EDITORIAL STAFF
E. L. Shaner

Editor-in-Chic|
E. C. Kreutzaera

Editor
A. J. Haln

Managing Edizar
Guy Hubbard
Machine Tool Editor
D. S. Cadot

Art Editar

## ASSOCIATE EDITORS

(i. H. Manlove J. D. Knox
W. G. Gude
W. J. Camprell

New York

1. H. Sucil B. K. Price
L. E. Browne

Piusburgh Chicaga
R. 1. HaktFond E. F. Row

Dettoit
Washingıon
A. H. Allen L. M. Lamm Landon
Vincent Delpokt
ASSISTANT EDITORS
A. R. Finley Iay Dleulis 1. C. Sulifan La Veank Nock

Grorge Urban
New York
John H. Caldwfle

## BUSINESS STAFF

G. O. Hays

Business Manages
C. H. Batley

Advertising Service

| Y York | F. W. Kagutzaerg |
| :---: | :---: |
|  | B. C. Snell |
| Pimsburgh | S. H. Jasper |
| Chicago. | - L. C. Pelott |
| Cleveland | R. C. Taenke |
|  | D. C. Kiefer |

J. W. Zuber

Circulation Manager
MAIN OFFICE
Penton Building, Cleveland

## BRANCH OFFICES

New York ............ 110 East 42 nd St.
Cisruro.......550 North Michigan Ave.
Pirsthurgh
Enerait
Koppers Building
6560 Cass Ave.
Cincinnati
Son Francisco
National Press Building 1734 Carew Tower 1100 Norwood Ave.
Lowdon Caxton House Westminster, S.W. 1

Publkbed by THE PENYow Purllaning Co.
 Treident chatrman of Board: E. It SHANER, Praldent: F, O. Stmineaich, Gerretary, Vice
Manber, Ausit Bureata of Curcularyo
 Peblinhes avectatlon.
United Etvere, Cubs Nonds, Subecription in the yere it. Iro years sifextoo sund Camada, one ouatrien, onin year $\$ 10$. Furopeaz and foreign Paximitise ise.
at Clerveland second clas matter of the inatome Coprrmant 1940 ber the Act of Mareh 3,1879


AB


Volume 107-No. 11
September 9, 1940
READER COMMENTS ..... 4
HIGHLICHTING THIS ISSUF ..... 19
NEWS
How Excess Prohits Tax Bill Is Slowing Defense Program ..... 21
House Will Ease "Draft Wealth" Provision in Conscription Bill ..... 22
Steelwork Operations for Week ..... 23
Pig Iron Operating Rate Advances: Close to go Per Cent in August ..... 25
Men of Industry ..... 26
Government Contract iswards for Week ..... $27-28$
Carboloy Makes Sixth Price Cut Since 1929; Standardizes Tools. ..... 33
Urge Industrial Development of Northwest as Aid to Defense ..... $3^{8}$
"Use Present Capacity Before Building Plants Elsewhere" ..... $3^{8}$
Financial ..... 39
Activities of Steel Users, Makers ..... 40
Obituaries ..... 40
Meetings ..... 41
WINDOWS OF WASHINGTON ..... 31
MIRRORS OF MOTORDOM ..... 35
EDITORIAL-One Bad Egg Spoils the Omelet ..... 42
THE BUSINESS TREND ..... 43
TECHNICAL
Reducing the Cost of Metal Spraying-By E. T. Parkinson ..... 46
"Geared" Magnets Help Treat Disks ..... 49
Erecting Steel Towers-By F. I.. Spangler ..... 64
A Broach Repair Method ..... 66
Materials Handling
Continuous Pig Casting-By Reginald Trautschold ..... 50
Progress in Stelmaking
Strand Heat Treating Cold Strip-By Norman P. Goss and Curtis H. Vaughan ..... $5^{2}$
Joining and Welding Progressive Assembly with Resistance Welding Guns ..... $5^{8}$
Surface Finishing Highly Mechanized Finishing Linc for Transformer Cases ..... 70
INDUSTRIAL EQUIPMENT ..... 68
HELPFUL. LITERATURE ..... 73
MARKET REPORTS AND PRICES ..... 75
BEHIND THE SCENES ..... 9
CONSTRUCTION AND ENTERPRISE ..... 96
INDEX TO ADVERTISERS ..... 10.4
PRODUCTION•PROCESSING•DISTRIBUTION•USE


Modern Presses the tleveland punih a 5 Hear works rampany Cleveland, Ghio
NEW YORK • EHICAGD • DETROIT • PHILADELPHIA • PITTSEURGH

# ง1든 <br> PRODUCTION•PROCESSING. DISTRIEUTION•USE <br> HIGHLIGHTING THIS ISSIE 

- TESTIMONY before the senate finance committee last week (p. 21) revealed clearly that recent delays in the national defense program have been due to uncertainty over profits and amortization. While the debate on the excess profits tax still is in progress, the senate is expected to make far-reaching changes in the house draft. These, it is expected, will enable manufacturers to take government contracts with a greater degree of assurance. Conversely, the house ( $\mathbf{p} .22$ ) is expected to pass a military training bill with a much less drastic "draft industry" provision than that approved by the senate. Despite lack of final action on these bills, last week's armament awards (p. 27) were impressive.

In embryonic stage is a plan for large-scale defense industries (p. 38) in the Northwest. These would be based on low-cost electric power and would be aimed at taking

## Defense

In Northwest care of our defense requirements in and along the Pacific ocean. In this and numerous other projects that would bring wide relocation of industrial activities, many manufacturers see cause for concern. Pittsburgh interests, for example, propose use of established plants (p. 38) before new ones are built ... In one community alone, Paterson, N. J., 686 men trained under the government program (p. 32) have been placed in plants working on defense orders . . . Defense commission ( $p .31$ ) requests avoidance of hours in excess of 40 a week wherever possible.

Steel production last week (p. 23) averaged 82 per cent due to the Labor day lull but immediately snapped back. Demand tends to swell (p. 75) indicating main-

> Heary Steel Outpul Seen tenance of near-capacity production for an indefinite period. War and national defense remain important factors in current bookings. Structural awards, for example, moved to the highest level of the
year with large orders for defense plants. Automotive specifications are brisk. England continues to take heavy shipments . . . New extras are out ( p .82 ) on hot-rolled, plain-carbon plates and floor plates and on hot-rolled alloy steel. Ferroalloy prices are reaffirmed. Scrap prices are up further. Prices on cemented carbide metals (p. 33) are lower.

Metal-spraying process is finding many new applications, says E. T. Parkinson (p. 46), because its usefulness has been enhanced. Costs have been reduced sharply,
Cut Metal Spraying Cost speeds and thicker deposits depositing efficiency has been improved through higher and strength of bond to the base material is greater. It now is possible to deposit a layer as thick as $1_{2}$-inch with one pass of the metallizing gun. . . . A new chain conveyor finishing line at a Pittsburgh transformer case plant ( p .70 ) combines in regular sequence the operations of cleaning, rust-proofing, drying, painting and baking. . . A A new pig iron casting machine in Canada (p. 50) has interesting features.

Norman P. Goss and Curtis H. Vaughan (p. 52) discuss continuous normalizing of cold reduced strip steel. They reveal procedure for obtaining best results for

## Cold Strip Normalizing

 deep drawing and other purposes requiring special properties. Grain size control, for example, depends on the speed of the strip in transit through the furnace. Standard resistance guns with suitable fixtures facilitate progressive welding assembly (p. 58) of some 52 separate parts that form the body of a well-known harvesting combine. . . . Due to importance of tooling under present conditions, repairing of tools when possible is essential; a broken broach (p. 66) recently was repaired by low-temperature brazing, a method which offers wide possibilities.

# When Unit Values Are High Assure Low Forming Costs With Inland Sheets 

EACH stroke of a press represents dollars expended for fixed charges, labor and overhead. That is why the greater the number of operations performed to complete a part, the higher is its unit value. When breakage occurs all the value put into a part, including the cost of steel, is wasted.

This loss is being held to the minimum
by many leading manufacturers who use Inland Sheets made especially to meet their fabricating and product requirements.

Inland metallurgists will gladly cooperate in solving your sheet forming problems. Their services are without obligation. Call or write your nearest Inland office.

# How Excess Profits Tax Bill Is Slowing Defense Program 

Witnesses, in Senate Committee Hearing, Point to Faults.

Measure Passed by House Meets Much Dissatisfaction.

House Will Moderate "Conscript Industry" Provision.

Week's Defense Orders Aggregate $\$ 118,000,000$.

## W ASHINGTON

- FAR REACHING changes in the excess profits tax bill passed by the house are likely to result from senate deliberations now under way. Most witnesses at the hearings held last week expressed dissatisfaction with the house measure. This dissatisfaction comes not only from business men but also from influential senators.
Senate finance committee may report the bill out early this week. As gag rule cannot be employed, It is hazardous even to guess how long the upper chamber will debate the bill. Following approval by the senate the measure must go to conference and then be repassed by both houses.

Delay in enacting a fair excess profts tax and amortization billcoupled by Presidential insistenceis generally viewed as a major retarding influence in the defense pro gram.
William S. Knudsen, Leon Henderson, John D. Biggers and Donald Nelson, of the defense commission, attacked the treasury-sponsored plan at committee hearings.

At the same time, Mr. Knudsen, emphasizing that he was speaking for himself alone, inferentlally criticized the present bill's "penalty tax" provisions, which also have been attacked by some senators.
Pointing out that the levy is known as the "excess-profits tax", Knudsen declared that "it seems fair that this should be a tax on earnings above their normal past record, and not a tax based solely or largely on earnings above an arbitrary per cent or standard.
Mr. Knudsen also sald: "I do not
think a penalty tax should be imposed on normal earnings. If the government needs more revenue, why not obtain it by flat increase in the corporation tax rate?"
The restrictions in the bill, which the defense commission unanimously disapproved both in testimony and in a formal letter to the finance committee, would apply to new plant facilities erected under a speclal amortization provision allowing their entlre cost to be subtracted from taxable net income in flve years.

The restrictions consist of a provision that these facilities could not be destroyed or even substantially altered unless the secretary of war or navy elther gave written consent or bought the property at a reduced price.

## Defeats Own Purpose

If this limitation remains in the bill, it would "tend to defeat the very purpose of the amortization provisions and thereby impede the defense program," Mr. Knudsen asserted.

Expressing full agreement with the treasury that the interests of the United States must be protected, Mr. Knudsen declared that this aim could best be achieved by individual contracts rather than the less flexible terms of a law.

Retention of the restrictions would "lead to a dearth of help from private capital," he said, but if the amortization provisions are accepted with the "strings," he predicted that there would be no trouble in carrying through plant expansion for the defense program very largely with private capital.

So far, one witness stated, most of the money has been put up by the government.

Mr. Henderson, securltles and exchange commissloner, and one of the New Deal's leading economists, warned that "you might as well drop the amortization provisions" if the restrictions are retained on the subsequent use of the newly built plant facilities to which the liberal amortization privileges would apply.
"You would be saying that the manufacturer has to give up his facilltes to the government."

Declaring that "the sole purpose? in recommending the amortization provisions was to encourage the use of private caplial," Mr. Biggers asserted the proposed restrictions "would in effect nullify" the amortization features.
"Considerably sharper negotiathons" are being carried out on the part of the government than during the last war, Mr. Henderson asserted. Under the "alert procedure" now followed in watching prices, he said, the government has already obtained two articles in large quantities at a lower price than ever before.

Mr. Biggers informed the sanate committee that three plans would be followed in respect to financing new plants for defense materials:
11) Wholly by private capital, which is to be encouraged by the amortization provisions.
(2) By private capital, but repaid by the government, which at the end of the emergency period could sell the plant back to the private manufacturer.
(3) Entirely by the government,
which would retain the plant in the same way that it now owns arsenals.

With the "string" giving the government ultimate control even of the privately financed plants, "the private manufacturer will not avail himself of plan 1, and the whole load will fall on the government through plans 2 and 3," said Mr. Biggers.

John L. Sullivan, assistant secretary of the treasury, indicated in answer to questions that he thought it might be possible to work a provision for permissive flling of consolidated returns into the pending bill.

In reply to a question by Chairman Harrison as to whether some flat percentage above that paid by other industries should not be imposed on defense contractors and subcontractors, Mr. Sullivan said he would prefer to discuss the subject first with defense officials to determine whether such a provision would delay the armament program.

Mr. Sullivan expressed disagrec. ment, contending that even those industries which realized no direct benefits from arms spending would realize indirect returns.

In respanse to a question by Senator Byrd, he said that the United States Steel Corp. would pay a tax of about $\$ 7,500,000$ on surplus profits of $\$ 26,000,000$ or $\$ 28,000,000$ in 1940 under the bill as it now stands.

The treasury witness expressed the opinion that it would be "exceedingly difficult" to impose a special differential tax on defense subcontractors because of the difficulty of determining what portlon of their expenses and proflts should be charged to government business.
"I think the American people feel that those who are going to make money out of these detense contracts ought to pay the big part of this," Senator Harrison remarked.

## Taxes Normal Profts

A subcommittee on revenue legislation. United States Chamber of Commerce, holds that "enactment of the present measure would depress business activity and jeopardize the defense program, prwate financing and the payment of outstanding debts. It would disturb the markets for commodities and sccurities and produce other serious repercussions."
It also asserts that "under the guise of taxing 'excess' profits, the bill imposes disastrous taxes upon profts which are only normal and essential and not in any sense excessive, and not even remotely related to expenditures for national defense."

The committes repeats the recommendation that amo:tization should
be considered separately from the excess profits tax feature, and be promptly enacted, and that more time should be given to the drafting of a practical profits tax bill.
Discussing the major objections to the revenue bill the committee stated: "The bill as adopted by the house is practically impossible of comprehension. Unquestionably years of dispute and litigation: would be necessary before tax liabilities could be determired, despite its declared purpose of making such liabilities deffinite and certain.

Under the guise of taxing 'excess' profits, the bill imposes disastrous taxes upon profits which are only normal and essential, and not In any sense excessive, and not even remotely related to expenditures for national defense. Its drastic structure of rates is applied without regard to the relation of income to actual invested capital or the relation of excess profts to real normal profits. The measure makes no real effort to ascertain excess profits.
"It so applies the concept of average earnings over a period of years, as a basis for tax upon excess profits, as to preclude its use in most cases. It can be fairly said to have emasculated this idea which has been so widely supported is a fair basis of differentlating between normal and excess profits.
"The invested-capital base proposed is arbitrary and Illogical. bearing little relation to realities. It requires impossible computations.
"The measure does not make ade quate provision for special relies to those who, by reason of its involved and technical terms, will re ceive such harsh treatment as to amount to gross injustice.
"The expectation, encouraged by official announcement and the proposal of the ways and means sub. committee, of adequate provision for amortization to protect agairst capital losses in connection with defense facilities has not been fully realized because of the inclusion of some unnecessary restrictions," the committee said.

## House Will Ease "Draft Wealth" Provision in Conscription IBill

团 ALTHOUGH the house of representatives will pass a military training bill which will contain some kind of a "draft industry" provision, it is expected this provision will not be as drastic as the senate bill.

The military affairs committee of the house has proposed an amendment modeled after the 1916 provision for drafting industry. Several other modifying amendments have been introduced in the house.

House military affairs committee which handled the bill adopted by a margin of one vote the substitute "draft industry" amendment giving the government priority or plant rental privileges for national defense contracts, in place of the senate provisfon to condemn and take over private plants. This amendment, offered by Representative Smith, Connecticut Democrat, carried 12-11.
The Smith proposal is copied from the existing national defense act, except that it would apply immediately upon passage of the draft bill, whereas the defense act is inoperative except during war or the imminence of war.

Amendment sets forth that the war or navy departments may require any firm to place ahead of all other orders the manufacture of arms, ammunition or any other necessary supplies for the army or navy.
It also authorizes the two depart-
ments to place such orders with any plant that may be readlly transformed into a factory for the manufacture of such articles.

In event any company refuses to take such orders at reasonabie prices, determined by the secretary of war or secretary of the navy, the President would be authorized 10 take immediate possession of the plants and proceed with the manufacture through an appropriate government bureau.

The amendment states that the compensation or rental for the use of any factory under these conditions "shall be fair and just."
Penalty for failure to comply would be imprisonment for not mere than three years and a fine of not more than $\$ 50,000$. To protect the rights of labor, the following proviso is included in the amendment:
"Nothing herein shall be deemed to render inapplicable existing state or federal laws concerning the health, safety, security and employ ment standards of the employes in such plant."

Principal argument used against the Russell-Overton amendment in the Senate bill was that it author. ized the government to institute condemnation proceedings at the time it took possession of a factory and thereby made the government eventually the owner of the plant.


## PRIDUCTION．．．Down

－STEELWORKS operations last week dropped 9 玹 points to 82 per cent， due to Labor day．Production the remainder of the week was as heavy as in the corresponding period in the previous week．Two districts galned slightly，seven declined，and three were unchanged．A year ago the rate was 62 per cent；two years ago it was $41^{1 / 2}$ per cent．

St．Louls－Steady at 80 per cent． 20 of 28 open hearths active． Birmingham，Ala－With 21 open hearths in production the rate held at 88 per cent．Republic Steel Corp． will light another furnace shortly．

Detroil－Labor day caused no in－ ierruption to production here and the rate advanced 1 point to 94 per cent．Ford Motor Co．operated all ten open hearths one day last week， the first time in several years．

Cincinnati－Slipped 9 points to 68 per eent because of the hollday in－
terruption．Recovery is scheduled for this week．

Cleveland－Dropped 9 points to 81 per cent，although some plants op－ erated on Labor day．The rate will move higher thls week．

Pittsburgh－Average operations for the week were 72 per cent，down 141／2 points．

Wheeling－Output for the week was off 18 points to 80 per cent， though mills operated at 98 per cent except for the holiday．

New Fngland－One open hearth

| Steel Ingot Statistics |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Calculated Monthly Productlon－All Companies $\qquad$ Werkly Number Open Hearth $\qquad$ Bessemer $\qquad$ Total $\qquad$ produc－of Percent ton，all weeks |  |  |  |  |  |  |  |  |
| reriod | Net | of | Net | or | Net | ot | compa net to | ith |
| 1290 Reported by Compantes which in 1939 made 97.9 F \％of Open Hearth and $100 \%$ of Bessemer． |  |  |  |  |  |  |  |  |
|  | 5，369，601 | 86.40 | 285， 114 | 56.10 | 5，655， 313 | 84.11 | 1，276．595 | 4.43 |
|  | 4，203，508 | 72.37 | 205，527 | 43.19 | 4，409，035 | 70.16 | 1，064，983 | 4.14 |
| Apr | 4.073 .196 | 65.54 | 191．539 | 37.62 | 4，264，755 | 63.42 | 962，699 | 4.43 |
| Apri | 3．798，371 | 63.11 | 176.335 | 35．76 | 3，974，706 | 61.04 | 926，505 | 4.23 |
| May | 4，582，694 | 73.74 | 258.709 | 50.80 | －1．841．403 | 72.00 | 1，092．867 | 4．4．4 |
|  | 5，228．529 | 86.88 | 304.381 | 61.72 | 5，532．910 | 88.97 | 1.289 .783 | 4． 4.9 |
|  | 5，272，708 | 8 ¢5．03 | 322，362 | 63.44 | 5.59510 | 823．40 | 1，265． | 4.42 |
|  | 5，663，363 | 91.13 | 369，674 | 72.59 | 6，033，037 | 89.72 | 1，3t11．559 | 4.48 |
| 8 mos． | 38，191，970 |  | 2.11 |  | 40，306，231 |  | 1．154，231 | 3 c \％ |
| 1939 Reported by Companiea which in 1939 made $97.97 \%$ of Open Ilearth and $100 \%$ of lleatemer． |  |  |  |  |  |  |  |  |
|  | 3，413，783 | 55.35 | 165.080 | 27.22 | 3，578，563 | 52.83 | 807.870 | 4.43 |
|  | 3，149，294 | 56.55 | 219，621 | 40.10 | 3，368，915 | 55.07 | 842.229 | 4.00 |
| Aprli | 3．621，17 | 58.71 | 217.930 | 33.93 | 3，839，127 | 56.67 | 866,620 | 4.43 |
| May | 3.122 .418 | 52.27 | 230，336 | 39.22 | 3．352，774 | 51.11 | 781.532 | 4.43 |
| June | 3，314，012 | 50.34 53.48 | 190.4678 209.868 | 31.40 | 3，293，164 | 53．64 | 821.417 | 4.48 |
| July | 3，308，029 | 83．45 | 256．798 | 42.43 | $3,364.827$ | 52.74 | $8 \mathrm{80} \mathrm{\% .422}$ | 4.12 |
| Aug． | 3.465 .515 | 64.29 | $27 \mathrm{fi479}$ | 4358 | 4.241 .94 | 62．62 | 957.561 | f． 4 |
| 8 mas． | 26，998，925 |  | 1，766，619 |  | 28，765．544 |  | ド2\％，500 | 4.72 |
|  | 4，436，702 | 74.45 | 332，676 |  | 4，769，46S | 72.87 | 1．114．362 | 4．28 |
|  | 5，626，685 | 91.22 | 453，492 | 74.71 | 6，080，177 | 89.75 | 11372．500 | 4.43 |
|  | 5，694．788 | 95.34 | 452.995 | 77.12 | 6，147．783 | 93.71 | 1，433，050 | 4.29 |
|  | 5，468，880 | 88.87 | 353，134 | 58.35 | 5，822，014 | 86.13 | 1，917，198 | 4.42 |
| rotal | 1 ．．．48，226，070 | 66.43 | 3，358，916 | 47.05 | 51，5S4， 986 | $6: 70$ | 989，355 | \＄2．14 |

[^0]
## District Steel Rates

Percentage of ingot Capacity Engageat In Leating Districts

| Week ended |  | Same weck |  |
| :---: | :---: | :---: | :---: |
| Sept． 7 | Chunge | 1089 | 1314 |
| 72 | －14．5 | 55 | 32 |
| 84.5 | $-14.5$ | 51 | 3s |
| 79 | $-10$ | 4 ti | 31 |
| 75 | $-9$ | 57 | 4.1 |
| 80 | $-18$ | NU | $4!3$ |
| 81 | －9 | tity | －13．5 |
| 90.5 | None | ties．s | 49 |
| 88 | None | 70 | 54 |
| 85 | $+5$ | 70 | （ti） |
| 68 | －9 | 57 | 60 |
| 80 | None | 62 | 42 |
| 94 | ＋ 1 | 49\％ | 67 |
| 82 | －9．5 | 62 | 41.5 |

was added，ralsing the rate 5 points to 85 per cent in splte of Labor day closing．

Buffulo Maintained $90: 2$ per cent for the third week．Two mills will add open hearths thts week．
loungstown，O．Off 9 points to 75 per cent．Republic Steel Corp． suspended one open hearth and Sharon Steel Corp．added one． Schedule for thls week is 86 per cent．

Chirago－Steel production last week was at about $842 / 2$ per cent of capacity，down $14^{1 / 2}$ points．

Central eastern seaboard－De clined 10 points to 79 per cent，the we：k＇s average．

## August Ingot Output

## Near Highest Records

E Production of openhearth and bessemer ingots in August totaled $6,033,037$ net tons，according to the American Iron and Steel institute． Thes was the thirc highest monthly output in history，exceeded only by 6，080，177 tons in October and 6． 147，783 tons in November， 1939.

August output was 8 per cent larger than July＇s and 40 per cent over Aucust last year．

Daily average production in Au－ gust was $1,361,559$ tons，represent－ Ing 89.72 per cent of cabacity，com－ pared with $1,265,853$ tons， 83.40 per cent，in July．In August last year daily avorage output was 95,561 tons， 62.62 per cent．

Eight months production this year was $40,306,231$ tons，compared with $28,765,514$ tons in the corre． sponding period last year．

## New Osborn Division

－J．M．\＆e L．A．Osborn Co．， Cleveland，has purchased assets and good will of the Molse Steel Co． Cincinati．This new Osborn divi－ slon will be conducted by the for－ mer Molse personnel and from the same location， 3240 Spring Grove avenue，where stocks have been greatly increased．

## 20 Per Cent of July Steel Products Exported

- Steel products made for sale in July totaled 4,173,839 net tons, according to the American Iron and Steel institute. This was nearly 10 per cent more than $3,802,485$ tons made in June.

The amount exported in July was 835,385 tons, or 20 per cent of output. This is the highest proportion shown since the institute began to report figures monthly, beginning
with Aprll this year. Comparisons:

|  | Output | Exported | Pct. |
| :---: | :---: | :---: | :---: |
| April | 3,005,218 | 371,532 | 12.37 |
| May | 3,576,860 | 476,761 | 13.33 |
| June | 3,802,485 | 601,668 | 15.8 |
| July | 4,173,839 | 835,385 | 20.0 |

Output in the first seven months thls year was $24,896,782$ tons; comparative figures for the identical months last year are not available. The tonnage for the first nine months last year was $22,572,553$, and for the 12 months, $34,687,861$.
Exports in the seven months this year amounted to $3,606,186$ tons.

## Bessemer Flame Control Process Patented

- Patents for manufacturing steel by the bessemer flame control proc ess have been granted Jones \& Laughlin Steel Corp., Pittsburgh. The process of controlling the end point of the bessemer blow by an arrangement of photo-electric cells ellminates over and under blowing the bessemer charge, assuring und. formity of quallty. (See Steed, May 22,1939, p. 54 .)


Total limber of Coxanies Included

# Pig Iron (Dperating Rate Advances: Close to 90 Per Cent in August 

- UNITED STATES' production of coke plg iron in August averaged 136,599 net tons daily, highest since November, 1939, when daily output was 138,883 tons. It was more than 4 per cent greater than July's daily average, 130,984 tons, and compared with 96,122 tons in August a year ago.
With three more stacks put in blast during the month, the industry's operating rate increased 3.8 points.
Production in August totaled 4,234,576 tons, highest for any month since July, 1929, when output was $4,236,412$ tons. It was 4.1 per cent greater than July's $4,060,513$ tons. It exceeded that of any August since this publication started com-

| MONTHL | Primad | CTION |
| :---: | :---: | :---: |
|  | 1939 | 1938 |
| Jan..... . 4,024,556 | 2,436,474 | 1,618,245 |
| Yeb...... 3.304,368 | 2,307,405 | 1,463,093 |
| March. ... 3,270,575 | 2,680,446 | 1,646,636 |
| Mprll .... 3,139,043 | 2,301,963 | 1,534,569 |
| May. . . . . 3,497,157 | 1,923,625 | 1,412,249 |
| Jupe . . . . 3,813,092 | 2,373,753 | 1,188,037 |
| July. . . . . $4,060,513$ Aug. . . $4,234,576$ | $2,638,760$ 297974 | 1,338,645 |
| Tot. 8 mo. 29,343,880 | 19,642,202 | 11,916,450 |
| Sept | 3,218,940 | 1,885,069 |
|  | 4,062,670 | 2,315,599 |
|  | 4,166,512 | 2,561,060 |
|  | 4,219,718 | 2,478,244 |
| Total | 35,310,042 | 21,156,422 |

piling monthly pig iron production statistics in 1918.
Production in the first eight months this year was $29,343,880$ tons, approximately 50 per cent more than $19,642,202$ tons produced in the period last year, and nearly two and a half times as large as in 1938. Total output for the first eignt months in 1937 was $30,116,405$ tons; for the period in 1938 it was $11,916,450$ tons.
Average daily production for the eight months this year was 120,262 tons, well above 80,832 tons, the comparative figure last year. It was lower, however, than 123,935 tons, dally average for the eight months in 1937.
The industry's operating rate in. meased, for the fourth consecutive month from April's low of 68.9 per cent, to 89.9 per cent of capacity. This compared with 86.1 per cent operations in July this year, and 62.4 per cent in August last year. It was highest since November, 1939, when operating rate was 90.3

\left.| AVERAGE DALLY PRODUCTION |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
| Net Tons |  |  |  |  |$\right]$

per cent, and exceeded the 85.7 per cent rate in August, 1937.

Stacks in blast Aug. 31 totaled 190, three more than in July, and highest since December, 1939, when 191 were active.
Five blast furnaces resumed in August, and two were blown out or banked. One merchant stack resumed and one was blown out. In the steelworks or nonmerchant classification, four stacks resumed and one was blown out. Furnaces resuming in August:
In Indiana: Madeline No. 5, Inland Steel Co. In New York: One Buffalo, National Steel Corp. In Ohio: Martins Ferry stack, Wheeling Steel Corp.; One Otis, Otis Steel Co., which had been down for rebuilding. In Pennsylvania: Bethlehem B, Bethlehem Steel Co.
Stacks blown out or banked: In Ohio: Hamilton No. 2, Hamilton Coke \& Iron Co., for rebuilding. In Tennessee: Rockdale furnace, Tennessee Products Corp.
Twenty-five pig iron producers, both merchant and nonmerchant
acgist heon frodection
Nit Ton*

|  | No. in blast last day of |  | -Total Tonnages Non- |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Aug. | July | Merchant | merchant |
| Alabama | 18 | 18 | $105.385^{\circ}$ | 193, $731{ }^{*}$ |
| Illinols | 14 | 14 | 58, 4\%4 | 325,430 |
| Indlany | 17 | 16 | 53 | 476,455 |
| New York | 13 | 12 | 100.966 | 199.235 |
| Ohio ... | 42 | 41 | 130,789 | 824,157* |
| Penns. | 64 | 63 | 103,749 ${ }^{\circ}$ | 1.217.253* |
| Colorada | 3 | 3 |  |  |
| Michigan | 4 | 4 |  |  |
| Minnesola | 2 | 2 | 24,635 ${ }^{\text {a }}$ | 150,652* |
| Tennessee | 0 | 1 |  |  |
| Utah | 1 | 1 |  |  |
| Kentucky | 2 | 27 |  |  |
| Maryland | 6 | 4 |  |  |
| Mass. | 1 | 1. | 17.0m) | 306,543 |
| Virgtaia | 0 | 0 |  |  |
| West Va. | 3 | 31 |  |  |
| Tolal | 1(4) | 187 | 541.060 ${ }^{\circ}$ | 3,693,53\% |

*Includes fernomangantse and splereletsen.
and possessing an aggregate of 104 stacks, reported all their furnaces were in blast Aug. 31. Among the large producers included were: Bethlehem, Republic, Jones \& Laughlin, Sloss-Sheffield, Inland, Wheeling, Tennessee Coal \& Iron, and Colorado Fuel \& Iron.

## Develops Process for Making Powdered Iron

- Process for making pure iron powder has been developed by the Glidden Co., Cleveland, according to announcement last week by P. E. Sprague, vice president. A plant has been built and is in operation at Hammond, Ind., headquarters for the Metals Refining Co., a Glldden division.
Considered a metallurgical triumph in the building and control of apparatus to produce a powder of the necessary particle size, purity and stabillty, it is sald, the

RATE OF PURNACE OFERATION
(Relation of Production to Capaeity)

|  | $1940{ }^{1}$ | 1939' | $1948{ }^{3}$ | 19374 |
| :---: | :---: | :---: | :---: | :---: |
| Jan. | 85.4 | 51.0 | 33.6 | 76.6 |
| Feb. | 75.0 | 59.5 | 33.6 | 79.5 |
| March | 69.5 | 56.1 | 34.2 | 82.5 |
| April | 68.9 | 49.8 | 38.4 | 83.7 |
| May. | 74.2 | 40.2 | 29.4 | 84.3 |
| June | 83.6 | 51.4 | 25.5 | 76.6 |
| July | 86.1 | 55.0 | 28.2 | 82.9 |
| Aug. | 89.9 | ¢ 2.4 | 3.4 .8 | $\times 5.7$ |
| Sept. | - | 69.7 | 40.5 | 88.7 |
| Oct. | . | 85.2 | 48.0 | 68.4 |
| Nov. |  | 90.3 | 55.0 | 49.3 |
| Dec. |  | 88.5 | 51.4 | 35.6 |

[^1]process may make avallable alloys not now known.
"It is a difficult and critical operation because of the high temperatures involved," Mr. Sprague stated. He described the process as continuous with raw materials going in one end of the apparatus and the powder coming out the other. The ore is not permitted to melt. A major problem is in keeping the powdered lron, after extraction of the oxygen, from reuniting with the oxygen of the air.

Malleable iron castings production in July totaled 38,872 net tons, compared with 34,700 tons in June and 28,836 tons in July, 1939, according to the bureau of the census. Production in seven months this year amounted to 287,028 tons, compared with 231,870 tons in the corresponding period last year.

# MEN of INDIISTRY 

(2) CHESTER H. NORTON, purchasing agent, Boston works of AllisChalmers Mfg. Co., has been transferred to the company's main offices in the West Allis works at Milwaukee, as assistant general manager of purchases. H. W. Hauser, associated with the purchasing department in Milwaukee, will succeed Mr. Norton as purchasing agent. Boston works.

Warner G. Tilsher has been appointed factory manager, TaylorWinfleld Corp., Warren, O. He has been active in the development and manufacture of aircraft, streamline trains and other light weight structures fabricated by resistance welding.
E. Arthur Baldwin and Otto Pruessman, vice presidents and European and Far eastern managers of International General Electric Co.. respectively, have retired.
R. E. Howe, president, Appalachian Coals Inc., Cincinnati, has been appointed a member of the resolutions committee, National Association of Manufacturers.
F. E. Barth, formerly associated with Graton \& Knight Co., Worcester, Mass., has joined National Motor Bearing Co., Oakland, Calif., manufacturer of oll and grease seals and shims, as industrial sales manager.

Virgil Jordan, president, National Industrial Conference board, New York, has announced appointment of Fairfleld E. Raymond as administrative assistant. Mr. Raymond has been director of a joint patent inquiry sponsored by the National

d. F. Ibrown

W. G. Tilsher

Association of Manufacturers, the Conference board, and the American Engineering council.
J. F. O'Donnell, assistant sales manager, merchandising division, Westinghouse Electric \& Mfg. Co., East Pittsburgh, has been placed in charge of the division's Pacifle coast sales cperations. C. A. Meler, formerly Pacific coast manager, is now manager of utlility sales in that district.

Wallace $W$. Leipner, active in architectural engineering 20 years, has resigned from Arthur G. McKee \& Co., Cleveland, to become head of the porcelain enameled roofing and siding division, in charge of sales and engineering, Porcelain Steels Inc., Cleveland.
J. F. Brown has been appointed construction engineer, Chicago district, Carnegie-Illinois Steel Corp. He has been succeeded as chief engineer of South works by A. J. Hulse. Mr. Brown joined the South works in 1901 in the civil engineering department, and successively served as assistant chief civil engineer, chief civil engincer, construction engineer, acting chief civil engineer, and chief engineer. Mr. Hulse joined the corporation in 1936 as assistant chief englneer at South works. He was transferred to Pittsburgh as staff engineer three years later and remained there in that capacity until his present appointment.

Milton P. Higgins, the past two years resident manager of Norton Co.'s electric furnace plant at Chippawa, Ont., has been transferred to Worcester, Mass., as assistant manager of abrasive production and research. Mr. Higgins has been
with Norton about 12 years, and prior to the Chippawa post, was manager of sales research at Worcester and in special sales work in the Chicago territory. He is a director of Norton Co. and also of its Behr-Manning division.
E. C. Herrington, the past five years chief engineer, Herrington \& Randall Inc., Detroit, industrial oven builders and designers, has joined Ferro Enamel Corp., Cleveland. He will head Ferro's industrial oven division, recently expanded to offer a complete line of oven and finish production equipment.

George E. Smith, formerly general manager of operations, United Wall Paper Factories Inc., Chicago, has been elected a vice president and treasurer, Crosley Corp., Cincinnati. His prior assoclations include Nash Kelvinator Co., Budd Wheel Co. Edward G. Budd Mfg. Co. and Gimbel Bros., Philadelphia.
L. W. Reinken, electrical engineer. formerly with International Telephone Development Co., has Joined W. Green Electric Co. Inc., New York. Mr. Reinken recently returned to the United States after cight years in Europe where he had been engaged in supervising the promotion of selenium rectifiers for in ternational Telephone Development Co.

Thomas J. Moore has been appointed manager of sales, Hill-Chase \& Co., Philadelphia. He was first affiliated with his father, then Philadelphia manager of Halcomb Steel Co., and when his father died he succeeded him as manager. In 1920

A. J. Hulse
he organized Rupp-Moore Co., distributing tool and cold finished steels. This business continued unif 1927 when he became district manager for Columbia Steel \& ShaftIng Co., and in 1929 took over additlonal duties as manager of Edgar T. Ward's Sons Co., Philadelphia.

Donald C. S:haffert is now assistant chief chemist at Coppetweld Steel Co.'s plant in Warren, O. He was previously associated with Re public Steel Corp., Diebold Safe \& Lock Co., Canton Forge \& Axle $\mathrm{CO}_{0}$, and Steel and Tube division of Timken Roller Bearing Co.

Russell W. Harris has been appointed district manager for Rustless Iron \& Steel Corp., Baltimore, in charge of the northern Ohio district, with headquarters in the Society for Savings bullding, Cleveland. The past 13 years Mr. Harris had been identlfied with the Cleveland sales office of Colonial Steel Co. and Vanadium Alloys Steel Co.

Roy Hunter and P. Robert Foseld have been appointed to the sales staff of Gisholt Machine Co., Madison, Wis. Mr. Hunter will be in charge of the Cleveland office and will cover northern Ohio and northwestern Pennsylvania. He formerly was associated with International Machine Tool Co. Mr. Foseld is now a member of the castern sales division. He will make his headquarters at Philadelphia and will cover eastern Pennsylvania, southern New Jersey, Delaware and Maryland.

# Arimy. Navy Awarils \$118,7(1)9,87: 8.5 Per Cent Is for Airerait 

- NOTABLE contracts announced last week by United States war department were to Lockheed Aircraft Corp., Burbank, Calif., for 410 interceptor pursuit airplanes with spare parts, costing $\$ 30,278,787$, and to Boeing Aircraft Co., Seattle, for 277 heavy bombing airplanes with spare parts, costing $\$ 70,449,955.20$.

The number of airplanes now contracted for under 1940-41 appropriations is 2677 , out of 4247 authorized.

Total of two contracts, $\$ 100,728$,742.20 , is 85 per cent of all awards announced by the war and navy departments last week.

Other contract awards by the war department:

Ordnance Department Awardw Acme Machine Tool Co., Cincinnati, lathes, $\$ 26,136$.
Ajax Electrolhermic Corp., Trenton, N, J.. furnaces, $\$ 9625$.
Aluminum Co. of America, Washington, magneslum, $\$ 20,416$.
American Cyanamid \& Chemleal Corn.. Maynard, Mass., ammunition components, weapons, $\$ 53,375$.
nents, weapons, Amerlean Locomotive Co., Rallway Steel American Locomotive Co., Rallway steed
Spring division, New York, springs, Spring division, New York, sprims, American Lncomotlve Works, Schenectady. N. Y., arthlery limbers, $\$ 24$, American Saw matnting machines. ettstown, N. J., painting machines, $\$ 7200$.
American Stee] \& Wire Co., Baltimore, steel. 845,313 .
Ausiln-Hastings Co. Inc., Cambridec. Mass., drlll presses, drllls, $\$ 76,969.40$.

## Plan Industrial Advertisers' Conference



- Commitfee arranging for conference of advertising and marketing executives af Detroif, Sept. 18-20, under sponsorship of National Industrial Advertisers' association. Seated. left to right: Ralph L. Wolle and T. B. Moule. Seiler, Wolle \& Associates Inc.: Lloyd R. Vivian, Ditzler Color Co., chairman: Henry G. Doering. the Truscon Laboratories: E. C. Howell. Carboloy Co. Inc. Standing: Philip Linne. Owens-Corning Fiberglass Corp:; Charles M. Gray. Charles M. Gray \& Associates: William J. Chappell, Timken-Detroit Axle Co.; A. F. Denham, Denham \& Co.. all of Detroit

Barret, Leon J., Co. Woreester, Mass., oll extractors, $\$ 1119.50$.
Bausch \& Lomb Optical Co., Rochester. N. Y., telescople sights, $\$ 140,831.10$. Bergram Mechanical Fig. Co. Ine., New Britaln, Conn., grinders, $\$ 2856$.
Bliss, E. W., Co., Bronklyn, N. Y., nuachines, presses, $\$ 77.669$.
Brown \& Sharpe Mrg. Co., l'rovidence, I2. I., milling machines, gages, $\$ 57,872.17$ Bryant Machincry \& Engincering Co.. Chicago, drll presses, 55220 .
Budd, Edward G., Mrg. Co., Philadelphla, ammunition components, $\$ 18,157.91$.
Chambersburg EngIneering Co., Chambersburg, Pa., board hammers, \$40,302. Chicago Pneumatie Tool Co., New York, alr compressors, $\$ 7195$.
Cincinnati Nilling Machine and Cincinnati Grinders Inc., CIncinnatl, broaching, grinding, miling machlnes, $\$ 118$, 985.92.

Continenial Motors Corp., Muskegon. Mich., parts for motors, $\$ 150,409.10$. Damond T Motor Co., Chicago, trucks. \$104,584.
Dochler Dle Casting Co., Pottstown, Pit, castings, $\$ 1170.18$.
DuPont, E. I., de Nemours \& Co., Smokeless Powder division, Wilmington, Del. ammunition components, weapons, \$5s. 500.

Eastern Tool is Mig. Co. Bloomitell, N. J., springs, $\$ 7699$ 84.

Eclipse Machine diviaion, Bendix Ayta. flon Corp.. E'lmilra Inclghts, N. Y., ammunltian, $\$ 88,570$.
Ex-Cell-O Corn., Detrolt, grindine matmhines, \$2879.10.
Farquhar Ca.. A. B., Itd. Yurk, l'is presses $\$ 13.650$
Firestone Tire \& Rubbor Co., Akron, O nutlet valve guards, $\$ 3100$.
Fitzsimans Co., Youngsiown, O., steel har, $\$ 2453.62$.
Frick Co., Wasnesboro, Pa, machines,
Gardner Denver Co., New York, air compressors, 86430 .
General Machinery Corp., Niles Tiwal Works divislon, Hamllton, O., parta for lathes, \$19.695.
Geometrle Tool Ca. New Llaven, Cunn chasers, taus, \$2044.68.
Glsholt Machine Co., Madison, Wis., lathes, $\$ 6615$.
Greenteld Tay \& Dte Corp., Greontheld. Greenteld Tay \& Dle
-1ass., gages, $842,357.95$.
Hass. gages, $\$ 42,357.95$.
Hanson-Whitney Machine Co., Jlartfond, Conn., milling machines, gages, $\$ 24$, 421.69.
llardinge Brus. Inc., Elmira, N. Y.. lathes. S10.R56.10.
Hart, Earle, Wondworking Mach. Cu)., Chlrago, planers, $512,019$.
Harvery Metal Corp.. Chleago, ammunlthon compments, $\$ 90,930$.
Heald slachine Co., Worcester, Mass. grinders and boring machines, \$15. 731.84.

Hendey Machine Co., Torrington, Conn. lathes, $\$ 21525$
Hercules Powiler Co., Witmington. Del.. ammunition components, weapons, \&53.: 000
Illinots Giage Co., Chicago, gages, \$4. 504.24.

Internathonal Tonl \& Engineering (.o. Chicago, gages, \$2491.25.
Kearney \& Trecker Curp. milling machines, $\$ 21,900$.
Kemier Chemical Co Inc. Thilat ammuntion cal Conen Phladulphia ammunition components, weajons, \$13, 140.

KIngsbury Machine Towl Corp., Kerne. N. H., spindle machines, $\$ 25,408,50$.

Krueger, H. R., \& Cu., Detrolt, Arılling machines, $\$ 82,635$.
Lapointe Machine Tool Co., Hudson, Mass., broaching machines, $\$ 140,151$. 35 .

Leßlond Rt. K.. Machine Tool Co., Cincin FatL laftes, $\$ 2060$
Lera, E-Inc, New York, polishers, $\$ 1450$ Leland Gistord Co - Worcester. Mlass. drilline machines, $\$ 19.336$.
Levine, samuel, New York, gate valves

Lindbere Engineering Co. Chlcare. fur-naces- 53088.
Logansport Machine lne, Laxanspart, Ind.. shaving machines, \$1t.200.
Lukers Steel Con Boston, steel plate, $\$ 8117.87$.
ndagra Mfg. Co. Inc, Haskell, N. 1., ammunition components, weapons. s342-t2 Manhatian Perforated Melal Co. Inc. Long lsland, N. In brass $\$ 1790$.
Narshall \& Huschari Mech. Co, Chicago, stralghtening presses, $\$ 4301$
Midvale Co, Nicetown, Philadelphia, forginge, siox,080.
Monarch Machlne Toal Co.. Newark. N. J. lathes \$21,350.

National Pneumatic Co. Inc, Rahway, N. J. ammunition components, weapors se29:35.38.
New York Thread Grinding Corp- New York, gages, \$1975.
Nlagara Machine E Tool Works, Burato presses, $\$ 1616$.
Oliser Instrument Co, Adrian Med. grimilng machines, siass.
Oliver Iron E Steel Corp. Pitssburgh. eyebolt lirting plurs $\$ 16,727.53$,
Feters Engineering Ca, Philadelphia, machines 51850.
Petersson Bras. Toul Con Milford, Mase. sager smang.
Penn Supply Co, Jersey City. N. J. plpe. $\$ 1094.69$
Prati \& Whitney diwislon, Ntles-RementFand Co, Hartfond, Conn., resnoducing machines lathes millers, sloa, $2 \boldsymbol{z} \frac{73}{13}$.
Precise Tool \& Mis. Co. Farmington. "tich, gages, 5issa.
Precise Tool A Mif. Con Sprinetleld Mass gacek $533^{2} 2$
Prentliss, Henry. \& Co. Inc. Boston, revolving tables. si21א.
Production Machine Co. Greenfleld, Mase., polkhing machines. $\$ 2150$.
Reminglon Arms Co. Inc, Brldseport Ounn_ ammunition, $\$ 12,649.20$.
Revere Copper \& Brass Inc. Rome dushslon. Rome. X. Y, brass tubink. \$17.7.10. Rivett Lathe E Grinder Ine., Boston. Lathes 5aco5.
Raberts, J. T. Bnas Inc. Baltmore. sage valves $\$ 1012.40$.
Rockwell, w, $\mathrm{S}, \mathrm{N}$, New lork, forge furnaces, $\$ 49.400$
Scintilla Magneto diviston, Bendix Avtation Corp. Sldney, N. Y. parts for magnelos, 5sc2264.
Scovill MPR. Co, Waterbury, Conn, ammunition componenis 547,575
Shartle Erox Machine Co_ Middletown. O_ RHing sets. \$1s81.
Shipley, $W$ : E. Machinery Co.. Ihuadelphia screw machtnes, sT076.
Smithe, $F$. I., Machine Co. Inc. New York, machines, 5 se00.
Slar Machine \& Tool Co. Clroblanas. gapes, 54287.
stedfast Roulston Inc. Reston, shapern 52096
Stewart Bolling \& On. Inc, Cleveland. machines, \$350.
Stove Healing \& Vent. Cow Wiashingion. compressars seme.
Struthers Wells Titusville Corp.. Titusville, Pa- forgings, 8207.575
Sturtevant, B. F., Co_ Springineld, Mass campressors \$sirg.14.
supertor sheet steel $\mathrm{Co}_{4}$ New york. terne plate, 52500.
Sulnd Machinery Co., Philadelphia, lathes \$13,002
Tafr-Pelrce Mrí. CO- Woonsocket. H. $1 .$. gages esmon.
Townsend. Samuet $\mathrm{F}_{\mathrm{n}}$, Lawn Nower Ln. Burombeld, N. J. ammuntion s34.5Ty. Tonv Electric Miz. CO, Cleveland. gaging machines, 5350.
Troy Tool \& Gage Co . Detrolt, giages. 5112.

United-Cart Fastener Corp- Combridge. Mase machines $\$ 3000$.
i Please turs to Page 291

## Purchases Under Walsh-Ilealey Aet

## ila week ended August ift

Iron and Steel Products

American Car \& Foundry Co. New Iork
American Chain \& Cable Co.. Page Steel and Wire division, Monessen. Pa.
Amertican Brake Shoe \& Foundry Co., American Forge division, Chicago
American Rolling Mil Co.. Mddletown. $O$.
Amertcan Type Founders Sales Corp., Washington
Bethlehem Steel Co., Bethlehem, Pa,
Budd wheel $\mathrm{CO}_{\mathrm{m}}$ Detrolt.
Carnegle-Illinols Steel Corp., Washington
Chrysler Alrtemp Sales Corp., Dryton, O.
Colt's Patent Fire Arms Mrg. Co., Hartford, Conn.
Crane Ca. Washington
Crucible Steel Co. of America, New York
Dana Tool D-Nast Machinery Co., Phlladelphia
Dlekglesser, Charles J_ ${ }^{[ }$Co., Derbs: Conn.
Erie Forge Co, Erle, Pa.
Hibbard Spencer Bartlett \& Co. Chicago
Inland Steel Co., Chleago
Jackes-Evans Mig. Co., St. Louls
Jessop Steel Co. Washincton, Fa.
Karp Meral Products Co. Ine, Brooklyn, S. Y. Lasalle Steel Ca. Chleago
Lukens Steel Co., Coatesville, Pa.
Mergenthaler Linotype Co.. Brooklyn, N.
Midsale Co. Philadelphia
National Forge \& Ordnance Co, Washington
National Pneumatic Co. Inc., New York
Nailonal Tube Cn, Pitisburgh
Parish Presked Steel Con Reading, Pa.
Pennsylvania Forge Corp. Phlladelphia
pllsburgh Steel Ca, Pltisburgh
Pittsburgh Steel Foundry Carp, Glassport, Pa.
Reeves Sieel \& Mrs. Co. Dover, O.
Scrimgeour, Wm., washingion
Sheftleld Steel Corp., Kansas City, Mo
Stewart-Warner Corp.. Indianapolis
Worthington Pump \& Machinery Corp., Harrison, N. 3
York Safe \& Lock Ca. York, Pa.

## Nonferrous Mefals and Alloys

Aluminum Co of America, Washington
Aluminum ingots $\$ 15,375.00$
Aluminum Cooking Ulensll Co., New Kensington, Pa. Amerlean Brass Co., Waterbury, Conn.
Chase Brass \& Copper Co. Inc, Waterbury, Conn
Gorham Co, Erovidence, R. I
Intermational Nlekel Co, Inc., New York
Onelda Letd.. Onelda, $\underset{\text { in }}{ }$
Phelps Dodge Rettining Corp, Siew York
standard Pressed steel Co., Jenkintown. Pa
Thompson Products Ine, Detrolt

## Machinery and Other Equipment

Nax Mrg. Co Cleveland
American Laundry Machinery Co. Cincinnats
Austin-Ilastings Co. Inc. Cambridge. Mass.
Brown \& Sharpe Mig. Co, Providence, R. I.
Bullard Co , Bridgeport. Conn.
Caterpillar Tractor Co., peoria, Ill.
Clncinnatl Milling Machine foincinnatl Crinders Inc Clacinnati
Commercla! Iron Wiorks, Portland, Oreg.
Essley, E. L, Machinery Co. Chleago
Federal Machinery Sales Ca, Chicago
Food Machinery Corp. Los Angeles
Foote-Burt $\mathrm{Co}_{3}$, Cleveland
Fulton Sylphon Co. Knoxylle, Tenn,
Georgla Iron Works, Augusta, Ga.
Gisholt Machire Co, Madtson, WIsc.
Harnischfeger Corp, Milwaukee
Harris-Sesbold-Potler Co. Cleveland
Kearney \& Trecker Corp. Mllwaukee
Lloyd \& Arms Inc. Philadelphia
Ladge 太 Shipley Machine Tool Ca. Cincinnaty
Marshall \& Huschart Machinery Con Chlcago
Neff Kohlbusch \& Bissell Inc. Chicaro
Niles-Bement-Pond Co. Prait \& Whitney division. West Hartford, Conn.
Osgood Co. Marion, 0.
Prentlss Henry, \& Co. Ine, Boston
Robbins \& Myers Inc. Springatd. 0.
Sebastian Lathe Co. Cincinnats
Smith. T. L. Co, Milwaukee
Stediast \& Roulston inc., Boston
Timken-Detroit Axle Co, Wisconsia Axte division, Oshkesh H"s.
Watertury Farrel Fdry. \& Mach. Co. Waterbury, Conn.
Wation-Stllman Co. Roselle. N. J.
GRAND TOTAL.
-Estimated.

## Army and Navy Awards

(Concluded from Page 28)
U. S. Tool Co. Inc., Ampere, N. J., milling machines, $\$ 29,510$.
Vince Corp., Detroit, ages, \$1543.80. Virginia Rubatex Corp., Bedford, Vi., valves, $\$ 6972$.
Waltham Watch Co., Waltham, Mass., latham watch co., 250.

Warner \& Swasey Co., Cleveland, Inches, 41.985 .50 .

West \& Dodge Thread Gage Co. Inc. Heston, gazes, $\$ 3,832.52$.
Westinghouse Electric \& MIg. Co., Spring nell, Mass., furnaces, \$7485.
Wlekwlre Spencer Steel Co., New York, Wheckwlre Sp
wire, $\$ 1204$ Wire, $\$ 1204$.
wilder
Wider, IR. S., Inc., Watham, Mass., meroprojectors, $\$ 4329.60$.
Willamette Hester Co., New York, trucks, $\$ 4550$.
Wisconsin Axle division, Timken Detroit Axle Co., Oshkosh, Wis., differential assemblies, $\$ 16,075$.
Tels, Carl, Inc., New York, optical equipmint, $\$ 2953.20$.

## Quartermaster Corps Award n

Bray, F. L., Const. Co., Oklahoma City, Okla., Officers' quarters, Southeast Air depot. Mobile, Ala., \$60,208.
Diamond $T$ Motor Car Co., Chicago trucks, $\$ 58,401.63$.
Doehler Metal Furniture Co. Inc., New York, cots, 386,500 .
Fargo Motor Co., Detroit, Trucks, $\$ 255,614$. Fuller, George A., Co., New York, tomporary buildings, $F t$. Dix, N. J., $\$ 5$, 531,000.
Hagstrom Construction Co., St. Paul, as sembly line at Savanna Ordnance depot, \$949,319.
Holleman Motor Co., Washington, trucks $\$ 490$.
Joseph Light Construction Co., Washington, temporary buildings, Ft. Geo. G Meade, Md., $\$ 235,963$.
Lehr Construction Co., St. Joseph, Mo., temporary buildings, Ft . Leavenworth Kans., \$126,766.
Oehler. Chas. H., Galveston, Tex., Lemporary buildings, Fl. Crockett, Tex., $\$ 96,449$.
Owen-Ames - Klmball, Grand Haplus Mich., hospital buildings, Camp Custer, Mich., \$362,000.
RIte, A. J., Construction Co., Dallas, Tex., repair shop, Southeast Air depot, \$1.350,000.
Rommel, George H. Co., Louisville, Ky. storage warehouses, Jerrersonville, Ind $\$ 1,262,800$.
Smith, A., \& Co. of Illinois, Chicago, temporary housing, Ft, Sheridan, Ill., $\$ 285,000$
Yellow Truck \& Coach Motor Co., Chicargo, trucks, $\$ 921,343.72$.

## Corps of Engineers Awards

American Car \& Foundry Co., Berwick, Pa., ponton equipment, $\$ 241,976$. Wallace \& Tlernan Co., Belleville, N. J., mobile water purification units, $\$ 45$,710.53.

## Chemical Warfare Service Awards

Nolan Co. Inc., Washington, plumbing supplies, $\$ 4698.58$.

United States navy department last week announced the following contract awards:

Alexander, Harry, Inc., New York, power plant improvement, $\$ 185,000$.
Phoenix Bridge Co.. Phoenixville, 1'a.. structural steel for extension to building at Boston navy yard, \$14,045.
Hurray of Supplies and Accounts Awards
Austin-Hastings Co. Inc., Cambildee, Mass., planers, shaper, \$45,725.60.
Balfour, Guthrie \&e Co. Id., San Francisco, pile tron, \$5377.
Brown \& Sharpe Mra. Co. Providence, F. I. automatic screw machines. \$10.
384.05.

Carey Machinery \& Supply Co.. Ball. more, lathes, $\$ 23,495.35$.
Caterpillar Tractor Co., Гearha, Ill., tracetor, \$5922.
Cincinnati Milling Machine \& Cincinnati Grinders Inc., Cincinnati, millers, grindGrinders $\$ 18,039.10$.
ers. $\$ 18,039.10$. land City. N. Y., distribution panels, $\$ 35,506.16$.
Consolidated Machine Tool Corp., Rocheser, N. Y., lathes, $\$ 87,960$.
Danforth, Richard S., San Francisco, anchars, $\$ 40,824$.
Chars, $\$ 40,824$. Flectrle Supply Co. Inc., Boston,
wire, $\$ 37,142.84$.
Electric Boat Co., Bayonne, N. J., moElectric Boat Co., Bayonne, N. Ja mo-
tors, controllers and spare parts, tors,
Electric Heater Co, Bridgeport, Conn barrels, with rod and eye, 37002.30 .
bale Foundry Co, Eric, Pit, forging ham File Foundry
Mar, $\$ 27,570$.
Gallmeyer \& Livingston Co., Grand Rap-
Ids, Mich., grinding machines, $\$ 3665.0 \mathrm{Ki}$.
General Machinery Corp., Hamilton, U. lathes, $\$ 588,598$.
General Motors Corp., Chevrolet division,
Detroit, automobiles, $\$ 53,040.86$
Gisholt Machine Co., Madison, Wis., LurGishoit Machine Co.
ret lathes, $\$ 45,678$. Cincinnati, openside Gray, $\mathbf{G} . ~ A .$,
planer, $\$ 45,913$.
planer, $\$ 45,913$. Co Chicago tool room
Hannifin Mfg. Co., Chicago, tool room type combination machines, $\$ 5025$
Hendey Machine Co., Torrington, Conn.. precision lathes, $\$ 12,638$.
Howe Fire Apparatus Co., Anderson, Ind. Ire pumping engines, $\$ 44,381.69$.
Kollsman Instrument division of Square D Co., Elmhurst, N. J., tubes, compasses. 563,000 .
Lloyd \& Arms Inc., Philadelphia, drilling machines, $\$ 6820$.
Lockheed Aircraft Corp., Burbank, Calls., airplanes, $\$ 114,235.97$.
Mero-Westco Inc., Bettendorf, Low n, internal grinder, $\$ 21,119.15$.
Mueller Brass Co., Port Huron, Mich. naval brass, $\$ 9956.20$.
Potter \& Johnston Machine Co., Pawtucket, R. I., turret lathe, 38526.50
Pratt \& Whitney division, Nlles-Bement Pond Co., West Hartford, Conn., milling machines, $\$ 12,768$.
Revere Copper \& Brass Inc., Baltimore brass, copper, $\$ 14,498.54$.
Ruckstell-Burkhardt Engineering Co Detroit, auxiliary power units, \$114, 154.80.

Schrader's, A., Son division of Scovil Mfg. Co. Inc., Brooklyn, N. Y., parts for diving apparatus, $\$ 13,487.75$.
Stoss-Shertleld Steel \& Iron Co., Birming -Sloss-S Ala, de Iron, $\$ 10,076.10$.
ham, Ala., Dig Co Richmond, Va. Smith-Courtney Co., $\$ 1,500$.
steam drop hammer,
South Bend Lathe works, South Bent. Ind., engine lathes, $\$ 75,125.85$.
Steel Products Engineering Co., Spring field, O., alreraft propeller blades and hubs, $\$ 103,486.72$
Struthers Wells-Titusville Corp-, TitusStruthers Wells-ing capstan, $\$ 11.257$. watson-Stllman Co., Moselle, N. J., my-Watson-stiliman $\$ 18,500$.
draullc pump, $\$ 18,500$. \& Mig. Co., Kist Westinghouse Electric \& Meg. Co., mas electrical equipment, \$00,815.
White Motor Co.. Cleveland, motor busser, $\$ 31,110$.

## Awards in Canada

TORONTO, ONT.

- Department of munitions and supply, Ottawa, last week announced the following contracts, amounting to $\$ 14,500,000$ :

Mrcraft Supplies; Packard Motor Car Co., Detroit, U. S. A., $\$ 2,5 \$ 2.087$; Chryslar Corp. of Canada Ltd., Windsor, $\$ 16$. 131: British Aeroplane Engines Lid.. 131: British $\$ 252,235$ : Canadian Pratt \& Montreal, \$252,235: Canadian Aircraft Co. Ltd., Longuell, Que.. Whitney
$\$ 169,974$.

Mechanical Transport; Ford Motor Co
of Canada Ltd., Windsor, aral Motors Products Oshawa, \$11,816: Fort Smiths Falls, Ont. $\$ 9$
machinery and Tons: Optical Co., Rochester, 5157.429 ; T. E. Ryder Montreal, s13.880; Ontar Co. Lid., Ottawa, $\$ 18,892$ A. R. Machinery Co. Ltd., Toronto, stu
Electrical Eazulpment; Canad la cons Co. Ltd., Montreal, \$258,606; Victor Co. Led. Montreal, \$19,0 CanAda Mig. Co. Ltd., Ottawa
n-Ada Mrs. Cominton, 569807 . Defense Industries It Quebec. $\$ 569,807$; Defense Industries Ltd., Mon-
treat, $\$ 470,386 ;$ C. P. Fable Led., Monreal, $\$ 470,386 ;$ C. P. Fablen Lid., Mon-
treat, $\$ 31,564 ;$ Merck \& Co. Ltd., Montreat, $\$ 31,564$; Merck \& Cu. Ltd., Mon-
Ordnamer: Consolidated Mining s Smelting Co. Lid., Montreal, \$61,287 Hudson Bay Mining \& Smelting Co. Lid. Winnipeg, Man., $\$ 61,287$.

Construction Projects; Standard Construction Co. Lid., Beauport, Que., Sis 3, 444; A. F. Byers Co. Ltd., Montreal, s48. 2*6: 11. Dagenais, Ottawa, $\$ 119,568$; Fid Construction Co. Toronto, $\$ 267,668$; Scott Jackson Construction Co., Toronto, \$108.250: W. C. Brennan Contracting Co.,
 Aldinger Co. Lid., Winnipeg, $\$ 205,229$ Smith Brothers \& Wilson Lid., Regina, Sask, Sro3,814; Bennett \& White Construction Co. Calgary, Alta., \$407.166: Fraser MacDonald Co Lid winnipeo $\$ 441,500$ : Canadian Comstock Co. Lid.. Toronto, $\$ 151,000$; Ambrose Wheeler Lid., Moncton. N. B., 368,$5010 ; \mathbf{N}$. B. Roantree Co. Lid., Regina, $\$ 68,500$; Ontario Construction Co. Ltd., St. Catharines, Ont., 570,500; Standard Construction Co., Halltax N. S. $\$ 175.500$; Fundy Construction fax, Hall f emo 500. Carter-Halls-A1. Co., Halifax, \$50,50, Carter-tals-AlClinger Co. Ltd., Winnipeg, $\$ 850,000$; P, W. Graham \& Sons, Moose Jaw, Sask.. \$32s,000; H1ll-Clark-Francls Ltd., NewIaskeard, Ont. 8825,000 : F. J. Ryan Contracting Co. Lit., Vancouver, B. C., s290,500; Buchan Construction Co. Lt ta. Calgary $\$ 195500$ Clayton Co. Ltd

Calgary,

## 'Industry Not Stalling, <br> HookTellsRadio Audience

- Convincing answer to the whitpered charge that industry is stalling national defense production for selfish reasons was given a nation-wide radio audience by Charles R. Hook, president, American Rolling Mill Co. Middletown, O., in an interview Aug. 30.

Mr. Hook, who also is chairman
of the executive committee, National Association of Manufacturers, de clared American manufacturers had volunteered their knowledge, expertene and productive genius at the outset of the emergency. He quoted President Roosevelt, Secretary of President Roosevelt, Secretary of nils of any "sitdown" by industry.

Further, he pointed out, more than 100 outstanding industrialists are serving the government without pay serving the government wee defense program; industry of Its own accord is making a survey of industrial facilities, not only to aid the army and navy, but also to prolect consumers and assure a supply of normal peacetime goods. Many companies have gone ahead with defense expansion despite tax and profit uncertainties, and continua lion of legislative restrictions. radio audience by Charles R. Hook, nils of any" sitdown" by industry. -
 head along with our new Turret Lathe Toal Catalog if you will apply on your firm's letterhead.

Warch these pages for further announcements of new Jones \& Lamson Turret Lathe Tools. A few minutes' reading may bring years of extra profit.
JONES \& LAMSON MACHINE CO., Springfield, Vermont, U. S. A.

Manulaclueeri of: Saddle Rom Type Unlvensal Turn Lathes . . . Fay Autamatic Lathes. . . Aviomatic Doubleand Milling a Contoring Mochines . . . Auromatic Threod Grinding Mochinas. . . Canpardors... Tangent and Radial, Shallomary and Revolving Dies and Chasert.

[^2]By L. M. LAMM
Washington Editor, STEEL

# Vational Defense Commission Defines Labor Policy. <br> Secretary Compton Praises Industry for Patriotism. 

Two Jobs for Jesse II. Jones Favored in Congress.
Agricultural Department Approves Steel Corn Bins.

WASHINGTON

- PRIMARX among objectives of the advisory commission to the councll of national defense is the increase in production of materials required by United States armed forces and the assurance of adequate future supply of such mate. rials with the least possible disturbance to production of supplies for the civilian population. The scope of the present program entails bringing into production many unused resources of agriculture, manufacturing and manpower, the commission said last week in defining its policy. The commission continued:
"This program can be used in the public interest as a vehicle to reduce unemployment and otherWise strengthen the human fiber of our nation. In the selection of plant locations for new production, in the interest of national defense, great weight must be given to this factor.
"In order that surplus and unumployed labor may be absorbed in the defense program, all reasonable efforts should be made to avold hours in excess of 40 per week. However, in emergencies or where the needs of the national defense cannot otherwise be met, exceptions to this standard should be permitted. When the requirements of the defense program make it necessary to work in excess of these hours, or where work is required on Saturdays, Sundays or holidays, overtime should be paid in accordance with
the local recognized practices . . .
"All work carried on as part of the defense program should comply with federal statutory provisions affecting labor wherever such provisions are applicable. Thls applies to the Walsh-Healey act, fair labor standards act, the national labor relations act, etc. There should also be compliance with state and local statutes affecting labor relations, hours of work, wages, workmen's compensation, safety; sanitation, etc.


## Retain Safoguards

"The commission reaffirms the principles enunclated by the chicf of ordnance of the United States army, during the World war, in his order of Nov. 15, 1917, relative to the relation of labor standards to efficlent production:
"In view of the urgent necessity for a prompt Increase in the volume of production . . vigilance is demanded of all those in any way associated with industry lest the safeguards with which the people of this country have sought to protect labor should be unwisely and unnecessarily broken down. It is a fair assumption that for the most part these safeguards are the mechanisms of efficiency. Industrial history proves that reasonable hours, fair working conditions, and a proper wage seale are essential to high production . . every attempt should be made to conserve in every way possible all of our achievements in
the way of social betterment. But the pressing argument for maintaining industrial safeguards in the present emergency is that they actually contribute to efficiency.' "
"I deflnitely do not think that industry is hampering the national defense," Lewis Compton, assistant secretary of the navy, declared last week.
It is true, however, he sald, that some of "our prime manufacturers are experieneing difficulty in get. ting some subcontractors to accept orders under the present terms of the proflt limiting clause of the Vinson-Trammell act. In addition to this, some delay also has been experienced, particularly in connection with the procurement of aircraft, in situations where plant expanslons are to be financed by private capital. This is caused by the fact that industry does not know under present conditions what rate of amortization it can apply until the end of the contract. Naturally business men want to know the rules of the game before the game starts."
Secretary Compton sald he believes industrial leaders have been patriotic and spent their money on plant expansions without the assurance of legislation.
He sald three steel companies making armor plate, for which there is no commercial market, financed their own plant expansions and increased the annual tonnage output. "These companies," he sald, "were willing to take a chance on what amortization would be allowed at the end of the contracts. I know of another company engaged in the construction of so-called mosquito boats which, over a year ago, erected an $\$ \$ 00,000$ plant."

Discussing the national defense spending program with reference to the navy, Secretary Compton sald that, "We now have under contract $\$ 1,435,000,000$ in ships, alreraft, ordnance and public works. The re-
cently authoized 11 ver cent Increase in the navy as well as all other tonnage authorized was under contract within 24 hours after the enactment of the legislation.
This was possible because negothathons were tentatively consummated prior to the final enactment of the law. The same thing is true with the 70 per eent program now pending betore the congress. In a very short time after thls measure hecomes law, the navy will be in a position to make awards of contracts for the vessels Involved in this increase."

## PROLOSE AUTHORIZATION OR DUAL JOB FOIR JONES

Joint resolutions have been introduced in both houses of congress "that notwithstanding any prove sion of liw to the contrary, Jesse $H$. Jones, federal loan admintstrator, may contlinue in such office and be appointed to, In the manner now provided by law, and may exerelse the dutles of the office of the see vetary of commerce; provided, that the total compensation to be pald him as secretary of commerce and as federal loan administrator shall be that provided by law for the secietary of commerce." The resolutton has been reported favorably by committees of both houses.

## MCNUTT BERORTS PROGREAS in fabolt training phan

Fexderal Security Administrator Paul V. MeNutt has forwarded to the matlonal defense advisory commission a repart recelved from John W. Studebaker, commissioner of education, on the vocational education mational defense program.
This report shows that in one month's time 80.614 persons were enrolled for defense training and that approximately 3000 men were placed in Jobs by the end of July. In one community alone, Paterson. N. J., 686 persons have been trained and placed. These placements have been in three important national dofense industries located in or near Paterson: Wright deronatical Corp, the Watson Flagg Co., and the Curtls Propeller division of the Wright Acronautical Corp. Current reports of placement reaching the United States office of education indicate that 20,000 tratnees may have moved out of the summer schools into defense jobs by Sept. 1.
"These figures have been gathered from 11 states," sald Mr. MeNutt. "They show that the training of workers in vocational schools in 283 citles is one of the swiftest moving phases of the national defense program."

Men and boys is to 60 are being trained in summer schools opened for the special purpase of training workers for defense industries. A
few women are enrolled in places where such industries require women workers.

Launched on July 1, four days after the President had signed the act of congress approprating \$15,000,000 for the purpose, this program by July 15 had 30,000 men In training and by July 31 had over 80,000 men in training. By Sept. 1, 90,000 were in training.

Two types of training are provided by vocational schools in the natlonal defense program. Reemployment short courses giving instrueHon in specifle skills such as welding and riveting enroll 51,601 men. Supplementary courses that aid workers on the job, who attent school to extend or improve their skills, have 29,010 registrants.

## PRONECTED SFA, AIK BASES WILL. REQUIRE MUCH STERL,

Although detalls on the new sea and air bases to be constructed on leased British possessions in the Atlantle had not been revealed last week, it was indicated a heavy steel tonnage will be requited. Work on the bases will start as soon as definite sites are selected, according to Chalrman Carl Vinson of the house naval affairs committee.

The bases are to be located in British Gulana, Trinidad, St. Lucia, Antlgua, Jamaica, the Bahamas, Bermuda and Newfoundland. Others are planned in the Paclice on the Galapagos and the Cocos islands in the Pacific.

Congresstonal action will not be necessary to start work on the bases as President Roosevelt has a "blank check" for $\$ 200,000,000$ which may be applied to this construction. In addition, congress has appropriated $\$ 10,000,000$ for auxiliary air bases.

## GOVERNMENT BUYS MORE STEEL. CORN STORAGE, BINS

Agricultural department has announced contracts for $13, \% 01$ steel grain bins, having a total storage canacity of $37,403,730$ bushels. (For the tonnages and supplies see page S1.) The bins will be used by commodity Credlt Corp. to store part of the corn which will be delivered by farmers in settlement of loans on 1938 and 1939 corn.

Cost of the bins, which will be of 2730 bushels capacity each, will be $\$ 2,301,54$, or an average of 6.15 cents per bushel of storage space, delivered at country points. This is 2.15 cents per bushel less than the delivered cost of steel bins purchased in 1939.

The purchase is a continuation of the department's program to keep a substantial part of the ever normal granary corn reserve stored in the country, where it will be avallable for livestock feed or for movement
into normal market channels when corn prices justify thls.

Officials said a year of experience with steel bin storage has shown that ear corn which has been stored at least a year in cribs before shelling, can be placed in steel bins and kept for a longer period without deterioration. Less than 0.4 of 1 per cent of the corn stored in steel bins a year ago has been removed from bins because of damage.

## NEW DEFENSE COMMISSION APPOINTAENTS ANNOUNCED

Sidney Hillman, member of the national defense advisory commisslon in charge of the labor division, announced the following appointments to his staff: Channing R . Dooley, manager of industrial relations, Socony Vacuum Oil Co., New York, as director in charge of the program of training workers within Industry; J. S. Dietz, personnel re lations manager: Western Electric Co., New York, as assistant to Mr. Dooley.

## CROWELL, IRE-ELECTED HEAD OF ORDNANCE ASSOCLATION

Brig. Gen. Benedict Crowell, speclal consultant to Secretary of War Henry L. Stimson, has been reelected president, Army Ordnance association, according to an announcement by Col. C. E. McRac, chairman of the association's committee on elections. General Crowell was a founder of the assoclation 21 years ago and since has served as its president continuously. He was director of munitions in the World war cabinet of President Wilson and was the assistant sec retary of war under Newton D. Baker.
Elected vice presidents of the association were Col. Whlliam $W$. Coleman, chairman, Bucyrus-Erie Co., Milwaukee, formerly special assistant to the chlef of ordnance. United States army; and Col. Frederick H. Payne of Greenfield, Mass, assistant secretary of war under President Hoover and now chief of the Hartford, Conn., ordnance district.

## ST, $000,600,000$ AKNIS BILL APPROVED BY CONGRESS

Both houses last week gave approval to the "two-ocean" navy bill. carrying defense appropriations of more than $\$ 5,000,000,000$, and the measure went to the White House.

The bill provides funds to start work on approximately 200 war ships, to build nearly 15,000 planes for the army and navy and $\$ 517$. 000,000 for plant expansion to carry out the program.
Total defense commitments made during this session now exceed $\$ 15$. $000,000,000$.

# Carboloy Makes Sixth Price Cut Since 1929; Standardizes Tools 

CARBOLOY CO. INC., Detroit, last week anncunced a further price reduction, the sixth since 1929, on cemented carbide metals and other products including special tools and lool bits, dies and wear-resisting inserts. The reduction is made possible, the company said, as result of an expanded manufacturing program and economies resulting from greater production efficiencies in Carboloy's new million-dollar plant.
Company also announced mass production on a standardized line of cutting tools, designed to cover 80 to 90 per cent of all applications for cemented carbide tools. The simpliffed line includes five styles in three different grades. The mass production program, it was said, has made possible a price of $\$ 1.85$ for a typical standard tool which earlier would have cost $\$ 5.84$ in lots of one. The new tools now cost only 90 cents in quantities of 50 or more.
The new standardized tools will be carrled in stock, ready for shlpment, completely grcund and ready for use.
Avallablility of standard Carboloy round hole dles for drawing sizes of bar and tubling up to $3 \frac{1}{2}$ inches In diameter, and improvements in construction in the larger series, R7 to R16, of standard drawing dles, also were announced.

## Denles "Secret Covenants"

Commenting further on the indictment returned against the company by a federal grand jury in New York Aug. 30, charging violation of antitrust laws, W. G. Robbins, Carboloy president, sald:
"The alleged clalm that we have 'secret covenants' with Krupp's is completely ridiculous. The only 'secret covenants' Carboloy has entered into are with the United States government and they consist of a pledge not to reveal the results of work our company has been and is doing in building up national defenses ...
"Krupp has no control whatsoever over elther manufacture or distribution or prices of Carboloy metal or any other tungsten carbide produced in this country that we know of. This was specifically provided for in cur license agreement
"As to the question of possible shortage of tungsten carbide for na. tional defense, Carboloy's new plant alone has a metal production capacity that can fill all concelvable industrial and defense demands-a capacity many times the present
consumption of all tungsten carbides by industry-and from sources of raw material owned by us in the United States."

## FAVORS "ACTION TO

## REMOVE RESTRICTIONS"

L. Gerald Flrth, president, Firth Sterling Steel Co., McKeesport, Pa., one of the three American producers of tungsten carbide cutting materials licensed by Carboloy, stated his company looks with favor on any action taken to remove the restrictions on the manufacture of these materials.
"In cur oplnion, the development and use of these hard metal compositions have been very much restricted as a result of the regulatlons Imposed by license stlpulations. Moreover, authorized American manufacturers have been restrained from exporting
"One striking example of the effect of these regulations is found in the relatively small volume of tools made from these materials in this country as compared with the European consumption..
"The effect of this federal action," Mr. Firth sald, "should result In the correction of a condition in the carbide industry which will permit greatly increased amounts of these materials as a vital commodity in the natlonal defense program, to be used by arsenals and by other armament manufacturers."

## No German Control of <br> Magnesium Manufacture

- Absolutely no restriction on the unlimited fabrication of magnesium metal into armaments for national defense or industrlal purposes exists in the United States, says Wiser Brown, first vice president and general manager. American Magnesium Corp., New York.

Mr. Brown denied department of justice assertions that there is German control in this country of mag. nestum manufacture and fabrication through patents. He explained his company operates under American patents which, although formerly owned by a German company, now are wholly unrestricted.

## Early Delivery Asked On TVA Power Equipment

$\square$ Three large waterwheel generátors costing more than $\$ 1,200,000$ have been ordered by the Tennessee

Valley authority from General Electric Co., Schenectady, N. Y., for the Cherokee dam powerhouse. Construction of the dam, located on the Holston river near Jefferson City, Tenn., is being rushed to provide power for new national defense industries. Generators will produce 100,000 kilovolt-amperes. Each rated 33,333 kilovolt-amperes, 13,800 volts, and 94.7 revolutions per minute, the unlts will be furnished with General Electric exciters and air coolers.

Allis-Chalmers Mfg. Co., Milwaukee, has been awarded contracts for one hydraulle turbine for the Pickwick Landing dam project and two hydraulic turbines and two generators for the Wilson dam project, ag. gregating $\$ 1.660,000$. Generators are 28,000 kilovolt-amperes, 13,800 volts at 100 revolutions per minute. Turbines are rated at 35,000 horsepower at 100 revolutions per minute. Earlsest possible delivery has been asked by the government.

## Electro Manganese Corp. Offers Restarch Prizes

ne Electro Manganese Corp., Minneapolis, has announced a second electro manganese research contest for graduate and undergraduate students. Three prizes of $\$ 300, \$ 200$ and $\$ 100$ will be awarded for the winning papers.

Company suggests the subjects of the research papers, which may be in the fields of metallurgy and metallography, chemistry, or physles, be submitted to the company as soon as possible in order that excesslve duplication can $b=$ avolded. Contestants will be supplied with reasonable quantities of electro manganese without charge.

Papers should be submitted to the company's research department, 730 Rand Tower, Minneapolis, before July 1, 1941. Company's first research contest will be concluded Sept. 20.

## Agreement Reached in Steckel Patent Suit

E Carnegie-Illinois Steel Corp., Pittsburgh, last week announced settlement with the Cold Metal Process Co. of patent litigation pending in the federal courts involving the Steckel patents for equipment and processes for rolling in the cold reduction of steel products.

Agreement provides Carnegie-Illi. nols and other United States Steel Corp. subsidlaries are licensed to oferate under the patents on a royalty basis. Equally favorable terms and royalties will be avail. able to other steel companies


## MORE PRODUCTION with "ACORN" DIES

Every year more mamufacturers turn to gemuine "Acorn" Dies hecause of the way they handle jobs like this one. This 10-32 High Speed Steel "Acorn" Die on a multiple spindle automatic is threading safety razor handles. Sustained accuracy and ability to cut close to a shoulder are essential requirements. "Acorn" Dies fill the bill, to the tune of over 15,000 threaded parts per die! G. T. D. Greenfield was

the originator of the "Acorn" Die-the die with positive concentric adjustment. G. T. D. Greenfield engineers know how and where "Acorn" Dies can be most advantageously used. This picture shows how compact the "Acorn" Dic is - shows how close to a shoulder it will cut. Remember, too, they operate equally well on fixed or live spindles. Ask your supply house or G.T.D. Greenfield for full data.

GREENFIELD TAP \& DIE CORPORATION, Greenfield, Mass. San Franciam. In Canade: Greenfelat Tajs to He Corpo of Canala, Led., Galt. Ont.

# Mirrors of MOTORDOM 

By A. H. Allen
Detroit Editor, STEEL

General Motors' Model Integration Carried Further.
Manufacturers Overcoming Kinks in 19.41 Production.
Stainless Steel Trim Used More Extensively:
Forging Steel Scoured by Blasting with Grit.

## Inquiries for Armsmaking Equipment Increasing.

## DETROIT

NOT readly discernible to the layman, yet quickly apparent to anyone who makes a practice of studying motor car designs closely, is the unusual job of integration which has been worked out among the General Motors divisions for 1941 models. It is a tribute to effective engincering, but most of all to co-ordination and correlation of the reguirements of the different divisions,

There are two triumvirates which control 97 per cent of the car output of GM. They are known as the CO-P group-Chevrolet, Olds and Pontiac-and the B.O.P group -Bulck, Olds and Pontiac. Fisher, of course supplies bodies for all four makes, and it is in the body fleld where co-ordination of design has been worked out so neatly.
First, in the C.O.P group a body style was developed fo Chevrolet, but the same body shell, with possibly minor revisions in a cowl stamping or some such similar part, is furnished to Olds for its 60 series and to Pontlac for its Torpedo deluxe series. Olds and Pontiac designers, however, effectively disguise the resemblance by using differently shaped fenders, incorpo rating some "speed lines" here and there, highlighting a body panel with stainless steel molding, or placing some ornamental trim here and there
Olds and Pontiac further expand this small line for 1941 by offering either 6 or 8 -cylinder power plants at a price differential of only 325 to $\$ 35$.
Now, consider the B-O-P line.

Fisher this fall is introducing its new body style with fast back and concealed running boards and equal In width and roominess to the Tor pedo body introduced last fall. This body is used on the Buick Special and Century series, the Olds 70 or Dynamic Cruiser, and the Pontiac Torpedo Streamliner. Again. minor embellishments and decorations differentiate the three separate makes, and again Pontiac and Olds offer either 6 or 8 -cylinder engines.

Finally, last yeat's Torpedo body, made only in coupe and four-door sedan styles, is continued un. changed on the Buick Super and Roadmaster series, the Olds 90 or Custom Cruiser and the Pontiac Torpedo custom. New fenders, new trim, new moldings maintain th: individuality of the three lines of cars.

## Indepomdents Emulate GM

This practice is nothing new to the moto: industry but, like the new higher octane fuels available for motor cars this fall, bodies have been refined just a little further. The enviabla position in which the plan places General Motors can be appreciated when it is realized how many different lines of cars it is possible to produce from what may be considzred almost standa d basic body dies and tools. By the same token, this coordination of manufacturing makes the battle of the independent manufacturers just a

[^3]little tougher, just a litile more hazardous.

The independents have had to combat this blanketing of the entire price fleld by attempting to do a little blanketing of thelr own and by emulating, in varying degrees, the new body styling introduced by GM a year ago. It remains to be senn whether the now body style introduced by GM this fall will come in for the same degree of emulation. Chances are it will not, because the new design does not boast any radical innovations. The so-called fast back has been used by Lincoln Zephyr, Chrysler llnes, Nash and others before, though not accentuated as much as in the new Fisher treatment. Conewaled running boards were introduced on the zephyr two years ago, in fact were scorned by designer Henry Drey. fuss who dubbed the doors "clubfooted."

## Cudillar Output Snall

No slighting of Cadillac was in tended in this round-up of GM cars. Cadillac also used the Torpedo body last year, likely will continue it this year, as well as other body styles. Cadillac appears to be leceding, however, in its relative pasition with other GM makes. In the first six months of this year, for exam. ple, Cadillac turned out 20,120 cars out of General Motors' total of $1,104,942$, or 1.8 per cent. With additional emphasis being placed on Eutck's Limited series this year, which is in competition with Cadillan, the latter is golng to need some added sales promotion if it is to retain its shate of the GM total.

General Motors in the first six months of this year captured 43.52 per cent of the industry's total output. Conceivably the corporation could push this figure to 50 per cent for the 1941 model ycar, a feat which no auto company has achleved slnce 1921 when Ford garnered 55.67 per cent of the $1,518,600$ output total for that year. Never before or since has any manufacturer come close to this figure, although General Motors has had
as high as 44.84 per cent of the business in 1938.

Imminence of important defense contracts with General Motors Corp., is sald to have led to the resignation of W. S. Knudsen, peesi. dent. He also resigred as a member of the board of d'rectors and of the pollcy and administration committers. No actlon has been taken with regard to his sucesssor.
C. L. Mecuen, vice president, has been elected a member of the administration committee, and Harley J. Ea-l, d'rector of the stvlling seetion, has been elected a vice president of the corporation.
a PRODUCTION delays and t'euns have been more numerous in the past few weeks than has bern the case in other years. Plvmouth and Dodge have been beset by kinks in scheduling and in asscmbly operations. Plumouth because of its new sustem of body and chassis assembly instituted this year. Congestion of new cars requiring minor touching un before rectiving $O K$ tags and delays in recelving certain parts have resulted in complete shut Jowns on two occasions.
Last week Pontlar assembly line was shut down beceure of shortage of bodies from the Fisher plant in Pontlac, and the Fisher bodv lines were compelled to shut down on thece d'fferent occasions because of "the accumulat'on of an excessive numter of hodle; recuiring remairs and rewo:king of operations re-ultIng from the fallu e of employes In the trim and final assembly departments to perform their operations correctly," according to the plant manager.

This immediatelv led to reports of another "slowdown" by union emploves which was emphatically denied by Walter P. Reuther. GM division director for the UAW-CIO, who sald. "This is the sort of thing that every body plant experiences during the start of a new productlon season. Certain bottlenecks always appear due to lack of stock or engineering difficulties. A number of timing standards are in dispute but they have nothing to do with the corporation's difficulties In getting production started properlv."

Pontlac schedules called for around 3500 cers in four work'ng days. Meanwhile Bulck was turnins out about $5(0)$ units, Olds 3000. Plvmouth was the only one of the Chrysler divisions to produce in anv volume, turning out around 3000 cars.

This week will see three more previews of new models-Chevrolet on Tuesday, Ford on Wednesday, and Chrysler-Dodge-DeSoto on

Thursday. This about winds up the prevlew scason with the exception of Packard on the sixternth. Packard situation is a strange one, inasmuch as the company was the flrst to complete tool and die work on new models, yet the last to display new cars to the piess and to dealers.

Plymouth models for 1941 have engine horsepower stepped up to 87 and torque increased over the entire speed range. Booster-type gearshift is optional equipment. A new wheel design is claimed to re-

## Automobile Production

Passenger Cars and Trucks-United States nnd Canada
By Department of Commerce


## Year . . . 2,65 5.171 3,732,608

Eatlmated by Ward's Reports

| Week ended: | 1940 | 19399 |
| :---: | :---: | :---: |
| Aug. 10 | 11,635 | -6i,125 |
| Aus. 17 | 17.475 | 15.108 |
| Aug. 24 | 23,732 | 18.845 |
| Aug. 31 | 27,645 | 25,240 |
| Sept. 7 | 39,665 | 26,865 |
| tComparable |  |  |

duce hazard of blowout or puncture, a completely flat tire glving the same driving effect as a tire inflated to 10 pounds pressure on a standard wheel.

Bodies are better sealed against dust, water, heat and nolse. Rear spring leaves of Amola steel are grooved for softer spring action. Hood is of one-plece construction, controlled from an inside lock. OH bath air cleaner is standard equipment. Front doors open wider and have a check strap to hold the door in the open position if desired.
Second gear ratio in the transmission has been in reased, permitting two-speed shifting under normal d-iving condit!ons.

Bulit-in oil cleaner which cleans 103 Der eent of the engine oll before it goes through the pumb and into bearines is standard on Pontiac engines for the next year. The cleaner is built into the engine and never has to be removed and eerviced. Located at the inlet to the oll system in the bottom of the crankerse, the cleaner comprises a settling
chamber concentric with the oil inlet tube. Around the settling chamber is an inverted cup and between the cup and the settling chamber is a cylindrical screen. Oil passes first through the screen and then enters the inlet plpe, belng drawn upward agalnst the bottom of the inverted cup. This changes direction of the stream and cauecs it to flow downward around the outside of the inlet pife to a flat baffle. The latter again changes the dire-tion of flow and throws out dirt particles into settling chamber.

Engineers in the new Olds forge shop in Lansing continue their experiments with new forging techniques. One development wh'ch may prove to be of practical importance is the cleaning of heated stock before forging by means of blasting with grit. It has been found possible to scour off scale from the hot steel by this means, but there is danger of the abrasive becoming imbedded in the stee] which of course would spoll the forging. However, by carefully grading the size of the abrasive, using only larger and well rounded particles, and by slowing down the speed of the wheel which throws the abrasive against the stock, sticking can be overcome.

## More Stainless Steel

Stainless steel moldings really have come into the'r own on the 1941 models: in fact, there has been a generous increase in the amount of stainless steel strip for trim, decorative effects, louvres and other body ac:outrements. Belt moldings generally are about twice as wide as last year and in some cases are given a flash chrome plate to insure a perfect mateh with other chrome plated trim. The ldea of chrome plating stain'ess stcel may sound like gilding the Hly, but it is true that stainless does not match too well with chromium plating. but has the advantage of being a hard, re sistant material which stands up better in moldings than brass or mild steel strip.

Preliminary activity on armament programs in this area is bullding up gradually but steadily. Inquiries for large volumes of cauibment are out for the Chrysler tank plant, and the Fo:d and Packard engine plants. Addition to the Sag. Inaw Steering Gcar nlart for mass production of machine guns is contemplated.
© Stainless steel plaque for "the most heautiful movable bridge bult in 1939" was unvelled Sept. 4 on the Second avenue bridre, Alcena, Mich., bv the American Institute of Steet Construction, New York. The bridee was fabricated and erected by R. C. Mahon Co., Detroit.

## A Carboloy Announces DTH PRICE REDUCTION!

## Plus New "Universal" "Standard Tools For $\mathbf{8 0 \%}$ of all Turning, Boring, Facing Jobs

Since the year when Carboloy tools were first introduced it has been the expressed sim of Carboloy Company to pass on to industry savings resulting from increased consumption and manufacturing efficiencies. As a tangible result of this policy, five major price reductions were put into effect between 1929 and 1939.

For a number of years, however, we have realized that if our ultimate goal of reducing the price of Carboloy cutting tools to a level that would make them ovailable for the widest possible use, mass production methods of manufacture, through greater standardization, would have to be effected.

Towards this end one of our major activities has been to determine the minimum number of grades and the simplest line of tools that would be applicable to a substantial majority of carbide tool applications.

## New $\$ 1,000,000$ Plant Part of Program

Concurrent with this we inaugurated a long range pragram of manufacturing development to establish maximum efficiency for standardized production. This culminated in the expenditure of a million dollars on a new plant and equipment completed last spring, having a production capacity of ten times the amount of cemented carbide then consumed by industry, with provisions for expanding metal production to many times that amount.

## Mass Production of Standard Tools Now Possible

Today we are happy to announce that this program has been completed. One of the outstonding results of this program now made available to industry is a line of standardized tools at prices that would have seemed beyond the realm of possibility only a few years ago. Indicative of the extent to which standardization has been developed is the fact that these tools-covering 80 per cent of all carbide fool requirements-comprise but five styles in only three grades-iwo for cast iron, and one for steel.

## General Price Reduction on Carboloy Metal

A further result of this standardization program is that-because of the anticipoted wider scale use of carbide tools - the cost of producing basic cemented carbides can be reduced to such an extent that we are able to announce the sixth general price reduction on carbide metals. This affects special lools, dies for working wire, bar, tubing and sheef metal, Carboloy wear-resistant inserts, etc., in proportion to the amount of Carboloy metal used in each product.

CARBOLOY COMPANY, INC., DETROIT, MICH.

58.66 NOW $\$ 3.95$

size "H" square
( $1 / 52 \times 3 \times 1 / 4$ Corbeley Vip)

( $5 / 2 \times 8 / 10 \times 7 / 2$ Carbeloy ${ }^{1} 15$
ALL TOOLS GROUND READY FO USE (STEEL CUTTING TOOLS INCLUD GROUND-IN CHIP BREAKER)

Write for New Price Sheets

# Urge Industrial Development of Northwest as Aid to Defense 

## WASHINGTON

E ADVANTAGES accruing to speedy and adequate defense of the Pacific coast and United States' Pacific possessions through establishment of basic industries in the Northwest were emphasized in a report recently submitted to the natlonal defense advisory commission.

Prepared by Paul J. Raver, Bonneville power administrator, the report was submitted by Harold L. Ickes, secretary of the interior. It points out the advisability of decentralizing defense industries and refers to natural and power resources readily available. Edward R. Stettinius Jr., defense commissioner, and Gano Dunn, commission member, have studjed its recommendations.

Report discusses needs of such defense industries as aircraft, ordnance, munitions and shipbuilding; basic industries essential to these, and availability of Northwest resources and raw materials. According to Mr. Raver, "High grade iron and alloy steels, ferroalloys, electrolytic magnesium, nitrates and military explosives, calcium carbide and its derivatives, chlorine and chlorates are materials the Northwest can produce due to availability of low cost electric power and raw materials."
It further points out that owing to low-cost Columbia river power, three new industries have come to the Northwest this year. These include Aluminum Co. of America, whose Vancouver, Wash., plant starts production of pig aluminum this month; Pacific Carbide and Alloys Co., ex. pected to manufacture calcium carbide this year; and Sierra Iron Co.. which will produce plg iron from regional ores.

## Would Strengthen Defense Phan <br> "Industries have entered prelim. inary discussions with the Bonne-

 ville power administration indicating the possibillty that production of ferrochrome, magnesium, chlorates and high grade and alloy steels may be initiated in the near future," sald Mr. Raver. "Aluminum from Northwest raw materials is also likely to be produced in the next few months. All these active industrial prospects fall in the flelds of electrochemistry and electrometallurgy, flelds that ordinarily would be expected to develop in the Northwest because of the great importance in them of cheap power and the availability of minerals."In calling attention to necessity
for advance expansion of the Bonne-ville-Coulee power network facilities, Mr. Raver pointed out industrial development in the Northwest would be of major assistance in strengthening the nation's defense position. Outlining the situation, the report said:
"In appraising possible contributions of the Northwest, an important fact must be noted about the present location of the war industries of the nation. Most of them lie in the northeastern states east of the Mississippl, occupying 13 per cent of the land area of the country. In contrast, the 11 western states, covering 40 per cent of the land area, are not equipped with industries to provide adequately for defense of the Paciffe coast and Pacific possessions, nor with industries to supplement, when necessary, production of eastern plants for defense of Atlantic outposts.
"These western states lack munitions and ordnance plants. They have only some shipbuilding and aircraft manufacturing facilities; but even for these industries the West
draws upon the East for many basic materials and parts that could be made closer to western plants.
"These circumstances do not con. tribute to the speedy and most effective defense of the United States and its possessions. Products of western mines, vital to war industries in the East-copper, lead, zinc, mercury, tungsten, molybdenum, etc.-have to move east 2000 miles for processing and fabrication.
"Part of this obviously has to return 3000 to 6000 miles in the form of materials and supplies for defense outposts of the Pacific coast, Alaska and Hawaii. These move ments take time and transportation costs, and burden railroads and ships. Some could be eliminated...
"It is not widely known that power projects at Bonneville and Grand Coulee will provide, by July, 1942, over 600,000 kilowatts of sapacity. In addition, total ultimate installations of both projects that can be expedited according to the nation's needs amount to over 2,400 .000 kilowatts capacity. Here is an enormous reservoir of low-cost power awaiting the nation's command to serve whatever uses may be dictated by the interests of national defense. The nation should therefore be concerned with an appraisal of how it may best make use of what the Northwest can offer."

## - Use Dresent Capacity Beiore Wuilding IPlants EIsewhere*

- PRODUCTION facilities in established industrial areas should be utilized fully before the federal government spends more money to buy new defense plants in other districts. This opinion has been expressed by the Pittsburgh Industrial commission in a letter to William S. Knudsen, member of the national defense advisory commission.
Commenting on the proposal by congressmen to "drive by political pressure" government defense plants into nine midwestern states. Charles E. Robinson, acting manager of the Pittsburgh commission, said:
"Production facilities, where polltical pressure has not been a factor, have in overwhelming numbers selected a location in the relatively small area east of the Mississippi and north of the Ohio rivers. The 14 states in this area account for almost $62,000,000$ or nearly 48 per cent of the population of the United States.
"In these 14 states are located 102 , 000 manufacturing concerns, or ap-
proximately 62 per cent of the total in the United States.
"Their products are valued at $\$ 42$. $000,000,000$, or 69 per cent of the total valuation of all products manufactured in the United States. In these 14 states live $6,000,000$ wage earners who receive annually in excess of $\$ 7,500,000,000$, or 75 per cent of all the wages paid in manufactur. Ing industries in the United States.
"Taxes paid by corporations and individuals in these 14 states exceeded $\$ 1,697,000,000$, or nearly 70 per cent of the total, last year.
"Within this area, the fundamental requirements for low-cost production are located, i.e. raw mate rials, markets, trained labor, capital and managerial Intelligence.

The pittsburgh industrial district. comprising only five counties, Ms. Robinson said, produces manufac tured goods of greater value than any one of the nine midwestern states mentioned and greater than the total produced in North and South Dakota, Nebraska, Kansas,

Arkansas and Oklahoma. Other comparisons of industrial statistics are similar.
"These facts indicate clearly," Mr. Robinson concluded, "that a satisfactory prosecution of the national defense program might well lie in having each man, each district and each state do that for which it is best suited, whether it be the rais. ing of foodstuffs, mining, or production of airplanes, tanks or guns."
The Pittsburgh commission and the industrial development division, Emergency Committee of the Pittsburgh District, are jointly conducting a survey of the district's existing manufacturing facilities capable of participating in the defense program. Manufacturers are being questioned as to plant capacities, type of work done, available equipment, working conditions and expanslon possibilities.

Sponsors of the survey "feel certain existing plant facilities here have nowhere near reached their capacities yet. It would be the height of folly to think about building more plants as long as this condition prevails."

Applications for mortgage insur. ance on homes to be built under FHA inspection totaled 4904 in the week ended Aug. 24, exceeding by 60 per cent the corresponding week in 1939.

## financlal

## KEYSTONE STEEL'S FISCAL YEAR NET TOTALS $\$ 1,418,221$

a Keystone Steel \& Wire Co., Peoria, Ill., reports net profit for fiscal year ended June 30 was $\$ 1$, 418,221 after depreciation, interest, federal income taxes and all other charges. This was equal to $\$ 1.87$ per capital share, and compared with net income of $\$ 897,299$ or $\$ 1.18$ per share in the preceding year.

Earnings in the last fiscal year were second largest in the company's history, exceeded only in 1936, when net income totaled $\$ 1$, 501,493 . Net sales, however, were greater last year, aggregating \$13,279,520, against $\$ 10,598,645$ in 1936. Dollar sales for the period were 20 per cent greater than the preceding year's $\$ 11,040,319$.

Sales totaled 241,139 net tons, a 16.2 per cent gain over 207,669 tons in year ended June 30, 1939.

Keystone's proft-sharing plan has resulted in distribution of $\$ 240,723$ among its employes in past four years. This was equal to 5.7 per cent of the company's total net profit for the period. In last fiscal year $\$ 112,308$ accumulated under the plan and was distributed among 1630 ellgible employes. Flat participation of 6 per cent in all net profit

## Steel Consumers' Earnings Statements

- AGGREGATE first half net income reported by 232 iron and steel consumers totaled $\$ 198,567,388$, compared with $\$ 102,010,445$ earned by the same companies in corresponding period last year. Increase was 946 per cent. Only 16 companies incurred a loss for the six months, while 16 reported deficits in first half, 1939. Prior tabulations in Strel. (July 22, p. 29; July 29, p. 14; Aug. 12, p. 41; Aug. 19, p. 40 and Aug. 26, p. 33) listed 205 companies; the following includes 27 . All figures are net earnings except where asterisk denotes loss:

|  | Secund 1 SHO Quarter | Secund 193:9 Quarter | $\begin{gathered} \text { Finst } 1: 400 \\ \text { Mgif } \end{gathered}$ | $\begin{aligned} & \text { Firat } 11,3: 3 \\ & \text { Hal? } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| Aero Supbly Mfr. Co. Inc., Corry, Pa. | ¢ | \$ | \$281, 142 | 48,243 |
| Alhry Cast steel Co., Marion, O. ... |  |  | 16.372 |  |
| Amerlcan kuseh Corp., Springfeld. Mass. | 212,900 | 15.752 ${ }^{\text {c }}$ | 384.651 | fls, 015 sy |
| Ametican Satety Razor Corp., Bronklyn, N, | 76.375 | 219, 800 | 212,417 | 4286.473 |
| Pulard Co. Bridgeport, Conn. |  |  | 1,260, 810 | 40, 9982 |
| Cullie Tungsten Curp., Undon Cits, N, J . |  |  | 1182.787 | 14,715 |
| Chicas, Flexible Shaft Co,. Chicaro (a) | 161,372 \% | 317.171 .18 | 478,5463 | 413,2443 |
| Continental Cushlon Spring Co., Chicago | 6.084 | 2,548 | 6, 44, 3 | 4.7.th |
| Finster-Wheeler Corp.. New York |  |  | 354.856 | ${ }_{102}^{1 / 5.1510}$ |
| Fuler Mitg. Co. Kalamazoo, Mich | 31.39\% | 60.479 | 148.650 |  |
| Fyr-Fster Co., Dastun, $0 . \ldots . . .$. |  |  | 11,6239 |  |
| Gruham-Palse Motors Corp., Detrolt | 225,810* |  |  | $716.33^{\circ}$ |
| Hases Mts. Corp. Grand Raplds. Mtich. Homard Aircraft Corp., Cheagos | $54.162^{*}$ | $66.78{ }^{\text {ch }}$ | $\begin{gathered} 1.38,125^{\circ} f \\ 7.191^{\circ} \end{gathered}$ | $\begin{gathered} 1+52,115{ }^{2}+1 \\ 19,752^{\circ} \end{gathered}$ |
| Indistrlal Brownholst Corp., Bay City, Mlch | 109.295 | 32. 51.5 | 160, 726 | $2{ }^{2}$ |
| Jaener Mashine Cu. Cilumbus, 0.8 |  |  | 16\%3, 252 | 2014,4:6 |
| l/ekheed Airerafl Corp., Burbank, Calit. |  |  | 2.022.619 |  |
| Pantex Iressing Machine Inc., Central Falls, R . |  |  | 30,62.4 | 46, 13) |
| Firmey- Poves Postage Meter Co., Stamford, Conn. | 4.80 | 133, 8.31 | 2.38,920\% | 246.s56 |
| Riesmuds Spring Co.. Jacksim, Mich. | 389.644 | 42,688 | 501,805 | 114.34.54 |
| Sheller Mrs. Corp., Portland, Ind. |  |  | 114.673 | 142.078 |
| Sparka-Withington Cu, Jackson, stion |  |  | 710.543** | $70.658^{\circ}$ |
| Starry Curu. New York ....... |  |  | 1,020.2x+1 | 2. 6.4056 |
| Statrett IL. S : Co., Athot, Mass. |  |  | 50, (6) $0^{\text {a }}$ | '236, 4, 2 |
| Warkn Roller Hearing Cu., Cantun, O. | 2,109,028 | 1.514,974 | 4, 9 W6.54 | 2.421.370 |
| Warren Foundry f Itipe Co. Phillinsburg N. J. |  |  | $2017.6 \times 1$ | 181.081 |
| Westan Electrical Instrument Cord.. Newark. N. J | 217,276 | 100. (ry) | 501,4046 | 153, 243 |

made on sales of Keystone products, exclusive of subsidiaries, is provided in a new plan, effective July 1 , 1940.

Total payroll in last flscal year, proft-sharing and vacation pay excluded, was $\$ 2,632,122$, against $\$ 2$. 556,687 in preceding year. Employes totaled an average of 1462 , against 1294.
Taxes accrued in the period to taled $\$ 544,857$, compared with $\$ 410$, 448 in flscal year ended June 30 , 1939.

## MONARCH MACHINE TOOL PLANS STOCK ISSUE

Directors of Monarch Machine Tool Co., Sidney, O., recently voted to increase the total of authorized no par shares from 200,000 to 250 , 000 . Special shareholders' meeting has been called for Sept. 10 to act on the proposal.

Wendell E. Whipp, president, last week declared the action was contemplated that the number of out standing shares might more nearly reflect Monarch's large plant and equipment extensions. The company recently completed a $20,000-$ square loot addition, its sixth plant expansion in six years.
"If the shareholders approve the increase," declared Mr. Whipp, "60, 000 of the then unissued shares would be used to present stockholders 0.4 per cent of a new share for each share held of record at the close of business on Sept. 20. The company would then have 216,000 shares issued and outstanding, of which 6000 shares are held in the company treasury, with 34,000 shares authorized but unissued."

## DIVIDENDS DECLARED

Allegheny Ludlum Steel Corp., Pittsburgh, 25 cents per share on common, payable Oct. I to record of Sept. 11.

Sharon Steel Corp., Sharon, Pa, regular quarterly of $\$ 1.25$ per share on the company's $\$ 5$ preferred, payable Oct. 1 to record of Sept. 20.
M. A. Hanna Co., Cleveland, 30 cents per share on common, payable Sept. 13 to record of Sept. 7. This will make a total of 70 cents per common share paid this year. Company's directors llkewise declared the usual quarterly of $\$ 1.25$ per share on $\$ 5$ cumulative preferred, payable Dec. 1 to record of Nov. 15.

- Production of brass and aluminum alloy castings by a new process, said to give much greater accuracy and a better flnish, reducing the amount of finish machining necessary, will be started in December by Briggs Mfg. Co., Detrolt, in a remodeled plant at 12825 Taft avenue, Cleveland.


## Activities of Steel Users, Makers

- AN INDIANA charter has been granted to L\&J Press Corp., which has taken over the Loshbough-Jordan Tool \& Machine Co., Elkhart, Ind. Principals of the new corcoration are J. M. Hartrerine and D. R. Grossman, of Detroit. The past 20 years Mr. Hartgering has operated a consu'ting engineering business in Detrolt. while Mr. Greseman was for 13 years general mennger of Studebaker Corp. of Canada Ltd., Windsor, Ont.

John's Enginecring Co., Cleveland, has movert th new quarters at 4017 Payne avenue.

Granite C'ty Stral Co.. Gran'te Citv. Ill. has manad to we-tern disfret offimen ${ }^{1015}$ Baltimore avenue, Kansas City, Mo.

Ekstrand \& Theland Inc., New York. have heen anmointof selling perants in the linitm States and Canada he Metal Herrides Inc., Reverlv. Mass., for its line of alloy powders.

Fnvineering Service Jnc., marufacturer of tonl mrinamer. attonth. mente phit othem rrmienion tho's. has moved from imo- I, invood avenue, Detroit. to f 3 m panife bculevard, Huntington Park, Calif.

Chain Belt Co.. Milwalkee, has moved its Minneanolis office from 803 LaSalle avenue to larger quar. ters at 1645 Hennenin avmnue. $R$. X. Raymond. associated with Chain Belt over 20 vears, is Minneapolis district manager.

Wayne Davies Packinse Inc., Chj. cago, recently organized, is now in production on the new re'nforced hydraulic "U" packing, which can be furnished in sertion sizes from $1 / 2$ to $\%$-inches, inclusive, for any plunger diameter from 9 to 90 inches. Equipment is being instatled for manufarturins all section sizes from $1 / 4$ to 1 -inches.

Harnischfeger Corp., Milwaukee, has appointed Columbia Supply Co., Columbla, S. C., exclusive agent for its line of P\&H welders and electrodes. Columbia will operate under supervision of Harnischfeger's Washington office.

Orders for two gas-driven turbines, the first to be built for sale, have been received by General Ele:tric Co., Schenectady, N. Y. One unit will be used by a California
oil reflnery, and the other by a Texas reflnery.

Salem Engineering Co., Salem, O., has been awarded contract for carburlzing furnace equipment to be installed at the Berwick, Pa., plant of American Car \& Foundry Co.

Foxboro Co., Foxbo"o, Mass., has appointed firm of Eumstearl-Woolford as exclusive sales representative in the Orecon and Washinatan taritory. Recently formed by Dale Eumstead and O. H. Woslfo d, the new company has established headquartors at 1411 Fou th avenus, Seattle, and has also taken over the former Foxboro office at Poltland, Oreg.

Ferro Enamel Ccrp., Cleveland, will erest an addition to its color oxide plant which will double pressent floor space and more than double cutput. The company's industrial oven division also has been expanded to offer a complete line of ovens and finish produstion equipment.

Kirk \& Blum Mfg. Co., Cincinnatl, manufacturer of dust control, ventllating and cooling systems, and drving and baking ovens, is now ce'ebrating its thirty-third rnniversary. Organized in 1907, the company now occupies a plant comprising twe acres of floor space, and employs c.ver 200 workers.

Wm. G. Wetherall, fron and steel warehouse firm, has completed erection of a brick warchouse at 303-305 President strect, Baltimore, adjoining its present warehouse.

Roots-Connersville Blower Corp., Connersville, Ind., announces sale, effective Sept. 1, of its turbine pump business, consisting of water systems, condensate units and turbine pumps for general industrial applications, to the Sterling Pump Corp., Hamilton, O., which will hereafter manufacture and sell this line of pumps under its name.

Pratt \& Whitney Aircraft division of United Aircraft Corp., East Hartford, Conn., celebrated its fifteenth anniversary Aug. 1. In 1925, F. B. Rentschler, D. L. Brown and G. J. Mead pioneered in the design and construction of a 400 -horsepower radial air-ccoled aircraft engine for the United States navy's bureau of aeronautics. Employing 25 persons, they began work in an idle building
of the Pratt \& Whitney machine tool plant in Hartford, and by December that year their engine, the first of the "Wasp" series, had been completed and passed the navy acceptance tests. The present plant covers more than $1,250,000$ square feet in area and employs over 10,000 workers.

George Birkenstein, president. George Birkensteln Corp., Chicago, nonferrcus metal interest, has purchased the Anker-Holth Mig. Co., Port Huron. Mich., and its wholly owned subsidiary, Anker.Holth Co. Ltd., Sarnia, Ont. The company has manufactured cream separators, milking machines, patented hose reels and sprinkler nozzles for 36 years. Materials purchasea for manufacture incluie steel sheets, steel castings, stainless steel, and brass rods, forgings and castings. Operation of the newly acquirel plant will not interfere with the Birkenstein nonferrous business of which Mr. Birkenstein will continue as president.

## Died:

M GEORGE A. DARBY, 75, for 25 years chief engineer, Orange Roller Bearing Co., Orange, N. J., in Fanwood, N. J., Aug. 31. He was a member, Soclety of Automotive Englneers.

Alfred E. Wiener, 73, formerly a professor of electrical and mechanical engineering at Unlon college, Schenectady, N. Y., and for 20 years an employe of American Machine \& Foundry Co., Brooklyn, N. Y., Aug. 29, in that clty. He had been chief instrustor, American Institute of Electrical Engineers, New York.

Richard McCulloch, 71, St. Lcuis, public utilities operator, Aug. 28 in Milwaukee. He was a leader in the development of electric lines in St. Louls, Chicago, France and Switzerland. Untll 1504, he was chief engineer, Chicago city railway.

William F. Lyon, 72, president, Kay Machinery Co., Cleveland, Aug. 27 , in that city. He organized the Kay company about 15 years ago.

George N. Van Sweringen, 65, vice president, Chicago Rallway Equipment Co., Sept. 3 at his home in Evanston, Ill. He had been with the company 31 years.

William Stevens Buttles, 42, a de velopment engineer speclalizing in metallurgy, Sept. 2, in Chicago.

## MEETINGS

## NATIONAL SAFETY CONGRESS HAS DIVEISIFIED PROGRAM

OVER 160 sessions will be held durin! the five day congress and exposit ${ }^{\prime}$ in of the Natlonal Safety councll, S.evens hotel, Chicago, Oct. 7 11. Industrial and public safety equipinent whll be staged in Exhl. bition hall, lower level of the hotel. Princlpal speaker at the luncheon of the metals section Tuesday noon will be E. T. Weir, chairman, National Steel Corp., Pittsburgh. At the afterncon session L. C. Wilson, general manager, Reading Steel Casting division, American Chain \& Cable Co., Reading, Pa., will speak on "Maintaining Safety Interest in the Small Plant" and P. E. Rentschler, president, Hamilton Foundry \& Machine Co., Hamilton, O., on "How To Bulld a Safety Program for the Small Foundry."

## MNING GEOLOGISTS TO VIEW UTAH DISTRICTS FROM AIR

A feature of the one hundred and fifty-third meeting of Amsrican

Institute of Mining and Mctallurgical Engineers, Salt Lake City, Utah, Sept. 10-13, will be a number of trips over the Utah mining districts in 21-passenger mainliner planes. Two important papers dealing with production of molybdenum, and another on "Future of the LeadZinc Induztry", by C. H. Crane, president. St. Joseph Lead Co., will be presented.

## LIGHTING CONFERENCE TO REVIEW LAMP PROGRESS

An editorial lighting conference will be held at the GE instltute, Nela Park, Cleveland, Sept. 30. Recent advances in lamp development and lighting research will be discussed by research engineers. Topics will deal with a panorama of lamps and lighting, and varlous types of lighting such as office, industrial, store, school, and home lighting and wiring. Eusiness perspectives will be precented by Dr. Zay Jeffries. C. W. Maedje will be chairman.

## RQUIPMENT MAKERS TO STUDY DEFENSE PROGRAM

Questicns to be considered at the annual meeting of the Foundry
"Largest Jig for Largest Bomber"


To asscmble its new 70-ton B-19 army bomber, Douglas Alrcraft Co., Santa Monica, Calif., designed what is claimed to be the largest steel jig ever used in the aircraft industry. Two of the four sections are shown in the accompanying photograph just after the wing and forward fuselage section of the plane was removed. Complete jig is 200 feet long, 48 feet high and weighs 105,000 pounds. Douglas uses standard-
ized shapes and salvages about 90 per cent of the members from discarded jigs.

The bomber for which the Jig was built measures more than 210 feet from wing tip to wing tip, will be powered by four 2000 horsepower Wright Duplex engines. Scheduled for ground tests within the nex: several weeks, the plane will have a range of more than 7000 miles and a load capacity of 56,000 pounds.

Equipment Manufacturers assocl. at.on, at the Homestead, Hot Springs, Va., Oct. 25-26, include relationship of equipment manufacturers to the country's defense program, taxes, amortization, etc. A feature will be individual executive reports on present and future business.

## Convention Calendar

Sont. 9-1:-Amerienn Chemieni somety. Hundredth national mecting in Detroit. Chniles I. Parsons. 728 Nllis buiddIng, Washington, is secretary.
Scpt 10-1: Amerlcan limitute of MinIng und Motsllurgicsi Finglncera. Onc hutadred and flfty-third meeting, flotel Utah, Salt Take Clty, Utah, $\Lambda$. $B$. Parsons, 20 W, 30th strect, New York, is secretary.

Sept. 12-diray Iron Foumders suciety. Annual mecting at Iotel Clevelimd. Clevelond. W. W. Tease, IU10 I'ublic Square bullding, Cleveland, is exceutlve vice president.
 Seventh annual metal mining conventhon and exposition, Colorado Springs, Colo. Jullen D. Conover, 209 Munsey bullding, Washlngton, is secretary.

Sept. 18-- Vniveralty of lemumylvania. Sympostum on "Development of Metal as a Structural Element in Archltecture," at the univeralty, Philadelphla.
Sapt. 18-20-National Indumtral Advertherm assonlation, Elghteenth annual conference al Hotel Sintler, Detrolt, Mildred R. Webster, 100 East Uhlo street, Chlicago, is secrelary
Sept. 15-20-Conerefe Reinforcine sters Instltute. Seml-annual meeting al Skytop Jomige, skytop, Pa. H. C. Delzell, 2257 Buitders bullding, Chteago, is executlve secretary.
Sept. 20 - Chleago section, Imeriesth Ceramile suselfoty, and Dibsirlimenti of
 lllnofa. Sympusilum on acld, luaste and neutral refractorlos at auditorlum, Civic Opera bullding. Chlcago.
Sept. 2f-\%5-Sioclety of Automotlve FinElnmers. Nintlonal tractor meeting at Schrocier hotet, Milwawkee. John A. C. Warner, 29 West Thirty-minth street, New York, is gencral manager.

Sept. ad-27-Sturlatlon of Iron and Steed Insimears. Thlrty-sifih convention and exposition at Steverns hatel, Chicaga. Freat Whlley. 1010 Empire bulfding: Plttsburgh, is managlng vilrector.
Sert. शf-2n-Niational Aworelation of Furemeri. Seventeenth annual convenllon at Hotel Gloson, CincInnatl. H. G Evans, Goodyear Tire \& llubber Co., Akton, O., Is secretary.
sopgt. 30-Oet. 1 - Nidtional Lubricatine Giresse Inwtitute. Eighth ginnusil cunvention at Stevens hotel, Cheago. Coorge W. Mller, 498 Winspear avenue, Buralo, is execullve secretary.

Get. 2-s - Fiectruchemical Nachety Ine. Seventy-elghth general conventlon at Chateau Laurler, Ottawa, Canada. Dr. Coltn G. Fink, 3000 Broadway. New 亡ork, is secretary.

Oct. 7-11-Niflomul suftely muncll. Twenty-ninth nathonal safety congress and exposition at Stevens hotel, Chicago. W. H. Cumeron, 20 N. Wucker Drive, Chicago, is managing director.

Oct. 8 - irmy Oransance asworlafion. Twenty-frst annual meetine at the Waudarf-Astorla thotel, New York.

## One Bad Egg Spoils the Omelet

- WHO is to blame for the delay in setting up national defense on a volume production basis? It was to be expected that this question, sooner or later, would be widely asked. It now is being asked-and answered.

Most of those who undertake to answer the question-including the Presidentplace the blame on congress for its failure to act promptly on the draft and tax bills and on requests for additional defense appropriations.

Army and naval procurement officers made it quite plain, in testifying before congressional committees, that a large number of contracts have failed of placement because of uncertainty on the part of the manufacturers as to where they would stand if they accepted them.

## Blame for the Delay Is Beginning To Be Placed on Industry

While congress received most of the blame, some of it recently began to be directed at industry. For example, Senator Walsh said that the defense airplane program was being held up by subcontractors who refused to take orders for parts for American airplanes because on such business they would make considerably less profit than they now are making on parts for British planes. He proposed that the President be given authority to take over these plants it a real emergency develops.

Later, on the President's inquiry, William S. Knudsen reported that he had not yet seen any evidence of delays from this cause. However, other accusations of the same general tenor have emanated from other quarters and recently the column of Raymond Clapper, Washington commentator. had this to say:
"There is a suspicious amount of haggling going on by industry over defense contracts with the danger that it will provoke
the administration into a drive for greater control over industry in the interest of the national defense. . . . It isn't all industry that is causing the trouble. It never is. It is that some are jeopardizing all of the others. . . . The most dangerous thing for our system of free enterprise now would be for business to allow itself to be blamed by this administration for a breakdown in defense preparations."

## Favorable Publicity Should Be Sought In Connection with Defense Program

This warning is one that should not go unheeded by industry. This is no time to invite accusations that industry puts dollars ahead of patriotism. The wise manufacture will do all that he can to aid the national defense program. He will accept contracts for defense equipment with the minimum amount of delay, when it is possible for him to do so. When he finds that acceptance of a contract might lead him into an undesirable or dangerous situation, he should resort to publicity so that the public will have a proper understanding. At the least he should inform his representatives in congress as to the reasons why he cannot accept an order. Such action, will be doubly necessary if the house concurs in the senate's enactment authorizing the President to conscript manufacturing plants.

American industry should bend every effort to encourage and generate favorable publicity for itself in connection with the national defense program. First, however, every individual unit in industry must make sure that it has no "skeleton in the closet" to be embarrassingly revealed in the strong glare of this defense program publicity.


## The BUSINESS TREND

## Aetivity Index Extends Recent Upward Trend



- BOLSTERED by expanding purchases for defense and large order backlogs accumulated in recent months, operations in the durable goods' industries were sustained at near capacity levels during August. Further expansion in output is indicated through the fall months, reflecting increased production facilities in many instances.
In some consumers' goods lines a slight seasonal gain has been recorded lately, but in general activity has lagged considerably behind the advance for industry as a whole. The normal seasonal factors
which generally develop after Labor Day, should favorably influence the pace of industrial operations in the weeks immediately ahead.

Sterl's index of activity in the iron, steel and metalworking industries for the week ended Aug. 31 , gained 2.3 points to 103.7 , reflecting the steady seasonal upturn in automobile production and rev. enue freight carloadings. A moderate dip will be recorded by the index for the Labor Day week ended Sept. 7, but a definite upward trend should develop throughout the fall months.


STEEL'S index of activity gained 2.3 points to 103.7 in the week cnded firg. 31

| Werk Snded |  |  | 31u. リata | 1910 | 1839 | 1938 | 193\% | 1936 | 1985 | 1934 | 1435 | 193t | 1931 | 1439 | 19*\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| June 22. | 1910 114.8 | 1939 | Jan | 114.7 | 91.1 | -3.3 | 102.9 | 83.9 | 74.2 | 58.8 | 48.6 | 54.6 | 69.1 | 87.6 | 104.1 |
| June 29. | 115.3 | 91.0 | Feo | 105.8 | 90.8 | 71.1 | 106.8 | 84.3 | 82.0 | 73.9 | 48.2 | 53.3 | 73.3 | 99.2 | 111.2 |
| July | 94 | 73. | March | 104.1 | 92.6 | 71.2 | 114.4 | 88.7 | 83.1 | 78.9 | 44.5 | 54.2 | 80.4 | 98.6 | 114.0 |
| July 13 | 108.2 | 73.4 878 | Ap:ll | 102.\% | 0.9 .8 | T0.8 | 116.6 | 100.8 | 83.0 | 83.6 | 32.4 | 32.8 | 81.0 | 101.7 | 122.5 |
| tuty 20 | 106.0 | 86.0 860 | May | 10-4.6 | 83.4 | 67.4 | 121.7 | 101.8 | 81.8 | 83.7 | 63.3 | 34.8 | 78.6 | 101.2 | 122.9 |
| July 27 | 103.4 | 86.8 | June | 11.4 .1 | 90.9 | 63.4 | 109.9 | 100.1 | 77.4 | 80.5 | 70.3 | 51.1 | 72.1 | 95.8 | 120.3 |
| lug. |  |  | July | 1024 | 823 | 68.2 | 110.4 | 100.1 | 75.3 | 63. | 77.1 | 47.1 | 67.3 | 79.9 | 115.2 |
| AUg. 10 | 98.7 | 83.7 | Aus. | 101.1 | 83.9 | 68.7 | 110.0 | 97.1 | 76.7 | 83.0 | 74.1 | 43.0 | 67.4 | 83.4 | 1169 |
| Aug. 17 | 100.8 | 83.9 | Sept. |  | 98.0 | 12.3 | 98.8 | 86.7 | 69.7 | 36.9 | 68.0 | 46.5 | 64.3 | 83.7 | 110.8 |
| Aug. 24 | 101.1 | 82.2 | Oct. |  | 114.0 | 87.6 | 98.1 | 94.8 | 77.0 | 56.4 | 63.1 | 48.4 | 59.2 | 78.8 | 107.1 |
| AUR. 31. | 103.7 i | 43.4 | Nor. |  | 1162 | 98.9 | 84.1 | 108.4 | 88.1 | 54.9 | 52.8 | 47.5 | 54.4 | 71.0 | 82.2 |
|  | 203.7 | \$n. 3 | Dec |  | 118.9 | 95.1 | 74.7 | 107.6 | 88.2 | 58.9 | 54.0 | 46.2 | 51.3 | 643 | 88.3 |

[^4]Steral Ingint Operathons

| Wrek | －rudral | （1） 10 | 1498 | 1988 | 109\％ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| June | 1 | 78.3 | 52.0 | 23.5 | 73.0 |
| June | 8 | 81.5 | 33.3 | 23.5 | 74.0 |
| June | 13 | 81.0 | 52.5 | 27.0 | 75.5 |
| June | 22 | 48．0 | 54.3 | 28.0 | 74.0 |
| June | 27 | 89，0 | 54．0 | 2\％．0 | 77.5 |
| July | 6 | 7．3．0 | 42.0 | 24.0 | 74.0 |
| July | 13 | 88.0 | 51.5 | 32.0 | 82.0 |
| July | 20 | 88.0 | 514.3 | 317.0 | 81．0 |
| July | 27 | 80.3 | （110） | 87.0 | \％4．0 |
| AUs． | 3 | 90.3 | 60.0 | 40.0 | 84.5 |
| A $1 \times$ ． | 10 | ［13，3 | （i2．．${ }^{1}$ | 41.0 | NH．U |
| Aus． | 17 | 901 | 6．1．5 | 41.5 | 81.0 |
| Aus． | 3.8 | 90．5 | 68.5 | 4．3．5 | 83.0 |
| Aus． | 31. | 91.5 | 6.4 .0 | 44.5 | M3． 0 |




Frodoht Car tamilliga
（ Іяни）Сагн）

| Wirrk rivilul | 1810 | 191：31 | 14：18 | 19.87 |
| :---: | :---: | :---: | :---: | :---: |
| June 1 | 619 | 598 | 5124 | $6{ }^{6} 9$ |
| June 8 | 70， | （3，2） | 5 H 4 | 754 |
| June 15 | 712 | 6.18 | 5.25 | 756 |
| June 22 | 728 | 6.4 .3 | 5.9 | 774 |
| June 29 | 732 | gin） | $5 \times 9$ | N01 |
| July fis | 637 | 589 | 501 | fint |
| July 13 | 740 | （674 | 60\％ | 770 |
| July 20 | T：10 | （6） 6 | 5 St | 771 |
| July 27 | 718 | 640 | 5 SW | 783 |
| Auk． | 718 | Gilil | $5 \mathrm{SW4}$ | 771 |
| A 118.10 | 727 | 68.5 | A！（1） | 777 |
| Aug． 17. | 743 | 674 | 50.8 | 741 |
| Aug． 24. | 761 | 688 | 6121 | 757 |
| Aus． 31. | $780 \dagger$ | 722 | 648 | 815 |

trrelminars

Filerifle liower Output
（Amman KWU）

| Wrak rented | 1410 | 1pas | 19：8 | 1937 |
| :---: | :---: | :---: | :---: | :---: |
| June 1 | 2．202 | 2.114 | 1．47！ | 2，1：31 |
| June is | 2，4：3 | 2，－37 | 1，912 | $2.21 \%$ |
| June 15 | 2.316 | 2．2xis | 1.511 | 2.214 |
| June | 2.316 | 2.28 .5 | 2.1119 | 2，264 |
| Juns em | 2.514 | 2．3ッ | 2.115 | 2.234 |
| July ${ }^{\text {d }}$ | 2．2\％ | 2，183 | 1，Ni1 | 2.0 以其 |
| July 13 | $2.4 \times 3$ | 2， 2.4 | $2.11 \% 4$ | 2.218 |
| Juty ：4 | 23ッ4 |  | 2，ハ5 | 2.2059 |
| July ：－ | 2．0611 | 2.3 \％ | 2 yc | 2，24 |
| Ally ： | 2．445 | 32.85 | 2，116 | 2.243 |
| Aug． 10 | 2．nc！ | －．t63 | 2，134 | 2.301 |
| Aug ${ }^{17}$ | 2．nns | 2，7cs | 2.159 | 2.30 .1 |
| Auc． 24 | 2.571 | 2．8．2－1 | 2，13．8 | 20.208 |
| UE． 31 | 2.801 | 2.357 | 2，149 | 2，321 |





Fabricated Structural Steel

|  | (1000 tons) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | --Shlıияния |  |  | - Purukinge |  |  |
|  | 1010 | 19:13 | 11:48 | 1914 | 115:19 | 1938 |
| Jan. | 114.5 | X,.as | 8, 5 | 81.7 | 10. 7 | 20.3 |
| Feb. | 17.2 | 81.4 | 81.2 | (12.4) | 8. 7 | 57.1 |
| Mar. | 03.9 | 1-9.3 | 103.3 | 1-4.3 | 95.1 | 84.3 |
| dir. | $11 \mathrm{ii},$. | 3-1. 9 | 10\%.U | T, 5 | 11.4.3 | 111.2 |
|  | 156 | 17\% ! | 97.4 | 13138 | 155.9 | 77.3 |
| June | 119.1 | 120.1 | 198 | 1 1¢17 | 111.9 | 99 |
| Jい's | 117.4 | 1105 | 880 | 151.5 | 1141 | m.ll |
| Aug. | ...... | 1487 | 21. 0 | .... | 11 m 9 | 10n. 8 |
| Eept. |  | 1410.8 | 91.5 | $\cdots$ | 111.4 | 915 |
| Ort. |  | 1:1.8 | 1似? |  | 118.8 | 15.4.8 |
| Nisv. |  | 128.2 | 99.9 |  | 90. 3 | 1Кถ. 1 |
| Dec. |  | 116.2 | 106.5 |  | 84.4 | 156.4 |
| Total |  | 440.1 | 158.8 |  | 1305.0 | 1256.6 |




Industrial I'roduction
Federal IReservo Board's Index
(1935-59 $=100$ )

|  | 1930 | 1039 | 1938 | $193 \%$ | 1934 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Jan. | 122 | 102 | 86 | 116 | 45 |
| Feb. | 116 | 101 | 84 | 117 | ! ${ }^{2}$ |
| March | 112 | 101 | 84 | 120 | 44 |
| Aprll | 111 | 97 | 82 | 120 | ys |
| May | 114 | 97 | 40 | 111 | 3111 |
| June | 121 | 102 | 81 | 119 | 1uy |
| July | 121 | 104 | 85 | 1.0 | 10.5 |
| Aug. | ... | 104 | 90 | 120 | 107 |
| Scpt | ... | 113 | 92 | 115 | 1us |
| Oct. |  | 121 | 4 | 117 | 119! |
| Nov. |  | 124 | 100 | 95 | 113 |
| Dec. |  | 126 | 101 | 87 | 11 H |

Class I Rallroads Net Operaling Income (Linlt: $\$ 1.080,000$ )

|  | 1810 | 1930 | 1938 | 10.9 |
| :---: | :---: | :---: | :---: | :---: |
|  | \$4.3.57 | \$32.89 | \$7.14 | \$38 87 |
| Feb. | 32.62 | 18.59 | 1.91* | 38.78 |
|  | 34.73 | 34.32 | 14.7.3 | 6 6. $\times 8$ |
| M | 33.82 | 15.32 | 9.40 | 48,46 |
| June | 47.08 | 25.10 | 16.67 | 44.24 |
| duly | 47.42 57.08 | 39.10 | 6 | 59.35 |
| Aug. | 57.08 | 49.01 | 38.43 | (1) 4 |
| Sept. |  | 54.59 | 5.42 | 0.76 |
| Oct. |  | 86.43 | 50.36 | 59.62 |
| Nov. |  | 101.62 | 68.57 | 60.86 |
| Dec. |  |  |  | 32.44 |
| Ave |  |  |  |  |

-Indirater deflelt.


## Metal


#### Abstract

More economical fuel consumption, faster spraying rates cut costs more than 50 per cent. Deposits up to $1 / 2$-inch thick are made in one pass. Strength of bond increased to 15,000 p.s.i.


- USEFULNESS of the metal-spraying process has recently been enhanced greatly for two reasons: Costs are now extremely reasonable. Depositing efficiency is greatly improved by the higher speeds and thicker deposits possible. Strength of the bond to the base material also has been greatly increased. Thus the process becomes increasingly important for many jobs, at the same time new applications are opened up.

Seeking reduced costs and wider application of the process, Metallizing Co. of America, Inc, has made developments that permit steel or nonferrous metals to be sprayed at high rates of deposition and economical utilization of available industrial gases. A new gun with a special head sprays economically and successfully with acetylene, propane or natural gas. In fact, steel has been sprayed successfully using coal gas at only 12 pounds pressure.
These new developments in certain instances have reduced the cost of metal spraying over 50 per cent. Now it is possible to spray metal successfully at an hourly cost for gas of 25 to 30 cents or lower if piped natural gas is available.

Too, it is easy to control these newer spray guns as the pressure can be varied about 50 per cent and still obtain a neutral flame. Another advantage in many operations is that it is no longer necessary to deposit metal in layers to build up a thick deposit. This eliminates the laminations formerly necessary where only a thin deposit could be sprayed at one time. Now it is possible to put on a layer as thick as $1 / 2$-inch with one pass of the metallizing gun. By eliminating laminations, a much stronger, heavier. denser deposit is produced.

A further important development is the increase in speeds. Approximately 30 per cent faster spray-
ing of steel can be accomplished, with a denser metal as a result. The added speed is most important in much of this work. For instance, eight crankshafts were sprayed, averaging 40 minutes a crank using propane.

Spraying speeds now permit 8 to 10 pounds of steel, 7 to 9 pounds of aluminum, 15 to 20 pounds of bronze or 30 to 35 pounds of zine to be deposited in an hour's run.

A typical heavy-duty metallizing gun uses three pounds of propane per hour at an average cost for gas of 22 cents per hour. Oxygen consumption is 75 cubic feet per hour with oxygen pressure rang. ing from 15 to 20 pounds per square inch and air pressure from 60 to 80 pounds per square inch.

Due to spraying characteristics, the new guns have a spray that is much more concentrated, increasing the depositing efficiency. While this is of importance in coating any surface, it is of special interest in coating shafts and similar members where spraying losses are apt to be greatest.
When metal spraying was first inaugurated, there was some doubt as to the strength of the bond between the applied metal and the base. However, it now is possible to obtain bonds between 12,000 and 15,000 pounds per square inch. These are ample for almost any type of metal-spraying operation.

One of the particularly advantageous applications of metallizing is in the rebuilding of worn crankshafts. It is not difficult to make the journals of metallized crankshafts three times as hard as the original journals. Since the sprayed steel is 10 per cent porous and oil absorbent, as well as containing free carbon, the bearing properties of such metallized surfaces are extremely high. Increased wear resistance is afforded by the porous structure and

# spracuing 

By E. T. PAREINSON
Metallizing Co. of America, Inc. 562 W. Washington Boulevard Chicago

the free carbon. The surfaces take on the high glaze peculiar to forged steel. The satiny finish that characteristically stays on sprayed steel makes the bearing last much longer and decreases friction as well, especially on heavy loads and at high speeds.
However, there are many other applications of the process. For instance, the United States Naval Air Station, San Diego, Calif., in local process specification No. 96 presents procedure details for sandblasting and metallizing aircraft parts including engine cylinders, tubular structures, main floats, wing-tip floats, fuel tanks, oil tanks, cowling, steel wheels, aluminum alloy wheels, oleo pistons, as well as steel shafts.
Engine cylinders, for example, are to be sandblasted with extreme care due to the different pressures necessary in blasting the steel and aluminum alloy sections. If the high blasting pressure used with aluminum alloy sections is not confined exclusively to those areas and is allowed to overlap on the steel fins nearby, their thickness will be reduced and they will curl or warp. The elapsed time between sandblasting and metal spraying must be a minimum. In sandblasting steel cylinder barrels, air pressure of 40 to 50 pounds is recommended, holding the nozzle 6 to 8 inches from the work and using No. 60 flint shot for blasting material. When sandblasting aluminum alloy parts of cylinders, air pressure of 80 to 90 pounds is specified with the same nozzle distance mentioned.
For metallizing steel parts of engine cylinders, oxygen pressure is from 22 to 23 pounds, air pressure at 60 pounds with 16 -gage pure aluminum wire being fed at rate of 10 to 11 feet per minute, using a No. 2 nozzle held 3 to 4 inches from the surface. In metallizing cylinder fins, the gun should be held

One of largest uses of metal spraying at present is in reconditioning worn crankshatts. Sprayed journals are three times as hard as originals. An excellent bearing surface is allorded because the sprayed metal is about 10 per cent porous and contains lree carbon

2 to $2 \frac{1}{2}$ inches from the top of the fin and at an approximate angle of 15 degrees to the fin and the spray gun kept moving with a uniform motion. For spraying aluminum alloy material on cylinder heads, procedure is same as for steel parts above.

Metallizing engine cylinders has proved superior to all paint methods heretofore used to prevent rust and corrosion. Metallizing steel tubular structures affords an excellent base for paint and also is far superior to the usual practice of painting with primer coat followed by a finish coat of paint in nreventing corrosion.
In preparing such tubular structures for metallizing, the same practice recommended above is to be applied. In every case it is most important to clean the surfaces thoroughly of all oil. In metal spraying, acetylene pressure is 15 pounds, oxygen pressure at 17 to 18 pounds, air pressure 60 pounds with wire set to feed at 9 to 10 feet per minute using a No. 3 nozzle, holding the nozzle from 4 to 6 inches from the surface and using No. 15 gage aluminum wire containing 1 per cent zinc.

As in other work mentioned above, the minimum time possible should elapse between the cleaning and spraying. In no case should more than 2 hours elapse. Care should be taken to see that all oiling holes, bushings, etc., are plugged. Use a 12 to 18 inch stroke and deposit from 0.002 to 0.003 -inch film.
In sandblasting main floats, wing-tip floats, fuel tanks, oil tank and cowling, care should be taken as

## T: ABIE

| Metal Appr | Approxinate Hardness of Sprayed Metals |  |
| :---: | :---: | :---: |
| Copper |  | Scleroscope |
| Brass | 87.7 | 28.0 |
| Bronze | 89.0 82.6 | $\begin{aligned} & 24.2 \\ & 18.0 \end{aligned}$ |
| Phosphor Bronze. |  |  |
| Monel Metal .... | 92.6 | 26.9 |
| Nickel Silver | 1710 | 37.4 |
| 0.10 Carbon Steel |  |  |
| §in Carbon Sted |  | 16,0 |
| 1. 80 Carbon Steel | 24.0 | 40.0 |
| . 0 Carbon St | 420.0 | 70.0 |
| Metco No. 1 Stainless Stect | 460.0 | 75.0 |
| Metco No. 2 Stainless Steel | 267.0 | 49.7 |
| Hete No. 2 Stamless Steel |  | 70.0 |

too much pressure or holding the nozzle too close to the surface will cause the skin to stretch and dis tort. Following sandblast instruc tlons as mentioned above, however, will be found safe with an inexperi enced operator. Watch the heat in metallizing as too much will cause distortion. When fllling scored or worn places with two or more coats, dress down to a smooth surface and then polish with steel wool and oil.

When the rims of steel wheels which are seriously corroded are to be sandblasted, submerge first in a caustic solution for a few hours. stram clean and then blast.
To prepare oleo pistons and certain steel shafts for metallizing, a light thread 0.062 Inch deep should be cut thelr entire length. Most shafts are rough threaded. All shoulders and flanges should be dovetailed 15 degrees, sandblasted lightly and then metallized as described above. They then can be reground to the desired diameter. Use nothing coarser than flint shot No. 60. In no case should parts be handled without gloves before being metallized. Take care to remove all paint, rust, etc, as presence of these materials will cause pockets and crawling of the metal film. Wire entering the gun should be lubricated. This can be done by securing a knotted cleth saturated with "tule" grease around the wire where it enters the gun.

## Depasits Wear Slow:y

In sandblasting walkways of aircraft, these same naval specffications direct that using an air pressure of 60 to 80 pounds the nozzle be held 10 to 12 inches from the surface. Conditions for metalliz'ng are approximately the same as described above except wire feed is increased to 12 to 13 feet per minute, using a No. 3 nozzle held 6 to 10 inches from the surface with 15 -gage aluminum wire containing 1 per cent zinc. After a smooth coat of metal has been applied, both the gas and air pressure are reduced, causing the aluminum wire to be deposited on the surface in small lumps of metal that will adhere to the surface as Well as a smooth coat and give walk-
ways of a superior finish compared to that herctofore obtainable. A sample of such material placed on a busy thoroughfare was in good condition after approximately 30 days and passage of 20,000 men.
The metallizing of alreraft parts is a great improvement in the prevention of corrosion both on parts left unpainted and also as a base for parts later painted, according to this same naval specification. It adds that unless the unpainted part is subjected to extreme exposure in continually damp atmospheric conditions or in salt water spray, subsequent painting has been found unnecessary in many instances. Where paint has been applied over metal spray, the adherence is far superior to that of paint applied on anodic treated surfaces.

While the metallizing process does not add strength to material, it is used to butld up corroded spots where pits have occurred.
One of the improved guns, known as the "Mogul" has a number of outstanding features. The gun is compact with all moving parts enclosed in a dust-proof case packed with lubrication. The case is onepiece construction to ellminate leaking foints. A singlecontrol taper valve simultaneously turns on the air, gas and oxygen in proper sequence and proportion in a single movement and likewlse turns the gases off completely in a single movement. The large taper valve affords a more perfect gas mixture and makes it possible to spray an extremely fine coat of metal even with a ${ }^{1 /}$-inch wire. Wire nozzle is hard faced to withstand abrasive action of the moving rod.
Feed rolls are exceptionally large and the air turbine driving the feed rolls also is larger than usual to g've more power, assuring positive feed without wire interruption. A 75 -pound pull is exerted on wire going through the gun.

A large number of tests have been made as to the lasting qualities of sprayed metal. For instance, in checking quality of retal sprayed on piston rods to rebuild them in comparison with qualites of new rods, one new rod and one metallized
rod were placed in a pump and a stroke counter attached. In a pump checked after 32,690 strokes, the retallized plunger was worn only 0.0050 -inch compared with the new plunger which had worn 0.0072 -inch. A second pump checked after 121, 319 strokes showed the metallized plunger had worn only 0.0030 inch compared with the new plunger which had worn 0.0064 -inch. It is evident the metallized plungers give superior performance over a new replacerrent. This lower rate of wear, of course, means correspondingly longer life, less frequent replacements and lower maintenance expense.
Frequently it is valuable to know the hardness of sprayed metal. Accordingly Table I is included, giving hardness values on both brinell and scleroscope scales. While this table of course does not list all the possible metals that can be sprayed, it does afford a gulde to the hardnesses obtainable.
Users of advanced metallizing equipment report many important savings not limited to any one particular type of metal.

For example, a refrigerating company making equipment for cold storage trucks, rooms for cooling, lockers for food storage, etc., is using a metal spray gun and propane to spray some 1330 square feet of zine dally, with three men being employed in the blasting room. It is not unusual to spray 7500 square feet weekly. Of course most of thls is flat work.

On a performance test to check the new guns, 9332.5 square feet of zinc surface was deposited using 17 tanks of oxygen, one tank of propane and 759.5 pounds of zinc.

## Good Bearings Obtained

Many other users employ the metallizing process in rebuilding bearlngs. One user reports that he employs two methods in such maintenance work. Where the bearing indicates excess clearance due to normal wear but otherwise is in good condition, enough old babbit is removed by machining to allow a sufficient amount of new diesel marine babbit to be sprayed, anchorage provided by previous sandblast ng. The bearing then is Anished in the usual manner.
Second method is employed where the bearing is found to be in a condition which makes it necessary to rebabbit completely. In thls case all the old babbit metal is removed, a special effort being made to re move any oll that may be entralned in any porous material remainingThe bearing casting then is thoroughly sandblastedand immediately a coat of tin is sprayed on this clean surface. The thickness of the sprayed tin apparently does not affect the an-
chorage one way or another as long as $0.008 \cdot 1$ nch is not exceeded. Bearing subsequently is rebabbited in the usual manner. This user reports that after employing this procedure for 7 years, no failures have been encountered from mechanical faults. Size of these journals is $1 \% / 4$ Inches to $2 \%$ Inches, length of bearIngs ranging from 4 to $6 \frac{1 / 2}{2}$ inches with speed of rotation from 1750 to 2800 revolutions per minute. These bearings are used in centrifugal pumps and turbines.
An oll refiner reports successful metallizing applications include pump plungers and impellors, interior of pump casings, centrifugal splndles, various slipper shoes and guides, valve and cam gear parts, pressure valve stems, seal rings, plston rods and many other applications on parts subjected to wear.
A large manufacturer of electric machinery employs sprays 0.25 per
cent carbon steel to build up bearing brackets and bearing cartridges, builds up collector rings with sprayed copper and replaces galvanizing on many items by spraying zlnc.

Often metallizing extends equipment $H f$ e amazingly. For instance, a 2 -inch blowdown valve on a certain power-plant application had a normal life of one year. When the valve parts are metallized with $18-8$ stainless, they withstand three years of service. It takes only 15 minutes to prepare a valve, 30 min utes to spray and 30 minutes to finish at an approximate cost of $\$ 3.50$ for the job.

Another instance where metallizing has proved espectally valuable is in the plant of a southern power company. Turbine runners avail able only in cast bronze are worth several hundred dollars and wear rapidly because of water cavitation
which renders them useless so a method has been developed to extend their service life. A liner, $5 / 32$-inch thick, is machined out and applied to the runner. The surface is sprayed with $1 / 32$-inch stainless. When thls liner cavitates, another is made and placed in the bronze runner. These stainless steel liners extend the service life of the runner and permit important savings.

Another power plant application is spraying of aluminum on superheater nipples and tubes and outside of water tubes. Here the sprayed aluminum furnishes an effective protection against high-temperature oxidation. It has been found an extremely satisfactory protection.

With the greatly lowered cost of metal spraying now possible, it is expected applications of the process wlll be extended to many other fields for which it is well sulted but where costs heretofore prevented.

## "Geared" Maginets Solve Vacuinin Problem in Treating Disks


$\square$ IN COATING aluminum disks with selen'um, Gene al Electric Co., S:henectady, N. Y., employs a vacuum chamber contalning a diskmoving mechanism which is oper. ated by alnico magnets. The disks, used in photecelectric eells, must be treated separately, and the use of alnico "gears" has made it possible to laad as many as 100 of them in the vacuum chamber simultaneously, and to treat them consecutively in the small vapor chamber located in the vacuum jar.

In operation, one of the magnets is revolved around a protruding brass tube sealed to the base of the vacuum chamber. Within the tube is another alnico magnet attached to the mechanism. As the outside magnet is revolved, the one within the vacuum-sealed chamber also rotates. Thus, without any shaft extending from the vacuum chamber, it is possible to control the mechanism. One set of "gears" laises the disks one at a tlme, whercupon a second set of "gears" operates the mechanism which transports the single disks to the vapor chamber-holds them there the specffed length of time-then removes them to the stack of completed disks.

A high vacuum is neeessary since the alr in the selenium would oxidize. Besides, in a vacuum the vaporizing temperature is decdedly lowered, and vaporization in a vacuum gives the operator a control in directing the path of the vapor particles. In addition to vaporizing selenium, the equipment also is applicable in vaporizing and depos. iting other materials.

# Continnous Pig Casting 

Unusually well-designed handling facilities feature highly efficient continuous pig-casting setup at Canadian plant,<br>fifty $45-p o u n d$ pigs produced per minute-70 tons hourly.

- THE PRODUCTION of pigs and certain other shapes by use of continuous casting methods is growing rapidly as such setups permit exceptionally high output from the equipment and, being completely mechanized, involve a minimum amount of supervision and hand labor. Thus the workmen are enabled to turn out a superior product at a greater volume and with less eflort.
An excellent example of one of these mechanized units and the excellent work they do is the layout at plant of Canadian Furnace Limited, Port Colborne, Ontarlo, which turns out some of the finest pig in the Dominion-fifty 45-pounders every minute day in and day outclose to 70 tons of Victoria pig iron each hour.

The pigs, cast in heavy conveyor

By REGINALD TRAUTSCHOLD
molds, are dusted with lime to facilitate the gravity discharge of the congealed jron and are not only produced at this speed but also are cooled and hardened in transit. Within four or five minutes from pouring, the pigs are delivered to waiting rallroad cars some 140 feet distant delivered by a single 20 horsepower conveyor-drive motor at a handling cost of less than a Canadian cent for 75 pigs discharged at the car side.

To perform this materials-handling task, driving motor of the conveyor is called upon to move constantly between 40 and 45 tonsfour to five times as much dead weight as the poundage of pig which travels on the loaded conveyor up

a moderate incline at a speed of 33 feet per minute. Each of the molds carrying a cast-iron pig weighs 160 pounds and each of the two strands of high-carbon bushed roller chains weighs about 118 pounds.

Two pig molds are mounted on each of the 16 -inch links of the conveyor chains to ferm a continuous serics of troughs into which the blast furnaces discharge without interruption, thus continuously casting to give a tremendous output with a minimum of handling equipment. Molds are supported by single-flange rollers with $6 \frac{1}{2}$-inch tread diameter and running on 80 pound T-rail tracks. Thus, a total load of approximately 250 pounds is placed on every link of the double strand chain.

An interesting and highly important drive detail of this conveyor is the "wave line" spur gear and eccentric pinion transmission as semblage employed to maintaln constant speed of mold iravel and 10 avoid the dangerous repetitive strains that would otherwise be placed on the conveyor chains by the variances in diameter of the long. pitch sprocket wheels. The gear member is somewhat polygonal in form, with pitch circumference elevations and depressions conformina to the number of teeth in the canveyor sprocket wheels, while the offset of the pinion member is so proportioned that full tooth engagement is secured at all times by the

$$
\text { Please turn to Page } 72 \text { ) }
$$

[^5]

TODAY the easier working qualities of Carpenter Stainless Steel make it economically practical for use in almost any product. These typical everyday applications suggest how much can be done with this modern Stainless Strip-how easy it is to give your product extra sales appeal, and still keep costs within the limits set by competition. Deep drawing, bending or forming of Stainless parts is no longer a difficult problem. Uniform temper and clean blanking qualities permit faster blanking and punching and help reduce press troubles. Why not investigate Carpenter Stainless now? Ask the Carpenter man to help you pick the most economical type for your needs.

THE CARPENTER STEEL COMPANY
Reading, Pa.

NO SCRAP
Ordinarily bezels are made by blanking the rings from a wide strip, which leaves o high percentage of serap. This Stainless bezel, available in' any size up to that used for in automobile headlisht rim, is made in the form of a rolled molding whous scrap and then tormed into a rins. There is a tremendous saving in material. Made tram Carpenter Stainless No. G. The ends can be welded il desired. Can you use a Stainless bezel in your product?


Fig. 1-Special produces for generating the atmosphere for the heating and cooling chamber of the electric an.
nealing furnace

# Strand Heat Treating Cold Strip 

## Coil throughout entire length subjected to same time-temperature cycle in continuous normalizing furnace operated with controlled atmosphere. I'roduct has uniform grain size and physical values

[ DURING the past decade a tremendous advancement has been made in the production of low-carbon steel in strip form in long continuous lingths and widths ranging from about 24 to 108 inches. Demand for these widths has come princlpally from the automotive industry and tin plate fabricators. The quantity used for tin plate alone is rapidly approaching 2,000 , 000 tons.

The large increase in production has bien made possible by two mafor developments during the period from 1926 to 1936, namely, the continuous 4 -high hot and cold strip mills. These made possible the production of coils of long length and of wide width and afforded for the first time strip with improved surface and accurate gage. Its introduction also revolutionized the grain structure with the result that strip steels of unusual physical values are now available. In the latter half of the period 1926 to 1936 the use of the lighter gages for tin plate requirements was initiated.

## Older Forms of Heat Treatments

Usually in the processing of cold rolled strip some heat treatment is required at one or more points. In

By NORMAN P. GOSS
Cold Melal Process Co.
Youngstown, O .
and
CURTIS H. VAUGHAN
Electric Furnace Co.
Salem, 0 .
general these may consist of process anneals to put the material in shape for further cold rolling, and final heat treatments in the form of annealing or normalizing operations, or sometimes a combination of both to make available the proper physical and structural conditions for stamping, or other fabrication, into the final product.

Annealing practice may vary in that the strip may elther be annealed in coll form or sheared and then annealed in the flat; at the present time this is principally accomplished in batch type furnaces of one form or another. Normalizing may be considered funda. mentally as a continuous furnace operation and is carried out in most mills with the material-generally cut in lengths-belng carried between rider and cover sheets through the ordinary direct-flred furnace.

It would appear logical that, having accomplished the rolling of the strip in long lengths continuously, the necessary heat treatments might be accomplished in like manner, that is, the coll would be unreled at one end of the furnace, passed continuously through the equipment, and recoiled at the discharga end.

## Continuous Heat Treatment

Batch annealing requires heating through the mass of a coil or stack of cold rolled strip. This, of course, consumes time, and cooling to a temperature at which the steel may be safely exposed to the air requires a further and much longer perlod. As compared to this, the continuous strand method requires only a few minutes in the furnace equipment.

Theoretically, at least, it would appear that the most uniform pos. sible method of heat treatment is in continuous strands where every unit of length of the strip throughout the entire length of the coll passes through exactly the same tme-temperature cycle. In batch annealing either colls or flats, it is obvious that the outside of the mass comes to temperature earlier and cjols in a shorter time than the


## Announcement

H. A. Brassert \& Company, Consulting Engineers for the steel industries, are moving their engineering and sales offices, located at present at Chicago, to Pittsburgh, and after August 15th will be located in the First National Bank Building there. The decision to move to Pittsburgh was prompted by the increasing concentration of steel company headquarters in Pittsburgh. The company's executive offices are in the Lincoln Building, 60 East 42 nd Street, New York, from which office their foreign business will be handled. An office will be retained at 310 South Michigan Avenue, Chicago.

The firm of H. A. Brassert \& Company has served practically every iron and steel company in this country and many abroad. It has offices in New York, Chicago, London, Paris, Lima and Buenos Aires. Herman A. Brassert, President of the Company, states that the organization in these branch offices established new industries by the development of new sources of raw materials, constructing new plants, introducing in existing works modern practice and machinery throughout the world. Outside of the United States, this firm has done business in Australia, Austria, Belgium, Brazil, Canada, Chile, China, Columbia, Denmark, Egypt, England, France, Germany, Holland, India, Italy, Japan, Manchuria, Mexico, New Zealand, Norway, Peru, Poland, Scotland, Spain, Switzerland, Turkey, U. S. S. R., Yugoslavia, and others.

Recently this firm constructed and built three large iron and steel plants in Great Britain, the most prominent one being the steel works at Corby, located about 80 miles from London. This plant consumes high sulphur native ores, which were formerly considered unsuitable for the production of steel but are now being processed. using the new method developed by H. A. Brassert \& Company. This development is, of course, at the present time of great value to England because it makes these plants independent of the importation of foreign iron ores. Plants were built in Germany and Austria employing similar methods. These plants, however, were not completed on account of the outbreak of the war, at which time Mr. Brassert dissociated himself from this undertaking.


Fig. 2-Rimmed cold rolled strip as normalized. X-ray view at right. Fig. 3killed cold rolled strip as normalized. X-ray view at right
inside, and thus no two portions of the coll, or the stack of sheets, or plates, go through exactly the same time-temperature cycle.

The results of the batch heat treatment may therefore be expected to vary in certain respects. Usual. ly there will be found throughou: the coll some variation in structure, causing a similar varlation in the yield point and even the elongation, though as far as hardness is concerned the coil will be fairly uniform.

Hardness is not the only factor to be considered in the annealed metal and in its subsequent fabrication. It would appear that uniform grain size, completeness of recrystalliza.
tion, and uniform yield point (provided of course that the hardness values are reasonable), are more important guides than hardness alone in determining the drawabillty of the metal.

Although in batch annealing the directional properties can usually be eliminated by keeping the cold reduction below 50 per cent, these properties cannot be removed if the metal has been subjected to reductions of over 50 per cent. In contrast, with continuous annealing at temperatures above $A_{s}$, heavy reductions are permissible, since with
such heat treatment the directional properties can be easily removed, because of the allotropic transforma tlon' taking place when the strip cools through $\mathrm{A}_{3 \text {. }}$

## Surface Conditions

Inasmuch as cold reduced strip has a high surface finish before an nealing it is essential that the material be delivered from the furnace with its surface free from scale or even discoloration. The economies of the case dictate also that the means for acoomplishing the bright annealing or bright nor. malizing be of reasonable cost. These problems of brightness and low cost are answered by the eco-nomically-produced controlled atmospheres which have been developed during the past elght years, thus eliminating the need of rider and cover sheets.

It becomes apparent that in the continuous furnace, relatively large in size and with ends open at all times to permit ingress and exit of the strip, appreciable quantities of the controlled atmosphere must be supplied continuously. Expenslve gases such as hydrogen would serve but are far too costly for such ap plications. Hence, the continuous heat treatment of the strip in its most desirable form at least was dependent upon the development of a low-cost controlled atmosphere, and with such atmosphere commercially available the way became cleared for economical continuous furnace applications.

In 1932 the Cold Metal Process Co., Youngstown, O., hearing of this atmosphere development, in vestigated its possibilities in two directions, namely: Its use in the bright annealing of both cold rolled steel strip and of electrical (high silicon) strip both in the hot and

[^6]Fig. 4-Electric furnace designed for annealing and normalizing 40 tons of lowcarbon strip up to 36 inches wide in 24 hours

animpotuen THIII P
IIGIISSPCUII
... A Sellers Tool Grinder operafed by your tool room boy

With Sellers semi-automatic, high-speed method of tool grinding, your tool room boy can easily keep tools for your entire plant correctly ground and ready for immediale use while your machinists stay on production work. . . For Sellers Tool Grinders provide an interchangeable cam to guide the grinding of tool shapes, making possible a rapid duplication of tools ground accurately to predetermined specifications . . . Grind your tools the Sellers method . . . it is faster, more eccuratel

Complete information and prices will be furnished on request. WILLIAM SELLERS \& COMPANY, Incorporated 1622 Hamilion Stree: Philadelphia, Pa.


N C I CDO


Fig. 5-X-ray of low-carbon cold rolled strip belore annealing showing grains oriented in rolling direction
cold rolled forms.
These investigations, supplemented by considerable experimental work in a small continuous furnace at Salem, O., resulted in a decision early in 1933 to install a continuous controlled atmosphere furnace of large enough slze for moderate production requirements at the company's plant in Youngstown, 0 . This furnace was placed in opera. tion several months later.
This strip normalizing furnace was destroyed by the fire that leveled the company's plant in 1936 but was subsequently replaced with a new and larger furnace unlt which provides for a wider range of annealing and normalizing capacities.

The furnace, shown in Fig. 4, has an effective heating chamber 3 feet 8 inches wide by 30 feet lang, pow. ered at 420 kilowatts for a productive capacity of 40 tons of low-carbon steel strip per 24 -hour day in widths up to 36 inches.

A sectlonalized cooling chamber separated approximately 10 feet
from the heating chamber is cooled by circulating water through a flattened helical pipe coil provided throughout the 72 -foot length of the furnace. Connecting the watercooled chamber to the heating chamber is an insulated, or lined, cooling section for heat economy and to delay the csoling rate of the strip.
The strip is supported in the furnace on a standard roller hearth type of conveyor consisting of a series of rollers spaced throughout the length of the equipment. The rollers in the heating chamber and in a portion of the cooling chamber are of heat-resisting alloy with a polished surface. The remainder of the rolls in the cooling chamber are of brass construction. All rolls are individually driven with a chain and sprocket drive from a motor-operated, variable-speed drive unit in

Fig. 6-Examples of severe deep drawing operctions
such a manner that the surface speed of the rolls is identical with the rate of travel of the strip. This eliminates the necessity of a rider sheet and further eliminates the possibility of scratching which of course is fundamental in the heat treatment of cold rolled strip; thls had not been previously accompllshed.

All rolls are carried in bearings located completely outside the furnace shell, in such a manner that any roll may be easily removed for maintenance purposes. Thesa bearings are self-aligning and are care fully sealed to prevent entrance of air to the equipment.

Equipment for uncolling the strip at the charging end of the furnace and for recolling after treatment at the discharge end of the cooling chamber were designed and built by the Cold Metal Process Co. This equipment incorporated the necessary mandrels, pinch rolls, stitcher and shear, speed control devices, and other details.

Atmosphere for use within the neating and cooling chambers is generated in the spectal producer shown in Fig. 1. This unit provides approximately 2500 cubic feet of atmosphere per hour, utilizing only approximately 300 cubic feet of natural gas per hour. The analysls of the atmosphere can easily and accurately be varied in order to pro duce strip with a mirror finish or: of different degrees of coloring similar to "temper colors".

Heating in the heating chamber is accomplished by heavy cast heatresisting elements located both above and below the strip. The heating units are separated longitudlnally into two control zones, with potentiometer type controllers accurately controlling and recording the temperature in both zones.

Since the advent of the use of radiant tubes in connection with gas flring, particularly of the recuperative type, and because of recent metallurgical improvement in the tubes, large savings in heating cost can be realized. The savings will

of course vary in different plants due to the relative cost of electric power and gas.
In the all-eleatric unit of a size to produce say 5 tons of tin plate per hour, 0.010 -inch $x 36$ inches wide, the power requirements are approximately 195 kilowatt hours per ton, which at an assumed rate of 1 cent per kilowatt hour gives a heating cost of $\$ 1.95$ per ton of material. Comparable equipment heated with radiant tubes rezuires about 1503 cubic feet of natural gas per hour which with an as sumed gas rate of $\$ 0.50$ per 1000 cuble feet brings the heating cost with gas down to $\$ 0.75$ per ton.
While the figures for both electric and gas heating of continuous normallzing are for a unit with a productlve capacity of 5 tons pel hour it is not feasible to provide a bell furnace unit for handling colled material which would even approach this capacity. Therefore, the figures on batch annealing will be given for a unit of approximately 1 ton per hour capacity. Such a furnace requlres a gas consumption of approximately 1400 cubic feet of gas per ton of net material. Using the same unit gas rate of $\$ 0.50 \mathrm{prr}$ 1000 cubic feet this gives a cost for heating of $\$ 3.70$ per ton.

While there are several other tangible items of expense which enter Into the total heat treating cost these have been found to be comparable on a "per ton" basis. In other words, the difference in heat treating cost is $\$ 0.05$ per ton favoring the batch anneal.
This small difference is reduced or completely eliminated by intangible items such as reduction of scrap loss and the ellmination of coll set by the continuous method.
In addition to the foregoing it has been found that the initial cost of equipment is less on a "per ton" basis for continuous equipment than for batch equipment.

## Character of Product

The product of continuous heat treatment is characterized by uniform grain size and uniform physicals. Typical structures are illus trated in the photomicrographs and their corresponding X-ray diagrams in Figs. 2 and 3, for rimmed and aluminum killed strip steel. Both the rimmed and killed hot rolled strip were cold rolled from 0.105 inch to various gages; the strips were then heat treated at 1700 de grees Fahr. for about 15 to 20 sec onds. The structures in Fig. 2 show that recrystallization is completed rapidly. This is definitely shown by comparing the X-ray dlagrams of Figs. 2 and 3, the latter showing the structure of a strip just as cold polled. The microstructure of the normalized strip shows that the grains are uniform in size and the


Fig. 7-Rimmed cold rolled strip as batch annealed. X 500. X-ray viow at right
carbides appear sorbitic.
On the other hand, in batch annealing there is a wide variation in the time required for the outer layers of the oull and those in the center of the mass to reach temperature; this causes some variatlon in the grain size, but the tensile properties show a greater variation. The mlerostructure and X-ray diagram of a pot annsaled rimmed steel strip is shown in Fig. 7.

By heating the strip to a temperature above $A_{1}$ coupled with proper time at temperature, steels having unusual deep drawing properties can be developed. Examples of severe deep drawing operations are shown in Fig. 6. These clearly show that normalized strip stecls are suitable for deep drawing requirements. In some instances one or more operations could be ellminated without intermediate anneals. This could not be accomplished with the batch annealed strip or sheet.

In one of the cups shown in Fig. 6 it was absolutely necessary that it be drawn uniformly and without ears; this was accomplished with strip steels normalized above $\mathrm{A}_{8}$ Also, the normalized cold reduced strip required but one heat treat ment, whereas the pot annealed strip requires at least two. In an other instance it was necessary to obtain a perfect rim due to the small projection required on the upper rim; strip steel heat treated above $A$, made this possible for the first time.

## Importance of Grain Size

Tests made on a large number of colls of rimmed and killed strip stecls normalized above $A_{3}$ and run through the furnace at various speeds, so that the time at temperature was varied, proved that the time at temperature controls the grain size. Larger grains, though not always uniform in size, can always be obtained in the rimmed stcels. The grains in the killed steels are smaller and more uniform in size. Killed strip steels require a
longer time at temperature in order to attain the deaired size; however, only a few seconds at temperature are rezuired to complete rectystallization of the cold rolled structure in either case.
Numerous tests show that the graln size and the yield point are related. Also, deep drawing tests show that grain size, yleld point, uniformity of structure, and completeness of recrystallization are of more importance than hardness. For example, Otis' states that a $0.040-$ inch strip annealed in the coll in the bell type furnace gave an Olsen cup value of 0.410 and 0.430 and Rockwell " $B$ " hardness numbers ranging from 31 to 40 . The same Olsen cup values have been obtained in strip heat treated continuously above $A$, but the Rockwell " $B$ " hardness numbers ranged from 48 to 55 . This is accounted for by the difference in grain size and the microstructure (sec Figs. 2, 3, 7).
The grain size can be controlled for all deep drawing requirements by simply changing the speed of the strip through the furnace, that is, varying the time the strip is held at the temperature. The longer the holding time, the larger the grains will be. However, it must be pointed out that the grains reach their maximum size in only a fraction of a minute; increasing the time at temperature beyond a certain time limit will not cause a further increase in the grain size.

Excellent deep drawing properties are usually obtained when the grains of the aluminum killed strip are about 0.0005 to 0.00075 -inch diameter. For a rimmed strip steel the grain size should be slightly larger. The grains are never as unlform in size, the grains near the surface tending to be larger. A typical rimmed strip steel, normalized at 1700 degrees Fahr., is shown In Fig. 3.

If the strip is run through the

[^7]

Fig. 2-Auger housings are welded to lower side panel subassembly in this fixlure

## Progressive Assembly

## Some 52 separate parts are assembled in sequence to form entire body

## of harvesting combine. Effectively illustrates how standard re-

 sistance welding guns with suitable fixtures permit efficient assemblyA COMPLETE welding department designed for progressive assembly welding of the entire body of two sizes of harvesting combines has been put into operation at the East Moline, III. plant of John Deere Harvester Co.

The body assembly comprises some 52 separate parts including auger housing, beater cover, top,
upper and lower side panels, reinforcing plates, collars and brackets. All these parts are assembled by spot welding at nine progressive stations, using only seven transformers, seven welding guns and a new spot welder of the air-hydraulic type.

Each "gun" includes a U-shaped clamp holding the two welding electrode tips and an air or oll cylinder by means of which pressure is ap plied to the work inserted between jaws of the gun. Entire unit is connected by flexible cables to the weld-

Fig. 1-Layoul diagram of arrangement of welding guns and fixtures for the production line described


## "Gulf <br> PERIODIC CONSULTATION SERVICE

## has helped us get smooth, trouble-free operation"

... SAYS ASST. SUPERINTENDENT.

"IT PAYS US TO FOLLOW THIS

## GULF ENGINEER'S RECOMMENDATIONS

## TO THE LETTER"

"We combat friction and inefficiency in our large plant with these tested and proved weapons: Gulf Periodic Consultation Service and Gulf's higher quality lubricants." says this plant superintendent. "In today's rush of orders, our main objectives are continuous, uninterrupted production schedules and lower maintenance costs-so, we stick to the Gulf engineer's recommendations."

From a complete line of more than 400 quality oils and greases, the Gulf engineer is prepared to reconmend the lubricants that will help you secure the operating economy and efficiency you require. You pay nothing extra for this specialized service-you can put it to work in your plant at once!

Gulf quality lubricants are quickly available to you through more than 1100 warehouses located at principal distributing points in 30 states from Maine to New Mexico. Write or phone your nearest Gulf office today.
send for this free booklet



Fig. 3-Cylinder and top subassemblies, previously assembled on conventional stationary spot welders, are put logether in this fixture using a "pinch" type spot welding gun

Ing transformer, timer and air or hydraulic equipment.

The floor plan layout of this equipment in Fig. 1 shows flow of work through the various units. It will be noted the top-reinforcement fixture $A$ and the auger and beaterhousing fixture $B$ employ spot-welding guns swiveled on an arm to permit their being revolved to reach the two fixtures. The top-reinforcement fixture, moreover, is of the turntable type so all parts can be reached with the gun from one side.

Another single gun is used for
the lower sidepanel assembly $C$ and the upper side-panel assembly $D$. Transformer, booster and gun here are hung from an overhead monorall and are moved between the two fixtures as needed.

A similar monorail permits welding both sides of the roof assembly to the side panels with but a single
gun, the monorail belng U.shaped and located dirently above the as sembly station at E, Fig. 1.

Two more guns at the "major" assembly station $F$, each with its own transformer, complete the actual welding eauinment. It should be mentioned that each gun, with the exception of the first mentioned swiveled installation has its own timer and transformer. These automatic timers operate through electronic tubes and are adiuctable as to welding time, cooling time, etc. for each spot.

The entire installation was worked out with the co-operation of the Progressive Welder Co., Detroit, which sundlied fixtures, transformers and guns.

The various sheet metal parts range from 0030 to 0.125 - Inch in thickness. Fixtures are so designed and equipment se'ected that no spots show on the outslde of the completed shell. In general this has been achieved by the use of water-cooled dies fitting the contour of the body at the weld. These dies, known as "coppers," bear against the outside of the body and serve as con durtors for the we'ding current.

Primary ascemblies (subassemblies) are welded first on a spot welder. Then the subassemblies are in turn assembled on the series of fixtures shown here as will be detailed. Auger housings are welded to the lower side panel subas. sembly in the fixture in Fig. 2. (B, Fig. 1) the side panel being located on the right of the fixture shown. Note use of quick-acting hand clamos on many of these fix tures. A "pinch" type of spot weld. ing gun is used here. The assembly'

Fig. 4. (Left)-This telescoping fixture is used in welding side panels to the cylinder and top cover assembly. Fig. 5. (Right)-In background, top panel is being welded in position. Foreground shows "major" assembly fixture open. Note here the two sets of hydraulic cylinders used to open and close dies at each side of the fixture



An HD 6084 Pit Type Furnace at the Quality Aluminum Casting Company, Waukesha, Wisconsin

## HEVI DUTY ELECTRIC COMPANY heat treating furnaces heyfedefy electric exclusively MILWAUKEE, WISCONSIN

then goes to the fixture in Fig. 3 (C. Fig. 1) where cylinder and top cover subassemblies are spot welded, using another plnch gun.

Upper side panels are welded to the cylinder and top cover assembly in the telescoping fixture shown in Fig. 4 ( $D$, Fig. 1). The cylinder and top cover assembly first is mounted in the inner fixture. Upper side panels are located inside the outer part of the fixture, which is then rolled into position over the inner fixture on the guide rails shown. The operation requires about 80 spots with a pinch type gun welder. This same welder also serves $C$, being hung on a monorail over both fixtures. A hand raising device is used to elevate the ralls and outer fixture to clear the inner fixture, when welding is completed. This lifts the entire assem. bly off the inner fixture, permilting it to be rolled on the ralls to the following eperation.

This next operation, the fixture for which is shown in rear, Fig. 5 (E, Fig. 1), consists in welding the top panel in position. With the assembly rolled forward to station E on rails extending from $D$, the top panel and assembly locating fixture are dropped into place from overhead, the top fixture piloting in four holes in the ends of pasts of the main fixture. With the combine body assembly in this fixture, drip moldings are pinch gun welded to side panels after the roof panel has been welded into the assembly.
The entire assembly then is rolled forward to station $F$, the major assembly location. Here, Fig. 6, upper and lower assemblies are welded together. Fixture used here is shown in open position in foreground of Fig. 5. First, the lower side panel and auger housing subassembly from Fig. 2, are slid into the fixture. Then the assembly from Fig. 5 is rolled over the fixture to nest the assemblies. Four pilot pins are ralsed into holes in brackets on the legs of the outer fixture. Four air


Fig. 7-One of the subassembly fixtures built to use one of the standard 'push' 'type guns and timer from the final assembly station
cylinders on cither side then move in the locating coppers, pilot plun gers engaging holes in the lower assembly to locate it horizontally and vertically.
Two hand expansion guns are used to weld the assemblies together, working from both ends at station F. Each gun has its own transformer and power unit, the former located in the base of the major assembly fixture, the latter mounted on the fixture as shown. Air-hydraulic beosters are used for the guns. Each gun is provided with an individual timer, one being of the interrupted type and one being a repeating timer.
The expansion guns bear against
the back-up plates shown on the center of the flxture, pressure being against the outer coppers, which incidentally, are water cooled. With this setup no spot weld marks appear on the outside of the fintshed body.

An unusual operation now follows In this same setup. Axle brackets of 16 -inch hot-rolled stock are weld ed on the outside of the body panel and reinforcement panels of 0.060 inch pressed steel are simultaneous. ly welded on the inside to the 0.030 inch stock body panel between them -a thinner section between two heavier gages.

In addition to welding through these three thicknesses, the same gun, transformer and timer are used to make other welds between body and reinforcement panel where only two thicknesses of metal are involved. This is made possible by the provision of a dual-heat pushbutton arrangement on the gun. These push buttons operate dual heat relays on the interruptor timer. This arrangement permits some 40 spots per side to be welded through three sections with 60 more per side through two sections, switching back and forth as required.

Contributing to the success of this setup is the provision and design of coppers to fit the reinforcement brackets exactly. These brackets require welding both at an angle and horizontally. To provide for this, using the same guns, the back up plates on the fixture are designed so they may be swung manually to a position parallel with the surfaces being welded together.

After removal from the major fixture at $F$, the last operation on the combine body is to weld in a (Please turn to Page 72)

Fig. 6-Here the major assembly fixture has work inserted and dies closed ready for welding
Fig. 8-Another subassembly tixture. This one is used to weld reinlarcements on both ends of the top or cover and a bafle in the middle. Note fixture is on a turntable, permitting it to be revolved so operator can make all welds from ane side using a deep-throated pinch gun


# EXTRA STAMINA 

## for $90 \%$ of all new RAILROAD CARS built!

For parts that have to "take the bumps"-or wherever unusual strength is required-Steel Castings are in growing favor. For example, more than $90 \%$ of all new


Cored holes in casting save drilling time - an extra economy.
railroad cars have cast steel center fillers and strikers. These parts, which form the backbone of the underframe construction, must be of the strongest available material. And where it is advisable to save weight, cast steel in skeleton, lightweight designs, is still strongest.
Steel Castings are the most economical form in which you can secure for your product the obvious advantages of steel. They permit scientific weight distribution, without excess metal to trim off. They permit combinations of parts that save handling and assembly cost. They afford a wide range of mechanical properties, and are readily built into welded structures.

Your local foundry will gladly show you how you can secure these benefits-often at substantial cost savings. Or you may write for information to Steel Founders' Society of America, 920 Midland Bldg., Cleveland.
MODERNIZE YOUR PRODUCT WITH


# Erecting Steel Towers 

By F. L. SPANGLER

- AN IMPORTANT item in the final cost of a steel tower is the cost of field erection. A tower may comprise several hundred individual pieces of steel, welded, riveted or bolted together. These pieces can be drilled and assembled on a bench in a shop much more quickly and at much less cost than required to drill or assemble thern in the field.

Except in the case of comparatively small towers, it is impracticable to deliver the structure complete to the fleld site because of limitations affecting shipment of such large structures and difficulties of handling large heavy assemblies in the fleld. Without careful consideration given to all factors involved, the savings made by using shop labor may be offset by higher field erection costs caused by investment in high-capacity hoisting equipment or by larger crews to handle the heavy bulky assemblies.

Short slender towers or poles may be shipped intact, if not of too great length, thereby requiring no fleld assembly. One company supplies poles up to 50 feet in length, fully assembled. Longer poles are shipped in two sections and require a field splice.

Steel towers serving as radio antennae have been erected with heights as great as 750 feet. Radio towers are of two types, those that are rigidly anchored at the base, and those that are pivoted at the base. The latter is necessarily a guyed structure, while the former is not. Towers may have either three or four uprights tied together by diagonal and horizontal members, giving a cross section like an equilateral triangle or a square.
In the erection of these structures, it is usual practice to employ a gin pole or boom, usually made of wood and about 50 feet long, which is lashed to one of the legs of the tower structure. Gin poles also are used in the erection of power transmission towers. They may be lashed to a leg of the structure or, if the base is quite wide, they may be guyed in the center of the structure with the bottom of the pole in a basket supported by cables passing over sheaves on the structure.

These gin poles are preferably of some soft wood such as pine or fir so the pieces of cable by which they are lashed to the structure will bite into the pole and prevent slipping. Where the gin pole is of
steel, it is necessary to provide the pole with clips or other means for resting against the cable and preventing the pole from slipping when hoisting a load.

Of course, wire rope is essential in the erection of these steel structures. It is used to lift the loads from the ground and also to raise the gin pole. Where guys are required, a considerable amount of rope must be employed for this purpose.

Field erectors have found that some ropes handle easier than others and so speed the erection job and cut labor costs. Some ropes will twist and tend to throw themselves into loops which may be pulled into destructive kinks. Other ropes will lie straight and handle with much the same ease as manilla ropes. The difference is brought about in manufacturing the rope itself. Ropes whose strands are preformed before being closed onto the rope center normally contain no internal twisting stresses and so are the easiest to handle. Such rope does not fly apart or unravel when cut.

Since saving in time is important in keeping fleld erection costs low, erectors generally have adopted preformed ropes for hoisting and lifting purposes, Ropes not preformed still are being used for guys. For temporary guys that later will be used as holst ropes, the preformed type may be preferred.

The footing design for steel towers depends on local soil conditions. Light-weight poles set directly in the earth may be provided with earth-bearing angles at the bottom. Concrete, however, is generally used as a footing, the structure being set in the concrete or anchored on top of a concrete pedestal.
The following sequence of operations is typical for erecting a three-sided radio tower rigidly connected to its base.

First, the lowermost section of one of the legs is bolted in place on its foundation, after which diagonals are bolted on. Then the first sections of the other two legs are erected, and diagonals and horizontal members are added. A sheave is then attached to the top of one of the leg sections for hoisting the gin pole so it can be lashed to the leg. The gin pole is made to extend about 25 feet beyond the top of the leg so that its sheave can be used for
hoisting succeeding sections of legs as well as diagonal and cross members into place for bolting.
The second and each succeeding section of the tower is erected in a similar manner to the first section. After the erection of each section the sheave that was attached to the top of the last section is moved to the top of the new section, allowing the gin pole to be lifted and lashed in a higher position. Thus, by using a gin pole to hoist the leg sections and diagonal and cross members into place, and a sheave to hoist the gin pole as the erection of the tower proceeds, section after section is added to the tower.
The leg sections of these towers are generally of some standard length - $20,22,25$ feet or some other consenient length.
As erection of the radio tower proceeds, the tower legs converge closer and closer to the center of the structure until finally they meet, and the rest of the tower then consists of prefabricated sections set one on top of the other until the last section is in place. In the erection of these sections, the gin pole is used in the same manner as for the erection of the lower part of the tower.
Fastening one leg section or one tower section on top of another may be done by providing plates at the top and bottom of the section, the bottom plate of an upper section resting on the top plate of a lower section, with the plates bolted together by the fleld erectors.
Where the radio tower is of the guyed type, with its base pivoted on an insulator bearing, the tower may consist of long, slender sections delivered to the site in standard lengths. These are erected one on another, in much the same manner as the erection

Left this lype of tower is rigidly anchored at the base, uses no guy wires, has triangular cross section. Right, fowers like this are pivoted at the bottom on a single support. employ guy wires to hold them upright
of the upper sections of the three-legged tower just described, with the exception that the pivoted structure must be guyed at all times. Hence as erection proceeds, new guys are attached to hold the structure plumb. Most of these guys are temporary and are removed after the permanent guys have been put in place.

These tower sections may comprise a combination of angles with connecting members, all assembled in the shop, so the only field assembly is the making of the field joints.

The procedure for erecting power line transmission towers is much the same as that for a radio tower rigidly supported by legs. A gin pole is used to hoist the individual steel members in place for bolting and a sheave which is moved up step by step as erection proceeds is used to hoist the heavy gin pole to enable it to be lashed at a higher position.
Where a guyed gin pole is used in the center of the tower, its base rests in a basket supported by ropes passing over sheaves atop each of the four legs. The gin pole is raised by pulling on two of these ropes passing over sheaves on opposite legs, after these sheaves have been raised. With the gin pole in its new position, the other two sheaves are raised and the ropes pulled taut. The guy wires always are kept taut, but they are played out as the gin pole is raised to allow for the increased elevation of the pole.

To avoid setting up a high bending moment in the gin pole when hoisting sections, a fairlead sheave is located below the pole and attached to one of the tower legs near the ground. From the fairlead, the rope feeds to a power winch.

Whatever the erection method to be used, it should be studied carefully and all details planned in advance. Only by careful planning can field erection costs be kept low.



## A Broach Repair Method

M MUCH is heard these days about the importance of tooling. At the same time grave concern is being expressed over the growing shortage of skilled toolmakers. Therefore, any practical means by which expensive tools which are difficult to make can be repaired quickly and put back into service after accidental breakage is of particular interest at this time. One such method is shown here.

At the S. \& S. Corrugated Paper Machinery Co. Inc. plant, Brooklyn, N. Y., a high-speed broach used in cutting 3 -inch keyways broke in service. This tool is used constantly on a variety of work. While a new one costs $\$ 72.75$, the delay in getting it was more serious as it meant disrupted production schedules.
Inspection showed that the break was clean and about 14 inches from the drawbar end where the broach is attached to the machine. As the high-speed steel from which the broach was made is of the airquenched type, hardness had to be kept in mind in determining the best repair. Also, to maintain size in the broach, the joint had to be made by a method which would not warp the tool out of shape. Many broaches would involve similar restrictions.

It was felt that the job would be greatly simplified if the repair could be made without affecting the hardness of the cutting edges. This meant a low-temperature process had to be used, eliminating welding. Therefore, it was decided to braze

Above illustrations show two views of the high-speed broach repaired by the silver soldering technique described here using two reinforcing strips, one on each side
the break together with a low-temperature silver alloy supplied by Handy \& Harman, 82 Fulton street, New York. This material flows freely at 1175 degrees Fahr. It was used to join two reinforcing strips of tool steel to the sides as shown in the illustrations above.

First, the sides of the broach were undercut $1 / 6$-inch for a distance of $13 / 1$ inches each way from the break, using a surface grinder. These surfaces then were cleaned thoroughly and covered with a spe. cial flux designed for use with this silver solder. It is completely liquid and active at 1100 degrees Fahr. Two high speed steel reinforcing strips were formed to fit the recesses cut in the sides of the broach. After these also were fluxed, the joint was assembled with inserts of the silver solder brazing alloy in sheet form 0.005 inch thick between the reinforcing strips and the body of the broach. The assembly then was clamped securely together.

Using an oxyacetylene torch having a No. 5 tip and regulated to give a soft reducing flame, heat was applied to the side of the broach opposite the cutting teeth. Care was taken to heat evenly until a faint red appeared in the met-
al. The brazing alloy insert then flowed and penetrated into the fracture, securely joining the broken parts which had been butted together closely. At the same time it permanently united the reinforcing pieces to each side. The job then was air cooled because of the type of steel which was joined.

An inspection of the finished job showed a sound joint. Tests indicated that hardness had not been affected, and the broach did not warp to a harmful degree. The small amount of warpage which did occur was attributed to the hurriedly arranged clamping methods which of course would be corrected on a future job.

After slight finish grinding, the bioach was tested in regular service. It has now been in use for over three months and is doing its job as well as a new tool. The hardness of the cutting edges appears not to have been impaired by brazing in any way.

In checking costs of materials and labor for this job, the results added up as follows: Undercutting and grinding labor, 2 hours, $\$ 4.00$; gases, 50 cents; brazing alloy and flux, less than 10 cents; brazing and fluxing labor, one-half hour, $\$ 1.00$; finishing labor, one-half hour, $\$ 1.00$; total, $\$ 6.60$.
Thus low-temperature brazing not only relieved a production jam but saved the difference between $\$ 72.75$ and $\$ 6.60$ in doing it. The wider use of brazing like this offers an opportunity of saving many an expensive tool from the junk pile.



## Cutting Machine

- Gleason Works, Rochester, N. Y., announces the Revacycle, a new mass-production machine for cutting straight bevel gears such as those used in automotive differentials. It provides a fast method of cutting straight bevel gears, the gear teeth being both roughed and finished in one operation with a single disk cutter. While normally arranged for the continuous production of one particular gear or pinion, the machine also can be arranged to handle several jobs consecutively. Typical production for an $11 \times 16$ combination, 5 diametral pitch is 70 pinion or 50 gears per hour. The machine's cutter has a number of radially arranged roughing blades followed by a number of similarly arranged finishing blades with a gap between the last finishing and the first roughing blade. The cutter is mounted on a reciprocating slide, and, as the cutter rotates in engagement with

the gear blank, it moves along the lengthwise direction of the tooth space. As the cutter moves from the small to the large end of the blank, the roughing blades rough out a tooth space. On the return stroke the finishing blades finish the tooth space which has just been roughed.

The blank is held stationary during cutting, and at the end of each return stroke of the cutter, the blank is indexed at the gap in the cutter blades. Conjugate tooth forms are
produced as a result of the cutter motions and the profile shapes of the cutter blades. Except for chucking, the machine is entirely automatic. It is provided with a rotary work holding turret with three spindles. Thus, gears are removed and blanks loaded at two stations, while cutting takes place at the third. While the machine is in operation a built-in conveyor deposits chips outside the machine. Lubrication of all moving parts other than the spindle is provided by a circulating oil system. The work is held in place by a heavy spring and is released by a hydraulic piston.

## Electric Counter

- Production Instrument Co., 706 West Jackson boulevard, Chicago, has introduced a small, compact mercury electric counter which requires only a small amount of energy (about 2 watts at rated volt-

age). It is particularly suited for electric eye operation and is capable of providing 600 counts per minute. Five number wheels record up to 99,999 and repeat. Large white figures on black wheels located close to the window provide easy reading. The counter features tamper-proof construction, and is available for any 60 -cycle alternating-current voltage up to 230 and for any directcurrent voltage up to 115.


## Carbon Dioxide Analyzer

- Bacharach Industrial Instrument Co., 7000 Bennett street, Pittsburgh, anncunces a chemical type carbon dioxide analyzer known as Fyrite for measuring the percentage of carbon dioxide in the flue gases of boiler furnaces. It features a gas sampling unit which includes a primary flue filter with a replaceable filtering thimble. Other improvements are said to make the instrument faster and more fool-proof. Its operation is simple. A flue gas sample of known volume is pumped to the instrument by hand with a rubber bulb and trapped in the instrument. The instrument is then
turned upside down and back again to mix the gas sample with the absorbing reagent. The suction created due to the complete absorp-

tion of the carbon dioxide pulls the absorbing fluid up an amount equal to the carbon dioxide absorbed. The instrument gage fits snugly into the hand and its proportions are balanced so that it is not easily upset when placing it on a table.


## Industrial Cleaner

- Electric Vacuum Cleaner Co. Inc., 1734 Ivanhoe road, Cleveland, has introduced two models of a new 1-horsepower portable industrial cleaner for industrial use. Model 184 has a 2-bushel capacity and model 184-A has a $11 / 2$-bushel capacity. Both are equipped with a 1 -horsepower air-cooled motor. The new type crinkle-finish on the container is durable and long-wearing.



Large ingot
stocks assuret SHIPMENT ${ }^{\text {Risid contol of of products }}$ from insot to products material assures highest pendable! uniform and de-

WORTH SHEARED STEEL PLATE<br>\section*{FLANGED AND DISHED HEADS}<br>    Toronlo, Con., Drummond, Mecall \& Co., Lid.

WORTH STEEL COMPANY
CLAYMONT, DELAWARE

# Finishing Transiormer Cases 

After being thoroughly cleaned and rustproofed, transformer cases receive two coats of baked-on synthetic enamel in highly mechanized finishing line. Chain conveyor runs continuously

- AN OUTSTANDING finishing line at Pittsburgh plant of AllisChalmers Mfg. Co. includes complete equipment for cleaning, rust-proofing, drying, painting and baking operations in the production of transformer cases which range in size from 31 to 41 inches in diameter and from 38 to 44 inches in depth. The entire system was engineered and co-ordinated by the R. C. Mahon Co., 86 Mt. Elliott avenue, Detroit, to meet the specific requirements involved in applying two coats of synthetic enamel to this product.

The transformer cases are carried through the system on a monorail conveyor at three levels as shown in the accompanying elevation diagram, Fig. 2. The cases are suspended from hooks moved along by a continuous chain conveyor, in an inverted position. The cases are loaded on the chain conveyor at the urload-load station at lower center of the plan diagram, Fig. 1. This station also is shown at the extreme right: in Fig. 3.

First after loading, the cases are lifted to the second level where they pass through the alkali wash
slation seen in the plan view, Fig. 1. Here sprays are set to cover effectively the entire interior and exterior surfaces of the case. The alkali wash solution is maintained at a temperature of 180 degrees Fahr. by means of gas immersiontype heaters in which the gas is burned in tubes submerged in the solution in the tank.

From the alkali wash, work passes to the adjacent hot-water rinse which is also heated by immersiontype gas burners to 180 degrees Fahr. An important advantage obtained by using immersion-type gas burners is that this method of heating completely eliminates considerable buildup of scale on heating equipment which is apt to occur with conventional heating systems.

All solutions are pumped through sprays and drained from the worls back into the solution tanks directly below as shown in elevation diagram, Fig. 2. Drain boards adjoining each tank return spray and drip to the correct tank.

Rust-proofing section is heated by
Fig. 1-Plan view of the highly efficien! setup which applies two coats of synthetic enamel to the transformer cases
direct-fired gas burners. As the gas is burned directly in the processing chamber, the atmosphere in this unit is partially reducing in nature. This feature has been found to increase the effectiveness of the rustproofing obtained. Even though the conveyor entry at extreme right, Fig. 3, is open, sprays from the pre ceding washes and the fact that the work is elevated help to trap this atmosphere which has been made partially reducing because of the large percentage of oxygen that is burned in the process stage. The gas burners on all of the tank heating units are fitted with complete automatic safety and temperature control systems.

All these process and rirse tanks operate at a temperature of 180 degrees Fahr., the automatic control switching the gas burners from a high to a low position as may be necessary to maintain the temperature. The automatic safety control cuts off main gas supply valves in case the pilot lights are extinguished, or electric current fails, or gas pressure drops below a predetermined point.

After passing through a second

rinse and a chromic acid bath, the cases go through an automatic blowoff where any entrained water is removed before the transformer cases pass on to the dryoff oven. The blowoff air is furnished by the same blower that supplies combustion air to the gas burning equipment. From the blowoff area, the work passes down to the lower level and exits from this series of processing units to enter the adjacent dryoff oven.
This oven is heated by a line of direct-fired gas burners mounted on the floor and designed to operate at two levels. By use of a high and a low level, automatic controls switch the burners from one setting to the other to maintain an operating temperature of 350 degrees Fahr. Complete safety controls also are incorporated here.
Now the rust-proofed and dried cases are passed to the first-coat spray booth-one of two Mahon hy-dro-filter spray booths of the open-top down draft type provided with full water curtains which flood the entire back side of the booth with water to remove all overspray and pigment from the air before the air is passed out through the exhaust fan. Overspray and excess pigment entrapped in the water cur. tain are removed in the centrifuge section of the hydro-filter. Both first and second-coat spray booths are pictured at the left in Fig. 3.
From the first spray booth, the transformer cases pass into the baking oven where a temperature of 350 degrees Fahr. is maintained by means of direct-fired gas heaters. Both heated air and products of combustion are circulated throughout the entire oven. This oven is arranged so a considerable amount of the air heated by the gas burners is recirculated through the oven, thus keeping down fuel requirements and increasing efficiency of the unit. The gas burner and

Fig. 2-Elevation view showing the three levels at which conveyors carry the work through the equipment


Fig. 3-Double entrance and exit from furnace. Note opening is below furnace level, thus trapping heated air and maintaining thermal efficiency
blower equipment is installed on the floor directly below the raised oven. Complete safety and automatic temperature control is provided.
It will be noted in the plan diagram, Fig. 1, that work passes in and out of the oven at the same end. In Fig. 3, this entrance and exit is seen to be at a lower level than the oven proper. This is also shown in the elevation diagram, Fig. 2. Here the oven section of the monorail is shown plainly on a third level at a considerable distance from the floor. This allows the work to enter and leave the oven continuously, yet assures high thermal efficiency because the hot air and gases are trapped in the upper portion of the oven-the entrame and exit being through the oven "bottom."

The plan diagram, Fig. 1, shows clearly the three partitions employed in the oven to break up side drafts. One partition separates the entrance and exit line of the prime-coat cir-
cuit and a second partition separates ingoing and outgoing lines of the finish-coat circuit, while a third larger partition extends past the center of the oven to separate the prime coat from the finish-coat circuit.

After the prime coat or first coat has been baked, the work passes through the second-coat spray booth, returns to the oven where the finish coat is baked.

Emerging from the oven for the second time, the transformer cases go to the unload-load station where they are removed from the conveyor.
This finishing system was especially designed to do a specifle job thoroughly and economically at its normal conveyor speed of 3 fect per minute. However, the conveyor is equipped with a variable-speed drive which permits conveyor speed to be increased or decreased approximately 50 per cent above or below normal operating speed. Each transformer case recelves two coats of synthetic enamel over a thoroughly cleaned and rust-proofed base. The finish produced is hard, tough and highly abrasion resistant as well as being practically immune to weathering.


## Continuous Casting

(Concluded from Page 50)
meshing gears.
This distinctive transmission construction imparts a pulsating motion to the gearing that exactly compensates for, or counteracts, the variations in conveyor speed caused by long link chains driven by conventional circular gearing. The strain on the conveyor chains thus is held uniform and the rate of conveyor travel kept constant-essential requirements for the satisfactory operation of a conveyor doing this type of work.
Engineers of Canadian Furnace Ltd., Deminion Foundries \& Steel Ltd. and Link-Belt Co. collaborated in the design and construction of this cost-reducing pig-casting conveyor.

## Chart Indicates Steels

## For Various Uses

E A steel recommendation chart giving brands of tool steels recommended for various tools, dies and other applications, is announced by Jessop Steel Co., Washington, Pa. It lists over 150 applications in alphabetical order, with the recom. mended tool steels indicated at the right of each application.

Two different symbols are used to identify the steels recommended. One indicates recommendations for average runs, the other for long runs. The bottom of the chart gives the correct heat treatment for the principal brands of Jessop steel.

Copies of the new chart are obtainable upon request to the company at the address noted.

## Welded Steel Grating Made in Several Types

: Pressure welded steel floor grating and running boards are now sup. plied in a number of types and sizes by Whitehead \& Kales Co., Detroit. Grating is made in standard widths of 24 inches and in lengths up to 20 feet, of structural quality mild steel, copper bearing, if desired, and developing an ultimate strength of 55,000 to 65,000 pounds per square inch.

The mesh is formed of longitudinal bearing bars of rectangular section, crossed by round bars electric pressure welded at the intersections. The round crossbars have deeply knurled upper surfaces, with the knurled area slightly increased at the intersections. Standard size has clear space between longitudinal bars of 1 inch and clear space between cross bars of $311 / 16$ inches. Close spaced and wide-spaced types also are made, the former having 0.73 -inch between longitudinals and $311 / 16$ inches between crossbars, the latter having $21 / 16$ inches between longitudinals and $811 / 16$ inches between cross bars. The material also may be obtained in the form of stair treads.

Running boards and brake steps for railroad applications are similar in design except that the longitudinal members have deeply serrated edges on the upper side to present a nonskid surface and prevent ice formation or dirt clogging. Cross bars are round but not knurled.


## Strand Heat Treating

(Concluded from Page 57) furnace too rapidly the grain size will be small, recrystallization may not be completed, and the directional properties and fragmentation of the grains introduced during cold rolling will not be removed. Such a strip would not be suitable for deep drawing.
In normalized strip steels the finer the grain, the higher the yield point and the elastic limit; and the larger the grain, the lower the yield point. However, either type of strip will deep draw, but the dies must be constructed to take into consideration the variations in physical properties.

## Progressive Assembly

## (Concluded from Page 62)

box reinforcement assembly immediately above the axle pads across and between the major reinforcement plates. A push-gun with the actuating cylinder pushing against a backup plate is used for this operation. It is connected to the transformer and timer in the spot welder, eliminating one more transformer and timer.

Alongside of the major assembly station is located a subassembly fixture, Fig. 7, (K, Fig. 1), where collars and small brackets are welded to upper and lower side sheets before starting the subassemblies. The lower electrode of this fixture is fitted with copper alloy inserts, and adaptors are provided for locating the different collars. The transformer is mounted in the column of the fixture. Welding is done with one of the expansion guns and timer from the final assembly station.
To weld reinforcements on either end and the baffle in the middle of the top, a separate turntable type of fixture is provided as shown in Fig. 8, (H, Fig. 1). The operator stays on the same side of the fixture, using a deep-throated pinch gun for the welds. Welding is done through the copper forms shown. These rest against the outside of the top panel and eliminate visible welding spots from the outside of the top panel by distributing the welding current at the outer surface as well as by conducting heat away rapidly. The copper forms also assist in insuring proper shaping of the top assembly.
The various fixtures are designed so the position of their locating supports may be altered to permit welding different sizes of combines on the same fixtures. The bases, of ccurse, are designed for the largest size combine.

Note the illustrations show the equipment on test and before installation in the actual production line diagramed in Fig. 1.

# - HELPFUL LITERRTUURE 

## 1. Multiple Speed Motors

Howell Electric Motors Co.- A-pare 11 lustrated bulletin No. 35-50 glves operating characteristics of "Multi-Speed" motors in open type with ratings from to 150 horsepower and in close ypes from tis to 100 horsepower. These motors are bullt for two, ihree, and lour speed drive service.

## 2. Carbide Tipped Tools

Super Tool Co. - 24-page Illustrated catalog No. 40 deals entirely with cemented tungsten carbldes and carblde upped tools. It contalns speclfications and data on tipped reamers, lathe centers, special tools, standard carbide blanks, blts and tools.

## 3. Chain Drives

Link-Belt Co. - 96-page illustrated "Link-Belt Sllverstreak Sllent Chain Drive Data Book" No. 125 shows in detall design and construction of this power transmission method. EngineerIng data for drive selection, applications, lubrication, dimensions, list prices, and drive accessories are presented.

## 4. Electric Heating

Hevl Duty Electric Co. - 6-page 11lustrated folder No. HD-740 is descriptive of "Hevl Duty" radiant heat element construction for all types of electrically heated industrial furnaces. Detalls of constructions, as well as typlcal appllcations, are shown.

## 5. Lubrication

Gulf Oll Co.-12-page lllustrated bookjet, "Gulf Periodic Consultation Service", explains consulting service avallable to manufacturing, utllity, transportation, mining and construction industries relative to industrial lubrication problems.

## 6. Jaw Crushers

Allis-Chalmers Manufacturing Co. 28-page 1llustrated bulletin No. B-6034 covers four general types of jaw crushers; namely, fine reduction, "Dodge," "Blake," and "Superlor." Sketches show principle of operation. Construction features, capacity and dimension tables and list of ores, rocks and other matertals on which jaw crushers are used are glven.

## 7. Dust Collection

American Foundry Equipment Co.Illustrated circular No. 42 describes assembled type "Dustube" dust collector for industrial application. This unit Is equlpped with a bin hopper and hand operated shaker. Sizes range from 90 to 360 square feet of cloth for handling up to 1440 cuble feet of alr per minute.

## 8. Thermocouples

Leeds \& Northrup CO- $\rightarrow 0$-pase 11 ustrated catalos No. NissA(6) 11sts a comprehensive line of thermocouple assemblies with their parts and accessories. Tabulated information alis correct selection of couples for specinc appllcatlons. Illustrations and listines are arransed for easy identitication of assemblies, parts and accessories

## 9. Diamond Wheels

Norton Co.-24-page lllustrated bookNo. 358 thoroughly discusses uses and applications of Norton metal bonded diamond wheels. This is stated as, " $\lambda$ handbook on reconditloning and sharpening single polnt cemented carbide tools rapldly and economically."

## 10. Bearing Lubrication

New Departure, Div. General Motors Sales Corp.-16-page lliustrated booklet No. A-120 is an ald to the cholee of currect lubricants for ball bearings. It covers selection and application of olls and greases and provides a simple method of determintis proper grade and viscosity for varlous operating temperatures and bearing speeds.

## 11. Atmosphere Furnaces

Lithlum Corp. - G-page Illustrated rolder, "Llthco Atmosphere Furnaces," glves full information on these fur naces whlch provlde for the heating of ferrous metals in a chemically neutral atmosphere, without carburization, decarburization or scaling.

## 12. Motorized Reducers

D. O. James Manufacturing Co--28 page illustrated catalog No. 17 and price list covers hellical gear type motorized speed reducers with ratlos of 1.2 to $9: 1$, from $\%$ to 50 horsepower; planetary type with ratlos 10 to $3^{\prime 200: 1}$ * to 75 horsepower; and worm geas \% to with ratlos $5-2 / 3$ to $70: 1$, from 36 to 30 horsepower

## 13. Gasoline Arc Welder

Hobart Brothers Co. - 4-page Ilus trated bulletln, "Actually 5 Yellrs Ahead", presents complete information An the new Jr, gas drlve $200-a m p e r e$ "Strenminer" arc welder. Features in"Streaminer arc welder. polarlty conclude close heat control, polarity control, remote control and stabllization

## 14. Fluorescent Fixture

Westinghouse Electric \& Manufacturne Co.-Illustrated leaftet No. 61-152 glves full data on type FPR twin lamp fuoresecent luminalre, designed especlally for illumination of low bay industrial arcas. Characteristics, mountIng instructions, construction detalls and ng instrucessorles are described.

## 15. Hydraulic Equipment



 punching thi wresshg equltumeht. Alv pitatlons, bucrutins fothlyes and evter and spectucatlons th vallohs exthbment aro clven.

## 16. Air Comprossora

Curtls linumatle Nachtiery Ch- 76
 sonts deserfivtion and llata on mbete "Ch. two and four eylhiter alt colliuressors in sliaw ranstha from od, of sist 5 cuble feet ber manto Illavave. ment. These water cobled lilitm ate avablable with or whthout motor or milsine drive.

## 17. Ovorhoad Handling

Cleveland Trammall Dtythan, Cleve

 "How to Determlite Whero Owermead Materlals Hambling Eublument Call Ite Usod Prontatis:" Ihlumtrationm of equbgment and Instathatione Ate mown.

## 18. Grinding Machinos

Clnelnmatl Mblling Machate of cheln
 bulletin No. G-45s, "Hettor ( F (mithis in Bour "Toolroom", dhown fenturem of the pydraulle unlverval grtallins smathlle Use of color, elowen! vlewa hall Illity trations ade in tollins the mbery of thim machine.

## 19. Hydraulic Powor

Hlackhawk Mrnnufacturtin ( $5,-\infty$. 11 -
 tesertbem "lorto-1"owar nortable byn draule power tulfa for bumbing, bullins,
 clampine operationm in all sypen of ilsclustrtes. All cquibnomt and acemmorlem are deweribed.

## 20. Speod Roducors

 Illumtrated yeneral cataiog, "Atint Hbsed Reducerm". in dameriptiva of inotorlsedt oftset driven, doublit worm reduction unita, ernetfonst hermenwor worm ulitm,
 Complete spectincationm and ythem wia included.

## 21. Unit Hoatora

Crinnell Co- - AB-pace Illuntrated emta. log No. 1 prementm completa dotaila of "Thermoller" unit lienterm for factory, industrdal, and Eencrat applemilonm, anvantages and ectinoiny of wilt heathos. specincationa, frwtallatlon and contron data, and lypleal inmentintions nia ahown. Thewe healerm watman In its mbem for viacticmlly all purpomen.

## STEEL

Readers' Service Dept.
1213 West Third St.,
Cleveland, Ohio
Send me the literature I have circled below.

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 28 | 27 | 28 |  |  |
| 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 |

Name Titl

Company
Products Manufactured

## 22. Braided Packing

Garlock Packing Co.-12-page illustrated bulletin No. AD-131 describes reatures of "Lattice-Brald" coll packing in types for rotary pumps handiling hot or cold water, caustic solutions or weak aclds; on rods operating against acids, steam, gas, lye or caustic soda; against hlgh pressure steam and hot oll; and other solutions.

## 23. Carbide Tool Grinder

Ex-Cell-O Corp.-16-page lllustrated bulletin No. 46101 discusses increased production and economy in use of ccmented tungsten carbide tipped tools. In addition to descriptions of complete line of carblde tool grinders, data on chip curling, grooving, combination wheel set-ups, and rapld grinding teclinique are also included.

## 24. Flame Hardening

Alr Reduction Co.-10-page illustrated bulletin No. ADC-624 glves detalls on considerations and apparatus involved in name hardening surfaces of various forms. Water cooled flame hardening torch with its avallable extenslons and tlps is featured.

## 25. Nickrel

International Nickel Co.-20-page 11 lustrated bulletin No. T-15 deals with the engineering properties of nickel. Composition, physical constants, mechanical properties, corrosion resistance, working instructions, mill products, and speciai alloys are some of the subjects covered.

## 26. Abrasives

Sterling Grinding wheel Co,-36-page llustrated catalog, "Bricks and Sticks", presents applications, specifications and prices of abrasive bricks and sticks, sharpening stones, wheels and blocks for floor surfacing machines, rubbing blocks, and resinold cutting wheels.

## 27. Voltage Regulator

General Electrlc Co.-16-page lllustrated bulletin No. GEA-2022C presents complete data on type GDA "Dlactor" generator-voltage regulators for alternating current machines. Detalls of operation, accessorles, and sppllcations are shown.

## 28. Hoist Buckets

Blaw-Knox Co. - 40 -page illustrated catalog No. 1696 presents features, uses, construction detalls of hook-on, direct reeved, hook-on type, and ship's tackie clamshells, and of dump buckets and Ingot tongs. Service hints and application data are furnished.

## 29. Portable Compressor

WorthIngton Pump and Machinery Corp.-Illustrated bulletin No. H-850-M4 glves specifications and design features of the model 105 "Streamilned" portable compressor incorporating a balanced angle compressor and a Hercules 6-cylinder engine.

# *HELPFUI UIIferfiURE 

## (Continued)

## 30. Springs

Wallace Barnes Co. - 52-page handbook, "Springs", includes torsion spring design chart, formulas, typical computations, charts to find safe load, calculate welght of helical extension and compression springs, table of declmal equivalents. Effect of non-central loading and design suggestions are discussed.

## 31. Turret Lathe Data

Glsholt Machine Co.-Illustrated performance data sheets Nos. 50 to 53 give actual operating data on typical jobs employing turret lathes. These case studies describe problem and results attained, as well as showing method of machining and briefly describing machine employed.

## 32. Plating Rack Coatings

Hanson-Van Winkie-Munning Co,-Illustrated bulletIn No. WR-101 glves speciflcations and shows applications of "Wrap-Rax" tape, a covering for elec-tro-plating racks. This product is synthetic thermoplastic resin in tape form and is resistant to cleaning, plekiing and plating solutions.

## 33. Lubrication System

Farval Corp.-4-page illustrated bulletín No. 7450 describes Duallne, Jr., centralized system of lubrication which provides distribution of elther oll or grease to bearings on smaller machines. Schematic drawings, dimensions, and discussions of proper lubrication are included.

## 34. Wire Strippers

Ideal Commutator Dresser Co.-4-page illustrated bulletin, "Solves All Wire Stripping Problems," is descriptive of "Ideal" brush wire stripping machines for removing all types of insulation from wire and cables preparatory to use. Hand and machine operated strippers are shown.

## 35. Insulated Cable

Okonite Co.-8-paga lllustrated bulletin No. OK-2007A presents features of "Okolite" insulated cable for high voltage application. This cable is applicable for use on all voltages up to 35,000 volts for underground, underwater, and overhead service and on equipment.

## 36. Stainless Steel

Republic Steel Corp.-24-page 11lustrated bulletin No. 362 presents complete data and physical properties of "Enduro" 18-8 types of stalnless steel. Avallable types, corrosion data, recommended applications, analyses, fabrication, machining, and working suggestions are included.

## 37. Metal Band Saw

Armstrong-Blum Mig. Co.-8-page 11 lustrated bulletin No. $800-A$ presents fcatures of large capacity metal band saw that is efficient on most delicate work and cuts at any angle up to 45 degrees without moving the work. Construction detalls, speclications and 1 m provements are discussed.

## 38. Flexible Coupling

Amerlcan Flexible Coupling Co. - 4 page illustrated bulletin No. 3428 tells how to select the proper fiexible coupling for various machines. Prlce lists and dimenslons of junlor, light and medlum duty couplings are given. Heavy duty couplings for severe operating conditions are featured.

## 39. Recording Meters

Bristol Co.-Illustrated bulletin No. 555 describes features of portable recording voltmeters and ammeters which make them molsture prool and rugged enough to withstand transportation and rough use. Two and three pen instruments are also shown.

## 40. Contour Machines

Continental Machines, Inc.-4-page 11 lustrated bulletin, "Eminent Engineering," describes "Doall" contour machines for Internal and external contour sawing and band flling. Features and construction detalls of these machines are shown.

## 41. Shovel

Byers Machine Co.-24-page $1 l l u s t r a t e d$ catalog 939 shows "Bear Cat Jr." shovel In use as a shovel, clamshell, crane, dragline, trencher, and backfller. Three forward speeds, intermediate swing shaft, three-quarters swing, mast held free and other features are described or illustrated.

## 42. Crane Brakes

Electric Controller \& Manufanturing Co.-8-page 1llustrated broadside, "EC\&M Type WB Brakes," presents complete data on these electrically operated brakes for cranes, holsts and mill machinery. Features are shown.

## 43. Turret Lathe Tools

Jones \& Lamson Machine Co. 3 Illustrated data sheets Nos. 2, 3, 6, 7, 8 and 9, for insertion in the catalog, "Tools for Jones \& Lamson Turret Lathes." General specifications for ram and saddle type universal turret lathes are glven.

## STEEL

## Readers' Service Dept.

213 West Third St.
M
9-9-40
leveland, Ohio
Send me the literature I have circled below.

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 |  |  |
| 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 |

Name $\qquad$ Title

# Steel Demand Heavier: Defense Needs Expand 

Structural awards increase sharply. Scrap prices higher. Ingot rate rebounds after holiday. Pig iron production up in August

- BUSINESS in most steel products is tending upward, following a moderate dip in some directions during August. All indications point to maintenance of near-capacity production for an extended period.

Ingot output this week is scheduled to return to near the level prevailing prior to the Labor Day interruption. Although all plants did not close for the holiday, shutdowns were sufficiently general to cause a $91 / 2$-point drop in the national average last week to 82 per cent. The rate a year ago was 62 per cent.
Pressure for raw material supplies continues heavy. Pig iron production in August totaled 4,234,576 tons, largest for any month since July, 1929. Daily average output of 136,599 tons compares with 130,984 tons in July and 96,122 tons a year ago. Production the first eight months this year was $29,343,880$ tons, against $19,642,202$ tons a year ago and $30,116,405$ tons in the 1937 period. Net gain for the month of three blast furnaces brought the total number of stacks in blast on Aug. 31 to 190. This compares with 138 a year ago and with the most recent peak of 191 last Decomber.

War and national defense remain important factors in steel demand. A sharp increase in structural shape awards last week to near the year's best level resulted partly from large orders for plants to be devoted to armament manufacture. These included 3920 tons for Consolidated Aircraft Corp., San Diego, Calif.; 3495 tons for navy yard work at Norfolk, Va.; 3000 tons for Pratt \& Whitney division, United Aircraft Corp., Hartford, Conn.; 1500 tons for Bath Iron Works Corp., Bath, Me., and 1000 tons for Allison Engine division, General Motors Corp., Indianapolis.

Among other large structural orders were 11,000 tons for a Brooklyn subway and 4380 tons for two New York high schools.

Heavy steel needs of Great Britain, particularly for semifinished material, largely are responsible for continued active exports. Rolled steel production for export recently has averaged 20 per cent of total out. put, and of this foreign tonnage more than 40 per cent has consisted of semifinished products. In recent months a larger percentage of total ste ci production has been destined for abroad than vas fire during 1917 or 1918.

Railroad equipment buying is fill from brisk, lois fairly large steed tonnages are moving fo car fitments and railroad shops for repair work or new unis. The Eric has ordered 1000 tons of rafts, and the Union Pacific is inquiring for 2000 underfames for box cars it will build. Equipment order: Include 18 dee st electric switchers for the Mllwather road, 125 logging cars for the Atlantic Coast Lie and $\$ 2.5$ gone: doles for the Erie.

Automotive ste releases are active, contributhe to better movement of sheets, stay and bars. New model assemblies are expanding stonily, locreashg 12 , 000 units last week to 39,6665 . That compare st, whit 26,865 a year nyc.

New schedules of extras have been hasted on phone and hot-rolled alloy steed. The batter becomes affectlive Oct. 1. These revintom result in shphity hughes charges on certain grades and sizes of the products in volved. Changes In extras on other products are foe ported under consideration.

Tin plate orders sand production conllmue to decline. output last week beings off 6 polite to AH ser cent. Ship. gents are steady, but heavy stocks: bald the appronell of a quieten consuming period result in lower mill operations.

Pig from deliveries are Decreasing gradually, fallaended by improved foundry operations. Users fire fatty well covered and forward buylng continue c: light, although tonnage for fourth quarter shipment is bee Ing accepted at current prices. A lesoling seller hasa reaffirmed present quotations on ferromshasiese sind other ferroalloys for ne \%t period. Scrap prices cons Hence to res, boosting the complete it cents lase wick (1) $\$ 19,50$.

Most stecelroaking detricte experieriecos curtailed up p
 showed losses of 1413 prince, $27 \%$ and eft h per cent,
 at Youngetron, 18 points to en) at Withering. 9 pennis
 point a to 79 in eastern Fennagivanta, UnChanged te ce




# COMPOSITE <br> MARKET <br> AVERAGES 

|  | Sept. 7 | Aug. 31 | Aug. 24 | One Month Ago Aug., 1940 | Three Months Ago June, 1940 | One <br> Year Ago <br> Sept., 1939 | Five <br> Years Ago <br> Sept., 1935 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Iron and Steel | \$37.81 | \$37.78 | \$37.74 | \$37.70 | \$37.69 | \$36.67 | \$32.82 |
| Finished Steel | 56.60 | 56.60 | 56.60 | 56.60 | 56.60 | 55.60 | 53.70 |
| Steelworks Scra | 19.50 | 19.16 | 18.87 | 18.71 | 19.03 | 17.97 | 12.65 |

[^8]
## COMPARISON OF PRICES

Representative Market Figures for Current Week: Average for Last Month, Three Months and One Year Ago


Sheet bars, Pittsburgh, Chicaso Slabs, Pittsburgh, Chicago. Reroling billets, Pittsburgh
Wire rods No. 5 to sinch, Pitis. thsourgh sheets, No. 2 galv., Ritsburgh. Sheets, cold-rolled, Gary. Shets, No. 24 galv., Gary Bright bess., basic Wre, Pits. TIn plate, per base box, Pitts... $\$ 5.00$ (Vire nails, Plttsourgh.

Semifinished Material

| Sept. 7, | Aug. | June | Sept. |
| :---: | :---: | :---: | :--- |
| 1940 | 1940 | 1940 | 1939 |
| $2.15 c$ | $2.15 c$ | $2.15 c$ | $2.15 c$ |
| 2.15 | 2.15 | 2.15 | 2.15 |
| 2.47 | 2.57 | 2.37 | 2.37 |
| 2.25 | 2.25 | 2.25 | 2.05 |
| 2.10 | 2.10 | 2.10 | 2.10 |
| 2.215 | 2.215 | 2.215 | 2.215 |
| 2.10 | 2.10 | 2.10 | 2.10 |
| 2.10 | 2.10 | 2.10 | 2.10 |
| 2.15 | 2.15 | 2.15 | 2.15 |
| 2.10 | 2.10 | 2.10 | 2.10 |
| 2.10 | 2.10 | 2.10 | 2.00 |
| 3.05 | 3.05 | 3.05 | 3.05 |
| 3.50 | 3.50 | 3.50 | 3.80 |
| 2.10 | 2.10 | 2.10 | 2.00 |
| 3.05 | 3.05 | 3.05 | 3.06 |
| 3.50 | 3.50 | 3.50 | 3.50 |
| 2.60 | 2.60 | 2.60 | 2.60 |
| $\$ 5.00$ | $\$ 5.00$ | 55.00 | $\$ 5.00$ |
| 2.55 | 2.55 | 2.55 | 2.40 |


| $\$ 34.00$ | $\$ 34.00$ | $\$ 34.00$ | $\$ 34.00$ |
| ---: | ---: | ---: | ---: |
| 34.00 | 34.00 | 34.00 | 34.00 |
| 34.00 | 34.00 | 34.00 | 34.00 |

$\begin{array}{llll}34.00 & 34.00 & 34.00 & 34.00\end{array}$


Sept. 7, Aug. June Sept, $1940 \quad 1940 \quad 1940 \quad 1939$ $\$ 24.34 \quad \$ 24.84 \quad \$ 24.34 \$ 23.35$ $\begin{array}{lrrr}22.50 & 22.50 & 22.50 & 21.50\end{array}$ $\begin{array}{llll}24.94 & 24.34 & 24.34 & 23.54\end{array}$ $24.21 \quad 24.21 \quad 24.21 \quad 23.20$ $\begin{array}{llll}13.00 & 29.00 & 23.00 & 22.20\end{array}$ $\begin{array}{llll}19.38 & 19.38 & 19.38 & 18.58\end{array}$ $\begin{array}{llll}19.88 & 19.38 & 19.38 & 18.58 \\ 22.89 & 22.89 & 22.89 & 22.09\end{array}$ $25.215 \quad 25.215 \quad 25.215 \quad 24.415$ NR.NI $23.00 \quad 23.00 \quad 22.00$ $\begin{array}{llll}23.00 & 23.00 & 23.00 & 22.50\end{array}$ 30.34
$\begin{array}{llll}30.34 & 30.34 & 29.84\end{array}$$\begin{array}{rrr}125.33 & 115.33 & 95.35\end{array}$

STEEL, IRON, RAW MATERIAL, FUEL AND METALS PRICES

## Sheet Steel

| Pittsburgh |  |
| :---: | :---: |
|  |  |
|  | Chicago, Gary |
| Cleveland |  |
| Detrolt, del. |  |
| Buffalo |  |
| Sparrowi Point, Md. |  |
| New York, del. |  |
| Philadelphia, del. |  |
| Granlte City, Ill. |  |
| Middletown, O. |  |
| Youngstown, 0. |  |
| Birmingham |  |
| Pacific Coast ports |  |
| Cold Rolled |  |
| Pittsburgh |  |
| Chlcago, Gary |  |
| Butralo |  |
| Cleveland |  |
| Detrolt, dellvered |  |
| Philadelphla, del. |  |
| New York, del. |  |
| Granite City, Ill. |  |
| Middletown, O . |  |
|  | Youngstown, 0. |
|  | Pacinc Coast ports |

## Galvanised No. 24

Pittsburgh
Chlcago, Gary
Buftalo
Sparrows Point, Md.
Philadelphía, del.
New York, delivered
Birmingham

Except when otherwise designated, prices are base, f.o.b. cars.

|  | Granite City, Ill. . . . . . 3.60c | Plates . . 21.5022 .0025 .5030 .50 | Gulf ports . . . . . . . . . . . 2.45 c |
| :---: | :---: | :---: | :---: |
|  | Middletown, 0 . . . . . . . . 3.50c | Sheets . .26.50 29.0032 .5036 .50 | Birmingham .......... 2.10c |
|  | Youngstown, O. . . . . . . 3.50c | Hot strip. $17.0017 .50 \quad 24.00 \quad 35.00$ | St. Louls, del. . . . . . . . . 2.34 c |
| 2.1 | Pacinc Coast ports . . . . 4.05c | Cold stp. $22.00 \quad 22.50 \quad 32.00 \quad 52.00$ | Paclfc Coast ports...... 2.75 C |
| 2.10 c | Black Plate, No. 28 and INghter |  |  |
| 2.10 c | Pittsburgh ............. 3.05c | Steel Dlate | 1 n and Ierne Plate |
| 2.20 c | Chicago, Gary .......... 3.05c |  |  |
| 2.10 c | Granite Clty, Ill. . . . . . . 3.15c | Plttsburgh ............. 2.10 c | In Plate, Colce (base box) |
| 2.10 c | Ions Ternes No. 84 Unassorted | New York, del. . . . . . . . 2.29 C | Pittsburgh, Gary, Chicago \$5.00 |
| 2.34c | Plttsburgh, Gary $3.80 \mathrm{c}$ | Phlladelphia, del. ...... 2.15c | Granite City, Ill. . . . . . . . 5.10 |
| 2.27c | Paclnc Coast ......... 4.55 c |  | Mfa. Terne Plate (baso bex) |
| 2.10c | Ensmbllng Sheets | Chicago or Gary . ...... 2.10c | Plttsburgh, Gary, Chicago \$4.30 |
| 2.10 c | No. 10 No. 20 | Cleveland ............. 2.10 c | Granite City, Ill. . . . . . . . 4.40 |
| 2.10 c | Pittsburgh .... 2.75 c 3.35c | Blrmingham ........... 2.10c |  |
| 2.65 c | Chicago, Gary.. 2.75c 3.35c | Coatesville, Pa. ........ 2.10 c | Bars |
|  | Granlte Clty, Ill. 2.85c 3.45c | Sparrows Polnt, Md. .... 2.10c | Soft Sted |
|  | Youngstown, $0.2 .75 \mathrm{c} \quad 3.35 \mathrm{c}$ | Claymont, Del. . . . . . . . . 2.10c | (Base, 20 tone or over) |
| 3.05c | Cleveland ..... 2.75 C 3.35c | Youngstown ........... 2.10c | (Base, 20 tons or over) |
| 3.05c | Middetown, O.- 2.75c 3.35c | Gulf ports . . . . . . . . . . . 2.45 c | Pittsburgh . ............ 2.15 c |
| 3.05c | Paclllc Coast . 3.40 c 4.00c | Pacinc Coast ports ..... 2.65c | Chicago or Gery . . . . . . . 2.15 c |
| 3.05c |  |  | Duluth . . . . . . . . . . . . . . . 2.25 c |
| \$.15c | orrosion and Hea |  | Birmingham . . . . . . . . . 2.15 c |
| 3.37c |  | Plttiburgh ........... 3.35c | Cleveland . . . . . . . . . . . . 2.15 c |
| 3.39c | Resistont Aloys | Chicago ............... 3.35 C | Buffalo . . . . . . . . . . . . . ${ }^{2.15 c}$ |
| $3.15 c$ 3.056 | Pittsburgh base, cotsts per lb. | Paclic Const ports ..... 4,00c | Phlladelphla, del. ...... 2.47 c |
| 3.05 c | no-Nickel |  | Boston, dellvered ...... 2.52c |
| 3.70c | No. 302 No. 304 | Structural Shapes | New York, del. . . . . . . . 2.49 c |
|  | Plater . . . . . . 27.00 29.00 | Plttsburgh ............. 2.10c | Gulf ports . . . . . . . . . . . $\quad 2.2 .50 \mathrm{c}$ |
| 3.50 c | Sheets . . . . . . . $34.00 \quad 36.00$ | Phlladelphla, del. ..... 2.21 \% c |  |
| 3.50 c | Hotstrip..... 21.50 23.50 | New York, del. ....... 2.27 c | Rall Stecl |
| 3.50 c | Cold strlp ..... $28.00 \quad 30.00$ | Boston, delivered ...... 2.41c | (Base, 5 tors or over) |
| 3.500 | Straight Chromes | Bethlehem ............ 2.10c | Plttsburgh . . .......... 2.05 c |
| 3.67 c | No. No. No. No. | Chlcago . . . . . . . . . . . . . 2.10c | Chicago or Gary . . . . . . 2.03c |
| 3.74 c | $410 \quad 430 \quad 442 \quad 446$ | Cleveland, del. . . . . . . . . 2.30 c | Detrolt, dellvered ...... 2.15c |
| 3.50c | Bars ... $18.5019 .00 \quad 22.5027 .50$ | Buttalo . . . . . . . . . . . . . 2.10c | Cleveland . ........... 2.05 c |

Buffalo Blrmingham 2.05 c

Gulf ports 2.40 c

Paciflc Coast ports
2.70 c

Chicago
Iron
Phlladelphia, del.
2.25 c

Plttsburgh, rellned ...3.50-8.00c
Terre Haute, Ind.
$\begin{array}{r}50-8.00 \mathrm{c} \\ \hline 2.15 \mathrm{c}\end{array}$

| Relnforcins |  |
| :---: | :---: |
| New | Billet Bars, B |
| Chlcago, | Gary, Buffalo, |
| Cleve., | Birm., Young., |
| Sparrows P |  |
|  |  |
| Pacific Coast ports |  |
| Rail Steel Bars, Base |  |
| Pittsburgh, Gary, Chi- |  |
| cago, Buffalo, Cleve- |  |
| land, Blrm. |  |
| Gulf por |  |
| Pacifle C | oast ports |

## Wire Products

Pitts.-Cleve.-Chicago-Birm. base
per 100 lb. keg in carloads
Standard and cement
coated wire nalls...
(Per Pound)
ollshed fence staples.
$\$ 2.55$

Annealed rence w
Galv. Ience Wire
Woven wIre fenci
oven wire fencing (base
C. L. column)

Ingle loop bale tles, (base C.L. column)
Galv. barbed wire, 80 -rod spools, base column
Twisted barbless wire, column
To Manufacturing Trade
Base, Pitts. - Cleve. - Chlcago Blrmingham (except spring wire)
Bright bess., basle wire. 2.60 c Galvanized wire
Spring wire
wlre.

### 2.55 c

 3.05 c 3.40 r
## Cut Nails

Carload, Pittsburgh, keg. . $\$ 3.85$
Cold-Finished Bars

|  | Carbon | Alloy |
| :---: | :---: | :---: |
| Plttsburgh | 2.65 c | 3.35 c |
| Chicago | 2.65 c | 3.35 c |
| Gary, Ind. | 2.65 c | 3.35c |
| Detrolt | 2.70 c | -3.45c |
| Cleveland | 2.65 c | 3.35 c |
| Buffalo | 2.65 c | 3.35 c |

## Alloy Bars (Hot)

(Base, 20 tons or over) Pittsburgh, Buffalo, Ch1. cago, Massillon, Canton, Bethlehem
Detrolt, dellvered
Detrolt, dellvered ...... 2.80 c

|  | Alloy |  | Alloy |
| :---: | :---: | :---: | :---: |
| S.A.E | DIff. | S.A.E. | Diff. |
| 2000. | 0.35 | 3100 | 0.70 |
| 2100 | 0.75 | 3200 | 1.35 |


$4100 \quad 0.15$ to $0.25 \mathrm{Mo} . . .$. 2.00 NI.
$51000.80-1.10$ Cr.
5100 Cr , spring nats . ...... 0.15
6100 bars
6100 spring nats
1.20

Cr. N., Van,
0.85

Carbon van.
1.50

9200 spring fats ............. 0.15
9200 spring rounds, squares 0.40
Electric furnace up 50 cents.
Alloy Plates (Hot)
Plttsburgh, del. .......... $3.275 c$
Chlcago, del. . ............ 3.28 c

## Strip and Hoops

(Base, hot strip, 1 ton or over; cold, 3 tons or over)
Hot Strip, 12 -inch and less Plttsburgh, Chicago, Gary, Cleveland. Youngstown. Middletown, Birmingham . Detrolt, del.
Phlladelphia
Pin 2.42c
New York, del.
Pacinc Coast ports
Conperage hoop, Young.,
Pitts.; Chlcago, Blrm..
Cold strip, 0.25 carbon and under, Plttsburgh, Cleveland, Youngstown Chicago
Detrolt, del.
Worcester, Mass. ....... 2.90 c
Carbon Cleve., Pitts
$0.26-0.50$.............. 2.80 c
$\begin{aligned} & 0.51-0.75 \\ & 0.76-1.00\end{aligned} \cdots . . . . .$.
$0.76-1.00$
Over 1.00 .............. $8 . ~$
Worcester, Miass. $\$ 4$ higher.
Commodity Cold-Rolled Strlp Pitts.-Cleve.-Youngstown 2.95 s Chlcago
Detroit, del. .............. . . 3.05 c
Vorcester, Mass. ........ 3.35e

## Rails, Fastenings

(Gross Tons)
Standard rails, mill...
$\$ 40.00$
Relay ralls, Pittsburgh
20-100 lbs. ...... 32.50-35.50
Light ralls, bllet qual.,
Pilts., Chlcago, B'ham. $\$ 40.00$
Do., rerolling quality.. 39.00
Cents per pound
Angle bal's, billet, mills.
2.70 c

Do., axle steel
2.35 c
3.00 c

Spikes, R. R. base
Track bolts, base pilts
Car axles forged, Pltts.,
Chicago, Blrmingham.
Tie plates, base
Base, hemt ralls 25 to 601bs.
lbs. up \$8; 8 lbs. up \$10. Base rallroad splkes 200 kegs or more; base plates 20 tons.

## Bolts and Nuts

F.o.b. Pittsburgh, Cleveland, Birmingham, Chicago- Dis-
$5 \%$, full containers, add $10 \%$.
Carriage and Machine
$1 / 2$
$x$ C 6 and smaller.. .68 .5 oft
Do. larger, to $1-\ln . . . .66$ off Do. $11 / 2$ and larger ..... 64 off Tire bolts

## Stove Bolts

In packages with nuts separate $72 . \overline{5}$ off; with nuts attached add $15 \%$; bulk 83.5 off on
15,000 of 3 -Inch and shorter. or 5000 over $3-\mathrm{In}$.
step bolts ................ . . 60 off
Plow bolts . .................68.5 off
seminnished hex. U.S.S. S.A.E.


1 1/6-1 $1 / 2$-Inch
60
Hexagon Cap Screws
Upset $1-1 \mathrm{n}$., smaller ... 70.0 off Square Head Set Screws
Upset, $1 \cdot$ In., smaller .... 75.0 off
Headless set screws .... 64.0 off

## Piling

Pitts., Chgo., Buffalo .... 2.40c
Gulf ports .............. 2.85 c
Paciflc Coast ports ...
Rivets, Woshers
F.o.b. Pitts., Cleve., Chgo

Structural

17 -inch and under .....65-10 of $2^{\prime \prime}$ O.D.

| 13 | 13.04 | 15.03 |
| ---: | ---: | ---: |
| 13 | 14.54 | 16.76 |
| 12 | 16.01 | 18.45 |
| 12 | 17.54 | 20.21 |
| 12 | 18.59 | 21.42 |
| 12 | 19.50 | 22.48 |
| 11 | 24.62 | 28.37 |
| 10 | 30.54 | 35.20 |
| 10 | 37.35 | 43.04 |
| 9 | 46.87 | 54.01 |
| 7 | 71.96 | 82.93 | Chigh washers, pitis.,

Chl., Phila., to jobbers
and large nut. bolt
Welded Iron,
Steel Pipe
Base dilscounts on steel pipe.
Pitts.
Lorainn
O., to


> 13
13

## Cast Iron Pipe

Class B Pipe-Pet Net Ton
G-In., \& over, Birm. . $\$ 45.00-46.00$ 4-In., Blrmingham. 48.00-49.00 4-in., Chlcago .... 55.80-57.80
6-In. \& over, Chicago 53.80-54.80
$6-\mathrm{In}$. \& nver, east fdy. $\quad 49.00$ Do., 4-in.
Class A Pipe $\$ 3$ over Class B
Stnd. fitgs., Blrm., base $\$ 100.00$.

## Semifinished Steel

Rerolilng millets, Shab
Pittsburgh, Chlcago, Gary
Cleve., Buffalo, Youngs.,
Blrm., Sparrows Polnt. . $\$ 34.100$
Duluth (blllets) ......... 36.00
Detroit, dellvered......${ }^{36} 3600$
Forging Quality iniletm
Pitts., Chi., Gary, Cleve.,
Young, Buffalo, BIrm.. 40.00
Duluth

## Sheet IBars

Pitts., Cleveland, Young. Sparrows Point, But falo, Canton, Chicago. . 34.cא
Detrolt, dellvered ....... 36.00
Wire Rod.
Pitts., Cleveland, Chicago,
Birmingham No, 5 to gis
inch incl. (per 100 lus.) $\$ 2.00$ Do., over s to $17-$ In. Incl. 2.15 Worcester up $\$ 0.10$; Galveston up $\$ 0.25$; Pacillc Const up $\$ 0.50$.
PItts., Chl., Youngstown,
Coatesvllle, Sparrowa Pt. 1,90c

## Coke

Price Per Net Ton
Beehiva Ovens
Connellsville, fur... \$4.35-4.60
Connellsville, fary.. 5.25-5.50
Connell, prem. fdry. 5.73-6.25
New River fury. ... 6.25- 6.50
Wise county fdry ... $5.50-6.50$
Wise county fur. ... 5.00- 5.25
Newark, N. J., del. . 11.38-11.85
Chicago, outside del. $\quad 10.50$
Chicago, dellvered. $\quad 11.25$
Terre Haute, del. .. 10.75
Millwauke, ovens... 11.25
New England, del... 12.50
St Louls, del. .... $\quad 11.75$
Blrmingham, ovens. $\quad 7.50$
Indlanapolis, del. .. 10.75
Cinclnnaty, del. .... 10.50
Cleveland, del. .... 11.05
$\begin{array}{ll}\text { Buffalo, del. ....... } & 11.25 \\ \text { Detrolt, del. ...... } & 11.00\end{array}$
Phlladelphla, del. .. 11.15
Coke By-Products
Spot, gal., freloht allowed east Pure and go\% benzo
Toluol two dearec ... 15.000
Toluol, two degree . . . . . 27.000
Solvent nadheha . . . . 26.00
Industrial xylol ........ 26.010
Per lb. J.o.b. Prankford and
Phenol (less than 1000
Do. (1000 ins. or over) 14.73 C
En. 100tern Plants or orer lb 13.73
Naphthalene flakes, pells,
bbis to jobbers ...... 7.00
Per ton, bulk, f.o.b. port
Sulphiste of ammonia....s'zs.00

## Pig Iron

Dellvered prices include switching charges only as noted. No. 2 foundry is $1.75-2.25$ sll.; $2 \overline{\mathrm{c}}$ diff. for each 0.25 sil. above 2.25 sll.; 50 c difr. below 1.75 sll. Gross tons.

| Basing Points: | No. 2 Fdry. | Malleable | Basic | Bessemer |
| :---: | :---: | :---: | :---: | :---: |
| Bethlehem, Pa. | \$24.00 | \$24.50 | \$23.50 | \$25.00 |
| Birmingham. Ala.s | 19.38 |  | 18.38 | 24.00 |
| Birdsboro, Pa. | 24.00 | 24.50 | 23.50 | 25.00 |
| Buffalo | 23.00 | 23.50 | 22.00 | 24.00 |
| Chicaga | 23.00 | 23.00 | 22.50 | 23.50 |
| Cleveland | 23.00 | 23.00 | 22.50 | 23.50 |
| Detroit | 23.00 | 23.00 | 22.50 | 23.50 |
| Duluth | 23.50 | 23.50 |  | 24.00 |
| Erie, Pa. | 23.00 | 23.50 | 22.50 | 24.00 |
| Everett, Mass. | 24.00 | 24.50 | 23.50 | 25.00 |
| Granite City, Ill. | 23.00 | 23.00 | 22.50 | 23.50 |
| Hamilton, 0 . | 23.00 | 23.00 | 22.50 |  |
| Neville Island, Pa. | 23.00 | 23.00 | 22.50 | 23.50 |
| Provo, Utah. | 22.00 |  |  |  |
| Sharpsville, Pa. | 23.00 | 23.00 | 22.50 | 23.50 |
| Sparrow's Point, Md | 24.00 |  | 23.50 |  |
| Swedeland, Pa. | 24.00 | 24.50 | 23.50 | 25.00 |
| Toledo, O. | 23.00 | 23.00 | 22.50 | 23.50 |
| Youngstown, | 23.00 | 23.00 | 22.50 | 23.50 |
| $\ddagger$ Subject to 38 cents deduction or higher. | for 0. | per | t pho | horus |
| Dellvered from Basing Points: |  |  |  |  |
| Akron, O., from Cleveland | 24.39 | 24.39 | 23.89 | 24.89 |
| Baltimore from Blimingham | 24.78 |  | 23.66 |  |
| Boston from Birmingham. . | 24.12 |  |  |  |
| Boston from Everett, Mass. | 24.50 | 25.00 | 24.00 | 25.50 |
| Boston from Buffalo | 24.50 | 25.00 | 24.00 | 25.50 |
| Brooklyn, N. Y., from Bethlehem | 26.50 | 27.00 |  |  |
| Canton, O., from Cleveland. ... | 24.39 | 24.39 | 23.89 | 24.89 |
| Chicago from Blrmingham | 23.22 |  |  |  |
| Cincinnati from Hamilton, O. | 23.24 | 24.11 | 23.61 |  |
| Cincinnatl from Birmingham. | 23.06 |  | 22.06 |  |
| Cleveland from Birmingham. | 23.32 |  | 22.82 |  |
| Mansfleld, O., from Toledo, O. | 24.94 | 24.94 | 24.44 | 24.44 |
| Milwaukee from Chicago. | 24.10 | 24.10 | 23.60 | 24.60 |
| Muskegon, Mlch., from Chicago, Toledo or Detrolt | 26.19 | 26.19 | 25.69 | 26.69 |
| Newark, N. J., from Birmingham | 25.15 |  |  |  |
| Newark, N. J., from Bethlehem | 25.53 | 26.03 |  |  |
| Philadelphia from Birmingham | 24.46 |  | 23.96 |  |
| Philadelphia from Swedeland, Pa. | 24.84 | 25.34 | 24.34 |  |
| Pittsburgh district from Neville. JNeville base, plus 69c, 84c, Island t and $\$ 1.24$ frelght. |  |  |  |  |
| Saglnaw, Mleh., from Detrolt... | 25.31 | 25.31 | 24.81 | 25.81 |
| St. Louls, northern | 23.50 | 23.50 | 23.00 |  |

$\begin{array}{llllll}\text { St. Louis from Birmingham.....t23.12 } & \ldots . . & 22.62 & \ldots . . \\ \text { St. Paul from Duluth } \ldots \ldots . . . .25 .63 & 25.63 & \ldots . & 26.13\end{array}$ †Over 0.70 phos.

## Low Phos

Basing Points: Birdsboro and Steelton, Pa., and Bulfalo, N. Y, $\$ 28.50$, base; $\$ 29.74$ dellvered Philadelphia.

+Silvery
Jackson county, O., base: 6-6.50 per cent $\$ 28.50$; 6.51-7- $\$ 29.00$; $7-7.50-\$ 29.50 ; 7.51-8-\$ 30.00 ; 8-8.50-\$ 30.50 ; \quad 8.51-9-\$ 31.01$; 9-9.50-\$31.50; Buffalo, \$1.25 higher.

## Bensemer Ferrosillicont

Jackson county, O., base; Prices are the same as for sllveries, plus $\$ 1$ a ton.
$\dagger$ The lower all-rail dellvered prlce from Jackson, O., or Buffalo Is quoted with frelght allowed.
Manganese differentials in sllvery Iron and ferrosilicon, 2 to $3 \%$, $\$ 1$ per ton add. Each unit over $3 \%$, add $\$ 1$ per ton.

## Refractories

Per 1000 (Pa., O., W. Va., Mo.)



Pa., Mo., Ky............ $\$ 60.80$ Domestic dead-burned First Quality
Pa., Ill., Md., Mo., Ky.
47.50
47.50
47.50
$\begin{array}{ll}\text { Alabama, Georgla....... } & 47.50 \\ \text { New Jersey ........... } & 52.50\end{array}$

## Second Quality

Pa., Ill., Ky., Md., Mo.
Georgia, Alabama
New Jersey
42.75
34.20
49.00

New Jersey .....
Ohio

$\begin{array}{lll}\text { Intermediate } . . . . . . . . . & 36.10 \\ \text { Second quality } & \text { Fl........ } & 31.35\end{array}$
Malleable Bung 13rick
All bases ............. $\$ 56.05$
Sllica Brick
Pennsylvanla
Pennsylvania ...... $\$ 47.50$ carlonds, net on
Jollet, E. Chlcago $\quad 55.10$ Do. barge 20.00
Birmingham, Ala. ..... 47.50 No. 2 lump ......... . . . . $\quad 21.00$

## Ferroalloy Prices

Ferromanganese, 78-8\%\%, carlots, duty pd...... $\$ 120.00$ Ton lots ............. . 130.00 Less ton lots ........ 133.50 Less 200 1b. lots..... 138.00 Do., carlots del. Pitts. $1 \times 25.33$
Splegeteisen, 19-21\% dom. Palmerton, Pa., spot. Do., $26-28 \%$
Ferrosilicon, $50 \%$ freight allowed, c.l. c.l.... $\qquad$ 74.50 Do., ton lot...
$\qquad$ Do., ton lots w.....
Spot, $\$ 5$ a ton higher
ilicomanganese, c.l., 2 3/3 per cent carbon.

### 118.00

$2 \%$ carbon, $108.00 ; 1 \%, 133.00$ Contract ton price $\$ 12.50$ higher; spot $\$ 5$ over contract.
Ferrotungsten, stand., 1 b . con. del. cars ...... 1.90-2.00
Ferrovanadlum, 35 to $40 \%$, lb., cont. . .2.70-2.80-2.90
Ferrophosphoris, gr. ton, c.l., 17-18\% Rockdale, Tenn., basls, $18 \%, \$ 3$ unitage, 58.50; electric furn., per ton, c. 1., 2326\% f.o.b. Mt. Pleasant, Tenn., $24 \%$ \$3 unltage
Ferrochrome, 66-70 chromium, 4-6 carbon, ets. lb., contained cr., del. carlots
75.00
11.00 c

Do., ton lots
Do., less-ton lots .... 11.75 c s. . . . . 12.00c 67-72\% low carbon: Car- Ton Less loads lots ton $2 \%$ carb... 17.50 c 18.25c 18.75c $1 \%$ carb... 18.50c 19.25c 19.75c $0.10 \%$ carb. 20.50 c 21.25 c 21.75 c $0.20 \%$ carb. 19.50 c 20.25c 20.75c Spot $1 / 4 \mathrm{c}$ higher
Ferromolybdenum, 55$65 \%$ molyb. cont., f.o.b. mlll, 1 b .
Calclum molybinte, ib. molyb. cont., f.o.b. mill

Ferrotitanium, $\quad 40-45 \%$ lb., con. ti., f.o.b. Nlagara Falls. ton lots... Do., less-ton lots.... $\$ 1.25$ $20-25 \%$ carbon, 0.10 max., ton lots, lb. Do., less-ton lots. Spot 5 c higher
Ferrocolumbium, 50-60\% contract, lb. con. col., f.o.b. Nlagara Falls... Do., less-ton lots. Spot is 10 c higher

Technical molybdenum trioxide, 53 to $60 \%$ molybdenum, lb. molyb. cont., f.o.b. mill...
Ferre-carbon-titanlum, 1518\%. t1., 6-8\% carb., carlots, contr., net ton. $\$ 142.50$
0.95
0.80
\$1.23
1.25
1.35
1.35
1.40
$\$ 2.25$
$\$ 2.25$
2.30
3
0.80
0.80

Do., spot
Do., contract, ton lots Do., spot, ton lots.... 15-18\% th., 3-5\% carbon, carlots, contr., net ton Do., spot
D., spot . . . . . . . . . . . 160.00 Do., contract, ton lots. 160.00 Do., spot, ton lots..... 165.00

Alsifer, contract carlots, f.o.b. Nlagara Falls, Ib.
7.50c f.o.b. Nlagara Falls, Ib. $\quad 7.50 \mathrm{c}$ Do., ton lots...... .8 .8 .00 c
Do., less-ton lots..... 8.50 c

Chromlum Briquets, con-
tract, freleht allowed 1b. spot carlots, bulk Do., ton lots
145.00
145.00
150.00
157.50 0.00
7.50 c
$7.50 c$
$7.75 c$ 8.00 c

> So., less 200 lbs.......
> Spot, $1 / 4 \mathrm{c}$ higher.

Tungsten Metal Powder, according to grade, spot shipment, 200-1b drum lots, 1 b . ........ $\$ 2.50$ Do., smaller lots...... 2.60

| Ganadum Pentoxide, |  |
| :---: | :---: |
| contract, 1b. contained | \$1.10 |
| Do., spot | 1.15 |

silicon IBriquets, contract carloads, bulk, freight allowed, ton
Ton lots lots, ib
$\$ 69.50$
79.50 Less 200 1b. lots, $1 \mathrm{~b} . \quad 4.00 \mathrm{c}$ Spot $1 / 4$-cent higher
Danganese Briquets,
contract carloads, bulk freight allowed, ib. Less-ton lot
hum Alloy, 12-15\% contract, carloads Do., spot
102.5

34-40\%, contract, car-
$34-40 \%$, contract, car-
loads, 1 b ., alloy.
Do., ton lots.......
Do., less-ton lots.....
14.00 c
15.00 r
16.00 c
solybdenumi Powder,
$99 \%$, f.o.b. York, Pa. $200-\mathrm{lb}$. kegs, lh.
Do., $100-200$ 1b.
Do., under $100-1 \mathrm{lb}$. lots 3.00
Molybdenum Oxide Briquets, $48-52 \%$ mo-
lybdenum, per pound
contalned, f.o.b. producers' piant
14.00 c
$12.50 c$


Do., $2 \%$..... 4 c higher

3.75 c

8 m
grains, net ton l.o.b. Chewelah, Wash., net
ton, bulk
22.00
net ton, bags
26.00

Net ton, f.o.b. Baltimore, Ply.
Chrome brick . . . . ..... $\$ 50.00$
Chem. bonded chrome... 50.00
Magnesite brick ...... 72.00
39.90 Chem. bonded magnesite 61.00

Washed gravel, duty
pd., tide, net ton. \$25.00-\$26.00
00 . 00 00

## WAREHOUSE STEEL PRICES

Base Prices in Cents Per Pound, Delivered Locally, Subject to Prevailing Differontials

|  | Soft Bars | Bands | Hoops | Plates \% $/ 1 \mathrm{ln}$, \& Over | Structural Shapes | Floor Plates | Hot Rolled | Sheets Cold Rolled | Galv. <br> No. 24 | Cold Rolled Strlp | Carbon | $\begin{aligned} & \text { rawn } \\ & \text { S.A.t. } \\ & 2300 \end{aligned}$ | S.A.E. 3100 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Boston | 3.98 | 3.86 | 4.86 | 3.85 | 3.85 | 5.66 | 3.51 | 4.48 | 4.66 | 3.46 | 4.13 | 8.63 | 7.23 |
| New York (Met.) | 3.84 | 3.76 | 3.76 | 3.76 | 3.75 | 5.56 | 3.38 | 4.40 | 4.05 | 3.31 | 4.09 | 8.59 | 7.19 |
| Philadelphia ... | 3.85 | 3.75 | 4.25 | 3.55 | 3.55 | 5.25 | 3.35 | 4.05 | 4.00 | 3.31 | 4.06 | 8.56 | 7.16 |
| Baltimore | 3.85 | 4.00 | 4.35 | 3.70 | 3.70 | 5.25 | 3.50 | .... | 5.05 | .... | 4.05 | .... | ... |
| Norfolk, Va. | 4.00 | 4.10 | .... | 4.05 | 4.05 | 5.45 | 3.85 | $\ldots$ | 5.40 | .... | 4.15 |  |  |
| Buffalo | 3.35 | 3.62 | 3.62 | 3.62 | 3.40 | 5.25 | 3.05 | 4.30 | 4.00 | 3.22 | 3.75 | 8.15 | 6.75 |
| Plttsburgh | 3.35 | 3.40 | 3.40 | 3.40 | 3.40 | 5.00 | 3.15 |  | 4.45 | $\ldots$ | 3.65 | 8.15 | 6.73 |
| Cleveland | 3.25 | 3.30 | 3.30 | 3.40 | 3.58 | 5.18 | 3.15 | 4.05 | 4.42 | 3.20 | 3.75 | 8.15 | 6.75 |
| Detrolt | 3.43 | 3.23 | 3.48 | 3.60 | 3.65 | 5.27 | 3.25 | 4.30 | 4.64 | 3.20 | 3.80 | 8.45 | 7.05 |
| Omaha | 3.90 | 3.80 | 3.80 | 3.95 | 3.95 | 5.55 | 3.45 |  | 5.00 |  | 4.42 | $\because$ | 710 |
| Cinclnnatl | 3.60 | 3.47 | 3.47 | 3.65 | 3.68 | 5.28 | 3.22 | 4.00 | 4.67 | 3.47 | 4.00 | 8.50 | 7.10 |
| Chicago | 3.50 | 3.40 | 3.40 | 3.55 | 3.55 | 5.15 | 3.05 | 4.10 | 4.60 | 3.30 | 3.75 | 8.15 | 6.75 |
| Twin Citles | 3.75 | 3.65 | 3.65 | 3.80 | 3.80 | 5.40 | 3.30 | 4.35 | 4.75 | 3.83 | 4.34 | 8.84 | 7.44 |
| Milwaukee | 3.63 | 3.53 | 3.53 | 3,68 | 3.68 | 5.28 | 3.18 | 4.23 | 4.73 | 3.54 | 3.88 | 8.38 | 6.98 |
| St. Louls | 3.62 | 3.52 | 3.52 | 3.47 | 3.47 | 5.07 | 3.18 | 4.12 | 4.87 | 3.41 | 4.02 | 8.52 | 7.12 |
| Kansas City. | 4.05 | 4.15 | 4.15 | 4.00 | 4.00 | 5.60 | 3.90 | .... | 5.00 | ... | 4.30 | .... | .... |
| Indlanapolis | 3.60 | 3.55 | 3.55 | 3.70 | 3.70 | 5.30 | 3.25 | .... | 4.76 | .... | 3.97 | ... | ... |
| Memphis | 3.90 | 4.10 | 4.10 | 3.95 | 3.95 | 5.71 | 3.85 | $\ldots$ | 5.25 | .... | 4.31 | $\ldots$ |  |
| Chattanooga | 3.80 | 4.00 | 4.00 | 3.85 | 3.85 | 5.68 | 3.70 | $\ldots$. | 4.40 | $\ldots$ | 4.39 | $\ldots$ |  |
| Tulsa, Okla. | 4.44 | 4.34 | 4.34 | 4.33 | 4.33 | 5.93 | 3.99 | $\ldots$. | 5.71 | .... | 4.69 | . |  |
| Blrmingham | 3.50 | 3.70 | 3.70 | 3.55 | 3.55 | 5.88 | 3.45 | $\ldots$. | 4.75 |  | 4.43 | $\cdots$ |  |
| New Orleans. | 4.00 | 4.10 | 4.10 | 3.80 | 3.80 | 5.75 | 3.85 | .... | 4.80 | 5.00 | 4.60 | .... |  |
| Houston, Tex. | 4.05 | 6.20 | 6.20 | 4.05 | 4.05 | 5.75 | 4.20 | $\cdots$ | 5.25 | $\cdots$ | \%... | $\ldots$ | $\ldots$ |
| Seattle ...... | 4.00 | 3.85 | 5.20 | 3.65 | 3.75 | 5.75 | 3.70 | 6.50 | 5.00 | $\ldots$ | 5.75 | .... | $\ldots$ |
| Portland, Oreg. | 4.25 | 4.50 | 6.10 | 4.00 | 4.00 | 5.75 | 3.95 | 6.50 | 4.75 | .... | 5.75 | 10.65 |  |
| Los Angeles. | 4.15 | 4.60 | 4.45 | 4.00 | 4.00 | 6.40 | 4.30 | 6.50 | 5.25 | .... | 6.60 | 10.65 | 9.80 |
| San Francisco. | 3.50 | 4.00 | 6.00 | 3.35 | 3.35 | 5.60 | 3.40 | 6.40 | 5.15 | $\ldots$ | 6.80 | 10.65 | 9.80 |


|  | $\begin{aligned} & \text { S.A.E. } \\ & 1035- \\ & 1050 \end{aligned}$ | $\begin{aligned} & \text { Hot-roll } \\ & 2300 \\ & \text { Series } \end{aligned}$ | $\begin{aligned} & \text { led Bars } \\ & 3100 \\ & \text { Series } \end{aligned}$ | (Unann <br> 4100 <br> Serles | aled)- <br> 6100 <br> Scries |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Boston | 4.18 | 7.50 | 6.05 | 5.80 | 7.90 |
| New York (Met.) | 4.04 | 7.35 | 5.90 | 5.65 |  |
| Philadelphla ... | 4.10 | 7.31 | 5.86 | 5.61 | 8.56 |
| Baltimore | 4.45 | .... |  |  |  |
| Norfolk, Va. |  |  |  |  |  |
| Buffalo | 3.55 | 7.10 | 5.65 | 5.40 | 7.50 |
| Plttsburgh | 3.40 | 7.20 | 5.75 | 5.50 | 7.60 |
| Cleveland | 3.30 | 7.30 | 5.85 | 5.85 | 7.70 |
| Detroit | 3.48 | 7.42 | 5.97 | 5.72 | 7.19 |
| Cinclnnati | 3.65 | 7.44 | 5.99 | 5.74 | 7.84 |
| Chicago | 3.70 | 7.10 | 5.65 | 5.40 | 7.50 |
| Twin Cities | 3.95 | 7.45 | 6.00 | 6.09 | 8.19 |
| Milwaukee | 3.83 | 7.33 | 5.88 | 5.63 | 7.73 |
| St. Louls. | 3.82 | 7.47 | 6.02 | 5.77 | 7.87 |
| Seattle | 5.85 |  | 8.00 | 7.85 | 8.65 |
| Portland, Oreg. | 5.70 | 8.85 | 8.00 | 7.85 | 8.65 |
| Los Angeles.. | 4.80 | 9.40 | 8.55 | 8.40 | 9.05 |
| San Francisco. | 5.00 | 9.65 | 8.80 | 8.65 | 9.30 |

## BASE RUANTITIFS

Soft Bars, Bands, Hoops, Plates, Shapes, Floor Plates, 1101 Rolled Sheets and SAE 1035-1050 Bars: Base, 400-1999 pounds $300-1999$ pounds in Los Angeles: 400-39,999 (hoops, 0-299) In San Franclsco; 300-4999 poums in Portir, scatle; 400-14.999 pounds in Twin Citles; 400-3999 pounds In BIrmingham,

Cold Rolled Sheets: Base, $400-1499$ pounds in Chicazo, CInclnnath. Cleveland, Detrolt, New York, Kansas City and Si Louls; 450-3749 In boston; 500-14.9 Thanclsco, portland: any quan delphia, Baltlmore; 300-4999 In San Francisco, Portland; any quantlty in Twin Citles; 300-1999 in Los Angeles.

Galvanized Sheets: Base, 1500-3499 pounds. New York; 150 1499 in Cleveland, Pittsburgh, Baltimore, Norfolk; 150-1049 in Los Angeles; 300-4999 in Portiand, Seattle, San Francisco; 450-374! In Boston; $500-1499$ in Birmingham. Buffalo. Chicago, Clncinnatt, Detrolt, Indianapolis, Mllwaukee, Omaha, St. Louls, Tulsa; 1500 and over ir Chattanooga: any quantay in whictics, 750 -150 In Kansas City; 150 and over in Memphis; 25 to 49 bundles in Philadelphia.

Cold Rolled Strip: No base quantlty; extras apply on lots of all size

Cept Finished Bare: Base, 1500 pounds and over on carbon except 0-299 in San Francisco, 1000 and over in Portland. seattle 1000 pounds and over on alloy, except 0-4999 in San Francisco. except 0-4999, San Francisca; 0-1999. Portland, Seattle.

## CURRENT IRON AND STEEL PRICES OF EUROPE

## Dollars at Official Rates of Exchange

Export Prices f.o.b. Port of DispatchIV Cahle ar lindio

Domestic Prices at Works or Furnace-
Last Neporled


## IRON AND STEEL SCRAP PRICES

Corrected to Friday might.
heavy meliting steei.
Birmingham, No. 1.16 .00 Bos. dock No. 1 exp. 16.25-16.50 New Eng. del. No. 1 16.00-16.25 Buffalo, No. 1.... . 19.50-20.0 Butfalo, No. 2 . . . . . 17.50-18.0U Chicago, No. 1 . . . . 18.25-18. 75 Chicago, auto, no
 leveland No 1 rs. 15,75-16.25 Cleveland, No. $2 . . .$. 18.00-18.50 Detrolt, No. $1 . . . . .+15.50-16.00$ Detrolt, No. 2. . . . . $14.50-15.00$ Eastern Pa., No. 1.. 20.50 Eastern Pa., No. 2. . 19.50 Federal, Ill., No. 2. . 15.00-15.30 Granlte Clly, I2. R. No. 1
16.00-16.50 Granite City No. 2. 15.00-15.50 Los Ang., No. 1, net $13.00-13.50$ Los Ang., No. 2, net 12.00-12.50 N.Y. dock No. 1 exp. $\uparrow 15.50-16.00$ Pitts., No. 1 (R.R.). 20.50-21.00 Plttsburgh, No. 1... 19.50-20.00 Pttgburgh, No. 2. . 17.00-17.50 St. Louls, No, 1. . . . 16.00-16.50 St. Louls, No. 2. . . 14.75-15. 25 San Fran., No. 1, net 13.00-13.50 San Fran., No. 2, net 12.00-12.50 Seatue, No. 1. .... . 15.0 $\begin{array}{llr}\text { Tornnto, dirz., No. } 1 & 11 \mathrm{NO} \\ \text { Valleys, No. } 1 . . . . & 19.50-20.00\end{array}$

COMPRRSGED SIILETK
Butfalo, new ...... 18.50-19.00
Chicago, factory ... 17.75-18.25 Chicaso, dealers 16.00-16.50 Cinclnnatl, dealers. 14.75-15.25 Cleveland
Detrolt . . $+17.00-17.50$ , new mat . Pa, old mat. Los Angeles, net Pittsburgh
St. Louls
San Franclaco ne
Valleys

## BUNDIED SHEETS

Buffalo, No. 1.
Buffalo, No. 2.
Cleveland
pltaburgh
St. Loulis
Toronto, dealers
17.50-19.00 16.00-16.50 14.50-15.00 17.30-18.04 11.50-12.00 9.7:

## SHRET CIIIPINGS, LOOSE

Chicago .......... 13.00-13.50 Cincinnatl, dealers.. 10.25-10.75 Detrolt
$+13.50-14,013$
10.50-11.00

Toronto, dealers... 9.00
BUBIIEIING
Birmingham, No. 1. 13.10 Butralo, No. 1. . . . . 17.50-18.00 Chicago, No. 1 . . . . 17.25-17.75 Cincin. No. 1 deal.. 11.50-12.00 Clncin., No. 2 deal.. 6.75-7.25 Cleveland, No. 2. . . 13.00-13.50 Detrolt, No. 1 new. $116.00-16.50$ Valleys, new, No. 1 19.00-19.50 Toronto, dealers.... 5.50-6.00

MADHINE TULNINGS (Lohk)
Birmingham

## Buffalo

Chicago
CIncinnati, dealers Cleveland, no alloy Detrolt
Eastern Pa.
Los Angeles
New York
Pittsbureh
St. Louls
San Francisco
Toronto, dealers
Valleys
SIIOVELING TUIRINGS
Buftalo
Cleveland
Chicaso
Chlcago, spel, anal.
Detrolt Pitts.............
Pltts., alloy-eree... $\dagger 10.75-11.25$
IBORINGS AND TUIRNINGS
For Blast Furnace Use
Boston district.
Butralo
CincInnati, dealers. 6.75-7.25
Cleveland
Eastern Pa Detrolt 13.00-13.50 13.00-13.53 New York ......... . . $18.75-9.00$ Plttsburgh $\ldots . . . . .$. Toronto, dealers $12.50-13.00$
6.75

## AXLE TURNINGS

Buffiln
Boston district
Chicago, elec. fur. East. Pa. elec. rur.
St. Louls
16.00-16.50

Toronto
18.00-18.50 17.50-18. (x)

CAST IRON IBOHINGS
Blrmingham 8.30
5.00-6. 50 Boston dist. chem.. +9.00- 4.25
Buffalo.........
$12.50-13.00$ Chicago . . . . . . . . . . . . . 12.50-13.00 12.50 Cincinnati, dealers. 6.75-7.25
Cleveland Detrolt.............
E. Pa., chemical

New York ........ . $+8.75-9.00$
St. Louls .........
Toronto, dealers .
9.00- 9.5

HAIIIROAD SIDCLAITTEM
Chicago .......... $21: 25-21.75$
ANGIE BAIES-STEEI
Chicago ........... $21.50-22.00$
St. Louls . . . . . . . . $18.00-18.50$ silitings
Buffalo
Chicago, coll
Eastern par ...... 21.00-21.50
Pittern Pa.
Pittsburgh
$\qquad$ 24.50-25.01 STEEI, RAIIS, SIIOITT

## Blrmingham

Buffalo
Chicago ......
Chicaso (2 ft) Cincinnat1 deal... 22.50-23.00 Detrolt ............. $+21.50-22.00$ Pltts., 3 rt. and less $25.00-25.50$ St. L. 2 ft . \& less. . 20.50-21.00 STEGI, RAIIS, SCIBAP
Birmingham
Boston districi.
16.00
$14.50-15.00$

## Ores

Lake Buperior Iron Ore
Grosa ton, 51 \% \%
Lower Lake Ports
Old range bessemer
Mesabl nonbessemer
High phosphorus
Mesab bessemer
Old range nonbessemer.

Eastern Local Ore
Cents, unit, del. E. Pa.
Foundry and basic $56-63 \%$, contract.

## Furelgn Ore

Cents par urit, c.s.). Atlaric ports
Mangantierous ore.
45-55\% Fe.. 6-10\%
Mang.
N. African low phos
10.(6)

Nom.
nom.

1
panish, No. Aprlcan basic, 50 to $60 \%$
Chinese wolframite,
net ton, duty pd.. $\$ 23.50-24.00$
Brazll iron ore, 68-
$69 \%$, ord......
max.) phos. (.02
F.O.B. Rio Janelro.

Scheellte, imp. ....

| 13uffalo | 21.00-21.50 |
| :---: | :---: |
| Chicago | 18.25-18.75 |
| Cleveland | 23.50-24.(\%) |
| Plttsburgh | 23.00-23.50 |
| St. Louls | 18.75-19.25 |
| Seattle | 18.00-18.50 |
| PIPE AND FLUES |  |
| Chlcago. net | 12.50-1.3.01 |
| CIncinnati, dealers. | 12.00-12.50 |
| RAIIITOAD GRATE | ISATS |
| Buffalo | 14.00-14.50 |
| Chicago, net | 18.50-14.00) |
| CincinnatJ, dealers. | 11.25-11.75 |
| Eastern Pa. | 17.50 |
| New York | 12.00-12.50 |

$13.50-19.00$

## RAILROAD WROUGHIT

Birmingham ...... 14.00
Boston तlstrict .. $+9.50-10.00$
Eastern Pa., No. 1 .. 20.00-20.50
St. Louis, No. 1 .... 13.00-13.50 St. Louls, No. 2 . ... 15.00-15.50

## FOHGE JILABIIINGS

Boston distrlct .... $111.50-12 .(x)$
Buffalo . . . . . . . . . . 17.50-18.00
Cleveland .......... 18.00-18.50
$\dagger 15.50-16.00$
16.50-17.00
roirgis scizal
Boston district
+7.111
Chlcazo, heavy .... 22.50-23.00
J.ow PHOSDHOKUS

Cleveland, crops. . . $23.00-23.50$
Eastern Pa., crops. . $25.00-25.50$
Pltts., bllet, bloom,
25.00-25.50)
I.OW PIIOS. IUNCIIINGS

Buffalo
Chleago
Cleveland
Eastern Pa
Pittsburgh
Seatlle
22.00-22.50
21.75-22:25
20.00-20.30 25.00-25.50 24.50-25.00
$\dagger 17.50-18.00$
IRAIIS FOIR MOYIING
5 feat and over
Blrmingham $\ldots . .$.
17.50

Boston $\quad . . . . . . . .+15.75-14.01$
Chicaso . . . . . . . . . . . 22.00-22.50
New York . . . . . . . $\uparrow 17.50-18.00$
Fastern Pa. ....... 23.0n-23.5!
St. Louls . ......... 20.50-21.00
STELEI. CAIL ANI.ES
Blrmingham ...... 18.00
Boston dlstrict ..... . $\dagger 18.50-19.00$
Chicago, net ...... 22.50-23.00
Eastern Pa. ......... 25.00-25.50
St. Louls . . . . . . $22.00-22.50$
1.0comoTivi ThiES

Chicago (cut) . . . . . 22.00-22.50
St. Louis, No. 1. . . . . 17.00-17.50
SHAFTING
Boston district . ...†19.00-19.25
$\dagger 19.00-19.25$
$\dagger 19.00-19.50$

Eastern Pa.
25.00-25.50

St. Louls, $11 / 4-34 \%$ ". . 18.50-19.04
CAR wIIELIS
Blrmingham, fron. . 13.50
Boston dlst., fron. . $\dagger 14.75-15.00$ Buftalo, steel...... 23.50-24.00 Burfalo,
Chicago,
fron . . . . . . $\quad 19.00-19.50$ Chlcago, rolled steel $21.50-22.00$ Cincin., Iron deal... 19.00-19.50 Eastern Pa., Iron. . . 21.50-22.00 Eastern Pa., steel. . 24.50-25.00 Pittsburgh, iron . . 21.00-21.50 Pittsburgh, steel . . 25.50-26.00 St. Louls iron St. Louls, steel 18.25-18.75 19.50-20.00

## No. 1 CAST SCRAl

Birmingham
16.50

Boston, No. 1 mach. $\uparrow 15.75-16.25$ N. Eng. del. No. 2. . 15.25-15.75 N. Eng. del. textle $1 \times .75-50.00$ Buffalo, cupola .... 18.50-19.00 Buffalo, mach, . . . . 20.00-20.50 Chleago, agrl. net. 15.00-15.50 Chlcago, auto net. . 17.25-17.75 Chicago, ralliond net $16.00-10.20$ Chleago, mach. net. 16.5(1)-17.(111 Clncln., mach. deal.. 19.50-20.00
Cleveland, mach. . $21.50-22.00$
leetrolt, rupola, net. $+17(x)-17.50$ Eastern Pa., cupola. 22.00-22.50 E. Pa., No. 2 yard. . 18.50-19.00 E. Pa., yard fdry... 19.00 Los Angeles cupola. $16.50-1,1414$ liltsburgh, cupola. 19.00-19....
Snn Franclsco ..... 14.50-1.ili seattle
St. L., agrl. mach.. . 18.00-18.an St. L., No. 1 mach.. 19.00-19.50 Torontu, Nu. 1 .
mach., net deaters $18.100-18.511$

## HEAVY CAST

Boston dist. break. . $15.00-15.25$ New England, del.. . 15.75-16. 25 Butfalo, break .... 17.50-18.00 Cleveland, break, net $16.50-17.06$ Detrolt, auto net. . $\dagger 17.25-17.75$ Detrolt, break. .... $15.00-1 \mathrm{~s} . \mathrm{s}(1)$ Eastern Pa. ...... . 21.00
l.os Anc., sulto, net, 19 nol-1.(N) New York break...†16.00-16.50 Plttsburgh, break. . 16.(41-16.50)

## STOVE PIATH

Blrmingham
10.(M)-11.(H)

Boston district.... . $\ddagger 11.50-11.75$
Butralo ........... . . 16.00-16.50
Chlcayo, net ....... 12.00-12.54
Cincinnati, dealers. 11.75-12.25
Detroll, nel ...... $+11.00-11.0 \%$
Eastern Pa.

St. Louis...........12.50-13.00
Toronto dealers, net
12.100
M.II.I.EABJ.E:

New England, del... $21.511-22 .|u|$ Buffalo
Chicago, R . R .
Cincin. agri., deal. 16.75-17.25 Cleveland, rall. .... 22.50-23.10 Eastern Pa., R. R.. . $22.50-23.00$
Los Angeles
Pittsburgh, rall.... 23.50-0.4.110
St. Louls, R. R. . . . . 19.00-19.51)

## Sheets, Strip

Sheet Strlp Prices, Pages 76, 77
Pittsburgh - Automotive releases are somewhat heavier and the volume of bookings in September is expected to exceed the August figure. August totals were slightly under July. Initial buying by automobile companies is heavier than last year, although some major producers have yet to be heard from. Prices are steady, with all new business being placed at the full price.
Cleveland-Shipments are expanding, influenced largely by increased automotive needs. While there is some evidence of stocking on the part of consumers, early requirements constitute the principal stimulus to demand. Comparatively early delivery still is available on most grades, although backlogs are growing in some instances.
Chicago - Award by the department of agriculture of contracts for steel bins totaling $\$ 2,301,548$ for storing corn delivered by farmers in liquidating loans on the 1938 and 1939 crops, as announced from Washington Wednesday, opens up a sizable piece of steel sheet business. The contracts announced went to Butler Mfg. Co., Galesburg, Ill., 10, 000 bins; Columbia Steel Tank Co., Kansas City, Mo., 1500 bins, and the same number to A. N. Eaton Metal Products Co., Omaha, Nebr.; while the Beatrice Steel Tank Mfg. Co., Beatrice, Nebr., got 700 . The bins contracted for are sufficient to store $37,403,730$ bushels. Since each manufacturer has his own bin-building plan, the average sheet steel requirement per bin is flgured around 2800 pounds, this making a matter of total sheets needed of between 19,000 and 20,000 tons. The Rock Island government arsenal, Rock Island, III., has an inquiry for 1000 tons of 16-gage sheets, possibly for gun stampings, to close shortly.

Boston-Narrow cold strip orders are heavier, with an increasing volume for fourth quarter delivery being booked by rerollers. Improvement in demand is well diversified and automotive specifications are more active. Mill operations are at capacity in most instances, but inroads on backlogs are slight, despite heavy and increasing shipments. Deliveries on the more standard run of material are from three to four weeks, but on some specialtles are slipping backward gradually. Sheet buying is slack, due to accumulated low-priced inventories, but on the small volume being placed hot-rolled and galvanized appear to be moving at listed prices, although it is admitted these are not subject to much test. New buying of special finished sheets in
small lots, notably stainless, tends to improve.

New York-Sheet shipments here continue to expand moderately. For most leading sellers deliveries in August were somewhat ahead of those in July and indications now point to a still larger movement this month. Stovemakers, who have been operating at a fairly good rate all summer, are expected to become much more active before the end of this month in further preparation for the fall and winter season. Household appliance manufacturers
continue to broaden their require. ments, with few notable exceptions such as refigerator manufacturers, whose production has been sagging recently due to seasonal intluences. Deliveries on hot and cold-rolled sheets range from three to six weeks, depending upon gage and size.

Deliveries on some strip specialthes are slightly more extended, but three to four weeks can be done on the more standard runs. Backlogs remain large desplte high produethon and shipments. Except for


How can AMPCO METAL Serve You?
$A^{R E}$ there places in either your product or your production tools where metal failure is causing trouble? ... If so, AMPCO METAL can help you . . . as it has helped an impressive number of prominent manufacturers. There's no other bronze like it. AMPCO METAL is unequalled in its resistance to wear, impact, fatigue, and corrosion. It can be supplied in a wide range of properties and forms.

## WRITE FOR DATA

Tell us what you're up against, and we'll send complete data sheets and recommendations.

AMPCO METAL, INC.<br>Dept, s-99<br>MILWAUKEE, WISCONSIN


some alloy and specialty items, hot strip deliveries are not materially extended

Philadelphia-Most sheet sellers expect a larger movement this month as shipments against lowpriced contracts close Sept. 30. There is seasonal slackening in some specifications, particularly from stovemakers. Defense requirements are more noticeable, a recent inquiry calling for several hundred tons of hot-rolled sheets from a district fabricator of powder drums. The 2.10 c base on hot-rolled sheets is being quoted generally.

Buffalo - Current demand for sheets and strip is the best in some time. Some sellers report buying is surpassing the surge which followed declaration of war a year ago. Increased automotive demand is coupled with a sustained brisk flow of orders from miscellaneous sources.

Cincinnati - Covering of sheet needs for fourth quarter, following the reaffirming of prices, has been considerable but not in such volume as to indicate anxiety over deliveries. Automotive specifications are expanding. A heavy ton-


For all types of low temperature heat treating of aluminum alloys, bronze, brass and steel-rods. plates. sheets and shapes "Salem" has developed and pue into operation a group of modern. streamlined. highly efficient and surprisingly economical Convection Type Furnaces. Highly applicable to the manufacture of small arms ammunition.
Convection Units may be gas, ail or electric

Photo I-Car Type Furnace for annealing aluminum theets and plater for sitcralt parts
Thoto 2 - Continuous Chain Conveyor Furnace for heating aluminum billets lat rolling-
Photo 3-Car Type Furnaces Photo 4-Tubular Hardening Furnace includinz quench. fully automatic.
Phato 5-5hows the new ippe convection unit.
-SALEM'S practical and progrestive engineers will gladly discust rour roblems with you.

SALEM, OHIO- chicaco - detroit - pittsluzch - philadiphia - london - wellano. ont.

## THE WITTER PROCESS

 for FORGING SHELLS20\% Savings in materials
$50 \%$ Increase in production
nage for Canadian delivery has been booked.

Birmingham, Ala. - Sheets are in good demand although some slackening has been in evidence over the past several weeks. Output currently is estimated at above 80 per cent. Strip production has been stepped up slightly.

Toronto, Ont.-Despite the fact that Canadian mills are booked almost solid to the end of the year on sheets and strip orders are heavy and current booking is for delivery early in 1941. Local representatives of United States companies state that large orders are being placed for Canadian consumption. The automotive industry is ordering heavily and other branches of industry also are active.

## Plates

## Plate Prices, Page 76

Pittsburgh-Revised extras have been announced on hot-rolled carbon steel plates and floor plates, the new list being dated Sept. 1. Numerous changes have been made in plain plate extras, affecting charges for size, shearing, flame cutting, heat treatment, chemical requirements and quality.

On specified widths or diameters up to 24 inches, plates $1 / 4$-inch thick or over take the base price as before, provided universal mill plates are ordered or the mill is given the option of furnishing a sheared or universal mill product. If the buy. er's specifications require that a sheared mill product be furnished, extras of 25 cents on widths under 24 inches to 12 inches and 50 cents on widths under 12 inches to 6 inches are applicable.

Plates 36 to 48 inches in diameter and $1 / 4$-inch thick or more formerly were base but now take a 15 -cent extra. Diameters over 48 to 72 inches also were base on the old card, but base now applies on 60 to 72 inches, with diameters 48 to 60 inches taking a 15 -cent extra. The base length has been changed from 3 to 80 feet to 5 to 80 feet, with a 15-cent extra applied on lengths 3 to 5 feet.

Revisions in quantity extras on floor plates result in higher charges on small lots. Base quantity has been increased from 2500 pounds or over to 4000 pounds or over, with small-lot extras raised slightly.

Boston-Revised extras on hotrolled alloy and carbon steel plates and floor plates have brought out little additional buying traceable to these changes. Shipments are maintained and buying since the holiday has increased slightly. Aside from shipyard specifications,
which are outstanding, orders are mostly for less than car lots. The latter, however, are more numerous from miscellaneous fabricators and users. Railroads are releasing small lots for maintenance. Scattered demand for floor plates is fair.
New York-Plate buying is well sustained. Tank and boiler shops are active and increasing tonnage is being released by smaller shipyards, formerly building pleasure craft, now engaged on defense contracts.
Philadelphia-Eastern plate mills are planning to put into early effect the new plate extras announced early in the week by a Pittsburgh producer. This may stimulate some anticipatory buying and later accelerate purchase of multiple sizes for cutting by purchasers. It is pointed out there already is shortage of larger sizes. The navy has postponed the opening date originally scheduled for Sept. 6 on bids for 118,000 tons of plates, shapes and bars, but has not set the new date. Deliveries range from two to four weeks on smaller sizes and six to eight on larger.

Birmingham, Ala. - Plates are being produced at capacity, largely because of car business, shipbuilding and demand from tank manufacturers. Tonnage is moving in large volume and deliveries are scheduled several weeks in advance.

Scattle - Demand for plates is more active. Some fabricators complain of slow deliveries from eastern mills. Largest project pending, 800 to 1300 tons, depending on alternate bids, is at Bellingham, Wash., bids opened Sept. 5, for 20,000 feet of 36 and 48 -inch industrial water line. Puget Sound Bridge \& Dredg. ing Co., Seattle, will build several steel lighters for navy department, involving about 300 tons.

Toronto, Ont. - Demand for plates continues brisk and orders are coming in at a rapid rate for ship construction, tanks and armored vehicles for war purposes. Practically all the new demand, however, is going to the United States and additional large tonnages are pending.

## Plate Contracts Pending

4400 tons, two mine-layers, 4700 tons displacement each; bids Oct. 16, navy department, Washington.
1500 tons, flve 80,000 -barrel tanks, New London Terminal Co., New London, Conn.; Leo F. Caproni, New Haven, engineer.
800 to 1300 tons (depending on atternates) 36 and 48 -inch industrial water line, Bellingham, Wash.; blds Scpt. 5.
300 tons or more, open lighters for navy department: Puget Sound Bridge $\&$ Dredging Co., Seattle, general contractor.
200 tons or more, discharge plpes for flood control projects near Portland, Oreg.; King Bros., Portland, low to

United States engineer.
Unstated, 16,000 feet 14 -inch steel pipe and fittings; blds in at The Dalles, Oreg.
Unstated, four C-3 type maritime commission steam freighters; Seattle \& Tacoma Shipbullding Co., Seattle, general contractor.

## Bars

## Bar Prices, lage 76

Pittsburgh - New extras to become effective Oct. 1 have been announced on hot-rolled alloy steel.

Principal changes from the previous card, issued early this year, result in higher charges for alloy content on several grades. These include advances of 15 cents per 100 pounds of finished products or $\$ 3$ per gross ton of semifinished products in S. A. E. grades 2300 and $4800 ; 30$ cents per 100 pounds or $\$ 6$ per gross ton on S. A. E. 2500 and 10 cents per 100 pounds or $\$ 2$ per gross ton on S.A.E. 4600. The nickel-chrome-vanadium grade has been dropped from the card.

Chicago-The present broadening of the government rearmament pro-

## Another DoALI Achiwement

## 1000 PANS . . . 50 Times Faster than Old Way ...

Again DoAll shows it is the most versatile and fastest method to cut all metals by sawing sample wheat pans out of tin for Stremel Brothers, Minneapolis, U.S.A. Four stacks of 250 sheets each-held together with clamp plates-no holes bored. Total time 1 hour ( 15 minutes for each stack) for complete job.


FREE-New Handbook on Contour Machining-158 pages of valuable metal working helps.


The DoAll is a moderately priced, rugged precision machine tool that replaces shaping, milling and lathe work with enormous savings of time, labor and material. Cuts out internal and external shapes from any metal up to $10^{\prime \prime}$ thick.

Used in large and small plants in 30 countries by manufacturers of all kinds of metal goods, machine parts, dies and tools, appliances, equipment, motor cars, airplanes; also by ship builders, railroads, arsenals, etc.

CONTINENTAL MACHINES, INC.

gram is bringing out surprising trade angles for steel bar producers. From companies that are awarded contracts for government material but which never before bought steel bars, large inquiries are coming out. Since some of these inquirers are strangers to the usual steel bar trade, mills have to instruct them on materials specifications. Bar mills are busy, have fair backlogs and are speeding up to care for steadily increasing demand.

Boston-Additional purchases of alloy bars by government shops at

Watertown and Springfield, Mass., are paced by expanding specifications and consumption by miscellaneous fabricators, small firearms, tool makers, forging shops and machine tool builders accounting for substantial releases. Hot-rolled carbon bar demand is less heavy, but tends upward despite the flurry in buying by most leading consumers recently. Covering against estimated fourth quarter needs has developed more momentum and some buyers are seeking protection beyond that period. Specifications by


Send note on Company Letrerbead for NEW Catalog 39

## THE HORSBURGH \& SCOTT CO.

## GEARS AND SPMED REDUCERS

5112 HaMILTON aVENUE - CLEVELAND, OHIO, U. S. A.
secondary distributors are steady and a substantial volume is being handled by the latter, who are pressing for delivery on some alloy sizes.

Philadelphia-Small forging shops are more active as defense work continues to expand, imparting new stimulus to steel bar demand. Virtually all large forging shops are booked to capacity with much marine tonnage on order. Machine tool builders and government shops are operating at a high rate and specifying freely, particularly on cold-finished and alloy bars.

Birmingham, Ala. - Bar production, largely for concrete reinforcing, is heavy. Output is at 80 per cent or slightly better.

Buffalo-An increase in automotive specifications is forcing mills farther in arrears on bar delivery. Mills report it is becoming more obvious that needs for defense products are spurring demand. Mills continue to roll at capacity.

Toronto, Ont. - Rapid expansion of industrial activities is responsible for increasing demand for merchant bars and bookings show steady improvement. Producers report large orders to the end of the year with demand well sustained. Toolmakers have been heavy buyers recently and there has been improvement in demand from the automotive industry as well as from concerns engaged in war work.

## Pipe

## Pipe Prices, Page 77

Boston-Resale prices on merchant steel pipe continue mixed and weak in some districts, despite slightly improved demand for building needs and a somewhat firmer stand by mills for published quotations. Manufacturing requirements for tubing are maintained, but buying is curtailed by forward covering with consumer stocks better balanced by recent deliverias. As to the latter a possible exception includes alloys. Recent purchases of cast pipe approximate 750 tons in small lots, but releases against blanket contracts drag with utility buying light.

New York-Despite pressure being exerted by resellers, 1 nill prices on merchant pipe continue generally firm. Meanwhile, demand is fairly active, notwithstanding absence of large building projects. The La Guardia housing project in Brook. lyn is one of the few larger projects now pending.

Cast pipe buying continues slack with contracts mostly for small lots. Early improvement in demand, however, is expected to re-
sult from extension of facilities at numerous army camp sites in the East. New York city is expected to buy at least 5000 tons additional this fall and close to 500 tons will be placed for a sewer and water lines, State school, Staten Island, N. Y.

Birmingham, Ala. - Cast iron pipe production is on a five-day basis, in most instances, with government naval bases, west coast points and scattered tonnage accounting for most business.
Seattle - No important tonnages are up for figures but agencies report a fair demand for small lots. Seattle has approved several system extension proposals and bids wlll be asked soon.

## Cast Pipe Placed

200 tons, 6 to 20 -Inch for Spokane, Wash., unlversal plpe, to Marckmann \& WIllams, Seattle, for Central Foundry Co., Birmingham, Ala.

## Wire

Wire Prices, Puge 77
Chicago-This being usually between seasons for the general wire trade, It is not surprising to find current business largely routine, although the mills are operating at a good rate. Manufacturers' wir? is the current backlog, fence wire and nails moving at about expecterl rates.
Boston-Supplies of semifinished alloy steels for the manufacture of wire specialties are tight and finishing departments in some instances could use more tonnage if available. While there is no definite shortage, current stock is being worked off steadily. Production schedules at wire mills approximate 95 per cent and backlogs are increasing on some items despite heavy shipments. Deliveries on some specialty items requiring fixed processing periods are more extended. Releases to the automotive trade are gaining and new buying is well diversified, more orders appearing for defense order products. Rope mills and electrical cable plants have large backlogs and demand by makers of screw machine products is substantial.
New York-Wire bookings, largely for prompt delivery, are fully up to 90 per cent or practical capacity. Backlogs are gaining on some mills. Spring wire is improving moderately with specificatiens against early 1941 automotive requirements heavier. Link spring low carbon wire for army cots is in good demand. Strong demand for wire rope for usual domestic needs, including marine, is bolstered by export buying which includes a large cable order
for balloon barrages for Grear Eritain and substantial volume of elevator rope for South America.

## Rails, Cars

Track Material lorices, lage ::
Railroads continue to add to roll ing stock but rail buying has not yet started. Chicago, Milwaukee, St. Paul \& Pacific has awarded 18 dieselelectric switchers to three builders. Union Pacific is inquiring for 2000
steel underfmanes for cans to be built in its own shops. Other inquiry and awards stre for small lots to meet presings meeds.

## Rail Orders Placed

Frie, f(h) tons raths, to Carnewte-llithois Steel Corp. Pltsturyh, and listhtehem steel Co., Bethlehem. I's.

## Locomotives Placed

 1s desel-electrk switermes bermmethes: three lixp-horsemblwer and bithe
 1.2 Granges 111:- four lkh-horsepmwer

ta American Locomotive Co., New Kogk; two 1000-horsepower to Baldwin Locomolve Works, Philadelphia.

## Car Orders Placed

Atlantle Coast, I.Ine, 125 logging cars, in Gretenville Steel Car Cu., Greenville, P'a. $\approx$ Erle, 325 seventy-ton gondolas 10 own shops at Dunmore, Pa.

## Car Orders Pending

Duruth, Missabe \& Iron Range, 100 intyton gondolas; in addition to ballasi and hopper cars pending.
Union Pacifle, 2000 underframes for box cars which will be bullt in own snops bids asked

## Shapes

Structural Shape Prices, Page 7
Pittsburgh - Inquiry last week was slightly heavier, with awards steady. Backlogs hold at about the same level and deliveries are still behind in varying degrees, depending on the products.

Boston-Except for a mild flurry in small-tonnage contracts, district fabricating shops have not to date shared heavily in stronger demand for fabricated structural steel, most


ALLOYS • STAINLESS • CARBON • BRONZE ERIE ©olting ERIE BOLT \& NUT CO • ERIE,
of the larger work going to Pennsyl. vania. An exception is a 750 ton award to the Holyoke, Mass., shop for new buildings at the Springfield, Mass., armory. Inquiry and tonnage being estimated is substantial, government and defense program expansions being supplemented by more private work of a general type.
New York - Despite mounting structural steel contracts, tonnage continues to come out for estimates in much larger volume, notably for aircraft plant expansions, shipyards and scores of projects connected with the defense program. Bridge needs, which include awards for New York, New Haven \& Hartford railroad spans, 600 tons, are heavier and bids close Sept. 17 on a Long Island railroad grade crossing section in Brooklyn, 2600 tons. For: hangars especially, structural steel requirements will be impressive for the newly acquired leased bases from the British in the Atlantic. Structural mills are already pressed to expedite delivery on plain material entering into defense contracts, although fabricating shop capacity is not yet taxed to fill needs.

Philadelphia-Structural steel demand is increasingly active, with orders again expanding and considerable work pending. Of particular note is 7600 tons for the St. Georges, Del., bridge for the war department, bids Sept. 9.

Buffalo - Some slowing up of shape awards was noted during the past week, but additions to pending tonnage appeared. Plans for several large industrial projects definitely announced to be carried through, have not yet come out.

Seattle - New projects are developing and fabricating shops, al ready with backlogs, will book ample tonnages to carry over the year end. Bethlehem Steel Co., Seattle, has the contract for 250 tons steel sheet piling for a flood control project at Coeur d'Alene. Idaho. Truscon Steel Co., Youngstown, O., will supply 300 tons for doors for the army air base, Fairbanks, Alaska.
Toronto, Ont. - Demand for

## Shape Awards Compared

|  | Tons |
| :---: | :---: |
| Week ended Sept. | 49,247 |
| Week ended Aug. 31 | 29,909 |
| Week ended Aug. 24 | 23,819 |
| This week, 1939 | 13,816 |
| Weekly average, year, 1940 | 22,312 |
| Weekly average, 1939 | 22,411 |
| Weekly average, August | 29,403 |
| Total to date, 1939 | 789,761 |
| Total to date, 1940 | 804,23\% | 49,247

Week ended Aug. 3 ..... 23,50
This week, 1939 ..... 13,816
Weekly average, 1939....... ..... 22,411
Total to date, 1939804,23\%

[^9]structural shapes is taxing fabricating plants and orders are increasing. Construction work on projects connected with Canada's war effort for the past week totaled in value upwards of $\$ 4,500,000$ for which some 5000 tons of steel will be raquired, while a similar tonnage is in prospect for various other undertakings for immediate closing. New contracts run upwards of 8000 tons weekly.

## Shape Contracts Placed

14,000 tons, subway, route 110 , section 10, Brooklyn, to Amerlcan Bridge Co.. Pittsburgh; George H. Fllnn Corp., New York, contractor.
2000 tons, shop bullding, Pratt \& Whitney division United Aircrart Corp., Hartford, Conn., to R. C. Mahon, Detrolt.
2600 tons, Benjamin Franklin high school, New York, to Lehigh Structural Stecl Co., Allentown, Pa., through Psaty do Fuhrman Inc., New York.
2160 tons, machine shop, navy yard, Norfolk, Va., to VIrginia Bridge Co., Roanoke, Va., Rust Englneering Co., Pittsburgh, contractor.
2110, addition, flnal assembly bullding, Consolldated Aircraft Corp., San Diego, Calif., to Consolidated Steel Corp., Los Angeles.
1810 tons, manufacturing shop addition, Consolldated Alrcraft Corp., San Dlego, Calif., to National Iron Works, San Dlego, Calif.
1780 tons, Woodrow Wilson high school, New York, to Bethlehem Fabrlcators Ine., Bethlehem, Pa., through Psaty \& Fuhrman Inc., New York.
1550 tons, grade separation, East Twelfth street, contract E-3, Brooklyn, N. Y., for Triboro bridge authority, to American Bridge Co., Pittsburgh.
1525 tons, bullding, Durham Life insurance Co., Ralelgh, N. C., to Dietrich Bros. Inc., Baltimore.
1500 tons, factory bullding and boller house, Delco-Remy division, General Motors Corp., Anderson, Ind., to Indiana Bridge Co., Muncle, Ind.
1500 tons, additional tonnage, shipyards extensions, Bath Iron Works, Bath, Me., to American Bridge Co., Pittsburgh, through Morton C. Tuttle Co., Boston.
1335 tons, glass plant, Libbey-OwensFord Glass Co., Rossford, O., to Misslssippi Valley Structural Steel Co., Decatur, Ill.
1150 tons, quartermaster's depot, Philadelphia, to Belmont Iron Works, Eddystone, Pa., through Wark \& Co., Ehiladelphla.
1000 tons, extension to buildings, for Alifson engine division, General Motors Corp., Indianapolis, to R. C. Mahon Co., Detroit.
750 tons, shop bullding and laboratory. armory, water shops, Springfleld, Mass., to Haarmann Steel Co., Holyoke, Mass.: Ley Construction Co., Springficld. Mass., contractor.
670 tons, bridge, state prosect FASH-40-2, Rensselaer county, New York, io American Bridge Co., Pittaburah, through Frank E. Antolick, Schaght1coke, N. Y.
600 tons, ractory addition, Robinson Clay Products Co., Pottstown, Pa., to Poy Robinson. Philadelphta, through Esarclay White Co., Phtladelphta.
coo tons, bridges, New York, New Haven \& Hartiord rallriad, Bay Chester, S. Y., and southern Crinnecticst pronts io American Bridge Co., Phtisburgh.
 Laphams Mills, N, li, to Amerteth Bridge Co., Pittsbursh.
490 tons, seaplatme hangar, Annamolls, Md., to Fort Pitt Brlise Works, Plitsburgh.
455 tons, seaplame hankar, quanthoo, Va., to Fort Plt Bridge Works, Plttshurgh, through John MeShain (0., Lilladelphia.
45 tons, malnt shop, Amerlean Cir Foundry Co., St. Louls, to superlor Structurad Steed Co., St. Louls.
430 tons, alteratlons, spear Co. Plltsburgh, to keystone Englnewing (C)., Pittsburgh.
tis tons, factory building No. 1, American Cyanamid Co., Wallingtad, Comi.,

In Bethbom Slow in- ilhathfum. I:
410 tons. (wou buthbinge.

 lud.


 burgh.

 Bethlohem, In.
325 tons. proscerlon whas. for is tay
 tron \& sted Co. Los Ambeles.





## adaptABLE•relaABLE•durABLE

## American Radial Bearings (grooved innar-race typo) are able

 to lower the maintenance costs and increass the performanceslife of your heavy machinery. Adaptable - the outer racs is removable for easy assembly. Durable-the racos and rollers arn made from a special, heat-treated alloy stesl. Reliuble-cionstant inspection and precision-tests assurs absolute accuracy. Whise the load is radial, specify American Radial Esarinçs.
## AMERICAN ROLLER EEARING COMPANY, PITTSEURCH, PA



300 tons, hangar doors, Falrbanks, Alaska, army alr station, to Truscon Steel Co., Youngstown, O.
300 tons, bridge, proj. 233-A-B-C, MIssissippi, to Vincennes Steel Corp., Vincennes, Ind.
285 tons, bullding, for Northwestern Bell Telephone Co., Waterloo, Iowa, to Pitts-burgh-Des Moines Steel Co., Plttsburgh.
280 tons, addition, warehouse, Ecusta paper mill, Pisgah Forest, N. C., to Dave Steel Co., Asheville, N. C.
255 tons, bridge, route 353 , section 3 , Lycoming county, Pennsylvania, to Phoenix Bridge Co., Phoentxville, Pa.
250 tons, garage and bakery building, National Biscult Co., Syracuse, N. Y., to Syracuse Engineering Co., Syracuse.

250 tons, steel sheet plling, flood control project, Coeur d'Alene, Idaho, to Bethlehem Steel Co., Seattle; Sather \& Son, Seattle, general contractor.
250 tons, state highway bridge, Lycoming county, Pennsylvania, to Phoenix Bridge Co., Phoenixville, Pa.
245 tons, bridge, Tlogn county, Pennsylvanla, to Fort Pitt Bridge Works, Pittsburgh.
235 tons, bridges, Habersham and Chatham counties, Georgia, to Virginia Bridge Co., Roanoke, Va.
215 tons, warchouse, for Douglas Alrcraft Co., El Segundo, Calif., to Bethlehem Steel Co., Bethlehem, Pa.
210 tons, state highway bridge, Burwell, Nebr., to Omaha Steel Works, Omana,


- Your open hearth service requires a rugged, simple, dependable locomotive combined with low-cost operation. Here is a design especially developed for you. Notice the sturdy, all welded frame. The cab is fabricated of heavy steel sheets and well braced-no wood. Gears, shafts, bearings, hand rails, floor plates-yes, every part is designed to stand up under tough service. There are no elaborate or complicated controls. Simply push the starter buttons and the engine is ready for work. Speed and power are controlled by a single lever-the engine throttle. Installations show operating costs reduced 50 percent or more. You can't afford to overlook such savings. Let us tell you more about the advantages in detail.

DIESEL: Mechanical or Electric Drive
QASOLINE: Mechanical or Electric Drive . . . . . ELECTRIC: Storage Battery or Trolley

## THE WHITCOMB LOCOMOTIVE COMPANY

Nebr.
190 tons, addition to plant, for Ceco Stee Products Corp., Clyde, Ill., to Gage Structura] Steel Co., Chicago.
170 tons, roll storage building, Armstrong Cork Co., Lancaster, Pa., to A. B. Rote, Lancaster.
165 tons, tunnel rlbs, McKees Rocks, Pa to Fort Pitt Bricige Works, Pittsburgh. 160 tons, reconstruction bridge, Shipgenville, Pa., for state, to Keystone Englneering Co., Plttsburgh.
150 tons, extension to bullding 187, Bo5ton, for government, to Phoentx Bridge Co., Phoenlxville, Pa.
135 tons, brldge, state highway project RC-40-68, Caledonia - Avon highway, Livingston county, New York, to Bethlehem Steel Co., Bethlehem, Pa.; Pot-ter-DeWitt Corp., Pavilion, N. Y., contractor, $\$ 149,752.82$, bids Aug. 21, Albany.
125 tons, two-span WF beam and I-beam bridge, Hallfax, Vt., to Bethlehem Steel Co., Bethlehem, Pa.; Lockwood-Young Corp., Concord, N. H., contractor; 30 tons relnforcing bars awarded same rabricator.
115 tons, shapes and bars, grade crossIng elimination, state highway project, Onondaga county. New York, 60 tons to Amerlcan Bridge Co., Pittsburgh; 55 tons, to Concrete Steel Co., New York; Arzani \& Gessler, Syracuse, N. Y., contractor.

112 tons, United States englneer, Mem phis, Tenn., inv. 1092-41-28, to Ten nessee Coal, Iron \& Rallrond Co. Blrmingham, Ala., blds Aug. 9.
110 tons, bridges 7-6, Angelica, N. Y., to American Bridge Co., Pitisburgh.
110 tons, stores and orfices, Indiana, Pa. to Keystone Engineering Co., Pittsburgh.
110 tons, highway bridge, Covington, Va., to Roanoke Brldge \& Iron Co., Roanoke, Va.
105 tons, bridge, FAGM-118-A(1), Mitchell county, Texas, to Viryinia isridge Corp., Roanoke, Va.
105 tons, bridge, 131 of 77-17-23, Port Huron, Mich., to Yeager Bridge \& Culvert Works, Port Huron, Mich.
100 tons, furnace building, Carborundum Co., Nlagara Falls, N. Y., to Lackawanna Steel Construction Co., Bulfato.

## Shape Contracts Pending

7300 tons, tank plant, for Chrysler Corp., Centerline, Mich.
6700 tons, state bridge over Connecticut river, Hartiord-East Hartford, Conn.

4500 tons, bridge over Mississippl river at Chester, Ill.; preliminary plans for bids Sept. 21.
2600 tons, grade ellmination, section 5 contract 4, Allantic avenue, Brooklyn, Long Island rallroad; bids Sept. 17.
1700 tons, sheet piling, East liver drive east Forty-nrst to Forty-ninth streets, New York; Welss \& Weinser, New York, low.
1100 tons, warchouses M-20 and M-26, Philadelphia, for government.
1000 tons, radio transmitter bullding, for General Electric Iealty Corp., Schenectady, N. I'.
900 tons, brifge, route 124 , Boston Post road, Bronx, N. Y.; J. Leopold \& Co., New York, low, $\$ 199,345$.

758 tons, ulso 625 tons steel sheet piling, $107^{1 / 2}$ tons ralls and steel plpe foundatlons Bonneville powerhouse; Puget Sound Construction Co., Tacoma, low.
750 tons, ardition, Spencer Lens Co.,

Cheektowaga, N. Y.: Gilmore-Car-michael-Olson Co., Cleveland, contractor.
665 tons, bridges. Chatauqua county and Westfeld, N. Y.
550 tons, grandstand, for Queens County Jockey club, New York
550 tons, grade elimination, section 5 , contract 4, Atlantic avenue, Brooklyn, Long Island rallroad; bids Sept. 17.
450 tons, East River drive, 41st to 49th streets, contract 34, New York; Welss \& Welnser, New York, low.
440 tons, factory and warehouse addition, for Republic Steel Corp., Gary Ind.
350 tons, addition, engineering building, Vought-Slkorsky division, United Alr craft Corp., Stratford, Conn.

330 tons, welding shop, Manitowoc Ship bullding Cord., Manitowoc. Wis.; blds postponed from August 26.

330 tons, state highway bridge, Westfleld, N. Y., John B. Schultz, Buffalo, low on contract.

325 tons, warehouse, General Foods Corp. Dorchester district, Boston.

275 tons, underpass, Kettle Falls, Wash, for bureau of reclamation

260 tons, bridge, Falrmount boulevard Cuyahoga county, Omio for clty of Cleveland.

260 tons, state highway bridge, Alle gheny county. Pennsylvania; bids Sept 6.
zo tons, grade separation, Kettle Falls, Wash.; blds sept. 10, to interior department.
225 tons, state highway bridge, Jefferson county, Penasylvania; blds Sept. 6.
220 tons, intake and service bay, Kentucky dam, Gilbertsvilie, Ky., for Teanessee Valley authorlty, Knoxvllle, Tenn.

190 tons, tunnel shleld for subway, Danville, lll., for state.
170 tons, bulkhead wall, contract 34. Marglnal street, New York, for city.
165 tons, maintenance building, O'Hara townshlp, for Allegheny county, Pennsylvania.

165 tons, hangar, for Roscoe Turner Aeronautical Corp., Indianadolls, Ind.

160 tons, state bridzes 694, 695, 766, Caryville, Wls.

150 tons, state brldge PSC-4667, Erle county, New York.
1.50 tons, Greyhound Bus terminal. Bupfalo.

140 tons, state bridge RC-4075, Ulster counts; New Xork.
140 tons, state highway bridge. Hamburg, N. Y., C. B. Whitmore, Lockport, N. Y., low.
135 tons, truss brldge, Northumberiand county, Pennsylvanla; blds to state highway department. Harrisburg, Pa., Sept. 13.
125 tons, garage and storchouse, naval statlon, Newiport, R. I.
120 tons, state bridge PSC-5341, Ontario county, New York.
120 tons, mezzanine stations, subway. contract D-2-C, Chicago.
120 tons. Greyhound Bus terminal, Syracuse, N. Y.

115 tons, garaze and storehouse, Newport, R. I., for navy.
115 tons, boller house, for Citizens Gas \& Coke Utility, Indlanapolis, Ind.

110 tons, alterations to school buldaing, Norwich, N. X.
110 tons, bulding, for Faxton hospltal, Utica, N. Y.
100 tons, inree stations, Chlcaso subway; blds Sept. 12.
100 tons, bullding addition. Mathteson Alkall Company, Nlagara Falls, N. Y.
Unstated, drum gate control equipment. Coulee dam; Willamette Iron \& Sted Corp., Portland, Oreg., low.
Unstated, steel windows, doors, screens, etc., army air station. Fitrbanks, Alaska; bids in at Fort Mason, Calir.
Unstated, $60-$ ton traveling crane; blds in to Bonneville project. Porthand, Ores.

## Reinforcing


New York - While most of the largest relnforedng stey proberts have been closed, new inquily is coming out in rood volume and a heavy tombage is mearthg the bid stage. Multbple housfig work fooms and the Follx Fleld probeet at Newark, N. J., is bohng rebhi. Highway and bridge linquity is heavier, 550 toms bolng imvolved in


CUTTING ASSEMBLY COSTS INCREASING PRODUCTION GETTING BETTER WELDS

## Worker Fatigue Minimizad

Highly flexible No-Kik cable with reactance neutralizing effect has eliminated "punishment from bucking cables" allowing the operator to place spots with greater accuracy. Cables are water cooled throughout.

## Cable Clamp Adds Flexlbilily

Progressive hydraulic cable clamp, newest development that reduces cable wear, eliminates flexible shunts, and gives "free-swing ing" action to welding guns. Hydraulic welding gun pressure also clamps cable terminals to gun for greater current transfer.

## GuI Handing Speeded Up

Speedier handling and increased durability under high speed operation characterizes the Progressive Welderline of lightweight, hydraulic guns. Single bolt type cable connection at cable clamp permits ready inter-change-
ability of Progressive guns for various types of work.

Swivel Balacter
Safety type swivel suspension for complete welding unit permits greatest range of operation, Balancer arm supporta both cable and gun to reduce lifting effort.

Wider Range of Weldiny Pressures A wider range of closely adjustable weldink point pressures is now possible with the Progressive "HydroBooster." 'This unirque unit utilizes factory air line pressure to develop a range of from 300 to 1200 lbs. hydraulic pressure.

## Faster Oparation with Hew Valve

Faster, nositive action in continuous weldink operation is assured through Progresuiva's new heavy duty molenoid valve. Sleseve-type design eliminittes chances of valve besing "held open" by dirt.
 Find out all aborut "Yorzewiding"

## ALL OF THESE, PLUS

more not meneloned. are: Incorgorated in Prosteselve: Purtithle Spot Welding adulfment auch san illuttratad. Ciuns to mult virtually any weldind centdition are avallatale.

Progressivecan help you weld it better, faster and with leas cost. ASK PROGRESSIVF. HOW JO DO I'T.

Behind the Scenes with STEEL

## Country Life

We definitely should never have moved to the country. Another week off to fool around home and play some golf and what do we get out of it? A swell case of poison ivy all over again. Live and learn-and we just live.

## So What?

- "Chase out to the steel works and get the story of an accident," said the staff chief of a Chicago evening paper to a cub reporter and erstwhile lifeguard. Forgetting the assignment for the rest of a busy day, the chief spotted the item in the Home edition "Man Falls in Vat of Molten Steel. John Kacewicizi, a rigger, while engaged in construction work at the- Stecl Works met with a fatal accident this afternoon when he fell into a vat of molten steel. Kacewicizi was a good swimmer, too."


## Tails Up

- J. C. Farrel, genial r. p. of Easton Car \& Consrruction, passes along this interesting letter just received from his good friend, J. A. Kinnaird, managing director of England's largest builder of truck bodies

Probably things are going a bit more peaceably with you than they are here, but you can take it us an absolute statement of fact that we have got our tails very much up and Mr. Hitler is gring to get what he damn well deserves and that before he's much older. In thistyeight hours they've lost 126 planes and if they keep on at that rate, it won't be long before we control the air in the same way as we control the seas and then, hawen help them! 1 understand there is a lot of "bunk" appearing in your neuspapers about us starving and such like nonsense. Don't you believe it. If you sau our fruit shop windous, for instance. packed full of fresh fruit all brought from abroad, you would appreciate what command of the
seas really means and thank God for the Royal Navy and Merchant Navy.
Written August 13, 1940.

## The Pay-Off

It's time now to look over the damages to the billfold for that headstrong offer of two bucks for ceery real slip found in the August 26 issue. Our cockiness was quite justificd, however, because the only real boner was on page 15 where it was claimed that Bethlehem's additional ovens would make Buffalo the second largest coke-producing area in the country. It took a Carnegie-Illinois man to spot that one since his own Gary Works is a good sccond to Clairton, the tops. Two smackers are on their way to Carl G. Hogberg. R. J. Schuler, Asst. Mgr. of Sales for Republic's Bolt \& Nut division, writes "in Hight" on an American Airlines flagship demanding $\$ 32.00$ (American money) because an extra 16 -page form slipped into his issue. We hope to settle with Mr. Schuler for two dollics, which will be immediately charged against the bindery. Shrdlu, the office cat at J. F. Bingham Mfg. Co., is turned down cold for insisting that a "penny" is really two cents according to Hoylc. If Hoyle ever played penny-ante that way, he took an awful beating.

## Top Job

$\square$ That lets us off preity casy and Steel is just that accurate every week. And at about this stage it's high time someone does a little bragging on the job being done up front every week on the National Defense Program. Nowhere else, to our knowledge, will you find such complete listings of Army and Navy contracts awarded nor a more complete report each week of the Government procurement plans and policies. Another feather, please, for the editors' caps, and make them red, white and blue.

## -The Market IVeek-

grade crossings, Brooklyn, for the Long Island railroad, bids Sept. 17. Concrete bar prices are firmest in months with scattered shading, although weakness continues in highway mesh.

Pittsburgh - Inquiries and placements over the past week were on about the same basis as a week before. Prices are firmer in most sections and practically all jobs in mill quantities are reported placed at full price. Sellers here expect steady business until weather interferes, and they do not anticipate delivery difficulties this fall.

Philadelphia-Reinforcing bar demand is improving with prices increasingly strong.

Scattle - Puget Sound Construction Co., Tacoma, Wash., is low at $\$ 3,131,606$, to United States engineer for units 7 to 10 , Bonneville powerhouse foundations, involving 7000 tons of reinforcing bars, the largest award pending in this area. Bethlehem Steel Co., Seattle, has a blanket contract for 1000 tons or more, for various navy projects in the Puget Sound district, The Austin Co., general contractor.

## Reinforcing Steel Awards

1000 tons or more, naval projects luget Sound area, to Bethlehem Steel Co., Seattle; The Austin Co., Seattle, general contractor.
435 tons, Wheatley Courts, housing project Tex. 6-4, San Antonio, Tex., to Alamo Iron Works, San Antonlo, Tex.: H. H. Moeller, San Antonio, contractor.
400 tons, seaplane hangar, Quantico, Va., for bureau of yards and docks, through John McShanne Co., Philadelphla, to Rosslyn Steel Co., Washington.
400 tons, quartermaster's depot, phlladelphla, to Truscon Steel Co., Youngstown, O., through wark \& Co., Philadelphia.
400 tons, defense and aviation faclities, Guantanamo Bay, Cuba, to Jones \& Laughlin Steel Corp., Pittsburgh; Frederick Snare Corp., New York, contractor.
280 tons, parking garage, Phlladelpha, to Truscon Steel Co., Youngstown, O., through S. H. Levin, Philadelphia.
260 tons, construction work, Tongue Point, Oreg., naval base, to Poole \& McGonisle, Portland; Western Con-

## Concrete Bars Compared


struction Co., Seattle, general contractor.
185 tons, highway, route 49 , section 16 , South Dennls, N. J., to Bethlehem Steel Co., through Harry Elsenberg Inc., Collingwood, N. J
140 tons, covered water reservoir, Norfolk, Va., to Hall-Hodges Co., Norfolk, Va., through C. W. Lockwood, Hampton, Va.
110 tons, Dixle-Vortex Co., Easton, Pa., to Conerete Steel Co., New York through Lauter Construction Co., Philadelphla.
100 tons, operatlons hangar and annexes, Hill fleld, Utah, to Bethlehem Steel Co., Bethichem, Pa.; Mead \& Mount Construction Co., Denver, contractor.
100 tons, flood control project, Coeur d'Alene, Idaho, to Bethlehem Steel Co. Seattle; Sather \& Son, Seattle, general contractor.
100 tons, Vernita substation, Bonneville project, to unstated Portland house; West Coast Construction Co., Seattle, general contractor.

## Reinforcing Steel Pending

$70 c 0$ tons, Bonneville powerhouse foundations, Puget Sound Construction Co. Tacoma, low.
800 tons, war department bridge, St. Georges, Del.; bids Sept. 9.
200 tons, Allen housing development, Philadelphia; bids Sept. 17.
200 tons, tralning school, St. Petersburg, Fla., for federal works administration, Washington; blds Sept. 18.
195 tons, two reinforced structures, Beaver Falls, Pa.; blds to state highway department, Harrlsburg, Pa. Sept. 13.
100 tons, additlon to Anchorage, Alaska, federal bullding; McCarthy Bros. Construction Co., St. Louls, low.

## Pig Iron

Pif Iron Irtces, lage 78
Pittsburgh - Pig iron production during August was greater than during July, although the same number of furnaces were in blast. Tonnage this month will probably run about the same and it is possible the current 40 active stacks will remain. Prices are steady. Demand is slightly better for foundry iron. Chief tonnage continues to come from nonintegrated steel plants. Coke supply apparently is now adequate, with production up slightly in the beehive district around Connelsville.
Cleveland-Current and prospective improvement in foundry operations promises to extend the recent upturn in pig iron shipments during September. Consumption is expanding seasonally in some instances. Rumors in the East of a possible price advance by next month are discounted, but in the absence of active forward buying producers have little occasion to make formal announcement regarding fourth quarter quotations. Meanwhile the market is being continued at unchanged levels.

Chicago-Buying of pig iron is
largely in scattered lots of foundry and malleable, as foundries begin to feel automotive revival and some from the armament program. In neither instance is this approaching the volume expected to shape up shortly. Shipments in August exceeded July and September starts at a rate promising to exceed August. The gain in pig iron appears divided equally between gray iron and malleable foundries. Charcoal iron producers are said to be shipping production, this going largely to rollmakers. These in
turn feel the stimulus of roll re newal demand from rolling mills,

Boston - Pig iron bookings for fourth quarter shipment are being taken at unchanged prices, although covering for that period thus far is limited. Consumers in some in stances have underestimated third quarter needs and are amplifying specifications for immediate shipment. This is notably true in southern New England where more unexpected orders for castings have appeared in connection with the defense program. Foundries supply-


That's one of the major reasong for the unbeatable econorny of Kinnear Rolling Doornv For in additisn to the basic adrantages of Kinnear's rugged, all-steel construction and efficiont, in spacesaving operation, every dooris engineored to meet the oxact requirements of the individual space saving operation, every dooris operings like the above ( 870 equare feet!) or for the average-sized opening. So whether Kinnear Rolling Doore will help cut rlant crstein numereuivaya. Get the full operinge, Kinnear Roling Doore Winear Catalg. Writel The Kinnear Manufacturing Company. 1780-1800 Fields Ave.. Columbus, Ohio.
PindTI Hf:
ing the machine tool industry are maintaining melt, which is on the increase and covering a broader field, although some jobbing shops tend to lag behind the general average.

New York-While some tonnage has been booked for fourth quarter, pig iron sellers generally are making no effort to stimulate such future buying. Shipments have continued brisk. Some sellers report August deliveries were the heaviest for any month this year and declare there is little or no let-up in the case of shipments so far this month, notwithstanding the Labor Day holiday. Machinery equipment manufacturers continue the most active. In the export field there has been further heavy buying recently by Great Britain.

Philadelphia While at least one district mill has placed a fair tonnage of basic pig iron recently, buying is limited as most consumers are protected by contracts. Such buying as appears seems stimulated more by desire for protection against scarcity later than by fear of price advance. Sellers are booking fourth quarter tonnage at current prices but are making no drive for business. Most sellers report
incoming tonnage greater than production.

Buffalo-A mild buying flurry has developed but producers seam more interested in the present spirited pace of shipments. Merchant iron sellers have cleared most of third quarter bookings, but there will likely be some carryover of orders to fourth quarter. Motor and building equipment melt is increasing. Buying is well spread over diversified consumers.

Cincinnati - August shipments were the heaviest of the year with indications that September will be equal or better. Tonnage is being booked for fourth quarter delivery at current prices, but buying is light.

Toronto, Ont. - New business in merchant pig iron holds steady but lacks special feature. Melters are taking iron as demands dictate and orders and shipments against contract are responsible for deliveries of about 5000 tons weekly. Basic iron is more active, running about 500 tons per week, the balance made up of foundry and malleable grades. Current demand largely is confined to spot needs with future delivery bocking at a standstill. Production is holding, with nine stacks blowing out of ten in Canada.

## Produced Under RIGID METALLURGICAL CONTROL

For tools requiring a hard, wear-resisting outer surlace supported by a tough core, water-hardening tool steels are generally recommended. It is :20t enough, however, to specify "any" water-hardening steel. Tool shop su-
 pervisors with long experience in ordering tool steels have learned to specify "JESSOP"-because the extreme care exercised in the preparation of JESSOP STEELS guarantees high quality and uniformity.
There are several brands of JESSOP Water-Hardening Tool Steels available for various requirements, including "WASHINGTON" and "LION" (straight carbon steels), "WASHINGTON SPECIAL E-25" (carbon-vanadium steel) and "RAPID FINISHING" (carbontungsten chrome steel). We will gladly advise which brand is best suited to your needs. Write JESSOP STEEL CO., 584 Green St., Washington. Pa. ESTABLISHED 1901.
"JESSOP SETS STANDARDS IN FINE QUALITY STEELS"
Fessopser/s न Amencea
 shaninzes and composhe swzut

## Scrap

## Scrap Prices, l'age 80

Pittsburgh-No. 1 heavy melting steel has been advanced $\$ 1$ a ton to $\$ 19.50$ to $\$ 20$ on a sale to a down. river mill. The market also derives added support from dealer offerings for material to be shipped cut of the district, principally to Youngstown. Current railroad offerings are fairly heavy, although they do not come up to the figure of last month. Clos. ings thus far have shown prices slightly better on most items, with specialties particularly active. Demand frem steel foundries continues good and specialty prices are firm.

Cleveland-Prices have strengthened further here and in the Valley. Leading steelworks grades here are up 50 cents, with No. 1 steel at $\$ 19$ to $\$ 19.50$. Demand is active, with supplies relatively moderate.

Boston - Iron and steel scrap prices are stronger, several grades advancing 25 to 50 cents a ton. Buying and shipments for domestic melt are moderate with some increase in activity developing. Boat loading against export orders is steady with quotatiens firm at the top range of the recent advance. Most exports are going to Britain. While heavy melting steel grades for Pennsyl. vania shipment are up 50 cents, shipping point, the price is still too low considering transportation charges, to attract much tonnage in view of the better prices available for dock delivery.

New York-Shipments against orders are steady, with foundry grades slightly more active. Domestic consumer buying is limited to scattered lots. Prices generally are unchanged, although for export brokers have advanced No. 2 steel to $\$ 15$, barge. Loadings for shipment to England are maintained. A. A. Volk Co., New York, is low on the contract for scrapping the Ninth avenue elevated line, involving 65,000 tons of steel scrap. Bids close Sept. 17 for wrecking pa=t of the Second avenue elevated structure, containing about 30,000 tons.

Cincinnati-Iron and steel scrap prices are up 50 cents, and dealerbroker trading is active. Wanted grades are none too plentiful, considering the rapid absorption at the present steelmaking rate, and dealers are trying to augment stocks. Sentiment is bullish.

Philadelphia-A strong undertone continues in scrap, with sellers moving cautiously in anticipation of higher prices. This is particularly noticeable in all grades of steel mill scrap and increasingly so in some foundry grades. Little export scrap is moving from this district as do-
mestic prices are the more attractive. At the moment more scrap is coming in than going out by water, as the last of three cargoes loaded at a South Atlantic port for Italy prior to her entry into the war is being unloaded here for the account of a leading Pennsylvania consumer.
Buffalo-Sweeping price gains of $\$ 1.50$ a ton have been posted on steelmaking grades, following a sale of approximately 25,000 tons on the basis of $\$ 19.50$ to $\$ 20$ a ton for No. 1 heavy melting steel. The entire tonnage was placed with local dealers and did much to further strengthen sentiment. The customary $\$ 2$ differential prevailed on No. 2 steel and allied grades. Ship. ments by water continue substantial. Higher prices have also quickened collection activity. Dealers report supplies ample to cover commitments.
Birmingham, Ala. -- Re-entrance of Republic Steel Corp. into the market for first of the month pur chases has raised No. 1 heavy melting to $\$ 16$, with other minor prica changes.

## Steel in Europe

Foreign Sterl Prices, Pake 79
London-(By Cable) -In raw materials and semifinished steel the position of Great Britain at present is quite satisfactory. Delivery of ore from Mediterranean sources continues. Pig iron is being strictly rationed, especially to light foundries. Heavy rolling mills and sheet mills are working to capacity.
Exports of tin plate are quiet, partially due to diminished Australian and South American inquiry and partly to limitation of export permits.

## Tin Plate

## Tin Plate Prices, Pare ifi

New business in tin plate is very light, with the off season approaching. Producers see little possibility of any increase in production this fall, with the rate last week at 48 per cent, off 6 points. There is a possibility general line can business will increase somewhat during the fall months, as is generally the case. Export buying continues slow.

## Freight Rates Reduced

Boston-To provide a basis of rates for export, reduction in freight rates on coiled wire rods and billets from Worcester to Bos. ton is proposed, $\$ 1.25$ per gross ton against a present rate of $\$ 1.65$ for
rods and $\$ 2.88$ for billets. Reduction will also become operative on rates for these commodities from Worcester to New York harbor lighterage points, $\$ 3.00$ a gross ton on rods and billets from $\$ 3.85$.

## Warehouse

Warchouse Irices, Page 79
Chicago - August sales werc greater than July's in case of most local warehouses. Demand was well spread as to products. Prices are steady and unchanged.

Philadelphia - Warchouses are experiencing a brisk business, some having the largest trade of the year in August and September is expected to better this record. Prices are steady.

Buffalo - Sales continue to scale
new peaks for year with further improvement expected. Consumers working on defense orders are leading buyers. Deliveries from mills are slowing up especially on certain items in the specialty category.

Seattle - The jobbing trade is active, buying diversified and volume steady from both public and private sources. Prices are unchanged and firm, plates, shapes and mild steel bars still below Portland tariffs.

## Navy Buying Aluminum

Boston-Bids close Sept. 10 un der schedule 2972 , bureau of supplies and accounts, navy department, Washington, on 150 tons of aluminum alloy ingots for delivery at the Portsmouth, N. H., navy yard.
 ability of this versatile electrode "Hi-Tensile " $F$, a fast, smooth rad jobs. Good for working conditions. - Horizontal, vertical and over work in Cro-Man-Sil, used equally well on hos. Especially well suited. Let your local Page diswork in tight place and other new all f. 50 acts. Wire Fence; Tru-Lay Pre-
 BUY ACCO QUALITY in Page Welding Electro Valves; Campbelleys. formed Wire Rope, Chains; Wright HIRE DIVISION - MONESSEN, National Metal
*
Machines; American See onr exhibit. Booth $G^{4}$


## AMERICAN <br> FORD CHW HOCK OMSION

# Nonferrous Metal Prices 

## TURNINGS ARE MORE EXPENSIVE

 THAN THE STEEL FROM WHICH THEY COME! . . . not in scrap ralue, of course, but in their ebst of manufacture . . . But, you say, we don't infend to manufacture turnings!-Yet, you do if you attempt to economize by making ring dies, bushings, forming rolls, etc., from solid sleel.With a complete stock of BISCO alloy and tool steel tubing on hand-and with both local and distant deliveries so modernly dependable, it becomes more economical to select your exact requirements fram the BISSETT line of fubing and also secure the exact size needed in bath triside bund outside diamelers nearest your indihidual requirements. . In addinon to BISCQ Non-shrink, oil-hardening tod steel|tusing, we furnish from stock stainless steels, filloy steels, etc. A copy of our stock list will be mailed promptly uponrequest.

## THE BISSETT

 STEEL CO 900 EAST 67th STREET, CLEVELAND, OHIO
III.L PRODICTS
F.o.b. mill base, cents per lb., except as specified. Copper brass products based on 11.50 c Conn. copper

Sheets


WLD METAIS
Nom. Dealers' Buying Prices
Nir. I Composition Red Brass
New York
$.7 .25-7.50$
Cleveland
$.7 .37^{1 / 2}-7.6^{1 / 1 / 2}$
Chicago
$.25-7.50$
st. Louls
leaw Copper and wire
New York, No. 1 ........... $8.871 / 2-9.121 / 2$
Cleveland, No. 1 .......... .... 8.50-8.75
Chicago, No. 1 . . . . . . . . . . . . . . . 8.50-8.75
st. Louls .......... .................. . 8.75
Componition Brans Turnluym
New York 1.Ight Cupper

|  | 1.tyht Cupper |
| :---: | :---: |
| New York | . $6.87^{1 / 2}-7.121 / 2$ |
| Cleveland | .6.50-6.75 |
| Chicago | .6.50-6.75 |
| it. Louls | 6.75 |
|  | Light ls rasm |
| Cleveland | .3.75-4.0U |
| hicago | 4.25-4.37 $1 / 2$ |
| st. Louls | 4.25 |


| Ierad |  |
| :---: | :---: |
| New York | 4.25-4.35 |
| rleveland | .3.60-3.75 |
| Chicago | .3.75-4.00 |
| st. Louls | .3.50-3.75 |
| Zinc |  |
| New York | .3.75-4.00 |
| Cleveland | .3.25-3.50 |
| St. Louls | .3.50-3.75 |
| Aluminum |  |
| Misc., cast, Cleveland | 8.50 |

## Nonferrous Metals

New York-A spurt in copper sales and a further tightening in the zinc supply situation resulted in price advances in these markets and tended to strengthen the general price tone of all nonferrous metal markets last week.

Copper-Sales jumped to 113,106 tons on Thursday, representing a $\$ 25,000,000$ turnover and a new record high for any single day's business. These sales are equal to one and one-half months' production so a period of comparatively light buy. ing is expected now. Copper and

## Borings, Cleveland

Clips, soft, Cleveland . . . . . . . . . . . . . . . 14.00
Misc. cast, St. Louls . . . . . . . . . . . . 7.75-8.00

## SECONDARY METALS

Brass ingot, $85-5-5-5$, less carloads. . 11.75
Standard No. 12 aluminum ...14.00-14.¿5̄


Oun aim is to render service. A little more complete. . . more hospitable...more pleasing ... than even the most exacting guest expects.

CIIAS. H. I.OTTT
Manager
Every Rearn Oulxide
wilh Privale Bulh
Single from $\$ 2.50$
Douhle from \$4.00


CASS AT BAGIEY AVE. GARAGE IN CONNECTION

## -The Market IVeok-

brass rolled product, copper wire and cable, brass ingot and red metal scrap prices generally advanced in line with the higher ingot price.
Lead-A moderate amount of business was done and prices held firm at 4.75 c , East St. Louis. The market remained depressed, however, by the threat of heavy importations of Mexican metal.
Zinc-Sellers continue to urge buying caution so that consumers who actually need metal for nearby consumption will be able to obtain it without needlessly bidding up the price on themselves. Offerings continued light, even at 6.85c, Eạst St. Louis, the level which was estab. lished on Thursday.

Tin-Demand in the domestic market was dull and prices eased fractionally. Straits spot closed at 50.25 c compared with the previous week's close of 50.50 c .

- Hazard Wire Rope division of American Chain \& Cable Co., Wilkes-Barre, Pa., has acquired a unit of the former Sheldon Axle Co. plant in Wilkes-Barre. The building, $60 \times 350$ feet, will be equipped for the manufacture of torpedo nets for the federal government.


## Ferroalloys

## Ferroalloy Prices, Pafe 78

New York Prices on ferromanganese and ferrochrome in general have been reaffirmed for fourth quarter. Thus ferromanganese, 78 82 per cent, in car lots, will continue to be quoted at $\$ 120$, duty paid, Atlantic and Gulf ports.

Ferromanganese specifications have shown some improvement this month, following general dullness over July and August because of heavy buying in June in anticipation of the $\$ 20$ increase which became effective July 1 on contracts. In point of actual shipments, this month may also prove better than August and possibly even better than July, when there was some carryover at the old prices, due to the rush of buying in June. However, there is some doubt concerning the latter possibility.

## Iron Ore

Iron Ore Prices, Page 80
New York - While private demand has continued slack there has been further heavy buying of manganese ore by the government. It is estimated in some trade quarters that government reserve purchases now aggregate between 800 ,000 and 900,000 tons. In some cases

## BETTER WELDS-LOWER COSTS

Position the work this way and save crane service, welder's time and handlina costs.
C-F Positioners are available in four slzes, 1200,2500, 6000 , and 14000 lb . capacities.

Tilting and rolating movements of table are independently controlled on both power and handoperated machines. Table is removable for special fixtures if desired.

Write loday for complele information about C-F Welding Positioners which provide the economical means of quick, safe and easy welding.



Hannifin "Packless" Air Control Valves have no packing, and no leakage or packing maintenance troubles. This simple disc-type design has the bronze disc ground and lapped to form a perfect seal with the seat, which is similarly finished. The smooth-acting, positive control of air operated equipment means better performance.
Made in 3 -way and 4 -way types, hand and foot operated, manifold, spring return, heavy duty rotary, electric and special models. Write for Valve Bulletin 34-S.
hanNifin manufacturing company - 621-631 So. Kolmar Ave., Chicago, III. ENGIEERS • DESIGNERS • MANUFACTURERS • DOUBLE-ACTING PNEUMATIC AND HYDRAULIC CYLUNDERS, ALL SIZES

contracts call for extended delivery, at least over two or three years. For instance, there is the contract for 240,000 gross tons entered into by the Metals Reserve Co. with the Anaconda Copper Mining Co., lest month for delive=y cver a period of three years from the time production is begun, which should be within five to eight months.
Prices being paid by the government have not been made public, but in some quarters it is regarded as significant that the open market prices on manganese ore continue unchanged, with Caucasian, 50-52 per cent, holding at 60 cents per unit, before duty, and South African, $50-52$ per cent, at 58 to 59 cents. Cuban manganese, $50-51$ per cent, duty free, is holding at 71 to 73 cents.
Cleveland -Shipments of iron ore from upper lake ports in August totaled $10,534,431$ gross tons, an increase of $3,579,851$ tons over 6,954 ,580 tons in August, 1939. In July shipments were $9,535,494$ tons.
Cumulative tonnage to Sept. 1 was $38,236,609$ tons, compared with
$22,495,767$ tons, an increase of 15 , 740,842 tons.

Comparisons by ports for August are as follows:

|  | Gross 'Jons |  |
| :---: | :---: | :---: |
|  | August 1940 | August 1539 |
| Escanava | -T,24 | 457,806 |
| Marquette | 82v,269 | 709,484 |
| Ashland | 945,931 | 903,576 |
| Superior | 3,848,461 | 2,227,166 |
| Duluth | 2,838,059 | 1,:312,268 |
| Two lilarbors | 1,546,53.1 | 1,344,280 |
| Total U. S. Ports. | 10,479,978 | 6,954,580 |
| Michlpicoten | 54,453 |  |
| Total | 10,534,431 | 6,954,580 |
| Increase from 1939 | 3,579,851 |  | season to Sept. 1, are as follows:


|  | Gross Tons |  |
| :--- | :---: | :---: | :---: |
|  | To <br> Sept. 1 | To <br> Sept. 1 <br> 1940 |
|  |  | 1939 |

## Construction

## Ohio

ASHLAND, O.-Guard Rail Construction Co., Guy Prlest, 712 Claremont avenue, president, has been incorporated to manuracture guard rall and bridge planks. Francls R. O'Brien, Richland Trust building, is attorney.

CLEVELAND-Champion Machine \& Forging Cu., L. W. Greve, president, 369: East Seventy-eighth street, is having plans arawn by E. MeGeorge, 9400 Quin-

## and <br> Enterprise

cy avenue, for a forge and machine shop bullding to cost $\$ 40,000$.

CLEVELAND-Warner \& Swasey Co. has started work on the third addition for this year, which will provile 30,000 feet of floor space at cost of $\$ 600,000$.

CLEVELAND-Hickok Electrical Instrument Co., 10514 Dupont avenue, will bulld an addition $80 \times 50$ feet and : new bullding $80 \times 100$ feet to Inerease space for assembly operations, probably with complete air conditloning. H. M.

Morse \& Cu., 1500 Supertor avenue, probably whll prepare plans.
CLEVELAND-Ace Bofler \& Repalr Co., 3360 West Eighty-elghth street, Michael Schurger, sceretary, plans new

- Additional Construction and Enterprise leads may be found in the list of Shapes Pending on page 88 and Reinforcing Bars Pending on page 91 of this issue.
plant with 2500 square feet floor space on Triskett Joad near West 135 th street.

CLEVELAND--Cleveland Welding Co. H. W. Kranz, president, L3erea road and West 117th street, has lot contract lu H, L, Vokes Co., 5300 Chester avenue, for addition to lts shop.

CLEVEI,AND-Fulton Foundry Co., 7325 Morgan avenue, is bullding a onestory addition $21 \times 30$ feet for additional core room facilities. A. C. Denison is in charge.

CLEVELAND-Rellance Electrje \& Engineering Co. has given general contract to J. L. Hunting Co., Ninth and Chester, for one-story addition to factory and office bullding at 1088 Ivanhoe road, to provide about 12,000 square feet floor space. This is third addition within past year. Cost wlll be about $\$ 60,000$.

CLEVELAND-Eaton Mf⿸. Co., 739 East 140th street will build one-story $100 \times 400$-foot addition with second story $40 \times 120$ fect for manufacture of new ltem for national defense. General contract to Sam W. Emerson Co., 1836 Euclid avenue.

CLEVELAND_-WIlbur Watson \& Associates, 4614 Prospect ayenue, have been appointed by United States war department to design $\$ 14,000,000$ arsenal to be bullt near Ravenna, $O$. Construction contract has been let to Hunkin-Conkey Construction Co., 1740 Enst Twelfth street, on cost-plus basis.

Cleveland - Cleveland Pneumatic Tool Co., 3734 East Seventy-elghth street, will bulld three manufacturing units with $20,000,36,000$ and 40,000 square feet floor space. Construction to be handled by Ernest McGeorge and W. R. Hargett, 9400 Quincy avenue, contract to be let about Sept. 10.

Cleveland--H. K. Ferguson, Hanna building, has taken contract from Kimble Glass Co., Vineland, N. J., to deslgn, construct and equip a manufacturing building at Vineland, $60 \times 177$ feet, 12 reinforced concrete storage bins $24 \times 55 \times 60$ feet and remodel existing coal-handling equipment.
SANDUSKY, O.-Sandusky Foundry \& Machine Co., Devereux Lake, president. is buldding a shop addition and has purchased adjoining realty for further expansion to provide added faclitiles for government work.

## Connecticut

BRIDGEPORT, CONN. - BrIdgeport Brass Co., R. E. Day, president, 774 East Main street, will bulld a one-storyaddition to its plant at Pembroke and watter streets.

## Massachusetts

NORTHAMPTON, MASS. - W. Hall. chalrman sewer committee, plans sewage disposal plant to cost $\$ 300,000$. Tighe \& Bond, 189 High street, Holyoke, Mass., are engincers.

WORCESTER, MASS. - Heald Machine Co.. New Bond street, R. N. Heald, president, has let general contract to E. J.

Cross Co. Inc., 150 Prescolt strect, for two-story boller plant $52 \times 106$ feet, at cost of about $\$ 100,000$. Albert Kahn. New Center building, Detrolt, is architect.

WORCESTER, MASS.-Wyman Gordon Co., 105 Madison street, has let general contract for a one-story $106 \times 300$-fant forge shop to E. J. Cross Inc., 150 Prescott street, costing about $\$ 135,000$.

## New York

NLAGARA FALLS, N. Y.--Union Car blde Co., 137 Forty-seventh street, will take bids in September for a one-story factory $90 \times 148$ feet, estimated to cost over $\$ 40,000$ with equipment.

## Pennsylvania

GREENVILLE, PA.-Bessemer \& Lake


## eusy us this!

When you arrive at New York's Grand Gentral Termimal. simply hatnd your bags to a porter and say "Hotel Hoosevelt". . . He will escort you through our private passageway. direct from the Terminal to the Roosevelt tobhy-where we will do the rest . . Perfeet convenience ... Quality meals... Thoughtful service . . . And room comfort that you'll boast of bath home-st.00 up.


BERNAM G. HINES. Monoging Director
MADISON AVE AT 45th ST., NEW YORK
Direet Entrance from Grand Central Terminal


Erie rallroad, F. R. Layng, chief engincer, Greenville, whll build a one-story machine and erecting shop addition to cost $\$ 40,000$.
WARREN, PA.-Pennsylvania Furnace \& Iron Co., Pine street, will take bids soon on the first unit of a steel and concrete plant addition to cost $\$ 40,000$.

## Michigan

BENTON HARBOR, MICH.-City plans sewer disposal ptant to cost about $\$ 340$,000. Consoer, Townsend \& Quinlan, 211 West Wacker drive, Chicago, are englneers.
DETROIT-De V'lieg Machine Co., 10:23: Woodward avenue, has been incorporated with $\$ 25,000$ capital to deal in machine tools and machinery by Charles 13. DeV'leg, 10232 Woodward avenue.
FLINT, MICH.-Filnt Machinery Co., 1403 Union Industrial bullding, has been incorporated with $\$ 50,000$ preferred and $\$ 12.50$ common stock to deal in machinery, by Murray T, Polley, 905 Belmon: avenue, Flint, Meh.
JACKSON, MICFI,-Jackson crankshaft division, Muskegon Motor Speclalties Co.. has glven general contract to NorthMoller Co., Jackson, for a factory bullding. Russell Allen Jackson, is architect.
KALAMAZOO, MICH.-Security Metas Products Inc., 1015 American Nationat Bank bullding, has been incorporated with $\$ 50,000$ capital to deal in metal mroducts, by Wilfred C. Miner, Holland, Mich.

KALAMAZOO, MICH. - Borroughs Mrg. Co., 2002 Lane boulevard, has been Incorporated with $\$ 50,000$ capltal to deal in machinery, by Allan Smith, Plalnwell, Mich.

LANSING, MCH.-Duplex Truck Co. has awarded contract for concrete and steel plant addition $72 \times 160$ feet, to cost over $\$ 50,000$ with equipment.

PONTIAC, MICH. - Yellow Truck \& Coach Mrg. Co. has given contract for a plant addition to Darin \& Armstrons Inc., Detrolt, one story $120 \times 500$ fect. Alred Kahn, New Center bullding, Detrolt, is architect.

YPSILANTI, MICH. - Ypsllanti Screw Products Inc., 310 River boulevard, has been Incorporated with $\$ 25,000$ capital io deal in screw machines and their products, by Ray R. Buckman, 18667 CherryJawn avenue, Detrolt.

## Illinois

CHICAGO - Central Screw Co., 3501 Shlelds avenue, has let general contract to B. W. Handler Construction Co., 1261 South state street, for a one-story plant and warehouse addition $108 \times 208$ feet, costing about $\$ 40,000$.

HARVEY, ILL.-Buda Co. has let general contract for a one-story dhesel engine plant to Continental Construction Co., 340 North Central avenue, Chlcago, to cost about $\$ 300,000$.
Millestadt, ILL, City plans construction of a sewage disposal plant, auxHllary plping and appurtenances at cost of $\$ 60,000$. Hirst-Rosche Engineering Co., Hillsboro, Ill., Is engIneer.

MOLLNE, ILL.-CIty, A. H. Asp, mayor, plans construction of a sewage disposal plant costing about $\$ 300,000$. Will seek WPA funds.

TAYLORSVILLE, ILL.-Peabody Cos! Co., Taylorville, whll build a coal-washIng plant at No. 7 mine at cost of $\$ 1,-$ 250,000.

## Indiana

ANDERSON, IND.-Delco Remy Corn., Twenty-fourth street and Columbus av-
enue, whll bulld a foundry for aluminum castings and airplane engine parts, to cost $\$ 300,000$, with equipment.
INDIANAPOLIS-Radlo Corp. of America, J. N. Smith. resident vice president, 501 North LaSalle street, will take bids soon on four one-story brick and sted manufacturing buildings, to cost about $\$ 1,000,000$, Abert Kahn, New Center bullding, Detrolt, is architect.

## District of Columbia

WASHINGTON-Bureau of supplles and accounts, navy department, whll take bids as follows: Sept. 13, schedule 2868 , fourteen portable electrle saws; schedule 2906, motor-drlven unlversal tool and cutter unlversal grinding machine for


## REPAIR CONCRETE <br> to a TOUGH, Feather Edge!

Avoid accidents! Prevent costly delays! Repair holes. cracks, broken places in concrete flewrs or resurface an entire area with the durable KUGGEDWEAK RESURFACIER. No chopping or chipping required. Merely sweep out spot to be repaired-mix the material-trowel it on. Holds solid and tight right up to irregular edge of old concretc. CelluloseProcessed to proside a firmer, tougher, smosther, more rugged wearing surface. Usal indoors or out. Dries fast. Costs only 100 to 1 fe per sy. ft.
Valuable 68-page "H.ANDBOOK OF BUIL.DING MANTENANCE" arailwhle to those requesting on business letserhead.

MAKE A TEST with ruocedwear - FREE TMIAL OFFER

## FIFEROCK COMPANI

2330 Mannlng st.
1hhladelyhla, Penne
Please send complete IRUGGEDWEAK infor mation . details of FREE TRIAL OF. FER. iv obligation.

## Name

Company
Address
City
State
alr station, San Dlego, Callf.; schedule 2915, two motor-cirisen ram-type untversal milling machines for Brooklyn, N. Y., and Mare Island, Calif.; schedule 2990, three motor-driven unlversal tool and cutter grinders for Brooklyn, N. Y.; schedule 2998. motor-driven hydraulle open-side planer for Charleston, S. C.; schedule 3002 , two motor-driven slotter machines for Philadelphia; schedule 2947, motor-driven horizontal internal cylinder grinding machine for Brooklyn, N. Y.; schedule 2983 , three motor-driven
hacksaw cutting-off machines for WashIngton: Sept. 17, schedule 2919, two motor-driven radial drilling machines for Puget Sound, Wash.; schedule 2950 , two motor-drlven sensitive preclsion lithes for San Diego, Calif.; schedule「986, llve motor-driven milling machines for Portsmouth, N. I., and Mare Island, Calif.; schedule 2954, motor-driven vertical boring mill for Mare Island, Callf.; sehedule 2956 , three motor-driven unlversal tool and cutter arimding machines for Puget Sound, Wash.

## LOWMAN-SHIELDS

 RUBBED COVERED ITLLS

Using theso rolls, steel makers have established many remarkable records bringing new low costs per ton. L. S. rubber covered rolls are long wearing, acid resisting, and are designed to neet your needs. We make all types and styles of furnace door hose-metal, metal and rubber, etc. Our Ace rubber vacuum lifters are standard equipment in most large sheet mills. Write ior quotations.

## LOWMAN-SHIELDS RUBBER COMPANY Rubber Specialists to the Steel Industry PITTAMEIGGI. IM.



THE HANNA FURNACE CORPORATION
MERCHANT IIGIRON DIVISION OF NATIONAI. STEEL. CORPORATION

## Missouri

MARYVILLE, MO. - Nodaway-Worth electrle co-operative is taking blds on 412 miles of rural transmission line to serve about 1075 customers. Pauletie \& Wilson, 1006 Topeka avenue, 'Topeka, Kans., are englneers. (Noted Aug. 19.)

ST. LOUIS - Curtiss-Wright Corp., 30 Rockefeller plaza, New York, is consldcring plans for an $\$ 8,000,000$ expansion at Lambert-St. Louls field, inereasing its plant to seven times present slze, for construction of its new substratosphere planc.

## Oklahoma

PAWNEE, OKLA. - CIty, W. C. W11liams, clerk, takes bids to Sept. 12 tor improvements to municipal power plant and waterworks, including a 500 -kllowatt dicsel generating unit and auxiltarles, iwo waterworks pumps, etc. O.F. Sewel!, Pawnee, is consulting engineer.

## Wisconsin

BELOIT, WIS. - Nonferrous metals foundry to be built by Falrbanks, Morse \& Co., noted Sept. 2, will be $80 \times 220$ feet, between pattern shop and north foundry, capactty three times present nonferrous department. Includes sandcleaning and handing equlpment, core ovens, pattern storage. Bids will be asked as soon as plans are completed by O. D. Conover, architect, Cleveland.

FOUNTAIN CITY, WIS.-United States Engineering Corps, St. Paul district. will bulld machine shop and mills shop building, one-story $50 \times 80$ feet. General contract to Johnson \& Kramer, St. Charles, Minn.

MILWAUKEE - Chain Belt Co., 16U! West Bruce street, is having p!ans prepared by Eschweller \& Eschweller, architeets, Milwauke, for a plant addition 31 $\times 123$ feet, two stories.

MILWAUKEE-E. Brlelmaler \& Sons Co., architect, Mllwaukee, is preparing plans for a four-story engineering building for Marquette University on West Wisconsin avenue between Fifteenth and Sixteenth streets, to cost about $\$ 300,010$ for bullding and $\$ 150,000$ for equlpment.

MILWAUKEE - Geuder, Paeschke \& Frey Co. is building a two-story addilion $70 \times 74 \mathrm{fect}$, to cost about $\$ 35,000$. at its plant, 405 North Flfteenth strect. Meredith Bros. Inc, has general contract.

RACINE, WIS. - Modine Mfg. Co.. Charles T. Perkins, vice president, will build addition to house sheet metal, press work and other departments for radiator production, one siory, 60,001 square feet, saw-tooth, brick, steel and concrete. Additional unit with 15,100 square feet floor space will be built in house wind tunnel to test gas motor radlators. (Noted Sept. 2.)

## Minnesota

ANOKA, MINN.-Anoka llght and pow er co-operative, George L. Morris, superintendent, has let contract to L . A Baumgardner \& Co., St. Paul, for 210 milles of rural transmission llnes to serve 679 customers. General Engineering Corp., 2944 Cedar avenue, Minneapolis, is engineer.

BENSON, MINN,--Stevens-BIg Stoni power co-operative, Victor Hanson, su perintendent is about to take blds on 219 miles of rural transmission lines to serve 465 customers. General Engineering Corp., 2944 Cedar avenue, Minneapolls, is engineer.

GRANITE FALLS, MINN. - Minnesota valley power co-operative, Uscar $1 \%$. Swanson, superintendent, has given contract to Acme Construction Co., St. Pial. for 441 miles rural transmission lines;


[^10] me SHEET ORNAMENTAL—INDUSTRIAL For All Purposes 60 Years of Metal Perforating Prompt Shipments Send for Metal Sumple Plates THE ERDLE PERFORATING CO. 171 York Street Rochester, N.Y

DESIGNING AND COMBUSTION ENGINEERS SPECIALIZING IN
OPEN HEARTH FURNACES
Lortus Encmesamb
Sog otivan budg. Cotyotation trlephons
Sog ocivan Budg. Coypotation ATLanme 4480
pITTSBUGH, PA.


## JAMES CRISWELL COMPANY

 Furnace Engineers \& Contractors Open Hearth, Soaking Pits and heating furnacesKeenan Bldg.
Pittsburgh, Pa.


United Engincering Service, 1406 West Lake street, Minneapolis, is engineer.

NOPEMING, MINN.-St. Louis coun!y sanatorium commission, Dr. A. T. Laird, secretary, is taking bids on stoker, garbage tnelnerator and coal-handling equipment at county sanatorlum. Charies Foster, 316 Medical Arts building, Duluth, is consulting englneer.

OWATONNA, MINN. - Steele-Waseca electric co-operatlve, L. 1'. Zimmerman, superintendent, is preparing plans for 154 miles rural transmission lines to serve 355 customers. United Eingineering Service, W. W. Cutliff, engineer, 1-206 West Lake street, Minneapolts, are engineers.

PLAANVIEW, MINN.-Vilage, Watter s. Kulawske, recorder, is taking bids for


CONSIDER STEELGRIPT Brushes for your pickling, galvanizing and tinning departments.

STEELGRIPT Brushes are furnished in straight strips to be applied to your present wood blocks for the removal of middlings.

Also furnished in a continuous, complete (close or open) spiral formation for cylindrical scrubbers in steel or brass mills.

STEELGRIPT Brushes have greater holding and non-shedding qualities, resulting in longer life and more dependable operation. Less frequent replacements will save you time and money. Send blue prints or specifications of your requirements.

## The FULLER BRUSH Company INDUSTRIAL DIVISION - DEPT. BC 3582 MAIN STREET HARTFORD, CONN.

sewage disposal plant. Burlingame. Hitchcock \& Estabrook, 521 Sexton building, Minneapolis, engineers.

ST. CHARLES, MINN.-CIty, Uscar N. linden, clerk, is taking blds for a vertical turbine-type deep well pump.

## Texas

BORGER, TEX. - Phillips Petroleum Co., Bartlesville, Okla., will bulld gasoline pipe line from its rellnery at Borger to San Antonio, Tex., and gulf ports, at cost of $\$ 300,000$.

## Lowa

ALGONA, IOWA-City, Adah Carlson, clerk, is having plans prepared for it light and power plant to cost about \$100,noD. Burns \& McDonnell Engineering Co., 107 West Linwood boulevard, Kansas City, Mo., are engineers.

GAIVA, IOWA-City, I. E. Baumgaraner, clerk, is taking bids on sewage disposal plant, including pumping station, tllter, tank, etc. Currie Enginecring Co.. Webster City. Iowa, engincer.
KEOKUK, IOWA-Dryden, Rubber Co. plans a plant addition to cost about $\$ 100,000$.
LAKE VIEW, IOWA-Village, Katherine Monroc, clerk, is secking WPA aid for sewage disposal plant to cost $\$ 25,000$. l3uell \& Winter, 508 Insurance Exchange bullding, Sloux City, Iowa, are engineers.

WAPELLO, IOWA-City, C. M. Donalısun, clerk, has recelved WPA allottment to ald in financing sewage treatment plant and storm sewers costing about $\$ 99,000$. Consoer, Townsend \& Quinian, 211 West Wacker arive, Chicago, are engineers.

## Oregon

MARSHFIELD, OREG.-Bond issue of $\$ 20,000$ has been approved for a munielpal water system enlargement. WPA assistance has been given, entire project $t 0$ cost $\$ 35,000$.

PRINEVILLE, OREG.-CIty, J. F. Adamson, clerk, will receive blds Sept. 16 for construction of sewage disposal plant and sewers. R. H. Corey, Portland Oreg., is engineer.

## Washington

BELLINGHAM, WASH.-Puget Sound Pulp \& Timber Co., Ossian Anderson, president, has submitted proposal to stockholders for erection of $\$ 1,500,000$ plant addition to increase sulphite pulp production from 100.000 to 150,000 tons annually.

KENNEWICK, WASH.-Local interests are negotiating with Reynolds Metal Co., Rlchmond, va., for establishment of an aluminum plant here. Company is reported to have applied for IRFC loan of $\$ 15,000,000$.

## Canada

BROCKVILLE, ONT.-Phillips Electrical Works Ltd. has given general contract to Bremner, Norrls \& Co., 2049 McGill College avenue, Montreal, for a plant on Kingston road, here, to cost about $\$ 75,000$. J. Charles Day, 630 Dorchester street West, Montreal, is engincer.

CORNWALL, ONT.-Howard Smith Paper Mills Ltd. has given general contract to A. F. Byers \& Co. Lid., 1226 University street, for $\$ 25,000$ chemical plant here.

HAMILTON, ONT.-Dominion Found-

Hes \& Steel Ltd., Depew street, has let general contract to Frid Construction Co. Ltd., King street East, for plant addition 600 reet in length.
l.ONG BRANCH, ONT.-Weston industries plans plant on Lake Shore road at Brown's Line, four buildings, to cost about $\$ 350.000$, for which equipment will cost an additional $\$ 400,000$. Will be used for battery divislon.

PAMOUR, ONT.-Hoyle Gold Mines Ltd., 25 King street, Toronto, is having plans prepared by H. S. Munroe for milling plant here to cost about $\$ 400,000$.

MONTIREAL, QUE.-Liberty Smelting Works, 269 Prince street, is taking bids for a $\$ 25,000$ plant addition. Ellasoph \& Greenspoon, 1403 Bleury street, are architects.


One of the Few Famous Hotels in

## AMERICA

When important events came to Philadelphia, you'll find them of the Bellevue. The Republican National Committee had its headquarters here, of course. So did the Democratic National Committee four years ago. It is where things happen, and outstanding people stay. It is the meeting place of people who do things in business, art and social life.

## BELLEVUE STRATFORD

IN PHILADELPHIA

CLAUDE H. BENNETT
General Manager
$\star \star \star \star \star \star$

## WIRE

Iron - Stcel - Alloy
Round - Flat - Shapes All Sizes and Finishes Also Wire Screen Cloth The Seneca Wire \& Mfg. Co. Fostorin, Ohio


## D'S FIMEST PRE-FIMISHED METALS - SHEETS \& COILS

 AMERICAN NICKELOHD COMPANY1310 SECOND ST. PERU, ILLINOIS

# FIRTH-STERIIIG 

TOOL STEELS - STAINLESS STEELS - SINTERED CARBIDES FOR COMPLETE SHOP TOOLING . McKEESPORT, PA.

## The Jackson Iron \& Steel Co. "JuSe Mo" PIG IRON SPECIALTIES 'Jackson. Ohio

## SUPERIOR

 STEELCORPORATIONHOT AND COLD ROLLED STRIP STEEL AND SUPERIOR STAINLESS STEELS

Successfully serving steel consumers for almost half a century

EXECUTIVE OFFICES - GRANT BLDG.. PITTSBURGH. PA. GENERAL OFFICES AND wORKS - CARNEGIE. PA.


## RYERSON CERTIFIED STEELS

class and type of material. All kinds from standard carbon grades
to special alloys in stock for Immediate Shipment. Write for Stock List. Joseph T. Ryerson \& Son, Inc. Plants of: Chicago, Milwaukee, St. Louis, Cincinnati, Detroit, Cleveland, Buffala, Boston, Philadelphia, Jersey City.


## B ELLMONT $\frac{R O N}{\text { PHILADELPHIA }}$ NEW YORK

 Engineers - Contractors - Exporters STRUCTURAL STEEL-BUILDINGS \& BRIDGES lRyETED-ARC: WELDEDBELMONT INTYMLOCKING CHANNEI FBoon
Main OMice-l'hila. Write for Catalogree


## TRI-LOK

Gratine nind Tresids Stcel- Maminum - IBrass No IRIvets, Bolts or Welds Manufactured by
The Tri-Lok Co., Pittsburgh, Pa.
National Distributars
DRAVO CORPORATION, Mathinery Divilia 300 Penn Ave. Plewlurch, lat.


BRIGHT • ANNEALED • COPPERED GALVANIZED and TINNED-Coiled, Straightened and Cut to Lengthin All Sizes.

| $V$ MANUFACTURER | $V$ CLIP |
| :--- | :--- |
| $V$ FLORIST | $V$ BALING |
| $V$ WEAVING | $V$ BUNDLING |
| $V$ STONE | $V$ BALE TIES |
| $V$ STAPLE | $V$ BOOKBINDING |
| $V$ TAG | $V$ AND OTHERS |

MCKNIRE BROTHERS


## $41001 \underbrace{77}$ <br> ROTARY SLITTING KNIVES

for Modern Requirements
Highest Quality
The Product of Many Years Specialization made br toolmakers
COWLES TOOL COMPANY
Cleveland, Ohio

WHERE SPACE IS AT A PREMIUM!
L-H Type WF saven $1 / 3$ of apace Clange disikn permits bolting th fly whete dutch, ete. An
 LOVEJOYFLEXIBLECOUPLINGCO 4973 W. LAKE ST.

CHICAGO. ILL

For Dependability -
Whitehead Quality Stampings


1903
WHITEHEAD STAMPING CO. 1667 W . Lafayette Blva.

Solve the problem of production break-down due to inferior stampinge. For 37 yoars, WHITEHEAD SIAMPINGS hove been recognized for dependiobility. Experianced workmanship is your assurance of quality stompings that maintain production efficiency. Place your next order with Whitehead. Send for calolog

Detroit, Mich.

## GREY IRON, SEMI-STEEL \& ALLOY IRON CASTINGS-- <br> WOOD PATTERNS A SPECIALTY <br> Commercial and Industrial Stokers <br> THE CANTON PATTERN \& MFG. CO. CANTON, OHIO



## HOT-DIP GALVANIZING PRACTICE

By W. II. Spowers Jr.
An up-to-date treatise on zlnc coatings of steel that will appeal to those who dally are engaged in surfacing metals with zinc. 200 Pages- $4 \overline{5}$ Illustrations- 4 Tables -T Charts. Price $\$ 4.00$ Postpald.

THE PENTON PUBLISHING COMPANY
Irentun Isuilding Book Department Cleveland, ohl



## Employment Service

## SALARIED IOSITIONS

$\$ 2,500$ to $\$ 25,000$
This thoroughly organized advertising service of 30 years' recognized standing and reputation, carrles on preliminary negotiations for posittons of the callber indicated above, through a procedure individuallzed to each client's personal requirements. Several weeks are required to negotiate and each individual must finance the moderate cost of his own campaign. Retaining fee protected by refund provislon as stipulated in our agreement. Identity is covered and, If employed, present position protected. If your salary has been $\$ 2,500$ or more, send only name and address for cietalls. R. W, Blxby, Inc., 110 Delward Bldg., Buffalo, N. Y

## Help Wanted

REPRESENTATIVE WANTED BY FIRM engazed in the production and sale of atmosphere furnace equlpment to cover Cleveland. Detrnit and Buffalo territory. Addiress Box 303, STEEL, Penton Bldg., Cleveland.

## Positions Wanted

STRUCTURAL STEEL EXECUTIVE, 44. with 21 years comprehensive, first-hand experience in all phases of sales and operances, resigning because of pilien with rabrices, destres responsible positon wh collateral or concern operating such a ana manupeparmert-conveyor or rurBox 305. STEEL, Penton Bldg., Cleveland.
ACCOUNTANT-AUDITOR-OFFICE MANAger. Fine reco-d in rhirgn for sev: nl manuracturers, 75 to 500 employes. Now employed. Want change with moderate 301, STEEL, Penton Bldg. Cleveland Box 301, STEEL, Penton Bldg., Cleveland.
SALESMAN WOURD LIKE CONNECTION on screw machine products, commission basis, for Wisconsin. No nein Eastern Iowa and Enstern Minnesota, MilWaukee offlce. Address Box 302, STEEL, Penton Bldg., Cleveland.
EXECUTIVE ENGINEER EMIJOYED, age 42, technical education, inventive abllity. wide experience design manufactur ing, sales engineering of stamped die cast plastic and enameled automotive parts. A thorough knowledge of modern production methods, costs, tools, factory layout and lanor problems seeks a new connection Andrass Box 291, STEEL, Penton Bldg. Cleveland

## Castings

## 0110

THE WEST STEEL CASTNG CO., Cleve land. Fully equipped for any production broblem. Two 1 th ton Elec. Furnaces. Makers of high grade light steel castings. also alloy castings subject to wear or hleh heat

## PENNSYLVANIA

NORTH WALES NACIINE CO. INC North Wales. Grey Iron, Nickel. Chrome Molybdenum Alloys, Seml-steel. Superio quallty machine and hand molded sand blast and tumbled.

## Duplicate Parts

## WELDED STEEL FABRICATION

Specislists in duplication of cast Ings and machlnery parts with rolled steel shapes.

Send blue prints and specifleations for auotation.

## MORRISON METALWELD PROCESS INC.

1438 Bailey Ave., Buffalo, N. Y.

## Accounts Wanted

MANUFACTUREIRS AGENT 15 XEARS FA perlence in Detrolt territory. desires one or two accounts, on productlve materlal or factory equipment. Address Box 300 , STEEL. Penton Bldg., Cleveland.
MANUFACTURERS AGENT IN INDIAN apols aren wants Ine serew and machine or steel and wire products. Has extenslve clientele and maintalns permanent starf. Address Box 306, STEEL, Penton Bldg. Cleveland.

## Bids Wanted

Federal Works Agency, Publle Build Ings Administration, Washlngton, D. C. Aug. 24, 1940.-Sealed proposals in duplicate will be publicly opened in this offlce at 1 P.M., Standard Time, Sept. 24, 1940 for the construction of the U.S.P.O. at Cadiz, Ky. Upon application, one set of drawings and specifications will be supplied free to each feneral contractor interested in submitting a proposal. The above drawings and specifleations MUST be returned to this ofrice. Contractors requiring additional sets may obtain them by purchase from this office at a cost of per set. Which womment for drawings Checks offered as payment for drawings and spectileations must be made puyavie to the order of the Treasurer. U. S. Drawings and specifications will not be rurnisher to contractors who have consistently ralled to submit proposals. set upon request, and when considered in the interests of the Govern in be rurnished, in the discretion of the Commissioner, to bullders exchanges, chambers of commerce or other organizations who will guarantee to make them avallahle for any suh-contractor or material nrm interested, and to quantity surveyors, but this privliege wine are not returned after they have the sets are not returned arter they have accomplished their purpose Commissiner of Pubildings, nolds. Commissinner of Works Agency.
Federal

## Is It Your Job

to sce that the personnel of your com pany is tip-top in efficiency and that all riepartments are sufficiently staffed to function to the best advantage?
If you need a man to fill a specific job-that is where STEEL can help.
Our readers include trained and experlenced men In all branches of the metalworking industry who are ever on the alert for new opportunlies. Tell them what you have to offer throush an advertisement in the Help Wanted columns of STEEL.

## Equipment For Sale

-REBUILT-<br>BLOWERS - FANS - EXHAUSTERS Consiernvilip-Roota poaltive hlowera. Band hast. Rrinder and duat exhauster<br>GENERAL BLOWER CO.<br>

## Rails-"1 Ton or 1000"

 All glem, practically mo mo Yem pection-AC'FAROiRIFR-Fivery Tract Accemory carried In hiock-Amirle and Aplice Harn, llolta, Nut Buy from One Soure Sate Tine and Momey
Phone. Write or Wirp
L. B. FOSTER COMPANY. Inc.


Increasing boller capactty, and we must dispose of present boller equipment, conslsting of
1 Kewance-No. 120 K Boller- 125 HP -15 lbs , pressure, Size $72^{\prime \prime} \times 22^{\prime} 66^{\prime \prime}-$ Type FB-with $11 / z^{\prime \prime}$ - $85 \%$ magnesin covering; with all regular boller ittlings.
1 -20" diameter x $36^{\prime} \mathrm{high} \times 12 \mathrm{Ga}$. Stce! Stack
$1-5^{\prime} \times 9^{\prime} 6^{\prime \prime} \times h^{\prime \prime}$ stcel Water Storage Tank, and Steel Frame Platform for support.
1-No. SACD Iron Fireman Automatic Coal Burner, with 1 alr volume regujator, and shear pin alarm.

The Commercial Shearing \& Stamping Co.
Youngstown, Ohio

## CRANES

2-5 ton Shaw Overhead Traveling Span 50' Cage Operated, 3 motors, 220 volts, D.C.
LANG MACHINERY COMPANY
25th \& A.V.R.R
Pittsbursh, Pa.
TRAVELING CRANES
OVFIHHEAD ELECTHEC
Variou: sizes
Send us your inquirles
INDUSTRIAL EQUIPMENT CORP.
PITTSBCHGH, PA.

[^11]
# ADVERTISING INDEX 

Where-to-Buy Products Index carried in first issue of month.

1age

A
Abart Gear \& Machine Co
Abrasive Co., Division of Simonas Saw \& Steel Co.
Abraslve Products, Inc.
Accurate Spring Mif. Co
Acme Galvanizing. Inc.
Acme Steel \& Malleable Iron Works
Air Reduction
Ajax Electrothermic Corp.
Ajax Flexible Coupling Co
Ajax Manufacturing Co.
Alan Wood Steel Co.
Allesheny Ludium Steel Corl.
Allen-Bradley Co.
Allis-Chalmers Mif. Co
Alrose Chemical Co.
Amerlcan Aglle Corp
Amerlean Brass Co., The
Amerlean Bridge Co.
American Chain \& Cable Co., Inc. American Chain Division
American Chain \& Cable Co. Ine. Ford Chaln Block Division
American Chain \& Cable Co., inc.. Page Steel \& WIre Division
American Chain Division of Ameriean Chain \& Cable Co., Inc.
American Chemleal Paint Ca
Amerlean Engineering Co.
Amerlean Flexlble Coupling Co
American Forge Division of the Amerlean 13rake Shoe \& Foundry Co
Amorican Foundry Equapment Co., The
Amerlen G Gas Assuclation
American Hot Dip Galvanlzers Associatlon
American lanolin Corp.
Amertean Monorafl Co.
American Niekeloid Co.
American Pulverizer Co
Amertean looller Jearing Co.
American Joolling Mill Co., Thi
American Serew Co.
American Shear Knife Co.
American Society for Netals
American Steal \& Whre Co.
American Tinning \& Galvanizing Co
Ames lana Machine Co.
Ampeo Metal, Inc.
Andrews Steel Co., The
Apolln Sleol Co.
Armstrong-Blum Mrg. Co,
Armstrong Cork Co.
Assoclation of Iron \& Stcel Enclneers
Atlantle Stamying Co
Atlantle Sterl Co.
Atlas Cia \& Mrg. Co.
Atha Drop Forke Co
Atlas Lumnite Cement Co.

## 13

13abeock \& Wlloox Co.
13alley. Wm. M., Co
13aker-laulans Co.
Baldwin-Duckworth Division of Chain lsolt Co.
batifion Soulhwark Division of the 13aldwin Iacomotive Works
bantam buarings Corp
batues, Wallace, Co., The, Division oi Assochated Spring Corporathon
Bammes, W. F. and John, Co.
Iassie Dolomite, Inc.
13ny City Forge Co.
Beatty Machlme \& Mrg. Co
Belluvue-stratford Hotel
Bulmont lron Works
Borger Manuficturing Dtvi, Remublise Sterel Corp.
Hethlahm Stcel Co.
Hirdshoro Ster Foundry \& Alachint Co.
131ssett Sterel Co., The
131anchatrd Mtachlne C.o.
Haw-k゙nox Co.

l3liss \& latughlln, Inc
liliss, F: W'., Co.

Brassert, H. A. \& Co.
Bridgeport Brass Co
Broderick \& Bascom Rope Co.
Brooke, E. \& G., Iron Co.
Brookmire Corporation
Broslus, Edgar E., Inc.
Brown \& Sharpe Mfg. Co.
Brown Instrument Co., The
Bryhnt Chucking Grinder Co.
10 Burfalo Galvanizing \& Tinnlng Works
Buflalo Galvanizin
Bullard Co., The
Bundy Tubing Co.
C
Cadman. d. W., Mrg. Co.
Canton Pattern \& Mfg. Co., The...... 102
Carboloy Co., Inc
37
Carborundum Co., The
Carey, Philip, Co., The
Carnegie-Illinols Steel Corju.
Carpenter Steel Co. The
Cattle, Joseph P., \& Bros., Inc
Celleote Co., The
Central Screw Co.
Chain Belt Co.
Chambersburg Engincering Co.
Champlon Rlvet Co.. The
Chandler Products Co.
Chleago Perforaling Co.
Chicago Rawhide Mfg. Co.
Cincinnati Grinders, Inc.
CincInnatl Milling Machine Co..
Cincinnati Shaper Co., The
Clark Controller Co.
Cleveland Cap Screw Co.
Cleveland-Cliffs Iron Co.
Cleveland Crane \& Engincering Co
Clevelanal Hotel
Cleveland Punch \& Shear Works Co.
Cleveland Tramrail Division, Cleve-
land Crane \& Engincering Co.
Cleveland Twist Drill Co., The.
Cleveland Worm \& Gear Co., The
Climax Molybdenum Co.
Colonial Broach Co.
Columbian Stee] Tank Co
Columbla Steel Co.
Columbus Die, Tool \& Machine Co
Commercial Nelals Trealing. Inc.
Cone Automatic Machine Co., Ine.
\&l Contlnental Machines Inc.
Contlnental Roll \& Steel Founiry Co.
Continental Screw Co.
Copperweld Steel Co.
Corbin Screw Corp.
Cowles Tonl Co.
Crane Co.
Cilswell, James, Co.
Cullen-Frjestedt Co.
Curlis Pnoumalic Machinory (i...... 9
Cutler-Hammer, lnc.

## I)

Damascus Steel Casting (.o
Darwin \& Milner, Inc.
Davis Brake Beam Co.
Cearborn Gage Co.
Detroll Leland Hotel
Diamond Expanslon Bolt Co., Inc
Dietzel Lead 13 urning $C$.
Differentlal Steel Car Co.
Dravo Corp., Englneering Works Div. Dravo Corp., Machinery IYtislon Dubera Corp.
Ducr Spring of Mif. Co.

## E

Gilnstic Stop Niut Corp
Electric Controller \& Mlfs. Co.
Electric Furnace Co. The
111
Flectric Storape Battery Co
Electro Alloss Corp., The
Elcetro Metallurgleal Co
Elmes, Charles F., Englncering Works
Engincering and Construction Dlvision Kioppers Co
Enterprise Galvanlzing Co,
Erilo Perforating Co., The
Erle Bolt \& Nut Co.
Frie Foundry Co.
Filla Machine Co.. The
ast
53

Brick Works
Excelsior Tool \& Machine Co
Fafnir Bearing Co.. The
Falrbanks, Morse \& Co.
Fanner Mrg. Co.
Farrel-Birmingham Co., Inc
Farval Corp. The
Federal Machine \& Welder Co
Finn, John, Metal Works
Firth-Stering steel Co.
Firth-Stering steel
Flexrock Co.
Prge

Flinn \& Dreffeln Co.
Back Cove
Flood Co., The
Ford Chain Block Division of Ameri-
can Chain \& Cable Co., Inc
Fort Pltt Spring Co.
Foster, L. B., Co.
Foxboro Co., The 106
Fuller Brush Co.
Garden City Fan Co.
Garlock Packing Co., The
General Blower Co.
Ceneral Flectrle Co.
General Electric Co. ................ -
Globe Brlck Co.. The
Granlte Clty Steel Co
Graybar Electric Co.
Great Lakes Stee! Corp
Greendield Tap \& Dle Corp.
Greennela Tap \& Die Corp. ...........
Gregory, Thomas, Galvanizing Works
Grinnell Co., Inc, ...............................
Gulf Oll Corporation
Gulf Reflning Co. .................................... 5

Hagan, George J., Co.
Hallden Machine Co. ....................... Cove
Hanlon-Gregory Galvantzing Co
Hanna Furnace Corp.
14i Hannilin Mfg. Co.
Harntschfeger Corp
Earrington \& King Periorating Co.... 99
Hays Corp., The
Heald Machine Co., The
Helmer-Staley, Inc.
Heppenstall Co.
Hevl Duty Flectrle Co.
Hillstale Fluor Spar Mincs
Hindley Mfg. Co.
Hobart Bros.
Hodell Chain Co., The
Holden, A. F., Co., The
Hollands Mrg. Co.
Horsburgh \& Scott Co.
Hubbard, N. D., Spring Co.
Huther Bros. Saw Mfg. Co
Hyatt Bearings Division, Gencral Mo
tors Sales Corboration
Hyde Park Foundry \& Machine ("o.
Hydro-Power Systcms. Inc.
lllinois Clay Products Co.
lllinols Development Council
Independent Galvanizing Co.
Industrial Brownholst Corp.
Industrial Equipment Co:p
Ingersoll-Rand Co.
Inland Steel Co.
Internatlonal Correspondence Schonts
International Derrick \& Equipment Co.
International Nickel Co., Inc.

Jackson Iron \& Steel Co., The
James, D. O. Mfg. Co.
J-I Enginecring Sales Co.
Jessop Stcel Co.
Jessop, Wm.. \& Sons, Inc
Johns-Manville Corp
Johnson Bronze Co.
Jones \& Lamson Matchtne Co
Jones \& Laturhiln Steel Corp.
Jones. W. A., Foundry \& Machine Co.
Joslyn Co. of Callfornta
Joslyn Mfg. \& Supply Co,
K
K゙antlink Spring W'ashers

Kardong Brothers, Inc.
Kearney \& Trecker Corp
Kemp, C. M., MIg. Co.
Kímball Safety Products Co
King Fifth Wheel Co.
Kinnear Mrg. Co.
g. Co.

Kinnear Mig. Co. .
Kirk \& Blum Mif. C
o.

Koch, George, Sons
Koppers Co.
Koven, L. O., \& Brother, Inc.
Kron Co., The
L
Laclede Steel Co.
Lake City Malleable Co.
Lake City Malleable Co... Th
Landls Machine Co., Inc
Lundis Tool Co.
Lung Machinery Co.
Lansing Slamping Co
LaSalle Steel Co.
Lawrence Copper \& Bronze
LeBlond, R. K., Mrechine Tool Co., The
Leeds \& Northrup Co.
Lee Spring Co., Inc.
Lehigh Structural Steel Co.
Leschen, A., \& Sons Rope Co.
Lewis Bolt \& Nut Co
Lewls Foundry \& Machine Division oi Blaw-Knox Co.
Lewls Machine Co., The
Lincoln Electric Co., The
Linde Alr Products Co., The
LIndemuth, Lewls B
Link-Belt Co
Loftus Engineering Corp.
Logemann Bros. Co.
Lord Baltimore Hotel, The
Lovejoy Flexible Coupling Co.
Lowman-Shields Rubber Co.
Ludlow-Saylor Wire Co., The
Inside Back Cover
Me
McKay Machine Co, .
Back Cover
McKee, Arthur G., Co.
Mckenna Metals Co.
M1
MackIntosh-Hemphill Co.
Macwhyte Co.
Marr-Galbreath Machinery Co.
Mathews Conveyer Co.
Maurath Inc.
Medart Co., The
Mesta Machine Co.
Metal \& Thermit Corp.
Michigan Steel Tube Products Co..
Midvale Co., The
Missourl Rolling Mili Corp
Moltrup Steel Products Co.
Monnrch Machine Tool Co., The
Monarch Steel Co.
Morgan Construction Co.
Morgan Engineering Co
Morrison Metalweld Process, Inc.
Morton Salt Co.

## N

National Acme Co., The
National Bearing Metals Corp.
National Carbon Co., Inc.
Natlonal-Erie Corp.
Natlonal Forge \& Ordnance Co.
National Lead Co.
National Roll \& Foundry Co.
National Screw \& Mfg. Co.
National Steel Corp.
National Telephone Supply Co...................
Natlonal Tube Co.
New Departure Division General Mo-
tors Sales Corp

## New Jersey ZInc Co.

New York \& New Jersey Lubricant Co.
Nagara Machine \& Tool Works
Nicholson, W. H., \& Co.
Stes Steel Products Div. Republic Steel Corp.

## Nitralloy Corp., The

Norma-Hoffmann Bearings Corp
North Amerlcan Manufacturing C
Inside Front Cover
Northern Engineering Works

$$
\overline{-}
$$

Page
Northwest Engineering Co.Page

Strom Steel Ball Co.

Strong Stecl Foundry Co.
Sturtevant, B. F., Co.
Sun Oll Co.
Superior Steel Corp.
Surrace Combustion Corp.
Sutton Engineering Co. .
Swindell-Dressler Corp..

## T

Tennessee Coal, Iron \& Railroad Co .
8.9

Thomas Steel Co., The
Thompson-Bremer \& Co.
Tide Water Associated Oil Co.
Timken Roller Bearing Co.
Timken Steel \& Tube Division, The
Timken Roller Bearing Co.
Tinnerman Products, Inc.
Toledo Scale Co.
Toledo Stamping \& Mrg. Co.
Tomkins-Johnson Co.
Torrington Co., The
Townsend Co.
Tri-Lok Co., The
L'age

Ohlo Electrjc Mig. ${ }^{\circ}$
Ohio Locomotive Crane Co., The.
Ohio Seamless Tube Co., The
Ohto Steel Foundry Co., The
P
Page Steel \& Wire Division of Amerl-
can Chain \& Cable Co., Inc..
Pangborn Corp.
Parker-Kalon Corp.
Pease, C. F., Co., The
Penn Galvanizing Co.
Pennsylvania Industrial Engincers
Pennsylvanis Salt Mff. Co.
Penola, Inc.
Perkins, B. F., \& Son, Inc.
Petroleum Iron Works Co., The
Pheoll Mig. Co.
Pltsburgh Crushed Steel Co.
Pittsburgh Gear \& Machine Co
Pittsburgh Lectromelt Furnace Corp.
Pittsburgh Rolls Division of Blaw-
Knox Co.
Pittsburgh Steel Co.
Plymouth Locomotive Works, Div.
The Fate-Root-Heath Co.
Poole Foundry \& Machine Co.
Pressed Steel Car Co., Inc.
Pressed Steel Tank Co.
production \& Machine Tool Show Progressive Welder Co.
Pure Oll Co., The

## IR

Raymond Mrg. Co. Division of Assoclated Spring Corp.
Reliance Electric \& Engincering Co..
Republic steel Cor'p.
Revere Copper and Brass, Inc.
Rhoades, R. W., Metaline Co., Inc.
Riverside Foundry \& Galvanizing Co.
Roosevelt Hotel
Russell, Burdsall \& Ward Bolt \& Nut Co.
Ryerson, Joseph T., \& Son, Inc

## St. Joseph Lead Co.

Salem Engineering Co.
Samuel, Frank, \& Co., Inc.
San Franclsco Galvanlzing Work
Sanitary Tinning Co., The
Sawyer Electrical Mifg. Co.
Scovill Mig. Co
Scully Steel Products Co.
Sellers, Willam, \& Co., Inc
Seneca Wire \& Mif. Co. The
Shafer Bearing Corporation
Shakeprool Lock Washer Co
Shakeprool Lock Washer Co. ....
Shaw-Box Crane \& Hoist Divis
Manning, Maxwell \& Moore, Inc.
Shell Oil Co., Inc.
Shenango Furnace Co., The
Shenango-Penn Mold Co.
Shepard Nlles Crane \& Hoist Corp.
Shoop Bronze Co., The
Shuster, F. B., Co., The
Simonds Gear \& Mfg. Co.
Slmonds Saw \& Steel Co.
Sinton Hotel
SKF Industries, Inc
Snyder, W. P.. \& Co.
socony-Vacuum Oil Co., Inc.
South Bend Lathe Works
Standard Galvanizing Co.
Standard Steel Works
Stanley Works, The
Steel \& Tubes Division, Republic Stecl Corp
Steel Conversion \& Supply Co.
Steel Founders' Society of America
Steelweld Machinery Diviston, Cleve-
land Crane \& Engincering Co.
Stewart Furnace Division, Chlcago Flexible Shaft Co.

Truscon Steel Co
Twin Disc Clutch Co.

Union Carbide \& Carbon Corp.
Unlon Drawn Steel Div. Republic Steel Corp
United Chromium, Inc.
United Engineering \& Foundry Co.
United States Rubber Co.
United States Sted Corb., Subsidiarles 8,9 American Bridge Co.
American Steel \& Wire Co.
Atlas Lumnlte Cement Co.
Carnegle-Illinols Steel Corp.
Columbia Steel Co
Cyclone Fence Co.
Federal Shipbullding \& Dry Dock Co.
Natlonal Tube Co.
Oll Well Supply Co.
Scully Steel Products Co.
Tennessee Coal, Iron \& IRallroad Co .
Unlted States Steel Export Co.
Universal Atlas Cement Co.
Virginia Bridge Cu.
United States Steel Export Co.
$8 .!$

```
                                    V
```

Vulley Mould \& Iron Corp.
Vanadlum-Alloys Steel Co.
Vanadlum Corporation of America
Voss, Edward W.

## W

Waldiron, John, Corp.
Warner \& Swasey Co.
Washburn Wire Co.

Welrion Steel Co.
Wellman Smlth Owens Eng. Corp., Liti
Back Cover
Westlnghouse Electric \& Mrg. Co.
West Penn Machinery Co.
West Steel Casting Co.
Wheellng Steel Corporation
Whitcomts Locomotive Co., The...... 8
Whitchead Stampling Co.
Wickwire Brothers
Wilcox, Crittendon \& Co., Ine
Whlliams, J. H., \&e Co., Inc.
WIlson, Lee, Engineering Co... I3ack Covel
Wilson Welder \& Metals Co., Inc.
Wisconsin steel Co.
Witt Cornice Co., The
Worthington Pump \& Machinery Corp.
Worth Steel Co.
Wyckoff Drawn Steel Co.
Yale \& Towne Mrg. Co.
Youngstown Alloy Casting Corp
Youngstown Sheet \& Tube Co., The
Youngstown Welding \& Engineering
Co., The
Zeh \& Hahnemann Co

## "FEELS" $1 / 10000$ CHANGE <br> and DOES SOMETHING ABOUT IT!

How better could the accuracy and sensitivity of $\alpha$ Foxboro Indicating Recorder-Controller be expressed? A pointer deflection of $.0001^{\prime \prime}$ results in an appreciable change in pen position and control action. There are no "dead spots," no lost motion.

Dependable, accurate performance of a control instrument is absolutely essential-otherwise why depend upon instruments at all? As pioneers in the design and perfection of control instruments, Foxboro incorporates in this Recording Controller sensing and
control mechanisms which assure a degree of sensitivity and accuracy unheard of in former instruments.

Among those companies where a close check of instrument performance is maintained the Foxboro Recorder-Controller has been generally adopted for new installations. It will pay you to "look into" the mechanical features which have enabled these instruments to establish new operating standards. The Foxboro Company, 118 Neponset Ave., Foxboro, Mass., U. S. A. Branch Offices in 25 cities.


Foxboro Indicating Hecorder-Controller Three Types:
Electric 2-Position Control Electric Throttling Control Stabilog Air-Operated Throttling Control


RECORDING - CONTROLLING


[^0]:    3923 The percentages of capacity for 1939 are calculated on weekly capaciles of 1 ． 249 net net tons open hearth Ingots and 136,918 net tons Bessemer Ingots，Lotal 1，529，－ thents the based on annual capactles as of Dee．31，1938，as follows：Open hearth The parcent net tons：Bessemer Ingots， $7,138,880$ net tons．
    The percentages of capacity operated for 1090 are calculated on weekly capacities 1,517855 net tons open hearth ingots and 114,956 net tons Bessemer ingots，total bearth ingot tons；based on annual capacltses as of Dee，31， 1939 as follows：Open nearth ingots， $73,343,547$ net tons；ßessemer ingots， $6,009,320$ net tons．

[^1]:    Based on capacity of 55,628,060 net tons, Dec. 31, 1939: ' capacity of 56,222 . 790 net tons, Dec. 31,1938 ; $^{2}$ capacity of $56,679,168$ net tons, Dec. 31, 1937; 'nrst six months on capacily of $55,454,265$ net tons, Dec. 31, 1936-last six months on capacity of $55,695,065$ net tons, June 30 . 1937. Capacltles by Amerlcan Iron and steel institute.

[^2]:    "Profil Producing Marhine Trouf"

[^3]:    Material appearing In this department is fully protecter by copyright, and its use in any form whatsoevet without permission is prohlblied.

[^4]:    Prelliminary

[^5]:    General view of pig-casting conveyor in which iron is poured continuously to make pigs which harden and are delivered while still on the converorall at rate of 50 pigs per minute -24 hours a day. Output is 70 tons per hour. 1680 tons per day

[^6]:    ${ }^{1}$ Allotrople transformation:-When the grains are transformed from the austenItic to the ferritic state, or from face centered io a body-centered lattice. Inis. therefore, involves a transiormation oi the grain' structure.

[^7]:    Iran and Steel Engineer, Feth. 1936.
    (Please turn to Page 72)

[^8]:    Iron and Steel Composite:-Plg iron, scrap, billets, sheet ba rs, wire rods, tin plate, wire, sheets, plates, shapes, bars, black hot strip, nalls, tin plate, plpe. Steelworks Scrap Composite:- Heavy melting steel and compressed sheets.

[^9]:    Includes awards of 100 tons or more.

[^10]:    - Hubbard makes them in any quantity, any material for every kind of mechanical application. Complete facilities include modern tools and equipment, heat treating. spit welding, tapped assemblies. Send your inquiry to Hubbard and get quotati ns that represent economy.


    ## MD. HUBBABD SPRING (O.

[^11]:    LOCOMOTIVES FOR SALE One Standard maner 2-6-3 Typ locrmotive, maximum trac:lve power 23.800 ll 5 , soll
     ensine, tintive puwer $¥ 8,7(M$ lbs., soft cual
     Brath excelert remedion. If interested. phese writh for specincaths and price. Addr
    Bux 295 , STEEL. Pentor Eddz. Cleveland.

