety of applications for these devices.

In manufacturing these disks, it has been found that most satisfactory results are obtained with ductile materials-that is, metals. It seems to be necessary that the material shall flow under "near-bursting stress" until it attains such a shape as permits the minimum stress for the load. The stress must be a "pure" stress. Use of materials of low ductility appears to result in combined stresses along with "stretch," resulting in lack of uniformity and unpredictable results.

Almost all metals which can be obtained in sheet form have been employed. These include aluminum, copper, steel. stainless steel, monel, gold, platinum. Laminated combinations of base and the more precious metals are most generally used. Recent produc-

Typical tests on bursting disks blow the thin disk apart as shown here in these before and after views of a 6 -inch disk bursting at a pressure of 220 pounds per square inch
tion in this country of laminated aluminum-and-gold and aluminum-and-silver has provided valuable new materials for disks. Nearly all of these metals can be obtained in many alloys and in many tempers . . . Lead, tin and zine are notably unsatisfactory.

Aluminum and copper are the most widely used metals for this purpose. They have the very desirable property of low tensile strength. Commercial 2SO aluminum alloy with ultimate tensile strength of 13,000 to 15,000 pounds per square inch has been used to make disks with a bursting pressure of 11 pounds per square inch in 6 -inch diameter size and only 160 pounds per square inch in the $\%$-inch diameter size.
There is a minimum thickness of any metal which can be used to make disks on a press. Press forming seems superior to pressure forming, probably because it tends to minimize excessive fow of metal from any weak spot and also results in a uniform depth and a uniform amount of cold working. The rate of the drawing operation can be controlled accurately so conditions for the flow of metal can be identical for an entire lot of disks.

To form the disks, the metal must be thick enough to flow into the new shape, semi-spherical, without excessive thinning. After forming, the disks must undergo a certain amount of handling and shipping so must be sturdy enough to withstand this treatment. However, disks have been made as thin as 0.002 inch. Of course, the thickness of the metal must be exactly right. Since metals often are conveniently obtainable only in standard gages, these special thicknesses are produced by cold rolling in a small mill at the fabricating plant.

If required bursting pressure is low, the choice of metal is limited to those which have a low enough

To accommedate the many bursting pressures for which the disks must be designed, strip stock of a wide variety of thicknesses must be available. In addition to standard thicknesses, a rolling mill in the plant is employed to make available many other thicknesses. This view shows only a portion of the slock maintained
strength and can be obtained thin enough to burst at the required pressure. Comparatively high bursting pressures offer a choice of several materials. Corrosion resistance requirements or other special qualifications often will indicate which is the most desirable material for a particular application.

In selecting a bursting disk to safeguard a pressure vessel, it is desirable to consider the pressure vessel itself, including material from which it is made, its working pressure and consequent working stress and the ratio of this working stress to ultimate strength and elastic limit of its material. A safety device must, of course, function before the stress in any part of the vessel itself reaches the elastic limit and distorts permanently. Safe working pressures are almost always established so that working stresses are less than half the elastic limit. In such cases, disks with a bursting pressure of $1^{1 / 2}$ times the working pressure furnish adequate protection.

"Upper Creep Limit" Determining Factor

This means that a disk will be stressed to $2 / 3$ its ultimate strength under ordinary working pressures. With many materials, this means they are stressed beyond their elastic limit. This fact is amazing to many engineers who spend nearly all their time designing to avoid this very condition. Thus 2 SO aluminum with an ultimate tensile strength of 13,000 to 15,000 pounds per square inch is stressed to about 10,000 pounds per square inch under normal working conditions. The nominal elastic limit of this material is about 5000 pounds per square inch.

While these values are for a standard set of conditions and are not correct for the conditions in a disk, the relative values are similar. The determining factor for maximum permissible stress or for ratio of working pressure to bursting pressure is the "upper creep limit" of the material. This is the value beyond which the material flows so rapidly as to fail in a comparatively short time. The fact that the creep limit of metals like lead, tin and zinc is so low as compared with their ultimate strength, accounts for the unsuitability of these metals for disks.
It is difficult to find published data for creep in most metals, in such form as is useful for application to bursting disk design. Most published data available have been determined for engineers who design for ample safety and not for exact failure. Creep stresses, for instance, ordinarily are stated as values resulting in a certain percentage of creep in a certain number of hours. Data such as this are extremely

Most bursting disks are lormed in a press operation using a setup similar to that shown here. Note hold-down ring in lower section of die. A micrometer checks amount of reduction in hicioness produced by the forming
difficult to apply in the manufacture of disks.
This means that the bursting disk designer must resort to direct experiment and tests to determine the creep limits as well as to help determine other factors such as fatigue, temperature, corrosion, etc.

Where pressure vessels are subject to pulsations, fluctuations or alternate pressure and vacuum the fatigue limit of the material is likely to be the determining factor in figuring the ratio of bursting pressure to working pressure. Here again published data are inadequate. Tests have shown, however, that working pressures must be held considerably below those for more quiescent loads. An aluminum disk, for example, will serve more satisfactorily under severe pulsation if the ratio of bursting pressure to working pressure be 2 rather than $1^{1 / 2}$.
In process industries, high temperatures often are encountered. In such cases accurate metallurgical characteristics of various metals must be determined by extensive testing at actual working temperatures. For this work, an electrically heated furnace with multiple thermocouples and recording and controlling pyrometers is used. This makes it possible to rate bursting disks not only for room temperature but also for various other temperatures.
Choice of metals and range of bursting pressures narrow sharply for high temperature applications. Aluminum is virtually worthless at temperatures above 300 degrees Fahr. Copper has been used successfully
at somewhat higher temperatures. Stainless steel and monel appear most suitable for extremely high temperatures. Nickel has the seemingly unique and valuable property of preserving an upper creep limit extremely close to its ultimate tensile strength at comparatively high temperatures.

The effect of cold working must be considered in applications where the temperature is above the annealing temperature of the metal in the disk. Copper has the faculty for annealing in time at extremely low temperatures. For that reason, if a copper disk, made from initially fully annealed material, be tested for bursting pressure immediately after it is made, it will show a much higher bursting pressure than it will after having been subjected to comparatively low temperatures for a period of time.

In copper, the cold-working effect of pressing a disk adds approximately 11 per cent to its initial strength. Therefore, allowance must be made for this increase in strength. To insure immediate protection it is desirable fully to anneal copper disks before putting them into use and determining their pressure rating.

The list of similar factors and variables involved in the design, fabrication and use of bursting disks could be extended to great length. In this article I have attempted merely to point out a few of the difficulties and problems involved in a "design for failure" as contrasted with a "design for safety."

Controls Sarking IPit Temperature

And Atmospliere Automatically

RECENTLY the soaking pit facilities at the Roebling, N. J., plant of John A. Roebling's Sons Co. were changed over from producer gas to standard bunker "C" oil as fuel and an exceptionally efficient system installed to provide accurate automatic control of combus. tion conditions as well as temperature.
There are elght soaking pits in a double row at this installation. In loading, six hot-top ingots are placed in each pit to give a total capacity of 48 ingots. Rayotubes are mounted to sight 3 or 4 feet below the top edge at the front of each pit. Each Rayotube is conneeted to a control instrument setup as shown in the schematic diagram and works with a pyrometerrecorder connected to an electric control valve drlve which, through a relay, moves both atomizing air (primary air) and fuel valves. This controller, through another relay, also operates a damper drive to the recuperators to control the intake damper through which secondary air enters, all as shown in the diagram. A dial is provided on
the control panel to permit the fuelair ratio to be reproportioned as may be desired.

This arrangement automatically
operates valves for primary and secondary air and also for fuel as furnace (soaking pit) load requirements may dictate. The control operates to make the adjustment gradually, never moving suddenly.

Changes in furnace load do not affect furnace pressure. An entirely separate instrument from the temperature fuel-air system (Please turn to Page 90)

Deformation Controlled

Abstract

A unique handling system features a large number of hydraulic jacks on temporary foundations for aligning parts of huge tanks during field erection, permits turning tanks for downhand welding

Fig. 1. (Left)-Crawler crane lifting ring section into position. Prefabricated plates stacked at left. Fig. 2. (Right)-Placing section on hydraulic

- FIELD erection of many large structures involves the necessity of preventing deformation of the members during assembly. In fact, this problem is so severe that the use of certain types of structures has definitely been limited because of the difficulty of developing a satisfactory, simple and efficient erection method.
The system one company has devised to overcome deformation is of particular interest because this same method has possibilities for use in erecting a large variety of structures, especially extremely large horizontal tanks and containers.

For instance, the use of horizon. tal high-pressure gas holders as against vertical types has several important advantages since the horizontal units have a much smaller overturning moment, both from wind pressure and seismic impact; nelther do they loom up above the surrounding objects to monopolize the view, a factor of major impor-
jacks on temporary foundations in asjacks on temporary foundations
sembling huge tanks

Chief Engineer
Lacy Mig. Co.
Los Angeles

By W. A. SANDBERG

tance in semiresidential and business districts.
Yet difficultles encountered in erection and in supporting the holders on multiple foundations have limited the size of these units greatly. It has been found that by supporting the holders at two points only, using circular girders resting on expansion rollers, all difficulties from the supporting method are eliminated.

Erection troubles were caused mainly by excessive deflections of the circular rings and uneven settlement of the foundations. How. ever, a method was recently de-
veloped by the Lacey Mfg. Co. of Los Angeles and applied success. fully to the recent construction of high-pressure storage tanks for the Southern Counties Gas Co. at Santa Monica, Calif.
This type of construction also is very economical for storage of liquified petroleum gases as well as casing head and aviation gasoline.
As will be seen in accompanying illustrations, the extremely large size of these holders called for a new method of handling if they were to be constructed and assembled without serious deformation occurring. These holders, which are of welded construction except for riveted longitudinal joints, each have a capacity of 500 ,000 cubic feet and were designed for a safe working pressure of 50 pounds per square inch.

The A.P.I.-A.S.M.E. code for unfired pressure vessels was followed in the design except that the clauses limiting the use of plates conform: ing to A.S.T.M. specification A. 7

BECAUSE IT MACHINES EASIER!

These paint spray nozzles are machined from Carpenter No. 5 (14\% Chrome Iron). Drilling and threading are accomplished with ease. The machining speed is 175 feet per minute. Stainless Steel was adopted because it is easily cleaned and keeps the nozzle operating at highest efficiency. There is a Carpenter Stainless Steel to meet every requirement of manufacture.

Ask a production man his reason for choosing Carpenter Stainless bar stock . . . and invariably back comes the answer, "Because it machines easier."

So often does this answer come, and from so many different types of plants, that it constantly confirms everything we have ever said about Carpenter Free-Machining Stainless Steel.

This ease of machining opens the door to many additional uses for stainless steel. Parts that were previously considered too difficult, and therefore, too expensive, to make of Stainless, are now being turned out economically through the savings afforded by Carpenter Free-Machining No. 5.
The Carpenter representative with his specialized knowledge of stainless steels is prepared to help you select the grade best suited to your particular requirements. Get the benefit of his experience by taking up your problem with him.
THE GARPENTER STEEL COMPANY Reading, Pa.

to not more than "s-inch were waived.
The cylindrical shells are 32 feet in outside diameter. Shell thickness is $3_{4}-$ Inch and hemispherical heads are $1 / 2$-inch material made with one crown plate and made with two rings of 12 radial segments each. The overall length is approximately 215 feet.

Supported by Two Girders

Each holder is supported by two circular girders located 108 feet 3 inches from center to center. These girders rest on rollers, in turn supported by steel pedestals on concrete foundations. Temperature expansion in this 108 -foot 3 -inch length is approximately ${ }^{3}$-inch from 30 to 130 degrees Fahr. The expansion rollers adequately handle this movement.

Each tank weighs approximately 750,000 pounds. The supports are designed not only to take care of this weight, but also additional stresses from temperature expan. sion, expansion from working pres. sure and from a 20 per cent seismic impact. The longitudinal shell joints are quintuple riveted with $1 / 2$. inch outside butt straps and $17 / 32$ inch inside butt straps with 1%. inch steeple-head rivets. Joint efficiency is 93 per cent. Outside butt straps and outside rivet heads were seal welded for tightness but these welds were not considered when calculating joint efficiency.
From the above figures and from the accompanying illustrations, it is evident these tanks involved a number of erection and fabricating problems. As previously mentioned, the principal trouble anticipated was from deformation. However, this was adequately controlled by the special fabricating method devised as follows:

First step in constructing these tanks was to assemble four prefabricated steel plates together on a horizontal platform to form a section of the shell 32 feet in di-

Fig. 3. (Left)-Tank completed. Now clips will be semoved, holes plugged, infernal tie rods removed, transverse ties altached, permanent supports atlached, hydraulie jacks and temporary loundations removed. Fig. 4. (Right)Here an electric winch pulls cables which revolve tanks for welding in downhand position
ameter and 8 feet long. Prior to being shipped to the site for field erection, the plates were rolled to proper curvature, edges were machined for welding and ends punched for rivets. A number of these plates stacked on edge are seen at the lower left in Fig. 1.
First step in the field is to assemble individual shell rings, done on a horizontal platform with the plates on edge, the ring axis vertical. Each ring is about 8 feet long and 32 feet in diameter. With the four plates riveted at their ends to form a circumferential section, radial tie rods are next set in place, bolted into clips tack welded on the interior surface of the shell plates. As will be seen in Figs. 1 and 2, these tie rods are in two sets radiating cut from two center rings. They furnish the necessary support to keep the section from being twisted out of shape during erection,
Next step is to move the rings into alignment on the temporary supports, a crawler crane being used to lift and place the rings. As shown in Fig. 2, each ring is placed on a pair of individual hydraulic jacks on the temporary foundations. The tip of each jack carries a roller which contacts the shell section. It is not difficult to manipulate the hydraulic jacks to align the rings accurately. Once aligned, each section is bolted to the preceding section by temporary cllps.
Outside parts of the tank heads were assembled on the ground and completely welded before being lifted into place and joined to the tank. The whole shell and inner
portion of the head were completely assembled before the tank was rotated for welding.

Circumferential joints between the rings were welded both inside and out. Inside welding was done on the bottom of the tank from the interior, and the outside seam was applied at the top of the tank. Tank was rotated during welding so most of the work was done in downhand position.

Tank Revolved Readily

Fig. 4 shows the electric winch and cable connecting it to the tank at the left, which is being rotated for welding. It is not difficult to revolve the entire tank on the rollers. It will be noted the rollers are not only bolted to temporary concrete foundations, but are supported laterally by a network of structural steel. The hydraulic connections to the hydraulic jacks are clearly visible in Figs. 2 and 4 and also can be seen alongside the foundations in Fig. 1. Each Jack has an individual valve so it can be operated individually when the sections are being lined up.
Before any welding was done on these large gas holders, the complete procedure was established on test plates in the field and operators were tested in accordance with these procedures. Test plates were prepared approximately 3 feet long with a standard U.groove adopted for the circumferential seams on the $z_{\text {-inch }}$ shell. Using $3 / 16$-inch electrodes, a continuous tacking pass was made on the back side of the test plates to correspond to the outside of the shell plates. Next two passes of $3 / 16$-inch rod were deposited in the bottom of the groove followed by a sufficient number of passes so that one flnishing pass would give a convex outer surface.
In making test plates, each suc ceeding pass was begun 6 inches (Please turn to Page 90)

STEEL

SELECTED WITH THE GREATEST

The steel in seamless tubing must be good you just can't make seamless tubing successfully out of poor steel. But the best tubing for your purpose can only be made of the steel that is exactly right for that particular job.

Our independent position gives us the advantage of being able to pick our sources of supply. Through long experience and close cooperation with the various producers of steel, our metallurgists know the kinds of steel each mill makes best. Every pound of steel in our large stock was made to our specifications by mills best able to produce that particular steel.

Every heat of steel that reaches our plant is carefully checked in our own laboratory. Steel of questionable quality is not accepted or used. The identification of all heats is carefully kept in our mill so that detailed records are always available showing the history of the melt.

These facts give us complete control over our raw material which is very essential in selecting the right steel for your particular production problem.

We KNOW the steel is right for your purpose before we start making your tubing.

Why nat talk Hinqes nuer with an Ohric Seamless sales enginees and see minat sumgeitions he hat ta allet.

CARE

Tubing used in pressure applications that call for bends and other severe forming operations must be right from every angle. Strength and casy working qualities of Ohio Seamless Tubing rest on the solid founda-
tion of carefully selected steel. Ctuftsmanship and material combine to praduce OHIO QUALITY.

New Porcelain-Enameling Plant

Exceptionally well-planned plant prevents dust on work by using cover-coat booths and drier supplied with filtered air under pressure. Recuperator supplies 3600 c.f.h. of air at $400^{\circ} \mathrm{Fahr}$.

- POSSIBLY one of the most comprehensive and best equipped porce lain enamel shops in existence is the recently completed enameling plant of Tappan Stove Co., Mansfleld, O.

It is housed in a new fireproof building especially designed for enameling purposes. There are no overhead trusses to collect dust. The building is of steel and brick construction with insulated steel deck roof. Ventilating and heating sys. tem is novel in that all air is taken into the building through automatic self-clearing oil filters, then through banks of steam coils arranged with a system of bypases, and controlled automatically by a room thermostat for delivery into the room through four blowers. Entire plant is in one
room and is kept under pressure to prevent dirty air from entering except through the filter system. Building and equipment layout were designed and engineered by Tappan engineers with the continuous furnace and enameling equipment furnished and installed by Ferro Enamel Corp., Cleveland, O.

Pickling room is exceptionally well lighted and air conditioned to assure more pleasant working conditions and resultant increase in

Fig. 1-Layout diagram of new porcelain enameling shop of Tappan Stove Co., Manstield, O. Note continuous enameling furnace is in adjoining room. Illustrations courtesy Ferxo Enamel Corp., 4150 East Fifty-sixth street. Cleveland

efficiency. An unusual ventilation system here was designed to keep the room under suction so no air leaves the room except through the ventilating system. Air is drawn from the outside through three sets of steam coils set into the wall and then directed by a baffle to pass over the pickling tanks and up through three powerful high-velocity exhaust fans. Air is changed

prowiben Muv LCDivancal. with

εxclusive advanced design of stones and mandrels, plus extreme ease of operation and contral, makes it passible to finish holes to very close limits on the Ex-Cell-O Internal Lapping Machine at a new low cosl... on a high production basis.
Due to far greater stone contact area, ordinarily difficult and expensive grinding and finishing operalions, such as holes inferrupted with keyways, slols, etc., are precision lapped on this Ex-Cell-O machine just as easily as plain holes . . . stone wear is greally minimized . . . the necessity for frequent checking and resetting is reduced.
Send for complete information on this moneysaving machine. Initial cost is surprisingly low.

EX-CELL-O Internal Lapping MAGHINE

BETTER JOB . . GREATER PRODUCTION Worm shown lapped on Ex-Cell-O Internal Lapping Machine by Gear Specialties, Chicago. Former bellmouth cond 50% eliminated and production increased ART-Worm blank - MATERIAL-ASTOCK SAE Sloel, carburized and harde OF HOLE SIZE OF RAEMOVED- TOLERANCE-.0003" PROU ROUT.
 DUCTION-From 90

EX-CELL-O CORPORATION • 1228 OAKMAN BLYD. • DETROIT, MI

EXFGELL-O
 machines AND TOOLS

Ex-Cell-O Corporation
1228 Oakman Blvd., Datrail, Mich.
Please send Bulletin 41102 on the Ex-Cell-O Internal Lapping Machine.

Name
Firm
every three minutes, and there is no condensation at any time. It is possible to stand anywhere in this pickle room without noticing fumes.

Plekling room tanks include two cleaner, cleaner-rinse, acid, acidrinse, nickel-dip, nickel-rinse and alkali solutions and a tank-type drier. Space is provided for future installation of additional tanks when required for increased production. All tanks are approximately $4^{1 / 2}$ feet wide, $7^{1 / 2}$ feet long and 4^{1}. feet deep. Steam coils in the tanks maintain solutions at proper temperature.

Tank-type drier is heated by two cross-fired atmospheric-type gas burners, and an ingenious tripper device automatically turns the burners on when the basket is lowered and leaves only the pilots on when the basket is removed. A 1 ton capacity hoist, electrically propelled, conveys the monel metal baskets through the various operations. See layout diagram, Fig. 1.

Like the pickling room, the mill room also is unusually well planned and lighted. Two mills are 4×5 feet of 1000 -pound capacity, while the other two are 3×4 feet of 500 pound capacity-all mills being individually motor driven and equipped with inching drives. Sliding gate guards are provided in front of each mill. Changing the loading heads is accomplished from a catwalk in back of the mills, this walk making the mill doors readily accessible.

Mills are loaded from the mez. zanine floor where the frit, clay, oxides and other materials are stored and proportioned. A fully equipped laboratory maintains close watch over milled and sprayed

Fig. 2-Unloading end of cable conveyor serving cover coat drier. Note closely spaced high-intonsity lighting fixtures to aid inspection α this point
enamels to insure uniformity. Milled enamel is stored on the mezzanine in a battery of 200 and 300 -gallon storage containers which are porcelain enameled both inside and out. An enameled cover has slotted holes to permit stirring.

Booths for cover coat application, see Fig. 3, are enclosed in an air

Fig. 3-Cover coal spray room at extreme left, air supply chamber at upper center, cover-coat drier extends off into distance below air chamber. At right is enirance end of ground-coat drier chamber with chain conveyor
conditioned plenum chamber 23 feet long by 18 feet wide and 12 feet high constructed of sheet metal and containing steel sash windows on two sides.

Adjoining the plenum chamber is the air supply or "makeup" air chamber, Fig. 3, containing a bank of steam coils and a large blower. The air from outside the enamel building is drawn into this chamber, where it is heated by the steam coils to control temperatures definitely. A blower discharges this air under pressure into the plenum chamber through a large number of dry air filters. This design enables the air to be equally distributed over the entire area of the spray booths.

The plenum chamber, being under pressure, prevents any shop dirt from being drawn in. This mate rially reduces one of the hazards of producing dirt-free cover coat ware.

Housed in by the plenum chamber are two $6 \cdot f$ oot wide manually operated spray booths and one 6 . foot automatic spraying machine, each being equipped with an individual water curtain extending the full width of the booth, making the unit self-cleaning. See Fig. 5.

The automatic spraying machine assembly consists of a moving sprayer head which has four spray nozzles of the type used on ordinary hand spray guns, adjusted to give a flat fan-shaped spray. In operation, the entire spraying assembly moves back and forth at a regulated rate of speed across the conveyor carrying the ware to be sprayed.

The overhead conveyor-type gasfired ground-coat drier is a special design 34 feet long, 12 feet wide and constructed of 4 -inch insulated panels. It can be seen at extreme right,

They＇ll be Shopping for NEW AIDS TO PRODUCTION

AT THE RATIONAL METAL EXPOSITION

Speed is the keynote of the government＇s ten billion dollar emergency program－a big factor in determining which plants will receive α share of the mammoth defense orders to be placed this fall．For this reason，new aids to production are vitally necessary to the thou－ sands of industrial plants which are compet－ ing for this business．

If you have a new aid to production－a better metal ．．．a faster machine ．．．a newer process－now is the time to capitalize on it．And the fastest，most economical way to bring it to the attention of the men you must
sell is through an exhibit in the National Metal Exposition at Cleveland，Oct．21－25．

For these men will flock to the National Metal Exposition and Congress by the thou－ sands，as they did at Chicago last year，to look for the products they need ．．．to com－ pare ．．．to analyze ．．．and to buy．

Over 275 leading manufacturers have al－ ready reserved space in this biggest annual Aid to Production Exposition ．．．a few choice spaces are still available．Write or wire col－ lect today for floor plan and full details． Address：W．H．Eisenman，Managing Director， National Metal Exposition， 7301 Euclid Ave－ nue，Cleveland，Ohio．

Cooperating Societies

American Society for Metals，American Welding Society，The Wire Association，Iron \＆Steel Division and Institute of Metals Division，American Institute of Mining \＆Metallurgical Engineers． counts in carburizing

Hevi Duty has a ten year successful record of producing Batch Type Electric Gas Carburizers. This experience proves the importance of -

* Heavy Rugged Construction of Furnace and Alloy Parts
* Major Operating Parts in Cover (easily accessible)
\star Self Cooled Fan Shaft Bearings
丸 Multiple Zone Control
\star Positive Control of Carburizing Media
\star Proved Element Construction
Hevi Duty Electric Gas Carburizers have all these essential features which are paramount to high quality carburizing and low maintenance and operating costs.

Fig. 3. Heat in addition to that from the furnace recuperator is supplied by a vertical direct gasfred heater. Heat supply fan discharges the heated air into ducts in the bottom of the oven and recirculates about 75 per cent of all heat supplied. The air heater is of the automatic ignition type with safety and control equipment.
An exhaust fan at the entrance end and a forced-air curtain at the discharge end minimize heat losses from these openings. The conveyor chain is equipped with a corner sprocket drive variable from 10 to 30 feet per minute. Easels to support the ware are on 32 -inch centers and contain many movable points and supports. These permit efficient hanging of a great variety of ware.

Ware Passes Through Slots

The black-edge booth located near the discharge end of the drier has a slot through which the ware on the easels passes. It is an 8 -foot wide water-wash booth with an individual precipitator unit for reclaiming overspray.

A recirculating ground-coat dip tank with magnetic separator attached insures clean well-set enamel during the entire dipping operation.
The cover-coat conveyor and drier used in conjunction with the spray booth prevlously mentioned consists of a cable-type conveyor enclosed in an insulated drier housing 40 feet long, 4 feet wide, 6 feet high and constructed of 4 -inch insulated panels. Longitudinal doors located along the side permit easy access to the interior for cleaning and inspection. Heat for this drier is furnished by the furnace recuperator. This heated air also is filtered before entering the cover-coat drier.
This conveyor consists essentially of two sets of five endless parallel cables driven by a common driving sheave with working height 30

Fig. 4-(Left)-Front view of gas-fired U-type continuous porcelain enamel firing furnace. At extreme left is exhaust stack with recuperators. Duct at entrance of furnace seen here provides forced-air curtain to minimize heat losses. Fig. 5-(Right)-Interior view of spray room
inches from shop floor level. Cable support and guide sheaves are mounted on a shaft supported on the outside of the drier as shown in Fig. 2. These sheaves are held in place by ball-bearing self-aligning pillow blocks.

A common fault of cable conveyors, especially on cover-coat ware, has been eliminated by the use of two sets of cables. The first set, about 30 feet long, runs from the loading end of the conveyor through the plenum chamber containing the water-wash spray booth and ends on a double-groove driving sheave located between the spray room and the drier entrance. From this point the ware is automatically transfered to another set of cables approximately 70 feet long which conveys the ware through the drier and brushing operations and then to the unloading point. See layout, Fig. 1.
By this arrangement the cables on which the ware has been sprayed do not enter the drier. This prevents enamel dust from collecting in the drier. At the loading and unloading ends of this conveyor, each cable has an automatic spring takeup to maintain even tension on the cables at all times. The conveyor driving mechanism is a totally enclosed, variable speed unit which permits operation at from 8 to 32 feet per minute.

Much of the dried cover-coat ware is brushed on the cables directly over a special-design 16 -foot table located on the discharge side of the drier. Top of this table is fitted with ${ }^{1} \%$-inch mesh galvanized screen
with a perforated plate below for equalizing the flow of air. In addition to this unit, three 3×4-foot brushing tables are installed parallel to the conveyor where the most difficult pieces are brushed. All tables are the suction-type, all brushed off enamel being collected and discharged into a reclaiming unit similar to that used with the spray booths.

A new Ferro U-type continuous furnace is housed in a separate building adjoining the enamel shop. Only the furnace conveyor chain enters the enamel shop proper, this allowing more working space and permitting substantial cooling of the ware after it leaves the furnace and before it enters the enamel shop for further processing or inspection.

Trolleys Are Dirtproof

The furnace conveyor chain as shown in layout, Fig. 1, makes a 90 -degree turn into the new enamel building to make a total extension from the mouth of the furnace of approximately 235 lineal feet. The conveyor is a drop-forged heattreated chain with dirtproof trolleys equipped with special attachments that permit alloy hook rods on which the burning tools are carried to be turned at any desired angle. Traction wheel turns are used on all inside and outslde turns to eliminate bumpy travel. A springtype takeup and caterpillar drive unit completes the furnace conveyor.

Furnace itself has a hot zone 16 feet 2 inches long equivalent to about 30 lineal feet of travel in the burning zone. A 50 -foot preheat is provided. Furnace is equipped with alundum muffles with new patented corrugated V-bottom. Height of the sidewall is 4 feet while inside width is ample to burn unit ranges.

Two forced air curtains, one at the front of the furnace, see Fig. 4,
(Please turn to Page 89)

RoILING STAINLIF55

 Th THESMINTRODUCTION Tu -2 Rallonay Cited wo ravisher cole mi s2-HICH TEMPER PASS MILL $3^{\prime \prime}$ REVERSING COLD MILL

ON UNITIED MIILS

Forming Cuts Costs

Often only a simple change in design will permit much teelding

 to be saved by use of formed parts. This generally cuts cost of completed article as forming is less expensive than weldingWELDING and forming may be combined in fabrication of welded designs to reduce greatly the cost of a part. The container below might be made in four parts as shown in method 1, resulting in a weld on each corner. The scrap loss is low and the cuts are simple but the welding is considerable. If, however, the parts are cut as shown in method 2 and bent along the edges, the welding footage is materially reduced. The cutting cost and the scrap loss are increased. The resultant product would be made of two pieces, bent along the edges.
A modification of this design might be made as shown in method 3. Factors such as the type of equipment avallable in the plant will determine which combination of parts is most economical.
A direct comparison of costs is enlightening. Suppose the gross weight of the part is 30 pounds and

By E. W. P. SMITH
Consulting Engineer Lincoln Electric Co. Cleveland

the cost of the welding is 18 cents per foot. With 2 feet on a corner, or a total of 8 feet, the cost of welding is $\$ 1.44$ for method 1.
Compare this to the part in meth. od 2 where the total footage is $2^{1 / 2}$. The cost then is 45 cents. As a matter of fact, the cost would really be less than this because in method 2 the joint is a flat butt joint (square groove) and so could be welded in a fixture on a backing-up strip. It is therefore easier to make than the

[^6]corner foint illustrated in method 1. Increase in scrap loss-say 25 per cent-would make the gross weight 37% pounds.

Resultant costs are:

Material

$(30 \times$
$3 \mathrm{c})$
(
Total $\$ 2.34$
Material
$(371 / 2 \times 3 \mathrm{c}) \ldots \ldots \ldots \ldots . . \$ 1.13$
Welding
.45

Total $\$ 1.58$
Saving due to bending
This saving does not include the cost of bending, yet this would be only a fraction of 76 cents. Hence. in general, when proper equipment is available, it is more eenn-mical (Please turn to Page 89)

NEW WELD-O-TROL EQUIPMENT PAYING DIVIDENDS

HERE'S WHAT YOU GET WITH WELD-O-TROL
neDucio outagecharges-currentturned "on" and "off" 600 or more times per minute. BITRER WLLD 5 -no mechanical delay-no stopping and starting.
REDUCED MAINTENANCI - no moving parts to wear out.

IN ALL AROUND SAVINGS

Burned resistance welds and poor bond between metal were constant sources of trouble on body assemblies at this well-known automotive plant. Shutdowns were frequent and maintenance was heavy due to the type of welding control in use.

But today the picture is entirely changed. Seventeen gunwelders, each equipped with Weld-O-Trol, have completely eliminated burned welds. A stronger bond is now obtained with half as many welds as used formerly. Rejected assemblies
have reached a new low. And during the six months the Weld-O-Trols have been on the job, they haven't cost a penny for maintenance.

Weld-O-Trol's complete ABSENCE OF MOVING PARTS is the feature largely responsible for this remarkable improvement. It does away entirely with time delay - giving you the full accuracy of the welding timer and a closer control of current.

If you'd like to know more about Weld-O-Trol, drop us a line. Ask for Bulletin F-8451-A.

Profits from Waste

High return possible: 30,000 gallons solvent reclaimed yearly at

Abstract

saving of 90 per cent; 75,000 board feet of lumber reclaimed at 70

Abstract

per cent profit; copper scrap for anodes saves 40 per cent

- AMERICAN industry is rapidly following the lead of automobile manufacturers in organizing salvage departments to reclaim waste materials. By concentrating on "what are we going to do with our. waste material," even plants producing a variety of products can net substantial savings by proper. recovery methods.

At East Springfleld, Mass., Westinghouse Electric \& Mfg. Co. spends approximately $\$ 2,500,000$ annually for materials in the making of vacuum cleaners, fans, air conditioning equipment, commercial and domestic refrigerators, and saves thousands of dollars annually by being waste conscious. The salvage department was reorganized in 1937 and the floor space expanded from 1000 to 9000 square feet. All scrap and waste material clear through this one department.

Here the value, quality and best method of placing the material back into production are carefully checked. Salvaging apparatus includes stills, centrifuges, filters, machine tools and special equipment adapted to process particular kinds of waste material The success of these operations depends upon all departments clearing their salvage material through this section.

Economical salvaging runs can be made where a good volume of material is to be reclalmed. Materail heretofore thrown down sewers,

Left above, laundry washes 45,000 pounds of wipers yearly. Solvent still at right reclaims 30,000 gallons yearly at 90 per cent saving. Right above, scrap copper is baled, saves 40 per cent when used as plating anode material

By F. A. BULDRA
Supervisor Salvage Operations
Westinghouse Elec. \& Mtg. Co. East Springtield, Mass.
burned in the incinerator or sold at a very low price is now turned back into the plant output or sold at higher prices.

Salvage problems at the West inghouse plant include steel, copper, brass, bronze, solder, silver, paper, wood sawdust, various chemicals, paint, thinners, solvents, cleaning materlals and laundry work

A punch press has been placed at the baler where steel is baled in the punch shop so wherever it is economical to punch extra parts from skelcton steel or nonferrous sheets, an operator immediately sets up a die and runs material until that order is finished. With this system, parts are punched from serap at once and stored until the production department places an order for them. A calculation is made within 20 per cent of the year's
activity (volume anticipated) of this part and punching is done up to this limit. There is always the gamble of activity falling off due to canceled orders or changes in design. However, this method more than compensates for the otherwise necessary rehandling of material and pays tremendous dividends in the final analysis.

All solvents and waste oils are stored outside and records kept of the approximate activity per year. These records determine the advisability of buying universal stills, centrifuges and clarifying equip. ment to rework these materials for use somewhere in the plant. At the present time 30,000 gallons of Varsol are being distilled at a saving of 90 per cent of the original value. This material is centrifuged on the job to eliminate foreign matter. However, it picks up oil. But when the deposit becomes objectionable. it is collected and placed in an underground tank for later distilla. tion. A 100-gallon-per-hour vacuum still reelaims this material. It is then piped out of the building into a battery of drums set on an elevated runway. The pipe is so designed that the drums fill consecttively. By backing a trailer to the platform, drums can readily be rolled on the trailer, thus eliminating considerable handling.
An interesting example of the elimination of waste came from

The doors of The American Brass Company, largest producer of copper and copper alloys, are ever open to those secking helpful technical or engineering cooperation. In its never-ending quest for the most suitable and coonomical metals for specific applications, our Research Department has produced and tested hundreds of special copper-base alloys, many of which are now in common use for special types of service. . In addition, this Company produces a wide range of Copper, Brass, Bronze and Nickel Silver, in all standard compositions
and in all commercial forms. Manufacturing plants and warchouses are maintained in strategic industrial areas. Distributors, in a na-tion-wide network, are adequately stocked to supply your needs with these Anaconda Metals. - Throughout the years, many manufacturers have come to regard The American Brass Company as dependable headquarters for everything in Copper, Brass and Bronze. Make it your source of supply for these metals - and for the suggestions of a Technical Department possessing a wealth of metallurgical experience.

The Widest Range of Copper Alloys from a single source of supply

WIRE AND RODS - T'o suit every requirement. Wire from . $002^{\prime \prime}$ to rods for gencral fabrication and enginecring purposes up to $31 / 2^{\prime \prime}$ diameter. Free cutting copper, brass, bronze, nickel silver and Everdur rods in long mill lengths; in round, square, hexagon, octagon, and other shapes.

SHEETS AND PLATES - In copper and a broad range of commercial copper alloys, hot rolled or cold rolled; in various tempers; available in thicknesses of $.003^{\prime \prime}$ and heavier. Hot rolled sheets in widths up to $132^{\prime \prime}$, depending on the alloy and gauge requirements.

THE AMERICAN BRASS COMPANY Fhbicators

ANACONDA METALS

COPPER-Arsenical, Deoxidized, Electrolytic, Leaded, Silver Bearing.

BRASS-From "2 and 1" Yellow Brass to "85.15" Red Brass, Leaded, Naval, Forging, Brazing, and Special Brasses.

BRONZE-Commercial, Manganese, Phosphor, Cadmium, Silicon, Architectural, Bushing, Forging, Leaded, Hardware, and Special Bronzes.

NICKEL SILVER-From 5% to 30% nickel content; leaded, from 10% to 18% nickel content.

SPECLAL ALLOYS

Admiralty Alloy	Cupro Nickel
Ambrac *	Everdur*
Ambraloy $^{\text {Muntz Metal }}$	
Avialite*	Mup Nickel
Benedict Nickel	Super Nicmpaloy*
Beryllium Copper	Tobin Bronze*

SPECIAL PRODUCTS

Brass Pipe - Brazing Solder - Bus Bars, Tubes and Shapes - "Electro-Sheet" Copper - Condenser and Heater Tubes Copper Tubes and Fittings - Everdur and Copper Electrical Conduit - Eyelets, Grommets, etc. - Flexible Metal Hose Roofing Copper - Tobin Bronze and Tempaloy Shafting - Welding Rods.
Technical publications on these prolucts are available without cost. Hrite also for Anaconda Publication B-28, a comprehensive Leroklet on Anaconda Copper and Copper Allogs.
*Trade Marks Registered in U. S. Patent Office.

SEAMLESS PIPE AND TUBES-Manufactured by the cast shell, Mannesmann, and the "extruded, rolled and drawn" processes. Round tubes in sizes from .020" O.D. to $26^{\prime \prime}$ O.D. in various wall thicknesses. Square, hexagon, octagon and irregular shaped tubes in a varicty of sizes and alloys. METAL FINISHING-Special finishing equipment is employed and every effort is made to supply Anaconda Copper, Brass, Bronze, Nickel Silver and Special Alloys that exactly meet your particular fabricating requirements in composition, temper, gauge, size, finish and working qualities.

HOT PRESSED PARTS • PRESSURE DIE CASTINGS

Short Culs
 to a Finished Product

To manufacturers whose products include parts of complicated, irregular design, Anaconda Hot Pressed Parts and Anaconda Pressure Die Castings offer marked advantages: Both products are consistently accurate in dimension and are available in a range of alloys that machine and thread freely. Consequently, they can be finished at higher speeds than sand castings, reducing serap to a minimum and greatly increasing tool life. Characteristic of both these products is a smooth, fine-texture finish, a uniform grain structure, and the greatest possible freedom from internal defects. Write for Publication B-9. - Anaconda Special Shapes in long mill length eliminate the need of expensive milling and other machining operations. Shapes such as pinions, cams, and irregular sections of practically all descriptions are produced by either cold drawing or extruding, depending on the alloy. The finished form is commercially constant in cross section and possesses a higher tensile strength and denser grain structure than sand castings. They are available in copper, brass, bronze and some nickel silver and phosphor bronze alloys in rod form suitable for use in serew machines, turret lathes and in other types of equipment.

EXTRUDED AND

DRAWN SHAPES

ANACONDA
 from mhe to corls

THE AMERICAN BRASS COMPANY

General Ofices: Waterhury, Connecticut

Sulsidiary of Anaconda Copper Mining Company

OFFICES AND AGENCIES-Atlanta, Ga. Boaton, Mass. Buffalo, N. Y. - Chicago, Ill. - Cincinnati, Ohio - Cleveland, Ohio Denver, Colo. - Detroit, Mich. Houston, Texas • Kenosha, Wis. - Los Angeles, Calif. • Milwaukee, Wis. - Minneapolis, Minn. Newark, N. J. - New York, N. Y. Philadelphia, Pa. - Pittsburgh, Pa. - Providence, R. I. P Rochester, N. Y. - St. Louis, Mo. San Francisco, Calif. - Seattle, Wash. - Syracuac, N. X. - Washington, D. C. . Waterbury, Conn.
WAREIOLSES: Chicago, III. Cleveland, Ohio - Milwaukee, Wis. = Philadelphia, Pa. - Providence, II. I.
The American Brass Company of Texas, Houston, Texas
1N CANADA: Anaconda American Brass Limited. Manufacturing Plant and General Office, New Torontu, Ontarin
Montreal Ofice: 939 Dominion Square Building
this project. Approximately $\$ 5000$ to $\$ 8000$ a year was spent for a chemical to mix with Varsol to ellminate a possible fre hazard. When the project was approached from an elimination of waste standpoint by the salvage department, laboratory tests showed that this agent when mixed with Varsol and distilled would set up hydrochloric acid and destroy the still. Therefore, an investigation was made in an effort to eliminate the agent. The fire insurance underwriters were called in to investigate the condition and found that with the addition of safety contalners to eliminate the fire hazard, this agent was unnecessary. Therefore, an extra saving was realized.
We are equipped to salvage 7000 gallons of oil per year. The oil is reclaimed by washing to eliminate impurities and then is clarified with clay and centrifuged. This reclaimed oil will not be used again for its initial purpose but as a cutting oil for screw machines.

Salvage Crew Overlooks Nothing

The laundry, consisting of a washer, extractor and drier, washes 45,000 pounds of wipers per year. These wipers are soiled by men wiping their hands and machines. Also gloves, aprons, unionalls and other various fabric apparel are
Some 75,000 board feet of wood is reclaimed per year at a profit of 70 per cent of its original cost. This material is used by the carpenter shop, production department and shipping department There are two sizes and grades, $5 / 8$-inch hard pine and $\pi / 4$-inch soft pine. The soft pine is readily used. However, approximately 30 per cent of the total volume is hard pine which previously was not used. But the salvage department got busy and found that the hard pine could be employed successfully in the construction of certain boxes. As a lesult, the demand for hard pine has increased to where the present supply is insufficient to meet the possible applications.
For plating purposes, scrap copper is melted into anodes and used in place of new anodes. It is most economical to place baled copper skeleton scrap in a basket thus eliminating the cost of melting. pouring, drilling and tapping for hooks. A saving of 40 per cent of the original cost of material can be realized in this manner.
Due to various copper tubing applications througout the plant, there is always a quantity of short ends with a scrap value of one-third the original cost. The reoperating cost of making shorter tubes is 10 per cent which leaves a consider able proft. We have delivered back into the shop over 40,000 pleces copper tubing to be used for various tubing applications.
The company spends a small for-
tune in silver for silver solder to make joints A careful segregation of the material clearing through the salvage department has saved one man's salary per year.

Due to keen competition in business today, reclaiming and utilization of waste in industry is paramount. Management is realizing this and establishing salvage departments. Where such departments already exist, they are being expanded so the greatest possible return from initial expenditures for materials can be obtained.

New Gear and Bearing
 \section*{Lubricant Introduced}

- A lubricant for highly loaded gears and antifriction bearings of the roller and ball type for use under extremely severe operating conditions is announced by Sterling Motor Truck Co. Inc., 2021 South Fiftyfourth street, Milwaukee. It consists basically of colloidal graphite suspended in a straight mineral oil. Ability of the lubricant to resist heavy loads is attributed primarily to the colloidal graphite which, under pressure, forms a graphoid coating on the gear teeth, etc., the coating becoming integral with the surface of the part. This coating prevents metal to metal contact through a form of "dry" lubrication when the strength of the petroleum lubri-
cants is inadequate to maintain continuous lubrication.

Builds Locomotive To Fit the Mine

- A new 15 -ton mine-haulage locomotive announced by General Electric Co., Schenectady, N. Y., has an over-all height of only 26 inches. This enables it to operate in a 40 inch vein without brushing top or taking up bottom. Its overall height has been held down by using high-speed, body-mounted, self-ventilated motors and double-reduction gear drives. The motors are connected to the gears through drive shafts with double universal and slip joints. Equalized spring suspension minimizes derailments, and overload devices protect the equipment.

Two motors, each with a one-hour rating of 90 horsepower and a continuous rating of 84 horsepower, supply the motive power. A 10 step controller provides smooth and fast acceleration with ordinary loads, and application of maximum tractive effort for starting heavy trains. With a special type of trolley support on one side of the locomotive, the trolley base can be raised to a height which permits the pole to be swung across the top of the locomotive by merely operating an air valve.

Greater Production Reduces Costs

- An example of the effect on costs of increased production due to growing demand is revealed by the above chart showing prices of cemented carbldes for cutting tools over the past ten years, during which period their use has increased-particularly for steel cutting.

Since 1930 , the price of a typical standard blank of the material has
dropped 60 per cent, from $\$ 1$ to 38.3 cents per gram, while minimum prices, based on large quantities have declined to almost one-tenth of the 1930 schedule. Large increases are anticlpated in connection with the current armament program. Illustration courtesy of Carboloy Co. Inc., P. O. Box 239, Detroit.

FOR GAS RADIANTS

Abstract

Incandescent surface acts as constant pilot, maintains combustion both at extremely low turndown and at high input. Heat output is directly related to air-gas input, permits exact automatic control

- IMPORTANT advances in gas-heating methods in recent years can be attributed to the ability to produce heat which is largely radiant in character. Radiant heat penetrates rapidly and deeply. It offers a means of achieving efficient furnace operation and uniform heating at high rates.

But radiant heat, with all its ability to penetrate, should be so produced that other favorable characteristics are present also. It is necessary to provide for exact control of heat distribution and temperature. At the same time, it is essential that temperature changes be brought about without disturbance of atmosphere. And it is highly desirable to have a radiant combustion system which simplifies furnace design and operation.

Control of Heat Distribution: Fig. 1 is a diagrammatic view of a gas-fired radiant, recently developed but already widely used for precision heat treating in industrial furnaces. Shape of the incandescent surface determines the direction of the radiating waves which travel from the surface. Since the source of radiation is an incandescent surface rather than a flame, the emanating heat is free of hot spots.
A multiplicity of radiants permits the furnace designer to direct his radiant heat in accordance with the purposes for which the furnace is to be used. Zone control has been employed in some furnaces in which it was desirable to heat certain portions of a charge to higher temperatures than others. On the other hand, extremely uniform conditions can be maintained in all parts of the heating chamber when

uniformity is the requirement. Such control of distribution is the result of burner location and of the absence of hot spots in the radiation.

For applications in which uniformity of distribution is required, the temperature chart in Fig. 2 and the companion diagram in Fig. 3 should be of interest as they show the heating uniformity that is obtained. In this case, four radiants were located in the roof of a furnace along with six recording thermocouples located at the various positions indicated in Fig. 3. Note that the locations include positions near the hearth, near the roof, near side walls and at various intermediate points, yet the band of recorded temperatures for a holding temperature of 1600 degrees Fahr. is narrow.

Controlling Temperature: Design characteristics of the radiant burner make possible the accurate control of temperature. The incandescent surface serves as a constant pilot to maintain combustion both with extremely low turndown and at high input. This constant supporting of combustion is the basis of a wide operating burner pressure range from $1 / 8$-inch to at least 54 inches water column. The shape of the cavity is such that incandescence is present at all input rates within this entire range. To control temperature of the radiation from the burner surface and hence in the heating chamber, it is necessary only to control the degree of incandescence which is directly related to rate of input of a given air-gas mixture. All products of combustion are completely burned with the result that there is no flame emission to interfere with the temperature control.

An example of radiant application in which the minimum and maximum operating characteristics of the burner are of paramount importance, is the removable round or rectangular hood furnace in which heavy charges are heated to a predetermined control temperature in the shortest possible time and then held at temperature. The ability of the burners

Fig. 1-Diagran shows how radiant heat energy is distributed evenly from incandescent burner cavity
to operate efficiently at high burner pressures pernits high heat input for the heating-up cycle. In effect, the charge can be given heat at the highest rate it is capable of absorbing. The high input shortens the heating-up period.
As previously stated, the burners can be operated at burner pressures of 54 inches water column or higher. At this pressure, about 80 cubic feet of nanufactured gas per hour is liberated in a combustion space of $31 / 2$ cubic inches. At this rate and with the air-gas mixture completely burned, the tremendous heating value of radiants is apparent.
Input for the holding cycle, can be adjusted to any rate within the burner-pressure range from 54 to $1 / 8$ inch water column. This is a turndown ratio of 53 to 1 in gas burning capacity. In this range, minimum operating burner pressure is equivalent to 1.5 cubic feet of manufactured gas per hour. Hand in hand with the wide input range is the advantage that the incandescent surfaces in the radiants are immediately responsive to control adjustments originating in temperature-control apparatus. This responsiveness permits holding cycles to be carried out exactly.
In another type of furnace where rapid heat transfer to the charge is of more importance than wide variation of input, gas radiants are valuable. In such furnaces, with the cycle depending solely on the absorption rate of the charge, the designer is able to direct the radiants for rapid transfer to the charge, thus shortening the heating cycle and in-

			0	$0 c^{3}$					

creasing production. Tests conducted on a cylindrical furnace 3 feet by 10 inches in diameter by 17 feet high, fired with radiants located in the walls, showed heat penetration into the charge was more uniform and rapid. Because of the faster heat penetration into the charge, 50 per cent more production is obtained in the same furnace area.

Continuous furnaces, such as those for wire strand and strip annealing, are excellent application for radiant burners distributed over the entire surface of the roof. Not only is even heat distribution from side to side of the furnace obtained but the extremely wide capacity range of the burners permits those near the entrance end to be operated at a higher rate to quickly heat the incoming material. Since combustion is completed in the radiant cavity and since a large portion of the heat produced is radiant in character, burners can be mounted close to the wire or strip resulting in more production per square foot of furnace area and therefore greater economy.

Maintenance of Atmosphere: So complete is combustion within the radiant cavity that the products of combustion are utilized as protective atmosphere

Fig. 2. (Left)-Upper portion shows chart record of a controlling potentiometer while lower section is corresponding record of six thermocouples localed in various parts of the fumace chamber as shown in Fig. 3 at right. Note how closely all six records are grouped even though each imprint is quite wide
Fig. 3. (Below)-Upper section shows plan view and lower is sectional view of test setup showing how evenly radiant roof burners heat a furnace chamber

CHANBERSBURG ENGINEERING CO., CHANIBERSHURE, PA.

STEAM DROP HAMMERS

Standard of the industry. Greater production, greater steat or air economy, and greater accuracy. The Chambersburg patented Slide Valve is featured.

BOARD DROP HAMMERS

Frame - to-anvil construction, front rod design, simplicity of motor drive, and increased board life characterize this efficient Board Drop Hammer.

PNEUMATIC FORGING HAMMERS

Self-contained - motor, compressor, and hammer in one unit. Has high productive capacity. Its greater forging output is due to its heavier anvil construction, higher impact speeds and greater rapidity of blows.
for the charge. Inlet pressure and turbulence set up within the cavity cause the completely burned gases to be delivered to the furnace chamber in an agitated condition and so to circulate without fans to all portions of the chamber and around the charge. In the air-tight furnaces, required for controlled atmos. phere work, positive pressure is maintained within the chamber and there is no diluting of the inner atmosphere.
To produce protective atmospheres for furnace charges, as in the case of clean annealing of stainless strip and wire or bright annealing of copper, it is essential that correct air-gas ratios be maintained. To take advantage of wide burner: operating ratio of 53 to 1 , combustion systems must be capable of maintaining exact air-gas proportions at all rates of heat input.

The radiants with which the examples cited here are concerned are used with air-gas controllers which provide the desired mixture over the entire operating range.
Simplifying Furnace Design: It is evident that radiants permit furnace design to be simplifled and fur. nace chambers to be reduced in size. Since the radiants will operate efficiently in any position, the heat can be distributed as desired without depending on location of vents, baffles or fans.

In design of furnaces utilizing conventional burners, location of vents and baffles or the use of fans is usually given primary consideration so the burned gases may give the desired heating results. With radiants, the designer can direct the heat as needed for either a thoroughly uniform distribution or a zoned distribution.

Three Ways of Obtaining Lonvres Shown, Production Cost Reduced

- CARE at the drawing board stage on the part of users of die castings often results in saving many production dollars. For example, the illustrated automobile heater housing shows three ways of obtaining louvres in a casting without extra cores or slides.
By curving the bottom of the housing and extending the louvres slightly onto the front face, Fig. 1, it was possible to core these openings with the rear hall of the die. This portion of the die also forms the exterior faces of the front and side louvres. The openings in the side louvres appear where shown in Fig. 2 but are not seen in the position in which the heater is normally viewed; special care in removing flash left at the openings, therefore, is necessary.

In Fig. 3 the louvres at the top of the housing are directed toward the rear, and to core them in this direction would require a special slide in the die, operating at an
angle.
This has been avoided by use of a combination punching and bending die in a punch press subsequent to casting. The punches shear the metal along the rear and at the two sides of the openings, bending them outwardly.
The shearing does not leave perfectly smooth edges but, as these louvres face to the rear, the rough edges are not important. Although the die for performing this extra neration involves some expense it is less than would be involved by coring the casting. Morcover, if these
openings were cored, metal flash left in them would require a trimming die almost equaling the cost of the die required for stamping the louvres.

The heater housing is about 0.045 inch thick where the top louvres are formed. As the zinc alloy used is high in impact strength and in
ductility at room temperature it readily permits stamping and forming.

New Coating Widens Usage of Valves

(developed by Merco Nordstrom Valve Co., 400 Lexington avenue, Pittsburgh, in connection with a new process known as Merchrome coating. Thus a lubricating plug cock valve is now enabled to handle successfully services where the temperatures run as high as 1000 degrees Fahr. and where operating conditions make the ordinary valve inadequate. It is a development in which a welded coating is applied to the rotating surfaces of the plugs and bodies and in some cases other parts of the valves. The coating is a complex metal alloy of extreme hardness and corrosion-resistance. The hardness of the treated surfaces is approximately 54 Rockwell C.
The corrosion resistance of the coating is about equal to that of stainless steels. Forming an inseparable bond, it may be applied in any thickness.

While the use of coated valves is principally for reflneries on hot oi] and vapor lines, such as cracking. coking and topping units, and for mud lines to combat abrasion and crosion, the application of the coating is expected to prove useful in chemical plants and other industries.

111ustration shows three ways of obtaining louviesina casting without extra cores or slides in the die. Pholo courlesy New Jersey Zine Co., 100 Front street. New York

WHY G-E ELECTRODE W-22 GIVES YOU

HERE is a fully approved, reverse-polarity, all-position electrode for shielded-arc welding of mild steel in any position including vertical and overhead. Type W-22 provides the extra penetration needed for heavy work in order to get thorough fusion into the root of the joint. Your operators will find the "wetting characteristics" of the W-22 molten deposit make it especially easy to use in making strong fillets of flat contour.
Welding operators agree, when they use this rod, that it is especially
fast and easy to "handle," producing welds of excellent contour and appearance.

SPEED

Comparisons of carefully measured deposition rates at the same power levels (amperes times arc volts) in all positions show a difference of 5 to 8% in favor of Type W-22 electrode. Over-all welding speed is further increased because this electrode is so easy to handle. Molten weld metal crosses the arc in a fine spray instead of large drops-a feature of great help to the operator in making uniform welds and in avoiding any tendency of the electrode to stick to the work, especially on vertical and overhead joints.

ON QUALITY WELDS

Approvals: This electrode is approved by: Bureau of Marine Inspection and Navigation American Bureau of Shipping, Groups H1G and B1G

Lloyds' Register of Shipping, Section 4, Par. 1-9. Complete engineering data and test results of welding speeds, physical qualities, etc. are available through your local G-E arc welding distributor or G.E Sales Office. Call or write them today for a free demonstration of this electrode applied to your own work.

Here is an example of the excellent finished appearance obtained on multi-pass joints with the General Electric shielded-arc electrode, Type W-22.

Qualifications, It will meet:

A.W.S. Filler Metal Specification E-6010
A.S.M.E. Boiler Code, Paragraphs U-68.

It will meet the requirements of U.S. Navy Specifications 22-W-7, Class 1 , and is permitted on work requiring approval of Hartford Steam Boiler Inspection and Insurance Company.

Type W-22 is today's best answer to the profit formula for electrodes: MAXIMUM DEPOSITION RATE \times MAXIMUM USABILITY $=$ MAXIMUM WELDING SPEED

Immediate delivery of Type W-22 electrode, as well as any other in the full line of G-E electrodes, can be made from local stocks held by G-E arc welding distributors right in your own territory.

Local deliveries are further backed by direct-fromfactory shipments. NO DELAY!

```
Gentral Electric Co., Sect. 13 673-1/
```

Scherectady, N. Y.

```
Gentlemen:
```

have rhecked below Flease send me, free of charkes the fiems GES-2510 () Speed Weldind With The W-22 Electrode. O

```
G-E'y New Electrode Bulletin GEA-1546F
```

Name
Addreas
Company DIDCTRIC

Fig. 5-Industrial carbu retor of the Eemp type which supplies premixed fuel

Bright Annealing

Deoxidizing gas from the producer is sampled continuously and is maintained at the desired analysis by a reversing motor on

 the carburetor which alters the ratio of air to gas as required- A CONTROLLED system that fulfils the established need for the automatic correction of variables now is available for protective atmosphere generators used in the bright annealing process. This new device not only is sensitive, accurate and continuous in operation, but makes absolute for the first time the control of atmosphere gas characteristics. A constant indication of current gas analysis and a continuous graphic record are provided.
The new device assures the desired analysis constantly by com.
pensating for changes in the speciffic gravity of the fuel gas, the thermal value of the fuel gas, and the variation in the combustion air supply.

The bright annealing gas as generated is sampled continuously, the sample passing through a thermal conductivity analysis cell. This cell develops a potentlal which is a measure of the composition of the
gas as produced. A controlling potentiometer indicates and records the potential.
When an atmosphere gas producer is placed in operation, the desired analysis of the gas is set by a manual adjustment of the hand wheel on an industrial carburetor. This analysis is maintained automatically from that point on by a motor of special characteristics

Fig. 1 (Left)-Schematic diagram of a 15.000 -cubic loot per hour atmas-gas producer. Fig. 2 (Aight)-Diagram of drying tower which serves the atmos-gas generating units

THE STATIONARY WHEEL PIG CASTING MACHINE

It is an exceedingly rugged and heavy machine.
All parts are of best material for respective duty.
Less than one-fourth the moving and wearing parts in standard pig casting machines.
The only pig casting machine where roller bearings and
(FRhilef desicin) Patenss Peuding Low Power Consumption. Smooth, Quiet Running. Broad Speed Range. Precision Speed Control. No Breakdown Delays. Dependable Operation. 100\% Greater Capacity.

The Stationary Mounted Wheel forced feed lubrication is practicable.
Maintenance and repair costs are practically eliminated.
All sizes of pigs can be cast by changing the moulds only.
No vibration in machine-resulting in better grain structure in pigs.

The Manganese Steel Pin and Bushing

The Steel Casting Link

We can show you this machine in operation in the Pithburgh District.

Fig. 3.-General view of annealing department which is served by constantanalysis gas units for bright annealing. Fig. 4-Analygraph of the Brown type which records the amount of combustible in the gas
which is geared to the micrometer adjusting screw on the carburetor, This motor responds when energized through the potentiometer in re sponse to deviations in the gas com position. The controlled circuit for this application has been especially developed co-operatively by engineers of the Brown Instlument Co. 4508 Wayne street, Philadelphia, and the C. M. Kemp Mfg. Co., 407 East Oliver street, Baltimore.

Five gas generating units of the Kemp type and one of the Surface Combustion type, each having a capacity of 15,000 cubic feet per hour, or a total capacity of 90,000 cuble feet per hour, serve the annealing department of the American Rolling Mill Co., Middletown, O. A view on this department is shown in Fig. 3. Various indicating, recording and/or controlling instruments operate in conjunction with the gencrating equipment. The gas temperature in and out of the refrigerating unit and the per cent of carbon dioxide in the gas as well as the rate of gas flow are under instrumentation on the Surface

Combustion machine. The gas temperature to the alumina towers, the per cent of carbon dioxide controlled and recorded on the analygraph as well as the rate of gas flow are recorded on the Kemp machines. Common to all machines are instruments which record the pressure of the cooling water and bright annealing gas.

A typical analysis of the gas is as follows: Carbon dioxide, 5.6 ; oxygen, 0.0 ; carbon monoxide, 9.6 ; hy drogen, 12.0; methane, 1.0 ; and nitrogen, 71.8 per cent.
The gas sample is taken to the Brown analygraph where it is an alyzed and recorded. The control functions so that if the analysis does not conform to specifications, predetermined limits on impulse are sent to the reversing motor on the carburetor. The motor either increases or decreases the ratio of air to gas port size as required. The operation of the motor, which is through a worm drive at slow speed, is intermittent or continuous depending upon the variation of the gas analysis from the desired point. The
lag between sampling and controlling is approximately $11 / 2$ minutes. The analygraph records the amount of combustible in the gas.
The load on the machine is controlled by a Bristol free controller which operates a diaphragm valve on the line between the blower and the burners. A by-pass for a minimum load of 7000 cubic feet per hour is provided. In the event that all the load is shut off on the main header the minimum load is passed to the atmosphere through the relief valve provided.

A schematic diagram of a 15,000 cubic foot per hour atmosphere-gas producer as well as the drying towers are shown in Figs. 1 and 2.

Safety Device Prevents Damage to Vehicles

- An automatic safety control for motor-operated rolling doors is an nounced by Kinnear Mfg. Co., Columbus, O. Its application reduces the possibility of injury to persons or damage to cars or trucks in case doors are carelessly closed by attendants who fail to note whether or not the opening is completely cleared when they push the control button.

The device works through a compressible, air containing weather strip installed along the bottom edge of the door. When the door contacts an obstruction upon closing, it compresses the weather strip which forces air through an impulse switch, causing the door to either stop its closing travel, or immediately revert to its fully open position.

Aluminum Cleaner Also

Retards Corrosion

- A new aluminum cleaner, Cowles AE, for general cleaning of aluminum parts of all kinds is announced by Cowles Detergent Co., 7016 Euclid avenue, Cleveland. It also contains properties to prevent corrosion of nonferrous metals.

The cleaner has been compounded to produce in solution the high colloidal activity and proper balance of detergent anions necessary for cleaning accumulations of shop dirt, drawing and cutting oils. It is customarily used in concentra. tions of 3 to 6 ounces per gallon of hot water. The time of immersion and temperature of the solutions are dependent upon the individual cleaning demand. All parts cleaned rinse freely and after drying are ready for further finishing or shipment.

Use this improved

to protect highly finished metal surfaces

GULF OILCOAT NO. 1 is easily applied, long lasting and economical to use.

YOU can now secure an improved material to protect highly finished surfaces of steel and nonferrous metal products against corrosion - GULF OILCOAT NO. 1. This product is an entirely new rype of slushing compound, developed by Gulf technologists after many years of research and field tests.
While GULF OILCOAT NO. 1 provides a thin film which is not easily rubbed off by handling, it may be readily removed by conventional solvents. Accelerated laboratory corrosion tests, as well as field tests with all types of metals have established the superiority of this new type of slushing material over products formerly used for this purpose.

GULF OILCOAT NO. 1 can be applied by any conventional method and lasts for a long period of time. It is nominally priced and economical to use. Ask the Gulf representarive who calls on you to give you further details - or fill in and mail the coupon below for complete information.

Better Finishing Methods Produce

Improved Cutter Efifiency

- ALTHOUGH some operators believe the increased expense of producing a higher surface finish on cutters offsets the benefits to be derived, such actually is not the case, this erroneous impression no doubt resulting from use of long, costly procedures now obsolete in the light of modern practice.
When John Lindegren, assistant superintendent at the Crompton \& Knowles Loom Works, Worcester, Mass., began work on improved surface finishes as applied to cutting edges, he discovered that tool costs were increasing from year to year even though they were using the best tools the market afforded. The machines were of modern design and the speeds and feeds were not excessive. What was causing this condition?

For sharpening various milling cutters, for instance, they were using wheels $31 / 4$ to $2^{1 / 4} \times 1^{1 / 4} \times 1 / 2$. inch, ME 21561, $3846 \cdot \mathrm{~K}$. To improve on this a " BE " bonded wheel in a finer grit, $3860-\mathrm{K} 5 \mathrm{BE}$, was recommended. This was satisfactory, producing a much keener edge with much less wheel wear mainly because this wheel re-

Fig. 1. (Upper left)-Sketch shows conception of rough ground cutting edge with hills and valleys created by coarse abrasive grains. Note how the peaks or points break off quickly in Fig. 2. upper right, due to the heary load imposed on them. Edge dulls quickly. Fig. 3. (Lower left)-Cutting edge of tooth of 6 -inch face mill as commonly reground. at 100 diameters. Contrast this with the highly finished edge of the same cutter shown in Fig. 4, lower right, same magnitication
valleys. Obviously when the cutter is put in use, the unsupported peaks are unequal to the heavy load imposed upon them and quickly break off, leaving flat spots that rub instead of cut. This places a greater load on the remaining edge which in turn fails quicker than it would if the edge were stralght and the load equally distributed. In the meantime these flat spots continue to abrade, tearing the stock off instead of giving a smooth clean cut and at the same time generating heat, through this friction, that eventually affects the entire cutting edge and naturally the hardness of the cutter. Net result-a dull tool.

The next step was to devise an economical method of removing the hills and valleys, approaching as near as possible a straight unbroken line. To perform this operation a Norton fine grit Crystolon shellac wheel (37320-J8L) was used with good success on the tool and cutter grinders, surface grinders, etc. This work and change of wheels is accomplished easily on the usual tool and cutter machines. The same method is used

VALVES ARE BETTER

 ?

...when made of Steel Castings

Whatever you make, you can safely follow the example of leading valve manufacturers if you want to improve your product and cut costs.

More and more valves are now being made of steel castings, and they are stronger, more rigid, longer-wearing valves -able to resist high temperatures and pressures. Cast steel contributes these desirable qualities, plus lower cost, less machining to do, and a wide choice of mechanical properties.

Your own foundryman will gladly show you how your products may be similarly improved by a wider use of steel castings. Or you may consult, without obligation, Steel Founders' Society, 920 Midland Building, Cleveland, Ohio.

Steel Castings

bring you these advantages

1. Uniform structure, for greater strength, shock and stress resistance.
2. Metal distributed where it will do the most good; maximum strength with minimum weight
3. Widest range of mechanical properties.
4. Good machining qualities, low finishing costs, better streamlined appearance.
5. High rigidity, minimum deflection, accurate alignment, close tolerances and better fit.
6. Readily weldable in composite structures.
7. High fatigue resistance, maximum endurance and longerlife-ideal for critically stressed parts.

MODERNIZE YOUR PRODUCT WITH
for all milling cutters. Gear cutters are ground first in lots-then the wheel is changed and the lot given the high surface finish. Dies, punches and broaches are ground and given a high surface finish in position by changing the wheels.
The most interesting part of the work now follows and it substantiates the theory relative to a good cutting edge--an unbroken line at the junction of two planes. Bear in mind when reviewing these pictures that only one plane of the cutter has been given a high surface finish so a few hills and valleys from the other plane are quite
visible to the eye in some cases. It is not hard to imagine that the cutter illustrated in Fig. 3 would cut much cleaner and last much longer than that illustrated in Fig. 4. To prove it, actual records were kept of work produced with ground tools and those ground and highly finished. Some substantial increases were obtained.

The usual procedure is to remove 0.003 to 0.005 -inch with the $3860-\mathrm{K} 5 \mathrm{BE}$ whecl leaving about 0.001 -inch for the finishing wheel (37320-J8L Crystolon shellac). To remove any more than 0.001 -inch with this latter wheel might result

SIMONDS

Here's the Cost-Cutting TOOL BIT for Heavy Cuts on Tough or Hard Material
... also "TUNC0" and "RED STREAK" High Speed Bits SIMONDS SAW \& STEEL CO., FITCHBURG, MASS.
in slight burning which can be overcome by thinning the rim with an abrasive stick. One of the gearshaper cutters finished by this method gave a surface roughness reading of 1.3 micro inches. Other plants may use different methods and grains and grades but the final result is a better cutting edge.

The benefits derived from this work are many and perhaps are forerunners of further economies. The following advantages were effected in this case: Longer life of cutting tools because resharpenings are fewer, fewer grinding wheels used, increase in work between regrinds, better quality of work produced, less power consumption.

Percentage increase in work produced with the high surface fin ished tools on a few of the operations as compared to production obtained from an ordinarily ground tool shows some surprising contrasts. On gear cutting, increases of 232,263 and 350 per cent were recorded. In milling work, the finer finished cutters showed increases from 100 to 400 per cent. Punch and die work revealed 33 and 66 per cent increases.

Rotary Union Solves
 Friction Problem

- A new rotary union for use wherever a gas or liquid line must be connected to a revolving shaft, roll or drum is announced by Perfecting Service Corp., 2622 South Parkway, Chicago. It features lowfriction performance and is especially designed for web-driven rollers. It is particularly adapted to the needs of fabricators of steel, aluminum and other metal products.

Recent improvements have made it possible to offer two types of unions-the standard type for use on pressures over 50 pounds, and the heavy duty unit for use on pressures over 50 pounds. The unions also are available for spectal requirements in connection with brine and other types of liquids.

Window Ventilator
 Keeps Out Rain

E A new kind of window ventilator for homes, institutions and public buildings is announced by Wind OGuards Inc., Dearborn, Mich. Besides advantages of natural ventilation it assures privacy, control of sunlight and protection against sudden rains. Being adjustable to prac tically all windows, the ventilators are available in three sizes to it window openings 14 to 22,22 to 34 and 34 to 54 inches. The frame and louvers are of Armco Zincgrip sheets. The unit is finished to har monize with surroundings.

Humidifying Valve

- McDonnell \& Miller, Wrigley building, Chicago, have developed a snap action humidifying valve to eliminate the possibility of the valve sticking or clogging due to presence of scale or other foreign matter. A cam-and-roller action causes it to snap from tight clos-

ure to wide open whenever the water level drops a quarter of an inch. When the water level rises to the proper level the valve snaps to the closed position, scating tightly against water pressure up to 150 pounds. This "wide opening" feature assures flushing out the orifice and cleaning the seat. The humidifter control is made in three different styles-the No. 17 which consists of the valve and float only is $109 / 16$ inches in length; No. 117 which includes the valve and float in a covered float chamber measures 11 inches long, 3 inches wide and $4^{1 / 8}$ inches deep; and No. 217 which incorporates copper tubing and a simple means of tapping into city water supply line.

Speed Indicator

- Reeves Pulley Co., Columbus, Ind., announces a new handwheelspeed indicator for use in connection with variable speed transmisslons, vari-speed motor pulleys and motodrives. Known as the Speedial, it indicates speed settings of the different units. The actual indication is a definite number of turns of the speed shifting screw of the unit. For each full turn of the shifting screw the Speedial registers one point or degree on the circular scale as shown in the illustration. It is avallable for use on both new units and on units already in service.

Feature of the unit is the space available on the dial for the user to write his own calibrations in whatever corresponding units he prefers. Blank dials can be calibrated to individual requirements and provided to read either clockwise or counterclockwise. Gear ratios of $20: 1,30: 1$ and $60: 1$ are available. The dial is calibrated in ac-

cordance with these ratios in from 0 to 20,0 to 30 and 0 to 60 turns of the shifting screw.

Shaded Pole Motors

a Emerson Electric Mfg. Co., 1824 Washington avenue, St. Louis, announces a new line of shaded pole motors, in pressed steel frames, for unit heaters, blowers and other fan applications that do not impose a heavy starting load and that come up to full speed quickly. These are

available in two frame sizes, with capacities ranging from approximately $1 / 400$ to $1 / 25$ horsepower. The small frame is furnished with detachable strap base and the large frame can be furnished with rigid saddle base or resilient hub mounting. All ratings can be furnished without base, with extended-throughbolts for stud mounting. Frames are all equipped with self-aligning wool-packed, oil impregnated bearings, and surrounding oil retaining washer. The motor design includes a covered bearing in the back cover, which has a fiber thrust plug to absorb the thrust action of the shaft. These motors also are suitable for vertical operation, with shaft end up.

Air Heaters

- Heating division, Westinghouse Electric \& Mfg. Co., Mansfield, O.,
announces a new line of wall and floor mounted air heaters. Ease of installation and clean, steady, odorless heat make these units desirable for use in crane cabs, truck houses, valve houses, locomotive cabs, scale rooms and garages. They are designed for use with either a 3-heat hand switch or type AA thermostat. Wall mounted air heaters range from $25^{1 / 4}$ to $31^{3 / 4}$ inches in length and are 10% to $16 \frac{7}{8}$ inches high. They have a rating of 1000 to 4500 watts and operate on 115,230 or 440 volts. Floor mounted units have approximately the same heating surface in inches and the same wattage rating as the wall mounted units.

Ventilating Fans

a Truflo Fan Co., Harmony, Pa., announces a new line of roof ventilating fans for increasing the re-

moval of air in gravity-type ventila. tors. The fans are available in 48 , $42,36,30,24$ and 18 -inch sizes with air exhaust capacities ranging from 40,000 to 2000 cubic feet per minute.

Clamp Vise

- Knu-Vise Inc., 16841 Hamilton street, Detroit, has developed a Knu-Kam-Klamp which has an adjustment range of between $7 / 8$ and 1 inch, depending on the portion of the toggle bar used for clamping. It is made in two sizes, both interchangeable with the standard type Nos. 110 and 250 toggle clamps. Its action is similar to a toggle clamp in that they both have a clamping bar hinged at one end, the operating handle, and base member for attaching it to the fixture. The link connecting handle to toggle bar is slotted to permit this bar to be withdrawn rapidly from the work. The upper portion of the toggle or clamping bar is machined to a cam surface against which two rollers are in contact at all times. When the handle is in the vertical position, these rollers are contacting the low part of the cam surface and the toggle bar is

Coparighe 1910 - Joars de Inughlin Stret Corporarion
From an orikinal drauing by Orison MacPherson

WITH J\&L STEEL WIRE - MANUFACTURERS WEAVE SAFETY, CONVENIENCE, COMFORT, INTO THE FABRIC OF MODERN LIFE

Thousands of appliances and facilities for home, farm and factory are made of steel wire - draun from J \& L Controlled Quality Steel.

"Steel wire forms the warp and woof of much of the fabric of modern life. By its strength and its adaptability to many forms, it affords us appliances and facilities that make life safer, casier and more enjoyable.
"And just as steel wire serves everyone so fully, its manufacture is one of the most diversified operations in our works. Here in this $\mathrm{J} \& \mathrm{~L}$ wire mill are hundreds of highly specialized units operated by skilled workmen under supervision of exlerienced mill management. Each unit is integrated with the whole $J_{\&} L$ chain of Controlled Quality steel production, that follows through the smelting of sclected iron ores, conversion of the iron into steel ingots, rolling of ingots into blooms, billets, and wire rods. We saw the rods run their fiery course through the loud, speeding rolls, faster than half a mile a minute. We saw them pass their tests for tensile strength and accuracy of size.
"Now we stand before this humming edraw bench." where these rods of J\&L Controlled Quality Sicel are
pulled through a series of tungsten-carbite dies, each reducing the rod's diameter until the desired size or gage of wire is produced. Then, by different combinations of finishing and heat treating operations, the wire is processed into wire of infinite rarietics and qualities for unlimited channels of service - strong, accurate wire for J\&L wire rope; bright and galvanized wire for $\mathrm{J} \& \mathrm{~L}$ nails, staples, barbed wire and woven fencing; highly tempered J\&L Mastercraft spring wire, which manufacturers like yourself use in making springs for soft, durable mattresses and fine furniture; Electromatic oil tempered spring wire for special mechanical springs; special wire for cold forming into bolts and machinery parts; tin-coated wire for communication lines; soft wire for the thousands of manufacturers who make coat hangers, wood serews, paper clips - 160,000 other articles of daily service.
"When you think of all these uses of steel wire stemming from the mighty ingot, the common denominator of this great industry, you realize afresh that steel is our most useful metal, our first line of defense, our greatest servant, in the design of modern life."

Jones \& Laughlin Steel Corporation

in the maximum position to take ine thickest part being held in the fixture. Continued swinging of the handle forces these cam rollers against the rise of the cam so that the toggle bar is eventually in the minimum clamping position.

Soldering Iron

- Ideal Commutator Dresser Co., Sycamore, Ill., has introduced a Quick Heat soldering iron which attains soldering heat in less than a minute.
Through the use of a special carbon electrode heating element, its

tip is quickly brought up to soldering temperature. Carbon electrode makes contact at point of tip so that heat is concentrated where it is most effective. Heating is controlled by a thumb-operated button on the handle. Although the iron is recommended for all ordinary soldering purposes, it is not recommended for continuous duty.

Gas Mask

- Mine Safety Appliance Co., Braddock, Thomas and Meade streets, Pittsburgh, announces the addition of an all-vision faceplece to the allservice gas mask which features non-fogging, large-area lenses of

laminated shatterproof glass. It permits vision at all seeing angles, as lenses are contoured at sides. Dry
incoming air is conducted over the lenses, preventing accumulation of moisture or fog. The unit readily fits any face with the gas-tight seal eliminating pressure points. The minimum dead air space inside the faceplece also cuts down rebreathing of exhaled air. The facepiece, made of specially compounded, molded rubber can be sterilized without harm. An all-rubber head harness holds the facepiece in such a position that no metal touches the face.

Spray Nozzle

E Spraying Systems Co., 4021 West Lake street, Chicago, has introduced a Fulljet spray nozzle for various industrial and chemical processes, gas washers and evaporative condensers. It is available in brass or other materials. Its pipe connection is $1 / 2$-inch male, and capacity is 2.5 or 2.9 gallons per minute at 10 pounds pressure. The nozzle produces a full-cone square spray with uniform distribution. This same nozzle can be furnished with a round spray pattern. Sturdily constructed, it has large pasages to prevent clogging.

Tapgun

E Black \& Decker Mfg. Co., Towson, Md., has introduced a new Tapgun to its line of production tools. It weighs only $33 / 4$ pounds, measures $91 / 4$ inches overall and taps up to $5 / 16$-inch in cast iron, $3 / 16$-inch

in steel, $3 / 8$-inch in brass or aluminum. It taps at 400 revolutions per minute and backs out at 525 revolutions per minute.

Remote Control

4 U. S. Electrical Motors Inc., 200 East Slausson avenue, Los Angeles, Calif., announces a new system of electric remote control adapted to its Varidrive motor. It makes possible the automatic control of the take-off shaft speed by means of a thermostat, float switch or other control. It consists of a small worm gear reducer mounted on the motor control case and connected to the motor control shaft which changes the speed. The pilot motor is operated by thermostat, float switch or similar control through
a cyclic relay or process timer. The thermostat or float switch controls the direction of speed change while the cyclic relay governs the rate of change of the speeds.

Swing Grinder

- Hammond Machinery Builders, Kalamazoo, Mich., announces type W wide swing grinder for use on bulky work or any application where extra working space around the wheels can be used to advan-

tage. It is a 3-horsepower machine with totally enclosed motor. It also is equipped with 14 -inch boiler plate guards spaced 36 inches between wheels.

Disk Sanders

E Skilsaw Inc., 3313 Elston avenue, Chicago, announces three new additions to its line of disk sandersmodels SP, H2 and SL. The first is a 2 -speed heavy duty sander and polisher for steady use in metal fabricating plants where there is need for a variety of sanding, polishing and buffing operations. When operating at a speed of 4200 revolutions per minute with a 7 -inch disk, it provides a maximum of sanding efficiency. When changed to 1300 revolutions per minute, the tool can be used with felt rubbing pads or lamb's wool polishing bonnets for rubbing down lacquered surfaces

and other polishing operations. A gear shift enables it to change from one speed to the other. The tool is $18^{1 \%}$ inches long and weighs $14^{3 / 4}$ pounds.

Model H2 also is a 2 -speed heavy duty sander. It utilizes a 9 -inch clisk which is used at a speed of 2700 revolutions per minute. When

District Sales Offices: NEW YORK AND PITTSBURGH
the outer edge of the disk becomes worn, it is re-sized to a 7 -inch diameter using a special trimmer which is provided with the sander. The smaller disk can be mounted on the alternate 7 -inch pad and used at a speed of 4200 revolutions per minute. The sander is $19 \frac{1 / 2}{2}$ inches long and weighs 16 pounds.

Model SL is an extra heavy power unit that can handle a wide variety of heavy duty sanding, grinding and surfacing operations. It operates at a no-load speed of 50co revolutions per minute. It may be used with various sanding pads, grinding wheels, wire cup brushes and other accessories. It is 18 inches long and weighs 15 pounds.

Multibreaker Assemblies

- Cutler-Hammer Inc., 315 North Twelfth street, Milwaukee, announces a change in the case construction as used with its type MB multibreaker assemblies. The device now has an insulated groundable neutral. These assemblies are available with 1 to 16 breakers which can be arranged for 2 or 3 -pole solid neutral circuits for alternating cur-

rent service. Type MB is furnished in elther flush or surface mounting styles.

Tube Bender

- Greenlee Tool Co., division of Greenlee Bros. \& Co., Rockford, Ill, has developed a hand tube bender for bending steel, copper, brass and other tubing, as used in the machinetool, aviation, air-conditioning, refrigeration and plumbing fields.

Because of its design, the bender can bend tubing without kinking or flattening. The bending is accomplished by a rolling action which
eliminates friction and leaves the finish of the tube unmarred.

The tool is available in six sizes for bending tubing with outside diameters of $1 / 1,5 / 16,2 / 4,3 / 2,5 / 8$ and $3 / 4$-inch. Although it is ordinarily held in a vise, a tapped hole in the head permits the use of an auxiliary handle for bending small sizes or soft tubing without a vise.

Treadle Roll Bearing

- New Departure, division General Motors Corp., Bristol, Conn., has developed a special treadle roll ball bearing of high carbon steel which is completely protected from dirt

or lint and fully lubricated for long life. It is easy rolling and designed so it cannot rub at the sides of the treadle arm.

Explosion-Proof Switch

- Micro Switch Corp., Freeport, 111., has developed a small explosion proof switch for use in hazardous locations such as atmospheres containing vapors of ethyl ether, gasoline, alcohol, acetone, lacquer solvents, etc., and for grain dusts. Measuring $3^{5 / 3} \times 2^{1 / 2} \times 2$ inches, it is available with roller arm with the axis of the roller either parallel to or at right angles to the arm, and as a bullet nose push rod type. Its mounting space is kept to a minimum by omitting feet or lugs. However, where a foot or lug-type mounting is desirable, a universal mounting strap is available. A removable cover plate provides easy access to the terminals, which are supported on the switch element itself and accept No. 14 solid wire. The switching unit enclosed within the cast iron housing is the standard Micro Switch with a separate Underwriters' listing of 1200 watts up to 600 volts alternating current. Single pole, double throw contact arrangements also are available.

Gasket Marker

© Crane Packing Co., 1800 Cuyler avenue, Chicago, announces an improved gasket marker for marking and outlining gasket sizes on sheet packing. It is about 4 inches longer
than previous markers and is made of rust-proof spring brass. It elimi-

nates the use of a compass as all necessary information for marking gasket sizes is etched in raised characters on the device.

Angle Iron

- George Scherr Co., 128 Lafayette street, New York, has developed a new universal Magne-Blox angle iron for holding diversified work of all types. It consists of a series of steps measuring in width $3 / 16$, 75 , $1 / 2$, $15 / 16$ and 1% inches upon which may be placed special pieces for surface grinding without the use of complicated clamps and attachments. Its overall dimensions are $3 \times 3 \times$ $71 / 2$ inches. When placed on the plane surface of the magnetic chuck, the angle iron will form a magnetic right angle giving the same holding power per square inch as the chuck itself.

Inside Micrometers

- Lufkin Rule Co., Saginaw, Mich., has placed on the market No. 80 series inside micrometers. Range in these micrometers is obtained by use of extension rods and collars.

Provision also is made for adjusting tension and taking up wear on the screw. Contact points of rods are adjustable for maintaining their individual length.

Forming Cuts Costs

(Concluded from Page 62)

 to form or to bend than to weld. Shapes are not only bent, formed and machined for welded designs, but they are also cut by gas. It is interesting to note that for plate up to 5 inches thick inclusive, the cost for gas only for a cut of 100 square inches (cross section) is approximately 25 cents at the average price of oxygen and acetylene. The speed of cutting increases rapidly as thickness of plate is reduced so that the labor charge varies. See chart.Note that as the thickness of the plate increases, production in square inches cut also goes up. For example, $1 / 4$-inch plate cut at a rate of 120 feet per hour means 360 square inches in cross section is cut. Plate of 4 -inch thicknes, cut at a rate of 108 feet per hour means 648 square inches in cross section is cut. Plate of 1 inch cut at 80 feet per hour amounts to 1080 square inches. Eccnomy through the use of large plate is obvious insofar as this fac tor of preparation is concerned.
The data as given include no fatigue and no setup allowances.

Plan to Revise Practice

On Coated Abrasives

- The standing committee in charge of simplifled practice recommendation R89-36, "Coated Abrasive Products," recently approved a revision of the recommendation, and the division of simplified practice, national bureau of standards, Washington, has mailed copies to all interests for consideration and approval.
Simplification of these products was first undertaken in 1928, when a survey of the industry disclosed the existence of more than 8000 varieties. Eatly in 1928 a general conference of manufacturers, distributors and users drafted the orig. inal recommendation R89-28, which reduced the number of stock varieties to 1923. Subsequent revisions in 1931 and 1935 listed 1863 and 1868 stock varieties, respectively.
The proposed revision now would further reduce the number of stock variaties to 1739 . Mimeographed copies of the proposed revision are available.

Enameling Plant

(Concluded from Page 59)

and one about 20 feet in from the front provide an effective means of preventing heat loss and minimiz. ing cold air flow into the furnace. A twin-nozzle burner supplies proper amount of natural gasplies air for combustion to the two rear
burners of the furnace. Full automatic modulating control with all necessary safety devices is provided. Normal operating fuel consumption varies between 2500 and 3000 cubic feet per hour of natural gas at 1050 B.t.u. Chain speed on ground-coat work is 7 feet per minute and 9 feet per minute for cover-coat operations.

Furnace exhaust stack, at extreme left in Fig. 4, contains a 2 pass recuperator with 70 tubes and core busters so hot exhaust gases from the furnace enter at the base of the stack and give up a great portion of their heat to the recuperator tubes.

Filtered air at room temperature
is introduced through an upper duct and gets its initial heating while passing through 35 tubes around which the cooler exhaust gases are guided. After entering an insulated plenum chamber, the filtered air passes through another set of 35 tubes in contact with the hotter exhaust gases for final heating before being exhausted through the lower duct by means of a fan. Removable insulated plugs permit inspec. tion of the recuperator tubes.
Recuperator is designed to provide 3600 cubic feet per hour of hot air at 400 degrees Fahr. This recuperated heat is used primarily in the cover-coat drier.

- The Murex line includes a group of specially developed rods designed to produce welds with tensile strengths ranging from 70,000 to 100,000 lbs. per sq. in.; ductilities of 20% to 30% and corrosion and heat resisting qualities matching closely any of the more widely used new steels. Because of their excellent deposition rates of high amperages, their ease of handling by skilled welders, and the assurance they provide of cleaner, smoother deposits they step up welding speeds and help hold down costs.

Ask to have Murex Electrodes demonstrated on your high strength-low alloy applications. A note to the nearest M \& T office will bring a representative promptly.

METAL \& THERMIT CORPORATION
 120 BROADWAY, NEW YORK, N. Y.

Accumulator built of A. S. T. M. A-203, Grade 8 sleal by Black, Sivalis \& Brysen, Ohlahoma Ciry. Wolded with Murex Nichel Steel.

Deformation Controlled

(Concluded from Page 52)
from the starting point of the pass ahead to show the contour of each pass.

As the welding of the test plates progressed, the best possible amperage and voltage were determined for each pass and size of electrode. This then was included as part of the procedure, allowing a 10 per cent variation above or below the values to take care of varying field conditions.

In the actual welding of the shells, the continuous outside tacking pass was applied in position, after which the two inside passes of $3 / 16$-inch rod were applied as far as practical without rotating the shell or erecting staging. The succeeding passes were deposited in sections approxImately 5 feet long with 1 -foot backstepping. This meant rolling the holders in 5 -foot steps with all the operators working in the bottom of the holders, keeping time with each other as well as possible. In welding the outside pass and in all the seal welding of rivets and backstraps, the operators were moved out on top of the tank and the holders were rolled in approximately 8 -foot steps.

Heads were welded in downhand position as far as possible. Each bead was thoroughly cleaned and peened to relieve stresses set up during welding. The circular girders were welded in position throughout.

After the shell has been completed, Fig. 3, the clips and bolts which held the sections in place during welding and which still appear in

Fig. 3 are removed. Then the bolt holes are plugged. After this the shell is tested with compressed air at 110 per cent of working pressure (55 pounds per square inch), subsequently reduced to 35 pounds. Next the circular girders were assembled and welded to the tank. The two circular girders for each tank are spaced 108 feet 3 inches center to center on the 215 -foot tanks.

After a tank was located at the proper elevation, centered between supports and carefully leveled, supporting brackets were bolted to the roller cradles and welded to the girders. The roller cradles and rollers for the permanent supports at the two circular girders were first assembled as a unit and bolted to the pedestals of the permanent supports before the brackets were welded to the girders.

Many Jacks Employed

After the brackets and longitudinal braces were welded in place, the hydraulic jacks were let down and removed from the temporary foundations. Then the tank pressure was blown down. Finally the interior tie rods forming the bracing system were removed and transverse ties welded in place.

Features of this erection method thus seem to include the use of temporary tie rods to hold sections in position during erection, also use of a large number of hydraulic jacks on temporary foundation for aligning the parts. In addition, use of cable wrapped around the tank and pulled by electric winch provided means of positioning both for interior and exterior welds so all could
be made in a downhand position, making for maximum efficiency in welding.

Also important were properly designed slings and lifts for moving the section about on a crawler-type crane. One of these cranes is shown assembling the sections in Figs. 1 and 2.

No doubt many of these innovations in erection procedure could be applied with equal advantage to the field erection of other large struc tures.

Controls Soaking Pit

(Concluded from Page 49)
automatically holds furnace pres. sure at any desired point by mov ing the stack damper as may be necessary.

This type of setup, however, is especially recommended where air infiltration is a large variable. All instruments are standard type.

Use of this system has been quite satisfactory, due to the extreme sensitiveness of the control equipment. After an ingot has come to the soaking heat, its temperature is easily maintained within plus or minus 5 degrees Fahr, of the de-

Diagram of Rayotube selup
sired point which may be set answhere from 2160 to 2450 degrees Fahr. Ingots are heated with great uniformity to a thoroughly plastic condition.

In addition, the atmosphere is controlled exactly as desired 10 maintain the correct oxidizing condition required to form hard scals that will break off cleanly in the roughing rolls. These results ate obtained with an economical outlay for equipment and at low fuel cost. With old pits which may have a large variable air leakage, such a control setup may be of extreme value in aiding the heaters to send out properly heated ingots.
The steel handled in these pits is usually special analysis material, including practically all of the high alloys as well as the usual carbont manganese steels.

MEETINGS

GRAY IRON FOUNDERS WILL. DISCUSS NATIONAL, DEFENSE

a ANNUAL meeting of Gray Iron Founders' society will be held at Hotel Cleveland, Cleveland, Sept. 12. While the meeting will be devoted largely to reports of activities during the past year, plans to meet the problems of rearmament and co-operation in that connection with the government will be discussed. All gray iron foundry executives are invited.

CHICAGO IS MEETING PLACE FOR HOT DIP GALVANIZEIRS

American Hot Dip Galvanizers association will conduct its semiannual mecting at the Palmer House, Chicago, Aug. 22. Morning will be devoted to a technical session at which papers relating to zine coatings by the hot dip galvanizing process will be presented by members and by the association's technical director of research, Wallace G. Imhoff; afternoon is reserved for the regular business session. Only members may attend the latter, but guests by invitation may participale in the technical meeting. Other features of the program are a lunchcon and banquet.

NEW SHOW WHIL PROMOTE ELECTIRICAL ENGINEERING

An Electrical Engincering exposition will be held in Convention Hall, Philadelphia, Jan. 27-31, during the midwinter meeting of the American Institute of Electrical Engineers. First of its kind, the exposition is designed to serve the electrical industry by promoting a more rapid dissemination of information on new developments.
Exhibits will include new and improved electrical products for the generation, transmission and utilization of electrical energy of interest to engineers in the utility, railroad, industrial and consulting fields. Charles F. Roth, Grand Central Palace, New York, is exposition manager.

FOREMEN HOLDING ANNUAI. MEETING IN CINCINNATI

Charles R. Hook, president, American Rolling Mill Co., Middletown, O., A. C. Cosgrove, vice president and general manager, Crosley Corp., Cincinnati, and Donald R. Richberg, New York, will be featured speakers at the seventeenth annual convenfion of the National Association of Foremen at Hotel Gibson, Cincinnati, Sept. 26-29.

In addition to discussing organbation technique in foremen's clubs, the convention will examine problems confronting the foreman as
the result of current defense activilies, the responsibility of foreman to management and vice versa, legal problems, job simplification, and personnel problems. An exposition of industrial equipment will be held concurrent with the convention.

REFRACTORIES SYMPOSIUM IS SCIIEDULED IN CHICAGO

A symposium on ac:d, basic and neutral refractories is to be held in Chicago on the evening of Sept. 20, under joint auspices of the Chicago section, American Ceramic society, and department of ceramic engi-
neering, University of Illinois. Meeting will be in the auditorium of the Chicago Lighting institute, Civic Opera building.

Speakers will include Dr. Robert B. Sosman, research laboratory, United States Steel Corp., Kearny, N. J., who will present a paper on "Temperature versus Refractories;" W. F. Rochow, Harbison-Walker Refractories Co., Pittsburgh, with a paper on "Service Application of Acid Refractories;" and Dr. R. P. Heuer, General Refractories Co., Philadelphia, who will discuss service applications of basic refractories.

- Great flexibility for handling ore cargoes from ship to dock is provided in this bridge built by Dravo for Great Lakes Steel Corporation. 350 feet overall, it has a central span of 187 feet, carries a 10 -ton bucket. Apron hoist provides clearance for steamer masts.
- Whether the problem is one of modernizing old equipment, replacing obsolete handling machines or designing special facilities to meet new problems, consultation with Dravo Corporation may prove to be of great value to you.
- Added to its ability to fabricate and erect structures such as the one shown here, Dravo Corporation has had years of experience building docks, retaining walls, plant foundations-everything that enters into the problem of terminal facilities. Inquiries relative to specific problems may be addressed to

Financial News

(Concluded from Page 41)
posed plan would also eliminate the company's earned surplus deficit resulting from adjustment of propcrty account, and would create in its place an earned surplus clearing the way for dividend payments.

The plan contemplates exchang. ing each present share of 7 per cent preferred with accrued unpaid dividends into 1.4 shares of new 5 per cent preferred. Each share of the new stock will be convertible into two shares of common.

Company's directors announced, last week, their intention of declar-
ing a dividend on the new preferred stock for the quarter beginning July 1.

SUPERIOR STEEL, CORP.

Second quarter net proft of Superior Steel Corp., Pittsburgh, steel finisher, was $\$ 31,661$. This was equal, after interest, depreciation and federal income taxes, to 28 cents per share on capital stock, and compared with $\$ 54,043$ net deficit incurred in the period last year. Net profit for the quarter ended March 31 was $\$ 84,010$ or 74 cents per share.

Total net profit for six months ended June 30 , was $\$ 115,671$, equal

MATHEWS SPRING MOUNTED CONVEYERS

SPRING MOUNTED CONVEYER

CUT MAINTENANCE COSTS

THE principle is simple; the roller axles are rigidly locked in the frame as in the conventional "rigid type" construction, but the conveyer frame which retains the rollers is carried on pre-compressed coil springs. The springs are held in compression equal to the rated safe load of each roller. Under impact conditions or excessive loads the springs absorb the overload.

This construction represents the greatest improvement in roller conveyer in many years. Its application will reduce maintenance costs by prolonging the life of the equipment. When conditions are severe, "spring mounted" is the practical conveyer construction for the job.

Capacities from 150 lbs . to 8000 lbs. per roller available.

Ask for Illustrated Folder

Pig Iron Production Figures Modified Slightly

- Actual July coke pig iron production in United States totaled 4, 060,513 net tons, according to complete reports from operators of the country's 231 potential blast fur. naces. Average daily rate was 1300^{-} 984 tons, compared with 127,103 in Junc. These flgures are essentially as reported in Sterl, Aug. 5, p. 24, in a compilation including some estimates.

Furnaces in blast July 31 totaled 187 as stated last weok, although there were two changes not previously reported. Ensley No. 6 stack of Tennessce Coal, Iron \& Railroad Co., in Alabama, was blown in July 9 , after having been down for relining since May 31 . Reusens furnace of E. J. Lavino Co., in Virginia, was blown out July 31.
National Steel Corp., Pittsburgh. reported blowing in an additional furnace at the Buffalo plant of its subsidiary, Hanna Furnace Corp., on Aug. 3. Placing the stack in blast brought Natlonal's iron and steel works operating rate up to the 100 per cent level, according to the corporation's report.

\ll HELPFUL LITERATURE

1. Annealing Furnaces

Lee wilson Engineering Cu.-8-page illustrated bulletin, "Annealing Furnaces for wire and Strip." describes these unts and shows typlcal installations. These turnaces are fred with vertical radlant tubes and are sald to attain unliormity of structure and tensile strength in short cycles at low fuel rates.

2. Cements and Coatings

Atlas Mineral Products Co- 16 -page illugtrated bulletin, "Materlals of Chemleal Construction," presents complete information on materlals - Including acidproot cements, plastic Hnings, jointing matertals, and protectlve coatings for add and alkall proot construction, tanks, towers, floors, ducts, trenches and sewers.

3. Vises and Tools

Hollands Manufacturing Co.-24-page illustrated loose-leaf catalog No. 36 describes machinists' and Hlers' solld and ${ }^{3}$ wivel Jaw vises with stationary and solld bases, as well as combination bench. plpe, anvil and woodworkers ${ }^{\prime}$ wises. Pipe cutters, dies, and stocks and ladles are also described. Complete specifications and prices are glven.

4. Continuous Filing

Continental Machines, Inc.-4-page IIlustrated folder D-357 glves specificatons on bench and floor model continuous band flling machines. Each model handes $4, \%$, and 3 -inch wlaths of thes in types designed for material being machined.

5. Welded Tip Tools

Fansteel Metallurgical Corp. - 8-page illustrated folder G-401 contains explicit instructions for making tools of "Tantung' welding rod which is applied to steel shanks by acetyiene torch. and lists prices of weiding rod and standard welded tlp tools.

6. Development in Rubber

B. F. Goodrtch Co.-32-page itlustrated bulietln, "Typleal Examples of Goodrich Development in Rubher," is a reprint of a serles of 28 recent advertisements 11 lustrating and describling improvements and applications of rubber to many types of products and Industries.

7. Electroplating Baskets

Hanson-Van Winkle-Munnlige Co.-IIlustrated bulletin No. D-104 describes meshete line of wire baskets in varlous meshes and gauges, made of steel, brass, mluminum, Monel, and nickel-chromium. In addlition to welded metal baskets, «lazed earthenware baskets are shown.

8. Automatic Lathe

Gisholt Machine Co--6-page Mustrated bulletin No. 1080 presents full detalls of No. 12 hydraulic automatic lathe for between center and chucking work. Machine finds application on production turning jobs such as gear blanks, cylinder liners and plstons, small impeliers, and tywheels.

9. Fluorescent Lamps

Westinghouse Electric \& Manufacturing Co.-24-page illustrated bulletin No. A-3618, entitied "Fluorescent Lighting," is a practical zulde to the application of Mazda F lamps and equipment. It explains how lamps work and purpose of auxiliarles. Direct current operation, temperature effect, color, stroboscople offect, radio interference and lighting costs are some of the sublects covered.

10. Air Shut-Off Valves

Homestend Valve Manufacturing Co.6 -page illustrated folder No. 83975 describes "Homestend-Ross" valves for use as quick acting shut-oll valyes on air lines to alr guns, chipplng hammers, and atn operated tools. Valves are adaptable also on gas and cold water service for pressures up to 150 pounds.

11. Floor Dye

Fiexrock Co. - 4 -page illustrated bulletin describes "Colorfex:" a resin base floor dye that preserves wood foors and protects concrete. Thls product which provides a clean gloss surface is available in greys red, sreen, and brown.

12. Split Phase Motors

Century Electric Co. - 4-page illustrated bulletin No. BCA 120.0 shows construction leatures and operating characteristics of split phase fractional horsepower motors rangins in size trom $1 / 20$ to $1 / 6$ horsepower.

13. Control Instruments

Bristol Co.-Illustrated bulletin No. 548 describes ine of thermometer and pyrometer controllers for gas, electrle, and oll fired industrial fumaces, king and ovens. Included is information regarding air and electrically operated cons trollers, automatic control valves, thermometer bulbs and thermocouples.

14. Plating Salt

E. I. du Pont de Namourg \& Co.-IHustrated service manual glves full data for operation and maintenance of plating soluttons including cost and time tables on commercial deposits. Features of "Cadalyte" salt for cadminm platine presented. Tests for deposit thiekmess are suggested.

15. Abrasive Cleaning

American Foundry Equipment Co. 4 page illustrated circular No. 4 describes the new continuous "Wheelabrator TumBlast," airless blast cleaning equipment for high production shops. Work to be cleaned is carried through blast barrel on an endless apron type conyeyor which cascades and tumbles work, completely exposing it to full effect of abrasive blast.

16. Micrometers

George Scherr Co-4-page illustrated bulletin, "Recd Micrometers," describes and gives specifications and list prices of all types of micrometers for inside and outside measurement. These instru= ments feature tool steel spindles, frictional adjustment and Exed anvils.

17. Metering Orifice

York Oll Burner Co.-4-page fllustrated bulletin, "Irls Shutter" describer a variable iris shutter metering valve or orifice for metering or regulating the flow of steam, atr, gas and liquids. These units are applicable to metering service in all types of industries.

18. Laboratory Furnaces

Ajax Electrothermic Corp.-A-page IIlustrated bulletin No. 12 gives complete information on small electric furnaces for laboratory purposes The 3-kilowatt converter for temperatures up to 2500 degrees Cent. is described as are furnaces for use with this converter.

19. Electric Arc Welder

Harnischieger Corp.-Ilustrated bulletin No. W-28 describes the new WD-150 square trame arc wetder which measures less than 33 inches in length and one foot in helght and dellvers welding current ranging from 200 down to 15 amperes. Detalls of design and service avaliable from parallel hook-up of two or more minhines are also included,

20. Wire Rope Connectors

Electroline Co.-S-page Illustrated bulletin NO. $F-2$ gives detalls of the improved "Electrolme-Flege" wire rope connectors with bulit-in vibration dampo ing design. Installation methods, severai corrosion resistant finishes and types, and availabie sizes are presented.

21. Dust Control

Pangborn Corp. - 4-page llustrated bulletin No. 2056 shows dust control equitment in use in varlous types of plants. Explanation is given of how maintenance costs are reduced, valuable materials are salvaged, depreciation rates aTe lowered with use of dust control machinery.

STEET

Reader:' Service Dept.
1213 Weat Third St.,
Cloveland, Ohio

K
$8-12-40$

Sond me the literature I have circled below.

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | | |
| 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | |

Narna Title

BUSINESSREPLYCARD
No Pontage Stamp Necconary if Mailed in the United Staten
20 POSTAGEWILI BE FAIDBY-
Company
Producte Manufacturad
Address
STEEL
Penton Building
CLEVELAND, OHIO

22. Bronze Bearings

Moraine Products Dify General Motors Corp.-72-page Lllustrated tool llst of "Durex" bronze bearings describes bearing material, glves installation data Including press fits and clearances and complete dimensions of types or bearIngs. Includes plain cylindrical, flange, thrust washer, seal ring, self-aligning, cylindrical splined O.D., half, and step llange bearings.

23. Direct Current Motors

Allis-Chalmers Manufacturing Co. 40 -page $111 u s t r a t e d$ bulletin No. B-6002 gives data on and shows appitcations of large direct current motors and controls for heavy duty drives. In addition to showing instaltation views of these motors in steel and mining industries, many pages are devoted to design features of the machines.

24. Grinding Wheels

Sterling Grinding Wheel Co. 80 -page illustrated catalog No. 40 presents specifications, descriptions, list prices, and application and operating data on grindIng wheels for all types of products in Industry. One section is devoted to wheel specticatlons for grinding machines.

25. Steel Valves

Hancock Valve Dly., Manning, Maxwell \& Moore, Inc.-4-page illustrated bulletin 5-7000 reproduces A.S.M.E. service rating tables. Information on "Duravalye" and bar stock valves includes cut-away views of construction. Prices and dimensions are listed. Tells how to select proper valve for varlous purposes.

26. Temperature Recorder

Leeds \& Narthrup Co,-12-page lllustrated bulletin N-33B-685 deseribes Speedomax pyrometer for h!gh-speed recording. Uses for temperature, pressure and humidty measurements, speed, radio fleld strength and microphotometer measurements are explained. Completed chart resulting from instrument operathon is shown

27. Electric Tools

The Porter-Cable Mackine Ca - 12page illustrated folder gives brief descriptions of portable electric sanders, "Spcedmatie" hand saws, floor sanders, and beit, disc and spindle sanders. Applications are discussed and shown spectfications of varlous models are Isted.

28. Flexible Couplings

Link-Eelt Co.-12-page H11ustrated catalog 1845 contains price and dimenslonal data on types A, B, and RC couplings and information on revolving and stationary casings for RC type. Simple selection tables and instructions for installation and lubsication are included.

«HELPFUL LITERATURE

(Continued)

29. Combustion Furnace

Harry W. Dletert Co.-Illustrated leaflet describes the NO. 3400 "Varitemp" combustion zurnace for carbon and sulohus determinations of all metals by combustion method. Unit is adaptable for combustion of coal, coke and olls for determination of sulphur with a special determinator.

30. Nickel Alloys

International Nickel Co.-32-page 11lustrated bulletin No. T-13 shows the use of nickel and nickel-base alloys in the design of corrosion resistant machinery and equipment. Engineerlng data n chart and tabular form amplifles text regarding physlcal propertles of these alloys.

31. Diesel-Electric Switcher

General Electric Co.-24-page illustrated bulletin No, GED-803 describes advantages and savings possible with diesel-electric locomotives for all types of switching by rallroads and in industrlal plants. Typical Installations of varlous types of machines are shown.

32. Wires and Cables

The Okonite Co.-32-page Illustrated booklet No. OK-1005 gives pictorial trip through laboratory showing step-by-step procedures of developing new Insulation or protective sheath. How it is put into production, checked and tested in laboratory and proving ground is explained brlefly.

33. Magnetic Drums

Magnetic Engineering \& Manufactur ing Co.-4-page illustrated catalog No. 340 describes high power magnetic drums for protection, purfication, concentration and separations. Fractical applications for all kinds of scparations are explained. Data on dimenstons and capactties are Included.

34. Steam Cleaning

Homestead Valve Manuiacturing Co. 4-pare illustrated bulletin No. J-24025 shows savings posslble through the use of "Hypressure Jenny" steam cleaning equipment on maintenance and production fobs. Typical applications of thls equipment for all types of cleaning are shown.

35. Bar Stock Valves

Reading-Pratt \& Cady Dlv., American Chain \& Cable Co.-16-page Ilustrated bulletin No. 1186 contalns complete information, dimensions, and application recommendations for bronze, carbon steel, and stalnless steel bar stock valves which are precision machined from bar stock metals and fultll need for close controlled valves, capable of withstunding wide range of temperatures and pressures.

36. Small Switches

Micro Swltch Corp.-Illustrated data sheet No. 12 discusses teatures, constructlon, and application details of panel mounting and roller-leat "MIcro" switches. Blucprints show dimensions and outiines. Charts give operating characterlstics of each.

37. Surface Condenser

Ingersoll-Rand Co.-Illustrated bulletin No. 2622 describes the cross flow type R surface condenser, deslgned for high vacuums and high efficlency in small capacitles, Sizes range from 200 to 1500 kllowatt units. Typical installations, cross sectlonal views and constructonal detalls are glven.

38. Electric Solderer

Ideal Commutator Dresser Co--Illustrated bulletin, "Instant Heat," gives details and applications of the new electric soldering tool which employs a transformer and b-carbon element which heats instantly upon touching wire or terminal to be soldered.

39. Machine Tools

Jefferson Machine Tool Co.-4-page ilustrated bulletin, "Speed Up Production," contalns complete description and specifcations on swing frame grinding and polishing machine, lathe tall stock turret head. lathe tool post turret, lathe adjustable pull feed, and endless beit sander.

40. Traveling Cranes

Northern EngIneering Works-8-page H1ustrated bulletin No. S-107 describes "Super-Cranes" for heavy duty service. Constructional detalls as well as vews of typical Installations of these travelias cranes are included.

41. Grinding Wheel Stand

Cincinnati Muling Machine \& Cincinnati Grinders, Inc.-Hlustrated bulletin No. G-454 describes wheel balancing stand with 20 and 40 inch swing, and wheel balancing arbor for mafntenance of correct wheel mount balance. Four arbors avallable are illustrated.

42. Diesel Engines

Caterpllar Tractor Co. -32 -page Inus Crated bulletin No. 6056 shows more than a hundred typical applications of "Caierpllat" diesel engines in all types Industries. Performance records each application are glven brletiy.

FIRST CLASS
PERMIT Na ${ }^{36}$
(Sec. $310 \mathrm{PL} . \mathrm{AR}$)
Clevelard, Ohio

STEEEL

Readars' Service Dept.
1213 West Third St.,
Cleveland, Ohio
Serd me the literature I have circled below.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23	24	25	26	27	28		
29	30	31	32	33	34	35	36	37	38	39	40	41	42	

Name
Title
K
8-12-40

Company
Producte Manufactured

Steel Demand Supports Near-Capacity Output

MARKET IN TABLOID*

Demand

Active for practically all products.

Shipments make little impression on backlogs. Deliveries seen extended further by fall. Scrap is stronger

prices
Generally firm; scrap up further.

production

Unchanged at $90^{1 / 2}$ per cent.
n OPERATING problems occupy the principal attention of most steel producers as demand holds in a volume matching or exceeding near-capacity output.
Shutdowns for repairs have interrupted the recent steady upturn in steelmaking by some districts, but the national average held last week at $901 / 2$ per cent Increased schedules are indicated for several areas this week.

Heavy shipments lately have been without effect on mill backlogs of many products, and deliveries on some items have become further delayed. Buyers generally are protected on current needs, either by previous commitments now being filled or by stocks on hand, consequently the supply situation so far has been without serious inconveniences.
Possibility is seen of more extended delays in deliveries by fall. Exports recently have accounted for 15 to 20 per cent of steel output, and war developments will determine how long this proportion will continue. Even without the share of such business coming from Great Britain and Canada future demand appears likely to engage most steelmaking facilities, since a marked upturn in automotive needs is in prospect the remainder of the year and requirements of the defense program are becoming increasingly prominent.
Automobile production is at or near the season's ebb, declining last week to 12,635 units. A year ago the bottom was reached one week later at approximately this same level. Assemblies of new models are expected to be increased as rapidly as possible, in order not only to take advantage of the active retail market but also to avoid insofar as possible any interruption to operations later in the year because of shortages of material.
Scrap prices have advanced for the second successive week, moving the composite up 21 cents to $\$ 18.50$. Quotations have edged upward in several districts, with mills showing more interest in the market. Government licensing does not appear to be restricting exports of No. 1 heavy melting steel, but certain independent steel producers plan to make a formal protest to Washington, seeking extension of licensing to cover foreign shipments of all scrap grades.
While last week's awards of structural shapes and concrete reinforcing bars were off from the heavy
volume of the preceding three weeks, large tonnages are involved in pending and prospective construction.

Several large orders for line pipe have swelled recent business in tubular products. Outstanding in proposed pipe line laying is application of the Reserve Gas Pipe Line Co. to the federal power commission to build a 1500 -mile line of 24 -inch pipe between the Gulf coastal region and New York city.

Railroad equipment orders continue fairly active and are supplemented by heavier steel purchases for freight car repairs. Recent awards include 2350 freight cars by the Southern Pacific, 1000 box cars to be built by the Chicago, Burlington \& Quincy, 21 coaches and 18 diesel-electric locomotives by the Atlantic Coast Line and two streamlined passenger trains placed jointly by the Chicago \& North Western, Southern Pacific and Union Pacific.

June exports of 617,678 gross tons of iron and steel, including pig iron but excluding scrap, compare with a monthly average of 525,000 tons in 1917, when foreign shipments set an all-time yearly peak. England and Canada accounted for more than one-half the June tonnage, taking 231,094 and 90,491 tons, respectively. Continuation of the June pace through remainder of the year will bring 1940 exports slightly above the 1917 total.
Tin plate production was unchanged last week at 71 per cent, but with consumers' stocks being reduced an increase in specifications is looked for soon.

Pig iron shipments are steady or slightly heavier compared with a month ago. Foundry operations are being stimulated by heavier production of automotive, railroad and farm equipment castings. Better activity at implement and tractor plants also is reflected in expanding steel needs.

Most changes in district steelmaking rates last week were small. Pittsburgh eased $1 / 2$-point to 86 per cent, with Chicago down a similar amount to $96^{1 / 2}$. Youngstown, off 3 points-to 82 , is scheduled to move higher this week. Other reductions include 6 points to 93 at Detroit, 3 points to 78 at Cincinnati and 2 points to $88^{1 / 2}$ at Buffalo. Increases were $4^{1 / 2}$ points to 85 at Cleveland, 1 point to 99 at Wheeling and 1 point to 89 in eastern Pennsylvania. Birmingham at 88, New England at 80 and St. Louis at 62% were unchanged.

COMPOSITE MARKET AVERAGES

Iron and Steel Composite:-Pig Iron, scrap, billets, sheet bars. wire rods. tin plate, wire, sheets, plates, shapes, bars, black
pipe, rails, alloy steel, hot strlp. and cast tron plpe at represenintive centers. Finlshed Steel Composite:-plates, shapes, bars, hot strip, nalls, tin plate, plpe. Steelworks Scrap Composite:-Heavy melting steel and compressed shects.

COMPARISON OF PRICES

Representative Market Figures for Current Week; Average for Last Month, Three Months and One Year Ago

Finished Material	$\text { Aug. } 1940$	$\begin{aligned} & \text { July } \\ & 1940 \end{aligned}$	May	$\begin{aligned} & \text { Aug. } \\ & 1939 \end{aligned}$	Pig Iron	$\text { Aug. }_{1940} 10 .$	$\begin{aligned} & \text { July } \\ & 1940 \end{aligned}$	$\begin{aligned} & \text { May } \\ & 1940 \end{aligned}$	$\begin{aligned} & \text { Auz. } \\ & 1939 \end{aligned}$
Steel bars, Pittsburgh	2.15 c	2.15 c	2.15 c	2.15 c	Bessemer, del. Pittsburgh	\$24.34	\$24.34	\$24.34	\$22.34
Steel bars, Chlcago..	2.15	2.15	2.15	2.15	Basle, Valley	22.50	22.50	22.50	20.50
Steel bars, Philadelphia	2.47	2.47	2.47	2.47	Basle, eastern, del. Philadelphla	24.34	24.34	24.34	22.34
Iron bars, Chicago	2.25	2.25	2.25	2.05	No. 2 foundry, Plttsburgh.	24.21	24.21	24.21	22.21
Shapes, Pittsbursh	2.10	2.10	2.10	2.10	No. 2 foundry. Chicago	23.00	23.00	23.00	21.00
Shapes, Philadelphia	2.215	2.215	2.215	2.215	Southern No. 2, Blrmingham	19.38	19.38	19.38	17.38
Shapes, Chicago	2.10	2.10	2.10	2.10	Southern No. 2, del. Cinclnnati	22.89	22.89	22.89	20.89
Plates, Pittsburgh	2.10	2.10	2.10	2.10	No. 2X del. Phila. (differ av.	25.215	25.215	25.215	23.215
Plates, Phlladelphia	2.15	2.15	2.15	2.15	Malleable, Valley	23.00	23.00	23.00	21.00
Plates, Chicago	10	2.10	2.10	2.10	Malleable, Chlcaro	23.00	23.00	23.00	21.00
Sheets, hot-rolled, Pittsburgh	2.10	2.10	2.10	2.00	Lake Sup., charcoal, del Chicago	30.34	30.34	30.34	28.34
Sheets, cold-rolled, Pittsburgh	3.05	3.05	3.05	3.05	Gray forge, del. Pittsburgh	23.17	23.17	23.17	21.17
Sheets, No. 24 galv, Plttsburgh	3.50	3.50	3.50	3.50	Ferromanganese, del. Pltsburgh	125.33	125.33	105.33	85.33
Sheets, hot-rolled, Gary.	2.10	2.10	2.10	2.00					
Sheets, cold-rolled, Gary	3.05	3.05	3.05	3.05	Scrap				
Sheets, No. 24 galv., Gary...	3.50 2.60	3.50 2.60	3.50 2.60	3.50 2.60	Heavy melt. steel, Pitts.	\$18.75	\$19.55	\$18.00	\$16.15
Bright bess., basle wire, Pitts. Tin plate, per base box pltts.	2.60 $\$ 5.00$	\$2.60	2.60 5.500	\$5.60	Heavy melt, steel No. 2, E. Pa.	18.00	17.50	16.00	14.40
Tin plate, per base box, pitts. Wire nalls, Pittsburgh	$\$ 2.00$ 2.55	\$2.55	\$2.55	\$2.00 2.40	Heavy melting stcel, Chicazo.	17.50	17.25	16.65	13.75
					Ralls for rolling, Chicago Railroad stel spectalties, Chicago	21.25 20.25	21.25 20.25	20.45 19.75	17.75 15.50
Semifinished Material									
Sheet bars, Plttsburgh, Chicago.	\$34.00	\$34.00	\$34.00	\$34.00	Coke				
Slabs, Pittsburgh, Chicago	34.00	34.00	34.00	34.00	Connellsville, furnace, ovens.	54.75	\$4.75	$\$ 4.75$ 5.75	
Herolling bllets, Pittsburgh.	34.00	3.100	34.00	34.00	Connellsville, foundry, ovens.	5.75	5.75	5.75 11.25	5.00 10.50
Wire rods No. 5 to g-lnch, pitts.	2.00	2.00	2.00	1.92	Chicago, by-product idry., del.	11.25	11.25	11.25	10.50

STEEL, IRON, RAW MATERIAL, FUEL AND METALS PRICES

Sheet Steel

Ifot Rolled

PIttsburgh
Chicago, Gary
Cleveland
Detroit, del.
Buffalo
Sparrows Point, Md
New York, del.
Phlladelphia, del
Granite City, Ill
Midतletown, O
Youngstown, 0 .
Birmingham
Paclfe Coast ports Cold Rolled
Pittsburgh
Chicazo, Gary
Buttalo
Cleveland
Detrolt, delivered
Phlladelphla, del.
New York, del. Granite City, Ill
Middletown, \mathbf{O}.
youngstown, 0 .
Pacinc Coast ports
Galvanized No.
Pittsburgh
Chlcago, Gary Buffalo
Sparrows Polnt, Md
Phlladelphla, del
New York, dellvered
Btrmingham

Except when otherwise designated, prices are base, f.o.b. cars.

Granite City, Ill. 3.60c Plates ... 21.5022 .0025 .5030 .50
Middletown, O. Youngstown, 0 . Pacifle Coast ports
2.10 c 2.10 c
2.10 c
2.20 c
2.20 c
2.10 c
$2.10 c$
$2.10 c$
2.10 c
2.34 c
$2.34 c$
$2.27 c$
2.27 c
2.20 c
2.10 c
2.10
2.10 c
2.10 c
2.10 c
2.10 c
2.65 c

Chicaso. Gary...	2.75 c
Grant	

Granite Clty, III. 2.85 c Younestown 0.80 C
Cleveland $\quad 2.75 \mathrm{c}$
3.05 c Mlddletown, $0 .{ }^{2.75 \mathrm{c}}$
3.05 c
3.05 c 3.05 c
3.15 c
3.37 c
3.37 c
3.39 c
3.39 c
$\mathbf{3 . 1 5} \mathrm{c}$
3.15 c
3.05 c
3.05 c
3.05 c
3.70 c
$\begin{array}{llllll}3.60 \mathrm{c} & \text { Plates } & .21 .50 & 22.00 & 25.50 & 30.50 \\ 3.50 \mathrm{c} & \text { Sheets } & .26 .50 & 29.00 & 32.50 & 36.50\end{array}$
3.50 c Hot strip $17.00 \quad 17.50 \quad 24.00 \quad 35.00$
4.05 c Cold stp.. $22.00 \quad 22.50 \quad 32.00 \quad 52.00$

Steel Plate

Pittsburgh
New York, del. Philadelphia, del
Boston, delivered Buftalo, dellvered Chicago or Gary
Cleveland
3.35c Birmingham
3.35 c Coatesville, Pa .
3.45 c Sparrows Point, Md.
3.35 e Claymont Point
3.35 c Youngstown
4.30 c
2.10 c

10c

Corrosion and HeatResistant Alloys
Pittsburgh base, cents per lb. Chrome-Nickel

Bars	No. 302	No. 304
Bars	24.00	25.00
Plates	27.00	29.00
Sheets	34.00	36.00
Hot strib	21.50	23.50
Cold strip	28.00	30.00
Stralkht	Chromes	
No.	No. No.	No.
410	$430 \quad 442$	246

St. Louls, del.
Pacjfle Coast ports.
$2.75 c$

Tin and Texne Plate

2.29c Pltsburgh Gery Chicago $\$ 5.00$
2.15 c Granlte City, III. 5.10
2.46 c Mfg. Terne Plate (hase box)

Mff. Terne Plate (hase box)
Pittsburgh, Gary, Chicago 4.40
Bars
10c Soft Steel
(Base, 20 tons or over)
Pittsburgh 2.15 c
Chicago or Gary 2.15 C
Duluth ${ }_{215 \mathrm{c}}^{2.250}$
Birmingham 2.15 c
3.35c Cleveland 2.15 c
3.35 c Buffalo
3.70c Detrolt, dellivered $\frac{2.25}{2.41 \mathrm{c}}$
4.00 c Philadelphia, del. ${ }_{2.52 \mathrm{c}}^{2.41 \mathrm{c}}$ Boston, dellvered …... 2.52 C
New York, del. ${ }_{2}^{2.49 \mathrm{C}}$
Gulf ports 2.80 C
2.10 c Pacific Coast ports
2.2112 c C Rall Steel
(Base, 5 tons or over)
2.10 c pittsburgh 205c
2.10c Chicago or Gary 2.15 c
2.30 c Detrolt, delivered 2.15 C
2.10c Cleveland

-The Market Week-

Buffalo	2.03 c
Brimingham	2.05 c
sulf ports	2.40 c
Paclic Const ports	2.70 c
Iron	
Chicago	2.25 c
Phlladelphla, del.	2.37 c
Plttsburgh, reflned ... 3.50	0-8.00c
Terre Haute, Ind.	2.15c
Itrinforclag	
New Billet Bars, Ba	
Chleago, Gary, Buffalo, Cleve., Blrm., Young., Sparrows Pt., Pltts.	2.15 c
Gull ports	2.50 c
Pactic Coast ports	2.60 c
Rail Steel Bars, Base	
Plttsburgh, Gary, Chicago, Bulfalo, Cleveland, Birm.	2.05 c
Gulf ports	2.40 c
Pacifle Coast ports	2.50 c
Wire Products	
Pilts.-Cleve-Chicago-Birm. base per 100 lb . keg in carloads	
Standard and cement	
coated wire nalls	\$2.55
(Per Pound)	
Pollshed fence staples.	2.55c
Annealed lence wire.	3.05 c
Galv. fence wire 3.40r Woven wlre fencing (base	
Woven wlre fencing (base C. L. column)	67
Single loop bale tles, (base C.L. column)	56
Galv, barbed wire, 80-rod spools, base column	70
Twisted barbless wire, column	70
To Manufacturine Trade	
Basc, Pitts, - Cleve. - Chlcago	
Blrmingham (except wire)	spring
Brlght bess., basle wire.	2.60 c
Galvanized wire	2.60 c
Spring wire 3.20c	
Worcester, Mass., $\$ 2$ higher on brlght baste and spring wire.	
Cut Nails	
Carload, Plttsburgh, Keg . $\$ 3.85$	
Cold-Finished Bars	
Plttsburgh Carbon	Alloy
Chicago	3.35 c
Gary, Ind. ${ }^{\text {Cre }}$ 2.65c	3.35 c 3.35 c
Detroit 2.70 c	-3.45c
Cleveland 2.65c	3.35 c
Buttalo . Dellwered. 2.65 c	3.35 c

Alloy Bars (Hot)
(Base, 20 tons or over)
Pittsburgh, Burfalo, Chi.
cago, Masslllon, Can-
On, Bethlehem
2.70 c
S.A.E. Alloy DIff. S.A.E Alloy

S.A.E.	DIff.	S.A.E.	DI
$2000 \ldots$.	0.35	$3100 \ldots .$.	0.7
2100	0.75	$3200 \ldots .$.	

2100	$\ldots . .0 .75$
$2300 \ldots .1 .55$	$3200 \ldots$
$2500 \ldots .2 .25$	$3400 \ldots$
$4100 \ldots .$.	

$\begin{array}{lll}4100 & 0.15 \text { to } 0.25 \text { Mo. } \\ 4600 & 0.20 \text { to } 0.30 \text { Mo. } 1.50 \text {. }\end{array}$
$200 \mathrm{N1}$.
100
$0.80-1.10 \mathrm{Cr}$.
6100 Cr . spring flats
6100 bars
6100 spring fiats
Cr. N., Van.
Q 2000 spring lats
9200 spring touts
Electric furnace up 50 cents.

Strip and Hoops
(Base, hot strip, 1 ton or over; cold, 3 tons or over)
Hot Strlp, 12 -dnehand less
Pittsburgh, Chlcaso,
Gary: Cleveland
Youngstown, Midde-
town. Blrmingham 2.10 c
Detrolt del
Phlladelphin, del.
New, York, del.
Pactile Const ports
Coomerage hoop, Young.,
Pltis.; Chicago, Blrm.
Cold strlp, 0.25 carbon
and under, Pittsburgh,
Cleveland, Youngstown Chicago
Detrolt, del.
Worcester Mass
Carbon Cleve.
$0.26-0.50$
$0.51-0.75$
$0.76-1.00$
worcester, Mass. $\$ 4$ hlghe
Commodity Cold-IRolled Strlp
Pitts.-Cleve,-Youngstown 2.95 c
Chicago
3.05 c

Detrolt, del. 3.05c
Lamp stock up 10 cents.

Rails, Fastenings

(Gross Tons)
3.35 c

Standard rails, mill $\$ 40.00$ Relay ralls, Pltsburgh $20-100 \mathrm{lbs} \quad 32.50-35.50$ Lighe ralls, bllet qual.,

Pitts., Chicago, B'ham. $\$ 40.00$
Do., rerolling quality 39.00
Cents per pound
Angle bars, billet, malls
2.70 c

Do., axle steel
Spikes, R. R. base
Track bolts, base
Car axles forged, pitts.
Chicago, Birmingham
4.15c

Base, llght rails 25 to 60 lbs.
20 lbs., up $\$ 2 ; 16$ lbs. up $\$ 4 ; 12$
los. up $\$ 8 ; 8$ lbs. up $\$ 10$. Basc ralload splkes 200 kegs or more; base plates 20 tons.

Bolts and Nuts

Fi,o.b. Pittsburgh, Cleveland, Birmingham, Chicago. Discounts for carloads addittona. Carrlage and Maching
x 6 and smaller68.5 off Do. larger, to 1-1n. 66 off Do. $1^{1 / 4}$ and larger 64 off Tire bolts

Stove Rolts

In packages with nuts separate 72.5 off; with nuts attached add 15%; bulk 83.5 off on 15,000 of 3 -inch and shorter, or 5000 over $3-\mathrm{In}$.
Step bolts
Plow bolts
Nuts
Seminnished hex. U.S.S. S.A.E. $1 / 2$-Inch and less. ${ }_{10}$-1-Inch
$13 / 4-13 / 2$-Inch
\% and larger
Hexagon Cap Screws
Upset 1 -In., smaller ... 70.0 off Square Head Set Screws
Upset, $1-1 n$., smaller $\ldots . .75 .0$ off Headless set screws ... 64.0 off

Piling

Pitts., Chgo., Buffalo 2.40 c
Gulf ports 2.85 c

Rivets, Washers

Fi.o.b. Pitts., Cleve, Choo.,
Structural Bham.30c

Ts-Inch and under 65-10 off

Vrought washers, Pits.
15.03
$14.54 \quad 16.76$
$16.01 \quad 18.45$
$17.54 \quad 20.21$

18.59	21.42
19.50	22.48

$\begin{array}{ll}18.50 & 22.48 \\ 24.62 & 28.37\end{array}$
$\begin{array}{ll}30.54 & 33.20 \\ 37.35 & 43.04\end{array}$
$\begin{array}{ll}46.87 & 54.04\end{array}$

Cast Iron Pipe

Class 15 Pipe-ret Net Ton 6-in., \& over, Birm. $\$ 45 .(0)-46.00$ 4-In., Blrmincham. . 48.00-49.00 A-1n., Chlenco 56,80-57.80 $6-\mathrm{in}$. \& over, Chlengo $53.80-54.80$
$6-\mathrm{In}$ \& over, cast tdy. 49.00
Do., 4 - In .
52.00

Cinss A Pipe $\$ 3$ over Class B
Stnd. lligs., Birm., hase $\$ 100.00$.

Semifinished Steel

Lerolling Ifllots, Slaba (Gross Tons)
Pltstursh, Chicago, Gary,
Cleve., Burfalo, Youngs.
Blrm., Sparrows Point. $\$ 34.00$
Duluth (bllets) 36.00
Detrolt, dellvered 36,00 Farghig Qually Hillefs
Pitts., Chl., Gary, Cleve.
Young, Buffalo, Bl'm. 40.00
Duluth

Sheat IHars

Pitts., Cleveland, Young,
Sintrows Polnt, Bur
falo, Canton, Chicago 34.00
Detrolt, dellvered 36.00
Wían Iloim
Plts., Cleveland, Chicago,
L3hmingham No. 5 to He $^{-}$
Inch incl. (per 100 lbs.) $\$ 2.00$
Do., over is to 1 -In. Incl. 2.15
Worcester up $\$ 0.10$; Galves-
ton up 50.25 ; Paclile Coast up $\$ 0.50$.
Pitts., Chl. Youngstown,
Contesville, Sparrows Pt, 1.90e
Colke
Price Per Net Ton
therdiva Ovens
Connellsville, fur. . \$4.35-4.60
Connellsville, fdry $5.25-5.54$
Connell, prem. fitry 5.75-6.25
New River firy. . . . 6.25-6.50
Wise county Idry ... 5.50-6.50
Wire county fur. ... 5.00-5.25
18y-I'roduct Funniry
Newark, N. J., del. .. 11.38-11.85
Chlcago, outside del. 10.50
Chicago, delfvered. 11.25
Terre Haute, del. .. 10.75
Milwaukee, ovens .. 11.25
New England, del.. 12.51
St Louis, del. 11.75
Birmingham, ovens. $\quad 7.50$
$\begin{array}{ll}\text { Indlanapolls, del. .. } & 10.75 \\ \text { CIncinnatl, del. } & 10.50\end{array}$
$\begin{array}{ll}\text { ClncinnatI, del. } & 10.50 \\ \text { Cleveland, del. } & 11.05\end{array}$
Buffalo, del. 11.23
Detrole, del. 11,00

Coke By-Products

Spot, gal., frelght allowed aant Pure and 90% berzol... 15.00 e
Toluol, two degree 27.00 e
Solvent naphtha 26.00 e
Industrial xylol 26.00 e
Per lb, f.o.b. Frankford ard
Phenol (less than 1000
lbs.) 1000 ibs or i............ 14.75
Do. (1000 lbs. or over) 13.75
Eastern Plants, per ib
Naphthalene llakes, balls,
bbls, to jobbers
Per ton, buik, fob. port
sulphate of ammonia. $\$ 28.00$

Pig Iron

Dellvered prices include switching charges only as noted. No. 2 foundry is $1.75-2.25$ sil.; $2 \overline{5} \mathrm{c}$ diff. for each 0.25 sil, above 2.25 sll.; 50 c diff. below 1.75 sil. Gross tons.

Busing Points:	No. 2 Fdry.	Malleable	Baste	Bessemer
Bethlehem, 1'a.	\$24.00	\$24.50	\$23.50	\$25.00
Birmingham, Ala.s	19.38		18.38	24.00
Blrusboro, Pa. ...	24.00	24.50	23.50	25.00
Butfalo	23.00	23.50	22.00	24.00
Chicago	23.00	23.00	22.50	23.50
Cleveland	23.00	23.00	22.50	23.50
Detrolt	23.00	23.00	22.50	23.50
Duluth	23.50	23.50		24.00
Erie, Pa.	23.00	23.50	22.50	24.00
Fverett. Mass.	24.00	24.50	23.50	25.00
Granite City, 111.	23.00	23.00	22.50	23.50
Hamilton, 0.	23.00	23.00	22.50	
Neville Island, Pa .	23.00	23.00	22.50	23.50
Provo, Utah	22.00			
Sharpsullle, Pa.	23.00	23.00	22.50	23.50
Sparrow's Polnt, Md.	24.00		23.50	
Swedeland. Pa.	24.00	24.50	23.50	25.00
Toledo, O.	23.00	23.00	22.50	23.50
Youngstown, 0.	23.00	23.00	22.50	23.50

$\$$ Subject to 38 cents deduction for 0.70 per cent phosphorus or higher
lullvered from Busing leulnts:

Akron, O., from Cleveland	24.39	24.39	23.89	24.85
L3altimore from Blrmingham	24.78		23.66	
Boston from Birmingham	24.12			
Boston from Everett, Mass.	24.50	25.00	24.00	25.5
Boston from Buifalo	24.50	25.00	24.00	25.50
Irooklyn, N. Y., from Bethlehem	26.50	27.00		
Canton, O., from Cleveland.	24.39	24.39	23.89	24
Chicago from Birmingham	$\dagger 23.22$			
Cinclniatl from Hamliton, 0	23.24	24.11	23.61	
Cincinnati from Birmingham	23.06		22.06	
Cleveland from Birmingham	23.32		22.82	
Mansfleld, O., from Toledo, O	24.94	24.94	24.44	24.4
Millwaukee from Chlcago.	24.10	24.10	23.60	24.
Muskegon, Mich., from Chicago, Toledo or Detrolt	26.19	26.19	25.69	6.6
Newark, N. J., from Birmingham	25.15			
Newark, N. J., from Bethlehem	25.53	26.03		
Philadelphia from Birmingham	24.46		23.96	
Philadelphla from Swedeland, Pa.	24.84	25.34	24.34	
Pittsburgh district from Neville Island	$\begin{aligned} & \text { (Nev\| } \\ & \text { land } \end{aligned}$	$24 \mathrm{fr}$	plus ht.	84
Suglnaw, Mlch., from Detrolt	25.31	25.31	24.81	25.8
St. Louls, northern	23.50	23.50	23.00	

St. Louls from Birmingham St. Paul from Duluth †Over 0.70 phos.

No. 2 Malle- Basle mer
Fdry. able $+23.12 \quad \ldots .{ }^{2} \quad 22.62$ $\begin{array}{ll}23.12 & 25.63\end{array}$
26.13

I.ow Phos.

Basing Points: Birdsboro and Steelton, Pa., and Buftalo, N. Y. $\$ 28.50$, base; $\$ 29.74$ delivered Philadelphia
 + Sulvery
Jackson county, O., base: $6-6.50$ per cent $\$ 28.50 ; 6.51-7-\$ 29.00$; $7-7.50-\$ 29.50 ; 7.51-8-\$ 30.00 ; \quad 8-8.50-\$ 30.50 ; 8.51-9-\$ 31.00$: 9-9.50-\$31.5u; Buffalo, $\$ 1.25$ higher.

Bessemer Ferrosillcant

Jackson county, O., base; Prlces are the same as for sllverles plus $\$ 1$ a ton.
\dagger The lower all-rall dellvered price from Jackson, O., or Bufalo is quoted with ireight allowed.
Manganese differentials in sllvery fron and ferrosilicon, 2 to 3%, $\$ 1$ per ton add. Fach unit over 3%, add $\$ 1$ per ton.

Refractories

Ludle Brick
(Pa., O., W. Va., Mo.)

Super Quality
рa, Mo., Ky
First Quality
Pa., Ill., Md., Mo., Ky Alabama, Georgia... New Jersey

Second Quality

Pa., Ill., Ky., Md., Mo.
Georgla, Alabama
New Jersey

Ohlo	
First quality............	39.90
Intermedlate	36.10
Second quality	\ldots.

Malleable Bung Brick
All bases

Sllica Brick

Pennsylvania
Joliet, E. Chleago
Birmingham, Ala.
47.50
47.50
52.50
grains grains, net ton r.o.b.
Chewelah, Wash., net Chewelah, Wash., net
net ton, bags
Basic Brick
Net ton, f.o.b. Baltimore, Ply-
43.75 mouth Afeeting, Chester, Pa.
34.20 Chrome brick \$50.00

Chem. bonded chrome. . . 50.00
$\begin{array}{ll}\text { Magnesite brick } & 72.00 \\ \text { Chem. bonded magnesite } & 61.00\end{array}$
Fluorspar
Washed gravel, duts pd., tlde, net ton. $\$ 25,00-\$ 26.00$
Washed gravel, f.o.b. Ill., Ky., net ton,
$\$ 47.50$ carloads, all rall $\quad .1 .00$
55.10 Do. barge
47.50 No. 2 lump
22.00

Ferroalloy Prices

Ferromangantac, 78-8き\%。 carlots, duty pd...... Ton lots Less ton lols 10. 138.00

Spleyeleisen, 19-21\% dom. Palmerton, Pa., spot. 1) 0. $26-28$

Frrasilleon, 50% frelght allowed, c.l.
Do. ton lat Do., 75 per cent 1)o., ion lots Spot, $\$ 5$ a ton higher
Slleombinganese, c.l., 21/4 per cent carbon 118.00 2% carbon, 108.00; 1\%, 133.00 Contract ton price $\$ 12.50$ higher; spot $\$. \overline{7}$ over contract

Ferrotungsten, stand., lb. con. del. cars 1
Ferruvanadium, 35 to 40 \%. ib., cont. . 2.70-2.80-2.90
lurrophosphoriss, gr. ton, c.l., 17-18\% Rockuale Tenn., basls, 18%, \$3 unltage, 58.50 ; electric rurn., per ion, c. l., 23"6\% f.o.b. Mt. Pleasant Tenn., $24 \% \$ 3$ unltage
Ferrochrome, 66-70 chromium, 4-6 carbon, cts 10., contained er., del. carlots
 ara Falls, ton lots Do. less-ton lots 20-25\% carbon, 0.1 max., ion lots, ib. Do., less-ton lots. Spot 5c higher
Ferrucolumbium, 50-60\% contract, 1b. con. col. fo.b. Niagara Fills Do., less-ton lots.

Spot is $10 c$ higher
Technical molybdenum trioxide, 53 to $60 \% \mathrm{mo-}$ lybdenum, lb. molyb. cont., 1.o.b. mill.

Ferro-carbon-tltanium, 15

 18%, th., 6-8\% carb. carlots, contr., net ton. $\$ 142.50$Do. ton lots .i.... 1175 Do., less-ton lots. 12.00c 67-72\% low carbon Car- Ton Less loads lots ton 2% carb... 17.50 c 18.25 c 18.75 c 1% carb... 18.50 c 19.25 c 19.75 c 0.10% carb. 20.50 c 21.25 c 21.75 c Spot y c higher
Ferromulybdenum, 55$65 \%$ molyb. cont., f.o.b. mill, ib.
Calcium molyfolate, ib. molyb. cont., f.o.b. mill

Do., spot
Do., contract, ion lots 145.00
Do., spot, ton lots.... 150.00
15-18\% t1, 3-5\% carbon,
carlots, contr., net ton 157.50
Do., spot
Do., spot
Do., contract, ton lots. 160.00
Do., spot, ion lots. 165.00
Alsifer, contract carlots.
f.o.b. Niagara Falls, 1b. 7.50 c Do., ton lats
Do., less-ton lots Spot $1 / 2$ c lb. higher

8
Chromium Brliuets, contract, irelght allowed, lb. spot carlots, bulk Do., ton lots
Do., less-ton lots Do., less 200 lbs.

Spot, 4 higher.
Tungsten Metal Powder, according to grade, spot shipment, 200-1b. drum lots, 1 b .

Do., smaller lots.

Chromlum Metal, 98% cr., 0.50 carbon max., contract, lb. con. Do., spot
88\% chrome, contract Do., spot
84.00 c
89.00 c
83.00 c
88.00 c

Silleon Metal. 1% iron, contract, carlots, $2 \times 14.00 \mathrm{c}$ $1 / 8-\ln ., ~ I b . ~ ~$
Do. 14.00 c
20.50 c

Spot ve hlaher
Sllicon Briquets, contract
carloads, bulk, frelght
allowed, ton $\$ 69,50$
Ton lots 79.50
Less-ton lots, $1 \mathrm{~b}$.
Less 200 1b. lots, 1 b .4 .00 c
Spot y-cent higher.
Manguneqe 13 riauets, contract carloads. bulk frelght allowed, ib.
Ton lots
Iess-ton lots
Spot is chigher
Zirconlum Alloy, 12-15\%, contract, carloads, bulk, gross ton $\ldots . .102 .50$ Do., spot . \quad.
34-40\%, contract, car- 14.00 c
loads, $1 \mathrm{~b} .$, alloy …... 14.00 C
Do., ton lots 16.00 c
Do., Spot $/ 4$ c higher
Molybdenum Fowder, 99%, f.o.b. York, Pa. 200-1b. kegs, 1 b .
Do., 100-200 1b. lots.
$\$ 2.60$
2.75
Do., under $100-1 \mathrm{~b}$. Lots 3.00
Iolybdenum Oxide 13riquets, $48-52 \%$ molybdenum, per pound contalned, f.o.b. pro. ducers* plant
ducers* plant

WAREHOUSE STEEL PRICES

Rase Prices in Cents Per Pound, Delivered Locally, Subject to Prevailing Differentials

	Soft Bars	Bands	Hoops	Plates 3/4-In. \& Over	Structural Shapes	Floor Plates	, Sheets-_工			Cold Rolled Strlp	- Cold Drawn Bar		
							Hot Rolled	Cold Rolled	Galv. No. 24		Carbon	$\begin{gathered} \text { S.A.E. } \\ 2300 \end{gathered}$	$\begin{array}{r} \text { S.A.E: } \\ 3100 \end{array}$
Boston	3,98	3.86	4.86	3.85	3.85	5.66	3.51	4.48	4.66	3.46	4.13	8.63	7.23
New York (Met.)	3.84	3.76	3.76	3.76	3.75	5.56	3.38	4.40	4.05	3.31	4.09	8.59	7.19
Philadelphia ...	3.85	3.75	4.25	3.55	3.55	5.25	3.35	4.05	4.00	3.31	4.0\%	8.56	7.16
Balumore	3.85	4.00	4.35	3.70	3.70	5.25	3.50		5.0 T		4.05
Norfolk, Vo.	4.00	4.10		4.05	4.05	5.45	3.85		5.40		4.15		\ldots
Buffalo	3.35	3.62	3.62	3.62	3.40	5.25	3.05	4.30	4.00	3.22	3.75	8.15	6.75
Plttsburgh	3.35	3.40	3.40	3.40	3.40	5.00	3.15		4.45		3.6.5	8.15	6.75
Cleveland	3.25	3.30	3.30	3.40	3.58	5.18	3.15	4.05	4.42	320	3.75	8.15	6.75
Detrolt	3.43	3.23	3.48	3.60	3.65	5.27	3.23	4.30	4.64	3.20	3.80	8.45	7.05
Omaha	3.90	3.80	3.80	3.95	3.95	5.55	3.45	..	5.00		4.42		
Cincinnati	3.60	3.47	3.47	3.65	3.68	5.28	3.22	4.00	4.67	3.47	4.00	8.50	7.10
Chicago	$3.50{ }^{*}$	3.40	3.40	3.55	3.55	5.15	3.05	4.10	4.60	3.30	3.75	8.15	6.75
Twin Citles	3.75	3.65	3.65	3.80	3.80	5.40	3.30	4.35	4.75	3.83	4.34	8.84	7.94
Milwaukee	3.63	3.53	3.53	3.68	3.68	5.28	3.18	4.23	4.73	3.54	3.88	8.38	6.98
St. Louls	3.62	3.52	8.52	3.47	3.47	5.07	3.18	4.12	4.87	3.41	4.02	8.52	7.12
Kansas City	4.05	4.15	4.15	4.00	4.00	5.60	3.90	, 12	5.00		4.30		...
Endianapolis	3,60	3.55	3.55	3.70	3.70	5.30	3.25	... ,	4.76		3.97		
Memphis	3.90	4.10	4.10	3.95	3.95	5.71	3.85	5.25	4.31	\%.	
Chattanooga	3.80	4.00	4.00	3.85	3.85	5.68	3.70	4.40	4.39	
Tulsa, Okla.	4.44	4.34	4.34	4.33	4.33	5.93	3.99	5.71	4.69	
Birmingham	3.50	3.70	3.70	3.55	3.55	5.88	3.45	\ldots	4.75		4.43		
New Orleans.	4.00	4.10	4,10	3.80	3.80	5.75	3.85	4.80	5.00	4.60	
Houston, 7ex.	4.05	6.20	6.20	4.05	4.05	5.75	4.20		5.25	\cdots			
Seatle	-1.0\%	3.85	5.20	3.65	3.75	5.75	3.70	6.50	5.011	...	5.75		
Portland, Oreg.	4.25	4.50	6.10	4.00	4.00	5.75	3.95	6.50	4.75	...	5.75		
Los Angeles.	4.15	4.60	4.45	4.00	4.00	6.40	4.30	6.50	5.25	...	6.60	10.65	9.801
San Francisco.	3.50	4.00	6.00	3.35	3.35	5.60	3.40	6.40	5.15	6.80	10.65	9.80

1BASE QLANTITIFS

Soft Bars, Bands, Hoons, Plates, Shapes, Floor Plates, Hot Rolled Sherts and SAE 1035-1050 Bars: Base, $400-1999$ pounds 300-1999 pounds in Los Angeles; 400-39,999 (hoops, 0-299) in San Franclsco: 300-4999 pounds in Portland. Seattle: 400-14.999 pounds in Twin Cities; $400-3999$ pounds in Birmingham.

Cold Rolled Sheets: Base, $400-1499$ pounds in Chicago, Clncinnat1, Cleveland, Detrolt, New York, Kansas City and St. Louls; 450-3749 in Boston; 500-1499 In Buffalo: 1000-1999 in Phila delphia, Ballimore; 300-4999 in San Francisco, Portland; any quantity in Twin Cities; 300-1999 in Los Angeles.

Galvanized Sheets: Base, $1500-3499$ pounds. New York; $150-$ 1499 in Clevcland. Pitisburgh, Baltimore, Norfolk: 150-1049 in Los Angeles; 300-4999 in Portland. Scattle, San Francisco; 450-374. In Boston; 500-1499 in Birmingham. Buffalo. Chicago, Cincinnati. Detroit, Indlanapolis, Milwaukee, Omaha, St. Louis, Tulsa; $150 n$ and over ir Chattanooga: any quantity in Twin cities; $750-1500$ In Kansas City; 150 and over in Memphis: 25 10 49 bundles in Philadelphia.

Cold Rolled Strip: No base quantity: extras apply on lots of all size

Cold Finished Bars: Base, 1500 pounds and over on carboll 1000 nounds and over on alloy, except over in Portland, Seattle SAE Hot Rolled Alloy Bars: Base, 1000 pounds and over excent $0-4999$, San Franclsco; $0-1999$, Portland, Seattle.

CURRENT IRON AND STEEL PRICES OF EUROPE

Dollars at Official Rates of Exchange

Export Prices f.o.b. Port of Dispatch-
Hy Cahle or Indin

Tiranited wire. b
in mals, base
Piste, box 108 lbs. $\$ 5.61 \quad 1$ i.

Domestic Prices at Works or Furnace-

IRON AND STEEL SCRAP PRICES

MEITING STEEI

IIEAVY MELTING

sirmingham, No. $1 . \quad 15.00$ New Eng. del exp. 16.00-16.25 No. 1 15.50-16.00 Buffalo, No. Chlcago, No Chleaso, auto, no alloy levenall dealers. 14.50-15.00 Cleveland, No. ${ }_{2}$... 17.50-18.00 Detroit, No. 1 $\dagger 15.00-15.50$ Detrolt, No. 2 $+14.00-14.50$ Eastern Pa., No. $1 . \quad 19.50$ Eastern Pa., No. 2. 18.00 Federal, III., No, 2 . . 14.25-14.75 Granite City, R. R.

No. 1

Granite City, No. 2 13.75-14.25 Los Ang., No. 1, net 13.00-13.50 Los Ang., No. 2, net 12,00-12.50 N.Y. dock No. 1 exp. 15.00-15.50 Pitts., No. 1 (R.R.) . 19.50-20.00 Plttsburgh, No. 1... 18.50-19.00 Plttsburgh, No. 2. . 17.50-18.00 st. Louls, No. 1 St. Louls, No. 14.75-15.25 St. Louls, No. 2...13.75-14.25 San Fran., No. 1, net $13.00-13.50$ San Fran., No. 2, net 12.00-12.5u Seattle, No. 1. Toronto, dirs., No. 1 Valleys, No. 1.... . 18.00-18.50

COMIPIRESSED SIHEETS

Buffalo, new

Chicago, factory Chlcago, dealers Cincinnatl, dealers 17.00-17.50 | $.17 .00-17.50$ |
| :--- | Cleveland Clevelanu Detrolt

E. Pa., new mat. . Pa.. old mat Los Angeles, net Pittsburgh St. Louls
San Francisco, net Valleys 13.50-14.00 17.00-17.50 +17.00-17.5u 19.00-19.50 15.50-16.00 10.00-10.50 18.50-19.00 12.00-12.50 10.00-10.50 $17.50-18.00$

SUNDIEN SIHELETS

Buffalo, No. 1.
Cleveland Pittsburgh St. Louls
Toronto, deulers
16.00-16.50 14.50-15.00 14.00-14.50 17.50-18.00 11.25-11.75
9.75

Shekt
Cinclnnati, dealers Detroit
St. Louls
Toronto, dealers
$12.50-13.00$
9.00-9.50
10.00-10.50

BUSIIEIING
Birminsham, No. 1
Buffalo, No. 1
Chlcago, No. 1
Cincln No 2 deal
Cleveland, No 2 . 5.50-6.00 Detroit, No. No. 2. 12.00-12.50 Valleys, new, No. 1 17.50-18.00 Toronto, dealers.... 5.50 . 6.00

MACHINE TURNINGS (I.unk)

Birmingham

Buffalo
Cincinnati, dealers
Cleveland, no alloy
Detrolt
Eastern Pa
Los Angeles
New York
Pittsburgh
St. Louls
San Francisco
Toronto, dealers
Valleys

SHOVELING TURNINGS

Buffato 13.00-1350
Cleveland 12.00-12.50
Chicago 12.50-13.00
Chicago, spel, anal. . 14.50-15.00 Detrolt
$14.50-15.00$
$11.00-11.50$
Pitts., alloy-free
15.50-16.00

BOIRINGS AND TUIRNINGS
 For Blast F'urnace Use

Boston district.
Buffalo
CIncinnati, dealers
Cleveland
Eastern Pa
Detrolt
New York
Pittsburgh
Toronto, dealers

ANIE: TURNINGS

Buftalo
Boston distrlet.
Chicago, elec. fur

Fast. Pa. elec. fur.

St. Louls
Turonto
6.00-6.25
$11.50-12.00$
5.50-6.00 12.00-12.50
$1.00-11.50$
+11.00-11.50 $\dagger 8.00$
12.50-13.00 6.75
16.00-16.50
19.50-10.00
17.50-18.00

CAST IItON HOHINGS

Birmingham

Boston dlst. chem... +8.50 - 8.00
Buftalo
Chicago
CIncinnati, dealers $\quad 5.50-6.00$
Cleveland 12.00-12.50
Detrolt 12.00-12.50
E. Pa., chemical

New York
St. Louls.
roronto, dealers

$11.25-11.75$ 14.50-15.00

48.00-8.50
8.00- 8.50
6.75

RAIRAROD SDPCLALTEE

Chicago 20.00-20.50 ANGIE BAISS-STEEI.
Chicago
st. Louls
spilings
Burfalo
Chlcago, coll
Chicago, leat
Eastern Pa
Pittaburgh
St. Louis.

STEEL. RAILS, SIHOLT

Birmingham
Buffalo
Chicaco (........ 22.50-23.01 Chlcago (2 it. 20.50-21.00 Cincinnati, dealers. $21.50-21.50$ Detrolt $+21.50-2200$ Pltts., 3 ft and less 24.00-24.50 STEEL, RAIIS, SCRAP
Birmingham
5.00 Boston distrlet

.00-20.50 RAM.S FOIR ROLISNG
5 foat and over
RAILROAD WIROLCillt

Bostongham

Boston district $\quad+9.50-10.00$ Eastern Pa., No. 1. . 19,50-20.00 St. Louls, No. 1 . .. 12.00-12.50 St. Louls, No. $2 . .$. 13.50-14.00

FORGE IIIASIINGS
Boston district..... $\dagger 11.00-11.50$
Buffalo 16.00-16.50
Cleveland 16.50-17.00
Detrolt
Plttsburgh 16.50-17.00
FOIGGE SCRAI
Boston distrlet
Chlcago, heavy. . . .
21.50-2200
J.OW PIIOSIrionus

Cleveland, crops. .. . $23.00-23.50$
Fastern Pa., crops. . $25.00-25.50$
Pitts., bllet, bloom,
slab crops
I.OW PIIOS. PUNCIIINGS

L3uffalo
Chicago
Cleveland
Eastern Pa.
Pa 20.00-20.50
Pitsburgh 24.00-25.50
Detrolt …........ 15.00

Chicago $15.75-16.00$

New York17 $50-1800$

Eastern Pa. 23.00-23.50

St. Louls 19.00-19.50
STERL. CAIL AXILES
Blrmingham $\quad 18.00$
Boston districtt18.00-18.50
Chicago, net 21.50-2:00
Fastern Pa.
St. L.ouls 21.00-21.50

LOCOMOTIVE TIRES

Chicaso (cut) 21.50-22.00
St. Louls, No. 1 17.50-18.00

SHAFTING:

15.00 Boston district
14.50-15.00 New York

Ores

Lower Lake Ports

Old range bessemer
Mesabl nonbessemer
High phosphorus
Lesabl bessemer 4.35
Old range nonbessemer... 4.60

Eastern Lucal Ore

Cents, unit, del. B. Pa

Foundry and basic $56-63 \%$, contract.

Forelen Ore
Cents per unit, ci.f. Atlantic ports
Manganlferous ore.
$43-5 \overline{5} \% \mathrm{Fe} ., 6-10 \%$
Mang.
N. African low phos
10.00

Spanish. No. African
basle, 50 to 60%
Chinese wolframlte,
net ton, duty pd. \$23.50-24.ut
Brazll iron ore, 68 -
69% ord......
Low phos. (. 02
Low phos. (.02 T.5Uc
max.) F.B. Rio Janelro.
Scheellte, imp.
Nom. Chrome ore, Indian $\$ 25.00$
nom. 48% ore, Indian,
14.00
16.50-17.00
25.00-25.50
21.00-21.50
†15.75 16.50
21.00-21.50 Eastern Pa.

St. Louls, 1
$25.00-25.50$ 23.00-23.50 St. Louls, 1 1. $-3 / 4$ ". . 18.00-18.50 23.00-23.50 17.00-17.50 18.00-18.50

Car IVIIEEIS
Blrmingham, fron. $\quad 13,00$ Boston dist.. iron. . . 14.7.7-15. 00 Buffalo, stecl 22.00-22.50 Chicago, Iron 18.501-19.00 Chicago, rolled steel $20.50-21.00$ Cincln., Iron, deal.. . 18.00-18.50 Eastern Pa., Iron... 21.00-21.50 Eastern Pa., steel. . 24.50-25.00 Pittsburgh, Iron... 19.50-20.00 Pittsburgh, steel. . $24.50-25.00$ St. Louls, fron. 17.00-17.50 St. Louls, steel. . . . 19.00-19.50

NO. 1 CAST SCRAP

Birmingham

15.. n

Boston, No. 1 mach. $\dagger 15.50-16.00$ N. Eng. del. No. 2. 14.50-14.75 N. Eng. del. textlie 18.75-:0.00

Buffalo, cupola.... 18.00-18.50
Buffalo, mach. 19.50-20.00
Chlcago, agrl. net. $15.00-15.50$
Chicago, auto net. . 16.50-17.01)
Chicago, railroad net $16.00-16.50$
Chicago, mach, net. 16.50-17.00
Clncln., mach. deal.. 18.75-19.25
Cleveland, mach. . 21.25-21.73
Detrolt, cupola, net. $\ddagger 17.00-17.5 n$
Eastern Pa., cupola. 21.50-22.00 E. Pa., No. 2 yard. . 18.00-18.50 E. Pa., yard fdry... 18.50-19.00 Los Angeles . 16.50-17.(mi Pittsburgh, cupola. 19.00-19.50 San Francisco 14.50-15.01 Seattle 14.50-16.00
14.50-16.00

St. L., No, 1 mach.. $18.75-19.25$ Toronto, Nu. 1
math., het dealers 18.00-18.50

HEAVY CAST

Boston dist. break. . $+14.00-14.25$
New England, del... $15.50-1600$
Buffalo, break.... 16.50-17.00
Clevelnnd, break, net 16.50-17.00
Detrolt, auto net... $\dagger 17.25-17.75$
Detrolt, break. $+15.00-15.50$
Eastern Pa. 19.50-20.00
Los Ang., auto, net. 13.(00-14.01)
New York break. . $\quad \$ 15.50$
Ittsburgh, break.. 16.00-16.50
STOVE PIATE
Birmingham 10.00-11.00
Boston district. . . . $111.00-11.50$
Buffalo …....... 15.00-15.50
Chlcago, net 11.50-12.00
CincInnat1, dealers $10.50-11.00$
Detrolt, net $111.00-11.50$
Eastern Pa. 15.50-16.00
New York Pdry +12.25
Toronto dealers, net 12.00
MAIIEEABLE:
New England, (cl. 21.5()-2.2.(x)
Buffalo
Chicago, R. R. 21.50 - $2-2.10$
Clncin. agri., deal.. 15.50-16.00
Cleveland, rall..... 21.50-22.00
Eastern Pa., R. R.... 22.50-23.00
Los Angeles $\quad 12.50$
Pltisburgh, rall. $23.50-24.00$
St. I.ouis, R. R.
$18.50-19.140$

Including war rixk dury. cents per unit Caucasian 50-52\%	
So. African, 50-52 \%	58.00-59.00
Indian, 49-50\%	56.00
Brazillan. 46%	
Cuhan. $30-51 \%$ duty	
free	71.00-73
Notsbdernam	
Suphide conc., lb.,	

Sheets, Strip

Sheet © Strip Prices, l'uges 96, 47
Pittsburgh-Sheet orders have begun to filter in from automobile makers, although releases are light and it is not expected much sheet tonnage will actually move during the next 30 days. Miscellaneous sheet buying has been fairly good. Production is estimated at 75 to 80 per cent of capacity; galvanizing operations 73 per cent.
Cleveland - Specifications continue active. While buying is retarded seasonally as well as by previous heavy shipments, mills have shown little if any improvement in deliveries recently. Holdups on shipments are infrequent, since even in cases where material is not required immediately, buyers are interested in avoiding future delays by adding to stocks. Relatively little tonnage currently is moving to automotive interests.
Boston-Sheet buying is light, consumers and distributors having heavy stocks. Several mills, insisting on specifications on remaining low-priced tonnage, took cancellations on the remainder. Some new business has been booked at the full list price but buying is only in small, scattered lots for specialties. Coldrolled strip buying is heavy, fully supporting near-capacity operations. Orders for shipment beyond this quarter at open prices and some covering on this basis is being done.
New York-Sheet buying is perhaps at the lowest level this summer, both in orders and specifications. Practically all shipments against low-priced contracts on galvanized sheets were cleaned up Aug. 1, which leaves a gap in that product. Some consumers are still building up stocks of commercial products in anticipation of government work in expectation of a delivery delay this fall, especially after the automobile industry covers on 1941 models.

Philadelphia - Sheet buying is comparatively slow, due to recent heavy coverage but consumption is well maintained and more active buying next month is indicated.
Buffalo-Although some seasonal recession was noted in buying of sheets and strip, rolling schedules of mills have not been affected. indications of a possible slackening in operations developing in the near future are more than offset by the tirst of what is expected to be large tonnage for the new 1941 automobiles. Mills also report big backlogs as a sustaining factor.
Cincinnati-Although comparatively light so far, the trend in demand for automotive sheets is up.
holding rolling schedules at 75 per cent. Little present tonnage is for British account, or for direct national defense needs. Buying by miscellaneous consumers shows a slackening, needs for this quarter having been previously covered adequately. Electrical sheets are active. Releases from household appliance makers are sustained.
St. Louis Aside from cold strip, purchasing of which is reported as showing some improvement, sheet and strip business is noticeably reacting to seasonal influences. Production is being maintained, but at
the cost of backlogs. Galvanized sheets, particularly heavier gages, continue relatively slow.

Birmingham, Ala.-Sheet production remains close to capacity or better than 85 per cent. Demand is fairly evenly divided between manufacturers' and roofing sheets. A moderate quantity of cotton tie strip is being produced.

Toronto, Ont.-Orders for sheets and strip are in good volume as a result of continued placing of large war contracts. The automotive industry has issued specifications for 1941 car models and heavy buying

AMPCO METAL Serves Both!

The screw-down nut in a blooming mill weighs about 3500 lbs . It stands the continuous, smashing impact of reducing massive steel ingots in modern high-speed rolling mills. The small bushing, used in a precision lathe, must maintain accuracy within .0005 of an inch, through years of service. These extremes suggest the wide application of AMPCO METAL in industry.

CAN IT SERVE YOU?
 AMPCO METAL is supplied in many grades.

 It is a bronze without equal in its combination of high strength and resistance to wear, faligue and corrosion. Write for complete specifications and enge. AMPCO METAL, INC. Dept. S-812 Milwaukee, Wis.
on this account is expected soon, but in the meantime substantial tonnages are being taken for motorized vehicles for the army. Some mills report booking into November, while practlcally all production has been covered to the end of September.

Plates

Plate I'rlew, Page 96

Pittslurgh -- Plate bookings the past week have been slightly less
than shipments, but backlogs remain high. Operations are at capacity. Demand is good from both industrial construction and maritime operations.

Cleveland - Orders have been boosted materially by shipbuilding and railroad needs. American Ship. building Co. has placed about 4500 tons, mostly plates, for 12 subma-rine-net tenders, and several thousand tons of plates have been booked for freight car repairs. Miscellaneous demand continues fairly active. Plate shipments still are extended,

"AMERICANS"

FOR HEAVY.DUTY DEFENSE JOBS IN 24-HOUR-A-DAY PRODUCTION!

In days ahead, continuous, unfaltering service from heavy producing and handling equipment will depend on the ability of its roller bearings to withstand the punishment of 24 hour-a-day use. American Super Heavy Duty Roller Bearings are built with the vital extra capacity to take this grueling treatment day after day, and month after month. Soundly engineered, precisely mated, brutally strong-they will help keep your heaviest equipment running smoothly in defense of America and to the credit of "Americans." Write today for technical facts.

American roller bearing co., Pittsburgh, Pa.

AM』RICAN
Heavy-Duty ROLLER beARINGS
averaging about four to six weeks. On thick sections eight weoks may be required.
Chicago-Steel plates continue among the most active products, both at mills and warehouses. Government needs, direct and indirect, play a large part in the cur. rent market. Mill deliveries, especially on heavier and wider gages, continue to be quite extended. Railroad freight car and diesel locomotive requirements are increasing. Plate prices, once traditionally weak, are firm.

Boston - Plate demand is steady, with most inquiry for less-than-carloads for prompt delivery. Delivery of wider plates is more extended. Shipyard specifications are steady with one eastern Pennsylvania mill supplying most tonnage for private builders. Floor plate and navy yard requirements are more widely distributed.
New York-Following a brief lull plate demand has improved and miscellaneous buying is fairly active. While some Pittsburgh and midwestern mills offer delivery in four to flue weeks, most eastern producers can do better, about three weeks on most wider and heavier gages and a week to ten days on lighter.

Philadelphia - Ingalls Shipbuilding Corp., Birmingham, Ala., is low on one to six C-3 cargo buats, requiring 18,350 tons of plates and 6550 tons of shapes. Sun Shipbuilding Co. has released a further large tonnage of plates and it is under. stood some specifications now entered by shipbuilders run into 1943. Railroad business continues active. new business including 3500 tons of plates placed by the Reading Co. with several mills for hopper car repairs. Miscellaneous business is improving slowly. Deliveries on light plates now average two to three weeks and on heavy plates three to four weeks.
Birmingham, Ala.-Plate produc. tion is steady and mills are heavily booked, due to persistent demand flom manufacturers of tanks, shipbuilders and the car plant at Bessemer.
Seattle-Local shops are having a normal run of scasonal jobs in lots of less than 100 tons each. Prospects are improved with additional ship censtruction expected to be placed with western yards. Puget Sound Sheet Metal Works, Seattle, has a contract to furnish tanks and vessels for the Consolidated Mining Co's plant at Trail, B. C., requiring more than 100 tons of stainless steel plates.

Toronto, Ont.- Plate demand has come into more prominence as a result of large orders for tanks of the Mark III type for the British
and Canadian governments. However, it is stated that most of Canada's plate demand will be filled by United States producers, as Canadian producers are booked to the end of the year.

Plate Contracts Placed

1001 tons or more, stainless stecl, finks and vessels for smelter, Trall, B. C., to Puget Sound Sheet Metal Works, Scatle.

Plate Contracts Pending

205 tons, 500,000 -gallon elevated stwe lank for constructing quartermaster, MacDill neld, Tampa. Fla.. Chlcago Bridge \& Iron Co., Chlcago, low.
205 tons, 500,000 -gallon elevated steel tank, Westover air held, Chiconee Mass., Pittsburgh-Des Molnes steel Steel Co., Pltsburgh, low.
Unstated, 2915 feet $\& 103$ ti-lnch welded steel plpe for Winthrop, Wash., Hsh hatchery; bids to reclamation bureat, Coulee Clty, Wash., Aug. $2: 1$

Bars

Haf Prices, Inge git
Pittshurgh - Automotive orders are beginning to reach mill books. Inquiries arising from the national defense program also are being received. Merchant bar backlogs are fair and deliveries are being made on schedule. Cold-finished divisions report slight increase in business, particularly from automotive partsmakers, and inquiries indicate substantial increases this fall from ag. ricultural implement manufacturers.

Cleveland - Bar deliveries are lengthening despite absence of active automotive buying. Shipments are most extended on larger sizes, rollings of which are infrequent. Deliveries on smaller sections vary somewhat with different mills but generally are not less than four weeks. Producers are being pressed for shipment not only to accommodate current needs but also because some buyers wish ts avoid a more stringent supply situation in coming months.

Chicago--Steel bar orders, which were somewhat quiet in the past two weeks, are beginning to pick up. Carbon bar orders in many quarters show an upward tendency, but more notable betterment has been attained in alloy steel bars.

Boston - Hot-rolled carbon and alloy bar demand is brisk and consumption heavier. Textile equipment builders are releasing carbon bars more liberally and machine shop consumption is steady. Shops producing alloy forgings are releasing substantial tonnages and a

Worcester forger with aircraft orders is farming out tonnage. Government buying is gaining, Watertown arsenal having awarded 1600 tons for induction furnace melting, with deliveries spread to April. Shipyard specifications are heavy. D :liveries on heat-treated alloy stock range to ten weeks or more.

New York-Commercial bar demand lags, although a good volume of tonnage is still moving and heavy additional requirements are in prospect. The lag is noted particularly in plain carbon bars, with railroads and bolt and nut manu-
facturers specifying less activoly. The principal movement has beell in bars for machine tool and aviation equipment manufacturers and government arsenals.
Birmingham, Ala.-Bar output is well sustained, considerable tonnag? being for concrete reinforcing while merchant bar demand has held up consistently.

Toronto, Ont-Booking of merchant bars has been more active recently and mills now report most of their output contracted to the end of September. However, on some lines delivery can be obtained with-

Built by FARREL for Purdue University
 rating foree ond each serew is recorded

This rolling mill recently built for experimental work at Purdine University emborlies some interestisg features. It is of welded construction and is designed to perform wither hot or cold rulling of melals.

It is and $8^{n}, 12^{n}$ iwo-hinh mill wilk the mill, reductiondrive, pinionstand and motor mounted was a commons hedplate 10 form an inteqral umit. The mill housings. drive case and ledplate are all fabricated from rolled steel plate and welded. Twa pairs of interehanmeable forged sieci palls of interchange furnished, one pair of strei rolls are farmished, one pair of suitable composition and hardness for cold rollisig and the other pair for hot rollisg. Tha honsings are of the arch-top lype, welded tonether into u single structure.

On each housing, monnted between the top roll rider and adjusting serew is a hydranalic eglinder or pressure block with a ram. The total sepa-
ia promds on a chart. and mdisig the separate readings sises the total s-puratisy force on the mill.

The mill is drisen by a direct current variable speed motor through uti enclosed double reduction drive with integral piniosstand. The drive is the veriseal lyme with all gear centers in the same plane. fears and mill pinions are aceurately generated Sykes contimuons tooth herrimghome and are motnted in antifriction roller hearings. An oil pump with filtor provides force-fecd lubrication to all mears and hearings.

When vou hase a problem itsvolving the rollizg of metals take advantage of the evperienced eomatal amal evpert assintamed Farel engincers can wive sou. We are prepared to builed mills of any size for rolling all kinds of sum-ferrous metal: und cold rolled striplsteel.

FARREL-BIRMINGHAM COMPANY, Inc. ANSONIA, CONN.
in two or thate wexks. Eqpecially heavy wartand are reported from vorimaters and mining companies.

Buffalo - Following slightiy less thmand arours the end of July sullers prjent releases azainst hasy thind quavier bookings for tuel lass are again in volume egual to the best movement this year.
Philadetphia-Par backlogs conLinue to grow. with mast interests unable to promise delivery on carbon giades much before September and alloy grades befone Novermber.

The situation may be relieved somewhat when larger production tacililies are completed. Ingalls Shipbufiding Corp., Birmingham, Ala., is low on one 10 six $\mathrm{C}-3$ cargo boats requiring 1300 tons of bars, 600 tons of rivets and bolts. Frankford arsenal took bids Aug. 5 on 250 tors of tungsten bullet core steel and Remington Arms $C 0$. is in the market for 400 tons of the same material. Standard Pressed Steel Co., Jenkintown, Pa, is booked well into 1941 on bullet core machining contracts for Frankford arsenal.

ERIE FOUNDRYCO.

ERIE BUILDS Dependable HAMMERS

Pipe

Pipe Pricts, Faze 9:

Pittsburgh - Lirtle change has been indicated, with standard pipe active, oil country steady, mechanical goods unchanged and miscel laneous buying fair. Basklogs in tubular specialties have not receded, although bookings have been somewhat lighter over the last two weeks. Line pipe orders are heavier.

Boston - Resale prices for merchant steel pipe are irregular and gererally weak at most distributing points in New England. Cast pipe buying is slow and competition with asbestos-cement pipe is keener. Providence, P. I., has placed 400 tons with the Everett, Mass., foundry.

New York-Utility companies continue substantial buyers of merchant pipe, apparently as protec tion against a possible shortage of steel this fall. Jobbers also are laying in stocks in expectation of possible extension in mill deliveries. Demand from the building trades for heating and plumbing pipe is expanding somewhat, with the outlook promising for well into the fall.

Birmingham, Ala.-Pacific coast points are taking much cast iron pipe tonnage, mostly in smaller sizes, and government projects, notably naval bases, require considerable pipe.
Seattle-Inquiry has increased and agencies expect improved volume within 30 days. Quartermaster, Fort Lewis, Wash., received bids Aug. 7 for 9920 feet of 4 to 10 -inch cast iron pipe, 22 hydrants, 6580 feet galvanized and 11,900 feet of black welded steel pipe and accessories. Specifications for Winthrop, Wash., fish hatchery, bids to rec!amation bureau Aug. 23, include 1115 feet * to 6 -inch galvanized steel pipe.

San Francisco - Little improve ment in demand for cast iron pipe is noted. Only one award of size was reported. Awards totaled 637 tons and brought the year's aggregate to 31,060 tons, compared with 21 , 576 tons for the same period a year ago.

St. Louis-American Rolling Mill Co., Middletown, O., has been awarded 120,000 feet of electric welded steel pipe for a power plant at Venice, Ill., through Western Foun. dation Co., Chicago.

Washington -. Reserve Gas Pipe Line Co., a Texas corporation, has flled application with federal power commission for a pipe line to carry natural gas from the Gulf coastal region to New York and adjacent industrial areas. The line will be 2500 miles long, of 24 -inch
pipe to withstand 1000 pounds per square inch pressure and will cost about $\$ 80,000,000$.

Steel Pipe Placed

26,000 tons, 20 -inch line for Natural Gas Pipe Line Co. of America from Geneseo, Ill., to sillwaukee, to A. U. Smith Corp., MIlwaukee,
13,500 tons, 8 -Inch, gasoline line for Socony-Vacuum Oll Co. from Bullalo to Syracuse, N. Y., to Jones \& LaughIn Steel Corp. and Natlonal 'lube Co. Pittsburgh.

Cast Pipe Placed

637 tons, 24-inch, San Dlego, C'alli., to United States Pipe \& Foundry Co. Burlington, N. J
400 tons, 12 -inch and under, Providence, R. I., to Warren Pipe Co., Everett Mass.

Cast Pipe Pending

255 tons, 4 to 8 -Inch, Sacramento, Cillt.; blds opened.
125 tons, McChord Field and Fort Lewls, Wash.; blds opened.

Rails, Cars

Track Material Prices, lage 9:

Award of 2350 freight cars to several builders by the Southern Pacift and 18 diesel electric locomotives to Electro-Motive Corp., La Grange, Ill., by Atlantic Coast Line were the high lights of last week in the railroad market.
Chicago \& North Western, in conjunction with Southern Pacific and Union Pacific, placed two streamlined trains and Atlantic Coast Line two stainless steel streamlined trains. The North Western also awarded 60 covered hoppers.

War department is reported considering purchase of 2000 railroad cars especially designed for troop transportation, estimated to cost $\$ 15,000,000$ to $\$ 20,000,000$. Details as to when bids will be asked are not announced.
Domestic freight car awards in July involved 5864 units, according to final returns. This brings the total for seven months to 22,037 . against 9642 in the corresponding period last year, 8021 in the first seven months of 1939 and 47,015 in the same period in 1937 . Further comparions follow:

	1940	1939	1938	1937
Jan.	360	3	25	17,806
Feb.	1,147	2,259	109	4,972
March	3,104	800	680	8,155
April	2,077	3.095	15	9,772
May	2.010	2,051	6,014	4,732
June	7.475	1,324	1,178	548
July	5,864	110	-	1,030
7 mos.	22,037	9,642	8,021	47,015
Aug.		2.814	182	1.475
Sept.		23,000	1,750	1,216
Oet.		19,634	2,537	1,355
Nov.		2,650	1,232	275
Dec.		35	2,581	275
Total		57.775	16,303	51,611

Car Orders Placed

Atlantle Coast Line, 21 llght-welght stainless steel streamlined coaches, to E. G. Budd Mrg. Co., Phlladelphla; to be operated in connection with Pennsylvania rallroad.
Chicago, Burlington \& Quincy, 1000 box cars, to own shops.
Chlcago \& North Western, slxty 70-ton covered hopper cars, to General Amerlean Transportation Corp., Chicago.
Chicago \& North Western and Union Paclic railroads, owned jolntly, one streamlined train, to Pullman-Stand-
ard Car Mrg. Co., Chicago; dieselelectric power plant to be supplied by Electro-Mlotive Corp., La Grange, Ill.
Chlcago North Western, Southern Pacific and Linlon Pactic rallroads, Joint ownership. one streamlined train. to Pullman-Standard Car Mrg. Co., Chicago.
Southern Paciff, 2350 freight cars; 500 box cars each to General American Transportation Corp., Chicago, Pressed Steel Car Co., Pittsburgh, and Bethlehem Steel Co., Bethlehem, Pa.; 500 automoblle cars to Mt Vernon Car Mlfg. It Vernon III. 350 hoppers to Amerlean Car \& Foundry Co., New York

The Parade of HELICALS AND HERRINGBONES to Industry

is Ninety-eight more Helical and Herringbone gears are on their way for use in industry's business of transmitting power. Day by day Horsburgh \& Scott Herringbone and Helical gears are becoming more popular because of their greater accuracy ... greater resistance to wear. These and many other features make them most economical, smooth and quiet for transmitting power between parallel shafts.

Your Company Letterhead Brings a Complete 448-Page Catalog
THE HORSBURGH \& SCOTT CO.
GEARS RND SPEED REDUCERS
5112 HAMILTON AVENUE - CLEVELAND, OHIO, U. S. A.

-The Market Week-

Rail Orders Placed

Pere Marquette, 1850 tons, to Carneglefilinols Steel Corp., Chicago.

Car Orders Pending

Chicago, Rook Island \& Pacillc, court permission asked for purchase of 1000 box cars and construction of 200 gondolas in own shops.

Locomotives Placed

Akron, Canton \& Youngstown, iwo steans locomotives, reported placed with Lima Locomotive Works, Lima, O.
Atantic Coast line, 18 diesel-electric
locomotives. to Filectro-Mintlve Corj. La Grange, Ill,
Chicago de North Western, Union Pacitic and Southern Paclic jointly, motive power for two streamlined trains for service to the Paclife coast, to FlectroNotlve Corb., La Grange, 111.

Buses Booked

A.e.f. Motors Co., New York, 30 coaches for Pittsburgh Motor Coach Co., Pittsburgh.
J. G. 13rill Co., Philadelphia, 60 irolley coaches for Honolulu Transit Co., 10 for Denver Tramway Corp., 8 for Des Molnes Rallway Co., 3 for Shreveport Batlway Co.

JETALized surfaces . . . blachened by chemical oxidation . . retain their original dimensions and texture. Furthermore, they cannot chip, scale or peel. The new JETAL process (pulented) colors ferrous meta's quichly and cconomically. It is a simple immersion hath penetrates deeply . . . requires no experience, no claborate equipment, no clectrical current. Worh is readily handled in buth, baskets or barrels.

JETAL

- BliCkens Iron and Steel
- Speeds up Production; less than live minutes to obtain a black
- Penetrates deeply
- Enhances sales appeal
- Reduces friction
- Saves on finishing costs
 made for free dernonstralion in your onm plant if yon desire. Descripliee folder on request.

> ALROSE CHEMICAL COMPANY Providence, R. I.
> Tel. willioms 3000

Wire

Wire Prhese, Page 97

Pltshurgh-Slight increases have been noted in the manufacturers' wire market. Initial automobile orders have been received and buy: ing is active by partsmakers. Miscellaneous manufacturing continues steady. In the merchant market jobber buying has gained slightly, particularly in agricultura] products. Export demand for merchant products remains fairly steady.

Chicago - First substantial wire orders for automotive uses are expected this week. Releases by auto seat spring makers have been unusually light. Merchant wire demand is good. Production is high but difficulties in deliveries are experienced in many items. Rural demand is good for this time of year. Mesh, for road building, will be in heavy demand till late fall.

Hoston

While buying has leveled in a few wire products, bookings are maintained, specialties covering a wide range. Finishing operations are near capacity with overtime schedules effective in some de partments. Shipments are heavier but backlogs are being reduced on only a few products. Automotis? tonnage is increasing. Rope de mand is heavier and backlogs are increasing.

New York - Demand for wle products continues active, with incoming specifications about equal to shipments. Manufacturing wire is moving particularly well and is beginning to reflect heavice automotive buying.

Birningham, Ala. Wire products, including all specifications, continu? in good demand. Fencing and nails are moving in large quantities, and output of the wire mill is about so per cent.

Tin Plate

Tin l'ate Prices, lage 96
Pittshurgh Tin mill operations have steadied, with estimated production last week at 71 per cent of capacity. Specifications are slightly better, and shipments over the past week we:e heavier than the preceding week. Consumers have been reducing inventories and ale expected to increase releases substantially over the next few weeks.

Semifinished Steel

smmifintifed prices, page 9
Plttshurgh - Releases on sheet bars from nonintegrated mills were slightly better last weok than dut. ing the previous week. Export de
mand continues strong, with Britain the principal customer. Demand for skelp and wire rods is steady.

Shapes

Structural Shape Proces, Page 9f
Pittshurgh - Both public works projects and industrial construction continue to add to mill backlogs. Inquiries ovar the past week were somewhat less than the previous week, although shipments aie high and awards numerous.
Chicago-Structural bookings are ahead of shipments but fabricators find a continuance of recent quiet. As a result most present structural business is being placed with the mills by a widely-diversified group of miscellaneous users. Structural needs of the defense program have not been significant in this area, though reported substantial in coast districts.

Boston - More structural steel is being bought for government cost plue contracts. Awards anproximating 3000 tons include 1800 tons for crane runways for a Groton, Conn., shipyard and 650 tons for a second addition to a Worcester, Mass., forge shop. Bridge requirements expected out by early fall will take close to 20,000 tons of steel, mostly fabricated shapes.
New York-Structural activity is expanding, with the largest recent inquiry involving approximately 14,OCO tons for subway, loute 110, section 10, in Brooklyn, on which general contractors' bids will be opened Aug. 27. A substantial tonnage of plain beams may also be purchased for shoring. Action on approximately 12,000 tons for twin dry docks for the Newport News Shipbuilding \& Dry Dock Co., with an additional tonnage for piers, is expected to be announced soon.
Philadelphia - Leading structural mills are booked four to five weeks and further gains in backlogs are seen as government cost-plus con-

Shape Awards Compared

	Tons
Week ended Aug. 10	24,101
Week ended Aug. 3	19,720
Week ended July ${ }^{\text {a }}$	45,939
This week, 1939	17,975
Weekly average, year, 1940	21,306
Weekly average, 1939	22,411
Total to date, 1939	33,958 712,534
Tota! to date, 19.10	681,795

tracts are coming out in increasing numbers.

Buifalo- Interest in the structural steel market is growing as present projects easily aggregate the best tonnage of the year. A few fair sized projects are scattered among numerous small jobs.

Seattle-Public works and defense projects involving heavy tonnages are being released and fabricating shops in Seattle and Portland, with large backlogs, are anticipating increased activity. Pacific Car \& Foundry Co., Seattle, is low
at $\$ 124,935$ and has been recommended for award for 1000 tons for a shop building at Puget Sound navy yard. Wisconsin Bridge \& Iron Co., Milwauke, has 260 tons for the Continental Can Co. plant at Walla Walla, Wash.

San Francisco - Shape awards last week totaled 3382 tons and brought the year's aggregate to 152,700 tons, compared with 77,084 tons for the same period last year.
Toronto, Ont.-Fabricators report an even flow of orders, and backlogs are mounting steadily. Most new

HACKNEY FACILITIES SOLVE PROBLEMS IN MAHY INDUSTRIES

HACKNEY manufacturing facilities have played an important part in the solution of numerous problems in many industries. As a result, a number of manufacturers have been able to effect product improvements and at the same time to reduce their costs.
This deep drawn liquid receiver is one of the several special products manufactured by Hackney for the refrigeration industry. It is suitable for 250 lb . per sq . in. working pressure. Note that the vessel is equipped with two bull's-eye fittings which consist of ground glass inserts of approximately " 1 " " thickness. They are held in place by special gaskets and with a brass ferrule retainer. With these bull's-eyes, it is a simple job to gauge the amount of liquid refrigerant in the receiver.

In availing themselves of Hackney design and manufacturing facilities, manufacturers get the benefits of Pressed Steel Tank Company's more than 35 years' experience in the manufacture of special shapes and shells from many types of metals. Through positive control of heat treatment, X-ray control of welding and numerous other Hackney procedures, they are assured of better. more dependable products at lower costs. Whatever industry you are in, you may find Hackney's facilities beneficial and profitable. A Hackney engineer will be glad to cooperate with you in developing new shells or shapes or improve on those now being used. There is no obligation-write for details.

Behind the Scenes with STEEL

Vacation At Home

- Back after a weck of unlaxing. We missed our fishing this year but managed to accomplish someching we've always wanted to do. We played a full round of golf every day for seven straight days and took off twelve strokes from our previous low score. Another week like that and we'll be getting big idcas.

"Hearty"

E Most heart-touching discontinuance notice our circulation department has had to accept came last week from an old friend out in Independence, Kansas. He writes: Having been boosted out of active business life by the all-too-common coronary trouble, the question is whether a "hearty" should keep on with an old friend trade paper and be periodically reminded of what he is missing out on, in the hope of "staying young," or just resign himselt gracefully to being a cabbage, or emulating "Elsic," according to the Doctor's, family's and friend's admonitions to "Take it casy." 1 presume (he sadly concludes) you had better let my address plate die.

Delirium Tremens

ERailway Express Agency recently shipped scveral pythons from Scattle, Wash., to various points about the country. Now, they include the trade price on pythons in their published list and in case you're planning on sending one home to the wife and kiddies figure it at $\$ 50$ per linear foot.

The Raw Deal

E Chicago Editor, Jim Powell, tells of being cornered by a fellow on Michigan Ave, the other day who pointed to Jim's Willkie button and whispered very con-
fidentially, "The Dems got buttons like that too, only they say, with one word on each line, 'Roosevelt And Wallace'." "So?" says Jim. "Yeah," says the other guy, "but see what those first letters spell? R-A-W, raw! Okay, now spell it backwards." "War," pronounces Jim solemnly, as his friend smiles happily and darts off in quest of more Republicans.

Notes On Defense

- Speaking of war, the U.S.N. 16 -inch shore gun hurls a 2400 lb . projectile 3 I miles at the unbelicvable rate of 1500 miles an hour. It reaches the mark ahead of its own sound.

Time Loss

- Medical consultant C. D. Selby of General Motors estimates from a 6 -month survey that 10 per cent of the workmen lose an average of 37 days cach year because of ordinary sickness or non-occupational injurics. This is a loss of 260,000 calendar days or 712 years!

Hotel Penton

- Cleveland is running a dangerously high pennant fever these days but we understand that the local hostelries are quaking in their boots for fear the Indians will really come through and win. Unofficially it is reported that every hotel room in town is already reserved for World's Series time because of some convention or other in town that week, and if that's so, our time has come. Here we are with a swell steam-heated nine-story building not over a roo-yard dash from the stadium and a men's and women's wash room on every floor. Let's sec, we can get about three cots in every office and at five bucks a crack and with all the offices-why it's a gold mine!

Shrdle

-The Market IVeeti-

business is in connection with plant additions and new plants for war production. On this account alone it is stated that upwards of 20,000 tons of structural steel contracts are pending. Awards for the past week exceeded 10,000 tons. Building construction in Canada for first half exceeded that of the corresponding period of 1939 by approximately 75 per cent and furtier expansion predicted with large government projects already announced exceeding $\$ 50,000,000$

Shape Contracts Placed

3500 tons, Union Electric Co. of Illinols power house, Venice, Ill., equally divided belween Mississippi valles Structural steel Co. and Stupp Brothers Brldge \& Iron Co., St. Louls. through Stone \& ivebster Construction Co., Boston. (Prevlously reported.)
2506 tons, Including 1275 tans sheet pllIng, 1100 tons talnter gates and 131 tons of structurals, Caddoa or John Martin dam, Arkansas river, Colorado. to unnamed Interest.

2200 tons, plant, Carbide \& Carbon Chemicals Corp., New York, for erec tlon at Texas Clty, Tex., to Mosher Steel Co., Houston, Tex.

1800 tons, mainly crane runways, Electrle Boat Co., Groton, Conn., to AmerIcan Bridge Co., Pittsburgh.
1660 tons, three land-plane hangars Norfolk, Va., to Virginia Bridge Co., Roanoke, Va.
1000 tons, shop building. Puget Sound navy yard, to Paclic Car \& Foundry Co., Seattle.
975 tons, 18 -story apartment buildins. Ninetleth street and Central Hark West, New York, to American Bridge Co., Pittsburgh.

710 tons, steel pillng, Arklabuta dam. Coldwater river, Miss., to Inland Stee Co., Chicago.
680 tons, belt parkway contract $\mathrm{E}-2$, Brooklyn, N. Y., to American Bridge Co., Plttsburgh.
650 tons, second adilition, forge shop, Wyman-Gordon Co., Worcester, Mass to Amerlcan Bridge Co., Pltisburgh.
600 tons, stecl plling, shore protection for Diamond Alkali Co., Falrport, 0 to Bethlehem Steel Co., Bethlehem, Pa.
600 tons, factory bullding No. 98 for Union Carblde \& Carbon Corp, Nlagara Falls, N. Y., to Bethlehem Steel Co., Bethlehem, Pa.
600 tons H and Z-stec! sheet plling for Tongue Point, Oreg., naval atr base, to Bethlehem Steel Co., Bethlehem, Fi.
500 tons, plling, dock extension, Pere Marquette rallroad, St. Joseph, Mten to Bethlehem Steel Co., Bethlehem, Pa
490 tons, plant addition, American Smelting \& Refining Co., Perth Amboy N. J., to Belmont Iron Works, Eddystone, Pa.
480 tons, 12 -story apartment, 42 Eas: Sixty-seventh street, New York. is Drier Iron Works, New York, througn Schroeder \& Koppel, 369 Lexingion avenue, New York.
465 tons, Unlted States postorice garage. Detrolt, to R. C. Mahon Co., Detrolt.
425 tons, building Continental Can Co.. Passaic, N. J., to Bethlehem Fabrio cators Inc., Bethlehem, Pa .
400 tons, bulldinn, Bakellte Co.. Bound

-The Markel Week-

Brook, N. J., to American Bridge Co., Pittsburgh
385 tons, state highway bridge, PSC8758 , Broome county, New York, to Amerlcan Bridge Co., Pittsburgh.
350 tons, telephone bullding, Quincy. Mass., to Lehigh Structural Steel Co., Allentown, Pa.
310 tons, platforms and supports, Bayway, N. J., to Lacknwanna Steel Construction Co., Buffalo.
300 tons, Gould Academy gymnasium, Bethel, Me., to American Brldge Co., Pittsburgh.
265 tons, extension to bullding No. 80, navy yard, Portsmouth, N. H., to Bethlehem Fabricators Inc., Bethlehem, Ha.
260 tons, Continental Can Co, plant, Walla Walla, Wash., to Wisconsin Brldge \& Iron Co., Milwaukee; Austin Co., general contractor.
260 tons, repairs to Sixty-third street line, Chlcago Rapid Translt Co., Chicago, to Hansell-Elcock Co., Chicago.
255 tons, subway section 73-SF Cook county, Illinols, to American Britge Co., Plttsburgh.
240 tons, trestle and bins, for Ohio Valley Coal Co., Elm Grove, W. Va., to Riverside Steel Co., Wheeling, W. Va.
240 tons, extensions to engine houses, Hagerstown, Md., and Maryland Junction, W. Va., for Western Maryland rallway, to Phoenlx Bridge Co., Phoenixville, Pa .
230 tons, court house and custom house, Spokane, Wash., to Willamette Iron \& Steel Corp., Portland, Oreg.
225 tons, Coca Cola building, Louisville, Ky., to Loulsville Bridge \& Iron Co., Loulsville, Ky.
220 tons, overhead bridge and vadact FAGH-119, Milbank, S. Dak., to Bethlehem Steel Co., Bethlehem, Pa.
210 tons, heaters for crude unit, oll refinery, Bayway, N. J., to Pittsburgh Brldge \& Iron Works, Rochester, lia.
200 tons, scrap metal plant, for navy department, Brooklyn, N. Y., to A. J. Fitchy.
195 tons, bridge No. 1996, Vanderburg county, Indiara, to International steel Co., Evansville, Ind.
190 tons, brldge 36.70 , for New York, New Haven \& Hartford rallroad, Southport, Conn., to Phoenlx Bridge Co., Phoenlxville, Pa.
190 tons, brldge FAGH-684-E1, Lee county, Texas, to North Texas Iron \& Steel Co., Fort Worth, Tex.
190 tons, bridge, Cuyahoga county, Ohio, to American Bridge Co., Pittsburgh.
190 tons, bridge, FAGH-519D-FAGM117A, Harris county, Texas, to yeden Steel Co., Raleigh, N. C.
185 tons, overpass FAGI-96-B, Dennisville, N. J., to Bethlehem Fabricatois, Bethlehem, Pa.
160 tons, submarine battery charging bullding, navy yard, Phlladelphia, to Pltisburgh Bridge \& Iron Works, Rochester, Pa.
160 tons, 6 -story cold storage building, Rath Packing Co., Waterloo, Ia., to Clinton Bridge Works, Clinton, La.: also 69 tons of bars to Dis Moines Steel Co., Des Molnes, la.
155 tons, loading plant, ordnance depot, Savanna, IIt., to A. C. Woods \& Co., Rockford, III.
140 tons, state highway bridge, Mlami Akron, Ohio, to Burger Iron Co., akron, 0 .
140 tons, addition to laboratory bullding, Dayton, 0 ., for United States government, to Indiana Bridge Co., Muncle, Ind.
130 tons, office building, Arthur G. Mc-

Kee \& Co., Cleveland, to Fort Fill Brldge Works, Plttsburgh.
130 tons, state bridge over willimantic river, Willington, Conn., to American Brldge Co., Pittsburgh.
130 tons, bridge CWR-184-1-1, Coryell county, Texas, to Alamo Iron Works, San Antonlo, Tex.
125 tons, state bridge RC-40-58, seely Creek, N. Y., to American Bridge co., Pittsburgh.
120 tons, state highway bridge, Phlllipsburg, Pa., to American Bridge Co., pittsburgh.
115 tons, bridge 32.73, for New York, New Haven \& Hartiord rallrond, Brlugeport, Conn., to American Bridge Co., Pittsburgh.
115 tons. Deeds carillon tower, Dayton, O., to Burger Iron Co., Akron, 0 .

115 tons, school building, for St. Patrick's church, Troy, N. Y., to Utica Struetural Steel Co., Utlca, N. Y.
115 tons, New York state highway bridge, FAS RC-40-61, Chemung coun-

2y, to Lackawanna Steel Construction Co., Buffalo.
110 tons, extenstion to S. station, Aontaup Electric Co., Somerset, Mass., to Lehigh Structural Steel Co., Allentown, Pa.
110 tons, bridge repairs, C-18377, Chesapeake \& Ohlo rallioad, Rlchmond, Va., to Phoenlx Bridge Co., Phoenixville, Pa.
100 tons, St. Aloyslus Catholic church, Cheektowaga, N. Y., to Ernst Iron Works Ine., Buffalo.
100 tons, bullding No. 120, laborators for E. I. du Pont de Nemours \& Co., Nlagara Falls, N. Y., to R. S. McMannus Steel Construction Co. Inc., Buffalo, Laur \& Mack, Niagara Falls, N. Y., general contractor.

Unstated Connage, steel superstructure over navjgation lock, Kentucky dam, Tennessee Valley authority, to Bethlehem Steel Co., Bethlehem, Pa.
Unstated tonnage, powerhouse unit No. 3, Plckwick dam, Tennessee valley authority, to American Bridge Co. Plitsburgh.

- Every Page electrode is made to help you make better welds. The sole purpose of our broad program of research and experiment is to develop better products with which you can do better and more profitable work. Out of this program have come electrodes that, on actual test, have proved themselves head and shoulders above any electrodes against which they were tested. So, whatever welding job you have to do, give Page a trial. The results may surprise you.
BUY ACCO QUAUTY in Page Weldiag Electrodes; Page Wire Fence; Lay-Set Preformed Wire Rope; Reading-Pratt \& Cady Valves; Campbell Abrasive Cutting Machines; American Chains; Ford Chaln Blocke, Cranes and Trolleys.
PAGE STEEL AND WIRE DIVISION - MONESSEN, PENNSYLVANIA

AMERICAN CHAIN \& CABLE COMPANY, Inc.

AMIBCAN CHAN ONASCN AMITKAN CABLE CHMSHOM andotw C camparl dirstion poso cham hlock dirision	mazabo mof hore cmison manur majufacturno pinson DWEN SLENI SMWG COMEANK. NUC. PaCl bletiand wel onilin	macing matl \& cadr prrison Meache sith castac devision whem haniractuemé dmion	to in nolish wipe mosuls IMD Ime Palsonts rhan company. 14

Shape Contracts Pending

14,000 tons, subway, route 110 , section 10, buard of transportation, Brooklyn. N. Y.: general contractors' bids Aus.

0,000 tons, H-beam bearing plling, Maryland Dry Dock Co., Baltimore, blds asked.
4000 tons, approximately, buhdings, naval base, Hawail; Turner Constructhon Co. New Yurk, general contractor, receiving ligures
2700 tons, Benjamin Frankiln high school. New York, to be readvertised shortly.
2lion tons, bridge, Including small bascule, North Portland, Me.: plans ready soon.
1800 tons, Woodrow Wilson high school. New York, to be readvertised shortly.
foto tons, grade separatons, F. a s i Twelfth strect. New York, for Triborough bridge authority:
150 tons, aviation and marine corps facllities, marine barracks, Quantico. Va,: John MeShaln general contractor.
1500 tons, contract E-3, Triborough bridse authority grate crossing elimInation work, Brooklyn, N. Y゙.; blds Aug. 15.
1400 tons, apartment house, for Anthony Campagna, New York.
1300 tons, assembly shop. Bremetton, Wash., for navy.
1041 tons, bridges, Kette rlver gorge. Busds, Wush., for buredu of reclamation.
1h(o) tons, Z-plling, $5(0)$ tons shapes, seaplane hangar, naval academy, Annapu-

Ils, Md.; McCloskey \& Co., Phlladelphia general contractor

1000 tons, including 300 tons of sheet plling. Brooklyn approach shafts of Battery-Brooklyn tunnel; Andrew Catapano, Long Island Clty, N. Y., low un general contract.
950 tons, two bridges, Huntingdon county, Pennsylvania; bids to state highway department, Harrlsburg, Pa., Aux. 16.

850 tons, factory hullding, Metal Equipment Co., Jamestown, N. Y.
700 tons, bullding for Chevrolet Motor Co., Saginaw. Mich.
500 tons, shop, spectication 9906, navy yard, Bremerton, Wash.: Pactle Car 太 Foundry Co., Seatlle, Wash., low.
450 tons, office building, for United Carbon Co., Churleston, W. Va.
410 tons, state highway bridge, North East, Pa.; C. R. Knowles, Gowanda, N. Y., general contractor.

400 tons, warehouse, Owens-Illinois Glass Co., Alton, Ill: blds Aug. 13.
344 tons, sheet plling, United States enginter offlee, Portland. Oreg.; Columblat Steel Co., San Franeisco, low.
275 tons, state bridge SS-40-10, Wallkll, N. Y.

265 tons, steel sheet plling. for floort control projects at Sand Point and St. Marles, Idaho; general contracts awarded.
250 tons, addtion, Cooper hospital, Camden, N. J.: bids in.
200 tons, St. Luke's hospltal, Bethlehem, Pa.; bids Aug. 17.
180 tons, hangar, Denver, Colo., airport; bids Aug. 12
160 tons, warchouse, Jackson \& Perkins,

for handling sheet steel IN CLOSE QUARTERS

Where headroom is low and where storage area is confined, C-F Sheet Lifters handle tons of stock easily and safely. C.F Lifters need only $5^{\prime \prime}$ or $6^{\prime \prime}$ between piles, may be lowered vertically over a pack or bundle of sheets and are adjustable for stock from $12^{\prime \prime}$ to $72^{\prime \prime}$ wide.

C-F Lifters feature safe, one-man end control, in standard manual or powered units of 2 to 20 ton capacity, C-F Lifters accommodate sheets up to $72^{\prime \prime}$ wide or may be had in any special size to meet requirements.

Newark, N. Y.
140 tons, postoffice building. Charleston, W. Va.

130 tons, highway bridge, Avon, N. Y bids August 23
125 tons, brldge, Halliax, Vt.; Lockwood Greene Corp., Concord, N, H., cuntractor.
115 tons, reconstruction bullding, for St. Peter's church, Washington.
110 tons, men's residence, for New York State college Albany, N. Y
Unstated tonnage, hangar, MacDill held Tampa, Fla-; Central Contracting Co. Allanta, Ga_, general contractor, low at $\$ 1,003,900$.
Unstated tonnage, supply bulding and repair shop for construction quartermaster, Southeast air depot, Moble Ala.; Foster \& Crelghton, Nashville, Tenn., generial contractors, low at $\$ 1,433,400$.
Unstated tonnage, steel stringer bridge and approaches over Chickley rlver: bids Aug. 27 to 1R. W. Coburn, chlef engineer, Massachusetts department of publie works, Boston.
Unstated, barracks, hospital and ex change, army base, Fairbanks, Alaska: bids to Quartermaster, Fort Mason Callf., Aug. 10.
Unstated tonnage, motor test stand bullding, naval station, pensacola Fla.; E. J. Photzer, Twelfth and Lindley avenue, Philadelphia, low on general contract at $\$ 108,335$.

Reinforcing

IReinforcing Bar Prices, Page 97
Pittsburgh - New business continues to come in at a substantial rate. Prices are almost entirely at 2.15 c . Deliveries are being mads on schedule, with mill capacity reported ample in most cases. Export business is fair, and in some cases commands a premium.

Chicago - Producers and sellers are encouraged by improvement in prices and increase in new demand Volume of pending projects has tended upward gradually in the past few weeks. Most current tonnage is in small individual projects.

Boston - While a large volume of reinforcing steel is in prospect, current buying is in small lots. More than 11,000 tons is being figured for housing, flood protection and defense

Concrete Bars Compared

Includes awards of 100 tons or more

IS HOTEL CLEVELAND

ROOMS from \$3

-The Market Week-

work, much of it in the Hartford, Conn., district. Reinforcing bar prices are stronger although larger awards bring out moderate concessions.

New York-Action on at least two large reinforcing bar contracts is expected shortly, one involving 2500 tons for the Kingsboro housing project, Brooklyn, on which Caldwell-Wingate Co., general contractor, is low, and 1250 tons for Brooklyn navy yard on which J. Rich Stears Inc. Is general contractor.

Philadelphia - The reinforcing bar market is the firmest in months with the published price quoted in most instances. More work is reported coming out.
Seattle-Important tonnages are pending, the largest 7000 tons for foundations of the Bonneville power house, bids postponed from Aug. 20 to Aug. 30.

San Francisco - Movement of reinforcing bars continues well sustained and awards aggregated 7266 tons, bringing the total to date to 111,908 tons, compared with 102 , 731 tons for the corresponding pe riod in 1939.

Reinforcing Steel Awards

2000 tons, naval supply base, Norfolk, Va., through Virginia Engineering Co., Newport News, Va, to Concrete Steel Co., Norfolk, Va.
2000 tons, navi yard improvements, Portsmouth, N. H., to Bethlehem Steel Co., Bethlehem, Pa., through BancroftMartin, Aberthaw Co., contractor. 1850 tons, Union Electrje Co. plant, Venice, Ill., to Laclede Steel Co., St. Louls, ihrough Western Foundation Co., contractor.
s00 tons, navy yard machine shop bullding, Norfolk, Va., to Bethlehem Steel Co., Bethlehem, P'a., through Rust Engineering Co., Pittsburgh.
586 tons, buoss for submarlne net across Golden Gate, San Franclsco, to Columbla Steel Co., San Franclsco.
500 tons or more, Coulee dam projects to Bethlehem Steel Co., Sesttle: by reccamation bureau.
500 tons, miscellancous bulldings, Albrook fleld. Canal Zone, to lepublic Steel Corp., Cleveland, through leobert E. Mckee, contractor

480 tons, foundation, machlne shop, navy sard, Mare Island, Callf., to Herrick Iron Works, Oakland, Callf.
100 tons, factory adaltion, Campbell Soup Co., Chlcago, to Calumet Steel Co., Chlerso
260 tons, bridge substructure, I'eurla, 111 . sec. 15-B, to Inlant Stcel Co.. Chleago, through Great Lakes Dredge \& Dock Co.
250 tuns, Vineyard housing, Wheeling. W. Vi, to West Virginla Rall Co. Huntington, W. Va., through Don J Byrum Inc., contractor.
210 tons, court house, Appleton, Wis to Ceco Steel Products Corp., Chicago. 1 fio tons, equipment repair bullding Duncan fleld. Texas, through 11. Mocller, contractor, San Antonio. T, to Ceco Steel Products Cors., Omat Nebr.
150 tons, Aphne dam, San Kalatel, Callf.

Inire ilis morit LRss PAD NTM HUIIIII

. .) by furnishing him with BisCO Alloy and Tool Steel fibing that meets your exacting requirements for such Heams as ring dies, bushings, forming rolls, efc. With the right combinations of insid) and outside diameters sfocke for immediate shipment, long, costly hours of lathe wo k pn solid rounds afeno onger necessary.
Let usimgil yoypur current stock and price lis on BISCO Alloy and toal s.ee Fubing.

THE BISSETT STEEL

900 EAST 67th STREET, CIEVEEAND. OHIO
to Gunn, Carle \& Co., San Francisco. 150 tons, bridge and highway, Franklin, N. H., to Bancroft \& Martin Co., Port land, Me
150 tons, Metropoltan Edison Co. power plant, Reading, Pa., to Republic Steel Corp., Cleveland, through L. H. Focht \& Sons, contractor.
120 tons, factory at kewanec, Ill., to Inland Steel Co., Chicaso.
120 tons, Erte railroad grade ellmination, Johnson Clty, N. Y., to Bethlehem Steel Co., Bethlehem, Pa. through Binghamton Construction Co, Binghamton, N. Y.
119 tons, underpass, Palo Alto, Calle., to San Jose Steel Co., San Jose, Callf.
110 tons, state hlghway project No. 163, Warren county, Ohlo, to Republic Steel Corp., Cleveland.
110 tons, General Motors Corp. diesel division plant, Detrolt, to Great Lakes Steel Corp., Detrolt, through Taylor, Davis, Bryant \& Detwller, contractors.
110 tons, state hlghway bridge, Carsonville, Mich., to Bethlehem Steel Co., Bethlehem, Pa. through J. H. Baker, contractor.

Reinforcing Steel Pending

7000 tons, foundations Bonneville power house; bids to United States engineer, Bonneville, Oreg., post poned Aug. 20 to Aug. 30.
2560 tons, Klagsboro housing project Brooklyn, N. Y., Caldwell-Wingate Co. New York, low on qeneral contract.
1250 tons, navy yard, Brooklyn, N. y award by J. Rich Stears Ine., general contractor, New rork, expected momentirily:

1000 tons, navy yard subassembly shop, Brooklyn, N. Y., Walter Kidde Ine., contractor.
700 tons, Cargill grain elevator, St. Clair county, Illinols.
400 tons, ten hospltal bulldings, Wlllow wrook, N. Y.; blds Aug. 14
385 tons, two bridges, Huntingdon county, Pennsylvania; blds to state highway department, Harrisburg, Pa., Aug. 16.

360 tons, subway, route 110 , section 10 , board of transportation, छrooklyn, N . Y.: general contractors' blds Aug. 27
313 tons, belt parkway Brooklyn, N. Y., contract F-3; blds Aug. 15
275 tons, shop bullding, naval station, Newport, R. I.
200 to 250 tons, two bridges for New York, New Haven \& Hartford, No. 769 and No. 785, over Hutchinson river, Baychester, N. J.; blds asked.
192 tons (also 68 tons shapes). Washington state highway projects in Stevens and Lincoln countles; blds at Olympla, Wash., Aug. 20.
166 tons (also 85 tons other metal ltems). rearing ponds, cte., Winthrop, Wash., 1lsh hatchery; blds at Coulec Clty, Aug. 23: materials by reclamation bureau. 129 tons, highway work, Orange county, Callf, for state; blds opened.
111 tons, Sauvies Istand pumphouse: Kuckenberg Construction Co., Portland. Oreg., general contractor
100 tons or more, addition to Anchorage, Alaska, postoffles; blds pending.
100 tons, including miscellaneous, rearing ponds, Entlat, Wash., flsh hatchery; W. T. Butler, Seattle, general contractor.

$2_{\frac{1}{2}}$ YEARS' Successful

PRODUCTION Proves the Reliability of JESSOP SILVER-PLY Stainless-Clad STEEL

When evaluating the merits of stainless-dad steels, past performance is an all-important consideration. In this connection. it may le mentioned that

- Sll.VER-PIX has been successfully produced lis the Jesion tited Company for over two and one half years.
- Over $1,500,000$ lts. of Sllverr-PI. sheets and plates have been rolled during this period.
- NO PIECEOF EOUIPMENT IN WHICH JESSOP SILVER-PIS WAS UTIIIZED HAS EVER FAILED TO GIVE SATISFACTORY SEIRVICE.
SllNER-PLY Stainles-Clad Steel offers the complete protection of solid stainless, while saving up to 15% in material costs. Write for free broklet describing SILVEIR-PLY in detail. JEZSOP STEEL CO.. 584 Green St. Washington. Pa, FiTMBLISHED 1901.

larte procesning wessel for use in the chpmical indumery, fabricafeal from SIIEFER-PIV by Alloy Fab-

Pig Iron

1ig Iron Prices, Page 98

Pittsburgh-Production is moving upward, and all 40 stacks active in the district are being pushed to capacity. No plans have been an nounced for blowing in additional stacks, although it is known this is being considered. Coke supply is apparently the key factor.

Chicago - In line with expecta. tions, foundry melt has started to improve and pig iron releases have grown heavier. Sellers are confident current rate of shipments will hold throughout the month, and this would bring August tonnage well above that of July.

Boston - Pig iron consumers are covered through the quarter and many have larger reserves, buying being small currently. Shipments are improved and melt is gaining substantially. Foundry coke shipments are steady and substantial. Demand for castings is broadening. with larger work increasing. A Beverly, Mass., shoe machinery builder has a large order for 37 . mm . gun mounts, requiring heavy castings.

New York--Pig iron specifications are baing well sustained, with producers using from stocks to meet current demands. There is little new buying, however, as most consumers have contracts for the quarter. Expo:t demand continues quiet. Heavy shipments are going to England, but against contracts placed earlior in the summer.

Philadelphia-Except for two or three round lots of pig iron, rang. ing up to 1000 tons, buying is relatively light. Specifications already entered for August indicate an increase of 10 to 25 per cent in deliveries over July. Foundry operations average 75 to 80 per cent, although two or three jobbing shops are closer to 60 per cent. Require ments of non-integrated steel mills have expanded sharply. Great Britain is pressing for additional tonnage, especially of low phosphorus iron, which is comparatively scarce. It is understood Great Britain might pay as high as $\$ 30$. Recent British purchases include 50,000 tons placed with Ohio and Pennsylvania furnaces and 50,000 tons with an eastern interest.

Buffalo - Pig iron production jumped $7 \frac{1}{2}$ points to 92 per cent of capacity as the Hanna Furnace Corp. started its third blast furnace, to put the plant on a capacity basis. Twelve of the district's thirteen blast furnaces are now active.

Cincinnati-Demand for pig iron is well sustained despite seasonal
slackening in some lines. Except in machine tools, national defense moves are not reflected. Southern iron melters are being asked to anticipate needs by a few days, accommodations on rush shipments being slightly retarded. One furnace at the Hamilton division, American Rolling Mill Co., is down for three months for rebuilding.
St. Louis - Shipments are off slightly so far in August, but specifleations indicate little change from July in the month's total. The melt is steady, seasonal tapering in some directions being offset by gains elsewhere. Machine and engine shops and some jobbing foundries are busy. Pig iron buying is quiet and consumers apparently will carry more iron into fourth quarter than was expected a short time ago.

Scrap

Serap I'rices, Page 100

Pittsburgh - Last weck brokers paid $\$ 18.50$ for No. 1 heavy melting steel against orders at an unknown level but higher than that figure. Buying by at least one mill has been at around $\$ 19$. Brokers holding orders below that level have found some difficulty in covering. Bidding was relatively high on the Pennsylvania list, and while most of this material is expected to go east, part of it will probably come into this district.
Cleveland Two local steelmakers have done some desultory buying of open-hearth grades at the top of current quotations for No. 1 heavy melting steel. Blast furnace material is active and the market undertone is stronger. Prices at Youngstown are slightly weakened by delivery restrictions there and at Pittsburgh.
Chicago - Market is definitely firmer and most prices moved up. ward last week. No. 1 steel is quoted $\$ 17.50$ to $\$ 17.75$, chiefly on the basis of current dealer-broker trading, which ranges as high as $\$ 18$. Though the last confirmed mill sale was at $\$ 17.50$, brokers now are holding out for higher levels. Foundries, operating better, are increas ing purchases. Mills, continuing at capacity, are again interested. Scrap trade in general is definitely chearful over the price and demand sit uation.
Boston - Scrap prices are steady, the decline in most grades apparently being stopped. Some advances are noted. Domestic buying is light, foundry consumers having bought several weeks ago and now are operating from stock. Most activity is for export. One boat re-
cently sailed for Japan with 7000 tons and another is loading at Boston for that destination and at least two for England.
New York-A stronger undertone prevails in scrap, with brokers' buying prices higher on melting steel. The prime grade is holding at $\$ 15$ to $\$ 15.50$, f.o.b. New York, for domestic consumption, and No. 2 auto steel at $\$ 13.50$ to $\$ 14$. Domestic buying shows some improvement, although still rather inactive; foreign demand is quiet, but shipments are being maintained in good volume, particularly for England and Japan.

Buffalo-Possibility of sales developing soon was seen by the narrow margin prevailing between bid and offering prices. Reports that recent railroad lists brought $\$ 19.50$ a ton for No. 1 heavy melting steel did not alter the price range of $\$ 18$ to $\$ 18.50$ for regular No. 1 steel, but did tend to bolster sentiment among dealers.

Philadelphia-Scrap is defnitely stronger with several grades 50 cents higher. Steelmakers ace cutting into backlogs and are more interested in further supplies. A broker paid $\$ 19.15$ for 3500 tons of new compressed sheets on antomotive list. The navy yard sold

200 tons of No. 1 heavy melting steel to a broker at \$18.03, f.o.b., equivalent to $\$ 19.56$ delivered, mill.
No difficulty has been encountered in obtaining licenses for export of No. 1 heavy melting steel. In fact, Japan has purchased several additional round lots, paying about $\$ 18.50$ for No. 1 steel and $\$ 17.50$ for No. 2.

Detroit -- Spurred by strong demand for electric furnace scrap for shipment to Buffalo, Canton, O., and other centers of electric furnace steel production, the scrap market here is decidedly more active, with increases of 50 cents to $\$ 1$ per ton registered in nearly all items except cast grades and turnings. Low. phosphorus plate advanced $\$ 1$, to $\$ 17.50-\$ 18.00$. Some dealers are intensely bullish on this item and foresee sharply higher prices and possible shortage.
Cincinnati-Iron and steel scrap has developed a stronger unidertone, although quotations are unchanged. Mills do not anticipate needs heavily although steelmaking levels are high.
St. Louis - Activity in scrap is retarded partly by seasonal influences, but the tone is firmer. Dealers look for heavior buying this month in view of favorable pras-

Simple, positive control of air operated equipment is easily obtained with this heavy duty rotary valve. One pressure operates the cylinder, second pressure reverses the cylinder. Disc-type design without packing prevents leak-
age and packing maintenance troubles. Made in 3-way and 4-way types, hand and foot operated, manifold, spring return, heavy duty rotary, electric and special models. Write for Valve Bulletin 34-S.

HANNIFIN MANUFACTURING COMPANY
 621-631 South Kolmar Avenue - Chicago, Illinois

ENGINEERS • DESIGNERS • MANUFACTURERS • DOUBLE-ACTIMG PNEUMATIC AND HYDRAULIC CYUNDERS, ALL SIZES

Greater Tonnage Per Edge of Blade

AMERICAN SHEAR KNIFE CO. HOMESTEAD • PENNSYLVANIA
pects for steelmaking and foundry operations. Price changes are mixed, principally adjustments with other markets. Most quotations are nominal in the absence of consumer buying.

San Francisco -.. Due primarily to the possibility that a practical embargo may be placed on export of scrap, prices in this district have receded 50 cents a ton. No. 1 heavy melting steel f.o.b. cars, net tons, in the metropolitan area of Los Angeles and San Francisco is now priced at $\$ 13.00$ to $\$ 13.50$ with No. 2 at $\$ 12.00$ to $\$ 12.50$.

Steel in Europe

Forplifn Steed Prictes, Page 99
London - (By Cable) - Iron ore and scrap supplies in Great Britain are sufficient for immediate needs but reserves are not large enough for comfort. Supplies of hematite iron are becoming light. Export trade in steel is gradually improv ing, especially in black and galvanized sheets and there is fair tin plate trade with Australia and South America. Domestic foundries are taking larger tonnages on govern ment orders.

Warehouse

Warelanane Prices, IHza* $9!$
Chicago Bookings show a slight gain, sufficient to return demand to levels of two weeks ago. This month is confidently expected to be the best August since 1929, with the exception of 1937, when bookings were at slightly higher level, which might yet be exceeded.

Boston-Buying from warehouses is improving, more orders appearing for fill-in needs. Demand is broadening with shapes and plates in larger volume. Alloy and specialty lines are more active. Sheets and pipe are the weaker spots in an otherwise fairly firm price struc ture.
New York-A distinct improvement in demand fo: shapes and plates is noted in the local warehouse market. Some distributors report business in these lines since the first of the month is the best since 1937. Particular demand is noted for wide plates, reflecting undoubtedly rapidly extending mill deliveries on these larger sizes.
Cincinnati -- Although building items continue dull, volume of warehouse sales is well sustained, chiefly by industrial needs. Early August specifications are fully up to July tonnage. Prices are unchanged and firm.

Buftalo - Some disappointment
was shown by distributors over a mild lull in buying the past week Volume is still substantial but a shade under the level for July. Sell ers report the galvanized sheet mar ket continues weak at the low price of 4.0 ce .

Seattle - Sales are consistently higher than normal seasonal levels and continued improvement is expected. All items are in good demand. Prices in the Seattle area are stcady, although still at lower levels on important items than in Port land territory.

Michigan Steel Tube

To Make Welded Tubing

- Michigan Steel Tube Products Co. Detroit, announces it is now supplying electric resistance welded steel pressure tubes for various applications such as boiler tubes, condenser tubes, preheater tubes, hot water heater tubes, refrigerator and air conditioning equipment tubes, furniture tubing and stainless steel tubing.

The organization has had 32 years of experience in manufacture of welded steel tubing. Its plant covers 200,000 square feet of floor space under one roof.

Range of sizes of the new tubing is from $/ 4$-inch to 4 inches outside diameter and from 8 to 22 gage wall thickness. Pressure tubes are made to A.S.M.E. specifications.

Warner \& Swasey Files

- Warner \& Swasey Co., Cleveland, last week filed with the securities and exchange commission a regis. tration statement covering 276,580 shares of no par common stock. to be offered the public through underwriters. An indeterminate amount of common will be re. served for exchange for the company's $\$ 100$ par value 6 per cent cumulative preferred, shortly after the public offering.

Special stockholders' mecting will be held at Cleveland, Aug. 20. Stockholders will be asked to approve a recapitalization plan (STEEl. July 29, p. 74).

Metallurgical Coke

Coke prices, l'age 9 ?

Pittsburgh - Demand for coke continues to increase and bechive coke prices are stiffening. Pries on foundry grade coke is now $\$ 5.25$ to $\$ 5.50$, while furnace coke is most ly $\$ 4.50$. Some additional ovens have been added and total now in operation runs close to 3800 out of 6600 available. This compares with more than 5000 ovens operating last
fall. Operators intimate they will not put more ovens in operation unless sates are guaranteed, with cash in advance to facilitate operations. There is some indication that integrated companies will shortly put in more ovens to augment current supplies.

Bolts, Nuts, Rivets

Better bolt and nut business is in prospect during August, and the industry's operations have been advanced to $55-60$ per cent of capacity. Specifications from navy yards and miscellaneous users have been heavier recently. Recent price reduction in machine bolts and nuts sold to western railroads is not reflected in like revisions in other lines. Export demand is principally from South Africa and the British dominions. South American inquiry has slumped sharply.

Ferroalloys

Ferronlioy Prices, Page 98
New York While consumption is high, delive:ies of ferromanga. nese still reflect the heavy buying in June, prior to the $\$ 20$ price advance on contracts. This buying, in fact, will probably have an influence over the remainder of the quarter. The current market is $\$ 120$, duty paid, Atlantic and Gulf ports. Domestic spiegeleisen is holding at $\$ 36$, Palmerton, Pa., for 19 to 21 per cent material, and $\$ 49.50$ for 26 to 28 per cent. Most consumers of spiegeleisen covered rather substantially at the time of the price increase in June, with a result that current orders are well below consumption.

Nonferrous Metals

New York -- Unwillingness of smelters to carry large stocks of copper and lead in view of uncertainty regarding the outcome of the European war, resulted in declines in those markets last week. Smelt ers reduced prices in seeking to find a level at which demand would absorb their daily intakes. Tin prices also declined while zinc displayed : firm to strong tone.

Copper - Custom smelters cut prices one-quarter cent to 11.00 c on Tuesday and a like amount further to 10.75 c on Wednesday when lead ing mine producers cut their prices to the former level. Rolled and drawn product prices and scrap quetations were revised downward in line with the primary market.
Lead - All leading sollers reduced prices 15 points on Tuesday and 10

Nonferrous Metal Prices

Aug.	Copper			Stralts Tin, New York		$\begin{aligned} & \text { L.ead } \\ & \text { N. Y. } \end{aligned}$	$\begin{aligned} & \text { Levad } \\ & \text { Fas } \\ & \text { E1, } . \end{aligned}$	$\begin{aligned} & \text { Zine } \\ & \text { Si. } 1 . \end{aligned}$	$\begin{aligned} & \text { Aluml- } \\ & \text { num } \\ & \text { nal } \end{aligned}$	Antimony Amer. Spxt, N.Y.	Nlekel odes
	Flectro, del.	Like, rlel.	Castln								
	Conn	midwe	reflnery	Sput	Futures						
3	* 11.25	11.50	$10.87 \stackrel{1}{1}$	52.12%	50.857	5.00	4.8.)	6.2\%)	18.00	14.10	35.111
5	$\therefore 11.25$	11.50	10.87 \%	52.25	$50.87{ }^{1}$	5.00	4.85	(6.25)	18.00	14.00	:25. 1101
6	11.00	11.50	10.87 1/2	52.25	$50.871 / 2$	4.83	4.70	(i.25)	18.00	1.1 .01	3.3 .130
-	${ }^{2} 10.7 \overline{5}$	11.00	10.50	$52.12^{1}=$	50.75	4.85	4.70	6.25	18.00	14.00	35.010
8	10.75	11.00	11.50	52.40	$50.62{ }^{1.2}$	4,85	4.70	6.2.7	18.109	14.00	:35.00
9	-10.75	11.00	10.50	51.75	$50.37^{1 / 2}$	4.75	4.60	6.2.)	18.00)	14.00	3

- Based on sales by custom smelters; mine producers unchathged at 11.50 e.

MILI PRODUCTS
F.o.b. mill base, cents per th., except as specified. Copjer brass products based on 11.00 c Conn. copper
sheets
Yellow brass (high).
Copper, hot rolled
Lead, cut to jobbers.
Zinc, 100 1b. base
Tubes
High yellow brass
Seamless copper
rods
High yellow brass. \qquad
Anodes
Copper, untrimmed
Wire
Jellow brass (high)
18.23
19.64
7.00
11.50
20.98
20.12
13.26 17.12
16.85
18.48

OLI) METAIS

Nom. Dcalers Buying Prices
New York
6.7.-7.00

Cleveland
$7.25-7.50$
Chicago
.7.00-7.25
St. Louls
nleavy Copper and Wire
New York. No. 1............... $8.371,-8.623 .6$
Cleveland, No. 1
.8.25-8.50
Chicago, No. 1

St. Louis
Combuallion Brasm Turuingen
New York

1.thll Coppar

N゙ew York
. $6.3714-6.6^{2}$?
Cleveland
Chicago
St. I.ouls
6.25-4.50
. $1.2 .5-6.50$
1.ishl ألramm
$3.50-3.75$
4.25
Clevelind
Chicago
$4.25-4.3715$
4.25
St. Louls
New rurk luall
Cleveland
$4.25-4.45$
Cleveland ….......................60-3.75
Chleagn50-3.75
St. Louls

St. Louls

3.25-3.50

The cas Cluminum
Borings. Clevelund
8.54

Borings. Cleveland
+. 50
Clips. soft. Cleveland
14.01

Misc. cast. St. Louls.
7.75-8.0)

SECONDARY METALS

Standis:d No. 12 aluminum ... 13,50-14.(0)

> GREATER OVERLOAD CAPACITY MORE HOOK LIFT HIGHER SPEEDS Built in capacities of 1 ton to 20 fons-
floor or cab Hi-Lift Hoist offers -Northern electric on any lype off many advantages Northern Hi-Lift Hoists hail system. cut gears, roller bearimgs have machine frame-the characterings, welded steel well builf job. Illustics of a sturdy, ern Hi-Lify in a Mustrated is a NorthHard continuous selvice fabricaing plant. has proved the quality of this plant Write for catalog.

NORTHERN

NORTHERN ENGINEERING WORKS, 2609 Atwater St., Detroit, Mich. GRRNES Torthern HOISTS
points further on Friday, making the going level 4.60c, East St. Louis. Weakness in this market was attributed to the active competition of Mexican metal for outlets here.

Tin -- Domestic trading continu?d orderly despite political tension in the Far East. Straits spot slipped to only 51.75 c at the close from the previous week's close of $52.621 / 2 \mathrm{c}$.

Zinc -- Sustained active consumption as reflected in the 73 per cent galvanized sheet output rate has been an important factor in holding prime western zinc on the basis of 6.25 c , East St. Louis, in the face

CONSIDER STEELGRIPT Brushes for your piekling, galvanizing and tinning departments.

STEELGRIPT Brushes are Surnished in straight strips to be applied to your present wood blocks for the removal of middlings.

Also furnished in a continuous, complete (close or open) spiral formation for cylindrical scrubbers in steel or brass mills.

STEELGRIPT Brushes have greater holding and non-shedding qualities, resulting in longer life and more dependable operation. Less frequent replacements will save you time and money. Send blue prints or specifications of your requirements.

The FULLER BRUSH Company INDUSTRIAL DIVISION - DEPT. 8 C

HARTFORD, CONN.
of easiness in other major markets. Good export demand also has sup ported present levels. The statistical position remains strong, total stocks having declined 5717 tons during July to only 59,510 .

Antimony - Only routine business was done on the basis of 14.00 c , New York, for American spot.

E Commercial steel castings bookings in June were 59,661 net tons, compared with 50,346 tons in May and 37,774 tons in June, 1939, the bureau of the census reports. For six months this year orders aggregated 272,006 tons, against 230,156 in first half, 1939. June production was 50,651 tons, in May 50,034 tons and in June, 1939, 40,272 tons. Six months production was 132,009 tons, compared with 66,354 tons in the same period last year.

CONSTRUCTION

and ENTERPRISE

Ohlo

CANTON, O.--Everhard Mrg. Co., 1592 Seventh street, will bulld an addition 95 $\times 188$ feet, to cost about $\$ 20,000$. Warren Hoffman Co., 312 Third street, has general contract.
CLEVELAND-Ice Club of Cleveland. E. H. Brandenburs, prestient, Eucllid and Twenty-fourth street, is having plans prepared for a two-story 112 x 280 -foot ice and hockey arena to cost about $\$ 150,000$. C. H. Hinman, 1836 r.uclid avenue, is architect.
CLEVELAND-Guarantee Welding Co., 1973 East Fifty-flifth street, has been incorporated by Peter Schwerko, who formerly operated as an Indlvidual, and will bulld a shop of its own.
CLEVELAND - Wheelock-Lovejoy \& Co. Inc., 5205 Hamilion avenue, will

- Additional Construction and Enterprise Ieads may be found in the list of Shapes Pending on page 110 and Reinforcing Bars Pending on page 112 of this issue.
take blds soon for warehouse and office building, 97×211 feet at Marquette and takeside avenues, including craneway, four electric cranes, rolling steel railway door. Edward C. Bartlett is manager.

CLEVEI,AND-Standard Oll Co., Midland bullding, Howard West in charge, is preparing $\$ 500,000$ program of gasoline refning plants at Cleveland, Lima, O., and Latonla, Ky., to use Houdry catalytic reflning process. M. W. Kellogg Co., 225 Broadway, New York, is englneer and general contractor.

CLEVELAND-Cleveland Metal Abraslves Co., 887 East Sixty-seventh street, will take blis soon for an addition of 3600 square feet. W. H. Hatch, Hippodrome bullding, Cleveland, is engineer.

CLEVELAND-S.A.E. Steel Co., 1408 East Forty-seventh street, Arthur B. getz, in charge, will bulld 15,000 square feet additional steel storage space, cost-

Ing about $\$ 35,000$. Dunbar Co., 8201 Cedar avenue, is contractor.

COLUMBIANA, O.-Columblana Boller Works Co. will bulld addition with 10,500 square feet floor space, including steel building extension and leanto. Company has government order for $\$ 368,000$ worth of chemical containers

NELSONVILLE, O.-CIty plans waterworks Improvements and has appled for WPA funds. Estimated cost $\$ 180,000$. Burgess \& Nlple, 368 East Broad street, Columbus, 0 ., are engineers

Connecticut

STAMFORD, CONN.-Norma-Hoffman Bearings Corp., Hamilton avenue, has let general contract for one-story additlons 65×122 and 16×22 reet to Vuono Construction Co., 217 Bedford street, to cost about $\$ 40,000$. Fletcher-Thompson

Our aim is to render service. A little more complete . . . more hospitable...more pleasing ... than even the most exacting guest expects.

CHAS. H. LOTT
Manager

Every Room Outside with Private Bath
Single from $\$ 2.50$
Double from $\$ 4.00$

CASS AT BaGley ave. GARAGE IN CONNECTION

Inc., 1336 Fairtleld avenue, Bridgeport, Conn., is engineer.

Maine

BATH, ME.-Bath Iron Works Corp., 4. M. Maln, vice president, has let genA. M1 contract for assembly plant, 90 x con feet, with slx spur tracks, to Morton C. Tuttle Co., 862 Park Square bullding Boston. (Noted Aug. 5.)

New York

NEWBURGH, N. Y.-City plans construction of sewage disposal plant and will ask PWA funds. Cost estimated at 5850,000 . T. F. Bowe, 110 William strect, New York, is engineer.

New Jersey

BLOOMFIELD, N. J.-Scientille Glass Co., 49 Ackerman street, has let general contract for two-story manufacturing building 60×80 feet to Becker Constructon Co., 361 Grove street, Newark, N. J.

Pennsylvania

MEADVILLe, PA. - Champlon-Dearment Tool Co., South Main street, is adding heat-treating building 50×140 feet and warchouse 40×40 feet. Henry Shenk Co., 1115 Sassafrass street, is general contractor.

Michigan

DEARBORN, MICH. - Dearborn Speclalty Mifg. Corp. has been incorporated to deal In electric appltances, with 100 shares no par value, by A. Jerome Gels ler, 6610 Chase road.
DETROIT-Electric Welding Machine Co., 1440 East Larned street, has given general contract to Barton-Malow Co. for a factory building costing about $\$ 20,000$.
DETROIT-DavIs Tool \& Engincering Co., 6381 Epworth street, plans a factory bullding with about 40,000 square feet floor space.
PONTIAC, MICH.-Wilson Foundry \& Machine Co. has given general contract to C. A. Handeyslde Construction Co., Detrolt, for additions and alterations to its plant. Plans by L. J. Heenan, Pontlac, architect. (Noted Aug. 5.)

Illinols

CHICAGO - Automatic Engineering Works, 3344 West Gladys avenue, has let general contract for one-story $50 \times 180-$ foot plant at Laflln and Adams streets, to N. Dubin \& Son, 1312 South Harding avenue, Chicago.
CHICAGO-Bartlett Traller Corp., 3830 South Michigan avenue, will bulld a plant, one story, 72×280 and 72×100 feet, at Archer and Ashland avenues, costing about $\$ 80,000$. Charles C. Henderson, 134 North LaSalle street, is architect.

OTTAWA, ILL.-Ottawa SIllea Co. will let contract soon through Laramore \& Douglass, engineers, 327 South LaSalle street, Chicago, for a one-story power plant 100×100 feet.

Indlana

PORTLAND, IND, - Board of publle works, C. Wilson, clerk, plans waterworks improvements, including 1000 -gallon fuel oll tank, pumps and other accessorles, to cost about $\$ 25,000$. Bevington, Willams Inc., 730 Indlana Pythlan bullding, Indianapolls, is consulting engineer.

VEVAY, IND.-Southern Indiana Lolght \& Power Co. plans construction of new powerhouse costing $\$ 75,000$ or more, in-
cluding Installation of new equipment.

Alabama

BESSEMER, ALA.-UnIted States Plpe \& Foundry Co., G. F. Jones, resident manager, will build a machine shop addltion costing about $\$ 45,000$.

Maryland

BALTIMORE-Glenn I. Martin Co. Is consldering plans to decentralize aircraft production onerations and may escraft production operatish second unit in unused General tablish second unit in unused General
Aviation Co. bullding at munlelpal alr-
port. Survey is belng made for one and possibly more additional plants.

HAGERSTOWN, MD.-Clty recelves bids Aug. 15 for two steam generating units for municipal electric generating plant. Cost of units and bullding about $\$ 260,000$

SPARIROWS POINT, MD.- Rheem Mfg. Co., Plchmond, Callf., maker of steel barrels and containers, has bought a 25 -acre slte here and will bulld a onestory plant, the third addition to the companys plants in a year. Brown \& Mathews Inc, New York, has the general contract.

Combines all the necessary features of Speed, Precision, Capacity and Safely...Steel rolls set in Medart-Timken Bearings... Driving gears completely enclosed... Also Continuous Automatic Centerless Round Bar and Tube Turners, built in several types.
THE MEDART CO. - 3520 De Kalb St., St. Louis, Mo.

District of Columbia

WASHINGTON - Bureau of supples and accounts, navy department, will recelve blds as follows: Aug. 13, schedule '2fis, four motor-driven vertical turret lathes for Newport. R. 1.: schedule 2627, motor-driven toulroom prectston lathe for Whtte Plains, Md.; schedute 2626, mo-tor-driven heavy-duty lathe for White Plains, Md.; Aug. 16, sehedule 2631, two motor-diliven horizontal milling machines for South Boston. Mass.; schedule 2632, t wo motor-driven heavy-duty vertical milling machines for Portsmouth, N. H.; schedule 2633 , motor-driven milling machine for Boston; schedule 2634, two mo-tor-driven plate scarilng and plate edge planers for Phlladelphla; schedule, 2643, steam drophammer for Norfolk, Va: schedule 2644. motor-driven vertical turret lathe for philatelphis; schedute 2445 , three electrically controlled motordriven lathes for Newport. R. I.; schedule 2646 , two motor-drlven air hammers for Norfolk, Va.: schedule 2652, twenty-elght motor-driven heavy-duty engine lathes for Portsmouth, N. H.; schedule 2636, two motor-driven vertleal-type milling machines: schedule 2637 , two motordriven horizontal boring, drilling and milling machines for Phlladelphia: schedule 2642 , motor-driven open slde planer for Norfolk. Va.; schedule 2654, twentysix motor-drlven medium heavy-duty lathes for Boston; schedule 2657, sterm or alr-driven forging hammer for Bostun: schedule 2662, ten motor-driven geared-head engine lathes for Newport R. I.; schedule 2663, slx motor-iriven turret lathes and equlpment for New' port, R. I.

WASHINGTON-lural electrittcation administration of department of agri culture, Harry Slattery, administrator, has invited suppllers of poles, wire, transformers and pole line hardware to confer with him on rural construction requirements for the coming year in connection with the $\$ 100,000,000$ program approved by congress.

Kentucky

MADISONVILLE, KY.-City has had
survey made by Burns \& MeDonnell Engincering Co., 107 West I.inword avenue, Kansas City. Mo., for power plant to cost about $\$ 450,000$. Bond tssue is projected.

Tennessce

CHATTANOOGA, TENN. - Lloyd E: Jones Co., Central avenue, has boughi site on Manufacturers road and whll bulld steel fabricating plant 180×200 reet, equipped with 20 -ton traveling crane.

NASHVILLE, TENN.-Nashville elec tric power board plans expenditure of $\$ 650,000$ for additions and improvements durlng new llscal year.

Virginia

NEWPORT NEWS, VA.-Newport News Shlpbullaing \& Dry Doek Co. Is about io bulld a shipway and dry dock designed for production of large atreraft carriers. Another shipway is Hiso under consideration.
RICHMOND, VA.- Reynolds Metals Co., Federal Rescrve Bank bullding, wil! erect plant in produce aluminum, slte not sclected, first unlt io have capacity of $20,000,000$ pounds of aluminum annually. Ultimate plant will contain three such units. Company has RFC Ioan of $\$ 15,800,000$.

Missouri

JEFFERSON CITY, MO.--HI-partisan advisory board, state bullding commission, Edgar M. Fagan, acting secretary. is taking blds to Aug. 26 on constructlon of deep well, pump, pumphouse and piping, according to plans obtainablo from E. L. Willams, chtef engineer, Jefferson City.

MOUNT VERNON, MO,--Bi-parlisan udvisory board, state bullding commls. slon. Edgar M. Eagan, acting secretars: is taking bids to Aug. 26 , at Jefferson City, Mo., for installation of boller,

ACE
 RUBBER VACUUM LIFTERS

 Available in several sizes and grips, these rubber vacuum lifters are standard equipment in most large sheet mills. With them workmen handle sheets faster, better, leaving no marks.
RUBBER COVERED ROLLS

Many remarkable records have been made with these rolls establishing new low costs per ton. Acid resisting and long-wearing, our rubber covered rolls are designed to meet your needs.

FURNACE DOOR HOSE

We make all types and styles-metal, metal and rubber, etc. Let us know your requirements.
Rubber Sperinlists to the Niect Jnduntry
stoker, power plant plping plant and boller instruments at state santtorium. Plans from E. L. Whllams, chtef enkl neer, Jefferson City:

ST. LOUIS-Flectric Slug Rejector δ Mfg. Co., I. J. Lee, president, 703 Academy avenue, has been incorporated with $\$ 60,0 C 0$ capltal to manufacture slug rejectors for coln-operated machines.
ST. LOUIS - Qulck Meal division Amerlean Stove Co., Arthur Stockstrom. presldent. 2001 South Kingshighway boulevard, plans a one-story addition for manufacturing purposes, to cost about $\$ 300,000$, with equipment

ST. Louis-Carter Carburetor Corp. Hugh H. C. Weed, vice presldent, 2840 North Spring avenue, has started erecIlon of a four-story bollerhouse addition with 67,000 square feet floor space, tu cosi about $\$ 200,000$.

ST. LOUIS-A. Leschen \& Sons Rope Co., Harry J. Leschen, prestdent, 5909 Kennerly avenue, plans an addition containlng 5250 square feet floor space, including traveling crane and other materials handling equipment. Cost, with equipment, over $\$ 65,000$.

ST. LOUIS-Missourl Boller \& Sheet Iron Works. Fmil N. Tolkacz, president, 908 south Twenty-third street, is buildIng a one-story addition with 7040 square feet floor space, costing about $\$ 40,000$. with equipment.
ST. LOUIS-Messmer Brass Co., Joseph Messmer, president, 2700 South Seventh street, has bought adjoining property and plans a plant addition containing 24,000 square feet of floor space.

Wisconsin

MADISON, WIS.-Decre \& Co., Moline. III., will bulld a plant addition 120 x gill feet here, with electrical equipment. al total cost of $\$ 125,000$

WAUSAU, WIS.-Minnesota Mining x. Mif. Co., manufacturer of abrasives will let contract soon for several plant additlons here, including laboratory, warehouse, etc. Toltz., King \& Day Inc., Ploneer bullding, St. Paul, is architect and engineer.

Minnesota

KERKOVEN, MINN. - City, J. F: Floren, clerk, will take bids about dus. 15 for construction of municipal power plant and dlstribution system costint about $\$ 100,000$. Ralph D. Thomas \& Assoclates, 1200 second avenue Snuth Alinncapolis, are consulting engincers

MINNEOTA, MINN-CIty, E. F. MCMillin, clerk, takes bids to Aug. 15 it clectric light, heat and power plant, including gencrating machinery, powerhouse, distribution system and accessories. G. M. Orr \& Co., 342 Baker Ascade building. Minneapolis, are consult. ing englneers.

NEWPORT, MINN.-Cudahy D'ackint Co. will start construction soon on a waste disposal plant to cost about $\$ 20 \mathrm{zl}$. 000. Alvord, Burdick \& Howson, औ North Wacker drive, Chleago, are consulting engineers.

RUSH CITY. MINN.-CIty, Harry Sherman, clerk, will take bids abou Aug. 15 for construction of muntepail power plant and distribution system costing about $\$ 200,000$. Ralph D. Thomas \& Assoclates, 1200 Second avenue South. Minneapolis, are consulting enginecrs.

ST. PAUL-E. A. Walsh, state adjutant, state capitol, is having plans prepared for a hangar 146×470 feet at the municlnal alrport for 109 th alr squadron.

SAFETY!
When heat's a factor nothing is more important than SAFE operation of Ladle Cranes. And safety calls for I.W.R.C. ropes, because hemp center ropes can't take the intense heat.

For many years Macwhyte has supplied leading stecl-makers with I. W. R. C Ladle Crane ropes. Macwhyte men. with lifetimes spent in rope making. know how to make I. W. R. C. ropes with safety second 10 none! For SAFETY'S sake try a MACWHYTE Whyte Strand I.W.R.C. rope on your Ladle Cranes Available in 0×37 flexible or 6×19 standard flexible constructions.

MACWHYTE COMPANY 2912 Fourteenth Ave. "Kenowhs, Wisconstn
 New York - Pltehburgh - Chleago - it Wew York - Pittaburgh. Chleago Prt. Dhat fihurney throughout the 1: R. A.

MACWHYTE Whyte Sirand i.w.r. .c.
 ladle crane WIRE ROPE

JAMES CRISWELL COMPANY
 Furnace Engineers \& Contractors
 Open Hearth, Soaking Pits and heating furnaces
 Keenan Bldg.
 Pittsburgh, Pa.

H.A. BRASSERT \& COMPANY
 Consulting-Engineers pa IRON. STEEL. FUEL and heavy metallurgical industries

ग10 south michican avenut
CHICAGO

[^7]
"COWHES")
 ROTARY SLITTING KNIVES for Modern Requirements.
 Highest Quality
 Long Service

 The Prochluct of Many Jeara Specialiantioun COWLES TOOL COMPANY Cleveland, Ohio Serving American Industry Since 1884- Overhead Electric Cranes and Hoisis Crawler Cranes - Electric Molors - Arc Welders Wclding Electrodes. Harnischfeger Corporation ull w. Matieas Are., Mulesthon, wis.

-Construction and Enterprise-

to house 14 planes, control tower, shop and other facllitles. Cost about $\$ 320$,000.

WILLMIAR, MINN.-City council, E. H. Erogren, city clerk, has approved construction of a city garage and maintenance shop, 44×112 feet.

Texas

HOUSTON, TEX,-Arkansas Portland Cement Co., Okay, Ark., J. F. Kauman, superintendent, has had plans made tentatively for doubling eapacity of local plant to increase ilnish and raw grinding departments, install additional kiln and four concrete sllos 30 feet in diameter and 90 feet hlgh.

Kansas

KANSAS CITY, KANS.-Rearwin AIrcraft \& Englnes Inc., Fairfax airport, warts bulld a one-story plant addition for parts production and assembly, to cost $\$ 50.000$ with equipment.
WICHITA, KANS.-Beech Alreraft Co., R.F.D. No. 4. Wichita, has let general contract for three one-story bulldings as additions to fts marts and assembly plant to O. W. Armagost \& Son. 915 West Thirteenth street. Overend \& Boucher, Brown building, are architects. (Noted
June June 10.)

North Dakota

DEVILS LAKE, N. DAK.-North Dakota state highway department, J. S. famb, highway commissioner, Blsmarek, N. Dak.0 plans one-story maintenance shop for division hlghway office, costing $\$ 30,000$.
GllafTON. N. DAK. - Walsh county plans construction garage 40×100 fect and maintenance shop 50×100 feet. Theo. B. Wells, Grand Forks, N. Dak., is architect.

Iowa

BROOKLYN. IOWA-REA has allotted $\$ 160,000$ to T. I, P. rural electric co-operattve to finance 175 miles of rural lines. K. R. Brown, 803 Valles Bank bullding.

Des Moines, Iowa, is consulting englneer.

MERON, IOWA - J. M. Mason, town clerk, will take bids soon for a waterworks system, Including a 50,000 -gallon elevated tank, watermains, pumps, etc., to cost about $\$ 25,000$. C. L. Snyder Engineering Co., Columbus, O., is engineer.
MUSCATINE, IOWA-City, H. H. Hanson, recorder, Is having survey made for construction of sewage disposal plant.

Waterloo, IOWA - City, Knapp Mathews, clerk, is taking bids on four sewage pumps at cost of about $\$ 8000$. Nathan B. Burber is city engineer.

WATERLOO, IOWA - Rath Packing Co., John W. Rath, president, has awarded general contract to W. A. Klinger Inc., Warnock bullding, Stoux City, Iowa, for four-story packing plant addition 55 $\times 82$ feet. Henschein, Everds \& Cromble, 59 East Van Buren strcet, Chleago, are engineers.

WOODBINE, IOWA-City whll build a munlelpal power plant, including threc dlesel generators, 600 to 750 BHP. capacity, accessorles and distributing system. A. S. Harrington, Brown bullding, Umaha, Nebr., is consulting englneer.

Montana

MARDIN, MONT.-REA has allotted \$188,000 to Big Horn electrle co-operatlve, Carl J. Sloan, presldent, to Ilnance 157 milles of rural lines, serving 490 customers.

KALISPEL, MONT. - City, F. J liobischon, clerk, has selected Joseph Schmidt, Lewiston, Mont., as consulting engineer to prepare plans for sewage disposal plant and appurtenances and 15,000
$\$ 53,000$ feet of sewer, at cost of about $\$ 53,000$.

MISSOULA. MONT.-Montana Power Co. plans 20 -inch steel plpe line near Missoula, costing $\$ 50,000$. C. H. Christensen is division manager.
TOWNSEND, MONT.-Bond issue of $\$ 75,000$ carrled at recent election, to Itnance sewage disposal plant and sant-

PRODUCTION TOOLS

CHIEOME PLATED
Gage Blocks
G Better craftsmen, working under modern methods realize the value of CHROME PLATED GAGE BLOCKS as a production instrument.
I Assured accuracy on the production tine means speedy assembly.

It Use Chrome Plated Gage Blocks in all operations to solve the problems of accuracy.

tary sewers, to be bullt this fall. Frank T. Hooks is clty clerk and Uscar A Baarson, Helena, Mont., is consulting engineer.

Idaho

L.EWISTON, IDAHO-REA has atlotted $\$ 192,000$ to Clearwater rural dectric co-operative to flnance 130 miltes transmission lines.

California

BURBANK, CALIF. - Vega Alrplane Co., 3815 Empire avenue, will bulld a warehouse costing $\$ 11,000$.
BURBANK, CALIF. - Lockheed Alrcraft Corp., 1705 Victory place, will bulld an assembly plant costing $\$ 48,000$.
bURBANK, CALIF. - Premler Metalhung Window Corp. has been organized with $\$ 60,000$ capital, represented by Edward C. Olson, 224 North Ollve avenue, Burbank.

DOWNEY, CALIF. - Vultee Aircraft Co., 842 Lakewood avenue, whll bulld an office building with 5700 square feet Hoor space, costing $\$ 20,000$.

EL. SEGUNDO, CALIF.-Walters Alrcraft Corp. has been organized with $\$ 200,000$ capltal by Thomas Walters, Los Angeles, and Edward Lawler, El Segundo. Bernard Lawler, 25 Converse bullding, El Segundo, Calif., is correspondent.

PASADENA, CALIF.- Varl Mechanical Laboratory is bullding office and factory bulling, 75×120 feet, costing about $\$ 22,500$.

SAN DIEGO, CALIF,-Ryan Aeronautical Co., 2930 Pacifle avenue, will bulld a plant addition covering about 26,00 square feet floor space at cost of $\$ 75,000$.

Canada

HAMILTON, ONT-Canadian WestInghouse Co. Ltd., 286 Sanford avenue, whll take bids soon on a 65×450-loot addition on Aberdeen avenue, including 60 -foot traveling cranc. Hutton \& Souter, 36 James street South. Hamilton, are archltects.

HAMILTON, ONT-B. Greening Wire Co. I.td., Queen street North, has glven general contract for $\$ 25,000$ plant addltion to Frld Construction Co. Ltd., 128 King street East. Prack \& Prack, 35 James street South, are architects.
LONG BRANCH, ONT.-Department of munltions and supply, Ottawa, Ont., will bulld an ordnance plant on Lake Shore road, here, including 100,000 square feet floor space. C. D. Howe, Uttawa, Ont., is In charge.
TORONTO, ONT.-Prenco Progress \& Engineerlng Corp., 60 Front street West, has been organized to manufacture alrcraft parts, wheels, brakes, undercarriages, etc., and has taken over plant on Jarvis street formerly occupled by F. A. Colyer Co., pending plant erection.

TORONTO, ONT.-John Inglis Co. Ltd,, Strachan avenue, is considering plans for bullding 45×1100 feet, to double facllttes for gun production.

TORONTO, ONT. - Modern Tool Warks Ltd., 15 Van Horne street, has taken over bullding at 67 Pelham avenue, and will install horizontal boring and gearcutting machinery costing $\$ 55,000$.

TORONTO, ONT.-Hamilion Gear \& Machine Co. Ltd., 76 Van Horne street, will bulld a plant addition costing $\$ 75,000$.

SOREL, QUE.--Sorel Steel Foundries Ltd. has awarded structural steet for an $\$ 80,000$ plant addition, to Ferand \& Delorme Ltd., 385 St. Martin street.

C: FHEXIBLE CDUPLING

EASY TO GET AT! L-R Type WQ permits rotalion of either shaff, liming of engine or rerneteal of eilher eliment siihout teardown of coupling or moving machirie.
Time-saving non-lubricated coupling available with bores up to 14°. Catalog ready, free- Write.

IIVEITYFEXTBLE COUPLINGOD

Pickling of Iron and Steel

-By Wallace G. Imhoff

Price Postpaid $\$ 5.00$

This book covers many phases of pickling room practice and construction and maintenance of pickling equipment.

THE PENTON PUBLISHING CO.
$\begin{aligned} & \text { Book } \\ & 1213 \mathrm{~W} .3 \text { Department } \\ & \text { St. }\end{aligned} \quad$ Cleveland, 0 .

RYERSON CERTIFIED STEELS

class and type of material. All kinds from standard carbon grades to special alloys in stock for Immediate Shipment. Write for Stock List. Joseph T. Ryerson \& Son, Inc. Plants at: Chicago, Milwaukee, St. Louis, Cincinnati,Detroit, Cleveland, Buffalo, Boston, Philadelphia, Jersey City

BELMONT PHILADELPHIA $\frac{R O N}{\text { NEW YORK }}$ NORK Envimpers - Viomiractors - Exporiers

STRUCTURAL STEEL-BUILDINGS \& BRIDGES

The Jackson Iron \& Steel co. "JIsco" PIG IRON SPECIALTIES Jackson. Ohio

FIRTH-STERIIIG

TOOL STEELS - STAINLESS STEELS - SINTERED CARBIDES FOR COMPLETE SHOP IOOLING • McKEESPORT, PA.

Just published . . . new reference book "Handbook of Special Steels- Their Properties, Uses, Fabricators." Write for it!

aLLECHEAY LUDLUM STEEL CORPORATION OLIVER DUILDINE PITs.uigh, PA. Snles olfices and Complete Stechs in all Frimemal chins

STEELCORPORATION
HOT AND COLD ROLLED STRIP STEEL AND SUPERIOR STAINLESS STEELS

Successtully serving steel conuumery for almost half a century

EXECUTIVE OFFICES - GRANT BLDG. PITTSBURGH. PA GENERAL OFFICES AND WORKS - CARNEGIE. PA.

WILLIAMS

ANY SHAPE-ANY MATERIAL

FREE Forgiog Data Folder. Helpful, Infornativ Ilelpful, inform.

COMPLETE FACILITIES

 J.H. WILLIAMS \& CO."The Drop-Forsine People"
soo VULCAN ST, BUFTALO, N. Y.

ANY ALLOY STEEL LABORATORY CONTROLLED
 rations, spachicalions, prices.
Sand for yours now.
FREE ON REQUEST

WHITEHEAD STAMPING CO.
1667 W. Lafayefle Blvd.
Defreit, Mich.

GREY IRON, SEMI-STEEL \& ALLOY IRON CASTINGS
 SPECIAL WOOD PATTERNS Commercial and Industrial Stokers

THE CANTON PATTERN \& MFG. CO. CANTON, OHIO

All About Arc Welding THE IEU HAIIDBOOK

Your Guide ta Progress

\star Here are the results of twenty years' fact-finding on the part of a staff of two hundred arc welding experts contacting every industry throughout the world. The new 6th edition "Procedure Handbook of Arc Welding Design and Practice" contains up-todate facts about all aspects of arc welding and its many profitable applications, compiled and edited for quick reference and easy understanding. This authoritative reference guide will enable you to keep abreast of this fast-growing industry for personal advancement and profit. You cannot afford to be without this valuable new Handbook.
+
Complete in every detail. In eight parts - (1) Welding Methods and Equipment. (2) Technique of Welding. (3) Procedures, Speeds and Costs. (4) Weld Metal and Methods of Testing. (5) Weldability of Metals. (6) Machine Design. (7) Structural Design. (8) Actual Applications.
Recognized throughout the world as the authentic reference book on are welding. More than 90,000 copies of first five editions have been sold. 6th edition is an entirely NEW Handbook, containing important new information. Written clearly. Well indexed for quick reference. Size $6^{\prime \prime} \times 9^{\prime \prime} \times 15 / 8^{\prime \prime}$ -ideal for use in office, shop or school. Printed on fine paper. Bound in semi-flexible simulated leather-gold embossed.

Order your copy today. Mail your order and check to

STEEL

Book Department ... Penton Building ... Cleveland, Ohio

fTEEL

Positions Wanted

CONSTRLCTION ENGINEER.-P I, ANT Supt. 24 years on Industrlal construction as field and offlce executive for contraclors and owners. Well rounded experience includes supervision and expediting ship construction, erection and maintenance plant; layout; production; inspection; cost analysis: purchasing and personnel management. Registered Encineer, age 42, excellent habits, active and with abllity 10 meet people and obtain results. Can furnish responsible references. With present employer 10 years. Desire connection 274. STEEL, Penton Building, Cleveland. Ohio.
EXECCTIVE ENGINELR EMPLOXED, age 42 , technical education, inventive ablliy, wide experience design manufacturing, sales engineering of stamped dle cast plastle and enameled automotive parts. A thorough knowledge of modern production methods, costs, tools, factory layout and labor problems seeks a new connection. Address Box 291, STEEL. Penton Bldg., Cleveland.
TECINICAL WRITER, 29, GRADUATE electrical engineer with 5 years electric motor engineering and 2 years writing and editorlal experience deslres connectlon with publicity department of an industrial concern or advertising agency with electrlcal accounts. Now employed. Address Box 279, STEFL, Penton Bldg., Cleveland
METALLERGIST: TWENTY YEARS EXperlence. Has thorough knowledge of steel melting, hot working, testing, heat Sales Service Fully experienced in Sales, Avas Service, Research, and Production. ATEEL, Penton Blds. Cleveland.
STEEL. Penton Bldz. Cleveland.
MRODLCTION: MAN 38, ROLIER, FOREcounting, Graduate Industrlal and Personnel Management. Inventive abllity 20 years in stecl. Address Box 272, STEEL, Penton Bldg., Cleveland.
MILL SUPERINTENDENT OR ASSISTANT, ti2 years of age, avallable on reasonable notice. 15 years experlence as superintendent plate. bar, blooming and shape mille. Thoroughly competent. Can handle men. Best of references. Address Box 284, STEEL. Penton Bldg.. Cleveland.
EXECUTIVE OR EXECUTIVE ASSISTANT extensive practical expertence in sales and advertising: mechanical engineering graduate. Broad. knowledge of recent Federal legislation and very whde acqualntance with members of both major political partles in the Congress; age 39 ; excellent references. At present an associate and flnanclal adviser to a prominent person in publle life, but anxious to get back into privite industry. Address Box 287. Steel. Penton Bldg., Cleveland.

Duplicate Parts

WELDED STEEL FABRICATION

Specialists In dupltcation of castings and machinery parts with rolled steel shapes.
Send blue prints and specifications Muntation.
MORRISON METALWELD PROCESS INC.
1438 Bailey Are., Buffalo, N. Y.

For Sale

FOR SALE: ERIE CITY NO. SZ7 HIEATstoker and Nash circulating pump. Used only short time, Address Box 285, STEEL, Penton Bldg., Cleveland.

Accounts Wanted

SALES EXECUTIVE WITH ELEVEN years experlence in automotive fleld with such concerns as Thompson Products, Inc., Tlmken-Detrolt Axle Co., General Alotors Corp., deslres to act as manufacturer's representative In Detrolt Area. An energetle worker, age 34 , with wide acquaint ance in the Detrolt district. Well qualilied to sell established products. Address Box 282, STEEL. Penton Blda., Cleveland.
MANUFACTLRER'S AGENT IN INDIANapolls area wants llne of screw and machine products. Has an extenslve clientele and maintains a permanent staff. Address Box 289, STEEL, Penton Bldg., Cleveland. MANUFACTURERS IGENT IS INTERested in contacting manufacturers in metal Industry who desire representation in the Chicago area. Winl consider Warehouse Stock. Address Box 286,
STEFL, Penton Bldg., Cleveland.

Help Wanted

WANTED - EXPFIRIENCED MANAGER, well acquainted with Steel Trade to take over management of Plant and Sales. Old establlshed Fire Brick Plant in Central Pennsylvanla, Glve experience. Address Box 270, STEEL. Penton Bldg., Cleveland. DIRAFTSMEN THOROCGIIIY EXPERIenced in steel plant layout and design Applicant is to state age, education, and experience in detall, glving names of companies for whom he has worked, dates when with these companles, and upon what partlcular kind of work employed. Address Box 281, STEEL, Penton Bldg., Cleveland.
WANTED - ERECTION SEPFRINTENDent with executive ability to act as manager of erection division of steel fabricator. Must be able to handle men, plan and organize work and secure good costs. Give full particulars of experlence and training prst letter Address Box 283 STEFL, Penton Bldg., Cleveland.
ORPORTUNITY AVAHAHLI FOR SAINES executive experienced in marketing vars ous grades of sheets, Give record of experierce. Replics confldential. Address
Box $2!1!$ STEEL. Penlon Blag.. Cleveland.

Employment Service

SALARIED POSITIONS

$\$ 2.500$ to $\$ 25.000$
This thorouzhly organized advertising service of 30 years recognized standing and reputation, carsles on preliminary negotlations for positions of the caliber ind cated above, through a procedure individmalized to each cllent's personal requirements. Several weeks are required to negotlate and each Individual must finance the moderate cost of his own campaign Retalning fee protected by refund provi sion as stipulated in our agreement. Iden tity is covered and, if employed, present position protected. If your salary has been $\$ 2,500$ or more, send only name and address for details. R. W. Blyby, Inc., 110 Delward Bidg., Buffalo, N. Y.

Equipment For Sale

REBUILT-

ELOWERS - FANS - EXHAUSTE䍚
Connersville- Roots boeltive blowers Centrlfugala for gas and oil buraing. ans and roos vencle
GENERAL BLOWER CO.

Ralls-"1 Ton or 1000"

NEW RAITS-5000 Lons-All Sectlon- All Etsen. HELA YING RABLS- 25.000 tona-AH Sectoon-ACCEBEORIES-Every Track Acceswory carried In atoct - Anyle and Splice Bars, Bolka, Nut
Buy from Ont Soutce-Save Time and Money
L. B. FOSTER COMPANY, Inc.

PLATE SHEAR

No. 6 Hilles \& Jones. Capaclty $94^{\prime \prime} x$ 7/". Throat 38 ". Hold-down, Motor drive. On turn-table. A-1.
LANG MACHINERY COMPANY
$28 t h$ St. \& A.V.R.R. Pltsburgh, Pa

Used SHEET MILL EQUIPMENT

1-Mesta 1500 H.P., Gear Drlve, 9.75 1 Ratlo.
1-G. E, 1500 H.P. Motor, 300 R.P.M. 4600 V, 3 Phase, 60 Cycle.
7 Pairs Mesta 28" Hot Mill Housinge, Palts Hyde Park 28" Hot Mll Housings, 7 ft . $0^{\prime \prime}$ Spread
2-32". Mesta Plcklers, Pneumatic, 6 Arms, 6 ft . $3^{\prime \prime}$ Stroke, 13 ft . $6^{\prime \prime}$ Radius.
${ }_{2}$-No. 3 Mesta Lever Shear.
2-54" Mesta Steam Doublers.
2 Sets Wean Semi-Automatic Feeding and Catching Tables.
1-Schulte Sheet Grinding and PolIshing Machine.
1-Aetna-Standard Automatic Tob and Bottom Roll Pollsher.
1-Freyn Electric Regenerative Mill "x x. $6^{\prime \prime}$. 44". 54" Freyn Electric Roll Heaters.
And many other items-all in excellent condition-Write fo
GREAT LAKES STEEL CORP.
ECOHSE - DETROIT - MICHIGAN

Castings

THE WEST STEEL CASTING CO., Cieveland. Fully equlpped for any production oroblem. Two 1 th ton Elec. Furnaces Makers of high grade Hght steel castings also alloy castings subject to wear or nifh heat

NOIETH WALES MACMINE CO. INC North Wales. Grey Iron, Nickel, Chrome Molybdenum Alloys, Semi-steel. Superior qually machlne and hand molded sand blast and tumbled.

* ADVERTISING INDEX

Where-to-Buy Products Index carried in first issue of month.

Page	Page	Page
		F
Abart Gear \& Machine Co. 117	Brassert, H. A., \& Co. 119	Fafnir Bearing Co., The
Abrasive Co., Division of Sim	Bridgeport Brass Co.	Fairbanks, Morse \& Co.
Saw steel Co. 8\%3	Broderick \& Bascom Rope Co.	Fanner Mig. Co.
Abrasive Products, Inc	Brooke, F.. \&e G., Iron Co.	Farrel-BIrmingham Co., Inc.
Accurate Spring Mif.	Brookmire Corporation	Farval Corp., The . .
Acme Galvanizing, In	Brosius, Edgar E., Inc.	Federal Machine \& Welder Co.
Acheson Colloids Corp.	Brown \& Sharbe Mifg. Co.	Finn, John, Metal Works
Acme Steel \& Malleable Iron W	Brown Instrument Co., The	Firth-Sterling Steel Co.
Air Reduction	Bryant Chucking Grinder Co.	Flood Co., The
Ajax Electrothermic Corp.	Buffalo Galvanizing \& Tinning Works	Ford Chain Block Division of Ameri-
Ajax Flexible Coupling Co. Ajax Manufacturing Co.	Bullard Co., The Bundy Tubing C	can Chain \& Cable Co., Inc.
Ajax Manufacturing Co. Alan Wood Steel Co.	B	Fort Pitt Spring Co. .
Allegheny Ludlum steel Corp. . . . 121	Cat C	Foster, 1. B., Co. Foxboro Co., The
Allen-Bradley Co.	Cadman, A. W., Mfg. Co. Canton Pattern \& Mik Co The - 124	Fuller Brush Co.
Alls-Chalmers Mig. Co. Alrose Chemical Co. \qquad	Canton Pattern \& Mis. Co., The 122 Carborundum Co., The	
American Agile Corp	Carey, Phillp, Co., The	Garden City Fan Co.
Amerlean Brass Co., The ...65, 66. 67, 68	Carnegle-Illinols Steel C	Garlock Packing Co
American Bridge Co.	Carpenter steel Co., The	General Blower Co. $15,74,75$
American Chain \& Cable Co., Inc. American Chaln Dlvision	Carter Hotel Cattle, Joseph P.	General Electric Co., Lamp Dept.
American Chain \& Cable Co., Inc.	Cellcote Co., The	Globe Brlck Co., The
Ford Chain Block Division	Central Scre	Granite City
American Chain \& Cable Co., Inc.	Chain Belt Co. 12	Graybar Electric Co.
Page Steel \& Wire Diviston 109	Chambersburg Enginecring Co. 72	Great lakes Steel Corp. Greentleld Tap \& Die Corp.
American Chain Division of American Chain \& Cable Co., Inc.	Chamsion Rivet Co., The Chandler Products Co.	Gregory, Thomas, Galvanizing Works
American Chemlcal Paint Co.	Chicaso Perforating Co.	Grinnell Co., Inc.
American Engineering Co.	Chicago lawhide Mifg. Co	Gulf Oll Corporation
American Flexible Coupling Co.	Cincinnati Grinders, Inc.	Gulf Reflning Co.
American Forge Division of the Amer-	Cincinnati Milling Machine	1 I
lean Brake Shoe \& Foundry Co.	Cincinnati Shaper Co., The	Hagan, George J., Co.
Amerlean Foundry Equipment Co., The	Clark Controller Co,	Hanlon-Gregory Galvanizing
American Gas Assoclation	Cleveland Cap Screw Co.	Hanna Furnace Corp.
American Hot Dip Galvanizers Asso-	Cleveland-Clifs Iron Co. Cleveland Crane \& Enginecring Co... 18	Hannliln Mrg. Co.
American Lanolin Corp.	Cleveland Hotel 111	Harrington \& King Perforating
Amerlean Monorall Co.	Cleveland Punch \& Shear Works Co.	Hays Corp., The
American Nickeloid Co. 121	Cleveland Tramrall Division, Cleve-	Heald Machine Co., The
Amerlean Pulverizer Co.	land Crane \& Engineering Co.	Helmer-Statey, Inc.
Amertean Roller Bearing Co. 102	Cleveland Twist Drlll Co., The	Heppenstall Co.
American Rolling Mill Co., The	Cleveland Worm \& Gear Co., The	Hetz Construction Co., In
American Screw Co.	Climax Molybdenum. Co.	Hevi Duty Electric Co.
Amerlean Shear Knife Co. 114	Colonial Broach Co.	Hill-Acme Co., The
American Soclety for Metals 56	Columblan Steel Tank Co.	Hillside Fluor Spar Mines
Amerlcan Steel \& Wire Co. ...	Columbla Steel Co.	IIIndley Mfg. Co. ${ }_{121}^{121}$
American Tinning \& Calvanizing Co.	Columbus Dle, Tool \& Machine Co.	Hobart Bros. ${ }^{121}$
Ames Bag Machine Co.............	Cone Automatic Machlne Co., Inc.	Hodell Chain Co., The
Ampco Metal, Inc. 101	Continental Machines, Inc.	Hollands Mrg. Co.
Andrews Steel Co., The	Continental rroll \& Steel Foundry Co.	Horsburgh \& Scott Co.
pollo Steel Co.	Contínental Screw Co.	Hubbard \& Co.
rmstrong-Blum Mfg.	Copperweld Steel Co.	Hubbard, M. D., Spring Co.
Armstrong Cork Co.	Corbln Screw Corp.	Huther Bros. Saw Mig. Co.
Assoclation of Iron \& Steel Engineers	Cowles Tool Co. Crane Co.	Hyatt Bearings Division, General M tors Sales Corporation
Atlantic Stamplng Co.	Criswell, James, Co. 119	Hyde Park Foundry \& Mach
Atlantic Stel Co.	Culten-Frlestedt Co. 110	Hydro-Power Systems,
Atlas Car \& Mifg. Co. -	Curtis Pneumatic Mac	
Atlas Drop Forge Co. 122	Cutler-Hammer,	Illinols Clay Products Co.
Atlas Lumnite Cement Co.	0	Illinols Development Councll
Atlas Mineral Products Co. of Penna.	Damascus Steel Casting Co.	Independent Galvanizing
	Darwin \& Milner, Inc.	Industrial Brownho
Babcock Wilcos Co.	Davts Brake Beam Co.	Ingersoll-Rand Co.
Balley, Wm. M., Co. 77	Dearborn Gage Co. 120	Inland Steel Co.
Baker-Raulang Co.	Detrolt Leland Hotel 116	Internatlonal Correspondence Schoors
Baldwin-Duckworth Division or C	Diamond Expansion Bolt Co., Inc.	International Derrick \& Equipmen
Belt Co.	Dletzel Lead Burning Co.	Internatlonal Nickel Co., Inc.
Baldwin Southwark Division of The Baldwin Locomotive Works	Differential Steel Car Co. Wravo Corp., Engineering Works Div. 91	Jackson Iron \& steel Co., The
Bantam Bearings Corp.	Dravo Corp., Machinery Division ... 121	James, D. O., Mlf. Co.
Barnes, Wallace, Co., The, Division of	Duer Spring \& Mrg. Co.	J-B Engineering Sales Co
Assoclated Spring Corporation		Jessop Steel Co. ...
Barnes, W. F. and John, Co.	Elastic Stop Nut Corp	Jessop, Wm., \& Sons,
Basle Dolomite, Inc.	Electric Controller \& Mifg. Co.	Johns-Manville Cor
Bay City Forge Co.	Electric Furnace Co., The 16	Johnson Bronze Co.
Beatly Machine \& Mif. Co.	Electisc Generator \& Motor Co.	Jones \& Lamson Machine
Bellevue-Stratford Hotel	Electric Storage Battery Co...	Jones \& Laughlin Steel Cor
Belmont Iron Works 121	Electro Alloys Corp., The.	
Berger Manulacturing Div., Republic	Electro Metallurgical Co. 13	Joslyn Co. of Calliornla
Steel Corp.	Elmes, Charles F., Engineerlng Works	Josiyn Mifg, \& Supply Co.
Bethlehem Steel Co.	Engineering and Construction Division	K
Blrdsboro Steel Foundry \& Machine	Koppers Co.	Kantlink Spring Washer Man
Co. 87	Enterprise Galvanizing Co. 121	Kardong Brothers, Inc.
Blssett Steel Co., The 111	Erdle Perforating Co., The 119	Kearney \& Trecker Corp.
Blanchard Machine Co.	Erie Bolt \& Nut Co.	Kemp, C. M., Mfg. Co.
Blaw-Knox Co.	Erle Foundry Co. 104	Kımball Safety Products Co.
law-Knox Division, Blaw-Knox Co.	Eureka Fire Brick Works	King Firth Wheel Co.
iss \& Laughlin, Inc.	Ex-Cell-O Corp. 55	Kinnear mifg. Co. .

ADVEIRTISING INDEX

Where-to-Buy Products Index carried in first issue of month.

	Page
Koch, George, Sons	121
Koppers Co.	
Koven, L. O., \& Brot	
Kron Co., The	\cdots

1.

Laclede Steel Co
Lake City Malleable Co.
Lamson \& Sesslons Co., The
Landis Machlne Co., Inc.
Landls Tool Co.
Lank Machinery Co.
ansing Stamplng Co
LaSalle Steel Co
Lawrence Copper \& Bronz
LeBlond, R. K., Machine Tool Co., The
Leeds \& Northrup Co
Lee Spring Co., Inc.
Lehish Structural Steel Co
Leschen, A., \& Sons Rope Co.
Lew's Bolt \& Nut Co.
Lewls Foundry \& Machlne Division of Blaw-Knox Co.
Lewls Machine Co., The
Lincoln Electrlc Co., The
Linde Air Products Co.. The
Lindemuth, Lewis B.
LInk-Belt Co.
Lintern Corp. The
Loftus Enginecring Corp.
Logemann Bros. Co.
Lord Baltimore Hotel, The
Lovesoy Flexible Coupling Co
Lowman-Shields Rubber Co.
Ludlow-Saslor WIre Co., The
Me
McKay Machine Co.
McKee, Arthur G., Co
McKenna Metals Co.

M

Mackintosh-Hemphill Co
Macwhyte Co
119
brath Machlnery Co
Mathews Conveyer Co
Maurath, Inc.
Inside Front
Medart Co., The
Mesta Machine Co
Metal \& The-mit Corp
Mehlgan Steel Tube Products Co
Mdvale Co., The
Missourl Rolling Mill Corp
Moltrup Steel Products Co
Monarch Machine Tool Co., The
Morgan Construction Co
Morgan Engineering Co.
Morrison Metalweld Process, Inc.
Morton Salt Co.
Motch \& Merryweather Machinery Co. The

Natlonal Acme Co ${ }^{N}$
National Alloy Stel The
National Bearing Metals Corp.
National Carbon Co., Inc.
Natlonal-Erle Corp
National Forge \& Ordnance Co.
Natlonal Industrial Advertisers Assoclation
Natlonal Lead Co.
Natlonal Machinery Co
National Roll \& Foundry Co
Natlonal Screw \& MIf. Co
Natlonal Steel Corp.
National Telephone Supply Co., Inc
Natlonal Tube Co.
New Departure Dlvision General Mo. tors Sales Corp.

Front Cover
New Jersey Zinc Co
New York \& New Jersey Lubricant Co.
Niagara Machine \& Tool Works
Stes Steel Products DIv, Republic Steel Corp.
Nitralloy Corp., The
Norma-Hortmann Bearings Corp
Northern Engineering Works
Norton Co., The
115

Ohlo Electric Mfy. Co.
Ohio Ferro-Alloys Corp
Ohio Locomotlve Crane Co., The
Ohio Seamless Tube Co., The
Ohlo Steel Foundry Co., The
Oxweld Acetylene Co.
\mathbf{P}
Page steel \& Wire Division of Amert
can Chain \& Cable Co., Inc.
Pangborn Corp.
Parker-Kalon Corp.
Peabody Engineering Corp
Pease, C. F., Cu., The
Pennsylvanía Industrial Engineers
Pennsylvanla Salt Mfg. Co.
Penola, Ine
PerkIns, B. F., \& Son, Inc.
Petroleum Iron Works Co., The
Pheoll Mifg. Co.
Pltisburgh Crushed Steel Co.
Plltsburgh Gear \& Machine Co
Pittsburgh Lectromelt Furnace Corp.
Pittsburgh Rolls Division of Blaw
Knox Co.
Plttsburgh Steel Co.
Plymouth Locomotive Works, Div.
The Fate-Root-Heath Co.
Poole Foundry \& Machine Co
Pressed Steel Car Co., Inc.
Pressed Steel Tank Co
Prest-O-Lite Co., Inc., The
Production \& Machine Tool Show
Pure Oil Co., The

H

Raymond Mfg. Co. Division of Assoclated Spring Corp
Rellance Electric \& Engineering Co
Republic Steel Corp.

- Revere Copper and Brass, Inc.

Rhoades, R. W., Metaline Co., Inc.
Riverside Foundry \& Galvanizing Co.
Russell, Burdsall \& Ward Bolt \& Nut
Co.
Ryerson, Joseph T., \& Son, Inc.

s

St. Joseph Lead Co
Salem Engineering Co.
Samuel, Frank, \& Co., Inc.
San Franclsen Galvanizing Works
Sanitary Tinning Co., The
Sawyer Flectrlcal Mfg. Co
Scovill Mig. Co.
Scully Steel Products Co
Seneca Wire \& Mfg. Co., The
Shafer Bearlng Corporation
Shakeproof Lock Washer Co
Shaw-Box Crane \& Holst Division
Manning. Maxwell \& Moore, Inc.
Shell Oll Co., Inc.
Shenango Furnace Co., The
Shenango-Penn Mold Co.

- Shepard Niles Crane \& Holst Corn

Shoop Bronze Co., The
Shuster, F. B., Co., The
Simonds Gear \& Mig. Co
Simonds Saw \& Steel Co.
Sinton Hotel
SKF Industries, Inc.
Snyder, W. P. \& Co.
Socony-Vacuum Oll Co., Inc.
South Bend Lathe Works
Sta-Brite Mig. Co.
Standard Galvanizing Co
Standard Steel Works
Stanley Works. The
Steel \& Tubes Division, Repubile Steel Corp.
Steel Conversion \& Supply Co.
Steel Founders' Soclety of Amerlca ..
Steelweld Machinery Division, Cleveland
Crane \& Engineering Co.
Stewart Furnace Division, Chicako Flexible Shait Co
strom Steel Ball Co.
Strong Steel Foundry Co.
6.7

Jage
Superior Stcel Corp
Surface Combustion Corp
Sutton Engineering Co.
Swindell-Dressler Corp.

T

Tennessee Conl, Iron \& Rallroad Co
Thomas Steel Co., The
Tide Water Associated Oll Co
Timken Roller Bearling Co.
Timken Steel \& Tube Dlvision, The
Timken Roller Bearing Co.
Tinnerman Products, Inc.
Tltan Metal Mrg. Co.
Toledo Scale Co.
Toledo Stamping \& Mrg. Co
Tomkins-Johnson Co.
Torrington Co., The
Towmotor Co.
Townsend Co.
Tri-Lok Co., The
Truflo Fan Co.
Truscon Steel Co.
Twin Disc Clutch Co

(

Union Carblde \& Carbon Corp. 13
Unlon Drawn Stcel Div. Republic Steel Corp.
United Chromlum, Inc
United Engineering \& Foundry Co...60, 61
Unlted States Rubber Co.
United States Steel Corp., Subsidlarles -
Amerlean Brldge Co
Amerdcan Steel \& Wire Co.
Allas Lumnite Cement Co.
Carnegle-Illinols Steel Corp.
Columbla Steel Co
Cyclone Fence Co.
Federal Shipbuilding \& Dry Dock Co.
Natlonal Tube Co.
Oll Well Supply Co.
Scully Steel Products Co
Tennessee Coal, Iron \& Rallroad Co.
United States Steel Export Co.
Universal Allas Cement Co.
Virginla Bridge Co.
United States Steel Expurt Co.

v

Valley Mould \& Iron Corp
Vanadlum-Alloys Stcel Co.
Vanadlum Corporation of America
Voss, Edward W.

w

Waldron, John, Corp
Warner \& Swasey Co
Washburn Wire Co.
Wean Englneering Co.. Inc
Inside Back Cover, Back Cover
Weinman Pump \& Supply Co., The
Welrton Steel Co
Westinghouse Electric \& Mifg. Co
West Penn Machinery Co.
West Steel Casting Co.
ion
Whitcomb Locomotive Co., The
Whitehead Stamping Co.
Wickwire Brothers
Whakwire Spencer steel Co.
Wilcox, Crittendon \& Co., Ine.
Williams, J. H., \& Co., Inc.
Whlson, Lee, Engincerlng Co.
Inslde Back Cover
Wilson Welder \& Metals Co., Inc
Wisconsin Steel Co.
Witt Cornice Co., The
Wood, R. D., Co.
Worthington Pump \& Machinery Corp
Worth Steel Co
Wyckorl Drawn steel Co.

co.

Yale \& Towne Mig. Co.
Youngstown Alloy Casting Corb
Youngstown Sheet \& Tube Co., The
Youngstown Welding \& Engincering
Co., The

REMOVE

Gas Cutting

Machine

INEXPENSIVE

W A Y
by

The Unitcast Corporation, midwest steel foundry, formerly removed large risers from steel castings with a hand-cutting to:ch. It was an expensive job and a full day's work to remove three 14×26 inch risers.

After a consultation with Airco engineers, the management tried an Airco Radiagraph. With this oxyacetylene cutting machine, three risers of the same dimensions were removed in about 35 min utes - at a third of the cost. Observe how the finished cuts were smooth and clean. This practically eliminated the usual costly grinding operations.

Airco Flame Cutting is the modern, economical method of cutting steel. Why not investigate this Airco process further? It may show you the way to improved products, increased production, or lower manufacturing costs. Write any Airco district office for full information.

AIR REDUCTION

GENERAL OFFICES: 60 EAST 42nd STREET, NEW YORK, N. Y.
DISTRICT OFFICES IN PRINCIPAL CITIES

[^0]: Exports reported by International Tin Research and Development council; 1939 party estimated.

[^1]: 392,332 net tons opes of capacity for 1939 are calculated on weekly capaciltes of 1 -249 net met tons open hearth ingots and 136,918 net tons Bessemer ingots, total 1,529.Ingnte, $72,506,153$ net on annual capacities as of Dec. 31, 1938, as follows: Open hearth The percentages of capactiy operated for $\mathbf{7 , 1 3 8 , 8 8 0}$ net tons.
 of $1,402,898$ net tons open hearth Ingots and 1140 are calculated on weekly capacitles $1,517,855$ net net tons open hearth Ingots and 114,956 net tons Bessemer ingots, total hearth ingots, 73 s; based on annual capacitles as of Dec. 31,1939 as follows: Open hearin ingots, $73,343,547$ net tons; Bessemer Ingots, 6,009.920 net tons.

[^2]: Material appearing in this department Is fully protected by copyright, and its use in any form whatsoever without permisston is prohlbited.

[^3]:

 To dot $\quad 19,556,080$ N．T：－ 73.2 K \＆Fiviching Caterily

[^4]:

[^5]: - Aember, American Societs of Mechanleal Fingineers.

[^6]: Diagrams at left show a container and three methods of labricating it. Chart at right shows relation between speeds and costs of gas cutting plate of various thicknesses

[^7]: HOT-DIP GALVANIZING PRACTICE By W. II. Spowers Jr.
 An up-to-date treatise on zinc coatings of steel that will appeal to those who daily are engaged in suriacing metals with zinc. 200 Pages- 45 Illustratlons- 4 Tables -7 Charts. Price $\$ 4.00$ Postpald.

 THE PENTON PUELISHING COMPANY
 Penton Bullalng Book Department Cleveland, Ohio
 $350-5$

