BRITISH CHEMICAL AND PHYSIOLOGICAL ABSTRACTS ISSUED BY THE # Bureau of Chemical and Physiological Abstracts [Supported by the Chemical Society, the Society of Chemical Industry, the Physiological Society, the Biochemical Society, and the Anatomical Society of Great Britain and Ireland] ## **MARCH, 1943** #### BUREAU: Chairman: L. H. LAMPITT, D.Sc., F.I.C. Hon. Treasurer: F. P. DUNN, B.Sc., F.I.C. JULIAN L. BAKER, F.I.C. G. L. BROWN, M.Sc., M.B., CH.B. H. W. CREMER, M.Sc., F.I.C., M.I.CHEM.E. C. W. DAVIES, D.Sc., F.I.C. H. J. T. ELLINGHAM, B.Sc., Ph.D., F.I.C. C. R. HARINGTON, M.A., PH.D., F.R.S. L. A. JORDAN, D.Sc., F.I.C. G. A. R. KON, M.A., D.Sc. H. McCOMBIE, D.S.O., M.C., Ph.D., D.Sc., F.I.C. B. A. McSWINEY, B.A., M.B., Sc.D. Editor: T. F. BURTON, B.Sc. #### Assistant Editors: J. H. BIRKINSHAW, D.Sc., F.I.C.* H. BURTON, M.Sc., D.Sc., F.I.C. F. G. CROSSE, F.I.C. A. A. ELDRIDGE, B.Sc., F.I.C. W. JEVONS, D.Sc., Ph.D. E. E. TURNER, M.A., D.Sc., F.I.C., F.R.S. F. L. USHER, D.Sc. H. WREN, M.A., D.Sc., Ph.D. SAMSON WRIGHT, M.D., F.R.C.P.* *Assisted by J. D. BOYD (Anatomy), A. HADDOW (Tumours), F. O. HOWITT (Biochemistry), A. G. POLLARD (Plant Physiology), K. TANSLEY (Sense Organs), V. J. WOOLLEY (Pharmacology), and F. G. YOUNG (Ductless Glands). Indexer: MARGARET LE PLA, B.Sc. # A., II.—ORGANIC CHEMISTRY #### **CONTENTS** | I. | Aliphatic | 53 | VII. Alkaloids | | 74 | |-----|--------------------------------------|----|--|---|-----| | | Sugars and Glucosides | 56 | VIII. Organo-metallic Compounds | | 74 | | | Homocyclic | | TV Duckeins | | | | IV. | Sterols and Steroid Sapogenins | 67 | | • | , , | | V. | Terpenes and Triterpenoid Sapogenins | 68 | X. Miscellaneous Unclassifiable Substances | | 75 | | VI. | Heterocyclic | 69 | XI. Analysis | | 76 | Offices of the Bureau: CLIFTON HOUSE, EUSTON ROAD, LONDON, N.W.I # THE JOURNAL # BIOLOGICAL CHEMISTRY FOUNDED BY CHRISTIAN A. HERTER AND SUSTAINED IN PART BY THE CHRISTIAN A. HERTER MEMORIAL FUND #### EDITORIAL BOARD: RUDOLPH J. ANDERSON. W. MANSFIELD CLARK. HANS T. CLARKE. CARL F. CORL EDWARD A. DOISY. A. BAIRD HASTINGS. HOWARD B. LEWIS. ELMER V. McCollum. WILLIAM C. ROSE. WILLIAM C. STADIE. DONALD D. VAN SLYKE. HUBERT B. VICKERY. #### SUBSCRIPTION PRICE Beginning with January, 1939, 5 volumes to be issued a year £1 1s. 9d. per volume, post free > INDEX TO VOLS, 101-125 8s. net to Subscribers 12s. net to Non-Subscribers > > British Agents: BAILLIÈRE, TINDALL & COX 7 & 8 HENRIETTA STREET, LONDON, W.C.2 # CHEMICAL SOCIETY MEMORIAL LECTURES VOLUME I, 1893-1900 (Reproduced by a photolithographic process) Price 10s. 6d., postage 7d. #### CONTENTS THE STAS MEMORIAL LECTURE. By J. W. MALLETT, F.R.S. With an additional Facsimile Letter of Stas. Delivered December 13, 1892 THE KOPP MEMORIAL LECTURE. By T. E. THORPE, D.Sc., E.R.S. THE MARIGNAC MEMORIAL LECTURE. By P. T. CLEVE. 1895 THE HOFMANN MEMORIAL LECTURE. By the Rt. Hon. Lord Playfair, G.C.B., F.R.S.; Sir F. A. Abel, Bart., K.C.B., F.R.S.; W. H. Perkin, Ph.D., D.C.L., F.R.S.; H. E. Armstrong. Delivered May 5, 1893 THE HELMHOLTZ MEMORIAL LECTURE. By G. A. FITZ-GERALD, M.A., D.Sc., F.R.S. Delivered January 23, 1896 THE LOTHAR MEYER MEMORIAL LECTURE. By P. P. BEDSON, M.A., D.Sc., F.I.C. Delivered May 28, 1896 THE PASTEUR MEMORIAL LECTURE. By P. FRANKLAND. Ph.D., B.Sc., F.R.S. Delivered March 25, 1897 By F. R. Japp, F.R.S. Delivered December 15, 1897 THE KEKULE MEMORIAL LECTURE. E VICTOR MEYER MEMORIAL LECTURE. By T. E. THORPE, Ph.D., D.Sc., LL.D., F.R.S. Delivered February 8, 1900 THE Delivered February 8, 1900 By Sir H. E. ROSCOE Delivered March 29, 1900 THE BUNSEN MEMORIAL LECTURE. B.A., Ph.D., D.C.L., LL.D., D.Sc., F.R.S. THE FRIEDEL MEMORIAL LECTURE. By J. M. CRAFTS. 1900 THE NILSON MEMORIAL LECTURE. By O. PETTERSSON. Delivered July 5, 1900 VOLUME II, 1901-1913 (Reproduced by a photolithographic process) Price 8s. 0d., postage 7d. #### CONTENTS THE RAMMELSBERG MEMORIAL LECTURE. By Sir HENRY A. MIERS, F.R.S. Delivered December 13, 1900 THE RAOULT MEMORIAL LECTURE. By J. H. VAN'T HOFF, F.R.S. Delivered March 26, 1902 THE WISLICENUS MEMORIAL LECTURE. By W. H. PERKIN, Delivered January 25, 1905 Jun., F.R.S. THE CLEVE MEMORIAL LECTURE. By Sir Thomas Edward Thorpe, C.B., F.R.S. Delivered June 21, 1906 THE WOLCOTT GIBBS MEMORIAL LECTURE. By F. WIGGLESWORTH CLARKE. Delivered June 3, 1909 THE MENDELÉEFF MEMORIAL LECTURE. By Sir WILLIAM A. TILDEN, F.R.S. Delivered October 21, 1909 THE THOMSEN MEMORIAL LECTURE. By Sir Thomas Edward Thorpe, C.B., F.R.S. Delivered February 17, 1910 THE BERTHELOT MEMORIAL LECTURE. By H. B. DIXON, F.R.S. Delivered November 23, 1911 THE MOISSAN MEMORIAL LECTURE. By Sir WILLIAM RAMSAY, K.C.B., F.R.S. Delivered February 29, 1912 RAMSAY, K.C.B., F.R.S. THE CANNIZZARO MEMORIAL LECTURE. By Sir William A. Tilden, F.R.S. Delivered June 26, 1912 THE BECQUEREL MEMORIAL LECTURE. By Sir Oliver Lodge, F.R.S. Delivered October 17, 1912 THE VAN'T HOFF MEMORIAL WALKER, F.R.S. LECTURE. By James Delivered May 22, 1913 THE LADENBURG MEMORIAL LECTURE. By F. S. KIPPING. F.R.S. Delivered October 23, 1913 Publishers: THE CHEMICAL SOCIETY, BURLINGTON HOUSE, PICCADILLY, LONDON, W.1. # BRITISH CHEMICAL AND PHYSIOLOGICAL ABSTRACTS ### A., II.—Organic Chemistry MARCH, 1943. #### I.—ALIPHATIC. Reaction of hydrogen atoms with isobutane. W. H. White, C. A. Winkler, and B. J. Kenalty (Canad. J. Res., 1942, 20, B, 255—264).— The reaction of H atoms with iso-C₄H₁₀ has been investigated by the Wood-Bonhoeffer discharge tube method at 50—250°; the activation energy of the reaction is 10·5±1·5 kg.-cal. The nature of the products at a given terms depend on the sense. of the products at a given temp. depends on the concn. of H atoms present. With low at. concn. (5-9%) CH₄ is essentially the only product at $<170^{\circ}$. At 250° the yield of C_2H_6 is \sim half that of CH₄. With higher at. concn. (14-24%) C₂H₆ is formed in appreciable quantities at $140-170^{\circ}$ and exceeds the CH₄ content at 250°. Small amounts of C_3H_6 are formed at the higher temp. The results at low temp, appear to be explained satisfactorily by assuming a primary dehydrogenation reaction for C_4H_6 . results at low temp, appear to be explained satisfactority by assuming a primary dehydrogenation reaction, $iso\text{-}C_4H_{10} + H \rightarrow C_4H_9 + H_2$, followed by a series of "atomic cracking" reactions. To account for the behaviour at higher temp, additional secondary reactions, involving decomp. of radicals and their reaction with mol. H_2 , are assumed. Reactions of alkyl halides with hydrogen halides.—See A., 1943, I, Hydrogenation of disubstituted acetylenes. K. W. Greenlee and W. C. Fernelius (J. Amer. Chem. Soc., 1942, 64, 2505).—trans-Hydrogenation of acetylenes (Campbell et al., A., 1941, II, 81) is explained by the mechanism: Na \rightarrow Na⁺ + e⁻; CR;CR + e⁻ \rightarrow C⁻R;CR· \rightarrow (+ e⁻) (:C⁻R)₂; (:C⁻R)₂ + 2NH₃ \rightarrow (:CHR)₂ + 2NH₂. R. S. C. Addition of hydrogen fluoride to the triple linking. A. V. Grosse and C. B. Linn (J. Amer. Chem. Soc., 1942, 64, 2289—2292).—HF and C₂H₂ do not react at —70° to 300°/1 atm. but at room temp./13 atm. give a 35:65 mixture of CH₂·CHF and CHMeF₂ with much polymeride. Other acetylenes react similarly with HF (excess) at —70° to —55°/1 atm. Thus CH-CMe gives CMe₂F₂ (61%), m.p. —104·8°, b.p. —0·1°, and some polymeric product, C₈H₁₃F. CH-CEt or (CMe₂)₂ gives CMeEtF₂, m.p. —116·9°, b.p. 30·4—30·6°/747 mm. CH-CPr^α gives CMePr^αF₂, b.p. 58·2—58·8°/749 mm. CH-CBu^α and (CEt₂)₂ give ββ-, b.p. 86·0—86·2°/750 mm., and γγ-difluoro-n-hexane (76%), b.p. 86°/742 mm., respectively. CH-C-C₅H₁₁-n gives ββ-difluoro-n-heptane, b.p. 111·7—111·9°/749 mm. R. S. C. Constitution of pirylene.—See A., 1943, I, 54. Structure of co-polymerides of vinyl chloride and vinyl acetate. C. S. Marvel, G. D. Jones, T. W. Mastin, and G. L. Schertz (J. Amer. Chem. Soc., 1942, 64, 2356—2362).—CH₂:CHCl (I) and CH₂:CH·OAc co-polymerise to mixed chains, but those formed initially preferentially remove the (I). Thus, after complete polymerisation, the product is heterogeneous. Hydrolysis of the polymeride by HCl-H₂O-EtOH gives a chlorohydrin, unaffected by HIO₄, indicating head-to-tail union. This union is less clearly shown by dehalogenation, which is quantitatively rather erratic and may give could head-to-tail union. This union is tess county and may give cyclo-ation, which is quantitatively rather erratic and may give cyclo-propane units since the products decolorise Br-CCl₄ but not R. S. C. KMnO₄-COMe₂. R. S. C. Polyene series. VI. Preparation of ethinylcarbinols from aβ-unsaturated aldehydes. E. R. H. Jones and J. T. McCrombie (J.C.S., 1942, 733—735).—C₂H₂ is passed into liquid NH₃ and Na added gradually; addition of PhCHO-Et₂O, with continuous introduction of C₂H₂ (3 hr.), gives (cf. Campbell et al., A., 1939, II, 46) CH-C-CHPh-OH, m.p. 22°, b.p. 115—116°/16 mm. (82·5% yield) [phenyl-, m.p. 81—82°, p-nitrophenyl-, m.p. 132°, and β-naphthyl-urethane, m.p. 120°; H phthalate, m.p. 98—99°; acetate (Ac₂O at 100—115°), b.p. 124°/18 mm.], CHMe:CH-CHO similarly affords CH-C-CH(OH)·CH-CHMe (50—65%), b.p. 154—156°, 75°/24 mm. (Hg compound, m.p. >360°; phenyl-, m.p. 65°, and β-naphthyl-urethane, m.p. 89°; acetate, b.p. 110—112°/100 mm.), hydrogenated (Pd-C in MeOH) to CHEtPr-OH (phenylurethane, m.p. 49—50°), oxidised to COEtPr (2: 4-dinitrophenylhydrazone, new m.p. 134—135°). CH₂:CH-CHO gives CH-C-CH(OH)·CH-CH₂ (36%), b.p. 83·5—84·5°/150 mm. (phenyl-, m.p. 37°, and a-naphthyl-urethane, m.p. 127·5—128·5°; acetate, b.p. 87—88°/100 mm.), reduced by H₂-PtO₂-Et₃O to CHE₂:CH-CHO yields isobutenylacetylenylcarbinol (50%), b.p. 110—113°/100 mm. (phenyl-, m.p. 58—59°, and β-maphthyl-urethane, m.p. 76°), reduced (H₂-PtO₂-AcOH) to CHPr:CEt·CHO gives CH:C·CH(OH)·CEt:CHPr CHETBUP-OH. CHPT, CET-CHO gives CH₂C-CH(OH)-CET.CHPT (80%), b.p. 96·5—97°/14 mm. (a-naphthylurethane, m.p. 57—58°). Tiglic
aldehyde (CHMe; CMe-CHO) yields δ-methylhex-Δδ-en-Δα-inen-γ-ol (75%), b.p. 96—97°/50 mm. (a-naphthylurethane, m.p. 105°). Furfuraldehyde or CHPh; CH-CHO gives 2-furyl- (65%), b.p. 83—85°/2 mm., or styryl-acetylenylcarbinol (2%), m.p. 66—67°, respectively. Light absorption data are recorded and active H (Zere-vitinov) determined (a temp. of 90° is needed before reaction with acetylenic H is complete). acetylenic H is complete). A. T. P. Polyene series. VII. Carbinols from propargyl acetal. I. M. Heilbron, E. R. H. Jones, and H. P. Koch (J.C.S., 1942, 735—737; cf. preceding abstract).—CH²C·CH(OEt)₂ and MgEtBr—Et₂O, followed by EtCHO at 20°, give ζζ-diethoxy-Δδ-hexinen-γ-ol (I) (40%), b.p. 107°/3 mm., the γ-Me derivative (II), b.p. 88°/3 mm., of which is similarly prepared using COMeEt. CH₂Ph·COMe gives εε-diethoxy-α-phenyl-β-methyl-Δγ-pentinen-β-ol (III). (I), (II), and (III) contain I active H and are characterised by treatment with NH₂·CO₂Et in dil. HCl, thus affording the diurethano-derivatives [i.e., (NH·CO₂Et)₂ replacing (OEt)₂], m.p. 143°, 111°, and 130°, respectively. (II), H₂ (1 mol.), and Pd-CaCO₃ in MeOH afford a complex mixture, from which EtOH and 2-ethoxy-5-methyl-5-ethyl-2: 5-dihydrofuran (IV), b.p. 151°, 46°/19 mm., and a substance, C₁₄H₂₁O₂·OEt, b.p. 110°/4 mm., are isolated. (IV) and 2: 4:1-(NO₂)₂C₆H₃·NH·NH₂ in HCl-EtOH yield the 2:4-dinitro-phenylhydrazone, m.p. 194°, of γ-methylsorbaldehyde, formed by simultaneous hydrolysis and dehydration; semicarbazide acetate in hot H₂O converts (IV) into the semicarbazone, m.p. 169° (small yield), of OH·CMeEt·CH·CHO. Semihydrogenation of (III) also gives a poor yield of a dihydrofuran. gives a poor yield of a dihydrofuran. Electrical properties of polymethyl acrylate, methacrylate, and a-chloroacrylate, and polychlorethyl methacrylate.—See A., 1943, I, Fats containing fatty acids with odd numbers of carbon atoms. II—IV.—See A., 1943, III, 46, 131. Antioxidants and autoxidation of fats. XIV. Isolation of new antioxidants from vegetable fats. C. Golumbic (J. Amer. Chem. Soc., 1942, 64, 2337—2340; cf. B., 1941, II, 348).—When autoxidation of cottonseed, soya-bean, or mixed hydrogenated vegetable fats has proceeded until tocopherols are all destroyed, there remains a different type of antioxidant. The latter can be conc. by chromatography, best using activated Al_2O_3 and the Et esters (prep. by HCl-EtOH) in light petroleum. The absorption spectra (max. at 560—570 m μ .), inactivation by reductive acetylation to stable, colourless oils, decolorisation to readily oxidisable products, ready reaction with o- $C_6H_4(NH_2)_2$ to fluorescent (ultra-violet) products colouriess only decolorisation to readily oxidisable products, leady reaction with o-C₆H₄(NH₂)₂ to fluorescent (ultra-violet) products, instability to alkali, red colour, and lack of vitamin-E activity resemble the properties of chroman-5: 6-quinones. These red compounds are formed from colourless phenolic precursors in the fats. R. S. C. Diastereoisomerism of the $\theta\iota\lambda$ -trihydroxystearic acids. Geometric configurations of ricinoleic and ricinelaidic acids. J. P. Kass and S. B. Radlove (J. Amer. Chem. Soc., 1942, 64, 2253—2257).—Structures assigned below follow established rules (cf. A., 1939, II, 297) and confirm the cis-configuration of ricinoleic (I) and trans-configuration of ricinelaidic acid (II). Many data in the literature are corr. Configurations +++ etc. refer to C_λ , C_ι , and C_θ , respectively. (I) (prep. from castor oil modified; best by way of Me esters) with KMnO₄-KOH-H₂O at 0° gives $\theta\iota\lambda$ -trihydroxystearic acid, α -, m.p. 109-6— $112\text{-}4^\circ$, $[\alpha]_D^{23} - 2\text{-}9^\circ$ in EtOH, $-6\text{-}6^\circ$ in AcOH, and β -form, m.p. 137-6— $138\text{-}2^\circ$, $[\alpha]_D^{23} - 3\text{-}9^\circ$ in EtOH, $-11\text{-}6^\circ$ in AcOH, which are the ++- and +-+ acids or vice versa; (II) gives similarly $\theta\iota\lambda$ -trihydroxystearic acid, γ -, m.p. $86\text{-}87\text{-}4^\circ$, $[\alpha]_D^{23} + 19\text{-}1^\circ$ in EtOH, $+21\text{-}8^\circ$ in AcOH, and δ -form, m.p. 109-4— $110\text{-}4^\circ$, $[\alpha]_D^{23} - 26\text{-}6^\circ$ in EtOH, $-38\text{-}7^\circ$ in AcOH, which are ++++ and -- acids, respectively. Conversely, H_2O_3 -AcOH converts (I) into the γ - and δ -acids and (II) into the α - and β -acids. R. S. C. γ - and δ -acids and (II) into the α - and β -acids. Organic acids of leaves of Bryophyllum calycinum. Identity of "crassulacean malic acid" with isocitric acid.—See A., 1943, III, Reaction of ninhydrin with ascorbic acid and other endiol compounds. Decarboxylation of dehydroascorbic acid. E. S. West and R. E. Rinehart (J. Biol. Chem., 1943, 146, 105—108).—Ninhydrin (I) (2 mols.) and ascorbic acid (II) (1 mol.) at room temp., or more quickly on warming, give hydrindantin (III), $C_{18}H_{10}O_6$, also obtained from (I) and H_2S (cf. Ruhemann, J.C.S., 1911, 99, 792, 1306). Reductone or dihydroxymaleic acid gives a similar ppt. Oxidation Reductione or dinydroxymateic acid gives a similar ppt. Oxidation of (II) by (I) apparently stops at the stage of dehydroascorbic acid (IV); (IV) and (I) do not give (III). CO₂ formed in the reaction (I) + (II) is probably due to decarboxylation of (IV), possibly involving hydrolysis of the lactone bridge, with formation of l-xylosone. At least part of the metabolism of (II) in the body may involve oxidation to (IV), followed by decarboxylation. Photometric method for determining ascorbic acid.—See A., 1943, Photochemical decomposition of methyl n-butyl ketone.—See A., 1943, I, 66. Synthesis of α -amino-acids from substituted acetoacetic esters. K. E. Hamlin, jun., and W. H. Hartung (J. Biol. Chem., 1942, 145, 349—359).—The synthesis of α -NH₂-acids by nitrosating the respective substituted acetoacetic ester in 85% H₂SO₄ with BuO-NO at -5° to 0° , followed by hydrolysis by aq. NaOH of the α -oximinoester to the acid, and then hydrogenation at room temp./10 atm., using Pd-C (2 mol. equiv. of HCl in EtOH), is described; the method is general. The a-oximino-ester can be similarly reduced, followed by hydrolysis of the NH₂-acid ester. Alanine, a-amino-butyric acid, norvaline (Bz derivative, m.p. 153·5°), nor- and iso-leucine, aspartic acid, glutamic acid, phenylalanine, and O-methyltyrosine (HCl at 180° gives tyrosine) are prepared. The following are described: a-oximino-acids, R·C(N·OH)·CO₂H [R = Me, m.p. 182° (decomp.); Et, m.p. 155° (decomp.); Pr, m.p. 145° (decomp.); Bu, m.p. 137° (decomp.); CHMeEt, m.p. 145° (decomp.); CH₂Ph, m.p. 168° (decomp.); p-OMe·C₀H₄·CH₂, m.p. 157° (decomp.)], and-esters, R·C(N·OH)·CO₂Et [R = Me, m.p. 96°; CH₂·CO₂Et, an oil; [CH₂]₂·CO₂Et, m.p. 82°]. Photomicrographs of the NH₂-acids are reproduced. ester to the acid, and then hydrogenation at room temp./10 atm., Poly-condensation of a-amino-acid esters. Poly-condensation of (I) glycine esters, (II) alanine ethyl ester. M. Frankel and E. Katchalski (J. Amer. Chem. Soc., 1942, 64, 2264—2268, 2268—2271). —I. Average degrees of polymerisation are denoted by numerical prefixes. Passage of N₂ or H₂ through NH₂·CH₂·CO₂Et (I) at room temp. gives a 20-polymeride, decomp. ~280—300°, quantitatively hydrolysed by boiling 10% H₂SO₄ to glycine; subsequent contact with air gives a 25-polymeride; use of O₂ gives a 16-polymeride. In xylene at room temp. (3 months), (I) gives a 12-polymeride or, at the b.p. (8 hr.) and then room temp. (2 months), a 13-polymeride. In C₆H₆ at room temp. (70 days), (I) gives a 1:1 mixture of 4-polymeride and anhydride, but at the b.p. (7 hr.) and then room temp. (70 days) gives a 17-polymeride (quantitatively hydrolysed by 25% HCl). Similar experiments with NH₂·CH₂·CO₂Me (modified prep.) give 18-, 30-, 27-, and 35-polymerides. NH₂·CH₂·CO₂Buß gives a 10-polymeride. Subsequent heating at 130° gives still higher polymerides, e.g., the 20- and 16-polymeric Et esters give up to a 42-polymeride and the 30-polymeric Me ester gives a 110-polymeride. The polymerides are isolated by removing impurities in hot H₂O -I. Average degrees of polymerisation are denoted by numerical The polymerides are isolated by removing impurities in hot H₂O (picric acid and biuret tests on washings negative); the chainlength is determined by the OMe content. II. NH₂·CHMe·CO₂Et at room temp./15 mm. gives after 5 months a tetrapeptide (hygroscopic hydrochloride), alanine anhydride, and a 10-polymeric Et ester; at 40° it gives a 16-polymeride, at 80° a 14-polymeride, converted at 150° gradually into a 23-polymeride and quantitatively hydrolysed by HCl. Unlike the glycine polymerides, these polymerides are sol. in H₂O and are isolated as residues after "mol." sublimation of other products. R. S. C. Sodium bismuth triglycollamate. R. A. Lehman and R. C. Sproull (J. Amer. Pharm. Assoc., 1942, 31, 190—192).—CH₂Cl·CO₂H is converted into triglycollamic acid in 60% yield; this gives BiH triglycollamate, $C_6H_{10}O_8NBi$, and a hydrated double salt, $C_{12}H_{22}O_{17}N_2Na_3Bi$, of Na Bi triglycollamate with Na₂ triglycollamate. Crystal structure of β -glycylglycine.—See A., 1943, I, 54. Raman spectra of betaine.—See A., 1943, I, 50. Lysine and ornithine. H. D. Dakin (J. Biol. Chem., 1943, 146, 237—240).—Varying amounts (~5—10% of total present) of lysine (I) and ornithine (II) may be pptd. by alternate use of excess of 15% aq. AgNO₃ and N- or 2N-NaOH, until a brown ppt. of Ag₂O appears; the ppt. is decomposed by HCl. Formation of hydantoins by ring-closure of the PhNCO derivatives of (I) and (II) with HCl is accompanied by progressive racemisation; the latter is limited by adding EtOH, which gives quick dissolution and reaction (2.5 min.). Thus prepared are optically homogeneous hydantoin derivatives of d-lysine, m.p. $200-20^\circ$, $[a]_D^{20}-62.5^\circ$ in C_5H_5N
(from aq. AcOH), and d-ornithine, m.p. $208-209^\circ$, $[a]_D^{20}-48.0^\circ$ in C_5H_5N ; derivatives from inactive (I) or (II) melt at $190-191^\circ$ and $191-192^\circ$, respectively. A partly racemised hydantoin can be completely racemised by 0.5N-NaOH in 24 hr. A. T. P. Preparation of asparagine.—See A., 1943, III, 74. Action of enzymes on aa'-iminodicarboxylic acids. P. Karrer and Action of enzymes on aa'-iminodicarboxylic acids. P. Karrer and R. Appenzeller [with, in part, A. Kugler] (Helv. Chim. Acta, 1942, 25. 1149—1154; cf. A., 1942, 11, 278),—dl-Leucine and dl-CHMeBr·CO₂H (I) in N-NaOH at 37° give r-αa'-iminopropionic-hexoic acid, m.p. 239°. l-Leucine (II) and l-CHMeBr·CO₂H afford (+)-αa'-iminopropionichexoic acid, m.p. 214°, [a]_b⁸ +16°, whilst aa'-iminopropionic-l-hexoic acid, m.p. 233° (decomp.), [a]_b ±0° in H₂O, is derived from (II) and d-CHMeBr·CO₂H. dl-aa'-Iminoacelicpropionic acid, m.p. 217° (decomp.), is derived from (II) and glycine. These acids are not affected by d-amino-acid oxidase (III) or by the Laminoacid oxidase and other enzymes present in fresh or by the *l*-amino-acid oxidase and other enzymes present in fresh liver and kidney tissue. The observed oxidative deamination of dl-methylalanine by (III) is confirmed (cf. Keilin et al., A., 1936, 241) but this behaviour is not general for sec. amines since it is not shown by N-butyl-dl-alanine. Behaviour of polyamides on heating. R. Brill (J. pr. Chem., 1942, [ii], 161, 49—64).—X-Ray diagrams of threads of the condensate (I) of adipic acid and $(CH_2)_6N_4$, and of ϵ -aminohexoic acid (II), were obtained at various temp. In the case of (I) the symmetry increases with rise of temp., the monoclinic lattice becoming hexagonal. The transformation temp. is ~161°, but there is considerable hysteresis. In the presence of H₂O vapour, however, the hysteresis is much diminished and the transformation temp. is much diminished and the transformation occurs at 140°. The results for (II) show minor differences from those for (I). In agreement with Fuller et al. (A., 1941, I, 103), it is found that at high temp. segments of the polyamide mol. execute rotational vibrations. In the case of (I) the orientation achieved mechanically at the beginning of the work is decreased as the temp. rises whilst at the beginning of the work is decreased as the temp. rises, whilst for (II) the orientation is increased with rise of temp. #### II.—SUGARS AND GLUCOSIDES. Reactions relating to carbohydrates and polysaccharides. LXVII. Synthesis of methylated glucose derivatives. T. H. Evans, I. Levi, W. L. Hawkins, and H. Hibbert (Canad. J. Res., 1942, 20. B, 175—184).—a-Methylglucoside (from glucose, MeOH, and HCl) with PhCHO (anhyd. ZnCl₂) yields 4: 6-benzylidene-a-methylglucoside, provement 162 and 164° particulated (Me SO, NeOH in New Medical Andreas and Phylodological Canada (Me SO, NeOH in New Medical Andreas and Phylodological Canada (Me SO, NeOH in New Medical Andreas and Phylodological Canada (Me SO, NeOH in New Medical Andreas and Phylodological Canada (Me SO, NeOH in New Medical Andreas and Phylodological Canada (Me SO, NeOH in New Medical Andreas and Phylodological Canada (Me SO, NeOH in New Medical Med PhCHO (anhyd. ZnCl₂) yields 4: 6-benzylidene-a-methylgiucoside, new m.p. $163-164^{\circ}$, methylated (Me₂SO₄-NaOH in N₂) and hydrolysed (0·275ⁿ-H₂SO₄ in N₂) to 2:3-dimethyl-a-methylglucoside, m.p. $81\cdot5-83^{\circ}$. 2:3-Dimethylgluconophenylhydrazide, from the gluconic acid and NHPh·NH₂ in boiling Et₂O, has m.p. $166\cdot5-167^{\circ}$. 2:3-Dimethyl- β -methylglucoside is prepared either from β -methylglucoside via the 4:6-CHPh; derivative, or from 2:3-dimethylglucosie via the Bz₃ compound. 2:3:4-Trimethyl-I-glucosan on methylation and hydrolysis (as above) yields 2:3:4-trimethylon methylation and hydrolysis (as above) yields 2:3:4-trimethyl-glucose, which with MeOH-HCl gives 2:3:4-trimethyl-a- and $-\beta$ -methylglucosides, the former methylated (as above) to 2:3:4:6-H₂SO₄) tetramethyl-a-methylglucoside, hydrolysed (5% 2:3:4:6-tetramethylglucose. Rates of reaction of dissopropylidene-glucose, -galactose, and Rates of reaction of discopropylidene-glucose, -galactose, anu-sorbose with p-toluenesulphonyl chloride in pyridine solution. R. C. Hockett and M. L. Downing (J. Amer. Chem. Soc., 1942, 64, 2463—2464).—Reaction of p-C₆H₄Me·SO₂Cl (I) (8 mols.) with 1:2-5:6-discopropylidene-D-glucose, 2:3-4:6-discopropylidene-L-sorbose, or 1:2-3:4-discopropylidene-D-galactose (1 mol.) in C₅H₅N at 23° is found polarimetrically to be pseudounimol. and have half-change times in the ratio 74·2:2·1:1. The selectivity of (I) for primary or sec. OH thus closely resembles that of CPh₃Cl (cf. A., 1942, II, 6). Agar-agar. III. Isolation of hepta-acetyl-dl-galactose from 3:6-anhydro-β-methyl-d-galactoside. T. L. Cottrell and E. G. V. Percival. IV. E. G. V. Percival and T. G. H. Thomson (J.C.S., 1942, 749—750, 750—755).—III. 3:6-Anhydro-β-methyl-d-galactoside with Ac₂O-H₂SO₄ at 37° yields dl-galactose hepta-acetate, similarly obtained (Pirie, A., 1936, 593) from agar, which probably therefore contains 3:6-anhydro-l-galactose units. IV. Washed, methylated agar with AcBr in CHCl₃ yields Me_5 methyl-d-galactonate (I), m.p. 46° , $[a]_b^{14} + 20^{\circ}$ in H_2O , and a mixture of methylated disaccharide esters hydrolysed (5% H_2SO_4) to 2:5-dimethyl-3:6-anhydro-1-galactonic acid, m.p. 160° , $[a]_b^{10} - 65^{\circ}$ in H_2O (the amide, m.p. 171° , gives a negative Weerman reaction), tetramethyl disacreption of the second control H_2O (the amide, m.p. 171° , gives a negative Weerman reaction), tetramethyl-d-galactopyranose (isolated as anilide), and 2:4:5:6-tetramethyl-d-galactonic acid (syrup), $[a]_1^{14} - 3^\circ$ in H_2O , the Me ester, b.p. $110-135^\circ/0.07$ mm., $[a]_1^{16} + 11^\circ$ in H_2O , of which with MeOH-NH₃ yields an amide (syrup) giving a negative Weerman reaction, and with MeI and Ag₂O gives (I). Hydrolysis (MeOH-HCl) of methylated agar gives no tetramethyl-d-galactopyranose (cf. A., 1937, II, 445), but the production of dimethylmethylgalactosides is confirmed, and a small amount of substance is formed which when methylated hydrolysed and treated with NH Ph which when methylated, hydrolysed, and treated with NH₂Ph yields tetramethyl-1-galactoseanilide, m.p. 197°, [a]²⁰ +70° in COMe₂. Hydrolysis (H₂O at 130° under pressure) of agar yields a gel, "δ," and a H₂O-sol, fraction, "λ" These have been acetylated, methylated, and hydrolysed, and the relative mol. wts. of the products determined (η and I val.), but the results do not explain the differences in properties of " δ " and " λ ." Action of diazomethane on acyclic sugar derivatives. III. Synthesis of ketoses and of their open-chain (keto) acetates. M. L. Wolfrom, S. W. Waisbrot, and R. L. Brown (J. Amer. Chem. Soc., 1942, 64, 2329—2331; cf. A., 1942, II, 395).—1-Diazo-1-deoxyketo-d-fructose tetra-acetate in boiling AcOH gives keto-d-fructose pentaacetate (Hudson et al., A., 1916, i, 116), thus proving the nature of the reaction. 1-Diazo-1-deoxyketo-d-glucoheptulose penta-acetate gives similarly keto-d-glucoheptulose hexa-acetate (70%), m.p. 104—105°, [a]₁²² + 18·7° in CHCl₃ [absorption max. at 2830 A. (log & 1·60)], also obtained from 1-bromoketo-d-glucoheptulose penta-acetate by KOAC-Ac₂O at 70° and converted by NH₃-MeOH at 0° and then Ac₂O-NaOAc at 100° into the cyclic hexa-acetate, m.p. 114·5— 105°, [a]\frac{22}{2} + 18.7° in CHCl₃ [absorption max. at 2830 Å. (log \(\text{e} \) 1.60)], also obtained from 1-bromoketo-d-glucoheptulose penta-acetate by KOAc-Ac₂O at 70° and converted by NH₃-MeOH at 0° and then Ac₂O-NaOAc at 100° into the cyclic hexa-acetate, m.p. 114·5-COR \(\frac{115·5°}{6}, [a]\frac{50}{3} + 86° in CHCl₃ (cf. lit.). Mucyl dichloride HC-OAc bisdiazomucyldimethane "tetra-acetate (A; R = CHN₂), m.p. 179—180° (decomp.), which with HCl-Et₂O or boiling AcOH gives "1:8-dichloromucyldimethane" tetra-acetate (A; R = CH₂Cl), m.p. 174—175°, and "1:8-dihydroxymucyldimethane" hexa-acetate (A; R = CH₂COAc), m.p. 193—195° (decomp.), respectively. R. S. C. Fructosan from Yucca mohavensis, Sarg. K. P. Dimick and B. E. Christensen (J. Amer. Chem. Soc., 1942, 64, 2501—1502).—The fatfree stem of this plant yields to 70% EtOH 42% of a fructosan (Ba salt; acetate), possibly a fructopyranose and similar to that from rye flour (A., 1935, 69). R. S. C. Optical rotatory power of crocin in true and in colloidal solution. R. Kuhn and I. Low (Kolloid.-Z., 1942, 100, 136—137).—The extremely high optical activity shown by crocin in aq. (colloidal) solution (cf. A., 1939, II, 246) becomes negligibly small when the substance is in true solution in MeOH, AcOH, C_5H_5N , or 10% aq. C_5H_5N . Structure of the dextrins isolated from maize syrup. M. Levine, J. F. Foster, and R. M. Hixon (J. Amer. Chem. Soc., 1942, 64, 2331—2337).—Prep. of dextrins from maize syrup, essentially by MeOH, is described. Fractional pptn. from $\rm H_2O$ by MeOH gives fractions containing 2—26 (average) glucose units, the higher fractions being free from maltose or glucose. I-KOH yields K dextrinates, the K content of which agrees with the mol. wt. calc. from the I-reducing power and with [a]. Methylation is smoothly effected by Na-MeI in liquid NH3; determination, after hydrolysis, of tetramethylglucose shows absence of branching (confirmed by absence of dimethylglucose) and non-reducing fractions (confirmed by [a]). The smaller dextrins give quantitatively unstable compounds of phenylhydrazide type; the larger dextrins (<6 units) absorb NHPh·NH2; a stereochemical explanation is offered. R. S. C. Action of aqueous sodium hydroxide on starch. Strengthening of intramolecular linkings. C. Dumazert and R. Michel (Compt. rend., 1942, 214, 645—647; cf. A., 1939, II, 470).—If starch is pretreated with aq. NaOH, degradation by $\rm H_2SO_4$ -EtOH is
arrested and hydrolysis by pancreatic amylase is much slower, thus suggesting a greater stability of certain intramol. linkings. A. T. P. Investigation of the constitution of starch from the action on it of starch-splitting enzymes. K. Myrbāck (Tekn. Samfund. Handl., 1941, 79—129).—The action of dextrinogen amylase (I) on starch (II) gives $\sim 21\%$ of "limit" dextrin (III) having 6, 4, and, especially, 3 glucose residues per mol. Taka-amylase gives $\sim 20\%$ of (III) (6 residues per mol.), and small quantities of tetra- and tri-saccharides. Pancreatic or salivary amylases, however, produce chiefly tetrasaccharides and ~ 25 and 27% of (III), respectively, since the enzymes which decompose (III) specifically are absent. If (I) contains no PO_4 " the whole of the P_2O_5 of (II) is to be found in (III), especially in those of high mol. wt.; PO_4 " has no influence on the rate of decrease of (III) formation Presence of reducing groups $(e.g., {}^{\circ}CHO)$ in the substrate is (contrary to K. Meyer's theory) without important influence on the saccharoamylase activity. Starch studies: preparation and properties of starch triesters. J. W. Mullen and E. Pacsu (Ind. Eng. Chem., 1942, 34, 1209—1217; cf. B., 1942, III, 214).—Methods for the prep. of starch esters are critically reviewed and a preferred method is described involving gelatinisation of starch in azeotropic $C_5H_5N-H_2O$, and acylation in presence of C_5H_5N as catalyst. The triacetates, tripropionates, and tributyrates have been prepared from 5 varieties of starch and their physical properties studied. Special discussion is devoted to the results for η . The acetates from different starches differ mainly in their mol. wt., due to different contents of amylose and amylopectin; the degree of branching is of secondary importance. The behaviour of starch acetate agrees with the assumption that it forms approx. spheroidal mols. Physico-chemical characteristics of glycogen. W. B. Bridgman (J. Amer. Chem. Soc., 1942, 64, 2349—2356).—Glycogen, prepared by acid or base, is non-homogeneous. It lies mainly in the range of sedimentation const. 20—120S. The max. ($S_{20}=70S$) corresponds to a mol. wt. 2×10^6 if the particle is spherical or 4×10^8 if frictional resistance is evaluated by the measured diffusion const. c 2 (A., II.) This mol. wt. may be that of an aggregate or chemical mol. Interpretation of results on non-homogeneous systems is discussed. Determination of the mol. wt. of cellulose by an end-group method. E. Husemann and O. H. Weber (J. pr. Chem., 1942, [ii], 161, 1—19). —Practical details of a method already outlined (A., 1943, I, 8) are given. A. J. M. Connexion between carboxyl content and degree of polymerisation of celluloses and the ripening of viscose and its bleaching by chlorine. O. H. Weber and E. Husemann (J. pr. Chem., 1942, [ii], 161, 20—29).—The oxidation of cellulose has been investigated by finding the 'CO₂H content by the reversible methylene-blue method, and the η in Schweitzer's reagent, and calculation from the latter of the degree of polymerisation by Staudinger's method. Under the action of atm. O₂ on Na-cellulose, a splitting of the cellulose chain takes place with formation of 1 CO₂H for each broken linking. The effect of Cl₂ on cellulose in the bleaching process is investigated for solutions of different pH. From comparison of degrees of polymerisation and monose nos. it is clear that in acid solutions (pH 0-9) there is considerable breakdown of the mol. In addition to monocarboxylic acids, mols. containing no CO₂H are formed. At pH 5-5, the breakdown does not proceed so far and is oxidative. On the alkaline side autoxidation occurs. #### III.—HOMOCYCLIC. isoButylcyclobutane and dicyclobutylmethane. B. A. Kazanski and V. P. Golmov (Compt. rend. Acad. Sci. U. R.S.S., 1942, 34, 196—198).—Pasage of cyclobutanecarboxylic acid (I) and PrβCO₂H over ZnO-MnO at 400—403° gives isobutyrone, cyclobutyl Prβ ketone (II), b.p. 162—164° (yield 37%), and dicyclobutyl ketone (III), b.p. 201°/731 mm., 104°/30 mm. (semicarbazone, m.p. 129—130°), better obtained under identical conditions from (I) alone. (II) gives semicarbazones, prisms, m.p. 137—138°, and needles, m.p. 114—115°, and with N₂H₄,H₂O affords the hydrazone (IV), b.p. 89—90°/6 mm., and mainly the azine, b.p. 140—141°/6 mm. isoButylcyclobutane, b.p. 119—119.5°/743 mm., is prepared by distillation of (IV) with solid KOH and Pt-C. (III) and N₂H₄,H₂O give the corresponding azine, b.p. 187—188°/7 mm., and (mainly) the hydrazone, b.p. 117—118°/25 mm., converted as above into dicyclobutylmethane, b.p. 160-8—161°/743 mm. Structure of "diphenylene." W. Baker (Nature, 1942, 150, 210— Structure of "diphenylene." W. Baker (Nature, 1942, 150, 210—211).—"Diphenylene," C₁₂H₈, prepared by Lothrop's method (A., 1941, II, 247) does not readily yield Ph₂ on hydrogenation, neither does it show the properties of an acetylene or an allene. The annexed formula is proposed. A. A. E. Structure of "diphenylene." C. A. Coulson (Nature, 1942, 150, 577—578).—Baker's cyclopentindene formula for the compound $C_{12}H_8$ (see above) is supported by the fact that the bond strain energy is only a few kg.-cal., whilst that in the diphenyl formula is large, possibly $\sim 100~\rm kg$.-cal., although the mobile electrons in the latter are more stable than those in the former. A. A. E. New type of aromatic hydrocarbon. Acephenalane and its derivatives. Buu-Hoi and P. Cagniant (Compt. rend., 1942, 214, 493—495).—5-Bromoacenaphthene is converted by successive treatments with Mg in presence of EtBr and (CH₂)₂O into β-5-acenaphthylethyl alcohol, b.p. 180°/0·9 mm. (phenylurethane, m.p. 161°), transformed successively through the corresponding bromide (I), b.p. 171°/0·8 mm., m.p. 75°, and nitrile, m.p. 83°, into β-5-acenaphthylpropionic acid, m.p. 189° [corresponding chloride (II), m.p. 104°, and amide, m.p. 149°]. (I) and CHNa(CO₂Et)₂ afford Et₂ β-5-acenaphthylethyladonate, b.p. 220—230°/1·3 mm., hydrolysed and describorylated to accentably hydrolysed and describorylated to accentably hydrolysed and 149°]. (I) and CHNa(CO₂Et)₂ afford Et_2 β -5-acenaphthylethylmalonate, b.p. 220—230°/1·3 mm., hydrolysed and decarboxylated to γ -5-acenaphthylbutyric acid, m.p. 148° (amide, m.p. 182°). AlCl₃ and (II) in PhNO₂ at room temp. give 7-ketoacephenalane, m.p. 194° (oxime, m.p. 240°; semicarbazone, decomp. 235—245°), which is reduced (Clemmensen) to acephenalane (III), b.p. 168—170°/1·3 mm., m.p. 122° [additive compound, m.p. 116°, with 1:3:5-C₆H₃(NO₂)₃]. 7-Ketoacephenalene forms yellow needles, m.p. 177—178°. Chaulmoogryl quaternary salts. R. Baltzly, W. S. Ide, and J. S. Buck (J. Amer. Chem. Soc., 1942, 64, 2514—2515).—Chaulmoogryl bromide and 33% NHMe₂—MeOH at 105—110° give chaulmoogryl-dimethylamine, m.p. >0°, b.p. 170°/0·5 mm. [methiodide, m.p. >170° (decomp.); benzyliodide, dimorphic, m.p. 99°]. Trimethyl, mp. 227—230° (decomp.), and benzyldimethyl-octadecylammonium iodide, m.p. 93°, are also described. R. S. C. cycloHexylsulphamic acid.—See B., 1943, II, 44. p-Aminodimethylaniline. II. o-Chloro- and -nitro-derivatives. E. E. Ayling, J. H. Gorvin, and L. E. Hinkel (J. C.S., 1942, 755—758; cf. A., 1941, II, 359).—p-NMe₂·C₆H₄·NHAc (I) affords (method: Pinnow et al., A., 1894, i, 281) 1:2:4-NMe₂·C₆H₃(NO₂)·NHAc (90%) (II), m.p. 132° and 122—123 (dimorphs), and N-nitroso-4-acetamidomethylaniline (6%), m.p. 146° (cf. Hodgson et al., A., 1934, 884). p-NH₂·C₆H₄·NMc₂ and HNO₃ (d 1·5; 2 mols.) in AcOH-H₂SO₄ at 0° give 2:6:4:1-(NO₂)₂C₆H₂(NH₃)·NMc₂. NMc₄Ph-HNO₃-AcOH and a little NaNO₂ at <15° afford 2:4:1-(NO₂)₂C₆H₃·NMc₂, reduced by SnCl₂ in EtOH-HCl to 2:4:1-NH₂·C₆H₃(NO₂)·NMc₂ (III), m.p. 63° (Ac, m.p. 163°, and CHPh. derivative, m.p. 128°). (I) and Cl₂-CHCl₃ at room temp. yield 2-chloro-4-acetamidodimethylaniline (IV), m.p. 119—120°, also obtained from (II)—Na₂S₂O₄-aq. EtOH, followed by diazotisation and treatment with Cu₂Cl₂. Diazotised (III) with Cu-bronze, boiling MeOH, or HNO₃-Cu-bronze or -Cu₂O, gives p-NO₂·C₈H₄·NMc₂ (V). 4:2:1-NO₂·C₆H₃Cl·NMc₂, m.p. 78° [from (V) and Cl₂-CHCl₃ or from (III) by the diazo-reaction], is reduced by SnCl₂-HCl to 2-chloro-4-aminodimethylaniline, m.p. 61·5—63° (stannichloride), also obtained by hydrolysis (conc. HCl) of (IV). (II) and HNO₃ (d 1·42) in AcOH afford 4:2:6:1-NHAc·C₆H₂(NO₂)₂·NMe·NO orinHCl·NHAc·C₆H₂(NO₂)₂·NMc₂. (IV) in AcOH or HCl similarly gives 2-chloro-6-nitro-N-nitroso-4-acetamido-methylaniline (VII), m.p. 132—133°, or 2-chloro-6-nitro-4-acetamido-dimethylaniline (VII), m.p. 165—166° (attempted hydrolysis causes decomp.), respectively. (VI) is oxidised by HNO₃ (d 1·5) at 0°, then at room temp., to 2-chloro-6: N-dinitro-4-acetamidomethylaniline (VIII), m.p. 152—153°. (II) or (IV) and Cl₂-CHCl₃ yield (VIII) or 2:6-dichloro-4-acetamidodimethylaniline (IX), m.p. 153—154° (amine, m.p. 90—91°), respectively. (VII) and aq. Na₂S₂O₄-EtOH give the 6-NH₂-compound, m.p. 152°, converted (diazo-reaction) into (IX). Boiling PhOH and (VI) or (VIII) give 2-chloro-6-nitro-4-acetamidomethylaniline, m.p. 208—209°, also obtained from (VII) and Br-CHCl₃. 4:2:6:1-NHAc·C₆H₂(NO₂)₂·NHMe. A. T. P. Preparation of symmetrical azo-compounds, the positional influence of the nitro-group on the decomposition of nitronaphthalenediazonium sulphates by cuprous hydroxide, and an improved method for the production of 2-nitronaphthalene. H. H. Hodgson, E. Leigh, and G. Turner (J.C.S., 1942, 744—746; cf. A., 1942, II, 52). Decomp. of ArN₂HSO₄ (I) with CuOH at room temp. depends on the positivity of the C to which N₂ is attached. When this is very great, as in 2:1-NO₂·C₁₀H₆·N₂HSO₄, ArH results, and 85% of 2-C₁₀H₇·NO₂ is obtained. Gradations in positivity are shown in the decomp. of NO₂·C₁₀H₆·N₂HSO₄, with variations of the predominating product, viz., (NO₂·C₁₀H₆·N.)₂ or (NO₂·C₁₀H₆·)₂, indicating min. or medium positivity, respectively. The respective % yields of (:NAr)₂,
ArOH, and ArH obtained from various (I) and CuOH are quoted in parentheses: Ar = Ph (33; 26·5; 27·5); o- (80; trace; trace), m- (0; 28; trace; +35% of 3:3'-dichlorodiphenyl), and p-C₆H₄Cl (70; 31; trace); o- (35; trace; 39·5), m- (mainly 3:3'-dinitro-azobenzene + -diphenyl; 13% of PhNO₂), and p-NO₂·C₈H₄ (35; 13; 8); β-C₁₀H₇ (54; trace; 34); 2:1- (65; trace; 25), 1:2- (87·5; trace; trace) and 4:1-C₁₀H₆Cl (78·3; trace; trace); 1:2- (0; trace; 10; +1:1'-dinitro-2:2'-dinaphthyl), 4:1- (trace; 32·5; 31), and 5:1-NO₂·C₁₀H₆ (40·5; 15; 42). Mechanisms of reaction are discussed. 2:2'-Dichloro-1:1'-, m.p. 173—174°, and 1:1'-dichloro-2:2'-azonaphthalene, m.p. 170—171°, are prepared from C₁₀H₆Cl·N₂Cl, NaOAc, and aq. Na₂SO₃ at room temp., then at 60°. 5:5'-Dinitro-1:1'-azonaphthalene (I), m.p. 322—323°, is obtained similarly. 5:1-C₁₀H₆l·NO₂ and Cu-bronze at 220—230° yield 5:5'-dinitro-1:1'-dinaphthyl, m.p. 228—229°. 5:1-NO₂·C₁₀H₆·Ny₁HSO₄ and Cu paste or Cu-bronze give 1-C₁₀H₇·NO₂, 5:1-NO₂·C₁₀H₆·OH (trace), and (I) (mainly); Cu-bronze in EtOH affords 1-C₁₀H₇·NO₂. A. T. P. Action of cuprous oxide on diazotised amines in ethyl-alcoholic acid solution. H. H. Hodgson and H. S. Turner (f.C.S., 1942, 748—749).—NH₂Ar are efficiently deaminated when ArN₂HSO₄ (prep. by NO·SO₄H–AcOH) are added to finely divided Cu₂O in EtOH; % yields of ArH are: Ar = $p-C_6H_4$ Me (45); o-(89), m-(78), and $p-NO_2\cdot C_6H_4$ (97); $o-CO_2H\cdot C_6H_4$ (65); $2:5:1-C_6H_3Cl_2$ (57); $3:5:1:4-(NO_2)_2C_6H_2$ Me (40); $(\cdot C_8H_4-p)_2$ (49); $\beta-C_{10}H_7$ (60); 1:2-(70) and $2:1-NO_2\cdot C_{10}H_8$ (79); $2:4:1-NO_2\cdot C_{10}H_5$ (194); $4:2:1-NO_2\cdot C_{10}H_5$ (80); $2:4:1-(NO_2)_2C_{10}H_5$ (65); 1-(75) and 2-anthraquinonyl (70%). Influence of p-substituents on the decomposition of zinc chloride double salts of diazonium chlorides by acetic anhydride. H. H. Hodgson and C. K. Foster (J.C.S., 1942, 747—748; cf. A., 1942, II, 401).—(p-C₆H₄R·N₂)₂ZnCl₄ (I) with hot Ac₂O gives (mainly) p-C₆H₄R·OAc (II) and p-C₆H₄RCl. The comparative influence of R towards OAc replacement is in the decreasing order of the negative (-I) effect, viz., Cl > OMe > Me; OH is anomalous. (β-C₁₀H₇·N₂Cl)₂,ZnCl₂ and Ac₂O at 60— 95° give β -C₁₀H₇·OAc (48%); part hydrolysed to β -C₁₀H₄·OH) and 2-C₁₀H₇·Cl (23·5%); (I) (R = OH) (at ~110°) yields p-C₆H₄(OAc)₂ (70%) and p-C₆H₄Cl-OH (18·8%). (II) (R = Cl, Me, and OMe) are determined as p-C₆H₄R·OH (49, 38·6%) and p-C₆H₄R·OMe (39%), respectively. Mutual influence of chromophoric groups in systems with closed π electron groups.—See A., 1943, I, 49. C-Alkylation of phenols.—See B., 1943, II, 43. **Bromination of 4-diphenylyl chloroacetate.** S. E. Hazlet, L. C. Hensley, and H. Jass (*J. Amer. Chem. Soc.*, 1942, **64**, 2449—2450).—4-Diphenylyl chloroacetate (prep. by $\mathrm{CH_2Cl}\text{-}\mathrm{CoCl}\text{-}\mathrm{C_5H_5N}\text{-}\mathrm{dioxan})$, m.p. 116—117°, b.p. 185°/3 mm., with Br and a trace of Fe powder in CCl₄ at 70—80° gives 26% or in CH₂Cl·CHCl₂ gives 60% of 4'-bromo-4-diphenylyl chloroacetate, m.p. 141—142·8° (also obtained from $p\text{-}\mathrm{C_6H_4Br\cdot C_6H_4}$ ·OH-p and hydrolysed thereinto), but in AcOH gives, according to the grade of AcOH and conditions, $p\text{-}\mathrm{C_6H_4Ph\cdot OH} + 4:2:6:1\text{-}\mathrm{C_8H_2PhBr_2\cdot OH}$, CH₂Cl·CO₂H + $p\text{-}\mathrm{C_6H_4Ph\cdot OAc}$, or 4-diphenylyl bromoacetate, b.p. 185°/3 mm., m.p. 112—112·5°. 2-Bromo- and 2:6-dibromo-4-diphenylyl chloroacetate have m.p. 60·5—62° and 83—84°, respectively. R. S. C. Esters of sec.-hydroxyaralkylalkylamines. J. S. Buck and R. Baltzly (J. Amer. Chem. Soc., 1942, 64, 2263—2264).— p-OMe·C₆H₄·[CH₂]₂·NH·CH₂Ph with CH₂O (1·1 mol.) and HCO₂H (5 mols.) etc. gives benzyl-β-p-anisylethylmethylamine hydrochloride (I), m.p. 170°, but the 3 : 4-(OMe)₂-compound was not thus methylated. With conc. HCl-CO₂ at 170°, (I) gives benzyl-β-p-hydroxyphenylethylmethylamine hydrochloride, m.p. 198° [O-acetate, m.p. 211°, benzoate, m.p. 191°, and -CO₂Et-derivative (prep. by ClCO₂Et-NaOH-N₂), m.p. 128—129°, hydrochlorides]. Hydrogenation (Pd-C) of the appropriate salts in 80% AcOH gives PhMe and β-p-acetoxy-m.p. 194°, β-p-benzoyloxy-, m.p. 198°, and β-p-carbethoxyoxy-phenylethylmethylamine hydrochloride, m.p. 138·5—139°. 3 : 4 : 1-(OMe)₂C₆H₃·[CH₂]₂·NHMe and CH₂PhCl-EtOH at room temp. give benzyl-β-homoveratrylmethylamine hydrochloride (30%), m.p. 205°, and thence, as above, benzyl-β-3 : 4-dihydroxy-, m.p. 153° (diacetate, m.p. 174—175°; dibenzoyloxy-, m.p. 131—132°), and β-3 : 4-diacetoxy-, m.p. 174—175°; dibenzoyloxy-, m.p. 163—164°, and β-3 : 4-diacetoxy-, m.p. 142—143°, -dibenzoyloxy-, m.p. 163—164°, and -di(carbethoxy-oxy)-, m.p. 115°, -phenylethylmethylamine hydrochloride. R. S. C. Mixed aromatic phosphates.—See B., 1943, II, 44. Use of deuterium as a tracer in the Claisen rearrangement. G. B. Kistiakowsky and R. L. Tichenor (J. Amer. Chem. Soc., 1942, 64, 2302—2304).—When nuclear-deuterated Ph allyl ethers rearrange, the D displaced migrates entirely to the O. 2:4:6:1-C₆H₂D₃·OH and 4:2:6:1-C₆H₂DMe₂·OH, prepared from the phenol by D₂O-HC! at 100°, with CH₂·CH·CH₂Br-NaOH-H₂O-COMe₂ at the b.p. give the allyl ethers, which are rearranged at 230—240° and 190—200°, respectively. The products are treated with AcCl, and the DCl-HCl mixture evolved is collected in HCl and analysed for D by infra-red absorption. Migration of D does not occur when 2:4:6:1-CH₂·CH·CH₂·C₆·H₂D₂·OH is heated at 210—230°. 2:6-Dimethyl-4-allylphenol, m.p. 26—27° (phenylurethane, m.p. 137—139°), gives an acetate, b.p. 105—110°/2 mm. R. S. C. a-Bromo- $a\beta\beta$ -tri-p-anisylethylene [synthetic estrogenic agent].—See B., 1943, III, 41. Nuclear alkylation of alkylaminophenols.—See B., 1943, II, 43. Synthesis of p-hydroxyphenyl amyl sulphide. E. Miller, F. S. Crossley, and M. L. Moore (J. Amer. Chem. Soc., 1942, 64, 2322—2323).—p-OH·C₆H₄·N₂Cl and n-C₅H₁₁·SH (I) in aq. NaOH at 10° and then 60° give p-OH·C₆H₄·S·C₅H₁₁-n (25—30%), m.p. 62—62·5°, and (n-C₅H₁₁·S)₂, b.p. 89—91°/1 mm., reduced by Na–EtOH to (I) and obtained also from n-C₅H₁₁·Br by Na₂S₂–EtOH or from (I) by I–NaOH–H₁₁O. p-OH·C₆H₄·S·C₅H₁₁-iso is similarly prepared. Polyene series. V. Employment of $\gamma-2:6:6$ -trimethyl- Δ^{1} cyclohexenyl-a-methylcrotonaldehyde for the synthesis of vitamin-A A. Spinks (J.C.S., 1942, 727—733; cf. A., 1939, II, 548).—The synthesis of vitamin-A described by Kuhn et al. (A., 1937, II, 288) could not be repeated. NaOMe (added slowly), \$\beta\$-ionone, b.p. 82°/ could not be repeated. NaUMe (added slowly), β -nonone, b.p. $62^{\circ}/10^{-2}$ mm. (regenerated from the semicarbazone), and CH₂Cl·CO₂Et in light petroleum (b.p. $40-60^{\circ}$) in N₂ first at -60° , then at 20° (18 hr.), and finally at the b.p. (6 hr.), give Et $a\beta$ -oxido- δ -2: 6: 6-trimethyl- Δ 1-cyclohexenyl- β -methyl- Δ 7-pentenoate, b.p. 55° (bath)| 10^{-3} mm., hydrolysed ($10^{\circ}/6$ KOH-EtOH at 20° ; then 4N-H₃PO₄) to the corresponding acid (I), m.p. 132° (decomp.) (poor yield) [Me ester, b.p. $70-80^{\circ}$ (bath)| 10^{-4} mm.], stable only in N₂ in the dark. There is no evidence that (I) or its esters exist in the isomeric CO-There is no evidence that (I) or its esters exist in the isomeric CO-form. There is a marked difference in the intensities of absorption at 2860 A. between the Et ester and (I) or its Me ester, and a variation in η is noted in the case of the esters; similar variations occur with the esters (below) from mesityl oxide, and are ascribed to the existence of stereoisomeric forms of the glycide acid. α-Ionone (reaction in Et₂O) similarly affords Et a β -oxido- δ -2 : 6 : 6-trimethyl- Δ^2 -cyclohexenyl- β -methyl- Δ^γ -pentenoate, b.p. 135—145°/0-2 mm., 70° (bath)/10-4 mm.; the derived acid (II) did not crystallise. Mesityl (bath)/10⁻⁴ mm.; the derived acid (II) did not crystallise. Mesityl oxide and CH₂Cl·CO₂Et-NaOMe-Et₂O give a mixture of Et, b.p. 65° /l mm., and Me a β -oxido- $\beta\delta$ -dimethyl- Δ^{γ} -hexenoate, b.p. 60° /l mm., hydrolysed to the acid (III), m.p. 72°. The oxido-group in the above esters largely resembles an ethylenic linking in absorption properties. Crude (I) and Cu at 130° /l5 mm. (1·5 hr.) afford a non-ketonic fraction, b.p. $80-90^{\circ}/0.1$ mm., and $\gamma - 2:6:6$ -tri-methyl- Δ^1 -cyclohexenyl-a-methylcrotonaldehyde (IV), b.p. 45° (bath) 10^{-4} mm. (phenylsemicarbazone, m.p. 182° ; 2:4-dinitrophenylhydrazone, m.p. 164.5°), purified by regeneration from the thiosemicarbazone, m.p. 192°, by steam-distillation in presence of o-C₆H₄(CO)₂O in N₂. The aß-unsaturated nature is shown by its absorption spectrum (cf. Ishikawa et al., A., 1937, II, 426). (II) is decarboxylated similarly y-2.6.6.6-trimethyl- Δ^2 -cyclohexenyl-a-methylcrotonaldelya, b.p. 45 (bath)/10-4 mm. (regenerated from the thiosemicarbazone, m.p. 188–151°, phenylsemicarbazone, m.p. 123–124°; 2:4 dinitrophenylhydrazone, m.p. 148.5–149.5°), with light absorption data analogous to those of (IV). The two aldehydes described by Ishikawa et al. (loc. cit.) are probably identical, being derived from a-ionone. (III) and Cu at 145°/760 mm. give a mixture, b.p. 125–135°, which affords, through the semicarbazone, m.p. 184°, (mainly) ay-dimethyl- Δ^a -pentenaldehyde, CHPh β :CMe·CHO, b.p. 130–135° (phenylsemicarbazone, m.p. 178°; 2:4-dinitrophenylhydrazone, m.p. 164–165°). (IV), COMe, and Al(OBu'), in C₈H₄, and N. give η -2:6:6-trimethyl- Δ^1 -cyclohexenyl-z-methyl- Δ^1 -e-heptadien- β -one, b.p. 75–80° (bath)/10-4 mm. [semicarbazone, m.p. 189–190° (decomp.)], converted by MgEtBr into θ -2:6:6-trimethyl- Δ^1 -cyclohexenyl- χ -dimethyl- Δ^3 -octadien- γ -ol, b.p. 70–80° (bath)/10-4 mm.
CH:CNa [from C₂H₂ and Na (not NaNH₂) in liquid NH₃] and citral in Et₂O give a-acetylenylgeraniol (V), CMe₂:CH·[CH₂]₂·CMe:CH·CH(OH)·C:CH, b.p. 88°/0-02 mm., which with Ac₂O-C₅H₅N at 100° in N₂ affords the acetate, b.p. 92—95°/0-5 mm. (absorption spectrum similar to that of the carbinol); prolonged treatment of (V) with Ac₂O at 110° gives (mainly) si-dimethyldeca- Δ^{ν} -iriene- Δ^a -inene. (IV) similarly yields ζ -2:6:6-trimethyl- Δ^1 -cyclohexenyl- δ -methylhex- Δ^5 -ene- Δ^a -inen- γ -ol, b.p. 115—120°/10-3 mm.; the acetate, b.p. 130—135°/0-1 mm., shows light absorption data indicating some migration of a double linking. Polyene series. VI. Preparation of ethinylcarbinols from $\alpha\beta$ -unsaturated aldehydes. VII. Carbinols from propargyl acetal.—See A., 1943, II, 53, 54. Physiologically active phenylethylamines containing a tert. hydroxyl, C. M. Suter and A. W. Weston (J. Amer. Chem. Soc., 1942, 64, 2451—2452).—The appropriate Grignard reagent and COPh-CHR·NHR',HCl give β-hydroxy-β-phenyl-n-butyl-, m.p. 180—181° (lit. 183·5°, 184—186°), and -n-hexyl-amine hydrochloride, m.p. 151—152°, β-amino-γ-phenyl-n-butan-, m.p. 239—239·5° (decomp.) (lit. 244°), -n-pentan-, m.p. 220·5—222° (decomp.), -n-heptan-, m.p. 213—216° (decomp.), and -n-monan-, m.p. 193—200° (decomp.), -γ-ol hydrochloride, β-amino-α-cyclohexyl-α-phenylpropan-α-ol hydrochloride, +2H₂O, m.p. 261—263° (decomp.), β-methylamino-γ-phenyl-n-butan-, m.p. 234—235° (lit. 245—248°), -n-pentan-, m.p. 197·5—198·5° (decomp.) (lit. 192°), -n-hexan-, m.p. 182·5—183·5° (decomp.), -n-heptan-, m.p. 149—150°, and -Δ^c-n-hexen-, m.p. 166·5—167·8°, -γ-ol hydrochloride. M.p. are corr. Alk in the grouping CAlk-C·NH has little effect on the pressor activity but reduces the toxicity. Some of the products are irritant (rabbits' cornea). Hexamethylene O-acylmandelates.—See B., 1943, III, 41. Preparation of phenylpropiolic acid. M. Reimer (J. Amer. Chem. Soc., 1942, 64, 2510).—Prep. of CPh $^{*}_{1}$ C·CO $_{2}$ H from CHPh $^{*}_{1}$ CH·CO $_{2}$ H by way of the dibromide (prep. in boiling CCl $_{4}$) is improved to 76% over-all yield. R. S. C. Nitration of 4-diphenylyl benzoate. S. E. Hazlet and H. O. Van Orden (J. Amer. Chem. Soc., 1942, 64, 2505—2506).—p-C₆H₄Ph-OBz with fuming + conc. HNO₃ in AcOH at room temp. gives 4'-nitro-4-diphenylyl benzoate, m.p. 209—210°, also obtained from p-NO₂·C₆H₄·C₆H₄·OH-p. 2-Nitro-, m.p. 111°, 2:6-, m.p. 157—158°, and 2:4'-dinitro-, m.p. 151—152°, and 2:6:4'-trinitro-4-diphenylyl benzoate, m.p. 168°, are described. Chemical constitution and the tanning effect I. Simple esters and polyesters of gallic acid. A. Russell and W. G. Tebbens, jun. (J. Amer. Chem. Soc., 1942, 64, 2274—2276).—Gallic acid and ROH-HCl give n-amyl (I), m.p. 127°, and n-hexyl gallate (II), m.p. 92°. 3:4:5:1-(OAC)₃C₆H₂·COCl and d-arabitol in quinoline—CHCl₃ at room temp. give d-arabityl pentariacetylgallate, m.p. 72° after sintering, hydrolysed by NaOH-H₂O-COMe₂-N₂ at 0° to d-arabityl pentagallate (III), m.p. 83° after sintering. Relative tanning properties are: very good, gallotannin; fair, (III), dl-crithrityl tetragallate, mannityl and sorbityl hexagallate, m.p. 76° after sintering; poor, ethylene glycol di- and glyceryl tri-gallate; none, gallic acid, Me, Et. Pra, Prb, and Bua gallate, (I), (II). (CH₂·OH)₂, glycerol, dl-erythritol, d-arabitol, sorbitol. R. S. C. Condensation of phenylglyoxylic acid with phenylacetonitrile. M. Cordier and J. Moreau (Compt. rend., 1942, 214, 621—623; cf. A., 1935, 975).—COPh·CO₂H and CH₂Ph·CN condense with difficulty in presence of aq. alcoholic alkali, but in piperidine (\sim 2 mols.) alone, a-hydroxy- β -cyano-a β -diphenylpropionic acid, decomp. slowly >180° or more rapidly \sim 210°, is obtained (40% yield). It is converted by HCl-AcOH at 100° into (CPh·CO)₂O. A. T. P. Symmetrical cyanostilbenes. J. B. Niederl and A. Ziering (J. Amer. Chem. Soc., 1942. 64, 2486—2487).—CH₂Ar-CN with I-NaOMe—MeOH-Et₂O gives ~35% of αβ-dicyano-4: 4'-dimethoxy- m.p. 187°. 3: 4: 3': 4'-dimethylenedioxy- m.p. 235°, and -tetramethoxy-stilbene, m.p. 205°. 4: 4-Dihydroxy-αβ-dicyanostilbene, m.p. 287° (diacetate m.p. 217°), obtained (diazo-method) from the (NH₂)₂-derivative shows some œstrogenic activity. CHArEt-CN with I-NaNH₃ in Et₂O gives ~25° of γδ-dicyano-γδ-diphenyl-, m.p. 175°, and -di-3: 4-methylenedioxyphenyl-n-hexane, m.p. 213°. p-NO₃·C₆H₄·CHEt-CN (prep. from CHPhEt·CN by fuming HNO $_3$ at 0°), b.p. $165^\circ/3$ mm., with I–NaOMe gives $\gamma\delta$ -dicyano- $\gamma\delta$ -di-p-nitro-, m.p. 225° , and thence-p-amino-, m.p. 205° , and -p-hydroxy-, m.p. 218° , -phenyl-n-hexane. Reactions, CH₂R·CN (R = 3:4-CH₂O₂·C₆H₃) + Et₂CO₃-Na-C₆H₄ (60°) - CN·CHR·CO₂Et, b.p. $161^\circ/3$ mm. + (+EtI-NaOEt-EtOH) - CN·CEtR·CO₂Et, m.p. 72° + (cold alkali) CN·CEtR·CO₂H, m.p. 110° + (180°) CHEtR·CN, b.p. $174^\circ/5$ mm., are reported. R. S. C. Acrylonitrile. I. Cyanoethylation of active methylene groups. H. A. Bruson (J. Amer. Chem. Soc., 1942, 64, 2457—2461).—In presence of strong bases, CH₂:CH·CN (I) adds to reactive > CH₂ giving > CH·(CH₂)₂·CN and then > C([CH₂)₂·CN)₂. 40% aq. CH₂Ph·NMe₃·OH (II) is an excellent catalyst; solvents (dioxan. Bu⁷OH) and cooling are advisable to control the reaction. Fluorene thus affords 9:9-di-β-cyanoethylfuorene (74%), m.p. 121°. Indene gives 1:1-di-, b.p. 210—220° (2 mm., and much 1:1:3-tri-β-cyanoethylindene, m.p. 65°, b.p. 280—290°/1 mm. Anthrone gives 9:9-di-β-cyanoethylanthr-10-one, m.p. 215°. 2-Nitrofluorene gives 2-nitro-9:9-di-β-cyanoethylfuorene (~100%), m.p. 236—237°. In absence of a base, cyclopentadiene (III) and (I) give (Diels-Alder) exothermally 2:5-endomethylene-Δ³-tetrahydrobenzonitrile, b.p. 80—85°/11 mm., but in presence of (II)-dioxan at 20—25° give hexa-β-cyanoethylcyclopentadiene, m.p. 203°, and liquids, b.p. 100—280°/1 mm. Similarly, dimethylfulvene and (I) alone give 2:5-endo-Δ*-isobutenylidene-Δ³-tetrahydrobenzonitrile, m.p. 87°, b.p. 95—100°/1 mm., but in presence of (II) give impure β-cyanoethyl derivatives. ωω-Dimethylbenzofulvene with (I) and (II) in dioxan at 25—35° gives a β-cyanoethyl derivative, m.p. 121°, but Diels-Adder products are resinous. Alkaline hydrolysis converts the products into 9:9-di-β-carboxyethylfuorene, m.p. 273—274°, 1:1:3-tri-β-carboxyethylfuorene, m.p. 161—162°, 9:9-di-β-carboxyethylanthr-10-one, sinters 220°, decomp. 230°, and hexa-β-carboxyethylanthr-10-one, sinters 220°, decomp. 230°, and hexa-β-carboxyethylcyclopentadiene, m.p. 181°. CH₂:CH·CO₂R (R = Me or Et) does not replace (I), but with (III) undergoes Diels-Alder reaction giving Me, b.p. 71—73°/8 mm., or Et 2:5-endomethylene-Δ³-tetrahydrobenzoate, b.p. 84—85°/10 mm. CHMe:CH·CN with (II) and indene or (III) gives resinous products, but with fluorene gives 9-β-cyanoisopropylfhorene, m.p. 92—93°. Preparation of aromatic dinitriles.—See B., 1943, II, 45. Esters of Δ^4 -tetrahydrophthalic acid.—See B., 1943, II, 44. Stereochemistry of catalytic hydrogenation. I. Stereochemistry of the hydrogenation of aromatic rings. R. P. Linstead, W. E. Doering, S. B. Davis, P. Levine, and R. R. Whetstone. II. Preparation of the six inactive perhydrodiphenic acids. III. Optically certive perhydrodiphenic acids. active perhydrodiphenic acids. Proof of the configuration of the backbone. R. P. Linstead, W. E. Doering, and (in part) F. H. Slinger. IV. Hexahydrodiphenic acids. R. P. Linstead and S. B. Slinger. IV. Hexahydrodiphenic acius. R. P. Davis. V. Assignment of cis and trans configurations. R. P. Linstead, S. B. Davis, and R. R. Whetstone. VI. Hydrogenation of 9-phenanthrol and related substances. Identification of three of the possible stereoisomeric forms of the perhydrophenanthrene ring. R. P. Linstead, R. R. Whetstone, and P. Levine. VII. Complete N. P. Linstead, R. R. Wiletstone, and F. Levine. VII. Complete hydrogenation of phenanthraquinone. R. P. Linstead and P. Levine (J. Amer. Chem. Soc., 1942, 64, 1985—1991, 1991—2003, 2003—2006, 2006—2009, 2009—2014, 2014—2022, 2022—2026).—I. Theoretical. Nomenclature and structural representation are those Previously proposed [A., 1939, II, 307; cf. (I) and (V) below]. For, e.g., hydrogenated 9-phenanthrones and Me H diphenates etc. the configuration of the C_6 -ring adjacent to the CO, CO_2 Mc, etc. is named first. In work described below (9 cases) and in the literature (reviewed), complete hydrogenation of mono-, di-, and tri-cyclic aromatic hydrocarbons, OH-compounds, acids, and derivatives of acids in presence of PtO_2 at room temp. gives mainly cis- and synderivatives, e.g., (I). This unilateral addition of H_2 is due to (a) complete hydrogenation occurring during a single period of adsorption on the catalyst, (b) "catalyst hindrance" (see below), and (c) diphenic acid etc. being hydrogenated in the coiled phase, i.e., with the CO₂R contiguous. Catalyst hindrance occurs when the configuration of the reactant-catalyst adsorption complex is such that the surface of the catalyst prevents access of the reagent to some portion of the reactant; it is shown diagrammatically to reduce trans and anti addition of H in the phenanthrene and diphenic acid II. Configurations assigned below are proved in later work. The six possible dodecahydrodiphenic acids are prepared; three other acids so described previously are accounted for. cis-syn-cis-Dodecahydrodiphenic acid (I), m.p. 287—289° (varies with the rate of heating) (Linstead et al., A., 1939, II, 322; Vocke, A., 1934, 189; m.p. 273°), is half-inverted by way of the Me H ester to the cis-syn-trans-acid (II), dimorphic, m.p. 199—200° and 173—175°, and completely inverted by acid at high temp. to the trans-syn-trans- acid (III), m.p. $221-223^\circ$ (loc. cit., 200°). Similarly, the cis-anticis-acid (IV), m.p. $197-198\cdot 5^\circ$, gives the cis-anti-trans- (V), m.p. 205.5—206.5°, and trans-anti-trans-acid
(VI), sinters at 237°, m.p. 246—248° (loc. cit. 244°). When cis-Me H (or Me₂) esters are 246—248 (loc. cit. 244*). When cis-Me H (or Me₂) esters are hydrolysed by KOH-MeOH, inversion to the more stable transform occurs only at the C adjacent to CO₂Me. Diphenic acid (VII) (modified prep.; Me H ester, mp. 110—111°) with H₂-PtO₂ in AcOH at 60 lb. gives (I) (53%), (IV) (10%), (II) (7%), cis-1.2:3:4:5:6-hexahydrodiphenic acid (VIII) (10%), m.p. 241—242 (bath initially at 235°) (cf. loc. cit.), and unchanged (VII) (20%); the by-products are separated by fractional acidification of the Na salts in H O at the big. followed by orthodox methods. (20%); the by-products are separated by fractional acidification of the Na salts in H_2O at the b.p., followed by orthodox methods. Hydrogenation in EtOH is slower but also gives mainly (I). The anhydride, new m.p. $146-147^\circ$, of (I) with NaOMe-MeOH at room temp. gives the cis-syn-cis-Me H ester (IX) (76.5%), m.p. $128.5-129.5^\circ$, and with boiling MeOH + a drop of 15% oleum gives (IX) (30%) and the cis-syn-cis-Me₂ ester (X), m.p. $73-74^\circ$. In boiling MeOH + 2% of 15% oleum, (I) gives 95% of (X) and 2.5% of (IX), with CH_2N_2 (excess) in dioxan gives (X) (89%), or with CH_2N_2-EtOH (1 equiv.) gives also some (IX). $CH_2N_2-Et_2O$ converts (IX) into (X). Boiling conc. HCl-AcOH hydrolyses (IX) or (X), without inversion, to (I); aq. 20% NaOH also hydrolyses (IX) to (I). Boilinto (X). Boiling conc. HCI—Acort hydrolyses (IX) to (I), without inversion, to (I); aq. 20% NaOH also hydrolyses (IX) to (I). Boiling NaOMe—MeOH followed by a little H₂O partly inverts and then hydrolyses (IX), yielding (II). KOH in boiling commercial MeOH causes complete inversion of (X), yielding (III). NaOMe in boiling, causes complete inversion of (X), yielding (III). NaOMe in boiling, freshly dried MeOH converts (IX) by half-inversion without hydrolysis into the trans-syn-cis-Me H ester (XI), m.p. 97—99°; this change is very facile, for MeOH distilled from BaO may contain enough alkali to convert the anhydride of (I) into (XI). CH2N2 (excess) converts (II) or (XI) into the trans-syn-cis-Me, ester (XII), m.p. 12.5—14.5°, hydrolysed by boiling conc. HCl-AcOH to (II) and the cis-syn-trans-Me H ester, m.p. $101.5-102.5^{\circ}$. Boiling Ac.O converts (II) into the cis-syn-trans-anhydride, m.p. 104-Ac₂U converts (II) into the crs-syn-trans-annydride, in.p. 104-104·5° (cf. Marvel et al., A., 1941, II, 15), and some oily polymeride, both reconverted into (II) by boiling aq. alkali. CH₂N₂ converts (III) into the trans-syn-trans-Me₂ ester (XIII), m.p. 56—57·5°, reconverted into (III) by boiling HCl-AcOH. The trans-syn-trans-anhydride [prep. from (III) by Ac₂O], m.p. 105—106·5°, in boiling dry MeOH gives the trans-syn-trans-Me H ester, m.p. 115·5—117·5°, converted by acid or (noor yield) alkali into (III) and by CH.N. converted by acid or (poor yield) alkali into (III), and by CH₂N₂ into (XIII). Boiling NaOMe-MeOH completely inverts (X), without hydrolysis, yielding (XIII), which is also obtained by partial inversion and hydrolysis of the cis-syn-trans-Me H ester by KOH-MeOH. With boiling Ac_2O , (**IV**) gives the cis-anti-cis-anhydride, forms, m.p. $95-96^\circ$ and $99-100^\circ$, and thence (MeOH) the cis-anti-cis-Me H ester (**XIV**), m.p. $97\cdot5-99^\circ$, converted by CH_2N_2 [as is (**IV**)] into the cis-anti-cis-Me₂ ester (**XV**), m.p. $43-44\cdot5^\circ$; both esters are hydrolysed by HCl-AcOH to (**IV**). KOH-MeOH converts (**XV**) (inversion) into (**XV**) (anhydrid) and O(1)verts $(\mathbf{X}\mathbf{V})$ (inversion) into (\mathbf{V}) (anhydride, m.p. $91.5-93^{\circ}$) and $(\mathbf{X}\mathbf{V})$ into $(\mathbf{V}\mathbf{I})$ (Me_2 ester, m.p. $84.5-86^{\circ}$). The acid, m.p. 213° , of Vocke (loc. cit.) is probably impure (III). The acid, m.p. of Marvel et al. (loc. cit.) is a dimorph of (II). The acid, m.p. 203° of Linstead et al. (loc. cit.) is dodecahydrodiphenyl-1: 2'-dicarboxylic acid; its predecessors, the unsaturated ketones, m.p. 94° and 39°, have the spiran structures proposed by Woodward (A., 1942, II, 164), and the saturated ketones are the cis- and trans-forms of the perhydrospirans. III. In the syn-series of dodecahydrodiphenic acids only the intermediate cis-trans-form is resolvable; in the anti-series all three forms are resolvable. Prep. of active forms of (II), (IV), and (VI), and resistance of (I) and (III) to resolution prove the configurations assigned above to (I)—(VI). Five alkaloidal salts of (I) were cryst. assigned above to (1)—(V1). Five airaining at saits of (1) were crystabut regenerated inactive acids. Its Me H ester (IX) is, however, resolved by cinchonidine into the I- and d-Me H esters, m.p. 133-5—134-5°, $[a]_D^{27} = 10.7 \pm 0.3^\circ$, $+10.3 \pm 0.3^\circ$ in 95% EtOH. The I-ester is hydrolysed by conc. HCl-AcOH to (I), a 0, and with CH₂N₂ gives (X), a 0, thus conclusively proving the meso-nature of (I). With NaOMe-MeOH at room temp. (later a little H₂O is added), With NaOMe-MeOH at room temp. (later a little H_2O is added), the l- and d-esters give, by partial inversion and hydrolysis, the d-, m.p. $170-174^\circ$, $[a]_2^{B^0} + 75^\circ$, and l-, m.p. $171-174^\circ$, $[a]_2^{B^0} - 75^\circ$ in EtOH, -cis-syn-trans-acids, respectively. (III) (brucine salt, cryst.) resists resolution. Cinchonidine yields the l-, m.p. $239-241^\circ$, $[a]_2^{B^0} - 45 \pm 1^\circ$ (cinchonidine salt, m.p. $204\cdot 5-205\cdot 5^\circ$), and d-cis-anticis-acid (XVI), m.p. $238\cdot 5-240\cdot 5^\circ$, $[a]_2^{B^0} + 43 \pm 1^\circ$ in 95% EtOH. of (XVI) is inverted by boiling KOH-MeOH, yielding the l-form, m.p. $257-258\cdot 5^\circ$, $[a]_2^{B^0} - 79\cdot 5 \pm 5^\circ$ in 95% EtOH, of the trans-antitrans-acid; the d-form, m.p. $257\cdot 5-259^\circ$, $[a]_2^{B^0} + 77\cdot 5^\circ$ in EtOH, is prepared by way of the ephedrine salt of the acid and with the l-form regenerates (VI). IV. Absorption of 3 H₂ by (VII) in presence of PtO₂ in AcOH yields (I) (25%), (VIII) (25%), and unchanged (VII) (40%). H₂-PtO₂ in AcOH converts (VIII) into (I) (77%), reaction being again homogeneously cis-syn in contrast to the results of Vocke (loc. cit.) binding Nie. The presence of an aromatic ring in (VIII) is proved by prep. of a NO_2 -derivative, dimorphic, m.p. $201-202^\circ$ and $218-219^\circ$ (yields an amine which diazotises and couples with β - $C_{10}H_7$ ·OH). In boiling Ac_2O , (VIII) yields an oily anhydride, regenerating (VIII) by hydrolysis (boiling dil. HCl). At the m.p., (VIII) is isomerised to the *trans*-hexahydrodiphenic acid (XVII), m.p. $220-221.5^\circ$ (NO_2 -derivative, forms, m.p. $218-219^\circ$ and 224 225°) (cf. Vocke, loc. cit.), best purified by way of the anhydride (XVIII), m.p. 115—116°. At 243±3° (XVIII) is equilibrated with the cis-form, but 70% of (XVIII) is recovered; some CO₂ is evolved. Hydrogenation of (XVII) yields homogeneously (<84%) (II). V. The following and known reactions prove the cis-configuration of (VIII), (I), and (IV), and the trans-configuration of (XVII). (III), and (VIII) and (VIII) and (VIII) and (VIII) and (VIII) and (VIII). and (VI), and correlate the 9-keto-as-octahydrophenanthrenes with the hexahydrodiphenic acids. Oxidation of (VIII) by HNO3 or ${\rm KMnO_4}$ was unsuccessful, but by ${\rm O_3}$ in AcOH (later ${\rm H_2O_2}$) gives cis-hexahydrophthalic [-cyclohexane-]: 2-dicarboxylic] acid, separated from unchanged (**VIII**) by partial acidification of the salt and identified by conversion into the dianilide, m.p. 237-5—238° (lit. 234°), and phenylimide, m.p. 132°; the dianilide, m.p. 317—318°, of trans-hexahydrophthalic acid (XIX), new m.p. 227—229° (preheated to 200°), yields no phenylimide. The structure of 9-keto- Δ^{10} -dodecahydrophenanthrene and its precursors (Rapson *et al.*, A., 1935, 1498) is proved by ozonisation in AcOH to give trans-2-ketodicyclohexyl-2'-carboxylic acid, an oil (oxime, m.p. 162-163°), converted by Ac2O into the The liquid cis-9-keto-1: 2: 3: 4: 9: 10: 11: 12-octahydrophenanthrene (XXI) (above) of (VIII) (proof of structure). trans-9-Keto-1: 2: 3: 4: 9: 0: 13: 4: 9: 10: 11: 12-octahydrophenanthrene (XXI) (above) of (VIII) (proof of structure). trans-9-Keto-1: 2: 3: 4: 9: 10: 11: 12-octahydrophenanthrene (XXI) (above) of (VIII) (proof of structure). trans-9-Keto-1: 2: 3: 4: 9: 10: 11: 12-octahydrophenanthrene (XXII) gives a (NO_2)₃-derivative, m.p. $182\cdot5-183\cdot5^\circ$, and the NO_2 -derivative of (XVII). VI. Pt-hydrogenation of phenanthrene hydrocarbons, alcohols, and ketones is substantially cis-syn. 9-Phenanthrol (XXIII) (modified prep.) with H₂-PtO₂ in AcOH gives a hydrocarbon, b.p. 121°/3 mm., cis-syn-cis-tetradecahydro-9-phenanthrol (XXIV), m.p. 110·5—111°, and a small amount of 1:2:3:4:5:6:7:8-octahydro-9-phenanthrol (XXV), m.p. 134·5—135°; H₂-Raney Ni in EtOH at 120°/123 atm. gives mainly (XXV) (best method of prep.) (cf. von Braun et al., A., 1926, 172; m.p. 133°), which is obtained also with difficulty from Na s-octahydrophenanthrene-9-sulphonate and KOH at phenanthrene-9-sulphonate and KOH at 290—300°. (XXIV) is converted into (I) by $\mathrm{HNO_3}$ at 100° and thus has the configuration stated; configuration at $\mathrm{C_{(9)}}$ oH inguration stated; configuration at $C_{(g)}$ is uncertain, but on the hypothesis of catalyst hindrance is as shown. 2-Phenyleyelohexanone (**XXVI**) and $CH_2Br\cdot CO_2Et$ give the OH-ester (80%), and thence (PCl₅- C_6H_6) an unsaturated ester (77%), b.p. 146—153°/3 mm., and 2-phenyl- Λ^1 -cyclohexenylacetic acid (93%), m.p. 92—93°, hydrogenated (Pd. 40 CH) to che 2-phenylacetic particles (194%). genated (Pd-AcOH) to cis-2-phenylcyclohexylacetic acid (XXVII) m.p. 168—170°, and some of the trans-isomeride, m.p. 113·5—114·5 m.p. $168-170^{\circ}$, and some of the trans-isomeride, m.p. $113\cdot 5-114\cdot 5^{\circ}$ (XXVIII) (not isolated); in
H_2SO_4 , pure (XXVII) gives (XXI); the mother-liquors from (XXVII) give (XXII) (cf. Cook et al., loc. cit.). I-Hydroxy-2-phenylcyclohexylacetic acid (prep. by hydrolysis of the ester; 75%), m.p. $128-129^{\circ}$, with Ac₂O (cf. loc. cit.) gives 17% but with boiling (Pr^aCO)₂O gives 35% of 2-phenylcyclohexylideneacetic acid, m.p. $168-170^{\circ}$ [with KMnO₄ gives (XXVI); equilibration by alkali gives mainly the Δ^{BV} -acid]; hydrogenation thereof is usually cis, giving (XXVII), but in presence of Pd in C_4H_6 gives 33% of (XXVIII) (best method of prep.) with 57% of (XXVII). With 1 H_4 in presence of EtOH, (XXI) gives 93% of cis-1 2:3:4:9:10:11:12-octahydro9-phenanthrol (XXIX), m.p. $115-116^{\circ}$ (loc. cit., m.p. $114-115^{\circ}$), which probably (catalyst hindrance) has the structure shown; however, (**XXII**) gives varying amounts of $C_{(9)}$ -epimeric transl: $2:3:4\cdot 9:10:11:12$ -octahydro-9-phenanthrols, m.p. 90—91° and 100—101°. Na-EtOH reduces (**XXI**) to a mixture, including (XXIX); Al(OPr\beta)_3-Pr\betaOH gives an inseparable mixture; mols.)-Pd in EtOH gives mainly (?) cis-1:2:3:4:9:10:11:12-octahydrophenanthrene, b.p. 121—122°/4—5 mm. (lit. 129°/6 mm.), and a little (XXIX). Perhydrogenation of (XXI) or (XXIX) often and a little (XXIX). Perhydrogenation of (XXI) or (XXIX) often leads to elimination of O; e.g., with H₂-PtO, in EtOH + (little) AcOH it gives a hydrocarbon, b.p. 109—111°/4 mm., with a little (XXIV). With H₂ (3·4 mols.) and PtO₂ in EtOH, (XXI) gives (XXIV). (XXIX), an epimeride (XXX). m.p. 132·5—133·5°, of (XXIX), and a mixture (A), m.p. 85—87°, which yields (XXIV) (10%), and (XXXX) (30%); similar perhydrogenation of (XXIX) gives (XXIV) (47%) and (A) (10%). CrO₃-AcOH at 0° (later room temp.) oxidises (XXIV) to cis-syn-cis-9-heiotetradecahydrophenanthrene (XXXI), m.p. 43—44°, but at 100° gives the trans-syn-cis-isomeride (XXXII), m.p. 56·5—57·5° [oxime, m.p. 224—225°, regenerates (XXXII)]; Al(OBu^y)₃-COMe₂-C₀H₆ gives a mixture. Structures are proved by oxidation (HNO₃) of (XXXI) to [I] and of (XXXII) to (II). Relations of (XXXI) and (XXXII) naulel those of the 1-ketodecahydronaphthalenes: boiling NaOEt-EtOH effects the change, (XXXI)—(XXXII); (XXXI) gives an oxime, m.p. 150—151°, unstable in hot EtOH, but gives directly the 1-dinitrophenylhydrazone, m.p. 236—238° (decomp.), of (XXXII). H₂-PtO₂ in EtOH reduces (XXXII) to trans-syn-cisteradecahydro-9-phenanthrol, m.p. 88—89°. The ketone, m.p. 57°, of Marvel et al. (A., 1941, II, 15, 357) was (XXXII), but its precursor, the alcohol, m.p. 67°; is of uncertain structure CN-CH₂-CO₂Et, (XXVI), and NH₄OAc in C₆H₆-AcOH at 140—160° give crude Et 2-phenylcyclohexylidenecyanoacetate (54%), b.p. 174°/4 mm. [by reduction (H₂-PtO₂-EtOH or Al-Hg-Et₂O) and then hydrolysis gives (XXVII)], containing some 10-cyano-1:2:3:4-tetrahydro-9-phenanthrol (8%), m.p. 230—231° [benzoate, m.p. 183—184°; picrate, m.p. 185—190° (decomp.); Na salt, formed by aq. Na₂CO₃; resists hydrolysis]; the latter product is obtained from the former by heating at 200—220°. VII. Hydrogenation (Pt; Ni) of phenanthraquinone (modified prep. and purification) gives mainly cis-syn compounds. H₂-PtO₂ in AcOH at 4 atm. gives slowly α_scis-syn-cis-tetradecahydrophenanthrene-9:10-diol (XXXIII), m.p. 173·9—174·4° (dibenzoate, m.p. 153·5—154°, prep. in C₅H₅N). In presence of Raney Ni in EtOH at 110°/80 atm., 6 mols. of H₂ are absorbed (cf. von Braun et al., loc. cit.), but at 160°/170 atm. 8 mols. are absorbed, yielding, from 26 g., β- (7·54 g.), m.p. 173·9—174·4° [depresses the m.p. of (XXXIII)] (dibenzoate, m.p. 115·5—116°), and γ-cis-syn-cis- (XXXIV) (3·96 g.), m.p. 154·5—155·5° (dibenzoate, m.p. 114·2—115°), and α-cis-syn-trans-tetradecahydrophenanthrene-9:10-diol (XXXV) (0·138 g.), m.p. 184—184·5°. By H₂-Raney Ni in EtOH at 120°, 9:10-dihydroxys-decahydrophenanthrene, m.p. 135—136° (diacetate, m.p. 160—161°) (cf. Skita, A., 1926, 173), is obtained. All the diols give Criegee's test for I:2-diols. The structures of the cis-syn-cis-diosl are proved by oxidation [Pb(OAc)₄-C₆H₆, KIO₄, CrO₃-AcOH, or AcO₂H; less well, Beckmann's mixture; not KMnO₄, HNO₃, or KOBr] to (I); the formulæ (a) (meso), (b) (meso), and (c) (dl) are available for the a-, β -, and γ -diols, but the precise allocation thereof is unknown. Similar oxidation to (II) proves the cis-syn-trans structure of (XXXV), for which four formulæ (all dl), differing at $C_{(9)-(10)}$, are available. Dehydration of the diols by activated or pptd. Al₂O₃ gives only a trace of ketone; (XXXIV) with KHSO₄ at 150—160° gives a compound, $(C_{14}H_{22}O)_x$ (x may be 1), m.p. 202—203°, and a substance giving a crude oxime, m.p. 190—200°. M.p. (all parts) are corr. Dehydration of αβ-distyryl[ethylene] glycol by sulphuric acid. Formation of γ-phenyl-α-styryl-Δα-butenaldehyde by a hydrobenzoin change followed by displacement of a double linking. Y. Deux (Compt. rend., 1942, 214, 269—271).—[CHPh.CH·CH·CH·CH·OH)·]₂, m.p. 158° (? di-p-nitrobenzoate, m.p. 186°), obtained by reduction of CHPh.CH·CHO with Zn-Cu in aq. EtOH, is converted by boiling 20% H₂SO₄ into γ-phenyl-α-styryl-Δα-butenaldehyde (I), b.p. 158—160°/5 mm. (semicarbazone, m.p. 210—211°; oxime, m.p. 135—136°). (I) is oxidised (KMnO₄) to BzOH and CH₂Ph·CO₂H, and hydrogenated (Raney Ni) to (Ph·[CH₂]₂)₂CH·CHO (semicarbazone, m.p. 155—156°; oxime, m.p. 98—99°), which is oxidised (Ag₂O) to the corresponding acid, b.p. 210—212°/4 mm. (amide, m.p. 165°; anilide, m.p. 150°), also obtained by decarboxylation of (Ph·[CH₂]₂)₂C(CO₂H)₂. ortho-Alkylation and -arylation of mesityl aryl ketones. R. C. Fuson and S. B. Speck (J. Amer. Chem. Soc., 1942, 64, 2446—2448). —The OMe of o-methoxyaryl mesityl ketones is replaced by R by treatment with MgRHal. 2:4:6:1-C₆H₂Me₃·COCl (I), the appropriate aryl compound, and AlCl₃ in CS₂ at room temp. give 4-methoxy-m-tolyl (II), m.p. 103°, 2-methoxy-1-naphthyl (III), m.p. 109—110°, and m-anisyl mesityl ketone (IV), m.p. 76°. o-Anisyl mesityl ketone (V), m.p. 112—113°, is obtained from o-OMe·C₆H₄·MgBr and (I) in Et₂O. With Et₂O-C₆H₆-MgPhBr at 30° or 60°, (V) gives o-diphenylyl (VI) (35%), m.p. 89° (cf. A., 1942, II, 315), or 2:6-diphenylphenyl mesityl ketone (VII) (20%), m.p. 162°, respectively; 2·5% and traces of (VII) are obtained from MgPhBr with 2:4:6:1-C₆H₆Me₃·CO·C₆H₆Br-o and (VI), respectively. The product (A., 1942, II, 311) from (V) and o-OMe·C₆H₄·MgBr is 2-methoxy-2'-mesitoyldiphenyl. With MgPhBr, (II) affords 4-phenyl- (18%), m.p. 73°, and 2·4-diphenyl- (20%), m.p. 131°, and with MgEtBr gives 4-ethyl- (28%), m.p. 58°, m. tolyl mesityl ketone. MgRHal and (III) give 2-phenyl- (59%), m.p. 136° 2-a-naphthyl- (76%), m.p. 181°, 2-methyl- (56%), m.p. 67° (also obtained from 2:1-C₁₀H₆Me·COCl by C₈H₃Me₃-AlCl₃ or C₆H₂Me₃·MgBr), 2-ethyl- (80%), m.p. 90°, and (IV) give a little (1) mesityl 4-methoxy-2-diphenylyl ketone, m.p. 194—195° (corr.) Effect of methoxyl toward stabilising ene-diols. R. P. Barnes and W. M. Lucas (J. Amer. Chem. Soc., 1942, 64, 2258—2259).—p-OMe has a greater stabilising effect on benzoin and the enediol than has o-OMe. 2:2'-Dimethoxybenzoin (I) with $Ac_2O-KOAc$ at 100 gives the acetate, m.p. 102° , converted by further boiling into a little $a\beta$ -diacetoxy- $a\beta$ -di-o-anisylethylene (II), m.p. 149° , stable to boiling KOAc-AcOH, but hydrolysed by boiling H_2SO_4 -aq. EtOH (not conc. H_2SO_4 -N₂ at 0°) to (I). However, 4:4'-dimethoxybenzoin gives an acetate, m.p. $93\cdot5^\circ$, not convertible into the Ac_2 compound. $a\beta$ -Diacetoxy- $a\beta$ -di-p-anisylethylene [prep. from (p-OMe·C₆H₄-CO)₂ (III) by H_2 -PtO₂-ZnCl₂-Ac₂O; (II) is similarly obtained], m.p. 121- 124° , is converted by conc. H_2SO_4 at room temp., by hydrolysis and oxidation, into (III). Properties of an ene-diol. β-Mesitoyl-α-o-anisyl-acetylene glycol. R. P. Barnes and W. M. Lucas (J. Amer. Chem. Soc., 1942, 64, 2260—2261).—o-OMe stabilises an ene-diol. Mesityl o-methoxystyryl ketone (prep. from o-OMe·C₆H₄·CHO and 2: 4: 6: 1-C₄H₂Me₃·COMe in NaOH-H₂O-EtOH), m.p. 95°, with warm H₂O₂-NaOH-H₂O-EtOH gives the oxide, m.p. 73—74°, converted by NaOH in boiling aq. EtOH into mesityl a-hydroxy-o-methoxystyryl ketone, m.p. 137° [red FeCl₃ colour; 98% enolic (Kurt Meyer)]. With Br-CaCO₃ in CCl₄ this gives HBr and a-bromo-βy-diketo-α-o-anisyl-y-mesitylpropane (I), m.p. 84° (non-enolic), converted by boiling KOAc-AcOH into mesityl a-hydroxy-β-acetoxy-o-methoxystyryl ketone (II), m.p. 94° (red FeCl₃ colour; 84% enolic). The aβ-diacetate (III), m.p. 103—104°, is obtained from (II) by AcCl or from (I) and Ac₂O-KOAc. Conc. H₂SO₄ at 0° hydrolyses (II) or (III) to mesityl aβ-dihydroxy-o-methoxystyryl ketone, m.p. 105°, which gives a bluish-green FeCl₃ colour, decolorises I and 2: 6-dichlorobenzenone-indophenol, giving in all cases (slowly in air) o-anisyl mesityl diketone, m.p. 132°, which with H₂O₂-alkali yields o-anisic and mesitoic acids (proof of structure). R. S. C. **Properties of o-anisoylmesitoylmethane.** R. P. Barnes and C. C. Cochrane (J. Amer. Chem. Soc., 1942, **64**, 2262).—o-Anisyl 2:4:6-trimethylstyryl ketone, m.p. 118°, gives a dibromide, m.p. 135°, converted by boiling NaOMe-MeOH into o-anisyl β -methoxy-2:4:6-trimethylstyryl ketone, m.p. 87°, which with boiling conc. HCl-MeOH gives the β -OH-derivative [=mesityl β -hydroxy-o-methoxystyryl ketone] (I), m.p. 105°. 2:4:6:1-C₈H₂Me₃·CO·CH:CH-C₆H₄·OMe-o gives similarly its dibromide, m.p. 86°, mesityl β : o-dimethoxystyryl ketone, m.p. 85°, and (I). (I) gives a red FeCl₃ colour, is 100% enolic, but is unaffected by CH₂N₂, Ac₂O-H₂SO₄, or AcOH. This and its dual mode of formation indicate its existence as a chelate compound. R. S. C. Stereoisomeric unsaturated bromo-αδ-dimesityl αδ-diketones. R. E. Lutz and D. H. Terry (J. Amer. Chem. Soc., 1942, 64, 2426—2430).—Yellow trans-COR·CBr:CH·COR (I) (R = mesityl here and below) (best
prep.: A., 1925, i, 681) is obtained from (COR·CHBr)₂ by boiling NaOBz-EtOH or AgOBz-Prβ₂O and is converted by boiling NaOBz-EtOH into a colourless cis-form, m.p. 88—89, whence it is regenerated by illumination in CHCl₃-I. Both forms are converted by KI-AcOH into trans-(COR·CH₂)₂ (II), by boiling KOH-70% EtOH into COR·C(OH):CH·COR, and by NaOMe-MeOH at room temp. into cis-COR·C(OMe):CH·COR, and are unchanged by Ac₂O-H₂SO₄ at 100°. Boiling HCl-AcOH-H₂O does not affect (I). PhICl₂ and (II) in CHCl₃ at room temp. give (COR·CHCl)₂ (39%), m.p. 209° (decomp.) (cf. A., 1927, 58), which in boiling EtOH gives COR·CCl:CH·COR, also obtained from [COR·CH(OH)-]₂ by PCl₅-CHCl₃. PhICl₂ and (II) in boiling CHCl₃ give a nuclear-chlorinated, unsaturated diketone, C₂₂H₂₂O₂Cl₂, m.p. 209-5—210°, converted by Zn dust-AcOH into a Cl-containing compound, m.p. 166—167°. trans-COR·CMe:CH·COR (III) (improved prep.; stable to light in MeOH) with Br-CHCl₃ at -10° gives slowly HBr and small amounts of cis-β-bromo-αδ-dimesityl-γ-methyl-Δβ-butene-αδ-dione (IV), m.p. 143·5—144°, ββγ-tribromo-αδ-dimesityl-γ-methylbutane-αδ-dione (IV), m.p. 188°, and αδ-dimesityl-β-methylbutane-αδ-dione (IVI), m.p. 60·5°. Removal of HBr by NaHCO₃ during bromination at 0° leads to 77·70°, of (IV). With boiling NaOBz- or NaOAc-EtOH, AgOBz-Prβ₂O, or 1: I C₈H₆N-H₂O, (IV) gives the trans-isomeride (VII), m.p. 171—171·5°. (VI) is obtained from (III) by SnCl₂-HCl-AcOH or H₂-Pt or from (VII) by Zn dust-AcOH at room temp.; it could not be cyclised. In AcCl + a trace of H₂SO₄, (III) gives 4-acetoxy-2: 5-dimesityl-3-methylfuran, m.p. 88°. Preparation and alkylation of αδ-dimesityl-γ-methylbutane-αβδ-trione enol. R. E. Lutz and D. H. Terry (J. Amer. Chem. Soc., 1942, 64, 2423—2426).—cis-COR·CBr.CMe·COR (I) (R = mesityl here and below) with NaOH in boiling 90% MeOH gives β-hydroxy-αδ-dimesityl-γ-methyl-Δβ-butene-αδ-dione (II) (64%), m.p. 124-5—125° (sol. Na and insol., unstable Ag salt; no CO derivative; maroon colour with FeCl₃-EtOH; sol. in aq. Na₂CO₃) (cf. A., 1942, II, 408), but in 80% MeOH gives largely non-cryst. material with 30% of a Br-free compound, m.p. 234°. With CH₂N₂-Et₂O, (II) gives the cis-β- (III) (44%), m.p. 134-5—135°, and trans-β-Me ether (IV) (9%), m.p. 156-5—157°, trans-δ- (V) (30%), m.p. 119-5—120°, and cis-δ-Me ether (VI) (15%), m.p. 142°. (II) is also obtained from COR·C(OAg).CH·COR by MeI in boiling Prβ₂O (7% yield), from (III) or (IV) by HCl-AcOH-H₂O at room temp., or from (V) or (VI) at the b.p. The Ag salt of (II) with MeI-MeOH-H₂O at COR·CO·CMe (V.) COR·C·OMe (III.) COR·CMe OMe CR 0–60° gives 65% of (V) and 37% of at dimesityl- $\beta\beta$ -dimethylbutane-ayô-trione. m.p. 132.5–133°, unaffected by boiling HCl-AcOH-H₂O ay8-trione. m.p. 132-5—133° unaffected by boiling HCI-AcOH=H₂O or NH₂OH-MeOH. With NaOMe-MeOH at room temp., (I) gives 58% of (III) and 12% of (IV). Boiling HCI-MeOH converts (III) first into (IV) and then into (II). I-CHCl₃-sunlight or boiling NaOAc-EtOH has no effect on (III), but illumination in MeOH converts (IV) into (III) (-100%) or (V) into (VI). KOH-MeOH and light-CHCl₃-I are without effect on (VI), as are KOH-MeOH and HCl-MeOH (room temp.) on (V). HCI-MeOH (room temp.) on (V). Constituents of pyrethrum flowers. XV. Presence of the cumulated system in the pyrethrolone side-chain. F. B. LaForge and F. jun. (J. Org. Chem., 1942, 7, 416—418).—The structure OH-CH—CO CH₂-CH₂-CHMe for pyrethrolone is confirmed by the similar behaviour of pyrethrone and a-cyclohexyl- ΔB^{γ} -pentadiene towards halogen addition and subsequent reduction and by their similar absorption spectra. Behaviour of carbonyl bridge compounds with alkaline hydrogen poxide. C. F. H. Allen and J. W. Gates, jun. (J. Amer. Chem. Soc., 442, 64, 2439—2442).—"crs"-4:7-endoKeto-2:3:5:6-tetra-1942, 64, 2439—2442).—"c15"-4:7-endoKeto-2:3:5:6-tetraphenyl 4:7:3a:7a-tetrahydroinden-1-one (I) with aq. H.O.-NaOH at <30° absorbs 4 O, giving a peroxide, softens ~80°, decomp. up to 200°, which with KI- or HBr-AcOH regenerates (I) but in boiling AcOH gives the "trans"-isomeride (II), m.p. variable, 215° of (I) (cf. A. 1937, II, 457). (II) does not give a peroxide. At 260—270° (II) loses CO and undergoes a 1:2 shift of Ph, giving 3:3:5:6 tetraphenylindan-1-one (III) (structure proved below). In other respects (I) and (II) react similarly: both add 1 MgMeI and show 1 active H, with KOH-EtOH give 2:3:5:6-tetraphenyl-4: 7: 3a:7a-tetrahydroinden-1-one-7-carboxylic acid, and with MgPhBr give the same carbinol etc. 3:3:5:6-Tetraphenylindane-1: 2-dione (IV) [prep. from (III) by SeO₂ (cf. loc. cit.)] gives a quinoxaline derivative and with H_2O_2 -NaOH- H_2O -EtOH gives 4: 5-diphenyl-2-benzhydrylbenzoic acid (V) (61%), m.p. 258—259° (Me ester, m.p. 165°), which with CuCO₃ at 260— 265° gives 3: 4-diphenyl-1-benzhydrylbenzene [4-benzhydryl-o-terphenyl] (30%), m.p. 143° (also prepared from 3: 4: 1-C₃H₃Ph₂·COPh and MgPhBr and subsequent reduction by Zn-AcOH), and $\alpha a: 4: 5$ -tetraphenylphthalide (VI) (20%), m.p. 180° (also prepared from 2: 4: 5: 1-CO₂H·C₂H₂Ph₂·COPh and MgPhBr). (VI) is unaffected by Br, AcCl, or CrO₃, and with Zn-AcOH gives (V). 2: 2-Dibromo-3: 3: 5: 6-tetraphenylindanone with MgPhBr gives first the 2-Br₁-compound and then (III). 4 7 3a: 7a-tetrahydroinden-1-one-7-carboxylic acid, and with with MgPhBr gives first the 2-Br₁-compound and then (III). MgRBr and (III) give 1:3:3:5:6-pentaphenylindan-1-ol, mp. 233—234° (decomp.) (dehydrated by boiling 2% H₂SO₄-AcOH to 1:1:3:5:6-pentaphenylindene, m.p. 227°), 1:1:5:6-tetraphenyl-3-methyl-, m.p. 180°, and -3-a-naphthyl-indene, m.p. 244°. MgPhBr and (IV) in Bu₂O at 100° give 1:2:3:3:5:6-hexaphenylindane-1:2-diol, m.p. 159°. R. S. C. General method for synthesis of acenaphthenequinones. Buu-Hoï and P. Cagniant (Compt. rend., 1942, 214, 315—317).—Acenaphthenone (I), NO·C₆H₄·NMe₂, and aq. 10% Na₂CO₃ in EtOH at \$\pm40°\$ give "acenaphthenequinonedimethylaminoanil," m.p. 200—202°, readily hydrolysed (dil. H₂SO₄) to the quinone. 2:1-C₁₀H₆Me·CH₂Cl and aq. EtOH-KCN afford the nitrile, b.p. 155°/0·5 mm. m.p. 79° and thence 2:1-C₁₀H₆Me·CH₂·CO₂H [chloride (II), b.p. 148—150°/0·5 mm.; amide, m.p. 178°]; (II) with AlCl₃ in C₆H₆ or PhNO₂ gives 1-methylacenaphthen-7-one, b.p. 158°/21 mm. m.p. 120° (semicarbazone, m.p. 213—215°), converted [as for (I)] into 1-methylacenaphthenequinone, m.p. 200° [8-dimethylaminoanil, m.p. 137° (III); quinoxaline from o-C₆H₄(NH₂)₂, m.p. 198°]. (III) is accompanied by a little of the corresponding bismethylacenaphthylidenedione, m.p. 254° (cf. Sircar et al. A., 1933, 505). 4:1-C₁₀H₈Me·CH₂Cl, b.p. 124—126°/2·1 mm., similarly yields 4-methyl-1-naphthylacetic acid, m.p. 148° [nitrile, b.p. 154—156°/0·5 mm.; chloride, b.p. 148°/0·5 mm., cyclised less readily than (II); amide, m.p. 209°], 3-methylacenaphthen-7-one, m.p. 92° [semicarbazone, m.p. 240° (decomp.)], and 3-methylacenaphthenequinone, m.p. 178° (8-dimethylaminoanil, m.p. 189°; quinoxaline, m.p. 262—263°). 1-Nitro-5-aminoanthraquinone.—See B., 1943, II, 45. General method for synthesis of acenaphthenequinones. Buu-Hoï 1-Nitro-5-aminoanthraquinone.—See B., 1943, II, 45. #### IV.—STEROLS AND STEROID SAPOGENINS. Sterols of alfalfa [lucerne] seed oil. II. Isolation of β - and δ pinasterol. I. C. King and C. D. Ball (f. Amer. Chem. Soc., 1942, 64, 2488—2492; cf. A., 1940, III, 83).—This oil yields sterols, giving insol. acetates, which by hydrolysis and then fractionation by 85% EtOH yield a- (I), m.p. $168\cdot5-169^{\circ}$, $[a]_{D}^{37}-2\cdot7^{\circ}$ (acetate, m.p. $180-182^{\circ}$, $[a]_{D}^{31}-6\cdot4^{\circ}$; benzoate, m.p. $196-199^{\circ}$, $[a]_{D}^{19}+2\cdot1^{\circ}$), and β -spinasterol, $+0\cdot5H_{2}O$, m.p. $148-150^{\circ}$ (H₂O lost at $110-125^{\circ}$), $[a]_{D}^{30}+5\cdot9^{\circ}$, and anhyd., m.p. $148-150^{\circ}$ [digitonide; acetate (II), m.p. $153-155^{\circ}$, $[a]_{D}^{10}+5\cdot1^{\circ}$; benzoate, m.p. $181-183^{\circ}$, $[a]_{D}^{10}+7\cdot5^{\circ}$]. The sol. acetates yield δ -spinasterol, $+0\cdot5H_{2}O$, m.p. $143-144^{\circ}$ [a_{D}^{11}], $+0\cdot5H_{2}O$, digitonide; acetate (III), m.p. $129-13\cdot5^{\circ}$ [a_{D}^{110}] $+7.5^{\circ}$]. The sol. acetates yield δ -spinasterol, +0.5H₂O, m.p. 143—144°, $[a]_D^{19} + 6.2^{\circ}$ [digitonide; acetate (III), m.p. 132—133·5°, $[a]_D^{16} + 0.8^{\circ}$; benzoate, m.p. 165—168°, $[a]_D^{19} + 11.1^{\circ}$]. [a] are in CHCl₃. Hydrogenation of (II) or (III) gives a-stigmastenyl acetate. Bessisterol (IV) (Kuwada et al., A., 1941, II, 321) differs from (I) in [a]. The formulæ of Fernholz et al. (A., 1940, II, 373) for (I) may apply Epimeric 7-hydroxycholesterols. O. Wintersteiner and W. L. Ruigh (J. Amer. Chem. Soc., 1942, 64, 2453—2457).—7-Ketocholesteryl acetate with Al(OPr β)₃-Pr β OH and later 2% KOH gives crude 7(a)-hydroxycholesterol (I), m.p. ~176° (Windaus et al., A., 1935, 1363), di- Δ 4:6-cholestadien-3-yl or - Δ 3:5-cholestadien-7-yl ether, m.p. 158—160°, [a]_D +90.6° in CHCl₃ (absorption max. at 243 mμ., ε 54,000 in Et₂O), and Δ 4:6-cholestadien-3-one. (I) contains up to 20% of 7(g)-hydroxycholesterol, m.p. (+MeOH) 186° or (solvent-free) 154—157°, [a]g20 (+MeOH) -87-6° in CHCl₃. Partial hydrolysis of the 3:7(g)-, m.p. 151—152·5° (lit. 155—157°), [a]g30 —107-5° in CHCl₃, or 3:7(a)-dibenzoate gives the 7-monobenzoates. The 3:7(a)-diacetate, m.p. 106—107°, [a]g37 +51·8° in CHCl₃, and 7(g3)-benzoate (g41), m.p. 145—146°, [a]g60 —201° in CHCl₃; g61 + succinate, m.p. 150—151°), are prepared. Pyrolysis of (g61) gives little 7-dehydrosterol. little 7-dehydrosterol. Cholesteryl oxides. P. N. Chakravorty and R. H. Levin (J. Amer. Chem. Soc., 1942, 64, 2317—2322).—Cholesteryl acetate and o-CO₂H-C₅H₄·CO₃H in boiling Et₂O give the β - (I) (58%), m.p. 111—112°, [a]₂₅ -21·8°, and a-oxide (II) (15%), new m.p. 101—103°, [a]₂₅
-44·6°. Cholesteryl benzoate gives only (50%) its a-oxide (IX). (III), m.p. $164-166^\circ$, $[a]_0^{25}-28\cdot0^\circ$. Cholesterol gives its a- (IV) (61%), m.p. $141-143^\circ$, $[a]_0^*$ $-44\cdot5^\circ$ [also obtained from (II) KOH-MeOH], and a small amount of β -oxide (V), m.p. $105-107^\circ$, $[a]_0^{25}-12\cdot7^\circ$ [also obtained from (I)]. NH_2 ·CO·NH·NH₂, HCl and (I) in C_5H_5N at 100° give 6-chloro-5-hydroxy-3-acetoxycholestane (VI), m.p. 187.5—189.5°, unchanged by Ac₂O and also obtained from (I) m.p. 187·5—189·5°, unchanged by Ac₂O and also obtained from (I) by boiling FeCl₃-EtOH, BzCl-CCl₄, or BzCl-C₅H₅N at room temp. and then 100°, or C₅H₅N,HCl in boiling EtOH. C₅H₅N,HCl in EtOH converts (III) into 6-chloro-5-hydroxy-3-benzoyloxycholestane (VII), m.p. 196—198° (unchanged by Ac₂O), (II) into (VI), and (IV) or (V) into unstable Cl-compounds which are characterised by conversion into (VII) but which in MeOH-COMe₂ yield a halogenfree compound, m.p. 99—105°. BzCl with (II) gives a product, m.p. 160—170°, converted by Ac₂O into (VI), with (III) or (IV) gives (VII), and with (V) gives (VII) and another substance, m.p. 197—198°. With boiling Na₂CO₃-EtOH-H₂O, (VI) gives (IV), which is also obtained from (VII) by KOH-MeOH. The stereochemistry of the reactions is briefly discussed. #### V.—TERPENES AND TRITERPENOID SAPOGENINS. E. Rabald and J. Kraus (Z. physiol. Chem., Strophanthin. Strophanthin. E. Rabald and J. Kraus (2. physiol. Chem., 1940-265, 39—51).—Reduction of strophanthidin (I) by Al-Hg or Al(OPr^B)₃ gives strophanthidol (II), m.p. ~180 (softens at 150°) and m.p. 222—223° (corr.) after resolidifying at 180—190°, [a]²² +37·1° in MeOH [diacetate, m.p. 193—195° (corr.)]. (II) cannot be hydrogenated completely in presence of Pd-black and with Pd-C or PdO absorbs 1 H₂ with formation of a product, m.p. 180-185°, and, if PdO is used, a substance, m.p. 205-206° (corr.) after 185°, and, if PdO is used, a substance, m.p. 205—206° (corr.) after melting and resolidifying at ~190°; in presence of PtO₂ (II) affords dihydrostrophanthidol, melts incompletely at 170—180°, resolidifies and melts at 207—208° (corr.); $[a]_0^{16} + 35 \cdot 5^\circ$ in MeOH, identical with the compound obtained similarly from (I). K-Strophanthin- γ hepta-acetate is reduced [Al-Hg or Al(OPr8)₃] to K-strophanthol- γ hepta-acetate, m.p. 172—173° (corr.), $[a]_0^{21} - 84^\circ$ in C_6H_6 , hydrolysed by Ba(OMe)₂ in MeOH to K-strophanthol- γ (III), softens at 190°, decomp. 195—200°, $[a]_0^{14} + 8 \cdot 6^\circ$ in MeOH [octa-acetate (IV), softens at 148°, m.p. 153—155° (corr.), $[a]_0^{17} + 7 \cdot 1^\circ$ in C_6H_6], (III) is hydrolysed by acid to (II) and strophanthotriose, m.p. 225° (corr.; decomp.), $[a]_0^{17} + 7 \cdot 34^\circ$ in H₂O. Ba(OMe)₈-MeOH and (IV) yield comp.), $\lceil a \rceil_D + 7.34^\circ$ in H_2O . Ba(OMe)₂-MeOH and (**IV**) yield K-strophanthol- γ 18-acetate, m.p. 190—195° (decomp.), $\lceil a \rceil_D^{14} + 9.85^\circ$ in MeOH, which is hydrolysed to an acetylated genin. The nomenclature K-strophanthin- α , $-\beta$, and $-\gamma$ is suggested for strophanthidin-cymarose (cymarin), strophanthidin-cymarose-glucose, and strophanthidin-cymarose-glucose-glucose respectively Sapogenins. XVII. Position of the carboxyl group in oleanolic and glycyrrhetic acids. G. A. R. Kon and W. C. J. Ross (J.C.S., 1942, 741—744).—Me acetyldehydro-oleanolate (I) with SeO₂ in boiling AcOH gives a diketodehydro-ester (II), $C_{33}H_{46}O_6$, m.p. 247– 248° , $[a]_D$ – 144° in CHCl $_3$ (cf. Ruzicka et al., A., 1939, II, 331), which is saponified to a neutral substance (III), m.p. 286– 289° , $[a]_D$ + 204° in C_6H_5N (cf. Jacobs et al., A., 1932, 749), and an acid, m.p. $262-264^{\circ}$, which forms a pyridazine derivative, m.p. $263-265^{\circ}$. Oxidation (H_2CrO_4) of (III) yields a triketone, $C_{19}H_{40}O_3$, m.p. $>300^{\circ}$ (decomp.). Acetyldcoxoglycyrrhetic ester (IV) similarly gives a diketo-dehydro-ester, m.p. $236-237^{\circ}$, isomeric with (II), and is hydrolysed to the acid, m.p. $248-249^{\circ}$, $[a]_D-39^{\circ}$ in CHCl₃, converted into the same hydroxy-diketone. Bromination of Me converted into the same hydroxy-riketone. Bromhaton of the acetylglycyrrhetate affords a Br_2 -ester, decomp. 215—220°, $\lceil \alpha \rceil_D$ +521 in CHCl₃, and a dehydro-ester, m.p. 241—242°, $\lceil \alpha \rceil_D$ +321° in CHCl₃, which is reduced (Zn-Hg-AcOH) to an ester, $C_{33}H_{52}O_4$, m.p. 258—259°, $\lceil \alpha \rceil_D$ +127° in CHCl₃. (I) and (IV) are therefore B-ketonic esters and support is thus afforded to the formulæ assigned to the parent acids (Bilham et al., A., 1942, II, 418). #### VI.—HETEROCYCLIC. Analogues of synthetic tetrahydrocannabinol. G. A. Alles, R. N. Icke, and G. A. Feigen (J. Amer. Chem. Soc., 1942, 64, 2031—2035). —m-OMe·C₈H₄·CHO (I) and MgBu·Cl in Et₂0 give a-m-anisyl-n-amyl alcohol (92%), b.p. 128·5—129°/5 mm., dehydrated by KHSO₄ at 135—160° to m-OMe·C₈H₄·CH·CHPr^a, b.p. 92—99°/1 mm., which with H₂-PdO in EtOH at 3 atm. gives m-n-amylanisole (II) (81·5%), b.p. 97—98°/3 mm. m-OMe·C₈H₄·CH₂·OH [prep. from (I) by H₂-Raney Ni at 90°/90 atm.] with conc. HCl-CaCl₂ gives the chloride, b.p. 75°/2 mm., which with MgBu·Cl gives (II). 30% aq. HBr-AcOH at 100° converts (II) into m-n-amylphenol, b.p. 99—100°/1 mm. (3:5-dinitrobenzoate. m.p. 70°). condensation of Analogues of synthetic tetrahydrocannabinol. G. A. Alles, R. N. -100°/1 mm. (3:5-dinitrobenzoate, m.p. 70°), condensation of which with Et cyclohexanone-2-carboxylate (III) by $\rm H_2SO_4$ at <25° gives 5''-n-amyl-3': 4': 5': 6'-tetrahydrodibenz-2-pyrone, b.p. 180—185° (bath)/10 μ ., and thence (MgMeI in PhOMe at 100°) 2: 2-dimethyl-5''-n-amyl-3': 4': 5': 6'-tetrahydrodibenzpyran (99%), b.p. 140—145° (bath)/0·5 μ . Similarly are prepared 4'-methyl-5''-n-amyl-, 5''-methyl-, and 4': 5''-dimethyl-, m.p. 105—106°, -3': 4': 5': 6'-tetrahydrodibenz-2-pyrone, 2: 2: 4'-trinethyl-5''-n-amyl-, b.p. 155—160° (bath)/2 μ ., 2: 2: 5''-trinethyl-, and 2: 2: 4': 5''-tetramethyl-3': 4': 5': 6'-tetrahydrodibenz-2-pyrone, and (III) in POCl₃-C₆H₆ give 5''-n-butoxy-3': 4': 5': 6'-tetrahydrodibenz-2-pyrone (65%), m.p. 87—88°, b.p. 240—243°/3 mm., also obtained from the 5''-hydroxypyrone by Bu°₂SO₄-2N-NaOH at 90—110° and converted by MgMeI-PhOMe at 100° into 2: 2-dimethyl-5''-n-butoxy-3': 4': 5': 6'-tetrahydrodibenzpyran, b.p. 133—134° (bath)/1 μ . 2: 2: 4'-Triwhich with Et cyclohexanone-2-carboxylate (III) by H₂SO₄ at <25° by higher thomse at 100 into 2.2 atmenty-5 -1-batoxy-3 \cdot 4. 5. 6 tetrahydrodibenzpyran, b.p. $133-134^{\circ}$ (bath)/1 μ . 2:2:4'-Trimethyl-5''-n-butoxy-3':4':5':6'-tetrahydrodibenzpyran, bp. $162-168^{\circ}$ /5 μ ., is prepared from the 5-hydroxypyran by Bu $^{a}_{2}$ SO₄-2N-NaOH at 90-100° 2:2-Di- and 2:2:4'-tri-methyl-5''-ethoxy-3':4':5':6-tetrahydrodibenzpyran, liquids, are similarly prepared. (PrCO)₂O and a drop of H₂SO₄ convert the 5"-n-butyroxy-2:2-di- and -2:2:4'-tri-methyl-3':4':5':6'-tetrahydrodibenzpyran, liquid; the corresponding 5"-acetoxypyrans, m.p. $65-66^\circ$ and $59-60^\circ$, respectively, are prepared by $Ac_2O-C_5H_5N$. The above-named pyrans produce no ataxia in dogs (doses: 50—100 mg. per kg.) or corneal anæsthesia in rabbits (doses: 10—20 mg. per kg.) (cf. Ghosh et al, A., 1941, II, 145). Synthetic tetrahydrocannabinol produces ataxia (8 mg. per kg.) but no corneal anæsthesia (doses up to 32 mg. per kg.) (cf. loc. cil.). **Constitution of hibiscetin.** P. S. Rao (*Current Sci.*, 1942, **11**, 360; cf. A., 1942, **II**, 327).—2: 4: 3: 6: 1-(OH) $_2$ C $_6$ H(OMe) $_2$:CO·CH $_2$ ·OMe with $[3:4:5:1-(OMe)_3$ C $_6$ H $_2$ ·CO] $_2$ O and $[OMe)_3$ C $_6$ H $_2$:CO $_2$ Na gives 7-hydroxy-3: 5: 8: 3': 4': 5'-hexa-, methylated to 3: 5: 7: 8: 3': 4': 5'hepta-methoxyflavone (hibiscetin Me, ether). Products of the reaction of flavonols with boric acid and organic acids and its significance for the anchoring of boron in plant organs. K. Tauböck (Naturwiss., 1942, 30, 439).—Evaporation of solutions or Et₂O-sol., intensely yellow pigment (II) with marked yellow-green fluorescence very suitable for the detection and determination of traces of (I). (II) is not very stable and on repeated evaporation passes into an Et₂O-insol., non-fluorescent pigment similar to that passes into an Et₂O-insol., non-intorescent pigment similar to that obtained with citric and other acids; in dry Et_2O it can be kept for several hr. The most suitable mol. proportions are (I): $H_3\text{BO}_3: H_2\text{C}_2\text{O}_4 = 1:1:4$. $H_2\text{C}_2\text{O}_4$ can be replaced by $\text{CH}_2(\text{CO}_2\text{H})_2$ but succinic, fumaric, and adipic acid etc. are unsuitable. The presence of OH increases the reactivity. Polybasic CO-acids are unsuitable. Monobasic NH_2 -acids give non-fluorescent, Et_2O -insolation of the property but diberial NH acids give some (II). pigments but dibasic NH2-acids give some (II). Naringenin, campherol, quercitin, morin, quercetagenin, myricetin and its hexaacetate show the reaction, which is not exhibited by genistein. daidzein, flavone, or hesperitin. Anthocyanins and anthocyanidins give intensely coloured but non-fluorescent substances; this is true also of l-catechin, dl-epicatechin, curcumin, and phloretin. Evidence is adduced in favour of the view that B is partly immobilised in many plant organs by combination with (I). Optically active tetrahydrocannabinols. XIV. d- and l-3"-Hydroxy-2: 2: 4'-trimethyl-5"-n-amyl-3': 4': 5': 6'-tetrahydrodibenzpyran. R. Adam, C. M. Smith, and S. Loewe (J. Amer. Chem. Soc., 1942, 64, 2087—2089; cf. A., 1942, II, 236).—dl- is resolved by l-menth-hydrazide in EtOH, giving 1-3-methylcyclohexanone, b.p. 164—168° (semicarbazone, m.p. 181°, [a]²⁷ +20·8° in EtOH; l-menth-hydraz- one, m.p. 146°, $[a]_{25}^{25}$ –
31·3° in EtOH). This and the d-ketone (prepfrom pulegone; 1-menth-hydrazone, softens at 126—130°, m.p. 130—136°) with Et₂C₂O₄-NaOEt at 3—5° (later room temp.) give Et dand 1-5-methylcyclohexanone-2-carboxylate, b.p. 122—124°/15 mm., and 1-3-methylcyclonexanone-z-carboxylate, p.p. 12z = 124 [13] min., $[a]_D^{20} + 90 \cdot 5^{\circ}$ ($\rightarrow +73^{\circ}$ by keto-enol equilibration), $-84 \cdot 6^{\circ}$, and thence d- and 1-3''-hydroxy-4'-methyl-5''-n-amyl-3': 4': 5': 6'-tetra-hydrodibenz-2-pyrone, m.p. 177°, $[a]_D^{25} + 137^{\circ}$ in CHCl₃, $[a]_D^{27} + 133^{\circ}$, -127° in EtOH, and d- and 1-3''-hydroxy-2: 2: 4'-trimethyl-5''-n-amyl-3': 4': 5': 6'-tetrahydrodibenzpyran, b.p. 175—185°/0-1 mm., $[a]^{25} + 147.5^{\circ}$ in CHCl₃, $+147^{\circ}$ in EtOH, $[a]^{26} - 114^{\circ}$ in EtOH. The d- and l-pyrans are 0.38 and 1.66 times, respectively, as potent (by ataxia) as the dl-compound (cf. Leaf et al., A., 1942, II, 202). R. S. C. Condensation of 1: 4-dihydroxy-2-methylnaphthalene with formaldehyde and xylenol alcohol. H. von Euler and S. von Kispeczy (J. pr. Chem., 1942, [ii], 160, 195—202).—2:1:4-C₁₀H₅Me(OH)₂ (I) (1 mol.), CH₂O (1·1 mols.), and NaOH (2 mols. as 10% solution) (room temp.; 48 hr.) yield a yellow compound, C₂₂H_{1e}O₄ (probably 3-methylenebis-2-methylnaphthaquinone), and colourless material. (I) (1 mol.), CH₂O (1·1 mol.), and conc. HCl (0·1 mol.) afford a product, m.p. 280°, which with Ac₂O-C₅H₅N (100°; 2 hr.) yields a compound, C₂₇H₂₂O₅, m.p. 305—306° (probably di-1 acetoxy-2-methylnaphtha- acetoxy-2-methylnaphtha- acetoxy-2-methylnaphthalene). OH (II.) m-4-Xylenol (1 mol.), (I) (2.5 mols.), and 96% HCl-EtOH (15 min.; 100°) yield a compound, C₂₈H₂₆O₃, m.p. 204° [probably (II)] (acetate, m.p. 230—231°). W. C. J. R. (II)] (acetate, m.p. 230—231°). Thionaphthen-indigotins.—See B., 1943, II, 47. Phenoxthionins.—See B., 1943, II, 45. Reaction products from a-chloroketones and potassium cyanide. III. Cyanoacetonylacetone and a new method of preparing acetonylacetone. R. Justoni (Gazzetta, 1941, 71, 375—388).—5-Hydroxy-2:4-dicyano-2:5-dimethyltetrahydrofuran (I) (A., 1942, II, 326) 2: 4-dicyano-2: 5-dimethyltietranydroluran (1) (A., 1942, 11, 320) with aq. NaOH gives α'-cyanoacetonylacetone cyanohydrin, COMe-CH(CN)·CH₂·CMe(OH)·CN, a syrup, which when distilled gives α'-cyanoacetonylacetone (II) (loc. cit.) (FeCl₃ reaction; Cu salt), from which it is also obtained by action of HCN and KOH. With boiling conc. HCl, (II) gives 3-cyano-2: 5-dimethylfuran (III), b.p. 183—183·5°, hydrolysed by 20% KOH in aq. EtOH to the amide, m.p. 125°, of 2: 5-dimethylfuran-3-carboxylic acid. With boiling ag. NH (or solid NH carbonate or NH GAC-ACOH) (II) amule, III., 125, of 2:3-dimethylmran-3-carboxylic acid. With boiling aq. NH₃ (or solid NH₄ carbonate, or NH₄OAc-AcOH), (II) gives 3-cyano-2:5-dimethylpyrrole, m.p. 89—90° (also obtained from COMe-CHNa-CN, CH₂Cl-COMe, and aq. NH₃), which with 50% aq. KOH gives the amide, m.p. 160—161°, of 2:5-dimethylpyrrole-3-carboxylic acid. With P₂S₃ or P₂S₅ at 85—90°, (II) gives (III) and some 3-cyano-2:5-dimethylthiophen, b.p. 225—233° (decomp.) (also obtained from 2:5-dimethylthiophen and BrCN-A(Cl₃), which is hydrolysed to the corresponding amide. At 70° (I) and dil (also obtained from 2:5-dimethylthiophen and BrCN-AlCl₂), which is hydrolysed to the corresponding amide. At 70°, (I) and dil. H₂SO₄ give γ-cyano-α-aceto-γ-valerolactone (**V**) (cf. Obregia, A., 1892, 324), which in aq. NaOH gives acetonylacetone [50% yield from (I)]. With RN₂Cl, (**IV**) gives the phenylhydrazone (**V**), m.p. 208°, and p-nitrophenylhydrazone (**VI**), m.p. 227°, of γ-cyano-α-keto-γ-valerolactone. (Similarly α-aceto-β-ethylidenepropio-γ-lactone gives the corresponding α-phenylhydrazone.) With EtOH-HCl, (**V**) gives α-keto-γ-carbethoxy-γ-valerolactone phenylhydrazone. With boilthe corresponding a-phenylhydrazone.) With EtoH-Hol, (I) 8-a-keto-y-carbethoxy-y-valerolactone phenylhydrazone. With boiling 5% NaOH, (V) gives 1-phenyl-5-methylpyrazole-3-carboxylic acid. Similarly (VI) gives 1-p-nitrophenyl-5-methylpyrazole-3-carboxylic acid, new m.p. 219—220° (decomp.), of which the Me ester, m.p. 174—175°, is obtained from COMe·CH₂·CO·CO₂Me and p-YO CH NH-NH. Nicotin-p-phenetidide.—See B., 1943, III, 41. 4-8-Diethylaminoamylamino-6-methoxy-, b.p. 210—212°/1·5—2 mm., 5:6:7-trimethoxy-2-methyl-, b.p. 142°/2 mm. (8-nitro-, m.p. 115°, and 8-amino-derivative, b.p. 153°/2 mm.), and 8-y-dimethylaminobutylamino-6-hydroxy-quinoline, m.p. 118° (O-acetyl derivative, b.p. 195—200°/1 mm.).—See A., 1943, III, 136. ative, b.p. 195—200°/1 mm.).—See A., 1943, 111, 136. Synthetic application of o- β -bromoethylbenzyl bromide. I. Sulphanilamide derivatives of 1:2:3:4-tetrahydroisoquinoline. F. G. Holliman and F. G. Mann (J.C.S., 1942, 737—741).—The preport o-Br· $[CH_2]_2\cdot C_6H_4\cdot CH_2Br$ (I) is improved by treating o- $C_6H_4Br\cdot CH_2Br$ with NaOEt to give o-bromobenzyl Et ether, b.p. 119—120°/18 mm., which under special conditions with EtBr undergoes the Grignard reaction in combination with $(CH_2)_2O$ to form o-OH· $[CH_2]_2\cdot C_6H_4\cdot CH_2\cdot OEt$, converted by HBr-AcOH into (I). p- C_6H_4Me -SO₂·NH₂ and (I) with K_3CO_3 yield 2-p-toluene-sulphonyl-1:2:3:4-tetrahydroisoquinoline, m.p. 142°. Similarly, (I) and p-NHAc· $C_3H_4\cdot SO_2\cdot NH_2$ give 2-p-acetamidobenzenesulphonyl-1:2:3:4-tetrahydroisoquinoline, m.p. 175—176°, hydrolysed (HCl) to the NH_2 -compound, m.p. 174°, also obtained by direct condensation, along with 2-[p- $(2'\cdot1':2':3':4'-tetrahydroisoquinolyl)-benzenesulphonyl-1:2:3:4-tetrahydroisoquinolyl)-benzenesulphonyl]-1:2:3:4-tetrahydroisoquinolyl)-benzenesulphonyl]-1:2:3:4-tetrahydroisoquinolyl)-benzenesulphonyl]-1:2:3:4-tetrahydroisoquinolyl)-benzenesulphonyl]-1:2:3:4-tetrahydroisoquinolyl)-benzenesulphonyl]-1:2:3:4-tetrahydroisoquinolyl)-benzenesulphonyl]-1:2:3:4-tetrahydroisoquinolyl]-1:2:3$ $p\text{-NH}_2\text{-C}_3\text{-H}_4\text{-SO}_4\text{Na}$ Na $_2\text{CO}_5$ and (I) afford, after acidification, p-[2-1:2:3:4-tetrahydroisoquinolyl)benzenesulphonic acid (+0·5H $_2\text{O}$) m.p. 236—237 (efferv.), which with PCl $_5$ –NH $_3$ gives in small yield the -sulphonamide, m.p. 163°, remelts 182—184°. 1-Amino-1:2:3:4-tetrahydroquinoline sulphate and $p\text{-NHAc-C}_6\text{H}_4\text{-SO}_2\text{Cl}$ with NaOH form p-acetamidobenzenesulphon-1-(1:2:3:4-tetrahydroquinolyl)-amide, m.p. 203° (decomp.), which could not be hydrolysed. $p\text{-NHAc-C}_6\text{H}_4\text{-SO}_2\text{-NH-NH}_2$ and $p\text{-NHAc-C}_6\text{H}_4\text{-SO}_2\text{-Cl}$ in $\text{C}_6\text{H}_5\text{-N}$ give s-di-p-acetamidobenzenesulphonhydrazide, m.p. >300°, hydrolysed (HCl) to the $NH_2\text{-compound}$ (+H $_2\text{O}$), m.p. 203° (decomp.). The bactericidal properties of the compounds are recorded. F. R. S. Quinoline derivatives of sulphanilamide. O. G. Backeberg and J. L. C. Marais (J.C.S., 1942, 758).—By condensing sulphanilamide with the appropriate chloro-lepidine and -quinaldine derivatives in AcOH, the following have been prepared: N⁴-(2'-lepidyl)-, m.p. 258°, N⁴-(6'-methoxy-, m.p. 249°, and N⁴-(6'-ethoxy-2'-lepidyl)-, m.p. 278°; N⁴-(4'-quinaldyl)-, m.p. 280° (decomp.); N⁴-(6'-methoxy-, m.p. 301° (decomp.), -(8'-methoxy-, m.p. 293° (decomp.), -(6'-ethoxy-, m.p. 308° (decomp.), and -(8'-ethoxy-4'-quinaldyl)-sulphanilamide, m.p. 277° (decomp.). New synthesis of heterocyclic compounds. I. 2:3-Dialkylquinolines. V. A. Petrow (J.C.S., 1942, 693—696).—By treating the anil, R·CO·CHR·CH.NAr, prepared by condensing equivamounts of CHO·CHMe·COMe or formylcyclohexanone and the amounts of CHO·CHMe·COMe or formylcyclohexanone and the appropriate amine in EtOH, with the amine hydrochloride and ZnCl₂ in EtOH, the following have been obtained: 2:3-dimethyl5:6-benzoquinoline, m.p. 124—125° [picrate, m.p. 260—261° (decomp.)], from γ-(β'-naphthyl-, m.p. 171—172°, and γ-(a'-naphthyl-iminomethyl)-butan-β-one, m.p. 110—111°; 6:7:8:9-tetrahydro-1:2-benzacridine, m.p. 96-5—97-5° [picrate, m.p. 210-5—211-5° (decomp.)], from 1-(a-naphthyliminomethyl)cyclohexan-2-one, m.p. 118—119°; 1-(β-naphthyliminomethyl)cyclohexan-2-one, m.p. 181—182°; 9-, m.p. 77—78° [picrate, m.p. 215—216° (decomp.)], and 8-methyl-1:2:3:4-tetrahydroacridine, m.p. 100—101° [picrate, m.p. 189—190° (decomp.)], prepared from 1-(m-tolyliminomethyl)cyclo-182°; 9-, m.p. 77—78° [picrate, m.p. 215—216° (decomp.)], and 8-methyl-1: 2:3:4-tetrahydroacridine, m.p. 100—101° [picrate, m.p. 189—190° (decomp.)], prepared from 1-(m-tolyliminomethyl)cyclo-hexan-2-one, m.p. 152—153°, and dehydrogenated to 2-methyl-acridine, m.p. 129—130° (lit. 125—126°) [picrate, m.p. 225—226° (decomp.)]; 7-methyl-1: 2:3:4-tetrahydroacridine, m.p. 61—62° [picrate, m.p. 189·5—190·5° (decomp.)], prepared from 1-(p-tolyl-iminomethyl)cyclohexan-2-one, m.p. 163—164°; picrate, m.p. 184—185° (decomp.), of 2-methyl-1:2:3:4-tetrahydroacridine; 1-anilo-methyl-4-methylcyclohexan-2-one, m.p. 161—162°; 6:9-dimethyl-1:2:3:4-tetrahydroacridine, m.p. 188~ (decomp.)], from 1-(p-xylyliminomethyl)cyclohexan-2-one, m.p. 100—101°; 7-phenyl-1:2:3:4-tetrahydroacridine, m.p. 130° [picrate, m.p. 246—247° (decomp.)], from 1-(diphenylyl-4-iminomethyl)cyclohexan-2-one, m.p.
201—202°, and dehydrogenated to 3-phenylacridine, m.p. 127—128° [picrate, m.p. 244—246° (decomp.)]; 9-, m.p. 94·5—95·5° [picrate, m.p. 197—198° (decomp.)], and 6(or 8)-chloro-1:2:3:4-tetrahydroacridine, m.p. 92° [picrate, m.p. 204—205° (decomp.)], from 1-(m-chloroanilomethyl)cyclohexan-2-one, m.p. 188—189° (decomp.)], from 1-(p-chloroanilomethyl)cyclohexan-2-one, m.p. 169—170°; 9-, m.p. 79—80° [picrate, m.p. 191—192° (decomp.)], and 6(or 8)-bromo-1:2:3:4-tetrahydroacridine, m.p. 86—87° [picrate, m.p. 213·5—214·5° (decomp.)], from 1-(m-bromo-anilomethyl)cyclohexan-2-one, m.p. 175—176°; 7-iodo-1:2:3:4-tetrahydroacridine, m.p. 86—87° [picrate, m.p. 213·5—214·5° (decomp.)], from 1-(m-bromo-anilomethyl)cyclohexan-2-one, m.p. 175—176°; 7-iodo-1:2:3:4-tetrahydroacridine, m.p. 86—86° [picrate, m.p. 191—192° (decomp.)], from 1-(p-iodoanilomethyl)cyclohexan-2-one, m.p. 169—60°; 60° 8)-carbethoxy-1:2:3:4-tetrahydroacridine, m.p. 63—64° [picrate, m.p. 161° (decomp.)], from 1-(m-carbethoxyanilomethyl)cyclohexan-2-one, m.p. 134—144°; 7-carbethoxy-1:2:3:4-tetrahydroacridine, m.p. 63—64° [picrate, m.p. 161° (decomp.)], from 1-(m-carbethoxyanilomethyl)cyclohexan-2-o [picrate, m.p. 161° (decomp.)], from 1-(m-carbethoxyanilomethyl)-cyclohexan-2-one, m.p. 143—144°; 7-carbethoxy-1:2:3:4-tetrahydroacridine, m.p. 94·5—95·5° [picrate, m.p. 197—198° (decomp.)], from 1-(p-carbethoxyanilomethyl)cyclohexan-2-one, m.p. 181—182°, and hydrolysed to 1:2:3:4-tetrahydroacridine-7-carboxylic acid, m.p. 290—291°; 1-(o-carboxy-, m.p. 199—200°, and 1-(o-carboxy-, m.p. 199—200°). and hydrolysed to 1:2:3:4-tetrahyaroacriame-1-carboxytic acia, m.p. 290—291°; 1-(o-carboxy-, m.p. 199—200°, and 1-(o-carbomethoxy-anilomethyl)cyclohexan-2-one, m.p. 134·5—135·5°, which do not give acridine derivatives; 7-hydroxy-1:2:3:4-tetrahydro-acridine, m.p. 290—291° [picrate, m.p. 229·5—230·5° (decomp.)], from 1-(p-hydroxyanilomethyl)cyclohexan-2-one, m.p. 154—155°; 7-nitro-, m.p. 170·5—171·5° [picrate, m.p. 204·5° (decomp.)], from 1-(p-nitroanilomethyl)cyclohexan-2-one, m.p. 244-245°, reduced to 7-amino-1: 2: 3: 4-tetrahydroacridine, m.p. 141° (Ac derivative, m.p. 218:5—219:5°); 1-(m-nitroanilomethyl)cyclohexan-2-one, m.p. 171-172°, which does not form an acridine derivative; 9-methoxy-171—172°, which does not form all acridine derivative; 9-methoxy-1: 2: 3: 4-tetrahydroacridine, m.p. 121·5—122·5° [picrate, m.p. 206·5—207·5° (decomp.)], from 1-(o-methoxyanilomethyl)cyclohexan-2-one, m.p. 131—132°; 7-methoxy-1: 2: 3: 4-tetrahydroacridine, m.p. 90—91° (picrate, m.p. 223·5—224·5° (decomp.)], from 1-(p-methoxyanilomethyl)cyclohexan-2-one, m.p. 149—150°; 6(or 8)-acetyl-1: 2: 3: 4-tetrahydroacridine, m.p. 131—132° [picrate, m.p. 211-212° (decomp.)] acetyl-1:2:3:4-tetrahydroacridine, m.p. 131—132 [pterate, m.p. 211—212° (decomp.)], from 1-{m-acetylanilomethyl)cyclohexan-2-one, m.p. 139—140°; and 7-anilino-1:2:3:4-tetrahydroacridine, m.p. 173° [picrate, m.p. 251—252° (decomp.)], from 1-{p-anilinoanilomethyl}cyclohexan-2-one, m.p. 144—145°. A mechanism for the reaction is suggested. Sulphanilamide derivatives of histidine. M. Amorosa (Gazzetta, 1941, 71, 343—350).—Histidine hydrochloride in aq. NaOH with p-SO₂Cl·C₀H₄·NHAc gives the N-Ac derivative (I), m.p. (+3H₂O) 122—132°, (anhyd.) decomp. 242—243° (quinine salt, m.p. 135°), of p-aminobenzenesulphonylhistidine (II), m.p. 263—264° (decomp.) [p-carbamido-derivative, m.p. 229—231° (decomp.)]. With MeOH-HCl, (I) or (II) gives the Me ester dihydrochloride (III), m.p. 218—225° (decomp.), of (II). Diazotisation of (II) and (III) and coupling with β-C₁₀H₁·OH gives products, m.p. 255—257°, and 165—170°, respectively. N-Substituted barbituric acids. J. S. Buck, W. S. Ide, and R. Baltzly (J. Amer. Chem. Soc., 1942, 64, 2233).—1-Phenyl- yields 1-p-nitrophenyl-, m.p. 188°, and thence 1-p-aminophenyl-5-ethyl-5-isobutylbarbituric acid, m.p. 153°. The appropriate carbamides and malonic esters yields 1-o-phenetyl-, m.p. 193·5°, 1-p-ethylphenyl-5-ethyl-5-n-butyl-, m.p. 107°, and 5:5-diethyl-1-n-hexyl-, m.p. 41°, barbituric acid. R. S. C. Barbituric acids.—See B., 1943, III, 42. Lysine and ornithine.—See A., 1943, II, 55. Convenient synthesis of dl-methionine. H. R. Snyder, J. H. Andreen, G. W. Cannon, and C. F. Peters (J. Amer. Chem. Soc., 1942, 64, 2082—2084).—Hydrogenation (Raney Ni) of α-keto-γ-butyro-lactonephenylhydrazone in EtOH at 100—150°/1700 lb. gives 3:6-diketo-2:5-di-β-hydroxyethylpiperazine (I) (54%), m.p. 178—180°, but in Ac₂O at 125°/2000 lb. gives α-acetamido- (30%), m.p. 82—84°, b.p. 175—178°, hydrolysed to α-amino-γ-butyrolactone (40%) (hydrochloride, m.p. 200—201°). H₂—Pd—C in MeOH converts α-oximino-γ-butyrolactone (prep. by OEt*NO-MeOH), m.p. 183—185°, in MeOH into (I) (55—60%), m.p. 186° (decomp.). SOCl₂ at 0° to -5° (later warm) and (I) give 3:6-diketo-2:5-di-β-chloroethylpiperazine, m.p. 230—231°, which with NaSMe (2·2 mols.) in EtOH gives 3:6-diketo-2:5-di-β-methylthiolethylpiperazine, m.p. 231—232°, converted by conc. HCl into dl-methionine (85—95%). Glyoxalines. II. Interaction of benzamidine with phenylglyoxal. R. S. C. Waugh, J. B. Ekeley, and A. R. Ronzio (J. Amer. Chem. Soc., 1942, 64, 2028—2031; cf. A., 1942, II, 379).—Data of Kunckell et al. (A., 1901, i, 758) are erroneous. Adding conc., aq. KOH to BzCHO,H₂O (I) and NH₂·CPh.NH in EtOH gives a-hydroxyphenacylbenzamidine (II) (40%), OH·CHBz·NH·CPh.NH, +0·5EtOAc, m.p. 112—115° (decomp.). Adding a little 50% aq. KOH to (I) and NH₂·CPh.NH₂Cl (III) in warm H₂O and then boiling gives 4-hydroxy-3: 4-diphenylglyoxaline [? 5-keto-2: 4-diphenyl-4: 5-di-hydroglyoxaline] (IV) (64%), +0·5 dioxan, m.p. 251—252° (acetate, m.p. 174°), also obtained by adding acid to (II) in hot alkali. In boiling AcOH, (I) and (III) give 4: 5-dihydroxy-2: 4-diphenyl-4: 5-dihydroglyoxaline hydrochloride (62%), darkens at 260°, m.p. 282° (diacetate, m.p. 181°, of the free base), which is also obtained by adding an excess of conc. HCl to (II) or (IV) in alkali and in absence of acid rapidly gives (IV). In EtOH containing a trace of alkali, (IV) gives (?) a polymeride, darkens at 250°, m.p. 262°, whence it is regenerated by hot alkali. In aq. NaOAc at room temp., (I) and (III) give 4: 5-dihydroxy-2: 5-diphenyl-1-a-hydroxyphenacyl-4: 5-dihydroglyoxaline (87%), m.p. 73—80°, which in EtOH yields (IV). In boiling H₂O, (I) and (III) give NH₃ and a substance (< 1%), C₂₂H₁₀N₂, m.p. 170—172°. Absorption spectra of the products are recorded. Pyrazole compounds. I. Reaction product of phenylhydrazine and ethyl cyanoacetate. A. Weissberger and H. D. Porter (J. Amer. Chem. Soc., 1942, 64, 2133—2136).—Contrary to Conrad et al. (A., 1906, i, 608), CN·CH₂·CO₂Et, NHPh·NH₂, and NaOEt (2 mols. essential) in EtOH give 3-amino-1-phenyl-5-pyrazolone (I) (43%), m.p. 218—220° {N-Bz, m.p. 220—221°, N-CO₂Et- (II), m.p. 198—199°, (?) (CO₂Et)₂-, m.p. 106—108° [with a little piperidine in boiling EtOH gives (II)], and N-NH₂·CO-derivative, m.p. 235—236°). With AcCl in dioxan, (I) gives the 3-Ac derivative (III), m.p. 218—220°, but with boiling Ac₂O gives the ON-Ac₂ derivative, m.p. 144—145°, hydrolysed to (III) by cold 2% NaOH. NHPh·N:C(CO₂Et)·CH₂·CO₂Et in boiling AcOH—C₆H₆ gives Et 1-phenyl-5-pyrazolone-3-carboxylate (80%; less under other conditions), m.p. 185—186°, converted by 28% aq. NH₃ at room temp. into the amide (57%), m.p. 233—235° (decomp.), and by 42% aq. N₂H₄.H₂O at room temp. into the hydrazide (86%), m.p. 235—237° (decomp.). With HCl-aq. EtOH—NaNO₂ at 5° this gives the azide (62%), deflagrates at 140°, and thence (boiling EtOH) (II) and (10% NaOH at 100°) (I) (proof of structure). R. S. C. Pyrrole series. IX. Determination of the bridge structure of dipyrrylmethanes. Estimation of active hydrogen. A. H. Corwin and R. C. Ellingson. X. Rearrangements of pyrrole rings in the oxidation of dipyrrylmethanes. A. H. Corwin and K. J. Brunings (J. Amer. Chem. Soc., 1942, 64, 2098—2106, 2106—2115; cf. A., 1942, II, 380).—IX. NH in pyrroles (9 examples) and dipyrrylmethanes (12 examples) is determined by titration with NaCPh₃ in Et₂O-C₆H₉- or -dioxan-N₂, the indicator being the colour of the reagent. Blanks on solvents are necessary. Technique and apparatus are detailed. C-Substitution by Me, CO₂Et, or Br does not interfere, but COMe consumes additional reagent. NaCPh₃ reacts with substances which are indifferent to molten Na or K. The reaction mechanism can be checked by hydrolysis to the starting material or conversion by Me₂SO₄ into the N-Me compound; dimethylation is thus possible. 3:5-Dicarbethoxy-2:4-dimethylpyrrole thus gives the 1:2:4-Me₃ compound. 3:5:3':5'-Tetracarbethoxy-4:4'-dimethyldipyrrylmethane with 1 or 2 NaCPh₃ and then Me₂SO₄ gives the 1:4:4'-Me₃ and 1:4:1':4'-Me₄ (I) compound, respectively. (I) gives a red Na salt (N-Na salts are colourless), in which the Na is probably in the bridge CH since the salt cannot be the Na is probably in the bridge CH₂, since the salt cannot be methylated and by hydrolysis regenerates (I). 4:4' Dicarbethoxymethylated and by hydrolysis regenerates (I). 4:4'-Dicarbethoxy3:5:3':5'-tetramethyldipyrrylmethane with 2 NaCPh3 and then Me2SO4 gives the 1:3:5:1':3':5'-Me6 compound (II); use of 1 mol. of NaCPh3 gives a mixture of (II) and 1:3:5:3':5'-Me5 compound, m.p. 176° (decomp.) [converted into (II) by further treatment]. 1 NaCPh3 reacts with the more acidic NH of 4:3':5'-tricarbethoxy-3:5:4'-trimethyldipyrrylmethane, yielding with Me2SO4 the 3:5:1':4'-Me4 compound (III); when the Na2 salt reacts with 1 mol. of Me2SO4 the more basic NNa reacts, yielding the 1:3:5:4'-Me4 compound, m.p. 97° [also obtained from 3:5-dicarbethoxy-4-methyl-2-chloromethylpyrrole and 3-carbethoxy-1:2:4-trimethylpyrrole (V) in boiling MeOH]; the Na2 salt and 2 mols. of Me2SO4 give the 1:3:5:1':4'-Me5 compound (VI), m.p. 129°, also obtained from 3:5-dicarbethoxy-1:4-dimethyl-2-chloromethylpyrole). m.p. 129°, also obtained from 3:5-dicarbethoxy-1:4-dimethyl-2chloromethylpyrrole and (\mathbf{V}) in
boiling MeOH and from (\mathbf{IV}) by NaCPh₃ and then Me₂SO₄. NaCPh₃ and (\mathbf{III}) in dioxan give a blue-fluorescent, red, later violet, solution, whence H₂O or Me₂SO₄ yields a compound, C₂₀H₂₄O₅N₂, m.p. 203—204°, but in C₆H₆ gives a colourless Na salt, which, as usual, with H₂O regenerates (\mathbf{III}) and with Me₂SO₄ gives (VI). X. 4:4'-Dicarbethoxy-1:3:5:3':5'-pentamethyldipyrrylmethane (VII) [prep. from 3-carbethoxy-2:4-dimethylpyrrole and (V) in CH₂O-aq. MeOH at 45°], m.p. 178—179°, with 1 mol. of Br in CCl₄ gives HBr, 4:4'-dicarbethoxy-3:5:3':5'-tetramethyldipyrrylmethene (VIII) (58%), m.p. 189—190° (decomp.), and 4-carbethoxy-1:3:5-trimethylpyrrole (IX) and with 0.5 mol. of Br gives HBr, 96% of (VIII), and 4:4'-dicarbethoxy-1:3:5:1':3':5'-hexamethyldipyrrylmethane (X). (VIII) is also obtained from (VII) by HCO₂H-HBr or Cl₂-CCl₄, but not by neutral or basic oxidising agents. (VIII) and (X) absorb Br equally rapidly, (VII) more slowly. Cl₂ is absorbed very rapidly by (VII), but pptn. of (VIII) is then slow. 3-Carbethoxy-2:4-dimethylpyrrole with aq. HBr and HCO₂H at 65° (not room temp.) gives (VIII). Neutral KMnO₄ oxidises 4:4'-dicarbethoxy-3:5:3':5'-tetramethyldipyrrylmethane (XI), but not (VII), to (VIII). (VII) is unaffected by CH₂O-HBr. Br converts (VII) and (X) into (VIII) (85·4%) and the 1:3:5:1':3':5'-Me₆-methene. (VII) and (X) with HBr-CCl₄ give 95% of (VIII). 4:4''-Tricarbethoxy-1:3:5:3':5':3'':5''-heptamethyltripyrrylmethane and HBr-CCl₄ give (XI) (90%) and (V). 3:5-Dicarbethoxy-4-methyl-2-dichloromethylpyrrole and (VII) in dioxan-4:4'-Dicarbethoxy-1:3:5:3':5'-pentamethyldipyrrylmethpyrrylmethane and HBr-CCl₄ give (**XI**) (90%) and (**V**). 3:5-Dicarbethoxy-4-methyl-2-dichloromethylpyrrole and (**VII**) in dioxan-HCl give (**VIII**). Br-CCl₄ converts 4:3':5'-tricarbethoxy-3:5:4'-trimethyldipyrrylmethane into 4:3':5'-tricarbethoxy-3:5:4'-trimethyldipyrrylmethene (83%), m.p. 125° (decomp.), but converts 3:5:4'-tricarbethoxy-1:4:3':5'-tetramethyldipyrrylmethane into (**VIII**) [and, presumably, 2:4:2':4'-tetracarbethoxy-1:3:1':3'-tetramethyldipyrrylmethane (not isolated)]. "Disproportionation" of (**VII**) by Br is thus shown to be due to fission of C·CH₂ and not of NMe; reaction mechanisms involving 2-CHBr₂- and 2-H monopyrrole derivatives are discussed. pyrrole derivatives are discussed. Methoxyglaucobilins, a new type of bilirubinoid pigment; Gmelin's reaction. H. Fischer and H. Reinecke (Z. physiol. Chem., 1940, 265, 9—21).—Bilirubin is dehydrogenated by p-O:C₆H₄:O in AcOH to biliverdin, converted by FeCl₃ into the compound, C₃₃H₃₅O₈N₄Cl₄Fe; this is converted by NaOH followed by AcOH and then by CH₂N₂ into biliverdin Me₂ ester, m.p. 213°, which gives the compound, C₃₅H₃₉O₄N₄Cl₄Fe, m.p. 257°. Formylneoxanthobilirubic acid is condensed with vinylneoxanthobilirubic acid (I) to Me₂ 1':8'-diphydroxy-1:3:6:8-tetramethyl-7-ethyl-2-vinyl-2'a-4'-ms-bilitriene-4:5-dipropionate, m.p. 262°, and Zn complex salt of Me₂ 1':8'-dihydroxy-1:3:6:7-tetramethyl-8-ethyl-2-vinyl-2'a-4'-ms-bilitriene-4:5-dipropionate are described. (I) and 3:3'-dimethyl-5:5'-dibromomethyl-pyrromethene-4:4'-dipropionic acid hydrobromide afford Me₄ 1':12'ionate are described. (I) and 3:3'-dimethyl-5:5'-dibromomethyl-pyrromethene-4:4'-dipropionic acid hydrobromide afford Me_4 1': 12'-dihydroxy-1:3:6:7:10:12-hexamethyl-2:11-divinylhexapyrrene-4:5:8:9-tetrapropionate, m.p. 242° . The Zn complex salt is dehydrogenated to dimethoxyætioglaucobilin, m.p. 193° (corresponding Cu complex). Glaucobilin IX a-Me₂ ester affords a Zn complex $C_{35}H_{40}O_6N_4Zn$, m.p. 305° , converted into the dimethoxyglaucobilin ester, $C_{37}H_{48}O_8R_4$, m.p. $160-162^\circ$. Glaucobilin XIIIa gives a $(OMe)_2$ -compound, $C_{37}H_{48}O_8N_4$ (Cu complex). Me 6'-bromo-1'-hydroxy- is converted into Me 1': 6'-dihydroxy-2:3:6-trimethyl-1:5-diethyltripyrrene-4-propionate. It is shown that the violet stage of the Gmelin reaction is not explicable by the formation of dihydroxy-2:3:6-trimethyl-2:5-dipyrrene-4-propionate. the Gmelin reaction is not explicable by the formation of dihydroxy- Isomerisation of chlorophylls a and b. H. H. Strain and W. M. Manning (J. Biol. Chem., 1943, 146, 275—276).—Chromatographic adsorption (dry powdered sugar; light petroleum) of plant extracts shows that chlorophylls a (I) and b (II) are accompanied by small amounts of two other green pigments, chlorophylls a' (III) and b' (IV). The adsorption column is washed with light petroleum containing 0.5% of Pr^aOH and 0.5% of $NPhMe_2$; (III) forms the lowest green band, and (IV) separates between (I) and (II). Higher plants and green algae extracted at or at > room temp. yield (III) and (IV), but only traces are obtained by extraction at -80° . Plants not containing (II) do not yield (IV). (I) and (III), and (II) and (IV), are interconvertible, rapidly in PraOH at $95-100^{\circ}$, to give equilibrium mixtures containing 20% of the new isomeride. Thus it is not certain whether (III) and (IV) are natural plant conit is not certain whether (111) and (117) and (111), stituents. Different phæophytins are obtained from (I) and (III), stituents. Different phæophytins are obtained from (I) and (III), EtOH. (I) and (III) afford spectroscopically similar phæopurpurins; (III) probably does not correspond with the hypothetical chlorophyll a2 of Conant et al. (A., 1933, 403). isoOxazole group. X. Nitro-, amino-, and diazo-derivatives of isoOxazole. A. Quilico and C. Musante (Gazzetta, 1941, 71, 327—342).—5-Methylisooxazole with HNO3 (d 1·51) in H₂SO₄-SO₃ at 60—80° gives 4-nitro-, b.p. 187—189°, reduced by SnCl₂-HCl to the hydrochloride, m.p. 149° (decomp.; darkens from 130°), of 4-amino-5-methylisooxazole (I), b.p. 130°/25—27 mm. (Ac, m.p. 87°, Bz, m.p. 140°, CHPhi., m.p. 96—97°, CHPhiCH·CH·, m.p. 101°, and m-NO₂·C₅H₄·CH·, m.p. 136—137°, derivatives). 3-Methylisooxazole similarly gives 4-nitro-, b.p. 103—107°/25—27 mm., and 4-amino-3-methylisooxazole (II), m.p. 43°, b.p. 118—120°/25 mm. [hydrochloride, m.p. 184° (decomp.); Ac, m.p. 90—91°, Bz, m.p. 148—149°, and CHPh·, m.p. 114°, derivatives]. The diazo-compounds from (I) and (II) are labile, but the diazonium chloride from 4-amino-3·5-dimethylisooxazole (obtained as above; cf. Morgan et al., J.C.S., 1921, 119, 700) with boiling aq. CuSO₄-H₂SO₄ from 4-amino-3:5-dimethylisooxazole (obtained as above; cf. Morgan et al., J.C.S., 1921, 119, 700) with boiling aq. $\text{CuSO}_4-\text{H}_2\text{SO}_4$ gives CO_2 , Ac_2 (which is also obtained by similar treatment of COAc_2 , the presumed intermediate product), and 5-acetyl-4-methyl-2:1:3-triazole, m.p. 173—174° (Ag salt; oxime, m.p. 202°; p-nitrophenylhydrazone, m.p. 253—255°) (which with $\text{K}_2\text{Cr}_2\text{O}_7-\text{H}_2\text{SO}_4$ is oxidised to 4-methyl-2:1:3-triazole-5-carboxylic acid), and with boiling dil. H_2SO_4 gives 4-chloro-3:5-dimethylisooxazole, b.p. 151—152° (cf. A., 1939, II, 90) [p-nitrophenylhydrazone, m.p. 235° (decomp.)], and CHClAc2, with a substance, $\text{C}_{10}\text{H}_{14}\text{O}_3\text{N}_4$ (?) [oxime, m.p. 196—197° (Bz derivative, m.p. 207°); p-nitrophenylhydrazone, m.p. 4315° (darkens from 300°)]. m.p. \$\prec{315}^{\circ}\$ (darkens from 300°)]. Substituted sulphonamides. J. P. English, D. Chappell, P. H. Bell, and R. O. Roblin, jun. (J. Amer. Chem. Soc., 1942, 64, 2516).—p-NO₂·C₆H₄·SO₂·NH₂ and CH₂Cl·COCl in 4·4% NaOH at 5° give N¹-chloroacetyl-p-nitro-, m.p. 172—173°, reduced by SnCl₂-conc. HCl at 35° to N¹-chloroacetyl-p-amino-benzenesulphonamide, m.p. 157—158°. 2-Benzenesulphonamido-pyridine, m.p. 171—172°, -pyrimidine, m.p. 229—230°, -4-methylpyrimidine, m.p. 193—194°, -thiazole, m.p. 171—172°, and -1:3:4-thiadiazole, m.p. 188—189°, are prepared in C₅H₅N. M.p. are corr. R. S. C. #### VII.—ALKALOIDS. Erythrina alkaloids. XIII. Constitution of erythraline, erythramine, and erythratine. K. Folkers, F. Koniuszy, and J. Shavel, jun. (J. Amer. Chem. Soc., 1942, 64, 2146—2151; cf. A., 1943, II, 49).—Indole is obtained from erythraline (I) or erythraline (II) or erythraline. 1943, 11, 49).—Indole is obtained from erythraline (1) or erythratine (II) by fusion with KOH. (II) gives an O-benzoate, $+2H_2O$, m.p. $248-249^\circ$, O-acetate, m.p. $128-129^\circ$ [hydrolysed by HCl-EtOH- H_2O to (II)], methiodide, $+0.5H_2O$, m.p. $121-125^\circ$, $[a]_2^{15}+109.7^\circ$ in H_2O , and anhyd., m.p. $135-136^\circ$, $[a]_D+110.4^\circ$ in H_2O , and thence the N-methyl-methine, $C_{10}H_{23}O_4N$, solid, which with Zn dust gives a gum. H_2 -PtO₂ in H_2O +a little HBr reduces (II) to dihydroerythratine hydrobromide (III), m.p. 249° , unstable at 25° . Absorption spectra are recorded for erythramine (IV), (I), (II), (III) dihydroerythramine hydrobromide, 6:7-methylenedioxy-(II), (III), dîhydroerythramine hydrobromide, 6: 7-methylenedioxy-1:2:3:4-tetrahydroisoquinoline hydrobromide, and hydrocotarn- ine. (I), (II), and (IV) contain one $\mathrm{CH}_2\mathrm{O}_2$, OMe , tert . N common to two nuclei, and 2, 1, and 1 C.C, respectively; (II) contains also a non-phenolic OH_2 ; four fused nuclei, of which three are aromatic and common to the three alkal- oids and one is variously hydrogenated and oxygenated, are probably present. The skeleton (A) or, less probably, its linear analogue, is suggested. #### VIII.—ORGANO-METALLIC COMPOUNDS. Bivalent and tervalent rhodium. III. Compounds of rhodic halides with tertiary arsines. F. P. Dwyer and R. S. Nyholm (J. Proc. Roy. Soc. New South Wales, 1941, 75, 140—143).—RhX3 with Proc. Roy. Soc. New South Wates, 1941, 16, 140 120, 1411, 183, ASR₃ in HCl-EtOH gives a sol. form (**I**) and an insol. form (**II**), converted by boiling C₆H₆ into (**I**). It is suggested that (**I**) is [RhX₃,3AsR₃] whilst (**II**) is (Rh(AsR₃)₅,RhX₆]". The following were prepared:
diphenylmethylarsinerhodic chloride, m.p. 122-124 and 176—178°, bromide, m.p. 116° and 191°, and iodide, m.p. not recorded and 200°; p-tolyldimethylarsinerhodic chloride, m.p. (form I) 86—88°, bromide, m.p. (form I) 109°, and iodide, m.p. 85—86° and 200° #### IX.—PROTEINS. Present status of mol. wts. of proteins. A. Rothen (Ann. New York Acad. Sci., 1942, 43, 229—241).—A general survey. Amino-acid analysis and the structure of proteins. A. C. Chibnall (Proc. Roy. Soc., 1942, B, 131, 136—160).—A lecture. The recent speculations of Bergmann and Niemann on protein structure are reviewed in the light of new analytical data for certain proteins. The mol. of edestin appears to be a system of 6 similar peptide chains of mol. wt. 50,000, the constituent residues of which conform to the Bergmann-Niemann rule. Lactoglobulin is a system of 8—9 peptide chains, not all of like composition, ovalbumin a similar 8—9 peptide chains. The two latter proteins contradict the rule but the component peptide chains may conform to it. Insulin appears to be a system of 18 peptide chains in agreement with Bernal's deductions from crystallographic data. The conclusion that these protein mols, are systems of peptide chains is based in the conformal of the conformal protein and a part on titration data and in part on determinations of free NH2-N; the method of linkage of these chains is discussed. J. H. B. Structure of silk fibroin. E. Abderhalden (Z. physiol. Chem., 1940, 265, 23—30).—In addition to polypeptide chains, silk fibroin contains large amounts of 2:5-diketopiperazines (I) or ring structures closely related thereto. A secondary formation of the isolated (I) from poly- or di-peptides is excluded. Glycylalanine, glycyltyrosine, and alanylserine anhydride have been isolated. H. W. Heats of organic reactions. Digestion of β -lactoglobulin by pepsin.—See A., 1943, I, 63. Oxidative conversion of casein into protein free of methionine and tryptophan. G. Toennies (f. Biol. Chem., 1942, 145, 667—670).—Oxidation of casein in HCO₂H solution with H₂O₂ converts methionine and probably tryptophan into biologically inactive products and cystine is partly destroyed. Threonine, serine, and probably other NH coids are unaffected. R. L. E. Carbon suboxide and proteins. VII. Malonylpepsin. A. H. Tracy and W. F. Ross (J. Biol. Chem., 1943, 146, 63—68; cf. A., 1942, II, 241).—Malonylation of the free NH₂ and phenolic OH of pepsin inactivates the enzyme. Gentle hydrolysis of the O-malonyl linking causes partial reactivation, indicating intimate association between phenolic OH and activity. The specificity of pepsin is unaltered by the presence of CO₂H groups in positions normally occupied by the basic lysyl residues in pepsin; these residues are thus unessential for activity and are without influence on the specificity of the enzyme. Malonylation of serum-albumin increases the no. of peptide linkings subject to the action of pepsin. Brain kephalin, a mixture of phosphatides; separation from it of phosphatidyl-serine and -ethanolamine, and a fraction containing an inositally-serine and -ethanolamine, and a fraction containing an inositol phosphatide. J. Folch (J. Biol. Chem., 1943, 146, 35—44; cf. A., 1941, III, 743).—Brain kephalin (modified method of isolation from fresh ox brain) in CHCl₃ is fractionated by adding to EtOH; fractions are freed from H₂O-sol. impurities by dialysis. Thus obtained are (a) phosphatidylethanolamine (I), sol. in EtOH, which has the composition originally attributed to the whole kephalin, and is hydrolysed to glycerophosphoric acid (II) and NH₂·[CH₂]₂·OH, (b) phosphatidylserine (III), and (c) a mixture of phosphatides, one or more of which contains inositol, and which also probably contains some (III); hydrolysis yields inositol, serine, and (II). With the exception of (I), the phosphatides in the kephalin fraction of brain lipins are strongly acidic and are isolated from brain as K or Na salts when treatment with mineral acid is avoided in isolation. #### X.—MISCELLANEOUS UNCLASSIFIABLE SUBSTANCES. Colour test for citrinin. Its preparation. H. Tauber, S. Laufer, and M. Goll (J. Amer. Chem. Soc., 1942, 64, 2228—2229).—Prep. of citrinin from P. citrinum is outlined. With H₂O₂-EtOH-H₂O it becomes yellow, changed to red by NaOH. The yellow-red change is reversible by H₂SO₄-NaOH. Cultures give the same reaction; penicillin does not. Exposure in dioxan causes a similar, but in EtOH a different, change. Notatin: an anti-bacterial glucose-aerodehydrogenase from Penteillium notatum, Westling.—See A., 1943, III, 143. #### XI.—ANALYSIS. Use of concentrated sulphuric acid instead of lead dioxide for the absorption of oxides of nitrogen in micro-C-H determinations. K. Burger $(Angew.\ Chem.,\ 1942,\ 55,\ 260-261)$.— H_2O is absorbed in $Mg(ClO_4)_2$, then N oxides in H_2SO_4 , and then CO_2 as usually. The H_2SO_4 may be reactivated by passing O_2 through it at 150°. Quantitative decomposition of organic bromine and iodine compounds by the lime fusion method. W. M. MacNevin and G. H. Brown (Ind. Eng. Chem. [Anal.], 1942, 14, 908).—The method previously described for determination of Cl (A., 1940, II, 263) can be applied to org. Br and I compounds. Steam-distillation apparatus for micro-Kjeldahl analysis.—See A., 1943, III, 76. Reduction of unsaturated hydrocarbons at the dropping mercury electrode. - See A., 1943, I, 64. Determination of inulin.—See A., 1943, III, 152 Dissociation constants of diphenylselenium dibromide and diiodide.—See A., 1943, I, 61. Potentiometric studies in oxidation reduction reactions. XI. Quantitative potentiometric determination of aromatic amines. B. Singh and A. Rehmann (*J. Indian Chem. Soc.*, 1942, 19, 349—353).— By the use of a bright Pt electrode in the titration liquid, in conjunction with a calomel electrode, o- and p-NO₂·C₈H₄·NH₂, 1:2:4-OH·C₈H₃(NH₂)₂, o- and p-NH₂C₈H₄·OH, o-C₆H₄(NH₂)₂, and NHPh₂ can be accurately determined potentiometrically. The first three are titrated in aq. HCl against standard KIO₃, and the others are titrated in (usually) aq. H₂SO₄ with standard NaNO₂. F. L. U. Microbiological method for determination of p-aminobenzoic acid. M. Landy and D. M. Dicken (J. Biol. Chem., 1943, 146, 109—114).—The method is based on the growth response of Acetobacter suboxydans to p-NH₂·C₅H₄·CO₂H (I); turbidity is measured with a photo-electric colorimeter. No growth occurs in the basal medium in absence of (I). Materials insol. in H₂O are first finely-divided, extracted with 10—20 vols. of H₂O for 30 min. at 15 lb., centrifuged, and filtered. The inhibitory action of blood, c.s.f., etc. on the test organism is overcome by autoclaving. (I) is widely distributed, e.g., in brewer's yeast, liver extract, fresh liver, and meat extract, and probably in most body tissues. The activity of other compounds similar to (I), viz., p-amino-phenylacetic acid, -ethyl benzoate, -phenylglycine, etc., is not comparable with that of (I), and thus the method has high specificity. Determination of the tocopherols and tocopherylquinones by the colorimetric oxidation-reduction method. J. V. Scudi and R. P. Buhs (J. Biol. Chem., 1943, 146, 1—6; cf. A., 1941, III, 685; 1942, III, 702).—The sample containing tocopherols (I) is dissolved in BuOH, AuCl₃ added, and the mixture kept in the dark at room temp. for 30 min.; aq. technical hexane is added; the org. layer is washed and conc. in vac. under N₂. Reduction is effected using Raney Ni in BuOH with phenosafranine (II) as indicator, and the solution is pumped into standard 2:6-dichlorophenol-indophenol (III). Vitamin-K quinol reduces (III) immediately, but tocopherylquinones (IV) act more slowly (40—60 min.) and are estimated by difference. The specificity of the method can be increased by preliminary reductive treatment with Claisen's alkali. Substances to be tested must be oil-sol, and non-reducing, and with AuCl, give new substances capable of reversible reduction and oxidation, which have of (III), and which must reduce (III) slowly. Carotenoids and vitamin-A do not interfere. (I) and (IV) in the same sample are best determined by two analyses, although this is not essential, as (I) can be recovered by light petroleum after determining (IV), and then oxidised further. Results are given for wheat-germ oil, refined cottonseed oil, dog plasma, and whole human blood [(IV) not observed previously]. The difference in biological activity between a- and β - + y-tocopherols is discussed, and a method of differentiating suggested, viz., β - and γ - with HNO₂ give (probably) o-quinones, whereas a- apparently does not react. A. T. P. Determination of lanthionine. W. C. Hess and M. X. Sullivan (J. Biol. Chem., 1943, 146, 15—18).—Lanthionine (I) is converted into cysteine (II) by colourless 57% HI containing 1% of KH₂PO₂ at 135—140° (in N₂). Neither cystine nor methionine interferes with the determination of (I). (I) formed by dil. alkali treatment of a protein such as wool or lactalbumin can be determined colorimetrically by first hydrolysing the (I) containing metrically by first hydrolysing the (I)-containing protein with HCl; (I) does not react in the Sullivan cystine or cysteine reactions. Then total (II) is measured after hydrolysis of the protein with HI. The difference between the two hydrolysates gives amount of (II) derived from (I), which multiplied by 1.72 gives amount of (I). #### INDEX OF AUTHORS' NAMES, A., II. MARCH, 1943 ABDERHALDEN, E., 75. Acree, F., jun., 67. Adam, R., 69. Allen, C. F., H., 67. Alles, G. A., 69. Amorosa, M., 72. Andreen, J. H., 72. Appenzeller, R., 56. Ayling, E. E., 58. Ayung, E. E., 66. BACKEBERG, O. G., 71. Baltzly, R., 58, 60, 72. Baltzly, R., 58, 60, 72. Barnes, R. P., 66. Bell, P. H., 74. Bridgman, W. B., 57. Brill, R., 56. Brown, G. H., 76. Brown, R. L., 57. Brunings, K. J., 72. Bruson, H. A., 62. Buck, J. S., 58, 60, 72. Buger, K., 76. Buls, R. P., 76. Bul-Hoi, 58, 67. CAGNIANT, P., 58, 67. Cannon, G.
W., 72. Chakravorty, P. N., 68. Chappell, D., 74. Chibnall, A. C., 75. Christensen, B. E., 57. Cochrane, C. C., 66. Cordier, M., 61. Corwin, A. H., 72. Cottrell, T. L., 56. Crossley, F. S., 60. DAKIN, H. D., 55. Davis, S. B., 62. Deux, Y., 65. Dicken, D. M., 76. Dimick, K. P., 57. Doering, W. E., 62. Downing, M. L., 56. Dumazert, C., 57. Dwyer, F. P., 74. EKELEY, J. B., 72. Ellingson, R. C., 72. English, J. P., 74. Euler, H., 70. Evans, T. H., 56. Feigen, G. A., 69. Fernelius, W. C., 53. Fischer, H., 73. Folker, K., 74. Foster, C. K., 59. Foster, J. F., 57. Frankel, M., 55. Fuson, R. C., 65. GATES, J. W., jun., 67. Goll, M., 75. Golomov, V. P., 58. Golombic, C., 54. Gorvin, J. H., 58. Greenlee, K. W., 53. Grosse, A. V., 53. Hamlin, K. E., jun., 55. Hartung, W. H., 55. Hawkins, W. L., 56. Hazlet, S. E., 69, 61. Heilbron, I. M., 54, 60. Hensley, L. C., 59. Hess, W. C., 76. Hibbert, H., 56. Hinkel, L. E., 58. Hixon, R. M., 57. Hockett, R. C., 56. Hodgson, H. H., 59. Holliman, F. G., 70. Husemann, E., 58. ICKE, R. N., 69. Ide, W. S., 58, 72. Jass, H., 59. Jones, E. R. H., 53, 54, 60. Jones, G. D., 53. Justoni, R., 70. KARRER, P., 56, Kass, J. P., 54, Katchalski, E., 55, Kazanski, B. A., 58, Kenalty, B. J., 53, King, L. C., 67 Kispeczy, S., 70, Kistiakowsky, G. B., 60, Koch, H. P., 54, Kon, G. A. R., 68, Konuiszy, F., 74, Kraus, J., 68, Kugler, A., 56, Kuhn, R., 57, La Forge, F. B., 67. Landy, M., 76. Laufer, S., 75. Lehman, R. A., 55. Leigh, E., 59. Levi, I., 56. Levin, R. H., 68. Levine, P., 62. Linstead, R. P., 62. Linstead, R. P., 62. Low, I., 57. Loewe, S., 69. Lucas, W. M., 66. Lutz, R. E., 66. McCromble, J. T., 58. MacNevin, W. M., 76. Mann, F. G., 70. Manning, W. M., 78. Marais, J. L. C., 71. Marvel, C. S., 58. Mischel, R., 57. Miller, E., 60. Moore, M. L., 60. Moreau, J., 61. Myrback, K., 57. NIEDERL, J. B., 61 Nyholm, R. S., 74. Pacsu, E., 57. Percival, E. G. V., 56. Peters, C. F., 72. Petrow, V. A., 71. Porter, H. D., 72. Quilico, A., 74. Quilico, A., 74. RABALD, E., 68. Radlove, S. B., 54. Rao, P. S., 69. Rehmann, A., 76. Reimer, M., 61. Reinecke, H., 73. Rinehart, R. E., 54. Roblin, R. O., jun., 74. Roblin, R. O., jun., 74. Ross, W. C. J., 68. Ross, W. F., 75. Rothen, A., 75. Ruigh, W. L., 68. Russell, A., 61. Russell, A., 61. Schertz, G. L., 53. Scudi, J. V., 76. Shavel, J., jun., 74. Singh, B., 76. Slinger, F. H., 62. Smith, C. M., 62. Snyder, H. R., 72. Speck, S. B., 65. Sproul, R. C., 55. Strain, H. H., 73. Sullivan, M. X., 76. Suter, C. M., 61. Tauber, H., 75. Tauberk, K., 69. Tebbens, W. G., jun., 61. Terry, D. H., 66. Thomson, T. G. H., 56. Tichenor, R. L., 60. Toennies, G., 75. Tracy, A. H., 75. Turner, G., 59. Turner, H. S., 59. VAN ORDEN, H. O., 61. WAISBROT, S. W., 57. Waugh, R. C., 72. Weber, O. H., 58. Weissberger, A., 72. West, E. S., 54. Weston, A. W., 61. Whetstone, R. R., 62. White, W. H., 53. Winkler, C. A., 53. Wintersteiner, O., 68. Wolfrom, M. L., 57. ZIERING, A., 61. # JUDACTAN ### ANALYTICAL REAGENTS WITH ACTUAL BATCH ANALYSIS JUDEX ANALYTICAL REAGENT SODIUM BICARBONATE A.R. **ACTUAL BATCH ANALYSIS** (Not merely maximum impurity values) Batch Number 20630 Chloride (Cl) . . . 0.001% Calcium, Magnesium Sulphate (SO₄) . . . 0.002% Nitrate (NO₈) . . 0.002% Nitrate (SO₂) . 0.001% Heavy Metals (Pb) 0.0002% and Insoluble Matter 0.003% Ammonia (NH₃) Ammonia (NH₃) . . 0.0003 % Iodine Absorption (I) . 0.003 % Arsenic (As₂O₃) . . . 0.2 p.p.m. Iron (Fe) . . . 0.0002% The above analysis is based on the results, not of our own Control Laboratories alone, but also on the confirmatory Analysical Cartificate issued by independent Consultants of international regute THE GENERAL CHEMICAL A PHARMACRUTICAL CO LTD COMTRACTORS TO HM GOVERNMENT & FINISHAL CORPORATIONS SUDDBURY MIDDLESEX Each Batch subjected to INDEPENDENT **ANALYSIS** before label is printed You are invited to compare the above **ACTUAL** **BATCH** ANALYSIS guaranteed by the specifications of any actual batch analysis with the purities | competing maker in this Country or abroad THE GENERAL CHEMICAL & PHARMACEUTICAL CO. LTD. Chemical Manufacturers, Judex Works, Sudbury, Middlesex