BRITISH CHEMICAL ABSTRACTS

A., II.-Organic Chemistry

DECEMBER, 1937.

Chain vibrations of isomeric paraffins and their identification in the Raman spectrum.— See A., I, 549.

Oxidation of propane.—See A., I, 621.

Paraffin hydrocarbons from crude synthetic isooctane [$\beta\beta\delta$ -trimethylpentane]. D. B. BROOKS, R. B. CLEATON, and F. R. CARTER (J. Res. Nat. Bur. Stand., 1937, **19**, 319—337).—The following hydrocarbons have been isolated from crude isooctane, partly by distillation and partly by crystallisation from CH₄: $\beta\beta$ - and $\beta\gamma$ -dimethylbutane; β -methyl-, $\beta\beta$ -, $\beta\gamma$ -, $\beta\delta$ -dimethyl-, $\beta\gamma\gamma$ - and $\beta\gamma\delta$ -trimethylpentane; β -methyl-, $\beta\delta$ -, $\beta\epsilon$ -, $\delta\epsilon$ -dimethyl-, $\beta\beta\delta$ -, $\beta\beta\epsilon$ -trimethyl-, $\gamma\gamma\delta\delta$ -tetramethyl-, and $\beta\beta\gamma\gamma\delta$ -pentamethyl-hexane; $\beta\delta$ -, $\gamma\gamma$ -dimethyl-, δ -ethyl-, $\beta\beta\zeta$ -, $\beta\beta\delta$ -(or $\beta\beta\epsilon$ -)trimethyl-heptane; $\beta\zeta$ -dimethyloctane. The majority of these are present to the extent of <0.05%. F. L. U.

Reaction for unsaturated hydrocarbons or their peroxides. E. LEDERER (Petroleum, 1937, 33, No. 38, 9-13).-When treated with the heavymetal salts of certain aliphatic, hydroaromatic, or aromatic carboxylic and sulphonic acids, e.g., Mn or Co octoate or stearate, unsaturated hydrocarbons give a characteristic colour change, e.g., from colourless to deep brown in the case of the Mn salts. Development of the colour forms a delicate test for the presence of unsaturated compounds, the test being carried out by treating 0.5-1 c.c. of the oil with 10 mg. of the Mn salt and heating the mixture for 10 min. on the steam bath. The reaction is dependent on the presence of a peroxide of the unsaturated compound. The reaction may be used to free the oil from peroxides. Colour changes occurring when certain (particularly polynuclear) hydrocarbons are treated with Ag salts are due to another type of reaction, viz., a reduction with separation of colloidal Ag.

A. B. M. Photochemical chlorination of ethylene compounds.—See A., I, 627.

Polymerisation of isoprene. W. H. CARMODY and M. O. CARMODY (J. Amer. Chem. Soc., 1937, 59, 2073—2074).—Vapour-phase polymerisation of isoprene over AlCl₃ gives exclusively a sol. polymeride, the mol. wt. (1300 in C_6H_6) of which is approx. twice that of the product formed during liquid-phase polymerisation (A., 1932, 830). H. B.

Pyrolysis of isobutene at very low conversions. C. D. HURD and F. H. BLUNCK (J. Amer. Chem. Soc., 1937, 59, 1869–1871).—Decomp. of isobutene at 650° to the extent of 0.1-1% gives CH₄ (50–59), C_2H_4 (11—13.6), and C_3H_6 (29—36%) as the only gaseous products. The persistence of C_2H_4 emphasises the need for caution in interpreting the method of extrapolating products formed during such decomp. to their vals. at zero conversion. H. B.

βεε-Trimethyl-Δ^α^ν-hexadiene and its hydrogen bromide additive product. K. N. CAMPBELL (J. Amer. Chem. Soc., 1937, 59, 1980—1983).—The ketol from Bu^γCHO (prep. from MgBu^νCl and HCO₂Me) and COMe₂ in EtOH–NaOEt is dehydrated (distillation with I) to β-keto-εε-dimethyl-Δ^{*}-hexene (I), b.p. 78—80°/40 mm. (2 : 4-dinitrophenylhydrazone, m.p. 159—161°; semicarbazone, m.p. 178°), which gives an unstable compound with dry HCl. The carbinol from (I) and MgMeCl is similarly dehydrated to βεε-trimethyl-Δ^α^{*}-hexadiene (II), b.p. 128°/732 mm., which is reduced catalytically to βεε-trimethylhexane and by Al–Hg in moist Et₂O to βεε-trimethyl-Δ^β-hexene (?), b.p. 72°/735 mm. (ozonolysis products, COMe₂ and CH₂Bu^{*}-CHO). (II) and HBr (I mol.) in cold CHCl₃ give the not very stable β-bromo-βεε-trimethyl-Δ^{*}-hexene (?), b.p. 75—77°/50 mm., oxidised by KMnO₄ and Na₂Cr₂O₇ (method : Farmer and Marshall, A., 1931, 460) to OH·CMe₂·CO₂H and by O₃ (followed by Zn dust and H₂O) to Bu^{*}CHO and (polymeric) OH·CMe₂·CHO. αβ-Addition of HBr, with no rearrangement, thus occurs. H. B.

Peroxide effect in the addition of hydrogen bromide to ethylene compounds. XIV. Addition of hydrogen bromide to the higher alkenes. M. S. KHARASCH and W. M. POTTS (J. Org. Chem., 1937, 2, 195—197).—Addition of HBr to Δ^{α} -nonene, -undecene, -tridecene, and -pentadecene, and to allylbenzene etc., gives primary bromides whenever peroxides are present, and sec. bromides in the presence of antioxidants. E. W. W.

Oxidation of unsaturated hydrocarbons by atmospheric oxygen. I. E. AFFERNI (Annali Chim. Appl., 1937, 27, 366—372).—Oxidation of Me·[CH₂]₁₃·CH:CH₂ by air at 125—145°, for 40 days, produces a wt. increase of 16·5%, and yields CO and CO₂, the evolution of which increases to a max. and eventually ceases, a polymerised acid (30%), mol. wt. 730—800, forming an *Et* ester C₁₇H₃₄O₂, b.p. 117·5°/ 15 mm., and a highly polymerised unsaponifiable residue. No peroxides were detected. L. A. O'N.

Action of elementary fluorine on organic compounds. IV. Vapour-phase fluorination of ethane. J. D. CALFEE and L. A. BIGELOW (J. Amer. Chem. Soc., 1937, 59, 2072–2073; cf. A., 1937, II, 81).—C₂H₆ and F₂ react in the vapour phase over Cu gauze to give C_2F_6 and smaller amounts of CF_4 , CHF_3 , and $CMeF_3$ (?). H. B.

Kinetics of the pyrolysis of *n*-propyl iodide and *n*-butyl iodide.—See A., I, 621.

Allylic rearrangements. IV. Composition of butenyl bromides prepared from crotyl alcohol and methylvinylcarbinol. W. G. YOUNG and J. F. LANE (J. Amer. Chem. Soc., 1937, 59, 2051— 2056).—Mixtures of CHMe:CH·CH₂Br (I) and CH₂:CH·CHMeBr (II) are obtained from either crotyl alcohol or methylvinylcarbinol by treatment with (i) 48% HBr at -15° , (ii) 48% HBr + conc. H₂SO₄ at -15° , (iii) saturated aq. HBr at 0°, (iv) dry HBr at -20° , (v) PBr₃ + C₅H₅N at -15° or -75° . The composition (determined refractometrically and corr. for small amounts of inert impurities) of the mixtures varies with each reagent and with the alcohol used. Since known mixtures of (I) and (II) do not alter appreciably under the experimental conditions used, rearrangements must occur during the formation of the bromides from the alcohols. Considerable rearrangement of (II) into (I) occurs with 48% HBr at 20°. H. B.

Bouveault reaction for the preparation of unsaturated alcohols. G. GOETHALS (Naturwetensch. Tijds., 1937, 19, 184—188).—Reduction of Me Δ^{β} -pentenoate with Na in dry MeOH or EtOH gave a mixture of 25% of amyl alcohol and 75% of Δ^{β} -pentenol together with smaller quantities of β - or γ -methoxyvaleric acid, and a very small quantity of β - or γ -methoxy-*n*-amyl alcohol. S.C.

Derivatives of $\beta\beta\beta$ -trialkylethanols. R. V. RICE, G. L. JENKINS, and W. C. HARDEN (J. Amer. Chem. Soc., 1937, **59**, 2000).—The *H* phthalates, m.p. 70—71°, 68—69°, 44·5—45·5°, and 84—85°, *H* tetrachlorophthalates, m.p. 140—141°, 149·5—150·5°, 144— 145°, and 138—139°, and phenylcarbamates, m.p. 99— 100°, 80—81°, —, and 135—136°, of CH₂Bu[×]·OH, CMe₂Et·CH₂·OH, CMeEt₂·CH₂·OH, and CEt₃·CH₂·OH, respectively, are described. The narcotic action of the alcohols is < that of CBr₃·CH₂·OH. H. B.

Esters derived from heptyl alcohol. M. Roger and F. DVOLAITZKA (Recherches, Roure-Bertrand, 1937, 79-82).-The following heptyl esters have been examined particularly with regard to their possible use in perfumery : formate, b.p. 76-77°/25 mm.; acetate, b.p. 95-96°/28 mm.; propionate, b.p. 88°/10-12 mm.; butyrate, b.p. 105°/10-12 mm.; isobutyrate (I), b.p. 98°/10-12 mm.; isovalerate, b.p. 108°/10-12 mm.; hexoate (II), b.p. 121°/10-12 mm.; heptoate, b.p. 132-133°/10-12 mm.; octoate, b.p. 145°/10-12 mm.; nonoate, b.p. 162°/10-12 mm.; decoate, b.p. 170-172°/10-12 mm.; undecoate, b.p. 167.5-168.5°/3 mm.; undecenoate (III), b.p. 174-175°/10-12 mm.; laurate, b.p. 184°/10-12 mm.; myristate, b.p. 190-191°/3 mm.; palmitate, b.p. 205-206°/3 mm.; stearate, b.p. 215-217°/3 mm., m.p. 15°; oleate, b.p. 216—217°/3 mm.; geran-ate (IV), b.p. 149—151°/3 mm.; citronellate, b.p. 139-140°/3 mm.; benzoate, b.p. 150°/10-12 mm.; phenylacetate, b.p. 143°/10-12 mm.; cinnamate, b.p. 185°/10-12 mm.; anisate, b.p. 155-157°/3 mm.; salicylate (V), b.p. 160°/10-12 mm. In the ester

series, as in that of the ethers, the same fruity, fatty and green odours, although less fugitive, accompany the heptyl radical. The odours of (I), (II), (III), (IV), and (V) appear original. H. W.

Alcohol, $C_{19}H_{40}O$, m.p. 62.5°, from oil of raspberries.—See A., III, 331.

Lipins of tubercle bacilli.—See A., III, 318.

Carbohydrates. IX. Introduction of copper into polyhydric alcohols. T. LIESER and R. EBERT (Annalen, 1937, 532, 89—94; cf. A., 1937, II, 179).—The alcohol is usually dissolved in 5—10% NH₃ and shaken with excess of Cu(OH)₂; after filtration, MeOH is added to the filtrate followed, if necessary, by Et₂O, whereby the complex is pptd. Alternatively, the non-reducing oligosaccharide is dissolved in aq. NEt₄·OH. Complexes are thus obtained with (CH₂·OH)₂, glycerol, crythritol, adonitol, mannitol, sorbitol, dulcitol, methylxyloside, methyland phenyl-glucoside, glucose, galactose, fructose, β -glucosan, maltose, lactose, cellobioside, sucrose, inositol, and tartaric acid (structures suggested). With oligosaccharides the union with Cu is less complete than with monosaccharides, probably owing to the isolated position of certain OH groups. H. W.

Triphenylmethyl ethers of glycerol and glycerol derivatives. C. D. HURD, C. O. MACK, E. M. FILACHIONE, and J. C. SOWDEN (J. Amer. Chem. Soc., 1937, 59, 1952—1954).—Glycerol α -CPh₃ ether (I) [$\beta\gamma$ -Me₂ derivative, b.p. 210—212°/3 mm., m.p. 45—50°, from (I), MeI, and Ag₂O in C₆H₆] heated at 180—190° gives glycerol $\alpha\gamma$ -(CPh₃)₂ ether (II), which at 260° affords glycerol ($\alpha\gamma$ -(CPh₃)₂ ether, m.p. 196— 197° [also prepared from glycerol (III) and CPh₃Br in C₅H₅N]. (I) is obtained from (II) and excess of (III) at 205—215°. Decomp. of the $\beta\gamma$ -dibenzoate of (I) at 260—300° gives CHPh₃, BzOH, and an unidentified unsaturated liquid. 2 : 2-Dimethyl-4-triphenylmethoxymethyl-1 : 3-dioxolan [$\alpha\beta$ -isopropylideneglycerol CPh₃ ether], m.p. 71—73° (from the OHcompound and CPh₃Cl in C₅H₅N), heated at 310— 328° affords CHPh₃, COPh₂, and COMe₂. H. B.

Characteristic reaction of yperite $(\beta\beta'$ -dichlorodiethyl sulphide). B. TELINEK (Bull. Soc. chim., 1937, [v], 4, 1813—1815).—In contact with a test paper impregnated with the Ag-NH₃ complex of isatin, $(CH_2CI \cdot CH_2)_2S$ gives a yellow spot with a green halo, which, when treated with EtOH-AcOH, turns deep blue. J. D. R.

Parachors of alkyl thiosulphites. H. STAMM and H. WINTZER (Ber., 1937, 70, [B], 2058—2060).— Measurements of the parachors of Me_2 , Et_2 , Pr^a_2 , and Bu^a_2 thiosulphite show the impossibility of the presence of a true, homopolar double linking, but are not sufficiently accurate to permit a decision between (·S·OAlk)₂ and S:S(OAlk)₂. H. W.

Preparation of alkanesulphonyl chlorides from isothiocarbamides. II. J. M. SPRAGUE and T. B. JOHNSON (J. Amer. Chem. Soc., 1937, 59, 1837— 1840).—The following are prepared by the methods previously described (A., 1936, 974, 1229) unless stated otherwise: S-dodecylisothiocarbamide hydrochloride, m.p. 132—135°, and hydrobromide, m.p. 112—114°; S-hexadecylisothiocarbamide hydro-

chloride, m.p. 126-128°; S-cyclohexylisothiocarbamide hydrochloride (I), m.p. 230-231° (modified prep.), hydrobromide, m.p. 202-203°, and picrate, m.p. 173-174°; S-sec.-octylisothiocarbamide picrate, m.p. 130-131°; S-tert.-butylisothiocarbamide hydrochloride (II), m.p. 162° [from $CS(NH_2)_2$ and $Bu^{\nu}OH-HCl$], and picrate, m.p. 160—161°; S-iso-, m.p. 167—168°, and -sec.- (III), m.p. 164·5—165·5°, -butylisothiocarbamide picrates; S-p-nitrobenzyl-, m.p. 225—228°, and S- α naphthylmethyl-, m.p. 238°, -isothiocarbamide hydro-chlorides; dodecane-, m.p. 42–43°, hexadecane-, m.p. 52—53°, α-methylpropane-, 89—90·5°/19 mm., α-methylheptane-, b.p. 110—111°/4 mm., cyclohex-ane-, b.p. 123—124°/16 mm., and p-nitrophenyl-methane-, m.p. 92—93°, -sulphonyl chlorides; dodecane-, m.p. 93-94°, hexadecane-, m.p. 96.5-97.5°, cyclohexane-, m.p. 94–95°, and α -naphthylmethane-, m.p. 171–172°, -sulphonamides. Complete elimination of S as SO₄" occurs when (II) is treated with Cl₂-H₂O; partial elimination takes place with (I) and (III) (as nitrate or hydrochloride). Data previously recorded (loc. cit.) for Bu°SO₂Cl apply to Bu⁸SO₂Cl. Further details are given for the prep. of EtSO,Cl, BuªSO,Cl, and CH, Ph·SO, Cl. H. B.

Agar. C. NEUBERG and C. H. SCHWEITZER (Monatsh., 1937, 71, 46-66).-Agar is separated by cold H_2O into a sol. fraction A containing S and an insol., S-free fraction B. A is further separated by pptn. with EtOH $(A_1; 3.6\% \text{ S})$, with Pb(OAc)₂ $(A_2; 4.8\% \text{ S})$, and with quinidine hydrochloride $(A_3; 6\% \text{ S})$. Agar is partly hydrolysed with 25% HBr (cold), and the Ba salt of a sol. acid with 4.3% S is isolated. The agar fraction A_3 is hydrolysed by " sulphatase " to yield H_2SO_4 and no reducing sugars, but similar hydrolysis of the HBr fission product yields both H₂SO₄ and reducing sugars. The S is present in agar in the form of polysaccharide sulphuric esters, and more of these groups are introduced by treatment with ClSO₃H in C₅H₅N and CHCl₃.

J. D. R.

Partial synthesis of muscle-adenylic acid. T. JACHIMOWICZ (Biochem. Z., 1937, 292, 356-359).—Phosphorylation of adenosine by Fischer's method (A., 1915, i, 296) affords a product identical (indicated by m.p., titration data, and deamination by muscle-deaminase) with muscle-adenylic acid.

F. O. H.

Constitution of adenosinetriphosphoric acid. II. H. K. BARRENSCHEEN and T. JACHIMOWICZ (Biochem. Z., 1937, 292, 350-355; cf. A., 1933, 1202).—The rate of deamination (Van Slyke) of the acid (I) by 30% $NaNO_2$ is < that of adenylic acid, whilst the rates are approx. equal with 60% NaNO2 (cf. Lohmann, A., 1932, 1274). Bone-phosphatase (Martland and Robison, A., 1929, 603) liberates approx. $\frac{1}{3}$ of the total P of (I) as inorg. PO₄"; this PO_4''' originates from the difficultly hydrolysable fraction, the readily hydrolysable fraction being practically unaffected. These findings do not support Lohmann's conception (A., 1936, 53) of the constitution of (I). F. O. H.

Formation of a lævorotatory phosphoric ester from the Neuberg ester. M. G. MACFARLANE and R. ROBISON (Enzymologia, 1937, 4, Part II,

125-128).-Experiments are described, the results of which support the view that the varying rotations of the fructose monophosphates prepared by partial hydrolysis of hexose diphosphate are due to the formation of another lævorotatory ester, more resistant to hydrolysis than fructose 1-phosphate, from fructose 6-phosphate during heating by migra-tion of the $PO_4^{\prime\prime\prime}$ radical to some other C atom. Samples of the lævo-ester prepared by fractional crystallisation of the brucine salts and of the Ba salts after Br oxidation had $[\alpha]_{5461} - 24 \cdot 2^{\circ}$ and $-21 \cdot 3^{\circ}$, respectively, but these probably are not absolutely pure and still contain some fructose 6-phosphate.

P. W. C.

Lysolecithin and tosylglycerides.-See A., III, 456.

Biological uptake of deuterium by fatty acids and cholesterol.—See A., III, 470.

Ester formation and structural relationships. S. G. TOOLE and F. J. SOWA (J. Amer. Chem. Soc., 1937, 59, 1971-1973).-The yields of Me esters from 1937, 59, 1971—1973).—The yields of the esters from the following acids, MeOH, and Et₂O,BF₃ at $64\pm1^{\circ}$ increase in the order : EtCO₂H, AcOH, CH₂Cl·CO₂H (I), CHCl₂·CO₂H (II), CCl₃·CO₂H (III), CH₂Ph·CO₂H (IV). The same order is found for (I)—(III) with MeOH-HCl and for (I)—(IV) with MeOH-H₂SO₄. The order is reversed for (I)—(III) with EtOH-HCl and when the amides of all the above acids are treated and when the amides of all the above acids are treated with MeOH + BF_3 . There appears to be no direct relationship between the ionisation const. and yield of ester; the controlling factor in substituted acetic acids is probably the inductive effect of the substituent. **H**. B.

Preparation of [ethyl] esters [using toluene]. V. M. MITSCHOVITSCH (Bull. Soc. chim., 1937, [v], 4, 1661-1669).-Aliphatic acids, or aromatic acids with CO_2H in a side-chain, heated with EtOH, PhMe, and 1-2% of H_2SO_4 give almost quant. yields of their Et esters, H_2O being eliminated in a ternary azeotropic mixture with EtOH and PhMe. Aromatic acids with nuclear CO₂H are esterified similarly, using a larger proportion of H_2SO_4 . E. W. W.

Re-esterification of carboxylic esters. I. F. ADICKES, F. PLESSMANN, and P. SCHMIDT (Ber., 1937, 70, [B], 2119-2128).—The Et ester (1 mol.) is heated with anhyd. MeOH (5-10 mols.) for 8 hr. at 100°; the mixture is fractionally distilled and tested for EtOH by the CHI_3 test. If positive, the process is repeated for a much shorter time. Et β -bromo- β -diphenylenepyruvate (I), m.p. 70-71°, is readily transformed into the Me ester (II), but the analogously constituted CBr₃·CO·CO₂Et, Et β-benzyl-β-diphenylenepyruvate, Et α-hydroxy-β-diphenyleneacrylate, and Et diphenyleneacetate are resistant towards Et 2-bromo-1: 3-diketohydrindene-2-carb-EtOH. oxylate is readily transformed into the Me ester, m.p. 120-121°, and re-esterification of Et 1:3-diketohydrindene-2-carboxylate (corresponding Me ester, m.p. 132°) occurs with nearly equal readiness, whereas Et 2-chloro-1: 3-diketohydrindene-2-carboxylate is unaffected. Replacement of the diketohydrindene group by a Bz residue appears to destroy activity in the cases of CBr₂Bz·CO₂Et, CMeBzBr·CO₂Et, and

CHAcBz·CO₂Et. Et α -bromo- α -trimethylacetylacetate is also inactive. The possibility that change is due to eliminated HBr is excluded. OH·CHMe·CO₂Et, SH·CH₂·CO₂Et, CCl₃·CO₂Et, Et₂C₂O₄, CBr₂(CO₂Et)₂, CHPh:C(CO₂Et)₂, o·NH₂·C₆H₄·CO₂Et, 2:4:6-(NH₂)₃C₆H₂·CO₂Et, Et pyridine-2-carboxylate, and Et α -p-toluenesulphonyldiphenylacetate are unchanged, but slight reaction is observed with HCO₂Et, COPh·CO₂Et, (OH)₂C(CO₂Et)₂, and CO(CO₂Et)₂. It appears, therefore, the CO α or β to CO₂Et is requisite for the ready rc-esterification with MeOH, but the possible action of semiacetals as intermediates is excluded, although such compounds are readily produced. Thus crystallisation of (I) from EtOH gives the Et semiacetal, m.p. 113—117° (decomp.), and rapid treatment with warm MeOH yields the Me semiacetal, m.p. 98°. (II) gives a Me, m.p. 104° (decomp.), and Et, m.p. 102° (decomp.), semiacetal. H. W.

Thermal decomposition of lead formate and of formic acid at a lead surface.—See A., I, 628.

One-third basic aluminium acetate solution.— See A., I, 616.

Unsaturated lower fatty acids. Crystalline derivatives. S. KOMORI and S. UENO (Bull. Chem. Soc., Japan, 1937, **12**, 433—435).—" Tohaku " (*Lindera obtusifolia*) oil yields, by the ester-Br method, obtusilie acid, b.p. 148—150°/13 mm. (p-bromophenacyl ester, m.p. 43·3°; shown to be Δ^{γ} -decenoic acid by oxidation of the Me ester by KMnO₄), and linderic acid, b.p. 170—172°/13 mm., m.p. 1—1·3° (p-bromo-, m.p. 47·5°, and p-phenyl-phenacyl ester, m.p. 42·5°; S-benzylthiuronium salt, m.p. 139°; *Me* ester dibromide, b.p. 178—182°/2 mm.; oxidised to dihydroxylauric acid, m.p. 102°), and from the residue tsuzuic acid, m.p. 18—18·5°, b.p. 185—188°/13 mm. [p-phenyl-, m.p. 54·5°, and p-bromo-phenacyl ester, m.p. 61·3°; with O₃ gives (CH₂:CO₂H)₂]. R. S. C.

 Δ^{γ} -Decenoic acid. Derivatives of *d*-galacturonic acid.—See A., III, 332.

Partial hydrogenation of fish oil. VIII. Constituents of [the] docosatrienoic acid produced by hydrogenating methyl clupanodonate. M. TAKANO (Bull. Chem. Soc., Japan, 1937, 12, 395— 401; cf. B., 1937, 1082).—Ozonolysis of that part of the Me docosatrienoate, produced by hydrogenating clupanodonic acid (I), which gives a tetrathicoyanate indicates that the ester is a mixture of mainly $\Delta^{\gamma\eta\delta}$. or $\Delta^{\eta\eta\xi}$, some $\Delta^{\eta\eta\lambda}$, and a small amount of $\Delta^{\eta\eta\sigma}$. isomeride. (I) would then be a mixture of $\Delta^{\eta\eta\delta\sigma}$ and $\Delta^{\eta\eta\xi\sigma}$ -docosapentenoic acids; the latter is probably correct (cf. Inoue and Kato, A., 1935, 195), the Δ^* linking being formed by shift of the Δ^{ξ} -linking during hydrogenation. The $\Delta^{\eta\sigma}$ -linkings, which absorb (CNS)₂, are harder to hydrogenate than the $\Delta^{\lambda\xi\sigma}$ linkings, which are indifferent to (CNS)₂. R. S. C.

Electrolytic reduction of glycollic acid and lactic acid. E. BAUR (Z. Elektrochem., 1937, 43, 821—822; cf. A., 1936, 943).—At high c.d. $OH \cdot CH_2 \cdot CO_2 H$ is reduced completely to MeOH, but with a lower c.d. $HCO_2 H$ can also be detected. It is concluded that the reaction proceeds through initial formation of MeOH and $HCO_2 H$, the latter being

reduced subsequently to CH_2O and then MeOH. On electrolytic reduction lactic acid yields EtOH and HCO_2H in stoicheiometric proportions. J. W. S.

Acetoacetic ester condensation. XI. Extent of condensation of monosubstituted acetic esters. D. C. ROBERTS and S. M. MCELVAIN (J. Amer. Chem. Soc., 1937, 59, 2007-2008).-The max. yields of CH2R.CO.CHR.CO2Et (I) obtained (method : A., 1934, 1091) from CH2R.CO2Et (6 mols.) and NaOEt (1 mol.) at 95° (78° when R = H) are : R = H75-76, Me 46-47, Et 40-42, Pra 34-35, Pr^{\$} 0, Bu^{\$} 0, Ph 53—55% (mol. ratio approx. 2:1); for R = n-alkyl, the extent of the condensation decreases and the time necessary for max. yields increases with the size of R. (I) are not formed from Bu^{\$}CO₂Et and CH2Buy CO2Et even when the reactions are carried out (cf. A., 1929, 1424) so that any EtOH formed is H. B. removed.

Magnesium mesityl bromide as a reagent in the acetoacetic ester condensation. M. A. SPIELMAN and M. T. SCHMIDT (J. Amer. Chem. Soc., 1937, 59, 2009-2010).-Bu^βCO₂Et, CH₂Bu^γ·CO₂Et, and Pr^BCO₂Et (none of which undergoes the acetoacetic ester condensation with NaOEt) are converted by Mg mesityl bromide (best added to ester) into Et α -isovalerylisovalerate (I) (51%) [use of MgPr[§]Br (cf. Conant and Blatt, A., 1929, 675; Ivanov and Spasov, A., 1931, 726) gives 1.2%], Et $\alpha\gamma$ -ditert.-butylaceto-acetate (II) (32%), b.p. 138—140°/32 mm., and Et α -isobutyrylisobutyrate (26.5%), respectively. The non-formation of these CO-esters with NaOEt is attributed to their inability to enolise; they do not give colours with FeCl₃. Et stearate is similarly converted into Et a-stearylstearate (27%), m.p. 48-49° (lit. 28-29°). (I) is hydrolysed (5% Na₂CO₃ at 225° in a steel bomb) to $COBu_{2}^{\beta}$. (II) is hydrolysed (aq. EtOH-KOH at 200°) to dineopentyl ketone, b.p. 185°/740 mm. (semicarbazone, m.p. 178-179°)

Condensations brought about by bases. I. Condensation of ethyl isobutyrate to ethyl isobutyrylisobutyrate. C. R. HAUSER and W. B. RENFROW, jun. (J. Amer. Chem. Soc., 1937, 59, 1823—1826).—In accordance with a mechanism discussed for the acetoacetic ester condensation, $Pr^{\beta}CO_{2}Et$ is converted by CNaPh₃ (a base sufficiently strong to form an enolate of the condensation product) in Et₂O into Et α -isobutyrylisobutyrate (I); the first stage appears to be the formation of the enolate CMe₂:C(O)·OEt, since treatment of this with $Pr^{\beta}COCl$ also gives (I). Hydrolysis (aq. KOH) of (I) affords COPr^{β_2} [semicarbazone, m.p. 160° (corr.)], also prepared from MgPr^{β}Br and Pr^{β}CN. H. B.

Preparation and rearrangement of dialkyl maleates. P. A. SHEARER and A. M. PARDEE (Proc. S. Dakota Acad. Sci., 1935, 15, 24-26).—Rubber accelerates conversion into the corresponding fumarates; improved yields are accordingly obtained by using all-glass apparatus in the prep. CH. ABS. (r)

Reaction between esters of organic acids and magnesium *iso*propyl chloride. IV. Experiments with ethyl β-phenylpropionate and ethyl succinate. A. SPASSOV (Bull. Soc. chim., 1937, [v], 4, 1658—1661).—CH₂Ph·CH₂·CO₂Et and MgPr⁶Cl give C₃H₆, and, after hydrolysis, CH₂Ph·CH₂·COPr⁶ (semicarbazone, new m.p. 118—

CH₂Ph CH₂·COPr^{ρ} (semicarbazone, new m.p. 118— 119°; cf. A., 1931, 1050). (CH₂·CO₂Et)₂ similarly gives C₃H₆, Pr^{β}CO·[CH₂]₂·CO₂H (semicarbazone, m.p. 152°), and $\beta\eta$ -dimethyloctane- $\gamma\zeta$ -dione, b.p. 100—102°/9 mm. (dioxime, m.p. 173—174°). E. W. W.

Synthesis of higher dicarboxylic acids, $CO_2H \cdot [CH_2]_n \cdot CO_2H$, $CO_2H \cdot [CH_2]_{16} \cdot CO_2H$, and $CO_2H \cdot [CH_2]_{18} \cdot CO_2H$. S. SHIINA (J. Soc. Chem. Ind. Japan, 1937, 40, 324B).—By electrolysis of a solution of $CO_2K \cdot [CH_2]_8 \cdot CO_2Et$, the ester

 $CO_2Et \cdot [CH_2]_{16} \cdot CO_2Et$ (I) is obtained which by reduction is converted into $OH \cdot [CH_2]_{18} \cdot OH$. The glycol gives, through the iodide, $(CH_2)_{18}(CO_2H)_2$. The following m.p. are recorded :

 $\begin{array}{l} {\rm CO_2H} \cdot [{\rm CH_2}]_{16} \cdot {\rm CO_2H}, 124 \cdot 2 - 124 \cdot 6^\circ; \ {\rm (I)}, 47 \cdot 5 - 47 \cdot 7^\circ; \\ {\rm CO_2Me} \cdot [{\rm CH_2}]_{16} \cdot {\rm CO_2Me}, 58 \cdot 9 - 59 \cdot 2^\circ; \end{array}$

Condensation of acetaldehyde with ethyl malonate. A. RESCH (Bull. Soc. chim., 1937, [v], 4, 1643—1658).—MeCHO (I) and $CH_2(CO_2Et)_2$ (II) in aq. K_2CO_3 (KCN less satisfactory) give " Et_2 ethanolmalonate" (III), an oil [decomp. on distillation, giving (I), (II), etc.], which does not yield an Ac derivative or urethane, and is not dehydrated by H_3PO_4 . KOH hydrolyses (III) to $CH_2(CO_2H)_2$; with AcCl (III) gives $CEtCl(CO_2Et)_2$. E. W. W.

Catalytic hydrogenation of saturated lactones. F. WESSELY, A. MUNSTER, and S. WANG (Monatsh., 1937, 71, 27—29).—At room temp. and pressure, hydrogenation $(Pd-H_2)$ of β -hydroxy*iso*propylmalonolactone is without effect, whilst β -phenyl- β -propiolactone- α -carboxylic acid yields PhMe and CH₂(CO₂H)₂ J. D. R.

Diazo-reaction of ascorbic acid. G. BARAC (Compt. rend. Soc. Biol., 1937, 126, 61-62).— The absorption of the diazo-colour in the visible region has been determined and the non-formation of azo-vitamin-C explained. H. G. R.

Preparation of methyl *d*-glucosonate. H. OHLE (Ber., 1937, 70, [B], 2153).—A hot solution of K diisopropylideneglucosonate (33 g.) in 10 parts by vol. of MeOH is boiled with 20 c.c. of $5N-H_2SO_4$. K_2SO_4 is filtered off and the filtrate is boiled for 3 hr. after addition of 10 c.c. of 12N-HCl. The yield of Me ester is about 90%. H. W.

Constitution of pectic substances. F. JUST (Woch. Brau., 1937, 54, 317-318).—A review of the work of Henglein, Schneider, and co-workers.

Nitroguanylhydrazones of aldehydes and ketones. G. B. L. SMITH and E. P. SHOUB (J. Amer. Chem. Soc., 1937, 59, 2077—2078).—*Nitroguanylhydrazones* of the following are prepared (method : A., 1935, 769): MeCHO, m.p. 234°; PrCHO, m.p. 95°; heptaldehyde, m.p. 93°; octaldehyde, m.p. 118°; CHMe:CH·CHO, m.p. 177.5°; veratraldehyde, m.p. 195°; hexone, m.p. 112·5°; Me *n*-amyl ketone, m.p. 109·5°; acetoacetanilide, m.p. 184°. H. B.

Kinetics of aldol condensation.—See A., I, 622.

Photolysis of *n*- and *iso*-butaldehyde.—See A., I, 627.

Addition of magnesium *n*-butyl bromide to acetone. G. PIEROTTI and T. D. STEWART (J. Amer. Chem. Soc., 1937, 59, 1773—1775).—MgBu^aBr and COMe₂ (slight excess) in Et₂O at 0° in complete absence of O₂ give CMe₂Bu^a·OH (I) and smaller amounts of C₄H₈, C₇H₁₄ [from (I)], C₈H₁₈, Pr^βOH, and (·CMe₂·OH)₂ (II); in presence of atm. O₂ (either during prep. of MgBu^aBr or during its reaction with COMe₂) Bu^aOH and CHMeBu^a·OH (III) are also formed. (III) results from Et₂O peroxide which reacts as MeCHO. The ratios Pr⁶OH: (II) and (I): reduction products [Pr⁶OH + (II)] are approx. 3:1 and 6:1, respectively. H. B.

Preparation of ketones from higher fatty acids. III. Preparation of ketones from the fatty acids of hydrogenated sardine oils. IV. Preparation of ketones from the fatty acids of coconut oil and of hardened rape-seed and soya-bean oils. K. KINO (J. Soc. Chem. Ind. Japan, 1937, 40, 311B, 311-312B).--III. By heating the fatty acids with Mg, ketones of various m.p. are obtained, the acids of higher m.p. giving ketones of higher m.p.

IV. The ketones of highest m.p. are obtained from acids with high m.p. and also from acids which are least unsaturated. F. R. S.

Combination of sugars with amino-acids. II. F. LIEBEN and B. BAUMINGER. III. Experiments with animal charcoal. J. BENEK and F. LIEBEN (Biochem. Z., 1937, 292, 371–375, 376– 379; cf. A., 1937, II, 401).—II. The decomp. of glucose (I) in systems containing (I) and glycine (II) in O_2 at 70° is retarded by increase in either component above the optimum ratio of (I): (II) = 1.5– 2.0:1. In N₂, the presence of (II) is still necessary for the (much lower) decomp. of (I). Presence of methylene-blue increases the decomp. almost to the aerobic val.

III. Presence of C increases the decomp. of (I) and formation of CO_2 and lactic acid; (II), however, is also decomposed with formation of CO_2 and NH_3 , a decomp. enhanced tenfold by the presence of (I). F. O. H.

Preparation of erythrose and some of its derivatives. G. E. FELTON (Iowa State Coll. J. Sci., 1935, 10, 79—81).—Ozonolysis of arabinal yields erythrose, $[\alpha]_{\rm D}$ +11.5° (initial), +30.5° (equil.), isolated as isopropylidenemethylerythroside. Acetobromoarabinose, a deoxypentose disaccharide tetra-acetate, two forms, m.p. 167—169° and 185.5°, and dihydroarabinal, b.p. 83—85°/1 mm., $[\alpha]_{\rm D}$ ±48.3°, are described.

CH. ABS. (r)

Structure of monoacetone-*d*-xylulose. P. A. LEVENE and R. S. TIPSON (J. Biol. Chem., 1937, **120**, 607-618).—The p-C₆H₄Me·SO₂ derivative and NaI method (A., 1932, 254; 1933, 1145) is applied to 2:3:4:5-isopropylidenefructose (I) and to isopropylidene-*d*-xylulose (II). The 1-p-toluenesulphonyl

I. A. P.

XIV(f)

derivative, m.p. 83°, $[\alpha]_D^{25} - 25.9^\circ$ in EtOH, of (I) is unaffected by NaI in COMe, at 100°. Similarly the 1:4-di-p-toluenesulphonyl derivative, m.p. 71-73°, $[\alpha]_{b}^{b}$ +6.3° in COMe₂, of (II) is not appreciably affected by NaI. This indicates that $p \cdot C_6 H_1 Me \cdot SO_2$ is not attached in position 5. With MeI-Ag₂O-Is not attached in position 3. Whith 10^{-1}Hg_2 COMe_2 , (II) gives its Me_2 derivative, b.p. $47^\circ/0.1$ mm., $[\alpha]_2^{\pm} -12.6^\circ$ in COMe_2 , which with $0.2\text{N}-\text{H}_2\text{C}_2\text{O}_4$ at 65° gives dimethylxylulose (III), m.p. $48-49^\circ$, $[\alpha]_2^{\pm}$ in MeOH $-26.7^\circ \rightarrow -16.3^\circ$ after 30 min. The strongly reducing properties of (III) show that the reducing group at position 2 is protected by :CMe2 in the isopropylidene derivative, but free in the Me₂ sugar. With MeOH-HCl, followed by Ag_2CO_3 , (III) gives tri-methyl-methylxyluloside ($\alpha + \beta$), b.p. 61-64°/0.25 mm., of which three successive fractions had $[\alpha]_{p}^{26}$ -18.6°, -7.0° , and $+4.3^{\circ}$ in COMe₂, showing partial separation into the α - and β -forms. Further methylation (MeI-Ag₂O) gives trimethyl-methylxyluloside ($\alpha + \beta$) (IV), b.p. $52^{\circ}/0.25$ mm., hydrolysed (H₂C₂O₄) to Me_3 xylulose (V), b.p. $64^{\circ}/0.25 \text{ mm.}, [\alpha]_{D}^{25} - 14.0^{\circ} \text{ in MeOH}.$ That (IV) is 1:3:4-trimethyl-methylxylulofuranoside is shown by oxidation (HNO3, d 1.42, at 59-95°), which with (IV) or (V) gives crude dimethylxylosonic acid (VI), esterified to a mixture of the Me ester with its "methyl-

 $\begin{array}{c} \begin{array}{c} CH_2 \cdot OH \\ CMe_2 < \begin{array}{c} O \cdot C \\ O \cdot C \cdot H \\ H \cdot C \cdot OH \\ CH_2 \end{array} \end{array}$ (II.)

glycoside," and some Me₂ *l*-dimethoxysuccinate. By complete methylation (Purdie) and treatment with NH₃-MeOH, dimethoxysuccindiamide is obtained. This shows that (II) is 2 : 3 - isopropylidene - d - xylulo -

furanose. With $Ba(MnO_4)_2-H_2SO_4$, (VI) gives a product, $C_6H_{10}O_6$, m.p. 151°, $[\alpha]_D^{26} - 68.8^{\circ} in H_2O$. E. W. W.

Structure of β -chloralglucose. W. FREUDEN-BERG and A. M. VAJDA (J. Amer. Chem. Soc., 1937, **59**, 1955—1957).— β -Chloralglucose [the β -glucochloralose of Coles et al. (A., 1929, 429)], m.p. 237·5—238°, $[\alpha]_{p}^{-}$ —17·2° in C₅H₅N, is 1:2-trichloroethylideneglucofuranose since it contains 3 active H (Zerevitinov), is oxidised by Pb(OAc)₄ in AcOH to CH₂O, is reduced (H₂, Ni, EtOH-NaOH) to (impure) chloroethylideneglucofuranose, m.p. 168—170° [hydrolysed (0·5N-HCl)) to glucose and CH₂Cl·CHO (2:4-dinitrophenylhydrazone, m.p. 149—151°)], and is methylated (Me₂SO₄, CCl₄, 50% NaOH) to trimethyl- β -chloralglucose (I), m.p. 113—114°, $[\alpha]_{p}^{-}$ —28·7° in CHCl₃. Methylation (method : West and Holden, A., 1934, 636) of 1:2isopropylideneglucofuranose gives the 3:5:6-Me₃ derivative, b.p. 117—119°/0·7 mm., hydrolysed (aq. EtOH-HCl) to 3:5:6-trimethylglucofuranose, which with CCl₃·CHO and conc. H₂SO₄ at 10—15° affords (I) (cf. White and Hixon, A., 1933, 810). H. B.

Reaction of 4:6-ethylidene- β -methylglucoside derivatives; 4:6-dimethylglucose. D. J. BELL and R. L. M. SYNGE (J.C.S., 1937, 1711—1718).— 4:6-Ethylidene- β -methylglucoside with N₂O₅ in CHCl₃ yields 4:6-ethylidene- β -methylglucoside 2:3-dinitrate (I), m.p. 88—89°, [α]₁₆¹⁶ -21.0° in CHCl₃, converted by 0.1% H₂SO₄ in Ac₂O into 6-acetyl-4- α -acetoxyethyl- β -methylglucoside 2:3-dinitrate (II), m.p. 113—115°, [α]₁₆¹⁷ +22.7° in CHCl₃, which on hydrolysis (COMe₂-HCl) yields MeCHO and unidentified products, and

on nitration (HNO3-CHCl3) gives MeCHO and β-methylglucose 2:3:4-trinitrate 6-acetate, m.p. 104-105°, $[\alpha]_{D}^{175} - 27.0^{\circ}$ in CHCl₃, which is resistant to hydrolysis (NaOMe-CHCl₃) and to iodination (NaI-COMe₂). (II) with NaOMe in CHCl₃-MeOH yields β -methylglucoside 2:3-dinitrate, m.p. 96-98°, $[\alpha]_{h}^{\infty}$ -20.5° in CHCl3-COMe2, acetylated (Ac2O-NaOAc or -C₅H₅N) to β -methylglucoside 2:3-dinitrate 4:6-diacetate, m.p. 138-140°, $[\alpha]_D^{19}$ -5.2° in CHCl₃, and methylated to 4:6-dimethyl-B-methylglucoside 2: 3-dinitrate, m.p. 54-57°, [a] -13.4° in CHCl3, which is hydrolysed (Na₂S) to 4:6-dimethyl- β -methylglucoside (III), b.p. 130-160°/0.4 mm., m.p. 50-52°, $[\alpha]_{b}^{b} - 28.8°$ in CHCl₃ (2 : 3-*di*-p-toluenesulphonate (IV), m.p. 146-149°, $[\alpha]_{b}^{c} - 14.8°$ in CHCl₃). Hydrolysis of 4:6-benzylidene-β-methylglucoside 2:3-dip-toluenesulphonate (H₂SO₄ or HCl in COMe₂) yields β-methylglucoside 2:3-di-p-toluenesulphonate (a syrup), methylated (MeI-Ag₂O) to (IV). (III) is hydrolysed (HCl) to 4 : 6-dimethylglucose, m.p. 156-158°, identical with the dimethylglucose, m.p. 156– 157°, of Haworth and Sedgwick (A., 1926, 1228). 4:6-Ethylidene- β -methylglucoside 2:3-diacetate (V) with Ac₂O-H₂SO₄ (0·1%) yields 4- α -acetoxyethyl β -methylglucoside 2:3:6-triacetate (a syrup), which with HNO₂-CHCl₂ gives β-methylglucoside 4-nitrate 2:3:6triacetate (VI), m.p. 112—114°, $[\alpha]_{b}^{1-3}$ -27.0° in CHCl₃, reduced (Fe-Zn-AcOH) to methylglucoside 2:3:6-triacetate, which is nitrated (HNO3-CHCl3) to yield (VI). Nitration (HNO3-CHCl3) of (I) affords β -methylglucoside 2:3:4:6-tetranitrate, m.p. 116— 118°, $[\alpha]_{\rm D}$ +9.35° in CHCl₃, whilst similar nitration of (V) yields β -methylglucoside 4:6-dinitrate 2:3-diacetate, m.p. 118-120°, [a]¹⁷_D -7.3° in CHCl₃, hydrolysed (NaOMe) to β-methylglucoside 4 : 6-dinitrate, m.p. 147—149°, $[\alpha]_{D}^{17}$ -5.3 in MeOH, which is methylated $(MeI-Ag_2O)$ to 2: 3-dimethyl- β -methylglucoside 4: 6-J. D. R. dinitrate.

Calcium chloride compound of α -d-galactose. R. M. HANN and C. S. HUDSON (J. Amer. Chem. Soc., 1937, 59, 2075).—The compound, $C_6H_{12}O_6$, $CaCl_2$, $3H_2O$, m.p. 129—130° (corr.), $[\alpha]_{2^0}^{p_0}$ (in H_2O) +75.82° (after 2.7 min.) \rightarrow +42.68°, is described. H. B.

Reduction of the methyl ester of 2:3:4trimethyl α -methyl-*d*-galacturonide to 2:3:4trimethyl α -methyl-*d*-galactoside. P. A. LEVENE, R. S. TIPSON, and L. C. KREIDER (Science, 1937, 86, 332-333).—Reduction has been effected in H₂ with a Cu chromite catalyst. Distillation gave a *product*, m.p. about 30°, $[\alpha]_{D}^{\infty}$ +198.4° in H₂O, which on hydrolysis yields 2:3:4-trimethyl-*d*-galactose. L. S. T.

Conversion of uronic acids into corresponding hexoses. I. Conversion of 2:3:4-trimethylmethyl-d-galacturonide methyl ester into 2:3:4-trimethylmethyl-d-galactoside. P. A. LEVENE and L. C. KREIDER (J. Biol. Chem., 1937, 121, 155—164; cf. A., 1937, II, 442).—2:3:4-Trimethyl-a-methylgalacturonamide, m.p. 153—153-5°, $[\alpha]_{5}^{22}$ +121.5° in CHCl₃ (from the Me ester and NH₃), with SOCl₂ yields the nitrile, m.p. 156—157°, $[\alpha]_{5}^{23}$ +177.6° in CHCl₃. The CN group of this could not be eliminated. AgNO₃ in aq. NH₃-MeOH followed by H₂S gave only the thioamide, m.p. 182—183° (also prepared from the nitrile and H_2S in MeOH– NH₄OH); heating with conc. aq. NH₃ gave the amide, whilst Na + MeOH gave a compound, probably the Me iminogalacturonate, m.p. 65–65.5°, $[\alpha]_D^{10}$ +194° in CHCl₃. The nitrile is reduced (Raney's catalyst) to 6-amino-2:3:4-trimethyl- α -methyl-dgalactoside, b.p. 172°/25 mm., $[\alpha]_D^{10}$ +161.3° in CHCl₃, which with HNO₂ gives 2:3:4-trimethyl- α -methyl-dgalactoside, $[\alpha]_D^{10}$ +132.2° in MeOH. A. LI.

I-Sorbose. II. New acetyl and methyl derivatives of *l*-sorbose. Numerical relationships in the *L*-sorbose series. H. H. SCHLUBACH and G. GRAEFE (Annalen, 1937, 532, 211-227; cf. A., 1933, 1145).—l-Sorbose with Ac₂O in well-cooled C₅H₅N gives a-1-sorbose tetra-acetate (I), m.p. 100.8° (corr.), $[\alpha]_{D}^{20} - 21.3^{\circ}$ in CHCl₃, converted by Ac₂O and NaOAc at 100° into a-sorbose penta-acetate (II), m.p. 97.0°, $[\alpha]_{D}^{20} - 56.5^{\circ}$ in CHCl₃. (I) with PCl₅-AlCl₃ or with PCl₅ alone gives very unstable, partly halogenated products, whereas with anhyd. HCl at 0° a-acetochlorosorbose (III), m.p. 67.0°, $[\alpha]_{D}^{20}$ -83.3° in CHCl₃, is obtained in 72% yield; it is still less stable than the corresponding fructose compound, but can be preserved for a few weeks in abs. Et₂O at 0°. It is re-converted by AgNO₃ into (I). Treatment of (III) with AgOAc in boiling C_6H_6 does not lead to complete replacement of Cl, but in Ac₂O at 80° 1-β-sorbose penta-acetate (IV), m.p. 113.8°, $[\alpha]_{D}^{20}$ +74.4° in CHCl₃, is obtained, a Walden inversion occurring as with the aldohalogenoses, but not with β -acetochlorofructose. Treatment of (III) with AgNO3 and Ag₂CO₃ in MeOH yields β-methylsorboside tetraacetate, m.p. 75.0°, $[\alpha]_D^{20}$ +79.8° in CHCl₃. The isomeric α -methylsorboside tetra-acetate has m.p. 89.5°, $[α]_{D}^{20}$ -52.6° in CHCl₃. β-Methylsorboside (V), has m.p. 106.2°, $[α]_{D}^{20}$ +39.0° in H₂O₂ +84.3° in MeOH, +97.1° in EtOH, +101.4° in EtOAc. Hydrolysis of (V), α -methylsorboside (VI), and β -methylfructoside, in contrast to that of the Me glucosides of the aldohexoses, occurs rapidly at 20°, and since they are all pyranose derivatives, the difference must be ascribed to that usually observed between a sec. and a tert. OH. The aldofuranosides are readily hydrolysed. The half-periods of inulin and sucrose are of the same order of magnitude as those of (V) and (VI). Generally, the differences in the rates of hydrolysis of ketopyranoses and ketofuranoses are not so great as those between the corresponding aldose compounds. The vals. of $[\alpha]_{D}$ for (II) and (IV) and (V) and (VI) enable the validity of Hudson's rules to be tested for ketoses on an extended basis. The observation that the increments for the different groups in the case of fructose are generally appreciably > those for similar groups in the aldose series cannot be generalised, since the α_x -vals. of *l*-sorbose are invariably considerably < those of d-fructose and vary irregularly around those of the aldoses. The only general differences between ketoses and aldoses are the greater reactivity of the former and the more pronounced tendency to form derivatives of the keto-form. Comparison of (V) and (VI) with the methylfructosides shows close resemblance between (V) and α - and (VI) and β -methylfructoside. The assignment of sorbose to the *l*-series and the designation of its derivatives

therefrom in consonance with Hudson's rules are inappropriate. H. W.

Ring structure of α -methyl-*l*-sorboside. R. L. WHISTLER and R. M. HIXON (J. Amer. Chem. Soc., 1937, 59, 2047—2048; cf. Arragon, A., 1936, 1234).— α -Methyl-*l*-sorboside (I) (tetra-acetate, m.p. 88°, $[\alpha]_{25}^{25}$ —52·4° in CHCl₃, unaffected by AcCl-HCl) is methylated (Me₂SO₄ followed by MeI-Ag₂O) to the Me, derivative (II), $[\alpha]_{25}^{29}$ —48·8° in CHCl₃, hydrolysed (2% HCl) to tetramethyl-*l*-sorbose (III), $[\alpha]_{25}^{28}$ —10·2° in CHCl₃, +4·95° in MeOH. Oxidation [HNO₃ (d 1·42) at 70—95°] of (III) gives d-dimethoxysuccinic acid, indicating that (I)—(III) possess pyranoid structures. H. B.

Fructose anhydrides. XXI. Synthetic di-fructose anhydrides. H. H. SCHLUBACH and H. KNOOP (Annalen, 1937, 532, 207-210).-Repetition of the work of Schlubach and Elsner (A., 1929, 51) leads to the isolation of a hygroscopic, amorphous compound which does not reduce Fehling's solution. Its \overline{COMe}_2 content (1.4%) and its properties in conjunction with the results of acetylation and methylation indicate that it is the diffuctose anhydride (I) obtained by Schlubach and Behre (A., 1934, 174) by the action of HCl on fructose, contaminated with a dextrorotatory, probably isopropylidene compound. A second substance (II) had $[\alpha]_D + 44^\circ$ in H_2O , +52° in MeOH, but higher vals. are occasionally observed. Its reducing power increases with the time of experiment and hence is due to causes other than the presence of reducing groups. It is slowly hydrothe presence of reducing groups. It is slowly hydro-lysed by n-H₂SO₄. When methylated it gives a *Me* ether (OMe = $45\cdot3\%$), b.p. $141^{\circ}/0.05$ mm., $[\alpha]_{20}^{20} + 55\cdot1^{\circ}$ in H₂O, +49.8° in CHCl₃, +47.8° in C₆H₆, +40.4° in CCl₄, hydrolysed to a trimethylfructose, b.p. $93^{\circ}/$ 0.05 mm., $[\alpha]_{20}^{20} + 22\cdot2^{\circ}$ in H₂O, +15.5° in CHCl₃, $\pm0^{\circ}$ in C₆H₆, -7.3° in CCl₄, which gives a non-cryst. *phenylosazone*. (II) appears therefore to be a di-functor apply dride and unlike (I) to be a functofuran fructose anhydride and unlike (I) to be a fructofuranose. The mol. wt. follows from the b.p. of the Me derivative. The simultaneous production of both types of anhydride is understandable since in polutions of fructose the furanose form is present in considerable proportion with the pyranose variety. From these forms under the influence of acids very varied difructose anhydrides result all of which are hydrolysed with great difficulty by acids and are very stable, saturated systems which show no tendency to poly-H. W. merise.

aldehydo-Derivatives of $d-\alpha$ -galaheptose. R. M. HANN and C. S. HUDSON (J. Amer. Chem. Soc., 1937, 59, 1898—1900).— $d-\alpha$ -Galaheptose [oxime (I), m.p. 179° (decomp.) (all m.p. except this are corr.), $[\alpha]_{\rm B}^{20}$ (in H₂O) $-5^{\circ} \rightarrow -1.6^{\circ}$] (as hydrate) and EtSH in conc. HCl give $d-\alpha$ -galaheptose Et mercaptal, m.p. 204—205°, $[\alpha]_{\rm B}^{20}$ -9.7° in C₅H₅N, the hexa-acetate, m.p. 145—146°, $[\alpha]_{\rm B}^{20}$ $+5.6^{\circ}$ in CHCl₃, of which with HgCl₂ + CdCO₃ in COMe₂ affords aldehydo-d- α -galaheptose hexa-acetate (II), m.p. 173—174°, $[\alpha]_{\rm R}^{20}$ $+27^{\circ}$ in CHCl₃ [oxime (III), m.p. 130°, $[\alpha]_{\rm B}^{20}$ $+16.3^{\circ}$ in CHCl₃], acetylated further (Ac₂O-AcOH-conc. H₂SO₄ at 20°) to the octa-acetate, m.p. 112°, $[\alpha]_{\rm B}^{20}$ $+19.8^{\circ}$ in CHCl₃. Acetylation (Ac₂O, C₅H₅N) of (I) or (III) affords aldehydo-d- α -galaheptoseoxime hepta-acetate, m.p. 125—126°, $[\alpha]_{D}^{20}$ +38.6° in CHCl₃, which when heated to 170° pases into d- α -galaheptononitrile hexa-acetate, m.p. 194°, $[\alpha]_{D}^{20}$ +31.7° in CHCl₃, also formed from (I) or (III) and Ac₂O-NaOAc. d- α -Galaheptosesemicarbazone, m.p. 136—137° $[\alpha]_{D}^{20}$ (in H₂O) -22° \rightarrow +32.9°, is acetylated (Ac₂O, C₅H₅N) to the semicarbazone, m.p. 180°, $[\alpha]_{D}^{20}$ +16.7° in CHCl₃, of (II). There is no parallelism between the rotations of the above compounds and those of the corresponding derivatives of mannose. H. B.

Behaviour of glucosides when micro-sublimed. R. FISCHER (Arch. Pharm., 1937, 275, 516—526).— Micro-sublimation of æsculin, fraxin, daphnin, phloridizin, quercitrin, baptisin, arbutin, solanin, digitonin, hederin, and other saponins gives the aglucones, but syringin and salicin sublime unchanged. The aglucone is best obtained by moistening with HCl before sublimation; this allows identification of the glucosides in and characterisation of many natural products. Solanidine hydrochloride sublimes. R. S. C.

Strophanthin. J. KRAUS (Naturwiss., 1937, 25, 651).—From a technical strophanthin prep. after mild hydrolysis, a trisaccharide, glucosidoglucosidocymarose, $C_{19}H_{34}O_{14}$, m.p. 217—220°, has been isolated; it is not identical with the methylstrophanthobioside of Feist (A., 1898, i, 329). From the same strophanthin prep. after acetylation an acetylstrophanthin, m.p. 216—220°, was obtained. W. O. K.

Scoporin.—See A., III, 333.

Fructosides of Amaryllidaceæ. Lycoris and Narcissus.—See A., III, 503.

Fructose anhydrides. XX. Constitution of asphodelin. H. H. SCHLUBACH and H. LENDZIAN (Annalen, 1937, 532, 200-207).-Extraction of Asphodelus tubers (harvested in October) with H₂O, removal of proteins by basic Pb acetate, and pptn. with EtOH gives the crude carbohydrate, which is further purified by repeated fractional pptn. by EtOH from H_2O . The persistent presence of N in small amount shows that homogeneity is not reached by this method. The product is therefore acetylated in C_5H_5N and the acetate (I), $[\alpha]_D^{20} - 16.6^\circ$ in CHCl₃, after repeated pptn. from C_6H_6 by light petroleum is deacetylated (Zemplen) to asphodelin (II), $[\alpha]_m^{20}$ -30.9° in H₂O. For a polyfructosan it is remarkably stable to heat. The reducing val. (Bertrand) is 0.35%, the aldose val. 0.4%. During hydrolysis the aldose val. increases to 11.1%. Methylation of (I) in $COMe_2$ affords methylasphodelin, $[\alpha]_{D}^{20} = -33 \cdot 3^{\circ}$ in C_8H_6 , which on hydrolysis gives 1:3:4:6-tetramethylfructose, a mixture of trimethyl-fructose and -glucose, and a dimethylfructose, $[\alpha]_{D}^{20}$ +19.6° in CHCl₃, apparently identical with that derived from methylirisin and methylgraminin. The ratio of the amounts of tetra-, tri-, and di-methylhexoses, calc. as fructose, is nearly 1:5:1. (II) must therefore contain at least six hexose residues; this is roughly confirmed by cryoscopic determinations of the mol. wt. The aldose val. of the trimethylhexose fractions points to the presence of at least one glucose unit in five hexose units. Whether the glucose is an integral component of (II) or the product of the fission of an accompanying glucose anhydride remains undecided.

The latter possibility is supported by the behaviour of the material obtained from tubers collected in January. The type of structure of (II) resembles that of sinistrin. H. W.

Fructose anhydrides. XIX. Constitution of asparagosin. H. H. SCHLUBACH and H. BÖE (Annalen, 1937, 532, 191-200).-The fresh asparagus roots are extracted with H₂O, proteins are removed with basic Pb acetate, and the crude carbohydrate is purified by systematic fractional pptn. by EtOH from H₂O. Thus obtained, asparagosin (I) has m.p. 197-198° after softening at 170° and swelling at 193°, $[\alpha]_{n}^{20}$ -32.4° . It is acetylated in C₅H₅N-H₂O to an Ac₂ derivative, which in anhyd. C₅H₅N passes into the triacetate (II), m.p. 93° after softening at 80°, [a]20 -20.1° in CHCl₃, which when deacetylated (Zemplen) affords (I) with $[\alpha]_{D}^{20} - 32.6^{\circ}$ in $H_{2}O$. It does not react with Fehling's solution. The mol. wt., determined cryoscopically in H₂O, corresponds with the presence of 9-10 fructose units. Acid hydrolysis causes 92.2% fission as a max. (measured by the reducing val. according to Bertrand). According to the method of Auerbach and Bodländer aldoses are absent so that (I) is composed entirely of fructose absent so that (1) is composed entirely of futures units. Treatment of (II) with Me₂SO₄ and alkali followed by MeI-Ag₂O gives trimethylasparagosin, $[\alpha]_{p}^{\infty} -47.8^{\circ}$ in CHCl₃. This is hydrolysed by alcoholic H₂C₂O₄ followed by 0.25% HCl to a tetramethyl-fructose, $[\alpha]_{p}^{\infty} +21.1^{\circ}$ to $+15.3^{\circ}$ in CHCl₃, 3:4:6-trimethylfructose, $[\alpha]_{p}^{\infty} +26.1^{\circ}$ to $+23.0^{\circ}$ in CHCl₃ (phenylosazone, forms, m.p. 126-127° and 78-79°, respectively) identical with that derived from inulin respectively), identical with that derived from inulin, and a dimethylfructose, $[\alpha]_D^{20}$ +14.0° to +21.0° in CHCl₃, identical with that derived from irisin and graminin (III). The ratio of the amounts of these products, calc. as fructose, is almost exactly 1:8:1. (I) is therefore a polyfructosan $(C_6H_{10}O_5)_{10}$. In its special structure it is allied most closely to inulin, of which it may be regarded as a model to scale 1:3. Since the presence of an open chain in (I) is impossible and that of a large ring must be assumed for the same reasons as in the cases of (III), sinistrin, and triticin the existence of (I) is a further argument for the H. W. presence of a large ring in inulin.

Constitution of galactogen. Ι. H. H. SCHLUBACH and W. LOOP [with H. SCHMIDT] (Annalen, 1937, 532, 228-235).-Galactogen (I) is separated as the Cu compound from its mixture with glycogen (II) in the vineyard snail (cf. May, A., 1934, 1251) and, after regeneration, is treated with malt disatase until further action does not occur. It has then $[\alpha]_D^{20}$ -17.6° in H₂O. The half-period of acid hydrolysis of (I) is somewhat < that of (II). May's explanation that the difference in the galactose (III) content of the hydrolysate according as it is calc. from the reducing power or optical activity is due to a peculiar variety of (III) is unnecessary; the phenomenon is probably due to varying amounts of reversion products depending on the conditions of reaction. Direct methyl-ation of (I) by KOH and Me_2SO_4 is difficult. It is therefore treated with aq. C_5H_5N and Ac_2O followed by anhyd. C_5H_5N and Ac_2O and the *acetate* is treated with Me_2SO_4 -KOH in $COMe_2$, then with Na and MeI in liquid NH_3 -anisole, and finally with Ag_2O-MeI ,

thereby yielding methylgalactogen (44.7% OMe; calc. 45.6%), $[\alpha]_{\rm p}^{20} - 71.1^{\circ}$ in CHCl₃. This is hydrolysed completely by 40% HCl to a mixture of tetramethyland dimethyl-methylgalactosides without apparent formation of trimethyl-methylgalactoside. The components are therefore present in the ratio 1:1. The structure of (I) resembles therefore that of irisin and differs completely from that of (II) which gives mainly a trimethylgucose when hydrolysed. H. W.

So-called "soluble starch." W. S. REICH and P. TRPINAC (Bull. Soc. chim., 1937, [v], 4, 1921— 1923).—"Sol starch," prepared from potato starch by hydrolysis with glycerol at 220°, is benzoylated (BzCl-C₅H₅N) to a *tribenzoate* of "amylone" (a non-reducing sugar with 3 free OH per glucose unit), and a different *tribenzoate*, $[\alpha]_{D}^{2*} + 64.7^{\circ}$ in CHCl₃. By prolonging the time, or increasing the temp. of hydrolysis of the starch, a non-reducing sugar with 4 free OH per glucose unit is formed (*octabenzoate*, $[\alpha]_{D}^{2*} + 70.6^{\circ}$ in CHCl₃). J. D. R.

Hydrolysis of starch paste by β -amylase and by heating under pressure.—See A., III, 430.

Application of cleavage type of oxidation by periodic acid to starch and cellulose. E. L. JACKSON and C. S. HUDSON (J. Amer. Chem. Soc., 1937, **59**, 2049—2050).—Maize starch (I) is oxidised by aq. HIO₄ (1 mol. consumed per $C_6H_{10}O_5$ during 24 hr.) at 21—22° to a product, $[\alpha]_{10}^{20}$ +9° in H₂O, which reduces Fehling's solution, gives an immediate ppt. with NHPh·NH₂, and shows no colour with I. Similar products, $[\alpha]_{10}^{20}$ (in H₂O) —25° and —29°, respectively, are formed [more slowly than from (I)] from cotton and filter-paper; the amount of HIO₄ consumed is >1 mol. probably owing to further oxidation during prolonged contact. Hydrolysis (0·1N-HClat 99—100°) of all the products gives (—)-solutions having approx. the equilibrium val. for *d*-erythrose.

H. B.

Carbohydrates. X. Viscosity of solutions of cellulose. T. LIESER and R. EBERT (Annalen, 1937, 532, 94-103; cf. A., 1937, II, 179).-In agreement with Staudinger the sp. viscosity of solutions of cellulose (I) in NH₃-Cu(OH)₂ is found to be independent of temp. and concn. η_{sp} of the same sample of (I) dissolved in NEt₄·OH and diluted with 0.7N-NaOH is about thrice as great and dependent on temp. and concn. Similar results are obtained in NEt. OH alone, in NMe3, p-cresol diluted with NaOH, and in PEt₄·OH diluted with NaOH. The state of dissolution of (I) is not regarded as essentially different in the two sets of experiments; this view is supported by the observation that η_{sp} of (I) in $(CH_2 \cdot N\dot{H}_2)_2$ is similar to that in org. bases. It appears impossible to regard the interaction of (I) and Cu(OH)2-NH3 otherwise than as a pseudostoicheiometric, micellary surface change regulated by the ratio, micelle surface : micelle content. This ratio appears to be true also in the cases of mercerisation, xanthate reaction, addition of HClO₄, and production of the primary Knecht compound. Permutoid introduction of Cu into (I) dissolved in strong org. bases is possible if the temp. is kept sufficiently low. The dissolution of (I) in such bases of sufficiently high mol. wt. and concn. occurs since they force apart the main valency

chains at the surface of the micelle, conquering the micellary forces until they penetrate to the thread mols. situated within the micelles; these become solvatised with production of mol. compounds. Low temp. favour the production of these as of all mol. compounds, whereas at higher temp. they become dissociated. Apart from hydrolytic influences, similar conditions maintain in solutions of (I) in conc. inorg. acids. These agents have a unique position as solvents of (I). Mild solvents, e.g., Schweitzer's solution, are incapable of overcoming the micellary forces of highly polymerised (I). The differences of η_{sp} in org. bases or inorg. acids and in Cu(OH)2-NH3 lead to the hypothesis that, other things being equal, micellary and mol. solutions of (I) have nearly the same sp. η . It is therefore impossible to distinguish by measurements of viscosity between the micellary and mol. condition. H. W.

Highly polymerised compounds. CLXXV. Km constants of cellulose acetates. H. STAUDINGER and A. E. WERNER (Ber., 1937, 70, [B], 2140-2148).—In consequence of the gradual alteration of K_m in cellulose derivatives of lower mol. wt. the viscosity of dil. solutions of tetra-acetylglucose laurate and stearate, ditetra-acetylglucose adipate, m.p. 163.5°, dihepta-acetylcellobiose adipate, m.p. 225-226°, and sebacate, m.p. 234-235°, has been determined. After making allowance for the viscosity of the aliphatic chain K_m for the glucose acetate residue shows a progression. In explanation it is assumed that the ratio of diameter to length of mol. must be very high for exact fulfilment of the laws of η . With shortchained, irregularly formed mols. a group which increases the diameter at any point causes increase in η . The simpler glucose derivatives have unbranched, extended thread mols. Since the K_m consts. of cellulose acetates can be calc. from those of these products, it follows that the macromols. of meso- and eucolloidal cellulose acetates and of cellulose itself must be constructed of long, unbranched glucose chains. The mols. of starch are extended but branched, whereas glycogen and its derivatives are com-posed of spherical mols. The K_{in} consts. of cetyl triacetylgallate, m.p. 88°, and ditriacetylgalloyloxydecane, m.p. 122.5-123°, in COMe₂, CHCl₃, and dioxan are almost identical with those of the corresponding glucose triacetate derivatives. For glucose pentabenzoate and penta-acetate and maltose octa-acetate η_{sp}/c is const. over a large region of concn. as expected H. W. for compounds with spherical mols.

[Reaction of] monochloroamine with organolithium and -zinc compounds. G. H. COLEMAN, J. L. HERMANSON, and H. L. JOHNSON (J. Amer. Chem. Soc., 1937, 59, 1896—1897).—NH₂Cl and ZnR₂ (R = Et, Pr^a) in Et₂O-light petroleum at -30° give NH₂R (46—57%) and NH₃ (41—47%); NH₂R (8—17%), NHR₂ (5—8%), NH₃ (27—38%), and N₂ are formed using NCl₃. LiR (R = Me, Bu^a, Ph, *p*tolyl) added to NH₂Cl at about -50° gives max. yields (33—39%) of NH₂R; NH₃ is also formed. H. B.

Addition of butylamine to butyl isocyanide. T. L. DAVIS and W. E. YELLAND (J. Amer. Chem. Soc., 1937, 59, 1998-1999).—Bu^a isocyanide (I), b.p. $124-125^{\circ}/761\cdot 5$ mm. (from Bu^aI and AgCN at $125-130^{\circ}$), with NH₂Bu^a and ZnCl₂ at $105-110^{\circ}$ gives $18\cdot4\%$ of NN'-di-*n*-butylformamidine (II) [*picrate*, m.p. $114\cdot 5-116\cdot 5^{\circ}$, which when heated > m.p. or fused with NaOH affords (I)]. (II) is also produced [with (I) and tarry products] from NH₂Bu and CHCl₃ (or CHBr₃), preferably in presence of ZnCl₂. (II) is also synthesised from HCO·NHBu^a, b.p. $124-126^{\circ}$, NH₂Bu^a,HCl, and POCl₃. H. B.

Compounds of carbonyl chloride with hexamethylenetetramine, *m*-toluidine, and ethylenediamine. N. A. PUSHIN and R. V. MITIÓ (Annalen, 1937, 532, 300—301).—Even when an excess of COCl_2 in CHCl₃ is employed, the compound $\text{COCl}_2, \text{2C}_6\text{H}_{12}\text{N}_4$ is obtained from $(\text{CH}_2)_6\text{N}_4$. COCl₂ and *m*- $\text{C}_6\text{H}_4\text{Me}\cdot\text{NH}_2$ afford *di*-m-tolylcarbamide hydrochloride,

 $C_6H_4Me^{\circ}NH_2$ afford di-m-tolylcarbamide hydrochloride, m.p. 162°. Ethylenecarbamide hydrochloride,

 $CO < \frac{NH \cdot CH_2}{NH \cdot CH_2}$, HCl, is derived from $(CH_2 \cdot NH_2)_2$.

H. W.

Onium compounds. XVII. Thioethers of formocholine and their sulphones. R. R. REN-SHAW and D. E. SEARLE (J. Amer. Chem. Soc., 1937, 59, 2056—2058).—SAlk·CH₂·NMe₂ (from NHMe₂, 40% CH₂O, and AlkSH) with MeI in PhMe afford trimethyl(alkylthiolmethyl)ammonium iodides, of which the following are described : Alk = Me, m.p. 136— 137°, Et, m.p. 119—120°, Pr° , m.p. 111—113°, Pr^{β} , m.p. 143—145°, Bu° , m.p. 123—126°, Bu^{β} , m.p. 153—154°. The corresponding sulphates are oxidised (5% KMnO₄ in neutral solution) to trimethyl(alkanesulphonylmethyl)ammonium sulphates,

[AlkSO₂·CH₂·NMe₃]₂SO₄; the following are described: Alk = Et, decomp. 178°, Pr^a , decomp. 190°, Pr^β , decomp. 190°, Bu^a , decomp. 190°, Bu^β , decomp. 197°. The following triethyl(alkylthiolmethyl)ammonium iodides are similarly prepared from SAlk-CH₂·NEt₂ and EtI: Alk = Me, m.p. 134—136°, Et, m.p. 102— 103·5°, Pr^a , m.p. 81—85°, Pr^β , m.p. 132—133°, Bu^β , m.p. 100—101°. M.p. are corr. Pharmacological properties are discussed (cf. A., 1932, 540). H. B.

Acetylcarnitine. R. KRIMBERG and V. VITANTS (Acta Univ. Latviensis, Med. Fak. Ser., 1933, 1, 297-303).—Carnitine and AcCl yield acetylcarnitine chloride, m.p. 181°, $[\alpha]_D^{\infty}$ -26.91°, which, with moist Ag₂O, yields acetylcarnitine, m.p. 145°, $[\alpha]_D^{\infty}$ -19.52° (Au, m.p. 128°, and Pt, m.p. 187°, salts); this with Ba(MnO₄)₂ gives the same acetobetaine as does carnitine, thus showing that the OH is in the β position. CH. ABS. (r)

Preparation of the simpler α -alkylaminoacids. I, II. W. COCKER (J.C.S., 1937, 1693-1695, 1695-1696).--I. An improved prep. of sarcosine (I) (cf. A., 1931, 1402) is described. Interaction of PhSO₂·NH·CH₂·CO₂H with EtI and NaOH, followed by hydrolysis (H₂SO₄), yields NHEt·CH₂·CO₂H (II), m.p. 180-182° [lit. 160° (decomp.)] (*phenylhydantoin*, m.p. 110°). N-Propylglycine, m.p. 196-198° (Bz derivative, m.p. 89-90°), is similarly formed using PrI. N-Benzenesulphonylalanine is methylated (Me₂SO₄) to N-benzenesulphonyl-N-methylalanine, m.p. 96-97°, hydrolysed (H₂SO₄) to N-methylalanine, m.p. 315-317° (decomp.) [lit. 260° (decomp.)] (Bz derivative, m.p. 129-129.5°; phenylhydantoin, m.p. 145—146°). Hydrolysis of N-benzenesulphonyl-N-benzylglycine with H_2SO_4 yields glycine (III), and with conc. HI, CH_2PhI and PhSH.

II. 2: 1-OMe· $C_{10}H_6$ ·SO₂Cl and (III) in C_6H_6 -NaOH afford N-2-methoxynaphthalene-1-sulphonylglycine, m.p. 184.5°, methylated (Me₂SO₄) to N-2-methoxynaphthalene-1-sulphonylsarcosine, m.p. 145°, hydrolysed (60%) H_2SO_4) to β -C₁₀ H_7 ·OMe and a little (I). Similarly, mesitylenesulphonylglycine, m.p. 154.5°, is prepared from mesitylenesulphonyl chloride and (III) is methylated (Me_2SO_4) to mesitylenesulphonylsarcosine, m.p. 164-165°, and hydrolysed (60% H₂SO₄) to (I). m-Xylenc-4-sulphonyl chloride and (III) yield N-mxylene-4-sulphonylglycine (IV) (hydrate, m.p. 76°; anhyd., m.p. 110-110.5°), methylated (Me₂SO₄) to N-m-xylene-4-sulphonylsarcosine, m.p. 104.5-105°, also hydrolysed by H_2SO_4 to (I). (IV) heated with p-C6H4Me.SO3Et and NaOH yields N-m-xylene-4sulphonyl-N-ethylglycine, m.p. 108-109°, hydrolysed by H_2SO_4 to (II). J. D. R.

Infra-red absorption spectra of the stereoisomerides of cystine. N. WRIGHT (J. Biol. Chem., 1937, **120**, 641—646).—Determination of the infra-red absorption spectra of *l*- (I), *d*-, *dl*-, and mesocystine shows that *dl*-cystine obtained by crystallisation is a compound. (I) from protein and cystinuric urine have identical spectra. A. L.

Multivalent amino-acids and peptides. IX. Synthesis of *l*-cystinyl-*l*-cystine. J. P. GREEN-STEIN (J. Biol. Chem., 1937, **121**, 9–17).—l-Cysteinyll-cysteine hydrochloride, m.p. 166°, $[\alpha]_{22}^{B2} + 35^{\circ}$ in 0·2N-HCl [from anhydrocysteinylcysteine (A., 1937, II, 262) with cold conc. HCl for 4 days], is oxidised by air in aq. NH₃ at $p_{\rm H}$ 8·5 to l-cystinyl-l-cystine (I), $[\alpha]_{22}^{B2}$ -60° in N-HCl (dihydrochloride), hydrolysed by dil. HCl to cystine having the same $[\alpha]$ as the initial material. The mol. wt. of (I) and of the Me_2 ester, m.p. 257° (decomp.), of its NN'-Bz₂ derivative, m.p. 220° (decomp.), indicate the formula [S·CH₂·CH(NH₂)·CO·NH·CH(CO₂H)·CH₂·S]₂.

A. Li.

Synthesis of substances related to capsaicin. P. C. MITTER and S. C. RAY (J. Indian Chem. Soc., 1937, 14, 421—424).—The following isobutylamides, in order of decreasing pungency, are described: Δ^{a} -hepteno-, b.p. 140°/4 mm., Δ^{a} -noneno-, b.p. 170°/7 mm., n-hepto-, b.p. 130°/7 mm., benzo-, cinnamo-, m.p. 114°, n-hexo-, b.p. 136°/9 mm., Δ^{a} -hexeno-, b.p. 138°/4 mm., n-octo-, b.p. 155°/8 mm., Δ^{a} -octeno-, b.p. 150°/4 mm., Δ^{β} -deceno-, b.p. 155°/4 mm., Δ^{ω} -undeceno-, b.p. 175°/5 mm., aniso-, m.p. 105—106°. A. LI.

Stability and toxicity of a complex salt of silver chloride and thiocarbamide. W. M. LAUTER and A. M. STAUFF (J. Amer. Pharm. Assoc., 1937, 26, 724—726).—The complex $AgCl_{,5}CS(NH_2)_2$ is unstable in H_2O , $AgCl_{,2}CS(NH_2)_2$ being formed. $AgCl_{,7}CS(NH_2)_2$ is stable in H_2O and has a toxicity of approx. 0.3 mg. per g. in rats. F. O. H.

Carbamide series. XIV. Structure of the guanidonium ion; evidence from electrolysis. T. L. DAVIS, W. E. YELLAND, and C. C. MA (J. Amer. Chem. Soc., 1937, 59, 1993—1997).—Dil. NH_4 amalgams appear to be formed when guanidine salts are electrolysed in H_2O or org. solvents using a Hg cathode. Evidence is discussed to show that the guanidonium ion is ${}^+C(NH_2)_3$; electrolysis results in the production of $[{}^+C(NH_2)_3]_2$, which decomposes to NH₃ and (CN)₂ [subsequently reacting with part of the NH₃ to give NH₄CN and CO(NH₂)₂ (via NH₄CNO)]. H. B.

Reduction of nitroguanidine. IX. Reduction of nitrosoguanidine to aminoguanidine. E. LIEBER and G. B. L. SMITH (J. Amer. Chem. Soc., 1937, 59, 1834—1835).—Aminoguanidine (I) is best prepared from nitrosoguanidine (II) by reduction with H₂ and Raney Ni in MeOH at 25°. The effects of catalyst, temp., and solvent are investigated. The yields of (I) from (II) are generally > those from nitroguanidine (cf. A., 1937, II, 10), except for PtO₂ in 15% AcOH [in which solvent (II) is unstable].

H. B. **Cacodylates of zinc.** R. THIOLLAIS and H. PERDREAU (Bull. Soc. chim., 1937, [vi], 4, 1896— 1898).—ZnO and AsMe₂O₂H yield Zn cacodylate monohydrate and heptahydrate, also obtained from ZnSO₄ and Ba cacodylate. J. D. R.

Complex compounds of mercury halides with the halides of the aliphatic amines.—See A., I, 628.

Ring fission in complex platinum compounds. --See A., I, 630.

Ethylene compounds of platinum.—See A., I, 630.

Dipole moment of *n*-propylcyclopropane.— See A., I, 499.

Synthesis of cyclopentanespirocyclopentane. N. CHATTERJEE (Sci. and Cult., 1936, 1, 478).— Et 1-cyanocyclopentane-1-cyanoacetate (from cyclopentanone cyanohydrin and $CN \cdot CH_2 \cdot CO_2 Et$) with $CH_2 Cl \cdot CH_2 \cdot CO_2 Et$ gives Et 1-cyanocyclopentane-1- α -cyanoglutarate, b.p. 210—213°/8 mm., hydrolysed and decarboxylated to cyclopentane-1-carboxylic-1- α -glutaric acid, m.p. 131—132°. The Et_2 ester, b.p. 162—165°/4 mm., of this, with Na in C_6H_6 , yields Et_2 1-keto-[0:4:4]-dicyclononane-2:4-dicarboxylated to 1-keto-[0:4:4]-dicyclononane-4-carboxylic acid, m.p. 67°; this is reduced (Clemmensen) and the product decarboxylated to [0:4:4]-dicyclononane (cyclopentanespirocyclopentane).

CH. ABS. (r) Action of N₂O₃ on $\Delta^{1:3}$ -cyclohexadiene. A. S. ONISCHTSCHENKO (Bull. Acad. Sci. U.R.S.S., Sér. Chim., 1937, 539-546).— $\Delta^{1:3}$ -cycloHexadiene (I) in AcOH, C₅H₁₁·NO₂, and 10% HCl in EtOH at -10° yield the nitrosochloride, m.p. 123°, of (I). (I) in Et₂O and N₂O₃ at -5° yield a ψ -nitrosite (impure), which is reduced (Sn and HCl) to 1 : 4-diamino- Δ^2 cyclohexene, +2HCl [platinochloride, aurichloride, both m.p. $\leq 250^\circ$; di-N-benzoyl derivative, m.p. 278—280° (decomp.)], and 1-hydroxy-4-amino- Δ^2 cyclohexene, +HCl [platinochloride, +2H₂O, decomp. at 222—223°; aurichloride, +H₂O, m.p. 187—190° (decomp.)]. R. T.

Sulphonaphthenic acids. S. VON PILAT and M. TURKIEWICZ (Petroleum, 1937, 33, No. 41, 1-4).- Several chlorinated naphthenic acids and their derivatives were prepared and their properties and behaviour towards alkalis examined. Na sulphonaphthenates were obtained from the Cl₂-compounds by decomp. with Na₂SO₃, and the corresponding esters from esters of chloronaphthenic acids. The course of this reaction was examined with regard to the formation of lactones and hydroxy- and olefinecarboxylic acids. The Na salts behave as salts of a strong acid, changing the colours of Me-orange and Congo-red. A study of the saponification products of monochloronaphthenic acids indicates that the Cl is mainly (65%) in the α position with regard to the CO₂H. The interfacial tension between C₆H₆ and solutions of naphthenates, chloro- and sulpho-naphthenates was measured. The first-named cause the greatest mol. lowering of tension. H. C. R.

Hydrogenation of aromatic hydrocarbons by means of calcium-ammonia. B. A. KAZANSKI and N. V. SMIRNOVA (Bull. Acad. Sci. U.R.S.S., Sér. Chim., 1937, 547—554).—H₄-derivatives are obtained by passing C_6H_6 , PhMe, $C_{10}H_8$, or $\Delta^{1:3}$ cyclohexadiene through a layer of Ca-NH₃ at 0°.

R. T. Friedel-Crafts synthesis. N. O. CALLOWAY (Chem. Rev., 1935, 17, 327-392).—A general summary. CH. ABS. (r)

Preparation of bromomesitylene. F. DUKE, H. LEWIS, and R. E. DUNBAR (Proc. S. Dakota Acad. Sci., 1935, 15, 21-23).—Mn is superior to Fe as catalyst in the direct bromination of mesitylene.

CH. ABS. (r) Halogenation of aromatic and aliphatic compounds. R. ODA and K. TAMURA (Sci. Papers Inst. Phys. Chem. Res. Tokyo, 1937, 33, 129-208).—Halogenation is usually effected by addition of Br or Cl₂ in AcOH to the org. compounds in AcOH, less frequently in n-C6H14 or H2O; excess of halogen is determined periodically by addition of KI and titration with $Na_2S_2O_3$. The velocity coeffs., calc. for a bimol. reaction, invariably increase or decrease with time. When bromination occurs instantaneously the reaction is followed by the combined use of KI and Br. These react momentarily and quantitatively, $Br_2 + KI = KBr + IBr$, but in presence of a very rapidly reacting org. compound some of the Br is utilised thereby and less IBr (which does not react with org. compounds) is produced. The amount of it produced therefore indicates the activity of the org. compound. The following general conclusions are reached. C_6H_8 , halogenobenzene (I), PhNO₂, BzOH, COPh₂, and, probably, PhCHO are scarcely brominated. (I) directs towards the o- and p-, the others towards the m-position. PhMe, xylene, C10H8, and 1:2:3:4-tetrahydronaphthalene (II) are brominated with moderate rapidity and Me directs to the o- and p-positions. Anthracene and phenanthrene are brominated very rapidly but the change can be followed iodometrically. Bromination of aromatic NH₂- and OH-compounds and of true aliphatic, unsaturated compounds such as CHPh:CH2 and cyclohexene takes place instantaneously and too rapidly to be followed iodometrically; OH and NH2 direct to the o- and ppositions. The theory of alternating polarity is

regarded as incapable of explaining these observations but the electromeric displacement hypothesis accounts for the unusual reactivity of NH₂Ph and PhOH and the disturbing influence of NO₂, halogen, or CO. The coupling theory of Schmidt is false since it fails to explain the unusual turgidity of PhNO₂ although it appears valid for the directive influence of NO₂. Schmidt's double linking rule explains satisfactorily the general influence of Me. Thus in PhMe a quantummechanical union exists between C of Me and C of the C₆H₆ nucleus united therewith, and hence reactivity is apparent in the *o*- and *p*-positions; this is also the cause of the reactivity of PhMe and (II). Similarly the reactivity of PhOH and NH₂Ph can be explained. If the unshared electron of the N of NH₂Ph is coupled with the *p*-electron of the C₍₆₎ atom, the residual nucleus must assume the form $C \subset C = C = N$ or

-C < C = C > C = N thus explaining the reactivity of NH₂Ph in the *o*- and *p*-positions. This is true also for PhOH. H. W.

Direct conversion of iodic acid and aromatic hydrocarbons into iodonium compounds. I. MASSON and E. RACE (J.C.S., 1937, 1718-1723; cf. A., 1936, 61).—HIO₃ in H_2SO_4 with PhX (X = H, Me, Cl, Br, or I) yields mainly iodonium radicals (C₆H₄X)₂I', some p-C₆H₄XI, and unidentified aliphatic degradation products of PhX. The reaction may be used for the detection of aromatic impurity in aliphatic hydrocarbons. With PhOMe and other highly reactive or easily oxidisable derivatives, decomp. takes place, and when X is a m-directing substituent (e.g., NO_2) the reaction is almost entirely inhibited. The iodonium salts may be isolated from the reaction by SO₂, or NaI, or both, to yield diaryliodonium iodides, or by dilution with H2O to yield the acid sulphates. Since I2O3 and H2SO4 with PhX afford only pure iodonium compounds in quant. yield, the following mechanism of reaction is suggested: primary deoxidation of HIO_3 to HIO_2 by PhX (which is oxidised to aliphatic substances) followed by HO·IO + 2PhX \rightarrow

brium in 6N-H₂SO₄. J. D. R. Aryl iododihalides as halogenating agents. B. S. GARVEY, jun., L. F. HALLEY, and C. F. H. ALLEN (J. Amer. Chem. Soc., 1937, 59, 1827—1829; cf. Bockemüller, A., 1931, 611).—Various unsaturated compounds [COPh·CH:CHPh, (:CHPh)₂, CO(CH:CHPh)₂, trans-(:CHBz)₂, Δ^{β} -pentene (the only aliphatic hydrocarbon to give a satisfactory product)] add Cl when heated with PhICl₂ in C₂H₄Cl₂, the reaction being less vigorous than with Cl₂; CHPh:CH·CO₂H and C₆H₆ are unattacked. PhIF₂ (from PhIO and 46% HF in AcOH) with simple olefines and (:CHPh)₂ in CHCl₃ gives mixtures; rubber similarly yields an impure F₁-derivative. Fluorination and/or coupling occurs with some aromatic hydrocarbons. Thus, acenaphthene affords diacenaphthenyl, m.p. 174°; pyrene yields fluoropyrene, Decomposition of iodonium salts. R. B. SANDIN, M. KULKA, and R. MCCREADY (J. Amer. Chem. Soc., 1937, 59, 2014—2015; cf. Lucas *et al.*, A., 1936, 323).—PhIO, *p*-OMe·C₆H₄·IO₂, and moist Ag₂O are triturated with a little CHCl₃; the aq. extract with KHal affords *phenylanisyliodonium chloride* (I), *bromide* (II), and *iodide*. Thermal decomp. of (I) and (II) gives mainly *p*-C₆H₄I·OMe with PhCl and PhBr, respectively, *i.e.*, the more electronegative anisyl radical remains attached to I. The I in *p*-C₆H₄I·OMe (not PhI) is eliminated by SnCl₂ in 40% HBr + approx. 75% AcOH; a quant. procedure is detailed. H. B.

Mechanism of sulphonation of aromatic compounds, and the hydrolysis of their sulphonic acids. V. UFINTZEV (Prom. Org. Chim., 1937, 4, 157—161).—Theoretical. The stability to hydrolysis of sulphonic acids falls with rise of temp., time of heating, and $[H_2SO_4]$; as a result, at a given temp., a mixture of isomeric acids is formed, in which the proportion of the acid most resistant to hydrolysis rises with time. The reactions of sulphonation or hydrolysis are not of the first or second order. R. T.

Salts of nitro-compounds. I. Preparation, alkylation, and acylation of salts of phenylnitroacetonitrile. J. T. THURSTON and R. L. SHRINER (J. Org. Chem., 1937, 2, 183—194).— CH₂Ph·CN, KOEt, and dl., d., or l-octyl nitrate give the optically inactive K salt (I) of CN·CHPh·NO₂, considered to have a conjugated aci-structure. Neither (I) nor the Na salt (II) gives alkyl derivatives with alkyl halides; (II) and Me₂SO₄ yield CN·CPh:CPh·CN. The Ag salt (III), however, with MeI forms aciphenylnitroacetonitrile Me ester, CN·CPh:N^O_{OMe}, m.p. 41—42°, decomp. on keeping, of which the O-alkyl structure is established by re-

of which the O-ankyl structure is established by reduction (PtO₂-Ac₂O-H₂) to NHAc·CHPh·CH₂·NHAc (IV), new m.p. 155–155.5° (also synthesised via NH₂·CHPh·CN). With CH₂PhCl, (III) gives CN·CPh:N·OH, [reduced to (IV)], and PhCHO, by decomp. of an unstable CH₂Ph ester. With BzCl, (II), or better (III), gives a compound, m.p. 116° (decomp.), which is O-benzoylphenylnitroacetonitrile, and not the C-Bz compound, Ph ω -nitro- ω -cyanobenzyl ketone (A., 1933, 1163), since reduction (PtO₂-Ac₂O-H₂) gives (IV) and BzOH. E. W. W.

Halogenation of acenaphthene. M. DASCHEV-SKI and A. KARISCHIN (Prom. Org. Chim., 1937, 4, 109—113).—Acenaphthene in EtOH (at the b.p.) and Cl_2 (2 mols.) give chiefly 4 : 5-dichloroacenaphthene (I) in 55% yield, together with 4-chloro- and traces of trichloro-acenaphthene. (I) in AcOH and $K_2Cr_2O_7$ yield 4:5-dichloroacenaphthenequinone and 4:5dichloronaphthalic acid. R. T.

[Pyrene syntheses.] W. QUIST (Annalen, 1937, 532, 302).—Syntheses of pyrene (cf. Vollmann *et al.*, A., 1937, II, 450) from 2:6:2':6'-tetramethyland 2:6'-diethyl-diphenyl and from phenanthrene and C_2H_4 have been described by Mattsson (Diss., Helsingfors, 1905). H. W.

Derivatives of 1:2-benzpyrene. A. WINDAUS and S. RENNHAK (Z. physiol. Chem., 1937, 249, 256— 266).—1:2-Benzpyrene in CS₂ with Br at 5° gives the Br_3 -derivative (I), m.p. 298—298.5°; in AcOH with conc. HNO₃ at room temp. a NO_2 -derivative (II), m.p. 250.5—251°; with conc. HNO₃ at approx. 100° a $(NO_2)_2$ -derivative (III), m.p. 286.5° (decomp.); with conc. H₂SO₄ and Ac₂O a monosulphonic acid (IV), m.p. 146—148° (Me ester, m.p. 206°; K and Na salts); and with Ac₂O and AlCI₃ acetylbenzpyrene, m.p. 186—186.5°, which, in dioxan, with aq. NaOH and conc. I in aq. KI at $\geq 60°$ followed by treatment with CH₂N₂ yields the Me ester, m.p. 151—151.5°, of the corresponding carboxylic acid. (II) boiled with NHPh·NH₂ for 5 hr. gives the corresponding NH_2 compound (V), m.p. 231° (decomp.) [Ac derivative, m.p. 217.5°; picrate, m.p. 180° (decomp.)]. The compounds (I)—(V) are not carcinogenic. W. McC.

Pharmaceutically important arsenic compounds. II. K. BRAND and E. ROSENKRANZ (Pharm. Zentr., 1937, 78, 685–691; cf. B., 1932, 1104).—The preps. of the following are described: NH₄ meta-arsenite, NH₄AsO₂, cyclohexylammonium meta-arsenite and its HAsO₂ additive compound, C_6H_{11} ·NH₃·AsO₂, HAsO₂, and NH₄Cl,As₂O₃.

Rearrangement of N-chloroacetanilide. R. S. HALFORD and J. C. HORNEL (J. Amer. Chem. Soc., 1937, 59, 1613—1615).—The rearrangement to o- and p-chloroacetanilide in aq. EtOH containing H_2SO_4 has been reinvestigated kinetically, using radioactive Cl' as catalyst (cf. A., 1937, II, 87). Equal amounts of o- and p-compound are produced. The change in radioactivity of Cl' in solution during the progress of the reaction rules out the possibility of an intramol. mechanism. A Cl'-intermediate mechanism is proposed. E. S. H.

Action of primary amines on dibromodiethylenediamine cobaltibromide. A. ABLOV (Bull. Soc. chim., 1937, [v], 4, 1783—1793).—Interaction of dibromodiethylenediamine cobaltibromide, [Co en_2Br_2]Br, and the appropriate amine in aq. EtOH yields pentamminocobalti-compounds of the structure [Co en_2(R)Br]Br_2 (other salts prepared are indicated in parentheses) where R is NH₂Ph, m-C₆H₄Me·NH₂ (dinitrate, di-iodide), p-C₆H₄Me·NH₂ (diiodide), o-NH₂·C₆H₄·OMe (di-iodide, dinitrate), o-NH₂·C₆H₄·OEt (di-iodide, dinitrate), m-C₆H₄(l·NH₂ (di-iodide), p-C₆H₄I·NH₂, β -C₁₀H₇·NH₂, NH₂Et (di-iodide, dinitrate). With α -C₁₀H₇·NH₂ and o-C₆H₄Me·NH₂, [Co en₃]Br₃ is formed; o-C₆H₄Cl·NH₂ does not give a derivative, and with o-phenanthroline [Co en₂(C₁₂H₈N₂)]Br₃ results. T. D. R. Anilides and phenylhydrazides of alanine, glycine, and leucine derivatives.—See A., III, 393.

Relative hypnotic effects of some carbamides of varied types. A. M. HJORT, E. J. DE BEER, J. S. BUCK, W. S. IDE, and D. W. FASSETT (J. Pharm. Exp. Ther., 1937, 61, 175-181).—The following carbamides have been prepared : BBB-tribromoethyl-, m.p. 174°; ββ-dibromopropyl-, m.p. 110°; ββγ-tri-bromopropyl-, m.p. 139°; as-m-chlorophenylmethyl-, m.p. 98—99°; as-p-bromophenylmethyl-, m.p. 110°; p-dimethylaminophenyl-, m.p. 181°; as-p-dimethyl-aminophenyl-n-propyl-, m.p. 181°; as-p-dimethyl-phenyl-n-propyl-, m.p. 191°; as-m-carboxyphenyl-ethyl-, m.p. 210°; as-o-, m.p. 110°, and -p-ethyl-phenylisopropyl-, m.p. 104°; as-a-naphthylmethyl-, m.p. 119°; as-α-naphthylethyl-, m.p. 141°; as-βnaphthylmethyl-, m.p. 110°; as-β-naphthylethyl-, m.p. 99⁶; o- and p-phenylenedi-; bis-pentamethylene- (I), m.p. 104°; Δ^2 -cyclohexenyl-, m.p. 197°; N-p-anisyl-N-s-diethylisothio- (hydrochloride) (II), m.p. 150°. The hypnotic action of carbamide derivatives is increased by the introduction of halogen atoms. (I), from piperidine, is less potent than the Δ^2 -cyclohexenyl- and phenyl-carbamides. The introduction of OH or CO₂H into the ring of arylcarbamides much decreases their activity. (II) is a convulsant and relatively toxic. W. O. K.

Constitution and reactions of thiocarbonyl tetrachloride. IV. Reaction with secondary and tertiary amines. C. S. ARGYLE and G. M. Dyson (J.C.S., 1937, 1629-1634; cf. A., 1937, II, 375, 411).-sec.-Dialkyl- and arylalkyl-amines and CCl₃·SCl (I) give unstable compounds, CCl₃·S·NRR'; diarylamines give CHPh3 dyes and substances containing at least one NRR'.C; tert. amines give dyes of the crystal-violet type by way of substances, NR₂·C₆H₄·S·CCl₃, the CCl₃ of which provides the tert. C of the CHPh₃ series. The appropriate sec. amine and (I) in Et₂O-aq. NaOH at 30° give S-dimethyl-, b.p. 74°/15 mm., -diethyl-, b.p. 96°/15 mm., -diisobutyl-, b.p. 127°/15 mm. (decomp.), -methylanilino-, and -methyl-p-toluidino-aminotrichloromethylthiol; the arylalkyl compounds decompose when distilled and others of this type, although prepared, were very unstable. These thiols with HCl in ligroin regenerate the amine and (I), are reduced by Zn-AcOH to McSH, are hydrolysed slowly by hot H₂O and rapidly by 20% aq. alkali to RCN and RCNS, and with an excess of an arylamine in ligroin give triarylguanidines in varying yield. $NHPh_2$ with $CSCl_2$ or (I) gives NN'N''-triphenylpararosaniline hydrochloride (II) and a red compound (III), (?) NPh2 ·C(C6H4 ·NHPh):C6H4:NHPhCl. The structure of (III) is based on its conversion by H_2SO_4 at 70° into a sulphate and monosulphonic acid, by fuming HNO.-AcOH at 100° into NO·N(C₆H₄·NO₂·p)₂ [with NH₂Ph at 120° gives NH(C₆H₄·NO₂)₂], by KMnO₄ into PhNC (in alkali) or NHPh2 (in acid), and by dry distillation into NHPh₂; AcCl-Ac₂O reacts with (III), but no Ac derivative could be isolated. Both (II) and (III) are also obtained from NHPh₂ with $CCl_3 \cdot NO_2$, $CCl_3 \cdot SO_2Cl$, or $p - C_6H_4Me \cdot S \cdot CCl_3$ at 150° . Reaction probably proceeds by way of CS(NPh2)2 which suffers p-rearrangement of the semidine-

491

benzidine type to NPh₂·CS·C₆H₄·NHPh and thence to (II). NPhMe₂ and (I) at $<20^{\circ}$ give S-p-dimethylaminophenyltrichloromethylthiol (IV),

 $NMe_2 \cdot C_6 \Pi_4 \cdot S \cdot CCl_3$, m.p. 71° [$(NO_2)_2$, m.p. 123°, and Br-derivative, m.p. 146° (decomp.); hydrochloride, m.p. 129-130° (decomp.)], with CH(C6H4.NMe2-p)3 and crystal-violet. The p-di-ethyl-, m.p. 44°, -n-propyl-, -n-butyl-, and p-methylethyl-thiols, oils, were similarly prepared. (IV) is hydrolysed by H₂O to p-NMe2 C6H4 SH (V) (Pb salt), which is oxidised by air to bis-p-dimethylaminophenyl sulphide, m.p. 118°, also obtained from S.Cl. and NPhMe2. With 118°, also obtained from S2Cl2 and NPhMe2. NH₂Ph in EtOH (IV) and its analogues give S-pdi-methyl- (VI), m.p. 175°, -ethyl-, m.p. 128°, and -n-propylaminophenyl-NN'-diphenylisothiocarbamide, NR₂·C₆H₄·S·C(NPh)·NHPh, m.p. 125°; with other arylamines (IV) gives S-p-dimethylaminophenyl-NN'di-p-tolyl-, m.p. 142°, -p-chlorophenyl-, m.p. 157°, and -p-bromophenyl-isothiocarbamide, m.p. 167°. With NH2-EtOH at 120° (VI) gives (V) and NH:C(NHPh)2, and with NH2Ph at 170° (V) and NPh:C(NHPh)2 with CHCl3-KOH it gives PhNC, and with Sn-HCl NH₂Ph, but it is unaffected by <80% KOH; it is also obtained from NPh:CCl·NHPh and NMe2. C6H4. SK in hot EtOH. NPhMe2, (IV), and AlCl_a at 100° give p-C₆H₄Me SH and crystal-violet, and NHPh₂ reacts similarly. NPh₂Me and (I) at 100-130° give NN'N"-triphenyl-NN'N"-trimethylpararosaniline hydrochloride; NPh3 at 180° gives hexaphenylpararosaniline hydrochloride, converted into the carbinol; aryldialkylamines react with partial dealkylation and N(CH₂Ph)₃ similarly gives CH₂PhCl R. S. C. and CSCl₂.

Phenylthiocarbamides. The triad $-N \cdot C \cdot S_{-}$. IV. Action of silver nitrate on phenylthiocarbamide. V. Action of nitrous acid on N-phenyl-N-methylthiocarbamide. K. B. LAL and H. KRALL (J. Indian Chem. Soc., 1937, 14, 474—477, 478— 485).—IV. AgNO₃ and NHPh·CS·NH₂ (I) in acid solution give several complexes. With excess of aq. AgNO₃, the compound NHPh·CS·NH₂,AgNO₃, decomp. 132—134° (which takes up further AgNO₃), is formed, which with KSCN (II) yields a compound NHPh·CS·NH₂,AgSCN. Thus by Volhard's method (II) can be determined in presence of (I), provided (I) is < equiv. to (II), with which it is equimolecularly pptd.

V. NPhMe·CS·NH₂ (III) and HNO₂ in strongly acid solution give *phenylmethylformamidine disulphide*, [NPhMe·C(:NH)S]₂ (*perchlorate*, m.p. 143°; *picrate*, m.p. 140°), and NO; in presence of AcOH, compounds, m.p. 199° (decomp.), and 205-210°, and N₂, are formed, apparently by way of NPhMe·CS·OH. Acids presumably facilitate the change

Some nuclear alkyl derivatives of β -phenylethylamine. J. H. SPEER and A. J. HILL (J. Org. Chem., 1937, 2, 139—147).—The following are prepared (h. = hydrochloride; p. = picrate): β -o-tolylethylmethylamine, b.p. 99°/12 mm. (h., m.p. 167°; p., m.p. 114—115°), β -m-, new b.p. 98—99°/12 mm. (cf. A., 1926, 512) (h., new m.p. 143°), and β -p-

tolylethylmethylamine (loc. cit.); β -o-, b.p. 120.5°/14 mm. (h., m.p. 147.5; p., m.p. 110°), β -m-, b.p. 120°/15 mm. (h., m.p. 148°; p., m.p. 95°), and β -p-tolyltriethylamine, b.p. 119°/14 mm. (h., m.p. 115—116°; p., m.p. 132°); β -m-, b.p. 100°/9 mm. (h., m.p. 161— 162°; p., m.p. 133°), and β -p-tolyldiethylamine, b.p. 107°/12 mm. (h., m.p. 203—204°; p., m.p. 126°); benzyl-, b.p. 165—167°/4 mm. (h., m.p. 232—234°; p., m.p. 125°), and diphenylmethyl- β -p-tolylethylamine, m.p. 73.5°, b.p. 193—195°/2.5 mm. (h., m.p. 256°; p., m.p. 155°); β -diethylamino- β '-tolyldiethylamine, b.p. 131—134°/3 mm. (dihydrochloride, m.p. 124—125°); β -p-tolylethyldi-n-butylamine, m.p. 120— 122°/2.5 mm. (h., m.p. 93°; p., m.p. 62—63°); 1- β p-tolylethylpiperidine, b.p. 118°/4 mm. (h., m.p. 212°; p., m.p. 144°); β -p-ethylphenyl-, b.p. 97°/8 mm. (h., m.p. 208°; p., m.p. 168°), and methyl- β -p-ethylphenyl-ethylamine, b.p. 178—179°), and β -p-benzylphenylethylamine, b.p. 178—179°), and β -p-benzylphenylethylamine, b.p. 178—181°/8 mm. (h., m.p. 222—224°; p., m.p. 154—155°); β -o-, b.p. 146— 148°/3 mm. (h., m.p. 180°; p., m.p. 169—171°), and β -p-benzylphenylethylamine, b.p. 178—181°/8 mm. (h., m.p. 157°/3 mm. (h., m.p. 122°; p., m.p. 143—144°), and β -p-benzylphenyltriethylamine, b.p. 169—171°), and β -p-benzylphenylethylinethylamine, b.p. 169—171°); β -o. b.p. 157°/3 mm. (h., m.p. 122°; p., m.p. 143—144°), and β -p-benzylphenyltriethylamine, b.p. 169—170°/3 mm. (h., m.p. 136-5°; p., oil); and β -p-(β -phenylethyl)-, m.p. 49°, b.p. 160°/2 mm. (h., m.p. 213—215°; p., m.p. 135°), and methyl- β -p-(β '-phenylethyl)-phenylethyllomine, b.p. 152—155°/2·5 mm. (h., m.p. 197°; p., m.p. 135—116°).

The amines are obtained from the substituted phenylethyl bromides, prepared (PBr₃) from the alcohols which result from action of (CH2)20 on the Mg derivatives of substituted bromobenzenes. The following intermediates are also described: $p-C_6H_4Br\cdotCO\cdotCH_2Ph$ (I) (A., 1932, 158), b.p. 165°/3 mm. (oxime, m.p. 137°); p-bromodiphenylmethane, b.p. 162°/13 mm. (from COPh C_6H_4Br , HI, and P); p-bromo-s-diphenylethane, m.p. 32° , b.p. $143^{\circ}/3$ mm. [obtained with (CH₂Ph)₂ from (I)]; β -p-ethyl-, b.p. 98-101°/4 mm. (phenylurethane, m.p. 104.5°), β-0-, b.p. 162°/3 mm. (phenylurethane, m.p. 124°), and B-p-benzyl- (II), b.p. 172°/4.5 mm. (phenylurethane, m.p. 93°), and β -p- β '-phenylethyl-phenylethyl alcohol (III), m.p. 67-68°, b.p. 172°/3 mm. (phenylurethane, m.p. 107°). As by-products with (II) and (III), pp'-dibenzyl-, m.p. 113°, b.p. 190-215°/5 mm., and pp'-di-β-phenylethyl-diphenyl, m.p. 146°, are obtained. 1-Ethyl-4-B-bromoethylbenzene has b.p. 84-86°/3 mm. As a by-product of the action of PBr₃ on (III), the acid phosphite, no m.p. <300°, of (III) is obtained. C₆H₄(CO)₂NK and p-C₆H₄Me·CH₂·CH₂Br give βp-tolylethylphthalimide, m.p. 117°, hydrolysed to the β-p-tolylethylmonoamide, m.p. 150°, of phthalic acid, E. W. W. and to the amine.

2-Methyl- α -naphthylamine-4-sulphonic acid. H. E. FIERZ-DAVID and E. MANNHART (Helv. Chim. Acta, 1937, 20, 1024-1040).-1-Nitro-2-methylnaphthalene, b.p. 185-186°/18 mm., m.p. 80-81°, is obtained in 60% yield by gradual addition of fuming HNO₃ to 2-C₁₀H₇Me in AcOH at 0° to 5° and subsequent gradual heating to 80° or from 2-

 $C_{10}H_7Me$ and conc. HNO₃ at 70-75°. It is reduced by Fe in neutral solution or by SnCl₂-HCl in AcOH to 2-methyl-a-naphthylamine, b.p. 165°/12 mm. (Ac derivative, m.p. 188°). A hydrazo-derivative is not obtained in alkaline solution. Gradual addition of the base to 50% H_2SO_4 at 110-140° gives the H sulphate, which passes at $180^{\circ}/\text{vac.}$ into 2-methyl- α -naphthylamine-4-sulphonic acid. This can be diazotised in the usual manner and converted into azodyes with α -C₁₀H₇·OH, R acid, chromotropic acid, 1:5-OH·C₁₀H₆·SO₃H, Schäffer and Neville–Winther acid, SS-acid, acetyl-H-acid, phenylmethylpyrazolone, and p-sulphophenylmethylpyrazolone. The dyes are somewhat yellower than those derived from 1:4-NH₂·C₆H₄·SO₃H, are more even, and usually somewhat faster to light. Unlike the latter, they are unaffected by CrO_3 , since the presence of Me prevents the form-ation of OH ortho to N_2 which is essential to afterchroming. This view is confirmed by treatment of the dye from $1:4-\mathrm{NH}_2\cdot\mathrm{C}_{10}\mathrm{H}_6\cdot\mathrm{SO}_3\mathrm{H}$ and 1:5-OH·C₁₀H₆·SO₃H in substance with CrO₃ and reduction of the product to $1:2:4-NH_2 \cdot C_6H_5(OH) \cdot SO_3H$; the hypothesis of Rosenhauer (A., 1930, 81) is thus established. H. W.

Aromatic nitro-derivatives. XIII. Substituted α-naphthylamines. A. MANGINI (Atti R. Accad. Lincei, 1937, [vi], 25, 387-391).-Reaction products from 1:2:4-C₁₀H₅Cl(NO₂)₂ and amines are described, as follows: N-2: 4-dinitro-1-naphthyl-ethyl-, m.p. 165.5-166.5°, and -allyl-amine, m.p. 146-147°, and -piperidine, m.p. 135-136°; N-mhydroxyphenyl-2': 4'-dinitronaphthylamine, m.p. 176-177°; o-, m.p. 260° (decomp.) (Et ester, m.p. 185-186°), and m-2': 4'-dinitro-1'-naphthylaminobenzoic acid, m.p. 250° (decomp.) (Et ester, m.p. 152.5-153.5°); N-2': 4'-dinitro-1'-naphthylsulphanilic acid, m.p. 190° (decomp.); p-2': 4'-dinitro-1'-naphthylamino-acetophenone, new m.p. 170-171° (cf. A., 1936, 75) [p-nitrophenylhydrazone, m.p. 255° (decomp.)], and -benzophenone, m.p. 200-201° (decomp.), and 2.2': 4'-dinitro-1'-naphthylaminopyridine, m.p. 189-190° (decomp.). E. W. W.

[C-Alkyl] aniline derivatives.—See B., 1937, 1023.

Mononitroalkylanilines, nitroalkylacylanilines, and derivatives thereof.—See B., 1937, 1023.

Arylnaphthylamines.—See B., 1937, 1023.

Amidines. II. Diamidines from di-imidochlorides derived from diamines. H. K. S. RAO and T. S. WHEELER (J.C.S., 1937, 1643—1645).— (p-NHBz·C₆H₄)₂ and PCl₅ in PhNO₂ give dibenzbenzididedi-imidochloride, (p-CPhCl:N·C₆H₄)₂, m.p. 212°, which with NH₃-MeOH gives NN'-di-(a-aminobenzylidene)benzidine, m.p. 252°, with KCN-MeOH gives NN'-di-(a-cyanobenzylidene)benzidine, m.p. 252°, with the appropriate base in NPhEt₂ at 100° gives NN'di-(a-cochloroanilino-, m.p. 234° [picrate, m.p. 229— 230° (decomp.)], -methylanilino-, m.p. 234° [picrate, m.p. 248° (decomp.)], -ethylanilino-, m.p. 203° [picrate, m.p. 248° (decomp.)], -benzylanilino-, m.p. 174° [picrate, m.p. 185° (decomp.)], -diphenylamino-, m.p. 262° (picrate, m.p. 234°), -ethyl-o-toluidino-, m.p. 200° (picrate, an oil), and -ethyl-p-toluidino-T (A., II.) benzylidene)benzidine, m.p. 221° (picrate, an oil). $p-C_6H_4(NH_2)_2$ gives similarly dibenz-p-phenylenediamidedi-imidochloride, m.p. 176°, NN'-di-(α -methylanilino-, m.p. 264° [picrate, m.p. 243° (decomp.)], -benzylanilino-, m.p. 203° [picrate, m.p. 220° (decomp.)], -methyl-o-toluidino-, m.p. 227° [picrate, m.p. 236° (decomp.)], -ethyl-o-toluidino-, m.p. 186° [picrate, m.p. 237° (decomp.)], and NN'-di-(α -cyano-benzylidene)-pphenylenediamine, m.p. 236°. $m-C_6H_4(NH_2)_2$ and PCl₅ alone, when heated, give dibenz-m-phenylenediamidedi-imidochloride, m.p. 86°, and thence di-(α -benzylanilinobenzylidene)-m-phenylenediamine, m.p. 129—130° (picrate, a paste). R. S. C.

Pyrolytic products of azobenzene. L. F. BOUL-LION and A. M. PARDEE (Proc. S. Dakota Acad. Sci., 1935, 15, 27–28).—The decomp. temp. is 460°; C_6H_6 , NH₂Ph, Ph₂, NHPh₂, anthracene, phenanthrene, HCN, NH₃, and N₂ are formed.

CH. ABS. (r)

Chloroamines. I. Azobenzene-p-sulphonic acid and certain of its derivatives. A. CHRZASZC-ZEWSKA and C. DOBROWOLSKI (Rocz. Chem., 1937, 17, 411-422).-(NPh:)2 and oleum at ≥80° yield azobenzene-p-sulphonic acid, $+3H_{pO}$ (I) (K, $+2H_{pO}$, and Na salts), differing from that described by Janovski (A., 1882, 834) in that it decomposes at 130°, in giving a cryst. chloride, m.p. 124.4-125° (lit., m.p. 82°), and in giving an amide (II), m.p. 224.8-225.5° (cf. Skandarov, J. Russ. Phys. Chem. Soc., 1870, 643). (II) and aq. NaOCl yield the Na salt of azobenzene-p-sulphonchloroamide, $+3H_2O$, whilst when AcOH is added to (II) in presence of excess of NaOCI the product is azobenzene-p-sulphondichloroamide, m.p. 111.6-112.4°. (I) is possibly a stereoisomeride of Janovski's acid. R. T.

Crystalline liquid combinations of p-azocinnamic esters with p-azophenol derivatives. Processes of association. D. VORLANDER [with R. WILKE, U. HABERLAND, and K. Ost] (Ber., 1937, 70, [B], 2096—2108).—Combinations with cinnamic esters are peculiarly adapted to the development of > two cryst. liquid phases or forms. Comparison with benzoic esters shows that this may be due to •C:C• in conjunction with the other associates, the $C_{g}H_{6}$ nucleus, •N:N•, •CH:N•, •CO•, etc. Derivatives of β -phenylpropionic esters are less suitable. The cryst. liquid properties are related to the complete mol. and all its parts. Polymorphous cryst. liquid phenomena can depend stepwise on definite individual parts of the mol. which with falling temp. become successively operative until the whole mol. comes into action and co-operation subsequently exists. As the temp. rises the formation of the cryst. liquid occurs with the distribution over the complete mol. of the many at. linkings in the solid crystal. With the liberation of definite individual portions of the field of union, a second cryst. liquid form can result and so forth until previously to the passage into the amorphous state the remnants of the regions of union become disrupted. According to röntgenographic observations mol. association and union does not cease with the incidence of the amorphous state. The thermostable arrangement of the active portions of the mol. in the cryst. solid as in the cryst. liquid

phase passes in the amorphous material into a condition of max. disorder, since the points of union between the mols. can vary at every temp. and time so that there are no defined transition points or places of union, and no polymorphism. The following appear new: p-p-hydroxybenzeneazocinnamic acid, decomp. $>240^{\circ}$ (corr.), not cryst. liquid (Et ester, m.p. 156—158°); p-p-methoxybenzeneazocinnamic acid, decomp. >255° (corr.) after softening at 250° [Me ester, m.p. 218—220° (corr.); Et ester, m.p. 142° (corr.) after softening at 115°]; p-p-ethoxybenzeneazocinnamic acid (Et ester having three cryst. liquid phases); Et p-cinnamateazo-p'-phenyl acetate, m.p. 137-139°, flowing at 150-152° and transparent liquid at 161° (corr.); Et p-cinnamateazo-p'-phenyl ethyl carbonate, m.p. 158° after softening at 116°; pp'-diethylcarbonatoazobenzene, m.p. 123° and 98° Et p-cinnamateazo-p'-phenyl benzoate, m.p. 220° (corr.) after softening at 140°, having three enantiotropic cryst. liquid phases and two cryst. solid forms; pp'-dibenzoyloxyazobenzene, m.p. 268° and 216°; Et p-cinnamateazo-p'-phenol benzenesulphonate, m.p. 110°, and -dimethylaniline, m.p. 164-166°; p-azobenzylidenedimalonic acid; p-azocinnamic acid, m.p. about 290° [corresponding chloride, Et, ester, softens at 157° and becomes transparent at 280° (corr.), Pr^{a}_{o} , ester, m.p. 120° and 209° (corr.), and Me_{2} ester, m.p. 237° and 249° (corr.)]. H. W.

Two new colour indicators from β -naphthylamine. H. EICHLER (Chem.-Ztg., 1937, 61, 797— 798).—Azo-dyes formed by coupling diazotised anthranilic and sulphanilic acids, respectively, with β -C₁₀H₇·NH₂ may be used as acidimetric indicators. J. S. A.

Action of hydrazine and methylhydrazine on 3-chloro-4:6-dinitrophenetole and 1-chloro-2:4dinitronaphthalene and derivatives of the resulting compounds. J. L. ROBERT (Rec. trav. chim., Ing compounds. 5. I. ROBERT (Ref. trav. entr., 1937, 56, 909—918; cf. A., 1937, II, 238).— $1:3:4:6-C_6H_2Cl_2(NO_2)_2$ and NaOEt-EtOH at 5° and finally at 100° give 3-chloro-4:6-dinitrophenetole (I), m.p. 112°, converted by N₂H₄,AcOH in EtOH at 100° into 4:6-dinitro-3-ethoxyphenylhydrazine, m.p. 202°, which on prolonged treatment with the reagent gives small amounts of 4: 6-dinitro-1: 3-dihydrazinobenzene, explodes at 196°. 3-Chloro-4: 6-dinitrophenylhydrazine and NaOEt give 5-chloro-6-nitrobenziminazole, violent decomp. 158° (Na salt, m.p. 323°). N'-Acetyl-4: 6-dinitro-3-ethoxyphenylhydrazine is described. (I) with NHMe·NH₂ in boiling EtOH affords α -4: 6-dinitro-3-ethoxyphenyl- α -methylhydrazine, m.p. 151° (block) (Ac derivative, m.p. 206°). 1-Chloro-2: 4-dinitro-naphthalene and N₂H₄, H₂O in EtOH give various reduction and condensation products but replacement of Cl by NH·NH2 does not occur; under similar conditions NHMe·NH₂, AcOH affords a-2: 4-dinitronaphthyl-a-methylhydrazine, m.p. 152° (block). 4:6-Dinitro-3-ethoxyphenylhydrazones, 4:6-dinitro-3-ethoxyphenyl- α -methylhydrazones, and 2:4-dinitro-naphthyl- α -methylhydrazones of the following substances have been prepared (m.p. are recorded in this sequence): CH₂O, m.p. 143-144°, 142-143°, 100° and 130°; MeCHO, m.p. 154°, 113-116°, 127°;

COMe₂, m.p. 143—145°, 121—124°, 183°; COEt₂, m.p. 107—110°, 62—64°, 88°; Me hexyl ketone, m.p. 78°, 62—64°, and 54°; CH₂Ac·CO₂Et, m.p. 153—156°, 104°. —; heptaldehyde, m.p. 108—109°, 86—87°, 85°; COPhMe, m.p. 220—223°, 141°, 182°; PhCHO, m.p. 248°, 171—172°, 203°; o-C₆H₄Cl·CHO, m.p. 242—245°, 213°, 176°; m-C₆H₄Cl·CHO, m.p. 244—249°, 174—176°, 157°; p-C₆H₄Cl·CHO, m.p. 244—249°, 174—176°, 157°; p-C₆H₄Cl·CHO, m.p. 235—237°, 178°; m-NO₂·C₆H₄·CHO, m.p. 287°, 236— 237°, 212°; p-NO₂·C₆H₄·CHO, m.p. 336°, 250—255°, 269°; o-OH·C₆H₄·CHO, m.p. 284°, 162°, 206°; p-OH·C₆H₄·CHO, m.p. 263°, 239°, 209°; p-OMe·C₆H₄·CHO, m.p. 242°, 204—205°, 188°; p-C₆H₄Me·CHO, m.p. 242°, 164°, 141°; 4-hydroxy-3-methoxybenzaldehyde, m.p. 252—255°, 156°, 175°; 3:4-CH₂O₂·C₆H₃·CHO, m.p. 279°, 191—192°, 185°; furfuraldehyde, m.p. 199° and 237—239°, 173°, 167° and 175°; 5-hydroxymethylfurfuraldehyde, m.p. 177—180°, 136—137°, 122°. The colours and solubilities of the compounds are tabulated. H.W.

Mechanism of the diazoaminobenzene conversion. H. V. KIDD (J. Org. Chem., 1937, 2, 198-208; cf. A., 1933, 1044; 1936, 465).-Diazoaminobenzene (I) with conc. HCl at $<0^{\circ}$, followed by β -C₁₀H₇·OH-NaOH, gives 1-benzeneazo- β -naphthol (II) (91% yield) and NH₂Ph (96% yield as hydrochloride). A solution of NH₂Ph (1 mol.) in aq. HCl (2 mols.) at -2° treated with NaNO₂ (0.5 mol.) and kept in the dark at 0° for 7 days slowly deposits aminoazobenzene (III). The amount of PhN,Cl, determined as (II), decreases by 75% on keeping for 12 days at 0°; only 14% is converted into (III). Theories of the conversion of diazoamino-compounds are reviewed; that of unstable intermediates is less satisfactory than that of primary fission and subsequent p-combination. The reaction mechanism is discussed from the electronic viewpoint, with special reference to p-C₆H₄Me·NH·N:NHPh. E. W. W.

Condensation of tertiary heptyl alcohols with phenol in presence of aluminium chloride. R. C. HUSTON and G. W. HEDRICK (J. Amer. Chem. Soc., 1937, 59, 2001–2003; cf. A., 1936, 602).— The following are prepared from PhOH (0.3 mol.), the tert. alcohol quoted (0.25 mol.), and AlCl₃ (0.125 mol.) in light petroleum at $0-30^\circ$: γ -p-hydroxyphenyl- γ -methylhexane (from CMeEtPr^a·OH), b.p. 124·6°/4 mm., 278·5°/748·5 mm. (benzoate, m.p. 38— 39°; o-chlorobenzoate, m.p. 25—26°; a-naphthylcarbamate, m.p. 82·3°); β -p-hydroxyphenyl- β -methylhexane (from CMe₂Bu^a·OH), b.p. 123·5°/4 mm., 277°/749·5 mm., m.p. 16—17° (benzoate, m.p. 36—37°; o-chlorobenzoate, b.p. 177—179°/2 mm.; a-naphthylcarbamate, m.p. 110—111°); β -p-hydroxyphenyl- β 8-dimethylpentame (from CMe₂Bu^a·OH), b.p. 115—117°/4 mm., 273°/ 748·5 mm., m.p. 31—32° (benzoate, m.p. 71—72°; o-chlorobenzoate, m.p. 51—52°; a-naphthylcarbamate, m.p. 114—115°); γ -p-hydroxyphenyl- γ 8-dimethylpentane [from CMeEtPr⁶·OH (prep. from COMePr² and MgEtBr]], b.p. 125—127°/4 mm., 272°/748·5 mm., m.p. 42—43° (benzoate, m.p. 40—41°; ochlorobenzoate, m.p. 42—43°; a-naphthylcarbamate,

m.p. $112-113^{\circ}$; β -p-hydroxyphenyl- β_{γ} -dimethylpentane (from sec.-BuCMe2.OH), b.p. 117-119°/4 mm., 281°/748.5 mm., m.p. 49-50.5° (benzoate, mm., 281 /1405 mm., m.p. 49-000 (benzoate, m.p. 44-45°; o-chlorobenzoate, b.p. 175-178°/2 mm.; α -naphthylcarbamate, m.p. 122-123°); γ -p-hydroxyphenyl- γ -ethylpentane (from CEt₃·OH), b.p. 120-122°/4 mm., 275°/749·5 mm., m.p. 75·5-76·5° (benzoate, m.p. 74-75°; o-chlorobenzoate, m.p. 67-68°; α-naphthylcarbamate, m.p. 133-135°); β-phydroxyphenyl-\$777-trimethylbutane [from CMe₂Bu^v·OH (prep. from COMeBu^v and MgMeI)], b.p. 287°/748·5 mm., m.p. 133—134° (benzoate, m.p. 84—84·5°; o-chlorobenzoate, m.p. 83—85°). The above phenols are also prepared (diazo-method) from the corresponding p-aminophenyl derivatives, b.p. $117-118^{\circ}/5$ mm., $145-146^{\circ}/10$ mm., $124-125^{\circ}/5$ mm., $146-146^{\circ}/10$ mm., $124-125^{\circ}/5$ mm., $146-148^{\circ}/11$ mm., $120-121^{\circ}/5$ mm., $128-131^{\circ}/5$ mm., and m.p. $55-56^{\circ}$, respectively, which are obtained by reduction of the remetizing principle methods. by reduction of the respective p-nitrophenyl derivatives, b.p. $292^{\circ}/741$ mm., $291^{\circ}/741$ mm., $284^{\circ}/741$ mm., $285^{\circ}/741$ mm., $277^{\circ}/741$ mm., $282^{\circ}/741$ mm., and m.p. 108° , which are prepared by nitration of the appropriate CPhAlk₃ and are oxidised to *p*- $NO_2 \cdot C_6 H_4 \cdot CO_2 H.$ H. B.

Copper compounds of o-aminophenol and its N-alkyl derivatives. F. HORN (J. pr. Chem., 1937, [ii], 149, 298-300).-Fehling's solution and o-NH₂-phenols give, but not quantitatively, the follow-

NH₂-phenois give, but not quantitatively, the follow-ing ppts.: from o-NH₂·C₆H₄·OH C₁₂H₁₂O₂N₂Cu, amorphous, m.p. (+H₂O) 225-230° (decomp.), (anhyd.) 220-225° (decomp.); from o-NHMe·C₆H₄·OH C₁₄H₁₆O₂N₂Cu, amorphous, +2H₂O and anhyd., m.p. 160-165° (decomp.); from o-NMe₂·C₆H₄·OH C₁₆H₂₀O₂N₂Cu, m.p. 218-219° (de-comp.); from o-NEt₂·C₆H₄·OH C₂₆H₂₈O₂N₂Cu, m.p. 216° (decomp.). The products are probably complex *salts* since none are formed from the *m*- or *m*-isomerides salts, since none are formed from the *m*- or *p*-isomerides $(p-\mathrm{NH}_2 \cdot \mathrm{C}_6\mathrm{H}_4 \cdot \mathrm{OH} \text{ ppts. } \mathrm{Cu}_2\mathrm{O})$. They are used to separate the o-compounds from mixtures. o-Di-methylaminophenol H oxalate has m.p. $167-169^\circ$ (decomp. 172°). R. S. C.

New aromatic fluorine derivatives. (MME.) H. DEGIORGI and E. V. ZAPPI (Bull. Soc. chim., 1937, [v], 4, 1636-1642; cf. A., 1936, 1374).-5-Nitrom-anisidine (improved prep.) is converted into 5nitroanisole-3-diazonium borofluoride, m.p. 150° (decomp.), and thence into 5-fluoro-3-nitroanisole (I), which (Sn-HCl) yields 5-fluoro-m-anisidine sulphate (+2H₂O) [reconverted by diazotisation etc. into (I)]. Hydrolysis of (I) gives 5-fluoro-3-nitrophenol (II), m.p. 112° [methylated to (I)]. 3:5-Dinitrophenetole (improved prep.) is reduced (Na₂S) to 5-nitro-mphenetidine, from which 5-nitrophenetole-3-diazonium borofluoride, decomp. 110°, is obtained, and thence 5-fluoro-3-nitrophenetole, m.p. 63.5-64°, hydrolysed to (II). $3:5:1-(NO_2)_2C_6H_3\cdot NH_2$, from the azide (cf. A., 1934, 1343), is converted into 3:5-dinitrobenzene-1-diazonium borofluoride, decomp. 203°, and into 5-fluoro-m-dinitrobenzene, m.p. 43°, reduced (NH₄SH) to 5-fluoro-m-nitroaniline, m.p. 115-116° (converted into $m - C_6 H_4 F \cdot NO_2$). E. W. W.

Compounds of phenyl *p*-nitrophenyl sulphide and ether with sulphuric acid. Example of thioquinonoid formation. H. H. HODGSON and

R. SMITH (J.C.S., 1937, 1634-1637).-F.p. measurements show the existence of 2:1 and 1:1 compounds, f.p. 51.7° and 50.3°, respectively, of p-NO₂·C₆H₄·SPh (I) and H_2SO_4 and of a 1 : 1 compound, m.p. 51.8° , of p-NO₂·C₆H₄·OPh (II) and H₂SO₄. Quinonoid structures, involving O^{IV} and S^{IV}, are postulated for these compounds; the formation by (I) of the acid salt shows it to be more strongly basic than (II). The compounds decompose when heated for some time. Some double mols. are formed in solution in the org. ingredient, but not in H_2SO_4 . R. S. C.

Estrogenic substance from the demethylation of anethole. A. SERINI and K. STEINRUCK (Naturwiss., 1937, 25, 682-683).—Demethylation of anethole by MgEtI yields, in addition to hydroxypropenylbenzene, a substance (I) $(Ac_2 \text{ derivative}, C_{26}H_{34}O_4, \text{ m.p. } 186^\circ)$; demethylation by MgPr^aI yields the homologue $(Ac_2 \text{ derivative}, C_{28}H_{38}O_4, \text{ m.p. } 175^\circ)$ of (I). Both Ac₂ derivatives are active (Allen-Doisy rat-unit 5—10 μ g.); they are probably [p-OAc·C₆H₄·CH(CHMeR)·]₂ (R = Et or Pr^a) (cf. Dodds and Lawson, A., 1937, II, 229, 361). F. O. H.

New form of resorcinol.—See A., I, 502.

Phase diagrams of binary systems of guaiacol and amines and of benzylamine with phenols. N. A. PUSHIN and I. I. RIKOVSKI (Annalen, 1937, 532, 294-299).-Guaiacol exists in an a-modification stable between 30° and -3.5° and a β -form stable below -3.5° . In the cryst. condition it does not form definite compounds or solid solutions with C6H6 or NPhMe₂ although it gives an equimol. compound with NH₂Ph. It forms *compounds* with quinoline (1:1), m.p. 12°, NHPh·NH₂ (1:2), m.p. 16°, and piperidine (2:1), m.p. 76°. Thermal analysis shows that NH₂·CH₂Ph gives compounds with PhOH (1:1), that $\operatorname{KH}_2^{\circ}\operatorname{CH}_2^{\circ}\operatorname{In}$ gives compounds with $\operatorname{FnOH}(1:1)$, m.p. 22.0°, and (1:3), m.p. 15.3°, o-cresol (1:1), m.p. 7.5°, m-cresol (1:1), m.p. 36.4°, p-cresol (1:1), m.p. -6°, and (1:3), m.p. 20°, o-C₆H₄Cl·OH (1:1), m.p. 47.5°, and (1:3), m.p. 55°, p-C₆H₄Cl·OH (1:1), m.p. 16°, and (1:3), m.p. 55°, and guaiacol (1:1), m.p. 15.5°, and (1:3), m.p. 32°. H. W.

Synthesis of 3-iodoveratrole. F. MAUTHNER (J. pr. Chem., 1937, [ii], 149, 328-329).—Veratrole-3-carboxylic acid gives successively the chloride (by PCl_5) and amide, m.p. 93—94°, 3-amino- (by NaOCl), b.p. 136—138°/15 mm., and 3-iodo-veratrole, m.p. 45—46°, b.p. 144—145°/14 mm. R. S. C.

Trinitrophloroglucinol. F. ŠORM and Z. DRÁ-PALOVÁ (Chem. Obzor, 1937, 12, 153—156).—By boiling 1:3:5-trichloro-2:4:6-trinitrobenzene (I) with a dil. (3%) aq. EtOH solution of excess of alkali hydroxide, a 55% yield of the normal alkali salt of trinitrophloroglucinol (II) was obtained. (I) was converted by a boiling aq. EtOH solution of NH₃ into 1:3:5-trinitro-2:4:6-triaminobenzene, converted by boiling with aq. NaOH into the normal Na salt of (II) in 70% yield. The preps. of the normal K, NH_4 , Li, Ba, Sr, Ca, Cd, Pb, and Ag salts of (II) are described. F. R.

Esterification of alcohols. W. HUCKEL, F. NERDEL, and F. REIMER (J. pr. Chem., 1937, [ii], 149, 311-316).-By partial reaction with COCl₂- C₅H₅N-Et₂O trans-decahydro-β-naphthol, m.p. 53° (carbonates, m.p. 99° and 92°), is freed from its more reactive isomeride, m.p. 75° (carbonates, m.p. 119° and 78—79°). trans-2-Hydrindanol is shown to be a racemate by formation of carbonates, m.p. 73—74° and 52—56°. p-Nitrobenzoates are not readily obtained from tert. alcohols, except from alcohols, CRMe₂·OH. The following p-nitrobenzoates are described : Bu^{*}, m.p. 115—117°, cyclohexyldimethylcarbinyl, m.p. 101—103°, and 1-propyl-1-cyclohexyl (poor yield), m.p. 46—48°. Camphene hydrate, 1isopropylcyclohexan-1-ol, and trans-2-methyldecahydro-2-naphthol, m.p. 92—93° (p-nitrobenzoate, m.p. 112—114°, prepared by K in PhMe), do not react with p-NO₂·C₆H₄·COCl in C₅H₅N. R. S. C.

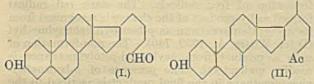
Preparation of *p*-phenyltriphenylcarbinol and existence of a metastable form. D. B. CLAPP and A. A. MORTON (J. Amer. Chem. Soc., 1937, 59, 2074—2075).—*p*-C₆H₄PhCl (0.8 mol.), COPh₂ (0.8 mol.), and Na powder (0.2 mol.) in C₆H₆ give 67% of *p*-phenyltriphenylcarbinol, m.p. (stable) 135— 136°; the first prep. gave a metastable form, m.p. 112—113°. H. B.

Preparation and pyrolysis of triphenylmethyl ethers of complex function. C. D. HURD and E. M. FILACHIONE (J. Amer. Chem. Soc., 1937, 59, 1949-1952).-Et a-triphenylmethoxypropionate, m.p. 79-80°, decomposes in the anticipated manner at 300° (bath) in N₂, forming AcCO₂Et (71%) and CHPh₃ (74%). CPh₃·O·CH₂·CH₂·OH, m.p. 102-103° (lit. 98-100°), undergoes disproportionation at $140-145^{\circ}/6$ mm. or atm. pressure to $(CH_2 \cdot OH)_2$ and $(CH_2 \cdot O \cdot CPh_3)_2$ (I), and is formed when (I) is heated with an excess of (CH2.OH)2. Decomp. of (I) at 340-350° (bath) gives CHPh₃ (61%) COPh₂, CH₂O, and CO; (CHO)₂ or CPh₃·O·CH₂·CHO may have been formed and undergone further decomp. a-Triphenylmethoxy-\beta-ethoxyethane, m.p. 77-78°, at 325-330° (bath) affords CHPh3, COPh, MeCHO, OEt·CH₂·CH₂·OH, and (CH₂·OEt)₂. αβ-Ethylideneglycerol CPh₃ ether has m.p. 105-106°. The above CPh₃ ethers are prepared from the OHcompounds and CPh₃Cl in C₅H₅N. H. B.

Action of magnesium phenyl bromide on chloroacetyl chloride and related compounds. J. S. W. BOYLE, A. MCKENZIE, and W. MITCHELL (Ber., 1937, 70, [B], 2153-2160).—Addition of CHPhCl·COCl to MgPhBr in Et₂O gives $\alpha\alpha\beta\beta$ -tetraphenylethanol, m.p. 232·5-233° [identical with the product obtained from MgPhBr and phenyldeoxybenzoin (I)], and resin, whereas (I) results when the order of admixture of the reactants is reversed. CH₂Cl·COCl and MgPhBr give $\alpha\beta\beta$ -triphenylethanol, m.p. 87·5-88·5°, and as-diphenylchlorohydrin, m.p. 66°. $\alpha\alpha\beta$ -Triphenylethylene glycol, m.p. 163°, is derived from CHCl₂·CO₂H and MgPhBr. r- $\gamma\gamma\gamma$ -Trichloro- β -hydroxybutyric acid or its Et ester and MgPhBr afford r- $\alpha\gamma$ -dihydroxy- $\alpha\alpha$ -diphenyl- γ -trichloromethylpropane, m.p. 178·5°, converted by boiling 2n-NaOH into $\alpha\gamma$ -dihydroxy- $\gamma\gamma$ -diphenyl-n-butyrolactone, m.p. 110°. Me (-)- $\gamma\gamma\gamma$ -trichloro- β -hydroxybutyrate, m.p. 62·5-63°, [α]_{ρ} -33° in EtOH, or the corresponding acid do not give cryst. compounds with MgPhBr. Definite compounds could not be obtained from MgPhBr and dimethylmalic ester. H. W.

Derivatives of cyclo-pentane- and -hexane-1:2-diols. M. MOUSSERON and R. GRANGER (Compt. rend., 1937, 205, 327-329).-Addition of Cl_2 and Br to cyclohexene affords only trans-1:2-dichloro- (I), b.p. 75°/15 mm. and -1:2-dibromocyclohexane, respectively, identical with the products obtained by interaction of 2-chloro- (II) and 2-bromocyclohexanol (III) with PCl_5 and PBr_3 . 1-Methyl- Δ^3 -cyclohexene having $[\alpha]_p$ +110° affords with Br two isomeric forms, b.p. 105°/15 mm. and 108°/15 mm., of 3:4-dibromo-1-methylcyclohexane. (II) with PBr₅ or (III) with PCl₅ affords 1-chloro-2-bromocyclohexane, b.p. 94°/17 mm. trans- (II) when heated with HCl affords some of the cis-isomeride. Prolonged interaction of (II) with a hot solution of NaOAlk affords 2-alkyloxycyclohexanol. The following are similarly prepared (b.p. at 760 mm.): 2methoxy-, b.p. 175°, and 2-ethoxy-cyclopentanol, b.p. 182°; 2-propoxy-, b.p. 205°, 2-cyclohexoxy-, m.p. 50°, 2-methoxy-1-methyl-, b.p. 181°, and -1-ethyl-cyclohexanol, b.p. 186°. 1:2-Dibromocyclanes when heated with conc. EtOH-KOH or NaOAlk afford the corresponding 1:2-di-ethers. The following are prepared (b.p. at 760 mm.): 1:2-dimethoxy-, b.p. 108°, and 1:2-diethoxy-cyclopentane, b.p. 126°; 1:2-diethoxy-, b.p. 151°, 1:2-dipropoxy-, b.p. 159°, 1:2-diisopropoxy-, b.p. 160°, 1:2-dibutoxy-, b.p. 192°, and 1:2-dicyclohexoxy-cyclohexane, b.p. 120°/ 15 mm. The above mono- and di-ethers of cyclohexanediol with PBr_5 afford 1:2-dibromocyclo-hexane. Oxidation (CrO₃) of 2-alkyloxy-cyclopentanol and -cyclohexanol affords 2-alkoxy-cyclopentanone and -cyclohexanone, respectively. The following are prepared (b.p. at 750 mm.): 2-methoxy-, b.p. 179°, and 2-ethoxy-cyclopentanone, b.p. 186°, and 2-propoxycvclohexanone, b.p. 209°.

J. L. D. Derivatives of phenyl- and s-diphenyl-ethylene glycol. L. PALFRAY and R. PANNELIER (Bull. Soc. chim., 1937, [v], 4, 1913—1916).—Phenylethylene glycol (bisphenylurethane, m.p. 148°) with allophanyl chloride in C_6H_6 yields a mono-, m.p. 168°, and di-allophanate, m.p. 240—241°; hydrobenzoin similarly yields a di-allophanate, m.p. 280°, but does not react with PhNCO. J. D. R.


Manufacture of diamino-alcohols of the aromatic series.—See B., 1937, 1024.

Sterols. XIX. epiErgosterol and epi- α -ergostenol. R. E. MARKER, O. KAMM, J. F. LAUCIUS, and T. S. OAKWOOD (J. Amer. Chem. Soc., 1937, 59, 1840—1841).—Ergostatrienone (Oppenauer, A., 1937, II, 250) is reduced [Al(OPr^{β})₃ in Pr^{β}OH followed by MeOH-KOH] to ergosterol and epiergosterol (I), m.p. 152°, $[\alpha]_{25}^{25}$ +50° in CHCl₃ (acetate, m.p. 126°). (I), which is not pptd. by digitonin, and is not identical with lumisterol. α -Ergostenone [from α -ergostenol (II) and Cu powder at 250°/4 mm.] is similarly reduced to (II) and epi- α -ergostenol, m.p. 188.5°, $[\alpha]_{25}^{25}$ +5.3° in CHCl₃ (acetate, m.p. 119.5°). H. B.

Fission of sterol digitonides and other molecular compounds by distillation in high vacuum. A. VON CHRISTIANI and M. PAILER (Mikrochim. Acta, 1937, 1, 26–29).—Cholesterol, coprosterol, etc. from the digitonides, and $C_{10}H_8$, indene, etc. from the picrates, may be recovered in pure form in 70–90% yield by heating the mol. compounds at 100–250° in a high vac. J. S. A.

Polyterpenes and polyterpenoids. CXVII. Conditions and mechanism of the dehydrogenation of homologous sterols and of cholic acid. L. RUZICKA and M. W. GOLDBERG (Helv. Chim. Acta, 1937, 20, 1245-1253).-If possible, the temp. of dehydrogenation of cholesterol (I) or cholic acid (II) should be $>350^{\circ}$ if the formation of chrysene is to be avoided and the primary products are to be isolated (cf. Diels et. al., A., 1927, 241, 1930, 470; Ruzicka et al., A., 1933, 820). Further examination shows that the main product of the dehydrogenation of ergosterol (III) with Se according to the older or newer conditions of Diels (A., 1930, 470; 1937, II, 95) is the hydrocarbon $C_{26}H_{26(24)}$, fractionation of which appears impossible by methods dependent on solubility or volatility. Re-examination confirms the homogeneity of the hydrocarbon, m.p. 205-206°, obtained by dehydrogenation of phytosterol (IV); analyses thereof and of the ketone, m.p. 204-204.5° derived therefrom favour the respective formulæ $C_{27}H_{26}$ and $C_{27}H_{24}O$. At a temp. $\gg 350^{\circ}$, therefore, dehydrogenation of (II) C_{24} , (I) C_{27} , (III) C_{28} , and (IV) C_{29} occurs with loss of 2 C and formation of a fifth ring from the long side-chain. These hydrocarbons probably represent a homologous series and have almost identical absorption spectra. Since the product $C_{22}H_{16}$ from (II) is methylnaphthofluorene it is probable that this or a very similar ring system is present in the other hydrocarbons. The distribution of the side-chains is unknown but must be such that a place is available in the aromatic ring system for the Me and Et group of the more complex sterols.

H. W. Sex hormones. XXV. Oxidation of saturated sterol derivatives with chromium trioxide. L. RUZICKA, M. OBERLIN, H. WIRZ, and J. MEYER (Helv. Chim. Acta, 1937, 20, 1283–1290).—The mother-liquors obtained after removal of androsterone acetate semicarbazone from the products of the oxidation of *epicholestanyl acetate by* CrO_3 in AcOH at about 90° (A., 1934, 1221) yield the *semicarbazone*, m.p. 224·5—225·5°, of 3-*epiacetoxyallo*cholanaldehyde (I); the structure of the compound

is rendered probable by the co-formation of the corresponding acid in considerable amount. In addition, the *semicarbazone*, m.p. 221-223°, of *epi*-norcholestan-3-ol-25-one (II) is obtained, produced in much larger proportion when the oxidation is effected at 25-30°. (II) has m.p. $181-182\cdot5^{\circ}$ (corr.), and yields an *acetate* (III), m.p. 111° (corr.). Oxidation of (II) with CrO₃ in AcOH affords the

diketone, $C_{26}H_{42}O_2$, m.p. $139\cdot5-140\cdot5^{\circ}$ (corr.). Condensation of (III) with a large excess of MgMeI followed by hydrolysis affords 25-hydroxycholestanol, m.p. $191-193^{\circ}$ (corr.), transformed by Ac_2O in C_5H_5N into the monoacetate, m.p. 154° (corr.). (III) with PhCHO and HCl in AcOH gives the noncryst. :*CHPh* derivative, which is oxidised by CrO₃ in AcOH and then hydrolysed to 3-epihydroxyallocholanic acid, m.p. $218-220^{\circ}$ (corr.) [Me ester, m.p. $166-168^{\circ}$ (corr.)]. H. W.

Vitamin-D₄.—See A., III, 327.

Phytosterol, $C_{28}H_{47}$ OH, and ketone, $C_{31}H_{52}O$, from *Citrus grandis*.—See A., III, 244.

Cumotocopherol, $C_{28}H_{48}O_2$, and its allophanate, m.p. 146°, $[\alpha]_D^{18} + 6.7^\circ$ in CHCl₃.—See A., III, 497.

Pregnane-3:17:20-triol, m.p. 243-244°, and its diacetate, m.p. 136.5°.—See A., III, 361.

Absorption spectra of compounds related to sterols.—See A., II, 494.

Tertiary alcohols of the cyclopentanopolyhydrophenanthrene series.—See B., 1937, 1135.

Synthesis of 9:10-dihydroxy-5-phenyl-9:10dialkyl-9:10-dihydro-1:2-benzanthracenes and related compounds. W. E. BACHMANN and J. T. BRADBURY (J. Org. Chem., 1937, 2, 175-182).-1:2-Benzanthraquinone and MgMeI or MgEtBr give 9:10-dihydroxy-9:10-dimethyl-, m.p. 181.5-182.5°, and -9: 10-diethyl-9: 10-dihydro-1: 2-benzanthracene, m.p. 145-145.5°. The Et, but not the Me2, compound has costrogenic activity. With MgPr^oBr, a substance, $C_{21}H_{18}O_2$, m.p. 91-94°, is obtained. 5-Keto-5:6:7:8-tetrahydro-1:2-benzanthracene [from β -(3-phenanthroyl) propionic acid, obtained by the Friedel-Crafts reaction from phenanthrene and succinic anhydride, together with β -(2-phenanthroyl)propionic acid, new m.p. 207-208°; cf. A., 1933, 1043] and MgPhBr give 5-hydroxy-5-phenyl-5:6:7:8tetrahydro-1: 2-benzanthracene, m.p. 157—159°, de-hydrated (KHSO₄) to 5-phenyl-7: 8-dihydro-1: 2-benzanthracene, m.p. 125—126°, dehydrogenated (S; Cu) to 5-phenyl-1: 2-benzanthracene, m.p. $151-152^{\circ}$ (picrate, m.p. $165-166^{\circ}$). This is oxidised (Na₂Cr₂O₇-AcOH) to 5-phenyl-1: 2-benzanthraquinone, m.p. $189-168^{\circ}$ 189.5°, from which MgMeI, MgEtBr, and MgPr^aBr give respectively 9:10-dihydroxy-5-phenyl-9:10-di-methyl-, m.p. 160-164° (cis + trans?) recryst. to a product, m.p. 130°, resolidifying to remelt at 215— 216°, -9:10-diethyl- (I), m.p. 147.5—148°, and -9:10-di-n-propyl-9:10-dihydro-1:2-benzanthracene (II), m.p. 191.5-192.5°. Both (I) and (II) are œstrogenic. MgPhBr gives a mixture containing small quantities of the 9: 10-diphenyl compound (?), E. W. W. m.p. 240° (decomp.), with Ph₂.

Constitution of natural phenolic resins. IX. Structure of lariciresinol. Preliminary experiments on the synthesis of lignandiols. R. D. HAWORTH and W. KELLY (J.C.S., 1937, 1645—1649). —Structures assigned (A., 1937, II, 202) to lariciresinol (I) and *iso*lariciresinol (II) are confirmed. Lignan is adopted as a generic name for substances of bisconiferyl structure. Unsuccessful attempts to

xv(j, k)

synthesise lignandiols and successful syntheses of aryltetronic acids are described. Anhydroisolariciresinol Me, ether is unaffected under conditions causing the change of (I) into (II); with Pb(OAc)₄ at 70-80° it gives dehydroanhydroisolariciresinol Me₂ ether, m.p. 201-202°. The Me₂ ether of (I) gives lariciresinol CPh₃ ether Me₂ ether, m.p. 134°, converted by 80% HCO₂H into the (HCO)₂ derivative, m.p. 102-103°, of isolariciresinol Me₂ ether. $CH_2Bz \cdot CHBz \cdot CO_2Et$ and $(CHBz \cdot CO_2Et)_2$ do not condense with CH_2O , HCO_2Et , or $Et_2C_2O_4$; the former ester with alkali gives $CH \ll CPh \cdot O$; the latter ester with CH_2O and alkali gives BzOH, and with conc. H₂SO₄ gives Et₂ 2:5-diphenylfuran-3:4-dicarboxylate, which resists reduction. Et $\alpha\beta$ -diversitylpropionate [from ω -bromoacetoveratrone and $(OMe)_2C_6H_3\cdot CO\cdot CHNa\cdot CO_2Et]$, m.p. 110—111°, with 10% KOH-MeOH gives the lactone, m.p. 155—156°, of γ -hydroxy- α -veratroyl- γ -3:4-dimethoxyphenyl- Δ^β -butenoic acid (K salt), or, when 0.1N-NaOH is dropped into its boiling solution in aq. MeOH, affords $\alpha\beta$ -diversitylethane, m.p. 180-181°, converted by HCl-MeOH into 2:5-di-3':4'-dimethoxyphenylfuran, m.p. $154-155^{\circ}$ (no FeCl₃ colour), insol. in NaOH. Et₂C₂O₄ and acetoveratrone (III) give Et veratroylpyruvate, m.p. 104—105° [corresponding acid, m.p. 192—193° (decomp.)], which does not react with $CH_2(CO_2Et)_2$, $CH_2Ac\cdot CO_2Et$, or $CN\cdot CH_2\cdot CO_2Et$; (III), veratroylacetonitrile, and $CH_2Ac\cdot CO\cdot CO_2Et$ are similarly unreactive. α -Veratroyl α 2 i.4 dimeth combining the second seco troyl-3-3:4-dimethoxybenzylbutyrolactone with CH₂O in cold 2% NaOH gives veratric acid and an oil, but with hot 2% NaOH yields γ -veratroyl- γ -3:4-dimethoxyphenylisobutyl alcohol (IV), m.p. 98-99°, which with HCl-AcOH (not -MeOH) affords 6:7-dimethoxy-4-3':4'-dimethoxyphenyl-2-chloromethyl-1: 2-dihydronaphthalene, m.p. 108-109°, converted by hot 5% KOH-MeOH into (?) 6:7-dimethoxy-1-3': 4'-dimethoxyphenyl-3-methylnaphthalene, m.p. 140°, sublimes at 200-220°(bath)/0.1 mm. CH₂O reacts with (IV) in presence of alkali, but gives indefinite products. The (CH₂O₂)-analogue, m.p. 103-104° (oxime, m.p. 139-140°), of (IV) is prepared. 3-Keto-a-cyano-y-p-nitrophenoxypropylbenzene, m.p. 156-157°, is obtained only in poor yield from CH₂Ph·CN and NO₂·C₆H₄·CH₂·CO₂Et. β-Ketoa-cyano-y-benzyloxypropylbenzene (obtained readily from CH₂Ph·CN and CH₂Bz·CO₂Me), m.p. 72-73° with HCl-MeOH gives phenyltetronic acid, converted by H₂O at 200° in poor yield into CH₂Ph·CO·CH₂·OH. $4-\beta$ -Keto- α -cyano- γ -benzyloxypropyl-3:4-dimethoxy-, m.p. 78-79°, and -3: 4-methylenedioxy-benzene, m.p. 72-73°, and 3:4-dimethoxy-, m.p. 211-213° 72-73°, and 3:4-dimethoxy-, m.p. 211-213°, and -methylenedioxy-phenyltetronic acid, m.p. 268° (de-comp.), are similarly prepared. R. S. C.

Direct synthesis of dihydroisolauronolic and isolauronolic acids. P. C. GUHA and K. S. SUBRAH-MANIYAN (Current Sci., 1937, 6, 94–95).— CMe₂Ac·CO₂Et with CO₂Et·CHBr·CH₂·CO₂Et and Zn gives Et β -hydroxy- β '-carbethoxy- $\alpha\alpha\beta$ -trimethyladipate (acid, m.p. 165–166°) and Et γ -carbethoxy- $\alpha\alpha\beta$ -trimethyl- Δ^β -butene- $\alpha\delta$ -dicarboxylate, b.p. 155– 162°/5 mm. (acid, m.p. 239–240°; trianilide, m.p. 235°; anilide anil, m.p. 212°), which with Na yields enolic Et 1:1:2-trimethyl- Δ^2 -cyclopenten-5-one-3:4dicarboxylate, b.p. 125—128°/3 mm., hydrolysed to the -3-carboxylic acid, m.p. 186—187° (oxime, m.p. 139—140°; semicarbazone, m.p. 225°), which on Clemmensen reduction gives dihydroisolauronolic acid. F. R. G.

Reformatsky reaction with benzamide. A. BANCHETTI (Atti R. Accad. Lincei, 1937, [vi], 25, 485–488).—NH₂Bz, Zn, and $CH_2Br \cdot CO_2Et$ give a product which after treatment with H_2SO_4 gives BzOH and resins, but no $CH_2Bz \cdot CO_2Et$,

NHBz·CH₂·CO₂Et, or $(CH_2 \cdot CO_2Et)_2$. If the product is not acidified, but extracted with (damp) Et₂O, a substance $(NH_2Bz)_2, ZnBr_2$ (I), m.p. 157—158°, is obtained. It is suggested that a compound BrZn·NH₂Bz·CH₂·CO₂Et is formed, and converted by H₂O into (I), ZnO, and EtOAc. E. W. W.

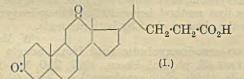
Preparation of 2:4-dinitro-benzonitrile and -benzoic acid. F. R. STORRIE (J.C.S., 1937, 1746).— Prep. of these substances is improved [85% and 95% yield, respectively, from $(NO_2)_2C_6H_3\cdot NH_2$].

R. S. C. Thermal decomposition of dibenzoyl peroxide in presence of deuterium. H. ERLENMEYER and W. SCHOENAUER (Helv. Chim. Acta, 1937, 20, 1015— 1016).—The reaction gives Ph₂ free from D, indicating the improbability of the intermediate production of free radicals. H. W.

[Attempted] synthesis of acyloins. K. BERN-HAUER and R. HOFFMANN (J. pr. Chem., 1937, [ii], 149, 317–320).—Unsaturated esters do not give acyloins with Na in xylene etc. CHMe:CH·CO₂Et is mainly resinified. Et α -cyclogeranate gives a poor yield of a substance, m.p. 112–113°. CHPh:CH·CO₂R (R = Me, Et, Bu, or CH₂Ph) gives a ketone, C₁₆H₁₆O, m.p. 176° (p-nitrophenylhydrazone, m.p. 222°; semicarbazone, m.p. 164–165°; oxidised to BzOH; reduced by Zn-HCl to a substance, C₁₆H₁₈, m.p. 64–65°), and a small amount of a ketone, m.p. 108–110°. R. S. C.

Occurrence of free radicals in chemical reactions. IX. A. Thermal decomposition of acylazotriphenylmethanes. B. Mode of reaction of diacyl peroxides. H. WIELAND, T. PLOETZ, and H. INDEST (Annalen, 1937, 532, 166-190; cf. A., 1934, 1215; 1935, 77).—A. Thermal decomp. of acylazotriphenylmethanes occurs mainly, R.CO.N. CPh. $\rightarrow R \cdot CO \cdot CPh_3 + N_2$, and is independent of the formation of free radicals. The dark red radical formed as by-product of the change is recognised from its absorption spectrum as *p*-benzoyltriphenylmethyl (I) (cf. Wittig, A., 1932, 746). The non-formation of such a product from acylazotri-p-tolylmethanes is readily understood. The presence of p-benzoyltriphenylmethane in the final product is ascribed to the hydrogenation of (I) by some unknown agent. The radical is the primary product, but this does not arise immediately from the N_2 compound since, under favourable circumstances, evolution of N_2 ceases before the red colour commences to develop. The red radical is decolorised by the N₂ compound in the act of its decomp .- not by the substance itselfsince it also disappears when the N2 compound is

decomposed by heat in its solution. The exact agent has not been identified, but it cannot be CPh₃. The radical not only appears in the free state after complete decomp. of the N₂ compound, but is present in latent form in the reaction solution, but not as dimeric ethane. If the radical is removed by O_2 the solution remains pale; addition of CPh3 causes rapid liberation of the free radical and CPh₃ is simultaneously utilised. The form of union of the acyltriphenylmethyl is not obvious. It is also liberated by NH₂Ph, NH₃, and other bases, and considerable possibility of a nitrogenous intermediate exists. This is supported by the observation that evolution of N is never quant. and part remains as a substituted hydrazine. The change can therefore be: $R \cdot CO \cdot N_2 \cdot CPh_3 \rightarrow R \cdot CO \cdot N \cdot N \cdot +$ CPh3. Explosive decomp. of acylazo-compounds (without solvent) is accompanied by production of small amounts of the aldehyde corresponding with the acyl residue; this is never formed during the regulated decomp. Triphenylmethylpyridine, m.p. 264-267° (hydrochloride), benzoylazotri-p-tolylmethane, formyl-azotriphenylmethane, m.p. $156-157^{\circ}$, benzoylazo-p-benzoyltriphenylmethane, benzoyl-p-benzoyltriphenyl-methane, m.p. 142° , and the compound, $C_{30}H_{30}O_2$, m.p.


212°, are incidentally described. B. The decomp. of further diacyl peroxides is investigated. $Bz \alpha$ -naphthoyl peroxide, m.p. 67°, from $\alpha \cdot C_{10}H_7 \cdot COCl$ and NaO₂Bz in aq. COMe₂ at 0°, when heated in admixture with sand, gives some CO₂ and BzOH. The neutral product is hydrolysed to BzOH, $\alpha \cdot C_{10}H_7 \cdot COCl$, some PhOH and higher phenols, naphtholcarboxylic acids, and more complex acids which give sparingly sol. Na salts. Bz phenylacetyl peroxide, m.p. 35.5° (decomp.), decomposes very readily and almost quantitatively into CO₂ and CH₂Ph·OBz, whereas with BzO₂·CO·CH₂·CH₂Ph change occurs only at 80° and is accompanied by side reactions. This influence of Ph renders understandable the failure to prepare (CHPh₂·CO)₂O₂, BzO₂·CHPh₂, or (CPh₃·CO)₂O₂. Thermal decomp. of Bz₂O₂ in CHPh₃ at 100° gives CPh₃·OBz, BzOH, C₆H₆, and sometimes p-C₆H₄Ph·CO₂H, the changes being explained, Bz₂O₂ + CHPh₃ \rightarrow CPh₃·OBz + CO₂ + C₆H₆. Bz₂O₂ and CPh₃, whether obtained in the present of the same provide of the context o

CPh₃·OBz and Bz₂O₂ + CHPh₃ \rightarrow CPh₃·OBz + CO₂ + C₆H₆. Bz₂O₂ and CPh₃, whether obtained in the usual manner or from specially purified CPh₃Cl and Hg, give much lower yields of CPh₄ than those claimed by Medvedev and Alexeeva (A., 1932, 379). The main products are CPh₃·OBz and BzOH; COPh₂ does not appear. CPh₄ is accompanied by an inseparable mixture of hydrocarbons. The possibility that the fourth Ph is yielded by Bz₂O₂ is rendered improbable by the small amount of CO₂ evolved and is excluded by the observation that CPh₄ also results when (p-C₆H₄Ph)₂O₂ is used. It therefore arises from C₈H₆ probably according to Bz₂O₂ + CPh₃ \rightarrow CPh₃·OBz + PhCO₂; PhCO₂ + C₆H₆ \rightarrow BzOH + Ph; Ph + CPh₃ \rightarrow CPh₄. Et₂O does not appear to react with CPh₃. H. W.

Iodonitrotyrosine. R. ZEYNEK (Biochem. Z., 1937, 293, 432–434).—3-Nitrotyrosine when treated with HIO₃ and HI gives an *iodonitrotyrosine*, m.p. 220° (decomp.), $\alpha_p + 10$ —11° in 4% HCl, in which the I is ortho to the OH. P. W. C. CHNa(CO₂Et)₂ and CMe₂Br·CHBr·CO₂Et give Et_3 2:2-dimethylcyclopropane-1:1:3-tricarboxylate, b.p. 153°/9 mm., converted by KOH-EtOH into ciswith a small amount of trans-caronic acid, and by HCl into terebic acid. E. W. W.

Unexpected complication in the replacement of a diazo-group. V. M. RODIONOV and A. M. FEDOROVA (Bull. Soc. chim., 1937, [v], 4, 1703— 1707).—The diazonium sulphate from 3-aminophthalic acid gives with MeOH at 40—50°, not 3-methoxyphthalic acid, but m-OMe·C₆H₄·CO₂H. o-Carboxybenzenediazonium sulphate [obtained using n-C₅H₁₁·O·NO] with MeOH gives o-OMe·C₆H₄·CO₂Me (and some BzOH and salicylic acid). 6-Carboxy-2 : 3methoxybenzenediazonium chloride and 2-carboxy-3 : 4dimethoxybenzenediazonium sulphate both yield 1 : 2 : 3-C₆H₃(OMe)₃, accompanied respectively by m- and overatric acid. E. W. W.

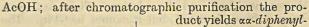
 Δ^{4} -3:12-Diketocholenic acid and its attempted transformation into 3:12-diketoallocholanic acid. J. SAWLEWICZ and T. REICHSTEIN (Helv. Chim. Acta, 1937, 20, 992–998).-4-Bromo-3:12-diketocholanic acid is converted by boiling C₅H₅N into Δ^{4} -3:12-diketocholenic acid (I), m.p. 199–201°, also obtained with acetoxy-3:12-diketocholanic acid by means of KOAc. (I) and CH₂N₂ afford Me

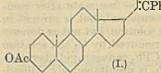
 Δ^4 -3: 12-diketocholenate (II), m.p. 154—155°. Hydrogenation (Raney Ni in MeOH) of (II) gives a product separated by digitonin into (after hydrolysis) α -3hydroxy-12-ketocholanic acid (oxidised deoxybilianic acid) and Me β -3-hydroxy-12-ketocholanate, m.p. 126—128° (corr.); the corresponding acid, m.p. 224—225° (corr.), is oxidised to dehydrodeoxycholic acid. Hydrogenation of (II) with Pd and Pt successively is described. H. W.

 Δ^5 -3-Hydroxyætiocholenic acid and its transformation products. M. STEIGER and T. REICH-STEIN (Helv. Chim. Acta, 1937, 20, 1040-1054).-Gradual addition of Me 3-hydroxybisnorcholenate in PhMe to MgPhBr in boiling Et_2O gives a by-product, m.p. about 165° (corr.; decomp.), and, mainly, diphenyl-∆⁵-3-hydroxyternorcholenylcarbinol, m.p. 113° (corr.). The corresponding monoacetate, m.p. about 177° (corr.), and, after re-solidification, m.p. 188-189° (corr.), is transformed by boiling AcOH into aadiphenyl- β - Δ^5 -acetoxycholenyl- β -methylethylene (I), m.p. 221-222° (corr.), hydrolysed to the corresponding OH-compound, m.p. about 106° (corr.) after becoming opaque at about 85°. Bromination of (I) in CHCl₂ affords the dibromide, m.p. 171-174° (corr.), oxidised and then debrominated to Δ^5 -3-acetoxyætiocholenic acid (II), m.p. 241-242° (corr.), [a]¹⁹_D -19.9° in COMe₂ [Me ester, m.p. 153-154° (corr.)], a keto-fraction consisting chiefly of the acetates of pregnenolone and

trans-dehydroandrosterone, and a non-ketonic product, m.p. 171-173°. △5-3-Hydroxyætiocholenic acid (III) [Me ester, m.p. 179-181° (corr.)] has m.p. 280-281° (corr.; decomp.). Hydrogenation (Pt in AcOH) of (II) affords β -3-acetoxyætioallocholanic acid, m.p. 247-249° (corr.), [Me ester, m.p. 142-144° (corr.)], hydrolysed to β -3-hydroxyætioallocholanic acid (IV), hydrotysed to p-3-hydrotydetballocholanic deta (1v), m.p. 256—258° (corr.) after becoming opaque at 145— 150° [Me ester (V), m.p. 166—170° (corr.) or (as hydrate), m.p. about 90—100° and, after re-solidi-fication, m.p. 166—170° (corr.)]. Oxidation of (IV) with CrO₃ in AcOH gives 3-ketoætioallocholanic acid, m.p. 253-256° (corr.) (Me ester, m.p. 176-179°), reduced by Zn wool in HCl-AcOH to ætioallocholanic acid, m.p. 229-231° (corr.). Bromination followed by oxidation and debromination of (III) gives △4-3-ketoætiocholenic acid, m.p. 236-242° (corr.), the Me ester, m.p, 130-131°, of which is hydrogenated (Pd followed by PtO_2) to (V) and Me ætiolithocholate, m.p. 143—144° (corr.). Ætiolithocholic acid is oxidised by CrO_3 in AcOH to 3-ketoætiolithocholanic acid, m.p. 246-249° (corr.) [Me ester, m.p. 147-149° (corr.)], reduced (Clemmensen) to ætiocholanic acid. H. W.

Synthesis of ursodeoxycholic acid. S. MIYAZI (Z. physiol. Chem., 1937, 250, 31–33; cf. Imai, A., 1937, II, 377).—3-Hydroxy-7-ketocholanic acid in EtOH with NaOEt at 200° for 10 hr. or in AcOH containing 0.033% of conc. HCl with PtO_2-H_2 gives ursodeoxycholic acid (*diformate*, m.p. 170°), the yield by the first method being 10%. Chenodeoxycholic acid is the chief product by both methods.


W. McC.


Glyco-ursodeoxycholic acid from bear's bile. S. MIYAZI (Z. physiol. Chem., 1937, 250, 34—36).— The bile yields glyco-ursodeoxycholic acid (+H₂O), m.p. 232°, $[\alpha]_{2^0}^{2^0}$ +51·28°, converted by alkaline hydrolysis into glycine and ursodeoxycholic acid (I). An improved method of isolating (I), cholic and chenodeoxycholic acid from the bile is described.

W. McC.

Oxidation of cholic and deoxycholic acid with CrO_3 . Colour reaction of ketocholanic acid with *m*-dinitrobenzene. K. KAZIRO and T. SHIMADA (Z. physiol. Chem., 1937, 249, 220—224).—Cholic acid in AcOH with aq. CrO_3 at 0° gives in 6—7 hr. a 65% yield of 3-hydroxy-7: 12-diketocholanic acid but no 3: 12-dihydroxy-7-ketocholanic acid. In the same way deoxycholic acid yields (much more slowly) 3-hydroxy-12-ketocholanic acid and 7: 12-dihydroxy-3-ketocholanic acid yields dehydrocholic acid. Hence OH at $C_{(12)}$ is more easily oxidised than OH at $C_{(3)}$ and OH at $C_{(7)}$ than OH at $C_{(12)}$. Ketocholanic acids having CO at $C_{(3)}$ (but not other ketocholanic acids) give a violet colour with alkaline $m \cdot C_6 H_4(NO_2)_2$. (Cf. Zimmermann, A., 1935, 1032.)

Degradation of lithocholic acid to ætiolithocholic acid. J. SAWLEWICZ and T. REICHSTEIN (Helv. Chim. Acta, 1937, 20, 949—953).—Addition of MgPhBr in Et₂O to Me bisnorlithocholate (Reindel and Niederlander, A., 1935, 1494) in boiling PhMe gives the non-cryst. diphenylcarbinol, which is treated with Ac_2O in C_5H_5N and then with boiling

duct yields αα-diphenylCPh₂ β - 3 - acetoxyatiocholyl β-methylethylene (I),
m.p. 161-163° after
softening at about 157°.
(I) by CrO₃ in AcOH at
100° yields acetylatio-

lithocholic acid, m.p. 225—226° (corr.) (Me ester, m.p. 113—118°), hydrolysed to ætiolithocholic acid, m.p. 273—275° after becoming opaque at about 120°, $[\alpha]_{2}^{16} + 50^{\circ} \pm 2^{\circ}$ in dioxan [Me ester, m.p. 141—142° (corr.)]. H. W.

Condensation of succinic anhydride with the methyl ethers of dihydric phenols. G. A. DALAL and K. S. NARGUND (J. Indian Chem. Soc., 1937, 14, 406-410).—The condensation (AlCl₃) of $(CH_2 \cdot CO)_2 O$ with the Me₁ and Me₂ ethers of dihydric phenols in PhNO₂, CS₂, and C₂H₂Cl₄ is described. The following substituted γ -keto-8-phenylbutyric acids were prepared: $3:4 \cdot (Me \text{ ester}, \text{ m.p. } 90^\circ, Et \text{ ester}, \text{ m.p. } 70^\circ)$ and $2:4\text{-dimethoxy-}(Et \text{ ester}, \text{ m.p. } 70^\circ; semicarbazone, m.p. 160^\circ)$ [also synthesised from $(CH_2 \cdot CO)_2 O$, $1:2:4 \cdot C_6 H_3 I(OMe)_2$, and Mg]; 5-bromo-, m.p. 178°, and 5-nitro-2:4-dimethoxy- (Me ester, m.p. 68°; semicarbazone, m.p. 175°), and 2:5-dimethoxy- (Me ester, m.p. 54°; Et ester, m.p. 46°; semicarbazone, m.p. 195°). Guaiacol and p-OH \cdot C_6 H_4 \cdot OMe do not condense. A. L1.

Anisylmalonic acid and its derivatives. J. B. NIEDERL, R. T. ROTH, and A. A. PLENTL (J. Amer. Chem. Soc., 1937, **59**, 1901—1903).—The following are prepared (usual methods) from *Et* α -cyano- α anisylacetate, b.p. 152—153°/2 mm., which is obtained in 50—55% yield from p-OMe·C₆H₄·CH₂·CN, Et₂CO₃, and Na in Et₂O: anisylmalonic acid, m.p. 137— 138° (*Et H*, m.p. 77—78°, and *Et*₂, b.p. 152—153°/2·5mm., esters; diamide, m.p. 190—191°); *Et* α -cyano- α -anisyl-propionate, b.p. 136—138°/0·5 mm., and -butyrate, b.p. 142—143°/0·5 mm.; α -cyano- α -anisyl-acetamide, m.p. 144—145°, -propionamide, m.p. 143— 144°, and -butyramide, m.p. 138°. p-C₆H₄Me·OMe with Na and CO₂ in amyl chloride (cf. Morton and Hechenbleikner, A., 1937, II, 101) gives 2:5-OMe·C₆H₃Me·CO₂H. p-OH·C₆H₄·CH(CO₂H)₂ (or derivatives) could not be obtained by direct condensation of CH₂(CO₂Et)₂ and PhOH or by rearrangement of OPh·CH(CO₂H)₂ (and its derivatives). H. B.

Syntheses in the hydroaromatic series. II. Diene synthesis of derivatives of 1-acetylenyland 1-vinyl-3:4-dihydronaphthalene. (FRLN.) E. DANE, O. HÖSS, A. W. BINDSELL, and J. SCHMITT (Annalen, 1937, 532, 39—51).—Diene syntheses are recorded for 6-methoxy-1-acetylenyl- (I) and -1-vinyl-3:4-dihydronaphthalene (II). 1-Keto-6-methoxy-1:2:3:4-tetrahydronaphthalene does not react with C_2H_2 in the presence of NaNH₂, but with a large excess of MgBr-C:CH gives a little 1-hydroxy-6methoxy-1-acetylenyl-1:2:3:4-tetrahydronaphthalene (not obtained pure) with (I), b.p. 124—130°/0-5 mm. (formed by dehydration of the alcohol), and di-1-6-methoxy-3:4-dihydronaphthylacetylene, m.p. 177° (formed as main product if less MgBr-C:CH is

used). Maleic anhydride (III) and (I) in Et_2O give 7-methoxy-1:2:9:10-tetrahydrophenanthrene-1:2-dicarboxylic anhydride (IV), m.p. 200°, and 7-methoxy- $3: 11 - endo - \alpha\beta - dicarboxyethylene - 1: 2: 3: 9: 10: 11$ hexahydrophenanthrene-1:2-dicarboxylic anhydride, m.p. 263° (decomp.), obtained also from (IV) and (III), dissociating into (IV) and (III) at 228-230°/12 mm., resisting hydrogenation, and giving with CH₂N₂ the Me_4 ester, m.p. 195°, of the corresponding *tetra-carboxylic acid*. Hydrolysis of (IV) by NaOH gives the corresponding *dicarboxylic acid*, m.p. 206° (decomp.) (Me2 ester, m.p. 117°); hydrogenation (Pd- $CaCO_3$) of (IV) in PhOMe gives the H₈-anhydride, m.p. 181°, converted into the H_8 -dicarboxylic acid, m.p. 185° (decomp.) [Me₂ ester (V), m.p. 123°], which with HBr-AcOH gives 7-hydroxyoctahydrophenanthrene-1: 2-dicarboxylic acid, +0.5H₂O, m.p. 199-200° (decomp.). Partial hydrogenation (Pd-CaCO₃) of (I) gives (II), which with (III) gives 7-methoxyhexahydrophenanthrene-1: 2-dicarboxylic anhydride, m.p. 200°, converted by CH_2N_2 into the Me_2 ester, m.p. 117°, of the corresponding acid, which affords (V) when hydrogenated. p-Benzoquinone and (I) give oils, but (II) gives 3: 6-diketo-10-methoxytetrahydrochrysene, m.p. $150-160^{\circ}$ (decomp.). 1-Keto-1:2:3:4-tetrahydronaphthalene and MgBr·C:CH. give impure 1-hydroxy-1-acetylenyl-1:2:3:4-tetra-hydronaphthalene and di-1-3:4-dihydronaphthylacetylene, m.p. 124°, hydrogenated to $\alpha\beta$ -di-1-1:2:3:4tetrahydronaphthylethane, m.p. 77°; heating the alcohol with porcelain at 100° gives 1-acetylenyl-3:4-dihydronaphthalene, b.p. 112°/2 mm., which does not react with (III). Partial hydrogenation gives 1-vinyl-3: 4-dihydronaphthalene, which with (III) gives hexahydrophenanthrene - 1: 2-dicarboxylic anhydride, m.p. 213° [hydrolysed to the dicarboxylic acid, m.p. 214-215° (decomp.) (Me₂ ester, m.p. 99°)], and with p-benzoquinone gives 3: 6-diketotetrahydrochrysene, m.p. 145-146°. R. S. C.

Molecular resonance systems. V. New phthaleins. G. SCHWARZENBACH and M. BRANDEN-BERGER (Helv. Chim. Acta, 1937, 20, 1253-1260).-Reduction of nitrated diphenylphthalide gives a nonseparable mixture of products from which phenolphthalein (I) is obtained in small quantity through the tetrazonium salt. $C_6H_4 < CO^{12}_{CO} > 0$ condenses satisfactorily with NPhMe, (Friedel-Crafts) but the method is useless with NH₂Ph and unsatisfactory with NHPhAc. CO(NHPh)2 with o-C6H4 CO2>0 and AlCl₃ in PhNO₂ gives an amorphous product (II) converted by conc. HCl at 140° into CO_2 and 4:4'diaminodiphenylphthalide (anilinephthalein) (III), m.p. 204°, the colourless solution of which in cold AcOH becomes violet when warmed whilst it is colourless in neutral or basic media or in strong acids. 4:4'-Diaminodiphenylphthalimide is obtained from (II) and conc. \dot{NH}_3 at 130°. The constitution of (III) is established by its conversion into (I), only a small proportion of which can be caused to crystallise, so that the remainder is identified by conversion through the oxime, m.p. 212°, into *p*-hydroxybenzoyl-o-benzoic acid, m.p. 213°. Ditolylphthalide is oxidised by CrO_3 in AcOH to diphenylphthalide-4: 4'-dicarboxylic acid, m.p. 304° , transformed by successive treatments with boiling SOCl₂ and NH₃ in CCl₄ into the corresponding diamide, m.p. 313° , which is degraded (Hofmann) to (III). (III) with boiling Ac₂O gives non-cryst. acetanilidephthalein of indefinite m.p. 4: 4'-Dibenzenesulphonamidophenylphthalide is amorphous. Dithiophenolphthalein is described.

H. W.

3': 5': 3'': 5''-Tetrabromo-4': 4''-dihydroxy-1: 4-diphenylnaphthalene-2: 3-dicarboxylic anhydride. R. WEISS (Monatsh., 1937, 71, 6-9).-2: 5-Di-(mm'-dibromo-p-hydroxyphenyl)-3: 4-benzofuran (I) with maleic anhydride in PhMe yields a cryst. additive product, which with HCl-EtOH affords 3': 5': 3'': 5''-tetrabromo-4': 4''-dihydroxy-1: 4-diphenylnaphthalene-2: 3-dicarboxylic anhydride, m.p. 353°. The Et_2 ester, m.p. 195-196°, is similarly formed from (I) and (CH·CO₂Et)₂. J. D. R.

Substance, $C_{15}H_{16}O_7$, m.p. 154—156°, from urine.—See A., III, 384.

Reaction of maleic anhydride with α - and β -benzaldoxime: benzoylaspartic acid. G. LA PAROLA (Gazzetta, 1937, 67, 481–486).—Either α - or β -benzaldoxime with maleic anhydride in C₆H₈ gives benzoylaspartic acid and PhCHO. E. W. W.

Synthesis of o-cyano-aldehydes. I. S. N. CHAKRAVARTI and K. GANAPATI (J. Indian Chem. Soc., 1937, 14, 463-467) .- o-Cyanobenzaldehyde (I), m.p. 76°, is obtained (in poor yield) by KMnO4-Na₂CO₃ oxidation of o-cyanocinnamic acid (A., 1928, 835); o-CN·C₆H₄·CO₂H and an acid, m.p. 197-202°, are also formed. Similarly 6-cyano-3-methoxybenzaldehyde, m.p. 107°, is obtained, with a substance, m.p. 218°, and an acid, m.p. 132°, by oxidation of 6-cyano-3-methoxy-, m.p. 220°, obtained from 6-amino-3-methoxy-cinnamic acid, m.p. 186° [hydrochloride, m.p. 204° (decomp.)] (from the NO₂-acid). 2-Amino-3-methoxy-, m.p. 189° (decomp.), is converted into 2-cyano-3-methoxy-cinnamic acid, m.p. 149°. Attempts to convert o-NH2-derivatives of Schiff's bases, oximes, and acetals into cyano-aldehydes through the E. W. W. diazo-compounds were not successful.

(A) Preparation of some p-dialkylaminobenzaldehydes. (B) Condensations of p-dialkylaminobenzaldehydes with nitrotoluenes. J.F.J. DIPPY, L. T. HOGARTH, H. B. WATSON, and F. R. WILLIAMS (J.S.C.I., 1937, 56, 346-348T, 396-397T). -(A) Different methods of preparing the aldehydes are compared, with special reference to the yields of p-β-hydroxyethylalkylaminobenzaldehydes which can be obtained. The following new aldehydes are described; p-ethyl-\$-hydroxyethylamino-, m.p. 45-47° [semicarbazone, m.p. 194° (decomp.)], p-\beta-hydroxyethylbutylamino- (semicarbazone, m.p. 158-160°), and 2-methyl-4-3-hydroxyethylbutylamino-benzaldehyde, b.p. 183°/5 mm. (semicarbazone, m.p. 151°). They are best prepared from the appropriate tert. bases by a modification of the method of Walter (G.P. 118,567).

(B) The following new stilbenes have been obtained by the interaction of 2:4-dinitrotoluene with the required aldehydes in presence of a little piperidine: 2:4-dinitro-4'-diethylamino-, m.p. 149°, 2:4-dinitro-4'-ethyl- β -hydroxyethylamino-, m.p. 174—176°, 2:4dinitro-4'- β -hydroxyethylbutylamino-, m.p. 220°, and 2:4-dinitro-4'- β -hydroxyethylbutylamino-2'-methyl-stilbene, m.p. 120°. 2-Nitro-4-amino-4'-dimethylaminostilbene is obtained by reduction of 2:4-dinitro-4'-dimethylaminostilbene by ammonium sulphide. It is difficult or impossible to condense aldehydes with p-nitrotoluene. 4-Nitro-4'-dimethylaminostilbene is obtained in 46% yield from p-dimethylaminobenzaldehyde and p-nitrophenylacetic acid in presence of piperidine.

β-apo-4-Carotenal, a further degradation product of β-carotene. P. KARRER, U. SOLMSSEN, and W. GUGELMANN (Helv. Chim. Acta, 1937, 20, 1020—1024; cf. A., 1937, 11, 378).—Further examination of the products of the oxidation of carotene by KMnO₄ leads to the isolation of β-apo-4-carotenal, CH₂·CMe₂·CMe₂·C·CH:[CH·CMe:CH·CH]₂:CH·CH: CMe·CHO [oxime, m.p. 165°; semicarbazone, m.p. 217° (decomp.) after softening at 214°], and ψ -α-carotene, m.p. 169—170°. It is proposed to base the names of the compounds obtained by the stepwise oxidation of carotenoids on that of the carotenoid and to indicate the shortening of the chain by the prefix "apo"; the number indicates the distance of the affected from the terminal double linking. Hence carotenal (loc.

H. W.

Preparation of cyclobutanone. N. J. DEMI-ANOV and S. M. TELNOV (Bull. Acad. Sci. U.R.S.S., Sér. Chim., 1937, 529–538).—1-cycloButanespirohydantoin and 8% aq. NaOH (14 hr. at the b.p.) yield 1-aminocyclobutane-1-carboxylic acid, m.p. 245— 248° (decomp.), converted by the action of HNO₂ into 1-hydroxycyclobutane-1-carboxylic acid (I), and by aq. NaOCl into the chloroamine, which yields cyclobutanone (II) in 74% yield when steam-distilled. (I) does not give (II) when heated with H_2SO_4 . R. T.

cit.) is β -apo-2-carotenal.

Catalytic hydrogenation of cyclohexanone. B. FORESTI (Annali Chim. Appl., 1937, 27, 359—365).— Hydrogenation (Pt) of cyclohexanone produces cyclohexanol (I) with a little cyclohexane (II) when carried out in acid medium (H_2SO_4 -N- K_2SO_4 , $p_{\rm H}$ 1) but only (I) in alkaline medium ($p_{\rm H}$ 12). (II) is produced directly from (I) in acid medium. A nomogram has been constructed by means of which the proportions of the substituents in the ternary mixture may be calc. from the amount of H_2 consumed and the *n* of the org. phase. L. A. O'N.

Action of primary amines on $\alpha\beta$ -dibromopropiophenone. B. REICHERT and F. MOLDEN-HAUER (Arch. Pharm., 1937, 275, 537-540).-COPh·CHBr·CH₂Br and NH₂Me in C₆H₆ give β bromo- α -methylaminopropiophenone, m.p. <0° [hydrobromide, m.p. 177-178° (decomp.)], Ph α -methylaminovinyl ketone, m.p. 170-172° (decomp.) [hydrobromide, m.p. 261-263° (decomp.)], and di-[β -bromo- α -benzoylethyl]methylamine, m.p. 222-223° (decomp.). NH₂Et gives similarly β -bromo- α -ethylaminopropiophenone hydrobromide, m.p. 172-173° (decomp.).

R. S. C.

Action of hydrogen bromide on benzaldehyde and methyl ethyl ketone. (SIGNA.) G. MASSARA (Gazzetta, 1937, 67, 440—443; cf. A., 1933, 716).— PhCHO + COMEEt with dry HBr give benzylidenebutanone, the compound $C_{18}H_{17}OBr$ (A., 1916, i, 372), and 3:4-diphenyl-2-benzylidene-5-methyl- Δ^3 cyclopentenone, new m.p. 160—161° (cf. A., 1929, 703). E. W. W.

Substances containing the β -ionone ring. Action of organomagnesium compounds on β -ionone. A. GIACALONE (Gazzetta, 1937, 67, 464—468).— β -Ionone (I), CH₂Br·CO₂Et, and Mg give a better yield of Et δ -(1:1:3-trimethyl-2- Δ^2 -cyclohexenyl)- β -methylbutadiene- α -carboxylate than when Zn is used (A., 1932, 852), but ionene (II) is also formed. From (I) and MgMeI, (II) and CH₄ are obtained; using MgBu^{β}Br, a small amount of (II) is formed. E. W. W.

Oxidation of desylamine and benzoin methyl ether.—See A., I, 623.

Phenyl benzyl ketimine and derivatives. K. N. CAMPBELL (J. Amer. Chem. Soc., 1937, 59, 2058– 2061).—*Ph benzyl ketimine* (I), m.p. 57°, obtained from its hydrochloride (II), m.p. 210–211° (decomp.) [prep. from PhCN and CH_2Ph ·MgCl (excess) followed by HCl], hydrolyses rapidly in moist air to NH_3 and COPh·CH₂Ph. The N-*Cl*-derivative (III), m.p. 78°, of (I) is obtained from (I) (in CHCl₃) and aq. NaOCl; (III) and HCl in light petroleum give (II). (III) does not lose HCl (to give a cyclic imine) when treated with Ag_2O (in C₆H₆) or dry KOH (in Et₂O); with aq. EtOH-KOH, benzilic acid and gummy products are produced. The N-*B*r-derivative, m.p. about 55°, of (I) is prepared from (II) and aq. KOBr. H. B.

Reduction of unsaturated ketones. J. F. J. DIPPY and R. N. LEWIS (Rec. trav. chim., 1937, 56, 1000-1006).-Reduction of substituted Ph styryl ketones to the corresponding saturated ketones is best effected by Na and AcOH; secondary diketonic products are formed only at elevated temp. Cl or NO₂ inhibits reduction. The following new or revised data are recorded : Ph o-methoxystyryl ketone, m.p. 57°; Ph o-chlorostyryl ketone, m.p. 48°; Ph p-chlorostyryl ketone, m.p. 114.5°; Ph o-nitrostyryl ketone, m.p. 126°; benzylacetophenone-2:4dinitrophenylhydrazone, m.p. 166° (the corresponding semicarbazone could not be obtained); αγδζ-tetraphenylhexane-a c-dione, m.p. 243°; Me &-phenyl-nbutyl ketone, b.p. 160-162°/20-23 mm. (semicarbazone, m.p. 156-157°); Ph \$-0-methoxyphenylethyl ketone, b.p. 227-230°/20 mm. (2:4-dinitrophenylhydrazone, m.p. 104.5°); $\alpha\zeta$ -diphenyl- $\gamma\delta$ -di-anisylhexane- $\alpha\zeta$ -dione, m.p. 232°. Styryl Me ketone is reduced (Clemmensen) to n-propylbenzene. H. W.

o-Nitrochalkones. I. TANASESCU and A. BACIU (Bull. Soc. chim., 1937, [v], 4, 1742—1759).—Interaction of o-NO₂·C₆H₄·CHO with the appropriate substituted acetophenone in EtOH affords the following: 2-nitro-, m.p. 124°, 4'-chloro-2-nitro-, m.p. 148°, 4'-bromo-2-nitro-, m.p. 137°, 2-nitro-4'-methyl-, m.p. 111°, 2-nitro-3': 4'-dimethyl-, m.p. 128°, 2-nitro-2': 4'-dimethyl-, m.p. 93°, 2-nitro-2': 5'-dimethyl-, m.p. 102°, 2: 2'-dinitro-, m.p. 152—153°, 2: 4'-di nitro-, m.p. 179°, 2-nitro-4'-cyano-, m.p. 186—187°, 2-nitro-4'-carboxy-, m.p. 245—246° (Me ester, m.p. 173—174°), 6'-chloro-2-nitro-3'-methyl-, m.p. 117°, 2:3'-dinitro-4'-methyl-, m.p. 195°, 4'-bromo-2:3'dinitro-, m.p. 202—203°, 2-nitro-4'-amino-, m.p. 178— 181°, and forms, m.p. 82° and 184° (hydrochloride, m.p. 207—210°; semicarbazone, m.p. 203—204°; Ac derivative, m.p. 234° and 230—231°), 2-nitro-4'benzamido-, m.p. 182—183°, 2-nitro-4'-dimethylamino-, m.p. 110—111°, 2-nitro-4'-methylamino-, m.p. 153— 154°, 2-nitro-3'-acetamido-, m.p. 182° (phenylhydrazone, m.p. 98°), 2-nitro-3'-amino-, m.p. 142° (hydrochloride, m.p. 195—199° decomp.), 2:3'-dinitro-4'amino-, m.p. 240—241°, and 3': 5'-dibromo-2-nitro-4'amino-chalkone, m.p. 208—209°. 1:4-

Retene. IX. Synthesis of 5:6-benzoretene and its derivatives. D. E. ADELSON and M. T. BOGERT (J. Amer. Chem. Soc., 1937, 59, 1776-1782).-6-Acetylretene and Br in cold Et₂O give 6-bromoacetyl- (I), m.p. 98.5-99°, and a little 6dibromoacetyl-retene, m.p. 157.5-158°; both are oxidised (I-KI in dioxan-10% NaOH) to retene-6carboxylic acid (II). (I) and CHNa(CO₂Et)₂ in C₆H₆ lead to \$-6-retoylpropionic [y-keto-y-1-methyl-7-isopropyl-6-phenanthrylbutyric] acid (III), m.p. 201-202° [Me ester, m.p. 108-109° (oxime, m.p. 126-127°)], also prepared from retene, (·CH₂·CO)₂O, and AlCl₃ in $C_6 \hat{H}_6$, which is reduced (Clemmensen) to γ-6-retylbutyric acid (IV), m.p. 179-179.5° [Me ester (V), m.p. $66\cdot5-67\cdot5^{\circ}$]. (III) is oxidised (NaOCl) to (II). (IV) and SnCl₄ at 105-110°, or its chloride and AlCl₃ in C₆H₆, give 1'-keto-1': 2': 3': 4'-tetra-hydro-5: 6-benzoretene (VI), m.p. $139\cdot5-140^{\circ}$ [oxime, m.p. 203—204° (decomp.); semicarbazone, m.p. 242— 244° (decomp.)], reduced (Wolff) to 1':2':3':4'tetrahydro-5 : 6-benzoretene, m.p. 88-89° (picrate, m.p. 159-160°), which is dehydrogenated (S at 220-230°) to 5:6-benzoretene, m.p. 98-99° (picrate, m.p. 144-144.5°). (VI) is reduced (Na, EtOH) to the 1'-OH-derivative, m.p. $131-132^{\circ}$ (picrate, m.p. $154\cdot5-155^{\circ}$). The product from (V), $Et_2C_2O_4$, and NaOEt is converted by 80% H₂SO₄ at 100% into 3': 4'-dihydro-5: 6-benzoretene-1': 2'-dicarboxylic anhydride, m.p. 219-220° (corresponding Me2 ester, m.p. 145.5-146.5°), dehydrogenated (S at 230-250°) to the anhydride (VII), m.p. 244.5-245.5°, of 5:6benzoretene-1': 2'-dicarboxylic acid, m.p. 240-241° (decomp.). (VII) appears to have no cestrogenic activity. 3-6-Retoyl-a-methylpropionic acid, m.p. 210-211° [Me ester, m.p. 96-97° (oxime, m.p. 135-135.5°)], prepared (as above) from (I) and

CNaMe(CO_2Et)₂ or from retene and methylsuccinic anhydride, is reduced (Clemmensen) to γ -6-retyl- α methylbutyric acid, m.p. 131-132°, which is converted (85% H₂SO₄) into 1'-keto-2'-methyl-1': 2': 3': 4'-tetrahydro-5: 6-benzoretene, m.p. 120.5-121.5°. All m.p. are corr. H. B. Additive products of o-nitrobenzaldehyde with substituted acetophenones. I. TANASESCU and A. BACIU (Bull. Soc. chim., 1937, [v], 4, 1673—1683; cf. A., 1932, 625).—o-NO₂·C₆H₄·CHO, COMER (R = Ph etc.), and Na₃PO₄ in aq. EtOH yield the following OH-ketones (m.p. of respective Bz derivatives given within parentheses): phenyl (improved yield), pchloro-, m.p. 97° (179°), and p-bromo-phenyl, m.p. 116° (174°), p-tolyl, m.p. 82° (170°), 4-o-xylyl, m.p. 98—99° (158—159°), p-anisyl, m.p. 139·5° (143°) (also obtained using KOH-EtOH), o-, m.p. 139°, and p-nitrophenyl, m.p. 127° (155°), p-cyano-, m.p. 138·5— 139° (147—148°), and 4-bromo-3-nitro-phenyl, m.p. 152° (205—207°), 2-nitro-p-tolyl, m.p. 131°, and pcarboxyphenyl β-hydroxy-β-o'-nitrophenylthyl ketone, m.p. 219—220° (226—227°). All the above compounds, especially the last, readily yield indigotin when treated with alkali. m- and p-Amino-, 3-nitro-4amino-, 3: 5-dibromo-4-amino-, 2: 5- and 2: 4dimethyl-, and 2-chloro-5-methyl-acetophenone yield only compounds of type CHR:CH·COR'. E. W. W.

Syntheses in the hydroaromatic series. I. Condensation of methylcyclopentenedione with butadiene. (FRLN.) E. DANE, J. SCHMITT, and C. RAUTENSTRAUCH (Annalen, 1937, 532, 29-38).-·CO·CO· activates an $\alpha\beta$ -ethylenic linking, at least in the cyclopentane ring, to make it reactive towards $(CH_2:CH)_2$. cycloPentene and SeO₂ in Ac₂O give Δ^2 . cyclopentenyl acetate, b.p. 154-155°, and A4-cyclopentene-1: 3-diol diacetate, b.p. 120-130°/15 mm.; the former is the main product at 100° in an open vessel and the latter in a closed tube at 100°. The monoacetate with cold 2N-NaOH gives Δ^2 -cyclopentenol, b.p. 137° (phenylurethane, m.p. 128-129°; dinitrobenzoate, m.p. 126°). The diacetate is hydrolysed by H₂O and with aq. NaHCO₃ rapidly gives Δ^4 -cyclopentene-1: 3-diol, b.p. 107°/12 mm., which reduces warm Fehling's solution and ammoniacal AgNO₃ or Ag₂CO₃ (slowly in the cold), and gives no cryst. phenylurethane or dinitrobenzoate; use of dil. alkali hydroxide leads to an isomeric diol, which gives a diphenylurethane, m.p. 195°, and diurethane, m.p. 123°. Δ^1 -Methylcyclopentene and SeO₂ give a 35% yield of 2-methyl- Δ^2 -cyclopentenyl acetate (I), b.p. 60-60.5°/12 mm., with some diacetate and methylcyclopentenone; cold KOH or NaOH hydro-lyses (I) to 2-methyl- Δ^2 -cyclopentenol, m.p. 59.5— 60°/12 mm. (phenylurethane, m.p. 103°), but use of crude (I) leads also to some 5-2'-methyl- $\Delta^{2'}$ -cyclopentenyl-2-methyl- Δ^2 -cyclopentenone, b.p. 115°/0-1 mm., m.p. 106°. Oxidation (CrO₃) leads to 2-methyl- Δ^2 -cyclopentenone, b.p. 53°/12 mm. [semi-CH₂ Me carbazone, m.p. 213° (slow heating),

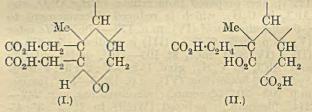
HC CH CO HC CH CO CH₂ CH₂ (II.)

carbazone, m.p. 213° (slow heating), 220° (decomp.; rapid heating); oxime, m.p. 128°], which with SeO₂ in AcOH at 120° gives Δ^3 -cyclopentene-CO 1:2-dione, m.p. 85° (oily enolic form; quinoxaline, m.p. 135°). This adds (CH₂:CH)₂ in dioxan at 110–130° to give the diketone (II), m.p. 110°. R. S. C.

Condensation of fluorene with acetone. II. H. FRANCE, P. MAITLAND, and S. H. TUCKER (J.C.S., 1937, 1739—1745; cf. A., 1930, 85).—Fluorene (I) with

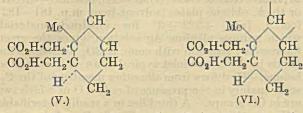
COMe₂ containing KOH gives a 50% yield of Me β -9-fluorenylisobutyl ketone (II), m.p. 77–78° (piperonylidene, m.p. 167-168°, and 6-bromopiperonylidene derivative), also obtained less well using mesityl oxide (III), (I), and KOH or from (III) and Na fluorenyl (IV) in Et₂O. Fluorenol, obtained from fluorenone (V) by Mg in MeOH at 45°, gives 9-bromoand thence by AgNO₃ in hot MeOH 9-methoxyfluorene, which gives (IV) by Schlenk's method. With CH₂Ph·OBz (IV) gives 9-benzoylfluorene. Neither 9-fluorenyldimethylcarbinyl chloride nor bromide reacts with CHAcNa·CO₂Et. Dry distillation of (II) gives (I), (III), and COMe₂; heating with KOH-EtOH, Na in xylene, or K in C6H6 gives (I); K gives also 9-isopropylidenefluorenone, which, when kept, yields (V). Oxidation of (II) with KMnO_4 gives (?) β-hydroxy-β-9-fluorenylisobutyl Me ketone, m.p. 120–122°; with $Na_2Cr_2O_7$ gives (V), with NaOBr, CHBr₃, and with NaOI, CHI₃. The semicarbazone, m.p. 218°, of (II) with NaOEt gives β-9-fluorenyl-βmethylpentane (VI), m.p. 84-85°, also obtained by Clemmensen reduction, with a substance (VII), $C_{19}H_{20}$, m.p. 103-104° (formed as sole product by HI). CMe₂Pr^aCl (modified prep.) gives a Grignard reagent, which with (V) affords (VI), which is also obtained from the chloride and Et sodiofluoreneoxalate (VIII) or, in very poor yield, potassiofluorenecarboxylate. a-9-Fluorenylisopropyl iodide, m.p. 95-97°, is prepared from the alcohol. Bu'I or Bu'Cl with (VIII) gives 2% of tert.-butylfluorene, m.p. 101-102°. With HBr-AcOH (II) gives a substance, m.p. 95-105°, which rapidly decomposes to HBr and a sub-stance, $C_{19}H_{18}$, m.p. 77—79°, oxidised to a keto-acid, $C_{19}H_{18}O_3$, m.p. 163—164°, and hydrogenated (Pd) in warm AcOH to (VII). With ZnCl₂ at 240—250° (II) gives (VII) and a substance, $C_{16}H_{14}$, m.p. 133—134°, also obtained by P_2O_5 at 250°. The oxime, m.p. 109-110° (Ac derivative, m.p. 90-94°), of (II) with PCl₅ gives an amide, C₁₉H₂₁ON, m.p. 167-169°, yielding uncrystallisable bases when hydrolysed. The Br-, m.p. 83–85°, Br_{2} -, anhyd. and +EtOH, m.p. 102–104°, and Br_{3} -, m.p. 173–175°, -derivatives of (II) are oxidised (CrO_3) to (V) and thus do not contain Br in the nucleus; no acid was obtained from the Br3-compound by KOH. With HNO3-H2SO4-AcOH (II) gives a NO₂-derivative, m.p. 110-114° (in one experiment a substance, C₁₆H₁₅O₃N, m.p. 98-100°), reduced by Na2S to a substance, C19H21ON, m.p.

Hydroxybenzofluorenones.-See B., 1937, 1025.

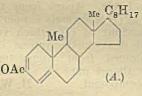

R. S. C.

 $143 - 146^{\circ}$.

Preparation of 2-hydroxy-5-methoxyacetophenone. F. MAUTHNER (J. pr. Chem., 1937, [ii], 149, 324-327).— $p-C_6H_4(OAc)_2$ (modified prep.), m.p. 121°, and $p-OMe\cdot C_6H_4\cdot OAc$ (I), b.p. 134—135°/ 18 mm., do not undergo the Fries rearrangement. McCN and (I) do not undergo the Hoesch reaction. $p-C_6H_4(OH)_2$, AcOH, and ZnCl₂ at 145—150° give 2:5-dihydroxyacetophenone, m.p. 202°, which with NaOH-Me₂SO₄ gives the 5-Me ether (p-nitrophenylhydrazone, m.p. 215—216°). R. S. C.


Dioximes. CXXIII. G. PONZIO and G. TAPPI (Gazzetta, 1937, 67, 518-526).—Phenylmethyltriketone-" α "-trioxime (I) (A., 1936, 1383) and N₂O₄ m.p. 100°; Bz derivative, m.p. 130—131°), of acetylphenylglyoxime [α -phenyl- γ -methyltriketone- $\alpha\beta$ -dioxime] peroxide, m.p. 79—80° [phenylhydrazone, m.p. 160°; semicarbazone, m.p. 218—219° (decomp.)], obtained by HCl hydrolysis of (II), into which it is reconverted by NH₂OH,HCl. With N₂O₄ in Et₂O, or with HNO₃ (d 1·40), (II) gives phenyl-($\alpha\alpha$ -dinitroethyl)glyoxime peroxide, m.p. 135—136°. Phenylmethyltriketone-" β "-trioxime (III) (A., 1922, i, 1039) is distinguished from (I) by the m.p. of its Bz₃ derivative, m.p. 181— 182°; with N₂O₄ (III) gives the same products as (I). " β "-Benzoylmethylglyoxime (A., 1922, i, 1038) (semicarbazone, m.p. 247—248°) with Me₂SO₄ yields a Me, ether, m.p. 68—69°. E. W. W.

Sulphonic acids of sterol derivatives. A. WINDAUS and E. KUHR (Annalen, 1937, 532, 52– 68).— Δ^4 -Cholestenone and Ac₂O-H₂SO₄ give an 85% yield of the 6-sulphonic acid (I), m.p. 193—195° (decomp.) [various salts described; Me ester, m.p. 149—150°; phenylhydrazone, m.p. 212—214° (decomp.)]. The alkali salts foam in H₂O, are colloidal, and, as does also (I), cause cholesterol, benzpyrene, and methylcholanthrene to remain dissolved in H₂O. Hydrogenation in the presence of Pd–C in AcOH gives a H₂-acid, m.p. 223—225° (decomp.) (Me ester, m.p. 172—173°), but use of PtO₂ leads to a H₄-acid, sinters at 190°, decomp. 200° (Me ester, m.p. 155°), oxidised to the acid (II), C₂₇H₄₄O₅, m.p. 218— 220°. The position of the SO₃H is determined by


oxidation of (I) by $KMnO_4$ to the acid (III), $C_{26}H_{44}O_6$, m.p. (anhyd.) 136-141° and (+AcOH) 97-99°, and cholestane-3: 6-dione-4: 5-diol, m.p. $220-225^{\circ}$ (decomp.) after sintering at 210° , which readily loses H_2O (e.g., with 5% HCl-EtOH) to give the enolic Δ^4 -cholestene-3 : 6-dion-4-ol, m.p. 148—149°, also obtained from Δ^4 -cholestene-3: 6-dione (IV). Sulphonic acids are also prepared from (IV), decomp. about 150° [Cu salt; Me ester, m.p. $164-165^{\circ}$ (decomp.)], Δ^5 -cholesten-7-one, m.p. 178—180° (decomp.) [Me ester, m.p. 180—181° (decomp.)], androstenedione, decomp. about 196° [Me ester, m.p. 159—160° (decomp.)], and progesterone, m.p. 190-192° (decomp.) (Me ester, m.p. 160-161°). Cholestan-3-one gives the 2-sulphonic acid, m.p. about 148° after sintering [Me ester, m.p. 206-208° after sintering; phenylhydrazone, m.p. about 180° (decomp.)], oxidised by CrO3 or HNO3 to the acid (V), m.p. 191-194° (Me ester, new m.p. 60°) (A., 1914, i, 1066), and 2-bromo-cholestanone gives the enol acetate, m.p. 106-107°. Coprostanone gives similarly the 2-sulphonic acid (Me ester, m.p. 171-172°, and an isomeric ester), oxidised

to the acid (VI), m.p. 201-202°. Cholesterylene-xsulphonic acid (Me ester, m.p. 175-176°; Li, decomp.

from 220°, Na, and K salts) has little or no antirachitic activity. R. S. C.

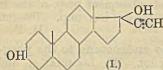
Enolic derivatives of progesterone and other αβ-unsaturated steroid ketones. U. WESTPHAL (Ber., 1937, 70, [B], 2128-2136; cf. A., 1937, II, 25).—Treatment of testosterone (I) with boiling Ac₂O-AcCl gives the enol diacetate, m.p. 153-155°, $[\alpha]_{D}^{20}$ -151° in CHCl₃, hydrolysed by H_2SO_4 to (I); it shows protracted physiological activity. Progesterone (II) is transformed into the corresponding enol acetate, m.p. 138° , $[\alpha]_{D}^{20} - 41.9^{\circ}$ in CHCl₃, and enol propionate, m.p. $134-136^{\circ}$, $[\alpha]_{D}^{20} - 40.6^{\circ}$ in CHCl₃, by a mixture of the requisite acid anhydride and chloride, whereas for the prep. of the enol butyrate, m.p $116-118^{\circ}$, $[\alpha]_{D}^{\circ} - 37.8^{\circ}$ in CHCl₃, it is necessary to use $Pr^{\alpha}CO_{2}Na$ and $(Pr^{\alpha}CO)_{2}O$. Physiologically the action of these esters is practically indistinguishable from that of (II), to which they are somewhat inferior. The ultra-violet absorption spectra of the esters establishes the presence of a conjugated double linking similar to that of cholestenone enol acetate (III). This does not react readily with maleic anhydride (IV) and under more drastic conditions a product, m.p. C.H., about 260° (decomp.),

about 260° (decomp.), mol. wt. about 1800 (very sparingly sol. Na salt), is produced. It differs from all known adducts of (IV) and sterols. (III) is therefore (A). The double

linkings in the esters are therefore at Δ^3 and Δ^5 .

H. W.

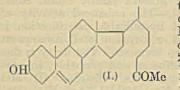
Attempted partial reduction of androstenedione. U. WESTPHAL and H. HELLMANN (Ber., 1937, 70, [B], 2136—2140).—Androstene-3: 17-dione is transformed into the 3-monosemicarbazone, decomp. 234°, the constitution of which is established by its absorption spectrum. This is reduced by Na and Pr^gOH and then hydrolysed to testosterone, freed from androstenediol by Girard's "ketone reagent T." H. W.


Sterols. XX. The pregnanolones. R. E. MARKER, O. KAMM, and E. L. WITTLE (J. Amer. Chem. Soc., 1937, 59, 1841–1843).—Partial reduction (H₂, PtO₂, EtOH) of pregnanedione (I) gives epipregnan-3-ol-20-one, new m.p. 149° (cf. A., 1937, II, 424) (acetate, m.p. 112°; semicarbazone, m.p. 245°), also obtained by limited acetylation (AcOH-Ac₂O) of pregnanediol and subsequent oxidation (CrO₃). Reduction (H₂, PtO₂, AcOH-HBr) of (I) affords mainly pregnan-3-ol-20-one, m.p. 149° (acetate, m.p. 121°; semicarbazone, m.p. 245°); androstanedione

similarly gives and rosterone. The OH-ketones are purified by treatment of the crude reaction products with Girard's reagent and subsequent prep. of the H succinates. *epiallo*Pregnanolone has m.p. 176° (cf. *ibid.*, 250). H. B.

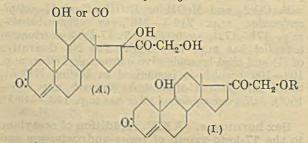
Conversion from the androstane to the pregnane series. J. KATHOL, W. LOGEMANN, and A. SERINI (Naturwiss., 1937, 25, 682).—The conversion is effected by C_2H_2 and its derivatives. Thus dehydroandrosterone and C_2H_2 afford $\Delta^{5:6}$ -17-ethinylandrostene-3: 17-diol, m.p. 240° (Ac, m.p. 175°, and Ac₂ derivative, m.p. 169°), which with O₃ yields 3: 17diacetoxyætiocholenic acid, m.p. 246°. isoAndrosterone with C_2H_2 gives 17-ethinylisoandrostane-3: 17-diol, m.p. 257°, partly hydrogenated to 17-ethenylisoandrostane-3: 17-diol, m.p. 207°, oxidation of which by perphthalic acid affords the corresponding oxide, m.p. 182°, whilst OSO₄ and reductive degradation gives 3: 17: 20: 21-tetrahydroxyallopregnane. The ethinyl derivatives exhibit more of the characteristics of female than of male hormones. F. O. H.

New compounds of the follicle hormone series. K. MIESCHER and C. SCHOLZ (Helv. Chim. Acta, 1937, 20, 1237-1244) .- The enhanced activity of sex hormones induced by suitable esterification is attributed to delayed resorption and consequent better utilisation of the hormone. The delay is due in part to impeded diffusion and probably, in part In part to impeded underson and provery, in part to solubility and hydrolysis. Estrone (I) and (CHMe₂·CO)₂O in C₅H₅N at 120—125° yield æstrone isobutyrate, m.p. 120—121°; the corresponding n-hexoate, m.p. 94·5—95°, and stearate, m.p. 81·5— 82.5°, are obtained by use of the requisite acid chloride. Similar methods lead to the prep. of æstradiol 3:17-diisobutyrate, m.p. 100.5-101.5°, and 3:17-dipalmitate, m.p. 63-65°. Estradiol 3-mono-n-butyrate, m.p. 98-99°, and 3-monostearate, m.p. 78-79°, are obtained by hydrogenation (Adams) of the corresponding œstrone esters. Partial hydrolysis of the requisite normal esters by K_2CO_3 in 95% MeOH affords æstradiol 17-monoisobutyrate, m.p. 183-183.5°, 17-mono-n-valerate, m.p. 144-145°, and 17-mono-n-hexoate, m.p. 112-112.5°. Œstradiol 3-benzoate (from the alcohol and BzCl), n-valeric anhydride, and C₅H₅N give æstradiol 3-benzoate 17-nvalerate, m.p. 133-133.5°. Similar methods lead to æstradiol 17-benzoate 3-propionate, m.p. 165-166°, and 17-benzoate 3-n-butyrate, m.p. 141.5-142° (hydrolysed to æstradiol 17-monobenzoate, m.p. 92.5-94°). Successive treatments of œstradiol in dioxan with COCl₂ and MeOH or EtOH afford 17-methylcarbonato-, m.p. 216.5-218°, or ethylcarbonato-, m.p. 171-172°, -æstradiol. 3:17-Diethylcarbonatocestradiol has m.p. 138-139°. The Na derivative of (I) and allyl bromide give æstrone allyl ether, m.p. 108-109°, which is isomerised in boiling NPhEt, to the amorphous C-allylæstrone (benzoate, m.p. 155-160°). Œstrone cinnamyl ether has m.p. 149-149.5°. H. W.

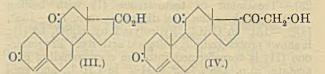

Sex hormones. XXIV. Addition of acetylene to the 17-keto-group of trans-androsterone and Δ^5 -trans-dehydroandrosterone. L. RUZICKA and K. HOFMANN (Helv. Chim. Acta, 1937, 20, 1280— 1282).—A solution of K in liquid NH₃ is treated with C_2H_2 until it is decolorised and *trans*-dehydroandrosterone in C_6H_6 -Et₂O is added; after treatment

O is added; after treatment with Girard's reagent, the product gives Δ^{5} -17acetylenylandrostene-3trans-17-diol (I), m.p. 240—242° [3-monoacetate, m.p. 175—176°

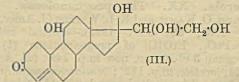
after softening at 170°; diacetate, m.p. 169—169.5°, hydrolysed to (I)]. Similarly trans-androsterone gives 17-acetylenylandrostane-3-trans-17-diol, m.p. 255— 257° (3-monoacetate, m.p. 205—207°; diacetate, m.p. 199—250°). H. W.


Sex hormones. XXVI. Oxidation of cholesteryl acetate dibromide with chromium trioxide. L. RUZICKA and W. H. FISCHER (Helv. Chim. Acta, 1937, 20, 1291—1297).—The main portion of the acetate of *trans*-dehydroandrosterone is removed as semicarbazone from the debrominated neutral products of the oxidation of cholesteryl acetate dibromide by CrO_3 in AcOH at 28—30°. The mother-liquors give a mixture of semicarbazones which is treated successively with acid and alkali;

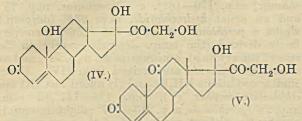
the product when crystallised from MeOH yields Δ^5 -norcholestene - 3 · trans - ol -25-one (I), m.p. 125-127° [benzoate, m.p. 144-145°; acetate,


COME 144—145°; acetate, m.p. 141·5—142°, and its semicarbazone, m.p. 237— 238° (decomp.)], oxidised through the dibromide to a diketone, $C_{26}H_{40}O_2$. Catalytic hydrogenation of (I) gives a mixture of the saturated OH-ketone and the corresponding diol, oxidised by CrO₃ to a saturated diketone identical with that derived from epicholestanyl acetate. The constitution of (I) is thus established. (I) is physiologically inactive. The mother-liquors from (I) yield trans-dehydroandrosterone and Δ⁵-pregnanolone. H. W.

Constituents of the adrenal gland. X. Corticosterone. T. REICHSTEIN (Helv. Chim. Acta, 1937, 20, 953–969; cf. A., 1936, 1382).—Further examination of substance H (loc. cit.) discloses the presence of substance M, an $\alpha\beta$ -unsaturated ketone, $C_{21}H_{50}O_5\pm H_2$, m.p. 207—210° (corr.; slight decomp.) when slowly heated; it reduces alkaline Ag solution, gives the green fluorescence reaction with conc. H_2SO_4 , the absorption spectrum of an $\alpha\beta$ -unsaturated ketone, and is oxidised by CrO₃ to adrenosterone. It

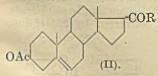

resembles very closely substance Fa but is distinguished by cryst. form. It is isomeric with Fa or distinguished therefrom by 2H so that the partial

structure A is probable for it. It is biologically inactive in the quantity available. After removal of M, H give corticosterone [(I), R = H], needles (+ EtOH) or thick, oblique plates (solvent-free), m.p. 181-182° $+223^{\circ}\pm3^{\circ}$ for air-dried material, (corr.), $[\alpha]_{D}^{15}$ which reduces alkaline Ag solution, gives the green fluorescence reaction with conc. H₂SO₄, and shows the bands in the ultra-violet typical of an α G-unsaturated ketone. (I) differs from the other members of the C_{21} series mainly in the presence of only 4 O of which two are in CO groups. A third lies in a readily esterifiable OH since (I) gives an acetate (II) [(I), R = Ac], various forms all of m.p. about 145-146.5°, and, after resolidification, m.p. 152.5-153° (corr.), a butyrate, m.p. 170-171° (corr.), very suitable for diagnosis, a benzoate, m.p. 201-202° (corr.), a H succinate, m.p. 194-195°, a palmitate, m.p. 87-93°, and an oleate,


m.p. 79-81°. (I) is oxidised by CrO₂ to the acid (III), m.p. about 266-272° (corr.) [Me ester, m.p. 174-178° (corr.)]. The occurrence of the fourth O of (I) in a sec. OH is established by the mild oxidation of (II) with CrO_3 to dehydrocorticosterone acetate, m.p. $178 - 180.5^{\circ}$ (corr.), which retains the reducing group; it is hydrolysed to dehydrocorticosterone, m.p. about 177-180° after softening at 170°, identical with the substance A of Kendall. The exact position of the sec. OH is uncertain but in analogy with substances A, C, D, E, Fa, and M it is probably attached to $C_{(11)}$ or $C_{(12)}$; on purely chemical grounds attachment to $C_{(11)}$ is the more probable. Apart from this uncertainty, the structure of (I) is strongly supported by the physiological behaviour of (I), which very closely resembles that of deoxycorticosterone (21hydroxyprogesterone) obtained from stigmasterol. Substance K (loc. cit.) is almost pure (I) and need not be regarded as a new compound. H. W.

Constituents of the adrenal gland. XI. Constitution of the $C_{21}O_5$ group. T. REICHSTEIN (Helv. Chim. Acta, 1937, 20, 978–991; cf. A., 1937, II, 380).—The location of the last O of substance A (loc. cit.) permits further conclusions with regard to the other $C_{21}O_5$ substances since these can all be converted into the same triketone. Substance E, anhyd. or (+1H₂O), m.p. about 120° (decomp.), is oxidised by CrO₃ to adrenosterone (I) whereas with HIO₄ it affords Δ^4 -androsten-11-ol-3 : 17-dione (II), m.p. 189—190° (corr.), readily converted by CrO₃ into

(I). Hence E is (III), the position of the double linking being fixed since it has the spectrum of an $\alpha\beta$ -unsaturated ketone and only one CO is now shown to be present. It can therefore be only in Δ^1 or


 Δ^4 position, the latter being much the more probable by reasons of analogy. Substance *M* is oxidised by CrO₃ in AcOH to (I) and by Pb(OAc)₄ to (II); it

is therefore (IV). Substance M gives a monoacetate, m.p. 223-225° (corr.), which is not attacked by HIO_4 but is oxidised by CrO_3 in AcOH to the mono-acetale, m.p. 239–241° after becoming opaque at 70-100°, of substance Fa which is therefore (V). Fuller data for substances C and D could not be obtained owing to lack of material. C does not give a pure product with $Pb(OAc)_{4}$. D gives a diacetate, m.p. 224-226° (corr.) after becoming opaque at about 90^{δ}, which is oxidised by CrO₃ in AcOH to and rostane-3-ol-11 : 17-dione acetate. C yields a *diacetate*, m.p. 204-206°, which gives ill-defined compounds when oxidised. The following identities are established among the compounds isolated by Reichstein (R), Wintersteiner and Pfiffner (W) and Kendall et al. (K): substances $A(\mathbf{R}), A(\mathbf{W}), \text{ and } D(\mathbf{K}); C(\mathbf{R}), D(\mathbf{W}), \text{ and }$ $C(\mathbf{K})$; $D(\mathbf{R})$ and $G(\mathbf{K})$; $Ea(\mathbf{R})$, $Fa(\mathbf{W})$, and $E(\mathbf{K})$; andrenosterone (R) and ketone 4 (K); corticosterone (R) and compound B(K); dehydrocorticosterone (R) and compound A(K); substance L(R) and compound G(W); compound M(R) and F(K). The problem of the isolation of the active hormone is not completely solved since amorphous fractions are isolable from the gland which excel any of the cryst. materials in cortin activity. Either a more powerful substance is present or two components are required for the development of full activity, one of which may be only an activator. The possible mode of biosynthesis is discussed.

H. W.

Constituents of the adrenal gland. XII. Deoxycorticosterone (21-hydroxyprogesterone) from Δ^5 -3-hydroxyætiocholenic acid. M. STEIGER and T. REICHSTEIN (Helv. Chim. Acta, 1937, 20, 1164—1179).—Treatment of Δ^5 -3-acetoxyætiocholenic acid with SOCl₂ in C₆H₆ yields the corresponding chloride (I), m.p. about 165° (decomp.) when rapidly heated, frequently accompanied by the anhydride, m.p. 331—332° (corr.; slight decomp.). CH₂N₂ and (I) in abs. Et₂O give Δ^5 -21-diazo-3-acetoxypregnen-20-one [(II), R = CHN₂], m.p. about 148— 150° (decomp.), which does not give a ppt. with

digitonin (III) in 80%COR EtOH, hydrolysed by cold KOH-EtOH to Δ^5 -21-diazo-3-hydroxypregnen-20one (IV), m.p. 144° (corr.; decomp.), which gives an

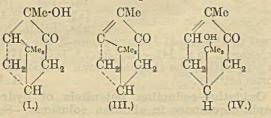
immediate ppt. with (III) in 80% EtOH. $2n-H_2SO_4$ and (II) in dioxan yield Δ^5-21 -hydroxy-3-acetoxypregnen-20-one [(II), R = CH₂·OH], m.p. 149—156° (corr.), hydrolysed by acid to $\Delta^5-21:3$ -dihydroxypregnen-20-one, m.p. (indef.) 139—159°. Treatment of (II) in anhyd. Et₂O with HCl at 0° affords Δ^{5} -21chloro-3-acetoxypregnene-20-one (V) [(II), R = CH₂Cl], m.p. 157-158° (corr.), whence the corresponding 3-OH-derivative, m.p. 162-164°. Both Cl-ketones reduced cold Ag₂O-NH₃ solution. Direct oxidation of (V) with CrO₃ in AcOH gives mainly Δ^{4} -21-chloropregnene-3: 6: 20-trione, m.p. 215-220° (corr.); if the double linking is protected by bromination previous to the oxidation, the reaction occurs in the desired sense but subsequent debromination with Zn or with KI also removes Cl from C₍₂₁₎ and progesterone results. AcOH converts (IV) into Δ^{5} -3-hydroxy-21-acetoxypregnen-20-one, m.p. 184-185° (corr.) [the corresponding Bz derivative has m.p. 171-173° (corr.)], brominated in CHCl₃ and then oxidised and debrominated to Δ^{4} -3-

CO·CH₂·OAc keto-21-acetoxypregnen-20-one (VI), m.p. $157-159^{\circ}$ (corr.), $[\alpha]_{3}^{19}$ +177°±4° in abs. EtOH, hydro-

lysed to Δ^4 -3-keto-21-hydroxypregnen-20-one (deoxycorticosterone), m.p. 141—142° (corr.), $[\alpha]_{D^2}^{22}$ +178°±3° in abs. EtOH, the simplest known compound with cortin activity. H. W.

Oxidation-reduction potentials of hydroxynaphthaquinones in alkaline solutions.—See A. I, 620.

Kinetics of the production of anthraquinone compounds from benzoylbenzoic acid derivatives. R. ODA and K. TAMURA (Sci. Papers Inst. Phys. Chem. Res. Tokyo, 1937, **32**, 263—273).—The rate of cyclisation of $o \cdot C_6 H_4 Bz \cdot CO_2 H$, $o \cdot 4'$ -tohuyl-, $o \cdot 4'$ chlorobenzoyl-, $o \cdot \alpha$ -naphthoyl-, and $o \cdot 5: 6: 7: 8$ -tetrahydro-2-naphthoyl-benzoic acid to anthraquinone and its derivatives, under the action of $95 \cdot 6^{\circ}_{\circ} H_2 SO_4$, is studied at varying temp.; velocity coeffs., and, for the first three reactions, energies of activation, are cale. It is assumed that addition of $H_2 SO_4$ precedes condensation, and that the velocity of addition is significant. $o \cdot 3'$ -Nitrobenzoylbenzoic acid does not condense. 1- $o \cdot Carboxyanilinoanthraquinone$ cyclises very rapidly [to the acridone]. E. W. W.

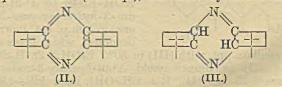

[Ring] conversion reaction in the reduction of menthones by Clemmensen's method. A. AUTE-RINEN (Suomen Kem., 1937, 10, B, 22-23).-Menthone Et ether with Na dissolving in EtOH affords 3-hydroxy-5-ethoxy-1: 1-dimethylcyclohexane, oxidised (CrO₃) to 3-ethoxy-5: 5-dimethylcyclohexanone, b.p. 124-126°/32 mm. (semicarbazone, m.p. 188-188.5°). 1:1-Dimethylcyclohexane-3:5-diol(A., 1913, i, 607) with Ac₂O in a mixture of boiling EtOAc, CHCl₃, and C₆H₆ affords the Ac_1 (I), b.p. 148–150°/ 18 mm., and Ac₂ derivatives. The former with CrO₃ affords a substance which when distilled in air loses AcOH to give 5-keto-1: 1-dimethyl- Δ^2 -tetrahydrobenzene (II), and when distilled in vac. gives 3-acetoxy-5:5-dimethylcyclohexanone, b.p. 77-78°/0.044 mm. (I) affords the dinitrophenylhydrazone and semicarbazone of (II). Hydrolysis of (I) with HCl gives (II); with N-NaOH a dimeride (?), m.p. 97-99.5°, of (II) is formed. Prolonged action of conc. HCl at room temp. on (II) affords a small amount of an unidentified oil. (II) when reduced (Clemmensen)

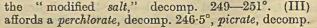
affords a product from which the semicarbazones of 3:3-dimethylcyclohexanone and 2:4:4-trimethylcyclopentanone (cf. A., 1935, 1239) are isolated.

J. L. D.

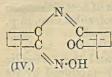
Electrochemical oxidation of pinene. F. FICH-TER and G. SCHETTY (Helv. Chim. Acta, 1937, 20, 1304—1308).—Electro-oxidation at a PbO₂ anode of pinene emulsified by invadin *B* in aq. H_2SO_4 gives HCO_2H , terebic acid (I), and *p*-cymene. In EtOH- H_2SO_4 the products are dipentene, cineole, α -terpineol, EtHSO₄, (I), and *cis*-terpin. H. W.

New example of the transformation of a given active pinene into two compounds of inverse opticalactivity (carvones). M. DELÉPINE (Bull.Soc. chim., 1937, [v], 4, 1669—1673; cf. A., 1924, i, 1084, 1088).—The (—)-keto-alcohol (I) (cf. Delépine and Grandperrin, Compt. rend. 65e Congr. des Soc. savantes, 1932, 101) from d-pinene (II) is converted


into its (+)-semicarbazone, which with $H_2C_2O_4$ in EtOH gives *d*-carvone (yielding *d*-carvoxime). The intermediates (III) and (IV) are suggested. *l*-Carvoxime is obtained from (II) in the usual way through *d*-limonene and its nitrosochloride.


E. W. W. Thioborneol and isothioborneol. Mercaptides of thioborneol. J. HARASZTI (J. pr. Chem., 1937, [ii], 149, 301—310).—Pure bornyl chloride and MgEtBr give Mg bornyl bromide, which with S gives thioborneol (I), m.p. 112·5—113°, with a little thiocamphor, m.p. 125—130° (oxime, m.p. 118— 118·5°), and bornyl disulphide, m.p. 195° [reduced by Zn-HCl to (I)]. isoBornyl chloride (modified prep.), however, gives camphane. Thus (I) is related to borneol; it gives Pb, m.p. 250—260° (decomp.), Hg^{II} , m.p. 175°, Cu^{I} , m.p. 120—125°, Bi, m.p. 172— 175°, and Au, m.p. about 195—200° (decomp. 220— 230°), salts and salts, $(C_{10}H_{17}S)_2BiI$, decomp. 140— 150°, and TIS· $C_{10}H_{17}, C_{10}H_{17}$ 'SH, m.p. 166°. R. S. C.

Action of primary aliphatic bases on camphorquinone. II. H. RUPE and A. T. DI VIGNANO (Helv. Chim. Acta, 1937, 20, 1078-1097; cf. A., 1934, 1224).-Camphorquinone (I) condenses very readily at the β -CO with primary aliphatic amines and under pressure and at >100° the main products are alkylaminocamphors (II) with small amounts of the corresponding epicamphor bases, the alkyl of the amine behaving as reducing agent; pyrazine compounds are also formed. At lower temp, and in open vessels alkylimino-bases of camphor are almost exclusively formed; these are readily hydrogenated to (II). Oxidation of camphor by SeO₂ in boiling Ac₂O gives (I) in 90% yield. (I) and NH₂Me in abs. EtOH at $112-115^{\circ}/6-7$ atm. give CH₂(OEt)₂, isodicamphenepyrazine, methylaminocamphor (III), b.p. 109.5-110°/12 mm., which can be preserved only

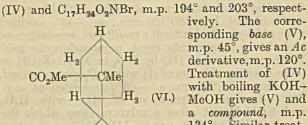

under N₂ in the dark, and methylaminoepicamphor (IV), b.p. 111.5-112°/11.5 mm., which resinifies less readily than (III) on exposure to air. (III) gives a per-chlorate, m.p. 179-181°, a nitrosoamine, m.p. 73°, and an oxime hydrochloride, m.p. 234° (decomp.), whilst a perchlorate, decomp. 255-256° when very finely divided (the temp. depends greatly on the size of the crystals), a nitrosoamine, m.p. 71°, and an oxime hydrochloride are derived from (IV). Under similar conditions NH₂Et and (I) afford MeCHO and ethylaminocamphor (V), b.p. 116-117°/12 mm., m.p. 28° [perchlorate, m.p. 215-217° (slight decomp.)], apparently without production of the corresponding epi-compound. Me₂SO₄ and (V) readily give methylethylaminocamphor, b.p. 119-119.5°/12.5 mm. [per-chlorate, m.p. 204-205° (decomp.)], identical with the product obtained by treating (III) with Et₂SO₄. Methylethylaminocpicamphor (perchlorate, m.p. 184– 187°), has b.p. 122–124°/12.5 mm. Reduction (Ni in EtOH-H₂O) of (III) gives methylaminoborneol, b.p. 131-134°/12 mm. [hydrochloride, m.p. 315° (decomp.)], probably not sterically homogeneous. Reduction of (III) with Na and C_6H_6 affords a methylaminoborneol, m.p. $84-85^{\circ}$ (hydrochloride, m.p. >300° after becoming discoloured at 250°) which contains 2 active H (Zerevitinov). Hydrogenation (Ni in H_2O -EtOH at room temp.) of (IV) gives methylaminoepiborneol, b.p. 134–135°/12 mm., m.p. 116° after softening at 106° (hydrochloride, slow de-comp. <250°), in 95.5% yield. Treatment of (I) with NH₂Me in boiling abs. EtOH for 20 min. followed by preservation at room temp. for 24 hr. gives methyliminocamphor, b.p. $112-114^{\circ}/11$ mm., m.p. $84-85^{\circ}$, $[\alpha]^{20}+173\cdot3^{\circ}$ in $C_{6}H_{6}$; it is readily hydrogenated (Na in EtOH) to (III) with a very small proportion of (IV). Similar treatment of (I) with 33% NH2Et in abs. EtOH yields ethyliminocamphor, m.p. 63–64°, $[\alpha]_{D}^{20}$ +176.3° in C₆H₆. Condensation of (I) with NH₃ occurs less readily than with NH₂Me and leads to a-aminocamphor, b.p. 120-122°/14 mm., which, according to the behaviour of its hydrochloride and oxime, is homogeneous. It gives dihydrodicamphenepyrazine, m.p. 114-115°. H. W.

Constitution and synthesis of *iso*dicamphenepyrazine. H. RUPE and A. T. DI VIGNANO (Helv. Chim. Acta, 1937, 20, 1097—1117).—The basic distillate of high b.p. from the condensation of camphorquinone (I) and NH₂Me at high temp. affords *iso*dicamphenepyrazine (II), m.p. 204·5—205°, $[\alpha]_{20}^{20}$ +13·23° in C₆H₆ [obtained by Einhorn and Jahn (A., 1903, i, 43) from aminocamphor and its hydrochloride], and *iso*d*ihydrodicamphenepyrazine* (III), b.p. 197—198°/12·5 mm., m.p. 71—72°, $[\alpha]_{20}^{20}$ +387·63° in C₆H₆, +330·2° in CHCl₃. (II) gives a methiodide, decomp. 259°, *picrate*, m.p. 204—206°, and *aurichloride*, m.p. 254—255° (decomp.), converted by EtOH into

196.5° or 190° when finely divided, hydriodide, decomp. 231° after becoming discoloured at 208°, and methiodide, decomp. 245—246°, which gives (I) when heated and is transformed by Ag_2O into N-methylisodihydrodicamphenepyrazinium hydroxide, m.p. 190— 200° after softening at 100° (picrate, decomp. 179°).

α- or β -2: 3-Diaminocamphane with (I) with ZnCl₂ in AcOH gives (III) in better yield but throws no light on the constitution of the product. Aminocamphoroxime with (I) and cryst. NaOAc in EtOH

in the dark at room temp. or, more rapidly, in boiling solution yields oximinocamphyliminocamphor (IV), m.p. 174—175° (decomp.) when finely divided, $[\alpha]_{D}^{30}$ –225.9° in C₆H₆, which is readily hydrolysed by acids and is hydrogenated (Ni) to (III), also obtained when the mixture of amino-camphor and -epicamphor as obtained by its hydrolysis is preserved for several weeks. Oxidation of (III) readily yields (II) thus establishing the constitution of the latter. Hydrogenation (Ni or Pd at 80°/10 atm.) of (II) or (III) appears impossible but they are converted by Na and EtOH into isotetrahydrodicamphenepyrazine Na and EtOH into isoletrahydrodicamphenepyrazine (V), m.p. 113:5—114:5°, b.p. 202—204°/11 mm., $[\alpha]_{D}^{20}$ +80.60° in C₆H₆ [perchlorate, decomp. 231—233°; hydriodide, m.p. >310°; $(NO)_2$ -derivative, m.p. 144—145° (decomp.)], which contains two active H (Zerevitinov). The following experiments were made in attempts to explain the production of dihydrodicamphenepyrazines by the action of (I) on alkylamines. Methylaminecampher is unchanged on alkylamines. Methylaminocamphor is unchanged when strongly heated. NH₃-EtOH and (I) at 100° give exclusively iminocamphor or, if action is greatly prolonged, a rosin-like mass from which a derivative of (III) could not be extracted. MeI in boiling MeOH transforms (V) into NN'-dimethylisotetrahydrodicamphenepyrazine, m.p. 86–87°, $[\alpha]_{p}^{20}$ +64.88° in C_6H_6 (hydriodide, decomp. 252–257°; picrate, decomp. 151-153°), which reduces acid or neutral KMnO₄ and immediately decolorises Br in CHCl₃; it passes at 270-290° into (II), unsaturated hydrocarbons, H. W. CO, H_2, CH_4, C_2H_6 , and N_2 .


Synthesis of thujane. P. C. GUHA and S. KRISHNAMURTHY (Current Sci., 1937, 6, 56–57). Et 1-methyl-3-isopropylcyclopentan-2-one-1-carboxylate is reduced (Na-Hg) to the corresponding sec. alcohol, b.p. 153–156°/11 mm. (phenylurethane, m.p. 144–145°), dehydrated (P_2O_5) to the cyclopentene compound, b.p. 114–115°/11 mm. This substance and CH₂N₂ give the dicyclo-0:1:3-hexane derivative, b.p. 130–132°/12 mm., hydrolysed (KOH) to the carboxylic acid, m.p. 93–94°, which is decarboxylated to thujane. F. R. S.

Cedrene. II. Methyl-oxidation of cedrene by selenious acid to primary cedrenol and to cedrenal. W. TREIBS (Ber., 1937, 70, [B], 2060– 2066).—Artificial cedrene (I), obtained by short treatment of cedrol with 95% HCO_2H , is oxidised by SeO₂ in Ac₂O HCO_2H , is oxidised by SeO₂ in Ac₂O immediately an isomeric, saturated, probably tetracyclic alcohol, b.p. $160^{\circ}/20$ mm., $\alpha_{D} - 58^{\circ}$, oxidised to an aldehyde which affords a readily sol. semicarbazone and thence to a poorly cryst. monocarboxylic acid. Farther oxidation of (II) by CrO₃ in AcOH-EtOH or more drastic oxidation of (I) with SeO2 gives cedrenal, (III), b.p. $163^{\circ}/20$ mm., $\alpha_{\rm D} - 56^{\circ}$ [semicarbazone, m.p. 248° (decomp.)]. Treatment of (III) with H_2O_2 and KOH-MeOH gives a mixture from which the ester, C17H30O4(OMe)2, m.p. 111-112°, separates; this is hydrolysed to the *acid*, $C_{16}H_{28}O_4$, m.p. 158° (decomp.), derived by addition of $1 H_2O$ and 1 MeOHto cedrenal oxide. Oxidation of (11) with CrO_3 (= 20) in AcOH gives ·CO₂H ·CH2·CO2H cedrenecarboxylic acid, m.p. 122° (Me ester, m.p. $167-169^{\circ}/20$ mm., α_{D} -71°), isomerised by Br in CHCl₃ (IV.) to the acid, m.p. 149-150°. Oxidation of (II) with

to the acid, m.p. 149–150°. Oxidation of (11) with $KMnO_4$ in aq. $COMe_2$ yields norcedrenedicarboxylic acid (IV), b.p. 330°/atm. pressure, m.p. 209°, which is unusually stable towards chemical reagents. The Me H ester, m.p. 97–98° and Me_2 ester, b.p. 173°/20 mm., hydrolysed to an isomeric Me H ester, m.p. 124°, are described. H. W.

Terpene compounds. I. Synthetic study on the structure of azulene. N. N. CHATTERJEE (J. Indian Chem. Soc., 1937, 14, 417–420; cf. Bardhan, A., 1935, 748).—Preliminary to attempting the synthesis of azulene, 3-methyl-1-isopropylideneindene (I), m.p. 49°, was synthesised as follows: Et Δ^1 tetrahydrobenzoate treated successively with Et sodiocyanoacetate and CH₂Br·CO₂Et gives Et 1carbethoxycyclohexane-2-a-cyanosuccinate, b.p. 204– 206°/4 mm., hydrolysed and esterified to the Et 1carbethoxy-2-succinate, b.p. 177–185°/7 mm. This with Na yields Et (0:3:4-dicyclo)nonan-2-one-3:4-dicarboxylate, b.p. 188°/8 mm. (the Na derivative of which, with MeI, gives the Et 3-methyl-3:4dicarboxylate, b.p. 174°/7 mm.), hydrolysed to the 4-carboxylic acid, m.p. 136° (semicarbazone, m.p. 220°). The Et ester, b.p. 143–144°/8 mm. (semicarbazone, m.p. 159°), of this with MgMeI gives 2-a-hydroxymethyl-4-a-hydroxyisopropyl-(0:3:4-dicyclo)nonane, b.p. 154°/4 mm., which yields (I) whenheated with Se. A. LI.

Teresantalic and isoteresantalic acid. H. STEIGER and H. RUPE (Helv. Chim. Acta, 1937, 20, 1117—1146).—Conversion of Me teresantalate into its hydrobromide and removal of HBr by NH₂Ph followed by fractional distillation of the product gives Me isoteresantalate (I), b.p. $91\cdot2^{\circ}/10$ mm., $[\alpha]_{D}^{2\circ}$ $-133\cdot46^{\circ}$, hydrolysed to homogeneous isoteresantalic acid (II), m.p. 137°, b.p. $141-143^{\circ}/16$ mm., $[\alpha]_{D}^{2\circ}$ $-150\cdot82^{\circ}$ in C₆H₆. Examination of the more volatile ester fractions discloses the presence of esters other than those derived from teresantalic acid or (II). The residue from the distillation of crude (I) contains unstable esters which are hydrolysed to (II) and an acid of higher m.p., the Semmler-Bartlett lactone (III) identified by hydrolysis to apoborneolcarboxylic acid, and a viscous yellow liquid, b.p. $196-204^{\circ}/10$ mm., which is not homogeneous but is converted by HCl or HBr in Et₂O into compounds, C₁₇H₂₄O₂NCl

OAc·O·Hg·CH₂ OHg·O·OAc 134°. Similar treat-

ment of the fraction b.p. $203^{\circ}/10$ mm. gives the compound $C_{16}H_{19}ON$, m.p. 85°, of Rupe and Tomi (A., 1917, i, 138) and an acid, $C_{16}H_{21}O_{2}N$, m.p. 168°. Treatment of somewhat impure (I) with Hg(OAc), in AcOH-H₂O gives the acetomercuri-compound (VI), m.p. 214° (corresponding chloromercuri-derivative, C11H14O3Cl2Hg2, incipient softening, 160°), converted by NaOH and Zn powder in boiling EtOH into homogeneous (II); the OH-acid, C10H16O3, m.p. about 205°, and the Muller lactone, $C_{10}H_{14}O_2$, m.p. 103°, are also produced. With Zn and HCl (VI) yields (III) and the corresponding OH-acid, m.p. 192°. Similar treatment of Me teresantalate with Hg(OAc)₂ affords HgOAc, a compound, C₁₂H₁₈O₅Hg, m.p. 208-210°, probably an acetomercuri-compound of an apoborneolcarboxylic acid, and an oil, converted by Zn and KOH in boiling EtOH into a ketodihydroteresantalic acid, m.p. 270°, possibly 1-cis-apocamphorcarboxylic acid. Oxidation of (II) in alkaline solution by KMnO₄ gives a neutral substance, C₁₀H₁₄O₃, m.p. by KMMO₄ gives a heitrar sustainte, $C_{10}H_{14}O_3$, in.p. 220°, probably a lactone of apocamphene hydrate-carboxylic acid, a substance, $C_8H_{14}O$, b.p. 67.5°/11 mm., and a compound, $C_{10}H_{12}O_4$, m.p. 203°; this gives a salt, $C_{10}H_{12}O_5Ag_2$, decomp. 175°, but is con-verted by CH_2N_2 in Et₂O into the ester, $C_{12}H_{18}O_5$, b.p. 153°/10 mm., m.p. 42°, so that its constitution is not established. Similar oxidation of teresantalic and circle a disorboxylic acid. C. H. O. m.p. 248° and gives a dicarboxylic *acid*, $C_{10}H_{12}O_2$, m.p. 248° [*Me*₂ ester, b.p. 135°/10 mm.; (*NH*₄)₂ salt, decomp. 208°], and an unidentified *substance*, $C_{10}H_{12}O_3$, m.p. 208°]. 189°. Ozonisation followed by methylation of (II) gives an ester, b.p. $128 \cdot 2^{\circ}/12$ mm., hydrolysed to an acid, C₉H₁₄O₄, m.p. $123-124^{\circ}$, and an acid, m.p. 157° . Oxidation of (II) with HNO₃ (d 1.48) gives (III) and an *acid*, $C_{10}H_{12}O_5$ or $C_8H_{10}O_4$, m.p. 150°. Hydration of (II) with H_2SO_4 yields (III), converted into *apo*borneolcarboxylic acid (Me ester, b.p. 124°/10 mm., m.p. 40-41°). Boiling H₂O converts (II) into santene and Asahina's acid. Hydrogenation (Ni in EtOH-II,O at room temp.) of (I) gives Me dihydroisoteresantalate, b.p. $90.5^{\circ}/10$ mm., $[\alpha]_{D}^{20}$ +8.02°, hydrolysed by KOH-MeOH to dihydroisoteresantalic acid, m.p. 120-121°, [a]²⁰ +7.03°. Similar hydrogenation of Na isoteresantalate yields a dihydroisoteresantalic acid, m.p. 106–107°, $[\alpha]_p^{20}$ -25.01° . whereas in presence of Pd a third isomeride, m.p., 118°, $\left[\alpha\right]_{D}^{20}$ +-23.47° in C₆H₆, is produced. H. W.

Polyterpenes and polyterpenoids. CXVI. Oxidation of acetyloleanolic acid by chromium trioxide with opening of the double linking. L. RUZICKA and S. L. COHEN (Helv. Chim. Acta, 1937, 20, 1192-1200).—Repetition of the work of Schicke and Wedekind (A., 1933, 612) and consideration of the results in the light of that of Ruzicka and Hofmann

(A., 1936, 477) lead to the conclusion that oleanolic acid does not give an oxidation product, C25H38O6, containing 2 OH and 2 CO2H. The assumption of such a product was conducive to the previous constitution with the double linking and CO2H in ring E and its non-existence allows the formula of Ruzicka et al. (A., 1937, II, 202). Oxidation of acetyloleanolic acid by CrO3 at 80° gives an alkali-sol. substance, m.p. about 235° (corr.), which solidifies above its m.p. and then melts again at 303—304° (corr.). Analyses of this "acetylviscolic acid" (I) and the "viscolic acid" (II), m.p. about 290° (corr.), produced by its hydrolysis agree with the formula of Wedekind but the figures differ little from those required for (II) or the lactonedicarboxylic acid (III), $C_{30}H_{46}O_2$, of Ruzicka and the identity of (II) with (III) is shown by its transformation into derivatives of (III) or of the corresponding iso-series. (I) is transformed by boiling Ac_2O into the anhydride, $C_{32}H_{46}O_7$, m.p. 306° (corr.), identical with Ruzicka's compound and obtained also from (II). Ac₂O and (II) in C₅H₅N yield (I). Treatment of (II) with CH_2N_2 and then with boiling Ac_2O gives an acetyl-lactone Me₂ ester, m.p. 186-187° (corr.), closely related to the product, m.p. 203-204° (corr.), of Ruzicka and, like it, hydrolysed to the Me H isolactonedicarboxylate, m.p. 300-304°. H. W.

Polyterpenes and polyterpenoids. CXVIII. Catalytic hydrogenation of the aB-unsaturated keto-group in glycyrrhetic acid and in keto-aamyrin. L. RUZICKA, H. LEUENBERGER, and H. SCHELLENBERG (Helv. Chim. Acta, 1937, 20, 1271-1279).-Of the 4 O of glycyrrhetic acid (I) two are present in CO2H and one in OH. The absorption spectrum suggests that the fourth O is present in an αβ-unsaturated keto-group as in ketoacetyloleanolic acid. This view is confirmed by hydrogenation (PtO2 in cold AcOH) of Me glycyrrhetate, which gives Me deoxyglycyrrhetate (II), m.p. 248° (corr.) after softening, $[\alpha]_{\rm p}$ +108° in CHCl₃. This is transformed by boiling Ac₂O into Me acetyldeoxyglycyrrhetate, m.p. 266—267° (corr.), $[\alpha]_{\rm p}$ +120° in CHCl₃, also obtained by hydrogenation of Me acetylglycyrrhetate. (I) is hydrogenated similarly to deoxyglycyrrhetic acid, m.p. 330° (corr.), $[\alpha]_{\rm p}$ +148° in CHCl₃, transformed by CH₂N₂ into (II). In all cases 2 H₂ is required and CO is transformed into CH2. All the compounds give a pronounced yellow colour with C(NO2)4 in CHCl3. Hydrogenation of keto-a-amyrin gives a-amyrin as main product apparently without admixture with the B-isomeride. α-Amyrin acetate is similarly obtained H. W. from keto-a-amyrin acetate.

Resins of native [German] conifers, their constituents and changes during the working of wood. H. WIENHAUS [with, in parts, H. RITTER, W. SANDERMANN, H. LAMBRECHT, H. ENGELHARDT, H. H. MULLER, R. ECK, K. MUCKE, and E. ENGELMANN] (Papier-Fabr., 1937, 35, 385–392).—A review. The following appears new. No experimental details are given. The most volatile part (20%) of the oil, d 1.332, $[\alpha]_{\rm D} -53.8^{\circ}$ in Et₂O, -37° in C₆H₆, from *Pinus sylvestris*, L., contains d- α - and β -pinene, Δ^3 -carene, camphene, and limonene; the oil also contains cadinene, cadalene, alcohols, C₁₅H₂₄O and C₁₅H₂₆O, and a hydrocarbon, C₁₂H₁₂, m.p. 83° (quinone, m.p.

The resin acid (I), m.p. about 142°, [a]_D 142°). -112° (A., 1936, 1385), isomerises to abietic acid (II) when repeatedly crystallised from MeOH; its a rapidly becomes positive in 0.01N-HCl-Et₂O and then slowly slightly negative.- Irradiation (ultra-violet) also gives an isomeride, $[\alpha]_{\rm D}$ +30°; it contains some *d*-pimaric acid, since hydrogenation gives tetrahydropimaric acid as well as a H2-acid, m.p. about 185°. Dehydrogenation by Pd-C gives about 80% of retene. The Me ester gives a mono-ozonide, C21H32O5; mild treatment with KMnO4 gives an amorphous acid (K salt), the Me ester, (OH)₂C₂₀H₂₉·CO₂Me, m.p. 178°, of which gives unsatisfactory products when isomerised or oxidised. Fairly fresh resin from Picea excelsa, Lk., contains >18.5% of steam-volatile material, including $l_{-\alpha}$ and $-\beta$ -pinene, a little Δ^3 -carene, limonene, verbenone, verbenol, and a tetra-unsaturated diterpene, $C_{20}H_{32}$, and yields p-OH·C₆H₄·CH·CH·CO₂H and an acid, m.p. about 150° , $[\alpha]_{\rm p} - 102 \cdot 4^{\circ}$. With 0.01N-HCl the latter acid gives (II) by way of an isomeride, m.p. 152° , $[\alpha]_{\rm p} + 41 \cdot 7^{\circ}$; it is not homogeneous, since its cryst. Na salt regenerates an acid, $[\alpha]_{\rm p} - 146 \cdot 7^{\circ}$; it gives a H_2 -acid, m.p. 244° (Me ester, m.p. 184°) and, when oxidised Pr⁶CO H when m.p. 184°) and, when oxidised, $Pr^{\beta}CO_{2}H$; when distilled, it yields an *acid*, m.p. 190°, $[\alpha]_{p} - 42^{\circ}$, oxidised to an *acid*, $C_{20}H_{30}O_{2}(OH)_{4}$, m.p. 246°, also obtained from (II). The neutral part of a resin from Picea excelsa from North Sweden contained a dextrorotatory, autoxidisable, monocyclic diterpene, C20H32 (Hs-compound), and a doubly unsaturated, tert. alcohol, C15H210. The turpentine from Abies pectinata, D.C., contains α - and β -pinene, camphene, sobrerol, $\Delta^{s_{-}n-pentadecadienal}$ (hydrogenated to $n-C_{14}H_{23}$ ·OH). 17% of a substance, $C_{17}H_{30}O_2$, m.p. 62° (contains one ethylenic linking and readily loses 1H₂O), and 37— 46% of acids, which crystallise with difficulty and contain *l*-pimaric acid. The turpentine from Larix europæa, D.C., contains 14% of volatile material (mostly α -pinene), oxygenated, unsaturated diterpenes, and acids which yield (II). With NaHSO₃, pinene suffers dehydrogenation and ring-fission, yielding cymene, C10H8 derivatives, borneol, azulenes, etc. Tsugalactone and pinoresinol arise by polymerisation R. S. C. of coniferyl alcohol.

Lignin. I. T. LIESER and V. SCHWIND (Annalen, 1937, 532, 104-115).-Mixtures of AcOH and Ac₂O with relatively much H2SO4 dissolve pine wood almost completely. With less mineral acid acetolysis is much slower and is accompanied by maxima and minima indicating the production of substances which are first sol, and then insol. in alkali. Attempts to use partial acetolysis for the isolation of the components of the cell membrane by continuously withdrawing the acetolysate, diluting it with H2O, and subjecting it to dialysis proceed non-uniformly chiefly owing to the formation of simple substances such as CH2O, MeOH, and AcOH. The presence of OMe in all fractions is characteristic. Evidence of the existence of a compound of cellulose (I) and lignin (II) is obtained; this can be dissolved in fuming HCl at low temp. but decomposes into its components at higher temp. The introduction of Cu and treatment with CS2 are used for the characterisation of OH in (II). Model -experiments show that only primary and sec. OH

participate in the xanthate reaction; these behave similarly towards $Cu(OH)_2$ -NH₃, which also reacts with vicinal phenolic hydroxyls. With CS₂ and NaOH esterification is incomplete but becomes maximal when strong org. bases, e.g., NEt₄·OH, are used. Under these conditions the results given by the two methods are identical. Comparison of the results afforded by these methods with those based on acetylation and methylation leads to the conclusion that "Cu(OH)₂-NH₃·lignin" contains 6·1% of sec. and $4\cdot2\%$ of tert. OH. Use of the "Cu(OH)₂ method" for the determination of OH in (II) of the cell membrane and in its components [mannan, (I), (II), and xylan] indicates that an appreciable alteration of the OH content of (I) does not occur during the isolation process. H. W.

Constituents of pyrethrum flowers. VII. Behaviour of the pyrethrins on hydrogenation. H. L. HALLER and F. B. LAFORGE. VIII. Presence of a new ester of pyrethrolone. F. B. LA-FORGE and H. L. HALLER (J. Org. Chem., 1937, 2, 49-55, 56-61; cf. A., 1936, 1381).-VII. PtO₂hydrogenation of an 80% pyrethrin-II concentrate in EtOH is rapid until 4 H are absorbed and then slow, finally stopping by inactivation of the catalyst; removal of the acids formed and addition of fresh catalyst leads to further hydrogenation of the neutral fraction. The products are chrysanthemumdicarboxylic acid Me1 ester, tetra- and less hexa-hydropyrethrone (separated as semicarbazones, partly by crystallising and partly by dissolving the H4-semicarbazone in dil. HCl); the amount of H ester is about 20% > that of the pyrethrones. A 55% pyrethrin-I concentrate hydrogenates similarly to chrysanthemumcarboxylic acid, tetra- and hexa-hydropyrethrone (more of the latter than in the former case); the amount of acid exceeds that of the pyrethrones by 50%. The amount of acid recovered approx. corresponds with that indicated by the Seil method. Hydrogenation may be a method of analysis.

VIII. Pyrethrin-I semicarbazone cannot be obtained pure and is unstable; hydrolysis gives pyrethrolone, chrysanthemum-carboxylic (I) and -dicarboxylic acid, and 7—8% of an acid (II), m.p. 41°, b.p. 175—185°/0·7 mm., $[\alpha] = 0$ (p-phenylphenacyl, m.p. 107°, and Me ester, b.p. 155°/1 mm.); analysis of the esters indicates C₁₆H₃₀O₂ as formula of (II), but titration indicates a mol. wt. of 290. Hydrogenation of (II) gives a H₂-acid, m.p. 53°. Deniges' reagent gives with (II) a colour similar to that with (I); the Ba salt is insol. (II) may be a mixture. R. S. C,

Plants used by the Indians against snake venom and malaria. E. C. DEGER (Arch. Pharm., 1937, 275, 496—503).—"Chalcupa," Rauwolfia heterophylla, contains dodecanedicarboxylic acid, glucosides, saponins, small amounts of tannins, a Ca salt, chalcuparesene, $C_{12}H_{22}O_4$, m.p. 165° (NO₂-derivative), chalcupine-A, $C_{14}H_{21}O_{12}N_3$, m.p. 170°, and chalcupasulphine, $C_{72}H_{129}O_{71}N_{12}S$ (an additive compound of chalcupine-B, $C_{15}H_{24}O_{11}N_6$, with, probably, a purine). Inorg. constituents of the plant are detailed; they include much Cl and SO₄, but little Na. Injections and infusions of Chalcupa are curative against snake-bite. R. S. C. Saponins. XII. Sapogenin of Gleditschia horrida, Makino. S. KUWADA (J. Pharm. Soc. Japan, 1935, 55, 1258—1264).—The sapogenin, $C_{31(30)}H_{50(19)}O_4$, m.p. 299—300° (decomp.), $[\alpha]_D^{20}$ +32.51° in CHCl₃, forms a Me_1 ether, m.p. 230.5°, and a diacetate, m.p. 219°. CH. ABS. (r)

Anthrone derived from barbaloin and isobarbaloin. J. H. GARDNER and L. JOSEPH (J. Amer. Pharm. Assoc., 1937, 26, 794—796).—Aloin was fractionally crystallised from MeOH and the fractions were hydrolysed with aq. borax. The products were purified, reduced with $SnCl_2$ -Sn-HCl, and acetylated. In all cases, the final product was chrysophanic acid-9-anthranol triacetate. Hence both barbaloin and *iso*barbaloin yield aloe-emodin-9anthrone on hydrolysis (cf. McDonnell and Gardner, A., 1934, 774). F. O. H.

Pechmann's dye. Mechanism of the formation of products obtained by the action of alkali. P. CHOVIN (Compt. rend., 1937, 205, 565-567).-The pure isomeride (I) of Pechmann's dye (II) is vellow. The action of EtOH-KOH on (I), (II), the vellow acid + 2H₂O (III) of Kugel (A., 1898, i, 198) and Bogert and Ritter (A., 1925, i, 255), and the yellow acid + 1H₂O (IV) of Dufraisse and Chovin (A., 1934, 1108) affords a red-violet salt $+ 2H_2O$ (V), which when acidified gives the corresponding acid which loses 1H2O to form (IV). Brief interaction of acid with (V) affords (III) but prolonged interaction affords a colourless dihydrated acid probably identical with that obtained by Bogert and Ritter (A., 1925, i, 255). (V) results from the alkaline hydrolysis of both lactone rings. The restitution of one lactone ring gives (IV); when both lactone rings are reformed simultaneously (I) is formed; when they J. L. D. close successively, (II) is formed.

Chasmanthin. F. WESSELY and K. SCHÖNOL [with, in part, A. MUNSTER and W. ISEMANN] (Monatsh., 1937, 71, 10-26; cf. Feist, A., 1935, 864).-Chasmanthin (I) (improved prep. from Colombo root), C₂₀H₂₂O₇, m.p. 246°, contains one lactone grouping, and with NaOH gives chasmanthin A (II), m.p. 260°, $[\alpha]_{\rm D}$ +18·47° in C₅H₅N, and chasmanthin B (III), m.p. 170–175° (decomp.), $[\alpha]_{\rm D}$ +24·86° in C₅H₅N, both isomeric with (I). Acetylation of (I) with Ac₂O affords acetylchasmanthin I (IV), m.p. 290° (decomp.), hydrolysed (NaOH) to (III) and a little (II), whilst acetylation with Ac₂O-NaOAc yields acetylchasmanthin II (V), m.p. 272° , $[\alpha]_{D} + 30.06^{\circ}$ to +29.39° in C₅H₅N. Acetylation (NaOAc-Ac₂O or Ac₂O alone) of (II) or (III) affords (V), which does not depress the m.p. of acetylpalmarin (VI), m.p. 272°, $[\alpha]_{\rm D}$ +12.65° in C₅H₅N (from palmarin and Ac₂O or NaOAc-Ac₂O). Methylation (Me₂SO₄-NaOH-EtOH) of (II) and (III) gives methylchasmanthin A, m.p. 260°, $[\alpha]_{\rm p}$ +44.46° in C_5H_5N , and methylchas-manthin B (VII), m.p. 290°, $[\alpha]_{\rm p}$ +44.32° in C_5H_5N , respectively, whilst (I), similarly treated, yields non-homogeneous products. Hydrogenation (Pd-H.) of (I) gives hydrochasmanthic acid (VIII), m.p. 259°, methylated (Me₂SO₄-NaOH) to a Me ether, m.p. 195°, and esterified (CH_2N_2) to a Me ester, m.p. 180°, $[\alpha]_D - 11.23^\circ$ in C_5H_5N (cf. Feist, *loc. cit.*). Similar hydrogenation of (IV) affords an *acid*, which on hydrolysis gives (VIII), whilst (V) yields acetylhydropalmaric acid, m.p. 271°, $[\alpha]_{\rm D}$ +39° to +37° in C₅H₅N, also obtained by hydrogenation of (VI). On hydrogenation (II) and (III) give hydropalmaric acid, whilst (VII) yields hydromethylchasmanthic acid, m.p. 252°, $[\alpha]_{\rm D}$ +56° in C₅H₅N. J. D. R.

Clerodin, m.p. 161-162°.-See A., III, 287.

Arjunetin, $C_{11}H_{18}O_4$, H_2O , m.p. 215°, and an isomeride, m.p. 165°.—See A., III, 331.

Shonanic acid derivatives.-See A., III, 331.

Pseudoauxin and lumiauxin.—See A., III, 286.

Synthesis of benzfuran-2-carboxylic acid and -2-acetic acid. V. TITOFF, H. MULLER, and T. REICHSTEIN (Helv. Chim. Acta, 1937, 20, 883-892).— Isatin is converted into coumarandione, which is condensed with $CH_2Br\cdot CO_2Et$ and NaOEt and then hydrolysed to o-oxalophenoxyacetic acid (I), $CO_2H\cdot CO\cdot C_6H_4\cdot O\cdot CH_2\cdot CO_2H$, m.p. 198-200° (corr.) $(Me_2 \text{ ester, m.p. 76-78°})$. Attempted cyclisation of the acid with $Ac_2O-H_2SO_4$ yields

of the acid with $Ac_2O-H_2SO_4$ yields $o-CO_2H\cdot C_6H_4\cdot O\cdot CH_2\cdot CO_2H$ and CO whilst the action of NaOH at 100° or 200° does not give the desired result. The ester is cyclised by Na in EtOH and then hydrolysed to benzfuran-1: 2-dicarboxylic acid (II), m.p. 259-260° (decomp.), partly decarboxylated at 270° to benzfuran-2-carboxylic acid (III), m.p. 162° (decomp.), also obtained with (I) by the action of Ac_2O and NaOAc on (I) at 170–180°. Treatment of (III) with Cu powder in quinoline at 220-270° gives coumarone. SOCl₂ transforms (III) into benzfuran-2-carboxyl chloride (IV), b.p. about 122°/12 mm., m.p. 65°, converted by anhyd. HCN and C_5H_5N in Et₂O into the corresponding cyanide, m.p. 142° (corr.), which is hydrolysed by HCl-AcOH to benzfuran-2-glyoxylamide, m.p. 202-204° (corr.); this is transformed by 2N-NaOH into benzfuran-2-glyoxylic acid (V), m.p. 125-126° [phenylhydrazone, m.p. 194-196° (corr.)]. With boiling NH₂Ph followed by HCl (V) yields a nitrogenous compound, m.p. 116°, in place of the desired aldehyde. (IV) is transformed by CH₂N₂ in Et₂O into 2-diazoacetylbenzfuran (V), m.p. about 118° (decomp.), converted by Ag₂O-NH3 into benzfuran-2-acetamide, m.p. 190-191° whence benzfuran-2-acetic acid (VI), m.p. 89-90°. Alternatively (V) is transformed by Ag₂O-EtOH into Et benzfuran-2-acetate, b.p. 140-150°/12 mm., which is hydrolysed to (VI). The influence of (VI) on the growth of plants does not exceed that of benzfuran-1acetic acid. H. W.

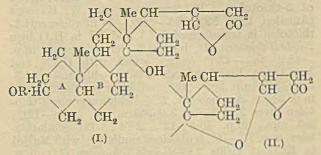
Fission of the coumarone nucleus. T. REICH-STEIN and J. BAUD (Helv. Chim. Acta, 1937, 20, 892-894).—2-Bromobenzfuran reacts with difficulty with Mg, better with Mg-Cu alloy. The product is converted by CO₂ into benzfuran-2-carboxylic acid and mainly into o-acetylenylphenol, b.p. about 98°/12 mm. [p-nitrobenzoate, m.p. 107-108° (decomp.)]. H. W.

Heterocyclic compounds. IV. Coumarins from resacetophenone and ethyl acetoacetate and synthesis of coumarino- γ -pyrones. R. D. DESAI and S. A. HAMID (Proc. Indian Acad. Sci., 1937, **6**, A, 185–190, and Current Sci., 1937, **6**, 56).— Resacetophenone, CH₂Ac·CO₂Et, and POCl₃ give

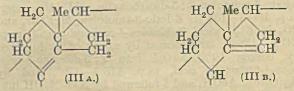
7-hydroxy-6-acetyl-4-methylcoumarin (\mathbf{I}) (50%) yield) [Ac derivative, m.p. 180° (lit. 172°); semicarbazone, m.p. 320°], which is brominated to the 3-Br-compound, m.p. 216° (Ac derivative, m.p. 195°), hydrolysed (Na₂CO₃) to 6-hydroxy-5-acetyl-3-methyl-coumarilic acid, m.p. 260° (decomp.), and 6-hydroxy-5-acetyl-3-methylcoumarone, m.p. 138° [Ac derivative, m.p. 118°; Me ether, m.p. 94°; semicarbazone, m.p. 315° (decomp.)]. 7-Methoxy-6-acetyl-4-methylcoumarin is brominated to the Br-, m.p. 165°, and Br2-derivatives, m.p. 207°. (I) and Ac2O-NaOAc give 3'-acetyldimethyl-4: 2'-coumarino-(7:6)-y-pyrone, m.p. 245°, and 7-hydroxy-8-acetyl-4-methylcoumarin similarly yields 3'-acetyl-4: 2'-dimethylcoumarino-(7:8)-y-pyrone, m.p. 260°, along with substances of m.p. 320° and 300°. F. R. S.

Condensation of aldehydes with malonic acid in the presence of organic bases. IX. Condensation of β -hydroxynaphthaldehyde (2-hydroxy-1-naphthaldehyde). K. C. PANDYA and T. A. VAHIDY (Proc. Indian Acad. Sci., 1937, 6, A, 181—184).— β -Hydroxynaphthaldehyde and CH₂(CO₂H)₂ condense (preferably in presence of a base) to give 5:6-benzocoumarin-3-carboxylic acid in good yield. F. R. S.

Aluminium chloride, a new reagent for the condensation of β -ketonic esters with phenols. S. M. SETHNA, N. M. SHAH, and R. C. SHAH (Current Sci., 1937, 6, 93—94).—PhOH and CH₂Ac·CO₂Et with AlCl₃ in Et₂O or PhNO₂ give 4-methylcoumarin in 30—40% yield. Similarly o-OH·C₆H₄·COMe and o-OH·C₆H₄·CO₂Me give Me 5-hydroxy-6-acetyl-, m.p. 165° (also prepared by Fries transformation of 5-acetoxy-), and 5-hydroxy-6-carbomethoxy-, m.p. 185—186°, decarboxylated to 5-hydroxy-4-methylcoumarin (cf. Limaye and Kelkar, A., 1937, II, 254). Condensation with H₂SO₄ yields the 7-OH-compounds (cf. Agarwal and Dutt, *ibid.*, 299). F. R. G.


Synthesis of flavonols. Oxidation of flavindogenides. J. ALGAR and (MISS) I. P. CAREY (Proc. Roy. Irish Acad., 44, B, 37–43).—3-Benzylideneflavanone is oxidised (KMnO₄–H₂SO₄) to 3-hydroxy-3-benzoylflavanone (I), m.p. 164–165° (monoxime, m.p. 225°), hydrolysed to flavanol and BzOH. With cold Ac₂O (I) gives the monoacetate, m.p. 179–180°, but with hot Ac₂O–NaOAe affords a substance, $C_{22}H_{16}O_4$, m.p. 135°, hydrolysed to BzOH, flavanol, and other substances. A similar series of reactions yields 3-hydroxy-2-anisoylflavanone, m.p. 153–154° (monoacetate, m.p. 157–158°), forming with Ac₂O– NaOAc a substance, m.p. 115°; 3-hydroxy-3-(3': 4'methylenedioxybenzoyl)flavanone, m.p. 194–195° (monoacetate, m.p. 200–201°), with Ac₂O–NaOAc giving a substance, m.p. 148–149°; and 3-hydroxy-3benzoyl-3': 4'-methylenedioxyflavanone, m.p. 196°. F. R. S.

Hydroxydiphenylene oxides.—See B., 1937, 1177.


Photolytic production of formaldehyde in the eosin group. E. BAUR and K. GLOOR (Helv. Chim. Acta, 1937, 20, 970—974; cf. A., 1937, II, 28, 318).— Me and Et esters of eosin and Et esters of rhodamines give CH₂O in the Baur-Fricker experiment. Non-

esterified members of the eosin group do not give this effect. H. W.

Constitution of cerberin. T. MATSUBARA (Bull. Chem. Soc. Japan, 1937, 12, 436—441).—Cerberin, new formula, $C_{29}H_{44}O_8$, anhyd. and $+0.5H_2O$, m.p. 191—193°, $[\alpha]_{10}^{10.6}$ —77.9° in CHCl₃, from the seedkernels of *Cerbera Odollam*, Gaertner, is shown to be (I) (R = C₆H₁₁O₄; R *cis* to the Me on C₍₁₀₎; rings A and B *cis*) by the following reactions. It is a heart poison. It neutralises hot, but not cold, alkali, gives Legal's and Baljet's reactions, yields *dihydrocerberin*, $+0.5H_2O$, m.p. 185—186°, and is thus a

βγ-unsaturated lactone. It yields isocerberin (II), m.p. 252—253°, $[\alpha]_D^{20}$ —73.8° in CHCl₃, which proves the presence of OH on C₍₁₄₎. When heated for a long time in 5% H₂SO₄-EtOH, it gives a methylpentose, cerberose (osazone, m.p. 121—122° or, dried at 100°/30 mm., 141—142°, $[\alpha]_D^{21}$ +62.5° in CHCl₃), and a mixture of cerberigenin [(I), R = H] (not isolated) and anhydrocerberigenin (III A or B), m.p. 220—222°, $[\alpha]_D^{21}$ +46.8°

in CHCl₃ (formation of a digitonide fixes the position of the OH on C₍₃₎; acetate, m.p. 175—176°, $[\alpha]_{20}^{20}$ +58° in CHCl₃). With acid cerberigenin loses H₂O to give (III). Hydrogenation of (III) gives tetrahydroanhydrocerberigenin, m.p. 155—156°, oxidised by CrO₃ to tetrahydroanhydrocerberigenone, m.p. 181— 182° (oxime, m.p. 210—212°). CrO₃ oxidises (III) to anhydrocerberigenone, m.p. 195—196°, $[\alpha]_{20}^{20}$ +74·4° in CHCl₃ (oxime, m.p. 221—223°). R. S. C.

Action of formaldehyde on ethyl pyromucate. D. DINELLI and G. B. MARINI (Gazzetta, 1937, 67, 417-424; cf. A., 1937, II, 429).-Et pyromucate (I) and paraformaldehyde (II) in H_2SO_4 (d 1·84) give a resinous product containing the 5 : 5'-dicarbethoxyderivative, m.p. 192° [also obtained from dicarbethoxydifurylmethane and (II)], hydrolysed to the 5 : 5'-dicarboxy-derivative (III), no m.p. <280°, of 3 : 3'(or 4 : 4')-dihydroxymethyl-2 : 2'-difurylmethane internal ether, m.p. 128° [from (III)], hydrogenated (PtO₂-AcOH) to an H_8 -derivative, b.p. 150°/4 mm. The 5 : 5'-dicarbethoxy-derivative, m.p. 98°, hydrolysed to the 5 : 5'-dicarboxy-derivative, m.p. 252°, of ac.3 : 3'(or 4 : 4')-dihydroxymethyl-2 : 2'-difurylethane, b.p. 133°/11 mm., is obtained from dicarbethoxydifurylethane (loc. cit.) and (II), or from (I) and (MeCHO)₃, followed by (II). E. W. W.

Thiophen series. XXXVI. 2-Phenylthiophen-5-carboxylic acid piperidide, a pepper-like substance of the thiophen series. W. STEINKOPF and R. GORDING (Biochem. Z., 1937, 292, 368— 370; cf. A., 1937, II, 163).—5-Iodo-2-phenylthiophen reacts with Mg in presence of EtBr and Et₂O. The solution with CO_2 etc. affords 2-phenylthiophen-5carboxylic acid, m.p. 184—185° (acid chloride, m.p. 80°; piperidide, m.p. 103—104°). F. O. H.

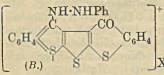
Thiophen series. XXXVII. Iodo-derivatives of 3-thiotolen. W. STEINKOPF and W. HANSKE (Annalen, 1937, 532, 236-249).-2-Chloromercuri-3thiotolen is transformed by I and KI in H₂O into 2-iodo-3-thiotolen (I), b.p. 84.5-85.8°/11 mm., m.p. -45.9° to -43.7° (corr.), which with HgCl₂ and NaOAc in EtOH affords 2-iodo-5-chloromercuri-3thiotolen, m.p. 208-209° and, after re-solidification, m.p. 284°. Analogously, 2: 5-dichloromercuri-3-thiotolen gives 2:5-di-iodo-3-thiotolen, b.p. 120.8-121°/ 2.5 mm., m.p. 10.5-12°. 2:4:5-Tri-iodo-3-thiotolen, m.p. 75-76°, is obtained similarly; with MgMeI in Et₂O it yields 2:4-di-iodo-3-thiotolen (II), m.p. 56:5-57:5°, and 4-iodo-3-thiotolen, b.p. 88°/12 mm., m.p. -25° to $-24\cdot5°$ (corr.) [4-iodo-2:5-dichloromercuri-, m.p. 297° (decomp.), and -2:5-diacetoxy-mercuri-, m.p. 235.5° (decomp.), -3-thiotolen]. Treat-ment of the solution of it and MgEtBr in Et₂O with CO₂ at 0° leads to 4-iodo-3-thiotolen-2-carboxylic acid, m.p. 208-209° (K salt) (whence 4:5-dibromo-3thiotolen-2-carboxylic acid, m.p. 225.5-226.5°), and 4-iodo-3-thiotolen-2: 5-dicarboxylic acid (Me2 ester, m.p. 156.5-158°). 4-Iodo-3-thiotolen, MgEtBr, and CO₂ in Et₂O yield 3-thiotolen-4-carboxylic acid, m.p. 136.5—138.5°, transformed by excess of Br followed by boiling 10% NaOH into 2:5-dibromo-3-thiotolen-4-carboxylic acid, m.p. 178.5-179°, and by Hg(OAc)₂, AcOH, and I followed by NaI-NaOH into 2:5-di-iodo-3-thiotolen-4-carboxylic acid, m.p. 181-183° (K salt). The successive action of Mg and CO_2 on (I) affords 3-thiotolen-2-carboxylic acid, m.p. 143-145°, the Me ester, b.p. 116-117.5°, of which is converted into 4:5-di-iodo-3-thiotolen-2-carboxylic acid (III), m.p. 264.5° (corr.) (Me ester, m.p. 157-158°), and 5-iodo-3-thiotolen-2-carboxylic acid, m.p. 178-179.5° (Me ester, m.p. 84-86°). 4:5-Dibromo-3-thiotolen-2-carboxylic acid, m.p. 228-229.5°, and its Me ester, m.p. 102-103°, are described. Treatment of (III) with $Hg(OAc)_2$ in boiling AcOH and of the product with 10% NaCl followed by 10% HCl gives 4:5-di-iodo-3-thiotolen, b.p. 98.5°/0.5 mm., m.p. 15.7-17.2°, whence 2:3:2':3'-tetraiodo-4:4'dimethyl-5: 5'-mercuridithienyl, C10H6I4S2Hg, m.p. 290° (decomp.), 4-iodo-3-thiotolen-5-carboxylic acid, m.p. 215-218° [Me ester (IV), m.p. 75.5-76.5°], and Me 2-bromo-4-iodo-3-thiotolen-5-carboxylate, m.p. and Me 2-oromo-4-todo-5-thiotolen-5-carboxylate, M.p. 75-5-76-5°. Hg(OAc)₂ and I in AcOH transform (IV) into Me 2:4-di-iodo-3-thiotolen-5-carboxylate, m.p. 112-112-5° [corresponding acid, m.p. 240-5-242° (decomp.)]. 2:4-Di-iodo-3-thiotolen-5-carb-oxylic acid and Hg(OAc)₂ in boiling AcOH yield 2:4-di-iodo-5-acetoxymercuri-3-thiotolen, m.p. 218-220° (decomp.), transformed by NaCl followed by

HCl into (II), which gives 2: 4-di-iodo-5-chloromercuri-3-thiotolen, m.p. $228-229^{\circ}$. 5-Iodo-3-thiotolen, b.p. $86\cdot5-87\cdot5^{\circ}/12$ mm., m.p. -61° (corr.), gives 5iodo-2-chloromercuri-3-thiotolen, m.p. 217° when rapidy heated and, after re-solidification, m.p. 282° . The decarboxylation of 5-bromothiophen-2-carboxylic acid and of 3:4:5-tribromothiophen-2-carboxylic acid is described. In all cases the m.p. of the I-derivatives become lower as the lability of the I atoms increases. The reactivity of I in the 2-thiotolens increases in the sequence $4 \rightarrow 3 \rightarrow 5$ and in the 3-thiotolens in the order $4 \rightarrow 2 \rightarrow 5$. 2:5-Di-iodothiophen is exceptional. H. W.

Thiophen series. XXXVIII. Chloro-derivatives of thiophen and the limited applicability of the method of mixed m.p. among isomeric thiophen derivatives. W. STEINKOPF and W. KOHLER (Annalen, 1937, 532, 250-282).-Chlorination of thiophen invariably results in the production of mixtures of Cl-derivatives, the separation of which is very difficult on account of the close proximity of their b.p. The homogeneity of the materials is doubtful and they have therefore now been prepared by individual chemical methods. Frequently different compounds of similar m.p. in the thiophen series do not exhibit a depression of the m.p. when mixed. This occurs only with tri- and tetra-substituted thiophens and is favoured by the presence of three Cl, sometimes by two or three Br, but never by several I. Frequently the pairs of substances are shown to be completely isomorphous and to give identical absorption spectra in the ultra-violet. Distinction can be made by irradiation with ultra-violet light, when isomerides with the differentiating atom or group in the α -position give intense, bright colours whereas dull or different shades are obtained when it is in the 3-position. Depression of the m.p. is not observed when 2- or 3-nitrothiophen or thiophen-2sulphonyl chloride is mixed with the corresponding Se derivatives. Similar relationships are not observed in the C6H4 series. Crude 2-chlorothiophen (I) is transformed into 2-chloro-5-chloro-mercurithiophen (II), m.p. 223-224°, which when distilled with 10% HCl gives the homogeneous halide, b.p. 127-128.3° (corr.), m.p. -70° to -69° . I and KI convert (II) into 2-chloro-5-iodothiophen, b.p. $95-96^{\circ}/14$ mm., m.p. -25° to -24° (corr.). Treatment of (I) with Hg(OAc), in boiling AcOH gives 2-chloro-3:4:5-triacetoxymercurithiophen, whence 2chloro-3:4:5-trichloromercurithiophen, which gives 2chloro-3:4:5-tri-iodothiophen, m.p. 126°. Br converts (I) into 2-chloro-3:4:5-tribromothiophen, m.p. 91°: 2-chlorothiophen-5-sulphonyl chloride is obtained by the successive action of $CISO_3H$ at -10° and PCl_5 on (I). The dichlorothiophen fraction when treated with $Hg(OAc)_2$ and NaCl affords 2:5-dichloro-3: 4-dichloromercurithiophen, m.p. 314-315°, whence 2:5-dichlorothiophen, b.p. 161-162° (corr.), m.p. -43.4° (corr.). 2:5-Dichloro-3:4-di-iodo-thiophen, m.p. 83°, 2:5:2':5'-tetrachloro-3:3'-diiodo-4:4'-mercuridithienyl, m.p. 238°, 2:5-dichloro-3:4-dibromothiophen, m.p. 65°, and 2:5-dichloro-acetothienone, m.p. 39°, are described. 2:5-Dichloro-3:4-di-iodothiophen is transformed by MgEtBr

515

H. W.


followed by CO_2 in Et₂O into 2:5-dichlorothiophen-3:4-dicarboxylic acid. The trichlorothiophen fraction, b.p. 203-207°, gives with Hg(OAc)₂ in AcOH 2:3:5:2':3':5' - hexachloro-4:4' - mercuridithienyl, m.p. 242-243°, converted by HgCl₂ in COMe₂ into 2:3:5-trichloro-4-chloromercurithiophen, m.p. 211-212° (corresponding 4-bromomercuri-compound, m.p. 207°), whence 2:3:5-trichlorothiophen, b.p. 207.7-209.2° (corr.), which gives 2:3:5-trichloro-4-bromothiophen, m.p. 50.5-51°. 2:3:5-Trichloro-4-iodothiophen has m.p. 51°. The chlorothiophen fraction, b.p. 205-207°, and AcCl with AlCl₃ in light petroleum give 2:3:5-trichloro-4-acetothienone, m.p. 80°, in very small yield. Treatment of crude trichlorothiophen with conc. H₂SO₄ and conc. HNO₃ at 0° leads to 2:3:5-trichloro-4-nitrothiophen, m.p. 70°. 2:5-Dibromo-3-iodo-4-thiophenic acid is transformed by Cl₂ in distilling AcOH into 2:3:5-trichloro-4-thiophenic acid, m.p. 176-177°. 2:3:5-Trichlorothiophen-4-sulphonyl chloride has m.p. 57-58°. Tetrachlorothiophen is treated with MgEtBr in Et₂O and the crude Cl₃-derivative is converted by HgCl₂ and NaOAc in EtOH into 2:3:4-trichloro-5-chloromercurithiophen, m.p. 211° [whence 2:3:4-trichlorothiophen, b.p. 209.2-210.2° (corr.), m.p. -0.5°],

and by Hg(OAc)₂ in boiling AcOH into 2:3:4:2':3':4'-hexachloro-5:5'-mercuridithienyl, m.p. 242-243°, whence 2:3:4-trichloro-5-bromo-mercurithiophen, m.p. 207°. 2:3:4-Trichloro-5-identication of 50, 51° 2:2':4 trichloro-5iodothiophen, m.p. 50-51°, 2:3:4-trichloro-3-bromothiophen, m.p. 50.5°, 2:3:4-trichloro-5-acetothienone, m.p. 80°, -5-nitrothiophen, m.p. 70°, and -thiophen-5-sulphonyl chloride, m.p. 55—56°, are obtained in the usual manner. Cl_2 and 2:3-dibromo-3-thiophenic acid in boiling AcOH give 2:3-dichloro-5-thiophenic acid, m.p. 196-197°, which is converted by Hg(OAc)2 in boiling AcOH into 2:3-dichloro-4:5-diacetoxymercurithiophen, whence 2:3-dichloro-4:5-dichloromercurithiophen, which when distilled with dil. HCl gives 2: 3-dichlorothiophen (II), b.p. 173-174° (corr.), m.p. $-26\cdot2^{\circ}$ (corr.). This gives 2:3-dichloro-5-chloromercurithiophen, m.p. $269-270^{\circ}$, whence 2:3dichloro-5-iodothiophen, m.p. 27°. 2:3-Dichloro-5-bromothiophen, b.p. 212—214°, m.p. 6°, 2:3-dichloro-5-acetothienone, m.p. 68°, 2:3:2':3'-tetrachloro-5: 5'-dibromo-4: 4'-mercuridithienyl, m.p. 238-239°, 2:3-dichloro-5-nitrothiophen, m.p. 55-56°, and 2:3-dichlorothiophen-5-sulphonyl chloride (III), m.p. 55-56°, are obtained in the usual manner. 2:3-Dichloro-4: 5-di-iodo-, m.p. 72°, and -4: 5-dibromo-, m.p. 67.5°, -thiophen are described. Hydrolysis of (III) with boiling NaOH and treatment of the hydrolysate with Na-Hg in a current of steam gives 3chlorothiophen (IV), b.p. 136-137° (corr.), m.p. -62°, whence 3-chloro-2-chloromercurithiophen, m.p. 137-138°, 3-chloro-2:5-dichloromercurithiophen, de-comp. 275°, and 3:3'-dichloro-2:2'-mercuridithienyl, m.p. 174-175°. The successive action of MgEtBr and CO2 on (II) affords 3-chloro-2-thiophenic acid, m.p. 175-176°. (IV) is converted by Hg(OAc)2 in boiling AcOH followed by I into 3-chloro-2:4:5tri-iodothiophen, m.p. 121°; 3-chloro-2:4:5-tribromo-thiophen has m.p. 91°. The residues obtained in the prep. of (IV) are dried, treated with PCl₅ and then with EtOH-KOH, thereby giving 2:4-dichloro-

thiophen, b.p. 174-175° (corr.), m.p. -34°; 2:4dichloro-3: 5-dibromothiophen has m.p. 72°. Passage of Cl₂ through 2:5-dimethylthiophen (V) in CCl₄ and treatment of the product with much Br gives 3: 4-dichloro-2: 5-di(dibromomethyl)thiophen, m.p. 112°, converted by Cl₂ in boiling CCl₄ into 3:4dichloro-2: 5-di(dichloromethyl)thiophen, m.p. 80°, and by pptd. CuCO3 and hot H2O into 3: 4-dichlorothiophen-2:5-dialdehyde, m.p. 194°; this is transformed by H_2O_2 -KOH into 3:4-dichlorothiophen-2-aldehyde, m.p. 72°, and 3:4-dichlorothiophen-2:5-dicarboxylic acid, m.p. 314-315° (decomp.). Hg(OAc), and the acid in boiling AcOH yield 3: 4-dichloro-2: 5-diacetoxymercurithiophen, whence 3: 4-dichlorothiophen, b.p. 184·5—185·5° (corr.), m.p. 1°, mercurated to 3: 4-dichloro-2-chloromercuri-, m.p. 206—207°, and -2: 5dichloromercuri-, m.p. 347-349° after darkening, -thiophen. The latter substance with I and KI gives 3: 4-dichloro-2: 5-di-iodothiophen. 3: 4-Dichloro-2: 5dibromothiophen, m.p. 75°, and 3:4-dichloro-2-acetothienone, m.p. 56°, are described. 3:4-Dichloro-2-hydroxymethylthiophen-5-carboxylic acid has m.p. 220-221°. 2:4:5-Trichloro-3-thiotolen, b.p. 115- $116^{\circ}/23$ mm., m.p. -18° (corr.), is obtained from Cl₂ and the corresponding Br₃-compound in CCl₄. 2:4:5-Tri-iodo-3-thiotolen is converted by Cl₂ in CHCl₃ at 0° into 2:2:3:4:4:5:5-heptachloro-3-methyltetrahydrothiophen, m.p. 217-218.5° (decomp.). Drastic chlorination of thiophen or chlorination of 2-thiophenic acid in cold AcOH affords 2:3:3:4:5(or 2:2:3:4:5)-pentachloro-2:3-di-hydrothiophen, b.p. 122-126°/13 mm. Br transforms (V) in CS2 into 3:4-dibromo-2:5-di(dibromomethyl)thiophen, m.p. 132°, converted by Cl₂ into 3:4dibromo-2: 5-di(dichloromethyl)thiophen, m.p. 103°. 3: 4-Dibromothiophen-2: 5-dialdehyde, m.p. 227°, is oxidised by KMnO4 to 3: 4-dibromothiophen-2: 5-dicarboxylic acid, m.p. 317-318°. 2:3-Dibromo-5thiophenic acid is transformed into 2:3-dibromothiophen, b.p. 218.6-219.6° (corr.), m.p. -17.5° (corr.). Exhaustive treatment of 2-thiotolen with Br-H2O leads to tetrabromothiophen, m.p. 115-117°.

Thiophen series. XXXIX. Constitution of the salts of the phenylhydrazone of $\alpha\beta\alpha'\beta'$ -thiophenobisthiochromone [bis(benzthio-1:4-pyrono-2:3)-2':3':5':4'-thiophen]. W. STEIN-KOPF (Annalen, 1937, 532, 282-288; cf. A., 1937, II, 164).—Treatment of $\alpha\beta\alpha'\beta'$ -thiophenobisthiochromone (A) with HCl, AcCl, or SOCl₂ in ordinary CHCl₂ (containing EtOH) gives the dihydrochloride, A 2HCl, m.p. 273° (AcCl or SOCl₂ being hydrolysed by EtOH). The more difficultly hydrolysed BzCl gives the adduct, 2A,3HCl, or if EtOH is removed as far as possible from the CHCl₃, a mixture of the salts, A, HCl and 3A, HCl. All these salts lose HCl when heated and ultimately show the m.p. of A; they are all of the same intensely yellow colour. H₂O hydrolyses them slowly. Aand NH₂·NH·CH₂Ph give a benzylhydrazone the *perchlorate*, decomp. 242—248°, of which closely resembles the phenylhydrazone salt. This observation excludes the quinonoid or quinolide structure of the latter (loc. cit.). The possibility of a radical structure is considered. Since direct action of I on the phenylhydrazone gives the tri-iodide,

 $C_{24}H_{14}ON_2S_3I_3$, m.p. 120—122° (decomp.), I is added to AgClO₄ in C_6H_6 as long as decolorisation persists and the solution of the phenylhydrazone is added; no reaction occurs at room temp. and only a pale blue colour develops at 100°. The *perchlorate*, decomp. 290—310°, readily produced from the acetate, is not

here formed. Also HI analogously gives the hydriodide,

 $X = \begin{array}{c} C_{24}H_{14}ON_2S_3,HI, \text{ de-}\\ comp. 310-315^\circ. \text{ The}\\ possibility that the} \end{array}$

salts arise by addition of acid to CO is negatived by the dissimilar behaviour towards H_2O of salts of A and of its phenylhydrazone. The salts must therefore arise by addition of acid to S of the thiochromone ring to which \cdot NH \cdot NHPh is attached (cf. B). H. W.

Thiophen series. XL. Mercury derivatives of thiophen. W. STEINKOPF and A. KILLINGSTAD (Annalen, 1937, 532, 288-293).-Dropwise addition of thiophen (I) to a boiling mixture of HgCl2-NaOAc-H_oO-EtOH gives 2:5-dichloromercurithiophen, converted by short treatment with BzCl in PhNO₂ into Ph 2:5-chloromercurithienyl ketone, m.p. 244-246°, hydrolysed by superheated steam to Ph 2-thienyl ketone, m.p. 55-57°, and converted by I-aq. KI into Ph 5-iodo-2-thienyl ketone, m.p. 129-130°. If the reaction is protracted, 2:5-dibenzoylthiophen, m.p. 114-115°, is produced. 2:5-Diacetoxymercurithiophen is produced by addition of (I) to Hg(OAc)₂ in 50% AcOH at 45° and 2:5-dichloromercuri-3-thiotolen in the same manner as the thiophen derivative. The replacement of all the a-H atoms (and only these) by the action of $Hg(OAc)_2$ and 50% AcOH on thiophen derivatives appears general. Thus are produced 2-bromo-5-acetoxymercurithiophen, m.p. 135°, 5-acetoxymercuri - 2 thiotolen, m.p. 133° (identified by conversion into 5-chloromercuri-2-thiotolen), 2:5-diacetoxymercuri-3thiotolen, decomp. >240°, and 4-bromo-2: 5-diacetoxymercuri-3-thiotolen, decomp. >270°. In the case of 2:5-dimethylthiophen the β atoms are replaced with production of 3: 4-diacetoxymercuri-2: 5-thioxen, decomp. >290°. H. W.

Thionaphthen-2-acetic acid. E. M. CROOK and W. DAVIES (J.C.Ś., 1937, 1697—1698).—Thionaphthen (I), $CH_2Br\cdot CO_2Et$ (II), and Cu give thionaphthenacetic, m.p. 141°, or -diacetic acid according to the conditions. MgMeI does not react with (I) in Et₂O, but the MgBr-derivative is obtained by adding 2-bromothionaphthen and MeI to an excess of Mg and with CO_2 gives thionaphthen-2-carboxylic acid [S-dioxide, m.p. 218° (decomp.)], the chloride, m.p. 53—54°, of which affords a diazo-ketone, m.p. about 40° (decomp.), converted by Ag₂O-EtOH and subsequent hydrolysis into thionaphthen-2-acetic acid. $C_{10}H_8$ and (II) give a mixture of acids and a ketone. R. S. C.

[Enol-betaines. Derivatives of 3:5-diketopiperidine.] C. GUSTAFSSON (Ber., 1937, 70, [B], 2165—2166; cf. A., 1937, II, 386).—A reply to Kröhnke and Heffe (*ibid.*, 422). H. W.

[Enol-betaines. Derivatives of 3:5-diketopiperidine.] F. KRÖHNKE (Ber., 1937, 70, [B], 2166).—In reply to Gustafsson (preceding abstract) it is pointed out that enol-betaines are of three types, (1) the colourless compounds of high m.p. described by Benary (A., 1908, i, 600) and allied to those of Gustafsson, (2) the coloured, low-melting, basic methine enol-betaines of the pyridinium series, and (3) the benzoylenol-betaines of the pyridinium series which occupy an intermediate position.

H. W.

3-Vinyl-pyridine and -piperidine. H. A. IDDLES, E. H. LANG, and D. C. GREGG (J. Amer. Chem. Soc., 1937, 59, 1945—1946).—3- α -Hydroxyethylpyridine (Strong and McElvain, A., 1933, 399) is converted by P₂O₅ (in xylene) or SOCl₂ (followed by EtOH-KOH) into 3-vinylpyridine (hydrochloride, m.p. 114—115°; picrate, m.p. 143—144°; platinichloride, m.p. 158—160°; aurichloride, m.p. 138— 140°; mercurichloride, C₇H₇N,HgCl₂, m.p. 145— 150°), which polymerises when kept. 3- α -Hydroxyethylpiperidine (loc. cit.) is dehydrated [conc. H₂SO₄, little AcOH, 180° (bath)] to 3-vinylpiperidine (picrate, m.p. 162—164°). H. B.

Condensation reactions of aldehydes and ketones with ammonia to pyridine bases. Condensations with acetaldehyde and crotonalde-hyde. A. E. TSCHITSCHIBABIN (Bull. Soc. chim., 1937, [v], 4, 1826-1831, 1831-1838).-The literature on the formation of C_5H_5N bases from MeCHO or croton-aldehyde (I) with NH_3 is critically reviewed. MeCHO and NH_3 passed over kaolin at 340-360° yield α - (II) and γ - (III) -picoline, 2- and 4-propylpyridine, 2propenylpyridine, collidinealdehyde (IV), β-collidine (V), and an unidentified collidine (VI) (picrate, m.p. 142°). The bases are separated by fractional distillation and fractional crystallisation of the picrates. (I) and NH₃ similarly yield all the above bases except (VI), and tricrotonylidenetetramine (VII). (MeCHO)₃ and aq. NH3 with NH4OAc at 160-180° under pressure yield chiefly (IV) with a little (II), (III), and (V), whilst (I), NH₄OAc, and aq. NH₃ at 180° under pressure yield mainly (VII) and a little (IV).

J. D. R.

Quinuclidine. Dicyclo[2:2:2]aza-1-octane. V. PRELOG, D. KOHLBACH, E. CERKOVNIKOV, A. REZEK, and M. PIANTANIDA (Annalen, 1937, 532, 69-82).-Quinuclidine (I) is synthesised in good yield, the key intermediate being prepared by four methods. 4-Hydroxymethyltetrahydropyran (improved prep.) and PBr₃-C₅H₅N give 4-bromomethyltetrahydropyran, b.p. 85-86°/17 mm., and thence tetrahydropyran-4acetonitrile, b.p. 125-126°/21 mm., and -4-acetic acid (II), b.p. 178°/20 mm., m.p. 54-55°. Tetrahydropyran-4-yl benzenesulphonate, an oil, or, less well, 4-bromotetrahydropyran, b.p. 60-61°/15 mm. (prep. from tetrahydropyran-4-ol by $PBr_3-C_5H_5N$), with $CH_2(CO_2Et)_2$ gives Et_2 tetrahydropyran-4-malonate, b.p. $156-160^{\circ}/13$ mm., converted into the corresponding *acid*, m.p. 151° , and thence into (II). Tetrahydro- γ -pyrone (III) with Zn-CH₂Br-CO₂Et gives Et 4-hydroxytetrahydropyran-4-acetate, b.p. 132-140°/15 mm., the Ac derivative, b.p. 140-145°/21 mm., of which, when distilled at 1 atm., gives Et tetrahydropyranylideneacetate, b.p. 113°/15 mm. (large exaltation of $[\tilde{R}]$), hydrogenated (PtO₂; dry EtOH) XVII(d)

to the Et ester (IV), b.p. $108-110^{\circ}/14$ mm., of (II). CN·CH₂·CO₂Et, (III), and a trace of piperidine in C₆H₆ give Et 4-tetrahydropyranylidenecyanoacetate, m.p. 66-67° [and, in one experiment, a substance (V), C₁₈H₂₀O₅N₂, m.p. about 260° (decomp.)], hydrolysed

 $0 < \stackrel{\mathrm{CH}_2 \cdot \mathrm{CH}_2}{\underset{\mathrm{CH}_2 \cdot \mathrm{CH}_2}{\overset{\mathrm{CH}_2}{\overset{\mathrm{CH}_2 - \mathrm{CH}_2}{\overset{\mathrm{CH}_2 - \mathrm{CH}_2}}{\overset{\mathrm{CH}_2 - \mathrm{CH}_2}{\overset{\mathrm{CH}_2 - \mathrm{CH}_2}{\overset{\mathrm{CH}_2 - \mathrm{CH}_2}}{\overset{\mathrm{CH}_2 - \mathrm{CH}_2}{\overset{\mathrm{CH}_2 - \mathrm{CH}_2}}{\overset{\mathrm{CH}_2 - \mathrm{CH}_2}}{\overset{\mathrm{CH}_2 - \mathrm{CH}_2}}{\overset{\mathrm{CH}_2 - \mathrm{CH}_2}}{\overset{\mathrm{CH}_2 - \mathrm{CH}_2}}{\overset{\mathrm{CH}_2 - \mathrm{CH}_2}}{\overset{\mathrm{CH}_2 - \mathrm{CH}_2 - \mathrm{CH}_2 - \mathrm{CH}_2}}{\overset{\mathrm{CH}_2 - \mathrm{CH}_2}}}}}}}$

by dil. acid to the corresponding acid, m.p. 137– 138°, partly converted by heat into 2 : 3-dihydropyran-4-cyanoacetic acid, b.p. 135°/23 mm., hydrolysed by 20% H₂SO₄-EtOH to Et 2 : 3-dihydropyran-4-acetate [by hydrogenation gives (IV)], and converted by NaOEt-C₆H₄Br-CO·CH₂Br into Et α -cyano- α -[2 : 3dihydropyran-4-] β -p-bromobenzoylpropionate, m.p. 153—154°. Na-EtOH-C₆H₆ reduction of (IV) gives 4- β -hydroxyethyltetrahydropyran, b.p. 119—120 /14 mm. (phenylurethane, m.p. 70—71°), which with HBr gives α -dibromo- γ - β -bromoethylpentane, b.p. 185—186°/17 mm., converted by 20% NH₃-MeOH at 130—140° into (I), m.p. 158—159° (picrate, m.p. 275—276°). HBr at 100—110° converts (II) into δ -bromo- β - β -bromoethylvaleric acid, m.p. 71—71.5° the Me ester (prep. by CH₂N₂) of which with NH₃-MeOH gives Et piperidine-4-acetate, b.p. 123—127° /15 mm. [hydrochloride; platinichloride, m.p. 210— 237—238° (decomp.) [platinichloride, m.p. 210— 213° (decomp.); PhSO, derivative, cryst.].

R. S. C.

Synthesis of dicyclo[2:2:3]aza-1-nonane, quinuclidine-2-carboxylic acid, and B-4-piperidylpropionic acid. V. PRELOG and E. CERKOV-NIKOV (Annalen, 1937, 532, 83-88).-4-Bromomethyltetrahydropyran and CHNa(CO.Et)2 give Et. 4-tetrahydropyranylmethylmalonate, b.p. 166-169°/ 13 mm., the corresponding acid, m.p. 114-115° (decomp.), from which, when heated, yields \$-4tetrahydropyranylpropionic acid (I), m.p. 92-93°. The Et ester, b.p. 134-139°/17 mm., of this acid with Na-EtOH-C₆H₆ gives $4-\gamma$ -hydroxypropyltetrahydro-pyran, b.p. 143-145°/20 mm., converted by HBr at 100° into αζ-dibromo-γ-β'-bromomethylhexane, b.p. 204°/21 mm. Yields in these reactions are good. The Br3-compound with NH3-MeOH at 130-140° gives 11.8% of dicyclo[2:2:3]-aza-1-nonane, m.p. 129° (platini-, m.p. 238-240°, and auri-chloride, decomp. about 250°; picrate, m.p. 288-289°). HBr and (I) give ε -bromo- γ - β' -bromoethylhexoic acid (II) (not obtained pure), the Et ester of which with NH_2 -MeOH affords β -4-piperidylpropionic acid, m.p. 275–276° (decomp.) [hydrobromide, m.p. 220–222°; Et ester, b.p. 142–143°/15 mm. (platinichloride, m.p. 190–191°)]. Br-red P at 100° converts (II) into $\alpha \epsilon$ -dibromo- γ - β' -bromoethylhexoic acid, which with NH_3 -MeOH gives quinuclidine-2-carboxylic acid, m.p. about 280° (decomp.) [hydrobromide; methochloride, R. S. C. m.p. 298° (decomp.)].

Nitrogenous heterocyclic rings. XXXIII. Hydrogenation of o-phenylenediacetonitrile under high pressure. P. RUGGLI and A. STAUB (Helv. Chim. Acta, 1937, 20, 925—927; cf. A., 1936, 64).—Hydrogenation (Ni in NH_3 -EtOH) of o- $C_6H_4(CH_2 \cdot CN)_2$ in a relatively large autoclave so that

there is no considerable fall in pressure of H_2 during the reduction gives $o-\beta\beta$ -phenylenediethylamine [$o-\beta\beta'$ -diaminodiethylbenzene] (I), b.p. 156—175°/13 mm., in addition to benzohexamethyleneimine. (I) yields a methiodide, m.p. 227°, dihydrochloride, m.p. 253°, dipicrate, m.p. 235° (decomp.), and a Bz₂ derivative, m.p. 153°. It resembles the compound of Fries and Bestian (A., 1936, 714) rather than that of von Braun *et al.* (A., 1916, i, 130). H. W.

Synthesis of 5- and 6-benzyloxyindoles and attempts to prepare 5- and 6-hydroxyindoles therefrom. H. BURTON and J. L. STOVES (J.C.S., 1937, 1726–1728).—2-Nitro-4-benzyloxytoluene, m.p. 52°, prepared from 2-nitro-p-cresol and $ilde{CH}_2$ PhCl, with Et2C20, and KOEt gives 2-nitro-4-benzyloxyphenylpyruvic acid (+H₂O), m.p. 89–90°, and 2:2'-dinitro-4:4'-dibenzyloxydibenzyl, m.p. 164–165°. The pyr-uvic acid is reduced [Fe(OH)₂] to 6-benzyloxyindole-2-carboxylic acid, m.p. 185–186° (decomp.), decarboxylated by heating in glycerol to 6-benzyloxyindole, m.p. 5 - Benzyloxyindole - 2 - carboxylic acid 111-112°. (+H₂O), m.p. 190°, prepared from 2-nitro-5-benzyloxypyruvic acid, is decarboxylated to 5-benzyloxyindole, m.p. 96-97° (1-Ac derivative, m.p. 129-130°). Neither 5- nor 6-benzyloxyindole has been debenzylated, the products being dark-coloured complex F. R. S. phenolic substances.

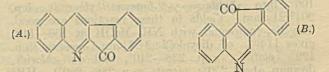
Diethylamides of indole-3-carboxylic, 3-indolylacetic, thionaphthen-2-carboxylic, and reduced 3-indolylacetic acids. R. WEGLER and H. BINDER (Arch. Pharm., 1937, 275, 506-516).-Mg 3-indolyl iodide and NEt2 COCl in Et2O give indolyl-3-carboxyldiethylamide, m.p. 151-151.5° (picrate, m.p. 129.5—120°; NO-derivative, m.p. 241—242°, reduced to the $N-NH_2$ -derivative, m.p. 177.5—178°; hydrolysed to the known acid), hydrogenated with difficulty to a mixture of H2- and H8-compounds (picrates, m.p. 182-183.5° and 195-198°). NEt2 CH2 COCl similarly leads to 3-indolylacetdiethylamide, m.p. 101° (picrate, m.p. 139-140°; hydrolysed to the known acid), hydrogenated to the $2:3-H_2$ - [picrate, m.p. 170-172°; additive compound with 2-nitrohydrindene-1: 3-dione, m.p. 184° (decomp.)] and $H_{8^{\circ}}$ amide, b.p. 146-147°/0.75 mm. (picrate, m.p. 177-178.5°). Mg 2-thionaphthenyl iodide and NEt₂ COCI give thionaphthen-2-carboxyldiethylamide, b.p. 220°/11 mm., also obtained from the acid chloride and NHEt2, and hydrolysed to the known acid. 3-Nitriloindole and KOH-EtOH-H2O give indole-3-carboxylamide, m.p. 200°. The indolediethylamides could not be R. S. C. obtained by other methods.

Derivatives of di- and tetra-hydroquinoline.— See B., 1937, 1179.

α-6-Methoxy-8-quinolyl-β-alkylcarbamides. J. W. BOEHMER (Rec. trav. chim., 1937, 56, 901–906). —8-Amino-6-methoxyquinoline is transformed by the necessary alkylcarbimide in PhMe into α-6methoxy-8-quinolyl-β-alkylcarbamides in which the alkyl is Me (I), m.p. 201°, Et, m.p. 188°, Pr^a , m.p. 197°, Pr^β , m.p. 217°, Bu^a , m.p. 194°, and Bu^β , m.p. 190°. All these compounds afford hydrochlorides. Only (I) appears to have any action on plasmodium relictum. H. W.

Mechanism of decarboxylation. I. Decomposition of quinaldinic and isoquinaldinic acids in the presence of compounds containing carbonyl groups. P. Dyson and D. L. HAMMICK (J.C.S., 1937, 1724-1726).-When quinaldinic (I) and isoquinaldinic (II) acid are heated with excess of PhCHO, anisaldehyde, and COPhMe, CO₂ is evolved and products are obtained which indicate that the decarboxylation takes place thus: OH·CO·X + $COYZ \rightarrow OH \cdot CXYX + CO_2$ where X = quinolyl or isoquinolyl, and Y and Z = aryl, alkyl, or H. (I) with PhCHO gives phenyl-2-quinolylcarbinol, m.p. 50-60°, readily oxidised to the ketone, with anisaldehyde forms anisyl 2-quinolyl ketone, m.p. 78° (2:4-dinitrophenylhydrazone, m.p. 242°), and with COPhMe yields phenyl-2-quinolylmethylcarbinol, m.p. 100°. (II) and PhCHO afford phenyl-1-isoquinolylcarbinol, m.p. 106° (Bz derivative, m.p. 158-159°), oxidised $(K_2Cr_2O_7)$ to the ketone. F. R. S.

Iodo-derivatives of substituted phenylquinolinecarboxylic acids.—See B., 1937, 1270.


Derivatives of methylcholanthrene and heterocyclic derivatives of cholesterol. W. ROSSNER (Z. physiol. Chem., 1937, 249, 267-274; cf. Dorée and Petrov, A., 1936, 69).-Methylcholanthrene (I) in C_6H_6 gives with conc. HNO₃ in AcOH for 3 hr. at 0° two (NO2)2-derivatives, m.p. 224° and 257°, respectively, and with Ac2O and conc. H2SO4 a monosulphonic acid (II), m.p. 240° (Me ester, m.p. 274°). In the same way the condensation product (III) of cholestan-3-one and NHPh•NH₂ gives a mono-sulphonic acid, m.p. 235° (Me ester, m.p. 190°; K and Na salts). (III) with Se at 320° for 40 hr. gives a compound (IV), C₂₉H₃₉N, m.p. 203°; at 340° for 30 hr. (after 16 hr. at 320°) a compound (V), $C_{21}H_{17}N$, probably aninomethylcholanthrene, m.p. 225° ; and at 360° (I). Cholestenone with NHPh NH₂ yields a compound (VI), C33H47N, m.p. 195°, which with Se gives at 320° a compound (VII), C₂₉H₃₅N, m.p. 170°; at 340° for 30 hr. (after 16 hr. at 320) a compound (VIII), $C_{28}H_{27}N$; and at 360° (I). (II) is not carcino-genic. Formulæ are suggested for the compounds (III)--(VIII). W. McC.

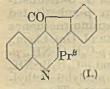
Acridine derivatives as antimalarials. U. P. BASU and S. J. DAS-GUPTA (J. Indian Chem. Soc., 1937, 14, 468-473).-5-Chloro-, m.p. 68-69° (cf. A., 1925, i, 65; 1931, 495), with PhOH-KOH at 140° gives 5-phenoxy-, m.p. 102° (hydrochloride, m.p. 223-225°), and with NEt₂·[CH₂]₄·NH₂ (I) and Cu at 150° gives $5 - \delta$ - diethylaminobutyl - 1 : 2 : 3 : 4 - tetrahydroacridine (methylenedioxynaphthoate, m.p. 216-220°). Et cyclohexanone-2-carboxylate (II) and p-anisidine (III) give 7-methoxy-1:2:3:4-tetrahydroacridone, m.p. 295°, which with PCl₅, followed by PhOH at 150°, yields 5-chloro-7-methoxy- (IV), m.p. 122°, and 5phenoxy-7-methoxy-1:2:3:4-tetrahydroacridine (V), m.p. 120° [hydrochloride, m.p. 220° (decomp.); picrate, m.p. 190-192°]. From (I), (IV), and Cu, or from (I) and (V) (both at 150°), the 7-methoxy-5-8diethylaminobulyl compound (dihydrochloride, m.p. 193-194°) is obtained Similarly (IV) gives the 7methoxy-5-y-diethylaminopropyl compound (dihydrochloride, m.p. 228-229°). Et 5-methylcyclohexanone-2-carboxylate and (III) yield 7-methoxy-2-methyl-

1:2:3:4-tetrahydroacridone, m.p. 335°, from which 5-chloro-7-methoxy-2-methyl-, m.p. 90°, 5-phenoxy-7methoxy-2-methyl-, m.p. 103°, 7-methoxy-2-methyl-5-8diethylaminobutyl- (dihydrochloride, m.p. 203—204°), and 7-methoxy-2-methyl-5- γ -diethylaminopropyl-1:2:3:4-tetrahydroacridine (dihydrochloride, m.p. 242—243°) are obtained. Et 3-methylcyclohexanone-6-carboxylate and p-C₆H₄Cl·NH₂ (VI) give Et 2-(4'chloroanilino)-4-methyl- Δ ¹-cyclohexene-1-carboxylate, m.p. 90°, which at 270° forms 7-chloro-2-methyl-1:2:3:4-tetrahydroacridone, m.p. 375° (decomp.) (sealed tube), from which (POCl₃-PCl₅) 5:7-dichloro-2-methyl-1:2:3:4-tetrahydroacridine, m.p. 89°, is obtained. Using (II) and (VI), 7-chloro-1:2:3:4tetrahydroacridone, m.p. 380°, is formed. E. W. W.

3:10-Dihydroxy-1:2:3:4-tetrahydro-7':8'benzquinoline.—See B., 1937, 1179.

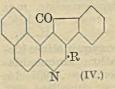
Polynuclear condensed systems with heterocyclic rings. W. BORSCHE and W. NOLL (Annalen, 1937, 532, 127—145).—Phenylpyruvic acid (I) is transformed by o-NH₂·C₆H₄·CHO and NaOH in H₂O-EtOH at 100° into 3-phenylquinoline-2-carboxylic acid (II), m.p. 165° (decomp. into CO2 and 3-phenylquinoline) (Me ester, m.p. 82°; anilide, m.p. 182-183°). Similarly, (I) condenses with isatin to 3-phenylquinoline-2: 4-dicarboxylic acid (III), m.p. 271-272° (decomp.) (Me2 ester, m.p. 124-125°; dianilide, m.p. 253-255°). Complete decarboxylation of (III) occurs at its m.p. whereas at 210-215° it affords 3phenylquinoline-4-carboxylic acid (IV), decomp. 277° (Me ester, m.p. 76-77°; anilide, m.p. 222). 5-Methylisatin and (I) yield 3-phenyl-6-methylquinoline-2:4-dicarboxylic acid, m.p. $281-282^{\circ}$ (decomp.) [Me_2 ester, m.p. $131-132^{\circ}$; dianilide ($+1H_2O$), m.p. 155°], which passes at 220° into 3-phenyl-6-methylquinoline-4-carboxylic acid (V), m.p. 282° (decomp.) (Me ester, m.p. 111-112°; anilide, m.p. 286°), and at 290-295° into 3-phenyl-6-methylquinoline, b.p. 226°/17 mm., m.p. 63-64° (picrate, m.p. 256-257°). Treatment of (II) and (IV) with AlCl₃ in PhNO₂ affords 9-keto-1-aza-2: 3-benzofluorene (A), m.p. 190.5°,

and 9-keto-3-aza-1:2-benzofluorene (B), m.p. 238° (picrate, m.p. 227—228°). The dichloride of (III) with AlCl₃ in PhNO₂ gives a mixture of 9-keto-1-aza-2:3-, m.p. 313° (decomp.) (Na salt), and 9-keto-3aza-1:2- (VI), m.p. 185° (decomp.) and, after resolidification, m.p. about 235° (Na salt; Me ester, m.p. 206—207°), -benzofluorene-4-carboxylic acid. Ring-closure by conc. H₂SO₄ at 100° gives (B) from (IV), 9-keto-3-aza-p-methyl-1:2-benzofluorene, m.p. 237° [picrate, m.p. 252° (decomp.)], from (V), and (VI) from (III). (A) gives an oxime, m.p. 242—243° (decomp.), and a 2:4-dinitrophenylhydrazone, decomp. 333° (hydrochloride); it is reduced by N₂H₄,H₂O at 100° to 3-aza-1:2-benzofluorene, b.p. 240°/25 mm., m.p. 140°. Reduction with Sn and HCl leads to 1-aza-1:2:3:4-tetrahydro-2:3-benzofluorene, m.p. 119—122°, and 1-azadihydro-2: 3-benzofluorene hydrochloride, m.p. 239—242° after softening at 217°. (B) similarly affords an oxime, m.p. 288°, and a 2: 4dinitrophenylhydrazone, m.p. 315° (decomp.); it is reduced to 3-aza-1: 2-benzofluorene, b.p. 242 /14 mm., m.p. 165° [picrate, decomp. 192°; hydrochloride, m.p. 337—338° (decomp.)], or by Sn and HCl followed by acetylation to 3-aza-acetyldihydro-1: 2-benzofluorene, m.p. 133—134°, hydrolysed to 3-azadihydro-1: 2benzofluorene hydrochloride, m.p. 293—295°. 3-Azap-methyl-1: 2-benzofluorene, b.p. 246°/12 mm., m.p. 136—137°, gives a hydrochloride, decomp. 343—345°.


Benzylpyruvic acid (VII), o-NH₂·C₆H₄·CHO, and 18% NaOH at 100° yield 3-benzylquinoline-2-carboxylic acid (VIII) (+H₂O), m.p. about 105° and, after re-solidification, decomp. about 133° [hydrochloride (hydrated), m.p. 80—85°, (anhyd.), m.p. 166·5— 168·5° (decomp.); Me ester, m.p. 62°; anilide, m.p. 144°]. 3-Benzylquinoline-4-carboxylic acid (IX), m.p. 230·5° (decomp.) (Me ester, m.p. 84—85°; anilide, m.p. 244°), is obtained by partial decarboxylation at 200° of 3-benzylquinoline-2: 4-dicarboxylic acid, m.p. 188° (decomp.) (or, from AcOH, decomp. 186—188° after softening at 132°; from COMe₂, decomp. 186— 188° after softening at 120°; Me₂ ester, m.p. 61—63°; dianilide, m.p. 204°), derived from (VII) and isatin; complete decarboxylation at 250° yields 3-benzylquinoline, b.p. 226°/19 mm., m.p. 65—67°. The chloride of (VIII) is transformed

N OH (C.)

chloride of (VIII) is transformed by $AlCl_3$ in $PhNO_2$ into 1-aza-2: 3benzoanthran-9-ol (C), isolated as the Al derivative, $(C_{17}H_{16}ON)_3Al$, m.p. >360°. Similarly, (IX) gives 3-aza-1: 2-benzoanthran-9-ol (X)


(hydrochloride, decomp. >360°). Ring-closure with conc. H_2SO_4 appears less satisfactory. (X) gives an Ac derivative, m.p. 177—178° [picrate, m.p. 248—249° (decomp.)], and an oxime, m.p. 277—278° (decomp.). Reduction of it with N_2H_4, H_2O does not give a homogeneous material. With glycerol and 82% H_2SO_4 at 150° it gives 7-aza-5:6-benzobenz-anthrone, m.p. 255°; it is oxidised by $Na_2Cr_2O_7$ and 30% H_2SO_4 to 3-aza-1:2-benzoanthraquinone, m.p. 186°, reductively acetylated to 3-aza-1:2-benzo-anthraquinol diacetate, m.p. 267° (decomp.). H. W.

Polynuclear, condensed ring systems with heterocyclie rings. II. W. BORSCHE and F. SINN (Annalen, 1937, 532, 146–165).—COPr³·CH₂Ph, isatin, and KOH in H₂O–EtOH at 100° give 3-phenyl-2-isopropylquinoline-4-carboxylic acid, m.p. 284° (decomp.), the chloride of which is converted by AlCl₃ in

benzofluorene, m.p. 135°. 2-Chloro-3-phenylquinoline-4-carboxyl chloride similarly affords 4-chloro-3-aza-1:2-benzofluorenone (II), m.p. 214.5° [2:4-dinitrophenylhydrazone, m.p. 322—324° (decomp.)], which does not form a hydrochloride or picrate; it is transformed by N_2H_4, H_2O at 190—200° into 4-hydroxy-

3-aza-1: 2-benzofluorene (III), gradual decomp. 330° after becoming discoloured at 300°. 9-Keto-4methoxy-3-aza-1:2-benzofluorene, m.p. 173° (2:4-dinitrophenylhydrazone, decomp. 328°; oxime, decomp. 240-245°, according to the rate of heating), does not give a hydrochloride or a picrate; it is converted by N.H4,H2O into (III). NaOEt in EtOH and (II) afford 9-keto-3-aza-1: 2-benzofluorene, m.p. 238° [picrate, m.p. 226-228°; 2:4-dinitrophenyl-hydrazone, m.p. 310-311° (decomp.)]. 2-Phenylchloride (corre-5:6-benzoquinoline-4-carboxyl sponding anilide, m.p. 269°) could not be cyclised by AlCl. or by conc. H₂SO₄ to the corresponding ketone; the cause does not lie in the inability of the COCI to react since 4-benzoyl-2-phenyl-5: 6-benzoquinoline, m.p. 201°, which could not be oximated, is readily produced in presence of AlCl₃ and C_cH₆. 3-Phenyl-5: 6-benzo-quinoline-4-carboxyl chloride and

quinoline-4-carboxyl chloride and AlCl₃ in PhNO₂ afford 9-keto-3-aza-1:2-1':2'-naphthaflucrene [(IV), R = H], m.p. 216° [picrate, m.p. 244°; oxime, m.p. 281° (decomp.); 2:4-dinitrophenylhydrazone, m.p. 313° (decomp.)],

(IV.) hydrazone, m.p. 281°(IV.) hydrazone, m.p. 313° (decomp.)], reduced by N_2H_4 , H_2O to 3-aza-1:2-1':2'-naphthafluorene, m.p. 200° (hydrochloride; picrate, decomp. 241° after incipient blackening at about 225°). Phenylpyruvic acid, β -C₁₀H₇·NH₂, and Pr⁶CHO in boiling EtOH give 3-phenyl-2-isopropyl-5:6-benzoguinoline-4-carboxylic acid, m.p. 277° [decomp. into CO₂ and 3-phenyl-2-isopropyl-5:6-benzoguinoline-4-carboxylic acid, m.p. 277° [decomp. into CO₂ and 3-phenyl-2-isopropyl-5:6-benzoguinoline after becoming discoloured], transformed into 9-keto-4-isopropyl-3-aza-1:2-1':2'-naphthafluorene [(IV), R = Pr^β], m.p. 161° [picrate, m.p. 192–193°; oxime, m.p. 226° (decomp.)], reduced to 4-isopropyl-3-aza-1:2-1':2'-naphthaftuorene, m.p. 202° [picrate, m.p. 216° (decomp.)]. 2:3-Diphenyl-5:6-benzoquinoline-4-carboxylic acid (Me ester picrate, m.p. 232°) is transformed by successive treatments with SOCl₂ and AlCl₃ in PhNO₂ into 9-keto-4-phenyl-3-aza-1:2-1':2'-naphthaftuorene [(IV), R = Ph], m.p. 211° [picrate, m.p. 249°; oxime, m.p. 242° (decomp.); 2:4-dinitrophenylhydrazone, m.p. 293° (decomp.)], whence 4-phenyl-3-aza-1:2-1':2'-naphthafluorene, m.p. 234° (picrate, decomp. 228°). CH₂Bz·CO₂Et, o-NH₂C₆H₄·CHO, and NaOH slowly and at room temp. afford 2-phenylquinoline-3-carboxylic acid, m.p. 229° (anilide, m.p. 1805°), the chloride of which is cyclised by AlCl₂ in PhNO₂ to

chi₂b2:00₂b0; ordfl22⁶b1 classified 2-phenylquinoline-3-carboxylic acid, m.p. 229° (anilide, m.p. 180.5°), the chloride of which is cyclised by AlCl₂ in PhNO₂ to 4-aza-9-keto-2: 3-benzofluorene, m.p. 175.5° [picrate, m.p. 198.5°; 2:4-dinitrophenylhydrazone, m.p. 301° (decomp.)], whence 4-aza-2: 3-benzofluorene, decomp. 230-235° after becoming discoloured. This yields 9-benzylidene-4-aza-2: 3-benzofluorene, m.p. 245-246° (decomp.), and 9-ethoxalyl-4-aza-2: 3-benzofluorene, m.p. 233-234° (decomp.) (oxime, decomp. 199; Bz derivative, m.p. 167-168°). CH₂(CO₂Et)₂ and o-C H.Bz·NH₂ at 195-180° give Et 2-hydroxy-4phenylquinoline-3-carboxylate, m.p. 274°, hydrolysed by conc. HCl to the corresponding acid, m.p. 283° (decomp.); this with SOCl₂ yields 2-chloro-4-phenylquinoline-3-carboxyl chloride (Me 2-chloro-4-phenylguinoline-3-carboxylate, m.p. 127-128°, cyclised to 1-chloro-9-keto-2-aza-3 : 4-benzofluorene, m.p. 215– 217° (2 : 4-dinitrophenylhydrazone, decomp. 317°). CH₂Bz·CH₂·CO₂H, o-NH₂·C₆H₄·CHO, and 10% NaOH– MeOH at 100° yield 2-phenylquinoline-3-acetic acid, m.p. 191° (evolution of CO₂ and production of 2-phenyl-3-methylquinoline) [picrate, m.p. 215° (decomp.); Me ester, m.p. 88–89°], the ring compound, m.p. 367– 370° (decomp.), from which contains S. Atophan is transformed into the chloride, which with AlCl₃ and C₆H₆ gives 4-benzoyl-2-phenylquinoline, m.p. 114° (picrate, m.p. 213–214°; oxime, m.p. 192–193°; 2 : 4-dinitrophenylhydrazone, m.p. 245–246°), reduced by N₂H₄,H₂O at 180° to 4-benzyl-2-phenylquinoline (picrate, decomp. 192°). 2-Chloroquinoline-4-carboxyl chloride, C₆H₆, and AlCl₃ yield 2-chloro-4benzoylquinoline, m.p. 105–107° (2 : 4-dinitrophenylhydrazone, m.p. 247°). 2-Phenylquinoline, AlCl₃, and BzCl in CS₂ yield 2-p-benzoylphenylquinoline, m.p. 126° (hydrochloride, m.p. 196°; picrate, m.p. 164°; oxime, m.p. 185°).

Dyes derived from 8-hydroxyquinolinealdehydes and from 2-hydroxyanthraquinonealdehyde. S. K. RAY (J. Indian Chem. Soc., 1937, 14, 414-416).--7 · Aldehydo · 8 · hydroxyquinoline condenses (HCl) with NPhMe₂ or resorcinol, or (H₂SO₄) with o-hydroxytoluic acid (I), giving *leuco-bases*, m.p. respectively 177°, 148°, and 250°, oxidised by PbO₂ or NO·HSO₄ to the *carbinols*. Condensation (H₂SO₄) with resorcinol or *m*-OH·C₆H₄·NEt₂ yields *pyronine dyes*, m.p. 80° and 86-87°. The 5-aldehyde gives similar results. 1-Aldehydo-2-hydroxyanthraquinone, when condensed (HCl) with NPhMe₂, or (H₂SO₄) with *m*-OH·C₆H₄·NEt₂ or (I), and the products oxidised, yields *dyes*, the first two having m.p. 78° and 135°. A. Li.

Syntheses of pyrazolone derivatives. I. Butyl- and isobutyl-antipyrine. A. GIACALONE (Gazzetta, 1937, 67, 460–463).—CHBu^{β}Ac·CO₂Et (new prep. using NaOEt and CH₂Ac·CO₂Et in EtOH, followed by Bu^{β}I) and NHPh·NH₂ in AcOH give 1-phenyl-3-methyl-, m.p. 118°, which with MeI-MeOH yields 1-phenyl-2:3-dimethyl-4-isobutylpyrazolone, m.p. 56°. 1-Phenyl-3-methyl-, m.p. 95–96°, and 1-phenyl-2:3-dimethyl-4-n-butylpyrazolone, m.p. 44–45°, are prepared similarly. E. W. W.

Preparation of glyoxaline derivatives from acyloins. K. BERNHAUER and R. HOFFMANN (J. pr. Chem., 1937, [ii], 149, 321–323).—Butyroin with PhCHO or CH₂O and NH₃-Cu(OAc)₂ gives 2-phenyl-4:5-di-n-propyl-, m.p. 175—176° (hydrochloride, m.p. 146—147°), and 4:5-di-n-propyl-glyoxaline, m.p. 65— 68° (hydrochloride, decomp. 154—156°), respectively. Acetoin gives similarly 2-phenyl-4:5-dimethyl-, m.p. 242° (hydrochloride, m.p. 116—118°), and 4:5-dimethyl-glyoxaline, m.p. 115—117°, b.p. 125—135°/0·3 mm., respectively. Only the Ph bases crystallise well. R. S. C.

Glyoxaline group. VI. Opening of the benziminazole ring. B. ODDO and (SIGNA.) L. RAFFA (Gazzetta, 1937, 67, 537—543; cf. A., 1933, 285).— The MgBr derivative of benziminazole (I) with AcCl or EtCOCl in Et_2O yields 1-acetyl- (II) and 1-propionyl-benziminazole, which when boiled with the acid chloride give no other product. 1-Benzoyl-

benziminazole with BzCl at the b.p., followed by hot H_2O , yields $o \cdot C_6H_4(NHBz)_2$. With Ac₂O followed by hot H_2O , (I) gives $o \cdot C_6H_4(NHAc)_2$ (III) and (II); (II) also gives (III). With aq. AcOH at 100°, however, (II) yields (I). E. W. W.

Aliphatic polyamines. VI. J. VAN ALPHEN (Rec. trav. chim., 1937, 56, 1007—1012; cf. A., 1937, II, 302).—Even when an excess of primary amine is present, one mol. of N(CH₂·CH₂Cl)₃ reacts with only two mols. of the former to give a derivative of 1- β -aminoethylpiperazine. N(CH₂·CH₂Cl)₃,HCl (I) is converted by boiling NH₂Ph into 4-*phenyl*-1- β -*anilinoethylpiperazine*, m.p. 60°, converted by PhNCS into the compound NPh<CH₂·CH₂·CH₂·N·CH₂·CH₂·NPh·CS·NHPh, m.p. 105°, and by BzCl into 4-*phenyl*-1- β -*benzanilido ethylpiperazine*, m.p. 91°. (I) and NH₃ in EtOH– H₂O at 100° afford 1- β -*aminoethylpiperazine* (+H₂O), b.p. 260—280° (*picrate*, m.p. about 208°). 4-*Methyl*-1- β -*methylaminoethylpiperazine*, b.p. 240—260° (*oxalate*; *picrate*, decomp. about 210°), is described. 4- β -Aminoethyl-1- β -aminoethylpiperazine,

Derivatives of piperazine. XI. Addition to conjugate systems. II. V. E. STEWART and C. B. POILARD (J. Amer. Chem. Soc., 1937, 59, 2006).— $1:4-Di-(\beta aroyl-\alpha -arylethyl)piperazines$ are prepared (method: A., 1936, 1522) from piperazine and the following derivatives of Ph styryl ketone: 3-Me, m.p. 116—116-5°; 4'-chloro-4-methyl, m.p. 149·2— 149·6°; 4'-bromo-3-methyl, m.p. 128·8—129·2°; 4'chloro-3-methyl, m.p. 125·6—126°; 4'-chloro-4methoxy, m.p. 152—152·5°; 4'-bromo-4-methyl, m.p. 153—153·5°; 4'-bromo-4-methoxy, m.p. 154·8— 155·2°; 3:4'-Me₂, m.p. 165·5—166°; 4'-bromo-3:4-methylenedioxy, m.p. 154·5—155·2°. M.p. are corr. H. B.

Infra-red spectrum and molecular structure of diketopiperazine and tetramethyldiketopiperazine.—See A., I, 495.

Derivatives of pyrazolones and of tetrahydrodiazanaphthalene.—See B., 1937, 1179.

Substituted pyrimidines.—See B., 1937, 1270.

Condensations of aromatic amines with formaldehyde in media containing acid. VI. Use of formic acid in the preparation of 3 : 6-disubstituted dihydroquinazolines from p-substituted amines, and from their bis(arylamino)methanes and Schiff's bases. E. C. WAGNER (J. Org. Chem., 1937, 2, 157—166).—p-C₆H₄Me·NH₂, p-C₆H₄Cl·NH₂, p-OMe·C₆H₄·NH₂, p-OEt·C₆H₄·NH₂, and p-C₆H₄Br·NH₂ with CH₂O and HCO₂H give 3-p-tolyl-6-methyldihydroquinazoline and its analogues. These are formed by way of (p-C₆H₄Me·NH)₂CH₂ etc., and may also be obtained from the latter, the amine hydrochlorides, and CH₂O-HCO₂H, or from the trimeric Schiff's bases, (p-C₆H₄Me·N·CH₂)₃, amine, amine hydrochloride, and CH₂O-HCO₂H. The two latter methods give better yields. The following are described. NN'-Methylenebis-p-chloroaniline, new m.p. 59—60°; NN'-methylenebis-p-phenetidine, m.p. 75° (the substance previously regarded as this compound is the trimeric Schiff's base, m.p. 90°); NN'methylenebis-p-bromoaniline, m.p. 92° [another substance, m.p. 181° (decomp.), was previously so named (cf. A., 1908, i, 534)], which is reduced (Zn-HCl) to p-C₆H₄Br·NH₂, p-C₆H₄Br·NHMe, and p-C₆H₄Br·NMe₂, and is converted by CH2O into trimeric methylene-pbromoaniline, m.p. 166°; trimeric methylene-p-phenetidine, m.p. 90°, similarly reduced to a mixture of amines; 6-methoxy-3-p-anisyl-3: 4-dihydroquinazoline, m.p. 138° (corr.) [picrate, m.p. 214° (corr.)], hydrogenated to the 1:2:3:4-tetrahydroquinazoline, m.p. 135° (corr.); and 6-ethoxy-3-p-phenetyl-3: 4-dihydroquinazoline picrate, m.p. 185.5° (corr.). 3-p-Tolyl-6-methyl - 1:2:3:4 - tetrahydroquinazoline and HCO₂H at 150° give the 3: 4-dihydroquinazoline. E. W. W.

Quinazolines. I. T. N. GHOSH (J. Indian Chem. Soc., 1937, 14, 411-413).-1-Keto-3-benzamidomethyl-5: 6-benz-2: 4-oxazine (Ghosh, A., 1937, II, 393) condenses (Cu powder at 170°) with NH₂Ar to give 1-keto-2-aryl-3-benzamidomethyl-1: 2-dihydro-

(I.)

m.p. 195–196°, m-tolyl, m.p. 177–178°, and with o- $C_6H_4(NH_2)_2$ to give the benziminazole derivative, (I), m.p. 211-212° (hydrochloride, m.p. 225-231°). A. LI.

Fission of 2-hydroxy-3-tetrahydroxybutyl-quinoxalines. II. H. OHLE, W. GROSS, and A. WOLTER (Ber., 1937, 70, [B], 2148-2152; cf. A., 1934, 392).-Fission of these compounds by NHPh·NH2 is not a true hydrolysis but a dehydrogenation. Its incidence is independent of the configuration of the side-chain and of the presence of an electrolytically dissociable OH at $C_{(2)}$. Me gulusonate and $o - C_6 H_4 (NH_2)_2$ an H_2O at 20° afford 2-hydroxy-3-1-xylotetrahydroxybutylquinoxaline, m.p. 170° (decomp.), $[\alpha]_{D}^{20}$ -62.0° in H₂O, converted by NHPh·NH2 in boiling H2O into 2-hydroxyquinoxaline-3-aldehydephenylhydrazone, m.p. 283° (de-2-Hydroxy-3-d-arabotetra-acetoxybutylcomp.). quinoxaline with CH2N2 in CHCl3 slowly gives 2methoxy-3-d-arabotetra-acetoxybutylquinoxaline, m.p. 154.5—156.5°, $[\alpha]_{D}^{20} - 27.6^{\circ}$ in CHCl₃, hydrolysed by NH3-MeOH at 20° to 2-methoxy-3-d-arabotetrahydroxybutylquinoxaline, m.p. 183°, [a]20 -13.7° in C5H5N, which suffers fission into 2-methoxyqyinoxaline-3-aldehydephenylhydrazone, m.p. 145°. The isomeric 2-keto-1-methyl-3-arabotetrahydroxybutyl-1:2-dihydroquinoxaline, m.p. 187°, $[\alpha]_{5}^{57} - 61 \cdot 1^{\circ}$ in C_5H_5N , is derived from Me glycosonate and $o \cdot NH_2 \cdot C_6H_4 \cdot NHe$, HCl, NaOAc, and H_3BO_3 in boiling EtOH. 2-Hydroxy-3-methylquinoxaline is transformed by CH2N2 in EtOH into 2-keto-1: 3-dimethyl-1: 2-dihydroquinoxaline, m.p. 87°. AcCO₂H and o-NH₂·O₆H₄·NHMe in presence of AcOH give pyruv-o-methylaminoanil, m.p. 139°. 2-Keto-1-methyl-3-dibronomethyl-1:2dihydroquinoxaline, m.p. 178° (phenylhydrazone, m.p.

198°), is derived from 2-hydroxy-3-dibromomethylquinoxaline and CH₂N₂ in CHCl₃ or from

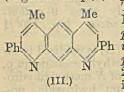
CHBr₂·CO·CO₂H, o-NH₂·C₆H₄·NHMe,HCl, and borax H. W. in EtOH.

Phenazine series. V. Reactions of 1:2:3:4tetrahydrophenazine and related compounds. VI. Reactions of alkyl phenazonium salts ; the phenazyls. H. McILWAIN (J.C.S., 1937, 1701-1704, 1704-1711).-V. 1:2:3:4-Tetrahydrophenazine (I) and PhCHO give 1:4-dibenzylphenazine, m.p. 158° [ferrichloride (+AcOH), m.p. 200°], whilst (I) and p-NO₂·C₆H₄·CHO yield 1-p-nitrobenzyl-3:4-dihydro-phenazine, m.p. 172°, and 1:4-bis-p-nitrobenzylphenazine, m.p. 250°, reduced to 1:4-bis-p-aminobenzyl-1:2:3:4-tetrahydrophenazine, m.p. 176°. According to the time and amounts, (I) and p-NMe₂·C₆H₄·CHO give 1-p-dimethylamino-3: 4-dihydrophenazine, m.p. 158°, or 1:4-bis-p-dimethylaminobenzylphenazine, m.p. 207°. 1:2:3:4-Tetrahydrophenazine monomethiodide, m.p. 207°, with NaOH affords 9-methyl-2:3:4:9-tetrahydrophenazine, b.p. 170°/1 mm., 1:2:3:4:5:6:7:8-octahydrophenazine and methiodide, m.p. 175°, similarly gives 9-methyl-2:3:4:5:6:7:8:9-octahydrophenazine, b.p. 160°/1 mm.

VI. Phenazine methosulphate (II) is oxidised in air to a small amount of 2-keto-N-methylphenazine, m.p. 200°, also obtained by oxidation of N-methyldihydrophenazine. N-Methylphenazonium hydroxide, presumably the immediate product of the reaction between N-methylphenazonium salts and alkalis, is unstable even in absence of air. Under the influence of visible light, these salts oxidise more rapidly, producing mainly the 4-keto-compound, pyocyanine (45 mol. %), phenazine (47 mol. %), and small amounts of 1-hydroxyphenazine and 2-keto-Nmethylphenazine. NaCN and (II) give N-methylphenazyl-2-nitrile, m.p. 145°, and N-methyldihydrophen-azine-2-nitrile, m.p. 155°, which are interconvertible under certain conditions, and both yield phenazine-2carboxylic acid. Na2SO3 and (II) afford Na N-methyldihydrophenazinesulphonate $(+H_2O)$, which with K persulphate forms N-methylphenazyl- and then N-methylphenazonium-sulphonic acid betaine, with Na2SO3 giving Na H N-methylphenazyldisulphonate betaine. Phenazine ethosulphate, m.p. 190°, and NEt K₃Fe(CN)₆-NaOH yield 2-keto-N-

ethylphenazine, m.p. 174°, and with Na2CO3 in daylight, 4-keto-N-ethylphenazine, m.p. 187°, is obtained. The ethosulphate is reduced (Zn) to N (III.) N-ethyldihydrophenazine, m.p. 99°, which with PbO₂ gives N-ethylphen-azyl (III), m.p. 102°. MeMgI converts (II) into NN-

dimethyl-NN-dihydrophenazine and other products. F. R. S.


NEt

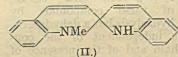
Reversible polymerisation as a cause of new types of absorption bands.-See A., I, 494.

Nitrogenous heterocyclic rings. XXX. 4:6-Diamino-1: 3-diacetylbenzene and its trans-formation into derivatives of *lin.*-benzodipyridine. P. RUGGLI and H. REICHWEIN (Helv. Chim. Acta, 1937, 20, 905-913; cf. A., 1937, II, 214).-4:6-Dinitro-m-xylene in conc. H₂SO₄ is

xvII (e)

oxidised by CrO_3 -H₂SO₄ at -5° to 4:6-dinitroisophthalic acid, converted by SOCl₂ into the corresponding chloride, m.p. 106-108°, which gives a resin with CHAcNa CO2Et and could not be transformed into the corresponding cyanide. With CH2N2 in Et2O it affords 4: 6-dinitro-1: 3-bisdiazoacetylbenzene, decomp. 146-149°, in which CO could not be detected and which gives resins when treated with Al-Hg H₂S, or I. It is transformed by EtOH and conc. HCl into 4:6-dinitro-1:3-dichloroacetylbenzene, decomp. 155-159° after softening at 150°, which cannot be reduced in the usual manner but is converted by Cu in conc. H2SO4 at 60° into 4 : 6-diamino-1 : 3-dichloroacetylbenzene (I), decomp. about 200° when rapidly heated, which appears to pass in boiling PhNO2 into an indigoid compound; its Ac, derivative, m.p. 175-176° (slight decomp.), and NaOH give a black vat dye. NaI and (I) in cold COMe2 afford 4: 6-diamino-1: 3di-iodoacetylbenzene, decomp. 165-170° (indef.). Zn dust and HCl or AcOH transform (I) into 4:6-diamino-1: 3-diacetylbenzene (II), m.p. 234-233° (slight decomp.) $(Ac_2 \text{ derivative, decomp. } 240-245^\circ)$. Mo Me This with COPhMe and KOH-

This with COPhMe and KOH-McOH at 110° gives 2:7-diphenyl-4:5-dimethylbenzodipyrid-Ph ine (III), decomp. 284-285° [dipicrate, decomp. (indef.) 210-260°]. With CH₂Ac₂ and piperidine at 225-230° (II) yields


3: 6-diacetyl - 2: 4: 5: 7-tetramethylbenzodipyridine, decomp. 246—248° after darkening at 240° (dipicrate, decomp. 180°). With $CH_2Ac\cdot CO_2Et$ in boiling xylene (II) gives 2: 7-dihydroxy-3: 6-diacetyl-4: 5-dimethyl- or 2: 7-diketo-3: 6-diacetyl-4: 5-dimethyl-1: 2: 7: 8-tetrahydro-benzodipyridine, decomp. about 415° after slow darkening above 310°. H. W.

Nitrogenous heterocyclic rings. XXXI. Synthesis of indigotin from o-substituted acetophenones. P. Ruggli and H. REICHWEIN (Helv. Chim. Acta, 1937, 20, 913-918).-Gradual addition of Br in CHCl₃ to an irradiated solution of $C_{\rm s}$ H.Ac·NO₂ at 50° gives ω -bromo-o-nitroaceto-phenone (compound, C₁₃H₁₁O₃N₂Br, decomp. 230— 240°, with C₅H₅N), reduced by Cu powder in conc. H.SO4 at 50° to w-bromo-o-aminoacetophenone, m.p. $83-85^{\circ}$ (decomp.) after softening at 80° (compound, $C_{12}H_{13}ON_2Br$, decomp. 210-223°, with C_5H_5N), which gives very little indigotin (I) when warmed with dil. NaOH in air. w-Bromo-o-acetamidoacetophenone, m p. 126-127° after softening at 120°, from the amine and Ac₂O in Et₂O, gives 73% yields of (I) when treated with dil. NaOH and air, thus suggesting the intermediate formation of acetylindoxyl. w-Chloro-o-nitroacetophenone, from o-NO₂·C₆H₄·COCl and CH₂N₂ followed by treatment of the N₂ compound with EtOH-H2O-HCl, is similarly reduced to w-chloro-oaminoacetophenone, m.p. $112-113^\circ$, which gives only a green colour with aq. NaOH. From ω -chloro-oacetamidoacetophenone, m.p. 123-125°, (I) is obtained H. W. in 63% yield.

Nitrogenous heterocyclic rings. XXXII. Benzodipyridine derivatives. IV. P. RUGGLI and A. STAUB (Helv. Chim. Acta, 1937, 20, 918-925).—Et₂ m-xylylenedichloromalonate is converted

by conc. H_2SO_4 -HNO₃ (d 1.5) at 0° into Et_2 4:6dinitro-m-xylylenedichloromalonate, m.p. 146°, which when hydrogenated (Ni in EtOH-EtOAc-H₂O) gives Et2 2:7-diketo-1:2:3:4:5:6:7:8-octahydrobenzodipiperidine-3: 6-dicarboxylate (I), m.p. 252°. Et2 m-xylylenedimalonate (II) is obtained from m-C6H4(CH2Br)2 and CHNa(CO2Et)2 or by condensing m-C₆H₄(CHO)₂ with CH₂(CO₂Et)₂ and piperidine to Et2 m-phenylenedimethylenemalonate (III), b.p. 265°/11 mm., m.p. 102°, which is subsequently hydrogenated (Ni in EtOAc-EtOH-H2O). The product gives a mixture of NO2-derivatives from which (I) is obtained by reduction. 2:7-Diketo-octahydrobenzodipyridine-3: 6-dicarboxylic acid has m.p. 412° (decomp.). Treatment of (III) with HNO3 (d 1.5) at 0° yields Et_2 4-nitro-m-phenylenedimethylene-malonate, m.p. 79–80°, reduced to Et_2 4-amino-mphenylenedimethylenemalonate, m.p. 172-175° after softening (Ac derivative, m.p. 150-160° after softening at 145°), which is cyclised by EtOH-conc. HCl at 100° to Et_2 3-carboxycarbostyril-6-methylenemalonate, m.p. 247-250°. $m \cdot C_6 H_4$ (CHO)₂ and barbituric acid in boiling C_5H_5N afford m-phenylenedimethylene-barbituric acid, m.p. 335—340° (decomp.). CO(NH₂)₂ and (II) with NaOEt in EtOH yield m-xylylenedibarbituric acid, m.p. 271-272°. H. W.

Spiran derivative of the quinoline series. K. MAURER and H. STARCK (Ber., 1937, 70, [B], 2054–2058).—2-Methylquinoline with o-NO₂·C₆H₄·CHO and ZnCl₂ at 140° yields to 2-o-nitrostyrylquinoline, m.p. 103°, reduced by SnCl₂ and HCl to 2-o-aminostyrylquinoline, m.p. 158° [Ac derivative, m.p. 181–182°; methiodide (I), m.p. 233°; picrate, m.p. 218°; diperchlorate, decomp. 261° or (+12H₂O), m.p. 120°; r-, m.p. 201°, and d-, m.p. 205°, -camphorsulphonate; d-tartrate, m.p. 212–213°; Fe^{II} and Fe^{III} salts].

Fell and Fell salts]. Cautious treatment of (I) with KOH-EtOH affords 1-methylspirodihydroquinoline (II), m.p. 115° (picrate, m.p.

233°; diperchlorate, decomp. 180-190° after becoming black at 150°; r-, m.p. 218°, and d-, m.p. 230°, -camphorsulphonate; d-tartrate, m.p. 192°), which gives no evidence of mol. asymmetry. It is particularly sensitive to Fe salts, with which it gives a red colour. H. W.

Compound $C_{8}H_{16}H_{4}N_{2}$, m.p. 256—257°, from scollop muscle.—See A., III, 339.

Pyrazoloanthraquinones.—See B., 1937, 1180.

Anthrapyrimidines.-See B., 1937, 1180.

Pyrrole series. III. Relation of tripyrylmethane cleavage to methene synthesis. A. H. CORWIN and J. S. ANDREWS (J. Amer. Chem. Soc., 1937, 59, 1973—1980; cf. A., 1936, 1122).—Et 2formyl-4-methylpyrrole-3:5-dicarboxylate (I) (1 mol.), Et 2:4-dimethylpyrrole-3-carboxylate (II) (1 mol.), and dry HCl in C_6H_{14} give 78% of the hydrochloride of 3:5:4'-tricarbethoxy-4:3':5'-trimethylpyrromethene (III), m.p. 137° (decomp.) (Cu complex), together with some 3:5:4':4''-tetracarbethoxy-4:3':5':3'':5''-pentamethyltri-2-pyrrylmethane (IV); with 2 mols. of (II), the sole product is (IV) [also formed by fusion of (I) and (II) (2 mols.) at 190-200°]. Contrary to Fischer and Ernst (A., 1926, 621), (IV) undergoes cleavage. Thus, (IV) and HCl in Et₂O-HCO₂H (essential) give 4:4'-dicarbethoxy-3:5:3':5'-tetramethylpyrromethene (V) [together with (III)], whilst (IV), (I), and HCl in Et₂O afford (III). The various reactions which occur with (I)-(IV) can be accounted for on the basis of varying reaction velocities. (III) and cold MeOH-KOH give 3:5:4'-tricarbethoxy-4:3':5'-trimethyldi-2-pyrrylcarbinol Me ether (VI) (the Et ether is similarly obtained using EtOH-KOH), which undergoes the reactions postulated for the free carbinol. Thus, (VI) and $\hat{H}Cl$ in C_6H_{14} afford (III); (VI), (II), and HCl in C_6H_{14} yield (IV); (VI), Et 1:2:4-trimethylpyrrole-3-carboxylate (VII), and HCl give (III) and no tripyrrylmethane (cf. below). Fusion of (VI) and (VII) at 145-150° furnishes 3:5:4':4"-tetracarbethoxy-4:3':5':1":3":5"-hexamethyltri-2-pyrrylmethane, which according to expectations (cf. above) is cleaved by Et₂O-HCl to (III). Et 2-formyl-1:4dimethylpyrrole-3:5-dicarboxylate (VIII) and (II) at 190-200° give 3:5:4':4"-tetracarbethoxy-1:4:3':5':3":5"-hexamethyltri-2-pyrrylmethane, m.p. 169-170° [also formed from (II), (VIII), and HCl in C₆H₁₄], which is cleaved by HCl to (V) (most rapidly in presence of HCO_2H) and (probably) a 1methylpyrromethene (not isolated). 3:5:4':4''-Tetracarbethoxy-1:4:1':3':5':1'':3'':5''-octamethyltri-2-pyrrylmethane, m.p. 178°, is prepared from (VII) and (VIII). Various unidentified products are obtained from (I) and (VII) by fusion or condensation with HCl. H. B.

Residual affinity and co-ordination. XXXVII. Complex metallic salts containing 2:6-di-2'pyridylpyridine (2:2':2"-tripyridyl). (SIR) G. T. MORGAN and F. H. BURSTALL (J.C.S., 1937, 1649-1655) .- The two forms of 2:6-di-2'-pyridylpyridine (I) (2': 2': 2"-tripyridyl trihydrochloride tetrahydrate, decomp. 280-285°) are dimorphous (cf. A., 1932, 284) and on oxidation (KMnO₄) give only pyridine-2-carboxylic acid, indicating that it is the central one of the C_5H_5N rings which is preferentially attacked. (I) acts as a tridentate group and furnishes many stable and characteristic co-ordination compounds, divided into two series, which contain severally 1 and 2 mols. of base to each atom of metal. The first series is of type [M tripy X] and [M tripy X]X, where M = Cu, Ag^+ , Ag^{++} , Zn, Cd, Hg, Pd, Pt, and [IrCl₃ tripy]. The second is of type [M 2tripy]X₂ and [M 2tripy]X₃,nH₂O, where M = Fe⁺⁺, Co⁺⁺, Co⁺⁺⁺, Ni, Ru⁺⁺, Os⁺⁺, and Cr⁺⁺⁺. The following are described : 2:2':2''tripyridyl-cupric chloride dihydrate, -argentous nitrate and perchlorate, -argentic nitrate, chlorate, perchlorate, dithionate, and persulphate, -zinc chloride, -cadmous chloride, -mercuric nitrate, -palladous chloride trihydrate, and -iridium trichloride; bis-2:2':2"tripyridyl-ferrous bromide tetrahydrate (monohydrate) and iodide monohydrate, -ruthenous chloride tetrahydrate. -osmous chloride tetrahydrate and iodide hydrate, -cobaltous bromide hydrate (+3.5H2O; monohydrate) and iodide hydrate, -cobaltic chloride heptahydrate, -nickel bromide hydrate (+3.5H₂O; monohydrate,

iodide hydrate, and tartrate tetrahydrate, and -chromic chloride dihydrate. F. R. S.

Relation between taste and chemical constitution. Naphthoisotriazine group. IV. A. NERI. V, VI. A. NERI and (SIGNA.) G. GRIMALDI. VII—IX. A. NERI (Gazzetta, 1937, 67, 448—453, 453—460, 468—472, 473—476, 477—481, 513—517; cf. A., 1937, II, 433) .-- IV. 2-Benzene- (I) and 2-psulphobenzene-azo-a-naphthylamine-4-sulphonic acid (II) with OMe C₆H₄CHO in AcOH give Na 3-phenyl-2-p-anisyl-2: 3-dihydro-1: 3: 4-naphthoisotriazine-6sulphonate $(+7H_2O)$, tasteless, and the Na_2 salt of the corresponding 3-p-sulphophenyl-acid, very sweet. Similarly *p*-sulphobenzeneazo- β -naphthylamine (III), benzene- (IV) and p-sulphobenzene-azo-Band naphthylamine-6-sulphonic acid (V) give 2-p'-sulpho-phenyl-3-p-anisyl-2: 3-dihydro-1: 2: 4-naphthoisotriazine, tasteless, and 2-phenyl-, slightly bitter, and 2-p'-sulphophenyl-3-p-anisyl-2 : 3-dihydro-1 : 2 : 4naphthoisotriazine-8-sulphonic acid, tasteless.

V. Vanillin gives, from (I) and (II), 3-phenyl-, tasteless, and 3-p-sulphophenyl-2-(4'-hydroxy-3'methoxyphenyl)-2: 3-dihydro-1: 3: 4-naphthoisotriazine-4-sulphonic acid, slightly salty; from (III), 2-p-sulphophenyl-3-(4'-hydroxy-3'-methoxyphenyl)-2: 3-dihydro-1: 2: 4-naphthoisotriazine, tasteless; and from (IV) and (V), 2-phenyl-, bitter, and 2-p-sulphophenyl-3-(4'-hydroxy-3'-methoxyphenyl) - 2: 3-dihydro-1: 2: 4-naphthoisotriazine-8-sulphonic acid, salty with sweet after-taste.

VI. MeCHO gives, from (I) and (II), 3-phenyl-, slightly bitter, and 3-p-sulphophenyl-2-methyl-2:3dihydro-1:3:4-naphthoisotriazine-6-sulphonic acid, slightly sweet; from (III), 2-p-sulphophenyl-3-methyl-2:3-dihydro-1:2:4-naphthoisotriazine, tasteless; and from (IV) and (V), 2-phenyl-, bitter, and 2-p-sulphophenyl-3-methyl-2: 3-dihydro-1:2:4-naphthoisotriazine-8-sulphonic acid.

VII. CHPh:CH·CHO gives, from (I) and (II), 3-phenyl-, sweet, and 3-p-sulphophenyl-2-styryl-2:3dihydro-1:3:4-naphthoisotriazine-6-sulphonic acid, very sweet; from (III), 2-p-sulphophenyl-3-styryl-2:3-dihydro-1:2:4-naphthoisotriazine, tasteless; and from (IV) and (V), 2-phenyl-, tasteless, and 2-psulphophenyl-3-styryl-2:3-dihydro-1:2:4-naphthoisotriazine-8-sulphonic acid, tasteless.

VIII. By diazotisation, 1: 4-NH₂·C₁₀H₆·SO₃H gives 2- α '-naphthaleneazo- α -naphthylamine-4: 4'-disulphonic acid (G.P. 42,382), which with PhCHO and other aldehydes gives 2-phenyl-, tasteless, 2-p-anisyl-, sweet, 2-o-hydroxyphenyl-, tasteless, 2-(4'-hydroxy-3'-methoxyphenyl)-, tasteless, and 2-styryl-3-(4'-sulpho- α -naphthyl)-2: 3-dihydro-1: 3: 4-naphthoisotriazine-6-sulphonic acid, sweet. None of the naphthoisotriazine described in the above series has m.p. < 300°.

IX. The Na_2 salt of 1-p-sulphobenzeneazo- β naphthylamine-6-sulphonic acid (prepared in the usual way), with AcOH and aldehydes gives 3-phenyl-, sweet, 3-o-hydroxyphenyl- and 3-p-anisyl-, both tasteless, 3-(4'-hydroxy-3'-methoxyphenyl)-, sweet with salt after-taste, and 3-styryl-2-(4'-sulpho- α -naphthyl)-1:2:4-naphthoisotriazine-8-sulphonic acid, tasteless. E. W. W.

Cobaltinitrites of hexamethylenetetramine. A. HEMMELER and (SIGNA.) M. ANGELINI (Gazzetta, 1937, 67, 428-434; cf. A., 1936, 303).-Na3[Co(NO2)6] 1937, 67, 428–434; cl. A., 1000,000, and (CH₂)₆N₄ (I) give the compound, Na[(CH₂)₆N₄H]₂[Co(NO₂)₆],6H₂O. De Koninck's re-agent (CoCl₂ + NaNO₂ + AcOH, filtered) and (I) give a compound CoO[(CH₂)₆N₄H]₄Co[Co(NO₂)₆]₂. E. W. W.

Phosphorylation of monoisopropylideneadenosine and of diacetyladenosine. P. A. LEVENE and R. S. TIPSON (J. Biol. Chem., 1937, 121, 131-153).—In order to prepare an adenosine-5-phosphoric acid, the OH groups 2 and 3 were blocked as follows. Adenosine and CPh₃Cl in C₅H₄N give a mixture of 5-mono- (I), $[\alpha]_{B}^{23} - 18^{\circ}$ in C₅H₅N, and N: 5-di-triphenylmethyladenosine (II), m.p. 200-202°, $[\alpha]_{B}^{-5}$ $-19\cdot2^{\circ}$ in C₅H₅N. Heating (I) in C₅H₅N with C₆H₄Me·SO₂Cl yields N: 2: 3-tritoluenesulphonyl-5-triphenylmethyl-, $[\alpha]_{B}^{25} - 57\cdot2^{\circ}$ in COMe₂, hydrolysed by 80% AcOH to the tritoluenesulphonyladenosine by 80% AcOH to the tritoluenesulphonyladenosine, m.p. 195-196°, $[\alpha]_{p}^{26}$ -94.4° in COMe₂, the 5 position of which is free since it gives no cryst. derivative with NaI in COMe₂. With Ac₂O in C₅H₅N, (I) yields N: 2:3-triacetyl-5-triphenylmethyl-, $[\alpha]_{\rm p}^{24}$ +14.0° in $C_{\rm 5}H_{\rm 5}N$, hydrolysed by 80% AcOH to 2:3-diacetyl-adenosine, m.p. 181—182°, $[\alpha]_{\rm p}^{24}$ -78.7° in COMe₂ (also obtained from (II) via 2:3-diacetyl-N:5-ditriphenylmethyladenosine, $[\alpha]_{\mathbf{p}}^{26} = -6.0^{\circ}$ in COMe₂}, together with acetyladenine, m.p. 347-348° Benzoylation of (I) in C_5H_5N gives N:2:3-tri-benzoyl-5-triphenylmethyl-, $[\alpha]_2^{25} -41 \cdot 5^{\circ}$ in C_5H_5N , hydrolysed by 80% AcOH to 2:3-dibenzoyl-adenosine, m.p. 132-134°, [a]²⁵ -107.8° in COMe₂, together with benzoyladenine. Adenosine, COMe2, and ZnCl2 yield 2: 3-isopropylideneadenosine, m.p. 200-204°, $[\alpha]_{D}^{20} = -99.8^{\circ}$ in C_5H_5N . Phosphorylation (cf. A., 1935, 1481) of this with 2 mols. of POCl₃, or of diacetyladenosine with 1 mol., and hydrolysis of the product with N-HCl gives adenosine-5-phosphoric A. LI. acid, isolated as Ba salt.

Absorption spectra of pyrrole colouring matters. Pyrromethenes and bilirubinoids .- See A., I, 548.

Morpholine alkanols.—See B., 1937, 1179.

Action of xanthhydrol on pyrroles. G. ILLARI (Gazzetta, 1937, 67, 434-439).-Xanthhydrol (I) and pyrroles, in AcOH, give mono- and di-xanthylpyrroles. The following are described : 2:5-dixanthyl-, m.p. 200° (decomp.) (converted by KOH fusion into maleimide and xanthen), 5-xanthyl-2ethyl-, m.p. 190-191°, 2-acetyl-5-xanthyl-, m.p. 221-224° (decomp.), 5-xanthyl-2: 4-dimethyl-, m.p. 218-219° (decomp.), 3-acetyl-5-xanthyl-2: 4-dimethyl-, m.p. 253° (decomp.), and 2:5-dixanthyl-1-phenyl-pyrrole, m.p. 256-259° (decomp.). 2:4-Dimethylpyrrole-3:5-dicarboxvlic acid, 3:5-diacetyl-2:4-dimethyl-, 2:5-diethyl-, and 2:5-diacetyl-pyrrole do not condense with (I). It is suggested that (I) might be used as a reagent for identifying mixed pyrroles.

E. W. W. Pharmaceutical applications of furfuraldehyde. I. A. MANGINI (Annali Chim. Appl., 1937, 27, 386-392; cf. A., 1937, II, 428).-Furfuraldehyde and AcCO₂H with o-, m-, and p-toluidine yield

2-2'-furyl-8-, m.p. 248-249° (decomp.) (Na salt), 7-, m.p. 272-272.5° (decomp.) (Na salt), and 6-methylcinchonic acid, m.p. 253-254° (decomp.) (Na salt), respectively. The acids are more or less active in the elimination of uric acid and are more tolerable and less toxic than atophan derivatives.

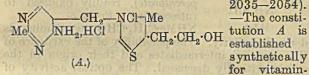
L. A. O'N.

Oximinopyrroles. VII. Synthesis of phenylbenzylfurazan. T. AJELLO (Gazzetta, 1937, 67, 444–448).—CH₂Ph·CBz.N·OH and NH₂OH give Ph CH₂Ph diketone dioxime, m.p. 217–218° (Bz₂ derivative, m.p. 146°; Ni salt), of which the Ac2 derivative, amorphous, is converted by boiling 10% KOH into the substance $C_{15}H_{12}ON_2$, m.p. $98-99^{\circ}$ (cf. A., 1935, 763; 1937, II, 264), which is thus shown to be 3-phenyl-4-benzyl-1:2:5-oxadiazole.

E. W. W. Hydroxyquinolines. III. Syntheses of diphenylquinolinoisooxazine and of its N-substituted derivatives. F. PIRRONE (Gazzetta, 1937, 529-536).-8-Hydroxyquinoline (1) and CHPh(N:CHPh)₂ in C₆H₆ at 60° give 2:4-diphenyl-5:6-(7':8'-quinolino)-1:3-isooxazine (II) (A., 1936, 1526). In EtOH at 60°, (I), PhCHO, and HCO·NH₂, NH2Ac, NH2Bz, or p-OH·C6H4·CO·NH2 give respectively the 3-formyl, m.p. 158–159°, 3-acetyl, m.p. 208–209° (picrate, m.p. 164–165°), 3-benzoyl, m.p. 198–199° (picrate, m.p. 186°), and 3-salicoyl, m.p. 171–172°, derivatives of (II). E. W. W.

Action of sulphuric acid on unsaturated thiocarbimides : thiolthiazolines. H. A. BRUSON and J. W. EASTES (J. Amer. Chem. Soc., 1937, 59, 2011—2013).—β-Methylallylthiocarbimide (I), b.p. 64°/ 10 mm., 169—170°/760 mm. (from CH₂:CMe·CH₂Cl and MeOH–NaCNS), and aq. 27% NH₃ give β -methyl-allylthiocarbamide, m.p. 92–94°, which is converted by aq. 35% HCl at 140° into 2-amino-5: 5-dimethylthiazoline hydrochloride, m.p. 127—129.5°. 5:5-Di-methylthiazoline-2-diazonium chloride, decomp. methylthiazoline-2-diazonium chloride, violently about 140°, and H2S in aq. KOH afford 2-thiol-5: 5-dimethylthiazoline (II), m.p. 162-5-163° (Ac, m.p. 69.5°, Bz, m.p. 91°, and ClHg-derivatives), also prepared from 2-thiol-5: 5-dimethyloxazoline, m.p. 107-109° (from NH2 CH2 CM2 OH and CS2 in aq. EtOH-KOH), and P_2S_5 in C_6H_6 . (II) is also obtained from (I) and 95% H_2SO_4 at $<5^\circ$; (I) \rightarrow $[CH_2:CMe \cdot CH_2 \cdot NH \cdot CS_2H] \rightarrow \underbrace{CMe_2 \cdot S}_{CH_2 \cdot NH} > CS \rightarrow (II).$ β-Methyl-α-ethylallyl alcohol (from MgEtBr and CH2:CMe CHO), SOCl2, and C5H5N at 65° give the chloride, b.p. 120-124°, and thence β-methyl-α-ethylallylthiocarbimide, b.p. 190-200°/760 mm., converted by 95% H2SO4 at 0° into 2-thiol-5 : 5-dimethyl-4-ethylthiazoline [or 2-thiol-5-methyl-5-propylthiazoline (cf. Billeter, A., 1925, i, 1051)], m.p. 115-118°.

H. B. Reactions in the thiazole series. I. Reactions of 2-chlorobenzthiazoles with thiocarbamides. WINFIELD SCOTT and G. W. WATT (J. Org. Chem., 1937, 2, 148-156).-2-Chlorobenzthiazole (I) and $CS(NH_2)_2$ (II) in EtOH at the b.p. give 2-thiol-benzthiazole. This is also obtained from allyl- (III), phenyl- (IV), and o-tolyl-thiocarbamide (V), but not from s-diphenyl- (VI), s-dicyclohexyl- (VII) [from


(C6H10N)2CH2 and S], N-phenyl-N'N'-dimethyl-(VIII), NN-pentamethylene-N'-phenyl-thiocarbamide. or With thiobenziminazolone, (I) gives an additive com-pound, C₁₄H₁₀ClN₃S₂, m.p. 233-234° (decomp.). 2-Chloro-6-nitrobenzthiazole and (II), (III), (IV), (V), (VI), or (VII) give 2-thiol-6-nitrobenzthiazole (IX), m.p. 225-227°; reaction with (VI) is very slow, whilst with (VII) some s-dicyclohexylcarbamide is formed. With (VIII), no (IX) is identified, 6-nitro-2dimethylaminobenzthiazole, m.p. 197.5-199°, and an unidentified product being formed. In general, thiocarbamides react the less readily as they are the more substituted. 1:1'-Dipiperidinomethane and S in xylene give piperidine pentamethylenedithiocarbamate, m.p. 172-173°. E. W. W.

5-Nitrobenzthiazyl dithiocarbamates.—See B., 1937, 1179.

1-Amino-5:6-tetramethylenebenzthiazole. See B., 1937, 1179.

Pyrimidylthiazoles.-See B., 1937, 1270.

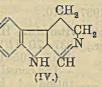
Synthesis of the antineuritic vitamin. H. ANDERSAG and K. WESTPHAL (Ber., 1937, 70, [B],

2035-2054). -The constisynthetically for vitamin-

 B_1 (I). γ -Acetopropyl acetate is brominated in anhyd. Et₂O and the crude product is converted by Ba(CNS)₂ in EtOH into γ -thiocyano- γ -acetopropyl acetate, isomer-ised in acid solution to 2-hydroxy-4-methyl-5-acetoxyethylthiazole, m.p. 89°. This is transformed by boiling POCl₃ into 2-chloro-4-methyl-3-acetoxyethylthiazole, b.p. 103—105°/0.7 mm., reduced by Zn dust and AcOH at 70° to 4-methyl-5-acetoxyethylthiazole, b.p. 112°/5 mm. (picrate, m.p. 133°), whence 4-methyl-5-hydroxy-ethylthiazole, b.p. 123-124°/3 mm. (picrate, m.p. 163-164°), identical with the basic product obtained by fission of (I) (Williams, A., 1935, 504, 668). Arising from the suggestions of Williams (loc. cit.) and Windaus et al. (A., 1936, 253) with regard to the pyrimidine portion of the mol. of (I) the synthesis of 4'-methylthiazolo-3': 2'-1: 2-benziminazole, m.p. 165° , from CH_2Cl ·COMe, thiolbenziminazole, and Na in EtOH and of 4'-methylthiazolo-3': 2'-1: 2-5-methyliminazole, b.p. 150-160°/23 mm. (hydrochloride, m.p. 242°), from 2-thiol-4-methyliminazole and CH₂Cl·COMe, has been effected. These compounds as bases and salts are colourless and devoid of the fluorescence in the ultraviolet of the thiochrome obtained by the alkaline oxidation of (I). The previous suggestions for the constitution of (I) appear therefore inaccurate in this respect and further progress is made by the synthesis of all possible pyrimidine portions except the known 5: 6-diamino-4-ethylpyrimidine. 4-Amino-2:6-dimethylpyrimidine could not be nitrated. Et benzeneazoacetoacetate, acetamidine hydrochloride (II), and Na in EtOH afford 5-benzeneazo-4-hydroxy-2:6-dimethylpyrimidine, m.p. 186°, reduced by Na₂S₂O₄ and NaOH to 5-amino-4-hydroxy-2: 6-dimethylpyrimidine, m.p. 194°. This with PCl. in boiling POCl₃ affords 4-chloro-5-amino-2:6-dimethylpyrimidine, m.p. 80° X (A., II.)

(picrate, m.p. 169°), transformed by NH₃-MeOH at 238° into 4 : 5-diamino-2 : 6-dimethylpryrimidine, m.p. 248° [monohydrochloride (+0.5H2O), m.p. 271°; monopicrate, m.p. 235°, condensation product, C20H16N4, m.p. 207°, with benzil], which differs greatly from the degradation product of Windaus. Et₂ formylsuccinate, (II), and NaOEt in boiling EtOH give Et whence Et 4-chloro-2-methylpyrimidyl-5-acetate, m.p. 179°, 110°/4 mm., m.p. 40-41° converted by MU.e. into 4-amino-2-methylpyrimidyl-5-acetamide, (III), m.p. 250° (corresponding acid, m.p. 270°), and 4-methoxy-2methylpyrimidyl-5-acetamide (IV), m.p. 201°. Treatment of (III) with Br and KOH and PhCHO successively and hydrolysis of the product with HCl yields 4-amino-2-methyl-5-aminomethylpyrimidine, m.p. 132° [dihydrochloride, m.p. 268-269°; picrate, m.p. 224-225°; sulphate, m.p. 276°; formyl derivative, (V), m.p. 224°], identical with the product of Windaus. P₂S₅ in boiling PhMe transforms (V) into 4-amino-2-methyl-5-thioformamidomethylpyrimidine (VI), m.p. 193°. Treatment of (IV) with Br and KOH gives 4-methoxy-2-methyl-5-aminomethylpyrimidine, b.p. 110-116°/? mm. (picrate, m.p. 188°), the dihydro. chloride, m.p. 150-151°, of which is transformed by NaNO2 into 4-amino-2-methyl-5-hydroxymethylpyrimidine, m.p. 194° (hydrochloride, m.p. 224°), whence (HBr in AcOH at 40°) 4-amino-2-methyl-5-bromomethylpyrimidine dihydrobromide, m.p. 213° (decomp.). This with 4-methyl-5-hydroxyethylthiazole at 120-130° gives 4-methyl-5-β-hydroxyethyl-N-4'-amino-2'methyl-5-pyrimidylmethylthiazolium bromide hydrobromide, m.p. 220°, also obtained by treatment of acetopropyl benzoate, b.p. 138—140°/2 mm., with Br and then with (VI) and identical with vitamin- B_1 hydrobromide. This is transformed through the picrate, m.p. 201—202°, into the corresponding hydrochloride, m.p. 252°, chemically and physiologically identical with the natural material. 2:4-Dihydroxy-6-methyl-5-hydroxymethylpyrimidine and PCl₅ in boiling POCl₃ afford 2:4-dichloro-6-methyl-5-chloro-methylpyrimidine, b.p. 120°/3 mm., m.p. 39°, which with NaI in COMe₂ affords 2:4-dichloro-6-methyl-5-iodomethylpyrimidine, m.p. 90°. This with AgOAc in COMe₂ yields 2:4-dichloro-6-methyl-5-acetoxymethylpyrimidine, b.p. 141°/4 mm., m.p. 55°, converted by NH3-EtOH at 100° into 2-chloro-4-amino-6-methyl-5hydroxymethylpyrimidine, m.p. 179°, which with Zn dust in boiling H₂O gives 4-amino-6-methyl-5-hydroxymethylpyrimidine, m.p. 166°. 4-Amino-6-methyl-5bromomethylpyrimidine hydrobromide (VII), m.p. 210-212°, is condensed with the thiazole derivative at 120-130° to 4-methyl-5-hydroxyethyl-N-4'-amino-6'-methyl-5'-pyrimidylmethylthiazolium chloride hydrochloride, m.p. 242° (corresponding hydrobromide; picrate, m.p. 193°; picrolonate, m.p. 213°). This resembles (I) in giving an intense ultra-violet fluorescence when oxidised by alkaline $K_3Fe(CN)_6$ but is distinguished, inter alia, by less physiological activity. NH3-MeOH at 100° transforms (VII) into 4-amino-6-methyl-5aminomethylpyrimidine (VIII) (picrate, m.p. 238°; hydrochloride, m.p. 277°). Et₂ acetosuccinate, $CS(NH_2)_2$, and NaOEt in boiling EtOH afford 4-hydroxy-2-thiol-6-methylpyrimidyl-5-acetic acid, m.p. 295° (Na salt), the Et ester, m.p. 218°, of which is

transformed by Pb(OAc)₂ and H₂O₂ in AcOH at 30— 40° into *Et* 4-hydroxy-6-methylpyrimidyl-5-acetate, b.p. 203—205°/0.5 mm., m.p. 153°. This with boiling POCl₃ gives *Et* 4-chloro-6-methylpyrimidyl-5-acetate, b.p. 116—117°/1.5 mm., whence (NH₃-MeOH at 120— 130°) 4-amino-6-methylpyrimidyl-5-acetamide, m.p. 223°, and (VIII). H. W.


Oxidation of benzoylanabasine with potassium permanganate. G. ΜΕΝSCHIKOV, J. LOSIK, and A. OREKHOV (Chim. Farm. Prom., 1934, No. 6, 7-8).-dl-δ-Benzamido-δ-(3-pyridyl)valeric acid, m.p. 146°, is formed, and, with HCl, yields δ-amino-δ-(3pyridyl)valeric acid dihydrochloride. CH. ABS. (r)

Synthesis of natural substances, particularly alkaloids, under physiological conditions and its relationship to the question of the formation of vegetable compounds in the cell. C. SCHÖFF [with G. LEHMANN, W. ARNOLD, K. KOCH, H. BAYERLE, K. FALK, F. OECHLER, and H. STEUER] (Angew. Chem., 1937, 50, 779-787, 797-805).-There is no evidence of any spontaneous chemical change in the animal cell. In the vegetable cell the reactions may be important for life and controlled at every stage by a sp. enzyme of the cell or may be accidental whether or not controlled by an enzyme. Far-reaching conclusions can seldom be drawn from the constitution of a single natural product but greater probability is attached to consideration of the "comparative anatomy" of a series of closely related compounds. The hypothetical method of biogenesis is then subjected to the criteria of physiological possibility and inherent probability with regard to initial materials. For the synthesis of the alkaloids of the Angostura bark, o-NH₂·C₆H₄·CO₂H is too feebly reactive to serve as initial material. The condensation of o-NH2 C6H4 CHO with aldehydes or ketones requires too conc. alkali but its reaction with β -CO-acids at $p_{\rm H}$ 5—11, best at $p_{\rm H}$ about 7.0, takes place with loss of \overline{CO}_2 and leads with suitable partners to quinoline, 2-methyl- and 2-n-amylquinoline. Condensation of is suggested for the biogenesis of the 4-hydroxyquinoline derivatives. Condensation of succindialdehyde (I) with NH₂Me and CO(CH₂·CO₂H)₂ leads directly at $p_{\rm H}$ 3—11 to tropinone, whereas at $p_{\rm H}$ 13 tropinonedicarboxylic acid results. The alkaloids derived from tropinonecarboxylic acid may owe their origin to the condensation of (I) with NH_2Me and

 $\begin{array}{c} \mathrm{CO}_{2}\mathrm{H}\text{\cdot}\mathrm{CH}_{2}\text{\cdot}\mathrm{CO}\text{\cdot}\mathrm{CH}_{2}\text{\cdot}\mathrm{CO}_{2}\mathrm{Me}. & \textit{meso}\mathrm{Tartardialdehyde},\\ \mathrm{CO}(\mathrm{CH}_{2}\text{\cdot}\mathrm{CO}_{2}\mathrm{H})_{2}, \text{ and } \mathrm{NH}_{2}\mathrm{Me} \text{ give a homogeneous}\\ \textit{ketone} (\mathrm{II}), \text{ m.p. } 192^{\circ}, \text{ reduced to two stcreoisomeric}\\ \mathrm{CH}_{2}\text{-}\mathrm{CO}\text{-}\mathrm{CH}_{2} & \text{alcohols one of which is identical}\\ \mathrm{CH}\text{\cdot}\mathrm{NMe}\text{\cdot}\mathrm{CH} & \text{with teloidine. Hydroxytropine}\\ \mathrm{CH}(\mathrm{OH})\text{-}\mathrm{CH}\text{\cdot}\mathrm{OH} & \text{appears to be derived from maldialdehyde}. \\ (\mathrm{IL}) & \text{dientical with teloidine} \\ \end{array}$

glutardialdehyde (III), NH₂Me, and CO(CH₂·CO₂H)₂ with loss of CO₂. Lobelanine is obtained in 80% yield from (III), NH₂Me, and CH₂Bz·CO₂H at $p_{\rm H}$ 4, the yield being dependent on $p_{\rm H}$ in an unusual degree. Examination of the probability of the synthesis of hygrine, cuskhygrine, and methylisopelletierine from suitable amino-aldehydes is hampered

by the difficulty of their prep. but the prep. of 2-β-phenylethylpyrrolidine from CH2Bz·CO2H and NH₂·[CH₂]₃·CH(OEt)₂ establishes its inherent possibility. The isoquinoline alkaloids are so complex that a complete suggestion of their biogenesis cannot yet be given, but it is shown that 6:7-dihydroxy-1-methyl-1:2:3:4-tetrahydroisoquinoline (precursor of carnegine and salsoline) is formed from salt of β -3:4-dihydroxyphenylethylamine and MeCHO in dil. aq. solution at $p_{\rm H}$ 5. Tetrahydroharman results from tryptamine and MeCHO under physiological conditions; its further conversion into harmaline, harmalol, harmine, and harman is readily explained. Under physiological conditions the ring system of vasicine is rapidly formed from $o-NH_2 \cdot C_6H_4 \cdot CHO$ and $NH_2 \cdot [CH_2]_3 \cdot CHO$ and there is no reason to suppose that $OH \cdot CH(NH_2) \cdot [CH_2]_2 \cdot CHO$ behaves differently; the peculiarity is the reversibility of the change, irreversible stabilisation being attributed to an enzyme which displaces H from positions

1:2 to positions 3:4. Treatment of o-NH₂·C₆H₄·CHO with CH₂ dihydronorharman at $p_{\rm H}$ 5 gives N the substance (IV) (isolated as the perchlorate), readily oxidised to rutæcarpine. From o-

(17.) NHMe· $\tilde{C}_{6}H_{4}$ ·CHO evodiamine is derived similarly. The possibility of the existence of the supposed intermediates and their origin in the cell is critically discussed. The optical activity of the alkaloids is considered. H. W.

Lupin alkaloids. XIV. Anisylsparteine. K. WINTERFELD and E. HOFFMANN (Arch. Pharm., 1937, 275, 526—532; cf. A., 1937, II, 218).—dl-Lupanine and p-OMe·C₆H₄·MgBr give p-anisyldehydrosparteine, b.p. 194—202°/0·1 mm., hydrogenated very slowly to p-anisylsparteine (I), b.p. 188°/0·3 mm. [sulphate, $+6H_2O$, m.p. 76°; diauri-, m.p. 193° (decomp.), and platini-chloride, $+2H_2O$, decomp. 246°; picrate, m.p. 206°]. Ethyl- and phenyl-sparteine sulphates, phenyldehydrosparteine sulphate, and (I) have 10, 20, 10, and 30 times, respectively, the effect of sparteine sulphate (II) on the frog's heart. The effect of (II) is equal to that of methylsparteine sulphate. R. S. C.

Rotatory power of some alkaloids derived from ecgonine. C. LAPP and A. LÉVY (Bull. Sci. Pharmacol., 1937, 44, 305–325).—The alteration of $[\alpha]$ with $p_{\rm H}$ is measured for cocaine, ecgonine, benzoyl-, methyl-, and nor-ecgonine. The changes which occur as the $p_{\rm H}$ is altered are discussed in the light of their absorption spectra. J. L. D.

Alkaloid of the Chinese drug, "Kuh-Seng." II. H. KONDO, E. OCHIAI, and K. TSUDA (Arch. Pharm., 1937, 275, 493—496; cf. A., 1928, 531).— The drug contains, besides matrine, oxymatrine, $C_{15}H_{24}O_2N_2$, $+H_2O$ (retained at 150°/vac.), m.p. 208°, $[\alpha]_{5}^{*}$ +29.8° in EtOH, and $+xH_2O$, m.p. 77— 80° (picrate, decomp. 215°; platini-, decomp. 250°, and auri-chloride, decomp. 207°; perchlorate, decomp. 240°; hydrobromide, hygroscopic, m.p. 215°; methoaurichloride, decomp. 185°; hydrochloride, hygroscopic), unaffected by p-NO₂·C₆H₄·COCl; the latter base contains one tert. N and one CO·N. The two alkaloids are not necessarily related. R. S. C.

Aconitine. II. Relationship between aconitine and atisine and some degradation products of the latter. A. LAWSON and J. E. C. TOPPS (J.C.S., 1937, 1640-1643).-Atisine (I), C₂₂H₃₃O₂N, m.p. 296° (decomp.), possesses CH₂O₂ and NMe groups (cf. Jowett, J.C.S., 1896, **69**, 1518; Chandrasena, A., 1933, 841). The hydrochloride of (I) is reduced $(Pd-H_2)$ to the H_2 -derivative [hydrochloride, m.p. 319° (decomp.)]. After removal of CH₂O₂, (I) with Zn gives a base, C₂₀H₃₁ON (picrate, m.p. 173°). KOEt and (I) yield a base, C₂₁H₃₁O₂N, m.p. 147° [hydrochloride, m.p. 278° (decomp.)], dehydrogenated (Se) to a base, b.p. 150-160°/1 mm. (picrate, m.p. 206°), and a hydrocarbon (II), $C_{17}H_{16}$. Dehydrogenation of (I) gives a base, $C_{20}H_{29}ON$, b.p. 190–200°/ I mm. [picrate, m.p. $242-243^{\circ}$ (decomp.); hydro-chloride, m.p. 265°], a substance, $C_{19}H_{27}O_2N$, m.p. 240°, an oil, b.p. 170–200°/1 mm., and (II), b.p. 130–160°/1 mm. (*picrate*, m.p. 129°; $C_6H_3(NO_2)_3$ complex, m.p. 140°). The results indicate that (I) has a pentacyclic structure and is more closely related to lucidisculine than to aconitine. F. R. S.

Dihydrokurchine. J. C. CHOWDHURY and D. H. PEACOCK (J. Indian Chem. Soc., 1937, 14, 486— 488).—Kurchine (A., 1928, 1265), $C_{23}H_{38}N_2$, gives (PtO₂-H₂) dihydrokurchine [sulphate, m.p. 334° (decomp.); hydriodide, m.p. 222°; picrate, m.p. 176°; sulphate, m.p. 268°, of Ac derivative, m.p. 112°; NO-derivative, m.p. 109°; p-toluenesulphonyl derivative, m.p. 174°]. E. W. W.

Conessine series. III. Degradation of conessine and isoconessine hydriodides to a common hydrocarbon. IV. Action of nitric acid on conessine and the reduction of one of its two isomeric mononitro-derivatives to mono-oxyand isodioxy-conessine. S. SIDDIQUI and V. SHARMA (Proc. Indian Acad. Sci., 1937, 6, A, 191-194, 199-206).—III. Conessine (I) and isoconessine hydriodides on heating at the m.p. in H₂ give NH₃ and about 70% yield of conessene, C₂₁H₃₀, b.p. 185-192°/3 mm., α_{51}^{31} +35.0°, which (bromination) appears to contain three double linkings.

IV. HNO₃ (1 part fuming : 1 part d 1·4) converts (I) into nitroconessine, m.p. 173°, $[\alpha]_{B}^{3p}$ +11·0° in EtOH [hydrochloride, m.p. 253° (decomp.); hydriodide, m.p. 252° (decomp.); hydrobromide, m.p. 258° (decomp.); platinichloride, m.p. 267° (decomp.); awate, m.p. about 167°; picrate, m.p. 216°; dimethiodide, m.p. 238° (decomp.); dimethobromide, m.p. 237° (decomp.)], which is reduced (Zn-HCl) to a mixture of mono-oxyconessine, $C_{24}H_{40}ON_2$, m.p. 202-203°, a_{B}^{40} +11·5° [hydrochloride, m.p. 273-275° (decomp.); hydriodide, m.p. 352° (decomp.); hydrobromide, m.p. 360° (decomp.); platinichloride, efferv. 297°; picrate, m.p. 249° (decomp.); dimethiodide, m.p. 298-300° (decomp.); dimethobromide, m.p. 308° (decomp.)], and isodioxyconessine, $C_{24}H_{42}O_2N_2$, m.p. 279-280°, a_{B}^{44} -11·0° [hydrochloride, m.p. >360°; platinichloride, m.p. 288° (decomp.)]. With HNO₃ (3 parts fuming : 16 parts d 1·4) (I) affords isonitroconessine, $C_{24}H_{39}N_2$ ·NO₂, m.p. 259-260°, a_{B}^{30} -45·5° in CHCl₃ [hydrochloride (+H₂O), m.p. 239-240° (decomp.); hydriodide, m.p. 295° (decomp.); platinichloride, m.p. 237° (decomp.); dimethobromide, m.p. 301° (decomp.)]. F. R. S.

Syntheses in the papaverine group. IV. Synthesis of 6-propoxy-1-(3': 4': 5'-trimethoxyphenyl)-7-methoxyisoquinoline. S. SUGASAWA and K. KAKEMI (J. Pharm. Soc. Japan, 1935, 55, 1283-1288).-isoVanillin, EtOH-KOH, and PraBr yield 4-methoxy-3-n-propoxybenzaldehyde, b.p. 156-158°/4 mm., m.p. 51°, which, with galloylglycine Me₃ ether, NaOAc, and AcOH, yields 2-(3':4':5'-tri-methoxyphenyl)-4-(4'-methoxy-3'-n-propoxybenzylidene)-5-oxazolone, m.p. 172°. With MeOH-Na2CO3, this affords a-galloylamino-4-methoxy-3-n-propoxycinnamic acid Me, ether, m.p. 213°, which, with Cu chromite and quinoline at $160-190^{\circ}$, yields ω -galloylamino-4-methoxy-3-n-propoxystyrene Me_3 ether, m.p. 133°, hydrogenated to β -3-(4-methoxy-n-propoxyphenyl-ethyl)galloylamide Me_3 ether, m.p. 109°. With PCl₅ in CHCl₃ this affords 7-methoxy-6-n-propoxy-1-(3':4':5'-trimethoxyphenyl)-3:4-dihydroisoquinoline hydrochloride, m.p. 208-209° (free base, m.p. 104°), dehydrogenated to 7-methoxy-6-n-propoxy-1-(3':4':5'-trimethoxyphenyl)isoquinoline, m.p. 208-209°. The corresponding Pr^{β} compounds are prepared similarly and have b.p. 132-134°/2 mm., and m.p. 188°, 137.5°, 137.5°, 102°, 217-218°, 96-97°, and 199°, Сн. Авз. (r) respectively.

Synthesis of an isomeride of domesticine ethyl ether. H. SHISHIDO (Bull. Chem. Soc. Japan, **12**, 419-424).-3: 4-OEt·C₆H₃(OMe)·CHO, 1937, CH₂(CO₂H)₂, and piperidine in C₅H₅N give 4-methoxy-3-ethoxycinnamic acid, m.p. 176-177.5°, reduced (H_2-Pd-C) to β -4-methoxy-3-ethoxyphenylpropionic acid, m.p. 104-106°. The amide, m.p. 123-124°, obtained from this acid by way of the chloride, with NaOEt gives β-4-methoxy-3-ethoxyphenylethylamine [oxalate, m.p. 226-227° (decomp.); hydrochloride, m.p. 166-168°]. This affords homopiperon-β-4'methoxy-3'-ethoxyphenylethylamide, m.p. 129-131°, converted by POCl₃ in PhMe at 130-140° into 7 - methoxy - 4 - ethoxy - 1 - piperonyldihydroisoquinoline [oxalate, m.p. 227-228° (decomp.)]; the methiodide, m.p. 142-144° (decomp.), of this base gives the methochloride, which with Zn-H2SO4 gives 7-methoxy-4-ethoxy-1-piperonyl-1:2:3:4-tetrahydroisoquinoline, m.p. 154-154.5° [oxalate, m.p. 186-187° (decomp.); hydrochloride, m.p. 237-239° (decomp.); sulphale, m.p. 114-115° (decomp.)]. Conc. HNO₃ at <5° yields the 1-2'-nitropiperonyl compound, m.p. 128° after sintering at 123°, reduced by SnCl₂ to the 2'-NH2-compound, m.p. 105-107° [oxalate, m.p. 186-188° (decomp.); hydrochloride, m.p. 220-222° (decomp.); sulphate, m.p. 179-181° (decomp.)], which with HNO₂-Cu-Zn-HCl gives dl-5-methoxy-6-ethoxy-2:3-methylenedioxy-N-methylaporphine, m.p. 136° [hydrobromide, m.p. 250—252° (decomp. from about 230°)], resolved by d- and l-tartaric acid into the dand l-isomerides, m.p. $142-144^{\circ}$, $[\alpha]_{D}^{28} + 90^{\circ}$, -90.9° in EtOH [l-base d-tartrate and d-base l-tartrate, m.p. 186-188° (decomp.); hydrobromide, m.p. 260-261° (decomp. from about 230°)]. The d-base depresses the m.p. of domesticine Et ether. R. S. C.

Synthetical experiments in the chelidoninesanguinarine group of alkaloids. C. R. NOLLER, R. O. DENYES, J. W. GATES, and W. L. WASLEY (J. Amer. Chem. Soc., 1937, 59, 2079; cf. Richardson et al., A., 1937, II, 356).—Various unsuccessful attempts to synthesise phenanthridines are indicated. Ring-closure of the N-piperonylamides of δ -piperonylisocrotonic and -propionic acid could not be accomplished. The synthesis of $\alpha\gamma$ -dipiperonylbutyric acid from Et piperonylmalonate and piperonylmethyl bromide is being attempted. Methylation of 2:3-(OH)₂C₆H₃·CHO has been effected. H. B.

Tylophorine salts.—See A., III, 246.

Haslerine, m.p. 237°, and quirandine, m.p. 218°.—See A., III, 331.

Organo-arsenic compounds. VI. Synthesis of 1-chloroarsindole from cinnamic acid. VII. Synthesis of arsindole derivatives. H. N. Das-GUPTA (J. Indian Chem. Soc., 1937, 14, 397-399, 400-405) .- VI. o-Aminocinnamic acid, when diazotised and treated with Na2CO3, H3AsO3, and CuSO4, gives tris-o-(B-carboxyvinyl)phenylarsenic oxide, m.p. >300°, which could not be converted into an indole derivative, but the Et ester on similar treatment yields o-(β-carbethoxyvinyl)-, m.p. >360°, hydrolysed to o-(\beta-carboxyvinyl)-phenylarsinic acid, m.p. 205-206°. HBr in glacial AcOH converts this into βbromohydrocinnamic-, m.p. 185°, which with aq. Na₂CO₃ affords styrene-o-arsinic acid, m.p. 150³. Treatment with SO2, conc. HCl, and a little KI yields the arsenious chloride, m.p. 55°, cyclised by AlCl₃ in CS₂ to 1-chloroarsindole.

VII. Neither β-phenylvinylarsinic acid [from ωbromostyrene (I) and Na arsenite] nor Hg distyrene, m.p. 150° [obtained, together with Hg styryl bromide, m.p. >330°, from (I), Na, and HgCl₂], could be converted into CHPh:CH·AsCl2, but (I) with AsCl3 and Na in C₆H_g-EtOAc gives tri-β-phenylvinylarsine, m.p. 82° (picrate, m.p. 100°; methiodide, m.p. 95°), which when heated with AsCl₃ yields 1-chloroarsindole, via the unstable dichloride. β-Phenylvinyldimethylarsine, b.p. 125-135°/5 mm. (methiodide, m.p. 155°; HgCl₂ compound, m.p. 131°) [from (I) and AsBrMe2, using Na in CgH₆-EtOAc or Mg in Et₂O], was treated with Cl₂ in CCl₄ and the product heated to 190°; this gave 1-methylarsindole. With AsPhCl₂ in cold EtOH (NaOH) (I) gives a compound which when distilled A. LI. vields 1-phenylarsindole.

Aromatic aurothiol-arsenic compounds. K. BURSCHKIES (Arch. Pharm., 1937, 275, 503–506). p-SH·C₆H₄·AsO₃H₂, KAuBr₂, and Na₂SO₃ give paurothiolphenylarsinic acid (Na salt). 3-Amino- (Na salt) and 3-acetamido-4-aurothiolphenylarsinic acid (Na salt) and 3:3'-diamino-4:4'-diaurothiolarsenobenzene are similarly prepared. These compounds have no therapeutic advantage over the usual antituberculosis drugs. R. S. C.

Arsenobenzenesulphoxylates.—See B., 1937, 1272.

Azo-dyes and immunobiology. Destruction of anaphylactic supersensitiveness to azoprotein by azo-dyes from *p*-aminophenylarsinic acid. H.E. FIERZ, W. JADASSOHN, and W. G. STOLL (Helv. Chim.

Acta, 1937, 20, 1059—1077).—Corresponding with Pauly's assumption, azoprotein (I) whether formed in vitro or in vivo contains the 'N:N' group. The dye which destroys the anaphylactic supersensitiveness to (I) in the Schultz-Dale experiment must contain the same N₂ group as the causative (I). 4'-Sulphonyl-2'-carboxydiazoaminobenzene-4-arsinic acid (Na₃ salt, decomp. 210°), 4'-hydroxyazobenzene-4-arsinic acid, the compound,

AsO(OH)₂·C₆H₄·N₂·C₆H₃(OH)·N₂·C₆H₄·AsO(OH)₂, and the *dye* from p-NH₂·C₆H₄·AsO(OH)₂ and β -C₁₀H₇·OH which exists in the quinonehydrazone (·NH·N.) and azo- (·N.N·) -forms are described. The azo-group can be fixed in the last-named compound by replacing OH by OMe, which can be effected nearly quantitatively by NaOH-Me₄SO₄. H. W.

Mercuriphenyl oleoxide and sodium ricinoleate mercuriphenyl ether.--See B., 1937, 1272.

Mercuriphenyl derivatives of aromatic acids. —See B., 1937, 1273.

Relative reactivities of organo-metallic compounds. XVII. Azo-linking. H. GILMAN and J. C. BAILIE (J. Org. Chem., 1937, 2, 84-94; cf. A., 1937, II, 359) .- Organo-metallic compounds form complexes with aromatic azo-compounds, large amounts (27-77%) of Ph_2N_2 being recovered after reaction with an excess of the reagent. Ph2N2 gives (NHPh)2 by symmetrical addition to form (·NPh·MgBr)2 etc. with ZnEt, (31), BePh₂ (55.4), MgEtBr (58), MgPhBr (62.5), LiPh (51.8), and NaPh (25.1%); it gives NPh2 NHPh with CaPhI (18.5) and KPh (38.4%) by asymmetric addition to form NPh2 NPhK etc.; it gives NH₂Ph with ZnEt₂ (16), ZnEtI (12.2), ZnPh₂ (6.8), and MnPhI (53.8%) by further reaction of (NHPh)2 with the reagent. Asymmetric addition occurs only with the most reactive reagents and the above results are confirmed by exclusive 1:2addition of the reactive CaPhI and KPh and partial 1:2-addition of LiPh and NaPh to ·CH:CH·CO·. Reaction of organo-Al compounds is accompanied by condensation and polymerisation. The mechanism of various apparently abnormal Grignard additions R. S. C. is discussed.

Reduction of lead organic nitro-compounds. K. A. KOTSCHESCHKOV and G. M. BORODINA (Bull. Acad. Sci. U.R.S.S., Ser. Chim., 1937, 569—576).— PbPh₂(NO₃)₂ and fuming HNO₃ (7 hr. at 100°) yield $[m-C_6H_4(NO_2)]_2Pb(NO_3)_2$, converted by HBr into *Pb di*-m-nitrophenyl dibromide, reduction of which in acid, alkaline, or neutral solution leads to formation of amine, which immediately decomposes into NH₂Ph and PbBr₂. R. T.

Polarity of the co-ordinate link. II. Influence of aromatic substitution on the stability of the phosphinimines. F. G. MANN and E. J. CHAPLIN (J.C.S., 1937, 527-535).—The action of chloramine-T (I) on tert. phosphines (cf. A., 1932, 528) has now been investigated, each phosphine having been treated (a) with the anhyd. reagent in abs. alcoholic solution, and (b) with the hydrated reagent in rectified spirit. Under conditions (a), only a true phosphinimine, $R_3P \rightarrow N \cdot SO_2 \cdot C_6H_4Me$, was formed, whereas under (b) a phosphinimine or the hydroxyphosphinesulphonamide,

 $OH \cdot PR_3 \cdot NH \cdot SO_2 \cdot C_6 H_4 Me$, could be obtained according to the strength of the polarity of the co-ordinate link in the initial phosphinimine. PPh3 and (I) give (a) triphenylphosphine-p-toluenesulphonylimine, m.p. 187°, and (b) NN-bis-(p-toluenesulphonamidotriphenylphosphine)-p-toluenesulphonamide, m.p. 138°. Tri-o-tolylphosphine, m.p. 125°, obtained from PCl₃ and o-C₆H₄Me-HgBr, with (I) affords (a) tri-o-tolylphosphine-p-toluenesulphonylimine, m.p. 188°, and (b) the phosphinimine and tri-o-tolylphosphine oxide $(+0.5H_2O)$, m.p. 153°. $P(C_6H_4Me_{-}p)_3$ and (I) yield (a) tri-p-tolylphosphine-p-toluenesulphonylimine, m.p. 174°, and (b) the phosphinimine and hydroxytrip-tolylphosphine-p-toluenesulphonamide, m.p. 106°. Tri-m-tolylphosphine, m.p. 100°, with (I) forms (a) a syrup, from which a well-defined phosphinimine cannot be obtained and (b) hydroxytri-m-tolylphosphine-p-toluenesulphonamide, m.p. 98°, also obtained from tri-m-tolylphosphine oxide, m.p. 111°, and p-C₆H₄Me·SO₂·NH₂ (II). Tri-o-anisylphosphine, m.p. 204°, prepared from PCl3 and o-C6H4Br OMe, with (I) gives (a) tri-o-anisylphosphine-p-toluenesulphonylimine, m.p. 273-274°, and (b) the phosphinimine and hydroxytri - o - anisylphosphine - p - toluenesulphonamide, m.p. 149°. Tribromotri-o-anisylphosphine oxide, m.p. 245°, is obtained by bromination of the phosphine, Tri-p-anisylfollowed by alkaline hydrolysis. phosphine, m.p. 131°, and (I) afford (a) tri-p-anisylphosphine-p-toluenesulphonylimine, m.p. 155°, and (b) hydroxytri - p - anisylphosphine - p - toluenesulphon -amide, m.p. 121°, only. Tri-m-anisylphosphine, m.p. 115°, and (I) yield (a) a glass and (b) hydroxytri-manisylphosphine-p-toluenesulphonamide, m.p. 112°, easily converted into tri-m-anisylphosphine oxide,

m.p. 151—152°, and (II). Tri-o-chlorophenylphosphine, m.p. 185°, prepared from o-C₆H₄Cl·MgI and PCl₃ in H₂, and (I) give (a) tri-o-chlorophenylphosphine-p-toluenesulphonylimine, m.p. 235-236°, and (b) the phosphinimine and no hydroxy-sulphonamide, which could not be obtained from tri-o-chlorophenylphosphine oxide (+0.5H2O), m.p. 226-236°. Tri-p-chlorophenylphosphine, m.p. 103°, with (I) yields (a) tri-p-chlorophenylphosphine, m.p. 232° , and (b) tri-p-p-toluenesulphonylimine, m.p. 232° , and (b) tri-p-chlorophenylphosphine oxide, m.p. 175° , and (II). Tri-m-chlorophenylphosphine, m.p. 67° , with (I) affords (a) and (b) PO(C₆H₄Cl-m)₃. PPhMe₂ and (I) do not give a cryst. product, whilst PPhEt2 affords (a) and (b) phenyldiethylphosphine-p-toluenesulphonylimine, m.p. 82°. PEt₂ C6H4Mc-p and (I) yield (a) and (b) p-tolyldiethylphosphine-p-toluenesulphonylimine, m.p. 120°, and similarly obtained are triethyl-, m.p. 119°, tri-n-propyl-, m.p. 66°, and tri-n-butylphosphine-p-toluenesulphonylimine, m.p. 54°. Triphenyl-, m.p. 192-193°, tri-o-, m.p. 201-202°, and tri-p-tolyl-arsine-p-toluenesulphonylimine, m.p. 185°, are obtained from (I) and the corresponding arsine under conditions <math>(a). The results are dependent on the fact that Me, OMe, and Cl are op-directing, and the theoretical significance is discussed.

F. R. S. Magnetochemical investigations of organic compounds. XII. Potassium benzil and potass-

ium phenanthraquinone. E. MULLER and W. WIESEMANN (Annalen, 1937, 532, 116-126).—The product of the interaction of molar proportions of benzil (I) and K, Ph diphenylyl ketone (II), is converted by BzBr into (I) and (CPh·OBz)₂. It is transformed by protracted agitation with Ph_2S_2 into (I) and PhSH which is oxidised to Ph_2S_2 . It is hydrolysed to (I) and OH-CHPh-Bz. Gradual addition of increasing amounts of (I) to (II) (cf. Schlenk, A., 1913, i, 1205) and determination of the magnetic susceptibility of the product shows that free K benzil exists, but all materials previously mistaken for it are mixtures of it with (I) and K stilbenediol (II), in which (I) and (II) are united to a quinhydrone compound. Under the experimental conditions its prep. in the pure state is practically impossible and its existence as solid is very doubtful. Similarly, the material regarded as K phenanthraquinone is a mixture of this substance with phenanthraquinone and K phenanthraquinol. The socalled K xanthone and K benzanthrone are similar mixtures of compounds. The relative solubilities of the different components appear to determine the composition of the ppts. In the present instances definite mol. relationships between the quinhydrone or its constituents and the radical do not exist. **H.** W.

Reaction between proteins and metaphosphoric acid. H. HERRMANN and G. PERLMANN (Nature, 1937, 140, 807).—Analytical data obtained with the ppts. formed from egg-albumin (I) or clupein sulphate (II) and HPO₃ are recorded. The amount of P bound agrees with the no. of free $\rm NH_2$ in (I) or with the no. of positively charged $\rm NH_2$ in (II). L. S. T.

Simplified quantitative hydrogenation of milligrams and centigrams of substances. C. WEY-GAND and A. WERNER (J. pr. Chem., 1937, [ii], 149, 330-336).—A simplified apparatus for rapidly and quantitatively hydrogenating (PtO_2) 3—5 or 30—50 mg. of substances is described. Errors in the hydrogenation of 10 substances with 1—9 ethylenic linkings were 0—1.6%. R. S. C.

Determination of alkyl- and aryl-halogen in presence of each other. W. H. RAUSCHER (Ind. Eng. Chem. [Anal.], 1937, 9, 503-504; cf. A., 1937, II, 358).—The author's method gives results having errors <0.1%. F. R. G.

Micro-determination of organic sulphur. W. SASCHEK (Ind. Eng. Chem. [Anal.], 1937, 9, 491— 492).—A modification of Pregl's method. The combustion tube is washed out with 1 in 300 HCl into a crucible in which $BaSO_4$ is pptd. and the liquid removed by suction through a filter stick. Transference of ppt. is thus avoided. F. R. G.

Qualitative organic analysis. Identification of alkyl halides, amines, and acids. (MISS) E. L. BROWN and N. CAMPBELL (J.C.S., 1937, 1699— 1701).—Primary and sec. alkyl bromides and iodides are identified by the formation with CS(NH₂)₂ of S-alkylisothiocarbamides; the following are described: n-, m.p. 181°, and iso-propyl-, m.p. 148°, n-, m.p. 180°, iso-, m.p. 174°, and sec.-butyl-, m.p. 190°,

n-, m.p. 154°, iso-, m.p. 179°, and sec.-amyl-, m.p. 143°, n-hexyl-, m.p. 157°, and benzyl-isothiocarbamide picrate, m.p. 188°. (·CH₂Br)₂ yields ethylene bis(iso-thiocarbamide) (picrate, m.p. 270°). pp'-Diphenylthiocarbanilide, m.p. 233-235° (from p-C.H.Ph.NH2, CS_2 , C_5H_5N , and I), is converted by Ac_2O into 4-diphenylylthiocarbimide (I), m.p. 70°. Aliphatic amines are identified by interaction with (I) or with β-naphthylthiocarbimide, and the following are described, the m.p. recorded being those of the Nalkyl- (or -diakyl-)N'-4-diphenylylthiocarbamide, and the N-alkyl (or dialkyl)-N'- β -naphthylthiocarbamide, and respectively: methyl- (142°, 127°), ethyl- (165°, 142°), n-propyl- (156°, 114°), n- (155°, 119°) and iso-butyl (157°, 137°), n- (147°, 114°) and iso-amyl, (130°, 116°), n-heptyl (149°, 115°), dimethyl- (225°, 173°), diethyl- (114°, 90°), dipropyl- (117°, 109°), diisobutyl- (160°, 136°), di-n-amyl- (118°, 126°), benzyl- (147°, 173°), cyclohexyl- (180°, 172°), bornyl-(167°, —), camphyl- (138°, 127°), and ethylenebis- (237°) 223°). 2:4:5- $C_6H_2Me(NO_2)_3$ with the appropriate primary amine yields N-ethyl-, m.p. 126°, -n-propyl-, m.p. 101°, -n-, m.p. 96°, and -iso-butyl-, m.p. 112°, -n-, m.p. 99°, and -iso-amyl-, m.p. 82°, -n-heptyl, m.p. 50°, and -benzyl-4: 6-dinitro-m-toluidine. (CH2.NH2)2 yields NN'-bis-(2:4-dinitro-5-methylphenyl)ethylenediamine, m.p. 280°. Org. acids are identified by formation of the 2-alkylbenziminazole with $o-C_6H_4(NH_2)_2$, and the following are described : 2methyl-, m.p. 214°, -ethyl-, m.p. 120°, -n-, m.p. 124°, and -iso-propyl-, m.p. 136°, -amyl-, m.p. 282°, -hydroxyethyl-, m.p. 131°, -hydroxymethyl-, m.p. 214°, and -phenylhydroxymethyl-benziminazole picrate, m.p. 209°. Alkyl nitrites are identified by formation of 3oximino-2-phenylindole with 2-phenylindole. An improved prep. of 2:4-dinitrobenzoic acid is described. J. D. R.

Determination of glycol or glycerol in dilute solutions containing oxidisable impurities. W. E. SHAEFER (Ind. Eng. Chem. [Anal.], 1937, 9, 449– 450).—50 c.c. of solution containing <2.5 g. of $(CH_2 \cdot OH)_2$ and free from mol. compounds are neutralised and distilled with a three-bulb Snyder column to 10 c.c.; 50 c.c. of dry C_5H_5N are added and the mixture is distilled to 110°, the residue being acetylated with 25 c.c. of $2.6N-Ac_2O$ in C_5H_5N , then diluted, and titrated, while shaking, with N-NaOH. The result is compared with a blank val. The method can be used for glycerol, and after applying a correction the accuracy is 1%. F. R. G.

Determination of $\beta\gamma$ -butylene glycol. Y. TOMI-YASU (J. Agric. Chem. Soc. Japan, 1937, 13, 972— 977).—Acetoin is first removed from the liquid by distillation (cf. A., 1937, II, 443). The residue is heated with Br and NaOAc, the excess of Br exactly removed by Na₂S₂O₃, and then the liquid is distilled into aq. NiCl₂ solution. Wt. of ppt. $\times 0.88 = \beta\gamma$ butylene glycol. J. N. A.

Volumetric determination of polyhydric alcohols and reducing aldoses (monosaccharides) by means of periodate, and the determination of periodate and iodate in presence of each other. I. F. RAPPAPORT, I. REIFEE, and H. WEINMANN

TECHNIN

(Mikrochim. Acta, 1937, 1, 290-299).—I set free at $p_{\rm H}$ 4·4—7 from solutions of KIO₃ and KIO₄ in presence of KI corresponds with the KIO₄ present. Glucose (I), mannitol (II), and sorbitol (III) can be determined in acid or alkaline solution by means of the periodate method. (II) and (III) can be determined in presence of (I) by determining (I) by means of Fujita and Iwatake's method and the total sugar by means of periodate. Galactose and its admixture with (II) and (III) can similarly be determined but only in acid solution. C. R. H.

Quantitative acetylation of amines by acetyl chloride and pyridine. V. R. OLSON and H. B. FELDMAN (J. Amer. Chem. Soc., 1937, 59, 2003–2005).—Smith and Bryant's method (A., 1935, 369) of determination of OH, which gives inconsistent results with amines and amides, is modified. Using $AcCl + C_5H_5N$ in Bu[°]₂O at 70° and compounds which are sol. in the reagent, vals. >90% of the theoretical are generally obtained. H. B.

Effect of aldehydes on cystine and cysteine. W. C. HESS and M. X. SULLIVAN (J. Biol. Chem., 1937, **121**, 323—329).—Through formation of complexes, aldehydes have a marked effect on the determination of cysteine by the Sullivan method, the effect increasing with decreasing acidity, with increasing concn. of the reactants, and with increase in the val. of the ratio aldehyde : cysteine. Aldehydes do not affect the determination of cystine either in dil. or in conc. solutions. C. R. H.

Detection of thiocarbamide. E. STORFER (Mikrochim. Acta, 1937, 1, 260–263).—The substance to be tested is gently heated for 2—4 min. with H_2O , mixed with dry CuCl₂ or other Cu salt, boiled for 1 min., and filtered. A drop of the filtrate, which must be neutral, is brought on to filter-paper soaked in $K_3Fe(CN)_6$. A violet-blue colour indicates the presence of $CS(NH_2)_2$. EtOH-H₂O and $COMe_2$ -H₂O solutions sometimes give better results. Highmol. products, *e.g.*, resins, must first be decomposed by treatment with syrupy H_3PO_4 at 100—150° followed by neutralisation with NaOH. 0.00001 g. of $CS(NH_2)_2$ can be detected. C. R. H.

Micro-method for measuring rate of decomposition of diazoacetic esters. P. GROSS, H. STEINER, and F. KRAUSS (Mikrochim. Acta, 1937, 1, 87-91).—A micro-gas volumeter is described. J. S. A.

Quinone reactions. G. WOKER and U. ANTE-NER (Helv. Chim. Acta, 1937, 20, 1260—1270).— The complication in the detection of ascorbic acid caused by the development of colour by benzoquinone (I) and tissue only (A., 1937, II, 367) is not attributable to $C_{g}H_{4}$ ·OH, carbohydrate group, or readily eliminated S but is given by the isolated NH₂acids. This explanation is quantitatively inadequate; in the reaction of (I) and proteins the effect is due to the NH₂-acids, particularly histidine, lysine, arginine, ornithine, and proline, and also to NH₃ obtained by their deamination. The possible structures of the compounds thus formed are discussed. Similar reactions are afforded by triketohydrindene (cf. Cherbuliez, A., 1935, 102). H. W.