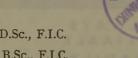
BRITISH CHEMICAL AND PHYSIOLOGICAL ABSTRACTS

ISSUED BY THE


Bureau of Chemical and Physiological Abstracts

[Supported by the Chemical Society, the Society of Chemical Industry, the Physiological Society, the Biochemical Society, and the Anatomical Society of Great Britain and Ireland]

FEBRUARY, 1943

BUREAU:

Chairman: L. H. LAMPITT, D.Sc., F.I.C. Hon. Treasurer: F. P. DUNN, B.Sc., F.I.C.

JULIAN L. BAKER, F.I.C.

G. L. BROWN, M.Sc., M.B., CH.B.

H. W. CREMER, M.Sc., F.I.C., M.I.CHEM.E.

C. W. DAVIES, D.Sc., F.I.C.

H. J. T. ELLINGHAM, B.Sc., Ph.D., F.I.C.

C. R. HARINGTON, M.A., Ph.D., F.R.S.

L. A. JORDAN, D.Sc., F.I.C.

G. A. R. KON, M.A., D.Sc.

H. McCOMBIE, D.S.O., M.C., Ph.D., D.Sc.; F.I.C.

B. A. McSWINEY, B.A., M.B., Sc.D.

Editor: T. F. BURTON, B.Sc.

Assistant Editors:

J. H. BIRKINSHAW, D.Sc., F.I.C.*

H. BURTON, M.Sc., D.Sc., F.I.C.

F. G. CROSSE, F.I.C.

A. A. ELDRIDGE, B.Sc., F.I.C.

W. JEVONS, D.Sc., PH.D.

E. E. TURNER, M.A., D.Sc., F.I.C., F.R.S.

F. L. USHER, D.Sc.

H. WREN, M.A., D.Sc., Ph.D.

SAMSON WRIGHT, M.D., F.R.C.P.*

* Assisted by J. D. BOYD (Anatomy), A. HADDOW (Tumours), F. O. HOWITT (Biochemistry), A. G. POLLARD (Plant Physiology), K. TANSLEY (Sense Organs), V. J. WOOLLEY (Pharmacology), and F. G. YOUNG (Ductless Glands).

Indexer: MARGARET LE PLA, B.Sc.

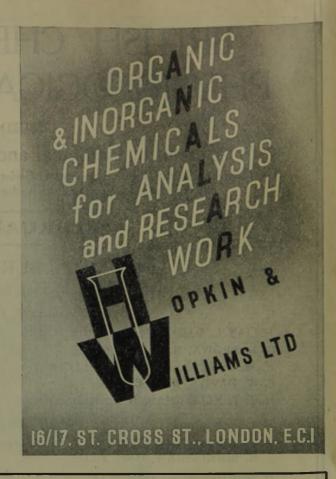
A., II.—ORGANIC CHEMISTRY

CONTENTS

I.	Aliphatic					2 I	VII. Alkaloids		49
II.	Sugars and Glucosides					24	VIII. Organo-metallic Compounds		49
III.	Homocyclic				٠	25	IX. Proteins		
	Sterols and Steroid Sap	_				39			~
V.	Terpenes and Triterpen	oid S	apog	enins		4 I	X. Miscellaneous Unclassifiable Substances	2	5°
VI.	Heterocyclic					42	XI. Analysis		51

Offices of the Bureau: CLIFTON HOUSE, EUSTON ROAD, LONDON, N.W.I

VITREOSIL


ALWAYS RELIABLE READILY OBTAINABLE

No user need fear shortage of supplies of VITREOSIL, pure fused silica. A large variety of acid and heat-proof ware is available for the laboratory or the works.

THE THERMAL SYNDICATE LTD.

Head Office & Works: Wallsend, Northumberland London Depot: 12-14, Old Pye St., Westminster, S.W.I

ESTABLISHED OVER 30 YEARS.

CHEMICAL SOCIETY MEMORIAL LECTURES

VOLUME I, 1893-1900 (Reproduced by a photolithographic process)

Price 10s. 6d., postage 7d.

CONTENTS

THE STAS MEMORIAL LECTURE. By J. W. Mallett, F.R.S. With an additional Facsimile Letter of Stas.

Delivered December 13, 1892

THE KOPP MEMORIAL LECTURE. By T. E. THORPE, D.Sc., F.R.S.

THE MARIGNAC MEMORIAL LECTURE. By P. T. CLEVE. 1895

THE HOFMANN MEMORIAL LECTURE. By the Rt. Hon. Lord PLAYFAIR, G.C.B., F.R.S.; Sir F. A. ABEL, Bart., K.C.B., F.R.S.; W. H. PERKIN, Ph.D., D.C.L., F.R.S.; H. E. ARMSTRONG. Delivered May 5, 1893

THE HELMHOLTZ MEMORIAL LECTURE. By G. A. F1TZ-GERALD, M.A., D.Sc., F.R.S. Delivered January 23, 1896

THE LOTHAR MEYER MEMORIAL LECTURE. By P. P. Bedson, M.A., D.Sc., F.I.C. Delivered May 28, 1896

THE PASTEUR MEMORIAL LECTURE.
Ph.D., B.Sc., F.R.S. E. By P. FRANKLAND, Delivered March 25, 1897 THE KEKULE MEMORIAL LECTURE. By F. R. Japp, F.R.S.
Delivered December 15, 1897

THE VICTOR MEYER MEMORIAL LECTURE. By T. E. THORPE, Ph.D., D.Sc., LL.D., F.R.S. Delivered February 8, 1900

THE BUNSEN MEMORIAL LECTURE. By Sir H. E. ROSCOE, B.A., Ph.D., D.C.L., LL.D., D.Sc., F.R.S. Delivered March 29, 1900 THE FRIEDEL MEMORIAL LECTURE. By J. M. CRAFTS. 1900

THE NILSON MEMORIAL LECTURE. By O. Pettersson.

Delivered July 5, 1900

VOLUME II, 1901-1913

(Reproduced by a photolithographic process)

Price 8s. 0d., postage 7d.

CONTENTS

THE RAMMELSBERG MEMORIAL LECTURE. By Sir HENRY Delivered December 13, 1900 A. MIERS, F.R.S.

THE RAOULT MEMORIAL LECTURE. By J. H. Van't Hoff,
F.R.S.

Delivered March 26, 1902

F.R.S.

THE WISLICENUS MEMORIAL LECTURE. By W. H. PERKIN,

Delivered January 25, 1905

THE CLEVE MEMORIAL LECTURE. By Sir Thomas Edward Thorpe, C.B., F.R.S.

Delivered June 21, 1906

THE WOLCOTT GIBBS MEMORIAL LECTURE. By WIGGLESWORTH CLARKE. Delivered June 3, 1909

THE MENDELÉEFF MEMORIAL LECTURE. By Sir William A. Tilden, F.R.S.

THE THOMSEN MEMORIAL LECTURE. By Sir Thomas Edward Thorpe, C.B., F.R.S. Delivered February 17, 1910 THE BERTHELOT MEMORIAL LECTURE. By H. B. DIXON, F.R.S. Delivered November 23, 1911

THE MOISSAN MEMORIAL LECTURE. By Sir WILLIAM RAMSAY, K.C.B., F.R.S.

Delivered February 29, 1912

THE CANNIZZARO MEMORIAL LECTURE. By Sir William A. Tilden, F.R.S.

THE BECQUEREL MEMORIAL LECTURE. By Sir OLIVER LODGE, F.R.S.

Delivered October 17, 1912 THE VAN'T HOFF MEMORIAL LECTURE. By JAMES WALKER, F.R.S.

Delivered May 22, 1913

WALKER, F.R.S.

THE LADENBURG MEMORIAL LECTURE. By F. S. KIPPING,

Delivered October 23, 1913

Publishers: THE CHEMICAL SOCIETY, BURLINGTON HOUSE, PICCADILLY, LONDON, W.1.

BRITISH CHEMICAL AND PHYSIOLOGICAL ABSTRACTS

A., II.—Organic Chemistry

FEBRUARY, 1943.

1.—ALIPHATIC.

Products from the Wurtz reaction. Mechanism of their formation. A. Saffer and T. W. Davis (J. Amer. Chem. Soc., 1942, 64, 2039—2043).—At $320^{\circ}/200$ mm., MeI, EtI, or MeI-EtI with Na gives complex mixtures containing H_2 , C, saturated and unsaturated hydrocarbons (much CH_4 from MeI or C_2H_6 from EtI). The results are explained as due to formation of alkyl radicals, which react mainly with excess of halide. Secondary radicals disappear by R. S. C.

Tracer studies with radioactive hydrogen. (A) Synthesis of labelled methyl iodide. (B) Menschutkin reaction.—See A., 1943, I,

Photo-oxidation of methyl iodide.—See A., 1943, I, 40.

Common basis of intramolecular rearrangements. IX. Formation of cyclopropanes from monohalides. III. Action of sodium alkyls on aliphatic chlorides. Relation to the Wurtz reaction. F. C. Whitmore and H. D. Zook (J. Amer. Chem. Soc., 1942, 64, 1783—1785; cf. A., 1942, II, 83).—HgEt₂ (excess) and Na in n-C₅H₁₂-N₂ at 25° give NaEt (80%) and 5—8% Na-Hg. NaEt and n-C₆H₁₃Cl at -10° to 0° give (a) by coupling n-C₈H₁₈ (40%) and (b) CH₂:CHBu^a (46%) + C₂H₈ (52%). NaPr^a (prep. from HgPr^a₂ in n-C₃H₁₈-N₂) and CH₂Bu^aCl do not react at <50° but at 50—60° give 1:1-dimethylcyclopropane (75%), C₃H₈ (70%), Bu^aBu^a (4%), and C₃H₈ (5%; probably formed by decomp. of NaPr^a). CH₂Bu^aCl does not react with 6% Na-Hg. NaAlk thus reacts partly as a base, removing HHal from the halide, and this is their effect when they are ing HHal from the halide, and this is their effect when they are formed in the Wurtz reaction. The olefine is derived solely from the halide and the simple paraffin from the NaAlk.

Higher hydrocarbons. II. Five λ-substituted heneicosanes. F. C. Whitmore, J. N. Cosby, W. S. Sloatman, and D. G. Clarke (J. Amer. Chem. Soc., 1942, 64, 1801—1803; cf. A., 1942, II, 341)—n-C₁₂H₂;MgBr (I) and n-C₅H₁₁·CO₂Et (1.07 mols.) give n-C₅H₁₁·C(C₁₂H₂:5n)₂·OH (II), b.p. 225—229°/1 mm., and some n-C₁₀H₂₂ and hexadecan-η-one. Dehydration of (II) by CuSO₄-N₂ at 160—180°, purification of the olefine by SiO₂ gel, and then hydrogenation over Ni at 120°/1100 lb. gives λ-n-amyl-n-heneicosane, m.p. -9-1°, b.p. 192°/1 mm. λ-a-Ethyl-n-propyl-, b.p. 187°/1 mm., and λ-cyclopentyl-n-heneicosane, m.p. -12·7°, b.p. 186°/1 mm., are similarly prepared using ~2 mols. of the appropriate ester. MeOBz (3 mols.) and (I) in Et₂O give, after dehydration of the carbinol, λ-phenyl-Δκ-n-heneicosane, b.p. 203°/1 mm., hydrogenated in presence of very active Ni at room temp./1800 lb. to λ-phenyl-, m.p. 20·8°, b.p. 204°/1 mm., or in presence of Ni at 150°/1500—1800 lb. to λ-cyclohexyl-n-heneicosane, m.p. -7·2°, b.p. 209°/1 mm. Et cyclopentanecarboxylate, b.p. 171·9°/737 mm., is prepared (48·5%) from Mg cyclopentyl bromide and Et₂CO₃ in Et₂O at 0°. n, d, and η are recorded for the hydrocarbons. Purities are >95%.

Allelia reassessessessesses at the Silving and mechanisms of the

Allylic rearrangements. XIII. Kinetics and mechanisms of the conversion of crotyl and methylvinylcarbinyl chlorides into acetates and ethyl ethers. J. D. Roberts, W. G. Young, and S. Winstein (J. Amer. Chem. Soc., 1942, 64, 2157—2164; cf. A., 1942, II, 293).

—Bimol. interaction of CHMe:CH·CH₂CI (I) or CH₂:CH·CHMeCl (II) with OEt' or OAc' gives only the normal product and solvolytic (S_F1) reaction gives mixtures. The first type can be induced without the latter. Interaction of (I) with NaOEt in EtOH is of the second order, little changed by adding a little H₂O. Solvolysis of (I) with EtOH at 25° is of the first order, k₁ (1·84 × 10⁻⁴) of which is much increased by H₂O (12·3 × 10⁻⁴ in presence of 5·35 mols. of H₂O per 1.). 99% pure Et ether is obtained from 0·7m-(I) and 0·9m-NaOEt, and >96%-pure Et ether from 1·3m-(II) and 1·8m-NaOEt. With KOAc or diphenylguanidinium acetate in AcOH, (I) or (II) gives mixed acetates, the kinetics being those of mixed-order reactions, but KOAc-Ac₂O at 100° reacts homogeneously with (I) and NEt₄·OAc-COMe₂ at 58° similarly with (II). R. S. C. Allylic rearrangements. XIII. Kinetics and mechanisms of the

Dehydration $\Delta^{a\epsilon}$ -hexadien- γ -ol to $\Delta^{a\gamma\epsilon}$ -hexatriene and $\Delta^{1:3}$ -cyclohexadiene. L. W. Butz (J. Amer. Chem. Soc., 1942, 64, 1978—1979).—Dehydration (conditions: A., 1940, II, 182) of CH₂:CH·CH₂·CH(OH)·CH:CH₂ gives some $\Delta^{1:3}$ -cyclohexadiene (I), since with (CH·CO)₂O at 30° the product gives the endoethylene-

tetrahydrophthalic anhydride, m.p. 147°, also obtained from pure (I). However, the amount of (I) formed varies uncontrollably.

Synthesis of higher alcohols from water-gas under pressure.—See B., 1942, II, 393.

B., 1942, II, 393.

Preparation and properties of polyethoxyethanes and their bromoderivatives. S. M. McElvain and P. M. Walters (J. Amer. Chem. Soc., 1942, 64, 1963—1965).—CMe (OEt)₃ and Br (1 mol.) in C₅H₅N at ~30°, later 60—70°, give 53% of CHBr₂·C(OEt)₃, b.p. 102—104°/8 mm., converted by boiling KOEt-EtOH into CH₂Br·C(OEt)₃ and thence (excess of alkali or separate experiment) CMe(OEt)₃. CHMe(OEt)₂ and Br in C₅H₅N at 10—15° give CH₂Br·CH(OEt)₂ (23%) and CHBr₂·CH(OEt)₂ (29%). OEt·CH₂·CH(OEt)₂ with Br in C₅H₅N at 65° gives a mixture, including 15% of (OEt)₂CH·CHO, b.p. 79°/12 mm., but in absence of a solvent suffers fission to EtBr (0.85), H₂O (0.97), EtOH (0.75), and CHBr₂·CH(OEt)₂ (0.25 mol.) (CH₂·OEt)₂ and Br at 80° or in C₅H₅N at 65° give mixtures. CHBr₂·CH(OEt)₂ and boiling KOH-EtOH give CHBr·C(OEt)₂ (62·5%), b.p. 72—73°/11 mm.; CHCl₂·CH(OEt)₂ gives CHCl:(OEt)₂ (60%), b.p. 57—68°/10 mm. OEt·CH₂·CO·NH₂, m.p. 82—83°, b.p. 225—230°, and P₂O₅ at 150—180° give OEt·CH₂·CN (60%), b.p. 69—70°/10 mm., 180—181°/740 mm., is largely decomposed by Br in C₅H₅N at 80°. OEt·CHBr·CH(OEt)₂ and KOEt-EtOH give CHBr·C(OEt)₂ (cf. A., 1938, II, 4).

Tracer studies with radioactive carbon. Synthesis and oxidation

Tracer studies with radioactive carbon. Synthesis and oxidation of three-carbon acids.—See A., 1943, I, 39.

of three-carbon acids.—See A., 1943, I, 39.

Fats from fatty acids having an odd number of carbon atoms. W. Keil (Z. physiol. Chem., 1942, 274, 175—185).—See A., 1943, III, 131. CHEtBu^a·CH₂·OH and HBr at 100—130° give the bromide, b.p. 72—75°/10 mm., converted by, successively, CHNa(CO₂Et)₂-EtOH, boiling KOH–EtOH, and heat at 180° into γ-ethyl-n-octoic acid, b.p. 142—143°/10 mm. The derived Et ester, b.p. 108—110°/10 mm., with H₂-Cu chromite at 270° gives CHEtBu^a·[CH₂]₂·OH, b.p. 108—110°/10 mm., and thence, as above, the bromide (I), b.p. 104—106°/10 mm., and ε-ethyl-n-decoic acid, a liquid. With boiling KCN–KI–EtOH, (I) gives the nitrile, b.p. 126—128°/14 mm., which with HCl–EtOH and then NaOH gives δ-ethyl-n-nonoic acid, b.p. 163—166°/17 mm. (Et ester, b.p. 126—130°/17 mm.). n-Decaldehyde and MgMeBr–Et₂O give n-undecan-β-ol and thence the bromide, b.p. 128°/15 mm., n-C₂H₁₉·CHMe·CH(CO₂Et)₂. b.p. 150—152°/2 mm., and, by aq. NaOH at 130—150° and then decarboxylation at 180°, β-methyl-n-dodecoic acid, b.p. 125—130°/16 mm. n-Octaldehyde gives similarly n-nonan-β-ol, the bromide, b.p. 116—118°/38 mm., Me β-methyl-n-decoate, b.p. 110—113°/18 mm. (by H₂-Cu chromite at 280°/180 atm.; then HBr), γ-methyl-n-decyl bromide, b.p. 120—124°/20 mm., and δ-methyl-n-dodecoic acid, b.p. 132°/10·6 mm. R. S. C. Action of fatty acids on copper.—See A., 1943, I, 40.

Action of fatty acids on copper.—See A., 1943, I, 40.

Action of fatty acids on copper.—See A., 1943, I, 40.

Preparation of orthoesters. S. M. McElvain and J. W. Nelson (J. Amer. Chem. Soc., 1942, 64, 1825—1827).—MgRX and C(OEt)₄ give CR₂(OEt)₂ and CR₃·OEt with very little CR(OEt)₃. Prep. of CR(OEt)₃ is best (59—78%) effected by treating OEt·CR:NH,HCl (A) with EtOH (15 mols.) in presence of Et₂O (1—3 vols.; optimum stated for Me—Bu) at the b.p. (39—46°). If R is branched, the yield is lower (Pr^β 27—30, Bu^β 21—23%). However, CH₂Cl·C(OEt)₃ is best prepared by EtOH alone at ~40°. The decomp., (A) → RCO·NH₂ + EtCl, becomes appreciable only at higher temp. (60—80°). Prep. of (A) from RCN and HCl-EtOH is described. Et₃ ortho-acetate, b.p. 144—146°/740 mm., -propionate, b.p. 70—72°/32 mm., -n-, b.p. 58—59°/7 mm., and -iso-butyrate, b.p. 50—51°/7 mm., -n-, b.p. 49—50°/3 mm., and -iso-butyrate, b.p. 50—51°/7 mm., and -chloroacetate, b.p. 68—70°/10 mm., are prepared.

R. S. C.

Preparation of high-molecular derivatives of aliphatic hydroxymonocarboxylic acids.—See B., 1942, II, 394.

Production of purified sodium lactate.—See B., 1942, II, 394. Purification of ethyl lactate.—See B., 1942, II, 394.

Loco weeds. V. Constituents of Astragalus earlei. A. Stempel and R. C. Elderfield (J. Org. Chem., 1942, 7, 432—443; cf. A., 1940, II, 185; III, 462).—The substances previously called "a.

and β -earleine" are identified as betaine and choline respectively. and β -earleine ' are identified as betaine and carrier by phospho-The reported pptn. of the active constituent of A, earlei by phospho-to adsorption on the ppt. Reinecke tungstic acid is probably due to adsorption on the ppt. salt ppts, a highly active fraction from which a cryst, substance has salt ppts, a highly active fraction from which a cryst. Substance has been isolated and also ppts. bases with a strong ninhydrin reaction. A dihydroxyvalerolactone, m.p. $52-53^{\circ}$, $[a]_{10}^{25}-64.7^{\circ}$ in $H_{2}O$ (diacetate, m.p. $86-87^{\circ}$, $[a]_{20}^{25}-7.09^{\circ}$ in CHCl₃; phenylhydraxide of the OH-acid corresponding to the lactone, m.p. $114-115^{\circ}$, $[a]_{20}^{28}+42^{\circ}\pm2^{\circ}$ in MeOH, $\pm45^{\circ}$ in $H_{2}O$), has been isolated from extracts of the weed together with glycerol. Possible structures for the lactone are discussed. Enzymic action of yeast, takadiastrase, or expelsive effects the carbohydrate constituents of the weed without emulsin affects the carbohydrate constituents of the weed without apparently affecting the activity. d-Xylomethylonic acid phenylhydrazide, m.p. $132-133^\circ$, $[a]_D^{29}+33^\circ$ in MeOH, $+21^\circ$ in H_2O , is incidentally described. M.p. are corr.

Preparation of lævulic acid.—See B., 1942, II, 394.

Formation of complex tungsto-tartrates.—See A., 1943, I, 40.

Long-chain acids. V. Aleuritic acid. P. C. Mitter and S. Mukherjee (J. Indian Chem. Soc., 1942, 19, 303—307).—Et \(\varepsilon\)-Et \(\varepsilon\)-Et \(\varepsilon\)-D, 128—130°/16 mm. (from the OH-compound and PBr3 in C6H6-C6H6N), with NaOMe yields \(Et \varepsilon\)-methoxy-hexoate, b.p. 94—95°/15 mm., reduced (Na + EtOH) to \(\varepsilon\)-methoxy-hexoate, b.p. 91—95°/15 mm., the bromide, b.p. 98—99°/19 mm., from which with Mg followed by OMe-[CHBr]2-[CH2]2-Cl (Noller et al., A., 1934, 991) in Et2O yields a product converted by Zn dust in BuOH into \(\varepsilon\)-methoxy-\(\Delta\)-entadecenyl chloride, b.p. 198—204°/5 mm. This yields a nitrile, bydrolysed (EtOH-KOH) to \(\varepsilon\)-methoxy-\(\Delta\)-entageconic acid. by hydrolysed (EtOH-KOH) to o-methoxy- Δ^0 -hexadecenoic acid, b.p. 194°/2 mm. Et aleuritate is reduced (Na + BuOH) to aleurityl alcohol, m.p. 56°, oxidised [Pb(OAc)₄ in AcOH] to OH·[CH₂]₈·CHO (small yield).

Production of per-acids.—See B., 1942, II, 394.

O-Penta-acetyl-d-gluconates of polyhydric alcohols and cellulose. M. L. Wolfrom and P. W. Morgan (J. Amer. Chem. Soc., 1942, 64, 2026—2028).—The appropriate alcohol with gluconyl chloride penta— 2026—2028).—The appropriate alcohol with gluconyl chloride pentaacetate in C_5H_5N gives ethylene glycol di-, m.p. $94-95^\circ$, $[a]+15^\circ$, propane-ay-diol di-, m.p. $88-89^\circ$, $[a]+18\cdot5^\circ$, di- β -hydroxyethyl ether di-, m.p. $111-112^\circ$, $[a]+12^\circ$, glyceryl tri-, amorphous, softens at $58-65^\circ$, $[a]+20^\circ$, d-sorbitol hexa-, amorphous, softens at $65-78^\circ$, $[a]+30^\circ$, d-mannitol hexa-, amorphous, softens at $65-78^\circ$, $[a]+37^\circ$, and a-methyl-d-glucopyranoside tetra-, amorphous, softens at $68-72^\circ$, $[a]+57^\circ$, -0-penta-acetyl-d-gluconate. In C_5H_5N , mercerised cotton linters gives a coloured, but in NEt₃-PhNO₂ at 80° gives a cream-coloured, product, containing $0\cdot45$ penta-acetyl-d-gluconyl (A) unit per anhydroglucose (B) unit. Modified cellulose acetate $[1\cdot72\text{ Ac}^{21}\text{ per }(B)\text{ unit}]$, $[a]_D^{24}-13^\circ$ in C_5H_5N , in C_5H_5N gives a product, $[a]_D^{21}-10^\circ$ in C_5H_5N , $[a]_D^{24}+2\cdot5^\circ$ in CHCl₃ (gives dark, brittle films), containing $0\cdot75$ (A) per (B) unit, but in NEt₃-CHCl₃ at 60° gives a product, $[a]_D^{23}-9^\circ$ in C_5H_5N , $[a]_D^{24}+1^\circ$ in CHCl₃ (gives colourless, flexible films), containing $0\cdot37$ (A) per (B) unit. Unless otherwise stated, [a] are $[a]_D^{25}$ in CHCl₃. R. S. C.

Production of isomeric trioxymethylene.—See B., 1942, II, 394.

Production of isomeric trioxymethylene.—See B., 1942, II, 394.

Keten acetals. X. Elimination of hydrogen bromide from acetals of α-bromo-aldehydes. isoPropyl- and n-propyl-keten diethyl acetal. S. M. McElvain, R. L. Clarke, and G. D. Jones (J. Amer. Chem. Soc., 1942, 64, 1966—1969; cf. A., 1942, II, 296).—CHR(OEt)₂ (R = Prβ, b.p. 133—136°, Prα, b.p. 143—144°, or Buβ, b.p. 156—158°) [modified prep. from CH(OEt)₃ and MgRX] with Br give CMe₂Br·CH(OEt)₂, b.p. 63—64°/7 mm., CHEtBr·CH(OEt)₂, b.p. 82—84°/12 mm., and CHPrβBr·CH(OEt)₂ (I), b.p. 55—56°/3 mm. (20—40°/6), which with 1·4n-KOBuγ-BuγOH give CH₂:CMe·CH(OEt)₂ (64°/6), b.p. 136—137°, CHMeiCH·CH(OEt)₂ (41°/6), b.p. 48—49°/21 mm., and CMe₂:CH·CH(OEt)₂ (62°/6), b.p. 59—60°/16 mm., respectively. Interaction of (I) with 0·75n- or 2n-NaOEt-EtOH or 0·75n-KOBuγ-BuγOH at 80° is of the second order, faster with KOBuγ. BuβCN (prep. from BuβCO·NH₂ by P₂O₅ at 90°, later 130°), b.p. 127—129°, gives CBuβ(OEt)₃ and thence (Br-C₅H₅N) Et₃ α-bromo-orthoisovalerate (67°/6), b.p. 63—64°/1·3 mm., which with Na gives isopropylketen Et₂ acetal [aa-diethoxy-γ-methyl-Δα-butene] (80%), b.p. 96—97°/100 m., 156—157°/745 mm. (structure proved by exothermic hydrolysis by very dil. HCl to BuβCO₂Et). Et₂ α-bromo-ortho-n-valerate, b.p. 69—70°/2 mm., and n-propylketen Et₂ acetal [aa-diethoxy-Δα-n-pentene], b.p. 107—108°/100 mm., 167—168°/737 mm. (hydrolysed to BuαCO₂Et), are similarly prepared. CHR₂·CH·C(OEt)₂ are not rearranged to CR₂·CH·CH(OEt)₂ by boiling KOBuγ-BuγOH. The mode of elimination of HBr from (I) is inconclusively discussed. Keten acetals. X. Elimination of hydrogen bromide from acetals is inconclusively discussed.

Manufacture of ketens and olefines.—See B., 1942, II, 395.

Condensation products of keten with ketones. B. H. Gwynn with E. F. Degering (J. Amer. Chem. Soc., 1942, 64, 2216—2218).—Keten reacts with ketones having $\leqslant 3$ α -H in presence of a little H_2SO_4 (not H_3PO_4 or p- C_0H_4Me - SO_3H), giving enol acetates (properties described). COMe₂. COMeEt, mesityl oxide, etc. react rapidly; COPhMe, COMeBu⁷, and CMe₂:CH·COMe react slowly, and COPr 2 2 not at all not at all

Photo-enolisation of ketones.—See A., 1943, I, 40.

Manufacture of (A) quaternary ammonium compounds, (B) carboxyl chlorides, and (c) carboxyl esters, of quaternary ammonium compounds.—See B., 1942, II, 395.

Nature and constitution of shellac. XVI. Preparation of θιστιλην αναγρεπταθες για ματος το βιστιλην αναγρεπταθες για ματος αναγρεπταθεί

NN-Dimethylethylenediamine and [its] derivatives. R. Baltzly, J. S. Buck, and W. S. Ide (J. Amer. Chem. Soc., 1942, 64, 2232—2233).—NMe₂·[CH₂]₂·NH₂, b.p. 107° (hygroscopic dihydrochloride, m.p. ~160°), gives the p-nitrobenzoate hydrochloride (I), m.p. 182·5—183·5°, hydrogenated (PtO₂-EtOH-HCl here and below) to the p-aminobenzoate dihydrochloride, m.p. 190—191° [the derived methochloride hydrochloride, decomp. >230°, is obtained from the methochloride derived from (I)]. The p-nitrobenzoate hydrochloride, m.p. 247—248·5°, gives β-p-aminophenylureidoethyldimethylamine [dihydrochloride, m.p. 182—184° (decomp.); methochloride hydrochloride, m.p. 186°]. β-p-Aminophenylacetamido- [dihydrochloride, m.p. 155—156° (decomp.)], β-phenylthioureido-, m.p. 83—83·5°, and β-sulphanilamido-ethyldimethylamine [dihydrochloride, m.p. 211·5—213·5° (decomp.)] are also described.

Ontical configuration of glutamic acid isolated from essein hydrochlorides.

Optical configuration of glutamic acid isolated from casein hydrolysates by six procedures. (Miss) J. C. Opsahl and L. E. Arnow (J. Amer. Chem. Soc., 1942, 64, 2035—2039).—After hydrolysis of casein by boiling 20% HCl the glutamic acid (I) isolated by six different methods contains 2.5—6.2% of the d-form. Recoveries are recorded for hydrolysates containing added dl-(I); for the two best methods these are 76—89 and 82—96%. The methods used are detailed are detailed.

r-β-Hydroxyglutamic acid. E. Abderhalden and G. Pitschak (Z. physiol. Chem., 1940, 265, 31—38).—An improved method is given for the prep. of r-β-hydroxyglutamic acid (I) from casein. Acetyl-l-glutamic acid, m.p. 186—187°, is converted by CH₂N₂ and where the distribution into the conversation of the preparation of the conversation of the preparation of the conversation of the preparation of the preparatio Acetyl-f-glutamic acid, in.p. 180—181, is converted by CR_2N_2 and subsequent distillation into the corresponding optically inactive Me_2 ester, b.p. $158-162^{\circ}/0.1$ mm., m.p. 80° (also obtained from the dl-acid, m.p. $176-180^{\circ}$), and Me_2 glutamate. r- β -Hydroxyglutamic acid hydrochloride, NaOAc, AcOH, and Ac₂O yield a product which when treated with CH_2N_2 and then distilled affords CH_2CH_2 . CH_2 ·CH>C·CO₂Me. Methylation of (I) with

the compound

CO-NH° CO-NH° CO-NH° CH₂N₂ or MeOH-HCl is accompanied by ring-closure. Me_2 carbobenzyloxyglutamate, b.p. $211-214^{\circ}/0.6-0.8$ mm., and β -hydroxyglutamate, b.p. $208-210^{\circ}/0.5$ mm., carbobenzyloxy-l-aspartic acid, m.p. $112-115^{\circ}$, $[a]_{10}^{10}+13.85^{\circ}$ in aq. NaOH (Me_2 ester, b.p. $204^{\circ}/0.25$ mm.), and Me_2 2: 5-diketopiperazine-3: 6-diacetate are incidentally described. ally described.

Manufacture of organic amides.—See B., 1942, II, 395.

Preparation of [linear] polyamides.—See B., 1942, II, 395.

Mono- and di-substituted guanidines. J. S. Buck, R. Baltzly, and C. W. Ferry (J. Amer. Chem. Soc., 1942, 64, 2231—2232).—NH:C(SMe)*NH₂,H₂SO₄ and the appropriate amine give β-morpholinoethyl-, m.p. 197°, ββ-diethoxyethyl-, m.p. 154°, NN-dicyclohexyl-, m.p. 195°, N-benzyl-N-methyl-, m.p. 252° (decomp.), and δ-phenoxybutyl-, m.p. 199—199·5°, -guanidine sulphate, 2B,H₂SO₄. α-C₁₀H₇·NH·CH₂Ph, CN·NH₂, and HCl in C₅H₁₁·OH give N-α-naphthyl-N-benzylguanidine hydrochloride, m.p. 223—224°.

p-OMe·C₆H₄·CH₂·NH₂ (2 mols.) and CNBr (1 mol.) at 150° give NN′-di-p-methoxybenzylguanidine hydrochloride, m.p. 125·5—126·5°. α-C₁₀H₇·NH·CS·NHMe (from α-C₁₀H₇·NCS and NH₂Me) with Me₂SO₄ and then PbO-NH₃ gives N-α-naphthyl-N'-methylguanidine hydrochloride, m.p. 220—220·5° (decomp.).

R. S. C.

II.—SUGARS AND GLUCOSIDES.

Synthesis of epilactose and lactose. W. T. Haskins, R. M. Hann and C. S. Hudson (J. Amer. Chem. Soc., 1942, 64, 1852—1856).—Total synthesis of epilactose and lactose is detailed (cf. A., 1942). Total synthesis of epilactose and factose is detailed (cf. A. 1947, II, 351). Condensation of acetobromo-d-galactose (prep. from β -D-galactopyranose penta-acetate by HBr-AcOH at 0° and later 5°), m.p. 84—85° (lit. 82—83°, 85°), [a] +242° in C₆H₆ (cf. A., 1924, i, 371), and 2:3-isopropylidene-D-mannosan <1,5> β <1.6> by No.

1881

212

Book I

ol.) at a p. 1255 Me) with manish

852—18 (cf. A.,

p. from.

nd later

(1.6)

Ag₂O-CaSO₄-I in CHCl₃ at 24° 7 days), hydrolysis of the product by 80% AcOH at 100°, and heating with NaOAc-Ac₂O at 100° gives 4- β -D-galactopyranosido-D-mannosan<1,5> β <1,6> 2:3:2':3':4':6'-hexa-acetate (30%), m.p. 193—194°, [a] $_{0}^{20}$ —62·7° in CHCl₃. With H₂SO₄-Ac₂O-AcOH at 0° this gives a-epilactose octa-acetate (1) (99%), m.p. 96—97°, [a] $_{0}^{20}$ +41·2° in CHCl₃, hydrolysed by Ba(OMe)₂-MeOH at 5° to β -epilactose, m.p. 195—196°, [a] $_{0}^{20}$ +~17° \rightarrow +27·2° in H₂O (k 0-0151). HBr-AcOH-Ac₂O at 5° and then Zn dust-H₂PtCl₆ in 50% AcOH at 0° converts (1) into lactal hexa-acetate, m.p. 114°, [a] $_{0}^{20}$ —18·0° in CHCl₃, which with BzO₂H in Et₂O-EtOAc-H₂O at 25° gives β -lactose hexa-acetate, m.p. 89—90°, [a] $_{0}^{20}$ —4·5° in CHCl₃, and thence [Ba(OMe)₂] α -lactose, +H₂O, m.p. 202° (decomp.), [a] +81° \rightarrow +52·7° in H₂O (k 0-0042). M.p. are corr.

Reactions relating to carbohydrates and polysaccharides. LXV. Improved technique for fractionation of partly methylated glucosides. I. Levi, W. L. Hawkins, and H. Hibbert (J. Amer. Chem. Soc., 1942, 64. 1957—1959).—Small quantities of glucosides are fractionated (Podbielniak; apparatus described) with 95—97% recovery and formation of <1% of non-volatile residue. In an example, 2.957 g, of 2:3-di-, 2:3:4-tri-, and 2:3:4:6-tetra-methylmethylglucosides are thus separated.

Reactions relating to carbohydrates and polysaccharides. LXVI. Structure of the dextran synthesised by the action of Leuconostoc mesenteroides on sucrose. I. Levi, W. L. Hawkins, and H. Hibbert (J. Amer. Chem. Soc., 1942, 64, 1959—1962).—The semi-microdistillation technique (see above) is used to confirm the finding (A., 1938, II, 44; cf. Brauns, A., 1938, II, 220) that the dextran named yields, by complete methylation and hydrolysis, a 1:3:1 mixture of 2:3-di-(I), 2:3:4-tri-, and 2:3:4:6-tetra-methylmethylglucoside. (I) is identified as 2:3-dimethylglucophenylhydrazide. Possible structures for the dextran are indicated. R. S. C.

Lichenin. E. G. V. Percival and H. Granichstädten (Nature, 1942, 150, 549).—Lichenin (I) with 1 mol. of KOH for each anhydroglucose unit forms an unstable additive compound, but both 2-and 6-methylglucose are present in the products of hydrolysis after methylation under anhyd. conditions. This indicates that the primary alcohol groups in (I) are not shielded as in cellulose.

Molecular constitution of enzymically synthesised starch. W. Z. Hassid and R. M. McCready (J. Amer. Chem. Soc., 1941, 63, 2171—2173).—Starch (I), [a]_D +170° in N-NaOH, synthesised from the Cori ester by potato phosphorylase, with $Ac_2O-C_5H_5N$ at 60° gives a "triacetate," [a]_D +170° in CHCl₃, mol. wt. (η) 84,000, hydrolysed by 0.5N-KOH at room temp. to (I), [a]_D +168°, and converted by Me₄SO₄-30% NaOH at 55° into a "Me₃" ether, [a]_D +216° in CHCl₃, mol. wt. (η) 54,000. This, by hydrolysis, gives 2:3:6-tribut no tetra- or di-methylglucose, showing that the glucose units form long chains or loops and that natural synthesis of starch involves enzymes more complicated than phosphorylase.

Estimation of the dialdehyde type of oxidation in hydroxystarches and hydroxycelluloses. D. H. Grangaard, E. K. Gladding, and C. B. Purves (Paper Trade J., 1942, 115, TAPPI Sect., 75—80).—Oxidation of starch and cellulose by HIO₄ changes the glucose residues of which they consist into chains of semi-acetals of (CHO)₂ with 2 crythrose units. Boiling 10% HCl-MeOH converts periodate-hydroxystarch (I) into ~50% of the expected amount of [CH(OMe)₂]₂, isolated by means of its volatility with steam and determined as (CHO)₂ either colorimetrically or by pptn. with 2:4:1-(NO₂)₂C₆H₃·NH·NH₂. The other half of the (CHO)₂ residues in (I) condenses with the crythrose residues present during methanolysis to a cyclic acetal which probably contains a 1:4-dioxan ring. Control experiments show that this substance is only slightly volatile with steam and interferes in a reproducible way with the determination of [CH(OMe)₂]₂. When the analytical method is extended to include both acetals it recovers <90% of the (CHO)₂ units present in (I) or periodate-hydroxycellulose (II). Oxidation of starch by aq. IO₄ is selective only below 20° and within the limits pH 2—5 and in these conditions is 90—95% efficient. Properly prepared (II) gives analyses corresponding to ~90% of dialdehydic oxidation and possibly a trace of the same type of oxidation is present in a MnO₄'-hydroxycellulose. Entirely negative results are obtained with products formed by means of S₂O₃", OBr', OCl', Cr₂O₇", and HNO₃. It is probable that the no. of different Cureducing structures initially produced from cellulose by any oxidising agent is >4.

Determination of the mol. wt. of cellulose by an end-group method.—See A., 1943, I, 8.

O-Penta-acetyl-d-gluconates of cellulose.—See A., 1943, II, 23.

III.—HOMOCYCLIC.

Formation of cyclopropanes.—See A., 1943, II, 21.

Isomerisation of β -carotene. Isolation of a stereoisomeride having increased adsorption affinity. A. Polgár and L. Zechmeister

(J. Amer. Chem. Soc., 1942, **64**, 1856—1861).— β -Carotene (I) is converted by heat (boiling light petroleum, b.p. 60—70°; 190°) (CO₂) or catalysts (I— or conc. HCl-light petroleum) into a mixture of pigments, of which 9—10 are stereoisomerides of (I). The products are separated by chromatography [Ca(OH)₂]. The isolated products are isomerised by I to similar mixtures containing much (I). Some of the products are adsorbed more strongly than is (I). Of these, neo- β -carotene U (II) (17%) is obtained having m.p. 122—123° (corr.; block; CO₂), a 0 in C₆H₆, absorption max. 4—8 m μ . < those of (I). The stereochemistry is discussed. (I) probably has 1, Gillam's ψ -a-carotene 2, and a labile isomeride (shift of absorption max. 20 m μ .) 4—5 cis-linkings.

Methylation of aromatic nitro-compounds with lead tetra-acetate. L. F. Fieser, R. C. Clapp, and W. H. Daudt (J. Amer. Chem. Soc., 1942, 64, 2052—2060).—1:2:4:6-C₆H₂Me(NO₂)₃ (I) is methylated by Pb(OAc)₄ in AcOH to 1:3:2:4:6-C₆H₂Me(NO₂)₃ (II), interaction being induced by long heating at 100°, boiling for a short time, local superheating, or adding CH₂(CO₂H)₂. Yields are the same by all methods, but optimum (28—32%) if 2·5—3 equivs. of Pb(OAc)₄ are used. Methylation is also effected by warm Pb₂O₃—AcOH or by prolonged boiling with PbO₂–AcOH. s-C₆H₃(NO₂)₃ gives similarly (I) + some (II), but (II) is unaffected by further treatment. m-C₆H₄(NO₂)₂ gives ~30% of 1:2:4-C₆H₃Me(NO₂)₂ + 1:3:4:6- or 1:3:2:4-C₆H₂Me₂(NO₂)₂; for identification the products are nitrated, the (II) formed is separated, and (I) then isolated as complex with β-C₁₀H₇·NH₂. PhNO₂ with Pb(OAc)₄ (3 mols.) gives 4·9% of o- + some p-C₆H₄Me·NO₂, isolated by nitration etc. as above and converted by fractionation and subsequent oxidation into o- + p-NO₂·C₆H₄·CO₂H. After a long induction period, 2·4 equivs. of Pb(OAc)₄ are consumed by boiling C₆H₆-AcOH, but the product (18%) is CH₂Ph·OAc; methylation is the first reaction, since PhMe and Pb(OAc)₄ give CH₂Ph·OAc (11%). PhCl similarly gives (? mixed) C₆H₄Cl·CH₂·OAc, whence alkali yields p-C₆H₄Cl·CH₂·OH. C₁₀H₈ is oxidised, yielding α-C₁₀H₇·OAc (26%). Trials with α-C₁₀H₇·NO₂, 1:5- and 1:8-C₁₀H₆(NO₂)₂, 1:3:8- and 1:4:5-C₁₀H₅(NO₂)₃, and 1:3:6:8-C₁₀H₄(NO₂)₄ are unpromising, but a trace of 2:1:8-C₁₀H₅Me(NO₂)₂ is obtained. (II) is obtained from (I) by Ac₂O₂ in boiling C₆H₆ (10·6%) or by anodic oxidation in NaOAc-AcOH (9% yield), which reactions suggest possible mechanisms.

Kinetics of the oxidation by permanganate of side-chains to the benzene nucleus. I. Oxidation of monochlorotoluenes.—See A., 1943. I. 38.

Preparation of benzene derivatives [diphenyls].—See B., 1942, II, 395.

Further nitration of dinitrodiphenyls. F. H. Case (J. Amer. Chem. Soc., 1942, 64, 2225).—Hot HNO₃ (d 1·5) converts 2: 3'-diinto 2: 4: 3'-tri-nitrodiphenyl, m.p. 137—138° (cf. Blakey et al., A., 1928, 165), also obtained similarly with the 3: 4: $4' \cdot (NO_2)_3$ -derivative, m.p. 205—206°, from the 3: $4' \cdot (NO_2)_2$ -compound (proof of structure). (m-NO₂·C₆H₄)₂ gives 3: 4: 3'-trinitrodiphenyl, m.p. 179—180°, which yields the known 3: 3: 3': 4'-(NO₂)₄-derivative, m.p. 203—204° (lit. 186°).

179—180°, which yields the known 3:3':4'-(NO₂)₄-derivative, m.p. 203—204° (lit. 186°).

R. S. C.

Nitration of halogenodiphenyls. I. Nitro-derivatives of 4-bromodiphenyl. F. H. Case (J. Amer. Chem. Soc., 1942, 64, 1848—1852).
—Nitration of ρ-C₆H₄PhBr gives 4-bromo-3:4'-(II), m.p. 210—211° (lit. 205—206°), and -3 2'-dinitrodiphenyl (II), m.p. 154—155° (lit. 147—148°) (cf. A., 1927, 1062; 1934, 62; 1938, II, 225), structures being proved thus. (I) is obtained from 3:4-NO₂·C₆H₄·NO₂·C₆H₄·NO₂-4' by, successively, NaNO₂-conc. H₂SO₄ at 0°, H₃PO₄, Br—NaBr—H₂O at 0°, and Cu, and by nitration of 4-NO₂·C₆H₄·C₆H₄Br-4' (IV) by conc. HNO₃-H₂SO₄ at <30° and with CrO₃ gives 3:4:1-NO₂·C₆H₃Br-CO₂H (V). 4-Bromo-3:2':4'-trinitrodiphenyl, m.p. 180—181°, is obtained from (I), (III), (III), or (IV) by HNO₃ (d 1·59) at 100° (cf. Le Fèvre et al., A., 1926, 1027). Nitration of 3-NO₂·C₆H₄·C₆H₄Br-4' gives, according to the conditions, (a) a mixture (VI), C₁₂H₆O₆N₃Br, m.p. 181—182° [oxidised to (V)], and a little 4-bromo-2:3'-dinitrodiphenyl (VIII), m.p. 143—144°, (b) (VII) and 4-bromo-3:3'-dinitrodiphenyl (VIII), m.p. 189—190° [oxidised to (V)], or (c), by HNO₃ (d 1·59) at 100°, 4-bromo-2:3'-di-initrodiphenyl, m.p. 192—193° [obtained similarly from (VI)]. 3-NO₂·C₆H₄·C₆H₄·NH₂·4' and KNO₃-oleum at <6° give 2:3'-di-initrodiphenyl, m.p. 157—158° (Ac derivatives, m.p. 215—216°), and thence 2-NO₂·C₆H₄·C₆H₄·NO₂·3' and (VII). 3-NO₂·C₆H₄·C₆H₄·NHAc-4' and HNO₃ (d 1·59) in Ac₂O-AcOH give 3:3'-dinitro-4-aminodiphenyl, m.p. 223—224°, and thence (VII) and 2:4-NO₂·C₆H₃·C₆H₃·Sr·NO₂·4':3'. 3:4-Dinitrodiphenyl [prep. from 1:3:4-C₆H₃I(NO₂), PhI, and Cu powder at 280°], m.p. 87—88°, with NH₃-EtOH at 150° gives 3:1:4-NO₂·C₆H₃Ph·NH₂ and with Br-AcOH-FeCl₃ (trace) at 90° gives 4-bromo-3':4'-dinitrodiphenyl (XI), m.p. 167—168°, converted by HNO₃ (d 1·59) into 4-bromo-

3:3':4'-trinitrodiphenyl, m.p. 192—193°, which is also obtained from (VI) or (XI). HNO₃ (d 1·5) at <8° converts 3:4:1-NO₂·C₆H₃(NHAc)·C₆H₄·NO₂·3' into 3:5:3'-trinitro-4-acetamido-, m.p. 242—243° (also obtained from 3-NO₂·C₆H₄·C₆H₄·NHAc-4'), and thence -4-amino-diphenyl, m.p. 233°. With, successively, NaNO₂-H₂SO₄ at 0°, H₃PO₄ at 2°, oleum at 15—20°, and boiling EtOH, (X) gives 3:5:3'-trinitrodiphenyl, m.p. 177—178° [also obtained from m-C₆H₄I·NO₂, 1:3:5-C₆H₃I(NO₂)₂ (XII), and Cu powder at 270°], and by Schoutissen's method 4-bromo-3:5:3'-trinitrodiphenyl, m.p. 222—223°. 3:5:3':5'-Tetranitrodiphenyl, m.p. 228—229°, is obtained from (XII) by Cu powder at 270°.

Proposition of polycyclohayyldiphenyls.—See B. 1942. II, 396.

Preparation of polycyclohexyldiphenyls.—See B., 1942, II, 396.

Separation of cis- and trans-stilbenes by application of the chroseparation of cis- and trans-stituenes by application of the chromatographic brush method. L. Zechmeister and W. H. McNeely (J. Amer. Chem. Soc., 1942, 64, 1919—1921).—cis- and trans-(CHPh.)₂, -p-OMe·C₆H₄·CH:CHPh, and -p-C₆H₄Me·CH:CHPh are separated by adsorption on Al₂O₃, extruding the column, and painting a streak with 1% KMnO₄ down the column; the two zones are indicated by brown stains. 1—2% of one form can be detected in the other. in the other.

in the other.

"Tervalent" carbon. XXI. Tetracyclohexyldiphenylethane. K. Ziegler and P. Herte (Annalen, 1942, 551, 222—234; cf. Marvel et el., A., 1930, 1279; Neunhoeffer, A., 1937, II, 16).—Dicyclohexylphenylcarbinol is converted by AcOH saturated with HBr in Et₂O into the bromide, m.p. 126—127°, which with dry Ag₂O and powdered AgNO₃ in MeOH affords dicyclohexylphenylmethyl Me ether, m.p. 75—76°. This is transformed by K-Na into the corresponding K compound (I), converted by EtOH into dicyclohexylphenylmethane, b.p. 201—202°/12 mm. (p-NO₂-derivative, m.p. 112—113°), also obtained by hydrogenation of cyclohexylcyclohexylidenephenylmethane, and by CO₂ into dicyclohexylphenylacetic acid (II), m.p. 250—252° (lit. 242—244°) (Ag salt). (I) and (CMe₂Br)₂ in Et₂O at —15° to —20° afford tetracyclohexyldiphenylethane, m.p. 157—158° (under N₂), transformed by K-Na followed by CO₂ into (II). The mol. wt. in freezing C₆H₆ is 470. It is autoxidised in boiling Et₂O to dicyclohexylphenylmethyl peroxide, m.p. 182—184°; in presence of pyrogallol (III) it appears to yield the H peroxide which has not been definitely characterised. Its rate of autoxidation resembles that of any other labile ethane and in autoxidation resembles that of any other labile ethane and in particular the rate of absorption of O_2 is independent of the O_2 pressure if (III) is present. In C_6H_6 it decolorises I but the reaction cannot be regarded as an identification of radicals since the rate of decomp. at room temp. is too small to permit a sufficiently rapid addition of I, which obviously attacks directly the very weak, central C-C linking. It greatly accelerates the autoxidation of $\Delta^{1:3}$ -cyclohexadiene and styrene. Solutions of the substance in C₆H₆, prepared with exclusion of air, lose their ability as O₂-carriers after prolonged heating, the ethane being irreversibly decomposed after primary dissociation followed by disproportionation.

Dissociation of hexa-arylethanes. XIV. Ethanes derived from mixtures of triaryl halides. C. S. Marvel and C. M. Himel (J. Amer. Chem. Soc., 1942, 64, 2227).—Treating mixed triarylmethyl halides (6 pairs) with Ag gives products, the degree of dissociation of which (determined by magnetic susceptibility) is \ll the mean of the dissociation of the pairs of radicals.

Dissociation of the pairs of radicals.

R. S. C.

Dissociation of hexa-arylethanes. XII. Effect of naphthyl and diphenyl groups. C. S. Marvel, J. W. Shackleton, C. M. Himel, and J. Whitson (J. Amer. Chem. Soc., 1942, 64, 1824—1825; cf. A., 1941, II, 284).—The following % dissociation in 0·1M. solution in C₆H₆ are determined by means of magnetic susceptibilities: [(p-C₆H₄Ph)₂CPh]₂ 18±2, (p-C₆H₄Ph)₆C₂ 26±5, (β-C₁₀H₇·CPh₂)₂ 6±2, [(β-C₁₀H₇)₂CPh]₂ 13±2, (β-C₁₀H₇)₆C₂ 21±10, 24±5, (α-C₁₀H₇·CPh-C₆H₄Ph-p)₂ 54±2. The relatively low results of Bachmann et al. (A., 1937, II, 90) are thus confirmed. Calculation for 0·1M. solution by the law of mass action from measurements at other concus. is proved permissible (26±2 to 29±5) for 0·839—7·0% solutions of (α-C₁₀H₇·CPh₂)₂ in C₆H₆ at 25°. β-C₁₀H₇ are much less dissociated than are α-C₁₀H₇ derivatives. Phenyldi-β-naphthyl-, m.p. 168—169°, and -p-diphenylyl-methyl peroxide, m.p. 151—152°, and phenyldi-β-naphthylmethyl chloride, m.p. 159—160°, are described. are described.

Quaternary salts. R. Baltzly, C. W. Ferry, and J. S. Buck (J. Amer. Chem. Soc., 1942, **64**, 2231).—n- $C_{18}H_{37}$ ·NPhMe, b.p. 234°/3 mm. (methiodide, m.p. 93—94°), β -cyclohexylethylbenzyldimethylammonium chloride, m.p. 206° (decomp.), benzyldimethyl- β -bromoethylammonium bromide, m.p. 174°, and α -naphthylmethyltriethylammonium chloride, m.p. 197° (decomp.), are prepared. R. S. C.

Acylacetarylamides.—See B., 1943, II, 5.

Influence of the 5-nitro-group on halogenation and nitration of Thindence of this order to an anogenation and intraction of 5-nitro-1-naphthylamine and related naphthalides. H. H. Hodgson and H. S. Turner (J.C.S., 1942, 723—725).—5: 1-NO₂·C₁₀H₆·NH₂ (I) yields with Br in CHCl₃ at 50° 2-bromo-, m.p. 121·5° (Ac derivative, m.p. 139°) [deaminated by diazotisation (NaNO₂-H₂SO₄ in AcOH) and treatment with Cu₂O in EtOH to 2: 5-C₁₀H₆Br·NO₂],

or 2: 4-dibromo-5-nitro-1-naphthylamine, m.p. $159 \cdot 5^{\circ}$ [Ac derivative, m.p. $230 \cdot 5^{\circ}$ (decomp.)], and with Hg(OAc)₂ in AcOH at 100° , 5-nitro-1-naphthylamine-2-mercuriacetate, m.p. $>400^{\circ}$. This with I in aq. KI at 100° gives $2 \cdot iodo \cdot 5$ -nitro-1-naphthylamine, m.p. $121 \cdot 5$ — $122 \cdot 5^{\circ}$ (Ac derivative, m.p. $169 \cdot 5^{\circ}$), converted (diazo-methods) into $2 \cdot 5 \cdot C_{10}H_6 \cdot NO_2$, new m.p. $91 \cdot 5^{\circ}$, and $1 \cdot 2$ -di-iodo-5-nitronaphthalene, m.p. $132 \cdot 5^{\circ}$. $5 \cdot 1 \cdot NO_2 \cdot C_{10}H_6 \cdot NHAc$ (II) with Cl₂ in AcOH at 100° yields only the Ac derivative, m.p. $235 \cdot 5^{\circ}$, of $2 \cdot 4$ -dichloro-5-nitro-1-naphthylamine, m.p. $116 \cdot 5^{\circ}$, deaminated (as above) to $2 \cdot 4$ -dichloro-5-nitronaphthalene, m.p. $116 \cdot 5^{\circ}$. Nitration of (II) gives $4 \cdot 5 \cdot 1 \cdot (NO_2)_2 \cdot C_{10}H_6 \cdot NHAc$, hydrolysed and deaminated to $1 \cdot 8 \cdot C_{10}H_6 (NO_2)_2 \cdot 5$ -Nitro-p-toluenesulphon-1-naphthalide, m.p. 171° [from (I) and $p \cdot C_0 \cdot H_4 \cdot Me \cdot SO_2 \cdot C$ in $C_6 \cdot H_6 \cdot N$], and AcOH-HNO₃ (d $1 \cdot 5$) yield the $p \cdot C_6 \cdot H_4 \cdot Me \cdot SO_2 \cdot C$ derivative, m.p. 206° , of $2 \cdot 4 \cdot 4 \cdot 5 \cdot 1 \cdot (NO_2)_3 \cdot C_{10}H_4 \cdot NH_2$, m.p. 310° (lit. 305° , 310°). $2 \cdot C$ horo-5-nitronaphthalene (from $5 \cdot 2 \cdot NO_2 \cdot C_{10}H_6 \cdot NH_2$) has m.p. $100 \cdot 5^{\circ}$.

Phenylthiocarbamides. The triad -N·C·S-. XII. Phenylcyanamide, its properties and derivatives. Phenylhydrazine-a-carboxylic acid. R. Sahasrabudhey and H. Krall (J. Indian Chem. Soc., 1942, 19, 343—348).—NHPh·CS·NH₂ with Cu(OAc)₂ in an alkaline medium gives NHPh·CN [separates from H₂O as (mainly) a monohydrate at 30° and trihydrate at 0—15°; hydrochloride, m.p. 118°; H sulphate; NO-derivative, m.p. 155—156°, which with NaOH affords NO·NPh·CO₂Na (corresponding Ag salt), reduced (Sn, dil. HCl) to CO₂H·NPh·NH₂,HCl]. NHPh·CN polymerises to triphenylisomelamine.

Preparation of sulphanilylcarbamide. E. H. Cox (J. Amer. Chem. Soc., 1942, 64, 2225—2226).—NH₂·C(OEt):NH,HCl, p-NHAc·C₆H₄·SO₂Cl, and K₂CO₃ in COMe₂-H₂O at 0° give p-acetamidobenzenesulphonyl-O-ethylisocarbamide (87%), m.p. 223—224°, hydrolysed by conc. HCl at 100° to sulphanilylcarbamide (80%), m.p. 140—146° (gas) (NH₄, K, and Na salts). R. S. C.

p-Aminobenzenesulphon- $\beta\beta$ -dimethylacrylamide.—See B., 1943,

Acylation experiments with sulphanilamide and heterocyclic Acylation experiments with sulphanilamide and heterocyclic amines. II, III. F. Bergmann and D. Schapiro (J. Org. Chem., 1942, 7, 419—423).—Sulphanilamide (I) and (:CH·CO)₂O in COMe₂, dioxan, or xylene give N⁴-sulphanilamidomaleic acid, m.p. 209—210°, converted by boiling 2% H₂SO₄—EtOH into the Et ester, m.p. 204—205°, with some N-phenylmaleimide-p-sulphonamide, softens at 220°, decomp. 285°. trans-CO₂Et-CH:CH·COCl (II) and (I) in COMe₂-C₅H₅N yield Et N⁴-sulphanilamidofumarate, m.p. 219° (corresponding acid, m.p. 295°). (I) and citraconic anhydride in dioxan at 5° and then at room temp, afford the acid, C., H.-O.N.S. terresponding acta, m.p. 295°). (1) and citraconic anhydride in dioxan at 5° and then at room temp. afford the actid, $C_{11}H_{12}O_6N_2S$, m.p. 175° and ~210° after re-solidification, easily transformed into the imide, m.p. 217—218°. 8-Amino-6-methoxyquinoline (III) and (:CH-CO)₂O in boiling COMe₂ yield 6-methoxyquinoline-8-N-maleamic actid, m.p. 225° [Et ester, m.p. 177°, and its hydrochloride (+0·5H₂O), m.p. 212° (decomp.)]. Et 6-methoxyquinoline-8-N-fumaramate, m.p. 105° [hydrochloride, m.p. 195° (decomp.)], results from (II) and (III) in COMe₂. 6-Methoxyquinoline-8-citraconimide has m.p. 179°.

has m.p. 179°. III. Gradual addition of Cl·[CH₂]₂·COCl in C_6H_6 to (III) in C_6H_6 leads to 8-\$\textit{-chloropropionamido-6-methoxyquinoline}, m.p. 104°, which with boiling MeOH-NHEt2 gives \(\gamma\)-acrylamido-6-methoxyquinoline, b.p. 210°/0·4 mm., m.p. 119—120° (hydrochloride, m.p. 208°; dibromide, m.p. 171—172°).

H. W.

Interpretation of the Sandmeyer reaction. III. Further evidence Interpretation of the Sandmeyer reaction. III. Further evidence in favour of a mechanism involving anionoid halogen. H. H. Hodgsson, S. Birtwell, and J. Walker (J.C.S., 1942, 720—723).—PhN₂HSO₄ with CuSO₄ and NaBr gives 38% of PhBr. The yield (63%) of p-C₆H₄Br·NO₂ (I) from p-NO₂·C₆H₄·N₂HSO₄, CuSO₄, and NaBr is unaffected by added (NH₄)₂S₂O₈, but FeCl₃ gives 74% of a 1:1 mixture of (I) and p-C₆H₄Cl·NO₂ (II); with H₂O₂ the yield of (I) is reduced. Conversion of p-NO₂·C₆H₄·N₂Cl into (II) is catalysed by FeCl₃ or CuCl₂ in H₂O or in HCl but not by ZnCl₂; SnCl₄ and AlCl₃ have little effect. Production of ArCl from ArN₂Cl and CuCl₂ (or CuSO₄ and NaCl) increases with increasing positivity of the diazonium cation. The reactions studied can be interpreted by the mechanism previously proposed (A., 1942, II, 52, 254). Cu^I by the mechanism previously proposed (A., 1942, II, 52, 254). Cu^I salts do not possess the almost unique character claimed by Sandmeyer and by Waters (A., 1942, II, 222).

A. LI.

Halogenation of esters in the diphenyl series. I. Chlorination of p-diphenylyl acetate. C. M. S. Savoy and J. L. Abernethy (J. Amer. Chem. Soc., 1942, 64, 2219—2221).—p-C₄H₄Ph·OAc with Cl₄ and a little I in CCl₄ and then KOH-aq. EtOH gives 4-chloro-4'-hydroxy-diphenyl, m.p. 145—146° (acetate, m.p. 113°), also obtained (4%) by treating benzidine with, successively, NaNO₂-aq. HCl, CuCl-HCl at room temp. and later 60°. and NaNO₂-aq. HCl at room temp. and later 60°. 2-Chloro-, m.p. 68°, 2: 6-dichloro-, m.p. 64°, and 2: 6: 4'-trichloro-4-diphenylyl acetate, m.p. 79·5°, are prepared from the corresponding phenols by boiling NaOAc-Ac₂O. R. S. C.

Nuclear methylation of phenols by means of methanolic sodium methoxide. J. W. Cornforth, (Mrs.) R. H. Cornforth, and (Sir) R. Robinson (J.C.S., 1942, 682—684).—The C-methylation method

used in the pyrrole series is extended. Although PhOH, o- and p-C₀H₄(OH), and a-C₁₀H₂-OH are unaffected by NaOMe-MeOH at 220° autoclave for ~10 hr., β-C₁₀H₂-OH [I] is partly methylated to 1:2-C₁₀H₄Me-OH [II] Resortinol [III] and s-C₄H₃(OH)₃ similarly yield 2:4:6:1:3-C₆HMe₄(OH)₂; with [III], some HCO₂H and probably a C-methyl- or -dimethyl-β-resortylic acid are also formed. 2:2°-Dihydroxy-di-α-naphthylmethane gives an improved yield (75%) of [II] showing that nascent [I] is more readily methylated than ordinary [I]. Benzylidenedi-β-naphthol gives 2:1-OH-C₁₀H₂-CH₂Ph₄ [I] and [II] whilst 1-piperidino-2- and 4-piperidino-1-naphthol yield [II] [I] is not formed] and 4:1 tries 2: 1-OH-1, H. CH. Ph. (1). and (11) whilst 1-piperidimo-2- and 4-piperidino-1-naphthol yield (II) [[I] is not formed and 4: 1-C₁₀H. Me-OH, respectively. 2: 7-Dihydroxy-1: 8-bispiperidino-methylblemanthrene, m.p. 219—220° from 2: 7-dihydroxyphenanthrene, piperidine and aq. CH₂O in EtOH), is reduced by NaOMe-MeOH at 200° for 6 hr., and the product methylated to (probably) 2: 7-dimethoxy-1: 8-dimethylphenanthrene, m.p. 256—257° Mechanisms of reaction are discussed.

Interaction of p-cresol and other phenols with chloral and its praise. M. P. Balie and W. C. Webber (J.C.S., 1942, 718—720). hydrate. M. P. Balfe and W. C. Webber (J. C.S., 1942, 718—720).

—In CHCl₂ at room temp. in presence of K₂CO₃, CCl₃-CHO yields with PhOH, Ph (7.5%), m.p. 15—18°, and with p-cresol, p-tolyl 323-trickloro-a-hydroxyethyl ether (35°). (I, m.p. 46—47°, but does not react with o- or m-cresol, p-NO₂C₆H₄·OH, or p-OH-C₆H₄·CO₂H.

Repeated saturation of molten p-cresol + CCl₃-CH (OH)₂ with HCl rields 3-233-trichloro-a-hydroxyethyl-p-cresol (35%) (II, also hearined when II is kept for several months in HCl gas or in soluobtained when I is kept for several months in HCl gas or in soluobtained when (I is kept for several months in HCl gas or in solution containing K₁CO₂. (II) in AcOH saturated with HCl gives the 4-monoacetate (III), m.p. 163° [colour (fugitive when heated) with FeCl., which with p-cresol and 99° H₂SO₄ in AcOH yields the monoacetate (IV) m.p. 198°, of ana-trichloro-33-di-4-hydroxy-m-tolylethane [diacetate (Ac₂O-NaOAc), m.p. 162°]. (II), p-cresol, and 99° H₂SO₄ in AcOH at 50-60° yield (III). (IV) and a diacetate, m.p. 200° slight decomp. [also obtained from (II) and 99° H₂SO₄ in PhNO, at 15°, with or without decressly acceptable.) H.SO, in PhNO, at 15°, with or without p-cresol: acetylated NaOAc-Ac₂O to the triacetate, m.p. 178°, of (V. II) with aq. KOH yields the compound (? VI), m.p. 184° (diacetate, m.p. 133°).

CCl₂-CHO or its hydrate with (best) 79.8% H₂SO₄ yields a complex of composition CCl₃-CH(OH)-O-SO₂-OH,1-5H₂O + 21.2% of

Ordation of p-cresol by peroxidase. W. W. Westerfeld and C. Lowe (J. Biol. Chem., 1942, 145, 463—470).—Horseradish peroxidase, H₂O₂, and p-cresol at pH 6-5 (PO₄" buffer) give the keto-dimethyltetrahydrodiphenylene oxide (I) of Pummerer et al. (A., 1925, i. 1262), 2:2'-dihydroxy-5:5'-dimethyldiphenyl (diacetate, m.p. 88°), and (probably) 2:2'-dihydroxy-3-(6'-kydroxy-m-tolyl)-5:5'-zimzehyldiphenyl, m.p. 196-5' triacetate, m.p. 107°) (cf. loc. cd.). 2:3'-Dihydroxy-5:6'-dimethyldiphenyl [from (I) and 48% HBr at 100° (bath) (dibenzoate, m.p. 131·5—132°), is methylated (Me₂SO₄, 10% NaOH) and then oxidised (KMnO₄, 10% NaOH) to 2:3'-dimethoxydiphenyl-5:6'-dicarboxylic acid, m.p. 263—264°. Ordation (KMnO₄, COMe₂) of (I) gives 1:4-dimethyl-1:2-dihydroxydiphenyl-5:2-dihydroxydiphenyl-5:2-dihydroxydiphenyl-5:2-dihydroxydiphenyl-5:2-dihydroxydiphenyl-5:2-dihydroxydiphenyl-5:2-dihydroxydiphenyl-5:2-dihydroxydiphenyl-5:2-dihydroxydiphenyl-5:2-dihydroxydiphenyl-5:2-dihydroxydiphenyl-5:2-dihydroxydiphenyl-5:2-dihydroxydiphenyl-5:2-dihydroxydiphenyl-5:2-dihydroxydiphenyl-5:2-dihydroxydiphenyl-5:2-dihydroxydiphenyl-5:2-dihydroxydiphenyl-5:4-dimethyl-1:2-dihydroxydiphenyl-5:4-dihydroxydiphenyl-5 Oxidation (KMnO₄, COMe₂) of [I] gives 1: 4-dimethyl-1: 2-dihydro-commarone-1-carboxylic-2-acetic acid (II), m.p. 149—150° (anhydride, m.p. 125—126°), oxidised (KMnO₄, dil. NaOH) to 1-methyl-1: 2-dihydrocommarone-1: 4-dicarboxylic-2-acetic acid, m.p. 238—240°. KOH-Insion of (II) at 250°, followed by methylation (Me₂SO₄) and oxidation (KMnO₄, 2% NaOH), gives 4: 1: 3-OMe-C₄H₄(CO₄H)₂.

a-Decylresorcinol.—See B., 1943, II, 5.

9,5

52

allylumols and related compounds. A. H. Cook, I. M. Heilbron, and F. B. Lewis (J.C.S., 1942, 659—661).—Neither p-anisyl stearate, m.p. 50°, nor paimitate, m.p. 51°5°, obtained from the acyl chloride and p-OH-C.H.*OMe-Et_O-C.H.*N (cold), would undergo the Fries reaction. The following are prepared from quinol Me, or Et_1 ether, the acid chloride, and AlCl, in C.H.Cl, at 0°: 2:5-dimethoxystearophenone, m.p. 46°, -palmitophenone (I), b.p. 205°/0·18 mm. m.p. 51·5°, -myristophenone, b.p. 209°/0·5 mm., m.p. 43°, and introphenone, b.p. 175—178° 0·2 mm., m.p. 27·5°; 2:5-diethoxymyristophenone, b.p. 204° 0·29 mm., m.p. 47·5° (2:4-dinitrophenyl-hydrazone, m.p. 78°), and -laurophenone, b.p. 180—190°/0·34 mm. 2:4-dinitrophenylhydrazone has m.p. 75°. 2:4:5-Trimethoxylaurophenone melts at 53°. Clemmensen reduction affords 2:5-dimethoxy. b.p. 188° 0·2 mm., and -diethoxy-octadecyl-b.p. 210°/0·06 mm., 2:5-dimethoxy-b.p. 210°/0·5 mm., and -diethoxy-hexadecyl-b.p. 219°/0·1 mm., 2:5-dimethoxy-b.p. 165° 0·5 mm. and -diethoxy-tetradecyl-b.p. 183° 0·1 mm., and 2:5-dimethoxy-b.p. 154° 0·5 mm., and -diethoxy-b.p. 154° 0·5 mm.

203°/0.5 mm.; demethylation by HBr-AcOH gives 5-methoxy-2-tetradecylcoumaran (or 6-methoxy-2-tridecylchroman), b.p. 196°/0.2 mm., 5-hydroxy-3-methyl-2-hexadecylcoumaran (or 6-hydroxy-4methyl-2-pentadecylchroman), b.p. 192—194° [0-2 mm., 5-hydroxy-4-methyl-2-tertadecylcoumaran (or 6-hydroxy-4-methyl-2-tridecylchroman), b.p. 200° [0-2 mm., and 5-hydroxy-3-methyl-2-decylcoumaran (or 6-hydroxy-4-methyl-2-nonylchroman), b.p. 178—183° [0-2 mm.

Palmityl-&-cumoquinol Me, ether could not be prepared.

Synthasis of substances related to the sterols. XL. (A) Preparation of 2: 7-dihydroxyphenanthrene and derivatives. (B) Reduction of 1-y-ketobutyl-2-naphthol. J. W. Cornforth and (Sir) R. Robinson (f.C.S., 1942, 684—689; cf. A., 1941, II, 365).—(A) Clemmensen reduction of 3: 3'-dimethoxybenzoin (I), followed by hydrogenation of the crude product (contains 3: 3'-dimethoxystilbene) in EtOH (Raney Ni) at normal temp. and pressure, gives 3: 3'-dimethoxydibenzyl (II), also obtained from (I) and aq. C₂H₃N-CuSO₄ at 90—100°, followed by reduction and hydrogenation of the dimethoxybenzil. (II is best prepared from m-OMe-C₄H₄-CH₂Cl (improved prep.), by reaction of its Grignard reagent with anhyd. FeCl₂. 3: 3'-Dikydroxydibenzyl, m.p. 139—140°, is oxidised by FeCl₃ to yellow resins. (II) and Hg(OAc)₂-AcOH-I at 50° afford 6: 6'-di-iodo-3: 3'-dimethoxydibenzyl, m.p. 113—114°, cyclised by Cu-bronze at ~260° to 2: 7-dimethoxy-9: 10-dihydrophenanthrene, m.p. 108—109°, which is dehydrogenated by S at 220—230° to Synthesis of substances related to the sterols. XL. (A) Preparion of 2: 7-dihydroxyphenanthrene and derivatives. (B) Reduction Cu-bronze at ~260° to 2:7-dimethoxy-9:10-dihydrophenanthrene, m.p. 108—109°, which is dehydrogenated by S at 220—230° to 2:7-dimethoxyphenanthrene (III), m.p. 169—170°, converted by boiling HI-AcOH into the (OH)₂-compound (IV) (dibenzoate, m.p. 252—253°) (not transformed into its Me ethers by HCl-MeOH). IV and Me₂SO₄-10°, aq. NaOH-COMe₂ yield (III) and 2-hydroxy-7-methoxyphenanthrene (V), m.p. 173—174°, less readily prepared from the monobenzoate of (III) by methylation and hydrolysis. Hydrogenation (Cu chromite in EtOH) of (V) at 170—175°/100 atm. gives 2-hydroxy-7-methoxy-1:2:3:4-tetrahydrophenanthrene, m.p. 123—124°, with (probably) some 1:2:3:4:5:6:7:8-H₈-derivative. 2:7-Dihydroxy-9:10-dihydrophenanthrene (VI), m.p. 206—208° (from the Me₂ ether and HI-AcOH), with BzCl at 210—220° 208° (from the Me₂ ether and HI-AcOH), with BzCl at 210-220° gives the dibenzoate, m.p. 208—210°, and some monobenzoate; methylation of the latter with aq. COMe₂-Me₄SO₄-NaOH, followed by alkaline hydrolysis, gives 2-hydroxy-7-methoxy-9: 10-dihydrophenanthrene (VII), m.p. 118—120°. The Na derivative of (VII) and CO₂ at 210—220° 20 atm. yield 2-hydroxy-7-methoxy-9: 10-dihydrophenanthrene-3-carboxylic acid, m.p. 225—226° (decomp.); 2: 7-dihydroxy-9: 10-dihydrophenanthrene-3: 8-dicarboxylic acid, acid, in the control of th m.p. 305' (decomp.), is obtained from (VI and CO₂ at 200')5 atm. m-OMe-C₆H₄·CH₃·COCl (VIII), p-C₆H₄(OMe)₂, and AlCl₃-CS₂, followed by Clemmensen reduction of the product and subsequent followed by Clemmensen reduction of the product and subsequent methylation, give 2:5:3'-trimethoxydibenzyl, b.p. 177—180°/0·4 mm. (demethylation gives tars). Me 2-hvdroxy-4-phenylacetoxy-benzoate, m.p. 53—54°, is obtained from 2:4:1-(OH)₂C₄H₃·CO₂Me [X] and CH₂Ph-COCl-AlCl₃-CS₂, whereas condensation in PhNO₂ at 50—60° affords Me 2:4-dihydroxy-5-phenylacetylbenzoate, m.p. 150—151°, reduced (Clemmensen) to Me 2:4-dihydroxy-5-β-phenylethylbenzoate, m.p. 114—115° (aq. NaOH-EtOH give 4-β-phenylethylresorcinol). [VIII] [X] and AlCl₃-PhNO₂ at 30° afford a product, m.p. 165° (softens at 150°) hydrolysed by aq. NaOH-EtOH to an acid, m.p. 237—240°, which loses CO₂ at 240° to give 4-m-methoxyphenylacetylresorcinol, m.p. 109—110°. AlCl₃ or ZnCl₂, [VIII], and methylumbelliferone at 140°, and then 170°, give no new product.

(B) Hydrogenation (Cu chromite-EtOH) of 1-γ-ketobutyl-2-naphthol (X) at 155° 75 atm. yields 2-hydroxy-1-γ-hydroxybutyl-

naphthol (X) at 155° 75 atm. yields 2-kydroxy-1-y-hydroxybuly-1:2:3:4-tetrakydronaphthalene (XI, forms, m.p. 111—112°, and b.p. 215—220° 10 mm., but the corresponding diketone could not be obtained.

XI is oxidised by K₂Cr₂O₇-H₂SO₄-aq. AcOH-C₆H₆ to (probably) 1-kydroxy-2-keto-1-y-ketobuly-1:2:3:4-tetrahydronaphthalene, m.p. 79—80°. (XI) and Al(OBu')₃—OMeto-C₆H₆ give a substance, b.p. 156—158°/9 mm., probably (A).

XI and Al(OBu')₃-COMeto-C₆H₆ give a compound, b.p. 175—200°/15 mm., grodably (A). affords a 2: 4-dinitrophenylhydrazone, m.p. 212-213° (decomp.), probably derived from the dike-tone. (XI) and Raney Ni (N₂) at 150—160° give a-methyltetrahydro-5: 6-benzochroman, new m.p. 72—73°, also ob-

a-methyltetral dro-5 be benzylation, followed by CH(OEt)₃-HCl-EtOH, and hydrogenation (Raney Ni) of the 2-benzyloxy-l-y-ketobutyl-naphthalene Et₂ acetal at 100° 100 atm. **X** and H₂-Raney Ni-EtOH at 180° 125 atm. afford perhydro-2-methyl-5: 6-benzochroman, b.p. 132—133° 9 mm., partly converted by an equal wt. of Ac₂O

 $(+1\% \ \rm ZnCl_2)$ at 200° into an unsaturated monoacetate, b.p. 167—172°/9 mm. A. T. P.

Halogenation of phenolic ethers and anilides. XIII. activation energies for di- and poly-substituted aromatic ethers.-See A., 1943, I, 38.

Formation and rearrangement of o-tolyl benzhydryl ether. H. A. Iddles, D. H. Chadwick, J. W. Clapp, and R. T. Hart (J. Amer. Chem. Soc., 1942, 64, 2154—2157).—Contrary to Schorigin (A., Formation and rearrangement of σ-tonyl delizary trying teach. The Amer. Iddles, D. H. Chadwick, J. W. Clapp, and R. T. Hart (J. Amer. Chem. Soc., 1942, 64, 2154—2157).—Contrary to Schorigin (A., 1929, 183), the compound, m.p. 139—141°, obtained from σ-cresol and CHPh₂·OH in AcOH—H₂SO₄ at 100°, is 3:5-dibenzhydryl-o-tolyl acetate (I); at room temp. 5-benzhydryl-o-cresol (II), m.p. 101°, b.p. 180—185°/2 mm., is obtained. σ-C₆H₄Me·O·CHPh₂ (prep. from CHPh₂Cl and σ-C₆H₄Me·ONa in boiling Et₂O), b.p. 175—178°/4 mm., with ZnCl₂ at 150° also gives (II). Br in CCl₄ converts (II) into the 3-Bγ-compound, m.p. 117—118°, which is also obtained (70%) from 1:3:2-C₆H₃MeBr·OH and CHPh₂·OH in AcOH—H₂SO₄ at room temp. With Me₂SO₄—NaOH at 40°, (II) gives the Me ether (67%), m.p. 74—76°, also obtained (43%) from 2:1:5-OMe·C₆H₃Me·CPh₂·OH by Zn dust in AcOH. 2:1:3-OH·C₆H₃Me·CPh₂·OH by Zn dust in AcOH. 2:1:3-OH·C₆H₃Me·CPh₂·OH and Zn-AcOH give 3-benzhydryl-o-cresol (70%), m.p. 76—78°, which with Br-CCl₄ gives the 5-Br-derivative (45%), m.p. 97—100° (acetate, m.p. 157—158°), also obtained (m.p. 100—103°) from 1:5:3·C₆H₃MeBr·OH and CHPh₂·OH in AcOH—H₂SO₄ at 100°. 2:1:3:5-OH·C₆H₃Me(CO₂Me)₂ (modified prep.) and MgPhBr in boiling Et₂O give an orange substance (75%), 5:1:3:2-CPh₂·C₆H₂Me(CPh₂·OH)·O, m.p. 206—208°, reduced by Zn dust in boiling AcOH to 3:5-dibenzhydryl-o-cresol, amorphous, m.p. 50—60° [3:5-dinitrobenzoate, m.p. 206—207°; acetate [I]]. R. S. C. Custernary salts from β'-dimethylamino-β-thymoxydiethyl ether.

Quaternary salts from β' -dimethylamino- β -thymoxydiethyl ether. C. W. Ferry, A. E. Ardis, and J. S. Buck (J. Amer. Chem. Soc., 1942, 64, 2232).—Na thymoxide or 6-chlorothymoxide with boiling 1942, **64**, 2232).—Na thymoxide of o-chlorothymoxide with bolding (Cl- $\{CH_2\}_2\}_2$ O and then 33% NHMe₂-MeOH at 145°/~150 lb. give oily bases, which with RHal yield benzyl-, m.p. 122—123°, and p-chlorobenzyl-, m.p. 166—166·5°, - β - β -thymoxyethoxyethyldimethylammonium chloride, β - β -6-chlorothymoxyethoxyethyldimethylammonium iodide, m.p. 152°, p-chloro-, m.p. 160°, and p-bromo-, m.p. 156·5—157°, -benzyl- β - β -6-chlorothymoxyethoxyethyldimethylammonium chloride.

Quaternary salts containing aryloxy-ethyl and -propyl groups. W. S. Ide, R. Baltzly, and J. S. Buck (J. Amer. Chem. Soc., 1942, 64, 2234).—Na thymoxide and 6-chlorothymoxide with OH:[CH₂]_n·Br give OH:[CH₂]_n·X and thence (PBr₃) Br·[CH₂]_n·X and (NHMe₂-MeOH; 120—125°) NMe₂·[CH₂]_n·X, which with AlkHal yield \$\eta\$-thymoxy-, m.p. 176°, and \$\eta\$-6-chlorothymoxy-ethyltrimethylammonium iodide, m.p. 228°, benzyl-, m.p. 194°, p., m.p. 216°, and o-chlorobenzyl-, m.p. 175°, -\eta\$-6-chlorothymoxyethyldimethyl-ammonium chloride. y-6-chlorothymoxy-n-brobyltrimethylammonium chloride. methylammonium iodide, m.p. 228°, benzyl-, m.p. 194°, p-, m.p. 210°, and o-chlorobenzyl-, m.p. 175°, -β-6-chlorothymoxyethyldimethylammonium chloride, γ-6-chlorothymoxy-n-propyltrimethylammonium iodide, m.p. 229°, p-chlorobenzyl-, m.p. 204°, and p-bromobenzyl-, m.p. 191°, -γ-6-chlorothymoxy-n-propyldimethylammonium chloride, m.p. 184—187°. β-6-Chlorothymoxy-n-propyldimethylammonium chloride, m.p. 184—187°. β-6-Chlorothymoxyethyl-pyridinium, m.p. 119—120°, and -2: 4-dimethylthiazolinium bromide, m.p. 214°, are prepared.

R. S. C.

Unsymmetrical disubstituted carbamides. J. S. Buck, W. S. Ide, and R. Baltzly (J. Amer. Chem. Soc., 1942, 64, 2233).—NHRR' and NH₂·CO·NH·NO₂ give N-methyl-N-n-hexyl-, m.p. 75°, N-p-anisyl-N-sec.-butyl-, m.p. 140°, -β-methyl-n-butyl-, m.p. 130°, -ββ-dimethyl-n-propyl-, m.p. 155°, and -ay-dimethyl-n-butyl-, m.p. 110°, -carbamide.

R. S. C.

5-Amino-2-hydroxybenzenesulphonamide and related compounds. R. T. Williams (J.C.S., 1942, 708—709).—5:2:1-NH₂·C₈H₃(OH)·SO₃H and C₅H₅N-Ac₂O at room temp. afford C_5H_5N 5-acetamido-2-acetoxybenzenesulphonate, m.p. 143—144°, converted by PCI, into 5-acetamido-2-acetoxybenzenesulphonyl chloride (I), m.p. 148—149°. (I) and 50% aq. NH₃, followed by cold 2N-HCl, yield 5-acetamido-2-hydroxybenzenesulphonamide, m.p. 215°, hydrolysed by boiling aq. HCl to the 5-NH₂-compound, m.p. 202° (decomp.). 5-Acetamido-2-acetoxybenzenesulphonamilide, m.p. 150° (decomp.), obtained from (I) and NH2Ph-AcOEt, is hydrolysed by boiling 2n-HCl to 5-amino-2-hydroxybenzenesulphonanilide, m.p. 159° . 3:4:1-NH₂·C₆H₃(OH)·SO₃H gives C_5H_5N 3-acetamido-4-acetoxybenzenesulphonate, m.p. 162° , and thence the corresponding sulphonyl chloride (II), m.p. 143° , and 3-acetamido-4-acetoxy-, m.p. 205° , and 3-amino-4-hydroxy-benzenesulphonanilide, m.p. 172° (poor yield). (II) and aq. NH₃, followed by hydrolysis with 2n-HCl, give a non-cryst. product. 4:2:1-NHAc·C₆H₃(OAc)·SO₂Cl gives 4-acetamido-2-acetoxy-, m.p. 213—214°, whence 4-amino-2-hydroxybenzenesulphonanilide, m.p. 184°.

Vital stains. I. A. A. Goldberg (J.C.S., 1942, 713-716). Vital stains of the trypan-blue type, containing I or As, are synthesised. $5:1:2\text{-}C_6H_3\text{IMe}\cdot\text{N}_2\text{Cl}$ and $8:3:6:1\text{-}O\text{H}\cdot\text{C}_{10}H_4(\text{SO}_3\text{Na})_2\cdot\text{NH}_2$ (I) in aq. NaOH at $0-5^\circ$, then at 40° , give Na_2 1-amino-2-(5'-iodo-o-tolueneazo)-8-naphthol-3:6-disulphonate, which with tetrazotised o-tolidine in NaOH affords Na_4 3:3'-dimethyldiphenyl-4:4'-bis-

[2"-azo-8"-amino-1"-hydroxy-3": 6"-disulphonaphthalene-7"-(5"-iodo-o-azotoluene)]; the benziline and dianisidine analogues are prepared. 1:2:6:4-N₂Cl·C₆H₂I₂·AsO₃H₂ and (I) afford Na₄ 1-amino-2-(2':6'-di-iodo-4'-arsonobenzeneazo)-8-naphthol-3:6-disulphonate, converted into Na₈ 3:3'-dimethyldiphenyl-4:4'-bis-[2"-azo-8"-amino-1"-hydroxy-3":6"-disulphonaphthalene-7"-(azo-2"':6"-di-iodobenzene-4"'-arsonate)]. CH₂(C₆H₄·NH₂·p)₂ and 1-CaCO₃-H₂O-Et₂O give 3:3'-di-iodo-4:4'-diaminodiphenylmethane, m.p. 80—85°, which is tetrazotised and coupled with K_4 2-amino-1-(4-arsonobenzeneazo)-8-naphthol-3:6-disulphonate to give K_8 3:3'-di-iododiphenylmethane-4:4'-bis-(2"-azo-7"-amino-1"-hydroxy-3":6'-disulphonaphthalene-8"-azobenzene-4"'-arsonate). 4:2:6:1-SO₃H·C₈H₂I₂·N₂Cl and (I) afford Na₃ 1-amino-2-(2':6'-di-iodo-4'-sulphobenzeneazo)-8-naphthol-3:6-disulphonate (II). Benzidine-2:2'-disulphonic acid in aq. NaOH at 80°, added to ICl-aq. HCl at 80°, affords Na₂ 5:5'-di-iodobenzidine-2:2'-disulphonate (III), which (tetrazotised) with (II) gives Na₈ 5:5'-di-iodo-2:2'-disulphonaphthalene-7"-(azo-2"':6''-di-iodobenzene-4'''-sulphonate)]. 1:4:6:2-NH₂·C₆H₂I₂·CO₂H, m.p. 228—230° (from o-NH₂·C₆H₄·CO₂Na and ICl-aq. HCl, at 70—80°), gives Na₃ 1-amino-2-(2':4'-di-iodo-6'-carboxybenzeneazo)-8-naphthol-3:6-disulphonate, and thence, with tetrazotised (III), Na₈ 5:5'-di-iodo-2:2'-disulpho-di-di-hemyl-4:4'-his-[2'''-azo-8'''-amino-1'''-hydroxy-3''':6'''-di-iodo-2:2'-disulpho-di-hemyl-4:4'-his-[2''''-azo-8'''-amino-1''-hydroxy-3'':6'''-disulpho-di-hemyl-4:4'-his-[2'''-azo-8'''-amino-1''-hydroxy-3'':6'''-disulpho-di-hemyl-4:4'-his-[2'''-azo-8'''-amino-1''-hydroxy-3'':6'''-disulpho-di-hemyl-4:4'-his-[2'''-azo-8'''-amino-1''-hydroxy-3'':6'''-disulpho-di-hemyl-4:4'-his-[2'''-azo-8'''-amino-1''-hydroxy-3'':6'''-disulpho-di-hemyl-4:4'-his-[2'''-azo-8'''-amino-1''-hydroxy-3''-6'''-disulpho-di-hemyl-4:4'-his-[2'''-azo-8'''-amino-1''-hydroxy-3''-6'''-di-iodo-2:2'-disulpho-di-hemyl-[2"-azo-8"-amino-1"-hydroxy-3": 6"-disulphonaphthalene-7"-(5"-

and thence, with tetrazotised (III), $Na_8 \cdot 5 \cdot 5' \cdot di \cdot iodo \cdot 2 \cdot 2' \cdot disulphodiphenyl \cdot 4 \cdot 4' - bis \cdot [2'' - azo - 8'' - amino - 1'' - hydroxy - 3'' : 6'' - disulphonaphthalene \cdot 7'' - (azo - 2''' : 4''' - di \cdot iodobenzene - 6''' - carboxylate)].$

Condensation of o-, m-, and p-thiocresols with o-bromonitro-Condensation of o-, m-, and p-thiocresols with o-bromonitrobenzene, 2:5-dichloro- and 2:5-dibromo-nitrobenzene. P. S. Varma, K. S. V. Raman, and N. H. Malani (J. Indian Chem. Soc., 1942, 19, 354—356).—C₈H₄Me·SNa (or K) and the halogen compounds (with Cu-bronze for o-C₈H₄Br·NO₂) at ~180—200° give 2'-nitro-2-, b.p. 210—215°/16 mm., m.p. 86°, -3-, b.p. 222°/18 mm., m.p. 86·5°, and -4-methyl-, m.p. 87·5°, 4-chloro-, m.p. 121°, and 4-bromo-2-nitro-4'-methyl-, m.p. 124°, and 4-chloro-2-nitro-2'-methyl-diphenyl sulphide, b.p. 200—205°/18 mm., m.p. 82·5°. 4-Bromo-2-nitro-4'-methyldiphenyl sulphone has m.p. 132°. F. R. S.

Energy-level treatment of reaction data.—See A., 1943, I, 38.

Acid-catalysed hydrolysis of phenyl-substituted aliphatic esters.— See A., 1943, I, 39.

Isethionic acid. A. A. Goldberg (J.C.S., 1942, 716—718).— Isethionic acid is obtained from Et_2SO_4 and 60% oleum at \$10°, with subsequent hydrolysis (H₂O) and is isolated as the Ca salt. Na O-phenylacetyl-, O- β -phenylpropionyl-, and O-acetylmandelylisethionate [from Na isethionate and the acid chloride at 140° (alone in the first case) or in xylene] are hydrolysed slowly in neutral, more rapidly in acid, and very rapidly in strongly alkaline solution. Pharmacological applications of these are discussed, and lethal dosages for mice are given.

Manufacture of hydroxylamine and mandelic acid.—See B., 1943, II, 5.

Preparation of substituted mandelic acids and their bacteriological effects. III. J. L. Riebsomer, D. Stauffer, F. Glick, and F. Lambert (J. Amer. Chem. Soc., 1942, 64, 2080—2081; cf. A., 1939, II. bert (J. Amer. Chem. Soc., 1942, **64**, 2080—2081; cf. A., 1939, II, 62).—Figures in parentheses below are bacteriological activities relative to OH·CHPh·CO₂H. CO(CO₂Et)₂, the appropriate hydrocarbon, and SnCl₄ give OH·CAr(CO₂Et)₂, in which Ar = 2:4:1, b.p. $150-155^{\circ}/4-5$ mm., 3:4:1-, b.p. $157-160^{\circ}/4-5$ mm., and 2:5:1-C₆H₃Me₂, b.p. $154-156^{\circ}/4-5$ mm., p-CH₂Ph·C₆H₄, b.p. $225-230^{\circ}/4-5$ mm., and p-C₆H₄Ph, converted by 20% KOH and then aq. HCl into $^{-2}:4\cdot(3\cdot5)$, m.p. $113-115^{\circ}$ [acetate (0.5), m.p. 92°], $3:4-(3\cdot5)$, m.p. $133-115^{\circ}$ [acetate (<1), m.p. $112-113^{\circ}$; propionate (<1), m.p. 86°], p-benzyl- (<1), m.p. $133\cdot5-134\cdot5^{\circ}$, and p-phenyl-mandelic acid (0), m.p. 192° [acetate (0), m.p. 133° ; propionate (0), m.p. 107°]. Structures are proved by oxidation to the expected benzoic acid 2-C₁₀H₇Me gives a very poor yield of an acid, m.p. $146\cdot5-147\cdot5^{\circ}$; $2\text{-}C_{10}\text{H}_7\text{Me}$ gives a very poor yield of an acid, m.p. $146.5\text{--}147.5^\circ$; CHPh, gives an impure acid, m.p. $90\text{--}95^\circ$; $1\text{-}C_{10}\text{H}_7\text{Me}$, fluorene, acenaphthene, and anthracene do not give the expected acids. Crude xylene gives a product as active as the isomerides but too toxic. Mandelic acid acetate (1), m.p. 76—76.5°, and propional (2), m.p. 58°, and p-methylmandelic acid acetate (0.5), m.p. 105°, are also reported.

Condensations of γ-bromocrotonic esters with zinc. K. Ziegler, W. Schumann, and E. Winkelmann (Annalen, 1942, 551, 120—126; cf. Fuson et al., A., 1938, II, 442).—CH₂Br-CH:CH·CO₂Me, PhCHO, and Zn wool in boiling C₆H₆ readily give Me δ-hydroxν-δ-phenvl-Δ^a-pentenoate, b.p. 175—179°/11 mm., which absorbs 1 H₂ (Pd-BaSO₄ in EtOAc) giving a product dehydrated (KHSO₄ at 150—170°) to CHPh:CH·C(H₂)₂·CO₂Me, b.p. 158—162°/10 mm., m.p. 75°, which is hydrogenated and then hydrolysed to Ph·[CH₂]₄·CO₂M. CH-Ph:CH·CHO similarly gives a little Ph·[CH:CH]₃·CO₂Me. CH₂Br·CMc:CH·CO₂Me (I) and PhCHO readily afford essentially Me δ-hydroxy-δ-phenyl-β-methyl-Δ^a-pentenoate, b.p. 192—203°/14 mm. (64%), hydrolysed to the actd. m. p. 154°, and hydrogenated (Pd-BaSO₄ in abs. EtOH) to OH·CHPh·CH₂·CHMe·CH₂·CO₂Me, m.p. 65°; it is converted by PBr₃ in C₆H₆ at room temp. into Me

δ-bromo-δ-phenyl-β-methyl- Δ^{α} -pentenoate, which with collidine under N₂ at 110° gives the Me ester, b.p. 173— $181^{\circ}/12$ mm., of δ-phenyl-β-methyl- Δ^{α} -pentadienoic acid, m.p. 157° , hydrogenated to δ-phenyl-β-methyl-n-valeric acid. ε -Phenyl-β-methyl- Δ^{α} βδ-hexatrienoic acid, m.p. 192° , is obtained by hydrolysing the distilled product from (I) and CHPh.CH·CHO.

Lactones related to the cardiac aglycones. X. Synthesis of simple, hydroxylated β-substituted Δαβ-butenolides. E. R. Marshall, J. A. Kuck, and R. C. Elderfield (J. Org. Chem., 1942, 7, 444—456).

—Dropwise addition of CH₂Br·CO₂Et in C₈H₆ to a boiling mixture of p-OMe·C₆H₄·CO·CH₂·OMe, C₆H₆, and Zn gives Et β-hydroxy-γ-methoxy-β-p-anisylbutyrate (I), b.p. 152—160°/0·6 mm., which does not absorb H₂ in EtOH containing PtO₂. The corresponding acid, m.p. 102·5—103·5°, is transformed by HBr-AcOH at 110—120° into β-p-anisyl-Δαβ-butenolide [β-p-anisyl-Δαβ-butenolide] (II), m.p. 120°, demethylated by AcOH-HBr at 120—140° to (slightly impure) β-p-hydroxyphenyl-Δαβ-butenolide (III), m.p. 262·5—263·5° (sealed capillary) (acetate, m.p. 138·6—140·7°), also obtained directly from (I). p-OAc·C₆H₄·COCl is transformed by successive treatments with CH₂N₂ and AcOH into p-OAc·C₆H₄·CO·CH₂·OAc, m.p. 94·6—95·6°, which is converted by Zn and CH₂Br·CO₂Et followed by hydrolysis into (III), which gives a strong Legal test and with CH₂N₂ gives (II). m-OAc·C₆H₄·CO₂H is transformed through the chloride, CHN₂ ketone, and m-OAc·C₆H₄·CO·CH₂·OAc into β-m-hydroxyphenyl-Δαβ-butenolide, m.p. 187·5—188·5° (sealed capillary), which gives a positive Legal test, a colour with FeCl₃, and decolorises which gives a positive Legal test, a colour with FeCl3, and decolorises which gives a positive Legal but negative FeCl₃ test. o-OAc·C₆H₄·CO·CHN₂ is converted by glacial AcOH into coumaranone (**IV**), also formed with an orange comacon into coumaranone (**IV**), also formed with an orange compound, m.p. 204—205°, using AcOH at room temp. and subsequently at 100°. o-OMe·C₆H₄·CO·CHN₂ reacts violently with AcOH in absence of a solvent but smoothly in presence of Et₂O to give (**IV**). o-OMe·C₆H₄·MgBr and OMe·CH₂·CN afford o-OMe·C₆H₄·CO·CH₂·OMe, b.p. 149—152°/10 mm. (semicarbazone, m.p. 138·1—139·1°), converted into Et β-hydroxy-γ-methoxy-β-o-anisylbutyrate (**V**), b.p. 127—128°/0·2 mm., and thence into β-o-anisyl-Δαβ-butenolide, m.p. 95·1—95·6°; this is transformed by HBr, HBr-AcOH, or AcOH under varied conditions into coumaronyl-3-acetic acid, m.p. 89·2—91·2°, mixed with unchanged material. Reduction (PtO₂ in AcOH) of (**V**) yields Et β-hydroxy-γ-methoxy-β-2-methoxycyclohexylbutyrate, b.p. 122—123°/1 mm., with some hexahydrocoumaronyl derivatives; the ester does not react satisfactorily with HCl or HBr. o-OMe·C₆H₄·CO₂Me is hydrogenated (Raney Ni) at 200°/2000—2700 lb. per sq. in. to Me 2-methoxy-cyclohexanecarboxylate, b.p. 96·5—97°/15 mm. (but mainly to Me cyclohexanecarboxylate), converted into the acid, b.p. 122—123°/5 mm. (p-toluidide, m.p. 130·2—132·4°), the acid chloride, ω-diazoo-methoxyhexahydroacetophenone, and thence into a mixture of hexahydrocoumaranone and ω-acetoxy-o-methoxyhexahydroacetophenone. hexahydrocoumaranone and ω-acetoxy-o-methoxyhexahydroacetophenone. High-pressure hydrogenation of o-OH·C₆H₄·CO₂Me in EtOH gives Et hexahydrosalicylate, b.p. 110—115°/13 mm., hydrolysed to a mixture of acids, m.p. 76—78° and 109—110°, and transformed by NH₁ into the amide, m.p. 113·7—114·7°. The crude acid is transformed by AcCl in boiling Et Offillowed by distillation into is transformed by AcCl in boiling Et₂O followed by distillation into 2-acetoxycyclohexanecarboxylic acid, m.p. 66·1-66·6° (p-toluidides, m.p. 154-155·9° and 124-143°). The crude acid is transformed into the chloride and thence into the CHN₂ ketone, which could not be satisfactorily converted into ω : o-diacetoxyhexahydroacetophenone. None of the lactones described above shows cardiac activity when tested in frogs. M.p. are corr.

Preparation of hexahydro-p-toluamides. M. Delepine and M. Badoche (Ann. Chim., 1942, [xi], 17, 179—182).—p-Toluic acid is hydrogenated (PtO₂—AcOH) to the H_6 -derivative (I), b.p. 128—130°/13 mm., partly converted by HCl at 235—240° for 2 hr. into the trans-acid, m.p. 111° (60% yield) [amide, m.p. 226° (block)]. (I) is a mixture, consisting mainly of cis-hexahydro-p-toluic acid [amide, m.p. 163° (block) or 160—160·5° (tube)]. Other m.p. (lit.) of the amides are those of mixtures.

Basic indium salicylates. T. Moeller (J. Amer. Chem. Soc., 1942, 64, 2234).—Anhyd. $\ln_2(SO_4)_3$ (1 mol.) and o-OH·C₆H₄·CO₂Na (3 mols.) in H₂O gives basic In salicylate, $\ln(C_7H_5O_3)_2$ ·OH, +3H₂O, converted at 110° or in boiling MeOH into the anhyd. salt.

R. S. C.

Chloralamides. Chloral-5-acetamidosalicylamide and related compounds. K. N. Rana (J. Indian Chem. Soc., 1942, 19, 299—302).—
5-Acetamidosalicylamide (+H₂O), m.p. 204—206° (loses H₂O at 110°) [from 5:2:1-NHAc·C₆H₃(OH)·CO₂Me and aq. NH₃], heated with chloral yields 5-acetamidosalicyl-βββ-trichloro-a-hydroxyethylamide, m.p. 176—177° (decomp.) [violet colour with FeCl₂; Me₂ ether (Me₂SO₄), m.p. 166—167°; Bz₂ m.p. 187—188°, and Ac₂ derivative (Ac₂O), m.p. 212—214°], dehydrated (cold conc. H₂SO₄) to 6-acetamido-2-trichloromethylbenzometoxazone, m.p. 218—219° (Ac derivative, m.p. 197—198°). Formation and stability of 5-substituted chloralsalicylamides are promoted by positive substituents. A. LI.

Diamino-peptides. R. Baltzly, W. S. Ide, and J. S. Buck (J. Amer. Chem. Soc., 1942, 64, 2231).—Hydrogenation of

NMe₂·[CH₂]₂·CO·NH·C₆H₄·NO₂·p (prep. from Br·[CH₂]₂·CO·NH·C₆H₄·NO₂·p and NHMe₂) (hydrochloride, m.p. 200—201°) and its methochloride in HCl–EtOH gives β-dimethylaminopropion-p-aminoanilide dihydrochloride, m.p. 218—219°, and the corresponding methochloride hydrochloride, m.p. 211—212°, respectively. NEt₂·[CH₂]₂·NH₂ (prep. from NEt₂·CH₂·CN by Na–EtOH) gives the p-NO₂·C₆H₄·CO derivative hydrochloride, m.p. 164—165°; this and its ethochloride yield (hydrogenation) N-p-aminobenzoyl-N'N'-diethylethylenediamine dihydrochloride, m.p. 176·5—178°, and the corresponding ethochloride hydrochloride, m.p. 228°, respectively. NMe₂·[CH₂]₂·CN gives similarly NMe₂·[CH₂]₃·NH₂ (dihydrochloride, m.p. 182—184°; p-NO₂·C₆H₄·CO derivative hydrochloride, m.p. 180—192°), and N-p-aminobenzoyl-N'N'-dimethyltrimethylenediamine dihydrochloride, m.p. 184—185°. The p-nitrophenylcarbamate of OH·[CH₂]₂·NEt₃Cl is reduced to the p-aminophenylcarbamate (hydrochloride, m.p. 138—139°).

Action of thionyl chloride on 2:3-hydroxynaphthoic acid. J. W. Airan and S. V. Shah (J. Indian Chem. Soc., 1942, 19, 333—334).—2:3-OH· $C_{10}H_6$ · CO_2H (I) with SOCl₂ at 110° yields the lactone, m.p. 240°, hydrolysed (dil. NaOH) to (I).

Reaction of furoic acid with aromatic compounds. II. Reaction of methyl furoate with benzene and chlorobenzene. C. C. Price and C. F. Huber. III. C. C. Price, E. C. Chapin, and M. Rieger (J. Amer. Chem. Soc., 1942, 64, 2136—2139, 2227—2228; cf. A., 1941, II, 291).—II. Me furoate, C_6H_6 , and AlCl $_3$ at 0° and later 70° give 1- $C_{10}H_7$ ·CO $_2$ Me (32—46%) (cf. McCorkle et al., Proc. Iowa Acad. Sci., 1936, 43, 205) and a tar, containing Me 9-ethyl-9: 10-dihydrog-anthroate (I) (11—20%), m.p. 52—54°, b.p. 144—145°/0-04 mm., but with PhCl at 0° and later 90—100° gives 6: 1- $C_{10}H_6$ Cl·CO $_2$ H (~40%) and its Me ester (15%). Formation of (I) involves reductive fission of the endo-[CH $_2$] $_2$ bridge. The structure of (I) is proved by conversion into anthracene (II) (61%) by soda-lime at slightly >360° and by oxidation by CrO $_3$ -AcOH-H $_2$ O to anthraquinone (III) (80%) or by less CrO $_3$ to Me 9-ethyl-10-anthrone-9-carboxylate (35%) (2: 4-dinitrophenylhydrazone, m.p. 215°; isolated by Girard's reagent T), and by resistance to hydrolysis.

Freagent 1), and by resistance to hydrolysis.

III. The crude acids obtained from furoic acid (**IV**) and C_0H_6 by AlCl $_3$ (loc. vit.) probably contain 9-ethyl-9: 10-dihydro-9-anthroic acid, since by oxidation they give (**III**) and by distillation with soda-lime give (**II**) (10%) with an oil, which with S gives 1: 4- $C_{10}H_6$ Ph $_2$. The acids from (**IV**) and PhMe give, by soda-lime, 2: 7-dimethylanthracene (from 3: 6-dimethyl-9-ethyl-9: 10-dihydro-9-anthroic acid), but only tars by other methods.

R. S. C.

9-anthroic acid), but only tars by other methods. R. S. C. Synthesis of phthalides from 3:4:5-trimethoxybenzoic acid. F. E. King and T. J. King (J.C.S., 1942, 726—727).—3:4:5:1-(OMe) $_3$ Ce $_6$ H $_2$ ·Co $_2$ H, aq. 40% CH $_2$ O, and conc. HCl at 140° yield 3:4:5-trimethoxyphthalide (I) or (more HCl) its 6-CH $_2$ Cl derivative (II), m.p. 85° [also obtained from (I), CH $_2$ O, and conc. HCl]; in each case \sim 5% of 6:6'-methylenebis-3:4:5-trimethoxyphthalide (III), m.p. 199°, is isolable. (I) with NaOEt and Et $_2$ Co $_4$ in PhMe and N $_2$ at 100° (bath) affords Et 3:4:5-trimethoxyphthalidylgly-oxylate, m.p. 188—189°. With CH $_2$ O and HCl, syringic acid yields 4-hydroxy-3:5-dimethoxy-6-chloromethylphthalide, m.p. 185°, and 6:6'-methylenebis-4-hydroxy-3:5-dimethoxyphthalide, m.p. 223—224° [methylated to (III)], whilst 2:3:4:1-OH·Ce $_4$ H $_2$ (OMe) $_2$ ·CO $_2$ H gives only 5:5'-methylenebis-2-hydroxy-3:4-dimethoxybenzoic acid, m.p. 252° (efferv.).

Kinetics and equilibria of the carbinol formation of phenolphthalein.
—See A., 1943, I, 39.

Monoperphthalic acid.—See B., 1943, II, 5.

Synthesis of 3-hydroxynthalic acid. O. Gisvold (J. Amer. Pharm. Assoc., 1942, 31, 202—203).—3:1:2-NO $_2$ °C $_6$ H $_3$ (CO $_2$ H) $_2$ is hydrogenated (Pt-black or Raney Ni in EtOH) to the NH $_2$ -acid, converted (diazo-method) into 3:1:2-OH·C $_6$ H $_3$ (CO $_2$ H) $_2$, m.p. 154° (lit. 151°, 244°) [anhydride, m.p. 195° (lit. 198—199°)]. J. E. P.

Inhibition of oxidation of aldehydes.—See A., 1943, III, 36.

Kinetics of oxidation of aldehydes by chromic acid. III. Oxidation of tolualdehydes. IV. Oxidation of bromobenzaldehydes.—See A., 1943, I, 38.

Behaviour of pyrogallol trimethyl ether and 3:4:5-trimethoxybenzonitrile with Grignard reagents. C. D. Hurd and H. E. Winberg (J. Amer. Chem. Soc., 1942, 64, 2085—2086).—3:4:5:1-(OMe)₃C₆H₂·CN (prep. outlined) and MgBuβBr in boiling PhMe give mainly 4:3:5:1-OH·C₆H₂(OMe)₂·COBuβ (I) (cf. Haller et al., A., 1939, II, 508), but in Et₂O-PhMe at 40° give only 3:4:5:1-(OMe)₃C₆H₂·COBuβ (II), b.p. 164—166°/6 mm., m.p. 37—39°. The structure of (I) is shown by prep. from (II) by H₂SO₄ at 35—40° and by oxidation (CrO₃-AcOH) to 1:2:6:4-O·C₆H₂(OMe)₂·O. 1:2:3-C₆H₃(OMe)₃ and MgMeI in boiling PhMe give 2:6:1-(OMe)₂C₆H₃·OH.

Synthesis of 2-substituted above 41.

Synthesis of 2-substituted phenanthrenes. B. Riegel, M. H. Gold, and M. A. Kubico (J. Amer. Chem. Soc., 1942, 64, 2221—2222).—2-Substituted phenanthrenes are best (2-Ac 53, -EtCO 45, -Pr $^{\circ}$ CO 48, -CO $_{2}$ Me·[CH $_{2}$] $_{2}$ ·CO 70, and -NH $_{2}$ 25%) prepared by dehydro-

genating the corresponding readily available $9:10\text{-H}_2\text{-derivatives}$ by S at, e.g., $250-280^\circ$. $2\text{-iso}Butyryl\text{-}9:10\text{-}dihydrophenanthrene}$, m.p. $71\cdot6-72\cdot6^\circ$, and -phenanthrene, m.p. $116\cdot8-117\cdot6^\circ$, and Me y-keto-y-2-phenanthryl-n-butyrate, m.p. $112\cdot2-112\cdot6^\circ$, are described. M.p. are corr.

Photochemical reactions of ketones. II. Benzpinacol and benzpinacolin. A. Banchetti (Gazzetta, 1941, 71, 685—693).—The reduction of COPh₂ in Pr β OH-HCl in sunlight gives (CPh₂·OH)₂ (I), tetraphenylethylene oxide (II), and CPh₃Bz (III), in proportions depending on acidity and temp. In Et₂O-HCl in sunlight, (II) is formed. Mechanisms are discussed. With P₂O₅ in boiling C₆H₈, (I) gives (III). In boiling EtOH containing some dil. HCl, (I) is unchanged.

Synthesis of o-o'-anisoylbenzoic acid. B. P. Geyer (J. Amer. Chem. Soc., 1942, 64, 2226—2227).—Adding o-OMe·C₆H₄·MgBr (prep. from Mg activated by EtBr) in Et₂O to o-C₆H₄(CO)₂O in C₆H₆ gives o-CO₂H·C₆H₄·CO·C₆H₄·OMe-o (54%), m.p. 143—143·5°, and aa-di-o-anisylphthalide (18%), m.p. 148—149°. R. S. C.

Amino-alcohols. XI. Arylglyoxylohydroxamyl chlorides. N. Levin and W. H. Hartung (J. Org. Chem., 1942, 7, 408—415).—COAr·CCI:N·OH (I) are obtained by gradual addition of alkyl nitrite to a solution of COAr·CH₂Cl in Et₂O through which HCl is slowly passing. (I) are converted into OH·N:CAr·CCI:N·OH by NH₂OH,HCl in aq. EtOH at room temp. Thus are obtained phenylglyoxylohydroxamyl chloride (II), m.p. 132—133°, and the corresponding chloroglyoxime, decomp. 186—187°. The following derivation of (II) have been obtained; the m.p. of the corresponding chloroglyoximes are placed in parentheses: p-methyl-, m.p. 126—128° (decomp. 185—186°); p-phenyl-, m.p. 157—158° (decomp. 177°); p-chloro-, m.p. 120—121° (decomp. 181—182°); p-methoxy-, m.p. 137—139°; p-hydroxy-, decomp. 158—159° (decomp. 183—184°); 3:4-dihydroxy-, decomp. 184—185°. Alkaline decomp. of (I) gives the corresponding benzoic acids in excellent yield. (I) and NH₂Ph in anhyd. Et₂O at room temp. give the corresponding anilides; phenylglyoxylohydroxamanilide, m.p. 145—146° (decomp.), and its p-methyl-, m.p. 163—164° (decomp.), p-phenyl-, m.p. 135—136° (decomp.), p-chloro-, m.p. 145—146° (decomp.), p-methoxy-, m.p. 148—150° (decomp.), p-hydroxy-, m.p. 164—166° (decomp.), and 3:4-dihydroxy-, m.p. 155°, -derivatives are described. (I) appear to be catalytically hydrogenated to phenylethanolamine and its derivatives.

Dioximes. CXXV. G. Ponzio (Gazzetta, 1941, 71, 693—695).— The compound, m.p. 108° , regarded by Avogadro (A., 1924, i, 294) as oximino-p-tolylacetonitrile oxide (I), is a-p-tolylglyoxime peroxide [3-p-tolyl-1:2:5-oxadiazole 5-oxide] (II); this in Et₂O with aq. Na₂CO₃ gives (I), m.p. 112° , which, unlike (II), with conc. HCl readily gives p-tolylchloroglyoxime, p-C₅H₄Me-C(:N·OH)·CCl:N·OH. With HCl-Et₂O, benzoyloximino-p-tolylacetonitrile oxide gives p-C₆H₄Me-C(:N·OB₂)·CCl:N·OH.

Enediols. X. An aminostilbenediol. R. C. Fuson and S. L. Scott (J. Amer. Chem. Soc., 1942, 64, 2152—2153; cf. A., 1942, II, 91).—(2:6:1-C₆H₃Me₂·CO)₂ and HNO₃ (d 1·59) at 0° give the 3:3'-(NO₂)₂· (I) (92%), m.p. 211—212° (corr.), and 3:5:3':5'-(NO₂)₄·derivative (1%), m.p. 273—275° (decomp.), and a substance, m.p. 241—243° (decomp.; corr.). (I) does not form an oxime or react with NHPh·NH₂· H₂—PtO₂ reduces (I) in EtOH slowly to colourless [3:2:6:1-NH₂·C₆H₂Me₂·C(OH)·]₂ (II), which is oxidised with great ease to 3:3'-diamino-vic.-xylil, m.p. 201—202° (corr.) (Ac₂ derivative, m.p. 296—297°). (II) yields a hydrochloride (III), which with aq. NaOH gives an orange substance, m.p. 229—230° (decomp.; corr.). (III) with Ac₂O-C₅H₅N, or (II) with boiling Ac₃O, gives aβ-diacetoxy-aβ-di-3-diacetamido-vic.-xylylethylene, m.p. 241—242° (corr.). 3-NH₂ thus does not affect the stability of the enediol. R. S. C.

Absorption spectra and structures of pyrethrins I and II.—See A., 1943, I, 31.

Structures of highly arylated indenones. Their behaviour with bromine. C. F. H. Allen and J. W. Gates, jun. (J. Amer. Chem. Soc., 1942, 64, 2127—2130).—2:3:5:6-Tetraphenylindanone (I) and Br in CHCl₃ give (probably) 2-bromo- (II) (84%), m.p. 241° (decomp.), and then 2:7a-dibromo-2:3:5:6-tetraphenyl-2:7a-dihydroindenone (III), m.p. 270° (decomp.), which is also obtained (75%) from (I) by 2 mols. of Br. KI-AcOH, KOH-EtOH, or MgRX reduces (III) to (II), but Zn-AcOH yields (I). HBr has no effect on (II) or (III); (II) may be formed by allylic rearrangement. (CH·CO)₂O does not add to (II) or (III). With MgPhBr and then aq. NH₄Cl, (II) gives 2:3:5:6-tetraphenyl-2:7a-dihydroindenone (50%), m.p. 125° (instantaneous) or 95°, resolidifies, remelts at 164—166°, rearranged at the m.p. or in boiling AcOH to (I). 2:3:5:6-Tetraphenyl-3a:4-or -3a:7a-dihydroindenone with Br-CHCl₃ gives 4-bromo-2:3:5:6-tetraphenyl-3a:4-dihydroindenone (IV) (84%), m.p. 196° (0.5 active H; adds 1.5 MgMeI), dehydrogenated by Br-CHCl₃ to 4-bromo-2:3:5:6-tetraphenylindenone (V) (90%), m.p. 234—235°. (V) is reduced by Zn-AcOH to 4-bromo-2:3:5:6-tetraphenylindenone (Some context of the con

gives 4-bromo-1-hydroxy-1:2:3:5:6-pentaphenylindene (52%), m.p. 249°. MgPhBr and (IV) give (mechanism discussed) 2:3:5:6:7-pentaphenyl-3a:7a-dihydroindenone (27%), m.p. 246° [and a product (20%), C₇₈H₅₇O₂Br, m.p. 229° (decomp.) (consumes 2·7 MgMeI; 2 active H)], which with MgPhBr gives 1-hydroxy-1:2:3:5:6:7-hexaphenyl-3a:7a-dihydroindene (69%), m.p. 240° (not dehydrated by 2% H₂SO₄-AcOH), and with HBr gives a substance, C₃₉H₂₇Br, m.p. 194°. MgMeI and (IV) give 2:3:5:6-tetraphenyl-7-methyl-3a:7a-dihydroindenone (VI) (33%), m.p. 170°, and, in one experiment, 10% of a ketone, C₃₄H₂₂O, m.p. 217°. (VI) consumes 1 MgMeI, showing 0·3 active H, is unaffected by HBr or (CH·CO)₂O, and with Br gives the 7a-Br-derivative (80%), m.p. 239°, whence it is regenerated by MgMeI.

22.

Enolisation in the Reformatsky reaction. M. S. Newman (J. Amer. Chem. Soc., 1942, 64, 2131—2133).—Recovery of ketone after a Reformatsky reaction is due to enolisation and formation of CR₂:CR'-OZnBr and AlkOAc. Thus, acetomesitylene (I) consumes 1 mol. of CH₂Br-CO₂Me (II) in presence of Zn and C₆H₆ but, after hydrolysis, yields 50% of MeOAc and 90% of (I); MeOAc is also obtained by distillation prior to hydrolysis, but in \Rightarrow traces by prolonged boiling of (II) and Zn in C₆H₆. Experiments with 1-keto-2-o-tolyl-3-methyl- and 1-keto-2-phenyl-1: 2: 3: 4-tetrahydronaphthalene and 1-keto-1: 2: 3: 4-tetrahydrophenanthrene (modified prep.) show that (i) for different Br-esters enolisation of the ketone increases in the order CH₂Br-CO₂Et < CHMeBr-CO₂Et < CHEtBr-CO₂Et; (ii) use of I to initiate reaction decreases enolisation; (iii) use of dioxan as a solvent promotes enolisation.

Preparation of 2-keto-1:2:3:4-tetrahydronaphthalene from β-naphthol and analogous transformations. J. W. Cornforth, (Mrs.) R. H. Cornforth, and (Sir) R. Robinson (J.C.S., 1942, 689—691).—2-C₁₀H₁·OMe with Na-EtOH at 115° (bath), followed by immediate hydrolysis (aq. HCl), gives 2-keto-1:2:3:4-tetrahydronaphthalene (I) (56%). 1:2-C₁₀H₆Me·OMe similarly affords 2-keto-1-methyl-1:2:3:4-tetrahydronaphthalene (II) (10%), b.p. 137—138°/18 mm. [semicarbazone, m.p. 200—202° (decomp.)], and some 2-methoxy-1-methyl-5:6:7:8-tetrahydronaphthalene (III) (63%), b.p. 120—122°/0·4 mm., is similarly prepared from 1:6-C₁₀H₆(OMe)₂; the 6-OMe-isomeride is formed by hydrolysis (aq. EtOH—HCl) of 2:6-dimethoxy-3:4-dihydronaphthalene (A., 1941, II, 295). Dehydrogenation (S at 220—225°) of 1-keto-6-methoxy-5-methyl-1:2:3:4-tetrahydronaphthalene and methylation (Me₂SO₄-aq. NaOH) of the phenol gives 2:5-dimethoxy-1-methylnaphthalene, m.p. 85°; reduction and hydrolysis then yields 2-keto-5-methoxy-1-methyl-(semicarbazone, m.p. 188—190°) and some 1-keto-6-methoxy-5-methyl-1;2:3:4-tetrahydronaphthalene (2:4-dinitrophenylhydrazone, m.p. 249—250°). Equilenin Me ether when reduced and hydrolysed affords the keto-alcohol (A). m.p.

Discording to the proof of the first state of the proof of

m.p. 83—85° (semicarbazone, m.p. 192—194°; 2:4-dinitrophenyl-hydrazone, m.p. 184°).

A. T. P.

Structure of the bimolecular product formed by the action of acidic dehydrating agents on anhydroacetonebenzil. C. F. H. Allen and J. W. Gates, jun. (J. Amer. Chem. Soc., 1942, 64, 2123—2127).— The substance previously (A., 1933, 1164) believed to be 4:7-endo-keto-3:3a:5:6- is now considered to be 4:7-endo-keto-2:3:5:6- tetraphenyl-3a:4:7:7a-tetrahydroindenone (I), the rearrangement, >CPh·CPh:CH \rightarrow >CH·CPh:CPh, occurring during the formation of (I) from anhydroacetonebenzil [4-hydroxy-3:4-diphenyl- Δ^2 -cyclopentenone]. (I) consumes 2 MgMeI, adding 1 mol. and giving 1 CH₄; with MgRHal it gives only (75—85%) monocarbinols; addition occurs at C₍₁₎; the endo-CO enolises, reacts with MgMeI, and, after decomp., ketonises. With Br-AcOH at 100°, (I) gives the 4:7:7a-br₃-derivative, m.p. 229—230°, converted by MgMeI into 4:7:7a-tribromo-1-hydroxy-2:3:5:6-tetraphenyl-1-methyl-4:7-endo-a-hydroxyethylidene-3a:4:7:7a-tetrahydroindene (II), m.p. 278° [consumes 2·7 MgMeI, then regenerates (II)]. PCls converts (I) in boiling C₆H₆ into a Cl₁-derivative, m.p. 215°. By MgRHal and then standard reactions, (I) gives 1-hydroxy-4:7-endo-heto-2:3:5:6-tetraphenyl-1-methyl-, m.p. 262° [acetates, forms (prep. by AcCl), m.p. 202° and (prep. by Ac₂O-H₂SO₄) m.p. 180°; derived 1-chloride, m.p. 219°, and 1-bromide, m.p. 191°]], -2:3:5:6-tetraphenyl-1-a-naphthyl- (III), m.p. 295° (derived 1-bromide, m.p. 233°), and -1:2:3:5:6-pentaphenyl-(IV), m.p. 226° [acetate (prep. by Ac₂O-H₂SO₄), m.p. 235°; derived 1-chloride, m.p. 216°], -3a:4:7:7a-tetrahydroindene.

2:3:5:6-Tetraphenylindenone and MgPhBr give 1-hydroxy-1:2:3:5:6-pentaphenylindenone and MgPhBr give 1-hydroxy-1:2:3:5:6-pentaphenylindenone (87%), m.p. 203°. With Zn dust in boiling AcOH this gives a hydrocarbon, C₃₉H₂₈, m.p. 280°, which is also obtained (with evolution of CO and H₂O) from (IV) at 290—310°, a rearrangement

occurring in one or other reaction. (III) gives similarly a hydrocarbon, C₄₃H₃₉, m.p. 298°. Both oximes (loc. cit.) of (I) with boiling EtOH-cone. HCl regenerate (I). Formation of 2-phenylquinoline from CHPh:CH:CH:NPh (unimol. in boiling EtOH) (Peine, A., 1884, i, 1344) involves a rearrangement analogous to that during the prep. of (I).

the prep. of (I).

Action of organomagnesium compounds on dianils of αβ-diketones. Cyclisation of the α-anilinoketones obtained. (Mile.) M. Garry (Ann. Chim., 1942, [xi], 17, 5—99).—Partly an account of work previously reviewed (A., 1939, II, 376). γ-Anilino-β-anilo-γ-methylbutane [Me α-anilinoisopropyl ketone anil] (I), m.p. 66° [picrate, m.p. 150° (decomp.); Ac derivative, m.p. 242°], is hydrolysed to the ketone (II) [oxime, m.p. 142°, also obtained from (I) and NH₂OH, or from NO-CHMe-CMe₂·O·NO₃ and NH₂Ph (cf. Klingstedt, A., 1926, 44); semicarbazone, m.p. 182°; picrate, m.p. 112°; Ac derivative, m.p. 74°; methiodide (III), m.p. 175° (decomp.)], which is reduced by Na-EtOH to γ-anilino-γ-methylbutan-β-ol, b.p. 149°/17 mm. (N-phenylcarbamyl derivative phenylcarbamate, m.p. 191°; unstable picrate, m.p. 110°). (*CMe.NPh)₁ (IV) with MgMeI in boiling C₈H₈ gives βγ-dianilino-βγ-dimethylbutane (V), m.p. 37°, b.p. 216—217°/12 mm. [sulphate, m.p. 190° (decomp.); dihydrochloride, m.p. ~190° (decomp.); picrate, m.p. 163°]. The anil, m.p. 95° (softens from 82°), b.p. 218—219°/20 mm. (picrate, m.p. 143—144°), of γ-anilino-γ-methylpentan-β-one (picrate, m.p. 95°) and γδ-dianilino-γδ-dinethylhexane, forms, m.p. 89° and 65° (probably stereoisomerides) [the mixture gives a dihydrochloride, m.p. ~170° (decomp.), and a monopicrate, m.p. 138° (decomp. from 125°)], are prepared from (IV) and MgEtBr. γ-Anilino-β-anilo-γ-methylheptane (VI), m.p. 74°, b.p. 225—230°/18 mm. [from (IV) and MgBu^aBr-Et₂O], is hydrolysed (aq. HCl) to the ketone (VII), m.p. 86° [picrate, m.p. 130°, also obtained from (VI) and picric acid]. Hydrolysis of the crude reaction product also affords some NHPhBu and (probably) 2:3-dimethyl-1-butylindole, b.p. 155—160°/17 mm. (picrate, m.p. hydrolysed (aq. HCl) to the ketone (VII), m.p. 86° [picrate, m.p. 130°, also obtained from (VI) and picric acid]. Hydrolysis of the crude reaction product also affords some NHPhBu and (probably) 2:3-dimethyl-1-butylindole, b.p. 155—160°/17 mm. (picrate, m.p. 97°). MgBu°Br and (IV) in C₆H₆ give εζ-dianilino-εζ-dimethyl-decane [dihydrochloride, m.p. 135° (decomp.)]. (IV) and CH₂Ph·MgCl afford γ-anilino-β-anilo-δ-phenyl-γ-methylbutane, m.p. 100°, and thence the ketone (VIII), m.p. 74°, b.p. 208—210°/16 mm. (picrate, m.p. 125°, cxime, m.p. 178°), reduced to γ-anilino-δ-phenyl-γ-methylbutan-β-ol, b.p. 213°/14 mm. Ph α-anilino-α-phenylethyl ketone (IX), m.p. 142° (hydrochloride, m.p. 138—142°; picrate, m.p. 168°), is not obtained (cf. Cameron, A., 1930, 345) from Ph α-chloro-α-phenylethyl ketone, m.p. 57—58° (from COPh-CPhMe-OH and SOCl₂), and NH₂Ph, whereby (probably) Ph α-phenylvinyl ketone, m.p. 52—57°, results. (·CPh·NPh)₂ and MgEt1 give β-anilino-α-anilo-αβ-diphenylbutane, m.p. 183·5° (free ketone, m.p. 143°), with (mainly) COPh-CPh·NPh, NH₂Ph, NHPhEt, Bz₂, NHPhBz, and BzOH. Absorption spectra of many of the compounds are shown. (II) with NH₂Ph (excess) and NH₂Ph, HCl at 180°, with a little NH₂Ph, HCl at 180°, or with ZnCl₂ at 140°, gives 2:3:3-trimethyl-indolenine, b.p. 110°/10 mm. [picrate, m.p. 155°; methiodide, also obtained by heating (III)], also prepared from (II) by heating with a little NH₂Ph, HCl at 180° affords 2:3-dimethyl-3-butylindole-mine, b.p. 142—143°/17 mm. (picrate, m.p. 137°; methiodide, m.p. 211°). (VIII) with NH₂Ph + NH₂Ph, HCl at 175—180° gives 2:3-dimethylindole and a little CH₂Ph·NHPh, but with ZnCl₂ at 180° affords 3-benzyl-2:3-dimethylindolenine, b.p. 188—190°/18 mm. (picrate, m.p. 139°). (IX) and NH₂Ph + NH₂Ph, HCl at 160—165° yield one or other of the isomerides, 2:3-diphenyl-3- (X), m.p. 108° (no reaction with Ac₂O; picrate, m.p. 155°), or 3:3-diphenyl-2-(picrate, m.p. 139°). (IX) and NH₂Ph + NH₂Ph,HCl at 160—165° yield one or other of the isomerides, 2:3-diphenyl-3- (X), m.p. 108° (no reaction with Ac₂O; picrate, m.p. 155°), or 3:3-diphenyl-2-methylindolenine (XI), m.p. 145° (picrate, m.p. 210°); (XI) is usually formed and conditions for preparing (X) are not established. The methiodide, m.p. 188°, of (X) is converted by NaOH-EtOH into (probably) 2-hydroxy-2:3-diphenyl-1:3-dimethylindoline, m.p. 110°, whereas the methiodide, m.p. 230°, of (XI) and aq. NaOH in Et₂O give 3:3-diphenyl-1-methyl-2-methyleneindoline, m.p. 101° (picrate, m.p. 178°). With Ac₂O-NaOAc, (XI) affords 1-acetyl-3:3-diphenyl-2-methyleneindoline, m.p. 138°. Cyclisation of (IX) to (XI) is effected by a little NH₂Ph,HCl at 170—180°, or by heating its hydrochloride to 190°. (X) is synthesised from Mg 2:3-diphenyl-indolyl iodide and MeI in PhMe at 90°, or from the phenylhydrazone, m.p. 129—131°, of COPh CHPhMe and aq. HCl.

A. T. P. m.p. 129-131°, of COPh·CHPhMe and aq. HCl.

gi

Action of alkaline reagents on the bimolecular product formed by the action of acidic dehydrating agents on anhydroacetonebenzil. C. F. H. Allen and J. W. Gates, jun. (J. Amer. Chem. Soc., 1942, 64, 2120—2123).—4: 7-endo Keto-2:3:5:6-tetraphenyl-3a:4:7:7a-tetrahydroindenone (modified prep.; 90% yield) with boiling KOH-EtOH gives 2:3:5:6-tetraphenyl-3a:4:7:7a-tetrahydroindenone-7-carboxylic acid (I) (76%), m.p. 275—276° (no CO evolved) (anilide, m.p. 269°) (cf. A., 1933, 1164; 1937, II, 457). NaOMe or NaOEt gives similarly the Me, m.p. 193° [also obtained from (I) by CH₂N₂], and Et ester, m.p. 159—160° (with some acid), respectively, of (I). The esters are stable to KMnO₄-COMe₂, but (I) with KMnO₄-aq. K₂CO₃ at 85—95° gives, by loss of HCO₂H, 2:3:5:6-tetraphenyl-3a:4-dihydroindenone (II) (56%), m.p. 239—240°, which is also obtained from 2:3:5:6-tetraphenyl-3a:7a-dihydroindenone (III) (modified prep.; 70—75% yield; cf. loc. cit.)

by HBr-AcOH at 100° or H₂SO₄-AcOH. (II) does not add (:CH·CO)₂O, adds 1 MgMeI (no gas), and at 300° is isomerised to 2:3:5:6-tetraphenylindanone (IV). With MgPhBr-Et₂O at room temp., followed by aq. NH₄CI, (II) gives, by 1:2- and 1:4- addition, respectively, 1-hydroxy-1:2:3:5:6-pentaphenyl-3a:4-dihydroindene (V) (25%), m.p. 233°, and 2:3:5:6:7-pentaphenyl-3a:4-intydroindene (V) (25%), m.p. 233°, and 2:3:5:6:7-pentaphenyl-3a:4-intydroindene (VI) (60%), forms, m.p. 178-179° and 145-146°; when dil. acid replaces the NH₄CI, a hydrocarbon, C₃₉H₂₈ (VII), m.p. 222°, which does not add (:CH·CO)₂O, is isolated instead of (V). These results prove the structure of (I). With MgPhBr and then aq. NH₄CI, (IV) gives 1-hydroxy-1:2:3:5:6-pentaphenylindane, m.p. 228-229° (decomp.), and thence (H₂SO₄-AcOH) (VII); (III) gives similarly a glassy carbinol and then (VII). (VI) exists partly as the enol, since with AcCl it gives an acetate (70%), m.p. 115° [consumes 2 MgMeI without evolution of gas; subsequent hydrolysis regenerates (VI)], and with MgMeI gives 0·67 CH₄; it gives no oxime, does not react with (:CH·CO)₂O, and with Br-CHCl₃ affords the 7a-Br-derivative, anhyd., m.p. 218-219°, and +C₆H₆, softens at ~144°, m.p. 234° [whence (VI) is regenerated by MgMeI (1 mol. consumed; no CH₄ evolved)], which is unaffected by C₅H₅N, KOAc, HBr, AcCl, or Br. Some of the above reactions necessitate allylic rearrangements. R. S. C.

Decahydronaphthalene-1: 5-dione and 2: 2'-diketodic vclopentyl.

B. J. F. Hudson and (Sir) R. Robinson (J.C.S., 1942, 691—693).—

Et α-bromoadipate and Ag powder at 140—160° give Et₄ octaneαδεθ-tetracarboxylate, b.p. 192—195°/0·2—0·3 mm., converted .by

K (not Na) in PhMe at room temp., followed by hydrolysis with
aq. EtOH-HCl, into 2: 2'-diketodic vclopentyl (I), m.p. 67—69° [bis2: 4-dinitrophenylhydrazone, m.p. 230—240° (decomp.)], contaminated with (probably) (III) (below). Methylation (NaNH₂-MeIEt₂O) of (I) gives a Me₁ derivative, b.p. 175—185°/14 mm. [dioxime, m.p. 207—211° (decomp.)]. (I) is prepared (2—4% yield)
in a purer form by hydrolysis (aq. NaOH-EtOH) of the product
from Et sodiocyclopentanone-2-carboxylate and I in Et₂O. Hydrogenation (Raney Ni in EtOH) of 1: 5-C₁₀H₄(OH)₂ at 150—200°/
120 atm. gives mixed decahydro-α-naphthols (cis-form, m.p. 92—
94°, isolated) and 5—8% of x-decahydronaphthalene-1: 5-diol (II),
m.p. 130—150° [a form, m.p. 159—161°, probably a stereoisomeride
of that described by Campbell et al. (A., 1942, II, 90), is described].
Use of Cu chromite as catalyst gives mainly phenolic products;
5: 6: 7: 8-tetrahydro-1-naphthol, m.p. 65°, and a substance, m.p.
165—170° (acetate, m.p. 129—131°), are isolated. (II) and CrO₃aq. AcOH at 0° to room temp. yield 10% of decahydronaphthalene1: 5-dione (III) (probably trans), m.p. 165—167° [bisphenylhydrazone
(IV), m.p. 230°], or a mixture of (III) and the cis-form, m.p. 68—
72° [bisphenylhydrazone (V), m.p. 172—173° to a gum, becoming
clear at 208—210°]; mixtures are converted into (III) by AcOH at
100° (6 hr.). (V) and aq. HCl or EtOH-HCl yield 3: 4: 7: 8: 9: 10hexahydronaphtha(1: 2: 5: 6)-bis-(2: 3)-indole, m.p. 312—316° (decomp.); (IV) similarly yields a substance, m.p. 292—296° (decomp.).

A. T.P.

Homogeneous catalysis and solvent effects in or diene synthesis.—See A., 1943, I, 21.

Alkylation of 1: 4-naphthaquinones with esters of quadrivalent lead. L. F. Fieser and F. C. Chang (J. Amer. Chem. Soc., 1942, 64, 2043—2052).—Pb(OAc)4 in boiling AcOH introduces Me adjacent to a CO of 1: 4-naphthaquinone or its alkyl derivatives, the reaction being much accelerated by presence of a promoter, e.g., CH₂(CO₂H)₂, MeOH, etc. (cf. below). 2-Methyl-5: 8-dihydro-1: 4-naphthaquinol (I) etc. promotes its own methylation. Use of RCO₂H, a promoter, and an excess of Pb₂O₃ leads to introduction of R. (I) (improved prep.) or the derived H₂-quinone with Pb(OAc)4 in boiling AcOH gives 2: 3-dimethyl-1: 4-naphthaquinone (II) (up to 28%) (quinol diacetate, m.p. 190—190.5°). 2-Methyl-1: 4-naphthaquinone (III) is slowly affected by this treatment, but is rapidly converted into (II) if interaction occurs in presence of CH₃(CO₂H)₂ (49% yield), CHMe(CO₂H)₃, CH₂Ac·CO₂Et, CHEtAc·CO₂Et (46% yield), MeOH, or tartronic acid, but CMe₂(CO₂H)₂, CH₂(CO₂Et)₂, CHPh₃, cyclopentadiene, and acenaphthene are ineffective. o-Xyloquinone and (CH₂:CMe)₂ in boiling EtOH give 2: 3: 6: 7-tetramethyl-5: 8: 9: 10-tetrahydro-1: 4-naphthaquinone, m.p. 105—106.5°, isomerising to 2: 3: 6: 7-tetramethyl-5: 8-dihydro-1: 4-naphthaquinol, m.p. 269—270.5° (lit. 232°), oxidised by CrO₃ or Pb(OAc)₄ to 2: 3: 6: 7-tetramethyl-1: 4-naphthaquinone, m.p. 169.5—170° (lit. 167—168°) (quinol diacetate, m.p. 216—217°), which is also obtained from 2: 6: 7-trimethyl-5: 8-dihydro-1: 4-naphthaquinol by Pb(OAc)₄ in boiling AcOH. 2-Methyl-3-ethyl-1: 4-naphthaquinone, m.p. 72—72.6° (quinol diacetate, m.p. 106—108°, resolidifies, remelts at 116—117°), is obtained from (III) by EtCO₂H, Pb₂O₃, and CH₂Ac·CO₂Et at 100° or from 1: 2: 4-O:C₁₀H₅Et:O by Pb(OAc)₄—AcOH-CH₂(CO₂H)₂. With RCO₂H, Pb₂O₃, and a promoter at 100° to 120—130° (III) gives similarly 2-methyl-3-n- (IV) (47%), m.p. 65—65·4°, sublimes at 53—58°/1 mm. (quinol diacetate, m.p. 93·5—95°), and -3-iso-propyl- (V) (59%), m.p. 110—111·2

(quinol diacetate, m.p. $140\cdot5-141\cdot2^\circ)$, -1: $4\cdot naphthaquinone$. 1: 2: $4\cdot O:C_{10}H_5Pr^a:O$, m.p. $40\cdot5-41^\circ$ (lit. $39-39\cdot5^\circ$), with Pb(OAc)_4 and CH_2(CO_2H)_2 in boiling AcOH (not at 100°) gives (\mathbf{IV}). β -Naphthyldimethylcarbinol (prep. from $2\cdot C_{10}H_7\cdot COMe$ by MgMeI), m.p. $65-65\cdot5^\circ$, could not be reduced. $2\cdot C_{10}H_7Pr^\beta$ (prep. by a Friedel-Crafts reaction; 14% yield) with CrO_3 gives 1: 2: $4\cdot O:C_{10}H_5Pr^\beta:O$, an oil, which with Pb(OAc)_4-CH_2(CO_2H)_2-AcOH gives (\mathbf{V}). M.p. are corr. gives (V). M.p. are corr.

Alkylation of p-quinones by acyl peroxides. L. F. Fieser and A. E. Oxford (J. Amer. Chem. Soc., 1942, 64, 2060—2065).—Interaction of 1:2:4-O.C.₁₀H₅Me.O (I) with Pb(OAc)₄ (excess) in AcOH at 90—100° is promoted by MeOH, H₂O, Pr⁸OH, Bu⁹OH (induction 1978). at 90—100° is promoted by MeOH, H_2 O, PrBOH, Su'OH (induction period), PrB_2 O, C_6H_6 , PhMe, cyclohexane (II), and n- C_8H_{18} , the products being 1:2:3:4-O: $C_{10}H_4$ Me₂:O, CO₂, and (?) C_2H_6 . In absence of (I), all the promoters except Bu'OH cause decomp. of $Pb(OAc)_4$ in AcOH, relative efficiencies being $C_6H_6 > (II) > C_8H_{18} > PhMe$. The (II) is largely unchanged; the decomp. of $Pb(OAc)_4$ eventually ceases but is restarted by adding more (II); $Pb(OAc)_4$ is unchanged in (II) slope and then does not method the Pb(OAc)₄ is unchanged in (II) alone and then does not methylate (I); Pb(OAc)₂ formed may be partly responsible, since it retards the reaction of (I) with Pb(OAc)₄ in AcOH-PhMe-(II). Diacyl peroxides (best, 1 mol.) in AcOH at 90° alkylate many quinones, no promoter being required; the acyl may be unsaturated; the reaction of the property of the second of the property of the proper promoter being required; the acyl may be unsaturated; the reacting quinone may be substituted by a lower alkyl, Br, or OH, but not by OMe or higher alkyl; aroyl and aracyl peroxides are consumed but give no or indefinite products. Thus are prepared: from (I), 2-methyl-3-pentadecyl- (60%), m.p. 95—97°, -3-heptadecyl- (60%), m.p. 96°, -3-Δ*-heneicosenyl- (? mixed isomerides) (small yield), m.p. 39—81°, -3-norchaulmoogryl- (40%), softens at 57°, m.p. 65—68°, -3-Δ*-decenyl- (40%), m.p. 68°, and -3-Δ*-hexadecenyl- (25%), m.p. 72—73°, -1: 4-naphthaquinone; phthiocol (50%) from 1: 2: 4-O.C₁₀H₅(OH).O; 2-pentadecyl-1: 4-naphthaquinone (small yield), m.p. 71—72°, from 1: 4-O.C₁₀H₆.O; duroquinone (small yield) and 2: 3: 5-trimethyl-6-pentadecyl-1: 4-benzoquinone (25%), m.p. 74°, from 1: 2: 3: 5: 4-O.C₆HMe₃.O; 1: 2: 3: 5: 4-O.C₆HMe(OMe)₂.O from 1: 2: 6: 4-O.C₆HMe₃.O; 1: 2: 3: 5: 4-O.C₆HMe(OMe)₂.O; from 1: 2: 6: 4-O.C₆HMe₃.O; n.p. 136—138°, from 1: 2: 5: 4-O.C₆H₂(OH)₂.O (very little) and 2: 5-dihydroxy-3-pentadecyl-1: 4-benzoquinone (small yield), m.p. 136—138°, from 1: 2: 5: 4-O.C₆H₂(OH)₂.O; 1: 2: 3: 5: 6: 4-O.C₆MeBr₃.O (with H₂-Pd-BaSO₄-NaOAc gives toluquinol) (68%) from 1: 2: 3: 5: 4-O.C₆HBr₃.O. R. S. C. R. S. C.

Celastrol. Spectrographic characterisation and colour tests. L. F. Fieser and R. N. Jones (J. Amer. Pharm. Assoc., 1942, 31, 315—317),—The ultra-violet absorption spectra of celastrol (I) and methylcelastrol indicate β-naphthaquinonoid structures. Colour reactions with aq. EtOH-NaHSO₃, boroacetic anhydride, and CN·CH₂·CO₂Et-NH₃-EtOH indicate that (I) is an 8-hydroxy-3: 4-dialkyl-1: 2-naphthaquinone and may be the 2-methyl-3-hydrogeranyl (or homohydrogeranyl) derivative.

"Naphthylidenesulphanilamide" derivatives. F. Irreverre and M. X. Sullivan (J. Amer. Chem. Soc., 1942, 64, 2230—2231).—Treating p-NH₂·C₆H₄·SO₂·NH₂ (I) in H₂O with 1: 4: 2-O·C₁₀H₅(SO₃Na)·O at ~50—60° (later 0°) gives 3-hydroxy-1: 4-naphthaquinone-1-psulphamylanil, m.p. 271—273°; (I) with, successively, 1: 4: 6: 2-O·C₁₀H₄(SO₃Na)₂·O, H₂O₂, and NaCl at room temp. (later 0°) gives Na 3-hydroxy-1: 4-naphthaquinone-1-p-sulphamylanil-7-sulphonate, and with 1: 2: 4-O·C₁₀H₅(SO₃K)·O at ~70° and then HCl at 30° (later cooling at 0°) gives 3-p-sulphamylanilino-2-sulpho-1: 4-naphthaquinone-1-p-sulphamylanil, m.p. 276—278°. R. S. C.

series. VII. Synthetic experiments. IV. Hydroxy-3-naphthoyl derivatives of aminoanthraquinones. R. V. Bhat, (Miss) K. D. Gavankar, and K. Venkataraman (J. Indian Chem. Soc., Ind. Ed., 1942, 5, 171—177; cf. A., 1942, II, 405).— Chem. Soc., 18a. Ed., 1942, 5, 171—177; cf. A., 1942, 11, 405).—
1-2'-Hydroxy-3'-naphthoylaminoanthraquinone, m.p. 240—241° (acetate, m.p. 261—262°; benzoate, m.p. 225—226°; p-toluene-sulphonate, m.p. 288—289°), is prepared from 1-aminoanthraquinone (I) and 2:3-OH·C₁₀H₆·COCl in boiling PhNO₂. 1:4-Diaminoanthraquinone similarly affords 1:4-di-(2'-hydroxy-3'-naphthoyl-amino)anthraquinone, m.p. 290—291° [diacetate, m.p. 285—286° (decomps)] amino)anthraquinone, m.p. 290—291° [diacetate, m.p. 285—286° (decomp.); dibenzoate, m.p. 249—250°; di-p_toluenesulphonate, m.p. 225—226°], but 1:5-diaminoanthraquinone similarly yields 1-amino-5-(2'-hydroxy-3'-naphthoylamino)anthraquinone, m.p. 278—279° [Ac₂ derivative, m.p. 325° (decomp.)], insol. in NaOH-EtOH at 60°. 1-p-Nitrobenzamidoanthraquinone, m.p. 280—281° [from (I) and p-NO₂°C₆H₄·COCl in PhCl at 150°], is reduced by Fe and a little AcOH to the NH derivative, m.p. 326—327° converted into little ACOH to the NH₂-derivative, m.p. 336—337°, converted into 1-p-2'-hydroxy-3'-naphthoylaminobenzamidoanthraquinone, m.p. 349—350°. Clear solutions are not obtained with the compounds and aq. alkali. Dyeing trials (as vat dyes; also after development)

IV.—STEROLS AND STEROID SAPOGENINS.

Recovery of sterols.—See B., 1943, III, 21

Beech bark (Fagus silvatica). III. E. Clotofski and W. Herr (Ber., 1942, 75, [B], 237—243).—Extraction with light petroleum

and conen. of the extract causes the separation of a mixture of isomeric fatty alcohols and paraffins, a compound (I), m.p. 290-292°, [a]¹⁸ + 56·3° in CHCl₃, and a sterol (II) isolated by pptn. with digitonin and also obtained with arachidic and resin acid from the light petroleum mother light and a sterol (II) isolated by pptn. digitonin and also obtained with arachidic and resin acid from the light petroleum mother-liquors. (I) gives the Salkowski and Liebermann-Burchard reactions. It could not be recovered unchanged by hydrolysis of the acetate, m.p. 271°, formate, m.p. 181 or benzoate, m.p. 118-122°. It is hydrolysed by C₅H₁₁OH-HCl to a compound, C₂₉H₄₈O₂, m.p. 232° (diacetate, m.p. 273°), which is neutral and does not contain CO; a sugar residue is not removed by hydrolysis. (II), C₂₄H₄₀O (+EtOH), m.p. 134°, [a]b -31·25° in CHCl₃, is identical with the sterol isolated by Zellner (A., 1926, 1281) but not with stigmasterol. The acetate (III), m.p. 121-122°, [a]b -32·4° in CHCl₃, dibromoacetate, m.p. 123-124°, benzoate, m.p. 141·5°, p-nitrobenzoate, m.p. 187°, and allophanate, m.p. 258°, are described. Oxidation of (II) by Al(OBu⁷)₃ in COMe₂-C₆H₄ affords the ketone, C₂₄H₃₈O, m.p. 103°; the corresponding semicarbazone, m.p. 248° (decomp.), is reduced (Wolff-Kishner) to the hydrocarbon, C₂₄H₄₀, m.p. 77-78°. Hydrogenation [Pd-C in Et₂O-AcOH (1:1)] yields the dihydrosteryl acetate, m.p. 130·5°, hydrolysed to the dihydrosterol, m.p. 138°. The presence of one double linking is confirmed by titration with Br. firmed by titration with Br.

Chemical behaviour of cafesterol. P. N. Chakravorty and M. M. Wesner (J. Amer. Chem. Soc., 1942, 64, 2235).—Data in the literature (Wettstein, A., 1942, II, 198, 371; Slotta et al., A., 1939, II, 18) are corr. Cafesterol (I) does not contain an aromatic ring, since with HNO₃ it gives only a non-acidic NO₂-compound, m.p. 220—230°. It contains reactive, conjugated ethylenic linkings: with (!CH·CO)₂O in C₆H₆ at room temp. or slightly warm it gives an adduct, m.p. 185—192°, but decomp. occurs in boiling C₆H₆. In EtOH it absorbs 2 H₂ (20% Pd-C), giving a H₄-derivative, m.p. 153—155°; this and its acetate, m.p. 150—152°, give no colour with conc. HCl in EtOH. Na-EtOH or -C₅H₁₁·OH reduces (I) to a product, m.p. 153—156° (with conc. HCl-EtOH gives a stable purple colour) [acetate, m.p. 162—165° (yellow-orange colour with HCl), which with ('CH·CO)₂O gives an adduct, m.p. 185° (no colour with HCl)]. No details are given. with HCl)]. No details are given.

Preparation and dehydration of diphenyl-6-methoxy-i-norcholenyl-carbinol. B. Riegel, M. F. W. Dunker, and McC. J. Thomas (J. Amer. Chem. Soc., 1942, 64, 2115—2120).—Me 6(a)-methoxy-i-Amer. Chem. Soc., 1942, 64, 2115—2120).—Me 6(a)-methoxy-i-cholenate (prep. from Me 3-p-toluenesulphonyloxy-Δ⁵-cholenate and KOAc-MeOH), a syrup, [a]²_B +44·1° in CHCl₃, with MgPhBr-Et₂O and then aq. NH₄Cl gives diphenyl-6(a)-methoxy-i-norcholenyl-carbinol (I), m.p. 139—140·2°, [a]²⁷_B +43·9° in CHCl₃. Me 3-hydroxy-Δ⁵-cholenate with an excess of MgPhBr gives diphenyl-3-hydroxy-Δ⁵-norcholenylcarbinol (II), softens at 95°, melts (effervescence; ? dehydration), resolidifies at 108°, remelts at 169·4—172·2° [3-p-toluenesulphonate (III), m.p. 143·2—144° or (? loss of H₂O) m.p. 62°, resolidifies, remelts at 136—137°]. KOAc-MeOH converts (III) into (I). (II) or its 3-acetate (prep. by Ac₂O-C₅H₅N), m.p. 163·2—165·5° (lit. 172—172·5°), in boiling Ac₂O-AcOH or AcOH gives 3-acetoxy-24: 24-diphenyl-Δ⁵:²³-choladiene (IV), m.p. 166·6—167·4°, also obtained from (I) by boiling AcOH. Hydrolysis of (IV) by boiling NaOPra-PraOH (later addition of H₂O) or by activated Al₂O₃ in boiling xylene gives 3-hydroxy-24: 24-diphenyl-Iysis of (IV) by boiling NaOPr^a-Pr^aOH (later addition of H₂O) or by activated Al₂O₃ in boiling xylene gives 3-hydroxy-24: 24-diphenyl-Δ^{6:23}-choladiene, m.p. 173—174°, the 3-p-loluenesulphonate, m.p. 130·6—131·5°, of which with KOAc-MeOH gives aa-diphenyl-β-6(a)-methoxy-i-bisnorcholenylethylene (V), m.p. 109·1—110·1°, [a]³/_p +67·8° in CHCl₃ [with Ac₂O-AcOH gives (IV)]. With I in boiling xylene, (I) gives (?) diphenyl-3-iodo-Δ⁵-norcholenylcarbinol, m.p. 168·2—169·4°. Activated Al₂O₃ and (I) in boiling xylene give (?) aa-diphenyl-β-6(β)-methoxy-i-bisnorcholenylethylene (VI), m.p. 161·8—163°, [a]^{3b}/_p -38·6±2° in CHCl₃ [with Ac₂O-AcOH gives (IV)]. Me 3-methoxy-Δ⁵-cholenate (prep. from the 3-p-toluenesulphonate by boiling MeOH), m.p. 109·2—109·6°, [a]²²/_p -44·6° in CHCl₃, with MgPhBr (excess) gives diphenyl-3-methoxy-Δ⁵-norcholenylcarbinol, m.p. 164·8—165·9°, dehydrated by boiling AcOH to 3-methoxy-CHMe·CH₂·CH·CPh₂ (24: 24-diphenyl-Δ⁵·23-choladiene, m.p. 11·55±0·66° in CHCl₃, which

m.p. $114\cdot5-115\cdot3^{\circ}$, $[a]_{0}^{14}$ $-11\cdot55\pm0\cdot66^{\circ}$ in CHCl₃, which is also obtained from (\mathbf{V}) or (\mathbf{V} 1) by boiling $\mathbf{H}_{2}\mathbf{SO}_{4}$ -MeOH. With activated $\mathbf{Al}_{2}\mathbf{O}_{3}$ in boiling (VII.) (? VII), m.p. $162-163^\circ$, $[a]_D^{25}-18\cdot 5^\circ$ in CHCl₃, converted into (IV) by boiling AcOH. M.p. are corr.

Marine products. XII. Oxidation of poriferasterol. A. M. Lyon and W. Bergmann (J. Org. Chem., 1942, 7, 428—431).—Poriferasterol is oxidised by $Al(OPr\beta)_3$ in boiling PhMe-cyclohexanone to poriferastenone, m.p. $111-112\cdot 5^{\circ}$, $[a]_2^{25}+56\cdot 7^{\circ}$ (2:4-dinitrophenylhydrazone, m.p. $231\cdot 8-234\cdot 5^{\circ}$; semicarbazone, m.p. $229-230^{\circ}$). Treatment of poriferasteryl acetate (I) with 1 mol. proportion of Br and then with O. gives $3(\beta)$ -hydroxybisparchylagia acid marketics. Br and then with O_3 gives $3(\beta)$ -hydroxybisnorcholenic acid, m.p. $291-292^\circ$ (decomp.) [Me ester, m.p. $140-141^\circ$ (acetate, m.p. $137\cdot5^\circ$)]. Ozonisation of (I) gives a C_7 fragment isolated as the 2:4-dinitrophenylhydrazone, $C_{13}H_{18}O_4N_4$, m.p. $113-114^\circ$, $[a]_2^{80}\pm0^\circ$. Clionasterol is shown to be 22:23-dihydroporiferasterol. M.p. are corr.

Derivatives of cestrone containing oxygen at C₍₁₀₎. M. N. Huffman (J. Amer. Chem. Soc., 1942, 64, 2235—2236).—16-Oximino-cestrone (I) and Zn in AcOH give mixed α-ketols (A), including a 16-hydroxy-cestrone, m.p. 234—237°, [α]_D^{29 δ} – 102° in EtOH [benzoate, m.p. 241-5—243·5°; oxime, m.p. 222·5—223°; Me ether, m.p. 174—177° (oxime, m.p. 175—177°)]; H₂-PtO₂ reduces (A) to mixed triols, including an cestriol, m.p. 267—269°, [α]_D^{29 δ} +88° in EtOH (Me ether, m.p. 141—142°; triacetate, m.p. 152°). Œstrone Me ether gives mixed α-ketols, oxidised by Cu(OAc)₂ to 16-keto-cestrone Me ether, m.p. 176—178°, the dioxime, m.p. 230°, of which is also obtained from the Me ether of (I) and NH₂OH. 16-Keto-cestrone-dioxime, m.p. 230—231°, with Cu(OAc)₂-EtOH gives a highly coloured Cu complex, sol. in CHCl₃, but no coloured Ni or Co complex. No details are given.

Sterols. CLI. Rearrangement of 17: 21-dibromoallopregnan-3(β)-ol-20-one acetate. R. E. Marker, H. M. Crooks, jun., R. B. Wagner, and E. L. Wittbecker. CLII. Rearrangement of 16: 17-dibromopregnan-3(β)-ol-20-one. R. E. Marker, R. B. Wagner, and E. L. Wittbecker (J. Amer. Chem. Soc., 1942, 64, 2089—2092, 2093—2097).—CLI. alloPregnan-3(β)-ol-20-one (I) and Br (1 mol.) in AcOH at room temp. give the 17-Br-derivative (II), m.p. 93—96°, which with Fe dust in AcOH at 100° or H₂-Pd-BaSO₄ in C₅H₅N-dioxan at 40 lb. regenerates (I) and with boiling C₅H₅N gives Λ¹⁶-allopregnen-3(β)-ol-20-one. 3(β)-Acetoxyallopregnan-20-one (IV), m.p. 155°, converted into (III) by H₂-Pd-BaSO₄ in MeOH-dioxan-C₅H₅N at 40 lb. and by boiling C₅H₅N into 3(β)-acetoxy-Δ¹⁶-allopregnen-20-one [with Zn dust in AcOH gives (III)]. CrO₃-AcOH at room temp. oxidises (II) to a mixture, which with boiling C₅H₅N or KOAc-AcOH gives Δ¹⁶-allopregnene-3: 20-dione (V) and with Fe dust in AcOH at 100° gives allopregnane-3: 20-dione [obtained from (V) by Zn dust in AcOH at 100°]. 2 mols. of Br with (III) or 1 mol. with (IV) in AcOH at 40° gives 17: 21-dibromo-3(β)-acetoxy-allopregnan-20-one, m.p. 174°, converted by boiling KOH-MeOH into 3(β)-hydroxy-Δ¹¹⁽²⁰⁾-allopregnen-21-oic acid (VI), m.p. 249°. The derived OAc-acid with O₃-CHCl₃ and then hot KOH-MeOH gives isoandrosterone (isolated as semicarbazone). Oxidation of (VI) by Al(OBu⁷)₃-COMe₂-C₅H₅ and then reduction by Al(OPrβ)₃-PrβOH gives 3(a)-hydroxy-Δ¹⁷⁽²⁰⁾-allopregnen-21-oic acid, m.p. 232—235°, converted by O₃-CHCl₃ etc. into androsterone. cycloHexyl Me ketone with Br at 0° and then KOH-EtOH at room temp. gives cyclohexylideneacetic acid.

Me ketone with Br at 0° and then KOH-EtOH at room temp. gives cyclohexylideneacetic acid.

CLII. 3(β)-Acetoxy-Δ16-pregnen-20-one with Br-AcOH gives the dibromide, m.p. 137—140°, whence it is regenerated by H₂-Pd-BaSO₄ in C₃H₅N-dioxan at 3 atm., boiling C₅H₅N, NaI-MeOH, or KOAc-AcOH, and which with boiling KOH-MeOH gives 3(β)-hydroxy-Δ17(20)-pregnen-21-oic acid (VII), m.p. 254—256° (decomp.) (acetate, m.p. 161—163°), and its Me ester (VIII), m.p. 153—156° [acetate (IX), m.p. 103—105°; also prepared from (VII) by CH₂N₂]. H₂-PtO₂ at 3 atm. reduces (VII) to 3(β)-hydroxypregnan-21-oic acid (X) {acetate; Me ester (XI), m.p. 141—143° [acetate (XII), m.p. 105—106°]} and (IX) to (XII). With O₃-CHCl₃ or KMnO₄-KOH at 0°, (VII) gives ætiocholan-3(β)-ol-20-one. With, successively, Al(OPrβ)₃-COMe₂-PhMe, Al(OPrβ)₃-PrβOH, removal of precipitable material by digitonin, and O₃-CHCl₃, (VIII) gives ætiocholan-3(a)-ol-17-one. Na-n-C₅H₁₁·OH and then KOH-MeOH converts (VII) or (X) into 3(a)-hydroxypregnan-21-oic acid, m.p. 224—226° [Me ester, m.p. 118—119° (acetate, m.p. 85—87°)], oxidised by CrO₃-AcOH to 3-ketopregnan-21-oic acid, m.p. 170—172° (Me ester, m.p. 121—123°), whence it is regenerated by H₂-PtO₂ in dioxan at 3 atm. Na-EtOH reduces (XI) to pregnane-3(a): 21-diol, m.p. 164—166° (diacetate, m.p. 76—79°; pregnane-3(a): 21-diol, m.p. 205—206°, is similarly prepared.

V.—TERPENES AND TRITERPENOID SAPOGENINS.

Reactions of β -pinene. II. With selenium dioxide in acetic acid W. D. Stallcup and J. E. Hawkins (J. Amer. Chèm. Soc., 1942, 64 1807—1809; cf. A., 1942, II, 178).— β -Pinene and SeO₂ in Ac₂O (less good, AcOH) give pinocarvyl acetate (I) with some carvopinone (II), pinocarvone (III), and, in AcOH, pinocarveol (IV); the amount of SeO₂ used is of minor importance. SeO₂ in boiling EtOH converts (IV) mainly into (II). Hydrogenation (Pd-C; cyclohexane; $100^{\circ}/1200$ lb.) of (IV) gives d-cis-pinocampheol, m.p. $55\cdot5$ — 56° , $100^{\circ}/1200$ lb.) of (IV) gives d-cis-pinocamphyl acetate, b.p. $100^{\circ}/1200$ lb. of (IV) gives d-cis-pinocamphyl acetate, b.p. $100^{\circ}/120$

Preparation and properties of camphormonoamides. M. Delépine (Ann. Chim., 1942, [xi], 17, 171—178).—d-a- (combines with EtOH, COMe₂, but not with $\rm H_2O$) and d- β -camphoramide have vals. of

[a]_D of +25° and +73·2°, respectively, in EtOH. isoCamphoric acid and SOCl₂ at room temp., followed by NH₃-Et₂O, give l-a-isocamphoramide, m.p. 193°, [a]_D $-46\cdot4^\circ$ in EtOH, l-isocamphordiamide monohydrate, m.p. 132°, [a]_D $-37\cdot8^\circ$ in H₂O (anhyd., [a]_D $-41\cdot25^\circ$ in H₂O), and a neutral substance, C₁₀H₁₆ON₂, m.p. 187°, [a]_D $-82\cdot8^\circ$ in EtOH. l-B-isoCamphoramide (modified prep.), new m.p. 171° (block), has [a]_D $-51\cdot4^\circ$ in EtOH. l-isoCamphoric acid is converted into the l-a-Et ester, and thence by SOCl₂ into its β-acid chloride, which with NH₃-Et₂O, followed by aq. NH₄Cl, yields Et a-isocamphorate β-amide, m.p. 121°, [a]_D $-51\cdot5^\circ$ in EtOH (corresponding Me ester, [a]_D $-63\cdot2^\circ$ in EtOH). d-Camphoric acid and SOCl₂, followed by NH₃-Et₂O, yield (mainly) camphoric anhydride and d-a-camphoramic acid. d-a-, m.p. 248° (block), [a]_D $+37\cdot3^\circ$ in EtOH, and d-β-camphormethylamide, m.p. 178° (block), [a]_D $+65\cdot9^\circ$ in EtOH, are prepared. A. T. P.

Hydrolysis of amides. M. Delépine and M. Badoche (Compt. rend., 1942, 214, 588, 591, and Ann. Chim., 1942, [xi], 17, 183—212).—d-CHPhEt·CO·NH₂, m.p. 81°, [a]_D +52·6° in EtOH, and 2N-HCl at 100° (bath) give the d-acid, whereas boiling 2N-NaOH affords almost entirely the r-acid owing to racemisation of the amide prior to hydrolysis. Although d-CHPhEt·CO·NHPh, m.p. 81·5°, [a]_D +102° in EtOH, is stable to boiling 2N-HCl, boiling 2N-NaOH (4 hr.) causes partial racemisation; EtOH-NaOH (21 hr.), gives inactive acid + anilide. r-NH₂·CHPh·CH(OH)·CO·NH₂ and aq. Ba(OH)₂ yield two r-acids, m.p. 240° (block) and 290° (block) (10%), but 2N-HCl causes little isomerisation, giving mainly the former. d-a-Camphoramide (I) and boiling H₂O give d-camphoric acid (II), [a]_D +48·8° in EtOH, and camphoric anhydride (62·5% conversion); the β-amide (III) similarly gives some anhydride and version); the β -amide (III) similarly gives some anhydride and probably some α -amide. Camphoric acid and boiling H_2O yield no anhydride; the latter reacts slowly with boiling H_2O . A mixture no anhydride; the latter reacts slowly with boiling $\mathbf{H}_2\mathrm{O}$. A mixture of $(\mathbf{NH}_4)_2$ camphorate, anhydride, and $\mathbf{H}_2\mathrm{O}$ in a sealed tube at 100° affords some a-amide. (I) and boiling $2\mathbf{N}$ -HCl give (II) and 10% of camphorimide (IV); 61% of (II) and 39% of (IV) are obtained similarly from (III), and (III)–20% HCl give 50–70% of (IV). (I) is slowly hydrolysed by $5\mathbf{N}$ -NaOH (8 hr.) to give camphoric acid containing 20% of l-iso-acid (V), separable by AcCl at room temp.; similarly after boiling (III) for 15 hr., 50% of (III), 25% of (II), and $3\cdot5\%$ of iso-acid, probably formed through (IV) (which can be isolated), are obtained. l-a- (VI) and $-\beta$ -isocamphoramide (VII) are unaltered by boiling $\mathbf{H}_2\mathrm{O}$, but are hydrolysed (a- more readily) by $2\mathbf{N}$ -HCl to (V); no imide nor anhydride is formed. Alkaline hydrolyse; of (VI) gives (V) and some (II). (VII) is difficult to hydrolyse; 2N-HCl to (V); no imide nor anhydride is formed. Alkaline hydrolysis of (VI) gives (V) and some (II). (VII) is difficult to hydrolyse; after boiling with 4N-NaOH for 4 hr., a trace of d-acid is formed. l-isoCamphordiamide (VIII) and boiling 2N-HCl (8 hr.) give (V) and (VI), whereas (VIII) and N-NaOH (10 hr.) yield d-β-cis-camphoramide, rotation becoming positive. (V) shows only 1.3% conversion into d-acid on boiling with 5N-NaOH for 8.5 hr. d-α-Camphormethylamide (IX) reacts slowly with boiling H₂O, giving probably some d-β-methylamide (X); (X) similarly yields 21% of anhydride and (IX). (IX) can be isolated from a mixture of camphoric acid some d-β-methylamide (X); (X) similarly yields 21% of anhydride and (IX). (IX) can be isolated from a mixture of camphoric acid neutralised with NH₂Me, anhydride, and H₂O, heated in a sealed tube at 100° for 3 hr. (IX) and, more readily, (X) are converted by 2N-HCl into the methylimide, m.p. 42—43°, [a]_D +11·4° in EtOH. cis-Hexahydro-p-toluamide (XI), refluxed with 2N-HCl for 7 hr., is partly transformed (15%) into the trans-amide (XII); (XI) and aq. NaOH-EtOH yield 35% of (XII), and excess of alkali affords 50% of the trans-acid (XIII), m.p. 111°. (XII) is not isomerised, and yields only (XIII). In general, acids saponify the amides with liberation of the corresponding acid, whereas alkalis often cause racemisation or isomerisation, probably owing to keto-enol change CR₂·C(OH)·NH₂. $CR_2:C(OH)\cdot NH_2$.

Configuration of nickel bisformylcamphor-ethylenediamine.—See A., 1943, I, 5.

Reactivity of terpene nuclei. Halogenation of dihydroterpenes. A. Gandini (Gazzetta, 1941, 71, 722—729).—A review (cf. Gandini, A., 1936, 1257; 1939, II, 220; 1940, II, 283; Gazzetta, 1940, 70, 604). In the halogenation of dihydroterpenes, Me and Pr $_{\beta}$ groups are unaffected, the nucleus being attacked. In dicyclic terpenes, halogenation is first in the $_{\beta}$ -position to $C_{(7)}$, in contrast to menthane, first halogenated at $C_{(4)}$. E. W. W.

VI.—HETEROCYCLIC.

Reaction of furoic acid with aromatic compounds.—See A., 1943, II, 34.

Alkylquinols and related compounds.—See A., 1943, II, 29.

Nitration of 5-hydroxy-4-methylcoumarin and 5-hydroxy-4-methylcoumarin-6-carboxylic acid and its methyl ester. N. B. Parekh and R. C. Shah (*J. Indian Chem. Soc.*, 1942, **19**, 335—338).—5-Hydroxy-4-methylcoumarin with HNO₃-H₂SO₄ at 0° gives the 8- NO_2 -derivative (**I**), m.p. 174—176° (efferv.), and at room temp., the 6:8-(NO_2)₂-compound, m.p. 181—182°. Me 5-hydroxy-4-methylcoumarin-6-carboxylate with AcOH-HNO₃ affords the 8- NO_2 -derivative, m.p. 201—202°, hydrolysed to the corresponding acid, m.p. 220—221°, also obtained by nitration of 5-hydroxy-4-methyl-

coumarin-6-carboxylic acid, and decarboxylated (AcOH-HCl) to (I). F. R. S.

Aluminium chloride—reagent for the condensation of β -ketonic esters with phenols. VII. Condensation of 4-nitroresorcinol with ethyl acetoacetate. N. B. Parekh and R. C. Shah (J. Indian Chem. Soc., 1942, 19, 339—342).—4:1:3-NO₂·C₆H₃(OH)₂ and CH₂Ac·CO₂Et in PhNO₂ with AlCl₃ give, in poor yield, 6-nitro-5-hydroxy-4-methylcoumarin (I), m.p. $209-210^{\circ}$ (Me ester, m.p. $132-133^{\circ}$), which is converted by Me₂SO₄-NaOH successively into 5-nitro-6-hydroxy-2-methoxy- (+0·5H₂O), m.p. $162-163^{\circ}$ (efferv.), and 5-nitro-2: 6-dimethoxy- β -methylcinnamic acid, m.p. $206-208^{\circ}$. The formation of (I) in the condensation indicates chelation between NO₂ and OH in the resorcinol.

Dibenzfurans.—See B., 1943, II, 6.

Synthesis of cantharidin. K. Ziegler, G. Schenck, and E. W. Krockow [with A. Siebert, A. Wenz, and H. Weber] (Annalen, 1942, 551, 1—79).—Me₂ 3:6-endomethylenehexahydrophthalate is converted by CPh₃Na at room temp. followed by MeI (better Me₂SO₄) and hydrolysis into cis-1:2-dimethyl-3:6-endomethylenehexahydrophthalic anhydride ("methylenecantharidin"), m.p. 206° (Me₂ ester of the corresponding acid, m.p. 57°), with a small proportion of trans. 1:2-dimethyl-3:6-endomethylenehexahydrophthalic portion of trans-1: 2-dimethyl-3: 6-endomethylenehexahydrophthalic acid, m.p. 320—323° (Me₂ ester, m.p. 44°); the exo-anhydride does not appear to be formed. Attempts to methylate Me₂ norcantharidate similarly were unsuccessful.

ate similarly were unsuccessful.

trans-Δ⁴-Tetrahydrophthalodinitrile, m.p. 125°, is obtained in small yield from fumaronitrile (prep. from the diamide, p-C₆H₄Me·SO₂Cl, and anhyd. C₅H₅N described), (CH₂·CH)₂, and PhMe at 100° but the change is accompanied by the formation of much rubber-like polymeride. This is avoided by passing the gas into the dinitrile and PhMe at 170—180°, when a 76% yield is very slowly obtained. It does not appear to be methylated smoothly. I: 2-Dimethyl-Δ⁴-tetrahydrophthalic anhydride (I), m.p. 101°, is obtained with much polymeride when ('CMe·CO)₂O and (CH₂·CH)₂ are heated in a sealed tube; the yield attains 50% when the gas is passed into a solution of the anhydride in decahydronaphthalene at 192° in 720 hr. and 60% when the reactants without solvent are heated at 170—180° of the anhydride in decahydronaphthalene at 192° in 720 hr. and 60% when the reactants without solvent are heated at $170-180^{\circ}$ in an autoclave of such size that the bulk of the $(CH_2:CH)_2$ remains in the gaseous phase. (I) is stable at 400° and is hydrolysed by alkali to the acid, m.p. 200° with re-formation of (I), which also slowly results when a solution of the acid in H_2O is boiled. It is hydrogenated to 1:2-dimethylhexahydrophthalic anhydride (II), m.p. 129° , identical with the deoxycantharidin of Gadamer (A., 1917, i, 659, 704); the corresponding acid, m.p. 180° , passes partly into the anhydride in boiling H_2O . The characteristic instability of the cantharidindicarboxylic acids is therefore due to the presence of the bridge. (I) and Br in CCl. (small quantities should be used of the bridge. (I) and Br in CCl₄ (small quantities should be used or, better in AcOH) afford 4:5-dibromo-1:2-dimethylhexahydroor, better in AcOH) afford 4:5-dibromo-1:2-dimethylhexahydro-phthalic anhydride, m.p. 181°, which is rapidly converted by boiling aq. NaOH into an anhydride, C₁₀H₁₂O₄, m.p. 182° (vac.), and the corresponding dicarboxylic acid, C₁₀H₁₄O₅, m.p. 178°. Other reagents for the elimination of HBr give uninviting products but NMe₃ at 100° gives large amounts of non-volatile products and ~10% of 1:2-dimethyl-1:2-dihydrophthalic anhydride (III), b.p. 112°/2 mm., m.p. 70°. (III) is quantitatively hydrogenated to (II), is converted by alkali and cold acid into the corresponding acid, m.p. 158° with re-formation of (III), and with Br in AcOH yields at least two dibromides, the most sparingly sol. of which has with 18-18 cantharidinimide of Gadamer (loc. cit.). (I) and (CH₂·CO)₂NBr in boiling CCl₄ give a mixture (IV) of 6-bromo-1: 2-dimethyl-Δ⁴-tetra-hydrophthalic anhydrides, separated by crystallisation into a small proportion of a stable monobromide, m.p. 106°, and a large proportion of an isomeride, m.p. 72°, which tends to lose HBr spontaneously. When heated at 150° and then at 180° (IV) gives (III) in variable yield dependent on experimental conditions. Boiling 20% NaOH hydrolyses (IV) to isocantharic acid B (V), m.p. 204—206° [Me ester (VI), m.p. 72°], converted by boiling AcCl into 6-acetoxy-1: 2-dimethyl-Δ⁴-tetrahydrophthalic anhydride, b.p. 310°, m.p. 101·5—102°, identical with the substance obtained by oxidising (I) with SeO₂-Ac₂O. (V) is reduced (Pd-BaSO₄ in abs. EtOH) to dihydrocantharic acid, m.p. 263° [Me₂ ester (VII), m.p. 58—60°]. (VI) and (CH₂·CO)₂NBr at 130—135° afford Me bromoisocantharate, m.p. 166°, converted by H₂-Pd-BaSO₄ into (VII), m.p. 65°. Treatment of the non-volatile products of the prep. of (III) with boiling aq. NaOH followed by acid gives ψ-cantharic acid (VIII), m.p. 187° (Me ester, m.p. 100°; H₂-derivative, m.p. 270—273°).

(CMe·CO)₂O and cyclohexadiene, best in presence of C₈H₆, at

(:CMe·CO)₂O and cyclohexadiene, best in presence of C₆H₆, at 170—180° afford 1:2-dimethyl-3:6-endovinylenehexahydrophthalic anhydride (**IX**), m.p. 263·5°, oxidised by NaOBr to the bromolactonic acid, $C_{12}H_{15}O_4Br$, m.p. 231–232° (discoloration, decomp.) (Me ester, m.p. 164–165°), and further to the mutually interconvertible dilactone, $C_{12}H_{14}O_4$, m.p. ~375°, or hydroxylactonic acid, $C_{12}H_{16}O_5,H_2O$, m.p. ~375° (Me ester, m.p. 177–178°). (**IX**) is converted by dissolution in NaOH and oxidation with KMnO₄ into

1: 2-dimethyl-3: 6-endodihydroxyethylenehexahydrophthalic anhydride [3: 6-endodihydroxyethylenedeoxycantharidin] (\mathbf{X}), m.p. 303°, transformed by COMe₂ containing a few drops of conc. $\mathbf{H}_2\mathrm{SO}_4$ into the :CMe₂ ether, m.p. 214—215°. (\mathbf{X}) is converted by \mathbf{HNO}_3 (d 1·5) at 100° into the dinitrate, m.p. 157—158°. \mathbf{HNO}_3 (d 1·2) oxidises (\mathbf{X}) at 100° to 4:5-diketo-1:2-dimethyl-3:6-endoethylenehexahydrophthalic acid ($\mathbf{H}_2\mathrm{O}$); the colourless form is probably (A). It becomes yellow at >260° (diketonic form) and has m.p. 315—320° when slowly heated, 338—340° (decomp.) in bath preheated to 330° when slowly heated, 338-340° (decomp.) in bath preheated to 330°.

It is converted by $\rm CH_2N_2$ into the yellow Me_2 ester, m.p. $173-174^\circ$, and by boiling $\rm Ac_2O$ into the yellow anhydride (m.p. as for acid), which spontaneously absorbs H2O and becomes colourless when which spontaneously absorbs H_2O and becomes colourless when exposed to air. The acid is transformed by evaporation with fuming HNO_3 into cis-1: 2-dimethylcyclohexane-1: 2:3: 6-tetracarboxylic dianhydride (**XI**), m.p. 245— 246° , converted by boiling H_2O into the tetracarboxylic acid. (**XI**) is transformed by prolonged action of CH_2N_2 in aq. Et_2O into the corresponding cis- Me_4 ester (**XII**), m.p. 108— 109° , whereas in aq. $COMe_2$ a cis- Me_2 ester, m.p. 156° , results, converted by further methylation (CH_2N_2) into (**XII**). Neutralisation (phenolphthalein) of (**XI**) with NaOMe—MeOH, addition of HCl (Congo-red), and treatment of the product with CH_2N_2 leads to (**XII**), whereas evaporation of the solution to dryness and tion of HCl (Congo-red), and treatment of the product with CH₂N₂ leads to (XII), whereas evaporation of the solution to dryness and treatment of the residue with Me₂SO₄-NaOMe under strictly defined conditions gives Me₄ 1:2-dimethylcyclohexane-cis-1:2-trans-3:6-tetracarboxylate (XIII), m.p. 111—112°. This is partly hydrolysed by alkali to the 1:2-Me₂ 3:6-H₂ ester (+H₂O) (lost at 120°), m.p. 208°, also obtained by acid hydrolysis (20·2% HCl) of (XIII). 20·2% HCl and (XII) yield essentially the 1:2-Me₂ 3:6-H₂ ester. (XIII) is neutralised with 2n-NaOH and transformed under strictly defined conditions into the Ag₂ salt, which is converted by Br in CCl₄ into acidic products (XIV) and a "neutral oil" from which Me epihydrobromocantharate, m.p. 115—116°, is isolated. It is hydrolysed by boiling 48% HBr to the acid (XV), anhyd. or +1H₂O, m.p. 185—186°, which, when heated, affords cantharic acid and

cantharidin. (XIV) contain 4-bromo-2: 3-dicarbomethoxy-2: 3-di-methylcyclohexane-1-carboxylic acid, m.p. 119° , and the ester lactone (XVI) (R = Me), m.p. $184-185^{\circ}$, hydrolysed by 48% HBr to the lactonedicarboxylic acid (XVI) (R = H), m.p. $296-297^{\circ}$ (change at $205-220^{\circ}$), also obtained as a by-product of the prep. of (XV); it is transformed by boiling Ac_2O into the anhydride (XVII), m.p. $296-297^{\circ}$. The configuration of cantharidin is discussed. H. W.

Cleavage of ethylene linkage by thionyl chloride. A. Schönberg and W. Asker (J.C.S., 1942, 725).—Dixanthylene (\mathbf{I}), dithioxanthylene, NN'-dimethyldiacridine, diflavylene, and dithioflavylene undergo cleavage when boiled with SOCl₂ and the product dissolved in C_6H_6 and shaken with H_2O at 30°, yielding the ketones. The product from (\mathbf{I}) and SOCl₂ with NH₂Ph yields xanthoneanil.

Synthesis of a 3: 4-diaminotetrahydrothiophen and a comparison of its stability with the diaminocarboxylic acid derived from biotin. G. W. Kilmer, M. D. Armstrong, G. B. Brown, and V. du Vigneaud (J. Biol. Chem., 1942, 145, 495—501; cf. A., 1942, II, 387).—dl-[CH₂Br·CH(OH)·]₂ and aq. Na₂S at 50—60°, then at 100°, followed by treatment of the product with HCl in a scaled tube at 150° or by treatment of the product with HCl in a sealed tube at 150° or with HBr (reflux) give 3: 4-dichloro-, m.p. $60-61^{\circ}$, or -dibromotetrahydrothiophen, m.p. $83-89^{\circ}$; attempted replacement of halogen by the use of NH₃, o-C₆H₄(CO)₂NK, and other reagents was unsuccessful, as also were attempts to replace Br in the derived sulphone. $a\delta$ -Dichlorobutane- $\beta\gamma$ -diol, m.p. $62-63^{\circ}$, b.p. $113-118^{\circ}/4$ mm., obtained by KMnO₄ oxidation of $a\delta$ -dibromo- $\Delta\beta$ -butene, is converted by aq. Na₂S into 3: 4-dihydroxytetrahydrothiophen, m.p. $54-58^{\circ}$ (HI at 210° gives much H₂S). Et₄ tetrahydrothiophen-3: 3:4:4-tetracarboxylate (I) (modified prep.), b.p. $200-208^{\circ}/8$ mm., and N-NaOH at 80° , followed by heating the residue at $140-160^{\circ}$, esterification to the di-ester with HCl-EtOH at room temp., and heating with N₂H₄,H₂O (water-bath), afford tetrahydrothiophen-3: 4-displayed to the di-ester with HCl-EtOH at room temp. esterification to the di-ester with HCl-EtOH at foom temp., and heating with N_2H_4 , H_2O (water-bath), afford $tetrahydrothiophen-3:4-dicarboxylic dihydrazide (II), m.p. <math>226-227^\circ$ (previous softening), also obtained in lower yield by partial hydrolysis of (I) with $0\cdot l_N$ -NaOH at room temp., followed by decarboxylation and treatment with N_2H_4 . (II) and $NaNO_2$ in N-HCl-Et₂O followed by interaction of the azide with EtOH give 3:4-diurethanotetrahydrothiophen, m.p. 176—178°, converted by HCl (sealed tube; 100—105°) into 3:4 diaminotetrahydrothiophen dihydrochloride, incipient decomp. ~250° [aq. NaOH gives the free diamine (III), m.p. ~40°; dipicrate, incipient decomp. ~250°; Ac₂, sublimes at 260—265°, and Bz₂ derivative, m.p. 295—300° (previous softening)]. A cyclic urea derivative could not be obtained by treating (III) with COCl₂-NaOH, and Et₂CO₃ did not yield a CO: derivative. (III) is unchanged with fuming HI at 210°, but at 250° ~5—10% of its S is liberated as H₂S, and 10—15% of its N as volatile base; it is thus more stable than the diaminocarboxylic acid derived from biotin.

A. T. P.

1-p-Aminobenzenesulphonamido-2: 5-dimethylpyrrole. Walsh (J.C.S., 1942, 726).—p-Acetamidobenzenesulphonhydrazide and acetonylacetone in AcOH give 1-p-aminobenzenesulphonamido-2:5-dimethylpyrrole, m.p. 202° (decomp.), after hydrolysis (NaOH). 1-p-Toluenesulphonamido-2:5-dimethylpyrrole, m.p. 144°, is similarly prepared.

F. R. S.

Synthesis of vitamin B_6 .—See B., 1943, III, 21.

Some anilinopyridine derivatives. W. O. Kermack and (Miss) A. P. Weatherhead (J.C.S., 1942, 726).—From the appropriate Clderivative and NH2-compound, the following have been prepared: derivative and N13-compound, the ionowing have occur prepared 2-anilino-, m.p. 263°, and 2-p-anisidinonicotinic acid, m.p. 295°, 4-anilinopyridine, m.p. 173°, N-(4'-pyridyl)anthranilic acid, m.p. 238°. These acids could not be cyclised with either H₂SO₄ or POCl₃.

Preparation of certain 3-substituted indoles. (Mrs.) R. H. Cornforth and (Sir) R. Robinson (J.C.S., 1942, 680—682).—Indole and indole-2-carboxylic acid (I) are converted by MeOH-NaOMe at indole-2-carboxylic acid (1) are converted by MeOH-NaUMe at 210—220° into skatole, which may be conveniently prepared in this way. Treatment of (I) with the appropriate alcohol gives the following: 3-ethyl- (picrate, m.p. 121°), 3-n-propyl-, b.p. 162—164°/20 mm., 3-n-butyl- (picrate, m.p. 114°), 3-n-heptyl-, m.p. 60°, 3-benzyl-, m.p. 103°, 3-y-phenylpropyl-, m.p. 73°, 3:7-dimethyl-, m.p. 56°, and 3-cyclohexyl-7-methyl-indole, m.p. 115°. (I) could not be alkylated by means of sec. alcohols and their Na derivatives. A mechanism for the reaction is suggested.

Reaction with hydrazoic acid in sulphuric acid. IV. Behaviour of substances containing the system -CO·CO·NH-. G. Caronna (Gazzetta, 1941, 71, 585—589).—Isatin (or acetylisatin) with NaN₃ in H₂SO₄ gives anthranilamide; N-ethylisatin gives o-ethylamino-benzamide. COPh•CO•NHPh gives the same products as benzil (cf. Spielman et al., A., 1938, II, 64).

Synthesis of 4:5-dihydroxyquinoline. L. Musajo and (Signa.) M. Minchilli (Gazzetta, 1941, 71, 762—765).—3:4:1-NH₂·C₆H₃Cl·OH and CO₂Me·CH₂·CO·CO₂Me in boiling Et₂O give Me₂ 2-chloro-5-hydroxyanilosuccinate, m.p. 101—102°, which in petroleum jelly at 220° gives Me 8-chloro-4:5-dihydroxyquinoline-2-carboxylate, m.p. 143° reduced in a Meoly Neoly at 101. 143°, reduced in aq. MeOH-NaOAc by H2 (Pd-C) to the Me ester, m.p. 253°, of 4:5-dihydroxyquinoline-2-carboxylic acid, m.p. 305° (decomp.). Above its m.p. this yields 4: 5-dihydroxyquinoline, m.p. E. W. W.

18

Utilisation of alkoxy-ketones in the synthesis of quinolines by the Pfitzinger reaction. II. S. D. Lesesne [with H. R. Henze] (J. Amer. Chem. Soc., 1942, 64, 1897—1900; cf. A., 1939, II, 388; 1940, II, 24).—Isatin and COEt-CHMe-OMe, b.p. 154—155°/746 mm. (semicarbazone [Wallace], m.p. 120·5°), in 33% aq. KOH at 100° give 3-methyl-2-a-methoxyethylcinchonic acid (I) (74%), m.p. 234° (decomp.) [Me ester, m.p. 57° (picrate, m.p. 179°)]. At 250° (I) gives CO₂ and, by fission and reduction, 3-methyl-2-ethylquinoline (14%) [picrate, m.p. 191° (corr.) (lit. 193°)], with conc. HCl at 100° gives 3-methyl-2-a-hydroxyethylcinchonic acid (55%), +H₂O, m.p. 265° (picrate, explodes at >310°), with boiling HI-red P gives, after 6 hr., 3-methyl-2-ethylcinchonic acid (II) (78%), m.p. 279° (picrate, m.p. 198°), or, after 7 days, 3-methyl-2-ethyl-1: 2: 3: 4-tetrahydroquinoline (III) (70%), b.p. 253°/716 mm. (picrate, m.p. 188°), and with H₂-PtO₂ in EtOH gives 3-methyl-2-a-methoxyethyl-1: 2: 3: 4-tetrahydrocinchonic acid, m.p. 232° (decomp.). (III) suffers fission by Sn-HCl at 100°, giving 3-methyl-1: 2: 3: 4-tetrahydroquinoline, b.p. 117°/15 mm. [picrate, m.p. 159° (corr.) (lit. 155°)]. With SOCl₂ at 0° and then the appropriate amine, (I) gives 3-methyl-2-a-methoxyethylcinchondi-ethyl- (IV), m.p. 94°. -isoamyl-, m.p. 190°. und -allyl-amide, m.p. 112°, and, by NH([CH₂]₂·OH), the diester-amide, (RCO₂·[CH₂]₂)₂NH, m.p. 295°. Isatin and COMe-CHMe-OMe, b.p. 115—116°/739 mm. (semicarbazone [Wallace], m.p. 141°), lead similarly to 2-a-methoxyethylcinchonic acid, m.p. 186° (decomp.), 2-ethylcinchonic acid, m.p. 180°, and 2-ethylquinoline [picrate, m.p. 148° (lit. 147°)]. With isatin in KOH, acctoin and COPhPra give bis-2-cinchonic acid (III), m.p. 257°], and 2-phenyl-3-ethylcinchonic acid (VIII), m.p. 286° [picrate, m.p. 147°; Utilisation of alkoxy-ketones in the synthesis of quinolines by the olyl] (VI) (58%), m.p. 367° [diethylamide (VII), m.p. 257°], and 2-phenyl-3-ethylcinchonic acid (VIII), m.p. 286° [picrate, m.p. 147°; diethylamide (IX), m.p. 244°], respectively. M.p. are corr. Inactivity is recorded as follows: (I), (II), (VI), (VIII), and (IX)

against Plasmodium cathemerium in canaries; (IV), (V), and (VIII) against avian malaria; (VII) orally against Streptococcus viridans

Acylation experiments with sulphanilamide and heterocyclic amines. —See A., 1943, II, 28.

Quinolines and acridines.—See B., 1943, II, 6.

Quinolines and acridines.—See B., 1943, II, 6.

α-Alkoxyvinyl- and α-alkoxyethyl-barbituric acids. S. M. McElvain and H. Burkett (J. Amer. Chem. Soc., 1942, 64, 1831—1836).
—CH₂:C(OR)₂, CH₂(CO₂Et)₂, and NaOR at 125—130° give a mixture, separated for R = Et, of OR·CMe.C(CO₂Et)₂ (A) and CH₂:C(OR)·CH(CO₂Et)₂ (B), which with AlkBr or AlkI in, best (usually 55—85% yield), PrβOH gives CH₂:C(OR)·CR'(CO₂Et)₂, converted by CO(NH₂)₂ and NaOPrβ-PrβOH in poor yield into 5-alkyl-5-α-alkoxyvinylbarbituric acids or by H₂-Raney Ni in EtOH at 120°/1850 lb. into OR·CHMe·CR'(CO₂Et)₂, which in EtOH give good yields of 5-alkyl-5-α-alkoxyethylbarbituric acids. Alkylation of OR·CHMe·CH(CO₂Et)₂ is impossible. The pharmacological properties, sometimes pronounced, are briefly discussed. The following are obtained: Et₂ α-ethoxyethylidene-(I) (66%), m.p. 26—27°, b.p. 79—83°/0-03 mm. (with O₃ gives no CH₂O), and α-ethoxy-vinyl-malonate (II) (11%), b.p. 69—70°/0-03 mm. [with O₃ in AcOHAc₂O gives CH₂O; with NaOEt at 125° slowly gives (I)]; mixtures of (A) and (B), in which R = Pr, b.p. 110—112°/3 mm., Bu*, b.p. 135—140°/2·5 mm., and isoamyl, b.p. 120—130°/0-05 mm.; Et₂ ethyl-α-ethoxy-, b.p. 87—91°/0·1 mm. [prep. from (I) or (II); also obtained from CEtNa(CO₂Et)₂ by CHMeCl·OEt in C₆H₆], n-propoxy-, b.p. 121—130°/2·3 mm., n-butoxy-, b.p. 97—98°/I mm., n-butyl-, b.p. 88—91°/0·04 mm., and isoamyloxy-, b.p. 104—110°/0·04 mm., -vinylmalonate; Et₂ allyl-, b.p. 92—96°/0·1 mm., n-propyl-, b.p. 84—90°/0·01 mm., -a-ethoxy-vinylmalonate; Et₂ ethyl-α-ethoxy-, b.p. 71—72°/0·03 mm., -n-propoxy-, b.p. 77—78°/0·03 mm., -n-butoxy-, b.p. 83—84°/0·03 mm., -n-propoxy-, b.p. 77—78°/0·03 mm., -n-butoxy-, b.p. 85—86°/0·04 mm., isoamyl-, b.p. 88—89°/0·03 mm., -n-butyl-, b.p. 85—86°/0·04 mm., isoamyl-, b.p. 88—89°/0·03 mm., -n-butyl-, b.p. 87—79°/0·04 mm., and -sec-amyl-, b.p. 89—98°/0·03 mm., -n-louxy-, m.p. 189·5—190°, -n-propoxy-, m.p. 177—179°, and -isoamyloxy-, m.p. 153—154°, -n-propoxy-, m.p. 17 propoxyethyl-allyl-, b.p. $97-98^\circ/0.18$ mm., and -sec.-amyl-malonate, b.p. $101-102^\circ/0.06$ mm.; 5-ethyl-5-a-ethoxy-, m.p. $189.5-190^\circ$, -n-propoxy-, m.p. $177-179^\circ$, and -isoamyloxy-, m.p. $153-154^\circ$, -vinylbarbituric acid; 5-a-ethoxyvinyl-5-allylbarbituric acid, m.p. $158-160^\circ$; 5-n-butyl-, m.p. $169-170^\circ$, and 5-isoamyl-5-a-ethoxy-vinylbarbituric acid, m.p. $165.5-166^\circ$; 5-ethyl-5-a-ethoxy-, m.p. $181-181.5^\circ$, -n-propoxy-, m.p. $177.5-178^\circ$, -n-butoxy-, m.p. $132.5-133^\circ$, and -isoamyloxy-, m.p. $129.2-130^\circ$, -ethylbarbituric acid; 5-a-ethoxyethyl-5-n-propyl-, m.p. $168.5-169^\circ$, -n-butyl-, m.p. $138-139^\circ$, -isoamyl-, m.p. $136-137^\circ$, -allyl-, m.p. $127-128^\circ$, and -sec.-amyl-, m.p. $169-169.5^\circ$, -barbituric acid; 5-a-n-propoxyethyl-5-allyl-, m.p. $160-160.5^\circ$, and -sec.-amyl-barbituric acid, forms, m.p. $210.5-212^\circ$ and $153.5-154.5^\circ$.

2-Sulphanilamidopyrimidine.—See B., 1942, III, 21.

Pentduopent reaction. V. H. von Dobeneck (Z. physiol. Chem., 1942, 275, 1—15).—Prep. of propentduopent (A) solutions, essentially by alkaline H_2O_2 , from hæmin, bilirubin (I), biliverdin, urobilin, typellin, and typellin stercobilin, and blood is described and absorption max. of the products are recorded. Animal organs, urine, pneumococci, and icterus serum do not give the pentduopent (B) reaction, i.e., a red colour on treatment of solutions of (A) with alkaline Na₂S₂O₄. A positive reaction by urine indicates presence of hæmin. (A) are considered to include the structure shown

O,H₂O and (B) to be 5:5'-dihydroxypyrromethenes (or the derived CO-form).

N (A.) NH This is supported by analysis of the propentduopent from (I), the Zn salt of that from the Me₂ ester of opsic acid-methene, the Cu salt of that from atiohaemin-I, and the Me₂ ester of 5:5'-dihydroxy-3:3'-dimethylaytromethylay 4.4' dimensionic acid and by the fall of the control of the contro methylpyrromethene-4: 4'-dipropionic acid, and by the following results. Et 3-formyl-2: 4-dimethyl- with H₂-Raney Ni in EtOH at 160°/150 atm. gives Et 2: 3: 4-trimethylpyrrole-5-carboxylate (60%), m.p. 127° (and, sometimes, a dimeride, m.p. 228°, of Et 2: 4-dimethylpyrrole-5-carboxylate). 2: 2'-Dibromo-3: 4: 3': 4'-2: 4-dimethylpyrronethene with boiling KOAc-AcOH- H_2 O gives 5: 5'-dihydroxy-3: 4: 3': 4'-tetramethylpyrromethene with boiling KOAc-AcOH- H_2 O gives 5: 5'-dihydroxy-3: 4: 3': 4'-tetramethylpyrromethene (\Rightarrow 5%), m.p. 211°, which with H_2 O₂-NaOH gives the 3: 4: 3': 4'-Me₄ derivative, m.p. 223°, of (A) and with H_2 -PtO₂ in MeOH gives the derived pyrromethane, m.p. 214°. 5: 5'-Dihydroxy-4: 4'-dicarbomethoxy-3: 3'-dimethylpyrromethane, m.p. 147°, is obtained from the corresponding (A) or (B) sponding (A) or (B).

Bile pigments. XXXV. Synthesis of biliverdin (uteroverdin), bilirubin, biliverdins XIIIα and IIIα, and of vinylneoxanthic acid. H. Fischer and H. Plieninger (Z. physiol. Chem., 1942, 274, 231—260).—Opsopyrrolecarboxylic acid is converted by H₂O₂ in C₅H₅N at 55° into β-5- (I), m.p. 183°, with a smaller amount of -2- (II), m.p. 140—145°, -hydroxy-4-methylpyrrole-3-propionic acid. (I) is converted (MeOH-HCl, not CH₂N₂) into the Me ester, m.p. 85—87°, and thence by N₂H₄,H₂O in boiling MeOH into the hydrazide,

m.p. 148° . This is converted by HNO₂ at -5° into the unstable azide, transformed by boiling EtOH into 5-hydroxy-4-methyl-3- β carbethoxyaminoethylpyrrole (III), m.p. 80—85°, which could not be hydrolysed to the amine by acid or alkali by reason of the instability hydrolysed to the amine by acid or alkali by reason of the instability of the pyrrole ring. (III) is condensed with opsopyrrolealdehyde (IV) in alkaline medium to 5-hydroxy-4:3'-dimethyl-3- β -carbethoxy-aminoethylpyrromethene-4-propionic acid (V), m.p. 205°, which with CH₂O-HCl affords Me_2 1':8'-dihydroxy-1:3:6:8-tetramethyl-2:7- β -carbethoxyaminoethyl-2a:7'y-bilidiene-4:5-dipropionate, m.p. 250°. This is dehydrogenated by p-OlC₆H₄·O in AcOH at 100° to the glaucobilinurethane, m.p. 248°, also obtained from (V), Ac₂O, and HCO₂H at 100° and hydrolysed by 18% HCl at 135—140° to 1':8'-dihydroxy-1:3:6:8-tetramethyl-2:7- β -aminoethyl-2'a:7'y-bilidiene-4:5-dipropionic acid dihydrochloride (VI), which when benzoylated 4:5-dipropionic acid dihydrochloride (VI), which when benzoylated and esterified (MeOH-HCl) gives an unidentified compound, $C_{49}H_{52}O_8N_6$, m.p. 145° . Prolongation of the reaction between (III) and (IV) (see above) leads to the unstable 5'-hydroxy-3: 4'-dimethyl-3'and (**IV**) (see above) leads to the unstable 5'-hydroxy-3: 4'-dimethyl-3'-β-aminoethylpyrromethene-4-propionic acid, m.p. 230—240° [Me ester (**VII**), m.p. (indef.), 90—120° (decomp.)], benzoylated and esterified (MeOH-HCl) to Me 5'-hydroxy-3: 4'-dimethyl-3'-β-benzamidoethylpyrromethene-4-propionate, m.p. 235°, which condenses with Ac₂O-HCO₂H to Me₂1': 8'-dihydroxy-1: 3: 6: 8-tetramethyl-2: 7-di-β-benzamidoethylbilitriene-4: 5-dipropionate, m.p. 195—220°. The corresponding -2: 7-di-β-acetamidoethyl acid (Me₂ ester, m.p. 220°) is hydrolysed by boiling 18% HCl to (**VI**). Methylation (NaOH-Me₂SO₄) of (**VI**) followed by elimination of NMe₃ and esterification (MeOH-HCl) leads to biliverdin XIIIa Me₂ ester, m.p. 245° (Kofler), also obtained by the action of KOH-MeOH containing Zn(OAc)₂ and MeI on (**VI**) and converted by fusion with ni-C₆H₄(OH)₂ into Me vinylneoxanthobilirubate, m.p. 187°, also obtained from (**VII**). (**II**) and 5-formyl-3-acetyl-2: 4-dimethylpyrrole after esterification yield Me 5-hydroxy-4'-acetyl-3: 3': 5'-trimethylpyrromethene-3-propionate, m.p. 250°. (**II**) is transformed by HCl-MeOH into the Me ester, m.p. (indef.) 45°, and thence successively into the hydraxide, m.p. 162°, azide, and carbethoxyamino-derivative and 5'-hydroxy-3: 3'-dimethyl-4'-β-carbethoxyamino-derivative and 5'-hydroxy-3'-garbethyl-4'-β-carbethoxyamino-derivative and 5'-hydroxy-3'-garbethyl-4'-β-c azide, m.p. 162, azide, and carbethoxyamino-derivative and 3-hydroxy-3: 3'-dimethyl-4'-β-carbethoxyaminoethylpyrromethene-4-propionic acid (Me ester, m.p. 227°); this is converted by Ac₂O-HCO₂H followed by esterification into Me₂ 1': 8'-dihydroxy-2: 3: 6: 7-tetramethyl-1: 8-di-β-carbethoxyaminoethylbilitriene-4: 5-dipropionate, m.p. 185°. 5'-Hydroxy-3: 3'-dimethyl-4-β-aminoethylpyrromethene-4-propionic acid (VIII) and 1': 8'-dihydroxy-2: 3: 6: 7-tetramethyl-1: 8-di-8-acitamidoethylbilitriene-4: 5-dihydroxy-0: 3: 6: 7-tetramethyl-1: 8-di-9-acitamidoethylbilitriene-4: 5-dihydroxy-0: 7-dihydroxy-0: β-acetamidoethylbilitriene-4: 5-dipropionic acid are obtained as described for the isomerides. The latter substance is hydrolysed to the non-cryst. amine hydrochloride, which is transformed into biliverdin IIIa, m.p. 230° (Kofler). (VIII) and Me formylvinylneoxanthate in boiling MeOH-48% HBr afford Me₂ 1': 8'-dihydroxy-1: 3:6:7-tetramethyl-2-vinyl-8-β-aminoethylbilitriene-4:5-dipropionate hydrobromide, hydrolysed and then transformed by Zn(OAc)₂ and Me₂SO₄ into biliverdin IXa, m.p. 206—209°. (V) is converted by treatment with HCN-HCl in CHCl₃ and then with H₂O into 5-hydroxy-5'-aldehydo-3': 4-dimethyl-3-β-carbethoxyaminoethylpyrromethene-4'-propionic acid, m.p. 233°, which is condensed to Me₂ 1': 8'-dihydroxy-1: 3:6: 7-tetramethyl-2: 8-di-β-carbethoxyaminoethylbilitriene-4: 5-dipropionate, m.p. 210° (Kofler), transformed by conc. HCl at 100° into biliverdin IXa [Me ester, m.p. 199—200°, hydrolysed (KOH-MeOH) and reduced (Na₂S₂O₄) to bilirubin]. the non-cryst, amine hydrochloride, which is transformed into bili-

Action of sodium amalgam on position-isomeric, monoalkyl derivatives of 5-keto-3-thion-6-benzyl-1:2:4-triazine. E. Cattelain (Compt. rend., 1942, 214, 429—431).—2-Monoalkyl derivatives are not affected by Na–Hg, which cyclises β -alkylthiosemicarbazones of CH₂Ph·CO·CO₂H, the liberated alkali acting as a dehydrating agent. 3-Monoalkyl compounds give the 3:4-H₂-derivatives without opening of the heterocyclic ring. 4-Monoalkyl derivatives give 1:6-H₂-derivatives without rupture of the ring whereas the parent compound suffers ring opening between 4 and 5 and then adds 2 H at 1 and 6 yielding CH₂Ph·CH(CO₂H)·[NH]₂·CS·NH₂. H. W.

Diacylamino-1:3:5-triazines.—See B., 1943, II, 7.

Pyrazole nucleus. Transposition of bis-4: 5'- into bis-4: 4'-pyrazolene. G. B. Crippa and R. Caracci (Gazzetta, 1941, 71, 574—580).—1-Phenyl-3-methyl-5-pyrazolone with BzOH at 100° (8—10 hr.) or NH₂Ph at 180° gives 4: 5'-anhydro-bis-(1-phenyl-3-methyl-5-pyrazolone), NPh-CO C:C NPh-N (I), m.p. 258° (cf. Ionescu et al., A., 1928, 74), which with AcOH forms a compound, M₂.AcOH, m.p. 244°. With AcOH-Br, (I) gives its 4'-Br-derivative, m.p. 214°, with "pyrazole-blue," NPh-CO C:C CO-NPh (II), also obtained from, and reduced by Zn-AcOH to, 4: 4'-bis-(1-phenyl-3-methyl-5-pyrazolone). The transposition from 4: 5'- to 4: 4'-structure on formation of (II) is attributed to enolisation of (I), which in fact gives (Me₂SO₄) a Me ether, 5-methoxy-1-phenyl-4-(1'-phenyl-3'-methylpyrazolyl)-3-methylpyrazole, m.p. 130°, which with Br-AcOH gives only a 4'-Br-derivative, m.p. 93°, with no 4: 4'-product of "pyrazole-blue" type.

Quinoxaline cyanines. I. A. H. Cook, J. Garner, and C. A. Perry (J.C.S., 1942, 710—713).—Dimethylquinoxaline methiodide (I) in

C₅H₅N with p-NMe₂·C₆H₄·CHO in Ac₂O gives 2-(1:3-dimethylquinoxaline)-1-(4-dimethylaminobenzene)dimethincyanine, m.p. 244 (methosulphate, m.p. 182—183°), which may also be prepared without the isolation of the methiodide; the corresponding -3-methyl-1-ethyl compound (ethosulphate, m.p. 170—171°) may also be similarly obtained. 1:3:3-Trimethyl-2-methyleneindoline-ω-aldehyde and (I) yield 2-(1:3-dimethylquinoxaline)-2-(1:3:3-trimethylindoline)trimethincyanine, m.p. 188°. Quinaldine methiodide and diphenylformamidine afford 2-anilinovinylquinoline methiodide (II), m.p. 256° (decomp.); with the appropriate reagents, 2-methylanilinovinyl-benzoxazole ethiodide, m.p. 212°, -benzthiazole methiodide (III), m.p. 244°, and -quinoline methiodide, m.p. 271°, are similarly obtained. Of these three compounds, only (III) can be hydrolysed (NaOH) to 1-methyl-2-methylenebenzthiazoline-ω-aldehyde, m.p. 99°. With Ac₂O-NaOAc, (I) and (II) give 2-(1:3-dimethylquinoxaline)-2-(1-methylquinoxaline)-2-(1-methylguinoxaline)-2-(1-methylquinoxaline)-300°, may be obtained similarly without the isolation of the intermediate derivatives. HCO₂Na and (I) in Ac₂O when kept below 20—25° yield bis-2-(1:3-dimethylquinoxaline)trimethincyanine iodide, m.p. 204—205°, after treatment with KI. oNH₂·C₆H₄·NHPh with Ac₂ followed by Ac₂O and p-NMe₂·C₆H₄·CHO in C₅H₅N and treated with NaCl gives 2-(1-phenyl-3-methylquinoxaline)-1-(4-dimethylaminobenzene)dimethincyanine chloride, decomp. >300°. By using the same amine with the appropriate aldehyde under specified conditions the following are obtained: 2-(1-phenyl-3-methylquinoxaline)-2-(1:3:3-trimethyllindoline)-trimethincyanine (iodide, m.p. 177°); bis-2-(1:phenyl-3-methylquinoxaline)-1-(4-demethylaminobenzene)dimethincyanine iodide, decomp. >300°. A strong bathochromic influence of the quinoxaline system is evident from the deep blue colour of the cyanines described. F. R. S.

Exchange experiments with radioactive tracers.—See A., 1943, I, 38.

Condensations between methoxyacetonitrile and ketones. iso-Oxazole group. C. Musante (Gazzetta, 1941, 71, 553—565).—OMe·CH₂·C(N (I) and COMeEt with Na in Et₂O, followed by dil. H₂SO₄, gives a mixture, b.p. 92—97°/21—22 mm., probably of OMe·CH₂·C(:NH)·CH₂·COEt (II) and OMe·CH₂·C(:NH)·CHMeAc, converted by hydrolysis or on keeping into a mixture of diketones, which with N₂H₄-EtOH, followed by aq. KMnO₄ and conc. HCl gives pyrazole-3: 5-dicarboxylic acid, showing the presence of the diketone corresponding to (II). Similarly (I) and COPhMe (III) give β-imino-γ-methoxy-n-butyrophenone (IV), m.p. 27—30°, bp. 180°/6—7 mm. (Cu salt, m.p. 188—190°), which with FeCl₃-EtOH gives a product, m.p. 156—157°. When heated with 20% NaOH, (IV) evolves NH₃, giving (III). With NaOEt-NH₂OH,HCl in EtOH, (IV) gives 5-phenyl-3-methoxymethylisooxazole, b.p. 180°/28—29° (oxidised by AcO₂H to the 3-carboxylic acid), formed by initial replacement of :NH by :N·OH. With conc. HCl at 160—170°, (IV) yields 5-phenyl-3-chloromethylisooxazole, m.p. 47·5—48·5°, hydrolysed by 10% KOH to give (III). p-OMe·C₆H₄·COMe and (I) give β-imino-γ-methoxy-n-butyro-p-methoxy-phenone, m.p. 96—98° (Cu salt, m.p. 210°), which with NH₂OH gives 5(or 3)-p-anisyl-3(or 5)-methoxymethylisooxazole, m.p. 55°, oxidised by AcO₂H to p-OMe·C₆H₄·CO₂H. p-C₆H₄·GOMe and (I) give β-imino-γ-methoxy-n-butyro-p-bromophenone [Cu salt, m.p. 221° (decomp.)].

E. W. M. Schelmann of the content of

Sulphonamide derivatives of isooxazole. C. Musante (Gazzetta, 1941, 71, 565—573).—p-NHAc· C_0H_4 ·SO₂Cl and 4-amino-3:5-dimethyl-, -5- and -3-methyl-, and -3-phenyl-isooxazole (obtained by SnCl₂ reduction of the 4-NO₂-compound) at 100° give products which with aq. HCl yield respectively 4-p-anilinesulphonamido-3:5-dimethyl-, m.p. 193—194° (Ac derivative, m.p. 245—246°), -5-methyl-, m.p. 136—137° [Ac, m.p. 222—224° (darkening), and Ac₂, m.p. 189—190°, derivatives], -3-methyl-, m.p. 146—148° (Ac derivatives, m.p. 192°) (which with NaNO₂ gives a product, darkening at 200°), and -3-phenyl-isooxazole, m.p. 170—171°. p-NH₂·C₀H₄·NHAc and 3:5-dimethylisooxazole-4-sulphonyl chloride give 3:5-dimethylisooxazole-4-sulphon-p-aminoanilide, m.p. 167°. E. W. W.

2-Thiolthiazolines.—See B., 1943, II, 7.

Raman spectra of thiazole and its mono- and di-substituted derivatives.—See A., 1943, I, 31.

Vapour pressure of hydrates of sulphathiazole sodium. J. Crusellas (J. Amer. Pharm. Assoc., 1942, 31, 157—158).—Data for commercial preps. of the mono-(I), sesqui-(II), and hexa-hydrate indicate that there are two structural modifications of (I) and that (II) is the most stable hydrate under average conditions.

F. O. H.

Action of phenylhydrazine on saccharin and thiosaccharin. (Signa.) A. Mannessier-Mameli (Gazzetta, 1941, 71, 596—614).—Saccharin (I) and thiosaccharin (II) with NHPh·NH₂ (III) at room temp. give respectively the saccharinate, m.p. 130°, sweet, and thiosaccharinate (IV), m.p. 109—110°, bitter, of (III). In AcOH, or

N 150

N 5-

18-1

は一大は

TOTAL S

at 140—145°, (II) and (III) give saccharinphenylhydrazone (V), m.p. 225° (decomp. 230°) (Bz derivative, m.p. 330—335°), not obtained under similar conditions from (I) and (III), which, however, give (V) at 160—180°, with saccharinphenylimine and o-amidosulphonylbenzanilide. When heated above its m.p., (IV) gives (V). H₂O₂ oxidises (V) to (I) and an amorphous product. At 235—240°, (V) gives saccharinimine, (I), and NH₂Ph. Its reducing properties suggest that (V) is tautomeric with 3-phenylhydrazino-ψ-saccharin. E. W. W.

Condensation of phenanthrenequinone with the diaminocarboxylic acid derived from biotin. K. Hofmann, G. W. Kilmer. D. B. Melville, and V. du Vigneaud (J. Biol. Chem., 1942, 145, 503—509; cf. A., 1942, II, 387).—The diaminocarboxylic acid derived from biotin gives the dibenzoquinoxaline (I), C₂₃H₂₀O₂N₂S, m.p. 202—204°, and not the dihydroquinoxaline, suggesting that high this processes a 5 membered.

NH·CH-CH₂

NH·CH-CH

(A.) [CH₂]₄·CO₂H

(A.) [CH₂]₄·CO₂H

and not the dihydroquinoxaline, suggesting that biotin possesses a 5-membered ring, and is probably A. The ultraviolet absorption spectra of the dibenzodiny dihydroquinoxaline (II), m.p. 183—185°, derived from 3:4-diaminotetrahydro-

(A.) [CH₂]₄·CO₂H dihydroquinoxaline (II), m.p. 183—185°, derived from 3:4-diaminotetrahydrothiophen differs from that given by (I). (II) heated at 200° and then sublimed at 200°/2 mm. gives the dibenzoquinoxaline derivative, m.p. 228—233°, the absorption spectrum of which is similar to that of (I).

VII.—ALKALOIDS.

Erythrina alkaloids. XII. Chromatographic analyses of erysodine, erysovine, and "erysocine." Technique for preparative isolation. K. Folkers and J. Shavel, jun. (J. Amer. Chem. Soc., 1942, 64, 1892—1896; cf. A., 1942, II, 120).—These alkaloids are best separated by chromatography (Al₂O₃; CHCl₃; sometimes development by EtOH; technique described). Erysodine (I) and erysovine (II) are homogeneous, but "erysocine" (A., 1940, II, 332; cf. Gentile et al., A., 1942, II, 275) is thus resolved into (I) and (II) Erysopine, (I), and (II) are isolated from E. cubensis, Wright, E. pallida, Britton and Rose, and E. arborescens, Roxb., (I) and (II) from E. Folkersii, Kruk. and Mold., E. velutina, Willd., and E. excelsa, Baker, and (I) from E. Berteroana, Urb. R. S. C.

Quinine sulphamate. K. H. Stahl and R. A. Kuever (J. Amer. Pharm. Assoc., 1942, 31, 154—156).—Quinine (1 mol.) with NH₂·SO₃H (1 or 2 mols.) in EtOH gives quinine sulphamate, m.p. 171—173° (decomp.), and disulphamate, m.p. 173—175° (decomp.). Photomicrographs of the crystals of the salts are given. F. O. H.

Cinchona alkaloidal salts of sulphanilamide.—See B., 1943, III, 21

Ergot alkaloids. XIX. Transformation of dl- and d-lysergic acid into 6:8-dimethylergolines. R. G. Gould, jun., L. C. Craig, and W. A. Jacobs (J. Biol. Chem., 1942, 145, 487—494; cf. A., 1939, II, 525).—dl-Lysergic acid, m.p. 251° (decomp.), and Na-BuOH give dl-dihydrolysergic acid, m.p. 290—300°; sublimation at 350°/25 mm. then yields the unsaturated dl-lactam, C₁₆H₁₆ON₂, m.p. 313—316° (cf. A., 1938, II, 384), hydrogenated (PtO₂-AcOH at room temp.) to the saturated dl-lactam, C₁₆H₁₈ON₂, m.p. 332—336° and 310—315° (possibly racemic modifications); the two forms are combined and reduced by Na-BuOH possibly to (mainly) 7-hydroxy-6:8-dimethylergoline, and sublimation of the product at 200°/0·2 mm. affords dl-dehydro-6:8-dimethylergoline, m.p. 182—186°, hydrogenated (PtO₂-AcOH) to dl-6:8-dimethylergoline, m.p. 227—229° (two cryst. forms), identical with the synthetic product. The structure of lysergic acid is thus confirmed. Optically active α-dihydrolysergic acid is similarly converted into the unsaturated lactam, and thence (H₂; PtO₂-EtOH) into the saturated lactam, m.p. 332—336° [some stereoisomeride (I), m.p. 300—308°, is also isolated], a dehydro-6:8-dimethylergoline, m.p. 155—157°, and 6:8-dimethylergoline, m.p. 246—248° (apparent change of cryst. form at 170°), [a]₂²⁰ -49° in CHCl₃. (I) similarly affords a little 6:8-dimethylergoline, m.p. 234—238°. The unsaturated lactam, C₁₆H₁₆ON₂, obtained from γ-dihydrolysergic acid at 350°/25 mm. has m.p. 239—240°, [a]₂²⁰ -197° in C₅H₅N.

A. T. P.

VIII.—ORGANO-METALLIC COMPOUNDS.

New heterocyclic systems. F. G. Mann, F. G. Holliman, and D. R. Lyon (Nature, 1942, 150, 603).—o-Br*[CH₂]₂*C₆H₄*CH₂Br condenses readily with alkyl- or aryl-dichloroarsines in presence of metals to give stable 2-alkyl(aryl)-1:2:3:4-tetrahydroisoarsinolines. Less good yields of 2-aryldihydroisoarsindoles are obtainable by the use of o-xylylene dibromide.

A. A. E.

Vital stains.—See A., 1943, II, 31.

Electrolysis of Grignard reagents. Short-lived free radicals in ethyl ether. R. Pearson and W. V. Evans (Trans. Electrochem. Soc., 1942, 82, Preprint 23, 257—264).—Hydrocarbons have been prepared by electrolysing ethereal Grignard reagents and the ten-

dencies of the liberated free radicals to combine or to disproportionate have been determined. Me, if in sufficiently high concn., forms C_2H_6 , but if the concn. is low Me attacks the solvent forming CH_4 , C_2H_6 , C_2H_6 , EtOH, and $Pr^\beta OH$. Et disproportionates whereas Pr^α both combines and disproportionates. Branching of the C chain decreases the combining tendency, probably by steric effect, whereas increase in C chain length increases this tendency. Bz, CH_2Ph , and cyclohexyl combine. The current efficiency is $\sim 100\%$. Possible reaction mechanisms are discussed. Mg aryl compounds have similarly been examined. The results support previous theories of the formation of free radicals by electrolysis. C. R. H

Tetra-aryl-phosphonium, -arsonium, and -stibonium salts. II. Mechanism of their formation by the aluminium chloride reaction. D. R. Lyon and F. G. Mann (J.C.S., 1942, 666—671).—AlCl₃ and AsPh₃ combine in CS₂ to give trichlorotriphenylarsinealuminium (I). [AsPh₃→AlCl₃], oxidised in PhBr by air to AsPh₃O. Tetraphenylarsonium picrate has m.p. 201—202°, and the thiocyanate, m.p. 268—270°. At 200° (I) and PhBr give the AsPh₄ salt, without formation of by-products. The formation of (I) is confirmed by the prep. of mixed salts: triphenyl-p-tolylarsonium iodide (+H₂O, m.p. 147—148°); diphenyldi-p-tolylarsonium iodide (+H₂O, m.p. 194—195°); and phenyltri-p-tolylarsonium iodide, m.p. 205—206°, and thiocyanate, m.p. 143—144°. (I) is thermally stable to ~250°. When (I) is prepared with impure AlCl₃, C₆H₆ is evolved and AsPh₄ salt is produced. AlCl₃ and AsPh₂Cl in CS₂ give the unstable additive product, trichlorodiphenylchloroarsinealuminium (II), which, at 200°, gives AsPh₄Cl and As. When impure AlCl₃ is used, C₆H₆ is produced and less AsPh₄. AsPh₄ is not produced by heating PhBr and (II). With AlCl₃ and AsPhCl₂, trichlorotris(phenyldichloroarsine)aluminium is formed, a non-ionic compound containing 6-covalent Al; on heating AsCl₃ and AsPh₂Cl are formed. C₆H₆ and AsCl₃ with AlCl₃ give AsPhCl₂, which reacts as described. Thus the As ion can arise in only two ways: by the interaction of (I) and PhBr, and by the thermal decomp. of [AsClPh₂-AlCl₃]. The following are also described: tri-o-tolylarsine hydroxyoxybromide, m.p. 148—152°, oxydibromide, m.p. 232°, oxydibromide, m.p. 253—255°, and thiocyanate (+H₂O), m.p. 207—209°; tetra-m-tolylarsonium iodide, m.p. 266—264°, and the m-compound, m.p. 175—176°; and tetraphenylphosphonium thiocyanate.

IX.—PROTEINS.

Analysis and minimum mol. wt. of β -lactoglobulin. E. Brand and B. Kassell (*J. Biol. Chem.*, 1942, 145, 365—378).—The min. mol. wt. of β -lactoglobulin (I) (42,000) obtained from the distribution of the S-containing NH₂-acids and from the arginine content agrees with the mol. wt. in solution (41,600). (I) contains $364(\pm 3)$ NH₂-acid residues + 1 to 6 terminal NH₂-acids. 1 mol. contains the following residues: cysteine 4, half-cystine 8 (*i.e.*, 4 S·S linkings), methionine 9, tryptophan 4, tyrosine 9, arginine 7, threonine 21, serine \sim 15, amide groups 22, histidine 4—6, and lysine 31—36. The side-chains of (I) contain >45 OH and it is suggested that these contribute to the cohesion of the mol. by H bridges through H₂O mols.

X-Ray diffraction studies of iodinated amino-acids and proteins.—See A., 1943, I, 8.

Phosphopeptones of caseinogen (lactotyrins).—See A., 1942, III, 902.

Ultracentrifugal isolation from lung tissue of a macromolecular protein component with thromboplastic properties.—See A., 1943, III, 84.

X.—MISCELLANEOUS UNCLASSIFIABLE SUBSTANCES.

Purification and chemistry of penicillin. J. R. Catch, A. H. Cook, and I. M. Heilbron (Nature, 1942, 150, 633—634).—By chromatography from an org. solvent on a column consisting of a H₂O-retentive support associated with an inorg. base, penicillin (I) is recovered quantitatively and manifold concn. is easily accomplished. The yellow Sr salt, $C_{24}H_{34}O_{11}NSr$, has no measurable optical activity. Dil. acid, alkali, or moist org. bases afford by fission a H₂O-sol. acid, an insol. pigment ($C_{16}H_{20}O_6$ or possibly $C_{16}H_{13}O_5, H_2O$), MeCHO, and a little $\alpha\beta$ -unsaturated aldehyde, $C_7H_{12}O$) but no CO₂. Reduction of (I) with Al-Hg affords as hydrolysis product an insol. compound, $C_{16}H_{20}O_5$. Ozonolysis of the pigment affords MeCHO, whilst degradation with alkaline permanganate affords $\leqslant 3$ mols. of $H_2C_2O_4$.

Beech bark (Fagus silvatica).—See A., 1943, II, 39.

XI.—ANALYSIS.

Standardisation of chromatographic analysis. A. L. LeRosen (J. Amer. Chem. Soc., 1942, 64, 1905—1907).—Chromatography may be put on a quant. basis by use of the terms, S = length of absorbent column containing a unit vol. of solvent/length of empty tube required to contain the same vol. of solvent, $V_{\sigma} =$ the const. rate of flow of the solution (the initial rate is abnormally fast), and R = rate of movement of an adsorbate zone relative to that of the developing solvent. This is illustrated for various carotenoids on $Ca(OH)_2$ developed by C_6H_6 and is used successfully to predict the behaviour of some mixtures.

Determination of ammonia by a diffusion method.—See A., 1943, I, 41.

Kjeldahl distillation without absorbing acid.—See A., 1943, I, 41.

Sulphur in organic compounds containing nitrogen and halogen. Acidimetric micro-determination. E. L. Brewster and W. Riemann (Ind. Eng. Chem. [Anal.], 1942, 14, 820—821).—The $\rm H_2SO_4$ resulting from the combustion in $\rm O_2$ is evaporated in a stream of purified air, HNO₃ and HCl being removed by evaporation. Apparatus and procedure are detailed.

Qualitative and quantitative analysis of hydrocarbon mixtures by means of their Raman spectra. D. H. Rank, R. W. Scott, and M. R. Fenske (Ind. Eng. Chem. [Anal.], 1942, 14, 816—819).—A linear relation between the relative intensity of the Raman lines compared with an internal standard and the vol. concn. is shown for six binary mixtures of hydrocarbons, one of which is an azeotropic mixture of min. b.p. This linear relationship is general for mixtures of nearly all hydrocarbons within the limits set for the determination of intensities of Raman lines by means of photographic plates. Scattering coeffs. are described and vals. for this const. are given for a series of hydrocarbons. Qual. and quant. analysis of hydrocarbon mixtures by means of Raman spectra could be substituted for infra-red analysis in cases where components of the mixtures contain appreciable % of the constituents to be determined.

J. D. R.

Identification of alcohols and alkyl hydrogen sulphates with S-benzylthiuronium chloride. R. K. Bair and C. M. Suter (J. Amer. Chem. Soc., 1942, 64, 1978).—Alcohols are converted by CISO₃H-dioxan and then S-benzylthiuronium chloride in H₂O or aq. EtOH into Pr^a, m.p. 111·5—112·5°, Prβ, m.p. 142—143°, Bu^a, m.p. 100—101°, CHMeEt, m.p. 117—119°, Buβ, m.p. 136—137°, n-amyl, m.p. 85—86°, n-hexyl, m.p. 85—86°, n-hexyl, m.p. 77—79°, n-octyl, m.p. 42—70°, n-decyl, m.p. 73—75°, n-dodecyl, m.p. 74—76°, myristyl, m.p. 87—88°, cyclohexyl, m.p. 163—164°, bornyl, m.p. 174—175°, and menthyl, m.p. 149—150°, S-benzylthiuronium sulphate and ethylene di-S-benzylthiuronium disulphate, m.p. 180—181°. NaAlkSO₄ are similarly identified. MeOH and EtOH do not give cryst. salts. S-p-Chlorobenzylthiuronium chloride gives waxy salts. M.p. are corr.

Effect of formaldehyde on the volatilisations of ammonia, mono-, di-, and tri-methylamine. G. J. Benoit, jun., and E. R. Norris (Ind. Eng. Chem. [Anal.], 1942, 14, 823—825).—CH₂O renders NH₃ almost completely non-volatile at room temp., but has no effect on the recovery of NMe₃. It does not completely prevent the volatilisation of NH₂Me and NHMe₂. When NHMe₂ and NH₂Me are distilled in presence of CH₂O anomalies are observed which in the case of NHMe₂ are probably due to MeOH present in the aq. CH₂O.

J. D. R.

Micro-determination of urea-nitrogen. J. C. Bock [with F. A. Kordecki] (J. Biol. Chem., 1941, 140, 519—523).—A very simple but accurate micro-method is described. 0.5 c.c. of blood is treated with urease in presence of $\rm Na_2CO_3$, and the liberated NH $_3$ is absorbed in 0.1N-HCl and determined by nesslerisation. The method is applicable to determination of urea-N in urine provided that NH $_3$ -N is determined by the same method.

J. N. A.

Derivatives in the indane group as reagents for amines. IV. Methylbindone. G. Wanag (Z. anal. Chem., 1942, 123, 292—305).— In glacial AcOH a green coloration is given by aromatic primary mono-, di- (not o-), tri-, and tetra-amines ($\geqslant 2$ NH₂ in one ring). ·NO₂ and ·SO₃H, but not ·Hal, ·OH, :CO, or ·CO₂H, interfere. The reaction is also given by NHPhR (R \neq Me, Et), o-C₆H₄Me·NHR, NPhR₂ (not C₆H₄Me·NR₂), C₁₀H₇·NHR, C₁₀H₇·NMe₂, sec., purely aromatic amines with Ph, C₆H₄Me, and α -C₁₀H₇ radicals, NPh₂Et, and NPh₂·CH₂Ph.

Photometric determination of arginine. E. Brand and B. Kassell (J. Biol. Chem., 1942, 145, 359—364).—The intensity of the colour developed by arginine (I) in the Sakaguchi reaction (Weber, A.,

1930, 755) decreases linearly with increasing amounts of (I), and the inhibition of colour development by NH₃ and by histidine likewise follows a linear course. Extrapolation to zero conentyields the same colour value per unit wt. of (I). The (I) content of a protein is determined by estimating the apparent (I) contents of different amounts of a hydrolysate and then extrapolating to zero protein conen. The (I) content of cryst. proteins is: swine pepsin (0.96%, 2 residues per mol.), trypsinogen (1.61%), chymotrypsinogen (2.83%, 6 residues per mol.), β-lactoglobulin (2.87%, 7 residues per mol.), trypsin (3.27%), ribonuclease (5.16%), horse serum-albumin A (5.49%, 22 residues per mol.), horse serum-albumin B (5.52%, 22 residues per mol.), human serum-albumin (6.30%, 25 residues per mol.).

Determination of both cystine and cysteine in mixtures. M. X. Sullivan, W. C. Hess, and H. W. Howard (J. Biol. Chem., 1942, 145, 621—624).—Cystine (I) and cysteine (II) when determined by the CN'-(I) method are equiv., mol., for mol., in chromogenic val., deviations being due to impurity in (II), irregular H_2O content, or to oxidation. When determined by the amalgam-cyanide procedure, (I) and (II) are equiv. in chromogenic val. mg. for mg., since I mol. of (I) gives 2 mols. of (II). (I) and (II) can be determined, either singly or in mixtures.

Colorimetric micro-method for determination of cystine and cysteine. B. Vassel (J. Biol. Chem., 1941, 140, 323—336).—The method is based on formation of a blue colour by heating cystine (I) or cysteine (II) or both in acid solution with p-NH₂·C₆H₄·NMe₂ in presence of FeNH₄(SO₄)₂, and determination of the % absorption at 580 m μ . by a spectrophotometer. The method is applicable to 0·01—0·20 mg. of (I) or (II) per c.c. of solution (error $\pm 3\%$). The formation of the blue colour depends on a SH and a primary NH₂ which are separated by two CH₂. Reduced glutathione and homocystine do not give the blue colour but they interfere with determination of (I) by causing reduction of the blue to a leuco-compound. Ascorbic acid and tyrosine have no effect on the determination, but when the former is added after formation of the blue colour, it causes reduction to the leuco-compound.

Colour reactions of phenols. A. Steigmann (J.S.C.I., 1942, **61**, 180).—Monohydric phenols and resorcinol give blue or bluish-green colorations with Na β -naphthaquinonesulphonate in presence of NH₃ in aq. solution. p-Substituted phenols give a very weak reaction or none. Blue and violet colours are also given by certain phenols when oxidised together with p-NH₂·C₆H₄·NHPh or other p-phenylenediamines, preferably by chloramine-T; here again o-and m-phenols give the strongest reactions. The characteristic yellow Ag and red-brown Cu salt of C₆Cl₆·OH are described.

Determination of purines. G. H. Hitchings and C. H. Fiske (J. Biol. Chem., 1941, 140, 491—499; cf. A., 1941, II, 276).—The protein-free tissue filtrate containing 3—4 mg. of purine-N is diluted to \sim 30 c.c. in a 50 c.c. conical-tip centrifuge tube and neutralised to phenolphthalein. After heating to 100° the purine bases are pptd. by addition of 0-8 c.c. of saturated aq. NaHSO₃ and 1 c.c. of 10% aq. CuSO₄. The ppt. is centrifuged after 3 min., and washed twice with 10-c.c. portions of hot H_2O . The ppt. is suspended in 3 c.c. of 3N-HCl and boiled cautiously. After addition of 15 c.c. of H_2O the mixture is heated on the steam-bath while H_2S is passed in for \sim 3 min. The mixture is then cooled, diluted to 25 c.c., filtered, and N determined in an aliquot by the micro-Kjeldahl method.

Determination of sodium phenylethylbarbiturate. E. A. Kocsis and E. Kovács (Z. anal. Chem., 1942, 124, 40—42).—The aq. Na phenylethylbarbiturate (I) is pptd. by an excess of 0·ln-AgNO₃. The ppt. is collected on a No. 1 G4 Jena crucible (not paper), and the excess of Ag' in the filtrate determined by Volhard's method using 0·ln-KCNS. Ag' can be determined by adding excess of (I), followed by excess of 0·ln-AgNO₃, and then titration of excess Ag' with 0·ln-KCNS.

Capillary analysis of some important opium alkaloids in filtered ultra-violet light. E. A. Kocsis and Z. Holló (Z. anal. Chem., 1942, 124, 35—40).—The colours given by 1% aq. solutions of morphine, codeine, thebaine, papaverine, narcotine, and narceine on Schleicher & Schüll No. 602 filter-paper in daylight and in ultra-violet light are tabulated and discussed.

Relation of alkaloidal to inorganic chemistry.—See A., 1943, I, 42.

Determination of arsenic in organic arsenical compounds. F. B. Rodman and H. N. Wright (J. Amer. Pharm. Assoc., 1942, 31, 200—202).—The Lehmann volumetric method (U.S.P. X) gives significantly lower results than the Treadwell-Hall gravimetric method.

INDEX OF AUTHORS' NAMES, A., II.

FEBRUARY, 1943.

ABERNETHY, J. L., 28.
Airan, J. W., 34.
Allen, C. F. H., 35, 36, 37.
Ardis, A. E., 31.
Armstrong, M. D., 44.
Arnow, L. E., 24.
Asker, W., 44.

Asker, W., 44.

BADOCHE, M., 33, 42.

Bair, R. K., 51.

Bair, R. K., 51.

Bair, M. P., 29.

Baltzly, R., 24, 27, 31, 33.

Banchetti, A., 35.

Benoit, G. J., jun., 51.

Bergmann, F., 28.

Bergmann, W., 40.

Bhat, R. V., 39.

Birtwell, S., 28.

Bock, J. C., 51.

Brand, E., 50, 51.

Brewster, E. L., 51.

Brown, G. B., 44.

Buck, J. S., 24, 27, 31, 33.

Burkett, H., 46.

Butz, L. W., 21.

Butz, L. W., 21.

CARACCI, R., 47.
CATONIA, G., 45.
Case, F. H., 28.
Catch, J. R., 50.
Cattelain, E., 47.
Chadwick, D. H., 31.
Chakravorty, P. N., 40.
Chang, F. C., 38.
Chapin, E. C., 34.
Clapp, J. W., 31.
Clapp, R. C., 26.
Clarke, D. G., 21.
Clarke, R. L., 23.
Clotofski, E., 39.
Cook, A. H., 29, 47, 50.
Comforth, J. W., 28, 30, 36.
Comforth, R. H., 28, 36, 45.
Cosby, J. N., 21.
Cox, E. H., 28.
Craig, L. C.. 49.
Cripp, G. B., 47.
Crooks, H. M., jun., 41.
Crusellas, J., 48.

DAUDT, W. H., 26. Davis, A. L., 24.
Davis, T. W., 21.
Degering, E. F., 23.
Delépine, M., 33, 41, 42.
Dobeneck, H., 46.
Dunker, M. F. W., 40.
Du Vigneaud, V., 44, 49.

ELDERFIELD, R. C., 22, 33. Evans, W. V., 49.

FENSKE, M. R., 51. Ferry, C. W., 24, 27, 31. Fieser, L. F., 26, 38, 39. Fischer, H., 46. Folkers, K., 49. Fuson, R. C., 35.

Gandini, A., 42.
Gardner, W. H., 24.
Gardner, J., 47.
Garry, M., 37.
Gates, J. W., jun., 35, 36, 37.
Gavankar, K. D., 39.
Geyer, B. P., 35.
Gisvold, O., 34.
Gladding, E. K., 25.
Glick, F., 32.
Gold, M. H., 34.
Goldberg, A. A., 31, 32.
Gould, R. G., jun., 49.
Grangaard, D. H., 25.
Granichstädten, H., 25.
Gwynn, B. H., 23.

Hann, R. M., 24.
Hart, R. T., 31.
Hartung, W. H., 35.
Haskins, W. T., 24.
Hassid, W. Z., 25.
Hawkins, J. E., 41.
Hawkins, W. L., 25.
Heilbron, I. M., 50.
Henze, H. R., 45.
Herr, W., 39.
Herte, P., 27.
Hess, W. C., 52.

Hibbert, H., 25.
Himel, C. M., 27.
Hodgson, H. H., 27, 28.
Hofmann, K., 49.
Holliman, F. G., 49.
Hollof, Z., 52.
Howard, H. W., 52.
Huber, C. P., 34.
Hudson, B. J. F., 38.
Hudson, C. S., 24.
Hufman, M. N., 41.
Hurd, C. D., 34.

IDDLES, H. A., 31. Ide, W. S., 24, 31, 33. Irreverre, F., 39.

JACOBS, W. A., 49. Jones, G. D., 23. Jones, R. N., 39.

KASSELI, B., 50, 51.
Keil, W., 22.
Kermack, W. O., 45.
Kilmer, G. W., 44, 49.
King, F. E., 34.
King, T. J., 34.
Kocsis, E. A., 52.
Kordecki, F. A., 51.
Kovacs, E., 52.
Krall, H., 28.
Krockow, E. W., 43.
Kubico, M. A., 24.
Kuck, J. A., 33.
Kuever, R. A., 49.

Lambert, F., 32. LeRosen, A. L., 51. Lesesne, S. D., 45. Levi, I., 25. Levin, N., 35. Lewis, F. B., 29. Lowe, C., 29. Lyon, A. M., 40. Lyon, D. R., 49, 50.

McCREADY, R. M., 25. McElvain, S. M., 22, 23, 46. McNeely, W. H., 27.

Malani, N. H., 32.
Mann, F. G., 49, 50.
Mannessier-Mameli, A., 48.
Marker, R. E., 41.
Marshall, E. R., 33.
Marvel, C. S., 27.
Melville, D. B., 49.
Minchilli, M., 45.
Mitter, P. C., 23.
Moeller, T., 33.
Morgan, P. W., 23.
Musherjee, S., 23.
Musanjo, L., 45.
Musante, C., 48.

NELSON, J. W., 22. Newman, M. S., 36. Norris, E. R., 51.

OPSAHL, J. C., 24. Oxford, A. E., 39.

Рагекн, N. B., 42, 43. Реагson, R., 49. Рестival, E. G. V., 25. Регту, С. A., 47. Рівпівдет, Н., 46. Родіят, А., 25. Ропліо G., 35. Ртісе, С. С., 34. Purves, C. B., 25.

RAMAN, K. S. V., 32. Rana, K. N., 33. Rank, D. H., 51. Riebsomer, J. L., 32. Riegel, B., 34, 40. Rieger, M., 34. Riemann, W., 51. Roberts, J. D., 21. Robinson, R., 28, 30, 36, 38, 45. Rodman, F. B., 52.

SAFFER, A., 21. Sahasrabudhey, R., 28. Savoy, C. M. S., 28. Schapiro, D., 28. Schenck, G., 43. Schonberg, A., 44.

Schumann, W., 32.
Scott, R. W., 51.
Scott, S. L., 35.
Shackleton, J. W., 27.
Shah, R. C., 42, 43.
Shah, S. V., 34.
Shavel, J., jun., 49.
Siebert, A., 43.
Sloatman, W. S., 21.
Stahl, K. H., 49.
Stallcup, W. D., 41.
Stauffer, D., 32.
Steigmann, A., 52.
Steingel, A., 22.
Sullivan, M. X., 39. 52.
Suter, C. M., 51.

THOMAS, McC. J., 40. Turner, H. S., 27.

VARMA, P. S., 32. Vassel, B., 52. Venkataraman, K., 39.

Venkataraman, K., 39.

WAGNER, R. B., 41.
Walsh, E. O'F., 45.
Walters, P. M., 22.
Wanag, G., 51.
Webtherhead, A. P., 45.
Webber, W. C., 29.
Weber, H., 43.
Wenz, A., 43.
Wenz, A., 43.
Wenz, A., 42.
Westerfeld, W. W., 29.
Whitmore, F. C., 21.
Whitson, J., 27.
Williams, R. T., 31.
Winberg, H. E., 34.
Winkelmann, E., 32.
Winstein, S., 21.
Wittbecker, E. L., 41.
Wolfrom, M. L., 23.
Wright, H. N., 52.

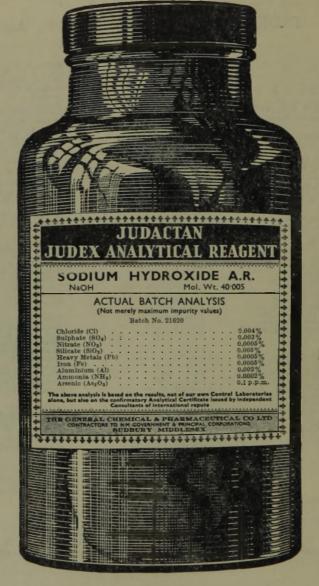
Young, W. G., 21.

Zechmeister, L., 25, 27. Ziegler, K., 27, 32, 43. Zook, H. D., 21.

ERRATUM.

Abstracts A., II, 1942.

22


de

8 F

Page
396 In formula (A) the ring on the extreme right should be shown attached to the apex of the adjacent cyclopentane ring, not to the side.

JUDACTAN

ANALYTICAL REAGENTS WITH ACTUAL BATCH ANALYSIS

Each Batch subjected

to

INDEPENDENT

ANALYSIS

before

label is printed

You are invited to compare the above actual batch analysis with the purities | competing maker in this Country or abroad

ACTUAL

BATCH

ANALYSIS

guaranteed by the specifications of any

THE GENERAL CHEMICAL & PHARMACEUTICAL CO. LTD.

Chemical Manufacturers, Judex Works, Sudbury, Middlesex