BRITISH CHEMICAL ABSTRACTS

A., II.—Organic Chemistry

NOVEMBER, 1937.

Recent investigations on thermal changes in simple organic compounds. M. W. TRAVERS (Trans. Faraday Soc., 1937, 33, 1342—1353).—The results of recent studies of the thermal decomp. of MeCHO, simple hydrocarbons, $(CH_2)_2O + MeCHO$, NH₂Me, ethers, and alkyl nitrites, and the conclusions reached from them, are discussed. For such reactions the determination of order of reaction from the halflife period is impossible. The importance of the initial stages of the reaction is emphasised.

J. W. S.

Structure of aliphatic compounds: Walden inversion. W. TAYLOR (Rec. trav. chim., 1937, 56, 898-899; cf. A., 1, 417).—In simple reactions (e.g., hydrolysis and esterification) of Me, Et, Pr^{β} , and Bu^{γ} compounds, the high relative speed of reaction of Bu^{γ} is interpreted by assuming that in primary and sec. aliphatic compounds, RX, X is partly bound by the α -H. This view conforms with the theories of Polanyi and others to account for the Walden inversion. F. L. U.

Mechanism of the reaction of substitution and Walden inversion. P. A. LEVENE, A. ROTHEN, and M. KUNA (J. Biol. Chem., 1937, 120, 777-797).-It is shown that in normal saturated aliphatic derivatives, substitution on the asymmetric C by a negative group or atom is connected with an inversion of configuration. In substances CHRR'X when R =•CH: CH_2 , substitution of a N_3 group for halogen proceeds without inversion of configuration, whilst when R' = Ph substitution of Br for OH by HBr or PBr_3 in absence of C_5H_5N takes place without inversion of configuration, but in presence of C_5H_5N with inversion. For normal, saturated alkyl derivatives substitution is connected with inversion provided the mechanism of substitution of N_3 for halogen proceeds by the same mechanism as the substitution of one halogen for another. A general theory of the Walden inver-sion is not yet possible. d-8-Chloro-octane, b.p. 92°/ 50 mm., $d_{\rm D}^{\rm ss}$ +0.28° (l=1), and d- γ -chloro-octane, b.p. 98°/33 mm., $\alpha_{\rm D}^{\rm ss}$ +5.10° (l=1), are obtained from the requisite I-compound and LiCl in MeOH at 10th the required recomposite and that in the intermediate γ -ol, b.p. 103—106°/147 mm., $[\alpha]_5^{25}$ -23.2°, and PCl₅ in dry Et₂O give d- γ -chloro- Δ^{α} -heptene (I), b.p. 92—94°/125 mm., $[\alpha]_5^{25}$ +9.76°, converted by NaN₃ in H₂O-MeOH at 25° into γ -azido- Δ^{α} -heptene, b.p. 78—81°/32 mm., $[\alpha]_5^{27}$ —0.04°, reduced (Adams) to 1-y-aminoheptane, b.p. 100-106°/148 mm., $\left[\alpha\right]_{n}^{m} - 0.02^{\circ}$; another sample of the latter substance, b.p. 99-101°/150 mm., $[\alpha]_{D}^{27}$ -0.45°, was obtained by hydrogenating (Adams) $1-\gamma$ -amino- Δ^{α} -heptene, b.p. 95—105°/155 mm., α_{D}^{25} -4.80° (l = 1), derived, with

a sec. amine, b.p. 92–95°/1 mm., $[\alpha]_{D}^{25}$ +0.52° (l = 1), from (I) in NH₃-MeOH at 25° and then at 50°. 1-γ-Bromo-Δ^a-heptene, b.p. 92—94°/50 mm., $[\alpha]_{D}^{28}$ -4.64° , is converted by LiCl in MeOH at 25° into d-y-chloro- Δ° -heptene, b.p. 87—88°/90 mm., $[\alpha]_{15}^{28}$ $+0.90^{\circ}$. r- α -Phenylethan- α -ol is converted into the H phthalate, m.p. 108°, from which, after resolution with brucine, 1-a-phenylethan-a-ol, b.p. 75°/1 mm., $[\alpha]_{\mathbf{p}}^{a} - 42.0^{\circ}$, is obtained. This is converted by SOCl, into 1-a-chloro-a-phenylethane, b.p. 101°/50 mm., $[\alpha]_{25}^{25} - 24.0^{\circ}$, whence successively d- α -azido- α -phenyl-ethane, b.p. 114°/50 mm., $[\alpha]_{25}^{25} + 18.6^{\circ}$, and d- α -amino- α -phenylethane, b.p. 75°/15 mm., $[\alpha]_{25}^{25} + 3.14^{\circ}$. 1- α -Phenylpropan- α -ol (II), b.p. 94–95°/10 mm., [α]_D -22.2° (obtained by resolving the r-alcohol through the strychnine phthalate), and SOCl, afford 1-a-chloro-a-phenylpropane, b.p. 77-80°/10 mm., [a] -28.9°, whence d-a-azido-a-phenylpropane, b.p. 100-101°/22 mm. $\alpha_{\rm p}^{25}$ +32.95° (l = 1), and d- α -amino- α -phenylpropane, b.p. 81°/10 mm., $[\alpha]_{25}^{25}$ +4.57°. PBr₅ and (II) in C₅H₅N give *l*- α -bromo- α -phenylpropane, and (II) in C_5H_5N give l- α -bromo- α -phenylpropane, b.p. 57—61°/0.6 mm., a_{10}^{26} —47.7°, converted by 40% NH₃-MeOH into the amine, b.p. 88—90°/16 mm., $[\alpha]_{12}^{25}$ +3.65°. 1- α -Phenylbutan- α -ol, b.p. 121—123°/ 18 mm., $[\alpha]_{12}^{25}$ —7.62° [hydrogenated (Adams) to 1- α -cyclohexylbutyl- α -ol, b.p. 76—77°/1.5 mm., $[\alpha]_{12}^{25}$ —4.61°], is converted by PBr₅ in CHCl₃-C₅H₅N into d- α -bromo- α -phenylbutane, b.p. 67—75°/0.5—1 mm., $[\alpha]_{12}^{25}$ —17.6°, and by PBr₅ in CHCl₃ into 1- α -bromo- α -phenylbutane, b.p. 67—72°/0.5—1 mm., $[\alpha]_{12}^{25}$ —1.98°, whereas the alcohol and PBr. gave a sample of b.p. whereas the alcohol and PBr₃ gave a sample of b.p. $65-72^{\circ}/0.5-1$ mm., $[\alpha]_{25}^{25}$ -0.20°. PCl₅ and the alcohol gave a hydrocarbon, C₁₀H₁₂, b.p. 147-152°/1.5 mm. Inversion occurs during the transformation of the bromide into the chloride by LiCl. 1-a-Amino- α -phenylbutane has b.p. 105°/10 mm., $[\alpha]_D^{25} - 2.28^{\circ}$ (hydrochloride, $[\alpha]_D^{25} + 0.66^{\circ}$ in H₂O), if derived from l-α-azido-α-phenylbutane, b.p. $85-90^{\circ}/4$ mm., $[\alpha]_{D}^{25}$ -16·4°, but b.p. 103-104°/15 mm., $[\alpha]_{D}^{25}$ -0·83°, when obtained from the bromide and NH₂.

H. W. Catalytic isomerisation of *n*- and *iso*-butane. C. W. MONTGOMERY, J. H. MCATEER, and N. W. FRANKE (J. Amer. Chem. Soc., 1937, 59, 1768—1769). -5% of AlBr₃ equilibrates *n*- and *iso*-C₄H₁₀, giving about 20% of the former; as by-products only 2—3% of CH₄ and C₂H₆ are formed. R. S. C.

Synthesis of branched hydrocarbons with long chains. K. H. MEYER and P. STREULI (Helv. Chim. Acta, 1937, 20, 1179–1183).—Octadecyl alcohol is converted by PCl_5 into *octadecyl chloride*, m.p. 18°, and by HBr at 150° into the corresponding

bromide, m.p. 41°, neither of which reacts with Mg. Octadecyl benzoate, m.p. 42°, decomposes at 300° into BzOH and octadecene, b.p. 179-180°/18 mm., m.p. 18°, the dibromide, m.p. 22°, of which is transformed by KOH at $270^{\circ}/0.1$ mm. into Δ^{α} -octadecinene (I), m.p. 28° (Ag derivative and salt C16H33 C:CAg, AgNO3, which when heated in xylene gives Δ^{ot} -hexatriacontadiinene, m.p. 59°). Reaction does not occur between MgMeI in boiling Et_2O , whereas CH_4 is evolved from solution in boiling Bu°_2O , but the Grignard compound (II) does not react with PhCHO, BzCl, MeOBz, AsCl₃, SiCl₄, or thapsonitrile (III) and is not hydrogenated (Pt). With CO₂ it affords Δ^{a} -nonadecinenoic acid, m.p. 59.5°, in 25% yield and with COPh₂ it gives α -hydroxy- $\alpha\alpha$ -diphenyl- Δ^{β} -nonadecinene, m.p. 54°. Treatment of (III) with MgEtI in Et₂O-Bu^a₂O at 60° affords eicosane-yo-dione, m.p. 93°, converted by (II) into 19: 34-dihydroxy-19: 34-diethyl-Δ17 35-dopentacontadi-inene, C14H28[CEt(OH) · C:C·C16H33]2, m.p. 42° (yield 88%), reduced to 19:34-diethyldopenta-H. W. contane, m.p. 26°.

Ratio of substitution to addition in the reaction of chlorine with olefines in dilute carbon tetrachloride solution. T. D. STEWART, K. DOD, and G. STENMARK (J. Amer. Chem. Soc., 1937, 59, 1765— 1766).—Rates of reaction with Cl₂ in CCl₄ are Δ^{β} -C₅H₁₀ > Δ^{γ} -C₇H₁₄ > Δ^{β} -C₆H₁₂ > Δ^{β} -C₇H₁₄ $\gg \Delta^{\alpha}$ -C₅H₁₀ > Δ^{α} -C₇H₁₄. The ratio of addition to substitution is determined for these olefines. Excess of olefine or Cl₂ increases and decreases, respectively, substitution. With Δ^{α} -C₅H₁₀ increase in concn. increases substitution, but with C₇H₁₄ decreases it. R. S. C.

Catalytic polymerisation of ethylene at atmospheric pressure. III-V. Y. KONAKA (J. Soc. Chem. Ind. Japan, 1937, 40, 236-237B; cf. this vol., 43).-III. The Co catalyst is improved by the addition of 20% of Cu to Ag. The influence of a no. of metallic oxides and salts has been examined.

IV. The Co-Ag catalyst is best prepared by pptg. the nitrates with K_2CO_3 followed by reduction at 350°. A good catalyst is given by Co-Ag-U₃O₈-kieselguhr (10:2:2:12).

V. The optimum temp. $(290-300^{\circ})$ varies slightly with the catalyst used and the rate of flow of the C_2H_4 has a considerable influence on the yield of liquid polymeride. F. R. G.

Gaseous polymerisations.—See A., I, 569.

Isomeric Δ^{β} -pentenes. H. J. LUCAS and A. N. PRATER (J. Amer. Chem. Soc., 1937, 59, 1682—1686). —The hydriodides, m.p. 42—42.5° and an oil, respectively of trans-, b.p. 106.5°/10 mm., m.p. 24.1°, n_{D}^{25} 1.4578 (p-phenylphenacyl ester, m.p. 90—91°; dibromide, m.p. 97—98°), and cis- α -methyl- Δ^{α} -pentenoic acid, b.p. 94—94.4°/10 mm., m.p. -42°, n_{D}^{∞} 1.4488 (dibromide, an oil; p-phenylphenacyl ester, m.p. 44.5—45.8°) (prep. from OH·CMePr^a·CO₂H), with aq. NaHCO₃ give pure trans- (I), b.p. 36.2°, f.p. -180° to -178°, n_{D}^{∞} 1.3817, and nearly pure cis- Δ^{β} -pentene (II), b.p. 36.2°, f.p. -135° to -136°, n_{D}^{20} 1.3799, which afford the dibromides, b.p. 91°/50.1 and 92.4°/ 50.1 mm., f.p. -55° to -53° and -44° to -41°, n_{D}^{20} 1.5096 (both), d_{1}^{α} 1.6809 and 1.6817, respectively, and with HBr bromopentenes, b.p. 117.5° and 116.5—

118.5°, $n_{\rm p}^{20}$ 1.4435 and (?) 1.4425, respectively. The properties of pentenes prepared by other investigators are considered in the light of these data; many samples were mixtures. The experimental basis of the hypothesis of electronic isomerism of olefines is removed. R. S. C.

Constitution of lycopene. R. KUHN and C. GRUNDMANN (Ber., 1937, 70, [B], 1905—1906).—In reply to Karrer and Solmssen (this vol., 378) it is pointed out that the authors' conclusions with regard to the formula of lycopenal are independent of the yields of methylheptenone and the dialdehyde $C_{24}H_{28}O_2$ obtained by its oxidation (A., 1932, 749). H. W.

Hydrogenation of acetylene and ethylene with palladium as catalyst.—See A., I, 524.

Hydrogenation of acetylene to ethylene. P. ACKERMANN (Brennstoff-Chem., 1937, 18, 357-361). —By passing mixtures of C_2H_2 with excess of H_2 over Ni-kieselguhr at 80-150°, using narrow tubes and a short layer of catalyst, up to 70% of the C_2H_2 is converted into C_2H_4 . C_2H_6 and liquid polymerides are also formed. The formation of C_2H_6 is diminished by using narrow tubes having their inner surface coated with a thin layer of catalyst, or Ni tubes the surface of which has been activated. By hydrogenation in the liquid phase even at relatively low temp. some polymerides are formed. A. B. M.

The "peroxide" or "oxygen" effect. J. C. SMITH (Chem. and Ind., 1937, 833—839).—A review of the available data on the effect of O_2 and peroxides on the addition of H halides to unsaturated compounds. J. D. R.

Kinetics and mechanism of polymerisation processes. S. MEDVEDEV (Prom. Org. Chim., 1937, 3, 472–481).—Polymerisation of

CH₂·CCl·CH:CH₂ consists in aggregation of the active units \cdot CH₂·CCl·CH·CH₂· (1), to yield chains, followed by development of units of the type \cdot CH₂·CCl·CH·CH₂. (II) in the straight-chain polymeride, to yield branched chains and rings. Approx. expressions are derived for velocity of polymerisation; the exact equations cannot be derived, owing to differences in the probability of attachment of (I) to (II) units, according to whether the latter are situated at the surface or near the centre of an aggregate. It is shown that the velocity rises with increasing concn. of monomeride, to a limiting val. determined by the free surface of the polymeride. R. T.

Synthesis of polychloro-compounds by aluminium chloride. IV. Condensation of hexachloropropylene with s-dichloroethylene. H. J. PRINS (Rec. trav. chim., 1937, 56, 779–784; cf. this vol., 174).—CCl₃·CCl:CCl₂ and AlCl₃ at 80° form a cryst. additive compound, which reacts vigorously with (CHCl)₂, but the only product isolated was a compound, $C_9H_5Cl_{11}$, m.p. 113–114°, b.p. 190°/2 mm., formed by reaction of 3 mols. of (CHCl)₂. Cautious reaction in CH₂Cl₂ at 5–6° affords a good yield of $\alpha\alpha\beta\gamma\gamma\delta\epsilon\epsilon$ octachloro- Δ^{α} -pentene, b.p. 113–113·5°/2 mm., which with $\leq 96\%$ H₂SO₄ gives SO₃, HCl, $\alpha\beta\gamma\delta\delta$ -pentachloro[(?)- Δ^{α} -]pentenoic acid, m.p. 120–124·5° (loses 1 HCl to KOH-EtOH), and an isomeric *acid*, m.p. 133-136.5°. Both acids lose 4-5 Cl to Na_2CO_3 . R. S. C.

Kinetics of the synthesis of methyl alcohol.— See A., I, 525.

Heterogeneous catalytic racemisation of *l-iso*butyl alcohol.—See A., I, 573.

Synthesis of a glycerol- d_1 from optically active isopropylidene-*d*-glyceraldehyde. H. ERLEN-MEYER, H. O. L. FISCHER, and E. BAER (Helv. Chim. Acta, 1937, **20**, 1012—1014).—Treatment of isopropylidene-*d*-glyceraldehyde in EtOAc containing D₂O and Ni (Rupe) with D₂ gives d-isopropylideneglycerol-d, C₅H₉O₂·CH_{1.62}D_{1.38}O, b.p. 78·5—79·5°/11 mm, $[\alpha]_p$ +11·8°, whence glycerol-d, C₂H₅O₂·CH_{2·1}D_{0·9}O, b.p. 165—166°/12 mm., $[\alpha]$ 0·00±0·01°. H W

Naturally occurring monoanhydrohexitols. W. FREUDENBERG and E. F. ROGERS (J. Amer. Chem. Soc., 1937, 59, 1602—1605).—Styracitol, m.p. 155°, $[\alpha]_{2}^{2b}$ —48.5° in H₂O, $[\alpha]_{2}^{ab}$ —50.5° in aq. H₃BO₃, is oxidised by Pb(OAc)₄ more rapidly than is polygalitol (I), m.p. 142—143°, $[\alpha]_{2}^{b}$ +42.86° in H₂O, $[\alpha]_{2}^{b}$ +45° in aq. H₃BO₃ (prep. from *Polygala senega* in 0.22% yield). The former is thus $\alpha\epsilon$ -anhydromannitol and the latter $\alpha\epsilon$ -anhydrosorbitol, configurations which are confirmed by consideration of optical superposition. Accritol and (I) are identical. Hydrogenation (Pd-black) of oxygalactal tetraacetate, freed from (?) β -d-galactose 2:3:4:6tetra-acetate by crystallisation, gives $\alpha\epsilon$ -anhydrodulcitol [(?) -talitol] tetra-acetate, m.p. 108°, $[\alpha]_{2}^{2a}$ —15.31° in CHCl₃, hydrolysed by Ba(OH)₂ to $\alpha\epsilon$ anhydro-dulcitol [(?) -talitol], a syrup, $[\alpha]_{2}^{2a}$ —7.34° in H₂O. R. S. C.

Synthesis of glycerides. II. P. E. VERKADE, J. VAN DER LEE, J. C. DE QUANT, and E. DE ROY VAN ZUYDEWIJN (Proc. K. Akad. Wetensch. Amsterdam., 1937, 40, 580—583; cf. A., 1935, 326).— In glycerides of the type OR·CH(CH₂·O·CPh₃)₂ (I) and CPh₃·O·CH₂·CH(OR)·CH₂·OR' (II) (R, R' is acyl), the CPh₃ may be removed by H₂-Pd in EtOH without wandering of the acyl groups. On the basis of this and lit. data on the wandering of acyl groups in the hydrolysis of CPh₃ from glycerides of the type (I) and (II) with acid, the following general method for the synthesis of glyceryl esters is outlined. Reduction of (I) or (II) with H₂-Pd in EtOH affords β -glycerides and $\beta\gamma$ -diglycerides, respectively; fission of (II) with HCl yields $\alpha\gamma$ -diglycerides of known structure. The $\beta\gamma$ - and $\alpha\gamma$ -diglycerides with R''Cl and C₅H₅N afford triglycerides containing three different acyl groups and of definite structure. J. D. R.

Reduction of glycerides by Bouveault and Blanc's method. V. M. MITCHOVITCH and G. STEFANOVITCH (Compt. rend., 1937, 205, 386-388).— Interaction of olein and palmitin with Na in boiling EtOH, Bu^aOH, or amyl alcohol affords oleyl and cetyl alcohol. Similarly, olive oil, lard, cod-liver oil, and chaulmoogra oil afford mixtures of alcohols.

J. L. D. Glycerides of elaidic acid. A. BÖMER and W. KAPPELLER (Fette u. Seifen, 1937, 44, 340-343).-- The elaidoglycerides α -palmito- $\beta \alpha'$ -dielaidin, m.p. 46·3°, α -stearyl- $\beta \alpha'$ -dielaidin, m.p. 49·9°, α -elaido- $\beta \alpha'$ dipalmitin, m.p. 51·7°, α -elaido- $\beta \alpha'$ -distearin, m.p. 60·7°, and trielaidin, m.p. 40·7°, have been synthesised from glycerol and the respective acids. E. L.

Fission of Robison's ester by triphosphopyridine nucleotide. O. WARBURG and W. CHRISTIAN (Biochem. Z., 1937, 292, 287–295).— Phosphohexonic acid (Robison and King, A., 1931, 523) is oxidised by systems containing the nucleotide and protein intermediary enzymes I and II (Negelein and Gerischer, A., 1936, 638), the oxidation being more complete in the presence of glucose or, to a greater extent, fructose. The end products include two esters with C: P = 3:1 and 6: 1, respectively. F. O. H.

Preparation of esters from alcohols and acid chlorides in the presence of magnesium. Esterification of tertiary alcohols. A. SPASSOV (Ber., 1937, 70, [B], 1926-1930).-A solution of the acid chloride in Et₂O is gradually added to the carbinol in Et₂O containing Mg powder. Reaction is usually vigorous and after about 1 hr. at room temp. is completed during 2 hr. on the water-bath, after which the product is cooled, treated with dil. NaHCO₃, and the ester is extracted with Et₂O. The change is $CR_3 OH + R' COCl = OH CR'Cl O CR_3$ (I); (I) = $R'CO_2CR_3 + HCl;$ Mg + 2HCl = MgCl₂ + H₂. In addition to reacting with HCl, the Mg has a secondary action, since it cannot be replaced by Fe, Al, or Zn. This sp. action is obvious in the acceleration of esterification and the suppression of the dehydrating action of the acid chloride on the tert. alcohol. Bu^vOH, CMe₂Et·OH, CMeEt₂·OH, and CEt₃·OH are smoothly and rapidly acylated, the yield being >60%. $CPh_3 OH$ could not be thus esterified, but $C(CH_2Ph)_3 OH$ gives a 50% yield of ester. AcCl, EtCOCI, PrCOCI, and Pr^sCOCI react readily with primary, sec., and tert. alcohols (yields 50-90%). CH₂Ph-COCl reacts readily with Bu⁷OH, but with BzCl the reaction proceeds less favourably. The following appear new: trimethylcarbinyl propionate, b.p. 115-116.5°, and phenylacetate, b.p. 114-117°/14 mm.; dimethylethylcarbinyl propionate, b.p. 153-156°/710 mm.; tribenzylcarbinyl acetate, m.p. 80-81°; triethylcarbinyl butyrate, b.p. 83-86°/13 mm., and phenylacetate, b.p. 142-146°/13 mm. H. W.

Replacement series of alkyl groups as determined by alcoholysis of esters. II. G. B. HATCH and H. ADKINS (J. Amer. Chem. Soc., 1937, 59, 1694—1696; cf. A., 1935, 472).—The equilibrium ratios, ROAc/ROMe, obtained in the reaction ROAc + MeOH \Longrightarrow ROH + MeOAc, at 200° (actually measured for reaction of EtOAc and calc. for MeOAc), are R = Et 0.81, $Pr^a 0.79$, $Bu^a 0.80$, *n*-amyl 0.98, -hexyl, -heptyl, -nonyl, and -decyl 0.88, -octyl 0.85, and -dodecyl 0.84, $Pr^{\beta} 0.55$, sec.-Bu 0.53, CHMePr^a 0.80, CHMeBu 0.7, CHMe⁻C₃H₁₁ 0.71, CHMe⁻C₆H₁₃ 0.68, CHMe⁻C₇H₁₅ 0.63, Bu^β 0.66, CH₂·CHEt₂ 0.92, CH₂·CHEtBu^a 1.01, CHMeBu^β 0.72, cyclohexyl 0.57, allyl 0.62, benzyl 0.59, CH₂Ph⁻CH₂ 0.63, Ph⁻[CH₂]₃ 0.83. Substitution by Me or unsaturated residues reduces the ratio, unless Me is sterically near O. R. S. C. Thermal transformations of potassium and sodium formate in presence of alkali hydroxides. —See A., I, 523.

Hydrolysis of acid chlorides. IV.—See A., I, 571.

Basic lead acetates. R. DUBRISAY and A. SAINT-MAXEN (Compt. rend., 1937, 205, 325-326; cf. A., 1936, 1464).—Addition of aq. NH₃ in increasing amounts to solutions of neutral Pb(OAc)₂ does not alter the ultra-violet absorption spectrum, in which there is no definite band until the mixture, which contains two basic Pb acetates, contains 0.5 g.-mol. of NH₃ and 1 g.-mol. of Pb. With higher concns. of NH₃, the spectrum is altered. The X-ray diffraction spectrum of the more sol. compound is identical with that of Plöchl's compound, Pb₂(OAc)₃·OH. The less sol. exhibits a characteristic X-ray spectrum which indicates that it is not a mixture and is not hydrocerusite. J. L. D.

Hydration of acetylenes. I. Δ^{θ} -Undecynoic acid (undecolic acid). (MISS) M. L. SHERRILL and J. C. SMITH (J.C.S., 1937, 1501—1503).—Hydration of Δ^{θ} -undecynoic acid with H₂SO₄ yields 59% of θ - and 41% of ι -ketoundecoic acid, whilst with Hg(OAc)₂ the respective proportions formed are 46% and 54%. J. D. R.

Exchange reaction of organic compounds with D_2SO_4 . R. SCHOENHEIMER, D. RITTENBERG, and A. S. KESTON (J. Amer. Chem. Soc., 1937, 59, 1765).— D has been introduced into palmitic acid, *dl*-alanine, *d*-leucine (I), and cholesteryl chloride dibromide by exchange with D_2SO_4 in H_2SO_4 . (I) was racemised.

E. S. H.

Kolbe electrosynthesis of several organic acids. S. KITAURA (Bull. Inst. Phys. Res. Japan, 1937, **16**, 765—772).—Kolbe electrolysis of oleic, ricinoleic, palmitic + phenylacetic, and palmitic + β -phenyl-propionic acids gives tetratriacontadiene, the glycol (CH₂)₁₄[CH:CH:CH₂·CH(OH)·(CH₂)₅Me]₂, cetylbenzene, and heptadecylbenzene, respectively.

Isomerides formed in the course of the hydrogenation of erucic acid. Y. TOYAMA (J. Soc. Chem. Ind. Japan, 1937, 40, 283—285B).—Et erucate is hydrogenated (Ni-kieselguhr at 180—185°) to a product hydrolysed to a mixture containing behenic (I) and brassidic (II) acid, and other isomerides of erucic acid. Products of oxidation (KMnO₄) of the mixed Et esters from (I), (II), and (III) suggest that the Δ^{μ} -ethylenic linking has migrated partly to the Δ^{λ} - and partly to the Δ^{ξ} - and perhaps the Δ° positions. E. W. W.

Optical activity of lactic acid produced by Lactobacillus acidophilus and L. bulgaricus.— See A., III, 316.

Specificity of the salicylaldehyde reaction [for pyruvic acid] of Csonka-Straub. A. E. BRAUN-STEIN (Nature, 1937, 140, 427).—The reaction is positive with all compounds containing Ac linked directly to H or C. It is negative with O- and N-Ac compounds, the CO of which is not a genuine carbonyl group. The mechanism of the reaction is discussed, and the need for care in its application to quant.

investigations on the metabolism of $AcCO_2H$ emphasised. L. S. T.

Ethyl acetoacetate and metallic copper. B. CIOCCA (Gazzetta, 1937, 67, 346—351).—In presence of air, Cu reacts slowly with $CH_2Ac \cdot CO_2Et$ (I) at 50—60° to give the Cu derivative of (I), also obtained from Cu₂O, or from CuO that has not been strongly heated. Cu reacts similarly with CH_2BZAc or with CH_2Ac_2 , but not with $COMe_2$, COMeEt, or $COPh_2$. E. W. W.

Peroxide effect in the rearrangement of α -bromoacetoacetic ester. M. S. KHARASCH, E. STERNFELD, and F. R. MAYO (J. Amer. Chem. Soc., 1937, 59, 1655—1657).—CHAcBr·CO₂Et and CMeAcBr·CO₂Et rearrange to γ -Br-esters in the absence of light and air only if HBr and a peroxide (ascaridole) are present; HBr or a peroxide alone is ineffective. As normally prepared CHAcBr·CO₂Et is slowly rearranged by HBr in vac., but this is due to traces of peroxide present, since prep. in H₂ usually gives a stable α -Br-ester. Light accelerates the change by HBr. HCl does not effect rearrangement. The peroxide effect is due to a chain mechanism involving liberation of Br atoms from HBr by a peroxide and/or O₂. R. S. C.

Paramagnetic isomerisation of maleic acid into fumaric acid.—See A., I, 573.

Ozonisation of maleic anhydride. Production of a very explosive ozonide. E. BRINER and D. FRANK (Helv. Chim. Acta, 1937, 20, 1211-1213).-Ozonisation of maleic anhydride in CHCl₃ or EtCl at -60° to -80° gives a particularly unstable and explosive ozonide. According to the quantity of O₃ absorbed it has the composition (:CH·CO)₂O,xO₃. H. W.

Enzymic hydrogenation of fumaric acid.—See A., III, 392.

Synthesis of trans-trans-muconic acid from fumaric acid. H. ERLENMEYER and W. SCHOEN-AUER (Helv. Chim. Acta, 1937, 20, 1008—1012).—Me H fumarate is converted by SOCl₂ into the corresponding chloride, b.p. 70—71°/14 mm., m.p. 16°, converted by 5% H₂O₂ in presence of C₅H₅N into the *peroxide*, decomp. 129°. This passes when heated mainly into Me₂ trans-trans-muconate, m.p. 158°, but a more fundamental reaction resulting in the evolution of C₂H₂ also occurs. H. W.

Synthesis of Hildebrandt's acid ; synthesis of methylated polyenedicarboxylic acids. R. KUHN and C. GRUNDMANN (Ber., 1937, 70, [B], 1894—1904). —Bu^aCHO, obtained by oxidising *n*-amyl alcohol with Na₂Cr₂O₇ and H₂SO₄ at 100°, is brominated at -20° to -15° in CHCl₃ in strong light and then converted by EtOH into α -bromo-n-valeraldehyde Et_2 acetal, b.p. 92—96°/12 mm. This is transformed by solid KOH at 150° into Δ^{α} -pentenal Et_2 acetal, b.p. 163—165°, hydrolysed by 2N-H₂SO₄ to Δ^{α} -pentenal, b.p. 122—125°, which is condensed with CHMeBr-CO₂Et and Zn turnings in boiling C₆H₆ and then dehydrated by KHSO₄ to $Et \alpha$ -methyl- $\Delta^{\alpha\gamma}$ -heptadienoate (I), m.p. 94—95°/11 mm. Condensation of (I) with Et₂C₂O₄ and KOEt in EtOH-Et₂O affords $Et_2 \alpha$ -keto- β C-aimethyl- $\Delta^{\gamma\epsilon}$ -hexadiene- α C-dicarboxylate, m.p. 70°. This is con-

E. W. W.

verted by Ac_2O at 200° into the corresponding Ac derivative, reduced (Al-Hg in moist Et_2O) to the compound,

CO₂Et·CH(OAc)·CMe:CH·CH:CH·CHMe·CO₂Et, which is hydrolysed to $\alpha\epsilon$ -dimethyl- $\Delta^{\alpha\gamma\epsilon}$ -hexatriene- $\alpha\zeta$ -dicarboxylic acid (I), m.p. 271° (Me₂ ester, m.p. 109°), which is reduced (Na–Hg) to $\alpha\epsilon$ -dimethyl- $\Delta^{\beta\delta}$ -hexadiene- $\alpha\zeta$ -dicarboxylic acid (II), m.p. 109°, isomeric with Hildebrandt's acid (II) (A., 1901, ii, 180; 1936, 1231). Addition of HBr in AcOH to (II) gives a non-cryst. acid transformed by AgNO₃ in C₅H₅N into $\alpha\epsilon$ -dimethyl- $\Delta^{\gamma\epsilon}$ - or - $\Delta^{\alpha\gamma}$ -hexadine- $\alpha\zeta$ -dicarboxylic acid, m.p. 147° (Hildebrandt's ψ -acid). [The conversion of $\Delta^{\beta\delta}$ -hexadiene- $\alpha\zeta$ -dicarboxylic acid into $\Delta^{\alpha\gamma}$ -hexadiene- $\alpha\zeta$ -dicarboxylic acid under similar conditions shows that the reactions are accompanied by migration of the double linkings.] Hydrogenation (Pt–SiO₂ in AcOH) of (I) affords $\alpha\epsilon$ -dimethylhexane- $\alpha\zeta$ -dicarboxylic acid, b.p. 168—174°/0·07 mm. (di-pbromophenacyl ester, m.p. 103—104° or m.p. 90° when rapidly cryst. from 70—90% EtOH), the dichloride of which is converted by Br in strong light followed by EtOH into Et₂ $\alpha\zeta$ -dibromo- $\alpha\epsilon$ -dimethylhexane- $\alpha\zeta$ dicarboxylate, b.p. 153—158°/0·08 mm. This is converted by NaI in COMe₂ into the corresponding I₂compound, which is transformed by 35% KOH-MeOH into $\alpha\epsilon$ -dimethyl- $\Delta^{\alpha\epsilon}$ -hexadiene- $\alpha\zeta$ -dicarboxylic acid, m.p. 193°, identical with (III).

The following examples are cited of the influence of choice of materials on the synthesis of methylated polyenedicarboxylic acids by the $\text{Et}_2\text{C}_2\text{O}_4$ process. Et Δ^{α} -pentenoate, b.p. 156—158°, $\text{Et}_2\text{C}_2\text{O}_4$, and KOEt afford El_2 δ -keto- γ -methyl- Δ^{α} -butene- $\alpha\delta$ -dicarboxylate, m.p. 60°, converted by the successive action of $Ac_2\text{O}$ and Al-Hg followed by hydrolysis into β -methylmuconic acid, m.p. 232°, in 36.5% yield, whereas a yield of 34 5% is secured when CMe₂:CH·CO₂Et is the initial material. Et $\Delta^{\alpha\gamma}$ -heptadienoate, b.p. 90—92°/ 12 mm., is transformed into Et_2 ζ -keto- ϵ -methyl- $\Delta^{\alpha\gamma}$ hexadiene- $\alpha\zeta$ -dicarboxylate, whence ϵ -methyl- $\Delta^{\alpha\gamma}$ -hexadiene- $\alpha\zeta$ -dicarboxylate acid, m.p. 245—246°, in 13% yield. The yield is only about 5% when the acid is obtained similarly from Et β -methylsorbate through the non-cryst. Et_2 ζ -keto- β -methyl- $\Delta^{\alpha\gamma}$ -hexadiene- $\alpha\zeta$ -dicarboxylate. H. W.

IV. dl-Tartronaldehydic acid. Glyoxal. H. O. L. FISCHER, E. BAER, and H. NIDECKER (Helv. Chim. Acta, 1937, 20, 1226-1236).—The prep. of cryst. dl-tartronaldehydic acid (I) or of salts thereof of const. composition has not been accomplished, but it is shown that in aq. solutions it has the reactions expected of a OH-aldehyde, whilst in acid solution the reducing power is so marked as to resemble that of reductone or ascorbic acid. Glyceraldehyde CH₂Ph cycloacetal in AcOH is converted by conc. H₂SO₄ followed by CrO₃ into tartronaldehydic acid CO₂H·CH·O·CH·O·CH₂Ph CH_2Ph cycloacetal, CH_2Ph ·O·CH·O·CH·CO₂H , m.p. 180—181°, $[Na_2 \text{ salt } (+1H_2O); Me_2 \text{ ester, m.p.}$ 137—138°], converted by reductive fission or by hydrolysis into (I). Alternatively, glyoxal semiacetal is transformed by ClCO₂Me and KCN into the Et₂ acetal of carbomethoxytartronaldehydonitrile, (OEt)₂CH·CH(O·CO₂Me)·CN, b.p. 131-133°/12 mm.

(corresponding CO_2Et -compound, b.p. 85-88°/0·01-0·03 mm., 103-105°/1 mm.), whence the amide, m.p. 122-123° (corresponding carbethoxy-amide, m.p. 75°), transformed into the Et_2 acetal of Ba tartronaldehydate, which is converted by CO_2 into (I). Treatment of warm solutions of (I) with NHPh·NH₂ gives CO_2 and glyoxaldiphenylhydrazone. The phenylosazone of (I), m.p. 209° when rapidly heated, has been obtained in small amount. The Et_2 acetal of Et carbomethoxytartronaldehydate and the corresponding carboethoxy-compound have b.p. 85-90°/ 0·02 mm. and 90-95°/0·02 mm., respectively.

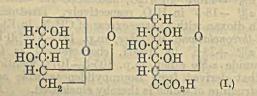
H. W.

Sensitised photolysis of malic acid. E. BAUR (Helv. Chim. Acta, 1937, 20, 974—977).—Irradiation of malic acid and HgCl₂ in presence of UO₂SO₄ gives HgCl and CO₂ (1:1), whilst AcCO₂H is produced. In presence of $Fe_2(SO_4)_3$ the ratio is 1:2 and MeCHO arises secondarily from AcCO₂H, whilst in presence of quinine the ratio becomes approx. 1:3 and MeCHO is not formed solely from AcCO₂H. H. W.

Derivatives of hydroxymethoxysuccinic acids, and some related amides. R. T. WILLIAMS (J.C.S., 1937, 1517—1518).—meso-Tartaric acid, methylated (Me₂SO₄-KOH) and esterified (MeOH– HCl) affords Me_2 dl-erythro- α -hydroxy- β -methoxysuccinate, b.p. 107—109° (bath)/0.5 mm., $[\alpha]_D 0^\circ$ in MeOH (diamide, m.p. 195—196°; bismethylamide, m.p. 125°). Similarly, r-tartaric acid yields Me_2 dl-threo- α -hydroxy- β -methoxysuccinate, b.p. 140° (bath)/2 mm. (diamide, m.p. 192—193°; bismethylamide, m.p. 152—153°). The following are also described: dl-tartramide, m.p. 226°, meso-tartramide, m.p. 189—190°, dl-dimethoxysuccindiamide, m.p. 268—272° (decomp.), dl-tartarobismethylamide, m.p. 204—205°, meso-tartarobismethylamide, m.p. 182— 183°, dl-dimethoxysuccinobismethylamide, m.p. 194— 195°. J. D. R.

Crystallised L-threonolactone and synthesis of *l*-threonic acid a-methyl ether. K. GATZI and T. REICHSTEIN (Helv. Chim. Acta, 1937, 20, and 1. INFIGURITEIN (Herv. Chini. Acta, 1937, 20, 1298—1303).—Oxidation of *l*-ascorbic acid with KMnO₄ leads to cryst. *l*-threonolactone (I), m.p. 65—68° (corr.), b.p. 145—147°/0·3 mm., $[\alpha]_{21}^{p_1}$ +30·7° to +27·3° in H₂O, $[\alpha]_{20}^{p_0}$ +47·0° in MeOH, +45·1° in COMe readily transformed into the second COMe₂, readily transformed into *l*-threenphenyl-hydrazide, m.p. 161-161.5° (corr.), $[\alpha]_{D}^{20}$ +30.9° in H₂O, $[\alpha]_{D}^{21}$ +48.6° in MeOH. NH₃-MeOH and (I) at room temp. afford l-threonamide, m.p. 105.5-107° (corr.), $[\alpha]_{D}^{21}$ +56.0° in H₂O, $[\alpha]_{D}^{20}$ +82.1° in MeOH. Brucine and (I) in $H_2O-MeOH$ afford brucine *l*-threonate, m.p. 209-210° (corr.), $[\alpha]_1^{22}$ -19.3° in H₂O; the corresponding quinine and strychnine salts have m.p. 169.5-170.5° (corr.), [α]²²₁₀ -116.7° in H₂O, and m.p. 182-184° (corr.), $[\alpha]_{D}^{21} - 18.5^{\circ}$ in H_2O , respectively. Treatment of (I) in dioxan with a large excess of CH₂N₂ in Et₂O gives 1-threonolactone Me ether, m.p. 111-114°/0.12 mm., $[\alpha]_{\mathbf{D}}$ +78.8° in MeOH, characterised as *l*-threenamide a-Me ether, m.p. 105.5-107°, identical with that derived from isopropylideneascorbic acid, the H. W. structure of which is thereby elucidated.

Reductones. F. MICHEEL, G. BODE, and R. SIEBERT (Ber., 1937, 70, [B], 1862–1866).—Tetronic

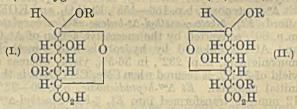

acid is converted by PhN₂Cl into the sparingly sol. monophenylhydrazone of hydroxydehydrotetronic acid, which with NHPh·NH₂ gives the corresponding diphenylhydrazone. This is suspended in abs. EtOH and hydrogenated (Pd sponge) to 3:4-diaminotetrone (I), $C(NH_2)$ -CO>O, m.p. 198—201° (decomp). Dehydro-*l*-ascorbic acid diphenylhydrazone is similarly transformed into hydroxy-3:4-diamino-5-1-tetronylacetic acid (II), $C(NH_2)$ -CO+O H₂O (I) and (II) are nearly neutral to indicators. In acid solution AgNO₃ is reduced to Ag and 2 I are absorbed, but the changes do not occur so readily as with ascorbic or scorbamic acid. The absorption

spectra of (I) and (II) suggest the presence of the forms $C(:NH) \longrightarrow CO \rightarrow O$ and $C(:NH) \cdot CO \cdot O$ $CH(NH_2) \cdot CH_2 \rightarrow O$ and $CH(NH_2) \longrightarrow CH \cdot CH(OH) \cdot CO_2 H$ in neutral solution. H. W.

Duality of the reversibly oxidised forms of vitamin-C and the polarisation of its dienol group. N. BEZSSONOFF and M. WOLOSZYN (Nature, 1937, 139, 469).—The reversible behaviour of the blue and green solutions obtained by treating acid solutions of vitamin-C (I) with phosphomolybdic acid (II) affords further evidence of the existence of two reversibly oxidised forms of (I). Quinol (III), but not pyrocatechol, gives the same colour reactions with (II) as does (I), which indicates that in both (I) and (III) the dienol group is polarised. L. S. T.

βε-Anhydromannono-γ-lactone. F. VALENTIN (Coll. Czech. Chem. Comm., 1937, 9, 315–326).— 3:6-Anhydromannose treated with Br in H₂O for several days gives non-cryst. βε-anhydromannonic acid (I) (amorphous Ba salt), which yields a phenylhydrazide, m.p. 190.5° (decomp.), $[\alpha]_{\rm b}$ +19.7° in MeOH. This with EtOH-H₂O-PhCHO at the b.p. gives the γ-lactone, m.p. 113°, $[\alpha]_{\rm b}$ +126.5° in H₂O, falling slowly to +115.3° after 282 hr. K₂ saccharate reacts violently with AcCl-H₂SO₄, giving αδdiacetylsaccharo-γγ'-dilactone, m.p. 190–192°, $[\alpha]_{\rm b}$ +155° in Ac₂O. It is concluded that the two rings of these and of other sugar compounds containing the dicyclic system CCC.COC have the same optical character, $[\alpha]$ thus being augmented, and that the effect increases with the no. of CO groups. E. W. W.

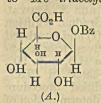
Polysaccharides. X. Constitution of new disaccharide "xyloglucuronic acid" from Kadsura japonica, Don. K. NISHIDA and H. HASHIMA (Bull. Agric. Chem. Soc. Japan, 1937, 13, 660-672; cf. A., 1935, 964).—Xyloglucuronic acid (I) on methyl-



ation with Me₂SO₄ + NaOH and MeI + Ag₂O yielded Me hexamethylaldobionate, $[\alpha]_{50}^{50}$ +90.7°, which on

hydrolysis with 2% HCl gave 2:3-dimethylxylose and $\alpha\beta\gamma$ -trimethylglucuronic acid. J. N. A.

Derivatives of d-galacturonic acid. III. Synthesis of a mercaptal of d-galacturonic acid and methyl tetra-acetylaldehydo-d-galacturonate. H. A. CAMPBELL and K. P. LINK (J. Biol. Chem., 1937, **120**, 471-479).—The reaction product of d-galacturonic acid and EtSH in conc. HCl gives, with NaOH-MeOH, the Na salt (I), $[\alpha]_{555}^{255} -13\cdot6^{\circ}$ in H₂O, of digalacturonic acid Et₂ mercaptal (II), m.p. 132.5°, $[\alpha]_{555}^{255} +17^{\circ}$ in MeOH. An aq. solution of (II) evaporated at 100° gives d-galacturonolactone Et₂ mercaptal, m.p. 79°, $[\alpha]_{555}^{255} +36^{\circ}$ in H₂O. CH₂N₂ and (II), or MeOH-HCl and (I) or (II), or Me d-galacturonate and EtSH in HCl, give the Me ester (III), m.p. 133-134°, $[\alpha]_{555}^{255} +17\cdot8^{\circ}$ in 95% EtOH, of (II). Acetylation of (III) (Ac₂O-C₅H₅N) yields Me tetra-acetyl-d-galacturonate Et₂ mercaptal, m.p. 139°, $[\alpha]_{555}^{255} +20\cdot5^{\circ}$ in CHCl₃. This is converted (CdCO₃-HgCl₂-COMe₂-H₂O) into the Et hemiacetal (IV), sintering at 113°, m.p. 139°, $[\alpha]_{555}^{255} +16\cdot5^{\circ}$ after 10 min., $-3\cdot0^{\circ}$ after 36 hr., in C₂H₂Cl₄, of Me tetra-acetylaldehydo-d-galacturonate, m.p. 136·5-137·5°, $[\alpha]_{555}^{255} -16\cdot2^{\circ}$ in C₂H₂Cl₄, of which the semicarbazone, m.p. 219-220° (decomp.), $[\alpha]_{555}^{255} +83\cdot4^{\circ}$ in CHCl₃, is obtained from (IV).


Oxidation and hydrolysis of polygalacturonide methyl ester to *l*-tartaric acid. P. A. LEVENE and L. C. KREIDER (J. Biol. Chem., 1937, **120**, 591— 595).—Polygalacturonide Me ester (A., 1934, 633;

1935, 732) is oxidised $(H_5IO_6; SrCO_3; Br; H_2SO_4; Ag_2CO_3; H_2S)$ and hydrolysed to K H *l*-tartrate, and must therefore have structure (I) or (II) (R = galacturonide residue). E. W. W.

Ring structure of α -methyl-d-galacturonide and its derivatives. P. A. LEVENE and L. C. KREIDER (J. Biol. Chem., 1937, 120, 597-606).— The pyran structure of methylgalacturonide (A., 1934, 281) is confirmed. α -Methyl-d-galacturonide Me ester monohydrate (I) (A., 1934, 280) is dehydrated in vac. at 78° over P₂O₅ to the anhyd. form, m.p. 148°, which with MeI-Ag₂O-MeOH (repeated methylation) yields α -methyl-2: 3: 4-trimethyl-d-galacturonide Me ester, m.p. 70·2-70·3°, $[\alpha]_{25}^{25}$ +142·1° in CHCl₃. This is oxidised (HNO₃, d 1·42, at 65-95°) to $\beta\gamma\delta$ trimethoxymucic acid, m.p. 100-101°, $[\alpha]_{23}^{23}$ +42·0° in COMe₂ [Me₂ ester, m.p. 1005° (mixed m.p. with acid, 79-82°), $[\alpha]_{25}^{2}$ +28·9° in H₂O; di(methylamide), m.p. 207°, $[\alpha]_{25}^{2}$ +12·6° in MeOH], with a syrup from which MeOH-HCl gives trimethoxy-l-araboglutardi-(methylamide) (A., 1927, 1059). With NH₃-MeOH, (I) gives α -methyl-d-galacturonamide (II), m.p. 225-226°, $[\alpha]_{25}^{2}$ +127·2° in H₂O. After attempted " Weerman degradation" (A., 1917, i, 546) of (II), only (II) is isolated. Attempted Hofmann degradation gives only a-methyl-d-galacturonide dihydrate (A., 1934, 280). E. W. W.

Chemical constitution of benzoylglycuronic acid. W. F. GOEBEL (Science, 1937, 86, 105-106).-Benzoylglycuronic acid (I) in MeOH with CH2N2 at -10° yields the *Me* ester, m.p. 190-191°, $[\alpha]_{\rm D}^{*}$ -16.3° in MeOH, acetylated (C₅H₅N-Ac₂O at 0°)

to Me triacetylmonobenzoylglycuronate, m.p. 145°, CO-H [a]^B -16.6° in CHCl₃. Synthetic OBz Me α-benzoyl-βγδ-triacetylglycuron-ate, from Me α-bromo-βγδ-triacetylglycuronate (II) and AgOBz in CHCl₃, is identical with the corresponding derivative prepared from natural (I). It is regarded as having the same structure and configuration as (II),

which is a pyranose derivative with the B configuration (A., 1936, 1231). (I) is as (A) in which Bz is attached to the first C. L. S. T.

Reactions of the thiol group. IV. N. HELL-STRÖM (Svensk Kem. Tidskr., 1937, 49, 201—207).— SH•CH₂•CO₂Na (I) and CH₂CI•CH₂•OH after 17 days at room temp. are treated with CuSO₄ to give Cu α -(β -hydroxyethyl)thiolacetate, decomp. 171°. By similar methods (I) yields with OH·CH₂·CH(OH)·CH₂Cl (II), Cu α -($\beta\gamma$ -dihydroxy-propyl)thiolacetate, (III), decomp. 182°. (III) is also made from (I) and giveida. (II) and control with the

made from (I) and glycide. (II) and carbyl sulphate give a compound, $C_4H_7O_2Cl$, b.p. 146°, probably α -chloro- $\beta\gamma$ -methylenedioxypropane, which with (I) yields (III). (I) and epichlorohydrin give $Cu \alpha - (\gamma - chloro-\beta - hydroxypropyl)thiolacetate, decomp. 157-158°,$ and Cu ay-(\$-hydroxypropyl)dithioldiacetate, decomp. 149°. M. H. M. A.

Mechanism of homogeneous thermal decomposition of gaseous acetaldehyde.—See A., I, 523.

Influence of traces of oxygen on thermal decomposition of gaseous acetaldehyde.—See A., I, 571.

Electrolytic reduction of n-valeraldehyde to n-pentane. S. SWANN, jun., and E. W. FIELD (Trans. Electrochem. Soc., 1937, 72, Preprint 16, 229-233).-Highest yields are obtained under conditions similar to those used for reduction of COMePr^a (A., 1935, 310) using a Cd cathode, although the yield of C5H12 is much less from Bu^aCHO. The next best yield is given by >99.99% Pb, but this is very sensitive to impurities. A Zn cathode also gives a good yield. A 99.9% Pb cathode "prepared" according to Tafel (A., 1900, ii, 588) is not as efficient as pure Pb. F. R. G.

Polyene pigment of the orange. II. Citraurin. L. ZECHMEISTER and P. TUZSON (Ber., 1937, 70, [B], 1966-1969; cf. A., 1936, 1435).-The finelypowdered, dried skins are extracted with Et₂O free from peroxides. The extract is evaporated, the residue is dissolved in light petroleum and chromatographed (CaCO₃). The ester fraction is hydrolysed and the hydrolysate is again chromatographed, thereby yielding citraurin (I), $C_{20}H_{40}O_2$, m.p. 146–147° (oxime). A method of determining (I) is given.

H. W.

Ketones from higher fatty acids. II. Comparison of the degrees of decomposition of the carboxyl group during the action of iron or magnesium powder on higher fatty acids at high temperatures. K. KINO (J. Soc. Chem. Ind. Japan, 1937, 40, 235-236B).-Decomp. is more rapid when higher temp. and large amounts of metal are used, and is greater with Fe, which also gives a more highly coloured product than Mg. Prolonged heating lowers the m.p. of the product, especially with Fe.

F. R. G.

Determination of acetoin. Y. TOMIYASU (J. Agric. Chem. Soc. Japan, 1937, 13, 787-790).--Acetoin (I) in neutral or slightly acid solution is mixed with FeCl₃ and distilled into a solution containing NH_2OH , NaOAc, and NiCl₂; wt. of ppt. $\times 0.72 =$ (I). With a mixture of Ac_2 and (I), two determinations are necessary, the first without FeCl_a. Wt. of ppt. $\times 0.596 = Ac_{o}$. J. N. A.

Syntheses of simpler methylated sugars. H. O. L. FISCHER, E. BAER, H. POLLOCK, and H. NIDECKER (Helv. Chim. Acta, 1937, 20, 1213-1226).—The action of 0.1N-H₂SO₄ on OCH_2 -C:CH₂ gives equiv. amounts of CH2O and acetol which condense after addition of a small excess of Ba(OH), to butane-aβ-diol-y-one (I), b.p. 65-70°/0.02 mm., m.p. 37.5°, also obtained by hydrolysis of isopropylidenebutane- $\alpha\beta$ -diol- γ -one or by oxidation of COMe CH:CH₂ with NaClO₃ in presence of OsO₄ or, less advantageously, of KMnO4. (I) affords a hydrazone, m.p. 110-111°, 2:4-dinitrophenylhydrazone, m.p. 118°, 2:4-dinitrophenylosazone, a diacetate, b.p. 51-64°/0.01-0.02 mm., and its p-nitrophenylhydrazone, m.p. 105°, a dibenzoate, m.p. 87° *ingurazone*, m.p. 105°, a *dibenzoate*, m.p. 87°, and a *methyl*cycloacetal (bimol.), m.p. 177–178°. Distillation with P_2O_5 transforms (I) into Ac₂. Condensation of (I) with CH O crack (COV) (CIV. 2017) densation of (I) with CH₂O or of COMe CH₂ OH with CH_2O (1:2) affords γ -hydroxymethylbutane- γ o-diol- β one (dihydroxymethylacetol), b.p. 105-107°/0.02-0.05 mm. (2:4-dinitrophenylhydrazone, m.p. 156-157°; tri-p-nitrobenzoate, m.p. 192-194°; anhydride C₁₀H₁₆O₆, m.p. 196-197°, and its diacetate, m.p. 196°).

Oxidation of mesityl oxide in COMe₂ by NaClO₃ and a little OsO₄ in H₂O and treatment of the mixture with Zn powder yields β -methylpentane- $\beta\gamma$ dicl-8-one (trimethylglycerose), b.p. 94-99°/9 mm., m.p. 20-21° (2: 4-dinitrophenylhydrazone, m.p. 157-158°; di-p-nitrobenzoate, m.p. 154-155°). H.W.

Dioximes. CXXII. G. TAPPI (Gazzetta, 1937, 67, 388-392).-Dimethyltriketone trioxime (I) with N₂O₄ gives methylacetylglyoxime peroxide oxime, CMe—C·CMe:N·OH (II), m.p. 130—131° (Ac, m.p. N·O·O·N $N \cdot 0 \cdot 0 \cdot N$ 73°, and Bz, m.p. 172°, derivatives), which in HNO3 (d 1.40) gives dinitromethylacetylglyoxime peroxide, m.p. 72-73°, converted by SnCl₂-HCl into methyl-acetylglyoxime peroxide. Hydrolysis of (II) by 20% HCl gives methylacetylglyoxime peroxide, m.p. 32—33° (phenylhydrazone, m.p. 169°; semicarbazone, m.p. 230°). Using excess of N_2O_4 , (I) also yields traces of dimethyltriketone-1: 3-dioxime peroxide 2oxime, m.p. 182° (decomp.), converted by $NH_2OH, HCl in C_5H_5N into (I).$ E. W. W.

Oxidation as a route to carbohydrates. N. A. ORLOV and L. S. MUSTAFIN (Compt. rend. Acad. Sci. U.R.S.S., 1937, 16, 107–108).—Dipentene, allyl alcohol, and styrene in H_2O with Ca(OH)₂, active C, and O_2 at 100–110° in 34 days afford pentosans (0.03–0.1% yield). J. D. R.

Sugars in solution and in the cell. E. F. ARMSTRONG (Chem. & Ind., 1937, 816-818).—The tautomerism of sugars in solution and the probable modes of biogenesis of sugars are discussed.

R. S. C.

2:5-Dimethylxylofuranose and 2:3-dimethylxylose. G. J. ROBERTSON and D. GALL (J.C.S., 1937, 1600—1604).—1:2-isoPropylidenexylose benzoate 3-p-toluenesulphonate is hydrolysed (NaOMe in C_6H_6 to 1: 2-isopropylidenexylose 3-p-toluene-sulphonate, m.p. 89–90°, $[\alpha]_D^{17}$ –28.6° in CHCl₃, which with MeI-Ag₂O yields 5-methyl-1: 2-isopropyl-3-p-toluenesulphonate, m.p. 81-82° idenexylose [a]18 -31.8 in CHCl₃, converted by MeOH-HCl into 5-methyl-β- (I), m.p. 89°, [α]¹⁸_D -51.7° in CHCl₃, and $-\alpha$ -methylxylofuranoside 3-p-toluenesulphonate (II) (a syrup), $[\alpha]_{D}^{18} + 44.5^{\circ}$ in CHCl₃; the α - and β -forms are converted by HCl-MeOH into an equilibrium mixture, $[\alpha]_{D}$ +11.7° in CHCl₃. Methylation of (I) and (II) (MeI-Ag₂O) affords respectively 2:5-dimethyl- β - (a syrup), $[\alpha]_{p}^{18} - 49.9^{\circ}$, and $-\alpha$ -methyl-xylofuranoside 3-p-toluenesulphonate (a syrup), $[\alpha]_{p}^{17}$ $^{+34.7\circ}$ in CHCl₃, which are hydrolysed (KOH-aq. EtOH) to 2:5-dimethyl-β-, b.p. 85°/0.02 mm., $[\alpha]_{b}^{+}$ -56° in CHCl₃, and -α-methylxylofuranoside, b.p. 110°/0.03 mm., $[\alpha]_{b}^{+}$ +54.3° in CHCl₃, both of which are converted (HCl-aq. COMe₂) into 2:5dimethylxylofuranose (a syrup), $[\alpha]_{1}^{17}$ +46° in H₂O, +16·4° in EtOH. This, with p-C₆H₄Br·NH·NH₂ yields the p-bromophenylosazone of 5-methylxylose. 1:2-isoPropylidenexylose 5-benzoate, hydrolysed (MeOH-HCl) and methylated (Ag₂O-MeI), gives 2:3-dimethyl-y-methylxyloside 5-benzoate (a syrup), hydrolysed (NaOH-aq. EtOH) to 2:3-dimethyl- γ -methylxyloside, b.p. 95°/0·15 mm., $[\alpha]_{\rm B}^{\rm b}$ +12·5° in CHCl₃, and further hydrolysed (aq. HCl) to 2:3dimethylxylose, identical with that obtained from xylan by Robertson and Speedie (A., 1934, 871). 1:2-isoPropylidenexylose 5-p-toluenesulphonate when methylated (MeI-Ag₂O) yields 3-methyl-1:2isopropylidenexylose 5-p-toluenesulphonate, m.p. 114°, $[\alpha]_{\mathbf{p}} = -27 \cdot 2^{\circ}$ in CHCl₃, hydrolysed (HCl-MeOH) to monomethylmethylxyloside. J. D. R.

β-d-Talose and d-talose acetates and orthoesters. W. W. PIGMAN and H. S. ISBELL (J. Res. Nat. Bur. Stand., 1937, **19**, 189–213).—Oxidation (BzO₂H) of galactal by Levene and Tipson's method (A., 1931, 938) affords galactose, α- (I) and β-dtalose (II), m.p. 120–121°, and d-talose benzoate (III), m.p. 150–170° (decomp.). Acetylation (C₅H₅N-Ac₂O; 0°; 3 days) of (I) yields α-d-talose pentaacetate, m.p. 106-5–107°, $[\alpha]_{20}^{20}$ +70-2° in CHCl₃, which with AcOH containing 38% of HBr (0°, 1 hr. followed by room temp., $2\frac{1}{2}$ hr.) affords 1-bromod-talose tetra-acetate (IV), m.p. 84–84.5° (sinters S3°), $[\alpha]_{20}^{20}$ +165.6° in CHCl₃. (IV) with AcOH-Ag₂CO₃ (0°, 1¹₄ hr.) gives d-talose triacetate 1:2-omethylacetate, m.p. 91.5–92.5°, $[\alpha]_{20}^{20}$ +3.7° \rightarrow +2.2° (19 hr.), and with AgOBz in moist COMe₂ $(-4^{\circ}; 1\frac{1}{2}$ hr.) yields α -d-talose tetra-acetate, m.p. 112—113°, $[\alpha]_{D}^{20} + 42 \cdot 8^{\circ}$ in CHCl₃. Mutarotation and oxidation (Br-H₂O) rates are given for (I) and (II), and evidence is given suggesting that (III) has an orthobenzoic acid structure. The conditions for ortho-ester formation are discussed. F. N. W.

Benzylated derivatives of β -glucosan and of glucose. G. ZEMPLÉN, Z. Cströs, and S. ANGYAL (Ber., 1937, 70, [B], 1848—1856).—Gradual addition of a mixture of β -glucosan triacetate (I) and powdered KOH to CH₂PhCl at 95—100° gives tribenzyl- β -

 $\begin{bmatrix} CH \\ HC \cdot O \cdot CH_2 Ph \\ O \\ CH_2 Ph \cdot O \cdot CH \\ HC \cdot O \cdot CH_2 Ph \\ HC \\ HC \\ CH_2 \\ (II.) \end{bmatrix}$

glucosan (II), m.p. 90°, $[\alpha]_{D}^{0} - 29.5^{\circ}$ in CHCl₃ (a modified procedure for the determination of CH₂Ph is recorded). (II) with Ac₂O containing a trace of conc. H₂SO₄ at room temp. gives α -

2:3:4-tribenzulglucose 1:6-diacetate, m.p. 66° , $[\alpha]_{D}^{21}$ $+62.5^{\circ}$ in CHCl₃, $[\alpha]_{D}^{22}$ +81.5° in EtOH, and the corresponding β-derivative. The mixture is hydrolysed by NaOMe-MeOH at room temp. to a mixture of α - and β -tribenzylglucose, giving after treatment with Ac₂O and anhyd. NaOAc at 100° a product from which β -2:3:4-tribenzylglucose 1:6-diacetate, m.p. 63— 63.5° , $[\alpha]_{D}^{21} + 17.4^{\circ}$ in CHCl₃, is isolated. This, or its mixture with the a-isomeride, in CHCl3 is transformed by HBr-AcOH followed by CH2Ph OH and Ag2CO3 in C_6H_6 into 2:3:4-tribenzyl- β -benzylglucoside 6-acetate, m.p. 115.5—116°, $[\alpha]_2^{31}$ +2.9° in CHCl₃, which with CH₂PhCl and KOH at 95—100° affords 1:2:3:4:6-pentabenzylglucose, m.p. $82-82\cdot5^{\circ}$. 2:4-Dibenzyl-β-glucosan (III), m.p. 103° , $[\alpha]_{p}^{p} - 28\cdot5^{\circ}$ in CHCl₃, is invariably produced during the prep. of (II) and is conveniently obtained when solid KOH is added to a mixture of (I) and CH₂PhCl in xylene at 90°; it passes into 2:4-*dibenzylglucose*, m.p. 75-79°, $[\alpha]_{15}^{15}$ +25·1° in EtOH. The constitution of (III) is established by converting it into 2:4dibenzyl-β-glucosan-3-p-toluenesulphonate, m.p. 105.5-106°, $[\alpha]_{\rm D}^{\rm H}$ -5.7° in CHCl₃; this is debenzylated by hydrogenation (Pd-C in EtOH-AcOH) and the product is transformed by Ac_2O in C_5H_5N at room temp. into β -glucosan 2:4-diacetate 3-p-toluenesulphonate (IV), m.p. 87-87.5°. Treatment of (IV) with $Ac_2O-H_2SO_4$ followed by HBr-AcOH affords α -bromoglucose 2:4:6-triacetate 3-p-toluenesulphonate, m.p. 150°, which with Ac₂O and TlOAc yields β -glucose 1:2:4:6-tetra-acetate 3-p-toluenesulphonate, m.p. 171-172°. H. W.

Aldehydo-derivatives of dibenzylideneglucose. M. L. WOLFROM and L. J. TANGHE (J. Amer. Chem. Soc., 1937, **59**, 1597—1602).—When glucose Et₂ mercaptal 6-benzoate (I), PhCHO, and ZnCl₂ react, $[\alpha]$ rapidly passes through a min. and then rises. This min. α corresponds with a max. yield of *dibenzylidene-d-glucose* Et₂ mercaptal 6-benzoate (II), m.p. 130·5—131·5°, $[\alpha]_{23}^{23}$ —15·5° in CHCl₃, -11° in PhCHO [hydrolysed to (I) by hot aq. AcOH], which passes by further reaction into dibenzylidene*d-glucose* 6-benzoate (III), m.p. 160—160·5°, $[\alpha]_{25}^{26}$ +15° in CHCl₃, $[\alpha]_{25}^{26}$ +18° in C₂H₂Cl₄, +20° in PhCHO (does not reduce Fehling's solution or AgNO₃). CdCO₃-HgCl₂ in aq. COMe₂ converts (II) into dibenzylidene-aldehydo-d-glucose 6-benzoate, m.p. 185— 187°, non-reducing, $[\alpha]_{15}^{26} +43°$ (stable) in C₂H₂Cl₄, $[\alpha]_{15}^{26} +51° \rightarrow +14°$ (24 hr.) in CHCl₃ containing EtOH [thiosemicarbazone, m.p. 191—192° (decomp.), $[\alpha]_{26}^{26} +47° \rightarrow +40°$ in CHCl₃], which gives Schiff's test and is converted by PhCHO-ZnCl₂ into (II). Hot 0.5N-NaOH hydrolyses (II) to 2:3:4:5dibenzylidene-d-glucose Et₂ mercaptal, m.p. 159·5— 160·5°, $[\alpha]_{26}^{26} -17°$ in CHCl₃, reconverted into (II) by benzoylation and giving with HgCl₂-CdCO₃ 2:3:4:5-dibenzylidene-d-glucose, amorphous [thiosemicarbazone, m.p. 223—224° (decomp.), $[\alpha]_{26}^{26} +91°$ in C₅H₅N]. Hydrolysis of (III) gives dibenzylidene-dglucose, m.p. 163—165°, $[\alpha]_{26}^{26} +35°$ in C₅H₅N, reconverted into (III) by benzoylation. R. S. C.

Acetylation and methylation of agar-agar and the isolation of 2:4:6-trimethyl- α -d-galactose by hydrolysis. E. G. V. PERCIVAL and J. C. SOMER-VILLE (J.C.S., 1937, 1615—1619).—Agar acetate with Me₂SO₄-NaOH yields a product, $[\alpha]_D^{17} -92^{\circ}$ in CHCl₃, which is hydrolysed (H₂SO₄ followed by MeOH-HCl) to Me lævulate (p-*nitrophenylhydrazone*, m.p. 136°), an unidentified dimethylmethylketoside, and 2:4:6-trimethylmethylgalactoside monohydrate (I), m.p. 37°, $[\alpha]_D^{16} +101^{\circ}$ in H₂O, further hydrolysed (HCl) to 2:4:6-trimethyl- α -galactose (II), m.p. 104—105°, $[\alpha]_D^{16} +124^{\circ}$ in H₂O, which with NHPh·NH₂ yields 4:6-dimethylgalactosazone, m.p. 158°, $[\alpha]_D^{26}$ -25° in EtOH. When treated with Br and dehydrated, (I) gives 2:4:6-trimethyl- δ -galactonolactone, $[\alpha]_D^{16} +50^{\circ}$ in H₂O (amide, m.p. 167°, $[\alpha]_D^{16} +74^{\circ}$ in H₂O). With HCl-MeOH, (II) regenerates (I).

J. D. R.

Reduction of potassium dichromate by sucrose. ---See A., I, 577.

Influence of the walls of the vessel on the course of alcoholytic reactions. E. BERNER and A. HJULSTAD (Ber., 1937, 70, [B], 2028—2031).— Alcoholysis of heptamethyl- β -methyl-lactoside occurs almost twice as quickly in a steel tube (construction described) as in a glass tube. Similar observations are recorded for β -phenolglucoside and MeOH at 205—210° and for the action of MeOH on CH₂Ph·OAc at about 210°. H. W.

Emulsin. XXXI. Mono- and di- β -d-glucosides of dihydric alcohols and their hydrolysis by sweet almond emulsin. B. HELFERICH and R. HILTMANN (Annalen, 1937, 531, 160—175).—The ease of hydrolysis of monoglucosides OH·[CH₂]_n·OR increases somewhat with increase in the length of the C chain. Diglucosides OR·[CH₂]_n·OR are hydrolysed at about the same rate as the corresponding monoglucosides if n = 2 or 3, but much more slowly when n = 4. OH·[CH₂]₂·OMe, acetobromoglucose (I), and Ag₂CO₃ give β - β ·methoxyethyl-dglucoside tetra-acetate, m.p. $81-82^{\circ}$, $[\alpha]_{D}^{\alpha} - 20\cdot6^{\circ}$ in CHCl₃, hydrolysed (Zemplén) to β - β ·methoxyethyl-dglucoside, m.p. 117·5—119° (corr.), $[\alpha]_{D}^{\alpha} - 28\cdot7^{\circ}$ in H₂O. β '-Hydroxyethyl- β -d-glucoside tetra-acetate, (I), Ag₂CO₃, CaCl₂, and I in anhyd. CHCl₃ yield glycoldi- β -d-glucoside octa-acetate, m.p. 170·5—171°, $[\alpha]_{D}^{\alpha} - 31\cdot8^{\circ}$ in CHCl₃, whence glycoldi- β -d-glucoside,

m.p. 113–115°, $[\alpha]_D^{\infty}$ -35.2° in H₂O. (I) and CH₂(CH₂·OH)₂ with Ag₂CO₃ give γ' -hydroxypropyl-β-d-glucoside tetra-acetate (II), m.p. 97·5—98·5° (corr.), $[\alpha]_{D}^{\oplus}$ -17·0° in CHCl₃, de-acetylated to γ' -hydroxypropyl- β -d-glucoside, m.p. 100—101.5° (corr.), $[\alpha]_{D}^{\mu\nu}$ -36.2° in H₂O. (II) and (I) in anhyd. CHCl₃ containing Ag₂CO₃, CaCl₂, and I give propanea'γ'-dioldi-β-d-glucoside octa-acetate, m.p. 175-176.5° (corr.), $[\alpha]_{D}^{20} - 16.9^{\circ}$ in CHCl₃, whence propane- $\alpha'\gamma'$ dioldi-β-d-glucoside, m.p. 152-154° (corr.) after softening, $[\alpha]_{D}^{20} - 40.5^{\circ}$ in H₂O. Analogous methods are used in the prep. of the following : 8'-hydroxybutyl- β -d-glucoside, m.p. 98—100° (corr.), $[\alpha]_{\rm D}^{20}$ -35° [tetra-acetate, m.p. 78-80° (corr.), $[\alpha]_{20}^{20} - 19.2°$ in CHCla], and butane-ad-dioldi-B-d-glucoside, m.p. 184-185° after softening, $[\alpha]_{D}^{21}$ -41.9° in H₂O, n-pentaneα'ε'-dioldi-β-d-glucoside, m.p. $90-92^{\circ}$ (corr.) after softening at about 80° , decomp. 100° , $[\alpha]_{p}^{23} - 40.0^{\circ}$ in H_2O (octa-acetate, m.p. $122 \cdot 5 - 124^\circ$, or, occasionally, m.p. $134 \cdot 5 - 137^\circ$, $[\alpha]_{20}^{20} - 24 \cdot 5^\circ$ in CHCl₃); n-hexanem.p. $134\cdot 3-137$, $[\alpha]_{15}^{-} -24\cdot 5^{-}$ in $CHCl_3$; n-nexane- $\alpha'\zeta'$ -dioldi- β -d-glucoside (+1H₂O), m.p. (anhyd.) $152\cdot 5-153\cdot 5^{\circ}$ (corr.), $[\alpha]_{12}^{22} -40\cdot 1^{\circ}$ in H₂O [octa-acetate, m.p. 142-143\cdot 5^{\circ} (corr.), $[\alpha]_{20}^{22} -24\cdot 6^{\circ}$ in $CHCl_3$]; 1-trans-cyclopentane-1: 2-diol- β -d-glucoside, $[\alpha]_{D}^{2\delta} = -28.5^{\circ}$ in H_2O ; cis-cyclopentane-1: 2-diol- β -dglucoside, two diastereoisomeric forms-I, m.p. 165– 167.5° (corr.), $[\alpha]_{D}^{18} - 24.0°$ in H₂O and, -II, m.p. 135.5–137.5°, $[\alpha]_{D}^{18} - 36.3°$ in H₂O; n-butane- $\alpha'\delta'$ -diol- α' - β -d-glucoside- δ' - β -d-6-methanesulphonylglucoside, m.p. $122.5 - 124^{\circ}$, $[\alpha]_{13}^{23} - 38.0^{\circ}$ in H₂O [hepta-acctate, m.p. $142 - 143^{\circ}$ (corr.), $[\alpha]_{12}^{23} - 20.4^{\circ}$ in CHCl₃].

H.W.

Constitution of the glucoside butrin isolated from Butea frondosa flowers. I. J. B. LAL (J.C.S., 1937, 1562—1564).—Butrin (I), $[\alpha]_{D}^{3D} - 81.7^{\circ}$ in C_5H_5N (dihydrate, $[\alpha]_{D}^{3D} - 73.27^{\circ}$ in H_2O), with Pb(OAc)₂ yields a Pb salt, $C_{27}H_{30}O_3$ (O·Pb·OAc)₂, 2H₂O, m.p. 128°. The following derivatives of (I) are described: nonabenzoyl (monohydrate), m.p. 141°, $[\alpha]_D^{3D} + 77.28^{\circ}$ in C_5H_5N , deca-acetyl (monohydrate) (by NaOAc-Ac₂O), m.p. 119—120°, $[\alpha]_D^{3D} - 79.86^{\circ}$ in C_5H_5N , oxime (dihydrate), m.p. 180°, tetra-p-nitrobenzoyl (monohydrate), m.p. 154° $[\alpha]_D^{3D}$ (anhyd. material) -44.30° in C_5H_5N . (I) with Me₂SO₄-KOH yields O-methylbutrin, m.p. 82—84°, whilst with MeI-K₂CO₃ in MeOH, O-dimethylbutrin (heptahydrate), m.p. 234°, is formed. (I) with Na₂CO₃-EtI in EtOH affords O-diethylbutrin ($+7.5H_2O$), m.p. 238°, and an isomeric chalkone derivative, m.p. 183°, whilst on oxidation (H_2O_2 -KOH), fisetin is formed. J. D. R.

Placing the oleander glycoside in the digitalis group. W. NEUMANN and W. LINDNER (Arch. exp. Path. Pharm., 1937, 185, 630-643).—The aglucone of oleandrin is identical with acetylgitoxigenin, and that of deacetyloleandrin with gitoxigenin. Both glycosides belong therefore to the digitalis group; this is borne out by the pharmacological activity. P. W. C.

Gossypitrin. Attempt to define the position of the glucose residue. K. NEELAKANTAM and T. R. SESHADRI (Proc. Indian Acad. Sci., 1937, 6, A, 12—15).—Methylation (CH₂N₂) of gossypitrin and subsequent hydrolysis gives gossypetin (?) 3:8:3':4'- Me_4 ether, m.p. 227–230° after softening at 225° Ac_2 derivative, m.p. 142–143° after softening at 135°), methylated (Me₂SO₄) to the Me₆ ether. The glucose residue is probably in position 7. F. R. G.

Mechanism of the reduction of aromatic N-glucosides to arylglucamines. P. KARRER and E. HERKENRATH (Helv. Chim. Acta, 1937, 20, 1016—1019).—N-p-Toluidineglucoside tetra-acetate, from acetobromoglucose and $p-C_6H_4$ Me·NH₂ or by acetylation of p-toluidineglucoside, is reduced (Ni-H₂) as readily as the Ac-free compound. Under similar conditions N-methylanilineglucoside tetra-acetate and theophylline-d-glucoside tetra-acetate are unaffected. It appears therefore that in all cases reduction affects the Schiff's base which in solution is in equilibrium with the N-glucoside form.

H. W.

Rapid volumetric determination of pentosans. I. K. CHRISTITSCH (Zavod. Lab., 1937, 6, 558— 561).—Furfuraldehyde (I) obtained from pentosans and boiling acid is determined by Bertrand's instead of by the usual phloroglucinol method. The Cu equiv. of (I) is almost identical with that of glucose. R. T.

Asparagose. S. MURAKAMI (Acta Phytochim., 1937, 10, 43-62).—The tubers of Asparagus officinalis contain a non-reducing fructosan, asparagose (I), m.p. 215°, $[\alpha]_{D}^{20}$ -35·7°, mol. wt. 1160 (=7 fructose units) (triacetate, m.p. 125°, $[\alpha]_{D}^{20}$ -35·6° in CHCl₃, -42·6° in AcOH, mol. wt. 2211; Me derivative, m.p. 138— 142°, $[\alpha]_{D}^{20}$ -50·4° in CHCl₃). (I) with NaOMe in MeOH gave a product, $[\alpha]_{D}^{20}$ -35·5°, mol. wt. 1280 (=8 fructose units). Under the same conditions, sucrose, (I), and inulin are hydrolysed by acid in 391, 558, and 840 min., the degree of hydrolysis with (I) being 87% and 94% as determined by reduction and polarimetric methods, respectively. The max. aldose val. was 1.6%. (I) in glycerol at 140° gave a product still having the same rotation, but the mol. wt. corresponded with that of a dihexosan. This reassociated on keeping. Similar depolymerisation occurs on heating in HCO·NH₂ and in NH₂Ac. Hydrolysis of the Me derivative in H₂C₂O₄-HCl gave an oil, b.p. 110-120°, $[\alpha]_{D}^{20}$ +26·9°, containing 41% OMe (phenylosazone, m.p. 127-128°), which resembled in properties 3: 4: 6-trimethylfructose.

P. W. C.

"Cremastramannan," the mannan of Japanese saleps. T. OHTSUKI (Acta Phytochim., 1937, 10, 1-28).—The tubers of *Cremastra variabilis* contain but little starch and considerable amounts of *cremastramannan* (I) $[\alpha]_{p}^{2a} - 46.6^{\circ} \pm 6.6^{\circ}$ in dil. NaOH, which on acid hydrolysis gives *d*-mannose and *d*glucose (3:1). Treatment with pancreatin and diastase gives *cremastramannin*-A (II), $[\alpha]_{p}^{3a} - 46.6^{\circ}$ in 0.02N-NaOH, and with takadiastase *cremastramannin*-B, $[\alpha]_{p}^{2a} - 40^{\circ}$ in 0.02N-NaOH (III), both of which on acid hydrolysis give mannose and glucose (3:1). (I), (II), and (III) all give *acetates* in which each hexose mol. has 3 OAc groups, the m.p. being 269°, 245°, and 220°, respectively; all are optically inactive in COMe₂. The dissociation by heat is followed in terms of change of viscosity. (I) gives Cu and Pb complexes, the metal contents of which

correspond with the requirements of the formula $(C_6H_{10}O_5)_8Cu$, $(C_6H_{10}O_5)_{12}Cu$, and $(C_6H_{10}O_5)_4Pb$. (I) after 15 and (II) and (III) after ten treatments with Me₂SO₄-NaOH give sol. *derivatives* of m.p. 240°, 242°, and 247° containing >40% OMe and having $[\alpha]_{15}^{18}$ -36·1°~ -39·7°, -37·5°, and -42·2°, respectively. P. W. C.

Bletillamannan, a mannan from the tubers of Bletilla striata. T. OHTSUKI (Acta Phytochim., 1937, **10**, 1–28).—The tubers contain but little starch and considerable amounts of bletillamannan (I), $[\alpha]_{\mathbb{D}}^{\oplus}$ -40° ±5·3° in 0·5% NaOH, which on acid hydrolysis gives d-mannose and d-glucose in the ratio 4 : 1. Treatment with pancreatin gives bletillamannin-A (II), $[\alpha]_{\mathbb{D}}^{\oplus}$ -44·4° in 0·5% NaOH, and with takadiastase bletillamannin-B (III), $[\alpha]_{\mathbb{D}}^{\oplus}$ -44·4° in 0·5% NaOH, both of which on acid hydrolysis give mannose and glucose (4:1). (I), (II), and (III) give acetates, m.p. 270°, 268°, and 258°, respectively, in which each hexose mol. has 3 OAc groups, and all have $[\alpha]_{\mathbb{D}}^{\oplus}$ -32° in CHCl₃. (I), (II), and (III) on treatment 10–13 times with Me₂SO₄-NaOH give sol. derivatives of m.p. 250° containing >40% of OMe and having $[\alpha]_{\mathbb{D}}^{\oplus}$ -58°, -50°, and -40° in CHCl₃, respectively. P.W.C.

Dextrins and the constitution of starch; phosphorus content of starch and dextrins. K. MYRBACK and K. AHLBORG (Svensk Kem. Tidskr., 1937, 49, 216-230).-The constitution of starch is critically reviewed with especial reference to the production of dextrins by enzymic fission. Hydrolysis of starch with β -amylase, followed by fractional pptn. of the products with EtOH, yields dextrins with M 8000-80,000, whilst with maltase or ptyalin, dextrins with M 2500—1100 are obtained. The dextrins are considered to originate from portions of the starch mol. lying between "anomaly" points, which may be chain-branching points, or points where a phosphate group occurs. Determination of the P content of native starches and of sol. starches obtained therefrom by acid hydrolysis indicates that the P-containing portion of the mol. is most resistant to hydrolysis, and similarly, determination of P in the dextrins prepared by hydrolysis with takadiastase or β -amylase shows that the P-containing portion is almost completely resistant to hydrolysis to maltose by β -amylase. J. D. R.

Starch. IV. Hydrolysis of starch by 7.5 and 15% hydrochloric acid at low temperatures [20°]. V. Phosphoric acid content of potatostarch. A. TYCHOWSKI and S. MASIOR (Biochem. Z., 1937, 292, 141–147, 218–220; cf. A., III, 312).— IV. Results for the formation of maltose, H₂O-sol. and -insol. fractions, changes in hydrolytic products of α - and $\alpha + \beta$ -amylase action, and ash and P₂O₅ contents are tabulated and discussed.

V. Starch paste heated under pressure in presence of $CaCO_3$ yields the Ca salt of amylophosphoric acid (I) which is more thermostable than the original (I), decomp. only at temp. >150°. The stability is not due to p_{π} but is sp. for the Ca salt. F. O. H.

Cellulose, starch, and glycogen. H. STAUDIN-GER (Naturwiss., 1937, 25, 673-681).—A lecture.

Oxidation of cellulose in a heterogeneous medium. L. BRISSAUD (Mem. Poudres, 1937, 27, 195-213) .- Samples of cellulose (I) were oxidised with 0.1N-NaOCI to products containing 0.069, 0.077, 0.154, 0.235, and 0.312 atoms of O per mol. of $C_6H_{10}O_5$, respectively. Reducing power and methyl-ene-blue absorption increase rapidly with degree of oxidation. This differentiates (I) degraded by hydrolysis, which have a lower methylene-blue val. than the original (I) and relatively low reduction nos. Nitration also differentiates oxidised and hydrolysed (I); the former seem to undergo nitration like (I), but partly decompose during stabilisation. The CO.H. content increases with degree of oxidation. By treating oxidised (I) with boiling H₂O and cold 2% aq. NaOH, respectively, products having similar properties to the original (I), or rather to (I) degraded by acids, were obtained. The extracts do not appear to be impurities, that have been fixed by adsorption, but seem to form parts of chains to which they are attached by main valencies. W. J. W.

Action of sodium hypoiodite on cellulose. L. BRISSAUD (Mem. Poudres, 1937, 27, 214-229).-Prolongation of the hypoiodite treatment beyond 1/2 hr. does not affect the amount of I consumed, but if after ½ hr. treatment and separation of the wash waters the sample is again treated there is a further considerable consumption. This varies with the concn. of the reagents. Reducing groups are formed or appear during the treatment in addition to the development of acidity, which seems to imply the superimposing of two actions. One of these is caused by the oxidising agent and induces degradation and is analogous to the action of NaOCl. The other action causes changes on the surface of the micelles, which facilitate the passage of sol. products in the micelles. The intervention of surface effects and secondary oxidising reactions invalidates the I val. as an accurate measure of the mol. wt. of cellulose. W. J. W.

W.J.W. Highly polymerised compounds. CLXVIII. Determinations of the viscosity of cellulose nitrates. H. STAUDINGER and M. SORKIN (Ber., 1937, 70, [B], 1993—2017).—Cellulose nitrates (I) are obtained by the action of $HNO_3-H_2SO_4$ on cellulose of varying degree of polymerisation. They can be preserved almost unchanged over P_2O_5 if the acid has been removed completely. For sol solutions the relationship $\eta_{sp.}/c_{gm.} = K_m M$ is shown to hold good by comparison of the mol. wt. determined osmometrically with that based on viscosimetric measurements in COMe₂ or BuOAc. For gel solutions, the expression log $\eta_{sp.}/c_{gm.} = [\log \eta_{sp.}/c_{gm.}]_{c\to 0} + c.K_{st.}$ holds for (I) and the relationship between mol. wt. and increment const. is $M = (K_{st.} + 7)/K_{mst.}$. The dependence of viscosity on temp. has been investigated. The viscosity of (I) in BuOAc with increasing amounts of C₆H₆, in BuOAc + light petroleum, cyclohexane, EtOH, CHCl₃, CCl₄, or PhCl, and in COMe₂-H₂O gives results dissimilar to those observed with the polystyrenes. The low viscosity of (I) in C₅H₅N is due to degradation. The departures of solutions of (I) from the Hagen-Poiseuille law are discussed. H.W. X-Ray diffraction study of the action of liquid ammonia on cellulose and its derivatives. G. L. CLARK and E. A. PARKER (J. Physical Chem., 1937, 41, 777—786).—Fibres of native and mercerised cellulose, treated with liquid NH_3 at -75° , increase in diameter about threefold. Swollen NH_3 -cellulose is reverted to cellulose by treatment with cone. aq. NH_3 . Slow evaporation of NH_3 yields a new modification, cellulose III, which on boiling with H_2O reverts to cellulose, reversion being more complete for cellulose III derived from native than for that derived from mercerised cellulose. On acetylation, cellulose III gives the same acetate as native and mercerised cellulose. The actions of heat, dil. and conc. NH_3 , and AcOH on cellulose III have also been examined. Commercial cellulose acetates are saponified by liquid NH_3 after several days. C. R. H.

Rotatory dispersion of configuratively related amines. P. A. LEVENE, A. RUTHEN, and M. KUNA (J. Biol. Chem., 1937, 120, 759-775).-The correlation of the configuration of primary and sec. amines is similar to that of primary and sec. alcohols and the direction of rotation of the former is identical with that of the corresponding alcohols. In all alkylamines the absorption regions nearest to the visible region are not anisotropic. The following new compounds have been prepared : d-\$-benzamidobutane, m.p. Rave been prepared. a prepared is a product of the second prepared is $(\alpha_{123}^{25} + 6.7^{\circ} \text{ in abs. EtOH}; d-\beta-benzamido octane, m.p. 73-74°, <math>[\alpha_{123}^{25} + 28.5^{\circ} \text{ in abs. EtOH}; d-hexan-\beta-ol, b.p. 99-100°/168 mm., <math>[\alpha_{123}^{23} + 10.7^{\circ}, \alpha_{133}^{23} + 10.7^{\circ}]$ a-nexan-p-oi, b.p. 99—100 /108 mm., $[\alpha]_{5}^{cc}$ +10.7, converted by anhyd. HI into 1- β -iodohexane, b.p. 90—91°/70 mm., $[\alpha]_{5}^{23}$ -30.7°; this with NaN₃ in H₂O-MeOH at 80° gives d- β -azidohexane, b.p. 96—98°/160 mm., $[\alpha]_{5}^{26}$ +27.8°, hydrogenated (Adams) to 1- β -aminohexane, b.p. 70°/155 mm., $[\alpha]_{5}^{27}$ +4.30° (hydrochloride, $[\alpha]_{5}^{bc}$ -5.68° in abs. EtOH, transformed into d- β -benzamidohexane, m.p. 86—88°, $[\alpha]_D^{25}$ +14·3° in abs. EtOH); d- γ -heptanol, b.p. 104—106°/117 mm., in abs. EtOH); d- γ -heptanol, b.p. 104—106°/117 mm., $[\alpha]_{2^{5}}^{2^{5}}$ +5·12°, converted successively into 1- γ -iodo-heptane, b.p. 76°/12 mm., $[\alpha]_{2^{5}}^{-}$ -8·25°, d- γ -azido-heptane, b.p. 79—81°/43 mm., $[\alpha]_{2^{5}}^{-}$ +1·78°, and d- γ -aminoheptane, b.p. 75°/70 mm., $[\alpha]_{2^{5}}^{-}$ +4·15° (homo-geneous), $[\alpha]_{2^{5}}^{2^{5}}$ +2·6° in abs. EtOH (hydrochloride, $[\alpha]_{2^{5}}^{-}$ +1·00° in 10°/₀ HCl; d- γ -benzamidoheptane, m.p. 66—68°, $[\alpha]_{2^{5}}^{2^{5}}$ +2·0° in abs. EtOH); d- γ -nonanol, b.p. 96—98°/19 mm., $[\alpha]_{2^{5}}^{2^{5}}$ +7·08°, converted successively into 1- γ -iodononane, b.p. 99—100°/10 mm., $[\alpha]_{2^{5}}^{2^{5}}$ -14·2°, d- γ -azidononane, b.p. 105—107°/30 mm., $[\alpha]_{2^{5}}^{2^{5}}$ -43·04°, d- γ -aminononane, b.p. 102°/50 mm. $[\alpha]_{5780}^{25}$ +3.04°, d- γ -aminononane, b.p. 105–107/50 mm., $[\alpha]_{5780}^{25}$ +3.04°, d- γ -aminononane, b.p. 102°/50 mm., $[\alpha]_{D}^{25}$ +4.61° (homogeneous), $[\alpha]_{D}^{25}$ +3.7° in abs. EtOH (hydrochloride, $[\alpha]_{D}^{25}$ +1.5° in H₂O; d- γ -benzamidononane, m.p. 86°, $[\alpha]_{D}^{25}$ +12.5° in abs. EtOH); 1-8-octanol, b.p. 79–80°/17 mm., $[\alpha]_{D}^{25}$ +0.64°, giving successively 1-8-iodo-octane, b.p. 97°/22 mm., $[\alpha]_{25}^{26}$ -1.76°, 1-8-azido-octane, b.p. 92— 93°/35 mm., $[\alpha]_{\rm D}^{-} = -0.82^{\circ}$, 1-5-amino-octane, b.p. 92—93°/80 mm., $[\alpha]_{\rm D}^{-} = -0.45^{\circ}$ (hydrochloride, $[\alpha]_{\rm D}^{-} = -0.50^{\circ}$ in 10% HCl; d-8-benzamido-octane, m.p. 99—100° $[\alpha]_{\rm D}^{-} + 1.30^{\circ}$ in abs. EtOH). The rotatory dispersions of configuratively related primary and sec. amines in the homogeneous state and their corresponding hydrochlorides in H₂O are recorded. H. W.

A catalytically induced reaction [of glucosamine] resembling the Cannizzaro reaction. P. A. LEVENE and C. C. CHRISTMAN (J. Biol. Chem., 1937, 120, 575–590).—Glucosamine (I) with H₂ (Adams' Pt) is converted, by a pseudo-Cannizzaro reaction, half into *aminosorbitol* (II) [Ac_6 derivative,

CH. OH m.p. 99–100°, b.p. 160–180°/0·3 mm., H.C.NH₂ Ba(OMe)₂–MeOH into N-acetyl-β-aminosorbitol (IV), m.p. 152–153°, $[\alpha]_{15}^{25}$ H.C.OH aminic acid (III) [as (II) but with CH₂·OH COH COH CON CONTROL CONTRO

titration. Slightly increased yields of (II) are obtained under high pressure of H_2 , and of (III) under atm. pressure. The reaction is unimol. until 70-80% completed. In absence of H_2 or of Pt there is no reaction. The hydrochloride of (I) with H_2 -Pt gives only *aminosorbitol*, m.p. 157-158°, $[\alpha]_2^{\infty} - 2\cdot 4^{\circ}$ in 20% HGl, whilst N-acetylglucosamine gives (IV). In H_2 , reduced Adams' Pt converts (I) into (II) and (III), but under reduced pressure of H_2 , especially in presence of NaOH, there is almost quant. formation of (III). The mechanism of the reaction is discussed. E. W. W.

Formation and breakdown of amino-acids by intermolecular transfer of the amino-group. A. E. BRAUNSTEIN and M. G. KRITZMANN (Nature, 1937, 140, 503-504).-The reaction between glutamic acid (I) and AcCO₂H (II) is reversible, since these acids are rapidly formed by muscle tissue from alanine and α -ketoglutaric acid (III), and equilibrium mixtures of similar composition are obtained in both the direct and the reversed reaction. The enzyme system responsible is present in muscle, heart, brain, liver, and kidney. a-Keto-acids other than (II) can serve as acceptors for the NH₂ of (I), but, on the other hand, all α -NH₂-acids give up their NH₂ to (III) in presence of muscle tissue; the formation of (I) with 16 different natural and racemic NH₂-acids, including such as glycine or histidine, has been established. No transfer of NH₂ occurs unless either the NH₂or the keto-acid is dicarboxylic. L. S. T.

Oxidative deamination of amino-acids. B. C. KAR (J. Indian Chem. Soc., 1937, 14, 381–387).— NH₂-acids (glycine, leucine, alanine) are oxidised to aldehyde, CO₂, and NH₃ by phenols in the presence of H₂O₂ and Na₂WO₄ or H₂WO₄ sol, or by quinones alone (o- or p-). Since phenols are oxidised by H₂O₂ + catalyst, the deamination must be due to quinones. Resorcinol deaminates better with H₂O₂ alone. The rate of deamination is measured by the decrease in NH₂-N (Van Slyke). A. LI.

Non-labile deuterium of amino-acids treated in dilute deuterium oxide media. J. A. STEKOL and W. H. HAMILL (J. Biol. Chem., 1937, 120, 531— 536).—Treatment of *l*-cystine, arginine, histidine, and lysine with hot aq. D_2O -HCl yields products containing D in positions other than the NH₂, NH, or CO₂H groups. Tryptic digestion of caseinogen in aq. H₂O yields tyrosine containing D in positions other than the OH, NH₂, or CO₂H groups. The use of D in the study of NH₂-acid metabolism is discussed. F. O. H.

Amino-acids of the yellow enzyme. R. KUHN and P. DESNUELLE (Ber., 1937, 70, [B], 1907-1926). -Colorimetric determinations establish the presence of the following NH₂-acids in the yellow enzyme (% in parentheses) : arginine (I) (8.2), histidine (II) (2.75), lysine (III) (13.7), hydroxyproline (~0.0), tyrosine (7.75), phenylalanine (5.75), tryptophan (4.86), eystine (IV) (0.34), and glutamic acid (V) (7.1). As far as the method is valid, therefore, there is no fundamental difference in nature or amount between the identified NH₂-acids and other known proteins. Only (V) has been obtained in substance (as hydrochloride). The % S in the enzyme is about thrice that required by the amount of (IV) which is present, so that other NH2-acids containing S must be expected. In all, account is rendered of 65% of the total N. The bases are of peculiar interest since lactoflavin-5phosphoric acid is united to basic groups of the protein component in at least two positions, the PO4 residue and NH at position 3. The sum of (I), (II), and (III) is very similar to that of the best known chromoprotein, hæmoglobin, but the distribution is widely different. The protein of the yellow enzyme is poor in (II) but rich in (III) whereas the globin contains much (II) and little (III). H. W.

Dipeptides of β -amino-acids. E. DYER and E. BALLARD (J. Amer. Chem. Soc., 1937, 59, 1697— 1699).—CH₂Cl·CH₂·COCl and the appropriate NH₂acid give N- β -chloropropionyl-glycine, m.p. 133— 135° (*Et* ester, m.p. 71—72·5°; anide, m.p. 174— 175°), - β -phenyl- α -alanine, m.p. 123—125°, and - β phenyl- β -alanine, m.p. 71—72·5°. CHPhBr·CH₂·CO₂H and glycine give mainly cinnamoylglycine. None of these products give dipeptides with NH₃. Carbobenzyloxy- β -alanyl-glycine, m.p. 145—146°, - β -phenyl- α -alanine, m.p. 145—146°, - β -phenyl- α -alanine, m.p. 144·5—145°, and - β -phenyl- β -alanine, m.p. 151·5—153°, with H₂ and colloidal Pd give β -alanyl-glycine, m.p. 230° (decomp.) (hydrochloride), - β -phenyl- α -alanine, m.p. 264—265° (decomp.) (hydrochloride), m.p. 235—236° (decomp.) (hydrochloride, m.p. 182°), which are unchanged by HCO₂H. M.p. are corr. R. S. C.

Biuret reaction of sarcosyldiglycine and glycylsarcosyldiglycine. J. FELDMAN (J. Amer. Chem. Soc., 1937, 59, 1657—1659).—Rising's theory of the biuret reaction is confirmed. Sarcosine anhydride gives no Cu complex. Sarcosyldiglycine (from chloroacetyldiglycine and NH₂Me), $+H_2O$, m.p. 237— 239°, with Cu(OH)₂ and NaOH in absence of CO₂ gives the complex, Na₄CuC₁₄H₂₀O₈N₆. Hydrogenation of carbobenzoxyglycylsarcosyldiglycine gives glycylsarcosyldiglycine, a syrup, which affords the complex, NaCuC₉H₁₃O₅N₄. R. S. C.

Protective colloids "protalbinic" and "lysalbinic" acids. S. INOUE (J. Soc. Chem. Ind. Japan, 1937, 40, 268B).—Increase in [NaOH] gives acids having a decreasing N content and the Na salts have an increasing Au no. and decreasing γ which lowers the protective action (cf. Bechhold, A., 1904, ii, 650). F. R. G.

Derivatives of aminohydroxypropanesulphonic acid. Biuret reaction. S. TSUNOO (J. Biochem. Japan, 1937, 25, 375-391; cf. A., 1935, 1111).- The following were prepared : y-o-, m.p. 235°, -m-, m.p. 195°, and -p-toluidino-, m.p. 247°, -m-xylidino-,

(I.) Me 0-

m.p. 213° (decomp.), -(2methylquinolyl)- (I), -(anaphthylamino)-, m.p., N-CH2:CH·CH2·SO3H 165-170°, -ethylamino-diethylamino-, -propyl--allylamino-, amino-,

-butylamino-, -guanido-, m.p. 225°, -(2-naphthal-enesulphonylmethylamino)-, m.p. >280°, -(p-toluene-sulphonamido)- (as Na salt, decomp. 260°), and -(p-toluenesulphonylmethylamino)-\beta-hydroxypropanesulphonic acid (as Na salt, m.p. $>280^{\circ}$). γ -Chloro- β hydroxypropanesulphonic acid, resolved by means of the brucine, m.p. 232°, and strychnine salts, yielded the 1- (strychnine salt, m.p. 104-105°) and d-isomeride (strychnine salt, m.p. 85°), the following respective d- and l-derivatives being subsequently prepared: d- and t-derivatives being subsequently prepared: γ -amino-, m.p. 265°, 265°, $[\alpha]_{13}^{13} + 9\cdot13°, [\alpha]_{10}^{19} - 9\cdot67°$; -methylamino-, m.p. 223°, 225° (decomp.), $[\alpha]_{10}^{19}$ $+19\cdot86°, [\alpha]_{12}^{12} - 17\cdot25°$; -dimethylamino-, m.p. 251°, 243° (decomp.), $[\alpha]_{15}^{16} + 31\cdot96°, [\alpha]_{10}^{20} - 29\cdot49°$; -(n-butylamino)-, $[\alpha]_{10}^{16} + 22\cdot34°, [\alpha]_{10}^{20} - 29\cdot49°$; -tri-methylamino-, m.p. >295°, 285° (decomp.), $[\alpha]_{15}^{13}$ $+28\cdot54°, [\alpha]_{15}^{23} - 26\cdot63°$; also the strychnine salt, m.p. 125°, of γ -benzamido- β -hydroxypropanesulphonic acid All rotations are in H₂O; all m.p. uncorr. acid. All rotations are in H_2O ; all m.p. uncorr. γ -Amino- β -hydroxypropanesulphonic acid, fed to rabbits, is excreted unchanged. The response of the above compounds to the ninhydrin (II) and biurct (III) reactions indicates that the group ·CH(OH)·CH₂·NRR' gives both reactions when R = H and $\tilde{R}' = alkyl$, (III) but not (II) when both R and R' = alkyl, and neither reaction on betaine formation. With R or R' = aryl or with SO₂·NH₂ neither reaction is given but substitution of ·NH·C(:NH)·NH₂ for NH₂ does not inhibit (III). F. O. H.

Ferroaminopentacyanides.—See A., I, 528.

Preparation of azomethane. F. P. JAHN (J. Amer. Chem. Soc., 1937, 59, 1761-1762).-Me2N2 is best obtained from NMe2.NH2,2HCl by conversion by CuCl₂ into Me₂N₂,Cu₂Cl₂, which is dried in vac. and heated. Me2N, and Hg vapour do not explode. Explosions are caused by distilling a high-boiling oil, which is formed by oxidising old samples of the R. S. C. hydrazine.

Improved preparations of aliphatic diazocompounds and certain of their properties. D. W. ADAMSON and J. KENNER (J.C.S., 1937, 1551-1556).—An improved prep. of Me nitroso-β-methyl-aminoisobutyl ketone (cf. A., 1933, 398; 1935, 479) is described. Interaction of pulegone and the appropriate primary amine in H_2O , followed by nitrosation, yield the following : 5-methyl-2-nitroso-amethyl-, m.p. 116.5°, -ethyl-, m.p. 108.5°, -n-propyl-, m.p. 125.5°, -n-butyl-, m.p. 89°, -n-amyl-, m.p. 88.5°, -n-heptyl-, m.p. 70°, and -allyl-isopropylcyclohexanone, m.p. 108°. From CH₂N₂ to CHPrN₂, aliphatic diazo-compounds are prepared from the appropriate Me nitroso-β-alkylaminoisobutyl ketone in PhOMe by treatment with NaO·CH₂Ph or Na cyclohexoxide under reduced pressure. Homologues higher than CHPrN, are similarly prepared using the NO-ketones

prepared from pulegone. The following b.p. are recorded : CHMeN₂, -19° to $-17^{\circ}/89.5$ mm., CHEtN₂ -8° to $-7.5^{\circ}/41.5$ mm., CHPr^aN₂, -3.5° to $-5.5^{\circ}/26$ mm., CHPr^gN₂, 1° to $-1^{\circ}/32$ mm., and the absorption spectra of these and CH₂N₂ from 2500 to 5500 A. are measured in cyclohexanol. The reactivities of CHMeN2, CHEtN2, and CH2N2 are compared by measurement of N₂ evolution when treated with PhOH, and found to be (II) > (I) >(III). CMe2:CHAc with (III) in Et,O yields 5acetyl-4: 4-dimethylpyrazoline, b.p. 110°/18 mm., m.p. 51.5-52.5°, and with (I), 5-acetyl-3:4:4-trimethylpyrazoline, m.p. 76.3°, which when heated with Cu gives 2:2:3-trimethylcyclopropyl Me ketone (semicarbazone, m.p. 139-140°). J. D. R.

Phosphine and arsine derivatives of the group I(b) metals : volatile derivatives of gold. F. G. MANN and A. F. WELLS (Nature, 1937, 140, 502).-The trialkyl-phosphine and -arsine derivatives of AgI, like those of CuI, have the fourfold mol. $[R_3P(As) \rightarrow AgI]_4$. The Ag compounds have the same constitution as the Cu⁺ compounds, since $[AsPr_{3} \rightarrow AgI]_{4}$ is strictly isomorphous with $[AsEt_{3} \rightarrow CuI]_{4}$, the effect of replacing Cu by Ag being compensated by that of Et by Pra; both the 4covalent Cu+ and Ag+ atoms have a tetrahedral configuration. The aurous compounds, $[R_3P(As) \rightarrow AuX]$, where X is Cl, I, or CNS, are unimol., and the Au shows a true co-ordination no. of 2. The compounds $[PR_3 \rightarrow AuX]$, where X is Cl or I, are very stable and can be freely distilled under reduced pressure. [PBu^a₃ \rightarrow AuCl] can be volatilised even at 1 atm., and deposits a film of Au when the vapour is passed through a heated tube. L. S. T.

Mechanism of the reaction between sulphuric acid and mono- and di-methylarsinic acids. G. PETIT (Compt. rend., 1937, 205, 322-325).-AsMeO(OH)₂ (I) with H₂SO₄ at 315° in a sealed tube rapidly affords As₂O₃ and SO₂. At 250°, the reaction is much slower. In each case, the amount of SO₂ liberated is < that expected from the stoicheiometric equation and is explained on the basis of two consecutive reactions: (a) scission of (I) to give MeOH and $As(OH)_3$ (which is also accomplished by H_3PO_4) and $As(OH)_3$ (which is also accompliance by $H_3 I \circ_{4/4}$ and (b) oxidation of MeOH by H_2SO_4 . AsMe₂·O₂H with H_2SO_4 in a sealed tube at 315° rapidly affords As_2O_3 and SO_2 in the proportions demanded by the stoicheiometric equation. At lower temp., the reaction mechanism resembles that for (I). J. L. D.

Organo-magnesium compounds as reducing agents. M. MOUSSERON and R. GRANGER (Compt. rend., 1937, 204, 986-989).-The organo-magnesium derivative (I) of cyclohexylcarboxylic acid (1 part) with C₆H₁₁·MgBr (2 parts) in Et₂O in an atm. of N₂ at 0° affords cyclohexene (II), cyclohexanol (III), cyclohexylcarbinol, dicyclohexyl-methane (IV) and -carbinol, and dicyclohexyl. Two types of reaction are utilised to explain the formation of these products. The reaction is of fairly general application and is applied to straight-chain analogues of (I). cyclo-Hexylcarboxyl chloride or Et cyclohexylcarboxylate with C₆H₁₁·MgBr similarly affords dicyclohexyl ketone, (II), (III), and (IV). Aromatic aldehydes and alicyclic ketones react similarly. J. L. D.

Preparation of stannic alkyl iodides and their action on aromatic amines. T. KARANTASSIS and C. VASSILIADÈS (Compt. rend., 1937, 205, 460–462; cf. A., 1897, 918).—Prolonged interaction of Sn (2 parts) with alkyl iodides (4 parts) in a sealed tube at 130—180° affords Sn^{IV} dialkyl iodides. The following are prepared : Sn Me₂, m.p. 30°, Et₂, m.p. 42-42.5°, Pr², b.p. 166-167°/10 mm.(slight decomp.), Bu^{β}_{2} , b.p. 290—295°, and di-isoamyl iodide, b.p. 202—205°/8 mm. The Me₂ and Et₂ derivatives are stable at 180°, but the others decompose extensively to give, for example, SnI₂, C₃H₈, and propylene from SnPr₂I₂. The above iodides (1 mol.) form additive compounds with aromatic bases (2 mols.) in EtOH. The following are prepared : $SnMe_2I_2 + 2C_5H_5N$, m.p. 151-152°; $+2NH_2Ph$, m.p. 109-110°; $+20 \cdot C_6H_4Me \cdot NH_2$, m.p. 68-89°; +2quin-aldine, m.p. 110-111°; $SnEt_1I_2 + 2C_5H_5N$, m.p. 115-116°; $SnPr_2I_2 + 2C_5H_5N$, m.p. 64-65°; $+2NHPh_2$; $+2NPhEt_2$, m.p. 63-64°; +2quin-aldine, m.p. 71-72°; and $SnBu^{\beta}_2I_2 + 2NPhEt_2$.

Theory of unsaturated and aromatic compounds. E. HÜCKEL (Z. Elektrochem., 1937, 43, 752—788).—A summary. J. W. S.

Combustion of aromatic and alicyclic hydrocarbons.—See A., I, 522.

Bromination of bromo-, chloro-, and fluorobenzene in the gas phase. Effect of temperature and catalyst on the substitution type. M. VAN LOON and J. P. WIBAUT (Rec. trav. chim., 1937, 56, 815-838).-The bromination of gaseous PhBr, PhCl, and PhF is investigated in an automatically functioning apparatus. In the presence of C the reaction changes at 400-450° from o-p to mainly m in all cases, a change which is inexplicable on any known theory of substitution. In the presence of FeBr, on C the reaction is of the o-p type from 200° to 500°, although the proportions of isomerides formed change considerably; these changes agree excellently for PhBr with Scheffer's equations and are determined by differences in the energies of activation which appear to be const. from 200° to 500°; differences in the entropies of activation are negligible. Mixed m.p. curves are given for $o-m-C_6H_4ClBr$, $p-o-and p-m-C_6H_4BrF$. R. S. C.

Thermal polymerisation of styrene.—See A., I, 523.

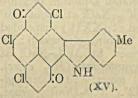
β-Phenyl sulphide. IV. O. HINSBERG (Ber., 1937, 70, [B], 2027—2028; cf. this vol., 288).—β-Diphenyl sulphone (I) is converted by boiling 70% HClO₄ into β-diphenyl sulphone oxide (II), m.p. Ph Ph SO Ph SO Ph SO (II) cannot be acetylated and is unchanged by Zn filings and boiling 20% HCl. (I) retains 0.5H₂O very obstinately. H. W.

Synthesis of diradicals. pp'-Triphenylenediphenylmethyl. E. Müller and G. Sok (Ber., 1937, 70, [B], 1990–1992; cf. A., 1936, 1370). cycloHexane-1: 4-dione and LiPh in Et₂O give 1: 4diphenylcyclohexane-1: 4-diol, m.p. 225°, dehydrated and aromatised by Se at 200° to $p-C_6H_4Ph_2$ (I), m.p. 210°, in 70-80% yield. BzCl, AlCl₃, and (I) afford pp'-dibenzoylterphenyl, m.p. 294° transformed in decahydronaphthalene by LiPh in Et₂O into pp'-tetraphenylterphenylene-pp'-diol, m.p. 162°. The corresponding dichloride, m.p. 236°, when boiled with Cubronze in C_6H_6 gives a dark red solution, very sensitive to air. It doubtless contains the diradical. H. W.

Molecular constitution of naphthalene. G. B. BONINO (Gazzetta, 1937, 67, 343-346).—A reply to Oddo on a question of priority (cf. this vol., 373). E. W. W.

Pyrene and its derivatives. H. VOLLMANN, H. BECKER, M. CORELL, and H. STREECK [with, in part, G. LANGBEIN] (Annalen, 1937, 531, 1—159).—Monosubstitution of pyrene (I) occurs very readily and without exception in position 3. Similarly mixtures of 3:8- and 3:10-di-derivatives are invariably produced by the ready, direct disubstitution. 3:5:8-Derivatives and 3:5:8:10-compounds are formed by direct tri- and tetra-substitution. Higher substitution causes entry into the 1:2:6:7 and finally in the 4:9 positions. The behaviour of (I) towards

substituents causes it to be regarded mainly as a Ph_2 derivative the *o*-positions of which are bridged by two $\cdot CH:CH \cdot residues$; the mobility of H at 3, 5, 8, and 10 is attributed to the action of these residues on the typically benzenoid rings C and D. The behaviour of (I) is expressed by the formula (Ia) or (Ib) but the older formulation (Ic) is less satisfactory since it contains a *p*-quinoid nucleus A whereas (I) is colourless when pure. The assumption of an alternation of the linkings according to all these schemes accounts for the predominance of 3:10-over 3:8-di-derivatives in all cases of di-substitution.


Crude pyrene-3: 8-quinone, obtained by oxidation of (I) with H₂SO₄ and K₂Cr₂O₇, is purified with difficulty by successive crystallisations from AcOH, PhCl, and PhNO₂ respectively. The pure substance is best obtained through 3:8-dihydroxypyrene or by catalytic dehalogenation of 2:5:7:10-tetrachloropyrene-3: 8-quinone; the former method gives opportunity of isolating pyrene-3: 10-quinone through 3: 10-diacetoxypyrene, m.p. 190°. SO₂Cl₂ and (I) in CCl₄ yield 3-chloropyrene, m.p. 119°, whilst 3:5:8:10tetrachloropyrene (II), m.p. 368°, is obtained from (I) and Cl, in CCl, at 60° or by treatment of 3:5:8:10tetranitropyrene with PCl₅. Br and (I) in PhNO₂ at room temp. and then at $120-130^{\circ}$ give $3:5:8:10^{-1}$ tetrabromopyrene (III), m.p. 402° . With oleum at 85° (II) gives 5: 10-dichloropyrene-3: 8-quinone, m.p. 278° (decomp.), obtained also by dehalogenation of 2:5:7:10-tetrachloropyrene-3:8-quinone.

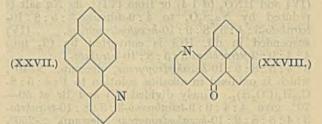
3:5:8:10-Tetraketo-3:4:5:8:9:10-hexahydropyrene (naphthalene-1:8:4:5-di-indandione) (IV) is

451

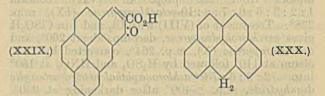
obtained by treating (II) with oleum at 80°, diluting the solution with H_2SO_4 , and raising the temp. to 200° or by the action of Zn dust and NaOH on 4:9dibromo-3:5:8:10-tetraketo-3:4:5:8:9:10-hexahydropyrene (V) [derived from (III) and conc. H₂SO₄ at 140-150°, reduced and then oxidised to 4:9-dibromo-3:5:8:10-tetraketopyrene, and converted by Ac₂O containing a trace of H_2SO_4 into 4:9-dibromo-3:8diacetoxypyrene-5: 10-quinone, m.p. 270° (decomp.)]. With boiling BzCl-NPhMe₂ (IV) gives 3:5:8:10tetrabenzoyloxypyrene, m.p. 340° (decomp.), hydrolysed to 3:5:8:10-tetrahydroxypyrene. Analogously (V) gives 4:9-dibromo-3:5:8:10-tetrabenzoyloxypyrene, m.p. $>370^{\circ}$ (decomp.). (IV) in 2% NaOH is converted by NaNO, and 6% H_2SO_4 into 4 : 9-dinitroso-3:5:8:10-tetraketohexahydropyrene (VI), violent de->200°. 4:9-Dinitro-3:5:8:10-tetraketocomp. 3:4:5:8:9:10-hexahydropyrene is obtained from (IV) and HNO₃ (d 1.4) or from (VI); its Na salt is reduced by $Na_2S_2O_4$ to 4:9-diamino-3:5:8:10-tetraketo-3:4:5:8:9:10-hexahydropyrene. (IV) suspended in dil. HCl is converted by Cl₂ into 4:4:9:9-tetrachloro-3:5:8:10-tetraketo-3:4:5:8:9:10-hexahydropyrene, decomp. $>340^{\circ}$, which is oxidised in alkaline solution to 1:4:5:8- $C_{10}H_4(CO_2H)_4$. Finely divided (V) and Br at 50-70° give 4:4:9:9-tetrabromo-3:5:8:10-tetraketo-3:4:5:8:9:10-hexahydropyrene, decomp. $>250^{\circ}$, which gives CHBr₃ when treated with alkali. Prolonged chlorination of (I) in $C_6H_3Cl_3$ yields 1:2:3:5:6:7:8:10- octachloro - 1:2:6:7- tetra-hydropyrene (VII), m.p. about 292° with evolution of HCl when rapidly heated and m.p. about 375° after re-solidification; it passes when heated at 400° into hexachloropyrene (VIII), m.p. 383° after softening at 360-370°, also obtained by use of KOH-EtOH. Treatment of (VIII) with oleum yields 2:6-, m.p. 390°, and 2:7-, m.p. 296°, -dichloronaphthalenetetracarboxylic dianhydride; the last-named is also obtained from 3:8-dichloroacenaphthene-5:6-dicarboxylic acid, the anhydride, m.p. 289° after darken-ing at 275°, of which is described. The motherfrom the prep. of (VII) contain liquors 1:2:3:5:6:7:8:10-octachloropyrene (IX), m.p. 238°. Treatment of (VIII) with Cl₂ and I in ClSO₃H gives perchlorohydropyrene, decomp. about 260°, and decachloropyrene (X), m.p. 264°, converted by 20% oleum at 110° followed by H_2SO_4 and HNO_3 at 180° into 2:3:6:7-tetrachloron aphthalen et et racarboxylic dianhydride, m.p. >400° after darkening at 350° . Oxidation of (VIII) with HNO₃ (d 1.5) at $\Rightarrow 5^{\circ}$ yields 2:5:7:10-tetrachloropyrene-3:8-quinone, m.p. 320-325° after darkening at 310°. Similar treatment of 1:2:5:6:7:10-hexachloropyrene-(IX)affords 3:8-quinone, m.p. 274° , whilst (X) yields 1:2:4:5:6:7:9:10-octachloropyrene-3:8-quinone, m.p. 304°. 4:5:9:10-Tetrachloro-4:5:9:10-tetrahydropyrene-3: 8-quinone, from the 3: 8-quinone and Cl₂ in C₆H₃Cl₃ at 100°, passes when distilled with steam into 4:9-dichloropyrene-3:8-quinone (XI), m.p. >500° after darkening at 330°. 5-Chloropyrene-3: 8-quinone, m.p. 248°, obtained by use of SO₂Cl₂ in PhNO₂ at 100°, and 4:5:9:10-tetrachloropyrene-3: 8-quinone, m.p. 377°, prep. by chlorination in C6H3Cl3 at 150-170°, are described. Chlorination of 3:8-R ** (A., II.)

dimethoxypyrene (XII) with SO_2Cl_2 in $C_8H_3Cl_3$ containing CaCO₃ at 150° yields 5:10-dichloro-3:8dimethoxypyrene, m.p. 279°, also obtained by the action of Me_2SO_4 and NaOH on 5:10-dichloro-3:8dihydroxypyrene, decomp. >350°, prep. by reducing the corresponding quinone with NHPh·NH, in C.H.Cla. Treatment of (XII) in PhCl with SO₂Cl₂ and dioxan gives 5-chloro-3:8-dimethoxypyrene, m.p. 315°. Reduction of (XI) in C₆H₃Cl₃ by NHPh·NH₂ at 130-140° gives 4:9-dichloro-3:8-dihydroxypyrene, m.p. 274°, whence 4: 9-dichloro-3: 8-dimethoxypyrene, m.p. 256°. 5-Nitropyrene-3: 8-quinone has m.p. 335° (decomp.). (XII) and HNO₃ (d 1.4) in boiling AcOH afford 5: 10-dinitro-3: 8-dimethoxypyrene (XIII), m.p. 357° (decomp.), whilst addition of NaNO, to (XII) in boiling PhCl containing AcOH yields 5-nitro-3:8-dimethoxypyrene, m.p. 237°, catalytically reduced to 5-amino-3: 8-dimethoxypyrene, m.p. 255°, and oxidised by HNO₃ to (XIII). The tetrachloroquinone is converted by NH2Ph at 50°, by cryst. NaOAc and NH2Ph at 130-140°, and by boiling NH2Ph containing Cu powder into 3:6:8-trichloro-1-anilinopyrene-5:10quinone, m.p. 269–270°, 3:8-dichloro-1:6-dianilino-pyrene-5:10-quinone (XIV), m.p. 335°, and 1:3:6:8-tetra-anilinopyrene-5:10-quinone, m.p. 390-395°, respectively, and by anhyd. KOAc in boiling $PhNO_2$ followed by boiling dil. AcOH into 3:6:8-trichloro-1-hydroxypyrene-5:10-quinone, m.p. 322° (decomp.) (Na salt), by NH₃ at 120° into 3:6:8trichloro-1-aminopyrene-5: 10-quinone, m.p. >350° (decomp.) (Bz derivative, m.p. 323°), and by p- $C_6H_4Me\cdot NH_2$ and NaOAc in boiling PhCl into 3 : 6 : 8trichloro-1-p-toluidinopyrene-5: 10-quinone, m.p. 297°

[whence the carbazole derivative (XV)]; (XIV) yields the analogous dicarbazole compound, m.p. 338° . 2:6- $C_{10}H_6(OBz)_2$ with NaCl-AlCl₃ at $155-200^{\circ}$ gives 1:6-dihydroxy - 3:4:8:9 - dibenz pyrene-5: 10-quinone (XVI),


m.p. >450° [corresponding Me_2 derivative (XVII), m.p. 360° (decomp.)]. (XVI) with PCl₅ in boiling PhCl yields a keto-chloride, hydrolysed by conc. H_2SO_4 at 100° to 1 : 6-dichloro-3 : 4 : 8 : 9-dibenzpyrene-5 : 10quinone, m.p. >400°, or, under other conditions, into 1 : 5 : 6 : 10-tetrachloro-3 : 4 : 8 : 9-dibenzpyrene, m.p. about 336° after softening at 300°. (XVI) or (XVII) with boiling $p-C_6H_4$ Me·NH₂ affords 1 : 6-di-p-toluidino-3 : 4 : 8 : 9-dibenzpyrene-5 : 10-quinone, m.p. 379— 380°. 2 : 6-Dichloro-, m.p. 400°, and 2 : 6-dianilino-, m.p. 400°, -naphthalene-1 : 4 : 5 : 8-tetracarboxydiphenylimide are described.

ClSO₃H and (I) in CCl₄ at $0-5^{\circ}$ yield pyrene-3sulphonic acid [Na salt (XVIII), converted by PCl₅ in POCl₃ into the corresponding chloride, m.p. 120^o (decomp.)]. 3-Hydroxypyrene, m.p. 179° (Ac derivative, m.p. 102°; Me ether, m.p. 93°), from (XVIII) and NaOH at 270-290°, does not couple with diazotised aromatic amines. 3-Nitropyrene (XIX), m.p. 153-154°, is obtained from (I) and HNO₃ (d 1·4) in AcOH at 50°. Successive addition of POCl₃ and (I) to formylmethylaniline in o-C₆H₄Cl₂ leads to pyrene-3-aldehyde, m.p. 126° (phenylhydrazone, m.p. 201-202°). 3-Acetylpyrene (XX), m.p. 90°, is


xv(b)

obtained from (I) and ZnCl, in AcOH-Ac₂O at 80°. 3-Benzoylpyrene (XXI) gives an oxime, m.p. 220°, isomerised by PCl_5 in C_6H_6 to pyrene-3-carboxyanilide, m.p. 255°. Reduction of (XIX) by NaSH in EtOH-H₂O yields 3-aminopyrene, m.p. 117-118° (Ac derivative, m.p. 260°). 3-Chloropyrene is transformed by CuCN at 300—340° into 3-cyanopyrene, m.p. 153°, hydrolysed by aq. NaOH at 180° to pyrene-3-carb-oxylic acid, m.p. 274° (corresponding chloride, m.p. 152°, and anilide, m.p. 255°), also obtained by oxidising (XX) in boiling C_5H_5N by aq. NaOCl. (XXI) with AlCl₃-NaCl at 160—165° gives 2:3(CO)-benzoylenepyrene, m.p. 242°; this with molten KOH at 170-245° gives 1-phenylpyrene-o-carboxylic acid, m.p. 218°, converted by dry distillation of the Ba salt into 1-phenylpyrene, m.p. 169°. CH₂Cl·CO₂H and (I) in $o-C_6H_4Cl_2$ at 180—190° yield pyrenyl-3-acetic acid, m.p. 220° (decomp.), which when distilled with NaOH-CaO affords 3-methylpyrene, m.p. 71-72° (picrate, m.p. 211-212°), obtained also from pyrene-3-aldehyde and N₂H₄, H₂O at 200°. Distillation of (XX) with Zn dust gives 3-ethylpyrene, m.p. 94-95°. Gradual addition of CH2Cl·COCl to (I) and AlCl3 in CS₂ gives 3:8-, m.p. 288°, and 3:10-, m.p. 202°, -dichloroacetylpyrene, oxidised by NaOCl in Bu^aOH-EtOH-H₂O at 90° to pyrene-3: 8-dicarboxylic acid, m.p. >365° (decomp.) [corresponding chloride (XXII), m.p. 262°], and pyrene-3: 10-dicarboxylic acid, m.p. >365° (decomp.) [chloride (XXIII), m.p. 235°]. With C_6H_6 and AlCl₃ (XXII) gives 3:8- (XXIV), m.p. 239°, and (XXIII) gives 3:10- (XXV), m.p. 165°, -dibenzoylpyrene, the mixture of which is obtained from (I), $AlCl_3$, and BzCl in CS_2 at room temp. Passage of dry O_2 through a molten mixture of (XXIV) or (XXV) with $AlCl_3$ -NaCl at about 120° gives pyranthrone. Oxidation of (XXIV) suspended in AcOH by CrO_3 yields 3:8-dibenzoylpyrene-5:10-quinone, m.p. 292°, transformed by $AlCl_3$ -NaCl at 140—150° into dilydroxypyranthrone (Me₂ ether). Similar oxidation of (XXV) gives 3:10-dibenzoyl-pyrene.5:8-quinone, m.p. 242°. 3:8-Dinitropyrene, m.p. 309°, is obtained mixed with the 3:10-isomeride by the addition of HNO_3 (d 1.4) to (I) in AcOH at 90°; reduction of the mixture by NaSH in EtOH-H₂O leads to 3:8-diaminopyrene, m.p. 232-233° (sulphate; Ac₂ derivative, m.p. about 410° after blackening at about 375°), and 3: 10-diaminopyrene, m.p. 160-162° (Ac, derivative, decomp. about 350°). Nitration of 3-acetamidopyrene gives a mixture, reduced (Na in EtOH) and separated into 3-amino-8-, m.p. 280°, and 3-amino-10-, m.p. 250-251°, -acetamidopyrene. 3:5:8:10-Tetranitropyrene, m.p. 332°, is described. KCN and (III) in boiling CH₂Ph·CN yield 3:5:8:10-tetracyanopyrene, m.p. about 450°, hydrolysed by 10% NaOH at 180° to pyrene-3:5:8:10-tetracarboxylic acid (Et, ester, m.p. 194°), the tetrachloride, m.p. 226°, of which is transformed by C_6H_6 and AlCl₃ in CCl₄ into 3:5:8:10-tetra-benzoylpyrene, m.p. 282°. 3:5:8:10-Tetrachloro-pyrene, m.p. 299—300°, from (II), AlCl₃, and C_6H_6 , is oxidised by CrO3 in AcOH to 1:4:5:8-tetrabenzoylnaphthalene, m.p. 373° , which is very stable towards further oxidation. 2:3:3':2'-Dipyrenylene has m.p. 212-214°. (I), o-C₆H₄(CO)₂O, and AlCl₃ in C₆H₆ yield o-3-pyrenoylbenzoic acid, m.p. 225-

226°, which with BzCl in boiling $1-C_{10}H_7Cl$ gives 3:4-phthaloylpyrene, m.p. 254°. Diphthaloylpyrene, m.p. >420°, is described. β -3-Pyrenoylpropionic acid, m.p. 184°, is reduced by Zn dust and NaOH to γ -3-pyrenylbutyric acid, m.p. 184°, transformed by the successive action of PCl₅ and AlCl₃ in C₆H₆ into 3:4-4'-keto-1':2':3':4'-tetrahydrobenzpyrene, m.p. 171°, and thence by distillation with Zn dust into 3:4-benzpyrene (XXVI), m.p. 175°. 3:4:8:9-Dibenzpyrene has m.p. 315°. Oxidation of (XXVI) by CrO₃ yields 3:4-benzpyrene-5:8-quinone, m.p. 245° (corresponding quinol diacetate, m.p. 204°), and 3:4-benzpyrene-5:10-quinone, m.p. 295° (corresponding quinol diacetate, m.p. 242°). Under other conditions (XXVI) affords benzanthroneperidicarboxylic anhydride, m.p. 364-365°. Treatment of (XIX) with 3-aminopyrene, glycerol, and conc. H₂SO₄ leads to 3:4-pyridinopyrene (XXVII), m.p.

157°, oxidised to 3:4-pyridinopyrene-5:10-quinone, m.p. 330°, converted by NaOCl in boiling C_5H_5N into 11-azabenzanthroneperidicarboxylic acid [the corresponding anhydride, m.p. 349°, is converted by o- $C_6H_4(NH_2)_2$ into a benziminazole derivative], the Ba salt of which passes into 11-azabenzanthr-7-one (XXVIII), m.p. 159—160°. Et₂ 3-pyrenylidenemalonate, m.p. 114°, from the aldehyde and $CH_2(CO_2Et)_2$ in boiling Ac₂O, is hydrolysed to 3pyrenylidenemalonic acid, decomp. about 230° (3pyrenylacrylic acid, m.p. 270°), transformed by ZnCl₂ in Ac₂O into pyreneindenonecarboxylic acid (XXIX), decomp. 302—303°; this yields 1:8:9-naphthanthrene (XXX), m.p. 135°, also obtained by the

distillation of 1:s:9-naphthanthrone (XXXI) with Zn dust. (XXX) or (XXXI) is oxidised by CrO_3 in AcOH to 1:s:9-naphthanthrone-10-naphtha-1:2quinone, m.p. 378° (decomp.) [corresponding phenazine derivative, m.p. (indef.) 352°]. Pyrene-4carboxylic acid, m.p. 326° (Me, m.p. 136°, and Et, m.p. 117°, ester; corresponding chloride, m.p. 166°), is converted into the corresponding hydrazide, m.p. 230° and m.p. (indef.) >300° after re-solidification (Ac derivative, m.p. 290° (decomp.); di-4-pyrenoylhydrazine, m.p. 368—369°), which is transformed through the azide and 4-acetamidopyrene, m.p. 229°, into 4-aminopyrene (XXXI), m.p. 207°. 3-Aminopyrene sulphate passes in boiling $o-C_6H_4Cl_2$ into

453

3-aminopyrene-4-sulphonic acid, the Na salt (XXXII) of which is converted by NaOH at 160° into 4-hydroxypyrene, m.p. 206-207° (acetate, m.p. 114°; Me ether, m.p. 105-106°), also obtained from (XXXI) (Sandmeyer); it couples with diazotised aromatic amines. (XXXII) is converted into the corresponding hydrochloride, which gives 3-cyanopyrene-4sulphonic acid (Na salt; corresponding chloride, m.p. 265°) when diazotised and treated with K₃Cu(CN)₄. Pyrene-4-carboxylamide and PCl5 in C6H3Cl3 give 4-cyanopyrene, m.p. 203-204°, also obtained by distilling Na pyrene-4-sulphonate with KCN; it is converted by N_2H_4 , H_2O at 200° into 4-methylpyrene, m.p. 143—143.5° (*picrate*, m.p. 192°). Under dif-fering conditions hexahydropyrene (XXXIII) is transformed by Br into 1-bromo-, m.p. 130-131°, and 1:6-dibromo-, m.p. 194°, -3:4:5:8:9:10-hexahydropyrene (XXXIV). (XXXIII) and SO₂Cl₂ containing a little AlCl₃ yield 1:6-dichloro-3:4:5:8:9:10-hexahydropyrene, m.p. 182-183°. ClSO₃H and (XXXIII) in PhNO₂ at 16-25° give hexahydropyrene-1-sulphonic acid whereas the 1:6disulphonic acid is obtained from (XXXIII) and conc. H₂SO₄ at room temp.; the corresponding Na salts did not give satisfactory results when fused with NaOH. 1-Acetyl-, m.p. 85—86°, and 1:6-diacetyl-, m.p. 182°, -hexahydropyrene are oxidised by NaOCI in presence of C_5H_5N to hexahydropyrene-1-, m.p. 241° (Na salt), and -1:6-di-, m.p. 322° (decomp.), -carboxylic acid. 1-Benzoyl-, m.p. 109°, and 1:6-diheracul m p. 275° hexahydropyrene are described. dibenzoyl-, m.p. 275°, -hexahydropyrene are described; the latter did not undergo ring-closure satisfactorily when fused with AlCl₃-NaCl in presence of O_2 . CuCN and boiling (XXXIV) yield 1 : 6-dicyanohexa-hydropyrene (XXXV), m.p. 303°, whereas at 320-350° they give pyrene-1: 6-dinitrile, m.p. 406°, also obtained by dehydrogenating (XXXV) with Se in boiling ethylcarbazole. Pyrene-1: 6-dicarboxylic acid, decomp. about 420°, is converted by PCl₅ in C₆H₃Cl₃ at 170—180° into the corresponding dichloride, which with C_6H_6 and AlCl₃ affords 1:6-dibenzoylpyrene (XXXVI), m.p. 237°, and (?) 1-benzoylpyrene-6-carboxylic acid, m.p. 252°. Oxidative treatment of (XXXVI) with AlCl₃-NaCl at 140—150° leads to 1:10-6:5-dibenzoylenepyrene. Ozonisation of (I) in AcOH gives 4 - aldehydophenanthrene - 5 - carboxylic acid (XXXVII), m.p. 276°, oxidised by CrO₃ in AcOH at 80° to phenanthrene-4 : 5-dicarboxylic acid, m.p. 298° (decomp.) (corresponding azine, m.p. 330°, and its anhydride, m.p. 340°). Oxidation of (XXXVII) by KMnO₄ in alkaline solution gives diphenyl-2:2':6:6'tetracarboxylic acid, m.p. about 390° (decomp.), converted by heating with Cu(OAc)₂ into Ph₂ and fluorenone.

2-Amino-1-hydroxypyrene, decomp. 250°, obtained by reduction of 2-benzeneazo-1-hydroxypyrene, m.p. 197°, is oxidised by CrO_3 to pyrene-1:2-quinone (XXXVIII), m.p. 310° (corresponding azine, m.p. 262°), also obtained by fusion of (XXXVII) with KOH. Oxidation of (XXXVIII) with CrO_3 in AcOH at 90° gives pyrene-1:2:6:7-diquinone, m.p. about 365° (decomp.), which affords a diphenazine derivative, m.p. >420°. 1-Hydroxypyrene (XXXIX), m.p. 206-207° (Ac derivative, m.p. 113-114°), is prepared from (XXXVII) and N_2H_4,H_2O in boiling AcOH or by the energetic reduction of (XXXVIII). It is converted by aq. $(NH_4)_2SO_3$ at 150° into 1aminopyrene, m.p. 182° (hydrochloride; sulphate; Ac derivative, m.p. 276°). Glycerol, 80% H₂SO₄, amd (XXXIX) at 120—125° give 1:8:9-naphthanthr-10-one, m.p. 243°, also obtained similarly from (I). H. W.

Polyterpenes and polyterpenoids. CXV. Synthesis of 1:8-dimethyl- and 2-methoxy-1:8-dimethyl-picene and their identification with the products of the dehydrogenation of pentacyclic triterpenes. L. RUZICKA and K. HOFMANN [with H. BAUER, P. MULLER, G. RUFFONI, and P. RUSCONI] (Helv. Chim. Acta, 1937, 20, 1155-1164).—1 - Keto - 7 - methyl - 1 : 2 : 3 : 4 - tetrahydro naphthalene is converted by Zn and CH2Br·CO2Et in C₆H₆ into Et 7-methyl-3: 4-dihydro-1-naphthylacetate, b.p. 112-122°/0.4 mm., reduced by Na and EtOH to β -7-methyl-1:2:3:4-tetrahydro-1-naphthylethyl alcohol, b.p. 115-118°/0.1 mm., whence the corresponding bromide (I), b.p. 104-105°/0.1 mm. The Mg derivative of this reacts with 1-keto-5-methyl-1:2:3:4-tetrahydronaphthalene, b.p. $143-145^{\circ}/10$ mm., m.p. $49-50^{\circ}$, to form α -7-methyl-1:2:3:4tetrahydro-1-naphthyl-β-5'-methyl-3':4'-dihydro-1'naphthylethane, b.p. 185-186°/0.1 mm., dehydrogenated (Pd-C at 320°) to a-7-methyl-1-naphthyl-B-5'methyl-l'-naphthylethane, which after purification through Al_2O_3 (Brockmann) has m.p. 74-75°. It is transformed by AlCl₃ in CS₂ at room temp. into 1:8-dimethylpicene, m.p. 305-306°, identical with that derived from gypsogenin, hederagenin, quinovaic acid, ursolic acid, fricdelinol, and β -amyrene. Condensation of CHNa(CO_2Et), with ω -chloro-3-methoxy-2-methylacetophenone gives the corresponding malonate, b.p. 140-150°/0.5 mm., hydrolysed and decarboxylated to y-keto-y-3-methoxy-o-tolylbutyric acid, m.p. 130-130.5°. This is reduced (Clemmensen) to y-3-methoxy-o-tolylbutyric acid, b.p. 144-145°/0.1 mm., m.p. 109-110°, cyclised by successive treatments with SOCl₂ and AlCl₃ in CS₂ to 1-keto-6-methoxy-5-methyl-1:2:3:4-tetrahydronaphthalene, b.p. 123-124°/0.1 mm., m.p. 114-115°. This is transformed by the Grignard compound from (I) into α -6-methoxy-5 - methyl - 3 : 4 - dihydro - 1 - naphthyl - β - 7' - methyl -1': 2': 3': 4' -tetrahydro-1'-naphthylethane, b.p. 197-198°/0.02 mm., dehydrogenated to a-6-methoxy-5methyl-1-naphthyl-3-7'-methyl-1'-naphthylethane, m.p. 121-122°, which is cyclised by AlCl₃ in CS₂ to 2-methoxy-1: 8-dimethylpicene, 358-359°, m.p. identical with that derived from amyrin. H. W.

Aromatic nitro-derivatives. X. Naphthalene derivatives. A. MANGINI and B. FRENGUELLI. XI. Action of some diamines on 1-chloro-2:4-dinitronaphthalene. A. MANGINI (Gazzetta, 1937, 67, 358—370, 373—380).—X. The structure of substituted C_6H_6 derivatives is discussed on Bonino's theory (A., 1935, 1057), and extended to substituted naphthalenes. The rate of reaction of 1:2:4- $C_{10}H_5Cl(NO_2)_2$ (I) with NH₂Ph and other amines is studied: it is always > that of 1:2:4- $C_6H_3Cl(NO_2)_2$. The following are described: N-4-diphenylyl-, m.p. $174-174\cdot5^\circ$, -p-bromophenyl-, m.p. $223\cdot5-224\cdot5^\circ$, -p-carboxyphenyl-, m.p. $269-270^\circ$ (decomp.), -pcarbethoxyphenyl-, m.p. 146.5—148°, and -p-hydroxyphenyl-2': 4'-dinitro-1'-naphthylamine, m.p. 219.5— 220.5°; and 4-(2': 4'-dinitroanilino)diphenyl, m.p. 144—145°.

XI. With diamines (I) gives compounds of type $NH_2\cdot R\cdot NH\cdot C_{10}H_5(NO_2)_2$ or type $R[NH\cdot C_{10}H_5(NO_2)_2]_2$, according to reactivity and proportion of amine used. The following are described : N-o-, m.p. 177·5– 178° [hydrochloride; Ac derivative, m.p. 218–219° (decomp.)], N-m-, m.p. 195–196° (decomp.) (Ac derivative, m.p. 205–206°), and N-p-aminophenyl-2': 4'-dinitro-1'-naphthylamine, m.p. 232–233° (decomp.) (Ac derivative, m.p. 245–246°); and NN'-bis-(2': 4'-dinitro-1'-naphthyl)-m-, m.p. 252–253° (decomp.), and -p-phenylenediamine, m.p. >290°. 2: 4'-NH_2: [C₆H₄]₂·NH₂ gives a mixture from which only NN'-bis-(2'': 4''-dinitro-1''-naphthyl)-2: 4'-diaminodi-phenyl, m.p. $\neq 290^\circ$, is isolated. Benzidine yields N-2'': 4''-dinitro-1''-naphthylbenzidine, m.p. 228-5–229.5° (Ac derivative, m.p. 205–206:5°), and NN'-bis-(2'': 4''-dinitro-1''-naphthylbenzidine, m.p. $\pm 290^\circ$. (CH₂·NH₂)₂ yields NN'-bis-(2'': 4'-dinitro-1''-naphthylbenzidine, m.p. $\pm 290^\circ$. (CH₂·NH₂)₂ yields NN'-bis-(2'': 4'-dinitro-1''-naphthylbenzidine, m.p. $\pm 290^\circ$. (CH₂·NH₂)₂ yields NN'-bis-(2'': 4'-dinitro-1''-naphthylbenzidine, m.p. $\pm 290^\circ$. (CH₂·NH₂)₂ yields NN'-bis-(2'': 4''-dinitro-1''-naphthylbenzidine, m.p. $\pm 290^\circ$. (CH₂·NH₂)₂ yields NN'-bis-(2'': 4''-dinitro-1''-naphthylbenzidine, m.p. $\pm 290^\circ$. (CH₂·NH₂)₂ yields NN'-bis-(2'': 4''-dinitro-1-naphthylbenzidine, m.p. $\pm 290^\circ$. (CH₂·NH₂)₂ yields NN'-bis-(2'': 4''-dinitro-1-naphthylbenzidine, m.p. $\pm 290^\circ$. (CH₂·NH₂)₂ yields NN'-bis-(2'': 4''-dinitro-1''-naphthylbenzidine, m.p. $\pm 290^\circ$. (CH₂·NH₂)₂ yields NN'-bis-(2': 4''-dinitro-1-naphthylbenzidine, m.p. $\pm 290^\circ$. (CH₂·NH₂)₂ yields NN'-bis-(2': 4''-dinitro-1-naphthylbenzidine, m.p. 162–163°. E. W. W.

Condensation products of the diphenylamine series [methylsulphonyldiphenylamines].—See B., 1937, 885.

cis-Form of azobenzene. G. S. HARTLEY (Nature, 1937, 140, 281).—The cis-form of azobenzene has been separated by extraction of a COMe₂ solution, which has been exposed to light, with H₂O, and extraction of the aq. extract with CHCl₃ after treatment with light petroleum. The m.p. is at least $2^{\circ} >$ that of the normal form; the absorption coeff. for blue light is greater, and the dipole moment in C₆H₆ is 3.0 D units. Equilibrium is attained under the usual conditions with approx. 27% of the cis-form. L. S. T.

Decomposition of benzenediazonium chloride. W. A. WATERS (Nature, 1937, 140, 466-467).— When suspended in an org. liquid, PhN₂Cl (I) appears to melt at approx. 50° with violent decomp. HCl is often formed and is always accompanied by PhCl. In COMe, with excess of CaCO₃, the chief reaction is (I) + COMe₂ = N₂ + C₆H₆ + CH₂Cl·CO·Me. Frce neutral radicals are supposed to be formed as (I) decomposes. When this decomp. in COMe₂ + CaCO₃ is carried out in presence of Sb, Bi. Pb, or Hg, the metal is rapidly attacked at room temp.; with Hg, HgPhCl is formed. L. S. T.

"Catalytically polar" materials.—See A., I, 523.

[Metallic salts of] diazoamino-compounds. IV. A. MANGINI (Gazzetta, 1937, 67, 384–388; cf. A., 1935, 969).—2:2'- (I), 3:3'- (II), and 4:4'dinitro- (III), and 4:4'-dimethyl- (IV), and 4:4'dibromo-diazoaminobenzene (V) give salts as follows: (I) and (II), intensely coloured K salts; (II) and (III), Ag salts in yellow, orange, and red forms; (IV) and (V), yellow Ag salts; and (II), yellow, and (III), orange-yellow and red, Hg salts. The Hg salts of (IV) and (V) are obtained in yellow forms only, but these give red solutions in $PhNO_2$. E. W. W.

Refractive indices of aniline-o-chlorophenol mixtures and the nature of the molecular compound. C. D. ELLYETT (Trans. Faraday Soc., 1937, 33, 1212—1217).—The vals. of n_{10}^{20} have been determined for NH₂Ph-o-C₆H₄Cl·OH mixtures. The departures of the mol. refractivity from the mixture law are within experimental error. Trew's results (A., 1932, 801) for CHBr₃-COMe₂ mixtures are recale. The conclusion of Smyth *et al.* (A., 1929, 994) that in such cases only dipole association occurs is criticised and a resonance link is proposed. It is considered to be most probable that in the intermcdiate compound the N of the NH₂Ph is linked to the phenolic H of the o-C₆H₄Cl·OH mol. This is supported by the fact that the large heat of mixing, and therefore the compound formation, disappears when the OH is replaced by H or OMe. The existence of a chelate ring in o-C₆H₄Cl·OH is discussed. J. W. S.

Heats of reaction and specific heats of anilineo-chlorophenol mixtures.—See A., I, 507.

Thermal decomposition of cresol on a glowing wire. K. PETERS and K. WINZER (Brennstoff-Chem., 1937, 18, 357).—The reactions occurring when cresol (b.p. 190—210°) was decomposed by immersing in it an electrically-heated wire (cf. B., 1936, 133) can be represented approx. by; $30C_6H_4$ Me·OH $= 15C_6H_6 + 5PhMe + Ph_2 + 30CO + 15CH_4 +$ $20H_2 + 28C$. The rate of decomp. of cresol is \ll that of paraffin hydrocarbons under similar conditions. A. B. M.

Pyrolysis of 2:4:6-trialkylphenyl allyl ethers. C. D. HURD and W. A. YARNALL (J. Amer. Chem. Soc., 1937, 59, 1686-1690).—Diallyl and CH₂:CHMe, but not allene, are evolved during pyrolysis of Ph allyl ethers; the rearrangement is in part intermol. p-Tolyl allyl ether (modified prep.), b.p. 97-98°/16 mm., gives 69% of 3-allyl-p-cresol (I), b.p. 115-118°/14 mm. (gives 3-allyl-p-tolyloxyacetic acid, m.p. 124-125°), and a little *p*-cresol and 3:5-diallyl-p-cresol (II), b.p. 134-141°/15 mm., hydrogenated to 3:5-diisopropyl-p-cresol (III), b.p. 138-142°/17 mm., m.p. 21° (3:5-dinitrobenzoate, m.p. 96°). 1:3:4-C₆H₃MePr^a·OH, prepared by hydrogenation of (I) (gives 3-propyl-p-tolyloxyacetic acid, m.p. 114-115°), gives an allyl ether, b.p. 123-124°/16 mm., which at 230-275° affords 67% of 3-propyl-5-allyl-p-cresol, b.p. 135°/13 mm. [hydrogenated to (III)], with 24% of (I). The allyl ether, b.p. 148°/15 mm., of (II) at 250-270° gives diallene, (III), and CH₂:CHMe. R. S. C.

Nitrated o-alkyl-phenolic compounds.—See B., 1937, 878—879.

Introduction of the triphenylmethyl group. II. III. Mobility of the bromine atom in triphenylmethylisochavibetol and its derivatives. I. E. FUNAKUBO (Ber., 1937, 70, [B], 1981-1982, 1983-1986; cf. A., 1936, 1388).--II. iso-Chavibetol is converted by short heating with CPh₃Cl in C_5H_5N at 155° into the oxonium salt, which passes into isochavibetol CPh₃ ether (the yield of which attains its max. in 10 hr. and then slowly declines) and triphenylmethylisochavibetol [2methoxy-6-triphenylmethyl-5- Δ^a -propenylphenol] (I) max. production of which is observed after 40 hr. The product of the action of HI on (I) is 1:2-dihydroxy-3-triphenylmethyl-4-propylbenzene, m.p. 93— 96°.

III. The presence of \cdot CPh₃ confers mobility on α -Br. Addition of Br to (I) in Et₂O gives the corresponding dibromide (II), m.p. 128° (decomp.) when freshly prepared or decomp. 155° after preservation or crystallisation from light petroleum. (II) is transformed by short boiling with MeOH into 2-methoxy-6-triphenylmethyl-5- β -bromo - α - methoxy - n - propyl phenol (III), m.p. 184.5° (decomp.), and by boiling EtOH into the corresponding -a-ethoxy-compound, m.p. 174° (decomp.). Br and triphenylmethylisochavibetol Me ether in Et₂O at 15° afford 2-methoxy-6triphenylmethyl-5-aβ-dibromopropylanisole, m.p. 150.5 -151° (decomp.), converted by MeOH into 2-methoxy-6-triphenylmethyl-5-β-bromo-2-methoxy-n-propylanisole, m.p. $172-172 \cdot 5^{\circ}$ (decomp.) [also obtained by methylation (Me₂SO₄) of (III)], and by EtOH into the corresponding -a-OEt-compound, m.p. 159-160° (decomp.). Indications of the replacement of β-Br are not observed and isochavibetol dibromide and its Me ether are stable under these treatments. H. W.

System : pyrogallol-*p*-phenylenediamine.— See A., I, 517.

Pentahydroxybenzene series. I. G. AULIN and H. ERDTMAN (Svensk Kem. Tidskr., 1937, 49, 208-215).-2:6-Dimethoxybenzoquinone with Br in CHCl₃ in the cold affords 4:6-dibromo-2:5dihydroxy-1: 3-dimethoxybenzene, m.p. 140.5-142.5° (diacetate, by $Ac_2O-C_5H_5N$, m.p. 103-104°), whilst at 100°, 3:5-dibromo-2:6-dimethoxy-1:4-benzoquinone (I), m.p. 174.5-176.5°, is formed. (I) with MeOH-NaOH affords 6-bromo-2: 5-dihydroxy-3-methoxy-1: 4-benzoquinone (II), decomp. $203-205^{\circ}$, converted by $Zn-Ac_2O-C_5H_5N$ into 6-bromo-3-methoxy-1:2:4:5-tetra-acetoxybenzene (III), m.p. 165-166.5°, and reduced (Pd-H₂) to 2:5-dihydroxy-3-methoxy-1:4-benzoquinone, m.p. 158-160°. 3-Methoxy-1:2:4:5-tetra-acetoxybenzene, m.p. 182-182.5°, obtained in the same manner as (ÎII), is hydrolysed $(MeOH-H_2SO_4)$ and methylated (Me_2SO_4-NaOH) to pentamethoxybenzene, m.p. $59-60^{\circ}$. $1:2:3:4-C_6H_2(OMe)_4$ with Br in CHCl₃ affords 5:6-dibromo-1:2:3:4-tetramethoxybenzene, b.p. $153-155^{\circ}/0.6$ mm., oxidised (HNO3) to 5 : 6-dibromo-2 : 3-dimethoxybenzoquinone, m.p. 126-127°, which is hydrolysed (NaOH) to (II). J. D. R.

Alkanolamines. II. Reaction of the chloronitrobenzenes with monoethanolamine. C. B. KREMER (J. Amer. Chem. Soc., 1937, 59, 1681— 1682; cf. A., 1936, 485).—o-C₆H₄Cl·NO₂, NH 4 CH 1 of the angle of the constant of the second second

Some bases of physiological interest. H. C. BHATNAGAR, N. N. CHOPRA, K. S. NARANG, and J. N. RAY (J. Indian Chem. Soc., 1937, 14, 344—348).— NMe₂·CN with NH₂Ph,HCl at 120° gives phenyldimethylguanidine, m.p. 90° [methiodide, m.p. 188° (decomp.)], but does not react at atm. pressure with OH·CHPh·CH₂·NH₂ (I) [picrolonate, m.p. 198° (decomp.); oxalate, m.p. 171—172°; methiodide, m.p. 222°, NO-Bz₂ derivative, m.p. 131—132°; piperonylidene derivative, m.p. 105—106°, converted by MeI followed by dil. HCl into

OH·CHPh·CH₂·NHMe (picrolonate, m.p. 196—198°)]. Piperonaldehyde cyanohydrin is reduced (Na-Hg) to β -hydroxy- β -3: 4-methylenedioxyphenylethylamine [carbonate, m.p. 116—119° (decomp.); hydrochloride, m.p. 182—183°; picrolonate, m.p. 200° (decomp.); oxalate, m.p. 197°; N-Bz₁ derivative, m.p. 152—153°; NO-Bz₂ derivative, m.p. 141—142°; methiodide, m.p. 229—230°], the piperonylidene derivative, m.p. 155—156°, of which, when methylated and hydrolysed, yields 3: 4-methylenedioxyadrenaline (picrolonate, m.p. 203°). (I) condenses with SMe·C(:NH)·NH₂,HI in boiling EtOH, giving β -

SMe·C(:NH)·NH₂,HI in boiling EtOH, giving β hydroxy- β -phenylethylguanidine hydriodide, m.p. 133°. A. LI.

Preparation of a homologue of *epicoprosterol* in the ergosterol series. F. WETTER and K. DIMROTH (Ber., 1937, 70, [B], 2033).—Further details of the measurements of absorption spectra are given (cf. this vol., 416). H. W.

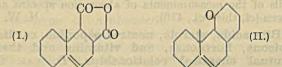
Bile acids, sterols, neutral saponins, cardiac poisons, hormones, and vitamins and their mutual chemical relationships. D. VAN OS (Pharm. Weekblad, 1937, 74, 1161—1178, 1194— 1218).—A review of the chemical relationships of representative members of each of the above types of compounds. S. C.

Stereochemistry of the sterols and the bile acids. D. A. PEAK (Nature, 1937, 140, 280-281).—A discussion. The fusion of the c and D rings appears to be in the *cis* and not in the *trans* position as hitherto believed. L. S. T.

Transformations of cholestanetriol. H. LETTRÉ and M. MULLER (Ber., 1937, 70, [B], 1947-1952).—Removal of H_oO from cholestanetriol (I), unlike that from the ergostadienetriols, does not lead to 7-dehydrosterols but is accompanied by stabilisation to the oxide or by intramol. transformations. Distillation at 220-240°/1 mm. of (I) causes decomp. without formation of well-defined substances. The corresponding dibenzoate at 210°/1 mm. gives BzOH and a-cholesteryl oxide benzoate, m.p. 181°. The diacetate is unchanged when distilled but passes when heated with $BaCO_3$ at 220° into α -cholesteryl oxide acetate, m.p. 97-98°. To exclude the possible formation of an oxide, derivatives of (I) in which OH at C(5) is removed or replaced are examined. Cholestanetriol diacetate is converted by Ac2O-conc. H2SO4 into a cholestenediol diacetate, hydrolysed to a cholestenediol, m.p. 99-108° (di-3:5-dinitrobenzoale, m.p. 231°); the corresponding dibenzoate, m.p. 160-161° and, after solidification, m.p. 177-178°, loses a little BzOH at 210°/1 mm. but is mainly unchanged. Oxidation of the enediol by CrO₃ in AcOH at 4°

gives a substance (II), $C_{27}H_{42}O_3$ (?), m.p. 142—143°. (I) is transformed by HCl-MeOH into the chlorohydrin, $C_{27}H_{47}O_2Cl$, converted into a *diacetate*, m.p. 107—108°, and a *dibenzoate* (III), m.p. 181°, proving

H OH


that the tert. OH at C₍₅₎ in (I) C₁₆H₂₀ is replaced by Cl. (III) when heated at 210°/1 mm., or with quinoline at 180° loses partly HCl and partly BzOH giving a cholestenediol dibenzoate, m.p. 179°, hydrolysed to a cholestenediol, m.p. 137-138°, oxidised

to cholestane-3: 6-dione. Assuming that a retropinacolin transformation has occurred, the annexed formula is suggested for (II). H. W.

Derivatives of 3:17-diols of the cyclopentanopolyhydrophenanthrene series.—See B., 1937, 980.

Unsaturated neutral oxidation products of stigmasterol compounds.—See B., 1937, 980.

Diene synthesis applicable to the sterol group. A. B. MEGGY and R. ROBINSON (Nature, 1937, 140, 282).—1-Methyl-2-vinylcyclohexene, obtained from 2methylcyclohexenylethyl alcohol by an application of the xanthate reaction, condenses with maleic anhydride in C_6H_6 to form the anhydride (I), m.p. 111.5°. This and the related dibasic acid, m.p. 171°,

gave analytical vals. in agreement with theory. With crotonaldehyde, the diene yields an adduct, $C_{19}H_{24}O_4N_4$ (dinitrophenylhydrazone, m.p. 192°). The 2:4-dinitrophenylhydrazone of the adduct (II) from the diene and cyclohexenone has m.p. 164°. Advantages of the method in relation to the synthesis of cholesterol and analogous substances are discussed. L. S. T.

Preparation of plant growth-promoting substances. I. Ethyl α -naphthylglyoxylate; α naphthylglycollic acid; α -naphthylacetic acid. F. WILCOXON (Contr. Boyce Thompson Inst., 1937, 8, 467—472).— α -C₁₀H₇·CH₂·CO₂H is prepared by condensation of C₁₀H₈ with Et chloroglyoxylate (47% yield) followed by reduction with HI and red P (90% yield of crude product). Reduction with Na-Hg or with H₂-Ni gave α -naphthylglycollic acid. A. G. P.

Halogen migrations under the influence of aluminium chloride. IV. C. D. NENITZESOU and J. GAVAT (Ber., 1937, 70, [B], 1883—1886; cf. this vol., 140).—Further examples of migration are recorded. Gradual addition of Δ^1 -cyclohexenyl- or -cyclohexylidene-acetic acid in C₆H₆ to AlCl₃ in C₆H₆ gave p-phenylcyclohexylacetic acid, b.p. 180°/2 mm., m.p. 112° [Et ester (I), b.p. 168°/5 mm.; corresponding chloride, b.p. 182—183°/14 mm., and amide, m.p. 195.5°], the constitution of which is established by its transformation by MgPhBr into the corresponding carbinol, which is oxidised by CrO₃ in AcOH to p-phenylcyclohexanecarboxylic acid. β -cyclo-

Hexylacrylic acid and AlCl3 in C6H6 afford β-pphenylcyclohexylpropionic acid (II), b.p. 186-189°/1.5 mm., m.p. 145.5° (Et ester, b.p. 159°/2 mm.). Reduction of (I) by Na and EtOH gives β -p-phenylcyclohexylethyl alcohol, b.p. 157°/3.5 mm., m.p. 78°, transformed by red P and I in CHCl₃ at room temp. into β-p-phenylcyclohexylethyl iodide, b.p. 188°/2 mm. (corresponding bromide, b.p. 171°/6 mm.), whence the nitrile, b.p. 194°/1 mm., and (II). Gradual addition of AlCl_a to cyclohexene, BzCl, and cyclohexane gives Ph cyclohexyl ketone, b.p. 131-134°/5 mm., m.p. 54°, which condenses with Mg and $CH_2Br \cdot CO_2Et$ in C_6H_6 to Et β -hydroxy- β -phenyl- β cyclohexylpropionate, b.p. 155-158°/5 mm. This is hydrolysed to \$-hydroxy-\$-phenyl-\$-cyclohexylpropionic acid, m.p. 175°, dehydrated by boiling Ac2O to β-phenyl-β-cyclohexylacrylic acid, b.p. 183°/4 mm., m.p. 144.5°, reduced by Na-Hg to β-phenyl-β-cyclohexylpropionic acid, m.p. 101°. H. W.

Addition of Schiff's bases to methylenecarbonyl compounds. C. LAZZARESCHI (Gazzetta, 1937, 67, 371–373).—CN·CH₂·CO₂Et, CH₂(CO·NH₂)₂, and CN·CH₂·CO·NH₂ resemble CH₂(CO·)₂ compounds in combining with NPh:CHPh. The respective products are Et β -anilino- α -cyano- β -phenylpropionate, m.p. 140°, β -anilino- β -phenylmethylmalonamide, m.p. 196–197°, and β -anilino- α -cyano- β -phenylpropionamide, m.p. 118–119°. E. W. W.

Homologues of thioprocaine. C. F. LISCHER and C. N. JORDAN (J. Amer. Chem. Soc., 1937, 59, 1623-1624) .- NaSH and CH2Br CH2 NEt2, HBr in abs. EtOH give only bis-β-diethylaminoethyl di-sulphide, b.p. 160°/16 mm. (dihydrobromide, m.p. 223°). p-NO₂·C₆H₄·CO·SK and Cl·[CH₂]₃·Br in EtOH. give y-chloropropyl p-nitrothiobenzoate, m.p. 59-60°, reduced (Fe-HCl) to the p-aminothiobenzoate, m.p. 50-51°, which with the appropriate diamine at 100° gives the following y-dialkylaminopropyl paminothiobenzoate dihydrochlorides : Et2, m.p. 190-191°, Pr^a₂, m.p. 167°, Pr⁹₂, m.p. 196°, diallyl, m.p. 143°, Bu^a₂ (1:1 compound of the mono- and dihydrochloride), m.p. 162°, and di-n-amyl, m.p. 183°. The ester hydrochlorides are local anæsthetics. M.p. are corr. R. S. C.

Dissociation constants of o-substituted acids. Alkaline hydrolysis of benzoic esters.—See A., I, 516.

Formation of anilides of acids.—See A., I, 522.

Catalytic hydrogenation of amides of α -hydroxy-acids (cont.). H. ÔEDA (Bull. Chem. Soc. Japan, 1937, 12, 377–381; cf. this vol., 235).— Hydrogenation of CH₂Ph·CH(OH)·CO·NH₂ yields CH₂Ph·CH(OH)·CH₂·OH (cf. A., 1936, 189) together with two forms (presumed to be meso and r) of α 8diamino- $\beta\gamma$ -dibenzylbutane, m.p. 153–155° (Bz derivative, m.p. 199–201°) and m.p. 166–167° (Bz, m.p. 280–282°, and Ph·SO₂· derivatives, m.p. 226–227°). F. R. G.

Sulphur studies. XII. Thioaldehydes in the naphthalene and anthracene series. J. H. WOOD and R. W. BOST (J. Amer. Chem. Soc., 1937, 59, 1721-1723; cf. this vol., 342).—Naphthalene-(A) and anthracene-thioaldehydes (B) are more

stable than thiobenzaldehydes. The influence of the size of the radical is shown by the fact that PhCHS gives mainly the trans-cyclic trimeride, (A) give only the trans-cyclic compound, and (B) give only linear polymerides. $1-C_{10}H_7$ CHO is best obtained from polymetrics. 1- $C_{10}H_7$ circle is best obtained from 1-naphthylcarbithoic acid by way of the semicarb-azone. 2:1-OEt· $C_{10}H_6$ ·CHO (2:4-dinitrophenyl-hydrazone, m.p. 258°), best obtained from 2- $C_{10}H_7$ ·OMe (I), NPhMe·CHO, and POCl₃, with H₂S and a trace of H₂SO₄ in EtOH gives 2-ethoxynaphthalene-1-thioaldehyde (II), an oil, and some of the cyclic tri-meride (III), m.p. 283°, the latter being the sole product if H₂S is passed into a solution of (II) and HCl in EtOH. (II) and 2-C₁₀H₇·CHS are stable in dil solution for 24, 26 hr. give colours with Crota's dil. solution for 24—36 hr., give colours with Grote's reagent, eliminate H_2S with 2 : 4- $(NO_2)_2C_6H_3$ ·NH·NH₂ to give the hydrazones, and give ppts. with HgCl₂. At 300°/5 mm. (III) gives 70% of s-di-2-ethoxy-1-naphthylethylene, m.p. 213°, but, when distilled with a little H_2SO_4 , is partly depolymerised to (II). H_2S and anthracene-9-aldehyde (best obtained from anthracene, NPhMe CHO, and POCl₃) give a polymeride, m.p. 178°, of anthracene-9-thioaldehyde, obtained faster in presence of HCl; with H₂S and HCl in EtOAc-C₆H₆ at 0° a polymeride, m.p. 266°, is obtained, and at 23° a polymeride, m.p. about 263°; in KOH a poly-meride, m.p. 223°, is formed; distillation of these polymerides gives H_oS and tars. R. S. C.

Preparation of vanillin. I—III. S. KIMURA (J. Soc. Chem. Ind. Japan, 1937, 40, 277—278B).— The influence of [KOH], of quantity of KOH and of PhNO₂, and of time, temp., solvents, and catalysts on the oxidation of safrole (I) in the prep. of vanillin (II) is studied. The process (I) \rightarrow 4:3:1-+ 3:4:1-OH·C₆H₃(O·CH₂·OMe)·CH:CHMe \rightarrow 3:4:1-C₆H₃(OH)₂·CH:CHMe \rightarrow C₆H₃(OH)₂·CHO \rightarrow (II) gives improved yields. E. W. W.

3:4-Diphenylchlorocyclopentenones and related compounds. C. F. H. ALLEN and H. RUDOFF (Canad. J. Res., 1937, 15, B, 321-330).-2-Hydroxy-3: 4-diphenyl- Δ^2 -cyclopentenone with POCl₃ affords 2-chloro-3: 4-diphenyl- Δ^2 -cyclopentenone, (I), m.p. 142° (2:4-dinitrophenylhydrazone, m.p. 216-217°), reduced (P-HI-AcOH) to 3: 4-diphenylcyclopentanone, m.p. 92° (2:4-dinitrophenylhydrazone, m.p. 228°), which is dehydrogenated (SeO₂ in dioxan) to 3:4diphenyl- Δ^3 -cyclopentenone (2: 4-dinitrophenylhydrazone, m.p. 233°). Ozonolysis of (I) in EtOAc affords β-benzoyl-β-phenylpropionic acid, and with Na₂CO₃ in MeOH it gives a bimol. compound, C35H28O3, m.p. 208°. 4-Chloro-3: 4-diphenyl- Δ^3 -cyclopentenone (II) (2:4-dinitrophenylhydrazone, m.p. 216°) with HBr in AcOH yields 2-chloro-3: 4-diphenyl- Δ^3 cyclopentenone (III) (2:4-dinitrophenylhydrazone, m.p. 216°) and 4:7-endoketo-3:5:6:8-tetraphenyl-4:7:8:9-tetrahydroindenone (cf. A., 1933, 1164), which is also formed from (II) by oxidation (KMnO₄ COMe₂). 2-Chloro-3: 4-diphenyl- Δ^3 -cycloin In COMe₂). 2-Onloro-3: 4-Online Hyper-Legate pentenone (V) with 2: $4-(NO_2)_2C_6H_3\cdot NH\cdot NH_2$ affords a 2: 4-dinitrophenylhydrazone, $C_{23}H_{16}O_4N_4$, m.p. 265° (decomp.), from which (V) cannot be regenerated. With NaOH-MeOH, (V) yields 4: 7-endoketo-2-chloro-3: 5: 6: 8-tetraphenyl-2: 3: 4: 7: 8: 9-hexahydroindenone, the Cl₁-dimeride, C₃₄H₂₃O₂Cl, of

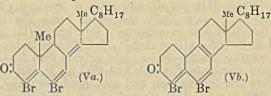
Burton and Shoppee (A., 1934, 409), from which (IV) is regenerated by NaOMe-MeOH. (IV) with CrO₃ in AcOH affords an isomeride (trans?), m.p. 264°, which at 265—270° yields 3:3:5:6-tetraphenylhydrindone (VI), m.p. 182°, oxidised (SeO₂) to 3:3:5:6-tetraphenylindan-1:2-dione, m.p. 199—200° (monoxime, m.p. about 200°), which with o-C₆H₄(NH₂)₂ gives an anil, m.p. 272°. With HBr-AcOH (VI) affords a dibromide, C₃₃H₂₂OBr₂, m.p. 265°, and with SO₂Cl₂ a dichloride, C₃₃H₂₂OCl₂, m.p. 252°, from which (VI) is regenerated by Zn-AcOH. 1-Phenylcyclohexeno and AcCl in CS₂ with SnCl₄ yield 2-acetyl-1-phcnyl- Δ^1 -cyclohexene, b.p. 145—147°/7 mm. (2:4-dinitrophenylhydrazone, m.p. 165°). The reaction product of CH₂:CMe·CMe:CH₂ and 2:5-diphenylbenzoquinone in MeOH yields on reduction a compound, C₂₂H₂₄O₂, m.p. 169—170°.

Synthesis of benzanthrones. F. G. BADDAR and F. L. WARREN (Nature, 1937, 140, 321; cf. A., 1936, 1388).—The $\alpha\gamma$ -Et₂ ethers of β -substituted glycerols can be used for the synthesis of 2-alkyl- and 2-aryl-benzanthrones under the conditions of Bally and Scholl's synthesis (A., 1911, i, 676). L. S. T.

Infra-red absorption as a measure of enolisation. A. M. BUSWELL, W. H. RODEBUSH, and M. F. Roy (J. Amer. Chem. Soc., 1937, 59, 1767).— The absence of an absorption band characteristic of OH in the region 2.75— 3.0μ . for dibenzoylmethane is believed to indicate that it is not largely in the enolic form (cf. A., 1936, 703). E. S. H.

Carvacrol. VI. Removal of the isopropyl group. VII. Halogenoacylmethylisopropylphenols. I. H. JOHN and P. BEETZ (J. pr. Chem., 1937, [ii], 149, 164—170, 171—174; cf. A., 1936, 76).—VI. AlCl₃ in PhCl (not PhNO₂) at 50° removes the Pr⁹ from carvacrol, 5-acetyl-, -propionyl-, -n-butyryl-, -isovaleryl-, and -benzoyl-carvacrol, thymol, 6-acetyl-, -propionyl-, -n-butyryl-, isovaleryl-, and -benzoyl-thymol to give 53—80% yields of the phenol or OH-ketone. The acyl group is also removed to a small extent. 4-Hydroxy-3-methylpropio-, m.p. 86°, -butyro-, m.p. 133°, and -isovalerophenone, m.p. 83°, and 4-hydroxy-2-methyl-butyro-, m.p. 104°, and -isovalero-phenone, m.p. 51°, b.p. 115—120°/0.008 mm., are described.

VII. Thymol with Br (4 mols.) in CHCl₃ in light gives a Br-derivative, m.p. 113°, and with CH₂Cl·COCl and AlCl₃ in PhNO₂ at 50° gives a 20-23% yield of 6-chloroacetylthymol, m.p. 133°, b.p. 175-178°/0.0018 mm. (acetate, m.p. 83°), sensitive to alkali, with much oily by-product. R. S. C.

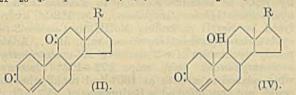

Syntheses in the indene series. H. SIMONIS and G. WOJACK (Ber., 1937, 70, [B], 1837–1848).— Treatment of CHMeB2·CO₂Et with 96% H₂SO₄ at 100° affords 2-methylindandione (I), m.p. 85°, whereas with P₂O₅ 2:2'-dimethylisobindone (II), C₆H₄<CO>CMe·C<C₆H>CO m.p. 198°, is produced, also formed when (I) is warmed with P₂O₅ or boiled with POCl₃. Its constitution is established by its formation from 3-chloro-2-methylindone, m.p. 61° (from CPhCl:CMe·CO₂H and 96% H₂SO₄ at 45— 50°), and sodio-2-methylindandione. (II) gives a p-nitrophenylhydrazone, m.p. 269°, and a p-bromo-phenylhydrazone, m.p. 222° (decomp.), and is converted by p-C6H4Me NH2 and anhyd. ZnCl2 in boiling EtOH into the tri-p-tolil, C₂₀H₁₄(N·C₆H₄Me)₃, de-comp. 240-250° after softening at 175°. (II) is transformed by PCl₅ in boiling CCl₄ and subsequently at 160° into the corresponding dichloride, m.p. 182° converted by Cu powder in boiling EtOH into (II) and by HI (d 1.7) into dihydro-2: 2'-dimethylisobindone (3-2'-methylindandionyl-2-methylindanone), m.p. 154°, also derived from (II), HI (d 1.7), and red P in boiling AcOH. 2: 2'-Dimethylisobindone dibromide is obtained from (II) and Br in boiling CS2 in sunlight. Fuming HNO₃ and (II) in boiling AcOH yield a dinitrodimethylisobindone, m.p. 167 (decomp.). a dinitrodimethylisopinaone, m.p. H_2SO_4 give Et o-toluoylmethylacetate and conc. H_2SO_4 give The diame (III) m.p. 110°. The corresponding p-tolyl derivative affords 2:6-di-methylindan-1:3-dione, m.p. 112°, whereas the mtolyl compound yields a substance, m.p. 87°. Et α -m-xyloylpropionate is converted into 2:4:6-trimethylindan-1:3-dione, m.p. 104°, whereas Et benzoylbenzylacetate with H₂SO₄ or P₂O₅ gives 2-benzoylindanone, m.p. 98°. The formation of benzylindandione could not be detected. 0- $C_{6}H_{4}Me \cdot CO \cdot CHMe \cdot CO_{2}Et$ converted into is 2:2':4:4'-tetramethylisobindone, m.p. 129° (pnitrophenylhydrazone, m.p. 218°), also derived from (III), NaOEt-EtOH, and 3-chloro-2: 4-dimethylindone, m.p. 107° (obtained from β -chloro- α -o-dimethylcinnamic acid, m.p. 103°). methylcinnamic acid, m.p. 103°). p-C₆H₄Me·CO·CHMe·CO₂Et and P₂O₅ at 140° afford

 C_6H_4 Me°CO°CHMe°CO₂Et and P_2O_5 at 140° afford 2:2':6:6'tetramethylisobindone, m.p. 193° (pnitrophenylhydrazone, m.p. 251°), obtained also from 3-chloro-2:6-dimethylindone, m.p. 80° [from β-chloroα-methyl-p-methylcinnamic acid, m.p. 108° (Et ester)], and 2:6-dimethylindandione. Et α-2:4-dimethylbenzoylpropionate and P_2O_5 give a cryst. mass which yields 2:4:6:2':4':6'-hexamethylisobindone - pnitrophenylhydrazone, m.p. 232°. Similarly the resinous product from Et α-anisoylpropionate and P_2O_5 affords 6:6'-dimethoxy-2:2'-dimethylisobindonep-nitrophenylhydrazone, m.p. 230—235° after softening. 2:2'-Dichloroisobindone has m.p. 224°.

H. W.

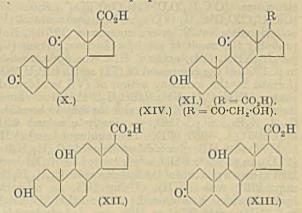
Bromination of Δ^4 -cholesten-3-one, cholestane-3: 6-dione, and Δ^4 -cholestene-3: 6-dione. A. BUTENANDT, G. SCHRAMM, and H. KUDBUS (Annalen, 1937, 531, 176-208; cf. A., 1936, 1512).--The bromination of cholestenone is a complex process the final result of which depends greatly on the experimental conditions. A scheme for the probable course of the changes is given. Gradual addition of Br in AcOH to cholestenone (I) in Et₂O containing HBr gives 4:6:6-tribromo- Δ^4 -cholesten-3-one (II), m.p. 182-183° (decomp.) or m.p. 194° when very rapidly heated, also obtained from the stereoisomeric 4: 6-dibromo- Δ^4 -cholesten-3-ones. (II) is unchanged by short warming with KOAc or Zn dust in EtOH. 4: 6-Dibromo- $\Delta^{4:6}$ -cholestadien-3-one (III), m.p. 183° (cf. Ruzicka et al., A., 1936, 1382), is obtained by treatment of (I) in CHCl₃ with Br-AcOH at room temp., of (II) in EtOAc by conc. HBr, and from 4:4:5:6-tetrabromocholestanone by KOAc in EtOH-C₆H₆ or by HBr in Et₂O-AcOH at room

temp.; it is unchanged when heated with Ac₂O. Gradual addition of Br in AcOH to (I) in CHCl₃ gives 4:6:7-tribromo- $\Delta^{4:6}$ -cholestadien-3-one (IV), two modifications, m.p. 165—166° and 130° respectively, also obtained by treatment of (III) in Et₂O with Br in AcOH containing conc. HBr. The motherliquors from the prep. of (IV) by the first method contain dibromocholestatrienone (Va or Vb), probably a mixture from which an individual, m.p. 203°, [α]^{BD}_D -38° in CHCl₃, is isolated; it is best obtained by


the action of Br in AcOH on (I) in Et_2O and is also derived from (IV), m.p. 165-166°, in CHCl₃ and conc. HBr-AcOH. It is stable towards quinoline at 185° and NPhEt₂ at 215°. It is unaffected by CH_2N_2 , maleic anhydride in boiling xylene, Ac_2O , AcCl, AcOH + conc. HCl, Hg(OAc)₂ in EtOH, or by SeO_2 in AcOH or amyl alcohol. The oxime has m.p. 118°. (II) with NaI in boiling C₆H₆-EtOH gives 4-bromo-6-ethoxycholestenone (VI), m.p. 111°; if MeOH is used 4-bromo-6-methoxycholestenone, decomp. 101°, is produced. Debromination of (VI) by Zn dust in boiling C₆H₆-MeOH yields (?) 6-ethoxycholestenone, m.p. 109°. Cholestenedione Et ether, m.p. 163°, is produced by the action of HBr-AcOH in boiling EtOH on (IV). Cholestenedione (VII), m.p. 122-123°, is converted by Br in Et₂O-AcOH into 4:7dibromo- Δ^4 -cholestene-3: 6-dione (VIII), m.p. 174° which yields a diquinoxaline derivative, m.p. 209° it gives oils containing Br under the influence of AgNO₃ in C₅H₅N. Cholestanedione in CHCl₃ is converted by Br in CHCl₃ containing a little HBr-AcOH into (VIII). (VII) in AcOH with Br at 30-35° affords 4:7:7-tribromo- Δ^4 -cholestene-3:6-dione (IX), m.p. 195°, also obtained from (VIII). Gradual addition of (IX) in C₆H₆ to a boiling mixture of NaHCO₃, Zn dust, and EtOH gives cholestanedione (X) and coprostanedione (XI), similarly derived from (VIII); the respective dioximes have m.p. 216° and 143-144°. (XI) is isomerised to (X) in AcOH containing HCl at 100°. Bromination of (XI) in CHCl₃ containing HBr-AcOH gives (VIII). (IX) and AgNO₃ in C_5H_5N at room temp. afford 4:7-dibromo- $\Delta^{4:7}$ -cholesta-diene-3:6-dione (XII), m.p. 183°, reduced by Zm dust and AcOH to (X). Cautious treatment of (XII) with Zn dust and boiling EtOH gives 7-bromo- Δ^4 -cholestene-3: 6-dione, m.p. 216°, transformed by Br in CHCl₃ into (XII). Fe powder and boiling EtOH convert (XII) into 7-bromo- $\Delta^{4:7}$ -cholestadiene-3:6-dione, m.p. 182°, obtained also from (IX) in boiling C_5H_5N and brominated to (XII). H. W.

Oxidation of cholesterol and dehydroandrosterone by means of osmic acid. M. USHAKOV and A. LUTENBERG (Nature, 1937, 140, 466).—Oxidation of cholesterol and dehydroandrosterone with OsO_4 yields *cis*-cholestanetriol, and *cis*-androstanonetriol, m.p. 243.5—244° (corr.; sinters at 242.5°), respectively. L. S. T. Application of Darzens' reactions to dehydroandrosterone. A. ERCOLI and L. MAMOLI (Chim. e l'Ind., 1937, 19, 435; cf. this vol., 294).—Dehydroandrosterone (I) and CHCl₂·CO₂Et (Mg-Hg) give the *dichloroacetate*, m.p. 198—199°, of (I).

E. W. W.


Sterols. XVIII. Preparation of epiallopregnanolone from allopregnanediol. R. E. MARKER, O. KAMM, and D. M. JONES (J. Amer. Chem. Soc., 1937, 59, 1595-1596) .- A good yield of epiallopregnan-3-ol-20-one is obtained from allopregnanediol by esterifying the 3-OH thereof with Ac₂O-AcOH, oxidising the monoacetate with CrO₃, and separating and purifying the product by means of Girard's reagent and the H succinate. 4-Bromo-20-acetoxypregnan-3-one and KOAc-AcOH give 4:20-di-Hydrogenation acetoxypregnan-3-one, m.p. 247°. (PtO₂; 3 atm.) of pregnanedione, m.p. 120°, in AcOH gives isopregnanediol, m.p. 174° (diacetate, m.p. 111°). alloPregnanonedicarboxylic acid (from allopregnanedione and CrO_3 -AcOH), m.p. 218°, when heated first with Ac₂O and then at 200–280°, and finally distilled at 2 mm., gives pyroallopregnanedione, R. S. C. C₂₀H₃₀O₂, m.p. 180°.

Adrenal cortex. III. Structures of compounds A, B, and H. H. L. MASON, W. N. HOEHN, B. F. MCKENZIE, and E. C. KENDALL (J. Biol. Chem., 1937, 120, 719—741; cf. this vol., 25).— Compound A (I) (A., 1936, 1117), new formula $C_{21}H_{28}O_{47}$ is probably (II) ($R = \text{CO}\cdot\text{CH}_2\cdot\text{OH}$). Com-

pound B (III) (loc. cit.), new formula C₂₁H₃₀O₄ m.p. 177-180° (not 135-139°, cf. loc. cit.), [a]²⁵_D $+222^{\circ}$ (all rotations in EtOH) (contains 2 OH and 2 CO), is identified with corticosterone (this vol., 105), and is probably (IV) ($R = CO \cdot CH_2 \cdot OH$). With HIO,, (III) gives CH_2O and acid-2 (V) [formula (IV), R = CO₂H], new m.p. 253–258° (decomp.), new $[\alpha]_{3401}^{25}$ +218° (contains 2 active H and 1 CO). Acid-I (VI) [formula (II), R = CO₂H], new m.p. 267–269° (*Me* ester, m.p. 178–179°; mono-oxime, m.p. 258–260°), from (I) and HIO₄, is also obtained from (V) and $K_2Cr_2O_7-H_2SO_4$ in COMe₂. Hydro-genation (Pd) of (I) gives *dihydro*-compound-*A*, $C_{21}H_{30}O_4$ (VII), m.p. 174–176°, $[\alpha]_{5461}^{25}$ + 163°, and hydrogenation (Pd) of (III) a dihydro-compound-B, $C_{21}H_{32}O_4$ (VIII), [m.p. 181–187°, $[\alpha]_{5461}^{25}$ +157°, further hydrogenated (PtO2) to hexahydro-compound-B, $C_{21}H_{36}O_4$, m.p. 220–222.5°, $[\alpha]_{3491}^{25} + 39°$. Oxidation (HIO₄) of (VIII) gives dihydro-acid-2 (IX), m.p. 265-270°, [a]²⁵, +100° (Me ester, m.p. 170-171°). Reduction of (VI) is carried out in steps, and gives first (Pd in EtOH) acid-1A, C20H28O4 (X), gives first (rd in Eton) acta-1A, $C_{20}I1_{28}O_4$ (A), m.p. 272—273°, $[\alpha]_{5461}^{265}$ +114° (mono-oxime), then (PtO₂ in EtOH-NaOH), acid-1B, $C_{20}H_{30}O_4$ (XI), m.p. 272—274°, $[\alpha]_{5461}^{265}$ +78° (Me ester, m.p. 188– 189°; no oxime obtained), and, finally (PtO₂-AcOH) acid-1C (XII), C₂₀H₃₂O₄, m.p. 284-286°, [\alpha]²⁵₅₄₆₁

+71°. Alternatively (X) is obtained by action of $K_2Cr_2O_7-H_2SO_4$ on (IX) or on (XI) in COMe₂. Similar oxidation of (XII) gives acid-1D (XIII), $C_{20}H_{30}O_4$, m.p. 265—266°, $[\alpha]_{2401}^{-}+93°$ (Me ester, m.p. 170—171°), but the acetate of (XII) with CrO_3 -AcOH gives the acetate, m.p. 210—213°, of (XI). With PCl_5 in CHCl₃, (XII) gives a chloro-acid, $C_{20}H_{31}O_3Cl$, m.p. 214—217° [Me ester, m.p. 128—130°, also obtained by chlorination of the Me ester of (XII)]. Filtrates from which (III) has been separated give a gum from which a compound-H, $C_{21}H_{32}O_4$ (XIV), m.p. 172—176°, $[\alpha]_{3461}^{-}+118°$, oxidised (HIO₄) to CH₂O and (XI), and (K₂Cr₂O₇-H₂SO₄-COMe₂) to (X) (2:4-dinitrophenylhydrazone), is obtained. The annexed structures are proposed.

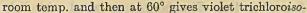
As hydrogenation of (I) and (III) largely destroys cortin activity, it is assumed that this is associated with the Δ^{α} -unsaturated ketone group.

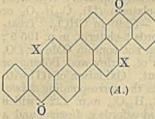
E. W. W.

Artostenone, a ketonic sterol from Artocarpus integrifolia. IV. Oxidation of artostenone. V. Platinichloride of artostenamine. Determination of carbon and hydrogen in stenones. VI. Constitution of artostenone. M. C. NATH (Z. physiol. Chem., 1937, 249, 71–75, 76–78, 78–81; cf. this vol., 294).—IV. Artostenone (I) in COMe₂ with KMnO₄ in neutral or acid (H₂SO₄) aq. COMe₂ gives diketoartostanic acid, C₃₀H₅₀O₄, m.p. 136° (dioxime, m.p. 173°; anilide m.p. 140–141°), and with HNO₃, a nitrocarboxylic acid, C₁₁H₁₇O₄N, m.p. 157–159° (decomp.), containing two condensed rings. Artostanone in AcOH with CrO₃ gives a keto-acid, C₂₀H₂₀O₂ or C₂₁H₂₀O₂, m.p. 88–90°.

keto-acid, $C_{20}H_{30}O_3$ or $C_{21}H_{32}O_3$, m.p. $88-90^{\circ}$. V. The oxime of (I) in EtOH with Zn and NaOH in EtOH gives artostenamine, m.p. 169-170° (platinichloride), which with AcOH and NaNO₂ gives artosterol. The magnitude of the differences between the C and H contents of such platinichlorides (II) of homologues renders (II) suitable for use in elementary analysis.

VI. (I) in EtOH with H_2SO_4 at 79° for 4 hr. gives α -artostenone, m.p. 99—100° (oxime, m.p. 193—194°; *CHPh*: compound, m.p. 89—90°). Dihydroartostenone (III) yields a *CHPh*: compound, m.p. 91— 92°, but (I) does not. 1 mol. of (I) takes up 2 Br and 1 mol. of (III) 3 Br. (I) is an $\alpha\beta$ -unsaturated ketone with the keto-group at $C_{(12)}$ and the double linking most probably at $C_{(9)}=C_{(1D)}$. W. McC. Unsaturated diketones related to the corpus luteum hormone.—See B., 1937, 980.


Dihydrofollicle hormone.—See B., 1937, 981.


Quinhydrones. R. CIUSA and L. BRULL (Gaz-zetta, 1937, 67, 392-398).-Quinol (I) treated in EtOH with NaOEt and with benzoquinone (II) gives disodium quinhydrone [O:C6H4:O,O'·C6H4·O']Na2, violet, also obtained from quinhydrone and NaOEt, or from (II) and NaOEt. Chloroquinol (III) and chlorobenzoquinone (IV) similarly give disodium dichloroquinhydrone. From either (III) and (II), or (I) and (IV), a disodium chloroquinhydrone is obtained; it is not clear whether these are identical, or whether they have the different structures [O:C6H4:O,O'·C6H3CI·O']Na2 and $[O:C_6H_3CI:O,O'\cdot C_6H_4 \cdot O']Na_2^{\circ}$. Benzoquinoneanil (V) and (I) with NaOEt give a compound (12.76% Na), probably the result of partial reduction. From (V), $p-C_6H_4(NH_2)_2$ (VI), and aq. HBr, the hydrobromide, m.p. 127°, of the compound of (VI) and NH:C6H4:NH In.p. 127, of the compound of (VI) and $\text{RH.C}_6\text{H}_4$. RH [formed by the oxidising action of (V)] is obtained, thus: $[\text{NH}_2 \cdot \text{C}_6\text{H}_4 \cdot \text{NH}_2, \text{NH:C}_6\text{H}_4 \cdot \text{NH}_2 \cdot]\text{Br}$. Simi-larly (V) and $p \cdot \text{C}_6\text{H}_4(\text{NHPh})_2$ give the dihydrobromide, $\text{C}_{36}\text{H}_{32}\text{N}_4\text{Br}_2$, m.p. 180°, previously obtained with m.p. 195° (A., 1936, 991). Benzoquinonedianil (VII) and (VI) with HBr give a *dihydrobromide*, $\text{C}_{24}\text{H}_{24}\text{N}_4\text{Br}_2$ (VIII), m.p. 188°, which when heated in EtOH loses HBr to give a mixture of the hydrobromide, C H NBr HBr to give a mixture of the hydrobromide, $C_{24}H_{23}N_4Br$, m.p. 173°, with (VIII). Using HCl, an unstable hydrochloride is obtained. $1:2:5-C_8H_3Me(NH_2)_2$ and (VII) with HBr or HCl give a hydrobromide, C₂₅H₂₆N₄Br, and a hydrochloride, m.p. 135°. Similarly p- $C_6H_4(NMe_2)_2$,2HCl and (VII) give a green hydrochloride, m.p. 125° (11.65% Cl). E. W. W.

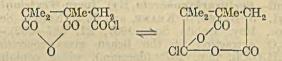
Colouring matters of Drosera Whittakeri. V. Constitution of droserone. J. W. H. LUGG, A. K. MACBETH, and F. L. WINZOR (J.C.S., 1937, 1597—1600).—The isolation of pure droserone (I) is described, and the measurement of its normal reduction potential supports the proposed structure, 2:5(or 2:8)-dihydroxy-1:4-naphthaquinone, and shows the close relationship to hydroxyjuglone (diacetate, m.p. 137°) and phthiocol. The I:4naphthaquinone structure of (I) is shown by the absorption spectra of its acetate, m.p. 119°. The absorption spectra of phthiocol and naphthapurpurin (triacetate, m.p. 164°) are discussed, showing their relationship to lawsone and hydroxydroserone respectively. F. R. S.

3: 4-dimethylanthraquinone, m.p. 206.5°, which is transformed by CuCl and NaOAc in PhNO, at 180-190° into 3:4:3':4'-tetramethylindanthrene; this does not give a vat. Similarly 2-acetamido-5:6:7:8-tetrahydronaphthalene and $o-C_6H_4(CO)_2O$ in C2H2Cl4 at 70° afford 0-2'-acetamido-4': 5'-cyclotetramethylenebenzoylbenzoic acid (IV), m.p. 193°, and 5-acetamidohydrindene yields o-2'-acetamido-4': 5'-cyclotrimethylenebenzoylbenzoic acid, (V), m.p. 210°. Attempts to effect ring-closure with (IV) or (V) by H_2SO_4 alone or in presence of H_3BO_3 fail by reason of the more ready sulphonation. Acid chlorides, P₂O₅, or AlCl₃-NaCl are ineffective. Attempts to hydrolyse the NHAc groups by prolonged boiling with dil. HCl lead quantitatively to the lactams of (IV) and (V), m.p. 209° and 269°, respectively. The lactams are readily hydrolysed by NaOH-MeOH. Thereby (III) yields o-2'-amino-4': 5'-di-methylbenzoylbenzoic acid, m.p. 152° (decomp.) and after re-solidification, m.p. 285°; it is transformed 0-2'-Amino-4': 5'-cyclotetramethyleneinto (II). benzoylbenzoic acid, m.p. 146.5°, is obtained similarly but its cyclisation is inhibited by sulphonation. Reduction of (IV) by Zn and NH3 or preferably by H₂ at 170°/40 atm. in neutral or somewhat alkaline solution in a Ni bomb yields o-2'-acetamido-4': 5'cyclotetramethylenebenzylbenzoic acid, m.p. 220°, which with conc. H_2SO_4 at 40–45° gives 1-acetamido-3:4-cyclotetramethyleneanthrone, m.p. 283° after softening and darkening at 280°; this is oxidised by H_2O_2 in alkaline solution to 1-acetamido-3:4cyclotetramethyleneanthraquinone, m.p. 192.5°, hydrolysed by NaOH in boiling MeOH to 1-amino-3:4cyclotetramethyleneanthraquinone, m.p. 189°. Analogously cyclisation of o-2'-amino-4': 5'-cyclotrimethylenebenzoylbenzoic acid, m.p. 172-173° (decomp.) when placed in a bath at 165° and rapidly heated, could not be effected. Reduction of (V) affords 0 - 2' - acetamido-4' : 5' - cyclotrimethylenebenzylbenzoic acid, m.p. 238°, whence successively 1-acetamido-3: 4-cyclotrimethyleneanthrone, m.p. 277-278° after darkening at 272° and softening at 274°, 1-acetamido-3: 4-cyclotrimethyleneanthraquinone, m.p. 212°, and 1-amino-3: 4-cyclotrimethyleneanthraquinone, m.p. 212.5°. NHPhAc, o-, m-, and p-C6H4Cl·NHAc, 3:4-, 2:4-, and 2:5-C6H3Cl2 NHAc, and p- $NH_2 \cdot C_6 H_4 \cdot NHAc$ do not react with $C_6 H_4 (CO)_2 O$ and $AlCl_3$ in $C_2 H_2 Cl_4$. $m \cdot C_6 H_4 Me \cdot NHAc$ is transformed mainly into 0-2'-acetamido-4'-methylbenzoylbenzoic acid (VI), m.p. 184°, transformed by prolonged boiling with dil. HCl into the corresponding lactam, m.p. 268°, with a smaller amount of 0-4'-acetamido-2'-methylbenzoylbenzoic acid, m.p. 241°, which with conc. H_2SO_4 at 130° affords 2-amino-4-methylanthraquinone, m.p. 265°. Similarly (VI) yields 1-amino-3-methylanthraquinone, m.p. 193°. H. W.

Regularities of substitution in polynuclear vat dyes. I. Constitution of a dichloroisoviolanthrone and preparation of some Bz-2: Bz-3'isoviolanthrone derivatives. II. Dinitro- and diamino-isoviolanthrones of the Bz-2: Bz-2'series. T. MAKI and Y. NAGAI (Ber., 1937, 70, [B], 1867-1872; 1872-1874).-I. Treatment of isoviolanthrone suspended in PhNO₂ with SO₂Cl₂ at

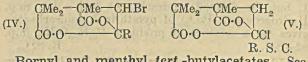
violanthrone, chlorodihydroxyisoviolanthrone, and Bz-3 : Bz-3'dichloroisoviolanthrone (I) (A; X = Cl). (I) with KOH-MeOH at 165°/18 atm. or with 25% NH3 and Cu powder at 200°/48 atm. gives respectively

0 Bz-3 : Bz-3'-dimethoxy-(II) and Bz-3 : Bz-3'-diamino- (III) -isoviolanthrone. The constitution of (I), (II), and (III) follows from the observation that each yields a blue vat which is regarded as characteristic of dibenzanthrone or isodibenzanthrone derivatives disubstituted in the Bz nuclei. Further, oxidation of (I) with CrO3-H₂SO₄ causes almost complete removal of Cl and production of Bz-2: 3-Bz-2': 3'-isoviolanthronediquinone. Again (I), (II), and (III) dissolves so readily in alkaline Na₂S₂O₄ that vat formation takes place at 40-50° whereas isoviolanthrone disubstituted in the o- or m-position to CO yields vats with greater or less difficulty on account of steric hindrance. The two Cl of (I) are readily replaced by OMe or NH₂, whereas Cl in β -position of the anthraquinone nucleus reacts with difficulty. 8:8'-Dimethoxyisoviolanthrone is a red-violet vat dye whereas (II) gives considerably darker, violet-blue shades on cotton. Bz-2: Bz-2'-Dimethoxyisoviolanthrone is described.


II (cf. A., 1936, 338). isoViolanthrone suspended in AcOH is converted by HNO₃ (d 1.48) at 60° into Bz: 2-Bz: 2'-dinitroisoviolanthrone, reduced by $Na_2S_2O_4$ and NaOH to Bz: 2-Bz: 2'-diaminoiso-molanthrone. The greenish-blue shades of the latter on cotton become grey or fast black when the material is treated with NaOCl; warming with NaOH-Na₂S₂O₄ on exposure to air reproduces the blue-green colour. The black dye is regarded as Bz: 2-Bz: 2'-isoviolanthrone in which a N₂ group is present either as an intramol. bridge or 2 N2 groups are distributed between two isoviolanthrone mols.

H. W.

Synthetic cyperones and their comparison with α - and β -cyperones. P. S. Adamson, F. C. McQuillin, R. Robinson, and J. L. Simonsen (J.C.S., 1937, 1576-1581).-Application of different processes has given cyperones structurally identical with α - and β -cyperones. The respective oximes, semicarbazones, and 2:4-dinitrophenylhydrazones of the natural and synthetic ketones exhibit undepressed m.p. on admixture and closely resemble each other in most respects. They show, however, certain optical and crystallographic divergencies, so that complete identity is not claimed. CH2Cl·CH2·CO2Et and NHEt2 give 1-diethylaminopentan-3-one, b.p. 84°/13 mm., the methiodide of which with l-dihydrocarvone and NaNH2 affords 1-methyl-1-yketoamyl-4-isopropenylcyclohexan-2-one, m.p. 103°. Cyclisation of this compound with NaOEt yields 1: 10-dimethyl-7-isopropenyl- $\Delta^{1(9)}$ -octal-2-one (I), b.p. 1.10-atmetige-1-isophopetige-1^{Aug}-octai-2-one (1), b.p. 160-163°/11 mm. $[\alpha]_{5461}$ +88° [oxime (O_a), m.p. 144°; semicarbazone (O_a); m.p. 202°, $[\alpha]_{5461}$ +91·5° in CHCl₃], and with H₂SO₄ leads to the isomeride, b.p. 130°/1 mm., $[\alpha]_{5461}$ +342° [oxime (O_β), m.p.


152—153°, $[\alpha]_{5461}$ +147° in EtOH; semicarbazone (O_β), m.p. 204° (decomp.), $[\alpha]_{5461}$ +201° in EtOH; 2:4-dinitrophenylhydrazone, m.p. 226°]. *l*-Dihydro-carvone, NaNH₂, and CH₂Cl·CH₂·CO₂Et give *Et* 1-methyl-4-isopropenylcyclohexan-2-one-1- β -propionate (II), b.p. 181–182°/13 mm., $[\alpha]_{5461}$ –10.65° in CHCl₃, which with Et₂C₂O₄ followed by loss of CO affords *Et* 3-carbethoxy-1-methyl-4-isopropenylcyclo-hexan-2-one-1- β -propionate, b.p. 170–175°/3 mm., $[\alpha]_{5461}$ –29.4° in CHCl₃ (semicarbazone, m.p. 147– 148°). This ester is hydrolysed to the acid (semi-carbazone, decomp. 192–193°), re-esterified to (II). CHMeBr·CO₂Et and (II) yield the β -form of (I), b.p. 173–175°/14 mm., $[\alpha]_{5461}$ +111.7°, purified through the semicarbazone (B_β), decomp. 209–210° [oxime (B_β), m.p. 141–144°, $[\alpha]_{5461}$ +112° in EtOH; 2 : 4-dinifrophenylhydrazone, m.p. 225–227°]. Re-duction (Na) of this compound gives α -dimethyl- η -1-methyl-4-isopropenylcyclohexan-2-one-1-β-propionate duction (Na) of this compound gives ak-dimethyl-nisopropenyldecal- β -ol, b.p. 160°/12 mm. (3:5-dinitro-benzoate, m.p. 150—152°), dehydrated to an impure hydrocarbon, b.p. 148°/22 mm., [a]5461 +47.0°. F. R. S.

Desmotropic rearrangements of camphoronic acid derivatives. Constitution of camphoranic and isocamphoranic acids. J. BREDT [with F. DEMEURE (J. pr. Chem., 1937, [ii], 149, 153-163).- α - (I) and β -Camphoronyl chloride (II) with HCO₂H give anhydrocamphoronic acid (III) and with piperidine give a piperidide, m.p. 131.5-132.5°, probably that of (III). Reactions of (I) and (II) and of their Brderivatives and of camphoranic and isocamphoranic acid, regarded as cis- and cis-trans-isomerides, $CMe_2 < CMe(CO_2H) > CH \cdot CO_2H$, are discussed on the basis of desmotropic rearrangement of the chlorides, as annexed.

The following formulæ are assigned: liquid Me, camphoronate CO2Me CMe2 CMe(CO2H) CH2 CO2Me;

camphoronate $CO_2Me^{-CMe_2 \cdot CMe_1 \cdot CO_2Me^{-CMe_2 \cdot CO_2}}}}}}}}}}}}}}}}}}}}}}}}}}}$ phoronic acid, m.p. 154°, O<CO·CMe₂ CO·CMe·CHBr·CO₂H, and its chloride, m.p. 168° (IV; R = Cl), and α -Me ester, m.p. 100° (IV; R = OMe), and β -Me ester, m.p. 142°, $CO_2Me \cdot CMe_2 \cdot CMe_{CHBr \cdot CO} > 0$; α -anhydrocamphoronyl chloride (V).

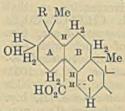
Bornyl and menthyl tert.-butylacetates.-See B., 1937, 1134.

Water-soluble ligninsulphonic acid from an extracted oak lignin. H. HIBBERT and W. H. STEEVES (J. Amer. Chem. Soc., 1937, 59, 1768).— Acetylation and hydrolysis of solvent-extracted oak wood meal gives a CHCl₃-sol. (10%) (OMe 23.6%) and -insol. (90%) lignin (OMe 20.6%), sol. in aq. NaHSO₃ at 100—125°; the sulphonic acid with NaOH gives 4.6% of vanillin and syringaldehyde.

R. S. C.

Lignin. IX. Sulphonation of lignin. H. FRIESE and E. CLOTOFSKI (Ber., 1937, 70, [B], 1986-1989).—The product of the action of H_2SO_4 -Ac₂O-AcOH on Ca ligninsulphonate [obtained by the action of $Ca(HSO_3)_2$ on lignin (I)] is the salt, $C_{36}H_{41}O_{20}S_2Ca$, closely analogous to the compound, $C_{36}H_{39}O_{21}S_2Ba$ (II), derived directly from (I) and H₂SO₄-Ac₂O-AcOH. A portion of the unsaturated linkings of (I) is unaffected by $Ca(HSO_3)_2$ but is sensitive to H_2SO_4 . The presence of an aromatic ring in lignin would be expected to cause a much more energetic action with H₂SO₄ leading to a more highly sulphonated product. Ca(HSO3)2 has no action on (II) at 135°. Nitrolignin is not sulphonated by H_2SO_4 -AcOH-Ac₂O but the presence of a sugar residue becomes evident during the change.

H. W. Catalytic isomerisation of the acids of pine oleo-resin and rosin. E. E. FLECK and S. PALKIN (J. Amer. Chem. Soc., 1937, 59, 1593–1595).— Isomerisation of *l*-abietic acid (I) by various common catalysts, mostly at 250°, is recorded. Pd–C is the most effective, giving α -pyroabietic acid, $[\alpha]_{2}^{\alpha}$ about +53°, from (I), α - and β -pimaric and the sapinic acids, and various resins. The reaction is much faster than when heat alone is applied. R. S. C.


Chemical constituents of lichens found in Ireland—Pertusaria concreta, Nyl., form Westringii, Nyl. J. BREEN, J. KEANE, and T. J. NOLAN (Sci. Proc. Roy. Dublin Soc., 1937, 21, 587—592).— Et₂O extraction of the lichen gives concretin, $C_{14}H_7O_5Cl_3$, m.p. 287° (decomp.), which contains 3 readily acetylated OH (Ac_3 derivative, m.p. 220— 222°) and is methylated with difficulty by CH₂N₂ to a Me_3 derivative, m.p. 200—202°. Extraction of the residue with boiling COMe₂ yields mannitol and norstictic acid, m.p. 267° (decomp.). P. G. M.

Constituents of pyrethrum flowers. IX. Optical rotation of pyrethrolone and the partial synthesis of pyrethrins. H. L. HALLER and F. B. LAFORGE (J. Amer. Chem. Soc., 1937, 59, 1678— 1681).—Pyrethrolones, obtained from pyrethrins I and II, are identical, being dextrorotatory in both cases. Pyrethrolone and Me chrysanthemumcarboxylate-carboxyl chloride, b.p. $88-92^{\circ}/0.2$ mm., yield an oil, which gives no cryst. semicarbazone, but tetrahydropyrethrolone gives tetrahydropyrethrin II, identified as semicarbazone. Chrysanthemumcarboxyl chloride gives similarly tetrahydropyrethrin I, but the derived semicarbazone had a low m.p. Hydrogenation (PtO₂) of pyrethrin I semicarbazone gives (?) a mixture of products, $C_{22}H_{35}O_3N_3$, m.p. $82-84^{\circ}$. R. S. C.

α-Elaterin. L. REICHEL and K. H. EISENLOHR (Annalen, 1937, 531, 287–296).—Elaterin (I) (Merck),

from Echallium Elaterium, is extracted with light petroleum and then fractionally pptd. by H₂O from dioxan, thereby giving α -elaterin (II), $C_{23}H_{32}O_6$ or $C_{24}H_{34}O_6$, m.p. 234°, $[\alpha]_{12}^{23}$ -52.9° in CHCl₃. Treatment of (I) with PhMe affords β -elaterin, m.p. 195.5° in small amount. (II) does not contain OMe or CO. According to the methods of Verley and Bolsing or Zerevitinov 2 OH are present. Oxidation of (II) with Ag₂O in boiling CHCl₃ gives the corresponding diketocompound, $C_{23}H_{30}O_6$ or $C_{24}H_{32}O_6$, m.p. 222°, which reddens fuchsin- H_2SO_3 , and affords a *dioxime* and a mono-p-nitrophenylhydrazone. The OH groups are therefore sec. Amorphous, ill-defined compounds are obtained from (II) and BzCl, p-C₆H₄Me·SO₂Cl, diphenylcarbamyl chloride, PCl₅, or SOCl₂. Titration of (II) with 0.1N-KOH shows the presence of 1 lactone ring and treatment with 2N-KOH establishes that of I Ac, thus accounting for the 6 O. Distillation of (II) with Zn dust gives $1: 4-C_{10}H_8Me_2$, also obtained by use of Se; hence (II) is derived from a hydronaphthalene. Quaternary Me is absent since dehydrogenation of (II) by S does not give MeSH. With $C(NO_2)_4$ (II) gives a distinct yellow colour. Bromination is accompanied by loss of HBr; it yields amorphous products from which fractions, decomp. 172° and 142°, respectively, have been separated. Hydrogenation (PtO₂ in AcOH) of (II) gives an amorphous H_6 -derivative, transformed by Se at 320° into $1:4-C_{10}H_6Me_2$ and other substances. Ozonis-ation of (II) affords AcOH, COMe₂, and HCO₂H establishing the presence of :CHMe, :CMe₂, and :CH₂ in the side-chains. H. W.

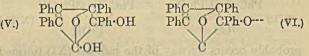
Constitution of acid sapogenins. XIII. Hederagenin and oleanolic acid. Z. KITASATO [with H. SHISHIDO] (Acta Phytochim., 1936, 10, 199-210; cf. A., 1936, 1261).—Oleanonic acid monobromolactone with CrO_3 in AcOH-H₂SO₄ gave (a) the monobromolactone of oleanintricarboxylic acid, m.p. 270° (decomp.). This is converted by CH_2N_2 into the Me₂ ester, m.p. 190°, which with Zn-AcOH gave Me. oleanintricarboxylate, m.p. 203—205°, $[\alpha]_{2}^{26}$ +57.3° in CHCl₃. The free acid has m.p. 289—290° (decomp.), and the Me₃ ester, m.p. 167-169°, the latter with KOH-MeOH giving a neutral product, $C_{28}H_{44}O_3$, m.p. 181–183°, $[\alpha]_D^{26}$ +159.4° in CHCl₃ (oxime, m.p. 215-216°); (b) the monobromolactone of oleanoltricarboxylic acid which on reduction and methylation as above gave Me3 oleanoltricarboxylate, m.p. 183°, $[\alpha]_D^{28} + 73.3^\circ$ in CHCl₃. Me₃ keto-oleanintricarboxylate gave a neutral product, $C_{28}H_{42}O_4$, m.p. 178°, $[\alpha]_{D}^{ab}$ +60.9° in CHCl₃, with KOH-MeOH, and oleanoltricarboxylic acid gave an acid, $C_{32}H_{50}O_6$,

m.p. 222—224°. The lactone of Me₂ acetyloleanoldicarboxylate (A., 1936, 1262) is converted by treatment with HBr-AcOH into Me an isomeric form, m.p. 267— 270° (decomp.), which with CH₂N₂ gave a Me₂ ester, m.p. 269—270°, identical with that from the lactone of ketoacetyl-

oleanolic acid by oxidation and methylation. The results fix the structure of the A, B, and C rings as shown, and the structure of the D and E rings is discussed. Here R = Me for oleanolic acid and $CH_2 \cdot OH$ for hederagenin. P. W. C.

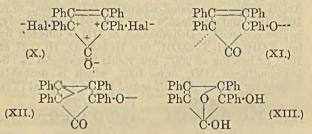
Structure of β -boswellinic acid. J. C. E. SIMPSON (Nature, 1937, 140, 467).—Oxidation of β -boswellinic acid (I) with CrO₃ yields a monoketone, C₂₉H₄₆O, m.p. 196°. Similar oxidation of Me β boswellinate gives the corresponding keto-ester, C₃₁H₄₈O₃, m.p. 160° (oxime, m.p. 200°). Thus (I) is a β -OH-acid. L. S. T.

Structure of gossypol. I. K. N. CAMPBELL, R. C. MORRIS, and R. ADAMS. II. Acylation. R. F. MILLER, D. J. BUTTERBAUGH, and R. ADAMS. III. Gossypol ethers. R. C. MORRIS and R. ADAMS. IV. Anhydrogossypol and its derivatives. R. F. MILLER and R. ADAMS (J. Amer. Chem. Soc., 1937, 59, 1723-1728, 1729-1731, 1731-1735, 1736-1738).-I. Gossypol (I), C₃₀H₃₀O₈, exists in forms, m.p. 184° (from Et.O), 199° (from CHCl₃), and 214° (from ligroin), respectively, and in a red form, m.p. 184-185° (photomicrographs), shown by X-ray examination to be cryst., forms 1:1 compounds with AcOH, m.p. 187°, HCO₂H, m.p. 197-198°, EtCO2H, m.p. 177-178°, and Pr°CO,H, m.p. 159-160°, and with SnCl₄ gives a complex containing 1 Sn and 2 Cl. Its isolation is improved. Colour reactions are described.

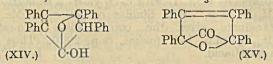

II. The prep. of the white, m.p. 276—279° (decomp.; sinters at 265°), and yellow hexa-acetates, m.p. 184— 186° (decomp.; sinters at 138°), is improved. The former with Ac_2O -NaOAc gives the latter. With conc. H_2SO_4 both or with $Ba(OMe)_2$ the latter yield (I). Tetra-acetylgossypolone is obtained in 57% yield from the white, but only in 7% yield from the yellow, form. Ozonisation of the white form gives a substance, $C_{19}H_{20}O_8$, m.p. 140°. A hexabenzoate, m.p. 202—204° (decomp.), is obtained. III. Me SO containing 25% of H.SO converts (I)

III. Me_2SO_4 containing 25% of H_2SO_4 converts (I) into a red Me_6 ether (II), m.p. 158-160° after sintering at 140°, giving in H₂SO₄ an orange colour, hydrogenated to an autoxidisable, colourless H2-derivative, which could not be isolated, and unaffected by hot 40% aq. KOH, 30% KOH-EtOH, o-C₆H₄(NH₂)₂, or NHPh·NH₂. With Me₂SO₄ in McOH a colourless Me_4 ether (III), forms, m.p. 259° (decomp.) and 190°, respectively, is obtained, which gives a scarlet colour with H₂SO₄, is indifferent to CH₂N₂, alkali, and FeCl₃, but is readily oxidised, and gives a Ac_2 derivative, m.p. 264-265° [by further acetylation affords a (?) dehydration product, m.p. about 188° after sintering at 140°; hydrolysed to (III) by KOH-EtOH]. Addition of KOH-MeOH to (I) in Me₂SO₄ gives a mixture of (II) and (III). Addition of Me_2SO_4 to (I) in KOH gives a white Me6 ether (IV), forms, m.p. 235–237° and 221°, respectively, which gives an orange colour in H_2SO_4 and resembles (II) in properties, but with Ac₂O-NaOAc gives a product, m.p. 179-181° after sintering at 160°. Gradual addition of $Na_2S_2O_4$ to (II) in MeOH gives a (?) H_2 -derivative, m.p. 110—126°, converted by KOH-MeOH in N_2 into (IV), which regenerates (II) when an excess of 25%NaOH is added to its solution in conc. H₂SO₄. Addition of 25% NaOH to (I) in Et_2SO_4 -H₂SO₄ gives a Et_6 ether (V), m.p. 128-130° after sintering at 118°; addition of KOH-EtOH to (I) in Et₂SO₄-EtOH gives

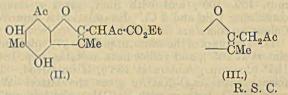
a Et_6 ether, forms, m.p. 211-212° and 231-232°, respectively.


IV. Anhydrogossypol, $C_{30}H_{26}O_6$, m.p. 230°, best obtained from (I) by C_5H_5N , HCl in boiling PhMe, probably contains 2 OH (Zerevitinov), with Ac20 gives a mixture of the two hexa-acetates of (I), regenerates (I) very readily in cold, dil. acids, and affords (II) or (IV) (according to the conditions of methylation) and (V) even in anhyd. media; in liquid NH₃ it gives diaminogossypol (VI), C₃₀H₃₂O₆N₂, m.p. 228-230° after decomp. at 187-195° (unstable hydrochloride), also obtained similarly from (I) and giving with Ac₂O-NaOAc a NN'-Ac₂ tetra-O-acetate, m.p. 282° (decomp.), and hydrolysed even by warm dil. AcOH to (I). Probably (I) is a symmetrical mol., containing 2 enolic OH; in anhydrogossypol these and two other OH lose 2 H₂O to give C:C·O·C rings, and (VI) probably contains two C.C.NH.,. R. S. C.

Heteropolarity. XXX. Oxidation and reduction products of tetracyclone. R. PUTTER and W. DILTHEY (J. pr. Chem., 1937, [ii], 149, 183— 216; cf. this vol., 425).—Tetracyclone (tetraphenylcyclopentadienone) (I) is converted by various reactions into furan and α -pyrone derivatives. 65% HNO₃ in AcOH or, better, dioxan converts (I) into 2 : 5-dihydroxy-2 : 3 : 4 : 5-tetraphenylcyclopentenone (II), m.p. 191—192° [2 active H (Zerevitinov)]; in AcOH some tetraphenyl- α -pyrone (III), forms, m.p. 166—167° and double m.p. 158° and 166°, respectively, is also obtained. Dehydration of (II) is effected by hot KOH-C₅H₅N-EtOH, dry HCI-Et₂O, HCO₂H at 100°, or heating at 200°, but yields 2-benzoyl-3 : 4 : 5triphenylfuran (IV), m.p. 166°, which is probably formed by way of the half-acetal (V) and radical (VI).


The structure of (IV) is determined by (a) reduction by distillation with Zn dust or boiling with HI-red P to 2:3:4-triphenyl-5-benzylfuran, m.p. 163° [re-converted into (IV) by amyl nitrite], (b) conversion by MgPhBr into diphenyl-1-2:3:4-triphenylfurylcarbinol, unstable, m.p. 179° (perchlorate, m.p. 267°, a coloured carbenium salt, which with H₂O₂-AcOH-Ac₂O gives a colourless hydroperoxide, m.p. 235-238°), (c) Beck-mann rearrangement of the oxime, m.p. 230° (formed only slowly), by PCl₅ in Et₂O into 2-chloro-3:4:5triphenylfuran, m.p. 168° (stable to AgOAc), (d) reduction by Zn dust in AcOH to ab-diphenyl-ab-di-2-3:4:5-triphenylfurylethylene (VII), m.p. 233° (green halochromy in H_2SO_4), and by Al-Hg in KOH-EtOH to 2-3:4:5-triphenylfurylbenzyl alcohol (VIII), m.p. 176—177° (red halochromy in H_2SO_4 ; acetate, m.p. 180—181°). Br adds as ions to (VII) in CHCl₃, giving a bluish-green solution, which soon becomes colourless when EtOH is added, owing to formation of the pinacone; disproportionation then gives (IV), but the (VIII) formed could not be isolated. The compound, m.p. 193°, considered by Kohler and Jones (A., 1919, i, 533) to be 2:4-diphenyl-5-benzylfuran, is probably by analogy $\alpha\beta$ -diphenyl- $\alpha\beta$ -di-2-3:5-diphenylfurylethylene. The colourless product (Dilthey et al., A., 1934, 297), intermediate in the formation of (I), is $C_{58}H_{42}O_2$, gives with Br HBr and a coloured solution, which is decolorised by EtOH and then gives (IV); by analogy with (VII) it is thus $\alpha\beta$ -diphenyl- $\alpha\beta$ -di-2-3:4:5-triphenylfurylethane; this is confirmed by its conversion by SeO₂ into (VII); it is unaffected by HI–P or Na–Hg in PrOH, but, when distilled with Zn dust, gives triphenylbenzylfuran. (III), best obtained from (I) by H_2O_2 -Ac₂O-AcOH, with MgPhBr, followed by HCIO₄, gives pentaphenylpyrenium perchlorate, m.p. 195°, identified by conversion by NH₃ into pentaphenylpyridine, and obtained also from (II) by MgPhBr. C_6H_4 Me-MgBr converts (III), but not (II), into 3:4:5:6-tetraphenyl-2-tolylpyrenium perchlorate, m.p. 297°. In cold KOH–EtOH (III) instantly gives a coloured solution, probably containing

coloured solution, probably containing CPh < CPh - CPh(OH) > 0, from which it is recovered by CO_2 , but heating with alkali causes decomp. With soda-lime at 200° (III) gives tetraphenylfuran (IX). With Cl_2 in cold C_6H_6 (I) gives a (? 2:5-)dichloride, m.p. 206°, which with alkali or Ag_2O or when dissolved in conc. H_2SO_4 or heated alone regenerates (I) and with AgOAc in AcOH gives (III); these reactions are undergone also by the known dichloride, m.p. 188°, and the dibromide, and are due the accumulation of positive charges, as in (X); the second reaction


probably occurs by way of the radicals (XI) (formed by loss of Ac₂O from the diacetate) and (XII). With hot Ac_2O (II) rearranges to a mixture of (III) and (IV); with cold Ac₂O and a little C₅H₅N it gives a monoacetate, m.p. 145°, which with HCl-MeOH gives (III) only, but with HCl-Et₂O, hot HCO₂H, or hot KOH-EtOH, or, when heated above the m.p., gives (IV) by way of coloured products; the former change probably occurs by way of (XIII), the O in position 2 penetrating into the ring between $C_{(1)}$ and $C_{(2)}$; the latter change is best explained by (VI) and it remains undecided whether (II) is not rather the $2:3-(OH)_2$ -compound or the half-acetal (XIII). Pb(OAc)_4 with (II) gives an 80% yield of 2-benzoyloxy-3:4:5-triphenylfuran, m.p. 114°, which with NULL, NUL sizes NUPPE, NHRZ and with 3% HCL. NHPh·NH2 gives NHPh·NHBz and with 3% HCl-MeOH gives 2-hydroxy-3:4:5-triphenylfuran, m.p. 125°; this or its benzoate with MgPhBr gives (IX). The colourless "hydrate" of (I), obtained from Bz2 and CO(CH₂Ph)₂ in the cold or from MgPhBr and CPh < CPh - CCHPh, is formulated as (XIV), since the known and the following reactions demand sometimes the structure, 3-hydroxy-2:3:4:5-tetraphenyl- Δ^4 -cyclopentenone, and sometimes 2-hydroxy-5-benzylidene-2:3:4-triphenvl-2:5-dihydrofuran. With SeO₂ in aq. AcOH (XIV) gives a little (IV), with Cl₂

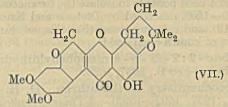
in C_6H_6 at 50° HCl and 2-chloro-5-hydroxy-2:3:4:5tetraphenyl- Δ^3 -cyclopentenone, m.p. 206°, which with AgOAc gives (III), with KOH-EtOH yields 20% of (I), with Zn dust and AcOH gives tetraphenylcyclopentenone, and loses HCl to NaHCO₃ in hot MeOH

to yield 2:5-oxido-2:3:4:5-tetraphenyl- Δ^3 -cyclopentenone (XV), m.p. 149°; this is unstable in light, yielding (in COMe₂) (III), which is also obtained by heating at 160° or treating with HCl in Et₂O.

R. S. C. Constitution of usnic acid. Y. ASAHINA, S. MAYEDA, and M. YANAGITA (Proc. Imp. Acad. Tokyo, 1937, 33, 270—271).—Usnic acid (I) in abs. EtOH at 150° gives *Et acetousnetate* (II), m.p. 150°, the structure of which is proved by alkaline fission to usnetic acid and AcOH or acetousnetol (deacetyldecarboxyusnic acid) (III), m.p. 197—198°, and CO₂. This proves the position of the CO₂H in the side-chain and the pyronone formula for (I).

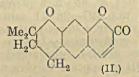
Anthocyanins. II. Pigment of red autumn leaves of species of Acer. S. HATTORI and K. HAYASHI. III. Pigment of the scarlet blossoms of Lycoris radiata. K. HAYASHI (Acta Phytochim., 1937, 10, 129–138, 139–146; cf. A., 1936, 1307).—II. Extraction of the autumn leaves of A. circumlobatum, Maxim (1759 g.), and of A. ornatum, Carr., var. Matsumuræ (247 g.), with 1% HCl-MeOH, treatment of the extract with basic Pb acetate and of the Pb salt with 5% HCl-MeOH followed by pptn. of the filtrate with Et₂O leads to the separation of 50 and 10 mg. respectively of a pigment [picrate, m.p. 173° (decomp.)], which on hydrolysis gave an aglucone closely resembling cyanidin chloride. The pigment is probably identical with chrysanthemin (I), a specimen of which was prepared for comparison from the red blossoms of Chrysanthemum sinense, Sabine.

III. The blossoms of *L. radiata* were similarly extracted and gave a pigment [*picrate*, m.p. 173° (decomp.)], hydrolysed to glucose and an aglucone closely resembling cyanidin chloride. The pigment is probably (I). P. W. C.


Heterocyclic compounds. III. Synthesis of cyclopenteno-1': 2': 2: 3-chromones and a discussion on the mechanism of the Pechmann and Simonis reactions. S. Z. AMED and R. D. DESAI (Proc. Indian Acad. Sci., 1937, 6, A, 6—11).—Et cyclopentanone-2-carboxylate with PhOH, m- and p-cresol, and β -C₁₀H₇·OH yields respectively cyclopenteno-, m.p. 120° (styryl derivative, m.p. 161°), 6-methylcyclopenteno-, m.p. 144°, and 7-methylcyclopenteno-1': 2': 2: 3-chromone, m.p. 83—84°, and cyclopenteno-(1': 2': 2: 3)-1: 4- $\beta\alpha$ -naphthapyrone, m.p. 165—

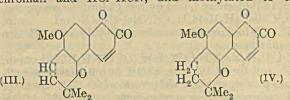
166° (styryl derivative, m.p. 220°). Alkaline hydrolysis to the corresponding o-hydroxybenzoic or naphthoic acid was complete in each case. The mechanism of the reaction is discussed. F. R. G.

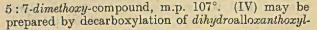
Synthesis of rotenone and its derivatives. XIII. W. BRIDGE, A. J. CROCKER, T. CUBIN, and A. ROBERTSON. XV. Structure of toxicarol. S. W. GEORGE and A. ROBERTSON (J.C.S., 1937, 1530-1535, 1535-1542).-XIII. 7-Hydroxy-2 : 2-dimethylchromanone gives no red ferric reaction and forms an acetate, m.p. 91°, p-nitrobenzoate, m.p. 137°, and Me ether [2: 4-dinitrophenylhydrazone, m.p. 221°; product with semicarbazide acetate, m.p. 226° (decomp.)]. The chromanone is reduced (Clemmensen) to 7-hydroxy-2: 2-dimethylchroman (I), m.p. 72° (pnitrobenzoate, m.p. 126°). 7-Hydroxycoumarin (benzyl ether, m.p. 154°) is hydrogenated to β-2 : 4-dihydroxyphenylpropionic acid, converted into 7-hydroxy-3:4dihydrocoumarin. 7-Benzyloxy-3:4-dihydrocoumarin and MgMeI yield 7-benzyloxy-2: 2-dimethylchroman, b.p. 160-165°/0.4 mm., debenzylated to (I). 6-Hydroxy-2-isopropylcoumaranone is acetylated to 3:6-diacetoxy-2-isopropylbenzofuran, m.p. 56°, and methylated (MeI) to 6-methoxy-2-isopropyl-β-coumar-anone (II), m.p. 78°. Resorcinol Me ether and Et α -bromoisovalerate form α -3-methoxyphenoxyisovaleric acid, b.p. $148-153^{\circ}/.01$ mm., which is cyclised through the acid chloride to (II). The semicarbazone of 7-methoxychromanone has m.p. 231° (lit. 222°). 7-Benzyloxy-4-methylcoumarin, m.p. 117.5°, from the OH-compound, with MgMeI gives 7-benzyloxy-2:2:4trimethyl- Δ^3 -chromen (III), m.p. 58°, hydrolysed to the 7-OH-compound, m.p. 130°, also obtained through 7-benzyloxy-2 : 2-dimethylchromanone, m.p. 73°, and MgMeI. Catalytic reduction of (III) affords 7-hydroxy-2:2:4-trimethylchroman (p-nitrobenzoate, m.p. 137°). In forming 2-hydroxy-4-benzyloxyacetophenone on ozonolysis the behaviour of 7-hydroxy-2:2:4-trimethylchromen is strictly analogous to that of xanthyletin and xanthoxyletin. The foregoing experiments support the structure assigned to 5:7dihydroxychroman.


XIV. 5:7-Dihydroxy-2:2-dimethylchromanone and MeI-K₂CO₃ give the 5-hydroxy-7-methoxy-compound (IV), m.p. 65-66° (2:4-dinitrophenylhydrazone, m.p. 254°), reduced (Clemmensen) to 5-hydroxy-7-methoxy-2: 2-dimethylchroman (V), b.p. 125—128°/0.4 mm. (p-nitrobenzoate, m.p. 122°). Benzylation of (IV) gives 5-hydroxy-7-benzyloxy-2: 2-dimethylchromanone, m.p. 134° (2: 4-dinitrophenylhydrazone, m.p. 242°), methylated (MeI-K₂CO₃) to the 7-benzyloxy-5-methoxy-compound, m.p. 111° (+H₂O, m.p. 81-82°; 2:4-dinitrophenylhydrazone, m.p. 215°), which is debenzylated to the 7-OH-derivative, m.p. 208-209° [2:4-dimitrophenalhudrazone, m.p. 275° (decomp.)]. This dinitrophenylhydrazone, m.p. 275° (decomp.)]. substance is also obtained by condensation of phloroglucinol Me ether and ßß-dimethylacryl chloride, and is reduced (Clemmensen) to 7-hydroxy-5-methoxy-2:2dimethylchroman (VI), m.p. 103-104° (p-nitrobenzoate, m.p. 143°). Toxicarol forms an oxime, m.p. 236-237°. Dehydrodihydrotoxicarol (VII) with Me₂SO₄-K₂CO₃ gives the Me ether, m.p. 216°, hydrolysed (KOH-Zn) to dihydrotoxicarolic acid Me ether, m.p. 203°, which with hot KOH is converted into derric

acid and (V) and not (VI). This confirms the structure (VII). 5:7-Dihydroxy-2:2-dimethylchroman

and Me2-cyanomethyl-4:5-dimethoxyphenoxyacetate after reduction give allodihydrotoxicarolic acid $(+H_2O)$, m.p. 148°, converted (NaOAc-Ac₂O) into the monohydrate of the O-Ac₂ derivative, m.p. 211— 212°. Me 2-cyanomethylphenoxyacetate and phloroglucinol afford phenoxyacetic acid-2-phloracetophenone, m.p. 184—185°, which with Ac₂O-NaOAc yields the diacetate, m.p. 240—241°, hydrolysed to 5:7-dihydroxychromeno-(3':4':2:3)-chromone, m.p. 256— 257°. F. R. S.


Constituents of the bark of Zanthoxylum americanum (Mill). IV. Constitution of xanthyletin. (MISS) J. C. BELL, W. BRIDGE, and A. ROBERTSON. V. Structure of alloxanthoxyletin. A. ROBERTSON and T. S. SUBRAMANIAM (J.C.S., 1937, 1542—1545, 1545—1549).—IV. Cresorcylaldehyde, $2:4:5\cdot(OH)_2C_6H_2Me\cdotCHO, m.p. 105 106^{\circ}$ (cf. Clemmensen, A., 1914, i, 271), is obtained by reduction of resorcylaldehyde and is itself reduced to m-xylorcin. This verifies its orientation and that of 7-hydroxy-6-methylcoumarin (cf. this vol., 72). 7-Hydroxy-2: 2-dimethylchroman and HCN-HCl give 7-hydroxy-6-formyl-2: 2-dimethylchroman (I), m.p. 104° [2: 4-dinitrophenylhydrazone, m.p. 302° (decomp.)],



also obtained by ozonolysis of dihydroxanthyletin (II). The structure of (II) is confirmed by its synthesis by decarboxylation of *dihydroxanthyletin* - 3 - *carboxylic* prepared from (I) and

acid, m.p. 158—159°, prepared from (I) and $CN \cdot CH_2 \cdot CO_2H$, followed by hydrolysis. Xanthyletin is reduced (Pd-H₂) to the H₄-compound, m.p. 156°.

is reduced $(Pd-H_2)$ to the H_4 -compound, m.p. 156°. V. alloXanthoxyletin (III), $C_{15}H_{14}O_4$, m.p. 115.5°, has been isolated in small amount from the bark. It is hydrolysed (KOH) to COMe₂ and phloroglucinol Me ether and is reduced $(Pd-H_2)$ to the H_2 -compound (IV), m.p. 155°. (IV) is hydrolysed and methylated to O-methyldihydroalloxanthoxyletinic acid, m.p. 178° (decomp.), hydrogenated to the H_4 -compound, m.p. 108.5°. Ozonolysis of (IV) affords 7-hydroxy-5-methoxy-8-formyl-2 : 2-dimethylchroman (V), m.p. 90°, also obtained from 7-hydroxy-5-methoxy-2 : 2-dimethylchroman and HCl-HCN, and methylated to the

etin-3-carboxylic acid, m.p. 240° (decomp.), obtained from (V) and CN·CH₂·CO₂H, followed by hydrolysis. It has not been possible to isolate the furanocoumarin, m.p. 99—100°, described by Dieterle and Kruta (this vol., 112), and it is suggested that this substance is a mixture of known compounds. F. R. S.

1-Keto-2:2-di-p-aminophenyldihydrothionaphthen.—See B., 1937, 1025.

Stereochemistry of thianthren. G. H. KEATS (J.C.S., 1937, 1592—1593).—2-Thianthrenyltrimethylammonium iodide, m.p. 190°, could not be resolved through the *d*-camphor-10- or α -bromo-*d*-camphor- π sulphonate or H *d*-diacetyltartrate. A val. calc. for the energy for transforming thianthren from the folded to the planar state indicates little configurational stability. F. R. S.

2:3-Diketopyrroline, a uninuclear substance related to isatin. O. MUMM and H. HORNHARDT (Ber., 1937, 70, [B], 1930-1947; cf. A., 1911, i, 79).—Hydroxymethylenepinacolindioxime, m.p. 84°, is transformed by AcCl into tert.-butylisooxazole, b.p. 156°/760 mm., the methosulphate of which is converted by KCN at 0° into a-methylimino-y-keto- $\delta\delta$ -dimethylhexonitrile, m.p. 42°. This is gradually converted by conc. HCl into $\alpha\gamma$ -diketo- $\delta\delta$ -dimethyl-hexoic acid (+1H₂O), m.p. 64°, or by less drastic treatment into the corresponding amide, m.p. 115°. The nitrile is transformed by HCl in EtOH into the non-cryst. pyrroline derivative, the constitution of which is established by its scission to y-imino-a-ketoδδ-dimethylhexoic acid, m.p. 185°, or by aq. EtOH in absence of HCl into ay-diketo-88-dimethylhexomethylimide, m.p. 183°. Analogously Me hexyl ketone and HCO₂Et with NaOEt give the hydroxymethylene compound, the monoxime, m.p. 118°, of which passes readily into hexylisooxazole, m.p. 97-98°/11 mm. (platinichloride); the corresponding methosulphate is converted by KCN into α -methylimino- γ -ketodeco-nitrile, which could not be distilled unchanged; when treated with HCl-EtOH it appears to give a pyrroline derivative which could not be isolated, whilst in absence of EtOH it is transformed by aq. dil. or conc. HCl into ay-diketodecoamide, m.p. 99°. p-C₀H₄MeAc gives the corresponding CH·OH derivative the oxime, m.p. 133°, of which is converted by AcCl into p-tolylisooxazole, m.p. 60°, the methosulphate of which is transformed by KCN into a-methyliminoβ-p-toluoylpropionitrile (I), m.p. 126°. The constitution of (I) is established by the observation that it yields with MgMeI a product which is decomposed by HCl to the substance

 $OH \cdot CMe(C_6H_4Me) \cdot CH_2 \cdot C(:NMe) \cdot CMe: N \cdot MgI, m.p. 175° (decomp.), by AcOH into the compound OH \cdot CMe(C_6H_4Me) \cdot CH_2 \cdot C(:NMe) \cdot CMe(OH) \cdot NH \cdot MgI, m.p. 183° (decomp.), and by NH_4Cl into the compound, NH_2 \cdot CMe(C_6H_4Me) \cdot CH_2 \cdot C(:NMe) \cdot CMe: N \cdot MgI, m.p. 197°. (I) in dioxan is transformed by HCl-EtOH into the substance$

OH·C(C₆H₄Me):CH·C(:NMe)·C(OEt):NH,HCl, decomp. 145°, and by HCl in abs. EtOH into 3-methylimino-2keto-5-p-tolylpyrroline dihydrochloride (II), decomp. 183° (corresponding monopicrate, m.p. 192°); if a trace of H₂O is present, Me α -keto- β -p-toluoylpropionate, m.p. 84° [hydrolysed to α -keto- β -p-toluoylpropionic acid $(+1H_2O)$], m.p. 143°, is also produced. NaHCO₃ solution and (II) at 0° give the yellow-green ψ -base, $\frac{C(C_0H_4Me):CH}{NH}$ -C(OEt)·NH₂, which gives K (+2H₂O), Ag (+1MeOH), decomp. 172°, and Cu (+4H₂O), decomp. 191°, salts. NH₃ transforms (II) in EtOH into the compound,

 $C(C_6H_4Me)$:CH NH C(NH) C(OEt) NH₂, m.p. 153°. Cold H₂O slowly transforms (II) into 2:3-diketo-5-p-tolylpyrroline, m.p. 229-230° [K (+2H₂O) salt], converted by aq. NaOH into y-imino-a-keto-y-p-tolylbutyric acid, m.p. 155°. y-Imino-a-keto-y-p-tolylbutyr-piperidide, m.p. 184°, -amide (+0.5H,O), m.p. 179°, and -methylamide (+0.5H₂O), m.p. 169°, are formed analogously. The great similarity of (II) to isatin is shown during hydrogenation (PtO₂ in EtOH). Initially a compound resembling isatide is produced which regenerates the parent on contact with air but alternately the airstable γ -amino- α -hydroxy- γ -p-tolyl- Δ^{β} -butenoic acid, decomp. 245-250°, results. NH,Ph and (II) in EtOH afford 3-phenylimino-2-keto-5-p-tolylpyrroline (III), m.p. 237°, which under non-standardised conditions yields a mono- and a di-hydrochloride. KOEt and (III) give the K salt. Hydrogenation (PtO₂ in EtOH) of (III) affords $Et \gamma$ -amino- α -anilino- γ -p-tolylbutyrate, m.p. 123°. CH₂(CN)₂ and (III) in EtOH yield 2-keto-5-p-tolyl-3-dicyanomethylenepyrroline, $C(C_6H_4Me):CH \longrightarrow C:C(CN)_2$, which has a very high m.p. It is slowly converted by alkali or piperidine into γ -amino- γ -p-tolyl- α -dicyanomethylene- Δ^{β} -butenoic acid, m.p. 276°, transformed by boiling HCl-EtOH into the dihydrochloride, m.p. 148-149°, of the substance, NH₂·C(C₆H₄Me):CH·C(CO₂H):CH·C(:NH)·OEt.

H. W.

dicyclo[1:2:2]Aza-1-heptane. G. R. CLEMO and T. P. METOALFE (J.C.S., 1937, 1523-1526).-2:2:5:5-tetramethylpyrrolidine-3-carboxylate-1-Et acetate, b.p. 169°/16 mm., prepared from CH₂Cl·CO₂Et Et 2:2:5:5-tetramethylpyrrolidine-3-carband oxylate, could not be ring-closed by the Dieckmann 3-Carboxy-2:2:5:5-tetramethylpyrrolreaction. idine-1-acetic acid $(+0.5H_2O)$, m.p. 261°, is obtained by hydrolysis of the ester. 2-Pyrrolidone and Et₂C₂O₄ give Et 2-pyrrolidone-3-oxalate, m.p. 132°, which could not be ring-closed. Pyridine-4-carboxylic acid, obtained from 2:4-lutidinic acid, is reduced (Na-C5H11·OH) and esterified to Et piperidine-4carboxylate, b.p. 74°/1 mm. (picrate, m.p. 172°), which is reduced (Bouveault) to 4-piperidylcarbinol, b.p. 122°/12 mm. (picrate, m.p. 120°). The carbinol with PBr₅ gives the bromide, which in alkaline solution is converted into dicyclo[1:2:2]aza-1-heptane, b.p. 130°/755 mm. [methiodide, m.p. 320° (decomp.); aurichloride, m.p. 280° (decomp.); picrolonate, m.p. 255° (decomp.); picrate, m.p. 274° (decomp.)] (cf. Prelog et al., A., 1936, 1388). F. R. S.

Purification of piperidine and its physiological significance. E. S. COOK and T. H. RIDER (J. Amer. Chem. Soc., 1937, 59, 1739-1741).—The following are recorded for the carefully fractionated materials: piperidine, b.p. 106.3°/751 mm. (hydrochloride, m.p. 248.4—249.9°); 2-methylpiperidine, $\mathbf{XVII}(d)$

b.p. 117—119° (uncorr.)/750 mm. (hydrochloride, m.p. 216—217°); piperidino-, m.p. 172·6—173·6°, and 2-methylpiperidino-formanilide, m.p. 127·9°. M.p. are corr. R. S. C.

Effect of the purification of piperidine on the activity of derived local anæsthetics. T. H. RIDER and E. S. COOK (J. Amer. Chem. Soc., 1937, 59, 1741—1742).—Drugs prepared from pure piperidine often differ in activity from those prepared from material containing 2-methylpiperidine. The following are prepared from the pure bases : piperidinopropanediol diphenylurethane hydrochloride, m.p. 203-5—205°, more active than the crude drug; 2-methylpiperidinopropanediol, m.p. 69—71°, and its diphenylurethane hydrochloride, m.p. 190-6—192-6°; γ -2-methylpiperidinopropyl alcohol, b.p. 110—112°/10 mm., and phenylurethane, m.p. 218-5—219°. M.p. are corr. Anæsthetic activities of the urethanes and benzoates are recorded, the Me derivatives being more and less active in the latter and former series, respectively. R. S. C.

Piperidinoacetanilide.—See B., 1937, 1131.

Modification of the Guareschi pyridine synthesis. II. N. PALIT (J. Indian Chem. Soc., 1937, 14, 354—357).—In presence of NaOMe, CN·CH:CAr·NH₂ condenses with Et benzylideneacetoacetate to give the 5-cyano-3-carbethoxy-4phenyl-6-aryl-2-methylpyridine: *Ph*, m.p. 189° (together with 3: 5-dicyano-2: 4: 6-triphenyldihydropyridine, m.p. 268°), p-tolyl, m.p. 189°, p-anisyl, m.p. 187°; and with Et benzylidenecyanoacetate to give the 3: 5-dicyano-4-phenyl-6-aryl- $\Delta^{3:6}$ -dihydro-2-pyridone: *Ph*, m.p. 250—251° (NHEt₂ as catalyst gives the diethylammonium salt, m.p. 208—210°), p-tolyl, m.p. 293°, p-anisyl, m.p. 296°. A. LI.

Manufacture of [pyridinium] methine and polymethine dyes.—See B., 1937, 1032.

Syntheses in the octahydropyrrocoline and octahydropyridocoline series. G. R. CLEMO and T. P. METCALFE (J.C.S., 1937, 1518-1523).-Et piperidyl-1: 2-diacetate, b.p. 155°/12 mm., from the monoacetate and CH2Cl·CO2Et, and K give 2-ketooctahydropyrrocoline (I), b.p. 76-77°/11 mm. [picrate, m.p. 187° (decomp.)], which with MgEtI yields 2-hydroxy-2-ethyloctahydropyrrocoline, b.p. 82°/1 mm. (picrolonate, m.p. 198°). Dehydration (PCl₅) of the alcohol yields 2-ethylhexahydropyrrocoline (II), b.p. 50°/1 mm. (picrolonate, m.p. 191°), catalytically reduced to the H_{g} -compound, b.p. 41°/1 mm. [picrate, m.p. 149°, *picrolonate*, m.p. 161° (slight decomp.); methiodide, m.p. 232° (decomp.)]. 1-Keto-octahydropyrrocoline (III) and MgEtI give 1-hydroxy-1ethylhexahydropyrrocoline, b.p. 85-87°/1 mm., dehydrated (PCl₅) to 1-ethylhexahydropyrrocoline, b.p. $74-75^{\circ}/1$ mm. (picrolonate, m.p. 185°), which is catalytically reduced to the H₈-compound (IV), b.p. 64°/11 mm. (picrate, m.p. 134°; . picrolonate, m.p. 176°). Et piperidyl-2-acetate and CH2Cl·CH2·CO2Et give Et piperidyl-2-acetate-1-3-propionate, b.p. 165-169°/11 mm. Et 1-keto-octahydropyridocoline-2carboxylate, MeI, and KOEt yield 1-keto-2-methyl-octahydropyridocoline, b.p. 80°/1 mm. (picrate, m.p.

176°), which is reduced (Clemmensen) to 2-methyloctahydropyridocoline (V), b.p. 56-57°/1 mm. (picrate, m.p. 182°), and by the Wolff method to the isomeric compound (picrate, m.p. 158°). MgMeI and (III) yield 1-hydroxy-1-methyloctahydropyrrocoline, b.p. 72-73°/1 mm. (picrate, m.p. 142°; picrolonate, m.p. 207°), dehydrated to 1-methylhexahydropyrrocoline (picrolonate, m.p. 183°), reduced to the H_8 -compound, b.p. 62°/11 mm. [picrate, m.p. 191° (decomp.); picrolonate, m.p. 198° (decomp.)]. Reduction of (I) by the Wolff and Clemmensen methods gives octahydropyrrocoline, and by the latter method 2-hydroxyoctahydropyrrocoline, b.p. 90°/11 mm. [picrate, m.p. 133°; picrolonate, m.p. 174° (decomp.)], is also obtained. The isomeric form of the 2-OH-compound, b.p. 95°/ 14 mm. (picrate, m.p. 175°), is obtained by reducing (I) with Na-Hg. Et 2-carbethoxypiperidvl-1-β-propionate and K give Et 1-keto-octahydropyrrocoline-2carboxulate, b.p. 103°/1 mm. It has now been shown that of the degradation products of strychnine (cf. this vol., 38) the base A is 4-methyl-3-ethylpyridine but B is not (II), (IV), or (V), although it may be another form of (V). F. R. S.

3: 3-Di-*p*-aminophenyloxindole.—See B., 1937, 1025.

Condensation of 4-hydroxy-2:6- and -2:8dimethylquinolines and of their derivatives with aromatic aldehydes. A. MEYER and H. DRUTEL (Compt. rend., 1937, 205, 462-464; cf. A., 1935, 758, 1506; this vol., 389, 431).-The ethiodides of 4-hydroxy-2:6-(I) and -2:8-dimethylquinoline (II) with an excess of aromatic aldehyde and a little piperidine at 130-140° interact at position 2. Thus (I) with the appropriate aldehyde affords : 4-hydroxy-2-(8-phenyl-Dr-butenyl)-, m.p. 198-199°, -2-(3':4'methylenedioxy)styryl-, m.p. 271-272°, -2-(4'-methoxy)-styryl-, m.p. 260-261°, and -2-(4'-dimethylamino)styryl-6-methylquinoline ethiodide, m.p. 253°. Similarly, (II) affords 4-hydroxy-2-(2'-hydroxy)styryl-, m.p. 248—249°, 210—212°, -2-(4'-hydroxy-3'-methoxy)styryl-, m.p. -2-(3': 4'-methylenedioxy)styryl-, m.p. 208-209°, and -2-(4'-dimethylamino)styryl-8-methyl-quinoline ethiodide, m.p. 218-219°. The OEtderivative of (II) with p-NMe₂·C₆H₄·CHO (III) at 140° in presence of ZnCl₂ affords 4-ethoxy-2-(4'-dimethylamino)styryl-8-methylquinoline, m.p. 174-175°. The reaction is general for the OEt-analogues of (I) and (II). 4-Chloro-2:8-dimethylquinoline with an equimol. amount of (III) in boiling Ac₂O containing some EtOH gives 4-chloro-2-(4'-dimethylamino)styryl-8-methylquinoline, m.p. 127-128°. Similarly treated, (II) or its Bz derivative affords 4-hydroxy-2-(4'-dimethylamino)styryl-8-methylquinoline, m.p. 315-316°, which indicates that acetylation of (II) probably J. L. D. precedes interaction with (III).

Spectrochemical investigations in the isoquinoline series. M. GERENDAS and E. VARGA (J. pr. Chem., 1937, [ii], 149, 175—182).—Absorption spectra are recorded for piperonyl- (I) and acet- β hydroxy - β - 3 : 4 - methylenedioxyphenylisopropylamide, acet-, piperonyl-, and veratryl- β -hydroxy- β -3 : 4-dimethoxyphenylisopropylamide, 1-methyl-, 1piperonyl- (II), and 1-veratryl-3 : 4-methylenedioxyisoquinoline, 1-methyl- and 1-veratryl-3: 4-dimethoxyisoquinoline. The amides have a two-banded and the isoquinolines a three-banded spectrum. The intermediate product (A., 1936, 1124) in the synthesis of (II) from (I) is shown by its two-banded absorption spectrum to be *piperonyl-a-piperonylidene-ethylamide*.

R. S. C.

Acridine salts of "yeast" and "muscle" adenylic acids. R. S. TIPSON (J. Biol. Chem., 1937, 120, 621—623).—The acridine salt of "muscle" adenylic acid (I) prepared as described by Wagner-Jauregg has the composition $C_{13}H_9N_2C_{10}H_{14}O_7N_5P$, and not that assigned by him (cf. A., 1936, 743), and m.p. 217—218° (darkening), $[\alpha]_{25}^{25}$ —23·2° in 10% HCl after 5 min. ($[\alpha]_{25}^{25}$ calc. for (I), -29·2°). The acridine salt (same formula) of "yeast" adenylic acid (II) has m.p. 183—184° (no previous darkening), $[\alpha]_{25}^{25}$ —28·6° in 10% HCl after 10 min. ($[\alpha]_{25}^{25}$ calc. for (II), -35·9°). E. W. W.

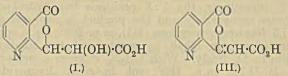
2:8-Dialkoxy-10-alkylacridinium derivatives with various kinds of amino-groups on the carbon in position 5. XVI. Synthesis of 5-m-aminoanilino-2:8-dialkoxy-10-alkylacridinium derivatives and 5:5'-m-phenylenebis(amino-2:8-dialkoxy-N-alkylacridinium) derivatives. Κ. ISHIHARA (J. Chem. Soc. Japan, 1935, 56, 1368-1387; cf. this vol., 211).-m-C₆H₄(NH₂,HCl)₂ and 5-chloro-2: 8-dimethoxy-10-methylacridinium chloride (I) in H₂O afford 5-m-aminoanilino-2:8-dimethoxy-10-methylacridinium chloride hydrochloride (II), +0.9MeOH, m.p. 228°, and 5:5'-m-phenylenebis-(amino-2: 8-dimethoxy-10-methylacridinium chloride)*, +4H₂O (III), m.p. 250° (decomp.) (for compounds marked * analysis indicates formation of basic salts), also obtained from (I) and (II). When heated, (II) loses HCl, giving the acridinium chloride, which with gives 5-m-aminoanilino-2:8-dimethoxy-10-KOH methylacridinium hydroxide (IV), m.p. 110° (decomp.) (with KI in AcOH gives the corresponding iodide, +0.4AcOH, m.p. about 225°), also obtained from (III) by KOH. When heated, both the above-mentioned hydroxides dissociate into $m - C_6 H_4 (NH_2)_2$ and 2:8-dimethoxy-N-methylacridone. KI in HCl converts (II) into the corresponding acridinium iodide hydriodide, $+H_2O$, m.p. 209°, and (III) into the corresponding bis(acridinium iodide), +0.4AcOH, m.p. 271° (decomp.). KOH converts (III) into the bis(acridinium hydroxide), m.p. 232°, also obtained from (IV). Similarly are obtained 5-m-aminoanilino-2:8-dimethoxy-10-ethyl-, m.p. 173° [corresponding iodide*, m.p. about 220° (semihydriodide semihydrochloride, +1.25H₂O, m.p. 219°)], -2:8-diethoxy-10methyl-, m.p. 163° [corresponding iodide*, m.p. 240° (semihydriodide, m.p. 237°)], and -2:8-diethoxy-10ethyl-acridinium hydroxide, m.p. 156° [corresponding iodide, +0.166AcOH, m.p. 235° (hydriodide*, +MeOH, m.p. 224°)], 5:5'-m-phenylenebis(amino-2:8-dimethoxy-10-ethyl-, m.p. 249°, -2:8-diethoxy-10-methyl-, m.p. 193°, and -2: 8-diethoxy-10-ethyl-acridinium hydroxide), m.p. 193° [corresponding dichlorides, m.p. $(*+3H_2O)$ 240° (decomp.), $(*+3H_2O)$ 251° (decomp.), and $(+2H_2O,0.5MeOH)$ 259° (decomp.), and diiodides, m.p. (+0.4AcOH) 271° (decomp.), 253° (decomp.), and 285° (decomp.), respectively]. The original should be consulted. R. S. C.

1-cycloHexyl-3-methyl-5-pyrazolone.—See B., 1937, 1025.

Synthesis of anserine from *l*-1-methylhistidine. O. K. BEHRENS and V. DU VIGNEAUD (J. Biol. Chem., 1937, **120**, 517—522).—*l*-1-Methylhistidine [*l*- α -amino- β -(*N*-methyl-5-glyoxalinyl)propionic acid] (I), from anserine (II), and MeOH-HCl give the *dihydrochloride*, m.p. 205°, of the *Me* ester (III) of (I). Carbobenzyloxy- β -alanyl azide (A., 1935, 629) with (III) in CHCl₃ gives a syrup converted by NaOH into *carbobenzyloxyanserine*, isolated as the *reineckate*. This is decomposed by C₅H₅N and the product reduced (Pd-H₂) to (II), isolated through the Cu salt. E. W. W.

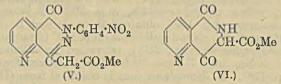
Creatinine derivatives. III. Alkylation with methyl and ethyl sulphates. Structure of methylcreatinine. W. R. CORNTHWAITE (J. Amer. Chem. Soc., 1937, 59, 1616—1617; cf. A., 1936, 864).— Addition of Me_2SO_4 to creatinine in hot H_2O gives methylcreatinine sulphate, converted by NaHCO₃ into methylcreatinine, which yields 5-benzylidene- and furfurylidene-2-methylcreatinine. Et_2SO_4 gives mainly creatinine Et sulphate, m.p. 146°, with some ethylcreatinine sulphate. The structure of methylcreatinine is thus confirmed. R. S. C.

Barbituric acids containing the 2-methylallyl group. W. J. DORAN and H. A. SHONLE (J. Amer. Chem. Soc., 1937, 59, 1625-1626).-The following are prepared : Et₂ n-, b.p. 99°/2 mm., and iso-propyl-, b.p. 126–127°/9–10 mm., n-, b.p. 131-132°/3 mm., sec.-, b.p. 102-104°/1.5 mm., and iso-butyl-, b.p. 110-113°/1 mm., n-, b.p. 112-114°/1 mm., sec.-, b.p. 142-144°/8=9 mm., and iso-amyl-, b.p. 115-142°/1b.p. 142—144 / β—9 mm., and uso-amge-, 0.p. 110— 116°/2·5 mm., β-methyl-n-butyl-, b.p. 135—137°/7 mm., n-hexyl-, b.p. 127—131°/1 mm., β-ethyl-n-butyl-, b.p. 129—133°/1 mm., and allyl-β-methylallylmalonate, b.p. 124—127°/6 mm.; Et₂ β-methylallyl-, b.p. 113— 116°/14—17 mm., di-β-methylallyl-, b.p. 114—1165°/ 1 mm., and ethyl-α-ethylpropyl-malonate, b.p. 111-112°/5·5 mm.; 5-ethyl-, m.p. 165-167°, -n-, m.p. 173·5-174·5°, and -iso-propyl-, m.p. 163-164°, -n-, m.p. 125-126°, -sec.-, m.p. 140-142°, and -iso-butyl-, m.p. 179.8-180.5°, -n-, m.p. 111-112°, -sec.-, m.p. 141.5—143°, and -iso-amyl-, m.p. 143·6—144·4°, -β-methyl-n-butyl-, m.p. 142—143·5°, -α-ethylpropyl-, m.p. $181 \cdot 5 - 183^{\circ}$, -n-hexyl-, m.p. $127 - 129^{\circ}$, - β -ethyl-n-butyl-, m.p. $148 - 150^{\circ}$, -allyl-, m.p. $165 - 167^{\circ}$, -cyclopentyl-, m.p. 159-161°, -phenyl-, m.p. 203-205°, -5-β-methylallylbarbituric acid; 5-β-methylallyl-, +0.5H₂O, m.p. 187—189°, 5:5-di-β-methylallyl-, m.p. 207-209°, N: 5-diallyl-5-B-methylallyl-, m.p. 149-150°, and a-ethylpropyl-barbituric acid, m.p. 197.5-198°, 5-n-propyl-, m.p. 157-158°, -n-, m.p. 137-137.5°, and -sec.-butyl-, m.p. 138-139°, and -sec.amyl-5-\beta-methylallylthiobarbituric acid, m.p. 146.5-148°. The pharmacological properties of the barbituric acids are summarised. R. S. C.


Some new derivatives of barbituric acid. M. BUSCH and F. KEYSER (Biochem. Z., 1937, 293, 16— 21).—Anilinobarbituric acid, heated with Ac₂O, gave an acetate, m.p. 255—260° (decomp.). Et diethylaminomalonate, b.p. 98—100°/19 mm., was prepared by heating NHEt₂ with bromomalonate and when treated with $CO(NH_2)_2$ and NaOEt gave 5-diethylaminobarbituric acid, m.p. 350° (decomp.). Et diisobutylaminomalonate, b.p. $148-152^{\circ}/19$ mm., was similarly prepared and converted into 5-diisobutylaminobarbituric acid, m.p. 355° . Et diamylaminomalonate, b.p. $148-150^{\circ}/19$ mm., with CO(NH₂)₂ in NaOEt-EtOH gave 5-diamylaminobarbituric acid, m.p. 313° , but when heated in a sealed tube with CO(NH₂)₂ gave a compound, $C_{15}H_{14}O_{3}N_{4}$, m.p. 325° . Et allylaminomalonate, b.p. $132-135^{\circ}/19$ mm., gave 5-allylaminobarbituric acid, m.p. $232-237^{\circ}$. 5-Bromo-5ethylbarbituric acid when heated in a sealed tube at 50° with EtOH and NHEt₂ gave 5-diethylamino-5ethylbarbituric acid, m.p. $218-219^{\circ}$. P. W. C.

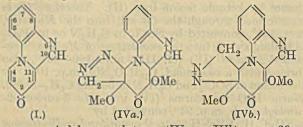
Thiobarbituric acids.—See B., 1937, 1135.

Derivatives of piperazine. X. Reactions with unsaturated esters. II. J. P. BAIN and C. B. POLLARD (J. Amer. Chem. Soc., 1937, **59**, 1719—1721; cf. A., 1935, 502).—Piperazine (I) with the appropriate Et₂ arylidenemalonate or aryl aldehyde and $CH_2(CO_2Et)_2$ gives 1:4-bis- $\beta\beta$ -dicarbethoxy- α -phenyl-(II), m.p. 151—152°, -3:4-methylenedioxyphenyl-, m.p. 150—151°, -o-chlorophenyl-, m.p. 156—157°, -p-anisylm.p. 146—147°, and -2-furyl-ethylpiperazine, m.p. 126—127°. By either method 1-phenylpiperazine gives 1-phenyl-4- $\beta\beta$ -dicarbethoxy- α -phenyl-, m.p. 145°, -g-anisyl-, m.p. 146—147°, and 2-furyl-ethylpiperazine, m.p. 130—104°. With hot KOH-EtOH (II) gives (?) K_2 α -ethoxybenzylmalonate and (I). With acid (II) gives (I) and CHPh:C(CO_2Et)_2, or PhCHO, CH₂(CO_2Et)_2, and, in one experiment, CHPh:CH·CO₂H. With H₂ and Raney Ni in dioxan at 100°/68 atm. (II) gives (I), NN'-dibenzylpiperazine, CH₂(CO_2Et)₂, and CH₂Ph·CH(CO₂Et)₂. The reaction of PhCHO with CN·CH₂·CO₂Et is catalysed by (I), but no addition occurs. R. S. C.


Pyrimidines. I. Preparation of 6-hydroxy-2-methylpyrimidine-5-acetic acid and its deriv-L. R. CERECEDO and F. D. PICKEL atives. (J. Amer. Chem. Soc., 1937, **59**, 1714–1716).-NH:CHMe·NH₂,HCl, CO₂Et·CH(COH)·CH₂·CO₂Et, NH:CHMe·NH2,HCl, and conc. NaOH give Et 6-hydroxy-2-methylpyrimidine-5-acetate (I), m.p. 179-180° (picrate, m.p. 157-158°), the acethydrazide, m.p. 246°, from which with HNO2 gives 6-hydroxy-2-methyl-5-aminomethylpyrimidine hydrochloride, m.p. 277° (decomp.) (corresponding picrate, m.p. 157-158°), converted by HNO2 into 6-hydroxy-2-methyl-5-hydroxymethylpyrimidine, m.p. 215°. From (I) are obtained the 5-acetamide, m.p. 242° (picrate, m.p. 207°), and 5-acetic acid, m.p. 254– 256°, and with POCl₃ Et 6-chloro-2-methylpyrimidine-5-acetate, m.p. 35–36°, b.p. 108–112°/11 mm., which furnishes the phenylhydrazide, m.p. 236°. R. S. C.

Synthesis of 2:5-naphthyridine derivatives. E. OCHIAI, K. MIYAKI, and S. SOTO (Ber., 1937, 70, [B], 2018—2023).— β -2-Carboxyphenylglycerolactone is converted by HCl into *iso*coumarincarboxylic acid and by H₂O at 250° into *iso*coumarin; it is therefore a δ -lactone. β -3-Carboxy-2-pyridylglycerolactone (I) on the other hand loses 1 H₂O and 1 CO₂ giving 2-acetylnicotinic acid (II), the constitution of which is confirmed by its oxidation in alkaline solution to CHI₃ and quinolinic acid. It cannot therefore be a δ -lactone and it appears that it is a γ -lactone (I) which passes into the unsaturated lactone (III) and

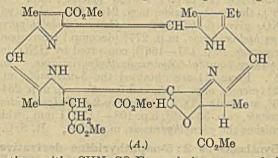
thence by ketonic fission into (II). Therefore (I) is transformed through the Ca salt into the Me ester, m.p. 154°, converted by SOCl₂ in C_5H_5N or by P_2O_5 in boiling xylene into the enol-lactone of Me 3-carboxypicolyl-2-acetate (IV) (cf. III), m.p. 160—161°, also formed with a compound, $C_{10}H_3O_4NCl$, m.p. 108°, by the action of SOCl₂ and C_5H_5N in boiling C_6H_6 -PhMe. Warm H₂O transforms (IV) into Me 3-carboxy-2picoloylacetate, m.p. 94°, converted by


p-NO₂·C₆H₄·NH·NH₂ into the p-nitrophenylhydrazone anhydride (V), m.p. 180°, thus proving that β -3-carb-

oxy-2-pyridylglyceric acid forms a γ -lactone. CH₂N₂ transforms (IV) into Me 3-carbomethoxy-2-picoloylacetate, b.p. 150—155°/0·04 mm., also prepared from the enol-lactone and anhyd. MeOH at 100—110° with small amounts of a compound, m.p. 215°. It gives an oximino-derivative, decomp. 186°, transformed by H₂ (Pd-C in HCl) into Me 1:4-dihydroxy-2:5naphthyridine-3-carboxylate (VI), m.p. 220° (decomp.) after softening at 207°, which with POCl₃ at 120—130° affords Me 1-chloro-4-hydroxy-2:5-naphthyridine-3carboxylate, decomp. 227°. H. W.

Phthaloylation. Action of quinoxaline-2:3dicarboxylic anhydride on o-phenylenediamine. G. B. CRIPPA and A. AGUZZI (Gazzetta, 1937, 67, 352-358; cf. A., 1929, 706).-Quinoxaline-2: 3-dicarboxylic anhydride (I) and o-C₆H₄(NH₂)₂ in EtOH quinoxaline-3-carboxyl-2'-aminoanilide-2-carbgive oxylic acid (II), m.p. 168°, with NN'-o-phenylenebis-(quinoxaline-3-carboxylamide-2-carboxylic acid) (?), m.p. 186-188°. With o-NHAc C6H4 NH2, (I) gives the Ac derivative (III), m.p. 217°, of (II), from which it is also obtained. Either (II) or (III) with Ac₂O in excess gives quinoxaline-2: 3-dicarboxyl-2'-acetamidophenylimide, m.p. 310-315°, which with NaOH followed by HCl yields (III). E. W. W.

Derivatives of glucazidone. K. MAURER and B. SCHIEDT [with H. SCHROETER and, in part, H. PLESSING] (Ber., 1937, **70**, [B], 1857—1861; cf. A., 1935, 1381).—The typical aromatic reagents attack the pyridone nucleus of glucazidone (I), apparently invariably in position 3. Substitution does not occur with all reagents and if the conditions are made more drastic the ring system is destroyed. Gradual addition of (I) to fuming H_2SO_4 (20% SO₃) gives glucazidone-3-sulphonic acid (II) (+H₂O), m.p. 275° (decomp.) after darkening (K, Na, and Ag salts). (II) is transformed by fuming HNO₃ into 3-nitroglucazidone, m.p. 215°, also obtained from (I). Oxidation of (II) with aq. KMnO₄ gives quinoxaline-2carboxylic acid, m.p. 210°. Br appears to substitute (II) initially in the 1:3 positions but hydrolysis occurs immediately and the product is regarded as 1:3-dihydroxyglucazidone (III), m.p. 206°; it is very readily sol. in alkali hydroxide and the solution absorbs O₂ freely. With CH₂N₂ it gives a product, C₁₄H₁₂O₃N₄, m.p. 186°, sol. in alkali hydroxide,

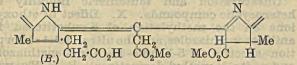

accompanied by a substance (IVa or IVb), m.p. 99– 100°. NHPh·NH₂ and (IV) afford the phenylhydrazone, yellow or red crystals, m.p. 202°. 3-Bromoglucazidone, m.p. 127°, obtained from (I) and Br in CHCl₃ or C₆H₆, gives a methiodide, m.p. 194° (decomp.) (methoperchlorate, m.p. 230°), converted by alkaline K₃Fe(CN)₆ into 3-bromo-10-keto-9-methylglucazidone, m.p. 178°. 3-Chloroglucazidone is obtained from (II) and SO₂Cl₂.

Pyrromethenes and tripyrrylmethanes with bromovinyl groups. H. FISCHER and E. STROBEL (Annalen, 1937, 531, 251-267).-2-Formyl-4-methyl-3-bromovinylpyrrole-5-carboxylic acid (I) condenses readily in MeOH at room temp. with 2:4-dimethylpyrrole (II) to 2-carboxy-3-methyl-4-bromovinyldi-(2: 4-dimethyl)tripyrrylmethane, decomp. 183°. The following 2-carboxy-3-methyl-4-bromovinyldi-()tripyrrylmethanes are obtained similarly : -2 : 4-dimethyl-3-ethyl-; -2: 4-dimethyl-3-β-carboxyethyl-, decomp. 3-ethyl-; -2:4-atmethyl-3-5-carooxyethyl-, decomp. 198°; -2:3-dimethyl-4-ethyl-, decomp. 158°; -2:3-dimethyl-, decomp. 169°; -2-methyl-4-ethyl-, decomp. 141°; -2:3:4-trimethyl-, decomp. 167°; -2-methyl-3:4-diethyl-, decomp. 156°; 2:3-dimethyl-4-propyl-, decomp. 145°; -3-carbethoxy-2:4-dimethyl-4-propyl-, 187°; -2-methyl-3-ethyl-, decomp. 168°. 4-Bromo-2-screbern 3-methyldi (2-methyl 3-ethyl-trimethyl-approximately) carboxy-3-methyldi-(2-methyl-3-ethyl)tripyrrylmethane decomposes at 152°. 2-Carboxy-3-methyl-4-bromo-vinyldi-3-benzoyl-2: 4-dimethyl- and -3-benzoyl-4-phenyl-2-methyl-tripyrrylmethane and the Et ester of the former could not be thus obtained. Addition of HBr-AcOH to (I) and (II) in Ac2O affords 4:3':5'trimethyl-3-bromovinylpyrromethene-5-carboxylic acid hydrobromide (Et ester hydrobromide). The requisite pyrrole and (I) (or its Et ester) analogously give the following -3-bromovinylpyrromethene-5-carboxylic acid hydrobromides: 4:4':5'-trimethyl- (Et ester hydrobromide); 4:5'-dimethyl-4'-ethyl- (Et ester hydrobromide); 4:5'-dimethyl-3'-ethyl- (Et ester hydrobromide); 4:3':4':5'-tetramethyl- (Et ester hydrobromide); 4:5'-dimethyl-3':4'-diethyl- (Et ester hydrobromide); 4:4':5'-trimethyl-3'-propyl- (Et ester hydrobromide). 4'-Carbethoxy-4:3':5'-trimethyl-3bromovinylpyrromethene-5-carboxylic acid hydrobromide and its Et ester hydrobromide, 4'-benzoyl-4: 3': 5'trimethyl-3-bromovinylpyrromethene-5-carboxylic acid hydrobromide and its Et ester hydrobromide, and Et 4'-benzoyl-3'-phenyl-4:5'-dimethyl-3-bromovinyl-

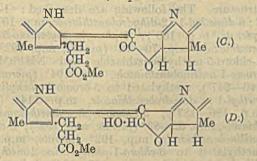
pyrromethene-5-carboxylate hydrobromide are de. scribed. 3-Bromo-2-formyl-4-methylpyrrole-5-carboxylic acid and 2-methyl-3-ethylpyrrole yield 3-bromo-4: 5'-dimethyl-4'-ethylpyrromethene-5-carboxylic acid hydrobromide, converted by Br in AcOH into 3:5dibromo-4: 5'-dimethyl-4'-ethylpyrromethene hydrobromide. 2: 4-Dimethyl-3-bromovinylpyrrole-5-carboxylic acid, obtained by hydrolysis of the Et ester, is extremely unstable. 5-Carbethoxy-2-methyl-4ethylpyrrole-3-acrylic acid suspended in CS2 is transformed by Br into the corresponding dibromide, which loses HBr at 100° with formation of Et 2methyl-4-ethyl-3-bromovinylpyrrole-5-carboxylate; this with SO_2Cl_2 in Et_2O yields Et 2-formyl-4-ethyl-3-bromovinylpyrrole-5-carboxylate (oxime), hydrolysed $\label{eq:constraint} 2 \mbox{-} formyl-4 \mbox{-} ethyl-3 \mbox{-} bromovinyl pyrrole-5 \mbox{-} carboxylic$ to acid. Substitution of Et for Me does not appear to increase the stability of these compounds. H. W.

Source of the formic acid produced on acid hydrolysis of nucleic acids. C. D. STEVENS (J. Biol. Chem., 1937, 120, 751-757).—Acid hydrolysis of thymonucleic acid (I) yields HCO_2H (II) corresponding with the adenine (III) present, and adenine sulphate gives on hydrolysis large quantities of (II); from (I), (III), and not the carbohydrate, is therefore presumably the main source of (II), of which guanine (IV) is also a minor source. Yeast nucleic acid on hydrolysis gives (II), due mainly to (III), and partly to (IV) and to ribose. Pyrimidines give little or no (II). E. W. W.

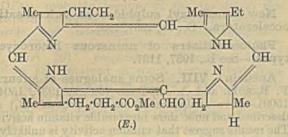
Chlorophyll. LXXX. New purpurins and chlorins by the oxidative degradation of chlorophyll. H. FISCHER and K. KAHR (Annalen, 1937, 531, 209-244).—The presence of CO in purpurin-7 (I) could not be established by NH₂OH or NH₂·CO·NH·NH₂, by acetal production or addition of HCl, or by condensation with $CH_2(CO_2Et)_2$, $CH_2(CN)_2$, or MeNO₂. Benzoylation is not effected in C_5H_5N . Chlorin- e_6 , Me₃ ester is oxidised by KMnO₄ in C_5H_5N to dihydroxychlorin- e_6 , and application of this method to purpurin-7 Me₃ ester leads to purpurin-9 [2-carboxy-2-devinylpurpurin-7 Me₄ ester] (A), m.p. 236° (decomp.), which gives a negative


reaction with CHN₂·CO₂Et and is converted by boiling C_5H_5N into 2-carboxy-2-de-ethylrhodoporphyrin Me_3 ester, m.p. 270°. Similar energetic oxidation of isochlorin- e_4 Me₂ ester gives a 2-carboxychlorin sol. in alkali and 5 : 6-dihydroxy-2-glycolyl-2devinylisochlorin- e_4 Me_2 ester, m.p. 192° (decomp.). Catalytic hydrogenation (Pd in 1% NaOH) of purpurin-7 Me ester (II) gives meso-rhodochlorin, m.p. 178°, also obtained with meso-purpurin-18 from

471


purpurin-18 under similar conditions. With PtO_2 in dioxan meso-purpurin-7 Me₃ ester is converted into the perhydro-compound, m.p. 213°.

The impossibility of hydrolysing (I) to the tricarboxylic acid depends on the instability in the last stage. Hydrolysis of (II) with Ba(OH)₂ gives the sparingly sol. Ba salt of the unstable *chlorin*, $C_{34}H_{32}O_7N_4Ba$, $[\alpha]_{699-730}^{\circ} + 650^{\circ}$ in COMe₂.


stage: Hydrolysis of (1) with $Ba(OH)_2$ gives the sparingly sol. Ba salt of the unstable chlorin, $C_{34}H_{32}O_7N_4Ba, [\alpha]_{690-780}^2 + 650^\circ$ in $COMe_2$. Treatment of phæophorbide a (III) in C_5H_5N with MeOH-anhyd. Na₂CO₃ at 100° gives the chlorin-e₆ Me_2 ester (B), m.p. 215° (decomp.), $[\alpha]_{690-730}^{20}$ -241°

in COMe₂, which when heated above its m.p. yields vinylrhodoporphyrin and a little rhodoporphyrin, both of which are sol. in alkali. (III) is oxidised by KMnO₄ in COMe₂ to unstable *chlorin Me ester*, decomp. 237°, $[\alpha]_{890-730}^{2} -94^{\circ}$ in COMe₂. Analogously *meso*-pheophorbide-a gives unstable meso-*chlorin Me ester*, m.p. 220° (decomp.), $[\alpha]_{890-730}^{2} -99^{\circ}$ in COMe₂. The reactions of these unstable chlorin esters do not differ from those of (I). Gentle oxidation of free chlorin- e_6 with KMnO₄ appears to give a mixture of chlorins, $C_{33}H_{34}O_5N_4$ and $C_{32}H_{34}O_4N_4$ or $C_{32}H_{32}O_4N_4$, esterified by CH_2N_2 to *purpurin*-5 *Me*₂ ester (IV), m.p. 194°, $[\alpha]_{890-780}^{20} + 242^{\circ}$ in COMe₂, and the *chlorin ester C* or *D*, m.p. 177°. Free chlorin- e_6

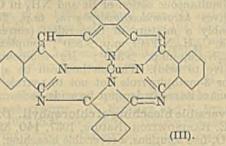
is converted by boiling C_5H_5N in N_2 into chlorin- e_4 and another chlorin. Under similar conditions but in presence of O_2 it gives the *ester*, $C_{33}H_{34}O_4N_4$ or $C_{33}H_{36}O_4N_4$, m.p. 176°. Similarly (IV) gives vinylrhodoporphyrin Me₂ ester, m.p. 273°. Analogously *meso*-chlorin- e_6 affords unchanged material, *meso*chlorin e_4 , a little porphyrin, and a mixture converted by CH_2N_2 into meso-*purpurin-5 Me*₂ ester, m.p. 127°, $[\alpha]_{690-730}^{2}$ +79.5° in COMe₂, and the *chlorin Me ester*,

 $C_{33}H_{36}O_4N_4$ or $C_{33}H_{38}O_4N_4$, m.p. 149°. ψ -Chlorin- p_6 yields diazomethane-meso-chlorinlactone-ester,

 $C_{33}H_{34}O_4N_4$, m.p. 176°, $[\alpha]_{690-750}^{20}$ —378° in COMe₂, whilst in the absence of O_2 it affords this substance with purpurin-5 Me₂ ester and rhodoporphyrin- γ carboxylic anhydride. The action of O_2 in C_5H_5N followed by CH_2N_2 on isochlorin- e_4 leads to γ -formylpyrrochlorin Me₁ ester (E), m.p. 181°, $[\alpha]_{990-750}^{20}$ —401° in COMe₂ (oxime; semicarbazone), also obtained by oxidation with KMnO₄ in C_5H_5N . H. W.

Imidoporphyrins. IV. Synthesis of tetraimidoætioporphyrin. H. FISCHER and F. ENDER-MANN (Annalen, 1937, 531, 245—250; cf. this vol., 169).—Et₂ 3-methyl-4-ethylpyrrole-2:5-dicarboxylate is converted by N_2H_4 , H_2O at 120—130° into 3methyl-4-ethylpyrrole-2:5-dicarboxyhydrazide, m.p. 241°, whence the corresponding diazide, m.p. 66° (decomp.), which could not be transformed satisfactorily into the corresponding diazide, m.p. 66° (decomp.), which could not be transformed satisfactorily into the corresponding diazide, m.p. 66° (decomp.), which could not be transformed satisfactorily into the corresponding diazide, m.p. 66° (decomp.), which could not be transformed satisfactorily into the corresponding diazide, m.p. 66° (decomp.), which could not be transformed satisfactorily into the corresponding diazide, m.p. 66° (decomp.), which could not be transformed satisfactorily into the corresponding diazide, m.p. 66° (decomp.), which could not be transformed satisfactorily into the corresponding diazide, m.p. 262 (probably a mixture of Br and NH₃ in CHCl₃ on (I) gives tetraimidoætioporphyrin, m.p. 252—253° (probably a mixture of isomerides) (corresponding hæmin, C₂₈H₃₂N₈FeCl, m.p. > 380°; complex Cu salt, C₂₈H₃₂N₈Cu, m.p. > 350°; Mg compound, very sensitive to acid). The method can be applied to (II) or 3-methylpyrrole but not to pyrrole itself on account of its ready decomp. by acids. H.W.

Reversible bleaching of chlorophyll. D. PORRET and E. RABINOWITCH (Nature, 1937, **140**, 321–322). —In O₂-free solutions, a reversible bleaching, which ∞ the (light intensity)[†], occurs. HCO₂H markedly increases this bleaching, whilst FeCl₂ and traces of O₂ suppress it. The quantum yield of the reversible bleaching is \gg that of the irreversible oxidation in presence of O₂. Synthetic Et chlorophyllide *a* and the natural chlorophylls *a* and *b* all behave in a similar manner. Possible mechanisms are discussed.


L. S. T. Reactions of nitrite with hæmoglobin derivatives.—See A., III, 411.

N-Tripyrazolylmethane. W. HÜCKEL and H. BRETSCHNEIDER (Ber., 1937, 70, [B], 2024-2026).— K pyrazole, obtained from K and pyrazole (I) in C₈H₆ or from molten (I) and KOH, is converted by CHCl₃ in C₆H₆ into N-tripyrazolylmethane, m.p. 106°, rapidly transformed by acids into (I) and HCO₂H. BzCl or Bz₂O and (I) afford 1-benzoylpyrazole, b.p. 140°/11 mm., m.p. 46°, also obtained in poor yield from Mg pyrazolyl bromide (II) and BzCl. Me pyrazole-1carboxylate, b.p. 92°/11 mm., m.p. 35°, from (I) and ClCO₂Me or from (II), gives CO₂ and (I) when hydrolysed. Di-I-phenyl-3-methylpyrazolonyl-4-ketone (semicarbazone, m.p. 202°) is obtained by the action of H₂O₂ on methenyldi- or methylenedi-phenylmethylpyrazolone. Other attempts to combine three pyrazole residues with one C atom are described. H. W.

Action of cuprous cyanide on o-halogenoacetophenones. II. J. H. HELBEBGER and A. VON REBAY (Annalen, 1937, 531, 279–287; cf. this vol., 264).—o-Cyanoacetophenone (I), b.p. 148°/12 mm., m.p. 48°, is obtained in very modest yield from $o-C_6H_4Ac\cdot NH_2$ (Sandmeyer); it is prepared from $o-C_6H_4ClAc$ and CuCN in quinoline at 150° with a by-

xvii(d, f)

product, m.p. 230°, but is best derived from o- $C_{6}H_{4}BrAc$ in $C_{5}H_{5}N$ at 120° (yield 80%). The unexpected stability of (I) suggests a cyclic structure $C_{6}H_{4} < CO \\ C(:NH) > CH_{2}$ or $C_{6}H_{4} < CO \\ C(:NH_{2}) > CH$, but the hypothesis is negatived by the conversion of (I) by $NH_{2}OH$ into the inner anhydride of phenylmethylketoxime-o-carboxylic acid, $C_{0}H_{4}$ $CO \\ O$ N, m.p. 159°. Similarly, methylphthalazone, m.p. 219°, is obtained from (I) and $N_{2}H_{4},H_{2}O$ or NH_{2} $CO \cdot NH \cdot NH_{2}$. Mild treatment of (I) with $NHPh \cdot NH_{2}$ in MeOH gives the additive product, $C_{13}H_{15}ON_{3}$, m.p. 205–207° (decomp.), converted by short boiling with AcOH into phenylmethylphthalazone. CuCl and (I) in quinoline at 200–220° give the Cu derivative of tetrabenzomonoazaporphin (loc. cit.), whilst in presence of o- $C_{6}H_{4}(CN)_{2}$ (II) [(I): (II): CuCl:: 2: 1: 2] the Cu salt of tetrabenzodiazaporphin results. If the components

are in the ratio l: l: l the product is the *Cu derivative* of *tetrabenzotriazaporphin* (III). The intermediate formation of (I) in the production of Cu tetrabenzoazaporphins from *o*-halogenoacetophenones and CuCN is thus established.

Exposure of finely-divided o-CN·C₆H₄·CH·CH·CO₂H to Br vapour at room temp. gives the corresponding *dibromide*, m.p. 155°, which passes in boiling C_5H_5N into ω -bromo-o-cyanostyrene, m.p. 87°, and *bromo*-o*cyanocinnamic acid*, m.p. 173°. These compounds with CuCl in quinoline undergo much resinification and do not appear to afford compounds resembling the phthalocyanines (cf. Linstead and Noble, this vol., 352). H. W.

Furfurylbarbituric acids.—See B., 1937, 1135.

Reaction of cysteine with acetone. Titration of cysteine by the acetone-hydrochloric acid method of Linderstrøm-Lang. (MISS) G. E. WOODWARD and E. F. SCHROEDER (J. Amer. Chem. Soc., 1937, 59, 1690—1694).—Cysteine and COMe₂ give H₂O and 2:2-dimethylthiazolylidene-4-carboxylic acid (I), m.p. 134—134.5° (decomp.; corr.), $[\alpha]_{p}^{m}$ -183° in COMe₂, hydrolysed by H₂O. In aq. COMe₂ the position of the equilibrium depends on the [COMe₂] and p_{π} . In the Linderstrøm-Lang method of determining glutathione it is essential to add the HCl before the bulk of the COMe₂, as the p_{π} developed prevents the formation of (I), which cannot be titrated with HCl. R. S. C.

Thiazoles. I. 4-Methylthiazole-5-acetic acid and its derivatives. L. R. CERECEDO and J. G. TOLPIN (J. Amer. Chem. Soc., 1937, 59, 1660-1661). -HCS·NH₂ and Et β-bromolævulate in dry EtOH at -5° to 15° give Et 4-methylthiazole-5-acetate (I), b.p. 107—112°/3 mm. (hydrochloride, m.p. 153°, prepared slowly from the β -Cl-ester; picrate, m.p. 130°), hydrolysed to the corresponding acid, m.p. 189° {Me ester, b.p. 111°/18 mm.; amide, 136°; hydrazide, m.p. 111° [picrate, m.p. 258° (decomp.)]}. The hydrobromide, m.p. 164°, of (I) with Na-EtOH gives a trace of β -4-methylthiazolyl-5-ethyl alcohol, isolated as picrate, m.p. 164°, but other methods of reduction either did not affect the ester or decomposed it.

R. S. C.

Unsaturation and tautomeric mobility of heterocyclic compounds. X. Effect of ethoxyl ions on the methylation of 5-substituted 1anilinobenzthiazoles, and the ultra-violet absorption spectra of 5-bromo-1-anilinobenzthiazole and of its N-methyl derivatives. R. F. HUNTER and M. A. WALI (J.C.S., 1937, 1513-1517).-On methylation with Me_2SO_4 alone, 1-anilino-5-methyl-, 5-bromo- and 5-chloro-1-anilino-benzthiazole apparently all react exclusively in the amino-aromatic form, yielding 1-phenylimino-2-methyl-1:2-dihydrobenzthiazoles. The $5-NO_2$ -derivative gives a mixture of isomeric Me derivatives. The presence of EtOH-NaOEt causes extensive methylation on the nonnuclear N in the 5-Me, -Br-, and -Cl-bases, and in the 5-NO₂-compound exclusive alkylation at this position. A comparison of the ultra-violet absorption spectrum of 5-bromo-1-anilinobenzthiazole with that of 5bromo-1-phenylmethylaminobenzthiazole in EtOH indicates that the mol. has the amino-aromatic structure. The following are described : 1-phenyl-2:5-dimethyl-1:2-dihydrobenzthiazole, m.p. 107-108° (picrate, m.p. 180°); 1-phenylmethylamino-5-methyl-benzthiazole, m.p. 70-72° (picrate, m.p. 192°), from 1-chloro-5-methylbenzthiazole and NHPhMe; bromo-1-anilinobenzthiazole, m.p. 194° (picrate, m.p. 246-247°), methylated to 5-bromo-1-phenylimino-2methyl-1: 2-dihydrobenzthiazole, m.p. 114° (picrate, m.p. 186—187°); 5-bromo-1-phenylmethylaminobenz-thiazole, m.p. 82—83° (picrate, m.p. 198°); 5-chloro-1-anilinobenzthiazole, m.p. 192° (picrate, m.p. 238°), methylated to 5-chloro-1-phenylimino-2-methyl-1:2dihydrobenzthiazole, m.p. 125-126° (picrate, m.p. 174°); 5-chloro-1-phenylmethylaminobenzthiazole, m.p. 76-77° (picrate, m.p. 196-198°); and 5-nitro-1anilinobenzthiazole, m.p. 248°, methylated to 5-nitro-1-phenylimino-2-methyl-1:2-dihydrobenzthiazole, m.p. 210°, and 5-nitro-1-phenylmethylaminobenzthiazole, m.p. 152° (picrate, m.p. 173°). F. R. S.

5-Chloro-2-(5'-chloro-o-toluidino)-3-methylbenzthiazole.—See B., 1937, 1025.

New benzthiazyl sulphides as vulcanisation accelerators.—See B., 1937, 1092.

Photosensitisers of numerous heterocyclic types.—See B., 1937, 1137.

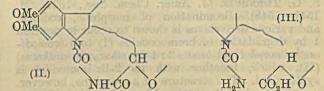
Aneurin. VIII. Some analogues of aneurin. F. BERGEL and A. R. TODD (J.C.S., 1937, 1504– 1509).—Five analogues of aneurin (vitamin- B_1) are described and none show measurable vitamin activity. The results suggest that vitamin activity is unlikely in a 3-(pyrimidyl-5'-methyl)thiazolium salt unless it contains (a) a 4'-NH₂, (b) a 5- β -hydroxyethyl group,

473

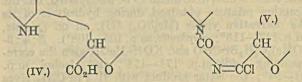
(c) a free 2-position in the thiazole ring. It is also probable that the nature of the substituents at 2' and . 6' in the pyrmidine ring influences vitamin activity. 4-Amino-5-thioformamidomethyl-2-methylpyrimidine and CH, Cl-COMe give 3-(4'-amino-2'-methylpyrimidyl-5'-methyl)-4-methylthiazolium chloride hydrochloride (analogue A) (+H₂O), sinters 261-262°. 4-Hydroxy-5-thioformamidomethyl-2-methylpyrimidine (I) and Me a-bromo-y-acetoxypropyl ketone (II) afford 3-(4'-hydroxy-2'-methylpyrimidyl-5'-methyl)-4-methyl-5-β-hydroxyethylthiazolium chloride hydrochloride (analogue B), m.p. 195-197°. CH₂Cl·COMe and (I) yield 3-(4'-hydroxy-2'-methylpyrimidyl-5'-methyl)-4'methylthiazolium chloride hydrochloride (analogue C), $(+H_2^0)$, softens 220°. Condensation in AcOH at 120° of (II) and 4-amino-5-thioacetamidomethyl-2methylpyrimidine (III), m.p. 228-229°, obtaind from 4-amino-2-methylpyrimidine and dithioacetic acid, gives the hydrobromide of 2:7-dimethyldihydro-1:3:6:8-benztetrazine, m.p. 283-284° (picrate, m.p. 198-199°; hydrochloride, m.p. 269-270°; base, m.p. 169-170°), and the bromide hydrobromide of O-acetyl-2-methylaneurin, m.p. 193-194°. This compound is converted through the picrate, m.p. 188-189°, into 3-(4'-amino-2'-methylpyrimidyl-5'-methyl)-2: 4-dimethyl-5-β-hydroxyethylthiazolium chloride hydrochloride (methylaneurin), m.p. 199°. (II) and (III) in AcOH at 80° lead to the hydrobromide of (III), m.p. 198-200°, converted through the picrate into the corresponding hydrochloride, m.p. 197-199°. 2:4-Dichloro-6-methyl-5-chloromethylpyrimidine (IV) and 4-methyl-5- β -hydroxyethylthiazole afford 3-(2': 4'dichloro-6'-methylpyrimidyl-5'-methyl)-4-methyl-5-βhydroxyethylthiazolium chloride, m.p. 206° (cf. Bowman, this vol., 213), aminated to the 3-(2'-chloro-4'-amino-compound (+H2O), m.p. 200-205° (picrate, m.p. 214-215°), which shows no measurable vitamin activity. (IV) and NaI yield 2:4-dichloro-6-methyl-5-iodomethylpyrimidine, m.p. 93.5-94.5°, which with 4-methyl-5-β-hydroxyethylthiazole forms 3-(2':4'dichloro-6' - methylpyrimidyl - 5' - methyl) - 4 - methyl - 5 - 8hydroxyethylthiazolium iodide, m.p. 181-182°. Amination of (IV) leads to bis-(2:4-dichloro-6-methylpyr-imidyl-5-methyl)amine, m.p. 162-163°, and no 5aminomethyl compound can be isolated. F. R. S.

Anthraquinonebis-selenazoles.—Sce B., 1937, 1030.

Improved cyanine synthesis (mixed solvent process). Reaction of orthothioformic ester. T. KIMURA (Proc. Imp. Acad. Tokyo, 1937, 33, 261-265).—CH(SEt)₃ in Ac₂O at 140° gives much better yields of trinuclear carbocyanines than does CH(OEt)₃, probably because of the acidity of the mercaptan liberated; thus, 1-methylbenz-oxazole, -thiazole, and -selenazole, and 1-methyl-naphthothiazole afford *compounds*, decomp. 225°, 260-261°, 239°, and 201°, respectively. Dinuclear carbocyanines are obtained in much better yield from CH(SEt)₃ or CH(OEt)₃ by mixtures of C₅H₅N and Ac₂O than by either C₅H₅N or Ac₂O alone. R. S. C.

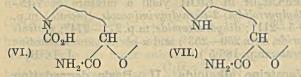

Origin and function of hordenine.—See A., III, 447.

Condensation of 2-aminonicotine with ω bromoacetophenone. J. L. GOLDFARB and M. V.


ANDRIJTSCHUK (Compt. rend. Acad. Sci. U.R.S.S., 1937, **16**, 473—477).—2-Aminonicotine and COPh·CH₂Br in EtOH yield a mixture of 7-(Nmethylpyrrolidyl)-2-phenylpyriminazole (picrate, m.p. 209·5—211°; dihydrobromide, m.p. 272—274°; platinichloride, m.p. 250—253°) and α-phenacylaminonicotine (picrate, m.p. 186·5°). J. D. R.

Veratrine alkaloids. II. Basic degradation products of cevine. W. A. JACOBS and L. C. CRAIG (J. Biol. Chem., 1937, 120, 447-456; cf. this vol., 355).-The base C₇H₁₅N has been identified as d-N-methyl-β-pipecoline (picrate of l-base, m.p. 176-179°, $[\alpha]_{180}^{23}$ -12.6° in COMe₂; picrate of dl-base, 165—168°). l-N-Dimethyl-β-pipecolinium m.p. iodide, m.p. 200-201°, $[\alpha]_{p}^{\infty}$ +7.0° in $H_{2}O$, and l- β pipecoline 3: 5-dinitrobenzoate, m.p. 114-116°, [a]³² -30° in COMe₂, are described. Separation of the mixture of bases obtained by heating cevine (I) in H_2 with Zn dust, by means of HNO₂, gave β -pipecoline (II) and similar treatment of the bases obtained by heating with soda-lime gave (II), mainly as the d-isomeride, and a very small amount of coniine (3:5dinitrobenzoate, $[\alpha]_{1}^{25}$ +49° in COMe₂). The base $C_8H_{11}N$ obtained by heating (I) in H_2 with Zn, followed by catalytic hydrogenation, is probably 5-methyl-2-ethylpyridine. The dicyclic base C10H19N previously obtained may be a methyloctahydropyridocoline or a dimethyloctahydropyrrocoline.

J. N. A. Strychnos alkaloids. XIX. Attempted degradation of oximinobrucine. H. WIELAND and F. WILLE (Annalen, 1937, 531, 268—278; cf. A., 1932, 629).—Oximinobrucine is converted by SOCl₂ into a product (I) from which by repeated crystallisation from MeOH the cyclic carbamide (II), m.p.

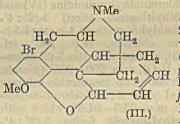


228° (decomp.), is isolated as the hydrochloride, $[\alpha]_{D}^{\infty} + 30\cdot1^{\circ}$ in H₂O. Boiling 2N-H₂SO₄ converts (II) into the open carbamide (III), m.p. 251° (decomp.), $[\alpha]_{D}^{\infty} + 31\cdot2^{\circ}$ in 0·1N-NaOH (sulphate), reconverted into (II) by HCl in MeOH. Treatment with boiling

conc. NaOH transforms (III) into norbrucic acid, $C_{22}H_{26}O_5N_2$, (IV), m.p. 292–293° (decomp.) (also +5H₂O) (hydrochloride; Et ester, m.p. 231°), hydrogenated (PtO₂ in AcOH) to dihydronorbrucic acid, m.p. 286–287° after decomp. from 270° (also +3H₂O). The isolation of an isomeric acid, m.p. 259° (decomp.) after softening, is also described; unlike (IV), it is not hydrogenated in presence of Pd. If (I) is treated with N-NaOH (II) present therein is converted into

(III) which dissolves leaving the cyclic chloroimine (V), $C_{23}H_{24}O_4N_3Cl$, m.p. 247° (decomp.), converted

by $2n \cdot H_2SO_4$ into (IV), which absorbs $1 \cdot H_2$ (Pd-black) without loss of Cl. When finely dispersed (V) is transformed by $2n \cdot NaOH$ into the carbamic acid (VI), $C_{23}H_{27}O_6N_3$, m.p. 206—207° (decomp.), which with dil. acid yields CO₂ and norbrucamide (VII), $C_{22}H_{27}O_4N_3$, m.p. 156—158°. If a solution of (VII) in dil. HCl is neutralised with NaHCO₃ (VI) is obtained. Attempts to remove Cl from (V) by KOH-EtOH yield a base, $C_{23}H_{25}O_5N_3$, m.p. 143—145°, isomeric with (II). The bases, $C_{22}H_{25}O_4N_3$, m.p. 258° (decomp.), and $C_{21}H_{26}O_6N_2$, m.p. 163° after prolonged softening [orange-yellow hydrochloride; H_4 -derivative, m.p. 236° (decomp.)], are isolated as by-products of the prep. of (I).


[With H. BEYER.] Re-examination of the acid from 11-hydroxydihydrostrychnine (Wieland and Kaziro, A., 1933, 1175) confirms the conclusions of Leuchs and Beyer (A., 1934, 539). H. W.

[Strychninolone and its derivatives.] H. LEUCHS (Ber., 1937, 70, [B], 2031-2033).—In criticism of the publication of Kotake and Mitsuwa .(A., 1936, 870) it is suggested that their γ -isomeride is the *c*-form of Leuchs; the ϵ -isomeride is impure *b*-form and their β -prep. is a mixture. The δ -substance does not appear to be a strychninolone isomeride. H. W.

Structure of bromomorphine. L. SMALL and S. G. TURNBULL (J. Amer. Chem. Soc., 1937, 59, 1541-1548).-Bromination of morphine, codeine, and various derivatives is shown to occur in position 1 by degradation of bromocodeine (I) to 1-bromodimethylmorphol (1-bromo-3: 4-dimethoxyphenanthrene) (II), which, together with its 2-Br-isomeride, is synthesised. The structure of ψ -morphine, however, remains in doubt, as it could not be obtained from bromomorphine. Bromoacetylmethylmorphol [from (I) by Hofmann degradation and acetolysis of the methine] is stable to aq. alkali, but with hot 15% KOH-MeOH gives bromomethylmorphol (1-bromo-4hydroxy-3-methoxyphenanthrene), m.p. 141.5-142.5°; this is too sensitive to alkali to be methylated, but the reaction mixture obtained during hydrolysis of its Ac derivative yields (Me₂SO₄) (II), an oil (*picrate*, m.p. 113-115°; styphnate, m.p. 105-108°). 3:4:6-(OMe)₂C₆H₂Br·CHO and KOH-MeOH give the corresponding acid, m.p. 174–178°, and alcohol, m.p. 91–94°; the latter product with HCl in C_6H_6 gives 6-bromoveratryl chloride, m.p. 66.5-68.5°, and thence the oily cyanide and 6-bromohomoveratric acid, m.p. 114-116°; condensation with o-NO2.C6H4.CHO and reduction gives 2-amino-a-6'-bromo-3': 4'-dimethoxyphenylcinnamic acid; diazotisation and treatment with Naturkupfer-C eliminates Br, but Gattermann's Cu paste gives 1-bromo-3: 4-dimethoxyphenanthrene-10-carboxylic acid; dry distillation of this acid gives an oily substance, (?) the Me ester (picrate, m.p. 113-

115°), not identical with (II), and decarboxylation with Cu eliminates the Br.

 $3:4:6:2-(OMe)_2C_6HBr(NO_2)$ ·CHO and CH_2Ph ·CO₂Na in Ac₂O at 100° give 30% of 6-bromo-2-nitro-3:4-dimethoxy- α -phenyl-, m.p. 206–208°, and 12% of 6-bromo-2-nitro-3: 4-dimethoxy-cinnamic acid, m.p. 200—201°, and thence (FeSO₄-NH₃) the NH_2 -acids, m.p. 202—203° and 150—151°, respectively, catalytic hydrogenation of which gives Br-free substances, m.p. 169-170° and 120-122°, respectively; the first-mentioned NH2-acid, when treated with BuNO2 and HCl-EtOH and then with Cu paste, gives 1-bromo-3: 4-dimethoxyphenanthrene-9-carboxylic acid, decomp. 260-270°, converted by distillation at 75 mm. into the Me ester, m.p. 123.5-125° (no picrate), and by Cu paste in quinoline at 240° into (II). By a similar series of reactions 5-bromo-2-nitroveratraldehyde (prep. from the vanillin derivative), m.p. 70-72.5°, affords 5-bromo-2-nitro-, m.p. 231-231.5°, and -2-amino-3:4-dimethoxy-a-phenylcinnamic acid, m.p. 175-176° (decomp.), 2-bromo-3: 4-dimethoxyphenanthrene-9-carboxylic acid, m.p. 237.5-238.5°, the Me ester, m.p. 114-116° (obtained by pyrolysis or CH₂N₂), of which with H2-Pd-BaSO4 gives Me 3: 4-dimethoxyphenanthrene-9-carboxylate, m.p. 95-96°; decarboxylation of the acid gives 2-bromo-3: 4-dimethoxyphen-78.5-79.5°. Bromochlorocodide anthrene, m.p. [from (I) and PCl_5 in $CHCl_3$], m.p. 131–133.5°, $[\alpha]_D^{20}$ -288.5° in EtOH, is reduced by Zn dust-EtOH-CO₂ to bromodeoxycodeine-C (III), m.p. 210-212.5°, [a]

+65.9° in EtOH (perchlorate, m.p. 208-210°), cryptophenolic, which absorbs 2 H₂ (Adams) in EtOH to give bromotetrahydrodeoxycodeine, form, +H₂O, m.p. 119 - 128°, $[\alpha]_{5}^{5}$ -28.2° in EtOH; the

methomethylsulphate, m.p. 197—212°, with 5N-NaOH gives, in one step, bromomethylmorphenol, m.p. 119— 120°, debrominated by H₂-Pd-CaCO₃ to methylmorphenol. Deoxycodeine-C' and Br in aq. AcOH give a perbromide, C₁₈H₂₀O₂NBr₃, m.p. 184·5—185·5°, $[\alpha]_{20}^{26}$ —156·7° in C₆H₆, hydrogenated (Adams) in EtOH to a new phenolic bromotetrahydrodeoxycodeine (hydrobromide, m.p. 116—117·5°, $[\alpha]_{20}^{26}$ —3·3° in EtOH), which with Na-EtOH gives a Br-free phenolic substance (C 72·5, H 7·9%), m.p. 88—89°. Deoxycodeine-A or its hydrobromide with Br in AcOH gives a substance, m.p. 189—189·5°, $[\alpha]_{20}^{25}$ +10·2° in C₆H₆ (contains 2 Br; hydrobromide, m.p. 149—151°, $[\alpha]_{20}^{26}$ -3·8° in EtOH), which with hot NaOAc-Ac₂O gives 1-bromoacetylmethylmorphol. Dihydrodeoxycodeine-D with Br-AcOH or aq. Br-AcOH gives a Brderivative, m.p. 156—157°, $[\alpha]_{20}^{25}$ —37·6° in EtOH. R. S. C.

Curare alkaloids. III. Pot-curare. H. KING (J.C.S., 1937, 1472—1482).—By extraction with 1% tartaric acid, the alkaloids of a specimen of potcurare have been separated into "non-quaternary" bases (38%) and "quaternary" bases (12%). The paralysing dose on frogs under standard conditions has been determined, and, although the former frac-

475

tion shows weak curare action, most of the activity lies in the "quaternary" fraction. The "non-quaternary" bases may be separated into proto-curidine (I), $C_{36}H_{38}O_6N_2$ (+0.5 C_5H_5N), m.p. 295° [dihydrochloride (+6 H_2O), m.p. 295° (efferv.), $[\alpha]^{20}_{-91}$ $+7.6^{\circ}$ in H₂O; O-methylprotocuridine methiodide, m.p. 318° (decomp.)] (cf. Boehm, A., 1898, i, 283), and neoprotocuridine (II), C₃₆H₃₈O₆N₂ (+8H₂O), m.p. 232° (efferv.) [dihydrochloride (+6 or 7 H₂O), m.p. >310°; O-methylneoprotocuridine methiodide, m.p. >300°]. The Millon reaction is shown by (I) but not by (II). From the "quaternary" fraction, (II) has been isolated as hydrochloride and also a mixture of alkaloids from which an amorphous iodide of high paralysing activity and showing a Millon reaction has been separated. By methylation of fractions of the alkaloids, iodide A, C₂₀H₂₅O₈NI₂, m.p. 260° (decomp.), and *iodide* B, $C_{17 \text{ or } 18} \tilde{H}_{22} \tilde{O}_2 NI$, m.p. 318°, have been obtained. (II) has been identified as an internally compensated form of isochondrodendrine; this establishes a close relationship between the alkaloids of pot-curare and those of tubecurare, as both are based on the fusion of two polyphenolic benzylisoquinoline nuclei by ether linkages. The botanical origin is discussed. F. R. S.

Sinomenium and Cocculus alkaloids. XLVI. Methylisochondodendrine. H. KONDO, M. TOMITA, and S. UYEO (Ber., 1937, 70, [B], 1890—1893).— Chromatographic analysis (Al_2O_3 , Brockmann) of the crude bases from Cissampelos insularis, Makino, does not lead to the isolation of insularine but yields methylisochondodendrine, also obtained from Stephania cepharantha, Hayata. Its identity with the product of Faltis (A., 1934, 423) is established by direct comparison of the alkaloids, their methine and hydromethine bases. H. W.

m-Arsenated phenoxyethanols. S. B. BINKLEY and C. S. HAMILTON (J. Amer. Chem. Soc., 1937, 59, 1716—1719).—m-OH·C₆H₄·AsO₃H₂ does not condense with CH₂Cl·CH₂·OH, but m-NO₂·C₆H₄·OH in 2N-NaOH gives β -m-nitrophenoxyethyl alcohol, m.p. 88°, reduced (H₂-Raney Ni) to m-β-hydroxyethylaniline, m.p. 52°, which affords (Bart) m-β-hydroxyethylphenylarsinic acid, m,p. 110° (Na salt). With HNO_3 (d 1.5) this gives a mixture of nitrates, hydrolysed by hot 3n-HCl to 2-, m.p. 270° (I), and 4-nitro-3- β -hydroxyethylphenylarsinic acid (II), m.p. 164°, which afford (SO₂-HI) the corresponding arsinoxides, m.p. >270°, and thence by $Hg(OAc)_2$ β -2-nitro-3-, m.p. 150—152°, and β -2-nitro-5-chloromercuriphenoxyethyl alcohol, m.p. 147-149°, both of which with 3n-HCl give o-NO₂·C₆H₄·O·CH₂·CH₂·OH, hydrolysed by 6n-NaOH to o-NO₂·C₆H₄·OH. With 6n-NaOH (I) and (II) give 2-, m.p. 208° (decomp.), and 4-nitro-3-hydroxyphenylarsinic acid, m.p. >270°; the 2-NO2-acid affords successively 2-nitro-3-hydroxyphenylarsinoxide, m.p. 220-223° (decomp.), 2-nitro-3-chloromercuriphenol, m.p. 212-214°, and 2:3-R. S. C. NO2. C6H3I.OH.

Arsenic derivatives of 1:4-benzisooxazine.— See B., 1937, 1136.

Organo-arsenic compounds. V. Synthesis of arsindole derivatives. H. N. DAS-GUPTA (J.

Indian Chem. Soc., 1937, 14, 349–353).— C_2H_2 and AlCl₃ convert AsPhCl₂ into a mixture of diphenyl- β chlorovinyl-, phenyl- $\beta\beta'$ -dichlorodivinyl- (also synthesised from the chloroarsine and MgPhBr) (double salts with HgCl₂, m.p. 157–158°, and AgNO₃, m.p. 170°; methiodide, m.p. 232°), and phenyl- β -chlorovinylchloro-arsine (cf. J.C.S., 1925, 127, 996). The last has been converted into the corresponding arsinic acid, m.p. 135°, *Et ether*, b.p. 165–170°/3 mm., arsenious cyanide, and sulphide, m.p. 141°, and by Grignard reagents into the phenyl- and methylarsines. When treated with AlCl₃ in CS₂ or heated to 230°, it affords 1-chloroarsindole. A. LI.

Mercury compounds of benzotrifluoride.— See B., 1937, 1136.

Mercuriation of benzanthrone(-7). A. BERN-ARDI (Gazzetta, 1937, 67, 380–384)—Benzanthrone-(-7) with $Hg(OAc)_2$ at 171° yields its 3-mercuriacetate (I), which at its m.p., 141–142°, gives Hg bisbenzanthronyl, m.p. 70–75°. 0-1N-KOH–EtOH converts (I) into the 3-mercurihydroxide, decomp. 260° (chloride prepared). With Br–KBr in AcOH, (I) forms 3-bromobenzanthrone(-7). E. W. W.

The cyclol hypothesis and the "globular" proteins. D. M. WRINCH (Proc. Roy. Soc., 1937, **A**, 161, 505—524).—A further development of the "cyclol" hypothesis (cf. this vol., 394). The general "cyclol" fabric, consisting of hexagonal rings, is folded according to geometrical rules to produce closed "globular" mols. It is shown that several systems can exist, the series formed by folding the cyclol network on to the faces of a truncated tetrahedron being here described. This series consists of a no. of mols. $C_1, C_2 \ldots C_n$ in which the no. of NH₂-acid radicals is 72, 288 ... $72n^2$. It is suggested that the group of proteins with mol. wts. 33,600—40,500 are represented by closed "cyclols" of the type C_2 containing 288 residues. The ionic behaviour of such mols. in solution is discussed with particular reference to reversible association and the hydration of the mol. G. D. P.

Ultracentrifugal purification and study of macromolecular proteins. R. W. G. WYCKOFF (Science, 1937, 86, 92–95).—A review. L. S. T.

Clupein. VIII. K. FELIX and A. MAGER (Z. physiol. Chem., 1937, 249, 111–123; cf. A., 1933, 963; Waldschmidt-Leitz and Kofranyi, A., 1936, 110).—The hydrochloride (I) of the Me ester of clupein (II) contains total N 24-99, Cl 16-08, and OMe 0.65%. The N is distributed as follows : as arginine (III) 89.39, $(NH_2)_1$ -acid 11.4, alanine (IV) 1.84, serine (V) 1.73, :NH 3.76, and valine (VI) 3.67. Arginylarginine and oxyproline (VII) are obtained as picrates from (I). The nos. of residues of (III), (IV), (V), (VII), and (VI) + others in (II) are 22, 2, 2, 1, and 3, respectively, and the no. of proline residues is 3. The mol. wts. of (II) and its Me ester are 4470 and 5340, respectively. The (II) formula previously suggested is modified in the light of these results.

W. McC.

Rapid method for protein dialysis.—See A., III, 447.

Green derivative of hæmoglobin.---See A., III, 370.

Semi-micro methods for determining the elements in organic analysis. H. BERGER (Chem. Fabr., 1937, 10, 396–398).—A thermostatically controlled electric furnace is preferred for heating the tubes, and in the determination of halogens and S, as well as C, H, and N, the temp. is maintained at 700°. PbO₂ is superior to Cu for removing N oxides. A special Kipp apparatus for preparing air-free CO₂ is described. A bead tube is used for the determination of halogens and S. I. C. R.

Determination of nitrogen and carbon in the same sample. C. T. GAYLEY (Ind. Eng. Chem. [Anal.], 1937, 9, 422–423).—The gases formed during a Kjeldahl N determination are passed in a stream of O_2 over Pt gauze in an electric furnace, cooled, and passed successively through $K_2Cr_2O_7$, 10% H₂SO₄, Zn, conc. H₂SO₄, and Dehydrite; finally the CO₂ is absorbed and weighed. R. S. C.

Determination of iodine in organic substances. H. DOERING (Ber., 1937, 70, [B], 1887–1889).—In the customary Carius procedure $AgNO_3$ is replaced by $Hg(NO_3)_2$ and the vol. of HNO_3 is increased to 5 c.c. The contents of the bomb tube are treated with aq. CaOCl₂, whereby I is converted into HIO_3 . Excess of Cl is removed by cautious addition of HCO_2Na , the mixture is cooled, and solid KI is added. The liberated I is titrated with $Na_2S_2O_3$ in presence of starch. H. W.

Simultaneous determination of chlorine, nitrogen, and arsenic in organo-arsenic compounds. H. N. DAS-GUPTA (J. Indian Chem. Soc., 1937, 14, 358—361).—The compound is slowly heated with a mixture of K_2SO_4 , conc. H_2SO_4 , and a little Se. The gaseous chlorides are absorbed in alkaline H_2O_2 , and the Cl is determined volumetrically, or gravimetrically after boiling, treating with NaHSO₃, and acidifying. The NH₃ in the residue is expelled by NaOH and the remaining solution treated with NaHSO₃, acidified, boiled, and the As determined with I. A. LI.

Semi-micro-determination of arsenic in organic compounds. E. I. AIZENSCHTADT (Zavod. Lab., 1937, 6, 503—504).—10 mg. of substance are heated with 0.5 ml. of H_2O and 1 ml. of H_2SO_4 (4 min. at the b.p.), 1 ml. of H_2O is added, and boiling is continued until SO₃ fumes appear. This operation is repeated, the solution is washed into a flask by means of 5 ml. of 20% H_2SO_4 , 5 ml. of 10% KI and 30 ml. of H_2O are added, and the solution is titrated with 0.01N-Na₂S₂O₃ after 15 min. The vol. of Na₂S₂O₃ required in a blank test is subtracted, and the As content is hence calc. R. T.

Determination of arsenic in mineral oil solutions.—See A., I, 579.

Volumetric determination of mercury [in organic compounds]. M. FITZGIBBON (Analyst, 1937, 62, 654-656).—Org. Hg compounds are destroyed by heating with H_2SO_4 . An excess of KI is added, and the solution is made alkaline with NaOH. 40% aq. CH₂O is added at 60°, together with 2.5% aq. gelatin to stabilise the reduced Hg in colloidal suspension. The solution is cooled to 20°, acidified with

AcOH, and treated with 0·1N-I, the excess of I being finally titrated back. J. S. A.

Determination of tellurium in organic compounds. E. T. TSAO (Chem. Ind. [China], 1935, 10, No. 2, 15—21).—0.2—0.3 g. of the Te compound is fused with 14 g. of Na₂O₂, 0.1 g. of KClO₃, and 0.2— 0.3 g. of sucrose in a Parr bomb. The product is dissolved in H₂O, boiled to remove peroxide, acidified with HCl, and conc. to 100 c.c., 30 c.c. of 12N-HCl are added, and the solution is heated to boiling. 15 c.c. of saturated aq. SO₂, 10 c.c. of 15% N₂H₄,HCl, and a further 15 c.c. of saturated aq. SO₂ are added and the solution is boiled and filtered on a Gooch crucible. The ppt. of Te is washed with H₂O and EtOH and dried at 105°. CH. ABS. (e)

Physical method of drying liquefied hydrocarbons. E. E. ROFER (Ind. Eng. Chem. [Anal.], 1937, 9, 414-415).-0.7 mg. of H_2O in 100 g. of $CH_2:CMe_2$ is detectable as a turbidity when the liquid is cooled to -80° . An apparatus for drying hydrocarbons is described. The liquid is placed over glass wool in a closed system at -80° ; the wool rests over a capillary tube passing into a vessel containing the hydrocarbon at -135° . Passage of liquid through the wool filter is caused by the difference in v.p. of the liquid at the two temp. R. S. C.

Determination of methoxyl. F. ARNDT and F. NEUMANN (Ber., 1937, 70 [B], 1835).—The method of gradual heating advised for highly methylated carbohydrates by Neumann (this vol., 229) has been applied in other circumstances by Arndt (*ibid.*, 283) and thus appears generally useful. H. W.

Microchemical detection of organic compounds by means of drop reactions. F. FEIGL [with A. LENZER, V. DEMANT, O. FREHDEN, and V. ANGER] (Mikrochim. Acta, 1937, 1, 127-141).-(a) Sulphinic acids, sulphonic acids, or sulphones are detected by fusion with NaOH, forming Na₂SO₂. On acidification, the SO₂ liberated induces the oxidation of Ni(OH)₂ spread on a slip of filter-paper, which may be impregnated with benzidine (purple colour produced) to increase the sensitivity. (b) NH,OH and oximes in 1 drop of solution are treated successively with NaOAc, 1% sulphanilic acid (I) in dil. AcOH, and 0.1N-I in glacial AcOH. NH₂OH is oxidised to HNO2, which diazotises (I). On addition of $Na_2S_2O_3$ and then 0.3% $C_{10}H_7$ ·NH₂ (II) in dil. AcOH, a red coloration is produced with 10^{-8} g. of NH₂OH. Oximes are first hydrolysed by warming with HCl before treatment as above. (c) Arylhydrazines, -hydrazones, and -osazones are oxidised to diazo-salts by treatment with a drop of $HCl + solid SeO_2$. On addition of (II), red to violet colorations are produced. (d) Glycerol and glycerides are heated with KHSO₄, forming acraldehyde, which gives a blue coloration on paper impregnated with o-dianisidine or, better, with $Na_{0}[Fe(CN)_{5}NO] + piperidine.$ Limit, 0.005 mg. (e) sec. Aliphatic amines in neutral aq. solution are treated with a drop of aq. Na₂[Fe(CN)₅NO] containing 10% of MeCHO. Addition of Na₂CO₃ gives a blue to violet colour. J. S. A.

Determination of acetone, n-butyl and ethyl alcohol, present together. I. Oxidation method. M. N. BECHTEREVA and N. D. JERUSAL-IMSKI (J. Appl. Chem. Russ., 1937, 10, 1314—1320).— COMe₂ is determined in a $COMe_2$ -BuOH-EtOH-H₂O mixture by the CHI₃ method; a second portion of the mixture is oxidised by Osburn and Werkman's method (B., 1931, 1117), and the acids produced are determined by the method of Virtanen and Pulkki (B., 1928, 688), applying a correction for AcOH produced by oxidation of COMe₂ (8% of the no. of ml. of 0-1N-COMe₂ present). R. T.

Microchemical determination of butyric acid. L. KLINC (Mikrochem., 1937, 23, 60-61; cf. A., 1936, 1397).—In the method previously described distillation is preferably carried out in apparatus with ground joints. The H_2O_2 should be prepared from Na₂O₂ and 2N-H₂SO₄. The flame must be low during distillation to prevent H_2O_2 passing into the distillate. Preferably the test sample should contain 0.05—2.0 mg. of PrCO₂H. J. W. S.

Quantitative micro-analysis of mixtures of fumaric and maleic acid. G. SEMERANO and I. S. RAO (Mikrochem., 1937, 23, 9–16).—The determination of maleic (I) and fumaric (II) acid in presence of one another through the difference in their reduction potentials (A., 1932, 1234) has been adapted to the microchemical scale. For determination of (I), the K salts are dissolved in aq. NH₄Cl, and for determination of (II) the Li salts are dissolved in LiCl. The reduction potentials under these conditions are, according to concn., between -1.90 and -1.26 v. for (I) and between -1.90 and -1.84 v. for (II). The heights of the waves in the polarographic diagrams \propto the concns. With quantities $>10^{-6}$ g. the accuracy is $\pm 1\%$. J. W. S.

Volumetric analytical notes. [Determination of chloral hydrate, hypophosphite, phosphite, halogen oxyacids, and phenol.] A. SCHWICKER (Z. anal. Chem., 1937, 110, 161-184).—(i) Chloral hydrate may be determined (a) iodometrically, in the presence of NH₄ borate. (b) Bromometrically, by adding an excess of $0\cdot 1n\cdot KBrO_3 + KBr + conc.$ HCl, and then borax. The excess of free Br is finally titrated back with AsO₃^{'''}. (c) By oxidation with an excess of $0\cdot 1n\cdot KMnO_4$ in Na₂CO₃-alkaline solution; excess of KMnO₄ is determined iodometrically. (d) By hydrolysis to CHCl₃ + HCO₂Na by means of NaOH at 100°. An equal vol. of saturated aq. NaOAc is added, and the HCO₂Na is titrated at 80° with KMnO₄. (e) By reduction to Cl' with Zn dust + 10% (NH₄)₂SO₄. The Cl' is then titrated with AgNO₃.

(ii) (a) H_2PO_2' reduces $HgCl_2$ to Hg_2Cl_2 ; the first stage proceeds in HCl solution, but is completed rapidly only in neutral solution. The final solution is acidified with HCl, and Hg_2Cl_2 is dissolved in an excess of 0.1N-KBrO₃, which is finally titrated back with AsO_3''' . H_2PO_3' reduces $HgCl_2$ in neutral solution and may be determined similarly. (b) H_2PO_2' may be determined also with KMnO₄, the excess of which is titrated back iodometrically, or with $H_2C_2O_4$; (c) by oxidation with KBrO₃ in H_2SO_4 solution at 100°; or (d) with KBrO₃ + KBr or $\text{KBrO}_3 + \text{HCl.}$ $\text{H}_2\text{PO}_3'$ is oxidised with $\text{KBrO}_3 + \text{KBr}$ in hot solution, or with NaOCl in a solution neutralised with NaHCO₃.

(iii) BrO_3' and IO_3' together are determined (a) by iodometric titration of total $BrO_3' + IO_3'$; (b) BrO_3 in a separate sample is destroyed by means of HCl, the Br and Cl liberated being bound by addition of PhOH; IO_3' is then determined independently. I' can be selectively oxidised to IO_3' in the presence of Br' by means of OCl' in Na₂CO₃ solution, the IO₃' being finally determined iodometrically. IO3' in presence of BrO_3' is determined by complete re-duction to I' and Br' by means of KHSO₃. I' is then oxidised to IO3' with OCI' and determined as above. For the determination of I', IO3', and BrO3' together, I' is determined with standard NaOCl. $IO_3' + BrO_3$ in a separate sample are determined iodometrically, and $I' + IO_3'$ are finally determined with OCl' after reduction with KHSO₃. Altern-atively, I' is oxidised to IO_3' , and total IO_3' is de-termined after destruction of BrO_3' with HCl. I' in presence of Br' is oxidised to IO_3' by a slight excess of 0.1n-KMnO₄ at 80°. The excess of KMnO₄ is destroyed with EtOH, the solution filtered from Is destroyed with Horr, the boundary intermined MnO_2 , and the IO_3' in an aliquot part is determined iodometrically. IO_4' in the presence of IO_3' is determined by reducing IO_4' to IO_3' by means of H_2O_2 in alkaline solution. The excess of H_2O_2 is destroyed by boiling, and the total IO_3' is determined iodo-metrically. $IO_4' + IO_3'$ in a separate portion is determined by fitration of the total I liberated with KI + HCl

(iv) PhOH is determined by the direct titration of an HCl solution, containing KBr, with 0.1 N-KBrO₃. The excess of KBrO₃ is titrated back with AsO₃^{'''}.

J. S. A. Volumetric determination of semicarbazide and aminoguanidine. G. S. SMITH (J.C.S., 1937, 1325).—N₂H₄ derivatives are determined by treatment of the hydrochloride or sulphate with KIO₃, KI, and H₂SO₄, followed by determination of the residual I. The guanidine or semicarbazide content is calc. from the reactions $5NHR\cdot NH_2 + 4KIO_3 \rightarrow$ $2I_2$ and $KIO_3 + 5KI \rightarrow 3I_2$. J. D. R.

Extractor for monoamino-acids. D. W. WOOLLEY (Ind. Eng. Chem. [Anal.], 1937, 9, 433).— An apparatus is described for extraction of NH_2 acids (or other heat-labile substances) without their anhydrides from neutral aq. solution by boiling BuOH (50°/vac.). Only the upper part of the BuOH is heated; the acids crystallise from the cold part and are not subjected to heat. R. S. C.

Effect of aldehydes on the determination of cysteine and cystine. M. X. SULLIVAN and W. C. HESS (J. Biol. Chem., 1937, 120, 537-542).—The effect of adding varying amounts of CH_2O (I), MeCHO (II), $(CHO)_2$, AcCHO, and C_6H_{13} ·CHO (III) on the accuracy of various methods of determining cysteine (IV) and cystine (V) is examined. Freshly added aldehydes have little effect in the Sullivan (A., 1930, 199) and Okuda (A., 1926, 190) methods for (V). The Folin-Marenzi method (A., 1929, 1093) for (V) is inhibited markedly by (I), somewhat by (III), but only slightly by (II). For (IV), aldehydes have little effect on the Okuda method, some effect in the Sullivan and Folin-Marenzi methods, and marked inhibiting effect in the Mason method (cf. A., 1930, 803). E. W. W.

Determination of thiol and disulphide compounds, with special reference to cysteine and cystine. VIII. Molecular ratio between Aphospho-18-tungstic acid and cysteine in their colour reaction. K. SHINOHARA (J. Biol. Chem., 1937, 120, 743—749).—A-Phospho-18-tungstic acid, new formula for crystals $P_2O_5(WO_3)_{18}$,26H₂O (I) (cf. A., 1920, ii, 625), does not react regularly with 2RSH (cf. A., 1935, 877, 1111; 1936, 60, 353). With cysteine (II) and (I) or its (NH₄)₆ salt, at $p_{\rm H}$ 5, in a first reaction (I) loses 1 equiv. of O per mol. of (II), but with excess of (II), (I) slowly loses a second equiv. of O. Colour intensity is plotted against time under varying conditions; it is const. only at $p_{\rm H}$ $4\cdot7$ —7.5, and in presence of excess of (I).

E. W. W.

Applicability of Benedict-Denis procedure to determination of methionine-sulphur. C. B. RUTENBER and J. C. ANDREWS (J. Biol. Chem., 1937, 120, 203-207).—Addition of 10 m.-equiv. of Na_2CO_3 to 10 ml. of Benedict-Denis reagent gave maximal (95.6%) recovery of S in determination of methionine. Larger or smaller amounts of Na_2CO_3 lower the S recovery. Prolonged ignition after evaporation is without advantage. J. L. C.

Determination of nitrogen by hydrogenation in betaine, pyramidone, and sulphanilic acid. H. TER MEULEN and H. J. RAVENSWAAY (Rec. trav. chim., 1937, 56, 1022—1023).—N can be determined accurately in these compounds by hydrogenation.

H. W.

Titration of aromatic amines with nitrous acid. J. PHILLIPS and A. LOWY (Ind. Eng. Chem. [Anal.], 1937, 9, 381—382).—2:4:6- $(NH_2)_3C_6H_2$ ·CO₂H, 1:2:4:6- $C_6H_2Me(NH_2)_3$, 1:3:5- $C_6H_3(NH_2)_3$, 1:2:4:6- $C_6H_2Cl(NH_2)_3$, metanlic acid, m- $C_6H_4(NH_2)_2$, and 1:2:4- $C_6H_3Me(NH_2)_2$ can be determined by addition of excess of NaNO₂ to the HCl solution followed by back-titration with either NH₂Ph,HCl or sulphanilic acid. Titration of 2:4:6- $(NH_2)_3C_6H_2$ ·OH, 1:2:4- $C_6H_3(NH_2)_3$, and o- and p- $C_6H_4(NH_2)_2$ does not give quant. results. E. H. S.

New photo-reaction of pyridine. A. CASTIG-LIONI (Annali Chim. Appl., 1937, 27, 256—257).— Filter-paper soaked in a 1% EtOH solution of quinoline (I), treated with a 0.05% aq. solution of C_5H_5N , and exposed to ultraviolet light, slowly develops a yellow coloration. Using lepidine instead of (I), a similar colour results, and a less intense colour using quinaldine, hydroxyquinoline, *iso*quinoline, or acridine. The reaction can be used to detect C_5H_5N in presence of nicotine, since with (I) the latter slowly gives only a greyish coloration.

E. W. W.

Determination of pyridine in presence of pyridine homologues. L. BARTA and Z. MARSCHEK (Biochem. Z., 1937, 293, 118–120).— C_5H_5N homo-

logues (α - and β -picoline, $\alpha\alpha'$ -lutidine, s-collidine) and piperidine give with BrCN and β -C₁₀H₇·NH₂ a red colour similar to that given by C₅H₅N but the colour is usually 50—90 times weaker and the error in the colorimetric determination of C₅H₅N in presence of five times the amount of homologue is 8—10%. Distillation with citrate buffer enables C₅H₅N and its homologues to be separated from NH₃ and nicotine. P. W. C.

Highly sensitive and specific microchemical reactions of sparteine with cobalt and iron salts. A. MARTINI (Mikrochim. Acta, 1937, 1, 164–167).—Cryst. ppts. of characteristic habit are formed with $NH_4CNS + Co$ or Fe^{***} salts. J. S. A.

Identification and differentiation of ephedrine and ψ -ephedrine. P. FOURMENT and H. ROQUES (Bull. Sci. Pharmacol., 1937, 44, 372—375).—Ephedrine can be accurately determined by the formation of CHI₃ on adding hypoiodite. It immediately gives with alkaline OsO₄ an orange ppt. which gives a violet coloration with boiling HCl, whereas ψ -ephedrine gives slowly a yellowish ppt. followed by a yellow coloration with HCl. E. M. W.

Reaction of morphine with vanillin and hydrochloric acid. Different action of some aromatic aldehydes on morphine and ψ -morphine. B. DREVON (J. Pharm. Chim., 1937, [viii], 26, 292-299).— ψ -Morphine (I) with vanillin-HCl at 100° gives a green coloration (cf. this vol., 268). The reaction is given by many aromatic aldehydes in the nucleus of which OH, Me, NO₂, and CH₂O₂ are substituents. Morphine and (I) give different colours. Furfuraldehyde and glucose do not serve as aldehydes.

J. L. D.

The biuret reaction. IV. Combination of copper, nickel, and cobalt with proteins. H. JESSERER and F. LIEBEN. V. Biuret reaction of organic substances of low mol. wt. R. KRETSCH-MAYER and H. JESSERER (Biochem. Z., 1937, 292, 403-418, 419-423; cf. A., 1936, 1398).-Alkaline aq. caseinogen (I) combines stoicheiometrically with Cu, Ni, and Co (as hydroxides) to give violet, goldenyellow, and red-brown coloured derivatives, respectively, dialysis of which yields a blue neutral Cu derivative of equal Cu content and a neutral Co derivative of the same colour and Co content, the Ni compound being decomposed to Ni(OH)2. Compounds of Cu, Ni, and Co with zein, edestin, fibrin, gelatin, and Witte's, silk-, and (I)-peptone were investigated. The compounds with peptones are less defined than those with proteins; Ni in the latter is bi- and Co ter-valent. The presence of the metal prevents N-methylation, whilst the methylated proteins behave abnormally only with Ni. The metals probably combine at the peptide linking. No reaction occurs between Fe and proteins.

V. The "biuret reaction" is given by arginamide and arginine anhydride but not by histidine, succinimide, serine, colamine, arginine, and α -benzoylarginine. At least two adjacent CO·NH₂, CS·NH₂ or C(:NH)·NH₂ groups are essential for the reaction.

LSO, solution at HOT; or (d) with Relation

F. O. H.