EDITORIAL STAFF
E. L. Shaner

Editor-in-Chief
E. C. Kreutzberg Editor
A. J. Hain

Managing Editor
G. W. Berdsall

Engineering Editor
J. D. Knox

Steel Plant Editor
Guy Hubbard
Machine Tool Editor
D. S. Cadot

Art Editor
ASSOCIATE EDITORS
G. H. Manlove
W. J. Campbell

Harold A. Knight
New York
W. G. Gude B. K. Price
L. E. Browne

Pittsburgh
Chicago
R. L. Hartiford
E. F. Ross

Detroit
Washington
A. H. Allen
L. M. TAMM

London
Vincent Delport
ASSISTANT EDITORS
George Urban
Jay DeEulis
I. C. Sullivan

La Verne Nock
Nesu York
John H. Caldwell

BUSINESS STAFF

G. O. Hays

Business Manager
C. H. Batley

Advertising Service
New York. E. W. Kreutzberg B. C. Snell

Pittsburgh..............S. H. Jasper
Chicago. L. C. Pelott R. C. Jaenke D. C. Kiefer

J. W. Zuber

Circulation Manager
MAIN OFFICE
Penton Building, Cleveland BRANCH OFFICES
New York..............IIO East $4^{2 n d}$ St.
Chicago....... 520 North Michigan Ave. Pitsburgh. Koppers Building Detroit 6560 Cass Ave. Washington....................... Press Building Cincinnati.............1734 Carew Tower San Francisco....... 1100 Norwood Ave. Oakland, Cali/., Tel. Glencourt 7559
L.ondon2, Caxton St. Westminster. S.W. i

Pemenn pulldiug, Cleveland, Ohto. E. L. Shaneit
Prestilent Presilent And Treasurer; G. O. HiAYA. Vice Memtident-F, G. Steinebacu, Secretary.
clamber, Austit Buresu of Clrculatlons: Asso-
lishers, thathers Assoclation. Paps Inc. aud Natious PubPublished every
United Stavery Monday. Subsacrintion In the
rear st, Mexico and Canada one pear st, tro, Cuba, Mexlco and Canada, one countrle,
lesues) 2 oc Estues) 20 c
ar Cleveland, under che matter at the postomee Copyriglit 1941 by the Act of March 1879 .

ABC

Volume 109-No. 8
August 25, 1941
BEHIND THE SCENES WITH STEEL 4
HIGHLIGHTING THIS ISSUE 19
NEWS
Half Billion for Steel Expansion This Year 21
Labor News in the Steel Industry 23
Steelman Summarizes Priority System as It Affects His Industry 25
Steelworks Operations for Week 27
Men of Industry 28
Obituaries
Obituaries 29
Activities of Steel Users, Makers. 3^{8}
Financial News of the Steel Industry 39
War Department's Defense Awards 40
Defense Supplies Rating Plan Certification Forms Revised 42
Aluminum Price Cut 2 Cents as New Plants Are Authorized 45
OPM To Require More Subcontracting To Avert "Priorities Depression" 4^{6}
OPACS Wants To "Know All" About Steel Industry's Costs, Operations 47
WINDOWS OF WASHINGTON 31
MIRRORS OF MOTORDOM 35
Editorial-Dreamers Tell U. S. To Wake Up 4^{8}
THE BUSINESS TREND 49
TECHNICAL
"Bounce" Rails for Highway Protection-By H. T. Moore 52
Forging Guns at Titusville-By Arthur F. Macconochic 54
Variable Speed Drives Increase Production 65
Quenching Media for Heat Treating Gun Forgings 68
Flame-Tensioning Band-Saw Blades 7^{5}
Steel-Frame Buildings vs. Bombs-By O. Bondy 80
Materials Handling
Handling and Fabrication Co-ordinated 62
Progress in Steelmaking
Floating Drive for Runout Tables-By John Knox 70
Joining and Welding
Cutting Cost and Weight of Aircraft Assemblies 74
Metal Finishing
Upping Output of Anodized Aluminum 84
INDUSTRIAL EQUIPMENT 88
HELPFUL LITERATURE 89
MARKET REPORTS AND PRICES 93
CONSTRUCTION AND ENTERPRISE 112
INDEX TO ADVERTISERS 120

PRODUCTION•PROCESSING•DISTRIBUTION•USE

GREATER Plant Capacity is Industry's No. 2 problemanswered in blue prints. It won't be long now! But in the meantime, present production facilities must be worked to the utmost. . . . Owners of Morgan Mills are discovering new capacities for greater tonnage with quality standards un-
 impaired. We shall be glad to help you if we may.

MORGAN CONSTRUCTION COMPANY• WORCESTER, MASSACHUSETTS n. 21
\square

HIGHLIGHTING THIS ISSUE OF

- UNDER the impact of the all-out priority system recently applied to steel in all forms some consuming plants engaged on civilian goods (p. 93) already have closed down for lack of supplies. Shortages of other metals are contributory. Deprived of latitude, producers in many cases have advised consumers to expect no more material without priority ratings. Even though OPM is seeking to encourage defense subcontracting (p. 46) to avert a "priorities depression" the civilian problem shows signs of becoming critical. As a result of the stringent new pig iron regulations one Southern producer will be able to ship to only 10 per cent of its customers, and wonders what the other 90 per cent will do.

The situation for civilians with respect to certain products also will be affected adversely by reason of analyses of mill order books last week. Because comparatively

Civilian Requirements

 few orders for wire, cold rolled sheets and strip, galvanized sheets, hot-rolled sheets and strip and tin plate -in the order named-come under priorities, considerable semifinished steel used for their manufacture will be diverted to products more heavily involved in priorities. Automobile production ($\mathbf{p} .35$) is to be cut 26.5 per cent during the four months starting Aug. 1-another straw showing how the wind blows. Further cuts are scheduled for later on. On the other hand, truck production will be increased.Whether the OPM carries out (p. 23) a new expansion program involving $12,000,000$ tons of ingots annually also is a question having an important bearing on the steel

Steel Needed For Expansion

 supply for civilians; to build and operate these facilities more than $4,000,000$ tons of steel would be necessary. In the meantime (p .21) expansion now in progress will bring ingot capacity to $88,370,920$ ne:tons by the end of this year or early in 1942 . . . Many consumers will be interested in a story prepared for Steel (p. \%5) by a steel salesman who has specialized in priorities since first they began to be applied . . . The Defense Supplies Rating Plan has been revised (p. 42) and two new forms have been devised . . . Vanadium (p. 33) now is under full priority control.

Professor Macconochie details (p. 54) the heating, forging, heat treatment, rough and finish machining of 37 -millimeter gun forgings, and larger sizes, as done at the Struthers

Forging Guns At Titusville

 Wells-Titusville Corp. plant at Titusville, Pa. . . . Variable speed drives ($\mathbf{p} .65$) increase production as much as 20 per cent. . . . John Knox, Steel Plant Editor, Steel, describes (p. 70) a unique floating drive developed for mill runout tables. . . . Bombing of English towns has revealed that certain design factors will do much to prevent bomb blast from damaging buildings. These are explained (p. 80) by O. Bondy. . . . H. T. Moore shows (p. 52) how "bounce" rails provide a more effective highway protection.How to get maximum output from aluminum anodizing equipment is confronting many aircraft manufacturers right now. By careful planning along the lines suggested (p. 84), one plant increased its output more than 25 per cent per working hour, jumped total from 5000 to more than 12,000 units per week. . . . Materials handling and fabrication are co-ordinated (p.62) to produce a truck cab every 7 minutes. . . . Professor Macconochie includes data on quenching media (p. 68) for heat treating such items as alloy steel gun forgings. . . . Several ways to cut cost and weight of aircraft assemblies are described (p. 74). . . . Flame-tensioning bandsaw blades (p. 78) proves successful.

The Problem of Steel Procurement

An Explanation of the Situation and Suggestions for Procedure

Today, the steel industry is producing at the rate of about 87 million tons a year. That is 29% more than in any previous year. However, 25 to 35% must be reserved for Defense, and this, plus growing commercial requirements, has brought about a temporary steel shortage.

Steel production is being increased, but because Defense needs are increasing, 100, it is difficult to say when there will be ample steel for all requirements.

Anticipating this situation, Ryerson entered the emergency with very large and complete stocks in every one of its ten steel service plants. These stocks enabled many customers to get started quickly on important Defense projects. They were sufficient, also, to supply industries whose continued operation means jobs and incomes for millions not engaged in direct Defense.

The demand for Ryerson Certified Fieels has been so great that our stocks have been substantially reduced and we are now out of many sizes. We are supplying urgent demands as fast as possible. It is particularly important at this time to take care of miscellaneous requirements from warehouse stocks because, if these rush oders had to be filled promptly by the sted mills, rolls would have to be changed, time would be lost, and production greatly reduced.

In giving best possible service to all of our eustomers, we will probably continue to run short of many types and sizes. Possibly, some type of allocation system may even become necessary. In the meantime, to meet the situation, we are making four suggestions:

One: Write on every order the use for which the steel is intended in accordance with regulations imposed by general preference order M-21 made effective by the Office of Production Management on August 9, 1941. If for Defense purposes mention either the govermment contract or project number, or industry priority classification if any. This is necessary in order that we may classify your purchases in conformance with their proup classifications.
Tuo: Send us your orders, not inquiries, so that valuable time will he saved and there will be no chance of steel, if on hand, being sold while the quotation is being made.
Three: List possible alternate sizes, gauges, and qualities that you could use if your exael requirements are not in stock.
Four: We urge your cooperation in conserving stocks and making them available to the largest number of users. Please try to avoid the tendency to order more than is required, for this is the surest way to create additional shortages that may prove serious to all.
For 99 vears we have served industry through prosperity and depression-peace and war-and expect to continue to serve for many years to come. We appreciate the patience and understanding of our friends and customers in this national emergency and want you to know that we will contime to work with you on this problem of steel.
 Joseph T. Ryerson \& Son,inc.
CIIICAGO
(IIFMEJAN゙D)

MIINAUKEF.
BUFFALO
s'r. 1.0015 BOSTON

CINCINNATI
PHII.ADELPHIA

DETHOIT JFRSEY CITV

Half Billion for

Steel Expansion

This Year
$+\quad+\quad+$

Expenditures for productive equipment ex-
panded sharply over earlier plans . . . 4,222,220
tons of ingot capacity added or in process of

construction

- TOTAL steelmaking capacity of the country should be at an annual rate of $88,370,920$ net tons of ingots by the end of 1941 or very shortly thereafter.
This figure is arrived at as the result of a survey just completed by Steel, covering 24 major producers and 12 smaller companies, or all that are known to have any expansion programs.

This survey shows total expansion, under way at the beginning of the year and undertaken since, comes to $4,222,220$ net tons of ingots, all to be ready for production before the end of this year or early in 1942.

Last weak the American Iron and Steel Institute reported that as a result of a $2,000,000$-ton expansion during the first half, ingot capacity as of June 30 was $86,148,700$ tons. Adding to this figure the additional $2,222,220$ tons to be completed dur.
ing the remainder of this year will bring the total to $88,370,920$ net tons.

The increase referred to in the foregoing makes no provision for additional expansion proposals now being studied (p. 22) by OPM. The report at Washington is that proposals for new ingot capacity would provide some $12,000,000$ additional tons. Whether this program, or a part of it, is to be authorized is not known. The only additional expansion of which the steel industry seems to be fairly sure is the addition of some $6,500,000$ tons of pig iron capacity, some $1,500,000$ tons of electric steel capacity and a certain amount of bessemer capacity.

Government authorization and financing and widespread application of priority ratings would be necessary for this additional program.

Cost of the $4,222,220$-ton expansion program now in process originally
was estimated at $\$ 457.500,000$, cor:siderably more than half of which, according to the companies involved, was to be financed out of their own, funds. Now it is estimated that rising costs may move the figure higher. This is sharply in contrast with the American Iron and Steel Institute's estimate last January that the industry would spend $\$ 282,000$,000 for new productive equipment in 1941. Expansion in 1940 cost \$171,000,000 . Estimated similar expenditures from the beginning of 1935 to the end of 1941 aggregate at least $\$ 1,565,000,000$.

Steel Capacity Increased $2,000,000$ Tons in First Hall

The steel industry increased its annual steelmaking capacity by a total of almost $2,000.000$ tons during the first half of 1941, making
a total increase in the past 18 months of nearly $4,500,000$ tons of new capacity, it is revealed by figures recently compiled by the American Iron and Steel Institute.

Installations of new equipment during the first six months of this year raise the industry's total annual capacity as of June 30, 1941, to 86,148,700 tons of steel ingots and castings. At the close of 1940, the nation's steel capacity was rated at $84,152,000$ tons per year.

Capacity is ordinarily rated by the institute only as of the close of a year, but the substantial additions to capacity which went into operation during the first half of 1941 made advisable a survey of capacity' as of mid-year.

Blast furnace capacity of the industry was increased by 300.000 tons during the first half of this year, and is now rated at $57,937,000$ tons of pig iron and ferroalloys per year. Plans are now being considered to construct an additional $6,500,000$ tons of blast furnace capacity.

Present steelmaking capacity of the industry is 18 per cent greater than the $72,985,000$ tons of capacity available in 1929, and exceeds by fully 40 per cent the total of 61,021 . 000 tons of capacity available in 1918.

Of the total tonnage of new steel capacity which was placed in operation during the first half of this year, about $1,500,000$ tons represented additional open-hearth furnace capacity and 686,000 tons represented the capacity of new electric furnaces. Bessemer steel capacity was reduced slightly as one converter, installed largely for experimental purposes, was dropped from the list.
Total capacity for producing steel by the open hearth process is now rated at $76,007,130$ tons per year, a new peak.
Capacity of the industry's electric furnaces, used primarily to produce high quality alloy steels, is now $3,272,370$ tons, likewise the highest on record. In the past year and a half, electric furnace capacity has risen nearly 75 per cent.

OPM Steel Expansion Report May Be Released Soon

WASHINGTON

Complete OPM report on the amount of steel expansion needed for the defense program is expected to be released soon. It now is in the hands of William L. Batt, of the OPM Production Division, who soon
will forward it to William S. Knud sen. Mr. Knudsen will analyze the report and turn it over to the President.

While OPM heads will not discuss the report, it is understood steel companies have indicated a willingness to increase present capacity by at least $12,000,000$ tons. Part of this would be accomplished through improvements at existing plants.

Pacific coast capacity will be increased by about $1,200,000$ tons, it is reported. Western companies or subsidiaries proposed expansions totaling $1,556,000$ tons to OPM several weeks ago.

At Pittsburgh, Jones \& Laughlin Steel Corp. officials were "complete. ly in the dark" concerning reports OPM was considering possibilities of erecting a new steel plant on property owned by the company at Hammond, Ind. The report, which orig. inated in Washington, follows by only a few weeks similar reports originating at Hammond and which were without foundation.

Maritime Commission Considering Building of 25 Lake Ore Carriers

United States Maritime Commission still has under consideration the

New Cold Strip Mill Employs 11,400-Horsepower in Six Motors

- Total of 11,400 horsepower is employed to drive the new 5 -stand cold strip mill at the Irvin works of Carne-gie-Illinois Steel Corp. First stand is powered by an 800 -horsepower motor and the remaining four stands are driven by 2000, 2500, 2500 and 3000 -
horsepower motors respectively. Tension reel is driven by a 600 -horsepower motor. All are special mill type, designed by General Electric Co. with particular attention paid to their armature stored-energy characteristics.
Nominal strip speed is 3850 feet per
minute without exceeding rated capacity of motors. The mill has been operated as high as 3750 feet per minute. It will handle stock up to 38 inches in width and is the second 5 -stand unit installed in the plant. First unit went info production in the fall of 1938.

Annual Blast Furnace Capacity

	Tons,		Charcoal	
As of-	Pig Iron	Ferroalloys		Total
Dec. 31, 1940	56,522,370	980,660	106,560	57,609,590
June 30, 1941	56,838,310	992,300	106,560	57,937,170

57,937,170

LABOR

Draft Reclassification Ends Strike at Chain \& Cable Plant

- A LOCAL Pittsburgh draft board last week proved a compelling force toward insuring labor peace. Striking employes of American Chain \& Cable Co.'s Page Division voted to return to work late in the week after four days of idleness despite tho fact their grievance had not been settled, and no negotiations were being held.
The local draft board had begun to reclassify workers and ten strikers, deferred because of their jobs in defense work, received notices to report immediately for physical examination. A sudden election was called and all went back to work. The ten will not return, however, unless the company requests a second deferment for them.

Walkout Halts Production at Alan Wood Iron Ore Mine

Scrub Oak Mine of Alan Wood Steel Co., Conshohocken, Pa., at Mine Hill, N. J., was shut down last week when 500 workers went on strike after one of their number had received a dismissal notice upon his return from vacation. Only a maintenance crew reported for work to keep mine pumps in operation and prevent flooding.

Committee of union and nonunion workers was appointed to confer with the mine superintendent concerning the dismissal.
Producing 3000 tons of iron ore daily, the mine has been working 24 hours a day the past 15 months.

Carnegie-Illinois Completes Wage Agreement With Coke Workers

Agreement between Carnegielllinois Steel Corp., Pittsburgh, and Steel Workers' Organizing Committee representatives on behalf of coke workers at the company's Clairton, Pa., by-product coke plant, was signed last week.

Negotiations had followed a oneday strike July 25, and the agreement is retroactive to that date. It provides wage increases for workers involved.

100 Tool Engineers Finish Training Course at Baltimore

First 100 tool engineers to complete the emergency defense training program instituted in Baltimore under direct sponsorship of the University of Maryland were graduated recently. Under the current set-up, classes in tool engi-
neering are conducted throughout Maryland, at College Park, Baltimore, Hagerstown and also at Washington.

Many of the trainees completing the course were formerly skilled workers in industrial plants whose work had indicated an ability to undertake tool engineering provided suitable training were completed.

Baltimore chapter of the American Society of Tool Engincers is assisting in carrying out the training plan.

Connecticut's Training System. 'Leading Nation"'

- Connecticut's plan for emergency training of defense workers is "apparently leading the nation in combined effectiveness and quantity of worker training," according to Otto W. Winter, national chairman, Emergency Defense Training Committee, American Society of Tool Engineers.
Under this state-developed and state-financed plan, 29 schools are co-operating in training 3000 every five weeks for specific defense jobs. Effectiveness of the program, developed in co-operation with industry, is indicated by the fact 45 per cent of all machine operators at United Aircraft Corp. plants in Connecticut are graduates of the 200 -hour school set-up.

The Connecticut plan (Stebl, Aug. 19, 1940, p. 21) is similar to the training program recommended last year by the American Society of Tool Engineers.

Pittsburgh River Oil Shipments at New Peak

- River shipments of petroleum and petroleum products in the Pitts. burgh district in July reached an alltime high, primarily because of the threatened shortage in the East. Ohio river, normally the largest carrier of petroleum products, floated 99,000 net tons or $29,700,000$ gallons in the month. This was an increase of 19,200 tons over shipments in the preceding month and 15,000 tons more than in July, 1940.

Steel shipments on the Ohio in July, 228,600 net tons, were down slightly from 236,500 tons in June Decrease was due to declining shipments of scrap from the Southwest. Total shipments on the Ohio, 1,781 , 000 net tons, was slightly less than the all-time peak of $1,785,300$ tons in June.

On the Monongahela, aggregate of shipments was $2,862,000$ tons, up 30,000 tons because of a 35,000 -ton increase in steel shipments, from 145,700 tons to more than 180,000

Iron, Steel Section of OPM, as Now Constituted

New Social Security Building, Whahington; Phone Republic 7500
A. D. Whiteside, Chief of Section

Charles Halcomb, Assistant and Priority Specialist Ray G. Faus, Administrative Assistant

Senior Consultants

Carbon steel:
Stanley B. Adams
Alloy steel, specifications:
H. Leroy Whitney

Metallurgy, plant expansion:
George B. Waterhouse
Industry Specialists
Agriculture:
R. W. Shannon

Railroads:
W. A. Summerhays

Raw Material Group
R. C. Allen, deputy chief
A. L. Fairley, priorities
R. H. Ridgeway, assistant

Iron Ore
R. C. Allen

Pig Iron
William Kerber
Scrap
L. J. Borenstein

Fuel
Edward Holley
Fluxes, Refractories
Don N. Watkins
Alloy Steel Group
(To Be Named) Deputy Chief
SAE Alloys
A. H. Philpot

Stainless \& Alloy Welding Rod
F. E. Spencer

Tool Steel

F. E. Spencer

Plant Expansion

W. A. Hauck

Herbert W. Graham
George Jurey
H. Bryant

Liaison Consultant
Ferrous alloys:
W. B. Nelson

Co-ordinator

Long C. Sterry
Carhon Steel Group
S. E. Hackett, Deputy Chief

Ingots and Semifinished
A. A. Wagner

Structural Shapes, Plates and Piling
A. A. Wagner
A. J. O'Leary
H. W. Bryant
J. H. Overall

Sheets, Strip, Tin Plate
L. F. Miller
E. F. Clark
J. A. Ewing

Steel Bars: Hot, Cold and Reinforcing
W. Vosmer
A. C. Roeth Jr.
C. M. Woodworth

Shell Steel, Rails and Accessories
J. J. Moakley

Forgings, Armor Plate
G. F. Hocker

Iron Castings, Cast Iron Pipe
A. L. Fairley

Tubular Products
Dan F. Lacy
R. L. Greenamyer

Wire and Wire Products
L. C. Crewe Jr.

Steel Castings
G. F. Hocker
R. Doughton

Cold-finished Bars
W. Vosmer
tons in July. Allegheny river totals increased in July to 330,000 tons from 320,400 in June.

Steel Representatives Urge River Extension

- Dredging of the Cuyahoga river at Cleveland to permit navigation 1500 feet beyond present limits was recommended to United States Engineers last week by representatives of Republic Steel Corp. and Otis Steel Co., both of which have plants near the site of the proposed extension.

The steel company spokesmen said the additional deep water was necessary to permit expansion for defense needs.

Donald B. Gillies, Republic vice president, stated his company was
investigating, at the government's request, plans for constructing additional blast furnace and steelmaking capacity on a site within the channel extension requested.

Walter M. Lorenz, Otis traffic manager, asserted the project would provide his company with dock and storage space.

- United States Steel Corp. common stock outstanding June 30 totaled 8,703,252 shares. Preferred holdings at the end of the second quarter aggregated $3,602,811$ shares. Foreign holdings of United States Steel common, June 30, were 490,298 shares, or 5.6 per cent of the issue, against 486,559 shares March 31. Ot the preferred stock, 59,558 shares, or 1.6 per cent, were owned abroad, compared with 59,588 shares of foreign holdings March 31.

Steelman Summarizes Priority System

As It Affects His Industry

WHILE the priorities system, created to meet an emergency and often revised and extended, appears unnecessarily tied up with red tape, a careful reading of the documents involved will save much time and avert much confusion. Usually the general orders or preference certificates are self explanatory and important features readily apparent. They have been drafted to cover all possible contingencies.
Herewith is presented an outline of priority matters relating to steel.
The steel consumer secures a preference by one of three methods:

1. A government agency places a contract directly with the consumer in question and at the same time assigns a preference rating.

Example-A shell steel contract which specifies a rating A-1-H.
2. The steel consumer receives an order for a subcontract and his cus tomer sends him a preference rating certificate to cover the order involved.
Example-An order for one large concrete mixer covered on PD-3 form from prime contractor.
3. The steel consumer manufactures a critical item such as machine tools and has been given a blanket preference order which may be used to secure necessary steel.
Example-P-5A Serial No. 3 which may be extended to any supplier by executing an acceptance.

Most questions which arise will be answered by a review of the important forms and general orders as outlined below, and by a thorough reading of any document on which you are working.
On any preference rating certifcate there are four important points to note:

1. The preference rating assigned.
2. The governiment contract number or job.
3. The quantity specified which may not always agres with an order.
4. The specified shipping date required for the quantity shown.

EDITOR'S NOTE: The accompanying article was written for STEEL by a student of the priiority regulations issued from Washington. He is associated with a large steel producing company, in a position where he must have a knowledge of priorities and their operations. For obvious reasons, however, his name cannot be used.

Preference ratings for defense work range from:

AA-Emergency, seldom lus.-
A-1-A to A.1-J-Used for most Army and Navy contracts.

A-2 to A-9-Usually used for fundamental supplies such as mining equipment, freight cars, etc.

A-10--Lowest defense rating used if no higher rating is assigned.

B-1 to B-8-For civilian requirements; officially this classification has been used only on nickel-bearing steel. It is expected that the new groupings, group A to group H as set up on PD-73 may, under order M-21, help to classify civilian requirements although these alphabetical groupings are not to be construed as preference ratings.

Important Forms

Note any preference rating AA to A- 10 may be extended on any of the following certificate forms, but the usual rating is noted in brackets at the end of each paragraph.

PD-1-Application for preference rating to be used by steel consumer to secure a rating for a particular order or group of orders. Must be sent to Priorities Division of OPM, New Social Security building, Washington.

PD-2-A specific preference rating certificate covering a particular order or item or group of orders. Issuec only by the Priorities Division of CPPM. Not extendable. To extend, subcontractor must apply to Priorities Division on PD-1 for a now certificate. PD-2 technically ap-
plicable only to the supplier to whom it is addressed. (A-1-C to A-10) Usually carries a serial number with prefix "C".

PD-3-A specific preference rating certificate to be used on any United States Army or Navy supply arm or bureau contract. Tus type of certificate may be issued or countersigned by any Army or Navy officer or inspector. It may be reextended by any subcontractor or sub-subcontractor ad infinitum. Extensions are controlled since the Army or Navy contract involved must be specified on the certificate.

Any steel consumer who receives such a certificate can get a supply of PD-3 forms from the nearest Army or Navy office and by reading the instructions contained therein should have little difficulty in ex. tending the rating to his steel supplier. (A-1-A to A.1-J) Usually carries a serial number with prefix "AN".

PD-4-Identical to PD-3 except that it is to be used for contracts of all government agencies other than the Army or Navy. Thus, on a TVA contract the original certificate or any extension should be countersigned by a TVA or authorized government official. (A-1-C to A-10) Usually carries a serial number with prefix "VG".

PD-5-This certificate is almost identical to PD-3 and 4 except that it is to be used only for orders required for a foreign government contract and must be countersigned by the agent of the foreign government involved as well as by an authorized United States government official. (A-1-B to A-1-J) Usually carries a serial number and prefix "F".
PD-10-"Request for nickel-bearing steel". This form is issued by the consumer and must be notarized. It has been effective as a priority rating certificate. Directions on the form are clear and concise and application has probably been simplest of all forms so far.
Since nickel is under a mandatory
priority this form must be submitted with each nickel steel order. (A-1-A to B-8)

PD-11-Report of inventory of nickel-bearing steel, to be filed by steel consumer.

PD-19A-Report for inventory control under General Metals Order No. 1. Now obsolete and replaced in effect by PD-73.

PD-25-Report of requirements for scarce materials. In effect a form to be used in applying for a blanket preference rating order P-6 Defense Supplies Rating Plan. Explained more fully below.

PD-25B-Report form to OPM of items extended under a General Preference Order P-6.

PD-32-Customer's statement of failure to obtain required delivery or place an order for iron and steel products. Self-explanatory.

PD-73-Customer's statement to producer classifying purchase order or contract for steel.

Effective Scpt. 1, 1941, each consumer must fill out one copy of this form and forward it with each order entered.

By Oct. 15, 1941, each consumer must have filled out and mailed one copy of this form to his supplier for each order open on his books.

Included in the form is a space for required shipping date, exact purpose, and classification of use in or der of importance.

Blanket Preference Rating Orders

P-5-Obsolete blanket rating for cranes; not extendable. Rating as signed A-1-A.

P-5A-Material entering into manufacture of cranes. Rating, A-1-A.

P-6-Defense supplies rating plan. Rating, A-10 or higher.

P-7-Material entering into merchant ship construction. Rating, A.1-A to A-1-C.

P-8-Material entering into freight car construction. Rating, A-3.

P-9-Various suffixes for heavy bombers. Rating, A-1-A and lower.
P-11-Material for production of metalworking equipment. Rating, A-1-A or lower as assigned. P-13--Material for air frames. Rating, A.1-A and lower.
P-14 A \& B-For ship ways. Rating as assigned.
P.17-Canning machinery and equipment. Rating, A-2.

P-19A-Material entering into the construction of a defense project. Rating, as assigned.

All of these blanket preference orders operate in much the same way. The manufacturer goes to the Priorities Division of OPM and if they give him a general preference order he should read it carefully. If he decides to accept the conditions stated therein, he executes by sign ing an acceptance and mailing to the Priorities Division. A serial num-
ber for identification purposes is assigned to each manufacturer. The manufacturer should extend to his supplier by forwarding a photostat or copy of his signed acceptance of a serially numbered copy and should also forward four or more additional copies, unsigned, so that his subcontractors may sign acceptances, mail a copy to OPM Priorities Division, and re-extend to their suppliers. The first page of the certificate showing the serial number and the original producer or contractor to whom extended will always remain the same for ready identification.

These general orders carry expiration dates, usually after 60 or 90 days or after a particular project such as a number of identified ships or a new ordnance plant has been completed.

There are some variations in handling the various orders, but a careful reading of any order will answer any question thereto.
Once a consumer has sent an executed copy of an order to a supplier. no additional forms are necessary. The consumer must give the supplier a list of items and orders (with shipping dates necessary to meet a carefully planned production schedule) which are to carry the rating.

It is suggested that the supplier show on his shipping notices and invoices the preference order number, producer's serial number, and preference rating extended. All of
these blanket orders require on demand of the producer or any subcontractor or supplier who extends the rating or to whom a rating has been extended, a report of orders and/or tonnage extended. This is necessary in order to prevent abuse of the privilege conferred. It is possible that the Priorities Division will make spot checks to determine the accuracy of such records and reports.

If a steel consumer is producing large lots of small items for defense supplies where individual tonnages are too small to use extensions of specific blanket preference certifcates, his best move would be to secure a P-6 order after reporting his requirements on a PD-25 form. It may be that the PD-73 forms under general order M-21 will relieve the situation for consumers of this type, but every effort should be made to get a rating of A-9 or better under the P-6 order.
On most of the blanket orders listed above the Priorities Division may extend any preference rating from A-1-A to A-10. For example, under the P-7 maritime ships order, 1941 hulls carry an A-1-A rating, 1942 hulls carry A-1-B and 1943 hulls carry A-1-C.

Summary of General Orders

General Metals Order No. 1-Inventory control plan, now replaced by order M-21.

General Steel Preference Delivery

Aircraft Production Index Significant

"The index in the diagram show. ing the monthly changes in the output of aircraft may well be
the most important of all our indicators of industrial production," says the Cleveland Trust Co., in its current Business Bulletin.
"It is directly significant as reflecting progress in one most important factor in our own preparedness program, and it is of perhaps equal consequence as a measure of our ability to supply aid to Britain and her allies."
The diagram is based on the series of aircraft production data included as one of the components of the Federal Reserve index of industrial production. The heavy irregular line shows the monthly changes in output of aircraft in this country. Average for the five years from 1935 through 1939 is taken as being equal to 100 .
Surprisingly, the steeply rising trend started early in 1939, long before the outbreak of war.
The actual number of military airplanes completed during the first six months of 1941 was 7423 , eclipsing by more than 1000 the entire war plane output of 1940 . Since the start of the defense program, a little over a year ago, more than 12,000 airplanes have been produced.

Order No. 1 of May 29, 1941, now replaced in effect by order M-21.

General Preference Order M-5 and M-5-A of April 10, 1941, set up mandatory priorities for nickel-bearing steel.
M-17-Pig Iron Order issued Aug. 1, 1941.

M-21-General Preference Order to conserve the supply and direct the distribution of steel.

Specific changes from General Steel Preference Delivery Order No. 1 of May 29, 1941, revoked by this order are:

1. All defense orders not assigned a higher rating automatically take a preference rating A-10.
2. Provides that each order must be covered by form PD. 73 which it is assumed will give steel producers detailed information on each order so that they may schedule accordingly.

J \& L May Air Condition

More Blast Furnaces

- Increased pig iron yield from Jones \& Laughlin Steel Corp.'s ail' conditioned blast furnaces, one at Aliquippa and two at its Eliza works, is prompting the company to consider similarly equipping its other eight stacks. Iron production at the Aliquippa stack is reported to have increased 8 per cent.

Installation of air conditioning at all 11 stacks, the company fig. ures, would result in pig iron yield increase approximately equivalent to the output of a new furnace. Cost of the additional equipment would be considerably less than the cost of a new stack and less time would be required to install the equipment than would be needed to build a new furnace.

Shells To Be Made at McKeesport Plant

Jones \& Laughlin Steel Corp. is equipping its McKeesport plant to produce shells, under an agreement with the Defense Plant Corp. The plant will employ 1500 . The rehabili. tation program will be financed in part by the government and in part by the company.
Company also is installing new soaking pit facilities and extending the open hearth building at its Pitts burgh plant. No additional furnaces are contemplated but the output of present units will be increased by the new facilities.

E Reserve supply of crude iron ore in New Jersey is estimated at more than $35,000,000$ tons, according to Meredith E. Johnson, state geologist. This equals the total tonnage of iron ore taken from New Jersey mines in the

PRODUCTION .

- STEELWORKS operations last week advanced $1 / 2$-point fo $98 / 2$ per cent. Four districts made gains, two declined and six were unchanged. A year ago the rate was $90^{1 / 2}$ per cent; two years ago it was $631 / 2$ per cent.

St. Louis-Unchanged at 98 per cent, which has been held for four months.

Detroit-Declined 2 points to 92 per cent, with two open hearths idle.

Cleveland-Completion of repairs on open hearths raised the rate $3^{11 / s}$ points to 93 per cent.

Cincinnati-Rose $21 / 2$ points to 88 per cent but a curtailment for open hearth repair is expected this week.

Chicago-Increased $11 / 2$ points to 101 理 per cent, 1 point below the record level of $1021 / 2$ attained in three weeks in May and June.

Birmingham, Ala.-Maintained 90 per cent, with 22 open hearths in production. Tennessee Coal, Iron \& Railroad Co. has relighted its No. 2 stack at Ensley, Ala., on completion of repairs.

Central eastern seaboard-Steady at $951 / 2$ per cent, expected curtailment from scrap shortage not yet apparent.

New England-After briefly touch-

District Steel Rates

Percentage of Ingot In Leading		Capacit District	Engaged	
	Week ended		Same	
	Aug. 23	Change	1940	1939
Pittsburgh	100	None	83	56
Chicago	101.5	+1.5	98	56
Eastern Pa.	95.5	None	89	44
Youngstown	98	None	83	55
Wheeling	92	-1	99	86
Cleveland	93	$+3.5$	86.5	80
Buffalo	93	+ 2.5	90.5	60.5
Birmingham	90	None	88	75
New Englan	90	None	85	70
Cincinnatl	88	+ 2.5	78	63
St. Louls	98	None	77.5	57
Detroit	92	- 2	92	82
Average	98.5	$+0.5$	90.5	63.5

ing 100 per cent last week operations receded to 90 per cent, one furnace going down for repairs.

Buffalo-Lighting of an open hearth by Republic Steel Corp. raised the rate $21 / 2$ points to 93 per cent.

Pittsburgh-Held at 100 per cent for the fifth week. Active blast furnaces number 44 out of 50 . CarnegicIllinois Steel Corp. blew in its No. 4 Duquesne stack, making all six active at that plant. This company now has 22 of 25 stacks active in the district.
Wheeling-Slight adjustment in producing units resulted in a decline of 1 point to 92 per cent.

Youngstown, O. - For the seventh consecutive week steel production remained at 98 per cent, with 76 open hearths and three besse. mers active.

Oil Drum Makers To Be Granted A-5 Rating

- Arrangements have been com pleted with OPM to assure manufacturers of steel drums sufficient steel with which to fill defense or ders for petroleum and oil companies.
A committee representing the manufacturers and steel producers has been conferring with OPM of ficials. The announcement last week added that the industry has been advised that orders up to twothirds of the normal rate for steel would be eligible for A-5 priority rating to meet requirements for chemical and petroleum products during September and October.
The A.5 rating on a two-thirds basis covering these two months is a temporary arrangement.

MEN of INDUSTRY

- FREDERICK E. MUNSCHAUER, vice president and treasurer, Niagara Machine \& Tool Works, Buffalo, has been elected president. He has been associated with the company 33 years. George R. Kinney, sales manager, who has served with the company 22 years, becomes vice president.

IRichard P. Swartz, vice president, Crown Can Co., division of Crown Cork \& Seal Co., Baltimore, has been promoted to assistant to president.

John L. Foley, 313 Herman street, Buffalo, has been appointed distributor in the Buffalo territory by $\mathrm{H} 口-$ bart Brothers Co., Troy, O., for its line of are welders and supplies.

John 11. Collier, president, Crane Co., Chicago, has been elected to the board of trustees of Illinois Institute of Technology, Chicago, to fill the vacancy created by death of C. B. Nolte, late president of the company.
H. G. Smith has been promoted to executive engineer in charge of engineering of automotive and industrial division and radial diesel division, Buda Co., Harvey, Ill. He was formerly chief engineer of the automotive division.
S. A. Harris has been appointed eastern regional manager, Detroit Rex Products Co., effective Sept. 1. He succeeds W. F. Newbery, who has been promoted to the general office at Detroit on special duties.

Adam L. Wesner has joined the technical staff of Battelle Memorial Institute, Columbus, O., and has been assigned to the division of materials beneficiation where investigations of coal laundering and ore dressing methods are in progress.
W. H. Spowers Jr., for many years a consulting engineer specializing in galvanizing, has been appointed Lieutenant Commander in the United States Navy and ordered to active duty in the Bureau of Ships, Washington. He will continue to maintain his offices at 551 Fifth avenue, New York, for limited consulting work. Mr. Spowers has built many of the largest galvanizing plants in this country, Canada,

F. E. Munschamer

George R. Kinney

W. II. Spowers Jr.

South America and Europe. He is also president of Spowers Research

Laboratories. In addition to writing numerous articles on various phases of galvanizing, he is author of the book, "Hot Dip Galvanizing Practice." A member of the Wire Association, he is associate editor of Wire and Wire Products. Mr. Spowers also has two sons in military service.

James T. Fox has been made blast furnace superintendent, Blast Furnace Division, Koppers United Co., Granite City, Ill. He has been assistant blast furnace superintendent, Interlake Iron Corp., Scuth Chicago, Ill., the past four years, and before that was associated with Inland Steel Co.

Dr. John Campbell, since 1929 technical director, International Pa per Co., has resigned to become associated with Reynolds Metals Co., Richmond, Va., where he will be in charge of a plant efficiency department devoted to manufacturing methods.
W. W. Hancock, secretary-treasurer, and P. F. Boyer, comptroller, Republic Steel Corp., Cleveland, were elected directors at a meeting of the board of directors last week. Both also were elected vice presidents, in addition to their present offices.
C. A. Nenno, executive vice president, J. M. \& L. A. Osborn Co., Cleveland, and manager of its Buffalo division, has resigned due to ill health. C. E. Caddy, the past several years manager of the company's Detroit division, succeeds Mr . Nenno as manager at Buffalo. Carl T. Howe has been appointed manager of the Cincinnati division, and C. F. Gruenert, formerly assistant manager at Detroit, has become manager there, succeeding Mr . Caddy.

William B. Given Jr. has been elected president, National Bearing Metals Corp., New York, to succeed J. B. Strauch. Mr. Strauch has been elected chairman of the board, which position was previously held by Mr. Given. Mr. Given is also president, American Brake Shoe \& Foundry Co., which company owns a controlling interest in the National Bearing Metals Corp.

DIED:

- Theodore E. Barker, a foundermember of the American Society for Metals, at his home in Atascadero, Calif., Aug. 16. Mr. Barker helped organize a chapter of the Steel Treating Research Society in 1917, which a year later took the name of American Steel Treaters Socicty, and served as president of the latter two years.

After amalgamation of the Steel Treating Research Society of Detroit with the American Steel Treaters Society as the American Society for Steel Treating (changed in 1934 to the American Society for Metals) Mr. Barker served one year as first vice president. He was a director of the society in $1927-28$ and chairman of the Chicago chapter in 1926 27.

Mr. Barker had been affiliated, successively, with the Miehle Printing Press \& Mfg. Co., Chicago; Accurate Steel Treating Co., Chicago; and Atascadero Motor Lodges, of which he was proprietor.
L. S. Kerchner, 61, Aug. 15, at his home in Pittsburgh. He was associated with the American Manganese Mfg. Co., now Dunbar Corp., many years, prior to establishing his own sales agency for pig iron, coke and sand in 1920. In 1922, with R. M. Marshall, he formed the partnership known as Kerchner \& Marshall, and six years later the company was incorporated as Kerchner, Marshall \& Co., with offices in the Oliver building, Pittsburgh, and branches in Cleveland and Detroit.

Thomas Waddell Gangloff, 49, technical manager, Hazard Insulated Wire Works Division, Okonite Co., in Wilkes-Barre, Pa., Aug. 10.

George L. Markland Jr., 73, chairman, Philadelphia Gear Works, Philadelphia, Aug. 14, in that city. He was a former president, American Gear Manufacturers Association, and a former director, National Association of Manufacturers and National Metal Trades Association.
D. Chester Scull Jr., 37, former manager, stamping department, Coatesville Plate Washer Co., in Philadelphia, recently.

Durwood B. Walters, 48, vice president and general manager, Chicago Vitreous Enamel Products Co., Chicago, in Evanston, Ill., Aug. 18.

[^0]of Walter R. Howell, president of the company.
A. C. Danner, 77, for more than 20 years an overseas representative of International Harvester Co., Chicago, Aug. 18 in West Palm Beach, Fla. He retired in 1922.

George S. Salzman, 63, vice president in charge of production, Cleveland Graphite Bronze Co., Cleveland, Aug. 16. He had been associated with the company 11 years.

Arthur B. Purvis, 50, director general of the British Purchasing Commission in the United States, recently in an aircraft accident in the United Kingdom.

Louis H. Mesker, 65, Cleveland representative for Reed-Prentice Corp., Worcester, Mass., in Cleveland, Aug. 1. He formerly was associated with the Cleveland Planer Co. and Kearney \& Trecker Corp.
P. R. Forman, 65, president, National Pneumatic Co., Rahway, N. J., Aug. 13. He had been associated with the company 40 years.

Merlin Kramer, 42, research engineer and an assistant superintendent, West Pullman works, Interna. tional Harvester Co., Chicago, Aug. 20 , in that city.

Foundry Equipment Sales Index Higher in July

- Foundry Equipment Manufacturers' Association, Cleveland, reports index of net orders closed for new equipment in July was 368.4, compared with 273.3 in June and 291.2 in May. Index for repairs was 326.9 , compared with 304.7 in June and 321.0 in May. Total sales index was 358.1 in July, 281.1 in June and 298.7 in May.

Indexes are percentages of monthly averages of sales to metalworking industries, 1937-39. Practical comparison of figures on the old base can be determined by multiplying by 1.328 .

Founders' Society to Open Washington Office

- Gray Iron Founders' Society will open a branch office in Washington to insure co-operation of members of the society with the national defense administration, to expedite transmission to members of the orders and rulings of the administration and to assist members in their work with the government.
W. W. Rose, executive vice president of the society, will be in active charge of the office. The main office in Cleveland will operate as usual under the supervision of John Vickers.

Pool Purchasing To Speed Defense Work

- Large-scale co-operative purchasing for defense production has been undertaken by White Motor Co., Cleveland; Diamond T Motor Car Co., Chicago; and Autocar Co., Ardmore, Pa., it was reported last week by the Purchasing Agents Association of Cleveland.

The three companies are working together on an order for 9347 motorized units, including half-trac scout cars, personnel carriers and mortar carriers. White is reported building 4908 scout cars and mortar carriers, Autocar has 2439 scout cars and personnel carriers and Diamond T is manufacturing 2000 personnel carriers. White motors are used in all the units.

Normally direct competitors, the companies have pooled their resources in the interests of defense. Joint purchasing commission comprising one representative from each company has been formed. Commission is composed of John E. Dunbar for White, J. E. Bower for Autocar and H. C. Emberson for Diamond T.

Small Firms Pool Facilities To Secure Defense Work

Endeavoring to obtain defense contracts, several smaller firms in Ellwood City, Pa., are pooling their facilities, according to the Ellwood Chamber of Commerce. Companies reported co-operating in the project are: United Tube Corp., Cavert Wire Co., Ellwood Co., Beaver Enamelling Co., Ellwood City Iron \& Wire Co., Jones Engineering Co. and Ellwood Products Corp.

Several of the city's larger manufacturers are already working on defense contracts, it was reported. These include National Tube Co., Aetna-Standard Engineering Co. and Mathews Conveyer Co. Should the pool plan succeed, it was said, part of the facilities of these plants will also be included.

July Industrial Truck
 Bookings Slightly Lower

- July electric industrial truck bookings totaled 273 units, compared with 287 in June, according to the Industrial Truck Statistical Association, 208 South LaSalle street, Chicago. Total net value of chassis only was $\$ 1,059,093$ in July, compared with $\$ 948,005$ in June.

July bookings included: 15 nonelevating platform trucks; 205 cantilever trucks; 11 tractors; 41 cranes; and one special unit.

Additional information may be obtained from the association.
 come to Blanchard Surface Grinders. "A decided money saver" is what the manufacturer of these pump parts called his No. 18 Blanchard. This is a machine designed not only for production, accuracy, and fine finish, but for quick changeover from job to job. Chucking the work is made easy by the

THE BLANCHARD MACHINE COMPANY 64 STATE STREET, CAMBRIDGE, MASSACHUSETTS, U. S. A.

Abstract

Defense spending, actual or authorized, now totals fortyeight billion . . . Machine tool prices advance slightly . . . Furniture manufacturers plan adjustments as priorities limit steel supplies . . . Motorists may be asked to turn in old license plates . . . Copper scrap ceiling established . . . Vanadium placed under full priority control . . . Founders win concessions

WASHINGTON

DEFENSE purchases and production authorized now total $\$ 48,087$,000,000 , according to a progress report issued by the Office for Emergency Management. Of this, $\$ 20$,$352,000,000$ is for the Army; $\$ 15,058$,000,000 for the Navy; $\$ 7,000,000,000$ for lend-lease; $\$ 5,677,000,000$ for other defense agencies.
Total cash disbursements under the authorized program from June 1, 1940, to July 31, 1941, have been $\$ 8,145,000,000$.

Commitments for defense plant expansion to June 30 , including a total of 2023 projects, totaled $\$ 3$,$402,000,000$. Government commitments covered 428 projects, costing $\$ 2,573,000,000$, and private commitments, 1603 projects, costing $\$ 829$,000,000 . Eight of the projects include both government and private commitments.

1460 Planes Delivered in July

Eighteen thousand prime contracts exceeding $\$ 10,000$ had been awarded to May 31 .
Deliveries of military equipment in July, OEM reported, included 1460 airplanes, 20 combat vessels and eight merchant ships.
British contract awards in this country from the war's outbreak to July 31 totaled $\$ 3,657,000,000$. Payments on orders from June, 1940, to July 31, 1941, were $\$ 2,150,000,000$. Outstanding commitments for plant expansions, 47 plants, are $\$ 148,000$,-

Total active strength of the United States armed forces includes 1,886,331 officers and men. The Army has $1,545,400$ and the Navy and Marine Corps, 340,931 .
Both civil and defense employment have increased sharply since the middle of last year, the report shows. Total civil nonagricultural employment in June was $38,790,000$, an increase of 9.5 per cent. Employment in 16 major private defense industries was $2,440,500$, a gain of 47.6 per cent.

Enrollment in the national defense
labor training program during its first year is estimated at $1,500,000$. As of June 30, 642,000 were in training.
The record of the Defense Labor Mediation Board reveals that 60 of the 64 cases certified to it up to Aug. 15 have been settled and work resumed. One case was returned to the Secretary of Labor; one strike resulted after recommendations; two cases were pending.
The housing authority had allocated 123,433 units-family and single dwellings and trailers, as of Aug. 9. Construction contracts had been awarded for 90,248 and 33,993 had been completed.
Office of Price Administration and Civilian Supply has issued price schedules for second hand machine tools, scrap and secondary aluminum scrap and secondary slab zinc, bituminous coal (revoked May 1), scrap iron and steel, iron and steel products, combed cotton yarn. srrap and secondary materials containing nickel, domestic hides, kip and calf skins, pig iron, cotton gray goods, brass mill scrap, plywood, raw silk and silk waste, copper, sugar, pig tin, burlap, and southern pine.
Thirty-five materials have been placed under broad priority control, 300 items placed on the priorities

Correction

- After the reproduction of the Customer's Certificate of Defense Requirements, Form PD-25C, revised, had been printed (see page 44), OPM made the following correction: Second sentence under item I should read as follows: "In calculating this percentage there have not been included any sales made under an order bearing specific defense identification which has already been used by the undersigned to obtain a delivery of materials by re-extension or other application of such specific defense identification." Italics denote correction from the form as it appears on page 44.

By L. M. LAMM
Washington Editor, STEEL
critical list, and 12 metals under inventory control. These include antimony, cadmium, ferrous alloys, iridium, lead, manganese or spiegeleisen, mercury, molybdenum, nonferrous alloys, tin and the scrap or secondary materials of all these metals.

Materials under industry-wide control include aluminum, magnesium, nickel, nickel-steel, ferrotungsten, machine tools, synthetic rubber, copper, cork, borax, zinc, polyvinyl, chloride, rubber, tungsten high-speed steel, chromium, chlorine, silk, calcium-silicon, pig iron, steel, silk waste, cutting tools and vanadium.

Reports Machine Tool
 Prices Slightly Higher

Standard machine tool prices in July were 1.1 per cent higher on the average than in the preceding month, according to the Bureau of Labor Statistics. General level in July was 19 per cent above that of August, 1939, before outbreak of hostilities in Europe.

High level in July was due to price advances on wide range of machine tools. Boring mills advanced by 4 per cent on average; turret lathes 3.5 per cent; engine lathes 2.3 per cent; screw machines 1.0 per cent; and grinding machines and milling machines 0.7 per cent. Price advances on certain individual sizes were greater than this, largest being for the 62 -inch to 64 -inch boring mill which increased 5.6 per cent.

Furniture Makers, Facing Steel
 Priorities, Plan Adjusiments

Representatives of six major groups in the furniture manufactur. ing industry met last week with John M. Brower, head of the Furniture Section, Division of Purchases, to consider adjustments the indus. try must make under the defanse program.

Chief problem discussed was the
growing shortage of steel. Manufacture of metal office and household furniture and equipment is estimated to be consuming sheet steel at a rate of $1,200,000$ tons per year. No serious shortage has been felt as yet, delays in deliveries being due largely to the industry's high operating rate, from 25 to 50 per cent above last year's level.

Since steel has gone under priority control, however, it is recognized the industry cannot long continue to get anything like its present quantity of steel. It is hoped that by making plans now the industry will be able to adjust itself to the shortage without serious shutdowns or unemployment.

Surrender of Old Auto Licenses May Be Required

A request that state vehicular authorities require motorists to surrender 1941 license plates upon receipt of new 1942 tags has been made by the OPACS, in announcing a program providing for preferential allocation of the minimum tonnage of sheet steel required to produce the 1942 license.
The program is issued, according to OPACS, only because time is too short to enable the states to find substitutes for steel for license tags and since many states already have procured their steel requirements.

Conservation of steel for civilian use is likely to become even more essential in 1942 if the emergency continues and the states are warned that in all probability no sheet steel will be made available for the manufacture of 1943 license tags.

Attention was called to Connecticut's five-year type of automobile license plate, with provision for annual change of date, as one method of conserving steel.

By requiring the surrender of old license plates, the states will add a sizeable tonnage of scrap to the national supplies.

Concessions Granted Foundries Under Pig Iron Order M-17

Certain modifications under the pig iron allocation order, M-17, were made by OPM officials in a conference with gray iron foundry executives, according to W. W. Rose, executive vice president, the Gray Iron Founders' Society Inc., Cleveland.
Where a foundry has or can obtain its complete future commitments sufficiently far in advance to fill in Form PD-69, it must do so. Those jobbing foundries whose business or customers make impossible the complete listing of orders for the succeeding month
called for on PD-69 will follow the order as far as possible and supplement on the same form a similar listing based on the previous month's business. Form must be accompanied by a substantiating affidavit from customers. Where, in considering one firm, a part of the succeeding month's business is known definitely and a part anticipated, the total should not exceed the total for the preceding month from that firm, without authority from OPM, according to Mr. Rose.
The founders had requested a three-month inventory, which was refused.

"Modified Portal to Portal" Work Week Decision Cited

Concurrence of U. S. District Court with "modified portal to portal" opinion on the work week in iron mines of March 15 was called to the attention of the metal mining industry last week by Philip B. Fleming, wage and hour administra. tor. The decision was that of Judge T. A. Murphree, in Birmingham, Ala., Federal Court, in the suit of the Tennessee Coal, Iron \& Railroad Co., Sloss-Sheffield Steel \& Iron Co., and Republic Steel Corp. for a declaratory judgment that the miners' work week does not include time spent in reaching their working place after entering the mine.

Defendants in the suit were three locals of the International Union of Mine, Mill and Smelter Workers (CIO). Wage and hour division intervened.
"Judge Murphree's decision should serve as additional notice to the mining industry to schedule their shifts within the 40 -hour work week or arrange to pay overtime in accordance with the opinion of the wage and hour division and that of the first United States court to adjudicate iron miners' work time," General Fleming said.
"Failure of employers when the act went into effect October, 1938, to go along with the wage and hour division's original definition of hours worked as including all time during which an employe is required by his employer to be on duty or to be on the employer's premises or to be at a prescribed work place may be costly in some instances. News. paper reports on the suit of the three steel companies in Alabama placed the wage differential at issue at $\$ 1,500,000$."

Pamphlets on Government's
 Purchase Procedures Published

Information concerning procedures employed by government agencies in making routine purchases for civilian needs was made avai!
able last week by the Departme of Commerce to businessmen w desire to sell to federal uni Pamphlet, "How To Sell to the Go ernment for Civilian Needs," ma be secured without charge upon a plication to the department at Was ington or any of its field offices, was declared.

Army and Navy purchasing, was also reported, is explained two booklets published by the r spective departments. "Army Pu chase Information Bulletin" may b secured from the War Departmen Washington, and "Selling to th Navy" will be received upon applic tion to the Navy Department, Wash ington.

Individuals or companies desirin to transact business with the gov ernment may write to the Procure ment Division, Treasury Depar ment, Washington, and request to b listed to receive invitations to bi on items they can furnish.

Provisions of Aluminum Scrap Price Schedule Broadened

Broadening of the exemption of toll fabrication from the aluminum scrap and secondary ingot price schedule (No. 2) was contained in a provisional amendment an nounced last week by OPACS.
Original schedule necessitated that converters charge a higher conversion fee for some forms of wrought aluminum scrap, especially sheet scrap, than for others. The amendment provides the same fee can be charged for all types of wrought scrap, other than forging, and will permit manufacturers to make more uniform arrangements for the reconversion of their scrap into finished material.

Ceiling on Copper Scrap Established by OPACS

Ceiling over copper scrap prices, based on 10 cents a pound for No. 1 copper wire and No. 1 heavy copper and providing differentials for leading grades, was established last week by OPACS. Ceiling prices are 2 to 4 cents below 12 cent copper. A uniform dealers' margin of $\%$-cent a pound is provided.
No. 2 copper wire and mixed heavy copper, each containing 96 per cent copper, was frozen at 9 cents a pound, and light copper containing 92 per cent copper at 8 cents.
Maximums apply to sales by makers of scrap to buyer's plant or warehouse. Makers may charge a premium of $1 / 2$-cent a pound on shipments aggregating 40,000 pounds or more.
OPACS Administrator Leon Henderson also warned that lead scrap prices must be reduced, declaring
that in some cases lead scrap is being quoted as high as virgin lead.

Government Receiving Little Domestic Manganese Ore

Excepting some shipments from Anaconda Copper Co., Anaconda, Mont., the United States government has received no manganese ore from companies obtaining awards made in July, 1940, according to OPM officials,
It was only recently reported Reconstruction Finance Corp. subsidiaries had ordered $2,000,000$ pounds of manganese ore from various low grade domestic mines last year. The manganese content was to be 48 per cent.
One mine in the state of Washington, it is reported, has delivered 10,000 pounds, but is said to have been helped in its production by the Bureau of Mines.
OPM experts said last week cooperation with Russia will not re. sult in obtaining more manganese from the Soviets. Germany, it is pointed out, has already obtained control of some Russian manganese mines. Furthermore, it would be virtually impossible to arrange for transportation from other manganese mines in Russia.

Vanadium Placed Under Full
 Priority Control, with A-10 Rating

Vanadium last week was placed under full priority control in an
order signed by E. R. Stettinius, Jr., Director of Priorities.

The order assigns a rating of A. 10 to all defense orders for vanadium to which this rating or a higher one has not been specifically granted, and requires the acceptance of such orders in preference to nondefense orders.

Vanadium has been subject to inventory control provided by General Metals Order No. 1, issued May 1, 1941, from which it is now removed. The new order requires that after Sept. 1 a manufacturer wishing to purchase vanadium must file a statement of the uses to which it is to be put, not later than the twentyfifth of the month preceding that of the specified delivery.

It also restricts deliveries to an amount not in excess of that neces. sary to a manufacturer to fill his orders on the basis of his current method and rate of production. This restriction does not apply to exports licensed by the administrator of export control, or to vanadium import. ed by a processor.

Strategic Metals Producers Ask Tax Modifications

Representatives of producers of strategic metals appeared before a meeting of the Senate Finance Committee which is considering the new tax bill. They urged modification of the tax provisions which would remove objectionable features of the bill applying to their industry.

Mark V, Britain's Latest Cruiser Tank

New cruiser tanks being built in England are low-slung and "rakish", accordis the caption on this photograph passed by the British censor. The iank is known as the Mark V. "It is last, well-armed for its size, and exceptionally maneuverable." NEA photo

Henry B. Fernald, chairman of the tax committee of the American Mining Congress, raised questions on the substantive basis on which proposed increases in tax rates are to be imposed. He urged that the income tax be applied only to true net income, and that provisions be enacted to avoid imposing crushing tax burdens.
Charles F. Willis, secretary of the Arizona Small Mine Operators Association, protested that under the limitations of the proposed law much of the possible strategic mineral production would be unfairly taxed and put out of business by burdens that could not be carried and, therefore, would not be assumed by potential producers.

Nonmetallic Minerals Advisory Groups Appointed by Stettinius

Priorities Director Stettinius last week announced creation of a special technical committee to advise the Office of Production Management on nonmetallic minerals.

The new group is a special subcommittee of the Advisory Committee on Metals and Minerals which was appointed by the National Academy of Sciences. Clyde E. Williams, director of the Battelle Memorial Institute, Columbus, O., is chairman of the General Advisory Committee on Metals and Minerals.
Membership of other special subgroups of the Advisory Committee -ferrous minerals and ferroalloys, metals, conservation and substitution, and tin smelting and reclama-tion-has already been announced.
The newly announced Nonmetallic Minerals Group has the following membership:
R. P. Heuer, chairman, General Refractories Co., Philadelphia; Paul Tyler, secretary, U. S. Bureau of Mines, Washington; L. E. Barringer, General Electric Co., Schenectady, N. Y.; B. C. Burgess, United Feldspar \& Minerals Corp., Spruce Pine, N. C.; W. S. Landis, American Cyanamid Co., New York; G. R. Mansfield, U. S. Geological Survey, Washington; Robert B. Sosman, U. S. Steel Corp., Kearny, N. J.; John D. Sullivan, Battelle Memorial Institute, Columbus, O .

Frank J. Tone, Carborundum Co., Niagara Falls, N. Y.; William M. Weigel, Missouri Pacific railroad, St. Louis; M. M. Leighton, State Geological Survey Division, University of Illinois Campus, Urbana, Ill.; G. A. Bole, Orton Ceramic Foundation, Columbus, O .
R. B. Wittenberg, International Agriculture Corp., New York; Oliver C. Ralston, U. S. Bureau of Mines, College Park, Md.
The new group is now preparing reports for the Office of Production Management on graphite, mica, asbestos and other strategic minerals.

A MODERN JOSHUA

W E are told that at Joshua's command the sun stood still, so he could gain time to complete the conquest of the enemy. The people called this a "miracle."

But when a Bullard Mult-Au-Matic lops off a third, a half, or three-fourths of the machining time on some job, it isn't called a miracleit's only "modern production.'

By whatever name the process is called, the important fact remains unchanged-the Mult-Au-Matic method of independent speeds, independent feeds and simultaneous operation is probably the greatest time-saving machining method ever made available in a standardized machine tool.

BULLARD

Mirrors of MOTORDOM

Washington decides on 26.5 per cent cut in car output for

 fall months . . . Fifty per cent for model year . . . Brass to copper to brass for radiator tanks . . . Aluminum-killed steels for deep-drawn stampings practically out . . . See easing of steel supply situation in 60-90 days . . . GM to combine divi-
sion new model previews

[^1]tions that 1,189000 trucks, approxi mately 200,000 more than the output during the model year ended July 31,1941 , will be required in the new model year which began Aug. 1. The estimate of truck requirements in cludes vehicles for the Army and Navy, the lease-lend program, for export to Russia and for vital transportation needs shown in a study by the Central Motor Transport Committee.

The passenger car curtailment for the first four months of the model year was decided upon to make certain that sufficient materials are conserved for defense, it was explained. On Dec. 15 the quota for December will be announced and it is planned that on the fifteenth of each month thereafter the quota for each month will be disclosed. Following the initial four months the officials explained the quotas may go up or down depending on the materials situation existing at that time.
The elimination of critical materials in trim and other nonfunction?! parts is expected to reduce the amount of critical materials required to produce $2,000,000$ passenger cars to the following amounts: Carbon steel $2,350,480$ tons; alloy steel 301 ,670 tons; gray iron 496,510 tons; malleable iron 115,920 tons; secondary aluminum 500 tons; nickel 300 tons; zinc 25,000 tons; chromium 2600 tons; copper 40000 tons; lead 31,000 tons; and tin 2600 tons.

Snuff Out Bright Work
 By First of Year

Bright interior and exterior trim of all kinds for passenger cars is coming in for a real pinch.

After production quotas have been set, the industry will be inventoried on its stocks of bright metal trim. When these stockpiles are exhausted, the clamp will go down on future

By A. h. Allen
Detroit Editor, STEEL

trim, and the guess is that this will come between Dec. 1 and Jan. 1. Truck builders already have ceased ordering bright work, but will use up current inventories.
Such metal trim is of several types-chrome-plated steel stampings, chrome-plated zinc die castings and stainless steel. The only conceivable legitimate reason for its complete elimination is the conservation of chromium for use in making alloy steel for defense equipment. And it is extremely doubtful if the
amount of chromium so released And it is extremely doubtful if the will make much difference in the tonnage of chrome-bearing steel available for defense.

The larger purpose, and the purpose behind much of what Washington is proposing and recommending today, is the psychological factor, the urgent need to shock people into a realization of the critical international situation and the danger in which this country is placed. There is no conception of this acute danger-if indeed there is actually danger-if indeed there is actually tion of the country. That defense is tion of the country. That defense is
the No. 1 job-yes, granted; but that there is any immediate physical there is any immediate physical
danger confronting this countryno.

So the whole program at Wash ington is now revolving about the urgency of shocking the populace into appreciation of the danger we face, and the method, strangely enough, is so far entirely by indirec. tion, by such tomfoolery as gasoline rationing talk throughout the country, by appeals to contribute old aluminum to help build bombers, by cutting all bright work off automobiles, by air raid warden practices and all the rest.

Sectionalize Fenders To Avoid Deep Draws

The motor industry now is being asked to change back from copper to brass for radiator tanks, this ington is proposing and recommendternational situation and the danger
4.and fan radith
again according to informed parts sources. Originally the change to copper was sought because of shortage of zinc. Now it appears shortages of copper outweigh the shortages in zinc, so brass again gets the call in radiator tanks. Next week it may be something else.

The situation in deep-drawing steel, that is, in aluminum-killed steel for deepdrawn parts such as front fenders, is becoming increasingly critical, although motor companies were warned of it months ago when first dies were being drawn up for 1942 models. Killed steel of the type used in deep-drawn fenders requires about 5 pounds of aluminum per ton. Although secondary aluminum is satisfactory for deoxidizing open-hearth heats, the supply of this material is as tight as ever, with the result that steel companies have told customers that large tonnages of this steel cannot be supplied much longer.

The answer has been, in most cases, to sectionalize fenders, building them up out of several pieces, none of which requires a severe draw, and attaching a molding over the seam. A good many of the fender producers have designed dies to follow this practice. Chevrolet is understood to be an exception, having preferred to stick to the onepiece deep-drawn fender. How it proposes to meet the lack of aluminum killed steel is not known as yet. Rimmed steel can be used for such stampings, according to some steel interests, but breakages and rejects are apt to be high.

Priority ratings on replacement parts and trucks are expected shortly from Washington. On trucks $1, \ldots$ tons capacity and over and on buses of 20 -passenger capacity and up, a rating of A.3 is expected. The prediction has been made that a rating of A-10 will be assigned to truck replacement parts which is generally felt to be too low. Priorities for farm tools also are forthcoming.

Incidentally, the fairly complete reorganization of OPM, now before the President, contemplates chang.

ing the automobile advisory committee to a general transportation committee, with subcommittees for each branch but still under the supervision of James S . Adams, former soap manufacturer who is now doing a first-class job in administering the auto advisory committee. The transportation section would comprise four main subdivisions covering railroads, farm equipment, military vehicles, and passen. ger and commercial vehicles.

Enough Steel for All Soon?

Shipments of steel to the motor companies, and to many parts companies as well, have been running heavy, but there is still a lot of cry--ing about inability to obtain enough material. Inventories of steel are at a high level, in some cases the highest in a long while, but naturally there is a certain amount of unbal. ance in such inventories.
Imposition of full priorities on

Highlights of the Automobile Industry in 1940

- Highlights in the 1941 edition of Automobile Facts and Figures, just published by the Automobile Manufacturers Association, Detroit, and available upon request, are the following:
U. S. production, passenger cars and trucks, calendar year 1940 4,469,354

Wholesale value of above production........................... $\$ 3,016,223,064$
All registrations, except tax-exempt official cars.............. . $32,025,365$
Official cars, federal, state and local.
427,496
1940 exports of motor vehicles from U. S. plants
229,423
Total motor vehicle taxes
\$1,802,748,000
Federal excise taxes only
S409,185,000
State gasoline taxes \$870,692,000
Gasoline consumption, except official cars. 1,000 gallons
Vehicle-miles traveled in U.S. in 1940.
$292,849,000,000$
Employment in motor car production, sales, servicing and
operation industries
6,105,003
Wage earners in automobile, body and parts plants.
447,000
Average weekly earnings
$\$ 34.20$
steel and the necessity of all users to file the PD-73 form for every order are considered by some steel offices here as likely to have a sobering effect on buying mathods and eventually to bring a little order out of chaos. The immediate result naturally is one of confusion until both producers and consumers have had a chance to understand and digest the routine involvad. But in 60-90 days some believe it entirely likely there will be enough steel for everybody, defense and nondefense.
However, such things as the 1,000 ,000 -ton British inquiry for semifinished material which came out last week disturb the prospects for "getting over the hump" in steel. Furthermore there have been several "rush-rush" British releases for steel and other materials which have been put ahead of every single domestic need. They have not been overly large but they upset the established sequence of orders and production.

Play Down Preview Parties

General Motors is understood to be planning to consolidate all its new model previews-at least those of Buick, Oldsmobile, Pontiac and Chevrolet-in a single occasion, now scheduled for Sept. 10 at the Miiford, Mich., proving grounds of the corporation. This marks a drastic change in policy for the corporation and one which is not entirely to the liking of the various divisions, since in many ways they are keenly competitive. Cancellation of the New York auto show and the concentration on defense manufacturing, how. ever, have dictated the simplification and unification of new model show. ings. Chrysler Corp. for several years has displayed all of its new models at one time, a slight exception being this year when Plymouth unveiled its new product earlier before regional dealer meetings.

Packard will preview its 1942 models today, Aug. 25, making a surprise change in its plans to advance the showing by several weeks. Clip-per-styled sixes and eights on two wheelbases make up the new line. Nash displayed three series of new models last week to dealers meating in the East. Studebaker will entertain the press at a mock-military Camp Studebaker near South Bend on Wednesday to give its new models a sendoff. Rumors indicate a burlesque re-enactment of the Civil war, in the spirit of the day. This about cleans up the list except for Ford, where plans have not yet been divulged. Chrysler, as reported here last week, will show all models at à defense production celebration.
General Motors Corp. has purchased $\$ 150,000,000$ of treasury notes of tax series B to apply on its 1941 federal taxes.

WHICH OF THPSE VITAL JOBS CAN POWDER MPTALLURGY DO FOR YOU?

,If your productive capacity is overtaxed, if essential materials are hard to get, Moraine designers, engineers and powder metallurgists may help. For today thousands of parts made by Moraine from metal powders serve industry along with products of casting, machining, forging, and other processes. Durex* oilretaining bearings help motors and machines to run longer, more smoothly, with less maintenance. Porex Filters keep dirt, moisture, and trouble out of fluids such as lubricants, fuel oil, air, and gases. Durex Iron gears, cams, and machine parts simplify designs, improve performance, cut material and production costs . . . Check the growing possibilities of this important field as applied to your specific problems. Get in touch with Moraine.

SEND FOR

Any or all of three new, factual, informative bulletins:
Porex Filters (Form 101S)
Durex Iron Patts(Form 102S) Durex Bearing (Form 103S)

A few parts made better, faster, through powider metallurgy.

${ }^{*} T$. M. Res. U. S. Pat. Off.

o

 4,W,WESTERN Electric Co., manufac Turing runt of the Bell Telephone System, and currently producing radio and telephone equipment for the armed forces, is letting subcontracts at an average rate of approximately 40 per cent of its government orders. On $\$ 37,000,000$ of government orders the company has farmed out more than $\$ 16,000,000$ in purchase orders.

Regal Mfg. Co., Coldwater, Mich., manufacturer of diesel and gasoline motors and other products, celebrat. ed its fortieth anniversary Aug. 14. Organized as the Regal Gasoline Engine Co., the name was changed in 1932 to Regal Marine Engine Co., when diesel motors were added to its production. In 1937 the present name was adopted to cover a wider diversification of products, when the company purchased assets of the Roberts Machine Co., Coldwater, and Esco Engincering Service Co., Toledo, O. More than 90 per cent of present production is going into defense work.

Tillotson Clay Products Co., Los Angeles, has changed its name to Refractories Corp.

Wheelco Instruments Co., Chicago, has moved its factory and offlees to the Wheelco building, Harrison and Peoria streets.

Harry Harris \& Co has moved its offices from 120 Broadway, New York, to its new office and yards at 33 Passaic avenue, Kearny, N. J.

Cincinnati oflice of Foxboro Co., Foxboro, Mass., has moved to new quarters at 607 American building. Walmut street and Central parkway.

Stoodv Co., Whittier, Calif., manufacturer of hard-facing allows, grinders and other equipment, recently added another building to its plant at Whittier. The new unit includes a display rotunda, main auditorium and demonstration room.

Lyon Iron Works, Greene. N. Y., manufacturer of material handling equipment, has changed its name to Lyon-Raymond Corp. The company will continue under the same manisement, directed by George G. Raymond, who has been president the mast 19 years.

Thomas Truck \& Caster Co., 4170 Mississippi river, Keokuk. Iowa, recently purchased three buildings formerly occupied by the KellogsBirse wholessle grecery firm, has
remodelled them and transferred its machinery and equipment to them. The company, employing 80 persons, has booked considerable defense business.

Fellows Gear Shaper Co., Spring. fleld, Vt., has opened a new cafeteria for employes on the top floor of a new storage building. Restaurant has a seating capacity of 200 and serves four meals a day, breakiast, noon dinner, supper and midnight dinner. Approximately 1400 meals are served per day.

Hytensil Aluminum Co., 5811 West Sixty-sixth street, Chicago, recently reported a new alloy, Hytensilite, made from scrap aluminum, and said to more than meet army and navy aircraft parts specifications. J. A. Toleik, company manager, is inventor of the process, details of which are not revealed.

Mine Safety Appliance Co., Pittsburgh, which recently took over and modernized a plant near Evans City, Pa., will shortly begin an additional expansion project at its Pittsburgh works. The company manufactures
a wide range of industrial safety equipment. Recently it has been awarded defense contracts totaling several million dollars.

Fire destroyed a large part of the Blasdell, N. Y., plant of the Exolon Co., producer of abrasives, Aug. 19, causing heavy damage. It halted all production, 80 per cent of which had been for defense orders.

Link-Belt Co., Chicago, recently published a 12-page booklet depicting its role in defense production. Pamphlet, largely pictorial, illustrates some of the many applications of Link-Belt products, including parts for tanks, scout cars, aircraft, mortar shells and materials handling equipment. About 80 per cent of the company's current output consists of defense materials, for either direct or indirect orders, according to Alfred Kauffman, president.

Acme Electric Welder Co. has moved to new quarters at 2618 Fruitland road, Los Angeles.

Spraying Systems Co., Chicago, maker of spray nozzles and equip. ment, is doubling manufacturing capacity, to take care of increased demand for its products.

154-Foot Girder Shipped from Gary to California

- One of the largest steel plate girders ever to be transported by rail has been shipped from Gary. Ind.., to the United States Bureau of Reclamation at Redding. Calif to be installed on the Pit river bridge of the Central Valley irriga. tion project The girder. 154 feet long. almost 12 feet high and weighing 97 tons. required three Iat cars equipped with special couplings and supports to distribute the weight Another of like dimensions also will be used in the south approcet to the bridge. NEA photo

FINANCIAL

Steel's Rate of Return on Net Worth Is Third Lowest

\square STEEL industry's annual rate of return on net worth in the flrst half this year was 10.1 per cent, third lowest in a tabulation of 20 industrial groups, according to the National City Bank of New York.
Only the paper products and baking industries had lower rates of return, 9.6 per cent and 6.4 per cent, respectively. In the six months last year, steel's rate was 5.1 per cent.

Highest rate of return among the 20 manufacturing groups was that of machinery manufacturers, 24.2 per cent. In close succession was the miscellaneous metal products group with 24 per cent; auto equipment
manufacturers, 23.8 per cent; automobile builders, 21.1 per cent; and office equipment fabricators, 16.9 per cent.

Average return for 304 companies comprising the manufacturers' groups was 13.2 per cent, compared with 11.2 per cent in the corresponding period a year ago. For 360 companies, representing a cross section of industry, the average rate of return was 12.8 per cent, against 10.8 per cent in the period in 1940.

Republic Steel Declares 50-Cent Dividend on Common Stock

Republic Steel Corp., Cleveland, last week declared a dividend of 50 cents per share on common stock, payable Oct. 2 to record of Sept. 10. Regular quarterly dividends of $\$ 1.50$ per share on the

101 Consumers' Combined Net Income Up 32.5\%

- COMBINED net income earned by 101 iron and steel consumers in the first six months of 1941 totaled $\$ 150,277,624$, compared with $\$ 113,404,086$ in the corresponding period last year, an increase of 32.5 per cent.

Two companies reported a loss for the six months, against seven that operated at a deficit in the half in 1940.
In the quarter ended June 30, 83 of the companies reported higher earnings than in the corresponding

${ }^{-}$Loss; tindicated.
period last year. One reported a deficit, compared with 10 suffering a loss in the quarter in 1940.

Combined net profit in the second quarter for all 101 companies was $\$ 78,548,955$. This was 30.4 per cent greater than $\$ 60,256,767$ reported by them in second quarter, 1940.

Accompanying tabulation summarizes earnings statements of 43 consumers. Prior compilation, including 58, appeared in Steel, Aug. 11, p. 36:

Second 1941 Quarter	second 1940 Quarter	$\begin{aligned} & \text { First } \\ & \text { 1941 } \\ & \text { Half } \end{aligned}$	First 1940 Half
\$510.410	\$231.136	\$719.537	\$277,375
1,793,107	1,639,889	2,389,577	2,609,758
190,791	212,900	389,222	383,651
1,675.043	1,095,151	3,271,009	1,535,905
1,6.801	76,375	90,808	212,447
312,568	397,520	558,157 \dagger	$508.708 \dagger$
394,848	329.349	955,647†	523,674t
27,404	38,746*	33.872*	60.795*
274,058	271,693	651,087	670,587
371,105 \dagger	53,834 \dagger	798,634	96,661
212,437	29.336	381,261 \dagger	51,872 \dagger
94,260	125,606	375,781	476,481
1,845,180	1,110,467	3,864,777	2,743,251
460,506	376,136	893,422	897,560
29,187	5,329	118,790	14,745
173,382	121,157	354,545	336,844
489,833	357,037	868,236 \dagger	663,037 \dagger
1,243,824 \dagger	4,032*†	1,690,900	72,958
191,226	231.420	618,458	582,325
163,309	120,556	328,049	273,186
46,575*	225,810*	135.442*	546,652*
182,287	97,628	320,067	214,261
577,483	381,625	465,033	262,384
924,412	711,055	1,517,091	1,472,711
220,714	965,954*	243,051 \dagger	1,820,199*
848,799	702,847	1,508,158	814,296
221,397	242,685	450,810	450,293
335.183	342,080	856,389	698,465
433,626	493,442	977,270	1,091,124
977.422	140,773*	1,251,694	102.366 ${ }^{\text { }}$
322,949	122,172	592,570	277.370
167,267	418,316*	147,994	785,988*
876,961	202,789	1.378.127	226,206
633,167	504,272	1,397,346	905,130
102,376	27,595	182,383	68,838
206,268	349,043	770,272	677,245
6,382	8,756	45,681	15,437
152,953	158.936	256,145	265,859
421,907	525,734	923,199	1,047,902
776.854	3,848.077	5,583,350	6,228,106
482,045t	133,737	909,820	203,415
1,906,018	1,356,860	4.011,380 ${ }^{4}$	3,204,000 \dagger
1,848,849	1,697,358	3.900, 323	2,721,109

corporation's 6 per cent cimpulativez convertible prior preference stock series A , and $\$ 1.50$ per share on the 6 per cent cumulatiye convet ible preferred were also (बeclared, payable Oct. 1 to record ats. Sent 10.

Board of directors likotise authorized setting aside, Oct. 1, of $\$ 300,000$ to the purchase fund for purchase of the 6 per cent cumutative convertible preferred stock, in accordance with Republic's amended certificate of incorporation.

Follansbee Steel Corp. Reports \$167,365 Second Quarter Profit

Follansbee Steel Corp., Pittsburgh, reports net profit in the quarter ended June 30 , after depreciation, interest and other charges but before provision for federal income and excess profits taxes, was $\$ 167,365$. This compared with net income of $\$ 29,930$ in the first quarter this year.
Net income in the first six months totaled \$197,295 before federal taxes, and compared with a $\$ 50,678$ deficit incurred in the second half in 1940.

Stove Manufacturers Join In Coal Research Program

- Twenty-six leading stove manu facturers have joined with Bitumin ous Coal Research Inc. in sponsor ing an enlarged research program to develop improved coal-fired heat ers and kitchen ranges at the Bat telle Memorial Institute, Columbus, O .
The three-year plan extends and enlarges the program started in November, 1940, for the coal industry. Objectives of the research are stoves for use with bituminous coal that will burn both low and high-volatile coals without smoke, that will automatically regulate the rate of burning, and that will have fuel capacity for 12 to 24 hours of operation at rated output.
Almost $2,000,000$ new stoves for use with coal or wood were sold in 1939. Approximately 45 per cent of the $15,000,000$ one and two-family homes in cities and towns in the United States are heated with such stoves. With rural heating units, these are estimated to consume 42,000.000 tons of coal annually.
- Commercial steel castings production in June was 113,988 net tons, compared with 104,971 tons in May and 50,651 tons in June, 1940, according to the Department of Commerce. Bookings in June were 161,512 tons, in May 153,143 tons and in June, 1940 they were 59,661 tons. Production for six months this year aggregated 596,022 tons, compared with 358,767 tons in the first half last year.

War Department Places \$172,675,599 National Defense Awards in Week

- NATIONAL defense contracts reported last week by the War Department totaled $\$ 172,675,599$. Ordnance branch of the service placed the greatest number of awards, but contracts for the Air Corps and for a new arsenal comprised almost half the aggregate value in the week. The awards included:
J-M Service Corp., New York, whollyowned subsidiary of Johns-Manville Corp., New York, estimated $\$ 27,111,620$ for management services during construction, procurement of equipment and operation of Kansas Ordnance Plant, Parsons, Kans., including training of key personnel. The plant whl load 105 mm . howitzer shells, 155 mm . shells, 100 - pound bombs, fuses, boosters and detonators.
Messer, Frank, \& Sons Inc., Cincinnati, estimated $\$ 2,036,500$ secondary contract for construction of a signal corps storage depot near Lexington, Ky ., ineludlag three warehouses, flve misce!laneous bulldings, heating plant, steam distributing system, rallroads, water and sewage disposal systems and all other necessary utilities. Arehitect-engineer award was placed with Allied Engineers \& Architects, Lexington.

Orinance Department Awards

Accurate Tonl Co., Newark, N, J., tools, $\$ 3112$.
Ahlberg Bearing Co., Chlcago, ball and roller bearings, $\$ 29,299$.
Allegheny Forging Co., Pittsburgh, forglngs, $\$ 3045.30$.
Allegheny Ludlum Steel Corp., Waterv llet, N. Y., steel, $\$ 91,960$.
Alls-Chalmers Mrg. Co.. NHwaukee transformers, \$2279.91.
American Brake Shoe \& Foundry Co. American Forge Division, Chicago, punches and dies, $\$ 13,400$.
American Brass Co., Waterbury, Conn., brass and copper bar, copper rod, copper plate, bronze and brass rod. $\$ 27,610.50$.
American Car \& Foundry Co., New York. parts for tanks and bombs, $\$ 602,464.02$. American Cast Iron Pipe Co., Birmingham, Ala., bends, crosses, couplings. elbows, flanges, $\$ 3248.19$
American Chain \& Cable Co., Adrian, Mich., parts for gun carriages, $\$ 3036$.
American Locomotive Co., Schenectady, N. Y̌., forgings, $\$ 18,65 \overline{6}$.

American Satety Razor Co, Brooklyn, N. Y., housings for shells, $\$ 100,925$.

American Steel \& Wire Co., Cleveland, chrome molybdenum steel, \$6747.50; Donora Works, Donora, Pa., steel bars, $\$ 225,641.81$.
Armstrong-Blum Mfg. Co., Chleago, hack saw machines, $\$ 30,679.60$.
Atlantic Mifg. Co., Philadelphia, projectiles, $\$ 9500$
Atlantic Screw Works Ine., Hartford, Conn., screws, \$2556.
Austín-Hastings Co., Cambridge, Mass., billet shear, $\$ 5696$.
Automatic Machine Products Co., Attleboro, Mass., percussion primers, $\$ 108$, 000.

Baldwin Locomotlve Works; Standard Steel Works Division, Philadelphia, steel castings, \$372,70s.10.
Barber-Colman Co., Rockford, III., cutters, \$2068.s0.
Bausch \& Lomb Optical Co, Rochester, N. Y., parts for telescopes, $\$ 15,540$.

Bohn Aluminum \& Brass Corp., Detroit castings, $\$ 44,230.68$.
Boonton Machine Shop, Boonton, N. J.. rollers, adapter, funnels, pins, clamps,
washers, cutters, tools, $\$ 9699$
Bridgeport Brass Co., Bridgeport, Conn brass cartridge dises, $\$ 758,827.50$
Bridgeport Metal Goods Mig. Co., Bridge port, Conn., anvils and primer cups, \$12,003.
Briggs \& Stratton Corp., Milwaukee, ruzes, $\$ 49,987.70$.
Bryant Chucking Grinder Co., Spring fleld, Vt., hole grinder, \$5395.
Buffalo Fire Appliance Corp., Buffalo, flre truck, $\$ 3595.85$.
Carlson, G. O., Inc., Thorndale, Pa., steel, $\$ 8795.35$.
Carnegie-Illinois Steel Corp., Chicago, steel, $\$ 12,078.77$.
Chambersburg Englneering Co., Chambersburg, Pa., alr operated hammers, \$3050.
Christlansen, C. B., Newark, N. J., A. tures, extra bushings, plates and blocks, flring plns, \$14,250.
Cincinnati Ball Crank Co., Cincinnati, burster casings, shell casings, $\$ 378$,098.15.

Cincinnati Time Recorder Co., CIncinnati, O., bursters with metal parts, \$14,834.82.
Circle Wire \& Cable Corp., Maspeth. N. Y.. lead cable, $\$ 3430$.

Cleveland Tractor Co., Cleveland, parts for tractors, $\$ 2097.59$.
Colonial Broach Co., Detrolt, sharpening machines, $\$ 21,210$.
Columbia Steel \& Shafting Co., Pilts burgh, steel bar, $\$ 3863.16$.
Compress Buckle Co., Attalla, Ala., shells, $\$ 920,000$.
Continental Motors Corp., Muskegon Mich., parts for engines, $\$ 50,827.31$.
Continental Roll \& Steel Foundry Co. East Chicago, Ind., castings, $\$ 24,070$.
Cruclble Steel Casting Co., Nillwaukee,
castings, $\$ 2265.38$. castings, $\$ 2265.38$.
Crucible Steel Co. of Amerlca, New York, steel, $\$ 18,179.40$.
Cutter Wood \& Sanderson Co., Cleveland, reamers, end mills, drills \$3396.10.
Dalzen Tool \& Mifg. Co., Detroit, cutting
tools, $\$ 3402.60$ tools, $\$ 3402.60$.
Day, J. H., Co., Cincinnall, screening machines, $\$ 45,310$.
Derbyshire Machine \& Tool Co., Philadelphia, punch holders, dies, $\$ 6015$.
Elmes, Charles F., Englneering Works, Chicago, hydraulic stralghtening press,
$\$ 3600$, $\$ 3600$.
Fox Munitions Corp., Philadelphia, gages, $\$ 31,086.20$.
Franklin Equipment Co., Monticello, lowa, towing equipment and accessories, $\$ 56,396.72$.
General Electrlc Co., Schenectady, N. Y., cable, transformers, gas carburlzing rurnace, $\$ 17,473$.
General Metals Corp., Los Angeles, forgIngs, $\$ 47,250$.
General Motors Corp., Guide Lamp DIvision, Anderson, Ind., cartrldge cases, \$2,450,000.
General Steel Castings Corp., Eddystone, Pa., steel castings, $\$ 375,091.10$.
Gibson, G. M., Bellevue, Iowa, parts for tanks, \$2437.
lathes, $\$ 29,857.20$. Co., Madison, Wis., Great Lakes Ste $\$ 29,857.20$.
ireat Lakes Steel Corp., Ecorse, Detrolt, steel, \$2127.04.
Greene-Wolf Co. Inc., Elizabeth, N. J., chrome nickel steel, $\$ 2855.20$.
bullett Gin Co., Amite, La., practice bombs, $\$ 37,897.25$.
Hanssen's, Louls, Sons, Davenport, Iowa,
wrenches, wrenches, \$2970.
Harnischfeger Corp., Milwaukee, electric crane, $\$ 23,160$.
Hartford Electric Steel Corp., Roxbury. Mass., steel castings, $\$ 304.70$. O., pins of steel tubing, $\$ 14,800$.

Hesse Machine \& Mrg. Co. Inc., Boston, gages, \$5717.60.
Hoe, R., \& Co. Inc., New York, equlllbrators, $\$ 15,635.16$.
Hoover Co., North Canton, O., fuzes $\$ 126,000$.
Ingraham Co., Bristol, Conn., fuze plates. \$97,572.
International Harvester Co., Chicago. forgings, $\$ 8306.40$.
International Machine Tool Corp., Indianapolis, lathes, $\$ 397,332$.
J. C. H. Automatic Machine Works, Phijadelphla, parts for shells, $\$ 5280$.
Jones \& Laughlin Steel Corp., Pittsburgh, steel, $\$ 5433.98$.
Kearney \& Trecker Corp., Milwaukee. milling machines, $\$ 32,379.60$.
Kelly, John P., Philadelphia, bronze castings, $\$ 12,875$.
Kennedy-Van Saun Mrg. \& Engineering Co., Danville, Pa, lathes, $\$ 929,700$.
Kern Co., New York, automatic lens grinding and polishing machine, $\$ 8500$.
Lamson Corp., Syracuse, N. Y,, gun mounts, $\$ 320,100$.
Latrobe Electrle Steel Co., Latrobe, Pa.. bar steel, \$2953.60.
LeBlond, R. K., Machine Tool Co., Cin cinnati, lathes, $\$ 353,652$.
Liberty Tool \& Die Corp., Rochester, N. Y., dies, $\$ 8430$.

Liberty Tool \& Gage Works, Providence. R. I., gages, $\$ 4110$.

Lindberg Engineering Co., Chicago, gas fired furnace, $\$ 2244$.
Manning, Maxwell \& Moore Inc., Cleveland, reamers, $\$ 6346$.
McDonald, P. F., Co., Boston, plain carbon steel, $\$ 4730.86$.
McGill Mrg. Co., Valparaiso, Ind., ball bearings, $\$ 2120$
McKenna Metals Co., Latrobe, Pa., tools, $\$ 5220$.
Mereury Mfg. Co., Chicago, battery operated truck, $\$ 6621.38$.
Metal \& Thermit Co., Jersey City, N. J., welding electrodes, $\$ 13,620$.
Michigan Tool Co., Detrolt, cutter machines, $\$ 7466$.
Midvale Co., Nicetown, Philadelphla, alloy stecl iube forgings, $\$ 85,176$.
Moline MIg. Co., Racine, Wis., heaters. $\$ 2198.60$.
Monarch Machine Tool Co., Sidney, 0 . lathes, $\$ 10,001.70$.
Moore Special Tool Co. Inc., Brldgeport, Conn., dles, $\$ 7750$.
Murphy, A. F., Die \& Machine Co., Boston, plate stampings. $\$ 3313.20$.
Natlonal Automatic Tool Co., Richmond, Ind., drilling machines, $\$ 21,140$.
National Forge \& Ordnance Co., Irvine, Pa., alloy steel tube forgings, $\$ 131,840$.
Natlonal Twist Drill \& Tool Co., Detrolt, drills, \$2636.21.
Nichols, W. H., \& Sons, Waltham, Mass., milling machines, \$2574.
Niles-Bement-Pond Co., Pratt \& Whitney Division, West Hartford, Conn., drill shanks and spools, drilling machine, taps, $\$ 19,728.73$.
Noblitt-Sparks Industries Inc., Greenwood, Ind., bombs, $\$ 54,525.92$.
Otis Elevator Co., Buffalo, steel castings, \$29,819.89.
Peco Mrg. Co., Philadelphia, ruze caps and bodies, lifting plugs, $\$ 705,557.50$.
Pennsylvanla Smelting \& Reflining Co.. Philadelphia, antimonial lead, \$209,665.50 .

Pittsburgh Steel Foundry Corp., Glassport, Pa., steel castings, $\$ 486,620.80$.
Precision Mig. Co., Philadelphia, gages. \$29,400.
Quality Tool \& Die Co., Indanapolls. gages, $\$ 10,108$.
Rellable Tool Co., Irvington, N. J., tools, S4116.
Revere Copper \& Brass Co. Inc., Rome. N. Y., brass dises, $\$ 54,104.78$.

Rockford Machine Tool Co., Rockford, Ill., machines and equipment, $\$ 30$,448.40.

Ryerson, Joseph T., \& Son Inc., Chicago, steel, \$4988.94.
S.A.F. Steels Inc., Cleveland, steel, $\$ 3906.20$.
Sall, George, Metals Co., Philadelphia,
antimonial lead, $\$ 142,250$.
Seneca Falls Machine Co., Seneca Falls N. Y., lathes, \$643,610.

Servel Inc., Evansville, Ind,, cartridge cases, \$797,297.44.
Shanklin Mig. Co., Springfield, Ill., percusslon fuzes, $\$ 160,020$.
Sherield Corp., Dayton, O., gages, $\$ 36$,831.42.

Sidney Machine Tool Co., Sidney, O, engine lathe, $\$ 8670$.
Sleg Co., Davenport, Iowa, parts for tanks, fles, $\$ 3188.82$.
Sinko Tool \& Mrg. Co., Chicago, gages. $\$ 6065$.
Slpp-Eastwood Corp., Paterson, N. J., nixtures, cutters, screws, adapters and crank shaft brakes, $\$ 2966$.
Smalley-General Co., Bay Clty, Mich. thread milling machines, $\$ 33,770$.
Spleer Mrf. Corp., Toledo, O., parts for tanks, $\$ 2933$.
Standard Gage Co. Inc., Poughkeepsle, N. Y., gages, $\$ 3320.08$.

Stanciard Pressed Steel Co., Jenkintown, Pa., hardening steel cores for bullets, $\$ 4820.40$.
Star Cutter Co., Detrolt, cutting tools, $\$ 28,899.89$
Surface Combustion Corp.. Toledo, 0 . furnaces, $\$ 8513.50$.
Thomas, Seth, Clocks, Thomaston, Conn. gears, pinlons, timing disc bushings and collars, $\$ 26,935$.
Thorrez \& Maes Mig. Co., Jackson, Mlch., fuzes, plugs, $\$ 3250$.
Thurston Mfg. Co., Providence, R. I. cutters, \$3740.
Timken-Detroit Axle Co., Wisconsin Axle Divislon, Oshkosh, Wis., transmission parts, \$3471.25.
Tltan Metal Mfg. Co., Bellefonte, Pa. plunger bodies, $\$ 42,320$.
Tri-Metal Products Corp., Conshohocken, Pa., bronze castings, manganese bronze castings, $\$ 49,279.75$.
Uchtorff Co., Davenport, Iowa, towing equipment, and accessories, $\$ 18,652.64$ Union Twist Drill Co., Athol, Mass. drills, Woodruif keys, $\$ 6399.50$.
United States Machine Tool Co., Cincinnati, milling machines, $\$ 4379.40$.
U. S. Metals Reflning Co., Carteret, N. J. antimonial lead, $\$ 31,875$.
Vanadlum-Alloy Steel Co., Latrobe, Pa., steel, \$5866.50.
Velt \& Young, Phlladelphia, dies, punches and stems, $\$ 37,303.50$.
Vinco Corp., Detroit, gages, $\$ 8142$.
Vortox Mig. Co., Claremont, Calif., air cleaner assemblies for tanks, $\$ 2601.30$. W. \& L. Machine Co., Phlladelphia, dies and punches, $\$ 8962.50$.
Washburn WIre Co., New York, steel, \$99,322.50.
Watson-Stillman Co., Roselle, N. J., gap type press, $\$ 6150$.
Willams, White \& Co., Moline, Ill., hy draulic bulldozer, $\$ 8650$.
York Safe \& Lock Co., York, Pa., elevat
ing mechanism
Zimmorman mism assemblies, \$6042. alloy steel Steel Co., Bettendorf, Iowa, alloy steel, steel castings, $\$ 9449.14$.
Air Corps Awards
Air Associates Inc., Bendix, N. J., electric
motors, $\$ 109,440$ motors, \$109,440.
Amerlean Gas Accumulator Co., Eliza beth, N. J., lighting tiucks, $\$ 70,690$.
Aro Equipment Corp., Bryan, O., pro peller hub assemblies, oil serve units,
$\$ 254,175$. $\$ 254,175$.
Bell Aircraft Corp., Buffalo, gun mount Bendix Aviation andes, $\$ 158,400$.
Division South Corp., Bendix Products Division, South Bend, Ind., wheel and $3214.529,75$. Ples, malntenance parts, sion, Rendis Ploneer Instrument Divl\$170,133; Six, N. J., fuel indicators, Sidney, N. Y Y special N. Y., workshop tool kjts. special tool sets and mechanleal draw-
Boelng Aircraft Magnetos, $\$ 311,808.83$.
alrplanes, $\$ 212,090.15$ Seattle, parts for Bonney Fors, $\$ 212,090.15$.
Pa., pllers, $\$ 7155$ Tool Works, Allentown,
Carnegie-Illinois $\$ 7155$.
sheet steel, $\$ 73,668.87$ Corp., Cincinnati, Cincinnatl steel, \$73,668.87.

- Coll Crank Co., Oakley, Cin-
cinnati, lubricating pressure guns $\$ 18,025$.
Cinclnnati Electrical Tool Co., CIncinnati, grinders, $\$ 33,817.50$.
Cincinnati Milling Machine \& Cincinnati Grinders Inc., Clncinnati, milling machines, $\$ 186,425$.
Continental Machines Inc., Minneapolis, machines, $\$ 47,500$.
Crescent Tool Co., Jamestown, N. Y., pllers, wrenches, $\$ 107,018$.
Curtiss-Wright Corp., Airplane Division, Buffalo, oil tanks, parts for airplanes, \$380,105.83; Curtiss Propeller Division, Clifton, N. J., propeller blade assemblles, $\$ 131,266.40$.
Cushman Motor Works, LIncoln, Nebr., gasoline motor scooters, $\$ 124,720$.
DeJur-Amsco Corp., Shelton, Conn., photographic exposure meters, $\$ 24,660.90$.
Despatch Oven Co., Minneapolis, electric ovens, $\$ 16,750$.
Douglas Aircraft Co. Inc., Santa Monica Calif., fre control system, $\$ 86,800$.
Electronic Laboratories Inc., Indianapolls, inverters, \$126,000.
Elgin National Watch Co.. Elgln, Ill., navigation watches, $\$ 57,992.50$.
Fairchild Engine \& Airplane Corp., Fairchild Aircraft Division, Hagerstown, Md., airplanes and parts, $\$ 4,746,951$.

Fanco Machine Co., Racine, Wis., presses, $\$ 13,965$.
General Electric Co., Schenectady, N. Y. superchargers, bearings, compressors, \$197,874.49.
General Motors Corp., Allison Division, Indianapolis, manifolds, sereen as. semblles, bolts, studs, $\$ 202,760$; Delco Products Division, Dayton, O., motor assemblies, $\$ 84,000$.
Great Lakes Steel Coip., Detroit, steel, $\$ 42,650.68$.
Hanson-Whitney Machine Co., Hartrord. Conn., hand bottoming taps, $\$ 52,027.08$. Hayes Industrles Inc., Jackson, Mich., wheel assemblles, $\$ 28,437.50$.
Hevi Duty Electric Co., Milwaukec, elec tric furnaces, $\$ 67,750$.
Homelite Corp., Port Chester, N. I'. gasoline englne drlven generators, \$2,141,298.
Ingersoll-Rand Co., Cincinnatt, air compressors, $\$ 50,532$.
Kraeuter \& Co. Inc., Newark, N. J., pllers. $\$ 2565$.
Lake Erie Engineering Corp., Buffalo, hydraulic press, $\$ 34,380$.
Lindberg Enginerring Co., Chicago, elec tric furnaces, $\$ 96,500$.
Longines-Wittnauer watch Co. Inc., New York, parts for clocks and watches, $\$ 128,417.50$.
Master Electric Co., Dayton, O., generator sets, $\$ 138,844.85$.
McCauley Steel Propeller Co., Dayton, O., propeller blades, assemblies, \$408,054.50.

Meriam Co., Cleveland, manometers, $\$ 40,018.90$.
Niles-Bement-Pond Co., Pratt \& Whitney Dlvision, West Hartford, Conn., drills, $\$ 184,390$.
Pump Engineering Servlce Corp., Cleveland, pump assemblies, $\$ 59,060$.
Racine Tool \& Machine Co., Racine, Wis. saws, $\$ 65,168$.
Republic Steel Corp., Massillon, O., steel rods, medium carbon, molybienum, \$377,100.05.
Rex Body Corp., Canastota, N. Y., photographic laboratories, $\$ 343,613.18$.
Ryerson, Joseph T., \& Son Inc., Chlcago, chrome nickel steel, $\$ 77,271.05$.
Saltzman, J. G., Inc., New York, projection printers, $\$ 487,256$.
Selfreat \& Elstad Machinery Co., Dayton, O., machines, $\$ 194,331$.
Sly, W. W., Mrg. Co., Cleveland, cablnets, $\$ 26,436$.
Stevens, L. E., Co., Cincinnati, material labor and equipment for boiler and equipment, \$145,222.70.
Stewart-Warner Corp., Chicago, lubricating pressure guns, $\$ 7995$.
Taylor-Winfleld Corp., Warren, O., electric welders, $\$ 67,205$.
Unicon Co., Kansas City, Mo., portable
hangars and portable warehouses, $\$ 291.024$
Utica Drop Forge \& Tool Corp., Utlca, N. Y., pliers, $\$ 31,200$.

Varlety Aircraft Corp., Dayton, O., pelorus assemblies, $\$ 28,750$.
Vlchek Tool Co., Cleveland, screwdrivers, $\$ 25,060$.
Western Industrial Engineering Co., Los Angeles, magnetic inspection apparatus, $\$ 225,000$.
Weston Electrical Instrument Corp... Newark, N. J., generator and indicator assemblies, parts for alrcraft instruments, ammeter and voltmeter assemblles, $\$ 401,731.77$.
Whlson, K. R., New York, presses, $\$ 18,488$.
Wright Aeronautical Corp., Paterson, N. J., tools for aeronautical engines, \$87,788.51.

Zahn Equipment \& Supply Co., Columbus, O.. presses, $\$ 6982.80$.

Quartermaster Corps Awards

American Steel \& Wire Co. of New Jersey, Cyclone Fence Division, Los Angeles, fencing and lllumination, Camp Callan and Ft. Rosecrans, San Diego, Callf., $\$ 37,909.90$.
Autocar Co., Ardmore, Pa., tractortrucks, $\$ 492,400$.
Delta Electric Co., Marion. Ind., electric lanterns, $\$ 8100$.
Dlamond T Motor Co., Chicago, tank transporters, trucks, $\$ 12,157,530.75$.
Fargo Motor Co., Detroit, trucks, \$131,067.

Federal Prison Industries Inc., Washington, 39,000 mess trays, $\$ 110,070$.
Foster Stove Co., Ironton, O., grates, $\$ 16,800$.
General Motors Corp., Chevrolet Division, Flint, Mlch., light sedan cars, \$643,075.36.

General Motors Sales Corp., Chevrolet Division, Detrolt, spare parts for trucks, \$5664.32.
Gorsuch, James A., Jr., Jeffersonville, Ind., grates, $\$ 8700$.
Harley Davidson Motor Co., Mllwaukee, motorcycles, $\$ 591,915$.
Haven Busch Co., Grand Raplds, Mich., chain link rence, gates, posts, to enclose bulldings, Ft. Custer, Battle Creek, Mleh., \$8029.
Highway Trailer Co., Edgerton. Wis., semitrailers, $\$ 134,088.77$.
International Harvester Co., Ft. Wayne, Ind., trucks, $\$ 1,104,854$.
Jackes-Evans Mfg. Co., St. Louls, stove plpe, $\$ 52,200$.
Landers, Frary \& Clark, New Britain, Conn., knives, $\$ 73,250$.
Mack Mrg. Co., Long Island City, N. Y., chassis and cargo bodies, $\$ 551,672$.
McGrew Machine Co., Lincoln, Nebr.. component parts for tent stoves, spark arrestors, $\$ 29,875$.
Mllcor Steel Co., Milwaukee, stoveplpe hoods, $\$ 45,975$.
Packard Motor Car Co., Detrolt, cars, $\$ 19,196$.
Philadelphia Depot Factory, Philadelphla, military pollce brassards, $\$ 2085.89$.
Rogers Bros. Corp., Albion, Pa., tank trailers, $\$ 1,637,195$.
Standard Foundry \& Furnace Co., DeKalb, Ill., grates, $\$ 9000$.
Stanley, William W., Co. Inc., New York, wlre cutter carriers, $\$ 7556$.
Wallace, R., \& Sons Mfg. Co., Wallingford, Conn., forks, spoons, $\$ 47,500$.
Watson Automoblle Equipment Co., Cincinnati, semitrallers, $\$ 14,105$.
Wheellng Corrugating Co., Wheeling, W. Va., stovepipe hoods and straight joints, $\$ 54,750$.
Wheeling Steel Corp., Martins Ferry, O., tent stoves, $\$ 181,500$.
White Motor Co., Cleveland, six-ton trucks, $\$ 585,000$.
Wickwire Spencer Steel Co., San Francisco, chain link fence and gates. Hamilton fleld, Callfornla, $\$ 8500$.
Winter-Weiss Co., Denver, trallers, \$1,096,200.
Yellow Truck \& Coach Mfg. Corp., De-

Defense Supplies Rating Plan

Certification Forms Revised

WHEN the defense supplies rating plan was made available May 19, 1941, a customer's affidavit, form PD-25C, was included as the approved form in which customers' sworn statements should be made. This form is superseded by two forms, PD-25D and PD-25C (revised). These two forms are reproduced in full on pages 43 and 44. The old form, PD-25C, is void and should no longer be used.

An official statement regarding the new forms follows:
"Form PD-25D is provided as a replacement for those who have been using the affidavit identification for individual purchases and who have shown thereon the number of the order or certificate assigned a preference rating under which the material covered by that individual order was to be used. For your convenience the new form is a Cus. tomers' Certificate of Defense Re-
quirements instead of an affidavit. It is no longer necessary for you to have the statements attested to by a notary public. A misstatement in such a certification, like a misstatement in an affidavit, is a violation of law.
"Form PD-25C (revised) is provided as a replacement of the original Affidavit PD-25C. It is for use by those who give to their suppliers a monthly statement of the percentage of the previous month's dol lar volume which was for defense as defined in the defense supplies rating plan. Please note that this form for the monthly report has also been changed from that of an affidavit requiring the signature and seal of a notary public to a cus. tomer's certificate.
"Notice also that paragraph Number 1 clearly specifies that the percentage figure to be entered in the space provided is obtained by analyz.
ing your sales. The requirements as to accuracy of analysis, the requirements as to percentage of your total dollar sales which you are required to analyze and the necessity for retaining your data for the perusal of a representative of the Division of Priorities remain unchanged.
"Either Form PD-25D or PD-25C may be reproduced for quantity distribution, but they must be repro duced in entirety and without altera. tion. If after a thorough trial of the new forms, you believe that an in dividual form of your own prepara. tion will better suit your business, send a copy of the form you would prefer to use to Office of Production Management, Division of Piiorities, Defense Supplies Rating Plan, 462 Indiana Avenue, Washington, for approval. Until such approval to use another form has been given, do not deviate from the exact reproduction of the new forms attached hereto.
"The only addition which may be made without approval is the typing or printing of your company name and address in the proper spaces in the upper portion of the form."
trolt, cargo body trucks, tractor-trucks, truck assemblles, $\$ 4,289,980.32$.

Signal Corps Awards

American Automatic Electric Sales Co., Chicago, attendants' cabincts, telephone dinls, motor generator sets, timing and telephone sets, telephone central office equipment, $\$ 67,512.10$.
Bendix Aviation Corp., Julien P. Friez \& Sons Division, Baltimore, anemometers, Indicators, thermosraphs and supports, $\$ 30,272,50$.
Bunnell, J. H., \& Co., Brooklyn, N. Y., control shatts, $\$ 9030$
Camillus Cutlery Co., Camillus, N. Y., knlves, \$6197.32.
Climax Engineering Co., Cllnton, Iowa, power units, $\$ 32,732$.
Collins Radio Co.. Cedar Raplds, Iowa, radio transmitting equipment, $\$ 500,-$ 177.50.

Colonial Radio Corp., Buffalo, radio receivers. $\$ 77,300$.
Communlcations Equipment Corp., Pasa dena, Calir., remote control equipment, \$11,020.06.
Connecticut Telephone \& Electric Corp. Meriden. Ccnn.. test sets, $\$ 17,136.76$.
Couch, S . H., Co. Inc., North Quincy Mass., terminal strips, $\$ 45,466.04$.
Federal Telephone Co., Newark, N. J. transmitting components, $\$ 23,325$.
Gray Mlg. Co., Hartford, Conn,, keyers and parts. $\$ 83,605.88$.
Hammarlund MIf. Co. Inc., New York, radto recelvers, \$183,071.
Intermational Telephone \& Radio Mig. Corp., East Newark, N. J., radlo transmilting equipment, $\$ 40,315$.
Jackson Electrical Instrument Co., Dayton. O. battery sets, $\$ 3418.70$
Kellogs Switchboard \& Supply Co., Chicaro, terminals, telephones, switchboards, \$47,S85.
Klein, Mathias, \& Sons Co., Chicago, clamps. $5.2,519.80$.
Lorain Products Corp., Loraln, O., subcscle ringing machines, $\$ 2708.47$.
Molded Insulation Co., Philadelphia, telephone equipment, sis $^{\prime}, \mathbf{5 3 7}, 06$.
North Electric Mig. Co., Galion, O., recelvers, \$2362.50.
Rolins Co., New York, hand winches, siscos.

Seyler Mifg. Co., Pittsburgh, clamps, $\$ 3907.26$
Sparks-Withington Co., Jackson, Mich., antenna weights, $\$ 11,200$.
Stromberg-Carlson Telephone Mig. Co. Rochester, N. Y., radios, $\$ 60,000$.
Super-Stcels Inc., Chicago, axles, $\$ 2523.26$. Technical Devices Corp., Bloomfleld, N. J., ampliners, terminal strips, sockets, capacitors, resistors, and transformers, \$52,204.77.
United States Motor Corp., Oshkosh, Wis., power units, $\$ 23,523$.
Utica Drop Forge \& Tool Corp., Utica, N. Y., pliers, \$10,846.96

Western Electric Co. Inc., Kearny, N. J., radio recelving and transmitting components, $\$ 2,483,007.12$.
Westinghouse Electrle \& Mif. Co., Lima, O., dynamotor units, $\$ 186,160$.

Vidin Metal Goods Co., Garwood, N. J., wire plkes, \$6934.72.

Chemical Warfare Service Awards

Crown Can Co., Philadelphia, chemical contalner assemblies, $\$ 47,371.20$.
ureka Vacuum Cleaner Co., Detrolt brass eyerings, $\$ 6940$.
National Stamping Co., Detrolt, diaphragm angle tubes, $\$ 64,050$.
Wackman welded Ware Co.. Chester Pa., galvanized drums, $\$ 18,748$.
Wood, Gar, Industries Inc., Detroit, cranes and truck bodies, $\$ 31,980$.

Medical Corps Awards

Brillo Mrg. Co. Inc., Brooklyn, N. Y. steel wool, \$10,050.
Fisher Sclentifle Co., Pittsburgh, vacuum pumps, 52508.
Haslam, Fred, \& Co. Inc., New York surgical insiruments, \$i69s.20.
Lindner Co., New York, malling cases \$10,471.76.
National Mifg. Corp., Plainfleld, Conn.
folding instrument tables, $\$ 4550.40$.
Pelton \& Crane Co., Detrolt, dental equipment, $\$ 4934.95$.
Philips Metalix Corp., Mt. Vernon, N. X.
radiographic and fluoroscople machines, $\$ 35,480$.
burs, s9103 Randolph Co., Toledo, O, burs, s9103.s.
Scharr \& Co., Chicago, copper wire and test tube supports, s470s.10.
Sklar. J.. Mffg. Co.. Long Island City.
N. Y., forceps \$171,637.50

Spengler Loomis Mrg. Co., Rockford, Ill., mess equipment, $\$ 6800$.
Torsion Balance Co., Jersey City, N. J., prescription scale and balance, $\$ 26,403$. White, S. S., Dental Mig. Co., Brooklyn, N. Y., carborundum disks, burs, handpjeces, forceps and miscellaneous equipment, $\$ 120,231.16$.
witt Cornice Co., Cincinnati, cans, \$8664.52.
Wiss, J., \& Sons Co., Newark, N. J., crown shears, $\$ 4080$.

Corps of Engineers Awards

Abrams Instrument Co., Lansing, Mich., contour finder with stereoscope, $\$ 63$,900.

Allison Steel Mrg. Co., Phoenix, Ariz., air corps demountable hangars, Mesa military airport, Higley, Arlz., \$179,064.

Ames Baldwin Wyoming Co., Parkersburg, W. Va., shovels, $\$ 21,560$.
Aqua Systems Inc., New York, aviation gasoline rueling systems, $\$ 146,311$.
Barbour Metal Buat Works, Valley Park Mo., steel work launches, Mississipp river at Rock Island, Ill., $\$ 40,611$.
Blickman, S., Inc., Weehawken, N. J., coffee urn batteries and coffee urn combination, Jefferson barracks, Missiuri, \$15,003.
Capitol Steel \& Iron Co., Oklahoma Ciity, Okla., hangar door assemblies, Aviation Mechanics' school, Wichita Fauls, Tex., $\$ 98,000$.
Carter Sheet Metal Works Inc., Omana. Nebr., mess tables, Lowry fleld, Denver, $\$ 7500$.
Chicago Bridge \& Iron Co., Houston, Tex., elevated steel water tank, Haringen airneld, Texas, $\$ 52,800$; Los Angeles, elevated water tank, victorville milltary airport, Callfornia, $\$ 68,890$.
Cincinnati Tool Co, Cincinnati, ponton bridge equipment, $\$ 13,377.15$.
Electric Service Co., Ann Arbor, Mich., basle llghting system, Dover, Del., airport, $\$ 13,171$.
Electric Wheel Co., Quincy, Ill., trallers, \$38,974.
Ellfeldt Hardware \& Machinery Suppiy
(Please turn to Page 110)

OFFICE OF PRODUCTION MANAGEMENT

Division of Priorities

Customer's Certificate of Defense Requirements (Specific Identification Form)
(Address)

The undersigned customer hereby certifies to the Director of Priorities of the Office of Production Management and to the above-named Supplier that:

1. The lollowing purchase orders placed by the undersigned with the above-named Supplier on \qquad were required by the uadersigned for the production of Defense Supplies as defined below, (date or customer's order),
all of which Defense Supplies either were or are to be delivered under a preference rating of A- \qquad assigned to such delivery by Preference Rating Certificate or Order of the Director of Priorities No. \qquad which Certilicate or Order is now in the bands of the undersigned or. if no rating bas been essigned, were or are to be delivered for the account of the agencies listed in (a) 1 and (a) 2 of the definition of Defense Supplies below, which orders for the account of such agencies are now in the bands of the undersigned.

2. The purchase orders specified above were not placed with the above-named Supplier in an amount which increased or will increase the undersigned's inventory in excess of a normal supply for any item.
3. The facts set forth above are to the best of the knowledge and belief of the andersigned true and correct.
Legal Name of Custamer Erecuting Cerificate
Signature and Title of Authorized Individual
"Defense Supplies" means and includes any supplies sold under any of the lollowing contracts or orders:
(a) Any contract or order for products to be delitered to or for the account of:
4. The Amy or Navy of the United States, the United States Maritime Comission, The Panama Canal, the Coast and Geodetic Survey, the Coast Guard, Civil Aeronautics Authority, the National Advisory Cormittee on Aeronautics, the National Defense Research Comittee.
5. The Government of Great Britain and the Goverument of any other country whose defense the President deems vital to the defense of the United States uader the Act of March 11, 1941, entitled "An Act to Promote the Defense of the United States."
(b) A.yy otber contract or order for products which the Director of Priorities determines is to cover direct or indirect defense requirements of the United States, by specifically assigning a preference rating of A-lo or higher thereio.
(c) Any contract or order placed or offered by any person for the delivery of any material or equipment required by him to fulfill his contracts or orders on hand, which material or equipment is fo enter directif or indirectly into the manulacture of the products specified in paragraphs (a)(1) and (a) (2) above.
The foregoing Certificate constitutes a representation to the above-named Supplier and to the Director of Priorities of the Office of Production Management. Section 35A of the Criminal Code, 18 U. S. C. 80 , makes it a criminal oflense to make a lalse statement or representation to any Department or Agency of the Uaited States as to any mater Within its jurisdiction. This certificate must be kept on file by the Supplier for inspection by representatives of the fllice of Production Management for a period of at least two jears.l

OFFICE OF PRODUCTION MANAGEMENT

Division of Priorities

Customer's Certificate of Defense Requirements

Whame of Supplier with Whom this Certilicate is Filed
(Address)

Abstract

The undersigned customer hereby certifies to the Director of Priorities of the Office of Production Managent and to the above-named Supplier that: 1. During the month of \qquad 194 \qquad \qquad percent of the total dollar volume of sales made by the undersigned to all of its customers constitated Defense Supplies as defined below. In calculating this percentage there bave not been included any sales made under an order bearing a specific preference rating which has been already used by the undersigned to obtain a delivery of materials by reextension or ot ber application of such rating. 2. No purchase orders have been placed with the above-named Supplier during the month specified, and no purchase orders will be placed with said Supplier in socceeding months in amounts which will increase the undersigneds inventory in excess of a normal supply for any item, 3. The facts set forth above are to the best of the knowledge and belief of the undersigned true and correct.

Legal Name of Costomer Executing Certificate

By: \qquad
"Defense Supplies" means and includes any supplies sold under any of the following contracts or orders:
(a) Any contract or order for products to be delivered to or for the account of:

1. The Army or Nary of the United States, the United States Maritime Commission, the Panama Canal, the Coast and Geoderic Survey, the Coast Guard, Civil Aeronautics Authority, the National Adpisory Comitree on Aeronautics, the National Defense Research Cormittee.
2. The Governmed of Great Britain and the Goverament of any orber country whose defense the President deems vital to the defense of the United States under the Act of March 11, 1941, entitled "An Act to Promote the Defense of the Uaited States. "
(b) Ans other contract or order for products which the Director of Priorities determines is to cover direct or indirect defense requirements of the United States, by specifically assigning a preference rating of A-10 or higher thereto.
(c) Any contract or order placed or offered by any person for the delivery of any material or equipment required by him to fulfill his contracts or orders on hand, which material or equipment is to enter directly or indirectly into the manufacture of the products specified in paragraphs (a)(1) and (a) (2) above-
The foregoing Certificate constitutes a representation to the above-named Supplier and to the Director of Priorities of the Office of Production Management. Section 35 A of the Criminal Code, 18 U. S. C. 30 , makes it a criminal offense to make a false statement or representation to any Department or Agency of the United States as to any matter witbin its jurisdiction. Tbis certificate mast be kept on file by the Supplier for inspection by representatives of the Office of Production Yanagement for a period of at least two gears.l

Aluminum Price Cut 2 Cents as New

Plants Are Authorized by Government

- TWO-CENT per pound reduction in aluminum prices after Sept. 30 was announced last week by Jesse Jones, federal loan administrator, as negotiations for a $\$ 100,000,000$ program to expand production of the metal neared completion.
Mr. Jones stated the cut had been promised by Arthur V. Davis, chairman of the Aluminum Co. of America, and that it was arranged during conversations in which the Defense Plant Corp. signed a contract to pay for $\$ 52,000,000$ worth of new aluminum plants to be built and operated by Alcoa but owned by the government. Cost of sites will bring the total expenditure to about $\$ 60$,000,000.
Price of aluminum ingot will be reduced from 17 to 15 cents a pound and other forms of the metal will be cut at least 2 cents. Aids of Mr.

Jones estimated the reduction will save the government more than $\$ 15$, 000,000 annually.

The contract with Alcoa provided for building a 400,000,000 pound alumina plant in Arkansas and three aluminum smelting plants with a total capacity of $340,000,000$ pounds annually. The three plants will be located at Massena, N. Y., $150,000,000$ pounds; at Bonneville dam, $90,000,000$ pounds capacity; and near Camden, Ark., 100,000,000 pounds capacity.
The RFC, it was reported, then will offer contracts similar to the ones concluded with Alcoa to the Olin Corp., Union Carbide \& Carbon Corp., Reynolds Metal Co., and Bohn Aluminum Co. for additional aluminum plants. The Olin plant will be at Tacoma with a $50,000,000$ pound capacity; the Union Carbide

"Largest Capacity Bearings" in Aluminum Mill

Four Timken tapered roller bearings to be installed on back-up rolls of the new, 4 -high reversing hot mill of Aluminum Co. of Amer. ica plant at Alcoa, Tenn., have " 30 per cent more capacity than any bearings ever built before." The bearings have a $351 / 2$-inch bore, 51 . inch outside diameter, 36 -inch width. They weigh 9070 pounds each and have a mill separating force capacity of $8,300,000$ pounds at mill speed.

Each bearing is a four-cage assembly with 34 machine turned, case carburized rolls per cage, or a total of 136 rolls per bearing. Individual rolls are 4 inches in diameter, $7^{1 / 6}$ inches long and weigh 23.37 pounds. Cones and cups are forged. Cages are turned.

Size of the baaring is indicated by comparison with the stature of the young man, who is holding one of the smallest bearings produced.
plant at Spokane with a $40,000,000-$ pound capacity; the Reynolds plant at Listerhill, Ala., with $100,000,000$ pound capacity; the Bohn plant at Los Angeles with $70,000,000$ pounds.
The programs provide for a total expansion of $600,000,000$ pounds annually and will bring the country's aggregate capacity to 1,500 , 000,000 pounds a year when the plants are completed about 15 months from now, Mr. Jones said.

The plants are to be owned by the government and operated by the private companies. The contracts, it was said, will contain no provision for purchase after the defense program. However, officials of the private companies apparently have been given to understand that the government will have no objection to sale ultimately.

600,000,000-Pound Alumina
 Capacity Increase Recommended

OPM has recommended an increase of $600,000,000$ pounds in alumina capacity by bringing into use low-grade bauxite ores. The agency contemplates a new plant in Arkansas, in addition to that to be built by Alcoa. The government would retain ownership of the plant and sell the alumina to aluminum-making companies lacking supplies of their own.

Industrial Machinery Exports Drop 22 Percent

回 Industrial machinery exports in June declined to the lowest level since late 1939 and totaled $\$ 28,377$,146 , off 22 per cent from the $\$ 36$,508,559 May total, according to the Department of Commerce.

Machine tool exports dropped to $\$ 11,233,804$, from $\$ 14,389,047$ in May and $\$ 19,021,589$ in April. Practically all classes of machines shared in the decline with lathe shipments dropping to $\$ 2,264,671$ from $\$ 2,414$, 299; milling machines to $\$ 2,107,007$ from $\$ 2,950,349$; drilling machines to $\$ 344,091$ from $\$ 676,436$; and grinding machines to $\$ 1,435,216$ from $\$ 2$,061,239.

Exports of other metalworking machinery also declined, to $\$ 2,318$,416 from $\$ 2,753,088$.

Mining, well and pumping equipment exports, valued at $\$ 2,429,269$, were 25 per cent below $\$ 3,249,537$ shipments in May.

Construction and conveying machinery dropped to $\$ 2,615,313$, or 20 per cent below the May shipments of $\$ 3,358,836$.

Power-generating machinery ship. ments were 40 per cent lower in June at $\$ 2,586,486$. Textile, sewing and shoe machinery shipments amounted to $\$ 1,587,701$, compared with $\$ 1,957,796$ in May; and "other industry machinery" totaled $\$ 5,606$,157, a decline of 14 per cent from the May total of $\$ 6,504,963$.

OPM To Require More Subcontracting

 To Avert "Priorities Depression"
WASHINGTON

 - COUNCIL of the Office of Production Management took drastic action last week to head off unemployment resulting from the impact of priorities and the undue concentration of defense orders.With shortages of materials for nondefense work threatening to close many factories in the near future, the Council approved a sweeping revision of Army and Navy purchasing policies developed in cooperation with the two services and designed to spread defense orders into such plants.

At the same time it announced establishment of the Defense Contract Service as an independent bureau in the OPM, reporting directly to Director General William S. Knudsen and Associate Director General Sidney Hillman. The new bureau will be represented in all OPM divisions, and will provide regional advisory services for plant owners, especially for smaller enterprises seeking defense contracts or subcontracts.

Robert L. Mehornay heads the bureau, and William E. Levis, a member of OPM's Production Planning Board, will assist him as personal representative of Mr. Knudsen and Mr. Hillman.

Alter Purchasing Policies

The OPM Council, composed of Messrs. Knudsen and Hillman and Secretaries Stimson and Knox adopted a plan of action approved previously by purchasing officials of the Army and Navy and OPM representatives. Principal points of the program include:

1. Special treatment designed to spread defense work wherever practicable into communities or industries faced with unemployment because they cannot obtain materials for nondefense production.
2. Changes in general purchasing policies, including a requirement that a statement as to the percentage of work to be "farmed out" under subcontracts shall be placed in every contract over $\$ 50,000$.
3. A requirement that a detailed statement as to subcontracting intentions shall be submitted hereafter with contract proposals of $\$ 250,000$ or more.
Special attention for communities or industries threatened with "priority unemployment" will be administered along these lines:
The Priorities Branch of OPM's

Labor Division will inform the Defense Contract Service of the essential facts in each case. The Defense Contract Service will investigate as to the production possibilities and, wherever practicable, the OPM will recommend to the Secretaries of War and Navy a remedial program that may include one or more of the following:

Negotiated contracts (instead of contracts let by competitive bidding) at prices up to 15 per cent above current quotations.

Payments To Be More Prompt

Orders for "a responsible defense association or corporation" organized so that manufacturers may jointly handle defense work that they could not do with their individual equipment.
Elimination of bid or performance bonds when necessary. Inspection of products at plants to facilitat? prompt payment.
Reimbursement of prime contractors for additional costs resulting from extension of such policies to their subcontractors.
The plan provides that, upon receipt of such recommendations from the OPM, the Secretaries of War and Navy shall issue to their purchasing departments "such specific directives as they determine necessary in the interests of national defense to carry out the procedure recommended."

The general purchase policies agreed on by the OPM Council are as follows:

1. Bid forms, blueprints and specifications, normally sent to bidders for purchases estimated to exceed $\$ 50,000$, will also be sent to appropriate branches of Defense Contract Service. Air mail will be used to the extent practicable and necessary to equalize bidding opportunities.
2. Formal bid openings will not be within less than 15 days from date of call for bids except where the needs of national defense require earlier openings, and awards shall be made promptly.
3. Calls for bids for large quantities to be broken down into optional units to permit smaller concerns to bid for appropriate quantities. Contracting officer shall be empowered to divide an award so that part of it would go to other than the low bidder.
4. Establish more exhibits of specific items broken down into components labeled with description of machine tools and equipment as well as operations required for produc-
tion. Such exhibits to be placed in centers readily available to manufacturers in addition to those already established.
5. Where regional bidding is requested and production facilities permit, awards will be restricted to regional bidders, unless otherwise approved by the head of the Department.
6. Earlier delivery date proposed by bidder shall be weighted favorably in valuing bids, if such earlier delivery is desirable.
7. Require a statement by the bidder with each proposal in excess of $\$ 50,000$, stating the minimum percentage of the total which he will subcontract, on a dollar value basis. This statement to become a part of the final contract. The percentage of subcontracting guaranteed by a bidder shall be weighted favorably in valuing bids.
8. No new machine tool delivery, nor priority therefor, to be given a contractor, under existing contracts where a commitment therefor has not been made in the contract, or under new contracts, unless and until the contractors shall satisfy the contracting officer and shall certify that no known qualified subcontracting facilities are available within reasonable distance; except in the case where a limited few tools (to be stated by him) are considered essential by the contracting officer to complete a production or assem. bly line.

DCS Power Increased

Details of the subcontracting statement to be required with future contract proposals of $\$ 250,000$ or more have not yet been worked out. This statement will be designed, however, to give the government full information as to whether a prospective contractor intends to buy additional machinery to handle the contract, whether he has engaged subcontractors and whether he needs help in finding additional subcontractors.

In its new status as a bureau with representation throughout the OPM's various operating divisions, the De fense Contract Service has increased opportunity to inform and advise the other OPM offices and the armed services concerning existing manufacturing facilities and their more effective use.

Machine Tool Shipments

 Total \$57,900,000 in July- Machine tool shipments in July totaled $\$ 57,900,000$, according to the National Machine Tool Bui ders' Association, Cleveland. This compared with output valued at $\$ 63,000,000$ in June and $\$ 60,800,000$ in May. Shipments in July, 1940, were estimated at $\$ 31,500,000$.

- MORE PAPER WORK: 225 members of the steel industry last week received a bulky 24-page questionnaire from OPACS. Administrator Henderson asked that it be filled out "as part of the defense program"

OPACS Wants To "Know All" About Steel Industry's Costs, Operations

- "OPACS and OPM are going to have to decide on priorities for the return of these questionnaires. If they keep coming at this rate, it soon will be impossible to return them on the dates required.'
This was the comment of one harassed steel executive last week as he received the latest (till then) demand for a vast amount of detailed information - OPACS' questionnaire on costs and operations.
The document includes 24 pages (eight blank) measuring $131 / 2 \times 17$ inches. Although OPACS attempted to limit questions to data "that should be readily available from the steel companies' records" (Steel, Aug. 18, p. 21) steel men said that many expert-man-hours would be required to answer it. The questionnaire is one of the longest that the government has submitted generally to the steel industry.
> "Paper Work" Getting Worse
> "Paper work"-which has been mounting steadily ever since the New Deal inaugurated the NRA, social security taxes, and other "reform" measures-has been multiplied by the national defense program.
> "It's pretty tough and it's getting worse," remarked the head of one accounting department.
> The OPACS questionnaire is in. tended to make complete cost infor-
mation available to the price agency for use for possible future revision of price schedules.
It includes five schedules covering the year 1940 and the first and second quarters of 1941.

SCHEDULE I requires consolidated profit and loss statements for each of the three periods. Also included are about 40 questions requesting breakdowns of certain profit and loss items. Operating expenses must be broken down in detail.

SCHEDULE II involves 45 items covering production, purchases and sales. For each item there are seven columns. A form is provided for the year 1940 and for the first and second quarters this year. This means a total of 945 entries for this schedule alone.

SCHEDULE III covers wages, salaries, man-hours, employment and major wage and salary rate changes. It requires answers to 26 questions in eight columns, or 208 entries.

SCHEDULE IV includes 29 questions on consolidated balance sheet for each of the three periods. On the reverse side are 50 questions on breakdown of balance sheet items. Each requires four columns, necessitating 948 entries for the schedule.

SCHEDULE V requests historical
data from 1936 to date on capacity, production, sales, profits, expenditures and reserves. Schedule includes more than 50 items requiring answers in seven columns.

Separate statements must be made regarding facilities leased from Defense Plant Corp.; on funded debt, interest and sinking fund requirements; preferred stock and dividend provisions; capital expenditures for which appropriations have been made or which are contemplated.

Separate statements explaining policies and practices regarding inventories, taxes, selected expenses, uncompleted contracts, marketable securities, investments and intangible assets are also required.

OPM Issues Questionnaire on
 Strategic Metals Stocks

OPM last week sent a questionnaire to manufacturing users of defense metals designed to locate quantities and the whereabouts of strategic metals and to determine what use is now being made of them.

The questionnaire asks users to report quantities on hand and use made during August of antimony, cadmium, chromium, cobalt, copper, ferroalloys, iridium, manganese or spiegeleisen, mercury, molybdenum, nonferrous alloys, tin, vanadium, tungsten, zinc, and scrap metal containing any of these metals.
It is expected that the answers will indicate the use stocks and distribution of 90 per cent of the metals listed.

Another questionnaire will shortly be sent to wholesale dealers in the metals.

Defends Trade Unions As Helping Defense

"Back of the headlines, organized labor is bringing home the groceries more bountifully each day."

This was a conclusion stated by Robert R. R. Brooks, OPM labor consultant, speaking before the Canadian Institute of Public Affairs at Lake Couchiching, Ontario, last week.

Mr. Brooks contended that, while strikes and other interruptions to defense material production attract widespread attention, long periods of industrial peace are accepted as commonplace. Trade unions on the whole, he insisted, are functioning to preserve industrial peace, to provide adequate labor supplies at points needed in the defense program, and to bring to the attention of the government dislocations in employment caused by curtailment of raw materials.

Dreamers Tell U. S. To Wake Up

- AMERICAN people are becoming conscious of the fact that their government is being directed by men enamored of grand vistas.

Those of highest authority in the federal administration are preoccupied by thoughts of distant places and of the hazy, remote future.

They are becoming increasingly annoyed by the, to them, petty and sordid details of affairs at home and of the present.

The mind of President Roosevelt, first in command, gravitates unerringly to far-off lands-England and Russia. Harry Hopkins, the President's man Friday, lives and dreams in the exciting atmosphere of London and Moscow. Henry Wallace, vice president and assistant-president-to-be, when not absorbed in the problems of the nation's farmlands, lets his mind wander to the far reaches of Latin America.

Meanwhile, capable Secretary of State Cordell Hull, whose job it is to attend to foreign affairs, is practically ignored. Apparently his statesmanship is too realistic for those who see only the glory of grandiose vistas.

All of this visionary concentration on distant places and the far-off future would be commendable-and especially so under present world conditions-if somebody in authority were looking after affairs at home and of the present moment.

True, there are many capable men who are trying to solve today's difficult internal problems, but their hands are tied. Everything pertaining to our domestic economy must clear through the President,
or through his right-hand man Hopkins. If the proposal to put Mr. Wallace in sole command of defense work goes through, then he, with Messrs. Roosevelt and Hopkins, will constitute the clearing house for internal problems.

And not one of the three has any marked sympathy with or understanding of the industrial mechanism required for effective defense!

That is a bleak prospect for a public that already is smarting under the results of past and present neglect by government of pressing, vital, domestic problems.

Certainly that prospect is not reassuring to the operators of small businesses who see the efforts of a lifetime washed away in the confusion of conflicting federal restrictions.

It is not pleasing to employers, employes or the public who see favored unions deliberately sabotaging the defense program.

It is not good news to citizens asked to give up certain privileges at the same time favored minorities are being given more and more privileges.

In reality it should not be encouraging to Churchill and Stalin, whose good sense tells them that in a united America lies the only hope of their ultimate victory over Hitler.

All of this is known to the public, as witness the apathy toward this emergency, the close vote in the house on extending the term of selective service, etc.

President Roosevelt urges the people to wake up.

It is good advice, but it will not and cannot be heeded until Mr. Roosevelt and others come down to earth.

The BUSINESS TREND

Activity Index Reverses Downward Tendency

- FURTHER expansion in some industrial lines continues to be hampered by bottlenecks and raw material shortages. Dislocation in the operating schedules among numerous non-defense industries is becoming acute, resulting from more extensive use of priority controls.
Volume of new business continues to exceed output in most instances, although tightness of the supply situation is gradually forcing a return to hand-tomouth purchasing in a growing number of industrial lines. Little headway has been made against record
breaking order backlogs built up during the first half of this year.

Sterl's index of activity during the week ended Aug. 16 reversed the recent downward tendency of the preceding four weeks. At the close of the latest period the index stood at 119.3 a gain of 1.2 points over the 118.1 level recorded in the preceding week. A year ago the index stood at 100.8. With the exception of steelmaking operations each of the industrial indicators composing the index recorded a moderate gain during the latest period.

Steel Ingot Operations

(Per Cent)

Werk puded	1941	1940	1938	1938
Aug. 16	98.0	90.0	63.5	41.5
Aug. 9.	98.0	90.5	62.0	40.9
Aug. 2.	98.5	90.5	60.0	40.0
July 26	97.0	89.5	60.0	37.0
July 19.	97.0	88.0	56.5	36.0
July 12.	97.5	88.0	50.5	32.0
July 5	96.5	75.0	42.0	24.0
June 28.	99.5	89.0	54.0	28.0
June 21	99.0	88.0	54.5	28.0
June 14	99.0	86.0	52.5	27.0
June 7	99.0	81.5	53.5	25.5
May 31.	99.0	78.5	52.0	25.5
May 24.	100.0	75.0	48.0	28.5
May 17.	99.5	70.8	45.5	300
May 10.	97.5	66.5	47.0	30.0
May 3	95.0	63.5	49.0	31.0
Aprll 26	96.0	61.5	49.0	32.0
Aprll 19	98.0	61.5	50.5	32.5

lireleht Car Luadings
(1000 Cars)

Electric Power Output

Steel Ingot Production
(Unlt 100 Net Tons)
Monthly Total Weekly Averace $1041 \quad 1939 \quad 1941 \quad 1940$

Jan.	$6,928.8$	$5,764.7$	$1,563.9$	$1,301.3$
Feb.	$6,237.9$	$4,525.8$	$1,559.5$	$1,093.2$
Mar.	$7,131.6$	$4,389.2$	$1,609.9$	990.8
Apr.	$6,756.9$	$4,100.5$	$1,575.0$	955.8
May	$7,053.2$	$4,967.8$	$1,592.2$	$1,121.4$
June	$6,800.7$	$5,657.4$	$1,585.3$	$1,318.8$
July	$6,821.7$	$5,724.6$	$1,543.4$	$1,295.2$
Aug.	$\ldots \ldots$.	$6,186.4$	$\ldots \ldots$	$1,396.5$
Sept.	$\ldots \ldots$	$6,056.2$	$\ldots \ldots$	$1,415.0$
Oct.	$\ldots \ldots$	$6,644.5$	$\ldots \ldots$	$1,499.9$
Nov.	$\ldots \ldots$	$6,469.1$	$\ldots \ldots$	$1,507.9$
Dec.	$\ldots \ldots$	$6,495.4$	$\ldots \ldots$	$1,469.5$

tWeekly average.

Class I Railroads Net Operating Income (Unit: $\$ 1,000,000$)

	1941	1940	1939	1938
Jan.	\$62.36	\$45.57	\$32.89	\$7.14
Feb.	58.49	32.86	18.59	1.91*
Mar.	80.63	36.73	34.32	14.73
April	52.57	33.82	15.32	9.40
May.	88.63	47.08	25.10	16.67
June	93.26	47.42	39.10	25.16
July		57.08	49.01	38.43
Aug.		66.01	54.59	45.42
Sept.		74.19	86.43	50.36
Oct.		86.99	101.62	68.57
Nov.		71.10	70.35	49.67
Dec..		78.79	60.95	49.37
Average		\$56.84	\$49.02	\$31.02

Construction Total Valuation In 37 States
(Unit: $\$ 1,000,000$)
$\begin{array}{lllll}1041 & 1940 & 1939 & 1938 & 1937\end{array}$
Jan.... $\$ 305.2$ \$196.2 $\$ 251.7 \quad \$ 192.2 \$ 242.7$
$\begin{array}{llllll}\text { Feb.... } & 270.4 & 200.6 & 220.2 & 118.9 & 188.3\end{array}$
$\begin{array}{llllll}\text { Mar. . } & 479.9 & 272.2 & 300.7 & 226.6 & 2312\end{array}$
Aprll. . $406.7 \quad 300.5 \quad 330.0$
$\begin{array}{llllll}\text { May... } & 548.7 & 328.9 & 308.5 & 28.3 .2 & 243.7\end{array}$
$\begin{array}{llllll}\text { June .. } & 539.1 & 328.9 & 308.5 & 28.8 .2 & 24.7 .7 \\ \text { July .. } & 577.4 & 398.7 & 288.3 & 251.0 & 317.7\end{array}$
$\begin{array}{llllll}\text { July. . . } & 577.4 & 398.7 & 299.9 & 239.8 & 321.6 \\ \text { Aug. . } & \ldots . & 414.9 & 3112 & 313.1 & \end{array}$
$\begin{array}{lllllll}\text { Aug. . } & \ldots . & 414.9 & 312.3 & 313.1 & 281.2 \\ \text { Sept. . } & \ldots . & 347.7 & 323.2 & 300.9 & 207.1\end{array}$
$\begin{array}{lllllll}\text { Oct.... } & \cdots . . & 383.1 & 261.8 & 357.7 & 202.1\end{array}$
$\begin{array}{lllllll}\text { Nov. . . } & \cdots & 380.3 & 261.8 & 357.7 & 202.1 \\ \text { Nec } & 399.8 & 301.7 & 198.4\end{array}$
$\begin{array}{lllllll}\text { Dec.... } & 456.2 & 354.1 & 389.4 & 209.5\end{array}$

Foundry Equipment Orders

Monthly Average
(1937-38-3D equals 100)

	1941	1940
Jan.	285.3	149.0
Feb.	281.1	135.7
March	315.2	183.2
April	377.2	145.2
May	298.7	129.1
June	281.1	164.9
July	358.1	194.4
Aug.		165.4
Sept.		161.2
Oct.		264.0
Nov.		254.2
Dee.		257.8

By H. T. MOORE President
Tuthill Spring Co. Chicago

pended and the rail has an opportunity to put the car back on the road under control.
An important development is the use of a double rail of this type as a road center divider. Already such an installation on Ramona boulevard, Los Angeles, Fig. 9, has made a significant reduction in traffic accidents. It requires no more road space than the conventional double line and yet it effectively separates the opposing lanes of traffic. Blinker lights and special painting make divider highly visible at night.
Material for guard rails comes from the steel mills in the form of 9 gage hot-rolled sheet $125 / 8$ inches wide. Most of it is 13 feet long for mounting on posts spaced $12^{1 / 2}$ feet apart center to center, allowing a 6 inch overlap at the ends of the rails. Of course, various highway specifications involve different post spacings with similar variation in length of rails. See Fig. 4.
Fabricating starts by punching four holes at one end and four slots at the other end of each rail. This work is done in the two presses shown in Fig. 5. A sliding table between the presses facilitates moving material from one press to the other. Each press is fitted with gages, and the table has rollers imbedded in its top to facilitate movement of the material. Because the length of the rails varies, it is not practicable to punch both ends in one operation.
Next, the guard rail panels are passed through a set of forming

rolls to give a curved cross section. The roll stand is shown in Fig. 6. As the panels come from the rolls, they pass through two steel wire brushes, Fig. 7, individually driven by separate motors. These effectively remove all loose scale, leaving the panels in excellent condition for a primer. In Fig. 7 the dust hood and exhaust equipment have been removed to show the wire brushes more clearly. Note the section of roller conveyor seen in the immediate foreground.

The rail panels now are primed by brushing on a coat of red lead or blue lead primer, after which they are stacked for drying as shown in Fig. 8. This paint must be brushed on as it is too heavy to dip or spray satisfactorily. Note the stacking spacers in Fig. 8 are made from channel sections with short T-sec tions welded as vertical spacers These units permit stacking to any convenient height.

Some 600 rail panels are produced

FORGING At Jitusuille

This account of forging practice in manufacture of guns at the Struthers Wells-Titusville Corp. touches on gun manufacture during 1914-18, then details recent rapid development of gun making facilities and explains step-by-step procedure, including heat treatment and finish machining of 37 -millimeter gun forgings, and larger sizes

This Is Number 26 in a Series on Ordnance and Its Production, Prepared for Steel by Professor Macconochie

- THE ASSOCIATION of the words "forge" and "Titusville" has a familiar ring for the roots of the existing Struthers Wells-Titusville reach down beyond the middle of the last century to the date of the founding of the original Struthers Wells Co. in 1845. Now the old Titusville Iron Works and the Titusville Forge Co. operate at Titusville, Pa, under single management (since 1937).

A glance over the history of these several organizations reveals the extraordinary diversity of the tasks on which they have been engaged and conveys the impression of a ready and eager acceptance of a job to be done. Pioneers in developing gas and electric welding equipment and in building welded rail. road car tanks, the peacetime activity of the Struthers Wells Division centers about stainless steel equipment for a wide variety of industrial purposes; while the Iron Works concentrates on boilers, gas

and diesel engines, rotary lime kilns and a wide variety of riveted and welded work. Over at the Forge, heavy crankshafts and hollow bored forgings are big business or perhaps we should say "were" since guns, and more guns, tend to crowd all else into the background at the present.

The manufacture of guns, however, is no new venture for Titusville Forge. Back in 1917 the famous 75 -millimeter gun claimed at-

> The author sincerely appreciates the many courtesies extended to him by the president of the Struthers Wells-Titusville Corp., John T. Dillon Jr., and hls assoclates; and thanks the Chier of Ordnance of the United States War Department for his kind permission to present this account of the forging and heat treatment of guns for the United States Army. All photes are by Kurach, and through the courtesy of Struthers WellsTitusville Corp., Titusville, Pa.

Fig. 1-This reveals what happens when high alloy steels are exposed to uneven variations in temperature-thermal checking
Fig. 2-Stock of ingots in yard of Struthers Wells-Titusville Corp., Titusville, PaThese will be forged into gun tubes. Flutes ease cooling strains. All photos by Kurach
tention and when the present emergency arose existing facilities were improved by the addition of equipment for heat treating and boring all calibers up to 155 millimeter. Further, a large number of special Cincinnati milling machines were installed for roughing breech blocks and rings, locking rings and the like. Early in 1940 the Iron Works Division put in facilities for the finish honing of guns up to 37 millimeters and at this moment of writing are busy enlarging their scope to include calibers up to 105 millimeters.

Further interesting developments in immediate prospect include equip. ment to complete the job of tube machining, chamber reaming and honing, and rifling the bore, on all sizes up to 4 inch. By the end of August, two new autofrettage installations of the latest design will be at work on tubes up to and including the same caliber. The new buildings required to house these and other needs are rising fast without benefit of rivets, being of allwelded construction; and new and powerful handling facilities will be capable of dealing with forgings weighing up to SIXTY TONS.

Familiar as the Titusville organizations were with the forging and heat treatment of alloy steels, it was perhaps to be expected that the manufacture of gun tubes would present no very worrisome prob. lems which might readily confound others whose experience lay in the field of mild and medium carbon

Fig. 3-Portion of etched slice from an got which has been accepted. Note I tine grained structure free from blemi
Fig. 4-Exterior view of direct-fired natu

By ARTHUR F. MACCONOCHIE
Head, Department of Mechanical Engineering
University of Virginia University Station, Va. And Contributing Editor, STEEL
steels. The severe and highly responsible duty demanded of a gun calls for unusual properties in the steel of which it is composed and hence nothing but the highest excellence in all that pertains to its manufacture will serve. Steels which might be suitable for the widest range of other industrial uses are not suitable for this use unless relatively free of those minor imperfections which may reasonably be tolerated in less important applications. Further, the steels must meet the most exacting physical tests of yield and ultimate strength, ductility and perhaps also impact resistance.
For these and other reasons associated with resistance to gas erosion and barrel wear, the company purchases electric furnace steel of carefully considered alloy content and requires that big-end-up pour. ing with a generous hot top be employed to promote the separation of gas and other impurities from the steel as it cools towards the solidification point in the ingot mold. At least 15 per cent of the total weight of the ingot is held in the hot top. Some steel manufacturers also employ unusually large mold tapers in order to promote cleanliness and freedom from deep piping.
Since a gun must of necessity be

Fig. 8-Here Professor Macconochie is watching a group of forgings while they are being lowered into one of the heat treating furnaces

Fig. 7-From the forging hammer, the gun tube is lowered into a box of iuller's earth where it will take from seven to twelve days to cool to a temperature of 150 degrees Fahr. Note hammer in background at right

Fig. $5-\ln$ this portion of the Titusville Forge shop, a 1500 -ton hydroulic press is reducing the ingot to a billet of square cross section - the tirst lorging operation

forged down (or rolled to billet form) from an ingot whose diam-eter-length ratio is much greater than that of the finished gun forging, considerable drawing out takes place in the direction of the axis. Hence, if inclusions, segregations and the like were present, their influence would be apparent principally in the transverse test. Note that this is the direction in which the ductility and yield strength are of the greatest importance.

In the manufacture of gun steel, basic electric furnaces of about 50 tons' capacity are commonly employed. The presence of chromium. nickel, molybdenum, vanadium and sometimes other alloying elements demands the utmost care in pouring and cooling the ingot since until the gun tube has reached its final tempered condition, the steel of which it is made is peculiarly liable to the thermal checks and flakes characteristic of high alloy stecls exposed to uneven variations in temperature. This condition is exhibited in Fig. 1 which shows a quarter of a section of a gux tube made from such defective material. Fig. 2 shows part of the ingot pile in the company's yard. The heavy flutes on the outside of the ingots are designed to ease the inevitable strains accompanying cooling.

Before a heat is accepted, the top and bottom from one ingot are cut off, ground and polished, then boiled for an hour in hydrochloric acid diluted with an equal quantity of water. Any imperfections which might render the steel unservice able are thus revealed at the outset before any forging work is done.

Fig. 12-Accuracy of bore is deter mined by use of pivoted search bar as shown here. A dial gage reveals amount "out"

Fig. 9-This batch of 37 -millimeter gun lorgings is being removed from one of the vertical gas-fired heat-treating furnaces

Fig. 3 shows portion of an etched slice from an ingot which has been accepted, the steel being virtually free from all blemish. The ingots from the heat are now given serial numbers together with the heat number -- stamping or metal tag identification being employed.

In conventional practice, the ingots after stripping from the molds are lowered into soaking pits before they can cool. However, the Titusville Corp. purchases its stock, so a start must be made from the cold and heat applied with the greatest circumspection. If these: alloy steel gun forgings were treat ed like ordinary mild or medium carbon steel, checks of considerable severity would develop. Hence, especially in the case of the ingots of larger diameter, practice here is to pre-warm the ingots in a water bath which is gradually brought up

Fig. 10-Closeup of core drill used to secure a longitudinal test specimen from the muzzle of the gun forging

Fig. 11-This shows how a transverse saw cut is made on the breech end of the gun torging in order to obtain
to a temperature of 200 degrees Fahr. by steam. At this temperature, the ingot enters the preheating furnace shown in Fig. 4 where its temperature is raised to 1200 degrees Fahr. One hour is allowed for each inch of ingot diameter.

These preheating furnaces are simply constructed. They are rectangular in form with depth sufficient to avoid direct flame impingement on the charge. They are heated by the natural gas jets arranged in a row near the top of the side wall and directed horizontally towards the opposite side. No provision is made for venting.
The ingot is now ready for transfer to the heating furnaces, where its temperature is raised steadily to about 2000 or 2100 degrees Fahr., care being taken to soak thoroughly at forging heat. This transfer is accomplished by a manipulator known as the Brosius auto floor charger. It seizes the ingot by the hot-top tong and thrusts it through the furnace door. The charger has a rear "rudder wheel" electric drive, power arriving via a self-winding cable. The arrangement is exceedingly flexible and highly responsive.

When ready for forging, the ingot is seized once more by the hottop tong and worked down under the hydraulic press to a square sec-tion--the exact dimension depending upon the caliber of gun being forged. The 37 -millimeter, for instance, requires a 6 -inch square, the 75 -millimeter calls for an 8 -inch square and so on, a 500 -ton press being used for these calibers and a 1500 -ton unit for larger sizes. At this stage the press is preferred to the hammer in order to work the material deeply and thus secure maximum beneficial effects from hot working the steel. Later on in the process, the hammer will serve for calibers of 75 -millimeter and under, but for the larger sizes the press is still preferred. Fig. 5 shows the 1500 -ton press at work squaring off. At this point about 30 per cent is removed from the top of the square billet and some 5 or 10 per cent from the bottom, a cutter a transverse test specimen

TOOLS SHOULD PUNC be startled by their short working time. Right now, when every man and machine is being pushed to the limit of productive capacity, is the time to make sure machines and presses are getting the proper cooperation from tools and dies. Now is the time to make tools work more hours with fewer interruptions.

That's where users of Carpenter Matched Tool Steels have a definite advantage. They get more output because their tools work longer with fewer stops for regrinding, repairing and replacing. And at the same time they conserve valuable metals.

For the purpose of helping customers get the most out of tool steels, we have prepared a handy MATCHED TOOL STEEL MANUAL. This new Carpenter manual is complete . . . from a MATCHED TOOL STEEL CHART showing how to solve tool making problems the MATCHED SET way . . . to detailed heat treating and drawing instructions. Added to this manual is an 81-page alphaberical Tool Index and Steel Selec or. It quickly shows which steel best meets the requirements of each tool room job. If you do not already have a copy of this helpful 168 -page manual, ask your Carpenter representative. He has one for you.

- The Carpenter MATCHED TOOL STEEL MANUAL, showing sample pages from the Tool Index and Steel Selector.

THIS TOOL PROBLEM WAS SOLVED THE MATCHED SET WAY!

The Job:
Piercing dic used in piercing slots in 14 gauge hor rolled steel at a production fate of 1,200 pieces per hour.
The Problem:
Breakage occurred on narrow side of die after about 2,500 pieces. Heat treatment and hardness tests showed okay.

The Matched Set Solution:

Recognizing the need for a tougher oil-hardening steel to withstand piercing impacts, the Superintendent, guided by the MATCHED SET diagram, selected Carpenter R.D.S. RESULTS: 1. Breakage overcome.
2. Tool life increased from 2,500 to $1,000,000$ pieces.
3. Production per month increased 39,400 pieces, by
a saving of 33 hours in tool-caused idle press time.

being pressed in from all four sides.
Fig. 6 shows the billet being worked down to form under the hammer after re-heating to 2100 de grees Fahr, or thereabout. During the operation the temperature is permitted to fall well down towards the upper limit of the critical range of the steel, or to around 1500 to 1600 degrees. Once more an identification number is stamped upon the breech end as the tube leaves the hammer, a number

Fig. 13-Gun barrel is brought within the prescribed tolerance limits by carefully controlled "hits" with a hydraulically driven die in this mechanism

Fig. 15-Setting up for boring two gun forgings at the same time in a dual machine. Drilling is done first from one end, then the other. Tool will be diamond pointed drill shown in Fig. 14
where from seven to twelve days, depending on the size of the forg ing.

Although the reasons for this slow cooling following forging are still to a large extent in the specu-

More Information on Modern Shell Production

STEEL's first reprint handbook on "Modern Shell Produciion" detailed the methods and equipment necessary for the most efficient production of high-explosive shell-that is, the shell body which undergoes fragmentation as it reaches its objective. Over 1000 copies of this 76 -page book have now been distributed and a limited supply is still available at $\$ 1.00$ per copy.

Now, a second handbook has been compiled. It goes into further detail on the manufacture of shell, as well as brass cartridge cases, small arms ammunition, shell and bomb fuzes, the flight of the projectile and the airplane bomb. This second handbook is attractively bound, fully-illustrated and entitled "More Information on Modern Shell Production." Orders should be addressed to STEEL, Readers Service Department, Penton Building, Cleveland. Price, 50 cents per copy.
which is retained until shipment. Thereafter, the forging is immediately buried in a steel box containing fuller's earth. See Fig. 7. Mica, ashes, or the like would serve equally well for the purpose but fuller's earth happens to be readily available. Cooling down to about 150 degrees Fahr.-the temperature of removal from the box-takes any-
lative stage, the necessity for so treating the work has been amply demonstrated by experience. Possibly the relief of strains arising from forging work, or the harmless release of hydrogen dissolved in the steel, or both advantages arise from this extremely slow anneal. This much at least is certain, failure to observe this precaution results in

Fig. 14-Tools for boring and reaming gun forgings. The diamond pointed drill at extreme left drills the hole from the solid forging. The bit with the rock maple "packing" shown assembled at extreme right and disassembled in center is used to open up or "ream" the bore. This tool employs cuiters of high spead steel, guided straight through the forging by the maple packing
checking of the steel.
Next, the gun forging is heat treated. First step is a double normalizing process in which a group of forgings as shown in Fig. 8 are lowered into a vertical gas-fired furnace where they are heated slowly and held at 1850 degrees Fahr. for eight hours, then cooled in still air to 500 degrees. At this temperature they are re-charged and heated to 1650 degrees, held at this level for six hours, then air cooled.

For the quench, the forgings are re-heated to 1550 degrees, held at this temperature for six hours, then lowered into the oil bath from which they are removed after the temperature has fallen below the flash point of the oil, or to around 300 degrees.

The quench is followed by a draw at 1050 to 1150 degrees Fahr., depending on the physical properties desired, the forgings being held at drawing temperature for ten hours. As may be well imagined, the careful heat treatment to which this gun steel is subjected, develops an exceptionally fine grained structure.

Under the microscope, using a magnification of 450 diameters, the polished and etched cross-section of a test piece exhibited apparently a troostite-sorbitic complex, with rounded-off remaining needles of martensite. The presence of the special elements (chromium, nickel, molybdenum, vanadium, etc.) has a depressing effect on the Ari point, lowering this transformation temperature to about 800 degrees at moderate rates of cooling. Since checking or "hair line cracking" is known to occur between the Arl point and 300 degrees or so, every advantage is to be derived from the extremely slow cooling subsequent to forging.
This slow cooling permits the Ari transformation to take place at a higher temperature and thus at a time when the steel is in a softer condition. The changes in density accompanying the allotropic moditlcations of the critical range are thus removed as a contributory fac-

HARDEN

with ELECTROTHERMICPERMEATION

HIGH-SPEED Tool Steels of half Molybdenum, half Tungsten or even all Moly are now being hardened with absolute certainty of uniform results. The Upton ElectrothermicPermeation principle of operation has made the changeover from 18-4-1 types surprisingly easy and there is very little experimenting to determine proper temperatures and time. Once determined, results can be duplicated with absolute certainty.

Users of Upton Electric Salt Bath Furnaces have found that:

1 There is no decarburization-even on ALLMOLY alloys and size change of tools during hardening is under perfect control. This means that thousands of Moly hobs - hardened in Upton furnaces-are being sold without any grinding after hardening.
2 Properly hardened Moly H. S. Steel tools will give identical cutting characteristics with 18 -
3 The ceramic pots last longer and the furnace costs considerably less to operate.

The Electrothermic-Permeation principle of operation assures a positive, yet natural, circulation of heated salt so strong that it supplies heat uniformly to all portions of the work. High operating efficiencies have saved upwards of $\$ 1200.00$ per year in fuel alone.
With its ultra-sensitive heat input control, the Upton high heat furnaces operate within minimum temperature fluctuations. Proof of this is that re-orders of Upton furnaces have increased sharply since users have begun hardening the MOLY types of high speed steels.
Let us tell you more about these furnaces now.

Fig. 16-One end of the machine shop where 37 -millimeter gun forgings are
tor in the checking which tends to occur during cooling after forging. The necessity for hardening and drawing these gun forgings in order to secure the desired physical propertics has the inevitable effect of distorting them. Thus a straight ening operation carried out under a hydraulic press is undertaken at this point, the tubes being thereafter returned to the furnace where they are heated and held at a temperature 100 degrees less than the draw temperature. If this were not done, the tubes would bend once more after machining had removed the outer layer, the one chicily af. fected by straighiening.

The forgings are now ready for their preliminary physical tests. Fig. 10 shows the type of core drill employed to remove a test specimen in a longitudinal direction from the muzzle end of a 37 -millimeter forging. Fig. 11 shows how a saw cut is taken on the breech end to secure a traverse test specimen. being firished

Disks also are cut from both breecl, and muzzle ends for an etch test.

Longitudinal and transverse specimens are now turned down, the ends threaded and the central portion reduced to 0.37 -inch diameter (an area of one square inch), gage length of 1.4 inches being employed. The locations from which test specimens are iaken are marked by govcrnment inspectors, the usual point being about midway between the bore and the outside of the gun. For 37 -millimeter tubes, the yield strength requirements lie between 95,000 and 120,000 pounds per square inch, with a minimum redustion of area of 45 per cent.

Characteristic analyses of two steels exhibiting these qualities are respectively: 0.34 and 0.36 per cent carbon; 0.68 and 0.62 per cent manganese; phosphorus, 0.017 each; sulphur, 0.024 and 0.021 ; silicon,

Fig. 17-Here is portion of shop working on the larger gun tubes. Note the three sets of heavy supports being employed on the gun barrel at the right. Part of the control equipment can be seen on the balcony at the far end

Pannoed ETBI

WHAT YOUR

- Simplicity of design.
- "Feather-touch" Clutch Control.
- Cushion Clutch.
- Worm Boom Hoist.
- Cast Steel Bases with Cast Stee Machinery Side Frames.
- Helical Gear Drive.
- Uniform Pressure Swing Clutches
- Splined Shafting.
- Ball and Roller Bearings on al High Speed Shafts.
- Large Clutches.
- Easy Steering.
- Crawler Gears Fully Enclosed.
- Small Crawler Rollers.
- No "nut cracker" Crawler Action
- Chain Drive to Crawlers.
- Demountable Lagging.
- Easy Convertibility.

THESE features can mean the difference between profit anc loss to you. These Northwes advantages mean increasec output and speed with lowe maintenance costs. Many o them are found on no othe machine and together the) offer a combination that get: things done, and that's wha counts today.

Let us tell you what a Northwes can do for you. No obligation of course.

NORTHWEST ENGINEERING CO., 1805 Steger Blag., 28 E. Jacksen Blvd, Chicago, III.

the
 CTARIE that coes АПЧШH

Materials Mandling

and FABRICATION

.... are co-ordinated to produce one truck cab every 7 minutes

\square HANDCRAFTMANSHIP is combined with modern tools and the assembly line technique in production of steel cabs for trucks at the White Motor Co., 842 East Seventy-ninth street, Cleveland. Here materials handling methods are given equal consideration along with fabrication methods to the end that maximum production efficiency is attained.
To begin with, all parts are fabricated within the plant except large steel panels which are made outside with White-owned dies. Preliminary framing operations are handled on a large fixture which can be seen in Fig. 1. Here after the panels have been clamped in the massive jig, the abutting edges are arc welded to form a solid shell entirely free from rivets. There can be no shucking of joints or loosening of parts in such a unit. The completely welded cab shell is being removed from the fixture in Fig. 1. Except for these preliminary framing operations, accomplished on the iixture, all the fabricating operations are done at a series of stations along a floor-type chain conveyor line which has a variable speed of from 6 to 18 inches per minute. Cabs are spaced on this line about every 8 feet. Many types of craftsmen are required during the building process including spot welders, arc welders, gas welders, panelers, torch solderers, metal finishers, door hangers, painters, fit-out men and trimmers.

With the exception of the flooring, all panels are of 18-gage steel. At the first point of assembly, upper and lower back panels are combined by spot welding along the flanges and closed intervals. Two men work together, positioning the unit and operating the foot pedal of the resistance welder.

At the second station, the roof panel and windshield panels are combined by gas welding all the way across. This is done over a special form jig.

At the third assembly point, the completed roof and back panel unit are placed in the major assembly fixture shown in Fig. 1 and combined by electric arc welding, a welder and helper working together here. Next the cab shell is attached to the skeleton framework by arc welding, and the all-steel understructure is likewise added by are welding. The understructure itself is made of 16 .gage panels welded to 18 -inch channel supports. The floor panel is a one-piece stamping, fully insulated underneath with $1 / 2$-inch wool for protection of cab occupants against heat or cold.

After framing, the cab is placed on a dolly especially built to accommodate these units. As shown in Figs.

Fig. 1. (Top)-Major framing fixture in which most of the welding of parel sections and framework is done
Fig. 2. (Center)-Here understructure frame and panels have been added and the operator is installing the seat frames. Note the heavy coil springs
Fig. 3. (Bottom)-Welds are ground off, filled with solder and then sanded smooth in preparation for painting. Power sanders help in this work

2 and 3, this dolly can be moved about on the floor to any point desired and also can be rolled onto a channel or track for the production line operations, at which point it is hooked to the dolly in front, the line of dollies then being pulled down the production line.

In the conveyor line, the cabs are torch soldered to fill all seams, one man working on each side. The cabs are then completely finished using a sanding belt, disk wheel and hand sandpaper. No putty whatever is employed. The cabs are washed with acid and thinner, preparing the metal for subsequent painting operations and providing full assurance that no rust will eat through later.

Fig. 2 shows installation of seat frames constructed of tubular rail steel, centrally suspended above the cab floor on heavy alloy steel coil springs which eliminate the jar of rough road surfaces. The frames are given one coat of prime and one of enamel. Each frame is sup. ported by two steel arms, known as "ride controls", attached to the rear cab supports and mounted on rub. ber bushings which act as shock absorbers to control and prevent excessive bouncing. The tension of these bushings can be regulated to meet the weight of each individual driver. Seat frames also are fastened to the cab uprights by shackles to hold the seat in a vertical position. This construction gives the entire seat assembly a cradle effect. To improve further the riding qualities, regular shock absorbers are installed.

Next the cab doors are hung, being tested to see that the door action is free. Subsequently, the cabs are thoroughly cleaned and sent to the prime spray booth for three successive coats of prime on the outside and one on the interior. Then the conveyor line takes them through an oven where they are baked for 50 minutes at 225 degrees Fahr.

When baked, cabs are sanded to a satin finish, using hand and power sanders as shown in Fig. 3. The conveyor line then makes a horse shoe turn as shown in Fig. 4 to bring the cabs back through a finish spray booth where they are given
(Please turn to Page 78)

Fig. 4. (Top)-Here cabs are being sanded after the primer in preparation. for entering the finish spray booth
Fig. 5. (Center)-Spraying on one of the three finish coats prior to finish baking
Fig. 6. (Bottom)-Complete cab with all fittings is being carefully inspected. More than 300 different combinations of cabs are produced on this line

VARIABLE SPEED DRIVES

WHILE variable-speed drives continue to show important advantages on more and more machines, there are still many applications on which they could be used to speed production, cut rejects, lower power costs or produce some other advantage.
Typical of what these units can do is the performance of the vari-able-speed transmission shown in Fig. 1. A continuous overhead chain conveyor 1800 feet long is

increase production

used for both assembly and inspection, covering many different departments of a plant. Its extreme length and loading necessitate two drives to keep maximum chain tension at a safe value.
Ordinary operating speed of the conveyor is 9 feet per minute, but a range from 4 to 12 feet per

SUE

DEFENSE is the major problem of the metal producing and metalworking industries today. And, because of so many defense problems, the men working with metals are going to find it expedient and necessary to attend the twenty-third annual National Metal Congress and Exposition in Philadelphia's Public Auditorium, October 20-24. In no other way can such a fund of information be accumulated in so brief a time.

THE METAL SHOW

this year will offer the opportunity for executives in defense industries to learn of new equipment, materials and processes with the least expenditure of time. The exhibits and the technical programs will offer many ideas and suggestions for speeding defense work. The 1941 Metal Show will undoubtedly attract many more-than the 35,000 important visitors who attended the 1940 show. It will be very much worth while to make definite plans to attend this convention and exposition.

5HOU I55UE ... /eaturing

TE E as over the past many years, will devote a substantial portion of the October 13 issue to the same interests as the various Societies participating in the National Metal Congress. This issue will carry a combination editorial and advertising insert section printed in red and black on special coated stock. Editorially, it will carry the complete technical program; the entire list of exhibitors, who will be in attendance, their booth location and what they will exhibit; as well as other pertinent information.

ADVERTISING in this issue, in combination with the editorial material, will give the convention visitor a fore-taste of what he will see and hear-just a week prior to the opening of the show-and it will display your products to those who attend as well as those who do not. Companies selling to the metal producing and metalworking industries may well consider the advertising possibilities of this issue. Write for details.

Sheet \& Tin Plate Co., Mansfield, O., it has been customary to use direct-current variable-speed motors on such furnaces, but there was only a limited amount of direct current available here. Furthermore, overhead cranes and other equipment on the direct-current line produced heavy voltage fluctuations and thus a wide variation in speed of all direct-current mo-
tors. This was undesirable here as it could produce considerable variation in sheet quality, due to variations in rolling speed.

Using a constant-speed alternat-ing-current motor and a variablespeed drive, this unit not only saved the cost of running directcurrent lines to the job but furthermore saved the conversion loss incident to use of a motor-genera-
tor set-a considerable saving since the unit runs 24 hours a day, 300 days a year. What is more important, its use assures absolutely uniform speed for all normalizing runs, eliminating danger of speed variations. Maintenance on brushes and direct-current motor controls also is saved. The variable-speed drives shown were furnished by Reeves Pulley Co., Columbus, Ind.

QUENCHING MEDIA

.... for hear treating such items as alloy steel gun forgings

- THESE notes are principally concerned with those factors which govern the selection of quenching oils. Primarily, of course, there is the necessity of securing the desired rate of cooling of the steel, but the degree of permanence in service and the extent of the availability of the medium are also important considerations. With regard to the question of cooling rate, it is well known that an increase in the speed of cooling from above the critical range results in a lowering of the Ar_{1} point to such a level that the transformation of the austenite cannot proceed further than the martensitic stage. Thus we obtain a hardened steel.
However, it is perhaps less well known that the lowering of the temperature at which transformation takes place does not keep pace with the increase in the cooling rate, but falls abruptly at a certain "critical velocity" of quenching. Thus if the rate is sufficiently slow, the transformation of pearlite would occur in the neighborhood of the normal temperature of 1292 degrees Fahr.; while an increase in the cooling rate

By ARTHUR F. MACCONOCHIE
Head, Department of Mechanical Engineering
University of Virginia
University Station, Va.
And
Contributing Editor, STEEL
results in a lowering of the Ar_{1} and the formation of sorbite rather than pearlite.

A further increase in the speed of cooling depresses the transformation point to around 1200 degrees, plain carbon steel now exhibiting a troostitic structure. Thereafter a very slight increase in the rate ab. ruptly depresses the temperature of transformation and produces martensite. In any given case the rate of cooling would be influenced not only by the nature of the cooling medium and its amount, but also by the distance of the element from the heat robbing surface of the piece and the relative velocity of work and coolant.

From of old a certain mystery has surrounded the art of the smith.

It may seem a far cry from the use of a Nubian slave for a sword, to the blind faith of a Sheffield craftsman in the virtue of water from some particular source. But the underlying cause is the same although its expression has fortunately assumed more humane forms. With the rapid increase in our knowledge of metallurgical science we have learned that the prime function of a quenching liquid (namely the withdrawal of heat) depends upon certain physical qualities which can readily be obtained among a wide variety of media at our disposal.

These qualities include the heat of vaporization; specific heat; conductivity; viscosity; volatility; initial temperature (to some extent); and last but by no means least important, the ratio between the quantity of the medium and the mass of the piece, since this last, together with the specific heat, determines the amount of heat which may be absorbed by the bath for a given rise in temperature.

Since much of the heat given out by the work is dissipated to distant parts of the bath by convection, high viscosity tends to slow down the rate of heat absorption by the bath. However, in liquids which boil at low or moderate temperatures, much of the heat may be absorbed in the latent form, giving rise to bubbles of vapor which, if allowed to adhere to the metal, retard cooling. Water, one of the most efficient quenching media from the standpoint of ability to absorb heat quickly, has both a high specific heat and a large latent heat. When these characteristics are coupled with low viscosity, we have a combination of properties conducive to maximum effectiveness.
(Please turn to Page 87)

This diagram illustrates approximately the quenching power of various liquids. Key: B, brine; W, city water, 1, new fish oil; 2, No. 2 lard oil; 3, lard oil in use for 2 years; 4 , boiled linseed oil; 5, raw linseed oil; 6 , new bleached iish oil; 7, new cottonseed oil; 8 , tempering oil (60% cottonseed, 40% mineral); 9 . mineral tempering oil; 10, dark mineral tempering oil; 11, extremely viscous tempering oil. From data by Mathews and Stagg

TIME IN SECONDS REQUIRED TO COOL TEST PIECE FROM $1200^{\circ} \mathrm{F}$ TO $700^{\circ} \mathrm{F}$

Look to this new service to help you in two timely ways: (1) In getting better service from your piping equipment; (2) In training and supervising maintenance crews. Bulletin No. 2 is now ready with many hints on proper piping applications and good instal-

A

\square CRANE CO., GENERAL OFFICES: 836 S. MICHIGAN AVE., CHICAGO VALVES•FITTINGS•PIPE PLUMBING•HEATING•PUMPS

NATION-WIDE SERVICE THROUGH BRANCHES AND WHOLESALERS IN ALL MARKETS

DEVELOPS FLOATING DRIVE

for

MILL RUNOUT TABLES

By JOHN D. KNOX

Steel Plant Editor
Hotor of newly developed motor is integral part of table roller. Lug on underside of frame prevents rotation of stator under operating conditions. Starting of motor is cushioned by coil springs. Wabble of table roller due to warpage has no harmiul effects on motor

6 IN EARLY DESIGNS of steel mill runout tables a large number of the rollers were driven through a common lineshaft and bevel gears by a single motor. This type drive had many disadvantages. When the motor failed for any reason the mill stopped rolling. Then there was the problem of lubrication, warpage of the table rollers due to heat radiated from the hot steel in transit, wear of gear teeth and mis-alignment of shaft and gears. This arrangement of driving mill tables, therefore, was gradually abandoned.

A few decades ago separate induction motors were employed for actuating a short curved conveyor table for moving billets from the heating furnace to the first stand of rolls. The table rollers were driven through a pinion and an internal spur gear with all motors controlled through a single starter. This represented the first step. The next stage in the development made use of individual gearmotors, and this was followed by direct drives, using individual motors. Individual drives for steel mill runout table rollers have since been widely employed on many of the modern mills, particularly for rolling wide strip and sheets.

Recently, however, a new typa of drive for mill table rollers, known as the "floating motor drive," has been developed by the Reliance Electric \& Engineering Co., 1038 Ivanhoe Road, Cleveland. A floating motor is mounted on the end of the roller shaft in such a way that it is always concentric with the shaft. The relation of the armature to the field poles, or rotor to the stator is always the same. Variable weights of steel commodities coming from the mill and any warpage of the table roller whether caused by radiat-
(Above) Layout of the floating drive applied to a direct-current motor
(Right) Layout of the floating drive applied to an alternating-current drive
ed heat or battering, have little effect on the maintenance of the centerline of the roller with respect to the motor, inasmuch as they are identical.

The motor rotor is mounted on a sleeve, which in turn is keyed to the shaft of the table roller. Both the rotor and roller shaft are carried on the same set of ball bearings.
The roller shaft extension is drilled
(Above) Coil springs positioned on each side of the lug on bottom of motor frame prevent rotation of tield frame and cushion the starting of the motor
(Right) Floating motor showing roller shaft extension. Coil springs, which compensate for the torque developed by the motor, fit over the pins shown
 at bottom of frame

YOUR DEFENSE

 ..PLUS YOUR PROFITSIn spite of the acute emergency conditions prevailing throughout your industry, your part in the defense program need not conflict with your profits! Right now, thousands of manufacturers are accepting the challenge by finding new ways to hold their manufacturing costs to a minimum, thus defending their profits. In wire working, for instance, these manufacturers more than ever before are effecting genuine savings by selecting a wire known beyond question for its quality, uniformity, workability. Such a wire is WISSCO UNIFORM'D* WIRE. You, too, can benefit from the use of a wire that works well . . . a wire that's easy on tools and machine and promotes top speed operation with safety. Next time you order Wire, combine your patriotic urge with your profit urge by specifying WISSCO!

* Mcans wirc made to the efacting standards of Wichwirs Spencer quality and unaformity.

WICKWIRE SPENCER STEEL COMPANY

500 Fifth Ave., New York; Buffalo, Chicago, Detroit, Worcester. Pacific Coast Headquarters: San Francisco. Warehouses: Los Angeles, Seattle. Export Sales Department: New York

Typical application of the newly dereloped drive to a series of runoul table rollers
and threaded to receive a screw. The unthreaded shank of this screw passes through, and is supported by, the rotor sleeve. Endwise motion of the screw with relation to the rotor sleeve is prevented by a shoulder on one side and a welded head on the other.
A rotor ready for mounting is drawn onto the table roller shaft by turning the threaded stud into the internal threaded portion of the roller shaft, thus forcing the sleeve of the rotor over the roller shaft.
Attached to the underside of the motor at the rear end is a lug with a pin on each side, coil springs designed to compensate for the torque developed by the motor fit over these pins and extend in the opposite direction to a U-shaped bracket bolted to the roller table bed. The springs confine the rotation of the stator to about an inch from neutral position, depending upon their stiffness, and through their reaction compel the rotation of the rotor and table roller. In addition, the springs serve to cushion the starting of the motor. When the motor first starts to operate, there is a noticeable deflection of both springs, but as the motor is brought up to speed, all deflection disappears.

The question arose concerning the operation of the motor in case the table roller became sufficiently
warped to throw the motor out of line. And so the Reliance Co. undertook two tests in its laboratory. First, a table roller was displaced 30 degrees from the horizontal; this had no effect on the operation of the motor. Second, a table roller shaft was bent to throw the outer end of the motor $1 / 16$-inch out of line with the bearings of the roller; neither the wabble nor the vibration was harmful. Since these experiments the company has had table rollers operating successfully in mill service for over two years.
Connection with the power supply is had through flexible covered wire leads which are resistant to moisture and oil. A special plug and floor receptacle are used to facilitate a break in the circuit.
Either alternating-current or di-rect-current motors are used for the floating drive, depending on economic conditions. In roller table operation, adjustable speed of the roller is essential to match the speed of the material delivered by the mill, and this is made possible either by the use of alternating-current motors and variable frequency, or directcurrent motors operating on variable voltage. Each type motor has its own advantages.

While the cost of a standard motor is less than that of a floating drive motor with its sleeve and

Typical roller table of two decades ago with a large group of rollers driven by a single motor through line shaft and bevel gearing

drawing-on stud, there are advan tages to be secured. No couplings or mountings are necessary. The table roller and motor may be replaced as a unit. Mis-alignment of the motor and roller never is encountered. Table construction is simplified and cost materially reduced.

Films Show Optical Tests, Thread Grinding

- Both inspection by optical projection and automatic thread grinding are comparatively recent but extremely important developments about which little textual matter exists. However, these techniques are playing such an important role in the manufacture of defense products requiring great accuracy and quality of finish that students of modern inspection and thread production should learn them.
To provide technical training schools and other institutions with material for instruction in these modern methods of inspection and thread production, Jones \& Lamson Machine Co., Springfield, Vt., has prepared two slide films illustrating optical comparators and automatic thread grinders. Each film is accompanied by a written description in lecture form.

The films can be projected with any standard $35 \mathrm{~m} / \mathrm{m}$ slide film projector and either or both will be sent gratis to any university, technical school, or other accredited institution providing technical courses, upon request of the principal in charge.

Silver Shows Promise as
 Electroplated Coating

The field of electroplated coatings continues to show promise as an outlet for silver according to the American Silver Producers' Research Project, upon completion of a year of activity at the Bridgeport, Conn., plant of Handy \& Harman.
Silver-plated containers, according to the report, now are undergoing experimental stages as a package for chemicals and commodities. So far, however, results have varied. In recent months the scarcity of many base metals has focused attention on the use of silver as a substitute for aluminum, nickel and tin. Experiments also are under way to determine advantages of the use of a cor-rosion-resistant electroplate of silver followed by a hard, wear-resistant chromium deposit.
In conducting experiments to determine the strength of extruded tubing made from a 3.5 per cent silver to 96.5 per cent tin alloy, a bursting strength of 2500 pounds per square inch was obtained.

SPEEDING DEFENSE with $98,000,000 \mathrm{lb}$. blows

Conservative calculations show that the instantaneous force developed at the moment of impact by a 35,000 pound Erie Steam Hammer is over 98 million pounds. Not only are Erie Hammers built with extra ruggedness to withstand the heavy resultant stresses, but they are so designed that every pound of the force is put to work on the metal being forged. These are the two main reasons why Erie Hammers are speeding defense by standing up under abnormally heavy operating schedules.

Erie Steam Hammers are made in rated sizes up to 75,000 pounds. They are fully described in Bulletin 333. Write for your copy.

```
ERIE FOUNDRY COMPANY ERIE, PENNSYLVANLA, U.S.A.
```


ERIE BUILDS Dependadle HAMMERS

Cutting Cost And Weight of AIRCRAFT

- ONE OF the most important ways to reduce cost, weight and time in making aircraft assemblies lies in the use of Speed nuts and Speed clips-fastening devices which afford savings up to 70 per cent in cost of material and reductions in weight up to 90 per cent. When savings in cost of handling and speed of assembly are added, the actual dollar saving may be doubled or trebled in many cases. Add to this the fact that the efficiency of these fastenings (as regard resistance to loosening from vibration) has been found as much as four times as great as that of conventional fastening devices.

There are many aircraft assemblies for which the standard flat type Speed nut is well adapted. For example, rubber sealing strips around access doors, bomb bay enclosures, chemical tank fairings, etc., may be fastened by using a retainer strip over the fastening leg of the sealing strip with a Speed nut holding down the retainer strip. Standard flat Speed nuts in the form of continuous strips afford tremendous savings in weight, cost and assembly time for building up fire wall sections, stiffening ribs, etc. When the prongs are evenly spaced, Speed nut strips can be furnished in coils and cut off to desired length.
One of the quickest methods of
greatly reducing cost and weight is to employ the Speed nut shown in Fig. 1 to attach fairlead blocks. Every aircraft has a large number of control cables which must run through various portions of the structure. To form a guide for the cables and to prevent fraying, a special fiber grommet could be made and fastened with one push-on type Speed nut as shown in Fig. 1.
Fig. 2 shows how angle-type anchor Speed nuts can be employed on exhaust fairing to eliminate special angles and brackets, thus reducing total weight and number of parts and increasing speed of assembly.

U and J-Speed nuts, Figs. 3 and 4 respectively, are used on an exceptionally wide range of applications since both of these types are self-locating and thus are suitable for "blind" locations. To apply them, it is necessary merely to snap the nut over the edge or flange of the part to be fastened.

Fig. 3, for instance, shows method of using a U-type Speed nut to install streamlined fairings, exhaust scoops, intake scoops, etc. Note the smooth outer surface provided at the right. The same method is used in fastening engine and other cowlings and for attaching canvas boots or wheel pockets, belly cowling panels, mounting tab control indicator plates, spinner mountings, crankcase deflector assemblies and flush-mounted inspection plates. Also they are used for attaching hub fairings to landing wheel brakes, navigation and cabin lights,
instrument panels and many other points on the plane.

In Fig. 4, a J-type Speed nut is being used with a cable clamp. The J-type differs from the U-type in that the inside leg is shorter. It is used where the full bearing of the lower leg is not needed, yet it affords the same advantage of being self-positioning as well as providing economy in use of material.

In addition to standard flat, U and J-Speed nuts, many specials have been employed to advantage. For instance, Fig. 5 shows a special U-type Speed nut to provide a onepiece cable guard for pulley sectors. Virtually every airplane has many locations where such cable guards are needed.

Fig. 6 shows another arrangement. Here a special Speed nut " A " is riveted to the structural section " B " with flush rivets on the outer face. Then for quick attachment or removal of wheel pockets a serrated stud "C" is secured to the canvas " E " by means of flat Speed nut " D ". Stud " C " then is pushed in easily to tension the assembly securely. To remove pockets for inspection or service, a firm pull allows stud to be ratcheted out of the assembled position. The fiber reinforcement " F " prevents stud from pulling through the fabric.

Fig. 7 shows a special Speed nut that provides means for positioning wing ribs to I-beam type wing spars. With this type of assembly, there are no holes or notchings made in the spar, and therefore its full strength is retained. As screw is tightened, the ball-like fingers of the Speed nut clamp the wing rib bracket to the spar under springlocked tension.
In all of these applications the Speed nut replaces at least a nut and a lock washer and in many instances replaces several other parts as well. For example, in attaching cables, wires and tubes, the latching. type Speed clip shown in Fig. 8 can be snapped into sheet metal sections, with no screws, rivets or saddle strap being required, Similarly, the Speed nut in Fig. 9 eliminates several parts of former cable attachments. To cushion the tubing or conduit being carried, these devices are provided with a coating of Neoprene or rubber where desired.
Fig. 10 shows another variation. This flat anchor-type Speed nut can be used for regular blind mounting assemblies or for flush blind mountings. The special nut is riveted to the back sheet with flush-type rivets and has a "ball" like formation surrounding the Speed nut prongs and of sufficient curvature to span the standard dimpling for countersunk flat head screws and bolts as is shown in Fig. 10.

Where the bolt holes are too far
from the edge of the panel to permit snapping U or J-type nuts over the edge, the latching type as in Fig. 11 can be employed. It is effective any place on the panel. A rectangular hole is used to assure accurate alignment of Speed nut prongs over the bolt hole. To assemble, the lip of the nut is inserted into the square retaining hole and the nut pressed forward until the catch snaps into the hole. See Fig. 11.

In Fig. 12 a Speed clip is used virtually to nail the metal parts together. This is a tubular type of fastener which is pushed through a round hole in the backing panel from the front side. As it enters the hole, the cam-like prongs are compressed. When the clip is fully inserted, the prongs spring outward back of the panel to hold the clip firmly in position. With the clip snapped in place, a rivet bolt or stud can be pushed into it and will be firmly gripped by the curled-in end of the clip, to lock the assembly. This affords a permanent attachment for instruction plates, number plates, name plates and similar applications.
The removable type is ilustrated in Fig. 13. Here at the end of the clip is an inward annular groove to give a firm smooth grip on the stud, bolt or rivet, permitting it to be removed by a steady outward pull.

The removable clip is widely employed for attaching various items of molding and trim. Fig. 14 shows a typical use-engaging studs for holding curtain support channels and interior cabin trim. The same method is also utilized for sealing strips and other trim.

In Fig. 15 a ball stud engages a special Speed nut to form a snapin attachment for hand-hole plates, inspection doors, etc. By dimpling the backing plate and using a flush screw to mount the ball stud, the entire attachment can be made flush.

In addition to those shown, there are some 800 other variations of Speed clips and Speed nuts already developed. For aircraft use, these are made from SAE 1060 special aircraft molybdenum spring steel, cadmium finished, although they are also available in several other materials and finishes.

Issues Standards on
 Bolts, Nuts, Rivets

Bolt, Nut and Rivet Standards, compiled by American Institute of Bolt, Nut and Rivet Manufacturers; cloth, 1750 pages; available from the Institute, Cleveland, at $\$ 1$ per copy.
This new edition supersedes one issued in 1935. It is published to aid production in manufacturers'

plants and as a service to users in acquainting them with accepted standards of nomenclature, dimensions, sizes and other practices. The standards have been developed over a long period of years through continual consultation among manufacturers, users, and national engineering societies. They represent practices that are practical and economical in manufacture.
Many of the standards have been developed and approved through the procedure of organizations such as the American Standards Association and the Division of Simplified Practice, United States Department of Commerce, with the participation of manufacturers. The remainder have been prepared by the institute with the co-operation of users and member and nonmember manufacturers. In all cases the standards are approved generally by manufacturers and represent established practice in their plants.

This new bolt, nut and rivet standards handbook was prepared by W. C. Stewart, technical advisor to the institute, under the supervision of the institute's committee on standards and technical practices.

TIESTIED for hardness
 CHECKED for accurces

DAVY AND UNITED ENGINEERING COMPANY, LTD., SHEFFIELD, ENGLAND - DOMINION ENGINEERING WORKS, LTDW MONTREAL, P. Q. - UNITED INTERNATIONAL, S. A. PARIS, FRANCE - SHIBAURA-UNITED ENGINEERING CO., TOKYO, JAPAN

Fabricating Truck Cabs

(Continued from Page 64)
three coats of finish enamel. Cabs are being sprayed in Fig. 5.

Now the cabs pass through the other side of the oven where they are again baked for 50 minutes at 225 degrees. Next operations on the line are to install the windshield, hardware, inside door panels, moldings, glass, upholstery and lining. The windshield is set in dumdum with rubber molding overlapping for full seal. Tubular rubber lace is employed all around the door to keep drafts out, and the door itsell is rimmed with rubber strip to seal against air and moisture. All cabs are water tested.

Next wool insulation is cemented on the inside surface of all top and back panels, cement for this purpose being sprayed on. On all cab-over-engine models, the engine housing also is insulated. Every cab is completely lined with trim fabric. Seats are upholstered in leather with sponge rubber for a foundation. Cushions have three
adjustments and seat backs have four angular adjustments. Ventilation system includes a roof-type air intake and exhaust with two adjustable ventilators in the front panel. On cab-over-engine models there is a cowl ventilator in addition.
Many laborsaving devices are employed to facilitate production on the line. Hi-cycle electric drills, screwdrivers, belt sanders and disk sanders are a few. Small pneumatic drills weighing less than 2 pounds have been found a distinct advantage in working on the cab interiors since these units can be maneuvered readily in close quarters. They are used almost exclusively on the fit-out and trim section of the line.

Inspection includes not only that given incoming materials, but a constant scrutiny all along the production line. All functional parts such as doors and window regulators are given particular attention to be sure they operate properly.

Approximately 22 man-hours are required for production of a con-
ventional cab, including fabrication of the various parts. The ratio of production is about seven conventional cabs to one cab-over-engine type. Output rates, of course, vary with the number of men and the speed at which the line is operated. Close control is exercised so that not over 30 cabs are ever between the end of the cab assembly line and the point of usage at the chassis erection line where the cabs are assembled on trucks. At the present time, a cab is produced every 7 minutes ready for installation on a truck chassis.
More than 300 different combinations of cabs are built according to customers' demands and state regulations. For instance, in addition to the various types and sizes, there are different colors, different marker lights, different seat possibilities. Too, there are variations in floor boards, rear windows and all accessories. In addition, a large number of cabs are made for military purposes. Also many are made for export. Some of these are sectionalized for shipping by airplane.

FLAME-TENSIONING BAND-SAW BLADES

E LUMBER-mill band saws require frequent retensioning, usually after every 20 hours of operation, to keep them operating with acceptable efficiency. The conventional method of tensioning saws has been to stretch the center of the blade by hammering and rolling to give it the necessary curvature or "crown." This method, besides being difficult and time-consuming work, makes the blade rough from hammer marks, which in turn causes friction while the saw is cutting. Recently, a new, simple method, using the oxyacetylane flame for obtaining tension in band-mill saws, has been reported to be saving 50 per cent in time while imparting to the saws a longer-lasting tension than could be obtained before.
This new method was developed by Peter J. Burish of Pendleton, Oreg.
Success of this method depends upon proper application of the heat. On a double-cut saw, for example, a strip of metal from $1 / 4$ to $\%$-inch wide just below each cutting edge should be heated to a blue-purple
color along the entire length of the saw. The saw should never be heated to a temperature higher than necessary to produce this characteristic color. The exact width of the heated band depends upon the size of the saw, the reason being that it requires more heat to crown a small saw than to crown a large one. As the edge metal cools it con-tracts-approximately $1 / 4$-inch per 6 feet in length, giving the saw blade the desired tension.

A moderately small, closely controlled flame should be used and should be held so the end of the flame is about $11 / 2$ inches away from the saw, with the welding tip inclined at a 45 to 60 -degree angle toward the unheated portion of the saw. The forward motion of the blowpipe should be fast enough so the metal turns bluish after the flame is moved on. Flame-tensioning speeds for most of the saws treated by this lumber company approximated 48 inches per minute.

Following this heat-treatment, the saw is placed on a bench for inspection to determine whether any addi-
tional pulling or stretching is required. Experience has indicated that many flame-tensioned saws do not require any additional work, while a few require some rolling.

This company has been successfully tensioning all of its saws by this method for over a year, us. ing the process first when the saws are new and treating them repeatedly. No cracks or crumpled teeth have developed that could be attributed to the heat-treating, nor has there been any softening of steel or any noticeable loss of temper caused by heating.

A specimen of band-saw steel taken from a saw that had been flame tensioned many times was submitted to the manufacturer from whom the saw had originally been purchased. The manufacturer reported that as far as could be determined the sample submitted bad not been damaged in any way, indicating that the steel had not been harmed by the flame-tensioning.

Illustrations courtesy The Linde Air Products Co., New York

YODER ALSO MAKES: Coilers
Uncoilers
Scrap Cutters
Slitting Lines
Tension Reels
Bending Machines Beading Machines Brake Shoe Machines Roll-Forming Machines Flying Cut-off Machines

Write for Literature

Flat sheets of dural aircraft stock must be formed accurately into a variety of shapes for wings, fuselage and other parts of modern military planes. In the circle is shown a Yoder Hammer at the North American Aviation plant at work on long sections of dural. The battery of Yoder hammers is shown in action at the Consolidated Aircraft plant on similar work for wing and fuselage sections. The spring action of Yoder Hammers is ideal for working in dural, insuring uniformity and accuracy of results . . .

 ings in back have collapsed
Fig. 5-A sleel-frame store and house, hit at an angle, can be repaired quickly as framework is still good although direct bomb hit on upper floors caused them to tall, taking some of lower floors with them

and supports more or less independ ent of each other, the up-to-date steel framed structures have shown much more resistance under air attacks. It is a fundamental law of modern design that the skeleton of steel or reinforced concrete has to stand the entire vertical and horizontal loading. On the other hand, floors and walls, both outside and inside, are merely to transmit their direct loads to the main
irames.
The new construction, as shown in Fig. 8 anticipates a rigid connection between girders and columns of sufficient strength to take up bending moments. There are various types of such multistory frames, of course. Their common feature, important in view of airraid precautions, is that blast from bombs cannot break the girders loose from their bearings and let them fall down. Hinged connections, combined with sufficient horizontal anchorage, will do as well, provided there are other rigid frames in the structure to take forces. moments from lateral

$$
\text { Fig. } 4 \text { presents such a steel }
$$

framed building, nine stories high. One sees the extent of destruction suffered by the neighboring houses. While the steel framed building, too, is damaged by fire, as shown by the blackened parts above the windows, its main structural parts still remain uninjured. The destruction of the adjoining houses gives an idea of the forces which the steel-framed structure has withstood.

Heat Blows Up Tiles: The use of hollow tiles in floor construction may involve danger in case of fire. The air in the cavities is expanded by the heat and blows up the floor. In some such cases it has happened that all floors from top to bottom have collapsed, only the framework of the building remaining intact.

Finally, Fig. 5 shows the damage caused by a bomb hit at an angle on the top floor of a London multistory steel framed building. Result: Under direct impact from the explosion, the top floors have crashed down and taken some of the lower floors with them. Walls and windows were blown out, but the steel skeleton stood up to the attack very well and saved the whole build-

ing. It is comparatively easy to replace the walls and the floors of such a building if the load carrying frames have remained intact. Thus, people have been surprised to see how quickly steel framed multistory buildings in London, though heavily damaged, have been repaired and put into service again.

Recommendations: The time has not yet come for laying down defnite building regulations to reduce air raid damage to the least possible extent. But there are already some lines of improved design and construction clearly to be seen. These are:

First, vertical and horizontal steel members must be connected so firmly as to enable them to take up horizontal forces. It does not suffice at all to lay the end of a girder on, or put it into, a wall without providing reliable anchorage or, still better, a rigid connection.

Second, the walls and panels filling the area between the steel members should be fixed in such a manner as to allow them to be blown out readily. Thus blast will not cause serious damage to the main structure. (This rule does not apply to shelters; of course, where just the opposite principle must be used.)

Third, it is necessary to improve protection against fire. If heat ob-

Fig. 8-One of many types of rigid steel-frame multistory buildings that has successfully withstood bomb attacks
tains access to the steel frames and deprives them of their load bearing capacity, the finest structure is useless. There are multistory steel skeletons in London and in the provinces so distorted and twisted by fire that their original shape can hardly be recognized. Steel members should be given ample insulation by use of concrete or masonry solidly fixed by steel wire mesh or similar devices. It is also
useful to fill concrete into the hollow cores of column sections.

Fourth, floors must be able to withstand fire lasting for hours. Certain types of hollow tiles, though possessing many advantages, should not be used for they are unable to withstand prolonged exposure to fire. Solid concrete floors with filler joists or steel reinforcement should be preferred.

One thing is certain: Experience

Fig. 7-Original cross section of compound girder in Fig. 3
from large-scale air raid damage will thoroughly influence future building design. Even up-to-date steel framed structures which, like reinforced concrete buildings, have behaved satisfactorily, have taught many new lessons. Steel structures for industrial, commercial and housing purposes will have to be built according to the experience gained in the past year. When properly designed and constructed, they will more than ever demonstrate the excellent qualities of steel as a structural material.

Forging at Titusville

(Continued from Page 60)
square inch of added load are taken and the results plotted until the yield strength of the steel has been passed.

The yield strength is then deter mined arbitrarily as follows: The stress-strain diagram for the speci men having been plotted, a straight line parallel to the initial straight portion of the diagram is drawn at a distance to the right equal to the "set" prescribed in the detail specification of the steel. The load corresponding to the point where this line intersects the diagram, divided by the original cross-sectional area of the specimen is defined as the yield strength.

The yield strength so determined is somewhat less than the "yield" with which the engineer is ordinarily familiar, and which corresponds to the short horizontal portion of the diagram prior to the rise in an approximately parabolic arc.

The Struthers Wells-Titusville Corp. undertakes machining operations on its barrels, and is being equipped for rifling. The sequence of operations on 37 -millimeter units is as follows: Centering; first rough turn-check and straighten if necessary; saw to length and re-center;
rough turn outside; rough turn; bore; final rough turn; ream; second or finish ream-final check for straightness; rough and finish hone with same set-up. Larger calibers are rough turned and bored prior to quenching in order to permit the entry of the quenching medium to the center of the piece.

All experienced machinists have observed distortion of hardened and tempered parts after stock removal. A gun barrel is no exception to the general rule-in fact, on account of its physical character and long and slender form, and also because of the high accuracy demanded, it exhibits this peculiarity in rather a marked degree. The arrangements for determining accuracy of the bore and for returning the barrel to the truth are shown in Figs. 12 and 13. A pivoted search bar is used in conjunction with a dial gage in Fig. 12. An experienced crew is then able to "hit" the tube with the hydraulically driven die shown in Fig. 13 in such fashion that the departure from a straight line in the length of the barrel is returned to within the prescribed limits of 0.005 inch.

The tools used in the boring and reaming operations are shown in Fig. 14. The diamond pointed drill on the left drills the hole from the solid, and the packed bit shown in
its assembled and also dismantled form is employed to open up or "ream". The cutters, which in this case are of high speed steel, may be seen in the foreground and the arrangements whereby coolant is fed to the operating end of the bit may be observed in the disassembly.

One of the hardest tasks in machining guns of all calibers is to cut a straight hole. The bit of the type shown appears to answer about as well as anything so far tried, al. though the rock maple used for "packing" suffers from the severe treatment to which it is subjected since, in order to be effective, it must fit very tightly indeed in the bore behind the cutting tools. Only well seasoned maple should be used, and the moisture is preferably removed by a vacuum process before impregnation with special oil.

F'ig. 15 illustrates setting up two gun barrels in a machine for boring. Drilling is conducted firsi from one end and then from the other, the two holes meeting near the middle of the piece. In the final honing operation, coolant is poured upon the outside of the barrel as well as pumped within it, lest a temperature rise, occasioned by the heat generated, cause distortion. In a short time, it is planned to retool the entire plant for use of sintered carbides wherever possible.

USED AS A

Matter of Form...

Many steel mills use High- or Medi-um-Carbon Ferro-Carbon Titanium as a matter of form. They have proved to their own satisfaction that the use of either of these final deoxidizers helps to improve the quality and promotes better rolling of sheets and forming plates. Send for data and specific applications of Titanium in steel.

TITANIUM
 ALLOY MANUFACTURING CO.

GENERAL OFFICES AND WORKS: NIAGARA FALLS, N. Y., U. S. A.

EXECUTIVE OFFICES: 111 BROADWAY, NEW YORK CITY

Representatives for the Pacific Coast . . . Balfour, Guthrie \& Co., San Francisco, Los Angeles, Portland, Seattle, Tacoma
Representatives for Canada - Rallway \& Power Eng. Corp., Ltd., Toronto, Montreal, Mamilton, Winnipeg, Vancouver, Sydney
Representatives for Europe
T. Rowlands \& Ca., Lid., 23-27 Broomhall St., Sheffield, England

Upping Output of

ANODIZED ALUMINUM

Abstract

Here are a number of ideas which point to increasing the efficiency and output of your aluminum anodizing department. By careful planning along the lines suggested, one plant not only achieved an increase in total output from 5000 to well over 12,000 units per week, but also increased output more than 25 per cent per working hour

- THE PROCESS of anodically oxidizing aluminum was dealt with in the article "Protective Finishes for Aluminum Aircraft Surfaces" (Stefl, March 10, 1941, p. 66) in which practice at the Buffalo plant of Curtiss-Wright Corp. was detailed. It is intended here to discuss a few ways in which output in some plants has been greatly increased-in the hope that this information may prove of value to aid others in improving their own production.

As explained in the article referred to above, the anodizing process involves essentially the formation of a thick resistant surface film of oxide as an integral part of the article. It is applicable only to aluminum-rich material. The 3 per cent solution of pure chromic acid has been standardized for many years and appears one of the best. Its use involves no corrosion of the apparatus with consequent stoppages for repair, recleaning, etc., nor is their any risk of corrosion by residual acid attack in crevices or joints. With chromic acid, any diquid remaining is not only harmless but exerts a powerful inhibitory action.

While the majority of the possible developments for improving the process have been covered by patents, there are three ways which can be used singly or combined to give an increased yield per working hour using chromic acid solutions. These are: First, alteration of the anodizing conditions using the standard solution; second, varying the solution and the conditions; third, increasing the efficiency of equipment and personnel.

Alteration of the Anodizing Con-
tions taking exactly 1 hour. Lower voltages or higher temperatures tend to give softer films of high absorbing power, while increasing the applied voltage or reducing the temperature of the bath results in harder, less absorptive coatings. To reduce the time required in the vat to produce a coating of the required resistance, it is convenient to employ temperatures lower than 40 degrees Cent. and to increase the voltage more rapidly than usual and to a higher value (refer
ditions: The current in the circuit is profoundly altered by changing the bath temperature and voltage applied. Higher current in turn permits the film to be formed more quickly, but the properties of the coating are changed at the same time. A careful study of the relationship of the operating conditions and the character of the oxide obtained enables the determination of optimum procedures.
A set of conditions widely employed specifies a temperature of

Fig. 1-Relation between current, voltage and time for various typical anodizing cycles. "Standard" is the normal BengoughStuart process with 3 per cent chromic acid at 40 degrees Cent. (1) is at same temperature but at higher voltage. (2) is at 45 degrees Cent. and higher voltage
40 degrees Cent. plus or minus 4 degrees, the applied voltage being raised gradually to 40 and later to 50 volts to give a current density of 3 amperes per square foot for pure aluminum, the cycle of opera-

[^2]路路 Flexible? There are several limitations to these alternative procedures, but as long as they are understood they are not likely to be trnublesome. Both higher temperatures and highei voltages lead to higher current densities for a given material, so the capacity of the power plant

Flame hardening the shaft. Only the ends require hardening to resist wear on the bearing spots.

Workman examining hardened shafts which are now ready for assembly.

This manufacturer's problem was to increase the service life of a shaft without raising the cost of manufacture. Originally, a softer shaft was used. It was heat treated, then ground to fit inner races which were inserted at each end for bearings. "Now," he says, "thanks to Airco Flame Hardening separate inner races are unnecessary. No longer are expensive heat treating and grinding operations needed. The wearing qualities of the product are vastly improved - yet it costs less to build."

Numerous other hardening applications are helping America build better defense products faster. Representatives of the Airco Applied Engineering Department will be glad to assist you in the proper application of flame hardening to your individual problem.

must be sufficient to provide the required current without overheating. Further, some generators are designed for 50 volts as the maximum so some difficulty may be encountered in obtaining the 65 or 70 volts for these cycles. Usually it is possible to work out a set of conditions, however, that allows the existing plant to be used at a higher capacity without risk of damage or without expensive remodeling.

Another possible difficulty from increasing the voltage too rapidly is the occurrence of current surges, together with sparking beneath the surface of the liquid between ad-

Fig. 2-Relationship between current density and time, using a chromic acid solution at 38 degrees Cent. \mathbb{A} is at 40 to 50 volts: B at 50 to 60 volls
jacent objects. This results in a "burned" appearance and may damage the electric equipment. Care in increasing the voltage applied will prevent this danger. The voltage should be raised in small increments to allow the current to settle down to a steady value at each higher potential before the next one is applied.

Fig. 2 shows the type of relationship existing between voltage increase and the corresponding current, plotted against the time. It will be noted as soon as the specified maximum voltage has been applied the current remains substantially constant as revealed by the horizontal portion of each curve. A high instantaneous current also is shown by the peak at the extreme left.

Test Alloys: Maximum voltage permissible depends on analysis of the material, most alloys generally reducing this value. The actual
amount of elements added is of less importance than whether it is in solid solution or not, for insoluble constituents are preferentially attacked by the solution, leading to high current densities and a rough, open film. Preliminary trials are best for determining the optimum conditions.

Coatings produced with high voltage and low temperatures are much harder than standard films and are incapable of absorbing as much "dope" such as lanoline, but they are quite satisfactory as a base for paint, lacquer, etc. The flexibility is altered only a small amount, but the degree of absorption of moisture is affected considerably. Under conditions of high humidity, the degree of moisture absorption is particularly important in affecting the corrosion resistance and dialectric strength of the film.

Alteration of the Solution: Up to this point we have considered only operating conditions with normal 3 per cent chromic acid solution. The use of higher strength electrolytes has been advocated as they permit changing over from batch to a continuous system of operation. Concentrated solutions give thicker films, with standard techniques, also, and likewise a coating of required thick ness is developed more rapidly.

There appears little advantage in exceeding a concentration of about 10 per cent. It is possible-indeed, advisable-to control the operation and bath by means of the acidity of the solution. This involves measuring the pH value of the electrolyte from time to time. The solution is a strong acid (low pH). Optimum conditions are: pH value of 0.15 to 0.5 ; temperature, 35 degrees Cent. plus or minus 2 degrees; applied voltage, 30 to 40 volts; current density, approximately 3 amperes per square foot.

A film of the same thickness as obtainable in the standard 3 per cent chromic acid solution is produced here in about 35 to 40 min -utes-a substantial time saving. Also, the process can be used on a continuous basis, adapting it to automatic plants for mass production output.

Efficiency of Plant and Personnel: It may not be possible to carry out the necessary preliminary work to enable drastic changes in established routine to be made. Also, restrictions on the supply of chromic acid may make it undesirable to use stronger solutions. Therefore it is desirable to examine every detail of plant and procedure to insure maximum efficiency in every step of the process.

Considering equipment first, experience has shown that for a given tank size, increased capacity can be secured simply by a more
efficient arrangement of the various auxiliary components. The agitator often is placed in such a position that it occupies up to 10 per cent of the tank volume, while frequently pipes and valves convey. ing steam and cooling water to the solution may occupy a foot or more space at one end of the tank. It is quite practicable to take in all these pipes through the tank wall by means of welded joints, permitting their control valves to be located outside the tank. This affords greater usable volume of tank, thus increasing the effective tank capacity.

The temperature controller or indicator also may be relocated to advantage frequently.
Double Tank Capacity: In addition, the cathodes instead of being placed an inch or more from the sides of the tank can be placed within $1 / 1$-inch of the walls, or still better, can actually form part of the tank. Where the tank was originally intended to take one line of work as an anode, it generally is possible to use the center rod as an additional cathode rod, enabling two lines of work to be hung in the tank, forming two sets of anodes and thus doubling the productive capacity.

Also, considerable time can be saved by increasing the rate of heating and cooling, especially if this is associated with thermostatic temperature control.

Finally, equipment should be arranged for minimum movement in handling work in and out of the tanks. A clock provided near the instrument and control panel often may be found to improve the efficiency of operations by making possible a closer check on work cycles. Good lighting, too, is very important, especially when maximum headroom is required.

Operation and Control: The characteristics of the film produced are determined by a number of operat. ing conditions. The advantages of strict control include assurance of quality and uniformity. These, together with the ability to estimate accurately the individual loads and hence the total output of the plant, are important.
First step in control is to draw up a rigid code specifying what is standard practice for each material and for each article to be treated. This should include current density given by a specified voltage at a stated tank temperature, also the length of time taken to increase the voltage from the start, the magnitude of each voltage increment, and total immersion time. It is possible to do this when the area of the component is known, and its anodizing properties determined, either by direct experiment or from previous work.

Such data, to be of maximum use, must be determined and recorded by the technical staff and placed at the disposal of the production personnel. The immediate supervisor of the anodizing department then can lay down working information for each load put through the tanks. Of course, completely repetitive work, once set up, needs little fur. ther control.
Care of the Solution: There are two points requiring attention-the maintenance of the chromic acid content and the determination of impurities. With the standard 3 per cent chromic acid solution, the quality of the film deteriorates seriously if the concentration falls below 2.5 per cent.
Planning Loads: Here is where the most time can be saved, and where in many plants will be found the greatest possibilities for increas. ing efficiency. Collaboration between the production controller and the tank operator is essential if maximum output is to be obtained. Advance planning is of utmost importance. Loads must be planned several batches in advance so the details of current, voltage increment, etc., can be worked out and the required time allocated.

Wherever possible, it is wise to take advantage of the full capacity of the electric equipment by plan-
ning each load so it exposes a total area that coincides with maximum electric capacity of the plant. For example, if the generator is capable of an output of 900 amperes, each load should total 300 square feet if the current density is to be 3 am peres per square foot. This must include the material used for holding the work, and of course the tank must be of suitable size.

A daily time table often aids efficiency. Planning such a time table is easy with the standard 3 per cent chromic oxide process, consuming an hour exactly in connection with batch work. For such a time table it is necessary to know the time required for loading and unloading the tank, and it is right here that surprising savings can be made.

Cut Loading Time: For instance, it may well be worth while to employ extra operators in the shop simply to assist in cleaning the work and loading the tanks as such assistance may enable one or more extra loads to be treated each day. The actual loading operation is speeded if individual articles are jigged or wired onto frames previously.

Get An Over-All View: It is impossible to overstress the value of a careful survey of the plant, the personnel and every detail of procedure. Only then is it possible to
eliminate weak points of exisiting procedure.

An example of what can be achieved by careful planning is shown by one plant which introduced a 2 -shift system under close control and increased output 25 per cent per working hour.
This plant originally was working 44 hours per week from 8:30 a. m. to $12: 30$ and from 1:30 p. m. to 5:30 on five days and from 8:30 a. m. to $12: 30$ on Saturdays. In that time the output was just under 5000 units each week. There were six tank loads of work per day, three in the morning and three in the afternoon, making a total of not more than 32 per week.
When a 2 -shift system was introduced, it was found possible to reduce the time to load and unload the tanks to about 5 minutes by employ. ing extra labor for that particular period. The new shifts run from 6 a. m. to $2 \mathrm{p} . \mathrm{m}$. and from 2 p . m. to 10 p. m., giving 14 loads through the tanks each day, with 15 loads occasionally under favorable conditions. Weekly output now averages 72 loads or 12,000 units per week of 80 hours. Note that this output is not only double the previous one by more than 2000 units, but also-and what is more important-an increase of over 25 per cent is obtained per working hour.

Quenching Media

(Continued from Page 68)
Water, however, could not be classed as a volatile liquid and its conductivity for heat is not high. The addjtion of salt apparently increases the cooling effect-at least in the case of items of small cross section.
By contrast with water we reproduce herewith the results of experiments by Matthews and Stagg. through the courtesy of CarnegieIllinois Steel Co., obtained while experimenting with a number of different oil baths. These curves indicate that for the majority of the samples tested, the rates obtained with oils were about half of those
secured when using water and brine; while the very viscous samples were about a third or less. In carrying out these tests, a suitable specimen of steel was carefully heated to 1200 degrees Fahr. and quenched in 25 gallons of the medium under consideration. The time required to cool the piece down to 700 degrees was carefully observed with a stop watch, the rise in temperature of the medium being noted at the same time. This procedure was repeated until the medium had reached 250 degrees Fahr. or its boiling point. Concerning the manner in which the quench was carried out in each case with respect to the degree of relative movement between

TABLE I-Characteristics of Certain Oils

Sp. Gr. at 60°	Flash Point	Fire Point
0.869	311	360
0.909	405	464
0.879	325	370
0.856	205	219
$\ldots .3$	435	486
0.874	379	444
0.963	565	640
0.925	510	680
0.917	590	680
0.917	565	685
0.933	401	446
0.885	500	581
0.922	500	621

[^3]work and medium, no information is available.
Speaking generally, mineral oils are more stable than vegetable or animal oils, continued use tending to render the latter "gummy." Sperm (whale) oil, however, has been in use in the steel districts of England for a great many years.
Another series of experiments from a different source and using still baths indicates that sperm oil has about one-third the cooling power of water; while comparable figures for machine oil, paraffin oil, palm oil, rapeseed oil, olive oil, and neatsfoot oil are given as $0.022,0.29$, $0.15,0.22,0.37$, and 0.33 respectively.

In scme cases-for example, in quenching alloy steel gun forgingsit is not desirable to permit cooling to proceed to the temperature of the bath and it is in fact desirable to remove the piece from the bath at such a temperature that the flash point of the oil is an important consideration. The flash point, it may be recalled, is that temperature at which the oil will give off vapors in sufficient quantity to produce an explosive mixture when mixed with air. The fire point is the lowest temperature at which the vapors given off will burn continuously when ig. nited.

A few data on familiar oils are given in Table I.

Industrial Equipment Equipment

Welding Machine Trailer

- Lincoln Electric Co., 12818 Coit road, Cleveland, announces a new 2-wheeled light-weight pneumatictired trailer for transporting arc welding machines about. It can be used for road towing up to approximately 30 miles per hour, can be hitched to a factory mule or industrial truck and is easily moved by hand. The welder is mounted on it by means of four bolts in the trailer frame. The trailer's combination two bar and standing support has a hand-operated ratchet arrangement

for locking the support arm in position. The unit measures 66 inches long, 42 inches wide, 16 inches high (over tires) and weighs 282 pounds.

Electrically-Operated

Chernical Proportioner

a Cochrane Corp., Seventeenth street and Allegheny avenue, Philadelphia, announces an electrically. operated chemical proportioner for proportioning a number of individual chemicals to water conditioning systems in accordance with makeup requirements. Of the swing-pipe type, it is controlled from an electric flow meter provided with contacts on the integra. tor train. When the predetermined quantity of water has passed through the meter orifice, the integrator closes a contact in an electrical circuit, including a timecycle relay. The latter starts the proportioner motor, which lowers the draw-off pipe and then after a definite interval stops it. To increase or decrease the chemical
dosage it is only necessary to increase or decrease the duration of running the geared motor, which is done by turning the timer knob on the panel. The timer dial is marked in terms of minutes or seconds. Any number of chemical feeds can be controlled from one meter, but can be adjusted independently. In order to adapt this method of control to widely differ-

ent loads, provision is made for varying the interval between charges and the duration of running the geared motor inversely one to the other. The geared motor is of rugged construction and of a type that is magnetically locked in position when current is off.

Carbide Tool Grinder

(a) Hammond Machinery Builders Inc., 1611 Douglas avenue, Kalamazoo, Mich., has placed on the market a new carbide tool grinder using 6 -inch silicon carbide or diamond wheels. It stresses heavier, machine tool construction for additional strength and solidarity demanded by present production schedules. It also features extra-heavy removable tilting tables. The tables are slotted for the protractor angle-guide furnished with machine. Also, the inside edge of each table is machined inward at an angle to permit tilting without necessitating readjustment of the distance bctween table and wheel. The cast iron support under each table also

serves as a sludge pan and is easily removed and cleaned by releasing the same clamp that locks the tilt-
ing table to the supporting shaft. For providing accuracy in grinding angles, an indicator, ranging from 0 to 25 degrees is included directly beneath each table. Tables tilt to exact angle of adjustment easily, sliding on machined quadrants. The grinder's $1 / 2$ horsepower motor is a heavy-duty type running at 3450 revolutions per minute. It is reversible for right or lefthand grinding. For wet grinding, an integral wheel guard and coolant tank may be substituted for the standard cast iron wheel guard. Coolant is carried to the wheel via a copper tube.

Drill Press

Sibley Machine \& Foundry Corp., South Bend, Ind., has intro duced a new 25 -inch swing all geared drilling machine for produc

tion work as well as heavy, tough drilling jobs. Instant change of feeds and speeds are effected by levers within easy reach of the operator. Both levers are cam operated. Spindle speeds range from 75 to 1500 revolutions per minute, and feeds range from 0.005 to 0.045 -inch. The 6 -splined spindle of the unit can be operated either by power or hand feed; the travel by power is 12 inches, and by hand, $121 / 2$ inches. All controls are centered in front of the machine. The all-geared drive is obtained through a series of gears mounted on horizontal shafts. The transmission is totally enclosed, but is a complete removable unit. Multispindled shafts are used throughout. All gears operate in oil. Tapping operations are controlled by electrical reversing switches, operating through a start.

Helpful Lilerature

1. Heat Treating

Upton Electric Salt Bath Furnace di-VIsion-8-page illustrated bulletin No. 129-4 presents description or "Electrothermic Permeation" principle of heat treating. Method, which is suitable for hardening of varlous "Moly" high speed steels' being substituted for 18-4-1 tungsten types, is available in any of com plete line of "Upion" furnaces.

2. High Strength Bronze

Bartlett Hayward division, Koppers Co.-Single data sheet deals with "D-HS" bronze. Recommended uses, general deserlption, properties, cost and applicatons are covered. Table indicates minimum physical propertles.

3. Distribution Duct

BullDog Electric Products Co.-lizpage lllustrated bulletin No. 412 explains reatures or design and application or "Lo-X Bustribution Duct", of low reactance type. Voltage drop curves, speciflations and dimensional data are in cluded.

4. Centrifugal Pumps

Worthington Pump \& Machinery Corp 4-page illustrated bulletln No. W-304B2 is descrlptive of two stage volute, type U centrifugal pumps which may be used with turbine, engine or belt drive. Design and construction is shown with sectional drawing. Specifications are glven.

5. Porous Bearings

Keystone Carbon Co.-24-page fllustrated catalog lists additions to llne or "Selrlube" porous bearings. Properties and uses of these self lubricating bearings are described. Details for correct method of installation are given. Standard slzes are listed for plain, flanged and thrust bearings. Graphs show allowances for press it into housing and running fit after Installation.

6. Thermometers

C. J. Tagliabue Manufacturing Co.-4-page Illustrated bulletin No. 1229 shows princlpal forms and connections for industrial thermometer applications. Construction reatures are explained by text and cut-away drawings.

7. Chain

S. G. Taylor Chain Co.-28-page IIlustrated catalog, "Taylor Made Producis." is collection of catalogs on chains. Sllng and crane chains, coll chain, high carbon electrle weld loading chaln and 10 g chaln are some of types covered. Data are included on chain terminology and safe loads for chains and slings for different variations in angle of load.

8. Welding Metals

Stoody Co. 48 -page Illustrated catalog No. 106 glves complete information on characteristics of hard facing alloys, tungsten carblae inserts, tungsten carbide in tubes, and welding electrodes. In addition, aerial, flexlble shaft and universal oll tool grinders are described. Recommendations are included for varlous types of hard facing metals which are applled by acetylene or electrle arc.

9. Transformers

Wagner Electric Corp.-4-page llustrated bulletln No. TU-34 describes new type of transformer which has integral type of transiormer which has integral protection against both surges and over-
loads. Design features of these type HEBF-EP transformers are explained.

10. Metal Band Saw

Wells Manuracturlng Co.-4-page Illustrated bulletin No. 175 gives complete specifications on two slzes of metal cutting band saws. No. 8 machine will handle up to 8×16 inches and No. 5 unit die up to 8×16 inches and No. 5 unit
will cut up to 5×10 inches, Gravity feed is controlled by hydraulic frame chech.

11. Cupolas

Whiting Corp.-24-page illustrated bulletin No. FY-100 is complete discourse on "Whiting" cupolas. Typleal foundry layout is shown in large drawing. Fealayout of supolas, tuyere, air supply and tures of cupolas, tuyere, alr supply and
control, hot blast type, mechanical charging, sizes, capacitles and specifications are some of data given.

12. Electric Welding

Westinghouse Electric \& ManufacturIng Co.-Illustrated catalog section 26Ing Co--mestrated catalog section 200 describes constant potential direct current welding system for supplying welding energy to multiple arc circults. Motor generators, mechanical parts, controls and motor starting equipment are discussed. Wiring diagram shows electrical arrangement.

13. Compressors

Pennsylvania Pump \& Compressor Co. -16-page illustrated bulietin No, 194 presents complete information regarding line of horizontal, slngle stage, heavy duty compressors. Sectional view explains features, which are ampliffed in text. Typical drive methods and other data are included.

14. Unit Heaters

Reznor Manufacturing Co.-12-page illustrated catalog No. U41 describes gasfired suspended unit heaters in fan, blower and duct types. Sizes, construction materlals, controls and capacitles are given, together with general descriptions of each model. Accessorles including thermostats, foor bases and louvre ing thermostats, foor bases an

15. Duplicating Tools

O'Nell-Irwin Manutacturing Co.-Illustrated data sheet, "Dle Accuracy With out Dles," glves complete specifications on "Micro" die duplleating bender, shear and brake. These tools permit duplicatlon of metal shapes in small runs without use or dies.

16. Anti-slip Stair Treads

National Bronze \& Aluminum Foundry Co-4-page illustrated bulletin points out safety iactors provided by use of "Ten-Lox" antl-sllp stair treads and foor tile. This product is aluminum casting impregnated with abrasive to give complete safety underioot

17. Reciprocating Tool

H \& H Research Co.-4-page illustrated bulletin, "It Saws, Sands, Hones, Files," describes many of muititude of operations which can be performed with reclprocating "Multi-Purpose" tools. This equipment, which is avallable in 518 models, may be used for work ranging from light chipping to removal of burr from heavy steel castings.

18. Oil Burner Motors

Emerson Electric Manufacturing Co.-4-page lllustrated bulletin No. X3941 presents advantages and performance data on line of oll burner motors. Dlmance slonal information is given for $\frac{1}{3}$ and 1 ih horsepower models. Features are explained through use of disassembled
vlew. vlew:

19. Flexible Metal Hose

Pennsylvanla Flexible Metallic Tubing Co,-8-page illustrated bulletin No, 52 -G gives complete information on bronze steam hose and clincher couplings. Plalm. wire bralded and armored types are described. Complete specifications and list prices are given for various types and sizes.

20. Cutting Machines

Andrew C. Campbell division, Amers can Chain \& Cable Co. Illustrated folder, patterned after cut-aff section of 6 -Inch bar stock, explalns savings possible with "Campbell Cutamatle" cutting machines which make smooth accurate cuts through bar stock up to 6 inches in diameter in annealed or unannealed alloy steel.

21. Metal Cutting Saws

Capewell Manufacturing Co.-14-page illustrated catalog No. 140 is tescriptive of complete line of metal cutting saws. Hack saw blades, as well as metal cutting band saws are covered. In addition to providing data and prices on each type, cuEting speeds and helprul hints on proper use of saws are given.
f TEELReaders' Service Dept.
1213 West Third St, Cleveland, Ohio
Please have literature circled below sent to me.
IJ
$\begin{array}{llllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\ 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 \\ 30 & 31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & 40 & 41 & 42\end{array}$
Name
Company
Products Marufactured
Ãddress
City

22. Pot Furnaces

A. F. Holden Co.-8-page bulletin deseribes use of pot furnaces for normallaing of forgings, continuous salt bath hardening, wire patenting, heating of soldering irons, bright tempering, direct process annealing, and austempering. Slzes, capacities and range of operations for pot furnaces are glven.

23. Riveting Machine

Tomkins-Johnson Co. - 4-page illus trated bulletin No. RK-1 is descriptive of new type of automatic feed "Rivet-Pierce Rlvitor" for riveting previously unplereed work. Work is driven down over underfed rivet, punching slug out. Rivet is set at next stroke of machine.

24. Castable Refractories

Johns-Manville- 4 -page illustrated bulletin No. RC-13A is devoted to hydraulicsetting refractories suitable for doors and other linlngs, burner rings, furnace bottoms and speclal refractory shapes. Tabular data shows three types of "Firecrete" with temperature limits of 2200,2400 and 2800 degrees Fahr. and chrome castable reiractory for temperachrome castable remactory for
tures up to 3200 degrees Fahr.

25. Dipper Parts

American Manganese Steel division, American Brake Shoe \& Foundry Co.24 -page illustrated bulletin No. 641-D describes and deplets design changes over years or Amsco renewable and special standard present day models and special
types or dippers. Accessories such as dipper teeth, lips, fronts, backs, doors and other parts to meet specifle digging conaltions are also covered.

26. Power Assembly Tools

Black \& Decker Manufacturing Co.56 -page illustrated data book on power assembly tools presents complete information on portable electrle screw drivers, nut runners and tappers. Valuable data are included on slzes of pllot holes; bolt, nut, cap screw and lag screw sizes; socket wrenches and tap drill sizes.

27. Thermocouples

Wheelco Instruments $\mathrm{Co},-32$-page 11Iustrated "Thermocouple Data Book and Catalog' No. S2-3 glves descriptions, prices and recommendations on use of thermocouples, lead wire, thermocouple wire, heads, connectors, plug and socket assemblles, insulators and protecting et assemblles, insulators and protecting tubes. Data are included on temperature
conversion, pipe and wire sizes, milivolt tables, wire resistances, and thermocouple construction.

28. Group Washing

Braaley Washfountain Co.-24-page illustrated booklet is pictorial presentation entitled, "Bradley Washfountains and Mult-Stall Showers On the Job." Brief explanatory legends with each illustration reveal advantages of modern sanitary group washing factlities in industry, schools and institutions.

29. Flexible Bearings

Harris Products Co.-8-page illustrated folder presents data on "Torflex" fexible bearings. This tncludes radial loads, radial and axial deffections, rubber wall thicknesses and capacities of stock sizes evallable from $3 / 10$ to 5 -inch dlameters. Typleal applications are shown in range of uses from heavy duty cement mill supports and drag line seraper drlves to rayon spinning bobbins.

30. Galvanized Sheets

Newport Rolling Mill Co.-4-page lllustrated bulletin relates advantages of "Colorbond" galvanized sheets, This sheet is treated to receive finlsh coats 1 mme diately without further processing. Sample of "Colorbond" is included.

31. Flexible Shaft Machines

Walker-Turner Co , - 8 -page bulletln No. FS-41 reports on flexible shaft machines for use In defense industrles. Models are described for use in grinding polishing, burring and for other operatlons. Machines lllustrated range from heavy duty models to commercial and intermittent duty types, and include bench, noor, and suspended models in direct, multi-speed and two-speed geared drives.

32. Air Operated Controllers

Brown Instrument Co.-36-page illustrated catalog No. 8903 describes alr operated controllers for temperature, pressure, flow, llquid level and humidity. Large photographs of instruments and installations are featured throughout and diagrams outine principle of opand dia

33. Metal Spraying

Metallizing Co. of Amerlca-52-page Hllustrated bulletin "The Fistory, Purpose and Practice of Metallizlng" comprises pletorlal display of metal spraying applications. Large schematic view shows operation of metal spraying gun. Text glves brief resume of history and purpose of process.

34. Large Compressors

Trane Co. - 24 -page illustrated bullefln No. 32-G describes large "Turbo-Vacuum" compressors for air conditioning and industrial processing service. Mechanleal features of indlvidual parts are covered in separate sections. Typlcal layouts and cycle of operation are charted and ciescribed in detail. Line drawings glve dimensional data and explain purge system.

35. Carbide Tool Grinding

Norton Co. - 64-page splral-bound handbook No. 167-5P gives information handbook No, $167-5 P$ gives iniormation point cemented carbide tools. Each of several sections is devoted to various types of grinding wheels and how to use them. One section contalns grinding hints, recommendations, and essay on importance of proper grinding. Action photographs show grinding operations on standard makes of grinders.

36. Hack \& Band Saws

Spartan Saw Works, Inc.-40-page 11lustrated pocket-size booklet catalogs band saws for cutting dry ice, wood, metal and meats. Description of features, operating characteristics, width, gage, number of teeth and prices are given for various types of both band and hack saws. Several charts and tables present useful general information for saw users.

37. Pumps

International Nickel Co.-16-page 11 lustrated bulletin is entitied "Practical Pumping Problems and How They Are Solved". Thls describes actual experiences of pump users with nickel alloy pump parts for service in handling corrosive
solutions. Sectlon tells how to choose metal for pumplng corrosive liquid, Photographs of pumps in service are presented.

38. Electric Traveling Cranes

Bedford Foundry \& Machine Co. 4page broadslde pictures and brlefly describes some of recent electric traveling cranes. List of users is included.

39. Die Steel

Jessop Steel Co,-6-page folder No. 441 describes "CNS" high carbon, high chrome die steel for general purpose work where wear resistance comblned with shock resistance is needed. Forging, annealing, hardening, tempering, applications and pertormance are covered. Curves show tempering ranges, coefflelent of expansion and Izod impact value.

40. Belting

B. F. Goodrich Co.-Catalog section No. 2140 announces line of "Multicord" belting. It discusses construction and advantages of this type belt, including appilcation of "Plylock" splice to make belts endless on pulleys in plant. Tables of minimum pulley diameters and approximate welghts of 100 foot lengths of varying widths are included.

41. Motor Controls

General Electrlc Co, - 8 -page illustrated bulletin No. GEA 3531 is titled "How To Select Control For D-C Motors." Subjects covered include functions of d1ect current controller, types of controls, manual versus magnetic control, methods of control, protection afforded by various types, and methods of stopping motors quickly. Wirlns diagrams supplement text.

42. Scale \& Rust Remover

Dakite Products, Inc.-20-page pocketize booklet No. 4305 outilnes features of compound No. 32 for safe removal of hard water scales, rust and similar deposits from equlpment, parts and other metallic surfaces. Method of use is given for compressors, condensers, dlesel, gasoine and gas engine cooling systems, on coolers, refrigerating equipment,

PTEEL Readers' Service Dept.

213 West Third St., Cleveland, Ohio
lease have literature circled below sent to me.
8-25-41

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
17	18	19	20	21	22	23	24	25	26	27	28	29			
30	31	32	33	34	35	36	37	38	39	40	41	42			

ing lever. The drill has an overall height of 9 feet 6 inches. The maximum distance of its spindle to the base is 33 inches. Working surface of the table is $18 \frac{1}{2} \times 24$ inches.

Yard Crane

图 Buckeye Traction Ditcher Co., Findlay; O., has placed on the market a Clipper yard crane equipped with a short gooseneck boom saicl to provide greater stability undei heavy loads, facilitating car loading and unloading and working in close quarters. It provides handling of lengthy objects in confined space despite the short boom. It enables stacking of material 20 feet high or more. All operations in the work cycle of the crane such as swing, boom raising or lowering and load hoisting, are controlled by vacuum power. Six small handles on a "desk type" control board perform various opcrations. The control system eli-

minates trouble from freezing in winter and condensation of moisture in summer. Other features of the crane include: 175 feet per minute minimum hoist speed; welded steel box type boom; safety power drum brakes; quick convertibility to shovel, dragline or lifting magnet. It also travels, swings and hoists simultaneously. The machine is available in three models of $5,61 / 2$ and 7 tons capecity.

Directional Relay

Westinghouse Electric \& Mfg. Co., East Pittsburgh, Pa., has intro duced a new series of reiays for use in directional discrimination in the detection of phase and ground faults. Although generally installed along with fault detector relays, these types H. 3 and HV. 3 high speed, 3 -phase directional units are also used with frequency relays to trip tie line breakers on under or over frequency. The directional element consists of three electromagnets and three loops around a vertical shaft. On the outer legs of each magnet are two voltage coils
and the applied voltage induces a large current in the loop by transformer action. The current coil is on the center leg of the electro-magnet, and the applied current produces an air gap flux. This flux interacts

with the loop current and causes ro. tation of the shaft in a direction corresponding to the instantaneous direction of power flow. The voltage restraint element is similar to the directional element except no current coil is used. Double-throw silver contacts permit application to either single line or parallel line protection. The contacts will close 30 amperes at 250 volts direct current and the auxiliary relay (contactor switch) will safely carry this cur. rent long enough to trip the breaker.

Daily Strip Chart

© C. J. Tagliabue Mfg. Co., Park and Nostrand avenues, Brooklyn, N. Y., has introduced a new tearoff

feature which can be installed on its Celectray recorders and record-er-controllers. It consists of a tearoff bar and a reroll with clip and tape. The clip, of a special design without springs, firmly grips the
chart after a chart section has been removed. This feature is said to be particularly useful for daily records as well as a complete record of any batch or run. The chart strips also can be filed for ready reference.

Vertical Turbine Pumps

2 Pomona Pump Co., Pomona, Calif., announces design improve. ments in its pumps instrumental in increasing efficiency as much as ten per cent. These, now included in all size vertical turbine pumps, involve changes in the guide vanes, function of which is to alter the flow direction of fluids being pumped. The vane ends are now of a bulbous shape and regardless of the flow direction of the fluid, its direction is always substantially tangential to the vane surface. Thus, greater uniformity of flow pattern is secured, friction is re-

duced and efficiency of fluid lift is increased. Furthermore, eddy currents are not developed. Inasmuch as the new guide vanes are an in. herent part of the pump bowl as. sembly, it is not necessary for the owner of a vertical turbine pump to purchase a complete new pump in order to take advantage of the new design. It is only necessary to substitute a new bowl assembly.

Broaching Machines

- Colonial Broach Co., 147 Jos. Campau street, Detroit, announces a line of eleven single ram broaching machines which feature increased size of work table and ram. Each machine is adapted to a wider range of tooling, and peak capacities of each has been increased to give ample reserve power. Normal capacities of the various sizes range from 3 tons and 36 -inch stroke up to 25 tons and 66 -inch stroke for the eleven standard models. Column widths on each unit have been increased, permitting increased ram
width and better support for wide bars. The work platen has also been increased in width. All machines embody an entirely new cylinder design using seamless steel tubing in connection with welded construction for leak-proof operation. Another feature is the vertical mounting of the main drive motor

inside the column, reducing the amount of floor space needed. Improvements allow effective installation of chip wipers, protecting the bearing surfaces of the moving platen. The new design of the table provides finish-machined pads on the front as well as on both sides for mounting auxiliary units. In the larger machines of the new line a longer travel of the receding table has been provided. Both the dual safety control and emergency knee bar are supplied on all machines at no extra cost. Control is all-hydraulic on all machines. All machines are equipped with the heavy duty, large volume coolant pumps.

Mobilcrane

E Osgood Co., Marion, O., announces a new improved model 705 WM Mobilcrane incorporating several new features. It now has air control of all movements, independent boom hoist, independent travel

and swing motions and hook rollers. The independent boom hoist is oper-
ated by two twin-disk clutches. A brake prevents the boom from running down under heavy loads. Independent travel of the machine is affected by a twin-disk clutch, with change of direction being made through bevel gears. Also two speeds are obtained through spur gears and selective clutches. This enables the machine to make a lift, swing or travel with the load in any direction.

Multi-Breaker

回 Square D Co., 6060 Rivard street, Detroit, announces a new industrial multi-breaker for use on 230 volt alternating current systems. It is available in both 2 and 3 -pole forms in capacities from 15 to 100 amperes. The enclosure is dust-resisting and the operating mechanism, including the die cast external handle, is mounted on the cover of the box so that when the cover is removed, the entire interior of the box around the breaker is left free

for wiring. A quick make and break mechanism also is incorporated on the cover assembly. Indication of a tripped condition of the breaker is provided by a white target signal which appears behind a glass window in the nameplate. The front operation of the breaker unit permits close ganging. A thermal element affords a time lag on momentary overloads while a magnetic trip feature causes instan. taneous tripping on heavy short circuits. The box and cover are of black enameled sheet steel.

Smoke Mask

H. S. Cover, 98 Chippewa street, South Bend, Ind., has introduced a new smoke mask for foundrymen. Of double sponge type, it features a soft rubber mask with twin filter apertures each containing a large, fine textured sponge. The nose of
the respirator is equipped with a plastic valve that exhausts breathed air. Another feature is the new slide fastener type head band that is easy to adjust and can be quickly fitted to any head size. The

sponges, when moistened with water, keep smoke out of lungs. Unit is foldable to fit the pocket, fits low on the face and does not interfere with goggles.

Protective Apron

- American Optical Co.,Southbridge, Mass., has placed on the market a new AO Protectocote apron, the material of which provides effective protection against acids, oil and greases.

In addition to protecting the worker's clothing, it guards his person against contact with industrial compounds and liquids that cause skin diseases and discomfort. It also resists heat and will not burn. The apron is very light in weight.

Slotting Tools

- Experimental Tool \& Die Co., 12605 Greiner, Detroit, announces an assortment of ten high speed steel slotting tools for use in conjunction with the company's Slotmaster, a slotting head that can be used on all milling machines, providing

double duty facilities. The unit also can be used as a vertical or horizontal slotter and shaper for cutting key-ways, templets, splines, internal gears, and for slotting out precision blanking dies and molds.

Nondefense Consumer

Position Grows Worse

Abstract

Indications point to increased suspension in civilian goods production, with resulting widespread unemployment. Regulations more stringent

Demand

Nondefense procurement be. comes serious problem.

prices

Secondary to obtaining delivery; scrap breaks through ceiling.

Production

Gains $1 / 2$-point to $981 / 2$ per cent.

- UNDER the impact of the all-out priority system recently applied to steel in all forms some consuming plants already have been forced to suspend operations on civilian goods. Although not yet in the critical stage, indications are that such suspensions will become widespread, resulting in large unemployment during at least a temporary period in turning from civilian goods production to defense. Involved are goods made from metals in general.
Under the stringent new pig iron regulations one Southern producer finds it hereafter can ship to only about 10 per cent of its customers, who are engaged on priority business; the remaining 90 per cent are threatened with shutdowns.
The decision to cut passenger car production $261 / 2$ per cent during the four months starting Aug. 1 is a straw showing which way the wind is blowing. Last week mills analyzed their order books to determine what finished products are least involved in defense. Fewest priority orders involve wire and next fewest apply in cold-rolled sheets and strip, galvanized sheets, hot-rolled sheets and strip, tin plate, in that order. Some semifinished steel now going into wire immediately will be diverted to products such as plates, which come largely under high priority. Similar diversions will reduce the output of the other products named, excepting possibly tin plate, which, while not yet under extensive priority, will be needed in large volume for food canning.
Plate consumers hope the new regulations may result in better shipments as it is believed material for shipbuilding has been accumulated in shipyards faster than it can be fabricated and that cognizance may be taken of this and plates be released for other purposes until accumulations have been reduced.
Rating of A-3 for railroad car building material may not be sufficient to keep up production as this preierence is behind a large tonnage carrying a higher rank.
Some mills specify that Form PD73 be received from customers by Sept. 1 for all orders now on books, although the priorities division has provided that this form may be furnished by Oct. 15 in connection with
orders on books before Sept. 1, on which shipments will not be completed by Oct. 15. Producers are emphasizing to customers that this form has nothing to do with priority rating, which must accompany all new orders. They also point out that mills can not accept orders in which only part is covered by priority and that separate orders must be entered.

Demoralization proceeds in the scrap market and differentials between grades has all but disappeared, melters being glad to get anything that is steel or iron. Reports of sales at $\$ 2$ to $\$ 3$ per ton over the ceiling have been received and No. 1 heavy melting steel is reported to have been sold in the Pittsburgh district at $\$ 25$ per ton, at Cleveland at $\$ 23.50$ and at Chicago at $\$ 23$.
Some form of mandatory priority to cover steel warehouse sales is expected to be announced soon to clarify the situation of secondary suppliers and stop leaks of material for less essential requirements. Warehouses have been tightening releases to civilian trade and filling higher priorities first.
Automobile production last week totaled 45,525 units, compared with 46,750 the previous week and 23,732 in the corresponding period last year.
Steel production last week advanced $1 / 2$-point to $981 / 2$ per cent, changes in various areas being slight. Chicago gained $11 / 2$ points to $1011 / 2$ per cent, Cleveland $31 / 2$ to 93 , Cincinnati $21 / 2$ to 88 and Buffalo $2^{1 / 2}$ to 93 per cent. Detroit dropped 2 points to 92 and Wheeling 1 point to 92 . Unchanged rates were as follows: Pittsburgh, 100; Youngstown, 98; New England, 90; eastern Pennsylvania, $95 ½$; St. Louis, 98; Birmingham, 90 .
Lake Superior iron ore consumption in July set a new high mark at $6,497,442$ gross tons, eclipsing the previous high set in March. With this rate continued or exceeded through the winter the expected season total of $75,000,000$ to $78,000,000$ tons of ore would be none too much to tide over until the opening of navigation in 1942.

Steel's composites hold unchanged at the level prevailing for several weeks, $\$ 56.60$ for finished steel, $\$ 38.15$ for iron and steel and $\$ 19.16$ for steelworks
scrap. scrap.

COMPOSITE

- 4 at	Aug. 23	Aug. 16	Aug. 9	One Month Ago July, 1941	Three Months Ago May, 1941	One Year Ago Aug., 1940	Five Years Ago Aug., 1936
Iron and Steel	\$38.15	\$38.15	\$38.15	\$38.15	\$38.15	\$37.70	\$33.88
Finished Steel	56.60	56.60	56.60	56.60	56.60	56.60	53.40
Steelworks Scrap	19.16	19.16	19.16	19.16	19.16	18.71	14.66

Iron and Steel Composite:-Pig iron, scrap, billets, sheet bars, wire rods, tin plate, wire, sheets, plates, shapes, bars, black pipe, rails, alloy steel hot strip, and cast fron pipe at representative centers. Finished Steel Composite:-plates, shapes, bars, hot strip, nalls, tin plate, pipe. Steelworks Scrap Composite:-Heavy melting steel and compressed sheets.

COMPARISON OF PRICES

Representative Market Figures for Current Week; Average for Last Month, Three Months and One Year Ago

Finished Material	Aug. 23. 1941	$\begin{aligned} & \text { July } \\ & 1941 \end{aligned}$	$\begin{aligned} & \text { May } \\ & 1941 \end{aligned}$	Aug. 1940	Pig Iron	Aug. 23, 1941	$\begin{aligned} & \text { July } \\ & 1941 \end{aligned}$	$\begin{gathered} \text { May } \\ 1941 \end{gathered}$	Aug. 1940
Steel bars, Fittsburgh	2.15 c	2.15 c	2.15 c	2.15 c	Bessemer, del. Pittsburgh	\$25.34	\$25.34	\$25.34	\$24.34
Steel bars, Chicago	2.15	2.15	2.15	2.15	Basic, Valley	23.50	23.50	23.50	\$22.50
Steel bars, Philadelphia	2.47	2.47	2.47	2.47	Basic, eastern, del. Philadelphia	25.34	25.34	25.34	24.34
Shapes, Pittsburgh	2.10	2.10	2.10	2.10	No. 2 fdry., del. Pgh., N.\&S. Sides	24.69	24.69	24.69	23.69
Shapes, Phlladelphla	2.215	2.215	2.215	2.215	No. 2 foundry, Chicago	24.00	24.00	24.00	23.00
Shapes, Chicago	2.10	2.10	2.10	2.10	Southern No. 2, Birmingham	20.38	20.38	20.38	19.38
Plates, Pittsburgh	2.10	2.10	2.10	2.10	Southern No. 2, del. Cincinnati	24.06	24.06	24.06	23.06
Plates, Philadelphia	2.15	2.15	2.15	2.15	No. 2X, del. Phila. (differ. av.).	26.215	26.215	26.215	25.215
Flates, Chicago	2.10	2.10	2.10	2.10	Malleable, Valley	24.00	24.00	24.00	23.00
Sheets, hot-rolled, Plttsburgh	2.10	2.10	2.10	2.10	Malleable, Chicago	24.00	24.00	24.00	23.00
Sheets, cold-rolled, Pittsburgh	3.05	3.05	3.05	3.05	Lake Sup., charcoal, del. Chicago	31.34	31.34	31.09	30.34
Sheets, No. 24 galv., Pittsburgh.	3.50	3.50	3.50	3.50	Gray forge, del. Pittsburgh....	24.19	24.19	24.19	23.17
Sheets, hot-rolled, Gary	2.10	2.10	2.10	2.10	Ferromanganese, del. Pittsburgh	125.33	125.33	125.33	125.33
Sheets, cold-rolled, Gary	3.05	3.05	3.05	3.05	Ferromanganese, del. Pltsburgh	125.3	125.3	12 S	
Sheets, No. 24 galv. Gary ...	3.50	3.50	3.50	3.50	Scrap				
Bright bess., basic wire, Pitts.	2.60	2.60	2.60	2.60					
Tin plate, per base box, Pltts.	\$5.00	\$5.00	\$3.00	\$5.00					
Wire nails, Plttsburgh	2.55	2.55	$2.5 \overline{5}$	2.55	Heavy melting steel, Chicago	$\begin{aligned} & 17.75 \\ & 18.75 \end{aligned}$	$\begin{aligned} & 17.75 \\ & 18.75 \end{aligned}$	$\begin{aligned} & 17.75 \\ & 18.75 \end{aligned}$	18.35 18.10
					Ralls for rolling, Chicago	22.25	22.25	22.25	22.00
Semifinished Material					No. 1 Cast, Chicago .	20.00	21.50	21.50	16.75
Sheet bars, Pittsburgh, Chicago.	\$34.00	\$34.00	\$34.00	\$34.00	Coke				
Slabs, Pittsburgh, Chicago	34.00	34.00	34.00	34.00	Connellsville, furnace, ovens.	\$6.25	\$6.25	\$5.70	\$4.75
Rerolling billets, Pittsburgh	34.00 2.00	34.00	34.00	34.00	Connellsville, foundry, ovens.	7.25	7.25	6.30	5. 75
Wire rods No. 5 to ${ }^{3}$-inch, Pitts.	2.00	2.00	2.00	2.00	Chicago, by-product fdry., del.	12.25	12.25	12.25	11.25

STEEL, IRON, RAW MATERIAL, FUEL AND METALS PRICES

Sheets, Strip

Hot-Rolled Sheets Piltsburgh, Chicago, Gary: Cleveland, Birmingham,

Buffalo, Youngstown, Sparrows Point, Middletown, base 2.20 c Detroit, del. 2.20 c Cold-Rohed Sheets
L-ittsburgh, Chicago, Cleveland, Gary, Burfato, Youngstown, Middletown, base
Granite City, basc......... 3.15 c
Detroit del15c
Pacillc ports 3.70 c Galvanked Sheets, No. 24
Pittsburgh, Chicago, Gary, Birmingham, Buffalo, Youngstown, Sparrows Point, Middletown, base 3.50 c Granite City, base....... 3.60c Pacitle ports 4.0 abc Corrugated Galv. Sheets Pittsburgh, Chicago, Gary,

Birmingham, 29 gage,
per square...........
Pittsburgh, Chicago, Gary
i3irmingham, 16 gage, not corrugated, comper alloy
Copper iron
Pure iron
3.31 c
\qquad
............ 3.95̄
hot-dipped,
No. 24, ittsburgh Enameling Shects Pittsburgh, Chicago, Gary cleveland, Youngstown,
Midतletown, 10 gage, base
Granite City, base 2.75 s
Paclife ports 3.40 c
littsburgh, Chicago, Gary,
4.25 c

Except when otherwise designated, prices are base, f.o.b. mill, carloads.

Chromium-Nickel Steels

Pittsburgh base, cents per lb.

No.	302	303	304
Bars	24.00	26.00	25.00
Plates	27.00	29.00	29.00
Sheets	34.00	36.00	36.00
H. R. strip	21.50	27.00	23.50
C. R. strip	28.00	33.00	30.00

Straight Chromium Steels

.76-1.00 Caribon
6.15u Over 1.00 Carbon 8.35c

Tin, Terne Plate

Tin llate
Pittsburgh, Chicago, Gary,
$100-\mathrm{Ib}$. base box....... $\$ 5.00$ Granite City $\$$ Tin Mill mack Plate
Pittsburgh, Chicago, Gary, base 29 gage and lighter 3.05c Granite City 3.15c Pacifle ports, boxed...... 4.05c Long Ternes
Pittsburgh, Chicago, Gary, 3.80 c No. 24 unassorted
Pittsburgh, Chicago, Gary,
100-base box........... $\$ 4.30$ Granite City
Pittsburgh base per package 112 sheets $20 \times 28!n .$, coating I.C

S-lb	\$12.00	25-1b... $\$ 1600$
15-1b.	14.00	30-1b.... 17.20
20-1b.	15.00	40-1

20\%	Steel Plate
Clad	Pittsburgh 2.10 c
304	New York, del.2.29c-2.54c
	Philadelphia, del. ${ }^{2.15 \mathrm{C}}$
-18.00	Boston, delivered....2.42c-2.57c
19.00	Buffalo, delivered $2,10 \mathrm{c}$
.....	Chicago or Gary
	Cleveland
	Birmingham Pa 2.10c-2.35c
	Coatesville, Pa.
	Sparrows point, Md. .2.10c-2.35c
446	Claymont, Del. 2.10c
27.513	Youngstown 2.45 C
30.50	Gulf ports 2.6 ¢5c
36.50	Paciflc Coast ports
35.00	Stel Flonr Plates $3.3 \overline{\mathrm{c}}$
52.00	

Gulf ports
Pacillc Coast ports

Structural Shapes

Pittsburgh

Phlladelphia, del
New York, del.
Bostan. dellvered
Bethlehem
Chlcago
Cleveland, del.
Bulfalo
Gulf poits
Blrmingham
St. Louis, del
Pacille Coast ports

.10 c

2.75 c

Bars

Mot-IEolled Carbon Bars

Pittsburgh. Chicago, Gary,
Cleve., Birm., base 20 tons one slze
Detroit, del.
New York, del.
Duluth, base
Phlladelphla, del
Gulf ports. dock
All-rall, Houston from
Blrmingham
Pac. ports, duck
All-rail from Chicago.. 3.25 c
2.25 c
2.49c
2.25 c
2.47c
2.50 c
2.59 c

Cleveland, Burm. base 5 tons
Detrolt, del.
New York. del.
Phlladelphia, del.
Aulf ports, dock
All-lail, Houston from
Birmingham
не. ports, aock
All-rail from Chicago.
Ilot-Inalled Alloy Bars
Ittshurgh. Chleago. Can-
torn. Massillon. Bulfalo,
Bethlehem, base 20 ions
one size
Detroll

$2100 \ldots . .0 .35 \quad 3100 \ldots . . .0 .70$
$\begin{array}{lll}2100 \\ 2300 & \ldots .75 & 3200 .\end{array}$
2300.... $1.70 \quad 3300$

4100 .15-25 Mo
4600 10.20-0.30 Mo.; 1.5и)2.00 NI.
$510081 \mathrm{l}-1.10 \mathrm{Cr}$.
5100 Spr. Jats.
6100 Bars
6100 Spr. lials
Cars, Van.
9200 Spr, thats
9200 Spr. rounds, squares
[130). Mn, mean 1.51-2.00
Do., rarbon under 0.20 mid.
Cubd-Finished Carloon 13urs
Pitts., Chlcaso, Gary
Cleveland, Buffalo, base
20,000-39,999 165.
$2.6: \bar{c}$
Cold-Fininhiml Nllover 2.7 (\%
Piltsburgh, Clilcago, Gary, Cleveland. Buffalo, base 3.3 suc Detrolt
Galveston, ada so.2n: lilaclllc
Turned, (irnumal Shalitum
Pilsburgh. Chicago. Cars
Clevelama, Bulfalo, base
(not Incluling turning.
grinding, pollshing ex-
1)etrol

Reinforviur \quad.
Pittsburgh, Chiss (New Billet) Clevelang, Chicago, Gary,
rows Point, Buftalo,
Gulf ports, riock base..... 2.Ine All-rall, Houston 2.50c
Birmingham from
Pacilte ports, dack 2.59 c All-rail from dack 2.80c Detrolt del. 3.25 c
Reinforeing Bars (Rail Steel)
Pittsburgh, Cnicago, Gary,

Cleveland, Birm., base. 2.15
Gulf ports, rock
All-rall, Houston from Birmingham
Paclitc ports, dock.....
All-rail from Chicago. 3.25 c
Iron Jisars
Philadelphia, com. del. 3.06-3.500
Pittsburgh, muck bar, .. 5.00c
Plttsburgh, staybolt 8.000
Terre Haute com., f.o.b. m! 11
2.15 c

Wire Products

itts.-Cleve.-Chicago-Birm. base per 100 lb . keg in carloads
standard und cemient
coated wire nails..... s.2.55 (Per Found:
Pollshed fence staples
Annealed fence whe.
ialv. fence wire
Woven wire renclng (base
C. L. column)
single loop bale ties,
(base C.L. column)
;alv, barbed wire, 80 -rod
spools, base column
Fivisted uarbless wire, column
To Mithufucturiar Trade
Base, Pitts.-Cleve,-Chicago
Birmingham (except sprino
Bright bess wire)
wire $2.60 c$
Galvanized wire 2.6Ue
Spring wire 3.20
Worcester, Mass., \$2 higher on
bright basir and spring wire.
Cut Nails
Carload, •Itshurkh. Keg s3.xה
Alloy Plates (Hot)
Pitlsburgn, Chicago. Coales-
ville. Pa. . 3.50 .

Rails, Fastenings
 (Gross Tons)

Standard ralls, mill S4u.me
Relay ralls. Pltshurgh
20-100 lhs.32.5(1-45..3!
Light ralls, bllet qual..
Pitts., Chicago. B'ham. \$4u.uv
Do., rerolling qually \quad is.un
Cents per pound
Angle bars. biljet, imms
Do., axle stee]
Splkes, R. R. base
Track bolts, base
Do., heat treated
Car axles forged. pitts.
Chlcago, Birmingham.
Tie plates, base
Base, light ralls :s
20 lbs., up $82 ; 16$ ibs. up $\$ 4: 12$ llis. up $88: 8$ lbs. up $\$ 10$. lhase railroad splkes 200 kegs or

Bolts and Nuts

F.o.b. Pittsburgh, Cleveland, firmingham. Chirugo. Dis5%. full containers add andional Curriaqu iuml Minchum
4/ $x 6$ and smaller..... $651 / 2$ off Do.. $\frac{1}{2}$ and in x ijll and shorter..... $631 / 3$ oft shorter x fin. illil
and larger, all lengths 59 off
tll diameters. uwer fi-in
long 59 off
.59 off
Eicurliolis
In Darkages wilh milis s
In Darkages wilh mils semalale
71-10 off: wilh nuts attacher?
71 off; bulk 8n off on $15.00 n$
n? 3 -inch and shorter. of $\overline{\mathrm{B}}$ (H)
ovpr A-in
siep bolts
Plow bolts
©emitinlsher huts
$\longleftarrow-$ Inch and less
H. l-inch
! the-jnch
on -inch $57 \quad 58$
la and larger.. 56
Upset 1 -in., smaller

1.	4	1	8.50	54.00
$\cdots 5.50$	4	1.50	8	54.00
5.50	4.50	4	450	57.50

Boiler Tubes

Carloads minimum wall
seamless steel boiler tubes, cut-
bugths base to 24 eet; f.o.b. Pittsoursh, base price per 100 feet
usual extras l.atl Welded

			Chat coal
Sizes	Gage	Steel	Iron
$11 / 20 \mathrm{O} . \mathrm{D}$.	13	S 9.72	\$523.71
1\% $\%$ O.D.	13	11.06	22.98
2"' O.D.	13	12.38	19.35
$21 / 4$ "O.D.	13	13.79	$21 . \mathrm{tix}$
$21 /{ }^{\prime \prime}$ O.D.	12	15.16	
2 \% 2 "O.D.	12	16.58	-26,57
2: ${ }^{4}$ O.D.	12	17.54	29.(1)
3"'0.D.	12	18.35	31.85
342 "O.D.	11	23.15	39.81
4" O.D.	10	28.66	49.911
5" O.D.	9	44.25	76.43
6" O.D.	7	68.14	
	Seaml		
		Hot	Cold
Slzes	Gage	Rolled	Drawn
1' O.D.	13	\$ 7.82	\$ 9.01
11/4O.D.	13	9.2r:	10.67
142"O.D.	13	10.23	11.79
13 "O.D.	13	11.64	13.4\%
$2^{\prime \prime}$ O.D.	13	1304	15.03
21/4"O.D.	13	14.54	16.76
21/4"O.D.	12	16.01	18.45
$216.10 . \mathrm{D}$.	12	17.54	20.21
2% O.D.	12	18.59	21.42
3" O.D.	12	19.50	22.48
$3^{1 / 2}{ }^{\prime \prime} \mathrm{O} . \mathrm{D}$.	11	24.62	28.37
4" O.D.	10	30.54	33.20
4% O.D.	10	37.35	43.04
5" O.D.	9	46.87	54.01
6" O.D.	7	71.96	82.93

Welded Iron, Steel.

Pipe

Base discounts on steel pine Pitts., I.orain. (). to consumers In carlands. Gary, Ind.. 2 poinis less on lap weld, 1 point less on buit weld. Chicago dellvers $2^{2 / 2}$ and 1^{2}, less. respectively
Vrought pipe. Pittshurgh base
lButt Wefal Steel
In.

15.	Blk.	Galv.
1	63 \%	51
4	663	55
1-3	681/2	57%
\%	30	10
1-11/6	34	16
$11 / 2$	38	183
2	371/2	18

Square Head Set Screws
upset, 1-in., smaller. 71 ofr Headless set screws..... 60 off Piling
Pitts.. Ch\&o.. Buffalo .. 2.40c

Rivets, Washers
 F.o.b. Pitts., Cleve., Chyo., 2, tap weld

Structural Bham. 37502 to 3 lap we.
2,2 to lap weld
$31 / 2$ to 6 , lap weld
7 and 8 lap weid.
7 and 8 , lap weld 68
Scamless, 3 pis. lower discount

Cast Iron Pipe

Class B Pipe-Per Net Ton
-1n Birmingham
4-in., Birmingham.. 48.00-44.00
4-in., Chlcago 56.80-57.80
6-in. \& over, Chicago 5s.80-54.8ט
6 -In. \& over, east Idy. 49.0
Do., 4-in. 52 w
Class A Plpe $\$ 3$ over Clasa B
Stnd. Itgs., Blrm., bare $\$ 1(10.11$

Semifinished Steel

Rerolling Billpta, NIahm
Pittsburgh, Chicago,
Cleve., Buffalo, Youner
Birm., Sparrows Polnt . 534.110
 Forging Quallty Bilintm
Pitts., Chi., Gary, Cleve.,
Young, Buffalo, Birm. 40 (1) Duluth

Sheet Bars

Pitts., Cleveland, Young
Sparrows Hoint Bur-
Palo, Canton, Chleago. S4.w
Hetroit, dellvered 36.10 WIre Rods
Pitts., Cleveland, Chleago,
Birmingham No. 5 to
Inch incl. (per 100 IDs) $\$ 2.00$

Worcester up $\$ 0.10$; Graveslom up $\$ 0.25$; Facilic Corsi uD
$\$ 0.50$ \$0.50.
Pltts Ch1 Skelp
coatesvi, Youngstown,
Shell Stpel
Pittsburgh, Chicago, base, 1000
tons of one size, open hearth 3-12-inch

18-inch and ouer

Coke

Price Per Net Ton

Connellsville, tur... $\$ 6.00$ - 6.2
Connellsville, fdry. $7.00-7.5 i$
Connell, prem. rdry. 7.25-7.5'
New River fdry. ... 8.00-8.25
WIse county fur. .- $\quad 6.50$
Nowarly Prodiret Finumiry $\begin{array}{lr}\text { Chicago, outgide del. } & 11.50 \\ \text { Chicago, dellvered } & 12.25\end{array}$ $\begin{array}{ll}\text { Chlcago, dellvered. } & 12.25 \\ \text { Terre Haute, (jel. } & 11.75\end{array}$ Milwaukee, ovens.. 12.25
New Enzland, del... 13.75

St. Ioouis. del. 12.25
$\begin{array}{lr}\text { Birminsham, ovens. } & 8.50 \\ \text { Indianapolls, del. . . } & 12.00\end{array}$
Cincinnati, del. ... 11.75
Cleveland, del. 12.30
Buffalo, del. 12.50
$\begin{array}{ll}\text { Detrolt, del. } \\ \text { Phlladelphia, del. } & 12.25\end{array}$

Coke By-Products

Spot, gal., freloht allowed ant

Pure and 90\% benionl	14.111)
Tolunl. two degree	27.100 r
Solvent naphth	.26.005

industrlal xylol ejibuc
Per lb. f.o.b. Frarkford and
Phenol (less than lom
Lap Wela

Do. (1000 1 hs . or over) 14.25 c
Eastern Plants, 13.25 c
Nanhthalene Hakes, halls
bhls. to jobhers 7 aur
Per ton, bulk. fo.b. port
Sulphate of ammonia.... $\$ 30.00$

Pig Iron
No. 2 foundry is $1.75-2.25$ sil.; 50c diff. for each 0.25 sil. above 2.25 sil. Gross tons.

Basing Points:	No. 2 Fdry.	Malleable	Basic	Bessemer
Bethlehem, Pa.	玉25.n0	\$25.50	\$24.50	\$26.00
Birmingham, Ala.s	20.38		19.38	25.00
Blrdsboro, Pa.	25.00	25.50	24.50	26.00
Buffalo	24.00	24.50	23.00	25.00
Chtcago	24.00	24.00	23.50	24.50
Cleveland	24.00	24.00	23.50	24.50
Detrolt	24.00	24.00	23.50	24.50
Duluth	24.50	24.50		25.00
Erle, Pa.	24.00	24.50	23.50	25.00
Everett, Mass.	25.00	25.50	24.50	26.00
Granite City, IIL.	24.00	24.00	23.50	24.50
Hamilton, 0.	24.00	24.00	23.50	
Neville Island, Pa.	24.00	24.00	23.50	24.50
Provo, Utah	22.00			
Sharpsvllle, Pa.	[24.00-	$24.00-$	23.50	$24.50-$
	24.50	24.50	24.50	25.00
Sparrow's Point, Md.	25.00		24.50	
Swedeland, Pa.	25.00	25.50	24.50	26.00
Toledo, 0.	24.00	24.00	23.50	24.50
Youngstown, 0 .	[24.00-	$24.00-$	$23.50-$	24.50-
	\{24.50	24.50	24	25.00

8Subject to 38 cents deduction ior 0.70 per cent phosphorus or higher.

	No. 2 Fdry.	Malleable	Basic	Besse mer
Saginaw, Mich., from Detroit.	26.31	26.31	25.81	26.81
St. Louls, northern	24.50	24.50	24.00	
St. Louls from Birmingham.	$\dagger 24.50$		23.62	
St. Paul from Duluth	26.63	26.63		27.13

Jackson county, O., base, 6.00 to 6.50 per cent $\$ 29.50$. Add 50 cents for each additional 0.25 per cent of silicon. Buffalo base $\$ 1.25$ higher.

Bessemer Ferrosllicon \dagger

Jackson county, O., base; Prices are the same as for sllverles, plus $\$ 1$ a ton.
Manganese differentials in sllvery iron and ferrosilicon not to exceed 50 cents per 0.50 per cent manganese in excess of 1 per cent.

Refractories

Per 1000 f.o.b. Works, Net Prices
Fire Clay Brick Super Quality
Pa., Mo., Ky.
First Quality
Pa., Ill., Md., Mo., Ky.. 51.3
Alabama, Georgla 51.30
New Jersey 56.00
Pa., Ill Second Quality
Georgla, Alabama
Georgla, Alab
New Jersey
46.55 Nel ton, J.o.b. Baltimore, Ply-
38.00 Chrome brick \quad ming, Chesier, Pa. $\$ 54.00$
49.00 Chem. bonded chrome.... 54.00

Magnesite brlek 76.00 43.00 Chem. bonded magnesite 65.0W

First qually
Intermediate
Second quality
Malleable Bung Hrich
All bases

Sillea Brick

Pennsylvanla
Jollet, E. Chicago
Birmingham, Ala.
Ladle Brick
(Pa., O., W. Va., Mo.)
Dry press
$\$ 31.00$
Wire cut

Magnesite

Domestle dead-burned
grafns, net ton f.ob
Chewelah, Wash., net
ton, hulk. 22.00 net ton, bags
22.00
26.00
6.00
lianle lirick

Chem. bonded magnesile 65.0n 36.10
36.00 Fluorspar

Vashed gravel, duty Mil. life, nel ion \$25.0u-\$26.00 Wishbed gravel, f.o.b. \$51.30 carloads, all rail 21.00 carloads, all rajl 58.90 Do. barge
51.30 No. 2 lump

Ferroalloy Prices

Ferromanguncae, 78-8\% \% , Carlots, duty pald
sbd. $\$ 120.00$
Carlots, del. Pitts. ... 125.33
Carlots, \&.o.b. Southern furn.
For ton lots add $\$ 10$.
for less-than-ton lots
$\$ 13.50$, for less than $200-1 \mathrm{~b}$, lots $\$ 18$
Splegeleisen, 19-21\% dom.
Palmerton, Pa., spot. . 36.00
Ferrosllicon, 50\%, frelght
allowed, c.l..
74.50
allowed, c.l.
87.00

Do., 75 per cent 135.00
Do., ton lots 151.00
Spot, $\$ 5$ a ton hirher.
Sillcomanganese, c.l., 23
per cent carbon 118.00
13% carbon 128.00
Contract ton price
$\$ 12.50$ higher; spot $\$ 5$
over contract.
Ferrotungsten, stand. 10
con. del, cars 1.90-2.00
Ferrovanadium, 35 to 40%, lb., cont.. 2.70-2.80-2.90
Ferrophosphorus, gr. ton, c.l., 17-18\% Rockdale Tenn, basis, $18 \%, \$ 3$ renn,", basis, $18 \%, \$ 3$
unitage, $58.50 ;$ electric unitage, 58.50 ; electric
furn., per ton, c. $1 ., 23$ 26% f.o.b. Mt. Pleasant, Tenn., 24% s3 unltage
Ferrochrome, 66-70 chromium, 4-6 carbon, cts.
lb., contalned cr., del.
carlots

Do., ton lots
Do., less-ton lots..... 11.75c less than 200 lb . lots. 12.25 c 67-72\% low carbon:
Car- Ton Less
loads lots ton
2% carb... 17.50 c 18.25 c 18.75 c 1% carb... 18.50c 19.25c 19.75c 0.10% carb. 20.50 c 21.25 c 21.75 c 0.20% carb. 19.50 c 20.25 c 20.75 c Spot $1 / \mathrm{c}$ higher
Ferromolybdenum, 55 65% molyb. cont., f.o.b. mill, lb.
Calcium molybdate, ib. molyb, cont., f.o.b. mill
Molybdenum Oxide, 1b. Molyb. cont., $5-20-\mathrm{lb}$. containers, if. o. b., Washington, Pa., ib..
Ferrotitanium, $\quad 40-45 \%$, lb., con. ti., fo.b. Niagara Falls, ton lots.. Do., less-ton lots.... 20-25\% carbon, 0.10 max., ton lots, ib... Do., less-ton lots.

Spot 5 c higher
Ferrocolumbium, $50-60 \%$ contract, lb. con. col., f.o.b. Nlagara Falls.. Do., less-ton lots....
Spot is 10 c nigher
Technical molybdenum trioxide, 53 to 60% molybdenum, lb. molyb. cont., f.o.b. mill.
0.80
erro-carbon-tilanium, 15 .
18%, tl., 6-8\% carb.
carlots, contr., net ton. $\$ 142,50$
Do., spot 145.טנ
Do., contract, ton lots 145.00
Do., spot, ton lots.... 150.00
$15-18 \%$ ti., 3.5% carbon,
carlots, contr., net ton 157.50
Do., spot 160.010
Do., contract, ton lots, 160.00
Do., spot, ton lots 165.00
Alsifer, contract carlots, f.o.b. Nlagara Falls, 1b. $\quad 7.50 \mathrm{c}$ Do., ton lots 8.00 e Do., less-ton lots 8.50c

Chromium Briquets, con-
tract, frelght allowed,
1b. carlots, bulk
Do, ton lots..
Dn., less-ton lots...... $\begin{aligned} & 7.50 \mathrm{c} \\ & 7.75 \mathrm{c}\end{aligned}$
Do., less 200 lbs....... $\begin{gathered}7.75 \mathrm{c} \\ 8.00 \mathrm{c}\end{gathered}$
$\$ 1.23 \quad$ Spot 4 c lb. higher
Tungsten Metal Powder, 95-99 per cent, per lb., depending upon quantlty\$2.50-2.60
Vanadium Pentoxlde, contract, lb. contained $\$ 1.10$

Chromlum Metal, 98% cr., contract, 10 . con. chrome, ton lots 80.00c Do., spot 85.00e 88% chrome, cont. tons. 79.00 lc
silleun metial, 1 \%o iron, conlract, carlots, 2 x 4/8-in., 16.
14.50 c

Do., 2%
13.00 c

Spot 4 c higher
Silfun IBriquets, contract carloads, bulk, irelght allowed, ton Ton lots

Less 200 lb . lots, 1 b . . 4.25 c

$$
\text { Spot } 1 / 4 \text {-cent higher }
$$

Manganese lifiquets. contract carloads, bulk freight allowed, Ib. .
Ton lots

Less-ton lots
Spot k hizher
Zirconlum Alluy, 12-15\%, contract, carloads, bulk, gross ton 102.50 Do., ton 108.00
$35-40 \%$, contract, car. loads, lb., alloy 14.00 c Do., ton lots 15.00 C Do., less-ton lots
Molyblenum Powder, 99% 1.o.b. York, Pa. 200-1b. kegs, 1b. $\$ 2.60$ Do., 100-200 lb. lots.. 2.75 Do., under $100-\mathrm{lb}$. lots
Molybdenum Oxide Briquets, $48-52 \%$ molybdenum, per pound contained, f.o.b. pro ducers' plant

WAREHOUSE STEEL PRICES

	Soft Bars	Bands	Hoops	$\begin{aligned} & \text { Plates } \\ & 1 / / \ln . \& \\ & \text { Over } \end{aligned}$	Structural Shapes
Boston	3.98	4.06	5.06	3.85	3.85
New York (Met.)	3.84	3.96	3.96	3.76	3.75
Philadelphia	3.85	3.95	4.45	3.55	3.55
Baltimore	3.85	4.00	4.35	3.70	3.70
Norfolk, Va.	4.00	4.10		4.05	4.05
Buffalo	3.35	3.82	3.82	3.62	3.40
Plttsburgh	3.35	3.60	3.60	3.40	3.40
Cleveland	3.25	3.50	3.50	3.40	3.58
Detrolt	3.43	3.43	3.68	3.60	3.65
Omaha	4.10	4.20	4.20	4.15	4.15
CIncinnati	3.60	3.67	3.67	3.65	3.68
Chicago	3.50	3.60	3.60	3.55	3.55
Twin Cities	3.75	3.85	3.85	3.80	3.80
Mllwaukee	3.63	3.53	3.53	3.68	3.68
St. Louls	3.64	3.74	3.74	3.69	3.69
Kansas City	4.05	4.15	4.15	4.00	4.00
Indianapolls	3.60	3.75	3.75	3.70	3.70
Memphis	3.90	4.10	4.10	3.95	3.95
Chattanooga	3.80	4.00	4.00	3.85	3.85
Tulsa, Okla.	4.44	4.34	4.34	4.49	4.49
Birmingham	3.50	3.70	3.70	3.55	3.55
New Orleans	4.00	4.10	4.10	3.80	3.80
Houston, Tex.	3.75	5.95	5.95	4.10	4.10
Seattle ...	4.00	4.00	5.20	4.75	4.75
Portland, Oreg.	4.25	4.50	6.10	4.00	4.00
Los Angeles.	4.15	5.45	7.25	4.95	4.95
San Franclsco	4.00	5.20	6.80	4.70	4.70
	S.A.E. Hot-rolled Bars (Unannealed)-				
	1035-	2300	3100	4100	6100
	1050	Serles	Series	Serles	Serles
Boston	4.28	7.75	6.05	5.80	7.90
New York (Met.).	4.04	7.60	5.90	5.65	
Phlladelphia Baltimore	4.10	7.56	5.86	5.61	8.56
Baltimore Norfolk, Va.	4.45	
Buffalo	3.55	7.35			
Plttsburgh	3.40	7.45	5.75	5.50	7.60
Cleveland	3.30	7.55	5.85	5.85	7.70
Cinclnnats	3.48	7.67	5.97	5.72	7.19
	3.65	7.69	5.99	5.74	7.84
Chteago					
Twin Citles	3.95	7.70	5.65 6.00	5.40 6.09	8.50
St. Louls	3.83	7.33	5.88	5.63	7.73
	3.84	7.72	6.02	5.77	7.87
Seattle					
	5.70	8.85	8.75 8.00	8.60 7.85	9.40 8.65
Los Angeles	4.80	9.55	8.55	8.40	8.65
San Francisco	6.05	10.60	9.60	8.45	10.10

EUROPEAN IRON, STEEL PRICES

Dollars at $\$ 4.021 / 2$ per Pound Sterling

Export Prices f.o.b. Port of Dispatch-
Bv Cable or Radio

	BRITISH Gross Tons f.o.b U.K. Port	
Merchant batb, 3-in		
Merchant bars, small, under 3 -inch, re-rol		16100
Structural hapea ${ }^{\text {Stip }}$. .	3.60 c 2.79 c	20 15100 10
Ship plater...	2.79 c 2.90	$\begin{array}{r}15100 \\ 16 \\ \hline 18\end{array}$
Sheits, black,	3.17 c	17126
Sheets, galvanize	4.00 e	22.50
Tin plate, base box, 20 rrugated, 21 gage	4.61 c	25126
Prite, base box, $20 \times 14,108$ pounds	\$ 6.20	1109

Domestic Prices Delivered at Works or Furnace-

Floor	Hot	Cold	Galv.
Plates	Rolled	Rolled	No. 24
5.66	3.71	4.48	5.11
5.56	3.58	4.60	5.00
5.25	3.55	4.05	5.26
5.25	3.50		5.05
5.45	3.85		5.40
5.25	3.25	4.30	4.75
5.00	3.35	4.65
5.18	3.35	4.05	4.62
5.27	3.43	4.30	4.84
5.75	3.85	5.32	5.50
5.28	3.42	4.00	4.92
5.15	3.25	4.10	4.85
5.40	3.50	4.85	5.25
5.28	3.18	4.23	4.73
5.29	3.39	4.24	4.99
5.60	3.90		5.00
5.30	3.45		5.01
5.71	3.85		5.75
5.80	3.75		4.50
6.09	4.19	...	5.79
5.93	3.45		4.75
5.75	3.85		4.80
5.50	4.20		5.25
6.50	4.75	7.25	6.00
5.75	3.95	6.50	5.00
7.20	5.10	7.30	6.30
6.40	4.70	7.20	6.45

Cold Rolled Strlp	\longrightarrow Cold Drawn Bars		
		S.A.E.	S.A.E.
	Carbon	2300	3100
3.46	4.13	8.88	7.23
3.51	4.09	8.84	7.19
3.31	4.06	8.56	7.16
...	4.05
	4.15	
3.52	3.75	8.40	6.75
	3.65	8.40	6.75
3.20	3.75	8.40	6.75
3.40	3.80	8.70	7.05
	4.42		
3.47	4.00	8.75	7.10
3.30	3.75	8.40	6.75
3.83	4.34	9.09	7.44
3.54	3.88	8.38	6.98
3.61	4.02	8.77	7.12
...	4.30	.	\ldots
\ldots.	3.97	
	4.31		
	4.39	
	4.69	\ldots	
	4.43		
5.00	4.60		
	7.15		
	5.75	\ldots	
	5.75		
	6.60	11.35	10.35
	7.05	11.60	10.60

BASE QUANTITIES

Soft Bars, Bands, Hoops, Plates, Shapes, Floor Plates, Hot Rolled Sheets and SAE 1035-1050 Bars: Base, 400-1999 pounds: 300-1999 pounds in Los Angeles; 400-39,999 (hoops, 0-299) in San Franclsco; 300 pounds and over, Portland, Seattle; 400-14,999 Twin Cities; 400-3999 Birmingham; 400 pounds and over in Memphis; Los Angeles, bars over $4-1 n$. wide, $1-1 n$. thick, 4.95 c .

Cold Rolled Sheets: Base, $400-1499$ pounds in Chicago, Cincinnati, Cleveland, Detroit, New York, Omaha, Kansas City St Louls; $450-3749$ in Boston; $500-1499$ in Buffalo; $1000-1999$ in Phila. delphia, Baltimore; 750-4999 in San Franclsco; 300-4999 in Portand, Seattle; any quantity in Twin Citles; 300-1999 Los Angeles.

Galvanized Sheets: Base, 150-1499 pounds, New York; 1501499 in Cleveland, Pittsburgh, Baltimore, Norfolk; 1 to 10 bun. In Los Angeles; 300 and over in Portland, Seattle; 450-3749 in Boston; Cincinnati, Detrolt, Indlanapolis, Milwaukee, Omaha, St. Louls, Tulsa; 3500 and over In Chattanooga; any quantity in Twin Cities; 750-1500 in Kansa: City; 150 and over in Memphis; any quantlty in Phlladelphia; 750-4999 in San Francisco.

Cold Rolled Strip: No base quantlty: extras apply on lots of all size

Cold Finlshed Bars: Base, 1500 pounds and over on carbon except 0-299 in San Francisco, 1000 and over in Portland, Seattle. 1 to 99 pounds in Los Angeles; 1000 pounds and over on alloy, except 0-4999 in San Francisco.
except 0-4999. San Francisco; 0-1999, Portland, Seattle.

Ores

Lake Superiur Iron Ure
Gross ton, 51\% \%
Lower Lake Ports
Uld range bessemer $\$ 4.7$
Mesabl nonbessemer $4.4 \overline{5}$
High phosphorus
Mesabi bessemer
Old range nonbessemer.
Eastern Local Ore
Cents, unit, del. E. Pa.
Foundry and basic
$56-63 \%$, contract
10.00

Foreign Ore
Cents per unit, c.i.f. Atlantic ports

Manganlferous ore
45-55\% Fe., 6-10\% Mang.
N. African low phos.

Spanlsh, No. African bastc, 50 to 60%

Nom
Chinese wolframite,
net ton, duty pd.. \$24.00-25.00 Brazll Iron ore, 68 . 69%, ord. Low phos. 1.02 max.)
7.50 c
max.) 8.00e
F.O.B. Rio Janeiro.

Scheelite, Imp. 23.50-24.00 Chrome ore, Indlan,
48% gross ton.

Manganese Ore

Including war risk but not duty, cents per unit cargo lots. Caucasian, 50-52\%. So. African, 48%.
70.00-72.00

Brazllian, 46%.... 69.00-71.00
Chilean, 47%...... 65.00-70.00
Cuban, 50-51\%, duty tree

Molybdenum
Nom. Sulphide conc., lb.,
Nom. Mo. cont., mines.

IRON AND STEEL SCRAP PRICES

Maximum Prices Announced Junc 18 by Office of Price Administration and Civilian Supply (Gross Tons)

	Pittsburgh, Youngs $\begin{gathered}\text { town, }\end{gathered}$ Weirton, Canton, Steuben- Warren, ville(a) Sharon	Chicago	Bethlehem	* East. Po.	Sparrows Pt .	Cleveland	Buffalo	shland, Ky Portsmouth Middletown, 0 .	Kokomo, Ind.
No. 1 heavy melting	\$20.00 \$20.00	\$18.75	\$18.25	\$18.75	\$18.75	\$19.50	\$19.25	\$19.50	\$18.25
No. 1 hyd. comp. black sheets	$20.00 \quad 20.00$	18.75	18.25	18.75	18.75	19.50	19.25	19.50	18.25
No. 2 heavy melting	$19.00 \quad 19.00$	17.75	17.25	17.75	17.75	18.50	18.25	18.50	17.25
Dealer No. 1 bundles	$19.00 \quad 19.00$	17.75	17.25	17.75	17.75	18.50	18.25	18.50	17.25
Dealer No. 2 bundles	$18.00 \quad 18.00$	16.75	16.25	16.75	16.75	17.50	17.25	17.50	16.25
Mixed borings and turnings	15.2515 .25	14.00	13.50	14.00	14.00	14.75	14.50	14.75	14.25
Machine shop turnings**	15.50 15.50	14.25	13.75	14.25	14.25	15.00	14.75	15.00	14.50
Shovel turnings ...	$16.50 \quad 16.50$	15.25	14.75	15.25	15.25	16.00	15.75	16.00	15.57
No. 1 busheling	$19.50 \quad 19.50$	18.25	17.75	18.25	18.25	19.00	18.75	19.00	17.75
No. 2 busheling	$15.50 \quad 15.50$	14.25	13.75	14.25	14.25	15.00	14.75	15.00	13.75
Cast iron borings	$15.75 \quad 15.75$	14.50	14.00	14.50	14.50	15.25	15.00	$\dagger 15.25$	14.00
Uncut structurals and plate	$19.00 \quad 19.00$	17.75	17.25	17.75	17.75	18.50	18.25	18.50	17.25
No. 1 cupola ...	$21.00 \quad 21.00$	20.00	22.50	23.00	22.00	22.00	20.00	21.00	20.00
Heavy breakable cast	$19.50 \quad 19.50$	18.50	21.00	21.50	21.00	20.50	18.50	19.50	18.50
Stove plate	19.00	17.00	18.00	18.50	18.00	18.00	19.00	17.50	16.00
Low phos, billet, bloom crops	$25.00 \quad 25.00$	23.75	23.25	23.75	23.75	24.50	24.25	23.50	23.75
Low phos. bar crops and smaller	$23.00 \quad 23.00$	21.75	21.25	21.75	21.75	22.50	22.25	21.50	21.75
Low phos, punch., plate scrap ${ }^{\text {d** }}$	$123.00 \quad 23.00$	21.75	21.25	21.75	21.75	22.50	22.25	21.50	21.75
Machinery cast cupola sizetit.	$22.00 \quad 22.00$	21.00	23.50	24.00	23.50	23.00	21.00	22.00	21.00
No. 1 machine cast, drop broken, 150 pounds and under	$22.50 \quad 22.50$	21.50	24.00	24.50	24.00	23.50	21.50	22.50	21.50
Clean auto cast	$22.50 \quad 22.50$	21.50	24.00	24.50	24.00	23.50	21.50	22.50	21.50
Punchings and plate scrap $\ddagger \ddagger$	$122.00 \quad 22.00$	20.75	20.25	20.75	20.75	21.50	21.25	20.50	20.75
Punchings and plate scrapss	$121.00 \quad 21.00$	19.75	19.25	19.75	19.75	20.50	20.25	19.50	19.75
Heavy axle and forge turnings.	119.50 19.50	18.25	17.75	18.25	18.25	19.00	18.75	18.00	18.25
Med, heavy elec. furrace turnings	18.0018 .00	16.75	16.25	16.75	16.75	17.50	17.25	16.50	16.75
					${ }^{2}$ Alabama				
	St. Louis Toledo, O.	Detrolt	Duluth	Birmingham	Clty, Ala., Atlanta	Chattanooga	Radford,	New Eng-	Pacifle Coast
No. 1 heavy melling	\$17.50 \$....	\$17.85	\$18.00	\$17.00	- ${ }^{\text {Altanta }}$			- l 16nd 16	Coasts
No. 1 hyd. comp. black sheets	17.50	17.85	18.00	17.00	17.00				${ }^{1} 14.50$
No. 2 heavy melting	16.50	16.85	17.00	16.00	16.00				${ }^{13.50}$
Dealer No. 1 bundles		16.85	17.00	16.00	16.00				${ }^{1} 13.50$
Dealer No. 2 bundles	15.50	15.85	16.00	15.00	15.00				'12.50
Mixed borings and turnings	$12.75 \quad 13.10$	13.10		12.25	12.25				49.75
Machine shop turnings ...	$13.00 \quad 13.35$	13.35	15.50	15.00	15.00				${ }^{1} 10.00$
Shoveling turnings	$14.00 \quad 14.35$	14.35	16.50	16.00	16.00				${ }^{\prime} 11.00$
No. 1 busheling	17.00	17.35	17.50	16.50	16.50				${ }^{1} 14.00$
No. 2 busheling	13.00	13.35	13.50	12.50	12.50				${ }^{1} 10.00$
Cast iron borings	$13.25 \quad 13.60$	13.60	13.75	12.75	12.75				${ }^{1} 10.25$
Uncut structurals and plate	18.50	16.85	17.00	16.00	16.00				${ }^{1} 13.50$
No. 1 cupola	20.00	20.35	319.00	20.00		20.50	21.00	22.00	18.00
Heavy breakable cast	18.50 -	18.85	${ }^{3} 17.50$	18.50				20.50	17.00
Stove plate	$17.00 \quad 15.60$	14.10	${ }^{3} 16.00$	17.00	17.50	18.00	17.50	14.00
Low phos, billet and bloom crops.	22.50	22.85	23.00	22.00					19.50
Low phos, bar crops and smaller.	- 20.50	20.85	21.00	20.00				19.50
Machinery cast cupola size $\dagger \uparrow$........	. 21.00	20.85	21.00 320.00	20.00	.				17.50 19.00
No. 1 machine cast, drop broken,		21.35	${ }^{210.00}$	21.00	...	21.50	22.00	23.00	19.00
150 pounds and under.......	21.50	21.85	-20.50	21.50		22.00	22.50	23.50	19.50
Clean auto cast	21.50	21.85	${ }^{3} 20.50$	21.50		22.00	22.50	23.50	19.50
Punchings and plate scrap $\ddagger \ddagger$ Punchings and plate scrapss	19.50	19.85	20.00	19.00					16.50
Punchings and plate scrapss...	18.50	18.85	19.00	18.00					15.50
Heavy axle and forge turnings.....	- 17.00	17.35	17.50	16.50					14.00
Medium heavy elec. furnace turnings	s 15.50	15.85	16.00	15.00					12.50

*Claymont, Del., Coatesville, Conshohocken, Phoenixvllle, Harrisburg. Pa. \ddagger Worcester, Mass.; Bridgeport, Conn.; Phtllpsdale, R. I. SLos Angeles, San Francisco, Portland, Seattle; $\# * * / s-1 n c h$ and heavier, cut i2 inches and under; itmay include clean agricuitural cast; $\ddagger \ddagger$ under $3 / 8$-Inch to $/ 4-1 n c h, ~ c u t ~ 12$ inch es and under; §sunder $1 / 4$-inch to No. 12 gage, cut 12 inches and under, "Alloy, W. Va., base $\$ 17.60$. †Base price at Portsmouth and Ashland; Middletown 25 cents less. ${ }^{1}$ Add $\$ 1.75$ at Pittsburgh. ${ }^{2}$ Atlanta base only on Nos. 1 and 2 H.M. steel, No. 1 comp. sheets and Nos, 1 and 2 dealer bundles, ${ }^{3}$ Also base prices at Minneapolis and St, Paul. ${ }^{1}$ Add $\$ 2$ at Minnequa, Colo.

Maximum Prlees for Iron and Steel Serap Orlginating from Railroads

[^4]
Sheets, Strip

Sheets \& Strip Prices, Pape 94
Diversion of a larger percentage of semifinished steel to finished products more heavily involved in the defense program is in sight, thereby making it more certain that civilian consumers will have a tough time of it soon.

Certain steelmakers whose overall business is typical of the industry have analyzed their order books to determine the extent to which priorities affect various finished steel products. Wire orders, it has been found, carry the fewest priorities, with the result that at least a certain portion of the steel now going into wire will be diverted to other products. Next fewest priority orders, in the order named, apply in cold-rolled sheets and strip, galvanized sheets, hot-rolled sheets and strip, tin plate.
Sheet demand continues heavy from all sources and consumers are seeking to place further tonnage and to obtain some sort of delivery promise. The latter is difficult as sheetmakers find their schedules constantly disrupted by high prefer'ence orders causing revision. pushing back orders with lower priority. Automobile builders are seeking sufficient material to keep up their output at the agreed rate of 80 per cent of last year's production.
Some sheet mills found shipments in July were more than half for defense purposes, an increase over June and a further growth is indicated for August. Mills attempting to make up fourth quarter schedules find it almost impossible to apportion tonnage for nondefense buyers with any certainty.

Galvanized sheet production continued last week at about 53 per cent of capacity. Buyers of this grade are pressing less heavily for delivery as substitutes are being used in such cases as it has been found feasible.
New England stripmakers find decline in buying of narrow cold-rolled strip is offset by heavier volume with preference rating, and while the ratio varies it has been close to 50 per cent in recent weeks. Hotrolled strip deliveries are less certain and rerollers are dipping into reserves to produce cold-rolled. Strip-rolling equipment shows the effect of continuous operation at a high rate and delays for repait's are more frequent.

Plates

Plate Prices, Page 94
Plate deliveries to miscellaneous users may be improved when the full priority plan is in effect, especially in heavy plates. It is believed shipments to shipbuilders have been larger than they could use currently and that inventory has been accumulated in many instances. The same situation is said to exist also in the case of tankbuilders and in some instances non receipt of other material on schedule has delayed fabrication of plates.
Under the formal priority order

No tugging of ropes or Yanking of chains! Just press these buttons and the Zip-Lift answers with smooth lifting and lowering of loads. The operator, with one free hand to guide the load, can also pull the fully loaded hoist by the conductor cable without danger of shorting or "blowing" control. This simplified full magnetic push button station is one of the many important advantages enjoyed by ZipLift users.

* The lightest weight push button handling only the control circuitnot the full motor current. No expensive replacements if damaged. Also permits simplified limit switch, again handling only auxiliary current.. the same as on all heavy duty electric hoists and cranes.

General Offices: 4411 West National Avenue, Milwaukee, Wisconsin

inventories will play an important part in determining delivery and this may result in smaller shipments to consumers having ample supply, releasing tonnage for other users not so well situated.

Railroad car builders find their preference rating falls short of providing them as much material, largely plates, as they need to keep up with car delivery promises. It develops that higher preferences apply to so large a volume of steel that they are far from being satisfied with their shipments.

Meanwhile, producers and users of plates are studying the all out priority regulations and handling blanks to be filed under the new rules. Mills are receiving a flood of inquiries as to delivery dates but are unable to give promises as precedence is governed by OPM and frequently orders are given to advance certain work. even ahead of higher preference rating. This pushes back other work so that promised de livery can not be depended on.

PLATE CONTRACTS PLAOED
T2,000 tons, thirty C-3 type cargo vessels for United States Martime Commission, to Seattle-Tacoma Shipbullding Corp., Tacoma, Wash., placed with various plate mills.
140 tons, the 100 -foot tugs for navy, Pacifle Coast, to Paclifc Coast Engineering Co., Alameda, Calif.

HIATE CONTRACTS PENDING
290 tons, 51%-inch Cedar river pipe line: Hydraulic Supply Mfg. Co., Seatlle: low; bids rejected by Seatle; new bids to be called when matertals inlority is established.
175 tons, 500,000 -gallon elevated water storage tank, navy yard, Charleston, S. C.; bits Allg. 22 to publte works officer, yard.
150 tons, 3806 feet, 22 -inch water link. clectrically welded, for East Marginal Way, Seattle; bids Aug. 28.
Unstated, 115 undergraund tanks, 5000 gallons capacity each, 50 for Mare Is land, Calif., 40 for Charleston, S . C. and 25 for New York navy yard; bids (t) navy Sept. 1.

Bars

Bar Prices, dage 9is

Large purchases of cold-drawn, alloy and carbon steel bars by government arsenals continue in the East, heavy tonnages for Spring. field and Watertown, Mass., supplemented by sustained buying by the Picatinny shops, Dover, N. J. Re. public Steel Corp., Cleveland, has booked 1430 tons of cold-drawn bars for Picatinny and quotations on 540 tons were rejected earlier. Wyckofr Drawn Steel Co., Pittsburgh, took 250 tons of chromium-molybdenum bars recently and Crucible Steel Co. of America, New York, booked 125 tons of alloy material at 6.9225 c , delivered.
Automotive industries are pressing for deliveries of bars, as well as other steel, to reach 80 per cent of last season's production. The government is seeking to reduce output even further.
Procurement of bars from warehouses has become difficult, even under priority as shipments to suppliers are not sufficient to keep up
assortments, which are much depleted in most cases. An increasing proportion of bar purchases from this source carry high priority and as a result civilian buying has little chance of being accepted. An order covering warehouses is expected shortly and may ease the situation somewhat.

Pipe

l'pe lerlees, pare 9 :
Line pipe demand is steady with new feeder lines being placed and large tonnage for main lines impending. Valve and fittings manufacturers have idle capacity and would welcome additional pipe line business, which would carry top priority.
Cast iron pipe production is as arge as pig iron supply will allow and practically all current business booked has priority rating, Several lots for Panama and Atlantic bases have been booked. Municipal buying has slackened because of uncertainty of obtaining shipment and some prospective lines have been held in abeyance. Completion of various military and defense projects within the next few months is relied on to relieve the heavy demand for soil and pressure pipe.
Standard pipe production has been delayed somewhat by inability of non-integrated makers to obtain sufficient skelp. Galvanized pipe output has been increased slightly as zine supplies have eased, although still at only about 50 per cent of capacity. There is little probability of any substantial change in this situation.

Standard pipe shipments to warehouses have dropped slightly as direct buying under preference ratings increased. While a substantial part of warehouse buying also car ries preference rating, larger jobs are being placed direct and reduce the quantity available for secondary markets.

Practically all mechanical tubing is going to defense purposes and the same is true of pressure tubing, even the $A-3$ rating on railroad equipment bringing unsatisfactory deiivery.

CAST PIPE PLIMCED

3664 tons, 4 to s-inch, east bay municipal utllity district, Oakland, Calif., to United States Pipe \& Foundry Co., Burlington, N. J.
1000 tons, 4 to 16 -inch, San Francisco, to United States Pipe \& Foundry Co., Burlington, N. J.
1000 tons, 2 to 16 -inch, universal, for naval air bases, Alaska, to Marckmann \& Williams, Seattle; for Central Foundry Co.
500 tons, defense projects in Puget Sound area, universal, to Marckmann \& Willlams, Seattle, for Central Foundry Co.

CAST PIPE PENDING

$15 \overline{5} 0$ tons, 20 -inch, cement-lined, Panama, schedule 5402; bids in.
G50 tons, 6 to 24 -inch, Class 150 and 250, Sin Diego, Calif.; United States Pipe \& Foundry Co., Burlington, N. J.. low.
300 tons. Stone Way, Forty-fourth ave. N. E. and Sand Point Way improvements. Seattle, 6 to 12 -inch; bids in to

Seattle board of public works.
214 tons, 6-Inch, Class 250, Burbank, Calif., United States Plpe \& Foundry Co., Burlington, N. J., low.
180 tons, 6 and 8 -inch and fitings, for District 4, Yakima, Wash.; bids to G. D. Hall, engineer, Aug. 26.

150 tons, 8 -inch, Class 1.50 , stock and replacement, Seattle; H. G. Purcell, for U. S. Pipe \& Foundry Co., Burlington, N. J., low.

STEEL PIPE PLACEI

330 tons, 30 -1nch steel pipe for water bureau, Philadelphla, to American Rolling Mill Co., Middletown, 0.
Unstated tonnage, 20016 -foot sections, 20 -inch i.d. steel shore plpe, U. S. engineer, Galveston, Tex., to Dedman Foundry \& Machine Co., Houston, Tex.; inv. 343.
Unstated tonnage, $100 \quad 16$-foot lengths, 18 -inch i.d. share pipe, U. S. engineer, Washington, to Lancaster Iron Works Inc., Lancaster, Pa.; serial 5.

Rails, Cars

Track Material Prices, Pare 95

Slow deliveries of steel and castings are delaying production of freight cars somewhat and builders are behind the schedule set several weeks ago. Some relief was afford. ed by the priority granted recently but so much other steel bears higher preference that car material is being shipped in less volume than desired. Shops are being operated at the highest rate possible in view of material supply.

Class 1 railroads had 86,416 freight cars on order Aug. 1, compared with 19,756 a year ago, the Association of American Railroads reports. The same roads had 603 locomotives on order Aug. 1, compared with 168 at the same time last year. In seven montlis this year the railroads put in service 42,243 cars, compared with 40,416 last year and 323 locomotives compared with 201.

Chicago commissioner of subways and highways has asked bids on about 4100 tons of steel rails for the city's subway, to close Sept. 11. In cluded is 1270 tons of contact raii of 145 -pound section. B-1 priority rating has been given the subway, to be used in case material could not be obtained otherwise.

LOCOMOTIVES PLACED

Belt Railroad, Chicago, one 1000 -horse power diesel-electric. to American Lo comotive Co., New York.
Chicago, Milwaukee, St. Paul \& Facifle two 44-ton diesel-electric switchers to General Electric Co., Schenectads. N. Y.

Raritan Arsenal, N. J., one 45 -ton dieselelectric, to General Electric Co. Schenectady, N. Y.
Union Pacifle, twenty-flive 1000 -hors power diesel switching locomatives. to Electro Notive Corp., La Grange, Ill. allveries six per month, beginning in April, 1942.
U. S. Army, ordnance plant. Iowa, two 14-ton diesel-electrics, to General Electric Co., Schenectady.

Car orders placed
Pont de Nemours Co., 100 tank
E. I. du Pont de Nemours Co, to americars, 11,000 -gallon capacity. York.
can Car \& Foundry Co., New dump cars.
U. S. Army, engineers, three dump cars
to Western-Austin Co., Aurora, III.
War Department, 29 forty-ton fire-control cars, to Greenville Car Co., Greenville, Pa.

RAIL, ORDERS PhaCLD

4800 tons, rails and rastenings, estimated Panama, to Darby Products of Steel Plate Corp., Kansas City, Mo.

HUSES HOOKED

Twin Coach Co., Kent, O.: Fifty-two 40 passenger for New York City Transit System, Brooklyn, N. Y.; thirteen 44passenger for Surface Transportation Corp., New York: llve 32 -passenger for New York State Railways, Utica, N. Y.; six 30-passenger for Erie Coach Co.. Erie, Pa.

Wire

Wire Prices, Page na

Wire producers are rescheduling their orders under the priority reg. ulation and delivery dates on some lots are being deferred beyond early promises. Complete revamping of schedules will require several weeks. In some cases wire orders carry priority on more than 50 per cent of bookings and wire rope makers find it as high as 80 per cent.
Automobile builders are not placing much new tonnage but are pressing for delivery on old orders. Some business is being held back from formal entry on books until defense business is cared for.

Consumer inventory appears unbalanced, some having barelv two weeks' supply and others sufficient for the remainder of the year.

Structural Shapes

Siructural Shape Prices, Pate 9i
Structural steel inquiry, except for defense work, has declined, ap parently because of inability to place civilian tonnage, under the priorities plan. Fabricators are pressed for defense shipments and shops are working at high speed. A num ber of current projects are in doubt as to priority. Chicago will ask bids this week for the Canal street bridge and a priority is expected to be granted.

SHAPE CONTRACTS PLAEED
7500 tons, sub-assembly shop, drydocks flve and six, navy yard, Brooklyn, to Bethlehem Steel Co.; bids Aug. 22.
3000 tons, airplane repajr building, Rome N. Y., to Harris Structural Steel Co. Plalnfleld, N. J.; Turner Construction Co., New York, contractor.
1825 tons, depot supply building No. 1 Rome, N. Y., to Bethlehem Steel Co. Bethlehem, Pa.; Turner Construction Coported York, contractor, pleviously reported as 1750 tons.

Agricultural Implement Industry

. . . is aided by Heppenstall products-shear knives for cutting metals, die blocks for forging parts and products, Heppenstall Automatic Safe-T-Tongs for lifting materials, and "tailor-made" forgings and other forged products. Heppenstall Company.

Heppenstall

PITTSBURGH • DETROIT • BRIDGEPORT

1200 tons, 14 units, McClelland Field, Sacramento, Calif., to Herrick Iron Works, Oakland, Calif.
1005 tons, six double warehouses, Augusta arsenal, Georgia, to Ingalls lron Works, Birmingham; A. Farnell Blalr, Decatur, Ga., contractor.
1000 tons. Atr Corps hangars at New Orleans and various Maine nelds, to Belmont Iron Works, Philadelphia
850 tons, two dry provision warehouses. naval supply depot, Oakland, Calif., to American Bridge Co., Plttsburgh.
800 tons, six warehouses, Camp Stanley, Texas, to Mosher Steel Co., Houston, Tex.; H. B. Kilstofte, San Antonio, Tex., contractor.
(ilo tons, building, Wright Fleld, Dayton, O., for air corps, to Incliana Bridge Co., Muncie, Ind.
600 tons, building, Robins Dry Dock \&

Repair Co., Brooklyn, to Harris Struetural Steel Co., Plainneld, N. J.
5.55 tons, reconstruction, track stringers, Manhattan bridge, New York, to American Bridge Co., Pittsburgh; John Roman Inc., New York, contractor.
523 tons, state bridge No. 81 over Wisconsin river, Lone Rock, Wis., to Bell:ehem Steel Co, Bethlehem, Pa.; L. G. Arnold, Eau Claire, Wis., contractor; bids July 29.
513 tons, steel sheet piling, U. S. Engineer, BInghamton, N. Y., to CarnegicIllinais Steel Corp., Plitsburgh, only bidder; inv. 2.
500 tons, store, F. W. Woolworth Co., Worcester, Mass., to A. O. Wilson structural Co., Cambrldge, Mass.
450 tons, including 63 tons wrought iron, Wyman crossing under Maine Central raitroad tracks, Faimeld, Me, to

Gar Action thats ACCURATE

\star When action is demanded for transmitting power, here's accuracy to better than one-thousandth of an inch ... precision is one feature of all Horsburgh \& Scott Worms and Worm Gears. There are seven outstanding features that make Horsburgh \& Scott Worms and Worm Gears the finest obtainable . . . it will pay you to learn about these advantages.

[^5]Valley authorlty, knoxville, Tern
2500 tons, airplane test building, Chev-rolet-Burfalo division, General Motors Inc.. Buffalo.
1750 tons, superstructure South Canal Street bridge, Chicago; bids Sept. 24.
1725 tons, state brldge, New York; blds Sept. 5 and Aug. 27, Albany.
1500 tons, factory addition, for Fatlchild Aircraft division, Fairchidd Engine \& Airplane Corp., Hagerstown, Mc.

1400 tons, manufacturing building, for Grand Clty Container Co., North Bergen, N. J.
1034 tors; also 3760 square feet grid steel fooring and 95,000 pounds ma chinery, brldge over Grassy Sound, route $\mathrm{S}-49$, section 5 , Wildwood, N. J.: bids Sept. 5, E. Donald Sterner, State Highway Commissianer, Trenton
900 tons, manufacturing building, for Harbison-Walker Refractories Co Clearlield, Pa .
760 tons, grade separation bridges, Thirtieth to Thirty-second streets, Queens, New York, for city.
600 tons, bulkhead frames and tubes Kentucky dam, Gilbertsville, Ky., fot Tennessee Valley authority, Knoxville, Tenn.
500 tons, roof framing, Parker power plant, 1540-D, Earp, Calli., for bureau of reclamation, Denver.
400 tons, state bridge RC-41-10, Chenango county, New York.
400 tons, Boys' Industrial school, Camp Hill, Pa., Reading Metalcraft Co., Reading, Pa., low.
400 tons, additional bulldings, army ordnance base, Seneca Falls, N. Y.; Poirier \& McLane Corp., New York, contractor.
375 tons, shaft sets, Penokee mine, Ironwood, Mich., for Republic steel Corp. Cleveland.
350 tons, storage building, Schenectady, N. Y., for army.

350 tons, six buildings, Seneca ordnanec depot, Kendaia, N. Y., for war department.
315 tons, bridges, Bradford county, Pennsylvanla; bids to state highway department, Harrisburg, Pa., Aug. 29.
300 tons, three bridges, using old material, skaglt river power project, Seattle; Noble White, Seattle, low \$93, 575. (second call).

250 tons, alterations to bridge, Harpursville, N. Y., for Delaware \& IIudson railroad.
225 tons. cratne runways and building addition, for John Wood Mfg. Co., Chicago.
200 tons, state bridge RC-41-38, War rensville, N. Y.
175 tons, bridges, Scuth Capitol street, Washington, for District of Columbia.
135 tons, steel framed storage bulldings, U. S. engineer, Boston; Dawn Construction Co., Dorchester, Mass., contractor. 150 tons, state highway bridge over Baltimore \& Ohio rallruad, Jessup, Mri.
140 tons, boiler house, Kingsbury ordnance plant, La Porte, Ind., for gov-
ernment.
140 tens, state bridge, contracet 2212,
Ladoga, Mont Ladoga, Montgomery county, Ind., birds 26 . tak . 5 rejected; new bids Aug.
140 tons, bridge, Mississippi Forest highWav, Homochitto National Forest, Franklin-Wilkinson counties, Morest, sipni; also 65 tons reinforcing bars;
bids in.
120 tons, repairs to existing structures Forest county, Pennsylvania: bids to state highway department Harrisburm Pal, Aug. 29. department, Harrisburs, 100 tons, 325 -foot bridge, Stowe, Vt. bids-span I-beam clerk, Stowe, Vt.; bids Aug. 28 , town clerk, Stowe; also 25 tons reinforcing
steel.

Unstated, steel hangar for Yakutat, Alaska; bids in to U. S. engineer, Seattle, Aug. 15.
Unstated, three 95-foot tower assemblies for Coulee power plant 115 kv . transmission circuits; bids to Denver Sept. 2 ; Sched. 1548-D.
Unstated, two 108 -foot towers and two $364-$ foot suspension towers, Willamette river transmission line crossing; C. J. Montag \& Sons, Portland, low $\$ 100,328$, to Bonneville profect, Portland, Oreg.

Reinforcing Bars

Reinforcing Bar Prices, Page 9
Reinforced concrete projects, ex cept for defense, have dropped to a low point as deliveries under the priority plan are practically impos-
sible. Suppliers have sufficient de. fense work of preferred nature to take up their entire production for some time.

For several defense projects, in cluding some army and navy bases acquired from Great Britain, ion nage is exceeding estimates substantially and contractors are pressing for shipment, but sellers are unwilling to take on additional tonnage voluntarily. Semifinished steel for reinforcing bar production is in small supply and hampers produc tion. An instance is an eastern mill with a rolling of 1800 tons, with only 800 tons of semifinished avail\&ole.
Concrete bar producers are asking designers to specify bars not

${ }^{6}$ First, DBL gives you performance as good or actually better that 18-1-1 High Speed Steel. Second, you use exactly the same heat-lreating equipment-nothing new to learn or buy!"

And what's more, DBI, High Speed Steel helps to protect you against possible alloy shortage-it contains less than one-third as much tungsten an 18-1-1. Aso, it costs less and is lighter than 18-1-1 . . . you get more pounds per dollar and more tools per pound.

There's at least 5 WAYS (count 'em) that DBL. High Speed Steel can benefit you-against no disadvantages. - Write for our new "Handbook of Special Steets" -it contains valuable techinical data on DBI, and other A-I products. Just ase the coupon belone.

ALLEGHENY LUDLUM
 stefl corporation

Allegheny Ludlum Steel Corporation Ollver Building, Pitfsburgh, Penna.

Send me a copy of your "Handbook of Special Steels."

NAME

COMPANY
ADDRESS
less than $1 / 2$-inch in diameter, to assist in production of this material. A much larger tonnage of larger sizes can be produced in the same time and slight change in design obviates use of smaller sizes.

REINforcing steel awards
7600 tons, army work at Hermiston, Oreg., to Calumet Steel Co., Chicago, for rall steel.
3000 tons, small arms plant, Salt Lak: City, Utah, for government, to Colorado Fuel \& Iron Co., Denver, through Colorado Builders Supply Co., Denver: Broderick \& Gordon, contractors.
2000 tons, army air base, Oklahoma City, Okla., to Sheffield Steel Corp., Kansas Clty, Mo.
1700 tons, flood wall, Jeffersonville. Ind.,
for U. S. Engineer, to Laclede Steel Co. St. Louis; Robert R. Anderson, contractor.
1200 tons, army picric acld plant, Marche, Ark., to Laclede steel Co., St. Louis; Cities Service Defense Corp., contractor.
foo tons, grain elevator, Minneapolis, to Laclede Steel Co., St. Louis; JonesHettelsatter Co., contractor.
G00 tons, additional facilities, Fort Belvolr, Va., to Rosslyn Steel \& Cement Co., Rosslyn, Va.; Charles H. Tompkins Co., Washington, contractor.
500 tons, army depot, suburban district, Boston, to Bethlehem Steel Co., through T. Stuart \& Son Co., Watertown, Mass., contractor.
500 tons, turbine plant, General Electric Co., Erle, Pa., divided between Jones \& Laughlin Steel Corp., Pittsburgh,

and Buffalo Steel Co., Buffalo; United Contractors \& Constructors, contractors.
368 tons, tunnels for bomber plant, Ford Motor Co., Ypsllanti, Mich., to Great Lakes Steel Corp., Detrolt, through Concrete Steel Fireproonng Co.
350 tons, miscellaneous buildings, air station, Lakehurst, N. J., to Truscon Steel Co., Youngstown, O.; Duffy Construction Co., New York, and KarnoSmith Co., Trenton, contractors.
350 tons, Indian hospital buildings, Tacoma, Wash., to Truscon Steel Co, Youngstown, O.; L. H. Hoffman, Portland, Oreg., contractor.
315 tons, six warehouses, Camp Stanley, Texas, to Brandt Iron Works, San Antonio, Tex.; H. B. Kilstofte, San Antonio, contractor.
300 tons, Atmospheric Nitrogen Co., ammonia plant, to Truscon Steel Co., Youngstown, O .
270 tons, mesh, air lleld runways, Westover neld, Chicopee, Mass., to American Steel \& WIre Co., Worcester, Mass.
250 tons, warehouse, General Foods Inc., Dorchester, Mass., to Bethlehem Stee] Co., Bethlehem, Pa.; Nicholson Co. contractor
230 tons, building Jewel Food Stores, Barrington, Ill., Includes 90 tons bars and 140 tons wire mesh, to Joseph T. Ryerson \& Son Inc., Chlcago; DahlStedman Co., Chicago, contractor. tor.
215 tons, warehouse, Jewel Food Stores, Chicago, includes 70 tons bars and 145 tons wire mesh, to Joseph T. Ryerson \& Son Inc., Chicago; Dahl-Stedman Co., Chicago, contractor
200 tons, paving, Lyons county, Iowa, to Sheffield Steel Corp., Kansas City, Mo.; Western Contracting Corp., Sloux Clty, Iowa, contractor; blds July 29.
180 tons, paving, Decatur county, Iowa, to Sheffield Steel Corp., Kansas City. Mo.; Booth \& Olsen Co., Sioux City. Iowa, contractor; bids July 29.

175 tons, bullding, Draper Corp., Hopedale, Mass., to Truscon Steel Co., South Boston, Mass.

170 tons, six double warehouses, Augusta Arsenal, Ga., to Bethlehem Steel Co., Bethlehem, Pa.; A. Farnell Blair, Decatur, Ga., contractor.
150 tons, mesh, additional faclities, Fort Devens, Mass., to Truscon Steel Co., South Boston; bars, previously reported as 550 tons, to Bethlehem Steel Co.; Matthew Cummings Co., Cambridge, contractor.
100 tons, school, Sisters of Charity, Royal Oak, Mich., to Jones \& Laughlin Stee! Corp., Pittsburgh, through Taylor \& Gaskin; J. A. Utley, contractor.
100 tons, Oberlin College physics laboratory, Oberlin, O., to Hausman steel Co.; Cleveland Construction Co., contractor.
100 tons or more, as needed thus far, section base, Bureau of Yards \& Docks, Navy Department, Burrwood, La., to New Orleans Materials \& Equipment Co., New Orleans; W. Horace Williams Co., New Orleans, contractor.

CONCRETE BARS COMPARED

Tons
Week ended Aug. 23
1.523

Week ended Aug. 16
21,530
Week ended Aur 9 7,061
This week, 1940................ . . 8,509
Weekly average, 1941.
Weekly average, 1940.
Weekly average, July, 1941.
Total to date, 1940 12,503

Tctal to date, 1941.
Includes awards of 100 tons or more.

36,000 tons, natlonal defense work in various parts of Paclifc Ocean; bids being taken by Pacifle Naval Constructors, Alameda, Callf.
1500 tons, air base, Weymouth, Mass.
5000 tons, sewage project, Queens, N. Y.; blds in.
4000 tons, PWA central heating plant, Washington.
700 tons, S. E. Kramer junior high school, Washington.
675 tons, additional buildings, Bridgeport Brass Co., Bridgeport, Conn., Stone \& Webster Engineering Corp., Boston and New York, contractor.
600 tons, power plant, Potomac Electric Power Co., Washington; Stone \& Webster Engineering Corp., Boston, contractor.
590 tons, contract No. 6, Manhattan tunnels, New York.
575 tons, buildings, Sperry Gyroscope Co., North Hempstead, N. Y.; Stone \& Webster Engineering Corp., Boston, contractor.
400 tons, flood control dike, Hartford, Conn.; A. I. Savin Construction Co., Hartford, contractor.
300 tons, Burroughs Adding Machine Co. plant, Plymouth, Mich.
140 tons, building, Continental Can Co., Mankato, Minn.
140 tons, bridges, Bradford county, Pennsylvania; blas to state highway department, Harrisburg, Pa., Aug. 29.
121 tons, sea wall, Rock Island, Ill., for state division of waterways; McCarthy Improvement Co., Davenport, Iowa contractor.
120 tons, Racoon creek reservoir, Centralia, Ill.
100 tons or more, Entiat river 170-foot bridge, Chelan county, Washington new bids soon to county commissloners.
100 tons, 100,000-gallon water storage tank; bids to W. C. Read, clerk, Bucoda, Wash., Aug. 25.
100 tons, including sheet steel piling and other items, 160 -foot continuous rein forced concrete bridge, Curry county, Ureg.; bids to bureau of roads, Portland, Oreg., Aug. 27.
Unstated tonnage, chip and oil house, airplane engine plant, Studebaker Corp., South Bend, Ind.; bids Aug. 26.

Pig Iron

Plk Iron Prices, Page 9 g

As a rule pig iron melters have small stocks and many depend on regular shipments to maintain operations. In spite of this close situation few interruptions to production are reported. Books for September shipments have been closed, such orders being subject to approval at Washington. Setting up of the reserve pool has elicited a number of orders from other than regular customers under the emergency allotment. August shipments are heavy and few furnaces have much reserve stock. October schedules must be filed with suppliers E. 5 and at Washington Sept. 15. Effect of heavy machine tool production is being felt in increased priority demand in New England, Sincinnati and other points.
Study of the September questionproportion of a surprisingly large and it anpears high priority ratings and it appears likely supplies for non defense purposes will be small. will be melters with larger stocks wreely. forced to use these more freely. In some cases foundry melt
will be curtailed to match available iron.

Shipments of southern iron in August have been larger to northern users, suppliers apparently trying to ship all old orders by Sept. 1. Tennessee Coal, Iron \& Railroad Co. has relighted its No. 2 stack at Ensley, Ala., after relining.

In the Buffalo district a shortage of freight cars has interfered some. what with prompt shipment, though not seriously.

Colonial furnace, recently acquired by United States Pipe \& Foundry Co., Burlington, N. J., is expected to go into blast soon after Sept. 15. This stack is included in the priority regulation and it is pos. sible some of its product may be diverted to general use.

Scrap

Serap Prices, Page 98

A substantial body of sentiment is developing in the scrap industry that present ceiling levels are too low to make possible reclaiming a large portion of potential scrap outside consuming districts. While the industry believes prices should be regulated it also knows that scrap will be gathered and prepared only when some profit can be made, which is impossible under present circumstances in the case of much material which would be processed at a slightly higher level. Experience has shown that on a rising market every dollar of increase brought scrap from a wider area and every decline circumscribed the

AlRCO) No. 10 RADIAGRAPHS RIDE SMOOTHLY ON

TORRINGTON NEEDLE BEARINGS

ANTI-FRICTION TORRINGTON NEEDLE
BEARINGS, on the driving wheel assembly of Airco No. 10 Radiagraphs, help assure efficient operation of these gas cutting machines, used for making smooth, clean cuts and bevels in steel. "Torrington Needle Bearings insure ample bearing lubrication for long periods. after installation and insure long bearing life," say Air Reduction engineers.

THE SMALL O. D. OF NEEDLE BEARINGS helps reduce size and weight of surrounding parts. They give low coefficient of friction, yet occupy no more space than plain bushings. The Needle Bearing units are installed by a quick, simple press fit on an ordinary arbor press. Both initial and installation costs are surprisingly low.

Your product, too, may be improved by the unusual features and economies of the Torrington Needle Bearing. Our Engineering Department will be glad to assist you in planning its use. For full information write for Catalog No. 110. For Needle Bearings to be used in heavier service, write our affliate, Bantam Bearings Corporation, South Bend, Indiana, for Booklet $1 \circ 3 \mathrm{X}$.

THE TORRINGTON COMPANY, TORRINGTON, CONN., U. S. A. ESTABLISHED 1866
Makers of Needle and Ball Bearings
New York Boston Philadelphia Detroit Cleveland Chisago London, England
territory which could ship at a profit.
Considerable scrap is moving outside, normal market channels in direct deals between consumers and steel mills and sales by railroads $t 0$ melters on their lines. This has resulted in disrupting usual channels and prevents some users from obtaining supplies from their established sources. Under steel priorities finished steel consumers no longer can trade scrap accumulations for preferred delivery and scrap brokers believe this will tend to enlarge tonnage moving through the open market.
Electric furnace operators in the Pittsburgh district find the situation much easier since the ceiling
on low phos grades has been raised $\$ 1.75$ per ton. Probably this fact has diverted some of this grade from other consuming points, caus ing corresponding shortage there. Lack of electric furnace scrap in the Pittsburgh district has been noted for several months and in some cases production has been curtailed. While there still is some difficulty in obtaining alloy scrap the flow of low phos is satisfactory, though it is not possible to build any surplus for safety.

Foundries are principal sufferers as cast grades are in light supply and new pig iron regulations have tended to intensify difficulties. Plants without priorities are having little success in obtaining either ma-

Matheus CAN HELP YOU Speed

 PRODUCTION- Today - the call to arm demands speed... and more speed. Mathews has had over a quarter of a century of experience working with the steel industry. That experience is available to you today.

One of 30 Mathews experienced Field Engineers is near you with ready and able service.

INCREASED CAPACITY FOR NATIONAL DEFENSE
Our plant capacity has been increased over 65% to care for the rising demands of the National Defense Program - plus the normal demands of peacetime production.
All orders, whether subject to Defense priorities or not, are given the same helpful care and attention that have always marked our dealings with prospects and customers in the past.

MATHEWS CONVEYER COMPANY

 142 TENTH ST.Field Engineers and Sales Offices located in 30 Industrial Centers.
terial. Numerous instances are met of curtailed foundry production and hand-to-mouth operation, as scrap becomes available, is the rule in the case of many castings manu"acturers.
In the Buffalo district most steel. makers have sufficient stocks to assure capacity operations through the summer but have only about one-fourth of what is regarded as a safe reserve to carry through the winter at a high rate of melt.

Canvass of various districts develops that dealers are not hoarding scrap, all available tonnage being prepared and shipped as rapidly as possible. The choke point apparently is largely in small collection of country scrap, dealers in all centers reporting receipts from this source are much below requirements.

Pacific Coast

San Francisco - Flow of scrap from outlying districts continues practically at a standstill and shortage has become more acute. A movement is under way to obtain large quantities of steel rails from obsolete railroads and from lines that are practically in bankruptcy or operating at a loss. While no definite appraisal has been made regarding the tonnage that can be obtained in this way, it is roughly estimated that over 100,000 tons are available.

Demand for plates continues unabated and awards aggregated 73 , 026 tons, bringing the total to date to 497,524 tons as compared with only 54,907 tons for the corresponding period in 1940.

Movement of cast iron pipe continues strong and demand for lots of less than 100 tons from distributors' stocks is far in excess of material actually at hand.
Pittsburgh-Des Moines Steel Co. submitted the only bid for 10,000 tons of shapes for a wind tunnel at Moffett Field, Calif., 40 by 80 feet, at $\$ 6,164,320$. Other concerns submitted bids on a cost-plus, fixed fee basis.
The largest reinforcing bar award went to Calumet Steel Co., 7600 tons for army work at Hermiston, Oreg. Awards totaled 8127 tons, bringing the year's aggregate to 96,350 tons, compared with 117,192 tons last year. An inquiry is in the market for 36,000 tons for national defense

[^6]projects located in various parts of the Pacific Ocean and Pacific Coast producers evidence little interest.

Seattle-Leading steel fabricators are refusing to quote, as practically the entire capacity is allocated to defense jobs. Present anxiety is to clear away the backlogs. For these reasons, inquiries have dropped and important tonnages for non-defense work are going begging. Seattle has postponed a 220 -ton steel pipe project until priorities are settled, when new bids will be called.
Lack of intercoastal space is diverting shipments to railroads at increased cost to the buyer. To illustrate, there was a difference of $\$ 1727$ in bids to Seattle for 150 tons of 8 -inch cast iron pipe, with fairly prompt delivery, overland and an uncertain date by water.

Foundries are operating at capacity and find it difficult to obtain either pig or cast iron scrap. Foundry grades of pig iron are scarce and plants have to be content with basic iron with low silicon content to which ferrosilicon is added. The market anticipates increased government control. The coke situation is also tight, supplies coming both from Fernie, B. C. and eastern ovens.

The scrap situation is confused and requires official adjustment. Materials collected in Idaho and Montana, ordinarily tributary to the coast, are moving to eastern centers because of the higher base price and a differential in the freight rate. Existing conditions have thus upset the usual channels. In addition, lo cal dealers have to compete with California. Consequently supplies of both cast iron and steel are below requirements. Dealers state that matter's have been complicated by purchases direct from collectors by some leading buyers, adding that increased supervision of the market is necessary to stabilize conditions.
Associated Shipbuilders, Inc., Seattle, has bid $\$ 1,495,000$ for six of sixteen, 12,800 -barrel tankers, pronnsed by the Maritime Commission. The local firm plans to establish a yard at fortland if awarded this contract
Cast iron pipe is moving as fast as agencies can get fabricators to accept orders.

Jobbing houses report scarcity of some items. Replacements are being made as rapidly as possible, higher prices prevailing, due to shipment overland. Everything in stock is in strong demand and warehouse Stocks are at the lowest
months.
montis.

Coke By -Products
Coke By-Product Prices, Irage 95
Heavy production of coke oven by-products is moving into consumption against contracts with practically no spot material available. With demand for plastics notably strong, distributors of phenol defense proting supplies or covering defense priorities, but few are in a position to take on additional commitments. While household de-
mand for naphthalene is seasonally light, the slack is more than made up by industrial and chemical requirements and there is no surplus to cover spot needs even in small lots, the same applying to distillates.

Canada

Toronto, Ont.-Proposals are under discussion by government and industrial leaders regarding further curtailment in civilian uses of steel, with the object of making available substantially larger tonnages for the war effort. It is generally conceded that stocks in hands of consumers and warehouse operators
will be frozen to make them available for war industry, and also stiffening in the war priority regulations. The government has placed its problems directly in the hands of the leading steel producers and it is stated that numerous other interests are co-operating.
Despite drastic shortage of steel to meet all demands for war materials production, there is no indication that the government plans to suspend or even curtail new contracts. On the contrary there appears to be general speeding up, with recent awards largest since the outbreak of war. Rapid prog. ress is being made towards increased production of iron and steel

We are proud of the close tolerances to which ERIE products are machined; the various types of lorgings manufactured at our works must be machined to astounding tolerances, particularly because of rigid defense specifications. Builders of ships, engines and machinery are swinging to ERIE products more and more every day: they reason in this fashion: ERIE FORGE COMPANY concentrates on steel castings and forgings-they have a wealth of experience-their work is of a superior quality-they take personal pride in workmanship-through the years every client has reported that ERIE installations have insured satisfactory operation.
INGOTS - BILLETS - CASTINGS - FORGINGS

> ERIEFDREE[D ERIE , PENNSYLVANIA

.-) by furnishing him with BISCO Alloy and Tool Steel t) bing that meets your exacting requirements for such tyams as ring dies, bushings, forming rolls, etc. With the
right combinations of insid. and outside diameters spockey for immediate shipment, long, costly hours of lathe Work po solid rounds afe no tonger necessary. Let ustugl youlpur current stock and price lisi on BISCO Alloy and Toot s.ee Fubing.

900 EAST 67th STREET, CIEVELAND, OHIO
by Canadian mills, but against this is a greater expansion in secondary industry for which steel will be the most important raw material.
During the past week the Department of Munitions and Supply announced shipbuilding contracts totaling upwards of $\$ 40,000,000$, which with contracts previously placed, will keep Canadian builders at capacity for the next two years. Already all Canada's production of plates has been contracted to the year end.

Canadian sheet producers are out of the market, with books fully loaded to the end of the year. With Canadian producers turning down contracts consumers are turning to United States sources of supply. It is stated that civilian consumers are unable to close contracts and practically all new committments are directly associated with war effort.

Orders for merchant bars are heavy and mill representatives state that only small tonnage now is available for this year's delivery Steel bar consumption is expanding and inquiry is developing from a wide variety of sources.

Merchant pig iron sales are well sustained, but show little improvement, due to supply rather than demand. Consumers are clamoring for foundry and malleable iron, which blast furnace operators are unable to supply. Producers are maintaining deliveries at about 4000 tons weekly, against consumers requirements of about three times this rate.

Further tightening of cast scrap is creating serious problems for foundry melters. Dealers report slowing down in offerings in the Toronto area, and more difficulty in making purchases in the United States. Supply of steel scrap is good and dealers are maintaining normal deliveries to mills and electric furnace interests. However the supply is not equal to all consumurs' demands.

Tin Plate

Tin llate Prices, Pare 94

Tin plate output remains unchanged at 94 per cent of capacity. Mills have not yet been threatened with interference to production as a result of priorities, and except for nonintegrated mills, of which there are few, tin plant operators are not worried.

Needs for packers' cans, which account for 90 per cent or more of their business, probably will be taken care of. Users of general line cans, and tin plate for miscellaneous applications may not be so fortunate, and are beginning to show some concern. This is taking the form of heavier ordering, which is ineffective, since shipments are being made at the limit of capacity to produce and further buying merely increases backlogs. The ironical side of this situation is that many users of tin plate in miscellaneous applications have only recently swung to this material from galvanized sheets or some nonferrous
material on which they have been forced out by defense needs.

Negotiations are proceeding for an additional purchase of tin plate for Great Britain and the empire, covering first half. Material under this agreement is for shipment to all points in the empire as well as to South American countries packing food for Great Britain.

Steel in Europe

Forelign Steel Prices, Page 97

Londen-(By Cable)-Production of steel and iron in Great Britain continues at satisfactory rate, with some departments quieter, including structurals, black and galvanized sheets and tin plate. Demand is in creasing for heavy plates, shipbuilding materials and alloy steels. The hematite iron situation is slightly improved. Exports of tin plate are light and domestic business is moderate. All exports to Japan have been stopped, except under speciai license.

Iron Ore

Iron Ore l'rlees, Page 07

Consumption of Lake Superior iron ore in July set an alltime record at $6,497,442$ gross tons. Next largest figure was reached in March with $6,411,531$ tons. The July figure compares with $6,231,067$ tons in June and with 5,523,595 tons in July, 1940. Cumulative consumption to Aug. 1 was $43,178,525$ tons, compared with $32,856,261$ tons in the cor responding period last year.
Total ore at furnaces and on Lake Erie docks Aug. 1 was $31,597,386$ tons, compared with $26,629,670$ tons a month previous and $28,244,060$ tons a year ago. At present rate of consumption estimated shipments of $75,000,000$ to $78,000,000$ tons for the season will be no more than suificient to carry over to the opening of navigation in 1942 . With new blast furnace capacity probably in service about the end of the year the situation next spring may be tighter than it was at the opening of navigation this year.

Equipment

New York-Machine tool delivery schedules are being revised under the priority ruling effective Aug. 15 , some shop equipment being moved ahead of originally scheduled tools and others are diverted in order of importance under the defense program by OPM. For the time numerous machines for the navy are be. ous machines for the navy are be ing given preference as to deliveries, this policy filtering through to buld. ers of instruments and other equip.路 Tremendous orders for the are hanced aircraft engine program are being assembled, and, although relatively limited purchases have been approved or allocated, bookings for engine builders are increasing. New England builders of grinding machines have booked substantial or. ders for Pennsylvania shops starting or increasing the production of
aircraft engines. Tooling for new bomber engine facilities is under the supervision of Wright Field, Dayton, O. Steel, motors and other supplies covered by top priorities are moving in sufficient volume to machine tool builders to maintain growing production. As the result of widespread expansions steadily getting into production, shipments of machinery mount monthly, but sustained defense needs and unprecedented orders hold backlogs to the highest peak in the history of the industry.

Riddlesburg, Pa., Stack
 To Be Relighted Soon

- Riddlesburg Coal \& Iron Co., Riddlesburg, Pa., has been incorporated to take over and operate the former Colonial blast furnace in that city. The new company is a wholly-owned subsidiary of the United States Pipe \& Foundry Co.
Officers are: Chairman of the board, N. F. S. Russell; president, Thomas W. Kennedy; plant manager, Frank J. Kennedy; secretary and treasurer, Don H. Tyson; traffic manager, J. K. Hiltner.
Company will mine its own coal and operate on coke produced in its own ovens. Expectation is that the furnace, now undergoing repairs, will be lighted about Oct. 1.

NAM Institute Studies
 Defense Labor Problem

- Impact of repeated strikes, continued pressure of union leaders for closed shops and inability of feder al machinery to curb losses running into millions of man days on defense projects were studied and discussed at a summer institute of employment relations last week. Sponsored by the National Association of Manufacturers, New York, and Vermont University, the institute was held at Burlington, Vt.
Launched a year ago, the summer institute is said to be a new method of studying and improving industrial labor practices. Walter D. Fuller, NAM president, and president of Curtis Publishing Co., Philadelphia, reported more than 200 leading American corporations were represented. Outstanding industrialists and educators attended the ses-
sions.

Exports of Farm Tools Decrease 12 Per Cent

图 Exports of farm implements and

 machinery in June totaled $\$ 6,345$,409, down 12 per cent from $\$ 7,179$,482 in the month in 1940, according to the Department of Commerce. Shipments abroad in the first six months aggregated $\$ 40,841,144$, compared with a total of $\$ 40,841,144$, com-the corresponding period last year.
Foreign sales of tractors, parts and accessories were valued at \$4,923,089 in June, 12 per cent above $\$ 4,414,809$ for the month in 1940. Tillage implement exports totaled $\$ 462,171$, more than 40 per cent lower than shipments of $\$ 788,038$ in June last year.

Exports of harvesting machinery in the month declined 60 per cent to $\$ 571,896$ from $\$ 1,483,252$ in June, 1940. Miscellaneous types of farm equipment exported were valued at $\$ 388,253$, against $\$ 493,383$ in the month a year ago.

Steel \& Wire To Double Duluth Coke Output

- American Steel \& Wire Co., United States Steel Corp. subsidiary, is rehabilitating the idle half of its 90 -oven by-product coke plant at Duluth. When all units
are in operation about Sept, 10 the plant will produce about 35,000 tons of coke per month, the additional tonnage to be shipped to Chicago units of Carnegie-Illinois Steel Corp. The ovens are of 12%. ton capacity.

Nonferrous Metals

New York - Government control over nonferrous metal markets was extended last week and additional regulations pend as demand for all nonferrous metals continues to exceed estimates.

Copper - Price Schedule No. 20 was issued, establishing a ceiling on copper scrap prices, effective Aug. 19. Top prices at which makers may sell were fixed on the basis of 10.00 c for No. 1 heavy in lots under 20 tons and 10.50 c in lots over 20 tons, delivered buyer's plant or warehouse. Maximum sale price by any other person was fixed at 10.75 c with no quantity differential. Partial

In this period of emergency, when Na tional Defense takes precedence, many find it possible to use new production standards on new or substitute materials.

We know from experience that many users of shaped wire have been able to adapt standard production shapes to replace shapes that require special mill runs.

The shapes shown above suggest a few of the many which are standard that Page turns out-widths up to $3 / 8^{\prime \prime}$ and end section areas to approximately .250 square inches.

PAGE STEEL AND WIRE DIVISION

 monessen, pennsylvaniaIn Business for Your Safety

PAGE hi-tensile "F"
High speed welding, a shield-arc type elec
trode for vertical, horizontal or overhead.

PAGE HI-TENSILE "C" A shield-arc type electrode for maximum and uniformity-vertical, horizontal or overhead welding.

PAGE-ALLEGHENY

STAINLESS
Shield-arc type electrodes from which you can select one that will welds that equals the
stainless you weld.

Nonferrous Metal Prices

Aus.	Electro, del.	$\begin{gathered} \text { Lake, } \\ \text { del. } \end{gathered}$	Castin	Straits Tin,		Lead	$\begin{aligned} & \text { Lead } \\ & \text { East } \\ & \text { St. L. } \end{aligned}$	$\underset{s t .}{2 \operatorname{lnc}}$	$\begin{aligned} & \text { Alumi- } \\ & \text { num } \\ & 99 \% \end{aligned}$	Anti. mony Amer. Spot. N.Y.	Nickel Cathodes
	Conn.	Midwest	refir	Spot	Futures						
16	12.00	12.00	11.75	52,00	51.50	5.85	5.70	7.25	17.00	14.00	35.00
18	12.00	12.00	11.75	52.00	51.50	5.85	5.70	7.25	17.00	14.00	35.00
19	12.00	12.00	11.75	52.00	$51.62^{1 / 2}$	5.85	5.70	7.25	17.00	14.00	35.00
20	12.00	12.00	11.75	52.00	51.75	5.85	5.70	7.25	17.00	14.00	35.6
21	12.00	12.00	11.75	52.00	51.75	5.85	5.70	7.25	17.00	14.00	35.00
22	12.00	12.00	11.75	52.00	52.00	5.85	5.70	7.25	17.00	14.00	35.00

F.o.b. mill base, cents per lb. except as specified. Copper brass products based on 12.00 c Conn. copper

Sheets

Yellow brass (high)	19.48
Copper, hot rolled	20.87
Lead, cut to jobbers	9.10
Zinc, 100 lb . base	12.50
Tubes	
High yellow brass	22.23
Seamless copper	21.37
Rods	
High yellow brass	15.01
Copper, hot rolled	17.37
Anodes	
Copper, untrimmed	18.12
Wire	
Yellow brass (high)	19.73

OLD METALS

Nom. Dealers' Buying Prices
No. 1 Composition Red Brass

New York	. 25
Cleveland	.10.50-10.75
Chicago	9.25-9.50
St. Louls	9.50

Heavy Copper and Wire
New York, No. 1
10.00

Cleveland, No. 1.
10.00

New York $9.2 \overline{5}$

5.50-5.75
5.75-6.00
5.75-6.00

Cleveland Chicago St. Louis

Light Brass
New York
Cleveland
Chicago
5.00-5.25

Cleveland
4.75-5.00

St. Louis

.,	5.00-5.25
	4.75-5.00
.	4.75-5.00
	.4.50-4.75
Old Zinc	
	4.50
	4.00-4.12 ${ }^{1 / 2}$
	4.50-5.00

Aluminum

clips, pure
10.00

SECONDARY METALS

Brass ingot, $85-5-5-5,1$. c. 1.
Standard No. 12 aluminum.
13.25 16.00

\star SOLDIERS BEHIND THE LINES KENNAMETAL
 Base Facing Tools for Machining 75 mm . Shells

Foremost in the present Defense effort are the Nation's machine shops . . busy turning rough forgings and castings into finished parts for guns, shells, tanks, planes, ships, and other armament. And vital to inereased machine shop production are KENNAMETAL steel-cutting carbide tools. For KENNAMETAL iurns, bores, and faces steel of all hardness up to 550 Brinell at three to ten times faster speeds than high speed steel... increasing machine fool production from 30 to 50%.

Standard and Modified Standard KENNAMETAL fools are now shipped within 10 days of receipt of orderi standard blanks within 3 to 4 days. On unusually large orders, partial shipments are made within the above times. Some standard KENNAMETAL fools (supplied in grade KM only) are now corried in stock for immediate delivery. Write for details.

or even complete priority on fabri cated products is a strong possibility.

Lead-OPACS and other government agencies are considering meth ods that will act to release hoarded lead scrap and ceiling prices may be fixed well below current levels. De. spite the warning that high scrap prices must be lowered, no reductions were reported last week. Refined lead stocks at the end of July totaled only 19,172 tons, a new low.
Zinc - Quantities of zinc which producers must set aside for the September emergency pool were set at 27 per cent of July output. Sell ers' unfilled orders continue to decline as shipments exceed fresh sales.

Tin-Offerings of Straits tin for nearby delivery at the maximum OPACS price of 52.00 c remained light. In an effort to ease the tight situation Metals Reserve Co. announced that it would release a moderate tonnage from its reserves for immediate delivery

Aluminum-Price of virgin aluminumingot will be reduced two cents a pound to the basis of 15.00 c for ninety-nine per cent plus on all shipments made after Sept. 30. Prices for fabricated aluminum will also be reduced at least two cents per pound and in some cases the reduction will be more. Scrap and secondary aluminum prices are expected to be adjusted downward in line with the primary market.

Defense Contracts

(Concluded from Page 42)

Co., Kansas City, Mo., Walker-Turner drill presses, Aircraft assembly plant, Kansas City, Kans., \$5487.01.
Fairbanks, Morse \& Co., Boston, equipment for Warren street pumping station, West Springfleld, Mass., Connecticut river flood control project, $\$ 40,986$.
Fairchild Aviation Corp., Jamaica, N, Y., stereocomparagraph and mirror stereoscopes, \$47,198.40.
Flour City Ornamental Iron Co., Minneapolis, ponton sets, $\$ 725,816$
General American Transportation Corp., Chicago, railroad cars, $\$ 36,624$.
General Motors Corp., Chevrolet Division, Detroit, trucks, Valdosta, Ga., Moultrie, Ga., and Sebring, Fla., airflelds, $\$ 8393.16$.
Gibbons, Boyd H., Los Angeles, station wagons and pickup trucks. Los Angeles engineer district, $\$ 17,727.55$.
Haffner-Thrall Car Co., Chicago, rallroad cars, $\$ 29,424,45$.
Hagerman Construction Co., Ft. Wayne, Ind., radio station building, Ft. Wayne airfleld (Ваег Field) Indiana, $\$ 4909$.
Hercules Powder Co. Inc., Wilminghon, Del., blasting machines and galvanometers, \$7912.50.
Hobart Mrg. Co., Troy, O., puree mixers. Jefferson barracks, Missourl. \$54.55.60.
Hughson, Wm. L., Co., San Franetsco, station wagon body type trucks. Morfet Reld, Callfornia, $\$ 6769.63$
illinois Range Co., Chicago, miscellane ous kitchen equipment, Biloxi, Miss. S23,496.
Independent Pneumatic Tool Co., Chicago, accessorles for air compressor, \$4437.40.
Keating, Daniel J., Co., Philadelphia, boiler houses and steam distribution systems, Scott tleld, Ininols, $\$ 269,000$.
Kieraber, W. H., Co., Dayton, O., vacuu pumps, $\$ 4049.99$.
Jones \& Laughlin Steel Corp., New Or leans. door assemblies, Including

KEEP RACKS ON THE JOB!

UNICHROME*
 "AIR DRY"

RACK COATING

As good as new after hundreds of plating cycles!

Right now, when platers and equipment are under pressure to produce to the limit of capacity-Unichrome "Air Dry" Rack Coating has proved the solution to one vital problemtoo frequent recoating of racks.
Because this new material has an unequalled combination of advantages, racks coated with it stand up longer, even in severe plating cycles -are unaffected by alkaline cleaners, acid dips, and plating solutions. And out-of-service time is cut to a minimum because of the speed and ease with which Unichrome "Air Dry" Rack Coatings are applied. Racks are dipped in the shipping container-the material dries at room temperatures.

Here are the seven big timeand money-saving advantages at a glance:
INSOLUBLE-withstands hot cleaners and all plating solutions
SAFE-contains no ingredients harmful to plating solutions
TOUGH-withstands wear and tear of handling
FLEXIBLE-withstands repeated flexing and bending
DURABLE-reduces the need for $r=0$ coating
CONVENIENT-any part can be patchod without recoating the entire rack
EASILY APPLIED-dipping is done in the consainer in which is is ship-ped-the material dries at room temperature.
Address requests for further inforoffice below.

UNITED ChROMIUM INCORPORATED

51 East 42nd Street, New York, N. Y
2751 E. Jefferson Ave. Detroit, Mich. Waterbury, Conn.

Traile Mark
Reg.U.S. Pat. or

hangar doors, $\$ 9290$.
Link-Belt Co., Chicago, coal handing equipment, Chanute fleld, Rantoul, Ill., $\$ 3977$.
Machine Tool \& Supply Co., Tulsa, Oklat, metal shapers, hydraulic surface grlnder, sllding geared head engine lathe, aircraft assembly plant, Tulsa, Okla., \$26,687.12.
Maine Steel Inc., South Portand, Me, anchors, $\$ 8078.40$
Mapel, Jchn T., Mlami Beach, Fla., construction and installation of basic lighting system, South Dade counts airport, Homestead, Fla., $\$ 12,600$
Market Forge Co., Everett, Mass., steam ers, Jefferson barracks, Missouri, $\$ 6456$.
McGrath Welding \& Machine Works. Omaha, Nebr., shect metal shrinkine machines, lazy arm standards, Alrcraft assembly plant, Ft. Crook, Nebraska, $\$ 5458$.
Mora, Gerald, Houston, Tex., underground magazines, Ellington neld, Houston, Tex., \$29,718.22,
Mosher Steel Co., Dallas. Tex., structural steel for air corps hangars, AviaLlon Mechanics' school, Wichita Falls, Tex., \$313,655.
New York, Chicago \& St. Louis Rallroarl Co., Cleveland,. rails and ties, Army air corps airport, Allen county, Indiana, S8313.49.
Outboard, Marine \& Mrg. Co., Johnson Motors Dlvision, Waukegan, Ill., outboard motors, $\$ 23,470,20$.
Pacifle States Cast Iron Pipe Co., Ironton, Utah, pipe and flttings, Hill fleld, Ogden, Utah, \$9013.29.
Pittsburgh-Des Moines Steel Co., Dallas, Tex., 400,000-gallon clevated steel water tank, Lake Charles airport, Louislana, \$45,230; elevated steel water tank, Midland fleld, Texas, $\$ 52,520$.
Plumb, Fayette R., Inc., Philadelphia, hand tools, \$4840.50.
Savory Inc., Newark, N. J., electric toasters, Jefferson barracks, Missouri, $\$ 4075$.
Smith Booth Usher Co., Los Angeles, universal back geared metal shapers, aircraft assembly plant, Tulsa, Okla. $\$ 4730$.
Somerville, Thos., Co., Washington, miscellaneous pipe and fittogs, Washington National airport, Gravelly Point. D. C., 57113.88.

Southwestern Fence Co., Houston, Tex.. boundary fence, Ellington fleld, Houston. Tex., \$18,672.
Sperry Gyroscope Co., Brooklyn, N. Y., searchlight units, $\$ 5,464,450$.
Sutton, James R., New Orleans, strurturaj steel for control tower, Lake Charles, La., \$3680.
Traller Co. of America, Cincinnati, semitrailers and dollies, \$265,789.88.
Travelcar Corp., Detroit, semitrailers. \$73,080.
Truscon Steel Co.. New Orleans, steel windows, aviation mechanies training school, Biloxi, Miss., \$835s.
United Steel Fabricators Inc., Wooster, O., steam tunnel cover plates, $\$ 4388$.

Upson-Walton Co., Cleveland, boat hooks and ponton oars, \$10,749.76.
Volker Bros. Inc., Buffalo, N. Y., lighting system, Tri-Cities airport, Endicolt, N. Y., $\$ 10,467.74$.

Warren Pipe Co. of Mass. Inc., Boston, cast iron pipe, bell and spigot, Westover fleld, Chicopee Falls, Mass. \$4671.20.
Washington Spring Works Inc., Washington, pumps, $\$ 3633.75$.
Watts, Charles R.. \& Co., Seattle, reneing, Neah Bay, Wash., $\$ 5830$.
Well Machinery \& Supply Co. Inc., F1, Worth, Tex., drill presses, bench grinders, aircraft assembly plant, Tulsa, Okla., \$17,798.75.
Winn Electrical Co., Bronx, N. Y., the basic llghting system, municipal airport No. 2, Louisville, Ky., $\$ 23,697.97$.
Worthington Pump \& Machinery Corp., Harrison, N. J., pumping station cquipment, Meadow Hill pumping station, East Hartiord, Conn., $\$ 39,196$.

by WELLMAN

Whether your aluminum rasting requirements are simple or complicated. you can rely on Wellman for production that is exact in every particalar. Our competent persomnel with 30 years' experience in aluminum plus the mosi modern equipment and new plant facilities insure precision quality.

Due to addilional plant facililies, deliveries on castings in all metals are nowe being made promplly.

CASTINGS

Dowmetral

(Magnesiam)

fluminum

Copper Silicon-lleall
Treated
Bronze
Phosphor-Manganese-
Government - Ampeo

PATTERNS

Wood or Mrial

PLATING

Copper Vieliel Chrome Send for fuotalions now.

[^7]

Millions for DEFENSE..!

\star When working on defense contracts, make sure you have a dependable source for Machine Screws - Bolts - Nuts - Rivets and Special Fastening Devices the kind you need of quality that will pass most rigid government inspection.

MACHINE SCREWS All Head Styles In Steel and Brass

Send us your speci-
fications and blueprints. Your inquiries for the necessary parts to fulfill your defense contracts will receive preferred attention.

CENTRAL

SCREW COMPANY 3517 SHIELDS AVENUE CHICAGO. ILLINOIS

Construction

Ohio

AKRON, O.-Allantle Foundry Co., 182 Beaver street. is increasing warehouse space 2500 square feet, at cost of about $\$ 3000$.

BARBERTON, O. - Barberton Foundry Co., R. Shook, 197 Huston street, manager, is adding two bays to Increase production, at cost of about $\$ 9000$.

CLEVELAND-Upson Walton Co., Clarence H. Mathews, president, which recently occupied new plant at 12500 Elmwood avenue, will add about 3600 square feet to its forge shop, 30×120 feet, with three doors and monorail. Plans are by Bonfleld \& Cumming, architects, 1900 Euclid avenue

CLEVELAND-Tube Craft Inc., 1328 West Scventy-eighth street, John Held, president, will move soon to its new plant at 1950 West 114th street. Bids are being recelved for an addition of 4000

Additional Construction and Enterprise leads may be found in the list of Shapes Pending on page 102 and Reinforcing Bars Pending on page 105 in this issue.
square feet. Company manuractures tubular furniture and bus seats and is negotiating for defense contracts.

CLEVELAND-A.E.S. Tools Inc. has been incorporated to manulacture cutting tools, with Arthur L. Wheeler, 627 Union Commerce building, a principal. Main office will be in Cleveland but plant probably will be outside.

CLEVELAND-National Acme Co. will build a plant addition at Colt road and East 131st street, to cost about $\$ 300,000$. Defense Plant Corp. will supply equipment to cost $\$ 488,000$ and will retain tille to it. The addition will cover about 45,000 square feet.

CLEVELAND-Webber Guge Co, 2517 Vestry street, George D. Webber, presi-dent-treasurer, is building a new plant of 4000 square feet at 12900 Triskett road, costing about $\$ 17,000$.

CLEVELAND-National Bron\%e \& Aluminum Foundry Co., East Eighty-eighth street, John L. Schmeller, executive vice president, will start production soon on two large defense orders. Airplane fuselage castings for North American Avialion Corp, bombers represent about $\$ 5$,000,000 and aluminum castings for Packard Motor Co. for aircraft engines represent a large amount. Heat treatment department will be expanded by 65×167. foot addition to cost about $\$ 35,000$. H. L. Vokes Co., 5300 Chester avenue, has general contract.

CLEVELAND - Cleveland Steel Toos Co., Ralph J. Venning, president. is adding 1500 square feet to a storage build ing at cost of $\$ 4000$.

CLEVELAND - Tinnerman Products Co., 2038 Fulton road, has let contract to Austin Co., 16110 Euclid avenue for design and construction of a one-story plant addition 56×150 feet, costing $\$ 40,000$. (Noted August 4.)

LORAIN, O.-Lorain Products Corp 200 Seventh street, plans a plant addition to increase output of electrical machinery. F. J. McFadden, 442 Oberlin avenue, architect, is taking bids

Connecticut

BRIDGEPORT, CONN. - RemingtonRand Inc., 1087 Rallroad avenue, has
let contract for a plant addition to Harry Marlng Jr. Inc., 536 Lindley street, Bridgeport, at estimated cost of $\$ 100,000$. (Noted August 11.)
BRIDGEPORT, CONN.-Sprague Meter Co. is having plans made for a one-story addition to cost about $\$ 45,000$, with equipment.

BRISTOL, CONN,-New Departure dt vision of General Motors Corp, is build ing a four-story addition 40×60 feet to cost about $\$ 85,000$, with equipment.
MIDDLEFIELD, CONN. - Lyman Gun Sight Corp. is building a two-story addition 45×68 reet, to cost $\$ 50,000$, with equipment.
NEW HAVEN, CONN.-Acme Wire CO is having plans made for an addition to its steam power house, to cost about $\$ 45,000$, with equipment.
NEW HAVEN, CONN.-High Standard Mifg. Co., is building a new plant, estimated to cost about $\$ 4,300,000$, financed by government funds

WATERBURY, CONN. - Scovill MIg. Co. Inc. is building a four-story addition 80×330 feet to enlarge casting shop, at cost of about $\$ 500,000$, with equlpment

Massachusetts

ATTLEBORO, MASS.-Marathon Co. is building a one-story plant to cost about \$25,000.

LYNN, MASS.-General Electric Co. Is building a plant for manufacture of reduction gears for merchant ships, to he financed by Defense Plant Corp.

SOUTHBRIDGE, MASS. - Surveys are being made for a sewage treatment plant. Greeley \& Hansen, 6 North Michigan avenue, Chicago, are englneers.

New York

LONG ISLAND CITY, N. Y.-PhelpsDodge Copper Products Co., 40 Wall street, New York, will build a furnace building extension at Meeker avenue bridge, general contract to Brown \& Matthews Inc., 122 East Forty-second street, New York, at about $\$ 150,000$.

TAHAWAS, N. Y.-Titanium Pigment Corp., 111 Broadway, New York, will build a plant, including bollerhouse, and install complete electric equipment. at estimated cost of $\$ 3,500,000$.

New Jersey

MOUNT HOLLY, N. J.-Plains Corp. subsidiary of Superior Zinc Corp., nas bought 600 acres near Chatsworth, N. J.. and is sald to be about to Install ten furnaces for reducing zinc ore.
NORTH BERGEN, N. J.-Grand City Container Corp., 622 West Fifty-seventh street, New York, has let contract to Brown \& Matthews Inc., 122 East Forty second street. New York, for a one and two-story office a nd manufacturing building, 300×800 feet, costing about $\$ 750,000$. (Noted July 7.)

Pennsylvania

ALLENTOWN, PA, - Heilman Boiler Works, 110 Linden street, will build a one-story plant unit to cost over $\$ 40,000$.

ERIE, PA.-Erle County Electric Co., Twelfth and French streets, has plans for extensions and improvements at its generating station at West Fifth and Cranberry streets, with installation of additional equipment to increase capaci19: United Engineers \& Constructors

HOT-DIP GALVANIZING PRACTICE

 By W. H. Spowers Jr.- This 200 -page book, gives full and carefully reasoned explanations of the why and wherefore of galvanizing. All the latest methods and processes are described and very copiously illustrated by a large number of diagrams 7 and photographs. 45 Illustrations- 4 Tables7 Charts-61-page Bibliography. Price Post-
paid $\$ 4.00$.

Inc., 1401 Arch street, Philadelphia, is engineer.
SHILLINGTON, PA.-Fairy Silk Mills. E. S. Jenckes, manager, will build a boiler house addition costing about \$40,000.

Michigan

ALBION. MICH,-Decker Serew Prod uets Co., E. C. Biewend, vice president. is building three plant additions, for manufacture of screw machlne products. des, tools and speclal machinery.

GLADSTONE, MICH.-Marble Arms \& Mrg. Co. has given contract to William Nelson for a one-story plant addition 40×80 feet.
greenvillle, Micil.-Federal Mogul

Corp. will build a one-story bronze foundry building 60×150 feet for manufac ture of propellers and marine equipment for the navy. Robinson, Campau \& Crowe, Grand Rapids, Mich., are architects.
JACKSON, MICH.-Pittsburgh Forging Co. has let contract to Austin Co., Detroit, for a small manufacturing addition to its plant in Jackson.

YPSILANTI. MICH.-Streicher Die \& Tool Co. is building a one-story plant $60 \times 140 \mathrm{fect}$.

Illinois

CHICAGO-Bids will be taken until Sept. 11 for ventilating equipment for State street and Dearborn street subways by Philip Harrington, commissioner of subways, 20 North wacker drive.

NoSep Lubricant is proving its worth these days in leading plantsparticularly where hardened and toughened steels are being tapped, drilled, bored, broached, pierced, threaded, etc.

NoSep has unusual lubricating and heat absorbing properties-it tends to glaze the tools and greatly increase their life.
Ready to be used as is or slightly diluted with inexpensive lubricating oils.
3B Lubricant is NoSep in base form, - to be diluted with from 1 to 8 parts of light mineral lubricating oil for many jobs. It is widely used for the most difficult jobs on steel where the lubricant may be brushed on.
WRITE FOR FURTHER INFORMATION AND OR WORKING SAMPLES

WAYNE CHEMICAL PRODUCTS COMPANY 9502 COPELAND ST.
 Established 1898
 DETROIT, MICHIGAN

CHICAGO-Wittek Mrg. Co., 4305 West Twenty-fourth place, manufacturer of hose clamps for airplanes, automobiles, etc., will build a 10,000 -square foot addition to accommodate defense business

GRANITE CITY, ILL.-Granite CIty Steel Co. mlans additional facllities for increased ingot production and OPM has been asked to certify the pregram for government linanclng

MOLINE, ILL.-City will apply to PWA for $\$ 400,000$ to inance waterworks improvements to care for added population resulting from national defense program. Included are watermalns, a 500,000 -gallon elevated steel tank and new screenheuse at pumping station.

Indiana

INDIANAPOLIS, IND. - Indianapolis Power \& Light Co. has plans for expansion and improvements in its steamelectric generaiting plant in IVarding street, including a $37,500-\mathrm{kw}$. Iurbo-gencrator unit and auxiliaries, estimated to cost about $\$ 2,000,000$. This is in addition to a simitar unlt to be completed in August.

LA PORTE, IND.-Water department. A. Buker, superintendent, has plans for extensions to the waterworks system to give capacity of $7,000,000$ gallons per day, with additional wells, huildings and equipment, to cost about sis.(0)0.

Missourì

SIKESTON, MO.-Hahs Machine Works plans erection of cne-story 60 $\times 120$-foot machine shop building, to cost over $\$ 40$,000, with equiprnent.

ST. LOUIS-McDonnell Alterart Corp. Lambert St. Louis Airport, will build a Defense Plant Corp. project covering 44,000 square feet, blackout tyje. Plans are by Palmer \& Lamdin, 1020 St. Paul street. 13allimore.
ST. LOUIS-Whitelleld Aircraft Corp.. 315 North Seventh street, has given contract to Charles Klst, 2 R01 Scuth Kingshighway, for a $60 \times 160-$ ront airplane hangar in connection with new airport in Jefferson county.

VICHY, MO.-War department has selected site here for $\$ 1,500,000$ airport protect in connection with Fort Leonaril wood, including 5500 feet of reinforced concrete rumways, hingars, shops, harracks, water, lighting and scwage disposal facilities.

Okiahoma

OKLAHOMA CITY, OKLA.- Ros Stephens Inc. will build 55 miles of 16 -ineh natural gas line from Cement, Okla., to Oklahoma Clty, including two bonster statlons, at cost of about $\$ 750,000$.

Wisconsin

BELOIT, WIS.-Yates-American Machine Co. will build a storage addition to jts plant.
GREEN BAY, WIS.-Wisconsin Public Service Commission, Bellen building, will let a cuntract soon for superstructure of an 82 x 176-foot power plant. Public Utility Engineering \& Service Co., 231 South la Salle street, Chicago, is enmineer.

Mildwalkee-A. F. Wagner Iron Woeks is building an iddition 60×90 feet.

PORT EDWARDS, WIS.-NekoosaEdwards Paper Co. has given contract to Frank Henry, Wisconsin Rapids, Wis.. or a one-story plant addition 50×200 feet.

WASHINGTON ISLAND, WIS.-Wash-
Wen Island Electric Co-operative Inc. ington Island Electric Co-oparatio REA

SUPERIOR

 STEEACORPORATIONHOT AND COLD ROLLED STRIP STEEL AND SUPERIOR STAINLESS STEELS

Successfully serving steel consumers for almost half a century

EXECUTIVE OFFICES - GRANT BLDG., PITTSBURGH, PA GENERAL OFFICES AND WORKS-CARNEGIE, PA
 PRE-FINISHED METAL CAN help you land GOVERNMENT ORDERS

LOWER COSTS Pre-finished metal elimipolishing or lacquering nates the cost of plating. polishing or lacquering your product after fabri-
cation. YOU CAN BID LOWER.
AVAILABLE IN SHEETS COILS AND FLAT WIRE
\& FASTER PRODUCTION Pre - finished you completely pre-finished - ready to be stamped, formed, drawn or bent into your com-
pleted product. YOU CAN DELIVER FASTER.

AMHRICAN NICRMOID COMPANY Mrs. of NICKIL, CHiROMIUM, BRASS, AND COPPER Elecko-Bonded Finishes Since 1898-Peru, III.

TOOL STEEL PROGRESS

Since 1774

WILLIAM JESSOP \& SONS, Inc.
New York-Chicago-Boston-Detroit-Toronto HAMILTON, ONTARIO

Steel Makers Since 1871

STRIP STEEL

HOT ROLLED - COLD ROLLED SPECIAL CARBON - ALLOYS
THE STANLEY WORKS NEW BRITAIN, CONN. - BRIDGEPORT, CONN.

TAYLOR-WILSON MFG. CO. 15 Thomson Ave.

Pittsburgh Dist. Mc Kees Rocks, Pa .
 buyers and sellers of good used or surplus machinery and supplies. Displayed classified rates are moderate. Send your instructions today to STEEL, Penton Building, Cleveland.
allottment, costing about $\$ 51,001$.

Vinnesota

MINNEAPOLIS - Minmeapolls-Moline Power Implement Co., manufacturer of agrlcultural machinery and fabricated structural steel, will bulld a one-story foundry addition 50×375 feet. (For other expansion see Stebl, Aug. 4.)

ST. PaUL-Secger Refrigerator Co.. Walter G. Sceger, president, manutacturer of refrigerator cabinets and derense products, has given contract to George J. Grant Construction Co. for a plant addition costing about $\$ 200,000$.

Texas

AUSTIN, TEX. - Bureau of rechamation, Denver, will take blas to Aug. 29 for 13%-ton gantry crane to handle bulkhead gates at Marshall Ford dam.
CORPUS CHRISTI, TEX. - Central Power \& Light Co., John T. Persons, chlef engineer, has let contract to Aikin \& Hilmman, Avery Point, Tex., for plant addition to house fourth generating unit. to cost about $\$ 645,000$. Sargent \& Lundy Inc., 140 South Dearborn street, Chicago, are engineers.

POIRT ARTHUR. TEX.-Texasteel Mfg. Co., G. Worth in charge, will build plant costing about $\$ 1,000,000$, general contract probably to go to Spence \& How'e Construction Co. H. E. Beyster Corp., Detroit. is engineer.

Kansas

Hatis, KANS.-Tevas Pide Lifue Co. Pilltower bullding, Tulsa, Okla., wil build 72 miles of 6 and 10 -Ineh pipe lines at cost of about $\$ 90,000$.

WICHITA, KスNS.-K゙ansas Gas \& Electric Co., 201 North Market street, will bulld 185 miles of $15-1,000$-volt transmis sion line from El Dorado to Sabetha Kans., to connect with Nebraska Power Co. line, to cost about $\$ 2,500,000$. Contract to Continental Construction Co., 340 North Central street, Chicago.

South Dakota

SIOUX FALLS. S. DAK-City, C. M whitheld, nuditor, has let contract to

Butler Mfg. Co., Minneapolis, for a prefabricated building 60×140 feet for machine shop, to house 14 metal lathes, spot welder, punch and drill press, are welding equlpment and other tools.

Iowa

WEST UNION, IOWA-Clty has given contract to E. B. Spencer Construction Co., Waterloo, Iowa, for sewage disposal plant, auxiliary equlpment and piping. at $\$ 30,000$.

Idaho

LEWISTON, IDAHO-Victor Van Dyk, manager Clearwater foundry, recently burned, will bulld a new structure, concrete walls and metal roof, costing about $\$ 10,000$.

KELLOGG, IDAFIO-J. B. Haffner, manager, Bunker Hlll \& Sullivan Mining \& Concentrating Co., has plans for a proposed $\$ 500,000$ fuming plant addition to smelter for recovery of lead, zinc and cadmium from smelter slag. Equipment is sald to have priority approval.

California

BELL, CALIF.-Apex Steel Corp., 6147 South Eastern avenue, will bulld a plant addition at cost of about $\$ 7200$.

LOS ANGELES - Wilshire Fireplace Equipment Co. has been formed by Gerald P. Rubens and will conduct business at 1515 Naud street.

LOS ANGELES-Blingo Tool \& Machine Works has been formed by Fred V. Graf and will establish a plant at 3225 Union Pacille avenue

LOS ANGELES-Dullen Steel Products Corp., 11613 South Alameda street, will build a warehouse costing about $\$ 5000$.

LOS ANGELES-Industrial Pjpe \& Steel Co., 5707 South Alameda street, has been organized by Adam C. McCuat.

LOS ANGELES-Marman Products Co. has built a 10,000 -square foot plant at 940 West Redondo boulevard for machining die castings and small forgings.

LOS ANGELES-Standard Steel Corp. 5001 South Boyle avenue, has built a 4000 -square foot toolroom addition.

adocesto, Calif.-Modesto Foundry Inc. Is rebuilding its foundry plant, recently destroyed by flre.

RIVEIRSIDE, CALIF. - Riverside Iron Works has been formed by Ned Hall and Carl Peterson and will operate a plant at 520 Mission boulevard, Riverside.

WILMINGTON, CALIF.-Phelps-Dodge Copper Products Corp. is having plans prepared for a plant on Los Angeles harbor, near wilmington, to cost about $\$ 725.000$ for land and buildings.

Washington

LA CENTER WASH.--Eureka Corp. capital $\$ 50,000$, has been organized by Trl-State Tractor Co., T. C. McCamey manager, to manufacture tractors, machines and vehicles.

SEATTLE-N. S. Foundry, 1140 Ellott avenue West, is building an addition 25 x 53 feet.

SEATTLE-Seattle Transit System has called blds for machinery and equipment for the Atlantic street terminal shops for opening at various dates. Bids include 2000 -pound motor hoist, 12,000pound hydraulic hoist, 60 -ton hydraulic press, lathes, boring machines, grinders, shears, grinding machines, forging machines, polishers, etc.

TACOMA, WASH.-CIty has appropriated $\$ 300,000$ for preliminary construction costs on proposed Nisqually municipal power plant.

Canada

ST. JOHN, N. B.-St. John Dry Dock \& Shipbuilding Co. Ltd. will build addition and make repairs to cost about $\$ 200,000$. Canadian Dredge \& Dock Co, has contract.

LONDON, ONT.-Emplre Brass Mig. Co. Ltd., Dundas street, is having plans drawn for one-story addition 35×80 feet, to cost about $\$ 60,000$, with equipment.
MALTON, ONT.-National Steel Car Corp. Ltd., Kenllworth avenue, Hamilton, Ont., has let contract to Gratton Construction Co., 486 Clinton street, Toronto, Ont., for additlon to aircrait division, here, to cost about $\$ 250,000$.
OSHAWA, ONT.-General Motors Corp. of Canada Ltd., Whlliam street, will build one-story addition 160×200 feet, to cost about $\$ 250,000$, with equipment.

TORONTO, ONT. - Standard Cycle Products Lid., 407 Logan avenue, wiil build one-story plant 100×180 feet for manufacture of blcycles, etc., to cost about $\$ 100,000$, with equipment.

TRENTON, ONT. - Department of munitions and supply, Ottawa, Ont., is taking blds for additional buildings here for airplane repair depot costing about $\$ 250,000$, with equipment.
WINDSOR, ONT.-Chrysler Corp. of Canada Ltd., 300 Tecumseh boulevard. has given contract to R. J. Wilson Ltd., 341 Tecumseh boulevard for plant addition to cost about $\$ 40,000$.

SHAWINIGAN FALLS, QUE--Shawinigan Stainless steel Co. Ltd. will build addition to cost $\$ 50,000$. H. S. Reid is superintendent.

ST. JOHN, QUE-Singer MIg. Co. Ltd. will build two additions for manuface ture of sewing machines, munitions, etc, to cost about $\$ 220,000$, with equipment: contract to J. P. Traham. 178 Mercer street.

REGINA, SASK.-Imperial Oll Co. Ldd.. Rurch street. Toronto, Ont., will build Church street. Toronto, rennery addition costing ab 93 feet and One building will be
another 40 foet.

CROSBY FOR STAMPINGS

Our engineers are ready and able to help solve your stamping problems, in design or construction. Crosby prices are consistent with QUALITY and SERVICE. In our 44 years of EXPERIENCE we have served over 100 different industries.

Marufacturers of "Ideal" Trolley Wheels

THE CROSBY COMPANY

BUFFALO, N. Y.

PARALAN COATED STEEL IH ANY FORM
Satisfies Producers - Consumers - Handlers NO RUST-CLEAN TO HANDLE-EASILY REMOVED

For Sheets-Strip-Wire-Parts-Tools, etc. SEND FOR BOOKLET
"ONLY PARALAN CAN DO ALL THAT PARALAN DOES" AMERICAN LANOLIN CORP. . Lawrence, Mass. Warehouses: Lawrence, Mass. - Cleveland, Ohio

STAMPINGS

ASSURANCE - with These Stampings

Thirty-eight years specializing in the manufacture of quality stamping gives you ASSURANCE when you specify WHITEHEAD STAMPINGS. Write for catalog.

WHITEHEAD STAMPING CO.
 1667 W. Lafayette alva. Detroit, Mich.

SMALL ELECTRIC STEEL CASTINGS

(Capacity 500 Tons Por Month)

CASTING CO.
OHIO, U. S.A.
Better Stael Castings

METAL CLEANING . . . two books that tell how to do it better

IMPACT CLEANING

by: W. A. Rosenberger

1 This 480 page book contains full information on the latest and most approved methods of impact cleaning, including blast-cleaning and sandblasting. It tells the reader of approved methods of cleaning under all conditions and for all types of products.

A practical book telling how to reduce cleaning expenses by application of proved methods.
In three parts: Part one covers Nozzle Blast Cleaning Equipment; Part Two, Mechanical Impact Cleaning: Part Three, Ventilation of Impact Cleaning Equipment . . . all profusely illustrated and cross-indexed for easy reference. "Impact Cleaning", $\$ 7^{*}$ postpaid.

MODERN BLAST CLEANING\&VENTILATION

 by: C. A. Reams- Mr. Reams, engineer, Ford Motor Co., has compiled this practical book from actual shop experience plus proved engineering information. His discussions of modern methods of blast cleaning and ventilating methods are applicable to all types of metal cleaning by the blast method.

Full information is given on selection of abrasives, abrasive cleaning methods, selection of equipment, abrasive reclamation, advantages and limitations, ventilation and reduction of industrial hazards, and scores of other helpful facts.

Illustrations and diagrams in this 213 page book increase its value to the plant engineer. "Modern Blast Cleaning and Ventilation". \$4* postpaid.

ORDER TODAY FOR FREE EXAMINATION:

[^8]THE PENTON PUBLISHING CO., Book Department, Penton Building, CLEVELAND, OHIO

USED and REBULLT EQUIPMENT M- MATERIALS

RAILS

AND ACCESSORIES

RELAYING RAILS - Super-quality machine-reconditioned-not ordinary Relayers.
NEW RAILS, Angle and Splice Bars, Bolts, Nuts Frogs, Switches. Tie Plates, and all othe Track Accessorios
Although our tomnages are not as large as here house stocks.
Every effort made to take care of emergency requirements. Phone. Write ot W'tre.
L. B. FOSTER COMPANY, Inc.

PITTSBURGH NEW YORK CHICAGO

Morefor Your Dollar! IRON \& STEEL PRODUCTS, ING. 36 Years' Experlence
13462 S. Brainard Aye., Chicago, Illilnols "Anything contalning IRON or STEEL" SELLERS - BUYERS - TRADERS

MILL MOTOR

300 HP... 230V-DC.. . 500 RPM G. E., Type AIC, form A Comp. Wound interpole, pedestal brim., spare armuture, condition equals new.

JOHN D. GRAWBUCK CO., PITISBURGH, PA
Phone Atlantic 6345

BOILER SHOP EQUIPMENT

3 Hydraulle Riveters
1 Accumulator lunches 1 Accumulator 1 Hydraulle lump 2 Traveling erames- 5 and 10 ton, 50 foot span Wangler, Rotary bevel shear
I, ennox stralpht hotary slicat
Plant, 5 acres, large bulddings, rallway sidng. Danlel Nevins, Attorney
U. B. Bullding

Dayton, Ohio

री

-REBUILT-

BLOWER5 - FANS - EXHAUSTERS
Connersille-Roots positive blowers. Cencritugale for gas and oll burning, Ventilating fang and roof ventilatora
GENERAL BLOWER CO.
404 North Peorla St.

```
Grinder. Kinlfe \(10^{\prime}\) Bridgeport, M.D
Grinder. Roll \(30^{\circ} \times 7\) G \(^{\prime \prime}\) Farrel. is
lammers, o-13 "3-3 Nazel, in, D,
Lathe, Roll 42 a 150 ton United Steam Hyd Plpe Machs. \(2-4-6-8-12^{\circ}\) Willams, M.D. Rolling Nini, Cold \({ }^{\circ} \times 18^{*}\) M.D.
```



``` Stralahtener, No. O Medart 1-1/2' M.D. 1210 House Bullding Pittsburgh, Pa
```

DIE SINKERE E-3 Keller, M, U
GEAR CURNER, Spur, 84 NEFAR, M.D. (3) MORIZ. MILLFI. TyDe. 3\%" bar D \& H LATHES, ${ }^{48^{\circ} \times 22-1 / 2, ~ \& ~} 48^{\circ} \times 26-1 / 2^{\prime}$, Johnson 'TURRET LATHE, 18, LUby, H.S. 3-9/10' M.D. PLANERS, $30^{\circ} \times 30^{\prime \prime} \times 8^{\prime} 30^{\circ} \times 30^{\circ} x 111^{\circ} 54^{\circ} \times 4^{\prime \prime} \times 10$
SHEAR, $10^{\prime} \times 3 / 10^{\prime \prime}$ Uhi Squaring, $11^{\prime} \mathrm{L}$.
LANG MACHINERY COMPANY 28th Street \& A. V. R.R. Plttsburgh, Pa

NEW AND USED EOUIPMENT IMMEDIATE DELIVERY

Audubon Flexible metalwove conveyor belt (Quench Tank Belt) $24^{\prime \prime}$ wide $x 46^{\prime} 0^{\prime \prime}$ long, chain-weave type, 3 mesh, No. $14 \mathrm{~W} \& \mathrm{M}$ Ga. (.080) dia. Audubon plain steed. Chains one strand No. 660 chaln mounted each side of belt. Chailı provided with special boss attachments for insertion of "*" dia. Cross rod support through belt
No. $45-\mathrm{A}$ Oil Burners
No. 385 Rivet Forge self-contained complete with blower.
No. 385 Rlvet Forges less blower.
G. E. vertical ball brg. motor 5 Hl 220 V .3 PH .60 Cy .1735 RPM . frame 254 V
6 No. 12 D. forge stands
6 Locomotive tire Ilghter tanks only, complete with intings.
North American Turbo blower No. 312-E-110, 12 a\%. pressure, 1750 CFM direct connected to 10 HP . 3PH. 60 Cy. 220 V. 3470 RPM motor.
MAHR MANUFACTURING COMPANY DIV. OF DIAMOND IRON WORKS, ING. Minneapolis Minnesota

WANTED
 Galvanzed, shop-worn, salty or waster sheets, sldes, ends and shearings, 26 gauge and llahter. 1 gauge soft hot rolled shearings $1-1 / 2$ and widd Also shects.
 State sizes, duantitles, location and price
 Address Box 531, STEEL
 Pantan Bldg., Cleveland

WANTED-TRANSFORMERS

Of all descriptions and slzes Burned Out or Good so interested in purchasins Empty Transformer Cases Will pay cash-send full description PHILADELPHIA TRANSFORMER CO.
2829 Cedar St.
Philadelphia, Fa.

Kirk \& Blum
 WELDED maGHINE BASES, PEDESTALS and FRAWES lathe pans
 GEAR and BEIT GUARDS
 Pressed Steel Louver Panels and Cover Plates
 THE KIRK \& BLUM MPC. CO.
 2822 Spring Grove Ave., Cinsinnali, Ohio

Sind your Inaulter lo
SPECIAL ENGINEERING WORK to the
A. H. NILSON MACHINE COMPANY BRIDGEPORT, CONN
deslgnest and builders of wire and albbon stock forming machines
We alon anlicis your bida far cam millina

SUB-CONTRACT WORK

is being given out daily. Put yourself in line to receive your share of this business by list ing your services in this sec tion. Write STEEL, Penton Bldg., Cleveland.

WANTED

Defense sub-contract orders for 20 gal. steel stampings $8^{\prime \prime}$ by $s^{\prime \prime}$ and smaller, We can produce these at a saving from a tonnage of small pleces THEDEFIANCE MANUFACTURINGCO. Defiance, Ohio

WELDED STEEL FABRICATION
Specialists in duplication of castngs and machinery parts with rolle steel shapes
Send blue prints and specfications for quotation.
MORRISON METALWELD PROCESS INC.
1438 Eailey Ave., Bulfalo, N. Y.

红 CLASSIFIED解

Help Wanted

SALESMEN: NEW SPECIAL ALLOXS for production and malntenance feld. High class repeat business with proven success. Attractive commission. Good territorles open, Quallfed and introduced hard workers with technical background (only replles with complete detalls considered). Address Box 508 , STEEL, Penton Bldg., Cleveland.

> PRoDUCTION MANAGER: EXPERIENCED man capable of supervising production. Engineering knowledge desirable but not absolutely essentlal. Please give full details regarding age, education and expprience. Excellent opportunity for the rlght man. Replies conildential. Philadelphla. Address Box 548, STEEL. Penton Bldg. Cleveland.

WANTED: SALES REPRESENTATIVE BY a large manufacturer of welded mechanical tubing for New York-Philadelphia Territory. Tubing experience and acqualntance with trade necessary. All replies strictly conidential. Address Box 541 , STEEL, Penton Bldg., Cleveland.

WANTED

PatTERN RIGGER for foundry in MassaTabor, Johnson-Jennings and SPO molding machines. Excellent opportunlty for man who knows his business. State all qual-lleatlons-former connections-and salary In reply. Address Box 529. STEEL, Penton Bldg., Cleveland.

Assistant
 Chief Ensineer

PHILADELPHIA MANUFACTURER OE Fieat treating furnaces offers permanent and lucrative position to experienced estlmator and designer of heat treating details of quallflcations and experience in full conflence. Reply Box 547 , STEEL Penton Bldg., Cleveland.

DRAFTSMEN: DESIGNERS, CHECKERS, layout men, detallers, experienced on both mechanleal and structural engineering. Apply or write to the Morgan Engincering Company, Alliance, Ohio.

MACHINE TOOL SALESMAN-BRANCII 35-45. Machine resident preferred, age sales experience shop or machine tool particulars ince preferred. Supply full No. 514, STEEL, Penton Bldg., Cleveland.
METALLLERGIST WITH IRON AND STEEL casting experience. Good opportunity for right party. Address Box 537, STEEL, Penton Bldg., Cleveland.

CLASSIFIED RATES

All classifications other than
Wanted," set solld other than "Positions 5.00 , each additional word 10 . 50 words, minimurn 50 words, 6.50 , each all capitals, 50 word 13; all capitais, leaded additlonal 50 words 7.50 , eapitais, leaded, minimum 2 "Positions Wanted," set solid word .15 . 25 words 125 each add solld, minimum adl capltals, minimum 25 words word . 05 ; additional word . 07 ; 25 words 7.75 , each minlmum 25 words 2.50 , capltals, leaded, word 30. Keyed address takes seven words, Cash with address takes seven Plositions Wanted" order necessary on Displayed fled without charge.
Displayed classifed rates on request.
STEEL, Penton Bldg and instructions to
eel, Penton Bldg., Cleveland.

Opportunities

FOR SALE-STEEL PLANT

Nine ton Electric Melting Furnace, with rapid-charge removal roof, also $\mathrm{S}^{\prime \prime}-10^{\prime \prime}$ and $16^{\prime \prime}$ Rolling Mills. Completely equipped with Overhead Traveling Cranes, Laboratory Machine Shops, Hot Metal Ladles, Loce motive Cranes, Railroad Cars, Monoral Crane System, Ingot Molds, etc.-located on 24 acres land- 85 miles from seaboard. Free twater, power and insurance rates. Free Water. Ample Labor supply
Suitable for producing Alloy, Stainless or carbon steel bars, ingots, castings, etc Avaliable immediately for production operations.
J. J. MeDermott, LIquidator

I,EBANON STEEL \& IRON COMIPAN
Lebanon, Penna,-Hhone 660

Employment Service

SALARIED POSITIONS $\$ 2,500$ to $\$ 25,000$

This thoroughly organlzed advertising service of 31 years' recognized standing and reputation, carries on prellminary ne. gotiations for positions of the caliber indlcated above, through a procedure individuallzed to each client's personal require-
ments. Several weeks are required to negotiate and each individual must finance the moderate cost of his own campalen Retaining fee protected by refund proyi sion as stipulated in our agreement. Iden tity is covered and, if employed, present position protected. If your salary has been $\$ 2,500$ or more, send only name and address for detalls. R. W. Blxby, Inc., 110 Delward Bidg., Buffalo, N. Y.

Bids Wanted

Federal Works Agency, Public Bulldings Administration, 7 th and D Sts., S. W. Washington, D. C. Will have avaliable bidding material for the construction of 300 housing units, ete., for the defense housing project at Massillon, Ohio, Upon application, nve sets af drawings and specifleations will be supplied free to each general contractor interested in submitting a proposal. Drawings and specifleathons will be shipped air transportation, Where this effects saving in tlme, and must be returned to this office. Bids will be opened on the date named in the speciflcafrom, which will be about 10 calendar days from the date upon which the biddlag material becomes available in this office.
W. E. Reynolds, Commisstoner of Public Buildings, Federal Works Agency.

Castings

01150

THE NEST STEEL CASTING CO., Cleve. land. Fully equlpped for any production problem. Two $1 \frac{1}{2}$ ton Elec. Furnaces. Makers of high grade light steel castings, also alloy castings subject to wear or high heat.

PENNSYLVANIA

NORTH WALES MACIINE CO., LNC., North Wales. Grey Iron, Nickel, Chrome, Molybdenum Alloys, Semi-steel. Superior quality machine and hand molded sand blast and tumbled.

Positions Wanted

WORKS MANAGER WITH YEARS OF EXPERIENCE IN MODERN UP-TO-DATE PRODUCTION METHODS, COST CONTROL, LABOR COOPERATION, DESIRES POSITION IN ADVISORY CAPACITY TO AID PRESENT FACTORY MANAGEMENT IN INCREASING PRODUCTION, CUTTING COSTS, AND BETTERING LABOR RELATIONS. BEST OF REFERENCES. ADDRESS BOX 546, STEEL, PENTON BLDG., CLEVELAND.

ENECUTIVE-SALES ENGINEEIR

Broad experience as sales engineer, former president and manager of a large manufacturing plant, desires engineering and sales position with headquarters in the east. Would consider exclusive sales on commission basis. Financlally responsible. Now employed in highly responsible position in the West. Reply Hox 545, STEEL, Penton Bldg., Cleveland.

ADVERTISING MANAGER

now and for past 15 years manager of advertising department of $\$ 13,000,000$ manuracturer of machinery and tools, is available for similar position preferably In New York City or nearby locality. Has ing. preparation and production advertislogues, booklets, sales production of catadress Boy 536 , sTEEL 110 E etc. Ad New York, N. Y. STEEL, 110 E. 42nd St.,

SUPERVISOR OF STRUCTURAL STEEI and general plate work fabrication 15 years' experience, seeking connection with flrst class organization as shop superintendent or general foreman. Address Box 543, STEEL, Penton Bldg., Cleveland.

PURCHASING EXECUTIVE - EIGHTEEN years' experience, General Purchasing Agent Steel Company and Manufacturer. Qualified as coordinator, expeditor-supervisor of stock and equipment control, stores, receiving, production. Background particularly attractive for concern engaged in defense work. Character and business references. Prefer Central West. Reply Box 523, STEEL, Penton Bldg., Cleveland.

SET UP AND MANAGE BRANCH OFFICE of expanding flrm, in Dayton, Ohio. Experienced accountant. Address Box 527, STEEL, Penton Bldg., Cleveland.

Accounts Wanted

EXPERIENCED WISCONSIN RERIRESENtative with well established contacts in the foundry and metal manuracturing industries desires additional línes. Address E. Michlgan St., Milwaukee Prescott, 225 E. Michigan St., M1lwaukee, Wisconsin.

MANUFACTURERS AGENT FOR FIFested in contacting manufacturers in interal industry, desires additional line Address Box 4i7, STEEL, Penton Bldg., Cleveland.

FOUNG MLAN NOIY CALLING ON INDUStrial concerns in Northern Ohlo and Western New York desires additional account. Address Box 532, STEEL. Penton Bldg., Adeveland.

－ADVERTISING INDEX

Where－to－Buy Products Index carried in first issue of month．
Pagc

Acme Galvanizing，Inc
Acme Steel \＆Malleable Iron Works
Ahlberg Bearing Co．
Ahlberg Bearing Co．．．．．．．．．．．．．．．．．．．．．． Mrg．Co．
Air Reduction
Ajax Electrothermic Corp．
Ajax Flexible Coupling Co．
Alan Wood Steel Co
Allegheny Ludlum Steel Corp．
Allen－Bradley Co．
Allis－Chitlmers Mfg．Co
Alrose Chemical Co
Alrose Chemical Co．
American Brass Co．，The
American Brass Co．，
American Bridge Co．
American Bridge Co．
American
Cable Division
Chain \＆Cable Co．，Inc．
American Chain \＆Cable American Cable Division mertcan Chain \＆Cable american Chain Division．
American Chain Division．．．．．．．．．．． Ford Che Block Division
Ford Chain Block Division
American Chain \＆Cable Co
Page Steel \＆Wire Division．
Amerlcan Chain Division of American
Chaln \＆Cable Co．，Inc．
American Chemical Paint Co．
American Engineering Co．
American Flexible Coupling Co
American Foundry Equipment $C o$.
American Gos Association
Amertean Hollow Boring
American Hant clation
American Lanolin Corp
American Monorail Co
American Nlekeloid Co．
American Pulverizer Co
American Roller Bearing Co．
Amerlean Rolling Mll Co．，The
American Screw Co
American Screw Co，
American Shear knore Society for Metals
American Soclety for Metals
American Solder \＆Flux Co
American Steel \＆Wire Co．
American Tinning \＆Galvanizing Co
Ampco Metal，Inc．
Amsler－Morton Co．，The
Andrews Steel Co．，The
Apollo Steel Co
Armstrong－Blum Mifg．Co．
Armstrong Cork Co．
Assuciation of Iron and Steel Engi－ neers
Atlantic stamping Co．
Atlantic Steel Co．
Atlas Car \＆Mrg．Co
Atlas Drop Forge Co．
Atlas Lumnite Cement Co．
Axelson alfg．Co．

13

Babcock \＆Wilcox Co．
Bailey，Wm．M．，Co．
Baker－Raulang Co．
Bantam Bearings Corp．
Barnes，Wallace，Co．，Division of Asso－ ciated Spring Corporation
Basle Refractories，Inc．
Bay City Forge Co．
Bay State Abrasive Products Co
Bellevue－Stratford Hotel
Belmont Iron Works
Berger Manufacturing Div．．Republic steel Corp．
Bethlehem Steel Co．
Birdsboro Steel Foundry \＆Machine Co．
Bissett Steel Co．，The
Blanchard Machine Co
Elaw－Knos Co．
Blaw－ǩnox Division．Blaw－Knox Co
Bliss \＆Laughlin，Inc．
Bower Roller Bearing Co
Boyle Manufacturing Co．
Brassert H A \＆Co
Bridgeport Brass Co．
Bristol Co．The
Broderlek \＆Bascom Rope Co．
Brooke，E．\＆G．，Iron Co．
Brosius，Edgar E，Inc．
Brown \＆Brown，Ine．
\square Cellcote Co．，The
Challenge Machinery Co The
Chambersburg Engineering Co
Chandler Products Corp．
Chicago Perforating Co．
Chicago Rawhide Mrg．Co．
Cincinnati Grinders，Inc．
Cincinnati Milling Machine Co．
Cincinnati Shaper Co．，The．
Clark Tructractor Div．of Clark Equip－ ment Co．
ment
ment Co．Machine Tool Co．
Cleveland Cap Screw Co．
Cleveland－Cliffs Iron Co．
Cleveland Crane \＆Engineering Co．
Cleveland Hotel
Cleveland Punch \＆Shear Works Co
Cleveland Tramrall Division，Cleve－
land Crane \＆Engineering Co
Cleveland Twist Drill Co．，The．
．Inside Front Cover
Cleveland Worm \＆Gear Co．，The．
Climax Molybdenum Co
Cold Metal Process Co
Colonial Broach Co．
Columbla steel Co．
Columbus Die，Tool \＆Machine Co．
Commercial Metals Treating，Inc．
Cone Automatic Machine Co．，Inc．．
Continental Machines，Inc．
Continental Roll \＆Steel Foundry Co．
Continental Screw Co．
Copperweld Steel Co．
Corbin Screw Corp．
C－O－Two Fire Equipment Co
Cowles Tool Co．
Crane Co．
Crawbuck，John D．Co
Crosby Co．，The
Cuban－Amerlcan Manganese Corp．
Cullen－Friestedt Co．
Culvert Division，Republic steel Corp．
Cunningham，M．E．，Co．
Curtis Pneumatic Machinery Division
of Curtis Manufacturing Co．
Cutler－Hammer，Inc
Back Cover
Cyclone Fence Co
D
Damascus Steel Casting Co
Darwin \＆Milner，Inc．
Davis Brake Beam Co
Dearborn Gage Co．
Deflance Mrg．Co．
Detroit Leland Hotel
－．Diamond Expansion Bolt Co．．Inc
Diamond Expansion Bolt Co．
Dinas Magnetic Separator Co．
Dravo Corp．，Engineerlng Works
5
Edison Storage Battery Div，of Thom－ as A．Edison，Inc
1 Elastic stop Nut Corp．
Electric Controller \＆Mifg．Co．
Electric Controller \＆Mrg．
Electric Furnace Co．，The
Electric Furnace Co．，The
Electic Storage Battery
Electro Alloys Co．，The
Electro Metallurgical Co．
Elmes，Charles F．，Engineering Works 113
Enterprise Galvanizing Co
Equipment Steel Products Division of Union Asbestos \＆Rubber Co
Erdle Perforating Co．，The
Erie Bolt \＆Nut Co．，T
Erie Bolt \＆Nut Co．
Erie Forge Co．
Erie Foundry Co
Eureka Fire Brick Works
Ex－Cell－O Corp．
Excelsior Tool \＆Machine Co．

Fafnir Bearing Co．，${ }^{\mathbf{F}}$
Page
Fafnir Bearing Co．，The
Fairway Laboratories，Dlv．The G．S． Suppiger Co．

Fanner Mifg．Co．

Fansteel Metallurgical Corp．
Farrel－Birmingham Co．，Inc．
Farval Corp．，The
Fcderal Machine \＆Welder Co
Federal Shipbuilding \＆Dry Dock Co
Ferracute Machine Co．
Ferracute Machine Co．
Finn，John，Metal Works
Firth－Sterling Steel Co．
Firth－Sterling Steel Co
Fitzsimons Co．，The．．．．．．．．．．．．．．．．．．．．．．．． 1
Ford Chain Block Division of Ameri－
can Chain \＆Cable Co．，Inc．
Foster，L．B．，Co．
Foxboro Co．，The
General American ${ }^{\mathbf{G}}$ Transportation
Corp．\quad.
General Blower Co．．．．．．．．．．．．．．．．．．．．．．．．． 110
General Electric Co．，Lamp Dept．．．．．．．
Gisholt Machine Co．
Gisholt Machine Co．
Globe Brlck Co．，The ．．．．．．．．．．．．．．．．．
Goodyear Tire \＆Rubber Co．，The
Granite City Steel Co．
8 Grant Gear works
Great Lakes Steel Corn．
Greenfleld Tap \＆Die Corp
Gregory，Thomas，Galvanizing Works Grinnell Co．，Inc．
Gulr oll Corporation
Gulf Reflning Co．

H

Hagan，George J．，Co．．．．．
Hallden Machine Co．，The．．．．．．．．
Hanlon－Gregory Galvanizing Co．
Hanna Englneering Works
Hanna Furnace Corp．
Hannilln Mrg．Co．
Harnischfeger Corp．
Harper，H．M．，Co．，The
Harrington \＆King Perforating Co．．．．IIज
Hays Corp．，The
Heald Machine Co．
Heald Machine Co
Feppenstall Co．
Hetz Construction Co．，In
Hetz Construction Co．．
Hevi Duty Electric Co．
Hevi Duty Electric C
Hindley Mrg．Co．
Hobart Bros．
Homestead valve Mig．Co
Horsburgh \＆Scott Co．
Hubbard \＆Co
Hubbard，M．D．，Spring Co
Hubbard，M．D．，Spring Co
Hunt，C．H．
Hunt，C，H．．．．．．．．．．．．．．
Hyatt Bearings Division，General Mo－
tors Sales Corporation
Hyde Park Foundry \＆Machine Co．
I
Illinols Clay Products Co．
Independent Galvanizing Co．
Industrial Brownhoist Corp．．．．．．．．．．
Ingersoll Steel \＆Disc Division，Borg
Warner Corp．
Inland Steel Co．．．．．．．．．．．．．．．．．．．．．．．．．．．Schols
International Correspondence
International Nickel Co．
International Stacey Corp．
International Stacey Corp．
Iron \＆Steel Products，Inc．
Isaacson Iron Works
Jackson Iron \＆Steel Co．，The
James，D．O．，Mrg．Co．
J－ B Engincering Sales Co ．
Jessop Steel Co
Co．
Jessop，Wm，\＆Sons，Inc．
Johns－Manville Corp．
Johnson Bronze Co．
Jones \＆Lamson Machine Co．
Jones \＆Laughlin Steel Corp．
Jones w A Foundry \＆Machine Co．
Joslyn Co．of California
Joslyn Mfg．\＆Supply Co．
K
Kardong Brothers，Inc．
Kearney \＆Trecker Corp
Kemp．C．M．．MIg．Co．

ADVERTISING INDEX

Where-to-Buy Products Index carried in first issue of month.

Kester Solder Co.
ت̈ldde, Walter, \& Co., Inc.
King Fifth Wheel Co
Kinnear Mifg. Co.
KIrk \& Blum Mfg. Co.
Koppers Co.
Koven, L. O., \& Brother, Inc.
Kron Co., The
Laclede Steel Co.
Lake City Malleable Co
Lamson \& Sessions Co., The
Landls Machine Co.
Lang Machinery Co.
Latrobe Electric Steel Co.
Lawrence Copper \& Bronze
Layne \& Bowler, Inc.
LeBlond, R. K., Machine Tool Co., The Leeds \& Northrup Co.
Lee Spring Co., Inc
Lehlgh Structural Steel Co.
Leschen, A., \& Sons Rope Co.
Levinson Steel Co., The.
Lewis Bolt \& Nut Co.
Lewis Bolt \& Nut Co.
Blaw-Knox Co \& Machine Division of Blaw-Knox Co.
Lewis Machine Co., The
Lincoln Electric Co., The
nde Air Products Co., The.
Link-Belt Co.
Loftus Engineering Corp.
Logemann Bros. Co.
Lord Baltimore Hotel
Lovejoy Flexible Coupling Co
Ludlow-Saylor Wire Co., The
Me
McKay Machine Co.
McKee, Arthur G., Co
McKenna Metals Co.
Mackintosh-Hemphill Co
Macklin Co.
Macwhyte Co.
Mahr Mifg. Co.
Mathews Conveyer Co.
Maurath, Inc.
Medart Co., The
Mesta Machine Co.
Micromatic Hone Corp
Midvale Co., The
Milwaukee Foundry Equipment Co.
Moltrup Stell Produll Corp.
Moltrup Steel Products Co.
Monarch Machine Tool Co., The
Monarch Steel Co.
Moraine Products Division General Motors Corp.
Morgan Construction Co
Morgan Englneering Co.
Marton Metalweld Process, Inc. 118
Morton Salt Co.
Motch \& Merryweather Machinery Co.
Motor Repair \& Mfg. Co. N
Natlonal Acme Co., The
National Bearing Metals Corp.
National Broach \& Machine Co.
National Carbon Co., Ine
National-Erle Corp.
National Forge \& Ordnance Co
National Lead Co.
National Roll \& Foundry Co.
Natlonal Steel \& Mig. Co.
National Steel Corp.
National Tube Co Supply Co., Inc.
New Fel Tube Co.
New England Screw Co.
New York \& New Jersey Lubricant Co.
Nichara Machine \& Tool Works
Nicholson, W. H. \& Co.
Nies
Niles Steel Products Div., Republic
Nilson Corp
Nitralloy Cor, Machine Co.
Norma-Hoy Corp., The.
North Amfmann Bearings Corp
North American Manufacturing Co.
Norton Co. ThineerIng Co.
Ohio Electric Mig. Co.
Ohio
Ohio Ferro-Alloys Corp
Ohio Knife Co., The Mrg. Co.
August 25, 1941

Ohio Locomotive Crane Co., The
Ohio Seamless Tube Co., The
Ohio Steel Foundry Co., The
Oll Well Supply Co.
Oxweld Acetylene Co.
P
Page Steel \& Wire Division Amerlcan Chain \& Cable Co. Inc. Pangborn Corp.
Parker, Charles, co
Parker, Charles, Co.
Parker-Kalon Corp.
Pawtucket Screw Co.
Penn Galvanizing Co.
Pennsylvanla Industrial Engineers
Pennsylvanla Salt Mrg. Co.
Penola, Inc.
Perkins, B. F., \& Son, Inc.
Pheoll Mfg, Co
Phliadelphia Transformer Co.
Pittsburgh Crushed Steel Co.
Pittsburgh Gear \& Machine Co.
Plttsburgh Lectromelt Furnace Corp
Pittsburgh Rolls Division of BlawKnox Co.
Pittsburgh Saw \& Tool Co.
Pittsburgh Steel Co.
Poole Foundry \& Machine Co
Porter, H. K., Co., Inc.
Pressed Steel Car Co., Inc.
Pressed Steel Tank Co.
Prest-O-Lite Co., Inc., The
Progressive Welder Co.
Quigley Co., Inc.
Raymond Mrg. Co., $\stackrel{\text { Rivision of Asso- }}{ }$ clated Spring Corp.
Reading Chain \& BIock Corp.
Ready-Power Co.
Rellance Electric \& Englneering Co.
Republle Steel Corp.
Revere Copper and Brass, Inc
Rhoades, R. W., Metaline Co., In
Rhoades, R. W., Metaline Co., Inc.
Riverside Foundry \& Galvanizing Co
Riverside Foundry \& Galvanizing Co..
Roebling's, John A, Sons Co.
Roebling's, John A., Sons Co.
Roosevelt Hotel
Roosevelt Hotel
Roper, George D., Corp.
Ruemelln Mfg. Co.
Russell, Burdsall \& Ward Bolt \& Nut Co.
Rustless Iron \& Steel Corp
Ryerson, Joseph T., \& Son, Inc.
Salem Engineering Co
Samuel, Frank, \& Co., Inc.
San Franclsco Galvanizing Works.
Sanitary Tinning Co., The.
Scovill Mrg. Co.
Scully Steel Products Co.
Seneca Wire \& Mfg. Co., The
Shakeproof Lock Washer Co.
Shaw-Box Crane \& Hoist Division,
Manning, Maxwell \& Moore, Inc.
Sheffleld Corp., The
Shell Oil Co., Inc.
Shenango Furnace Co., The
Shenango-Penn Mold Co.
Shepard Niles Crane \& Holst Corp
Shuster, F. B., Co., The.
Simonds Gear \& Mig. Co. Simonds Saw \& Steel Co.
Sinton Hotel
SisalKraft Co., The
SKF Industries, Inc
Snyder, W. P., \& Co.
Socony-Vacuum Oil Co., Inc.
South Bend Lathe Works
Southington Hardware Mrg. Co.
Standard Galvanizing Co.
Standard steel Works
Stanley Works, The
Steel \& Tubes Division, Republic Steel Corp.
Steel Conversion \& Supply Co.
Steel Founders' Society of America
Steelweld Machinery Division, Cleve-
land Crane \& Engineering Co Stewart Furnace Division, Chicago Flexible Shaft Co.
Stoody Co.
Strom Steel Ball Co.

Pag.
117
Strong Steel Foundry Co.
Sun Oil Co.
Superior Mold \& Iron Co.
Superior Steel Corp.
Surface Combustion Corp
Sutton Engineering Co
Taylor-Wilson Mrg. Co.
Tennessee Coal, Iron \& Rairo......
Co
Thomas Machine Mrg. Co.
Thompson-Bremer \& Co
Tide Water Associated Oil Co
Timken Roller Bearing Co. .. Front Cover
Timken Steel \& Tube Division, The
Timken Roller Bearing Co.
TInnerman Products, Inc.
Titanium Alloy Manufacturing Co..... 83
Toledo Stamping \& Mfr Co.
Tomkins-Johnson Co., The
Torrington Co., The
Truscon Steel Co.

Udylite Corp., The U
63
Union Carblde \& Carbon Corp.
Union Drawn Steel Div. Pepublic sted
Union Drawn Steel Div. Republic Stee
Corp. Corp.
United Chromium, Inc. 111
United Engineering \& Foundry Co. . 76, 77
United States Steel Corp., Subsidiaries. American Bridge Co.
American Steel \& Wire Co
Atlas Lumnite Cement Co.
Boyle Manufacturing Co.
Carnegie-Inlinols Steel Corp.
Columbia Steel Co.
Cyclone Fence Co.
Federal Shipbuilding \& Dry Dock Co

National Tube Co.
Oil Well Supply Co.
Scully Steel Products Co
Tennessee Coal, Iron \& Railroad Co.
United States Steel Export Co.
Universal Atlas Cement Co.
Virginia Bridge Co.
United States Steel Export Co.

Universal Atlas Cement Co.
Upton Electric Salt Bath Furnace Div.
Commerce Pattern Foundry \& Machine Co .

59
Valley Mould \& Iron Corp.
Vanadium-Alloys Steel Co.
Vascoloy-Ramet Corp.
Vaughn Machinery Co., The.
Virginia Bridge Co.
Waldron, John, Corp.
Wapakoneta Machine Co.
Warner \& Swasey Co.
Washburn Wire Co.
Watson-Stillman Co., The
Wayne Chemical Products Co.
Wean Engineerlng Co., Inc.
Weinman Pump \& Supply Co., The
Weirton Steel Co
Wellman Bronze \& Aluminum Co.
Wellman Engineering Co.
Westinghouse Electric \& Mig. Co.
West Penn Machinery Co.
West Steel Casting Co.
Whecling Steel Corporation
Whitcomb Locomotive Co., The.......... 1 . 117
Whitehead Stamping co.
Whitehead Stamping Co. 117
Whitney Screw Corp.
Whitney Screw Corp.
Wickwire Brothers, Inc.
Wickwire Spencer Steel Co
Welman \& Ward Co.
Wilcox, Crittenden \& Co., Inc.
Williams, J. H., \& Co., Inc.
Wilson, Lee, Engineering Co
Wilson, Lee, Sales Corp. Inside Back Cover
Witt Cornice Co., The
Wood. R. D., Co.
Worth Steel Co.
Wyckoff Drawn steel Co.
Yale \& Towne Mfg. Co
Yoder Co., The
Youngstown Alloy Casting Corp.
Youngstown Sheet \& Tube Co., The
Zeh \& Hahnemann Co.
(18.
(8)

.

. 50 ,
\square
\square
\square
\square
\square
\qquad

105

-$1 \overline{15}$-

NEW TIMES NEW IDEAS

It takes more brains to make advertising and selling fit industry's needs now. Some men we know are doing it well. If you want to learn to use advertising more effectively, plan to swap ideas with other wide-awake men at the 1941 three day N.I.A.A. Conference in September at the Royal York Hotel, Toronto, Canada. A new setting, a thousand executives, and speakers of international reputation.

Make this note in your diary

19th ANNUAL N.I.A.A. CONFERENCE toronto, canada - SEPTEMber 17, 18, 19

[^0]: Roger D. Howell, 64, assistant general superintendent, Bliss \& Laughlin Inc., Harvey, Ill., died of a heart attack Aug. 16. He had heen associated with the company about 20 years and was a brother

[^1]: Material appearing in this department is fully protected by copyright, and its use in any form whatsoever without permission is prohlbited.

[^2]: From Sheet Metal Industries, London. England.

[^3]: (From Metals Handbook)

[^4]: *Philadelphia, Wilmington, Del.; SLos Angeles, San Francisco, Seattle.
 NOTE: Where the railroad maker of scrap operates in two or more of the consuming points named above, the highest of the maximum prices set out above for such basing points shall be the maximum price at consumer's plant at any point on the railroad's line. (a) Re-laying quality $\$ 5$ higher.

[^5]: Send note on Company Letferhead for 488-Page Catalog 41 THE HORSBURGH \&SCOTT CO. GEARS AND SPEED REDUCERS 5112 hamilition avende - CLEVELAND, OHiO, U. S. A.

[^6]: Tool Steel Scrap
 Cents per pound, to consumers f.o.b. shipping point Tunssten types
 For each 1% tungsten contained Solld scrap containing over $12 \% \ldots . .80 \mathrm{c}$ Solid scrap containing 5 to 12% Turnings, millings containing over 12% .1 .40 Turnings, milings, sollds under 5 \%. 25 Molybdenum Types
 Solld scrap. not less than 7 \% mo- Solid scrap. not less than $3 c_{0}$ mu-
 lybdenum, 4% tungsten, 0.50
 lybdenum,
 vanarinm
 .13 .50
 Turnings, millings, same basis.............................

[^7]: THE WELLMAN BRONZE \& ALUMINUM COMPANY 6002 Superior Ave. Cleveland, Ohio

[^8]: You can examine either or both of these books at your leisure... send your order today. If after ten days you prafer to return them, we'll cheerfully cancel your bill. In ordering please give us your company name and your title.

 - Orders for delivery in Ohio must be accompanied by an additional 3% to cover compulsory state sales tax.

