EDITORIAL STAFF
E. L. Shaner

Editor-in-Chiel
E. C. Kreutzberg Editor
A. J. Hain

Managing Editor
G. W. Birdsall

Engincering Editor
J. D. Knox

Steel Plant Editor Guy Hubbard
Machine Tool Edisor
D. S. Cadot

Art Editor
ASSOCIATE EDITORS
G. H. Manlove W. J. Campuel
Harold A. Knigit
Neru York

W. G. Gude
L. E. Browne K. Price
Pirtsburgh Chicago

R. L. Hartrord E. F. Ross

Detroit
Washingion
A. H. Allen
L. M. Lamm

London
Vincent Delport
ASSISTANT EDITORS
George Urban Jay DeEulis I. C. Sullivan La Verne Nock New York John H. Caldwell
BUSINESS STĀFF
G. O. Hays

Business Manager
C. H. Bailey

Advertising Service
Nesu York. E. W. Kreutzberg B. C. Snell

Pittsburgh S. H. Jasper

Chicago L. C. Pelott R. C. Jaenke D. C. Kiefer

J. W. Zuber

Circulation Manager
MAIN OFFICE
Penton Building, Cleveland BRANCH OFFICES
New York.110 East 42nd St. Chicago...... 520 North Michigan Ave. Pittsburgh. Koppers Building Detroit. 6560 Cass Ave. Washington. National Press Building Cincinnati............ 1734 Carew Tower San Francisco....... inoo Norwood Ave. Oakland, Calij., Tel. Glencourt 7559 London Caxton House Westminster, S.W. 1

Published by Thf Penton Publighina Co.
Penton Building. Cleveland, Oblo. E. I. Sinaner Prealdent and Treasurer: G. O. Ilass. Vice President: F. C. Steinsibach, Secretary.
Member, Audit Bureau of Circulations: Assoclated Business Papers Inc, and Natlona PubIshers' Association.
Published every Monday. Subscriptlon th the United Statea, Cuba, Alexico and Canads, one ear \$4, two yeara sA: Furovean and forejan lasuea) 25 c . Esuea) 25c-
Entered as gecond class matter at the postomice at Cleveland, under the Act of March 3 , 1879. Copyright 1841 by the Penton Publishlag Co.

Volume 109-No. 2
July 14, 1941
READER COMMENTS 4
HIGHLIGHTING THIS ISSUE 19
NEWS
Britain Stockpiling Steel Imported from United States 21
Defense, Aid-to-Britain Steel Needs "Only 22% of 1941 Output" 23
Light Plate Capacity To Be Raised 754,000 Tons by 1942 24
Steclworks Operations for Week 25
First Halt Ingot Output Nearly $+1,000,000$ Tons 25
Steel Produced for Sale in May 1.4 Per Cent Below April 26
Priorities Management Department Established by Allis-Chalmers 27
Men of Industry 28
Obituaries 30
Mectings 31
National Steel To Add 300,000 Tons Ingot Capacity at Detroit 35
$\$ 3,061,000,000$ Allocated for Expansion of Defense Facilities 43
Government Defense Awards 44
U. S. Places $\$ 120,000,000$ Aluminum Order in Canada 47
WINDOWS OF WASIHINGTON 32
MIRRORS OF MOTORDOM 37
WING TIPS 41
EDITORIAL—Uncle Sam's Factory O.K., But How About Front Office?THE BUSINESS TREND49
TECHNICAL
Descaling Shell by Abrasives Blasting-By John D. Alexander 52
Big Guns-Ancient and Modern-By Arthur F. Macconochic 54
How Molybdenum-Tungsten High-Speed Steel Can Be Used To Replace $18-4-\mathrm{I}-\mathrm{By}$ loseph V. Emmons 5^{8}
New Heat Treating Gas Prevents Surface Decarburization. 68
Materials Handling
Analysis of the Crawler Crane as an Industrial Materials Handling Tool σ_{4}
Progress in Steclmaking
Use of Amorphous Graphite in the Open-Hearth Shop-By R. J.Zemanek71
Metal Finishing
"Hard" Chromium Plating-i
Life-By John T. Hyduke76
Joining and Welding
How To Get Welding Operators-By Harold Lawrence 82
INDUSTRIAL EQUIPMENT 88
HELPFUL LITERATURE 97
MARKET REPORTS AND PRICES 99
BEHIND THE SCENES 116
CONSTRUCTION AND ENTERPRISE 119
INDEX TO ADVERTISERS 128

GUNS behind the lines

Guns to build planes-guns to build plants-guns for tanks and trucks-guns for the myriad of items needed for national defense from ammunition boxes to soup kitchens.

To see that resistance welding guns-the "guns behind the lines" are available for whatever purpose they may be needed: to speed production, to simplify manufacture, to cut costs-and as fast as needed-is Progressive Welder's business.

ILLUSTRATED ABOVE

Swivel construetion of the upper electrode in this Standard Progressive "C" type gun enables clearing of obstructions in welding formed steel sections. (Available wilh long or short throats, wilhout swivel fealure, ete.) Insert shows a stondard Progressive gun for lighler work-fealuring self-loching full swiveling action, single pin cable clamp and P-H flexible kickless welding cable. There are several hundred 'standard' and semi-standard guns in the Progressive line-pinch guns, push guns, expansion guns, etc.

Today, with a new plant providing ample manufacturing facilities Progressive is able to fill all indicated needs for portable welding guns. Furthermore, there is a standard Progressive gun for virtually every conceivable job, large or small-from inch sections to light gauge aluminum and stainless-cutting design costs and delivery time. Your blueprint will bring you a quotation virtually by return mail. Write or wire direct to our main office or the following:
PHILADELPHIA
D. J. Riddell

DAYTON
Frank Mackniesh

BUFFALO
R. C. Neal Co 76 Pearl St.
ROCHESTER R. C. Neal Co. 46 Andrews St^{2}. TORONTO
Rudel Machinery Co.
Rudel Alachinery
137 Wellington St .

BRANCH OFFICES

CLEVELAND Frank Stockion ST. LOUIS Art Lewis

SAN FRANCISCO Ducommon Metals \& Supply Co.

PROGRESSIVE WELDER CO.
3050 East Outer Drive, Detroif, U.S.A.

HIGHLIGHTING THIS ISSUE OF ゴを邑

－MILD hysteria which developed last week among some civilian steel users（ 1.24 ）is un－ justified．The worst that consumers have suf－ fered to date have been mild pinches，particu－ larly in alloy steels，but in very few cases have production lines been halted for lack of steel． ．．．There is a mistaken impression，encour－ aged by a radio broadcast last Thursday eve－ ning，that only 40 per cent of current sted output is available to civilians；it appears to result from the fact that steelmakers esti－ mate total defense，indirect and direct，as ab－ sorbing 60 per cent or more of the steel out－ put．Actually，tonnage identified as＂direct and indirect defense＂includes large tonnages for purely civilian purposes．

In view of the widely reported＂shortage＂ of steel，it is interesting to note that certain consumers（ p .99 ）which normally operate on short schedules at this sea－

Department，

 ＂Wing Tips＂ son are running full on con－ sumer goods to be placed or sale next spring；this is be－ cause urgency on the part of suppliers is forcing them to take in much larger tonnages than they desire；while such cases are not typica！they do exist ．．．With this issue STEEL（p．41）amplifies its cover－ age of the aviation industry in a new depart－ ment entitled＂Wing Tips＂；the purpose is to inform manufacturers of many different prod－ ucts and materials who are in a position tis add to the momentum behind our aircraft con－ struction program．Some steelmakers who have been operating without profit（p．117）are，with OPACS ap－ preval，quoting f．o．b．mill prices，passing freight charges on to con－

Consumers

Pay the Freight sumers ．．．Defense work （ p ．43）is well ahead of schedule ．．．Significant move is establishment by Allis－Chalmers（1．2\％）of a priorities manage－
ment group headed by a top company officer ．．．Capacity for rolling light plates is to be increased（p．24）by 754,000 tons ．．．Meas－ ures for conserving alloy scrap（p．32）are under study ．．．Chromium now（p．34）is on the critical list ．．．Continued demands for higher wages constitute the British govern－ ment＇s most difficult problem，says Vincent Delport（p．21）；he reports the inflation spiral is not yet broken．

Joseph V．Emmons tells（p．58）how molyb－ denum－tungsten high－speed steel can be used to replace the well－known 18－4－1 high－tungsten type．With 18－4－1 supply re－
＂Moiy－Tung＂ Replaces 18－4－1 now available stricted by OPM，every user of high－speed tool steels： should know how to employ the satisfactory substitutes －Improved blasting equip－ ment for descaling shell is described（p．52） by John D．Alexander．Inside and outside of 75－ milimeter shell are blasted at cost of only $\$ 0.0168$ per shell．．．．An analysis of the crawler crane as an industrial materials han－ dling tool is presented（p．64）．．．．Apprentice training as a source of welding operators is discussed（p．82）by Harold Lawrence．

This week Professor Macconochie begins（p． 54）a study devoted to development of big guns and methods of manufacturing them．．．．How graphite is being used by

Electroplating

 many steelmakers to help swing over their cold metal ＂Hard＂Chromium charges to all steel scrap is told（p．71）by R．J．Zem－ anek．．．＂Hard＂chromium plating is assum－ ing increasing industrial importance，according to John T．Hyduke who describes（p．76）its characteristics，applications and also some un－ usual features of a new plant devoted almost entirely to that work．．．．Steel casings wert used as piles（p．74）to save several thousand dollars in constructing a foundation for a $900-$ ton capacity blast－furnace foundation recently．

Vacation this Year?

Though our national emergency is shortening and even cancelling many vacations this year, we hope you'll be able to slip away for a few days at least. While you're gone, your department can rely on Ryerson for the best steel-service that present-day circumstances will permit. In times like these, we are naturally out of many sizes but we still have a fair stock and service continues without interruption. So make the best of your days off . . . Relax! Build yourself up for the hard winter months ahead. Ryerson will help hold the fort.

OVER THERE: English officer commends workers in an antiaircraft gun factory for their workmanship. The officer claimed as much ciedit for defending the island was due them as to the troops who fired the guns. British workers since the start of the war have been labcring long hours, without seriou? detriment to morale. NEA photo

Britain Stockpiling Steel Imported

From United States

Takes opportunity in Russo-Nazi conflict to intensify

war material production . . . Steel output increased . . .

Domestic ores used . . . Labor shortage is problem

By VINCENT DELPORT
European Editor, STEEL

Abstract

LONDON

- WHILE Germany is engaged against Russia on the eastern front, Great Britain is intensifying the production of every type of raw material. This to a large extent depends on a speed-up of iron and steel output. That such an increase has been effected is shown by the fact that a proportion of the steel imported from the United States has been set aside, and reserves have been accumulated to the extent where American importations, especially of semifinished steel, have been materially reduced since May, and more shipping space has been allocated to prime war materials.

The satisfactory trend of steel
output has been made possible by a considerable development of the production of domestic iron ore which has been increased by 50 per cent. A substantial reduction in imports of foreign ores has a restrictive effect on the output of hematite pig iron; this means that other grades are substituted in the manufacture of cettain castings.

Bulk of steel output is reserved for war purposes; further restrictions were imposed recently on the use of steel and other metals for so-called luxury purposes, such as bathroom fittings, metal windows and metal furniture. On June 30, steel consumers were required to make known to the Iron and Steel

Control the tonnage of steel produets they had in stock at the end of the half-year. As a result of the various measures taken, deliveries of war contract materials are at present satisfactory.

Under present condition, iron and steel exports have to be restricted. Recently the president of the Board of Trade confirmed the government's policy, which is to permit exports only when they save sterling exchange necessary for essential imports; when these exports are essential to an allied nation; when the value of the exported product is high in comparison with that of the imported raw material and when the product can be made and
shipped without materially strain ing war resources.

A case in point is tin plate; most of the output is reserved for domestic production of food and oil containers, and exports are restricted to markets where goods are packed for re-export to Britain. The output of tin plate mills in April was about 50 per cent of capacity. Further economies in the use of tin plate will result from a recent order standardizing the size and shape of containers, and prohibiting the use of tin plate for packing about 30 commodities in addition to previous prohibitions.

Steel Controlled Prices Unchanged

There has been no change in iron and steel controlled prices since our last review. There is a belief, however, that selling prices may be in creased before long owing to the rise in the cost of wages, raw materials and transport. All business is done on the understanding that prices will be those ruling at time of shipment. In May there was an increase in the price of certain grades of iron ores.
While, as can be seen, the general situation of the steel industry in Great Britain is satisfactory, there are naturally considerable diffículties to be surmounted. One of the most difficult problems is concerned with labor. It is obvious that the war effort could not be brought to its maximum without certain privileges being given up by the workers, especially as regards hours of work.

On this point the trade unions have given full co-operation, and recently, the chief labor adviser to the Iron and Steel Control stated the additional hours had not detrimentally affected the workers' health. The harder conditions under which workers are operating have justiffed increases of wages, but fresh demands for further increases crop up frequently and the government does not seem able to stabilize wage levels. A recent in crease in wages of coal miners and of railroad workers is bound to have repercussions on the general price level and the vicious spiral which leads to inflation is not yet broken.

A satisfactory feature, however, is that there have been no important strikes to hold up production. Competition for men between the armed forces and industry, or between one industry and another, also has to be met. This does not apply so much to iron and steelworks, rolling mills, tube mills, or any concerns engaged in essential war work, but there have been some difficulties in regard to foundry workers which, however, have recently been satisfactorily settled. Strangely enough the coal mining industry has been ham-
pered by the calling up of certain categories of miners, and also by the fact that miners have been attracted to other industries where they could earn higher wages. As coal output was becoming affected the Minister of Labor and National Service has just taken measures to relieve the situation.

Scrap demand tends to exceed the supplies and stocks immediately available are relatively low. There are, however, substantial tonnages of iron and steel scrap lying all over the country and waiting to be collected; this constitutes a potential reserve. Curiously enough, imports of scrap from the United States during the first half of the year have been substantially less than in the first half of 1940 . However, an order for about 400,000 tons was, it is reported, placed with the U. S. government in June, and the Minister of Supply recently assured Parliament that the situation was well in hand.
It is interesting to note that the chancellor of the exchequer has made a concession in regard to the excess profits tax. This remains at 100 per cent, but 20 per cent will be refunded after the war to assist industry in readjusting itself to peace conditions. A special allow ance is also to be given to concerns engaged in producing metals specially required for munitions.

Conditions on the Continent are difficult to assess in view of the scarcity and vagueness of reports, particularly as regards Germany itself. In Germany a new four-year plan has been elaborated, which
provides for large expansion of works and factories, entirely for armament, especially in the East This is symptomatic and indicates the eastward trend of heavy industry, no doubt due to the vulnerability of the Ruhr and Rhine districts to British air attacks.
The French steel industry is re ported to be undergoing reorganization, bringing it more and more un der the control of the state. Steel works in Alsace-Lorraine and Northern France are said to have been acquired by German interests which include the Hermann Goering group. The minette ore of the Bas \sin de Briey in Alsace-Lorraine is a likely source of supply for German iron and steelworks.
In Belgium there appears to be a considerable amount of resistance against German excroachments Passive resistance is reported from the coal mines and strikes have occasionally broken out among the miners. Iron and steel production is below normal. At the end of 1940, 23 blast furnaces were operat. ing, as against 44 at the end of 1939. Output of raw steel in Belgium in 1940 was about 40 per cent less than in 1939. It is reported that Germans are acquiring shares in Belgium enterprises and placing their own men at key posts in concerns that are showing signs of resistance. A certain limited tonnage of exports amounting to 3000 tons a month has been allowed toward Hclland, Den mark, Norway and Finland; pay ments are made by a clearing ar rangement through Berlin.

Italian iron and steel industry is

\& WOMEN'S PLACE: In England it also is in defense industries, as demands of the armed forces cause a shortage of male laborers. Photo shows women operating machines which turn out parts for antitank guns in a ministry of supply factory "somewhere in England." NEA photo
carrying on under difficulties, especially as regards scrap supplies. Assistance from Germany is obtained in the form of imports of semifinished steel. Increasing use is being made of electric furnaces for the production of pig iron. Iron and steel prices were fixed in Italy at the beginning of the war and no alterations have beelı made since, although an increase is expected.

Sweden has been adversely af. fected by the war since the occupation of Norway in the spring of last year. Most of her usual export markets were lost and a complete reshaping was made necessary. The country has, however, managed to keep going thanks to intensified production of armaments for defense and to the establishment of new industries. Spain's iron ore industry is relatively maintained although the output in 1940 was nearly 10 per cent below 1939, mainly due to a sharp reduction of export trade.
Germany's sudden, if not entirely unexpected, attack on Soviet Russia holds both economic and military possibilities of great importance.
As the simplest explanations are often the most correct, the following appears a plausible cause for the Nazi action: Hitler knows he cannot win the war unless he beats Britain in her own island stronghold. His eyes are now open to the fact that to beat Britain he must hurl against her the whole and the best of his air and land forcesand what is left of the German and Italian navies. His fear of Russia's growing strength induces him to maintain strong and well trained forces all along his eastern frontier. He realizes also the possibility that he may not succeed in winning the war this year, and in the background looms the rapidly increasing menace of American help to Britain and her allies.

"Two Birds With One Stone"

Therefore by rushing against Russia before she has attained her full strength, Hitler gambles killing two birds with one stone; to remove the fear of an invasion of Germany's eastern frontier while engaged in the major battle against Britain, and to secure considerable sources of valuable supplies in Ukraine and the Caucasus.

The sources of supply comprise not only the wheat of Ukraine and the oil of the Caucasus region but also valuable resources of iron and manganese ore. It has already been indicated in these articles that Germany is self sufficient as regards iron and steel but that she was faced with the problem of obtaining iron ore of a suitable grade for economic production. The problem is no doubt partly solved since Germany can now draw upon Swedish
and French ore production. However, supplementary supplies from South Russia would be a great asset, especially as the mines would be relatively safe from air attack, and they could be used for supply: ing steelworks in Eastern Germany; and in Bohemia-Moravia; these works are of great importance as they would be much less subjected to air attacks than the Ruhr and Rhineland works, once Russia was subjugated.

Of greater interest still to Germany is manganese ore, which is found in India, Brazil and South Russia. Supplies from India can be ruled out and imports from Brazil have to come across the Atlantic. South Russia is therefore the only practical source of supply of manganese ore for German works.
(For inventory of Russia's metals
and other resources, see Steel, June 30, p. 15.)

An additional prize, which might come within reach of German ambitions, is the nickel mines of Petsamo in the north of Finland.

625,000 Tons Semifinished To Be Shipped to Britain

Question of allocation of 625,000 tons of semifinished steel for shipment to Great Britain over the remainder of the current quarter was settled last week and the Treasury's procurement division soon will formally make the awards under the lease-lend act.

Allocation of 420,000 tons of tin plate for shipment to Great Britain and her colonies over the next year is being considered. This tonnage has been pending for some weeks.

Defense, Aid-to-Britain Steel Needs "Only 22 Per Cent of 1941 Production"

- "NO SOUND factual basis for expecting a shortage of steel supply for any essantial use" exists, Walter S. Tower, president, American Iron and Steel Institute, declared before the annual meeting of the purchases and stores division of the Association of American Railroads in Chicago last week.

If any acute condition in respect to steel supply is to be experienced, it is already close at hand because of the coincidence of various pressing demands for carly delivery, he said.
"Like a river in flood, that sort of demand rises rapidly to the crast, but it does not last forever.
"Rated steelmaking capacity today is more than $85,000,000$ net tons of ingots in a year. Next year it will be substantially more. If pushed by stern necessity for the last available ton, the industry as it now stands probably could make at least 87,000 ,000 tons in 12 months, provided there were no interruptions in flow of materials and supply of labor. So far this year, and it is half gone, actual output has been at the rate of about $82,000,000$ tons, with no record of important lack of steel for any essential industry.
"Some users for civilian purposes have taken record-breaking quantities. Competent outside observers come to the conclusion that production has been consistently ahead of actual consumption. Inventories are raported to be still on the increase, and probably at the highest level ever known.
"The first charge against the present potential supply is for enough
tonnage to meet all domestic military uses, including army, navy and Maritime Commission programs. Close beside that comes the tonnage which we are committed to furnish for Britain and Canada. For this calendar year, 1941, according to current official estimates and reports, those two items, defense program and British-Canadian tonnages, represent an ingot equivalent of not more than $18,000,000$ tons.
(Editor's note: $18,000,000$ tons of steal represents not more than 22 per cent of probable 1941 production.)
"For the calendar year 1942, the current estimate for our own program is a little larger. The British need next year is still uncertain, but is hardly likely to expand very much, when the limiting factor of shipping space is considered.
"Available facts, therefore, justify the belief that both in this year and in 1942 there will be fully $67,000,000$ tons of steelmaking capacity which can be used for domestic civilian consumption and for whatever exports may seem desirable to countries other than Britain and Canada.
"Such other exports are not likely to call for more than $3,000,000$ tons of ingots, leaving a minimum of $64,000,000$ tons for domestic civilian uses. This country has never in any year been able to use any suchquantity of steel. Even in 1940 total domestic consumption including defense and civilian uses was only $55,000,000$ tons.
"But, say the prophets of scarcity, national income will rise to unheard
of levels, and the resulting demand for steel will be terrific. The broad answer to them is that the theory of intimate connection between national income and demand for steel is not sound, and it is particularly unsound under the distorted conditions of wartime economy.
"So far there have been no fig. ures offered by anyone to show that maximum defense requirements will amount to more than a minor fraction of total ability of the industry to produce steel. Nor is there any basis in facts for expecting that civilian consumption of steel products will take more than will be available, after the needs of the defense program have been satisfied.

Interprets Dunn Report

"A careful reading of the recent report to the President by Gano Dunn reveals the conclusion that in his considered opinion, after studying the subject intensively for several months, expansion of steelmaking capacity is not now justified beyond the normal and natural increase which is always going on in the industry, plus certain special additions, like electric furnaces, to meet specific defense requirements.
"Any other conclusion, I think, is untenable because it must be based on the theoretical assumption that requirements for nonmilitary uses will soar to fantastic levels. Instead of an orgy of consumption, some sacrifice by every one is the likely price of this job that this country faces."

Any real shortage of steel for nonmilitary uses seems both unlikely and unnecessary, Mr. Tower said.
"Should the unlikely happen, it will come early, it will be brief, and it can be dealt with only in one way; that way is temporarily to ration or to curtail the more dispensable uses. The machinery for such action already exists. It could be applied promptly. It should not be necessary to use it generally, or for very long in any case.
"Any such condition, if it should happen, could not be dealt with by a program of wholesale expansion. Here and there, as I have pointed out, additions to steelmaking facilities are under way all the time. Some important ones are due to become productive before the end of this year or in the course of 1942. But any large scale expansion must
be a matter of many months to create. Probably very little of 'the 10 million ton program,' which is referred to so blithely by the unknowing, could be realized within two years."

Estimates Vary Widely, but Users Are Getting Steel

Some steelmakers last week estimated about 30 per cent of current steel output is going to direct defense and that indirect defense is taking 30 to 50 per cent of the total.
These figures led a nationallyknown business publication to broadcast over the radio Thursday evening that only 40 per cent of the current steel output is available for civilian purposes.
The explanation is that the estimated 60 to 80 per cent of steel going into "direct and indirect defense" actually includes a huge amount used for purely civilian purposes.

While Mr. Tower's computation in the foregoing article does not differentiate specifically between direct and indirect defense needs, it can be accepted as a fair assurance that there is no immediate threat to the supply of steel for civilian use.

Light Plate Capacity To Be Raised 754,000 Net Tons

WASHINGTON

- CAPACITY of wide strip steel mills to make light plates for ships, railroad cars and other purposes will be increased 754,000 tons to a total of $2,480,000$ tons by the early part of 1942, according to OPM.

The increase will be brought about by construction programs now under way at a number of the mills.
W. A. Hauck, OPM steel consultant, disclosed the outlook after visiting several strip mills and compiling results of a questionnaire submitted recently to the 13 mills rolling strip 54 inches or more wide.
Present total annual capacity of these mills is $12,941,400$ tons, of which $1,726,000$ is light plate capacity and $11,215,400$ is capacity for the manufacture of strip. Of the additional plate capacity to be provided, 654,000 tons will be obtained gradually by the end of this year and the other 10,000 will be available by March 1, 1942.
Light plate production on the strip mills in May, 1941, was 108,772 tons. For the first five months of 1941 it averaged 97,013 tons per month, compared with a current capacity of 143,833 per month. This average unused capacity of 46,820 tons is to be absorbed gradually by the reallocation of suitable orders for
light plates and the placing of new orders.
A regulation will be issued shortly to all steel companies with strip and plate capacity, requesting them to reallocate to strip mills plates now scheduled for the regular plate mills, in cases where the sizes and quantities are better suited for strip mill production.
All new orders for light plates of sizes and quantities suitable for strip mill production will be allocated to strip mills in the bast position to produce such plates when needed, Mr. Hauck said, adding that this arrangement should relieve the heavier plate mills of a considerable amount of the light plate tonnage more suitable for strip mills and enable them to concentrate on heav. jer plate orders.

Additional heavier plate capacity is being installed by some of the companies that have strip mills, and more plate capacity is being provided also by companies not operating strip mills. Further additional plate capacity is proposed in the overall expansion of the steel industry now under consideration.

Most of the plates rolled on strip mills are $\%$-inch or less in thickness, although four of the strip mills can also roll $\pi / 4$-inch plates. To obtain maximum production of light plates
on strip mills, large tonnages in uniform sizes as to length, width and thickness must be scheduled, since strip mills are geared for speed with little interruption.

National Tube Rebuilding
 Blast Fumace at Lorain

National Tube Co., subsidiary of United States Steel Corp., is rebuilding one of its five blast furnaces at Lorain, O. Daily capacity will be increased 350 tons from 750 to 1100 tons.

OPACS Studies Price

 Ceiling for Cadmium- OPACS last week conferred with leading producers, distributors and users of cadmium, gathered information on the metal, and discussed the desirability of establishing a formal maximum price, in place of the present informal 90 to 95 -cent producers' rate.

Practically all cadmium is being sold at the producers' price, but some small second-hand lots are selling at $\$ 1.50$ to $\$ 1.75$ per pound with one unconfirmed report of $\$ 2.25$. There is a possibility of OPM priority on cadmium distribution. Cadmium is as tight as zinc, from whence it comes.

First Half Ingot Output Nearly 41,000,000 Tons

Production of steel ingots and castings in the record-breaking first six months of 1941 totaled $40,911,886$ net tons. This is within 20 per cent of output in all 1917, the peak year of the first World war, according to the American Iron and Steel Institute. It is nearly 40 per cent larger than the $29,405,402$ tons produced in first half, 1940.

During the past six months the industry operated at an average of 98 per cent of capacity, compared with 72.4 per cent in the period last year, and 91.6 in the second half of last year.
In 1917 operations averaged 90.8 per cent of the capacity existing then, which was approximately 55 ,600,000 tons annually, one-third less than present capacity of more than $84,150,000$ tons.
June output this year totaled 6 ,800,730 tons, at 98.2 per cent of capacity, compared with $7,055,132$ tons, 98.7 per cent of capacity, in May. June output in 1940 was 5,657,443 tons, 84.5 per cent of capacity.

PRODUCTION .

Up
■ STEELWORKS operations last week advanced 4 points to $971 / 2$ per cent of capacity, regaining most of the ground lost in the week of July 4. A year ago the rate was 88 per cent; two years ago, 501%.

Birmingham, Ala. - Steady at 90 per cent, with 22 open hearths in production.

Buffalo - Rebounded $171 / 2$ points to 93 per cent, $21 / 2$ points above the

[^0]rate during the last three weeks of June.

St. Louis - Held at 98 per cent, 27 of 28 open hearths in service.

Chicago - Down 1 point to $100 \frac{1}{2}$ per cent, from the revised rate of $1011 / 2$ per cent the preceding week.

Detroit - Up 13 points to 96 per cent, only one open hearth idle.

Central eastern seaboard -- Advanced 5 points to 97 per cent.

Pittshurgh - Several furnaces down for repairs were relighted, lift. ing the rate 2 points to $99^{1 / 2}$.

Wheeling - Rose 4 points to 91 per cent, highest since January and February.

Cleveland -- Gained 4 points to $961 / 2$ per cent.

New England - Unchanged at 90 per cent.

Youngstown, O. - With 77 open hearths and three bessemers in production the rate was 98 per cent, up 8 points.

Cincinnati - Advanced $61 / 2$ points to 88 per cent.

District Steel Rates

Percentage of Ingot Capacity Engaged In Leading Districts

Week	Same	
ended	Week	
July' 12	Change	Wha 1940

Plitsburgh	99.5	+ 2	80	44
Chicago	100.5	-1	95	50
Eastern Pa.	97	$+5$	84	40
Youngstown	98	+ 8	84	53
Wheeling	91	$+4$	94	79
Cleveland	96.5	+ 4	77	43
Buffalo	93	$+17.5$	90.5	37
Birmingham	90	None	88	80
New England	90	None	83	40
Cincinnati	88	$+6.5$	77.5	21
St. Louls	98	None	65	45
Detrolt	96	+13	92	64
Average	97.5	$+4$	88	50.5

Steel for Sale in May

1.4 Per Cent Below April

- Steel produced for sale in May totaled 5,196,563 net tons, 73,185 tons, or 1.4 per cent, less than 5,269 ,748 tons in April, according to the American Iron and Steel Institute.

Exports in May, 305,963 tons, were 25,979 tons below 331,942 exported in April, a loss of 7.8 per cent. Shipments to other members of the industry for further conversion totaled 356,117 tons, 28,434 tons, or 8.7 per cent, more than in April.

May production was $1,619,703$ tons
greater than the $3,576,860$ tons in May, 1940, up 45.3 per cent. Details for the month are presented in the table below.

Production in five months this year aggregated $24,907,500$ tons, 45.1 per cent more than $17,160,063$ tons in the corresponding period in 1940. Production for sale, less shipments to members of the industry for further conversion, related to estimated yield of 71.1 per cent of ingots, was 103.6 per cent of capacity in May and 102.3 per cent for five months. Of total production, exports were 5.9 per cent, compared with 6.29 per cent in April and 13.33
per cent in May, 1940. Summary by months, in net tons, follows:

Pct. Ex-

1940	Output	Exported	ported
April.	3,005,218	371,532	12.37
May	3,576,860	476,761	13.33
June	3,802,485	601,668	15.8
July	4,173,839	835,385	20.0
Aug.	4,649,065	1,053,110	22.6
Sept.	4,446,555	951,555	21.4
Oct.	4,937,388	783,652	15.87
ivov.	4,760,948	562,587	11.82
Dec.	4,909,448	713,802	14.5
Year	48,584,860	7,683,858	15.8
1941			
Jan.	5,163,912	558,198	10.8
Feb.	4.864.936	560,035	11.5
March.	5,411,319	491,519	9.07
April	5,269,748	331,942	6.24
May	5,196,563	305,963	5.9

			$\underline{1}$		Prook								
		Currot Moeit			Year io Date								
		тoun			Parcert copaty cont	Sthments		Toul	Pragentcopectiy	Stapeat			
		Expax^{1}					Export						
	Ingous, bloome, billecta, dabbe sheet bars, etcc..		34	1		422		20,370	179,8822	412,343		622,919	754, 992
	Heary structural thape.	7		730, 200	398,427.	918.2	11,739		1,828,733	23.4	81, 125		
	Steel piling....-....	3	3	248,000	24,977	118.5	691	8	104,812	102.1	11,612		
	Plate-Shered	28		5,496,590	472,356	10.1	24,025	2.212	2,199,804	96.7	176, 7 29	10,994	
	Sk	8	5	x $8 \mathrm{x} \times \mathrm{x} \times$	91,949	$\times \times$	19,165	33,299	1.44, 071	$\times \times$	69,349	180,499	
	-Standar	4.	6	-3,613,600	169,348	55.2	755		776,124	51.0	32,144		
	Light (60 lba and under)	6		302,800	-23,961.	54.3	4,913	¢ $\times 1 \times \times \times \times x$	80,957	64.6	31,751	xxxxxix	
	All other (Incl. girder. gu-			102,000	2,115	24.4	114		9,827.	23.3	1,499		
	Splice bar and tie plates-	14	9	1,210,600	72,315	20.3	1,367.	xxixx	318,157.	63.5	8,333	(1)	
	Bar-Merchant.	34	10	x+xxxxx	520,208	x $\times 1$	25,676	62,985	2,599,034	x $\times 1$	250, 043	299,560	
	Concrete reinforcing-	15		8××××××	.-. 135,255	x××	19,727.	\%	589,723	x $\times 1 \times$	96,963	(xixixix	
	roll	27	12	(1)	- 22,057.	x××	1,427	x \times	67,871	- $\times 1 \times$	4,913	xxx^{1}	
	Col	19	13		108,374	x× \times	1,416 $-12,607$		507,082	¢x \times	9, 3,311		
	Alloy-Hot rolled	$\frac{15}{16}$			$143,678$			14,089				- 69.164	
	Cold finished.	$\frac{16}{5}$	15	x	$\begin{array}{r} 17,895 \\ 10,381 \end{array}$	$\times \times$	$\begin{array}{r} 2,016 \\ 234 \end{array}$		$\begin{array}{r} 79,854 \\ 43,018 \end{array}$	- 1	$\begin{aligned} & 9,872 \\ & 1,620 \end{aligned}$		
	Total	52	17	11,600,185	958,608	97.3	63,103	77,074	4,542,804	94.6	435,998	364, 724	
	Tool steel hars (rolled and lorged).	16	18	127,870	9,745.	89.7	572	x19x9x	45,496	86.0	3.353		
	Ppe and tube-B, w.	13	19	2,049,200	134,986	71.5	12,907	${ }_{\text {x }} \times \mathrm{x} \times$	640,698	75.5	51.533		
	L			-885,260	41,317	54,9	--3,050		197,304	53.9	14,044	(1)	
	Electric weid	4	21	466,020	45,458	117.3	7,981		175,908	91.2	11,370	${ }_{1} \times$	
	Scamies	15		3,003,840	182,765	71.6	17.029		858,910	69.1	80,920	$1 \times$	
	Cond		23	152,145	11,719	90.7		x×xxxx	55,881				
	Mechanic	12	24	461,725	43,983	112.1	3,301	x×	196,107	108.6	19,367	x	
	Wire rode	19	25		126,962	${ }^{x \times x}$	11,256	-21,423	637.457		69,060	109,2959	
	Wire-Drawn.	37	26	-2,291,250	199,747	102. 6	12,638	1,922	904,978	95.4	64,890	9×456	
	Nails ands	19		1,120,610	68,236	12.7	7,477	x×××x×x	346, 653	74.7	29.859		
	an	1.6	${ }_{28}$	458,210	24,382	62,6.	6,532		119,320	62,9	27,527	¢ $\times 1$	
	Woven wire fence	15		771,180	28,991	4.,2			140,730	44.1			
	ve ties	1.0	30	110,980	8,535	20.5	. 59		32,088	69.9	. 99		
	All other	1	31	24,280	659.	31.9			2,655	26.			
	Fence poase	13	32	136,195	6,970	60.2		x $8 \mathrm{XX8} \mathrm{\times 8}$	30,431	54.0	479	8818188	
	Black plate.	10	33	296,435	40,135	159.4	7,350		152,609	124.4	11,540	42	
	Tin plate-Hot roted	7	34	352,700	-27,209	90.8	3,026	x××××x	111,499	76.4	7,567	x	
	Cold reduced		35	3,061,440	217,150	83.5	20,247.		919,222	72.5	75,956	808x	
	Sheets-Hot rolled	33	36	x×xxxxx	599.104	1x ${ }^{\text {x }}$	24,913	18,197	2,860,321	$\pm \times$	130,589	88,676	
	Galvania	13	37		133,23	x× \times	- 8,442	x×x×x×	714,490	x× \times	52,702	x $\times 1 \times 1 \times \mathrm{x}$	
	Cold mel	15	38		237,413 62,953		4,390 1,668		$1,185,974$ 311,883	¢ \times x	21,478 9,083	x $1 \times 1 \times 18$	
	Total Shers		40	12,137,550	1,032,723	100.1	39,413	18,197	5,072,668	101.0	213,852	88,676	
	Strip-Hot molled	26$\frac{23}{2}$3	41	2,666,140	160,839	71.6	-4,765	24.833	765,080	59.3	27.720	104,025	
	Cold rolled.		42	1,258,700	99,419	93.0	- $\quad 972$	8xixix	468,193	82.9	4,711		
	H5ects (car, rolled st		43	422,825	22,026	6.3		xxxxxx	105,864	60.5		xxxxix	
	Axtes	4	44	472,280	13,374	33.3	500		71,664	36.7			
	Track spike	10	45	319,435	14,993	55.2	129		71,964	54.4	1,418	xxixixi	
	All other.	4	46	24,100	3,358	164.0	- -	88888×	9,489	95.1	79	181818:	
	TOTAL STEEL Proouts (a) 133		18		5,196,563	x x	305,963	356,117	24,907,50	\%: \times	2,189,804	1,622,202	

	Pig iron, lerro Ingot moulds.	$\begin{array}{r}23 \\ 4 \\ \hline\end{array}$	49	$1 \times$	$62 ; 481$		591		301,644	-	$\begin{array}{r} 225,767 \\ 1,153 \\ \hline \end{array}$	$\begin{aligned} & 885,247 \\ & \times \times \times \times 1 \end{aligned}$
	Eara	-9	50	109,195	5.716	61.6	-7	364	25,786	57.1	1,12	1,413
	Pipe and	3	51	109, 300	6,223	67.0	530	-10180	26.721	59.1	889	
	Ald other.	2	52	11,0	1,035	17.2	-	-	7,799	26.5	, 281	
	Total Iron Proivers (itews 50	11	53	¢24,995	12,974	67.9	537	364	60,306.	64.	2,086	12413

Total Number of Companies
Included - 150 .
(a) Reparted by 133 Corupenios, which in 1040 produced 91% of that Yoer' B Total output of Finished Rolled Producte.

The essimased caerage yietd of pratucts for sale from ineots produced by the componies included aboon is
 Production for sale. Lass shipmens to members of the industry for further consersion, retaled to the estimated yield is as follows:

Currou monen 4. 840.446 \qquad V.T. 103.6%

Year to date $23,285,298 \ldots$ N.T: $102.3 \ldots \%$

Priorities Management Department

Established by Allis-Chalmers

ALLIS - CHALMERS MFG. CO. Milwaukee, has organized a priorities management group to direct the company's activities where preference ratings are involved, Max W. Babb, company president, announced last week.
"It has become necessary," he said, "that an organization should be set up to help in directing the company's activities in matters pertaining to priorities. General purpose of this organization is one of co-ordination and assistance and is not designed to take over any of the obligations and duties which are now a function of other departments.
"To this end the priorities management department at Allis-Chalmers has been established with L. W. Grothaus, vice president, as its head, G. V. Woody as administrator, and O. S. Larkby Jr. as his first assistant.
"The priorities management will have direction of: Presenting for the company matters concerning priorities to the Office of Production Management and all other government
departments or regulating bodies, including congressional, governmental or industry committees; the application of priorities to the company's suppliers of materials; the work being done by the company through its different departments on the matter of industry priorities as distinguished from a priority issued for specific contracts; helping to determine from the interested departments or from governmental agencies, such information as will pe:mit the shop to arrive at a proper decision in the problem of conflict of shop schedules between two or more jobs bearing the same priorities.
"The administrator will, from time to time, issue such informa. tion and instructions to the heads of departments as are necessary to guide the work of these departments in connection with this subject.
"All departments, including the tractor division and others holding prime interest in this subject, are to confer with the administrator of

Hand-Finishing Howitzers for the Army

[^1]priorities, or in his absence, with his assistant, on all subjects regarding priorities befora announcements or instructions are issued."

War Materials Plants

Financed by Government

W Reconstruction Finance Corp. last week reported a $\$ 125,000$ loan to Perfection Gear Co., Harvey, Ill., "in connection with the national defense program." Loan of $\$ 3,182,000$ to Thompson Aircraft Products Co., Cleveland, to be used in manufacturing airplane engines and airplanes also was announced.
Defense Plant Corp. lease agreements reported:
Increase of $\$ 75,000$ for reconditioning two ferromanganese blast furnaces of Tennessee Products Corp., Nashville, Tenn.;

Construction and equipment of a copper products plant at Los Angeles at cost of $\$ 2,995,000$, for Phelps Dodge Copper Products Corp.;

Increase of $\$ 2,916,013$ for buildings and equipment for new parts plant, Consolidated Aircraft Corp., San Diego, Calif.;

Erection and Equipment of a plant at Lansing, Mich., for Nash-Kelvinator Corp., to cost $\$ 15,150,744$, for aircraft parts production;

Increase of $\$ 500,000$ in agree. ment with American Brass Co., Kenosha, Wis., for additional construction costs at its ammunition components plant.

Industrial Machinery

Imports Decline 48%

- Industrial machinery imports into United States in 1940 totaled $\$ 4,125$,661 , down 48 per cent from $\$ 7,893,152$ in 1939, according to the Department of Commerce. Most important factor in the decrease was the large drop in purchases from Germany, to $\$ 175,335$ from $\$ 3,639,354$.

Imports from other countries from which United States purchases industrial machinery remained fairly stzady. United Kingdom's exports of this equipment to the States in 1940 totaled $\$ 2,026,879$, compared with $\$ 2,052,203$ in 1939. Industrial machinery imports from other nations last year: Sweden, $\$ 635,454$; Switzerland, $\$ 633,792$; Canada, $\$ 289$,010; and France, $\$ 114,845$.

About 25 per cent of all industrial machinery imports was textile machinery. Metalworking machinery irmports totaled $\$ 403,772$, and engines and parts $\$ 420,190$. Other types of industrial machinery imported: Sewing machines and parts, antifriction bearings, shoe machines, paper and pulp mill machinery, tobacco and cigarette making machinery.

MEN of INDIISTRY

[JAMES MACBETH JI., has been named manager of pig iron sales, and B. E. Stewart, manager of byproduct sales, Jones \& Laughlin Steel Corp., Pittsburgh. The two new managers succeed the late M. W. St. John. Mr. MacBeth's entire business experience has been with Jones \& Laughlin, having started in 1915 after attending Carnegie Institute of Technology.

Mr. Stewart, a graduate of West Virginia University, has been head chemist of the by-product laboratory, Aliquippa works, since 1937, and before that was chemist, Northern West Virginia Coal Operators Association.
W. W. Rector has been elected vice president and director, American Fork \& Hoe Co., Cleveland.

Kenneth Kemp has been named manager, Precision Parts Co., Hol. land, Mich., succeeding Herbert J. Trancis.

Ralph M. Fawcett has been elected president, Republic Stamping \& Enameling Co., Canton, O. He succeeds Howard B. Fawcett, now chairman of the board.
E. H. Alexander has been appointed engineer, Industrial Control Division, General Electric Co.'s Indus trial Department. He has been associated with the company since 1925.

Paul Fielden, associated with Norton Co., Worcester, Mass., 21 years as assistant credit manager and credit manager, has been named director of purchases. John Miller, a number of years assistant credit manager, succeeds Mr. Fielden as credit manager. Marcus W. White retains the position of purchasing agent.

Frank K. Howell has joined Haw kins-Hamilton Co., Richmond, Va., and will be engaged in sales engi-

James MaclBeth Jr.

13. E. Stewart

Paul Fielden
neering work, handling products of Cochrane Corp., Andale Co., Crosby Gauge \& Valve Co., Detroit Stoker Co., Hays Corp., United Conveyor Corp., and others.

Harry H. Orr, assistant superintendent, Chicago \& Eastern Illinois railroad, has been named assistant to the president.

Edmund R. Walker has been promoted to assistant to general manager, Fedders Mfg. Co., Buffalo, N. Y. He formerly was manager of the company's air conditioning division.

Henry Wilder, Heald Machine Co., Worcester, Mass., has been appointed regional chairman for the Worcester district of the Emergency Defense Training Committee, American Society of Tool Engineers.

Charles R. Helmbold has joined the sales staff of Edison-Emark Battery Division, Thomas A. Edison Inc., Kearny, N. J., with headquarters in Philadelphia, covering the mid-Atlantic territory.

Elmer E. Forslind has joined the New England sales staff of Foxboro Co., Foxboro, Mass., as sales engineer. William W. Nelson, the past four years a Foxboro service engineer, has been transferred to the New England sales force.

$$
\bullet
$$

S. D. Distelhorst, sales promotion manager, Cochrane Corp., Philadelphia, was awarded a professional engineering degree by Purdue University June 8 . He was graduated from Purdue in 1935 with a bachelor of science degree in electrical engineering.

George Terborgh has been elected secretary, Machinery and Allied Products Institute, Chicago. He succeeds Alexander Konkle, who has resigned to re-enter private business as treasurer of Arthur J. O'Leary \& Son Co., Chicago, producer of iron

and steel products. Mr. Terborgh formerly was senior economist, board of governors, Federal Reserve Bank, Washington. He will make his headquarters at the Washington office of the institute.

Sidney D. Williams, vice president in charge of steel sales, Copperweld Steel Co., Glassport, Pa., has been made executive vice president in charge of the company's new steel division at Warren, O. William B. Klee Jr., assistant secretary, has also been named assistant to Mr. Williams.
Thomas F. Troxell has been elected treasurer and a member of the board of directors. Mr. Troxell formerly was a partner of Riter \& Co., New York investment banking firm. C. Walter Holmquist, heretofore general superintendent of the Glassport plant, has been promoted to vice president in charge of operations there. Company reports Warren and Glassport plants operating at full capacity.

Charles A. Simmons Jr. has been elected vice president and general manager, Simmons Machine Tool Co., Albany, N. Y. Mr. Simmons, who is 25 and the son of C. A. Simmons Sr., president, started work in the machine shops at the age of 16.

Harry Merritt has resigned as vice president and manager, tractor department, Allis-Chalmers Mfg. Co., Milwaukee, but will continue in an advisory capacity. W. A. Roberts, since 1931 general sales manager, succeeds Mr. Merritt as manager of the tractor division.
L. Bruce Grannis, of Chicago and Detroit, has been elected vice president in charge of sales, Anker-Holth Mfg. Co., Port Huron, Mich. Leo T. Neidow, also of Chicago, has been named vice prasident in charge of engineering and production. Mr. Grannis has been engaged as an in-
dustrial and organization engineer the past 25 years, and Mr. Neidow is the originator of the airgrip chucking devices now being manufactured by Anker-Holth.
A. D. Troth, formerly manager of purchases, Sharon Steel Corp., Sharon, Pa., has been named director of purchases. F. M. McCleery, assistant purchasing agent, has become purchasing agent, while Glenn R. McQuiston has been made assistant purchasing agent.
I. Earl Romer has been appointed district manager, Cleveland office, Bliss \& Laughlin Inc., Harvey, IIl. He succeeds A. W. Schultz, resigned. Mr. Romer has been associated with Bliss \& Laughlin five years, beginning in the Cincinnati sales area. The past three and a half years he has been identified with the Cleveland sales staff.
M. J. Tennes Jr., president, Shafer Bearing Corp., Chicago, has entered active service as captain in the United States Army Air Corps, with permanent station at the Air Corps Advanced Flying School, Phoenix, Ariz. During absence of Capt. Tennes, management of the Shafer corporation will be under direction of John F. Ditzell, vice president and general manager.

Edward Warner, purchasing agent, Doehler Die Casting Co., Toledo, O. has been elected president, Toledo Association of Purchasing Agents. Other officers: First vice president, George Bancroft, WillysOverland Motors Inc.; second vice president, L. C. Warrick, Ottawa River Paper Co.; secretary-treasurer, Walter Noe, Libbey-Owens Glass Co., national director, Gordon s. Yost, Toledo Scale Co.
G. R. Prout, since 1939 manager of sales, industrial control section, General Electric Co., Schenectady,
N. Y., has been appointed manager of the industrial control division. R. S. Glenn has been named manager of sales of that division, assisting Mr. Prout.
W. C. Yates has been relieved of his present duties as manager of the control and renewal parts division, Industrial department, to devote more time to his duties as assistant manager of the department. W. T. Darcy will continue as manager of sales, renewal parts section.

Paul G. Cheatham Jr., of F. I. Madero, No. 55, Mexico, D. F., has been appointed representative in Mexico for Iron \& Steel Products Inc., Chicago.
C. W. Pearsall has been appointed general sales manager, Ahlberg Bearing Co., Chicago. He joined the company in 1919 and was a salesman in Chicago and Philadelphia, then Philadelphia branch manager, later Chicago branch manager, and subsequently manager of distributor sales.

Dr. Arthur S. Adams has been appointed assistant dean, College of Engineering, Cornell University. He joined Cornell a year ago, and has since been made professor of mechanics, secretary of the engineering experiment station and has been in charge of the engineering defense training program in Buffalo, Elmira, Binghamton, Geneva, and Ithaca, N. Y.

Frank C. Neal Jr. has been named district are welding specialist for General Electric Co.'s Dallas, Tex., office, and will cover Texas, Oklahoma and part of Louisiana. He succeeds N. M. Voorhies, who has been transferred to General Electric's Chicago office.

Bertrand A. Landry has joined Battelle Memorial Institute, Columbus, O., and will be engaged in re-
search and development work in the division of fuels research. The past 18 years Mr. Landry has been associated with the United States Bureau of Mines.

Thonas F. Peterson, since January, 1937, director of electric cable

Thomas F. Peterson
works, American Steel \& Wire Co., Worcester, Mass., has been transferred to Cleveland as director of electric cable engineering and research. He joined American Steel \& Wire in 1927 as cable engineer in the New York office; later was promoted to electrical engineer, and in 1931 was transferred to Worcester.

Edward J. McCann, formerly superintendent, has been made general works manager, South Chester Tube Co., Chester, Pa. He has been

E. J. MeCann
associated with the company 21 years, starting as night superintendent.
W. C. Hale, formerly with the Gypsy division of Gulf Oil Corp., Tulsa, Okla., and more recently in the sales department of South Ches-
ter Tube, has been appointed assistant to general works manager.
O. C. Mueller, heretofore sales representative in Cincinnati district for Mechanical Division, B. F. Goodrich Co., Akron, O., has been transferred to Pittsburgh, and is succeeded at Cincinnati by A. C. Lutz. J. M. Cooney has been transferred from Cincinnati to Dayton, O.; B. E. Silver, formerly with the manufacturers' sales department in Washington, has been transferred to the hose sales department at Akron, and J. V. Powers, sales correspondent in the New York district office, becomes field representative of the district, headquarters in Albany, N. Y.

Col. Leonard P. Ayres, vice president, Cleveland Trust Co., and nationally known statistician, last week was nominated by President Roosevelt for temporary promotion to the rank of brigadier general. During the first World war, Colonel Ayres was chief statistical officer for the United States Army and has been acting in the same capacity in the present emergency.
F. A. Stevenson was elected senior vice prasident, American Car \& Foundry Co., New York, at its recent board of directors meeting. He will, however, continue in charge of operations. W. L. Stancliffe, formerly manager of miscellaneous sales, was elected vice president in charge of miscellaneous and munitions sales. All other officers wera re-elected.

Week's Appointments In Defense Offices

WASHINGTON

- Sam H. Husbands, a director of the Reconstruction Finance Corp., is new president of the Defense Plant Corp. John W. Snyder has been elected executive vice president of the Defense Plant Corp.
Dr. Reavis Cox, chairman of the marketing department, Wharton School of Finance and Commerce, University of Pennsylvania, has been appointed assistant director of the Civilian Supply Allocation Division, OPACS.
Nathaniel G. Burleigh, industrial engineer and former Dartmouth College professor, will establish and head a general products section.
J. Elmer Thomas, petroleum analyst of Ft. Worth, Tex., has been named an advisory consultant in the fuel section of OPACS.
A. D. Whiteside, who has been connected with OPM in various capacities, will be chief of the iron and steel section of OPM under the reorganization, it was reported unofficially last week.

DIED:

- George Herbert Jones, 85, president, Hillside Fluor Spar Mines, Chicago; Midwest Forging \& Mfg. Co., Pershing Quicksilver Co., and

George II. Jones
one of the founders and second president of Inland Steel Co., at his home in Chicago, July 6. Born in Brixton, England, and brought to Chicago as a boy, he began work as a clerk for Hall, Kimbark \& Co., iron merchants. In 1893 he was one of the organizers of Inland Steel. After serving as its prasident eight years and in other executive positions he retired in 1921, but remained a director.

Frank L. Coventry, 70, vice president, Cleveland Tool \& Supply Co., Cleveland, July 4, in that city.

Otto V. Kruse, 54, general sales manager, Baldwin Locomotive Works, Philadelphia, at his home in St. Davids, Pa., July 1.
E. C. Edmundson, retired vice president and general manager, Wil. liams \& Co. Inc., Pittsburgh, July 1 , in that city.

William Oberhelman, 66, vice president, Hill \& Griffith, Cincinnati, foundry supplies, June 28, in Birmingham, Ala., where he resided 42 years.

Paul J. Simmen, 59, founder and president, Simmen Automatic Railway Switch \& Signal Co., Eden, N. Y., July 1, in Eden.

Lawrence McCarthy, 48, president, Hub Steel Co., Detroit, July 5, in that city. Born in Youngstown, O., Mr. McCarthy spent most of his life in Detroit, and was a former president of the Association of Steel Fabricators of Detroit.

MEETINGS

Prizes To Be Awarded at
Welding Society's Convention

- Summerill Tubing Co., Bridgeport, Pa., is establishing a series of prizes to be awarded by the American Welding Society at its annual meeting, Bellevue-Stratford hotel, Philadelphia, Oct. 19-24, for papers to advance the art of welding of aircraft steels, including tubing and other parts for tubular assemblies. Prizes of $\$ 300, \$ 200, \$ 100$ and four of $\$ 25$ will be awarded. More than 65 technical papers covering many phases of welding, cutting and treating processes will be presented.

Engineers To Discuss Machine Tools for Defense Purposes

To what extent older machine tools can be utilized to speed defense production is to be the major theme of the 3 -day semiannual meeting of the American Society of Tool Engineers, Royal York hotel, Toronto, Oct. 16-18. Technical sessions will be devoted to a general consideration of machine tools for defense purposes, getting the most from cutting tools, and increasing machine production.

Canada Will Exhibit War Materials in Toronto

A large display of military, air force and naval equipment illustrating Canada's war effort will be available at the National Industrial Advertisers Association conference, Royal York hotel, Toronto, Sept. 1719. It will include uniforms, shells, machine guns, aerial bombs, gun barrels and antitank guns.

Canada's Imports in May Valued at \$128,096,000

OTTAWA, ONT.
Canada's total imports in May increased 27 per cent over the month last year, from $\$ 100,537,000$ to $\$ 128$, 096,000 , according to the Dominion Bureau of Statistics. United States was reported the main source of supply, with $\$ 84,428,000$ against $\$ 63$, 896,000 in the month a year ago. United Kingdom was next, with $\$ 13,509,000$, compared with $\$ 14,448$, 000 in May, 1940.
Iron and steel and their products were most important items. Rolling mill products totaled $\$ 5,470,000$; engines and boilers, $\$ 2,865,000$; farm implements, $\$ 4,265,000$; machinery, other than agricultural, $\$ 12,583,000$; vehicles, $\$ 6,877,000$; electrical apparatus, $\$ 2,205,000$.

- W. Ames \& Co., Jersey City, N. J., operating a relatively small ware house and jobbing mill, have been
granted permission to sell bars, angles and spikes at prices of $\$ 2.85$, $\$ 3.10$, and $\$ 3.45$ per 100 pounds, respectively, or from 36 to 45 cents per 100 pounds above ceiling prices on equivalent products, by OPACS.

Gear Sales Index in
 June 299, Up 9.5%

- Industrial gear sales in June were 9.5 per cent greater than in May, and 132 per cent above June, 1940, according to the American Gear Manufacturers Association, Wilkins. burg, Pa. Sales in the first six months this year were 125 per cent greater than in the corresponding period in 1940.

Comparative index figure of sales in June was 299, against 129 in the month last year. Index figure in May was 273; in April, 292; in March, 288, and 262 in February. The index is based on 1928 as 100.

Compilation, the association reports, applies only to industrial gears.

Steel Inventories Index Advances 2.3 Points

- Index value of steel manufacturers' inventories in May was 125.6, compared with 123.3 in April and 113.6 in May last year, taking Dec. 31,1938 , at 100 , according to the Commerce Department.
Index value of new orders received by steel mills in May was 302, compared with 304 in April and 145 in May, 1940. Index was based on 100 for January, 1939.
Department's figures show that, with January, 1939, as 100, the May index of steel mill shipments was 234. This compared with 215 in April and 133 in May last year.

There was an 11 per cent increase in value of steel mill unfilled orders in May, against the April increase over March of 14 per cent. Increase in unfilled orders in May, over the period in 1940, was 316 per cent.

Armco Works Establishes Three Production Records

- Three production records were established in June by the American Rolling Mill Co.'s East Works, Middletown, O.
The open hearth department ex ceeded the previous monthly record by 1363 tons; the blooming, bar and strip mill rolled 1500 more tons than ever before; and the cold strip mill increased output by five feet per minute.
Total June output of the Armco plant, estimated company officials, is equivalent to a ribbon of steel four feet wide, as thick as a dime, reaching from New York to San Francisco and back to Denver.

Recommend Use of Silver

Instead of Tin in Solder
1 Extensive substitution of silver for tin in solder to conserve and hasten accumulation of adequate tin reserves topped a list of measures recommended last week to the Office for Production Management by a committee of the National Academy of Sciences.
"By all-out substitution in every possible line, which would require construction of much special equipment, and at least temporary hardship, it is believed that at least threequarters of the tin ordinarily used could be replaced," the group reported. "This means that the domestic smelting of Bolivian ores will supply most of the irreducible minimum."

Large-scale replacement of tin in solder, plus reduction in tin use already being made by can manufacturers, would reduce total tin consumption about 25 per cent, it was estimated. Sixty-six million ounces of silver annually should be sufficient for "all-out" replacement of tin in solder, said the committee. Forty to 50 pounds of tin may be replaced by $2^{1 / 2}$ to 5 pounds of silver, and at present prices the raw material cost of 2.5 per cent silver solder is "practically identical" with that of an equal volume of solder composed of 45 per cent tin and 55 per cent lead.

U.S. Steel's Shipments

Decline 4.5 Per Cent

- United States Steel Corp.'s shipments of finished steel in June were $1,668,637$ net tons, a decrease of 76 ,658 tons, or 4.5 per cent, from the all-time monthly high of $1,745,295$ tons in May. June shipments, how. ever, established a new record for that month, the prior peak being 1,558,444 tons in June, 1917.
Shipments for six months totaled $10,052,877$ tons, compared with 6 .288,398 tons in the same period, 1940. This was a new high for first half, the prior record being 9,207,000 tons, in 1929.

	1941	1910	1939	1938
Jan.	1,682,454	1,145,592	870.866	570,264
Feb.	1,548,451	1,009,256	747,427	522,395
March	1,720.366	931,905	845,108	627.047
Adril	1,687,674	907.904	771,752	550,551
May	1,745,295	1,084,057	795,689	509,811
June	1,668,637	1,209,684	807,562	524.994
July		1,296,887	745,364	484,611
Aug.		1,455,604	885,636	615.521
Sedt.		1,392,838	1,086,683	635,645
Oct.		1,572,408	1.345,855	730,312
Nov.		1.425,352	1.406,205	749,328
Dec.		$1.544,623$	1,443,969	765,868
Total, by				
Mos. 11.976.110 11,752.116 7,286,34				
Adjust ment			- 44.865	$\dagger 29,159$
Total 11.707,251 7.315				

Abstract

Alloy steel users asked to conserve scrap . . . Labor advisory committees to be appointed in reorganized OPM . . . Chromium placed under full priority control . . . Steel mill equipment for Brazilian project to get green light . . . Compliance section established to crack down on violators of priority regulations . . . Ceiling prices on rubber deferred . . . Steel sheets allocated for grain bins

By L. M. LAMM
Washington Editor, STEEL

White Motor Co.; T. R. Lippard, Federal Motor Truck Co.

OPM To Establish Defense
 Labor Advisory Committees

Dafense Labor Advisory Committees corresponding to the Defense Industry Advisory Committees will be set up in the reorganized OPM.

The Labor Advisory Committees will consult with government representatives in the various commodi ty sections and advise them on those aspects of defense production which are of primary concern to labor, as the Industry Advisory Committees will consult and advise on matters of primary concern to management.

The general plan of organization already announced for the industry advisory committees will also apply to the labor advisory committees, and the twin objectives-those of unifying the working relationship of the several OPM divisions with the industries which they contact, and of efficient liaison between defense agencies and industry-are the same.

Brazilian Steel Mill Equipment Orders Given Priority Rating

High priority ratings will be given to orders for machinery, equipment and steel placed in this coun try by the National Steel Co. of Brazil, which is erecting a $\$ 45,000$, 000 mill with Export-Import bank financing.

The OPM priorities division said the priorities will be sufficiently advanced to enable completion of the mill within two or three years.

"Urgency Standing" Granted For Vitally Needed Tools

Striking at the surplus of preference ratings that have produced a conflict among defense purchasers

No. 3 Jones \& Lamson Ram Type Universal Turret Lathe with slandard bar equipment.
Jones \& Lamson equipment will help the small plant do the big jobs now and solve, also, the problems of the future.

APPLYING the "bits and pieces" principle to America's defense program promises to fill many a small plant to capacity - and beyond.
That's Bump No. 1.
If you operate a small plant and tace the problem of adding new equipment, the question may come up: "Shall we install special machinery to handle defense work?" When normal conditions return, most special equipment can only be iunked and written off your books.
That would be Bump No. 2 - and a rough one.
Then you would face the problem of equipping to meet the driving competition of a postwar world.
That would be Bump No. 3 - and the stiffest jolt of all.
Plan now to smooth out these bumps and keep up your profits. See what versatile, long-lived,

PROFIT PRODUCING MACHINE TOOLS high speed, standard Jones \& Lamson machine tools can do to help you fill your armament orders promptly and leave you in position to win and hold post-war business later. Who knows what type of products you will find it most advantageous to produce and sell after this crisis is over? Only the most flexible modern equipment will leave you in position to meet demands which no one today can foresee.

It will not obligate you to put your problems up to Jones \& Lamson engineers. Inquiries from small plants receive prompt attention here, and we may be able to help you over many of the bumps before you reach them.

JONES \& LAMSON MACHINE CO.

Springfield, Vermont, U. S. A.

Manufacturers of: Ram \& Saddle Type Universal Turret Lathes . . . Fay Automatic Lathes . . . Automatic Thread Grinding Machines . . . Comparators... Automatic Opening Threading Dies and Chasers.

of machine tools, the OPM Priorities Division last week adopted a regulation formula giving tool buyers an "urgency standing." Priorities Director Stettinius said the formula will enable manufacturers to fill orders considered more vital although they carry the same rating as less urgent orders.

A major part of the formula is a master preference numerical list consisting of defense contractors who have ratings for tools and their relative "urgency standing." Purchasers on the list are to have priority over other with the exception of makers of machine tools, cranes, cutting tools, gages, micrometers and chucks who have an A-1-a rating.

Mr. Stettinius said this will give the machine tool industry the tools it needs to continue production.
British orders, some of which lack preference rating high enough to assure delivery when needed, will be "frozen" at their present status.

The formula provides a period of grace ranging from 30 to 60 days to allow manufacturers who receive the new high-rating orders for tools to adjust their schedules.

15.000 Tons Sheets Set Aside To Build Steel Grain Bins

Aid for farmers facing a shortage of storage space for grain now being harvested has been provided in an OPACS order providing for emergency preference ratings on 15,000 tons of sheet steel to be used in construction of grain bins.

Program provides that emergency preference ratings effective for obtaining such material shall be issucd to the extent determined by the OPM to be consistent with the defense program.

Chromium Placed Under Full Priority Control

Chromium last week was added to the critical materials placed under full priority control by Priorities Director Stettinius. The metal is vital to defense, being required for hardening stcel, for production of high-speed cutting tools, for the manufacture of refractory brick and for many chemical uses.
The United States is dependent almost wholly on imports for its supplies of chromite ore. The government stockpile is not large enough, consumption is moving up, and the increasing pressure on shipping space may restrict imports in future months.
The order provides all defense orders carry a preference rating of A-10 unless higher ratings are specifically assigned; monthly deliveries of chromium for use in the manufacture of chemical products must be limited to the average
monthly consumption of the processor over the 12 -month period July 1, 1940, to June 30, 1941; deliveries by processors of chromium for refractory material can be made only under defense orders or for necessary maintenance and repairs, except when the director of priorities provides otherwise; after the satisfaction of defense orders and all other terms of the order, deliveries for nondefense purposes may be made; restrictions against the building up of excessive inventory.

Consumption of chromite ore in this country at the present time is at the rate of between 750,000 and 800,000 long tons

Chromium is the fifteenth material put under full priority control.

Ceiling Prices on Rubber Goods Deferred by OPACS

Setting of ceiling prices on finished rubber products, in particular, tires and tubes, will be deferred for some months, OPACS Administrator Henderson announced last week. Effect will be to give the industry an opportunity to work out the current price problem on a voluntary basis.

Decision was reached after a series of conferences with tire manufacturers, mass distributors, and dealers.

OPACS previously had announced a ceiling would be placed on tire and tube prices at June 16 levels, a date prior to the announcement of the reduction in rubber consumption.

General Steel Preference Delivery Order No. 1 Forms Are Revised

Revision of forms PD-32 and PD. 32a, used in connection with General Steel Preference Delivery Order No. I, has been announced.

Revised forms, especially PD-32, are more detailed than the previous ones.

Customers of producers of iron and steel products, if unable to place an order satisfactorily, or if their orders are unduly delayed, may bring the matter to the attention of the Priorities Division by filling out form PD-32.

If the Priorities Division feels that the case justifies such action, it will then send the producer involved form PD-32a, requiring the producer to fill out another form, explaining why the customer's order was delayed or rejected.

Mass Transportation Equipment Materials Granted Priority

To insure adequate public transportation facilities, the OPACS through its Civilian Supply Allocation Division has issued a program providing preferential status on de-
liveries of materials and equipment used in construction of cars and buses for urban or interurban lines

A serious shortage of these types of passenger transportation equipment exists. It was decided to alleviate the situation by placing coaches and rail-cars used on urban and interurban lines on an equal footing as to materials and equipment with freight cars and locomotives, for which allocation programs already have been prepared.
The new program provides that deliveries of material and equipment necessary for the construction of motor and electric coaches and rail-cars for city, suburban and intercity common carrier passenger transportation shall be given preference over all material and equipment going to any other civilian uses, subject only to a prior preference to deliveries for all such material and equipment as may be re quired under contracts with the United States or any department or agency thereof.

OPM Priorities Division Sets Up Compliance Section

Compliance section, charged with investigating and correcting violations of priority regulations has been established with the Priorities Division of OPM. Lawrence J. Martin, administrator of General Metals Order No. 1 is in charge.

In announcing the new section, Priorities Diractor Stettinius declared that all efforts will be made to obtain voluntary compliance in all cases, but punitive action can and will be taken if necessary, so that the great majority of producers, who co-operate freely and willingly, will not be penalized by the unfair activities of a few who refuse to co-operate.

In the event that efforts to obtain voluntary co-operation fail, action which may be taken includes:

1. Public statements as to violations or evasions which have taken place.
2. The restriction of supplies of critical materials until compliance is assured.
3. Court action to require compliance.

The compliance section will control and supervise compliance cases arising through complaints from within OPM, from within the armed services, and from industry and the public.

Within the Washington office of the Priorities Division, all complaints of noncompliance with orders or certificates will be referred to the compliance section and will thereafter be handled under its supervision. Provision will be made for consultation and advice with industry groups and committees.

National Steel To Add 300,000 Tons Ingot Capacity at Detroit Plants

- THREE hundred thousand net tons of ingot capacity will be added by National Steel Corp., Pittsburgh, by an expansion program at the company's Detroit unit, Great Lakes Steel Corp., announced last week by E. T. Weir, chairman.
The new program, like construction that has been underway since the first of the year at three plants of National Steel Corp., has been undertaken, Mr. Weir said, to help meet the greatly increased needs for steel that have been created by the defense program. He added that the major portion of National Steel Corp.'s entire output is now being applied in defense production.
Primary steel capacity being added by construction now in prog. ress plus that of the new program just announced, will produce a total increase of 750,000 net tons per year in the company's ingot production, which is an increase of approximately 21 per cent over capacity at the end of 1940.
Principal features of the new program at the plants of Great Lakes Steel Corp. will be the installation of a bessemer converter and expansion of open hearth furnace capacity. Pig iron production will be sufficient to supply all requirements of the new steelmaking facilities.

Also now underway at Great

Lakes Steel is the project to adapt the company's 96 -inch continuous hot mill for the annual production of from 300,000 to 350,000 net tons of steel plates.
Requirements of the defense program and the general speed-up of industrial activity created sudden heavy demands for steel plates in excess of the country's normal plate capacity. Projects that are being undertaken by National Steel, as well as other steel companics, to adapt continuous mills to the rolling of steel plates assure ample supply of this product, Mr. Wir said.
Program now in progress at National Steel's plants, which will be largely completed this year, includes construction of 45 new byproduct coke ovens and the building and enlargement of blast furnace capacity to add more than 600 ,000 net tons per year to pig iron production.

Zinc Supplies_Decline 5 Per Cent in Month

国 Consumers' stocks of slab zinc declined nearly 5 per cent in May, compared with declines of 8 per cent in April and 4 per cent in March, according to the Bureau of Mines.

Stocks May 31 were 56,489 tons, compared with 59,414 tons April 30.
Inventories held by all classes of users except brass mills and zinc rolling mills and oxide plants fell in May. Those at brass mills continued the April increase and were 7 per cent higher at the end of May; stocks at zinc rolling mills and oxide plants increased 1 per cent. Galvanizers' stocks declined 12 per cent, and those of die casters $71 / 2$ per cent.

Stocks of all grades dropped in May; the decline of brass special, selected, and prime western inventories amounted to $7 \frac{1 / 2}{}$ per cent, and special high grade 4 per cent; stocks of regular high grade and intermediate declined only a few tons or considerably less than 1 per cent.

The total stock for May 31 was distributed as follows: Special high grade, 22 per cent (22 per cent in April); regular high grade and intermediate, 25 per cent (24 per cent in April); all other grades, 53 per cent (54 per cent in April). Galvanizers held 46 per cent of the total stocks on May 31 (50 per cent on April 30), brass mills 30 per cent (26 per cent on April 30), and die casters 11 per cent (12 per cent on April 30).

Tin Output and Stocks Increased in May

- World tin production in May is estimated at 22,200 gross tons, compared with 17,100 tons in April, according to International Tin Research \& Development Council, Greenford, Eng. Production in the first five months totaled 96,000 tons, against 85,400 tons in the period in 1940.

United States deliveries were 10 ,490 tons in May, compared with 13,955 tons in April. For five months deliveries were 65,492 tons, in contrast with 41,384 tons in the corresponding portion of 1940 . Consumption of tin in the United King. dom for the first four months of 1941 was 9509 tons, little changed from 9695 tons in the same months in 1940.

World stocks, including smelters' stocks and carryover, increased by 3693 tons during May, to 57,140 tons at the end of the month. Stocks at the close of May, 1940, were 40,738 tons.
a Forty-five chief machinist's mates and machinist's mates first and second class will study operation and maintenance of air conditioning and refrigeration equipment at a special training school at York Ice Machinery Corp., York, Pa., this summer and fall. The navy men will report in groups of 15 each for six weeks' courses, the first of which started July 7.

IOOK at this brass stud-used for mounting instrument magnets. After being formed and the long end threaded on an automatic screw machine, the two threads on the short end are cut on a No. 1 W \& S Turret Lathe-speed 1200 R.P.M. The larger thread is $.112^{\prime \prime}-40$, the smaller one only $.05 \pi^{\prime \prime}-104$.

The manufacturer, one of the largest concerns in the country, finds High Speed Steel "Acorn" Dies the best solution for this job.

"Acorn" Dies, because of their accuracy and their positive, finely controlled adjustment, are the ideal tools for cutting fine threads. Originally invented and manufactured by "G.T.D. Greenfield," they are typical of the contributions to modern manufacturing methods that have made "G.T.D. Greenfield" the country's leading and largest manufacturer of screw threading tools. Our complete catalog will be sent gladly on request.

Mirrors of MOTORDOM

Abstract

Roughened crankpin and main bearing journals found to result in longer bearing life, upsetting previous concepts of sur- face finish. Dynamometer and road tests confirm early results, so production shafts now are being lapped only 5 minutes instead of 48 . . New models will startle public with sweeping changes in body lines . . . Shotblast connecting rods to improve fatigue life

- A REVOLUTIONARY DETROIT' in popular conceptions of the most desirable type of surface finish on steel parts subject to lubricated met al-to-metal contact is in the offing, if early investigational work by engineers of a large automobile company continues to look as promising as it doas now. Specifically the mat ter of finish on crankpins and main bearing journals has been studied, but similar conclusions would seem to apply to other parts such as wristpins, valves, tappets, pistons, cylinder walls and the like.

Established practice has been to machine, grind and lap crankpins to a virtual "mirror" finish or, as measured by the profilometer, with average depth of surface depressions something like 4 or 5 microinches (millionths of an inch). Chrysler's Superfinish method goes even further, down to 1.5 or 2 mi croinches. The theory behind the ultrasmooth finish is that in operation a complete and unbroken film of oil is formed on the steel which carries the load on the bearing jour nal and prevents metal-to-metal contact and failure of the bearing.

Roughened Journals Better

Artificial roughening of smooth steel surfaces has bean practiced on such parts as camshafts, pistons and tappets for the purpose of etching the surface and applying a soft coating material which would have a wick action and absorb oil so that initial scuffing of moving metal surfaces is minimized. Electrolytic, chemical and heat treatments have been used successfully in such ap plications.

In the research mentioned above, after it was proved that acid etched journals gave longer bearing life than smooth journals, it was decided to build some crankshafts in which the journals would have different degrees of roughness produced mechanically. Four journals on a test shaft were ground with a
nonglazed free-cutting wheel which gave deeper pits than the usual ground finish showed. After grinding, the journals were polished only lightly with abrasive cloth. The shaft then was assembled in a mo tor and given a low-speed endurance run on a dynamometer, involving five cycles of 12 hours at 2800 r.p.m. and 1 hour at 4200 r.p.m., three cycles under full load and two under three-quarter load. After tearing down the motor it was discovered that the rod bearings on the rough journals were in much better shape than those on the smooth journals. This mystifying discovery was checked by varying the position of the rough journals on the shaft, but the conclusions were the same in every test.
Next step was to make up a series of seven crankpin sections and finish them to varying degrees of smoothness, ranging from the "production" or smooth finish to the rough ground finish before polish. Three sets of these specimens were checked by profilometer and average readings were as follows, in microinches: $\quad 5.0 .6 .5,21-33,35-49$, $68-83,88.98,99-110$ and 105-115. Incidentally the shaft is S.A.E. 1045 steel, heat treated.
More endurance runs established a tentative roughness range of $35-50$ microinches as the optimum, this before any maximum limit on roughness had been ascertained. So additional test shafts were made with even rougher journals. Dynamometer and road tests showed that the No. 5 finish, 88-98 microinches, was even better than the tentative standard.

So convincing and uniform were all tests that it was decided to specify the range of $35-50$ microinches as the production standard for all crankshaft journals, both pins and mains. Then the problem was how

[^2]

By A. H. ALLEN
Detroit Editor, STEEL

to convince shop inspectors and machine operators that a shaft they formerly would have rejected with out a second glance because of rough journals actually was a better one than the old mirror-smooth shaft! Inspectors had to throw out all their preconceived ideas of journal finishes and "start from scratch," so to speak.

Now, with bearing loads shortly to be increased appreciably because of a change from aluminum to cast iron pistons, the latter weighing 75 per cent more than aluminum, attention is focused more sharply than ever on the matter of bearing life. Hence it is proposed to step up journal roughness even more, perhaps in the range of 40 to 70 micro. inches.

Principal Changes Involved

There is no trick to doing this in the shop, and no new equipment is required. Three principal changes are involved: First, grinding wheels are dressed with fast traverse of the dresser and no fadeout of the dressing action, and are dressed after every 20 pins instead of after every 10 pins as before; second, the grinding wheel is withdrawn as soon as size is reached instead of waiting until sparks fade out; and third, the journals are machine lapped only 5 to 10 seconds with No. 240 grit cloth, instead of the former practice of lapping 30 seconds with No. 240 and 18 seconds with No. 320.

The obvious question is why a roughened bearing journal should now prove to be easier on bearings than what has always been thought necessary. In answer to this, it must be pointed out that no definite conclusions or theories can be cited at this stage. It is too early. A thorough and leisurely program of fundamental research is indicated before any definite statements can

MIRRORS OF MOTORDOM-Continued

be made as to the whys and where fores.

However, for anyone who is interested in a possible analysis, here is one which has been suggested: If the theoretically continuous oil film on the journal should be ruptured or dispersed by deflection of the shaft or variation in the load or some other reason, then a series of small drops of oil, trapped in the grinding "valleys" in the shaft might be dragged out between the shaft and bearing to constitute many loadcarrying wedges of oil on the socalled "plateau" of the normal journal surface, thereby preventing met-al-to-metal contact which puts an end to bearing life.

The gentla lapping action may be considered to remove the "peaks" of grinding tracks, metal which is perhaps hardened, burned, or torn, leaving runners or grooves, very small naturally, to entrap oil which under load could provide a sort of pressure lubrication. It is not possible to operate a rough ground or even a finish ground bearing journal satisfactorily principally because the peaks previously referred to would cut the bearing to pieces, resulting in a sloppy fit.

Engine builders generally in recent years have reduced sharply the thickness of the babbitt layer on connecting rod bearings, many being only one-third of the thickness previously specified. This has brought increased bearing life and strength and has suggested to some bearing engineers that it might be well to try even thinner babbitt layers. One serious objection has been heard. If you get the babbitt too thin, it becomes almost impossible to detect a burned-out bearing, particularly in

Automobile Production
Passenger Cars and Trucks-United States and Canada
By Department of Commerce

	1939	1940	1941
Jan.	356,962	449,492	524,058
Feb.	317,520	422,225	509,326
March	389,499	440,232	533,849
April	354,266	452,433	489,834
May	313,248	412,492	545,321
5 mos.	1,731,495	2,176,874	2,602,408
June	324,253	362,566	
July	218,600	246,171	
Aug.	103,343	89,866	
Sept.	192,679	284,583	
Oct.	324,689	514,374	
Nov.	368,541	510,973	
Dec.	469,118	506,931	
Year	3,732,718	4,692,338	

Estimated by Ward's Reports

Week ended:	1941	$1940 \dagger$	
June 21	$\ldots \ldots \ldots$	133,565	90,060
June 28	$\ldots \ldots \ldots$	127,926	87,550
July 5	$\ldots \ldots \ldots$	96,457	51,975
July 12	$\ldots \ldots \ldots$	114,318	62,176
tComparable week.			

buses and trucks where the general noise level is high. And if you do not catch a failed bearing quickly there is the danger that the rod will seize to the shaft, break and go through the side of the crankease. So there is an inclination to go easy on any further reduction of babbitt thicknesses.

Radically New Styling in Some 1942 Bodies

If anyone thinks that 1942 models are going to be a pretty sad looking lot of automobiles, he had better change mind right now. Observers here who have been privileged to take an early peek at some

First of many thousand Studebaker army trucks ordered by the War Department recently was completed at the company's plant in South Bend. Ind. They are 6 -wheel drive cargo vehicles of $21 / 2$-ton capacity
of them are uniform in their praise of what the industry has accomplished, particularly with regard to bodies and outward appearance. Entirely new bodies will appear on several lines, sharply different from anything now on the market. No interference with the defense program was occasioned by these changes, because at the time body dies were going through, there was nothing clse in readiness for the tool and die shops to tackle.

A few generalities on the 1942 models will indicate trends: Longer wheelbases, bringing easier riding, particularly in rear seats; heavier bumpers extending around front and rear corners to protect exposed fenders; blending of both front and rear fender contours into body lines comparable to what Cadillac and Packard already have done; wider hoods and lower roofs; no great reduction in bright metal moldings, grilles and other decorative touches.

Mechanical changes will be subdued in the interest of new body contours. As indicated here previously, there will be more fluid flywheels or clutches.

Improve Rods, Change Pistons

An interesting new development in connecting rods is the idea of shotblasting them all over, resulting in a 125 per cent increase in fatigue life. Either hard or normalized shot appears suitable for this treatment, although important savings can be realized from the use of the normalized shot from the standpoint of equipment maintenance. Allison is understood to be using this treatment on rods for its airplane engines.

Foundrymen from near and far have been inspecting the new cast iron piston department in the Buick foundry at Flint where, with comparatively little dislocation of equipment or other jobs, facilities have been set up for casting 16,000 dometop pistons in an 8-hour trick.

New Die Casting Alloy

Die casters supplying the motor industry have been having more than their share of troubles, it appears. Although they have been able to obtain reasonable amounts of high-purity zinc for casting, they have to have 3 per cent of aluminum for hardener in the die-casting alloy. With the shutting off of all aluminum except on A-10 priority or better, it looked like no aluminum for die castings. Metallurgists now have developed a zinc alloy with only 1.5 per cent of aluminum and increased copper content, and die casters are hopeful of getting at least half the aluminum they formerly needed for alloying.

Letters of Intent for

Machine Tools Issued

Letters of intent for machine tools and equipment totaling $\$ 34$, 908,225 were issued to 32 com panies recently by the War Department. It is estimated the orders will be spread among more than 25,000 subcontractors.

One contractor, it is reported, has already awarded more than 100 subcontracts, and some subcontractors are said to have placed further orders to as many as ten smaller plants. Equipment is for small arms ammunition plants at St. Paul; Des Moines, Iowa; and Salt Lake City, Utah. Letters were given to:
Peters Engineering Co., Philadelphia. $\$ 1,452,250$.
Waterbury Farrel Foundry \& Machine: Co., Waterbury. Conn., $\$ 6,971,758$.
Ferracute Machine Co., Bridgeton, N. J., \$1,519,813.
Zeh \& Hahnemann Co., Newark, N. J., \$193,050.
Globe Machine \& Stamping Co., Cleveland, $\$ 11,374$.
Standard Machinery Co., Providenec. R. I., $\$ 35,878$.

Carrier Corp., New York. $\$ 11,098$.
Hires, Castner \& Harris, Philadelphia, \$579,967.
Blakeslee, G. S., \& Co., Cicero, 111.. \$119,889.

Colt Patent Fir Arms Mfg. Co., Hartford, Conn., $\$ 426,188$.
l.indberg Finglneering Co., Chicaso, \$73,597.

Owens Illinols Glass Co., Toledo, ()., \$429,282.
Specialty Engineering Co., Philadelphia, $\$ 2696$.
Black Rock Mig. Co., Bridgeport, Conn., $\$ 192,450$.
Canlster Co., Phlllpsburg, Pi., \$176,587.

Inman Mig. Co., Amsterdam, N. Y., \$204,105.

Proctor \& Schwartz, Philadelphia, $\$ 128$,700.

Buss, E. W., Co., Brooklyn, N. Y., \$11,126,877.
Star Tool \& Dle Co., Detrolt, $\$ 1,161,500$.
Spayd-Ohlo Mfg. Co., Detroit, s944,300.
Manistee Iron Works, Detrolt, $\$ 1,145,340$.
Heidrich Tool \& Die Corp., Detrolt, \$597,090.

Ranschoff, N., Co., Cincinnati, \$142,770. Manvllle, E. J., Machine Co., Waterbury, Conn., $\$ 372,972$.
Modern Bond Corp., Wilmington, Del., $\$ 214,994$.
V. \& O. Press Co., Hudson, N. Y., \$2,044,456.

Lu Pont, F. I., de Nemours \& Co., Wilmington, Del., $\$ 64,517$.
Filellty Machine Co., Philadelphia, \$471,273.
Henry \& Wright Mfg. Co., Hartiord, Conn., \$1,233,836.
Salem Engineering Co., Salem, O., $\$ 2,012,-$ 177.

Schutte \& Koerting Co., Philadelphia, \$534,189.
Watson Stillman Co., Roselle, N. J., \$313,302.

Replans Freight Cars,

 Saves Aluminum, Nickel- Complete replanning of 1941 car orders of Pullman-Standard Car Mfg. Co., New York, has enabled the company to save $3,350,000$ pounds of aluminum and 180,000 pounds of nickel for the national defense program. A company spokesman pointed out the aluminum conserved would be sufficient to build 670 pursuit planes or 180 medium bombers:

In place of aluminum, Pullman. Standard will use steel where strength is a prime requisite; plastics, composition board and similar materials will be used in in-

Steel Shelter Erected in Nine Hours

Corrugated steel tropic shelter which can be erected in nine hours is demonstrated by United States Marines at Washington. The hut can be covered with dirt or sandbags as camouflage and protection from shell splinters. NEA photo
teriors and in applications where great strength is not needed.

Elimination of chrome nickel stainless and the substitution of other types of steel will effect the nickel savings.

American Car \& Foundry To Weld Freight Cars

High-speed welding equipment designed for large scale production of freight cars has been developed by American Car \& Foundry Co., New York, in co-operation with Westinghouse Electric \& Mfg. Co., East Pittsburgh, Pa., and Federal Machine \& Welder Co., Warren, O.

Each car is held together by more than 6000 spot welds, which can be completed in one and one-half hours with the new apparatus. The process permits use of thinner and lighter steel sheets and results in more rigid construction, according to company engineers.

Weirton To Comply, With Two Exceptions

- Weirton Steel Co., Weirton, W. Va., last week announced it will comply with the National Labor Relations Board's recent order against it (Steel, June 30, p. 16), with two exceptions: No back pay will be offered to 17 men who claimed they were discriminatorily discharged, nor will re-employment be offered to six of these.
T. E. Millsop, president, said that of the 17 men ordered reinstated one is dead, two recently served jail sentences for violating election laws by signing Communist petitions, and re-employment of three will be held in abeyance until a decision is made by the War Department as to whether they can be employed on defense work.
"We are offering employment to the remainder of the 17 men, not because we feel they have any legal right to it but because of our consistent position since the time of their so-called eviction from the mills that they were never discharged. Inasmuch as the 17 men were never discharged, there will be no offer of back pay to any of them. It is not a question of money involved, as most of these men have been working elsewhere and the back wages would not amount to much, but we feol that we would be compromising with principle if we paid them any money simply to avoid further litigation."

E Orders received by General Electric Co., Schenectady, N. Y.: during the first six months this year totaled $\$ 521,139,000$, compared with $\$ 212,653,000$ for the same period in 1940. First half orders established a new record.

Heavy Tanes Feature Financial Analysis of 16.5 Companies

	$\xrightarrow{\text { coaba }}$		Toin Number				cotan	average per company				
$\underbrace{1880}_{1880}$	$\mathbf{4 4 4 , 9 7 4 , 9 4 2 , 1 3 0}$ $43,749,555,750$	$653,815,300$ $648,386,312$	$\begin{aligned} & 5,686,6 \mathrm{PQ} \\ & 5,592,582 \end{aligned}$	$\begin{aligned} & 3,490,601 \\ & 3,237,475 \end{aligned}$	$\mathbf{\$ 2 , 5 6 5 , 3 5 6 , 5 3 2}$ $1,979,837,898$	$52,022,987,658$ $1,721,354,505$	$\begin{array}{r} \hline \$ 1,247,356,732 \\ 1,076,966,487 \end{array}$		$\begin{gathered} 3328 \\ 308 \\ 308 \end{gathered}$	$\begin{aligned} & 15191 \\ & 1,68 \end{aligned}$, 37.1
treatio		${ }^{42} 28.88$	${ }^{8,127}$	${ }^{23,126}$	5385.512654	${ }_{5} 301,183,153$	3 m					
					2.6\%	12.5\%						

[^3]
WING
 TIPS

Abstract

Airplanes "on order" have twice the value of total United States and Canadian automobile and truck output in 1940. Huge program to require services of thousands of small plants, in addition to auto builders and large aircraft producers . . . Conflict between proponents of radial and in-line engines continues, but some engineers believe they may reach a meeting of minds soon

- CURRENTLY on order with American industry is nearly eight and one quarter billion dollars worth of airplanes. airplane engines and accessories-this out of a total present defense appropriation of forty-one and a half billions. Thus 20 per cent of the defense program is, so to speak, "in the air", as well it might be in view of developments in Europe and the Mediterranean in recent months. Looking at it another way, this airplane order is well over twice the value of all the motor cars and trucks produced in this country and Canada in 1940.
Airplane manufacture, it must be remembered, is an infant industry, now struggling hard to assume adult proportions. Helping in this struggle is all American industry, for only by such co-operation can the job be done. Inter-industry jealousies and dog-fights must be forgotten.

Notable for the high standards of product quality and the painstaking care over inspection it practices, the airplane industry will have to relax, at least in some small meas. ure, in the interests of production. Other industries, automotive for example, now have to look at the matter of building transportation equipment through different colored glasses, setting aside for awhile the idea of cutting costs to the bone, speeding up and mecha. nizing production, and jaywalking on quality and inspection.

Bomber Program Nearly Trebled

The auto industry has been in the heavy bomber picture for about a year now and production can be said to have started, if only in a small way. Originally the schedule called for Ford, General Motors and Chrysler to supply parts and subassemblies for 100 bombers a month each, these parts to be routed to five new assembly plants
-at Tuls?. Fort Worth, Kansas City, Omaha and Dallas-where final assemblies and installation of engines would be handled by crews from four aircraft companies, Consolidated at Fort Worth, Douglas at Tulsa, North American at Dallas and Kansas City, and Martin at Omaha.

Already this program has been doubled, if not trebled, and Ford Motor Co. is building a plant at Ypsilanti, Mich., which will supply subassemblies for Consolidated and Douglas, and will house a 3500 foot final assembly line where complete ships will be built and the motors installed from the nearby Ford-operated Pratt \& Whitney engine plant at Dearborn.

Incidentally, schedules for this radial-engine plant, originally calling for 15 engines per two-shift day, have been better than doubled to 40 engines a day, presumably so that a supply of engines can be fed to the bomber line at Ypsilanti. Initial orders for the engines have been boosted to 10,000 , costing $\$ 260,000$,000 . By fall certain sections of the Ford bomber plant should be producing, and by the first of the year should be well on the way toward turning out completed planes.
Fisher Body has started production in its refurbished plant at Memphis, Tenn., although all engineering and purchasing are centered in the General Motors building, Detroit, where Fisher has commandeered almost a whole floor of offices to house personnel of the newly organized Fisher Memphis Aircraft Division. Three Fisher plants at Detroit will co-operate on the project.

Chrysler Corp., Goodyear Tire \& Rubber Co. and Hudson Motor Car Co. constitute a triple entente which will feed the Martin-Nebraska bomber assembly plant, and all three have started in a limited way. Chrysler received just recently a
$\$ 42,000,000$ order for nose and center fuselage sections from Glenn L. Martin-Nebraska Co., although for months it has been lining up plant facilities for this work. Meanwhile, Douglas, Vega and Boeing aircraft companies have been drawn into the picture and will take on some of the heavy bomber or flying fortress construction work. Murray Corp. of America and Briggs Mfg. Co. also are now at work on airframe parts construction programs.

Small Plants Must Help

So we see at last a partial coagulation of automobile and aircraft companies to build bombers. But the eventual success of the effort is not going to depend so much on the efforts of these major producers as it is upon the thousands of small industrial plants throughout the country, supplying everything from cable wire to chrome-molybdenum steel tubing for use in airplanes.

Just as the success of the motor industry in achieving mass production of cars has been built upon the productive ability of suppliers of material, parts and equipment, so must this aircraft program succeed or fail. The motor companies and aircraft producers know how to put the planes together, how to tool equipment for subassemblies and the like, but they are stymied if they cannot get rivets, if they lack screw machine parts, if they cannot get aluminum castings and forgings, if there is a shortage of small motors, pumps, valves, tubing and such.

So it would appear that the nation's small and medium-size metalworking and parts industries, as well as the larger supply interests, might do well to keep abreast of progress in defense aviation and to learn where and how they can contribute to keeping the manufacturing program "on time". If in some way the regularly appearing com-
ment, herewith christened "Wing Tips," can prove of assistance, it will have served its purpose.

Radial, In-line Enginemakers Still Arguing Pros and Cons

The battle is raging, despite outward calm, between proponents of radial and in-line airplane engines. Both are being produced in large quantities; both are being installed in planes. At present the picture is Allison and Rolls-Royce for the inline engines, and Pratt \& Whitney for the radials. Allison has virtually doubled the size of its plant at least three times and is now supplying "several hundred" engines a month. Machinery is on order, buildings are in readiness and men are being trained for another doubling of schedules by the end of this year, aiming toward a goal of 500 engines a month. It is estimated that there are better than 800 planes llying in this country now, Allison powered, some with two engines.

Allison last week received additional contracts for engines amount ing to $\$ 50,000,000$, bringing its total since the beginning of the emergency to $\$ 242,000,000$.
Pratt \& Whitney engines will be manufactured by Ford at Dearborn, by Buick at Melrose Park, Ill., and by Chevrolet at Tonawanda, N. Y., in addition to those being turned
out by P\&W in the East. Wright is rushing a new plant at Lockland, O., and is delivering engines regularly from Paterson, N. J. Studebaker is planning to build 1000 Wright engines monthly in new plants at South Bend, Fort Wayne and Chicago. Meanwhile, Ford is putting on the test block a new in-line engine, liquid cooled and supercharged by an exhaust-driven turboblower. It is patterned after the $1: 350$-horsepower Rolls-Royce inline engine which Packard is now assembling at a rate of one a week.
A lately publicized development is the perfection by Allison engineers of a method by which a 15 per cent increase in power of the Allison V-1710 engine has been achieved without any increase in size and weight. An improved model has just passed army tests delivering 1325 horsepower at takeoff and military rating, against 1150 horsepower, top rating heretofore.
No information has been released on the "relatively simple improvement" which has brought this increase in power, but a good guess would be some change in the supercharger by which greater pressure of fuel and air mixture is delivered to the cylinders.

Pros and cons of radials versus in-lines have been argued by the best authorities, both military and industrial, with the situation now

Night Production of Night Fighters

Night crews rush production of DB-7B attack-bombers, recently acclaimed as night fighters by British airmen. in Douglas Aircraft Co.'s Santa Monica, Calif., plant. They are equipped with heavy armament, self-sealing fuel tanks and armor plating. With a backlog in excess of $\$ 400,000,000$ nearly 28.000 Douglas employes are working round the clock on attack ships, dive bombers and military transports for the United States and Great Britaim. NEA photo
just about as divided as it ever was. Actually, though, there is not the wide gap between these two types of air engines that might appear at first glance. As one engineer views the matter, engine builders are coming down the two branches of a Y, and before long may meet at the juncture. At that time the radial and the in-line will be nearly one and the same.

"Meeting of Minds" May Result From Demands for More Power

How? Well, consider the gradual increase in engine horsepower which has been demanded in fighting planes, in the interest of higher speed. For reasons of design and compactness, there is a limit to the number of cylinders which can be fanned around a radial crankshaft, so when a 2300 or 2800 horsepower radial is asked for, the solution is to design a double bank of cylinders. Now when the engine builders are called upon for 4000 or 5000 horsepower plants, they will have to add more banks, and what they will end up with will be a series of air-cooled in-line engines. By this time, it may prove difficult to air cool the rear banks, so they will have to turn to liquid cooling, and the engine then will be just a bunch of Allisons or Rolls-Royces set around the propeller shaft. So where is the argument then?
Nevertheless right now there is speculation about the Allison engine, just as there always is about any comparatively new development. Anything new is the first to "get the ax" whether or not the facts of the matter merit such treatment or not. For example, three Allisonpowered Bell Airacobras based at Selfridge Field in Michigan have crashed in flames in recent months -for no apparent reason, judging from the unlucky pilots' statements. They have said that the engine just caught on fire, so they bailed out.

Accredited research experts, in studying these misfortunes, have come to the conclusion that the accidents may have been the result of pilots failing to realize or be instructed in peculiar characteristics of the Allison engine. As the throttle is opened to near the top point, the engine performance becomes smoother, and as the tachometer needle starts on its second trip around the dial, indicating the second 2500 -r.p.m. cycle, the pilot does not have the warning vibration or chatter which is characteristic of radial engines as they near the wide-open throttle position.

From this it would appear that the Allison can be opened dangeronsly wide, to the point where the fire hazard is acute. Corrective might be to apply some sort of top speed governor.

$\$ 3,061,000,000$ Allocated for

Expansion of Defense Facilities

- DEFENSE plant expansion commitments at the end of May had risen to a total of $\$ 3,061,000,000$, covering 1847 projects, the Office of Production Management announced last week. In addition, applications had been made for certificates of necessity on plant facilities totaling $\$ 281,000,000$, upon which action had not been taken, bringing the total to $\$ 3,342,000,000$.

Government obligations comprise about 75 per cent of the money allocated, and 22 per cent of the projects. The total does not include private projects for which certificates of necessity have not been requested.

Government commitments as of May 31 cover 397 projects estimated to cost $\$ 2,291,000,000$; private commitments cover 1450 plants estimated to cost $\$ 770,000,000$.

Of the government commitments, $\$ 927,000,000$ represents the share of the army and $\$ 730,000,000$ repre. sents the navy's spending. Defense Plant Corp. is commited for $\$ 505$,000,000 , and other government agencies for $\$ 129,000,000$.

Types of products to be produced in the facilities and the source of funds for constructing them are shown in the following table:

Product	Source of FundsPublic Private		
	(Thousands of Dollars)		
Chemicals	\$412.535	\$358,593	\$53,942
Petroleum, coa	25,131	13,396	11,735
Iron, steel	284,264	135,660	148,604
Ammunition, shells, bombs	404,783	366,503	38,280
Guns	231,433	208,867	22,566
Aircraft	613,748	518,092	95,656
Ships, ship repair	486,816	476.003	10,813
Vehicles, tanks ..	43,340	23.720	19,620
Nonferrous metals	229, 744	83,730	146,014
Machinery	153,454	49,621	103,833
Electrlcal equipment	34,666	18,414	16,252
Miscellaneaus mfg .	53,538	38,252	15,286
Nonmanufacturing	87,635		87.6 .35
Total	3,061,087	2,290,851	\$770,236

Ohio has been awarded the greatest share of government-financed plants with $\$ 203,678,675$. Indiana is second with $\$ 199,254,084$; Pennsylvania third with $\$ 196,717,512$; New York fourth with $\$ 174,521,282$; Mich igan fifth with $\$ 160,754,440$; and Illi. nois sixth with $\$ 151,276,631$.

NAM Reports Defense
 Work "On Schedule"

Production for defense in the United States is "on schedule or ahead" of government requirements according to a survey of 16 major defense industry areas by the Na. tional Association of Manufactur-
ers. Substantial decline in delays caused by shortage of machine tools was noted in the report, released last week. In May, 29 per cent of manufacturers queried declared their output was hampered by lack of machine tools, against 63 per cent in January.

Materials shortage still faced most manufacturers, an average of 80 per cent of those responding stating this constituted a major obstacle, said the report.

Increasingly widespread need for skilled labor was emphasized. Percentage of manufacturers indicating such need increased from 45 in January to 56 in May.

Major source of delay was reported to lie in changes in specifications after orders had been placed, 59 per cent of the manufacturers mentioning that difficulty. Improvement of government inspection techniques was indicated by a drop
from 70 per cent in April to 41 per cent in May in complaints on that score.
Highlights of reports from key defense production areas:
Philadelphia: Production one to six weeks ahead of schedule. Many plants working 24 hours a day, seven days a week.
Cleveland: Output records broken and new records will be established in next six months.
Pittsburgh: Ordnance manufacture on schedule or ahead.
Hartford, Conn.: 5000 machine guns being turned out daily. Aircraft engine deliveries at rate not expected before December.
Buffalo: Labor scarce, but defense goods rolling out on schedule.
Youngstown, O.: Only idle steel plants are those down for repairs. Many operating above rated capacity.
York, Pa.: No holiday layoffs, no vacations, 24 -hour operation keeps deliveries earlier than required.

Detroit: Shell, gun, aircraft and parts production accelerating.

Accompanying chart, prepared by the association, summarizes other features of its report.

Army's Awards in Week $\$ 156,146,388$;

"Billion a Month for Defense by Fall"

- EXPENDITURES for defense

 will probably rise to $\$ 1,000,000,000$ per month next fall, compared with average of $\$ 800,000,000$ at present, according to Harold D. Smith, direc tor of the budget. Although he predicted an early upturn in defense production, Mr. Smith said he did not expect defense spending in the new fiscal year would exceed his earlier estimate of $\$ 15,500,000000$, unless war was declaredDefense contracts reported last week by the War Department to taled $\$ 156,146,388$. Awards for construction of new plants for production of war materials, and supplemental contracts for expansion of plants already under construction or in operation, comprised a major part of the total valuation. Ordnance Department placed most con tracts in the period; many, however were small. Awards reported:

Badger, E. B., \& Sons Co., Boston, addltlonal TNT and DNT capacity at the Plum Brook Ordnance Plant, Sandusky O., at cost of $\$ 9,252,911$.

Brown \& Root Inc., Houston, Tex., ammunition storage depot at Texas Ordnance Depot, Texarkana, Tex., including rallroads, roads, magazines, loadIng platforms, shelters, fences, miscellancous bulldings and utilitles. Gleb, LaRoche, Dahl \& Chappell, Dallas, Tex., have architectural-engineering contract. Project's total estimated cost is $\$ 9,411,827$.
Cahill Bros. Inc., San Franclsco, motor transport facllities at Ft. Ord, California, including maintenance shop. warehouse shop, miscellaneous bulld ings and utilitles for a fourth echelon motor repair base. Architectural-engineering contract was awarded to Hunter \& Hudson, San Franclsco. Total estimated cost, $\$ 1,230,171$.
Du Pont, E. I., de Nemours \& Co., Wilmington. Del., addition of TNT, DNT and Tetryl facllities to the smokeless powder plant now under construction at Sylacauga, Ala. Estimated total cost of plant is $\$ 14,871,820$ for construction, and $\$ 10.890,000$ additional for equipment.
Fruin Colncn Construction Co. and Fruco Construction Co., boih of St. Louis, supplemental agreements to fxed lee contracts for expansion of production facllities at the St. Louis Ordnance Plant for manufacture of small arms ammunition at total cost of $\$ 59,199,559$. Construction costs are estimated at $\$ 33,999,559$, balance is for acquisition of equipment and machinery. This expansion brings total estimated cost of the plant to \$89,526,149 , with $\$ 47,331,149$ for constructton and balance for machinery and equipment.
Hardaway Contracting Co.. Columbus, Ga., advanced single engine training school at Moultrle, Ga., for the afr corps. Project includes approximately 115 cantonment type buildings, construction of tleld and appurtenant facllities at cost of about $\$ 3,999,456$. J. B. McCrary Engineering Corp., Atlanta, Ga., has architectural-engineering contract.
Hunkin-Conkey Construction Co., Cleve-
land, additional loading facllities at the Ravenna Ordnance Plant, Ravenna, O., estlmated to cost $\$ 4,405,407$. Wilbur Watson \& Associates, Cleveland, handling architectural-engineering services.
Petry, N. G., Denver, and 1'. S. Cook Plumbing Co., Cheyenne, Wyo., addithonal replacement center facilities at Ft. Francis E. Warren, wyoming, including approximately 70 additional buildings. Walter W. Flora, Cheyenne, awarded contract for architectural-enginearing services. Total estimated cost, $\$ 1,032,758$.
Priester Construction Co., Davenport Iowa, $\$ 546,778$ for administration build ing and utilities at Rock Island Arsenal, illinols.
TompkIns, Charles H., Co., Washington, recreation and miscellaneous facllities at Ft . Belvoir, VIrginla, including recreation facilities, chapels, ponton bridge equipment storage, vehicle sheds, fencing, roads, lighting systems. Baskerville \& Son, Richmond, Va., received architectural-engineering con tract. Total estimated cost, $53,599,806$.

Ordannee Department Awards

Ace Drill Co., Detrolt, twist drills $\$ 2326.08$.
Acme Industrial Co., Chlcago, gages, \$10,354.50
Addressograph-Multigraph Co., Addressograph Division, Davenport, Iowa, addressograph and counter with attachments, \$1042.33.
Affliated Machine \& Tool Co., New York, gages, \$4704.
Albert \& Davidson Pipe Corp., Brooklyn, N. Y., steel plpe, \$1107.

All-Tool Co., Hillside, N. J.. punches, guldes, plugs, sleeves and pins, $\$ 1896$. American Broach \& Machine Co., Ann Arbor, Mich., rotary broaching machine, $\$ 8371$.
American Can Co., Maywood, III., cans, $\$ 4856.45$
American Car \& Foundry Co., Berwick, Pa., engine assembly supports, parts for tanks, $\$ 12,666.15$.
American Fork \& Hoe Co., Cleveland. commercial mattocks, \$2264.9j.
American Locomotive Co., New York, casting machine equipment, $\$ 13,993.50$ Rallway Steel-Spring Division, Latrobe, Pa., springs, $\$ 7210.32$.
American Machine \& Metals Inc., bast Moline, Ill., testers, $\$ 1452$.
American Type Founders Sales Corb. New York, Job presses, \$1285.15.
Ampco Metal Inc., Mllwaukee, seamless brass tubing. \$2565.
Animal Trap Co, of America Inc., Lititz Pa., plugs, ruze hole, for adapters, $\$ 3360$. Apex Tool \& Cutter Co. Inc., Shelton, Conn., cutters and blades, mills, \$14,861.40 .

Armstrong, G. R., Manufactureis Supplles Inc., Boston, serews, $\$ 2251.40$
Automatic Machine Products Co., Altle boro, Mass., primers, $\$ 71,700$.
Aviation Mfg. Corp., Spencer Heater 1) vision, Williamsport, Pa., ammunition parts, $\$ 33,000$.
Baldwin Locomotive Works, Baldwin Southwark Division, Eddystone, ト’a., latigue testing machines. $\$ 1590$.
Barbour Stockwell Co.. Cambridge, Mass., tachometers. \$21,336.
Barrett, Leon J., Co., Worcester, Mass., drying and olling machines, \$2840.
Barwood \& Co., Philadelphla, gages, $\$ 1006.10$.
Bearings Co. of America, Lancaster, 1'i., ball bearings, $\$ 1147.50$.
Belknap Hardware \& Mig. Co. Inc.,

Loulsville, Ky., machinist hammers $\$ 1031.2 \overline{5}$.
Belmont Smelting \& Relining Works Inc., Brooklyn, N. Y'., copper ingots, $\$ 1543$.
Bendix Aviation Corp., Bendix, N. J. starting cranks, parts for tanks, colls and solenolds, $\$ 56,667.37$; Scintilla Mag neto Division, Sidney, N. Y., magneto spare parts, $\$ 30,683.60$; Eclipse Aviation Dlvision, Bendix, N. J., starting cranks voltage regulators, parts for light tanks, 12 -volt electric stars, $\$ 24,951.34$ Bennel Machine Co. Inc., Brooklyn, N. Y., thread cleanlng machines, flxtures and scoops, \$2598.28.
Berkeley Equipment Co., Corry, i’a., furnish and install motor drives for presses, heading machines and pocketIng machines, $\$ 3944$.
Berry Bearing Co., Chicago, sights, gun mounts, $\$ 4143.78$.
Besly, Charles I.., \& Co., Belolt, WIs grinding machines, $\$ 1180$.
Bethlehem Steel Co., Bethlehem, P'a. breech ring forgings, $\$ 26,375$.
B. G. Corp., New York, elbows, tanks, $\$ 6015$.
Blakeslee, G. S., \& Co., Cicero, Ill., washing machines, $\$ 3045$.
Bliss, E. W., Co., Brooklyn, N. Y., valve assemblles for hydraulic press, $\$ 2200$.
Breeze Corps. Inc., Newark, N. J., parts for tanks, \$397,018.05.
Bridesburg Engineering Co., Phlladelphia, wrenches, $\$ 2393$.
Bridgeport Thermostat Co. Inc., Bridgeport, Conn., arming wire assemblies, $\$ 1880$.
Brown \& Sharpe Mig. Co., Providence, R. 1., blades for pinion turning machines, grinding machines, cams and tools for automatic screw machines, parts for milling machine, $\$ 26,599.02$.
Buckeye Traction Ditcher Co., Findlay O.. single drum winches for tractors \$27,048.
Budd Wheel Co., Detrolt, artillery ammunition, $\$ 427,040$.
Burgess-Norton Mifg. Co., Geneva, Ill., track parts, \$2036.88.
Byers Offlce Equipment Co., Davenport, Iowa, metal typist and clerical chairs, $\$ 1387.50$.
Canlster Co., Phlllpsburg, N. J., wrench parts and crimping machines, \$36i66.
Carboloy Co. Inc., Detroit, reamers, $\$ 2279.50$.
Carpenter Steel Co, Reading, P'a., steel, $\$ 17,676.66$.
Carrier Corp., Syracuse, N. Y.. refrigeration cycle equipment. \$6775.
Central Engineering \& Supply Co., Chicago, screws, nuts and bolts. $\$ 3216.79$.
Central Iron \& Steel Co., Harrisburg, Pa., steel plate, $\$ 4403.38$.
Chase Brass \& Copper Co., Waterbury Conn., brass tubing and equipment brass, \$5326.60.
Chase, Parker \& Co. Inc., Boston, cutters and mills, $\$ 3158.61$
Chicago Flexible Shaft Co., Chicago. ruzes, $\$ 327,684$
Cincinnati Milling MachIne Co., Cincinnatl, die sinking machines, $\$ 51,280$
Cincinnati Planer Co., Cincinnati, hydro double housing planer, $\$ 30,675$.
Clapp, E. D.. Mfg. Co., Auburn, N. I'. drop forgings, \$1185.50.
Cleveland Automatic Machine Co., Cleve. land, machines-turret, single spindle, shaft, \$81,582.10.
Cleveland Cutter \& Reamer Co., Cleveland, milling cutters, $\$ 1906.20$.
Cleveland Hardware \& Forging Co. Cleveland, lorgings, $\$ 1+19.30$
Cleveland Twist Drill Co., Cleveland, drills, \$3484.28.
Climax Molybdenum Co., Langeloth, l'a., ferromolybdenum, \$102,978.91.
Colt's Patent Fire Arms Mfg. Co., Hart ford, Conn., small arms materiel, $\$ 215,455.31$.
Consolldated Packaging Machinery Co., Buffalo, loading equipment, $\$ 24,305$.
Continental Motors Corp., Muskegon, Mich., exhaust plpe flanges, motor as
semblles parts, parts for tanks, $\$ 46$, 297.99.

Continental Roll \& Steel Foundry Co. Corapolis, Pa., steel castings, $\$ 5490$. C-O Two Fire Equipment Co., Newark N. J., carbon dioxide gas lire extlinguishers, \$1008.
County Supply Co., Plainfleld, N. J., tools, \$1026.71.
Crescent Electric Supply Co., Davenport, Iowa, luminaries and standards, \$11,168.30.

Crucible steel Co. of America, New York steel, $\$ 27,511.46$.
Cuno Engineering Corp., Chicago, illters, $\$ 1680$
Cutter, Wood \& Sanderson Co., Cambridge, Mass., cutters and mills, $\$ 3147.66$.
Cyclone Fence Co., Newark, N. J., wlre work partition, $\$ 1091.91$.
Edgcomb Steel Co., Philadelphia, tool steel forgings, tool steel, $\$ 2801.31$.
Electro Metallurgical Sales Corp., Nlagara Falls, N. Y., base metals, $\$ 144,246.82$.
Evans', John, Suns Inc., Philadelphia, fling pin springs, $\$ 1075$.
Federal Tool Corp., Chicago, gages, $\$ 6130$.
Finkl, A., \& Sons Co., Chleago, steel. \$2316.60.
Ford Motor Co., Dea:born, Mch., spare parts for service trucks, $\$ 37,713.17$.
Foster, L. B., Co., Pittsburgh, rallroad supplles, $\$ 1035.35$.
Fox Munitions Corp., Philadelphia, gages, \$14,614.60.
Frazer, H. B., \& Co., Phlladelphia, furnish and install fluorescent lighting system, \$26,500.
Fruchaur Traller Co., Detrolt, trallers $\$ 242,024,50$.
Fuller, E. C., Co., New York, job presses, $\$ 7531$.
Gas-Weld Equipment Co. Inc., Buston, electrode holter equipment, $\$ 2289.04$
General Cable Corp., Si. Louls, cable and reels, $\$ 6183$.
General Electric Co., Philadelphia, electric motors, \$1546.40.
General Motors Corp., Harrison Radiator

Clvislon, Lockport, N. Y., coolers, \$7637.50.
General Steel Casting Corp., Eddystone, Pa., steel castings, $\$ 2792.58$
G. M. Mrg. Co. Inc., Long Island City, N. Y., supports for fuze plunger, $\$ 4500$. Goddard \& Goddard Co. Inc., Detroit, cutters and blades, $\$ 3367.20$.
Good Roads Machinery Co. of New York Inc., Albany, N. Y., road roller, $\$ 2270$.
Gould \& Eberhardt, Irvington, Newark, N. J., shaper, \$3665.

Gralnger Rush Co., Boston, cable and copper wire, $\$ 2070$.
Greentleld Tap \& Die Corp., Greentleld, Mass., gages, hand taps, \$16,690.39.
Gurley, W. \& L. E., Troy, N. Y., telescopes, $\$ 5800$
Hampden Electric Supply Co., Springfleld, Mass., galvanized steel condult, $\$ 1408$.
Handy Governor, Ann Arbor, Mich., parts for tanks, \$9168.25
Hanson-Whitney Machine Co., Hartford, Conn., gages, $\$ 10,224.08$.
Hanssen's Sons, Louls, Davenport, Iowa, wrenches, \$6346.63.
Hayes, C. I., Inc., Providence, R. I., preheating furnaces, $\$ 1985.50$
Hesse Machine \& Mig. Co. Inc., Boston, gages, $\$ 1000$.
Hires, Castner \& Harris Inc., Philadel phia, primer folling presses, $\$ 7300$.
Hobart Bros., Troy, O., portable wellers, $\$ 3090$.
Hydraulic Controls Inc., Chicago, pumps, $\$ 4650$.
Hydrll Co. of Pennsylvanla, Rochester, Pa., artllery ammunition, $\$ 420,700$.
Improved Paper Machinery Corp., Nashua, N. H., vacuum washer, $\$ 8551$. Independent Pneumatic Tool Co., Chicago, alr motor holsts, \$5248.
International Business Machines Corp., New York, time recording equipment, \$6561: International Time Recordinz. Dlvision, Springlleld, Mass., parts for accounting machines, $\$ 3220.50$.
International Harvester Co., Chicago, tractor parts, $\$ 11,450.11$.
Johnson Brass Co., Roxbury, Mass.,

Heavy Gun Carriage Capable of 75 Miles an Hour

- Almost as long as a street car, this new gun carriage for a 155 -millimeter field gun was given its first test in Chicago. Carriage can be towed at speeds up to 75 miles an hour and is considered the most mobile heavy gun in the world by ordnance olficers. NEA photo
aluminum bronze castings, $\$ 38,905.44$. Johnson-Claftin Corp., Marlboro, Mass. gages, $\$ 7198.50$
Johnson Tool \& Engineering Co., Dayton, O., pyrotechnic pistols, $\$ 288,705.55$

Jones \& Laughlin Steel Corp., Plttsburgh cold drawn steel, steel bars, steel, \$189,207.57
Kelly, John P., Philadelphia, aluminum bronze castings, \$12,209.(i3.
Kidde, Walter, \& Co. Inc., New York, Ilre extinguishers, \$2963.50.
Kilgore Mfg. Co., International FinreSignal Division, Tippecanoe City, 0. components for pyrotechnic pistol, \$3610.38.
Landls Machine Co., Waynesboro, L'a. taps, parts and chasers, $\$ 12,285.50$.
La Salle Steel Co., Hammond, Ind., steel, \$2608.27.
Latrobe Electric Steel Co., New York tool steel, $\$ 1120$.
Lewis, George C., Philadelphia, Installa tion of alr conditioning system and exhaust system, $\$ 3655$.
Liberty Tool \& Dle Corp., RRochester N. Y., head punches, $\$ 3000$.

Lincoln Electrlc Co., Cleveland, portable welders. $\$ 2025$.
Lindley Electric Supply Co., P'hlladel phla, wire, switches, renewable wire fuses, $\$ 6189.43$.
Link-Belt Co., Ewart Plant Division, Indlanapolls, malleable iron castings, \$1873.40.
Losco Lead Seal Co., New York, lead seals, \$1590.
Louden Machinery Co., Fairflela, Lowa installing monorall system, \$29,887.
Lucas, J. L., \& Son Inc., Bridgeport Conn., steel boxes, $\$ 2200$.
Lyon Metal Products Inc., Davenport Iowa, steel shelving sections, $\$ 2379$.
Marlin-Rockwell Corp., Jamestown, N Y., ball bearings, $\$ 1292$.

Merko Co., Los Angeles, gages, $\$ 1676$.
Midivest Tool \& Mrg. Co., Detrolt, cutters, $\$ 1100$.
Minnich Machine Works Inc., Philadelphia, double chamber metal baling press, \$1395.
Modern Tool \&t Die Co., Phlladelphla, gages, $\$ 14,175.20$
Morris, Wheeler \& Co., Phlladelphla, re inforcing steel, $\$ 1550$.
Morse Twist Drlll Co., New Bedford Mass., taper shank end mllls, \$1349.10.
Motor Wheel Corp., Lansing, Mich., disk and wheel assemblles, artillery ammunition, $\$ 242,330$.
National Acme Co., Cleveland, screw machines, $\$ 59,250$.
National Tool Co., Cleveland, cutters and mills, \$2283.96.
Newburgh Wire Works, Cleveland, manganese, molybdenum steel, $\$ 156,679.17$.
Niles-Bement-Pond Co., Pratt \& Whitney
Division, West Hartford, Conn., gages grinders, oll pumps, $\$ 60,567.17$.
Noble \& Westbrook Mfg. Co., Hartford Conn., marking machines, \$1960.
Norrls Stamping \& Mrg. Co., Los Angeles, cartridge cases, $\$ 69,297.42$.
North American 1 ron \& Steel Co., Brooklyn. N. Y.. rolling doors, $\$ 3320$.
Northwest Tool \& Engineering Co., Millwaukee, gages, $\$ 1298.85$.
Norton Co., Worcester, Mass., grinding wheels, $\$ 2783.10$.
Ollgear Co., Milwaukee, pump for press, $\$ 4055$.
O. K. Tool Co. Inc., Shelton, Conn., cutters and mills, \$1316.
Onsrud Machine Works Inc., Chicago, machinery with complete equipment, $\$ 54,106.80$.
Otis Elevator Co., Buffalo, gymnasticating machines, timing devices, pres-
sure pump, steel castings, $\$ 25,494.14$
Otis Steel Co., Cleveland, steel, \$3537.68.
Peelle Co., Brooklyn, N. Y., modernize elevator, \$1321.
Penn Instrument Works, Philadelphia, snap gages, $\$ 1560$.
Pennsylvanla Forge Corp., Tacony, Phlladelphia, steel bars and forgings, alloy
steel forglngs, $\$ 19,536$
Perfex Corp., Milwaukee, fuzes, $\$ 350,0) 00$ Pipe Machinery Co., Clevoland, Gages, $\$ 6705.06$.
Plews Oiler Co., Minneapolis, oll cans, $\$ 2264.99$.
Poor \& Co., Canton Forge \& Axle Works DIvision, Canton, O., drop forgings, $\$ 12,004.30$.
Porter Forge \& Furnace Ine. Everett, Mass., steel drop forglngs, \$2129.62.
Porter, II. K., Co. Inc., Pitisburgh, artillery smmunition, $\$ 440,940.94$.
Precision Mig. Co., New York, gages, $\$ 17,810$; Philadelphia Division, gages, \$24,349.
Pringle Fiectrical Mrg. Co., l'hlladelphia, power switchboards, $\$ 8990$.
Production Tool \& Die Co. Inc., Spring1leld, Mass., dies, gages, $\$ 9060$.
Quallty Hardware \& Machine Corp., Chlcago, rurnish and install four motor drives, $\$ 1704$.
Quality Tool \& Die Co., Indlanapolls, gages, $\$ 14,924$.
Racine Tool \& Machine Co., Racine, Wis., hack saws, \$1673.90.
Fahaim Machine \& Tool Co., Gardncr, Mass., gages, $\$ 29,053.70$.
Read Machinery Co. Inc., York, 'a., gun parts, $\$ 127,050.96$.
Reed \& Prince Co., Worcester, Mass., screws, $\$ 5145$.
Remington Arms Co. Inc., Bridgeport, Conn., cartridges, $\$ 20,000$.
Renninger \& Graves, Hhilidelpnaa, volumetric developer, with Bruning model printer, $\$ 2560$.
Republic Electric Co., Davenport, lowia, lead encased cable, $\$ 12,53: 80$.
Republic Steel Corp., Buffalo, steel bar stock forgings, bar steel, \$11,001.32.
Reynolds Engineering Co., Rock Island, I11, gages, $\$ 14,497$.
leynolds Metals Co., Loulsville, Ky., aluminum powder, $\$ 4050$.
Ric-Wil Co., Barberion, O., plumbing supplles, $\$ 2681.74$
R. \& M. Mfg. Co., Royal Oak, Mlch., gages, $\$ 10,310.58$.
Robbins \& Myers Inc., Springfleld, O. electric fans, $\$ 1313.65$.
Rock Island Metal Foundry Co., Rock Island, Ill., bronze castings, castings and projectile holsts, $\$ 10,401.02$.
Roebllng's, John A., Sons Co., Philadelphia, galvanlzed wire, $\$ 1230$.
Root, B. M., Co., York, ऐ'a., undversal saw benches, $\$ 3140.26$.
Ryerson, Joseph T., \& Son Inc., Chicago, steel, $\$ 1919.11$.
Sheffield Gage Corp., Dayton, O., gages, $\$ 4052$.
Shipley, W. E., Machinery Co., I'hiladelphla, automatic cartridge case end trimming machine, $\$ 4845$.
Sidney Machine Tool Co., Sidney, O., heavy duty engine lathes, $\$ 8653$.
Sler-Bath Gear Co. Inc., North Bergen, N. J.. machining and cutting of teeth on pinion blanks, $\$ 30,800$.
Singer Sewing Machine Co., Newark, N. J., sewing and drive equipment machlnes, $\$ 11,099.05$.
Sipp-Eastwood Corp., Paterson, N. 1., drills, holders and bits, $\$ 2377$.
Smith, Thomas, Co., Worcester, Mass., soft steel dises, \$7316.50.
Snap-On Tools Corp., Kenosha, Wis, commercial extensions, hinge handies, $\$ 5296.19$
Somerville Machine \& Foundry Co. Somerville, Mass., aluminum bronze and bronze castings, $\$ 14,275,82$.
Sperry Gyroscope Corp., Brooklyn, N. Y. rorque converters, helmets, $\$ 8167.50$.
Square D Co., Kollsman Instrument Division. Elmhurst, N. I., compasses, $\$ 7200$.
Standard Alloy Co.. Phlladelphia, annealing baskets, $\$ 12,600$.
Standard Pressed Steel Co., Jenkintown, Pa.. tiring plugs, steel benches, $\$ 6102$.
Steel, W. M., Co., Worcester, Mass., reaming machines, $\$ 20,500$.
Suburban-Essex Machinists Inc., Orange, N. J., gages, $\$ 37,174$.

Swind Machinery Co., Phlladelphia, continuous pickling and rinsing unit, $\$ 3895$.
Syracuse Supply Co., Syracuse, N. Y., head drill, spindile drill, \$1002.
Tift-Pelrce Mrg. Co., Woonsocket, R. I., tool room equipment, $\$ 1220$.
Talon Inc., Meadville, Pa., gages, $\$ 1365$. Taylor-Wharton Iron \& Steel Co., Laston, Pa., compressed gas cyllnders, $\$ 8750$.
Timken Detroit Axle Co., Wisconsin Axle Division, Oshkosh, Wis., parts for lanks, \$1333.50.
Timken Roller Bearing Co., Canton, O., roller bearings, $\$ 7545.70$.
Tinius Olsen Testing Machine Co., Philadelphia, testing machines, $\$ 8550$.
Towmotor Co., Cleveland, lift and tractor trucks, tllting trucks, $\$ 16,454,87$.
Tri-Metal Products Corp., Conshohocken, Pa., bronze castings, $\$ 5541.80$.
Troy Belting \& Supply Co., Troy, N. Y., cutters and mills, $\$ 3250.10$.
Tungsten Electric Corp., Union City, N. J., tools, $\$ 33,437.47$.
Turner Unl-Drlver Co., Kansas Clty, Mo., gear box drives, $\$ 3321.40$.
Ulmet', J. C., \& Co., Cleveland, gages, $\$ 1008$.
Ulmer, Theo. C., Co. Inc., Philadelphia, hardware, \$1530.98.
Underwood Machinery Co., South Boston, Mass., pilot rammer, practice machine, $\$ 53,750$.
Union Hariware Co., 'l'orrington, Conn., rifle cleaning rods, $\$ 1950$.
Union Twist Drill Co., Athol, Mass., cutting tools, twist drills, drills, \$12,963.69.
United Shoe Machinery Corp., Beverly; Mass., steel drop forgings, $\$ 4692$.
United States Metals Reflning Co., Carteret, N. J., solder in bars, $\$ 1512.50$.
Uranium Lighting Corp., New York, lighting lixtures, $\$ 3989.90$.
U. S. Hoffman Machinery Cory., New York, laundry equipment, \$'2903.
Vanadium Corp, of America, Niagara Falls, N. Y., ferrovanadlum, $\$ 28,000$.
Vascoloy-Ramet Corp., North Chicago, Ill., tools, \$12,300.
Velt \& Young, Phlladelphla, punches and tools, $\$ 21,575$.
vermont Tap \& Die Corp., Lyndonville, Vt., hand taps, $\$ 1407.48$.
Vinco Corp., Detroit, gages, \$14,641.05.
Warner Electrlc Brake Mrg. Co., South Belolt, Ill., gun parts, $\$ 1553.75$.
Warner \& Swasey Co., Chicago, chucks for turret lathes, $\$ 1059$.
Waterbury Clock Co., Waterbury, Conn., assemblies for flare fuze, $\$ 3960$.
Waterbury Farrel Foundry \& Machine Co., Waterbury, Conn., assembly machines, corrugating machines, $\$ 38,766$.
Watson-Stillman Co., Roselle, N. J., hydraulic presses, $\$ 1300$.
Wellman, S. K., Co., Cleveland, brake lining and rivets, $\$ 1078.15$.
Westinghouse Electrlc Mrg. Co., Westinghouse Lamp Division, Boston, Huorescent lamps, \$1972.80.
White, Howard L., Brooklyn, N. Y., rlfling head, $\$ 2950$.
White, S. S., Dental Mifg. Co., lrince Bay, Staten Island, N. Y., shart and casing lachometers, $\$ 2435.45$.
Wilkins-Anderson Co., Chicago, balances, $\$ 1026.72$.
Williams, J. H., \& Co., Buffalo, forgings, wrenches, $\$ 24,636.01$.
Wood, Alan, Steel Co., Conshohocken, I'a., steel, $\$ 2703$.
Wright Aeronautical Corp., Paterson, N. J., parts for tanks, $\$ 49,338.12$.

Yoik Ice Machinery Corp., Phlladelphia. rurnish and install complete constant temperature cabinet, $\$ 1285$.
Youngstown Sheet \& Tube Co. Youngs town, O., seamless steel tubing, steel for gun mounts, $\$ 38,314.69$.
Zimmerman Steel Co., Bettendorf, Iowa, steel castings, \$14,731.77.
Zubles Bearing Co., Philadelphia, punches for bullet blank tools, $\$ 1278$.

Medical Corps Awards

Bausch \& Lomb Optical Co., Rochester,
N. Y., laboratory equipment, \$8255.(04.

Bohannon, Wilson, Co., Marion, U., pllers and pacilocks, $\$ 668.91$.
Clay-Adams Co. Inc., New York, laboratory equipment, $\$ 12,450$.
Cleveland Dental Mrg. Co., Cleveland dental equipment, $\$ 1786.43$.
Hamilton Mfg. Co., Two Rivers, Wis., dental cabinets, $\$ 56,286$.
Plcker X-Ray Corp., Cleveland, X-ray and held equlpment, $\$ 126,217.79$.
Standard X-Ray Co., Chicago, radiographic and fluoroscoplc machines, S3996.
Thomas, Arthur H., Co.. Phlladelphia, laboratory equipment, \$15,700.
Whakler Ice Machine Co., Philadelphla, refrigerating system, $\$ 7751$.

Const Artillery Corps Awards

Anaconda Wire \& Cable Co., New York, cable, $\$ 3610$.
Simplex Wire \& Cable Co., Cambridge, Mass., cable, $\$ 5876$.

Quartermaster Corps Awards
Allman-Coady Co., Columbus, O., storage buildings, test bulldings and loadIng platform, Avon Signal Corps Depot, Kentucky, \$445,731.
Chytraus, Enoch, Co., Salt Lake City, Utah, mess hall, Ft. Douglas, Utah, $\$ 10,233$.
Coffey, T. E., \& Co., Roanoke, Va., barracks, mess hall, officers' quarters and mess, recreation building, storehouse and administration building, Camp Lee, Virginia, \$56,717.
Fritch, J. J., Construction Co., Dallas, Tex., recreation buildings, barracks at Camp Joseph T. Robinson, Arkansas, $\$ 300,440$.
Fruehauf Traller Co., Detroit, semltrailers, \$407,250.
General Notors Corp., New York, portable vehicle assembly plant cquipment, \$180,097.04.
Martell, F. H., Washington, offlcers' mess building, Arlington cantonment, Virginia, \$14,573.
Mckee, Robert E., El Paso, Tex., four barracks, Ft. Bliss, Texas, $\$ 36,700$.
Mead \& Mount Construction Co., Denver, flve regimental chapels, magazines, Ft. Francis E. Warren, Wyoming, $\$ 121,200$.
Mroses, Charles S., Edgewater Park, N. J. sewage treatment plant, Ft. Dlx, New Jersey, \$129,000.
Noland Co., Washington, chains and tighteners, $\$ 22,946.45$.
Nielsen, Erbentraut \& Summers, San Jose, Callf., temporary housing and utllitles, Ft. Mason, Callfornia, $\$ 56,600$
Pearson Construction Co. Inc., Benton Harbor, Mich., 34 temporary frame bulldings, Ft. Benjamin Harrison, Indiana, \$419,050.
Smythe \& Co., Tacoma Park, Md., ten regimental chapels, $F t$. George G. Meade, Maryland, \$189,661.
Springtleld Bros., Dalton, Ga., regimental chapel, Ft. Oglethorpe, Georgia, S18,192.

Steinle-Wolf Inc., Fremont, U., IIre stathon and guard house, subguard house and main entrance gate, tool and equipment buildings, and fuse magazines, artllery repair bullding, Instrument building and garage and shop, Erle proving ground, Ohlo, $\$ 367,798$.
Thompson, F. N., Ralelgh, N. C., two barracks, Camp Davis, North Carolina, $\$ 16,300$.
Timmons, George W., Columbus, U., temporary building, Ft. Hayes, Columbus, O., \$20,878.
Upchurch Construction Co., Montgomery, Ala., regimental chapels, Ft. Benning, Georgia, $\$ 118,615.36$.
Vizzini, Philip, Baltimore, regimental chapel. Holabird quartermaster depot, Baltimore, \$19,742.
Welso Construction Co., Chlcago, three
chapels, Ft. Sheridian, Illnois, $\$ 51,485$. Wood, Gar, Industries, Detrolt, dump bodies, wrecker-bodies, $\$ 527,944$

Ah Corps Awards

Alrcooled Motors Corp., Syracuse, N. Y., engines, $\$ 256,670.65$.
Amerlcan-La France-Foamite Corp., Elmira, N. Y., oxygen cylinder assemblies, \$108,145.12.
Arnold, Schwinn \& Co., Chicago, chock assemblies, $\$ 27,582.48$.
Bell Aircraft Corp., Bulfalo, N. Y., alrplanes and spare parts, $\$ 15,885,081.56$ Chicago Aerial Survey Co., Chicago, aircraft cameras, $\$ 126,100$
Curtiss-Wright Corp., Alrplane Division, Buffalo, airplane maintenance parts, \$7,509,597.
Douglas Aircraft Co. Inc., Santa Monica, Callf., airplanes and spare parts, $\$ 7$, 843,010.69.
Fruchauf Traller Co., Detroit, semltraller assemblles, $\$ 126,470$.
Gem City Blue Print \& Supply Co., Day ton, O., drafting equipment, $\$ 60,765.2 .5$. General Fireprooflng Co., Youngstown, O., steel shelving, $\$ 133,403.22$.

General Motors Corp., Chevrolet Motor Division, Detrolt, engines and spare parts, $\$ 89,075,000$
Greenfleld Tap \& Die Corp., Greenfleld Mass., dies, $\$ 10,385.65$.
Lockheed Aircraft Corp., Burbank, Calif. airplanes and spare parts, \$2,797.947 North American Aviation Inc., Dallas, Tex., airplanes and spare parts, \$57, 725,572.80.
Northrop Aircraft Inc., Hawthorne Callf., airplanes and spare parts, \$16,287,134.
Republic Aviation Corp., Farmingdale L. I., N. Y., airplanes and spare parts, $\$ 8,165,400$.
Square D Co., Kollsman Instrument DIvision Elmhurst, N. Y., indicators and senerators, $\$ 61,350$.
Union Twist Drill Co., S. W. Card Divi-
sion, Mansfleld, Mass., dies, $\$ 25,138.55$ United Alrcraft Corp., Hamilton Standard Propellers Dlvision, East Hartiord. Conn., 3 -blade propellers, $\$ 217,9212.02$. ultee Aircraft Inc., Downey, Calif., airplanes and spare parts, $\$ 31,619,280$.
Wright Aeronautical Corp., Paterson, N. J., aeronautical engines, $\$ 218,382.4 \overline{5}$.

Signal Corps Awards

Connecticut Telephone \& Electric Corp. Meriden, Conn., headsets, test sets, $\$ 42,623.60$.
Eureka Vacuum Cleaner Co., Detroit, recognition devices, $\$ 250,792$.
Graybar Electric Co. Inc., Chicago, telephones, $\$ 46,248$.
Hallicrafters Co., Chlcago, radio reccivers, $\$ 944.40$.
Mallory, P. R., \& Co. Inc., Indianapolis, vibrators, $\$ 12,740$.
National Co. Inc., Malden, Mass., radio recelvers, $\$ 12,154.68$.
North Electric Mig. Co., Gallon, O., head and chest sets, $\$ 53,899$
Parish Pressed Steel Co., Reading, Pa. reels, $\$ 139,958$
Phelps Dodge Copper Products Corp. Yonkers, N. Y., telephone wire with reels, $\$ 342,975$.
United Transformer Corp., New York colls, $\$ 85,000$.
Whitney Blake Co., New Haven, Conn., wire with reels, $\$ 241,175$.

Corps of Enginecrs Awards
Aqua Systems Inc., New York, gasoline storage and dispensing system, Baton Rouge alrbase, Loulslana, $\$ 99,762$; air corps gasoline fueling system, Tallahassee, Fla., municlpal alrport, \$103, 991.

Bray, F. L., Construction Co., Moblle, Ala., equipment repair building, Brookley fleld, Mobile, Ala., \$239,448.
Buda Co., Harvey, Ill., earth augers, $\$ 121,360.68$.
Carver Pump Co., Matherville, Ill., pumping sets, $\$ 28,729.50$.

Los Angeles Yard To Build $\$ 4,000,000,000$ Worth of Ships

[^4]Columbus Iron Works Co., Columbus Ga., garment storage room, Lawson fleld. Ft. Benning, Georgia, $\$ 4425$
Crown Iron Works Co., Mlnneapolis, ponton sets, $\$ 41,528$.
Department of Water \& Power, Los Angeles, extension of underground powet and telephone condult system, Mines fleld, Los Angeles, $\$ 5000$.
General Motors Corn., Pontiac Dlvision, Detroit, slation wagon, Pine camp New York, \$897.24.
Giles \& Ransome, Phlladelphia, desel tractor equipped with bulldozer, Cape Henlopen, Delaware, $\$ 9275$.
Gluliano, Felix, Brooklyn, N. Y., basic llghting system, Millville alrport, Cumberland county, New Jersey. $\$ 15,000$
Gladding, MeBean \& Co., Seattle, sewer plpe, Elmendorf fleld, Anchorage, Alaska, \$14,448.75.
Gurlcy. W. \& L. E., Troy, N. Y., engineers' transits, \$101,480.
Hillstrom, J. W. \& J. R., Marshileid, Oreg., single screw steam dredge-tender, \$727,000.

Hime, J. R., Electric Co., Palm Beach, Fla., alrport lighting system, Mel-bourne-Eau Galle airport, Brevard county, Florida, \$17,852.80.
Ingersoll-Rand Co., New York, nall drivers, saws, alr compressors, $\$ 20,604.72$
LeRol Co., Millwaukee, air compressors, \$106,330
Lockwood, C. W., Hampton, Va., armament and instrument inspection and adjustment building, Langley fleld, Virginla, $\$ 137,713$.
Lord \& Burnham Co., Irvington, N. Y., footbriciges, \$62,667
Nelson, H. B., Construction Co., Atianta, Ga., airport lighting, Charleston, S. C., airport, $\$ 21,910$
Onan, D. W., \&e Sons, Minneapolis, gencrator sets, $\$ 171,950$.
Powers \& Archibald Inc., West Palm Beach, Fla., grading and paving runways, South Dade county alrport, Homestead, Fla., \$223,831.20.
"Qulck-Way" Truck Shosel Co., Denver, truck-cranes, $\$ 361,422.16$.
Rearwin Aircraft \& Engines Inc., Fairfax airport, Kansas City, Kans., compression riveters, alrcraft assembly plant, Kansas City, Mo., \$8535.46.
Smith, C. O., \& Co., Hazlehurst, Ga., two recreation bulldings, munlcipal airport Jacksonville, Fla., $\$ 4200$.
Somerville. Thomas, Co.. Washingtor, plpe nttings and wrenches, $\$ 6577.29$.
Thomason, M. R., Montgomery, Ala., Held lighting system, Alvin Callender airport, Belle Chasse, Plaquemines Parish, Louislana, $\$ 19,943$.
Tophams Inc., Washingtan, ponton sets, \$66,274.
Wallace \& Tlernan Co. Inc., Belleville, N. J., water puriflcation units, $\$ 149$, 604.45.

Wold. Peter, Seatlle, motorship Fern, Annette Island, Alaska, $\$ 40,000$.
Wyman \& Simpson Inc., Augusta, Me., runways, Augusta airport, $\$ 228,505$

\$120,000,000 U. S. Orders

For Aluminum in Canada

TORONTO, ONT.

- United States government recent
ly placed with Aluminum Co. of Canada Ltd., Montreal, Que., an additional order for 170,000 metric tons of aluminum at $\$ 126,000,000$. This supplements a prior purchase to the value of $\$ 60,000,000$. Contract calls for delivery in 1942-43-44. Expansions totaling about $\$ 60,000,000$ and located principally in the Quebec area are planned by the company to handle the orders, and those
(Please turn to Page 117)

Uncle Sam's Factory O.K.,

But How About Front Office?

- CURRENT news and market reports from the iron, steel and metalworking industries indicate that the confusion over priorities, prices and other factors regulated by government edict is increasing rapidly.

Much of the trouble is attributed to the ineptness of individuals in government bureaus who do not understand industrial operations and to the lack of co-ordination in the defense organization due to the lack of concentrated authority.

That these deficiencies exist in the defense set-up now is a matter of almost universal opinion.

Industrialists, who sensed these defects many months ago, no longer are alone in their pleas for corrective action. The house military affairs committee, a majority of whose members are ardent supporters of most administration policies, has issued a report based upon a searching investigation which criticizes the defense organization severely-chiefly on the score that the entire project has no authoritative head. Numerous other authorities, in and out of government, now agree with industrialists in their clamor for a more practical set-up for defense.

Washington's only response to these protests has been a minor revamping of jobs and functions in OPM. This will avail little, because the fault lies higher up in the organization. In fact, executive action by the President is the only thing that can correct the situation.

Meanwhile, the demoralizing effect of this confusion is becoming more disas trous every minute. The results are not
apparent in Washington, because Washington, like the front office of a large manufacturing establishment, knows only vaguely what is going on out in the shops where the real work is being done.

Out in the front lines of industry the consequences of incompetency in the front office stand out like sore thumbs. The officious orders which arbitrarily allocate precious material to destinations where it cannot be used for months, the edicts on prices which defeat their own purpose, the insistence on the part of some army or navy officials for meticulous adherence to trivial technicalities, the months-long waits for decisions on important detailsall of these and more aggravate the men who are trying so hard to meet production schedules.

But that isn't all. Scores of smaller companies are being squeezed out of business because of inability to procure material. Defense production is being slowed up by misapplication of supplies. The entire defense program is in danger of becoming more chaotic before it gets better.

It would be so easy to right matters quickly that one wonders why the President does not act. All he has to do is to name one good man to head the defense organization-as President Wilson did in naming Bernard M. Baruch in 1918.

It is not fair to dissipate efficiency on the production line through inefficiency at the top.

The BUSINESS TREND

Activity Index Declines During Holiday Week

- REFLECTING the July 4 holiday interruption, Steel's index of activity declined sharply to 123.0 during the latest period. This represents a drop of 15.8 points from the peak level of 138.8 recorded in the previous week. In the comparable holiday period last year the index declined 21.1 points, while in 1937 and 1929 it receded 11.5 and 12.2 points, respectively.

Each of the industrial indicators composing the index declined during the latest week. The national steel rate eased three points to 96.5 per cent, while automobile production totaled 96,457 units, compared
with 127,926 the preceding week. Revenue freight carloadings were reduced from the highest level recorded since the week of Dec. 14, 1929 to about 740,000 cars. Preliminary estimate of electric power consumption for the week of July 5 was placed at $2,870,000,000$ kilowatts, off from the all-time peak of $3,120,780,000$ established the preceding week.

The rebound from the holiday interruption in most industrial lines has been encouraging. Operations generally should hold at current practical capacity levels for some months, reflecting the large order backlogs accumulated and expanding defense needs.

STEEL'S index of activity declined 15.8 points to 123.0 in the week ended July 5:

Week Endal	1941	1414	Mo. Data	1941	1940	1939	1938	1937	1936	1935	1834	1933	1932	1831	1930
April 19	124.2	103.4	Jan,	127.3	114.7	91.1	73.3	102.9	85.9	74.2	58.8	48.6	54.6	69.1	87.6
Aprll 26	126.5	102.4	Feb.	132.3	105.8	90.8	71.1	106.8	84.3	82.0	73.9	48.2	55.3	75.5	99.2
May 3	132.6	1113.3	March	133.9	104.1	92.6	71.2	114.4	87.7	83.1	78.9	44.5	54.2	80.4	98.6
May 10	135.9	104.8	Aprll	127.2	102.7	89.8	70.8	116.6	100.8	85.0	83.6	52.4	52.8	81.0	101.7
May 17	136.1	106.8	May	134.8	104.6	83.4	67.4	121.7	101.8	81.8	83.7	63.5	54.8	78.6	101.2
May 24	138.6	109.1	June	138.7	114.1	90.9	63.4	109.9	100.3	77.4	80.6	70.3	51.4	72.1	95.8
May 31	128.4	99.2	July		102.4	83.5	66.2	110.4	100.1	75.3	63.7	77.1	47.1	67.3	79.9
June	138.		Aug.		101.1	83.9	68.7	110.0	97.1	76.7	63.0	74.1	45.0	67.4	85.4
June 14	138.4 138.7	111.9	Sept.		113.5	98.0	72.5	96.8	86.7	69.7	56.9	68.0	46.5	64.3	83.7
June 21	138.7	114.8	Oct.		127.8	114.9	83.6	98.1	94.8	77.0	56.4	63.1	48.4	59.2	78.8
June 28.	138.8	115.3	Nov.		129.5	116.2	95.9	84.1	106.4	88.1	54.9	52.8	47.5	54.4	71.0
July 5.	123.0	94	Dec.		126.3	118.9	95.1	74.7	107.6	88.2	58.9	54.0	46.2	51.3	64.3

July 14, 1941

Steel Ingot Operations

W'emk mindal	19.4	1! 111	19.41	1988
July 5.	96.5	75.0	42.0	24.0
Junt 28	99.5	89.0	54.0	28.0
June 21	99.0	88.0	54.5	28.0
June 14.	99.0	86.0	52.5	27.0
June 7	99.0	81.5	53.5	25.5
May 31	99.0	78.5	52.0	25.5
May 24	100.0	75.0	48.0	28.5
May 17.	99.5	70.1	45.5	? 0 ก
May 10.	97.5	66.5	47.0	30.0
May 3.	95.0	63.5	49.0	31.0
April 26	96.0	61.5	49.0	32.0
Aprll 19.	98.0	61.5	50.5	32.5
April 12.	98.0	61.0	51.5	32.0
Aprll 5	98.0	61.5	53.5	32.0
March 29	99.5	61.0	54.5	36.0
March 22	99.5	62.5	55.5	35.0
March 15	98.5	62.5	56.5	32.1

Freight Cur Loudings
(1000 Cars)

Week ended	194.1	1840	1939	1898
July 5	740	636	559	501
June 28.	909	752	666	589
June 21	886	728	643	559
June 14	863	712	638	556
Junc 7.	853	703	635	554
May 31.	802	639	568	503
May 24	886	687	628	562
May 17.	864	679	616	546
May 10.	837	681	555	542
May 3	794	666	573	536
Aprll 26	722	645	586	543
April 19.	698	628	559	524
April 12	680	619	548	538
Aprll 5	682	603	535	522
March 29	792	628	604	523
March 22.	769	619	605	573
March 15	759	619	595	540

Electric Power Output
(Millon KWH)

Week ended	$\mathbf{1 9 4 1}$	$\mathbf{1 9 4 0}$	$\mathbf{1 9 3 9}$	$\mathbf{1 9 3 8}$	
July	$5 \ldots \ldots$	2,870	2,425	2,145	1,937
June	$28 \ldots \ldots$	3,121	2,660	2,396	2,074
June	$21 \ldots \ldots$	3,056	2,654	2,362	2,082
June	$14 \ldots \ldots$	3,057	2,665	2,341	2,051
Jung	$7 \ldots \ldots$	3,042	2,599	2,329	2,057
May	$31 \ldots \ldots$	2,924	2,478	2,186	1,937
May	$24 \ldots \ldots$	3,012	2,589	2,278	2,031
May	$17 \ldots \ldots$	2,983	2,550	2,235	2,024
May	$10 \ldots \ldots$	2,975	2,516	2,239	2,019
Mayy	$3 \ldots \ldots$	2,915	2,504	2,225	1,992
Aprll	$26 \ldots \ldots$	2,926	2,499	2,244	1,996
Aprll	$19 \ldots \ldots$	2,874	2,529	2,265	2,010
Aprll	$12 \ldots \ldots$	2,882	2,530	2,235	2,016

[^5]
Pig Iron Proluction

Fabricated Structural Steel
(1000 tons)

Automolite Production

DESCALING SHELL

by abrasives blasting

m AIR IS the most expensive item in the cost of descaling shell by blasting. Most shell-blasting machines prior to a year ago used stationary air-blast jets over which the shell bodies were placed in a stationary position. Each shell then was blasted inside by a single stationary air-blast jet. If it were necessary to blast the outsides, other air-blast jets were used for this operation, also.

About a year ago, the American Foundry Equipment Co., Mishawaka, Ind., developed a shell-blasting machine incorporating features which greatly reduce the cost of air.

This unit consists essentially of a convayor from which are suspended shell hangers at intervals. The surrounding housing is cut away at one side to permit loading and unloading the hangers, and this opening is sealed with split rubber curtains to prevent escape of abrasives. See Fig. 1.

Inside the housing is located the blasting mechanism. This consists of air-blast jet nozzles, generally not more than two or three, spaced
apart the same distance as the shell hangers on the conveyor and pointing upward at different angles, as shown at "X," Fig. 2. These blast the inside surface of the shell. An airless Wheelabrator blasting wheel, "Y," Fig. 2, located to one side and further along the conveyor line blasts off the outside surfaces of the shell.

Spent abrasives drop to a hopper below, thence are carried by bucket elevator to the abrasives separator at "A," Fig. 3, and thence by gravity to the air-blast tank "B," Fig. 3, and on to the airless Wheelabrator blasting wheel "Y," Fig. 2.

If the shell is too heavy for handling by one man, it can be loaded and unloaded by a mechanical loading device. See Fig. 4. The cabinet is connected to a ventilating system for drawing off dust and fines. The machine can be furnished without the airless Wheelabrator blast wheel if the job does not require blasting outside surfaces.

Operation: The operator loads the shell on the hangers with the open ends downward. As these
hangers move into the cabinet, they spin around on their axis and are spotted over the successive airblast jets for a time interval determined by trial. This blasts out the inside scale. As one set of shell is being spotted over the jets, the preceding set is spinning before the airless Wheelabrator blast wheel to remove the outside scale. When a hanger emerges from the cabinet at the completion of the cycle, the blasted shell is remover and replaced by an unblasted shell.

Principal design features which reduce air consumption are these:

The shell hang in an upright. position with open ends downward. This permits the discharged abrasives to drop out freely by gravity. Hence there is no build-up of abrasives inside the shell and no chance for abrasives to protect the scale from the blast action.

While shell are spotted over successive air-blast jets and before the airless blast wheel, they are spun around so all surfaces are presented to the blast action.

Each of the blast nozzles is directed toward the inside of the shell at a different angle. This results in more parts of the surface being blasted and thus provides
greater coverage than if only a single stationary nozzle in one position were used.

The blast is continuous. It re. quires only a few seconds for a hanger to pass from one air-blast jet station to the next. If, during this short interval, the blast was stopped, the compressed air in the tank and lines would be discharged automatically through pop-off valves into the open and lost. Otherwise the lines would clog with abrasives.

Upon restarting the blast, however, several seconds would be required to obtain a steady flow of abrasives through the nozzle jets.

Such loss in blast efficiency is eliminated by the continuous blast here. The airless blast wheel for cleaning the outside surfaces reduces the power consumption by as much as 90 per cent as compared to air blast, a further important saving.

The conveyor timing gives constant output. A shell hanger emerges from the cabinet every so many seconds, and the cleaned shell must be replaced by an uncleaned shell.

Comparison of air consumption and cost, blasting insides only: A recent publication described a nonspinning hanger-type air-blast machine blasting only the insides of 75 -millimeter shell. Each shell was placed over a single nozzle and remained in a stationary position until the inside was satisfactorily blasted. Eight \%-inch nozzles at 90 pounds pressure were used. Hourly consumption was 100,800 cubic feet of air. Allowing for 25 per cent shut down time of noz.
zles during loading and unloading, actual hourly consumption was 75 ,060 cubic feet of air. At the accepted figure of 5 cents per thousand cubic feet, the hourly cost for air was $\$ 3.75$. With the production given of 125 shell per hour, air cost there amounted to 3 cents

By JOHN D. ALEXANDER

Cleveland Representative American Foundry Equipment Co.

Size of Shell
$60-\mathrm{mllll}$ meter
75-millimeter
90 -millimeter
105-millimeter
5 -Inch Anti-alreraft
155 -millimeter

TABLE I-Data on Shell Hasithe

No. Air Blast	Production
Nozzles at 90 lbs .	Per Hour
five ${ }^{\text {fe" }}$	600
three ${ }^{3}$:"	250
three ${ }^{-1}$ "	180
three ${ }^{\text {s }}$	150
three $3_{4} /$	120
three $\mathrm{s}^{\prime \prime}$	80

Air Required (Allowing Nozzle Wear 725 to 1050 crm 630 to 855 cfm . 630 to 855 cfm . 630 to 855 cfm . 630 to 8.55 cfm . 630 to 855 crm .
per shell.
The American spinning hangertype shell blasting cabinet described in this article-using only three "s-inch nozzles at 90 pounds pressure is blasting the insides of two-hundred-fifty 75 -millimeter shell per hour. Hourly air consumption is only 37,800 cubic feet, and the air cost figures on the same basis as above is only $\$ 0.00756$ per shell. This new design thus has reduced the air consumption by 75 per cent, or by at least 2 cents per shell.

On the basis of $1,000,000$ shell, this reduction amounts to a saving of $\$ 20,0 c 0$. The saving would be much greater than this if the outsides of the shell required blasting also and the airless blast wheel were used for this purpose instead of air-blast nozzles.

Complete operating cost of re-
moving scale in American shellblasting cabinets on a basis of two-hundred-fifty 75 -millimeter shell per hour, with labor at 75 cents per hour, power at $1 \frac{1 / 2}{}$ cents per kilo-watt-hour and abrasives at 80 cents per ton, including maintenance (parts and labor), abrasives, power and operating labor can be estimated at: $\$ 0.0132$ per shell for blasting insides only; $\$ 0.0168$ per shell for blasting both insides and outsides.
It should be emphasized that the maximum savings in blasting costs and in air compressor investment made possible by this improved equipment will only be attained when an appreciable quantity of shell is to be handled. In such a case, the somewhat higher initial cost is more than compensated for by the lower operating costs.

Fig. 6-Armstrong gun mounted for naval service. A is breech stopper; B, the upper carriage which recoils on the incline C i p, the pivot bolt which connects the Armstrong carriage with the common slide

ONE OF my very early recollec. tions and one which apparently made a deep impression is the story of the untimely death of James the Second of Scotland, killed by the bursting of a cannon at the siege of Roxburgh castle on Aug. 3, 1460. I believe the gun was constructed of iron bars bound with hoops after the fashion of a barrel, a common construction in those days. See Fig. 1.

Later as the art of casting was developed, the typical field piece of the carly sixteenth century consisted of a short, small caliber, smooth bore weapon, cast in bronze or iron. Contrary to the general impression, breech loaders are found among the earliest cannon, the principles of their action being essentially those of our latest designs embodying the sliding block. These early breech loaders did not survive, however, because of their lack of strength, and as late as the days of Nelson and Bonaparte, wars were fought with cannon whose es sential characteristics had not changed in more than 300 years.

Da Vinci, Again: Once more we turn to the notes left by Leonardo da Vinci for the earliest proposal to wind the barrel with wire to increase its strength and to close the open breech with a screwed block. The latter idea arose in part from the desirability of casting the barrel with both ends open so the posi-
tion of the core might be controlled better; and also to facilitate loading. This plan is now universally adopted (if we exclude our trench mortars). In our most recent applications of the steel founders' art, guns are made by centrifugally casting the molten metal in a rotating inold.

One of the earliest forms of cannon resembled an apothecary's mortar, whence the name of the modern piece is derived. See Fig. 3. These somewhat erratic devices fired a stone shot and, with the introduction of the cast iron projectile, were largely superseded by the culverin, Fig. 4,-the prototype of the modern gun. It employed a considerable charge of powder and had a high muzzle velocity for its time. The culverin was later modified by shortening the extremely long barrel which ancient artillerists believe necessary for long range shooting and so it became the howitzer, named after the German, Haubitz. The culverin retained for service in its own sphere of comparatively long range fire.

Naval guns of the period were simply constructed and so remained down to the middle of last century when the "rifle" was introduced. The history of this long and rather arid stretch in the theory and practice of gunnery is a somewhat tedious story of the influence of the various factors of caliber, length,

Fig. 4-The use of cast-iron projectiles led to the development of the culverin, a much stronger and more substantial weapon-the forerunner of the modern big gun
powder charge and projectile density on penetrative and destructive power of the shot, enlivened here and there by excursions into the more exciting possibilities of "mon ster" guns as much as 8 and even 10 inches in diameter!

In 1842-3 the Pasha of Egypt had built in England a 10 -inch gun, 12 feet long, weighing over 12 tons and projecting a solid shot of 128 pounds or a shell of 82 pounds. Under test, the Pasha's gun fired the 128 -pound shot a distance of 4669 yards with 26 pounds of powder, when elevated 20 degrees, the range when shell was used being somewhat less (3440 yards) and the powder charge 16 pounds. In 1845 there was forged at Liverpool for the United States steam frigate Princeton a gun of 12 -inch caliber, 13 feet long which fired a solid shot weighing 213 pounds. This gun was intended to replace one made of wrought iron bars welded together and fortified with hoops of the same material which had burst in service, killing several persons including the Secretary of State. The contrast between the weights of modern projectiles for guns of this caliber and the attain able ranges with modern propel lants and rifled barrels is indeed striking.

Rifled Barrels: Modern gunnery began with the introduction of the rifled barrel in 1854 when William George Armstrong (later Sir Wil liam) of Newcastle, England, submitted to the Duke of Newcastle, then minister of war, a proposal for a rifled cannon which was apparently approved, for the gun was constructed the following year and

Abstract

Here Professor Macconochie tells about early bronze and iron guns; invention of the wire wound guns and screwed breech block by Leonardo da Vinci; early guns including the mortar, the culverin and the howitzer; invention of the rilled barrel-the Armstrong gun; distribution of hoop stress in a thick cylinder; methods employed to reduce stress variations; modern wire wound, built-up and radialty expanded guns; considerations governing gun design

This Is Number 22 in a Series on Ordnance and Its Production, Prepared for Steel, by Professor Macconochie
to its elastic limit at the inner radius while carrying only a portion of the total possible load in its outer layers. Hence if we design the tube so as not to exceed the maximum permissible stress occurring at the inner radius, the gun will be much heavier than need be were some plan devised for spreading the total hoop load over all cylindrical elements uniformly. Conversely for a tube of given physical characteristics and dimensions the maximum permissible pressure will be governed by the induced stress within the steel where this is highest, namely at the inner radius.

Now there is nothing in this analysis that prevents applying its conclusions to the case of thick cylinders already stressed internally and preferably so application of the working load tends to distribute the total stress uniformly throughout the cross section. In cast guns, however, before the advent of the compound and wire wound types, efforts had been made to bring about this desirable condition by cooling the castings from the inierior.

Progressive Solidification: This was done by passing a stream of water through a hollow core while the flask was surrounded by burning coals to prevent too rapid loss of heat from the exterior. Thus the inner portion of the casting solidified first and thereafter successive cylindrical elements in succession, each contributing to the state of final stress within the metal of the tube by its contraction upon the one within. Cast iron cannon made by this method were not only stronger but were less liable to enlargement of the bore after firing.

The advent of rifled cannon finally rendered the cast iron gun obsolete, but not before many unsuccessful attempts had been made to wrap coils of wrought iron around the barrels of cast guns originally of smooth bore, which had been returned to the shops so that grooves might be cut in them. The higher chamber pressures necessary for the successful performance of the rifled cannon, together with the increase in longitudinal stress resulting from the friction between the projectile and the bore due to the

Fig. 2-Some of the earliest cannon were loaded at the breech instead of the muzzle. Here A represents a rectangular opening for receiving the sliding element C which contained the charge. The Key D held the block in place while the gun was fired. Lack of strength forced abandonment of this type in favor of the muzzle loader, despite its greater convenience

use of lead or other sheathing envelopes, proved too much for cast metal. In the London Times of April 19, 1860 appears an account of some of these experiments. In one case a hooped gun bore its trials well until the thirty-sixth round, when it burst into fragments. Two other guns of $6 \frac{1 / 2}{2}$ inches bore, similarly hooped, were tested at Woolwich Arsenal, powder charges of 16 pounds and cylindrical shot weighing 160 pounds being used. At the sixty-second and sixty-third rounds respectively these two cannon gave way, the breech of each being driven off without any fragmentation.

Modern Methods of Distributing

 Stresses: Nowadays, to approach as nearly as may be practical to the ideal of a uniform distribution of tensile stress across the cross section of the gun in action, three courses are open to us. We may wind the tube with exceptionally strong steel wire, varying the tension during winding as may be required; we may construct the gun with several tubes or hoops, each shrunk upon the one within it; or we may subject a thick-walled gun tube to very great hydraulic pressure $(90,000$ to 120,000 pounds per square inch) and so produce a per-
manent set within the metal which progressively diminishes as we approach the outside of the tube.
This last mentioned method, originally developed just before 1914, is known as "auto-frettage," which being translated literally means "selfhooping." The winding of guns with wire has been completely abandoned in this country, partly on account of the lower rigidity of the barrel so built and its consequent greater tendency to droop and whip; and also because of some difficulty with relining. Then, too, the quality and reliability of large forgings for jackets and hoops has improved.

Design Steps: In naval practice the first step is the determination of the caliber of the gun (inside diameter of barrel) and thereafter the length. Next the powder pressure is settled, the number of chamber capacities selected and the effects of different powders calculated. Previous experience concerning the permissible densities of loading furnishes a guide to the proper weight of the powder charge and so at last, by combining these several variables in the most desirable way, the muzzle velocity and maximum pressure are obtained. From this point we proceed by way of an investigation of the shape of the powder pressure curve to the design of the several parts of the gun in order that the stress in the barrel will be nowhere greater than about 70 per cent of the elastic strength of the steel. This, it may be observed is a somewhat higher working stress than we would ordinarily adopt, but is used so that the weight of the gun may be kept within practical limits. Hence we observe the necessity for the greatest care in the selection and fabrication of its various parts which will be detailed in the second part of this article next week.
(Concluded Next Week)

Fig. 1-An early form of bombard, constructed of iron bars bound together with hoops after the manner of the staves of a barrel

Fig. 3-The earliest cannon devised after the invention of gunpowder were conical, resembling an apothecary's mortar, hence the name. The stone projectiles which they fired moved relatively slowly and with little accuracy

Fig. 5-Cross sections of the Armstrong gun showing projectile of modern form, breech closing arrangement and powder charge-all ready for action

How Carpenter

Free Machining

Stainless Steels
are relieving pressure on production

In these days when machine shops are jammed with waiting work, every bar of Carpenter Free Machining Stainless is doing its bit to relieve the pressure. Cutting speeds as high as 120 to 200 surface feet per minute chase this Stainless through the shop. The free ma-
 chining qualities prevent unnecessary production interruptions usually caused by galling, seizing and loading up of the tools.
Yes! Carpenter Free Machining Stainless has always been a timesaver for the fabricator. Today all of its time saving advantages are fully employed in relieving the pressure created by the defense emergency.
Busy as we are, we are never too busy to answer your questions, or to supply you with information that will aid in solving stainless fabricating problems. Your Carpenter representative is ready to give you the benefit of his experience and to supply you with helpful literature, that will overcome production difficulties.

THE CARPENTER STEEL CO. READING, PA.

* Faster cutting speeds
* Less bogging or welding of chips
* Better finishes
\star Closer tolerances
* Less spoiled work
* Less tool trouble
\star Less galling or seizing

MOLYBDENUM-TUNGSTEN HIGH-SPEED STEEL

can be used to replace 18-4-1

With use of 18 per cent tungsten high-speed steels limited by OPM. every user should know of the satisfactory substitutes that have been developed. Here a metallurgist tells of his expericnce with an excellent substitute and how it can be adapted to your own needs

- THE OFFICE of Production Management recently issued an order limiting the use of 18 per cent tungsten high-speed steels in order to conserve the supply and direct the distribution of tungsten. As we have had wide experience with the molyb-denum-tungsten type of high speed steels, some of the information we have gained may be of interest to others.

This type of high-speed steel uses less than one-tenth as much tungsten as the well-known 18-4-1. It, therefore, fits particularly well into prasent plans for conservation of strategic and critical materials. Since it has now been in general commercial use for about eight years, many toolmakers besides ourselves have learned its superiority and made it their standard for high-speed tools.

Development of molybdenumtungsten high-speed steel was based on many years of careful and costly research work. Recognizing its great economic and strategic value, every effort has been made to make it generally available to the public. Many steelmakers now produce it. While these steels are known under the general trade name of Mo-Max, each steelmaker has adopted a brand name of his own. See Table I.

From the original type designed to compete with $184 \cdot 1$, special purpose varieties have been developed to cover the entire field of 18 per cent tungsten specialty steels. Table II shows comparable types of 184-1 and molybdenum - tungsten highspeed steels.

Type 1 is the general purpose 18-4-1 type and the corrasponding general purpose molybdenum-tungsten type. It should be noted that both classes of steel are being furnished in a wide variety of carbon contents for different purposes. The most common ranges of carbon are shown in Table III.

The low-carbon range is useful for dies, planer tools and other tools subject to shock. The intermediate range is suitable for tools such as

By JOSEPH V. EMMONS
Metallurgist
The Cleveland Twist Drill Co. Cleveland

drills, milling cutters and broaches. The high carbon range is adapted to reamers and lathe tools requiring great red hardness. This is the most common carbon range, and the one most commonly carried in warehouse stocks. It is expected that the hardness of properly hardened and tempered molybdenum-tungsten high-speed tools made from these carbon ranges will, in general, fall within the limits shown in Table IV.

Weight: In ordering steel it should be recalled that molybdenumtungsten high-speed steel has about 8 per cent less weight per cubic

[^6]inch than the 18 per cent tungsten steels. Thus, for a given purpose, 8 per cent less steel by weight need be ordered.
Grinding Sparks: It will soon be discovered that the grinding sparks from molybdenum-tungsten high-speed steels are a bright or ange color with a spear head on the end. Thus they are easily distinguished from 18 per cent tungsten steels with their dark red spark lines and from carbon steels with white lines ending in a star. It is thus easy to sort mixed steel and scrap by means of the spark test.

Fracture and Hardness: In starting to use molybdenumtungsten high-speed steel, it is desirable to combine steal inspection with heat treatment practice on disks or test pieces before proceading with expensive tools. The test pieces can be hardened and tempered under the conditions intended to be used on the tools to be made.

An inspection of the fracture, however, and a hardness test by any available means will indicate the response to the heat treatment and whether any adjustments in the conditions need to be made. The principal differences in behavior from the 18 per cent tungsten type are föging and hardening.
Forging is done at about 1900 to 1950 degrees Fahr. Note that this is lower than for 18-4-1. At this temperature it is quite plastic and forges with greater ease than the 18 per cent tungsten steels. Forging should stop when the temperature drops below 1700 degrees Fahr. Slow cooling after forging is desirable. Forging should always be followed by a full annealing.
Annealing is done in the same manner and at the same temperatures as 18-4-1. It is common practice to pack anneal at about 1550 degrees Fahr. The annealed hardness should be from 90 to 100 rock well B.
Machinability of the type 1 molybdenum-tungsten high-speed steal is probably the best of all high speed steels. It also grinds with ease.

Welding, Brazing: Mo-Max can be welded to carbon and alloy steel shanks or bodies when desired. The electric fusion method is per-

CAN YOUR SHIPMENTS

Takeit?

RAIN, sleet, dust, dirt and careless handling are IL hazards of transit beyond your control. Once the shipment leaves your plant, all you can do is hope. But you can control the packaging! Can the wrapping material and methods used by your shipping department "take it"'

FIBREEN is doing an outstanding protective job for American industry.

Steel mills use it to wrap 10 -ton bundles of steel sheets, loaded on open freight cars. Furnirure makers find a FIBREEN wrap gives effective shipping protection at a substantial saving in labor and crating. It has reduced claims for damage in transit to a remarkable degree. It protects export shipping - wraps and protects a host of products varying from a box of roses to auto bodies.

Perhaps is can do a job for you. The Sisalkraft Co. has accumulated a wealth of experience and research in packaging and shipping. Write, outlining what you have to protect or ship and your present methods. We will suggest methods others have found effective; and supply, without obligation, enough FIBREEN for a practical trial.

FIBREEN is 6 ply: TWO layers of strong kraft, reenforced with TWO layers of crossed sisal fibers embedded in TWO layers of special asphalt -
all combined under heat and pressure. FIBREEN is pliable and clean will not scuff - stands an astonishing amount of abuse and exposure. FIBREEN is used either as a wrapping or a lining material.
Soak it-twist it-try to tear it! Only when you get a sample in your own hands can you realize that a paper can be so strong - 50 tough - And impervious to moisture. There is no other material like FIBREEN. Available promptly in rolls and blankets of many widths. Write for sample.
FIBREEN is a product of The Sisalkraft Co. - who are also manufacturers of Sisalkraft, Sisal-X, Sisal-Tape and Copper-Armored Sisalkraft.

USE THIS FAMOUS FABRICATION FORMULA

FOR GREATER SPEED EFFICIENCY and ECONOMY

Here's a splendid example: This large rotary dryer is being economically fabricated from $3 / 8^{\prime \prime}$ stainless clad plate speedily flame cut with an Airco Radiagraph using Airco 99.5% pure oxygen and Airco acetylene. Longitudinal and circumferential joints are made by using $1 / 2^{\prime \prime} \times 4^{\prime \prime}$ steel butt straps plug welded and fillet welded to the inside shell plates. High quality welds and fast welding speeds are obtained by using the Wilson Hornet and Airco No. 81 Shielded Arc Electrode. A stainless steel inside seal weld completes the joint.

Flame cutting provides a quick, economical means of shaping steel into any desired contour whether a single unit or hundreds of identical pieces are required. Smooth, accurate cuts are
assured. Parts are light, strong, tough. Arc welding unites flame cut parts into a single homogenous structure. Simplicity of design and greatei efficiency of structure are important benefits; fabrication time and overall costs are lowered.

A most valuable advantage that goes with Airco products is the assistance of Airco's nation-wide Applied Engineering Department, available to every customer for instruction in the correct application of the welding and cutting processes and equipment to specific work, and for the solution of special problems. Be sure to ask for complete information about this service - a service worthy of the name.

Air Reduction

Anything and Euerything for GAS WELDING or CUTTING and ARC WELDING
haps preferable for this purpose. When it is used, the welded pieces should be cooled slowly and should have a full anneal to refine and toughen the weld before hardening. For some tool applications, brazing may be preferable to welding. The brazing can be done at the same time as the hardening and only the usual tempering is then required for toughening.
Hardening of molybdenum . tungsten high-speed steels can be done successfully in many ways. Where there is a considerable volume of work, salt baths are popular. These are usually internally heated electric furnaces of which at least three types are available. Controlled atmosphere furnaces are made by several manufacturers and are preferred by some toolmakers. It should be noted that it is necessary to control the water vapor as well as the $\mathrm{CO}, \mathrm{CO}_{2}$ and O ratios.
For atmosphere furnaces where conditions are not the best, it is possible to use protective coatings of borax and copper paint on the tools to control carburization or decarburization. Such methods and precautions have for the most part been developed for the 18 per cent tungsten steels and are more or less necessary for all kinds of highspeed steels.
The hardening temperatures vary from 2150 to 2250 degrees Fahr. The lower temperatures of this range are used for the more delicate tools and where great toughness is desired. The higher temperatures of this range are used where the maximum red hardness is required-in lathe tools used under severe conditions for example. The higher temperatures are also used for very heavy tools. For general work, in. termediate temperatures such as 2200 to 2220 degrees Fahr. are de. sirable.
Such variables as soaking times and quenching procedure are the same as for the 18 per cent tungsten steels. Straightening when required also is done by the usual methods. It is best done before the full secondary hardness is developed by tempering. It will be found that the lower hardening temperatures result in longer furnace life and less discomfort for the hardener.
Tempering or drawing should be done as soon as possible after the tools have cooled in the quench but not, however, until after the tools have cooled below 212 degrees Fahr:
Holding 30 to 60 minutes at 1050 degrees Fahr. produces a satisfactory secondary hardness. Some prefer two hours at 1025 degrees Fahr, while others prefer a double draw at 1025 degrees Fahr. When a high degree of toughness is desired,
as for example in punches and dies, higher draws such as 1075 or 1100 degrees Fahr. may ba used. Cooling from the draw should always be slow, for it is during cooling that the secondary hardening takes place, and this must not be hurried. Some typical hardness results after tempering steels of two different carbon contents are shown in Ta . ble V.

The problems involved in a shift to the molybdenum-tungsten type of high-speed steel are not difficult as the pioneering has been done. Commercial use has been slowly but firmly established so now it is estimated that in excess of 20 per cent of all of the high-speed steel used in this country is already of this type.

Rarely do we have a new product that is better, cheaper and more easily available than the old. Here
is such a case. Numerous careful workers have reported that the performance of molybdenum-tungsten high-speed tools has averaged about 20 per cent better than tools made of 18.4.1.

Cost of the molybdenum-tungsten high-speed steel, taking into account both the lower weight per cubic inch and the lower base price, is only about 75 per cent of the cost of 18-4.1. The availability of molyb denum and tungsten in the amounts required is beyond question.

It is no more difficult to develop the right technique for molybde-num-tungsten steels than for other steels.
This has been proved beyond doubt by the fact that so many toolmakers, both large and small, already have changed over with results that have been entirely successful.

Note: From Metal Progress, April 1941, p. 430.

TABLE IIL-Carbon Ranges for Migh-Tungsten and Molybdenum-Tungsten Hinh-Speed Steel, in Per Cent

18-4-1
54 to 0.60 H.S. Steel
0.04 to $0.60 \quad 0.64$ to 0.70
0.61 to $0.67 \quad 0.71$ to 0.77
0.68 to $0.74 \quad 0.78$ to 0.84

TABLE IV-DIardness Ranges

Tough carbon range
Moderate carbon range
60 to 64 Rockwell C
Hard carbon range
62 to 66 Rockwell C
64 to 68 Rockwell C

TAMLE V-Typical Hardness Values, Rockwell C

Carbon	0.75	STEEL	$\begin{aligned} & \text { 2150 }{ }^{\circ} \mathrm{Quenched} \text { from- } 2200^{\circ} \mathrm{F} \quad 2240^{\circ} \mathrm{F} . \end{aligned}$		
		Not Drawn	66	65	65
Chromium	3.61	Drawn $9.40^{\circ} \mathrm{F}$.	63	63	63
Molybdenum	8.66	Drawn 990	64	64	64
Tungsten	1.61	Drawn 1040	65	66	66.6
Vanadlum	1.07	Drawn 1090	64	66	
Manganese	0.14	Drawn 1140	63	64	65.5
silicon	0.27	Drawn 1190	61	62	64
		-STEEL B-Analysis At Left			
Carbon	0.80	Not Drawn	66	66	64
Chromlum	3.65	Drawn $940^{\circ} \mathrm{F}$.	63	63	6.3
Molybdenum	9.01	Drawn 990	64	65	64.5
Tungsten	1.35	Drawn 1040	65	66.5	67
Vanadium	1.23	Drawn 1090	64.6	66	67
Manganese	0.16	Drawn 1140	63	65	66
Stlicon ..	0.29	Drawn 1190	62	63	65.5

EVERY INDUSTRY

 B E E
G-E PRODUCTION-LABELED ELECTRODES For Peak Production and Profit on Every Job

PRESSED by today's peak-production demands, management and operators are finding that the improved arcing and deposition characteristics of G-E electrodes save them time and money.
Speed, "usability," ease of slag removal, and low spatter-loss-all characteristics of G-E rods-are features that are causing both operators and management to decide in favor of G-E electrodes.

This "O.K." of G-E electrodes by users themselves is further strengthened by the full approval of every major board of authority having jurisdiction over welding codes and procedures. Each G-E electrode has authoritative approval for use on practically every intended application.
Even G-E electrode cartons save you both time and money!

On every $50-\mathrm{lb}$ carton of mild-steel G-E electrodes you'll find production data - the estimated weld-footage obtainable on typical joints as well as the estimated weight of deposited metal obtainable. This production data enables you to estimate costs and production requirements more accurately than ever before. No more waste due to overages or shortages. No more guesswork in figuring pounds per foot or feet per pound-it's right on the label where it can't get lost!

Special Localized Electrode Service-Near You!
Your nearest G-E arc welding distributor or G-E office is part of a nation-wide organization set up to give you the kind of service that will help your welding profits. Just phone or write for a complete demonstration of G-E rods on your work. General Electric, Schenectady, New York.

An Analysis of the

CRAWLER CRANE

as an industrial materials handling tool

- THERE is one piece of materials handling equipment that appears to merit much more attention as an industrial materials handling tool than it gets-the crawler crane. To many plant men, it is still regarded only as a piece of contractor's equipment, one not having any particular application around an industrial plant. The truth is far from this, for, added to the extreme flexibility of the unit itself, the many pick-ups developed for use with the crawler crane make it one of today's most versatile materials handling aids.

For example, are you familiar with the following applications:

Grabs: Many types of tongs and grabs have been developed for specific handling problems such as moving structural steel sections as shown in Fig. 1. Here the Baltimore \& Ohio railroad loads and unloads rails and track units with a tong-like device which eliminates necessity for elaborate slings in picking up these loads. It easily handles material up to 16 feet and longer, weighing 2800 pounds or more. Such a device speeds handling since it requires practically no time or effort to apply it. It is merely placed over the piece to be picked up, and as the lifting force is applied, the tongs clamp the work firmly.

Various other grabs have been developed for specific purposes. For instance, there is a strong efficient grab known as the rock grab and
made in various sizes to handle large heavy bulky objects such as iron and steel ingots or billets, concrete blocks, rock, etc.

Another grapple is known as the pulp wood grapple, developed especially for handling uniformly piled material such as railroad ties, fence posts and the like. Of course it is equally applicable to handling rail sections and structurals of similar size.
Fig. 2 shows a typical special type of grapple used to handle nonuniform materials such as scrap iron, steel shavings, pressed scrap cubes and other bulk material, including nonferrous and nonmagnetic material which an electric magnet will not lift. In addition to this Owen grapple, there are various other designs of grabs and grapples for specific services.

Also the ordinary single-line clam-shell bucket is widely used for pickup work. Fig. 3 shows a regular 2-line clam shell - the type more efficient for hard digging and pickup-being used to handle a miscellaneous load of material.
Skip Handling. Crawler cranes often are used in the materials handling system of a plant for moving hand-loaded skips or containers filled with small scrap, castings or parts. These may or may not be loaded by hand, but often are carried through the plant by means of a monorail system, being handled outside of the plant by the crawler crane as shown in Fig. 4. Not only

MESTA PLANERS • LATHES • GRINDERS ROLLS • FORGINGS • CASTINGS COMPLETE STEEL MILL EQUIPMENT

does such a system fit well into the handling of work in process, but it also affords means of developing a system for regular and efficient disposal of waste.

Hook Lifts: Then, of course, many objects can be moved about by a hook engaging a lifting ring or some part of the object. Illustrated in Fig. 5 is a heavy boiler being loaded on a freight car in the Bucyrus-Erie yard at Erie, Pa., using a hook lift.
A variation of the hook lift is seen in Fig. 6 where the lifting pulley is connected to the load by means of a special fastening designed and built into the item itself. This insures proper handling of heavy, bulky or awkward shaped objects such as this large lock gate for the Fort supply dam.

Slings: Possibly the most versatile attachment of all is the sling since this unit can be made with various spreaders for loading anything from structural sections to trucks, tractors and airplanes. Fig. 7, for instance, shows a crawler crane lifting and stacking automotive frames at Chrysler Corp.'s Evansville, Ind., plant. The "gooseneck" attachment which can be fitted onto most crawler cranes is an aid in such work as this.

Of course the main advantage of the cravler crane is its extreme flexibility in being able to travel any place about the plant at a moment's notice. It is especially helpful in clearing up production bottlenecks. Suppose, for instance, there is a rush shipment that must be loaded today, but the track cranes and switch engine are urgently needed all morning over at the foundry, and taking the overhead crane away from the production gang on the erecting floor would tie up the entire works. The answer is to send in the crawler
crane. It can pull in a flat or gondola car, load the shipment and go on about its business without getting in anyone's hair.

Often an attempt to increase production capacity and speed up output by adding more track cranes increases track congestion and delays the work of both old and new units-instead of helping the situation. Also, additional overhead cranes can only serve to increase handling capacity within the limits of track range.

A crawler crane, on the other hand, is free to help out anywhere along the line. It can be used to keep production going in event an existing track or overhead crane breaks down. Thus it affords an important reserve for emergency service.

Good Resale Value: Another point that is causing many manufacturers to consider the crawler crane more seriously for production work is that a crawler crane is not tied into the production line as a permanent unit. Because of this and because it has a ready rental and resale value, it is becoming regarded as a safe investment to meet temporarily increased production requirements.
For instance, it can be used to swing a concrete or metal skullcracker to break up old concrete paving or structures, knock down walls, break up scrap castings and other demolition work. Too, the unit is convertible to a dragline, pile driver, pile puller, shovel or structural steel lift-all on a moment's notice. These additional uses provide assurance that a crawler crane, purchased for industrial materials handling, will never become simply another item of overhead expense.

Illustrations show Bucyrus-Erie cquipment.

LaMSON Bowis

TOR STED CONSTRUCHION

- Lamson \& Sessions can meet your requirements in bolt and nut products for steel construction from warehouse slocks. In addition to machine bolls, fitting-up bolts, cotters, wire rope clips, nuts and other standard products in a full range of sizes, Lamson offers at least two specialties that dovetail with the present national emergency program of building soundly and economically, and in the shortest possible time. - Lamson Lock Nuts provide security where vibration is severe or where suslained or sudden shock is encountered. These nuts
may be used over again and again. Dardelet Rivet bolts produce steel joints more secure than riveled joints, and with greater speed and lower cost of assembly. No compressed air, forge or skilled labor is required with the use of Dardelet Rivet bolts-just a maul and a wrench is needed. - Structures in which these two products are used can easily be altered or dismantled. Particulars and samples on request.
THE LAMSON \& SESSIONS COMPANY, Cleveland, Ohio Plants at Cleveland and Kent, Ohio; Chicago and Birmingham

π
 AMSON

BOLTS••NUTS••COTTERS••CAPSCREWS•• \quad OPECIALS

New Heat Treating Gas

Prevents

SURFACE DECARBURIZATION

- DRYCOLENE, the new atmos. phere gas for heat treating metals, first announced by General Electric Co. at the National Metal Exposition last fall, now is being used successfully by several industrial plants for heat treating their steel products without surface decarburization, according to the company
The gas is one of the latest advancements in protective atmos pheres for such operations as the scale-free hardening, bright annealing, sintering and electric-furnace brazing of high-carbon steels in which surface decarburization cannot be permitted. According to General Electric, the presence of carbon monoxide in drycolene opposes the decarburizing action of such impurities as carbon dioxide, water vapor or infiltered air, especially where large-size furnaces are concerned.

Steel Hardened to Surface

Steel hardened in drycolene has been found to be hard right to the surface and has passed such tests for traces of surface decarburization as the rockwell N ("Superficial") tests, weight change measurements and photomicrographs. For example, all three tests were made on SAE-52100 and 1090 steels. Samples were heated in drycolene for two hours at 1500 degrees Fahr. and quenched. Weight-change meas. urements showed slight increases in weight, indicating no decarburization. Rockwell hardness-comparison tests gave slightly higher converted "superficial" (N) values than the C readings, indicating no decarburization. And photomicrographs showed absolute uniformity of structure extending to the very surfaces.
The drycolene producer, now being made in sizes of 200 and 750 cubic feet per hour, is a gas-fired reaction chamber with a number of accessories-all mounted as one unit. Several refractory-screen type burners project through the side wall of the chamber. Charcoal is stored in a hopper at the top of the chamber which in turn feeds the material down through a vertical retort. The hopper is provided with both a cover and fittings for optional manual or vacuum charging.
The producer itself consumes hydrocarbon gases such as coke-oven, natural, propane or butane gas. The hydrocarbon gas and air first pass

TABLE I-Cost of Produching Drycolene
Per 1000 Cublc Feet From Varlous Fuel Gases
Coke-oven gas
(3) 60 cents per thousand.... 29 cents Natural gas
(ii) 40 cents per thousand... 16 cents Propane gas
(3) 8 cents per gallon from tank car
Propane gas
a 25 cents per gallon from
cyllnders
57 cents

through visual flow meters to show the input volume of each. They then enter a gas-combustion controller, consisting of a mixer which automatically holds the proportion of gas and air constant under all conditions, a compressor and a pressure regulator.

From the gas-combustion controller, the mixture goes through a self-closing fire check to the burners in the unit itself, heating the charcoal in the retort to incandes.

When the casting supporting the lifting mechanism and 40-ton top roller on a huge 30 -foot plate roller broke at the Ingalls Shipyard in Pascagoula, Miss., the use of are welding saved the yard, busy with defense work, from a several months shutdown. The new casting shown was constructed in 5 days from $1^{1 / 4}$-inch steel plate. Photo by Hobart Bros. Co., Troy, O.
cence Products of combustion travel through an externally mounted surface cooler, where most of the moisture is removed. An activatedalumina dryer may be inserted at this point if all the moisture must be removed to reduce the hydrogen content of the drycolene to the lowest point practical.

From here, the gas travels through the incandescent charcoal where further reactions take place and drycolene is formed. Any carbon dioxide or water vapor present is here converted into carbon monoxide and hydrogen. The gas after passing through a dropout chamber leaves through a filter which removes charcoal dust. It then passes through a visual flow meter which indicates the usable output rate.

Based on operating costs of a 750 . cubic-foot-per-hour drycolene producer operating at full capacity, the accompanying table shows the cost of producing the gas. Estimates include 4 pounds of charcoal (at 2 cents per pound) per thousand feet of drycolene.

Issues Tube Data
 Chart for Engineers

In an effort to relieve engineers working under the high pressure of defense production, Steel \& Tubes Division, Republic Steel Corp., 224 East 131st street, Cleveland, is offering a new tube data chart which makes available in abbreviated form a useful compilation of electric resistance welded tube data on sizes, tolerances, weights per foot, chemical analyses and physical properties of round tubing and also squares and rectangles.

Compact enough (22×14 inches) to be hung on the wall or placed under the glass top of a desk, the chart is entitled "Engineering Data on Electric Resistance Welded Steel." Copies are available upon request.

Develop Penetrating

Paint for Metals

\square A new finish with unusual penetrative and protective qualities called light gray Totrust is announced by Wilbur \& Williams Co., Park Square building, Boston.

Possessing the same qualities as aluminum paint in regard to color, light reflection, etc., it can be used either indoors or out. In addition, it stops rust at its source, covering pinholes and rusted pits in metal, expelling any moisture which may be present-surrounding and isolating particles of rust -forming a hard, durable, flexible film. One gallon of this finish covers approximately 800 to 1200 square feet.

June 1941

To the DEFENSE INDUSTRIES, UNITED STATES of AMERICA.

Gentlemen:-

We can still maintain fairly PROMPT DELIVERIES on NORTH AMERICAN COMBUSTION EQUIPMENT.

Our products consist of a COMPLETE LINE of BLOWERS, BURNERS, VALVES and ACCESSORIES of all descriptions for PROPER COMBUSTION of gas and oil.

One of our latest improved developments is a combination gas-oil burning system which burns eithor fuel through the same equipment.

The North American MIg. Co.

 SUIT EVERYBODY WILL SOON WHITTLE HIMSELF AWAY... WHICH REMINOS US THAT IF ALL THE EXPERTS WHO HAVE OFFERED US ADVICE ON IMPROVED PUBLICITY WERE LAID END TO END-THEY'D ALMOST EQUAL THE DISTANCE OF A YEAR'S OUTPUT OF MAURATH STAINLESS WIRE.

MAURATH, Inc.

 Builder of betfer welding| STAINLESS | | | |
| :---: | :---: | :---: | :---: |
| Type Numbers Available | | | |
| $302-\mathrm{B}$ | $\frac{316}{}$ | 330 | |
| 308 | $316-\mathrm{Cb}$ | 347 | |
| 309 | 317 | 410 | |
| $309-\mathrm{Cb}$ | 321 | 430 | |
| 310 | 325 | 442 | |
| 311 | 329 | 446 | |
| 312 | \bullet | 502 | |
| 15% | $\mathrm{Cr} .-65 \%$ | Ni. | |
| 20% | $\mathrm{Cr}-80 \%$ | Ni. | |

CLEVELAND

 electrodes in all analyses

Limestone being added to an open-hearth furnace. Charging graphite between raw limestone on the hearth and burned lime as a covering provides an open heat and helps the graphite to enter the solution

Use of

AMORPHOUS GRAPHITE In the Dpen-Mearth Shop

Abstract

Shortage of pig iron has forced many steelmakers to swing over their open-hearth shops from cold metal charges to all steel scrap heats. The changeover has been effected by the use of graphite which is one of the most efficient and economical sources of carbon for making high-quality steel. The method of adding this ma-

terial is explained in the accompanying article

BECAUSE of the sharp ncrease in iron and steel production for cmergency purposes, steel mills are faced with a possible shortage of pig iron due to its limited output, particularly in certain localities where the open hearths do not have a supply of hot metal from the blast furnace and must charge cold pig iron. Several open hearths are already experiencing the tightness of pig iron supply and are experimenting to find new materials which will enable them to make good steel from 100 per cent scrap charges.
The principal problem is to supplant the carbon normally charged when the pig iron is added and provide a source of carbon which is equally dependable. The most logical material to provide the carbon necessary is the mineral graphite, naturally suggesting itself to replace the graphitic carbon occurring in pig iron.
Mexican graphite No. 348 represents the most dense and lowest volatile carbonaceous material available and one that is free from phosphorus and sulphur which is usually present in abundance in nongraphitic carbons. Its great density allows it to occupy a minimum of space in the charge, and

By f. J. ZEMANEK

Metallurgist
United States Graphite Co. Saginaw, Mich.
its lack of pore structure and natural high refractoriness gives the necessary resistance to oxidation. This type graphite is inert to acid or basic reactions and is readily absorbed by molten steel. It is especially sized to exclude all dust and a special particle range is maintained to keep oxidation losses to a minimum, provide a dense pack, and supply a particle readily dissolved by the metal.

The inherent characteristics of the Mexican product provide an efficiency of over 70 per cent in carbon recovery in both acid and basic open-hearth practice while sulphur and phosphorus are held to a minimum. The fact that sulphur and phosphorus cannot be removed in acid practice makes this material cloubly desirable, and it is being successfully used to economically produce all grades of steels ranging from low carbon to carbon steels over 2.00 per cent carbon. Efficiency of carbon recovery is maintained over 70 per cent in
every instance with all scrap charges, and one operator reports that in their acid open hearth 100 per cent carbon recovery is obtained melting 1.50 carbon steel and that this pound-for-pound recovery is dependable and consistent.

How Material Is Used

In acid open-hearth practice the furnace bottom may be covered with a light layer of scrap before charging the graphite or it may be charged directly onto the furnace bottom with no harmful effects. A recommended procedure for charging is to fill the charging box a third full with borings and then place over this a few 100 -pound bags of the No. 348 Mexican graphite, fina!ly leveling off the box with more borings. When the box is overturned onto the furnace bottom, instant coverage will be obtained and a maximum carbon recovery assured. Enough boxes are charged in this manner to give the calculated amount of the graphite, and then several boxes of additional borings or light scrap are charged to provide complete coverage. For further protection of carbon a covering of 10 per cent ferrosilicon may be charged immediately following the carbon charge. Sufficient silicon may be added to equal that of the pig iron being replaced. The quality of steel made is said to be the equal of that produced with pig iron.

Another method successfully employed in acid open-hearth practice is to charge the Mexican graphite in steel drums holding 500 pounds. The drums may then be covered with the proper amount of 10 per cent ferrosilicon before charging the scrap. No manganese is necessary in either instance, but this may be added to the furnace prior to tapping or to the spout when the heat is being tapped.

Standard formulae are used to calculate the amount of No. 348 Mexican graphite necessary, bas-

TO THEIR PRESENT 58 ©G BADIANT

 TURE ANNEMUNG COVERS IOR STRIP, SHEET, AND TIN,WEIRTON STELL COWPPTIV MOWADD 19 MORE... WHICH again fulfills their exacting demands and standardS of "DOUble control" of odality in fine steels * ALWAYS AMON modern equipment developed purchased from steel industry, the Weirton Stee first radiant tube annean Surface Combustion one of the are 58 SC radiant tube anneals covers in 1934. Today, there Weirton strip, sheet and tin mill ng covers operating in the W eir. Also incorporated in this 19 more are now being built. Also continuous slab fur project are three of 80 gross tons per hour aces, each with a rated capacity of re inse. The douBoth single row and double row covers are tubes-in addition ble row covers with a center bank of radiong arranged to the two customary band rapid and uniform the side walls-permity large tomnage unheating of exceptionally Combustion DX der one cover. Surface atmosphere. units supply the protect installaWhen considering your next instaling covers, ask tion of radiant tube anrealing records of the

ing recovery on 75 per cent efficiency. About 30 points additional carbon is calculated over the clear carbon desired in steels of over 0.75 carbon content to provide a safety factor and take care of oxidation losses. This factor may be reduced to 10 points when working soft steels.
Basic open-hearth practice requires that the graphite be covered over with the lime to obtain best results. In this way the carbon is not released until the steel is melted and the lime comes up. The graphite may be charged onto the furnace bottom after it has been covered with a layer of scrap and then the lime charged over it. By placing the graphite on top of the lime boxes or within them, rapid and complete coverage is assured. More lime is available to remove sulphur and phosphorus inasmuch as the silicon ordinarily charged with pig iron is not present and the quantity of lime necessary may be reduced if the sulphur in the scrap offers no difficulty.
It has been suggested that a
quantity of raw limestone be charged together with the graphite or that the graphite be sandwiched between raw limestone on the furnace bottom and a burned lime covering.
This particular action would provide a more open heat, besides helping to bring sulphur out of the melt and into the slag more effectively, will aid the graphite to enter solution.

This method was discussed at the recent spring meeting of the Pittsburgh Open-Hearth Committee sponsored by National Open-Hearth Committee of A.I.M.E., and most operators agreed that this would be good practice.

In a number of open hearths it has now become regular practice to charge all steel scrap and graphite, and it appears that equally good results may be obtained in basic practice.

This material thus far represents the most efficient and economical source of carbon obtainable to produce a steel of the very highest quality.

Steel Foundation for Blast Furnace

When preparing this 900 -ton capacity blast furnace foundation, several thousand dollars in construction costs were saved by using steel piles instead of the usual wood cribbing underneath the pile drivers. The pile casings, fumished by Union Metal Mfg. Co., Canton, O., were driven 85 feet in one piece. Short extensions were then tack-welded intermittently to the tops of the piles and cap timbers laid across these extensions. The rigidity of the Monotube piles eliminated necessity for cross bracing

Completes Work on Standard Abbreviations

- American Standards Association reports completion of the revision of standard abbreviations for scientific and engineering terms. It includes such common terms as pounds per square inch, dollar, and dozen, as well as kilograms per second, reactive volt-ampere and British thermal unit.

The standard has been developed by a group of engineers, editors, and scientists representing many national organizations. Leadership for the work has been taken by the American Association for the Adl vancement of Science, the American Institute of Electrical Engineers, the American Society of Civil Engineers, the American Society of Mechanical Engineers and the Society for the Promotion of Engineering Education.

Chief difference from the earlier edition is the inclusion of abbreviations for terms not previously covered, and the shortening of certain previously recommended abbreviations.

Other characteristics of the standard are:

The elimination of spaces between word combinations or letters; and elimination of periods except in cases where the abbreviation spells out a common English word.

This standard-"Abbreviations for Scientific and Engineering Terms" (Z10.1-1941) -is now available in pamphlet form and may be obtained for 35 cents from association headquarters by addressing a request to 29 West Thirty-ninth street, New York.

A Substitute for Zinc To Protect Steel

- A timely answer to the problem of licking corrosion without zinc-coated metal is given by Roxalin Flexible Lacquer Co., Elizabeth, N. J., who calls attention to Roxaprene, a corrosion resistant speed synthetic that compares most favorably with other protective coatings for steel.

Because the product can be applied by dip, spray or roller coat, it requires no special equipment whatsoever.
Also, it air dries quickly or may be force dried in half the time required by conventional synthetics. This production facility eliminates much of the extra time, handling and processing formerly involved in protecting steel. The material is already being used successfully by manufacturers of air conditioning equipment, motor trucks, bottle caps, fans, blowers, pumps and special machinery.

Don't Dissipate Assets in a Losing Fight Against Idle Works Expense

If your business can not be geared to the "all-out" defense program and must close from lack of material, you should make your decision now to liquidate while conditions are more favorable than ever before for such action.

A partial liquidation leaving you a tax eating "white elephant" in the form of stripped buildings or vacant land is worse than no liquidation at all. A Hetz job insures 100% on every item excepting land, on which we have a record of 75%.

Prompt action, scientifically directed by an experienced liquidator, will solve your problem, leaving you free to engage in other activities, yet making available to others engaged in the defense program, many of your plant facilities.
CONFIDENTIAL INSPECTIONS \& PROPOSALS WITHOUT OBLIGATION

HITHE CONSTRUCHION CO.,Inc.

GRISWOLD STREET, N.E.
WARREN, OHIO

"Hard" Chromium Plating

AN IMPORTANT METHOD............

To Reduce Sticking in Molds
To Extend Life of Tools and Dies
To Salvage Worn and Undersized Parts

To Maintain Dimensional Accuracy of Gages

Abstract

Extreme hardness, low coefficient of friction and other desirable characteristics open up new fields for chromium plating, in addition to ornamentation. Here Mr. Hyduke, in charge of a shop devoted almost entirely to industrial applications, details the advantages of chromium plating for this work, some of the factors involved, approved procedure and equipment employed. A new plant, with several unusual features and designed especially for this work, is described

- SINCE the introduction of chromium plating some 15 years ago, it has been very widely adopted as a means of imparting a highly durable finish on many parts-especially in the automotive industry. Today, however, one of its most important applications is on work on which it is desired to utilize the extreme hardness of the chromium deposit to resist wear. Such a coating is useful not only as a means of obtaining a highly permanent surface of pleasing appearance but as a means of adding metal to worn surfaces or those made undersize inadvertently during manufacturing also as a method of protecting against wear in service.

The hardnesses possible range all the way up to 625 Vickers-Brinell, 8 Mohs, and 2 microns scratch width on the Bierbaum Microcharacter test. Plating conditions, however, greatly affect the hardness of the deposit. Most chromium plate will be found file hard. Wear resistance usually is far superior to that of

Fig. 1-A typical rack, top view, with special shaped lead anodes. It holds 20 small cylindrical parts, each 2 inches long and $1 / 4$-inch in diameter

Fig. 2-Other special racks with lead anodes for plating cylindrical parts. See lower view

By JOHN T. HYDUKE
General Manager Durable Plating Co Cleveland
fully hardened tool or die steels.
The deposit has other characteristics that should be noted. For instance, it is quite brittle, so should not be used on surfaces subjected to shock loads. Heating to temperatures between 300 and 400 degrees Fahr., however, improves the toughness without lowering wear resistance. Chromium plate has a low coefficient of friction, is nonwetting. Used on forming molds, it will prevent sticking of resinous plastics, rubber, paper and celluloid and will produce a better appearing surface on the molded product as well as reducing mold wear.

Before the advent of chromium plating undersize parts, such work could be reclaimed only at considerable expense, and many parts were simply discarded and crossed off as a complete loss. Today, however, the practice of building up undersize and worn parts by chromium plating is quite common. As a "putting on" method, it has few equals. Too, many parts such as gages and fixtures which are subject to considerable wear can be chromium plated during manufacture as a means of guarding against loss of

... Probably right where you are now, doing what you are doing now, but doing it better and faster, IF the new machinery you are ordering includes Axelson Lathes.

Now is the time for horse sense-not hysteria. Don't buy for this year alone but with the thought that the lathe you install today to machine munitions of war will ultimately be used for the tasks associated with peacetime manufacturing.

Axelson Lathes are designed right and they are built throughout of materials best adapted to the pur-
pose. They are good today and we know that they'll still be doing a firstclass job for their purchasers for many years to come. They afford a wide range of operating speeds and feeds necessary for fast production. They are accurate and they operate smoothly year after year with minimum power consumption.

Before you buy any lathe investigate Axelson

AXELSON MANUFACTURING COMPANY 6160 South Boyle Avenue, Los Angeles, California (P. O. Bax 98, Vernon Station) - 50 Church Street, New York - 3844 Walsh Street, St. Louis

At the lelt an Axelson Lathe is shown turn ing a half-inch faper on the end of a piston rod. This job requires accuracy to .001 of an inch.

WRITE TODAY for your copies of the newest Axelson Lathe Folders. Lalest views of the lathes logether with complete descrip tions and specifica
tions are given

The lathe illusirated above is an Axelson
24". Axelson Heary Duty Lathes are also available in $14^{\prime \prime}, 16^{\prime \prime}, 18^{\prime \prime}, 20^{\prime \prime}$ and $32^{\prime \prime}$ sizes.

dimension in hard service.
A chromium plate only 0.0015 to 0.0020 -inch thick after grinding to size has been noted to extend the life of cylindrical plug gages 400 per cent and more compared with that obtained using the best grade of hardened tool steel unplated. In addition, many tools operate easier when chromium plated. Milling cutters, reamers, taps, drills and metal cutting saws show longer life and better operation on many materials including steel, cast iron, copper and aluminum. Similarly, drawing dies and mandrels give three to five times usual life if chromium plated.

Chromium plating differs radically from ordinary plating in one important aspect. In ordinary plating, an electric current flows from the anode to the cathode, taking metal with it from the anode to the work,

Co., Cleveland, in handling such work has been highly developedan entirely new plant being erected recently with facilities designed especially to handle this work in the most efficient manner.

Since chromium plating will not deposit on a dirty or greasy surface, the first step in handling work is to clean it. All the salvage work done in this plant is on steel, a metal which cleans readily. While the majority of parts received from the customers are practically clean, usual practice here is to employ a grease solvent such as gasoline to put them in a perfectly clean condition. Many cylindrical parts are prepared by mounting them in a lathe and polishing them with 200 -grit manufactured alumina cloth. This treatment effectively removes both grease and dirt. Of course it is most

Fig. 3-Facilities in the new plant include this special arrangement for storage of the plating racks. They are hung on a frame and lowered into pits below floor level, thus being protected and also out of the way. Covers over the pits permit the floor space to be utilized
which is the cathode. In chromium plating, the anode is lead, and current flowing from the anode to the work or cathode obtains chromium entirely from the plating solution. This means, of course, that the solution must be controlled rigidly and kept at the correct pH and temperature at all times.
Equally important, it means that if a uniformly thick coating is to be deposited, the current distribution to the work that is, the current density per unit of area-must be likewise uniform, To meet this requirement, many special lead anodes are used to afford paths of equal length from work surfaces to nearest anode surface. Typical anodes of special shape used in this plant will be described.
Practice at the Durable Plating
essential that the cleaned surface thus made must not be touched with the hand after polishing as even the small amount of oil on one's skin will result in a poor plating job.

Of course, it is possible to employ other cleaning methods such as various pickling processes. Electrolytic acid pickling is the only way to remove heavy scale in deeply recessed parts. Sandblasting also may prove advantageous, especially where a high strength bond must be produced between the plate and the bare metal.

The next step is equally important. In practically all salvage work it is desired to deposit chromium plating on only a portion of the surface. To prevent the deposit from being formed on the remaining sections, they are covered or "stopped
off" in a number of ways. One of the most satisfactory is the use of a red lacquer, specially compounded for this purpose. Other means include wrapping parts of the work with electrician's tape or covering with tin or sheet lead.
Next operation prior to plating itself is to assemble the work on racks. In the interests of getting as much work as possible into the tank to make most efficient utilization of the plating facilities, it is advisable to assemble the work on racks, especially small parts. This permits a large volume of work to be handled in a relatively short time, and yet each part can receive a processing period sufficiently long to give it the coating thickness desired.

Thick Deposits Require Time

Thickness of ordinary chromium plating in most salvage work runs anywhere from a few thousandths of an inch to 0.070 -inch, or even more. The thickness obtainable is merely a question of time in the bath. Under ordinary conditions, the thickness of a chromium deposit can be built up at a rate of 0.002 -inch on diameter per hour. Thus if a coating 0.020 -inch thick is desired, the parts must remain in the bath for 10 hours. Thicker deposits require a proportionately longer time. Thus racking a large volume of parts into the plating bath at one time is most essential for economical processing.
Fig. 1 is a typical rack. It is designed to hold 20 small steel cylindrical parts, each 2 inches long and $1 / 2$-inch in diameter. Note that each part is encircled by a sheet lead anode-a necessity to insure uniform current distribution for uniform plate thickness, as was previously mentioned. Anodes and cathodes are insulated adequately as they are mounted on a wood support. The projections seen at the ends of the pieces to be plated are lead plugs which have been inserted to prevent chromium from being deposited in holes in the work. The irregular appearance of these plugs is caused by a chromium deposit which has been built up, resembling miniature stalagmites. This illustration affords a general idea of the type of racks used for small cylindrical parts in this plant.
The unit at left in Fig. 2 is a special rack for plating external surface of a cylindrical piece 18 inches long and 4 inches in diameter. The work is suspended inside the sheet-lead anode, which in turn is fastened to two wood supports. The part in the center of Fig. 2 is a special lead anode, while at the right is another rack for externally plating a cylindrical part that is 24 inches long and 4 inches in diameter. The work is centered inside the lead anode here also.

To assure uniform distribution of

For carburizing the important parts of their portable tools, The Rotor Tool Co. use a Hevi Duty Electric Vertical Carburizer. Its flexibility and adaptability in consistently producing controlled uniform cases on a variety of parts is making possible economical and dependable heat treating with a maximum of speed. Send for Descriptive Bulletin HD-940 for details on this furnace.

EDFI DUTE DLJCIBIC COMPANT MILWAUKEE, WISCONSIN

current to the work, it is necessary to utilize a large number of such racks designed for the various types of parts handled. While a given rack often can be used for several jobs or modified slightly to fit additional jobs, these racks accumulate rapidly so it is necessary to provide special storage space for them in the plant. In the old plant this was a serious problem. In laying out the new plant, special attention was given to rack storage to prevent this from becoming a nuisance.

Fig. 3 shows the method employed here. A number of racks are hung on a special supporting frame. When not in use, this frame is lowered into one of six concrete pits provided here especially for the purpose, using an electric hoist running on an overhead trolley as the method of placing the frame. Once the frame is deposited in a pit, the recess is covered, permitting utilization of the floor area for other work. Six pits are provided in a row as shown in Fig. 3. This provides facilities for storing a large number of racks where they will not accumulate dust nor interfere with other operations. At the same time, they are instantly available when needed.

Hoists Handle Large Work

The plating tanks, three in number, are each 8 feet long, 30 inches wide and 4 feet deep. One tank has a deep extension which makes a total depth of 18 feet available for handling special work. This permits objects which otherwise would be too long to fit into the tank to be handled easily. Fig. 4 shows two of these tanks in the new plant with electrical controls conveniently placed on the walls nearby. The tanks are steel, lined with special acid resisting brick.

Small work is handled in and out of the tanks by hand while hoists are provided for large work. For most salvaging work, the voltage used for chromium plating is 5 volts. The current may run as high as 15,000 amperes if all three of the tanks are loaded.

Considerable volumes of hydrogen and oxygen liberated in plating carry much spray with them. As this chromic acid spray irritates mucous membrane of nose and throat, thus forming an industrial hazard, special provision has been made to prevent any fumes from escaping into the room. A special exhaust system is installed with ducts round the entire periphery of the top of each tank. Thus air from the plant is drawn across the top of each tank and exhausted, carrying with it the fumes from the solution.
Typical work handled here includes worn automotive engine crankshafts which have the bearing surfaces built up by chromium plating. In plating these bearing sur-

Fig. 4-Two of the three main plating tanks, each 8 feet long, 30 inches wide and 4 feet deep. One of the three has a deep extension which makes available a total depth of 18 feet for handling long or special parts
faces, it would appear necessary at first thought to protect all of the shaft except that portion to be plated. However, this is not so as a piece of sheet tin or lead placed over the webs at each side of the bearing and top surface then painted will block off the flow of current to those areas and confine the deposit to the bearing surface itself. In such work, the cylindrical sheet lead anode employed is only as wide as the bearing to be plated. This same method of blocking off the flow of current to parts on which deposit is not wanted is employed on much other work also in addition to crankshafts.

Another important type of work done at this plant is the salvaging of a large number of worn plug, snap and other types of gages by chromium plating. The process is simplicity itself. The surfaces on which no increase in dimension is desired are blocked off with lacquer and a coat of chromium deposited to a thickness sufficient to bring the gage surfaces to a dimension a few thousandths of an inch over the size required. After plating, the gage

Fig. 5-An expanding bushing made of steel and chromium plated has much longer life than bronze bushing formerly used. Developed by Musselman Hub Brake Co.
then is ground down to correct size. In addition to making it possible to reclaim many otherwise worn out gages, it has been found that gages so rejuvenated will maintain their dimensions much longer.
While salvaging worn parts is an important portion of the work in this plant, much also is done in building up new parts to protect them from wear in service. An interesting example of such work is the expanding bushing employed in bicycle brakes and shown in Fig. 5. It is $1 \frac{1 / 8}{}$ inches in diameter and 1% inches long. In use, a wedge enters the tapered slot to expand the bushing and afford the braking action desired. As might be imagined, these parts are subject to rapid wear in service.

To increase the effective life of the brake, the outside portion of this bushing is given a chromium coating about 0.015 -inch in thickness. This has been found to more than triple the life of the part. It is only one example of many where the life of a new machine part has been greatly lengthened by chromium plating the wearing surfaces.

Allis-Chalmers Improves Its V-Belt Line

- Allis-Chalmers Mfg. Co., Milwaukee, reports that all its Texrope V-belts are now of the new Super 7 laminated design, based on the Vogt formula. The cords in the new belts are smaller, permitting use of more cords per belt with a resulting greater strength and less stretch. In addition each cord is individually imbedded in heat dissipating rubber to reduce internal belt degeneration.

How
 To
 Get
 WELDING OPERATORS

Concluding this series on welder training, Mr. Lawrence points out how to set up an apprentice training plan in your own shop-the means generally regarded as best assurance of continued improvement beyond the first level of welding

performance

- CERTAINLY no other industry has experienced a more rapid need for skilled men than has the welding industry. Few other types of plants have expanded from a skilled personnel of 10 men to a trained force of 500 in six years during the comparative calm of peacetime with a decided lull in general business activity.

Today there is talk of needing fifty welders where but one was required before. Welding rods have been on the critical list since the beginning of the defense effort. The only reason why trained welders are not on this same list is that it is restricted to inanimate objects.

Notwithstanding the untiring efforts of private and public welding schools, there is a definite and growing shortage of skilled welders. As discussed last week in section two of this series, the welding school within industry is a source of growing importance. And the third effort that is producing worthwhile results is the apprentice training program within industry.

Apprentice training within indus. try is a long-term program. This endeavor is not restricted to the development of the elementary basic skills but aims to produce a finished craftsman at the conclusion of the training period which may be several months. The influx of beginning welders may someday satisfy our requirements at this level of skill. But provision has to be made for supplying men of greater abilities for the more exacting welding work. The long-term apprentice training program is regarded as offering the best plan for the continued improvement of welders beyond the first level of welding performance.

In such a program, the trainee may be started to work as a welder's helper or chipper as soon as
he is hired, giving him an opportunity to become familiar with welding tools and their uses. In chipping he will see normal irregularities in welding and may question their origin. By being shifted from welder to welder, the welder's helper has an opportunity to see the differences in skill. He should soon discover that the better welders produce more work with less effort.

Outside of regular working hours, the apprentice is trained to hold an arc and run a straight bead. This discussion will deal with arc welding as the plan. Other processes involve a plan differing only in the minor details of equipment and procedure. Every instructional effort is directed toward developing enough ability to allow the apprentice to begin welding just as soon as he can handle the simplest welding job in the plant.

As the novice improves, he is moved from the position of welder's helper to a job in the fabrication department where he is instructed to do simple layout work along with oxygen cutting. Layout work is important to give the tyro an opportunity to see how the gap is bridged between design as represented by blueprints and construction as represented by actual metal. Later, he may be able to apply this knowledge in a constructive report to his foreman on faulty layout and offer suggestions for improving the layout from the welding operator's standpoint. More than once such advice has resulted in speeding production, lowering cost and an improved product.

No small part of the apprentice's value is realized when he is doing cutting. Under the close supervision of the assistant foreman who combines instructional activities with his normal production duties,
the beginner is taught the correct operation of the hand cutting and mechanical cutting equipment. This work will contribute to the plant output in addition to providing the embryo welder with a clear insight into the relationship of good cutting practice to the welding operations that follow.
In the fabrication department, the learner is required to clean the oxygen cuts that he makes. Where rough cuts are good enough, highspeed torch cutting may leave at the bottom of the kerf an adhering slag that must be cleaned away.

Careful Explanations Necessary

Cleaning operations of this sort are easy after the beginner has served some time as a welder's helper. The heavy equipment used to clean welds has a lighter counterpart for cleaning oxygen cut pieces. Part of the instruction at this point should be devoted to teaching the apprentice the difference between the time required for a precision cut and for a high-speed cut. Additional cleaning time required for the latter may make total time decidedly less than that for the precision cut. Furthermore, a considerable quantity of cutting gases is saved. All such factors should be explained carefully.

Apprentice training may seem slow, but results will prove its worth. The month or two spent as a welder's helper and in the fabricating department may not have contributed directly to the welding personnel, yet this background is valuable. Too, it has added something to plant output, a recognizable advantage over the welding school.
From fabricating work, the apprentice moves to fitting and tacking. Once more his direction is the responsibility of the assistant foreman in the department. The value of good fitup is explained in terms of lowered welding costs and greater ease of welding. By working examples, the beginner does the work at hand with a full appreciation of its place in the job to come.
Tacking brings the learner into

direct contact with shop welding requirements. The youngster is shown the correct method of making tacks, how enough section must be present in the tack welds to hold the parts in strict alignment during the handling operations that precede the actual production welds, how tack welds must be small enough to keep out of the way of the welds that follow, how the welds must be made in a sequence that will not upset the good fitup that the tack welds are supposed to freeze into the proper place.
Enough fitting and tacking to establish their place in the general scheme of things will be picked up while the apprentice is practicing outside of working hours on the more advanced welding techniques. These manipulations may be learned quickly or they may be acquired slowly, depending upon the aptitude of the apprentice. But once they are mastered, all the preliminary
will be some in the apprentice training group who will never be able to weld just as some would-be ball players never emerge from the jungles of the lowest class bush leagues. In fairness to all, the inept trainees should be encouraged to do their bit for the defense program in another line. If there is possible employment on other work in the same plant, rearrangement is indicated.

From fitting and tacking to the welding of subassemblies is the next step. Small parts that may be handled easily and that may be positioned to permit downhead welding provide good training. Since the best and least expensive welds are made in this manner, such subassemblies contribute to the best productive effort in any plant.

The right welding sequence may be demonstrated on the subassembly. The value of allowing all possible shrinkage to take place in the

Any program for training welding operators involves a goodly amount of actual welding practice-anywhere from 80 to 200 hours. Here a group of students are using five 200 -ampere Westinghouse transformer-type welding sets to "get the fee!" of alternating-current welding
training jobs have been completed and the apprentice is ready to step into line as a production welder.

As impatient as all production men are these days, the required six weeks to three months spent in training the more apt apprentices may appear to be a long time. Yet three months is not much time when you consider that a raw recruit becomes a semi-skilled welder in 90 days. Of course, not all tyros will establish that sort of a record. Six months, or even nine months in training will be about right for many men. There is this consolation, however. The men who learn more slowly usually retain what they are taught very well.

As in the school programs, there
subassembly may be pointed out at this time. All welds cause shrinkage. How much better it is to restrict this shrinkage to small units than to allow a cumulative shrinkage in a large assembly is well known to all progressive welding engineers.

Working on these units, the welder puts into practice all he has learned about fitup. Only because he has been trained to seek the best fit possible does he make a true fit wherever he can. Perfect fits, in turn, lead to the most efficient welding. Thus a proper program will have instilled a sound regard for good fabricating practice.

From three to six months, depending upon aptitude of the ap-
prentice and the need for men in the higher classifications, are spent on subassemblies. During this period, the average daily output of the welder should show a steady improvement and the young welder should be gaining confidence in himself. His schooling continues after working hours as long as his instructors think he has unexploited welding ability. Until he reaches the peak of his capabilities, training goes forward.
More difficult than positioned work is the catch-as-catch-can welding of the final assemblies. Frequently these structures are too large to be handled with existing positioning equipment. And unless there are many units of the same general design, the building of handling devices may be more costly than out-of-position welding.
Since vertical and overhead welding call for a higher order of skill, the apprentice will practice them studiously before making his debut on these more exacting welding projects. Many men will have dropped out at the lower levels but the few who have persevered to the top pay brackets will now possess a most valuable skill. They can turn out perfect welds in difficult positions at a satisfactory rate.

Graduates Need "Seasoning"

All during the progression from fitting and tacking through the welding of positioned subassemblies to the highest performance on final structures, the apprentices have been under the close supervision of the assistant foreman. This man is a new minor executive in present day welding shop organizations. Charged with responsibility of getting sufficient production of sound quality from the new men, the assistant foreman is the liaison officer between the instructor in the welding practice sessions and the foreman on the firing line.

No welding school graduate whether he comes from private, public or industrial school is prepared for factory work. He needs seasoning under battle conditions common to the industrial plant before he can hold his own with the veterans of the campaign. The roar of the machinery, the seeming confusion of the plant and the haste of men apparently oblivious of the green man detract materially from his progress. Harrassed by a multitude of production orders, the foreman cannot spare the needed time, much as he would like to take a hand personally in the acclimitization of his newest recruit.

Thus the assistant foreman with no other responsibilities helps the apprentice avoid the shock of a quick clashing of the inexperienced hand with a well-organized plant routine. With his every initial ef-

The same Production Units

but 11018 production

A typical case study from the files of Gulf Periodic Consultation Service

$$
\begin{aligned}
& \text { Since then Gulf Periodic Consultation Serv- } \\
& \text { ice has helped to step up production as } \\
& \text { much as } 25 \text { per cent on certain other key } \\
& \text { units of equipment. }
\end{aligned}
$$

Take these two steps today...

1. Call in a trained Gulf lubrication engineer.
 2. Adopt Gulf Periodic Consultation Service.

Gulf Periodic Consultation Service aims to help equipment builders and plant men speed defense production
through modern efficient lubrication design and practice. Write or phone your nearest Gulf office today.

GULF OIL CORPORATION • GULF REFINING COMPANY • PITTSBURGH, PA.

fort in a strange field under the constant supervision of the assistant foreman, the apprentice welder succeeds in performing the varied tasks common to the large and complicated weldments. He combines accuracy with neatness to produce the type of welds needed for modern services. In as short a time as he can, the welder frees himself from the need of eternal supervision and so leaves the assistant foreman more time to spend with the new group just coming up.

The final stage of training in many plants encompasses the welding of alloys and special products. Preheating and postheating, along with peening, may be added subjects. Here, also, an apprentice training plan starting with afterhours practice and completed under the guidance of the assistant foreman will bring a man without any welding experience at all up to the peak of welding utility.

Another advantage of apprentice training within industry is the wage incentive feature of the plan. Each improvement in welding position within the plant is accompanied by an increase in pay. There is no need for the management to stress the matter of haste. Improvement is sure to follow the quickest and surest path as long as money is the known reward. The usual pressure for increased wages is lacking as each man understands that his pay is limited by his ability and nothing else.
Nothing has been said about blueprint reading, shop mathematics, welding theory and welding metallurgy. Of course these subjects are as important in the apprentice training program as they were in
the other methods described in the preceding two articles in this series. But the streamlined course in industry may have no room for them.
These courses require no plant equipment. They may be completed by the men at home. And a sound plan calls for the taking of extension school or correspondence school courses in these essential subjects. A deflnite amount of outside work is established as a prerequisite to each level of plant work. Certificates of completion are issued by the co-operating schools.
Home study courses cost money. Many plants encourage their men to study by sharing the costs involved. Others refund all costs upon the successful completion of the work. It is recommended that company policy be as liberal as possible. Intelligent employe education and advancement is a surefire antidote for the machinations of communist-inspired agitators.
That there is a definite and growing shortage of welders is acknowledged. That industry can do something about it has been demonstrated. Three alternate routes have been suggested: the public or private welding school in which industrial co-operation is close; the welding school within industry; and apprentice training within industry. Any of these programs is sound if rightly used.

Reports Investigation Of Reinforced Concrete

- Contrary to previously accepted belief, bond resistance between concrete and steel is not proportional to the compressive strength of

Hopper-Type Trailers Use Welded Construction

All-steel arc-welded hopper-type semitrailers, especially designed for loading and hauling gravel, recently were announced by Landis Steel Construction Co.. Picher, Okla. The units haul 30 tons each. Hoppers are fabricated of 8 -gage Mayari-

R steel with welding equipment supplied by Lincoln Electric Co., Cleveland
standard-cured concrete. Neither is the bond developed by an added length of embedment of bar proportional to the added length of embedment.

These are the conclusions of Professors Gilkey, Chamberlin and Beal in bulletin 147 of the Iowa Engineering Experiment Station, "Bond between Concrete and Steel."

The bulletin presents the results of the investigation, conducted in co-operation with the Highway Research board, of the effect of such variables as length of bar embedment, strength of concrete, and type of bar (plain or deformed), on the bond developed in pull-out, beam or beam-type specimens, between which comparisons are drawn.

The complete study is embodied in the 120 -page bulletin which may be obtained without charge from the Iowa Engineering Experiment Station, Iowa State College, Ames, Iowa.

Practical Rules for Supervisory Success

贯 How to Supervise People, by Alfred M. Cooper; cloth, 150 pages, $5 \times 71 / 2$ inches; published by Mc-Graw-Hill Book Co., New York, at \$1.75.
A practical discussion making psychology understandable and usable for men in industry, this volume is based on the author's experience with foremen's training groups.
In the 20 years the author was engaged in conducting conferences with experienced supervisors in a wide variety of industries he gathered a large fund of practical material, all of which had been ap. plied successfully. The present volume is the result, reflecting the methods of those who had worked out the procedure.

It is intended as a reference book for supervisors, a textbook for beginners in supervision and a supplementary text for foremanship, supervisory and executivetraining conference discussion groups.

Seeks Comment on
 Proposed Standard

A draft of a proposed American standard for steel socket-welding fittings is now being distributed to industry for criticism and comment according to the American Society of Mechanical Engineers, 29 West Thirty-ninth street, New York. It covers over-all dimensions, tolerances and marking for wrought and cast carbon and alloy-steel welding fittings. Copies of the proposal are available on application to C. B. LePage, assistant secretary.

Shipbrilaling...

This 1500 ton Wood plate bending and forming press performs a vital part in the numerous operations which enter into the building of ships-and more ships.
Standing approximately 30^{\prime} high, this Wood unit has two main rams of $48^{\prime \prime}$ stroke. The clear distance between columns, right-to-left, is
$9^{\prime} 10^{\prime \prime}$ and front-to-back is $11^{\prime} 10^{\prime \prime}$. The moving platen can be inclined, front-to-back, as much as $111 / 2$ degrees from the harizontal.

For any problem involving the use of hydraulic presses or equipment, our engineers are always available for consultation.

R. D. WOOD COMPANY

 philadelphia, pennsylvania.AND VALVES HYDRAUD VALVES
ANGVERYURPOSE

Heat Treating Furnace

- Despatch Oven Co., Minneapolis, announces a new CF heat treating furnace which is more adaptable to tool room tempering and drawing work, and to the heat treatment of magnesium alloy castings and general production work requiring a temperature range from 300 to 1200 degrees Fahr. Its body construction is heavier than former units and heavy duty lift doors replace former swing type doors. Fan ca-

pacities also have been increased and method of interior heat distribution and circulation has been modified to give better uniformity. Standard furnaces in this line range from $13 \times 13 \times 13$ to $37 \times 37 \times 25$ inches. They are available with either gas fired or electric heating systems. Prompt delivery can be made to assist those who need this equipment in defense work.

Face Grinder

- Diamond Machine Co., 2447 Aramingo avenue, Philadelphia, announces a new face grinder which features increased speed of production. All of its controls are centralized and the bed has been lengthened so that even at the extreme limits of travel the platen never overhangs. The ways are wider apart, assuring a more rigid foundation for the table. The platen has also been widened to
allow mounting a magnetic chuck or for grinding wider parts. The table is driven by pistons mounted in double opposed cylinders, the rods of which are always in tension. The main spindle is driven by V-belts. Wheel head can be rotated horizontally as much as 15 degrees for concave grinding. An improved nozzle directs coolant

against the grinding wheel. Also protection is provided against flying abrasive particles, splashing of coolant, and against grit entering the ways or motor windings. Available in two sizes- 30 and 36 . inch - the machine requires a floor space of 111 inches front to back and 330 inches end to end, allowing for table clearance. The 30 inch machine accepts work $17^{1 / 2}$ inches high with front guard in place, or $23^{1 / 2}$ inches high with guard removed. The 36 -inch machine accepts work $231 / 2$ inches high with front guard in place, $291 / 2$ inches high with front guard removed. The length of work accommodated by either machine is 84 inches.

Hacksaw

- Plomb Tool Co., 2209 Santa Fe avenue, Los Angeles, announces a new type Firmback hacksaw which features a frame that can be set at any angle with the pistol grip handle. It also incorporates adjustable blade mounts that keep the blade straight at all times, minimizing breakage. The pistol grip handle is

mounted on the frame so as to give direct push and pull action on the blade. It can be turned to any position to get close-up cuts in spite of obstructio 5 . The blade also can be
turned and positively set at any angle. The frame is adjustable to take popular lengths of blades, and the blade mounts are movable up or down, on the legs of the frame. A short leg is available for special purposes.

Pneumatic Die Cushions

Dayton Rogers Mfg. Co., 2830 Thirteenth avenue, South, Minneapolis, announces a new model CCC pneumatic die cushion. Furnished in double tandem units, it is designed for extremely heavy ring holding pressure on large doublethrow single-crank presses and is used excessively on double-crank double-throw presses. Cushions are supplied with a combination regulating valve and pressure gage that controls and regulates all working

draw ring holding pressures. The design of the cylinder section of each cushion automatically shields the working parts of the cushion cylinders so that no pierce slugs nor loose parts can come in contact with the cushion unit. On these larger tandem units, the cushion equipment comes complete with a remote centralized lubricating block or header furnished with leads to the individual cushion cylinders. This type of equipment has ringholding pressures from 25 to 100 tons, controlled by an automatic reducing regulating valve.

Stoker Coal Crushers

. McNally Pittsburgh Mfg. Corp., 307 North Michigan avenue, Chicago, announces a design change on its 24 and 36 -inch stoker coal crushers. This is in the form of a reversible ratchet adjustment to provide easy, quick adjustment of roll spacing on the units. The ratchet adjustment is applied to one of the adjustment screws of the crushers and coupled through to the adjustment screw on the opposite end of the roll by roller
chain and sprockets. This insures an equal adjustment at both ends of the roll and makes for perfect sizing. An indicator also is pro vided to show the exact distance of roll movement. As adjustments

are generally confined to a fraction of an inch and rarely ever more than 1 inch, the adjustment may be made in a few seconds, even while the crusher is in operation

Oscillating Fans

Emerson-Electric Mfg. Co., 1824 Washington avenue, St. Louis, has introduced two 3 -speed oscillator fans-a 12 and 16 -inch unit which feature quiet operation and low current consumption. They are equipped with aluminum blades, ornamental guard and harmonizing blue nameplate. Their construction

features include finger-tip control to adjust arc of oscillation from 90 degrees to any lower range or to stationary position. Their fully enclosed, motor housings conceal and protect moving parts and are sealed against oil leakage.

Instrumentation System

- Brown Instrument Co., Wayne and Roberts avenues, Philadelphia, announces a new system of instrumentation for plating tanks. Fundamentally it involves direct control of the temperature of the water which is circulated through pipe coils or water jacket rather than indirect control of the circulating water from the temperature of the plating solution.

The system is capable of main taining a uniform plating temper-

ature-it saves on amount of steam and cold water necessary due to closeness of temperature control and prolongs the life of the control thermometer because the bulb is not subjected to the destructive action of the plating solution. The system also allows the use of a cheaper bulb construction.

Impulse Timers

Weltronic Corp., 3080 East Outer drive, Detroit, announces a line of electronic "impulse" timers for use in conjunction with resistance welding. Comprising two models, the line consists of a semi-automatic,
model No. 114 and a high speed automatic, model No. 57 timer. The former is adjustable for "on" time, "weld" time, "cool" time and for any number of interruptions of cur rent desired. The latter, in addition to these adjustments, also has a dial for regulating the "off" time between resistance welds.

Both models employ electronic tubes, the individual dials being adjustable in single cycle steps (for 60 cycle current) in a range of from 2 to 20 cycles. Number of interruptions can be set for anything from 1 to 10 . Also, both models are designed for use in combination with electronic contactors. They

may be used with any air or hydraulic pedestal or gun welder, portable or stationary. Air or hydraulic operation is essential, however, since a pressure switch must be used in combination with the timers.
Three "trouble" lights also are provided on the timers. They are connected to the pressure switch, the contactor, and into the "mold" time circuit. In order to provide maximum accuracy of adjustment, two ranges of "weld" time and "number of interruptions" are provided. These are selected by means of toggle switches on the face of the timer-similar to the selection of wave bands in a radio.

Metal Ring Guard

Eclipse Air Brush Co., 400 Park avenue, Newark, N. J., has introduced a new metal ring guard for clamp-type portable air-motored agitators. Acting also as a stand, it protects the propeller from contact with the mixing vessel when in use, and provides an easy means of

storage. The four metal supports that hold the ring in place protect the shaft and prevent it from getting out of alignment. Two metal handles alongside the air motor, at the top of the frame, facilitate lifting the agitator from the mixing vessel.

Pneumatic Tractor Tire

(1) F. Goodrich Co., Akron, O., is offering a new pneumatic rubber tire for use on industrial tractors. Called the Industrial Tractor Silvertown, it is available in two sizes, 8.24 and 9-24.

It features an unusually thick tread providing adequate traction for off-the-road service as well as

long life on highways, ramps and other paved surfaces. Strengthened with Duramin to impart long life, the tire can be used on industrial tractors moving raw materials and finished goods at freight terminals, steamship docks and lumber yards as well as in regular manufacturing plants.

Improved Crane

© General Excavator Co., Marion, O., announces an improved Supercrane adaptable to the many materials handling problems arising from the increasing tempo of defense production. It is capable of
high speeds and high lifting capac itites, having a safe lifting capacity of 15 tons. It can be equipped as a clamshell, dragline, pile driver or pull shovel. It has a stronger frame, hydraulic steering and brakes, enclosed transmission and differential.

Power from motor to operating machinery is transmitted by a twindisk power take-off clutch. The swing and travel motions are controlled by two twin-disk friction clutches. A special brake mounted on the lower end of the vertical intermediate shaft underneath the deck, acts as a swing brake when

Try Yellow Strand Plaited Safety Slings for handling "problem" loads in steel mill and foundry-irregular castings, steel rolls, huge transformers, etc. No shifting or slipping, no marring of highly finished steel-and no load too heary-for these amazingly fexible, soft, kink-resistant and durable slings.

All plaited safety slings made under the original Murray Patents* are now manufactured by our company, exclusively, and only genuine Yellow Strand is usedthe rope unsurpassed in quality and stamina.

Our engineering department is prepared to design a special Yellow Strand Plaited Safety Sling for any special problem.

Broderick \& Bascom Rope Co., St. Louis

Branches: New York, Chicago, Houston, Portland, Seattle

FREE

RIGGERS HAND BOOK
Contains full data on Plaited Salety Slings, standard Yellow Strand Slings, fitings, ete. No charge, ol cours
swinging and as an auxiliary or parking brake when propelling. A special precision hoist brake also permits the backing of the load down through the gears when the engine clutch is disconnected, or permits driving the drum backward, under power.
The main frame is equipped with screw jacks at the front and rear, and has folding outriggers with screw jacks on each side of the machine. All rear wheels are chain driven. In addition to two travel speeds given through the transmission, two additional speeds are available through speed change gears mounted on the deck.

Portable Carriage

Warren Steel Specialties Corp., Warren, O., has placed on the market a portable carriage to enable workmen to wheel awkward-to-handle heavy and lightweight but hith. erto stationary machines direct to the job. The carriage is constructed of angle iron channel and heavy gage auto body sheets welded to-

gether. It has handles for the workmen to lift and guide the apparatus direct to their bench or job. The carriages are available in any practical size. They are ideal in factories which, during this preparedness rush, are crowded; and also for manufacturers where more than one man uses the same tool or machines at different intervals.

Combination Starter

© Westinghouse Electric \& Mfg. Co., East Pittsburgh, Pa., has introduced a new combination starter for mining service to provide remote and automatic control of equipment such as conveyors, pumps and fans. Of direct-current type, its starting and acceleration are accomplished from a built-in or remotely mounted pushbutton.

Safety features include a line disconnecting switch, low voltage protection, combination thermal, instan-

IT takes "kuowing how to make good wire

1 american wire quality hegins in our own mines, source of the finest ore in America. This is an adranaghe enjoved by comparatively few in the wire-making field and is a primary factor in quality control.

3 positive assurance of quality in the open hearth is maintained by the use of our own iron and raw materials. The refining is done in furnaces equipped with the latest control features. and under the supervision of skilled operators.

2 at the blast furnaces the basic materials are caretully tested, weighed, and then bended-and the chemical and physical properties of the "catt" are constanty checked and rechecked to assure proper control of quality.

4 FROM INGOTS TO BiLLETS. Again the hand of long experience and watchful comerol becomes the protection of qualits. Heated to a uniform emperature throughout, the glowing ingots pass and repass through giant rolls, finally emerge as steel billets, redtuced to proper dimensions and cur to desired lengths.

AMERICAN STEEL \& WIRE COMPANY
american Quality wires
FOR MANUFACTURING PURPOSES
taneous overload protection and safety interlocks to prevent opening the door until the switch is off. When an accurate definite motor speed is desired, a small adjustable field rheostat may be added which provides up to 15 per cent increase in speed.

Hand-Operated Siren

E Federal Electric Co. Inc., 8739 South State street, Chicago, has introduced a new Model G handoperated siren for civil, military or industrial use. Available in two styles, it is compact, light in weight and features a powerful tone. Mod-
el G-1 is furnished with a flat base bracket for stationary installation on any flat surface, while model G.2, similar in design, is equipped with a hand grip, shoulder strap and case for portable use. Ballbearing motor shaft of the siren assures smooth operation and long wear. The gearing is made to provide maximum sound volume with minimum cranking effort.

Water Stills

- F. J. Stokes Machine Co., Philadelphia, has introduced improved steam-heated, single-effect automatic water stills, in capacities from 10

PERFECT FIT FOR A DIFFICULT FURNACE CONTOUR

YTOU can expect excellent workmanship when you send special shape specifications to Armstrong. Whether you need large units or small and intricate ones Armstrong engineers and skilled workmen can design and produce them to meet your exact needs.

There are good reasons for the workmanship and quality you get in Armstrong's Special Shapes. First: These shapes are made by specialists working in a well equipped department. Second: The uniformity, strength, and workability of all five classes of Armstrong's Brick make it possible to follow your most difficult specifications within strictest tolerances.

Using special shapes results in a better fit with fewer joints and tighter joints, truer contours, greater strength and durability, and saves installation labor. For domes, jack arches, and for many other individual design problems special shapes help to get the job done right.

Furnace builders making shapes to meet their own needs can relieve the congestion of work in their shops by ordering at least part of their requirements from us. Bring us your special shape problems, or ary other insulation problem you may have. Armstrong Cork Company, Building Materials Division, 985 Concord Street, Lancaster, Pa.

Armstrong's HIGH TEMPERATUREINSULATION

to 100 gallons per hour, for use in producing pure distillate for exacting laboratory and industrial purposes. One improvement incorporated in them is a high-speed vapor-baffle system designed so it increases the velocity of the water vapor, at the same time reversing its direction of flow three times between the top of the boiling chamber and the point at which it enters the condenser. Another feature of these stills is a new light-weight onepiece copper cover readily removable for inspecting and cleaning the steam-coils, boiler chamber and other parts. Covers are water-sealed, a positive seal being obtained without the use of gaskets and fastenings of any kind. The stills are all "hard water" models, equipped with

automatic "bleeder" devices to continuously remove scale-forming solid materials that are concentrated in the boiling chambers.

Ratchet Wrenches

- J. H. Williams \& Co., 225 Lafayette street, New York, recently placed on the market a new midget pattern reversible ratchet wrench. It has a $1 / 4$-inch square drive and

measures $41 / 2$ inches long, incorporating the same patented doubletooth pawl for both "on" and "off" rotation as is used in other Superratchet wrenches. A convenient shift lever at the head instantly reverses the wrench action. The handle is drop-forged from high tensile carbon steel-working parts are machined from chromium-molybdenum steel. The wrench is finished in chro-mium-plate over nickel.

EEIAHI muss EXPENBE

STEEL GASTINGS SAVE MONEY!

LIGHTER, STRONGER PARTS...

Every pound saved in building a motor truck makes room for another pound of pay load. And smart truck operators make their profit on pay load, not on dead weight.
For that reason truck manufacturers are turning to steel castings for parts that are lighter in weight, without the slightest sacrifice of strength and long life.

See how weight has been saved in the alloy steel truck castings illustrated above. Metal is scientifically distributed-no excess where it is not needed. Yet there is ample strength and
rigidity, true and permanent alignment, resistance to fatigue.

And remember this-thin sections are no problem to the modern steel foundry.

All of these advantages, plus big savings in assembly and finishing costs, and a wide selection of mechanical properties, are available to you in improving and modernizing your products.

For both product improvement and cost saving, use more steel castings. Your own foundryman will work with you, or you may write for information, without obligation, to Steel Founders' Society of America, 920 Midland Building, Cleveland, Ohio.

WHERE TO, SOLDIER?

They gave him a pass today, for the week-end.

The world is his-at least as far as the nearest town. No more K.P., no more drill, no more formations till Monday. He can be John American, his own master, having a good time. That pass is his open sesame.

But is it?
Where will he and his buddies go in that town overrun with soldiers? Where will they eat and sleep? What can the community do to give them relaxation and entertainment?

One of the forgotten problems in any high-speed scheme of national defense is how to provide for the soldier and sailor off duty.

Within the camps and naval stations the services themselves have
excellent facilities. But in the surrounding cities and towns the problem is acute and difficult.

Many of the newer army camps are located far from the larger centers. Into towns of 1,000 to 5,000 population may come as many as 3.000 men on a single evening. Where are they to go? How is the community to provide for them, to see that they get the wholesome food and entertainment that all of us would like them to have?

To meet this emergency all the "service agencies" of the last war have joined forces. The Y. M. C. A., the National Catholic Community Service, the Salvation Army, the Y. W. C. A., the Jewish Welfare Board and the National Travelers Aid Association have combined to form the United Service Organizationsknown as the U. S. O. Differences of
race and creed have been forgotten; lesser distinctions have been subordinated to the idea of united service.

How can you help? The U. S. 0 . is raising approximately eleven million dollars to finance its program of leisure-time aid to the men in service. This is your opportunity to do your bit for national defense. Give generously to the U. S. O.

How will the money be used? In maintaining 360 U . S. O. clubs. The government is building the club houses themselves. What is required now is money to operate them.

How and where shall you give? To the local committee that has charge of your city's part in this national drive. No matter how much or how little you feel you can give, send it today to your local chairman or to National U.S.O. Headquarters. Empire State Building, New York.

« HELPFUL LITERRTUURE >"

1. Steel-Backed Bronze

Johnson Bronze Co. - 4 -page fllustrated bulletin announces features or bronze bearing metal which is backed with steel. Product is aveilable elther plain or graphited as finished bearings, washers, strips or in rolls up to 400 feet in length. Method of manufacture is described in detall,

2. Blanket Insulation

Refractory \& Insulation Corp.-6-page illustrated bulletin No. I-64 is descriptive of laminated blanket insulation for flat or curved surfaces at temperatures to 1200 degrees Fahr. Comparative heat conductivities, selection tables and prices are included.

3. Corrosion Resistant Paint

United States stoneware Co,-8-page illustrated bulletin describes features, advantages and application of "Tygon" corroslon resistant paint. Product may be applied to wood, metal or concrete and is resistant to most acid solutions.

4. Abrasion Tester

Taber Instrument Co.-6-page illustrated bulletin is devoted to description of "Abraser" abrasion testing machine. It can be used to evaluate resistance of surface finlshes to rubbing abrasion. Range of application includes nearly all paint, lacquer, electroplated and plastic surfaces.

5. Dilation Meter

Bristol Co.-4-page bulletln presents ifformation on "Rockwell-Bristol Dllatometer" which indicates and records in ink, time-dilation changes and tempera-ture-dilation changes simultancously during heating and coollng cycles of ferrous and non-ierrous metals, ceramics, and other materlals of rigld form. Theorles, princloles and operation are discussed.

6. Gear Measurer

Fellows Gear Shaper Co.-12-page 11lustrated bulletin deals with involute measuring machine. Machine permits production of accurate gear tooth pronles. Princlple of operation, design and speciflcatlons are covered.

7. Industrial Timers

National Time \& Signal Corp.-8-page illustrated bulletin No. 146 presents complete description of synchronous welding dustrial varlable speed timers and industrial timers for automatic control of industrial processes. Complete flexibility ot cycle time is provided by replaceable change gears. Adjustable sequence intervals and duration time are possible because of independently positioned cams.

8. Electrical Tools

Standard Electrical Tool Co--36-page illustrated catalog No. 43 lists exhaust blowers, buffers and polishers, portable drills, drill presses, speed lathes and various types of grinding equipment. Specifications and features of equipment are given in detail.

9. Packing \& Gasket

Johns-Manville - 44-page illustrated handbook No. PK-12A glves detalled information on packing and gasket stylcs. Recommendation tables serve as gulde to proper packing selection for various types of equlpment under such service conditions as steam, brine, ammonia, caustics and olls.

10. Industrial Casters

Metzgar Co.-4-page illustrated bulletin described two complete lines of industrial truck casters which are fitted with unbreakable floor protective "EndWood" wheels, ranging in diameter from $24 / 2$ to 10 inches. Specifications and prices are glven for units with plain or Hyatt roller bearings.

11. Vibrationproof Fittings

Imperial Brass Manufacturing Co.- 16 . page illustrated bulletin No. 3101 describes three types of tube fittings for service where subjected to vibration. These are heavy-duty and flex fittings for use with steel tinned tubing, and fittings for neoprene tubing. Tools for handling tubing connection work are also described and priced.

12. Tool Steel

Jessop Steel Co.-4-page bulletlr No. 541 glves typical analysls, working conditions, tempering range and typical applications of "Jessop" rapid finishing steel which is suitable for rapid finishing cuts where smooth accurate surtace is desired.

13. Wiring Devices

Bulldog Electrlc Products Co.-90-page condensed catalog No. 411 presents general information, specifications, leatures and prices on varlety of electrical products. These include safety switches, wiring ducts and fittings, circult breakers and panels, swltch boards and disirlbution panels and cabinets.

14. Spray Finishing

Binks Manufacturing Co,-80-page catalog No. 78 describes line of spray painting and finishing equipment. Equipment covered includes agitators, air compressors, gauges, hose, spray booths, touch-up outfits, mixing tanks, exhaust fans, air dust guns, and air regulators.

15. Milling Attachments

Porter-Cable Machine Co.-Illustrated bulletin No. 206-A presents complete details on universal milling machine at tachments for hand and power feed millers. Regardless of position of cutter, attachment is held rigidly by overhead clamp.

16. Diesel Power

Caterpillar Tractor Co,-IIlustrated bulletin No. 6636 deals with problems solved by appllcation of diesel power: Statements of users in flelds of irrigation, mining, cotton ginning, power sawmills, flour milling, ice and refrigeration are quoted.

17. Packing Material

Sherman Paper Products Corp.-Single page data sheet No. 6 shows in serles of action photographs, steps in wrapping small flat packages with "Corroliex" wrapping material. Avallable welghts and sizes are Histed.

18. Wire Tying

Gerrard Co.-Illustrated sheet explains "The Gerrard Method of Wire ReInforcement in Defense and War Exports." Pictures show applications of galvanized wire strapping to export shipping cases, bundles of steel sheets, shipping cartons and machinery shipments.

19. Plugging Control

General Electric Co.-4-page 1llustrated bulletin No. GEA-3571 tells how stopping time is reduced on motor driven equipment, which must be started and stopped frequently, through use of plugging control. Details of control are shown In sectional Illustration. Eight suggested applications are shown in dlagrams.

20. Materials Handling

Stephens-Adamson Mig. Co.-20-page illustrated booklet No. 187 is devoted to materials handling problems and thetr solutions. Line drawings and action photographs show conveyor belts for handling cosmetic powder, coal, cement aggregate, sugar and other produets.

21. Testing Machines

Baldwin-Southwark division, Baldwin Locomotlve Works-40-page Illustrated bulletln on "Southwark-Tate-Emery" testing machines and alled equipment gives general specifications and detailed description of operation of standard unlversal testing machines. Machines for testing cement and concrete, horizontal machines, high capacity floor types and lapped-ram unit are described.

STEER

Readers' Service Dept.
1213 West Third St.,
Cleveland, Ohio

FF
7-14-41

Please have literature circled below sent to me.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
17	18	19	20	21	22	23	24	25	26	27	28	29			
30	31	32	33	34	35	36	37	38	39	40	41	42	43		

BUSINESSREPLYCARD
 No Postage Stamp Necessary if Mailed in the United Statea

Name
Title
Company
Products Manufacturad
22. Boring Machines

Stokerunlt Corp.-12-page illustrated bulletin, "Simplex Precision Boring Machines," glves complete specifications on ilne of these machine tools. Advantages, operation, design detalls and other data are given.

23. Butterfly Valves

R-S Products Corp.-12-page mustrated catalog No. $8-\mathrm{B}$ features standard and wafer type butterily or blast gate valves for control of gas, alr, steam or Hiquids. Data are given on manual and automatic control models. Quick action, self cleaning and light welght are some of features outlined.

24. Lead Roofing

Revere Copper \& Brass Co.-4-page 11lustrated bulletin "Roofloy" 11sts in detall, advantages of roofing material made of pure plg lead and minor strengthening constituents. List of locations where material is particularly adaptable is included.

25. Draft Gages

Hays Corp.-24-page Illustrated cata$10 g$ No. $41-294$ presents complete details on draft gages for indicating and recording draits, pressures, differentials and temperatures. These devices feature slack leather diaphragm mechanism for draft applications.

26. Flexible Metal Hose

Pennsylvanla Flexible Metallic Tubing Co.-8-page illustrated bulletin No. 55-F describes features and advantages of "Penflex" flexlble all-metal hose for unloading tank cars. Sectional views give detalls of construction and tables list number of complete tank car hose assemblies. Steam hose and heavy duty couplings are also described.

27. Gas-Diesel Engines

Worthington Pump \& Machinery Co.4 -page illustrated bulletin S-500-B39 describes type EEGX and EEX convertible engines which can use elther oll or gas for fuel. Schematic view shows detalls of construction and operation, and text outlines principle of fuel system.

28. Flexible Bearings

Harrls 2roducts Co.-4-page illustrated catalog on "Torfex" flexible bearings gives detalls of these devices which are recommended for noise, vibration and lubrication elimination; for impact and shock absorption; and for angular and parallel misallgnment.

29. Oil Conditioner

Combustion Service Co.-26-page bulletin is practical discussion of subject, "Burning of Fuel Oil." Grades of fuel oll, composition of olls, oll burner systems, combustion and efficient oll-firing are covered. Value of llquid "Kleen-Flo" oll conditloner is also discussed.

HELPFUL

 LITERATURE(Continued)

30. Ferrous Castings

Belle Clty Malleable Iron Co.-Illustrated folder. "It Takes all kinds of Ferrous Castings to Bulld Track Type Tractors," describes five types of castings which are produced by thls company. These include malleable, steel, electric furnace gray iron, electric furnace pearlitic malleable and alloy malleable.

31. Coal Preparation

Koppers-Rheolaveur Co.-4-page illustrated bulletin No. E-7619 is descriptive of "Koppers Menzles" cone separator for coal preparation. Operation of equipment is shown with sectionalized drawing and outline sketch.

32. Filter

Moraine Products division, General Motors Corp.-6-page 1llustrated bulletin on "Porex" explains thls porous metal which may be used to remove materials from fulds or to alter characteristics of flowing material. Typical applications include filtering, difiusing, separation, and flame arresting.

33. Bronze Alloys

Ampco Metal, Inc.-Illustrated monthly data sheet No. 89 deals with application of bronze alloys in equipment handling salts and brines. Construction of rotary salt tablet press and of pumps and valves handing brine solutions is discussed.

34. Plant Painting

Sherwin Willams Co.-26-page bulletin discusses relationship of white paint and better factory lighting. It analyzes effect of paint on lighting and illumination, showing by chart and photograph how scientifc plant painting contributes to better working conditions and greater output.

35. Mining Equipment

Allis-Chalmers Manufacturing Co.-8page illustrated bulletln No. B-6166 describes crushing, grinding, screening and mining equipment. It touches on complete line of this machinery including centrifugal pumps, blowers, compressors, "Texrope" drives, and related power and electrical equipment.
36. Conveyors \& Feeders

Standard Transmission Equipment - A-page illustrated bulletin deals "Free Flow" vibrating conveyors feeders for handling hot or cold fl granules or lumps. Line drawing sh construction details, and text discu styles, features and principles.

37. Speed Reducers

Winfleld F. Smith, Inc.-4-page lustratod bulletin is devoted to diffe tlal speed reducers which glve any r of reduction for 4 to 1 up to thouse to I in single stage. Tables list ou torque capacity, Input horscpower 1800 revolutions per minute, ove length and helght, and recommended plications.

38. Compressors

Pennsylvanla Pump \& Compressor -4-page lllustrated folder No. 193 sh avallable types of air and gas comp sors. Design detalls, features and typ installations are covered.

39. Electrical Equipment

Squáre D Co.-76-page illustrated log No. 126 contalns current prices, developments and general informa regarding company's line of elect equipment. This includes safety switc service entrance and meter switc motor controls, pressure swltches, panel boards.

40. Hole Reamers

Pratt \& Whitney division, Niles ment-Pond Co.-Two lllustrated bulle Nos. 451 and 453 describe deep drillers and deep hole reamers, res tively. Specifcations and detalls of chines are given.

41. Rubber Tape

B. F. Goodrich Co.-4-page illustr catalog section No. 9270 relates pro ties and applications of "Two-In-C rubber irlction tape which comb functions of splicing compound friction tape. Material is used for types of electrical insulation app tions.

42. Erection Crane

Northwest Engincering Co.-8-pag lustrated catalog covers new "No west" model 71 crane of 40 -ton capa for structural erection service. De of plvoted gantry, flange conne boom, swing clutches and controls glven, as are specifications and lif capacities.

43. Cleaning Products

Oakite Products, Inc. - Bl-mon house magazine is devoted to subj pertaining to cleaning of products equipment and maintenance or facto institutions and other locations. Spe cleaning problems and their solut are enumerated in detall.

STEEL

Readers' Service Doph
1213 West Third St.,
7-14-41
Cleveland, Ohio
Please have literature circled below sent to me.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
17	18	19	20	21	22	23	24	25	26	27	28	29			
30	31	32	33	34	35	36	37	38	39	40	41	42	43		

Name
Title
BUSINESSREPLYCARD
No Postage Stamp Necessary if Mailed in the United States

Company

Producta Manufactured
40 POSTAGEWIL亡BEPAIDBYー

Steelmakers Rationing

Ever More Strictly

Considerations are quantities used last year, stocks on hand and sometimes distances

 from plants. Civilian hysteria unjustified.
Demand

Bulge in defense inquiries past week.

prices

Still quoted "in effect ut time of shipment."

Production

Up 4 points to $97^{1 / 2}$ per cent.

- MILD HYSTERIA which developed last week on the part of many civilian steel users is in large measure unjustified. So far the worst suffering among consumers has taken the form of pinches and inconveniences, with but very few cases where steel shortage has halted production lines.

Pinches come mostly from alloy steel shortages. For example, taps, made of special steel, are under priorities -but the same taps can be used for civilian purposes. Aggravating the apparent strain on civilian needs is the fact that some consuming plants are working at 100 per cent of capacity, contraseasonally. making products now in full force which would normally be made next winter. Often such full operations are due to insistence of suppliers that the material be taken into consuming plants immediately.

Meanwhile the civilian situation should become better as various adjustments are made. Rationing on part of steelmakers becomes stricter and juster; many less essential projects are being abandoned. Substitutes for steel are often being made for the duration. Taxes and other government impositions will tend automatically to restrict civilian uses. Part of the hysteria is reflection on possible distress of the future rather than conditions of the present, as well as to false rumors circulated.

Instances multiply of borderline cases between defense and nondefense. Thus a public utility which supplies power to defense plants cannot get priorities on its raw materials. A maker of steel strapping, used widely in packaging and by steelmakers themselves on defense shipments, has no priority rating.

More interesting examples of use of substitutes for the duration come to light. A prominent state contemplates use of plastics in place of sheet steel for 1943 auto license plates. A maker of ventilating fans is making blades of wood.

Clever devices for rationing steel are being put into effect. Thus a maker of standard pipe not only rations pipe with respect to quantities bought in recent years, but with respect to quantity already on hand, and, what is more novel, with respect to distance from the source of supply. Thus a distributor near the mill is allowed two months' supply; one on the Pacific Coast, six months' supply.

Some companies employ the general principle in doling out steel of supplying only amounts furnisheci in previous years, thus devoting their excess production over those years to filling defense orders. The best brains of the industry are wrestling with the distribution problem and are doing well under the circumstances.

Many steel companies report decreasing volume of orders. Certain warehouse distributors find more moderate inquiries, both as to number and tonnages.

Smaller mills are taking advantage of a new OPACS ruling, whereby mills can quote on the basing point nearest the point where the product is produced, which means in effect quoting of f.o.b. mill prices, passing freight charges along to customers. Some of these producers recently have been operating without profit owing to higher costs.

Steel ingot production for the first half of 1941 was $40,911,886$ net tons, or within 20 per cent of total steel production for the entire world war year of 1917, up 40 per cent over first half, 1940.

Finished steel shipments by United States Steel Corp. of $1,668,637$ net tons established an all-time high for that month, the previous record having been in 1917 at 1.558,444 net tons.

Automobile production last week recovered from the holiday curtailment by 17,861 units, 114,318 having been scheduled, as against 62,176 for the like week of 1940.

Details have been settled for the allocation of 625,000 tons of semifinished steel for Britain, for shipment before third quarter.

Steel ingot production last week gained 4 points to $97 \frac{1}{2}$ per cent as a recovery from the holiday. An exception to the rising trend was Chicago, down 1 point to $1001 / 2$ per cent and three unchanged districts, Birmingham and New England at 90, and St. Louis at 98. Advances were as follows: Buffalo $17^{1 / 2}$ points to 93 , Cincinnati $6^{1 / 2}$ points to 88 , Detroit 13 points to 96, eastern Pennsylvania 5 points to 97, Pittsburgh 2 points to $991 / 2$, Wheeling 4 points to 91 and Cleveland 4 points to $961 / 2$.

STEFL's three composite price groups for last week were unchanged: iron and steel at $\$ 38.15$, finished steel at $\$ 56.60$ and steelworks scrap at $\$ 19.16$.

COMPOSITE MARKET AVERAGES

	July 12	July 5	June 28	One Month Ago June, 1941	Three Months Ago April, 1941	One Year Ago July, 1940	Five Years Ago July, 1936
Iron and Steel	\$38.15	\$38.15	\$38.15	\$38.15	\$38.15	\$37.63	\$33.49
Finished Steel	56.60	56.60	56.60	56.60	56.60	56.60	53.40
Steelworks Scrap	19.16	19.16	19.16	19.16	19.16	18.56	12.89

Abstract

Iron and Steel Composite:-Plg Iron, scrap, bllets, sheet bars, wire rods, tin plate, wire, sheets, plates, shapes, bars, black plpe, ralls, alloy steel, hot strip, and cast iron plpe at represen tative centers. Finlshed Steel Composite:-plates, shapes, bars,

Steelworks Scrap
19.16
56.60
$\$ 38.15$ hot strip, nalls, tin plate, plpe. Steelworks Scrap Composite:-Heavy melting steel and compressed sheets.

COMPARISON OF PRICES

Representative Market Figures for Current Week; Average for Last Month, Three Months and One Year Ago

Finished Material July 12, June April July
Steel bars, Pittsburgh
Steel bars, Chlcago
Steel bars, Phlladelphla
Iron bars, Chicago
Shapes, Pittsburgh
Shapes, Philadelphia
Shapes, Chlcago
Plates, Pittsburgh Plates, Philadelphia Plates, Chlcago Sheets, hot-rolled, Pittsburgh Sheets, cold-rolled, Pittsburgh Sheets, No. 24 galv., Pittsburgh Sheets, hot-rolled. Gary Sheets, cold-rolled, Gary Sheets, No. 24 galv. Gary Bright bess., basic wire, Pitts. Tin plate, per base box, Pitts. Wire nalls, Pittsburgh

July 12,	June	April	July
1941	1941	1941	1940
$2.15 c$	2.15 c	2.15 c	2.15 c
2.15	2.15	2.15	2.15
2.47	2.47	2.47	2.47
2.25	2.25	2.25	2.25
2.10	2.10	2.10	2.10
2.215	2.215	2.215	2.215
2.10	2.10	2.10	2.10
2.10	2.10	2.10	2.10
2.15	2.15	2.21	2.15
2.10	2.10	2.10	2.10
2.10	2.10	2.10	2.10
3.05	3.05	3.05	3.05
3.50	3.50	3.50	3.50
2.10	2.10	2.10	2.10
3.05	3.05	3.05	3.05
3.50	3.50	3.50	3.50
2.60	2.60	2.60	2.60
.	$\$ 5.00$	$\$ 5.00$	$\$ 5.00$
.	2.55	2.55	2.55

Semifinished Material

Sheet bars, Pittsburgh, Chicago. $\$ 34.00 \quad \$ 34.00 \quad \$ 34.00 \quad \$ 34.00$ Slabs, Pittsburgh, Chicago $\ldots . .34 .00 \quad 34.00 \quad 34.00 \quad 34.00$ Rerolling bllets, Pittsburgh ... $34.00 \quad 34.00 \quad 34.00 \quad 34.00$

July	12, June	
1941	1941	1
$\$ 25.34$	$\$ 25.34$	$\$ 2$
23.50	23.50	23
25.34	25.34	2
24.69	24.69	2
24.00	24.22	2
20.38	20.38	2
24.06	24.06	24
26.215	26.215	2
24.00	24.00	24
24.00	24.00	2
31.34	31.34	3
24.19	24.19	2
125.33	125.33	12

July
1940
$\$ 24.34$
22.50
24.34
23.69
23.00
19.38
23.06
25.215
23.00
23.00
30.34
23.17
125.33

Scrap

Heavy melting steel, Pitts.	\$20.00	\$20.00	\$20.20	\$19.55
Heavy melt. steel, No. 2, E. Pa.	17.75	17.75	18.00	17.50
Heavy melting steel, Chicago.	18.75	18.75	18.80	17.45
Ralls for rolling, Chicago	22.25	22.25	22.65	21.65
No. 1 Cast, Chlcago	20.00	21.50	22.31	16.95
Coke				
Connellsville, furnace, ovens	\$6.25	\$6.25	\$5.50	\$4.75
Connellsville, foundry, ovens	7.25	7.25	6.00	5.75
Chlcago, by-product idry., del.	12.25	12.25	11.85	11.25

STEEL, IRON, RAW MATERIAL, FUEL AND METALS PRICES

Except when otherwise designated, prices are base, f.o.b. cars.

Sheet Steel

$\begin{array}{llllll}\text { Sheets } & 26.50 & 27.00 & 29.00 & 32.50 \\ \text { Hot strip } & 17.00 & 18.25 & 17.50 & 24.00\end{array}$ Cold stp. $22.00 \quad 23.50 \quad 22.50 \quad 32.00$

Steel Plate

Pittsburgh	2.10 c
New York, del.	2.29c-2.54c
Philadelphia, del.	... 2.15c
Boston, delivered	2.42c-2.57c
Buffalo, delivered	2.33 c
Chicago or Gary	2.10c
Cleveland	2.1
Birmingham	2.10 c
Coatesville, Pa.	2.10c-2
Sparrows Point, Md	2.10c-2.
Claymont, Del.	2.10c-2.
Youngstown	2.1
Gulf ports	2.45 c
Pacific Coast ports	2.65 c
Steel Floor	
Pittsburgh	3.35 c
Chicago	3.35 c
Gulf ports	3.70 c
Pacific Coast ports	4.00 c
Structural S	pes
Pittsburgh	2.10 c
Philadelphia, del.	2.21 12 c
New York, del.	2.27 c
Boston, dellvered	2.41 c
Bethlehem	
Chicago	2.10 c
Cleveland, del.	2.30 c
Buftalo	2.10 c
Gulf ports	2.45 c
Birmingham	2.10 c
St. Louls, del.	2.34 c
Pacift Coast port	2.7

Tin and Terne Plate

Tin Plate, Coke (base box) Pittsburgh, Gary, Chicago $\$ 5.00$ Granite City, Ill.
Mif. Terne Plate (base box) Plttsburgh, Gary, Chicago \$4.30 Granite CIty, Ill.

Roofing Ternes

Pittsburgh base, package 112
theets 20×28 in., coating I.C.
8-1b... \$12.00 25-1b... \$16.00
15-1b... 14.00 30-1b... 17.25

20-1b.. 15.00 40-1b... 19.50

Bars

IIot-Rolled Carbon Bars
Pittsburgh, Chicago, Gary,
Cleve., Birm., base 20
tons one size........... 2.15 C
Detroit, del. 2.25 c
New York, del. 2.49 c
Duluth, base 2.25 C
Philadelphia, del. 2.47 c
Gulf ports, dock. 2.50 c
All-rail 2.59 c
Pac. ports, dock 2.80 l
All-rail
Pitts., Chicago, Gary,
Cleveland, Birm., base
5 tons
2.15 c

Detroit, del. 2.25 c
New York, del. 2.49c
Philadelphla, del. 2.47 c
Gulf ports, dock 2.50 c

Pac，ports，dock ．．．．．．．．． 2.80 c All－rall ．．．．．．．．．．．．．．． 3 Pitsburgh，Chicago，Can－ ton，Massillon，Buffalo， Bethlehem，base 20 tons one slze

Detrolt		
	Alloy	
S．A．E．	Diff．	S．A．E．
2000	0.35	3100
2100	0.75	3200.
2300	1.70	3300.
2500	2.55	3400

$2100 \ldots . .$.	0.75	3200.	1.35

$2300 \ldots 1.70 \quad 3300 \ldots . .$.
$\begin{array}{ll}4100 & .15-25 \text { Mo．．．．．．．．．．．．} \\ 4600 & 0.20-0.30 \text { Mo．；} 1.50-\end{array}$ 2.00 NI．

5100 80－1．10 Cr．．．．．．．．．． 0.45
5100 Spr．flats
6100 Bars
6100 Spr．Hats
Carb．，Van．
9200 Spr．flats
9200 Spr ．rounds，squares
T 1300，Mn，mean 1．51－2．00
Do．，carbon under 0.20
max．
Cold－Finished Carbon
Pitts．，Chicago，Gary，
Cleveland，Buffalo，base
20，000－39，999 lbs．
Detrolt
Cold－Finlshed Alloy Bars
Pittsburgh，Chicago，Gary， Cleveland，Buffalo，base 3.35 c Detroit
Galveston，add $\$ 0.25$ ；Paclic Coast，$\$ 0.50$ ．
Turned，Ground Shaftling
Pittsburgh，Chicago，Gary，
Cleveland，Buffalo，base not including turning， grinding，polishing ex tras）
2.65 c

Detrolt
2.70 c

IReinforclng Bars（New Billet）
Plttsburgh，Chicago，Gary，
Cleveland，Blrm．，Spar
rows Polnt，Buffalo，
Youngstown，base．．．．． 2.15 c
Gulf ports，dock
All－rall
Paclife ports，dock All－rail
Detroit，del．
2.50 c
2.59 c
2.80 c
3.25 c

Reinforcine Bars（Rail Steel）
Pittsburgh，Chicago，Gary，
Cleveland，Birm．，base． 2.15 c
Guif ports，dock ．．．．．．．．．2．50c
All－rail ．．．．．．．．．．．．．．2．59c
Pacifle ports，dock．．．．．．． 2.80 c
Alr－rall
3.25 c

Iron liars
Phlladelphia，del．．．．3．06－3．50c
Chicago ．．．
Pittsburgh，muck bar，． 5.00 c
Plttsburgh，staybolt ．．．．8．00c
Terre Haute

Wire Products

Pitts．－Cleve．－Chicago－Birm．base
per 100 lb ．keg in carloads
Standard and cement coated wire nalls．．．
Pollshed Per Pound） Annealed fence wlre．．．． 3.05 c
Galv fence wire ．．．． 3.40 c
Woven wire fenclng（base C．L．column）
Single loop bale ties， （base C．L．column）
Galv．barbed wire，80－rod spools，base column ．．
Twisted barbless wire column
To Manufucturing Trade
Base，Pitts．－Cleve．－Chicago Birmingham（except sprino
Brlght bess．，baslc wire． 2.60 c
Galvanized wire
Spring wire
Worcester Mass．．．．．．．． 3.20 c
bright basic and spring wire．

Cut Noils
Carload，Pittsburgh，keg．．$\$ 3.85$ Alloy Plates（Hot）
Pittsburgh，Chicago，Coates
ville，Pa．
3.50 c

Strip and Hoops

（Base，hot strip， 1 ton or over． cold， 3 tons or over．
Hot Strip， 12 －inch and less
Pittsburgh，Chicago，
Gary，Cleveland，
Youngstown．Middle－
town，BIrmingham
Detroit，del．
Phlladelphia，del．
New York，del
Pacific Coast ports
Cooperage hoop．Young．
Pltts．：Chicago．Btrm．
Cold strlp， $0.2 \overline{0}$ carbon
and under，Pittsburgh，
Cleveland，Youngstown 2. wilu
Chlcago ．．．．．．．．．．．．2．9Uc
Detrolt，del．．．．．．．．．． 2.90 c
Worcester，Mass．Cleve．，Pitts，
$0.26-0.50 \ldots . .$.
$0.51-0.75$
0．76－1．00
4.30 c
6.15 c
8.45 c

Worcester，Mass．$\$ 4$ higher．
Commodity Cold－Itolled Strlp
Pltts．－Cleve．－Youngstown $2.9 \overline{\mathrm{c}} \mathrm{C}$ Chicago
Detrolt，del．
Worcester，Mass
Lamp stock up 10 cents．
Rails，Fastenings

（Gross Tons） Standard ralls

Standard ralls，mill ．．．．
Relay ralls，Hittsburgh
20－100 lbs．．．．．．．32．50－35．50
lght ralls，bllet qual．．
Pitts．，Chicago，B＇ham．$\$ 40.00$
Do．，rerolling quallty．．
Cents per pound
Angle bars，billet，mills．
Do．，axle steel $\quad 2.7 \mathrm{Uc}$
Splkes，R．R，base ．．．．．．3．00c
Track bolts，base ．．．．．．
Car axles forged，Pitts．，
Chicago，BIrmingham．
Te plates base ．．．
Tle plates，base \quad Base， $11 g h t$ ralls 25 to 60 lbs．．
20 Ibs．，up $\$ 2 ; 16$ lbs．up $\$ 4 ; 12$
lbs．up $\$ 8 ; 8$ lbs．up $\$ 10$ ．Base rallroad splkes 200 kegs

Bolts and Nuts
F．o．b．Pittsburgh，Cleveland， Birmingham，Chicago．Dis counts for carloads additional 5% ．full containers，add 10%

Carriage and Machlne

$1 / 2 \times 6$ and smaller．．．．651／2 off Do．，pe and $\%$ \％ 6 － in ． and shorter．．．．．．．．63 $1 / 2$ off
Do．，$\%$ to $1 \times 6-1 n$ ．and
shorter ．．．．．．．．．．．．．．． 61 off
114 and larger，all lengths
All diameters，over $6-1 n$

Stove Bolts
In packages with nuts separate
In packages with nuts separate
71 off：bulk 80 off on 15,000
of 3 －inch and shorter，or 5000 over 3－in．
Step bolts ．．．．．．．．．．．．．．．．．． 56 off
Plow bolts ．．．．．．．．．．．．． 65 of
Semiflnished hex．U．S．S．S．A．E． innch an
in－1－Inch
$\frac{18}{1}$ 有－1－inch
1 有－1\％－incin．
Hexagon Cap Screws
Upset I－in．，smaller ．．．．．． 64 off
Square Head Set Screws $1^{\prime \prime} 0 . \mathrm{D}$ ．
Upset 1－in 71 of 1% mo D
Upset． $1-1$ n．，smaller．．．．．． 71 oft
Headless set screws ．．．． 60 oft
Piling
mirs．l．c．l．
Tool Steels

Pipe

In．
$2 \ldots .$.
$21 / 2-3$
$31 / 2-6$
7 and 8
$21 / 2-31 / 2$
$41 / 2-8$
to 3 ，butt weld
2 ，lap weld

Pitts．，Chgo．，Buffalo ．．2．40c
Rivets，Washers
F．o．b．Pitts，，Cleve．，Choo．， Structural Bham．．．．．．．．．．．．．．．．．．35c tofnch and under．．．．．．．65－5 off Wrought washers，Pitts．．

Chi．，Phlla．，to jobbers
and large nut，bolt
$. \$ 4: 25$ off

Pittsburgh base，cents per $1 b$ ．
Cart．Reg． 14.00 Oll－hard－
Carb．Ext． 18.00 ening ．． 24.00 enin
car．－chr． 43.00
11igh Speed Tool Steels
Tung．Chr．Van．Moly．

18.00	4	1	\ldots	67.00
18.00	4	2	1	77.00
18.00	4	3	1	87.00
1.5	4	1	8.5	54.00
\cdots	4	2	8	54.00
5.5	4	1.5	4	57.50

Welded Iron，Steel．

Base discounts on steel pipe． ilts．，Lorain，U．，to consumers In earloads．Gary，Ind．， 2 polnts less on lap weld， 1 point less on butt weld．Chicago dellvets $2 \frac{1}{2}$ and $1^{1 / 2}$ less，respectively． 35．：Wrought pipe，Pittsburgh base．

13at：IVeld
Steel

In．	H1k．	Galv．
$1 / 2$	$631 /$	51
\％	$66 \frac{13}{13}$	55
1－3	68》	57%
\％	30	10
1－114	34	16
$11 / 2$	38	181／2
2	$371 / 2$	18

Lap Weld
Steel

… ．．	61
$\ldots . .$.	64
$\cdots . .$.	66
...	65

4913
$\begin{array}{llll}31 / 2-6 & \ldots & 6 & 56 \\ 7 \text { and } 8 \cdots \cdots & 65 & 52 \%\end{array}$
Iron $30^{1 / 2} 12$

Steel

$21 / 2$ to 3 ，lap weld
3% to 6，lap weld

Boiler Tubes

Carloads minimum vall seamless steel boiler tubes，cut－ lengths 4 to 24 feet；f．o．b．Pitts－ subject to usual extras．

$$
\begin{aligned}
& \text { subject to usuab extro } \\
& \text { Iap Welded }
\end{aligned}
$$

Slzes
1%＂ $0 . \mathrm{D}$.
1 范 O．D．
Gage Ste
13 \＄
$\begin{array}{ccc} & & \text { co } \\ & \$ 9.72 & 1 r o n \\ 3 & \$ 9.03 \\ 3 & 11.06 & 123\end{array}$
11.06 \＄23．71
2.38 19．35

15.16

$16.58 \quad 26.5$
$17.54 \quad 29.00$
$18.35 \quad 31.36$
$23.15 \quad 39.81$
$28.66 \quad 49.90$
68.14

Seamless

Hot cola
Gage Rolled Drawn
$\begin{array}{lll}\text { Gage Rolled Drawn } \\ 13 & \$ 7.82 & 59.01\end{array}$
$\begin{array}{rrr}13 & \text { S } 9.82 & 59.01 \\ 13 & 9.26 & 10.61\end{array}$
$\begin{array}{lll}13 & 10.23 & 11.79 \\ 13 & 11.64 & 13.4\end{array}$

2＂O．D．	13	13.0	3
21／4＂O．D．	13	14.54	16.76
2\％＂U．D．	12	16.41	18.40
2\％＂O．D．	12	17.54	20.21
2\％＂O．D．	12	18.59	21.42
3＂O．D．	12	19.50	22.48
$31 / 2$＂O．D．	11	$24.6{ }^{2}$	28.37
4＂U．D．	10	30.54	35.20
$41 / 2 \mathrm{~m}$ O．D．	10	37.35	43.04
5＂O．D．	9	46.87	54.01
6＂O．D．	7	71.96	82.9

Cast Iron Pipe

Class B Pipe－Per Net Ton
$6-\ln$ ．，\＆over，Birm．$\$ 45.00-46.00$
4－in．，Birmingham．．48．00－49．00
4－1n．，Chicago ．．．．5ti．80－57．80
6－1n．\＆over，Chlcago 53．80－54．80
$6-1 n$ ．\＆over，east fdy． $49.0 u$
Do．，4－in．．．．．．．．． 52.10
Class A Pipe 53 over Cluss H
Sthd．Iltgr．，Blrm．，linge $\$ 100.01$
Semifinished Steel
Ifermillig IBllets，Slubm （Gross Tone
l＇ittsburgh Chicaro Gary，
Cleve．，Buffalo，Youngs．，
Birm．，Sparrows Polnt．．$\$ 34.0$ I
Duluth（billets）．．．．．．．． 36.1 ．
Forghag Quality isilifen
Pltts．Chl．，Gary，Cleve．，
Young，Buffalo，Blrm．su．vi
Duluth
Slieat Bitra
Pitts．，Cleveland，Young．，
Sparrows Hoint Buf－
〔alo，Canton，Chicago．צ4．tu l）etrolt，dellvered

Whe IRods
PItts．，Cleveland，Chicago， Birmingham No． 5 to
inch Incl．（per 100 Ius．）$\$ 2.00$ Do．，over y_{2} to $\{7-1 n$ ．Incl． 2.35 Worcester up $\$ 0.10$ ；Galves－ ton up $\$ 0.25$ ；Puclfic Coast up $\$ 0.50$.
Pitts．，Chi．，Youngstown， Coatesville，Sparrows HL．1．Wuc Shell Ster！
Pittsburgh，Chicago，baso， 1000
tons of one size，open hearth

18－Inch and over
Coke

Price Per Net Ton Brehlve Ovens	
Connellsville，fur．．．	\＄6．00－6．25
Connellsville，fdr	7．00－7．50
Connell．prem．fdry．	7．25－7．60
New River 1 dry．	8．00－8．25
Wise county idry．	7．
Wh－Product Foundry	
Newark，N．J．，del．	12．60－13．05
Chicago，outside del	11.50
Chicago，dellvered	12.25
Terre Haute，del．	11.75
milwaukee，ovens．	． 25
New England，del．．	．75
St．Louis，del．	2.25
Birmingham，ovens．	． 50
Indlanapolis，del．	
Cincinnati，del．	11.75
Cleveland，del．	
Buffalo，del．	12.50
rolt，del	12.2
	12.

Coke By－Products

spot，gal．，fretght allowed east
Pure and gillo Omaha benzol ．． 14.00 c
Toluol，two degree ．．．．27．0Uc
Industrial xylol ．．．．．．． 26.00 c
Per lb．f．o．b．Frankford and
Phenol（less than 1000
lbs．）．．．．．．．．．．．．．．．．．． 14.25 c
Do．（ 1000 lbs or over） 13.25 c
Eastern Plants，per 16.
Naphthalene Hakes，balls，
bbls．to jobbers ．．．．．．7．00c
Per ton，bulk，f．a．b．port
suiphate of ammonia．．．．\＄30．00

Pig Iron

No. 2 foundry is $1.75-2.25$ sll.; 50c dlff. for each 0.25 sll. above 2.25 sil.; 50 c diff. below 1.75 sil. Gross tons.

Basing l'oints:	No. 2 Fdry.	Malleable	Basic	Bessemer
Bethlehem, Pa.	\$25.00	\$25.50	\$24.50	\$26.00
Birmingham, Ala.s	20.38		19.38	25.00
Birdsboro, Pa.	25.00	25.50	24.50	26.00
Buffalo	24.00	24.50	23.00	25.00
Chicaso	24.00	24.00	23.50	24.50
Cleveland	24.00	24.00	23.50	24.50
Detrolt	24.00	24.00	23.50	24.50
Duluth	24.50	24.50		25.00
Erle, Pa.	24.00	24.50	23.50	25.00
Everett, Mass.	25.00	25.50	24.50	26.00
Granlte City, Ill.	24.00	24.00	23.50	24.50
Hamliton, O.	24.00	24.00	23.50	
Neville Islund, Pa.	24.00	24.00	23.50	24.50
Provo, Utah	22.00			
Sharpsville, Pa.	24.00-	24.00-	23.50-	24.50
	24.50	24.50	24.50	25.00
Sparrow's Point, Md.	25.00		24.50	
Swedeland, Pa.	25.00	25.50	24.50	26.00
Toledo, 0.	24.00	24.00	23.50	24.50
Youngstown, 0.	\{24.00-	$24.00-$	$23.50-$	$24.50-$
	\{24.50	24.50	24.50	25.00

8 Subject to 38 cents deduction for 0.70 per cent phosphorus or higher.

Dellvered from Basing Polnts:			
Akron, O., from Cleveland 25.39	25.39	24.89	25.89
Baltmore from Birmingham \dagger. 2 25.61		25.11	
Boston from Birmingham \dagger...... 25.12			
Boston from Everett, Mass. 25.50	26.00	25.00	26.50
Boston from Buftalo 25.50	26.00	25.00	26.50
Brooklyn, N. Y., from Bethlehem 27.50	28.00		
Canton, O. from Cleveland 25.39	25.39	24.89	25.89
Chicago from Birmingham. $\dagger 24.22$			
Cinclnnati from Hamilton, O. . 24.44	25.11	24.61	
Cincinnati from Blrminghamt... 24.06		23.06	
Cleveland from Blrminghamt... 24.12		23.12	
Mansneld, O., from Toledo, O. . 25.94	25.94	25.44	
Mllwaukee from Chicago 25.10	25.10	24.60	25.
Muskegon, Mich., from Chicago, Toledo or Detrolt \qquad $27.19 \quad 27.19$			
Newark, N. J., from Blrmingham $\dagger 26.15$			
Newark, N. J., from Bethlehem. 26.53	27.03		
Phlladelphla from Birminghamt. 25.46		24.96	
Philadelphia from Swedeland, Pa. 25.84	26.34	25.34	

Pittsburgh dist: Add to Neville Island base, North and South Sides, 69c; McKees Rocks, 55 c ; Lawrenceville, Homestead, McKeesport, Ambrldge, Monaca, Allquippa, 84c; Monessen, Monongahela Clty, \$1.07; Oakmont, Verona, \$1.11; Brackenridge, \$1.24.

Sasinaw, Mich., from Detrolt
St. Louls, northern
St. Louls from Birmingham. St. Paul from Duluth †Over 0.70 phos.

No. 2	Malle-	
Fary.	able	Basic
26.31	26.31	25.81
24.50	24.50	24.00
$\dagger 24.12$	\ldots.	23.62
26.63	26.63	$\ldots .$.

Basing Polnts: Blrdsboro and Steelton, Pa., and Buffalo, N. Y $\$ 29.50$, base; $\$ 30.74$ dellvered Philadelphia.
Gray Forge
Charcoal
Valley furnace $\$ 23.50$ Lake Superior fur. $\$ 28.00$
Pitts. dist. iur. $23.50 \begin{gathered}\text { do., del. Chicago....... } 31.34 \\ \text { Lyles, Tenn., hlgh phos.. . } 28.50\end{gathered}$
Sllvery
Jackson county, O., base, 6.00 to 6.50 per cent $\$ 29.50$. Add 50 cents for each additional 0.25 per cent of sllicon. Buffalo base $\$ 1.25$ higher.

Bessemer Ferrosilicont

Jackson county, O., base; Prices are the same as for sllverles plus $\$ 1$ a ton.
Manganese differentials in silvery fron and ferrosilicon not to exceed 50 cents per 0.50 per cent manganese in excess of per cent.

Refractories

Per 1000 f.o.b. Works, Net Prices Fire Clay Irrick Super Quality
Pa., Mo., Ky.
$\$ 64.60$
Pa., Ill., First Quality
51.30

Alabama, Georgia. 51.30
New Jersey
56.10

Pa Su Second Quality
Pa., Ill., Ky., Md., Mo.
Georgla, Alabama
New Jersey
46.55
46.55
41.80
49.00

Ohlo
irst quality
Intermedlate

Malleable I3uns Mrick
All bases
Silica Brick
Pennsylvania
Jollet, E. Chicago
Birmingham, Ala.

Ladle Brick
(Pa., O., W. Va., Mo.)
Dry press
. $\$ 31.0$ Wire cut

Mugnesite

Domestic dead-burned
grains, net ton $1.0 . b$ Chewelah, Wash., net ton, bulk
net ton, bags
Busic Brick
Net ton, f.o.b. Baltimore, Ply mouth Mesting, Chester, Pa. Chrome brlck $\$ 54.00$ Chem. bonded chrome... 54.00 Magnesite brick Chem. bonded magnesile 65.00 Fluorspar
Washed gravel, duty pd., tide, net ton. $\$ 25.00-\$ 26.0$ Washed gravel, f.o.b. Ill., Ky., net ton,
51.30 carloads, all rall. 20.00-21.00 58.90 Do. barge $\quad 20.00$ 51.30 No. 2 lump 20.00-21.00

Ferroalloy Prices

Ferromangunese, 78-82\%,
Carlots, duty pald,
sbd. $\$ 120.00$
Carlots, del. Pitts. ... Carlots, f.o.b. Southern
furn.
For ton lots add $\$ 10$,
for less-than-ton lots
$\$ 13.50$, for less than
200-1b. lots $\$ 18$.
spirgelelsen, 19-21\% dom. Palmerton, Pa., spot..
Ferromblicon, 50%, freight
allowed, c.l.. 74.50
Do., ton lot 87.00
Do., 75 per cent 135.00
Do., ton lots 151.00
Spot, $\$ 5$ a ton higher.
sillcomunmanese, c.l., 23
per cent carbon
$1 \% \%$ carbon
Contract ton price
$\$ 12.50$ higher; spot \$5 over contract.
Ferrotangsten, stand., $1 b$.
con. del. cars1.90-2.00
Ferrovanudinm, 35 to
40%, lb., cont.. 2.70-2.80-2.90
Ferrophospliorus, gr, ton,
c.1., 17-18\% Rockdale,

Tenn., basis, 18%, $\$ 3$
unltage, 58.50 ; electric
furn., per ton, c. $1 ., 23$ -
26% f.o.b. Mt. Pleasant,
Tenn., 24% $\$ 3$ unltage
Ferrochrume, 66-70 chromium, 4-6 carbon, cts. lb., contained cr., del.
carlots 11.00 c
145.00

Do., ton lots
Do., ton lots 11.75c
Do., less-ton lots..... 12.00c less than 200 lb. lots. 12.25 c 67-72\% low carbon:

6
2% carb... 17.50 c 18.25 c 18.75 c
1% carb... 18.50 c 19.25 c 19.75 c
0.10% carb. 20.50 c 21.25 c 21.75 c
0.10% carb. $20.50 c$ c 21.25c $21.75 c$
0.20%
carb. 19.50 c $20.25 c$
$20.75 c$ Spot $1 / \mathrm{c}$ higher
Ferromolybdenum, 55$65 \%$ molyb. cont., f.o.b. mill, 1 b .
Calcium molybdate, 10. molyb. cont., 1.o.b. mlll
Molybuenum Oxide, $1 b$. Molyb. cont., $5-20-1 \mathrm{~b}$. contalners, 1 . o. b., Washington, Pa., 1b..
Ferrotitanium, $\quad 40-45 \%$, 1b., con. tl., f.o.b. Niag ara Falls, ton lots. . Do., less-ton lots.... $20-25 \%$ carbon, 0.10 max., ton lots, 1 b .
Do., less-ton lots. Spot $\overline{\mathrm{x}} \mathrm{c}$ higher
Ferrocolumbium, $50-60 \%$ contract, lb. con. col., f.o.b. Niagara Falls. . i.o.b. Niagara Fails
Do., less-ton lots. Spot is 10 c higher
Technical molybdenum trioxide, 53 to 60% molybdenum, lb. molyb. cont., f.o.b. mill.

18% ti. $6-8 \%$ carb. carlots, contr., net ton $\$ 142.50$ Do., spot 145.00 Do., contract, ton lots 145.00 Do., spot, ton lots.... 150.00
15-18\% t1, 3-5\% carbon, carlots, contr., net ton 157.50 Do., spot Do., contract, ton lots. Do., spot, ton lots
Alsifer, contract carlots, f.o.b. Nlagara Falls, lb. Do., ton lots l.....
Do., lesston lots Spot ys lb. higher
7.50c
$8.00 c$
8.50c

Chromium Briquets, contract, freight allowed, 1b. carlots, bulk
7.00c Do., ton lots Do., less-ton lots..... 7.75 c Do., less 200 lbs..... 8.00c

\$1.23

1.25
1.35
1.35
1.40

Tuncsten Sletal Powder. 98-99 per cent, per lb., depending upon quan-
tity $\$ 2.50-2.60$
Vanadium Pentoxide, contract, 1b. contained $\$ 1.10$ $\$ 2.25$
2.30

Chromium Metal. 98\% cr., contract, lb. con. chrome, ton lots 80.00 c Do., spot 85.00 c
88\% chrome, cont. tons. 79.00 c

Sllicon Metal, 1% iron, contract, carlots, $2 \times$课-in., 1b

Spot 4 c hlgher

Silicon Briquets, contract carloads, bulk, freight allowed, ton
Ton lots
Less-ton lots, 10.
Less 200 lb. lots, $1 \mathrm{~b} . .4 .25$
Spot $1 / 4$-cent higher
Manganese Briquets, contract carloads, bulk frelght allowed, 1b. .
Ton lots
Less-ton lots
Spot $1 / 4 \mathrm{c}$ higher
Zlrconium Alloy, $12-15 \%$, contract, carloads, bulk, gross ton
$35-40 \%$, contract, car.
$35-40 \%$, contract, car.
loads, lb., alloy.... loads, lb., alloy.
Do., ton lots
Do., less-ton lots Spot $1 / 4 \mathrm{c}$ higher
Molybdenum Powder 99%, f.o.b. York, Pa. $200-1 \mathrm{~b}$. kegs, lb. Do., 100-200 lb. lots. Do.. under 100-1b. lots Molybdenum Oxide Briquets, $48-52 \%$ mo. lybdenum, per pound contained, f.o.b. producers' plant
14.500
14.50
13.000

2n
$\$ 74.5$
5.5

WAREHOUSE STEEL PRICES

	Soft Bars	Bands	Hoops	Plates \% in - \& Over	Structural Shapes
Boston	3.98	4.06	5.06	3.85	3.85
New York (Met.).	3.84	3.96	3.96	3.76	3.75
Philadelphla	3.85	3.95	4.45	3.55	3.55
Baltimore.	3.55	4.00	4.35	3.70	3.70
Norfolk, Va.	4.00	4.10		4.05	4.05
Buffalo	3.35	3.82	3.82	3.62	3.40
Pittsburgh	3.35	3.60	3.60	3.40	3.40
Cleveland	3.25	3.50	3.50	3.40	3.58
Detrolt	3.43	3.43	3.68	3.60	3.65
Omaha	4.10	4.20	4.20 3.67	4.15 3.65	4.15 3.68
Cincinnati	3.60	3.67	3.67	3.65	3.68
Chicago	3.50	3.60	3.60	3.55	3.55
Twin Cities	3.75	3.85	3.85	3.80	3.80
Milwaukee	3.63	3.53	3.53	3.68	3.68
St. Louls	3.64	3.74	3.74	3.69	3.69
Kansas City	4.05	4.15	4.15	4.00	4.00
Indianapolls	3.60	3.75	3.75	3.70	3.70
Memphis	3.90	4.10	4.10	3.95	3.95
Chattanooga	3.80	4.00	4.00	3.85	3.85
Tulsa, Okla.	4.44	4.34	4.34	4.49	4.49
Blrmingham	3.50	3.70	3.70	3.55	3.55
New Orleans	4.00	4.10	4.10	3.80	3.80
Houston, Tex.	3.75	5.95	5.95	4.10	4.10
Seattle	4.00	4.00	5.20	4.75	4.75
Purtland, Oreg.	4.25	4.50	6.10	4.00	4.00
Las Angeles	4.15	5.45	7.25	4.95	4.95
San Franclsco	4.00	5.20	6.80	4.70	4.70
	$\sim_{\text {-S.A.E. Hot-rolled Bars (Unannealed) }-}$				
	1035-	2300	3100	4100	6100
	1050	Serles	Series	Serles	Serles
Boston	4.28	7.75	6.05	5.80	7.90
New York (Met.)	4.04	7.60	5.90	5.65	\cdots
Phlladelphla.	4.10	7.56	5.86	5.61	8.56
Baltimore	4.45
Norfolk, Va.				\ldots	\ldots
Buffalo	3.55	7.35	5.65	5.40	7.50
Pittsburgh	3.40	7.45	5.75	5.50	7.60
Cleveland	3.30	7.55	5.85	5.85	7.70
Detrolt	3.48	7.67	5.97	5.72	7.19
Cincinnati	3.65	7.69	5.99	5.74	7.84
Chicago	3.70	7.35	5.65	5.40	7.50
Twin Citles	3.95	7.70	6.00	6.09	8.19
Milwaukee	3.83	7.33	5.88	5.63	7.73
St. Louls	3.84	7.72	6.02	5.77	7.87
Seattle	6.65		8.75	8.60	9.40
Portiand, Oreg.	5.70	8.85	8.00	7.85	8.65
Los Angeles .	4.80	9.55	8.55	8.40	9.05
San Franclsco.	6.05	10.60	9.60	9.45	10.10

Floor Plates	Hot	Sheets Cold	Galv. No. 24	Cold Rolled Strlp	-Cold Drawn Bars-		
						S.A.E.	S.A.E
	Rolled	Rolled			Carbon		3100
5.66	3.71	4.48	5.11	3.46	4.13	8.88	7.23
5.56	3.58	4.60	5.00	3.51	4.09	8.84	7.19
5.25	3.55	4.05	5.26	3.31	4.06	8.56	7.16
5.25	3.50	:.	5.05	4.05
5.45	3.85		5.40		4.15
5.25	3.25	4.30	4.75	3.52	3.75	8.40	6.75
5.00	3.35	4.30	4.65		3.65	8.40	6.75
5.18	3.35	4.05	4.62	3.20	3.75	8.40	6.75
5.27	3.43	4.30	4.84	3.40	3.80	8.70	7.05
5.75	3.85	5.32	5.50		4.42		
5.28	3.42	4.00	4.92	3.47	4.00	8.75	7.10
5.15	3.25	4.10	4.85	3.30	3.75	8.40	6.75
5.40	3.50	4.85	5.25	3.83	4.34	9.09	7.44
5.28	3.18	4.23	4.73	3.54	3.88	8.38	6.98
5.29	3.39	4.24	4.99	3.61	4.02	8.77	7.12
5.60	3.90	5.00	4.30
5.30	3.45	5.01	\ldots	3.97	\ldots
5.71	3.85		5.25	4.31	
5.80	3.75	4.50	4.39	\ldots
6.09	4.19	...	5.79	4.69	\ldots.
5.93	3.45	...	4.75	\ldots	4.43
5.75	3.85	\ldots	4.80	5.00	4.60	\ldots
5.50	4.20		5.25	\ldots.	6.90
6.50	4.75	7.25	6.00		5.75	\ldots.	
5.75	3.95	- 8.50	5.00	. .	5.75	\ldots	
7.20	5.10	7.30	6.30		6.60	11.35	10.35
6.40	4.70	7.20	6.45	\ldots	7.05	11.60	10.60

SASE QUANTITLES
Soft Bars, Bands, Hoops, Plates, Shapes, Floor Plates, Hot Rolled Sheets and SAE 1035-1050 Bars: Base, 400-1999 pounds; 300-1999 pounds in Los Angeles; 400-39,999 (hoops, 0-299) in San Franclsco; 300 pounds and over, Portland, Seattle; 400-14,999 Twin Citles; 400-3999 Blrmingham; 400 pounds and over in Memthis: Los Angeles, bars over $4-\mathrm{in}$. wide, 1 -in. thick, 4.95 c

Cold Rolled Sheets: Base, $400-1499$ pounds in Chicago, Cin cinnati, Cleveland, Detrolt, New York, Omaha, Kansas City, St. (n) delphla, Baltimore; 750-4999 in San Francisco; 300-4999 in Portland, Seattle; any quantity in Twin Citles; 300-1999 Los Angeles.

Galvanlzed Sheets: Base, 150-1499 pounds, New York; 150 1499 in Cleveland, Pittsburgh, Baltimore, Norfolk: 1 to 1499 in Los Anceles: 300 and over in Portland, seattie; 450-3i49 in Boston 500-1499 in Birmingham, Buffalo, Chicago, Cincinnati, Detroit Indianapolls, Mllwaukee, Omaha, St. Louls, Tulsa; 3500 and over Chatanooga; any quantity in Twin Citles; 750-1500 in Kansa City; 150 and over in Memphis; any quantity in Phlladelnhia $750-4999$ in San Francisco

Cold Rolled Strip: No base quantity; extras apply on lota of all size.

Cold Finlshed Bars: Base, 1500 pounds and over on carbon except 0-299 in San Franclsco, 1000 and over In Portland, Seattle 1000 pounds and over on alloy, except $0-4999$ in san francisco SAE Hot Rolled Alloy Bars: Base, 1000 pounds and over except 0-4999, San Francisco; 0-1999, Portland, Seattle.

EUROPEAN IRON, STEEL PRICES

Ores

IAka Superlor Iron Ure
Gross ton, 51\% \%

Lower Lake Ports

Oid range bessemer \$4.75 Mesabl nonbessemer 4.45 High phosphorus 4.45 Mesabl bessemer 4.60
Old range nonbessemer

Eastern Local Ore

Cents, urit, del. E. Pa.
Foundry and basle
10.00)

Foreign Ore
Cents per unit, c.i.f. Atlantic ports
Manganiferous ore, 45-55\% Fe., 6-10\%
Mang

* Arrican low phos.

Spanlsh, No. Arfican baste, 50 to 60% Nom Chinese woliramite, net ton, duty pd.. $\$ 24.00-25.00$ Brazll iron ore, 68 | 69\%, ord........... |
| :--- |
| $\begin{array}{l}\text { Low phos. (. } 02 \\ \text { max. })\end{array}$ |
| |
| 8.00 c | F.O.B. RIo Janeiro.

Scheelite, Imp. . . . 23.50-24.00 Chrome ore, Indian, 48% gross ton, clf. $\$ 43.00-46.00$

Manganese Ore

Including war risk but not duty, cents per urit cargo lots. Caucaslan, $50-52 \%$.
So. Airlcan, 48\% ... 70.00-72.00 Brazllian, 46\% 69.00-71.00 Chilean, 47%...... 65.00-70.00 Cuban, $50-51 \%$, duty free

[^7]
IRON AND STEEL SCRAP PRICES

Maximum I'rices Announced June 18 by Office of Price Administration and Clvilian Supply (Gross Tons)

	Pittsburgh, YoungsWeirton, town, Steuben- Canton, ville(a) Sharon	Chicago	Bethlehem	* East. Pa.	Sparrows Pt .	Cleve- land	Buffalo	South Ohlo \dagger
No. 1 heavy melting	\$20.00 \$20.00	\$18.75	\$18.25	\$18.75	\$18.75	\$19.50	\$19.25	\$19.50
No. 1 hyd. comp. black sheets	$20.00 \quad 20.00$	18.75	18.25	18.75	18.75	19.50	19.25	19.50
No. 2 heavy melting	$19.00 \quad 19.00$	17.75	17.25	17.75	17.75	18.50	18.25	18.50
Dealer No. 1 bundles	19.00 19.00	17.75	17.25	17.75	17.75	18.50	18.25	18.50
Dealer No. 2 bundles	$18.00 \quad 18.00$	16.75	16.25	16.75	16.75	17.50	17.25	17.50
Mixed borings and turnings	$15.25 \quad 15.25$	14.00	13.50	14.00	14.00	14.75	14.50	14.75
Machine shop turnings	$15.50 \quad 15.50$	14.25	13.75	14.25	14.25	15.00	14.75	15.00
Shovel turnings	$16.50 \quad 16.50$	15.25	14.75	15.25	15.25	16.00	15.75	16.00
No. 1 busheling	$19.50 \quad 19.50$	18.25	17.75	18.25	18.25	19.00	18.75	19.00
No. 2 busheling	$15.50 \quad 15.50$	14.25	13.75	14.25	14.25	15.00	14.75	15.00
Cast iron borings	$15.75 \quad 15.75$	14.50	14.00	14.50	14.50	15.25	15.00	
Uncut structurals and plate	$19.00 \quad 19.00$	17.75	17.25	17.75	17.75	18.50	18.25	18.50
No. 1 cupola	$21.00 \quad 21.00$	20.00	22.50	23.00	22.00	22.00	20.00	21.00
Heavy breakable cast	$19.50 \quad 19.50$	18.50	21.00	21.50	21.00	20.50	18.50	19.50
Stove plate	19.00	17.00	18.00	18.50	18.00	18.00	19.00	17.50
Low phos. blllet, bloom crops	$25.00 \quad 25.00$	23.75	23.25	23.75	23.75	24.50	24.25	23.50
Low phos. bar crops and smaller	$23.00 \quad 23.00$	21.75	21.25	21.75	21.75	22.50	22.25	21.50
Low phos. punch., plate scrap	$23.00 \quad 23.00$	21.75	21.25	21.75	21.75	22.50	22.25	21.50
Machinery cast cupola size	$22.00 \quad 22.00$	21.00	23.50	24.00	23.50	23.00	21.00	22.00
No. 1 machine cast, drop broken, 150 pounds and under	$22.50 \quad 22.50$	21.50	24.00	24.50	24.00	23.50	21.50	22.50
Clean auto cast	$22.50 \quad 22.50$	21.50	24.00	24.50	24.00	23.50	21.50	22.50
Funchings and plate scraptt	$22.00 \quad 22.00$	20.75	20.25	20.75	20.75	21.50	21.25.	20.50
Punchings and plate scraps 8	$21.00 \quad 21.00$	19.75	19.25	19.75	19.75	20.50	20.25	19.50
Heavy axle and forge turnings	$19.50 \quad 19.50$	18.25	17.75	18.25	18.25	19.00	18.75	18.00
Medium heavy elec. Purnace turnings	$18.00 \quad 18.00$	16.75	16.25	16.75	16.75	17.50	17.25	16.50
	St. Louis Toledo, O.	Detroit	Duluth	Birming ham	Chattanooga	Radford, Va.	New Eng. land \ddagger	Paclic Coasts
No. 1 heavy melting	\$17.50 S	\$17.85	\$18.00	\$17.00	\$	S	\$16.50	\$14.50
No. 1 hyd. comp. black sheets	17.50	17.85	18.00	17.00				14.50
No. 2 heavy melting	16.50	16.85	17.00	16.00				13.50
Dealer No. 1 bundles	16.50	16.85	17.00	16.00				13.50
Dealer No. 2 bundles	15.50	15.85	16.00	15.00				12.50
Mixed borings and turnings	12.75	13.10		12.25				9.75
Machine shop turnings	13.00	13.35	15.50	15.00				10.00
Shoveling turnings	14.00	14.35	16.50					11.00
No. 1 busheling	17.00	17.35	17.50	16.50				14.00
No. 2 busheling	13.00	13.35	13.50	12.50				10.00
Cast iron borings	13.25	13.60	13.75	12.75				10.25
Uncut structurals and plate	18.50	16.85	17.00	16.00				13.50
No. 1 cupola	20.00	20.35	18.00	20.00	20.50	21.00	22.00	18.00
Heavy breakable cast	18.50	18.85	16.50	18.50			20.50	17.00
Stove plate	$17.00 \quad 15.60$	14.10		17.00	17.50	18.00	14.00	14.00
Low phos. blliet and bloom crops	22.50	22.85	23.00	22.00				
Low phos. bar crops and smaller	20.50	20.85	21.00	20.00				
Low phos. punch. and plate scrap*	20.50	20.85	21.00	20.00				
Machinery cast cupola sizett ...	21.00	21.35	19.00	21.00	21.50	22.00	23.00	19.00
No. 1 machine cast, drop broken, 150 pounds and under	21.50	21.85	19.50	21.50	22.00	22.50		
Clean auto cast	21.50	21.85	19.50	21.50	22.00	22.50	23.50	19.50
Punchings and plate scrap $\ddagger \ddagger$	19.50	19.85	20.00	19.00				
Punchings and plate scrapss	18.50	18.85	19.00	18.00				
Heavy axle and forge turnings	17.00	17.35	17.50	16.50				14.00
Medium heavy clec. furnace turnings	15.50	15.85	16.00	15.00				12.50

[^8]Maximum Prices for Iron and Steel Scrap Originating from Rallroads

	Pittsburgh, Wheelling, Steubenville	Youngstown, Canton, Sharon	Chicago	Kokomo, Ind.	East. Pa.	Sparrows Pt .	Cleveland	Buffalo	South Ohio \dagger
No. 1 Rallroad grade heavy melting steel.	\$21.00	\$21.00	\$19.75	\$19.25	\$19.75	\$19.75	\$20.50	\$20.25	\$20.50
Scrap ralls	22.00	22.00	20.75	20.25	20.75	20.75	21.50	21.25	21.50
Rerolling quality ralls	23.50	23.50	22.25	21.75	22.25	22.25	23.00	22.75	23.00
Scrap ralls 3 reet and under	24.00	24.00	22.75	22.25	22.75	22.75	23.50	23.25	23.50
Scrap ralls 2 feet and under	24.25	24.25	23.00	22.50	23.00	23.00	23.75	23.50	23.75
Scrap ralls 18 Inches and under	24.50	24.50	23.25	22.75	23.25	23.25	24.00	23.75	24.00
	St. Louls	Kansas Clty	Detroit	Duluth	Birming ham	Minnequ Colo.	Radiord, Va.	New Eng land \ddagger	Paciflc Coast
No. 1 Rallroad grade heavy melting steel	\$18.50	\$17.00	\$18.85	\$19.00	\$18.00	\$17.50	\$.	\$.	\$15.50
Scrap rails	19.50	18.00	19.85	20.00	19.00	18.50			16.50
Rerolling quality ralls (a)	21.00	19.50	21.35	21.50	20.50	20.00			18.00
Scrap ralls 3 feet and under	21.50	20.00	21.85	22.00	21.00	20.50			18.50
Scrap ralls 2 feet and under	21.75	20.25	22.10	22.25	21.25	20.75			18.75
Scrap ralls is inches and under	22.00	20.50	22.35	22.50	21.50	21.00			19.00

[^9]
Sheets, Strip

Shect \& Strip Prices, Pages 100, 101
Sheet consumers without preference rating have increasing difficulty, not only in getting delivery promises, but in getting orders on mill books. This is especially true of galvanized sheets and a high rating is necessary to obtain early delivery. Some sheet sellers are out of the market for fourth quarter but in some cases are giving def. nite promises for that delivery for non-defense work. However, these contracts are subject to provisos.
One important sheet and strip maker has announced lengthened deliveries as follows: Narrow strip. $21 / 2$ inches and under, from 5 to 6 months, to 6 to 7; wide strip, $2^{1 / 2}$ to 8 inches, from 9 to 10 months, to 10 to 11; strib mill size sheets from 9 to 10 months, to 10 to 11 months: and galvanized, hot and cold-rolled sheets are listed as fourth quarter, 1942.

Automohile manufacturers are near the close of 1941 model production and will start soon on 1942 programs. A midwestern sheet mill July 1 curtailed sheet and strip shipments to motor manufacturers 20 per cent and will scale down from that. Such slack as this produces will be taken up at once hv enlarged defense reauirements. Volume of orders continues to slacken as consumers find it difficult to place tonnage for reasonable delivery.

In the Cincinnati district the effort to provide non-defense users on the hasis of 1940 consumption is meeting difficulty and apportionments are being reduced steadily. In that area producers have taken no fourth auarter tonnage.

As priorities have gone into effect on chromium metal sheet sellers expect similar action on chromebearing sheets within a fortnight. This was the procedure in the case of nickel-hearing sheets. Straight chrome sheets are heat resistant and largely used by oil burner manufacturers and makers of restau rant equipment, who had turned from nickel to chrome and again will be crowded.

Jobbers and stovemakers, without priorities, except on some soecial projects, are clamoring for sheets, with deliveries far short of demands as their suppliers find defense needs increasingly insistent.

Plates

Plate Prices, Page 100
Plates present one of the most difficult delivery problems in the steel industry and its solution seems remote. In the case of many im portant mills orders for the remainder of the year all carry top priority and scheduling one order simply means crowding back another of equal rating.

Some relief is being afforded by lighter plates being taken off plate mills and rolled on sheet mills but tonnages of plates over 1 -inch show no signs of diminishing. Plate de liveries have been holding up well to the present, because other mate-

Capacities from 5 to 300 Tons

Whatever your requirements in crane equipment, P\&H can answer them with modern designs that assure you of efficient, economical service. Faster operating speeds and easier control enable you to meet the demands of today's increased production schedules.

And P\&H's more than 50 years' experience in crane manufacture is your guarantee of recognized quality and performance.

General Offices: 4411 West National Avenue, Milwaukee, Wisconsin

rial needed in ship and tank construction, which takes most of the plate shipments, were further delayed than plates. The latter have been catching up and plates now are in heavier demand for immediate shipment. Additional plate capacity will be coming in later in the year to relieve this situation somewhat. Secondary priorities have been pushed back until they are practically meaningless in the case of most mills. Power jobs are among the sufferers in this respect.

Additional contracts for construc tion of 500 -ton steel lighters, requiring a total of approximately 7000 tons of plates: have been awarded to Dravo Corp., Pittsburgh, to fabricate a group of covered lighters for delivery at Brooklyn for the navy. Awards have also been made to Dekom Shipbuilding Corn., Brooklyn; additional units to J. K. Welding Co., Brooklvn, and Pacific Car \& Foundrv Co., Seattle. Nelson Boiler \& Tank Co. has also been awarded contracts for covered light ers and the Dravo Corp. for selfdumping scows.

PLATE CONTRACTS PLACED

270 tons, also 180 tons shapes, three arlditional 250-ton closed navy lighters In Paclite Car \& Foundry Co., Seattle. 2.25 tons, 500,000 -gallon elevated sted water tank, Fort Logan, Eenver, Colo. 10 Pittsburgh-Des Molnes Steel Co., Des Moines, Iowa, $\$ 52,140$ with niternate of $\$ 53,775$; bids Junc 28 , U. S. englneer, Omahn, Nebr.; bld on reinforcing steel, fabricated and in place, \$120 per ton.
200 tons, elevated steel water tank, fly ing cadet reception center, Kelly Field Tex., to Chleago Brlage \& Iron Co, Houston, Tex., $\$ 51,540$, blds June 18, U. S. engineer, Galveston, Tex., inv, 412.

100 tons, elevated steel tank, Fort Sherldan, Ill., to Chlcago Bridge \& Iron Co. Chleago, $\$ 38,150$, bids June 17.
100 tons, 250,000 -gallon elevated steel tank, Fort Monroe, Va., to Chleago Bridge \& Iron Co., Chicago, $\$ 39,850$.
Unstated, storage and gas fuellng system Sunset air lleld, Spokane, Wash., to Aqua Systems, New York, low at \$138,051, by U. S. engineer, Seattle.
Unstated. also unstated shapes, covered naval lighters, to Nelson Boller \& Tank Co., Seattle, $\alpha w a r d$ at $\$ 92,960^{\circ}$
Unstated, 9.161 feet 52 in . coal tar enamel steel plpe, alternate for lock joint concrete, and flttings; bids to Tacoma -July 21: \$240,000 avallable.
Unstated tonnage, thirty-two 250 -barrel steel storage tanks, quirtermaster, Marine Corps., Washington, to Columbla Steel Tank Co., Kansas City, Mo. sch. 1455 , bids June 16

PLATE CONTRACTS PENDING

164 tons, fabricated high-strength, low alley plates and structural steel cap plates, Panama, sch. 5208 , U. S. Steel Export Co., Washington, low, \$21,970,63, blds June 26, Washington.
100 tons or more, 1221 feet, S0-inch steel pipe, south flltered water Reservoir, Mcilllan llitration plant, Vashington bids July 17, serial 230 , to U. S. engineer office, Washington; alternate on 78-Inch concrete pipe.

Wire

Wire Prices, Page 101
Difficulty in meeting demand for wire and wire products arises mainly
from shortage of wire rods, especially in the case of non-integrated producers dependent on others for raw materials. Steel ordinarily being rolled into wire rods has been di verted to other outlets.

Some decrease in automotive demand accompanies change of models but this is temporary. Jobber stocks have been reduced but in most instances are sufficient to meet demands of small buyers.

Bars

Bar Prices, Page 100

Demand for steel bars, both car bon and alloy, for defense work, is increasingly heavy and deliveries to commercial consumers are falling further behind. Warehousemen have great difficulty in obtaining replacements. Deliveries on carbon bars have advanced from a range of ten to 12 months to about 15 months and popular sizes of alloy bars which have been available in six or eight months are now the subject of inquiry as to delivery
Two shell inquiries. aggregating 16,000 tons are being figured in the East, presenting an added burden to already loaded mills. Some warehouses in the East had a decline in tonnage moved in June, due to shrinkage of stocks, but this was not so generally true in point of dollar value, as movement of special steels was heavier, carrying higher prices.
The priority situation in bars, as well as in other steel products, has reached a point of confusion and sellers are swamped with priorities and special certificates where broader ratings fail. As a result mill schedules are being constantlv disturbed. Priorities are so numerous that they have begun to nullify themselves in manv instances. Yet the average consumer has little chance to obtain steel without some preference rating.

Pipe

Pime Prices, Pate 101

Pressing into service of idle tank cars has relieved pressure somewhat on building of pipe lines and more oil barges have been used for transborting oil.
Award is about to he made on a double oil line, 900 miles long, from New Orleans to a New Jersev port, taking about 800,000 tons of steel. Original plans called for a single line, 24 inches in diameter. How ever, because of the few companies which can make such large pipe in quantities, plans were revised to provide for a double line, each 12^{3} inches.
Southern pipe foundries are heavily booked and are producing close to capacity, though the rate could be increased somewhat if larger pig iron supply were available.

A maker of merchant pipe has devised an elahorate svstem of rationing, depending on past consumption and distance from source of supply. The nearest consumer is allowed two months supply and the farthest, six months.

CAST PIPE PLACED

325 tons, improvement of Sand Polnt Way, Seattle, 10 United States Pipe \& Foundry Co., Burlington, N. J.
105 tons, 2 to 6 -inch, Loyalton, Calif. to Pacifle States Cast Iron Pipe Co., Provo, Utah.

CAST PIPE PENDING

400 to 500 tons, 36 -inch, San Diego, Callf.; bids July 8.
Unstated, 6 and 8 -inch, for Pasco, Wash.; blds to Adah Perry, clerk, July 17.

Rails, Cars

Track Material Prices, Page 101

Award of 32,749 freight cars in June was the highest total for any month in recent years and exceeded the annual total in several depression years, and doubled the total for 1938. More than 40 per cent of June orders were placed with railroad companies' own shops.

Awards for six months totaled 94,775 , compared with 16,173 in the corresponding period last year. Other comparisons follow:

	1941	1940	1939	1938
Jan.	15,169	360	3	25
Feb.	5.508	1,147	2,259	9
March	8,074	3,104	800	680
April	14,645	2,077	3,095	15
May	18,630	2,010	2,051	6,014
J	32,749	7,475	1,314	1,178
6 mos..	94,775	16,173	9,532	8,121
July		5,846	110	
Aug.		7,525	2,814	18
Sept.		9.735	23,000	1,750
O		12,195	19,634	2,537
Nov.		8,234	2,650	1,232
ec.		7,181	35	2,581
Total		66,889	57,775	

Producers are giving particular attention on 160,000 tons of plates, shapes, sheets and bars for freight car construction, with an allocation likely to be announced shortly by OPM.

Carbuilders estimate that this tonnage would meet about one month's requirements, based on needs of 80,000 cars, which they would like to complete this year, and including a few thousand which the railroads themselves would like to get out in their own shops. However, some trade interests doubt if sufficient steel will be available for the construction of even 50,000 cars.

Such a program, it is pointed out, would also take a heavy tonnage of wheels, axles and specialties, in addition to rolled products, thus further complicating the problem. Incidentally, car builders assert they have considerable difficulty in getting pig iron to meet their maintenance requirements for wheels.

Meanwhile, in addition to new equipment, repair programs are being expanded sharply, with the New York Central having just entered the market for 50,000 tons of rolled steel for repairs to 9000 freight cars.

While the railroad equipment builders now have a priority rating of A-3, it is falling far short of providing the relief desired. Hence, the probability of a special allocation
to meet pressing needs. There has been a slight improvement recently, with three car shops down instead of six a fortnight or so ago, but several are proceeding on curtailed schedules.

Car builders claim they have more difficulty obtaining steel in the Pittsburgh area than in the Chicago, St. Louis or Birmingham districts.

CAR ORDERS PLAOED

Delaware, Lackawanna \& Western, 600 box cars and 250 gondolas to American Car \& Foundry Co., New York; 400 box cars to Magor Car Corp., Passaic, N. J.
Seaboard Air Line, 100 70-ton hopper cars, to Bethlehem Steel Co., Bethlehem, Pa.; in addition to 650 noted in a recent issue as having been distributed.

Army, two 70 -ton diesel-electrle switch engines for Jefferson proving ground Madison, Ind., to Vulcan Iron Works, Wilkesbarre, Pa.
Navy, two diesel-electric switch engines, to Vulcan Iron Works, Wllkesbarre, Pa.
Seaboard Alr Line, 13 dlesel-electrle $10-$ comotives, three 5400 -horsepower frelght locomotives, two 2000 -horsepower passenger locomotives and two 1000-horsepower switch engines 10 Electro-Motive Corp., La Grange, Ill.; three 1000 -horsepower switch engines to Baldwin Locomotive Works, Eddystone, Pa.; and three 1000 -horsepower switch engines to American Locomolve Co., New York.

Structural Shapes

Structural Shape Prices, Page 100
A marked falling off in current inquiry and awards is noted, due in part to the holiday, in part to difficulty of getting reasonable delivery and in part to patriotic realization that non-defense must give way to defense. There is belief, however, that once major defense construction is out of the way much potential civilian work will be revived. However lack of plain steel may hinder. Morever, many structural mills will be rolling rails and special shapes for ship and tank construction. These will require more mill time per ton than standard shapes, with tonnage output thus smaller.

Prominent inquiries in the Middle West are for telephone exchange buildings, power plants and other forms of public service which must be expanded because of greater concentrations of population in defense areas.

One of the larger newer projects is a 6000 -foot vehicular tunnel under the Delaware river, for which President Roosevelt has just given official approval.

SHAPE CONTRACTS PIACED

1100 tons, additional 37 MMI line, Kingsbury ordnance, La Porte, Ind., to American Bridge Co., Pittsburgh.
1000 tons, shop and offlce bullding, King Machine Tool Co., Cincinnati, to Indiana Bridge Co., Muncie. Ind.; Ferro Concrete Construction Co., Cincinnat1, contractor; Pollak Steel Co., Cincinnati, awarded 60 tons relnforcing bars.
900 tons, addition, Kansas Power \& Light

Co., Kansas City, Kans.. to Kansas City Structural Steel Co., Kansas City. Kans.
725 tons, two storchouses, Frankford arsenal, Philadelphia, to Bethlehem Steel Co., Bethlehem, Pa., through HighesFoulkrod, Phlladelphia.
701 tons, bridge work, Texas state highway department, Dallas county; also 312 tons reinforcing bars, wilh bridge ralling and bearing plles, to North Texas Iron \& Steel Co., Fort Worth, Tex.
700 tons, llve warehouse units, Brookley Fleld, Moblle, Ala., U. S. englneer 10 International Steel Co., Evansville, Ind.; Algernon Blair, Montgomery, Ala., contractor.
G95 tons, ventllation building, New York side, north tube, Lincoln tunnel, New

York, to American Bridge Co.. Pittsburgh, through Thompson-Starrett Co., New York, contractor.
fi45 tons, angles, partial requirements, Wright Fleld, O., under ctr. 2178, to Carnegle-Illinois Steel Corp., Pittsburgh, only bidder; remainder belng purchased in open market.
510 tons, hangar No. 2, LaGuarilia fleld, New York, to Harris Structural Steel Co.. New York, through Jonwal Construction Co., New York.
500 tons, clothing renovation plant, quartermaster depot, Kansas CIty, Mo., to Carnegle-Illinols Steel Corp., Pitisburgh, through Unlversal Construction Co., Kansas City.
466 tons, mill building, Continental Steel Corp., Kokomo, Ind., to Wisconsin

EXTRATOUGH is
this Macwhyte PREformed Crine Rope bectuse esuterwires (a) in every strand are specially drawn for outside service. These wires area Macwhyte Crane Rope's "first line of defense'
that's why we give them : Γ OUGH abrasion-resisting skin.
IT'S EXTRA FLEXIBLE, too, because the inner wires (b) in each strand of a Macwhyte PREformed Crane Rope are drawn in a special way to make them extra strong, extra pliable. These inner wires are the reserve strength of the rope.
YOU'LL FIND Macwhyte PREformed Cranc Ropes available from stock in the CORKECT size, grade, and construction you need.

Use the COR R EC.T ropes for your equipment MACWHYTE

PREformed CRANE ROPES

No other sling gives you all the advantages of a Macwhyte Altas Sling. Why? Because no wther sling is made from left-lay AND right-lay endless wire ropes...specially braided in a uniform, balanced, spiral construction.

Thanks to this

special construction of left-AND-right lay ropes yoll get all these idvantages:

(s) A Macrubyte Allas

Wing is posilitely nor-spinning;
(2) It is extremely flexible, kink
resistant, light-sceight, easy 10 handle:
(3) It is ane of the nuorld's SAF EST lifing clements; and
(4) Its servire life is extra long because the left-lay and right-lay roprs work together, do not fight and grind each ohter under lacd.
Men on the job like the way these slings handle. . . you"ll like the waty they help re duce bandling time and costs. Send for Sling Catalog S-6. Please write on company letterhead stating title.

Assure SPEFD Plus SAFETY With

MACWHYTE

Atlas Braided Wire Rope SLINGS

MACWHYTE COMPANY - 2912 Fourteenth Ave. - Kenosha, Wis. Manufacturers of wire rope to meet every need - Left - E'-right lay braided slings - Stainless Steel wire rope - Aircraft cable, Aircraft tie rods, and "Safe-Lock" Swaged Terminals.

Bridge \& Iron Co., Milwaukee. 465 tons, clothing renovation plant, Cumberland General Depot, Pa., to Anthracite Bridge Co., Scranton, Pa.; H. B. Alexander, Harrisburg, Pa., contractor. 425 tons, highway bridge, Dansville, N Y., to American Bridge Co., Pittsburgh, Hornell Construction Co., Hornell. N Y., contractor.

423 tons, six standard finished ammunition bulldings, Kingsbury ordnance plant, Laporte, Ind., for government. to Mississippi Valley Structural Steel Co., Decatur, Ill.; Bates \& Rogers Construction Corp., Laporte, Ind., contractor.
400 tons, power plant, Alexandria, Va, for Barstow Management, Reading, Pa., to Belmont Iron Works, Phlladelphia.

367 tons, overpass, Norfolk county, Virginla, to Virginia Bridge Co., Roanoke.

Va.: W. N. Jackson, Roanoke, contractor.
321 tons, state hlghway bridge, Plattsmouth, Nebr.. to Omaha Steel Works, Omaha, Nebr.
275 tons, bullding No. 26, du Pont de Nemours Co. Inc., Niagara Falls, N. Y., to Bethlehem Steel Co., Buffalo.

260 tons, hangar and shop, Bolling fleld, Washington, to Amerlcan Bridge Co., Pittsburgh.
250 tons, various small jobs, including 100 tons for plant addition, Pennsylvanla Salt Co., Tacoma, to Pacific Car \& Foundry Co., Seattle.
250 tons, ward, shop and miscellaneous bulldings, marine barracks, Quantlco, Va., to Fort Pitt Brldge Works, Pittsburgh, through Harwood-Nebel Construction Co., Washington.
245 tons, Bird street bridge, Boston, state

Increased waste disposal elticiency 60% : reduced initial cost 27%. . . these savings were proved in service with the Roppel 50 yd . Automatic Air Dump Car. Similar savings can be yours on bulk disposal of waste materials and other equally effective savings can be made throughout your plant with proper use of some of the 75 other types of Koppel industrial cars. LL Let us show you these cost figures and prove that the "Koppel way" is the saving way.

project, to Phoenix Bridge Works, Phoenlxville, Pa., through Coleman Bros. Corp., Boston.
236 tons, bridge, East Dubuque, Ill., for Illinols Central rallroad, to American Bridge Co., Pittsburgh.
225 tons, state bridge, Northbridge, Mass., to Bethlehem Steel Co., Bethlehem, Pa., through Carlo Blanchi, Framingham, Mass.
220 tons, state hlghway bridge, Charleston, Miss., to Vincennes Steel Corp., Vincennes, Ind.
200 tons, sub-station, du Pont de Nemours Co. Inc., Nlagara Falls, N. Y., to Ernst Iron Works, Buffalo.
200 tons, building, Acme Steel \& Malleable Iron Works, Buffalo, to R. S. McMannus Steel Construction Co. Inc., Buffalo.
200 tons, highway brldge, Jefferson County, New York, to Bethlehem Steel Co., Buffalo; Bero Engineering Corporation, Buffalo, contractor.
165 tons, Eurekn slough bridge, Eureka, Callf., for state, to Amerlcan Bridge Co., Pittsburgh.
160 tons, bridge, Delaware \& Hudson railroad, West Waterford, N. Y., to American Bridge Co., Pittsburgh.
158 tons, state bridges, route FA 155, section $1-X F$, Haypress, Green county, Illinols, to Illinols Steel Briage Co., Jacksonville, Ill.; bids June 13.
155 tons, preparation bullding, sponsored by Defense Plant Corp., Akron, O., to American Brldge Co., Pittsburgh.

150 tons, state brIdge PSC-C-8141, Long Island rallroad, Hempstead, N. Y., to American Bridge Co., Pittsburgh.
140 tons, state highway bridge, leterboro, N. H., to American Brldge Co., Pittsburgh.
120 tons, crane runway, Chicago Bridge \& Iron Co., Chicago, to American Bridge Co., Pittsburgh.
100 tons, bridge, Schenectady county, New York, to American Bridge Co., Pittsburgh, through Fitzgerald Construction Co., Troy, N. Y.
100 tons, additional faclities, naval air statlon, Miaml, Fla., to Aetna Iron and Steel Co., Jacksonville, through Paul Smith Construction Co., Miami.
100 tons, building additions, Atlas Powder Co., Stamford, Conn., to J. G. Schmidt Iron Works, Passalc, N. J.: Samworth-Hughes Co., Paterson, N. J., contractor; Igoe Bros., Newark, awarded 65 tons reinforeing bars.

SHAPE CONTRACTS PENDING
16,000 tons, 30 and 50 bulldings, St. Louls, for government.
8000 tons, Southwark power house, Phlladelphla Electric Co., Philadelphla: blds early this week.
4000 tons, plant addition. General Electric Co., Lynn, Mass.
1000 tons, terminal market bulldings, Brooklyn, N. Y.; bids July 18.
750 tons, landplane hangar, Anacostia, D. C., for navy.

700 tons, warehouse, Wichita, Kans.. sponsored by Defense Plant Corp.,

SHAPE AWARDS COMPARED
Week ended July 12
Tons
Week ended July 5
14,252
Week ended July 5
21,195
Week ended June 28
This week, 1940
Weekly average, 1941
Weekly average, 1940
Weekly averame June 1911
1911 27,157
Total to date, 1940
514,546
Total to date, 1941
873,759
Includes awards of 100 tons or more.

Washington.

500 tons or more, 850 transmission towers, 183 -mlle power line CouleePuget Sound; H. H. Walker Co., Ltd., awarded 111-mile section, $\$ 523,259 ; 72$ mile section to Fritz Ziebarth, Vancouver, Wash., $\$ 245,872$; by Bonneville project.
400 tons, bridge, Mahoning river, Lowellville, O., for Mahoning county, Ohlo. 380 tons, state highway bridges, Dauphin county, Pennsylvania; bids to state highway department, Harrlsburg, Pa., July 18.
321 tons, grade crossing elimination, Totowa, N. J., Franklin Contracting Co., Newark, N. J. low; bids July 11, Trenton.
300 tons, quartermaster's warehouse, Seattle; Western Constructlon Co., Seattle, low.
300 tons, navy storehouses and magazines, Oyster Bay, Wash., depot; Hoard \& Stingl, Seattle, contractors.
235 tons, Main street bridge, Becket. Mass.; Graves \& Hemmes Inc., Great Barrington, Mass., low, $\$ 114,074.60$.
225 tons, bridge, Bean's Crossing, North bridge, Mass.; Carlo Blanchl, Framing ham, Mass., low, $\$ 150,841.50$.
200 tons, bridge, Fox river, Dayton, 0. for LaSalle county, Ohio
200 tons, bullding addition, Standard Milling Co., Buffalo.
200 tons, building No. 12, du Pont de Nemours Co. Inc., Nlagara Falls, N. Y.
200 tons, building addition, Republic Carbon Co., Niagara Falls, N. Y
187 tons, Dayton bridge, La Salle, III., for LaSalle county; Wllliam J. Howard Inc., Chicago, low.
175 tons, ROTC riding hall, Cornell university, Ithaca, N. Y.

170 tons, underpass, Woodbury, N. J.: one bldder July 11, blds returned unopened.
145 tons, state bridge, Skowhegan, Maine. 125 tons, pattern shop. Worthington Pump \& Machinery Corporation. Burfalo
120 tons, repairs bridge, Forty-third street, Chicago, for New York Central rallroad.
115 tons, Payette division, Boise. Idaho. project; blds to Bolse, July 28.

100 tons, bullding addition, Hewitt Rubber Corporation, Buffalo.
100 tons, angles, channels, I-beams and plates, purchasing officer, Bonneville Power Administration, Portland, Oreg., inv. 2057; bids July 18
Unstated, Oregon state bridges, Clatsop and Lincoln counties; bids to Portland, July 17.
Unstated, steel towers, 230-kv. lines, No. 2069, to Bonneville project. Portland, July 11.

Ferroalloys

Ferroalloy Prices, Page 102
Due to drought in the south, which has affected power production, some sellers of ferroalloys have had to advise customers of a reduction in quotas this month. As a result, July movement for the industry as a whole will fall short of total June deliveries.

Chrome alloys are the latest to be placed on a priority basis, consumers now having to obtain certificates.
Prices continue unchanged, ferro-
manganese holding at $\$ 120$, duty paid, Atlantic and gulf ports, and 19 to 21 per cent spiegeleisen at \$36, Palmerton, Pa .

Reinforcing Bars

Moinforchag Bar Prices, Page 101
Several companies are virtually out of the market as steel is needed for what they consider more important uses. However awards were numerous the past week, or well over 15,000 tons. Chicago notes awards are heavier at the moment, with tonnages from 1000 tons downward. Mills and jobbers are more than ever confining attention to de-
fense construction. Illustrating quiet conditions, largest award in the Philadelphia consuming district the past week involved only 300 tons for barracks for the navy yard.

IAPINFORCING STFEL AWARDS

1500 tons, rebuilding and enlarging dock ordnance depot, Charleston, S. C., to Bethlehem Steel Co., Bethlehem, Pa., through Espy Paving and Construction Co., Savannah, Ga.
1235 tons, paving, Detroit, Wayne county road commission, to Truscon Steel Co., Youngstown, O.
1200 tons, pler, Benlcia Arsenal, Benicia, Callf., to Soule Steel Co., San Franclsco.
1000 tons, drydock addition, navy yard, Portsmouth, N. H., to Jones \& Laughlin Steel Corp., Pittsburgh; Aberthaw Co.,

World's Largest Plate Shear Uses FARREL-SYKES

In this giant plate shear, which will cut steel plates up to $21 / 2^{\prime \prime}$ thick by $13^{\prime} 6^{\prime \prime}$ wide, gears possessing maximum strength and load-carrying capacity had to be used. To secure these qualities, the builder, Thomas Machine Manufacturing Company, equipped this plate shear with Farrel - Sykes Herringbone Gears.

These continuous tooth herringbone gears have a larger number of teeth in contact, which gives them additional strength and ability to carry heavier loads and to withstand shocks, stresses and wear. Wear is retarded by the interlacing of the teeth, creeping engagement and inclined line
of pressure. Due to these characteristics, involute profile and correct tooth action are retained as long as the gears last.

The opposed helices of Far-rel-Sykes Herringbone Gears balance and absorb axial thrust within the gear member, preventing harmful thrust loads and resultant stresses on other parts of the machinery. Precision generated by the Sykes process, these gears are notably quiet and smooth-running.

Farrel-Sykes Gears are built for every type of service and special units are designed to order. Farrel engineers welcome the opportunity to consult with you on your gear problems.

FARREL-BIRMINGHAM COMPANY, INC.

contractor

1000 tons, brass rolling mill, Revere Copper \& Brass Inc., Chicago, to Joseph T. Ryerson \& Son Inc., Chicago; James Stewart Corp., Chicago, contractor.

750 tons, army base, warehouses and bridges, San Juan, Puerto Rico, to Truscon Steel Co., Youngstown, O.: Paul Smith Construction Co., contractor.
700 tons, two shlpways, New York Shipbuilding Co., Camden, N. J., to Truscon Steel Co., Youngstown. O.: Leonard Shaffer, contractor.

600 tons, flve warehouse units, Brookley Fleld, Mobile, Ala., U. S. engineer to Virginia Steel Co., Birmingham; Alger-
non Blair. Montgomery, Ala., contractor.
515 tons, garage and offices, Coca Cola Co., Chicago, to Bethlehem Steel Co., Bethlehem, Pa.; Paschen Bros. Construction Co., Chicago, contractor.
500 tons, buildings, Veteran's hospltal, Fort Howard, Baltimore, to Bethlehem Steel Co., Bethlehem, Pa., through Auf-der-Helde-Aragona, contractor.
450 tons, 14 inert material warehouses, proving ground, Savanna, Ill., for government, to Ceco Steel Products Corp. Chicago; Manhattan Construction Co., Okmulgee, Okla., contractor; blds June 20.

425 tons, administration building, quarlermaster depot, Jeffersonville, Ind., to American Building Supply Co.,

It's a two-way saving . . . in manufacturing because of the simplicity of design by Horsburgh \& Scott engineers and . . . in maintenance and freedom from breakdowns because of the rugged and precision construction of every part from the finest materials. Investigate these H. \& S. Helical Reducers with their lower first cost and longer trouble-free life.

Loulsville, Ky., through George H . Rommel Co., Loulsville, Ky.
410 tons, defense housing, navy yard, Brooklyn, N. Y., to Flreproof Products Co.
360 tons, naval base station facllities, Lakehurst, N. J., to Bethlehem Steel Co., Bethlehem, Pa., through Karno Smith \& Co. and Duffy Construction Co., contractor
350 tons, Jail, Fresno, Calif., to Kyle \& Co., Fresno, Calif.
350 tons, viaduct, two bridges and approaches, Hartford county, Connectlcut, to Joseph T. Ryerson \& Son Inc., Chicago; DeFellce \& Son, contractors.
320 tons, paving, Chicasaw county, Iowa, to Sheffld Steel Corp., Kansas Clty, Mo.
300 tons, barracks, Philadelphia navy yard, to Taylor-Davis Co.
260 tons, fleld scrvice building and armory, Springfleld, Mass., to Truscon Steel Co., Youngstown, O., through Casper-Ranger Construction Co., Holyoke, Mass.
250 tons, addition, American Brass Co., Kenosha, Wis., to Truscon Steel Co.. Youngstown, O.; through Austin Co., contractor.
250 tons, inert storage units, Western Cartrldge Co., Weldon Springs, Mo., to Ceco Steel Products Corp., Chicago; Fraser Brace Engincering Co., contractor; bids June 19.
240 tons, government storehouse, Springheld, Mass., to Truscon Steel Co., Youngstown. O., Caspar Ranger Construction Co., contractor.
200 tons, telephone bullding addition Providence, R. I., to Truscon Steel Co. Youngstown, O., through E. Turgeon Co., Providence, contractor.
178 tons, radio building, station WTMJ, Mllwaukee, to W. H. Pipkorn Co., Mllwaukee; Dahlman Construction Co., Milwaukee, contractor.
176 tons, state highway bridge, FAGH419 H, Bellevue, Jackson county, Iowa, to Sheffield Steel Corp., Kansas City, Mo.; Jensen Construction Co., contractor.
175 tons, Blrd strect bridge, Boston, to Northern Steel Co., through Coleman Bros. Corp., Boston.
160 tons, building, Distler Color Co., Detroit, to Jones \& Laughlin Steel Corp., Pittsburgh; Taylor-Gaskin, contractor.
155 tons, bridge, St. Johnsbury, Vt., to Truscon Steel Co., Youngstown, O., through Charles I. Hosmer Inc., Greenfleld, Mass., contractor.
150 tons, two bulldings, navy yard, Boston, to Concrete Steel Co., through Sawyer Construction Co., Boston.
150 tons, clothing renovation bant. Cumberland General Depot, Pa., to Truscon Steel Co., Youngstown, U.; H. B. Alexander, Harrisburg, Pa., contractor.

145 tons, state highway bridge 1452 , Norton, W. Va., to Ben Tom Supply Co.; through Dodd \& Archer, contractor.
130 tons, state highway project FAP-

CONCRETE BARS COMPARED
Week ended July 12
Tons
Week ended Juls 5
Week ended June 28
This week, 1940
Weekly average, 1941
Weekly average, 1940
Weekly averuse June ….
Total to date, 1940 5,437
8,861
8,585
11,19:
11,661
11,277
Total to date, 1941
324,5\%
Includes awards of 100 tons or more.

30-(A5), Orleans, Nebr., to Sheffield Steel Corp., Kansas City, Mo.
130 tons, includes 90 tons bars, and 40 tons wire mesh, paving, Milwaukee avenue, city of Chicago, to Bethlehem Steel Co., Bethlehem, Pa.; J. A. Mc Garry \& Co., Chlcago, contractors; blds June 18.
120 tons, highway construction and overpass, Berlin, Conn., to Bethlehem Steel Co., Bethlehem, Pa.; Didgini Arrigont, contractor.
115 tons, overpass, Norfolk county, Virginía, to Virginla Steel Co., Richmond: W. N. Jackson, Roanoke, Va., contractor.
101 tons, clothing renovation plant, quartermaster depot, Kansas City, Mo., lo Shefficld Steel Corp, through Unlversal Construction Co., Kansas City.
100 tons, clothing renovation plant, quartermaster depot, Kansas City, Mo., 10 Truscon Steel Co., Youngstown, O.
100 tons, paving, Milwaukee avenue, elty of Chicago, to Universal Highway Products Co., Chlcago; Standard Paving Co., contractor; blds May 19.

100 tons, storage buildings, Avon slynal corps station, Ken., to Truscon steel Co., Youngstown, O., through Flelscher Englneering \& Construction Co., Buifalo.

REINFORCING STEEL PENDING

10,000 tons, government ordnance storage depot, Kendala, N. Y.: Potrier \& McLane, contractors.
6000 tons, naval base work in Pacltic Ocean; sub-bids being taken by contractors, Pactile Naval Base, Alameda, Callf.
2350 tons, Anderson Ranch dam, Idaho blds July 7.
2200 tons, quartermaster's warehouse Seattle; Western Construction Co Seattle, low, $\$ 1,525,450$.
1700 tons, flood wall, army engineers, Jeffersonville, Ind.; bids July 24.
500 tons, Panama, sch. 5279; bids in Washington.
500 tons, river front boulevard, contract 11, Pittsburgh; blds July 22.
470 tons, three over-crossing, Los Angeles county, Callf., for state; bids opened.

450 tons, building addition, Standard Milling Co., Buffalo.

285 tons, Feather River bridge, Nicolaus, Callf.; blds opened.

255 tons, hlgh school, San Jose, Callf. blds in.

220 tons, bridges, Dauphin county, Pennsylvania; blds to state highway department, Harrisburg, Pa., July 18.
200 tons, high school, Alpena, Mich. Spence Bros., contractors.
170 tons, two pumping stations and two likes, army engineers, Lowell, Mass.; bids July 16.
155 tons, bullding, American Medical assoclation, Chleago; George A. Fuller Co., contractor.
123 tons, Medico-Physie building, Unicersity of California, Berkeley, Callf.: blds opened.

100 tons, power plant, navy yard, Norfolk, Va.; Burns \& Roe, contractors.
100 tons, runways ete., airport, west Lebanon, N. H.; M. Dematteo ConstrucLlon Co., Milton, Mass., low.
Unstated, state underpass at Worley, Idaho; blds to Bolse, July 11.
Unstated, navy storehouses and magazines, Oyster Bay, Wash., depot; Hoard \& Stingl, Seattle, awarded at $\$ 168$.

Semifinished Steel

Semifinished Priers, Page 10

Allocation of additional British tonnage focuses attention on semifinished steel, where there is considerable dissatisfaction with present circumstances.

The feeling is growing among mill men that British buying should be shifted more to finished products wherever possible, to insure enough semifinished material to keep American finishing mills running at capacity. In some cases there is considerable opposition to taking any further British business because it is felt prices are too low.

This condition has been aggravated because it is known that British steel mills are still shipping finished products in the export market, and are still taking orders, notably in South America, in competition with American mills.

Semifinished material for domestic consumption on non-defense work is tighter, with rods and sheet bars virtually closed. There is some slight flexibility at the moment because of the automotive situation, which will disappear when shipments are resumed. Because of the price situation, a number of shifts have been made in supply lines between integrated and nonintegrated mills.

Write for this

folder that fully de scribes this new and unusual bearing. It's FREE.

Here is a new and unusual bearing material that has already established many new records of performance. PreCast Bearing BRONZE ON STEEL, a thin wall, laminated type of bearing, combines the bearing qualities of bronze with the strength of steel.

The bronze alloy-S.A.E. 64, in powder form-is permanently bonded to strip steel. The process of manufacturing bearings or bushings from Pre-Cast Bearing BRONZE ON STEEL is essentially a stamping and forming operation. As a result, few bearings are as economical as Pre-Cast Bearing BRONZE ON STEEL, particularly when there is production quantities.

Pre-Cast Bearing BRONZE ON STEEL is also available in rolls-up to 400 feet in length-or as plates, washers or various types of stampings. It will pay you to investigate this new type of bearing. A request, on your business letterhead, will bring you complete information plus a sample bearing. Write TODAY.

Pig Iron

Pig Iron Prices, Page 102
Tight conditions are developing in pig iron supply and operations of foundries and small steelmakers are threatened with shortage. Pig iron producers have felt increasing demand since the price ceiling was announced and many refuse to antertain inquiries from any but regular customers. In spite of this limit on sales it is not certain sufficient iron will be available for the latter as considerable capacity in the eastern portion of the country is engaged in producing iron for delivery to Great Britain, with indications the tonnage for that purpose may
be increased this month.
The supply hinges entirely on blast furnace capacity as supply of ore, coke and limestone are ample. Several stacks now out for repair will be back soon. The Tennessee Coal, Iron \& Railroad Co. will blow in its No. 2 stack at Ensley, Ala, within a fortnight and Jones \& Laughlin Steel Corp., Pittsburgh, has relighted a stack at its Eliza furnace after relining.

In Southern Ohio the only local producer is out of blast and prices on iron delivered in Cincinnati and other consuming points is based on Hamilton, O., with freight added. This limits possible outside purchases because of the low furnace price. Southern pig iron producers

are not shipping iron to northern melters as freely as usual, freight rates and higher production costs because of increased mine wages making it less profitable. This reduced supply increases demand on northern stacks.

Some consumers in great need have been able to obtain relief by direct appeal to Washington on defense work. New priority schedules, expected this month, may case the situation somewhat.

Frequently no bids are received on pig iron inquiries for the navy, 223 tons of foundry for Norfolk, Va., recently going begging. The department of supplies and accounts, nevertheless is asking supplemental bids on 378 tons for delivery at Philadelphia, Brooklyn and Puget Sound, most being for Philadelphia, July 11, sch. 6225.

With some confusion continuing as to whether the 50 -cent differential for 50 points of manganese above one per cent applies to basic, eastern sellers have heen further advised bv OPACS officials that jt does. or at least it is optional with the individual furnace. Apparently, it was not originallv intended to aoply, but in view of the manner in which the ruling was phrased. officials in Washington have decided to let it stand as applving to hasic and some producers are quoting on this basis.

Orders against the 240000 -ton inquiry for bessemer and low phosphorus pio iron for Great Britain under the lease-lend program are being issued in nieromeal fashion. Anproximatelv 85.000 tons have thus been distributed amono several producers to date. mainlv bessemer, with the possible expention of a small tonnage of special low phosnhorus. The original inquiry called for delivery over a period of five months, beginning with July. Whether this full program will he realized remains to be seen. There is unquestionahlv a shortage of $n^{i m}$ iron. and particularly of low phosphorus.

Scrap

Gerap Prices, Page 10

Scrap flow has not been increased appreciably, although trading is somewhat more active, following further interpretations by OPACS. Clarification of base prices and switching charges has helped and it is expected other revisions will be made, as many inequalities remain.

The principal difficulty now is the increasing tonnage passing directly from producer to consumer instead of through normal channels. The government apparently is following this plan, turnings and borings at one arsenal now being returned to companies that supplied the steel. Formerly this material was offered for bids by dealers. The same practice is growing among automotive manufacturers, where offerings are smaller in the face of heavy automobile production. As a result of this situation brokers accustomed to handle industrial tonnage find their supplies reduced and melters de-
pending on these suppliers are facing possible shortage.
Scrap production by manufacturers engaged in non-defense work is declining and that from plants engaged in defense work is expanding. A substantial volume in the aggregate is moving but scarcely sufficient to support present heavy steel production. Consumer stocks are being used and are dwindling to the danger point in many cases. Small foundries are buying material wherever available and taking truck delivery on small lots.

Regulations by the government have pegged prices but apparentl" have not stimulated gathering and distribution of scrap from remote areas. Present prices are too low to tempt collections in locations removed from consuming districts Trading is practically on a spot hasis and few commitments are being made for future delivery. hrokers being unable to assurn themselves of tonnage far ahead.

Some scrap from Detroit terri tory is prevented from going to distant mills hecause of restrictions of the $\$ 1$ springboard clause in OPACS regulations. Sentiment among brokers is pessimistic, and much of the former incentive and keen competitive spirit have been washed out of the scrap business by government control.

Foundries in Eastern Pennsyl vania are definitely short of cast scrap and some are operating only three days a week, though they could be on full schedule if raw materials were available.
Buffalo interests report a steady movement of scran from the Atlantic seaboard up the canal, for delivery to Canadian melters. Dealers at Buffalo are receiving little material from outside the district, lake shipments having become much less than recently.

Pacific Coast

San Francisco-Featuring the market this week was the award of 4000 new freight cars for the Southern Pacific Co., involving 63, 200 tons of steel.

Consumers of steel products find it increasinglv difficult to obtain material when needed and in many instances contractors in an endeavor to obtain the necessary steel and who have received sub-bids from competitive interests have ap proached the second, third and fourth highest bidder and find it difficult, even then, to secure the steel.

The most active market was that for structural shapes and demand continues strong. Over 105,000 tons are pending.

Plate awards totaled only 450 tons. As far as can be ascertained the Seattle-Tacoma Shipbuildin: Corp., Tacoma, Wash., has not yet placed 72,000 tons for $30 \mathrm{C}-3$ tyne cargo vessels recentlv awarded by the United States Maritime Com mission.

Supplies of cast iron pipe in dis tributors' vards are badly depleted, due to lack of shipping space when
foundries can handle orders or when proucers cannot fill orders when space is available. Awards aggregated 700 tons and brought the total to date to 30009 tons compared with 19,925 tons for the corresponding period in 1940.

Seattle-National defense proj. ects this week completely overshadowed the market in this area, heavy awards featuring the situation.
Of major importance is the plan of Boeing Aircraft Co. to erect a $\$ 10,000,000$ plant to build flying boats for the navy on the shore of Lake Washington, Seattle, steel construction involving about 2000 tons of concrete bars and 12,000 tons of shapes. Main assembly
building will be 900×1100 feet, also warehouses, boiler house, paint, machine shops and other units. The Austin Co. is expected to receive the award.

Bonneville project this week awarded contracts totaling $\$ 3,450$, 000 for transmission lines, and electrical equipment and announces appropriation of $\$ 7,200,000$ for $230-\mathrm{kv}$ second Bonneville-Coulee line, 341 miles, and $115-\mathrm{kv}$. Bonne-ville-Vancouver line and $230-\mathrm{kv}$. steel tower crossing at Bradford Island. At Fort Lewis eight building and facilities contracts, total. ing $\$ 500,000$, were awarded this week. The Umatilla ordnance depot, Hermiston, Ore. has been given a $\$ 3,145,841$ supplementary

1. Precision solf-aligning ball bearing.
2. One-piece sturdy housing.
3. Removable end cap.
4. No drag labyrinth seals.
5. Simple mounting wreach.

Send for new 96-page Catalog No. 140 which gives defailed information on the complete Ahlbers line of Ball Bearings Roller Bearings and Pillow Blocks.

Their compaciness and simplicity of design make them ideal for light and normal service, where a rellable yel inexpenslve bearing ts required.
The full sell-aligning, precision iype ball bearing, is mounted in a one plece, Parkerized, and accuralely machined housing. Seals, to protect the bearing and retain lubricant are non-wearing Neoprene rings, which turn with the shalt and float in the housing.

This labyrinth st type of seal is frictlonless, long wearing, and exceplionally effective.

This series is available in shalt sizes from $\frac{9}{6}$ " to $2 \frac{3}{16}$ ", in elther fixed or expansion types. Closed end type is optional.

AHLBERGBEARIDG. COMPADY
 Manufecturers of (CJB) Master Ball Bearings:

3015 West 47th Street - . . Chicago. III.
contract bringing this project to a total of $\$ 10,760,534$. United States engineer, Seattle, plans to award the contract for the 11.2 mile Alaska Railroad extension to West Construction, Southboro, Mass. at $\$ 3,524,966$.

Pacific Car \& Foundry Co., Seattle, has been awarded 3000 tons of steel for submarine nets for the navy.
Rolling mills and fabricating plants are giving first attention to army and navy requirements. Pending tonnages of reinforcing bars for defense projects in this area exceed 7500 tons. Army contracts for airbase gas storage facilities involve large tonnages of
plates and other materials.
Cast iron pipe inquiries in excess of 750 tons are pending, some awaiting more definite delivery dates. Jobbing volume is heavy, dealers handicapped by low stocks and difficulty of making replacements. Rolling mills report ample supplies of steel scrap but cast iron scrap continues scarce and in strong demand.

Canada

Toronto, Ont.--In an effort to obtain more speedy delivery of steel necessary to the expansion of Canada's war industry some switch-

LET HACKNEY HELP YOU DESIGN A COMPETITIVE ADVANTAGE

- Hackney special parts have increased the ompetitive advantages of scores of products. Many times Hackney deep drawn shells have been able to reduce overall weight . . . at other times strength has been increased \qquad while often both results are obtained. Appsarance is improved. Many times improved durability is brought about, due to Hackney's aid in designing and manufacturing some special part for an industrial product.

In the manufacture of compressors, for instance, Hackney air receivers add not only to the efficiency of the product, but to its salability as well. Shown above is a vertical type Hackney air receiver. Compressor and motor are mounted on the saddle, attached to the top head. This receiver of two-piece construction has only one body weld (circumferential) and is equipped with pressed steel legs. The A.S.M.E. inspection openings and other inlet and outlet openings can be seen.
Hackney welding and deep drawing have permitted savings on other manufacturing processes. And many times production has been speeded up, and the cost of an individual part has been reduced. Hackney, of course, works in all types of metals. Send today for complete information-Hackney engineers may be able to make practical suzgestions for improving your products-or effecting cost reductions. There is no obligation.

PRESSED STEEL TANK COMPANY

201 Sa. LaSalla St, Raam 1511, Chiesge- 1387 Vanfarbilt Cancjurse Bldg, New

ing of contracts with primary pro ducers has been undertaken by the government. In this connection it is stated that a large order for bar steel placed with an On tario mill has been cancelled and the order given to another producer which is said to be better equipped for quick delivery. It is understood that efforts will be made to place business with companies which can give best delivery.
With placing of additional ship contracts representing outlay of upwards of $\$ 6,000,000$ with two Ontario builders, further large orders for plates are pending. It is estimated that pending plate orders total upwards of 10,000 tons, a large part of which will go to the United States. One local U. S. mill representative states that numerous orders for plates are reach. ing his desk but his company is not in a position to accept the business.

While sheet bookings by Canadian producers are tapering the slackening is due entirely to reluctance of mills to accept more business. There has been no definite announcement that mills are refusing orders although consumers trying to place contracts recently have been advised to wait. Sheet backlogs extend well into 1942.

Merchant bar orders are increasing and most Canadian production has been contracted to the yearend. Civilian consumers experience more difficulty in obtaining deliveries as most shipments are going direct to war industries. Inquiries indicate further large expansion in demand.

Structural steel awards continue high. War construction projects take most steel from fabricating shops, practically all of which are booked almost solid to the yearend. Dominion Bridge Co., Lachine. Que., and Toronto, Ont., closed approximately 10,000 tons for war projects, while a further 8000 tons was booked by other fabricators in Ontario. Among the large orders pending is 5000 tons for new war industry in Quebec for the Canadian government and 2000 tons for a second plant near Montreal.

Orders for merchant pig iron are gaining but show little change in tonnage. Most shipments are under 300 tons, following the policy laid down by the steel controller that deliveries can be made only for immediate needs. Under the new ruling cancelling all forward delivery contracts melters now must place orders for each shipment, and these in turn go through the office of the steel controller for approval. Producers are maintaining deliveries of foundry and malleable grades at about 4000 tons weekly.

Increased action is reported in iron and steel scrap markets. Dealers and consumers are seeking new sources of cast scrap and while no speculative buying is being done consumers are jumping prices to obtain sufficient for current needs.

Nonferrous Metal Prices

Juls	Copper								Anti-		
	Electro, del.	Lake, del.	Casting,	Stralt	S Tin,	Lead	Lead East	7 lnc	Aluminum		Nickel Cath-
	Conn.	Midwest	refinery	Spot	Futures	N. Y.	St. L .	St. L.	99\%	Spot, N.Y.	odes
3	12.00	12.00	12.25	53.00	$52.12^{1 / 2}$	5.85	5.70	7.25	17.00	14.00	35.00
4-Hollday 12.00 12.25 53.00											
5	12.00	12.00	12.25	53.00	$52.121 / 4$	5.85	5.70	7.25	17.00	14.00	35.00
7	12.00	12.00	12.25	53.00	52.25	5.85	5.70	7.25	17.00	14.00	35.00
8	12.00	12.00	12.25	53.00	52.25	5.85	5.70	7.25	17.00	14.00	35.00
9	12.00	12,00	12.25	53.25	$52.371 / 2$	5.85	5.70	7.25	17.00	14.00	35.00
10	12.00	12.00	12.25	53.25	52.37%	5.85	5.70	7.25	17.00	14.00	35.00
11	12.00	12.00	12.25	53.50	52.621/2	5.85	5.70	7.25	17.00	14.00	35.00

F.o.b. mill base, cents per lb, except as pecifed. Copper brass products based on 12.00 c Conn. copper

Sheets

Yellow brass (hlgh)	19.48
Copper, hot rolled	20.87
Lead, cut to jobbers	9.10
Zinc, 100 lb . base	12.50
Tube	
High yellow brass	22.23
Seamless copper	21.37
Rods	
High yellow brass	15.01
Copper, hot rolled	17.37
Anode	
Copper, untrimmed	18.12
Wlire	
Fellow brass (high)	19.73

OLO METALS

Nom. Dealers' Buying Prsces

No. 1 Composition Red Brass

New York	9.25
Cleveland	9.50-10.00
Chicago	9.00-9.25
St. Louls	9,00

St. Louls

Heavy Copper and Wire

New York, No. 1. 10.25-10.37 $1 / 2$
Cleveland, No. 1 10.00-10.50
Chlcago, No. 1 10.00-10.25
St. Louls
Composition Brass Turnings
New York
9.00

Lght Copper

Nonferrous Metals

New York - With production, shipments and fabrication of nonferrous metals at peak rates without covering needs fully, the government is expected to extend its control further over the markets.
Copper-General preference order providing priority control over
copper was amended to make it effective over copper-base alloys and fabricated products made from copper or from copper-bearing base al loys, such as brass or bronze. Be. cause of the shortage in copper, the

Change from wood to Monel brings 5 Big Benefits

This all-welded Monel pickling basket is one of five in use by Scyler Manufacturing Company, Etna, Pa. Made by Youngstown Welding \& Engineering Co., of Youngstown, Ohio, it weighs only 307 lbs ., yet carries loads of bolts, washers, lag screws, etc., weighing up to 2500 Ibs.

Built to replace wood, these allwelded Monel baskets have shown in service 5 important advantages:

1. 10% greater load capacity with same outside dimensions.
2. Quick and easy handling in loading, transporting, and dumping.
\qquad MOMEL
amendment stipulates that after copper has been set aside for the OPM emergency pool, defense orders must be given preference over non-defense orders. Additional changes are to be made in the copper order later on to provide a fuller measure of control over all copper supplies.

Lead-The trade awaits purchase by the Metals Reserve Co. of a large tonnage of refined lead from Canada, Mexico, and Peru. Demand remains in excess of the tonnage produced here and imported as refined lead.
Zinc-Total producer and consumer stocks are less than 65,000 tons. Head of the OPM conservation unit suggests a 9-cent price

3. Faster Pickling, due to better circulation of acid through all part's of load.
4. Rejects eliminated. Threads of heavy bolts previously became imbedded in wood, did not clean, were improperly galvanized.
5. No mainfenance or loss of service during repairs.

Many plants are utilizing the advantages of Monel pickling equipment, thus speeding defense production. Write for information on Monel pick ling equipment. Address:

THE INTERNATIONAL NICKEL
COMPANY, INC.
67 Wall Street, New York, N. Y.
HONEL
 Inc., which is spplied to m nickel
altoy contuininy pproximately twor-
thirds nickel aud une-thisd couper.

Behind the Scenes with STEEL

Pittsburgh Party

- Pittsburgh scrap circles are still talking about the big party last week. Invitations read: "Twenty Years Together. Joc Jacobson and Amos Bowman, upon completion of twenty years together (and betore they both go on a diet) request your presence at a Cocktail Party and Buffet Dinner on July 1, 1941 at 6:30 P. M. in the Urban Room, William Penn Hotel, Pittsburgh, Pa." Ioc and Amos scale in at about 500 pounds between them, and incidentally represent Luria Bros. Co. The party was about the same size-replete with food and drink, Hoor show and 40 beautiful hostesses, count cm 40, scrap dealers and purchasing agents. Joe and Bow were presented with a chock apiece by their company, and suitable but inmudible speeches were made by those who so desired. Steel's prodigious Pittsburgh editor, Bob

Hartiond was there to enjoy it all and snapped the accompanying picture of the two principals as they greeted one of their guests, L. E. Urhich of Oliver Iron \& Steel Co.

Scarfing

- Steelworks editor, John Knox ran headlong into the clutches of a Youngstown head librarian a few weeks ago and came out second best. John, of course, has lived and breathed this stelmaking business for lo these many years and can qualify as an ex-pert-at or away from home. But says the librarian in this case. "How am I going to index that article of yours on Scarfingthere ain't no such word!" "Oh yeh,", says lohn, and pulled out his big Websters only to hunt long and hard in vain. "The word." she sars. "is scarifying,
regardless of what the gentlemen in the mills may call it"-and right she is.

Longfellow

- That reminds us of another librarian who was asked the meaning and correct spelling of Lake Chaugogagogmanchaugagochaubunagungamaug, which as you may know is up near Webster, Mass. That two-score tongue-twister is usually abbreviated to the last six syllables and according to our best Indian interpreter means: "You fish on your side, I fish on my side, nobody fish in the middle!"

Very Funny

- If you don't mind secondhand stories, a friend of ours just told us about a navy friend of his who was home last week for a short leave from Atlantic patrol duty. Our friend quizzed the navy man for just a little inkling of what was going on out there but got nowhere. "I can't tell a thing," said the officer, "except that it was very funny when we made into shore this last trip we suddenly discovered we'd lost all our torpedoes and depth bombs." Probably the sea gulls swiped them one night when everyone was asleep.

Competition

The New Yorker magazine may have something with their quip on the recent industrial awards to two west coast airplane workers. One prize went to Bill Holcomb, Lockheed foreman, for inventing an clectromagnetic riveting gun and another prize to Boeing's Oscar Leibst for a structural design eliminating the use of rivets and clips! Quipped the N. Y.: That's science for you-lousy with ideas but no direction.

Wing Tips

© This week on page 41 you will find the first appearance of a regular feature in Sterl which we modestly predict will rival, cven before its baptismal ink is dry, those other two companion features. Mirrors of Motordom and Windows of Washington. Don't miss "Wing Tips" this week.

Shrdle
for zinc to bring out extra ore production.

Tin-Consumption in May increased $81 / 2$ per cent while that in solder alone increased 24 per cent. This was reported just after the National Academy of Sciences had recommended a sharp reduction in tin solders and spoke of saving 75 per cent of the amount used by substitution. Prices advanced to the basis of 53.50 c for Straits spot, the highest since last February. Supplies continued in excess of demand though over several weeks consumers willingly buy all the tin offered in order to increase their reserves.
Fifteenth anniversary of General Electric Co.'s all-steel refrigerator cabinet was recently observed at a dinner honoring W. L. Merrill, who developed the cabinet, and J. L. Knight, refrigerator cabinet engineering department. Forty-eight members of the General Electric organization attended the dinner, in Erie, Pa.

Steel in Europe

Foreign Steel Prices, Page 103
London-(By Cable)-Steel prices in Great Britain are unchanged although furnace coke has been advanced 1s 3d per ton. Pig iron supplies continue satisfactory except in hematite. Steel supplies are sufficient to insure satisfactory delivery on war contracts. Rolling mills are working at capacity. Large demand continues for sheets, special steels and shipbuilding material. Tin plate production continues severely restricted.

Tungsten Ore

Shipments of Bolivian tunosten begin this month against a 3 -year contract recently signed hy the Metals Reserve Corp., which outbid Japan for practically the entire output of that country for that period. The contract calls for the delivery of a minimum of 10.000 tons over the three years and a maximum of 14.000 tons.

Bolivian production over recent months has been expanding steadily, so that some in the trade believe total shipments will be nearer the maximum than the minimum. During the first World war, it is said, Bolivian production jumped from 265 to 3500 tons a year. Almost immediately after the end of hor. tilities it dropped to around 500 tons.

Meanwhile, shipments from China are coming through steadily, although as a matter of policy tonnage is heing delivered in relatively small lots. For instance, in June a shipment of 400 tons came in. and a similar tonnage is scheduled to arrive this month and about 600 tons in August. Since the emergency began about a year ago approximately 7600 tons has been received, it is estimated.

Domestic production of scheelite is being stepped up, with some
trade leaders estimating an increase this year of about 40 pel cent, which would bring the output up to around 6000 tons.

The relative stability in ore has been reflected in tungsten products For instance, in tungsten metal powder, $98-99$ per cent, the principal commercial grade, prices have held at around $\$ 2.50$ to $\$ 2.60$ per pound, depending upon quantity.

Aluminum Scrap Dealers Cautioned by Stettinius

Priorities Director Stettinius last week cautioned the foundries and melters, consumers and dealers of aluminum scrap that scrap may not be sold to processors who do not have A-10 preference ratings. Some smelters and dealers have misinterp:eted the order, which did not restrict sale or transfer of scrap between dealers although banning deliveries to smelters without preference ratings.

Mr. Stettinius said a number of cases have been reported where scrap is sold to processors without ratings in the belief that the limitations of the order apply only to deliveries for defense purposes. "The interpretation that scrap can be sold to processors without an A-10 rating if it is intended for nondefense purposes is incorrect," he said.

Small Producers Quote "F.O.B. Mill Prices"

PITTSBURGH

- Smaller mills are taking advantage of the revised OPACS Price Schedule No. 6, permitting all steel producers to quote on the basis of the basing point nearest the place where the product is produced, rather than at the basing point providing lowest delivered price. They are in effect quoting f.o.b. mill prices, freight charges to be paid by customers. This is made necessary by steadily increasing costs, a number of producers being in red ink.

There is a tendency on their part to take new orders from all cus-

[^10]tomers on this basis and general adoption appears to be in prospect.
The larger, completely integrated mills are proceeding cautiously. They have not as yet applied this f.o.b. pricing plan to their regular customers and there is not now any intention of doing so. These mills take the position that as they have been opposing the f.o.b. setup for many years it is to their advantage to maintain the basing point system, to be able to compete for business outside their immediate territory after the emergency is ended.

However, the larger sellers are applying f.o.b. mill prices on some business. This is mainly for defense products and is termed "dislocated" tonnage, in that points of delivery generally are far outside the normal sales "sphere" of the mills involved, meaning that freight charges are high.

$\$ 120,000,000$ U. S. Orders

 For Aluminum in Canada
(Concluded from Page 47)

from Canadian and British governments.

Research Industries Ltd., Toronto, a government-owned company, has received an order for $\$ 40,000,000$ worth of British radiolocators. Device, adaptable for use on land or sea and in the air, detects approaching aircraft miles away by means of electrical waves which are broken when a plane passes through.

Department of Munitions and Supply, in the week ended June 27, placed 3591 contracts with $\$ 31,689$,497 total valuation. Awards placed with United States companies aggregated $\$ 5,823,0334$. The orders:

Shiphuilding: Port Arthur Shlphuilding Co, Litd., Port Arthur, Ont., $\$ 3,840,000$;

Shaped Wire, Welding

 Electrodes and General WireIn this period of emergency, when Na tional Defense takes precedence, many find it possible to use new production standards on new or substitute materials.

We know from experience that many users of shaped wire have been able to adapt standard production shapes to replace shapes that require special mill runs.

The shapes shown above suggest a few of the many which are standard that Page turns out-widths up to $3 / 8^{\prime \prime}$ and end section areas to approximately .250 square inches.

PAGE STEEL AND WIRE DIVISION monessen, pennsylvania

In Business for Your Safety

Dufferin Shipbullaling Co. Lttl., Toronto, $\$ 2.499,600$.

Dockyard supplles: Canadian John Wood Mfg. Co. Ltd., Toronto, $\$ 14,386$; William Kennedy \& Sons Lid., Owen Sound, Ont., $\$ 21,260$; British Ropes (Can-
adian Fictory) Ltd., Vancouver, is. C. 522,885.

Land transport: General Motors Produets of Canada Lid., Oshawa, Ont., \$1,428,242; Goodyear Tire \& Rubber Co. of Canada Ltd., New Toronto, Ont., $\$ 18,705$;

Welding economy is never

It is the interval between welds, the positioning time that eats into the profits of production welding. Eliminate the extra moves and you save money right away. You can do it by "setting-up" just ance on a C-F Positioner for all welds . . top, bottom and sides.

Metallic Rooflng Co. Ltd., Toronto, \$295, 650; Hamilton Bridge Co. Ltd., Hamllton, Ont., \$24,800; Ford Motor Co. of Canada Ltd., Windsor, Ont., $\$ 32,876$.

Aireraft: Canadian Pratt \& Whitney Aircraft Co. Ltd., Longueull, Que., \$84. 097; Falrchild Aireraft Ltd., Longueull. S8283; Aviation Electric Ltd., Montreal, Que., \$91,561; Bristol Aireraft Products Ltd., Montreal, $\$ 226,550$; Canadian Car \& Foundry Co. Ltd., Montreal, \$6114 Canadian Wright Ltcl., Montreal, \$71,027 International Paints (Canada) Ltd., Montreal, $\$ 7219$; S. \& S. Atrcraft Lid., Ottawa, Ont., $\$ 42,768$; Fleet Alrcraft Letd., Ft Eric, Ont., \$84,056; Amalgamated Elec tric Corp. Ltd., Toronto, $\$ 24,840$; Easy Washing Machine Co. Ltd., Toronto, $\$ 60$, 767; Wagner Brake Service Co. Ltd., Toronto, \$5550; Smith \& Stone Lid., Georgetown, Ont., \$8975.

Electrical equipment: Aviation Electrlc Ltd., Montreal, $\$ 5807$; Canadian Marconl Co., Montreal, $\$ 18,023$; IR. C. A Victor Co. Litd., Montreal, $\$ 13,689$; Canadian General Electric Co. Ltd., Ottawa, $\$ 20,452$; Canadlan Westinghouse Co. Ltd. Ottawa, $\$ 16,405$; Northern Electric Ltd. Ottawa, $\$ 31,458$; Canadian Telephones Supplles Ltd., Toronto, $\$ 15,191$; Willard Storage Battery Co. of Canada Ltd., Tor onto, $\$ 12,750$; Small Electric Motors (Canada) Ltd., Leaside. Ont., \$45,930; Service Lamp Co. Ltd., London, Ont., $\$ 645 \%$.
Instruments: Canadian General Electric Co. Ltd., Ottawa, $\$ 28,522$; Ontario HughesOwens Co. Ltd., Ottawa, $\$ 81,977$; Viceroy Mifg. Co. Ltd., Toronto, $\$ 8234$.
Machinery: Dominion Holst \& Shove Co. Led., Montreal, $\$ 29,982$; Edward Webb $\&$ Sons, Toronto, $\$ 31,065$; A. R. Williams Machinery Co. Lid., Toronto, $\$ 6075$; Lufkin Rule Co. of Canada Ltd., Windsor, $\$ 5078$.
Ordnance: Gauthier \& Jullen, Portneuf Station, Que., $\$ 45,350$.
Munltons: International Flare Signa Co. Ltd., Waterloo, Que., $\$ 119,891$; Canadian Industries Ltd., Montreal, $\$ 6742$; Defense Industrles Lid., Montreal, \$27,913; Gurney Foundry Co. Ltd., Toronto, \$26,145; T. W. Hand Fireworks Co. Ltd., Cooksville, Ont., $\$ 16,485$; Dominion Electrohome Industrles Lid., Kltchener, Ont., $\$ 17,852$; Chatham Malleable \& Steel Products Lid., Chatham, Ont., $\$ 7356$.

Metals: British Metal Corp. (Canada) Ltd., Montreal, \$143,672.

Miscellaneous: Canadian Locomotive Co. Ltd., Kings!on, Ont., $\$ 27,600$; Canadian Industrles Ltd., Montreal, \$13,206: General Steel Wares Ltd., Toronto, $\$ 96$,500; Galt Malleable Iron Co. Ltd., Galt, Ont., $\$ 22,360$; Canadian General Rubber Co. Ltd., Galt, $\$ 75,385$; Kaufman Rubber Co. Ltd., Kitchener, $\$ 39,730$; Gillette Safety Razor Co. of Canada Ltd., Montreal, $\$ 11,700 ;$ Pal Blade Corp., Montreal, $\$ 14,400$; Dominion Bridge Co. Ltd., Lachine, Que., \$8312; New Brunswlek Electric Power Commission, St. John, N. B., $\$ 10,000$; Hydro-Electric Power Commisslon of Ontario, Toronto, $\$ 600$; Nelson River Construction Co. Ltd., Winnipeg, Man., \$8000; Waterman-Waterbury Mfg. Co. Ltd., Regina, Sask., $\$ 35,000$; Truscon Steel Co. of Canada Ltd., Walkerville, Ont., \$8000; Western Steel Products Corp. Ltd., Ottawa, $\$ 15,000$; Horton Steel Works Ltd., Toronto, $\$ 25,000$.

War construction projects: Coast Construction Co., Vancouver, B. C., RCAF station, $\$ 208,000 ;$ A. Janin \& Co. Ltd., Montreal, RCAF station, $\$ 370,000$; J H. Porter \& Sons Lid., Montreal, dock at Hallfax, N. S., \$128,000; Dominion Bridge Co. Ltd., Lachine, Que., steel for RCAF station, $\$ 100,000$; Acadia Construction Co. Ltd., Hallfax, N. S., S77,975; Stewart Construction Co. Ltd., Sherbrooke, Que., $\$ 267,352$: Atlas Construction Co. Lid., Montreal, erection of war materials plant in Quebec, $\$ 5,349$, 0 ou: Ontario Construction Co. Lid., St. Catharines, Ont., \$92.750.

and ENTERPRISE

Ohio

CLEVELAND-Parker Appliance Co., 17325 Euclid avenue, is erecting three bulldings in addition to expansion pro gram started in April, including storage building 120×400 feet, factory building 100×380 feet and laboratory building 100×220 feet, the three to cost about $\$ 285,000$.

CLEVELAND-Hertner Electric Co., 12690 Elmwood avenue, is taking bids through Walter G. Caldwell, architect, 838 Engineers building, for a one-story plant with 14,640 square feet floor space and wing with 1920 square feet for oven room.

CLEVELAND-Reliance Electric \& Engineering Co., 1088 Ivanhoe Road, is adding about 2560 square feet, costing about $\$ 8000$.

ELYRIA, O.-Bendix Westinghouse Automotive Air Brake Co., 901 Cleveland avenue, is taking bids on a con-

Additional Construction and Enterprise leads may be found in the list of Shapes Pending on page 108 and Reinforcing Bars Pending on page 111 in this issue.
crete and steel loading dock 28×243 feet, through Argonaut Realty division of General Motors Corp., Detroit.

EUCLID, O.-E. W. Bliss Co., 22501 st. Clair avenue, has let contract for a one-story 100×112-foot addition, to the Austin Co., 16112 Euclhd avenue, Cleveland, at about $\$ 50,000$.

MANSFIELD, O.-Humphrey Mig. Co., 201 East Fifth street, manufacturer of plumbing supplles, has let contract to Jacob Wolf Co., $11 \frac{1}{2}$ West Fifth street, for one story addition 80×100 feet, to cost about $\$ 12,000$.

NEW PHILADELPHIA, O.-Election will be held August 12 on $\$ 100,000$ in bonds for a sewer system. A. Rosch is clty engineer.

New York

NIAGARA FALLS, N. Y.-Frontier Bronze Corp., 210 Franklin street, I3uffalo, has plans by W. A. Cannon, Niagara Falls, for a foundry, offlec and pattern storage building, to cost about $\$ 40,000$.

New Jersey

Garfield, N. J.-Heyden Chemical Corp., plans a new powerhouse at its chemical works, estimated to cost $\$ 300$,000 , with equipment.

Pennsylvania

ERIE, PA. - General Electric Co., Schenectady, N. Y., Will bulld $\$ 10,000,000$ plant here for production of turbines. with about 225,000 square feet floor space. Machine tool equlpment will cost $\$ 9,000,000$, the remalnder being for the structure.
ERIE, PA.-American Boller Works, root of State street, is having plans prepared for an additional plant unit, to cost about $\$ 50,000$.

GROVE CITY, PA.-Borough councll plans extensions and improvements in the municipal electric power plant and additional equipment. Chester Fingineers

Just because RHOADES METALINE OILLESS BEARINGS have nothing to do with oil and grease . . . Just because they are so clean the food, textile, paper and tobacco industries use them everywhere . . . Don't get the idea that they cannot take on hard, heavy, speedy and hot jobs.

- You'll find them helping make steel where the severest demands are made on bearings-in furnace doors, annealing cars, soaking pit headers, hot shears, conveyor rolls, derricks and all sorts of other places. For more than three-score years,
- METALINE OILLESS BRONZE BEARINGS have done hard work in steel plants. Today they are used more widely than ever before, for plant and production men know they are reliable and give good service a long time.

R. W. RHOADES METALINE CO., INC. P. O. BOX 1 LONG ISLAND CHIY, N. Y.

"Right the first time ... and right on time!"

It's a 49 -year tradition here at Sharon to deliver each order on schedule and exactly as specified. You can place your steel fabricating jobs with us in complete confidence. The resources of General American Transportation Corporation, joined with the steel skill of the veteran personnel taken over intact from P. I. W., assure unsurpassed service on pressure vessels, storage tanks, and other riveted or welded steel equipment.

'FLUID FUSION" WELDED VESSELS are now made EXCLUSIVELY by

PLATE AND WELDING DIVISION GENERAL AMERICAN TRANSPORTATION CORP.
Successor to Plate \& Welding Div., Petroleum Iron Works Co. (P.I. W.)

Plant at Sharon, Pa. Offices in All Principal Cities

IIIRE HIS TORX luss podinly

. .) by furnishing him with BISCO Alloy and Tool Steel i) bing that meets your exacting requirements for such it ms as ring dies, bushings, forming rolls, etc. With the right combinations of insid. and outside diameters slocked for immediate shipment, long, costly hours of lathe wo k pn solid rounds a Ee no Tonger necessary.

Let us mid youleur current stock and price list on BISCO Alloy and ood see Fubing.

900 EAST 67th STREET, CIEVELAND, OHIO

Inc., 210 East Parkway; Pittsburgh, is consulting engineer.

Michigan

DETROIT-Motor Tool Co. will bulld an oiflce and factory bullding on Turner avenue. R. H. Neubrecht is architect.

DETROIT-Redford Tool \& Die Co. will build a plant addition from plans by Jensen \& Keough, Detrolt, architects.

DETROIT-Brown Lathe Corp. has been incorporated with $\$ 25,000$ capital to manufacture lathes and tools by Milton J. Miller, 2003 Dime Bank buildIng, Detrolt.

HOLLAND, MICH.-Holland Precision Parts Co. will build two additions to its plant. Van Dyke \& Volkers Co. has general contract.

LANSING, MICH.-Fusing Engincers Inc., 415 Hollister bullding, has been incorporated with $\$ 25,000$ capltal io operate a welding and repair business, by Walter E. Lindell, 425 Everett street.
LANSING, MICH.-Olds Motor Works has glven contract to Christman Co. for a three-story factory bullding 132×172 feet. Argonaut Realty Co., Deirolt, is architect.

Illinols

CHICAGO - Ford Motor Co. 126000 South Torrence avenue, plans extenslons and improvements to tis powerhouse, including turbine generating unit and auxllarles. Shreve, Anderson \& Walker, Marquette bullding, Detroit, are archltects and engineers.
CHICAGO-Mid-Continent Metall Produets Co., 105 West Adams street, has been incorporated with 1000 shares $\$ 100$ par value, by Carleton M. Tower and assoclates, 105 West Adams street.

EAST PEORIA, ILL.-Caterpllar Tractor Co. Is having plans made for large expanston of its plant here, sald to cost over $\$ 500,000$.
ROCKFORD, ILL.-Rockford Bolt \& Steel Co., manufacturer of bolts, nuts, screws, washers, etc., has let general contract to Linden \& Sons lnc. ror a one-story plant addition 60 ※ 160 reet iz. R. Wood, Melrose Park, lll, is englneer.
ROCKFORD, ILL.-Greenlee Bros. Co., manufacturer of woodworking machinery, tools and saws, has given general contract to Security Building Co. for construction of a one-story addition 73×230 reet. K. R. Wood Melrose F'ark, Ill., is engineer. (Noted April 7.)

ROCKFORD, ILL.-George H. Spengler Co., manufacturer of screw machine products, has given general contract to Linden \& Sons Inc., for a one-story plant addition, R. R. Wood, Melrose Park, Ill., is engineer.

Missouri

BOLIVAR, MO.-Southwest Electric Co-operative, L. L. Alexander, superintendent, has let contract to Stovall Construction Co., West Plains, Mo., for 124 miles rural electric lines to serve 274 customers. Midwestern Engineering Co. Tulsa, Okla., is engineer

POPULAR BLUFF, MO.-MissIssippl River Fuel Corp. is bullding a booster station for its gas plpe line near here. The bullding will cost about $\$ 5000$ and equipment will bring the total to about $\$ 150,000$.

ROBERTSON, MO.-McDonnell Aircraft Corp., Lambert-St. Louis municipal alrport, will let contracts soon for construction of an addition costing $\$ 512,000$. Palmer \& Lamdin, 1021 St . Paul street, Baltimore are architects. (Noted May 26.)

WEST PLAINS, MO.-Howell-Oregon Electric Co-operative, Joseph R. Hinds, superintendent, has let contract to Stovall Construction Co., West plains, for 152 miles rural electric lines to serve 287 customers. Midwestern Engineering Co., Tulsa, Okla., is engineer.

ST. LOUIS-Barrett Equipment Co., 2101 Cass avenue, has given contract to Murch-Jarvis Co., Cotton Belt building, 408 Pine street, for a one-story $47 \times 130-$ foot addition to its plant at 2103 Cass avenue. H. Van Hoefen, 408 Pine street. is architect.

ST. LOUIS-Emerson Electric Co., 1824 Washington avenue, has given contract to the Austin Co., Arcade building, St. Louls, for design and construction of an airplane gun turret manufacturing plant, to be operated for the war department

Fullers
 Steelcript Brushes

Steelgript Brushes have greater holding and non-shedding qualities, resulting in longer life and more dependable operation. Less frequent replacements will save time and money. Furnished in straight strips for Tin Middlings or continuous (close or open spiral) formations for Sheet Scrubbers, galvanizing, elc.

Send your blue prints and specifications for quotations on your particular requirements.

The FULLER BRUSH Company INDUSTRIAL DIVISION - DEPT. $8 C$

[^11]
Will Your Product Pass

Final Inspection?

Today as never before-
accuracy in 'tenths' means gage accuracy in Millionths!

YOU MUST BE POSITIVE and the sure way is with

Chrome Plated Gage Blocks

MADE BY

$\sqrt{97}$

DEARBORN GAGE COMPANY

22037 BEECH STREET
DEARBORN, MICH.

TAYLOR-WILSON MANUFACTURING CO. 15 Thomson Ave. \qquad McKees Rocks, Pa.

SAFETY WEDGE GRIP HOLDER

CONSTRUCTEDfor SAFETY-

1. For serial numbering.
2. With S afety Snap for quick chatge of type inserts.
3. To give 50% to 100% more serzice.
4. For any size or number of char-

5. Becauso of special alloy steel used.
6. Wil: not spall or mushroom.
7. Head 3 do not hare to be $g r o u n$
dressed
8. Knurled sides assure a positive grip.
WRITE FOR PRICES AND LITERATURE.

172 EAST CARSON ST. PITTSEURGH, PA.
on a tract adjacent to its new plant at 8100 West Florissant road, St. Louls county.

ST. LOUIS-St. Louls Car Co., 8000 North Broadway, manufacturer of railroad and street rallway equipment, is constructing three additional buildings at 600 Bittner treet, one story 162×232 feet, 240×300 feet and 80×232 feet, 10 cost over $\$ 100,000$, with equipment.

ST. LOUIS-American Can Co., 230 Park avenue, New York, will award contracts soon for a new plant costlng about $\$ 1,750,000$ on a 30 -acre tract at Junlata street and Kingshlghway. Plans are by company architect, C. G. Preis. Plant will be one story, 621×1035 reet, with office 50×175 fect and cafeterla and service building 100×375 reet.

Wisconsin

MILWAUKEE-Milwaukee Steel Foundry Co, has let general contract to Klubertanz Bros. for a foundry plant on South Water street. Walter Grierson is engineer.
MILWAUKEE-Geuder, Paeschke \& Frey Co., manufacturer of sheet metalware, stampings and contalners, has let general contract to Meredity Bros. for a plant addition 135×190 feet on North Fifteenth street. Fred IR. Rankl, 121 East Washington street, is engineer. (Noted June 9.)

MILWAUKEE-Ampco Metal Inc., 1745 South Thirty-eighth street, is building a foundry addltion doubling present noor area, containing 60,000 square reet

YEARS stretch back pretty far . . . back to the year this COMPAKY WAS FOUNDED

In 1916 we began making steel sheets, and now, in 1941 , we are still going strong. Many of our old friends have strung along with us for a quarter of a century; we are thankful to them, and to the many other friends we have acquired since the year before U. S. entered World War I. Our facilities have improved through the years, and we are looking forward to the next 25 years with pride and confidence.

QUALITY STEEL SHEETS

THE MAHONING VALLEY STEEL CO.
N I L E S , O H I O

in the Convenient SHAKEOUT PACKAGE

THE Shakeout Package makes Fairway Saltabs available to field workers and men in plants not equipped with Fairway Dispensers. For many years Fairway Saltabs have been a standby in hot industries; Saltabs are a valuable aid in the prevention of heat sickness.
The Shakeout Package contains a full 250 tablets, yet it fits easily in the pocket. It keeps the Saltab fresh *The name 'Sollabs' Reg. U. S. Pal. Off

The FAIRWAY LABORATORIES, Division

The G. S. Suppiger Co., 1530 Hadley St., St. Louis, Mo.
and clean. You'll like the handy pouring spout which folds snugly out of the way when not in use.
Fairway Saltabs are popular with the men because they are effective and so easy to take. The Shakeout Package is moderat ely priced; each worker should have his own supply. Order plenty and $b=$ prepared.
floor space, partly double-decked. Kelrleber Construction Co. Inc., Mllwaukee, is contractor.

OSHKOSH, WIS.-WIsconsin Axle division of Timken Detrolt Axle Co. will bulld an addition, one story 66×144 feet and two stories 66×44 feet, costing $\$ 15,000$, as one of a series of units in an expansion program.

WaUTOMA, WIS.-Waushara County Electric Co-operative Inc., Jullus Waala, secretary, is taking bids on 308 miles of electric transmission lines. Wisconsin development authority, Tenney bullding, Madison, Wis., is engineer.

WEST ALLIS, WIS.-Allis-Chalmers Mig. Co. has bought 20 acres on the outskirts of Millwaukee, site of a former Inland Steel Co. plant, for a $\$ 12,500,000$ plant to manufacture superchargers for the government.

Minnesota

MINNEAPOLIS-American Can Co. is preparing to bulld additional canmaking facillties In this distriet at cost of several million dollars, to serve the northwest area for general line and packers' cans.

WILLMAR, MINN.-Einar H. Brogren, city clerk, will open bids July 14 for Improvements and equipment for the municlpal llght and power plant, Including electrle switching and control equipment, deaerating and feed water heater and boller feed water pumping unit. Whllams \& Burlingame Inc., Stillwater, Minn., are engineers.

Texas

HOUSTON, TEX.-Houston Shipbullding Corp., Electric bullding, has let contract for 27×250-foot plate shop on ship channel, to Brown \& Root, 4300 Calhoun road, at about $\$ 95,000$.

Kansas

GORHAM, KANS.-City plans installation of a waterworks plant costing about $\$ 50,000$, including steel tank on tower, watermalns, two deep wells, pumps and pumphouse. Paulette \& Wilson, Salina, Kans, are engineers.
INDEPENDENCE, KANS.-Clty will vote July 29 on $\$ 100,000$ bond issue for clty's share of municipal airport est1mated to cost about $\$ 200,000$, federal funds to aid.

STERLING, KANS.-Arkansas Valley electric co-operative, Alvia B. Davis, superintendent, has let contract to Palmer \& Bergen Construction Co., Trengon, Mo., at $\$ 268,941$, for construction of 407 milles of rural transmission lines to serve 632 customers. Paulette \& Wison, Topeka, Kans., are englneers.

WICHITA, KANS.-Coleman Lamp \& Stove Co., manufacturer of gasollne pressure lamps and electric household appllances, has glven general contract to Hahner \& Foreman for a one-story plant addition 78×140 leet. Lorentz Schmidt is archltect.

WICHITA, KANS.-Beech Aircraft Cu., manufacturer of alrplanes, plans a onestory maintenance shop 100×160 feet. Overend \& Boucher, Brown bullding, are architects.

Iowa

CEDAR RAPIDS, IOWA-Iowa Mrg. Co., manufacturer of sand and gravel machinery, and bituminous mixing plants, has let general contract to Loomis Bros. for a two-story plant addition 60 N so feet.

FORT DODGE, IOWA-City, H. le. Sittig, clerk, will take blds to July 17 on addition to sewage disposal plant, including sludge pumphouse and equip-

SCREENS of Perforated Metal
 AMY METAL O ANY PERFORATION.
 <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; "></td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; " class="_empty"></td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| | |
| :---: | :---: |</table-markdown></div>

 5634 Fillmore St., Chicago, III. New York Office- 114 Liberty St.

(1)

(a)any material or quantity; for all kinds of mechanical applications.
Write Hubbard today about making the parts needed for your product.

M•D•HUBBARD SPRING CO.
432 central ave.
PONTIAC, MICH.

DESIGNING AND COMBUSTION ENGINEERS SPECIALIZING IN OPEN HEARTH FURNACES

D:2 नाड्राBLE COUPINतS

WHERE SPACE IS AT A PREMIUM!
I-R Type WF saves $1 / 3$ of spacr-llange desipn permits bolting. 10 fly wheel, clutch, etc. An exclusive 1-R feature. Bores up to Get new cator LOVEJOY FLEXIBLE GOUPLING CO. 4973 W. LAKE ST. CHICAGO. ILL.
ment. to cost about $\$ 150,000$.
MORNING SUN, IOWA-City plans construction of municipal light and power plant to cost over $\$ 50,000 . \mathrm{R}$. W. Gearhart, 349 Twenty-flrst street S. E., Cedar Rapids, Iowa, is consulting englneer.

SLATER, IOWA-City plans to bulld a municlpal llght and power plant to cost about $\$ 50,000$. R. W. Gearhart, 349 Twenty-flrst street S. F., Cedar Raplds, Iowa, is engineer.

California

INGLEWOOD, CALIF.-Precision Aeronautical l'arts Mfg. Co. has been formed
by Jerome P. Hoffman and assoclates and will establlsh business at 308 West Redondo boulevard.

LOS ANGELES--Southern Callfornia Gas Co. is bullding a concrete tank 38×273 reet, mostly below ground, at 932 Lyon street, costing $\$ 200,000$. Contract has been let to Bartlett Hayward Co., Baltimore, for a steel structure on top of the tank, to cost about $\$ 500,000$.

LOS ANGELES-Keystone Engincering Co., 1442 South San Pedro street, will bulld a machine shop addition 50×80 feet, costing about $\$ 5000$

LOS ANGGELES-Mechanical Speciallies Co. has been organized by Frank L. Odenbrelt and assoclates and will es-

Plain and Checker Plates - Hot Rolled Sheets
H. R. Bars and Bar Shapes - Reinforcing Bars
H. R. Bands and Strip - Stair Stringer Channels
tablish business at 719 East Gage avenue.
LOS ANGELES-Clnch Lock Corp. has been incorporated with $\$ 100,000$ capital by George Lelngang and ussoclates, Glendale, Callf. A. S. McConnell, 402 1'acifle Mutual bullding, Los Angeles, is representative.

LOS ANGELES-Hughes Alreralt Co. 7000 Romaine street, whll bulld two new plant buildings in the Baldwin Hills district, 39×46 feet and 79×148 reet, to cost about $\$ 37,000$.
SAN DIEGO, CALIF.-San Diego Tool \& Dle Co., 345 Fifteenth street, has been formed by Rudolph Bentle and assoctates.

Oregon

PORTLAND, OREG.-Schnitzer Steel Products Co., 33 N. W. Yeon avenue, is installing a small rolling mill and electric furnace in its plant.

PORTLAND, OREG.-Staufter Chemical Co. is having plans made for a sulphate of alumina plant here, first unit to cost $\$ 100,000$, production planned by Nov. 1, A. C. Mohr, San Francisco, is superintendent.

Washington

EVERETT, WASH.--Pinchurst water district will vote July 26 on a proposed bond issue of $\$ 75,000$ for a water supply system.

OLYMPIA, WASH--State toll bridge authority has approprlation of $\$ 75,000$ and wlll prepare plans for new span to replace collapsed Tacoma Narrows brldge, pending settlement of insurance sult.

SEATTLE-Olsen \& Winge Marine Works, 4125 Burns avenue N. W., will bulld an addition to its machine and jolner shop and craneway, 60×85 reet.

SEATTLE-Puget Sound Sheet Metal Works, 3641 East Marginal Way, is erecting a sandblast bullding. The Austin Co. is contractor.

Canada

KINGSTON, ONT.-Publie utlities commisston, 19 Queen street, is taking bids for two gasoline-driven centrifugal pumps, capacity 300 imperial gallons per minute. Gore \& Storrie, 1130 Bay street, Toronto, Ont., are engincers.

SAULT STE. MARIE, ONT.-Algoma Steel Corp. Ltd., Wilde street, has let contract to MeLarry \& Hanna, 173 Spring street, for main building in connection with its new blooming mill. Entire project wlll cost $\$ 4,000,000$, ilnanced by the Canadian government.

TORONTO, ONT.-Sully Brass Foundry Ltd., 7 Wabash avenue, will bulld a plant addition costing about $\$ 45,000$, with equipment. D. J. Benham, 351 Windemere avenue, has general contract.

WELLAND, ONT.-United Steel Corp. Ltd., King strect, has let contract to Gardiner Construction Co. Ltd., JRiver Bank street, for a plant addition costing about $\$ 75,000$, with equipment
WINDSOR, ONT.-Walker Metal Products Ltd., 1511 Kildare road, will bulld a plant addition costing $\$ 42,000$, without equlpment, general contract to Heln Construction Co., 172 Aylmer avenue.

MONTREAL, QUE.-Allled War Supplles Corp. Ltd., a government-owned company, 420 Lagauchetiere street West, has let contract to Dufresne Construction Co. Ltd., 1832 Ple IX boulevard, for a new plant to cost about $\$ 1,000,000$.

FIRTH-STERIIIG
 TOOL STEELS - STAINLESS STEELS - SINTERED CARBIDES FOR COMPLETE SHOP TOOLING • McKEESPORT, PA.

```
8ELMONT
    EHILADELPHIA
        RON
        W
        OR K S
        Engineers - Contractors - Exporters
STRUCTURAL STEEL-BUILDINGS & BRIDGES
        RIVFitED-ARC WELDED
        Belmont Interlocking Channel Flool
        Frite for Catalogue
Main Omice-Phila., Pa. New York Office-44 Whitchall M.
```


The Jackson Iron \& Steil Co. MANUFACTURERS OF

 STEELCORPORATION

HOT AND COLD ROLLED STRIP STEEL AND SUPERIOR STAINLESS STEELS

Successfully serving steel consumers for almost half a century
executive offices - grant blog., pittsburgh, pa GENERAL OFFICES AND WORKS - CARNEGIE. PA

CROSBY FOR STAMPINGS

> Our engineers are ready and able to help solve your stamping problems, in design or construction. Crosby prices are consistent with QUALITY and SERVICE. In our 44 years of EXPERIENCE we have served over 100 different industries.
> Manufacturers of "Ideal" Trolley Wheels

THE CROSBY COMPANY

BUFFALO, N. Y.

Get our estimate on your next order. Send for catalog.

WHITEHEAD STAMPING CO. 1667 W. Lafayette Biyd., Detroit, Mich.

Recognized since 1903 throughout U.S. Industry for:

1. Dependabilify
2. Accuracy
3. Economy
4. Long Life

USED and REBUILT EQUIPMENT
 促

FOR SALE

Have number of used, heavy-duty and holst type cranes in A-1 operating condlition; some for immediate release, others for shipment in the near future For information, address Box 516, STEEL, Penton Bldg., Cleveland
BLOWERS - FANS - EXHAUSTERS
Connersville-Roots Dositive blowers Centrifugals for ges and oll burning Ventliating fans and roof ventilators
GENERAL BLOWER CO.
uOs Narth Peorla St.
Chleaga, 111.

CRANES

OVERHEAD ELECTRIC TRAVELLING AC and DC

INDUSTRIAL EQUIPMENT CORP.
P. O. Box 1647

Pittsburgh, Pa.

FOR SALE

Type S K Westinghouse 25 HP 220 volt variable speed, with automatic reversing control panel. Never used.
RAILWAY MAINTENANCE CORP.
P. O. Box 1888

Pittsburgh, Pa.

WANTED

ONE D.C. 230 VOLT 5-7 $1 / 4 /$ OR 10 TON, 36 TO 42 FOOT SPAN, 100 FOOT RUNWAY ELECTRIC CRANE CAGE CONTROL. Address Box 513, STEEL. Penton Bldg., Cleveland.

In Millimeter sizes. 3 or 4 tons ranging in slze from $2^{\prime \prime}$ down to $\%$ ". Good condition-will sell chenp. Write Box 518, STEEL, Penton Bldg., Cleveland.

FOR SALE

NEW RAILS- 5000 tons-All Sectlona-All Sizea RELAYING RAILS-25,000 tons-All SectionsAll glzea, practloally an good as New. In atock-Angle and Apllce Bars, Bolts, Nuta Froks, 8witchea, Tle Platen Time and Money
Buy from One Source-Save Time and Money
L. B. FOSTER COMPAN

ITTBBUROH ER COMPANY, Inc. NABURGH NEW YORK

STEEL SHAFTING

DIE BINKER, E-3 Keller, M.D.
GEAR CUTTER, Spur, 84 "Newark MoRiz. Mill. Fi, Type, $34^{\prime \prime}$ " Gleason, M.D. (3) HERTZ, MILL, FI. Type, 33" bsr D \& If LATIES. 48"x'22-1/2" \& $48^{\prime \prime} \times 26-1 / 2^{\prime}$, Jobinson, TURIRET LATHE, 18"Lbby, 11.S. 3-9/16 M, M,

LANG MACHINERY COMPANY
28th Streot \& A. V. R.R. Pittshurgh, Pa.

MILL MOTOR

300 HP . . . $230 \mathrm{~V}-\mathrm{DC} . . .{ }^{2} 500 \mathrm{RPM}$ (., E., Tyue Ml'C, form A Comp. wound. Interpule, pedestal brge., with macnetic reverslng control panel, master controller and spare armature, condition equals new.

JOHN D. CRAWBUCK CO., PITTSBURGH, PA.
Phone Atlantic 6345

MORE for Your Dollar!
IRON \& STEEL PRODUCTS, ING.
36 Years' Experience
13462 S. Brainard Ave., Chicago, Illinois "Anything containing IRON or STEEL" SELLERS - BUYERS - TRADERS

Grinder, Knite 10° Bridgeport, M.D. Grinder, Roll $30^{\circ} \times 70^{\circ}$ Farel, M.D.
Lathe, Roll 42" $\times 20^{\circ}$ Unlted. M.D. Press, Forging 150 2on United steam Hyd Pipe Machs. $2-4-6-8-12^{\circ}$, Willams, M.D. Shears, Guli. $2^{\circ} \mathrm{sq} . \mathbb{\&}^{\circ} 4^{\circ} \mathrm{Bq} . \mathrm{B} . \mathrm{D}$ Shear Plate, $90^{\circ} x^{\prime \prime} 1-1 / 4^{\circ}$ Morgan 22° Gsp. Sheet Levellers 60° Mckay, 17 roll, M.D.
 1210 House Bullding Pitisturgh, Pa.

NEED EQUIPMENT

IN A HURRY?...

 Read the above advertisements - they list a lot of good serviceable machinery and accessories which may just fill the bill. And if you don't see what you needask these advertisers-they'll get it for you.
Kirk \& Blum
 WELDED MACHINE BASES, PEDESTALS and FRAMES lathe pans GEAR and BELT GUARDS Pressed Steel Louver Panels and Cover Plates
 THE KIRK \& BLUM MFG. CO.
 2822 Spring Grove Ave., Cincinnati, Ohio

```
Send your Inquiries for
SPECIAL ENGINEERING WORK to the
A. H. WILSON MACHINE COMPANY, BRIDGEPORT, CONN.
designers and builders of wire and alban stock forming machines. We also solicit your bids for cam milling
```


AVAILABLE FOR DIRECT DEFENSE SUB-CONTRACTING

Metal working and stamping (10 ga. or lighter) Electrical machinists and copper fabricating Cincinnati brakes and shears (7) Punch presses, 70 ton and smaller (45) Complete tool and die making department 2000 man hours per week available.

NOW MANUFACTURING ELECTRIC METER TEST EQUIPMENT, METER ENCLOSURES, SWITCHES, SWITCHBOARDS.

THE SUPERIOR SWITCHBOARD \& DEVICES COMPANY
CANTON, OHIO

> New Opportunities in contract work are rapidly developing, due to Increasing government orders, and large production backlogs. Why not take advantage of this situation? The "Contract Work" columns of STEEL will carry your qualiacations to concerns now letting contract work. Write today for details.

Positions Wanted

GRADUATE METALIULGGICAL ENGRnee with $2^{1 / 2}$ years' experience in research and production of seamless and welded steel tubing, carbon, alloy and stainless grades, desires position with a mid-westearn firm. Reply Box 509, STEEL, Benton 13ldg., Cleveland.

COMPETENT STRUCTURAL AND PLATE SHOP SUPERINTENDENT WANTS PORITION WITH REPUTABLE CONCERN. INTELLIGENT, INDUSTRIOUS WORKER, WITH PROVEN ABILITY TO HANDLE MEN. ADDRESS YOUR REPLY TO BOX 515, STEEL, PENTON BLDG., CLEVELAND.

EXECUTIVE WITII BROAD EXPERIENCE in manufacturing, development and merchandising of small metal stampings, available immediately for sales or production. Familiar with quantity production, progresslve dies, automatic feeds and finishing If you can use such ability, address Box 503, STEEL, Menton Bldg., Cleveland.

ClASSIFIED RATES

All classifications other than "Positions Wanted," set solid, minimum 50 words, 5.00 , each additional word .10 ; all capitals, minimum 50 words, 6.50 , each additional word .13; all capitals, leaded, minimum 50 words 7.50 , each additional word .15 . "Positions Wanted," set solid, minimum 25 words 1.25 , each additional word . 05 ; all capitals, minimum 25 words 1.75 , each additional word .07: all capitals, leaded, minimum 25 words 2.50 , each additional word 10 Keyed address takes seven words. Cash with order necessary on "Positions wanted" advertisements. Replies forwarded without charge.
Displayed classified rates on request. Address your copy and instructions to STEEL, Benton Bldg., Cleveland.

Accounts Wanted

NEW ENGLAND SALES ENGINEER SELLing metal manufacturing and machine industry wants additional line. Long estabfished in this territory with wide acquaintane among buyers and machine designers. Specialize on machine components. Repre. sent nationally prominent gear manufacsurer and would like another similar line. Address Box 517, STEEL, Benton Bldg.. Cleveland.

Employment Service

SALARIED POSITIONS

This thoroughly organized advertising service of 31 years' recognized standing and reputation, carries on preliminary negotiations for positions of the caliber ind cated above, through a procedure individualized to each client's personal requirements. Several weeks are required to ne gotlate and each individual must finance the moderate cost of his own campaign. Retaining fee protected by refund provesion as stipulated in our agreement. Identity is covered and, if employed, present position protected. If your salary has been $\$ 2,500$ or more, send only name and address for details. R. W, Blxby, Inc., 110 Delward Bldg., Buffalo, N. Y

Castings

THE WEST STEEL CASTING CO., Cleve land. Fully equipped for any production problem. Two $1 \not / 3$ ton Elec. Furnaces Makers of high grade light steel castings,
also alloy castings subject to wear or iso alloy heat
NORTH PALESNSYLVANTA North WALES MACHINE CO. INC. Moly Wales. Grey Iron, Nickel, Chrome, quality mm Alloys, Semi-steel. Superior blast machine and hand molded sand blast and tumbled.

-•ADVERTISING INTEX

Where-to-Buy Products Index carried in first issue of month.
Page

Acme Galvanizing, Inc.
Acme Steel \& Malleable Iron Works Ahlberg Bearing Co.
Airgrip Chuck DIvislon of Anker-Holth Mrg. Co.
Air Reduction
AJax Electrothermic Corp.
Ajax Flexible Coupling Co.
Alan Wood Steel Co.
Allegheny Ludlum steel Corp
Allen-Bradley Co.
Allis-Chalmers Mig. Co
Alrose Chemical Co.

American Aglle Corp. \qquad
American Brass Co.,
American Bridge Co.
American Cable Division of American Chain \& Cable Co., Inc,
American Chaln \& Cable Co., Inc., American Cable Division
American Chaln \& Cable Co., Inc., American Chain Division
American Chaln \& Cable Co., Inc., Ford Chain Block Division
American Chain \& Cable Co., Inc., Page Steel \& Wire Division
American Chaln Division of American Chain \& Cable Co., Inc.
american Chemical Paint Co
American Chemical Paint
American Engineering Co......
American Foundry Equipment Co.....
American Gas Assoclation
American Hollow Boring Co.
American Hot Dip Galvanlzers Assoclation
American Lanolln Corp.
Amerlcan Monorall Co.
American Nickeloid Co.
American Pulverizer Co
American Roller Bearing Co.
American Rolling Mill Co., The
American Screw Co
American Shear Knife Co.
American Soclety for Metals
American Solder \& Flux Co
American Steel \& Wire Co.
American Tinning \& Galvanizing Co.
Ampco Metal Inc.
Amsler-Morton Co., The
Andrews Steel Co.. The
Apollo Steel Co.
Armstrong-Blum Mig. Co.
Armstrong Cork Co.
Armstrong Cork Co ,
Association of $I r o n$ and Steel Englneers
Atlantic Stamplng Co
Atlantle Steel Co.
Atlas Car \& Mrg. Co.
Atlas Drop Forge Co.
Atlas Lumnlte Cement Co.
Axelson Mfg. Co.

B

Babcock \& Wilcox Co.
Balley, Wm. M., Co.

Laker-Raulang Co.

Bantam Bearings Corp.
Barnes, Wallace, Co., Division of Associated Spring Corporation
Basic Refractories, Inc.
Bay City Forge Co.
Bay state Abrasive products Co.
Belmoni Ircn Works
Berger Manufacturing Div., Republic Steel Corp.
Bethlehem Steel Co..
Birdsboro Steel Foundry \& Machine Co.
Blssett Steel Co., The
Blanchard Machine Co.
Blaw-Knox Co.
Blaw-knox Dlvislon, Blaw-Knox Co..
Bllss \& Laughlin, Inc.
Bower Roller Bearing Co.
Brassert, H. A.. \& Co.
Bridgeport Brass Co.
Bristol Co.. The
Broderick \& Bascom Rope Co.
Brooke, E. \& G., Iron Co.
Erosius, Edgar E., Inc.

Brown Brown Ine Page
Brown \& Sharpe Mrg.
Brown Instrument Co.,
Bryant ChuckIng Grinder Co
Byant Machinery \& Engineering Co
Euffalo Forge Co
Butfalo Galvanlzing of Tinning works
Buffalo Wire Works Co., Inc.
Bullard Co., The
Eundy Tubing Co.

C

Dadman, A. W., Mrg. Co.
Carborundum Co., The
Carey, Phillp, Co., The
Carnegle-Illinois steel Corp.
Carpenter Steel Co., The
Cattic, Joseph P., \& Bros., Inc.
Cellcote Co., The
Central Screw Co.
Challenge Machinery Co., The
Chambersburg Engineering Co
Chandler Products Corp.
Chicago Perforating Co.
Chicago Rawhide Mrg. Co.
Cincinnati Grinders, Inc.
CIncinnati Milling Machine Co.
Cincinnati Shaper Co., The
Clark Controller Co.....Inside Back Cover
Clark Tructractor Div, of Clark Equipment Co.
Cleereman Machine Tool Co.
Cleveland Cap Screw Co.
Cleveland-Cliffs Iron Co
Cleveland Crane \& Engineering Co.
Cleveland Hotel
Cleveland Punch \& Shear Works Co.
Cleveland Tramrall Division, Cleve-
land Crane \& Engineering Co.
Cleveland Twist Drill Co., The
Cleveland Worm \& Gear Co., The
Climax Molybdenum Co
Cold Mctal Process Co.
Cold Mctal Process
Colonial Broach Co.
Colonial Broach Co.
Columbla Steel Co.
Columbus Die, Tool \& Machine Co
Commerclal Metals Treating, Inc.
Cone Automatic Machine Co., Inc.
Continental Machines, Inc.
Continental Roll \& Steel Foundry Co.
Continental Screw Co.
Copperweld Steel Co.
Corbin Screw Corp.
Cowles Tool Co.
Crane Co.
Crawbuck, John D., Co.......................... 126
Crosby Co., The
Cruclble Steel Company of America
Cuban-American Manganese Corp.
Cullen-Friestedt Co.
Culvert Dlvision, Republic Steel Corp.
Cunningham, M. E., Co.
Curtis Pneumatic Machinery Co
Cutler-Hammer, Inc.

D

Damascus Steel Casting Co.
Darwin \& Milner, Inc.
Davis Brake Beam Co.
Dayton Rogers Mrg. Co.
Dearborn Gage Co.
Detroit Leland Hotel
Detroit Leland Hotel Bo............
Diamond Expansion Bolt Co.,
Dings Magnetic Separator Co.
Dings Magnetic Separator Co.
Dravo Corp., Engineering Works Dis
Eagle-Plcher Lead Ca., The
Edison Storage Battery Div. of Thomas A. Edison, Inc.
Elastic Stop Nut Corp.
Electric Controller \& Mrg. Co.
Inside Front Cover
Electrle Furnace Co., The
Electric Storage Battery Co.
Flectro Alloys Co., The
Electro Metallurgical Co.
Elmes, Charles F., Engineering Works
Enterprise Galvanizing Co.
Equipment Steel Products Division of Union Asbestos \& Rubber Co..
Erdle Perforating Co., The
Erie Bolt \& Nut Co.
Erie Foundry Co.
Furek ? Fire Brick WorksEx-Cell-O Corp.
Excelsior Tool \& Machine Co.
Fainir Bearing Co., The
Fairbanks, Morse \& Co.
Fairway Laboratories, Div. The G. S.Suppiger Co
Fanner Mfg. Co
Fansteel Metallurgical Corp.
Farrel-Birmingham Co.
Farval Corp., The
Federal Machine \& Welder Co.
Ferracute Machine Co.Finn, John, Metal WorksFirth-Sterling Steel CoFord Chain Block Division of Ameri-can Chain \& Cable Co., Inc.
Foster, L. B., Co., Inc. 126溒
Foxboro Co., The 120
General American Transportation Corp. 119
126
General Blower Co. 62, 63
General Electric Co.. Lamp Dept. $\overline{14}$
Gisholt Machine Co.
Globe Brick Co., The
Goodyear Tire \& Rubber Co., TheGranlte City Steel Co.Grant Gear Works.Great Lakes Steel Corp
Greenfleld Tap \& Die Corp.16
122122
Gregory, Thomas
Gulf Oil CorporationGulf Renning Co.

II

Hagan, George J., Co.
Hallden Machine Co., Th
Hanlon-Gregory Galvanizin
Hanna Engineering WorksHanna Furnace Corp.Hannifin Mig. Co.Harnischfeger CorHarper, H. M., Co., TheHarper, H. M., Co., The
Harrington \& King Perforating Co.
Hays Corp., The
Heald Machine Co
Heppenstall Co.
Hetz Construction Co., Inc.

Hevi Duty Electric Co.
Hill, James, Mrg. Co.
Hindley Mrg. Co.
Hobart Bros
Horsburgh \& Scott Co.
Hubbard \& Co.
Hubbard, M. D., Spring Co.
Hunt. C. H.
Huther Bros. Saw Mrg. Co
Hyatt Bearings Division, General Mo-
tors Sales Corporation
Hyde Park Foundry \& Machine Co.
Illinois Clay Products \mathbf{C}
Irdependent Galvanizing Co
Industrial Brownhoist Corp.
Industrial Equipment Corp.
Ingersoll Steel \& Disc Division, Borg Warner Corp.
Inland Steel Co.
International Correspondence Schools
International Nickel Co., Inc.
International Screw Co.
International-Stacey Corp.
Iron \& Steel Products, Inc.
Isaacson Iron Works

Jackson Iron \& Steel Co., The
James, D. O., Mfg. Co.
J-B Engineering Sales Co.
Jessop stecl Co
Jessop, Wm., \& Sens, Inc
Johns-Manville Corp.
Tohnson Bronze Co.
Jones \& Lamson Machine Co.
Jones \& Laughlin Steel Corp.
Tones, W. A., Foundry \& Machine Co.
Toslyn Co. of Callfornia
Joslyn Mig. \& Supply Co.

ADVERTISING INDEX

Where-to-Buy Products Index carried in first issue of month.

K	Page
Kardong brothers, Inc.	
Kearney \& Trecker Corp.	
Kemp, C. M., Mfg. Co.	
Kester Solder Co.	
Kidde, Walter, \& Co., Inc.	
Jing Fifth Wheel Co.	
Kinnear Mfg. Co.	
Kirk \& Blum Mrg. Co.	127
Koppers Co.	83
Fioven, L. O., \& Brother, Inc.	-
Kiron Co., The	

Laclede Steel Co.
Lake City Malleable Co.
Lamson \& Sessions Co., The
.3, 67
Landis Machine Co.
Lang Machinery Co

- 8

Latrobe Electric Steel Co.
Lawrence Copper \& Bronze
Layne \& Bowler, Inc
LeBlond, R. K., Machine Tool Co., The Back Cover
Leeds \& Northrup Co
Lee Spring Co. Inc.
Lehigh structural steel Co.
Leschen. A., \& Sons Rope Co.
Levinson Steel Co., The
-

Lewls Bolt \& Nut Co.
Lewis Foundry \& Machine Divislon of Blaw-Knox Co.
Lewls Machine Co., The
Lincoln Electrlc Co., The
Linde Air Products Co., The
Link-Belt Co
Loftus Englneerling Corp.
Logemann Bros. Co.
Lord Baltimore Hotel
Lovejoy Flexible Coupling Co........ 123
I.udlow-Saylor Wire Co., The.......... . . 121
Lyon Iron Works

Mckay Machine Co.
MicKee, Arthur G.. Co.
Mckenna Metals Co.
Mackiniosh-Hemphul Co
Macklln Co.
Macwhyte Co.
Mahoning Valley steel Co., The
Mathews Conveyer Co.
maurath, Inc.
Medart Co. The
Mesta Machine Co.
alichigan Tool Co.
Mcromatle Hone Corj
Midvale Co., The
Milwaukee Foundry Equipment Co.
Missourl Rolling Mill Corp.
Mollrup Steel Products Co.
Monarch Machine Tcol Co., The
Iorgan Construction Co
Morgan Engineering Co.
Morrison Metalweld Process, Inc.
Morton Salt Co.
Motor Repair $\&$ Mifg. Co.
National Acme Co., The
National Bearing Metals Corp.
National Broach \& Machine Co
Natlonal Carbon Co., Inc.
National-Erie Corp.
Natlonal Forge \& Ordnance Co.
National Lead Co.
National Roll \& Founciry Co.
National Screw \& Mrg. Co.
National Steel Corp.
National Telephone
National Telephone Supply Co., Inc
National Tube Co.
New England Screw Co.
New York \& New Jersey Lubricant Co.
Niagara Machine \& Tool Works
Nicholson, W. H., \& Co.
Niles Steel Products Div., Republic Steel Corp.
Nilson, A. H., Machine Co.
Nitralloy Corp., The
Norma-Hoffmann Bearings Corp
North American Manufacturing Co.
Northwest Engineering Co.
Norton Co., The
Ohlo Electric Mig. 0

Ohio Galvanizing \& Mfg. Co.
Ohio Knice Co The
Page

Ohio Locomotive Crane Co., The
Ohio Seamless Tube Co., The Ghio Steel Foundry Co., The
Open Steel Flooring Institute, Inc
Oxweld Acetylene Co.
Page Steel \& Wire Division Amerlcan Chaln \& Cable Co., Inc.

Pangborn Corp.

Parker, Charles, Co.
Parker-Kalon Corp.
Parker Rust Proof Co.
Pawtucket Screw Co.
Penn Galvanizing Co.
Pennsylvania Industrial Engineers
Page
-
123
Strom Steel Bull
Strong Steel Foundry Co
Sun Oll Co.
Superior Mold \& Iron Co
Superior Steel Corp.
Superlor Switchboard \& Devices Co
Surrace Combustion Corn
Sutton Engineering Co
T
Taylor-wilson Mrg. Co
Tennessec Coal, Iron \& Railroad Co . 121
Thomas Machine Mifg. Co.
Thomas Steel Co., The
Thompson-Bremer \& Co.
Tide Water Associated Oll Co
Timken Roller Bearing Co
Timken Steel \& Tube Division, the
Timken Roller Bearing Co
Tinnerman Products, Inc.
Toledo Stamping \& Mig. Co.
Tompkins-Johnson Co., The
Torrington Co., The
Truscon Steel Co.

U

Udylite Corp., The
Union Carbide \& Carbon Corp. -
Union Drawn steel Div. Republic Steel Corp.
United Chromium, Inc.
United Engineering \& Foundry Co.... -
Linited States Stcel Corp., Subsidiarles 93
American Bridge Co.
American Steel \& Wire Co.
Atlas Lumnite Cement Co.
Carnegle-Illinols Steel Corp
Columbla Steel Co.
Cyclone Fence Co
Federal Shipbuilding \& Dry Dock Co.
National Tube Co.
Oll Well Supply Co
Scully Steel Products Co.
Tennessce Coal, Iron \& Rallroad Co.
United States Steel Export Co.
Universal Atlas Cement Co.
Virginla Bridge Co.
United States Stecl Export Co.
Upton Electric Furnace Div. of Commerce Pattern Machine and Foundry Co.

Valley Mould \& Iron Corp.
Vanadium-Alloys Steel Co.
Vascoloy-Ramet Corp.
Vaughn Machinery Co., The
W
Waldron, John, Corp.
Wapakoneta Machine Co.
Ward's, Edgar T., Sons Co. 130
Warner \& Swasey Co.
Washburn Wire Co.
Watson-Stillman Co., The
Wean Engineering Co., Inc.
Weinman Pump \& Supply Co., The
Weirton Steel Co.
Wellman Bronze \& Aluminum Co
Wellman Engineering Co.
Westinghouse Electric \& Mig. Co.
West Penn Machinery Co. 126
West Steel Casting Co
Wheeling Steel Corporation
Whitcomb Locomottve Co., The......... 12.5
Whitehead Stamping Co............
Whitney Screw Corp
Whitney Screw Corp.
Wickwlre Brothers, Inc.
Wickwire Spencer Steel Co.
Wieman \& Ward Co.
Wilcox, Crittenden \& Co., Inc.
Williams, J. H., \& Co., Inc.
Wilson, Lee, Engincering Co.
Wilson, Lee, Sales Corp.
Witt Cornice Co. The
Wood, R. D., Co.
Worth Steel Co.
lijeckoff Drawn steel Co.

Steel Founders' Soclety of America
Steelweld Machinery Division, Cleve-
land Crane \& Engineering Co.
Stewart Furnace Division, Chicago
Flexible Shaft Co.
Stoody Co
Penola, Inc.
Perkins, B. F. \& Son, Inc.
fr. Co

Pittsburgh Lectromelt Furnace Corp.
tisburgh Rolls Division of Blaw-
Knox Co.
Rittourgh saw Tool
Poole Foundry \& Machine Co.
Porter, H. K., Co., Inc.
Pressed Steel Tank Co
Prest-O-Lite Co.. Inc., The
Progressive Welder Co.

Raymond Mig. Co., Dlvision of Asso-
ng Corp.
veliance Electro.
Rellance Electrle a Englneering Co
Republe steel Corp
Rhoades Copper and Brass, Inc.
Rlverside Foundry \& Galvanlzing Co.
Roebling's, John A., Sons Co.
Roosevelt Hotel
Roper, George D., Corp.
Ituemelin Mfg. Co.
Cussell, Burdsall \& Ward Bolt a Nut
1?ustless Iron \& Steel Corp.
Ryerson, Joseph T., \& Son, Inc..
Salem Engineering Co.
Samuel, Frank, \& Co.. Inc
Sian Francisco Galvanizing W'orks...
Sinltary Tinning Co., The
Scovll Mfg. Co.
Scully Sleel Products Co.
Seneca Wire \& Mfs. Co., The
Shakepronl Lock fasher Co
Snaw-Box Crane \& FIolst Division,
Sheffield Corp.. The
Shell Oil Co., Inc.
Sherango Furnace Co., The
Shenango-Penn Mold Co.
Shepard Nlles Crane \& Holst Corp
-huster, F. B., Ca., The
Simonds Gear \& Mig. Co.
Simands Saw \& Steel Co.
Sinton Hotel
SisalKrart Co., The
:KF Industries, Inc.
Snyder, W. P., \& Co.
Socony-vacuum Oll Co.. Inc
South Bend Lathe Works
Southington Hardware Mig. Co.
Standard Galvanizing Co.
Standard Steel Works
Stanley Works, The

teel \& Tubes DVision, Republic Steel
Corp. .
Corp.
Steel Conversion \& Supply Co
land Crame \& Engineering Co.....

EDGAR T. WARD'S SONS CO.

E. L. PARKER, PRESIDENT

P. O. 日0× 1557

PITTSBURGH, PA.

Because we feel an obligation as a steel supplier, we conceive that you are entitled to know as much as we know about our steel supply

WARD is happily situated with reference to source for our two primary products--cold finished carbon bars and seamless steel tubing-through our affiliation with the Columbia Steel \& Shafting Company and the Summerill Tubing Company. On all our other products we have an unusually fine source-relationship which has been fostered through long years of mutually satisfactory business connection.

To stop here, however, would leave a false impression. The situation goes deeper than this. Our sources also are dependent upon steel supply in the form in which they use it, either by purchase or manufacture. With absolute candor we must emphasize all that you have heard--there is not enough steel to go around. Heavy commitments for National Defense make it a foregone conclusion that civilian usage will of necessity be restricted

Though not as yet a certainty, it would not be unexpected to have some form of allocation or license-to-buy (supervised by authorities outside the steel industry) come into being with full production of the country's emergency war plant. Just where the steel distributor would fit into such a scheme is not completely apparent, but it is assumed that official circles will recognize steel distributors as serving thousands of manufacturers engaged directly or indirectly in defense activity and in essential civilian work and that provision will be made to satisfy these needs. Under such an arrangement, it is possible that the sale of steel products from warehouse stock will be subject to the same general conditions prevailing for sales by producers

Now for a statement of the general policy of WARD. It shall be our effort to fulfill our obligation as a supplier subject only to limitations imposed upon us by our responsibility to National Defense projects, by whatever allocation provisions which might be made and by the common sense necessity of providing that our available inventory serve as many WARD customers as possible. We have on our shelves a record inventory, but we also have a record demand against this inventory and it shall be our endeavor to maintain some sort of balance between "income and outgo" so that we will not be sold out and will continue to be in a position to serve

Very truly yours.
EDGAR T. WARD'S SONS CO.

ELP: P

[^0]: The percentages of capacity for 1940 are calculated on weekly capacitles of $1,410,130$ net tons open hearth, 114,956 net tons Bessemer and 36,011 net tons electric Ingots and steel for castings, total 1,561,097 net tons. based on annual capacltes as of Dec. 31, 1939 as follows: Open hearth 73,721,592 net tons. Bessemer $6,009,920$ net tons, electric 1,882,630 net tons.

 The percentages of capacity for 1941 are calculated on weekly capacitles of $1,430,102$ net tons open hearth, 134,187 net tons Bessemer and 49,603 net tons electric ingots and steel for castings, total 1,613,892 net tons; based on annual capacities as of Dec. 31, 1940 as follows: Open hearth 74,565,510 net tons, Bessemer 6.996,520 net tons, electric 2.586.320 net tons.

[^1]: E These $75-\mathrm{mm}$. howitzers, produced under scrutiny of Army inspectors at the Erie, Pa., works of General Electric Co., are rated as having the highest striking power for their weight of all the Army's guns. They will hurl 14 -pound projectiles 9500 feet. Workmen in the plant's motor department are hand-finishing and fitting the howitzers. NEA photo

[^2]: Material appearing in this department is fully protected by copyright, and its Is fully protected by copyright, and its
 use in any form whatsoever without use in any form whatsoever without
 permission is prohibited.

[^3]: 思

[^4]: - Unused land six months ago, this tip of Los Angeles Harbor's Terminal Island is rapidly becoming a huge production base which eventually will turn out $\$ 4,000,000,000$ worth of ships. California Shipbuilding Corp. already has completed 11 new ways and will launch the first of 55 vessels next December. In the background. scores of oil derricks are visible. NEA photo

[^5]: \dagger New serles: Includes additional gov ernmental and power generation not prevously reported.

[^6]: TABLE I-Trade Names of MolybdenumTungsten 1ligh-Speed Steels Company Brand Name
 Allegheny Ludlum Steel Corp., Pittsburgh, Pa.
 Bethlehem Steel Co. Bethlehem, Pa.
 Braeburn Alloy Steel Corp., Braeburn, Pa.
 Carpenter Steel Co., Reading, Pa.
 Columbla Tool Steel Co., Chicago
 Heights, Ill.
 Crucible Steel Co. of America, New York Henry Disston \& Sons Inc., Philadelphta, Pa .
 Halcomb Steel Co., Syracuse, N. Y.
 Jessop Steel Co. Washington, Pa.
 Latrobe Electric Steel Co., Latrobe, Pa.
 Simonds Saw \& Steel Co., Lockport. N. Y.
 Universal-Cyclops Steel Corp., Bridgeville, Pa .
 Vulcan Crucible Steel Co., Allquippa, Pa.

[^7]: Molybdenum
 Nom. Sulphide conc., lb.,
 Nom. No. cont., mines.

[^8]: "Claymont, Del., Coatesville, Phoenlxville, Harrisburg, Pa. ¡Portsmouth, Mlddetown, O., Ashland, Ky. \ddagger Worcester, Mass. Bridgeport, Conn.; Phlllpsdale, R. I. sLos Angeles, San Francisco, Seattle; ** y_{s}-inch and heavler, cut 12 Inches and under; $\dagger \dagger$ may Include clean agricultural cast; $\ddagger \ddagger$ under \mathbb{Z}_{8}-inch to $\%$-inch, cut 12 inches and under; $\$ 5 u n d e r ~ 1 / 4-$ inch to No. 12 gage, cut 12 inches and under.

[^9]: Phlladelphla, Wilmington, Del.. Claymont. Del., Coatesville, Phoenixville, Harrisburg, Pa.; fPortsmouth, Middletown, O. Ashland. Ky. fWorcester, Mass;; Bridgeport, Conn.; Phillipsdale, R. I. SLos Angeles, San Franclsco, Seattle. (a) also Johnstown, Pa., Warren, 0.

 NOTE: Where the railroad maker of scrap operates in two or more of the consuming points named above, the highest of the maximum prices set out above for such basing points shall be the maximum price at consumer's plant at any polnt on the railroad's line, except that switching charges of 84 cents per gross ton shall be subtracted from the maximum price of scrap originating from railroads operating in Chicago and sold for consumption outside Chicago. (a) Re-laying quality s5 higher.

[^10]: Tool Steel Scrap
 Cents per pound, to consumers f.o.b. shipping point

 ## Tungsten types

 For each 1% tungsten contained
 Sohid scrap containlng over $12 \% \ldots 1.80 \mathrm{c}$ Solíd scrap containing 5 to $12 \% \ldots .1 .60$
 Turnings, millings containing over 12%
 1.40

 Turnings, millings, solids under $5 \% .1 .25$ Molybdenum Types
 Solld scrap, not less than 7% molybdenum, 0.50 vanadium.
 Turnings, millings, same basis.
 Solld serap, not less than 3% mo-
 ly bdenum, 4% tungsten, 0.50
 vanadium
 .13 .50

[^11]: 3582 MAIN STREET
 HARTFORD, CONN.

