EDITORIAL STAFF
E. L. Shaner

Editor-jn-Chiel
E. C. Kreutzberg Editor
A. J. Hain

Managing Editor
G. W. Birdsall

Engincering Editor J. D. Knox Steel Plant Editor Guy Hubbard
Machine Tool Editor
D. S. Cadot Art Editor

## ASSOCIATE EDITORS

G. H. Manlove W. J. Camplell

Harold A. Knight New York L. E. Browne

Pittsburgh
R. L. Hartford

Detroit
A. H. Allen London
Vincent Delport
ASSISTANT EDITORS
George Urban Jay Dfeulis
I. C. Sullivan New York Vernr Nock
John H. Caldwell

## BUSINESS STAFF

G. O. Hays

Business Maxager
C. H. Bailey

Advertising Service
New York...... E. W. Kreutzberg B. C. Snell

Pittsburgh S. H. Jasper

Chicago L. C. Pelott

Cleveland R. C. Jaenke D. C. Kieffh

## J. W. Zuber

Circulation Manager
MAIN OFFICE
Penton Building, Cleveland
BRANCH OFFICES
New York. ............ 110 East 42nd St.
Chicago .....5520 North Michigan Ave. Pittsburgh . . . . . . . . . . . Koppers Building Derroit . . . . . . ........ 6560 Cass Ave. Washington.... National Press Building Cincinnati............. 1734 Carew Tower San Francisco ...... 1100 Norwood Ave. Oakland, Calif., Tcl. Glencourt 7559 ondon ..................2, Caxton St. Westminster, S.W. I

Published by TuF Printon Pumlishina Co. Penton Rullding, Cleveland, Ohlo. F. I. Shas frealdent and Treasurer: G. O. HAYs, Vice Presideat-F. G. Steinfibach, secretars.
Merober. Audit Bureau of Clrculations; ArsoTishers Association. Published eciation.
Untted Stateg, Cubs, Mexlco and Cavada in the year \$4, two years, s6; European and forelgn enantrite, one year $\$ 10$. Slugle coples (current lasues) 26 c .
Entered as gecond class matter at the postonice at Cleveland, under the Act of March 3, 1879.


ABC


Volume 109-No. 3
July 21, 1941
READER COMMENTS ..... 4
HIGHLIGHTING THIS ISSUE ..... 19
NEWS
Quarter to Half Billion Dollars "Take" for Unions ..... 21
Strikes Cost War Department $2,458,150$ Man-Hours in 6 Months ..... 22
Scrap Industry Blames Government for Threatened Scarcity ..... 24
Steclworks Operations for Weck ..... 25
Men of Industry ..... 26
Activities of Stecl Users, Makers ..... 28
Obituaries ..... 28
Machine Tools from South America on North American Market ..... 29
Plan To Conserve Metals Outlined to Hardware Men ..... 33
"Keep Up Production in Nondefense Industrics," Foremen Advise ..... 38
Government Defense Awards ..... 39
Rapid Defense Plant Construction Characterizes Rearmament ..... 43
Keynes Denies Britain Exports Lease-Lend Steel ..... 45
WINDOWS OF WASHINGTON ..... 30
MIRRORS OF MOTORDOM ..... 35
EDITORIAL-Expanding for Defense, or More Planned Economy? ..... 46
THE BUSINESS TREND ..... 47
TECHNICAL
Big Guns-Ancient and Modern (Conclusion)-By Arthur F. Mac- conochic ..... 50
New Film Helps Make Templets Direct from Drawings ..... 54
Gothic Type Church Features All-Welded Frame ..... 79
Metal Finishing
Factors That Influence Grinding Rolls for Ultra-Finish Work-By H. J. Wills ..... 56
Heat Treating
Diesel Cylinder Liner Bores Are Induction Hardened ..... 62
Progress in Stcelmaking
Determination of66
Berween Heats with Shorty ..... 68
Materials Handling Handling Paint Materials in Pipes ..... 71
Joining and Welding Tine Recorders Control Arc Welding Cost and Procedure-By Erwin C. Breckelbaum ..... 74
INDUSTRIAL EQUIPMENT ..... 88
MARKET REPORTS AND PRICES ..... 97
CONSTRUCTION AND ENTERPRISE ..... 118
INDEX TO ADVERTISERS ..... 126
PRODUCTION


# HIGHLIGHTING THIS ISSUE OF ゴ己运 

\＆THOUGH steel shortage has not yet proven a major difficulty for consumers，it threatens to become one shortly．Last week（ $\mathbf{p} .97$ ）regu－ lar customers of some large mills were advised that they hereafter will receive only 50 per cent of the steel hitherto shipped to them for nondefense use．This move will reduce sharply the output of civilian goods，an effect that should become apparent in the very near future． Many companies that hitherto have not booked defense work now are scrambling to get such business as a means of keeping their plants going and their organizations intact．The out－ look also is tinged by threat of reajuced steel output in the near future because of scrap and pig iron shortages．

Incensed scrap dealers（p．24）hold govern－ ment officials to blame for the impending crisis in scrap．Had the government acted on recom－ mendations made by the scrap

## Scrap May Be Bottleneck

 industry on June 10，they hold，scrap would not have be－ come a bottleneck．．．．Everi－ tually size o fthe defense ef－ fort is foreshadowed by the fact that defense ob－ ligations entered into in the month of June alone （p．39）aggregated five billions．．．．Long await－ ed price control legislation is expected（ $p .30$ ）to be introduced in Congress this week．．．．The projected 20 per cent cut in automobile produc－ tion，estimates A．H．Allen，（p．35），will throw 155,000 men out of work，thereby causing grave dislocations．Labor under the defense program already has become big business．STEEL（p．21）estimates that the annual union take now is somewhere between one－quarter and one－

## Carrying Coals

 To Newcastle half billion yearly．Items prominent in last week＇s la－ bor news：Loss of $2,500,000$ man－hours to the War Depart－ ment（p．22）through strikes；Republic Steel Corp．＇s agreement（p．23）to deal with SWOC；appointment to the post of first assistant sec－ retary of labor（p．23）of Dan Tracy，former union head，indicted last spring on charges of conspiring to keep prices of electrical equipment at a false high level．．．．On the order of car－ rying coals to Newcastle is the news（p．29） that South American－made machine tools are be－ ing imported here．

New industrial offerings include：Two new types of lathes（p．80）to expedite machining of shell；improved（p．84）＂hot spot＂indicators；a resin treatment（p．95）for

## New Lathes for Shell Work

 reducing porosity in castings： a new photometer（p．88） which offers a rapid and pre－ cise means of studying spec－ trographic plates；a new electro－blackening proc－ ess（p．60）．．．．A new church（p．79）features an unusual steel roof．．．．An incentive plan based on instrument chart records encourages welding operators to do more and better work （p．74）and reduces total overall welding cost． says Erwin C．Breckelbaum．．．．A streamlined paint handling system is a notable feature（ $p$ ．71）of the new plant of the Berger Mfg．Division．
Prof．Macconochie（ $\mathbf{p}, 50$ ）continues his dis－ cussion of big guns，examining into the char－ acteristics of gun tube steel，methods of manu－ facture and inspection of
Big Guns and Tube Steel guns，the theory of auto fret－ tage．He covers the new 37 － millimeter antitank and au． tomatic anti－aircraft guns and other advanced units．．．．H．J．Wills（p．56） analyzes the factors that must receive proper consideration in order to obtain desired results in ultra－finish grinding．．．．E．T．Saxer and R． E．Minto（p．66）describe an improved method for quick determination of tin in cast iron and plain steel，using an iron－antimony alloy．．．． Caterpillar diesel cylinder liner bores（ p .62 ）now are induction hardened．


## From Sand Dunes to Millions of Tons of Steel

Inland Steel Company now produces millions of tons of steel, where less than 40 years ago a single railway tower house stood in a wilderness of sand dunes and scrub oak trees.
The turn of this century found Inland operating its rail steel mill at Chicago Heights. At that time the Middle West was beginning to show signs of phenomenal growth. Those with vision foresaw that it was destined to grow and continue to grow into an ever more important market.
Inland saw the growing need for steel in this area of expanding industry, and in 1901 began building its Indiana Harbor Plant on the sand dune shores of Lake Michigan. Commending this location were its easy access to vast stores of the finest raw materials, and its central location from which to reach the great Middle Western market.
In the first year of operation, Inland made less than a
quarter of a million tons of steel. By 1906, output had been doubled. Ore, limestone and coal properties, and lake freighters, were soon acquired, to give Inland full control over all materials and steelmaking operations.
In 1916, Inland made enormous increases in its capacity. It not only prepared to produce $1,000,000$ tons of steel per year, but it acquired adjacent property and built new furnaces and mills for rolling a wider range of products. The year 1932 saw the opening of Inland's first continuous sheet and strip mill. In the following year tin mills were installed. In 1938, Inland added more open hearth furnaces and built a second continuous mill.

Today, output is at the capacity rate of $3,300,000$ tons of ingots per year. Not only has Inland added to its facilities, but also has recently rebuilt and modernized entire departments. Now, with one of the most modern steel plants in the world, Inland is able to do its full share in the present national emergency.


# Quarter to Half Billion Dollars "Take" 

## For Unions, in Peak of Power


#### Abstract

Friendly government, record employment and wages, pressure for armament combine to sweep organizations


into unparalleled prosperity -The only "big business"
that is permitted to conceal its resources

TRADE unionism has become Big Business, with an annual "take" eslimated at $\$ 250,000,000$ to $\$ 500$, 000,000 . Apparently it is destined to become an even larger and more profitable business, under protection of a labor government during these years of sharply increased employment and high wages.

Regardless of its effect on the national economy as a whole, the pres. ent emergency has been a tremendous boon to trade union organizers.

Total employment is at an all-time peak, offering a large field of prospects.

Wages are at the highest levels in history, making the collection of substantial initiation fees and dues relatively easy.
Employers are striving for uninterrupted production for defense and are granting many concassions to the unions that would have been bitterly contested a year or two ago.

Thus many large employers who have strongly resisted organization efforts in the past recently have granted recognition, and in some cases a closed shop, to avoid interference with defense production.

The situation is without parallel in American history. The two large unions are in clover, with their own internecine warfare as their only se:ious problem.

Claimed membership in 1940 was about $9,000,000$. The American Federation of Labor reported $4,247,443$; the Congress of Industrial Organizations, $4,000,000$; the railroad brotherhoods approximately 500,000 ; and other unions enough to raise the total to $9,000,000$. Employment increases and the recognition of unions by more employers indicates
membership may have increased sharply during the first six months this year.

Presumably all members now are paying dues. The new members are paying initiation fees. In some cases, nonmembers are contributing to union coffers by paying a sub-
stantial portion of their wages for temporary "work permits," especialiy on the government's defense construction projects.

Refusal by union officials to discuss their finances and the lack of laws compelling them to issue financial statemants makes a complete


Pickets barricaded a road leading to the Great Lakes Steel Corp. plant. Ecorse, Mich., last week to prevent workers from entering the plant. Strong hints of defense sabotage were heard as a "wildcat" strike, throwing 8000 out of work and halting production of 5000 tons of steel daily, was called shortly before a contract was scheduled to be signed. NEA photo
and exact picture of the "take" im possible.
No other-large enterprise in the United States is permitted to cover up its financial operations as is trade unionism.

CIO last year made no financial report "upon the advice of counsel," this to a ${ }^{2}$ oid embarrassment in present and potential litigation.

Ther, AFL reported 1940 income as : $\$ 1,938,483$;- including a $\$ 629,499$ carryover from 1939. This, however, is only a "drop in the buck"et," as the parent union receives only a small portion of the locals' revenue.

Expenditures for hiring organizers, paying office and hall rents, publishing union newspapers and other literature and for officials' salaries run into impressive figures. To obtain these funds, the "benefits of membership" are marketed for a price. Idealistic though the unions' slogans may be, their charges are based solidly on practical economics.

Legitimate union income mainly is derived from three sources: Pe riodical dues; initiation fees; and special assessments. Income recsived from "shakedowns" of employers or other forms of graft generally is not officially recognized.

## CIO Dues Lower

CIO dues and initiation fees ordinarily are considerably lower than those of the AFL, for two reasons: Craft union members in the AFL contain a larger percentage of skilled workers who receive higher wages and are able to pay higher dues and fees; AFL craft unions often have mutual insurance plans which necessitate higher charges.

Thus while CIO dues in the newer unions may be as low as $\$ 1$ monthly, and initiation fees only a few do: lars, the AFL charges fees ranging to above $\$ 1000$, so high that it is al. most impossible for the average man to break in, no matter how well qualified. The truckers in Seattle, for example, charge $\$ 500$; the motion picture operators in Cleveland, $\$ 1000$; the glaziers in Chicago, \$1500.

Competition between the CIO and AFL sometimes determines the amounts charged members. When the CIO was launching its Construction Workers Organizing Committee, it advertised that it levied no initiation fees and charged only $\$ 1.50$ a month dues. This, of course, was in marked contrast to the excessively high fees and dues charged by the entrenched.AFL building trades unions.

Dues and fees often are determined by the local unions, althcugh an upper limit sometimes is estab. lished by the parent union.

With charges varying from local to local and from industry to in-

## Editor Puzzled-Wuzzled,

## But Sees How It Works

"This puzzles us does it you?
"Dan Tracy, former head of the International Brotherhood of Electricians, has been second assistant secretary of labor for nearly three years.
"Among labor leaders allegedly involved, he was indicted this spring in San Francisco, at the behest of Assistant Attorney General Thurman G. Arnold, on charges of conspiracy to keep the prices of electrical equipment in the San Francisco area at a false high level, Tracy being accused specifically of letting no union workmen do work for concerns which did not subscribe to the agreed high prices.
"He wasn't fired or suspended from his labor post when the indictment was returned.
"This week, he was promoted by President Roosevelt to first assistant secretary of labor, with a raise of $\$ 334$ a year.
"It must be wonderful to have an employer who gives you a nice, fat job, then indicts you, then promotes and raises you, and shortly will bring you to trial.
"Or DOES this puzzle you?"-The Cleveland News, July 17.
dustry, the average cost to the worker for union membership is impossible to obtain. Some experts who have made extensive investigations estimate the overall average at $\$ 5$ a month. This would mean the yearly income of the unions is more than $\$ 500,000,000$-nearly twice the steel industry's profit in 1940.
Known established dues and initiation fees of the large unions would indicate the estimate of $\$ 5$
monthly is larger than actually collected, despite whopping initiation fees and special assessments in some cases.
An estimate of $\$ 2$ per month aver. age is conservative, and with a total trade union membership swollen to nearly $10,000,000$ through government policies and the exigencies of war, the yearly revenue is at least a quarter billion dollars.
The Steel Workers Organizing Committee and the United Automobile Workers and other large and new unions of the CIO generally have dues amounting only to $\$ 1$ a month and moderate initiation fees. Nor have these unions levied large special assessments to date. On the other hand, the older unions were assessed to finance the organization drives of the past few years. The SWOC, for example, cost CIO about $\$ 2,000,000$ before it became self supporting.

Experts investigations, however, have revealed some curious methods employed by the unions to gain revenue and cite these in substantiation of the $\$ 5$ figure. Thus at Ft. Meade the electricians' union charged nonmembers a daily fee of $\$ 1$ or $\$ 2$ for a working permit, instead of admitting new members. A carpenters' union went to the other extreme with profit; large numbers of untrained and incompetent men were admitted, to be discharged soon after paying high initiation fees. It has been reliably estimated the union made $\$ 400,000$ on the deal.

Obviously, such practices of exploitation have nothing to do with the legitimate objectives of organized labor; nevertheless they are common-and profitable.

Strangely, the government, instead of controlling or prosecuting such abuses of power has virtually erected an umbrella over the or-

## Strikes Cost War Department

## 2,458,150 Man-Hours in 6 Months

- Strikes in factories working on War Department orders and among workmen on army construction projects resulted in a loss of $2,458,150$ man-days during the first six months of 1941. Army contracts were delayed by a total of 187 strikes involving 213,900 workmen. Not included in the department's survey were the month-long shutdown of the soft coal mines or the $1,000,000$ -man-days strike at Ford Motor Co. The coal industry held no defense contracts and the department was unable to determine the extent of delay to army orders in the Ford strike.
War Department charts indicate
three peaks in work stoppages during the period. The first occurred in March when the Allis-Chalmers Mfg. Co. 75 -day tie-up, resulting in a loss of 421,000 man-days, was at its height. Second peak came in late May when the total man-days lost was increased by the "wildcat" General Motors stoppages. Third peak was in early June, caused the Com-munist-inspired strikes at North American Aviation Co., Inglewood. Calif., and the Cleveland plants of the Aluminum Co. of America.

Comparative peace has prevailed since the middle of June. Last week 21 strikes, involving about 11,000 workmen, were in progress.
ganizers. Trade unionism is the only big business that needs not submit to myriad government controls-in the form of financial reports, taxation, price regulations, form of organization and many others.

## Union Officials Not Barred From Positions in OPM

The rule barring paid trade association execurives from OPM does not apply to labor union officials, of whom there are more than 100 in the various subdivisions. Some of these are on the government payroll and some are spending only part time in Washington. Sources in the OPM Labor Division say that although they do not have accurate information, they believe those paid by the government are on leave of absence from their union positions and union salaries.

## "Wildcat" Strike Slows Steel Production in Detroit Area

An unauthorized work stoppage at the Ecorse, Mich., plant of Great Lakes Steel Corp. a few hours before a new contract was scheduled to be signed last week was attributed to obstructionists who have bean hampering negotiations since they were first started several weeks ago. Both company and SWOC officials agreed the strike was a "wildcat" demonstration.

After a contract was signed on Wednesday, resumption of work was marred by a sitdown strike in the cold mill.

## Republic Steel To Recognize SWOC as Bargaining Agent

Republic Steel Corp., Cleveland, last week entered into a stipulation with the National Labor Relations Board whereby the company agreed to recognize SWOC as exclusive bargaining agency in any of its plants where the labor board certifies a majority of employes are members of the union in good standing.

The corporation, SWOC and the labor board also entered into stipulations disposing of all charges of unfair labor practices now pending against Republic, and agreed to a formula to settle all questions of back pay.

A stipulation providing for settlement of the labor board case pending before the United States Coult of Appeals, Philadelphia, is subject to the approval of the court. With the court's approval of that, all other stipulations also will bacome ef fective.
T. M. Girdler, Republic chairman, was quoted as explaining the procedure as follows:

Membership in any plant will be established by union records checked
against company payrolls and verified by the National Labor Relations Board.

This procedure will eliminate the necessity of plant elections. It was adopted in the furtherance of collective bargaining in the plants and in the interests of national defense as It will avoid any interference with production that might result from plant electioneering campaigns.

Republic is operating at top speed and a good share of its output is for defense needs. It wants to avoid any letdown in production.

## Interunion Rivalry, Wage Demands Cause Work Stoppages

Rivalry between the CIO and AFL and demands for higher wages halted production in numerous plants and precipitated some violence last week.

At Cleveland, a jurisdictional dispute between the two unions at the Patterson-Leitch Co., steel fabricators, resulted in street fighting and rioting. There was no dispute between employer and the unions, no issue of wages or working conditions.

At Birmingham, Ala., a threatened strike at the Tennessee Coal, Iron \& Railroad Co. plant was can celed when the dispute was certified to the National Defense Medi-

3 ation Board. Workers had asked a 10 -cent houph increpse.

At Warren, O., ian unauthopized strike at the Cdpperwet SteeLCo. ended when attempts to dissuade workers frompentering the, plant failed. Only fisue was the fuk loughing of sevfial mes for nefficiency.

Wage increases averâting $111 / 2$ cents an hour were dwarded workers at two Buffalo plants of certissf Wright Corp.

Negotiations to eliminate differentials between the north ard south were sought by the Internag tional Union of Aluminum Workers from the Aluminum Co. of America.

United Aircraft Corp., Hartford, Conn., signed a contract with the AFL machinists unions granting wage increases amounting to $\$ 4,200$,000 a year to 25,000 employes.

Six persons were injured when police clashed with pickets at the Bendix, N. J., plant of Air Associates Inc. in a dispute over the dismissal of nine workers.

Work on two iron ore carriers being built for the Pittsburgh Steamship Co., United States Steel Corp. subsidiary, were held up when employes at the Great Lakes Engineering Works, Ecorse, Mich., went on strike. Hull for one of the vessels is now being built up and the keel for the second has just been laid.

## Night Scene in Burbank



- Twelve thousand of 29.290 employes at Lockheed aircraft plant in Burbank. Calit., are on the night shift, building the P-38 Lightning interceptors, and Hudson bombers. Lightnings, considered to be the deadliest fighting planes produced in this country, attain a speed of 400 miles an hour in level flight. The rush at Lockheed is so great a considerable number on night shift work in the open. NEA


# Scrap Industry Blames Government 

 For Scarcity Threatening Steel- ACUTE shortage of scrap will force a reduction in steel mill operations before year's end, suppliers and steelmakers said last week. In some instances, lack of scrap aiready is limiting steel production.

Responsibility for the shortage was placed directly on the Office of Price Administration and Civilian Supply by the Institute of Scrap Iron and Steel, in midyear convention in Detroit last week.

Institute members pointed out that the scrap industry in conjunction with the army and navy presented a list of recommendations to increase the flow of scrap to consumers June 10. The recommendations are said to have been ignored by OPACS.

The recommendations in part provide: Establishment of a $\$ 12$ shipping point price for No. 2 heavy melting steel west of the boundaries of Minnesota, Iowa, Missouri, Arkansas and Louisiana, designed to bring more western scrap into the market. Recommendation was ignored in the scrap price ceiling ordered by OPACS Administrator Leon Henderson a week later.

Country-wide salvage week, which, it was estimated, would bring out $1,000,000$ tons.
Wrecking of $1,000,000$ old automobiles, rusting in "graveyards."

Cessation of hoarding by the army and navy.
Scheduling of scrap needs for defense and lease-lend aid to Britain for six months ahead.

Elimination of direct dealing between producers and consumers.

## "Getting Alarmed"

The failure of OPACS and OPM to act on these recommendations is criticized by members of the industry. One authority said:
"We are getting very much alarmed over the scrap situation and fear that some consumers are going to lose production for lack of scrap. It may be there is not enough scrap in the entire country to support the extraordinarily high rate of steel mill operation.
"But whatever scrap there is in the country, and even though it be isolated in small amounts, should be made available. We are not going to let the blame for any shortage be pinned on us without being given the necessary authority to corral what material is available."
OPM officials were made aware of the situation last week by numerous reports of scarcity. Some mills, it heard, have only a two weeks' sup-
ply on hand, where 60 days' supply is normal. Mills ordinarily would be accumulating scrap at this season; now, supplies are being depleted.

Railroads are shipping in lower than normal volume. In August the automobile producers will be producing in reduced volume and this source will supply less scrap, accentuating the shortage.

## Government May Commandeer Scrap, Pig Iron Stockpiles

Stockpiles of pig iron and iron and steel scrap held by consumers may be commandeered to meet a serious shortage in these materials. This is reported to be the belief of defense officials who canvassed the possible methods of expanding production or freeing tightly held supplies at a meeting with industry representatives in Washington.

If the drastic action of requisitioning is decided upon, it can be carried out through the Department of Justice or through the OPM priorities division, defense officials believe. Commandeering is being considered because OPACS is anxious not to disturb these scrap prices.

The meeting also considered plans to expand production of scrap.

Present at the meeting were C. A.

Bishop, OPACS; Edward A. France Jr., OPACS; A. D. Whiteside, chief of iron and steel section of OPM; W. A. Hauck, OPM steel consultant; Robert Ridgeway, OPM scrap expert; and Walter S. Tower, president, American Iron and Steel Institute.

## Tool Steel Statistics

## Added to Institute Report

- Three new sets of figuras are included in the 1940 or twenty-ninth annual report of the American Iron and Steel Institute, now being issued. One shows production of tool steel bars; another, shipments of products to principal consuming industries for last year; and the third, a complete record of production of ingots and steel for castings by months for the years beginning with 1917.

Study of steel consumption was the first of its scope undertaken by the institute, and was done in the interest of uniformity and elimina. tion of duplicated effort. Annual study of this character was inaugurated by Steel in 1922.

General report includes statistics for the iron and steel industry of the United States and Canada, with other data concerning related industries. Some information contained in the report has already been published in preliminary form in statistical bulletins or compilations issued by the institute.


- Heary tanks of a new type called "Valentines" are seen in exercises "somewhere in the British Isles." NEA photo passed by British censor


## FINANCIAL

$\$ 324,435$ Net Income Earned by Continental Steel in June Quarter

- CONTINENTAL STEEL CORP. Kokomo, Ind., reports consolidated net profit in the quarter ended June 30 totaled $\$ 324,435$ after federal in come and excess profits taxes at the current rates, plus $\$ 193,675$ provision for expected increases under the proposed law. This was equal, after dividend requirements on the company's 7 per cent preferred stock, to $\$ 1.45$ per share on common.

Net earnings in the corresponding period of 1940 totaled $\$ 141,339$ or 54 cents per share on common. In the first quarter, 1941, net profit was $\$ 313,123$ or $\$ 1.40$ per common share.

## Acme Steel Co.'s Second

 Quarter Net Earnings $\$ 920,707$Acme Steel Co., Chicago, steel finisher, reports net profit in second quarter was $\$ 920,707$. Equal to $\$ 2.81$ per share on the company's par $\$ 25$ capital stock, this compared with net income of $\$ 661,149$ or $\$ 2.02$ per share in the period last year. In March quarter, 1941, net earnings totaled $\$ 963,474$ or $\$ 2.94$ per share.

Indicated net profit in first half was $\$ 1,884,181$ or $\$ 5.74$ per share, against $\$ 1,045,403$, equal to $\$ 3.19$ per share, in the corresponding period of 1940.
5494.072 Net Profit Earmed in June Quarter by Otis Steel Co.

Otis Steel Co., Cleveland, reports net profit in second quarter was $\$ 494,072$ after all deductions, including provision for estimated federal taxes. This compared with $\$ 594,183$ net earnings in first quarter this year and $\$ 196,629$ net loss in the second period of 1940 .

## Copperweld Reporls \$919,952

Copperweld Steel Co., Glassport, Pa., earned $\$ 919,952$ net profit in the six months ended June 30. Equal to $\$ 1.68$ per share on common, this compared with net income of $\$ 521$, 314 or $\$ 1.05$ por common share in the corresponding period in 1940.

## Warner \& Swasey Nets \$1,263,356

Warner \& Swasey Co., Cleveland, last week reported net earnings in the second quarter, after all deductions including provision for estimated federal taxes, were $\$ 1,263,356$. This was equal to $\$ 1.55$ per share, and compared with net profit of $\$ 1$, 040,077 in first quarter, 1941, and $\$ 1,126,011$ in second period of 1940. Provision for estimated federal taxes included allowance for possible additional taxes and contingencies.


## PRODUCTION

Down

- NATIONAL steel rate last week eased one-half point to 97 per cent of capacity, due in part to a brief strike at Great Lakes Steel Corp.'s plant, and also to furnace repairs in some centers. In the comparable week in 1940 and 1939 the ingot rate was 88 and 56.5 per cent respectivaly.

New England - Gained 5 points to 95 per cent, two works reporting 100 per cent operations.
Detroit - Down 10 points to 86 per cent, due to one-day interruption to open hearth operations at Great Lakes Steel Corp. caused by strike. Entire plant, except blast furnaces, was idle.

Pittsburgh - Unchanged at 99.5 per cent. Gains at some plants were offset by curtailment at others resulting from necessary furnace repairs.

Wheeling - Steady at 91 per cent.
Cleveland - Off 1.5 points to 95 per cent, caused by repair work.

Youngstown, 0. - Held at 98 per cent. No change is expected this week.

Buffalo - Remained at 93 per cent. Pig iron output continued at 100 per cent.

Central eastern seaboard - Continued at 97 per cent, following an

## District Steel Rates

Percentage of Ingot Capacity Engaged Fercentage In Leading Districts

|  | Week ended July 19 | Change | Same week |  |
| :---: | :---: | :---: | :---: | :---: |
| Pittsburgh | 99.5 | None | 81 | 48 |
| Chicago. | 100 | - . 5 | 95 | 53.5 |
| Eastern Pa. | 97 | None | 86 | 41 |
| $\mathbf{Y}$ cungstown | 98 | None | 84 | 53 |
| Whecling | 91 | None | 94 | 79 |
| Cleveland | 95 | - 1.5 | 63 | 56 |
| Buffalo | 93 | None | 90.5 | 46.5 |
| Birmingham | 90 | None | 88 | 81 |
| New England | 95 | + 5 | 75 | 40 |
| Cincinnati | 85.5 | - 2.5 | 84 | 31 |
| St. Louls | 98 | None | 65 | 47.5 |
| Detrolt | 86 | -10 | 95 | 64 |
| Average | 97 | $-0.5$ | 88 | 56.5 |

advance of 5 points in the preceding week.

Chicago - Off one-half point to 100 per cant, due to repairs.

Birmingham, Ala. Ninety per cent, with 22 open hearths active.

Cincinnati - Declined 2.5 points to 85.5 per cent. A slight gain is indicated for this week, on completion of furnace repairs.

St. Louis - Rate held unchanged at 98 per cent, with 27 out of 28 open hearths active.

## Welding Ships 'Saves 500,000 Tons of Steel"

(1) More than 500,000 tons of steel is being saved and an increase of 500 , 000 tons in cargo-carrying capacity over conventional methods of construction is being accomplished in the 705 -ship building program of the United States Maritime Com mission by welding, it was reported last week by the James F. Lincoln Arc Welding Foundation, Cleveland. Statement was based on a report issued by the commission.

Value of the steel saved totals $\$ 24,300,000$, and is sufficient to construct 227 extra cargo vessels, the commission declared. Under World war conditions, when welding was not used, the current program would require $2,775,000$ tons, it was said. Tonnage required today, utilizing welding, is $2,196,000$.

- New orders for 1372 steel boilers were received by 62 manufacturers in May, compared with orders for 1336 boilers in April, it was reported last week by the Census Bureau Department of Commerce. The May orders represented $2,559,910$ square feet of boiler heating surface.


# MEN of INDUSTRY 

- HERBERT J. WATT has been named manager of sales, western area, Carnegie-Illinois Steel Corp., with headquarters in Chicago. Mr. Watt will co-ordinate sales activities of offices in Chicago, Denver, Detroit, Indianapolis, Milwaukee, St. Louis and St. Paul. Since December, 1939, Mr. Watt has been manager of salas for the central area of Carnegie-Illinois.
J. M. Bowlby has been elected president, Eagle-Picher Lead Co., Cincinnati. He succeeds Joseph Hummel Jr., who has become chairman of the board. Since 1928 Mr . Bowlby has been a general partner of Barrow, Wade, Guthrie \& Co., Chicago, accountants and auditors. He will assume his new duties Sept. 1.

Frank H. Adams, the past 15 years vice president and general manager, Surface Combustion Corp., Toledu, O., has been elected president. He succeeds the late Henry L. Doherty. -
Paul T. Graff has joined Foxboro Co., Foxboro, Mass., as a sales engineer, specializing in the promotion of the company's control instrumentation.
T. D. Dantzler has joined the rubber research staff of Thermoid Co., Trenton, N. J. Mr. Dantzler has had 22 years' experiance in the rubber business.

Edwin Fisher, associated with Cadillac Motor Car Co., 13 years, the past four years as manager of its Jefferson avenue branch in the Detroit area, has resigned to join Progressive Welder Co., Detroit, in an executive sales capacity. Mr. Fisher will assist in the develop. ment of sales of resistance welding equipment in the middle western area.

Howard T. Walsh has retired after 41 years of continuous service with Sullivan Machinery Co., Michigan City, Ind. He served successively as


Herbert J. Watt

J. M. Howlby


Falwin Fisher
an apprentice in the company's training course, salesman in the Denver territory, Pacific Coast manager, London manager, general sales manager, and vice president and director.
F. B. Shay, mining engineer, Foote Mineral Co., Philadelphia, is on a trip to Cuba to investigate manganese, chrome and other mineral deposits.

Carleton Reynell has been appointed general manager of purchases and traffic, Worthington Pump \& Machinery Corp., Harrison, N. J. Frederic W. Thomas has been named assistant general manager of purchases, and Dean K. Chadbourne, assistant general manager of traffic.

John M. Manly Jr. has been appointed personnel director, Lodge \& Shipley Machine Tool Co., Cincinnati. He formerly was secretary, Industrial Association of Cincinnati, Cincinnati branch of the National Metal Trades Association, and Associated Foundries of Cincinnati.

Dr. Harvey C. Rentschler, director of research, lamp division, Westing. house Electric \& Mfg. Co., Bloomfield, N. J., was recently awarded an honorary degree of doctor of science in engineering by Princeton University. A Westinghouse research scientist for 25 years, Dr. Rentschler was cited for his talents in the investigation of photoelectric cells and X-ray and electron tubes.

Henry M. Hogan and Frederic G. Donner have been elected vice presidents, General Motors Corp., Detroit, and members of the administration committee. Mr. Hogan has been assistant general counsel of General Motors, with headquarters in Detroit, while Mr. Donner has been general assistant treasurer, with headquarters in New York.
L. P. Krampf, supply agent, Missouri Pacific railroad, St. Louis, was
elected chairman, purchases and stores division, Association of American Railroads, at the division's annual meeting in Chicago, recently. E. J. Lamneck, purchasing agent, Pennsylvania railroad, Philadelphia, was chosen vice chairman.

Delbert B. Geeseman has been appointed general superintendent, Canonsburg, Pa., works, Carnegie-Illin-

D. 13. Gceseman
ois Steel Corp., the tin plate manufacturing plant recently acquired by: Carnegie-Illinois from Standard Tin Plate Co.
W. A. Fletcher has been appointed district sales manager, wastern division, E. F. Houghton \& Co., Philadelphia, with headquarters at 835 Harrison street, San Francisco. Mr. Fletcher formerly was district sales manager at Cleveland and more recently in charge of the company's government products division.
C. D. Howe, minister of munitions and supply, Ottawa, Ont., announces


Frank T. Sisco
Who has been appointed assistant secretary, American Institute of Mining and Metallurgical Engineers, New York, as announced in STEEL. Julj 7, page 28. He formerly was editor, Alloys of Iron Research of the Englneering Foundation
the following changes in personnel of the purchasing branch of his department. John Eaton, director of the purchasing branch, has been recalled by the Canadian Pacific Railway Co., and has been promoted to assistant general purchasing agent. Mr. Eaton has been succeeded as director of purchasing branch by L. L. Price, heretofore general purchasing agent. W. E. Wilford, the department's purchasing representative at Toronto, Ont., has been promoted to general purchasing agent at Ottawa, and $\mathbf{R}$. H. Yarnell, will now head the Toronto purchasing office.

Cloud Wampler, president, Stern, Wampler \& Co., Chicago, investment bankers, has been elected exacutive vice president, Carrier Corp., Syracuse, N. Y.
F. A. Coons, formerly purchasing agent and secretary, Thomas Machine Mfg. Co., Pittsburgh, has resigned.

Edward Nelson Case has joined the research staff of A. F. Holden Co., New Haven, Conn. He is a recent graduate of Union College, Schenectady, N. Y. James Ceriani, formerly research chemist, E. I. Du Pont De Nemours \& Co., Wilming. ton, Del., also has joined Holden's research staff. He is a graduate of the Royal Institute of Industrial Chemistry at Bergamo, Italy.
E. I. Lassen has been appointed manager of welding sales for General Electric Co. in the New York district. He will work with E. Vom Steeg Jr., G-E welding specialist, and with Welding Engineering Sales Corp., G-E distributor, in serving northern New Jersey, New York state and Connecticut. Mr. Lassen


Louis Jordan
Who has resigned as assistant secretary, American Institute of Mining and Metallurglcal Engineers, New York, to become assoclated with the Office of Production Management, Washington, as reported in Stref, July 7, p. 28
formerly was engaged in welding application engineering work at Schenectady, N. Y.
T. R. Rhea has been named engineer of the chemical section, a new section in General Electric's indus trial engineering department, established to carry on activities which heretofore have been a part of the work of the mining section of the industrial engineering department.

Philip N. Cooke, for more than 15 years sales manager, Norton Co. of Canada Ltd., Hamilton, Ont., has been appointed resident manager, succeeding the late Robert C. Doug. las. D. M. Chisholm, of the Canadian sales organization, succeeds Mr. Cooke as sales manager. Mr. Cooke has been associated with the Canadian plant from its inception, leaving Worcester, Mass., in June, 1920, as one of the original Can-adian-Norton organization.
F. V. MacArthur, after nearly 50 years of service with Link-Belt Co., Chicago, has resigned as secretary and assistant treasurer, and is retir. ing from business. Harry E. Kellogg, heretofore treasurer and as sistant secretary, has been elected secretary, and will also continue as treasurer. Melbourne P. Anderson has become assistant treasurer, and Henry C. Oakes, assistant secretary. Frank H. Brandt has been named general auditor.

## 225,000 Tons Canadian, Mexican Lead Contracted

- Metals Reserve Co. has completed arrangements to purchase up to 225,000 short tons of Canadian and Mexican lead in the second half of 1941 to meet expanding defense needs in United States. Of this 50,350 tons represents material now held in stockpiles by three smelting companies with which contracts have been made. The balance is to be delivered out of production during the remainder of 1941.
Because domestic lead production is only about 60 per cent of consumption, lead purchased by the Metals Reserve Co. will be distributed under allocation of OPM to consumers in United States at pre vailing prices. Metals Reserve Co. is paying for the lead 3.75 cents per pound, exclusive of duty, at Laredo, Tex., and Trail, B. C. This price is expected to prevent further curtail. ment in Mexican production which has been declining due to loss of European markets

Companies possessing the $50,350-$ ton stockpile: Consolidated Mining \& Smelting Co. of Canada Ltd.; American Metal Co. Ltd.; and American Smelting \& Refining Co.

# Activities of Steel Users, Makers 

- PRODUCTION at Westinghouse Electric \& Mfg. Co.'s new fluorescent lamp plant, Fairmount, W. Va., is expected to begin Aug. 2. Eventually 200,000 tubes will be made daily The plant is windowless and air conditioned; equipment is being in stalled. The company will start work shortly on another plant on the same property to cost about $\$ 1,800,000$, to supply the lamp works with glass tubes.

Metal \& Thermit Corp., New York, has started construction of a research laboratory at Woodbridge, N. J. One story high, it will contain 16,000 square feet of floor space. Dr. Lincoln T. Work, formerly of Columbia University, is director of research activities.
"Keel laying" of the new Empire State Express was celebrated at the E. G. Budd Mfg. Co. plant in Philadelphia last week. F. E. Williamson, president, New York Central, and Edward G. Budd made the first weld in the center sill of the first of 32 streamlined cars under construction for the New York-Buf falo service.

United States Radiator Corp. has reopened its foundry at West Newton, Pa., after a seven-year shut down. Plant now employs 100, soon will add 150 more.

Fox Grinders Inc., manufacturer of grinding machines for steel mills and foundries, will raze its plant at Harmony, Pa., and erect a new steel and concrete structure, $50 \times 100$ feet, in its place.

Fedders-New York Co., 415 Lexington avenue, New York, has been organized by John C. Kjerner, to serve the metropolitan area with heating and air conditioning equipment. Eugene J. Moran, formerly of Moran \& Brown, will be associated with Mr. Kjerner.

Vascoloy-Ramet Corp., North Chi cago, Ill., has opened a district sales engineering office at 50 Church street, New York, to be in charge of Eugene Roth, eastern district sales manager, assisted by Alan Carver Harry J. Chase and Standish Rowe. Sales and service for the New York area had been handled previously from the Vascoloy-Ramet eastern plant in Jersey City, N. J.
Donberg \& Danits, 548 West Washington boulevard, Chicago, has been organized by Joseph H. Donberg and Samuel Danits, to deal in used machine tools. The company offers a comprehensive line of all types of tools and is prepared to purchase
such equipment, including complete plants. The organizers have a combined experience of 35 years in the used machine tool field.

Bolens Mfg. Co., Port Washington, Wis., has been sold to a new firm to be known as Bolens Products Co. The latter company is owned by Roy Johnson, president, Automatic Products Co. There will be no change in personnel.

Western Foundry Co., Chicago, has re-opened its foundry at Hol land, Mich. The plant will be operated by Frank J. Biener, plant manager. and William Selgrath, superintendent.

## Canada To Produce 10\% Of Tin Requirements

## TORONTO, ONT.

E Effective methods for tin produc tion from complex ores, in the Sul livan Mountain area in British Columbia have been devised by Con solidated Mining \& Smelting Co., Montreal, it was reported last wcek. The company will soon be able to provide about 10 per cent of Cana. da's tin requirements. Steel Co. of Canada Ltd., at Hamilton, Ont., is expected to receive entire output.

Since outbreak of war Consoli dated has added to its activities the exploitation of mercury deposits at Pinchi Lake; milling of scheelite from tungsten at Roche de Boule Mountain; production of cadmium, bismuth, tin and other metals.

Construction of new power development project designed for ultimate capacity of $1,000,000$ horse power and to cost about $\$ 30,000,000$, by Aluminum Co. of Canada Ltd., Montreal, has started. Additional power is required for the company's proposed $\$ 60,000.000$ plant expansion program, to fill large orders for Canada, Great Britain and Uniter States.

Department of Munitions and Sunply. in the week ended July 4, placed 2422 contracts with total value of $\$ 17,314,157$. Orders to United States companies aggregated $\$ 3,719,139$. Canadian companies' awards:

Ordnance: Dominion Engineering Works Itd., Montreal, Que., $\$ 1,460,000$; Northern Electric Co. Ltd., Montreal, $\$ 177,864$; Robert Mitchell Co. Ltd., Montreal, \$8986.

Munitions: Barber Die Castings Ltd., Hamilton, Ont., $\$ 29,379$.

Shipbuilding: E. \& S. Barbour, Newton, B. B. Newfoundland, \$9693; Hallfax Shipyards Ltd., Halifax, N. S., \$7407; St. John Dry Dock \& Shipbuilding Co. Itd., St. John, N. B., $\$ 30,533$.

Dockyard supplies: British Admiralty, England, $\$ 13,000$; Dominion Chaln Co. Ltd., Niagara Falls, Ont., \$24,562: McKin-
non Columbus Chain Ltd., St. Catharines, Ont. \$24,562.

Instruments: Brltish Admiralty, Eng land, $\$ 7200$.

Land transport: General Motors of Canada Ltd., Oshawa, Ont., $\$ 69,218$; Fire stone Tire \& Rubber Co. of Canada Ltd. Hamliton, Ont., $\$ 44,479$; Ford Motor Co of Canada Ltd., Windsor, Ont., $\$ 19,273$

Aireraft: Canadian Pratt \& Whitney Alreraft Co. Ltd., Longueull, Que., $\$ 223$,051; Anglo-Canadian Wire Rope Co. Ltd. Montreal, $\$ 13,152$; Dominion Wire Rope \& Cable Co., Montreal, \$9516; Noorduy'n Aviation Lid., Montreal, $\$ 792,169$; Switlik Canadian Parachute Ltd., Aontreal, \$9979; Canadian Wire \& Cable Co. Ltd. Toronto, $\$ 11,421$; DeHavilland Alrcraft of Canada Ltd., Toronto, $\$ 22,882$; National Steel Car Corp. Ltd., Malton, Ont. $\$ 14,849$; Fleet Aircraft Ltd., Ft. Erie, Ont. $\$ 480,096$.

Electrical equipment: Canadlan Marconl Co., Montreal, $\$ 38,476$; Canadian General Electric Co. Ltd., Ottawa, \$5630; Canadian WestInghouse Co. Ltd., Ottawa, $\$ 8907$; R. C. A. Victor Co. Ltd., Ottawa, \$20.402; Canadian Telephones \& Supplies Ltd., Toronto, $\$ 12,320$; Exide Batteries of Canada Ltd., Toronto, \$14,274; Ferranti Electric Ltd., Toronto, $\$ 20,280$; Grimmer Wilson Enginceling Co., Toronto, $\$ 7688$

Machinery and tools: Burrard Iron Works Ltd., Vancouver, B. C., $\$ 8796$; Robert Mulhall, Ottawa, $\$ 10,938$

Miscellaneous: Canadlan Comstock Co. Ltd., Toronto, $\$ 18,650$; Horton Steel Works Ltd., Torgnto, $\$ 13,925$; Howard Furnace Co., Toronto, \$5785; Ontario Hydro ElecIric Power Commission, Toronto, $\$ 87,082$ T. W. Hand Flreworks Co. Ltd., Cooksville, Ont., $\$ 20,380$; Kraft Containers Ltd., Hamilton, Ont., \$8368; International Business Machlnes Co., Ottawa, \$34,920, Canadlan Kodak Sales Co. Lid., Toronto, $\$ 31,602$; Dlamond Construction Co. Fredericton, N. B., $\$ 40,000$; McNally, Pat terson \& Hanes, Ottawa, $\$ 15,000$; Hagen \& Co., Hallfax, N. S., $\$ 22,000$; Power Bros. Ltd., Lunenburg, N. S., \$7000; George C. Abbott Ltd., Toronto, $\$ 6000$.

Instruments: British Admlralty, Eng land, $\$ 7200$; John Hay \& Co. Ltd., Eastview, Ont., \$12,480.

War construction projects: Ralph \& Arthur Parsons, Windsor, N. S., \$219,000; Anglin-Norcross Maritime Ltd., Montreal. bullding at Hallfax, N. S., $\$ 700,000$; E. J. Ryan Construction Co., Vancouver, B. C., building at Prince Rupert, $\$ 75,000$; Ambrose Wheeler Ltd., Moncton, N. B., \$213.299; Magliore Couchon Ltd., Quebec, Que., $\$ 492,414$; Frid Construction Co. Ltd., Hamllton, $\$ 212,018$.

## DIED:

- Robert C. Farrington, 59, since 1919 chief mechanical engineer for the Austin Co., Cleveland, designers and builders, and a specialist on factory building and design, July 15, in Ft. Worth, Tex.

William J. Vanderkloot, 62, a pioneer Chicago steel manufacturer and president, Vanderkloot Steel Works, Chicago, until it discontinued business ten years ago, at his home in Lake Bluff, Ill., July 14.

William H. Campbell, 59, since 1909 president, Garrigues, Stewart \& Davies Inc., New York, in Plainfield, N. J., July 12.

## Machine Tools from South America

## Penetrate North American Market

- UNTIL outbreak of the present European war it was a debated question whether South America would within reasonable time become a market for North American machine tools. The general conclusion was that it would be many years before it would represent a substantial market for machine tools of production type.
In view of that, it came as a surprise to many last week to learn that a substantial number of production machine tools not only are being manufactured in Argentina and in Brazil by native-owned and operated companies, but also that arrangements have been made for sale of the tools in United States.


## Will Ease Shortage Here

During recent trips to South America, James F. Strnad, president, Lempco Products Co., Bedford, O., automotive shop equipment manufacturer, was impressed with the possibilities of importing Argentine and Brazilian tools as a step toward relieving the present short age in the United States. He arranged to serve as exclusive American and British distributor for five of the leading South American machine tool builders-three in Buenos Aires and two in Sao Paulo, Brazil.
First shipment-47 machines
will arrive in Cleveland this week, including shapers, drill presses punch presses, die fling machines and hand screw machines. Later shipments will include large turret lathes, planers, heavy-duty drill presses and milling machines. One of the milling machines is shown in the illustration below.

The equipment is designed and built to conform to American standards and shop practice. This also is true of accessories, such as dividing heads. South American iron and steel are used and according to Mr. Strnad, the quality of castings is high.

Commenting on workmanship, he said the marked artistic ability of Argentineans and Brazilians makes them appreciative and capable of high-grade craftmanship necessary in machine tool building.

Interchangeability of parts is maintained, and spare parts will be stocked by the Lempco Products organization.

While it is not expected South American tools will be an important factor in the North American market in normal times, it appears they will present active competition to North American and European builders in the South and Central American markets after the war
"In the meantime these tools


- Typical of production machine tools now being built by a number of companies in Argentina and Brazil is this horizontal milling machine equipped with adjustable swiveling table, gibbed overarm and dividing head
should further our government's 'good neighbor' policy with the South American republics," said Mr. Strnad. "Above all, we hope that these machines will help to increase America's output of war materials by easing some of the production bottlenecks."


## June Machine Tool <br> Shipments \$63,400,000

풀 June machine tool shipments totaled $\$ 63,400000$, compared to $\$ 60$, 800,000 for May and $\$ 34,000,000$ for June, 1940, according to the Na tional Machine Tool Builders' Asso ciation, Cleveland.
The entire production is going to national defense and aid to Brit ain.
The industry has practically doubled its rate of production within the last twelve months. Ninety-flve per cent of the employes in the industry are employed in companies working two or three shifts, subcortracting is steadily increasing and programs for training new employes are in full swing.
Shipments are expected to continue to mount steadily and according to present indications the industry will meet or exceed its announced goal of a total production of $\$ 750,000,000$ during the year 1941.

## United States To Obtain Mexico's Surplus Metals

Mexico will export to this country for the next 18 months all surplus strategic and critical materials un der an agreement with Metals Reserve Co. and Defense Supplies Corp.

Antimony, copper, graphite, lead, mercury, tungsten, tin, zinc and henequen are covered by the pact.
The government companies will buy, at market prices at the time of purchase, any surplus of these products not sold to private industry in the western hemisphere. The Mexican government has ruled that exports of these commodities may be made only to points within the hemisphere.

## Delivers Tank No. 1000

(0) Combat tank No. 1000, built by American Car \& Foundry Co., New York, for the United States Army, rolled off the assembly line at the company's Berwick, Pa., plant July 10. This unit was completed 452 days from acceptance by the government of the first tank produced by this company.

Tank No. 1000 is undergoing the regular shakedown tests, and will be delivered to the Army July 26 . with appropriate ceremonies.


#### Abstract

Price control legislation scheduled to reach Congress this week. Many changes in proposed bill expected. Report wages, farm prices labled "do not touch" by administration ... OPM consultant studies expanding steel capacity. Say 6,000,000-ton increase may be sufficient . . . Stettinius places cutting tools on preference rating basis ... Name companies to operate new aluminum plants


WASHINGTON

- PRICE control legislation, discussed for many weeks and desired by the administration's OPACS, is scheduled to reach Congress this week. Bills designed to control the cost of the defense program and to prevent a general inflationary spiral probably will be introduced in both houses.

Congressional leaders privately admit that these bills will not attempt to place a ceiling over wages or farm products. These have been labeled "do not touch" by the administration.
While the proposed legislation has been studied from many angles, it is expected many changes will be made after it reaches Congress.
OPACS officials want three things in the law:

Definite legal declaration that prices should be controlled. Since OPACS first began to establish price ceilings on certain commodities the question of legality of the division's actions has been raised repeatedly.

Enforcement powers. Just what OPACS could do if any industry refused to comply with established price ceilings is a moot question. The new bill probably will provide for fines or jail sentences and the use of injunctions.

Public support. To date, price-fixing authorities believe, the public has not been pinched enough by rising prices to wax enthusiastic over contrcls. Ii such powers are incorporated in law, they believe, the policy will be more readily accepted.

One group of the bill's proponents believes that prices should be frozen at levels prevailing on a certain date before inflation started, plus additions necessitated by rising costs, and another group favors fixing prices as of a certain base period.

## Metals Firms Included in President's Export Blacklist

When President Roosevelt slapped an American export blacklist on 1800 pro-axis persons and firms doing
business below the Rio Grande, he included a number dealing in metals and metal products. Among the more prominent of these were:

Argentina Technical Co., Buenos Aires; Krupp Sociedad Metalurgica Argentina, Buenos Aires; Alnora Soc Machinas Ltd., Rio de Janeiro; Fonecedorma de Machinas Ltd. Soc, Rio de Janeiro; Explotadorada de Manganeso Soc Ltd., Santiago; Machinery \& Chemical Supply Co., Havana; General Machinery Co., Montevideo.

## 6,000,000 Tons New Steel Capacity Now Mentioned

W. A. Hauck, OPM steel consultant, is making a survey of expanding steel capacity.
His desk is piled high with reports from small and large steel mills with suggestions as to how they can and will expand their capacity if the additional tonnage is required. This information is being tabulated by Mr. Hauck.

Mr. Hauck does not believe that his report will be completed for about a month. It will go to William S. Knudsen who will probably forward it to the President. There has been talk recently that the administration has decided that a $6,000,000$ ton increase in productive capacity is all that is necessary instead of the $10,000,000$ tons originally sug. gested. If this is so, officials of OPM who have most to do with the situation have not been advised of any change.

## Priority Problems Clarified For Steel Executives

Knotty problems involving priorities were clarified by OPM officials at an educational meeting held in Washington last week with executives of steel companies assigned to priorities duties. Other meetings at which representatives of copper and other nonferrous metals companies will be present will be held soon.

Workings of the steel prefe ence


By L. M. LAMM
Washington Editor, STEEL
rating plan were explained by Stanley B. Adams of the priorities staff. L. H. Whitney presented OPM's position on the alloy steel preference order and W. A. Nelson discussed alloy priorities control.

The meeting was sponsored by compliance unit of the priorities division. Officials pointed out the unit has "crackdown" powers against violators of priority orders but intends to clarify the regulations before taking action against offenders.

## 366,000 Subcontractors <br> Producing Defense Items

Defense material is being produced by 366,000 subcontractors and sub-subcontractors for the 18,000 holders of primary defense contracts, Robert L. Mehornay, head of the Defense Contract Service, said last week.
The OPM will not be satisfied, he said, until subcontracting reaches "the full extent necessary to complete the defense program with the greatest possible speed."

## Preference Order for Cutting Tools Issued by Stettinius

Preference order for cutting tools was issued last week by the Priorities Division to meet "an increasing shortage." Henceforth manufacturers and distributors will be unable to fill orders for tools which do not have a preference rating of A-10 or higher.

Ruling provides, however, that nondetense orders may be filled after all defense needs on hand have been met. Priorities Director Stettinius declared manufacturers may continue working on orders in production July 17 for six weeks after that date. This exemption will not be affected, he said, by other preference rated orders received during


Since standard parts are assembled into complete systems to meet the special requirements of the particular job, the cost of American MonoRail is surprisingly moderate. Operation and maintenance are a minimum. Supplied for manual, electric or automatic operation.

Let us arrange for an American MonoRail engineer to survey your re-
 quirements at no obligation.

Eagy placing of heavy die blocks in planer with no damago

the six weeks' period, except those with an AA emergency rating.
Manufacturers who find compliance would interfere with actual prcduction are given a 10 -day period in which the order may be deferred. "No manufacturer or distributor may discriminate against defense orders," declared Mr. Stettinius. "He must accept such defense contracts in preference to other contracts offered under substantially similar terms and conditions."

## Priorities Critical List Revised; Metals Unchanged

Revised priorities critical list was issued last week by the OPM Priorities Division. Included for the first time are fire prevention and fire fighting equipment, laboratory equipment, neatsfoot oil, oxygen manufacturing units and rubber.

The metals list was unchanged. Included, however, are all but a few precious metais.

## Repair Maintenance Parts for Consumers Goods Gain Prelerence

To assure adequate supplies of repair and maintenance parts for such privately-owned consumers goods as automobiles, trucks, traile.s and household equipment, the Civilian Supply Allocation Division of OPACS promulgated an allocation program giving such materials and equipment a preference over other civilian needs.

Program, which is to be administered by the OPM, is expected to reduce to a minimum the inconvenience to the public caused by diversion of raw materials to defense needs with resultant curtailment of consumer durable goods production. By maintaining supplies of repair and maintenance parts such goods now in existence can be kept in operation.

The program points out that increasing requirements of the defense program will in the near future make it difficult to expand or even keep constant the supply of new consumer durable goods. Goods covered by the program include: Passenger automobiles, trucks and tractors, household refrigerators, stoves, ranges, and water heaters, sanitary plumbing fixtures, and furnaces, including oil burners and automatic stokers.

## Eight Commodity Branches Placed Under Stettinius' Supervision

Priority Director Stettinius said last week eight commodity branches covering products in which importing or allocating problems are uppermost will come under his supervision as a result of the OPM reorganization. Branch chiefs and commodities they will direct are:

Branch 1, Dr. Harry S. Rogers,
rubber, synthetic rubber, cork. Branch 2, Davis A. Uebelacker, nickel. Branch 3, Harry K. Masters, tungsten, molybdenum, vanadium, cobalt, antimony, beryllium. Branch 4, John A. Church, copper, other copper alloys, zinc, brass, cadmium. Branch 5, Andrew Leith, manganese, chrome, ferrosilicon, zirconium, titanium, rutile, columbium, tantalum and alloys of these products.

Branch 6, Erwin Vogelsang, tin, lead, illmenite (pigment). Branch 7, Howard Sykes, mica, fluorspar, cryolite, graphite, magnesite, gypsum. Branch 8, Richard J. Lund, asbestos, mercury, industrial diamonds, quartz crystal, platinum metals, radium, uranium, kyanite, abrasives, diamond dies, jewel bearings.

The branches as set up today will handle one or more commodities, but if allocation problems involving a particular metal expand greatly, a separate branch will be created. The commodity branch organization under Mr. Stettinius includes: Philip D. Reed, deputy director; C. H. Matthiessen Jr., assistant deputy director; Dr. C. K. Leith, technical consultant; Dr. W. Y. Elliott, consultant on import shipping allocations; Marshall J. Dodge Jr., administrative assistant. A consultant on stock piling will be named shortly.

## Name Companies To Operate Seven New Aluminum Plants

Five companies to operate seven new government-owned aluminum plants to produce an additional 600,000,000 pounds of the metal annually were recommended to the War Department by OPM last week.

Construction of a plant, likewise to be owned by the government. and operated during the emergency by the Aluminum Co. of America for the production of $400,000,000$ pounds of alumina annually also has been recommended to the War Department by OPM. Production of alumina from bauxite is a preliminary step in the manufacture of aluminum. This will be the first alumina plant ever designed for the combined treatment of both higi. grade and low-grade bauxite ores.

Construction of the plants to produce an additional $600.000,000$ pounds will raise the aluminum capacity of the United States to $1,400,000,000$ pounds annually. Imports from Canada will raise the total supply available to $1,600,000,000$ pounds.

Names of the companies recommended, the capacity of the plants proposed for their operation, and the locations recommended to date follow:

Aluminum Co. of America, 100,000,000 pounds, Arkansas; Aluminum Co. of America, $90,000,000$ pounds,

Bonneville-Grand Coulee area; Union Carbide \& Carbon Co., 60,000,000 pounds, Spokane, Wash.; Reynolds Metals Co., $100,000,000$ pounds, Listerhill, Ala.; Bohn Aluminu.. \& Brass Co., $70,000,000$ pounds, Los Angeles; Olin Corp., $30,000,000$ pounds, Tacoma, Wash.; Aluminum Co. of America, $150,000,000$ pounds, Massena, N. Y.

An arrangement has been worked out with Alcoa under which that company will design and supervise the construction, on a nonprofit basis, of the plants to be operated by the Union Carbide \& Carbon and Olin Corp. This will eliminate the necessity of these companies from engaging in preliminary investigations of plant design, and therefore will speed construction. Reynolds and Bohn will design and construct the plants they will operate.

## Sandmaier Named to Defense Advisory Commitlee Bureau

Philip J. Sandmaier, Republic Steel Corp., Cleveland, has veen named assistant to Sidney J. Weinberg, chief of the OPM Bureau of Clearance of Defense Industry Advisory Committees.
Mr. Weinberg also appointed to his staff R. H. Weob-Peploe, Lever Bros. Co., Cambridge, Mass.; Richard Wells, Freeport Sulphur Co., New York; Tom Lilley, Burlington Mills Corp., Greensboro, N. C.; and Charles R. Crosby, Dean Langmuir Inc., New York.

Eric Nicol, who has been serving as executive assistant to Sidney Hillman, was appointed associate chief of the Labor Division's new Labor Supply Branch last week. Mr. Nicol will devote his entire time to development of the new labor supply program in the field, and will work directly with the 12 regional Labor Supply Committees estab. lished to meet defense industrics' needs.

Paul Linz, nonferrous metal expert, has been appointed commodity specialist for lead in OPACS price division.

## Blanket Preferences Granted <br> 20 Yards Building Ship Ways

Twenty shipyards building ship ways under contract with the Mari time Commission or at government direction were issued blanket preference ratings last week. Ratings cover all material going into the way and certain types of equipment.

For ways which will produce completed ships this year, an A-1-a rating was assigned. An A-1-b rating applies to ways which will complete ships in 1942 and 1943.

Machine tools are not obtainable under the blanket rating but must be obtained through the usual individual preference certificates.

## Simplification Plan To Conserve

## Metals Outlined to Hardware Men

A BROAD program to simplify the lines and varieties of consumers goods was outlined by Donald M. Nelson, OPM Purchases Director, before the annual convention of the National Retail Hardware Association in New Orleans, last week. The simplification program, Mr . Nel son said, is necessitated by severe shortages of essential metals from aluminum to steel.

The plan, which will be launched immediately, will not be done by issuing arbitrary orders or by tell ing industry what must and what must not be done, Mr. Nelson stated. He outlined the program as follows:
"Each industry affected will be represented by a committee . . composed of representatives of manufacturers, distributo-s and consumers. It will be selected by the government from nominations made by industry; it will convene in WashIngton, where the whole program of simplification will be discussed with experts from the Bureau of Standards and defense officials. The industry representatives will be asked to suggest ways and means of simplification. Decisions will be made by the government, of course, but only after full discussion with
industry's duly selected representatives.
"Your own representatives-rep. resentatives of the retail field-undoubtedly will sit on the committee. Their presence on the committee will offer to you a fine opportunity to be of service. As retailers, you know the lines which lie on your shelves or in your stock rooms, month after month, taking up space, tying up capital and material and representing a drain on your resources rather than a live commercial asset. You will be able to suggest innumerable items on which savings can be made.
"When a program has finally been agreed upon and adopted, you will feel the benefits. You will have an increased turnover of your stocks. You will be dealing more largely in staple lines, easy to buy and casy to sell. You will be able to concentrate your sales effort on fewer lines. You will have less capital invested in new stocks and repair parts, and you will be able to get along with less storage space and decreased overhead."
By drastically reducing the sizes, styles and shapes of various items it should in many cases be possible to avoid a reduction in the overall

## Welders Repair Sabotaged Axis Vessels



Despite severe damage to engines and other vital parts of the German and Italian cargo vessels taken over by the United States govemment last April, repair work is being speeded to the point where some of them will be placed in service by midsummer. Here a bronze welder is repairing the main engine in a sabotaged Italian vessel; it was unnecessary to remove engine from the ship. Photo courtesy Linde Air Products Co., New York
quantity which is offered the public, Mr. Nelson said.
"Simplification offers a method of meeting shortages without getting a corresponding reduction in available goods."

The pincl in metals is the most severe of any class of raw materials, according to the OPM official.
"The civilian demand for such aluminum as is left over after all defense needs have been met is in the ratio of 15 to one-which means that for every pound of aluminum available to meet civilian needs there are at least 15 manufacturers each one of whom needs that pound. Civilian demand for the available supply of copper is in a ratio of five to two; civilian demand for such nickel as will be available is in a ratio of two to one. The situation in steel is not quite so bad; the ratio of civilian demand to available supply stands at about ten to nine, although the situation is considerably worse in respect to some of the alloy steels. Practically all of the metals in general industrial use stand somewhere between aluminum and steel."

## Henderson Sees Shortage of Metals for Consumers Goods

Defense consumption of steel, copper, aluminum, nickel, zinc, chromite, manganese and several other raw materials will be so great "we won't have enough left over for consumers durable goods," OPACS Administrator Henderson told the New York Housewares Manufacturers Association meeting in Atlantic City, N. J., last week.
"Rationing at the raw material line will be necessary with civilian goods' factories thrown into enforced idleness and men made unemployed for lack of machines."

Referring to his activities to expand steel and other industries, Henderson said "efforts for expansion have been too small. Nome steel not needed for military purposes can still be used to build additional capacity, but chances are it will mean little net gain for civilian uses.
"By the time we get the additional capacity the needs of the defense program will have expanded to the polnt where most of it will be needed for armaments."

Henderson warned that the government will stiffen control over prices, no matter how "ornery and belligerent" the protests against it.

He predicted the defense program will convince the nation that demand for goods produces prosperity. "After the war," he said, "the people will support continued heavy government expenditures for public works. Thus the foundation will be laid for a continuing demand for steel, aluminum, copper, tin, zinc and rubber that we have been too reluctant to expand in the last year."


A hand tool manufacturer makes both his striking and socket wrenches from Chrome-Molybdenum (SAE 4140) steel. He gets the toughness needed for striking wrenches even at the relatively high hardness of 35-38 Rockwell "C". His socket wrenches resist deformation
because of $\alpha$ Rockwell "C" hardness of 46-48.
Availability, economy, and quality are nicely combined with versatility in this one steel.

Our free technical book, "Molybdenum in Steel" will be sent to those interested.


> Transition from consumer goods to defense manufacturing creating unemployment and possibility is seen of 60,000 idle in Michigan as a result of auto curtailment . . . Important metal savings accrue from lower car production-1,619,000 tons of steel in six months . . . Several producers now closed for model changes . . . No more aluminum powder for car finishes

## DETROIT'

- PROSPECTS of large-scale unemployment in automobile and parts industries resulting from curtailment of car production are looming ever larger and, as might be expected, are stirring up labor leaders and politicians to a state of at least mild worry. It is an anomalous situation in the face of the current defense boom and seems to give the lie to earlier public proclamations about the dire shortage of labor the country was facing.

Consider a few statistics, prepared by C. C. Carlton, vice president of the Motor Wheel Corp., Lansing, Mich., and chairman of the Michigan Council for Defense, submitted in a recent report to Governor Van Wagoner, Michigan. He points out that curtailment of auto production by 20 per cent from the level prevailing in the first six months of the 1941 model year is actually a 38 per cent curtailment from the pace of the last six months of the model year, or the six months ending in July. And further this curtailment, already agreed to by the motor industry in conferences with the OPM at Washington, will mean loss of jobs by 96,100 in Michigan and 155,000 in the entire country. Automobile and parts industries in the country now hire 525,000 persons, of whom 325 ,000 are employed in Michigan.

## Would Leave 60,000 Jobless

Defense plants nearing the production stage in Michigan will be able to employ an additional 36,210 by October, according to the Carlton report, which would leave some 60,000 working people still without jobs.
If a 50 per cent reduction in auto output should be made mandatory, as some of the more inflammatory orators at Washington would like, then 173,600 would lose their jobs in Michigan plants, and 280,000 throughout the country.

Granting that these estimates
may be on the pessimistic side, still it is apparent a serious dislocation in employment is on the way as the transition from peacetime to defense production speeds up. Some of this unemployment may be temporary, it is true, but there may be thousands twiddling their thumbs this fall because of stoppage of jobs not alone in the automotive industries but in many other consumer industries as well. Already there are instances of smaller plants forced to shut down completely because of the lack of vital materials.

This appears to be a part of the price which must be paid for a gargantuan defense effort. Even in Great Britain, where all types of manufacturing are dwarfed alongside this country's productive plant, the same trouble has been experienced.

Already the complaints are starting to be heard. The UAW-CIO has issued a report urging greater attention to an orderly transition from nondefense to defense manufacturing. State governors and Washington representatives are bcing besieged with pleas from their constituents.

The motor industry saw the difficulty coming. Early last spring officials were calling attention to the serious effects on employment which would result from curtailment of consumer production.

Nonetheless curtailment of nondefense manufacturing is here and there is not much legislators can do about it except to attempt to ease the strain. So far it has come from defense priorities on materials over which few people are inclined to quibble. The auto industry, for example, has led the way in trying to make adjustments in its car manufacturing techniques to facilitate the flow of material to defense.

Some actual figures will show savings in vital metals which the

[^0]

By A. H. ALLEN
Detroit Editor, STEEL
industry will achieve in the six months starting Aug. 1, compared with the six months immediately preceding. These, of course, are based on the accepted 20 per cent curtailment, or as previously explained, the 38 per cent curtailment from the current rate. A saving of 87.4 per cent in primary aluminum and 33.8 per cent in secondary aluminum, or $17,000,000$ pounds in all, enough for 1700 average-size military airplanes; a saving of 76.1 per cent in nickel steel, or $185,000,000$ pounds in all; a saving of 70.1 per cent in zinc; a saving of 71.7 per cent in tungsten; and a saving of 37.1 per cent in steel, or $1,619,000$ tons in all.

Translating the saving in steel to a year's basis, it amounts to onethird of the entire $10,000,000$-ton new capacity figure being urged upon the industry by Washington expansionists.

## High Production a Help To Defense Program

There are those who look on the production of $5,300,000$ cars and trucks of 1941 vintage as virtual treason to the defense program. They proclaim wildly that this output should have been shut off long ago and the plants turned over to making guns, planes, tanks and whatnot. Such hysterics are simply foolish. Defense is the motor industry's No. 1 job and even if car production had been stopped cold months ago, there would not be a single extra gun, a single extra tank or a single extra machine gun available now. It takes time to engineer and tool up for military items, and in every case where the automobile industry is moving into defense manufacturing it is either on or ahead of schedule.

As a matter of fact, the motor industry has really made a valuable
contribution to national defense by turning out $5,300,000$ cars and trucks in the closing model year. Two reasons: First, this heavy production has taken an estimated 100,000 men off relief rolls and public payrolls and trained many of them to do important manufacturing jobs; and second it has demonstrated to suppliers of now-critical materials - aluminum, zinc, copper, nickel, etc.-the dire need for stepping up production of these items immediately, far in advance of the time when an expanding defense program might have demonstrated oncoming shortages. Thus, by showing up material shortages earlier and persuading suppliers to take steps to expand their output, automobile plants have at least helped to make these critical materials available at the time they are most needed.

## OPACS Disregards Auto Industry Advisory Group

Spreading rift between the OPM and the OPACS was attested last week by action of the Henderson organization in disregarding the automotive industry's defense advisory committee organized the week before by OPM, and in sending invitations to all the various motor companies to attend a meeting in Washington to discuss further curtailment of auto manufacturing. No reason was given for ignoring the carefully planned industry committee which is already functioning and includes representatives from car

and truck manufacturers, nine others on a motor truck subcommittee and eight parts manufacturers. The committee is purely advisory in character and has no authority to issue any orders or to enforce any regulations.

## Scheduling for 1942 Models

Breakdown of the first material authorization orders from Ford for 1942 models shows a total of 250 ,000 Ford and Mercury models, comprising 9000 Ford specials, 52,000
deluxe, 105,000 superdeluxe, 23,000 Mercury, 21,000 commercial and 40, 000 truck chassis. Engines classify into 1400 of the 4 -cylinder, 45,000 of the 6 -cylinder, 154,800 of the 90 horsepower V-8 (formerly the 85), and 43,800 of the 100 -horsepower V-8 (formerly the 95 ).

Lincoln material authorizations cover 7000 in all, the bulk of them Zephyr models. Production will be gin at a rate of 75 a day, presumably this week.
Hudson apparently will be the first of the passenger car producers to show its 1942 line semiofficial. ly, a Detroit area preview being scheduled for next week. The Hudson plant has been closed for changeovers for the past three weeks.
Nash likewise has been closed for three weeks for model change and last week Plymouth was making an effort to wind up 1941 production. The Plymouth closing was delayed as a result of a strike in a local plant supplying upholstery items to Chrysler divisions. Although this labor trouble was adjusted last week, it had progressed to the point where shutdowns were forced at Plymouth, De Soto and Chrysler for several days. Hence Plymouth was required to continue beyond orig. inal closing dates to fill out its schedule. An early changeover to 1942 models is being planned, although it is doubtful if assemblies can be rolling much before the middle of August. since Briggs Mfg. Co., body supplier, will be down for (Please turn to Page 95)

## Stamping Chevrolet Rear Fender Blanks



# COMP सTHTY AUTOMATIC HONLNG <br> <br> auromatic <br> <br> auromatic MICR-O-SVE CONTROL 

 MICR-O-SVE CONTROL}

One completely automatic Microfinish operation removes from $.0015^{\prime \prime}$ to $.0025^{\prime \prime}$ stock from reamed van vashiv culpas at the rate of approximately 200 pieces per hour. Unilorm size is generaled within $.0005^{\prime \prime}$ and bore accuracy within $0001^{\prime \prime}$ to, $0002^{\prime \prime}$ limits.


## THE HYDROHONTK

Microfinist for Cambined Accomplishment in One Process

The Automatic Micr-O-Size Control Unit generates accurate sizing, in high production, uniformly within limits from $.0002^{\prime \prime}$ to $.0005^{\prime \prime}$, reducing the tolerance range and number of selective fits. It offers increased production through simplified practice. It is provided with an unique feature: visual dials for set-up, adjustment, and complete operating control. Additional features comprise:

- Instantaneous abrasive expansion only to average rough bore size-by hydraulic pressure control-and thereafter positively restrained against any backlash; followed by -
- A controlled, uniform rate of abrasive expansion feedout to uniform size and finish-under variable pressure, hydraulically actuated control, synchronized with an adjustable time cycle, and,
- Expansion collapse of the abrasive members always to the same starting diameter-under mechanical control-and automatic compensation for average stone wear
This equipment, for the first time in honing makes completely automatic operation successful, in high production as shown above left.

$$
\star
$$

## MICROMATIC

## HONE CORPORATION

1345 East Milwaukee Ave. DETROIT, MICHIGAN, U.S.A.


## nevy yivi 3 STOCK REMOVAL "Nin +inct



PROCESS SAFETY


INTERNAL


EXTERNAL

## "Keep Up Production in Nondefense

## Industries," Foreman's Group Advises

By HERBERT RADDATZ

EVERYONE is agreed that production must be maintained in defense industries, but is it equally vital that production be maintained in the nondefense industries?

Without pretending to pose as economic experts, a group of foremen employed by the A. Geo. Schulz Co., Milwaukee, after prolonged discussion, concluded that the maintenance of production at high levels is a constructive force of the highest order.

Having decided in prior meetings that one of the major duties of a supervisor is to maintain production at a high level, a conference was scheduled to discuss ways and means to accomplish this.

Before becoming involved in the "how" of maintaining production, one conferee asked "Why is it important to keep up production?"

The discussion which followed developed some answers of such great significance that it was felt desirable to present the viewpoint of the group to the public for comparison, against some views of private industry which have had such widespread discussion recently.

In our opinion it is important to keep up production in our plant for these five reasons:

1. To keep our jobs.
2. To meet competition.
3. To make profits.
4. To continue in business.
5. To do something useful for society.
The first four represent direct self-interest and probably are merely an exposition of nature's laws of self-preservation. The fifth, however, expresses the fundamental purpose of private enterprise, and is a practical example of democracy at work. It is the soundest foundation upon which a business may be built, and should represent the spirit actuating every employe involved.

Analyzing the useful function our company performs for society, we selected nine items of major importance. These nine are listed here in order of their discussion, and no attempt has been made to determine their order of importance.

## 1. Provide Employment

By providing employment oppor-tunities-the existence and operation of our company enables some citizens in our community to earn a iivelihood; to rear their families in peace and security; and through the distribution of wages, to improve
the standards of living, not only of the employe and his family but also of employes engaged in housing; clothing; food; transportation; entertainment and other industries. The opportunity of private employment is a bright objective to young people on the threshold of life.

## 2. To Promote Sanitation

Proper packaging not only makes for lower packing and handling costs of consumer goods, but protects them against unsanitary exposure. Our business directly contributes to the maintenance of sanitary standards in commerce and the home.

## 3. To Safeguard Health

Foods, druggists' sundries, babies' toys and countless other things important in our daily life are protected against contamination through dust, dirt, handling and other sources by proper packaging. Individual containers lessen the likelihood of pollution ever present when commodities are handled in bulk. In this we do our part by providing the right kind of containers.

## 4. To Reduce Consumer Costs

Properly designed containers, packages, boxes and cartons facilitate packing, handling, shipping and selling, and by eliminating much lost time and waste motion, effect general economies in the cost of distributing goods. Lower spoilage, decreased accidental losses and greater economy of space in trucks, trains and stores help to lower the cost of goods purchased by the family buyer.

## 5. To Pay Taxes

It is right that a business pay for the privilege of existence and one of the forms of such payment is that of taxes. Fire and police pro

## About the Author

- Herbert Raddatz is foreman of the set-up box department, handwork and stripper department, A. Geo. Schulz Co., manufacturer of set-up and folding boxes, fiber and corrugated containers, Milwaukee.

He is one of 14 foremen who meet regularly to discuss their problems as supervisors.
tection, city, state and national governments, and the social systems to assist the needy and dependent are financed almost wholly by taxes paid by business and its employes. Since increased production means lower costs, the savings our business affords to society increase our ability to pay taxes, which in dollars and cents exceed the so-called profits of the business.

## 6. To Improve Living Standards

When a business distributes wages to employes, it stimulates employ. ment in other lines. The industries which furnish our supplies and transport supplies and products, in turn, provide more employment and wages when we maintain high production. Reducing the consumers' costs enables the family to divert the money thus saved to other purposes, thus stimulating still other businesses.

## 7. To Promote Community Welfare

Employment and earning power mean better homes; better schools; better clothing; better health; and better recreation. The construction of a new home adds wealth to the community, and in turn, provides further work and wages to those employed in supplying living facilities.

## 8. Makes Better Citizens

An individual with a job is not as likely to enter into a life of crime as one who is without a means of earning a living. Unemployment adds to the family burden and causes a drain on relatives, friends and organized charity. By providing employment a business minimizes the evils of idleness and emphasizes broader opportunities for education and social intercourse.

## 9. To Improve the Art of Management

Successful business operation makes possible further research and development. Worth while things developed in our business spread to the other businesses and they too realize the resulting savings and other advantages.
These conclusions of my fellow foremen cause me to wonder if it would not be worth while for other groups to consider the same thought in their own work, and whether it would not be a good idea to keep reminding the world of the importance of these three words and their meaning to life-keep up production!

- Number of patents granted for inventions throughout the world totaled 147,396 during 1939, latest year for which figures are available, according to the International Bu reau for the Protection of Industrial Property, Berne, Switzerland. Leading all countries in patents granted was the United States with 43,442 .


## War Department's Defense Fund

## Obligations in June $\$ 4,986,300,310$

- NATIONAL defense funds obli gated by the War Department in June aggregated $\$ 4,986,300,310$, a monthly total never before approached in American military expenditure, it was reported last week by Under Secretary of War Patterson. This averaged $\$ 199,452,012$ for every business day in the month.

Air Corps obligations, $\$ 2,297,476$, 278, constituted the largest single group. Ordnance was next, with $\$ 1,500,231,225$.

Characterizing the figures as "eloquent proof of the War Depart ment's determination to expedite the letting of contracts to the limit," Mr. Patterson added that "the bulk of this money did not become available until the passage of the Fifth Supplemental Appropriation Act on April 5, totaling $\$ 4,091,264,354$."

Army appropriation for the fiscal year 1924, Mr. Patterson pointed out, was $\$ 251,250,231$, lowest since the World war. Thereafter appropriations rose gradually until 1931, when total was $\$ 339,906,459$. In 1939 , appropriation was $\$ 459,401,254$.

War Department last week re
ported awards totaling $\$ 826,128,952$. Aircraft and aircraft parts contracts constituted a large portion of the amount. The contracts:

American Construction Co., Houston, Tex., $\$ 888,690$ for motor repair facllities including 36 miscellaneous buildings and utllities at Normoyle quartermaster depat, motor transport, Sar. Antunlo, Tex.
Artley Co. and Espy Paving \& Construction Co., both of Savannah, Ga., \$4,820,500 for advanced twin engine flying school at Valdosta, Ga., Including can-tonment-lype buildings with necessars' ulllities, other appurtenances requislte for a dlying school. Architectural and englneering contract was awarded to Reynolds, Stockman \& Hills, Jucksonville, Fla.
Central Contracting Ca., Atlanta, Gu. and Beckham \& Brooks, Perry, Git., fourth echelon motor repaif base section of Atlanta quartermaster depo:. including warchouses, sheds and necessary utllities, $\$ 2,529,778$. Robert \& Cu. Inc., Atlanta, awarded architectural and engincering services contract.
Cleary Bros. Construction Co., West Palm Beach, Fla., $\$ 3,627,640$ for $11 i^{\circ}$ coris baste flying school at Sebrlng, Fla. Undertaken immediately whll be $\$ 2,014,879$ of this amount, remainder to be accomplished when sufficient funds are made available. Frank W. Bail \& Associates, Ft. Myers, Fla.,


Needed: 22,600
More Workers
[ A About 22.600 workerj must be added to the payrolls of the machine tool industry by the end of the year, the Bureau of Labor Statistics reported recently after a survey of the industry's requirements. This will bring total employment of wage earners to 103.000, not including workers engaged in manufacturing tools by subcontracting companies. which have become of increasing importance.

In addition to shop workers. the industry will require during this year 2600 more salaried employes, including 300 engineers and 500 draftsmen.

Accompanying chart shows how machine tool employment has increased since 1935. Chart by the Bureau of Labor Statistics
awarded architectural-engineerlng contract.
Dixon, L. E., Co., Los Angeles, $\$ 2,617,883$ supplemental agreement to ilxed ree contract covering construction of a water supply system to carry water from mountains to Camp San Luls Obispo, California, including concrete dam, tunnels, plpe line, pumping plant and other appuitenances. Approximately 200 miscellancous structures are Included. Leeds, Hill, Bin'nyard \& Jewett, Los Angeles, furnishing architectural-engineering services.
Doyle, Russell \& Wise, Richmond, Va., $\$ 2,557,348$ for quartermaster corps school for 900 officers and men and adrlitional structures in replacement center area at Camp Robert E . Lec, Virglnta. Wiley \& Wilson, Lynchburg, Via., have award for architectural and engincering servlces.
Dunn Construction Co., Birmingham, Ala., and John S. Hodgson \& Co., Montgomery, Ala., $\$ 2,109,640$ supplement to previous contracts for Anniston Ordnance Depot, Talladega, Ala., IncludIng magazines, aprons, shelters, guard house fencing, rallroads, roads and other facllitles. Present total estimated cost of the project is $\$ 10,635,579$. J. 13. Converse \& Co., Moblle, Ala., and A. © Polk, Blrmingham, are architects and engineers.
Du Pont, F. I., de Nemours \& Co., Wilmington, Del., supplemental contract for $\$ 15,848,000$ in connection with establishment or anhydrous ammonia plant at Morgantown Ordnance Works, Morgantown, W. Va., to increase productlve capacity. Total estimated cost of the plant is now $\$ 31,448,000$, with $\$ 20,700,000$ for equipment.
Glllson-Taylor Inc., Lexington, Ky., general hospital at Danville, Ky., to contain 250 beds and be located adjacent. to newly constructed hospltal facllilies being leased from the Commonwealth of Kentucky. Estimated Cost. $\$ 330,943$. Associated Architects \& Engineers, Lexington, have been awarded architectural-engineering contract.
Grimshaw, W. R., Co., Tulsa, Okla., motor transport facilitles at Ft. Sill, Oklar, including maintenance shops, warehouses and necessary utllities for housing third echelon motor repair equipment, \$1,076,650.
Mason, Sllas, Co., New York, shell loading plant at Minden, La., estimated to cost $\$ 19,356,908$. Contractor to proville archltectural-englneering services, construct, equip and operate the plant, train key personnel. Approximately $\$ 3,158,200$ will be for acquisition of machinery and equipment for installation in the plant, which will load shells, bombs, fuzes and boosters. plant will be operated on a flxed fee basis, government to furnish all explosives and metal parts for loading ammunltion.
Mekenzie Construction Co., San Antonto, Tex., $\$ 1,857,559$ for additions to existlng San Antonio general depot, includIng warchouses, sheds, magazines fencing and other appurtenances. Work is to start Immediately on a portion of the project estimated to cost $\$ 972,184$, balance to be undertaken when funds are available.
MeShain, John, Inc., Phlladelphia, storage warehouse, Arlington, Va., \$1,640,000. Proposed building is to have floor area of 518,000 square feet.
Pairler \& McClane Corp., and John W. Harris \& Assoclates Inc., both of New York, $\$ 6,658,454$ for ammunltion storage depot at Seneca Ordnance Depot, Kendaia, N. Y., including magazines, transfer platforms, shelters, railroads, roads, miscellaneous structures and necessary utilitles. Willam S. Lozler, Rochester, N. Y., has architecturalengineering contract.
Price Bros. and C. \& G. Construction Co., both of Dayton. O., and Hinton \& Smalley, Celina, O., $\$ 1,692,055$ for fleld
construction work at Wright fleld Dayton.
Sound Construction Co., Seattle, 50 mls cellaneous bulldings, $\$ 827,100$.
Stone \& Webster Engineering Corp., New York, $\$ 868,967$ supplemental agreement for construction and architec tural-engineering services for an additlonal line for production of lead azide at Kankakee Ordnance Works, Jollet, Ill. Plant, to be operated by E. I. du Pont de Nemours a Co., Wilmington, Del., has reached total estimated cost of $\$ 32,079,967$.
Teufel, George F., \& Paul N. Carlson, Scattle, $\$ 1,033,221$ for motor repair shops at Ft. Lewis, Washington, including maintenance shop, warehouse shop, warchouses and utllities for housing third echelon motor repair facllitles.
Wheatley \& Mobley, Augusta, Ga., additional construction at infantry replacement center, Camp Wheeler, Georgia, including class rooms, sports arena and 24 miscellaneous buildings with utilitles, $\$ 487,197$.

## Orinanco Department Awards

Accurate Tool Co., Newark, N. J., tools, $\$ 4403.55$.
Aelco Brass Foundry, Milwaukee, aluminum castings, $\$ 3078.56$.
Albert \& Davidson Plpe Corp., Brooklyn N. Y., black steel plpes, \$4698.04.

Allis-Chalmers Mfg. Co., Mllwaukee, tractor parts, $\$ 2645.33$.
Aluminum Co. of America, Pittsburgh, aluminum ingots, $\$ 1767$.
Aluminum Seal Co., New Kensington, Pa., detonator parts, $\$ 81,220$.
American Cutter \& Engineering Co., Detrolt, punches and dies, $\$ 21,900$.
American Locomotive Co., New York, gun carrlages, tanks, $\$ 28,863,000$.
American Rolling Mill Co., Middletown, O. steel, \$10,647.54.
American Spring \& Meg. Corp., Holly, Mich., steel springs, $\$ 2429.41$.
Ames Baldwin Wyoming Co., Parkersburg, W. Va., shovels, $\$ 2128.10$.
Adex Tool \& Cutter Co. Inc., Shelton. Conn., blades for milling cutters, $\$ 4132.86$.
Armstrong \& Son Co., New York, mortar accessories, $\$ 1270.80$.
Assoclated Spring Corp., Barnes-GibsonRaymond Division, Detrolt, helleal springs, $\$ 3780$.
Automatic Screw Products Co., Indianapolis, fuzes, $\$ 233,612.40$.
Bausch \& Lomb Optical Co., Rochester. N. Y., metallurgical microscopes, $\$ 1059.25$.
Bendix Aviation Corp., Eclipse Aviation Divlsion, Bendlx, N. J., starter assem blies, \$85,560; direct electric starters, \$13,800; Bendix Marine Division, Brooklyn, N. Y., transmitters and differentials, $\$ 908,976.10$; ScIntilla Magneto Division, Sidney, N. Y., spare parts for tank, \$3721.14.
Bernz, Otto, Co. Inc., Rochester, N. Y gasoline blowtorches, $\$ 1300$.
Bethlehem Steel Co., Bethlehem, Pa. forged bomb bodies, $\$ 72,687.50$.
Bliss, E. W., Co., Brooklyn, N. Y., punch presses. $\$ 3570$.
Boesch Mfg. Co., Danbury, Conn., punch es, $\$ 10,640$.
Borg-Warner Corp., Mechanics Universal Joint Division, Rockford, Ill,, fuzes, $\$ 1,586,000$.
Bowen Products Corp., Ecorse, Mich. cartridge cases, $\$ 1,075,000$.
Breeze Corps. Inc., Newark, N. J.. spare parts for tank, $\$ 39,504,27$.
Brlstol Co., Waterbury, Conn., dllatometer, $\$ 1551.50$.
Brown \& Sharpe Mig. Co., Providence, R. I., screw machines, $\$ 13,554$.

Budd, Edward G., Mfg. Co., Philadelphia. shells, $\$ 870,000$.
Burroughs Adding Machine Co., Washington, accounting and posting machine, $\$ 1630.80$.
Carboloy Co. Inc., Detrolt, tools, $\$ 21,350$.
Carnegle-Illinois Steel Corp., Chicago, stecl, \$1062.30.
Carpenter Steel Co., Reading, Pa., drill rods, $\$ 7989.55$.
C. \& G. Tool Co., East Orange, N. J., tools, trays and gages, \$2852.
Chicago Flexible Shaft Co., Chicago Puzes, $\$ 901,529$
Cincinnati Miling Machine Co. Inc., Cincinnati, milling machines, $\$ 9827$.
Clapp, E. D., Mfg. Co., Auburn, N, Y. drop forglngs, $\$ 1896$.
Clark Equipment Co., Clark-Tructractor Division, Battle Creek, Mich., Industrial truck, \$2338.35.
Colt's Patent Fire Arms Mrg. Co., Hartford, Conn., guns, parts, Browning machlne guns and parts, $\$ 6,947,239,08$.
Columbla Steel Tool Co., Chlcago Heights. Ill., steel, \$1023.22.
Comtor Co., Waltham, Mass., gages, \$1431.04.
Continental Motors Corp.. Muskegon, Mich., pins, valve tappet rollers, flywheel assemblles, $\$ 11,562.14$.
Continental Tool Works, Detrolt, cutters and pllots, $\$ 3666.68$.
Cruclble Steel Co. of Amerlca, New York, steel, shot, molybdenum steel, $\$ 3,152$, 735.62.

Deflance Pressed steel Co., Marion, 0 . cartridge cases, $\$ 1,291,408$.
Detroit Broach Co. Inc., Detrolt, broach section detalls, $\$ 1416.80$.
Detroit Seamless Stecl Tubes Co., Dear born, Mich., steel, $\$ 5805.60$.
Devilbiss Co., Toledo, O., nozzle type wash booth, complete with splash proof pump motor, $\$ 1003.50$.
Elwell, H. F., Iron Works, Springlleld, Mass., structural steel, \$1288.
Ever-Tite Mrg. Co., Davenport, Iowa, plates and gussets, $\$ 5523.30$.
Farquhar, A. B., Co. Ltd., York, Pa. hydraulic presses, $\$ 2980$.
Felton, S. A., \& Son Co., Manchester N. H., bore brushes, $\$ 8322.95$.

Firth-Sterling Steel Co., McKeesport, Pa., tools, $\$ 16,790$.
Ford Motor Co., Dearborn, Mich., motor carrlages, $\$ 15,000$.
Ft. Pitt Bedding Co., Pittsburgh, metallic belt links, $\$ 720,000$.
Ft. Pitt Malleable Iron Co., Pittsburgh, grooved castings, \$4257.50.
Fulton-Sylphon Co., Knoxville, Tenn, metal fuze parts, $\$ 64,911$.
General Electrlc Supply Corp., Allentown Pa., cable and wire, $\$ 1309.21$.
General Fireproofing Co., Youngstown O., office equipment, $\$ 2280.23$.

General Motors Corp., Delco Appliance Division, Rochester, N. Y., gun directors, $\$ 524,000$; Delco Products Dlvision, Dayton, O., fuzes, $\$ 82,248.09$; Detrolt Division, guns, $\$ 27,823,008.25$.
Graybar Electrlc, Co., New York, linestarters, switches and electric counters, $\$ 1955$.
Great Lakes Steel Corp., Ecorse, Mich. steel sheets and plates, $\$ 13,537.98$.
Greenfleld Tap \& Die Corp., Greentleld. Mass., gages, $\$ 6232.98$.
Hadley Spectal Tool Co. Inc., Boston, parts for machine guns, $\$ 7770$.
Hansaloy Mrg. Co., Davenport, Iowa. parts for tanks, \$3464.94.
Hardware \& Supply Corp., Kansas City. Mo., axes, $\$ 2986.80$.
Hartford Electric Steel Corp., Roxbury, Mass., steel castings, \$1025.81.
Hershey Mrg. Co., South Boston, Mass., primers, $\$ 51,246$.
Hesse Machine \& Mig. Co. Inc., Boston. gages, $\$ 1750$.
High Standard Mlg. Co., New Haven, Conn., guns, $\$ 4,724,841.12$
Holden, John S., Attleboro, Mass., primers, $\$ 95,600$.
Hydraulle Controls Inc., Chicago, pumps. $\$ 4650$.
International Reglster Co., Chicago, shells, $\$ 1,593,700$.
Karp Metal Products Co. Inc., Brookly'r, N. Y., steel chests, $\$ 2628.67$.

Lamson Co. Inc., Syracuse, N. Y., tripod mounts, $\$ 1,243,152.20$.
Leeds \& Northrup Co., Philadelphia, multlple polnt recorders, \$4512.95.
Leland-Gifford Co., Worcester, Mass., drllling machines, $\$ 1220$.
Lincoin Engineering Co., St. Louls, lubricating fittings and guns, \$1309.81.

LIndberg Engineering Co., Chicago, electric furnace, $\$ 3122.50$.
Ludlow Valve Mfg. Co., Troy, N. Y., hydrants, $\$ 1196.48$
Machinery \& Welder Corp., Moline, Ill. welding electrodes, \$1449.25.
Marys Mig. Co., St. Marys, O., tracks, $\$ 4357.76$.
McKenna Metals Co., Latrobe, Pa., tools. $\$ 2430$
Mesta Machine Co., West Homestead, Pa., guns, \$1,863,140.
Metal Products Corp., Miami, Fla., fuzes, $\$ 140,600$.
Molded Insulation Co., Philadelphia, battery switches, \$4448.
Montgomery Elevator Co., Moline, Ill., modernize freight elevator, $\$ 2066$.
Munning \& Munning Inc., Newark, N. J. laboratory equipment, $\$ 1055.50$.
National Acme Co., Cleveland, equipment required to complete automatic screw machine, $\$ 3319.40$
National Cylinder Gas Co., Chicago, welding rods, $\$ 4250.56$.
National Machinery Co., Tiftin, O., double stroke header, $\$ 19,263$.
Nelson, Herman, Corp., Mollne, Ill., starter shiclds, \$1856.25.
Nlles-Bement-Pond Co., Pratt \& Whitney Division, West Hartiord, Conn., lathes. gage blocks, $\$ 15,08 c .35$.
Noble, K. B., Co., Hartford, Conn., generator set, \$6528.25.
Northwest Metal Products Co. Inc., Seattle, cartridge cllps, \$777,450.
Ocean City Mrg. Co., Philadelphia, prim ers, $\$ 26,460$.
Ohio Steel Foundry, Lima, O., breech ring castings, \$1689.
Otls Elevator Co., Buffalo, steel castings. $\$ 2198.54$.
Peterson Bros. Tool Co., Miliord, Mass., inspection gages, $\$ 2290$.
Pittsburgh Water Heater Corp., Pittsburgh, metal percussion primer parts, \$77,954.50.
Pope Trading Corp., New York, tin, $\$ 10$, 568.

Precision Fabricators Inc., Rochester. N. Y., packing supports for cans. \$1468.97.
Pullman Standard Car Mlg. Co., Hammond, Ind., gun carriages, $\$ 1,548,000$; Butler, Pa., Division, shells, $\$ 4,650,000$.
Quality Tool \& Dle Co., Indianapolis, gages, $\$ 6211$.
Rahalm Machine \& Tool Co., Gardner, Mass., gages, \$7716.50.
Remington Arms Co. Inc., Bridgeport. Conn., cartrldges, $\$ 2,460,000$.
Republic Steel Corp., Union Drawn Divislon, Cleveland, steel, \$1547.45; Chicago Division, steel, \$2598.95.
Revere Copper \& Brass Inc., Chlcago, brass, $\$ 2475.08$.
Rlvet Lathe \& Grinder Inc., Brighton, Mass., lathe, \$1531.
Ryerson \& Haynes Inc., Jackson, Mich., cartridge cases, $\$ 716,000$
Ryerson, Joseph T., \& Son Inc., Chlcago, welding electrodes, steel, $\$ 10,443.47$.
St. Louls Steel Products Co., St. Louls, arming wire assemblies, $\$ 20,836.83$.
St. Plerre Chain Corp., Worcester, Mass. forgings, $\$ 38,744.06$.
Shipley, W. E., Machinery Co., Philadelphia, case turning coulter machine. boring machine, $\$ 60,220$.
Sleg Co., Davenport, Iowa, motor starters, $\$ 1080$.
Signode Steel Strapping Co., Chicago, steel, \$1140.
Smith and Wesson Inc., Springfleld, Mass., revolvers, $\$ 1,170,444.71$.
Springfleld Munlcipal Water Works, Springfleld, Mass., hersey detector meter, \$1560
Standard Gage Co. Inc., Poughkeepsle, N. Y̌., gages, \$9764.4G.

Standard Pressed Steel Co., Jenkintown, Pa., nuts for machine gun tripod, steel nuts, $\$ 4252.65$.
Stoner Mig. Co., Aurora, III., cartrldge cases, $\$ 1,233,750$.
Taft-Pelrce Mifg. Co., Woonsocket, R. I., gages, $\$ 7287.40$.
Timken-Detroit Axle Co., Wisconsin Axle Division, Oshkosh, Wls., spare parts for tanks, $\$ 65,660.50$.
Titeflex Metal Hose Co., Newark, N. J..
assembly tubes, $\$ 16,844.30$.
Tobe Deutschmann Corp., Canton, Mass. filter generators, $\$ 1810.40$.
Tri-Metal Products Corp., Conshohocken Pa., castings, \$2547.19.
Triumph Explosives Inc., Elkton, Md., photo-flash bombs, $\$ 1,375,810.38$.
Unton Gear \& Machine Co., Boston, gears, $\$ 6213$.
Union Twist Drill Co., Athol, Mass., cutling tools, reamers, $\$ 4068.65$.
United Carr Fastener Corp., Cambridge, Mass, rasteners, $\$ 1396.81$.
Unlted EngIneering \& Foundry Co., Pittsburgh, guns, $\$ 1,220,199.40$
United Shoe Machinery Corp., Boston, extra parts for guns, $\$ 128,514.88$.
United States Rubber Co., Detroit, tracks for half track vehicle, $\$ 10,929.84$.
Uranium Lighting Corp., New York, fixtures, \$2112.91.
U.S.L. Battery Corp., Metal Mrg. Division, Long Island City, N. Y., practice projectiles, $\$ 550,000$.
Vascoloy-Ramet Corp., North Chicago, Ill., tools, $\$ 7070$.
Velt \& Young, Phlladelphla, punches, $\$ 9160$.
Vinco Corp., Detrolt, gages, $\$ 3790$.
Wallace Supplles Mig. Co., Chicago, exhaust manlfolds, \$30,380.
Watson-Sthlman Co., Roselle, N. J.. forged steel valves, $\$ 1029.50$.
Welnstein, S., Supply Co., New York, tools, $\$ 3961.07$.
Weldon Tool Co., Cleveland, end mllling cutters, $\$ 1032$
Western Cartridge Co., East Alton, Ill. cartrldges, $\$ 10,015,200$.
Western Electric Co. Inc., Kearny, N. J.. recorder, $\$ 9000$.
Westinghouse Electrlc \& Mfg. Co., Springfleld, Mass., fuze parts, $\$ 43,000$.
Wilson Brown Co., New York, equlpment for modernization of Barnes hydraulic honing machine, $\$ 4285$.
Wrlght Aeronautical Corp., Paterson, N.
J., flywheel hubs, tools, \$6641.20.

Zimmerman Stecl Co., Bettendorf, Iowa, steel castings, $\$ 5237.60$

## Slgnal Corps Awards

Acorn Insulated Wire Co. Inc., Brooklyn, N. Y., wire, $\$ 7800$.
American Automatic Electric Sales Co., Chicago, telephone assembles and equipment, battery telephones, \$111,207.

Amerlean Fork \& Hoe Co., Cleveland, axes, $\$ 1617.97$
Bell \& Howell Co., Chicage, motlon pleture projector and equlpment, \$6157.14.

Collins Radio Co., Cedar Raplds, Iowa, radlo telegraph, telephone equipment, \$32,427.
Cornellus, H. M., Co., New York, ground rod, $\$ 542.40$.
Depuc, Oscar B., Chicago, reduction printer, $\$ 3690$.
Emplre Cooler Service Inc., Chicago, Interphone equipment, $\$ 1938.93$
Ferris Instrument Corp., Boonton, N. J., signal generators, $\$ 2860.50$.
Follett Time Recording Co., Newark, N. J., stamps, \$27,020.

General Dry Batterles Inc., Cleveland, batterles, $\$ 17,897.78$.
General Electric Co., Schenectady, N. Y. crystal units, mountings, $\$ 8849$.
General Electrlc Supply Corp., New York, radlo recelvers, $\$ 4370$.
Graybar Electrle Co. Inc., New York, telephone switchboards, wire, desk telephones, clamps, augers, heat colls, reels, \$92,961.04.
Hackensack Cable Corp., Hackensack, N. J. wire, \$1460.80.

Insuline Corp, of America, Long Island City, N. Y., allgnment tool, $\$ 826$.
Joslyn Co., New York, wire, $\$ 14,883.31$.
Kellogg Switchboard \& Supply Co., Chicago, telephone batteries, wire, $\$ 19,299.72$

Off Automobiles, On Defense


- Earmarked for delense production on bomber parts and antiaircraft gun parts. this large rotary milling machine is one of a score or more of machines in the Plymouth plant in Detroit shortly to be taken off automotive production. Plant oificials conferred with military experts last week on the program. Here are, left to right A. H. Paterson. Plymouth production chief; H. L. Weckler, Chrysler vice president and general manager: D. S. Eddins. Plymouth president; Lieut. Col. R. Z. Crane. chief of ordnance production for the war department in the Detroit area, and Lieut. Col. H. W. Rehm, commanding officer. Chrysler tank arsenal

Kennlcott Wire \& Cable Co., Phillipsdale, R. I., cable, $\$ 28,210$.
Leich Sales Corp., Chlcago, switches, $\$ 850$.
Mcelroy, T. R., Boston, automatic keying unit and equipment, recorders and tubes, $\$ 38,29$.
National Carbon Co., New York, batterles, \$47,524.09.
O'Leary, Arthur J., \& Son Co., Chicago, anchor rods, $\$ 1957$.
Pan American Mrg. \& Supply Corp., Miami, Fla., wind speed assembly, \$636.30.
Power Equipment Co., Detroit, printer test sets, $\$ 560.56$.
Radlo Receptor Co., New York, radio transmitting equipment, $\$ 134,681$.
Rauland Corp., Webster-Chlcago Sound Division, Chicago, interphone equipment, \$3936.07
R.C.A. Mig. Co. Inc., Camden, N. J., public address systems, $\$ 19,874$.
Roebling's, J. A., Sons, New York, wire, switchboard cable, $\$ 16,158.31$.
Simplex Wire \& Cable Co., Cambrldge, Mass., wire, $\$ 7072.50$.
Simpson Electric Co., Chicago, test set, $\$ 6699.67$.
Stromberg-Carlson Telephone Mig. Co., Chicago, transmitter head, switchboard positions, $\$ 29,770.50$.
Teletype Corp., Chicago, teletype sets and equipment, $\$ 72,285.66$.
Templeton Kenly Co., Chicago, pole pullIng jack, \$6261.25.
Unlted States Electric Mig. Corp., New York, flashlights, \$65,949.66.
Untted Transformer Corp., New York, colls, $\$ 226,342.08$.
Westinghouse Electrlc Supply Co., Chicago, anchors and screws, \$1010.28.
Weston Electrical Instrument Corp., New York, Weston analyzer, \$1653.75.
White, David, Co., Milwaukee, tripods, $\$ 510$.
Widin Metal Goods Co., Garwood, N. J., legs, $\$ 986.40$.
Wilson, W. S., Co., New York, thimbles and washers, $\$ 653.65$.

## Air Corps Awards

Adams, S. G., Co., St. Louis, photographic darkroom equipment, \$77,393.
Apple Mfg. Co., Dayton, O., target assemblles, $\$ 106,848$.
Aro Equipment Corp., Bryan, O., oll servo units, \$150,750.
Baker-Lockwcod Mfg. Co. Inc., Kansas City, Mo., target assemblies, $\$ 80,574.90$. Bell Aircraft Corp., Buffalo, armor plate, wings, bullet-proof glass, $\$ 273,707.46$.
Bendix Avlation Corp., Bendix Products Division, South Bend, Ind., wheel assemblles, $\$ 29,725.59$; Ploneer Instrument Divislon, Bendix, N. J., compasses and inverters, parts for oxygen regulators, $\$ 978,428.94$; Ecllpse Aviation Dlvision, Bendix, N. J., malntenance parts, $\$ 105,247.80$.
Biederman Motors Corp., Cincinnatt, trucks, tractors, $\$ 377,597.44$.
Boelng Alrcraft Co., Seattle, tank assemblies, $\$ 498,830$.
Crescent Tool Co., Jamestown, N. Y.. pljers, \$82,950.38.
General Cable Corp., CIncinnati, O., Iron. steel, brass and copper wire, $\$ 82,583.87$.
General Electric Co., Schenectady, N. Y. generator voltage regulators, and relay switches, $\$ 520.000$.
General Motors Corp., Allison Division, Indlanapolls, engine parts, aeronautica englnes, $\$ 2,904,116.60$.
Hussmann-Ligonler Co., St. Louls, electric refrigerators, $\$ 24,080$.
Independent EngIncering Co., O'Fallon. Ill., oxygen generating plant, $\$ 57,000$. Jaeger watch Co. Inc., New York, tachometer assemblies, $\$ 63,839.93$.
Jewett Refrlgerator Co. Inc., Buffalo, electric refrigerators, \$692.
Keller, William H., Inc., Grand Haven, Mich., pneumatlc tools, $\$ 61,890$.
Kidde, Walter, \& Co. Inc., New York, oxy gen cylinders, $\$ 115,102$.
Koch Butcher's Supply Co., North Kansas City. Mo., electric refrigerators, $\$ 73,958.40$.
Martin, Glenn L., Co., Baltimore, alr-
plane parts, $\$ 658,751.77$.
Pease, C. F., Co., Chicago, photographic assembly lamps, $\$ 61,000$.
Roth Office Equipment Co.. Dayton, O. steel cablnets. $\$ 193,235.30$.
Traller Co. of America, Cincinnati, trall ers, \$287,548.80.
Wright Aeronautical Corp., Paterson. N. J., crankshaft assemblles, $\$ 159,480$.

## Quartermaster Corps iwards

Amerjcan Safety Razor Corp., New York, safety razors, $\$ 29,375$
Aqua Systems Inc., New York, gasoline fuellng system, Kellog airport, Michtsan, $\$ 30,612$.
Atkins, E. C., \& Co., Indianapolis, butcher saws, $\$ 4091.88$.
Aur der Helde Aragona Inc., West New York, N. Y., flre station, Ft. Dix, New Jersey, $\$ 9800$.
Autocar Co., Ardmore, Pa., tractortrucks, $\$ 5,056,283$.
Blair, A. Farnell, Decatur, Ga.. warehouses at Augusta arsenal, Georgia, $\$ 589,937$.
Bowen, John, Co., Boston, theatres, service club, officers' recreation build. ing and guest house, Ft. Devens, Massachusetts, $\$ 175.956$.
Branford Construction Co., Hartford, Conn., ten temporary bulldings, $F i$ H. G. Wright, New York, $\$ 76,000$.

Buford Bracy Co., Llttle Rock, Ark., additional facilities at reception center, Camp Joseph T. Robinson, Arkansas, \$12,700.
Burkes Bros., New Orleans, 22 chapel bulldings, Camp Shelby, Mississippi, $\$ 340,790$.
Chell \& Anderson Inc., Chicago, radio shelter building, Ft. Sherldan, Illinols, $\$ 8650$.
Chicago Bridge \& Iron Co., Chlcago, elevated water tank, Ft. Sheridan, Illinols, \$38,150.
Cumina Bullding \& Construction Co. New Brunswick, N. J., garage bulldIng, Raritan arsenal, Metuchen, N. J., $\$ 67,645$.
Devine, Naurice M., Inc., Boston, chapel, Ft. Andrews, Massachusctts, \$21,766.
Fquitable Equipment Co., New Orleans, sea-golng tug, steel harbor tug, coastwise tug, $\$ 732,000$.
Fargo Notor Corp., Detrolt, $1 / 2$-ton trucks, \$11,236,975.
Flesher Engineering \& Construction Co., Buffalo, storage buildings, test bulldIngs, loading platform, utilities and roads, Lexington signal corps depot, Kentucky, \$445,731.
Flint-Jordan Construction Co. Inc., Jackson, Miss., additional facillties, reception center, Camp Shelby, Mississippl, $\$ 35,980$.
Ford \& Loryea, Portland, Oreg., gasoline storage, distribution and dispensing system, concrete paving, sanitary sewerage system, water supply system, electric service racilities and railroad spur track, Ft. Lewis, Washing ton, $\$ 148,943$.
Gillette Saiety Razor Co., Boston, safety razors, $\$ 38,472.50$.
Gray, George W., Lubbock, Tex., mollon plcture theater, Camp Barkley, Texas, \$10,665.
Great Eastern Construcuon cu., syex York, four regimental chapels, Ft, Monmouth, New Jersey, $\$ 83,110$.
Green, Mont J., Manhattan, Kans, tlve regimental chapels, Ft. IRiley, Kansas, \$91,475.
Hackett, Henry H., Rapld City, S. Dak.. post ordnance mapazine, Ft. Meade, South Dakota, $\$ 5472$.
Harper, J. A., Crowville, La., standard ordnance repair shop, Camp Beaure gard, Louislana, \$64,307.
Indian Motorcycle Co., Springileld, Mass., motorcycles, $\$ 2,059,805$.
Ivey, Henry A.. Decatur, Ga., 12 regimertal chapels, Camp Forrest, Tennessee, \$192,000.
J.A.J. Construction Co. Inc., Brookiyn. N. Y. flve barracks, Ft. Dix, New Jersey, $555,519$.
Kitchens, Rex D., Construction Co., Austin, Tex., six regimental chapels, Ft. Sum Houston, Texas, \$85,055.

Mon Construction Co., Atlanta, Ga., 500man addition to recrult reception center, Ft. MePherson. Ga., $\$ 196,714$.
O'Driscoll \& Grove Inc., New York, storehouse, Ft. Dix, New Jersey, $\$ 5400$.
Owen, Ames Kimball Co., Grand Raplds, Mich., motor repair shops, grease and inspection racks, oil houses, wash racks, and administration bulldings, Ft. Custer, Michigan, $\$ 374,400$.
Rabalals, C. E., Bunkie, La,, Ilve standard ordnance warehouses, Canp Beauregard, Alexandría, La, $\$ 16,850$.
Simonds, John H., Co., Portland, Me., regimental chapel, Ft, Preble, Maine, \$21,760.
Southeastern Construction Co., Charlotte, N. C., theatre and service club, Camp Croft, South Carolina, \$25,963.
Twaits, Ford J., Co. \& Morrison-Knudsen Co. Inc., Los Angeles, temporary housIng, Ft. Ord, California, nurses' and offleers' quarters, barracks-medical detachment, standard wards, storehouse, at Camp Roberts, California, $\$ 1,406,435$.
Vizzinj, Philip, Baltlmore, Ilve barracks at Ft. Gcorge G. Meade, Maryland, $\$ 58,482$.
Wheatley \& Mobley, Augusta, Ga., smil! arms repair and optical shop bullding, guard house and 40 -car garage including utllities and paving, Augusta arsenal, Augusta, Ga., $\$ 298,978$.
White Motor Co., Cleveland, prime mover trucks, $\$ 1,957,800$.
Yellow Truck \& Coach Mfg. Co., Pontlac, Mich., $21 / 2$-ton trucks, van trucks, \$1,530,197.16.
Young Construction Co., Salt Lake City, Utah, two barracks and one induction building at reception center, $F t$. Douglas, Utah, $\$ 30,166$.

## Corps of Enkineers IWards

American Instrument Co., Sllver Spring, Md., signal lamps and devices, $\$ 12$ 378.20.

American Laundry Machincry Co., New York, laundry equipment, $\$ 19,461$.
Aqua Systems Inc., New York, air corps gasoline fucling system, Jackson airport, Mississlppl, $\$ 100,599$.
Atlantlc Bitulithic Co., Washington, runways and apron, New Myrtle beach municipal airport, South Carolina, $\$ 203,353$.
Baverle, H. O., Los Angeles, alrport lighting system, Las Vegas airport, Nevada, $\$ 33,200$; Los Angeles, airport light$\$ 33,200$; Los Angeles, airport llght-
Ing system, Santa Barbara municipal alrport, Calliornia, $\$ 33,600$.
Buffalo-Springfleld Roller Co., Springfleld, O., rollers, $\$ 28,472.30$.

Camillus Cutlery Co., Camillus, N. Y., pocket knives, $\$ 46,200$.
Chicago, Rock Island \& Pacifc Rallwav Co., Lecompte, La., steel rall, angle bars and the plates, $\$ 187,113.36$.
Clanchette, J. R., Pittsfleld, Me., apron, taxiways and gasoline distribution sys tem, Bangor airport, Malne, $\$ 495,076$.
Cincinnati Mllling Machine \& Cincinnati Grinders Inc., Cincinnati, milling machines, Ft. Crook aircrait assembly plant, Omaha, Nebr., $\$ 242,314$.
Clow, James B., \& Sons, National Cast Iron Pipe Division, Kansas City, Mo., cast iron water pipe, Jefferson bar racks, Missouri, $\$ 40,197.90$.
Colorado Fuel \& Iron Corp., Denver, pipe and fitlings, Lowry fleld, Colorado, $\$ 5442.48$.
Consolldated Steel Corp. of Texas, Orange, Tex., fabricated structural metal and hangar doors, Las Vegas airport, Nevada, $\$ 38,697$.
Dahlgren \& Brooks, Oklahoma City, Okla.. airport, Including paving, draingge and lighting, Oklahoma City municipal airlighting, Oklahoma City municipa
port No. 2 , Oklahoma, $\$ 145,146.62$.
Diamond, Arnold M., Brooklyn, N. Y. steel towers and power llne, Wax lake outlet, south of Bayou Teche, SL. Mary Parish, Loulsiana, $\$ 30,350.34$.
Dow, Rlchard H., Los Angeles, temporary building, March fleld, California, \$202,080.

Euclld Construction Co. Inc., New York, test structure, Edgewood arsenal, Marsland, $\$ 138,779.50$.
Fisk Electric Co., Houston, Tex., basic lighting, Corpus Christi municipal air
port, Nueces county, Texas, $\$ 14,980$.
Flotation Systems Inc., New York, air corps gasoline fueling system, municlpal alrport, Tucson, Arlz., $\$ 132,060$.
Foley, Howard $P$., Co. Inc., Phlladelphla, electric distribution system, Middletown air depot, Pennsylvania, $\$ 134,700$.
Gaw Construction Co., Philadelphia, cquipment repair building, MIddletown air depot, Middletown, Pa., $\$ 238,000$.
General Motors Corp., Pontiac Division, Detroit, station wagon, $\$ 889.64$; Chevrolet Division, Detroit, trucks, plek-up and canopy express trucks, $\$ 7181.94$.
Goedhart, George, Pasadena, Callf., armament and instrument inspection and adjustment bullding, March 1leld, Callfornia, $\$ 83,259$.
Grinnell Co. of the Pacille, San Franciseo, manhole frames and covers, \$2153.25; Seattle, plumbing supplies, Ladd fleld, Alaska, \$3115.80
Hamliton, Arthur, Jr., West Palm Beach, Fla., basic lighting system, Pinellas county airport, St. Petersburg, Fla, \$14,233.
Hillman, C. Kirk, Co., Seattle, churn drills, csst steel clrilling cable and sand cable, Annette island landing lleld, Alaska. \$21,743.70.
Imperlal Electrical Supply Co., Brooklyn. N. Y., steel tape parkway cable, Lowry fleld, Colorado, \$3042.60.
International Harvester Co., New Orleans, plek-up and canopy express trucks. $\$ 1714.16$.
Kesl, Joseph, Rental Equipment Co., St. Louls, portable alr compressors, Jefferson barracks, Missouri, $\$ 8640$.
Kuhlman Electric Co., Bay City, Mich. transformers, Jefferson barracks, Missourl, \$18,042.40.
Lake Erie Englneering Corp., Buifalo, hydraullc forming press, Ft. Crook alrcraft assembly plant, Omaha, Nebr. \$98,745.
Lawrence Construction Co., Sacramento, Calif., alr corps repair hangar, McClellan fleld, Sacramento, Calif., $\$ 97,-$ 841.

Lord \& Burnham Co., Irvington, N. Y., footbridges, $\$ 301,941$.
McWane Cast Iron Pipe Co., Birmingham, Ala., cast iron flttings, Jefferson barracks, Mlssouri, \$3012.50.
Moor, Lee, Contracting Co., El Paso, Tex.. runways and taxiways, airport llght ing, drainage port, and paving parking apron, Amarillo airport, Texas, \$233, 901.20.

Nebraska Power Co., Omaha, Nebr., powe: transmission lines and substation facllities, aircraft assembly plant, Ft. Crook, itles, aircraft assem
Nebraska, $\$ 71,120$.
Northern Commerclal Co., Seattle, trac. tors and bulldozers, Elmendorf neld, Anchorage, Alaska, $\$ 29,063.44$.
Northwest Englneering Co., Scattle, parts for diesel engine, Yakutat landing lleld, Alaska, \$2871.95.
Paclfic States Cast Iron Co., Provo, Utah, cast Iron pipe, $\$ 6866.49$.
Reed, L. P., Meridian, Tex., landing strips. incidental taxiways, and paving one runway, Waco municipal airport, Texas, $\$ 184,745,75$.
Seerle, Peter, Denver, temporary school bullding and storehouse, Lowry fleld, Colorado, $\$ 36,415$.
Van Range, John, Co., Cincinnati, photographic slnks, Elmendorf fleld, Alaski. $\$ 6500$.
Wattson, R. A., Co., Los Angeles, pumping plant, March fleld, California, \$12, 503.

Webster \& Hedgcock Tractor \& Equipment Co., St. Louls, crawler type trac. tors with bulldozers, Jefferson barracks, Missouri, \$7270.
Westinghouse Electric \& MIg. Co., St. Louls, ofl circuit breakers, Jefferson barracks, Missouri, \$7024.
Wold, Peter, Seattle, motorship FeRN, Annette Island, Alaska, $\$ 40,000$.
Wolff Construction Co., St. Louis, booster pump station, Scott fleld, Illinols, \$20,700.

Zicbarth, Fritz, Long Beach, Callf., pumping plant, Phoenix military alrport, Litchfleld park, Arlzona, \$9940; sewage treatment plant, March fleld, Caltfornia, $\$ 174.800$.

## Rapid Defense Plant Construction

## Characterizes Rearmament Program

- SPEED has been the chief attribute of America's defense program. This country is attempting to do in two years what required six or seven in Germany. First call for speed was for erecting new plants and additions for large-scale production of ordnance. Structural steel fabricators therefore were among the first to get into motion.

Cartoons have shown men working at machines, hastily set-up, while builders were racing to get roofs over their heads-yet lagging behind. The cartoonists did not exaggerate much. On yesterday's bean field tanks are being built today. A railroad locomotive from a switching yard was tracked into an unfinished plant in dead of winter to keep machinists' hands, as well as newly-laid cement, from freezing.

This article is no attempt to award blue ribbons to the fastest fabricators or to list, one, two, three, the speediest jobs. Seldom is there a common denominator among jobs, unlike a horse race where competitors are of the same age, condition of training, with same running conditions of track and temperature.

Rapid fabrication depends a great deal on type of building, weather, nearness of fabricator to site of job, whether a building is single or mul-ti-storied, whether specifications are complete at the start and not revised during progress, satisfactory labor conditions, sufficiency of
riveters and welders, requiring not too much overtime.

Especially fortunate as to location was the airplane engine plant Buick Motor Division, General Motors Corp., Melrose Park, Chicago, with Mississippi Valley Structural Steel Co., Decatur, Ill., as fabricator. Latter was located only about a mile from the job, with the In diana Harbor Belt railroad as the connecting link. The railroad supplied a drop-center car on which was placed special rigging to sup port the trusses during shipment. This rigging, usually set-up individually for each truss as shipped. was in this instance permanent, the car being shuttled back and forth between fabricator and new plant The job required 8800 tons of steel, bids taken Feb. 11 and awarded Feb. 14.

## Improved Equipment Helps

Employment of speed in steel fabrication is not new. Many now at drawing boards and in the field served during World war days when it was necessary to get materials as well as men onto the European battlefields. In peace time also there is occasional demand for ut most speed, such as when a rail road bridge on a main line is wrecked or washed out

Many fabricators have been able to make speed records alongside volume. Thus Bethlehem Steel Co.
has brought to completion within the past four months 60,000 tons of steel erection on key defense jobs.

Improved erecting and fabricat ing equipment since the first World war has aided in today's effort. Thus caterpillar cranes now are ca pable of lifts up to 50 tons. Some have booms up to 120 feet in length.

Plant design for the defense in dustries has undergone a change since the last war. Certain defense industries now are housed in cort ventional-type mill buildings. But the present demand for airplanes and tanks has called for many build ings with considerable variation. Some of the new blackout plants are of radical design. Bethlehem's construction has ranged from con ventional construction to airplane assembly plants that incorporate 500 -foot continuous spans. There has been far more variety in erec tion and fabricating problems than was characteristic during the first World war.

Fast erection invariably means letter-perfect scheduling and delivery of fabricated steel on the jol as schedules demand. In 25 years much progress has been made in efficient detailing, both in fabricat ing and erecting, an element of which is today's improved equip ment for copying blueprints and plans.

In the old days structural erec tion was seasonal, falling off sharp ly during the winter. Not so today For example, the Chrysler tank plant is located on low ground and persistent rain converted large portions of the site into mud. Steel was unloaded with caterpillar


- Speed with which the Chrysler tank arsenal was constructed is il lustrated by these three progress photos. At upper left, steelwork erection in its early stages in late November, 1940; below, the plant a month later, construction continuing despite snow and cold; at right, the plant in April. in production
cranes which had to be supported on timber pads. Erection was started Nov. 18, the established contract starting date, and completed Jan. 10 or 12 days ahead of schedule.

The tank arsenal took 6514 tons of steel, and averaged 145 men on the job, varying from day to day with weather conditions. Building is $500 \times 1382$ fect, covering 16.4 acres. Two locomotive cranes were spotted on temporary tracks along the center of the structure, everything else having been handled by crawler cranes. All was riveted construction. The heaviest pieces were columns weighing about 6 tons.
According to a spokesman for Albert Kahn Associated Architects \& Engineers, Detroit, who engineered the Chrysler job, contracts on the cost-plus basis are much preferred to lump-sum contracts because of the many unforeseen contingencies which arise.
It is conceded by fabricators that it is no special trick to make speed records when materials and equip. ment have right-of-way for the particular job. It is suggested that the pyramids of Egypt had the right of way in Pharoah's time. In fact many a fabricator is inclined to soft pedal a speedy job, claiming that other customers are likely to ask: "Why couldn't you use such speed on our job?" Speed records mean all-out priorities on men and materials.

In some instances jobs which started much later than scheduled, finished up sooner than date in the contract. Thus for an aeronautical manufacturing building for Otis Elevator Co., Harrison, N. J. field work started eight weeks late, but building was completed two weeks ahead of schedule. Factors: Efficient scheduling of fabricated steel, sufficient equipment and fast working erection crews. Erection was carried on at three points, with material unloaded from cars at two
points, three tractor cranes erecting and one unloading.

Erection crews have worked overtime on most defense jobs, states Bethlchem, usually on the basis of a nine-hour day and six-day week. While this schedule has been pushed to a ten-hour day on some jobs, overtime schedules in excess of six nine-hour days have been avoided as much as possible, because of diminishing returns resulting from overfatigue.

Albert Kahn company mentions among difficulties labor shortage, mainly riveters; supply is scarce and truculent and sometimes inefficient.

## Uses Proved Methods

Bethlehem notes that it has been found advisable to adhere to well tried erection methods for speed.

A Kahn official does not believe that erection work for emergencies is being done much faster than in 1918. He recalls no developments which has made any speed-up in steel erecting possible, although cranes, motors, other equipment and accessories have been improved.

A handicap against one speed job was the exceptionally low limit as to height of loaded cars which required special routing, drawn by a special Long Island railroad steam engine. This was a new plant for the Grumman Aircraft Corp., Beth-

- Aluminum Co. of America's huge plant at Lafayette, Ind., has been expanded five-fold since the start of the war in September, 1939. At that time the plant had monthly capacity for 695,000 pounds of extruded shapes and 122.000 pounds of tubing. By the end of this year, capacity will be $4,256,000$ pounds of shapes and $1,034,000$ pounds of tubing, six and nine-fold increases. respectively. Photo at left shows steelwork being erected for one of the additions; at right, the plant in production soon afterward
page, Long Island, fabricated by Le high Structural Steel Co., and requiring 2400 tons of steel. The Austin Co., Cleveland, awarded the contract Sept. 20, fabrication started Oct. 21, first shipment, Oct. 31; completed Jan. 20. Plant is $500 \times 700$ feet, one-story, with two-story office section. Structure consists of 140 and 80 -foot trusses, with steel pur lins and bracing. At intersection of the 140 -foot bays, trusses are supported by a 140 -foot jack truss weighing 80 tons.

In the Buick plant, Melrose Park, Ill. cranes were put on tracks along top longitudinals for erecting steel work between them. This was done because of deep foundations which had to be dug, making it difficult to work cranes on the ground.

An opposite situation was where speed was aided by necessity for little excavation and virtually no leveling in the plant for North American Aviation Co., near Dallas, Texas. Prefabricated cellular steel construction, supplied by H. H. Robertson Co., Pittsburgh, promoted speed.

Work on the Westinghouse Electric \& Mfg. Co.'s naval gun plant at Canton, O. started March 6, two days late, was completed May 15, 12 days ahead of schedule. The job: Four duplicate buildings, each with crane runways and three aisles in width. Steel was erected from a completed first floor supported on basement columns on 20 -foot centers. A safe operating area for the caterpillar crane was devised by construction of $25 \times 25$-foot operat ing mats of I-beams and concrete floor slabs.
In another job at no time after shipment were the truss span sections set down on their sides. While most were transported in special trucks from a railway siding adjacent to the point of erection, those that were unloaded on the job ahead of erection schedules were also

stored in upright position, which not only protected the bars but saved a certain amount of erection time. This was an assembly building for the Republic Aviation Corp., Farmingdale, N. Y. A feature was the erection in 100 -foot sections of thirty-nine 500 -foot continuous trusses, 12 feet deep. Special precautions had to be taken to prevent bending these unwieldy members.
Erection of a submarine runway for the Electric Boat Co., New London, Conn., involved handling heavy trusses ranging from 12 to 15 tons, erected to a height of 97 feet. Rather than employ a built-up traveler on which a light derrick could be mounted, which would have been a feasible method, tractor cranes with exceptionally long booms, supplemented with jibs, were used. A limited working area, as some of the steel had to be erected over water, necessitated the use of a 50 ton tractor crane with 125 -foot boom and 20 -foot jib. Three other tractor cranes with 100 -foot booms and 20 -foot jibs and one with an 30 -foot boom and 20 -foot jib also were employed. Use of these, rather than employing travelers that would have required the erection of a temporary structure to support them, accounted mainly for the fast time started Jan. 27, completed April 19; 2834 tons of steel.

## Aircraft Plants Speedily Built

Pace at which steel can be erected in terms of space to be enclosed is impressive in connection with new airplane plants. Erection for a group of buildings for the Doug. las Aircraft Co., Long Beach, Calif., started Jan. 29 and was completed May 27, by which time enough steel had been crected to support structures covering $1,260,000$ square feet. Two weeks later this had expanded to $1,356,000$ square feet; total steel, 11,108 tons.
Other fast jobs, In brief, were:
Midvale Steel Co., Phlladelphla, armor plate machine shop, 1900 tons, one-story. Erection started March 31, completed May 20, ahead of schedule, without labor overtime.
Hudson naval arsenal, Detrolt, comprising 14 bulldings, 11 steel, 6500 tons total. Largest, gun shop, 1340 tons, erection started Apri] 21, finlshed May 12; next largest, assembly shop, 820 tons, May 6 to June 14. Bethlehem, fabricator. Area, over $1,000,000$ square feet of floor space, over 135 acres. Maxlmum 150 workmen, no overtime.

General Electric Co., Schenectady, N. Y., 1900 tons. Contracts Dec. 20, steel ship" ments Feb. 12, work completed April 1. One story, with small 2 -story office.

Studebaker Corp., Chicago, alrplane englne parts, 2600 tons. Glffels \& Vallet Inc., Detroit, engineers. Steel from Joseph T. Ryerson \& Son Inc. Award Feb. 1, erection completed May 1.
Kingsbury ordnance plant, Laporte, Ind. Steel for 25 bulldings, 1750 tons Bates \& Rogers Construction Co., Laparte, contractor. Bethlehem, fabricator. Awarded late January. Erection started In 8 weeks, completed $21 / 2$ bulldings per week.

WestInghouse Electric \& MPg. Co. at

Falrmount, W. Va., $200 \times 884$ reet. Erected in $76_{1 / 2}^{1 / 2}$ working hours.
Fourteen warehouses, quartermaster depot, Jeffersonville, Ind., 2300 ions. Gage Structural Steel Co., Chleago, fabrlcator. George H. Rommel Co., Loulsvllle, Ky., contractor. Warchouse unlt completed every two weeks, each unit 605 feet 8 Inches x 79 feet 6 Inches.
Ford Motor Co., Dearborn, Mich., 8700 tons. Amerlcan Bridge Co., fabricator, $360 \times 1007$ feet. Erected $\ln 53$ calendar days.

## Keynes Denies

## Britain Exports

## Lease-Lend Steel

- CATEGORICAL denial that Great Britain is re-exporting steal and other goods obtained from the United States under the lease-lend bill was issued by John Maynard Keynes, economic advisor to the British Treasury, in an interview in Washington last week.
The denial followed widespread reports that goods shipped to England for prosecution of the war were being sold in South America in competition with United States goods.

Although England is committed to supplying 7500 tons of steel for a pipe line in Argentina on a contract now in force, the economist said, sharp restrictions have been applied to steel products in general and ex-
ports are forbidden except where they are needed overseas to complement goods essential for the war effort. Two substantial contracts, one for supplying equipment for the electrification of the Central Brazilian railway and another for the Rio Negro hydroelectric project in Brazil, have been abandoned.

Mr. Kaynes explained that British export business has undergone four phases since the war began. First was "business as usual" and lasted until the capitulation of France. After France fell and her financial help was lost, Britain entered a second phase of intensified export activity to aid in financing the war effort Emphasis on export trade began to fall off in the third phase which started when President Roosevelt expounded his lease-lend plan. The fourth phase was entered when the act was finally signed, and has resulted in curtailment of exports.

Recent restrictions could not be brought into immediate operation, Mr. Keynes explained, because there were many instances where orders were only partially completed and which required materials which could not be diverted to the war effort.

Future British export activity will be centered in textiles, the economist said, because they require little cargo space, are manufactured mainly with female labor and with machinery that is of little use in producing war materials.


- ALL-OUT PRODUCTION: One hundred days after Allegheny-Ludlum Steel Corp. broke ground for this plant addition at Brackenridge. Pa., it was pouring alloy steel from a new 35-ton Swindell-Dressler electric furaace, although the building itself had not been completed. A second furnace will be installed. Capacity for producing special steels is being increased 50,000 tons


## Expanding for What? Defense,

## Or More Planned Economy?

- LAST week OPACS Administrator Leon Henderson told members of the New York Housewares Manufacturers Association that "efforts for expansion have been too small."
"By the time we get the additional capacity," he added, "the needs of the defense program will have expanded to the point where most of it will be needed for armaments."

He then expressed the opinion that the experience of the defense program will convince the American public that "deman!? for goods produces prosperity."
"After the war," he predicted, "the people will support continued heavy government expenditures for public works. Thus the foundation will be laid for a continuing demand for steel, aluminum, copper, tin, zinc and rubber that we have been too reluctant to expand in the last year."

Here is a calm assumption by a man highly-placed in government affairs that "pump-priming" is going to be accepted as a perpetual feature of American life.

Worse yet, Mr. Henderson's remarks, considered in conjunction with recent statements by numerous other government spokesmen, indicate not only that pump priming and other artificial attributes of a planned economy are to be continued after the present emergency has ended, but also that many of the new controls exercised by the President under powers granted him for the duration of the emergency are expected to be made permanent.

These expectations or assumptions should be of grave concern to every citizen. They imply that the present government administration believes that the public has given it a mandate to continue and to expand its
visionary experiment in planned economy.
No such mandate has been given nor will it be given when the people understand what is involved in the ultimate destiny of the experiment.

The entire history of "New Deal" philosophy of planning an "abundant life" is marked by red flags of caution. The original objective was to promote recovery. The original method, embodied in NRA, failed partly because it was overloaded with too drastic social and economic reforms.

The second method, namely spendinglending, failed largely for the same reason notwithstanding the fact the spend-lenders complained that they had not spent enough to make the plan effective.

Now that the need of defense has created artificially a demand which spendlenders could not develop on the basis of their theory, they are trying to justify a tremendous expansion of plant for defense in the hope that the need of sustaining it in peacetime will call for additional "pump priming."

Just as each forward step in a planned economy since 1933 has necessitated additional controls, so will every advance henceforth call for more regulation and regimentation.
This program cannot be sustained by a nation half regulated and half free. Regulation and regimentation must be increased and expanded until, as in Russia, Germany and Italy, the state controls everything.
It is time that we realize the horrible destiny of our present policy.


# The BUSINESS TREND 

## Activity Index Hack Near Pre-Holiday Peak Level

■ INDUSTRIAL activity has recovered sharply from the moderate interruption recorded during the July 4 week, but some industrial indicators have not yet reached the pre-holiday levels.

Steel's index of activity in the iron, steel and metalworking industry gained 11.6 points to 134.5 during the week ended July 12. In the period immediately preceding the holiday week it was at the peak level of 138.8 . The index advanced 14.3 points to 108.5 in the week following the July 4 holiday last year, while in the comparable periods of 1937 and 1929 it gained 11.9 and 9 points respectively.


Each of the industry indicators composing the index advanced during the latest period. Steelmaking operations rose 1 point to $97 \frac{1}{2}$ per cent, but compared unfavorably with the 99.5 per cent recorded in the week ended June 28. Automobile production recovered some of the ground lost: in the holiday week to 114,318 units, against 96,457 recorded during the preceding week and 127,926 in the week of June 28. The decline from the prevailing 130,000 units a week level recorded during June is significant of the gradual tapering in production as the model year draws to a close.


STEEL'S index of activity gained 11.6 points to 134.5 in the week ended July 12:

| Week Ended | 19.1 | 1940 | Mo. Data | 1941 | 1940 | 1939 | 1938 | 1937 | 1936 | 1935 | 1934 | 1983 | 1932 | 1931 | 1880 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Apris 26 | 126.5 | 102.8 | Jan. | 127.3 | 114.7 | 91.1 | 73.3 | 102.9 | 85.9 | 74.2 | 58.8 | 48.6 | 54.6 | 69.1 | 87.6 |
| May 3 | 132.6 | 103.3 | Feb. | 132.3 | 105.8 | 90.8 | 71.1 | 106.8 | 84.3 | 82.0 | 73.9 | 48.2 | 55.3 | 75.5 | 99.2 |
| May 10 |  | 103.3 | March | 133.9 | 104.1 | 92.6 | 71.2 | 114.4 | 87.7 | 83.1 | 78.9 | 44.5 | 54.2 | 80.4 | 98.5 |
| May 17 | 135.9 136.1 | 104.8 | April | 127.2 | 102.7 | 89.8 | 70.8 | 116.6 | 100.8 | 85.0 | 83.6 | 52.4 | 52.8 | 81.0 | 101.7 |
| May 24 | 138.6 | 106.8 109.1 | May | 134.8 | 104.6 | 83.4 | 67.4 | 121.7 | 101.8 | 81.8 | 83.7 | 63.5 | 54.8 | 78.6 | 101.2 |
| May 31 | 128.4 | 99.2 | June | 138.7 | 114.1 | 90.9 | 63.4 | 109.9 | 100.3 | 77.4 | 80.6 | 70.3 | 51.4 | 72.1 | 95.8 |
| June | 138.4 | 111.9 | July |  | 102.4 | 83.5 | 66.2 | 110.4 | 100.1 | 75.3 | 63.7 | 77.1 | 47.1 | 67.3 | 79.9 |
| June 14. | 138.4 | 111.9 | Aug. |  | 101.1 | 83.9 | 68.7 | 110.0 | 97.1 | 76.7 | 63.0 | 74.1 | 45.0 | 67.4 | 85.4 |
| June 21. | 138.7 | 114.8 | Sept. |  | 113.5 | 98.0 | 72.5 | 96.8 | 86.7 | 69.7 | 56.9 | 68.0 | 46.5 | 64.3 | 83.7 |
| June 28. | 128.8 | 115.3 | Oct. |  | $12 \% .8$ | 114.9 | 83.6 | 98.1 | 94.8 | 77.0 | 56.4 | 63.1 | 48.4 | 59.2 | 78.8 |
| Juls 5. | 122.9 | 94.2 | Nov. |  | 129.5 | 116.2 | 95.9 | 84.1 | 106.4 | 88.1 | 54.9 | 52.8 | 47.5 | 54.4 | 71.0 |
| July 12. | 134.5 | 108.5 | Dec. |  | 126.3 | 118.9 | 95.1 | 74.7 | 107.6 | 88.2 | 58.9 | 54.0 | 46.2 | 51.3 | 643 |



## Steel Ingot Operations

| Week ended | 1941 | 1940 | 1939 | 1988 |
| :---: | :---: | :---: | :---: | :---: |
| July 12. | 97.5 | 88.0 | 50.5 | 32.0 |
| July 5 | 96.5 | 75.0 | 42.0 | 24.0 |
| June 28 | 99.5 | 89.0 | 54.0 | 28.0 |
| June 21 | 99.0 | 88.0 | 54.5 | 28.0 |
| June 14 | 99.0 | 86.0 | 52.5 | 27.0 |
| June 7. | 99.0 | 81.5 | 53.5 | 25.5 |
| May 31 | 99.0 | 78.5 | 52.0 | 25.5 |
| May 24 | 100.0 | 75.0 | 48.0 | 28.5 |
| May 17. | 99.5 | 70.0 | 45.5 | 30.0 |
| May 10. | 97.5 | 66.5 | 47.0 | 30.0 |
| May 3 | 95.0 | 63.5 | 49.0 | 31.0 |
| April 26 | 96.0 | 61.5 | 49.0 | 32.0 |
| Aprll 19 | 98.0 | 61.5 | 50.5 | 32.5 |
| April 12. | 98.0 | 61.0 | 51.5 | 32.0 |
| April 5 | 98.0 | 61.5 | 53.5 | 32.0 |
| March 29 | 99.5 | 61.0 | 54.5 | 36.0 |
| March 22 | 99.5 | 62.5 | 55.5 | 35.0 |

Freight Car Loadings
(1000 Cars)

| Week ended | 194.1 | 1940 | 1989 | 1938 |
| :---: | :---: | :---: | :---: | :---: |
| July 12 | 876 | 740 | 674 | 602 |
| July 5 | 740 | 636 | 559 | 501 |
| June 28. | 909 | 752 | 666 | 589 |
| June 21 | 886 | 728 | 643 | 559 |
| June 14 | 863 | 712 | 638 | 556 |
| June 7 | 853 | 703 | 635 | 554 |
| May 31. | 802 | 639 | 568 | 503 |
| May 24. | 886 | 687 | 628 | 562 |
| May 17. | 864 | 679 | 616 | 546 |
| May 10. | 837 | 681 | 555 | 542 |
| May 3 | .94 | 666 | 573 | 536 |
| April 26 | 722 | 645 | 586 | 543 |
| April 19 | 698 | 628 | 559 | 524 |
| April 12 | 680 | 619 | 548 | 538 |
| April 5 | 682 | 603 | 535 | 522 |
| March 29. | 792 | 628 | 604 | 523 |
| March 22. | 769 | 619 | 605 | 573 |





|  | Steel Ingot Production (Unit 100 Net Tons) |  |  |
| :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \text { Monthly Total } \\ 1041 \\ 1039 \end{gathered}$ | Weekly 1041 | $\begin{aligned} & \text { Averafe } \\ & 1040 \end{aligned}$ |
| Jan. | 6,928.8 $\quad 5,764.7$ | 1,564.1 | 1,301.3 |
| Feb. | 6,237.9 $4,525.8$ | 1,559.5 | 1,093.2 |
| Mar. | 7,131.6 $4,389.2$ | 1,609.9 | 990.8 |
| Apr. | 6,757.7 $4,100.5$ | 1,575.2 | 955.8 |
| Mлy | $7.101 .8 \quad 4.957 .8$ | 1.603. 1 | 1.121 .4 |
| June | 6,800.7 5,657.4 | 1,585,3 | 1,318.8 |
| July | ...... 5,724.6 |  | 1,295.2 |
| Aug. | 6,186.4 |  | 1,396.5 |
| Sept. | 6,056.2 |  | 1,415.0 |
| Oct. | 6,644.5 |  | 1,499.9 |
| Nov. | 6,469.1 |  | 1,507.9 |
| Dec. | 6,495.4 |  | 1,469.5 |
| Tota | 66,981.7 |  | 281.2 |

tWeekly average.


Finished Steel Shipments
U. S. Steel Corp.

## (Unit 1000 Net Tons)

$\begin{array}{llllll}1941 & 1940 & 1939 & 1938 & 1937\end{array}$ Jan.... $1682.51145 .6 \quad 870.9 \quad 570.31268 .4$ Feb.... $1548.51009 .3 \quad 747.4 \quad 522.41252 .8$ $\begin{array}{lcccccc}\text { Mar... . } & 1720.4 & 931.9 & 845.1 & 627.0 & 1563.1\end{array}$ $\begin{array}{llllll}\text { Apr.... } & 1687.7 & 907.9 & 771.8 & 550.5 & 1485.2\end{array}$ $\begin{array}{llllll}\text { May .. } & 1745.3 & 1084.1 & 705.7 & 509.8 & 1443.5\end{array}$ $\begin{array}{llllll}\text { June . . } & 1668.6 & 1209.7 & 807.6 & 525.0 & 1405.1\end{array}$ $\begin{array}{llllllll}\text { July . . } & \ldots & 1296.9 & 745.4 & 484.6 & 1315.3\end{array}$ $\begin{array}{lllllll}\text { Aug. . . . . . } & 1455.6 & 885.6 & 615.5 & 1225.9\end{array}$ $\begin{array}{lllllll}\text { Sept... } & \ldots . . & 1392.8 & 1086.7 & 635.6 & 1161.1 \\ \text { Oct.... } & \ldots & 1572.4 & 1345.9 & 730.3 & 876.0\end{array}$ Nov. . . . . . . . $1425.41406 .21749 .3-648.7$ Dec.......... $1544.61444 .0 \quad 765.9 \quad 539.5$ Tot. $\dagger$ . ... 14976.111707 .37315 .514097 .7
tAfter year-end adjustments.

## Construction Total Valuation

In 37 States
(Unit: $\$ 1,000,000$ ) $\begin{array}{lllll}1941 & 1040 & 1039 & 1938 & 1937\end{array}$

| Jan. | \$305.2 | \$196.2 | \$251.7 | \$192.2 | \$242.7 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Feb. | 270.4 | 200.6 | 220.2 | 118.9 | 188.3 |
| Mar. | 479.9 | 272.2 | 300.7 | 226.6 | 231.2 |
| April. | 406.7 | 300.5 | 330.0 | 222.0 | 269.5 |
| May. | 548.7 | 328.9 | 308.5 | 28.3 .2 | 243.7 |
| June | 539.1 | 324.7 | 288.3 | 251.0 | 317.7 |
| July. |  | 398.7 | 299.9 | 439.8 | 321.6 |
| Aug. | ... | 414.9 | 312.3 | 313.1 | 281.2 |
| Sept. | ..... | 347.7 | 323.2 | 300.9 | 207.1 |
| Oct. |  | 383.1 | 261.8 | 357.7 | 202.1 |
| Nov. |  | 380.3 | 299.8 | 301.7 | 198.4 |
| Dec. |  | 456.2 | 354.1 | 389.4 | 209.5 |
| Ave. |  | \$333.7 | \$295.9 | \$266.4 | \$242.8 |




Freight Car Awards

|  | 1941 | 1940 | 1939 | 1938 |
| :---: | :---: | :---: | :---: | :---: |
| Jan. | 15,169 | 360 | 3 | 25 |
| Feb. | 5,508 | 1,147 | 2,259 | 109 |
| March | 8,074 | 3,104 | 800 | 680 |
| April | 14,645 | 2,077 | 3,095 | 15 |
| May | 18.630 | 2.010 | 2, ก51 | 6,014 |
| June | 32,749 | 7,475 | 1.324 | 1,178 |
| 6 mos. | 94,775 | 16,173 | 9,532 | 8,121 |
| July |  | 5,846 | 110 | 0 |
| Aug. |  | 7,5125 | 2,814 | 182 |
| Sept. |  | 9,735 | 23,000 | 1,750 |
| Oct. |  | 12,195 | 19,634 | 2,537 |
| Nov |  | 8,234 | 2,650 | 1,232 |
| Dec. |  | 7,181 | 35 | 2,581 |
| Total |  | 66,889 | 57,775 | 16,303 |

## Sig <br>  <br> Ancient and <br> Moderin

Here is data on characteristics of gun tube steel for modern big guns: nethod of assembly of built-up gun; insertion of liner; theory of auto frettage; significant changes in artillery since 1914-18; the new 37 -millimeter antitank and automatic anti-aircraft guns and other advanced units

This Is Number 23 in "Series un Ordnance and Its Production, Prepared for Steti. b. Professor Macconochie.

## (Concluded from Last Week)

- THE MANNER of constructing a built-up gun is shown clearly in Fig. 7. Note the liner, the tube, the jacket, the hoops and the locking rings. This complexity arises from several causes. There is the necessity, for example, of greater strength near the breech than near the muzzle because of the greater instantaneous pressures. Then from a practical manufacturing standpoint, better results can be secured by forging and drawing small than large, thick parts. From the standpoint of securing the greatest uni. formity in distributing tensile stresses throughout the cross section, the greater the number of cylindrical elements the better. But this consideration does not oblige us to divide these cylindrical elements into a number of segments. For safety's sake, if for no other reason, it has been considered desirable in largecaliber, high-powered guns to have at least two reliable elements resisting the bursting forces. Thus
the upper and lower limits of the number of cylindrical elements are established.

Gun tube steel for United States Army service is required to possess a tensile strength of 95,000 pounds per square inch, to have a yield point of at least 65,000 pounds per square inch, a percentage elongation in the direction of forging work of 21 per cent and a reduction of area in this same specimen of at least 40 per cent. The requirements as to elongation and reduction of area in a transverse specimen are rather less, being only 18 and 30 per cent respectively. In order to meet these physical requirements, the contractor is obviously obliged to use an alloy steel. The actual analysis varies with the manufacturer but commonly includes some $3 / 1$ to 1 per cent chromium, 2 to $21 / 2$ per cent nickel and 0.30 to 0.40 per cent molybdenum, together with a carbon content of 0.35 per cent and manganese from 0.40 to 0.75 per cent.

Assembling: In assembling a gun
of the type shown in Fig. 7, the B hoops are shrunk on the tube $A_{1}$; then the C hoops on the B hoops; and the $D$ hoops (if any) on the $C$ hoops. Thus the gun is built up around the tube, which is placed breech end down in a cold gun pit with its end resting in a pot having a short mandrel extending up into the bore to steady it. The $B_{1}$ hoop or jacket is now removed from its warming pit and the internal diameter checked. Then it is lowered over the tube, which has previously been given a coat of graphite and light oil. Now if this operation were in the least delayed, thus giving the tube itself a chance to warm up as a result of the proximity of the hoop, uneven gripping might result. This is avoided by circulating water through the tube.

After the hoop is in position on the tube, it is cooled off by a water spray which plays on the breech end first and gradually ascends at a predetermined rate, lowering the

Fig. 8-The modernized 75 -millimeter gun of the United States Army
Fig. 9-This is the new and highly mobile 37 -millimeter antitank gun of the United States Army

Fig. 10-This is the Army's new 37millimeter anti-aircraft gun. It automatically fires 120 rounds a minute


## BY ARTHUR F. MACCONOCHIE

Head, Department of Mechanical Engineering
University of Virginia University Station, Va.
temperature progressively toward the muzzle. The other hoops are assembled in similar fashion. The gun is then mounted in a lathe and threaded at the junctions of the outside hoops so the locking rings may be screwed on.

The method of inserting the liner is of interest. After assembly of the various parts of the gun proper in the shrinkage pit, the tube is bored to a small taper with the aid of a series of tapered boring bits of the familiar packed type. The gun is then placed in a pit furnace muzzle down, heated to some 600 or 800 degrees Fahr. by electric heating elements and the liner, filled with cold circulating water, is slowly lowered into position. After seating, a holding-down yoke is applied, and valves set in the central standpipe of the liner cooling system are opened progressively to permit the liner to warm up at the breech end first where, consequently, gripping begins and spreads downward toward the muzzle. The gun is now ready for machining and finishing.

Monoblock Guns: The auto-frettage process to which reference has already been made, see Stret, last week, is now applied to monoblock guns (not built-up guns described above), with or without liners, of

Fig. 11-The 90-millimeter anti-aircraft gun shown here fires $\alpha$ shell over 6 miles up. This is the new standard anti-aircraft gun for air defense. Note it is a mobile unit
Fig. 14-The 8 -inch railroad gun has a range nearly 15 miles, weighs 86 tons
Fig. 15-Mammoth 16 -inch coast defense guns like this throw a 2340 -pound armor-piercer 28 -miles- $\alpha$ match for the most heavily armored battleship


from 75 to 240 -millimeter caliber. In practice the gun is mounted within inner tapered sleeves of hardened steel, supported in their turn by a heavy outer tube into which they are carefully fitted by grinding. Hydraulic pressure is applied to the gun tube by fitting plugs into the ends, these plugs being packed with rubber, leather and copper washers (in that order) to prevent leakage of the water under extremely high pressure. Ballooning of the tube does not, of course, take place beyond the plugs, but the original length is great enough to permit these end sections to be cut off.

The end thrust on the plugs is taken by heavy longitudinal tie bars, capable, under existing arrangements of carrying a total load of $3,000,000$ pounds. To treat guns of the largest calibers, this total load would be about $8,000,000$ pounds. Calculations of the pressures required to produce any desired result are checked after expansion of the tube by star gage internal measurements and micrometer external measurements, within limits of about half a thousandth of an inch in a total expansion of perhaps 190 thousandths-the amount attained in the case of the 75 -millimeter gun tube. This amounts to 6 per cent of the bore.

The properties of gun steel, as these are revealed in the tensile

Fig. 7-Method of assembling main tube, jacket, liner five hoops and four locking rings to form gun. Hoops and locking rings are carefully shrunk on tube in succession to set up high initial "squeeze" on material underneath, thus helping to afford uniform stress throughout entire cross section when gun is fired. Illustration from paper by G. A. Spohn, General Machinery Corp., Detroit
testing machine by the plotting of the stress-strain curve, are employed to determine (with the aid of Lame's theorem of thick cylinders) that pressure which will just induce permanent set in the innermost cylindrical element of the tube. Thereafter the pressure in the bore is increased step by step until permanent set has spread progressively to the outer cylindrical elements of the tube, the inner meanwhile having suffered much more than the outer, but not to any readily calculable extent, since the basis on which we determine the distribution of tensile stress through the cross section of a thick cylinder is constancy of the relation between stress and strain.

Controlled Initial Compression: In any event, the end result is an infinite series of cylindrical elements whose dimensions and physical characteristics have been altered in such fashion as to induce initial compressive stresses of declining magnitude toward the neutral surface of the tube and thereafter tensile stress of increasing intensity as we progress toward the outermost layer. We thus have a gun constructed by this meth-

od which, as in the case of the built up type, is in a situation to distribute the stresses resulting from discharge of the piece in a much more uniform manner than if no permanent expansion had taken place. Furthermore, the result in this case is superior to that secured by building up from tube and hoops since the best we can hope for in this latter plan is a step-by-step approach to the ideal solution of the problem.

It should not be inferred from this that where monoblock construction might be undesirable from a manufacturing standpoint, the process of auto-frettage cannot be successfully applied to the built-up gun. As a matter of fact, this is how 8 -inch naval guns are now constructed. One great advantage of the auto-fretting process is that the barrel of the gun is subjected, in the course of manufacture, to internal loads far in ex cess of any it will be called upon to bear in practice. Thus failure in ac tion, with its grave consequences, is well-nigh impossible.

The Paris Gun: Among the many and varied types of modern guns, perhaps none has made such a vivid impression on the imagination of the general public as the German guns which fired on Paris in the latter stages of the war of 1914-18. Fragments of the shell fired from these guns were sent over to the Experimental Shell Division of the Royal Ordnance Factories, Woolwich Arsenal, in 1918 so a copy might be made and the design investigated From these and other evidences, the following particulars were adduced but no direct evidence appears to be forthcoming since every care seems to have been taken to pre vent the precise details of construction from becoming generally known. Those who wish to pursue this subject may refer to "The Paris Gun" by $H$. Miller, originally published by Harrap and made avail. able in this country by a publisher

Fig. 13-The 8 -inch howitzer can throw a 200 -pound shell a distance of 10.5 miles

Fig. 12-The longest range of any field artillery weapon is had by this 155 millimeter gun that fires a shell 26,000 yards, roughly some 14 miles
now out of business. Hence consult your reference librarian

## THE PARIS GUN

Range
Maximum ordinate
of trajectory.

24 miles (estimated variously)
Time of flght..... 177 seconds
Muzzle velocity.... 5100 feet per second
Angle of elevation. 50 degrees
Velocity at vertex. 2287 feet per second Ballisuc coerticient. 10
Angle of fall...... 54
Weight of projec-
tile.............. in
330 pounds

## inches

Welght of prope
lant required lant required ...
ously estimated). 150 calibers (100 feet)
Maximum pressure. 47,000 pounds pei
Volume of powder chamber From these flgures, certain in teresting facts emerge. The high ballistic coefficient was secured by excellent streamlined design of the shell, which consisted of a relatively short body, holding a small amount of explosive and a long cap. The shell, as I recall its principal features, was perfectly balanced and did not depend on the copper band to provide the rotational acceleration, grooves milled in a ring integral with the body and ahead of the band, being provided for the purpose. Considerable trouble was experienced with this gun in service as a result of severe erosion of the barrel just beyond the limits of the powder chamber by the extremely high pressure gases employed. This involved centering the shell further and further up the barrel after each round, corresponding adjustments being made in the weight of the powder charge in order to maintain muzzle velocities. Guns of this type have little military value; the accuracy of shooting must necessarily be low; and there has been little or no disposition on the part of other countries to endeavor to copy them.

Many Changes: The significant changes which have come over the scene since 1914-18, at-least so far as artillery is concerned, include much greater mobility; the development of antitank and anti-aircraft weapons; and the passing of the famous 75's. After the battle of France, where it became apparent that they were outclassed by the German 105 millimeter, we were obliged to adopt the 105 as our principal light artillery piece. Although the 105 is more than a ton in excess of the weight of the 75 , it can be moved just about as easily. Further, it can be employed as both

gun and howitzer, firing its 33 pound shell in a relatively flat trajectory or lobbing it over obstructions at shorter ranges than its maximum of seven miles. This gun can be set up in less than a minute; has a traverse of 45 degrees and a maximum elevation of 65 degrees; and can fire four shells a minute. It is primarily intended to offer infantry rather close support by shell ing enemy troops, machine gun nests and minor fortifications, and through the disruption of enemy communications. The 105 -millimeter guns cost $\$ 25000$ apiece.

The modernized 75 -millimeter gun with its new light carriage, pneumatic tires, increased range and elevation and wider traverse is shown in Fig. 8. Before our change in policy concerning the 75 , we had modernized 141 of these guns at a cost of $\$ 8000$ each. Their principal application in all probability will be for tank attack unless we are called upon to fight within the near future, in which event we should still be largely dependent on this famous weapon.
Speaking of tank attack, the gun in which our new armies probably take most delight is the new 37 millimeter antitank gun shown in Fig. 9. Tired like an automobile, it can attain a speed of 50 miles per hour on the highway and is so light ( 850 pounds) that it can be maneuvered on reasonably flat country by hand as shown in the illustration, Fig. 9. This excellent little weapon fires a 2 -pound shell capable of piercing $11 / 2$ inches of armor plate at 1000 yards-the shell at present favored being a solid type on the theory that it will do its job inside the enemy tank without any explosion, although an explosive shell also is available.

Fast Firing: The counterpart of the 37 -millimeter antitank gun is the 37 -millimeter anti-aircraft gun shown in Fig. 10. For anti-aircraft work several different types of guns are necessary depending on whether
the enemy planes are flying at considerable elevation, in which case 90 or 105 -millimeter high-explosive shell fitted with mechanical time fuzes are called for; or whether the enemy planes are dive-bombing or "hedge-hopping." As a defanse against dive-bombing the 37 -millimeter quick-firing ( 120 rounds a minute) gun projecting a $1^{1 / 2}$. pound shell fitted with the type of sensitive fuze described in a recent article in Srect is unequalled. These fuzes, it may be recalled, function on contact with the airplane wing and act instantaneously. The maximum effective range of this weapon is 3000 yards. Like other modern artillery pieces it is highly mobile, can be hauled around by a truck and set up ready for action (including installation of the director and firecontrol apparatus) in about five minutes. This particular item weighs $2^{1 / 2}$ tons as against the less than half-ton antitank weapon and costs the taxpayer $\$ 20,000$. When fring at the rate of 120 rounds a minute, the two-gun battery disposes of 240 pounds costing $\$ 1320$. Yes, that's $\$ 1320$ a minute.

The new 90 -millimeter anti-aircraft gun (shown in Fig. 11), fir ing a 21 -pound high-explosive shell 33,000 feet up, spreads a burst that is a serious menace to any plane within 50 yards. It is the standard United States anti-aircraft gun at the present moment and supersedes the 3 -inch gun on account of its greater ability to keep a given space in the atmosphere filled with flying fragments of high-explosive shell. In service it would not be moved around (although it is, of course, mobile) but would be situated in strategic locations in the neighborhoods of harbors, industrial plants, citles and the like which might in vite the attention of enemy bombers.
The 155 -millimeter gun shown in Fig. 12 fires a 95 -pound shell a dis tance of 26,000 yards-the longest range of any field artillery weapon. This gun weighs over 15 tons and
requires bridges of perhaps twice this capacity when the weight of the truck is added. It belongs in the category of the "heavies" and is regarded by the Ordnance Department as a critical item of equipment. In action its function would be to concentrate on distant supply centers and munition dumps, to attack enemy fortifications and silence enemy batteries.

Classed with the 155 -millimeter among the heavy artillery is the 8 -inch howitzer shown in Fig. 13. This weapon fires a shell weighing 200 pounds a maximum distance of 10.5 miles. It also weighs close to fifteen tons and is designed to be towed around as a unit.

Fig. 14 shows our modern 8 -inch railroad mount-another "critical item of equipment." This weapon throws a projectile weighing some 260 pounds a maximum distance of 27,000 yards. While railroad mounts have considerable mobility, their movements are, of course, confined to solid roadbeds and to the well constructed bridges of the main lines. This gun weighs about 86 tons. Thus their transfer from one point to another is liable to interruption from enemy bombs the gun itself making an excellent target. Its chief function in time of war would be to take up its position rapidly at some threatened point along the coast.

Finally we come to the mammoth 16 -inch coast defense guns shown in Fig. 15. This weapon throws an armor-piercing shell weighing 2340 pounds a distance of 50,000 yards-or more than 28 miles -one every minute if necessary. This weapon is not listed as a critical item, the War Department apparently being well satisfied as to the ability of the Navy to defend these shores. The 16 -inch gun is probably the best example of modern high powered coast defense artillery. It is close to 70 feet long, requires a powder charge of 850 pounds and is capable of attacking and destroying the most heavily armored battleship.

## New Film Helps Make Templets Direct from Drawings

- The new photo-loft-templet process developed by Glenn L. Martin Co. and Lockheed Aircraft Corp. not only shortens the time between engineering and test flights in the aircraft industry from two to four months, but aircraft production cost is cut approximately $\$ 20,000$ per model. Sce Sterl, July 1, 1940, p. 44, for description of this process.

A most important portion of this development is the matte transfer film developed by Eastman Kodak Co., Rochester, N. Y., as it permits engineering drawings to be printed either by contact or by projection
on photosensitized metal sheets which then form templets or patlerns for further processing.
This shortcuts the costly and timeconsuming step of laying out the contours by hand from the blueprints and also the necessity of duplicating inspection.

In the contact method of making prints on photosensitized metal, the engineering drawings are made on metal plates which have been given a coating of material which will fluoresce in the presence of X-rays. Then if positive prints on the metal are desired, a photosensitive glass


Here is production setup for placing sensitive emulsion on metal sheets to sensitize them for use in printing directly on the metal. The film consists of an emulsion applied to a thin film support on a paper backing which is stripped oft as the film is applied to the metal surface. Photo courtesy Lockheed Aircraft Corp.
plate is placed in contact with the treated surface of the plate bearing the mechanical drawing and exposure is made by means of X-rays through the back of the metal plate. A processed glass negative then is printed onto a sheet of photosensitized metal in the usual manner.

Also as described in Steel, April 28, 1941, p. 87, Lockheed Aircraft Corp. makes satisfactory use of enlargements of mechanical drawings on photosensitized metal plates. In this process the mechanical draw ings are made directly upon lacquered metal sheets. These drawings then are photographed on glass plates in a special camera designed for this purpose, and the glass negatives then enlarged onto the photosensitized metal sheets in sizes as large as $4 \times 12$ feet. It is reported that templets so made are accurate within 0.001 -inch per foot.

A most simple and effective method of producing photosensitized metal sheets consists of laminating matte transfer film to lacquered metal sheet. The film itself consists of a sensitive emulsion coated on a thin film support, the film then being backed by a paper base. When used, the sensitized strip is transferred or stripped from the supporting paper base to the lacquered metal plate.

The accompanying illustration shows setup for doing this on a production basis. Here the supply roll of paper backed film is unreeled down to rolls at table-top height. These rolls apply the sensitized film and the paper backing to the lacquered metal sheet, which is passed underneath the applying roll.
At the same time, the backing paper is stripped off the film and rewound on another roll along. side the supply roll to leave the sensitive emulsion and thin film on the lacquered metal sheet, thus in effect sensitizing the metal sheet.


EUGENE (JACK) PHILLIPS, 1117 Cleckler South, Fort Worth, Texas, winner of first prize of $\$ 5,000$ in the Revere Award for the idea doing most to help speed America's industrial defense program. Tall and lanky, Phillips is 33 years old and employed as senior radio electrician with the C. A. A. central depor at Fort Worth. When a close friend, Captain Jerry Marshall, crashed in Arkansas in landing an airplane, Phillips immediately set to work on his prize winning idea-an improved method of blind landing. He studied nights, gave up car, vacations and other pleasures for necessary equipment. His wife predicts most of the prize money will be spent for new equipment. He has three children, Patricia, 7; Kenneth, 4; James, 8 months.
The men and management of Revere Copper and Brass Incorporated are proud that the first Award of $\$ 5.000$ goes to a man like Phillips. We also wish to thank the thousands of other American workmen for their splendid loyalty and cooperation in this effort to speed up industrial defense. Revere Copper and Brass Incorporated, 230 Park Avenue, New York.

Here Mr. Wills presents a study of the factors that must receive proper consideration if your ultra-finish grinding is to be successful. As he points out, there are many things that influence the operation. For details of what constitutes an ultra finish and how it is produced, see first section of this series, STEEL, June 30, 1941, p. 52

## Factors That Influence

# Grinding Rolls 

 For
## Ulira-Finish Work



By H. J. WILLS<br>Engineer<br>The Carborundum Co. Niagara Falls, N. Y.

- ULTRA FINISH can be secured on hardened steel rolls or chilled iron rolis and is essential on foil and jewelers' rolls and on Steckel mill rolls whether made of high speed tool steel or tungsten carbide. Due to the exceptional hardness of tungsten carbide, rolls of this material appear to offer great possibilities in transferring an ultra finish to the work.
It is never necessary to use the burnishing action of a dulled wheel to get a mirror finish. It is, in fact, most undesirable, for burnishing merely covers over surface faults temporarily.
Since there must be no pattern on the roll which can be transferred to the product, grit marks on the roll must be very shallow. Therefore the surface must be built up gradually, using a series of grinding wheels of decreasing grain penetration and grain size.

The finest practicable grain size down to 600 grit should be used for ultra finishes. Not only do they leave finer surfaces but they also present a larger number of cutting points to the work and so increase speed of cut, create less heat and reduce subsequent operations.

While wheels with larger grains will sometimes remove stock more rapidly, the longer and larger number of subsequent operations needed to remove the coarse grain marks may increase total grinding time instead of reducing it.

Every wheel should be used both as a roughing wheel and as a finishing wheel for best results and
economy; that is, it should be carefully "sparked out" even when it is to be followed by one or more finer grit wheels.

Surface perfection is largely dependent upon the amount of material removed per wheel. The less the material removed per wheel, the better the surface. There are no short-cuts. An ultra finish takes time.

Coolants must be clean and free from grit or particles will roll between the work and wheel to cause scratches and other blemishes. In the cutting cycle, use plain filtered water, with a slight amount of soluble oil to prevent rust, if desired. In the finish cycle, with the same wheel, apply a grease bag to the roll, held by a string to the coolant nozzle, and reduce the water supply. Should the wheel face become so filled with grease that it marks the roll in spots, increase the water supply. The grease bag may be any loosely woven cloth bag filled with a soluble paste grinding compound.

Strong soda solutions should never be used with shellac or resinoid bonded wheels since there is danger that the bonds will disintegrate.

Remove Loose Grit: In changing to finer grit wheels for subsequent operations, the wheel guards should be washed thoroughly to remove any of the coarser grit which might adhere to them and get between the wheel and work.

Coolant pressure should be suffi-
cient to penetrate to the point of contact between wheel and work. Use lots of coolant. The supply should never be shut off while grinding to allow the operator to watch the point of contact. If he cannot see it while the coolant is flowing a clearer coolant should be substituted. Any interruption to the coolant flow is fatal.

Wheel selection involves determin. ing the abrasive, the grit, the bond and the grade. The abrasive to use depends upon the roll material and finish desired. For chilled iron rolls, silicon carbide wheels are used to give a high luster; aluminum oxide for a satin finish. Hardened steel or high speed tool steel rolls for Steckel mills usually are ground with aluminum oxide wheels. A new bond also makes it possible to use silicon carbide for finishes with improved "color." To obtain a luster, use silicon carbide or aluminum oxide wheels of special characteristics for the final grinding. Tungsten carbide Steckel mill rolls are best ground with resinoid bonded diamond wheels.
Operating Factors Important: To select wheels of the right grit and grade, and to obtain an ultra finish with them requires a thorough understanding of what happens when a wheel is in contact with the work.
A grinding wheel must operate so the stresses set up by wheel rotation and work pressures on the grinding face are close to the ultimate resistance of both bond and abrasive crystals. A slight increase in stresses beyond this point will

## ONE MAN OPPRATING 3 MOTGE \& MERRYWEAYHER

 COLD SAWING MACHINBS ON 4y/2" ROUND SHBLL STHBL AVERAGES 4320 SLUGS PER 24-HOUR DAY WITHOUT SCRAP SLUGS, WITHOUT BURRS, AT AN EXCPBDINGLY LOW COST

To insure the best results, use $\mathrm{M} \& \mathrm{M}$ Saw Blades with the M \& M Cold Saw. Blade features are: reinforced teeth radially ground to lengthen intervals between sharpenings; high grade tool steel segments fitted to heattreated center; tooth pitch suiting any material; segments forming closed ring to stiffen blades; blade can be reset with new segments without lessening diameter.

For longer service, sharpen your blades on the Motch \& Merryweather Saw Grinder. Features: rigidity - no overhang, no chatter, no vibration; cutomatic indexing; dust-prool drive; easily grinding high and low teeth; all operating controls actuated while running.


One of the important things to watch in grinding rolls for ultra-finish work is to see that the wheel does not traverse off the roll more than one-fourth the wheel width. Otherwise, excessive radial pressure will taper the roll
break or dislodge the grains, while less pressure will cause the crystals to dull and glaze. In other words, any reduction in working stresses will cause the wheel to set harder and any increase will make it act softer. Varying the stresses will entail loss of either cutting action or abrasive material.
Wheel - to-Work Speed Relation Critical: The relation of wheel speed to work speed determines the shear ing force. As wheel speed is increased relative to work speed, the stresses are decreased and the wheel is not broken down so rapidly-and vice versa. Proper ratio of wheel speed to work speed thus is essential for economical grinding. For best surface quality, the faster the work speed in relation to wheel speed, the longer will be the unavoidable grain marks on the roll, and the less visible will they be.

Therefore for ultra finish grinding the work speed should be as rapid as possible, short of causing vibration. To prevent vibration while still getting the necessary high ratio of work to wheel speed,
it is customary to reduce the wheel speeds progressively as the finish is built up.
Work speeds must be kept as high as possible for two other reasons. For all finishing-out passes, the traverse per revolution of the work must be lowest obtainable. Many roll grinding machines are not designed for low mechanical traverse speeds so the work speed must be high to reduce the ratio of traverse. Since rate of traverse influences both shearing and compressive forces, a slow traverse permits softer wheel gradings and vice versa.

Recommended Traverse Speeds: Ultra finishes, however, demand a low ratio of traverse to work speeds. For roughing cuts, best practice is to traverse from one-half to twothirds the width of the wheel per revolution of the work. For finishing cuts, traverse no more than 0.25 inch per revolution. Final finishing cuts call for slowest traverse attain-able-not more than 2 inches per minute.

Never allow the wheel to travel off the work more than one-fourth
the wheel width, otherwise the increased unit pressures may taper the roll ends. Slack in the traverse should be taken up to avoid long dwelling of the wheel at the ends of the passes as this causes the roll ends to be ground under size and the wheel to glaze.
The physical properties of the roll material influence the shearing forces. Thus, a hard, tough roll calls for a comparatively soft wheel. The area of contact between work and wheel face affects the compressive force. Hence wide, large diameter wheels are usually of soft grade.
Influence of Wear: Because wheel diameter constantly diminishes from wear, the ratio of work speed to wheel speed increases, the arc of contact decreases and the unit pressure increases, causing the wheel to act softer. Wheel and work speeds should be adjusted frequently.

To prevent burnishing when making light finishing cuts, the cutting action can be maintained by increasing unit pressures between wheel and work, using wheels of small diameter and narrow faces. To avoid changing the wheels, it is satisfactory to underdress the wheel face to the desired width for the final passes.

Soft Bonds: Due to the wheel actions described, large diameter rolls, having greater contact area, can be ground with comparatively soft bonds. Likewise, wide wheels, especially those 4 inches or more can use softer bonds.

How To Compensate for Different Roll Diameters: Obviously no one wheel will be ideal for rolls of different diameters. Fortunately, however, operating conditions can be varied to compensate for the different arcs of contact. To make one wheel give practically the same grade action on both a 30 -inch roll and a 6 -inch one the wheel speed may be increased for the smaller roll, or the work speed decreased. The traverse rate may be decreased. the wheel face slightly dulled by dressing slowly, or lighter infeeds used. The same steps may be taken to offset softer wheel action due to reduction in wheel diameter caused by wear.

Dressing Desirable: Although a grinding wheel is partially selfsharpening, a wheel that is entirely self-sharpening would be too soft for ultra finish grinding. Therefore choose a wheel that will require occasional dressing to restore its cutting qualities when it becomes loaded or glazed.

Dress coarse wheels for every one to three rolls, depending upon roll size. Dress fine wheels from 60 to 220 grit before both rough and finish cuts. Wheels for ultra finish need be dressed only before roughing if they are manipulated as sug. gested in these articles. Prolonged

Are tubes in your condensers, evaporators, or heat exchangers eating into your profits and fattening your operating costs through premature failure and the necessity for too-frequent retubing?
Have you ever considered how much you might lengthen tube life and reduce maintenance costs by using stainless steel tubing?
Republic ENDURO* Stainless Steel in sheet, strip and other forms has proved conclusively its money-saving resistance to corrosion, its ease of cleaning, its prevention of product contamination and its long service life.
It can render the same service in tubular form -in Republic ELECTRUNITE Stainless Tubing, which is made of ENDURO.

And in this tubing-made by the electric resistance welding process-you'll find, too, all the easy-to-fabricate ELECTRUNITE advantages. It is consistently uniform in diameter, wall thickness, concentricity, ductility and fine scale-free surface -with a weld as strong and as resistant to corrosion as the base metal itself.

Republic ELECTRUNITE Stainless Steel Tubing is made in popular analyses, in sizes from $1 / 4$ to 3 -inch O.D., and in various gauges. Use it in a piece of equipment that is high in tube replacement cost-and see what it will save. For further information, write Steel and Tubes Division, Republic Steel Corp., Cleveland, O.

## REPUBYIC


grinding cycles may require more nequenc aressing. wneeis finer than 60 grit should have their edges rounded off before and after dressing to prevent chipping by the dress. ing tool and to avoid the chance of traverse waves. It is well to round off the edges using fine aluminum oxide paper, held in place with the thumb.

Unless the wheel is far too soft in effect it should never be dulled for ultra finish cuts with either dressing tools or hand stones. Decrease cutting action of fine wheels only by machine manipulation.

Dress with Care: Ultra finish grinding is impossible without proper wheel dressing. A diamond tool is usually best for ultra finish work. It must be kept sharp by turning the diamond frequently so that only a sharp edge of the stone will be applied to the wheel. A dull diamond is apt to press abrasive grains into wheel pores. These will leave the wheel, roll between wheel and work, causing scratches or "fish-tails" fatal to an ultra finish. The same thing may happen if the wheel is dressed so coarsely that some abra-
sive grains are partially loosened. Clean wheel face and sides with a stiti brisue brush and plenty of clean water after each dressing.

How To Avoid "Patterns": In ultra finish work, carefully avoid diamond marks from too great penetration of the diamond or by too rapid traverse when dressing. Either causes a pattern subsequently transferred to the work. To eliminate the pattern, hand traverse must usually be used. Wheels finer than 220 grit should never be contacted on their faces to "set" the diamond, for the resultant mark may require many dressings to remove. For the same reason, never rough dress fine wheels for ultra finishes. Remove diamond marks on fine wheels by a brief contact on the work at the roll ends, using neither coolant nor traverse.

In addition to slow traverse and shallow diamond feed, it is well to dress the wheel in the opposite direction to the traverse used on the roll as soon as possible after dressing.

Faulty dressing may result if done at a location on the machine differ-

Hammering "Plowshares Into Swords"


Parts for tanks destroyers, machine guns, artillery and aircraft are produced on this huge 20.000 -pound drop hammer recently installed in the plant of Kropp Forge Co., Chicago, to increase armament output. The giant unit weighing 615.000 pounds. is estimated to produce the equivalent of its own weight in drop forgings per month. Including the foundation, its over-all height is 48 feet $2 \sqrt{4}$ inches. At present 92 per cent of the company's capacity is involved with defense production
ent from the grinding position, because the normal parallel relation of the wheel and roll may not exist at that point. To prevent a tapered wheel face with a dragging edge, dress the wheel exactly on the line of wheel-work contact.

In the third section of this series, to appear in an early issue, the exact sequence of operations required to produce an ultra finish on various types of rolls will be detailed. In section four, instructions will be given on how to avoid specific blemishes.

## Describes Influence of

## Stress on Rusted Metal

"Influence of Stress on the Cor. rosion Pitting of Aluminum Bronze and Monel Metal in Water" is the title of research paper RP1366, recently issued by National Bureau of Standards, United States Department of Commerce, Washington. Written by Dunlap J. McAdam .Ir. and Glenn W. Geil, it is divided into nine sections, covering the results of the investigation.

According to the paper, cyclic stress tends to increase the size and sharpness of corrosion pits in aluminum bronze and monel metal and thus tends to increase the rate of lowering of the fatigue limit by corrosion. The form of corrosion pits in aluminum bronze is affected by the duplex microstructure. pits in monel metal are not appreciably influenced by the microstructure.

Curves of decrease of the fatigue limit, and constant-damage diagrams derived from these curves are very different from those obtained with steels. These differences may be attributed to the fact that the rate of corrosion of alu. minum bronze and monel metal, unlike that of steel, is anodically controlled. Steady stress tends to increase the rate of corrosion pitting of aluminum bronze but has little apparent effect on monel metal.

## Reports ElectroBlackening Process

- A new process, Electro-Ebonol, for electrolytic blackening of almost all metals, including aluminum, steel, stainless steel, zinc, cadmium, nickel, silver, gold, lead, tin and various alloys is reported by Enthone Co., New Haven, Conn. It deposits a black coating in from 30 seconds to 3 minutes, depending upon current density. Before blackening, however, the work must be cleaned similar to the cleaning preceding plating. Salts for the process are supplied by the company ready for use.


## FOR SIX CONSECUTIVE YEARS



Dangerous accidents flirt with racing cars every second as they speed around the race track.

The daring drivers in the 1941 Indianapolis 500 mile Classic knew the dangers awaiting them if any nuts, bolts or screws loosened on their speeding cars. As a safeguard against this, all of the winners of the Indianapolis races for the past six years used EVERLOCK WASHERS and found them to be absolutely dependable.

What an endorsement for $\alpha$ lock washer!

Race drivers know from experience that the patented and exclusive construction of EVERLOCK WASHERS locks the nuts, bolts and screws tightly. Each EVERLOCK WASHER tooth digs in deeper and deeper as the vibration increases with the whirlwind speed of the motors. This diggingin action, coupled with the flexing of the EVERLOCK WASHER tongues, means a lock washer that stops the loosening of nuts, bolts and screws better than other locking devices.

Don't take a chance on your products! Take a tip from the auto race drivers and use EVERLOCK WASHERS on your assemblies. Your products too must be held intact during shipment and after being placed in service. EVERLOCK WASHERS will give your assemblies this security. Profit by the experience of champions and use them now.

There is an EVERLOCK WASHER of the right type and size for every purpose.


Congratulations to a real lock washer! We used EVERLOCKS on our cars and had a safe, confident feeling throughout the race. Every bolt, nut and screw was held tight. 1941 CO.WIMMERS



What a test for a lock washer! I used EVERLOCKS and they held perfectly. second place chamyja
Again I depended on EVERLOCKS and they did a real job.
third place


## Diesel Cylinder

# LINER BORES 

## nre

## INDUCTION HARDENED

- INDUCTION hardening is now employed on the bores of cast iron cylinder liners used in the entire line of Caterpillar diesel tractors. This is said to be the first 100 per cent production application of electric induction heating to the cylinder bores of internal combustion engines. It is done using equipment developed by Budd Induction Heating Inc., a subsidiary of the Budd Wheel Co. of Detroit.

The inside diameters of the cast iron liners are hardened to 52 to 55 rockwell $C$ and subsequently are tempered to a slightly lower hardness. Depth of the hardened area developed is approximately 0.070 inch. Liners from 10 to 15 inches in length with bores varying from $3 \%$ to $5 \%$ inches inside diameter are in production. Following hardening and tempering, the bores are honed to the final finish before "Surfiding", after which the outside diameter is finish-turned for insertion into the cylinder blocks.

The finished sleeve is reported to be superior in physicals and wear-resistance-and the sleeves are not brittle. Quality and uniformity are excellent.

An interesting feature of this
hardening operation is that it serves as an additional check on previous inspections as it emphasizes any porosity or imperfections which may have escaped visual and surface examinations.

How it Works: In the Budd method, the high-frequency currents are induced in the shallow internal surface zone to be heated and are so concentrated that the temperature of the zone affected is raised to hardening temperature before any substantial amount of heat can drift to the remainder of the piece.

The required heat thus is generated almost instantaneously in the zone to be hardened and is then "trapped" through the immediate

Left, the operator is placing a liner in the induction hardening machine while heads carrying the work-holding chucks have been separated to permit entry of the work. Note the three control buttons at extreme right, this view, labeled "Stop," "Heat Off," "Start." View at right shows appearance of heat head and quenching device in position but with no work in the chucks. The cylinder liner is held by the chucks while the head is drawn progressively through the bore
application of a controlled water quench. An extremely hard surface results, while the remainder of the cylinder has remained relatively cool due to the speed of the operation and has therefore not been affected.

As all factors are accurately and automatically controlled, the characteristics of the area treated likewise are controlled within exceedingly close limits and excellent uniformity is obtained.

The first successful application of the process was to the bore of automobile hubs, in which a section of the inside diameter was hardened to form a roller bearing race. More than $4,000,000$ of these units have been turned out for a major automotive manufacturer without a failure being reported, according to Budd engineers.

Composite heat treatment also is possible. A tube which has been heat treated throughout may, as


## SOUTH BEND LATHES for Precision Machine Work



Accurate facing operations can be performed on South Bend Lathes because the cross slide dovetail on each saddle is carefully tested for squareness with $V$-ways of the lathe hed.


The most exacting precision thread cutting operations can be performed on South Bend Lathes because their lead screws are tested for accuracy of lead with specially constructed optical measuring equipment.


The smooth, quiet operation of South Bend Luthes is the result of the careful inspection and testing of gears for accuracy of tooth form, pitch diameter and concentricity.


9-inch Model A South Bend Workshop Quick Change Gear Precision Bench Lathe
Sound design, expert workmanship, and quality materials are combined in So Bend Lathes to give them permanent accuracy. For more than thirty years $t$ have been giving dependable, trouble-free service on the most exacting classes precision machine work.

Throughout the process of manufacture, parts and units for South Bend Lathes are frequently inspected and tested to assure accuracy in the finished product. Final tests are made with the lathe in operation. Each lathe must machine work to extremely close tolerances before it is approved for shipment from our factory.

South Bend Lathes are made in five sizes: $9^{\prime \prime}, 10^{\prime \prime}, 13^{\prime \prime}, 141 / 2^{\prime \prime}$ and $16^{\prime \prime}$ swing, $3^{\prime}$ to $12^{\prime}$ bed lengths, in Tool Room or Manufacturing types, with countershaft or motor drive. Write for a catalog and name of your nearest dealer.

$13^{\prime \prime}$ swing Liderneath Motor Drive Tuol R

## We're <br> on the job day and night!

"A shipbuilding company required 7 tons 1 " Bamboo Bars - cut to lengths, in connection with building new docks to meet the Navy Department's demand for early delivery of ships. They were short 7 tons on mill shipments. Order was received by us at $10: 35 \mathrm{a} . \mathrm{m}$. and material was in customer's plant in New Jersey at 12:15 p. m."

- from scully newark warehouse

WORKING on defense business? Rushed with regular work? Whatever your problems-if you need steel, steel products, copper, brass, tools, equipment and machinery you'll find Scully a prompt, reliable source of supply. Our eight warehouses are located near the great industrial centers and are able to render unusual service-even roday. Each warehouse knows that now, more than ever before, speed is sital and is making every effort to provide the type of cooperation that has made the Scully name famous. So why not phone, write or wire the nearest Scully warehouse . . . we're on the job day and night. And if you don't have a copy of our handy Stock List and Reference Book, ask for one.


Send for the Scully Stock List and Reference Book. . . it's free

SCULLY STEEL PRODUCTS COMPANY
Distributors of Steel,
Steel Products, Copper and Brass
Warehouses at CHICAGO ST. PAUL - MINNEAPOLIS NEWARK, N.J.
The Mark of 2 uality


CLEVELAND - PITTSBURGH BOSTON - BALTIMORE ST. LOUIS
The Mark of Service

one engineer has expressed it, be "kissed" on its inside diameter to produce a harder interior surface, thus improving wear-resistance of the bore, while retaining high physicals of the body.

High speed of production is another advantage. In the automobile hub application, for example, three to four hubs per minute are hardened on each machine in operation. Aviation cylinders can be treated at the rate of 60 to 100 per hour per machine.

Operation Explained: A currentcarrying coil or "head" is drawn evenly through the bore under treat-ment-or conversely, the part is drawn progressively over the heat "head"-while a high-frequency current is applied, producing the magnetic lines of force which result in heating the metal under treatment. This operation is followed immediately by the controlled water quench-the whole cycle being a matter of seconds. Head movement, current application and quench operation are entirely automatic, thus removing any possibility of error in the process once the machine has been set.

The machine is extremely flexible and is designed for rapid changeover from one size bore operation to another.
"Tailoring" to Requirements: The process now makes possible the production of improved units in nearly every type of machine in which cylindrical metal bores are subject to wear or stress. Hardness is developed at points of greatest wear, while a tough, ductile core is retained to provide maximum strength. Physicals of the parts treated are thus "tailored" to fit wear and strength requirements.

Further, where design permits, the outside diameter and all other unhardened areas can be machined after heat treatment of the inside diameter of the bore. As the depth of the hardened area is accurately controlled, the area which can be machined after the bore has been hardened can be determined precisely.

Parts often can be redesigned with lowered weights and costs as the integral localized heat treatment may favorably alter the metallurgy of the casting or forging to the point where a predetermined inside diameter area can be used as a wear-resisting surface.

Metallurgical Considerations: In materials containing temper or uncombined carbon, recombinations of this carbon at a greatly accelerated rate can be accomplished, thus markedly increasing the "hardenability" and strength of the area treated. The grain size of the treated material may be made consistently smaller, an advantage in

"Brains" of the induction hardening machine are shown here-a highly accurate sequence of operations being controlled by the series of cam-operated switches actuated by cams mounted on the drum in the lower portion of the control. This particular drum is arranged to receive four sets of cams which by shifting the drum permits selecting any one of four dif-
ferent sequences of operations
most applications as improved physical properties can be developed in this manner.

Gross distortion, scaling, neces-
sary straightening, decarburization, the necessity for using more stock in order to compensate for adverse distortion, and grinding checks due to lack of uniformity of structure, are no longer problems. The short cycle, in combination with the rapid quench eliminates oxidation.

At the same time, it has been found that annealing or normalizing treatments are less frequently required before hardening.

Other Applications: To the question, "How long a cylinder can you treat?" Budd engineers answer, "How long a bore do you have in mind?" Lengths varying from a fraction of an inch upward can now be treated. It requires only the adoption of known engineering principles to the design of equipment for lengths other than those now in production.

New applications of the process are many. Its use in aircraft engines, where light weight and resistance to wear are vital, is under consideration. Machines for the heat treatment of oil-well casings, to increase joint strength, already are under construction.

The process makes possible, engineers believe, the improvement of nearly every product having bores.

This is the Caterpillar installation. Note it is an integral part of the production line. The inside diameter of all liners for Caterpillar diesels are inductively hardened here



Out of chemical laboratories such as this often come simple methods for determining certain elements

# DETERMINATION OF TIN <br> IN <br> <br> CAST IRON AND PLAIN STEEL 

 <br> <br> CAST IRON AND PLAIN STEEL}

Determining the percentage of tin in iron and steel in a minimum of time has been made possible by an improved method which affords a sharp and lasting end point. The method makes use of an alloy of iron and antimony designated "Stanreduce" which supplies its own reducing atmosphere
a AN IMPROVED method for determining the percentage of tin in plain steel and cast iron has been devised to overcome the poor, fading end points obtained in the short method for tin in steel. The fading of the end point is caused by a high concentration of copper ions in the solution being titrated, and other factors. The use of a nonoxidizing gas, such as carbon dioxide, nitrogen or natural gas, along with the cumbersome procedure attending the use of such a gas, has been eliminated. The time required for the actual reduction of stannic chloride to stannous chloride has been greatly reduced. The method is accurate and fairly rapid considering this accuracy. The end point is sharp and lasting.

To develop this method it was necessary to produce an iron-antimony alloy, herein referred to as "Stanreduce." To make a determination requires 10 grams of Stanreduce. Of this amount 0.6 gram is used up and the remainder may be recovered by washing in succession with water, then with alcohol, and drying. The alloy can be used over and over. Stanreduce

By E. T. SAXER<br>Chiel Chemist and<br>R. E. MINTO<br>Assistant Chief Chemist<br>Otis Steel Co.<br>Cleveland

also can be used to good advantage for the determination of larger amounts of tin in nonferrous alloys.

## TIIE METHOD

1. Weigh 5 grams of the sample into a 300-milliliter Erlenmeyer flask.
2. Add 50 millisiters of $\mathrm{HCl}(2 ; 1)$ and keep at bolling temperature until the sample is dissolved. The acid residue from a sulfur determination may be used. Samples of cast iron should be flltered and washed with hot HCl solution.
3. Add 100 milliliters of a solution containing 10 grams of $\mathrm{NH}, \mathrm{Cl}$ and 10 milliliters of concentrated $\mathrm{Na}_{4} \mathrm{OH}$. If some $\mathrm{Fe}(\mathrm{OH})_{\mathrm{s}}$ separates, redissolve with a few drops of HCl .
4. Add concentrated $\mathrm{NH}_{4} \mathrm{OH}$ dropwise until a slight precipitate of $\mathrm{Fe}(\mathrm{OH})_{3}$ is discernible. This precipitate should be brown and not green.
5. Add a small quantity of paper pulp
(Please turn to Page 91)

| Table I-Effects of Alloying Elements* |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sample, 5 grams | $\% \mathrm{Cr}$ | \% V | $\begin{aligned} & \text { resent } \\ & \text { C\% Mo } \end{aligned}$ | \% As | \% Cu | Added, \% Sn | Found, $\% \mathrm{Sn}$ 0.005 | End Point |
| Gov't. No. $72 .$. | 0.91 |  | 0.15 |  |  | none | 0.006 | Fades slowly |
|  |  |  |  |  |  |  | 0.048 0.044 | Fades slowly |
| Gov't. No. $72 .$. | 0.91 |  | 0.15 | $\ldots$ | $\ldots$ | 0.05 | $\begin{aligned} & 0.044 \\ & 0.008 \end{aligned}$ | Fades slowt |
| Gov't. No. 30C. | 0.98 | 0.24 |  | .... | $\ldots$ | none | 0.012 | Fades slowly |
|  |  |  |  |  |  |  | 0.062 |  |
| Gov't. No. 30C. | 0.98 | 0.24 | $\ldots$ |  | $\ldots$ | 6.05 | G. 064 | Good |
| Fe by $\mathrm{H}_{2}$ |  | .... |  | 0.05 | .... | none | none | Good |
| Fe by $\mathrm{H}_{2}$ |  |  | $\ldots$ | 0.05 | 0.60 | none | none | Good |
| Battelle, "F" |  |  | $\ldots$ |  | 0.60 | none | none | Good |
| Battelle, "G" | .... | .... | .... | .... | 1.10 | none | none | Good |

[^1]


NAMONAL GABBON COMPANY, INC.<br>Unil of Union Carbide and Carbon Corporation<br>ㅍㄷ

Garbon Sales Division: Cleveland, Ohio

## BETWEEN HEATS wirн Shorty <br> 

- Say Fellers:

Over in the picklin' department the other day the gang was holdin' a bull session ' $n$ the fellers were firin' some pretty good stuff at each other along the lines of handlin' the acid. I don't always like to bust in on the fellers when they're goin' to the mat with some of their problems but I did this time without regret. I slid on to one of the benches 'n I sez, "Go ahead, fellers. Don't mind me. I'm jus' a sojourner stoppin' fer a second or two to rest some weary bones." I reckon I didn't interrupt 'em fer Ted Patty kept right on talkin'. He sez:
"Now look, y' guys. A io per cent solution of sulphuric is okay to get all the mill scale off the surface, 'n when acid is consumed y' gotta sweeten up the bath with a shot of fresh acid."
"O yeah," pipes up Slim Wiley. "We know that, already. What you're sayin' is ol' stuff. What I'm sayin' is, the ferrous sulphate takes the kick outta the bath
"Sure 'nough, big boy, you're right ag'in. Y' git 'bout five times the 'mount of ferrous sulphate as $y$ ' do iron. Fer instance, when $y^{\prime}$ got 40 per cent ferrous sulphate in your bath $y$ ' only get 'bout half the 'fficiency outta 'er," was Ted's comeback.

## Pops a Fair Question

"Then why don't y' dump the pickle into the sewer 'n start over ag'in?" Slim asked.
"I suppose we would but we never wait 'til she gets up to 40 per cent. Whenever we find the ferrous sulphate up 'round 25 per cent we stop addin' slugs of fresh acid now in them, 'n we keep on picklin' 'rill we run the bath down to 'round 5 per cent acid then we yank the plug outta the tank and let the juice run into the sewer."
"Howdaya get away with dumpin' 'er in the sewer?" Slim asked. "Don't the authorities jump $y^{\prime}$ fer pollutin' the stream?"
"Naw. Y' see we dump the tanks into the sewer 'n then over in settlin' basin we give 'er a shot of lime to kill
the acid 'fore we turn 'er into the creek. No harm in doin' that, is there?" sez Ted.
"Naw, far as I can sec there isn't. I remember a few years ago when I was picklin' at a plant in Ohio makin' sheets we were dumpin' our spent acid in the river. One day the boss came 'round and told us we'd have to treat the pickle liquor with lime before we let 'er go into the river. Seems as though a little blast furnace plant down the river was settin' up a kick cuz the water they were takin' from the river for coolin' purposes was cuttin' a lotta hot blast valves on the stoves ' $n$ they had to install new ones every now 'n then," sez Slim.
"Hey Slim, $y$ ' believe that?" inquired Skinny Boynton.

## Falls Back on the Boss

"That's what the boss told me, that's all I know. But when we started puttin' the lime to 'er to kill the free acid, we never got any more complaints from the blast furnace fellers."
"I don't doubt your word, $y$ ' understand Slim. Jus' wanted to git the account straight-that's all. Well anyway let me tellya one. Y' all know what an inhibitor is, I guess-that stuff we put in the pickling bath which causes a molecular film to be deposited on the sheets after the scale is all off. Once y' git a film on your base metal the acid won't attack 'or 'n there's no more pittin' of the surface nor waste of acid."
"Skinny, y" sound like a school teacher, but go along with your story."
"Well not long ago I was a talkin' to Phil Russell of the Grasselli Co., ' $n$ he was tellin' me that long before inhibitors were recognized, the steel industry ran across such effects without realizin' the cause. He sez, 'Some years ago, one of the mills doin' some picklin' sent in a complaint to an acid maker. He kicked because there was somethin' hay wire with his last shipment of acid. Seems as though his picklin' foreman complained that the sheets weren't picklin' in the regular
way. 'They were bein' burned or overpickled. ' $N$ so the acidmaker sent one of his service men to look over the job.'"

Skinny stopped long enough to light up is pipe 'n after he took a couple of drags he continued:
"Russell sez, 'the service guy checked up everything carcfully ' $n$ he found the acid they were usin' in the picklin' tubs was the same as that used before they bumped into the trouble. He thought there was somethin' screwy so he goes over to a guy working in the pickle house 'n starts firin' questions at him. It seems as though the pickle tub had been cleaned out jus' before the trouble started. The hunkey told the service guy that this was the first time 'she be cleaned out, mebbee, since they put 'em in tub, I betcha.'
Ted Patty interrupted to ask, "Didn't they have trouble with the iron content of the bath?"

## Shoes Did the Trick

"Naw, guess not Ted-at least Russell didn't mention it. He sez, 'she didn't get a chance to get too high cuz of the leaks, wet steam, 'n overflows. The hunkey told the service man they found all sorts of junk in the bottom of the tub includin' a pair of ol' shoes. 'N try as he could the service man couldn't fix up the tub so she would pickle to suit the fancy of the foreman until he found a pair of ol' shoes 'round the mill and fired them into the tub. ' N after that the foreman put his okay on the whole shootin' match 'n told everybody 'round the diggin's that his fellers never turned out such smooth surfaced sheets. Not a pickler's kiss in the whole blame lot.'"
"Did Russell think there was anything to the thing of puttin' the ol' shoes in the pickle?" Ted asked with a funny look on his face.
"Why his explanation was that the action of the pickle solution on the leather and its fillers formed a lowgrade inhibitor of some sort that actually did some useful work in restraining the action of the acid on the base metal."
Well, fellers, that's the gift of gab I listened to 'round the pickle tubs that day. I don't know of anyone who has commercialized the use of ol' shoes as an inhibitor. They use 'em at weddin's alright but not for swectenin' up the picklin' liquor. Anyway they're makin' better inhibitors nowadays.

So long, fellers. I'll be seein' ya.




## There is no substitute for experience!

Whether your materials can best be handled with a bucket, a hook or a magnet, it's a certainty that the speed of hoisting, the ease of operation and the sturdiness of your cranes are the really vital factors in your material handling costs. And that is why the 50 years experience gained by Industrial Brownhoist in the building of locomotive cranes is of importance to you.

The present day Industrial Brownhoist Gas, Diesel, or Steam locomotive crancs provide a wealth of advantages. Crab mechanisms operate with a smoothness never before thought possible. Cabs on Diesel and Gasoline models from 10
through 40 tons allow a full $360^{\circ}$ visibility. Undercarriages are built to the same standards as the heaviest railroad tenders. Booms are constructed for greater strength combined with decreased weight.

It will pay you to profit from Industrial Brownhoist's experience in building cranes. Write today for further facts about Industrial Brownhoist Gas, Diesel, or Steam locomotive cranes in capacities from 10 to 250 tons.


BAY CITY, MICHIGAN - DISTRICT OFFICES: NEW YORK philadelphia. pitisburgh, cleveland, chicago

## HANDLING PAINT MATERIALS

## IN PIPES

.... eliminates refilling of spray guns
.... assures more uniform colors
.... permits continuous agitation of paint
.... concentrates responsibility
.....reduces fire hazards
. WHEN Berger Mfg. Division of Republic Steel Corp. recently completed a sizable addition to its manufacturing facilities at Canton, 0 ., an opportunity was afforded to streamline the plant paint handling methods. Accordingly, a new 9 pipe circulating system nearly 2 miles long was installed and now carries paint in nine different colors to more than 50 points where it is applied to shelving, steel furniture, kitchen cabinets, lockers and other metal products of this plant.
Prior to installing this new centralized paint mixing, circulating and distributing equipment, enamels and lacquers had been delivered in 50 -gallon drums by factory trucks to four widely separated mixing stations located near the various finishing areas in the plant. At these points the finishing materials were prepared for use by reducing with thinners, stirring by hand with wooden paddles for 10 to 15 min utes, etc. Spray operators had to come to these decentralized sources of supply on an average of once every 2 hours to refill their containers from which they sprayed.
Paints mixed by hand at different
locations at different temperatures at different times and by different individuals could not be expected to be consistent in viscosity, specific gravity or degree of agitation-all of which bear directly on the color uniformity to be obtained. Certain advantages from a centralized sys. tem therefore are obvious. Most important of these, perhaps, is continuous mechanical agitation now employed to afford a more complete dispersion of pigments and to maintain a homogenous solution at all times, thus a more uniform paint and a more uniform finished product.
When mixing is done in one room, it is possible to maintain a more uniform temperature. Also, viscosity and specific gravity tests are al-


Fig. 2-Each pair of mixing and circulating tanks has its own pumping unit and iilter as shown here. This is an end view of the same set of tanks in Fig. 1
ways made under the same conditions and therefore are more directly comparable.
Moreover, there is now undivided responsibility as a single individual is placed in charge of mixing operations on each turn.
Handling by truck of paint materials throughout the factory is eliminated, thus reducing the flre hazard always present where inflam mable materials such as enamels and lacquers must be moved about.

Another important advantage is had by supplying paint continuously to each operator. Thus he need no longer leave his work to refll his container.

The present system includes two centralized mixing and paint storage rooms from which the circulating systems fan out to several areas on two floors of the plant. In the large mixing room, there are 20 mixing tanks, 14 of which serve a group of seven paint circulating systems. Five of these seven lines carry paint to an equal number of

Fig. 1-This battery of 14 mixing and circulating tanks serves seven plant distributing systems. Each system requires two tanks, one for mixing and the other for reservoir. Note handling facilities for loading the tanks from drums as shown at the left using hoist on overhead monorail bridge

Fig. 3-Five paint lines serve each of five spray booths on the first floor, two of the booths being shown here. Note adjustable fluid regulators directly above operators' heads. Work passes in front of operators suspended from chain conveyor. Another overhead chain conveyor in the handling system can be seen at the right
spray booths on the first floor. Two of the five lines continue on to a group of four spray booths on the second floor. The sixth paint line serves the second floor booths only. A seventh line runs to a group of dip enameling tanks on the third floor.

The smaller mixing room has nine mixing tanks from which two circulating systems carry paint to the locker assembly line. These two rooms supply air-conditioned storage facilities for more than 20,000 gallons of enamels and lacquers. They are maintained at a tempera ture of 78 degrees Fahr. the year round.

Fig. 1 shows a battery of 14 mix . ing and circulating units which supply paint to seven plant distributing systems. Note here at the extreme left the method of flling these tanks from drums. The hoist is carried on a monorail bridge which traverses the entire working area in the room.

Fig. 2 is a view of the end of the line shown in Fig. 1. Each tank has its own agitating motor drive at its top of the tank. Each pair of tanks is provided with its own pumping unit and mechanical filter.

The first floor spray room has five spray booths, two of which are shown in Fig. 3. Each booth is served by five lines, and provision is made for two operators to work in each booth, although only one is

Fig. 4-Two of the five tanks in the small mixing room are shown here These are for preparing special dip enamel colors. Pumping units at left handles solvent from an underground storage tank


shown in each booth in Fig. 3. Note the adjustable fluid regulators directly above the operators' heads. These regulate the spraying pressure to be obtained from each line. As will be noted from Fig. 3, each spray booth is provided with powerful floodlights to help in the spraying. A powerful exhaust system carries away overspray.

Fig. 4 shows two of the five tanks in the smaller mixing room used for preparing special dip enamel colors. The pumping unit to the left has been installed to handle solvent from an underground storage tank.
Fig. 5 shows one of the two compressed air circulating systems in the smaller mixing room used to circulate the paint from this point Also a portion of the racks for storing drums of various paints can be seen in the background.

All distribution lines having a to tal length of 1000 feet or more are made of 1 -inch pipe. Lines less than this length employ $3 / 4$-inch pipe. In every case, the same size pipe is used for the entire length of the line. For all changes of direction, 12 -inch minimum radius bends are used instead of pipe fittings.
Back in the mixing room, each dis tribution line is served by a pair of mixing tanks, a pump unit, a filter and the necessary valves, gages, etc. Two tanks are used for each line since one is employed for mixing while the other is serving as a reservoir.
Each tank is equipped with a mechanical agitation unit. A vertical shaft extends nearly to the bottom of the tank and carries two alumi num paddles of the propeller type. A quarter-horsepower explosion proof gear-head motor mounted on
top of each tank revolves the paddles at 59 revolutions per minute. Antiwhirl baffles welded to inside of tanks prevent swirling of the material. Pitch of paddle blades tends to lift the material upward. Thus heavier pigments are kept thoroughly mixed in the solution.

Each of the seven circulating systems served by the large mixing room is equipped with an internal
(Please turn to Page 88)

Fig. 5-This shows one of two com-pressed-air circulating systems in the smaller mixing room used to send out the paint from this point



## Tote more tons a turn

 with power from Exide-IroncladsEA VIER COLLS . . . higher handling speeds . . . more tonnage de-
livered more quickly . . . that's the order of the day!
When por equip youf electric trucks with Exide-Ironclad Batteries, you're sure of

- Giant power to handle 15 -ton steel coils easily.
- High voltage to maintain fast running speeds.
- Dependable performance throughout each turn . . . no breakdowns, no repairs.
- Longer battery life and correspondingly lower cost per ton-mile.

THE ELECTRIC STORAGE BATTERY CO., Philadelphia


## TIME RECORDERS

## control are welding

## cost and procedirice

An unusual incentive plan based on instrument chart records
 not only gives the operators an incentive to more and better work by enabling them to increase their incomes, but also reduces total overall welding cost while increasing output. Of equal importance, better work is done. System can be applied easily in any are-welding shop

E THE PROBLEM of how to reduce costs and yet improve quality at the same time is not easy to solve where the work performed is largely manual, such as in ordinary are welding. Any effort to lower the cost usually results in less satisfactory work, while improved workmanship ordinarily is more expensive. Some companies compensate workers on a piece-rate basis; others employ a day-work or nonincentive method. Each system has its advantages and disadvantages, and it was only after a comprehensive study that an entirely new method of compensation was developed to gain the advantages of each system.

Since Harnischfeger Corp. employs welding widely in fabricating overhead cranes, electric hoists, excavating machinery and other equipment, much experience was had in both previous methods of compen. sation.

To obtain lower cost and better work in a manual operation it is essential that the system of compensation be such as to induce the operator, in his own interest, to desire to accomplish the ends you also are seeking.
The first step in developing the new incentive plan was to make a comprehensive study of the graphic method of recording elapsed time by means of the Esterline-Angus chart recorder shown in Fig. 4. This instrument produces a detailed record showing the uniformity and regularity of work done by each operator, shows when work is started and when it is stopped, and also shows how much welding time was lost by each man.

In addition to this graphic record, showing how each man handled his work, a synchronous clock is connected to the relay circuit from each operator's station to measure and totalize the actual welding time.

Fig. 5 shows one of these series current relays connected to a weld-
ing generator employed in this type of setup. The flow of current to the welding arc energizes this relay. Its contacts control a circuit to one of the pens on the distant time recorder as well as setting in motion the synchronous electric clock. Since the clock runs only when the arc is in operation, the clock indicates total effective are time. This system furnishes all the information required for a most effective control as will be shown.

To insure the success of such a system, each operator is given the incentive to make the system function by a bonus payment based on records produced by the control system itself. It is recognized that any method of supervision and control which benefits the employer alone and not the workmen is likely to fail.

Operation of the System: Fig. 2 shows one of the recording panels with a 20 -pen time recorder and chart at the left. This reveals the distribution of active and idle time on 20 different welding machines. At the right in Fig. 2 is a group

By ERWIN C. BRECKELBAUM
Superintendent of Welding
The Hanischteger Corp. Milwaukee

Fig. 1-A portion of Harnischfeger Corp.'s welding shop (top view). Note variety of work handled. Welding machines are arranged in a double row down the center of the shop, with another row along each outside wall. All machines are wired back to a single centrally located recording panel. All illustrations courtesy Esterline-Angus Co. Inc., Indianapolis
Fig. 2. (Lower view)-One of the recording panels: At the left is the 20 pen time recorder showing on a single chart the distribution of active and idle time on 20 different welding machines. At the right is a group of 20 synchronous clocks which act as time totalizers, showing the total actual welding time
for each man and each shitt
of 20 synchronous electric clocks which totalize the welding time for each man and each shift. This equipment permits supervising three 8 -hour shifts of 20 men each.

The first of these control boards produced such excellent results that at present time there are three such control boards in service in the Harnischfeger plant capable of checking simultaneously the work of 45 different welding machines and their operators (a 20 -unit panel, a 15 -unit board and a 10 -unit board). The graphic meter of the instru ment in Fig. 2 has 20 pen elements, each pen being operated by an elec tromagnet connected through a


Governor frame of welded design. Cost- $\$ 0.29$. Weight- $31 / 2 \mathrm{lbs}$.
Governor frame of former design. Cost- $\$ 0.36$. Weight-41/2 lbs. ALTER EGO: Literally, "one's other self"-the still, small voice that questions, inspires, and corrects our conscious action.

ALTER EGO: Look how simple and how quickly we can make this governor frame by arc welding.

Yes, but why should we tackle a new way of making it when we've had so much EXPERIENCE with the present way?

ALTER EGO: Don't let's kid ourselves, that's NOT experience-it's just HABIT and habits of production (even some good ones) will mow you down if you stick with them long enough.

But this governor frame was written up as tops when we first designed it.

ALTER EGO: Yes, and that was exactly the same year you paid $\$ 3000$ for your Peerless auto. Suppose you had kept that car, unused, in a glass case and put it up for sale today-one of the best cars on the American market-do you think you could get $\$ 25$ for it?

> Boy! Haven't the timeschanged! Haven't values changed! Just look what better and speedier production have done.

ALTER EGO: You really mean that we've got to snap out of costly habits if we hope to survive in the faster era, just ahead. It is survival not only of the fit, but also of the fleetest.

LINCOLN SUGGESTS: It's simple to change over your product to welded construction-to prepare for the tough sledding ahead. Change one part at a time. This doesn't interrupt your rush production schedule. Gives you the strength, rigidity, light-weight and pleasing appearance of welded design without delay. "How to Changeover," Bulletin 420, will guide you and will show you how Lincoln guarantees that you will profit!



To overcome the problem you are facing today-and get you into the plants where doors are barred to salesmen's contacts-usc תTEEL.

Like a master key, fTEEL magazine opens for you those doors-gets your product story to the men with the power to say "yes" or "no"- keeps alive these vital contacts upon which future orders depend.

Through its selective coverage, $\boldsymbol{T}$ TEEL reaches the plants with rated buying power in the METALWORKING and METAL PRODUCING industries. Have you seen the specially prepared marker study which proves the rated buying power of תTEEL's coverage? If not, drop us a line, please. Advertising men and sales managers tell us it's an eye opener.


## "Steel"is Modern



CLEVELAND
NEW YORK - PITTSBURGH - CHICAGO WASHINGTON•LONDON


A NEW church, first in which a Gothic effect, see Fig. 1, is achieved in an all-welded steel-framed building and the only free-standing structure in existence with such great roof pitch, according to the designers, is being completed at Cleveland. This church, the Fairmount Presbyterian, is 150 feet long, 55 feet wide and 50 feet high, costing approximately $\$ 250,000$. The framework is entirely welded and, according to the structural engineer, weld. ed construction is the only method by which the structure is feasible. The tremendous pitch of the gable frame roof, see Fig. 2, and the fact that the entire structure is free standing make it unique. Roof pitch is exactly 45 degrees, more than twice that of average roofs (20 degrees). There is no lateral bracing whatever.
Bent channels and plate were arc

Fig. 1-Architect's rendering of new Fairmount Presbyterian Church of Cleveland. Gothic effect is achieved by all-welded steel framing
welded to form the haunch section of columns. In fabricating these, first a $V$ was cut into each channel. This was followed by bending to desired contour, placing the two bent channels together with a cut plate in a special jig, the plate touching each channel at center line of web, then fillet welding at each side of the plate. Columns and roof frames are 18 inch 70 pound I-beams. Haunch section web plate was butt welded to webs of columns and beams while the haunch channel flanges abutted the I-beam flanges in a V -shaped joint, see Fig. 3.

Column, haunch and roof frame, comprising one half a frame bent,

Fig. 2-All-welded steel frame, left, of new Cleveland church, first ever built in which channels comprise the principal load-carrying members in column haunches Fig. 3-View of frame, right, at junction of columns and roof beams showing haunch sections fabricated by arc welding bent channels and plate
constituted one fabricated unit. They were trucked to the site after shop fabrication.

In erection, the two halves of a bent were placed, held in position until the other was erected, then both were allowed to assume positions, butting together at the peak. All steel was placed in less than two days, the erector stating that one day would be ample for a second job of the same type.

Design was by Walker \& Weeks, structural welding engineering by C. Merrill Barber, steel fabrication by the Austin Co. and erection by Vogt \& Conant, all of Cleveland. All welding was by the shielded arc process with electrodes and equip. ment supplied by the Lincoln Electric Co., Cleveland.

Providing as it does the most ef ficient possible use of steel and a degree of rigidity which the struc. tural engineer claims could not be matched by any other design, this new development is expected to find wide usage in all types of freestanding structures.


## Centering Device

[ Center Scope Instrument Co., 633 South La Brea avenue, Los Angeles, announces an optical in strument or center scope which will locate lines, edges or points to the exact center of the spindle shaft of any machine tool. It is fast, accurate, and is not subject to any human or mechanical errors. Furthermore, the instrument is available in three models known as the Variable, Rotating and Special. The first will function on any of the various types of machine tools from a jig borer to a bench drill. The other two are built more for special uses. The Variable model is not factory centered, but is equipped with a trimming knurl screw allowing operator to center work to the spindle shaft of the machine tool. Its body assembly is about $51 / 2$ inches long and its steel shank is $1 / 2$-inch in diameter and $11 / 4$ inches long. The instrument has a magnification of 40X. The field of vision is large enough to enable operator to find his work lines in the image with little trouble. The instrument also has sufficient eye point position to enable the wearer of glasses to observe the entire field without discomfort. Guide lines in the eyepiece are properly spaced for all general shop

practices. These, however, may be changed. The center scope is brought into focus by moving the quill until the nose of the instrument is approximately $3 / 4$-inch above the work-and a sharp image of the layout is obtained. The in strument is centered to the machine tool in which it is placed by coordinating the trimming operation and the adjustment of the work. While a slide table makes centering more convenient, it is not necessary. The Special model is constructed with various taper shanks, and it is designed for use on jig borers, lathes and other machine tools. It is factory centered to its fixed taper shank. It also may be used in conjunction with gage blocks and micrometers.

## Burring Machine

目 Pines Engineering Co., St. Charles, Ill., announces a horizontal spindle burring machine for reaming, burring, facing, threading or honing tubing and rods. It features an air-operated work chuck controlled by a limit switch which is

tied in with the feed movement lever that advances the spindle. On some work the operation with this mechanical-electrical arrangement is capable of production speeds up to 1200 pieces per hour. Pictured is a typical production set-up where three operations are performed in a single pass: Tube outside diameter is burred, end is faced and inside diameter is reamed.

## Bench Center

Barber-Colman Co., Rockford, Ill., has introduced a new bench center for inspecting a variety of small work up to $61 / 2$-inch diameter by 18 inches long. It provides an accurate, fast method for inspecting cylindrical and circular pieces. The base of the bench center is cast from nickel cast iron and is of ribbed box construction with finished ways cast integral. Both headstock and tailstock are adjustable, and may be clamped at any position on the bed. The tailstock has a

spring-loaded sliding center which also can be readily locked in position. The headstock center is fixed and all three sliding members locate from the same reference surfaces. The slide, or indicator base, is provided with a vertical post and is used with a standard type indicator clamp. Other types of indicator holders can be easily attached if desired. The work on the unit is inspected usually by being rotated by hand under a dial indicator which registers the amount of runout or eccentricity. In addition work may be checked axially to determine side runout or "camming" action on the sides of shoulders or collars.

## Lightweight Air Hose

凬 B. F. Goodrich Co., Akron, O., has developed a new lightweight air hose so flexible that the $1 / 2$-inch size can be bent to a 3 -inch radius without collapsing or cutting off the air supply. Its design makes it very adaptable for use with pneumatic tools.

Made in a light gray color, the hose is stocked in $1 / 2$ and $3 / 4$-inch sizes. Of the 2 -braid construction, it easily can withstand working pressures of 80 to 125 pounds. The hose is oil resistant and has good heat resisting characteristics.

## Shell Lathes

- Sundstrand Machine Tool Co., Rockford, Ill., has introduced two new types of lathes for expediting production of shell-a model 10

automatic for turning 3-inch antiaircraft shell and an automatic for band turning four different sizes of shell. The former, shown in the accompanying illustration, rough and finish turns the outside diam eter and faces both ends of a 3 -inch


# Dotoris Doít Guess <br> <br> Why Should You? 

 <br> <br> Why Should You?}

It takes more than a superficial examination to find the strength and weakness of Unit Heaters, too.

You're buying HEAT not ornaments, so don't stop at the housings (they're all smartly styled). Performance depends upon what's inside.

Outstanding among all Thermolier features is an efficient Internal Cooling Leg, integral with the unit. It removes condensate continuously instead of intermittently; keeps all of the heater working all the time; eliminates "air binding" and hammer; permits use of simple thermostatic trap and is equal in actual cooling effect to more than 100 feet of exterior cooling piping.

This one feature alone places Thermoliers ahead of all other unit heaters in heating efficiency. Send for complete Data Book explaining Thermolier features. Grinnell Company, Inc., Executive Offices, Providence, R. I. Branch offices in principal cities of the United States and Canada.

Grinnell Company, Inc. - Grinnell Company of the Pacific - Grinnell Company of Canada, Lrd. - General Fire Extinguisher Company - American Moistening Company - Columbia Malleable Castinks Corporation . The Ontario Malleable Iron Company, Lid.

## OTHER THERMOLIER ADVANTAGES:

1 U-Shaped Tubes eliminate expansion strains the simplest way . . . insure dependability.

2 Positive Built-In Drainage-every tube is pitched for complete drainage of condensate.

3 Superior Fin Design-square fins instead of round $-24 \%$ more radiating surface. Dirt and lint collection is reduced to a minimum.


THE UNIT HEATER WITH 14 POINTS OF SUPERIORIYY
anti-aircraft shell made from tubing. The rough shell, in the lathe, is held on an expanding type mandrel attached to the machine spindle.

This mandrel in turn has two sets of three pins which expand on the inside diameter of the part. One set of these pins grips and drives the work at one end while the other set centralizes the part from the opposite end. The outer end of the mandrel has a pilot which registers in a support bushing in the tailstock. The tailstock support is mounted on an air-operated slide so that it can be moved
into and out of position quickly. The shell is positioned end-wise on the mandrel by a swinging locator attached to the headstock. The longitudinal feeding front carriage has a cam bar actuated tool slide on which is mounted a turret type tool block. Two tools are incorporated in the tool block, one of which is used for the rough turning cut, and the other for the finishing cut over the same surface. In between cuts, operator indexes the turret type tool block so that both cuts can be taken with but one handling and chucking of the part. The complete outside diameter of the


FROM $1 / 2$, TO 1000 POUNDS

Produced in our modernly equipped foundry from electric furnace steel and heattreated in automatically controlled gasfired furnaces.

We are in position to manufacture specialties made of manganese and alloy steel castings and invite concerns to write us about their requirements.


## STRAIGHTENINC $21 / 2 \prime$ ARMOR PLAT <br> Dozens of Steelwelds have been purchased for arn

- On heavy jobs like this, Steelweld Bending Presses truly demonstrate their quality. Straightening heavy, heat-treated armor plate having a tensile strength of 170,000 pounds per square inch, requires tremendous power. Every part of the machine must be built to take it.
The machine runs continuously at 20 to 40 or more strokes per minute depending upon plate thickness. Every stroke of the ram hits at full tonnage capacity. 100 or perhaps several hundred strokes are required as condition of plate demands.
plate work because production-minded executives ho found they will perform month in and month out, 24 ho a day unflinchingly.
The extra heavy construction that makes Steelwelds desirable for this work, is also advantageous for m bending and forming operations. If you work with n steel, alloy steel, monel or other metals of high ten strength, whether light or heavy gauge, it will pay yo check into the many possibilities of Steelweld Benc Presses.


## The GLEVELAND CRANE \&iENGINEERIN

 GET THIS BOOK! MANUFACTURERS OF CLEVELAND CRANES - CLEVELAND TRAMRAIL - STEELWELD BENDING -is controlled by a foot valve. The machine produces $75,28,37$ and 37 pieces per hour respectively for the 105, 155 millimeter, 5 -inch common projectile and 5 -inch navy shell.

## Oil Clarifying Units

- Gale Oil Separator Co. Inc., Chrysler building, New York, has introduced two new developments for clarifying cutting oils. One, an interceptor for use in conjunction with automatic machines and the other a reclaimer system. Both operate entirely by gravity system. The former can be installed directly to a machine by locating it on
its pumping system. Dirty oil entering this unit is directed downward and is broken apart by a specially designed breaker wedge. The wedge slows the incoming liquid, directs the lighter cutting oil upward and the heavier material downward to the bottom of the interceptor. The heavier material is riffled and rolled, break. ing away the lighter oil which flows to the surface. Through the turbulence in the bottom of the unit the heavier material flows into a bucket. The lighter liquid on the surface flows to the outlet and into a compartment where the final


## 

No matter how tough the test-how difficult the problemturn to Pangborn for blast cleaning that is QUICKER, CHEAPER and BETTER.
If pushed for production-install airless ROTOBLASTING -use it twenty-four hours a day-seven days a week. Pangborn Barrels, Tables and Special Cabinets have slamina and strength-have proven they can take itBY CONTINUOUS INCREASED PRODUCTION.
For speed-for control-for lower cost cleaning-shift gears quickly into ROTOBLASTING. Costs have dropped as much as $50 \%$. Production has increased as high as $80 \%$. And quality goes up to the very top.

## For quickest possible delivery-place tentative orders NOW.



## WORLD'S LABEEST MANUFACTURER OF BLAST CIEANING \& DUST CONTROL BQUIPMENT



## PANGBORN CORPORATION

## HAGERSTOWN, MD.

clarifying occurs. This unit is available in sizes capable of handling 5 gallons per minute or more. It can be installed with or without filter element. When using the reclaimer, impure oil taken from

combustion engines, etc., is poured into a tank above it. The dirty oil entering the unit is guided by a direction baffle to the bottom of the reclaimer, which at the same time, disperses it outwardly to the sides. Immediately, desludging or separating impulses are created so that the lighter oils rise to the surface. This inflowing current of oil comes in contact with a specially designed breaker wedge that further splits and separates the oil. The heavy sludgy material is bounced, rolled and scrubbed to separate impurities. As the oil is released of the heavy sludges, it rises to the surface and flows in a separate stream with the previously separated oils to the filter chamber. Here through a filter unit, small atoms of carbon or silt are filtered from the oil. Meanwhile, the heavy sludge and other impurities are collected in a sump where it can be drained off and discarded.

## Hot Spot Indicators

- Coal Specialties Co., 50 Church street, New York, has now placed on the market improved Hot Spot indicators for use in connection with coal piles and other stored material subject to spontaneous combustion. These units now incorporate fuse links which "blow" at 125 and 180
$\qquad$

degrees Fahr. in addition to the regular temperature of 150 degrees Fahr. The last, however, is the one which is most generally acceptable for average conditions throughout the country where coal is stored, but in some cases because of peculiar qualities of the coal which may heat up more rapidly or more slowly these other



## AMERICAN CHAIN \& CABLE COMPANY; Inc.

AA ESSENTIAL PRODUCTS . . AMERICAN CABLE Wire Rope, TRU-STOP Emergency Brakes, TRU-LAY Control Cables, AMERICAN Chain, WEED Tire Chains, ACCO Malleable Iron Costings, CAMPBELL Cutting Machines, FORD Hoists and Trolleys, HAZARD Wire Rope, Yacht Rigging, Aircroft Control Cables, MANLEY Auto Service Equipment, OWEN Springs, PAGE Fence, Shaped Wire, Welding Wire, READING.PRATT \& CADY Yalves, READING Elestric Steel Castings, WRIGHT Hoists, Crones, Presses... In Business for Your Safety
links may be more desirable. Each of these indicators measure 15 feet in length. It consists essentially of an outside casing of $3 / 2$-inch special acid-resisting iron pipe, filled at one end with a fluted bronze tip for facilitating the entrance of the unit into the coal pile. The other end of the casing is fitted with a cap held in place under tension of a spring by a series of 2 -foot units comprising a felt insulating disk, a patented fusible link and a wire connecting link. The principle involved is that the development of the "critical" temperature in any part of the coal pile causes the nearest link to part, breaking the chain, which in turn releases the
signal head, which is forced outward by the pressure of the spring (see illustration). When this signal is given, it is easily visible for several hundred feet and a casual inspection of the pile will reveal the particular location at which the coal has reached the dangerous temperature. The indicators are easily installed and after once being "blown" can be refilled and used again.

## Portable Transformer

回 Westinghouse Electric \& Mfg. Co., East Pittsburgh, Pa., has placed on the market a new portable PV130 potential transformer for use

with portable instruments and recorders. Enclosed in an aluminum case, it is available for input voltages between 230 and 2300 volts with 115 volts output on 60 cycle lines. All terminals are of polished nickel and terminal markings and polarities are clearly marked. Accuracy of the unit is plus or minus $1 / 4$-per cent both on ratio and phase angle between 0 and 200 per cent rated values.

## Improved Clamp

E Knu-Vise Inc., 16841 Hamilton avenue, Detroit, announces a new Klampacto C-clamp for use in erecting shed, shipyard, round-house or work shop, combining the deep

throat of the standard clamp with the holding pressure of a toggle movement. Its lower jaw swings clear of the work when released. It is equipped with two handles and makes it unnecessary to hang onto it and work when fixing it into posi-tion-for just a squeeze of the hand applies it with 2000 pounds pressure. It also is furnished with threaded spindle and lock nut for use when are welding to avoid spatter. The clamp comes in three models with a 5,6 and 10 -inch jaw.

## Machinists' Tool Chest

George Scherr Co., 128 Lafayette street, New York, introduced a new line of GS machinists' toolchests featuring drawers and compartments of various sizes to accommodate tools. Chests are available in solid oak, leatherette and poplar.

## One of America's Leading Dredgers $\cdots$ the

ATLANTIC GULF \& PACIFIC CO.



WORTH STEEL COMPANY. CIaymont, Delaware

## Handling Paint

(Concluded from Page 72) geared-type pump delivering 5 gallons per minute and driven by a 1 . horsepower explosion-proof motor.

In the smaller mixing room, com pressed air is used to force the paint out into the lines. Small air-motor driven internal-gear pumps keep the liquids circulating. Less expensive than the others, this latter type unit is satisfactory for short runs of pipe which have only one or two outlets, as in this case.
Located in each pipe system just beyond the pump is a mechanical
filter. Since the circulating cycle is from the tank to the pump, through the filter, out into the line and return back to the tank, the paint is continuously filtered as it is circu lated. It is this continuous circulating system that assures against any settling of heavier particles in the supply lines.
A fluid pressure regulator at each outlet in the distribution system reduces the line pressure to the de sired value for spraying. Each reg ulator has a removable key adjust ment and a pressure gage to indicate the selected spraying pressure. Only the supervisor holds a key to the regulators. This centers in him


Handling FERROMANGANESE from cars to stock pile this Blaw-Knox Bucket unloads an average of 7 cars per eight hour shift. The former cost of $\$ .65$ per ton was reduced to $\$ .25$ per ton.

This bucket handles LIMESTONE in pieces ranging from $6^{\prime \prime}$ to $12^{\prime \prime}$ from dock to $50-60$ ton gondola, filling car in an average time of 20 minutes.

It unloads SPIEGEL from 50-60 ton car in $11 / 2$ hours without teeth, and handles PIG IRON from stock pile at the rate of about $3 / 4 \mathrm{Cu}$. Yds. per grab.

Blaw-Knox Buckets are designed to meet Steel Mill requirements-put your bucket problems up to Blaw-Knox.



Well, here it is another weekend and I'm not a General yet. But give me time.

Matter of fact, I have too much time on my hands-on evenings and weekends.

The nearest village is 5 miles away. All you find there is a general store, a garage and a canning factory-nowhere to go for any good clean fun, unless you drop in at a smokefilled juke joint on the way.

Well, Mom, there's a big favor you can do me. The U. S. 0. is trying to raise $\$ 10,765,000$ to run clubs ror us, outside of camp. Places with lounge rooms, dance floors, games. writing rooms. Places you can get a bite to eat without paying a king's ransom.

I know you don't have an idle million lying around, but if you could get the ramily interested and some of the neighbors, and if that happened all over the country, the U.S. O. could raise $\$ 10,765,000$ overnight.

I'd appreciate it a lot, Mom, and so would every other mother's son in the U. S. Army and Navy.

Love,

## Bill

They're doing their bif for you. Will you do your bit for them ? Send your contribution io your local U.S. O. Committee or to U.S.O., Empire State Building, New York, N. Y.

## Time Recorders

(Concluded from Page 76)
system. Thus it is a more fair basis of compensation.
The operator is not penalized for circumstances beyond his control, such as poor fits in the work which might entail extra welding.

Makes Time-Study Records, Too: An extremely accurate cost record and detailed time study of every or any welding job in the plant is available at little clerical and timestudy cost for the chart records contain all the necessary data. With the piece-work system, detailed time studies or elaborate footage calcula-
tions with preliminary footage standards have to be made for each job. With continually changing jobs of small quantities, this method becomes simply impossible to work. Thus the time recorder and synchronous clock figures afford another valuable record.

Results Olotained: The installation of this system has brought exceptionally good results-in fact, far beyond the original expectations. Not only is a great mass of detailed work and much supervision saved, but the output of the welding plant actually has been increased 26 per cent without lowering quality of the workmanship whatever.

## is a most significast musber in litting

Built into Shaw-Box electric hoists are 7 vital features as well as sound basic design that comes from more than fifty continuous years of hoist and crane engineering.

Any good engineer will read these 7 guides to hoist-buying and visualize what they mean in operation and results.
There will be more and faster production, lowered costs and increased profits, happier and more efficient workmen because you have provided them with the best lifting machine to help them produce.

## Here are 7 reasons why you should insist an "SHAW-BOX"

\author{

1. "One-point" Lubrication
}
2. Interchangeable suspension
3. "Fool-proof"
4. Two-gear Reduction Drive

5. Hyatt Roller Bearings<br>6. Enclosed Construction

## 7. Ball Bearing Motor

SHAW-BOX Electric Hoists are made in a range of litting capacities from 250 lbs to 20 tons and in combinations and arrangements to suit your own special needs no matter for what industry they are required.

Let us quote on any lifting equipment you need. We may save you money. We can surely supply the correct hoist or crane. Send for catalog with complete information and illustrations.

Makers of all types and sizes of Electric and Hand Operated Cranes and Electric Hoists . . . Send all your crane and hoist inquiries to Shaw-Box!

## SHAW-BOX CRANE \& HOIST DIVISION

 MANNING, MAXWELL \& MOORE, INC.[^2]
## Determination of Tin

## (Concluded from Page 66)

and replace the flask on the hot plate; bring contents to a boll.
6. Remove flask from hot plate; nlter through a 11 -centimeter No. 1 Whatman Hiler paper, using a milering flask and gentle suction. Wash nask only sufticlently to remove the paper pulp.
7. Place the funnel containing the precipitate in a funnel stand and dissolve the precipitate off the paper with repeated washings of hot $\mathrm{HCl}(1: 2)$. Catch these washings in the orlginal flask. Contlnue washing until 150 to $175 \mathrm{milli}-$ Hiters of the acla solution has passed through the naper.
8. Add 10 grams of Stanreduce and place a 1-hole rubber stopper, through which passes a capillary tube, lishtly on the mouth of the flask. Place on the hot plate and bring the solution to a boll. Boll gently for 3 minutes. If the tin content is above 0.10 per cent about ilve minutes may be required to reduce all of the tin.
9. Remove the flask from the hot plate, tighten the stopper, cover the capillary tube with a rubber pollcemen, and place the fask in a cold water bath untll the contents are at room temperature.
10. Add 10 mililiter of starch soluHon to a clean 300-milliliter Erlenmeyer llask. Decant the cool solution carefully into this flask, wash the original תask once with water, and add to the titrating llask. Tltrate immedlately with lodate solution to a permanent blue.

A blank should be run and deducted from this titration.
11. Compute the percentage tin as pol10ws:

$$
\mathrm{I} \times \mathrm{S}=\% \mathrm{Tin}
$$

where:
$I=$ Milliliters lodate - blank
$S=$ Per cent tin value of 1 milliliter

## SOLUTIONS

Standard Tin Solution
Dissolve 0.1 gram of chemically pure IIn and 2.0 grams of $\mathrm{K}_{2} \mathrm{SO}_{4}$ and $20 \mathrm{milll}-$ liters of concentrated $\mathrm{H}_{2} \mathrm{SO}_{1}$. The acid must be hot. Cool in the air, dilute to 100 milliliters in a volumetric flask and mix. Thls produces stannic sulphate. 1 milliliter $=0.001$ gram tin.

Standard Potnssium Iodate Solution
The same solution as used for sulfur In sleel is employed. This is a 0.0156 N fodate solution.

$$
\begin{array}{lll}
2.97 & \text { grams } & \mathrm{KI} \\
0.4955 & \text { gram } & \mathrm{KIO}_{\mathrm{s}} \\
0.25 & \text { gram } & \mathrm{NaOH}
\end{array}
$$

Dissolve in a small amount of water and dilute to 1 liter. The NaOH must be added to the KI and $\mathrm{KIO}_{3}$ belore adding water for best results.

More $\mathrm{KIO}_{3}$ must be used if the salts are old and slightly decomposed.
1 Millillter $=.005 \%$ s on a 5 gram sample
1 Milliliter $=.0185 \% \mathrm{Sn}$ on a 5 gritul sample
1 MInliter $=.000926$ gram sn (Theoretical)
Ammonhinm Chloride-Ammonla Solution: 100 grams $\mathrm{NH}_{1} \mathrm{Cl}$
$0.5 \mathrm{gram}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$
$100 \mathrm{Minlliter} \mathrm{NH}, \mathrm{OH}$
Dllute to 1 itter with water.
The ammonium persulphate is added to make certain that a small amount of ferric iron is present to precipitate as $\mathrm{Fe}(\mathrm{OH})_{s}$ in procedure No. 4 of the method of analyses. It is not necessary where samples are dissolved directly in open flasks, but it is necessary when the residue from a sulfur determination is used as a sample.

## Standardizing

Welgh 5 grams of Fe (by hydrogen) into a 300 -milliliter Erlenmeyer flask. Plpette exactly 5 mililiters of the standard tin solution into this flask and
run exactly as in the method. Determine a blank.
$\frac{0.005}{\text { (titration-blank) }} \times$ $\times 20=\mathrm{Sn}$ value of 1 milliliter of lodate expressed In $\%$ when a 5 gram sample is used.
Thls has been found to be about 0.021 per cent and not 0.0185 per cent (theoretical).

## Stanreduce

Chemists have used many metals to reduce tin in the determination of tin. The authors have used the following metals with the results noted:

Aluminum: The action is too violent. The solution is liable to foam over unless the aluminum is added a little at a time. If the conditions are not correct the tin will be reduced to the metallic state and, consequently, results will be low.
Nickel: Chemical reduction of the tin is too slow.
Test Lead: Same objection as for nickel.
Common Iron Nails: These are usually too soluble. By the end of the reducing period so much iron is in solution as to cause a marked green color, a high blank, and sometimes a fading end point.


Gain floor space! Gain wall space! Gain ceiling space for conveyor equipment, trolley ducts, or other production-speeding units. Get all this extra, usable room in your plant by installing Kinnear Rolling Doors! They open straight upward, coiling compactly above the door lintel. They stay out of the way of all plant activity at all times. When open, they leave doorways completely clear, remaining out of reach of damage by trucks, wind, etc.

You gain extra protection, too, with Kinnear Rolling Doors! Their rugged, heavy-duty, all-steel, inter-locking-slat curtain (originated by

Kinnear!) not only stands up longer under the most gruelling service, but also gives greater resistance to fire, more protection against intrusion, theft, sabotage, or accidental damage. And if a Kinnear Door should be damaged, repair is easy and economical, because the slats may be replaced individually or in groups of any number.

Kinnear Rolling Doors are built to fit any opening, in new or old buildings. Equipped for motor, manual or mechanical operation. Easy and economical to install. Write for details today! The Kinnear Mfg. Co. 1780-1800 Fields Ave, Columbus, Ohio.

No. 40 Swedish Iron Wire: This is a good reducing agent but is a nuisance to use.
Eifectrolytic Iron: This material comes in squares and is a good reducing agent. Care must be exercised not to break the flask when introducing the squares as they are rather heavy. For a number of years it has been impossible to purchase this grade of metal.
Antimony: This the authors have always ground to a fine dust, over a 24 -hour period, in a pebble mill. Its reducing action is somewhat slow. Whenever iron has been used the authors have used it in combination with antimony. Lord and

Demorrest claim this is necessary. Stanreduce: This material is active chemically, yet it does not cause excessive foaming. 0.45 gram of tin has been reduced in 12 min utes with 10 grams of Stanreduce. It is not soluble and so does not impart a green color to the tin solution. Stanreduce supplies the ideal volume of gas during the cooling process. The flask containing the boiling, reduced tin solution can safely be taken directly from the hot plate, stoppered and placed in a cold water bath. It may be said that it supplies its own reducing atmosphere and no additional reducing or neutral atmosphere is

# Cadman BEARING METALS 

The Cadmans began experimenting with and producing bearing metals the year Lincoln strode out of Illinois at the head of a new political party. In all these years, Cadman metals have been improving. Today, Cadman metal for bearing purposes is superior to all other kinds because it consists of a network of HARD compound in which lies a SOFT matrix. This means less friction, more efficient lubrication, slower and more uniform wear and consequently safety and economy. When you buy Cadman bearing metals, you buy ALL these money saving factors. May we tell you more about it?

## A. W. <br> Gadman - MANUFAGTURING COMPANY 2816 Smallman St. - Pitisburgh, Pa.

CHICACO<br>Monhation Bldg.

PHILADELPHIA
18 W. Chelfen St.

SYRACUSE
418 Midand Ave.
NEW YORK
157 Chombers St.

Table II-Analyses of 5 -Gram Nimples of Steel for Tin*

| Tin added, <br> per cent |  | Titration | Titration |
| :---: | :---: | :---: | :---: |
| 0 | 0.5 | 0 | Ting, |
| 0 | 0.5 | 0 | 0 |
| 0 | 0.5 | 0 | 0 |
| 0 | 1.5 | 1.0 | 0 |
| 0.02 | 1.4 | 0.9 | 0.021 |
| 0.02 | 1.4 | 0.9 | 0.019 |
| 0.02 | 2.4 | 1.9 | 0.039 |
| 0.04 | 2.4 | 1.9 | 0.039 |
| 0.04 | 2.3 | 1.8 | 0.037 |
| 0.04 | 3.3 | 2.8 | 0.058 |
| 0.06 | 3.5 | 3.0 | 0.062 |
| 0.06 | 4.2 | 3.7 | 0.077 |
| 0.08 | 4.2 | 3.7 | 0.077 |
| 0.08 | 5.5 | 5.0 | 0.104 |
| 0.10 | 5.4 | 4.9 | 0.101 |
| 0.10 | 6.3 | 5.8 | 0.120 |
| 0.12 | 6.4 | 5.9 | 0.122 |
| 0.12 | 6.3 | 5.8 | 0.120 |
| 0.12 | 7.9 | 7.4 | 0.155 |
| 0.16 | 7.9 | 7.4 | 0.155 |
| 0.16 | 8.5 | 8.0 | 0.166 |
| 0.16 | 12.5 | 12.0 | 0.248 |
| 0.25 | 13.0 | 12.5 | 0.259 |
| 0.25 | 11.7 | 11.2 | 0.235 |

- The factor, 1 milliliter $=0.0207$ pel cent tin, as used, was developed by dividing the total number of milliliters of iodate employed into the total percentage of tin added to the ilrst 12 determinatlons. This glves the value or 1 milli. liter of fodate expressed in per cent in when a 5 -gram sample is used. The theoretical factor for an lodate solution standardized so that 1 milliliter equals 0.005 per cent sulphur is 1 milifititer equals 0.0185 per cent tin.
necessary. The residue may be recovered and used over again. Being in a granular form, it is convenient to use.

A shown by the research, the maximum deviation from the mean, in tin determinations up to 0.10 per cent Sn , is $\pm 0.004$ per cent. This determination can evidently be determined with that degree of accuracy.

In conducting routine analyses the accuracy might be slightly lower, i.e., greater deviation from the mean. It is thought best to report the tin to three decimal places on results up to and including 0.045 per cent. Results above this amount are reported to two decimal places, i.e., 0.046 per cent becomes 0.05 per cent and 0.073 becomes 0.07 per cent for reporting.

## Effects of Interfering Elements

Theoretically, any oxidation-reduction system lying between: ( Sb $\left.=\mathrm{Sb}^{* *}+3 \mathrm{e}\right)=0.1 \mathrm{~V}$, and: $\left(2 \mathrm{I}^{-}\right.$ $\left.=\mathrm{I}_{2}+2 \mathrm{e}\right)=-0.53 \mathrm{~V}$ will interfere and cause high results by reducing $I_{4}$. Copper was found to be the chief interfering element. Since the voltage of the system: $\left(\mathrm{Cu}^{+}=\mathrm{Cu}^{+*}\right.$ $+e)=0.17 \mathrm{~V}$ is close to the stan-nous-stannic system the end points will fade slowly if small amounts of CuCl are present, and they will fade quickly if appreciable amounts of CuCl are present. Copper is retained in solution by $\mathrm{NH}_{4} \mathrm{Cl}$ in operation 3 , and eliminated with most of the iron in operation 6.
Antimony will titrate with iodine
in a weak HCl solution, but when strong $\mathrm{HCl},(1: 2)$ is used, operation 7) no iodine whatsoever is absorbed.

Arsenious arsenic is theoretically oxidized by $\mathrm{I}_{z}$. The voltage of this system, however, is so close to the $\left(2 I^{\prime \prime}=I_{2}+2 e\right)$ system, that, under the conditions prevailing, it must reduce $I_{2}$ slowly. This element was found to have a negligible influence.

Other elements, which, chemists have claimed interfere, are: chromium, vanadium and molybdenum. Theoretically, $I_{v}$ will not oxidize reduced chromium and vanadium ions, as shown in Table 1. Large amounts of chromium, however, seem to introduce an additional color blank and some fading of the end point.

In the case of Government standard No. 72 containing 0.91 per cent chromium and 0.15 per cent molybdenum, the tin found was 0.005 per cent showing that there could not have been an excessively high blank. On adding an additional 0.05 per cent of tin the result was 0.048 per cent, this result being a trifle low. These titrations were not permanent end points, but were the first blues which could be detected through the green coloration due to $\mathrm{Cr}^{+++}$.

## Research

Tin usually is determined in steel volumetrically by titrating the reduced $\mathrm{Sn}^{*}$, in strong HCl solution, with iodine. The reaction being:

$$
\mathrm{Sn}^{*}+\mathrm{I}_{2}=\mathrm{Sn}^{\cdots}+2 \mathrm{I}^{-}
$$

Iodine usually is employed in the form of the iodate-iodide solution, and the one used in the steel laboratory for the determination of sulfur in steel is found readily applicable.
Theoretically, any metal such as lead, silver and antimony, which lies between the systems:

$$
\begin{gathered}
\left(\mathrm{Sn} \bullet=\mathrm{Sn}^{*}=2 \mathrm{e}\right)=0.13 \mathrm{~V} \\
\text { and } \\
\left.\mathrm{Sn}^{+}=\mathrm{Sn}^{+}+2 \mathrm{e}\right)=-0.13 \mathrm{~V}
\end{gathered}
$$

can be used to reduce all tin to the stannous condition and still have no tendency to reduce tin to the metallic state. Some of the metals above tin in the reduction potential series often are used. In this ap-

| Table III-I.og | of the | Daterm | Ination |
| :---: | :---: | :---: | :---: |
| Operation | Working Time |  | Total Time Elapsed (Min.) |
| Weigh .... | (Min.) | ${ }_{1}$ | (min.) |
| Dissolve |  | 30 | 31 |
| Adjust acidity, preclpitate tin | 2 |  | 33 |
| Bring to boll... |  | 2 | 33 |
| Filter | 3 | 3 | 38 |
| Dlssolve Sn (OH) | 3 | 3 | 41 |
| Reduce |  | 5 | 46 |
| Cool | 1 | 10 | 56 |
| Titrate | 2 | 2 | 58 |
| Totals | 12 |  | 58 |

plication the $\mathrm{H}^{+}$is reduced to $\mathrm{H}_{8}$ and in turn reduces all tin to the stannous condition. Among these, iron, aluminum, zinc and magnesium have been studied. Iron was found to be an excellent reductant with no tendency to reduce $\mathrm{Sn}^{++}$to Sn. Aluminum, magnesium and zinc have a decided tendency to reduce $\mathrm{Sn}^{++}$to Sn 。, especially if $\mathrm{H}^{+}$concentration is low. They should not be used except under carefully guarded conditions.
Antimony in a finely pulverized state is an efficient reductant for tin, and it has been used in the
laboratory of the Otis Steel Co. for a number of years. The acid solution of $\mathrm{Sn}^{\prime \prime}$, when reduced with antimony, must be protected from the atmosphere while being cooled. This is done usually by supplying carbon dioxide or nitrogen during the cooling process. It was the one goal of this work to find a reductant which would efficiently reduce all tin to the stannous state, and keep it reduced during the cooling process, without resorting to the use of a neutral atmosphere. An alloy of iron and antimony was found which is an excellent re-


So writes H. L. Fisher Mfg. Co. of Chicago, about their DoAll.
"We build many special machines and our DoAll is in constant use. We can do more different types of machining on the DoAll than on any other two machine tools.
"The large 2 " tool steel die sections were done in $1 / 8$ th the time it would have taken with other methods. The amount of steel we saved more than paid the operator's time.
"Any company working in metal and endeavoring to do machine work without a DoAll is throwing profits out of the window. To our way of thinking, you have developed the finest new item in machine tools in several years."

## MUF SEO. . Madesty powents our sading

 anything to the above except this-If you work with metal, make or shape or repair metal products or machinery-you'll find the DoAll a time, labor and money saver. Takes the place of shaper, milling and lathe work on hundreds of jobs and does internal and external sawing, filing and polishing faster and better.Let our man come to your factory with a DoAll and show you what it can do and save for you. CONTINENTAL MACHINES, INC. 1324 S. WASHINGTON AVE.


FREE - Literaturo and 158-page Handbook on Contour
ductant, and which supplies sufficient $H$ during the cooling process to keep all tin reduced to the stannous state. This alloy thus supplies its own reducing atmosphere.
Tin usually exists in steel within the limits of zero to 0.25 per cent. This was the range studied. Table I shows the analyses made by the method as outlined. Five grams of iron (by hydrogen) was used as a sample and various amounts of tin added in the form of $\operatorname{Sn}\left(\mathrm{SO}_{4}\right)_{2}$.

Abstracts of some of the experimental methods follow:

Attempted. The steel was dissolved in dllute sulphuric actd (1:12). The un-
dissolved portion flltered off and treated with concentrated nitric acid. The resulting white precipitate thought to be metastannic acid was illtered, washed and ignited.

Objections. Subsequent work proved that this precipltate was not stannic oxide, but a mixture of alumina and silica. Tin is partlally soluble in dilute sulphuric acld. See "Sampling and Analysis of Carbon and Alloy Steels," page 221 , by chemists of the United States Steel Corp.

Method No. 2
Attempted. The steel was dissolved in hydrochlorle acid, the tin prectpitated with ammonia in an ammonium chloride buffered solution. The stannic hydroxide flltered off and redissolved with 1:2 hydrochlorle acld. This solution then was reduced by adding flnely powdered antimony and was illtered into a beaker


## Your search for Quality Iron and Steel Sheets ends here at NEWPORT

## Hot Rolled Sheets -

 Newport Elecrical Sheets - GOHI Pure Iron-Copper Alloy Sheets Globe Brand Galvanized Steel Sheets, Roofing and Siding GOHI Enameling Iron Sheets - KCB Copper Steel Shects - Newport Long Terne Sheets Newport Galvannealed Sheets - Newpore DeLuxe Metal Sheets.It is no small accomplishment to produce iron and steel sheets of fine quality in these days of strict metallurgical control and modern manufacturing processes. However, to maintain uniformly highest quality during almost half a century of service to critical buyers, is the achievement of Newport, where since 1891 there has been but one standard of excellence; with every sheet the best for the particular purpose for which it is intended.
Iron and Steel Sheets by Newport are available for all general industrial and commercial uses, in sizes, gauges, grades and finishes to your exact specifications. Entrust your requirements to Newport, and enjoy the many advantages that come to users of these superior sheets.

THE DIIPARTBILLIIG MILL CO.

ANDREWS PRODUCTS IN CARBON AND ALLOY STEEL: BARS • PLATES •
UNVERSAL MILL PLATES SHEET BARS BILLETS BLOOMS SLABS.
containing liquid paraffin which hardened into removable seal on coollng. The seal was removed and the solution quickly titrated.
objections. Varlous welghts of antimony were used for reduction. This method worked falrly well, but there were too many discordant results (about 20 per cent) which were all low. The same method excepting that the antimony was left in for the final titration was also trled, but the end points fated too quickly.

## Method No. 3

Attempled. Iron (by hydrogen) was used in addition to the finely powdered antimony. About 2 grams was added al the same lime as the antimony. The remalnder of this experiment was the same as attempted by method No. 2 .
Objections. The reduction went is completion much faster than when the flnely powdered antimony alone was used as the reductant. There was no advantage to this procedure over method No. 2.

## Method No. 4

Attempted. Iron (by hydrogen) done was used as the reductant. About 2 grams of fron was used. No filtration after the final reduction was necessars: The paraffin was added directly to the boiling solution. The remainder of this experiment was the same as attempted by method No. 2.

Objections. It was found that the Iron, although an excellent reductant goes Into solution completely and no reductant is left to keep tin from reoxidizing during the cooling process. Discordant results, all low, were obtained.

## Method No. 5

Attempted. Method No. 4 was repeated using various amounts of antimony ir. the form of antimonous sulphate with the thought that the iron would reduce all tin present and also precipitate suftlicient fnely divided antimony to maintain reduction during the cooling process. The paraffin was discarded and the solution cooled before filtration. Same as above was also tried where antimony was left in for final titration.
objections. The flne antimony does not seem to supply sufficient reducing power to keep the tin reduced durlng the cooling process. Discordant low results were obtained. Discordant results were also obtained when the flne antlmony was not flltered from the final solution titrated. A quick fading end point was the objection to this latter procedure.

## Method No. 6

Attempted. Method No. 2 was repeated up to the point where the tin chloride was ready for reduction. The final reduction was attempted cold by pouring the acid solution over an alloy of iron and antimony contained in a Jones reductor.

Objections. The alloy, working in the cold, is not an effectlve reductant. It. seems that hydrogen is the effective reductant. The secret lies in supplying enough hydrogen to reduce in the hol and to keep all tin reduced during the cooling process.

## Method No. 7

Attempted. Method No. 2 was again repeated up to the point where the tin chloride was ready for reduction. Stee drillings containing 4 per cent nickel and about 0.30 per cent carbon were added as a reducing agent.
Objections. This type of steel was much too actlve in the hot acid solution. The solution foamed excessively and the procedure was entirely unsatisfactory.

## Method No. 8

Attempted. It was thought that the activity in method No. 7 could be reduced by Increasing the nickel content
as in Invar. Rods containing 35.05 per cent nickel, 0.23 per cent chromium, and 64.72 per cent Iron were tried.

Objections. Satisfactory reduction could not be obtained with this alloy. The solution was heated for a long period of time and then fnally set aslde in the cold for several days; no reduction, even of ferric chloride, was effected.

## Resin Treatment Makes

## Castings Less Porous

- Used to a limited extent for some time, a new treatment to make castings less porous is now being adopted on a wider scale due to the necessity for maximum production with minimum rejects, according to Durez Plastics \& Chemicals Inc., North Tonawanda, N. Y.
The treatment consists of phenolic resin (7347A) especially formulater for impregnating the casting. The impregnation is accomplished by forcing the resin into the pores of the casting under air pressure. After the resin has been forced into the casting, the latter is baked to thoroughly set or polymerize the resin.
Small castings are baked in an oven for several hours at 250 to 275 degrees Fahr. or preferably in a pressure tank by applying steam at 20 pounds pressure for two hours followed by .100 pounds for two hours. Large castings may be baked by applying steam direct at the same pressures. Thus hardened, the resin is practically impervious to water, solvents, mild alkalies and acids. This method of impregnation has been approved by the navy for use on certain types of castings.


## Mirrors of Motordom

(Concluded from Page 36)
ten-day inventory starting July 28.
It was "tap day" in the Plymoutn plant last Tuesday as ordnance and plant officials went around to inspect a number of machine tools earmarked for removal to new locations where they will be devoted to defense work. More than 200 structural parts for Martin medium bombers will be produced by Plymouth, as well as a number of parts for the Bofors antiaireraft gun. Throughout all Chrysler plants 400 machine tools have been tagged for withdrawal to defense jobs, almost matching the 500 new and different type machines which will be purchased.

## Finishes To Lose Glint

Changes in automobile finishes are being worked out for new models because of inability to obtain aluminum powder for mixing with body paints to produce the metallic glint effects. All General Motors lines, for example, have had to abandon this type of finish and to evolve new colors and color com-
binations without benefit of aluminum powder. Few persons probably will realize the change, however, since the metallic sheen is detectable only upon close inspection.
Something cataclysmic is portended if the public's choice of car colors is the trustworthy indication it always has been. Black has been superseded by maroon as first choice, according to Pontiac tabulations, for the first time in the company's experience. Black is now second, followed by dark gray, dark blue and the two-tone combinations. The latter now constitute 32 per cent of Pontiac's production, despite
the fact they command a price premium. A year ago they were only 10 per cent of the total.

Among disclosures in a recently issued survey of automobile usage, prepared by the Automobile Manufacturers Association, is an interesting analysis of passenger mileage by types of travel. Out of 346,522 ,000,000 total passenger miles traveled in this country in 1940, passenger cars accounted for 79 per cent, exclusive of recreational driving, electric railways 7.8 per cent, steam railways, 6.9 per cent, buses 6.0 per cent and airlines 0.3 per cent. What -no boats?

# 20 WAIS TO SPEED BLAST FURNACE CONSTRUCTION 


#### Abstract

New Bulletin tells how major steel companies avoid delays in rebuilding and maintaining blast furnaces and auxiliaries-by using LUMNITE




$\sum^{11}$PEED and economy result from using LUMNITE. Methods of use are rapid and it is availablenow - in small or large quantities in all industrial areas.

This diagram from the Bulletin shows 20 uses for LUMNITE in blast furnaces- 20 economical ways to help keep furnaces in operation and recondition old furnaces faster.

For example, in blast furnaces Refractory Concrete made with LCMNITE is used today for footer pads and for lining boot legs, blow pipes, hot blast pipes and connections. In blast furnace stoves the same materials are used for foundation pads, for packing checkers, for flue and door linings.

The new Bulletin tells of many other installations. Send for it today. Just fill out and mail the coupon below.


## AUTOMATIC in their upkeep, too!



## Exclusive Foxboro Refinements Make These Potentiometers "Wear-proof". . . Permanently Trouble-free!

With today's shortage of trained instrument personnel, defense industries just haven't time for "temperamental" pyrometer equipment. That, in a nutshell, is the reason why so many of the leading metal-working plants are specifying definite preference for Foxboro Potentiometer Recorders and Controllers on their re-orders.

Dependability in these instruments is the sum of exclusive Foxboro refinements and simplifications in every detail of design. For example, here are a few typical developments to make Foxboro Recorders and Recording Controllers the most dependable pyrometers on the market . . .

Galvanometer Suspensions that do not break, because they are designed, end-to-end, to
escape shear-action, corrosion and fatigue. Balancing Mechanism that gives instant, accurate response to every split-hair movement of the pointer, without fast driving of moving parts. Integral Mounting of slide-wire contact and recording device that eliminates a complete gear-train subject to wear and lost motion.
Anti-Friction Ball Bearings at every important bearing point . . . 14 or more in every instrument.

Foxboro Non-Recording Controllers, too, have many improved features which provide equally distinctive advantages. Get the complete story on both types of these more-dependable potentiometers. Write for Bulletins 190-5 and 202-3. The Foxboro Company, 118 Neponset Avenue, Foxboro, Mass., U.S.A. Branches in principal cities of United States and Canada.

# Civilian Steel Allocation 

# Cut Down More Severely 

Some slashes as much as 50 per cent in few days. More turn to defense work. Fluorspar up \$1. Scrap, pig iron short.

## Demand

Still exceeds supply and cur rent production.

## prices

Extremely conservative considering volume of demand.

## Production

Down point at 97.

- CUTTING down allotments of steel to nondefense consumers, particularly in the flat-rolled products, is to become more severe. Last week regular customers of some large mills have had allocations reduced as much as 50 per cent or more. This move will reduce sharply the output of civilian goods, an effect that should become apparent in the very near future.
Operations of several plants which depend on some scarce specialty, such as silvery pig iron, are literally day by day propositions, plant managers speculating on whether fresh materials will arrive during the night.
With a rush nondefense consumers are striving to climb on the defense bandwagon in order to obtain priorities. A striking case is that of a mouse trap maker who is turning out army cots, soldier's uniform belt hooks and bullet cores, having bought automatic screw machines for making the last, a type of manufacture unrelated to his normal products.

More and more do shortages trace back to scarcity of steel scrap and pig iron. Such shortages now prelent expanded production in some cases and are expected to force reduction in steel output later this year. Though there is a wealth of substitutes for many of the finished lines of steel, pig iron and scrap are basic materials for which there are no alternate materials. Railroads are returning scrap in much lower than normal volume and after Aug. 1 automobile makers are expected to produce less scrap because of curtailed car output. Many are employing barter arrangements, so much scrap for so much finished steel materials. A hopeful phase is that the amount of scrap now being shipped abroad is relatively negligible.

After much preliminary experimentation and negotiation shell steel is about to be produced in mass proportions, estimated at some $2,000,000$ tons of steel yearly. Pending inquiries for bars and billets for this purpose are estimated at 500,000 tons.

About 47,000 railroad cars could be built during second half of the year, provided sufficient steel could be obtained, according to estimates in well-posted quarlers. Shortage of skilled workers and delays in gearing up car-building plants are a limiting factor. Oí course the assumption of sufficient steel is a bold one.
Illustrating zinc scarcity a would-be buyer of galvanized sheets who had slab zinc on hand offered
1.) turn it in for the manufacture of sheets he wanted, but was turned down for fear the zinc quality was not standard. A maker of hinges whose modest raw material wants were merely crop ends of skelp was turned down until he indicated his hinges were used for airplane hangar doors.

About 40,000 tons of reinforcing bars have been involved in the first allocation by the Reinforcing Bar Sub Committee of the Steel Industry Defence Committee of OPM. Allocation was on basis of capacity, with all mills participating. It is expected that the allocation will become a regular proceeding hereafter. This may force into the background most all commercial tonnage now on books.

The price of fluorspar has risen $\$ 1$ per ton to $\$ 21$ with brisk demand in the steel, aluminum and ceramics industries.

Leading steelmakers have established elaborate offices at Washington in order to co-operate to the maximum in meeting requirements under the defense program. Some of the few producers who had not yet cpened books for 1942 delivery are about to do su because of pressure for places on books and completely sold out 1941 conditions.

Several steel makers disapprove of the partial priority system, stating that there should be either all-out priorities, or none at all. One of the present evils is shipping of steel to defense consumers long in advance of consumption, creating much idle material.

Steel ingot production for the country as a whole sagged a half point last week to 97 per cent of capacity. The only increase was New England, up 5 points to 95 per cent. Unchanged were the following: Pittsburgh at $99^{1 / 2}$, eastern Pennsylvania at 97, Youngstown at 98 , Wheeling at 91 , Buffalo at 93 , Birmingham at 90 and St. Louis at 98 . Four districts declined as follows: Chicago $1 / 2$ point to 100 , Cleveland $11 / 2$ points to 95 , Cincinnati $21 / 2$ points to $85^{1 / 2}$ and Detroit 10 points to 86 .

Scheduled automobile production for the past week was 109,912 units, down 4406 for the week, comparing with 53,020 for the like 1940 week.
STEEL'S three composite price groups for last week were unchanged: iron and steel at $\$ 38.15$, finished steel at $\$ 56.60$ and steelworks scrap at $\$ 19.16$.

# COMPOSITE <br> MARKET 

|  | July 19 | July 12 | July 5 | One Month Ago June, 1941 | Three <br> Months Ago April, 1941 | One <br> Year Ago <br> July, 1940 | Five <br> Years Ago July, 1936 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Iron and Steel | \$38.15 | \$38.15 | \$38.15 | \$38.15 | \$38.15 | \$37.63 | \$33.49 |
| Finished Steel | 56.60 | 56.60 | 56.60 | 56.60 | 56.60 | 56.60 | 53.40 |
| Steelworks Scrap | 19.16 | 19.16 | 19.16 | 19.16 | 19.16 | 18.56 | 12.89 |

Iron and Steel Composite:-Plg Iron, scrap, billets, sheet bars, wire rods, tin plate, wire, sheets, plates, shapes, bars, black pipe, ralls, alloy steel, hot strip, and cast iron pipe at representative centers. FInished Steel Composite:-Plates, shapes, bars, hot strlp. nails, tin plate, pipe. Steelworks Scrap Composite:-Heavy melting steel and compressed sheets.

## COMPARISON OF PRICES

Representative Market Figures for Current Week; Average for Last Month, Three Months and One Year Ago

Finished Material
Steel bars, Pittsburgh
Steel bars, Chlcago
Steel bars, Philadelphia
Iron bars, Chleago
Shapes, Plttsburgh
Shapes, Phlladelphia
Shapes, Chicago
Plates, Plttsburgh
Plates, Phlladelphla
Plates, Chlcago
Sheets, hot-rolled, Pittsburgh...
Shects, cold-rolled, Pittsburgh.
Sheets, No. 24 galv., Pittsburgh
Sheets, hot-rolled, Gary .......
Sheets, cold-rolled, Gary
Sheets, No, 24 galv. Gary
Bright bess,, baslc wire, pitts.
Tin plate, per base box, Pitts.
Wire nalls, Pittsburgh

## Semifinished Material

Sheet bars, Pittsburgh, Chicago. $\$ 34.00$ \$34.00 $\quad \$ 34.00 \quad \$ 34.00$ $\begin{array}{lllllll}\text { Slabs, Pittsburgh, Chicago } & \cdots . . & 34.00 & 34.00 & 34.00 & 34.00\end{array}$ Rerolling billets, Pittsburgh ... $34.00 \quad 34.00 \quad 34.00 \quad 34.00$
$\begin{array}{lrrrrr}\text { Reroling } & \\ \text { Wire rods No, } 5 \text { to } \text { to } & \text {-inch, Pitts. } & 2.00 & 2.00 & 2.00 & 2.00\end{array}$

| July 19, 1941 | June 1941 | $\begin{aligned} & \text { April } \\ & 1941 \end{aligned}$ | $\begin{aligned} & \text { July } \\ & 1940 \end{aligned}$ | Pig Iron | July 19, 1941 | $\begin{aligned} & \text { June } \\ & 1941 \end{aligned}$ | ${ }_{1941}$ | $\begin{aligned} & \text { July } \\ & 1940 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2.15 c | 2.15 c | 2.15 c | 2.15 c | Bessemer, del. Plttsburgh | \$25.34 | \$25.34 | \$25.34 | \$24.34 |
| 2.15 | 2.15 | 2.15 | 2.15 | Baslc, Valley | 23.50 | 23.50 | 23.50 | 22.50 |
| 2.47 | 2.47 | 2.47 | 2.47 | Basic, eastern, del. Philadelphia. | 25.34 | 25.34 | 25.34 | 24.34 |
| 2.25 | 2.25 | 2.25 | 2.25 | No. 2 fdry., del. Pgh., N.\&S. Sldes | 24.69 | 24.69 | 24.69 | 23.69 |
| 2.10 | 2.10 | 2.10 | 2.10 | No. 2 foundry, Chicago .......... | 24.00 | 24.22 | 24.22 | 23.00 |
| 2.215 | 2.215 | 2.215 | 2.215 | Southern No. 2, Birmingham | 20.38 | 20.38 | 20.38 | 19.38 |
| 2.10 | 2.10 | 2.10 | 2.10 | Southern No, 2, del. Cincinnati. | 24.06 | 24.06 | 24.06 | 23.06 |
| 2.10 | 2.10 | 2.10 | 2.10 | No. 2X, del. Phlla. (differ, av.). | 26.215 | 26.215 | 26.215 | 25.215 |
| 2.15 | 2.15 | 2.21 | 2.15 | Malleable, Valley | 24.00 | 24.00 | 24.00 | 23.00 |
| 2.10 | 2.10 | 2.10 | 2.10 | Malleable, Chicago | 24.00 | 24.00 | 24.00 | 23.00 |
| 2.10 | 2.10 | 2.10 | 2.10 | Lake Sup., charcoal, del. Chicago | 31.34 | 31.34 | 30.34 | 30.34 |
| 3.05 | 3.05 | 3.05 | 3.05 | Gray forge, del. Pittsburgh.... | 24.19 | 24.19 | 24.19 | 23.17 |
| 3.50 | 3.50 | 3.50 | 3.50 | Ferromanganese, del. Pittsburgh | 125.33 | 125.33 | 125.33 | 125.33 |
| 2.10 | 2.10 | 2.10 | 2.10 |  |  |  |  |  |
| 3.05 | 3.05 | 3.05 | 3.05 | Scrap |  |  |  |  |
| 3.50 | 3.50 | 3.50 | 3.50 | Scrap |  |  |  |  |
| 2.60 | 2.60 | 2.60 | 2.60 | Heavy melting steel, Pitts.. | \$20.00 | \$20.00 | \$20.20 | \$19.55 |
| \$5.00 | \$5.00 | \$5.00 | \$5.00 | Heavy melt. steel, No. 2, E. Pa. | 17.75 | 17.75 | 18.00 | 17.50 |
| 2.55 | 2.55 | 2.55 | 2.55 | Heavy melting steel, Chicago | 18.75 | 18.75 | 18.80 | 17.45 |
|  |  |  |  | Ralls for rolling, Chicago | 22.25 | 22.25 | 22.65 | 21.65 |
|  |  |  |  | No. 1 Cast, Chicago | 20.00 | 21.50 | 22.31 | 16.93 |
| \$34.00 | \$34.00 | \$34.00 | \$34.00 | Colve |  |  |  |  |
| 34.00 | 34.00 | 34.00 | 34.00 | Connellsville, furnace, ovens | \$6.25 | \$6.25 | \$5.50 | \$4.75 |
| 34.00 | 34.00 | 34.00 | 34.00 | Connellsville, loundry, ovens | 7.25 | 7.25 | 6.00 | 5.75 |
| 2.00 | 2.00 | 2.00 | 2.00 | Chlcago, by-product idry., del. | 12.25 | 12.25 | 11.85 | 11.25 |

# STEEL, IRON, RAW MATERIAL, FUEL AND METALS PRICES 

Except when otherwise designated, prices are base, f.o.b. cars.



## Tin and Terne Plate

Tin Plate. Coke (hase bax) Plttsburgh, Gary, Chicago $\$ 5.00$ Granlte City, Ill. ......... 5.10
Mif. Terne Pate (base box)
Pittsburgh, Gary, Chlcago $\$ 4.30$
Granite Clty, III. ....... 4.40

## Roofing Ternes

Pittsburgh base, package 112
sheets $20 \times 28$ in., coating I.C.
8-1b... $\$ 12.00$ 25-1b... $\$ 16.00$
$15-1 b . .14 .00 \quad 30-1 b . . \quad 17.25$
20-1b.. 15.00 40-1b. . 19.50

## Bars



Pac ports, dock
All-rall
Hot-Rolled Alloy Bars
Pittsburgh, Chicago, Canton, Nassillon, Buffalo, Bethlchem, base 20 tons one size
Detroit Alloy
S.A.E. Dif
S.A.E.
$2000 . . . .0 .35$
$0.35 \quad 3100 \quad 0.70$
3200..... 1.35
2500..... $2.55 \quad 3400 . . .$. . . 3.20

4100 .15-25 Mo............ . . 0.55
4600 0.20-0.30 MO.; 1.50. 2.00 NJ.

5100 80-1.10 Cr.
5100 Spr. flats
6100 Bars
6100 Spr . 11 ats
Carb., Van.
9200 Spr, flats
9200 Spr. rounds, squares
T 1300, Mn, mean 1.51-2.00
Do., carbon under 0.20 max.
Cold-Finished Carbon Bars
pitts., Chicago, Gary, Cleveland, Bupfalo, base 20,000-39,999 lbs.
Detrolt
Cold-Finished Alloy Bars
Pittsburgh, Chicago, Gary,
Cleveland, Buffalo, base 3.35 c Detrolt
Galveston, add $\$ 0.25$; Pacille Coast, \$0.50.
Turned, Ground Shaftlng
Pittsburgh, Chleago, Gary, Cleveland, Buflalo, base (not including turning, grinding, polishing ex tras)
2.65 c

Detrolt
einforcint Bars (New Billet)
Pittsburgh, Chicago, Gary,
Cleveland, Birm., Spar-
rows Point, Bulfalo,
Youngstown, base..... 2.15c
Gulf ports, dock. . . . . . . . . 2.50c
All-rall .....
Pacifle ports, dock
All-rall
2.50 c
2.59 c

Relnfurcing liars (Rail Steel)
Piltsburgh, Chleago, Gary,
Cleveland, Birm., base. 2.15 c
Gulf ports, dock ......... 2.50c
All-rall .......
Paclfic ports, dock.
All-rall . 2.59 c

All 2.80 c

Detrolt, del. ........
2.25 c

Philadelphia, com. del. 3.06-3.50c Pittsburgh, muck bar, . . 5.00 c Pittsburgh, staybolt .... 8.00c
Terre Haute com., 1.o.b. mill

## Wire Products

Pitts.-Cleve.-Chicago-Birm. base per 100 lb . keg in carloads
Standard and cement
coated whre nalls. (Per Pound)
Pollshed fence staples. . 2.55 c
Annealed fence wire.... 3.05 c
Galv. fence whre ...... 3.40 c
Woven wire fencing (base C. L. column)

Single loop bale ties, (base C.L. column)
Galv. barbed wire, 80-rod spools, base column
Twisted barbless wire, column
To Manufacturing Trade
Base, Pitts.-Cleve.-C hicago Birmingham (except spring
Bright bess., basic
Galvanized., basic wire 2.60 c
Spring wire
3.20 c
rcester, Mass., $\$ 2$ higher on

Cut Nails
Carload, Plttsburgh, keg. $\$ 3.85$ Alloy Plates (Hot)
Pittsburgh, Chlcago, Coates-
ville, Pa. ................... 3.50 c
Strip and Hoops
(Base, hot strip, 1 ton or over: cold, 3 tons or over)
Hot Strip, 12-Inch and less
Plttsburgh, Chicago,
Gary, Cleveland,
Youngstown, Middle-
town, Blrmingham Detroit, del.
Philadelphla, del.
New York, del. ...
Pacifle Coast ports
Cooperage hoop, Young.,
Pitts.; Chicago, Birm..
Cold strlp, 0.25 carbon and under, Plttsburgh, Cleveland, Youngstown 2.80 c Chicago ............... 2.90 c Chicago
Detroit, del. ........... 2.90 c Worcester, Mass. Cleve., Pitts.
Carbon
$\begin{array}{lll}0.26-0.50 & \ldots . . . . . . . . . & 2.80 \mathrm{c} \\ 0.51-0.75 & . . . . . . . . . . & 4.30 \mathrm{c}\end{array}$
$0.51-0.75$
$0.76-1.00$
Over 1.00
Worcester, Mass. $\$ 4$ higher
Commodity Cold-Rolled Strip
Pitts.-Cleve.-Youngstown 2.95 c Chlcago
Detrolt, del.
Worcester, Mass.
Lamp stock up 10 cents.
Rails, Fastenings
(Gross Tons)
Standard ralls, mill .... $\$ 40.00$
Relay rails, Pittsburgh
20-100 1bs. ...... 32.50-35.50
Light ralls, bllet qual.,
Pitts., Chlcago, B'ham. $\$ 40.00$
Cents per pound
Angle bars, bllet, mills Do., axle steel
Spikes, R. R. base
Track bolts, base ......
Car axles forged, pltts.,
Chicago, Birmingham.
Chicago, Brmingham. $\quad 3.15 \mathrm{c}$
Base, light ralls 25 to 60 lbs.
20 lbs., up $\$ 2 ; 16$ lbs. up $\$ 4 ; 12$
lbs. up $\$ 8 ; 8$ lbs. up $\$ 10$. Base
rallroad spikes 200 kegs or more; base plates 20 tons.

## Bolts and Nuts

F.o.b. Pittsburgh, Cleveland, Eirmingham. Chicago. carloads addional $5 \%$ counts containers, add $10 \%$.
5\%. Carriage and Machine
$1 / 2 \times 6$ and smaller.....65 $1 / 2$ on Do., is and \% $x$ 6-1n. and shorter. .........631/2 off Do., $x^{2 / s}$ to $1 \times 6$-in. and
shorter ............... 61 off
14 and larger, all lengths
Ais diameters, over $6-1 n$.
long ....................... 59 off
Tire bolts ................ 50 off
Tire bolts ....................... 50 oif
Stove IBolts
In packages with nuts separate In packages with nuts separate
$71-10$ off; with nuts attached 71 off: bulk 80 off on 15,000 of 3 -inch and shorter, or 5000 over 3-in.
over 3 -in.
Step bolts. .................... 56 off
Plow bolts .............. 65 oft

Semitlnished hex. U.S.S. S.A.E.

## $1 / 2-1$-inch

## $11 / 2-11 / 2$-inch

Hexaron Cap Screws
Hexngon Cap Screws
Upset $1-\mathrm{in}$., smaller ...... 64 oft
Square Head Set Screws Upset, 1-in., smaller...... 71 o Headless set screws.

Piling
Pitts., Chgo., Buffalo .. 2.40 c
Rivets, Washers
F.o.b. Pitts, Chame., Chgo.,

Wrought washers, pitts.
Chi., Phlla., to jobbers
and large nut, bolt
mfrs. l.c.l.
$\$ 4.25$ orf

## Tool Steels

$\begin{array}{ll}\text { Pittsburgh base, cents per } l b \text {. } \\ \text { Carb. Reg. } 14.09 & \text { Oil-hard- } \\ \text { Carb. Ext. } 18.00 & \text { ening . } 24.00 \\ \text { Carb. Spec. } 22.00 & \text { High }\end{array}$
Migh Speed Tool Steels

| Tung. Chr. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 18.00 | 4 | 1 | $\ldots$ | 67.00 |
| 18.00 | 4 | 2 | 1 | 77.00 |
| 18.00 | 4 | 3 | 1 | 87.00 |
| 1.5 | 4 | 1 | 8.5 | 54.00 |
| $\cdots .$. | 4 | 2 | 8 | 54.00 |
| 5.5 | 4 | 1.5 | 4 | 57.50 |

## Welded Iron, Steel. <br> Pipe

Base discounts on steel pipe. Pitts., Lorain. O., to consumers in carloads. Gary, Ind., 2 points less on lap weld, 1 point less on butt weld. Chicago delivery $21 / 2$ and $11 / 2$ less, respectively. Wrought plpe, Pittsburgh base.

| $\begin{gathered} \text { Butt Weld } \\ \text { Steel } \end{gathered}$ |  |  |
| :---: | :---: | :---: |
| In. | Blk. | Galv. |
|  | 63\% | 51 |
| * | $661 / 2$ | 55 |
| 1-3 | $68 \frac{112}{}$ | $57^{1 / 2}$ |
| 1-3............. |  |  |
| $\%$ | 30 | 10 |
| $1-1 / 4$ | 34 | 16 |
| 11/2 | 38 | $181 / 2$ |
| $1 / 2$ | $37 \%$ | 18 |
| Lap Weld Steel |  |  |
| 2 | 61 | 49 1/4 |
| $21 / 2$-3 | 64 | 52 |
| $3^{1 / 2}$ - 6 | 66 | 541 |
| 7 and 8 | 65 | 52 \% |
| \% |  |  |
| $\begin{aligned} & 2 \\ & 21 / 2 \\ & \ldots \\ & \hline \end{aligned}$ | 314 | $14 \%$ |
|  | $331 / 2$ | 18 |
| 41/2-8 | 324 | 17 |
| 9-12 | 28\% | 12 |
| Line Pipe Steel |  |  |
| 1 to 3, butt weld ....... 67 \%/3 |  |  |
| 2, lap weld .. |  | 60 |
| $21 / 2$ to 3, lap weld |  |  |
| $31 / 2$ to 6. lap weld |  | 55 |
| 7 and 8. lap weld |  | 64 |

## Boiler Tubes

Carloads minim u m wall seamless steel boiler tubes, cutlengths 4 to 24 feet; f.o.b. Pittsburgh, base price per 100 feet subject to wswa? eatras.
Iap Welded
Iap Welded

$51 z$
1" O.D
60 off $1 / /^{\circ} \mathrm{O} . \mathrm{D}$.

## G <br> Gage 13

Cha
Char
coal

## \$:23.71

$\begin{array}{ll}11.06 & 22.93 \\ 12.38 & 19.35\end{array}$
$\begin{array}{lll}13 & 12.38 & 19.35 \\ 13 & 13.79 & 21.68 \\ 12 & 15.16 & \end{array}$

## Coke By-Products

Spot, oal., freight allowed eat Pure and $90 \%$ benzol Pure and $90 \%$ benzol... $\mathbf{1 4 . 0 0 c}$
Toluol, two degree .... $\mathbf{Z 7 . 0 0 c}$ Solvent naphtha ...... 26.00 Industrial xylol ...... $26 . \mathrm{co}$
Per lb. f.o.b. Frankford and Phenol (less than 1000 lbs.) ( 1000 ibs. or over) 13.25 c Eastern Plants, per lb.
Naphthalene fakes, bals, 7.00 c
bbls. to jobbers ...... Per ton, bulk, f.o.b. port
ulphate of ammonia.... $\$ 30.00$

Pig Iron
No. 2 foundry is $1.75-2.25$ sil.; 50 e diff. for each 0.25 sil. above 2.25 sll.; 50 c diff. below 1.75 sil. Gross tons.

| Baglng Folnts: | No. 2 Fdry. | Malleable | Baslc | Bessemer |
| :---: | :---: | :---: | :---: | :---: |
| Rethlehem, Pa. | \$25.00 | \$25.50 | \$24.50 | \$26.00 |
| Birmingham, Ala.s | 20.38 |  | 19.38 | 25.00 |
| Birdsborv, Pa. | 25.00 | 25.50 | 24.50 | 26.00 |
| Buffalo | 24.00 | 24.50 | 23.00 | 25.00 |
| Chicago | 24.00 | 24.00 | 23.50 | 24.50 |
| Cleveland | 24.00 | 24.00 | 23.50 | 24.50 |
| Detrolt | 24.00 | 24.00 | 23.50 | 24.50 |
| Duluth | 24.50 | 24.50 |  | 25.00 |
| Erie, Pa. | 24.00 | 24.50 | 23.50 | 25.00 |
| Everett, Mass. | 25.00 | 25.50 | 24.50 | 26.00 |
| Granite Clty, Ill. | 24.00 | 24.00 | 23.50 | 24.50 |
| Hamliton, O . | 24.00 | 24.00 | 23.50 |  |
| Neville Island, Pa. | 24.00 | 24.00 | 23.50 | 24.50 |
| Provo, Utah | 22.00 |  |  |  |
| Sharpsville, Pa. | $\{24.00-$ | $24.00-$ | $23.50$ | $24.50-$ |
| Sparrow's Polnt, Md. | 24.50 |  | 24.50 24.50 |  |
| Swedeland, Pa. | 25.00 | 25.50 | 24.50 | 26.00 |
| Toledo, 0. | 24.00 | 24.00 | 23.50 | 24.50 |
| Youngstown, 0 . | 124.00- | $24.00-$ | 23.50- | 24.50- |
|  | \{24.50 | 24.50 | 24.50 | 25.00 |

8 Subject to 38 cents deduction for 0.70 per cent phosphorus or higher.

| Dellivered from lasing Points: |  |  |  |
| :---: | :---: | :---: | :---: |
| Akron, O., from Cleveland | 25.39 | 89 | 25.89 |
| Baltimore from Birmingham $\dagger$. . 25.61 |  | 5.11 |  |
| Boston from Birminghamt...... 25.12 |  |  |  |
| Boston from Everett, Mass. .... 25.50 | 26.00 | 25.00 | 6.50 |
| Boston from Buffalo . . . . . . . . . . 25.50 | 26.00 | 25.00 | 26.50 |
| Brooklyn, N. Y., from Bethlehem 27.50 | 28.00 |  |  |
| Canton, O. from Cleveland . . . . . 25.39 | 25.39 | 24.89 | 5.89 |
| Chicago from Birmingham. . . . . . $\dagger 24$ |  |  |  |
| Clnclnnati from Hamliton, O. . 24.44 | 25.11 | 4.61 |  |
| Cincinnati from Birmingham $\dagger$... 24.06 |  | 3.06 |  |
| Cleveland from Birminghamt... 24.12 |  | 23.12 |  |
| Mansfleld, O., from Toledo, O. . 25.94 | 25.94 | 25.44 |  |
| Mllwaukee from Chicago ..... 25.10 | 25.10 | 24.60 | 25.60 |
| Muskegon, Mich., from Chlcago, |  |  |  |
| Lewark, N. J., from Blrmingham $\dagger 26.15$ |  |  |  |
| ewark, N. J., from Bethlehem. 26.53 | 27.03 |  |  |
| hiladelphia from Birminghamt. 25.46 |  | 24.96 |  |
| hlladelphla from Swedeland, Pa. 25.84 | 26.34 | 25.34 |  |
| Plttsburgh dist.: Add to Neville Island base, North and South |  |  |  |
| Sides, 69c; McKees Rocks, 55c; Lawrencevllle, Homestead, McKeesport, Ambrldge, Monaca, Allqulppa, 84c; Monessen, Mon- |  |  |  |
| ongahela City, \$1.07; Oakmont, Veron |  |  |  |


|  | No. 2 <br> Fdry. | Malleable | Bastc | Besse mer |
| :---: | :---: | :---: | :---: | :---: |
| Sasinaw, Mich., from Detrolt | 26.31 | 26.31 | 25.81 | 26.81 |
| St. Louls, northern | 24.50 | 24.50 | 24.00 |  |
| St. Louis from Birmingham | -24.50 |  | 23.62 |  |
| St. Paul from Duluth | 26.63 | 26.6 |  | 27.15 | St. Paul from Duluth

## Low Phos.

Basing Polnts: Blrdsboro and Steelton, Pa., and Buftalo, N. Y. $\$ 29.50$, base; $\$ 30.74$ dellvered Phlladelphla
Gray Forge
Valley furnace Forge Charcoal
Pitts dist pur ............ $\$ 23.50$ Lake superior fur. . . . . . $\$ 28.00$ Pitts, dist. fur. . . . . . . . . . 23.50 do., del. Chicago. ....... 31.34

Lyles, Tenn., hlgh phos.
31.34
28.50

## Silvery

Jackson county, O., base, 6.00 to 6.50 per cent $\$ 29.50$. Add 50 cents for each additional 0.25 per cent of sillicon. Buffalo base $\$ 1.25$ higher.

## Bessemer Ferrosilicon $\dagger$

Jackson county, O., base; Prices are the same as for stlverles, plus $\$ 1$ a ton.
Manganese differentlals in sllvery Iron and ferrosllicon not to exceed 50 cents per 0.50 per cent manganese in excess of 1 per cent.

## Refractories

Ladle Brlck

Per 1000 f.o.b. Works, Net l'rices Dry press
(Pa., O., W. Va., Mo.)


Ferroalloy Prices

Ferromanganese, 78-82\%,
Carlots, duty pald, stud. . . . . . . . . . . . . . . $\$ 120.00$ Carlots, del. Pitts. . . . 125.33 Carlots, f.o.b. Southern rurn.
For ton lots add $\$ 10$
for less-than-ton lots
$\$ 13.50$, for less than
200-1b. lots $\$ 18$.
splegelelsen, 19-21 \% dom.
Palmerton, Pa., spot. . 36.00
Ferrosilicon, $50 \%$, prelght
allowed, c.l.
Do., ton lot
87.00

Do., ton lots ........ 151.00
Spot, \$5 a ton higher.
sllicomanganese, c.l., $21 / 2$ per cent carbon
$13 \%$ carbon
Contract ton price
$\$ 12.50$ higher; spot $\$ 5$ over contract.
Ferratungsten, stand., 10. con. del. cars . ...... 1.90-2.00
Ferrovanadlum, 35 to $40 \%$, lb., cont. . .2.70-2.80-2.90
Ferrophosphorus, gr, ton c.I., 17-18\% Rockdale Tenn basis 18\% unitage, 58.50; electrle rurn., per ton, c. 1., 23$26 \%$ f.o.b. Mt. Pleasant, Tenn., $24 \%$ \$3 unitage
Ferrochrome, 66-70 chromlum, 4-6 carbon, cts.
ib., contalned cr., del.
carlots
$\qquad$
145.00
.36.00

Do., ton lots
Do., less-ton lots...... 12.00 c
less than 200 Ib . lots. 12.25 c 67-72\% low carbon: $2 \%$ carb... 17.50 c 18.25 c 18.75 c $1 \%$ carb... 18.50c 19.25c 19.75c $0.10 \%$ carb. 20.50c 21.25c 21.75c $0.20 \%$ carb. 19.50 c 20.25 c 20.75 c Spot $1 / 4 \mathrm{c}$ higher
Ferromolybdenum, 55$65 \%$ molyb. cont., f.0.b. mill, 1 b .
Calcium molybdate, 1 b . molyb. cont., f.o.b. mill
Molybdenum Oxide, $1 b$. Molyb. cont., 5-20-1b. contalners, p. o. b., Washington, Pa., 1b...
Ferrotitanium, $40-45 \%$, 1b., con. th., f.o.b. Niagara Falls, ton lots. Do., less-ton lots. 20-25\% carbon, 0.10 max., ton lots, 1 b . Do., less-ton lots. Spot 5 c higher
Ferrocolumblum, 50-60\% contract, lb. con. col., f.o.b. Niagara Falls... f.o.b. Niagara Fals.
Do., less-ton lots.. Spot is 10 c higher
Technical molybdenum trioxide, 53 to $60 \%$ molybdenum, lb. molyb. cont., f.o.b. mill.
$\qquad$
Ferro-carbon-titanium, 15$18 \%$, ti., 6-8\% carb., carlots, contr., net ton. $\$ 142.50$ Do., spot . . . . . . . . . . . 145.00 Do., contract, ton lots 145.00 Do., spot, ton lots.... 150.00 15-18\% tl., 3-5\% carbon, carlots, contr., net ton 157.50 Do., spot .............. 160.00 Do., contract, ton lots. 160.00 Do., spot, ton lots .... 165.00
Alsifer, contract carlots, f.o.b. Nlagara Falls, 1b. 7.50 c Do., ton lots Do., less-ton lots ...... 8.50c Spot 胃c 1b. higher

Chromlum Briquets, contract, frelght allowed, 1b. carlots, bulk Do., ton lots
7.00 c Do., ton lots ..... Do., less 200 lbs. Spot $/ 4 \mathrm{c} 1 \mathrm{~b}$. higher
Tungsten Metal Powder, 98-99 per cent, per lb, depending upon quantity
$\$ 2.50-2.60$
Vanadium Pentoxide, contract, lb. contained \$1.10 Chromium Metal, $98 \%$ cr., contract, lb. con. chrome, ton lots Do., spot
88\% 8........... 85.00c
88\% chrome, cont. tons. 79.00 c

Silicon Metal, $1 \%$ Iron,


Sllicon Briquets, contract carloads, bulk, freight allowed, ton .......... $\$ 74.50$
Ton lots .......... 84.50
Less-ton lots, 1b. ..... 4.00 c
Less 200 lb . lots, ib. . 4.25 c
Spot $1 / 4$-cent higher
Manganese briquets,
contract carloads,
bulk frelght allowed, lb.
5.50 c

Ton lots $\ldots . . . . .$.
Spot $1 / 4 \mathrm{c}$ higher
Zirconlum Alloy, 12-15\%, contract, carloads, bulk, gross ton ..... 102.50 Do., ton
$35-40 \%$, contract, car
loads, 1b., alloy . . . . . . . 14.00 c
Do., ton lots ......... 15.00 c
Do., less-ton lots 3 .....
Molybdenum Powder $99 \%$, 1.o.b. York, Pa. 200-1b. kegs, lb. ..... $\$ 2.60$
Do., $100-200 \mathrm{lb}$ lots.. 2.75
Do., under $100-\mathrm{lb}$. lots
MoIybdenum Oride Briquets, 48-52\% mo-
lybdenum, per pound
contained, f.o.b. pro-
ducers' plant ........ 80.00 c

# WAREHOUSE STEEL PRICES 

|  | Soft Bars | Bands | Hoops | $\begin{aligned} & \text { Plates } \\ & \text { K-ln. \& } \\ & \text { Over } \end{aligned}$ | Structural Shapes | Floor <br> Plates | Hot Rolled | Sheets Cold Rolled | Galv. <br> No. 24 | Cold Rolled Strlp | Carbon | S.A.E. 2300 | $\begin{aligned} & \text { S.A.W. } \\ & \text { 3100 } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Boston | 3.98 | 4.06 | 5.06 | 3.85 | 3.85 | 5.66 | 3.71 | 4.48 | 5.11 | 3.46 | 4.13 | 8.88 | 7.23 |
| New York (Met.) | 3.84 | 3.96 | 3.96 | 3.76 | 3.75 | 5.56 | 3.58 | 4.60 | 5.00 | 3.51 3.31 | 4.09 | 8.84 8.56 | 7.19 7.16 |
| Philadelphla | 3.85 | 3.95 | 4.45 | 3.55 | 3.55 | 5.25 | 3.55 | 4.05 | 5.26 | 3.31 | 4.06 4.05 | 8.56 | 7.16 |
| Baltimore. | 3.85 | 4.00 | 4.35 | 3.70 | 3.70 | 5.25 | 3.50 3.85 |  | 5.05 5.40 |  | 4.05 4.15 | .... |  |
| Norfolk, Va. | 4.00 | 4.10 |  | 4.05 | 4.05 | 5.45 | 3.85 |  |  |  |  | .... |  |
| Buffalo | 3.35 | 3.82 | 3.82 | 3.62 | 3.40 | 5.25 | 3.25 | 4.30 | 4.75 4.65 | 3.52 | 3.75 3.65 | 8.40 8.40 | 6.75 6.75 |
| Pittsburgh | 3.35 | 3.60 | 3.60 | 3.40 | 3.40 3.58 | 5.00 5.18 | 3.35 3.35 | 4.05 | 4.65 | 3.20 | 3.75 | 8.40 | 6.75 |
| Cleveland | 3.25 | 3.50 | 3.50 | 3.40 | 3.58 | 5.18 | 3.35 3.43 | 4.30 | 4.84 | 3.40 | 3.80 | 8.70 | 7.05 |
| Detroit | 3.43 | 3.43 | 3.68 | 3.60 | 3.65 | 5.27 | 3.85 | 5.32 | 5.50 |  | 4.42 |  |  |
| Omaha | 4.10 | 4.20 | 4.20 | 4.15 | 4.15 3.68 | 5.75 5.28 | 3.42 | 4.00 | 4.92 | 3.47 | 4.00 | 8.75 | 7.10 |
| Clnclnnat | 3.60 | 3.67 | 3.67 | 3.65 | 3.68 |  |  |  |  |  |  |  |  |
| Chicago | 3.50 | 3.60 | 3.60 | 3.55 | 3.55 | 5.15 | 3.25 | 4.10 | 4.85 | 3.30 | 3.75 4.34 | 8.40 | 6.75 |
| Twln Citles | 3.75 | 3.85 | 3.85 | 3.80 | 3.80 | 5.40 | 3.50 | 4.85 | 5.25 | 3.83 | 3.88 | 8.38 | 6.98 |
| Milwaukee | 3.63 | 3.53 | 3.53 | 3.68 | 3.68 | 5.28 | 3.18 | 4.23 | 4.73 | 3.54 | 3.88 | 8.77 | 6.98 |
| St. Louls | 3.64 | 3.74 | 3.74 | 3.69 | 3.69 | 5.29 | 3.39 | 4.24 | 4.99 | 3.61 | 4.02 |  | 7.12 |
| Kansas City | 4.05 | 4.15 | 4.15 | 4.00 | 4.00 | 5.60 | 3.90 | ... | 5.00 | $\ldots$ | 3.97 | . | ... |
| Indlanapolis | 3.60 | 3.75 | 3.75 | 3.70 | 3.70 | 5.30 | 3.45 |  | 5.01 | $\ldots$ | 3.97 |  |  |
| Memphis | 3.90 | 4.10 | 4.10 | 3.95 | 3.95 | 5.71 | 3.85 | $\ldots$ | 5.25 | $\ldots$ | 4.31 4.39 | $\ldots$. |  |
| Chattanooga | 3.80 | 4.00 | 4.00 | 3.85 | 3.85 | 5.80 | 3.75 | $\ldots$. | 4.50 5.79 |  | 4.39 4.69 |  |  |
| Tulsa, Okla. | 4.44 | 4.34 | 4.34 | 4.49 | 4.49 3.55 | 6.09 5.93 | 4.19 3.45 |  | 4.75 |  | 4.43 |  |  |
| Blrmingham | 3.50 | 3.70 | 3.70 | 3.55 | 3.55 3.80 | 5.93 | 3.85 |  | 4.80 | 5.00 | 4.60 |  |  |
| New Orleans. | 4.00 | 4.10 | 4.10 | 3.80 | 3.80 | 5.75 | 3.85 |  |  |  |  |  |  |
| Houston, Tex. | 3.75 | 5.95 | 5.95 | 4.10 | 4.10 | 5.50 | 4.20 4.75 | 7.25 | 5.25 6.00 | $\ldots$ | 6.90 5.75 |  |  |
| Seattle | 4.00 | 4.00 | 5.20 | 4.75 | 4.75 | 6.50 5.75 | 3.95 | 6.50 | 5.00 |  | 5.75 |  |  |
| Portland, Oreg. | 4.25 | 4.50 | 6.10 | 4.00 | 4.00 | 7.75 | 5.10 | 7.30 | 6.30 |  | 6.60 | 11.35 | 10.35 |
| Los Angeles | 4.15 | 5.45 | 7.25 | 4.95 4.70 | 4.95 | 6.40 | 4.70 | 7.20 | 6.45 | ... | 7.05 | 11.60 | 10.60 |
| San Franclsco | 4.00 | 5.20 | 6.80 | 4.70 | 4.70 | 6.40 |  |  |  |  |  |  |  |

BASE QUANTITIES
Soft Bars, Bands, Hoops, Plates, Shapes, Floor Plates, Hot Rolled Sheets and SAE 1035-1050 Bars: Base, 400-1999 pounds; 300-1999 pounds in Los Angeles; 400-39,999 (hoops, 0-299) in San Franclsco; 300 pounds and over, Portland, Seattle; 400-14,999 Twin Citles; 400-3999 Blrmingham; 400 pounds and over in Memthis: 0 anceles bars over 4 -in wide, $1-\mathrm{in}$. thick, 4.95 c
phis; Los Angeles, bars Rolled Sheets: Base, 400-1499 pounds In Chicazo, CinInnati, Cleveland Detrolt, New York, Omaha, Kansas City, St. Louls: 450-3749 in Boston; 500-1499 in Buffalo; 1000-1999 in Philadelphia, Baltimore; 750-4999 in San Francisco; 300-4999 in Portland, Seattle; any quantity in Twin Citles; 300-1999 Los Angeles.

Galvanized Sheets: Base, 150-1499 pounds, New York; 150199 in Cleveland, Pittsburgh, Baltimore, Norfolk; 1 to 1499 in 1489 in Cleveland, Per 300 and over in Portland, Seattle; 450-3749 in Boston; $500-1499$ in Blrmingham, Buffalo, Chicago, Cincinnati, Detrolt, Indianapolls, Mllwaukee, Omaha, St. Louls, Tulsa; 3500 and over in Chattanooga; any quantity in Twin Citles; 750-1500 in Kanaa City: 150 and over in Memphis; any quantity in Philadelphia: 750-4999 in San Francisco.

Cold Rolled Strip: No base quantity; extras apply on lota of all size.

Cold Finished Bars: Base, 1500 pounds and over on carbon except 0-299 in San Francisco, 1000 and over in Portland, Seattle; 1000 pounds and over on alloy, except 0-4999 in San Francisco, SAE Hot Rolled Aliso; 0-1999, Pe,

## Ores

Take Superior Iron Ure Gross ton, 51 \% \%
Lower Lake Ports

Mesabi nonbessemer .... 4.45
Hlgh phosphorus ....... 4.35
Mesabl bessemer ........ 4.60
Old range nonbessemer.

## Eastern Local Ore

Cents, unit, del. E. Pa
Foundry and basle $56-63 \%$, contract

Forelgn Ore

Cents per unit, c.i.f. Atlantic
ports
Manganiterous ore,
$45-55 \%$ Fe., $6-10 \%$
Mang. .............

Mang.
N. African low phos.
Old range bessemer .... $\$ 4.75$ Low phos. (.02 $\quad$ max.) ............ 8.00c
4.60

Spanish, No. African
bastc, 50 to $60 \%$
Nom
Chinese wolframite, net ton, duty pd. . $\$ 24.00-25.00$

Brazll iron ore, 68

| $69 \%$, ord.......... | 7.50c |  |
| :--- | :--- | :--- |
| Low phos. |  |  |
| max. $)$ | $\ldots \ldots . .$. | 8.00 c |

## F.O.B. Rio Janelro.

Scheellte, Imp. .... 23.50-24.0C
Chrome ore, Indian, $48 \%$ gross ton, clf. \$43.00-46.00

## Manganese Ore

Including war risk but not duty, cents per unit cargo lots. Caucaslan, 50-52\% So. Airican, $48 \%$. . 70.00-72.00 Brazillan, 46\% .... 69.00-71.00 Chllean, $47 \%$...... 65.00-70.00 Cuban, $50-51 \%$, duty free

Molybdenum
Nom. Sulphide conc., 1b.,
Nom. Mo. cont., mines. .

## IRON AND STEEL SCRAP PRICES

Maximum Prices Announced June 18 by Office of Price Aaministration and Civilian Supply (Gross Tons)

| PI | Pittsburgh, Weirton, Steubenville(a) | Youngstown, Canton, Sharon | Chicago | Bethlehem | East. Pa. | Sparrows Pt . | Cleve- <br> land | Buffalo | South. Ohlo $\dagger$ | Kokomo, Ind. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. 1 heavy melting | \$20.00 | \$20.00 | \$18.75 | \$18.25 | \$18.75 | \$18.75 | \$19.50 | \$19.25 | \$19.50 | \$18.25 |
| No. 1 hyd. comp. black sheets | 20.00 | 20.00 | 18.75 | 18.25 | 18.75 | 18.75 | 19.50 | 19.25 | 19.50 | 18.25 |
| No. 2 heavy melting ......... | 19.00 | 19.00 | 17.75 | 17.25 | 17.75 | 17.75 | 18.50 | 18.25 | 18.50 | 17.25 |
| Dealer No. 1 bundles | 19.00 | 19.00 | 17.75 | 17.25 | 17.75 | 17.75 | 18.50 | 18.25 | 18.50 | 17.25 |
| Dealer No. 2 bundles | 18.00 | 18.00 | 16.75 | 16.25 | 16.75 | 16.75 | 17.50 | 17.25 | 17.50 | 16.25 |
| Mixed borings and turnings | 15.25 | 15.25 | 14.00 | 13.50 | 14.00 | 14.00 | 14.75 | 14.50 | 14.75 | 14.25 |
| Machine shop turnings .... | 15.50 | 15.50 | 14.25 | 13.75 | 14.25 | 14.25 | 15.00 | 14.75 | 15.00 | 14.50 |
| Shovel turnings ...... | 16.50 | 16.50 | 15.25 | 14.75 | 15.25 | 15.25 | 16.00 | 15.75 | 16.00 | 15.50 |
| No. 1 busheling | 19.50 | 19.50 | 18.25 | 17.75 | 18.25 | 18.25 | 19.00 | 18.75 | 19.00 | 17.75 |
| No. 2 bushellng | 15.50 | 15.50 | 14.25 | 13.75 | 14.25 | 14.25 | 15.00 | 14.75 | 15.00 | 13.75 |
| Cast iron borings | 15.75 | 15.75 | 14.50 | 14.00 | 14.50 | 14.50 | 15.25 | 15.00 |  | 14.00 |
| Uncut structurals and plate | 19.00 | 19.00 | 17.75 | 17.25 | 17.75 | 17.75 | 18.50 | 18.25 | 18.50 | 17.25 |
| No. 1 cupola | 21.00 | 21.00 | 20.00 | 22.50 | 23.00 | 22.00 | 22.00 | 20.00 | 21.00 | 20.00 |
| Heavy breakable cast | 19.50 | 19.50 | 18.50 | 21.00 | 21.50 | 21.00 | 20.50 | 18.50 | 19.50 | 18.50 |
| Stove plate ......... | 19.00 |  | 17.00 | 18.00 | 18.50 | 18.00 | 18.00 | 19.00 | 17.50 | 16.00 |
| Low phos. bllet, bloom crops | 25.00 | 25.00 | 23.75 | 23.25 | 23.75 | 23.75 | 24.50 | 24.25 | 23.50 | 23.75 |
| Low phos. bar crops and smaller | 23.00 | 23.00 | 21.75 | 21.25 | 21.75 | 21.75 | 22.50 | 22.25 | 21.50 | 21.75 |
| Low phos. punch., plate scrap .... | 23.00 | 23.00 | 21.75 | 21.25 | 21.75 | 21.75 | 22.50 | 22.25 | 21.50 | 21.75 |
| Machinery cast cupola size | 22.00 | 22.00 | 21.00 | 23.50 | 24.00 | 23.50 | 23.00 | 21.00 | 22.00 | 21.00 |
| No. 1 machine cast, drop broken, 150 pounds and under | 22.50 | 22.50 | 21.50 | 24.00 | 24.50 | 24.00 | 23.50 | 21.50 | 22.50 | 21.50 |
| Clean auto cast ........ | 22.50 | 22.50 | 21.50 | 24.00 | 24.50 | 24.00 | 23.50 | 21.50 | 22.50 | 21.50 |
| Funchings and plate scrap $\ddagger$ | 22.00 | 22.00 | 20.75 | 20.25 | 20.75 | 20.75 | 21.50 | 21.25 | 20.50 | 20.75 |
| Punchings and plate scrapss | 21.00 | 21.00 | 19.75 | 19.25 | 19.75 | 19.75 | 20.50 | 20.25 | 19.50 | 19.75 |
| Heavy axle and forge turnings | 19.50 | 19.50 | 18.25 | 17.75 | 18.25 | 18.25 | 19.00 | 18.75 | 18.00 | 18.25 |
| Med. heavy elec. furnace turnings | s 18.00 | 18.00 | 16.75 | 16.25 | 16.75 | 16.75 | 17.50 | 17.25 | 16.50 | 16.75 |
|  |  | St. Louis | Toledo, 0. | Detrolt | Duluth | $\begin{aligned} & \text { Blrming- } \\ & \text { ham } \end{aligned}$ | Chattanooga | Radford, Va. | New Eng land $\ddagger$ | Paclilc Coasts |
| No. 1 heavy melting |  | \$17.50 | \$ | \$17.85 | \$18.00 | \$17.00 |  | \$ | \$16.50 | \$14.50 |
| No. 1 hyd. comp. black sheets |  | 17.50 |  | 17.85 | 18.00 | 17.00 |  |  |  | 14.50 |
| No. 2 heavy melting |  | 16.50 |  | 16.85 | 17.00 | 16.00 |  |  |  | 13.50 |
| Dealer No. 1 bundles |  | 16.50 |  | 16.85 | 17.00 | 16.00 |  |  |  | 13.50 |
| Dealer No. 2 bundles |  | 15.50 |  | 15.85 | 16.00 | 15.00 |  |  |  | 12.50 |
| Mlxed borings and turnings |  | 12.75 |  | 13.10 |  | 12.25 |  | ..... |  | 9.75 |
| Machine shop turnings |  | 13.00 |  | 13.35 | 15.50 | 15.00 | .... |  |  | 10.00 |
| Shoveling turnings ... |  | 14.00 |  | 14.35 | 16.50 |  |  |  | .... . | 11.00 |
| No. 1 bushellng . |  | 17.00 |  | 17.35 | 17.50 | 16.50 |  |  | . $\cdot$. | 14.00 |
| No. 2 bushelling |  | 13.00 | ..... | 13.35 | 13.50 | 12.50 |  |  | ..... | 10.00 |
| Cast Iron borings |  | 13.25 | .... | 13.60 | 13.75 | 12.75 | . $\cdot$. | .... | .... | 10.25 |
| Uncut structurals and plate |  | 18.50 |  | 16.85 | 17.00 | 16.00 |  |  |  | 13.50 |
| No. 1 cupola .............. |  | 20.00 |  | 20.35 | 18.00 | 20.00 | 20.50 | 21.00 | 22.00 | 18.00 |
| Heavy breakable cast |  | 18.50 |  | 18.85 | 16.50 | 18.50 |  |  | 20.50 | 17.00 |
| Stove plate |  | 17.00 | 15.60 | 14.10 |  | 17.00 | 17.50 | 18.00 | 14.00 | 14.00 |
| Low phos. blllet and bloom crops |  | 22.50 | ..... | 22.85 | 23.00 | 22.00 | ..... | ..... | ..... | .... |
| Low phos. bar crops and smaller |  | 20.50 | .... | 20.85 | 21.00 | 20.00 |  |  |  | , |
| Low phos. punch. and plate scrap** |  | 20.50 | . | 20.85 | 21.00 | 20.00 |  |  |  |  |
| Machinery cast cupola size $\dagger \dagger$ |  | 21.00 |  | 21.35 | 19.00 | 21.00 | 21.50 | 22.00 | 23.00 | 19.00 |
| No. 1 machine cast, drop broken, 150 pounds and under |  | 21.50 |  | 21.85 | 19.50 | 21.50 | 22.00 | 22.50 | 23.50 | 19.50 |
| Clean auto cast ........ |  | 21.50 |  | 21.85 | 19.50 | 21.50 | 22.00 | 22.50 | 23.50 | 19.50 |
| Punchings and plate scrap $\ddagger \ddagger$ |  | 19.50 |  | 19.85 | 20.00 | 19.00 | ..... | ..... | ..... | ..... |
| Punchlngs and plate scrapss |  | 18.50 |  | 18.85 | 19.00 | 18.00 | ..... | ..... | .... |  |
| Heavy axle and forge turnings |  | 17.00 |  | 17.35 | 17.50 | 16.50 |  | .... | ... | 14.00 |
| redlum heavy elec. furnace tur | ngs | 15 |  | 15 | 16.00 | 15. |  |  |  | 12.50 |

[^3]Maximum Prices for Iron and Steel Scrap Originating from Railroads

|  | Plttsburgh, Wheeling, Steubenville | Youngs town, Canton, Sharon | Chicago | Kokomo, Ind. | - East. Pa. | $\begin{aligned} & \text { Spar- } \\ & \text { rows Pt. } \end{aligned}$ | Cleveland | Buffalo | South Ohlot |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. 1 Railroad grade heavy melting steel. | \$21.00 | \$21.00 | \$19.75 | \$19.25 | \$19.75 | \$19.75 | \$20.50 | \$20.25 | \$20.50 |
| Scrap ralls . . . . . . . . . . . . . . . . . . . . . . | 22.00 | 22.00 | 20.75 | 20.25 | 20.75 | 20.75 | 21.50 | 21.25 | 21.50 |
| Rerolling quality ralls | 23.50 | 23.50 | 22.25 | 21.75 | 22.25 | 22.25 | 23.00 | 22.75 | 23.00 |
| Scrap rails 3 feet and under | 24.00 | 24.00 | 22.75 | 22.25 | 22.75 | 22.75 | 23.50 | 23.25 | 23.50 |
| Scrap ralls 2 feet and under | 24.25 | 24.25 | 23.00 | 22.50 | 23.00 | 23.00 | 23.75 | 23.50 | 23.75 |
| Scrap rails 18 inches and under | 24.50 | 24.50 | 23.25 | 22.75 | 23.25 | 23.25 | 24.00 | 23.75 | 24.00 |
|  | St. Louls | Kansas Clty | Detroit | Duluth | Birming ham | Minnequa Colo. | Radford, Va. | New Eng land $\ddagger$ | Paclific Coast |
| No. 1 Railroad grade heavy melting steel | \$18.50 | \$17.00 | \$18.85 | \$19.00 | \$18.00 | \$17.50 | \$ | \$. | \$15.50 |
| Scrap rails ............. | 19.50 | 18.00 | 19.85 | 20.00 | 19.00 | 18.50 |  |  | 16.50 |
| Rerolling quality ralls (a) | 21.00 | 19.50 | 21.35 | 21.50 | 20.50 | 20.00 | .... | .... | 18.00 |
| Scrap ralls 3 feet and under | 21.50 | 20.00 | 21.55 | 22.00 | 21.00 | 20.50 | ... | .... | 18.50 |
| Scrap ralls 2 feet and under | 21.75 | 20.25 | 22.10 | 22.25 | 21.25 | 20.75 | .... | ... | 18.75 |
| Scrap rails 18 Inches and under | 22.00 | 20.50 | 22.35 | 22.50 | 21.50 | 21.00 |  |  | 19.00 |

[^4]
## Sheets, Strip

Sheet \& Strip Prices Pape y8, 90
Officials of OPM are holding meetings with makers of various household appliances to discuss possible methods of partially supplying their many civilian needs. It is recognized that sheets perhaps enter non-defense manufacture more than any other one steel item and hence the problem is all the keener for this reason.
Sharpest curtailment in shipments is to the automobile industry, which already in some instances has had its supplies reduced 20 per cent, and still more drastic contraction is ahead.

Restrictions are steadily increasing against civilian consumption of finished sheets as the defense effort becomes more intense. Currently, the trade in Southern Ohio is inclined to dispute government economists' estimates that only 25 per cent of total output will be needed for war materials and so far as the experience in that area is concerned, the feeling is that 50 per cent would be more nearer the facts. Mills are in full capacity operation, although the galvanized situation continues a serious problem. Shipments to jobbers are reported to be surprisingly adequate. Comment however about government purchases from warehousemen at carload and greater lots is highly critical. The feeling is expressed that federal purchases from this source are at greater prices than should the mills sell direct.
Recently several district mill representatives experienced cuts ranging from 25 to almost 50 per cent in their weekly allotments.
One mill representative, which has been having his allotments reduced from week to week with fair regularity, has been advised to expect a further cut of about 50 per cent on commercial tonnage tentatively promised for shipment in fourth quarter, with probably some additional shrinkage in rations meanwhile.

Most stovemakers are fairly well covered for the present, with enough steel either being processed or definitely on the way to handle the fall requirements. In the East, stovemakers aim to have their stocks completed by September, and consequently with about six weeks to go are in pretty good shape. However, the outlook for beyond is not encouraging.
Switch box manufacturers are try ing to get an industrial rating, because much of their production is said to be for defense and essential civilian needs, which they are unable to definitely designate due to the number of hands through which their product passes. They are endeavoring to obtain an A-10 rat ing.
While sheet producers have not received instructions limiting the sale of straight chrome bearing sheets, they are expecting them most any day.
The bumper wheat crop is calling


KEFP PRODUCTION MOVLNG WITH G-E WIRING MATHRIALS


## DISTRIBUTORS IN ALL

PARTS OF THE COUNTRY
Avoid costly wiring system breakdowns by using G-E conduit wire and cable and wiring devices. G-E wiring materials all have uniform high quality and will give long, dependable service. They are ideal for new wiring and for modernization and maintenance work. The line is complete.

## Free Wiring Handbook

To check the wiring in your plant for efficiency obtain a free copy of the handbook General Electric published recently, called "Adequate Wiring For Industry." It outlines modern industrial wiring practices which can be adopted in all plants.

For further information about G-E wiring materials and for a copy of the handbook see the nearest G-E Merchandise Distributor or mail the coupon.


## SEND FOR THIS HANDBOOK

[^5]for heavy tonnages of galvanized sheets for storage capacity and govcrimment orders have expanded sharply. Some districts are making galvanized sheets as low as 45 per cent of capacity.

At present, about 60 per cent of sheet mill output is available for conmercial work. Only 40 per cent is "enuired to fulfill priority carrying orders. The 60 per cent has been allocated according to amount of steel bought by the various customers during normal times, and it is expected the downward revisions, which will probably begin with an immediate cut on the order of 10 per cent, will be pro rata.
The price situation is confused,
with smaller mills, particularly the nonintegrated producers, reverting to f. o. b. mill basis and the larger sellers holding to the normal basing point method. Principal reason for this is the desire to maintain the basing point system after the end of the emergency.

Most mills are turning down orders for galvanized sheets because of the lack of spelter. In one instance, a customer who was turned down on galvanized shects for grain storage tanks, offered to furnish a substantial quantity of zinc. Still the business was rejected because there was no assurance as to the quality of the zinc for coating purposes.

Defense materials are produced in these galvanized Armco Ingot Iron buildings. The metal is constantly subjected to a highly corrosive industrial atmosphere.


# YEARS MORE SERVICE... FOR LESS THAN IG A POUND EXTRA 

Farsighted engineers in America's expanding industrial plants are looking ahead. They want long "after-the-emergency" service life and low maintenance costs from today's investments in new warehouse and factory buildings.
That's why galvanized Armco Ingot Iron is being used to cover so many new structures needed by defense plants. This durable metal has the longest service record of any low-cost iron or steel sheets. Installations dating back as far as 1909 are in good condition today. Yet galvanized Armco Ingot Iron with all its durability costs less
than a cent a pound more than ordinary galvanized steel.
Use extra-durable galvanized Armco Ingot Iron* on your new buildings for long life and low maintenance costs. The American Rolling Mill Company, 2351 Curtis Street, Middletown, Ohio.

> "For immediate painting and long paint life specify galvanized Anaco Ingot Iron Pantgrip sheets.


ARMCO
INGOT IRON

## Plates

## 1'late I'rices, Pake 98

Tank makers say the A-1-B rating which is now being given most of the work is working fairly well. With this rating they have getting promises of 10 to 11 weeks on plates and some is now commencing to come through on this schedule. Much of the work taking this rating is for underground storage tanks for cantonments and military bases, with the army and navy having more or less standardized on four sizes $-7750,13,500,27,000$ and 40,000 barrels.

Although plate deliveries unless covered by top priorities are uncertain, demand for small underground tanks for gasoline storage, 1000 to 2000-gallon capacity, continues active. Taking light plates, notably scarce, fabricators are partially meeting requirements from dwindling inventories, hoping for replacements when sheet and wide strip mills overcome the shortage by rolling plates in rreater volume. Releases by shipvards overshadow activity in othor lines, miscellaneous fabricating shops without defense orders shonping desperately. In some cases partial needs are filled, but at higher do. livered costs on an f. o. b. mill hasis, the consumer paying hirher freioht. Deliveries are subject to rolliner vagaries. Steady and substantial demand prevails for floor plates with deliveries from six th eight weeks, shipyards being rovered hpriorities and taking the better part, though miscellaneous industrial buv. ing is better than normal. Deliveries on semi-finished material, heads, flanged and dished work have lengthened. but average hetter than nlates for less essential fabrication. Plates when tied-in with semi-fabricated orders are also somewhat ahove the average as to delivery. Warehouses are distributing relatively few.

## PIATE CONTRACTS PLACED

400 tons. two $500.000-$ sal, tank and towers. milliary alrport, Mesa, Ariz., to Darby Products \& Steel Plate Co., Kansas City, Mo.
Unstated, fuel tank assemblies, war department, to Bneing Aircraft Co. Seattle, \$98.830.
Unstated, gas slorage and distribution system, Fort Lewis, Wash.; Lord \& Loryea, awarded on low bld, $\$ 148,943$.

## PIATE CONTRACTS PENIING

175 tons, 400,000 -gallon elevated steel water tank. Lake Charles. La.: blds July 15, U. S. engineer, New Orleans 100 tons, $80 \times 40$-foot welded steel barge, U. S. engineer, Galveston, Tex., Inv. 6, bids Aug. 2.

## Tin Plate

## Tin Plate Prices, Page $9 x$

Tin plate demand from both army and civilian sources is showing a marked increase. The army demand, normally nonexistent, is reaching major proportions, and because of improving economic conditions, civilian consumers are increasing consumption of canned
goods. As a result, packers are in creasing can stocks as far as possible which in turn is reflected by more rapid releases of plate from the can makers against orders on steel company books.

Mill operations continue un changed at an estimated 94 per cent of capacity. Most mills are now operating at peak rates, although in some cases there has not been adequate steel to maintain capacity operations. Tin plate business takes priority over most other commercial business, although following orders carrying definite preference ratings.

## Bars

## Bar l'rices. Diage 98

Many bar departments of leading steelmakers are spending major time on shell steel requirements of bars and billets. It is estimated that present outstanding inquiry is for 500,000 tons, with prediction that in 1942 consumption in shell steel making will be $1,500,000$ to $2,500,000$ tons yearly.

Far more priority ratings are being noted on bars than ever before, due not only to the expanding defense demands, but to efforts of consumers to get ratings on work that has not had preferences heretofore. Much of this falls in the indirect defense category. With ratings becoming increasingly important, buyers have made a special effort to establish the character of their business, so that preferences could be obtained where justified.
Additional large contracts for small arms adds to already heavy consumption of alloy bars and for: ward orders covered by high priorities are large, extending well into next year. Shipments against steady releases are maintained in volume to hold production at peak. Two Massachusetts arsenals have heavy tonnage on mill books, Watertown recently placing 9500 tons oî remelting carbon stock with two mills while production of the Garrand rifie at Springfield, which has trebled in the last year, is taking a corresponding increase of chromi-um-molybdenum bars. Current consumption of both carbon and alloy bars in New England is now at an all-time high, notably alloys anci the same holds true of alloy forg. ing stock and nickel-steel for forred chains.

Outside of defense, the situation is more drab. Extended shipments and limited supplies for civilian needs are holding this type of huy'ing down and mills are restricting the volume salesmen may take hy tightening allocations for this and other districts. Jobbers are feeling the pinch and whereas normally warehouses distribute the bulk of bar tonnage, the trend has been reversed and jobbers are now selling hut a small fraction of the ag. gregate volume being consumed. Direct mill orders and releases account for most activity.
Narrow flats are among the most difficult to get. Manufacturers of files have large backlogs also and


Many plants doing closetolerance work have found that the "eyes" hold the answer to greater production from present machines. Sight-saving, shadowless lighting has upped production $10-20 \%$

Screwing in "brighter bulbs" is not the answer; high-level lighting must be carefully planned to avoid glare, excessive contrast. Only experienced specialists in industrial lighting can analyze individual needs.

Graybar offers a full line of modern factory and office lighting units, plus skilled help from lighting specialists. Write for bulletin No. 40 on new fluorescent fixtures which save money while speeding production. Department ST, Graybar Electric Company, Graybar Bldg., New York.

## A SINGLE SOURCE FOR

 Complete Lighting Service

There are many places you can use the new RLM fluorescent lighting units to provide more effective, lower-cost light in plant, office and for sales displays - daylight in a dozen ways.


Benjamin Duo-Service Floodiights combine a wide combine a wide reflector with an intensive beam floodlighting Crouse-Hinds floodlight projectors floodlights and searchlights-for yards, sidings, storage tanks, loading platforms and other outdoor areas.
are pressing for deliveries of high carbon flats. Jobbers are selling tool, drill, machinery and other specialties on a mill delivery basis in some instances, inventories having been lowered and broken as to sizes, although builders of machine tools are getting sufficient steel specialties to maintain peak production.
The Edgemoor Iron Co., Edgemoor, Del. recently received a contract for anti-aircraft shells, requiring 20,000 tons of steel.

## Wire

Wire I'rlces, Page 99
Chicago notes that jobbers' stocks of wire, though a little below nor-
mal in relation to present requirements, are generally sufficient to meet current demand. On the other hand, manufacturers' stocks are low. A big difference between this and World war days is noted in demand for military barbed wire. That was a war of stagnation and fixed positions, taking much wire, compared with tactics which are mobile on land and with much emphasis on airplanes today.
In the Birmingham district consumers are not offering a great deal of pressure for delivery. The local wire mill is producing at about 70 per cent of capacity.

Deliveries on new nail orders ex-


For greatest efficiency, centralize your plant modernization programs with one competent concern. Brassert unified service plans and completes engineering projects from simple modernization programs to crecting complete mills-with plans, recommendations and construction work based on wide experience covering every phase of steel mill engineering. If you want to make plant changes with minimum interference to present operations-call BRASSERT!

## BRASSERT SERVICE INCLUDES

Consulting Engineer-ing-covering technical, commercial and financial aspects of present or prospective enterprises.
Design and construction of complete plants, extensions and modernization.

Design and manufacture of specialized equipment andmachinery.
tend to four months and merchant wire, 25 weeks.

## Rails, Cars

## Track Materdal Prices, Page 99

Railmakers are figuring on close to record purchases of rails for 1942 laying to handle the added traffic because of defense. Some tentatively estimate as much as 3,000 ,000 tons of steel will be bought by railroads over the rest of this year.
The Federal Court at St. Louis has authorized the St. Louis \& Southwestern to buy materials for building 500 freight cars in its shops at Pine Bluff, Ark. Among the larger locomotive purchases recently were fifteen 4-8-4 steam freight engines and five 1000 horsepower diesel switchers from Baldwin Locomotive Works.

Some car builders admit that while the industry has plenty of business on order, it could not turn out more than 45,000 to 50,000 cars during the current half even if all the steel required were available, because of the shortage of skilled labor and the general low gear at which the industry has been forced to operate over past months. However, they do not see enough steel in sight to build half of that amount, at the very outside. They are probably more discouraged over prospects than they were a fortnight ago. They have not given up their efforts to obtain more steel, but recent attempts in Washington to obtain relief have failed to bring results hoped for.

## LOCOMOTIVES PLACED

Lehlgh Valley, three 44 -ton diesel-electric switch engines, to General Electric Co., Schenectady, N. Y.
Louisville \& Nashville, elght 4000 h . p. diesel passenger locomotives, to Elec-tro-Motive Corp.
Navy, one 50 -ton diesel-electric switch engine, to Atlas Car \& Mifg. Co., Cleveland.
New York, Ontario \& Western, flve 44ton diesel-electric switch engines, to General Fiectric Co., Schenectady, N. Y. New York, Susquehanna \& Western, four 1000-horsepower diesel-electric locomotives to American Locomotive Co., New York; these are in addition to two recently noted as placed with St. Louls.
St. Louls \& San Francisco, fifteen 4-8-4 type steam frelght locomotives and llve $1000 \mathrm{~h} . \mathrm{p}$. diesel switching engines, to Baldwin Locomotlve Works.

## LOCOMOTIVES PENDING

Natlonal Rallways of Nexico, twenty, 4-8-4 type locomotives and six 2-6-6-2 type locomotives; bids asked.
Terminal Rallroad Assoclation of St. Louis, ten diesel switching engines, costing $\$ 785,000$.

## CAR ORDEIR PLACED

Army, slxteen 50 -ton flats, to HaffnerThrall Car Co., Chicago.
Central of New Jersey, 1000 seventy-ton gondolas, to Bethlehem Steel Co., Bethlehem, Pa.
Delaware, Lackawanna \& Western, 600 fifty-ton steel sheathed box cars and 250 nfty-ton steel gondolas.
Illinols Central, two lounge cars, to own shops.
Navy, 50 10,000-gallon tank cars to the

General American Transportation Corp. Chicngo, and 40 nat ears, ranging from 30 to 70 tons in capaclty, to the Haft-ner-Thrall Car Co., Chlcago.
Pullman Co., 20 coaches, to PullmanStandard Car Mrg. Co., Chicago.
St. Louis Southwestern, 500 frelght cars to tis own shops at Pine Bluff, Ark., following recent authorization by district court.
United Frult Co., 1000 banana cars, to Pullman Standard Car Mfg. Co., Chlcago,

CAR ORDERS PENDING
Argentine State Rallway, 175 to 500 box cars and 50 baggage cars, bids asked.
Navy, one to ten 50 -ton hat cars and one to slx 50 -ton boxcars for Sewells Point, Va.; blds July 22.
New York, Chicago \& St, Louls, 250 nfty-ton drop-end gondolas and 100 arty-ton automobile cilrs, bids asked.
Wabash, 100 frelght cars, permission asked of District Court for constructlon In own shops.

## HUSES 13OOKLD

Navy, forty-three 41-passenger a.c.f. motor coaches, Hall-Scott horizontal engine, to The a.c.f. Motors Co
St. Louls Public Service Co., 340 buses, to Mack Truck Corp. and Yellow Truck \& Coach Mrg. Co.
Twin Coach Co., Kent, O. has booked the following 33 coaches: From Denver Tramway Corp., Denver, twenty 27 passenger coaches; Bremerton-Charleston Transportation Co., Bremerton, Wash., one 27 -passenger; New Haven \& Shore Line Rallway Co., New London, Conn., two 23-passenger coaches; Stelnway Omnibus Corp., New York, llve 40 -passenger coaches; New York City Transit System, flve 40 -passenger coaches.

## Pipe

Pipe l'rices, l'age 99
Plans seem to be fading on construction of new cross-country pipelines to alleviate transportation problems on crude petroleum and refined products. There is less push from Washington, with emphasis shifted to construction of tank cars and tankers.

Tubular goods sales offices are swamped with oil country buying. The new tonnage continues to flow in at unprecedented rates, although much is recognized as duplication on the part of buyers, who have no intention of taking delivery on 100 pel cent.

Virtually all oil companies are placing their entire needs with sev. eral different sources of supply, which accounts for the tremendous aggregate of new business placed over the past few weeks. Recos. nizing that priority materials come first, oil country buyers have been actively competing, which has re sulted in a pyramiding of new or ders.

Other tubular goods markets re main fairly static. Orders show no inclination to slow down, and continue to exceed shipments in virtually all types and sizes. Jam in alloy and carbon mechanical tubing is un changed. Galvanized pipe produc tion is still declining.

At Boston, all types of steel tubing, including alloys, are active, producers taking but part of the ton-


S tandard Steel Works Division of The Baldwin Locomotive Works traces its origin to the Freedom Forge which was established at Burnham, Pa., in 1795. For many years Standard's 119-acre plantatBurnham, Pa., has kept pace with modern developments in the manufacture of steel products. To Standard's long experience is added modern production equipment, expert metallurgical control during every step in manufacture, and a highly trained personnel.
nage offered and this under priority rating for defense needs. Furniture requirements, which are heavy, are becoming increasingly tight. Aircraft needs are getting first call for alloys, but consumption by bicycle manufacturers and miscellaneous fabricators continues high during a period when demand would nor mally be slackening. A builder of motorcycles at Springfield, Mass. has booked an order for 5000 special light army units for Great Britain, $\$ 2,050,000$, deliveries to start in September and to be completed in February, 1942. Mostly for defense, partly indirect, steel pipe is active with galvanized stocks well depleteri with most re-sellers. Black pipe is being substituted where possible. Distributors with stocks now being
on a quota basis as regards replace. ments, inventories are husbanded cautiously. Cast pipe buying has improved materially, large tonnages having been placed to supplement steady releases against blanket contracts.

## CAST PIPE PLACED

640 tons, water system, flying school, near Lemoore, Callf., to United States Pipe \& Foundry Co., Burlington, N. J.

## CAST PIPE PENDING

328 tons, the Dalles, Oreg., 12-in. plpe, steel or cast iron; bids Aug. 4.

## Structural Shapes

Structural Shape Prices, Pare 98
The greater scarcity of structural steel is shown by the supposed

## ATLAS ORE TRANSFERS



100 ton-3 compartment Ore Transfer. Roller Bearing Journals. Doube end control for car operation. Individually operated discharge gales.

## OTHER ATLAS PRODUCTS

> Gas-Electric and Diesel-Electric Locomotives . . . Electric Transfer Cars for Blast Furnaces and Steel Plants . . Stockhouse Scale Cars for Blast Furnaces . . . Concentrate and Calcine Cars for Copper Refineries . . Automatic and Remote Controlled Electric Cars . . . Pushers, Levellers and Door Extractors... Coal Charging Lorries, Coke Guides and Clay Carriers... Atlas Patented Coke Quenching Cars for By-Product Coke Ovens ... Atlas Patented Indicating and Recording Scales .. Special Cars and Electrically Operated Cars for every conceiva ble Purpose.

## The Atlas Car \& Mfg. Co.

Engineers<br>Manufacturers

CLEVELAND, OHIO
opening of bids on seven hangars for the government in the South -but on the designated date there were no bids to open. So far this may indicate a choked-up condition among fabricators of the South only, but doubtless the rest of the country is not far different. Probably high priority ratings will have to be given defense structural work in the future to get inquiries honored.
There is talk of issuing priority ratings on bridges for main highways and railroads as the army recognizes that an artery of fast highways is necessary for proper defense. Much of the current work is state highway construction, which might be postponed but for the above reason.
Enough work is in sight to keep awards of average tonnage, provided builders can get the steel. However more and more do nonessential projects become abandoned. Fabricators can still make better promises on standard sections than on special ones. Thus 400 light shapes are needed for an extension of the Cleveland airport, the buyer so far refusing standard shapes because they are heavier than needed and more costly.
Chicago reports that in several instances recently wood piling was substituted for steel.

## SHAPE CONTRACTS PLACED

10,000 tons, bearing piles, additional requirements, dry docks 5 and 5 , navy yard, Brooklyn, N. Y., divided equally between Bethlehem Steel Co., Bethlehem, Pa.. and Carnegle-Illinols Steel Corp., Pittsburgh; Dry Dock Associates Inc., New York, contractors.
6600 tons, three warchouses, army supply depot, Charlotte, N. C., 4400 tons to IRethlehem Steel Co., Bethlehem, Pa., and 2200 tons to Ingalls Iron Works Co., Birmingham, Ala.; William Muirhead, Durham, N. C., contractor. 4000 tons, shop bullding, gear reduction department, General Electrle Co., West Lynn, Mass., to American Bridge Co., Pittsburgh.
2500 tons, low-lift pumping station, fllter building and administration bullding, south district flltration plant, city of Chleago; to American Bridge Co., Pittsburgh, through Strobel Construction Co., Chicago; bids June 26.
1900 tons, foundry bullding, No. 290, Brooklyn, N. Y., for U. S. government, to American Bridge Co., Pittsburgh.
1800 tons, second addition, warehouse for navy at Oakland, Calli., to Columbia Steel Co., San Francisco; formerly reported to American Bridge Co.. Piltsburgh.
1560 tons, three warehouses, Ogden, Utah, for army, to Kansas City Structural Steel Co., Kansas City, Kans.
1500 tons, Wolf Creek ordnance plant, Milan, Tenn., for government, to Wis

consin Bridge \& Iron Co., Milwaukee. 775 tons, addition, power house, Rivesvile, W. Va. to Fort Pitt Bridge Works, Pittsburgh.
600 tons, overhead crossing, FAGM-414 Burlington, Iowa, for state, to Amer can Bridge Co., Pittsburgh.
550 tons, bulkhead gates, spec. $1500-1$ ) Coram, Calif., to Southwest Welding \& Manufacturing Co., Alhambra, Calif.
453 tons, two bridges in Illinois for Nickel Plate railroad; 401 tons, Ramby and 52 tons, Charleston, both to American Bridge Co., Pittsburgh
415 tons, six magazine buildings, West land, Oreg., for army, to Poole \& Mc Gonigle.
400 tons, substations for Bonneville project, to Bethlehem Steel Co., San Francisco.
50 tons, shop hangar, Bolling Field, D. C., to Belmont Iron Works, Eddystone, Pa.; August Stang, Philadelphia, contractor; bars to Taylor-Davis Co., Philadelphia.
342 tens, pilling, flood protection, Paw ducah, Ky., for U. S. engineers, to Bethlehem Steel Co., Bethlehem, Pu.; Hoeffken Bros. Construction Co. \& G. E. TIllman, Centralia, Ill., contrite tors.
315 tons, machine shop extension and office building, Diesel engine division, General Motors Corp., Cleveland, to Fort Pitt Bridge Works, Pittsburgh
300 tons, crane runway, General Electric Co, Buffalo, to R. S. McMannus Steel Construction Co., Buffalo.
285 tons, hangar, control tower and boiler house addition, Eglin Field, Fla. to Ingalls Iron Works Co., Birmingham, Ala., $\$ 70,483$, based on evaluated bids (shipments on government $B / L$ ); bids June 27, U. S. engineer, Mobile inv. 486, awarded July 2; Decatur Iron \& Steel Co., Decatur, Ala., and Jones \& Laughlin Steel Corp. New Orleans other bidders.
280 tons, hangar and boiler house, Fort Lewis, Wash., to Paxton \& Vlerling Iron Works, Omaha, Nebr
265 tons, bridges for Illinois Central, East Dubuque, Ill., to American Bridge Co. Pittsburgh.
235 tons, state bridge, Becket, Mass., to American Bridge Co., Pittsburgh; Graves \& Hemmed Inc., Great Barring ton, Mass., contractor, $\$ 114,074.60$.
233 tons, building, National Carbon Co., Clarksburg, W. Va., to Bethlehem Steel Co., Bethlehem, Pa.
225 tons, crane runway and small struclures, naval depot, Bayonne, N. J., to Harris Structural Steel Co., New York, through Wigton-Abbott Co., New York, contractor.
215 tons, three boiler houses, Kingsbury ordnance plant, La Porte, Ind. to Amerlean Bridge Co., Pittsburgh.
187 Ions, Dayton bridge, La Salle, Ill.. for La Salle county, to American Bridge Co., Pittsburgh, William J Howard Inc., Chicago, contractor.
175 tons, bulling addition, Republic Carbon Company, NIagara Falls, N. Y. to the Bethlehem Steel Co., through DeHamel Contracilng Company, Cleve land.
165 tons, bridge, Humboldt county Calif., for state, to Minneapolis-Moline Power Implement Co., MInneapolis.
125 tons, telephone exchange extension, Melrose-Woodbine, Cleveland, for Ohio Bell Telephone Co., to Fort Pitt Bridge Works, Pittsburgh
115 tons, various bridges, in washington and Montana, for Northern Pacific railway, to American Bridge Co., Pitts burgh.
105 tons, shop and boiler house addition Camp Stewart, Ga., to Ingalls Iron Works, through Albert \& Harrison Inc. New York, contractor

100 tons, galvanized bus and switch rucks, Seattle light department substation, to Bethlehem Steel Co., Seattle. 100 tons, warehouse and ruse building, navy department, Oyster Bay, Wash. to Isaacson Iron Works, Seattle; Hoard Engineering Co., Seattle, contractor.
00 tons, addition, plate handing building, Corligan-McKinney works, Repub lie Steel Corp., Cleveland, to Fort Pitt Bridge Works, Pittsburgh.

## SHAPE CONTRACTS PENDING

18,000 tons, transmission Lowers, Bonne ville-Milway Coulee lIne, Coulee to Spokane line and Covington to Chehalls line Wash. Columbia Steel Co., San Francisco, low.
2750 tons, buildings and warehouses, signal depot, Avon, Ky., war depart men.

2650 tuns, airplane repair shop, Hill field, Ogden, Utah.
2500 tons, building addition, Bell air craft Corporation, Niagara Falls, N. Y., Austin Co., Cleveland, contractor.
2000 tons, factory building, Allegheny Ludlum Steel Corp., Dunkirk, N. Y.
2000 tons, sheet piling, including 400 tons $H$ columns, quay wall, Hunters Point drydock, San Francisco; Healey \& Tibetts, 1100 Evans street, San Francisco, contractors.
1500 tons, three hangars, Lake Charles La.; bids July 18 to U. S. engineer, New Orleans.
1300 tons, seven air corps hangars, $184=$ foot demountable type DH-1, three for Dothan, Ala.; three for Tuskegee, Ala. and one Hattiesburg, Miss., no bids recelved under pro. 477 to U. S. en-

way Homestead Plug Valves as flow changers, switching valves, or to operate single or double-acting pistons not requiring a mid-position shutoff.

1. You save in first cost, maintenance and operating time by requiring fewer valves and fittings.
2. You save by getting Homestead's typical long, trouble free operation, and extremely low cost-per-year valve service.
These valves are available in "Lever-Seald" and "Cam-Seald" types, sizes from $1 / 2$-inch to 12 -inch, cast in bronze, acid-metal, semi-steel, steel, Monet, Ni-Resist, or special alloys for specific jobs; for temperatures to $1000^{\circ} \mathrm{F}$. and corresponding pressures. Get this double economy; specify and order Homestead 3 -way and 4-way Plug Valves.
HOMESTEAD VALVE MFG. COMPANY P. O. BOX 22
 Send for Valve Reference
Book No, 38 and for apecal low prices on your
gineer, Moblle, Ala.
877 tons, bridge over Los Angeles River and Southern Pacific tracks, Los Angeles county, Callfornia, for state; bids readvertised.
750 tons, plant addition, Champion Ma chine \& Forge Co., Cleveland.
515 tons, bridge, route FA-5, 23-X1F, Lincoln, III., for state.
502 tons, beam bridge, Lincoln, Logan county, Illinois, Mississippi Valley Structural Steel Co., Decatur, Ill., low; bids July 15.
500 tons, tractor warchouse, J. I. Casc Co., Racine, Wis.
448 tons, Including 63 tons wrought iron plates, Wyman crossing under Maine Central tracks, Falrheld, Me.; blds Aug. 6, Augusta.
400 tons, H columns, De Haro Housing project, San Francisco; blds soon.
375 tons, bridge, Youngstown, O., for

Mahoning county; bids July 15.
350 tons, buildings, Boeing Airplane Co., Connell, Kans., through Defense Plant Corp.
300 tons, garage, fire station and locomotive crane shed, Bayonne, N. J. navy.
240 tons, bridge, Mile Brook, WInslow Kennebec county, Maine; blds July 23 , State Highway commission, Augustia; also 44 tons, village bridge over Lemon stream. Stark, Mc., same date.
220 tons, building, Everett, Mass., Boston, Consolidated Gas Co.
215 tons, boller houses, Kingsbury ordnance plant, La Porte, Ind
186 tons, highway bridges, state of Missouri; blds July 28.
175 tons, bullding, East Rlver Drive, New York City.
165 tons, underpass, FAGM-44-(2), Man-

number of hand-operated lathes. Moreover, each piece will receive exactly the same treatment, ensuring uniformity, fewer rejects and a better finished product. Although every Udylite automatic is built especially to fit its job, it may be easily and inexpensively adapted to a wide variety of shapes and sizes of work.

If you are now buffing or polishing any quantity of parts by the slow manual system it will pay you to investigate the many worthwhile advantages of Udylite Āutomatic Equipment. Our engineers will be glad to help you solve your partsfinishing problems. Write today and get complete details.

## THE UDYLITE CORPORATION

Detroit, Michigan



Return-type, dial, automatic pol-isher-12' diameter table, eight ring-type heads. Ideal for high iroduction of round or oddly shaped parts.


Ring-type, flocting polishing head-exclusive on Udylite full automatics. Easily adjusted Provides right pressure at al points.
dan, N. D., for state.
140 tons, bridge construction, No. 2188 Milltown, Ind., for state.
115 tons, warehouse bullding, spec. 1530 D, Mountain Home, Idaho, U. S. Bureau or Reclamation.
110 tons, gas tank foundation, Brooklyn N. Y., for Brooklyn Union Gas Co.

105 tons, fuse line boiler house, Kings bury ordnance plant, La Porte Ind
102 tons, factory and office bullding Tremco Manufacturing Co., Cleveland Paugh \& Brown, contractors.
100 tons or more, 50 to 70 30-fost stee towers, various locations, Civil Aero nautles Authority, Washington; Blaw Knox Co., Pittsburgh, apparently low $\$ 1000$ each; bids July 3, pro. 1008.
Unstated, motor repair depot, Fort Lewls, Wash.; Teufel \& Carlson, Seattle, low.
Unstated, steel warehouse, Anderson Ranch dam, near Mountain Home, Idaho; blds to Denver, July 25; 1530-D.
Unstated, 314-foot steel and concrete state bridge ( $\$ 163.000$ estimate) near Cut Bank, Mont.; bids to Helena, July 27.

## Reinforcing Bars

Relnfording Bar Prices, Page 99
First allocation of reinforcing bars was made Thursday by the Reinforcing Bar Sub-committee of the Steel Indudstry Defense Committee of OPM. Approximately 40,000 tons were involved, all carrying high ranking priorities. Tonnage was allocated on the basis of capacity, all mills participating. It is expected the action will become a regular procedure hereafter. Jobs requiring certain types of bending were allocated to mills equipped for such work. It will probably force into the background all commercial tonnage now on the books. It will probably make deliveries imbossible on jobs carrying no priorities unless such jobs can be sold out of stock. Established prices will apply on the allocated tonnage. An effort was made to distribute tonnare according to location of the mills so that excessive freirht would not be required on any joh. Prices f.o.h. nearest basing point will probablv apply.

Demand for mesh is heavier and close to 50.000 tons of bars and mesh await award along the midAtlantic seaboard. Original tonnages for numerous naval and army bases are being supplemented by substantial new releases.

Difficulty experienced by contractors in purchasing concrete reinforcing bars for non-defense projects is illustrated by inability to place close to 600 tons for a low. rent housing job at Providence, R. I.

## CONCRETE BARS COMPARED

## Tons

Week ended July 19
Week ended July 12
Week ended July 5 .
Week ended June 28 This week, 1940 Weckls average, 1941 Weekly average, 1940 Weekly average, June, 1941 Total to date, 1940 14.972

15,360 5.437 8,861 8,861
$8,40 \%$ 8,402 11,318
9,661 $11.2 \%$ Total to date 191

Includes awards of 100 tons or more

## REINFORCING STEEL AWARDS

3000 tons, Puget Sound navy yard storehouse, to Northwest Steel Rolling Mills Seatte; H. S. Wright Seattle, and L. H Hofrman, Portland, contracts.
2400 tons, housing project, Detroit, to Housman Steel Co., Detrolt, through Cauldwell-WIngate Co., New York, contractor.
2200 tons, quartermaster warehouse, Seattle, to Bethlehem Steel Co., Seattle; Western Construction Co., Seattle, contractor.
2100 tons, supply pler Puget Sound navy yard, to Bethlchem Steel Co., Seattle; Sound Construction \& Engineering Co., Seattle, contractor.
1000 Lons, additional requirements, dry dock and facilltles, navy yard, Portsmouth, Va., to Jones \& Laughlin Steel Corp., Pittsburgh.
450 tons, three warehouses, army supply depot, Charlotte, N. C., to Easterby \& Mumaw Co., Charlotte, N. C.; William Muirhead, Durham, N. C., contractor.
440 tons, Bureau of Reclamation, inv. 44,826-A-1. Friant, Callf., to Bethlehem Steel Co., San Franclsco.
350 tons, additional requirements, arms base, Trinidad, B.W.I., to Jones a Laughlln Steel Corp., Pittsburgh.
260 tons, navy magazines and storehouse, Oyster Bay, Wash., to Bethlehem Steel Co., Seatle; Hoard Engineering Co. Seattle, contractor.
235 tons, bars and mesh, state highway project, route 6 , section 21 A , Denville relocation, New Jersey, to Truscon Steel Co., Youngstown, O.; Unton Bullding \& Construction Corp., Newark, contracto:
225 tons, machine shop, Falk Corp., Milwaukee, to W. H. Plpkorn Co., Mllwau kee; Klug \& Smith Co., Milwaukee, contractor; bids June 30 .
200 tons, U. S. Engineer, Ft. Crook, Neb., to Ceco Steel Products Corp., Omaha, Nebr.
166 tons, Bureau of Reclamation, inv. 17007, Mancos, Colo, to Sheffleld Steel Corp., Kansas City, Mo.
161 tons, bridge, El Reno, Okla., to J. B. Kleln Iron \& Foundry Co., Oklahoma City, Okla
160 tons, St. Mary's hospital, Rochester, N. Y., to Bethlehem Steel Co., Bethlehem, Pa.; Faniel J. Meagher, contractor.
155 tons, building, American Nedical Assoclation, Chicago, to Concrete Steel Co., Chleago; George A. Fuller Co.. Chicago, contractor.
150 tons, naval ordnance plant, Indianapolls, for Lukas-Harold Corp., to Republic Steel Corp., Cleveland.
150 tons, overhead vladuct, St. Johnsbury, Vt., to Truscon Steel Co., Youngstown, O.; Charles I. Hosmer Inc., contractor.
120 tons, overpass, route 58, Norfolk County, Virginla, to Virginia Steel Co.; W. N. Jackson, contractor.

113 tons, bridge, Barber, Kans., to Sheffleld Steel Corp., Kansas Clty, Mo.
111 tons, bullding, Great Lakes Naval Training Statlon, Great Lakes, Ill., for navy, to Joseph T. Ryerson \& Son Inc., Chicago; Henry Ericsson Co., Chlcago, contractor; blds July 10.
110 tons, overpass, Little Rock, Ark., to Jones \& Laughiln Steel Corp., Pitts burgh, through Arkansas Foundry Co. Little Rock, Ark.
107 tons, Bureau of Reclamation, inv $33,507-A, G r a n g e r$, Wash., to Bethle hem Steel Co., Seattle, Wash.
106 tons, building, Oscar Mayer \& Co. Chlcago, 10 Bethlehem Steel Co., Bethlehem, Pa.; sill Construction Co., Chlcago, contractor.
103 tons, bridge, Wyandotte, Okla., to J. B. Kleln Iron \& Foundry Co., Okla-
homa City, Okla.
100 tons, WPA project, Kansas City, Mio. to Sherfield Steel Corp., Kansas City, Mo.
100 tons, Bird street bridge, Boston, to Northern Steel Co., Boston; Coleman Bros., contractors.
100 tons, administration building, naval training station, Great Lakes, Ill., to Joseph T. Ryerson \& Son Inc.
100 tons, signal corps depot storage bulldings, Fayette county, Kentucky, to Truscon Steel Co., Youngstown, O. Fleisher Engineering Co., contractor.

## REINPORCING STEEL PENDING

2350 tons, Anderson Ranch dam, Idaho; Morrison-Knudsen Co., Boise, and as soclates, low, $\$ 9,986,203$, to Reclama tion bureau; materials by bureau.
2000 tons, U. S. army base, Oklahoma

City, Okla.
850 tons, propeller laboratory and test stand, Wright fleld, Ohio; Ferro Concrete Construction Co., contractor.
750 tons, bars and piling, estimated, engine test bullding, Brookley Fleld, Mobile; Foster \& Crelghton Co., Nashville, Tenn., low; bids under inv. 485 to U. S. engIneer, Mobile.
660 tons, plane engine test bullding, Studebaker Corp., South Bend, Ind. general contract to Consolidated Con struction Co., Chicago; bids July 10.
600 tons, graln elevators, Standard Milling Co., Burfalo, N. Y.; MckenzleHague Co., contractor.
E00 tons, storage bulldings, ammunition depot, Hingham, Mass.
400 tons, engine test stand bullding addition, Patterson fleld, Ohlo; Charles H. Shook, contractor

# Leaves from a Fire Fighter's Notchook 

WATCH PAINT SPRAY BOOTHS and don't let paint or lacquer "build up" on insides of units. Residue is highly flammable and often will burn despite all extinguishers $u$ ever apply light coating of can do. Did you ever apply light corears Prevents paint from sticking; cuts fire hazard Cont
DONT SPEED UP PAINT DRYING OVENS beyond fan capacity. When you step up temperatures you increase flam 1 mable vapors; create explosive fire hazard. If you need more drying, put in more ovens. orfans-but don't risk dangerous temperatures.

[^6]
# Walter Kidde © Company, Inc. 

732 West Street, Bloomfield, N. J.
Ve have reprinted a series of these tips on fire protection. Send the coupon and we will send complete series-file bound.

NAME
COMPANY.
ADDRESS.


352 tons, bridge, across Los Angeles River and Southern Pacille Co. tracks, Los Angeles county, Callfornia, for state; blds being readvertised.
300 tons, three small bulldings, navai depot, Bayonne, N. J.
300 tons, bullding, American Can Co., Newark, N. J.; Turner Construction Co.. New York, contractor.
225 tons, building, Boston Consolldated Gas Co., Everett, Mass.
210 tons, Washington state highway projects, King county; blds to Olympla, July 29.
200 tons, Broadlawn hospital, Des Moines, Lowa; blds July 15
158 tons, high school stadium, Moline, Ill. bids in.
100 tons, Washington state highway projects; blds in at Olympia
Unstated, $\$ 200,000$ plant addition Contlnental Bakery Co., Seatlle; Daniels \& Turnquist, Seattle, contractors.
Unstated, motor repair depot Fort Lewls Wash.; Teufel \& Carlson, Seattle, low \$1,033,221.

## Pig Iron

## Pla Iron Irices, liage 100

The pig iron supply situation be comes more acute as steelmaker: have less to sell in a merchant way. as Britain wants considerable and as scrap supplies tighten. Luckily, as yet there has been no great epidemic of worn out linings, though many producers have fingers crossed.

At Chicago an inquiry for 15,000 tons of pig iron has been issued by railroad supply interests, but thus far no producer has been willing to cover any part of it. Makers of iron car wheels report inability to obtain sufficient iron to meet the demand for new wheels.

The Boston district merchant pirs iron producer has lowered reserves on all grades to a point current demand must be met by day to dav output. As a result official priorities and allocation of iron supplies; will be welcomed, thus removin! the pressure on the furnace by regular and new customers. While Allocations will not change materiallv the distribution of the unit, the seller will be taken off the spot by official rulings covering shipments. Production at Everett continues at capacity and the present blast is the most prolonged in recent years with no indications of a recess. Supplies of ore and other raw materials are ample. For months the Mystic has been allocating tonnage. To do this. rescrves have been reduced, the load being heavy on merchant producers with supplies coming from steel works units and the South far below normal. Customers with foundries outside the district have been supplied from time to time, part for the New England unit and part to branch shops. Foundry and steel works melt in the district continues near peak with backlogs heavy.

Export inquiries (apart from the British) continue to be noted, some from American copper companies with properties in South America, where they have foundries for producing grinding equipment and the like.

## UNICHROME "AIR DRY"

 RACK COATING
## Remarkably resistant

 plating rack insulation drys in air-at room temperature!Here's the new rack coating with a combination of properties that means valuable time and labor savings in the plating room.

Unichrome "Air Dry" Rack Coating withstands normal wear, hot cleaners and all plating solutions - without peeling, stripping or splitting. It produces thick, flexible coatings that: 1-Cannot contaminate the plating bath; 2-Adhere firmly even in severe plating cycles; 3-Cut cleanly and easily at the contacts.

Here are the seven big timeand money-saving advantages at a glance.

INSOLUBLE-withstands hot cleaners and all plating solutions
SAFE - contains no ingredients harmful to plating solutions
TOUGH-withstands wear and tear of handling
FLEXIBLE - withstands repeated flexing and bending
DURABLE-reduces the need ficy r coating
CONVENIENT-any part can be patch ed without recoating the entire rack

EASILY APPLIED-dipping is done in the container in which it is ship-ped-the material dries at room temperature.
Address requests for further information or a trial order to the nearest office below.

## UNITED GHROMIUM

INCORPORATED
51 East 42 nd Street, New York, N.Y. 2751 E. Jefferson Ave., Detroit, Mich Waterbury, Conn.

## Scrap

## scrap Prices, Page 102

The tendency is more and more to eliminate the dealer with transactions more direct from original source direct to mill. Often transactions are of a barter character, scrap for finished products. However the dealer is still recognized as performing a useful function and present tendencies are merely a product of the emergency.

At Chicago iron and stecl scrap volume, while high, continues to fall far short of current needs. Some concern is expressed as to how long the situation can go on without the government taking action to stimulate the flow into consuming channels. Mills resort more to direct dealing with scrap producers, and while not necessarily circumventing brokers and dealers, are getting producers to earmark material for their own mills. Some consumers, like foundries, are sending their own trucks to dealers yards. Dealers yards are kept clean as scrap moves out almost as fast as it moves in. Numerous sharp practices are developing, but these, of course, are difficult to pin down.

At Buffalo a tighter situation rules is many smaller foundries work on a hand-to-mouth basis on supplies, hut the trade is not without its more favorable points. The leading consumer of the district is able to add to reserve stocks, but not in the quantities necessary for adequate stocks for the future.

This consumer reports continued shipments from upper lake points and by barge from midstate and Seaboard collection centers. In addition, increased pig iron output is being used for ingot production.

At Pittsburgh scrap sources believe certain district mills will face serious curtailment of operations unless scrap flow increases shortly. Two to three weeks supply is about the most some mills can muster, and consumption runs ahead of supplv. The situation is so tight that mills will be forced to slow down in August or suspend entirely. On top of this comes the well-known fact that scrap flow diminishes after Oct. 1 because of weather conditions, and the summer ordinarily is used to build up stockpiles in anticipation of the winter dry-up. How. ever, this is obviously impossible now.

Cincinnati estimates that district steel producers are covered about 45 days ahead though foundry scrap piles are about two weeks' supply. From the Middle West generally come reports that numerous truckers who circulate among farmers and other sources of scrap have sold their trucks and gone to work on government projects or to the factories in the cities because of better wages and steady employment.
It is believed that the amount of scrap being exported now is negligible. There is confusion as to what the price limitations are on export tonnage.
Watertown, Mass. arsenal is of fering for sale this week machine

## an thral comblinimos:

INCREASED PRODUCTION + DECREASED TOOL COSTS

# you get both with JRNOP MOHTL. MOLYBDENUM-TUNGSTEN HIGR Sp\&ED STBEL 




# NAME YOUR PUMPING JOB... and there's a Roper to handle it 



Thick or thin acid or alkali . . . corrosive or combustible . . . there is a Roper to handle any clean liquid. Pumps standard fitted, bronze fitted and all bronze . . . capacities from one to 1000 gallons per minute . . . pressures up to 1000 lbs . per square inch . . . speeds up to 1800 revolutions per minute . . . mountings and drives for every practical need.
You can get a Roper Pump that is practically custom-built for your job.

Write for Catalog 939
with illustrations, cutaway views, drawings, dimension and pumping capacity tables, and complete information on the Roper line.
GEO. D. ROPER CORP., ROCKFORD, ILL.

shop turnings accumulated by Feb. 15, 1941, an estimated 2250 tons, top price to be $\$ 9.56$ f.o.b. subject to any changes made in the general price setup at Washington.

## Pacific Coast

Seattle - Contractors on non-defense find it extremely difficult to place orders for steel, both mills and jobbers giving preference to governmental requirements. Rolling mills and fabricating shops in this area face increasing backlogs despite capacity operations.
Awards of concrete bars featured the situation this week, 7500 tons having been placed for navy yard
and army projects, of which 3000 tons went to Northwest Steel Rolling Mills, Seattle, the balance to Bethlehem Steel Co., Seattle. Largest project pending involved 2350 tons for the Anderson Ranch dam, Idaho, general bids in, materials to be furnished by Reclamation bureau. Washington state will open bids July 29 for seven highway bridges, requiring 210 tons.

Shapes awards were not heavy but fabricators are more interested in clearing current orders. Bethlehem took 400 tons for Bonneville project substations, and 100 tons for bus and switch racks, Seattle light department, while Isaacson Iron Works, Scattle, was awarded 100

## MECHANICAL POWER PRESSES

of
ALL TYPES AND SIZES
Horn
Reclinable
Straight Side
Roll and Dial Feeds
Double Action
Double Crank
Punching
Toggle

Our Speciality:
Patent Percussion Power
Presses
$\underset{56 \text { Avenue A. }}{\text { ZEH }}$ \& HAHEMANN CO.

tons for navy warehouse and fuze buildings, Oyster Bay, Wash.

While no large plate projects are pending, the shipyards use increas ing tonnages. Gas storage and distribution systems at airports and cantonments call for considerable quantities of plates and sheets.

Important near future projects include the proposed aluminum plant at Tacoma, rebuilding the Narrows bridge and Tacoma's $\$ 11,000,000$ Nisqually river power plant.

Cast iron business pending exceeds 750 tons for projects in Seattle and Shelton, Wash. No large tonnages are up for figure but dealers report a steady demand for small lots out of stock.
Jobbers state that while sheets and plates are most active, all stock items move in a heavy and steady volume. It is difficult to make replacements and on some items deliveries are uncertain. Most business comes from Eastern centers by rail due to lack of water transportation. Steamer space available is freighting mostly heavy materials required in shipbuilding.
While mills state supplies of steel scrap are ample for present needs, receipts are not large. Cast iron scrap continues scarce and in strong demand, as a rule maximum prices allowed under the code prevailing.
San Francisco - Outstanding was the opening of bids on 18,000 tons of transmission towers for lines between Bonneville-Midway Coulee, Coulee to Spokane and Covington to Chehalis, Wash., on which Columbia Steel Co. submitted the low bid of $\$ 2,042,846$ tons. Awards of structural aggregated 4146 tons, bringing the year's total to 390,246 tons as compared with 116,293 tons for the corresponding period in 1940. Pending business has increased and now calls for more than 108,000 tons.
The largest plate letting went to Darby Products \& Steel Plate Co. and involved 400 tons for two 500 , 000 -gal. tanks and towers for the military airport at Mesa, Ariz. Awards totaled 600 tons, bringing the aggregate for the year to 423 ,828 tons, compared with only 41,878 tons for the same period a year ago. Pending business calls for more than 91,000 tons.
Demand for cast iron pipe, especially in small lots of less than 100 tons, remains strong and distribu tors still have difficulty in maintain ing sufficient stocks to take care of immediate demands. Awards aggregated 1330 tons and brought the total to date to 31,339 tons as compared with 20,490 tons for the corresponding period in 1940.

Among the larger reinforcing bar lettings were 440 tons for the Bu reau of Reclamation for delivery at Friant, Calif., booked by Bethlehem and 107 tons for the same governmental department for delivery at Granger, Wash., taken by the same. Awards totaled 679 tons and brought the aggregate for the year to 57,443 tons, compared with 89 , 578 tons for the same period last year.

## Canada

Toronto, Ont. - Sustained heavy buying of a widely diversified nature continues in the Canadian steel markets with practically all orders directly associated with war. As a result of the piling up of backlogs mills are fully booked on sheets and plate and have withdrawn insofar as orders for delivery to the end of the year are concerned. There is no abatement in new placings and most of the business now is going to the United States. The big and increasing demand for steel on war materials production account is tax ing to the limit Canada's rolling mill capacity and while expansion programs are underway at most of the steel mills here it will take several months before much additional capacity is available. The Steel Co. of Canada, Ltd., Hamilton, Ont., is expected to blow in its new furnace early in August and this will be fol lowed by another open hearth, nearing completion. While warehouse operators are taking care of some of the smaller business, supplies are gradually disappearing and difficulty is reported in replenishing owing to the more rigid enforcement of priority schedules.

One of the principal sheet produc ers is now out of the market. While Canada's present production of plate is fully covered by contract and priority rulings to the end of the year, and well into 1942, demand continues to far outstrip the supply and many users are continually coming into the market in an effort to make large purchases. All new orders being closed are going to the United States and local representatives of American companies report a deluge of inquiries. Unless there is relief on a broad scale from across the border, there is a possibility that this country will be un able to maintain its shipbuilding program on schedule. Heavy demand also continues for armor plate for war tank construction.

Fresh orders for merchant bars pile rapidly and deliveries on new orders are being extended to the end of the year, producers not accepting contracts into 1942. About 90 per cent of the new orders come under priority rulings. There is some surplus output contracted for by the automotive industry, agricul-

## Tool Steel Scrap <br> Cents per pound, to consumers f.o.b. shipping point

Tungsten types
For each $1 \%$ tungsten contained Solid scrap containing over $12 \% \ldots 180$ Solld scrap contalning 5 to $12 \%$ 1.60
over $12 \%$............ over $12 \%$ 1.40 Turnings, millings, solids under इั\%.1.25 Molybdenum Types
Solld scrap, not less than $7 \%$ molybdenum, 0.50 vanadlum.
Turnings, millings, same basis
Solid scrap, not less than $3 \%$ mo-
lybdenum, $4 \%$ tungsten, 0.50 vanadium
Turnings, millings, same basis
tural implement makers and various other consumers that cannot be strictly classified as war industries, these obtaining deliveries in a somewhat limited manner.
Structural steel awards continue in large volume, with individual orders ranging from 50 to 10,000 tons. Aluminum Co. of Canada, Ltd., has bought much in recent weeks for its $\$ 60,000,000$ plant expansion program and will require an additional 15,000 to 20,000 tons. Big orders are appearing from the Government on war construction with upward of 10,000 tons pending.

Pig iron producers are unable to meet demands other than those engaged in almost full time war work. Under the priority rulings foundry interests that are working on war materials to the extent of 40 per cent or less do not come into the preferred list and therefore are unable to obtain iron. No improvement is reported in production of foundry and malleable iron, the output averaging about 1000 tons per week, against consumers' demands of more than double this.

The announcement of maximum prices for cast scrap and stove plate

WORLD'S LARGEST EXCIUSIVE MANUFACTURERS OF KNIVES
SPEED
your
praduction with


## OHIO high quality IKNIVIES

O. K. SLITTERS AND SHEAR BLADES give smoother, more efficient, longer runs with more hours between grindings. Exact metallurgical specifications and electrically controlled furnaces give uniform hardness and temper to each knife. Uniform dimensions obtained by the latest grinding equipment. Furnished in Carbon Steel, High Speed, HiCarbon, Hi-Chrome, and Alloy Steels. For the knives with the longer lives that give better results at lower costs, specify O. K. SLITTERS AND SHEAR BLADES nowl

## THE <br> STARTING POINT of (14)

FORGINGS
CARBON-ALLOY
AND SPECIAL
BASIC ELECTRIC
STEELS


COMPLETE control of all processing from sclection of the melting charge to the finished condition is the N.F.\& O. guarantee of quality in forgings furnished to your specifications - Smooth Forged, Hollow Bored, Rough or Finish Machined. Die Blocks and Piston Rods

## National Forge and Ordnance Co.

IRVINE, WARREN COUNTY, PENNA., U.S. A.
by the Canadian Steel Controller is expected to bring some relief. The new consumers' price of $\$ 22$ per gross ton for No. 1 machinery cast is more than $\$ \bar{y}$ per ton under the rate prevailing previous to the new order. Steel scrap prices were fixed last February and since that time there has been no special price problems to contend with. It also is hoped to improve the supply of cast scrap, which at the present time falls far short of meeting consumers' demands. Imports from the United States are being urged in an effort to augment Canada's ordinary supply.

## Ferroalloys

## Ferroblloy l'ricos, lage 100

The drought in the South is expected to restrict ferroalloy produc tion in August, as well as during the current month. The present situation is not due to "freak weather" this year, but, is a regular thing during the summer months in the South, with power production restricted weeks at a time. Mean. while, there is demand for every pound being produced, with prices unchanged, due to the stabilizing influence of Washington. Ferromanganese is holding at $\$ 120$, duty paid,


## SHEAR SPECIALISTS

The Hallden Automatic Flattening and Cutting Machine operates efficiently on cold rolled and cold hot rolled metal, either light or heavy gauge. Shears for every product in steel and non-ferrous metals comprise our entire line.

THE HALLDEN MACHINE CO. THomaston Associated Companies: The Wean Engineering Company, Inc.-Warren. Ohio W. H. A. Robertson \& Company, Itd,-Bedford, England

## SUPERIOR INGOT MOLDS STOOLS

Tool Steel and Special Molds

# SUPERIOR MOLD \& IRON COMPANY <br> PENN, PA. 

(Pittsburgh District)
Phone: Jeannette 700

Atlantic and Gulf ports, and spiegeleisen, 19 to 21 per cent, at $\$ 36$, Palmerton, Pa .

## Steel in Europe

## Fordjen Steel Prices, Page 101

I.ondon - ( $B y$ Cable) - The iron, steel and raw material supply situation is sufficient to restrict American imports of semi- and heavy steel, which is partly balanced by increasing imports of special steels. Hematite is still scarce. This quarter contracts are largely placed. War contract deliveries are satisfactory, but little is left for commercial users and exports are severely restricted.

## Iron Ore

Iron Ore Prices, lage 101
The American Great Lakes ore fleet was again 100 per cent engaged in transporting iron ore on July 15, the same as a month before, with 292 vessels of a total of 292 engaged. A year ago, however, the fleet was 99.13 per cent enpaged, with 294 in commission of a total of 297. At the middle of July of this year the trib canacity of the fleet stood at $2.688,040$ gross tons, same as a month before, comparing with 2,717,040 tons a year ago. According to the report, a few Canadian boats are starting to load ore for American ports.

## Fluorspar

Fluorspar Prices, Page 1 we
Prices are $\$ 1$ per ton higher at $\$ 21$ per ton for principal domestic grades and would be at this quotation for imported, if any were entering the country at this time. Not only are steelmakers buying unusual quantities because of unusual steel production but there is considerable demand from the aluminum industry which makes artificial or synthetic cryolite from fluorspar.
The fluorspar industry has been notified by Washington that it should be prepared to supoly at least 225,000 tons of gravel spar during 1942 and from 60.000 to 75. 000 tons of high grade spar, suitable for the aluminum industry.
The recent advance in price was a gradual one, without formal announcement. Greater demands on the enameling industry calls for increased fluorspar tonnage in the form of synthetic cryolite.

## Nonferrous Metals

New York - Additional evidence that shortage of nonferrous metals is becoming more acute was presented this week. Leon Henderson, OPACS Administrator, declared that defense consumption of copper, aluminum, nickel, zinc and other materials will be so great "we won't have enough left over for consumers' durable goods." Mexico and the United States have made an agreement under which Mexico will export to this country for the next 18 months all surplus strategic and

Nonferrous Metal Prices

F.o.b. mill base, cents per lb. except as epecifed. Copper brass products based on 12.00 c Cоnт. copper

Sheets
production. One plan under consideration is to permit increased prices for copper produced above the normal rate. High-cost produc ers in Michigan and Arizona may be
allowed a premium above the basic 12-cent level.

Lead - Metals Reserve Co. has completed arrangements to buy up to 225,000 short tons of Canadian and Mexican lead during the second half of 1941. Of this quantity 50 ,350 tons represent metal now held in stockpiles by three contracting companies and which is expected to be allocated promptly by OPM to domestic consumers at prevailing prices. The balance will be delivered out of production during the remainder of the year.
Zinc-Heavier production coupled with larger imports is not expected to result in any marked improve-

| Yellow brass ( $\mathrm{h} / \mathrm{gh}$ ) | 19.48 |
| :---: | :---: |
| Copper, hot rolled .. | 20.87 |
| Lead, cut to jobbers | 10 |
| Zinc, 100 lb . base. | 12.50 |
| Tubes |  |
| High yellow brass | 22.23 |
| Seamless copper | -1.37 |
| Rnda |  |
| High yellow brass | 15.01 |
| Copper, hot rolled | 17.37 |
| Anoder |  |
| Copper, untrimmed | 18.12 |
| Wire |  |
| Yellow brass (high) | 19.73 |

OLD METALS
Nom. Dealerg' Buying Prices
Nu. 1 Composition Red Brasm

New York
$10.00-10.25$
Cleveland
10.50-10.75

Chicago
9.25-9.50

St. Louls
Heavy Copper and Wire

| Cleveland, No Chleago, No. |  |
| :---: | :---: |
|  |  |
|  |  |
|  |  |

St. Luis No. 1 $10.25-10.50$

Composition Brasa Turnines
New York
.9.75-10.00
Idght Copper

critical materials, including antimony, copper, graphite, lead, mer: cury, tungsten, tin and zinc. The Mexican government has ruled that exports of these commodities may be made only to points within the western hemisphere

Copper-Major copper producers and defense officials are in agreement that some increase in present rate of domestic output is possible. Meetings are planned to work out methods of achieving the additional


July 21, 1941

PRESSURE - TIGHT SERVICE AT LOW COST
The Nicholson lever-operated style J valve for air or oil pressures up to 125 The Nicholson lever-opereet the demand for a low-priced valve. Least exlbs. was introduced pensive of the Nicholson valve valves do. It, too, is described in our catalog No. 140.

## OTHER NICHOLSON PRODUCTS

Ni Nicholson welded floats, piston and weight operated shaft couplings, steam elimi-
 expanding mandrels, ars. Compressed air traps.

W. H. NICHOLSON \& COMPANY<br>177 OREGON ST., WILKES-BARRE, PA.

ment in suppiies for several months. It is felt likely that defense requirements will continue to mount, thereby exerting further restriction on the proportion of total tonnage available for ordinary commercial uses.

Tin-Prices declined steadily dur. ing the early part of the week from $53.621 / 2$ to $53.121 / 2 \mathrm{c}$ before recovering on Friday to $53.371 / 2 \mathrm{C}$ due to an advance in the Far Eastern market. Demand improved at the lower levels.

## Coke Oven By-Products

Coke 13y-l'raduct Prices, Page 99
Producers of phenol are heavily sold ahead and distributors are prorating available supplies against contracts without taking on new commitments. Heavy consumption by civilian industrial consumers is supplemented by strong defense needs, plastics taking substantial volume. While household demand for naphthalene has slackened, increase in chemical and miscellaneous requirements more than makes up the lag in that direction. No spot supplies of distillates are available and sellers are hard-put to meet contract obligations, this holding for benzol, toluol and xylol. For munitions, producers are taking full quotas of toluol. Production of coke oven by-products is at capacity and ahead of last year, but increase in capacity has not kept pace with heavier demand.

## Equipment

New York-An early ruling making machine tools undelivered by Aug. 15 subject to draft for installation in bomber and other aircraft plants is expected from Washing. ton shortly. Meanwhile large orders for machinery and other equipment
are being allocated machine tool builders, the industry assembling production units at an all-time high with many shop extensions now in full production. Covered by top priorities supplies of materials are ample, including steel, and builders of motors and electrical equipment are doing a notable job in keeping pace.
Seattle-Westinghouse Electric \& Mfg. Co., East Pittsburgh, Pa., offered the low bid, $\$ 2,697,785$, to Reclamation Bureau at Denver for furnishing and installing three 150,000 h. p. generators at Coulee dam. Specifications call for completion in 710 days and will increase Coulee's capacity to 900,000 horsepower. Plans calling eventually for 18 generating units with capacity of $2,700,000$ horsepower. Denver opened bids July 17 for 18 heating power boards for Coulee and July 28 will receive tenders for 2300 volt motor control equipment for Fallon pumping plant, Buffalo Rapids project, Mont., spec. 1532-D.
U. S. engineer, Portland, will open bids July 21 for 1910 outdoor switch and bus insulators for Bonneville. Northwest Hauling Co., Tacoma, subcontractor at Pendleton air base, has purchased a 10 -ton Michigan truck crane with 75 -foot boom. Seattle has awarded an $\$ 87,360$ contract to Dual Parking Meter Co. for 1680 units and will open bids July

## Construction

## Ohio

AMHERST, O.-U. S. Automatic Corp. Jackson street, is bullding two additions to its plant.

CANTON, O.-Ohlo Power Co., 305 Cleveland avenue, N. W., will spend approximately $\$ 20,000,000$ this year in plant


18 for $14,000 \mathrm{ft}$. conductor control cable; July 24 for Class A transformer. For Alaska air bases Northern Commercial Co. will furnish tractors and bulldozers; C. Kirk Hillman, Seattle, drills and cable at $\$ 21,743$; Pacific Electric Welding Co. platform type trailers. Identical bids of $\$ 229,809$ for furnishing conductor cable, etc. to Bonneville proj ect were submitted by Anaconda and General Cable Co.

## 66-Foot Span Connects Ryerson's Offices

- To accommodate rapidly increas. ing customer requirements, Joseph T. Ryerson \& Son Inc. is installing a 66 -foot glassed-in bridge connect ing the two main office buildings at its 21 -acre steel service plant in Chicago. The span will hasten the flow of work between departments and considerably speed customer service.

Rebuilt and enlarged loading doors also have been added to the plant service facilities, aiding faster loading and dispatching and assuring prompt pick-up for will-call customers. Thirty-five trucks now can be loaded at the Chicago plant at one time.

## Enterprise

expansion and improvement. About $\$ 500$, 000 is to be spent at Torrey substation on Sherman-Church road, and $\$ 300,000$ at Sunnyside station nenr Waco, $O$.
CLEvelaND-Cleveland Dlesel Engine Division of General Motors Corp. George W. Codrington, general manager is erecting a one-story addition, containing 25,000 square feet of floor space and will increase capaclty of the engine as sembly floor.
CLEvELAND-Thompson Products Inc. has leased for one year the T. H. Towel building at East Thirtieth street and


#### Abstract

Additional Construction and Enterprise leads may be found in the list of Shapes Pending on page 109 and Reinforcing Bars Pending on page 111 in this issue.


[^7] New York Offlce- 114 Liberty St.


THE SIMONDS GEAR \& MFG. CO. 25TH STREET, PITTSEURGH, PA.

## HOT-DIP GALVANIZING PRACTICE <br> By W. H. Spowers Jr.

An up-to-date treatise on zinc coatings of steel that will appeal to those who dally are engaged in surfacing metals with zinc. 200 Pages- 45 Illustrations- 4 Tables -7 Charts. Price $\$ 4.00$ Postpaid.

THE PENTON PUBLISHING COMPANY
Penton Bullding Book Department Cleveland, Ohio
550-S



Hare ls an electice plant with self-starting equipment and remole contral deslgned paricularly for magnat oparafion. For locomoive cranes if wil allow you to use larger magnels than now possible with steam-driven equipmeni, if wili Cui your coal bill moterially and inczedse handing ability at the same time.

## THE READY-POWER CO. 3828 GRAND RIVER AVENUE, DETROIT, MICHICAM



IN STEEL . . . The "Used and Rebuilt Equipment" section is the weekly meeting place for buyers and sellers of good used or surplus machinery and supplies. Displayed classified rates are moderate.
^ Send your instructions today to STEEL, Penton Building, Cleveland.
bulldings. Cost $\$ 40,000$. E. B. Hoefler, 5005 Euclid avenue, engineer.

CLEVELAND-Chandler Products Co., 1491 Chardon road, manufacturer of cap screws, is adding soo0 square feet to its plant.

CLEVELAND - Walters-Wilcox Co. 10006 Carnegle avenue, plans construction of factory containing about 50,000 square feet, location for which has not been decided. The company makes steel bullding parts and complete prefabrlcated steel bulldings.

CLEVELAND-Gabriel Co., 1407 East Fortleth strect, plans $\$ 10,000$ factory expanslon. J. J. Batterman is president

CUYAHOGA FALLS, O.-Falls Screw Products Co., 1731 Front street, will enlarge factory with $45-$ foot square addition.

is won through ability to place comfortable accommodations at your disposal . . . serviced to your satisfaction . . . priced to fit your requirements . . . so that you'll "tell the folks back home."

800 OUTSIBE ROOMS ALL WITH PRIVATE BATH . . . SIMGLE FROM $\$ 2.50$. . . DORBLE FEOM $\$ 4.00$

CHARLES H. LOTT
General Manager

SPRINGFIELD, O.-Robbins \& Myers Inc., maker of fans, motors and pumps, has purchased the former plant of the Plqua Hosiery Co. in Piqua, O., and will install new machinery there.

TOLEDO, O.-DeVilblss Co. is planning a $\$ 40,000$ addition to double its spray booth and exhaust equipment division.

TOLEDO, O.-Toledo Steel Products Co., subsldiary of Thompson Products Inc., Cleveland, has under way a $\$ 100,000$ addition to its lower Summit street planl.

## Connecticut

HAMDEN, CONN.-Acme Wire Co. has plans for a powerhouse addition, including a new boller unit and auxiliarles. Wescott \& Mapes Inc., 139 Orange street New Haven, Conn., is engineer. (Noted June 23).

HAMDEN, CONN,-High Standard Mrg. Co. Inc., 61 Foote street, New Haven, Conn., will construct and equip plant for manufacture of machine guns. Defense Plant Corp. will tinance project. Cost about $\$ 4,300,000$.

## Massachusetts

SPRINGFIELD, MASS.-Storms Drop Forging Co., 70 Storms court, will let contract soon through McClintock \& Crajg, engineers, Bridge street, for plant expansion, including a one-story office, one-story heat treating addition and one-story factory addition, to cost about $\$ 40,000$.

WORCESTER, MASS,-Arter Grinding Machine Co., 15 Sagamore road, has awarded general contract to $E$. Whitehead Inc., 97 Union street, for one-story, $90 \times 100$-foot machine manufacturing plant. Cost over $\$ 40,000$ with equipment.

## Rhode Island

PROVIDENCE, R. I,-Standard Machinery Co., 1475 Elmwood avenue, will let contract soon for a one-story so : 120-foot plant costing about $\$ 40,000$. Jenks \& Ballou, 2600 Industrial "'rust building, are engineers.

## New York

BUFFALO - Niagara Ship Building Corp., 36 Washington street, will erect shlpbuilding plant at cost of more than $\$ 400,000$.

LOCKPORT, N. Y.-Harrison Radlator Corp., Washburn street, has plans by J. M. Tully, Bewley bullding, for plant addition, costing $\$ 50,000$.

NIAGARA FALLS, N. Y.-Carborundum Co. has awarded contract for construction of three additions to its main plant, to cost over $\$ 150,000$ with equipment. Plans are also in progress for construction of new plant in Niagara Falls, Ont., by Carborundum Co. Ltd.. subsidiary, costing about $\$ 550,000$.

## New Jersey

BENDIX, N. J.-Air Assochates Ine. Bendix Airport, has broken ground for the addition to its maln manufacturing plant. The new bullding, comprising approximately 70,000 square feet of floor space, is being erected by Brown \& Matthews Inc., 122 East Forty-second street, New York. Approximately $\$ 135,000$ will be spent for land and bullding and $\$ 180,000$ for equipment. (Noted May 19)

## Penrsylvania

ERIE, PA.-Erie Concrete \& Steel Supply Co. Inc., 1301 Cranberry street, will erect a one-story steel, concrete ship building plant, to cost over $\$ 40,000$.

ERIE, PA.-Erie County Electric Co,
D. W. Jardine, president and general manager, has plans for stcel power plant addition and improvements. United Engineers \& Constructors Inc., 1401 Arch street, Philadelphla, engincer.
TRAFFORD CITY, PA.-WestInghouse Electric \& Mig. Co., East Plttsburgh. Pa., will erect two one-story steel foundry additions, and three one-story manufacturing additions. Cost estimated at $\$ 500,000$.

## Michigan

DETROIT-American Blower Corp. will erect an office bullding, research building and generator house on Tireman avenue, Dearborn, Mich. Girfels \& Vallet Inc., Detrolt, archltects.

GRAND RAPIDS, MICH.-Rademakel Chemical Corp., Eustlake, Mich., plans erection of plant for manufacture of dead burned magnestum oxide, cost of which is estimated at $\$ 500,000$.

## Illinois

CARBONDALE, ILL.-War department, Twentieth street and Constitution avenue, N. W., Washington, has preliminary surveys for construction of smokeless powder and bag loading plant near here, costing approximately $\$ 10,000,000$. Giffels \& Vallet Inc., 1000 Marquette bullding, Detrolt, engineers.

CHICAGO-Kux-Lohner Machine Co., 2145 West Lexington street, manufarturer of dic casting machines and presses for plastics, etc., is bullding a onestory addition with 25,000 square feet foor space at Harrison and Crawford avenues. Present plant on Lexington street will be continued in operation.
CHICAGO-American Varnish Co. has plans by Engineering Systems Inc. for construction of three-story fireproof addition to its plant on North Branch street. Cost more than $\$ 100,000$ wilh equipment.
CHICAGO-E. F. Houghton \& Co., $353-1$ South Shields avenue, maker and compounder of industrial oils and case hardening materials, is expanding its local facllities with a one-story addition to provide about 13,000 square feet. Cost, including new equipment, will approximate $\$ 35,000$. Completton is scheduled in three months.

GENEVA, ILL,-Burgess-Norton Mig Co., manufacturer of automotive parts. screw machine products and stampings, is adding 9000 square feet to its planl at cost of $\$ 20,000$.

## Indiana

EVANSVILLE, IND.-Schnacke \& Faw cett Mrg. Co. has been issued permit to construct a $\$ 5000$ machine shop bullding. $36 \times 125$ feet. Anderson \& Loer atre contractors.
FORT WAYNE, IND.-General Electrlc Co., Fort Wayne works, South Broadway, plans new plant here to manufacture turbo superchargers. Cost over $\$ 500,000$ with equipment.
GARY, IND.-Gary Screw \& Bolt Cu. manufacturer of bolts, nuts and inets is expanding steel bins and pickling tanks at cost of $\$ 35,000$. W. S. Thomas, Gary, is contractor.

MARION, IND.-Anaconda Wire \& Cable Co., 25 Broadway, New York, will construct and equlp plant here for manu facture of assault wire, costing approximately $\$ 352,724$, Defense Plant Corp. will finance project. (Noted June 30)

## Maryland

BALTIMORE, MD.-Rustless Iron \&

## PIPE <br> SHBETS <br> TIN PLATE <br> COP-R-LOY <br>  <br> THE MODERN TIN PLATE <br> WHEELING STEEL CORPORATION wheeling, w. va.

## WIRE

Iron-Stcel - Alloy
Round - Flat - Shapes
All Sizes and Finishes
Also Wire Screen Cloth
The Seneca Wire \& Mfg. Co.
Fostoria, Ohio


JIGS - FIXTURES - SPECIAL MACHINES -PUNCHES-DIES-'to your measure'!
Let our trained engineers apply our 35 years' experience to your equipment problem. Our suecesses in other plants of all types, and tion machinery. Write us in detail without obligation.
THE COLUMBUS DIE, TOOL AND MACHINE CO. COLUMBUS, OHIO

## INDUSTRIAL TRUCKS AND

 TRAILERSCaster and Fifth Wheel Types


THE OHIO GALVANIZING \& MFG. CO. Penn St., Niles, Ohio.

Pickling of Iron and Steel -By Wallace G. Imhof

Price Postpaid $\$ 5.00$

This book covers many phases of pickling room practice and construction and maintenance of pickling equipment.

THE PENTON PUBLISHING CO. Book Department
1213 W. 3rd St.
Cleveland, 0 .

 Engineers - Contractors - Exporters
STRUCTURAL STEEL-BUILDINGS \& BRIDGES Rivettid-ARC Welided
Belmont Interlocking Channel Floor
Matn Offic-Philu., Prita Jor Catalogue York Office-4t Whitehull St.
 ALLOY-TOOL-STEELS
DARWIN \& MILNER, INC. 1260 w. $4^{\text {Th }}$ ST. CLEVELANDO.

## INDUSTRIAL FURNACES

OVENS and DRYERS BURNER EQUIPMENT DENNSYLVANIA NDUSTRIAL ENGINEERS 2113 X'. Mugnolia Sit.. N. S., Pithburgh. Pa.


## MANGANESE ORES

For Blast Furnace and Open Hearth Use

CUBAN-AMERICAN MANGANESE CORP.

122 ERST 42nd STREET NEW YORK

Steel Co., 1101 Edison highway, has let general contract to Cummins Construction Corp., 803 Cathedral street, for a one-story $60 \times 440$-foot wire mill addition, to cost about $\$ 100,000$. (Noted April 28.)

## District of Columbia

WASHINGTON-Navy Department, Bureau of Supplies and Accounts, will take blds until July 25 , schedule 7856 , diesel generators, switchboard sets and transformers; untll July 29 , schedule 7878 , ten alr-turblne drlven portable pumps, dellvery Puget Sound, Wash.; schedule 7880, four motor-driven grinder machines; schedule 7904, one horizontal hydraulle forging press, dellvery San Diego, Callf.; schedule 7926 , one motordriven bevel gear generator, dellvery Mare Island, Callf.

## Kentucky

LOUISVILLE, KX.-B. F, Goodrleh Co. 500 South Main street, is having plans


Opening through its own passage-
way directly into Grand Central
Terminal, the Hotel Roosevelt of-
fers you perfect convenience on your arrival in New York . . . And because of its location at the heart of Manhattan's great mid-town section, it affords the same kind of convenience for all outside activities . . . Doubly handy and doubly cnjoyable.

## R Roosevelt

 BERNAM G. HINES, Manasing Director MADISON AVENUE AT 45 th ST., NEW YORKmade for a plant for processing Koroseal, to cost over $\$ 2,000,000$.

## Tennessee

CHATTANOOGA, TENN, - Ross-Mechan Foundries, Frank M. Robblns, president, plans $\$ 10,000$ addition to plant.

## Loulsiana

HOMER, LA.-REA has allocated \$520,000 to Ark-La Electric co-operative to ald on building 544 miles of rural electric line and a $10,000-\mathrm{kv}$. steam generating plant, to cost about $\$ 2,800,000$.

## West Virginia

CLARKSBURG, W. VA.-I2EA has allocated $\$ 700,000$ to Harrison rural electric association to tinance 601 miles of rural electric line and a steam generating plant.

## Missourl

ST. LOUIS-War department has announced a $\$ 58,850,000$ expanston of small arms plant at Goodfellow and Blrcher boulevards, tripling present plant capacity.

ST. LOUIS-St. Louls Car Co., 8000 North Broadway, has been Issued bullding permit for $\$ 75,000$ for erection of three one-story bulldings on the company's 60 -acre tract, $162 \times 232$ reet, $240 \times$ 300 feet, and $80 \times 232$ feet.

## Arkansas

EL DORADO, ARK゙.-Lion Oll Kellning Co. is having plans made for a gasoline manufacturing plant to cost about $\$ 400$,000.

OZARK, ARK.-Arkansas valley electrie co-operative, W. M. Milton, superintendent, has glven contract to Killoran Electric Co., Appleton, Wis., for construetion of 320 mlles of rural electrle line to serve 961 customers, at $\$ 211,105$. It. 13 . Gleb, Dallas, Tex., is engineer.

## Oklahoma

VINITA, OKLA.-Grand River Dam Authorlty, T. P. Clonts, general manager, Vinlta, is considering erection of magnesium reduction plant, to cost about $\$ 12,000,000$.

## Texas

FORT WORTH, TEX.-Premier Oil \& Reflning Co., Longview, Tex., will make reflnery plant improvements and expansions. Estimated cost $\$ 125,000$.

GILMER, TEX.-Farmers Electrle Generating Corp., Sam Scales, recelves blds July 31 for generating plant, and approximately 250 miles of rural lines. Freese \& Nichols, 407 Cipps building, Fort Worth, Tex., engineers.

HOUSTON, TEX.-Hughes Tool Co., 30 Hughes strect, will operate for the War Department bomber landing gear plant to be erected here at estimated cost $\$ 12$,000,000.

PASADENA, TEX.-Owen Tool Co. will erect tool plant, to cost approximately $\$ 40,000$

PORT ARTHUR, TEX.-Texas Steel Co., 3901 Hemphill street, Fort Worth, Tex., wlll spend approximately $\$ 500,400$ for steel mill, rolling plant, warehouses, shops, etc.

## Nebraska

CARSON CITY, NEBIR.-CIty plans construction of sewage disposal plant
complete with auxiliary equipment, to cost over $\$ 50,000$.

KEARNEY, NEBR.-Carl Weber has given general contract to J. E. Kaufman for a one-story machlne shop $51 \times 12^{\prime 2}$ feet.

## Idaho

POCATELLO, IDAHO-CIty will call blds soon for proposed $\$ 82,000$ sewage disposal plant. Plans have been piepared by B. C. Lowrie, city engineer.

## California

SAN DIEGO, CALIF.-Solar Aircraft Co. has application pending for addtlonal plant and equipment here to cost approximately $\$ 500,000$.

## Washington

KELSO, WASH.-City has retalned J. L. Henderson and R. G. Anderson, engineers, Vancouver, Wash., to survey and report on proposed $\$ 125,000$ municipal water system improvement.

SEATTLE - Stetson-Ross Machinery Co., 3204 First avenue, south, is making extensive plant additions and improvements.

## Canada

CLARKSON, ONT,-British American Oll Co. Ltd., Royal Bank bullding, Toronto, Ont., A. L. Ellsworth, presldent, is having plans prepared and will slart work immediatoly on erection of oll reIlnery near here, to cost about $\$ 4,500,000$ with equipment.

ETOBICOKE TOWNSHIP, ONT,-Ingraham Canadian Clock Co. Ltd., 411 Glendenning avenue, will erect plant here to cost about $\$ 75,000$, with equipment. General contract awarded to Gatehouse Bros. Ltd., 989 Bay street, Toronto, Ont.

PETERBORO, ONT.-Outboard Marine \& Mfg. Co. of Canada Ltd., Monaghan road will start work Immediately on erection of plant addition to cost $\$ 28,000$, exclusive of equipment, and has given general contract to Bradford \& Hoshal Ltd., 1170 Yonge street, Toronto.

PORT HOPE, ONT.-Port Hope Sanltary Mifg. Co. Ltd. will build plant addltion to cost $\$ 40,000$, without equipment. and has glven general contract to B . Pennington \& Son, Ontario strect, Port Hope.

WESTMOUNT, N. S.-Department of Munttlons and Supply, Ottawa, plans erection of shipyards here to cost, with equipment, about $\$ 2,000,000$. G. K. Sheils. deputy minister.

ARNTFIELD, QUE.-Francoeur Gold Mines Lid. has awarded general contract to Hill-Clark-Francis Ltd., Ninth avenue, Noranda, Que., for erection of $\$ 250,000$ cyanlde mill.

LACHINE, QUE.-Dominion Engineering Works, First avenue, machlnery and equipment bullder, will soon call for blds for erection of boller plant. Estimated cost, including equipment, $\$ 50,000$.

LONGUEUIL, QUE.-Department of Munitions and Supply, Ottawa, has awarded general contract to Deakin \& Stewart Ltd., Montreal, for erection of addition to plant of Falrchild Atrerat Ltd., here, to cost $\$ 40,000$, exclusive of cquipment.

QUEBEC, QUE.-Department of Munitions and Supply, Ottawa, has given general contract to Magloire Couchon Litd., Quebec, for erection of addition to Dominion Arsenal, here, to cost $\$ 56,000$, without equipment.

## CROSBY FOR STAMPINGS

Our engineers are ready and able to help solve your stamping problems, in design or construction. Crosby prices are consistent with QUALITY and SERVICE. In our 44 years of EXPERIENCE we have gerved over 100 different industries.

Manufucturers of "Ideal" Trolley Wheds

## THE CROSBY COMPANY

buffalo, N . y.


ANY ALLOY STEEL. LABORATORYCONTROLLED
ATLAS DROP FORGE CO - LANSING, MICHIGAN


THE WIEMAN AND WARD Cㅇ. Producers and Shippers

# COAL COKE PIGIRON 

 Steam - Gas - By-Product Coal Furnace . Foundry . Domestic Coke PROMPT AND EFFICIENT SERVICE OFFICES: OLIVER BUILDIMG, PITTSBUIBGH, PA. AT. 5325 CINCINNATI OFFICE: CAREW TOWER
## HOT DIP GALVANIZING

"A Material Difference"
Galvanized Products-Production Heat Treating COMMERCIAL METALS TREATING, INC.

Toledo, Ohio

## BRDCKD PIG IRDN <br> E. SF F. BHOOKE IRON CO. BIRDSBORO, PENNA.

METAL CLEANING . . . two books that tell how to do it better

## IMPACT CLEANING

by: W. A. Rosenberger
This 480 page book contains full information on the latest and most approved methods of impact cleaning, including blast-cleaning and sandblasting. It tells the reader of approved methods of cleaning under all conditions and for all types of products.

A practical book telling how to reduce cleaning expenses by application of proved methods.
In three parts: Part one covers Nozzle Blast Cleaning Equipment; Part Two. Mechanical Impact Cleaning: Part Three, Ventilation of Impact Cleaning Equipment . . . all profusely illustrated and cross-indexed for easy reference. "Impact Cleaning". $\$ 7^{*}$ postpaid.


MODERN BLAST CLEANING\&VENTILATION

## by: C. A. Reams

- Mr. Reams, engineer, Ford Motor Co., has compiled this practical book from actual shop experience plus proved engineering information. His discussions of modern methods of blast cleaning and ventilating methods are applicable to all types of metal cleaning by the blast method.

Full information is given on selection of abrasives, abrasive cleaning methods, selection of equipment, abrasive reclamation, advantages and limitations, ventilation and reduction of industrial hazards, and scores of other helpful facts.

Illustrations and diagrams in this 213 page book increase its value to the plant engineer. "Modern Blast Cleaning and Ventilation". \$4* postpaid.

## ORDER TODAY FOR FREE EXAMINATION:

> You can examine either or both of these books at your leisure. . send your order today. If after ten days you prefer to return them, well cheerfully ancel your bill. In ordering please give us your company name and your title.
> - Orders for delivery in Ohio must be accompanled by an additional $3 \%$ to cover compulsory state sales tax

THE PENTON PUBLISHING CO., Book Department, Penton Building, CLEVELAND, OHIO

## USED and REBUILT EQUIPMENT MATERIALS

## FOR SALE

10-ton BRIDGE CRANE, 44' $3^{\prime \prime}$ span NILES SEMI-QUICK CHANGE LATHE $30^{\prime \prime}$ swing x $12^{\prime}$ bed
1250 1b. CHAMBERSBURG steam or alr hammer
No. 15 GARVIN MILLING MACHIN: working range $13^{1 / 2 " x} 21^{1 \prime \prime 2}$ " $\times 42^{\prime \prime}$ This is but a small part of our large stock of Reconditioned Equipmentsend for stock list 4101

MORSE BROS. MACHINERY CO.
2900 Broadway
Denver, Colorado

## SYNCH. MILL TYPE MOTOR

40011 P G. E. type TS. form AL, 3 phase, b0 cycle 440 volt, 300 rti $A$ synch. motor, serial No. 5280820 panel and instruments. Utilitios Elestrical Mech'nery Corp 614 National City Bank Eidg. GLEVELAND, OHIO

Mere för Eder dollar!
IRON \& STEEL. PRODUCTS, INC. 36 Years' Experience
13462 S. Brainard Ave., Chlcago, Illinols "Anything containIng IRON or STEEL" SELLERS - BUYERS - TRADERS

## FOR SALE

Type S K Westinghouse 25 HP 220 volt varlable speed, with automatic reversing control panel. Never used

RAILWAY MAINTENANCE CORP.
P. O. Bax 1888

Pittsburgh, Pa

## WANTED

500 tons light grey iron castings from source within 200 mile radius of Cleveland or Buffalo. Reply Box 522 . STEEL, Penton Bldg., Cleveland.

## WANTED-TRANSFORMERS

Of all descriptions and sizes Burned Out or Good
Also interested in purchasing Empty Transformer Cases WIll pay cash-send full description PHILADELPHIA TRANSFORMER CO. 2829 Cedar St.

## HIGH PRESSURE HORIZONTAL TRIPLEX PUMPS

FOR IMMEDIATE DELIVERY FROM STOCK

| NUMRER OF <br> PUMPS <br> AVAILABLE | STROKE | WORKING <br> PRESSURE <br> IBS./SQ. IN. | CAPACITY <br> GALIO. | CAPACITYOF <br> DRIVING AOTOR <br> H.P. |
| :---: | :---: | :---: | :---: | :---: |
| 2 | $12^{\prime \prime}$ | 2850 | 143 | 350 |
| 1 | $12^{\prime \prime}$ | 3400 | 111 | 350 |
| 2 | $10^{\prime \prime}$ | 2850 | 95 | 230 |
| 1 | $10^{\prime \prime}$ | 2850 | 95 | 230 |
| 4 | $10^{\prime \prime}$ | 4250 | 63 | 230 |
| 1 | $10^{\prime \prime}$ | 4250 | 63 | 230 |

Inquire af: ALBERT B. CUDEBEC-American Represpntative THE LOEWY ENGINEERING CO., LTD., 22 East 40 th Street, New York City, N. Y.

## For Sale <br> McMYLER, COAL BURNING, LOCOMOTIVE CRANE-1919 Serial No. 3177-Magnet Equipment Immediate dellvery. F.O.B. Erie, Pa <br> Address Box 519 <br> STEEL, Penton Bldg., Cleveland, O.

## FOR SALE

No. 1 Standard Forging Hammer, 100 ios.
500 Ton Hethlehem Steel Shell Presses No. 3 Whllams, White Bulldozer
$18^{\prime \prime}$ Canton Portable Allgator Shears No. 3 Canton Alligator Shears Address Box 490 STEEL, Penton BldE., Cleveland

```
            FOR SALE
LATILES-54* Gleation and 2.2* Putnarn
HOIST-10n HP Lidgerwood double drum hispeed SPEED REDUCEIRS-1 to 151111 P SilPIRING MOTORS-500 and 700 HP G.E. DIFSEL. ENGINE GEAERATORC. M.G. SETS-20) 末w. RIdgwny-sisnchronous ITrue fur LIst
Duquesne Electric \& MIg. Co., Pittshurgh, Pa
```


## STEEL SHAFTING

## FOR SALE

In Millimeter sizes. 3 or 4 tons ranging in slze from $2^{\prime \prime}$ down to ss" $^{\prime \prime}$. Good condition-will sell cheap. Write Box 518, STEEL, Penton Bldg., Cleveland.

## RAILS and ACCESSORIES

RELAYING RALLS-Super-qually machine reconditloned mot ordinary Relnyers. NENW RAllS, Angle and Splice Bars, Bolts Accessories. Although our tonnages are not as large ns here made to take care of avallable. Every cifor emergency requirement Phone, Wrtse or Wire
L. B, FOSTER COMPANY, Inc. PITTSBUBGH NEW YORK

## -REBUILT-

 BLOWERS - FANS - EXHAUSTERS Conneraville-Roots Dosluve blowers Centrifugala for gas and oll burnlng,Gand blast, grinder sid duat exhaustera Ventllating fans and roof ventliators.
GENERAL BLOWER CO.
404 Nerth Peoria St.
Chicago, III.


DIE SINKER, E-3 Keller, M.
GEAR CUTTER Spur, 84: Newark, M.D. GEAR PLANERS. Bevel, 54 Gleasou. M.D. (3) HORIZ. MILL, FI. Type. 33 bar D i 1 . YERTICAL MILL. 8, Betis, 2 IIds., Grd. Fds

 PLANERS, $30^{\circ} \times 30^{\circ} \times 8^{\circ} 36^{\circ} \times 30^{\prime} \times 11^{\prime}, 54^{*} \times 54^{*} \times 10$
LANG MACHINERY COMPANY 28th Strest \& A. V. R.R. Pittsburgh, Pa

## IF YOU WANT TO BUY OR SELL

 good used or rebuilt equipment or materials-Place an advertisement in this section. Write STEEL, Penton Bldg., Cleveland, Ohio
## GREY IROH CASTINGS <br> o to 00,000 P. B. I. Tenslle Strength

 and kindred items effectively produced in small quantities-Individual parts to 2,000 pounds-Assemblies to 5,000 pounds.BROWN \& BROWN, INC.
Lima, Ohio

## WELDED STEEL FABRICATION

Speciallsts in duplication of cast-
Ings and machinery parts with rolled steel shapes

Send blue prints and specifleations for quotation.
MORRISON METALWELD PROCESS INC.
1438 Bailey Ave., Buffalo, N. Y.

```
Send your Inquinies lor
SPECIAL ENGINEERING WORK to the
A. H. NILSON MACHINE COMPANY, BRIDGEPORT, CONN.
deilanete and bullders of wire and ribbon
```

```
We also solicit your bids for cam millin
```

```
We also solicit your bids for cam millin
```

WE HAVE ADDITIONAL CAPACITY FOR METAL STAMPINGS, DIES AND LIGHT METAL FABRICATION, SEND BLUE PRINTS' SAMPLES

LITTERAL MFG. COMPANY
118 East Union St., Paris, Illinois

## Kirk \& Blum <br> WELDED mACHINE BASES, PEDESTALS and FRAMES lathe pails <br> GEAR and BELT GUARDS <br> Pressed Steel Louver Panels and Cover Plates <br> THE KIRK \& BLUM MFG. CO. <br> 2822 Spring Grove Ave., Cincinnati, Ohio

## Positions Wanted

SALESMAN NOW EMPLOYED BY REI'LT able mill selling tool steel desires change for best reasons. Enviable record of proluction. Understand machine tools and machinery of all kinds. Will go anywhere. Twenty years' experlence. Reply Box 520, STEEL, Penton Bidg., Cleveland.
GRADUATE MEMALLURGICAL ENGIneer with $21 / 2$ years' experience in research and production of seamless and welded steel tubing, carbon, alloy and stainless grades, desires position with a mid-western frm. Reply Box 509. STEEL, Penton Bldg., Cleveland

COMPETENT STRUCTURAL AND PLATE SHOP SUPERINTENDENT WANTS POSITION WITH REPUTABLE CONCEIRN. INTELLIGENT, INDUSTRIOUS WORKER WITH PROVEN ABILITY TO HANDLE MEN. ADDRESS YOUR REPLY TO BOX 515, STEEL, PENTON BLDG., CLEVE LAND.

EXECUTIYE WITH BROAD EXPERIENCE in manufacturing, development and mer chandising of small metal stampings, avall able immediately for sales or production. Famlliar with quantity production, progressive dies, automatic feeds and finishing If you can use such abillty, address Box 503, STEEL, Penton Bldg., Cleveland.
PURCHASING EXECUTIVE - RIGHTEES years' experience, General Purchasing Agent Steel Company and Manufacturer Qualitled as coordinator, expeditor-super visor of stock and equipment control stores, recelving, production. Background particularly attractive for concern en gaged in defense work. Character and business references. Prefer Central West. Reply Box 523, STEEL, Penton Bldg., Cleve land.

## CLASSIFIED RATES

All classifications other than "Positions Wanted," set solid, minimum 50 words, 5.00 , each additional word .10 ; all capitals, minimum 50 words, 6.50 , each additional word 13 ; all capitals, leaded, minimum 50 words 7.50 , each additional word 15 . "Positions Wanted," set solid, minimum 25 words 1.25 , each additional word . 05 ; all capitals, minimum 25 words 1.75 , each additional word .07; all capitals, leaded. minimum 25 words 2.50 , each additional word .10 . Keyed address takes seven words. Cash with order necessary on "Positions Wanted" advertisements. Replies forwarded without charge.
Displayed classifled rates on request.
Address your copy and instructions to STEEL, Penton Bldg., Cleveland.

## Help Wanted

"WANTED-WORKS MANAGERE, FORGI "Wanted- Works Mrite fuly giving plant, located in east. Peply Box 521 , STEEL, Penton Bldg. Reveland.

GENERAL FOREMAN FOR FORGE GENERAL FOREMAN Shop. Location plant, Die and Machine sive refences, experiPnce salary wanted. Address Box 512 , STEEL, Penton Bldg., Cleveland.

GENERAL FORGE PLANT SUPERINtendent familiar with die machine and forge shops. Eastern location. Give experien age, references Reply Box 5i1, STEEL, Penton Bldg. Cleveland.

## OPPORTUNITIES <br> AND PROFITS

are of equal interest to distributors and manufacturers-use an ad on this page next week to let manuracturers know you are interested in taklng on new lines.

## Employment Service

## SALARIED POSITIONS

$\$ 2.500$ to $\$ 25.000$
This thoroughly organized advertising service of 31 years' recognized standing and reputation, carrles on preliminary ne gotlations for positions of the caliber indlcated above, through a procedure individuallzed to each cllent's personal require. ments. Several weeks are required to negotiate and each individual must fnance the moderate cost of his own campalgn Retaining fee protected by refund provision as stipulated in our agreement. Iden tity is covered and, if employed, presen position protected. If your salary has been $\$ 2,500$ or more, send only name and时dress for detalls. R. W. Blxby, Inc., 110 Delward Bldg., Butfalo, N. Y

## Castings

THIE WEST STEEL CASTING CO., Cleveland. Fully equipped for any production problem. Two 1 th ton Elec. Furnaces. Makers of high grade light steel castingg, also alloy castings subject to wear or high heat.
PENNSYIVANIA

NORTH WALES MACHINE CO., INC ${ }_{\text {• }}$ North Wales. Grey Iron, Nickel, Chrome, Molybdenum Alloys, Semi-steel. Superior quality machine and hand molded sand hlast and tumbled.

## Accounts Wanted

NEW ENGLAND SALES ENGINEER SELLing metal manuracturing and machine industry wants additional IIne. Long established in this territory with wide acquaintance among buyers and machine designers. Specialize on machine components. Represent nationally prominent gear manufacturer and would like another similar line. Address Box 517, STEEL, Penton Bldg. Cleveland.

WISCONSIN REPRESENTATIVE AVAML able. Established factory representative able. Estab an additional line for general manufacturers throughout Milwaukee and Wisconsin. Preferably one adaptable to defense needs. Write Box 524, STEEL Penton Bldg., Cleveland

Where-to-Buy Products Index carried in first issue of month.

## A

Acme Galvanizing, Inc.
Acme Steel \& Malleable Iron Works
Ahlberg Bearlng Co.
Airarip Chuck Division of Anker-Holth Mfg. Co.
Alr Reduction
AJax Eletrothermlc Corp
A Jax Flexible Coupling Co.
Alan Wood Steel Co.
Allegheny Ludlum steel Corp
Allen-Bradley Co.
Alls-Chalmers Mfg. Co.
Alrose Chemical Co.
American Brass Co., The
American Bridge Co.
Amerlcan Cable Division of American Chain \& Cable Co., Inc.
Amerlean Chain \& Cable Co., Inc., American Cable Dlvision
Amerlcan Chaln \& Cable Co., Inc. Amerlcan Chain Division
American Chaln \& Cable Co., Ine. Ford Chain Block Division
American Chain \& Cable Co., Inc., Page Steel \& Wire Division
American Chaln Division of American
Chain \& Cable Co., Inc.
American Chemical Paint Co.
American Engineering Co.
Amerlean Flexible Coupling Co.
Amerlean Foundry Equipment Co.
American Gas Association
American Hollow Boring Co.
American Hot Dip Galvanizers Assoclation
American Lanolin Corp.
American Monorall Co.
American Nickeloid Co.
American Pulverizer Co.
American Roller Bearing Co.
American Rolling Mill Co., The
American Screw Co.
American Shear Knife Co.
Amerlean Soctety for Metals
American Solder \& Flux Co.
Amertean Steel \& Wire Co.
American Tinning \& Galvanizing Co.
Ampco Metal, Inc.
Amsler-Morton Co., The
Andrews Steel Co., The
Apollo Steel Co.
Armstrong-Blum Mfg. Co.
Armstrong Cork Co.
Asoclation of Iron and steel Englneers
Atlantic Stamping Co.
Atlantic steel Co.
Allas Car \& Mfg. Co
Atlas Drop Forge Co.
Atlas Lumnitc Cement Co.
Axelson Mif. Co.
13
Biabcock \& Wilcox Co.
.Bailey, Wm. M., Co.
Baker-Raulang Co.
Bantam Bearings Corp.
Barnes, Wallace Co., Division of Assuclated Spring Corporation
Basic Refractories, Inc.
Bay Clty Forge Co.
Bay State Abrasive Products Co.
Belmont Iron Works
Berger Manuracturing Div., Republic Steel Corp.
Bethlehem Steel Co.
Birdsboro Steel Foundry \& Machine Co.
Blssett Steel Co.. The
Blanchard Machine Co.
Blaw-Knox Co.
Blatw-Knox Division, Blaw-Knox Co.
Bliss \& Laughlin, Inc.
Bower Roller Bearing Co.
Brassert. II, A., \& Co.
Bridgeport Brass Co. .
Bristol Co., The
Broderick \& Bascom Rope Co.
Brooke, E. \& G., Iron Co.
Brosius, Edgar E., Inc.
Brown \& Brown, Inc.
Brown \& Sharpe Mfg. Co.

Brown Instrument Co., The
Bryant Chucking Grinder Co.

- Bryant Machinery \& Engineering Co

Buffalo Forge Co. ........................
Buffalo Galvanizing \& Tinning Works
Euffalo Wire Works Co., Inc. .........
Bullard Co., The
Eundy Tubing Co.
Cadman, A. W., Mrg. Co.
Carborundum Co., The
Carnegic-Illinols steel Corp.
Carpenter Steel Co., The
Cattle, Joseph P., \& Bros., Inc.
Cellonte Co., The
Central Screw Co
Challenge Machinery Co., The
Chambersburg Engineering Co
Chandler Products Corp.
Chicago Perforating Co.
Chleago Rawhicle Mfg. Co.
8.- Cincinnatl Grinders, Inc.

Cincinnati Milling Machine Co.
Cincinnati Shaper Co., The
Clark Controller Co.
Clark Tructractor Div. of Clark Equipment Co.
85 Clecreman Machine Tool Co
Cleveland Cap Screw Co.
Cleveland-Cliffs Iron Co.
Cleveland Crane \& Engincering Co...
Cleveland Hotel
Cleveland Punch \& Shear Works Co..
Cleveland Tramrail Division, Cleve-
land Crane \& Engineerlng Co
Cleveland Twist Drill Co., The
Cleveland Worm \& Gear Co., The
Climax Molybdenum Co.
Cold Metal Process Co.
Colonial Broach Co.
Columbla Steel Co.
Columbus Die, Tool \& Machine Co...
Commercial Metals Treating, Inc.
Cone Automatic Machtne Co., Inc.
Continental Machines, Inc.
Continental Roll \& Steel Foundry Co.
Continental Screw Co.
Copperweld Steel Co.
corbin Screw Corp.
Cowles Tool Co.
Crane Co.
Crawbuck, John D., Co.
Crosby Co., The
Crucible Steel Company of America.
Cuban-American Manganese Corp.
Cullen-Friestedt Co.
Culvert Division, Republic Steel Corp.
Cunningham, M. E., Co.
Curtis Pneumatic Machinery Co.
Cutter-Hammer, Inc.

## D

Damascus Steel Casting Co.
Darwin \& Milner, Inc.
Davis Brake Beam Co.
Dearborn Gage Co.
Detrolt Leland Hotel
Dlamond Expansion Bolt Co., Inc.
Dings Magnetic Separator Co.
Dravo Corn.. Englneering Works Div.
Duquesne Electric Mfg. Co.

## E

Engle-Plcher Lead Co., The
Edison Storage Battery Dlv. of Thomas A. Edison, Inc.
Elastic stop Nut Corp.
Electric Controller \& Mrg. Co
Electrle Furnace Co., The
Electric Storage Battery Co
Electric Storage Batery
Electro Alloys Co., The
Electro Bletallurgical Co.
Elmes, Charles F., EngIneering Works Enterprise Galvanizing Co.
Equipment Steel Products Division of
Union Asbestos \& Rubber Co.
Erdle Perforating Co., The
Erie Bolt \& Nut Co.
Eric Foundry Co.
Eureka Fire Brick Works
Ex-Cell-O Corp
Excelstor Tool \& Machine Co.
Fafnir Bearing Co., The

Fairbanks, Morse \& Co.
Fairway Laboratories, DIv. The G. S Suppiger Co.
Fanner Mfg. Co.
Fansteel Metallurgical Corp
Farrel-Birmingham Co., Inc
Farval Corp., The . Inside Back Cover
Federal Machine \& Welder Co.
Ferracute Machine Co.
Finn, John, Metal Works
Firth-Sterling Steel Co.
Ford Chain Block Division of Ameri-
can Chain \& Cable Co., Inc.
Foster, L. B., Co.
Foxboro Co., The
Fuller Brush Co.
General Amerlcan Transportation Corp.

5 General Electrle Co., Lamp Dept.
Globe Brick Co., The
Goodyear Tlre \& Rubber Co., The
Granite City Steel Co
Grant Gear Works
Graybar Electric Co.
Great Lakes Steel Corp.
Greenlleld Tap \& Dle Corp.
Grinnell Co, Inc.
Gulf Oll Corporation
Gulf Reflning Co.

Jackson Iron \& Steel Co., The
James, D. O., Mfg. Co.
Jessop Steel Co. ........
Jessop, Wm., \& Sons, Inc.
Johns-Manville Corp.
Johnson Bronze Co.
Jones \& Lamson Machine Co.
Jones \& Laughlin Steel Cori........ . . .
Jones, W. A. Foundry \& Machine Co. 86
Joslyn Co. of Callfornia
Joslyn Mig. \& Supply Co.
Kardong Brothers, Inc.
Kearney \& Trecker Corp.

- Kemp, C. M., Mfg. Co.


# ADVEITTISING INDEX 

Where－to－Buy Products Index carried in first issue of month．

Kester Solder Co．
kidde，Walter，\＆Co．，Inc
King Fifth wheel Co．
Kinnear Mig．Co
Kirk \＆Blum Mig．Co
Koppers Co．
Koppers L． O ．
Koven，L．O．，\＆Brother，Inc
Kron Co．，The
Laclede Steel Co．
Lake Clty Malleable Co．
Lamson \＆Sessions Co．，The
Landls Machine Co
Lang Machinery Co
Latrobe Electrle Steel Co．
Lawrence Copper \＆Bronze
Layne \＆Bowler，Inc．
LeBlond，R．K．，Machine Tool Co．，The Leeds \＆Northrup Co．
ee Spilng Co．，Ine．
Lehigh Structural Steel Co
Lesthen，A．，\＆Sons Rope Co
Levinson Steel Co，The
Lewls Bolt \＆Nut Co．
Lewis Foundry \＆Machine Dlvision of Blaw－Knox Co
．ewis Machine Co．，The
Lincoln Electric Co．，The
LInde Air Products Co．，The
I．Ink－Belt Co．
Litteral Mig．Co．
Loewy Engincering Co．，Litil
Loftus Englneering Corp．
Logemann Bros．Co．
Lord Baltimore Hotel
Lovejoy Flexible Coupling Co．
Ludlow－Saylor Whre Co．，The
Mekay Machine Co．
McKee，Arthur G．，Co．
McKenna Metals Co．

## I

Mackintosh－Hemphill Co．
Macklin Co．
Macwhyte Co
Mahoning Valley Steel Co．．The
Mathews Conveyer Co．
Maurath，Inc．
Medart Co．，The
Mesta Machine Co
Michigan Tool Co
Micromatic Hone Corp
Midvale Co．，The
Milwakee Foundry Equipment Co
Missourl Rolling Mill Corp．
Moltrup Steel Products Co．
Monarch Machine Tool Co．，The
ilorgan Construction Co
Morgan Engineering Co．
Morrison Metalweld Process，Inc．
Morse Bros．，Machinery Co．
Morton Salt Co．
Motch \＆Merryweather Machinery Co．
Motor Repair \＆Mfg．Co．
Natlonal Acme Co．，The
National Bearing Metals Corp
National Broach \＆Machine Co
Nutional Carbon Co．，Inc．
National－Erie Corp．
National Forge \＆ 0
National Forge \＆Ordnimer eio
National Lead $\mathrm{Co}, \underset{\sim}{2}$
National Roll sefoundry Co
Natlonal Screw ta Mrg．Co．
National Steel Corp．
Natlonal Telephone Supply Co．．Inc．
National Tube Co．
New England Screw Co．
New York \＆New Jersey Lubricant Co．
Nlagara Machine \＆Tool Works
Nicholson，W．H．，\＆Co．
Niles Steel Products Div Steel Corp．
Nilson，A．II，Machine Co．
Republic

Mitralloy Corp．，The
Norma－Hoffmann Bearings Corp
North American Manufacturing Co
Northwest Enginecring Co．
Norton Co．，The
Ohlo Electric Mig．${ }^{\mathbf{O}}$
Ohlo Ferro－Alloys Corp
Ohio Galvanizing \＆Mig．Co．

Ohto Knife Co．，The
Ohlo Locomotlve Crane Co．，The
Ohio Seamless Tube Co．，The
Ohlo Steel Foundry Co．，The
Open Steel FloorIng Institute，Ine．
Oxweld Acetylene Co．
Page Steel \＆Wire Division Ameri－
can Chain \＆Cable Co．，Inc．
Pangborn Corp．
Parker，Charles，Co．
Parker－kalon Corp．
Parker Rust Proof Co
Pawtucket Screw Co．
Penn Galvanizing Co．
Pennsylvania Industrlal Engineers．． 121
rennsylvanla Salt Mfg．Co．
Penola，Inc．
Perkins，B．F．，\＆Son，Inc
Pheoll Mrg．Co．
Phlladelphia Transformer Co
Fittsburgh Crushed Steel Co．
Pittsburgh Gear \＆Machine Co．．．
Pittsburgh Lectromelt Furnace Corp．
Plttsburgh Rolls Division of Blaw－
Knox Co．
Pllisbureh Saw \＆Tool Co
Pittsburgh Steel Co．
Poole Foundry \＆Machine Co
Porter，H．K．，Co．，Inc．
Pressed Steel Car Co．，Inc．
Pressed Steel Tank Co
Prest－O－LAte Co．，Inc．，The
Progressive Welder Co
Qulgley Co．，Inc．
16
Raymond Mifg．Co．，Division of Asso－ clated Spring Corp
Reading Chaln \＆Block Corp．
Ready－Power Co．
Rellance Electric \＆Engincering Co．
Republic Steel Corp．
Rhoades，R．W．，Metaline Co．，Inc．
Riverside Foundry \＆Galvanizing Co．
Roebling＇s，John A．，Sons Co．
Ronsevelt Hotel
Roper，George D．，Corp．
Rucmelin Mifg．Co．
Russell，Burdsall \＆Ward Bolt \＆Nut Co．
Rustless Iron \＆steel Corp
Ryerson，Joseph T．，\＆Son，Inc Co．
Salem Engineering Co．．．．
Simuel，Frank，\＆Co．，Inc
San Francisco Galvanizing Works
Sanitary Tinning Co．，The
Scovill Mfg．Co．
Scully Steel Products Co．
Seneca Wire \＆MIfg．Co．，The
Shakeproof Lock Washer Co．
Shaw－Box Crane \＆Hoist Division
Manning，Maxwell \＆Moore，Inc．
Sheffleld Corp．，The
Shell Oll Co．．Inc．
Shenango Furnace Co．，The
Shenango－Penn Mold Co．
Shepard Niles Crane \＆Holst Corp
Shuster，F．B．，Co．，The
Simonds Gear \＆Mrg．Co．
Simonds Saw \＆Steel Co．
Sinton Hotel
Sisalkraft Co．，The
SKF Industries，Inc．
Snviler，W．P．，\＆Co
Socony－Vacuum Oll Co．，Inc．
Soutin Bend Lathe Works
Southington Hardware Mrg．Co．
Standard Galvanizing Co．
Standard Steel Works
Stanley Works．The
Steel \＆Tubes Dlvislon，Republic Stee
Corp．
Steel Conversion \＆Supply Co．
Steel Founders＇Soclety of America
Steelweld Machinery Divlsion，Cleve
land Crane \＆Engineering Co．
Stewart Furnace Division，Chicago
Flexible Shaft Co
Stoody Co
21 Strom Steel Ball Co

Strong Steel Foundry Co．
Sun Oll Co．
Superior Mold \＆Iron Co．
Page

Superlor Steel Corp．
Surface Combustion Corp．
Sutton Engineering Co
Taylor－Wllson Mig．Co．
Tennessee Coal，Iron \＆Rallroad Co．
Thomas Machine Mfg．Co．
Thomas Steel Co．，The
Thompson－Bremer \＆Co．
Tide Water Associated OIl Co．
Timken Roller Bearing Co．．Back Cover
Timken Steel \＆Tube Division，The
Timken Roller Bearing Co
Tinnerman Products，Inc．
Toledo Stamping \＆Mrg．Co．
Tompkins－Johnson Co．，The
Torrington Co．，The
Transue \＆Williams stell Forging Corp．
Truscon steel Co．
Udyllte Corp．，The
U
Union Carblde \＆Carbon Corp．
Union Drawn Steel Div．Republic steel Corp．

United Chromium，Inc．
Infied States Steel Corp．，Subsidiaries
64， 95
American Bildge Co．
American Steel \＆Wire Co．
Atlas Lumnite Cement Co．
Carnegle－Illinois Steel Corp．
Columbia Steel Co．
Cyclone Fence Co．
Federal Shlpbullding \＆Dry Dock Co． National Tube Co．
Oll Well Supply Co．
Scully Steel Products Co．
Tennessee Coal，Iron \＆Rallroad Co．
United States Steel Export Co．
Universal Atlas Cement Co．
Virginia Bridge Co．
United States Steel Export Co．
Upton Electric Furnace Div．of Com－ merce Pattern Machine and Found－ ry Co．
Utilitles Electrical Machinery Corp．．． $1 \overline{24}$
Valley Mould \＆Iron Corp．
Vanadlum－Alloys Steel Co．
Vascoloy－Ramet Corp．
Vaughn Machinery Co．，The
Waldron，John，Corp．
Wapakoneta Machlne Co．
Ward＇s，Edgar T．，Sons Co．
Warner \＆Swasey Co．
Washburn Wire Co
Watson－Stillman Co．，The
Wean Engineering Co．，Inc．
Weinman Pump \＆Supply Co．，The
Welrton Steel Co．
Wellman Bronze \＆Aluminum Co
Wellman Engineering Co．
Westinghouse Electric \＆Migg．Co．
West Penn Machinery Co．
West Steel Casting Co．
Wheeling steel Corporation
Whitcomb Locomotive Co．，The
Whitchead Stamping Co．
Whitney Screw Corp．
Whekwlre Brothers，Inc．
Wickwire Spencer Steel Co．
Weiman \＆Ward Co．．．．．
Wilcox，Crittenden $\&$ Co．，Inc
Wilcox，Crittenden \＆Co．，Inc
Willams，J．H．，\＆Co．，Inc．
Wilson，Lee，Engineering Co
Wilson，Lee，Sales Corp．
Witt Cornice Co．，The
Wood，R．D．，Co．
Worth steel Co．
wyckoff Drawn steel Co．
Yale \＆Towne Mrg．Co
83 Yoder Co．，The
Youngstown Alloy Casting Corp．
Youngstown Sheet \＆Tube Co．，The
Youngstown Alloy Casting Corp．
loungstown Sheet \＆Tube Co．，The
Zeh \＆Hahnemann Co

[^8]
$$
5
$$
－ 18
$$
x
$$
$$
8
$$
號
235


#### Abstract

$$
0
$$


路

4-ROW TAPERED ROLLER BEARINGS, manufactured by Buntam in sizes up to $51^{\prime \prime} O$. 1)., are especially suitable for such applieations as back-up rolls and roll necks on hot and cold strip mills. Bantam Straight laadial Roller Bearings are also extensively used in this type of application.


BANTAM-DESIGNED MHL TYPE BEARINGS combine a radial roller section with a double-direction thrust bearing. Used at one end of roll necks, these bearings provide necessary thrust capacity, permit use of Straight ladial Roller Barings at opposite end. Jearings of this type pre made in three lengths for each bore size, providing a wide capacity range.
bantam quill bearings provide exceplionally high radial capacity in proportion to size. They find many applications in auxiliary equipment and in fabricating machinery such as the wire forming machine illustrated.


EYERY MAJOR TYPE of anti-friction bearing is included in B:antam's line-straight roller, tapered roller, needle, and ball. With this broad background of experience, Bantam's engineers are well qualified to cooperate in the selection of standard bearings, or design special ones, for every sted mill application. If you hase a bearing problem of any kind, TURN TO BANTTAM.


## STEEL MILL NEWS OF BANTAM BEARINGS



BANTAM SERVES THE STEEL INDUSTRY with a wide range of sizes and types of anti-friction bearings enginecred for severe service requirements. Typical application of Bantam Bearings is on work rolls and back-up rolls of this continuous hot strip mill in one of the country's major steel plants.
ULTRA-PRECISION IN LARGE BEARINGS made by Bantam is assured by special machining and grinding methods that result in extremely low tolerances, both in dimensions and in concentricits. Hardening techniques duveloped by Bantam engineers produce unusual toughness and strength, and contribute to successful bearing performance.


## Bantan torarincs

STRAIGHT ROLLER • TAPERED ROLLER • NEEDLE • BALL

[^9]
[^0]:    Material appearing in this department is fully protected by copyright, and its is fuliy protected in any form whatsoever without permission is prohibited.

[^1]:    * The data in this table demonstrate that arsenic and copper ions do not interfere with the determinalion of tin by the methcd outlined. The chromium, vanadium and molybdenum in the government standards are much higher than that encountered as residuals in plain steel. It is thought that no serlous errors will result from smalle. quantities.

[^2]:    M U S K

[^3]:    -Claymont, Del., Coatesville, Phoenixville, Harrisburg, Pa. †Portsmouth, Middletown, O., Ashland, Ky. £Worcester, Mass.; Bridgeport, Conn.; Phillipsdale, R. I. SLos Angeles, San Francisco, Seattle; ** \%is-inch and heavier, cut 12 inches and under; ttmay
     and under.

[^4]:    ${ }^{*}$ Philadelphia, Wilmington, Del., Claymont. Del., Coatesville, Phoeninville, Harrisburg. Pa.; †Portsmouth, Middletown, O., Ashland, Ky. $\ddagger$ Worcester, Mass,; Bridgepor", Conn.; Phlllpsdale, R. I. §Los Angeles, San Franclsco, Seattle. (a) also Johnstown, Pa., Warren, 0.

    NOTE: Where the rallroad maker of scrap operates In two or more of the consuming points named above, the highest of the maximum prices set out above for such basing points shall be the maximum price at consumer's plant at any point on the rallroad's line, except that switching charges of 84 cents per gross ton shall be subtracted from the maximum price of scrap originating from rallroads operating in Chicago and sold for consumption outside Chicago. (a) Re-laying quality $\$ 5$ higher.

[^5]:    General Elertric Company, Section CDW 1907
    Appliance and Merchandise Depr.
    Bridgeport, Conn.
    Sirs: Please send me free a copy of "Adequate Wiring for Industry" with information about G-E Wiring Materials.

    ## Name.

    Address
    City
    State

[^6]:    UICK and brutal in killing fires, LUX carbon dioxide extinguishers are harmless to materials and equipment. LUX gas is one of the fastest of all known extinguishing agents. Yet it leaves no mess or moisture, does not corrode or harm equipment, does not even contaminate a tank of liquid material into which LUX gas has been introduced. LUX has no bad habits, yet it's a lightning-quick fire killer.

[^7]:    Chester avenue. Operations to be trans ferred to the building, comprising iapproximately 110,000 square feet of flont space, have not been deflnitely decited.

    CLEVELAND - Incorporation paper: have been llled for Allied Machine \& Engineering Co. Roy Wilt, 2121 NBC bulld ing, attorney, flled appllcation for charier.

    CLEVELAND-Jack \& Helntz Inc., care of W. Jack, Hanna bullding, will soon let contract for one-story, $210 \times 300-$ foot factory, and $40 \times 80-f 00 t$ boller house. Cost $\$ 200,000$. W. Watson \& As sociates, 4614 Prospect avenue, engineers

    CLEVELAND - Cleveland Chain \& Mig. Co., D. L. Round, president, Broadway and Henry strects, wlll soon takc way and Henry strects, will soon
    bids for one-story, $40 \times 80$-foot, and two-story, $40 \times 60$-foot ${ }^{\times}$steel factory

[^8]:    

[^9]:    BANTAM BEARINGS CORPORATION - SOUTH BEND. INDIANA

