BRITISH CHEMICAL ABSTRACTS

A., II.—Organic Chemistry

JULY, 1937.

New electronic theory of organic reactions. H. F. TSEOU (Separate, Hangehow, 223 pp.; cf. A., 1936, 960).—An extension of previous theory and a survey of the literature of theory of org. reactions. The position of an element in the periodic table is determined by the condition of the electrons in the outermost sphere and there is an equilibrium point at which the electrons of an element would have no tendency to be displaced either inwards or outwards. C is supposed to be an element slightly to the left of this point but its position may be moved either farther to the right or left depending on whether it is joined to an element which repels electrons strongly or to one which attracts them. In doubly and trebly bound C and also in cyclic compounds the octets of electrons are more compact. In every chemical reaction there is involved a complicated system of electron displacements of the reacting mols., and the at. radius of an element in different compounds. With this formulation the facts in org. chemistry are accounted for. The theory finds substantial proofs in different physical measurements. F. R. S.

Catalytic isomerisation of n-hexene and octene in presence of zinc chloride and phosphoric acid. A. D. PETROV and M. A. TSCHELZOVA (Compt. rend. Acad. Sci. U.R.S.S., 1937, 15, 79-84).-Branchedchain hydrocarbons containing a quaternary C are much less readily chlorinated by SbCl₅ in CHCl₃ than those with only tert. C (cf. A., 1935, 1102). In absence of CHCl₃, chlorination is much more extensive. Octan- β -ol when heated with ZnCl₂ affords a mixture of Δ^{α} - (I) and Δ^{β} -ooteno (II), which when heated at 325-350° for 25 hr. in presence of ZnCl₂ and then hydrogenated affords 12% of iso-compounds (III). Higher yields of (III) are obtained at pressures of 50 atm. and in <1.5 hr. in presence of ZnCl₂ or H₃PO₄. (I) and (II), individually, similarly afford isomerides hydrogenated to products containing 46.8% of (III). Aª-Hexene after isomerisation and hydrogenation gives 23% of (III). J. L. D.

Completion of Krafft's proof of the structure of cetene. S. L. LANGEDIJK and P. L. STEDEHOUDER (Rec. trav. chim., 1937, 56, 526-528).—Cetene is Δ^{a} -n-hexadecene since its dibromide (I) is converted by 0.9N-EtOH-KOH at 180-200° first into Δ^{a} -nhexadecinene (II) (ppt. with AgNO₃-EtOH), isomerised by prolonged treatment into Δ^{a} -n-hexadecinene (III) (no Ag compound). (III) is unchanged by solid KOH at 190°/75 mm., conditions under which (I) affords (II). J. W. B.

Determination of the constitution of hydrocarbons of the $C_{n}H_{2n-2}$ series. A. E. FAVORSKI and M. D. BONE (Compt. rend. Acad. Sci. U.R.S.S., 1937, 14, 499—504).—Oxidation of allene hydrocarbons with $\rm KMnO_4$ yields unsaturated glycols which isomerise at once to ketols, which are further oxidised to acids, giving no differentiation between the acetylenic and allene type. With O₃, diozonides are formed which decompose to CO₂ and dicarboxylic acids, from the nature of which the structure of the allene may be deduced. J. D. R.

PERITECHNIK

Characteristics of hydrocarbons of the C_nH_{2n-4} series with conjugated double and triple linkings. A. I. ZACHAROVA (Sci. Rep. Leningrad State Univ., 1936, 2, No. 2, 162—195).—COMeEt is added gradually to a suspension of KOH in Et₂O saturated with C_2H_2 at -10° , C_2H_2 is passed for 8 lir., and H_2O is added, when OH-CMeEt-CiCH is obtained in 70% yield. This gives CHMe:CMeCCH (I) when passed over MgSO₄ at 230°. (I) and KOH in MeOH (120°; 12 hr.) give β -methoxy- γ -methyl- $\Delta^{\alpha\gamma}$ -pentadiene (II), b.p. 45—46°/15 mm., converted by heating with 1°_0 , H_2SO_4 (25—30°; 8 hr.) into CHMe:CMe-COMe, and by O_2 in CHCl₃ into MeCHO, AcCO₂Me, and HCO₂H. (I) and KOH in EtOH yield similarly β -ethoxy- γ -methyl- $\Delta^{\alpha\gamma}$ -pentadiene (II), b.p. 54—55°/15 mm., which reacts analogously to (I) with 1°_0 H₂SO₄, and gives β -ethoxy- γ -methylpentane, b.p. 140— 142°, on hydrogenation (Pd-Ni). A dimeride of (I), b.p. 74—75°/10 mm., is obtained as a by-product of the prep. of (II) or (III); it yields H₂C₂O₄, COMeEt, and AcOH with KMnO₄, and is probably (CMeEt:CiCC)₂. R. T.

Photochemical oxidation, sensitised by bromine, of carbon tetrabromide to carbonyl bromide and bromine in solution in carbon tetrachloride. W. KOBLITZ, H. MEISSNER, and H. J. SOHUMACHER (Ber., 1937, 70, [B], 1080—1086).—The rate of Brsensitised photochemical oxidation of CBr₄ in CCl₄ has been examined by measurement of the O₂ absorbed at 14° and 0·3° with light of λ 436 mµ. With relatively high [Br] the complete change may be nearly represented by 2CBr₄ + O₂ = 2COBr₂ + 2Br₂. Even with high [CBr₄] the quantum yield of the change is <1 mol. per hv. Br is feebly restrictive, O₂ weakly accelerating, to the change. COBr₂ has no influence. The temp. coeff. between 0° and 14° is about 1·2 per 10°. The course of the change is approx. expressed, $QA = [CBr_4]/0·11 + 0·06[Br_2]/[O]_2 + [CBr_4]$. The energy required to separate the first Br from CBr₄ is >50 kg.-cal. H. W.

Halogenation of ethylenes. I. ROBERTS and G. E. KIMBALL (J. Amer. Chem. Soc., 1937, 59, 947-948).—Contrary to usual statements, free rotation about the C.C linking is not to be expected in CRR'Hal·CR''R'''. Since the ionisation potentials of C and halogen are similar, an equally probable structure is Hal+ $<_{CR''R'''}$, in which the halogen acts as donor of two electrons to form a co-ordinate link with the C; the actual structure of the ion is intermediate between the two. Reaction of an ethylene with halogen involves first formation of such an ion, which then adds Hal⁻ by a "three-atom" reaction; this gives trans addition. If, however, R and R'' are similarly charged, e.g., CO₂⁻, the force of repulsion may suffice to cause rotation before the second step of addition occurs; this leads to *cis* addition. This mechanism is shown to accord with experiment.

R. S. C.

Addition of hydrogen bromide to allyl bromide in the presence of various substances. VI. Homogeneity of the catalytic action of oxygen. Theory of the oxygen effect. Y. URUSHIBARA and M. TAKEBAYASHI (Bull. Chem. Soc. Japan, 1937, 12, 173—176).—CH₂:CH·CH₂Br and HBr react in the presence of O₂ in an identical manner and to the same extent whatever is the surface area at which reaction occurs. It is suggested as an interpretation of earlier results (cf. this vol., 224) that O₂ catalyses the formation of CH₂(CH₂Br)₂ and not CHMeBr·CH₂Br in the above reaction. J. L. D.

Preparation of aliphatic dihalogeno-compounds of high mol. wt. J. VON BRAUN and E. KAMP (Ber., 1937, 70, [B], 973—978).—The prep. of long-chained dihalogeno-paraffins according to the scheme, $Br\cdot[CH_2]_n \cdot Br \rightarrow OPh\cdot[CH_2]_n \cdot Br \rightarrow$ $OPh\cdot[CH_2]_{2n} \cdot OPh \rightarrow Hal\cdot[CH_2]_{2n} \cdot Hal fails when n is$ large owing to the difficulty of the final step. Thisdifficulty disappears when the corresponding allow

OPh·[CH₂]_{2n}·OPh → Hal·[CH₂]_{2n}·Hal fails when n is large owing to the difficulty of the final step. This difficulty disappears when the corresponding alkyl ethers are used but the b.p. of Br·[CH₂]_n·Br and OAlk·[CH₂]₂·Br are inconveniently close; it is completely avoided by use of hydroaromatic ethers. CH₂(CH₂·CH₂·OPh)₂ is reduced (Ni) by H₂ at about 200°/100 atm. to αε-dicyclohexyloxypentane (I), b.p. 180—184°/10 mm., with some cyclohexyloxypentane and cyclohexanol (II). (I) and fuming HBr at 100° yield Br·[CH₂]₅·Br and cyclohexyl bromide. OPh·[CH₂]₁₀·OPh, b.p. 215—225°/0·05 mm., best obtained from OH·[CH₂]₁₀·OH, is hydrogenated to ακ-dicyclohexyloxydecane (III), b.p. 168—170°/0·05 mm., mixed with n-decane, (II), and cyclohexyl decyl ether. (III) gives Br·[CH₂]₁₀·Br (IV), m.p. 28°. (IV) and NaOPh in EtOH give unchanged material, OPh·[CH₂]₁₀·OPh, and OPh·[CH₂]₁₀·Br; the latter is converted by Na in Et₂O into Ph decyl ether, κ-phenoxy-Δ^α-decene, and diphenoxyeicosane, m.p. 92—93°, from which impure dibromoeicosane is isolated. H. W.

1:2- and 1:4-Addition. II. Nitrogen tetroxide and trimethylethylene [isoamylene]. A. MICHAEL and G. H. CARLSON (J. Amer. Chem. Soc., 1937, 59, 843—849; cf. this vol., 244).—N₂O₄, alone or in light petroleum, functions as $0 \cdot NO_2 + NO$, since with CMe₂:CHMe it gives $43\cdot2-47\cdot6$ and $35\cdot2 39\cdot2\%$, respectively, of bis(isoamylene nitrosate) (I). In Et₂O it functions mainly as $0\cdot NO + NO_2$, since in this solvent it yields about 35% of γ -nitro- β -methylbutan- β -ol nitrite (II), m.p. 60°, and $0\cdot15-8\cdot2\%$ of (I). In both cases the yields are relatively independent of temp. and thus of the equilibrium, $N_2O_4 \rightarrow 2NO_2$. In neither case could the other products be identified. As usually obtained, (I) is blue; distillation in steam gives a colourless product, removing about 25% of a blue oil, b.p. $43-47^{\circ}/2$ mm. (C 48.72, H 7.25, N 12.58%), which is not the monomeric form of (I). (I) is identified by reaction with NaSPh and NaSEt in EtOH to give NaNO₃ and the *thio-ethers*, NO·CHMe·CMe₂·SR, R = Ph, m.p. 90° (PhNCO additive compound, m.p. 113-114°), and Et, m.p. 60° (PhNCO additive compound, m.p. 112-2°), respectively. (II) and NaSPh in EtOH give the *thio-ether*, NO₂·CHMe·CMe₂·SPh, an oil, stable to H₂O₂-AcOH, but oxidised by CrO₃ to the sulphone, m.p. 102-103°. R. S. C.

Catalytic oxidation of organic compounds by carbon dioxide. I. Oxidation of *iso*amyl alcohol in presence of oxide and salt catalysts. A. M. RUBINSTEIN, K. P. PREOBRASHENSKAJA, and L. S. TSCHERNOMORSKAJA. II. Oxidation of different alcohols. A. M. RUBINSTEIN and N. F. LUKASCHINA. III. Mechanism of oxidation of alcohols. A. M. RUBINSTEIN and N. M. NAGIEV (Sci. Rep. Moscow State Univ., 1936, No. 6, 287— 297, 299—305, 307—319).—I. The yields of CH₂Pr⁶·CHO (I) and CH₂Pr⁶·CO₂H (II) obtained under optimum conditions by passing *iso*·C₅H₁₁·OH (III) in a stream of CO₂ over a no. of catalysts are: U₃O₈ at 450° , 72·9 and 12·3, MoO₃-punice at 450° , 59·3, and I8·2, Ca(VO₃)₂ (IV) at 600° , 58·6 and 3·7, Sn(VO₃)₂ at 450° , 56 and 30·4, and MoO₃-V₂O₅-punice at 400°, 40·8 and 37·9%. Except in the case of (IV) the optimum temp. are the same as for oxidation by air in presence of the same catalysts. The optimum rates of flow of CO₂ are determined for each catalyst.

II. (III)- CO_2 mixtures yield chiefly $CH_2:CHPr^{\beta}(V)$ in presence of V_2O_5 at 550°, and $Bu^{\beta}OH-CO_2$ mixtures give chiefly $CH_2:CMc_2$ with MoO₃ at 350—500°. $CH_2Ph\cdot OH$ and CO_2 afford PhCHO 54% and BzOH $32\cdot5\%$ with MoO₃ at 400°.

32.5% with MoO₃ at 400°. III. The gaseous products obtained by passing (III), (III)-H₂O, (III)-CO₂, or (III)-CO₂-H₂O mixtures over MoO₃-asbestos at 350—500° contain chiefly H₂, together with (V), CO, and CO₂, the yield of (V) being greatest, and of H₂ least, when (III) alone is passed over the catalyst. The ratio (I)/(II) in the liquid product falls with increasing temp. Under the conditions of the experiment, HCO_2H (VI) yields CO and H₂. The reaction of oxidation of alcohols by CO₂ is represented : CH₂R·OH + CO₂ \rightarrow R·CHO + (VI); (VI) \rightarrow CO + H₂; R·CHO + H₂O \rightarrow CHR(OH)₂ \rightarrow R·CO₂H + H₂; CHR(OH)₂ + CO₂ \rightarrow R·CO₂H + (VI). R. T.

Photochemical peroxide formation. VIII. Oxidation of glycol by molecular oxygen in ultra-violet light. IX. Oxidation of paracetaldehyde by molecular oxygen in ultra-violet light. R. CANTIENI (Z. wiss. Phot., 1937, 36, 116— 118, 119—120).—VIII. $(CH_2 \cdot OH)_2$ forms a peroxide OH·CH₂·CH₂·O₂H with O₂ in ultra-violet light. Further action of the peroxide with activated $(CH_2 \cdot OH)_2$ gives CO₂, H₂O, and $(CH_2 \cdot OH)_2$. The reaction is similar to the photochemical oxidation of glycerol (A., 1936, 1091). IX. Paracetaldehyde forms a peroxide when mixed with O_2 and exposed to ultra-violet light. The amount of peroxide produced varies linearly with time at first, but later decreases owing to decomp.

A. J. M.

Acidimetric determination of glycerol (and erythritol) by periodates. M. L. MALAPRADE (Bull. Soc. chim., 1937, [v], 4, 906—910).—The solution is neutralised to Me-red, treated with an excess of NaIO₄ for 20 min. and then with conc. aq. KNO₃ (which ppts. KIO₄). The liberated HCO₂H (2NaIO₄ + C₃H₈O₃ \rightarrow 2CH₂O + HCO₂H + 2NaIO₃ + H₂O) is determined by titration with a strong base. With KIO₄ the procedure is simpler. The method is exact in presence of EtOH or (CH₂·OH)₂. Weak bases and acids weaker than HCO₂H must be absent, but strong bases and acids do not interfere provided that they have no reducing or pptg. action towards NaIO₄. Under similar conditions erythritol affords 2HCO₂H. H. W.

Synthesis of ethyl isobutyl ether. E. M. MARKS, D. LIPKIN, and B. BETTMAN (J. Amer. Chem. Soc., 1937, 59, 946—947).—EtOBu^{β} is obtained in 70% yield from dry Bu^{β}OH, Na, and Et₂SO₄ at 120— 130°. Use of KOH instead of Na gives a 22.5% yield; 50% aq. KOH gives no ether. OEt·CHMeEt is obtained in 48% yield by use of Na. R. S. C.

Oxidation of ethyl mercaptan and ethyl disulphide by bromine in the presence of water. H. A. YOUNG (J. Amer. Chem. Soc., 1937, 59, 811— 812).—The following reactions are proved to occur in CCl_4-H_2O mixtures : $EtSH + 3Br_2 + 3H_2O \rightarrow$ $EtSO_3H + 6HBr$; $Et_2S_2 + 5Br_2 + 6H_2O \rightarrow$ $2EtSO_3H + 10HBr.$ Br vapour very rapidly oxidises EtSH to Et_2S_2 . R. S. C.

Rate of oxidation of ethyl disulphide by bromine. H. A. YOUNG and M. B. YOUNG (J. Amer. Chem. Soc., 1937, 59, 812—816).—Et₂S₂ removes Br or I from the aq. layer of CCl_4 -H₂O mixtures, indicating complex formation, but the reaction is reversible. A kinetic study shows that the initial rate of reaction is given by $dBr_2/dt = k \times [Et_2S_2(Br_2)_2]$, k being dependent on the rate of shaking. It is suggested that the first steps are: (fast) $Et_2S_2 + 2Br_2 \rightarrow$ $2EtSBr_2$; (slow) $EtSBr_2 + H_2O \rightarrow EtSO + 2H^{\cdot} +$ $2Br^{-}$, followed by formation of $EtSO_2Br$ and $EtSO_3H$. The reaction is catalysed by H⁺; when EtSH reacts with Br, the first reaction is formation of Et_2S_2 and HBr, and subsequent reaction is, therefore, abnormally fast. R. S. C.

Formation of organo-metalloidal and similar compounds by micro-organisms. V. Methylated alkyl sulphides. Fission of the disulphide link. F. CHALLENGER and A. A. RAWLINGS (J.C.S., 1937, 868-875).—The prep. of the following reference substances is described : MeSEt dimercurichloride, m.p. 127-128°; benzylmethylethylsulphonium picrate, m.p. 100.5-101°; MeSPr^a mercurichloride, m.p. 163.5-165°; benzylmethyl-n-propylsulphonium picrate, m.p. 95-95.5°; MeSEt platinochloride, m.p. 121.5-122.5°. When (EtS)₂ is treated with excess of saturated aq. HgCl₂, '70% yields of SEt·HgCl,HgCl₂ (I), m.p. 151°, and with (Pr^aS)₂ SPr^a·HgCl,HgCl₂, m.p. 139°, are obtained, the products being identical with those from the corresponding mercaptans. With EtSH and HgCl₂, (EtS)₂Hg, m.p. 76-77°, SEt·HgCl, m.p. $\pm 260^{\circ}$, and (I) may be obtained at will and with Pr°SH the corresponding compounds, m.p. 65-66°, 182°, and 138-139°, respectively. Neither SR·HgCl,HgCl₂ nor SR·HgCl liberates any mercaptan when warmed with NaOH in an air stream. When (EtS)₂, (Pr°S)₂, EtSH, and Pr°SH are added to cultures of *Penicillium brevicaule (Scopulariopsis brevicaulis)*, Saccardo, and the gases produced are absorbed in HgCl₂, ppts. are obtained which on treatment with NaOH in a stream of air yield MeSEt and MeSPr°. Negative results were obtained when (PhS)₂ and (CH₂Ph·S)₂ were added to the cultures. P. W. C.

Determination of $\beta\beta$ -dichlorodiethyl sulphide. L. BURUIANA (Z. anal. Chem., 1937, **109**, 107—110).— (C₂H₄Cl)₂S in EtOH is pptd. by 5 parts of 24% aq. Na₂HgI₄ at 30—40°. The oily ppt. is collected by centrifuging in a graduated tube, and its vol. is measured. Hydrolysis products are not pptd. by Na₂HgI₄. J. S. A.

Unsaturated sulphides derived from the chloroethylenes. N. W. CUSA and H. MCCOMBIE (J.C.S. 1937, 767—770).—NaSPh with (CHCl:)₂ in EtOH affords diphenylthiolethylene, b.p. 235—242°/760 mm., m.p. 62°. (CH₂Cl·CHCl)₂S when distilled at ordinary pressure yields dichlorodivinyl sulphide (I), b.p. 75-80°/15 mm., converted by NaSPh in EtOH into di(phenylthiol)divinyl sulphide (II), m.p. 78°, converted by NaOEt into an isomeride of (II), m.p. 138°. (I) with β -C₁₀H₇·OH and Na in EtOH yields di-(B-naphthyloxy)divinyl sulphide, m.p. 151-152°. C2HCl3 with NaSPh in EtOH affords Ph abdichlorovinyl sulphide (III), b.p. 145-150°/22 mm., converted by NaOMe into Ph α -chloro- β (?)-methoxyvinyl sulphide, b.p. 160-165°/20 mm., by Cl₂ in CCl, into Ph aaß -tetrachloroethyl sulphide, b.p. 175-182°/ 20 mm., and by NaOH in aq. EtOH into NaSPh and glycollic acid. C2HCl3 with NaSEt in EtOH affords mixtures of Et dichlorovinyl sulphide, b.p. 77-80°/30 mm., with chlorodi(ethylthiol)ethylene and tri(ethylthiol)ethylene. NaSPh with C_2Cl_4 in EtOH yields s-di-chlorodiphenylthiolethylene, m.p. 71-72°, the Cl of which is very resistant to further substitution. SNa·C₂H₄·OH and C₂Cl₄ in EtOH, followed by treatment with SOCl₂, afford isomeric compounds, $C_6H_6Cl_4S_2$, (a) b.p. 145—147°/30 mm., and (b) m.p. 72-73°. J. D. R.

Enzymic ester syntheses — See A., III, 269.

Constitution of peptides. I. Structure of organic acids. Raman hands of the acidic function in acids and their derivatives. C. SANNIÉ and U. POREMSKI (Bull. Soc. chim., 1937, [v], 4, 880—893).—Comparison of the Raman spectra of aldehydes, ketones, and esters with those of acids, homogeneous or dissolved in non-polar solvents, shows that the band at 1730 cm.⁻¹ attributed to the double linking C:O appears in acids at 1650 cm.⁻¹ This is not due to a displacement such as is frequently caused by substitution and the phenomenon can be explained only by the existence of two different forms of acids. The same doubling is observed in solutions of acids in

polar solvents, the relative intensity of the two bands being a function of the concn. of acid. The two forms of the acid are thus in an equilibrium dependent on the polarity of the solvent, the concn., and the temp. Since the mol. associations of acids also depend on these factors it is reasonable to attribute 1650 to the existence of associated mols. The frequency appears to be due to the vibration of a system of 2 atoms rather than to that of the entire complex or of the group O.C.O. 1650 may therefore be due to C.O. deformed by the production of particular linkings of the type of the "H bond" of Latimer and Rodebush between doubly linked O and OH of the CO₂H of the associated mql. or to the existence of a "H bond" itself. Association of acids is comparable with the phenomena of "chelate structure" by which the infrared and Raman spectra of aldehydes, o-hydroxybenzoic acids, and OH-acids are explained. In all these cases the internuclear distances of the O atoms (2.65 A.) are very close and appear to justify such a view.

H. W.

Rates of reaction of aliphatic acid halides. R. LEIMU (Ber., 1937, 70, [B], 1040-1053).-Among fatty acid halides AcCl reacts most rapidly and EtCOCl least rapidly with CH2Cl·CH2 OH (I), CH2Ph·OH (II), or cyclohexanol (III) in dioxan. Higher chlorides are somewhat less active than AcCl. The rate of alcoholysis corresponds with the strength of the n-acids, but this does not appear to be a general regularity. Branching in the C chain, particularly at C(a), greatly diminishes the rate of reaction with (I) but the effect is much less obvious with (II) or (III). With alkoxyacetyl chlorides the rate of reaction has a relative minimum when O is in the β -position to CO. Similar regularities are observed in the behaviour of chlorides of Cl-acids, the rates for the α -, β -, and γ -derivatives being about = 20:2:3. The α -compounds are characterised by high rate of reaction and small tomp. coeff. which diminishes as the rate of reaction increases. The greater rate is connected with a smaller energy of activation of alcoholysis. The theory of induced alternating polarities cannot be used in explanation of the behaviour of fatty acid ohlorides towards alcohols. COCl₂ is characterised by a very high rate of alcoholysis and its relatively low temp. coeff. ClCO, Et reacts so slowly with (I) in dioxan that the rate cannot be measured satisfactorily. ClCO2Et and ClCO2Pra react at about the same rate with MeOH, ClCO, Me more and $ClCO_2Pr^{\beta}$ much less rapidly. The greatest rate is observed with $ClCO_2CH_2\cdot CH_2Cl$. AcBr and (I) react very rapidly and the change has a small temp. coeff. The following new or revised data are recorded for various chlorides : dl-a-methylbutyryl, b.p. 118.0-118·3°/761 mm.; β-methylbutyryl, b.p. 117·8°/766 mm.; CCl₃·COCl, b.p. 117.9°/754 mm., from CCl₃·CO₂H and SOCl₂ in C₆H₆; dl-a-chloropropionyl, b.p. 110.7-111.2°/760 mm.; aa-dichloro-, b.p. 117.4-117.8°/753 mm., dl-a3-dichloro-, b.p. 43-44°/10 mm., and BBdichloro-, b.p. 43-44°/10 mm., -propionyl; y-chlorobutyryl, b.p. $35-36^{\circ}/12$ mm.; methoxy-, b.p. $50-51^{\circ}/69$ mm., ethoxy-, b.p. $49-50^{\circ}/37$ mm., and n-propoxy-, b.p. $44-44\cdot5^{\circ}/12\cdot5$ mm., -acetyl-; β -methoxy-, b.p. 27-27.5°/3 mm., and β-ethoxy-, b.p. 28-28.5 /2 mm., -propionyl; y-methoxy-, b.p. 46-47°/7 mm., and y-ethoxy-, b.p. 35°/10 mm., -butyryl; 8-methoxy-,

b.p. 51-51.5°/3 mm., and 8-ethoxy-, b.p. 64-66°/4 mm., -valeryl. H. W.

Kinetics of thermal decomposition of potassium formate. A. A. BALANDIN, L. C. FREIDLIN, and D. N. VASKEVITSCH (Sci. Rep. Moscow State Univ., 1936, No. 6, 321-345).-HCO₂K (I) vields chiefly K_2CO_3 (II) at 370-425°, and chiefly $K_2C_2O_4$ (III) at 440-475°; both reactions proceed simultaneously at 425-440°. The energy of activation of the former reaction is 10 times that of the latter. The ratio (II)/(III) of the product falls when <27% of glass is added to the (I), and then rises rapidly to a max. for 10:1 glass-(I) mixtures, at 440°; the ratio is at a min. for 0.8:10 (III)-(I), or 3:10 (II)-(I) mixtures, at 405°. The process is represented as $2(I) \rightarrow$ OH·CH(OK)·CO₂K (IV) \rightarrow (III) + H₂; (IV) \rightarrow (II) + CH₂O; CH₂O \rightarrow CO + H₂. R. T.

Alkylacetylenes and their addition compounds. XX. Reactions of alkenyl esters derived from alkylacetylenes. S. J. SLANINA and G. F. HENNION (J. Amer. Chem. Soc., 1937, 59, 855–857; cf. A., 1936, 1490).—Esters, RCO₂·CR';CH₂, are readily cleaved by various reagents to the ketone, COMeR, and appropriate second fragment. β -Acetoxy- Δ^{α} -heptene (I) with HBr at 0° gives an unstable additive compound, yielding AoBr, AcOH, COMe·C₅H₁₁, and a substance, b.p. 140–150°/ 23 nm.; β -acetoxy- Δ^{α} -hexene (II) gives AcBr, COMeBu, and a substance, b.p. 130–140°/23 nm. β -Chloroacetoxy- Δ^{α} -hexene and HCl at 10° give CH₂Cl·COCl and COMeBu. With NaOMe or p-C₄H₄Me·SO₃Me in NaOH (I) yields MeOAc and COMe·C₅H₁₁, but it is stable for 1 hr, in liquid NH₃ alone at -34° . With I in liquid NH₃ (II) gives CHI₃. R. S. C.

Preparation of angelic acid. H. P. KAUF-MANN and K. KÜCHLER (Ber., 1937, 70, [B], 915— 916).—Tiglic acid (I) is converted into its dibromide and thence into β -bromoangelic acid. This is debrominated in neutral or acid solution to (I), whereas in alkaline solution, particularly with Na-Hg, it affords angelic acid in 70% yield. H. W.

Geometrical isomerism of halogen substituted ethylenic acids. II. Addition of hydrogen bromide to tetrolic acid. V. O. MOCHNATSCH and A. I. STOLLAROV (Compt. rend. Acad. Sci. U.R.S.S., 1937, 14, 559-564).—CMe:C·CO₂H with aq. HBr (saturated at 0°) at 25° or at 40° affords a mixture of $\alpha\beta$ -dibromobutyric acids but aq. HBr (saturated at 25°) at 18-20° gives a mixture of β -bromocrotonic acids separated by fractional crystallisation from H₂O into the β -bromocrotonic acid, m.p. 94·4° (Na and Ca salts), and, from the mother-liquor, its stereoisomeric form, m.p. 80-81° (Ca salt). J. W. B.

n-Fatty acids and certain of their derivatives.— See A., I, 289.

Fats. XXXV. Diene synthesis with fats. IV. Determination of the diene value by iodometry. Diene values of various fats and their interpretation. H. P. KAUFMANN, J. BALTES, and H. BÜTER (Ber., 1937, 70, [B], 903-907; cf. A., 1936, 966).---Maleic anhydride (I) can be determined in COMe₂ or XIV (C)

in solvents not miscible with H₂O by addition of KI-KIO₃ and an excess of 0.1N-Na₂S₂O₃; after 2 hr. 0.1N-I = 0.1N-Na₂S₂O₃ is added and the liberated I is titrated with 0.1N-Na₂S₂O₃. The method is applied to the determination of the "diene val." of fats, which is more accurate when effected in sealed vessels than under a reflux condenser; the presence of the additive products and of other components of the fat is immaterial. The examples of $\Delta^{\theta\lambda}$ -octadecadienoic acid and α -elæostearic acid are cited. The "diene val." is an excellent method for the determination of the content in oils of acids with conjugated double linkings but several oils have "diene vals." although, as far as is known, they are not derived from such acids. The possibility of re-esterification of (I) appears excluded and it must therefore be assumed that all oils which have a diene val. contain compounds which can react with (I). The free fatty acids derived from such oils have no diene vals. so that either the unsaponifiable matter is responsible for the action or the diene-fatty acids are changed under the mildest conditions of hydrolysis. Experiments with linsced oil suggest the presence of previously unrecognised, unsaturated compounds of very labile nature. H. W.

Catalysed polymerisation in monolayers of drying oils.—See A., I, 369.

Action of periodic acid on lactic and pyruvic acid. P. FLEURY and (MLLE.) S. BOISSON (Compt. rend., 1937, 204, 1264—1266; cf. A., 1933, 376).— 0.05-0.025N-Lactic acid (I) with HIO₄ (0.4-0.1N) during 1 hr. at 100° affords MeCHO (1 mol.), CO₂, and H₂O following the reduction of 1 mol. of HIO₄. (I) is very slowly oxidised completely but the amount of aldehyde present decreases only slowly, because CH₂O is formed by the action of hot HIO₄ on MeOH, a secondary product of the main reaction. AcCO₂H with hot HIO₄ easily affords AcOH, which resists further oxidation. J. L. D.

Determination of lactic acid in presence of methylglyoxal. E. BAUER and F. ZIEGLER (Z. physiol. Chem., 1937, 247, 1—5).—To the mixture of lactic acid (I) and AcCHO (II) containing H_2SO_4 and MnSO₄ a tenfold excess of H_2O_2 is added to destroy (II); the mixture is boiled for 20 min., most of the excess of H_2O_2 is destroyed with KMnO₄ or NaHSO₃, and (I) is determined by titration with 0·01*N*-I in the usual way. With biological material the method is best applied after deproteinisation. W. McC.

Oxidation of some polyhydroxylic and polyethylenic higher fatty acids by aqueous alkaline permanganate solutions. T. C. GREEN and T. P. HILDITCH (J.C.S., 1937, 764—767).—With KMnO₄ in aq. NaOH, the isomeric pairs of 0.-dihydroxy-stearic and -palmitic acids afford suberic acid (I); $\varepsilon\xi$ dihydroxystearic acid yields undecoic and glutaric acid, whilst the isomeric μ v-dihydroxybehenic acids yield decane- $\alpha\omega$ -dicarboxylic acid. Similarly, $\theta_i\lambda\mu$ tetra- and $\theta_i\lambda\mu\sigma\pi$ -hexahydroxystearic acids afford (I) and azelaic acid, also formed from α - and β -elæostearic acids. J. D. R.

Diels-Alder diene synthesis. R. DELABX (Bull. Soc. chim., 1937, [v], 4, 765-791).-A lecture. Dieneometry and the diene value of fats. H. P. KAUFMANN (Ber., 1937, 70, [B], 900-902).--The procedure of Ellis and Jones (B., 1937, 152) has no advantage over that of the author (A., 1936, 966) and the term "M.A. val." has no advantage over "diene val." H. W.

Halogenometric determination of fumaric acid. E. SZEGEDY (Z. anal. Chem., 1937, 109, 95—107).— An aq. solution of fumaric acid, free from other substances and exactly neutralised (phenolphthalein), is treated in a stoppered flask with an excess of 0.1N-Br in N-KBr. After 2 hr. in the dark, KI in 0.1N-HCl is added, and the liberated I is titrated with Na₂S₂O₃. Sources of error in the bromometric titration are discussed. J. S. A.

Contact isomerisation of methyl maleate. R. J. LEVINA (Sci. Rep. Moscow State Univ., 1934, No. 3, 183—185).—Me₂ maleate is converted into Me₂ fumarate by passing over Pd-asbestos at 205— 206° in CO_2 . R. T.

Structure of glutaconic acids and esters. IX. α -Methyl- and α -ethyl-glutaconic acids. F. S. FITZGERALD and G. A. R. KON (J.C.S., 1937, 725— 727).—*trans* - α - Methyl - Δ^{β} -propene - $\alpha\gamma$ -dicarboxylic acid (I) with AcCl at 110° followed by hydration (cold H₂O) yields cis- α -methyl- Δ^{α} -propene - $\alpha\gamma$ -dicarboxylic acid (II), m.p. 125—126° (Me₂ ester, b.p. 82—85°/2 mm.). (I) in EtOAc with O₃ affords H₂C₂O₄ and Me α -formylpropionate, whilst (II) gives AcCO₂Me. Similarly, *trans*- α -ethyl- Δ^{β} -propene- $\alpha\gamma$ -dicarboxylic acid gives a non-homogeneous *cis*-acid, H₂C₂O₄ being the only identifiable product from O₃ on both the *cis*- and *trans*-acids in EtOAc. J. D. R.

Vinylene homologues of glutaconic acid. C. GRUNDMANN (Ber., 1937, 70, [B], 1148—1153).— Oxalocrotonic acid is converted by warm 3% H₂O₂ into glutaconic acid (yield 75%). Similar treatment of oxalosorbic acid (I) gives $\Delta^{a\gamma}$ -pentadiene- α s-dicarboxylic acid (Me₂ ester, b.p. 120—122°/2 mm., m.p. 39—40°), identical with the piperylenedicarboxylic acid obtained by Willstätter by degradation of the tropine alkaloids. Treatment of (I) with excess of H₂O₂ in alkaline solution leads to trans-trans-muconic acid. Condensation of the higher polyenedicarboxylic esters with Et₂C₂O₄ is greatly improved by use of KOEt and C₅H₅N in the complete absence of moisture. The esters are hydrolysed by 2N-NaOH and MeOH under N₂ at room temp. The following substances are thus obtained : oxalo-octatrienoic acid, m.p. >360° after much softening at 230—240°, oxidised to $\Delta^{a\gamma\epsilon}$ -heptatriene- α n-dicarboxylic acid, m.p. 199°; oxalodecatetraenoic acid, m.p. >360° after softening at 250°, oxidised to $\Delta^{a\gamma\epsilon\eta}$ -nonatetraene- α -dicarboxylic acid, m.p. 215° when rapidly heated, m.p. >360° after graduat softening when heated slowly. H. W.

dl- and active methyldiglycollic acids and their derivatives. M. GODCHOT and P. VIELES (Bull. Soc. chim., 1937, [v], 4, 937-944; cf. A., 1936, 823).-Et₂ methyldiglycollate (Et α -carbethoxymethoxypropionate) of whatever degree of optical activity (dependent on that of the technical Et lactate used in its prep.) is transformed by NH₃-H₂O at 0° into dl-methyldiglycolldiamide (I), m.p. 126° (Hg deriv-

XIV (c, d)

ative), which cannot be resolved into its optical antipodes by spontaneous crystallisation. (I) is hydrolysed by 10% NaOH to dl-methyldiglycollic acid, m.p. 61° (in sealed capillary) (anhydride,

0<<u>CHMe</u>CO CH₂CO>O, b.p. 118°/28 mm.; dianilide, m.p. 92°). H. W.

Catalytic oxidation of ascorbic acid.—See A., I, 368.

Vitamin-C [and scorbamic acid]. F. MICHEEL and R. MITTAG (Z. physiol. Chem., 1937, 247, 34–42; cf. this vol., 180).—Scorbamic acid (I), decomp. about 100°, yields with air, and especially with benzoquinone, a red dye catalytically reduced by H₂ to a colourless leuco-compound but not to (I). The dye is probably produced by irreversible condensation of 1 mol. of (I) with 1 mol. of dehydroscorbamic acid. Improved methods of preparing aminotetronic acid and 2deoxy-*l*-ascorbic acid are described. W. McC.

Isomerisation of 2:3-dimethylascorbic acid. W. N. HAWORTH, E. L. HIRST, F. SMITH, and W. J. WILSON (J.C.S., 1937, 829-834).-Dimethylascorbic acid (I) with aq. Ba(OH)₂ isomerises to isodimethylascorbic acid (II), b.p. 175°(bath)/0.03 mm., [a]²² -18° in MeOH, showing no selective absorption, and converted quantitatively into the amide of (I), from which (II) may be regenerated by aq. Ba(OH)₂. (II) when heated at 120°/0.1 mm. yields in some cases (catalytic impurity) (I), whilst heating with MeOH-HCl affords 2-methylascorbic acid (III), a syrup, $[\alpha]_{p}$ +10° in H₂O, converted by CH₂N₂ into 2:3dimethyl-1-ascorbic acid monohydrate (IV). 1-Ascorbic acid (V) with CH₂N₂-Et₂O affords mainly 3-methylascorbic acid, but also small quantities of monomethylhetero-ascorbic acid (?1-methyl) (VI), formerly (cf. A., 1934, 1333) described as 2-methylascorbic acid, hydrolysed by H₂O to (V), and converted by CH₂N₂ into a Me₂ derivative which with H₂O yields (III). (I) with CPh₃Cl in C₅H₅N affords 6-triphenylmethyl-2: 3-dimethyl-1-ascorbic acid (VII), m.p. 156°, [a], +35° in CHCl₃, and an isomeric substance (VIII), m.p. 178°, $[\alpha]_{D}$ +31° in CHCl₃, also produced by isomerisation of (VII) with McOH-NH₂. (VII) and (VIII) with HCl-CHCl₃ yield (IV), with MeI-MeOH-Ag₂O give triphenylmethyltrimethyl-1-ascorbic acid, m.p. 131°, $[\alpha]_{D}$ +31.5° in CHCl₃, and with HCl- $CHCl_3$ at -5° give 2:3:5-trimethyl-l-ascorbic acid (IX), m.p. 69—70°, $[\alpha]_D$ —11.4° in H₂O (mono-p-nitrobenzoate, m.p. 118°), isomerised by Ba(OH)₂ to isotrimethyl-l-ascorbic acid (X), b.p. 115° (bath)/0.01 mm., m.p. 38°, $[\alpha]_{0}^{16} - 34.9^{\circ}$ in H₂O (amide, m.p. 115°, $[\alpha]_{\mu}^{16} = 35.4^{\circ}$), showing no selective absorption in H₂O. When boiled with MeOH-HCl, (X) affords (III), methylated by CH_2N_2 to (IX). J. D. R.

Acetone derivatives of gluconic acid. W. N. HAWORTH, E. L. HIRST, and K. A. CHAMBERLAIN (J.C.S., 1937, 795-797).—Ca gluconate H_2SO_4 , COMe₂, and CuSO₄ afford a mixture of di- (I), m.p. 154°, $[\alpha]_{1^6}^{1^6} +11°$ in EtOH, and tri-isopropylidenegluconic acid (II), m.p. 111°, $[\alpha]_{1^6}^{1^6} +31°$ in EtOH, hydrolysed (MeOH-HCl) to (I). (I) with MeI-Ag₂O in MeOH yields Me 2-methyldiisopropylideneglucomate, b.p. 105°/0.02 mm., m.p. 44°, $[\alpha]_{1^6}^{1^6} +41°$ in H₂O, which is hydrolysed (HCl) to 2-methyl- γ -gluconolactone, a syrup, $[\alpha]_{\rm D}$ +45°, converted by MeOH-NH₃ into 2-methylgluconamide, m.p. 139°, $[\alpha]_{\rm D}^{16}$ +39° in H₂O. X-Ray examination of (II) shows it to be probably either the 1:2, 3:4, 5:6- or the 1:2, 3:5, 4:6-[CMe₂:]₃ compound. J. D. R.

alloMucic acid. F. L. HUMOLLER and W. F. McMANUS (J. Amer. Chem. Soc., 1937, 59, 945–946). —Priority of Posternak (A., 1936, 55) for the prep. of this acid is acknowledged (cf. this vol., 49).

R. S. C. Constitution and reactions of thiocarbonyl tetrachloride. III. Reaction with primary alkylamines and phenols. J. M. CONNOLLY and G. M. DYSON (J.C.S., 1937, 827-828).—n-Heptyl- and allyl-amine in Et₂O with K₂CO₃ in H₂O and CSCl₄ in Et₂O afford respectively S-n-heptyl- and S-n-allyl-aminotrichloromethylthiol, both oils, decomp. 170°. NH₂R with CSCl₄ in ligroin yields NHR·S·CCl₃, converted by excess of NH₂R and HCl into NR·C(NHR)₂,HCl, also prepared by methylation (Me₂SO₄) of CS(NHR)₂ followed by heating with NH₂R. Thus are prepared triallyl-, m.p. 176°, tribenzyl-, m.p. 201°, and triisoamyl-, m.p. 206°, -guanidine hydrochloride. OPh·S·CCl₃ with NaOEt in EtOH affords S-ethoxytrichloromethylthiol, b.p. 155° (decomp.), also prepared from CSCl₂ and NaOEt in Et₂O-EtOH, converted by excess of NaOEt into Et₄ orthocarbonate, b.p. 158°. Similarly are prepared S-isobutoxytrichloromethylthiol, b.p. 181° (decomp.), and Bu^β orthocarbonate, b.p. 238°.

J. D. R.

Thetines and selenetines. E. BILMANN and K. A. JENSEN (Bull Soc. chim., 1936, [v], 3, 2310-2318).—CHMeBr·CO₂Et (I) when treated with Me₂S in the hot or cold yields SMe₃Br, m.p. 201–202° (sealed tube; cf. lit.), and Et α -methylthiopropionate (II), b.p. 173–175°/773 mm. and 70–72°/14 mm., also obtained from (I) and a suspension of NaSMe in Et₂O. The prep. of solid NaSMe by treatment of NaOEt-EtOH with MeSH and then Et₂O is described. (II) when treated with MeI in the hot or cold yields $SMe_{a}I$, m.p. 213—214° (sealed tube; cf. lit.), and CHMeI·CO₂Et. CHMeBr·CO₂H (III) with Et₂S in the cold during 17 days gives diethylpropiothetine hydrobromide, CHMe(SEt₂)Br)·CO₂H, m.p. 105- 105.5° (decomp.), but with Me₂S (or Et₂S) at 100° SMe₃Br (or SEt₃Br) and SMe CHMe CO₂H. Similarly, (I) and Me₂Se gives trimethylselenonium bromide, m.p. 197—198° (sealed tube). (III) with R_2Se (R = Me or Et) gives mixtures of CHMe(SeR_2)Br)·CO₂H and SeR₃Br. All atempts to prepare propiothetinates and propioselenetinates failed. H. G. M.

Inhibition of photochemical reactions by nitric oxide.—See A., I, 370.

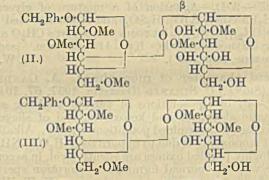
Kinetics of polymeric aldehydes. IV. Mechanism of the process of dissolution of polyoxymethylenes. J. LOBERING (Ber., 1937, 70, [B], 967—970).—Determination of the rate of dissolution of polyoxymethylene Me₂ ethers shows that the long chains are dissolved and then become degraded in the solution; with polyoxymethylenes a similar process is very probable. H.W. β-Heptyl- and β-nonyl-acraldehydes. R. DEL-ABY (Bull. Soc. chim., 1936, [v], 3, 2375–2382).— Acraldehyde (I) with $n \cdot C_7 H_{15}$ ·MgBr–Et₂O gives vinyl-n-heptylcarbinol, b.p. 99—101°/11·5 mm., 114— 116·5°/25 mm. (acetate, b.p. 122—123°/24 mm.), converted by PBr₃- $C_5 H_5 N$ into α-bromo- Δ^{β} -decene, b.p. 118—121°/17·5 mm. (corresponding α-acetoxy- (II), b.p. 132—134°/18 mm., and α-isobutoxy-, b.p. 147— 148°/18 mm., -compounds), which with (CH₂)₆N₄ in CHCl₃ vields a quaternary ammonium salt (III), C₇H₁₅·CH:CH·CH₂·N:(N₃C₆H₁₂)}Br. Hydrolysis of (II) with NaOH gives Δ^{β} -decenol, b.p. 117—118°/11 mm., oxidised by K₂Cr₂O₇-H₂SO₄ to Δ^{α} -decenal, b.p. 106—108°/12 mm. (semicarbazone, m.p. 168·5°), also obtained by hydrolysis of (III). Similarly, vinyl-nnonylcarbinol, b.p. 131·5—132°/13·5 mm., prepared from $n \cdot C_9 H_{19}$ ·MgBr-Et₂O and (I), is converted into αbromo- Δ^{β} -dodecene, b.p. 142—144°/12·5 mm.; this with (CH₂)₆N₄ in CHCl₃ gives a quaternary NH₄ compound, hydrolysed to Δ^{α} -dodecenal, b.p. 108—109°/1 mm. (semicarbazone, m.p. 165·5—166°; cf. A., 1932, 721). H. G. M.

Preparation of alkoxyaldehydes by oxidation of glyceryl α -ethers with periodic acid. L. PALFRAY and S. SABETAY (Bull. Soc. chim., 1937, [v], 4, 950-951).—Agitation of a mixture of glyceryl α -CH₂Ph ether, KIO₄, H₂SO₄, and H₂O emulsified by CH₃·[CH₂]₁₁·O·SO₃Na at room temp. gives CH₂O and benzyloxyacetaldehyde, b.p. 115°/15 mm. (semicarbazone, m.p. 120°). H. W.

Acid character of monoximes. A. GANDINI and (SIGNA.) C. STRANEO (Gazzetta, 1937, 67, 104– 113).— $p_{\rm H}$ of aq. solutions of various aliphatic and aromatic aldoximes and ketoximes, and of alicyclic ketoximes, is determined potentiometrically. Alkaline $p_{\rm H}$ of monoximes is due to impurities (NH₂OH, NH₃); the highly purified oximes are slightly acid, in accordance with the normal formulæ. Absorption spectra are also determined. E. W. W.

Study of the α - and β -aldoses and their solutions by bromine oxidation and mutarotation measurements. H. S. ISBELL and W. W. PIGMAN (J. Org. Chem., 1937, 1, 505-539).-When a- and β -pairs of sugars have the O-ring on the right in the projection formulæ, the more dextrorotatory member is termed α ; when the O-ring is on the left, the less lævorotatory member is termed β . All aldoses thus termed β are oxidised by Br more rapidly than are the α -isomerides. The O-ring of pentoses is not in the plane of the C atoms and the mol. as a whole is asymmetric; the configuration of the ring in pentoses is allotted by comparison with hexoses. Assignment of structures on the above system is discussed in detail. The rate of oxidation of equilibrium solutions of sugars is at first that of the β - and later that of the α -form; the amounts of α - and β -forms present in the mixture, calc. from the rates of oxidation, are compared with the amounts calc. from $[\alpha]$ on the assumption that only α - and β -forms are present. The approx. correspondence of the two methods shows that the equilibrium mixture contains mainly α - and β-forms, but possibly also other forms, particularly for galactose (I), arabinose (II), talose (III), and ribose (IV); part of the equilibrium mixture of (IV), how-N* (A., II.)

ever, is oxidised more rapidly than the β -form, which may thus be incorrectly designated. The rate of oxidation of the equilibrium mixture from (d-gulose), CaCl2, H2O (V) indicates existence of 32% of the unknown β -form. At 0° and 20° mutarot-ation of α - and β -d-glucose and -mannose, α -dgulose, CaCl₂, $H_2O(V)$, α - and β -d-lyxose, α -l-rhamnose, α - and β -lactose, and β -maltose is a first-order reaction, that of α - and β -d-(I), α - and β -l-(II), β -l-(II), CaCl₂, 4H₂O, d-mannose, CaCl₂, H₂O, α -d-(III), and l-(IV) is complex. Temp. coeffs. are determined for the mutarotation of 20 sugars; α - and β -forms mutarotate 8.34 and 5.32 times, respectively, faster at 20° than at 0°. Mutarotations occurring when equilibrium mixtures of (I), (II), and (III) are cooled give maxima, showing that constituents other than the α - and β -forms are present. [α] of a freshly prepared solution of α - and β -d-(I) in proportions corresponding with the equilibrium $[\alpha]$ decreases to a min. and then returns to the original val., which proves conclusively the presence of other modifications. The following approx. contents of α -form in the equilibrium mixtures are calc.: d-glucose 37, d-mannose 69, d-(I) 31, d-(III) 56, (V) 18.5, l-(II) 32.4 (26.5), d-xylose 32, d-lyxose 80, d- and l-ribose 89, l-rhamnose 69, lactose 37, maltose 37. R. S. C.

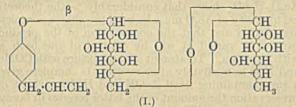

Oxidation of carbohydrates in acid solution. M. R. EVERETT and F. SHEPPARD (Univ. Oklahoma Med. School, Dept. Biochem., 1937, 66 pp.).-Results are recorded of a study of the oxidation of many carbohydrates by Br-H₂O in acid solution, identification of the products being based on the Sumner/Folin-Wu ratios of glucose equivs., mol. optical rotations, and ratios and mols. of acid/reducing material. The stages of oxidation of aldoses are (1) formation of monocarboxylic lactones, (2) production of dicarboxylic and keturonic acids (I), and (3) oxidation of (I). Ketoses are partly changed to *l*-keturonic acids (II). Sugar alcohols and non-reducing glucosides are first converted into ketoses and then partly oxidised to (II). Bromide retards all stages of oxidation, particularly (2), hence more (I) is formed in dil. solutions of sugar. Buffers accelerate all stages and cause production of mixtures of (I). Increased temp. does not invariably cause the same acceleration of the several reactions. With ketoses, α -glucosides (III), methylpentoses (IV), and d-glucosamine, oxidation is not distorted; with other aldoses, reducing disaccharides, and β -glucosides (V), a greater formation of non-reducing acids occurs. Oxidation paths are determined by substitution at C₍₁₎, cis-trans-isomerism of the intermediate C atoms, and substitution at C₍₆₎. The first is manifested in the great differences between α - and β -glucosides, the second determines the relationship of isomeric sugars, whilst the third becomes important for (IV) and dicarboxylic acids. A biological significance of cistrans-isomerism is indicated. Oxidation of glucosides provides a chemical method for distinguishing between α - and β -isomerides in solution. With hexosides, colour tests suffice to detect this difference but optical activity is applicable to all glucosides. Only reducing (III) capable of forming bionic lactones exhibit appreciable changes of rotation during oxidation; these are \ll the marked changes of (V). (III)

and (V) differ in rates of hydrolysis and oxidation mechanisms. (V) follow the rapid oxidation paths of their component units; the sec.-OH of (III) are more slowly oxidised without hydrolysis. At higher temp. these reactions become more nearly identical for the two series. The effects of $\alpha\beta$ -isomerism extend to linkings in anhydro-sugars and polysaccharides. Complications appear in the former when both ordinary ring structures and glucosidic O bridges are present so that some resemble (III) and others (V). cis-trans-Isomerism of cyclic C atoms exerts its influence on oxidation via ring stability and lactone equilibria. Content of (I) and mol. optical rotations of oxidised sugar solutions are predictable from this isomerism. Optimal conditions for the formation of (I) are provided by perfectly compensated types of cyclic trans isomerism; minimal conditions by complete cis arrangement. (I) are formed from pentoses through furanose and y-lactone modifications, from hexoses through pyranose and 8-lactone, and from heptoses through E-oxide form and E-lactone. In many respects the oxidation of carbohydrates by HNO₃ resembles that by Br but the latter is advantageous for analytical studies. Unoxidised anhydro-sugars of the a-dglucosan series show the same remarkable behaviour with analytical reagents as do their reducing poly-merides. H. W.

Dibenzylidene-glucose and -glycuronic acid from 6-benzoyldiethylmercaptoglucose. Synthesis of another dibenzylideneglucose from 4:6benzylideneglucose. P. E. PAPADIKIS (J. Amer. Chem. Soc., 1937, 59, 841-843).-Diethylmercaptoglucose 6-benzoate (modified prep.), m.p. 114°, [a]²³ +47.23° in CHCl₃, with ZnCl₂ in PhCHO gives (?1:2:3:5-)dibenzylideneglucose 6-benzoate, m.p. 156°, stable to Fehling's solution, hydrolysed by hot KOH-EtOH or cold NaOMe-CHCl₃ to (?1:2:3:5-) dibenzylideneglucose (I), m.p. 163°, which with NaOBr in aq. C5H5N gives a little dibenzylideneglycuronic acid, m.p. 175°. Dry 4:6-benzylideneglucose and P2O5 in PhCHO give a non-reducing dibenzylideneglucose, R. S. C. m.p. 163°, different from (I).

Glucose 2:3:6-tri-p-toluenesulphonate. K. HESS and L. KINZE (Ber., 1937, 70, [B], 1139-1142). -1-a-Bromoglucose 4-acetate 2:3:6-tri-p-toluenesulphonate (I), obtained by fission of starch *p*-toluenesulphonate by HBr-AcOH, is smoothly converted by a large excess of AgOAc in warm AcOH into β -glucose 1:4-diacetate 2:3:6-tri-p-toluenesulphonate, two forms, m.p. 140-142° and 150-151°, respectively, $[\alpha]_{D}^{20} + 17.6^{\circ}$ in CHCl₃, $+39.3^{\circ}$ in C₆H₆, $+19^{\circ}$ in COMe2. Glucose 4-acetate 2:3:6-tri-p-toluenesulphonate (II), $[\alpha]_{D}^{19} + 24.6^{\circ}$ in CHCl₃, $+60.0^{\circ}$ in C₆H₆, $+27.8^{\circ}$ in COMe₂, obtained from (I), H₂O, and a large excess of Ag₂O, is a mixture of the α - and β -forms which could not be isolated individually; addition of AgNO₃, application of Schlubach's method, or use of dry TIOH did not give improved results. Treatment of (II) with Ac₂O containing KOAc or NaOAc gives a mixture of glucose 1: 4-diacetate 2:3:6-tri-p-toluenesulphonates (III), m.p. 86—93° (indef.), $[\alpha]_{\rm p}^{\rm p}$ +65·2° in C₆H₆, +48·9° in CHCl₃, which could not be separated into individuals. (I) is readily transformed by HgCl₂ in boiling C_6H_6 into 1- α -chloroglucose 4acetate 2:3:6-tri-p-toluenesulphonate, m.p. 173—174°, $[\alpha]_{p^0}^{20}$ +80.7° in CHCl₃, +70.3° in COMe₂, +132.2° in C₆H₆ [also derived from (II) and p-C₆H₄Me·SO₂Cl in C₅H₅N at room temp.], which does not react with mol. Ag, Na powder, or Ag₂O. Treatment of (III) with NaI in COMe₂ at 90° and then at 115° leads to 6-iado- β -glucose 1:4-diacetate 2:3-di-p-toluenesulphonate, m.p. 189—190° (decomp.), $[\alpha]_{p^0}^{20}$ +13.0° in CHCl₃, +22.1° in C₆H₆, +10.1° in COMe₂. H. W.

Partly methylated disaccharides. I. K. HESS, H. VON HAMMERSTEIN, and W. GRAMBERG (Ber., 1937, 70, [B], 1134—1138).—Benzylcellobioside is shaken with ZnCl₂ and PhCHO and the product is poured into light petroleum; the powdery residue is treated with C_5H_5N (to remove ZnCl₂) and, after removal of the solvent, with abs. EtOH, thus giving benzylidene- β benzylcellobioside (I), $[\alpha]_{20}^{20}$ —47.0° in MeOH, —47.8° in C_5H_5N . Removal of :CHPh from (I) can be effected with 0.001*N*-H₂SO₄ at 100° or by 0.01*N*-HCl-MeOH. (I) in small quantities with Ag₂O and MeI affords benzylidenepentamethyl- β -benzylcellobioside, m.p. 140°, $[\alpha]_{20}^{20}$ —53.2° in CHCl₃, —48.0° in MeOH, —45.8° in COMe₂, hydrolysed to 2:3:6:8:10pentamethyl- β -benzylcellobioside (II), m.p. 140°, $[\alpha]_{20}^{20}$



-42.2° in CHCl₃, -42.5° in MeOH. Treatment of acetobromomaltose with CH₂Ph·OH and Ag₂CO₃ and hydrolysis of the product with NH₃-MeOH at 0° yields β -benzylmaltoside, transformed by PhCHO and ZnCl₂ into benzylidene- β -benzylmaltoside, m.p. (indef.) 110-116°, $[\alpha]_{\rm D}^{\circ}$ +27.3° in MeOH, +21.0° in CHCl₃, +31.0° in COMe₂. This is methylated to benzylidenepentamethyl- β -benzylmaltoside, m.p. 132-133°, $[\alpha]_{\rm D}^{\circ}$ +33.0° in MeOH, +29.6° in COMe₂, +38.4° in CHCl₃, hydrolysed to 2:3:6:8:10-pentamethyl- β -benzylmaltoside (III), m.p. 103-104°. H. W.

Anthranol- β -d-glucoside. J. H. GARDNER and T. F. McDONNELL (J. Amer. Chem. Soc., 1937, 59, 857—858).—Anthrone, acetobromoglucose, and KOH in aq. COMe₂ give anthranol- β -d-glucoside tetra-acetate, m.p. 205—205·2°, converted by Ba(OH)₂ in aq. EtOH at 60° into the free glucoside, +H₂O, m.p. 204—206°, which is hydrolysed by 0·05*N*-HCl (1 hr.; to anthrone) or -KOH (30 min.; to anthrone and dianthrone) and by 9% aq. borax (64% in 1 hr.). Barbaloin is thus not an anthranol glucoside. R. S. C.

Glucoside of Belamcanda chinensis (L.,) Leman (Pardanthus chinensis, Ker.), shekanin (tectoridin). C. MANNICH, P. SCHUMANN, and W. H. LIN (Arch. Pharm., 1937, 275, 317–328).—Shekanin (I), m.p. 257° (decomp.), $[\alpha]_{20}^{20} - 29\cdot4°$ (Ac₆ derivative, m.p. 182°, $[\alpha]_{20}^{20} - 34\cdot9°$ in C₆H₆), isolated in 1.5% yield from the rhizome of this plant by EtOH, is proved to be identical with tectoridin (isolated from *Iris tectorum* with $[\alpha]_{20}^{20} - 29\cdot95°$) by hydrolysis to glucose and tectorigenin (II), m.p. 230° (decomp.) (Ac₃, m.p. 190°, and Bz₃ derivative, m.p. 230°; *Me*₂ *ether*, m.p. 188°, and its *Ac* derivative, m.p. 213— 214°). The *Me ether*, m.p. 230°, of (I) with 38% HCl gives the 4'-*Me ether* (III), m.p. 191—192°, of (II). With HBr-AcOH (II) gives 5:6:7:4'-tetrahydroxyisoflavone, m.p. about 270° (*Ac*₄ derivative, m.p. 217— 220° after sintering), with 65% HNO₃ gives picric acid, and with KOH gives iretol, *p*-OH·C₆H₄·CH₂·CO₂H, and HCO₂H. KOH converts (III) into iretol and *p*-OMe·C₆H₄·CH₂·CO₂H.

lusitanicoside (chavicol-B-Synthesis of rutinoside), the glucoside from Cerasus lusitanic, G. ZEMPLÉN and A. GERECS (Ber., 1937, Lois. 70, [B], 1098-1101).-Rutinose hepta-acetate (β-1-lrhamnosido-6-d-glucose β -hepta-acetate) in CHCl₃ is converted by HBr in AcOH at 0° into a-acetobromo-[α-acetobromo-β-1-1-rhamnosido-6-d-glucose], rutinose m.p. $130.5-131^{\circ}$, $[\alpha]_{p}^{18} + 90.68^{\circ}$ in CHCl₃, which is converted by chavicol and KOH in COMe2-H2O into chavicolrutinoside hexa-acetate, m.p. 171.5° , $[\alpha]_{L}^{18}$ -48.43° in CHCl₃. This is hydrolysed by NaOMe

in abs. MeOH to chavicol- β -rutinoside, m.p. 188.5°, $[\alpha]_{\rm D}^{18}$ -73.86° in H₂O, identical with the lusitanicoside of Héressey et al. (A., 1932, 662), which is therefore (I). H. W.

Ring structure of xylal. W. N. HAWORTH, E. L. HIRST, and C. S. WOOLVIN (J.C.S., 1937, 780– 782).—Xylal diacetate deacetylated and methylated (Me_2SO_4 and NaOH followed by MeI and Ag₂O) affords *dimethylxylal* (I), b.p. 73°/17 mm., $[\alpha]_{11}^{16}$ —180° in CHCl₃. (I), oxidised in H₂O by BzO₂H in Et₂O, followed by methylation (NaOH-Me₂SO₄ and MeI-Ag₂O) and hydrolysis (HCl), affords trimethyl-lyxose and -xylose, proving the pyranose structure of xylal. J. D. R.

Polysaccharides. XXIV. Yeastmannan. W.N. HAWORTH, E. L. HIRST, and F. A. ISHERWOOD (J.C.S., 784—791).—Extraction of yeast with aq. NaOH, followed by formation of a Cu(OH)₂ complex, decomp. of this by HCl, and repeated pptn. by EtOH from H₂O yields yeast mannan, (I), $(C_6H_{10}O_5)_n$, $[\alpha]_D^+ + 89^\circ$ in H₂O {acetate (II), by Ac₂O-C₅H₅N, $[\alpha]_D^+ + 62^\circ$ in CHCl₃}. Methylated mannan, $[\alpha]_D^{24} + 85^\circ$ in CHCl₃ [from (I) or (III) by Me₂SO₄-NaOH], is hydrolysed by 1% HCl in MeOH at 150° to tetramethylmethylmannopyranoside (III), b.p. 120—125°/0.07 mm., 2:3:4-trimethylmethylmannoside (IV), b.p. 145—155°/ 0.1 mm., and 3:4-dimethylmethylmannoside (V), b.p. 138—145°/0.04 mm., the proofs of these structures being as follows. (III) is hydrolysed (H₂SO₄) to tetra-

methylmannose, recognised as the anilide and mannonolactone. (IV) is hydrolysed (H₂SO₄), at a rate indicating a pyranoside structure, to 2:3:4-trimethylmannose (VI), which is oxidised (Br-H₂O) to 135°/0-02 2:3:4-trimethylmannonolactone, b.p. mm., m.p. 91–92°, $[\alpha]_D^{20}$ +138° in H₂O. (VI) is oxidised (HNO₃) to 2:3:4-trimethylmannosaccharic acid (diamide, m.p. 191°). (V) is hydrolysed (H2SO4; rate indicates a manno-pyranoside structure) to 3:4dimethylmannose monohydrate, (VII), m.p. 107-109°, $[\alpha]_{\rm p} + 3^{\circ}$ in H₂O, oxidised (Br-H₂O) to 3: 4-dimethylmannonolactone, m.p. 157-158°, [a] +174° in H2O, the rate of hydrolysis of which indicates a δ-structure, converted by NH₃-MeOH into 3 : 4-dimethylmannon-amide, m.p. 140°, $[\alpha]_{10}^{20} + 22^{\circ}$ in H₂O, which with NaOCl yields NaCNO, indicating a free OH at C₍₂₎. (VII) yields an osazone with no loss of OMe, and with MeOH-HCl the $[\alpha]$ is unaltered, showing substitution at C₍₄₎. The structural unit of yeast mannan consists, therefore, of three mannose residues; one is attached by its reducing group to another, and thus forms a terminated side-chain, one is attached at $C_{(1)}$ and $C_{(6)}$ to the other two, and the third is attached to other residues at C(1), C(2), and C(6). J. D. R.

Polysaccharides. XXV. a-Amylodextrin. W.N. HAWORTH, E. L. HIRST, H. KITCHEN, and S. PEAT (J.C.S., 1937, 791-795; cf. A., 1935, 1355).-Starch, with β-amylase from wheat, at 38° affords maltose and α -amylodextrin (I), $[\alpha]_p^0 + 167^\circ$ in H₂O, which yields an acetate (II) with Ac₂O-C₅H₅N or with Ac₂O-AcOH-Cl2-SO2. Three specimens of methylated amylodextrin, from (I) by NaOH-Me₂SO₄ and from two specimens of (II) by deacetylation and methylation, yield, by the end-group method of assay, 9.8, 10.5, and 10.4%, respectively, of tetramethylglucose, indicating a chain length of 11-12 glucose units. It is considered that this represents genuine a-amylodextrin, which is not identical with that formerly described (loc. cit.), where a length of 16-17 units was found. J. D. R.

Mol. wt. of limit-dextrin. K. MYRBĀCK (Svensk Kem. Tidskr., 1937, 49, 145—152).—The diffusion of limit-dextrin in NaCl aq. gives vals. for M from 2240 to 3300, in agreement with those calc. from the reducing power. The material is homogeneous and does not show any ageing effects.

M. H. M. A.

Degradation of methylated inulin to hexamethyldifructosan. W. N. HAWORTH, E. L. HIRST, and F. A. ISHERWOOD (J.C.S., 1937, 782-784).--Drastic methylation of deacetylated inulin acetate or dimethylinulin leads to methylated inulin (α)²⁶ -55° in CHCl₃, after boiling for 50 hr. with MeI-Ag₂O-MeOH is unchanged, but the presence of HI in the MeI affords *hexamethyldifructosan*, b.p. 180°/0·1 mm., [α]²⁶ +59·3°, hydrolysed (H₂SO₄) to 3:4:6trimethylfructofuranose. The strong positive [α] of the methylated inulin of Irvine and Steele (cf. J.C.S., 1930, **117**, 1474) is, therefore, due to depolymerisation. J. D. R.

White oak cellulose. C. D. BIRD and G. J. RITTER (J. Amer. Chem. Soc., 1937, 59, 802-803).— White oak holocellulose (I) resembles that from maple and spruce, contains OMe 1.64, Ac 3.07, and pentosans 23.4%, and yields 1.56% of CO₂. Extracted white oak wood contains lignin (OMe 22.44\%) 23.4, OMe 6.44, Ac 2.37, and pentosans 18.7%, and yields 1.2% of CO₂. R. S. C.

Decomposition of ethers and esters of cellulose with sodium in liquid ammonia. P. SCHORIGIN and N. N. MAKAROVA-SEMLJANSKAJA (Compt. rend. Acad. Sci. U.R.S.S., 1937, 14, 509-511).—Benzylcellulose with Na in liquid NH₃ yields cellulose and $(CH_2Ph)_2$. The reaction product of trimethylcellulose and Na in liquid NH₃, treated with CO₂, gives a small yield of an acidic cellulose, indicating that a Nacellulose with a C-Na structure is formed. Under similar conditions, cellulose acetate is completely deacetylated. J. D. R.

Nitration of cellulose. A. BOUCHONNET, F. TROMBE, and G. PETITPAS (Bull. Soc. chim., 1937, [v], 4, 894—904).—HNO₃-H₂O with <33% H₂O yields stable cellulose nitrates but causes hardening and considerable diminution in the final val. of the product. These drawbacks can be overcome by use of HNO₃ containing alkali nitrates, sulphates, or phosphates, whereby products of high N content are obtained. Similar results are attained by the action of conc. HNO₃ on cellulose nitrates of lower N content obtained by means of HNO₃-H₂SO₄ or HNO₃-salts.

H. W.

Highly polymerised compounds. CLIV. Cellulose acetates and celluloses. H. STAUDINGER and G. DAUMILLER (Annalen, 1937, 529, 219-265).-The highly polymerised nature of the insol. cellulose triacetates (I) obtained by the action of Ac2O-C5H5N on cotton or ramic is established by their hydrolysis to celluloses (II) of the same high mol. wt. as the initial materials. Only strongly degraded (II) of degree of polymerisation <500 yield sol. acetates. Attempts to obtain more freely sol. esters by causing irregularity in structure by use of a mixture of acylating reagents did not lead to the desired result. Treatment of (I), re-pptd. from Schweitzer's reagent, with C_5H_5N until all the H_2O is displaced and then with $C_5H_5N-Ac_2O$ gives eucolloidal (II), sol. in $C_2H_2Cl_4$ or m-cresol and with more difficulty in CHCl₃, freely sol. in HCO₂H, in which they suffer degradation. They do not age. A continuous series of polymerichomologous triacetates similar to the trinitrates is thus available. Investigation of the viscosity of (I) in CHCl₃ and m-cresol shows that the polymeric homologues of very varied method of prep. have the same K_m const. Also, from the simplest to the most complex (I) the same relationship maintains between mol. wt. and sp. viscosity of equally conc. dil. solutions. All the acetates therefore have the same structure and the same form and are thus polymeric-homologous products. From the osmotically determined mol. wts. and the $\eta_{\rm sp}/c$ vals, the K_m const. for cellite are calc, in $COMe_2$ and *m*-cresol; they are > those of (I) in *m*cresol. Revision of the K_m consts. for (II) indicates the necessity of doubling the mol. wt. hitherto adopted; its degree of polymerisation is < 2000, in harmony with investigation of the mol. wt. of cellulose nitrate. The K_m consts. for (II) and its derivatives do not differ very greatly from one another but are widely different

from those of starch and its derivatives. The viscosity relationships of (II) show that eu-, meso-, and hemicolloidal products have the same structure and that in all of them the glucose residues are united straight, unbranched chains. The K_m consts. are very close to those calc. for products of extended thread form which contain rings in the chain. The conversion of (II) into polymeric-analogous products establishes the macromol. structure of the most complex members by the classical methods of org. chemistry. H. W.

Reversibility of the viscosity of solutions of cellite in acetic acid. K. HESS and W. PHILIPPOFF (Ber., 1937, 70, [B], 1143—1148).—1% solutions of cellite in AcOH are diluted to 0.05% and again conc. to 1%, whereby the sp. viscosity of the original solution is again attained. The reversibility indicates that the apparent rupture of cellulose acetates observed osmometrically by Hess and Ulmann is not attributable to fission of the bridges by a type of hydrolysis. H. W.

Preparation of cellulose acetates. L. CLÉMENT and C. RIVIÈRE (Bull. Soc. chim., 1937, [v], 4, 869-880).-Bleached cotton linters is immersed in a mixture of AcOH and H_2SO_4 at 18–20°, whereby hydro-cellulose is produced and there appears to be a temporary fixation of H_2SO_4 probably as an additive compound. Treatment of the product with AcOH-Ac, $O-H_{2}SO_{4}$ shows that considerably > the theoretical quantity of Ac₂O must be used to achieve complete acetylation and that the composition of the product cannot be varied at will by control of the bath as with nitration. Treatment of the mixture with COMe, and H₂O immediately after reaction is complete gives a ppt. containing fixed AcOH and H_2SO_4 , whilst on preservation the amount of the latter recedes in favour of the former. The primary acetates containing much OAc appear to be mixtures of cryst. and amorphous phases, the former of which disappears during progressive hydrolysis, and when the solubility of the product in OMc_2 is complete, the X-ray dia-gram is ill-defined and without rings. Further hydrolysis leads to cryst. cellulose. Halogen acids are much more effective catalysts of hydrolysis than are H_2SO_4 or $HClO_4$, which are of about equal merit. Generally, good accelerators of hydrolysis are poor catalysts of acetylation. The quantity of H_2O used has a profound influence on the products of hydrolysis. With < the theoretical quantity hydrolysis is observed, but the proportion of residual SO_3 is considerable. With about the theoretical amount, hydrolysis of SO_4 becomes pronounced whilst that of OAc remains regular and without considerable variations. With double the quantity a great variation is not observed with respect to OAc whilst the amount of SO₄ remains const., whereas a larger proportion of H₂O causes further removal of AcOH accompanied, H. W. apparently, by a fresh fixation of H_2SO_4 .

Effect of pressure on the reactions between amines and alkyl halides in acetone.—See A., I, 366.

Action of liquid ammonia on organic halogenocompounds. J. VON BRAUN [with R. LUTE, K. C. WARNE, W. PINKERNELLE, W. ROHLAND, A. POHL, F. DENGEL, and H. ARNOLD] (Ber., 1937, 70,

[B], 979–993).—The yield of primary amine from org. halogeno-compounds is greater when liquid NH₃ is used than with NH₃-H₂O or NH₃-EtOH and increases very greatly with increasing mol. wt. of halide inde-pendently of constitutional details. The method is very advantageous for the prep. of ether-bases, sec. primary and tert.-primary diamines, monoacylated diamines, decarboxypeptides, and quinoline deriv-atives with 2-CH₂Cl whereby nuclear Cl is little affected. With compounds Cl-[CH2]n.Cl spiran formation is observed when the val. of n is suitable; otherwise diamines are mainly produced. With very reactive halogen the formation of imino- rather than amino-compounds is observed.

amino-compounds is observed. $C_5H_{11}Br$ and liquid NH₃ at room temp. afford $C_5H_{11}\cdot NH_2$ (about 10%) and about 80% of NH(C_5H_{11})₂, possibly containing N(C_5H_{11})₃. $C_8H_{17}Br$ gives $C_8H_{17}\cdot NH_2$ (45%) and NH(C_8H_{17})₂ (43%), whilst $C_{12}H_{25}Br$ yields almost 90% of $C_{12}H_{25}\cdot NH_2$. CH_2PhCl and liquid NH₃ give $CH_2Ph\cdot NH_2$ (53%) and NH(CH_2Ph)₂ (39%), whereas with NH₃-EtOH the yields of $CH_2Ph\cdot NH_2$, NH(CH_2Ph)₂, and N(CH_2Ph)₃ are respectively 9%, 35%, and 48%. I- $C_{10}H_7\cdot CH_2Cl$ gives α - $C_{10}H_7\cdot CH_2\cdot NH_2$ and di- α -naphthylamine, b.p. 230–235 /0·3 mm., m.p. 55° (hydrochloride, m.p. 230°; picrate, m.p. 206°; NO-derivative, m.p. 132°). Tri- α -naphthylamine, m.p. 178° (hydrochloride, m.p. Tri- α -naphthylamine, m.p. 178° (hydrochloride, m.p. 192). 199°; picrate, m.p. 211°), is obtained by use of NH₃-EtOH. 9-Bromophenanthrene is converted by Mg and $(CH_2O)_3$ into 9-phenanthrylcarbinol, which with conc. HCl at 100° gives 9-phenanthrylmethyl chloride, m.p. 102° (more readily obtained from phenanthrene, CH_2O , and HCl); this is transformed by liquid NH, into 9-aminomethylphenanthrene, m.p. 107° (yield 70%) [hydrochloride, m.p. 277° (slight decomp.); picrate, m.p. 236°], and di-9-phenanthrylmethylamine, picrate, m.p. 230⁻], and di-9-phenanthrylmethylamine, m.p. 193° (hydrochloride, m.p. 239°; NO-compound, m.p. 268°). With NH₃-EtOH tri-9-phenanthrylmethyl-amine, m.p. 163° (hydrochloride, m.p. 229°; picrate, m.p. 190° after softening at 170°), is obtained. OPh· $[CH_2]_2$ ·NH₂ and OPh· $[CH_2]_3$ ·NH₂ are obtained in 65% and 71% yield respectively from OPh· $[CH_2]_2$ ·Br and OPh· $[CH_2]_3$ ·Br. NH₂Ph is trans-formed by a large excess of $C_2H_4Br_2$ at 100° into non-distillable NHPh· $[CH_a]_3$ ·Br, which with conc. HCl at

distillable NHPh-[CH2]2.Br, which with conc. HCl at 100° affords β -chloroethylaniline, b.p. 91—94°/1 mm. The latter and liquid NH₃ afford NHPh·[CH₂]₂·NH₂ (65%) and di- β -anilinoethylamine, b.p. 215–225°/0·1 mm. [hydrochloride, m.p. 233°; (NO)₃-compound, m.p. 99°]. NPhMe·[CH₂]₂·Br similarly affords β -methylanilinoethylamine (I), b.p. 100–112°/0·3 mm. (picrate, m.p. 174°; hydrochloride, m.p. 205°; Ac derivative, m.p. 88°), and di-β-methylanilinoethyl-amine, b.p. 200-202°/0·3 mm. (hydrochloride, m.p. 204°). The NO-derivative, m.p. 140°, of (I) is transformed by successive treatment with NaHSO3 and HCl into β -methylaminoethylamine, b.p. 115-117° (hydrochloride, m.p. 132°; picrate, m.p. 223°). NPhEt·[CH2]2.Br affords β-ethylanilinoethylamine, b.p. 148-150°/20 mm. (hydrochloride, m.p. 153°; picrate, m.p. 166°; Ac derivative, b.p. 180-185°/0.5 mm., m.p. 100°), and di-β-ethylanilinoethylamine, b.p. 223-230°/12 mm. (hydrochloride, m.p. 203°; picrate, m.p. 176°). NPhMe·[CH₂]₃·Cl yields γ-methylanilino-propylamine, b.p. 112-115°/0·3 mm. (hydrochloride,

m.p. 189°; picrate, m.p. 152°; Ac derivative, b.p. 168-172°/0.2 mm., and its NO-derivative, m.p. 114°), and di-y-methylanilinopropylamine, b.p. 220-222°/0·3 mm. [hygroscopic hydrochloride; picrate, m.p. 266°; Ac derivative, b.p. 250-255°/0·3 mm., and its (NO)₂-derivative, m.p. 161°]. γ -Methylaminopropyl-amine, b.p. 138-139° (hydrochloride, m.p. 185°; picrate, m.p. 227°), and di- γ -methylaminopropylamine, b.p. 122°/15 mm., m.p. 22° (picrate, m.p. 175°; hydro-chloride, m.p. 275°), are described. NHBz·[CH₂]₄·Cl gives benzoylputrescine, b.p. 186°/07 mm. (yield about 70%), and di-8-benzamidobutylamine, b.p. 290°/0.3 mm., m.p. 87° (hydrochloride, m.p. 230°), and NHBz·[CH₂]₅·Cl affords benzoylcadaverine, b.p. 202° 0.5 mm., with di-E-benzamidoamylamine, m.p. 69b

(hydrochloride, m.p. 199°). 3:4-Dichloro-2-chloromethylquinoline and liquid NH3 afford 3 : 4-dichloro-2-aminomethylquinoline, m.p. 104–106° (yield 72%) (hydrochloride, m.p. 239° ; picrate, m.p. 185° ; Ac derivative, m.p. 170°), and di-3: 4-dichloro-2-quinolylmethylamine, decomp. 162-165° (hydrochloride, m.p. 218-220°); with NH3-EtOH at 100° only the sec. base is obtained. 3-Chloro-4-anilino-2-chloromethylquinoline yields 3-chloro-4anilino-2-aminomethylquinoline, m.p. 155° [hydro-chloride, m.p. 214°; picrate, m.p. about 170°; Ac derivative (+11120), m.p. 189°], and di-3-chloro-4anilino-2-quinolylmethylamine, m.p. 232° (hydrochlor-ide, m.p. 225—230°; NO-derivative, m.p. 119°). CH₂Cl·CO·NH·C₅H₄·OEt-p is transformed by contact with PCl₅ and POCl₃ into 3-chloro-4-p-phenetidino-6ethoxy-2-chloromethylquinoline, m.p. 118-120° (hydrochloride, m.p. 231°; picrate, m.p. 155°), which yields 3-chloro-4-p-phenetidino-6-ethoxy-2-aminomethylquinoline, m.p. 110-112° (hydrochloride, m.p. 185°; Ac derivative, m.p. 143°), and di-3-chloro-4-p-phenetidino-6-ethoxy-2-quinolylmcthylamine, m.p. 214-216° (hydrochloride, m.p. 206°; Ac compound, m.p. 160-162° after slight softening).

 $Cl \cdot [CH_2]_{11} \cdot Cl$ gives almost exclusively NH₂ · $[CH_2]_{11} \cdot NH_2$. Br · $[CH_2]_5$ · Br affords mainly dipiperidinium bromide with very small amounts of piperidine and cadaverine. Similarly Br·[CH₂]₄·Br give chiefly dipyrrolidinium bromide with some pyrrolidine and $1-\Delta^{\gamma}$ -butenylpyrrolidine, b.p. 152— 154° (picrate, m.p. 107°; hygroscopic methiodide, m.p. 178°). Br [CH₂]₃·Br affords NH₂·[CH₂]₃·NH₂ and di-y-aminopropylamine, b.p. 210-230°. (CH₂Cl)₂ gives (CH₂·NH₂)₂ and NH(CH₂·CH₂·NH₂)₂; with (CH₂Br)₂ the yield of primary amine is lower and compounds, NH₂·[CH₂]₂·[NH·CH₂·CH₂]_n·NH₂, are pro-

duced. Ph₂, CH₂O, and HCl give only (CH₂Cl)₂ derivatives whereas HBr affords 4:4'-dibromomethyldiphenyl, m.p. 170°, in almost 50% yield. This with liquid

Synthesis of ethylenic amines. R. PAUL and H. COTTIN (Bull. Soc. chim., 1937, [v], 4, 933-937).-Ethylenic amines are best obtained by reduction of the corresponding nitriles with Na and abs. EtOH. Δ^{γ} -Pentenonitrile, b.p. 145°, obtained in 60% yield by passage of NH₃ and CH₂·CH·[CH₂]₂·CN over SiO₂

 $\mathbf{XIV}(g)$

at 480—500°, gives α -amino- Δ^{δ} -pentene, b.p. 105— 106°/767 mm. (hydrate, b.p. about 93°; platinichloride, decomp. 160°; picrate, m.p. 115—116°; H oxalate, m.p. 129—130°). α -Cyano- α -allyl- Δ^{γ} -pentenoic acid passes at 110—120° into α -allyl- Δ^{γ} -pentenonitrile, b.p. 85°/14 mm., 186°/760 mm., reduced to α -amino- β allyl- Δ^{δ} -pentene, b.p. 84—85°/20 mm., 168°/764 mm. (platinichloride, decomp. 142—143°; picrate, m.p. 138—139; H oxalate, m.p. 137°). β -Allyl- Δ^{δ} -pentenyl bromide, b.p. 74—75°/17 mm., obtained with some δ -bromo- β -allylamyl bromide, b.p. 113—114°/13 mm., by gradual addition cf (CH₂:CH·CH₂)₂CH·CH₂·OH and C₅H₅N to PBr₃, affords β -allyl- Δ^{δ} -hexenonitrile, b.p. 90—91°/14 mm., whence α -amino- γ -allyl- Δ^{ϵ} hexene, b.p. 86—18°/23 mm. (picrate, m.p. 124°).

Highly polymerised compounds. CLVI. Polyammonium compounds of high mol. wt. H. STAUDINGER and H. VON BECKER (Ber., 1937, 70, [B], 879-888).-Simple relationships between viscosity and chain length as with homopolar mol. compounds are not observed with proteins, the sp. viscosity of which varies within wide limits with the [H] and electrolytic addenda. Solutions of proteins which obey Einstein's law contain approx. spherical mols.; proteins which give highly viscous solutions of low concn. and with which the viscosity is not \propto concn. have extended mols. Solutions of Na polyacrylate (heteropolar mol. colloid as model for proteins) do not obey the Hagen-Poiseuille law mainly on account of cluster formation of the thread ions. The polyammonium bromides obtained by Gibbs et al. (A., 1933, 381) from NMe₂·[CH₂]₃·Br can be separated by dialysis into less and more viscous fractions the sp. viscosity of which diminishes with increasing concn. Cluster formation is impeded by the presence of HBr and in presence of sufficient electrolyte they behave like homopolar mol. colloids. A more perfect model of the proteins is afforded by polyammonium polyacrylate, which resembles a globulin in its insolubility in dil. NaOH or HCl and its ready solubility in 1.5N-NaCl containing a trace of H' or OH'. The relative viscosity of its solutions in 1.5N-NaCl containing NaOH or HCl (compared with that of a similar solution of NaCl) is independent of [H^{*}] or [OH']. H. W.

Betaines. IV. Mechanism of racemisation of salts of ethyl propiobetainate. E. BIILMANN, K. A. JENSEN, and H. B. JENSEN (Bull. Soc. chim., 1936, [v], **3**, 2295–2305; cf. A., 1935, 331).– (-)-, m.p. 130–131°, [α]_D -19.64° in EtOH, and (+)-Et propiobetainate iodide, m.p. 130-131°, $[\alpha]_{D}^{2^{n}}$ +19.78° in EtOH (prep. described), are racemised at the same speed by a mixture of (+)-NNdiethyl-3-methylbutylamine, b.p. 150-151°/765 mm., $\left[\alpha\right]_{D}^{\circ}$ +17.96°, and its *iodide*, which, as in the case of other tert.-amines and their salts, has a considerable influence on the velocity. Racemisation by means of the weak base PEt₃ occurs very slowly. (+)-, m.p. 157–157.5°, $[\alpha]_{10}^{20}$ +19.60° in EtOH, and (-)trimethyl-a-phenylethylamine iodide, m.p. 156.5-157°, $[\alpha]_{p}^{20}$ -19.60°, prepared by methylation of the appropriate amine, are not racemised by NaOEt-EtOH during 2 months, whilst Et (+)- α -dimethylaminopropionate, b.p. $155 \cdot 5 - 156 \cdot 5^{\circ} / 767 \text{ mm.}, \lceil \alpha \rceil^{20} + 5 \cdot 58^{\circ},$ but not Et d- α -aminopropionate, is racemised by NaOEt-EtOH, but more slowly than the betainate. These results support the view that racemisation involves the formation of an intermediate enolate ion. H. G. M.

Reactions of amino- and imino-acids with formaldehyde. M. LEVY and D. E. SILBERMAN (J. Biol. Chem., 1937, 118, 723—734).—Changes of $p_{\rm H}$ (H electrode) during the titration in presence of alkali of *dl*-alanine, *dl*-valine, *l*-aspartic acid, *l*tryptophan, *dl*-sarcosine, and *l*-hydroxyproline with CH₂O show that NH₂-acids may react with 1 or 2 mols., NH-acids with only 1. Similar measurements with asparagine and CH₂O, and measurements of the rate of disappearance of NH₂-N, show that the product of this reaction is a pyrimidine derivative.

A. LI.

Highly polymerised compounds. CLVII. Measurements of the viscosity of amino-acids. H. STAUDINGER and H. VON BECKER (Ber., 1937, 70, [B], 889-900).-The same relationships between sp. viscosity and chain length are not observed with acylated NH2-acids and their esters (containing an acyl group of high mol. wt.) as with purely homopolar compounds; the observed viscosity is > that calc. by an increment. This is attributed to the influence of the many CO·NH₂ linkings. It is not therefore possible to calculate the chain length in a simple manner from measurements of viscosity as with hydrocarbons and esters. By the addition of the requisite acid chloride to NH, CH, CO, Et, HCl in CHCl₃-C₅H₅N the lauryl, m.p. $61\cdot5^{\circ}$, myristyl, m.p. 70°, palmityl, m.p. 77 $\cdot5^{\circ}$, and stearyl, m.p. $82\cdot5^{\circ}$, derivatives of NH₂·CH₂·CO₂Et are obtained. Analogously, sarcosine Et ester gives palmityl, m.p. 33.5°, and stearyl, m.p. 35–37°, compounds whilst lauryl, m.p. 132°, myristyl, m.p. 133°, palmityl, m.p. 133.5°, and stearyl, m.p. 134°, derivatives are obtained from glycylglycine Et ester. NH₂·CH₂·CO₂H or the requisite acid chloride in presence of aq. NaOH afford the lauryl, m.p. 119.5°, myristyl, m.p. 122°, palmityl, m.p. 123.5°, and stearyl, m.p. 124.5° derivatives. Sarcosine give the *palmityl*, m.p. 61.5°, and *stearyl*, m.p. 67-68°, compounds whilst palmityl, m.p. 113°, and stearyl, m.p. 113.5°, derivatives are obtained from alanine. H. W.

Synthesis of *dl*-alanine in improved yield from α -bromopropionic acid and aqueous ammonia. W. C. TOBIE and G. B. AYRES (J. Amer. Chem. Soc., 1937, 59, 950).—Details are given for obtaining a 65—68% yield in this synthesis. R. S. C.

Colour reactions of sarcosine and alanine with ferric salts. III. J. V. DUBSKY and A. LANGER (Coll. Czech. Chem. Comm., 1937, 9, 137-149).--The following complex salts are prepared, usually by evaporation of aq. solutions of the Fe^{III} salt with sarcosine (S), dl-alanine (A), or glycine (G): FeCl₃, A +H₂O, m.p. 115°, decomp. 134°; FeCl₃, FeCl₂(OH), 3A + 4H₂O, m.p. 70°, decomp. 105°; FeCl₃, 2S + 0.5H₂O, m.p. 65°; FeBr₃, FeBr₂(OH), 2S + H₂O, decomp. 135°; FeBr₃, FeBr₂(OH), 3S; FeBr₃, FeBr(OH), 4S + 2H₂O, decomp. 135°; FeCl₃, FeCl₂(OH), 2A + 4H₂O, m.p. 116°, decomp.

280

 123° ; FeCl₃, FeCl₂(OH), $3A + 2H_2O$, decomp. 120° ;

125; FeCl₃, FeCl₂(OH), 5A + 2H₂O, decomp. 126°; FeCl₃, 2A + 2H₂O, decomp. 126°; FeBr₃, FeBr₂(OH), 2A + H₂O; FeBr₃, FeBr₂(OH), 4A + H₂O, decomp. 145°; FeCl₃, FeCl₂(OH), 3G + 3H₂O, decomp. 120°; FeCl₂(OH), G + 2H₂O, decomp. 119°; FeCl₂(OH), 2G + 1·5H₂O; FeCl₃, FeCl₂(OH), 2G + 2H₂O; FeCl₂, FeCl₂, OH), 3G + 4H₂O; FeCl₂(OH), 2G + 6H O, darkens 120° decomp

 $\text{FeCl}_3, \text{FeCl}_2(\text{OH}), 2G + 6\text{H}_2O$, darkens 120°, decomp. 170°; 2FeCl₃,3HCl,3G, m.p. 95°; FeCl₃,HCl,G, m.p. 96—140°; 2FeCl₃,HCl,G + 4H₂O. J. W. B.

Dideuterovaline and dideuteroleucine. C. R. KINNEY and R. ADAMS (J. Amer. Chem. Soc., 1937, 59, 897-898).-CMe2Br·CH(OEt)2, b.p. 80°/28 mm., gives isobutenaldehyde Et_2 acetal, b.p. 136–139°, reduced by H₂–PtO₂ to isobutaldehyde Et_2 acetal, b.p. 135–136°/745 mm., and by D₂–PtO₂ in EtOAc to $\alpha\beta$ -dideuteroisobutaldehyde Et₂ acetal, b.p. 133–135°/747 mm., which with NH₄Cl-KCN gives $\beta\gamma$ dideuterovaline, m.p. 273° (decomp.) (1.5-2° < dl-valine); this acid contains 25% < the theoretical amount of D, due to loss during enolisation of the aldehyde. Similarly are obtained $\alpha\beta$ -dideuteroiso-valeraldehyde Et₂ acetal, b.p. 164—165°/740 mm., isovaleraldehyde Et₂ acetal, b.p. 167—168°/750 mm., and $\beta\gamma$ -dideuteroleucine, m.p. 271° (decomp.) (2° < dl-leucine) (93.5% pure; enolisation much less R. S. C. probable).

Photographic chemistry of cystine. A. STEIG-MANN (Phot. Ind., 1937, 35, 357-358; cf. A., 1936, 873).—A general method for producing new compounds containing labile S consists in heating together cystine, in H₂O, with CH₂Br·CO₂H (or other halogenofatty acids), NaOH (or other alkali or aldehydes), with or without CH₂O. Thus two new compounds (or mixed compounds) formed from the above substances, with and without CH_2O , are named "cystiformin" and "cysticin" respectively; in emulsions they desensitise strongly, but show no other notable properties. J. L.

Selenium-substituted amino-acids. III. Inactive selenocystine. A. FREDGA (Svensk Kem. Tidskr., 1937, 49, 139-145; cf. this vol., 235).-Study of the variation with time of the solubility of (+)- (I) and (-)-selenocystine, singly and as equimol. mixture, indicates the production of the meso-form in the solution. The hydrochloride and hydrobromide of (I), r-selenocystine hydrochloride. (-)-cystine hydrobromide, and r-cystine hydrochloride are described.

M. H. M. A.

Acid amides. K. VON AUWERS (Ber., 1937, 70, [B], 964-967).-According to present chemical and physical evidence, acid amides are typical tautomeric compounds which in the liquid condition give mixtures of the ·CO·NH₂ and ·C(OH):NH forms. According to peculiarities of their components, the position of equilibrium can be greatly, under conditions almost completely, displaced in one or H. W. other direction.

Photochemical properties of the keto-iminolinking.—See A., I, 370.

Transposition of the functional group carboxyl in the form of an ester. J. MILIOTIS (Bull. Soc. chim., 1936, [v], 3, 2365-2367).-Transposition of carboxyl as ester occurs in the Hofmann degradation of Et oxamate with Br-KOH, the products being OEt CO.NH, only in small amount owing to evolution of NH₃ towards the end of the reaction, and EtOH. H. G. M.

Decarboxypeptides and their derivatives. III. J. VON BRAUN, F. DENGEL, and A. JACOB [in part, with A. BAHN] (Ber., 1937, 70, [B], 994-1001; cf. A., 1930, 73).-Examination of a series of decarboxypeptides shows them to be physiologically inactive when containing NH₂, NHMe, or NHEt but productive of cramp and lowering of temp. when higher alkyl groups are present; the activity appears to attain a max. with groups of medium size. Peptides which are not composed entirely of natural protein components appear physiologically inactive whatever the magnitude of the alkyl group. CHMeBr•COBr and pyrrolidine in dry Et₂O give 1-a-bromopropionylpyrrolidine, b.p. 112-114°/0.2 mm., which with the requisite primary amine afford 1-a-ethylaminopropionylpyrrolidine (Nethylalanyldecarboxyproline), b.p. 90-95°/0.2 mm. (hydrochloride, m.p. 210°; picrate, m.p. 174°), and 1-a-isoamylaminopropionylpyrrolidine, b.p. 130-135°/ 0.2 mm. (hydrochloride, m.p. 201°; picrate, m.p. 147°). Addition of NH₂·[CH₂]₃·NH₂ in Et₂O to CH₂Cl·COCl affords ay-dichloroacetamidopropane, m.p. 125°, transformed by liquid NH3 at room temp. into ay-diaminoacetamidopropane (hydrochloride, m.p. 165°). $\alpha\gamma$ -Diethylaminoacetamidopropane, b.p. 221°/0.5 mm. (hydrochloride, m.p. 158°), and $\alpha\gamma$ -diisoamylaminoacetamidopropane (hydrochloride, m.p. 158°) are described. $Di \cdot \alpha$ -aminopropionamidopropane (very hygroscopic hydrochloride, m.p. 227°) its Et_2 , b.p. 200—204°/0·4 mm., m.p. 45° (hydrochloride, m.p. 120°), and di-isoamyl, b.p. 219—221° (0·2 mm. hydrochloride, m.p. 122°), derivatives have been prepared. Putrescine and CH₂Cl·COCl in Et₂O-CH₂Cl₂ give $\alpha\delta$ -dichloroacet-amidobutane, m.p. 131°, which gives $\alpha\delta$ -diaminoacet-amidobutane, m.p. 108° (very hygroscopic hydro-chloride; Et₂ derivative, m.p. 58°, and its hydro-chloride, m.p. 198°; diisoamyl compound, b.p. 220°/ high vac., m.p. 42-43°, and its hydrochloride, m.p. 248°). Di-a-bromorronionamidolutane, m.p. 175° 248°). Di-a-bromopropionamidobutane, m.p. 175° gives di-a-ethylaminopropionamidobutane (hydrochloride, m.p. 67°) and the corresponding Pr_2 (hydro-chloride, m.p. 80°), Bu°_2 , (hydrochloride, m.p. 58°), diisoamyl (hydrochloride, m.p. 56°), and didecyl compounds, b.p. about 270°/high vac., m.p. 75-77°. aε-Dichloroacetamidopentane, m.p. 121°, gives αε-diaminoacetamidopentane, m.p. 91° (hydrochloride, m.p. 207°; Et₂ derivative, m.p. 227—229°/0·5 mm., m.p. 39—41°, and its hydrochloride, m.p. 201°; diisoamyl compound, b.p. 250-252°/0.1 mm., and its hydrochloride, m.p. 180°). Di-α-bromopropionamidopentane, m.p. 135°, gives non.-cryst. di-a-aminopropionamidopentane (very hygroscopic hydrochloride, m.p. 123° after softening at 105°; Et. derivative, b.p. $230^{\circ}/0.4$ mm. and its hydrochloride, m.p. 100° ; diiso-amyl compound, b.p. $242^{\circ}/0.3$ mm., m.p. 26° , and its very hygroscopic hydrochloride, m.p. 110°). NH₂Et and CHBrEt.COBr afford a-bromobutyrethylamide, b.p. 125-128°/16 mm., m.p. 63°, whence a-ethylamino-, b.p. 120-122°/13 mm., m.p. 43° (hydrochloride, m.p. 113°), and a-isoamylamino-, b.p. 147-152°/16 mm. (hydrochloride, m.p. 84°), -butyrethylamide. a-Ethyl-

amino-, b.p. 177-180°/1 mm. (hydrochloride, m.p. 235°), and α-isoamylamino-, b.p. 180-182°/0.3 mm. (hydrochloride, m.p. 153-155°), are derived from abromo-γ-phenylbutyrethylamide, m.p. 68-69°. α-Bromo-γ-phenylbutyryl chloride, b.p. 122-125°/1 mm., tends to lose HBr when distilled. p-Nitrobenz-βphenylethylamide, m.p. 151°, is reduced (Pd in MeOH) to p-aminobenz-\$-phenylethylamide, m.p. 151° (hydrochloride, m.p. 265°). Di-p-nitrobenzamidobutane, m.p. 260°, affords ad-di-p-aminobenzamidobutane, m.p. 243° (Ac_2 derivative, 299°). Tyramine and p-NO₂·C₆H₄·COCl yield mono-, m.p. 175°, and di-, m.p. 193°, -nitrobenzoyldecarboxytyrosine which are reduced to the corresponding NH2-, m.p. 214°, and (NH2)2-, m.p. 248°, -compounds. H. W.

Carbonyl cyanide. I. R. MALACHOWSKI, L. JURKIEWICZ, and J. WOJTOWICZ (Ber., 1937, 70, [B], 1012-1016).-CO(CH:N·OH)₂ is transformed by Ac₂O at 100° into the diacetate, m.p. 80-81° after softening at 75-77°, which passes at 110°/12 mm. into AcOH and acetoximinoacetonitrile (I), b.p. 110°/9 mm., m.p. (indef.) about 90°. (I) is readily hydrolysed by H₂O to CO₂, HCN, and AcOH. It is transformed by EtOH into Et acetoximinoacetate, b.p. 113°/8 mm., also obtained from Et oximinoacetate and Ac₂O at 90°. At 160° (I) yields AcOH and carbonyl cyanide, b.p. 65.5° (corr.)/740 mm., m.p. -36° to -35°, which does not tend to polymerise and can be kept unchanged in vessels of resistant glass in absence of moisture. It reacts immediately and explosively with cold H₂O giving HCN and CO2. With cold EtOH it yields CN·CO,Et. H. W.

Action of halogen compounds of arsenic and phosphorus on acetylenic carboxylic acids. I. Addition of arsenic chloride to tetrolic acid. V. O. MOCHNATSCH and V. S. BAGNIUK (Compt. rend. Acad. Sci., U.R.S.S., 1937, 14, 553–558). CMe:C-CO₂H and AsCl₃ at 110–115° afford the normal adduct, AsCl₂·CMe:CCl·CO₂H, but at 120–130° decarboxylation occurs to give, after KOH-treatment, α -chloro- β -arsinoxy- Δ^{α} -propene. At 140° the product is α -chloro- Δ^{α} -propenyl- β -arsine, m.p. 91.5-92°. At 150-155° CEt:C·CO₂H with AsCl₃ gives AsO CEt:CHCl; at lower temp. mixtures containing mainly the arsinoxy-acid are obtained. J. W. B.

Phosphetines and arsenetines. E. BIILMANN and K. A. JENSEN (Bull. Soc. chim., 1936, [v], 3, 2306-2309).-CHMeBr·CO₂Et (I) when treated with PEt₃, alone or in Et₂O, gives *Et propiotriethyl-*phosphetinate bromide, CHMe(PEt₃)Br)·CO₂Et, m.p. 113—114°. Similarly, d·CHMeBr·CO₂Et (II) yields a partly active product, instantly racemised by NaOEt-EtOH, rapidly by NEt₃-EtOH, and slowly by EtOH. CHMeBr CO₂H and PEt₃ in an atm. of CO₂ yield propiotriethylphosphetinate hydrobromide,

CHMe(PEt₃)Br)·CO₂H. Et propiotrimethylphos-phetinate bromide, m.p. 124-125°, and a partly active form, $[\alpha]_{D}^{20}$ +10.03° in EtOH, were similarly prepared. (II) with PPr3 gives only r.Et propiotripropylphosphetinate bromide. By similar methods (I) with AsEt3 gives Et propiotriethylarsenetinate bromide, CHMe(AsEt₃)Br)·CO₂Et, m.p. 69-70°, the same inactive form being also obtained from (II). H. G. M.

Organic derivatives of silicon. F. S. KIPPING (Proc. Roy. Soc., 1937, A, 159, 139-147).-Bakerian lecture. G. D. P.

Electronegative series of organic radicals. A. N. NESMEJANOV and K. A. KOTSCHESCHKOV (Sci. Rep. Moscow State Univ., 1934, No. 3, 283-289).—Two reactions take place between SnX_2 (X = Cl, Br) and HgR_2 in EtOH, viz., $HgR_2 + SnX_2 \rightarrow SnR_2X_2 + Hg$, and $HgR_2 + SnX_2 + 2EtOH \rightarrow 2RH + (OEt)_2SnX_2$. Domination of the latter over the former increases in proportion to the electronegative character of R, in the series of dimin- $\mathbf{R} = \cdot \mathbf{CH}(\mathbf{CO}_2 \mathbf{Et})_2,$ ishing electronegativity 1927, 165). It is concluded that the reactions do not involve ionisation of the substrate. R. T.

Mechanism of formation of mercuri-organic compounds through diazo-compounds. A. N. NESMEJANOV (Sci. Rep. Moscow State Univ., 1994, No. 3, 291-296).—Liberation of Hg is not an inter-mediate phase of the reaction $PhN_2Cl,HgCl + 2Cu \rightarrow HgPhCl + 2CuCl + N_2$, as Cu may be re-placed by Ag, which cannot displace Hg. In addition, Cu may be replaced by Cu-bronze, Al, Fe, Zn, Mg, or SnCl₂. CHN₂·CO₂Et and HgCl₂ yield Hg[CCl(HgCl)·CO₂Et]₂, CH₂Cl·CO₂Et, and N₂. R. T. NESMEJANOV (Sci. Rep. Moscow State Univ., 1934,

Oxidation of non-electrolytic cis-bivalent platinum compounds with sulphuric acid.-See A., I, 374.

Ethylene compounds of platinum. A. GELMAN (Sci. Rep. Leningrad State Univ., 1936, 2, No. 2, 5-47).—C₂H₄ is passed through aq. K₂PtCl₄ for 15 days at room temp., and aq. Pt(NH₃)₄Cl₂ is added, when [Pt,C₂H₄,Cl₃]₅[Pt(NH₃)₄] is pptd. This reacts with K₂PtCl₄ to yield K[Pt,C₂H₄,Cl₃],H₂O (I), identical with that obtained by Zeise from Na₂PtCl₄ and EtOH [Pt,C.H. NH,Cl_4] roots with HCl to and EtOH. $[Pt,C_2H_4,NH_3Cl_2]$ reacts with HCl to afford $NH_4[Pt,C_2H_4,Cl_3]$, and with $CS(NH_2)_2$ (II) to give $PtCl_2,4(II)$ (III), indicating its *cis* configuration. An attempted prep. of the trans-isomeride by Jörgensen's method was unsuccessful. (I) in dil. HCl and C_5H_5N yield cis- $[Pt, C_2H_4, C_5H_6N, Cl_2]$ (IV), converted by HCl into $C_5H_5NH[Pt, C_2H_4, Cl_3]$, by (II) into (III), and by excess of C_5H_5N into trans- $[Pt(C_5H_5N)_2Cl_2]$. (I) and $[Pt(C_5H_5N)_4]Cl_2$ give $[Pt, C_2H_4, Cl_3][Pt(C_5H_5N)_4]$. The salts $[Pt, C_2H_4, Cc_3H_5N), Br_2]$, $C_5H_5NH[Pt, C_2H_4, Br_3]$, and $[Pt, C_2H_4, Br_3]_2[Pt(NH_3)_4]$ are described. The stability of salts of the series $[Pt, C_2H_4, R, X_2]$ rises in the series $R = (II) < NH_2 < C_5H_5N < quinoline, and <math>X =$ $CN < CNS < NO_2 < I < Br < CI. B. T.$ sen's method was unsuccessful. (I) in dil. HCl and

 $CN < CNS < NO_2 < I < Br < Cl.$ R. T.

Inertness of cyclopentane hydrocarbons with respect to dehydrogenation catalysis. E. M. TARASOVA (Sci. Rep. Moscow State Univ., 1934, No. 3, 173-182).-2-Methylcyclopentanone and MgEtI yield cis-trans-1-methyl-2-ethylcyclopentan-2ol, b.p. 55-61°/11 mm., converted by distillation from anhyd. H₂C₂O₄ into a mixture of 1-methyl-2ethyl- Δ^1 - and - Δ^2 -cyclopentene (cis-trans), from which I-methyl-2-ethylcyclopentane (I) is obtained by hydrogenation. I-Methyl-2-*n*-propylcyclopentane (II) is prepared analogously from I-methyl-2-n-propyl- Δ^2 -cyclopentene, b.p. 144—148°. (I), (II), and ethyl-, *n*-propyl-, and *n*-butyl-cyclopentane are not dehydrogenated by passage over C-Pt in H₂ or CO₂ at 300°. Under similar conditions, 1:4-dimethylcyclohexane yields *p*-xylene. (I) and Br in presence of AlBr₃ yield tetrabromo-*p*-xylene. R. T.

Estimation of cyclopentadiene and indene and their polymerisation in carbon tetrachloride solution. D. L. HAMMICK and (MISS) D. LANGRISH (J.C.S., 1937, 797—801).—cycloPentadiene (I) and indene (II) can be determined in dil. (up to 0.05M) solution in CCl₄ with Br in CCl₄; polymerisation of (I) in CCl₄ is bimol., and much faster than that of (II), the rate of polymerisation of both in CCl₄ being retarded by MeCN and stopped in pure MeCN or CCl₄ without O₂. The polymerisations are considered to be autoxidation processes. J. D. R.

Influence of substituents on the velocity of catalytic dehydrogenation of cyclohexane derivatives. II. A. A. BALANDIN and N. I. SCHUJKIN (Sci. Rep. Moscow State Univ., 1936, No. 6, 281–286).—The velocity of dehydrogenation of methyl-cyclohexane at 200–250° (Ni-Al₂O₃ catalyst) is slightly > that of cyclohexane. R. T.

Influence of solvent on the course of chemical reactions. XIV. Aromatic hydrocarbons. K. LAUER [with Y. ABIKO] (Ber., 1937, 70, [B], 1127-1133).—Measurements are recorded of the dissociation consts. of PhOH and α - and β -C₁₀H₇·OH in H₂O by colorimetric determination of [H^{*}] in partly neutralised solutions and of these and 1- and 2-anthrol in 25 vol.-% EtOH with thymolphthalein as indicator. Determinations are also based on solubility. The dipole moments of the anthrols have been measured in C_6H_6 . The simple aromatic phenols differ slightly but appreciably in electrolytic dissociation, the extent of which corresponds conversely with the dipole moment. The product dissociation const. \times (dipole moment)² is const. The cause of the relationship is the polarisability of aromatic hydrocarbons which causes the formation of cationoid positions in the polynuclear members. In the cases of C10H8 and anthracene the influence of cationoid polarity on the properties of substituents can be studied without interference from effects due to the surrounding field. H. W.

Isomerisation of *m*-xylene and hexahydro-*m*-xylene during bromination. R. J. LEVINA (Sci. Rep. Moscow State Univ., 1936, No. 6, 267—268).— The chief product of bromination of *m*-xylene or hexahydro-*m*-xylene in presence of AlBr₃ is tetrabromo-*p*-xylene. R. T.

Bromination of aromatic compounds in presence of beryllium and ether. R. PAJEAU (Compt. rend., 1937, 204, 1202—1204).—Be, Br, and Et₂O form a loose complex, BeBr₂(Et₂O)₂ (I), which catalyses brominations as follows. C_6H_6 gives *p*- $C_6H_4Br_2$, alkylbenzenes give tribromoalkylbenzenes, dialkylbenzenes give tetrabromodialkylbenzenes, Ph₂ yields 4:4'-dibromodiphenyl, CH₂PhCl yields *p*- $C_6H_4Br \cdot CH_2Br$, and dihydric and alkyl-phenols yield Br_4 -derivatives. Bromination of PhOH and nitrophenols is not affected by (I), and proceeds normally. J. D. R.

Metal halide catalysts for hydrocarbon reactions. A. V. GROSSE and V. N. IPATIEV (J. Org. Chem., 1937, 1, 559–566).— C_2H_4 ethylates C_6H_6 (up to C_6Et_6) in presence of HCl and the following salts, the figures being the no. of mols. of C_2H_4 reacting at the stated temp./>l atm. in presence of 1 mol. of salt: BeCl₂ 200° 50, BF₃ 25° 35, AlCl₃ 75° 75, TiCl₄ 170° 5, ZrCl₄ 100° 90, NbCl₅ 75° 25, TaCl₅ 75° 60, HfCl₄, ThCl₄, EtCl₅. Reaction is by way of EtCl, for, if much HCl is used, EtCl is detected in the product. R. S. C.

Polymerisation of styrene as revealed by the Raman effect.—See A., I, 283.

Kinetics of polymerisation reactions.—See A., I, 366.

Thermal polymerisation reactions.—See A., I, 366.

Mechanism of thermal polymerisation and polycondensation.—See A., I, 366.

Chlorobromide of styrene. E. URION and L. NAMIAS (Bull. Soc. chim., 1936, [v], 3, 2333-2337).--Styrene (I) when treated with an equimol. mixture of Cl₂ and Br gives about 10% of CHPhCl·CH₂Cl, about 20% of CHPhBr·CH₂Br (II), and 65-70% of α -chloro- β -bromoethylbenzene (III), m.p. 27·5-28°, which with cold KOH-EtOH gives α -chlorostyrene, b.p. 73°/16 mm., hydrolysed to COPhMe. The rate of addition of BrCl to (I) is of the same order as that of Cl₂ and Br. The fusion diagram of (II) and (III) is given.

H. G. M.

Action of diazo-compounds on unsaturated compounds. Determination of mono- and polymeride of phenylbutadiene. A. P. TERENTIEV and M. E. ZEGELMAN (Sci. Rep. Moscow State Univ., 1936, No. 6, 257–261).—CHPh:CH·CH:CH₂ (I), but not its dimeride, combines with diazotised p-NO₂·C₆H₄·NH₂. The reaction of polymerisation is one of the second order. C₅H₅N reacts with (I), and is not a suitable solvent for studying velocity of polymerisation. R. T.

Nitronic ester of phenylcyanonitromethane. F. ARNDT, L. LOEWE, and H. IŞIK (Rev. Fac. Sci. Istanbul, 1937, 2, 139—141).—CN·CPh:NO·OAg and MeI give the O-Me ether (I), m.p. 40—41°, also obtained from CN·CPh:NO₂H and CH₂N₂ in Et₂O. Contrary to Hantzsch (A., 1907, i, 500) (I) decomposes at 90°. (I) with HI-AcOH liberates 2 I and is converted into CN·CPh:N·OH. J. W. B.

Units of affinity of the elements. J. GNEZDA (Separate, Zagreb, 1937, 17 pp.; cf. A., 1933, 450).— In accord with the author's theory, when CHPh₃ is kept for 3 months in excess of PhMe, the compound, $C_{40}H_{37}$ (= CHPh₃ + 3PhMe - 3H), m.p. 90-93°, is formed. With mesitylene, CHPh₃ yields a similar compound, $C_{28}H_{25}$, m.p. 91-93.5°. The theory also indicates that 8 Cl- and 10 Hg-"viravals" remain unsaturated in HgCl₂, and this is said to explain the existence of certain additive compounds. The effects

N ** (A., II.)

of various oxides on aq. rosaniline hydrochloride, decolorised by Mg, are in accord with the theory. The neutral character of triazole and the acidity of tetrazole are explained. Complex structures for various other compounds are developed. J. W. S.

Isomerism of triphenylmethane. M. V. GAVER-DOVSKAJA-JUSCHKEVITSCH (Sei. Rep. Moscow State Univ., 1936, No. 6, 263—266).—CPh₃·OH yields stable CHPh₃, m.p. 92°, when reduced in presence of C-Pt at 300°, and "unstable CHPh₂," m.p. 81°, at 150— 180°; the structure, CPh₂·C CH:CH CH₂ is assigned

to the latter.

R. T.

Action of aluminium chloride on diphenyl. J. K. JURIEV and R. J. LEVINA (Sci. Rep. Moscow State Univ., 1934, No. 3, 203–207).—The chief product obtained by passing Ph₂ over AlCl₃ at 250— 300° is C₆H₆, with cyclohexane and methylcyclopentane. R. T.

Accelerated and retarded autoxidation of tetraphenyl-p-xylylene [tetraphenylquinodimethane]. Action of antioxidants. G. WITTIG and H. KROHNE (Annalen, 1937, 529, 142-161).- LiC_6H_4Ph and $p-C_6H_4(CO_2Me)_2$ in Et_2O give $\omega\omega'-dihydroxy-\omega\omega\omega'\omega'-tetradiphenylyl-p-xylene, m.p. 289-$ 291° (Li₂ derivative), converted by HCl-CHCl₃-AcCl into the dichloride, m.p. 265-266° (decomp.), which with Naturkupfer-C in xylene (CO₂) at 100° tetra-p'-diphenylylquinodimethane gives (I), gives tetra-p'-diphenylylquinodimethane (I), p-C₆H₄[:C(C₆H₄Ph)₂]₂, m.p. 338—341° (decomp.). p-C₃H₄(:CPh₂)₂ (II) absorbs 1 O₂ in C₆H₆ to give a peroxide, OH·O·[CPh₂·C₆H₄·CPh₂·O₂]_n·H (n = 10), m.p. 168—171° (decomp.), sol. in conc. H₂SO₄ with orange-red halochromy and gradually converted thereby into p-C₆H₄(CPh₂·OH)₂, m.p. 166—168°, and reduced by ZnCl₂-HCl-AcOH and a trace of I to p-C₆H₄(CHPh₂)₂, m.p. 172°. The val. of n given above is only an average; in CCl₄ a peroxide is formed, in which the average val of n = 4 (1) in CHCl- gives Din which the average val. of n = 4. (I) in CHCl₃ gives an analogous *peroxide*, m.p. about 250° (decomp. from about 170°), in which n = 2. The rate of peroxide formation of (I) in five solvents is determined. Mixtures of PhCHO and (I) absorb O_2 at a rate intermedi-ate between those of PhCHO and (I) alone; (I) is preferentially oxidised and thus acts as an antioxidant for PhCHO. Polyenes, CPh₂:CH·[CH:CH]_z·CH:CPh₂, also act as antioxidants for PhCHO; their effectiveness is of the same order as that of (II) and increases with increasing x (max. with x = 6, owing to more rapid oxidation of the dodecahexaene). These effects rapid oxidation of the dodecahexaene). These effects are explained by assumption of a complex, RCHO...O.O...C.C. $p-C_6H_4(OH)_2$ delays oxidation of (II), but is itself fairly rapidly oxidised and thus soon loses its efficacy. Oxidation of a mixture of $p-OH \cdot C_6H_4 \cdot OMe$ and (II) gives the substance, $p \cdot p' \cdot OMe \cdot C_6H_4 \cdot O \cdot CPh_2 \cdot C_8H_4 \cdot CPh_2 \cdot O \cdot OH$, m.p. 152— 153° (decomp.). $p-C_6H_4(OMe)_2$ is not an antioxidant for (II). The presence of the terminal OH in the for (II). The presence of the terminal OH in the peroxides is proved by reaction with MgMeI.

R. S. C.

Decomposition of hexavinylethane derivatives into radicals. G. WITTIG and H. KOSACK (Annalen, 1937, 529, 167–184).—The tendency of symmetrical C_2H_6 derivatives to form the following free radicals is xv (a, b)

shown to be: CPh₂:CH·CPh₂· < (CPh₂:CH)₂CPh· < (CPh2:CH)3C. Free radicals are not formed if accumulation of vinyl substituents can be avoided by the allylic rearrangement. $CH(C_6H_4Ph)_2 \cdot OH$ and $H_2SO_4^-$ MeOH give $di(diphenylyl)methyl Me \ ether$, m.p. 125— 127°, which with Na-K in dioxan gives the K deriv-ative, converted by EtOH into $CH_2(C_6H_4Ph)_2$ and ative, converted by EtOH into $CH_2(C_6H_4Ph)_2$ and by $(CMe_2Br)_2$ in ligroin into $\alpha\alpha\beta\beta$ -tetradiphenylyl-ethane, m.p. 276—279°, which is stable at 300°. CHPh $(CH_2Bz)_2$ and LiPh give $\alpha\alpha\gamma\epsilon\epsilon$ -pentaphenylpenta- $\alpha\gamma$ -diol, m.p. 133—134°, which in boiling AcOH gives $\alpha\alpha\gamma\epsilon\epsilon$ -pentaphenyl- $\Delta^{\alpha\delta}$ -pentadiene, m.p. 168—169°, stable to LiPh, but giving with KCPhMe₂ a green K derivative, which with $(CMe_2Br)_2$ affords phenyl-di- $(\beta\beta$ -diphenylvinyl)methyl (I); this radical is monomeric when solid, since it is green, but becomes colourless in a few hr and later resinifies whilst monomeric when solid, since it is green, but becomes colourless in a few hr. and later resinifies, whilst its solution is very rapidly decolourised in air; with benzoquinone it slowly gives the *ether* (II), $p \cdot C_{6}H_{4}[O \cdot CPh(CH:CPh_{2})_{2}]_{2}$, m.p. about 140° with dissociation, and it reacts slowly with N₂Ph₄. CHPh:CH·CH(CH₂Bz)₂ could not be obtained from COPhMe and CPh₂:CH·CHO. CH(CH₂·CO₂Me)₃ and LiPh end CPh₂:CH·CHO. CH(CH₂·CO₂Me)₃ and LiPh give tri-(\beta-hydroxy-\$\$-diphenylethyl)methane [ααεεβ'β'-hexaphenyl-y-ethylpenta-αεβ'-triol], m.p. 227-228°, unaffected by LiPh, but converted by KCPhMe₂ into the violet K derivative, which with $(CMe_2Br)_2$ gives $tri - (\beta\beta - diphenylvinyl)$ methyl, black, which behaves with O₂ as does (I) and with benzoquinone gives, more rapidly than does (I), the *ether* [as (II)], m.p. 167—172°, which is less stable than is (II). Ph·[CH:CH]₂·COPh and COPhMe in KOH-aq. EtOH give cinnamylidenediacetophenone, m.p. $84-85^{\circ}$, and dicinnamylidenetriacetophenone, m.p. $254-255^{\circ}$; the former product with 2 mols. of LiPh gives ϵ -keto- $\alpha\alpha\gamma\beta'$ tetraphenyl-y-vinylpentan-a-ol, m.p. 146-147°, or with 4 mols. the diglycol, which could not be purified, but was dehydrated by hot AcOH to aaze-tetraphenyl-ystyrylpentamethylene oxide, m.p. 191-192° [also ob-tained from CHPh.CH.CH(CH₂·CO₂Me)₂]; this is further dehydrated by hot HCl-AcOH to give styryldi- $(\beta\beta$ -diphenylvinyl)methane [aay $\gamma\beta$ '-pentaphenyl- γ -vinyl- Δ^{ab} -pentadiene], m.p. 141—142°, which with LiPh gives a violet Li derivative; this with MeOH gives gives a violet Li derivative; this with MeOH gives $\alpha \alpha \varepsilon \varepsilon \beta'$ -pentaphenyl- γ -ethylidene- $\Delta^{\alpha\beta}$ -pentadiene, m.p. 130—131°, with I gives the dimeride, $\alpha \varkappa \varepsilon \kappa \kappa \beta' \beta' \beta'' \beta''$ -decaphenyl- β_i -divinyl- $\Delta^{\alpha\gamma m}$ -decatetraene, m.p. 180° (decomp.), and does not react with (CMe₂Br)₂. The tetraene has only slight tendency to dissociate in boiling xylene; the Li derivative is, therefore, LiCHPh·CH:C(CH:CPh₂)₂, formed by allylic rearrangement, and the structures of the derived hydrocarbons follow. CHPh:CH·CPh₂·OMe (modified prep.), m.p. 76-77°, and CPh₂·CH·CHPh·OMe with K-Na both give a K derivative, which with $(CMe_2Br)_2$ gives the dimeride, m.p. 211–212°, believed to be $\alpha\alpha\gamma\delta\zeta\zeta$ hexaphenyl- $\Delta^{\alpha \tilde{\epsilon}}$ -hexadiene. R. S. C.

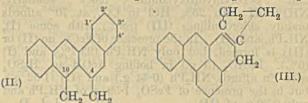
Halogen derivatives of indene. J. VON BRAUN and H. OSTERMAYER (Ber., 1937, 70, [B], 1006— 1008).—Gradual addition of 1-hydrindone (I) to PCl₅ suspended in C₆H₆ at 0°, distillation of the product, and treatment of it with quinoline in cold Et₂O leads to 1-chloroindene (II), b.p. 105°/15 mm., which is readily hydrolysed by 5% HCl to (I). xv (b)

(II) absorbs Br in cold CS_2 and the product loses HBr when distilled and gives 1-chloro-2-bromoindene (III), b.p. 115°/0·1 mm., the constitution of which is established by its ozonisation to homophthalic acid. With Br in CS_2 (III) affords some 1:2-dibromoindene (IV), m.p. 133°, which is resistant towards Br. (I) and PBr₅ similarly afford 1-bromoindene, m.p. 42°, and some (IV). H. W.

Synthesis of 1:2:4-trimethyl-7-isopropylindene. W. G. WHITTLESTON (J. Amer. Chem. Soc., 1937, 59, 825—826).—p-Cymene, 40% CH₂O (not paraformaldchyde), ZnCl₂, and, best, a little NiCl₂, and gaseous HCl at 60° give 2-methyl-5-isopropylbenzyl chloride, b.p. 123—124°/20 mm., and thence by standard methods El_2 2-methyl-5-isopropylbenzylmalonate, b.p. 190—195°/9 mm., the corresponding acid, m.p. 165°, β -p-cymylpropionic acid, b.p. 190—195°/20 mm., m.p. 76-5°, 2-methyl-5isopropylbenzylmethylmalonic acid, eryst. β -p-cymylisobutyric acid, b.p. 189—190°/12 mm., 2:4-dimethyl-7-isopropylhydrindone, b.p. 147—150°/9 mm., and (by MgMeI) 1:2:4-trimethyl-7-isopropylindene, b.p. 140—145° (slight decomp.)/10 mm., m.p. 99-5° (picrate, m.p. 88—89°). R. S. C.

Decomposition of tetralin peroxide. IV. Effect of sulphur and sulphur compounds.—See A., I, 316.

Irreversible catalysis of unsaturated cyclic hydrocarbons. Contact transformation of Δ^2 octahydronaphthalene. M. B. TUROVA-POLLAK (Sci. Rep. Moscow State Univ., 1934, No. 3, 193— 196).—trans- Δ^2 -Octahydronaphthalene (I) yields $C_{10}H_8$ and trans-decahydronaphthalene when passed over Pd-asbestos at 200—205° in CO₂. trans-2-Hydroxydecahydronaphthalene yields (I) when heated with NaHSO₄ at 180—200° (3 hr.), and the cisisomeride when heated with ZnCl₂. R. T.


 $\Delta^{9:10}$ -Octahydronaphthalene. Isomerising action of zinc chloride in dehydration of 2cyclopentylcyclopentanol. N. I. SCHUJKIN (Sci. Rep. Moscow State Univ., 1934, No. 3, 197—202).— 2-cycloPentylcyclopentanol and ZnCl₂ (180°; 2 hr.) yield $\Delta^{1:9}$ -and $\Delta^{9:10}$ -octahydronaphthalene (I), which with HBr yields 9-bromodecahydronaphthalene, and this yields pure (I) when boiled with EtOH-KOH. R. T.

Dehydrogenation catalysis of condensed ring hydrocarbons. I. N. TITZ and G. J. BERGO (Sci. Rep. Moscow State Univ., 1936, No. 6, 353-357).— Di- and octa-hydroanthracene yield anthracene when passed over C-Pt at 310°. Acenaphthene is not dehydrogenated under these conditions. R. T.

Action of aluminium chloride on octahydroanthracene. S. E. MICHLINA (Sci. Rep. Moscow State Univ., 1934, No. 3, 209—212).—The products obtained by distilling octahydroanthracene from AlCl₃ are tetradecahydroanthracene and tetrahydronaphthalene; the production of butadiene is postulated. R. T.

Friedel-Crafts reaction between oxalyl chloride and 1:2-benzanthracene. A. DANSI (Gazzetta, 1937, 67, 85—88).—This reaction in CS_2 gives 1:2benzanthracene-10-carboxylic acid, m.p. 220°, with 4: 10-oxalyl-1: 2-benzanthracene, m.p. 280–284°. The latter is oxidised (KMnO₄) and esterified (Ag salt and MeI) to Me_2 anthraquinone-1: 2: 4-tricarboxylate, m.p. 193°, and reduced (distillation in H₂ over Zn) to 4: 10-dimethylene-1: 2-benzanthracene, m.p. 130°. E. W. W.

4:10-Acc-1:2-benzanthracene. L. F. FIESER and A. M. SELIGMAN (J. Amer. Chem. Soc., 1937, 59, 883-887).— γ -Keto- γ -5-hydrindylbutyric acid (from hydrindene, succinic anhydride, and AlCl₃ in C₂H₂Cl₄-PhNO₂), m.p. 125-125.5°, with Zn-Hg in HCl-PhMe gives γ -5-hydrindylbutyric acid, m.p. 54.9—55.2°, the chloride, b.p. 170°/10 mm., of which with AlCl₃ in CS₂ gives 6:7-trimethylene-1-keto-1:2:3:4-tetrahydronaphthalene, b.p. 151-152°/2 mm., the structure of which is proved by oxidation to pyromellitic acid. Clemmensen reduction affords 6:7-trimethylenetetrahydronaphthalene, b.p. 104-106°/3 mm., which with BzCl gives 5-benzoyl-6:7trimethylenetetrahydronaphthalene (I), b.p. 183-185°/ 0.5 mm., converted by Se at 290° in N₂ into impure 1-benzoyl-2:3-trimethylenenaphthalene, b.p. 215-220°/ 1.5 mm., which at 405° yields 4:10-acc-1:2benzanthracene (II), m.p. 138.5-140° (picrate, m.p.

148—149°). CrO₃-oxidation of (II) gives 1:2benzanthraquinone-4-acetic acid, m.p. 228—229.5°. When heated at 410° (I) affords 17-21% of (?) Δ^3 -dehydro-3:4-trimethylene-2-isobenzanthrene (III), m.p. 144·5—145° (picrate, m.p. 136—137°; oxidised to phenanthrene-8:9-dicarboxylic anhydride), and 4% of 1':2':3':4'-tetrahydro-4:10-ace-1:2-benzanthracene, m.p. 106—107° (picrate, m.p. 131—132°), dehydrogenated to (II) by Se. M.p. are corr.

R. S. C. Derivatives of pyrene. G. LOCK (Ber., 1937, 70, [B], 926—930).—Stepwise bromination of pyrene (I) is possible in CCl₄. 3-Bromopyrene, m.p. 95° [picrate, m.p. 172° (corr.)], is thus obtained. Its constitution is established by its conversion by CuCN in boiling quinoline into 3-cyanopyrene, m.p. 151.5° [picrate, m.p. 141° (corr.)], which is transformed by MgPhBr in $Et_2O-C_6H_6$ into 3-benzoylpyrene (picrate, m.p. 159°), identical with that described by Scholl and Seer (A., 1913, i, 58). Further bromination of (I) affords dibromopyrenes, m.p. 221—222° (corr.) and 176—177° (corr.), respectively, probably 3:8- and 3:10-derivatives. H. W.

Pyrene series. K. DZIEWOŃSKI and L. STERN-BACH (Bull. Acad. Polonaise, 1937, A, 81–85).— Acetylation of pyrene (AlCl₃) yields 3-acetylpyrene (I), m.p. 94° (picrate, m.p. 160°; phenylhydrazone, m.p. 168°), the oxime of which, m.p. 198°, is converted by HCl in Ac₂O into 3-acetamidopyrene, m.p. 260°, hydrolysed to 3-aminopyrene. (I) when heated with S yields bis-4: 3-pyrenethiophenindigo, m.p. > 400°, and with MgMeI followed by hydrolysis gives 3-isopropenylpyrene, m.p. 61·5—62·5° (picrate, m.p. 146—147·5°). A. LI.

Catalytic condensation of acetylene with aromatic amines. X. Intermediate products of condensation of acetylene with amines. N. Kozlov and O. SERKO. XI. Condensation of acetylene with aniline in presence of mercury salts. N. Kozlov and G. RODMAN (J. Gen. Chem. Russ., 1937, 7, 832—835, 836—838).—X. C_2H_2 and NH₂Ph in presence of HgCl₂ yield Schultz's and Eckstein's bases; NPh:CHMe is supposed to be an intermediate stage in their production.

XI. The above reaction may be catalysed by HgSO₄, Hg₂SO₄, or HgNO₃, but not by Hg(CN)₂. R. T.

Oxidation reaction occurring during reduction of aromatic nitro-compounds. K. G. MIZUTSCH (Compt. rend. Acad. Sci. U.R.S.S., 1937, 15, 37-40; cf. A., 1936, 601).-NHPh·OH with warm aq. H₂SO₄ in CO₂ atm. affords azoxybenzene (I) and NH₂Ph, but mainly (85%) p-NH2·CeH4·OH (II). In the presence of $FeSO_4$, very little (II) is formed; NH_2Ph (68%) and (I) (30%) are the main products. oand p-Tolylhydroxylamine react similarly. NHPh-OH with 25% HCl in CO2 at 70° affords mainly chloroanilines (III) (88%) with some (I), NH_2Ph , and (II). In the presence of $FeCl_2$, no (II) or (III) is formed, but only NH_2Ph (93.7%) and (I) (6%). PhNO₂ (5 g.) in boiling AcOH-aq. H_2SO_4 with Sn affords NH_2Ph (0.44 g.) and (II) (1.52 g.), but in the presence of FeSO₄ 1.59 g. of NH₂Ph and only 0.30 g. of (II). J. L. D.

Condensations of aromatic amines with formaldehyde in media containing acid. VII. Polymeric states and structures of some anhydro-palkylaminobenzyl alcohols. W. S. YOUNG and E. C. WAGNER (J. Amer. Chem. Soc., 1937, 59, 854-855; cf. this vol., 308).—The compounds (·NR·C₆H₄·CH₂)_n, in which R = Me, m.p. 209-212°, Et, m.p. 84-86°, Pr^a , m.p. 106-108°, Bu^a , m.p. 52-53°, isoamyl, m.p. 46-48°, and CH₂Ph, m.p. 162-163°, are found by cryoscopy to be trimeric in C₆H₆ (cf. Friedlander, A., 1903, i, 252). Much higher mol. wts. are found in camphor. The bases and, to a smaller extent, their hydrochlorides, are unstable. Structures are confirmed by reduction by Zn-H₂SO₄ to the base, NHPhR. M.p. are corr. R. S. C.

Action of primary aromatic amines on 1:6dichlorodiethylenediamminocobaltic chloride. A. ABLOV (Bull. Soc. chim., 1936, [v], 3, 2270–2279; cf. A., 1936, 1241).—The following compounds have been obtained by interaction of praseo-1:6-dichlorodiethylenediamminocobaltic chloride (I) with the appropriate primary aromatic amine, all of which have a dissociation const. in $H_2O \ll$ that of NH_2Ph : [Co $en_2(m \cdot C_6H_4Me \cdot NH_2)Cl]X_2$ [en = $(CH_2 \cdot NH_2)_2$; X = Cl, Br, I, and NO_3];

[Co $en_2(o-NH_2 \cdot C_6H_4 \cdot OMe)Cl]X_2, 2H_2O$ (X = Cl, Br, and I; the nitrate has only 1 H_2O);

[Co $en_2(o-NH_2 \cdot C_6H_4 \cdot OEt)Cl]X_2, 2H_2O$ (X = Cl and Br); [Co $en_2(p-NH_2 \cdot C_6H_4 \cdot OMe)Cl]X_2$ (X = Br, I, and NO₃; the chloride has 1 H₂O);

[Co en₂(p-NH₂·C₆H₄·OEt)Cl]Cl₂,H₂O (the correspond-

ing nitrate has no H₂O); [Co en₂(p-NH₂·C₆H₄F)Cl]X₂ (X = Br, I, and NO₃; the chloride has 1 H₂O). Primary aromatic amines [o-C₆H₄Me·NH₂, p-C₆H₄Cl·NH₂, o-C₆H₄(NH₂)₂] with a dissociation const. < that of NH₂Ph cause isomerisation of (I) into the violeo-chloride. H. G. M.

Carbamide derivatives in the alkanolamine series. R. W. CHARLTON and A. R. DAY (J. Org. Chem., 1937, 1, 552-558).-The following carbamides are prepared from the appropriate alkanolamine with NH2.CO.NH.NO2 in H2O or a-C10H-NCO in Et₂O or dioxan : β-hydroxyethyl- (I), m.p. 94-95° [O-p-nitro- (II), m.p. 183-184°, and -p-amino-benzoate (III), m.p. 203°; ON-dicinnamoyl derivative, m.p. 173.5—174° (absorbs 2H₂ catalytically)]; β-hydroxyn-propyl-, m.p. 119° (mixed mono- and di-p-nitrobenzoyl, m.p. 182-186°, ON-di-p-aminobenzoyl, m.p. 210-211°, O-p-aminobenzoyl, m.p. 149-150°, and ON-dicinnamoul derivative, m.p. 179-179.5°); NNdi-β-hydroxyethyl- (OO-di-p-nitro-, forms, m.p. 140-140.5° and 152-153°, and -p-amino-benzoate, m.p. $172\cdot5-172\cdot8^{\circ}$; N- α -naphthyl-N'- β -hydroxyethyl-(IV), m.p. 186° [O-p-nitro-, m.p. 191° (decomp.), and -pamino-benzoate (V), m.p. 193-193.5° (decomp.)], N-a-naphthyl-N-B-hydroxy-n-propyl-, m.p. 162° [O-pnitro-, m.p. 218-221° (decomp.), and -p-aminobenzoate, m.p. 171°], and N-a-naphthyl-N'N'-di-βhydroxyethyl-carbamide, m.p. 126—127°. $\alpha\gamma$ -Dicarbamido-, +H₂O, m.p. 86—87°, $\alpha\gamma$ -di-1-naphthylcarbamido-propan-B-ol, m.p. 171.5-172°, and 6-carbamidothymol, m.p. 179°, were also made. M.p. are corr. The structure of the O-esters is indicated by their failure to react with Na in C6H6 or PhMe and by the fission of (II) by NH_3 -ÉtŐH at 100° to p-NO₂·C₆H₄·CO·NH₂. (I), (III), (IV), and (V) are weak hypnotics; (II) and (IV) are toxic. R. S. C.

Influence of reaction conditions on the yields of isomerides in nitration of acetanilide. A. P. TERENTIEV and B. M. KEDROV (Sci. Rep. Moscow State Univ., 1936, No. 6, 213-234).-The content of o-NO2 ·C6H4·NH2 (I) in the product of nitration of NHPhAc rises from 6–7% when 100% H₂SO₄ is taken to 28% with 84% H₂SO₄; nitration does not proceed when the H₂SO₄ contains >16% of H₂O₂ whilst the use of 10% oleum leads to production of tarry products. Increasing the amount of 100% H₂SO₄ taken per g. of NHPhAc from 2 to 5 ml. greatly lowers the yield of (I), but further addition of H_2SO_4 does not further reduce it. The yield of (I) is slightly increased by raising the nitration temp. from -3° to 10°, whilst further rise to 40° has no effect. The m-NO2. C6H4. NH2 content of the product is independent of temp., concn. and amount of H_2SO_4 taken. Addition of AcOH or $HgSO_4$ does not affect the relative yields of (I) and p-NO₂·C₆H₄·NH₂. R. T.

Manufacture of aminomethylnaphthalenesulphonic acids.—See B., 1937, 420.

Manufacture of [sugar] derivatives of o-nitroanilines and o-phenylenediamines.—See B., 1937, 420.

Optically active tricyclohexanediaminecobaltic salts and ethylenediaminecyclohexanediamine cobaltic salts.—See A., I, 289. Diaryls and their derivatives. XIII. Azodyes from 6:6'-diamino-2:2'-dihydroxy-1:1'dinaphthyl. J. S. JOFFE (J. Gen. Chem. Russ., 1937, 7, 1022-1025).-2- β -Hydroxynaphthaleneazo-, m.p. 292°, and 2-(2''-hydroxy-3''-carboxynaphthalene)azo-6:2':6'-trihydroxy-1:1'-dinaphthyl are prepared by coupling with diazotised 6:6'-diamino-2:2'dihydroxy-1:1'-dinaphthyl. R. T.

Action of mixed organo-magnesium compounds on the phenylhydrazones of aliphatic aldehydes. Preparation of s-alkylphenylhydrazines. P. GRAMMATICAKIS (Compt. rend., 1937, 204, 1262— 1263; cf. A., 1936, 837).—CHEt:N·NHPh (I) with MgPhBr affords N-phenyl-N'-α-phenylpropylhydrazine, also obtained from CHPh:N·NHPh and MgEtBr. (I) with MgEtBr gives N-phenyl-N'-α-ethylpropylhydrazine, b.p. 138°/12 mm. [hydrochloride, m.p. 185° (decomp.); Ac derivative, m.p. 93°; PhNCO derivative, m.p. 104°]. CHMe:N·NHPh with MgPhBr similarly affords N-phenyl-N'-α-phenylethylhydrazine, b.p. 190°/12 mm. [hydrochloride, m.p. 202° (decomp.); Ac derivative, m.p. 118°; PhNCO derivative, m.p. 187°], and with MgEtBr gives N-phenyl-N'-αmethylpropylhydrazine, b.p. 136°/12 mm. [hydrochloride, m.p. 195° (decomp.); Ac derivative, b.p. 177°/10 mm.; PhNCO derivative, m.p. 139°]. CH₂:N·NHPh with MgPhBr affords CH₂Ph·NH·NHPh. These hydrazines are oxidised in air to hydrazones. J. L. D.

Isomeric di- and tri-nitrophenylhydrazones. H. BREDERECK and E. FRITZSCHE (Ber., 1937, 70, [B], 802-809; cf. A., 1933, 154).—Further examples of isomeric di- and tri-nitrophenylhydrazones are given and reasons are advanced for considering them due to *cis-trans* isomerism. 5-Eth-oxymethylfurfuraldehyde is converted by 2:4:6- $(NO_2)_3C_6H_4$ ·NH·NH₂ in boiling EtOH containing conc. HCl into 5-ethoxymethylfurfuraldehyde-2:4:6-trinitrophenylhydrazone, (I) m.p. 176-178°, (II) m.p. 152-154°. Interconversion occurs when (I) or (II) is boiled in AcOH. 5-Methoxymethylfurfuraldehyde-2:4:6-trinitrophenylhydrazone exists in two forms, m.p. $180-182^{\circ}$ and $165-167^{\circ}$, respectively. Protracted treatment of (I) with boiling AcOH-Ac₂O vields 5-acetoxymethylfurfuraldehyde-2:4:6-trinitro-phenylhydrazone, forms m.p. 198—199° and 205— 207°, respectively. Isomeric forms are not obtained in the cases of furfuraldehyde-2:4:6-trinitrophenylhydrazone, m.p. 244-246°, or -o-nitrophenylhydrazone, m.p. 155—156°, 5-ethoxymethylfurfuraldehyde-o-nitro-phenylhydrazone, m.p. 127—129°, furfuraldehyde-2:4-dinitrophenyl-N-methylhydrazone, m.p. 187— 189°, 5-ethoxymethylfurfuraldehyde-2:4:6-trinitrophenyl-N-methylhydrazone, m.p. 116—118°, pyrrole-2-aldehyde-2: 4-dinitrophenylhydrazone, m.p. 283—286° thiophen-2-aldehyde-2: 4-dinitrophenylhydrazone, or m.p. 233-236°. Pyromucyl chloride gives pyromuc-2:4-dinitrophenylhydrazide, m.p. 211-212°, or pyromuc-2: 4-dinitrophenyl-N-furoylhydrazide, m.p. 195-197°. Pyromuc-2: 4-dinitrophenyl-N-methylhydrazide has m.p. 177-179°. H. W.

Alkylation of phenols with alcohols in presence of aluminium chloride. II. Alkylation with sec.- and n-alcohols. I. P. TZUKERVANIK and Z. N. NAZAROVA (J. Gen. Chem. Russ., 1937, 7, 623– 631).—The following alkylphenols are obtained in good yield by heating the phenol with alcohols in presence of 2 mols. of AlCl₃ per mol. of alcohol: $p-C_6H_4Pr^{\beta}$ ·OH, o- and $p-C_6H_4Pr^{\beta}$ ·OMe, and I:3:6- $C_6H_3MePr^{\beta}$ ·OH, with Pr^{\beta}OH in light petroleum at 110– 120°, p-CHMeEt·C₆H₄·OH, p-CHMeEt·C₆H₄·OMe, and di-sec.-butylanisole, b.p. 140—142°/11 mm., with CHMeEt·OH in ligroin at 140—150°, CHEt₂·C₆H₄·OH, and o-, b.p. 140—150°/30 mm., and p-a-methylbutylphenol, b.p. 150—156°/30 mm., from PhOH and CHMePr·OH (I) (50°; 4 hr.), sec.amyl-, b.p. 223—230°, and di-sec.-amyl-anisole, b.p. 245—260°, from PhOMe and (I), C₆H₃Et₂·OH, o- and p-C₆H₄Et·OH, and o- and p-C₆H₃Et₂·OH, from PhOH and EtOH (120—140°; 6 hr.), o- and p-C₆H₄Bu^a·OH from PhOH and Pr^aOH, o- and p-C₆H₄Bu^a·OH from PhOH and Pr^aOH, and and PhOH, C₆H₄Bu^{*}·OH from Bu^{*}OH and PhOH, and a mixture of amylphenols from iso-C₆H₁₁·OH and PhOH. By-products of the type C₆H₄R·OR are obtained in all cases; they are readily converted into alkylphenols by boiling. R. T.

Migration of alkyl radicals. I. Transfer of tert. alkyl radicals from phenols to hydrocarbons. R. A. SMITH [with J. ROSEN] (J. Amer: Chem. Soc., 1937, **59**, 899–900).—p-C₆H₄Bu^y·OH and AlCl₃ in hot C₆H₆ give PhOH and PhBu^y. p-CMe₂Et·C₆H₄·OH gives similarly in the cold PhOH and CPhMe₂Et. p-CH₂Bu^y·CMc₂·C₆H₄·OH in cold or hot C₆H₆ yields PhOH, PhBu^y, and other products. R. S. C.

2: 6-Dipropylcyclohexanols. G. VAVON and P. ANZIANI (Bull. Soc. chim., 1937, [v], 4, 1080— 1084).—2: 6-Diallylphenol (cf. A., 1919, i, 266) with H_2 -Pt gives 2: 6-dipropylphenol and then, with H_2 -Pt in AcOH, cis-cis-2: 6-dipropylcyclohexanol (I), b.p. 119—120°/13 mm. (H phthalate, m.p. 95°; H succinate, m.p. 40°; phenylcarbamate, m.p. 95°), oxidised by CrO₃ to 2: 6-dipropylcyclohexanone (II) (cf. A., 1932, 161). (II) with Na-EtOH affords cis-trans-2: 6-dipropylcyclohexanol (III), m.p. 113° (phthalate, m.p. 160—163°; H phthalate, m.p. 87— 88°; H succinate, m.p. 85°; phenylcarbamate, m.p. 150°). Ethers of (I) are hydrolysed less rapidly than those of (III) and hence have the cis configuration. (I) when heated with Na at 200° is partly converted into (III).

Oxidation of substituted phenols. Effect of iodine in the o- and p-positions. G. H. WOOLLETT, F. M. DAVIS, C. N. JONES, and (MISS) M. NEILL (J. Amer. Chem. Soc., 1937, 59, 861—864).—p-I hinders, but does not entirely prevent, formation of dipheno-quinones by oxidation of 2:6-substituted phenols; the % reduction of yield is approx. const. for different phenols. The formation of 3:5:3':5'-tetraiodo-dipheno-4:4'-quinone (I) from $C_6H_2I_3$ ·OH and $K_3Fe(CN)_6$ is confirmed by reduction (N_2H_4) of the product to 3:5:3':5'-tetraiodo-4:4'-dihydroxydi-phenyl, m.p. 284° (decomp.), which re-forms (I) with CrO_3 or $FeCI_3$; it amounts to 2·1% of the crude product. 2:6- $C_6H_3I_2$ ·OH and HIO_3 , $KMnO_4$, or, best, NaNO₂ in AcOH, give 84% of 3:5:3':5'-tetrabenz-

amidodipheno-4:4'-quinone (II), cryst. 4-Iodo-2:6dibenzamidophenol [from $(NO_2)_2C_6H_3$ ·OH], m.p. 232° (decomp.) [Bz derivative, m.p. 253-254° (decomp.)], and CrO₃ give 11·3% of (II). R. S. C.

Decomposition of ethers with sodium in liquid ammonia. P. SCHORIGIN and S. A. SKOBLINSKAJA (Compt. rend. Acad. Sci. U.R.S.S., 1937, 14, 505— 508).—With Na in liquid NH₃, $o \cdot C_6H_4$ Me·OCPh₃ yields o-cresol and CHPh₃, CH₂Ph·OPh gives PhOH and dibenzyl, and Ph₂O affords PhOH. Dissoamyl ether is not attacked in 5½ days. J. D. R.

Diazo coupling of 5-hydroxy-6-methylhydrindene. L. F. FIESER and W. C. LOTHROP (J. Amer. Chem. Soc., 1937, 59, 945).—The statement that 5hydroxy-6-methylhydrindene does not couple (A., 1936, 1503) is incorrect; the p-nitrobenzeneazo-, m.p. 230—232°, and benzeneazo-, m.p. 141—143°, -compounds are obtained in moderate yields in slightly, but in minute yields in conc., alkaline solution.

R. S. C. Manufacture of sulphonic acids of 3-hydroxyacenaphthene.—See B., 1937, 420.

Manufacture of 3:4:5:6-tetrahalogeno-oaminophenols.—See B., 1937, 420.

Synthesis of iretol. R. E. DAMSCHRODER and R. L. SHRINER (J. Amer. Chem. Soc., 1937, 59, 931– 933).—2:4:6-(NO₂)₃C₆H₂·OMe (from picryl chloride and NaOMe), forms, m.p. 50—51°, 56—57°, 58—59°, and (stable) 68—69°, with H₂ and very active PtO₂ or a large amount of Raney Ni in EtOH give 2:4:6-(NH₂)₃C₆H₂·OMe, m.p. 116·5—117·5° (corr.), converted by conc. HCl into iretol [2:4:6-(OH)₃C₆H₂·OMe], m.p. 187·5—188·5° (corr.), isolated in CO₂ and purified by sublimation in vac. R. S. C.

β-Phenyl sulphide. III. O. HINSBERG (Ber., 1937, 70, [B], 936—939; cf. A., 1936, 602).—"β-Diphenylsulphonium hydroxide" can be obtained pure by taking advantage of its solubility in H₂O. When dried at 90° it has the probable composition, SHPh₂·OH,H₂O; it is an approx. 1:1 mixture of the α- and β-compounds. Its basic perchlorate is transformed by H₂O₂ in AcOH into a perchlorate, C₂₄H₂₇O₉S₂Cl, m.p. 76—78°, converted by KOH-EtOH into α-Ph₂S and β-Ph₂SO₂. Since these are not present in the initial material, the fundamental forms are α-OH·SPh:C₆H₆ and β-OH·SPh(:C₆H₆) $<_{O}^{O}$. The experiments explain the production of α-Ph₂S during the prep. of β-Ph₂S from purified basic perchlorate.

H. W.

Pinacol rearrangement of cis- and trans-1:2-dimethylcyclohexane-1:2-diol. Relationship of the Walden inversion to the mechanism of molecular rearrangements. P. D. BARTLETT and I. PÖCKEL (J. Amer. Chem. Soc., 1937, 59, 820-825).—cis-1:2-Dimethylcyclohexane-1:2-diol gives solely 2:2-dimethylcyclohexanone (74%) under conditions (20% H₂SO₄) in which the trans-isomeride gives 1-acetyl-1-methylcyclopentane (78%). Assuming the ring to have an average planar configuration, that group migrates which is located in space near the opposite side of C₍₁₎ to that occupied by the OH which is to be replaced. This does not accord with loss of the OH before migration, nor with the "open sextet" theory; a modification of this theory is proposed. The formation of *iso*bornyl chloride (I) and acetate without the bornyl isomerides in the Wagner-Meerwein rearrangement necessitates a Walden inversion if (I) has the *exo*-structure; this is incompatible with the open sextet theory and with reaction by way of solvated carbonium ions. It is explained by a "push and pull" theory, thus: $A^+ + \text{Cl-C-C-C} < + \text{Cl}A \rightarrow$ $A\text{Cl} + > \text{C-C-CCl} + A^+$; the Cl-donor and acceptor may be Cl' or HCl, which leads to a reaction of the 1.5 or second order; Meerwein's kinetic results are shown to fit either of these orders better than the first order which he favoured. R. S. C.

Preparation of *d*- and *l*-isohydrobenzoin. F. EISENLOHR and L. HILL (Ber., 1937, 70, [B], 942-947).—PhCHO is electrolytically reduced by a modification of Law's method (J.C.S., 1906, 89, 512; 1907, 91, 1753) to a mixture of much hydrobenzoin (I), m.p. 139-140°, and little isohydrobenzoin (II), m.p. 121-22°, accompanied by the (?)polymorphous forms, m.p. 103° and 93°, respectively. Gradual addition of Br to (I) and yellow P in CS₂ affords α -stilbene dibromide, transformed by KOAe in AcOH into (II). (II) is separated into its optical antipodes by selection of the crystals formed when its solution in Et₂O is allowed to evaporate slowly. *d*-isoHydrobenzoin has $[\alpha]_{16}^{16} + 95 \cdot 46^{\circ}$ ($c = 1 \cdot 598$), $[\alpha]_{20}^{20} + 94 \cdot 0^{\circ}$ ($c = 2 \cdot 000$) in 96% EtOH, $[\alpha]_{16}^{10} - 122^{\circ}$ in C₆H₆. H. W.

Hydrogenation of acetylenic compounds. XXVII. Hydrogenation of s-diphenylditolylbutinenediol. J. S. SALKIND and E. E. MARTIN-SON (J. Gen. Chem. Russ., 1937, 7, 815–817).— COPh·C₆H₄Me-p and (:C·MgBr)₂ yield $\alpha\delta$ -diphenyl- $\alpha\delta$ di-p-tolyl- Δ^{β} -butinene- $\alpha\delta$ -diol, m.p. 146°, which yields $\alpha\delta$ -diphenyl- $\alpha\delta$ -di-p-tolylbutane- $\alpha\delta$ -diol, m.p. 176°, when hydrogenated in presence of Pt, and cis-, m.p. 96°, and trans- $\alpha\delta$ -diphenyl- $\alpha\delta$ -di-p-tolyl- Δ^{β} -butene- $\alpha\delta$ -diol, m.p. 188—190°, in presence of Pd catalyst. R. T.

Enzymic hydrogenation of unsaturated compounds.—See A., III, 219.

Synthesis of vitamin-A. R. KUHN and C. J. U. R. semicarbazone is converted by treatment with $o-C_6H_4(CO)_2O$ and steam into pure β -ionone, b.p. 128 /8 mm., which is condensed with Zn and $CH_2Br \cdot CO_2Et$ to Et β -ionylideneacetate, b.p. 162°/3 mm. Addition of this to the solution obtained by treatment of MgMeI in Et₂O with o-C₆H₄Me·NH₂ affords \$-ionylideneacet-o-toluidide (I), which is partly cryst. at -40° . (I) is converted by PCl₅ in C₆H₆ into the imidochloride, which is added to a suspension of $CrCl_2$ in Et_2O , thus giving β -ionylideneacetaldehyde (II), $CH_2 < CH_2 - CMe_2 > C \cdot CH: CH \cdot CMe: CH \cdot CHO, b.p. 110^{\circ}$ (bath)/10-4 mm. (slight decomp.) (semicarbazone, m.p. 193-195°). (II) reduces warm Ag₂O-NH₃ and gives a reddish-brown ppt. with SbCl₃ in CHCl₃. Addition of CMe2:CH·CHO to a solution of (II) in EtOH con-

taining piperidine and AcOH gives the aldehyde,

 $\mathbf{x}\mathbf{v}$ (i, j)

 $CH_2 < CH_2 \cdot CMe_2 > C[\cdot CH: CH \cdot CMe: CH]_2 \cdot CHO$, which gives a bluish-green colour with SbCl₃ in CHCl₃ and is reduced by Al(OPr^{β})₃ in Pr^{β}OH to the corresponding alcohol, the identity of which with vitamin-A is shown by the mixed chromatographic adsorption test on Al₂O₃, and growth test on rats. H. W.

Oxidation of cholesterol with selenious acid. A. BUTENANDT and E. HAUSMANN (Ber., 1937, 70, [B], 1154—1159).—Oxidation of cholesterol with SeO₂ in Ac₂O at 105—110° gives Δ^5 -cholestene-3:4-diol diacetate (I), m.p. 165—166°, $[\alpha]_{D}^{p_0} + 94\cdot5°$ in CHCl₃, and Δ^4 -cholestene-3:6-diol diacetate (II), m.p. 131— 133°, $[\alpha]_{D}^{p_0} -18\cdot5°$ in EtOH, hydrolysed respectively to 4-hydroxycholesterol (III), m.p. 174°, and Δ^4 cholestene-3:6-diol (IV), m.p. 255—256°. The authors agree with Rosenheim and Starling (this vol., 191) in interpreting the constitution of (I) and (III) but for the following reasons do not share the view that (II) and (IV) are the *trans*-isomerides of (I) and (III). (IV) suspended in AcOH is oxidised by CrO₃ (= 6 O)

HO₂C HO₂C (A.) to the ketodicarboxylic acid (V), $C_{27}H_{42}O_5$, m.p. 185—187°, $[\alpha]_{20}^{20}$ $+67\cdot53^{\circ}$ in COMe₂ (Me₂ ester, m.p. 137—138° after slight softening at 135°), which must be A since it is also obtained by oxidation of Δ^4 -cholestene-3: 6-dione. (V) is

transformed by Zn dust in boiling AcOH into the ketone, $C_{26}H_{42}O_2$, m.p. 114—115°. (IV) with Al(OPr^{β})₃ in boiling COMe₂-C₆H₆ gives cholestan-3:6-dione, m.p. 169°. H. W.

Unsaturated steroids. I. Constitution of cholesterilene. II. Preparation and properties of $\Delta^{2:4}$ -cholestadiene. III. Titration of unsaturated steroids with thiocyanogen. H. E. STAVELY and W. BERGMANN (J. Org. Chem., 1937, 1, 567—574, 575—579, 580—581).—I. Cholesterilene (I), m.p. 78—79°, $[\alpha]_{20}^{p}$ —97.5° in CHCl₃, prepared from cholesterol (II) by anhyd. CuSO₄, absorbs 2 Br, but gives no cryst. bromide, absorbs 1.97 O₂ from BzO₂H, with H₂-PtO₂ in EtOAc gives 80% of cholestane and 20% of coprostane, and with maleic anhydride in xylene at 135° gives abnormally the acid adduct (III), C₃₁H₄₈O₄, decomp. 240—245°. The cholestadiene, $[\alpha]_{b}$ —112° (IV), from allo- or epiallo-cholesterol and HCl is unaffected by Na-C₅H₁₁ OH, is hydrogenated (PtO₂) to 85% of cholestane and 15% of coprostane, and yields (III). The dienes (I) and (IV) have the same absorption spectrum and are thus both $\Delta^{3:5}$. cholestadiene. 7-Ketocholesteryl acctate and HCl-EtOH give 7-keto- $\Delta^{3:5}$ -cholestadiene (semicarbazone, m.p. 198—200°), reduced by NaOEt at 200° to $\Delta^{3:5}$. cholestadiene, m.p. 78—79°, $[\alpha]_{2}^{p}$ —63.75° in CHCl₃, similar to the above dienes in absorption spectrum. Cholesterilenes recorded in the lit. fall into two groups with $[\alpha]$ —60° to -70° and - >100°, respectively; the nature of the isomerism is unknown.

II. When (II) and Al₂O₃ are heated at 200°/vac., a hydrocarbon, m.p. 72—74°, $[\alpha]_D^{23}$ —56.5°, is sometimes obtained; distillation at 240—270° gives $\Delta^{2:4}$ -cholestadiene (V), m.p. 63°, $[\alpha]_D^{23}$ +114° in CHCl₃, hydrogenated (PtO₂) in EtOH to coprostane only, absorbing 2 O₂ from BzO₂H, yielding with maleic

anhydride in hot C_6H_6 or, better, xylene at 135° an isomeride, m.p. 70—72°, $[\alpha]_2^{n1}$ —77.8° in CHCl₃, and the acidic adduct, m.p. 268—270° (decomp.), reduced by Na-Hg to Δ^4 -cholestene, m.p. 77—78°, $[\alpha]_5^{n0}$ +66.9° in CHCl₃, and rearranged by HCl-EtOH to $\Delta^{3:5}$ -cholestadiene. The ready change of the $\Delta^{2:4}$ into the $\Delta^{3:5}$ -system is noted. The product, $[\alpha]$ +1.45°, obtained from (I) and Zn dust is probably a mixture of (I) and (V).

III. Titration with (CNS)₂ in AcOH discloses the following no. of ethylenic linkings: cholestanone 0·1, cholesteryl chloride 0·02 and benzoate 0·05, Δ^5 -cholestene 0·1, cholestenone 0·11, sitosteryl acetate 0·04, stigmasteryl acetate 0·03, cholesterilene 0·99, $\Delta^{2:4}$ -cholestadiene 0·95, and ergosteryl acetate 2·03. Δ^3 -, but not Δ^4 -, Δ^5 -, or Δ^{22} -, linkings react and reaction thus indicates ethylenic linkings present in reactive positions. R. S. C.

Ether-soluble constituents of sarsaparilla root. I. J. C. E. SIMPSON and N. E. WILLIAMS (J.C.S., 1937, 733-738).—The sterol fraction on bromination of the mixed acetates gave (1) a sparingly sol. bromoacetate, m.p. 210-211°, debrominated to an acetate, m.p. 140-141°; free sterol, m.p. 170°, $[\alpha]_{p}^{l7} - 45.8^{\circ}$; p-nitrobenzoate, m.p. 203°, $[\alpha]_{p}^{l7} - 13.3^{\circ}$; anisate, m.p. 173.5—174.5, $[\alpha]_{p}^{l7} - 14.3^{\circ}$, all of which are identical with stigmasterol and its derivatives, and (2) the filtrate, which on debromination, saponification, conversion into the 3:5-dinitrobenzoates, and fractionation from cyclohexane gave two products, (a) m.p. 207—209°, $[\alpha]_D^{a}$ -21.7°; corresponding free sterol, m.p. 135–135.5°, $[\alpha]_{\rm B}^{\rm m}$ –34.2°; acetate, m.p. 126–127°, $[\alpha]_{\rm B}^{\rm m}$ –34.7°; benzoate, m.p. 145–146°, $[\alpha]_{\rm B}^{\rm m}$ –14.2°, suggesting identity with β -sitosterol and its derivatives, (b) in minute amount, m.p. 215-217°; the free sterol, C29H50O, for which the name ɛ-sitosterol is proposed, has m.p. 143-144°, $[\alpha]_{\rm D}^{17} - 38.7^{\circ}$ (acetate, m.p. 127-128°, $[\alpha]_{\rm D}^{17} - 44.7^{\circ}$). The remaining fractions of the Honduras root consisted largely of fats, waxes, and a mixture of paraffins, m.p. 57–59°, of mean formula $C_{18}H_{38} \pm$ CH₂. The non-saponifiable fraction of this mixture gave on benzoylation a substance, m.p. 124.5-125°, apparently the dibenzoate of a dihydric phenol $C_{11}H_{14}O_3(OH)_2$, which may be identical with filixic acid of male fern. With Mexican root this fraction consisted 90% of a paraffin or mixture of paraffins, m.p. 61-62°, of mean formula $C_{23}H_{48}$, 9% of a tert.-*alcohol*, $C_{20}H_{42}O$, m.p. 82-82.5°, and 1% of a substance, $C_{29}H_{38}O_3$, m.p. 102-104°. P. W. C.

β-Œstradiol. B. WHITMAN, O. WINTERSTEINER, and E. SCHWENK (J. Biol. Chem., 1937, **118**, 789— 795).—Reduction of œstrone (Ni-Al + NaOH) yields two epimeric diols, separated by pptn. with digitonin, α-œstradiol, m.p. 176—178°, identical with the dihydrotheelin of MacCorquodale *et al.*, which predominates and has the greater œstrogenic activity, and β-œstradiol, m.p. 220—223° (3-benzoate, m.p. 156—157°; *diacetate*, m.p. 139—141·5°). All m.p. are corr. A. LI.

Silver-halogen complexes of benzoic acid. C. PRÉVOST and J. WIEMANN (Compt. rend., 1937, 204, 989-991; cf. A., 1934, 292).—AgOBz with Cl₂, Br, or I in cold CCl₄ affords silver-halogeno-

 $\mathbf{XV}(j,k)$

benzoates which convert Δ^{α} -heptinine into the α halogeno-derivatives. They also react with ethylenic compounds, and with cyclohexene yield 2-chloro-, m.p. 50°, -bromo-, m.p. 64°, and -iodo-cyclohexyl benzoate, m.p. 54°. J. L. D.

Action of thionyl chloride on aromatic aminoacids. R. GRAF and W. LANGER (J. pr. Chem., 1937, [ii], 148, 161-169).—Previous failures to obtain N-thionylaminobenzoyl chlorides from the NH₂-acids and SOCl₂ (I) was due to decomp. during distillation. o-, m-, and p-NH₂·C₆H₄·CO₂H with (I) give, after removal of excess of (I) at $\geq 120^{\circ}$, and distillation in vac., N-o-, m.p. $31-32^{\circ}$, b.p. $105-106^{\circ}/0.8$ mm., N-m- (II), m.p. $32-33^{\circ}$, b.p. $140^{\circ}/12$ mm., and N-p-thionylaminobenzoyl chloride (III), m.p. $40-41^{\circ}$, these are decomposed by H₂O or by MeOH to insol. substances of high mol. wt. accompanied by the hydrochlorides of the NH₂-acids, or of their esters. In Et₂O, with dry HCl, (II) and (III) give m-, decomp. about 270°, and p-aminobenzoyl chloride hydrochloride (IV), decomp. 250° . These are hydrolysed by H₂O, MeOH, or EtOH exclusively to the NH₂-acid or -ester hydrochloride; with CH₂Cl·CH₂·OH, (IV) gives p-NH₂·C₆H₄·CO₂CH₂·CH₂CI m.p. 86°. p-NHMe·C₆H₄·CO₂H and (I) give a product which with Et₂O-HCl forms p-methylaminobenzoyl chloride hydrochloride, m.p. 168-182°. p-Ethyl-, m.p. 100°, p-n-propyl-, m.p. 89-90°, p-n-butyl-, m.p. 112° (decomp.), and p-isoamyl-aminobenzoyl chloride hydrochloride, m.p. 105° (decomp.), are similarly prepared, and converted by MeOH into the Me esters.

Iodine value of cinnamic [acid] derivatives. A. LESPAGNOL and J. BRUNEEL (J. Pharm. Chim., 1937, [viii], 25, 454–457).—CHPh:CH·CO₂H, its Et, CH₂Ph, and cinnamyl esters, and CHPh:CH·CH₂·OH have low I vals., viz., about 29, 25, $4\cdot5$ — $6\cdot7$, $83\cdot3$ — 87, and 30, respectively. R. S. C.

cis-Cinnamic acids.-See A., I, 291.

Amido- and imido-chlorides of non-aromatic acids. X. J. von BRAUN and H. OSTERMAYER (Ber., 1937, 70, [B], 1002—1005; cf. A., 1934, 393, 1359).—Attempts to prepare acetylenic aldehydes by a process analogous to that leading from >C:CH·CCI:NR to >C:CH·CHO are hindered by the impossibility of avoiding addition of HCl during the action of PCl₅ on CR:C·CO·NHR'. Thus, phenylpropiolanilide, m.p. 128°, is converted by PCl₅ in cold C₆H₆ into β -chlorocinnamphenylimidochloride (I), b.p. 160—170°/0·1 mm., hydrolysed by H₂O to β -chlorocinnamanilide, m.p. 133°, and transformed by NH₂Ph in Et₂O into the amidine, CPhCI:CH(:NPh)·NHPh, m.p. 97°. Similarly phenylpropiolethylamide, m.p. 109°. Treatment of (I) with a suspension of CrCl₂ in Et₂O-HCl gives CHPh:CH·CHO (II) and β -chlorocinnamaldehyde, b.p. 125°/10 mm. (semicarbazone, m.p. 216°), whilst (II) is produced exclusively when an excess of CrCl₂ is used. α -Bromo- Δ^{α} -hexenoic acid, b.p. 134°/12 mm. (ozonised to Pr[°]CHO), and SOCl₂ give the corresponding chloride, b.p. 94°/14 mm., whence α -bromo- Δ^{α} - hexenanilide, m.p. 67°. This is converted by successive use of PCl_5 in C_6H_6 and much $CrCl_2$ into Δ^{α} -hexenaldehyde, whilst with a smaller proportion of $CrCl_2$ the crude α -Br-aldehyde is obtained. Reduction of a halogen atom vicinal to the ethylenic linking appears to depend on the presence of $\cdot CCl:NR$ since CPhCl:CH·CO·NHPh, CPhCl:CH₂, and 1-chloro-indene are resistant to $CrCl_2$. H. W.

Formation of hydrocarbons by the thermal decomposition of α -ethoxy-acids. M. MEYER (Compt. rend., 1937, 204, 1260—1261; cf. A., 1933, 377).— β -2-Tetrahydronaphthyl- α -ethoxypropionic acid, b.p. 165°/2 mm. (amide, m.p. 105°; chloride, b.p. 138°/3 mm.), when heated in presence of Pd affords 2-tetrahydronaphthylacetaldehyde, b.p. 161—162°/22 mm. (semicarbazone, m.p. 199—200°), and tetrahydro-2-methylnaphthalene; dehydrogenated (S) to give 2-C₁₀H₇Me. Similarly, β -cinnamyl- α -ethoxypropionic acid gives propenylbenzene. J. L. D.

Influence of replacement of a β -hydrogen by methyl in α -hydroxy- γ -phenyl- Δ^{β} -butenoic acid. M. GIRARD (Compt. rend., 1937, 204, 1071—1073).— Unlike the β -unsubstituted acid (I), α -hydroxy- γ phenyl- β -methyl- Δ^{β} -butenoic acid, m.p. 132° (prep. through its amide, m.p. 161°, and nitrile from CHPh:CMe·CHO), is unchanged by heating with alkali, does not react with I-Na₂CO₃, affords CMe-CHPh O with strong mineral acids (traces only with weak acids), but like (I) with I-NaHCO₃ it affords the γ -lactone, m.p. 80°, of β -iodo- $\alpha\gamma$ -dihydroxy- γ -phenyl- β -methylbutyric acid. J. W. B.

Isomerism of derivatives of cyclohexane. R. D. DESAI, R. F. HUNTER, and G. S. SAHARIA (Nature, 1937, 139, 718—719).—Both 3- and 4methylcyclohexane-1-carboxylic-1-succinic acids have been isolated in two forms. There is no indication of isomerism with multiplanar forms. L. S. T.

Lichen substances. LXXIX. Components of Cetraria islandica (L.), Ach. II. Y. ASAHINA and M. YASUE (Ber., 1937, 70, [B], 1053—1059).— Examination of new samples of *C. islandica* from Hokkaido gives in some instances solely *d*-protolichesteric acid (I) whereas from others 1-alloprotolichesteric acid (II), m.p. 107°, $[\alpha]_{D}^{16} - 102.0^{\circ}$ in CHCl₃, is obtained. The data recorded previously (A., 1936, 314) must be corr. for (II) and its derivatives (pyrazoline compound, $C_{21}H_{38}O_4N_2$, m.p. 67°, $[\alpha]_{26}^{26}$ -186.24° in CHCl₃; dihydroalloprotolichesteric acid, m.p. 121—123° after softening at about 111°, $[\alpha]_{\rm p}^{\rm si}$ -57.24° in CHCl₃). Examination of Japanese C. islandica shows its components to be very hetero-geneous whereas C. islandica f. tenuifolia from Japan, which invariably gives a positive $p-C_6H_4(NH_2)_2$ test, contains fumarprotocetraric acid alone or mixed with notable quantities of *l*-protolichesteric acid. Examination of European C. islandica and crispa confirms Zopf's opinion that lichesteric acid is not a primary component but is formed from protolichesteric acid during the extraction. Very mild treatment of C. islandica f. tenuifolia from Norway gives, however, a little l-lichesteric acid (III) and much (II). Specimens from Baden yielded a mixture

of (II) and (III) whereas another from Lausitz contained (I) almost exclusively. H. W.

Amino-acids. X. a-Methylamino-acids. Synthesis of N-methyl-3: 4-dihydroxyphenylalanine and related compounds. T. H. GUERRERO and V. DEULOFEU (Ber., 1937, 70, [B], 947-950; cf. this vol., 19).-Creatinine (I) and vanillin (II) when heated at 140° or boiled in piperidine afford 4-hydroxy-3-methoxybenzylidenecreatinine (III), m.p. 273°, whilst 4-acetoxy-3-methoxybenzylideneacetyl-creatinine (IV), m.p. 217°, is obtained by acetylation of (III) or when (I) and (II) are heated with NaOAc and Ac₂O at 130°. Reduction of (III) or (IV) by Na-Hg in H₂O gives 4-hydroxy-3-methoxybenzyl-creatinine (V), m.p. 231–233°, or 4-hydroxy-3-methoxybenzylacetylcreatinine, m.p. 174°. (V) is hydrolysed by boiling conc. Ba(OH)₂ to α -methylamino-β-4-hydroxy-3-methoxyphenylpropionic acid, m.p. 276—278° or m.p. 265—267° after darkening at 235° when slowly heated, converted by red P and HI (d 1.7) in Ac₂O into α -methylamino-B-3: 4-dihydroxyphenylpropionic acid, m.p. 298-300° or m.p. 286-287° after darkening at 240-245° when slowly heated. H. W.

Catalytic oxidation of certain aromatic compounds. J. S. SALKIND and V. V. KESAREV (J. Gen. Chem. Russ., 1937, 7, 879–881).—A mixture of the vapour of the substance with air is passed over $9:1 V_2O_5-U_3O_8$ on pumice at $400-420^\circ$, when 1or $2-C_{10}H_7Br$ or $\beta-C_{10}H_7$ ·OH yields $o-C_6H_4(CO_2H)_2$ (I) and BzOH, $1-C_{10}H_7$ ·NO₂, or $\alpha-C_{10}H_7$ ·NH₂ gives $o-C_6H_4(CO)_2NH$ and (I), C_5H_5N and quinoline give CO_2 , H_2O , NH_3 , NO, and $H \cdot CO_2NH_4$, whilst carbazole is not oxidised at 500°. R. T.

(A) Action of hydrogen chloride on solutions in alcohol of substituted phthalamic acids. (B) Reaction of certain amines with alkylarylphthalamic acids. B. A. PORAI-KOSCHITZ (J. Gen. Chem. Russ., 1937, 7, 604—610, 611—620).—(A) N-Arylphthalamic acids in EtOH yield the corresponding N-arylphthalimides when the solution is saturated with dry HCl. N-o- and -p-Tolyl-, α - and β -naphthyl-, p-hydroxyphenyl-, and p-dimethylaminophenylphthalimide, m.p. 218° (from p-dimethylaminophenylphthalamic acid, m.p. 157°), have been prepared by this reaction. Phenylnaphthalimide is obtained analogously from N-phenylnaphthalamic acid.

(B) The equilibrium $o \cdot \dot{C}O_2 H \cdot C_6 H_4 \cdot CO \cdot NHR + NHR'R'' \implies o \cdot CO_2 H \cdot C_6 H_4 \cdot CO \cdot NRR'' + NH_2 R', in various org. solvents at room temp., is shown to exist in the cases <math>R = R' = R'' = Ph$; R = R' = Ph, R'' = Me; $R = R' = o \cdot tolyl$, R'' = Et; $R = R' = a \cdot C_{10}H_7$, R'' = Et. R. T.

Di-n-heptyl phthalate.—Sce A., I, 377.

Friedel-Crafts reaction of lactones. I. Synthesis of aromatically substituted acids from δ -chloro- γ -valerolactone. H. BEYER (Ber, 1937, 70, [B], 1101—1113).— δ -Chloro- γ -valerolactone with AlCl₃ and C₆H₆ at 60—80° affords δ -phenylvaleric acid, m.p. 57—59°, $\gamma\delta$ -diphenylvaleric acid (I), b.p. 180—182°/0·1 mm., anthracene-9: 10-dibutyric acid (II), m.p. 248—250°/(vac.) after softening at 240°, and some anthraquinone (III). The intermediate

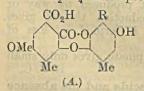
formation of y-chloro-8-phenylvaleric acid is postulated. (I) [Me ester, b.p. $155-156^{\circ}/0.1$ mm.; Et ester, b.p. $165-166^{\circ}/0.7$ mm.; corresponding chloride (IV), not distillable without decomp.; amide, m.p. 70-71° (vac.); anilide, m.p. 112-113°; carbamido-derivative, m.p. 139-140° after softening at 135°] is also obtained from $\gamma\delta$ -dibromovaleric acid, AlCl₃, and C_6H_6 at 60–70°. (IV) is transformed by AlCl₃ in CS_2 into 1-keto-4-benzyl-1: 2: 3: 4-tetrahydronaphthalene, b.p. 165°/0.1 mm. (semicarbazone, m.p. 186—187°). (II) [Me₂ ester, m.p. 106—108° after softening at about 100° ; Et_2 ester, m.p. 103— 105° after softening at about 90°; dihydrazide, m.p. 258-259° (decomp.) after softening at 255°], which has an intense violet fluorescence, is hydrogenated $(PtO_2 in AcOH at room temp.)$ to the non-fluorescent 1:2:3:4-tetrahydroanthracene-9:10-dibutyric acid, m.p. 230-232° after softening at 223° [Me2 ester, m.p. 80-82° (decomp.) after softening at 75° ; Et_2 cster, m.p. 92-93° after softening at 89°; dihydrazide, m.p. 250-252° (decomp.) after softening]. Ozonisation of (II) gives (III) and (·CH₂·CO₂H)₂. Addition of maleic anhydride to (II) at 260° gives the 9:10adduct, m.p. 283-285° (decomp.) after softening at 280° (Me2 ester, m.p. 187-189° after softening at 170°), which could not be hydrogenated.

H. W. Manufacture of chrysenecarboxylic acids.— See B., 1937, 420.

Synthesis of α -phenylparaconic acids. M. P. GERTSCHUK (J. Gen. Chem. Russ., 1937, 7, 980— 982).—Et₂ β -formyl- α -phenylsuccinate is reduced by Al to Et₂ phenylitamalate, which when distilled yields a mixture of cryst. (I), m.p. 92°, and liquid Et₂ α -phenylparaconate (II), b.p. 212—213°/15 mm. (I) or (II) gives α -phenylparaconic acid, m.p. 124° (+ 0.25H₂O, m.p. 102°), when hydrolysed with 10% HCl. R. T.

Electrolysis of aromatic acids. IV. Electrolysis of phthalic acid. V. M. RODIONOV, V. M. LEVTSCHENKO, and V. C. ZVORIKINA. V. Electrolysis of hemipinic acid. V. M. RODIONOV and V. C. ZVORIKINA (Bull. Soc. chim., 1937, [v], 4, 463-473, 473-477; cf. this vol., 101).—IV. Anodic or cathodic electrolysis does not affect $o - C_6 H_4(CO_2 K)_2$. Electrolysis without a diaphragm or first anodically and then cathodically gives α -, m.p. 268-269°, and β -di-dihydrophthalyl, (CO $< C_6 H_4 > CH \cdot)_2$, m.p. 252°, phthalide, and a little o-CHO·C₆H₄·CO₂H (I) and BzOH. Probably (I) is first produced by way of peroxides, since cathodic reduction thereof gives the other products. BzOH is formed by loss of CO₂ from (I).

 \bar{V} . Electrolysis of K_2 hemipinate gives only small yields of ψ -meconine. R. S. C.


Enolisation of β -ketonic acids and the absence of their ketonic decompositions in accordance with Bredt's rule. J. BREDT (J. pr. Chem., 1937, [ii], 148, 221-224).—Theoretical. The failure of 2 : 6-diketodiamontane -1 : 3 : 5 : 7-tetracarboxylic acid (this vol., 152) to lose CO₂ agrees with Bredt's rule that a β -ketonic acid is as stable as a γ - or other ketonic acid when it cannot give rise to an unsaturated enolic form, and with the impossibility of a double linking being formed at a bridge-head. E. W. W.

αβ-Unsaturated aldehydes. III. The two cyclocitrylideneacetaldehydes. J. VON BRAUN and P. KURTZ (Ber., 1937, 70, [B], 1009-1012).-The possibility that cyclisation occurs during the prep. of citrylideneacetaldehyde (I) from citrylideneacetic acid (von Braun and Rudolph, A., 1934, 1335) is excluded by the observation that the properties of (I) differ from those of the cyclic compounds now prepared. (I) and the compound of Kuhn et al. (A., 1936, 316) are probably therefore cis-trans-(A., 1930, 510) are produced CH₂·CMe₂>CH·CHO, isomerides. α-cycloCitral, CH₂<<u>CH</u>₂·CMe₂>CH·CHO, b.p. 75.77°/10 mm., is converted by Zn and CH₂Br·CO₂Et into Et β-hydroxy-β-2:2:6-trimethyl- Δ^4 -cyclohexenylpropionate, b.p. 147—152°/12 mm. The corresponding hydroxy-acid, m.p. 112-114°, is converted by Ac₂O and NaOAc at 100° into α cyclocitrylideneacetic acid, b.p. 145-150°/0.05 mm., transformed by SOCl₂ into the corresponding chloride and thence by NH₂Ph in Et₂O into a-cyclocitrylideneacetanilide, b.p. 218-222°/0.05 mm. The latter is converted by the successive action of PCI₅ in C₆H₆ and of CrCl₂ in HCl-Et₂O into a-cyclocitrylideneacetaldehyde, b.p. 82.83°/0.1 mm., which resembles tetrahydroionone in odour. Similarly, β-cyclocitral, $CH_2 \underbrace{CH_2 \cdot CMe}_{CH_2 - CMe} C \cdot CHO, b.p. 90 - 92^{\circ}/10$ mm., is transformed into a mixture of hydroxy- and unsaturated ester from which β -cyclocitrylideneacetic acid, b.p. 146-150°/0.05 mm., is isolated. This is transformed into β -cyclocitrylideneacetanilide, b.p. about $220^{\circ}/0.05$ mm., whence somewhat impure β -

cyclocitrylideneacetaldehyde which resembles β-ionone in odour. H. W. Synthesis of benzylidene-ethylideneazine. S. A. TERNOV (J. Gen. Chem. Russ. 1927, 7, 654, 655)

TEBINOV (J. Gen. Chem. Russ., 1937, 7, 654—655). PhCHO, MeCHO, and aq. N_2H_4 at 100° yield benzylidene-ethylideneazine, CHPh:N·N:CHMe, m.p. 89—90°, which does not reduce Ag₂O or Fehling's solution. R. T.

Lichen substances. LXXVIII. Psoromic acid. II. Y. ASAHINA and H. HAYASHI [with, in part, M. TASAKA] (Ber., 1937, 70, [B], 810–812; cf. A., 1933, 823).—Treatment of parinic acid with Ac_2O and C_5H_5N at 37° yields acetylpsoromic acid, $C_{20}H_{16}O_3$, m.p. 223°, converted by Ac_2O containing conc. H_2SO_4 into psoromic acid triacetate, m.p.

198—199°. Hypopsoromic acid (A, R = Me) is transformed by boiling 10% KOH into hypoparellic acid, m.p. 253° (decomp.), converted by short treatment with CH_2N_2 into the Me ester, m.p. 196—

197°, by protracted treatment into the Me ester Me_2 ether, m.p. 135°, and by Me_2SO_4 into the Me_2 ether, m.p. 230°. Successive electrolytic and catalytic reduction of the latter substance leads to deoxy-hyposalazinol Me_3 ether, thus establishing the structure of psoromic acid (A, R = CHO) from the analytical side. H. W.

Reactions of cyclohexanone with diazoethane. A. P. GIRAITIS and J. L. BULLOCK (J. Amer. Chem. Soc., 1937, 59, 951).—cycloHexanone (I) and CHMeN₂ in Et₂O or Et₂O-MeOH give 2-methylcycloheptanone, reaction being faster than with CH_2N_2 . CH_2N_2 does not react with cycloheptanone (II), whilst with cyclopentanone it gives a poor yield of (II) with a little (I). 2-Chlorocyclohexanone with CH_2N_2 gives quantitatively a chloromethylcycloheptanone.

R. S. C.

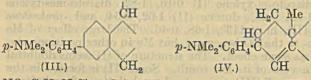
Synthesis of polyterpenoid compounds. III. J. W. COOK and C. A. LAWRENCE (J.C.S., 1937, III. 817-827; cf. Chuang et al., A., 1936, 988).-Et 2-y-cyanopropylcyclohexanone-2-carboxylate, b.p. 163- $165^{\circ}/0.7$ mm., prepared from γ -iodobutyronitrile and Et cyclohexanone-2-carboxylate, is hydrolysed to octane- α 50-tricarboxylic acid, b.p. 280–290°/0.8 mm. (Et ester, b.p. 162–163°/1 mm.), and γ -2-ketocyclohexylbutyric acid (p-phenylphenacyl ester, m.p. 78– 79°; Et ester, b.p. $136^{\circ}/0.4$ mm.). γ -(2-Methyl- Δ^1 -cyclohexenyl)butyric acid (p-phenylphenacyl ester, m.p. 83-84°), obtained from MgMeI and Et γ -2ketocyclohexylbutyrate, is cyclised to 9-methyl- $\Delta^{4:10 \text{ or } 5:10}$ -1-octalone, m.p. 222—223° (decomp.) (2:4-dinitrophenylhydrazone, m.p. 133°), hydrogenated to 9-methyl-1-decalone [oxime, m.p. 108.5-111°; 2:4-dinitrophenylhydrazone, m.p. 159-160° (decomp.)]. Et β - Δ^1 -cyclohexenylethylmethylmalonate, b.p. $134-137^{\circ}/0.5$ mm., from $\beta - \Delta^1$ -cyclohexenylethyl bromide and CHMe(CO2Et)2, is hydrolysed to the acid, m.p. 141.5-142.5°, which when heated affords γ - Δ^1 -cyclohexenyl- α -methylbutyric acid, b.p. 140-145°/0.8 mm. (p-phenylphenacyl ester, m.p. 88-90.5°); this is cyclised through the chloride and SnCl₄ to 2-methyl-\$29:10-1-octalone, b.p. 129°/13 mm. [semicarbazone, m.p. 212° (decomp.); oxime, m.p. 160-161°; 2:4-dinitrophenylhydrazone, m.p. 219-220° (decomp.)], which is hydrogenated to 2-methyl-1decalone, b.p. 109°/11 mm. [semicarbazone, m.p. 216-217.5° (decomp.); oxime, m.p. 152-153.5° 223-224·5°]. 2:4-dinitrophenylhydrazone, m.p. Hydrolysis and decarboxylation of Et β-(4-methyl- Δ^1 -cyclohexenyl) propylmalonate gives in small yield γ -(4-methyl- Δ^1 -cyclohexenyl)valeric acid, b.p. 112-114°/0.14 mm., cyclised to 1:6-dimethyl- $\Delta^{9:10}$ -4octalone, b.p. 141°/13 mm. [oxime, m.p. 98-102° semicarbazone, m.p. 163—165.5°; 2:4-dinitrophenyl-hydrazone, m.p. 217.5—219° (decomp.)]. Et ybromovalerate and Et 5-methylcyclohexanone-2carboxylate form the keto-ester, hydrolysed to y-(2-keto-4-methylcyclohexyl)valeric acid, b.p. about 160°/0.8 mm. (semicarbazone, m.p. 177-178.5°). $\gamma - \Delta^1$ -cycloHexenylbutyric acid is converted through the chloride and AlCl₃ into $\Delta^{9:10}$ -1-octalone [2:4dinitrophenylhydrazone, m.p. 266.5-267° (decomp.)]; the 2:4-dinitrophenylhydrazone of trans-1-decalone (I) has m.p. 222-222.5°. β-2-Ketocyclohexylpropionic acid [semicarbazone, m.p. 181-182° (decomp.)] is hydrogenated to the lactone of \$-2-hydroxycyclohexylpropionic acid, b.p. 145°/10 mm.

Methylation (NaNH₂-MeI) of (I) gives chiefly 2-methyl-1-decalone and some 9-Me compound with a methyl-1-decalone, isolated as the *oxime*, m.p. 139-139.5°. *cis*-2-Decalone (II) is chlorinated to 3-chloro-cis-2-decalone, m.p. 107-108°, converted into the 3-OH-compound, m.p. 88-90°. Et₂C₂O₄ and (II) afford Et cis-2-ketodecalvl-3-glvoxvlate (2:4-dinitrophenylhydrazone, decomp. 181-186°), converted into Et cis-2-decalone-3-carboxylate, b.p. 130°/0.7 mm. [2:4-dinitrophenylhydrazone, m.p. 169-170.5° (decomp.)]. This ester and MeI form Et 3-methyl-cis-2-decalone-3-carboxylate, b.p. 108.5-110°/ 0.4 mm. (2:4-dinitrophenylhydrazone, m.p. 120-121.5°), dehydrogenated (Se) to 3-methyl-2-naphthol (III). Et trans-2-decalone-3-carboxylate [2:4-dinitrophenylhydrazone, m.p. 181.5—182° (decomp.)] is methylated to Et 3-methyl-trans-2-decalone-3carboxylate, b.p. $113^{\circ}/0.5$ mm. (2:4-dinitrophenyl-hydrazone, m.p. $102\cdot5-104^{\circ}$), dehydrogenated to (III). CH,Ph·MgCH2Cl and (II) give 2-β-phenylethyl-cis-2-decalol, m.p. 111-112°, dehydrated (KHSO₄) to 2- β -phenylethyl-cis- $\Delta^{2:3}$ -octalin, b.p. 148-149°/0.9 mm., which is cyclised to dodecahydro-1:2benzanthracene (IV), similarly prepared from trans-2decalone (V). Dehydrogenation of (IV) affords 1:2-benzanthracene [2:7-dinitroanthraquinone complex, m.p. 252-253° (decomp.)], and its 5:6:7:8-H4-derivative, octahydro-1: 2-benzanthracene, m.p. 124.5—125.5°, and chrysene. Acetyl- Δ^1 -cyclohexene and (V) give 3-keto- Δ^4 -hexadecahydro-1:2-benzanthracene (trans form), b.p. 192-195°/1.3 mm. [semicarbazone, m.p. 240.5-241.5° (decomp.); 2:4dinitrophenylhydrazone, m.p. 201.5-204° (decomp.)], and the ketone (cis form), m.p. 122-122.5° [semicarbazone, m.p. 258.5° (decomp.); 2:4-dinitrophenylhydrazone, m.p. 172.5-179° (decomp.)], is similarly obtained from (II). These results show that the striking differences in the position of substitution in the stereoisomeric sterol ketones do not hold in the case of the 2-decalones, both cis- and trans- being attacked at position 3. The stability of the alternative Δ^1 - and Δ^2 -octalin systems present in the enolic forms of the ketones is influenced by the locking of this portion of the sterol mol. with the remainder of the ring system. F. R. S.

Fission of ketones with alkalis. I. Chloroacetophenones. G. LOCK and E. BÖCK (Ber., 1937, 70, [B], 916-925).-Fission of chloroacetophenones with at least one free ortho position occurs, if at all, with production of the corresponding benzoic acid; the change is therefore similar to that caused by substitution of halogen in Me. If both ortho positions are occupied smooth scission to halogenobenzene and AcOH is observed. Di-o-substituted acetophenones therefore closely resemble di-o-substituted benzaldehydes. The substance is heated with 50% KOH at 150° in a Ni tube for 24 hr., then diluted with H₂O and extracted with Et₂O. The alkaline solution is acidified with H₃PO₄ and distilled with steam; the distillate is titrated with 0.1N-KOH. COPhMe gives a little BzOH whilst o-C₆H₄Cl·CO₂H is derived from o-C6H4ClAc. m-C6H4Cl·CHO is transformed into m-chlorophenylmethylcarbinol, b.p. 240-246° (corr.)/748 mm., oxidised by CrO₂ in AcOH to m-C₆H₄ClAc, which yields m-C₆H₄Cl·CO₂H. p-C6H4ClAc affords p-C6H4Cl·CO2H. 2:6-C_cH₂Cl₂·CHO with MgMeI in Et₂O yields 2:6dichlorophenylmethylcarbinol, b.p. 134-136°/13 mm., m.p. 34-35° (benzoate, m.p. 77°), oxidised to 2:6-

dichloroacetophenone, m.p. 44°, which yields AcOH (= 81%); it is little affected by boiling 89% H_aPO₄. 2:6-C₆H₃Cl₂·CO₂H appears stable to 50% KOH. 3:5-Dichlorophenylmethylcarbinol, b.p. 136°/12 mm., m.p. 46°, gives 3:5-dichloroacetophenone, b.p. 134-136°/17 mm., m.p. 26° (oxime, m.p. 138°), whence $3:5-C_6H_3Cl_2\cdot CO_2H.$ 2:4-Dichlorophenylmethylcarbinol, b.p. 130-134°/11 mm. (p-nitrobenzoate, m.p. 113°), yields 2:4-C6H3Cl2Ac, m.p. 29° (oxime, m.p. 148°). 2:3:6-Trichlorophenylmethylcarbinol, b.p. 149-155°/11 mm., m.p. 87-88° (benzoate, m.p. 106.5°), is oxidised to 2:3:6-trichloroacetophenone, m.p. 63°, which gives $1:2:4-C_6H_3Cl_3$ in 82% yield. The conversion of 2:4:6-trichlorophenylmethylcarbinol, b.p. 158-163° (corr.)/17 mm., m.p. 76.5° into 2:4:6-trichloroacetophenone, m.p. 51.5°, which gives $1:3:5-C_6H_3Cl_3$ is described. Pentachloroaccto-phenone, m.p. 90°, affords C_6HCl_5 and AcOH (77.5%). H. W.

Polymethylbenzenes. XVI. Enolising action of magnesium methyl iodide upon hindered ketones. L. I. SMITH and C. GUSS (J. Amer. Chem. Soc., 1937, 59, 804-806; cf. A., 1936, 323).-The no. of active H found and mols. of MgMeI added in the Grignard machine (A., 1928, 160) are, respectively, for aceto-phenone 0.025, 1.025, -m-xylene 0.05, 1.02, -mesitylene 1.03, 0, -durene 0.97, 0.04, -prehnitene 0.75, 0.27, and -pentamethylbenzene, b.p. 144-145°/8 mm., m.p. 84°, 0.93, 0.01, 3:5-diaceto-1.66, 0.44, and 5-aceto-4-cumene 0.25, 0.79, 2:4diaceto-m-xylene (I) 0.16, 1.82, diaceto-mesitylene 1.82, 0.26, -durene (II) 1.62, 0.54, and -prehnitene (III), m.p. 113°, 1.68, 0.46. The large effect of Me o- to the CO is general, but Me in other positions also has some effect. The structure of (I) seems doubtful in view of its low result. Some (II) is formed in the prep. of (III) owing to demethylation of prehnitene R. S. C. by AlCl₃.


Reactions in the presence of metallic halides. I. β -Unsaturated ketone formation as a sidereaction in Friedel-Crafts acylations. N. O. CALLOWAY and L. D. GREEN (J. Amer. Chem. Soc., 1937, 59, 809—811).—In the reaction of C_8H_6 , AcCl, and AlCl₃ in CS₂ evolution of HCl never ceases; some dypnone (I) is formed if the COPhMe : AlCl₃ ratio is >1:1. 2 mols. of COPhMe and 1 mol. of AlCl₂ in CS₂ at 40—50° give 73% of (I), which is also obtained with (?) CPh₂:CH₂ from COPhMe by AlPh₃. 1 mol. each of COPhMe, PhCHO, and AlCl₃, give 91% of chalkone. Reaction may occur by way of AlR₃·OR. R. S. C.

Application of the principle of vinylogy to unsaturated ketones. R. E. CHRIST and R. C. FUSON (J. Amer. Chem. Soc., 1937, 59, 893-S97).— The CH₂ in :CH₂·C:C·C·O is reactive, even if the C:C is in a ring and the CO is outside it. Thus, Δ^{1} -tetrahydrobenzophenone (prepared from cyclohexene, BzCl, and AlCl₃ in CS₂), b.p. 147°/8 mm., gives (NaOEt) the 3-benzylidene derivative, m.p. 115°, and with KOEt and Et₂C₂O₄ the oxalo-ester COR•C—CH

 $[CH_2]_3 \cdot C:C(OK) \cdot CO_2Et$ (I; R = Ph), m.p. 92° (enolic K salt and *acetate*, m.p. 92°). Δ^1 -Tetrahydroacetophenone (modified prep.) condenses with PhCHO first at the Me, giving 1-cinnamoyl- Δ^1 -cyclohexene (II), m.p. 68°, which gives no CHI₃ and is also obtained from cyclohexene and CHPh.CH.COCl. (II) and $Et_2C_2O_4$ give the ester (I; $R = CO \cdot CH:CHPh$), m.p. 131-132° (K salt). Further treatment of the crude mixture of benzylidenecarvones with PhCHO yields an amorphous substance, probably the dibenzylidene derivative. R. S. C.

Indones. XIV. Partial dehalogenation of the 2: 3-dichloro-3-phenyl-2-methylhydrindone of m.p. 111-112°. R. DE FAZI and F. PIRRONE (Gazzetta, 1937, 67, 128-132).-In EtOH this compound (this vol., 153) is converted by AgNO3 into a compound, C₁₆H₁₂OCI [sic] (I), m.p. 125-126°, with an isomeride (II), m.p. 131-132°. With Cu, only (I) is obtained; with KI, a second isomeride (III), m.p. 153—155°, (I), a compound (IV), m.p. 143—144°, and 3-phenyl-2-methylindone (V). In COMe, aq. KOH gives (I) and (V). E. W. W.

Debromination of mono- and di-bromocholestanone. E. SCHWENK and B. WHITMAN (J. Amer. Chem. Soc., 1937, 59, 949-950).-Debromination of bromo- (I) and dibromo-cholestanone (II) gives varying results according to the reagent used. With $C_5 H_5 N$ (I) gives the pyridinium compound, m.p. 125-126°, and (II) gives the pyridinium compound, $C_{32}H_{49}ONBr$, decomp. >280°. With NPhMe₂ (I) gives cholestanone and (II) gives a compound, m.p. 230-232°, which couples with

NO2.C6H4.N2Cl and is (III) or, less probably, (IV). Similarly with KOPh (II) gives a compound, which couples and is probably the hydroxydiphenyl derivative. R. S. C.

Synthetic studies in the sterol and sexual hormone group. I. Synthesis of a 3-keto-10hydroxyhexahydrochrysene and its methyl ether. C. K. CHUANG, Y. L. TIEN, and Y. T. HUANG (Ber., 1937, 70, [B], 858-863).-Me δ-keto-η-m-methoxyphenyloctoate is cyclised by conc. H_2SO_4 at -15° to Me y-6-methoxy-3: 4-dihydro-1-naphthylbutyrate, b.p. $157-158^{\circ}/0.3$ mm., hydrolysed to the corresponding *acid*, m.p. 79-80°, which is dehydrogenated by S at 190–200° to γ -6-methoxy-1-naphthylbutyric acid (I), m.p. 150°. (I) is transformed by SOCl₂ in CHCl₃ followed by condensation with Et₂ a-acetylsodioglutarate into the non-cryst. ester

 $\mathrm{OMe}^{\cdot}\mathrm{C}_{10}\mathrm{H}_{6}^{\cdot}[\mathrm{CH}_{2}]_{3}^{\cdot}\mathrm{CO}^{\cdot}\mathrm{CAc}(\mathrm{CO}_{2}\mathrm{Et})^{\cdot}[\mathrm{CH}_{2}]_{2}^{\cdot}\mathrm{CO}_{2}\mathrm{Et},$

hydrolysed to 8-keto-n-6-methoxy-1-naphthyloctoic acid. The Me ester of this acid is transformed by NaOEt in Et₂O into β -6-methoxy-1-naphthylethylcyclohexane-2:6-dione (II), m.p. 168–170°, which has a pseudoacidic character but does not give a colour with FeCl₃. Cyclisation of (II) with P_2O_5 in boiling C_6H_6 or with 80% H₂SO₄ at 100° affords 3-keto-10-methoxy-chrysene (III), m.p. 177–178°, (oxime, m.p. 263° in both products 250°) which character 250°in bath pre-heated to 250°), which decolorises KMnO4 in AcOH and gives a red ppt. with Br in CCl_4 . (III)

is demethylated by HBr (d 1.49) in AcOH at 110° to 10-hydroxy-3-ketochrysene, m.p. 257-258° (decomp.) (bath preheated to 245°) [oxime, m.p. 287-288° (decomp.)], converted by 30% KOH and Me_2SO_4 into (III) H. W.

Projected synthesis of testosterone. R. ROBIN-SON (Chem. and Ind., 1937, 534).—Mainly polemical against Cook (cf. this vol., 292). Methyloctahydroindanone probably resembles a cholestanone rather than a β -decalone; a third ring has been added to this hydrindanone. R. S. C.

Condensation of dehydroandrosterone with ethyl a-chloropropionate. W. A. YARNALL and

>0Mo CH-CH2

CMe CO Et E. S. WALLIS (J. Amer. Chem. Soc., 1937, 59, 951-952).-Dehydroandrosterone, CHMeCl·CO2Et, and NaOEt give the oxide (I) and a little CH₂ (I.) androstene-3: 17-diol. NaOH converts (I) into the corresponding acid (Na salt) and a mixture of ketones,

probably Δ^5 - and Δ^5 -iso-pregnenolone, formed by rearrangement. R. S. C.

Constitution of artostenone, a ketonic sterol from Artocarpus integrifolia. M. C. NATH (Z. physiol. Chem., 1937, 247, 9-22) .- The unsaponifiable portion of the Et₂O extract of the juice of the fruit yields artostenone (I), $C_{39}H_{50}O$, m.p. 109°, $[\alpha]_{D}^{29}$ +19.86° in abs. EtOH, +23.44° in CHCl₃ [oxime, m.p. 175°; semicarbazone (II), m.p. $203-204^{\circ}$ (decomp.); Br-derivative, $C_{30}H_{48}OBr_4$, m.p. 160°]. (I) with Pt-asbestos and H_2 at 65° gives artostanone (III) (dihydroartostenone), m.p. 106-107° (oxime, m.p. 192-194°), the double linking in the $\alpha\beta$ -position to the keto-group being reduced, and with Na in EtOH or C₅H₁₁·OH artostenol, m.p. 106-107° (acetate, m.p. 120-121°). (II) is only partly reduced by Na in EtOH but the semicarbazone of (III) gives artostane, C₃₀H₅₄, m.p. 101° [picrate, m.p. 163° (decomp.)]. (I) is not reduced by Zn-Hg. W. McC.

Pechmann's colouring matters. Synthesis of colours with different substituents. P. CHOVIN (Compt. rend., 1937, 204, 1073-1075).-In agreement with earlier results (this vol., 150) it is shown that, in five further cases, the same substance is formed by condensation of either

are prepared the compounds of general formula Ar($C_8H_2O_4$)Ar' where Ar, Ar' = Ph, β - $C_{10}H_7$, m.p. 297°; Ph, p- C_6H_4Br , m.p. 347°; p- C_6H_4Me , β - $C_{10}H_7$, m.p. 316°; p- C_6H_4Br , β - $C_{10}H_7$, m.p. 377°; p- C_0H_4Me , p- C_6H_4Br , m.p. 393°; and p- C_6H_4Br , p- C_6H_4Br , m.p. 432°. J. W. B.

Kinetics of the sulphuric acid condensation of o-benzoylbenzoic acid C. W. DEANE (J. Amer. Chem. Soc., 1937, 59, 849-853).-Ring-closure of o-C₀H₄Bz·CO₂H (modified purification), m.p. 127.2-128.5° (corr.), in 96%—fuming H_2SO_4 (up to 28% SO₃) is unimol., giving 97—99% yields of anthraquinone; it is catalysed positively by SO₃ and negatively by H_2O . Increase of the % SO₃ from 1.8 to 14% has little effect on the rate of ring-closure; this is ascribed to H_2O formed at 75—85° thus : $H_2SO_4 \xrightarrow{} SO_3 + H_2O$.

Isomerisation of linalool under the influence of active silicate (floridin). G. V. PIGULEVSKI, E. T. KANETZKAJA, and M. A. PLATONOVA (J. Gen. Chem. Russ., 1937, 7, 873—878).—d-Linalool and floridin at 95—102° yield *l*-terpineol, *l*-limonene, dipentene, terpin hydrate, and a dicyclic diterpene, b.p. 178—180°/6 mm., with 3 double linkings.

R. T. Certain transformations of linalool, connected with its stereoisomerism. I. I. VANIN and A. A. TSOHERNOJAROVA (J. Gen. Chem. Russ., 1937, 7, 885-892).-d-Linalool in CHCl₃ and PCl₅ yield *l*-linalyl chloride (I) and a dichloride (II) [by addition of HCl to (I)]; with PCl₃ only (I) is formed. (I) is converted by NiCO₃ at 130-140° into a monocylic terpene, b.p. 62-72°/6 mm., and (II) into dihydro-*p*cymene. (I) gives β-pinene with Ag₂CO₃, and *l*linalool with wet Ag₂O, or with KOH in MeOH at 15°. R. T.

Syntheses with aliphatic monoterpenes. T. WAGNER-JAUREGG and H. ARNOLD (Annalen, 1937, 529, 274–287).—The effects of steric hindrance are very obvious during the production of acids $CHRR' \cdot CO_2H$ (R = cyclohexyl, cyclopentyl, or cyclopentenyl and $\mathbf{R}' = \text{geranyl}$, citronellyl, or dihydrocitronellyl) by the malonic synthesis. Introduction of the alkyl residue into $CH_2(CO_2Et)_2$ is satisfactorily effected in EtOH at 140° or in boiling xylene. Prolonged hydrolysis of esters CRR'(CO2Et)2 with boiling conc. alkali in many cases gives much Et H ester, the complete hydrolysis of which is effected only after decarboxylation. The following are described : citronellyl chloride, b.p. 93-95°/12 mm., and bromide, b.p. 103-105°/13 mm.; geranyl chloride, b.p. 103°/ 14 mm., and bromide, b.p. 110-112°/13 mm.; Et₂ cyclopentyl-, b.p. 135-140°/12 mm., cyclopentenyl-, b.p. 130-135°/2 mm., cyclohexyl-, b.p. 137-140°/ 0.1 mm., dihydrocitronellyl-, b.p. 140-150°/1 mm., citronellyl b 133-138°00.2 mm and arganyl b p citronellyl-, b.p. 133-138°/0.2 mm., and geranyl-, b.p. 140-150°/0.25 mm., -malonate; Et2 citronellylcyclopentyl-, b.p. 166-174°/0.15 mm., dihydrocitronellylcyclopentyl-, b.p. 160-162°/0.15 mm., geranylcyclopentyl-, b.p. 159-167°/0.20 mm., geranylcyclopentenyl-, b.p. 160-167°/2 mm., citronellylcyclohexyl-, b.p. 178-188°/0·3 mm., methylgeranyl-, b.p. 160-170°/7 mm., and n-hexylcitronellyl-, b.p. 165-174°/0.3 mm., -malonate; geranylcyclopentenyl-, b.p. 160-165°/2.5 mm. (Et ester, b.p. 125-135°/2 mm.), geranylcyclopentyl-, b.p. 170-190°/0.2 mm. (Et ester, b.p. 154-165°/3 mm.; CH₂Ph ester, b.p. 200-210°/0.4 mm.; obtained from the acid and CH, Ph-OH containing Zn dust), citronelly/cyclopentyl-, b.p. 145—150°/0·3 mm. (Et ester, b.p. 145—150°/0·8 mm.), citronelly/cyclo-hexyl-, b.p. 165—170°/0·4 mm. (Et ester, b.p. 148— 150°/0.5 mm.; CH₂Ph ester, b.p. 211-216°/0.6 mm.), and n-hexylcitronellyl-acetic acid, b.p. 170-180°/0.4 mm. (Et ester, b.p. 168-172°/2 mm.); CH₂Ph dihydrocitronellylcyclopentyl-, b.p. 172–190°/0-8 mm., n-nonylcyclohexyl-, b.p. 190–200°/0-5 mm., and n-octylcyclohexylethyl-, b.p. 203–206°/0-3 mm., -acetate. Citronellal (I) and Mg cyclohexyl bromide in Et₂O yield $\beta\zeta$ -dimethyl- θ -cyclohexyl- Δ^{β} -octen- θ -ol (cyclohexylcitronellol), b.p. $137-140^{\circ}/0.4$ mm. 1-Citronellylcyclohexan-1-ol, b.p. $130-140^{\circ}/0.5$ mm., is derived from Mg citronellyl bromide and cyclohexanone (II) in Et₂O. Addition of 35% NaOH to (I) and (II) in EtOH at -10° affords citronellidenecyclohexanone, b.p. $127-135^{\circ}/0.3$ mm. Methylgeranylbarbituric acid, m.p. $166-167^{\circ}$ (corr.) after softening at 158° , and its H_4 -derivative, m.p. 221° (corr.), are devoid of soporific action. H. W.

Secondary alcohols from cineole. A. GANDINI (Gazzetta, 1937, 67, 113—119).—2-Ketocineole is reduced by Na-EtOH to a 2-hydroxycineole, m.p. $106-108^{\circ}$ (phenylurethane, m.p. $86-86 \cdot 5^{\circ}$), with a smaller quantity of an isomeride, m.p. 80° (phenylurethane, m.p. 145°), which is the main product when Pt-H₂ is used (cf. Vavon, A., 1926, 837). E. W. W.

Comparison of methods of bromination of terpenes. T. K. GAPONENKOV (J. Gen. Chem. Russ., 1937, 7, 994—995).—The highest yields of limonene tetrabromide are obtained by Godlewski's method (cf. A., 1899, i, 920). R. T.

Irreversible catalysis of dicyclic hydrocarbons. Contact transformation of carane. R. J. LEVINA (Sci. Rep. Moscow State Univ., 1934, No. 3, 187— 192).—Carane is converted into cymene and menthane by passing over Pd-asbestos at 160—180° in a stream of CO₂. α -Fenchene and 1:3:3-trimethyl- Δ^4 -cyclohexene are not affected by similar treatment.

R. T. Preparation of camphorone and of two stereoisomeric dihydrocamphorols. R. CALAS (Compt. rend., 1937, 204, 984—986).—The *d*-camphorate when heated in vac. at 450° affords *dl*-2-methylcyclopentanone (5%), pulegenone (17%), and *dl*-camphorone (I) (65%). With Na in Et₂O-H₂O (I) gives a mixture, b.p. 82—84°/15 mm., of two alcohols, b.p. 83·2°/18 mm. and 83·3°/18 mm., which with o-C₆H₄(CO)₂O afford *phthalates*, m.p. 114° (I) and 84° (II), respectively. Hydrolysis of the esters affords the alcohols, which with CrO₃ give dihydrocamphorone (cf. A., 1913, i, 348), indicating that the alcohols are saturated stereoisomerides. The *cis* form (I) is hydrolysed more slowly than the *trans* (II). J. L. D.

Stereoisomerism of isocamphanol (camphenilyl alcohol) and of w-aminoisocamphane. W. HUCKEL and K. HARTMANN (Ber., 1937, 70, [B], 959-963).-Oxidation of dl-camphene with Pb(OAc)4 at 80° gives the enol acetate of camphenilanaldehyde (I), b.p. 111-113°/10 mm., and, apparently, a saturated isomeride, m.p. 101°. When warmed with KOH-EtOH (I) gives camphenilanaldehyde (II) (semicarbazone, m.p. 223°), also obtained mixed with some isocamphenylanic acid, m.p. 118°, but no camphenilone when (Π) is ozonised in AcOH or moist C_6H_6 . Reduction of (II) by Na and abs. EtOH affords preponderatingly isocamphanol I (III), m.p. 84° (pnitrobenzoate, m.p. 109°; H phthalate, m.p. 139°). Hydrogenation (Pt-sponge in Et₂O) of (I) or (II) gives mainly isocamphanol II (IV), m.p. 101° (pnitrobenzoate, m.p. 96°; p-aminobenzoate, m.p. 131°; H phthalate, m.p. 144°). The rates of hydrolysis of the esters of (III) and (IV) differ very greatly from one another. NH2OH,HCl and (II) give a non-cryst. oxime, reduced by Na and EtOH to ω -aminocamphane, which gives two Bz derivatives, m.p. 109° and m.p. 130·5°, respectively. H. W.

Addition of alcohols to double linkings. II. Ethers from unsaturated cyclic hydrocarbons and from the two pinenes. W. TREBS (Ber., 1937, 70, [B], 589-594; cf. this vol. 157).-cyclo-Hexene is unaffected by prolonged action of boiling MeOH containing H_2SO_4 whereas 1-methyl- Δ^1 -cyclohexene gives 1-methoxy-1-methylcyclohexane, b.p. 149-150°, in >50% yield. 1-Methoxy-1-ethylcyclohexane, b.p. 165-167°, is derived similarly but in poorer yield from 1-ethyl- Δ -cyclohexene. Menthene, obtained by the action of hot H₂C₂O₄ on menthol, affords tert.-menthyl Me ether, b.p. 200-201°. Addition of MeOH occurs to hydrocarbons containing a sec.-tert. but not to those with a sec.-sec. double linking. Homomenthene with a tert.-tert. double linking remains unchanged. Conditions are less favourable and more complicated with cyclic hydrocarbons containing two double linkings, owing to the tendency to the formation of a conjugated system and subsequent polymerisation. Carvene gives small amounts of an other with 2 OMe, but is mainly dimerised. a-Phellandrene is completely dimerised, whilst the 5-ring hydrocarbon from piperitone oxide is rapidly converted into a mixture of polymerides. Gradual addition of a- or β-pinene to boiling H₂SO₄-MeOH (sulphonic acids, PCl₃, PCl₅, and certain anhyd. salts also accelerate addition) affords α -terpineol Me ether, b.p. 212°, which readily loses MeOH under the influence of hot, conc. HCO2H, AcOH-H2SO4, or various anhyd. salts giving a doubly unsaturated, very unstable hydrocarbon, C10H16, b.p. 182-184°, apparently identical with that derived from a-terpineol. H. W.

Syntheses in the pinane group. II. Attempted synthesis of pinocamphone and synthesis of trans-s-homopinic acid. P. C. GUHA, K. GANA-PATHI, V. K. SUBRAMANIAN, and D. K. SANKARAN (Ber., 1937, 70, [B], 736-742; cf. A., 1936, 855).-Ketonopinone acould not be reduced to nopinone or nopinane by Zn dust and AcOH or HCl or by Clemmensen's method. Reduction of cis- or trans-Et2 norpinate by Na and EtOH gives trans-1: 1-dimethyl-2: 4-dihydroxymethylcyclobutane (I), b.p. 152-155°/15 mm. (vield 70-80%), oxidised by KMnO4 in alkaline solution to trans-norpinic acid. (I) and PBr3 in anhyd. CHCl3 give trans-1: 1-dimethyl-2: 4-dibromomethylcyclobutane, b.p. 100-102°/4 mm., re-converted into (I) by aq. Ba(OH), and transformed by NaCN in EtOH-H₂O into trans-1: 1-dimethyl-2: 4dicyanomethylcyclobutane (II), b p. 142-145°/6 mm. Hydrolysis of (II) by 20% KOH yields trans-2:2dimethylcyclobutane-1: 3-diacetic acid (trans-s-homopinic acid) (III), m.p. 120-121° [anilide, m.p. 216-217°; Et, ester (IV), b.p. 131-132°/4 mm.], converted by hot Ac_2O or by Ac_2O at 200° into the mixed anhydride, $OAc \cdot CO \cdot CH_2 \cdot CH < CH_2 \cdot CH \cdot CH_2 \cdot CO \cdot OAc$, which can be distilled unchanged, does not give an anilic acid or react with NH2.CO.NH.NH2, and is converted by warm H₂O into (III). Distillation of (III) over Ba(OH), does not appear to yield a ketone. The Dieckmann condensation of (IV) does not occur with

Na in boiling C_6H_6 whereas in boiling xylene traces of a product are obtained which gives a brownishred colour with FeCl₃ and yields a *Cu* derivative. H. W.

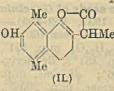
Syntheses in the thujane group. III. Synthesis of thujane. P. C. GUHA and B. NATH (Ber., 1937, 70, [B], 931-936; cf. A., 1936, 848, 850).-Gradual addition of Br to l-menthone in CHCl₃ in absence of light gives 2 : 4-dibromomenthone, m.p. 78-79°, $[\alpha]_{p}^{20}$ +199.2° in CHCl₃, in almost quant. yield. It is debrominated by Zn dust in EtOH to methylisopropyldicyclohexanone (I), b.p. 205-208°/688 mm., $[\alpha]_{5}^{56}$ +25·13° (semicarbazones, CHMo m.p. 175-176°, $[\alpha]_{5}^{26}$ -52·5° in AcOH, and m.p. 150-151°, $[\alpha]_{5}^{26}$ -53·0° in AcOH, respectively), and 1-methyl-4-isopropyl- $\begin{array}{c} \mathrm{CH}_{2} \ \mathrm{CH}_{2} \ \mathrm{CH}_{2} \ \mathrm{CO} \end{array}$ $\Delta^{1:4}$ -cyclohexadien-3-one (II), b.p. 123— 125°/14 mm., $[\alpha]_{D} \pm 0^{\circ}$. When heated or treated with HCl (II) passes into thymol. Reduction of (I) by Na and CPr⁸ (I.) abs. EtOH gives menthol, whereas with Zn-Hg and HCl thujane, b.p. 156-157°, [a]20 +8.48°, and p-menthane are produced. Treatment of (I) with N2H4,HCl and KOAc in dil. MeOH affords the ketazine ('N:C₁₀H₁₆)₂, b.p. 175—177°/4 mm., m.p. 78—79°, $[\alpha]_{D}^{24}$ +102.5° in Et₂O, whereas the hydrazone,

b.p. $123-125^{\circ}/7-8$ mm., $[\alpha]_{\rm D}$ +2.38° (*CHPh* derivative, b.p. 162-165°/3-4 mm., $[\alpha]_{\rm D}^{22}$ -21.6° in EtOH), is obtained from (I) and boiling 50% N₂H₄,H₂O. H. W.

Diene value of essential oils. H. P. KAUFMANN, J. BALTES, and F. JOSEFHS (Ber., 1937, 70, [B], 908—911).—The iodometric method of determining the diene val. is applied to phellandrene and myrcene, the additive products of which with maleic anhydride (I) are indifferent towards I. The compounds from ocimene and α -terpinene behave analogously. The use of the method with various essential oils containing these compounds shows that a sharp endpoint of addition of (I) is reached with comparative rapidity. H. W.

Lucænol, a definite principle extracted from the seeds of Lucæna glauca, Benth. M. MASORÉ (Compt. rend., 1937, 204, 890—891).—The seeds when extracted with H_2O give the substance lucænol, $(C_4H_5O_2N)_x$, m.p. about 283—287° (decomp.), responsible for the coloration with FeCl₃. The mol. appears to contain phenolic, NH_2 , and possibly CO_2H groups. The coloration with FeCl₃ is violetblue in acid, deep red in alkaline, solution.

F. A. A.


Lignin and related compounds. XXVII. Methylation and structure of methanol-lignin (spruce). J. COMPTON and H. HIBBERT (Canad. J. Res., 1937, 15, B, 38—45; cf. A., 1936, 995).— Crude methanol-lignin (I) (OMe 23%) is composed of two fractions, (i) (OMe 24%) removed by long extraction with Et₂O, or by its insolubility in 8— 10% NaOH, and (ii) (OMe 21.6%), sol. in 8—10% NaOH and repptd. by cold 1% HCl. (I) with Me₂SO₄ and a slight excess of 7.5N-NaOH at 20— 40° gives methylated lignins A and B (OMe 32.2 and 35.4%, respectively) (not acetylated by Ac₂O-C₅H₅N), whilst with a large excess of NaOH at 60° a product (OMe 37.2%) is obtained. Thus new OH groups are formed during methylation (probably from heterocyclic non-furan rings). Such degradation is markedly increased by rise of temp. and by increasing [NaOH], but is restricted by use of COMe₂ as solvent and by use of >5% excess of NaOH at 20°. When refluxed with 65% aq. MeOH-9% H₂SO₄, the OMe content (22.3%) of Et₂O-insol. (I) is reduced to 21.3% in 48 hr. and to 20.9% in 100 hr.

J. W. B.

Lignin. V. Preparation and sulphonation of the lignin from rye straw and pine wood. H. FRIESE [in part with H. GLASSNER] (Ber., 1937, 70, [B], 1059–1071).—Treatment of rye straw with $Ac_2O-AcOH$ (2.5:1) containing 6 vol.-% of H_2SO_4 give α -cellobiose acetate and an undefined mixture of sugar acetates corresponding with the presence of about 75% of carbohydrates. Treatment of the portion of the product sol. in H₂O with MeOH of varied concn. and ultrafiltration of the aq. solutions establishes the formation of ligninsulphonic acids. Similar treatment of pine meal indicates the presence of 65% of carbohydrates, a larger proportion of non-ultrafilterable matter, and a sol. portion similar to that derived from straw. Lignin obtained by use of superconc. HCl or 66% H₂SO₄ which does not contain carbohydrates is not dissolved by Ac₂O- $AcOH-H_2SO_4$. It appears therefore that a portion of the lignin at any rate is combined with polymeric carbohydrates in wood, but there is no reason to doubt the existence of lignin as such. The incomplete degradation of fir wood is described. H. W.

Lignin. VI. Sulphite liquors. H. FRIESE, V. HOGN, and H. WILLE (Ber., 1937, 70, [B], 1072-1079).-The liquor is centrifuged and subjected to a short after-hydrolysis with 2-6 vol.-% H_2SO_4 at 100°. After removal of volatile acids the solution is neutralised with $CaCO_3$ and evaporated to dryness. The residue is divided into three fractions by treatment with boiling MeOH, 80% MeOH, and finally by ultrafiltration. These are acetylated. It is thus established that the contents of the liquor are (i) a complex, non-hydrolysable ligninsulphonic acid, possibly a mixture of isomerides of differing mol. size which can be separated by ultrafiltration, (ii) a mixture of free sugar derivatives largely derived from hemicelluloses, and (iii) lignin-carbohydrate compounds in which the lignin is sulphonated in varying degrees. Treatment of wood with Ca(HSO3)2 is regarded as causing sulphonation of the free lignin component, whereby it is rendered at least colloidally sol. in alkali; the combined lignin is also sulphonated and rendered sol. in H_2O . The acidity of the liquor is not sufficient to cause hydrolysis of the complex. The so-called hemicelluloses, in so far as they are not combined with lignin, are hydrolysed H. W. to small components.

α-Hydroxysantonin. Y. ASAHINA and T. MOMOSE (Ber., 1937, 70, [B], 812—819).—α-Hydroxysantonin (I), m.p. 286°, obtained from the urine of dogs to which santonin has been administered, is converted by boiling Ac_2O containing NaOAc into the acetate, m.p. 173°, from which it is regenerated by cold fuming HCl. It is not esterified when heated with AcOH at 155° for 1 hr. (I) can be sublimed unchanged in a high vac., but loses H_2O when heated with HCl or HCO₂H, giving the *lactone* (II), m.p.

-CO $244-246^{\circ}$, $[\alpha] \pm 0^{\circ}$ in EtOH, (Me ether, m.p. 165-166°; acet--CHMe ate, m.p. 183°). (II) is transformed by 10% NaOH into $\alpha - 1 - \text{keto} - 7 - \text{hydroxy} - 5 : 8 - \text{di-}$ methyl-1 : 2 : 3 : 4-tetrahydro-2naphthylpropionic acid, m.p.

192—193° (Me ester, m.p. 138°), which is reduced (Na-Hg) to r-desmotroposantonin, m.p. 198—200° (acetate, m.p. 145°). (II) is reduced (Pd-C in AcOH) to r-santonigenic acid, m.p. 179—180° (Me ester, m.p. 98°), which is oxidised by FeCl₃ in 40% AcOH to disantonic acid, $C_{30}H_{38}O_6$, m.p. 265° (decomp.). (I) is converted by boiling 10% NaOH into the diketone, $C_{12}H_{16}O_2$, m.p. 106—107°, $[\alpha]_{22}^{22}$ —108·9° in EtOH [dioxime, m.p. 244—245° (decomp.); monosemicarbazone, m.p. 240° (decomp.); enol acetate, b.p. 134— 135°/3 mm.], which could not be hydrogenated in AcOH or EtOH and remains unchanged when heated with fuming HCl at 100° or with H_2SO_4 (d 1·5). Oxidation by KMnO₄ at room temp. transforms the diketone into the acid, $C_7H_{11}(CO_2H)_3$, m.p. 164—165°. H. W.

Manila elemi resin. M. MLADENOVIC (Monatsh., 1937, 70, 276-280).-Elemi resin should properly be assigned to the resinol class since it is mainly composed of the alcohols, amyrin (I) and brein (II). Treatment of the resin by the customary methods yields an ethereal oil, (I), and elemic acid. The amorphous β -elemic acid of Tschirch is a mixture of various elemic acids and, after acetylation, gives Ac derivatives of the acids with α - (III) and β -amyrin (IV) acetate. Keeping a solution of the residue in EtOH for months results in the separation mainly of (I) and repeated slow evaporation of the mother-liquors gives a cryst. mixture of (I) and (II). Acetylation (Ac₂O- C_5H_5N) of the non-cryst. residue gives (III), (IV), and brein acetate, whilst the remainder appears to contain OH. The Ac val [calc. on (I)] indicates that (I) is present to the extent of about 70%. H. W.

Quassin. I. Preparation and purification of quassin and neoquassin; their molecular formulæ. E. P. CLARK (J. Amer. Chem. Soc., 1937, 59, 927-931).—Treatment of a hot-H₂O extract of quassia chips first with Pb(OAc)₂ and then with activated C, followed by percolation of the C with CHCl₃, gives 0.15-0.18% of a mixture, separated by crystallisation, of quassin (I), C₂₀H₂₁O₄(OMe₂), m.p. 205-206°, $[\alpha]_{D}^{\infty} +40^{\circ}$ in CHCl₃, and an isomeride, neoquassin, m.p. 225-226°, $[\alpha]_{D}^{\infty} +46.6^{\circ}$ in CHCl₃. With 3.5% HCl (I) gives semidemethoxyquassin, C₂₀H₂₅O₅·OMe, m.p. 213°, sol. in aq. NaOH, but insol. in Na₂CO₃ or NaHCO₃, with constant-boiling HCl or HBr gives quassinol, C₂₀H₂₁O₄(OH)₂, m.p. 263° (decomp.), $[\alpha]_{D}^{\infty} +62.6^{\circ}$ in CHCl₃ [Ac derivative, m.p. 236° (decomp.)], sol. in alkalis, with Ac₂O-NaOAc gives anhydroquassin, C₂₂H₂₈O₅, m.p. 196°, dehydroquassin, C₂₂H₂₈O₆, m.p. 254°, and picrasmin, and with CrO₃ yields an isomeride, m.p. 221°, $[\alpha]_{2}^{\infty} +35.1^{\circ}$ in CHCl₃, which yields twice as much quassionl as does (I). Crystallo-optical data are recorded. R. S. C. Reactions caused by "activated " alumina.— See A., I, 368.

Morellin, a constituent of the seeds of Garcinia morella. B. S. RAO (J.C.S., 1937, 853-855).— Extraction of the pericarp of seeds of G. morella with hot EtOH yields morellin (I), $C_{30}H_{34}O_6$, m.p. 154°, $[\alpha]_{\rm b}$ -594° (dihydrochloride, m.p. 131°; Br_4 -derivative, m.p. 138—139°, $[\alpha]$ -156°; dioxime, m.p. 148—149°; mononitroguanylhydrazone, m.p. 205.5°, $[\alpha]_{\rm b}$ -748°; tetra-acetate, m.p. 178—179°, $[\alpha]_{\rm b}$ -327°; Me_2 ether, m.p. 156°, $[\alpha]_{\rm b}$ -242°, and its dioxime, m.p. 118°, $[\alpha]_{\rm b}$ +241°, diacetate, m.p. 82—83°, and Br_4 -derivative, m.p. 124°; Me_3 ether, m.p. 170— 172°). (I) resinifies on prolonged boiling with EtOH or on keeping at 100° for several hr. and it is converted into an amorphous substance when dissolved in EtOH-KOH. A cryst. isomeride, isomorellin, m.p. 116°, $[\alpha]_{\rm b}$ -561°, is obtained when an Et₂O solution of (I) is shaken with aq. KOH or when it is digested with AcCl in C_8H_6 solution in the presence of K₂CO₂. When fused with KOH, (I) gives dl-methylheptenol, phloroglucinol, AcOH, isovaleric, methylsuccinic, and homophthalic acids, and a ditert.-glycol, $C_{16}H_{22}O_2$, b.p. 130—140°/8 mm. (I) is probably related to mangostin from the pericarp of seeds of G. mangostana. P. W. C.

Chinese Asarum, Asarum Blumei, Duch, "Hsi-Hsin." Constitution of a neutral component. HUANG-MINLON (Ber., 1937, 70, [B], 951-958).—Extraction of the drug, which is free from alkaloids, with hot light petroleum affords *l*-asarinin (I), m.p. 121-122°, $[\alpha]_{\rm b}^{\rm a}$ - 122° in CHCl., identical with the product obtained from Korean Asarum (cf. A., 1935, 1433). (I) does not decolorise Br in CHCl₃ or $KMnO_4$ but gives an orange-yellow colour with $C(NO_2)_4$. It cannot be acetylated and does not give kctonic reactions. OH and OMe are absent. It is unchanged by boiling conc. KOH. Treatment of (I) with conc. HNO₃ in AcOH at room temp. gives dinitro-l-asarinin, m.p. 220–221°, $[\alpha]_D^{18} + 32^{\circ}$ in CHCl₃, and 4-nitro-1:2-methylenedioxybenzene. Prolonged treatment of (I) with boiling 10% HCl-EtOH causes isomerisation to l-sesamin, m.p. 121-122° $[\alpha]_{18}^{18} - 68.9^{\circ}$ in CHCl₃, and produces small amounts of substances, m.p. 121-122°, 168-169°, and 184-185°, respectively. Similarly d-sesamin is isomerised to d-asarinin, m.p. 121-122°. dl-Sesamin, m.p. 126-127°, and dl-asarinin, m.p. 134-135°, are obtained by admixture of the requisite optical antipodes. Attempts to convert (I) into a (OMe)4-compound are described. The constitution of (I) is discussed. H. W.

Hydrogenation of alcohols derived from furan. R. PAUL (Bull. Soc. chim., 1937, [v], 4, 846—854).— Furylalkylcarbinols (I) are obtained in good yield by the action of a considerable excess of the requisite Grignard reagent on furfuraldehyde at -15° . The product is decomposed by H₂O and extracted with Et₂O; the ethereal solution is vigorously shaken with conc. NaHSO₃ and then kept over K₂CO₃ to which a little NH₂Ph is finally added. The product is finally distilled under suitable low pressure. Hydrogenation of (I) in presence of Pt or Pd is accompanied by rupture of the nucleus at room temp.; with Ni this effect becomes more marked as the temp. of reaction is increased. With Raney Ni at $60-80^{\circ}/50$ atm., scission is entirely absent and the change is rapid; the small amount of unchanged (I) is removed, previous to distillation, by treatment of the product with Br in CHCl₃ at low temp. or with HCl (1:1). The following compounds are thus obtained: 2tetrahydrofurylmethylcarbinol, b.p. 71°/16 mm. (phenylurethane, m.p. 83-84°; acetate, b.p. 84°/14 mm.); 2-tetrahydrofurylethylcarbinol, b.p. 82-84°/15 mm. (phenylurethane, b.p. about 200-202°/8 mm.; acetate, b.p. 90-91°/12 mm.); tetrahydrofuryl-n-propylcarbinol, b.p. 94-95°/14 mm. (phenylurethane, m.p. 75°); phenyl-2-tetrahydrofurylcarbinol, b.p. 147-148°/10 mm. (phenylurethane, m.p. 123-124°; acetate, b.p. 161-163°/11.5 mm.).

"Furanic "condensations. VII. Preparation of alcohols of the furan series by means of ethereal or individual organomagnesium compounds and their transformation into unsaturated substances and resins. V. V. TSCHELINCEV [with A. S. LARIONOV] (Bull. Soc. chim., 1937, [v], 4, 819— 824; cf. A., 1936, 996).—Furfuraldehyde is transformed by MgEtI in Et₂O or, preferably, by MgEtI in C_0H_6 -NPhMe₂ into 2-furylethylcarbinol (I), b.p. 181—183°; 2-furylisoamylcarbinol (II), b.p. 202— 204°/760 mm., is obtained similarly. (I) or (II) is dehydrated by MgI₂ or anhyd. H₂C₂O₄ to the corresponding alkylidene compound, which immediately passes into a hard, non-fusible plastic resin. H. W.

Interaction of mixed organomagnesium compounds with ethyl β-furylacrylate. N MAXIM and (MLLE.) E. GEORGESCU (Bull. Soc. chim., 1936, [v], 3, 2266-2270).-Et β-2-furylacrylate (I) with MgEtBr-Et₂O yields γ -hydroxy- α -2-furyl- γ -ethyl- Δ^{α} -pentene, b.p. 125°/16 mm. (Bz derivative, b.p. 193°/11 mm.). Similarly (I) with MgPrBr-Et₂O yields γ -hydroxy- α -2-furyl- γ -propyl- Δ^{α} -hexene, b.p. 130°/16 mm. (Bz derivative, b.p. 198°/12 mm.), with MgBu^βCl-Et₂O vields γ -hydroxy- α -2-furyl- ϵ -methyl- γ -isobutyl- Δ° hexene, b.p. 143°/17 mm. (Bz derivative, b.p. 210°/18 mm.), with iso- C_5H_{11} ·MgBr yields γ -hydroxy- α -2-furylζ-methyl-γ-isoamyl- Δ^{a} -heptene, b.p. 174°/12 mm. (Bz derivative, b.p. 224°/8 mm.), and with MgPhBr yields γ -hydroxy- α -2-furyl- $\gamma\gamma$ -diphenyl- Δ^{α} -propene, m.p. 59°. Hydrolysis by KOH-H₂O of all the Bz derivatives gives the parent alcohols. Contrary to Thiele's hypothesis the organo-Mg compounds have reacted with the ester group and not with the conjugated system ·CH:CH·CO·. H. G. M.

Accelerators of vulcanisation.—See B., 1937, 592.

Synthesis of furfurylidene-ethylideneazine. S. A. TEBINOV (J. Gen. Chem. Russ., 1937, 7, 656– 657).—Furfuraldehyde, MeCHO, and aq. N_2H_4 at 100° yield furfurylidene-ethylideneazine, m.p. 109°. B. T.

Oxidation of acetylene- γ -glycols. 3:4-Diketo-2:2:5:5-tetraphenyltetrahydrofuran. P. A. TICHOMOLOV and A. E. DRUSHININ (J. Gen. Chem. Russ., 1937, 7, 869-8 2).--(OH·CPh₂·C:)₂ in AcOH and CrO₃ yield 3:4 diketo-2:2:5:5-tetraphenyltetrahydrofuran [phenylhydrazone, m.p. 134°; monoxime, m.p. 216° (decomp.); compound with o- $C_6H_4(NH_2)_2$, m.p. $249-250^{\circ}$]. R. T.

Natural coumarins. XXVII. Fraxidin and Isofraxidin. E. SPATH and Z. JERZMANOWSKA-SIENKIEWICZOWA (Ber., 1937, 70, [B], 1019—1020).— The mother-liquors left after isolation of fraxinol (this vol., 254) contain fraxidin, m.p. 196—197° (vac.), identified as 8-hydroxy-6:7-dimethoxycoumarin, and isofraxidin (I), m.p. 148—149°. The methylation of (I) to 6:7:8-trimethoxycoumarin and its difference from the known hydroxydimethoxycoumarins of the 6:7:8-series prove it to be 7hydroxy-6:8-dimethoxycoumarin. H.W.

Natural coumarins. XXVIII. Marmelosin. E. SPATH, P. K. BOSE, W. GRUBER, and N. C. GUHA (Ber., 1937, 70, [B], 1021–1023).—Marmelosin (I), obtained from the fruits of *Aegle marmelos* (Dikshit and Dulb, A., 1932, 1035), is proved by its isomerisation to alloimperatorin, the identity of the Me ethers of (I) and imperatorin (II), and the characteristic fission with AcOH containing a little H_2SO_4 to be identical with (II). H. W.

Natural coumarins. XXIX. Constitution of osthenol. E. SPATH and J. BRUCK (Ber., 1937, 70, [B], 1023—1024).—Treatment of the residues left from the extracts of Angelica root after removal of angelicin and osthol (I) with CH_2N_2 leads to the isolation of further quantities of (I), thus disclosing the presence of osthenol [7-hydroxy-8- γ -methyl- Δ^{β} butenylcoumarin], m.p. 124—125°, the direct isolation of which is also described. H. W.

Natural coumarins. E. SPATH (Ber., 1937, 70, [A], 83-117).—A lecture.

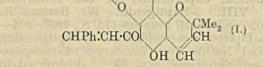
Synthetic coumarins. I. Coumarins derived from resacetophenone. R. R. AGARWAL and S. DUTT (J. Indian Chem. Soc., 1937, 14, 109—112).— Condensation of resacetophenone with the appropriate reagent gives 7-hydroxy-6-acetyl-, m.p. 139°, 7hydroxy-6-acetyl-4-methyl-, m.p. 147° (Ac derivative, m.p. 120—121°; oxime, m.p. 205°; semicarbazone, m.p. 183°; phenylhydrazone, m.p. 146—147°), 7hydroxy-6-acetyl-3: 4-dimethyl-, m.p. 168°, 7-hydroxy-6-acetyl-4-methyl-3-ethyl-, m.p. 122°, 7-hydroxy-6acetyl-4-methyl-3-isopropyl-, m.p. 108°, and 7-hydroxy-6-acetyl-3-benzyl-4-methyl-coumarin, m.p. 176°, and 7-hydroxy-4-methylcoumarin 6-styryl ketone, m.p. 141°. F. R. S.

Norbergenin. A. E. TSCHITSCHIBABIN, A. V. KIRSANOV, and G. A. ARBUSOV (Bull. Soc. chim., 1936, [v], 3, 2343–2347).—Bergenin is demethylated by 48% HBr to norbergenin (I), m.p. 276–278° (decomp.), $[\alpha]_{\rm P}^{20}$ –32.7° in H₂O (Ac_6 derivative,

(I.,

m.p. 214—218°, $[\alpha_{\rm In}^{\infty}-22\cdot8^{\circ}$ in C₆H₆), which also exists in an amorphous form and in another cryst. form with $0.5 {\rm H_2O}$. With CH₂N₂ (I) gives dimethylbergenin, also obtained from bergenin, and on demethylation gives (I). This confirms the assigned

constitution (I). In H_2O or EtOH with FeCl₃ (I) gives a deep blue coloration which turns brick-red with NaOH. Alkaline solutions of (I) become yellow in presence of atm. O_2 but are decolorised again on acidification. H. G. M.


Hydrogen cyanide synthesis of aromatic aldehydes. I. Dibenzfuran-3-aldehyde. L. E. HINKEL, E. E. AYLING, and J. H. BEYNON (J.C.S., 1937, 778—780).—Dibenzfuran-3-aldehyde (I), m.p. 68° (phenylhydrazone, m.p. 162°; NH_2Ph derivative, m.p. 131°; semicarbazone, m.p. 240°; oxime, m.p. 129°), prepared from dibenzfuran, $C_2H_2Cl_4$, HCN, and AlCl₃, is oxidised (KMnO₄) to the -carboxylic acid and condenses with benzoin to 3-dibenzfuroyl-3dibenzfurylcarbinol, m.p. 130°. The carbinol is oxidised (HNO₃) to bis-3-dibenzfuryl ketone, m.p. 236—237°, which is transformed (KOH) into bis-3dibenzfurylglycollic acid, m.p. 248°. With NaOAc-Ac₂O (I) yields β -dibenzfuran-3-acrylic acid, m.p. 239—240° (Me ester, m.p. 130°), with CH₂(CO₂H)₂ forms dibenzfuryl-3-methylenemalonic acid, m.p. 213° (decomp.), and with NMe₂Ph gives 3-dibenzfuryl-pr bis(dimethylamino)diphenylmethane, m.p. 172°, oxidised to an intense green dye. F. R. S.

Synthetical experiments in the isoflavone group. VIII. ψ -Baptigenin. W. BAKER, R. ROBINSON, and N. M. SIMPSON (J.C.S., 1937, 805-807).— ω -Piperonylresacetophenone (ψ -baptigenetin), Ac₂O, and NaOAc give 7-acetoxy-3': 4'-methylenedioxy-2-methylisoflavone, m.p. 198.5°, hydrolysed to the -hydroxy- compound, m.p. 253-254.5°, which forms the -benzyloxy- derivative, m.p. 186°. Condensation of this compound with PhCHO affords 7-benzyloxy-3': 4'-methylenedioxy-2-styrylisoflavone, m.p. 199-200.5°, oxidised (KMnO₄) to 7-benzyloxy-3': 4'-methylenedioxyisoflavone-2-carboxylic acid, m.p. 179-181°, which with HBr-AcOH is converted into ψ -baptigenin, identical with the natural product (cf. Späth et al., A., 1930, 611; Mahal et al., A., 1935, 90). F. R. S.

Synthesis of brazilin and hæmatoxylin. V. H. APPEL, W. BAKER, H. HAGENBACH, and R. ROBINSON (J.C.S., 1937, 738-744).-Resorcinol and Et indanedionecarboxylate (HCl) give 7-hydroxy-1'ketoindeno(2': 3': 3: 4) coumarin, m.p. above 340°, of which the Me ether, m.p. 270°, is reduced (Zn-AcOH) to the H2-derivative, m.p. 185-187°, and with NaOH affords 2'-hydroxy-4'-methoxy-3-phenylindan-1one, m.p. 141.5° (semicarbazone, m.p. 213-214°; Me ether, m.p. 89°). Veratroyl chloride and resorcinol Me₂ ether (AlCl₃) yield 2-hydroxy-4:3':4'-trimethoxy-benzophenone, m.p. 140-141°. 7-Methoxy-4benzophenone, m.p. 140-141°. 7-Methoxy-4-veratryl-, m.p. 151-153°, and 161-163°, obtained from the OH-derivative, is reduced to the -dihydrocoumarin, m.p. 82-83°, and to a product which is hydrolysed and esterified to Et β -veratryl- β -(2hydroxy-4-methoxyphenyl)propionate, m.p. 113-115°. The ester is converted into β -reratryl- β -(2-benzyloxy-4methoxyphenyl)propionic acid, m.p. 104-105°, which could not be made to undergo ring-closure. w-Veratroylresacetophenone 4-veratrate in AcOH-HCl gives 7-veratroyloxy-3': 4'-dimethoxyflavone, m.p. 219°, and with the appropriate metallic chloride yields 9-keto-7-veratroyloxy-4': 5'-dimethoxybrazylium zincichloride, stannichloride, and ferrichloride; the stannichloride is oxidised (KMnO₄) to veratric acid and hemipinic acid. Pæanol, from resacetophenone and Me₂SO₄, with veratroyl chloride forms O-veratroylpæanol, m.p. 158—159°, which in presence of NaNH₂ gives ω -veratroylpæanol, m.p. 162—163°, forming brilliant red solutions with metallic chlorides.

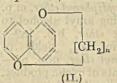
F. R. S.

Rottlerin. I. A. McGOOKIN, F. P. REED, and A. ROBERTSON (J.C.S., 1937, 748—755).—Rottlerin (I), $C_{33}H_{30}O_9$ or $C_{31}H_{30}O_8$, m.p. 212° (cf. Perkin, J.C.S., 1893, **63**, 975 et seq.; Dutt, A., 1925, 1296; Hoffmann et al., A., 1933, 397), is a highly reactive substance, difficult to obtain pure; some of the results of previous authors have not been confirmed. It gives a Ac₆ derivative (?), m.p. 213°, and is oxidised (KMnO₄) to BzOH; there is one cinnamyl residue and not two Ph residues. With KOH (I) affords phloroglucinol, CHPh:CH-CO₂H, BzOH, and AcOH, and with NaOH-Zn, CH₂Ph-CH₂:CO₂H and C-methyland -dimethyl- but no -trimethyl-phloroglucinol, are obtained. Hydrogenation of (I) yields the H₄compound and perhydroottlerin (II), m.p. 178°. Ba(OH)₂ and (I) lead to rottlerone (III), m.p. 236°, and

some BzCHO; (III) is reduced to the H_4 -compound (IV), m.p. 172—173° (Ac derivative, m.p. 214—215°), methylated to the Me derivative, m.p. 102° (oxime, m.p. 188°). Perhydrorottlerone, m.p. 166°, may be obtained by reduction of (III) or from (II) and NaOH. Hydrolytic fission of (IV) affords $CH_2Ph\cdot CH_2\cdot CO_2H$ and 5:7-dihydroxy-2:2-dimethylchroman. It is suggested that (I) contains the unit shown and that the results disprove the structure suggested by Dutt et al. (A., 1928, 643). F. R. S.

Pyrenium salts. XXVII. 2:4-Diarylnaphthapyrenium salts. W. DILTHEY, W. HÖSCHEN, and O. DORNHEIM (J. pr. Chem., 1937, [ii], 148, 210—216). p-OMe·C₆H₄·CH:CHBz and β -C₁₀H₇·OH in EtOH-HCl give (with a substance, m.p. 307—308°) 2phenyl-4-p-anisyl-5:6-naphtha-(1':2')-1:4-pyran, m.p. 205—206° (decomp.). This is converted by HCl-MnO₂ into the chlorohydrochloride, C₂₆H₁₉O₂Cl,HCl, which in COMe₂-MeOH-KOAc yields 2-phenyl-4-p-anisyl-5:6-naphtha-(1':2')-pyranol, m.p. 197—198° (decomp.) [picrate, new m.p. 210—212° (cf. A., 1935, 1130)]. The perchlorate, m.p. 250° (decomp.), of the last with AcOH-H₂O₂ gives 1-p-anisoyl-βnaphthyl benzoate (I), m.p. 178°. Attempted synthesis of 1-p-anisoyl-β-naphthol from β-C₁₀H₇·OH giving only β-naphthyl anisate, m.p. 113—114°, the hydrolysis product of (I) was reduced to p-anisyl-2-hydroxy-αnaphthylcarbinol, m.p. 107—108°, also obtained, m.p. 88—89°, from p-C₆H₄Br·OMe and 2-hydroxy-α-naphthaldehyde. p-Anisyl p'-methoxystyryl ketone and β-C₁₀H₇·OH yield 2:4-di-p-anisyl-5:6-naphtha-(1':2')-1:4-pyran, m.p. 193–194°, which with HCl-MnO₂ gives a chloride converted into 2:4-di-p-anisylnaphtha-1': 2'-(5:6)-pyranol, decomp. 180° (perchlorate, m.p. 266—269°; picrate, m.p. 208—211°). E W W

E. W. W. Polymembered ring systems. VIII. New application of the dilution principle. A. LUTTRING-HAUS and K. ZIEGLER (Annalen, 1937, 528, 155-161).—Ethers OH·C₆H₄·O·[CH₂]_n·Br are readily obtained if alkylation is effected in presence of an excess of phenol and dihalide; in this case the alkali compound is present almost exclusively and two-sided reaction of the dihalide is prevented. Cyclisation of the compounds $OR \cdot C_6 H_4 \cdot O \cdot [CH_2]_n \cdot Br$ (R = alkali) is effected by gradually adding equally conc. solutions of ether and dihalide at the same rate to a fixed vol. of the heated solvent, by adding a cold conc. solution of the pre-prepared K derivative to the heated solvent, or (best) by using an alkali the solubility of which is limited but sufficient to transform the ether as it is added into the reactive alkali compound (e.g., use of K₂CO₃ and boiling amyl alcohol). Resorcinyl ĸ-bromodecyl ether, m.p. 56°, resorcinol decamethylene ether, $C_6H_4 <_0^0 > [CH_2]_{10}$, b.p. 135—138°/0.5 mm., m.p. 23° {converted by HI (d 1.7) in AcOH into m- $C_6H_4(OH)_2$ and $[CH_2]_{10}I_2$, and its dimeride, $C_6H_4 < \underbrace{O \cdot [CH_2]_{10} \cdot O}_{O \cdot [CH_2]_{10} \cdot O} > C_6H_4$, b.p. 200/0.2 mm., m.p. 105-106°, are described. H. W.


Polymembered ring systems. IX. Pyrocatechol polymethylene ethers. K. ZIEGLER, A. LUTTRINGHAUS, and K. WOHLGEMUTH (Annalen, 1937, 528, 162-180).-Comparison of the yields of cyclic ethers obtained from the alkali salts of pyrocatechol ω-bromoalkyl ethers $OH \cdot C_6 H_4 \cdot O \cdot [CH_2]_n \cdot Br$ (n = 2 - -10) is rendered somewhat uncertain by the difficulty of exact assessment, but is sufficiently accurate to show the absence of a well-marked min. such as is observed in the readiness of formation of cyclic ketones. Kinetic measurements of the rate of formation of NaBr from ONa C6H4 O.[CH2]n Br in EtOH afford an accurate measurement of the rate of cyclisation if the solutions are dil., and difficulties due to alcoholysis can be overcome by use of a large excess of NaOEt; the limit of applicability of the method appears to be reached when n = 10. The rate diminishes rapidly from the 6- through the 7- to the 8-ring, and then continuously but less rapidly as would be expected in a homologous series from which steric influences are absent. This absence is ascribed to the 2 O and possibly also to the 2 C of the C_6H_6 ring, to all of which H is not attached. The following ethers are obtained by the action of an excess of the alkylene dibromide on pyrocatechol and NaOEt (mol. ratio, 3:1): o-hydroxyphenyl γ -bromopropyl, b.p. 101°/0.25 mm., m.p. 59°, 8-bromobutyl, b.p. 117°/0·25 mm., ε -bromoamyl, b.p. 132°/0·25 mm., ζ -bromohexyl, b.p. 150°/0·17 mm., η -bromoheyyl, m.p. 32°, 0-bromo-octyl, ι -bromononyl, b.p. 165°/0·25 mm., m.p. 19°, \varkappa -bromodecyl, b.p. 180°/0·24 mm. o-C6H4(OH)2, CH2Cl·CH2·OH, and NaOEt afford ohydroxyphenyl β -hydroxyethyl ether, b.p. 128°/0.7 mm., m.p. 100-101°, transformed by PBr₃ and C₅H₅N into o-hydroxyphenyl β-bromoethyl ether, b.p. 95°/0.25 mm. Gradual addition of these to a mixture of K₂CO₂

XVII (a)

and boiling amyl alcohol affords the following odioxybenzenes : ethylene-; trimethylene-, b.p. 103°/10 mm.; tetramethylene-, b.p. 112°/10 mm.; penta-methylene-, b.p. 122°/10 mm.; hexamethylene-, b.p. 140°/10 mm., m.p. 38°; heptamethylene-, b.p. 156°/10 mm.; m.p. 17—18°; octamethylene-, b.p. 171°/10 mm., m.p. 46°; nonamethylene-, b.p. 185°/10 mm., m.p. 58°; decamethylene-, b.p. 197°/10 mm. H. W.

Polymembered ring systems. X. New dihydroxybenzene and dihydroxynaphthalene derivatives. A. LUTTRINGHAUS (Annalen, 1937, 528, 181—210).—p-C₆H₄(OH)₂ readily yields a polymethylene ether with 10, much less readily with 8, CH₂ groups whereas similar compounds with 7 or 6 CH₂ groups could not be obtained. From $m - C_6 H_4(OH)_2$ an ether with 7 CH₂ groups is obtained with some difficulty, and the similar substance with 6 CH₂ is possibly formed in very small amount. 1:5- and 2:6-C10H6(OH)2 afford ethers with 10 CH2, but a compound with 8 CH₂ could not be derived from the latter. Consideration of at. distances in conjunction with readiness of ring formation appears to indicate a great stability of the plane or slightly bent form of the C₆H₆ nucleus, and to show that more energy is required for the deformation of a single mol. than can be derived from the kinetic mol. energy at 100-150°. Similarly, the energy required for alteration of the inclination of the 2 plane C6H6 nuclei in C10H8 towards one another is at any rate in excess of the mean energy of activation of processes occurring with reasonable rapidity between 100° and 150°. The very high mol. depression of the f.p. shown by various cyclic ketones is not shared with these complex ethers, but the introduction of a C6H6 nucleus into the ring system does not alter the general character of the odour in spite of the presence of a 2 ethereal O atoms.

Quinol is converted by Br·[CH₂]₁₀·Br and KOH in boiling EtOH into quinol mono-k-bromodecyl ether, m.p. 76.77°, cyclised by K2CO3 in boiling amyl alcohol to quinol decamethylene ether (I), b.p. $120-125^{\circ}/0.2$ mm., m.p. 63°, in 79% yield. (I) does not react with MgMeI and is converted by 48% HBr in boiling Ac₂O into $p-C_6H_4(OH)_2$ and $Br\cdot[CH_2]_{10}$ ·Br. Quinol mono- θ -bromo-n-octyl ether, m.p. 65°, is transformed into quinol octamethylene ether, b.p. 134°/0·8 mm., m.p. 65° (yield 18%), and the dimeric octamethylene ether, b.p. 235°/0.5 mm., m.p. 99°. Attempted cyclisation of quinol mono-n-bromo-n-heptyl ether, b.p. 164°/about 0.02 mm., m.p. 33°, gives small amounts of non-cryst. material volatile with steam, quinol mono-n-amyloxyn-heptyl ether, b.p. 192-196°/0.8 mm., and the dimeric heptamethylene ether, C₂₆H₂₆O₄, m.p. 113°. Quinol mono-ζ-bromo-n-hexyl ether has m.p. 57°. Resorcinol mono-r,-bromo-n-heptyl ether, b.p. 176°/0.04 mm., gives resorcinol heptamethylene ether, m.p. 109-109.5°, in 10% yield. Attempted cyclisation of resorcinol monoζ-bromo-n-hexyl ether gives a product which reacts with MgMeI, dimeric resorcinol hexamethylene ether, m.p. 114°, and resorcinol mono-ζ-amyloxy-n-hexyl ether, b.p. 173-176°/0.4 mm. Resorcinol 3-B'-bromoethoxyethyl ether, b.p. 146°/0.06 mm., is transformed by K_2CO_3 in boiling amyl alcohol into the dimeric ether, $C_6H_4 < \underbrace{O \cdot [CH_2]_2 \cdot O \cdot [CH_2]_2 \cdot O}_{O \cdot [CH_2]_2 \cdot O \cdot [CH_2]_2 \cdot O} > C_6H_4,$ m.p. 164°.

Quinol di-n-butyl, m.p. 46° , and di-n-amyl ether, b.p. $192^{\circ}/15$ mm., m.p. 45° , are described. 1:5- $C_{10}H_6(OH)_2$ is transformed by Br-[CH₂]₁₀·Br and KOH in boil-ing EtOH into 1-hydroxy-5- κ bromo-n-decoxynaphthalene, m.p. 70.5°, cyclised to 1:5-dihydroxynaphthalene decamethylene ether (II; n = 10), b.p. 160-164°/

0.05 mm., m.p. 105°, in 61.5% yield. 1-Hydroxy-5-0-bromo-n-octoxynaphthalene has m.p. 64°. 2-Hydroxy-6-k-bromo-n-decoxynaphthalene, m.p. 96°, gives 1:6dihydroxynaphthalene decamethylene ether, b.p. 130-135°/0.02 mm., m.p. 89-90°, in 22% yield. H. W.

Polymembered ring systems. XI. Form of the diphenyl and diphenylmethane molecules. A. LUTTRINGHAUS (Annalen, 1937, 528, 211-222) .- Considerations of at. distances indicate that, provided distortion of the mol. does not occur, the conversion of p-OH·C₆H₄·C₆H₄·OH-p' into an un- or do-decamethylene ether should occur. The failure to obtain a decamethylene ether is regarded as strong confirmation of the extended form and fixity of the Ph₂ system. Cyclisation of the somewhat similar $CH_2(C_6H_4 \cdot OH \cdot p)_2$ to a heptamethylene ether is possible. Gradual addition of KOH-EtOH to $p \cdot OH \cdot C_6H_4 \cdot C_8H_4 \cdot OH \cdot p'$ and $Br \cdot [CH_2]_{10} \cdot Br$ in boiling EtOH affords p-hydroxy-p'- κ -bromo-n-decoxy-diphenyl, m.p. 127—128°, converted by K₂CO₃ in boiling amyl alcohol into p-hydroxy-p'-k-amyloxydecoxydiphenyl, m.p. 111-113°. p-Hydroxy-p'-ĸbromo-n-decoxydiphenylmethane, m.p. 80-81°, is converted into pp'-dihydroxydiphenylmethane decamethylene ether, b.p. 206°/0.3 mm., m.p. 76° (yield 68%), which does not react with MgMeI, gives I.[CH2]10.I when treated with HI (d 1.7) in boiling Ac₂O, and affords $CH_2(C_6H_4 \cdot OH-p)_2$ when heated with KOH-NaOH at 300° in absence of air. p-Hydroxy-p'-0-bromo-n-actoxydiphenylmethane, m.p. 65-66°, yields pp'-dihydroxydiphenylmethane octamethylene ether, b.p. 168-170°/0·2 mm., m.p. 85-86°, in 29% yield whilst p-hydroxy-p'-n-bromo-n-heptoxydiphenylmethane, m.p. producting p 4 for the product of t

H. W.

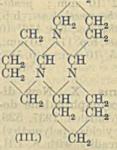
Polymembered ring systems. XII. Valency angle of the oxygen atom in derivatives of diphenyl ether. A. LUTTRINGHAUS (Annalen, 1937, 528, 223–233).—If the valency angle 110° is ascribed to O, close parallelism between ease of formation of cyclic ether with $O(C_6H_4 \cdot OH \cdot p)_2$ and $CH_2(C_6H_4 \cdot OH \cdot p)_2$ is to be expected. Since this is not observed, it appears that the angle of O is much more strongly affected by substituents than that of CIV and cannot be regarded as const. The possibility that O and ·CH₂· are so closely similar that corresponding compounds are isomorphous has been partly realised in the open systems OPh·CH₂Ph and (·CH₂Ph)₂ and is completely realised in the fixed systems fluorene and diphenylene oxide in which close similarity of valency angle is enforced. CH2Ph2 and Ph2O, however, give a pronounced entectic and there is evidence of

limited miscibility. Addition of KOH-EtOH to O(C6H4.OH-p)2 and Br.[CH2]2.Br in boiling EtOH gives p-hydroxy-p-k-bromo-n-decoxydiphenyl ether, m.p. 90.5°, cyclised by K₂CO₃ in boiling amyl alcohol to pp'-diphenyl oxide decamethylene ether, b.p. 189-195°/0·5 mm., m.p. 79-80°, in 36% yield. p-Hydroxy-p'-0-bromo-n-octoxydiphenyl ether, m.p. 83-84°, gives at most, minimal amounts of cyclic product. p-Hydroxy-p'-ζ-bromo-n-hexoxydiphenyl ether, m.p. 78°, affords the dimeric product, C₃₆H₄₀O₆, m.p. 142°. H. W.

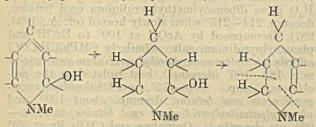
Molecular compounds of pyrrole derivatives. M. DEŽELIĆ (Bull. Soc. Chim. Yougoslav., 1936, 7, 91-113) .- The fusion diagrams suggest 1:1 compounds in the systems Et 3-acetyl-2: 4-dimethylpyrrole-5-carboxylate (I)-CH₂Cl·CO₂H (II), transition point (t.p.) 85·3°, -PhOH, t.p. 93°, -picric acid (III), -salicylic acid (IV), t.p. 107°, Et 3-aldehydo-2:4dimethylpyrrole-5-carboxylate (V)-(II), t.p. 74.5° , -(IV), m.p. 135° , -(III), t.p. 97° , -o- (VI), m.p. 114° , and $-m-C_{6}H_{4}(OH)_{2}$ (VII), m.p. 111° , Et 4-aldehydo-2: 4-dimethylpyrrole-3-carboxylate (VIII)-(IV), m.p. 111.5°, -(VII), t.p. 98°, and -quinol (IX), m.p. 117.5°, and 2:1 compounds in the systems (I)-(IV), t.p. 113°, -(VI), t.p. 108.5°, -(VII), m.p. 139°, and -(IX), t.p. 108.5°, Et 2 : 5-dimethylpyrrole-5-carboxylate (X)-(III), t.p. 100°, (V)-(IX), m.p. 142°, and (VIII)-(IV), t.p. 111°. Compound formation is not observed in the systems (I), (V), (VIII), or (X)-AcOH, -(·CH2·CO2H)2, -BzOH, (X)-(II), -PhOH, -(IV), -(VI), -(VII), -(IX), and -benzoquinone, and (VIII)-(VI). R. T.

Some furan ketones with several double linkings (II) and some ethylenic ketones with a pyrrole nucleus. N. MAXIM and I. COPUZEANU (Bull. Soc. chim., 1936, [v], **3**, 2251–2256).—Furfuryl-ideneacetone with p-C₆H₄Me CHO and EtOH-NaOH gives furfurylidene-(p-methylbenzylidene)acetone, m.p. so, b.p. $237^{\circ}/18$ mm. Similarly, furfurylidene-(o-nitro-benzylidene)acetone, m.p. 104° (corresponding m-, m.p. 125° , and p-, m.p. $159-160^{\circ}$, $-NO_2$ - and o-Cl-, m.p. 80° , -compounds), has been prepared. The following have been prepared by treating pyrryl Me ketone with the appropriate aldehyde, EtOH, and NaOH : p-methyl-, m.p. 152-153°, o-chloro-, m.p. 124°, p-methoxy-, m.p. 137°, m-nitro-, m.p. 203-204°, p-nitro-, m.p. 204°, p-dimethylamino-, m.p. 199-200°, -benzylidenemethyl pyrryl ketone. H. G. M.

Diaminomethane and its derivatives. II. a-Aminopiperidine and the products of reduction of a-aminopyridine. III. Hydrolysis of diacetyl- α -aminopiperidine and the pseudo-dipiperideine of Ahrens. A. V. KIRSANOV and J. N. IVASTCHENKO (Bull. Soc. chim., 1936, [v], 3, 2279-2288, 2289-2295).-II. Contrary to the conclusions of previous workers (cf. Tschitschibabin et al., A., 1930, 925), reduction of 2-aminopyridine (I) with Na-EtOH yields NH₃, C₅H₁₁N, and cadaverine, but no 2-aminopiperidine, considered to be too unstable for isolation. A mechanism for the formation of the foregoing products is given. Catalytic reduction (H_2-Pt) of the Ac derivative of (I), in presence of Ac₂O-AcOH, gives NN'-diacetyl-2-aminopiperidine (II), m.p. 122-123°, and similarly NN-diphenyl-2-aminopyridine in AcOH is hydrogenated to NN-diphenyl-a-amino-CH,

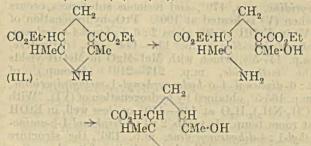

piperidine, m.p. 131-133°.

III. Hydrolysis of (II) with NaOH gives tripiperideine, m.p. 94-95°, probably (III). This is the compound described by Ahrens (A., 1898, i, 686) as dipiperideine, and depolymerises when distilled to a product with a mol. wt. corresponding with a dipiperidine. The reduction of KMnO₄ by (III) is attributed to the possible presence of the monomeride H. G. M.


in equilibrium with (III).

Aliphatic polyamines. V. J. VAN ALPHEN (Rec. trav. chim., 1937, 56, 529-534).-az-Dibromopentane and $(CH_2 \cdot NH_2)_2$ in hot EtOH-KOH give 1- β -aminoethylpiperidine [picrate, m.p. 221° (Gabriel, A., 1921, i, 58, gives m.p. 214-215°); Bz, m.p. 59°, and benzylidene derivative, b.p. 205°/38 mm., reduced by Na-EtOH to the N-benzyl derivative, b.p. 178°/20 mm. (hydrochloride, +2H₂O, decomp. 210°; picrate, m.p. 60°; phenylcarbamyl, m.p. 156°, and phenylthiocarbamyl derivative, m.p. 148°)], which with PhNCO and PhNCS gives, respectively s-phenyl-3-1-piperidinoethyl-carbamide, m.p. 270°, and -thio-carbamide, m.p. 261°, and with CS_2 -EtOH affords the internal salt C_5H_{10} >+NH·[CH₂]₂·NH·CS·S-, m.p. 126—128° (decomp.), converted at 140—170° into s-di-β-1-piperindinöethylthiocarbamide, m.p. 92°. J. Ŵ. B.

Derivatives of *p*-aminobenzenesulphonamide in the treatment of streptococcal infection in mice. W. H. GRAY, G. A. H. BUTTLE, and D. STEPHENSON (Biochem. J., 1937, 31, 724-730).-A no. of derivatives of *p*-aminobenzenesulphonamide (I) have been prepared and tested for toxicity and protective effect against infection with hæmolytic streptococci. A no. of the compounds tested are tolerated in larger doses than (I). The following are described : p-acetamidobenzenesulphonylcyclohexylamide, m.p. 224°; p-aminobenzenesulphonyleyclohexylamide hydrochloride, m.p. 227°; p-acetamidobenzenesulphonyl-p'-sulphonamidophenylamide, m.p. 280°; p-aminobenzenesulphonyl-p'-sulphonamidophenylamide hydrochloride, m.p. 224°; p-amino-benzenesulphonpiperidide, m.p. 164°; 2'-pyrrolidone-5'-carboxy-4-aminobenzenesulphonamide, m.p. 262°, optically inactive; 4:4'-disulphonamidodiazoamino-benzene, m.p. 172°; p-cinnamylidene-, m.p. 215°, p'-methoxybenzylidene-p-, m.p. 200°, 3': 4'-dimethoxy-benzylidene-4-, m.p. 196°, 3': 4'-diethoxybenzylidene-4-, m.p. 216°, 3': 4'-methylenedioxybenzylidene-4-, m.p. 219°, 3'-nitrobenzylidene-4-, m.p. 173°, 6'-nitro-3'hydroxybenzylidene-4-, m.p. 197°, p'-dimethylaminobenzylidene-p-, m.p. 229°, and p-furfurylidene-, m.p. 196°, -aminobenzenesulphonamides; and p-sulphonamidoglucoseanil, m.p. 210°. p-Aminobenzenesulphonyldiethylamide and its Ac derivative previously mentioned but not described by Fourneau et al. (A., 1936, 1029) have m.p. 105° and 82°. A more convenient prep. of azobenzene-p-sulphonamide than that of Skandarow (1870) is described. E. A. H. R.



Tetrahydropyridine series. O. MUMM [with W. BUTTENSCHÖN, W. FRIEDRICHSEN, and W. GRASSMANN] (Annalen, 1937, 529, 115-141).— Tetrahydropyridine derivatives are accessible by hydrogenation of C_5H_5N derivatives in which each atom in the ring bears a substituent; quaternary salts are the best starting materials and reaction probably proceeds by way of the ψ -base :

These highly substituted H4-compounds are fairly stable; ring-opening occurs, though with less case than in the H_2 -series, and a remarkable thermal decomp., indicated by the dotted line, into CHR:NMe and a butadiene derivative is characteristic. Less fully substituted H_4 -derivatives are obtained by disproportionation of H_2 -compounds; they are less stable, particularly to O_2 . Hydrogenation (colloidal Pt or PtO₂; 2 atm.) of Et₂ collidinedicarboxylate methosulphate in H₂O gives a 91% yield of Et₂ N-methyltetrahydrocollidine-3: 5-dicarboxylate, b.p. 164°/12 mm. (blue fluorescence; picrate, m.p. 131°), hydrolysed by conc. HCl at 120° with loss of CO_2 and ring-fission to β-methylamino-δ-methylheptan-ζ-one-γcarboxylic acid (hydrochloride, m.p. 148° ; picrate, m.p. $187-188^\circ$; also obtained less well by hot 20%KOH-EtOH) and decomposing, when distilled at 760 mm., into CHMe.NMe (detected by hydrolysis to NH₂Me and McCHO) and *Et* γ -carbethoxy- β -methyl- $\Delta^{\alpha\gamma}$ -hexadienoate (I), b.p. about 142°/16 mm. Hydrolysis of (I) by hot 20% KOH-EtOH gives two (?) stereoisomeric forms, m.p. 156° (decomp.) (often 149° or oily) and 196° (decomp. about 270°), of the corresponding dicarboxylic acid; both forms absorb 2 H_2 (PtO₂; AcOH), but only the second gives smoothly β -methyl- α -ethylglutaric acid, m.p. 100-101°, which is also obtained by way of its Et_2 ester, b.p. 134°/18 mm., by hydrogenation of (I). Hydrogenation (PtO₂; EtOH) of Et₂ 4-phenyllutidinedicarboxylate methosulphate leads to partial hydrogenation of the Ph and isolation of the impure 4-phenyltetrahydro-ester, b.p. about 205-220°/14 mm., which at about $300^{\circ}/760$ mm. gives Et γ -carbethoxyβ-phenyl-Δ^{αγ}-hexadienoate, b.p. 196-204°/14 mm., converted, by the methods used for (I), into the corresponding dicarboxylic acid, m.p. 157° (decomp.), and β -phenyl- α -ethylglutaric acid, m.p. 166° (Et₂ ester, b.p. 178—182°/11 mm.). Hydrogenation (colloidal Pt; 2 atm.) of Et₂ 4-benzyl-lutidinedicarboxylate methosulphate gives Et_2 4-benzyl-N-methyl- Δ^2 -tetrahydrolutidinedicarboxylate, m.p. 51° (platinichloride, m.p. 198-200°; perchlorate, m.p. 177°; yellowishgreen fluorescence), and (?) the Δ^3 -ester, an oil (only taintly fluorescent), converted into the solid isomeride by ultra-violet light; conc. HCl at 110° gives 4benzyl - N - methyltetrahydrolutidine - 3:5-dicarboxylic acid, m.p. 176° (hydrochloride, m.p. 181°), and β-

methylamino-S-benzylheptan-ζ-one-y-carboxylic acid. m.p. 206° (decomp.); distillation/vac. gives Et γ -carbethoxy- β -benzyl- $\Delta^{\alpha\gamma}$ -hexadienoate, b.p. 198°/17 mm., and thence the corresponding dicarboxylic acid, m.p. 131°, and Et₂ β-benzyl-a-ethylglutarate, b.p. 190°/16 mm. Et₂ dihydrolutidinedicarboxylate (II) and HCl-AcOH give Et2 lutidinedicarboxylate, Et2 tetrahydrolutidinedicarboxylate (III), m.p. 89°, b.p. 161-165°/0.8 mm. [considered by Knoevenagel and Fuchs (A., 1902, i, 565) to be the H₆-ester; NOderivative, m.p. 54°], and Et Δ^5 -tetrahydrolutidine-3carboxylate (IV), b.p. 108-110°/12 mm., 235°/760 mm. (mercuri- and platini-chloride, m.p. 138°; picrate, m.p. 120°); the amount of (IV) increases with time at the expense of (III) and it arises from (III) by the reactions (III) \rightarrow (A) \rightarrow (IV), which are also realised

from pure (III). The structure of (IV) is proved by hydrogenation (colloidal Pt; AcOH; 1 H₂ absorbed) to Et hexahydrolutidine-3-carboxylate, b.p. $102^{\circ}/14$ mm., $219^{\circ}/760$ mm. (mercuri- and auri-chloride, m.p. 147° ; perchlorate, m.p. 163°). Hydrogenation (colloidal Pt) of (II) or (III) gives Et_2 hexahydrolutidinedicarboxylate, b.p. $154^{\circ}/12.5$ mm., $292^{\circ}/770$ mm., m.p. $58-59^{\circ}$ [platinichloride, m.p. $208-210^{\circ}$ (decomp.); picrate, m.p. 154°]. (III) is autoxidised in air; it absorbs 1 O₂ at room temp. to give Et_2 2hydroxymethylene-6-methylpiperidine-3 : 5-dicarboxylate, b.p. $141-144^{\circ}/0.7$ mm., which absorbs 1 H₂ catalytically and at 100° absorbs a further 2 O₂ to give the oily 2-carboxylic acid. R. S. C.

Formation of pyridines from 1:5-[ae-]diketones. K. W. MERZ and H. RICHTER (Arch. Pharm., 1937, 275, 294-317).-Benzylidene- (I) and salicylidene-diacetophenone (II) [aye-triphenyl- and aediphenyl-y-o-hydroxyphenyl-penta-az-dione] differ in their mode of condensation with NH₃ and primary bases. Dry NH_3 -EtOH at room temp. converts (I) into 2:4:6-triphenylpyridine (III) [dibromide hydrobromide, m.p. $209-210^{\circ}$ (decomp.), converted into (III) by C_5H_5N ; picrate, m.p. $193\cdot5^{\circ}$], δ -iminoβδ-diphenylvalerophenone (IV), m.p. 111-116°, and a N-free substance, m.p. 246-248°. (IV) is an intermediate product in this reaction and under other conditions forms the main product; it gives (III) when treated with acid or alkali, by spontaneous decomp., and when heated at 120°. Formation of (III) instead of the dihydropyridine is due to dehydrogenation, which leads also to some hydrogenation of (I) during the reaction; with NH, Et (I) gives (III), evolution of C_2H_6 taking place instead of the de-hydrogenation. With $C_6H_2(NO_2)_3$ OH in hot EtOH (IV) affords 2:4:6-triphenyl-1:4-dihydropyridin

picrate, m.p. 155°, without dehydrogenation. In AcOH at 100° (IV) affords by disproportionation (III) and 2:4:6-triphenyltetrahydropyridine, m.p. 125.5°. With H₂-Pt in EtOH at 45-50° (IV) yields e-amino-aye-triphenylpentan-a-ol, an oil [hydrochloride, m.p. $274-275^{\circ}$ (decomp.); H oxalate, +xEtOH, m.p. 115.5°; carbamide derivative, m.p. 171-172°; with Ac₂O gives 1-acetyl-2:4:6-triphenylpiperidine, m.p. 161°]. Condensation of (II) with NH3 and NH₂R occurs without dehydrogenation, giving 2:6diphenyl-4-o-hydroxyphenyl-1: 4-dihydropyridine (V), m.p. 145.5-146°, 1-methyl- (VI), m.p. 121°, and 1-ethyl-2: 6-diphenyl-4-o-hydroxyphenyl-1: 4-dihydropyridine, m.p. 128-129°, hydrolysed to the starting materials by hot AcOH or mineral acid. Disproportionation to 2:6-diphenyl-4-o-hydroxyphenylpyridine, m.p. 179°, and resinous substances occurs when (V) is heated at 190°. PtO₂-hydrogenation of (V) in EtOH at 50° gives 2:6-diphenyl-4-o-hydroxy-phenylpiperidine, m.p. 143—144° (Bz_2 derivative, m.p. 147-5°), which with MeI-MgO in MeOH yields the methiodide, m.p. 217-219° (decomp.), of 2:6-diphenyl-4-0-hydroxyphenyl-1-methylpiperidine, m.p. 165.5°, obtained by hydrogenation of (VI). With (CH₂·NH₂)₂,H₂O at 140-150° or, less well, in EtOH at room temp. (I) yields 2:4:6-triphenyl-1-β-aminoethyl-1: 4-dihydropyridine, m.p. 136°, the structure of which is proved by the similarity of its absorption spectrum to that of (VI); similarly at 165-170° (II) 2: 4-diphenyl-4-0-hydroxyphenyl - 1 - B affords aminoethyl-1: 4-dihydropyridine, m.p. 150°. With N₂H₄,H₂O at 130° (I) gives 1-amino-2:4:6-triphenyl-1: 4-dihydropyridine, m.p. 158.5-159°. R. S. C.

(A) Hydrogenation of pyridine and pyridine bases under pressure in presence of nickel-silica gel catalysts. M. I. USCHAKOV and A. I. BRONEV-SKI. (B) Relative velocity of catalytic hydrogenation of pyridine and picolines in the hydrogenation of mixtures of pyridine bases. M. I. USCHAKOV and E. V. JAKOVLEVA (J. Gen. Chem. Russ., 1937, 7, 750—752, 753—758).—(A) The velocity of hydrogenation (Ni-SiO₂ gel catalyst) at 150— 200°/50—100 atm. falls in the series $C_5H_5N > \alpha - > \beta - > \gamma$ -picoline.

 $\alpha - > \beta - > \gamma$ -picoline. (B) C_5H_5N and α -picoline can be separated from their mixtures with β - and γ -picoline by fractional hydrogenation, as piperidine and α -pipecoline, as above, or by hydrogenation of the hydrochlorides, using a Pt catalyst. R. T.

Direct iodination of pyridine. Z. RODEWALD and E. PLAŻEK (Ber., 1937, 70, [B], 1159-1162).-C₅H₅N and I do not react when heated in a sealed tube under varied conditions. Treatment of molten C₅H₅N,HCl with I gives pentaiodopyridine (I) in very small yields whilst most of the C5H5N remains unattacked. (I) and 3:5-di-iodopyridine (II), m.p. 173° (constitution established by conversion into 3: 5-diaminopyridine), are formed when the vapours of C5H5N and I are heated. Replacement of I by ICl does not give appreciable improvement and considerable amounts of 2-chloropyridine result; addition of Hg or Fe salts is without influence. 2-Pyridyl-1-pyridinium iodide is obtained from C_5H_5N , HCl and I or ICl. The best yield results by the

action of I in fuming H_2SO_4 (50% SO₃), whereby 3-iodopyridine (III) (yield 18%) and (II) are produced. 2- or 4-Iodopyridine could not be thus obtained and (III) could not be converted into (II). H. W.

Enol betaines. V. Reactions with acid chlorides. F. KRÖHNKE (Ber., 1937, 70, [B], 1114-1117; cf. this vol., 208, 209).-Agitation of phenacylpyridinium bromide, BzCl, and K₂CO₃ in CHCl₃-H₂O gives dibenzoylmethylpyridinium enol betaine, decomp. 214-215° when slowly heated (cf. A., 1935, 987), decomposed by AcOH at 100° to BzOH and phenacylpyridinium salt. Similarly CHPh:CH·COCI affords benzoylcinnamoylmethylpyridinium enol betaine m.p. 185-186° (decomp.), best isolated as the perchlorate, m.p. 174-175°. o-Phthaloyldiphenacylpyridinium enol betaine, decomp. about 160°, and phenacylpalmitoylpyridinium enol betaine, m.p. 90-92°, are described. Quinoline and CHBz₂Br at 36° slowly yield dibenzoylmethylquinolinium enol betaine, decomp. about 240°. p-Chloro- and p-bromo-phenacylpyridinium enol betaine yield additive compounds, m.p. 85° after slight decomp. and m.p. 80-90°, respectively, with BzCN. H. W.

Coloured oximinobetaines. F. KRÖHNKE and H. KÜBLER (Ber., 1937, 70, [B], 1117—1120).— Treatment of phenacylpyridinium bromide (I) in 50% EtOH with an excess of amyl (II) or Et nitrite and N-NaOH at 0° gives the unstable basic bromide (III), m.p. about 55° (decomp.), transformed by N-HBr into oximinophenacylpyridinium bromide (IV), OH·N:CBz·N(C₅H₅)Br, m.p. 147° (decomp.) [corresponding perchlorate, m.p. 115° (decomp.)], also obtained directly from (I), NaNO₂, and N-HBr at 0°, or from (I) and (II) in EtOH at 0° or when heated. (III) is converted by 1·4N·K₂CO₃ at 35° into labile oximinophenacylpyridinium enol betaine (V), m.p. 46— 48° (decomp.) varying with the mode of heating, which rapidly decomposes on contact with glass or earthenware but can be preserved on agate. It is transformed by the requisite amounts of HBr into (III) or (IV). When triturated with abs. EtOH (V) is transformed into red needles, m.p. about 42° (decomp.). When heated with 0·5—1N-NaOH (V) passes into a more stable, yellow betaine, decomp. about 61°. The

 $\begin{array}{c} \text{Bz-C-NC}_{5}\text{H}_{5}\\ \hline \\ \begin{bmatrix} -0 & 1 \\ & 0 \\ & (A.) \\ \end{array}$

constitution A for (V) is supported by the analogous formation of oximinophenacylisoquinolinium bromide, m.p. $161-162^{\circ}$ (decomp.), and its conversion into the more stable

oximinophenacylisoquinolinium enol betaine, m.p. 69—70° (decomp.). The betaine derived from oximino-p-chlorophenacylpyridinium bromide, m.p. 125° (decomp.), is more sensitive than the corresponding Cl-free derivative. *p*-Nitrobenzylisoquinolinium bromide appears to be transformed by NaOH (not Na₂CO₃) and CHCl₃ into the corresponding *aci*-nitrobetaine. H. W.

Synthesis of 2:4-dihydroxyquinoline derivatives from malonic esters and aromatic amines. A. MEYER and P. HEIMANN (Compt. rend., 1937, 204, 1204—1206).—Arylamides of malonic esters, heated with paraffin oil to 250°, lose H_2O and give 2-hydroxy-4-alkoxyquinolines; under the same conditions, arylamides of C-substituted malonic esters lose EtOH yielding 2:4-dihydroxy-3-alkylquinolines, whilst PCl₅ as condensing agent gives 2:3-dichloro-4alkoxyquinolines. The following are prepared: 6chloro-2-hydroxy-4-ethoxy-, m.p. 91°, 2-hydroxy-4ethoxy-6-methyl-, m.p. 138°, 2-hydroxy-4-ethoxy-8methyl-, m.p. 190°, 6-chloro-2:4-dihydroxy-3-ethyl-, m.p. 264°, 2:4-dihydroxy-8-methyl-3-ethyl-, m.p. 218°, 4:6-dichloro-2-hydroxy-, m.p. 138°, 2:3:8-trichloro-4-ethoxy-, m.p. 63·5°, 2:3:4:6-tetrachloro-8-methoxy-, m.p. 127°, and 2: 4-dichloro-8-methoxy-, m.p. 92° quinoline. J. D. R.

Reactivity of methoxy-derivatives of 3-nitropyridine and new derivatives of 3:4-pyridinopyrazine. O. BREMER (Annalen, 1937, 529, 290-298).-Successive treatments of 4-pyridone nitrate with fuming H2SO4 and PCI5-POCl3 and of the product with MeOH at $\geq 20^{\circ}$ give 3-nitro-4-methoxypyridine hydrochloride, converted by aq. K₂CO₃ into 3-nitro-4methoxypyridine (I), m.p. 75°. CHNa(CO2Et)2 and (I) in boiling abs. EtOH give Et, 3-nitro-4-methoxypyridylmalonate, b.p. 157°/3 mm., hydrolysed by boiling 18% HCl to 3-nitro-4-methylpyridine, b.p. 85°/3 mm. [hydrochloride, m.p. 176° (decomp.)], transformed by PhCHO and piperidine at 160–170° into 3-nitro-4-stilbazole, m.p. 114–115°. Diazotisation of 3-amino-4-methoxypyridine followed by treatment with Cu powder-CuCl yields 3-chloro-4-methoxypyridine, b.p. 83-84°/3 mm. (hydrochloride). 5-Bromo-3-nitro-4hydroxypyridine and PCl₅ containing a little POCl₃ at 160° give 4-chloro-5-bromo-3-nitropyridine (II), m.p. 49-50°, which with NH₂·CH₂·CH₂·OH at 100° gives 5-bromo-3-nitro-4-β-hydroxyethylaminopyridine, m.p. 120-121°. (II) and NaOMe in abs. MeOH afford 5-bromo-3-nitro-4-methoxypyridine, m.p. 39-40°; 5-bromo-3-nitro-6-methoxypyridine (III), m.p. 89°, is obtained similarly. At 170-180° (I) passes into 3-nitro-1-methyl-4-pyridone, m.p. 220°. NH2 ·CH2 ·CH2 ·OH and (III) at 100° give 5-bromo-3nitro-6- β -hydroxyethylaminopyridine, m.p. 136°. 3-Amino-4-butylaminopyridine and Et₂C₂O₄ at 170° give 2-hydroxy-3-keto-4-butyl-3: 4-dihydropyridino-(3':4')-5:6-pyrazine, m.p. 256°; 2-hydroxy-3-keto-4-phenyl-3:4-dihydropyridine-(3':4')-5:6-pyrazine, m.p. >325°, is obtained similarly from 3-amino-4-H. W. anilinopyridine.

Esters of nicotinic acid. J. L. GOLDFARB (J. Appl. Chem. Russ., 1937, 10, 515-520).—The following esters have been prepared from nicotinyl chloride and the appropriate alcohol: benzyl, b.p. 179°/9 mm. (methiodide, m.p. 159-160°; hydrochloride, m.p. 72-74°; picrate, m.p. 156-157°), furfaryl, b.p. 152°/6 mm., m.p. 32-34° (methiodide, m.p. 137°; hydrochloride, m.p. 130°; picrate, m.p. 128°), βnaphthyl, b.p. 197-199°/1 mm., m.p. 160° (methiodide, m.p. 191-194°; hydrochloride, m.p. 191-194°; picrate, m.p. 177:5-178:5°), and cyclohexyl, b.p. 150°/7 mm. (methiodide, m.p. 114:5-115:5°; hydrochloride, m.p. 120°; picrate, m.p. 116°), nicotinate. R. T.

Xanthurenic acid. I—III. Xanthurenic acid, kynurenic acid, and kynurenine. L. MUSAJO (Gazzetta, 1937, 67, 165—171, 171—178, 179— 188).—I. Urine of albino rats on a hyperprotein diet (almost entirely fibrin) contains the Na salt $(+2H_2O)$ of xanthurenic acid (I), $C_{10}H_7O_4N$ [Me ester (II), m.p. 262°], which gives an intense green colour with aq. FeSO₄.

II. The Ba, Cu, and Na_2 salts of (I) are prepared. In C_5H_5N , (II) gives a Bz_2 derivative, m.p. 171°. When distilled with Zn in H_2 , (I) yields quinoline. Heated at 300°, (I) loses CO_2 ; the HCl extract contains the hydrochloride, m.p. >300°, of a dihydroxyquinoline, m.p. >300° (Bz_2 derivative, m.p. 178°). With POCl₃-PCl₅, (I) gives a *Cl*-derivative, $C_{10}H_6O_3NCl$, m.p. 209—210° (decomp.); with Ac_2O , (I) gives the reddish-violet colour of a 2hydroxyquinolinecarboxylic acid. Other colour reactions of (I), in comparison with kynurenic acid (III), are described.

III. The urine from which (I) is extracted contains small amounts of (III) and of kynurenine (IV). The urine of rabbits on a fibrin diet also contains (I), (III), and (IV); that of dogs contains (III) and (IV) only. A method for obtaining increased amounts of (IV) by injecting tryptophan into rabbits is described. E. W. W.

Quinolyl-4-pyruvic and -acetic acid. W. BORSCHE and L. BÜTSCHLI (Annalen, 1937, 529, 266-273).-The side chains of the 2- are more active than those of the 4-quinolyl compounds. Et quinolyl-4-pyruvate (I) [2:4-dinitrophenylhydrazone, m.p. 179°, and its hydrochloride, m.p. 239-240° (decomp.)] and PhCHO in presence of piperidine at 140° afford α -keto- γ -hydroxy- γ -phenyl- β -4-quinolyl-butyrolactone, m.p. 227° (decomp.), whilst with β -C₁₀H₇·NH₂ in AcOH at 100° they give 4 : 5-diketo-2 - phenyl - 1 - 2' - naphthyl - 3 - 4'' - quinolylpyrrolidine, m.p. 180° (with a substance, decomp. 277°). (I) with the requisite diazo-compound in AcOH containing NaOAc yields the β -phenylhydrazone, m.p. 174° (decomp.), and β -p-tolylhydrazone, m.p. 172° (decomp.), of aB-diketo-B-4-quinolylpropionic acid. Et aB-diketo- β -4-quinolyl propionate β -p-tolyl hydrazone has m.p. 147°. $Et = \alpha$ -oximino- β -4-quinolylpropionate, m.p. 183-184°, is hydrolysed by alkali to the corresponding acid, m.p. 198° (decomp.), which passes at 200° into quinolyl-4-acetonitrile (II), m.p. 144-145°. With the requisite diazo-compound this gives the phenylhydrazone, m.p. 168°, and p-anisylhydrazone, in.p. 188°, of quinolyl-4-glyoxylonitrile and with p-NO·C_gH₄·NMe₂ in MeOH it affords the corresponding p-dimethylaminoanil, m.p. 133-135°. With PhCHO, p-OMe·C₆H₄·CHO, and o-OH·C₆H₄·CHO (II) in presence of piperidine gives a-4-quinolylcinnamonitrile, m.p. $139-140^{\circ}$, p-methoxy- α -4'-quinolylcinnamonitrile, m.p. $143-144^{\circ}$, and 3-4'-quinolylcoumarin, m.p. 194° , whilst with isatin it affords 2-keto-3-4'-quinolylcyanomethene-2: 3-dihydroindole, m.p. 278°. With EtOH-HCl at 100° (II) gives Et 4-quinolylacetate, m.p. 64° (picrate, m.p. 157°, after softening), which affords Et 4-quinolylglyoxylate phenylhydrazone, m.p. 196°, and is hydrolysed by 2N-NaOH to 4-quinolylacetic acid, m.p. 90° (much decomp.). H. W.

Reactivity of benzylacetone in Pfitzinger's reaction. G. B. CRIPPA and E. SCEVOLA (Gazzetta, 1937, 67, 119–122).—Isatin in 50% KOH with COMe·CH₂·CH₂Ph gives 2- β -phenylethylquinoline-4-carboxylic acid (A., 1927, 1200). E. W. W.

Synthesis of 1-benzyltetrahydroisoquinoline bases. E. SPATH, F. KUFFNER, and F. KESZTLER (Ber., 1937, 70, [B], 1017—1019).—Homopiperonal and homopiperonylamine are kept in Et_2O at 15— 20° for 30 min. The solution is evaporated and the residue is shaken violently with HCl (1:1) at 100° for 1 hr., whereby 6:7-3':4'-dimethylenedioxy-1benzyl-1:2:3:4-tetrahydroisoquinoline, m.p. 84— 85°, is obtained in 2·33% yield. It is further identified by conversion into 2:3-12:13-dimethylenedioxyberbine, m.p. 213—214°. The observations of Hahn and Schales (A., 1936, 618) could not be confirmed. H. W.

Imidochlorides. V. Synthesis of hydroxycarbethoxyphenyl- α - and - β -naphthaquinolines. V. R. HEERAMANECK and R. C. SHAH (J.C.S., 1937, 867).—Et α - and β -naphthyliminobenzylmalonate are cyclised by heating to Et 4-hydroxy-2-phenyl- α naphthaquinoline-3-carboxylate, m.p. 228—230°, and Et 1-hydroxy-3-phenyl- β -naphthaquinoline-2-carboxylate, m.p. 280—282° (acid, m.p. 248—250°; picrate, m.p. 179—181°). F. R. S.

Medicinal products from acridine compounds. III. Tetrahydro-derivatives. O. J. MAGIDSON and A. I. TRAVIN (J. Gen. Chem. Russ., 1937, 7, 842-852).-5-Chloroanthranilic acid and cyclo-S42—852).—5-Chloroanthranhlic acid and cyclo-hexanone (I) (150°; 90 min.) yield 7-chloro-1:2:3:4-tetrahydroacridone, m.p. 385°, which with POCl₈ (120°; 3 hr.) gives 5:7-dichloro-1:2:3:4-tetra-hydroacridine, m.p. 84—85°, and this with PhOH (120°; 3 hr.) gives 7-chloro-5-phenoxy-1:2:3:4-tetrahydroacridine, m.p. 127—128°, and with PhOH and NH₂·CHMe·[CH₂]₄·NEt₂ (180°; 5 hr.) yields 7 - chloro - 5 - (8-N-dicthydromine - α - methydrothydromine 7 - chloro - 5 - (8-N-diethylamino - a - methylbutyl)amino-1:2:3:4-tetrahydroacridine, b.p. 230-240°/1 mm. (meconate, decomp. at 85-90°). 4-Chloroanthranilie acid and (I) yield 8-chloro-1:2:3:4-tetrahydro-acridone, m.p. 380°, from which 5:8-dichloro-, m.p. 87-89°, 8-chloro-5-iodo-, m.p. 115-116°, and 8-chloro 5-(8-N-dicthdamine are the the teth chloro - 5 - (8 - N - diethylamino - a - methylbutyl)amino-1:2:3:4-tetrahydroacridine are prepared as above. 5-Nitroanthranilic acid and (I) at 220° yield 7-nitro-1:2:3:4-tetrahydroacridone, m.p. 324-325°, identical with that obtained by nitration of 1:2:3:4tetrahydroacridone at -15° , and from which 5-chloro-7-nitro-1:2:3:4-tetrahydroacridine, m.p. 148— 149°, is obtained with POCl₃ at 125° (3 hr.). 5-Chloro-S-nitro-, m.p. 149-150°, and 8-nitro-5-(8-N $diethylamino - \alpha - methylbutyl)amino - 1:2:3:4 - tetra$ hydroacridine (meconate, decomp. at 110-115°) are 1:2:3:4-Tetrahydroprepared analogously. acridine-5-carboxylic acid and POCl₃ (100°; 1 hr.) yield the acid *chloride*, m.p. 198-200° (decomp.), from which the diethylamide, m.p. 102-103° (hydrochloride, m.p. 245-246°), and β-N-diethylaminoethylamide dihydrochloride, m.p. 246-248°, and the β-N-diethylaminoethyl ester (dihydrochloride, m.p. 188-189°) are prepared. R. T.

Acridones. X. p-Chlorophenylanthranil and 3-chloroacridone. I. TANASESCU and A. SILBERG (Bull. Soc. chim., 1936, [v], 3, 2383—2385; cf. A., 1936, 1509).—p-Aminophenylanthranil (I) (A., 1933, 275) is converted (Sandmeyer) into p-chlorophenylanthranil, m.p. 152°, which with boiling H_2O , EtOH, Zn, and CaCl₂ gives 4-chloro-2'-aminobenzophenone, m.p. 120° (Bz derivative, m.p. 136°), and with NaNO₂ and conc. H_2SO_4 gives 3-chloroacridone. Attempts to convert (I) into 3-aminoacridone by this method failed. H. G. M.

Photoluminescence spectrum of glycerol solution of trypaflavine.—See A., I, 346.

Syntheses of isomeric ethylphenanthridines. H. Kondo and S. Uyeo (Ber., 1937, 70, [B], 1094—1097).—Treatment of $o \cdot C_6H_4Br \cdot CHO$ and $1:3:2 \cdot C_6H_3EtBr \cdot NH_2$ with Cu powder at $230-240^\circ$ gives $1 \cdot ethylphenanthridine$, b.p. $110-140^\circ$ (bath)/0.03 mm. [picrate, m.p. 231°; styphnate, m.p. 226° (decomp.); double compound with HgCl₂, m.p. $212-219^\circ$]. $3:1:4 \cdot NO_2 \cdot C_6H_3Et \cdot NH_2$ is transformed into $4 \cdot bromo \cdot 3 \cdot nitroethylbenzene$, b.p. $127^\circ/4$ mm., reduced to $4 \cdot bromo \cdot 3 \cdot nitroethylbenzene$, b.p. $113-115^\circ/4 \cdot 5$ mm. (Ac derivative, m.p. $108-109^\circ$), which with $o \cdot C_6H_4Br \cdot CHO$ and Cu powder at $240-250^\circ$ gives $2 \cdot ethylphenanthridine$, b.p. $110-140^\circ/0.04$ mm. (picrate, m.p. 216° ; styphnate, decomp. 236°). p. $C_6H_4Et \cdot NHAe$ and Br in AcOH afford $3 \cdot bromo \cdot 4 \cdot acetamidoethylbenzene, m.p. <math>92^\circ$, hydrolysed to $3 \cdot bromo \cdot 4 \cdot aminoethylbenzene, b.p. <math>100-101^\circ/3$ mm., m.p. about 9° , which with $o \cdot C_6H_4Br \cdot CHO$ gives $3 \cdot ethylphenanthridine$, b.p. $120-130^\circ$ (bath)/0.05 mm., m.p. $62-63 \cdot 5^\circ$ [styphnate, m.p. 252° (decomp.); picrate, m.p. 230°]. $o \cdot C_6H_4Et \cdot NHAc$ is converted by conc. HNO₃ in Ac₂O-AcOH at 0° into the $3 \cdot NO_2$ -derivative, hydrolysed to $3 \cdot nitro \cdot 2 \cdot aminoethylbenzene$, b.p. $146-149^\circ/5$ mm., m.p. $29-30 \cdot 5^\circ$ (hydrochloride). The base is transformed into $2 \cdot bromo \cdot 3 \cdot nitro ethylbenzene (Ac derivative, m.p. <math>112^\circ$), which affords $4 \cdot ethyl-$ henanthridine [picrate, m.p. 223° (decomp.); styphnate, m.p. 216° (decomp.)].

New ring systems. III. Phenyl-1:2-methoxynaphthylamine o-8-ketone. W. KNAPP (Monatsh., 1937, 70, 251–258).–1- $C_{10}H_7Br$ and $o-NH_2 \cdot C_6H_4 \cdot CO_2H$ are converted by Cu powder and anhyd. K2CO3 in boiling PhNO2 into 0-1'naphthylaminobenzoic acid (I), m.p. 207°, and o-di-1'naphthylaminobenzoic acid, m.p. 272-274° (decomp.). (I) and P_2O_5 in boiling PhMe afford 3:4-benzacrid-one, m.p. $365-366^{\circ}$ (incipient decomp.). 1:2- $C_{10}H_6Br \cdot OMe$ (improved prep. from $\beta \cdot C_{10}H_7 \cdot OMe$ and Br in AcOH) similarly yields o-2'-methoxy-1'-naphthylaminobenzoic acid (II), m.p. 208-209° (sparingly sol. alkali salts), more advantageously obtained from $1:2-\mathrm{NH}_2\cdot\mathrm{C}_{10}\mathrm{H}_6\cdot\mathrm{OMe}$ and o-C₆H₄Cl·CO₂H, and o-di-2'-methoxy-1'-naphthylaminobenzoic acid, m.p. 250-251° (cryst. alkali salts). Phenyl - 1 - 2 - methoxynaphthylamine 0 - 8 - ketone $C_{6}H_{4} < CO > C_{10}H_{5} \cdot OMe, m.p. 190-192^{\circ},$ (III), is obtained from (II) and P2O5 in boiling PhMe. Treatment of (II) with PCl₅ gives a reddish-brown mixture, apparently unchanged by AlCl₂ and giving a product not identical with (III). When heated above its m.p. (I) gives NHPh·C₁₀H₇-a; similarly (II) affords phenyl-2-methoxy-a-naphthylamine, m.p. 82-83°. H. W.

Identification of phenylhydrazones and isomeric pyrazolines obtained from chalkones. L. C. RAIFORD and W. J. PETERSON (J. Org. Chem., 1937, 1, 544-552).—Chalkonephenylhydrazones on filter-paper with Br vapour give a yellow colour, changing to orange or brick-red; the isomeric pyrazolines give an immediate green colour. Differentiation is also possible by reduction and by crystal form. Hydrogenation (PtO₂) of COPh·CH:CHPh and p-C₆H₄Cl·CO·CH:CHPh gives COPh·C₂H₄Ph (phenylhydrazone, an oil) and p-chloro-B-phenylpropiophenone, m.p. 73° (oxime, m.p. 91-92°). Na-Hg-CO2 reduces chalkones and their phenylhydrazones to β-phenylpropiophenones and their phenylhydrazones, respectively, but does not affect 1:3:5-triphenylpyrazolines; Na-EtOH reduces the phenylhydrazones to NH,Ph. The following are described : phenylhydrazones, m.p. 116-118°, 101-102°, and 106-107°, of p-bromo-, -methyl- (forms, m.p. 77°, 55-56°, and 44°), and -methoxy- β -phenylpropiophenone, respectively; 1:5-diphenyl-3-p-chloro-, m.p. 150-150.5°, -bromo-, m.p. 156—157°, -hydroxy-, m.p. 116—118°, -methoxy-, m.p. 141—141.5°, -acetoxy-, m.p. 165-166°, -m-nitro-phenyl-, m.p. 131°, and -3-p-tolyl-pyrazoline, m.p. 152-153°. R. S. C.

Action of ethyl oxalate on pyrazolones. G. PERRONCITO (Gazzetta, 1937, 67, 158—164).—1-Phenyl-3-methylpyrazol-5-one (I) and $Et_2C_2O_4$ at 180° give bis-(1-phenyl-3-methyl-5-keto-4-pyrazolylene)glycol Et_2 ether (II), m.p. 163° (Br_4 additive compound, m.p. 80°). Me₂C₂O₄ gives the Me₂ ether (III), m.p. 193°. H₂C₂O₄ gives methenyldi-(1-phenyl-3-methylpyrazol-5-one) (A., 1930, 1182). With boiling 20% KOH, (II) or (III) gives bis-(1-phenyl-3-methyl-5keto-4-pyrazolyl) diketone, m.p. 137° (corresponding quinoxaline, m.p. >300°; monophenylhydrazone). With Zn-AcOH, (II) yields bis-(1-phenyl-3-methyl-5keto-4-pyrazolyl)glycol Et₂ ether, m.p. 208°.

E. W. W.

Derivatives of cyclotetramethylenepyrazole and their molecular compounds with substituted barbituric acids. H. RUHKOPF (Ber., 1937, 70, [B], 939–942).—Et cyclohexan-2-onecarboxylate and NHPh·NH₂ afford the corresponding phenylhydrazone, m.p. 98°, which passes when heated into 1-phenyl-3: 4-cyclotetramethylenepyrazol-5-one, b.p. ~200°7 12 mm., m.p. 180°, whence the 2-methyl (I), b.p. 220°/12 mm., m.p. 106.5°, 2-ethyl, b.p. ~250°/ 12 mm., m.p. 106°, 2-benzyl, b.p. 294°/40 mm., m.p. 82°, and 2-acetyl, b.p. 225°/40 mm., m.p. 131°, derivatives. cycloTetramethylenepyrazolones, unsubstituted at 2, do not give mol. compounds with barbituric acids. Such compounds (1:1), m.p. 108°, 161°, and 120.5°, respectively, are given by (I) with diethyl-, dipropyl-, (II), and allylisopropyl- (III) barbituric acid. Similar compounds (1:1), m.p. 146.5° and 140°, respectively, are obtained from 1 - phenyl-2-methyl-3: 4-cyclotrimethylenepvrazol-5one and (II) or (III). H. W.

Action of hydroxylamine and hydrazine on acetylenic thioamides. D. E. WORRALL (J. Amer. Chem. Soc., 1937, 59, 933–934).—CPh:CNa and PhNCO in Et_2O give *phenylpropiolthioanilide*, decomp. 113–114°, sol. in NaOH, decomposed by heat

at 100°, by acid in EtOH, Hg salts, or Br; in hot EtOH it gives the *dimeride*,

CPhiC·C(NPh)·S·CPh:CH·CS·NHPh, sinters at about 250°, sol. in NaOH, and yields with Br a dibromide, decomp. 226—227°, and decomp. products; with NH₂OH it gives 3-anilino-5-phenylisooxazole, m.p. 142—143° [yields 3-p-bromo-, m.p. 158° (gives BzOH, when oxidised), and 3-2':4'-dinitro-anilino-5-phenylisooxazole, m.p. 245—246°], and some 1-phenacylisooxazole, m.p. 190—191°; with NHPh·NH₂ it gives 3-anilino-1:5-diphenylpyrazole, m.p. 153° [Br₂-, m.p. 181°, and (NO₂)₃-derivative, m.p. 197—198°], and with N₂H₄ yields 3-anilino-5-phenylpyrazole, m.p. 166—167°, which affords 3-2':4':6'-tri-bromo-, decomp. 206—207°, and -nitro-anilino-5-phenylpyrazole, decomp. 266°. R. S. C.

Lactim-lactam tautomerism. I. Oxidation by perbenzoic acid of the double linking between carbon and nitrogen. M. M. BOTVINNIK and N. L. GAVRILOV. II. Oxidation of glyoxaline and its derivatives by perbenzoic acid. M. M. BOTVINNIK and M. A. PROKOFIEV (J. pr. Chem., 1937, [ii], 148, 170—190, 191—204).—I. BZO₂H (I) in CHCl₃ is a quant. reagent for the (fixed) C.N linking; the amount used is determined iodometrically. It oxidises (CHPh:N·CH₂·CO₂)₂Ba to NH₃, H₂C₂O₄, and BzOH. Histidine dihydrochloride (II), NH:C(NH₂)₂, and trimethyloxazole are all oxidised, with decomp. NH₂Me, NH₂·CH₂·CO₂H (III), NH₂·CHMe·CO₂H, CO(NH₂)₂, (CO·NH₂)₂, and NHBz·CH₂·CO₂H are not oxidised, nor are Abderhalden's enolised NH₂-acid anhydrides, nor uric acid (IV), or *iso*leucylhydantoin (V). The K salt of (IV) and OO'-dibenzylglycine anhydride are, however, oxidised. Thus (I) does not oxidise a lactim unless displacement of equilibrium to the lactam is excluded. In presence of MgO, however, (III), (IV), and (V) are oxidised by (I). The action of (I) on CH₂Ae·CO₂Et and on CH₂Bz·COMe (A., 1930, 1579) is confirmed.

II. Oxidation of glyoxaline by (I) is dependent on time and on conen. of (I); the intermediate glyoxaline dioxide, $C_3H_4O_2N_2$, decomp. 135°, is isolated; $CO(NH_2)_2$, but no $H_2C_2O_4$, is formed. Glyoxaline-4:5-dicarboxylic acid is not oxidised: it even stabilises (I). The oxidation of (II) and of 2-methyl-4:5-dihydroglyoxaline by (I) is studied. E. W. W.

Synthesis of aneurin. T. HOSHINO and M. OHTA (Proc. Imp. Acad. Tokyo, 1937, 13, 101–102).— Aneurin is synthesised from 4-methyl-5-(β-hydroxyethyl)thiazole and 6-amino-2-methyl-5-chloromethylpyrimidine hydrochloride, m.p. 214—215° (decomp.). Other compounds mentioned are 6-hydroxy-, m.p. 183—184°, and 6-amino-2-methyl-5-ethoxymethyl-[hydrochloride, m.p. 212° (decomp.)], and 6-amino-2methyl-5-hydroxymethyl-pyrimidine, m.p. 195—196° [hydrochloride, m.p. 218—219° (decomp.)]. A. LI.

Degradation of histidine and other glyoxaline derivatives by ascorbic acid. S. EDLBACHER and A. VON SEGESSER (Biochem. Z., 1937, 290, 370— 377).—A measurable but small amount of deamination occurs when a mixture of histidine (I) and ascorbic acid is oxygenated at 38°, but when to the mixture in PO₄^{'''} buffer at $p_{\rm H}$ 7 traces of Fe₂(SO₄)₃

or hæmin are added and O, is bubbled through, 80% of (I) is decomposed and subsequent alkalisation to the phenolphthalein red colour gives one, and more strongly with excess of NaOH gives two, equivs. of N as NH₃. Oxidative disruption of the glyoxaline ring must therefore have occurred. The reaction does not occur when N2 replaces O2. When subjected to the same treatment, (I) Me ester, glyoxalinyl-lactic acid, methylhistidine, histamine, hydroxymethylglyoxaline, and glyoxaline behave similarly, whilst glycine, alanine, phenylalanine, dihydroxyphenylalanine, tyrosine, valine, leucine, arginine, ornithine, aspartic and glutamic acids, proline, creatine, uric acid, allantoin, thymine, guanine, dialuric acid, and sturine give only traces of NH₃ and hypoxanthine, adenine, and carnosine give 30% and cystine and

serine 25% of NH₃. P. W. C. Condensations of aromatic amines with formaldehyde in media containing acid. V. Sub-stituted dihydroquinazolines from p-chloroaniline and p-bromoaniline. E. C. WAGNER and A. EISNER (J. Amer. Chem. Soc., 1937, 59, 879-883).—p-C₆H₄Br·NH₂ and CH₂O in dil. HCl at room temp. give 6-bromo-3-p-bromophenyl-3:4-dihydroquinazoline (I), m.p. 205.8° (25.9%; picrate, m.p. 242°) [obtained, but not identified, by Cairn-cross et al. (A., 1936, 487)], a base, b.p. 134-135°, and small amounts of methylated products (cf. loc. cit.). p-C₆H₄Cl·NH₂ yields similarly 6-chloro-3-p-chlorophenyl-3: 4-dihydroquinazoline (II), m.p. 192° (picrate, m.p. 239°), and a base, m.p. 135°. $(p-C_6H_4Cl-\dot{N}-CH_2)_3$, m.p. 151°, $p-C_6H_4Cl-NH_2$, and $p-C_6H_4Cl-NH_2$,HCl in PhNO₂ at 80–90° give 4-chloro-N-5'-chloro-2'-aminobenzylaniline, m.p. 93° (benzylidene derivative, m.p. 139°), converted by CH2O in KOH-EtOH into 6-chloro-3-p-chlorophenyl-1 : 2 : 3 : 4-tetrahydroquinazoline, m.p. 158°, and by 90% HCO₂H at 100° into (II). Similarly the trimeride, m.p. 168.8°, of p-bromo-N-methyleneaniline gives p-bromo-N-5'-bromo-2'-amino-benzylaniline, m.p. 117.6° (benzylidene dorivative, m.p. 144.6°) [with a little (I)], 6-bromo-3-p-bromophenyl-1:2:3:4-tetrahydroquinazoline (III), m.p. 173°, and (I). Reduction of (I) and (II) could not be effected without dehalogenation. With Na-EtOH (I), (II), and (III) give 3-phenyl-1:2:3:4-tetrahydroquinazoline. M.p. are corr. R. S. C.

Pyridino-3 : 4-triazoles. II. O. BREMER (Annalen, 1937, **529**, 288–290; cf. A., 1935, 993). Addition of 1-butylpyridino-(3':4')-4:5-triazole metho-

Addition of 1-butytpyriano-(3': 4')-4: 5-triazole methosulphate and KOH to aq. NBu N K₃Fe(CN)₆ at 0° gives 2'-keto-1'-methyl-1-butyl-1: 2-dihydropyridino-(3': 4')-4: 5-triazole (1), m.p. 112°, converted by HNO₃ (d 1·4) in conc. H₂SO₄ at ≥5° into the 5'-nitro-, m.p. 138°, and by PCl₅ and POCl₃ into the 5'-chloro-, m.p. 136°, -derivative. H W

H. W. Hydrazine derivatives analogous to barbituric and uric acid. B. HEPNER and S. FAJERSZTEJN (Bull. Soc. chim., 1937, [v], 4, 854-862).--Cyanoacethydrazide is converted by 40% NaOH at room temp. into 3-imino-5-ketopyrazolidine (I), decomp.

204° after darkening at 175°, which with a large excess of boiling Ac,O gives 3-imino-5-keto-1:4:4-triacetyl., m.p. 190-192°, and 3-imino-5-keto-2:4:4-triacetyl-, m.p. 130°, -pyrazolidine. 3-Imino-5-keto-1:4:4-tribenzoylpyrazolidine has m.p. 185°. (I) and PhCHO in boiling EtOH afford 3-imino-5-keto-4-benzylidenepyrazolidine $(+2H_2O)$, m.p. 244°, which does not react with HNO_2 .² 3-Imino-5-keto-4-oximinopyrazol-idine, m.p. >300° after changing colour at 100° and darkening at 200°, is reduced by $Na_2S_2O_4$ to (impure) 3: 4-diamino-5-hydroxypyrazole (II) [sulphate (III); hydrochloride; oxalate; acetate; picrate], which strongly reduces $KMnO_4$ and NH_3-Ag_2O . (III) and CH2Ogive3-imino-4-methyleneamino-5-ketopyrazolidine (+2CH₂O,H₂O). (II) and PhNCS in EtOH afford 3:4diphenylthiccarbamido-5-hydroxypyrazole (+1.5H₂O); attempts to prepare an analogous compound from PhNCO were unsuccessful owing to instability of the product. (II) is transformed by KCNO into 3-imino-4-carbamido-5-ketopyrazolidine (+H2O), converted by heating its Na or Ba salt into 5:7-dihydroxyglyoxalinopyrazole, NH<CO-C-NH NH-C-NH>CO. H. W.

Alloxantin series. (MISS) D. NIGHTINGALE (J. Amer. Chem. Soc., 1937, 59, 806–808).—1-Methylalloxantin, +3H2O, m.p. 226° (decomp.), is obtained from methylalloxan and dialuric acid or uramil. The 1'-Me isomeride, +3H₂O, m.p. 226° (decomp.), is obtained from methyluramil and alloxan. Separate identity is believed to be established by rapid pptn. of K dialurate from the 1-Me compound and slow pptn. from its isomeride by hot KOAc; the reaction of the 1'-Me compound is considered as due to gradual oxidation of the alloxan by 1-methyldialuric acid (I), which is shown to occur in a separate experiment. Similar results are obtained with 1:3- and 1':3'dimethylalloxantin and support the semiacetal structure of alloxantin. Benzoyldialuric acid and the substituted alloxans give benzoyl-1-methyl-, m.p. 233° (decomp.), and -1: 3-dimethyl-alloxantin, decomp. 237°. Benzoylmethyldialuric acid, m.p. 185-187° (K salt, $+H_2O$), from (I) and BzCl at 120°, does not react with alloxan. R. S. C.

Action of acetaldehyde and benzaldehyde on 5-aminotetrazole. R. STOLLÉ and K. HEINTZ (J. pr. Chem., 1937, [ii], **148**, 217-220).—The reported prep. of 4-amino-1-methylmethenyl-[1:2:3:5]-tetrazole (cf. A., 1935, 1509) from 4-amino-[1:2:3:5]-tetrazole [*i.e.*, 5-amino-1:2:3:4tetrazole (I)] and MeCHO is not confirmed. The actual product is an aldol derivative, $4-\gamma$ -hydroxybutylideneamino-1:2:3:4-tetrazole, m.p. 170° (Ag salt); (I) does not condense with BzCHO at 100°, or at 150°, at which temp. it yields guanylaminotetrazole. E. W. W.

Dipyrazolobenzenes. V. VESELY and A. MED-VEDEVA (Coll. Czech. Chem. Comm., 1937, 9, 176– 184).—6:1:2:3-NO₂·C₆H₂Me₂·NHAc with N₂O₃ in Ac₂O gives its NO-derivative, n.p. 85° (decomp.), converted in boiling C₆H₆ into 5-nitro-4-methylindazole (Noelting, A., 1904, i, 690) (Ac derivative, m.p. 127—127·5°), reduced (Fe-AcOH) to the 5-NH₂compound, m.p. 197°, the Ac₂ derivative of which affords its 5-NO-derivative, m.p. 94° (decomp.), con-

verted by boiling C_6H_6 into the 1'-Ac derivative (A; R = Ac, R' = H), sinters $205-208^{\circ}$, not melting completely at 305° , of 4':5':2:1:4'':5'':3:4.

 $\begin{array}{c} \text{Minimized observed of } \\ \text{Minimized CH} \\ \text{CH} \\ \text{CH} \\ \text{H} \end{array}, \text{m.p.} > 320^{\circ} (1':1'' \cdot Ac_2 \text{ derived of } 1'' \cdot Ac_2 \text{ derived of } 1''$ ative, m.p. 215°; Ag salt), obtained and also by direct decomp of the and also by direct decomp, of the NR (NO)₂ - derivative of 1:2:3:6- $C_6H_2Me_2(NHAc)_2$. Similarly 5 : 1 : 4 : 2-NO₂·C₆H₂Me₂·NHAc

(improved prep.) gives a NO-derivative, m.p. 92-93° (decomp.), converted into 5-nitro-6-methylindazole (loc. cit.), reduced to the 5-NH2-compound, m.p. 223-224°, the Ac2 derivative, m.p. 233-234°, of which affords a NO-derivative, converted into the 1'-Ac derivative, m.p. 275-278° (decomp.), of 5':4':1:2:5'':4'':4:5-dipyrazolobenzene, m.p. >330° (1': 1"-Ac2 derivative, m.p. 303-305°; Ag salt). J. W. B.

Pyrrole-blacks. I, II. P. PRATESI (Gazzetta, 1937, 67, 188-199, 199-206; cf. this vol., 123).-I. β-3-Methyl-4-pyrrylpropionic acid (I) after some months in air and light gives a black substance, oxidised (CrO_3) to methylmaleimidepropionic acid (II). With FeCl₃-Et₂O, (I) gives a black substance, oxidised to (II); with H_2O_2 in presence of Fe^{...}, (I) forms a similar substance. 3-Methyl-4-ethylpyrrole (III) with $FeCl_3$ gives a substance, oxidised (CrO₃) to methylethylmaleimide. 1-Methyl-2: 5-diethylpyr-

role does not yield pigments. II. With H_2O_2 -Fe^{••}, (III) gives a substance, which with CH_2N_2 yields a methylated *product*. The behaviour of other pyrrole derivatives towards oxidation, and towards I, is studied, and the structure of pyrrole-blacks is discussed. E. W. W.

Accelerating action of metallic salts and organic compounds in the aniline-black condensation, Compounds in the anime-black condensation, E. JUSTIN-MUELLER (Bull. Soc. chim., 1936, [v], 3, 2257—2266).—The effects of CuSO₄, NH₄VO₃, HVO₃, VOCl₂, FeSO₄, FeCl₃, K₄Fe(CN)₆, and K₃Fe(CN)₆ on the oxidation (a) of guaiacum resin with H₂O₂ and with NaClO₃, and of leuco-phenolphthalein (cf. A., 1917, ii, 432) with H₂O₂ are recorded and compared with their effects in the aniline-black condensation (b) (cf lit). Cu and V salts promote the liberation (b) (cf. lit.). Cu and V salts promote the liberation of active O from H_2O_2 and NaClO₃ and hence accelerate the reactions (a) and (b). V salts, especially VOCl₂, also accelerate these reactions by trans-ference of O through an intermediate oxidation product $(H_4V_2O_7)$. $p-C_6H_4(NH_2)_2$ and aminoazobenzene act only by means of a similar transference of O through an oxidation product. H. G. M.

Application of the cyanohydrin method to the synthesis of alkylamino-acids (hydroxyalkylamino-acids). A. I. KIPRIANOV and B. A. RASOH-KOVAN (J. Gen. Chem. Russ., 1937, 7, 1026—1032).— NHMe·CH₂·CH₂·OH, HCl, KCN, and various alde-hydes or ketones, in aq. EtOH, yield 2-phenyl-3-methyl-, 2:3-dimethyl-, and 2:2:3-trimethyl-tetra hydro-oxazole, b.p. 75-76°, with PhCHO, MeCHO, and COMe2, respectively. NH2 [CH2]3 OH, HCl similarly gives 2-phenyltetrahydro-oxazine, b.p. 175-176°/25 mm. (benzoate, m.p. 127°; picrate, m.p. 131°),

with PhCHO, and NH2 (CH2)2 OH, KCN, and MeCHO yield a-(\beta'-hydroxyethyl)aminopropionic acid, m.p. 193°, originating from hydrolysis of the corresponding a-nitrile; it is supposed that the above oxazoles and oxazines are produced from analogous nitriles by elimination of HCN. R. T.

Catalytic formation of resazurin. H. EICHLER (Monatsh., 1937, 70, 73–78).—Addition of aq. Na(K)NO₂ at 17–32° to m-C₆H₄(OH)₂-H₂O-H₂SO₄ containing MnO₂ (but not with H₂O₂, PbO₂, etc.) affords resazurin (I) (A., 1934, 1234), also formed in McOH or EtOH solution. (I) is reduced in alkaline solution at room temp. by $FeSO_4$ or $Na_2S_2O_4$ to hydroresorufin, converted in air into resorufin (II), also obtained by reduction of (I) with NaHSO3 or Na₂SO₃ at the b.p. Slow addition of m-C₆H₄(OH)₂ to NaNO₂-H₂SO₄ at $<50^{\circ}$ gives the *indophenol* of

N OH OH OH

resorcinol (annexed formula), the postulated intermediate (Nietzki et al., A., 1890, 156) in the formation of (II).

Conclusions regarding the relationship between colour, fluorescence, and constitution in this group of compounds are summarised.

J. W. B.

Hydroxydiphenyl-isatin condensation products.—See B., 1937, 530.

1:0

Manufacture of compounds of the azaphenanthrene series.—See B., 1937, 530.

Preparation of carboxylic acid amides derived from aza-compounds [-phenanthrenes].-See B., 1937, 530.

Thiazane [tetrahydrothiazine] synthesis. R. D. COGHILL (J. Amer. Chem. Soc., 1937, 69, 801-802).---Di- β -diethoxyethyl sulphide, S[CH₂·CH(OEt)₂]₂, prepared from CH₂Br·CH(OEt)₂ and K₂S or KHS, with 0.5% HCl at 40-50° gives 3:5-dihydroxy-thioxan, m.p. 73°, converted into the Et₂ ether by HCl-EtOH, and by HCN-NH₃ into tetrahydroxythiazine-3-nitrile-5-carboxylamide, m.p. 192° (decomp.), which with hot conc. HCl gives tetrahydrothiazine-3:5-dicarboxylic acid, m.p. 253-254° (decomp.). R. S. C.

Production of alkylaminoalkoxybenzthiazoles. -Seo B., 1937, 530.

Preparation of 1-thiol-5-tert.-butylbenzthiazole.—Šee B., 1937, 530.

Oxidation of leuco-methylene-blue by nitrates and nitrites. E. AUBEL, O. SCHWARZKOPF, and GLASER (Compt. rend. Soc. Biol., 1937, 125, 12-13).—Leuco-methylene-blue is oxidised by NO_3' in the light, and is not affected by heavy metals, whereas oxidation by NO_2' is catalysed by light and by heavy H. G. R. metals.

Quinoline derivatives. I. T. N. GHOSH (J. Indian Chem. Soc., 1937, 14, 113-115).-p-Tolylthio-carbamidoacetic acid, m.p. 147-148° (decomp.), obtained from the corresponding thiohydantoin, with Ac2O gives 2-keto-5-p-tolylaminodihydro-1: 4-thiazole, m.p. 157-158°, which with o-NO2°C5H4 CHO yields 2-keto-3-o-nitrobenzylidene-5-p-tolylaminodihydro-1:4thiazole, m.p. 200-201°, reduced to 5-p-tolylaminothiazole-2: 3(2': 3')-quinoline, m.p. 191-192°. A

 $\mathbf{XVII}(f, g)$

similar series of reactions with p-phenetylthiocarbamidoacetic acid, m.p. 134-135° (decomp.), affords 2keto-5-p-phenetylaminodihydro-1:4-thiazole, m.p. 193-194°, 2-keto-3-o-nitrobenzylidene-5-p-phenetylaminodihydro-1: 4-thiazole, m.p. 177-178°, and 5-pphenetylaminothiazole-2:3(2':3')-quinoline, m.p. 175°. F. R. S.

Accelerators for vulcanisation of rubber.— See B., 1937, 592.

Alkaloids of Anabasis aphylla. XII. Specific rotation of anabasine, in relation to the method of extraction from the plant, the nature of the solvent, and the concentration. S. S. NORKINA, T. NARKUZIEV, and A. P. OREKHOV (J. Gen. Chem. Russ., 1937, 7, 951-955).—Anabasine has $[\alpha]_{\rm D}$ -81° with no solvent, -75.25° in COMe₂, -71.24° in C₆H₆, -71.06° in C₂H₄Cl₂, -68.78° in CHCl₃, -45.85° in EtOH, and -39.1° in H₂O; the val. of $[\alpha]_{\rm D}$ in H₂O or C₆H₆ falls with increasing dilution. The val. of $[\alpha]_{\rm D}$ found also depends on the isolation procedure; racemisation is least with extraction with C₂H₄Cl₂, via the silicofluoride or benzoate.

R. T. Constitution of carpaine. III. G. BARGER, R. ROBINSON, and T. S. WORK (J.C.S., 1937, 711— 713).—Carpamic acid, obtained by hydrolysis of carpaine (I) (cf. Barger, J.C.S., 1910, 97, 466), is not readily affected by $K_2Cr_3O_7$ —H₂SO₄, giving no ketone. With P–HI, it affords a hydrocarbon, $C_{14}H_{28}$ (?), b.p. about 90°/high vac., similar to a hydrocarbon obtained from myristic acid. Exhaustive methylation of (I), followed by catalytic reduction, yields a lactone, hydrolysed to an acid, $C_{14}H_{28}O_3$, m.p. 20—25°, with one C-Me. Successive treatment of carpamic acid hydrochloride with PCl₅ and KOH leads to anhydrocarpamic acid, reduced (PtO₂-H₂) to deoxycarpamic acid, m.p. 181°, and oxidised with O₃ to a monobasic acid (COMe·[CH₂]₇·CO₂H?), and with KMnO₄ to agelaic and other acids. (I) is probably CH_2 -CH-CMe·[CH₂]₇·CO.

F. R. S.

Synthetical experiments relating to carpaine. I. Synthesis of a basic long-chain lactone. G. BARGER, R. ROBINSON, and Y. URUSHIBARA. II. G. BARGER, R. ROBINSON, and W. F. SHORT. III. Derivatives of tetrahydrofuran and intermediates of the aliphatic series. G. BARGER, R. ROBINSON, and L. H. SMITH (J.C.S., 1937, 714—715, 715—718, 718—725).—I. γ -Keto- Δ^{μ} -tetradecenoic acid and HBr give μ -bromo- γ -ketotetradecoic acid, m.p. 56°, debrominated to the corresponding OH-acid, m.p. 63—64°, which is oxidised (AcOH-CrO₃) to $\gamma\nu$ -diketotetradecoic acid, m.p. 95.5°. The Br-acid and NH₂Me afford ν -methylamino- γ -ketotetradecoic acid hydrochloride, reduced (Na-Hg) to the - γ -hydroxytetradecoic acid, m.p. 153° (hydrobromide), which is tasteless in solution, but forms a bitter-tasting lactone, analogous to carpamic acid and carpaine, respectively.

II. N-Bromo- κ -methylaminoundecoic acid, obtained from κ -methylaminoundecoic acid (hydrochloride, m.p. 105-105.5°) and NaOBr, does not react with H₂SO₄ to form a pyrrolidine. C₄H₄N-MgBr with θ -carbethoxynonoyl chloride gives Et sebacate, α 0-di-2'-pyrryloctane, m.p. 138°, and Et 0-2'-pyrroylnonoate (I), m.p. 28°, hydrolysed to the acid, m.p. 85-85.5°, whilst with Et sebacate, it forms N-0carbethoxynonylpyrrole, m.p. 43°, hydrolysed to sebacic acid and C₄H₄N, and converted at 300° into (I).

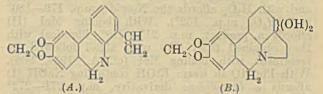
III. Et tetrahydrofurfurylmalonate (II), b.p. 123°/1 mm., from the bromide and Et malonate, is hydrolysed to β -tetrahydrofurylpropionic acid, of which the Et ester, b.p. 105°/11 mm., is reduced (Na-EtOH) to y-tetrahydrofurylpropan-a-ol. The alcohol and PBra give y-tetrahydrofurylpropyl bromide (III), b.p. 100-101°/16 mm., which with (II) affords Et bistetrahydrofurfurylmalonate, b.p. 165°/0.5 mm., hydrolysed to ββ'-bistetrahydrofurylisobutyric acid, b.p. 173°/0.35 mm., a compound structurally related to cuskhygrine. Tetrahydrofurfuryl p-toluenesulphonate has m.p. 38.7-39.1°. (III), KCN, and NaI give tetrahydrofurylacetonitrile, b.p. 92.4°/13 mm., hydrolysed to the acid, b.p. 144-146°/16 mm. (II) and 2. bromoundecanyl acetate afford µu-dicarboxy-v-tetrahydrofuryltridecan-a-ol, m.p. 108-109°. An improved method of prep. of Et 2-furoylacetate is described. Et e-hydroxyhexoate is converted by SOCl, into the -chloro-, b.p. $106^{\circ}/14$ mm., and by PBr₃ or HBr-H₂SO₄ into the -bromo-ester, b.p. 122- $125^{\circ}/12$ mm., which with CH2Ac CO2Et forms Et a-acetylsuberate, b.p. $154-158^{\circ}/0.28$ mm., hydrolysed to η -ketononoic acid, m.p. $40-41^{\circ}$ (2:4-dinitrophenylhydrazone, m.p. 88—89°; semicarbazone, m.p. 136°; Et ester, b.p. 141—142°/11 mm., and its semicarbazone, m.p. 108°; p-phenylphenacyl ester, m.p. 93.5—95°) (cf. Godchot et al., A., 1931, 731). Et ζ-bromoheptoate, b.p. 135°/17 mm., and CH₂Ac·CO₂Et similarly give 0-ketodecoic acid, m.p. 47.5—48.5° [semicarbazone, m.p. 115— 116° (+2H₂O, m.p. 127°); p-phenylphenacyl ester, m.p. 68—70°] (cf. van Romburgh, A., 1912, i, 38). Et η-ketononoate and Mg n-amyl bromide yield a OH ester converted into a neurolubreacyl a hydrogene OH-ester, converted into p-phenylphenacyl η -hydroxy- η -methyltridecoate, m.p. 68—71°. CH₂Ac·CO₂Et and OPh·CH₂·CH₂·CH₂Br give Et di(phenoxypropyl)aceto-acetate, m.p. 61—62°, and Et γ -phenoxypropylaceto-acetate, b.p. 164°/1 mm., which with carbomethoxypropionyl chloride forms a substance, hydrolysed by KOH to Me 5-phenoxybutyl ketone, b.p. 136-137°/1 mm. (2:4-dinitrophenylhydrazone, m.p. 97-98°), and an acid reduced (Clemmensen) and esterified to Et δ -phenoxyvalerate, b.p. 115—117°/0·42 mm., and Et η -phenoxyoctoate, b.p. 135—140°/0·42 mm. (acid, m.p. 68—70°). δ -Phenoxyvaleric acid forms a chloride, b.p. 142—144°/8 mm., characterised as the anilide, m.p. 84.5-85.5°. F. R. S.

Alkaloids of ergot.—See A., III, 267.

Preparation of lysergic acid hydrazide.—See B., 1937, 621.

Cotarnine series. VIII. Derivatives of 1aminomethylhydrocotarnine. B. B. DEY and (MISS) P. L. KANTAM (J. Indian Chem. Soc., 1937, 14, 91-94).—Anhydrocotarninomethylamine (picrate, m.p. 200°; sulphate, m.p. 220°) is obtained, by reduction of the nitromethane, as an oil and not a solid (cf. Magidson et al., A., 1935, 767), and from it are obtained benzoyl-, m.p. 125° (hydrochloride, m.p. 238-240°; picrate, m.p. 175-177°), acetyl-, m.p. 141°, p-nitrobenzoyl-, m.p. 138° [hydrochloride (+H₂O), m.p. 234°, nitrate, m.p. 190°, picrate, m.p. 138°], paminobenzoyl-, m.p. 185° (Ac derivative, m.p. 135°; picrate, m.p. 167°), m-nitrobenzoyl-, m.p. 95° (hydrochloride, m.p. 185°; picrate, m.p. 196—198°), maminobenzoyl-, m.p. 80°, o-nitrobenzoyl-, m.p. 143— 145° [hydrochloride, m.p. 240° (decomp.); picrate, m.p. 165°], and o-aminobenzoyl-aminomethylhydrocotarnine (picrate, m.p. 175°), and a product $C_{17}H_{28}O_3N_2I_2,2H_2O$, m.p. 135° (decomp.), by the action of MeI.

F. R. S. Alkaloids of : (A) Convolvulus pseudocanthabricus. A. P. OREKHOV and R. A. KONOVALOVA. (B) Arundo donax. (C) Cytisus caucasicus. A. P. OREKHOV and S. S. NORKINA. (D) Cytisus ratisbonensis. S. S. NORKINA and A. P. OREKHOV. (E) Genista tinctoria. S. S. NORKINA, T. NARKU-ZIEV, and A. P. OREKHOV (J. Gen. Chem. Russ., 1937, 7, 646-653, 673-675, 743-746, 853-856, 906-910).-(A) Four new alkaloids, convolvine (I), $C_{16}H_{21}O_4N$, m.p. 115° (nitrate, m.p. 212-214°), convolamine (II), $C_{17}H_{23}O_4N$, m.p. 114-115° [hydrochloride, m.p. 237-239°; picrate, m.p. 263-264° (decomp.); platinochloride, m.p. 216-217°; aurichloride, m.p. 202-203°; methiodide, m.p. 273-275°], convolvidine (III), $C_{33}H_{42}O_8N_2$ or $C_{33}H_{44}O_8N_2$, m.p. 192-193°, and convolvicine (IV), $C_{10}H_{16}N_2$, b.p. 250-260° (picrate, m.p. 260-262°), have been isolated from Central Asiatic specimens of the plant. When hydrolysed with 10% KOH in MeOH (I) yields nortropine and veratric acid (V), and is identical with veratroylnortropine. (II) is the N-Me derivative of (I), and is synthesised from tropine and veratroyl chloride in PhMe (at the b.p.). (II) gives (V) and an unidentified NH₂-alcohol, m.p. 272-273°, when hydrolysed. (IV) is present in traces only, and no information as to its structure was obtained.

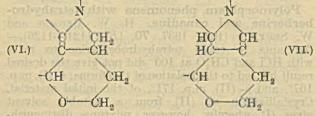

(B) Donaxine (A., 1935, 634, identical with von Euler's gramine, A., 1936, 741) [picrate, m.p. 144—145°; perchlorate, m.p. 181°; platinochloride, m.p. 180— 181° (decomp.); methiodide, m.p. 176—177°] yields skatole when distilled from Zn; von Euler's results are thus confirmed.

(c) d-Lupanine (VI), pachycarpine, and an alkaloid, m.p. 120—121°, not identical with cytisine (VII) or methylcytisine (VIII) have been found in extracts of the plant.

(D) The plant contains 0.16% of alkaloids, consisting of (VI), with traces of *l*-sparteine (IX) when the material is collected in May, and of (VI) 70\%, and (IX) 30\% in October.

(E) The plant contains 0.33% (dry wt.) of alkaloids, of which anagyrine, (VII), (VIII), and an unknown alkaloid, m.p. 95—96° (picrate, m.p. 244—246°), were isolated. R. T.

Lycoris alkaloids. X. Constitution of lycorine. H. KONDO and S. UYEO (Ber., 1937, 70, [B], 1087—1093).—2:3-NH₂·C₆H₃Br·CO₂Me and 6bromopiperonal (I) are converted by Cu powder at 200° into Me 6:7-methylenedioxyphenanthridine-1carboxylate, m.p. 149—151°, which could not be caused to react with MeI or Me₂SO₄ and therefore could not be transformed into the corresponding N-methylphenanthridone (A., 1935, 1387). Lycorineanhydromethine (II) (loc. cit.) is hydrogenated to dihydrolycorineanhydromethene, m.p. 87.5° [picrate, m.p. 174° (decomp.); methiodide, m.p. 236° (decomp.) after softening at about 225°], which when distilled with Zn dust gives 1-methylphenanthridine, phenanthridine, and 6:7-methylenedioxy-1-ethylphenanthridine (III), m.p. 142° [picrate, m.p. 257° (decomp.)]. The constitutions A and B are therefore assigned to (II) and lycorine, respectively. 2:3-(NO₂)₂C₆H₃Et with SnCl₂-HCl-EtOH at $0-2^{\circ}$ gives 2-nitro-3-aminoethylbenzene, m.p. $32-33^{\circ}$ (Ac derivative, m.p. $114-115^{\circ}$), which is converted into



3-bromo-2-nitroethylbenzene, b.p. 113°/3 mm., whence 3-bromo-2-aminoethylbenzene (IV), b.p. 115°/7 mm. (Ac derivative, m.p. 122°, oxidised to 3-bromo-2acetamidobenzoic acid, m.p. 212°). Treatment of (IV) with (I) and Cu powder at 210—220° affords (III). H. W.

Polymorphism phenomena with tetrahydro-berberine and canadine. H. W. BERSCH and W. SEUFERT (Ber., 1937, 70, [B], 1121—1126).— Attempts to cause tetrahydroberberine to react with HCl and CH₂O at 100° did not give the desired result but led to the isolation of two forms, α - (I), m.p. 167°, and β - (II), m.p. 171°, of the initial material. Crystallisation of (II) from a suitable solvent gives (I), whereby, however, mixtures distinguishable under a lens are frequently observed. When melted and allowed to re-solidify, preferably in a high vac., (I) passes into (II). Failure in the catalytic reduction of berberine salts by previous authors is attributed largely to the use of sparingly sol. materials. This difficulty is overcome by con-version of these salts through the :CMe₂ derivatives into the freely sol. acetates which are readily hydrogenated (PtO_2) ; the differing methods of reduction do not appear to affect the relative proportions of (I) and (II) formed. The possibility of a diastereoiso-meric relationship between (I) and (II) is not supported by their similar behaviour towards bromocamphorsulphonic acid, but the evidence is not conclusive by reason of the ready isomerisation of (I) and (II). Also the methobromide, m.p. 250-252°, from liquid MeBr and (I) is identical with that derived from (II). α -l-Canadine, m.p. 133°, $[\alpha]_{D}^{20}$ -297·1° in CHCl₃, passes when melted and allowed to cool in a high vac. into β -l-canadine, m.p. 142°, $[\alpha]_{D}^{20} - 298 \cdot 2^{\circ}$ in CHCl₃, which is too unstable to permit recrystallisation. α - and β -l-Canadine methobromide have $[\alpha]_{5461} + 145 \cdot 6^{\circ}$ and $+ 145 \cdot 1^{\circ}$ in CHCl₃, respectively. The evidence in favour of isomerism due to asymmetric N is therefore negative and the forms are hence regarded provisionally as polymorphous. H. W.

Constitution of strychnine. V. Neostrychnine. M. KOTAKE and M. YOKOYAMA (Sci. Papers Inst. Phys. Chem. Res. Tokyo, 1937, 31, 321-332).— Strychnine or methylstrychnine with Se at 250-260° affords neostrychnine (I), m.p. 226-228° (hydro-

chloride), identical with the product obtained by Robinson et al. (A., 1932, 527). Tafel's base (II) gives no (I) under the same conditions. With Me.SO, in warm MeOH (I) affords the methosulphate (III), m.p. 242-243°, converted by aq. NaI into the methiodide (IV), decomp. 315° [also obtained from (I) or (II) with boiling MeI-MeOH], which with AgCl-H₂O gives the methochloride, ni.p. 267-268°; (III) with hot ag. NaBr similarly affords the methobromide, m.p. 312°. With hot CH,PhCl (I) affords the benzylochloride [+0.5EtOH, m.p. 235° (docomp.)] and with H₂O₂ affords the N-oxide, m.p. 179-180° $(+3.5H_2O, \text{ m.p. } 152^\circ)$. With boiling MeI (II) affords a product, m.p. $217-218^\circ$, identical with that obtained from (IV) with alkali followed by treatment with boiling MeI (cf. A., 1934, 908). With PhCHO in warm EtOH containing NaOH (I) affords a benzylidene derivative, m.p. 271-272° (Robinson's has m.p. 158-159°). The hydrochloride of (I) loses its HCl in vac. [strychnine (V) hydrochloride does not], which indicates that (IV) is less basic than (V). It is suggested that the double linking in (V) has shifted into either of the positions shown in (VI) or (VII).

With KMnO₄ in COMe₂ at 10° (I) affords diketoneostrychnine, m.p. $234-235^{\circ}$ [mono-p-nitrophenylhydrazone, m.p. $269-270^{\circ}$ (decomp.); monoxime + $1\cdot5H_2O$, m.p. $317-318^{\circ}$ (decomp.); monobenzylidene derivative + 1H₂O (VIII), m.p. $307-308^{\circ}$ (decomp.)], which with cone. HCl affords a hydrochloride, decomp. 315° , converted by AuCl₂-EtOH into an *aurichloride*, m.p. $201-203^{\circ}$. 6N-HCl dissolves (I), and an oil, sol. in hot H₂O, is pptd. by NaOH, which indicates that (I) is probably altered by acid. With KMnO₄ in COMe₂ at 29° (VIII) affords dihydroxybenzylideneneostrychnine, m.p. 229°; the benzylidene derivative of (V) under similar conditions affords a $(OH)_4$ -compound, decomp. 231°. With Ag₂O in warm McOH (IV) gives de-N-methylneostrychnine, m.p. 227-229°. J. L. D.

Constitution of strychnine. VII. Absorption spectra of strychnine and its derivatives. M. KOTAKE, K. MORI, and T. MITSUWA (Sci. Papers Inst. Phys. Chem. Res. Tokyo, 1937, 31, 333-334).---Indole, indolylethylamine, and yohimbine have analogous absorption spectra, but different from that of strychnine (I). (I), dihydro- and neo-strychnine, strychninonic acid, Tafel's base, β - and ϵ -strychninolone, and α -dihydrostrychninolone have the same absorption spectra as acylcarbazolines and probably contain the same skeleton. J. L. D.

Synthesis of domesticin ethyl ethers. Η. SHISHIDO (Bull. Chem. Soc. Japan, 1937, 12, 150— 154).—3:4-Methylenedioxyphenylacetic acid with 3-methoxy-4-ethoxy-β-phenylethylamine at 180—190°

affords 3: 4-methylcnedioxyphenylacet-B-(3'-methoxii-4'-ethoxyphenyl)ethylamide, m.p. 114-115°, which with POCl, in PhMe at 130-140° followed by treatment with MeI gives 6-methoxy-7-ethoxy-1-piperonyl-N-methyldihydrolsoquinoline, m.p. 145°, reduced (Zn- H_2SO_4) to the corresponding H_4 -compound (1), m.p. 105-106°. (I) with conc. HNO_3 -AcOH below 5° affords 6'-nitro-6-methoxy-7-ethoxy-1-piperonyl-Nmethylletrahydroisoquinoline, m.p. 178-179°, reduced (SnCl₂-HCl) to the 6'-NH₂-compound, m.p. 96-98° [monohydrochloride, m.p. 228° (decomp.)], the diazonium derivative of which when boiled with Cu affords a product, reduced (Zn-HCl) to dl-2:3methylenedioxy-6-methoxy-5-ethoxy-N-methylaporphin, m.p. 132° [hydrochloride, m.p. 275-277° (decomp.)], resolved with d-tartaric acid into the 1-base, m.p. 129-131°, [a], -110.9° in MeOH [d-tartrate, m.p. 237° (decomp.); hydrochloride, m.p. 257° (decomp.)], and with l-tartario acid into the d-base, m.p. 131° [a]⁴ +110.8° in MeOH [l-tartrate, m.p. 237° (decomp.); hydrochloride, m.p. 257° (decomp.)], identical with domesticin Et ether. J. L. D.

Diarsyls. IX. Tetra-3-amino-4-hydroxyphenyldiarsyl. F. F. BLIOKE, J. F. ONETO, and G. L. WEBSTER (J. Amer. Chem. Soc., 1937, 59, 925-927; cf. this vol., 267).-Di-p-hydroxyphenyl-arsinic acid, m.p. 246-247° (decomp.), with Br-AcOH gives $C_6H_2Br_3$ OH and with HI-AcOH gives quantitatively AsI₃. Di-3-nitro-4-hydroxyphenylarsinic acid yields, by standard methods, di-3-nilro-4-hydroxyphenyl-chloro-, m.p. 142-143°, and -bromo-arsine, m.p. 131-132°, by Fe(OH), di-3-amino-4-hydroxyphenyl-arsinic acid, decomp. 218° (darkens at 210°), and -chloroarsine dihydrochloride, tetra-3-amino-4-hydroxyphenyldiarsyl oxide, m.p. 152-155° (decomp.), and thence (H₃PO₂) tetra-3-amino-4-hydroxy-phenyldiarsyl, m.p. 193-194°, stable when solid, unstable in alkaline solution [tetrahypophosphite, m.p. 202° (decomp. from 200°); dihydrochloride (I), m.p. 170-172°]. Di-p-anisylbromoarsine yields tetra-panisyldiarsyl oxide, m.p. 132–134°, and with KMnO₄ or H₂O₂ gives di-p-anisylarsinic acid, m.p. 190–191°, converted into the $3:3' \cdot (NO_2)_2$, m.p. 231° (decomp.; softens at 220°), and $\cdot (NH_2)_2$ -acid, m.p. 183–184° (decomp.). Of these and other diphenylarsine derivatives only (I) is curative against T. equiperdum in white rats. R. S. C.

Preparation of aryhmercuric nitrates.—See B., 1937, 520.

Reversible splitting of organomercuric cyanides with hydrogen chloride. E. CARR (Iowa State Coll. J. Sci., 1935, 10, 61—63).—Mainly theoretical. The stability of the C·Hg linking in a series of compounds is estimated by thermal decomp. and by irreversible fission with HCl. CH. ABS. (r)

Structure of organo-magnesium complexes. V. V. TSCHELINCEV (Compt. rend. Acad. Sci. U.R.S.S., 1937, 14, 337—340).—The structure RMg...Et₂O…I (heat of formation 6.6 kg.-cal. when R = Et) rather than $R...Et_2O...MgI$ is preferred for Grignard etherates for the following reasons : (1) complete analogy with the complexes of MgI₂, (2) Et₂O remains in the complex when it is converted into OR·Mg...Et₂O…I, (3) Et₂O and ROH are incorporated only between Mg and I and not between Mg and OR; thus MgI₂ forms complexes with 6, 4, and 2 EtOH, whereas OR·MgI forms complexes with 3, 2, and 1 EtOH, e.g., OR·MgI,3EtOH (-29.7 kg.-cal.), OR·MgI,2 β -C₁₀H₇·OH (-12.1), and OR·MgI,0-C₆H₄Me·OH (-4.7). Structural formulæ are suggested. J. W. B.

Acylseleno-ureas [-carbamides]. I. B. Doug-LASS (J. Amer. Chem. Soc., 1937, 59, 740—742).— Acyl chlorides and KSeCN in $COMc_2$ give solutions which are shown to contain much acylisoselenocarbimide by reaction with amines to give selenocarbamides. The following are described : benzoyl-, m.p. 194—195°, N-benzoyl-N'-phenyl- (I), m.p. 144—145°, -N'-o-, m.p. 124—125°, and -p-tolyl-, m.p. 154—155°, -N'- β -naphthyl-, m.p. 171—172°, -N'-benzyl-, m.p. 115—116°, and -N'N'-diethyl-, m.p. 110°, N-acetyl-N'-phenyl-, m.p. 184—185°, and N-pyromucyl-N'phenyl-selenocarbamide, m.p. 106—107°. M.p. are corr. Yields are variable. AgNO₂ in EtOH converts (I) into NHPh-CO·NHBz. R. S. C.

Selenium derivatives of salicylic acid. R. E. NELSON and G. S. BOASE (Proc. Indiana Acad. Sci., 1934, 44, 135—137).—Bromination of 5:5'-selenodisalicylic acid (I) yields 3:5-dibromosalicylic acid, m.p. 223°. Me₂ 5:5'-selenodisalicylate sclenodichloride (II) with Me salicylate and AlCl₃ affords $Me_2 5:5'$ -selenodisalicylate (III), m.p. 158°, converted into the selenodibromide, m.p. 143°, by Br; with Me₂SO₄ (III) gives (I). With aq. NaCN (II) affords 5:5'-selenodisalicylate selenodihydroxide, m.p. 137°.

Сп. Авз. (r)

Physicochemical studies of organometallic and furan compounds. W. E. CATLIN (Iowa State Coll. J. Sci., 1935, 10, 65-67).-Vals. are given for the relative reactivities of various halogenated furyl derivatives. Halogens attached to the furan ring are inert. The parachors of certain furan derivatives were measured. Data are given for the ionisation consts. of furan acids. The relative reactivities of organometallic compounds were measured by adding them in excess to an acid, and following the reaction by extracting the unchanged acid with H_2O . Using CCl₃·CO₂H at 25°, relative reactivities were : PbEt₄ 6, PbPh₄ 56, HgPh₂ 57, BiPh₃ 40, PbPh₃Et 2000. With HCl (25°) vals. were SnEt₄ 6.9 and (at 10°) PbEt₄ 410, SnPh₄ 75, HgEt₂ 30. Diatomaccous earth and O2 (or oxidation products) catalysed the Сн. Авз. (е) reactions.

Preparation of proteins by ultracentrifuging.— See A., III, 253.

Use of refractometry in organic analysis. M. M. SAMIGIN (J. Phys. Chem. Russ., 1936, 8, 839– 844).—Knowledge of d and n of a compound is sometimes sufficient for determining its type. J. J. B.

Quantitative macro- and micro-determination of sulphur in organic compounds. A. SCHÖBERL (Angew. Chem., 1937, 50, 334–337).—The material is burnt in air or O_2 in a SiO₂ tube, the combustion being localised and prevented from striking back by the insertion of fritted quartz discs. SO₃ + any SO₂ is adsorbed in H₂O₂. SO₄" is determined by pptn. with benzidine. J. S. A. Determination of sulphur and chlorine in combustible materials. H. KREKELER (Angew. Chem., 1937, 50, 337; cf. preceding abstract).—The method is applicable to the determination of halogens, alkaline $Na_2S_2O_3$ being used as absorbent. 0.01% of Cl in combustible gases may be so determined.

J. S. A.

Determination of arsenic and antimony in organic compounds and mixtures. E SCHULEK and R. WOLSTADT (Z. anal. Chem., 1937, **108**, 400– 406).—Org. material is destroyed by heating with conc. $H_2SO_4 + 30\%$ H_2O_2 . The solution is treated with 20% HCl + KBr, and distilled, the process being repeated. As is distilled over quantitatively, Sb^{III} remaining in the flask. Both As and Sb are titrated with KBrO₃. For titration with 0.01*N*-KBrO₃, α naphthoflavone is added as indicator. For the determination of small amounts of As, the distillate is freed from HCl by evaporation with $H_2SO_4 + 30\%$ H_2O_2 . As is then reduced with N_2H_4 , H_2SO_4 before titration with KBrO₃.

Destruction of organic mercury compounds for the determination of this element. C. V. BORDEIANU (Ann. Sci. Univ. Jassy, 1935, 20, 129– 131).—The organo-Hg compound (0·3—0·5 g.) mixed with finely powdered KMnO₄ (1—1·5 g.) is treated dropwise with cold fuming HNO₃ (10 c.c.), then with conc. H₂SO₄ (1—2 c.c.), and the mixture is heated at 100°. After dilution (50 c.c.) the excess of KMnO₄ is destroyed by 3% H₂O₂ and the Hg is determined by thiocyanate. The error is very small.

J. W. B.

Determination of chromium in organic compounds. C. F. MILLER (Chem. Analyst, 1936, 25, No. 1, 5-6).—Wet digestion of a 10-g. sample with conc. H_2SO_4 and HNO_3 is recommended. The solution is made alkaline and oxidised with Na_2O_2 . The Cr is determined iodometrically or colorimetrically with diphenylsemicarbazide. CH. ABS. (e)

Micro-determination of hydroxyl and aminogroups. F. H. STODOLA (Mikrochem., 1937, 180– 183).—The material is acetylated at 95—100° with a weighed quantity of a standard $Ac_2O-C_5H_5N$ mixture. The excess of Ac_2O is then titrated back with CO_2 free NaOH-EtOH. J. S. A.

Determination of fumaric acid in protein solutions containing succinic acid. E. STOTZ (J. Biol. Chem., 1937, 118, 471-477).—Fumaric acid (I) is pptd. as Hg^I salt in presence of 5% HNO₂ and the Hg^I oxidised to Hg^{II} which is then titrated with standard KCNS. 2-12 mg. of (I) can be determined in presence of proteins and succinic and malic acids. J. N. A.

Spectrophotometric studies of colour development in the analysis of sugar by the Benedict method and of cholesterol by the Liebermann-Burchard reaction. F. W. SUNDERMAN and J. RAZEK (J. Biol. Chem., 1937, 118, 397-404).—The development of colour in the two above reactions is studied by means of a photo-electric spectrophotometer which recorded within 10 sec. the transmission at each λ throughout the visible range, the first curve being obtained 2 min. after prep. of the solution and subsequent curves at intervals up to 1 hr. The optimal spectral zone is selected. P. W. C.

Microscopic tests for amino-acids. J. D. SURMATIS and M. L. WILLARD (Mikrochem., 1937, 21, 167—170).—The reactions of the usual alkaloid reagents and of heavy-metal salts with glycine (I), cystine (II), tyrosine (III), alanine, leucine, glutamic acid, aspartic acid, phenylalanine, and proline are described. For (I), (II), and (III) the crystal habits of the ppts. obtained serve as sp. tests. J. S. A.

Microscopy of amino-acids and their compounds. III. Copper salts. B. CUNNINGHAM, M. MACINTYRE, and P. L. KIRK (Mikrochem., 1937, 21, 245—249).—Characteristic crystal habits and optical data are described for the Cu salts of alanine, aspartic acid, cystine, glycine, *iso*leucine, leucine, lysine, methionine, norleucine, norvaline, phenylalanine, serine, and α -amino-*n*-valeric acid. J. S. A.

Inhibitors of colour development in the Sullivan method for cystine.—See A., III, 288.

p-Aminobenzenesulphonamide and its determination. E. SCHULEK and I. BOLDIZSAR (Z. anal. Chem., 1937, 108, 396–400).—*p*-Aminobenzenesulphonamide (I), m.p. 165° (corr.), may be determined bromatometrically by addition of a 10–30% excess of 0.1N-KBrO₃ to a solution of the material in HCl. KBr + HCl are added, using a stoppered reaction vessel. KI is then added, and the I liberated is titrated with Na₂S₂O₃. Alternatively, (I) is hydrolysed by refluxing with 70% H₂SO₄, whereby NH₃ is split off quantitatively. The liquid is then made alkaline, and NH₃ is distilled into 0.1N-acid.

J. S. A.

Colorimetric determination of the components of 3:4-dihydroxyphenylalanine-tyrosine mixtures. L. E. ARNOW (J. Biol. Chem., 1937, 118, 531-537).--3:4-Dihydroxyphenylalanine (I) is determined colorimetrically against a standard of (I), or, using a green Wratten 61 filter, of pyrocatechol, by the colour produced on adding HCl, NaNO₂-Na₂MoO₄ (giving yellow), followed by NaOH (giving red). Tyrosine is determined by adding HgSO₄-H₂SO₄, heating at 100°, adding NaNO₂, centrifuging if (I) is present, and comparing the yellow colour against a standard. E. W. W.

Microchemical detection of di- and tri-hydric phenols by drop reactions. J. KISSER and Y. KONDO (Mikrochem., Molisch Festschr., 1936, 259— 270).—Characteristic sensitive colour reactions of o-, m-, and p-C₆H₄(OH)₂, 1:3:5- and 1:2:3-C₆H₃(OH)₃ with FeCl₃, Ti₂(SO₄)₃, (NH₄)₂Ce(NO₃)₆, p-Ph·N₂·C₆H₄·SO₃H, fast red salt *B*, and AgNO₃ + NH₃ are described. J. S. A.

Identification of isomeric piperic acids by microchemical methods. H. LOHAUS and M. STEINER (Mikrochem., 1937, 21, 159–166).—The characteristic crystal habits and optical characteristics of piperic, isopiperic, isochavicic, and γ -bromoisochavicic acids, and of Me γ -bromoisochavicate are described. J. S. A. Bromatometric determination of 8-hydroxyquinoline. Determination of 8-hydroxyquinoline in pharmaceutical preparations. E. SCHULEK and O. CLAUDER (Z. anal. Chem., 1937, 108, 385— 396).—Sufficient material to contain 20—40 mg. of 8-hydroxyquinoline (I) is dissolved in HCl, and the solution is made just alkaline. KBr, a 10—30% excess of 0-1N-KBrO₃, and HCl are added, a stoppered reaction vessel being used. After keeping for 5 min. in the dark, KI is added, and the I liberated is titrated with Na₂S₂O₃. (I) may be isolated from pharmaceutical preps. by distillation in steam from a solution of $p_{\rm H}$ 8. Alternatively, (I) may be extracted with CS₂, CHCl₃, etc. from neutral solutions, or accompanying org. materials may be extracted by utilising the amphoteric properties of (I).

J. S. A.

Microchemistry of methylxanthides. (Caffeine, theobromine, theophylline.) G. DENIGES (Mikrochem., Molisch Festschr., 1936, 52–58).— Caffeine (I), theobromine (II), and theophylline (III) give ppts. of characteristic habit with NaOBr + HCl. Characteristic crystals are also obtained by evaporating solutions of (I) in HCl, (II) in CHCl₃, and (III) in COMe₂. J. S. A.

Micro-analysis of nitrogen in certain pyrimidines by the Dumas method. D. F. HAYMAN and S. ADLER (Ind. Eng. Chem. [Anal.], 1937, 9, 197).— The low vals. of N given for certain pyrimidines by the Pregl micro-Dumas method are corr. by mixing the substance with Cu acetate and CuO and heating to a high temp. A. LI.

Microchemical differentiation of alkaloids on basis of the m.p. of their picrates, picrolonates, and styphnates. L. KOFLER and F. A. MULLER (Mikrochem., 1937, 22, 43-77).—Data are given as to the appearance, solubility, and m.p. of the ppts. obtained with aconitine, *apomorphine*, arecoline, atropine, berberine, brucine, quinine, quinidine, cinchonine, cinchonidine, cocaine, codeine, cotarnine, coniine, duboisine, emetine, ephedrine, ephetonine, heroine, homatropine, hydrastine, hydrastinine, hyoscyamine, lobeline, lupinine, mescaline, morphine, narceine, narcotine, nicotine, papaverine, paracodeine, pelletierine, physostigmine, pilocarpine, scopolamine, sparteine, strychnine, thebaine, theobromine, tropacocaine, veratrine, and yohimbine. Colchicine, caffeine, and theophylline give no ppts. with the reagents.

J. S. A.

Reaction for distinguishing between anabasine sulphate and nicotine sulphate. S. A. KATZ (Z. anal. Chem., 1937, 108, 408).—The Roussin Et_2O-I reagent deposits a periodide from solutions of nicotine only. J. S. A.

Comparative microscopic tests of anabasine and related compounds; its purification and some physical constants. M. E. ZERBEY, M. T. ORINICK, and M. L. WILLARD (Mikrochem., 1937, 21, 171–179).—Reactions of non-homogeneous distillation samples of anabasine with alkaloid reagents are described. $n, d, \text{ and } [\alpha]^{25}$ for the impure material are recorded. J. S. A.