BRITISH CHEMICAL AND PHYSIOLOGICAL ABSTRACTS

ISSUED BY THE

Bureau of Chemical and Physiological Abstracts

[Supported by the Chemical Society, the Society of Chemical Industry, the Physiological Society, the Biochemical Society, and the Anatomical Society of Great Britain and Ireland]

APRIL, 1943

BUREAU:

Chairman: L. H. LAMPITT, D.Sc., F.I.C. Hon. Treasurer: F. P. DUNN, B.Sc., F.I.C.

C. R. HARINGTON, M.A., PH.D., F.R.S.

L. A. JORDAN, D.Sc., F.I.C.

G. A. R. KON, M.A., D.Sc., F.R.S.

H. McCOMBIE, D.S.O., M.C., Ph.D., D.Sc., F.I.C.

B. A. McSWINEY, B.A., M.B., Sc.D.

Editor: T. F. BURTON, B.Sc.

Assistant Editors :

J. H. BIRKINSHAW, D.Sc., F.I.C *

H. BURTON, M.Sc., D.Sc., F.I.C.

JULIAN L. BAKER, F.I.C.

C. W. DAVIES, D.Sc., F.I.C.

G. L. BROWN, M.Sc., M.B., CH.B.

H. W. CREMER, M.Sc., F.I.C., M.I.CHEM.E.

H. J. T. ELLINGHAM, B.Sc., PH.D., F.I.C.

- F. G. CROSSE, F.I.C.
- A. A. ELDRIDGE, B.Sc., F.I.C.

W. JEVONS, D.Sc., Ph.D.
E. E. TURNER, M.A., D.Sc., F.I.C., F.R.S.
F. L. USHER, D.Sc.
H. WREN, M.A., D.Sc., Ph.D.
SAMSON WRIGHT, M.D., F.R.C.P.*

* Assisted by J. D. BOYD (Anatomy), A. HADDOW (Tumours), F. O. HOWITT (Biochemistry), A. G. POLLARD (Plant Physiology), K. TANSLEY (Sense Organs), V. J. WOOLLEY (Pharmacology), and F. G. YOUNG (Ductless Glands).

Indexer: MARGARET LE PLA, B.Sc.

A., II.-ORGANIC CHEMISTRY

CONTENTS

							112
II.	Sugars and Glucosides .			83	VIII. Organo-metallic Compounds	. 1	[14
III.	Homocyclic .	• •	•	84	TRE TO A 1		
IV.	Sterols and Steroid Sapogenins			95			-
V.	Terpenes and Triterpenoid Sap	ogenins		96	X. Miscellaneous Unclassifiable Substances	. 1	115
VI.	Heterocyclic	• • •		99	XI. Analysis	- 1	115

Offices of the Bureau: 56 VICTORIA STREET, LONDON, S.W.I

1

HOPKIN & WILL 16-17, ST CROSS STREET, LONDON, E.C.I THE CHEMICAL SOCIETY Burlington House, Piccadilly, London, W.1 (IN VOLUME FORM) THE FARADAY LECTURES Delivered before the Chemical Society, 1869-1928 bv J. B. A. Dumas S. Cannizzaro A. W. Hofmann A. Wurtz H. von Helmholtz D. Mendeléef W. Ostwald **Emil Fischer** T. W. Richards S. Arrhenius R. A. Millikan R. Willstatter

(postage 4d. extra)

Price

8/6

Indicators

THE JOURNAL

OF

BIOLOGICAL CHEMISTRY

FOUNDED BY CHRISTIAN A. HERTER AND SUSTAINED IN PART BY THE CHRISTIAN A. HERTER MEMORIAL FUND

EDITORIAL BOARD:

W. MANSFIELD CLARK. HANS T. CLARKE. CARL F. CORL EDWARD A. DOISY. A. BAIRD HASTINGS.

RUDOLPH J. ANDERSON. HOWARD B. LEWIS. ELMER V. MCCOLLUM. WILLIAM C. ROSE. WILLIAM C. STADIE. DONALD D. VAN SLYKE. HUBBRT B. VICKERY.

SUBSCRIPTION PRICE

Beginning with January, 1939, 5 volumes to be issued a year £1 1s. 9d. per volume, post free

> INDEX TO VOLS, 101-125 8s. net to Subscribers 12s. net to Non-Subscribers

British Agents: **BAILLIERE, TINDALL & COX** 7 & 8 HENRIETTA STREET, LONDON, W.C.2

BRITISH CHEMICAL AND PHYSIOLOGICAL ABSTRACTS

A., II.-Organic Chemistry

APRIL, 1943.

I.—ALIPHATIC.

Semiquantitative extension of the electronic theory of the English school. A. E. Remick (J. Org. Chem., 1942, 7, 534-545).—The author advocates the summation of ΔH for all linkings made and broken in the rate-controlling step as the best method for judging the most probable reaction path. If this summation is made correctly taking into account the interaction between all the linkings involved the val. of ΔH finally obtained should be the heat of activation. Such calculations can be made with fair accuracy for simple compounds on the basis of the theory of abs. reaction rates. If these interactions are neglected and a simple summation is made of the ΔH vals, for the linkings made and broken, the results give a reasonably safe guide for comparing reactions involving unsubstituted, unconjugated compounds and hence form a semiquant. extension of the electronic theory of the English school. Since the method aims only at establishing a sequence of the relative probabilities of different conceivable rate-controlling steps, the calculations can be further simplified by omitting from consideration all of the eactions under consideration and which would accordingly cancel out in the final comparison. The resultant vals, of ΔH are designated "comparative heats of activation." Considerations at the most probable mechanism is $CH_2:CH_2 + Cl_2 = 0$

CH₂:CH₂--Cl--Cl→CH₂Cl-CH₂ + Cl, that the reaction will lead to addition rather than to substitution, that C₂H₄ is the nucleophilic reagent in this reaction which may accordingly be placed in class A of the Ingold-Rothstein scheme, and that the velocity of halogen addition is Cl₂ > Br₂ > I₂; (b) addition of H halides to olefines in which the rate-controlling step is CR₂:CH₂ + HX → CR₂:CR₂-H-X and the predicted order of velocity (neglecting entropy factors) is HI > HBr > HCl; (c) hydrolysis of chlorides of N and P in which the relative probabilities of the mechanisms are XCl₂ + H⁺ \rightleftharpoons XCl₂ - Cl-H \rightarrow ClX⁺ + HCl > XCl₃ + H⁺ \rightleftharpoons H-- XCl₂--Cl \rightarrow HXCl₂ + Cl > XCl₃ + OH⁻ \rightleftharpoons Cl ₄X - Cl - OH \rightarrow Cl₂X + HOCl. On the assumption that the 3 Cl atoms are removed by the same mechanism PCl₃ should yield HCl and P(OH)₃. For NCl₃ the comparative heats of activation for the three mechanisms are -58.6, -43.4, and +76.8 kg.-cal. Hence the second mechanism is the more probable and NCl₃ would be expected to yield HOCl and NH₃ on hydrolysis; (d) hydrolysis of alkyl halides which in acid solution is shown to follow the mechanism MeX + AqH⁺ \rightleftharpoons Me-X-H⁺ + Aq - Me⁺ + HX + aq; (e) cyanohydrin formation with aldehydes for which a more facile addition is predicted in a basic than in an acidic medium; (f) reactions of ethers with halogen hydrides etc. which probably follow the course, MeOMe + HX \rightleftharpoons MeO(Me)·H-X \rightarrow MeOH + X' + Me⁺, and (g) reactions of alcohols with halogen hydrides in which the order of reactivity is cale, to be *tert*. > *sec*. > primary. H. W.

"Sliding" isomerism ("olisthomerism"). A. Balandin (Acta Physicochim. U.R.S.S., 1942, 16, 195-205).—Where it is possible by change of groups in different ways to arrive at the same compound from the same starting materials, the products are called "sliding" isomerides or olisthomerides. Thus, in the formation of MeOAc from AcOH and MeOH, the substances may combine as follows: MeiOH + MeCO:OH and MeiOH + MeCO:OH. Conditions for the existence of this type of reaction are outlined. Reactions in which it may take place include esterification, formation of ethers from alcohols, formation of mixed acid anhydrides, mixed ketones, aldehydes from formic and another carboxylic acid, sec. amines from two primary amines, and the reactions provides an important method for comparing the strengths of linkings and the mobility of groups and atoms. Isotopes, artificial radioactivity, and optical activity can also be introduced into the study of the phenomenon. A. J. M.

Stereochemistry. III. Preparation of d-a-deutero- β -methylbutane. Its optical rotation. H. C. Brown and C. Groot (J. Amer. Chem. Soc., 1942, 64, 2563—2566).—d-CHMeEt·CH₂·OH (from fusel oil) and SOCl₂-C₃H₃N give d-CHMeEt·CH₂Cl, b.p. 99·5°/750 mm., a_D +1·33°, the Mg derivative of which with HCl gives EtPr^β and

with DCl gives d-CHMeEt·CH₂D, b.p. 27°/746 mm., a₅₄₆₁ <0.005°, probably <0.002°. R. S. C.

Isomerisation of n-pentane.-See B., 1943, II, 2.

Industrial synthesis of hexachloroethane. II. Chlorination of tetrachloroethane.—See B., 1942, II, 417.

Cyclic production of nitroparaffins.---See B., 1943, II, 38.

Synthesis of ethylenic and saturated hydrocarbons of *iso*-structure with a quaternary carbon atom. **II**. Reaction between β -bromo- $\beta\delta$ -dimethyl- Δ^{γ} -pentene and magnesium alkyl halides. R. J. Levina and J. B. Kagan (*J. Gen. Chem. Russ.*, 1941, 11, 523–526).-CMe₂:CH·CMe₂Br and MgRX (X = Cl, Br) yield the hydrocarbons CMe₂:CH·CMe₂R (R = Me, *Et*, b.p. 132°, *Pr*^a, b.p. 152–153·5°). These are hydrogenated to the hydrocarbons CMe₂Bu^βR (R = Me, *Et*, b.p. 129–130°, *Pr*^a, b.p. 151–152°). R. T.

Stability of butadiene in nitrogen mixtures at 250-500°.—See B., 1943, II, 1.

Photo-addition of hydrogen bromide to olefinic linkings. W. E. Vaughan, F. F. Rust and T. W. Evans (*J. Org. Chem.*, 1942, 7, 477– 489).—" Abnormal" addition of HBr to olefinic linkings (CH₂:CHMe, CH₂:CHEt, CH₂:CH·CH₂Br, diallyl) has been effected photometrically in liquid and vapour phase without the intervention of O₂ or peroxides. In the liquid phase, quant. conversions can be obtained so rapidly that the method suggests itself for practical syntheses; irradiation with sufficiently short λ is the principal requirement. Some photo-dissociable materials (aldehydes, ketones, metal alkyls) are able to sensitise the "abnormal" addition even when the radiation used is not absorbed by HBr or the olefine. Certain materials (MeI, I) are powerful inhibitors of the gas-phase process. All the evidence substantiates previous conclusions that the mechanism of the "abnormal" addition is a chain reaction involving Br atoms and free radicals.

Olefine-oxygen-hydrogen bromide photo-reaction. F. F. Rust and W. E. Vaughan (*J. Org. Chem.*, 1942, 7, 491-496).—The presence of large concns. of O₂ inhibits the photo-reaction of olefines (C_2H_4 and C_3H_6). The products of these retarded reactions include the *n*-monobromide, dibromide, bromohydrin, and H₂O. In the case of C_3H_6 CH₂AcBr is also formed. Peroxidic compounds are not found. CH₂AcBr (and, by analogy, any *a*-Br-ketone) acts as a powerful catalyst for the "abnormal" addition of HBr to olefines, even in the dark. H. W.

Cetene (Δ^{a} -hexadecene). H. Suida and F. Drahowzal (*Ber.*, 1942, 75, [*B*], 991—997).—Evidence is adduced in favour of the view that homogeneous Δ^{a} -hydrocarbons are obtained from Mg alkyl chlorides and allyl halides. $n-C_{12}H_{25}Cl$ is converted by KCN into *n*-trideconitrile, b.p. 150·6°/10·5 mm., reduced by the rapid action of a slight excess of Na in boiling Bu^aOH to $n-C_{13}H_{27}$ ·NH₂, the hydrochloride of which is transformed by BzCl in C_{eH} at 108—110° into *benz*-tridecylamide, m.p. 70·6°. This is converted by PCl₅ into *n*- $C_{13}H_{27}$ Cl, b.p. 135·7—136°/9 mm. (corresponding bromide, b.p. 148—149°/9·5 mm., m.p. 6·0°), transformed by the successive action of Mg and CH₂·CH·CH₂Br into Δ^{a} -hexadecene (cetene). H. W.

Addition of iodine trichloride to acetylene and the structure of β -chlorovinyliodochloride. R. C. Freidlina and A. N. Nesmejanov (Compt. rend. Acad. Sci. U.R.S.S., 1941, **31**, 892–894).— Addition of ICl₃ to C₂H₂ in either 3% or 15% HCl gives β -chlorovinyliodochloride (I), m.p. 74°, identical with the substance obtained by addition of Cl₂ to CHCl:CHI. C₂H₂ is eliminated from (I) by treatment with CsCl or C₅H₅N. A solution of (I) in CHCl₃ with C₅H₅N gives a ppt. of a double compound of (I) and C₅H₆N, reduced by FeSO₄ with evolution of I. F. R. S.

Purification of methanol.—See B., 1943, II, 39.

Constitution of pirylene: chemical evidence. H. Sargent, E. R. Buchman, and J. P. Farquhar (J. Amer. Chem. Soc., 1942, 64, 2692–2693; cf. A., 1943, I, 54),—Degradation of 1 : 1-dimethyl-2-bromo-methylpyrrolidinium bromide gives mixed bases (A) (70%), b.p. $\sim 56-70^{\circ}/50$ mm. (cf. lit.), from which 13% of a stable base, C₇H₁₃N, b.p. 65°/49 mm. (diliturate, m.p. 161–162°; picrate, m.p. 100·5–101°), is obtained. The derived methiodide (I), m.p. 259° (decomp.) (lit. 257°) (corresponding methopicrate, m.p. 112·5–113°), is also

obtained from (A); it is stable to H_2O at 100° and resists hydrogen-ation, but gives the methochloride which with H_2 -Pd-C in H_2O at ation, but gives the methochloride which with H_2 -Pd-C in H_2O at 2 atm. yields $n-C_5H_{11}$ MMe₃X. Distilling (**I**) with conc. aq. KOH gives pirylene (**II**) (59-73%), b.p. 59.4°/744 mm., which is shown to be CMeCCH.CH₂ by physical properties, addition of 3 H₂ (Pd-C) to give $n-C_5H_{12}$ and of HCl to give CHMe.CCl-CH.CH₂ [1:4-O:C₁₀H₄.O adduct, m.p. 180.7-181; (**II**) does not react at 100°]. M.p. are corr R. S. C. R S C.

Octadecyl alcohol (3:5-dinitrobenzoate, m.p. 77.5°) etc. in gorgonias.—See A., 1943, III, 181.

Silico-organic compounds. IV. Action of organic acid halides and of hydrohalogen acids on silico-orthoesters. H. W. Post and H. M. Norton (*J. Org. Chem.*, 1942, 7, 528-533).—Si(OEt)₄ and AcCl (1:1) at 135° give SiCl(OEt)₃ in 90% yield. At 185° and with ratio 1:2 there is a fair yield of impure SiCl₂(OEt)₂ whilst with ratio 1:5 some SiCl₃(OEt) is produced. At 200° in a steel bomb with ratios 1:2 and 1:1 only EtOAc could be identified, spongy siliceous polymerides being also produced. At 185° Si(OBu^a)₄ and AcCl (1:1) give SiCl(OBu^a)₃. A boiling equimol. mixture of Si(OEt)₄ and BzCl gives 70% of SiCl(OEt)₃ and 88% of EtOBz. With ratio 1:4 an identifiable product does not result. Si(OEt)₃·OAc and AcCl (1:2) do not react at 40°. At 185° and with ratio 1:1 there is no well-defined product; this is also the case with Si(OEt)·0·COEt. AcBr and Si(OEt)₄ (1:1) at 18·5° give 20% of EtBr, 80% of EtOAc, but no homogeneous compound of Si. Similarly BzBr gives 26% of EtBr and 68% of EtOBz. BiBr(OBu^a)₄. The possibility that Bu^a₂O is an intermediate is ex-cluded experimentally. Passage of dry HCl through Si(OEt)₄ at room temp. gives a small amount of EtOH, mainly unchanged ester, Silico-organic compounds. IV. Action of organic acid halides room temp. gives a small amount of EtOH, mainly unchanged ester, room temp. gives a small amount of EtOH, mainly unchanged ester, and some polymerised compounds of Si. At 185° Si(OEt)₄ and HCl appear to afford EtCl. Reaction does not appear to occur between Si(OBu^a)₄ and HCl. HBr and Si(OEt)₄ appear to react more readily, giving EtBr and EtOH, whilst Si(OBu^a)₄ gives some Bu^aBr and very little Bu^aOH. Si(OEt)₄ and Si(OBu^a)₄ and HI vield the corresponding alcohol and iodide. H. W.

Mechanism of obtaining vinyl ethers. E. S. Vasserman and A. B. Bedrintzeva (*Compt. rend. Acad. Sci. U.R.S.S.*, 1941, 33, 34-36).— The kinetics of the reaction of vinylation of alcohols are studied. When C_2H_2 reacts with 96.5% EtOH in presence of KOH at 170– 190°/~30 atm., the first stage is probably activation of C_2H_2 , which then reacts with EtOH to give CH_2 ; CH·OEt. It is assumed that EtOH reacts only with dissolved C_2H_2 , the concn. of which is approx. const. owing to large excess of it in the gaseous phase and the relatively bigh torm. the relatively high temp. Â. T. P.

aca-Trichloro-y-nitro- β -hydroxyalkanes and their reduction products. S. Malkiel and J. P. Mason (J. Amer. Chem. Soc., 1942, 64, 2515).—CCl₃·CH(OH)·CHR·NO₂ (from CCl₃·CHO,H₂O, CH₂R·NO₂, and aq. K₂CO₃ at 50—52°) with H₂-Raney Ni in EtOH at room temp./55 lb. give aca-trichloro-y-amino- β -hydroxy-propane (I), m.p. 44·7—45·7° (corr.) (lit. 42—43°), b.p. 138—146°/13 mm. (Bz derivative, m.p. 182·5°), and -n-pentane, b.p. 136—142°/10 mm. (Bz derivative, m.p. 182·5°), and -n-pentane, b.p. 136—142°/10 mm. (Bz derivative, m.p. 182·5°), and -n-pentane, b.p. 136—142°/10 mm. (Bz derivative, m.p. 182·5°), and -n-pentane, b.p. 136—142°/10 mm. (Bz derivative, m.p. 195·2°). Addition of COMe₂ to (I) in EtOH gives a compound, C₃H₄ONCl₃, m.p. 167·4—167·7° (corr.). R. S. C.

Purification of pentaerythritol.—See B., 1942, II, 419.

Preparation of divinyl ether.—See B., 1943, II, 3.

Ethyl peroxides. XIV. Oxidation of dissopropyl ether. A. Rieche and K. Koch (*Ber.*, 1942, 75, [*B*], 1016—1028).—A sample of Pr_{P_2O} which had been kept in a metal container for 10 years con-tained trimeric (**I**), m.p. 98.5°, and dimeric (**II**), m.p. 131°, acetone peroxide, COMe_2,H_2O_2, and some $Pr^{\beta}OH$, AcOH, and HCO_2H. Oxid-ation appears to proceed thus : $Pr_{P_2O}^{\beta}O + O_2 \rightarrow Pr^{\beta}O \cdot CMe_2 \cdot O_2 + (III)$; (**III**) + $H_2O \rightarrow OH \cdot CMe_2 \cdot O_2H$ (**IV**) + $Pr^{\beta}OH$ and (**III**) $\Rightarrow CMe_2 \cdot O_2 \cdot (\text{becomes polymerised}) + Pr^{\beta}OH$; (**IV**) $\Rightarrow COMe_2 + H_2O$. $Pr_{P_2O} + 2O_2 \Rightarrow O(CMe_2 \cdot O_2H)_2$ (**V**); (**V**) + $H_2O \Rightarrow 2(IV)$ (forms acetone per-oxide); (**V**) $\rightarrow H_2O + 2CMe_2 \cdot O_2^*$ (becomes polymerised); (**IV**) \Rightarrow $COMe_2 + H_2O_2$. In boiling C_6H_6 or EtOH the mol. wt. of (**I**) agrees with the expected val. whereas that of (**II**) in boiling C_6H_6 , EtOH. EtOAc, and COMe_2 is very variable. (**II**) is much more EtOH, EtOAc, and COMe₂ is very variable. (II) is much more volatile, more sensitive to shock, and more explosive than (I). (II) is hydrolysed by acid considerably more rapidly than (I). The absorption spectra of (I) and (II) are recorded. H. W.

Keten acetals. XI. Pyrolysis of keten acetals and ortho-esters. S. M. McElvain, H. I. Anthes, and S. H. Shapiro (*J. Amer. Chem. Soc.*, 1942, **64**, 2525—2531; cf. A., 1943, II, 23).—The reaction, CHX:C(OEt)₂ (X = H, Cl, alkyl etc.) \rightarrow CH₂X·CO₂Et + C₂H₄, occurs in glass at 200° (6 hr.; yield 20—100% dependent on the drying and usage of tubes), in *cyclo*hexane in steel at 200° (5–10% yield), or by rapid passage over glass chips, MnO₂, Al₂O₃, ZnO, or CrO₃ at 300—400° (60—80% yield). However, *keten Me₂ acetal* (I), b.p. 89—91°/740 mm., is 95% unchanged after heating for 24 hr. at 200°. CMe(OMe)₃ and Br give *Me₃ orthobromoacetate* (70%), b.p. 74—75°/17 mm., which with Na gives 70% of (I). CH₂:CH·OAc with Br and then CH₂:CH·CH₂·OH (II) or CH₂Ph·OH at 5° and

LIPHATIC. 80 later room temp. gives diallyl (45%), b.p. 101–-02°/20 mm., and $(CH_2Ph)_2$ bromoacetal (75%), b.p. 190–195°/2 mm., respectively, which with KOBU'-Bu'OH at the b.p. give, doubtless by way of the keten acetal, allyl Δ^r -pentenoate (43%), b.p. 48–50°/8 mm., 160–162°/740 mm. [hydrolysed to (II) and CH₂:CH₁:CC₂H], and CH_2Ph o-tolylacetate (46%), b.p. 158–162°/15 mm. (hydrolysed to CH₂Ph-OH and o-C₄H₄Me⁻CH₂:CO₂H), respectively. CH₂X·C(OEt)₃ (X = H, Cl, or OEt) decomposes at 200° into CH₂X·CO₂Et, EtOH, and C₃H₄, proof that the reaction occurs by way of CHX:C(OEt)₂ is provided by decomp. of CMe(OEt)₃ in presence of PhOH at 200° to EtOAc, EtOH, and PhOEt, and of OEt·CH₂·C(O₂H) (53%), EtOH, and C₂H₄. Similarly, CMe(OR)₂·OR' [prep. from CH₂:C(OK)₂ and R'OH] gives (a) R'OH + CH₂:C(OR)₂ \Rightarrow (+PhOH) CMe(OR)₂·OPh \Rightarrow ROAc + PhOR and (b) ROH + CH₂:C(OR)·OR' \Rightarrow (+PhOH) OR·CMe(OR')·OPh \Rightarrow (c) R'OAc + PhOR, and (d) ROAc + PhOR'. The relative amounts in which these reactions occur are determined for R = Et, R' = Bu⁶, Bu⁶, sec.-Bu, isoamyl, CH₂Bu⁷, and CH₂Ph, and for R = Bu⁶, R'OAc + PhOR, and (d) ROAc + PhOR'. The relative amounts in which these reactions occur are determined for R = Et, R' = Bu⁶, Bu⁶, sec.-Bu, isoamyl, CH₂Bu⁷, and CH₂Ph, and for R = Bu⁶, R'OAc + PhOR, and (d) ROAc + PhOR'. The relative amounts in which these reactions occur are determined for R = Et, R' = Bu⁶, Bu⁶, sec.-Bu, isoamyl, CH₂Bu⁷, and CH₂Ph, and for R = Bu⁶, R'OAc + PhOR, and (d) ROAc + PhOR'. The relative amounts in which these reactions occur are determined for the set R, C = Et', b.p. 78–83°, 3 mm. With CH₂Br·C(OEt)₃ and CHBr₂·C(OEt)₄, decomp-as above is complicated by loss of EtOBr (\Rightarrow MeCHO+ + HBr) and by addition of HBr to the keten, leading to varied products. CPh(OEt)₃ at the b.p. gives EtOBZ (60%) and Et₂O. The following are described. Et₂ Bu⁶, b.p. 70–72°/15 mm., Bu⁶, b.p. 64–66°/ 14 mm., sec.-Bu, b.p. 63–65°/1

Addition of sulphuric acid to olefines of high mol. wt. P. Baum-garten (Ber., 1942, 75, [B], 977-983).—Dodecene obtained by dehydrating dodecan-a-ol with hot, highly conc. H_aPO_4 or by the thermal decomp. of dodecyl palmitate is oxidised by BZO_2H to the corresponding oxide, which is hydrolysed by very dil. H_2SO_4 to the glycol and then quantitatively oxidised by $Pb(OAc)_4$. The sub-stance obtained by the second reaction is thus shown to be Δ^{a} -dodecene (I) whereas the first method affords a mixture (II) of stance obtained by the second reaction is thus shown to be Δ^{a} -dodecene (I) whereas the first method affords a mixture (II) of Δ^{β} - and Δ^{γ} -dodecene. Most complete action between (I) or (II) and H_2SO_4 is obtained by rapid use of a moderate excess of the monohydrate at ~0°, whereby 86% of alkyl sulphate can be pro-duced. (I) gives a non-uniform product separable by CHCl₃, COMe₂, light petroleum, $C_{e}H_{e}$, etc. into the sparingly sol. Na β -dodecyl sulphates (III) and freely sol. Na γ -, δ -, and possibly ε -dodecyl sulphates (IV). The a-dodecyl compound (V) could not be detected. (III) is identified by hydrolysis to dodecan- β -ol, oxidised to dodecanone. Hydrolysis of (IV) gives a mixture of sc. alcohols oxidised to a mixture of ketones. Migration of SO₄ occurs during the action of H₂SO₄ on (III) whereby salts sol. in CHCl₃ are pro-duced in considerable proportion whereas (V) is unchanged by this treatment. Similarly (IV) is partly converted into (III) by H₂SO₄. H. W. Nature of the glycerophosphoric acid present in phosphatides. I

Nature of the glycerophosphoric acid present in phosphatides. J. Folch (J. Biol. Chem., 1943, 146, 31-33).—Methods of isolation used to prepare glycerophosphoric acid (\mathbf{I}) from phosphatides hydrolysed with acid or alkali yield optically active mixtures of $a_{-} + \beta$ -acids, and there is no evidence to show whether (I) in phosphatides is in a- or B-form. A. T. P

Photo-addition of hydrogen sulphide to olefinic linkings. W. E. Vaughan and F. F. Rust (*J. Org. Chem.*, 1942, 7, 472–476).—Ultraviolet radiation of short λ readily promotes the addition of H₂S to CH:CHEt, CH₂:CHMe, diallyl, CH₂:CHCl, diallyl ether, and CH:CHEt, with formation of mercentage and sulphides. Light CH_2 :CH·CO₂Me with formation of mercaptans and sulphides. Light of λ transmissible by Pyrex is effective in initiating reaction if a small amount of photo-dissociable material such as COMe₂ is pre-sent. S of the 'SH or 'S' adds exclusively to C of the double Sinking which has the largest no. of H atoms. H_2S and olefine combine slowly in the gas phase under the influence of ultra-violet, radiation. The mechanism is one of a free radical chain and is dependent on the preliminary dissociation of H_2S . H. W.

Solubilities of saturated fatty acids.-See A., 1943, I, 87.

Mechanism of oxidation of oleic and elaidic acids and their methyl esters by hydrogen peroxide in acetic acid. Configurations of θ_i -dihydroxystearic acids. G. King (J.C.S., 1943, 37-38).—With H_2O_2 in AcOH at room temp., oleic acid yields mixed monoacetates (also obtained from oleic acid epoxide, m.p. 59.5°, and AcOH at room temp.) of dihydroxystearic acid, m.p. 95°, whilst elaidic acid gives some elaidic acid epoxide (I), m.p. 55°, and monoacetates [also obtained (with 50% of unchanged epoxide) from (I) and AcOH] of dihydroxystearic acid, m.p. 132°. Me oleate and elaidate behave similarly. Traces of peroxides are produced in all cases. It is concluded that in the oxidation in AcOH the epoxides are first formed and by fission and inversion give the (OH)-acids. Mechanism of oxidation of oleic and elaidic acids and their methyl formed, and by fission and inversion give the (OH)₂-acids.

Autoxidation of oxygen-active acids. V. Viscosimetric and volu-metric analysis of the addition of oxygen to the triglycerides. W. Treibs (Ber., 1942, 75, [B], 953—957; cf. A., 1942, II, 392).—

Quant. viscosimetric and volumetric analysis of the addition of O2 to glyceryl oleate dilinoleate from soya-bean oil and glyceryl linoleate dilinolenate from linseed oil shows that the autoxidative behaviour of the glycerides is an additive function of that of the individual active chains. As in the case of the corresponding Me ester, the glycerides form initially monomeric peroxides; these subsequently undergo condensation and dehydration. In the drying of the corresponding vegetable oils, the glyceryl residues are responsible for the film-building capacity and form the points of union of the macromol. film nets. H. W.

Preparation of tartaric acids.—See B., 1943, II, 41.

Preparation of crystalline anhydrous citric acid.—See B., 1943, II, 41

Preparation of sodium pyruvate. W. v. B. Robertson (*Science*, 1942, 96, 93—94).—Pptn. by approx. equiv. amount of NaOH-EtOH from AcCO₂H-EtOH gives an 80% yield after recrystallis-E. R. R. ation.

Preparation of calcium gluconate.—See B., 1943, II, 37.

Condensations. XVII. Acylation of the anions of alkyl esters by phenyl esters. Preparation of ethyl propionylacetate and related 8-keto-esters. B. Abramovitch and C. R. Hauser (J. Amer. Chem. **8-keto-esters.** B. Abramovitch and C. R. Hauser (*J. Amer. Chem. Soc.*, 1942, **64**, 2271–2274; cf. A., 1942, II, 132).—Treating ROAc with NaCPh₃ and then with $EtCO_2R'$ gives $EtCO\cdot CH_2\cdot CO_2R$ and R'OH; R and R' must be chosen so as to allow ready separation R'OH; R and R' must be chosen so as to allow ready separation of the products. Adding EtOAc and then p-diphenylyl propionate [prep. from $p-C_{4}H_{4}Ph \cdot OH$, NaOH, and (EtCO)₂O at $\sim 5^{\circ}$] to NaCPh₃ in Et₂O-N₂ at -5° and later keeping at 15° gives Et propionylacetate [B-keto-n-valerate] (I) (44%), b.p. 91–92°/17 mm.; use of EtCOCl gives 32% of (EtCO)₂CH·CO₂Et and thence 16% of (I). $n-C_{5}H_{11}$ ·OAc with NaCPh₃ and EtCO₂Ph gives 30% of n-amyl propionylacetate, b.p. 113–115°/10 mm. Bu²CO₂Et with NaCPh₃ and EtCO₂Ph gives 58% of EtCO·CHPr²·CO₂Et, b.p. 107–109°/21 mm. Bu² cyanoacetate (prep. from CH₂Br·CO₂Bu² and KCN-MeOH), b.p. 107–108°/23 mm., with MgEtBr-Et₂O gives a complex mixture. COMeEt with NaCPh₃ and then Et₂CO₃ gives mainly products of ketonic self-condensation. R. S. C. ketonic self-condensation. R. S. C.

Synthetic differential growth inhibitor.-See A., 1943, III, 256.

Syntheses of ethylene $\alpha\beta$ -disebacate and glyceryl $\alpha\beta\gamma$ -trisebacate. Metabolic experiments with ethylene $\alpha\beta$ -disebacate and sebacic acid. B. Flaschenträger and R. Allemann (Annalen, 1942, 552, 106–112). -Freshly distilled $(CH_2 OH)_2$ and Δ^2 -undecenoic acid at $150^\circ/120$ mm. and then at $155^\circ/120$ mm. give H_2O and C_2H_4 diundecenoate, (I), b.p. $200-219^\circ$ /high vac. It is converted by ozonisation in (1), b.p. 200–219'/high vac. It is converted by ozonisation in EtOAc at -18° and hydrogenation (Pd sponge) followed by oxid-ation (KMnO₄ in COMe₂ at room temp.) of the ozonide into $C_2H_4 H_2$ *disebacate*, m.p. 92–94° [Na₂, (NH₄)₂, Mg, Ca, Ba, and Ag₂ salts]. Glyceryl triundecenoate is similarly transformed into *glyceryl* H_3 aβy-trisebacate, m.p. 88–90° [(NH₄)₃, Na₃, Mg_{1.5}, Ca_{1.5}, Ba_{1.5}, and Ag₅ salts]. In the dog (I) behaves in the same manner as free sebacic conditioned to the triangle for the triangle behavior of the triangle behavior of the product of the triangle behavior of the state of the triangle behavior of the triangle acid. The ester union of (I) is rapidly hydrolysed in the tissue and esters can scarcely participate, even in chain reactions, in the H. W. degradation of fats.

Formaldehyde synthesis from methane and oxygen atoms. M. Kuschnerev and A. Schechter (*Compt. rend. Acad. Sci. U.R.S.S.*, 1941, 32, 560—562; cf. A., 1935, 1087).—Yields of CH₂O are recorded on CH₄ mixed with $10\% O_2 + 90\%$ A obtained by the action of the silent electric discharge action of the silent electric discharge. A. T. P.

Condensation products of acetaldehyde. E. E. Connolly (J.C.S., 1943, 42)—Crude aldol contains 35% of recoverable MeCHO, of which 50% can be recovered at room temp., and the rest by distillation with C₆H₆ or passing through a tube at 100°, but when fractionated in a vac. yields mobile aldol, b.p. 75°/16 mm., which rapidly polymerises, especially in the presence of electrolytes. of paraldol (supercooled liquid) shows that it is probably cyclic. Crude aldol with 2% of H_sSO_4 yields a viscid polymeride, b.p. $136^\circ/17$ mm., which with NH_2OH,HCl (slowly), or when distilled with dil. H_sSO_4 , gives equimol. amounts of MeCHO and CHMe:CH·CHO, and may be

CHMe ·O·CHMe·CH₂·CH(OH)·Q O·CH(OH)·CH2·CHMe·O--CHMe.

A. LI.

Derivatives of aldol and of crotonaldehyde. IV. Relationships Derivatives of aldol and of crotonaldehyde. IV. Relationships between the monomeric aldol and its dimeric forms. E. Späth, R. Lorenz, and E. Freund (Ber., 1942, 75, [B], 1029–1039).—Mono-meric aldol (I), paraldol (II), and the "viscous dimeric aldol" (III) in H₂O or aq. MeOH give with NH₂OH, p-NO₂·C₆H₄·NH·NH₂, or p-C₆H₄Br·NH·NH₂ in approx. equal amount the corresponding derivatives of (I), b.p. 110–120° (bath)/1 Torr, m.p. 115-5–116°, and m.p. 126–127°, respectively. (I) appears to show a pronounced tendency to form non-cryst. derivatives or to lose H₂O; thus even in dil. solution at 20° (I) or (II) affords essentially the dimedon derivative of CHMe:CH-CHO. In H₂O (I) and (II) ultimately give an equilibrium mixture containing 48% and 69% of (II) in 2·16 and 9·92% solution. At 10 Torr (III) can be depolymerised to (I). In H₂O (III) gives an immediate mol, wt. somewhat < is required In H₂O (III) gives an immediate mol. wt. somewhat < is required

D 2 (A., II.)

by $C_8H_{18}O_4$ and this val. diminishes in time to that observed with (II). At 100° (II) and (III) are interconvertible. Probably (II) and (III) are structurally identical but differ sterically. H.

Preparation of higher fatty aldehydes.---See B., 1943, II, 4.

T. White Preparation and polymerisation of methyl vinyl ketone. and R. N. Haward (J.C.S., 1943, 25–31; cf. B., 1938, 1326). $COMe_2$ (4 mols.) with paraformaldehyde (1 mol.) at pH 8·3–8·5 COMe₂ (4 mols.) with paratormaldehyde (1 mol.) at pH 8:3-8:5 (with MeOH-KOH) at the b.p. yields a product which on distill-ation with $o-C_4H_4(CO_2Bu)_2$ gives $CH_2Ac:CMe_2\cdotOH$ (I) (4-5), $OH:[CH_2]_2\cdotAc$ (27-28), $OH:CH_2\cdotCAc:CH_2$ (14-15), 1:3-dioxanyl-5 isobutenyl ketone (II), b.p. 90-92°/12 mm. (2:4-dinitrophenyl-hydrazone, but no oxime or NaHSO₃ derivative) (10-11), and 1:3-dioxanyl-5 Me ketone (3-4%). The ''3-ketobutanol'' of previous workers is a mixture of some of the above. (II) with cold ellecting KMnO xields COMe and with 2N-HCl. (H.O. (I)) alkaline KMnO₄ yields COMe₂, and with 2n-HCl, CH₂O. (I), or the crude condensation mixture, when distilled with 10% of H_3PO_4 . and the product treated with Ac₂O and fractionated, yields COMe-CH₂CH₂ (**III**). The rate of polymerisation of (**III**) in various solvents has been studied. The rapid polymerisation in precipitants, and the discrepancies in the kinetics of polymerisation in C_6H_6 , confirm that chain termination is retarded in liquids which do not A. LI. dissolve the polymeride.

Polymerisation of keto-alcohols. I. Preparation and mechanism of polymerisation of γ-ketobutyl alcohol. Ε. Ν. Rutovski, Α. Α. Berlin, and K. Zabirina (J. Gen. Chem. Russ., 1941, 11, 550-558). Berlin, and K. Zabirina (*J. Gen. Chem. Russ.*, 1941, **11**, 350–358).— Optimum conditions for prep. of OH•[CH₂]₂·COMe (**I**) from COMe₂ and CH₂O are: pH 8·2—8·4, temp. 30—35°. The pH should be ad-justed to 6·8 as soon as possible after completion of the reaction. Velocity of polymerisation rises with temp. from 50° to 150°. With the exception of Ac₂O neutral and acid catalysts (H₂O₂, ZnCl₂, P₂O₅, Bz₂O₂) have only a very small catalytic action. With 1% of the exception of Ac₂O neutral and acid catalysts ($r_{2}O_{2}$, $2r_{1}O_{2}$, $P_{2}O_{5}$, $Bz_{2}O_{2}$) have only a very small catalytic action. With 1% of $Na_{2}O_{2}$ the polymerisation reaction is completed after 2 hr., and with 1% of NaOH after 20 hr. Alkaline catalysts have no action in the polymerisation of OH·CH₂·CHMe·COMe. Refractometric and surface tension studies suggest that at room temp. 83% of (I) is in the enolic form OH·CH₂·CH:CMe·OH, and the catalytic action of alkalis is ascribed to their effect in shifting the equilibrium point towards this form. The polymeride obtained in presence of Bz_2O_2 (36 hr. at 80°) has a higher sintering point (240–243°) than when NaOH is used (160°); both polymerides are sol. in org. solvents, but not in H₂O, and are not affected by exposure to light. R.T.

Preparation of diacetyl.-See B., 1943, II, 4.

Manufacture of a-dimethylaminopropane- β_y -diol.—See B., 1943, II, 4.

Kinetics of amination of organic halogen compounds in liquid ammonia.—See A., 1943, I, 65.

Solubilities and compositions of the phospho-12-tungstates of diamino-acids and of proline, glycine, and tryptophan. D. D. Va: Slyke, A Hiller, and R. T. Dillon (J. Biol. Chem., 1943, 146, 137-Siyke, A Hiller, and R. 1. Dillon (J. Biol. Chem., 1943, 146, 137– 157).—Solubilities of the phospho-12-tungstates of arginine (I) $(A_3P_2, 8H_2O: A = NH_2$ -acid, $P = H_3PO_4, 12WO_3$), histidine (II) $(A_3P_2, 6 \text{ or } 12H_2O)$, lysine (III) $(A_3P_2, 10H_2O)$, and cystine $(AP, 6H_2O)$ and of glycine (IV) $(A_3P, 5H_2O)$, proline (V) $(A_3P, 2\cdot 5H_2O)$, and tryptophan $(A_3P, 10H_3O)$, are measured under varying conditions of temp. and concn. of mineral acid, and approx. optimal conditions are recorded for the phosphotungstate separation of the (NH) are recorded for the phosphotungstate separation of the $(NH_2)_2$ -from the NH_2 -acids in protein hydrolysates. The time required from the \mathbb{NH}_2 -acids in protein hydrolysates. The time required for complete ppth, of phosphotungstate varies inversely with the solubility; at room temp., **[I]** and **(III)**, which form the least sol, phosphotungstates, reach max. ppth, in a few hr., **(II)** and *l*-cystine in 48 hr., and **(IV)** and **(V)** in 72-96 hr. **(II)** forms mixed phospho-tungstates with **(I)** and **(II)**, so that when the mol, sum of **(I)** + **(III)** is > that of **(II)**, ppth, of **(II)** is more complete than is indicated by solubility of the isolated phosphotungstates. Solu-bility effect of derivatives of **(I)** and **(III)** on **(II)** is plotted as a function of the proportion of **(II)** in the mixture. **(II)** does not show a similar effect on the solubility of the phosphotungstates. show a similar effect on the solubility of the phosphotungstates of (I) and (III). A. T. P.

Organic catalysts. XXIV. Aldol condensation in the presence of secondary amino-acids. W. Langenbeck and G. Borth (Ber., 1942, 75, [B], 951-953).—Sarcosine, N-ethylglycine, N-methylalanine, and NHMe CHPh CO₂H are excellent accelerators of the transformation of MeCHO into aldol, crotonaldehyde, and a small pro-portion of products of higher b.p. N-Ethyl- and N-benzyl-alanine and a-methylaminoisobutyric acid are completely inactive. The catalysts retain their activity over long periods. H.W

N-Monochlorocarbamates. P. Chabrier (Compt. rend., 1942, 214, 362-365; cf. *ibid.*, 1941, 213, 310).—Interaction of OR·CO·NCl. and OR·CO·NH₂ affords 2OR·CO·NHCl, which form salts. Me N-chlorocarbamate, m.p. 32° (NaOEt gives the Na salt, OMe·CO·NNaCl, decomp. 115°; Ag salt, decomp. 40°), NHCl·CO₂Et (Na salt, decomp. 140°), and β -chloroethyl N-chlorocarbamate, m.p. 42° (Na salt, decomp. 75°), are prepared. A. T. P.

New preparation and properties of carbamidoformic esters. P. Charrier (Compt. rend., 1942, 214, 495-497).—Alkali salts of

N-chlorocarbamates and amides give carbamidoformic esters: $NCINa \cdot CO_2R' + R \cdot CO \cdot NH_2 \rightarrow NH_2 \cdot CO_2R'$ (I) + $NCINa \cdot COR$ (II); (II) $\rightarrow RNCO + NaCI; RNCO + (I) \rightarrow NHR \cdot CO \cdot NH \cdot CO_2R'. C_{e}H_{e}$ is a particularly suitable medium but, in some cases, can be replaced by H_2O . Et OH is apt to lead to production of urethanes. Thus nicotinamide affords *Me nicotinylcarbamidoformate*, m.p. 218°, and Et nicotinoylcarbamate, m.p. 85°. The presence of halogen in amide or carbamate is no obstacle to the reaction. Thus NHClAc and NClNa CO₂Me afford Me chloromethylcarbamidoformate, m.p. 168°, and NH₂Bz and NCINa CO_2Et give β -chloroethyl phenylcarbamido-formate, m.p. 117.5°. Reaction appears general and the yields are good with simple aliphatic or aromatic amides but mediocre with $HCO\cdot NH_2$. Alkalis or alkali carbonates hydrolyse the esters and HCO·NH₂. Alkalis of alkali carbonates hydrolyse the esters alkalish products when acidified give CO₂ and monosubstituted carbonates in good yield : NHR·CO·NH·CO₂H \rightarrow NHR·CO·NH₂ + CO₂. NH₃ transforms the esters into substituted biurets whilst N₂H₄ yields substituted semicarbazides NHR·CO·NH·CO·NH·NH₂ which react readily with aldehydes and ketones. H. W.

Catalytic hydrogenation of cystine. K. E. Kavanagh (J. Amer. Chem. Soc., 1942, **64**, 2721).—Cystine is readily hydrogenated to cysteine in 2N-HCl in presence of a little Pd deposited on a highpolymeric support (Pd-PVA). RSC

Behaviour of cystine dimethyl ester dihydrochloride and of cysteine monomethyl ester monohydrochloride in the Sullivan reaction for cysteine and cystine. M. X. Sullivan, W. C. Hess, and H. W. Howard (J. Washington Acad. Sci., 1942, **32**, 285–287).—The behaviour of cystine Me₂ ester dihydrochloride (**I**) and of cysteine Me ester monohydrochloride (**II**), m.p. 137–138.5°, softens at 110– 130° (prep. from cysteine hydrochloride and HCI–MeOH at 45° for 10 min., followed by adding to excess of Et_2O at 0°), in the Sullivan reaction is compared with that of cystine (III) and cysteine (IV). (I) and (II) are hydrolysed by NaCN in aq. NaOH to (III) and (IV), respectively. (I) is hydrolysed by 0·1N-HCl at room temp. (22 hr.), whereas (II) is not. (I) and (II) are relatively stable in H₂O, and whereas (II) is not. (I) and (II) are relatively stable if H_2O , and in solutions of low acidity at room temp., (I) is hydrolysed much more slowly than in 0-1N-HCl. (I) and (II) have a higher calori-genic val. than (III) and (IV), respectively, in the Sullivan reaction, when aq. NaCN is used to cleave the disulphide or to act as adjuvant in the cysteine reaction. If NaCN in N-NaOH is used, (I) gives approx. the same val. as (III). (II) treated with 0-1% NaCN in 0-8N-NaOH gives the same val. as (IV). 0.8N-NaOH gives the same val. as (IV). A. T. P.

Taurine. A. A. Goldberg (J.C.S., 1943, 4-5). $-NH_2^{*}[CH_2]_2^{*}SO_4H$ with aq. Na₂SO₃ at 140° (50 lb. pressure) for 20 hr. yields taurine (62%), which with the appropriate acid chloride (added gradually) in 5n-NaOH yields Na phenylacetamido-, β -phenylpropionamido-, and acetylmandelamido-ethanesulphonate. Median lethal dosages of A. LI. these for mice are given.

Manufacture of guanidine carbonate.--See B., 1942, II, 419.

Preparation of biuret.—See B., 1942, II, 421.

Reaction between thioamides and primary amines. M. J. Schlatter (J. Amer. Chem. Soc., 1942, **64**, 2722).—CS(NH₂)₂ with NH₂Bu^a at the b.p. gives NH₃ and N-n-butyl-, b.p. 131·5°/5 mm., and with CH₂Ph·NH₂ at 80° gives N-n-benzyl-thioacetamide, m.p. 65·1—65·3° (corr.), b.p. 158—162°/2 mm., but with OH·[CH₂]₂·NH₂ at $60-75^{\circ}$ gives (?) $di \cdot a \cdot \beta' - hydroxyethyliminoethyl sulphide, m.p. 101-101·5° (corr.) [picrate, m.p. 95—95·5° (corr.)]. H₂S and NH₃ may also be formed. R. S. C.$ R. S. C also be formed

Acylation of acetonitrile by ethyl *n*-butyrate. Alcoholysis of the sulting keto-nitrile to ethyl *n*-butyrylacetate. B. Abramovitch and resulting keto-nitrile to ethyl *n*-butyrylacetate. B. Abramovitch and C. R. Hauser (J. Amer. Chem. Soc., 1942, 64, 2720—2721).—Adding MeCN and then $Pr^{\alpha}CO_2Et$ to $NaCPh_3-Et_2O$ gives β -heto-n-hexonitrile (52%), b.p. 104—105°/11 mm., converted by HCl-EtOH into Construct the construction of the con COPrª·CH, CO, Et. R. S. C.

Preparation of adiponitrile .--- See B., 1942, II, 417

II.—SUGARS AND GLUCOSIDES.

Preparation of *d*-fructose 1:6-diphosphate by means of baker's yeasts. C. Neuberg and H. Lustig (*J. Amer. Chem. Soc.*, 1942, 64, 2722—2723).—Fresh baker's yeast converts sucrose in aq. NaH₂PO₄—NaHCO₃-Et₂O into *d*-fructose 1 : 6-diphosphate, isolated as Ca salt. Dried, but not fresh, Fleischmann's yeast is also effective if CCl4 is R. S. (added.

D-Galactosan <1, 5> β <1, 6>. R. M. Hann and C. S. Hudson (*J. Amer. Chem. Soc.*, 1942, 64, 2435–2438).—The structure of *D*-galactosan <1, 5> β <1, 6> (I) is confirmed by oxidation by aq. HIO₄ at 20° to *L'*-oxy-*D*-methylenediglycollic dialdehyde and thence (Br-SrCO₃) Sr *L'*-oxy-*D*-methylenediglycollate, +5H₂O, and by consumption of 2 equivs. of Na₂I₄O, to give 0.98 HCO₂H. Pyrolysis (BI-SICO₃) Sr L-oxy-D-methylenedigiycollate, $+3H_2O$, and by consumption of 2 equivs. of Na₂I₄O₇ to give 0.98 HCO₂H. Pyrolysis of a-lactose and treating the product with COMe₂-CuSO₄ gives L-glucosan <1, $5>\beta<1$, 6>(13%) and 3: 4-isopropylidene-D-galacto-san <1, $5>\beta<1$, 6>(11) (18%), m.p. 151—152°, [a] -72.9°. In C₅H₅N, (II) gives 3: 4-isopropylidene-D-galactosan <1, $5>\beta<1$, 6>2-acetate, m.p. 136—137°, [a] -51.4°, 2-benzoate (III), m.p. 119120°, [a] +6·3°, and 2-p-toluenesulphonate, m.p. 118—119°, [a] -63·7°, and in 0·1×-HCl gives (I) (91%), m.p. 223—224°, [a] -22·0° in H₂O. In C₅H₅N, (I) gives the 2:3:4-tribenzoate (IV), m.p. 89—90°, [a] +84·8°, and -tri-p-toluenesulphonate, m.p. 103—104° (corr.), [a] -51·1°. Boiling 20% AcOH hydrolyses (III) to D-galactosan <1, $5>\beta<1$, 6>2-benzoate, m.p. 164—165°, [a] +47·2°, converted by BzCl-C₅H₅N into (IV), by COMe₂-CuSO₄ into (III), and by Ac₂O-C₅H₅N at room temp. into the 2-benzoate 3:4-di-acetate, m.p. 103—104°, [a] +85·4°, or, similarly, 2-benzoate 3:4-di-p-toluenesulphonate, m.p. 119—120°, [a] +78·0°. Unless otherwise stated, [a] are [a]_D^m in CHCl₃. R. S. C.

Oxidation of sucrose by periodic acid. P. Fleury and J. Courtois (Compt. rend., 1942, 214, 366-368).---

O CH2.OH H--C-ćно ćно

Sucrose (I) (1 mol.) and HIO₄ (3 mols.) at 14° (24 hr.) afford HCO₂H (1 mol.) and the tetraldehyde (I), oxidised by aq. Br to the corresponding tetra-acid, or

Stabilisation of the glycosidic linking by anhydride formation. Helferich and J. Werner (Ber., 1942, 75, 949–951).—Glycol iodo-hydrin β -d-glucoside (A., 1940, II, 40) is smoothly converted by boiling NaOH into glycol β -d-glucoside anhydride (I), m.p. 210—211 [a]_D +56.0° in H₂O m.p. 125°, [a]_D +52.6° in CHCl₃ also obtained similarly from glycol chlorohydrin β -d-glucoside tetraacetate. (I) is not hydrolysed by emulsin of sweet almonds nor appreciably by boiling with N-HCl or N-H,SO4 for 16 hr. H. W

Synthesis of phenolic glucosides. T. H. Bembry and G. Powell (J. Amer. Chem. Soc., 1942, 64, 2419—2420).—The fully acetylated sugar, ArOH, and $POCl_3 + 1\%$ of H_2O in boiling C_6H_6 give β -phenyl-d-glucoside (44%), galactoside (44%), and -fructoside tetra-construct (220%) bett present of a power form β phenyl d-wileside phenyl-*d*-glucoside (44%), -galactoside (44%), and -iructoside tetra-acetate (33%; best prepared at room temp.), β -phenyl-*d*-xyloside triacetate (57%), β -1-naphthyl- (58%) and β -2-*diphenylyl*-*d*-glucos-*ide tetra-acetate* (35%), m.p. 155–156° (corr.), $[a]_{\rm B}^{22}$ -56° in CHCl₃, and thence β -2-*diphenylyl*-*d*-glucoside (90%), m.p. 76–77° (corr.), 12° in EtOH R. S. C.

Syntheses of natural phloridzin. G. Zemplen and R. Bognar (Ber., 1942, 75, [B], 1040-1043). 4 Benzoylphloracetophenone, KOH, and acetobromoglucose in aq. COMe₂ at room temp. yield 2-d-glucosido-4-benzoylphloracetophenone tetra-acetate, m.p. 176—177°, $[a]_{2}^{33} = 30.0^{\circ}$ in C₅H₅N, condensed with p-OH-C₆H₄·CHO and conc. KOH to naringenin-2'-glucoside, m.p. 173—174°, softens at 149°, $[a]_{2}^{26} = 20.6^{\circ}$ in 96% EtOH, -8.2° in C₅H₅N; this is hydrogenated (Pd-C in 96% EtOH) to phloridzin (+2H₂O), m.p. 108—110° (loss of H₂O), $[a]_{2}^{55} = 51.7^{\circ}$ in 96% EtOH for the hydrated material.

H. W Synthesis of glucohespertin, a hesperitin-7-glucoside. G. Zemplen and R. Bognar (Ber., 1942, 75, [B], 1043-1047; cf. Kolle et al., A., G. Zemplen 1936, 970).-4-d-Glucosidophloracetophenone tetra-acetate, KOH, 1936, 970).—4-*d*-Glucosidophloracetophenone tetra-acetate, KOH, and isovanillin in aq. EtOH yield *hesperetin-4'-glucoside* (I) (chalkone form) (+3H₂O), m.p. ~110—115° (much evolution of H₂O), changes at 105°, $[a]_{D}^{15} - 32\cdot6^{\circ}$ in C₅H₅N, anhyd. m.p. ~200—204°, softens at 160° and becomes viscous at 165°, which gives an amorphous acetate. It is transformed by boiling 0.2% H₂SO₄ into *hesperetin*-7-glucoside (flavanone form) (+1H₂O), m.p. 206°, softens at 190°, $[a]_{D}^{15} - 53\cdot9^{\circ}, [a]_{D}^{26} - 51\cdot9^{\circ}$ in C₅H₅N, but some difficultly removable hesperetin is simultaneously produced so that the homogeneous material is best obtained by hydrolysis of neobesperidin. It is conmaterial is best obtained by hydrolysis of neohesperidin. It is conmatcharts best obstantict by hydrolysis of monosperium. It is con-verted by $Ac_2O-C_5H_5N$ at room temp. into 7-tetra-acetylglucosido-hesperetin diacetate, m.p. $151-152^\circ$, $[a]_{26}^{26}-23\cdot7^\circ$ in C_5H_5N . Hydro-genation (Pd-C in 96% EtOH) of (I) affords 3-hydroxyphloretin-4'-glucoside 4-Me ether (+2H₂O), m.p. indef. 88-92°, softens at 82°, $[a]_{26}^{20}-25\cdot7^\circ$ in C H N, arbit m p. 155 [257] actions at 82°, $[\alpha]_{p}^{20} = 59.7^{\circ}$ in C_5H_5N , anhyd. m.p. fiddel. 88–92°, softens at 82°, which gives an amorphous acetate and is hydrolysed by boiling 3% HCl to 3-hydroxyphloretin 4-Me ether, m.p. 194–196°. H. W.

Vinyl ethers of cellulose. A. E. Favorski, V. I. Ivanov, and Z. I. Kuznetzova (*Compt. rend. Acad. Sci. U.R.S.S.*, 1941, **32**, 630–632).—Cellulose (I) and C_2H_2 in an autoclave at 120–150° in presence of a catalyst give mono- and di-vinyl ethers; under the conditions, cellulose is unchanged when C_2H_2 is replaced by N_2 . The ethers are partly sol. or insol. in cuprammonium solution, and are hydrolysed to (I) and MeCHO. A. T. P.

III.—HOMOCYCLIC.

Conversion of cyclopentane hydrocarbons of petroleum into cyclo-hexane hydrocarbons. M. B. Turova-Poljak, N. D. Zelinski, and G. R. Hasan-Zade (Compt. rend. Acad. Sci. U.R.S.S., 1941, 32, 551—554).—cycloPentane hydrocarbons are isomerised to cyclo-hexane hydrocarbons by 10% of AlCl_{3*} at 35° for 15—18 hr.; de-hydrogenation then yields the corresponding C_6H_6 derivative. Paraffin hydrocarbons in the petroleum are unaffected. The cyclo-

83

pentane content of petroleum can be determined by dehydrogen-ation (Pt-C) at 310° before and after treatment with AlCl₃. Methyl-cyclopentane affords cyclohexane, and thence C_6H_8 . A. T. P.

Reactions of neopentyl systems with electrophilic reagents. P. Skell and C. R. Hauser (J. Amer. Chem. Soc., 1942, 64, 2633-2635). --PhCHO and MgBu^yCl give CHPhBu^y·OH (I) with some COPhBu^y HBr in light petroleum at 0° gives CHPhBu^yBr (II), b.p. 103-104° HBr In light petroleum at 0° gives CHPhBu'Br (II), b.p. 103–104 (corr.)/7.5 mm., which is very slowly hydrolysed by H_2O , with MeOH- K_2CO_3 gives the Me ether, b.p. 94–95° (corr.)/20 mm., and with KOAc-AcOH gives the acetate, b.p. 123–124°/16 mm. With aq. AgNO₃ at room temp., (I) gives <70% of (II). CPh₃·CHPh·OH with HBr-C₈H₈ or conc. H₂SO₄ at room temp. gives (CPh₂·)₂. Differences from the CH₂Bu' series are as expected. R. S. C.

Rearrangement of 1:1:3:3:5:5-hexamethylcyclohexane-(19.4%; very little by 85% H₃PO₄; none by SOCl₂). R. S. C.

Halogenation of *m*-diphenylbenzene. II. Monoiodo-derivative. W. A. Cook and K. H. Cook (*J. Amer. Chem. Soc.*, 1942, **64**, 2485– 2486).—1:3:4-C₈H₃Ph₂Cl with 28% aq. NH₃-CuCl-CaO-Cu ribbon at 190°/800—850 lb. gives 1:3:4-C₈H₃Ph₂·NH₂, m.p. 74° (lit. 64°) (phenylthiccarbamide derivative, m.p. 135°), which by a diazoreaction (KI) gives 4-iodo-1 : 3-diphenylbenzene, m.p. 67°, b.p. 235-240° (corr.)/1 mm. R. S. C.

Separation of anthracene from carbazole.—See B., 1943, II, 42.

o-Terphenyl. II. Derivatives prepared from the hydrocarbon. C.F.H. Allen and F. P. Pingert (J. Amer. Chem. Soc., 1942, 64, 2639-2643; cf. A., 1942, II, 355).—o- (I) is less reactive than is m- or 2643; cf. A., 1942, II, 355).—o- (I) is less reactive than is *m*- or *p*-C₆H₄Ph₂, but reactions must not be forced to completion lest difficulty separable mixtures be formed. Traces of retained sol-vents affect the results; *e.g.*, traces of H₂O or EtOH favour poly-bromination and AcOH inhibits bromination or nitration. With anhyd. AlCl₃ and BzCl, (I) gives mixtures, but with the additive compound, AlCl₃,BzCl, in CS₂ gives a good yield of 4'-benzoyl-o-terphenyl, p-C₆H₄Bz-C₆H₄Ph-o, m.p. 111°, also obtained from o-C₆H₄PhI by p-C₆H₄Br-COPh and Cu-bronze at 240° and converted by way of the oxime, forms, m.p. 68° and (stable) 138°, into the anilide and thence 4'-carboxy-o-terphenyl (II). With AlCl₄-Ac₅O-PhNO₅,

C₄¹H₂¹PH by p²C₆¹H₄Br²COPh and Cu-bronze at 240° and converted by way of the oxime, forms, m.p. 68° and (stable) 138°, into the anilide and thence 4'-carboxy-o-terphenyl (II). With AlCl₃-Ac₂O-PhNO₂, (I) gives 4'-acetyl-o-terphenyl (~43%; less by AcCl or in CS₂), m.p. 94°, also obtained from o-C₆H₄PhI by p²C₆H₄Br²COMe and Cu-bronze at 220° and oxidised to (II) by NaOCl. According to the conditions, bromination gives 4' 4''-dt² (III), m.p. 170°, 4: 4' : 4''-tri- (IV), m.p. 170°, or 4: 5: 4': 4''-tetra-bromo-o-terphenyl (V), m.p. 228° (or an isomeride, m.p. 120° after sintering), and finally 3: 5: 10: 11-tetrabromotriphenylene (VI), m.p. >450° (block). Structures are proved by oxidation of (III), (IV), and (V) by CrO₃-AcOH to p²C₆H₄Br²CO₂H, bromination of (IV) to (V), and by prep. of triphenylene from (VI) by distilling with Zn dust. 1: 2: 3: 6-C₆H₂Ph₂Me₂ gives 4: 5: 4': 5'-tetrabromo-3: 6-dimethyl-o-terphenyl, m.p. 205°. Conc. HNO₃ in Ac₂O at 0—5° and later room temp. converts (I) into the 4'-NO₂. (VII) (78%), m.p. 105–106°, or with less cooling into the 4': 4'' (VIII), m.p. 218°, [also obtained from (VII) by fuming HNO₃ in Ac₂O at 10°--room temp], and 2': 4'-(NO₂)₂-compound (IX), m.p. 169°. Oxidation (CrO₃-AcOH) of (VIII) gives p²-NO₂·C₆H₄·CO₂H and of (IX) gives 2: 4: 1-(NO₂)₂C₆H₄·CO₂H. H₂-Raney Ni-EtOH yields 4'-amino-, m.p. 108° (less after keeping) (Bz derivative, m.p. 175°), and 4': 4''-diamino-o-terphenyl, m.p. 248°, and some (?) triphenylene derivative. R. S. C. New type of condensation reaction under the influence of aluminium

New type of condensation reaction under the influence of aluminium **chloride.** D. N. Kursanov and R. R. Zelvin (*Compt. rend. Acad.* Sci. U.R.S.S., 1942, **36**, 17–21).—Contrary to Tzukervanik *et al.* (A. 1937, II, 331) the condensation product (AlCl₃) of EtOH with C_8H_8 has m.p. 179°. This and the product from HCO₂Et, EtOAc-or CH₂Cl·CO₂Et with C_8H_8 and AlCl₃ or PhEt with AlCl₃ is 9 : 10-dimethylanthracene, hydrogenated (Pd-black) to 9 : 10-dimethyl-1:2:3:4:9:10:11:12-octahydroanthracene, m.p. 140-141.5° F. R. G

Synthesis of naphthalene-2: 7-dialdehyde. Attempted synthesis of coronene. J. H. Wood and J. A. Stanfield (J. Amer. Chem. Soc., 1942, 64, 2343—2344).—2: $7-C_{10}H_6(CN)_2$ with SnCl₂-HCl-Et₂O and then boiling H₂O gives naphthalene-2: 7-dialdehyde (24:3%), m.p. 142° (corr.) (di-2: $4-dinitrophenylhydrazone, decomp. begins at 295°, complete at 312—313°), oxidised by KMnO₄ to 2: <math>7-C_{10}H_6(CO_2H)_2$. Attempts to obtain coronene from the derived dithioaldehyde (U S HCl) by Cu and then heat clarge or with Sa folded $(H_2S-\hat{H}Cl)$ by Cu and then heat alone or with Se failed.

Friedel-Crafts acylations of sterically hindered alkylbenzenes. G. F. Hennion and S. F. deC. McLeese (J. Amer. Chem. Soc., 1942,

64. 2421—2422).—sec.-Alkylbenzenes give $(AlCl_3-CS_3; -10^{\circ})$ $p^{-}C_8H_4Alk\cdotCOMe (I)$ or $p^{-}C_8H_4Alk\cdotCOPh (II)$. $p^{-}Di^{-}sec.$ -alkylbenz-enes give similarly (at the b.p.) 2:5:1- $C_8H_3Alk_2\cdotCOMe$ (III) and $-C_8H_3Alk_2\cdotCOPh$ (IV). Yields are usually 60—88%. Na₂Cr₂O₇-H₂SO₄-AcOH at 65—75° converts (I) or (III) into $p^{-}C_8H_4(CO_2H)_2$. With boiling HNO₃ (d 1·09), (I) gives $p^{-}C_8H_4Alk\cdotCO_2H$, (III) gives $2:1:4\cdot C_9H_3Alk_2(CO_9H)_2$. (II) gives $p^{-}C_8H_4Alk\cdotCO_2H$, (III) gives $2:1:4\cdot C_9H_3Bz(CO_2H)_2$. With CrO₃ and then HNO₃ (1:2; tube), (III): Alk = sec.-Bu) gives $1:2:4\cdot C_8H_4(CO_2H)_3$. The following are described. p-sec.-Butyl-, b.p. 134—135°/11 mm. (semicarbazone, m.p. 190—191°). p-sec.-catyl-, b.p. 134—135°/3 mm. (semi-carbazone, m.p. 144—145°), 2-methyl-5-sec.-butyl-, b.p. 132—133°/ 11 mm. (semicarbazone, m.p. 114—115°), 2: 5-di-sec.-butyl-, b.p. 148—149°/14 mm. (semicarbazone, m.p. 160—161°), and 2: 5-di-sec.-amyl-, b.p. 126—127°/3 mm. (semicarbazone, m.p. 149—150°), sec.-amyl-, b.p. 126-127°/3 mm. (semicarbazone, m.p. 149-150°), sec.-amyl-, b.p. 120–121°/3 mm. (semicarbazone, m.p. 149–130°), -acetophenone; p-sec.-butyl-, b.p. 188°/9 mm., p-sec.-amyl-, b.p. 188–190°/5 mm., p-sec.-octyl-, b.p. 212–214°/5 mm., p-sec.-dodecyl-, b.p. 243–245°/4 mm., and 2:5-di-sec.-butyl-, b.p. 155°/3 mm., -benzophenone; p-sec.-butyl-, m.p. 91–92°, and -amyl-benzoic acid, m.p. 103–104°; 4-sec.-butyl-, m.p. 237–238°, and -amyl-benzoic acid, acid, m.p. 230–231°. p-C₆H₄Bu⁷₂ with AcCl-AlCl₃-CS₂ gives p-C₆H₄Bu⁷-COMe. R. S. C.

Polymerisation of styrene catalysed by p-bromobenzenediazonium hydroxide. C. C. Price and D. A. Durham (J. Amer. Chem. Soc., 1942, 64, 2508—2509).—Adding NaOH to p-C₆H₄Br N₂Cl and CH₂:CHPh in H₂O at 0° yields a mixed *polymeride*, containing 4.2% of Br and (from η) 2 CH₂:CHPh units; this is due to p-C₆H₄Br RSC radicals.

Isomerisation of unsaturated hydrocarbons in presence of oxides of metals. V. Isomerisation of δ -phenyl- Δ^{α} -butene and ε -phenyl- Δ^{α} pentene in presence of aluminium and chromium oxide. R. J. Levina and N. A. Schtscheglova. VI. Isomerisation of δ -phenyl-Levina and N. A. Schtschegiova. VI. Isomerisation of o-phenyl- Δ^{α} -butinene in presence of chromic oxide. R. J. Levina and E. M. Panov (J. Gen. Chem. Russ., 1941, 11, 527—532, 533—536).—V. Ph·[CH₂]₂·CH:CH₂ passed over Al₂O₃ at 250° or over Cr₂O₃ at 225° yields CHPh:CHEt. Ph·[CH₂]₃·CH:CH₂ yields CHPh:CHPr^{α} when passed over Cr₂O₃ at 250°; with Br in Et₂O it yields $a\beta$ -di-bromo-e-phenylpentane, b.p. 172°/9 mm. VI. Ph·[CH₂]₂·C;CH passed over Cr₂O₃ at 250° yields CPh*CEt, with a mixture of polymerides. R T

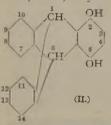
with a mixture of polymerides. R.T.

Bromination of diphenylalkanes and preparation of stilbene derivatives. I. aβ-Diphenylethane.—See A., 1943, II, 92

s-p-Dichlorotetraphenylethylene. C. C. Price and P. E. Fanta (J. Amer. Chem. Soc., 1942, 64, 2726-2727).—p-C₆H₄Cl-COPh with PCl₅ at 150° gives p-C₆H₄Cl-CPhCl₂ (90%), b.p. 189-194°/12 mm., which with NaI-COMe₂ gives a mixture [? COPh·CPh(C₆H₄Cl-p)₂ + p-C₆H₄Cl-CO·CPh₂·C₆H₄Cl-p), m.p. 126-145°, but with Zn in dry Et₂O gives s-diphenyldi-p-chlorophenylethylene, m.p. 202-203°, reduced by Na=EtOH to (CHPh₂)₂ and by H₂-Raney Ni in methylcvclohexane at 100°/110 atm. to a mixture including CPh₂:CPh·C₆H₄Cl-p, m.p. 168° (lit. 165-166°, 162°). R. S. C.

L. Zechmeister and A. L. Stereochemistry of diphenylpolyenes. Stereochemistry of alphenylpolyenes. L. Zechnieister and A. L. LeRosen (*Science*, 1942, 95, 587-588).—Stereoisomerides of diphenyloctatetraene were prepared by several methods and separated by chromatographic analysis, developing the chromatogram with a C_6H_6 -light petroleum on $Ca(OH)_2$. Preliminary details of the E. R. R. separation are given.

Isodimorphism of β -naphthol and naphthalene.—See A., 1943 I, 85.


1:3:5:7-Tetranitronaphthalene and the isomeric tetranitro-1:3:5:7-Tétranitronapitulaiene and the isomeric tetranitro-derivatives obtained from 2:6-dinitronaphthalene by nitration. J. Chatt and W. P. Wynne (J.C.S., 1943, 33-36).—Oxidation (HNO₃, d 1:16, at 200°) of 1:3-C₁₀H₆(NO₂)₂ yields only 3:5:1-C₆H₃(NO₂)₂·CO₂H, whilst nitration (67% excess of NO₂·SO₃H in H₂SO₄) gives 1:3:8-C₁₀H₅(NO₂)₃. 2:6-C₁₀H₆(NO₂)₂ {from 2:6-C₁₀H₆(OH)₂ by amination [40% (NH₄)₂SO₃ in 20% aq. NH₃ at 140° under pressure], diazotisation, and treatment with NaNO₂ and under pressure], diazotisation, and treatment with NaNO₂ and cuprocupric sulphite} with HNO₃-H₂SO₄ yields 1:3:5:7-(I), m.p. 260°, decomp. 263–265° (43%), 1:2:6:8-(II), m.p. 138° (8·4%), and ?-tetranitro-naphthalene, m.p. 215° (1·3%). (I) yields with HNO₃ (d 1·16) at 200°, 3:5:1-C₄H₃(NO₂)₂·CO₂H, with POCl₃-PCl₅ at 180–200°, a mixture of C₁₀H₄Cl₄ and C₁₀H₃Cl₅, and with SnCl₂ in EtOH-HCl, 1:3:5:7-C₁₀H₄(NH₂)₄, the hydrochloride of which when diazotised (in H₃PO₄-H₂SO₄) and treated with CO(NH₂)₂ followed by CuCl in conc. HCl yields a small amount of 1:3:5:7-C₁₀H₄(this could not be repeated). The constitution of (I) is confirmed by m.p. analogy and crystallographic examination. of (I) is confirmed by m.p. analogy and crystallographic examination. (II) yields with HNO₃ (d 1·16) at 190–200°, a mixture of 3: 5: 1: 2: (NO₂)₂C₆H₂(CO₂H)₂ and 3: 5: 1-C₆H₃(NO₂)₂·CO₂H, and with PCl₅–POCl₃ at 180°, a ?-tetrachloronaphthalene, m.p. 125–127°.

Action of aluminium chloride on tetrahydronaphthalene. A. Dansi and C. Ferri (*Gazzetta*, 1941, 71, 648-651).—Tetrahydronaphthalene (I) and AlCl₃ at 35-80° give $C_{10}H_8$, an oily fraction [dehydrogenated (Se at 350°) to a *compound*, $C_{16}H_{10}$, m.p. 147-

152° (sublimes 180°/2·5 mm.)], and a compound, $C_{20}H_{10}$ (II), m.p. 150·5°, regarded as 1:2:3:4:1':2':3':4'-octahydro-1:2:1':2'-bismaphthalene, different from the compound described by von Braun et al. (A., 1921, i, 405), and having a similar absorption spectrum to (I). With Br-CHCl₃, (II) gives a compound, $C_{20}H_{19}$ Br, m.p. 152°, and with Se at 320—340°, a compound, $C_{20}H_{12}$, m.p. 165° (picrate, m.p. 195°), of characteristic absorption spectrum. E. W. W

EW

Triptycene [9: 10-o-phenyleneanthracene], P. D. Bartlett, M. J. Ryan, and S. G. Cohen (*J. Amer. Chem. Soc.*, 1942, **64**, 2649–2653).— The adduct (I), obtained (83%) from anthracene and p-O:C₄H₄:O in boiling xylene, with 40% HBr (4 drops) in boiling AcOH gives 3': 6'(=1:4)-dihydroxy-9:10-o-phenylene-9:10-dihydroanthracene

[2:5-dihydroxytriptycene] (II) (90%), m.p. 338-340° (decomp.), converted by H_2 -Raney Ni in dioxan at 200°/1140 lb. into a H_{12} -Ni in dioxan at 200 /1140 ib. into a 12^{10} derivative, m.p. 220—224°, which is hydrogenated in the unsubstituted rings and is avidised by air in aq. alkali. With H_2 -Cu chromite in dioxan at $160^{\circ}/2200$ lb., (I) gives a compound, $C_{20}H_{20}O_2$, m.p. $226-228^{\circ}$ (diacetate, m.p. $177-178^{\circ}$), stable in air and thus reduced in the quinol ring. Many attempts to remove the OH from (II) failed.

tempts to remove the OH from (II) failed. KBrO₃-AcOH-H₂O oxidises (II) to the quinone (93%), m.p. 292—296°, the dioxime, m.p. 246° (decomp.), of which with SnCl₂-HCI-EtOH at ~60° gives 2 : 5-diaminotriptycene (III) (86%), m.p. 307° (decomp.) [hydrochloride (IV), decomp. >210°; Ac_2 derivative, decomp. 370°]. Attempts to remove the NH₂ directly from (III) failed. Treating (IV) in AcOH with, successively, H₂SO₄-AcOH-H₂O, NaNO₂, and CO(NH₂)₂ (all at 10°), addition to NaH₂PO₂-conc. HCl, keeping overnight, and sublim-ation of the product at 195°/2 mm., gives mono- + a little di-chlorotriptycene, m.p. 222—223°, which with H₂-Pd-CaCO₃-N₂H₄-KOH-EtOH-H₂O gives triptycene [9: 10-o-phenylene-9: 10-dihydro-anthracene] (V), m.p. 2548—255-2°. Treating the tetrazonium solution from (IV) with NaH₂PO₂-HBr gives a very poor yield of 2: 5-dibromotriptycene, m.p. 227—228°, debrominated to (V). In-ability of (V) to become planar prevents resonance so that the output CIU do a sinterplane and the solution of the product at 1970-1980 (V). a bility of (\mathbf{V}) to become planar prevents resonance so that the central CH do not show the same properties as in CHPh₃. Thus, (\mathbf{V}) is unaffected by CKPhMe₂-Et₂O-N₂, SO₂Cl₂-Bz₂O₂, and (:CH·CO)₂O in boiling PhNO₂, and is barely affected by Cl₂-CCl₄; CrO₃-AcOH oxidises (\mathbf{V}) to anthraquinone (76%) and ~6 CO₂; this is in accord with bond-fixation (Mills-Nixon effect) since the internal bond-angles are 109° 28'. R. S. C.

cycloPentylamides of [aliphatic] carboxylic acids.—See B., 1943, II, 74.

Nuclear alkylation of aromatic bases. V. Action of methyl alcohol on *m*-toluidine hydrochloride. R. W. Cripps and D. H. Hey (*J.C.S.*, 1943, 14—15; cf. A., 1931, 950).—*m*-C₆H₄Me·NH₂,HCl (1 mol.) and MeOH (1 mol.) at 210—235° (8 hr.) give o-4-xylidine in \sim 35% yield, with some methylated acridines (**I**), but no phenols. With 2 or (better) 3 mols. of MeOH at 210—220° (5½ hr.), ψ -cumidine is formed in ~50% yield, with some (**I**); 4 mols of MeOH at 260– 280° (10 hr.) afford *iso*duridine, *iso*durenol, C₆Me₅·OH, and (**I**). *m*-Methylation in the Hofmann-Martius reaction is established.

A. T. P. Compounds of aromatic amines with lower fatty acids.-See A., 1943, I, 88.

Sulphonation of benzylethylaniline. L. Blangey, H. E. Fierz-David, and G. Stamm (*Helv. Chim. Acta*, 1942, 25, 1162-1179).--David, and G. Stamm (*Hew. Chim. Acta*, 1942, 25, 1162–1179). NPhEt·CH₂Ph (**I**) with oleum at $\geq 60^{\circ}$ gives (cf. Gnehm *et al.*, A., 1908, i, 112) mainly (~78%) m-sulphobenzylethylaniline (K and Na salts; corresponding *amide*, m.p. 98–99°), which is transformed by nascent Br and subsequent oxidation into m-SO₃H·C₆H₄·CO₂H. In addition ~16% of p- and <1% of o-SO₃H·C₆H₄·CH₂·NPhEt (**II**) are formed with very little of a disulphonic acid. Excess of CISO₃H and (U) gives meinter m. SO ChiC H (CH + Where the set of the s and (I) give mainly m-SO₂Cl·C₆H₄·CH₂·NPhEt, whereas use of the calc. quantity of ClSO₃H in PhNO₂ or application of the "baking" process affords p-SO₃H·C₆H₄·NEt·CH₂Ph. The synthesis of (**II**) from o-CH₂Br·C₆H₄·SO₃H and NHPhEt is described. H. W.

Mixed arylhydroxyalkylamines.—See B., 1943, II, 74.

Preparation of diphenylthiocarbazide and diphenylthiocarbazone (dithizone). O. Grummitt and R. Stickle (1na. Eng. Onem. [Anal.], 1942, 14, 953-954).—Improved preps. of diphenylthio-carbazide and -carbazone are recorded. J. D. R.

Vinylaryl esters.—See B., 1943, II, 73.

Condensation of methyldipropylcarbinols with phenol in presence of condensation of metryinipropylaroinois with phenoin presence of aluminium chloride. R. C. Huston and C. R. Meloy (J. Amer. Chem. Soc., 1942, 64, 2655–2657).—CMePr $^{a}_{2}$ ·OH, 'CMePr $^{a}Pr^{\beta}$ ·OH, and CMePr $^{\beta}_{2}$ ·OH with PhOH–AlCl₃ at 25—35° give δ -p-hydroxyphenyl- δ -methyl-n-heptane (65%), m.p. 63—63·5°, b.p. 282—284°/738 mm., 151—152°/6 mm. (3:5-dinitrobenzoate, m.p. 124·5—126°; anaphthylurethane, m.p. 105—106°), γ -p-hydroxyphenyl- β -dimethyl-n-hexane (47%), m.p. 72—73°, b.p. 279—281°/738 mm., 122—124°/ 2 mm. (3: 5-dinitrobenzoate, m.p. 97–98°; a-naphthylurethane, m.p. 127.5–128.5°), and γ -p-hydroxyphenyl- $\beta\gamma\delta$ -trimethyl-n-pentane (60%), m.p. 57–58.5°, b.p. 275–277°/738 mm., 116–117°/2 mm. (3: 5-dinitrobenzoate, m.p. 103–103.5°; a-naphthylurethane, m.p. 106–107°), respectively. The same compounds are obtained by condensing the carbinols with C₆H₆ and nitrating, reducing, diazotising, and bucklessing the carbinols with C₆ details). and hydrolysing the products (no details). R. S. C

Compound formation between the isomeric hydroxydiphenyls and pyridine. S. E. Hazlet and R. W. Morrow (*J. Amer. Chem. Soc.*, 1942, 64, 2625—2628).—F.p. diagrams show that C_5H_5N with o- or m- C_6H_4Ph -OH gives stable 1 : 1 additive compounds, f.p. 38-2° (corr.) or 35-5° (corr.), respectively, but with p- C_6H_4Ph -OH gives unstable 1 : 1 and 1 : 2 additive compounds. R. S. C.

unstable I: I and I: 2 additive compounds. Halogenation of esters in the diphenyl series. II. Chlorination of *p*-diphenylyl benzoate and benzenesulphonate. (Miss) C. M. S. Savoy and J. L. Abernethy (*J. Amer. Chem. Soc.*, 1942, **64**, 2719— 2720; cf. A., 1943, II, 28).—*p*-C₆H₄Ph·OBz with Cl₂ and a trace of I in CCl₄ gives 4'-chloro-4-diphenylyl benzoate (55%), m.p. 182°, also obtained by benzoylation of p-C₆H₄Ch·C₆H₄·OH-*p* (I) and hydro-lysed to (I) by KOH-EtOH. *p*-C₆H₄Ph·O:SO₂Ph gives similarly 4'-chloro-4-diphenylyl benzenesulphonate (21%), m.p. 74—75°, simi-4'-chloro-4-diphenylyl benzenesulphonate (21%), m.p. 74-75°, simi-larly obtained from, and hydrolysed to, (I). 2-Chloro-, m.p. 59-60°, 2:6-di-, m.p. 128-129°, and 2:6:4'-tri-chloro-4-diphenylyl benzenesulphonate, m.p. 125-126°, are also prepared. R. S. C.

Isomorphism of β -naphthol and naphthalene.—See A., 1943, I, 85

Isomerides of stilbæstrol. II. W. H. Linnell and H. S. Shaik-mahamud (Quart. f. Pharm., 1942, 15, 384-388; cf. A., 1942, II, 9). -m-C₆H₄Et·OH and cold AcOH-Br give 3: 4: 1-C₆H₃EtBr·OH, b.p. 145-148°/10 mm. (3: 5-dinitrobenzoate, m.p. 105-105·5°), methylated (Me₂SO₄-40% NaOH) to 3: 4: 1-C₆H₃EtBr·OMe, b.p. 130-132°/15 mm., which did not form a Grignard reagent or Li derivative, and did not give a tolane with Ag₂C₂. m-C₆H₄Et·OMe is converted (method : Adams et al., A., 1924, i, 860) into 4: 2: 1-OMe·C₆H₃Et·CHO (I), b.p. 120-135°/6 mm. (2: 4-dinitrophenyl-hydrazone, m.p. 193-194°; azine, m.p. 110-111°, not convertible into a stilbene by heat), which could not be induced to undergo the benzoin condensation. 4-Methoxy-2-ethylthiobenzaldehyde, m.p. the benzoin condensation. 4-Methoxy-2-ethylthiobenzaldehyde, m.p. 95—100° (red at 180°) [from (I)-HCl- H_2S -EtOH or (I)- H_2S -EtOH-SJ=100 (left at 180) [floin (1)-HCI-H₂S=EtOH of (1)-H₂S=EtOH -piperidine], with Cu-bronze at 250° in N₂ gives 4:4'-dimethoxy-2:2'-diethylstilbene (**II**), m.p. 96—97°, demethylated (MgMeI at 160—170°; poor yield) to the $(OH)_2$ -derivative (**III**), m.p. 150°. The costrogenic activity of (**II**) and (**III**) is small (doses of 5 and 1 mg., respectively). H. B.

Action of diazo-compounds on quinones. Preparation of diphenyl derivatives. G. B. Marini-Bettolo (Gazzetta, 1941, 71, 627-635). 2-p-Nitrophenyl-1: 4-benzoquinone (I) (cf. Kvalnes, A., 1935, 86) is reduced (SO_2-H_2O) to 4'-nitro-2: 5-dihydroxydiphenyl, m.p. 195° [Me_2 ether (II), m.p. 104°; diazetate, m.p. 115°]. Sn-HCl reduction of (II) gives 4'-amino-2: 5-dimethoxydiphenyl, m.p. 145° (hydro-chloride, m.p. 225°; picrate, m.p. 184°; 2: 5-dimethoxydiphenyl-4''-azoresorcinol, m.p. 105°), converted (diazo-method) into 4'-hydroxy-2: 5-dimethoxydiphenyl, m.p. 130°. 2-m-Nitrophenyl-1: 4-benzoquinone (loc. cit.) similarly gives 3'-nitro-2: 5-dihydroxy-, m.p. 83°, -dimethoxy-, m.p. 84°, and -diazetoxy-, m.p. 100°, 3'-amino-2: 5-dimethoxy- (hydrochloride, m.p. 190°; azoresorcinol derivative, m.p. 96°), and 3'-nitro-2: 4: 5-triacetoxy-diphenyl, m.p. 206°. p-NH₂:SO₂·C₆H₄·N₂Cl in aq. NaOAc and benzoquinone in EtOH give 2-phenyl-1: 4-benzoquinone-4'-sulphonamide, m.p. 204°. Action of diazo-compounds on quinones. Preparation of diphenyl 2-phenyl-1: 4-benzoquinone-4'-sulphonamide, m.p. 204°

2-phenyl-1: 4-benzoquinone-4'-sulphonamide, m.p. 204°. E. W. W. Water-soluble compounds with antiheemorrhagic activity. B. R. Baker and G. H. Carlson (J. Amer. Chem. Soc., 1942, 64, 2657– 2664).—Data A below are doses in μ g. necessary for vitamin-K activity. 1:2:4-OAc·C₁₀H₈Me·OH (I) (A 2), prepared by partial deacetylation of 2:1:4-C₁₀H₈Me(OAc)₂ (A., 1942, II, 285), with Me₂SO₄-K₂CO₃-COMe₂ gives 1-acetoxy-4-methoxy-2-methylnaphthal-ene, m.p. 67—68°, hydrolysed by NaOMe or, better, NaOH-Na₄S₂O₄ in aq. MeOH to 4-methoxy-2-methyl-1-naphthol, m.p. 101—103°, which with (NH₄)₂SO₃-NH₃-H₂O at 175—180° and then Ac₂O-C₈H₆ gives 1-acetamido-4-methoxy-2-methylnaphthalene (II), m.p. 197— 199°. 3:1-C₁₀H₈Me·OH (III) (A 5) with p-SO₃H·C₆H₄·N₂Cl and then Na₂S₂O₄ gives 4-amino-3-methyl-1-naphthol hydrochloride, chars at 270°, converted by K₂Cr₂O₇ into 1:2:4-OC₁₀H₅Me₆O (A 1) and then Na₂S₂O₄ gives 4-amino-3-methyl-1-naphthol hydrochloride, chars at 270°, converted by K₂Cr₂O₇ into 1: 2: 4-O($_{10}$ H₅Me:O (A 1) and by Ac₂O-NaOAc-H₂O at 75° into the Ac derivative, m.p. 206– 208°. With Me₂SO₄-K₂CO₅-COMe₂ this gives (II), thus proving the orientation of (I) etc. The appropriate naphthol with succinic or glutaric anhydride (IV) in C₅H₅N at room temp. gives 4-acetoxy-3-methyl-1-naphthyl H succinate (A 3), m.p. 136–138°, and glutarate (A 4), m.p. 109–110° (with some di-4-acetoxy-3-methyl-1-naphthyl relations m.p. 164–166°), and 3-methyl-1-naphthyl H succinate (A 10), m.p. 109–111°. 2: 1: 4-C₁₀H₅Me(OH)₂ (V) (A 1), (IV), and NPhMe₂ in boiling CHCl₃ give 2-methyl-1-naphthyl *i*-naphthyl chloroacetate (prep. by CH₂Cl·COCl–NPhMe₂-CHCl₃ at 25° and later the b.p.), m.p. 103-5–104°, is converted by NMe₃-COMe₂ at room temp. into the N-trimethylglycinate chloride (A 4), m.p. 217°. 2Methyl-1: 4-naphthaquinol bischloroacetate (prep. in NPhMe₂-CHCl₃), m.p. 109-110°, gives similarly the di-N-trimethylglycinate dichloride (A 12), $+2H_2O$, m.p. 204°. Hydrogenation of 4-acetoxy-3-methyl-

Methyl-1 : 4-naphthaquinol bischloroacetate (prop. in NPhMeg-CHCl_g), m.p. 109—110°, gives similarly the di-N-trimethylglycinate dickloride (A 12), +2H_QO, m.p. 204°. Hydrogenation of 4-acetoxy-3-methyl-1-naphthyl carbobenzyloxy-β-alanate [prop. from (I), COCI-(CH_g]₂:NH-CO₂·CH₂Ph, and NPhMeg in boiling CHCl_g], m.p. 106-5—108°, gives the β-alanate hydrochloride (A 4), +H₄O, m.p. 106-5—108°, gives the β-alanate hydrochloride (A 4), H₄O, m.p. 106-5—108°, gives the β-alanate hydrochloride (A 4), the Na₂ phosphate (A 4), +H₄O, or Na₂ thiophosphate (A 10), +H₄O, respectively. Acetobronoglucose with (I) – or (III)–K₂CO₂-COMe₂-CHCl₃ gives 4-acetoxy-3-methyl-1-nphthyl sulphate (A 10), +H₄O, naphthylglucoside tetra-acetate, m.p. 135—137°, respectively, and thence (hot NaOMe-MeOH) 4-hydroxy-3-methyl-1, m.p. 206—208° (A 3), or 3-methyl-1-naphthylglucoside, m.p. 223—225° (A 10), re-spectively. Acetobronomaltose with (I) or (III) etc. gives 4-acetoxy-3-methyl-1-naphthylglucoside, m.p. 223—225° (A 10), re-spectively. Acetobronomaltose with (I) or (III) etc. gives 4-acetoxy-3-methyl-1-naphthylglucoside, m.p. 233—225° (A 10), re-spectively. Acetobronomaltose with (I) or (III) etc. gives 4-acetoxy-3-methyl-1-naphthylglucoside, m.p. 213—218°, or 3-methyl-1-naphthylmaltoside hepta-acetale, m.p. 152–5154°, and 4-hydroxy-3-methyl-1: 2: 3: 4-acetoxy-3-methyl-1. p. 142—143°/16 m. (oxime, m.p. 121— 125.6°), Heating (VI) with S at 255—265° and then distilling with CuO in quinoline at 200—215° to 1-keto-3-methyl-1: 2: 3: 4-tetrahydro-1-naphthoic acid (VI), m.p. 88—90°, resolifies, remelts at 21-C₁₀H₆Me:NH₂ [hydrochloride (A 50), new m.p. 228—231° (decomp.); Ac derivative (A >50), new m.p. 191—192°], which with δ -gluconolactone in 2: 1: H₄O-ACOH-N₂ at 100° gives glucono-2-methyl-1-naphthalide (A >50), new m.p. 192—214°, 1: 2: NO₂C₁₀H₆'CH₄'CO₄H with H₂-Raney Ni in MeOH at 1—3 atm. gives 2: 1-C₁₀H₆Me:NH₂ [hydrochloride (A 50), new m.p. 228—231° (decomp.); A cerivativ NO₂C₁₀H₂MerNHAC by H₂-Anley N11 EtOH at room temp., and converted by (CH₂·CO)₂O in hot CHCl₂ into N-4-acetamide-3-methyl-1-naphthylsuccinamic acid, +AcOH and anhyd., m.p. 250° (decomp. if preheated to 240°), resolidifies, remelts at 269—271°. This is also obtained from (**VIII**) and (CH₂·CO)₂O by way of N-4-amino-3-methyl-1-naphthylsuccinamic acid (A >50), m.p. 192° (decomp.). 1:4-Dimethoxy-2-chloromethylnaphthalene (**X**) [from 1:4-C₁₀H₄(OMe)₂ (modified prep.; new m.p. 86—87.5°) and CH₂Cl·OMe-AcOH at 25°], m.p. 62—63°, with NH₃-SO₂-H₂O at 135° gives impure 1:4:2-C₁₀H₄(OMe)₂·CH₄·SO₃K, oxidised by K₂Cr₂O₇-H₂SO₄-H₂O at 90—100° to K 2-sulphomethyl-1:4-naphthaquinone (A >50) [S-benzylthiuronium salt, m.p. 182—183° (decomp.)]. With boiling EtOH-KOH-H₂S (excess), (**X**) gives di-1:4-dimethoxy-2-naphthylmethyl disulphide, m.p. 116—117°, also obtained by, successively, CS(NH₂)₂-EtOH, NaOH-aq. EtOH, and I-NaOH-H₂O, and converted by H₂O₂-AcOH etc. into K and S-benzyl-thiuronium 3-hydroxy-2-sulphomethyl-1:4-naphthaquinone (A >50), m.p. 200—201° (decomp.). Potencies, A, are also recorded as follows: 2:1-C₁₀H₆Me·OH 5; 2-piperidinomethyl-1-naphthol and 1:4-NH₂·C₁₀H₆·NHAc >50. The esters of org. acids are too easily hydrolysed to be of use, but those of the inorg. acids are too easily hydrolysed to be of use, but those of the inorg. acids are too easily hydrolysed to be of use, but those of the inorg. acids are too easily hydrolysed to be of use, but those of the inorg. acids are too easily hydrolysed to be of use, but those of the inorg. acids are too easily hydrolysed to be of use, but those of the inorg. acids are too easily hydrolysed to be of use, but those of the inorg. acids are stable even to sterilisation. The glucosides are stable in H₂O, even when sterilised, if air is excluded or reducing agents are present.

R. S. C

Acetylenic ethers. III. Halogen derivatives of phenoxyacetylene. T. L. Jacobs and W. J. Whitcher (J. Amer. Chem. Soc., 1942, 64, 2635-2638; cf. A., 1942, II, 214).—Ph tri-iodovinyl ether, m.p. 129—129.5°, is obtained from OPh-C:C-MgBr by I-Et₂O or from OPh-C:CH (I) by I-KI-KOH, but only in traces from OPh-C:CNa by I; very unstable liquids (? OPh-C:CI) are also obtained in all cases. Slimmer's Br₂-compound, m.p. 29—29.5°, b.p. 117—118°/6 mm. (A., 1903, i, 249), was *Ph* $\beta\beta$ -*dibromoinyl ether* (II), since with boiling conc. HCl-EtOH-2: 4: 1-(NO₂)₂C₆H₃·NH·NH₂ it gives [CH:N·NH·C₆H₃(NO₂)₂·2: 4]₂, m.p. 311—312° (lit. 326—328°), with O_3 -C₆H₆ gives OPh-CHBr-CoBr and thence (KOPh) (OPh)₂CH-CO₂Ph, and with fuming HNO₃ at -10° gives 2: 4: 1-(NO₂)₂C₆H₃·OH and 2: 4: 6: 1-(NO₂)₂C₆H₂·OH [OPh-CBr:CHBr (III)] gives smoothly CHBr₂·CO₂·C₆H₃(NO₂)₂]. In ultra-violet light (III) gives an oil (? an isomeride), but (II) is unchanged. KOBr-KOH-(I) at -5° to -8° gives OPh-C:CBr, a very unstable oil, distillable only at very low pressure and converted by Br-CCl₄ into OPh-CBr:CBr₂ and by Hg(OAc)₂-HCl-H₂O-Et₂O at 10° into CH₂Br-CO₂Ph. R. S. C. $129 - 129 \cdot 5^{\circ}$ is obtained from OPh C.C.MgBr by I-Et₂O or from CH2Br.CO2Ph. R. S. C.

 β -3: 4-Methylenedioxyphenylisopropylamine. J. Elks and D. H. Hey (J.C.S., 1943, 15-16).—Piperonal and CHBrMe·CO₂Et-

NaOEt at room temp., then at 100° (bath), give Et $a\beta$ -oxido- β -3: 4-methylenedioxyphenyl-a-methylpropionate, b.p. 184—186°/14 mm.; hydrolysis (NaOH-90% aq. EtOH) and subsequent decarboxylation give 3: 4-methylenedioxybenzyl Me ketone, b.p. 154—156°/11 mm. This with HCO-NH₂ at 160—165°, followed by hydrolysis (dil. HCl), affords β -3: 4-methylenedioxyphenylisopropylamine, b.p. 138– 140°/12 mm. (Ac derivative, m.p. 93°). A. T. P. 140°/12 mm. (Ac derivative, m.p. 93°).

Derivatives of 4: 4'-diaminodiphenyl sulphone.-See B., 1943, III, 63.

Diaminobenzyl alcohols.—See B., 1943, II, 74.

Crystalline vitamin-A. J. G. Baxter and C. D. Robeson (J. Amer. Chem. Soc., 1942, 64, 2411-2416).—By suitable crystallisation at Chem. Soc., 1942, 64, 2411—2416).—By suitable crystalisation at low temp. vitamin-A forms solvent-free crystals (photomicrograph), m.p. $63-64^{\circ}$, and solvated crystals (A) containing ~ 1 MeOH (photomicrograph), m.p. 7—10°, or ~ 1 HCO₂Me, m.p. -4° to 2° or 7—10°, the solvents being retained at <0°/high vac. (cf. A., 1938, III, 53; 1939, III, 601; 1940, III, 371). It is uncertain whether (A) are definite compounds. The absorption max. at 328 (? 324) mp. has extinction coeff. 1780. The SbCl₃ colour has an absorption max at 200 consults by the Evelve photoe max. at 622 m μ ., having L_{1}^{1} 4800; results by the Evelyn photoelectric colorimeter are discussed. The biological potency is $4.3 \times$ 10^6 U.S.P. XI units per g. The mol. wt., elimination max., n, Ac and I vals. confirm the accepted structure. R. S. C.

Crystalline aliphatic esters of vitamin-4. J G. Baxter and C. D. Robeson (J. Amer. Chem. Soc., 1942, 64, 2407–2410).—Vitamin-A and RCOCl in $C_5H_5N-(CH_2Cl)_2$ give the acetate (I), m.p. 57–58°, palmitate, m.p. 27–28°, and β -naphthoate, m.p. 74–75° (cf. lit.), and divitamin-A succinate, m.p. 76–77°. Extinction coeffs. at 328 mµ. and of the SbCl₃ colours at 620 mµ. are given. The biological potency of all the esters is that calc. (I) is most stable. R. S. C. Photomicrographs are given.

Reaction of Grignard reagents with ketone acetals. R. J. Levina, S. G. Kulikov, and P. G. Parschikov (*J. Gen. Chem. Russ.*, 1941, 11, 567—572).—CMe₂(OEt)₂ with MgPhBr yields *a-phenylisopropyl Et* ether, b.p. 68°/4 mm., and with Mg cyclohexyl bromide gives *a-cyclo-hexylisopropyl Et ether*, b.p. 74—75°/18 mm.; these ethers do not react further with the reagents. trans-, b.p. 134—136°/29 mm., and cis-β-ketodecahydronapithalene Et₂ acetal, b.p. 132—133°/12 mm, are prepared. cycloHexanone Et₂ acetal, b.p. 132—133°/12 mm. affords cyclohexanol and unidentified products. R. T agents affords cyclohexanol and unidentified products. R. T.

Malonic ester synthesis and Walden inversion. W. E. Grigsby, J. Hind, J. Chanley, and F. H. Westheimer (J. Amer. Chem. Soc., 1942, **64**, 2606—2610).—Epoxycyclopentane (I mol.) and $CH_2(CO_2Et)_2$ (2 mols.), in boiling EtOH—NaOEt (I mol.) give, with inversion, Et_2 trans-2-hydroxycyclopentyl-malonate (I) (70—75%); none isolated if 1 mol. of ester is used; 27% in C_8H_8), b.p. 75°/10⁻⁴ mm., hydrolysed by boiling N-aq. NaOH (more slowly by more conc. alkali) to the -malonic acid (II), m.p. 118-4—118-7° (decomp.; corr.). In boiling C_5H_5N , (II) gives trans-2-hydroxycyclopentylacetic acid, m.p. 53·3—54·3° (corr.), slowly converted at 160°, as also is (II), into the lactone of cos-2-hydroxycyclopentylacetic acid (unaffected by boiling C_8H_5N). (I) is slowly decomposed by NaOEt=EtOH. Its formation is discussed. R. S. C. Malonic ester synthesis and Walden inversion. W. E. Grigsby, R. S. C. Its formation is discussed.

Constitution of o-carboxylic acids in solution.--See A., 1943, I,

Complex formation of boric acid with salicylic acid in aqueous solution. Salts of monosalicylboric acid.—See A., 1943, I, 92, 95.

Salicylamide. Ammonolysis of methyl salicylate. E. R. Kline Chem. Educ., 1942, 19, 332).—Details for the ammonolysis on a L S. T laboratory scale are given.

Hydroxylamine derivatives of anthranilic acid. A. W. Scott and B. L. Wood, jun. (*J. Org. Chem.*, 1942, 7, 508—516). —The compound obtained from isatoic anhydride by Meyer *et al.* (A., 1886, 358) is not *o*-aminobenzhydroxamic acid (I) but *O*-*o*-aminobenzoylhydroxyl-amine (II) (cf. Pope, *Diss., Univ. of Georgia*, 1941). It is converted by Bz₂O at ~70° into the Bz derivative, m.p. 157°, which, like (II), does not give the FeCL, test until it has been warred with NeOU does not give the FeCl, test until it has been warmed with NaOH. This with KOBu^a in Bu^aOH affords a K salt which rearranges in hot H_2O to 2: 4-diketo-3-phenyltetrahydroquinazoline, m.p. 280°, and o-CO₂H-C₆H₄·NH·CO·NHPh, m.p. 182°. (I), m.p. 149°, ob-tained from o-NH₂·C₆H₄·CO₂Me and NH₂OH, is fairly stable up to 140° and gives a marked test for hydroxamic acid with FeCl₃; the dry Na salt passes when heated into 2-hydroxybenziminazole (III), m.p. $302-303^{\circ}$. (I) (as Na salt) is converted by BzCl in dioxan into the Bz_2 derivative, m.p. 169°, the K salt of which rearranges to (III) in boiling H_2O . H.W

a-Arylphthalides.--See B., 1943, II, 75.

Carvacrolphthalein. M. H. Hubacher (*J. Amer. Chem. Soc.*, 1942, 64, 2538-2539).—Carvacrol (**I**), $o - C_0 H_4(CO)_2O$, and $SnCl_4$ at 100° give carvacrolphthalein (**II**) (8%; traces by $ZnCl_2$), m.p. 293.5—294.7° [diacetate, m.p. 217.8—219.7°; Me_2 ether, m.p. (partial) 202°, resolidifies, remelts at 211.5—212.2°]. Ehrlich's compound (G.P. 927.0°2. P. 1010. 147.1 methods for the helpic (**UIV**) (similarly for the second secon 225,983; B., 1910, 1474) was thymolphthalein (III) (similarly prepared in 62—70% yield), new m.p. $252\cdot4$ — $253\cdot1^{\circ}$ (diacetate, m.p. $153\cdot0$ — $153\cdot6^{\circ}$; Me₂ ether, m.p. $175\cdot9$ — $176\cdot7^{\circ}$), since this is obtained from impure (I). M.p. are corr. (II) and (III) are not laxative to *Rhesus* monkeys. R. S. C.

Synthesis of 4-hydroxy-2-naphthoic acids. R. D. Haworth, B. Jones, and Y. M. Way (*J.C.S.*, 1943, 10–13).—Et₂ a-aceto-a-benzyl-succinate [from CH₂PhCl and CO₂Et'CH₂-CNAAc-CO₂Et in PhMe at 120—130° (bath)] is hydrolysed (2N-NaOH) to benzylsuccinic acid, the anhydride (prep. by cold AcCl), m.p. 95—97° (lit. 102°), of which with AlCl₃—PhNO₂ gives 4-keto-1:2:3:4-tetrahydro-2-naphthoic acid, m.p. 145—147°, converted by Br-CHCl₃ into its 3-Br-derivative, m.p. 177—180°, and thence [NPhEt₂ at 100° (bath)] into 4:2-OH-C₁₀H₆-CO₂H (I), m.p. 220—222°. Similarly prepared are p-methylbenzylsuccinic acid, m.p. 112—116° (anhydride, m.p. 86-5°), 4-keto-6-methyl-1:2:3:4-tetrahydro-2-naphthoic acid, m.p. 205—207° (3-Br-derivative, m.p. 167—168°), and 4-hydroxy-6-methyl-2-naphthoic acid (11% yield), m.p. 240—241°; p-methoxy-benzylsuccinic acid, m.p. 100—101° (anhydride, m.p. 92—93°), 4-keto-6-methoyl-1:2:3:4-tetrahydro-2-naphthoic acid, m.p. 151° (3-Br-derivative, m.p. 167—168°), and 4-hydroxy-6-methoxy-2-naphthoic acid, m.p. 171°), and 4-hydroxy-6-methoxy-2-naphthoic acid, m.p. 100—101° (anhydride, m.p. 92—93°), 4-keto-6-methoxy-1:2:3:4-tetrahydro-2-maphthoic acid, m.p. 125—127° (anhydride, m.p. 171°), and 4-hydroxy-6-methoxy-2-naphthoic acid, m.p. 171°), and 4-hydroxy-6-methoxy-2-naphthoic acid, m.p. 125—127° (anhydride, m.p. 175°), 7-chloro-4-keto-1:2:3:4-tetrahydro-2-maphthoic acid, m.p. 190—191° (3-Br-derivative, m.p. 180—184°), and 7-chloro-4-hydroxy-2-naphthoic acid, m.p. 285—287° (some 6:1-C₁₀H₆Cl-OH is formed also) (Me ester, m.p. 218—220°; Me ether, m.p. 218—220°; Me ether, m.p. 218—220°; Me ether, m.p. 218—220°; Me of (1-C₁₀H₆Cl-OH is formed also) (Me ester, m.p. 218—220°; Me of (1-C₁₀H₆Ph-CO₂H (+ some 4:1-C₁₀H₆Ph-OH). Phenylmethyl-itaconic acid, m.p. 125—145°, and 4-hydroxy-1-methyl-2-naphthoic acid, m.p. 129—202°, affords 4:1:2: OH-C₁₀H₆Ph-CO₂H (+ some 4:1-C₁₀H₆Ph-OH). Phenylmethyl-itaconic acid, (15—20%), m.p. 203—207° [Me, m.p. 171—174°, and Et ester, m.p. 127—129

Reaction of furoic acid with tetrahydronapthalene. C. C. Price and N. C. Deno (*J. Amer. Chem. Soc.*, 1942, **64**, 2601–2602).— Tetrahydronaphthalene, furoic acid (**I**), and AlCl₃ give s-octahydro-1-anthroic (**II**) (6·3%), m.p. 153–153·5° [(?9:10-)(NO₂)₂-derivative, m.p. 230–235°], and -1-phenanthroic acid (0·25%), m.p. 143–143·5°. With Cu chromite in quinoline at 235°, (**II**) gives 1:2:3:4-tetrahydroanthracene and anthracene, but with S at 180-190° gives a substance, m.p. 216–226°. C₁₀H₈, (**I**), and AlCl₃ give neutral, amorphous products. R. S. C.

Syntheses in the hydroaromatic series. VII. Preparation of partly hydrogenated derivatives of 7-methoxyphenanthrene-2-carboxylic acid and of 7-methoxy-2-acetophenanthrene. E. Dane and O. Hoss (Annalen, 1942, 552, 113—125; cf. A., 1939, II, 429).—7-Methoxy-9: 10-dihydrophenanthrene-2-carboxyl chloride (I). b.p. 208—210°/0·025 mm., is transformed successively into 2-diazoaceto., m.p. 149° (decomp.), 2-chloroaceto- (II), m.p. 117°, and 2-aceto-7-methoxy-9: 10-dihydrophenanthrene (III), m.p. 133°. (III) is hydrolysed by HBr (d 1·48) in boiling AcOH to 7-hydroxy-2-aceto- (IV), m.p. 188—189°, and (II) is transformed by prolonged hydrogenation (Pd-BaSO₄) into 7-methoxy-2-a-hydroxyethyl- (V), m.p. 116—117°, -9: 10-dihydrophenanthrene. Alternatively (I) is converted by ZnMe₂ in PhMe and CO₂ at room temp. into (III), which with NaOEt and HCO₂Et in Et₂O-dioxan gives the corresponding CH(OH); derivative, m.p. 136—137°. (III), (IV), and (V) are physiologically inactive. 6-Methoxy-1-acetylenyl-3: 4-dihydronganthalene (VI) and CH₂:CH·CO₂H in HBr-Et₂O at room temp. yield 7-methoxy-tetrahydrophenanthrene-2-carboxylic acid (VII), m.p. 210—216° (slight decomp.); the Me ester, m.p. 92°, is dehydrogenated by p-O'C₂H₄. O in PhOMe at 152° to Me 7-methoxyndyndphenanthrene-2-carboxylate and C₆H₅N in PhMe into the chloride, which with CH₂N₂ in Et₂O affords 7-methoxy-2-diazoaceto-tetrahydrophenanthrene (IX), m.p. 148° (decomp.), with a 1: 1 adduct, m.p. 159° (decomp.), of (IX) and CH₂N₂. (IX) gives the corresponding CH₂CL ketone, m.p. 132°, attempted hydrogenation (Pd-BaSO₄ in MeOH containing CaCO₃) of which gave (III) and (V). (VII) is hydrogenated (Pd-C in PhOMe) to 7-methoxyoctahydrophenanthrene-2-carboxylic acid converted by mp. 159°. Regulated hydrogenation (Pd-CaCO₃ in stable cyclohexane)

of (VI) and treatment of the vinyl derivative produced with $CH_2:CH\cdot CO_2H$ at 100° gives 7-methoxyhexahydrophenanthrene-2carboxylic acid, m.p. 185°, which appears to yield 7-methoxyphenanthrene, m.p. 99°, when heated with Se at 300—320°. The noncryst. Me ester is dehydrogenated by $p-O:C_6H_4:O$ in PhOMe to a Me methoxytetrahydrophenanthrenecarboxylate, m.p. 107°, and further by Pd at 250—260° and then at 300° to (VIII). H. W.

a-Hydroxy-a'-p-bromophenylmaleimide. G. S. Skinner, C. A. Coghlan, and A. S. Berlin (J. Amer. Chem. Soc., 1942, **64**, 2600–2601).—Adding Br and H₂O to CN·CHPh·CO·CO₂R [reacting as CN·CPh^{*}C(OH)·CO₂R] (R = Et, Me, or Bu^{*}) in CHCl₃ at 45–50° gives an additive compound, which at ~50° loses HBr, rearranges, and cyclises to a-hydroxy-a'-p-bromophenylmaleimide (I), m.p. 239–240°, which in hot aq. Na₂CO₃ gives a Na salt (II), decomp. 321°. Omission of the H₂O leads to less [I] and some ? C₆H₄Br·CH₂·CN. With CH₂PhCl, (II) gives the N-CH₂Ph derivative, m.p. 169–170°, or with AgX gives the unstable Ag salt, converted by EtI-Et₂O into the N-Et derivative, m.p. 191–192°. Boiling HNO₃-H₂O or KMnO₄-NaHCO₃-H₂O oxidises (I) to p-C₆H₄Br·CO₂H. Aq. NaOH at room temp. slowly hydrolyses (I) to p-C₆H₄Br·CD₂·C. Aq. NaOH

dl- and meso- $\gamma\gamma'$ -Diphenyl- $\gamma\gamma'$ -suberodilactone. C. C. Price and A. J. Tomisek (J. Amer. Chem. Soc., 1942, 64, 2727).— COPh· $[CH_2]_2$ ·CO₂H and Zn dust in boiling 80—90% AcOH give γ -phenyl- γ -butyrolactone (30—40%) and $\gamma\gamma'$ -diphenyl- $\gamma\gamma'$ -suberodilactones, m.p. 267° (9%) and 165° (clear at 175.5°) (6%).

dilactones, m.p. 267° (9%) and 165° (clear at $175^{\circ}5^{\circ}$) (6%). R. S. C. Bromination of diphenylalkanes and preparation of stilbene derivatives. I. $a\beta$ -Diphenylethane. S. Bance, H. J. Barber, and A. M. Woolman (J. C. S., 1943, 1--4).--(CH₂Ph)₂ and Br (excess) in boiling CCl₄ give (CHPhBr)₂, which could not be further brominated; in boiling H₂O-AcOH, a mixture of 2: 4': $a\beta$ -tetrabromo- $a\beta$ -diphenylethane (I), m.p. 170-175°, and the 4: 4': $a\beta$ -isomeride (II) [also obtained from (p-C₄H₄Br·CH₂)₂ and Br in boiling CHCl₃ or AcOH] results, but gradual addition of the Br gives a product containing <4 Br per mol. (II) with CuCl or CuCN (2 mols.) in boiling C₅H₅N yields 4: 4'-dicyano-stilbene (III), also obtained from (II) and CuCN (4 mols.) in C₅H₅N at 200-210°. (II) in EtOH with MeOH-KOH atfords 4: 4': a-tribromostilbene, m.p. 82-83°. (III) with Br in PhNO₂ at 200° in bright light yields $a\beta$ -dibromo-4: 4'-dicyano- $a\beta$ diphenylethane (IV), m.p. 269° (decomp.), which with MeOH-KOH gives a-bromo-4: 4'-dicyanostilbene, m.p. 144-145° (130-132° after melting, supercooling, and remelting). This or (better) (IV) with EtOH-MeOH-KOH yields 4: 4'-dicyanotolane (V), m.p. 252-255°, reduced (H₂, Raney Ni in dioxan) to cis-4: 4'-dicyano-, m.p. 152-154° [gives the trans-compound in boiling PhNO₂-1 (trace)], converted via the imino-ether into cis-4: 4'-diamidino-stilbene (+H₂O), m.p. 204-206° (decomp.). 4: 4'-Diamidinotolane dihydrochloride (+0-5 H₂O) is prepared from (V). Residues from crystallisation of (II) when sublimed at 250°/1 mm. yield 4-bromo-4'-cyanostilbene, m.p. 187-188°. (I) with CuCN (4 mols.) in C₅H₅N yields 2: 4'-dibromostilbene, m.p. 84-85°, oxidised (KMnO₄ in 80% COMe₂) to o- and p-C₆H₄Br-CO₂H. (I) with CuCN (4 mols.) in C₅H₅N yields 2: 4'dicyanostilbene, m.p. 136-137°. 2-Cyano-4'-amidinostilbene has m.p. 200-205° (decomp.); the diamidine could not be obtained by the NaNH₂ method. A. L1.

Formation of diethyl cyclobutane-1: 1-dicarboxylate by the Kishner process. V. P. Golmov and B. A. Kazanski (Compt. rend. Acad. Sci. U.R.S.S., 1941, **33**, 37-40).—Cl·[CH₂]₃·Br (I) and CHNa(CO₂Et)₂ in boiling EtOH, or (I)-CH₂(CO₂Et)₂-Et₂O-NaOEt-EtOH at room temp., give Cl·[CH₂]₃·CH(CO₂Et)₂ (II) (52%), some (Cl·[CH₂]₃)₂C(CO₂Et)₂ and [CH₂]₃(CH(CO₂Et)₂]. (II) is the intermediate in the Kishner reaction, and is convertible by boiling EtOH-NaOEt into Et₂ cyclobutane-1: 1-dicarboxylate.

A. T. P. cycloButane derivatives. III. cis-cycloButane-1: 3-dicarboxylic acid. E. R. Buchman, A. O. Reims, and M. J. Schlatter (J. Amer. Chem. Soc., 1942, 64, 2703—2705).—Distillation at 2 mm. of the mixed anhydride from trans-cyclobutane-1: 3-dicarboxylic acid (I) or its Ag salt and boiling AcCl gives the anhydride, m.p. 47-5-48°, of, and thence (evaporation with 6N-HCl), cis-cyclobutane-1: 3-dic carboxylic acid (II), m.p. 143—143-5° (cf. J.C.S., 1898, 73, 330). With MeOH-H₂SO₄, (II) gives the Me₂ ester (III), b.p. 110—111°/ 20 mm., and thence the dihydrazide, m.p. 172—174°. The di-pbromophenacyl ester (prep. from the Na₂ salt) has m.p. 121-2-121.7°. (II) is largely carbonised by conc. HCl at 180° and at 200° alone gives only its anhydride. (I) is obtained from (III) by boiling MeOH-NaOMe, followed by hydrolysis (evaporation with 6N-HCl). CH₂(CO₂Et)₂ and 40% CH₂O, best with a little piperidine at 0° (later room temp.), give, after hydrolysis (NaOH-MeOH at 0° and later room temp.) and boiling with HCl, CO_2H -C(CH₂)·[CH₂]₂·CO₂H (IV) (20%), m.p. 131—132°, b.p. 175°/3·5 mm., a substance, C₄H₁₈O₂NCl, m.p. 220—220-5°, CO₂H·[CH₂]₃·CO₄H, pentane-aye. C₄H₁₈O₂NCl, m.p. 230—220-5°, CO₂H·[CH₂]₃·CO₄H, pentane-aye. (cf. J.C.S., 1900, 77, 294; 1908, 93. 1777; 1909, 95. 1166). (II) and (**W**) are distinguishable by resistance of (**II**) to, and oxidation of (**W**) by, KMnO₄ and by ready addition of HBr or CH_2N_2 to (**W**) ($CH_2N_2-Et_2O$ and then NH_3-EtOH at 100° give the *pyrazoline-diamide*, $C_7H_{12}O_2N_4$, m.p. 145—145·5°). HCl-EtOH largely poly-merises (**W**) but gives also 43% of Et₂ ester, b.p. 132—133°/23 mm., which yields no cryst. dihydrazide; the *anhydride* has m.p. $51-51\cdot5°$, b.p. 112—115°/2 mm.; the dichloride (SOCl₂), b.p. 82-83°/5 mm., gives the *diamide*, m.p. 164—165°; the *dia*-p-brome g2-g3/5 mm., gives the diamide, m.p. 164-165°; the di-p-bromo-phenacyl ester has m.p. $121\cdot6-121\cdot7^\circ$. M.p. are corr. R. S. C.

Chemical components of the roots of *Decalepis hamiltonii.* **V. 4-Methylresorcylaldehyde as preservative.**—See A., 1943, III, 294.

Gossypol. II. Anilino-derivatives. III. Methylation. K. S. Murty and T. R. Seshadri (*Proc. Indian Acad. Sci.*, 1942, A. 16, 141–145, 146–150).—II. With excess of NH₂Ph, gossypol (I) forms "tetra-anilinogossypol" (II), m.p. 303° (decomp.) [probably results from the change $2CHO \rightarrow 2CH(NHPh)_2$], which decomposes on heating for a long time at 110° or for a short period at 180° interval. Physical decomposition (J) and the second decomposition (J) and (J) a into $\rm NH_2Ph$ and gossypoldianil (III), m.p. 303° (decomp.). (I) and $\rm NH_2Ph$ (2 mols.) in Et₂O give the impure additive compound, (2CHO \rightarrow 2CH(OH)·NHPh], m.p. 303° (decomp.). Acetylation and methylation of (II) or (III) yield only derivatives of (I), NH₂Ph being removed.

III. Adams' method (A., 1938, II, 452) of methylating (I) does not appear to give a homogeneous Me_s ether (II), m.p. 130°, which is obtained from gossypol hexa-acetate with Me₂SO₄ and alkali in COMe₂, from (I) and CH_2N_2 in MeOH, or MeI and K_2CO_3 in COMe₂, or Me₂SO₄ and alkali. The methods which do not employ alkali hydroxide give less coloured products. (II) is unaffected by hot dil. H_2SO_4 and hence does not appear to have the constitution corresponding with the structure of the glycosides. H. W.

Reductions with nickel-aluminium alloy and aqueous alkali. I. Carbonyl group. D. Papa, E. Schwenk, and B. Whitman (J. Org. Chem., 1942, 7, 587-590).—The reduction of alkali-sol. CO compounds proceeds smoothly and with good yields with Ni-Al (Raney alloy) whereas alkali-insol. compounds require a solvent, e.g., EtOH, alloy) whereas alkah-insol. compounds require a solvent, e.g., Etchi, PhMe. Compounds COPhR, where R = H, aryl, or alkyl, give the corresponding hydrocarbon, whereas $Ph^{-}[CH_2]_{*}COR$ or CHPh:CH-[CH₂]_*COR, where R is H or alkyl, give generally the corresponding alcohol. p- γ -Phenylpropylphenoxyacetic acid has m.p. On above 92-93°

Acyloins, di- and poly-ketones. I. Syntheses in the αδ-diphenyl-butane series. I. P. Ruggli and B. Hegedüs (*Helv. Chim. Acta*, 1942, 25, 1285—1296).—CH₂Ph·CHO (prep. from CHPh:CH·CO₂H described) is converted through the H sulphite into CH, Ph·CH(OH)·CN and thence by CH, Ph·MgCl into ad-diphenyl-CH₂Ph·CH(OH)·CN and thence by CH₂Ph·MgCl into ab-disphenyl-butan- β -ol- γ -one (I), m.p. 52° (p-nitrobenzoate, m.p. 83—84°; semi-carbazone, m.p. 167—169°, softens at 164°). (I) and NHPh·NH₂ in boiling 70% AcOH give the corresponding osazone, m.p. 172— 174°, and phenylhydrazone, m.p. 111—113°. (I) is reduced by Na in boiling EtOH to [CH₂Ph·CH(OH)·]₂, m.p. 129—131°. (I) is also obtained in small yield by the action of Na powder on CH₂Ph·CO₂Et. Reduction of CH₂Ph·COCl by Mg-MgI₂ gives a liquid with odour of CPb·CH buttorgenzated (Paneur, Ni) to a compound C H. O which of CPh:CH [hydrogenated (Raney Ni) to a compound $C_{\rm e}H_{10}$ O which could not be caused to react with reagents for \cdot OH or :CO], a mixture of compounds, and $CH_2Ph \cdot CO_2[CH_2]_2$ Ph, converted by $CH_2Ph \cdot MgCI$ into $(CH_2Ph)_3C \cdot OH$, m.p. 113—114°. H. W.

Effect of solvents on the acylation of phenol with acid chlorides of high mol. wt. A. W. Ralston, A. Ingle, and M. R. McCorkle (J. Org. Chem., 1942, 7, 457-461; cf. A., 1941, II, 66).—PhNO₂ has a much greater para-directing influence than CS₂ on the Friedel-Crafts acylation of PhOH with C_nH_{2n+1} ·COCl (n = 7, 9, 11, 13, 15, and 17) in presence of an excess of AlCl₃. In C₂H₂Cl₄ only resinous products are obtained with chlorides more complex than C₁H₁₅·COCl. The length of the alkyl chain has little influence on the o/p ratio for a given solvent. o-, m.p. $35\cdot0-35\cdot5^{\circ}$, and p-, m.p. $63\cdot5-64\cdot0^{\circ}$, -hydroxydecophenone are new. H. W. Effect of solvents on the acylation of phenol with acid chlorides of

Rearrangement of phenyl octoate with ferric chloride, titanium tetrachloride, stannic chloride, and zinc chloride. A. W. Ralston, E. W. Segebrecht, and M. R. McCorkle (J. Org. Chem., 1942, 7, 522–527).—FeCl₃ is comparable to $AlCl_3$ as catalyst in the rearrangement of Ph octoate but gives a greater ratio of p- (I) to o- (II) -hydroxyoctophenone for the same % of ester conversion. When FeCl₃ is used the $(\mathbf{I})/(\mathbf{II})$ ratio is less as the mol. amount of catalyst increases whereas with AlCl₃ the reverse is true; (\mathbf{I}) and (II) appear unchanged when heated for 6 hr. at 70° with a mol. ratio of $FeCl_3$. Ti Cl_4 is less effective than $FeCl_3$ and $effective train <math>recl_3$ and p-octoyl-ratio is less. Substantial amounts of octoic acid and p-octoyl-with Ti Cl_4 and PhNO₃ phenyl octoate (III) are also produced. With TiCl4 and PhNO2 photony occurrent (III) are an so produced. with Tret, and FINO₂ as solvent the (I)/(II) ratio exceeds that in $C_2H_2Cl_4$; in CS_2 the change proceeds less rapidly than in $C_2H_2Cl_4$ or PhNO₂. Rear-rangement of (I) or (II) is not caused by TiCl₄. SnCl₄ is a much weaker catalyst than either FeCl₃ or TiCl₄; even at 150° the yields of (I) are quite small and a bare properties of the site. of (I) and (II) are quite small and a large proportion of ester is recovered unchanged. (III) is produced in notable amount. ZnCl, has only very slight catalytic activity in PhNO₂ or $C_2H_2Cl_4$ under conditions varying from 6 hr. at 100° to 24 hr. at 160°. H. W.

Derivatives of 2-propionyl-1-naphthol. C. M. Brewster and G. G. Watters (J. Amer. Chem. Soc., 1942, **64**, 2578—2580).—1:2-OH·C₁₀H₈·COEt (I) is best obtained from a-C₁₀H₇·OH, EtCO₂H, and ZnCl, at 145—150° or, less well, by displacement of Ac from 1:2-OH·C₁₀H₆·COMe (II). With BzOH–ZnCl₂, (II) gives a little 1:2-OH·C₁₀H₆·COPh. (I) is triboluminescent, gives an Et ether, b.p. 175—180°/15 mm., phenylkydrazone, m.p. 136°, 4-Br-, m.p. 98—99° (with RBr-NaOH-H₂O-COMeEt gives an Et, m.p. 68—69°, and Pra ether, b.p. 298—303°/690 mm., and with o-C₆H₄Cl·CHO-KOH-H₂O-EtOH at 0° gives a o-C₆H₄Cl·CH? derivative, m.p. 162—163° (phenylhydrazone, m.p. 199—200°). Clemmensen reduction of (I) gives 2:1-C₁₀H₆Pr^a·OH, m.p. 48—50° (Et, b.p. 294—296°/690 mm., and Bu^a ether, b.p. 304 m.p. $48-50^{\circ}$ (*Et*, b.p. 294-296°/690 mm., and Bu^{α} ether, b.p. 304-306°/692 mm.).

Study of the mechanism of the Beckmann rearrangement by the Study of the mechanism of the beckmann rearrangement of the strain rearrangement of A.e.B. Brodski and G. P. Mikluchin (*Compt. rend. Acad. Sci. U.R.S.S.*, 1941, 32, 558—559).—Beckmann rearrangement of CPh₂:N·OH by PCl₃=Et₂O at -15° , with subsequent addition of H₂O enriched in ¹⁸O, gives NHBzPh, which is hydrogenated (MoS₃) at 90 atm. The *d* of the H₂O obtained after hydrogenation is in accordance with that of the H₂O applied to hydrolysis. Results suggest that the Beckmann change cannot be explained by direct intermol. rearrangement, but that there is an intermediate elimin-ation of O (e.g., as H₂O), and subsequent rearrangement, possibly within the substituted ammonium ion. A. T. P.

Study of mechanisms of chemical reactions with oxygen isotopes. II. Beckmann rearrangement.-See A., 1943, I, 64.

Study of mechanisms of chemical reactions with oxygen isotopes.
II. Beckmann rearrangement.—See A., 1943, I, 64. *p*-Acylation of polyalkylbenzophenones by aryl 2: 4: 6-trialkylbenzoates. R. C. Fuson, E. M. Bottorff, R. E. Foster, and S. B. Speck (J. Amer. Chem. Soc., 1942, 64, 2573—2766).—COPhM (M = mesityl or other highly hindered Ph) and MCO₂Ar in presence of bases, e.g., Na, MgEtBr. MgBr, Mg + Mg1, give *p*-C, H₄(COM), and ArOH (cf. A., 1942, 11, 311). *p*-Tolyl mesitoate (I) and MgPhBr in Bu^a, O-N, at 100° give *p*-dimesitoylbenzene (II) (34%), m.p. 244-246° [and *p*-cresol (74%); cf. loc. cit.], also obtained (14%) by Friedel-Crafts reaction (A) [*p*-C,H₄(COC)), s-C,H₄Me₂, and AlCl, in boiling CS₂]. Similarly *m*-tolyl mesitoate, m.p. 388–39°, and MgPhBr give a little (II). o-C,H₄(Ph-CO-C,H₂Me₃-1:2:4:6, and *m*-cresol (80%); (I) with *o*- or *m*-C, H. Me-MgBr gives 2: 5-dimesitoyl-toluene (III) (29 and 11%), respectively). m.p. 189° [(A) gives 29%), and with *m*-OMe-C,H₄MgBr gives 2: 5-dimesitoylanisole (IV) (3-5%), m.p. 210° [(A) gives 35%]; *p*-tolyl 2: 4: 6-triisopropyl-(V), m.p. 223–225° ((A) gives 50%], and triathyl-benzoate, b.p. 170–171° 3 mm, with MgPhBr give p di-2: 4: 6-tricopropyl-(V), m.p. 223–225° ((A) gives 50%], iand triathyl-benzoatene (VT), m.p. 119–120° (I/A) gives 50%], iand triathyl-benzoatene (VT), m.p. 214–277°. m.⁻Tolyl mesilyl betwees for MgPhBr at 115° gives 13–14%, of 2: 4: 6: 1-C, H₂Me₃MgBr at 115° gives 13–14%, of 2: 4: 6: 1-C, H₂Me₃MgBr at 115° gives (III) (32%), m.p. (13–3%, with (I)-Mg-Mg1, at 100° gives 8%, but of ZnCl, gives none. Ph dibromomesityl ketone [prep. by bromination of (VII); 23%]. m.p. 113°, with (I)-Mg-Mg1, at 10° gives (IV) (35%), m.p. 113°, with (I)-Mg-Mg1, at 115° gives 114. dibromomesityl ketone [prep. by (A); 94%], m.p. 149–150°, m.p. 67°, with (I)-Mg-Mg1, at 115° gives 114. dibromomesityl ketone [prep. by (A); 94%], m.p. 149–151°, with (I)-Mg-Mg1, at 115° gives 114. dibromomesityl ketone [prep. b

mediate 4 : $1 - CN \cdot C_{10}H_6 \cdot CO_2H$).

Addition of magnesium methyl iodide to mesityl tert.-butyl di-**Letone.** R. C. Fuson and J. A. Robertson [and, in part, J. W. Corse] (*J. Org. Chem.*, 1942, 7, 466–471; cf., A., 1939, II, 508).— Each of the CO groups of mesityl Bu^γ diketone (**I**) reacts with MgMeI in the $a\beta$ -manner forming the corresponding ketol. If the condensation of Bu^yCO-CHO with s-C₆H₃Me₃ in presence of AlCl₃ is carried out at a low temp. over a long period of time the main product is mesicyltert.-butylcarbinol (II), m.p. 44°, instead of pivalylmesityl-carbinol (III), m.p. 117—118°. (II) affords an acetate, m.p. 68°, and is converted by NaOEt-EtOH at 75° under N₂ into (III), which itself is unchanged under these conditions. (II) or (III) is oxidised

by CuSO, in aq. C. H. N at 100° to (I), b.p. 115–118°/2 mm. (oxime, m.p. 139°), in 83% yield. (I) is hvdrogenated (PtO₂ in EtOH) to (III). (II) is reduced (Cu chromite-EtOH-H₂ at 175°/1500 lb.) to a-mestiyl-β-tert.-butylethylene glycol, m.p. 84–85° (diacetate, m.p. 73–74°), which is dehydrated by boiling, dil. H₂SO₄ to 2:4:6-trimethylbenzyl Bu^Y ketone, m.p. 80–81° (oxime, m.p. 147°), which does not contain active H. (I) and MgMeI in Et₂O afford mesitoyl-methyl-tert.-butylcarbinol (IV), m.p. 81–82° (acetate, m.p. 77°), which does not contain active H. (I) and MgMeI in Et₂O afford mesitoyl-methyl-tert.-butylcarbinol (IV), m.p. 81–82° (acetate, m.p. 77°), which does not contains I active H (Zerevitinov), and pivalylmesitylmethylcarbinol (V), m.p. 104–105°, which contains I active H but also does not give an acetate. AcOH-60% H₂SO₄ at 100° transforms (V) into a-mesitylethyl Bu^Y ketone (VI), b.p. 112°/3 mm., reduced (PtO₂ in EtOH) to a-mesitylethyl Bu^Y ketone (VII), m.p. 86°, which does not react with Ac₂O-C₅H₅N. Similar reduction of (VI) followed immediately by aeration of the solution gives the enol peroxide, immediately by aeration of the solution gives the enol peroxide, $CMe(C, H; Me_1) = 0$, m.p. 106°. Mesityl Bu^{γ} ketone does not appear CBu^{γ}(OH) = 0, m.p. 106°. to react with MgMeI in boiling Bu^a,O.

HW

Mechanism for the formation of anthraquinone from o-benzoyl-Mechanism for the formation of anthraquinone from 0-senzoya-benzoic acid. M. S. Newman (J. Amer. Chem. Soc., 1942, 64, 2324— 2325).—Addition of o-C₆H₄Bz·CO₂H (I) in 98—99% H₂SO₄ to cold MeOH gives 60% of a 40:56 mixture of ψ - and normal esters with 30% of unchanged (I). The ψ -ester is the primary product, being shown to be partly isomerised under the experimental con-ditions.—Expertise of anthraquinone (II) from (I) proceeds by the ditions. Formation of anthraquinone (II) from (I) proceeds by the reactions: $(I) + 2H_2SO_4 \rightarrow 2HSO_4' + H_3O^+ + o-C_6H_4 < CO_{C+Ph} > O$ $\rightarrow o-C_{g}H_{4}Bz \cdot C^{+}O \rightarrow (II) + H^{+}.$ R. S. C.

Structure of 2-nitroindane-1: 3-dione. G. Wanag and J. Bungs (Ber., 1942, 75, [B], 987–990).—Comparative titrations of 2-nitro-indane-1: 3-dione (I) and Et indane-1: 3-dione-2-carboxylate (II) in C_6H_4 , Et₂O, AcOH, EtOH, and H_2O with Br in the same solvents In $C_6 T_6$, $D_2 O$, heading interpret and D_1 and $T_2 O$ when D_1 in the state state is show that (I) is strongly isomerised in H_9O and EtOH but much less markedly in Et_2O and $C_8 H_6$ whereas (II) is more uniformly isomerised (66–90%) in different solvents. Isomerisation of (II) occurs very rapidly in H_2O , EtOH, and AcOH but slowly in Et_2O and $C_8 H_6$. In any given solvent the behaviour of (I) differs from the difference of $H_8 O$. that of (II) and hence from that of a true keto-enol. Hence (I) isomerises to the ketonitronic acid, $C_6H_4 < CO > C:N(:O) \cdot OH$.

H. W.

Dinitrodibenzanthrone. D. J. Bennett, R. R. Pritchard, and J. L. Simonsen (*J.C.S.*, 1943, 31-33).—The dinitrobenzanthrone (*Bz*-2-Similar (1,0.5., 1940, 31–36). The unit operation (I.2.2. Bz-2'-dinitroviolanthrone) (I) (prep. described) of Maki et al. (A., 1936, 338) cannot be the 16: 17-derivative since oxidation with aq. $\text{CrO}_3-\text{H}_2\text{SO}_4$ gives a dinitro-2: 2'-dianthraquinonyl-1: 1'-di-carboxylic acid (II), amorphous, m.p. >400° (Me₂, blackens at 218°,

gradual decomp. >218°, and Et_2 ester, sinters at 169–173°, m.p. 179–189°, decomp. >190°). (I) may be (A). (II) and aq. Fe $(OH)_2$ -NaOH give the $(NH_2)_2$ -acid; the tetrazonium sulphate and Zn dust in boiling C_3H_{11} ·OH afford 2: 2'-dianthraquinonyl-1: 1'-dicarboxylic acid (Me_2 ester, decomp. ~374°), also obtained by oxidising dibenz-anthrone (III). The magnetic susceptibilities of (III) and 3: 3'-dibenzanthronyl are -0.32×10^{-6} and -0.54×10^{-6} , respectively. A. T. P.

Substituted anthraquinones.-See B., 1943, II, 75.

IV.—STEROLS AND STEROID SAPOGENINS.

Catalytic reduction of cholesterol *a*-oxide. H. E. Stavely (*J. Amer. Chem. Soc.*, 1942, **64**, 2723—2724).—Cholesterol *a*-oxide (**I**) and H_2 -Pd-AcOH give slowly a mixture, which after acetylation (Ac₂O-C₅H₅N) and chromatography gives cholestanyl acetate, cholestane-3:5-diol monoacetate, m.p. 181° (lit. 177°) [free diol, m.p. 216—217° (lit. 201°)], and *a*-cholestane-3:5:6-triol diacetate [also obtained from the acetate of (**I**) and hot AcOH]. R. S. C.

(A) Action of mercuric acetate on $\Delta^{6:8}$ -cholestadien-8-ol (*iso*-dehydrocholesterol). A. Windaus, U. Riemann, and G. Zühlsdorff. (B) Action of lead tetra-acetate on isodehydrocholesterol. A. Windaus, U. Riemann, H. H. Rüggeberg, and G. Zühlsdorff (Annalen, 1942) 552, 135-142, 142-152; cf. A., 1938, II, 185).-(A) isoDehydro-552, 135—142, 142—152; cf. A., 1900, 11, 100, cholesteryl p-nitrobenzoate (I) in CHCl₃ and Hg(OAc)₂ in AcOH H_2 (A), m.p. 210—211°, rapidly yield HgOAc and the p-*nitrobarzoate* (A), m.p. 210–211°, $[a]_{\rm D} = -116\cdot 2^{\circ}$ in CHCl₃, of an unidentified alcohol, $C_{27}H_{40}O_2$, which does not react with NH₂OH, is probably dihydric, contains 4 double linkings, and arises from isodehydrocholesterol (II) by reaction with 3 O. isoDehydrocholesteryl 3: 5-dinitrobenzoate yields a similar ester, $C_{34}H_{42}O_7N_2$, m.p. 223—224°. After removal of (A) an amorphous material remains which is hydrolysed to a doubly unsaturated, dihydric alcohol (III), $C_{27}H_{44}O_2$, m.p. 228°, $[a]_D^2 - 51 \cdot 4^\circ$ in C_5H_5N (di-3: 5-dinitrobenzoate, m.p. 172°). It is converted by boiling Ac_2O into a cholestatrienyl acetate (IV), m.p. $102-103^\circ$ (absorption max. at 285 m μ .), hydrolysed to an alcohol, m.p. 99–100°, which becomes yellow on exposure to air and is hydrogenated

 OH
 OH
 OH
 Itob v, which becomes yellow on exposure to air and is hydrogenated (Pt sponge in EtOAc) to a-cholesteryl acetate, m.p. 76—77°. The mother-liquors from (III) yield a very cha-racteristic 3:5-dinitrobenzoate, C₃₄H₄₂O₆N, m.p. 219°, [a]²⁰₂₀ - 146° in CHCl₃, hydrolysed to a monohydric alcohol (B), m.p. 115°, softens at 108°, [a]₂₀ - 311° in CHCl₃, shown by its absorption spectrum to have 4 double linkings in unbroken conjugation. It is formed from in unbroken conjugation. It is formed from

(I) by absorption of 2 O. It and its acetate, m.p. 114-119°, [a]¹⁶_D (B) (I) in CHCl₃ are very sensitive to air. (B) (I) in CHCl₃ is converted by Pb(OAc)₄ in AcOH at 0° and

(b) (1) in CHCl₃ is converted by Pb(OAC)₄ in ACOH at 0° and subsequently at room temp. into a *cholestatrienyl* p-nitrobenzoate (\mathbf{V}), m.p. 167—168° (turbid), hydrolysed by alkali to a cholesta-trienol, m.p. ~100°, [a]₀ - 81·2° in CHCl₃ [acctate (\mathbf{VI}), m.p. 103— 104°, [a]₀ - 77·6° in CHCl₃; 3 : 5-dinitrobenzoate, m.p. 198°, [a]₃^T -65·0° in CHCl₃], which becomes yellow in air. The mother-liquors from (\mathbf{V}) yield an amorphous residue hydrolysed to a mixture of cholested incodices the conversion of which we have the transformation of the conversion of th Inducts non-on-the static restriction of the hydrolyster of a matrice of cholestadienediols the composition of which varies greatly with slight differences in experimental technique. The ethereal solution deposits (III), better obtained by use of $Hg(OAc)_2$. The more freely sol. material is purified through its additive products with digitonin and then yields a di-3 : 5-dinitrobenzoate, m.p. 176°, hydrolysed to a *cholestadienediol*, m.p. 196°, which may not be quite homogeneous. It and the non-cryst. residues obtained from it are transformed by boiling Ac₂O into a mixture of cholestatrienyl acetates similar to (\mathbf{IV}) . The chief portion has $[a]_D - 77^\circ$ but con-

tains 10–20% of a strongly dextrorotatory isomeride the parent alcohol of which appears identical with $\Delta^{5:7:9(11)}$ -cholestatrienol derived from 7-dehydrocholesterol or isopyrovitamin-From 1-denyalocchoisesterior is sopyilovitalinit- D_3 by oxidation with Hg(OAc)₂. The con-stitution (C) is ascribed to (**III**). Re-examin-ation of the action of BzO₂H on (**II**) shows that the acetate, m.p. 148°, of cholestatrienol

can be directly isolated by crystallisation from OMe_2 -MeOH; the mother-liquors therefrom contain (VI). H. W.

Isolation of androsterone sulphate. E. H. Venning, M. M. Hoffman, and J. S. L. Browne (J. Biol. Chem., 1943, 146, 369-379) —A cryst. conjugated androgen Na androsterone sulphate Cryst. Conjugated and open 1va unaroserone surpluse (1), $C_{19}H_{29}O_2 \cdot SO_3Na, m.p. 144^\circ \text{ or } +H_2O, m.p. \sim 190^\circ (\text{decomp.}) (\text{semi carbazone, m.p. 245^\circ), is isolated (details given, including a final$ chromatographic separation) from the urine of a man with aninterstitial cell tumour of the testis. Acid hydrolysis of (I) affords(chromatographic analysis) variable amounts of androsten-17-one and and rosterone. Synthetic dehydroiso and rosterone sulphate is hydrolysed by HCl to dehydroiso and rosterone and 3-chloro- Δ^5 androsten-17-one. A. T. P.

Steroids and sex hormones. LXXVIII. Oxidation of Δ^{4} ¹⁷-pregnadien-3-one by monoperphthalic acid. L. Ruzicka, M. W. Goldberg, and E. Hardegger (*Helv. Chim. Acta*, 1942, 50, 1297–1305).— $\Delta^{4:17}$ -Pregnadien-3-one (I) [*semicarbazone*, m.p. 224–226° (de-comp.)] is converted by OsO₄ followed by Na₅O₃ into Δ^{4} -17 : 20-*dihydroxypregnen*-3-one, m.p. 204–205°, oxidised by Pb(OAc)₄ in AcOH at room temp. to Δ^{4} -androstene-3 : 17-dione, m.p. 169–170°. (I) is oxidised by o-CO₂H·C₆H₄·CO₃H at room temp. to a mixture of isomeridae (H O, A, m.p. 174.5–175.5°) is CHO. (1) is oxidised by $o - CO_2 H \cdot C_c H_4 \cdot CO_3 H$ at room temp. to a mixture of isomerides, $C_{a_1}H_{30}O_2$, A, m.p. $174\cdot5-175\cdot5^\circ$, $[a]_D + 82^\circ$ in $CHCI_3$ $[semicarbazone, m.p. 227-228^\circ$ (decomp.); no colour with $C(NO_2)_4]$, B (main product), m.p. $188\cdot5-190^\circ$, $[a]_D + 106^\circ$ in $CHCI_3$ $[semicarbazone, m.p. 217-218^\circ$ (decomp.); no colour with $C(NO_2)_4]$, and C, m.p. $189-190^\circ$, $[a]_D + 111^\circ$ in $CHCI_3$ [semicarbazone, decomp. $<math>200^\circ$, m.p. 207° ; yellow colour with $C(NO_2)_4]$. C gives an acetate, m.p. $152\cdot5-153\cdot5^\circ$, with $Ac_2O-C_3H_5N$, which do not affect A or B. The absorption spectra of A, B, and C are almost identical and characteristic of $a\beta$ -unsaturated ketones. A and B are possibly oxido-compounds and C a doubly unsaturated CO-alcobol Mp. are compounds and C a doubly unsaturated, CO-alcohol. M.p. are corr. (vac.). H.

5-Methyl-2-ethylpyridine, a dehydrogenation product of solanidine. —See A., 1943, II, 103.

V.---TERPENES AND TRITERPENOID SAPOGENINS.

Essential oil of Cupressus macrocarpa.-See B., 1943, III, 62

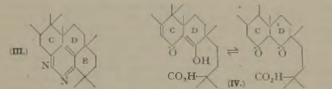
Vetiverone. S. Sabetay and L. Trabaud (Helv. Chim. Acta, 1942, 25, 1187).—A claim for priority against Naves (A., 1942, II, 371) H.

Isolation of lupeol from the osage orange (Maclura pomifera, Raf.). L. J. Swift and E. D. Walter (J. Amer. Chem. Soc., 1942, 64, 2539– 2540).—Dry osage oranges (1 kg.) yield to light petroleum a mixture, whence chromatography (Al silicate) and alkaline hydrolysis afford lupeol (I) (2.3 g.), for which crystallo-optical properties and a

95

photomicrograph are given. With conc. H_2SO_4 -Ac₂O-CHCl₃, (I) gives a red colour, also given by the dried latex of the fruit.

Phenolic behaviour of buchu-camphor and its derivatives. II. Comparison with phenols and keto-enols [in pH of dilute aqueous solutions]. (Signa.) C. Straneo (Gazzetta, 1941, 71, 646-647; cf. A., 1940, II, 136).—The pH (quinhydrone electrode) of 0.001N-aqbuchu-camphor (I), 6.65, is comparable with that of diphenols; in the OMe ether of (I) and in its 1- and 8- (alcoholic) -OH-derivatives the pH in 0.01N- and 0.001N-aq. solutions is comparable with that of monophenols (II). The pH of methylcyclohexane-1: 2-diones (III) is slightly > that of (II), suggesting that in (III) both CO groups can enolise. E. W. W.


Sesquiterpenes. LV. Stepwise degradation of norcedrenedicarb-oxylic acid. P. A. Plattner, G. W. Kusserow, and H. Klaut (*Helv. Chim. Acta*, 1942, 25, 1345–1364).—In the prep. of norcedrenedicarboxylic acid (I) according to Ruzicka et al. (A., 1929, 932), dihydroxycedranone, (?) $C_{15}H_{24}O_3$, m.p. $126-127^{\circ}$ (semicarbazone, m.p. $181-182^{\circ}$; p-nitrobenzoate, m.p. 175°), is obtained as bym.p. 181-182⁻; p-*nitrobenzoate*, m.p. 175⁻), is obtained as by-product; it does not give a yellow colour with $C(NO_2)_4$ or react with FeCl₃. (I), has m.p. 209°, $[a]_D^* - 39 \cdot 4^\circ$ in CHCl_a, and is best obtained (with $CO_2H \cdot CMe_2 \cdot CH_2 \cdot CO_2H$ and neutral compounds) by the oxidation of cedrenol in $COMe_2$ by KMnO₄ and of the acidic product by HNO₃ ($d \ 1 \cdot 4$). (I) is transformed by H_2SO_4 -MeOH into the *Me* H ester, m.p. 98.5-99.5°, and by CH₂N₂ into the *Me*₂ ester (II), $[a]_D^{25} - 43 \cdot 5^\circ$ in MeOH, partly hydrolysed by alkali to the M H ester m p. 130-131°. ester, m.p. 130-131°. Isomerisation is not observed when (I) or cedrenedicarboxylic acid is heated with conc. HCl at 180°, when the anhydride of (I) is heated at $210-220^\circ$, or when (II) is boiled with NaOMe-MeOH. The monocarboxylic acid, $C_{12}H_{18}O_2$, m.p. $90-90.5^{\circ}$, obtained by bromination of (I) followed by decarboxyl-ation and removal of HBr does not show the absorption typical of ation and removal of HBr does not show the absorption typical of $a\beta$ -unsaturation. Its Me ester is oxidised by BzO₂H in CHCl₃ to the oxido-ester, $C_{13}H_{20}O_3$, b.p. $132-133^\circ/12$ mm. $[a]_D - 42\cdot3^\circ$ in MeOH, transformed by boiling aq. dioxan into the $(OH)_2$ -ester, $C_{13}H_{22}O_4$, m.p. 105° , $[a]_D - 36^\circ$ in MeOH, with smaller amounts of two isomerides, m.p. 134° , $[a]_D - 63^\circ$ in MeOH, and m.p. $120-120\cdot5^\circ$, $[a]_D - 8^\circ$ in MeOH, respectively. With an excess of Br followed by CH₂N₂, (I) yields Me_2 bromonorcedrenedicarboxylate (III), m.p. $61-62^\circ$, $[a]_D - 26\cdot8^\circ$ in MeOH, with some Me H ester, m.p. $195-196^\circ$. (III) retains Br somewhat firmly but when treated with KOH in boiling ag. dioxan followed by CH N. 195–196°. (III) retains Br somewhat firmly but when treated with KOH in boiling aq. dioxan, followed by CH_2N_g , fractional distillation, and eventual hydrolysis, gives the monocarboxylic acid, $C_{12}H_{18}O_g$, m.p. 90–91° (*loc. cit.*), *Meg dihydronorcedrenedicarboxylate* (IV), $[a]_B = -70°$ in CHCl, and *Meg hydroxynorcedrenedicarboxylate* (IV), $[a]_B = -70°$ in CHCl, and *Meg hydroxynorcedrenedicarboxylate* (III) gives (IV), hydrolysed with difficulty to the acid (V), m.p. 212–213°, $[a]_D = 91°$ or -87° (c = 2.7 or 1.2) in MeOH, hydrogen-ated to (I) and apparently transformed by boiling Ac₂O into a polymeric anhydride. (V) is oxidised by KMnO₄ in alkaline solu-tion to the *hetodicarboxylic acid*, $C_{12}H_{23}O_5,H_2O$ (also anhyd.), m.p. 142:5-143°, $[a]_D = -35°$ in MeOH [p-nitrophenylhydrazone, $C_{18}H_{23}O_6N_3$, m.p. 182–183°; *Meg* ester, b.p. $\sim 10°$)]. This is oxid-ised [Pb(OAc)₄ in AcOH at room temp. and then at 70–80°] to +21° in MeOH (p-nitrophenylhydrazone, m.p. 106°)]. This is oxid-ised [Pb(OAc)₄ in AcOH at room temp. and then at 70-80°] to the anhydride (**VI**), $C_{11}H_{16}O_3$, b.p. 125°/high vac., $[a]_D - 22.9°$ in MeOH, hydrolysed to the dicarboxylic acid, m.p. 885-589°, $[a]_D + 13°$, +17.9° (c = 0.6, 1.15) in MeOH, $[a]_D - 4.9°$ in CHCl₃ (Me_2 ester, b.p. ~80°/high vac., $[a]_D^{23} + 26.3°$ in MeOH). The acid is obtained in less pure form and poorer yield by oxidation with H_2O_2 . Attempts to cyclise it by CaO at 260-320° give (**VI**). (**VI**) is converted by PBr₃ followed by Br, esterification with MeOH, frac-tional distillation, and hydrolysis into the lactonecarboxylic acid tional distillation, and hydrolysis into the lactonecarboxylic acid, $C_{11}H_{16}O_4$, m.p. 187°. M.p. are corr. H. W.

Sesquiterpenes. LVI. Degradation of dihydroeudesmol by chromic acid. L. Ruzicka, P. A. Plattner, and A. Fürst [and, in part, A. Ahl] (*Helv. Chim. Acta*, 1942, 25, 1364–1374).—Eudesmol is reduced (Raney. Ni-EtOH-H₂ at 100°/100 atm.) to dihydroeudesmol (I), m.p. 86–87°, [a]_D +16·8° in CHCl₃, which is dehydrated with about equal readiness when it is treated with KHSO₄ or when converted into the hydrochloride and then treated with KOH-EtOH. The products obtained by decomp. of the ozonide of the resulting dihydroeudesmene by H₂O give indefinite semicarbazones; reductive fission leads to more tractable products, but the yields are unsatisfactory. (I) is oxidised by CrO₃ in AcOH at 75-80° to 3.keto-5: 9-dimethyldecahydronaphthalene (II) (semicarbazone, m.p. 222°, [a]_D +26° in AcOH) and an acid, probably 1: 3.dimethylcyclohezane-1: 2-diacetic acid, m.p. 141-143° [Me₂ ester, [a]_D +5·5°, +4·6° (c = 1.61; 1·30) in COMe₂]. (II) is converted by PhCHO and KOH in aq. EtOH into the mono-, m.p. 141-143°, [a]_D +20·63° in EtOH, and by PhCHO and HCl in Et₂O and treatment of the product with NaOAc in AcOH into the di-, m.p. 198-200°, [a]_D^H -14·6° in CHCl₃, -benzylidene derivative. Ozonisation of the last named compound leads to (?) 1: 3-dimethylcyclohezane-2-carboxylic-1-acetic acid, m.p. 132-134°, [a]_D +47·1° in COMe₂ (Me₂ ester, [a]_D +45·3° in COMe; Me ester anilide, m.p. 100-102°, [a]_D +78° in COMe₂). M.p. are corr. H.W.

Triterpenes. LXVIII. *a*-**Elemolic acid.** L. Ruzicka, E. Rey, and M. Spillmann (*Helv. Chim. Acta*, 1942, **25**, 1375—1402).—Since identical CO-acids are not obtained from a- (I) and β - (II) -elemolic acids, these triterpene acids cannot be epimerides with respect to the sec.-OH. (I) and (II) lose 3 C as $COMe_2$ when ozonised or the sec-OH. (I) and (II) use a Case Course when Co_2H ; hence oxidised by CrO_3 or $KMnO_4$ with production of a new Co_2H ; hence the readily hydrogenated double linking in (I) and (II) must be present in a side-chain with terminal $\cdot CH_*CMe_2$. The difficultly reactive double linking of (I) is oxidised by $o-CO_2H-C_6H_4$ $\cdot CO_3H$ to reactive during many of (I) is obtained by $b - Co_2 n + Co_3 n + Co_3 n$ to an oxido-compound whereas the latent, not yet hydrogenated double linking of (II) is not affected by the oxidant and in this respect resembles the double linking of a-amyrin. A partial, mutual transformation in the two series is observed during many oxidations and hydrogenations which possibly depend on a dis-placement of the difficultly reactive double linking. Since the active double linking is in the same position in the two elemic acids it is highly probable that they differ from one another solely in the It is highly probably that they drive linking and have an otherwise similar structure. Since the relationship between (I) and (II) is very similar to that between lanosterol and cryptosterol in respect of oxidation with CrO3, ozonisation, hydrogenation, and dehydrogenation by Se it is probable that there is a close analogy between these ation by of terms probable tritterpene derivatives. (II), m.p. 224–225°, $[a]_{\rm D} - 24.0^\circ$, isolated from Manila elemi resin (A. 1942, II, 266) is shown to be homogeneous by further treatment with Girard reagent T and by chromatography of its Me ester, m.p. 143–144°, $[a]_{\rm D}$ -17.6° , in light petroleum over Al₂O₃. The following new or revised data are recorded : acetyl-a-elemolic acid (III), m.p. 241– 242°, $[a]_{\rm D} - 36.1^\circ$; a-elemonic acid (IV), m.p. 286–287°, $[a]_{\rm D}$ -76.0° (Me ester, m.p. 161–162°, $[a]_{\rm D} -90.2^\circ$; oxime, m.p. 227– 228°, $[a]_{\rm D} - 84.4^\circ$); dihydro-a-elemonic acid, m.p. 309–310°, $[a]_{\rm D} -97.0^\circ$ (oxime, m.p. 233–234°, $[a]_{\rm D} -117.2^\circ$); dihydro-a-elemolic acid, m.p. 237–238°, $[a]_{\rm D} -22.6^\circ$ [acetate (VI), m.p. 250– 251°, $[a]_{\rm D} -33.1^\circ$]; acetyl-a-elemolyl chloride, m.p. 209–210°, $[a]_{\rm D} -120^\circ$; β -elemonic acid, m.p. 224–225°, $[a]_{\rm D} +43.2^\circ$. Cata-lytic hydrogenation (PtO₂ in AcOH) of (II) gives (V) and (after methylation) *Me acetyldihydro-a-elemolate*. (VII), m.p. 130-5–131°, $[a]_{\rm D} -40.7^\circ$, and Me dihydro-a-elemolate. (VII), m.p. 130-5–131°, $[a]_{\rm D} -40.7^\circ$, and Me dihydro-a-elemolate. (VII), m.p. 130-5–131°, $[a]_{\rm D} -40.7^\circ$, and Me dihydro-a-elemolate. (VII), m.p. 130-5–131°, $[a]_{\rm D} -40.7^\circ$, and Me dihydro-a-elemolate. (VII), whereas (I) gives (V) when reduced in EtOH containing Raney Ni at 200°/160 atm. (I) is reduced (H₂ at 180°/60 atm., PtO₂-AcOH) to a dihydrodeoxo-a-elemolic acid, m.p. 247–248°, $[a]_{\rm D} +3.6^\circ$. (IV) is transformed by N₂H₄, H₂O followed by NaOEt=EtOH at 190° into deoxy-a-elemonic acid, m.p. 263–263.5°, $[a]_{\rm D} -36.6^\circ$). Me a-elemolate is converted by o-CO₂H+C₆H₄·CO₃H in CHCl₃ into its dioxide, m.p. 203–204°, $[a]_{\rm D} -60^\circ$, which does not give a yellow colour with C(NO₂)₄ and could not be satisfactorily hydrolysed in acid, alkaline, or neutral solution; large amounts of non-cryst. material are simultaneously formed. (VII groups of tetracyclic triterpene derivatives. (I), m.p. $224-225^{\circ}$, $[a]_{D} -24.0^{\circ}$, isolated from Manila elemi resin (A., 1942, II, 266) is The provide the set of the set o entity by oxidising the known Me acetyldihydro-a-elemolate with CrO_3 . (I) is oxidised by CrO_3 in AcOH to (IV) and β -elemonic acid, m.p. 225°, $[a]_D + 43\cdot2°$ (Me ester, m.p. 103—104⁵, $[a]_D + 34\cdot5°$). (IV) is converted by Na and EtOH followed by CH_2N_2 into Me epi-a-elemolate (IX), m.p. 141·5°, $[a]_D - 49\cdot2°$, which does not give a cryst. acetate and is hydrogenated (PtO₂ in AcOH at room temp.) to Me epidihydro-a-elemolate, m.p. -100° and 151-152° after resolidification at 130—140°, $[a]_D - 50\cdot3°$. (IX) is oxidised by CrO_3 in AcOH to Me a-elemonate, m.p. 161-162°, $[a]_D - 89\cdot0°$. (IV) is hydrogenated (PtO₂ in AcOH at 100°) to the H₂-compound and epidihydro-a-elemolic acid, m.p. $265-265\cdot5°$, $[a]_D - 60\cdot0°$; the latter substance is produced under the same conditions but at room temp. CrO_3 and (VIII) in AcOH at 50° afford (after esterification) Me₈ trisnoracetyl-a-tritelemenoldicarboxylate, m.p. 133-135°. Ozonisation of Me a-elemonate and decomp. of the ozonide by boiling H₂O gives Me₂ trisnor-a-tritelemenodicarboxylate, m.p. Ozonisation of Me a-elemonate and decomp. of the ozonide by boiling H_2O gives Me_2 trisnor-a-tritelemenonedicarboxylate, m.p. $161-161.5^\circ$, $[a]_D - 146.0^\circ$. Dehydrogenation of (I) by Se at 350° affords a hydrocarbon mixture which gives additive products, $C_{22}H_{17}O_8N_3$, m.p. $145-146^\circ$, and $C_{22}H_{17}O_8N_3$ or $C_{23}H_{19}O_8N_3$, m.p. $159-160^\circ$, with $C_6H_3(NO_3)_3$, 1:7:8-trimethyl-phenanthrene, m.p. $146-147^\circ$ [additive product, m.p. $192-192.5^\circ$, with $C_6H_3(NO_2)_3$]. 1: 7-dimethylphenanthrene [isolated as the additive compound, m.p. $159-160^\circ$, with $C_6H_3(NO_2)_3$ and as the picrate, m.p. $130-131^\circ$], and a homologue, $C_{24}H_{16}$, of picene, m.p. $345-346^\circ$. M.p. are corr. (vac.). $[a]_D$ are determined in CHCl₃. H. W. H. W

Triterpenes. XLIX. β -Elemonic acid. L. Ruzicka, H. Hausermann, and E. Rey (*Helv. Chim. Acta*, 1942, 25, 1403—1409).— Oxidation (CrO₃ in AcOH) of acetyldihydro- β -elemolic acid at room temp. gives diketoacetyldihydro- β -elemolic acid, m.p. 269—270°, $[a]_D + 23\cdot6°$ in CHCl₃ (*Me* ester, m.p. 176·5—177·5°, $[a]_D + 35\cdot6°$ in CHCl₃), which is shown by its absorption spectrum to contain the group CO-C:C-CO. It is hydrogenated (PtO₂ in AcOH) to (?) ketoacetyltetrahydro- β -elemolic acid, m.p. 273—275°, which does not give a yellow colour with $C(NO_2)_4$. Treatment of β -elemonic (i) into determine the product with $C(NO_2)_4$. Treatment of β -elemonic acid (I) in CCl_4 with O_3 until the product fails to decolorise Br-H₂O and decomp. of the product with hot H₂O yields $COMe_2$ in In the second product with not 1_2 by the contrast of the product with not 1_2 by the contrast of the product 1_2 by the p with $C(NO_2)_4$, and a non-cryst. neutral material, oxidised (CrO₃ in AcOH) to (III). (III) is also obtained by oxidation of (III) with with $C(NO_2)_4$, and a non-cryst. neutral material, oxidised (CrO₃ in AcOH) to (III). (III) is also obtained by oxidation of (III) with KMnO₄ in boiling COMe₂ in addition to 80% of a neutral, amorphous substance. Hydrogenation (PtO₂ in EtOH-AcOH at room temp.) of deoxo- β -elemonic acid affords *dihydrodeoxo*- β -elemonic acid mp 259—260°, [a]_D +9·35° in CHCl₃ (Me ester, m.p. 100—100·5°, [a]_D +4·8° in CHCl₃), which gives a distinct yellow colour with $C(NO_2)_4$. (I) and anhyd. HCO₂H in CHCl₃ at room temp. yield the substance. C.H.-O. mp. 240—242°: at higher temp. a cryst. the substance, $C_{31}H_{48}O_5$, m.p. $240-242^\circ$; at higher temp, a cryst, material does not result. M.p. are corr. H. W.

Triterpenes. LXX. Further transformations of β -amyradienetherpenes. LAX. Further transformations of β -amyradiene-dionol. L. Ruzicka and O. Jeger (*Helv. Chim. Acta*, 1942, 25, 1409– 1419).— β -Amyradienedionol acetate is oxidised by CrO₃ (cf. Simp-son, A., 1938, II, 448) to its oxide (**I**), m.p. 290–291°, and a com-pound, C₃₂H₄₂₍₄₄₎O₆, m.p. 288–290° (decomp.). (**I**) is hydrolysed by boiling KOH-MeOH or by 10% HCl-MeOH at ~200° to β -amyradienedionol oxide (**II**), m.p. 310–312° (vac.; decomp.). (**I**) and N H. H. O. in FtOH at 200° gives the nuridorized derivative (**III**) and N_2H_4 , H_2O in EtOH at 200° give the pyridazine derivative (III), m.p. 292—293° (*Ac* derivative, m.p. 261°). (I) is converted by KOH-MeOH at 130° into (II), at 200° into (II) and an acid (III),

and at 210° into (**IV**) and an unidentified, non-cryst. product. (**IV**), m.p. $239-240^{\circ}$ (*Me* ester, m.p. $114-115^{\circ}$; *acetate*, m.p. $157-158^{\circ}$), gives a dark yellow colour with $C(NO_2)_4$, a grey-green to black-green colour with FeCl₃, and is not lactonised at 230° /vac. It does not react with NH₂OH in EtOH at $80-200^\circ$ but with N_2H_4, H_2O at 200° yields the compound (V), m.p. 264–265°, also

obtained from (I), KOH, and N_2H_4 , H_2O in MeOH at 200°. (\mathbf{III}) is oxidised by H_2O_2 in AcOH to a non-cryst. product acetylated to (\mathbf{VI}) , m.p. 253° (decomp.), which is reduced (Wolff-Kishner) to (**III**). H. W M.p. are corr.

Saponin of fenugreek seeds. G. Soliman and Z. Mustafa (Nature, 1943, 151, 195-196).—The pure saponin (separation described), m.p. 190—200°, afforded in hydrolysis a cryst. mixture, m.p. 184°, of sapogenins from which a *compound*, $C_{27}H_4O_3$, m.p. 198° (free OH; 2 inactive O), was isolated. It appears to belong to the sarsasapogenin group. A. A. E.

Saponins and sapogenins. XX. Bethogenin and trillogenin, new Saponins and sapogenins. XX. Bethogenin and trillogenin, new sapogenins from Trillium erectum. S. Lieberman, F. C. Chang, M. R. Barusch, and C. R. Noller (J. Amer. Chem. Soc., 1942, 64, 2581–2583).—Hydrolysis of the extract of the root of T. erectum yields diosgenin, trillin (anhyd.), m.p. 269·5–271° (preheated bath), $[a]_{D}^{26}$ –103·4°, $[a]_{Hg}^{26}$ –127·2° in dioxan (acetate, m.p. 204–205°, $[a]_{D}^{10}$ –71·4°, $[a]_{Hg}^{26}$ –80·2° in dioxan), chlorogenin, bethogenin (I), $C_{27}H_{49}O_4$, m.p. 193–194°, $[a]_{D}^{24}$ –98·4° in dioxan, and trillogenin (II), $C_{27}H_{49}O_4$, m.p. 206–210°, $[a]_{D}^{24}$ –41·6°, $[a]_{Hg}^{24}$ –54·3° in dioxan. (I) is unstable when kept or recrystallised, is unsaturated [C(NO₄)]. (11), $C_2TR_{48}O_4$, in: p. 200-210, $[a]_D = 41^\circ 0$, $[a]_{H_2} = J3^\circ 3$ in diokali. (I) is unstable when kept or recrystallised, is unsaturated $[C(NO_2)_4]$, gives an acetate, m.p. 230-232°, $[a]_D^{-1} = 94\cdot4^\circ$ in dioxan, and benzoate, m.p. 212-215°, $[a]_D^{-1} = 65\cdot1^\circ$ in dioxan, shows 1 active H, with H_2 -PdO-EtOAc at 30 lb. and then $Ac_3O-C_5H_5N$ gives tetrahydro-bethogenin diacetate, m.p. 141-144°, $[a]_D^{24} = 156^\circ$ in dioxan, and gives an oxime, m.p. 241-243°, but with Ac_2O does not isomerise. The side-chain of (II) may be open since a tetra active m p. 102-103° $[c]_2^{24}O$ chain of (II) may be open, since a *tetra-acetate*, m.p. 102–103°, $[a]_{24}^{24}$ 0, $[a]_{142} = -3.5^{\circ}$ in dioxan, is obtained by Ac₂O–NaOAc. R. S. C. $[a]_{Hg} = 3.5^{\circ}$ in dioxan, is obtained by Ac₂O-NaOAc.

VI.—HETEROCYCLIC.

Reaction of furoic acid with tetrahydronaphthalene.-See A., 1943, II, 91.

Preparation of β **-2-furylacrylic acid.** S. Rajagopalan (*Proc. Indian Acad. Sci.*, 1942, **A**, 16, 163—166).— β -2-Furylacrylic acid,

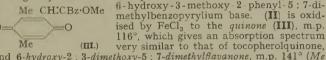
m.p. 141°, is obtained in 66–67% yield by heating an equimol. mixture of furfuraldehyde, $CH_2(CO_2H)_2$, and C_5H_5N at 100° for

Condensation of succinic acid with acetylacetone. Z. F. Stefanov-Condensation of succine acid with acetylacetone. Z. F. Stelanov-skaja, V. V. Dorofeev, and I. A. Trefiliev (J. Gen. Chem. Russ., 1941, 11, 518—522).—(CH₂·CO₂Na)₂ and CH₂Ac₂ in Ac₂O are heated for 20 hr. at 100°, and the product is treated with dil. HCl and extracted with Et₂O. The Et₂O-sol. fraction consists chiefly of a resinous acid, and this, heated with H₂O at 100° (12 hr.), yields 1-acetonyl-4-methylfuran-2-carboxylic acid, m.p. 121—122°. R. T.

Halogen compounds derived from 2:5-diphenyl-3-methylfuran. R. E. Lutz and C. E. McGinn (J. Amer. Chem. Soc., 1942, 64, 2583— 2585).—2:5-Diphenyl-3-methylfuran in CHCl₃ gives, successively, the 4-Br-derivative (I), 4-bromo-2:5-di-p-bromophenyl-3-methyl-(II), the 4-Br-derivative (I), 4-bromophenyl-3-methyl-3-met m.p. 168—169°, and '3-bromomethyl-furan (III) (75%), m.p. 212-213°. Structures are proved by indifference of the products to Zn dust-AcOH, except that (III) gives (II). With HNO₃-AcOH, (I) gives cis-COPh CMe CBr COPh, reduced by Zn dust-AcOH to gives cis-COPh-CMe₂COPh, reduced by Zn dust-AcOPh to COPh-CHMe-CH₂·COPh. (**II**) and (**III**) give similarly cis- β -bromo-a δ -di-p-bromophenyl- γ -methyl- (**IV**) (91%), m.p. 119·5—120°, and - γ -bromomethyl- $\Delta\beta$ -butene-a δ -dione (**V**) (90%), m.p. 117—117·5°, both reduced by SnCl₂-AcOH-conc. HCl to 2:5-di-p-bromophenyl- β -methylfuran (**VI**), m.p. 158—159°. (**VI**) and cis-a δ -di-p-bromophenyl- β -methyl- $\Delta\beta$ -butene-a δ -dione (**VII**), m.p. 115—116° (unaffected by I-CHCl₃-light), are interconvertible by HNO₃ and SnCl₂. Zn dust-AcOH reduces (**IV**), (**V**), and (**VII**) to a δ -di-p-bromophenyl- β -methyl- β -methyl- β -formorphenyl- β -methyl- β -formophenyl- β -formo butane-aδ-dione, m.p. 120-120.5°. R. S. C.

Conversion of unsaturated 1: 4-diketones into furans and hydroxy-furanones. R. E. Lutz and C. E. McGinn (J. Amer. Chem. Soc., 1942, 64, 2585-2588).—Further examples are provided of the greater ease of dehydration of *cis*- compared with *trans*-COPh-CR:CR'COPh. Spatial as well as energy relations may be the cause, in accord with formation of some hydroxyfuranones from cis-diketones. trans- (I) (modified prep.) and cis-COPh-CH:CMe-COPh (II) [prep. from 2 : 5-diphenyl-3-methylfuran (III) by HNO₃-AcOH at 10°; 81% yield] with HBr-AcOH give 4-bromo-2 : 5-diphenyl-3-methylfuran (IV) [also obtained from (III) by Br-CHCl₃], with Zn dust in AcOH give CHMeBz·CH₂Bz (V), and with SnCl₂-conc. HCl-AcOH give (III) (96%) [also obtained from (V)], but with Ac₂O-H₂SO₄ at room temp. (II gives 4-acetoxy-2 : 5-diphenyl-3-methylfuran (V) (50-68%), m.p. 94-95°, and with Bz₂O-H₂SO₄ gives an oily Bz-compound, whereas (I) does not react; with ZnCl₂-Ac₂O-AcOH trans- but not cis-(2:4:6:1-C₆H₂Me₃·CO·CH:)₂ gives the saturated diketone. (VI) could not be converted into the 4-Cl-compound. With Br-CCl₄, (VI) gives 2-bromo-2:5-diphenyl-4-methyl-2:3-dihydrofuran-3-one, m.p. 88-9° (with boiling EtOH gives the 2-OEt-compound), cisthe cause, in accord with formation of some hydroxyfuranones from 2-bromo-2 : 5-diphenyl-4-methyl-2 : 3-dinydrojuran-3-one, m.p. 88– 89° (with boiling EtOH gives the 2-OEt-compound), cis-COPh-CMe:CBr-COPh [prep. from (**IV**) by conc. HNO₃-AcOH at 80°] with H₂SO₄ (2 drops) in AcOH at 0° gives 2-acetoxy-, with H₃SO₄ in AcCl at 0° gives 2-chloro-, and with HCl-MeOH gives 2-methoxy-2 : 5-diphenyl-4-methyl-1 : 2-dihydrofuran-2-one. 3-Bromo-2 : 4 : 5-triphenylfuran (prep. from COPh·CPh·CH·COPh by 30% HBr-AcOH at room temp.) gives similarly 2-acetoxy-, 2-chloro-, and 2-methoxy-2 : 4 : 5-triphenyl-1 : 2-dihydrofuran-3-one. B S C

R. S.

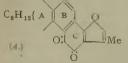

Constitution of the photodimerisates of the coumarins and fur-coumarins. F. von Wessely and I. Plaichinger (Ber., 1942, 75, [B], 971-976).—Evidence is adduced in favour of the view that coumarins. the photodimerides of coumarins and furocoumarins are cyclobutane derivatives. a-Dicoumarin (Strom, A., 1904, i, 505) could not be hydrogenated in cold or hot AcOH containing Pd. Me, dicoumarate Hydiogenetic in control in the intermediate the second state of t compound $\begin{bmatrix} 0 & \\ C_{\text{AH}} & C_{\text{CH}} \end{bmatrix}^2$ obtained by Dyson (J.C.S., 1887, 51, 68) by condensing o-OH-C₆H₄-CHO with $(CH_2 \cdot CO_2H)_2$ readily absorbs 2 H₂ in presence of Pd-C or under the action of Na-Hg. The product obtained by the action of Br on (I) is a substitution compound, the constitution of which has not been determined.

H. W

Synthetic experiments in the benzopyrone series. VI. Action of aluminium chloride on angelicin, psoralen, and related compounds. B. Krishnaswamy and T. R. Seshadri (Proc. Indian Acad. Sci. 1942, A. 16, 151–156).—Angelicin is converted by $C_{e}H_{e}$ and AlCi₂ at room temp. into 8-a β -diphenylethylumbelliferone, m.p. 205–206°, which gives a blue fluorescence in dil. alkali and a bright, violet fuorescence in conc. H_2SO_4 . Similarly, psoralen affords $6-\alpha\beta-di-phenylethylumbelliferone, m.p. 259–260°, transformed by MeI and <math>K_2CO_3$ in anhyd. COMe₂ into the Me ether, m.p. 172–173°. The following observations show that the coumarin ring is not involved and that the furan ring is the active centre: (a) coumarin (I) and umbelliferone Me ether undergo simple demethylation; (c) coumarone is polymerised too readily to allow condensation with $C_{\theta}H_{\theta}$; (d) coumarilic acid (II) undergoes smooth addition to 3-phenyldihydrocoumarilic acid, m.p. 143-144°. Coumaric acid resembles (II) in H. W. this reaction and differs from (I).

Useful colour reactions of anthoxanthins and related compounds. S. Rangaswami and T. R. Seshadri (Proc. Indian Acad. Sci., 1942, A, 16, 129-134).-The scope of the following colour reactions has been investigated using a large no. of natural and synthetic flavones (I), flavonols (II), flavonones (III), and certain related compounds : (a) reduction with Mg and HCl-EtOH, (b) reduction with Na-Hg and EtOH, and (c) Wilson's H_3BO_3 test using a mixture of H_3BO_3 and citric acid in COMe₂. For the first two reactions the nature of the colour depends in general on the no. of OH and OMe groups in the mol. Qualitatively it is not easy to effect minor distinctions between (I), (II), and (III). Wilson's test is very sp. for 5-hydroxyand 5-methoxy-flavones and (II) and o-hydroxy- and methoxy-chalkones. It is not given by (III) and simple aromatic ketones which do not satisfy the sp. conditions. A combination of the three H. W. reactions gives much useful information.

Preparation of substances resembling tocopherol and flavonols from benzopyrylium salts. P. Karrer and W. Fatzer (*Helv. Chim. Acta*, 1942, 25, 1129–1138).—Passage of dry HCl into a solution of 2:5:4:6:1-(OH)₂C₈HMe₂·CHO and COPh·CH₂·OMe in anhyd. HCO₂H at 0° and then at 20° leads to 6-hydroxy-3-methoxy-2-phenyl-5:7-dimethylbenzopyrylium chloride (I), hydrogenated (Pt in AcOH) to 6-hydroxy-2-phenyl-5:6-dimethylchroman-3-one, m.p. 141° (oxime, m.p. 216°), which does not contain OMe. (I) is trans-formed by NaOAc in MeOH into the *Me ether* (II), m.p. 179° (vac.) [analogously the *Et ether*, m.p. 163–164°, or 172° (vac.)], of the Mc CH:CBz·OMe [h-hydroxy-3-methoxy-2-phenyl-5:7-di-methylbenzopyrylium base. (II) is oxid-ised by FeCl, to the *quinone* (III), m.p.



and 6-hydroxy-2: 3-dimethoxy-5: 7-dimethylflavanone, m.p. 141° (Me ether, m.p. 117° after softening). H. W.

Oxidation of benzopyrylium salts to flavonols. P. Karrer and W. Fatzer (*Helv. Chim. Acta*, 1942, **25**, 1138—1140).—The double salt of FeCl₃ and 3-methoxy-2-phenylbenzopyrylium chloride passes in MeOH into the *Me ether* of the carbinol base, which is oxidised by $o-C_{9}H_{4}(CO_{3}H)_{2}$ to 2 : 3-dimethoxyflavanone, m.p. 177°, hydrolysed нŵ by acid to the corresponding flavonol, m.p. 169°.

by oc-G₄T₄(CO₃T₁) (10.2., 3-atmittabolic photonologies, in p. 1717, in your body by acid to the corresponding flavonol, m.p. 169°. If W. W. **Tetrahydrocannabinol analogues with marihuana activity. XV.** R. Adams, S. Loewe, C. W. Theobald, and C. M. Smith (J. Amer. Chem. Soc., 1942, **64**, 2653–2655; cf. A., 1943, II, 69).—m-C₄H₄Et-OH with H₂-Raney Ni in EtOH at 200°/136 atm. gives 3-ethylcyclohexanol (89%), b.p. 96°/20 mm, 192·5–193°/748 mm. (3: 5-dimitrobenzoate, m.p. 133–134°), oxidised by Na₂Cr₂O₇-H₂SO₄ to 3-ethylcyclohexanone (72%), b.p. 81°/12 mm. (semicarbazone, m.p. 166–167°; p-nitrophenylhydrazone, m.p. 128–129°), which with Et₂C₂O₄-NaOEt etc. gives Et 5-ethylcyclohexanone-2-carboxylate (54%), b.p. 96–98°/2 mm. (2: 4-dimitrophenylhydrazone, m.p. 128–212°), which with Et₂C₂O₄-NaOEt etc. gives Et 5-ethylcyclohexanone, m.p. 122–122.5°). Et 5:5-, b.p. 125–128°/14 mm., 4:5-, b.p. 116°/10 mm., and 3: 5-dimitrophenylhydrazones, m.p. 89°, 146–147°, and 175°, respectively), and cycloheptanone 2-carboxylate (14%), b.p. 77–79°/0.4 mm. [Cu salt, m.p. 193–194°; gives 1-phenyl-3: 4-pentamethylene-5-pyrazolone, m.p. 207–210° (decomp.)], are similarly prepared. Standard methods lead to 3''hydroxy-4'-ethyl-, m.p. 167–169°, -4': 4', m.p. 190–190.5°, -4': 5', m.p. 174-5–175.5°, and -4': 6'-dimethyl-, m.p. 151·5–152·5°, -5''-n-amyl-3': 4': 5': 6'-tetrahydrodibenz 2-pyrone and 5-hydroxy-7-n-amyl-3': 4': 5': 6'-tetrahydrodibenz 2-pyrone and 5-hydroxy-7-n-amyl-3': 4': 5': 6'-tetrahydrodibenz 2-pyrone and 5-hydroxy-1'-n-amyl-3': 4': 5': 6'-tetrahydrodibenz 2-pyrone and 5-hydroxy-1'-n-amyl-3': 4': 5': 6'-tetrahydrodibenz 2-pyrone and 5-hydroxy-2: 2-dimethyl-1'-n-amyl-3: 4'-pentamethyl-enecoumarin, m.p. 178-5–179°, which yield 3''-hydroxy-2: 2-dimethyl-4'-ethyl-(I), b.p. 186°(0.05 mm., -4''-n-amyl-3': 4': 5': 6'-tetrahydrodibenz-2-pyran and 5-hydroxy-2: 2-dimethyl-7-n-amyl-3: 4': 5': 6'-tetrahydrodibenz-2-pyran and 5-hydroxy-2: 2-dimethyl-1'-n-amyl-3: 4': 5': 6'-tetrahydrodibenz-2-pyran and 5-h 0.22, (II) 0.10, (III) 0.11, (IV) 0.10 (contractory), showing the depressing effect of variations in structure. M.p. a R. S. C. M.p. are

Quinone dyes of the phenanthrofuran series. III. Constitution of tanshinone II. F. von Wessely and T. Lauterbach (Ber., 1942, 75, Tenshinone II. (I) is probably A. Extraction of

(B), 958–970).—Tanshinone II (I) is probably A. Extraction of the roots of Salvia milliorrhizae with $C_{6}H_{12}\{A \mid B\}$ (I) $E_{12}O_$ C_6H_{12} A B which is separated which is separated (II) partly by crystallisation and partry by chromatography in C_6H_6 over Al_2O_3 . It does not contain OAlk. The presence of the o-quinonoid group is contained of

 \ddot{O} ence of the *o*-quinonoid group is con-firmed by the prep. of a *quinozaline* derivative, $C_{23}H_{22}ON_2$, m.p. firmed by the preprior of a quantizative derivative, $c_{2,3}c_{1,2}c_{$

not react with Zerevitinov's or carbonyl reagents. Hydrogenation of (I) with a little Pd sponge in EtOH ceases with the absorption of $1 H_2$ but with much Pd sponge in AcOH (I) and (III) fairly rapidly absorb 5 H_2 with partial loss of OMe in the case of (II). It is concluded that an aliphatic double linking is absent. Drastic oxidation of (I) by HNO₃ at 150° affords 1 : 2 : 3 : $4-C_gH_2(CO_2H)_4$ in excellent yield whereas the action of KMnO₄ in COMe₂ leads to a difficultly separable mixture of acids. With CrO₃ according to Kuhn-Roth (I) given by the formula of the formula (I) gives 1 mol. of AcOH whereas under less drastic conditions the (1) gives 1 mol. of Acorr whereas under less drastic conditions the product is an *anhydride* (III), $C_{14}H_{14}O_3$, of an *o*-dicarboxylic acid, m.p. 136°, softens at 134°, $[a]_{J}^{M} \pm 0^{\circ}$ [corresponding *acid*, m.p. 196–198° (decomp.)]. Oxidation of (I) and (II) is similar in causing loss of 5 C and 4 H. The probable assumption that (I) contains a substituted furan ring is strengthened by the formation of (IV) by the ozonisation of (III). The same difference (CH6) is observed the ozonisation of (**III**). The same difference (CII₆) is observed between the mol. formula of (**I**) and (**II**) and those of their products of oxidation by CrO_3 . (**IV**) and CrO_3 (Kuhn-Roth) give 1/3 mol. of AcOH. 1:2:3:4-C₆H₂(CO₂H)₄ is obtained in excellent yield by oxidation of (**IV**) with HNO₃. Hydrogenation (Pd sponge in AcOH) of (**IV**) causes absorption of 3 H₂ and production of a nonhomogeneous product from which a monocarboxylic acid, C14H18O2 m.p. 235° , is obtained; all the absorbed H appears to be required to convert 1 CO of (IV) into Me and since only 3 H₂ are similarly In p. 255 ; is obtained, an the absolution for only 3 H₂ are similarly convert i CO of (**IV**) into Me and since only 3 H₂ are similarly absorbed in presence of PtO₂ and AcOH it appears that an aliphatic double linking is not present in (**IV**). (**IV**) is therefore very prob-ably the dicarboxylic anhydride of an alkylated tetrahydronaphthal-ene or indane. Thermal decomp. of the acid corresponding to (**IV**) gives a hydrocarbon resembling C₁₀H₇Me and yielding a picrate which could not be completely purified. (1:2:3:4-Tetrahydro-naphthalene and its 1:1-Me₂ derivative are partly dehydrogenated when passed over heated Na₂CO₃.) Dehydrogenation of (**IV**) does not occur readily with K₃Fe(CN)₆ in alkaline solution, with Pd sponge at 230°, or with heated Se. KMnO₄ in hot alkaline solution followed by treatment of the product (**V**) with CH₂N₂ converts (**IV**) the Me₃ ester, C₁₄H₁₆O₇ (**VI**), m.p. 148—151°, which does not give AcOH (Kuhn-Roth), cannot be acetylated, does not react with carbonyl reagents, and does not yield CH₄ (Zerevitinov); the func-tion of the seventh O is not determined. It is oxidised by HNO₃ to 1:2:3:4-C₆H₂(CO₂H)₄. (**VI**) is also obtained by esterification tion of the seventh O is not determined. It is oxidised by HNO_3 to $1: 2: 3: 4-C_6H_2(CO_2H)_4$. (**VI**) is also obtained by esterification of (**V**) with HCl-MeOH but one CO_2H reacts only with difficulty. нŴ

Dioxanate of iodine pentafluoride. A. F. Scott and J. F. Bunnett (J. Amer. Chem. Soc., 1942, **64**, 2727).—IF₅ and dioxan give a 1:1 additive compound, m.p. 112° (decomp.; instantaneous), hydrolysed in air to HIO₃. R. S. C

Diphenospiran derivative with constitutional relationships to the tocopherols. P. Karrer and W. Fatzer (*Helv. Chim. Acta*, 1942, **25**, 1140-1143).—Passage of HCl into a solution of 3:6:2:4:1- $\begin{array}{c} (\mathrm{OH})_{2}\mathsf{C}_{6}\mathrm{HMe}_{2}\cdot\mathrm{CHO} \ \text{and} \ \mathrm{Me} \ \beta\zeta\kappa\text{-trimethyltridecyl ketone gives a}\\ \mathrm{blue} \ pyrylium \ \mathrm{salt}, \ \mathrm{C}_{36}\mathrm{H}_{51}\mathrm{O}_{4}\mathrm{Cl}, \ (\mathbf{I}) \ \mathrm{converted} \ \mathrm{by} \ \mathrm{NaOAc} \ \mathrm{or} \ \mathrm{NaHCO}_{3}\\ \mathrm{in} \ \mathrm{EtOH} \ \mathrm{into} \ \ 6: \ 6'-dihydroxy-5: \ 7: \ 5': \ 7'-tetramethyl-3'-\gamma\eta\lambda-trimethyldodecyldipheno-2: \ 2'-spiropyran, \ \mathrm{re-converted} \ \mathrm{by} \ \mathrm{HCl} \ \mathrm{into} \ (\mathbf{I}).\\ \mathrm{Catalytic} \ \mathrm{reduction} \ \mathrm{of} \ (\mathbf{I}) \ \mathrm{gives} \ \mathrm{a} \ \mathrm{liquid}. \end{array}$

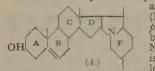
Structure of indigoids.-See A., 1943, I, 49.

Basicity studies of tert. vinylamines. R. Adams and J. E. Mahan (J. Amer. Chem. Soc., 1942, 64, 2588–2593).—Heterocyclic compounds containing endo- or exo-cyclic N·C:C are stronger bases than

(). Amer. Onem. 506., 1942, 52, 56, 2007. The stronger base of an pounds containing endo- or exo-cyclic N-CC are stronger bases than their saturated analogues, probably owing to equilibration of the former with the quaternary compounds, e.g., $CH_2 < CH_* CH_* M_* NMe + H_2 O \rightleftharpoons CH_2 < CH_* CH_* M_* NMe OH.$ The following pKH (= $pK_{H_0O} - pK_{ion}$) in H₂O at 25° are recorded. 1:2-Dimethyl- 11.94, 1-methyl-2-n-butyl-, {b.p. 88-5°/30 mm; 54% obtained from 1-methyl-2-pyrrolidone by MgBu^aBr in Et₂O-N₂ at room temp., with 14% of 1-methyl-2: 2-di-n-butyl/pyrrolidine, b.p. 122°/18-mm. [methiodide, m.p. 211° (corr.]] 11.90, 2-methyl-1-ethyl- [b.p. 73-5-74-5°/55 mm; prep. from Br-[CH₂]₃·COMe (I) by NH₂Et-EtOH; 52%; unstable in air] 11.92, and 2-methyl-1-n-butyl-2-pyrrolime [b.p. 82-83-5°/16 mm; 39% from (I) by NH₂Et-EtOH; 52% MeOH at 26°; 1:2-dimethyl-10-26, 1-methyl-2-n-butyl-10-26, 2-methyl-1-ethyl-10-69, and 1-methyl-pyrrolime 10-36; 1-methyl-3-pyrroline 9.92; 1:2-dimethyl-10.26, 2-methyl-1-ethyl-10-70, 1-propenyl-(b.p. 51-53°/10 mm.) 10-66 in 25% MeOH at 28°, 1-propyl-10-48, 1-allyl-9.69, 2-methyl-1 00-99, and 1-m-butyl-piperidine 10-49; (b.p. 51–53 /10 mm.) 10-66 in 23% incore at 26% propyl- 10-48, 1-allyl-9-69, 2-methyl-10-99, and 1-n-butyl-piperidine 10-49; piperidine 11-12; $\text{NMe}_2\text{-}[\text{CH}_2]_4\text{-}\text{COMe}$ 9-67; $n\text{-}\text{C}_5\text{H}_{11}\text{-}\text{CH}\text{-}\text{CH}\text{-}\text{NEt}_2$ 10-38 in 50% MeOH at 28°; $n\text{-}\text{C}_7\text{H}_{15}\text{-}\text{NMe}_2$ 9-94 in 50% MeOH at 26°; 1:1 piperidine-EtCHO in 25% MeOH 10-77 at 27°; 1:1 NHEt₂-n-C₆H₁₃-CHO in 50% MeOH 10-50 at 27°. Butyrolactone and NH₂Bu^a at 280° give 95% of 1-n-butyl-n-pyrrolidone, b.p. 121°/ 16 mm. The formula of lysergic acid (A., 1938, II, 463) needs revision revision

Anhydrides of basic amino-acids. D. W. Adamson (J.C.S., 1943, 39-40).—'' dl-Lysine anhydride,'' obtained by heating dl-lysine Me ester dihydrochloride with NaOMe, contains 40% of dl-3-amino-homopiperidone (I), b.p. 167°/12 mm., m.p. 68—71° [hydrochloride, m.p. 294—296° (decomp.); picrate, darkens 215°, m.p. 233° (de-

comp.): cf. Fischer et al., A., 1905, i, 121]. p-NHAc C₆H₄·SO₂Cl and give 3-(p-acetamidobenzenesulphonamido)homopiperidone, m.p. 286-288° (decomp.), hydrolysed (HCl) to ε-amino-a-(p-aminom.p. 286—288° (decomp.), hydrolysed (HCl) to *e-amino-a-(p-amino-benzenesulphonamido)*-n-*hezoic* acid, m.p. 286° (decomp.). d-NH₂:[CH₂]₂:CH(NH₂)·CO₂H,2HCl in MeOH with HCl affords 1-3-aminopyrrolidone, b.p. 175°/20 mm., m.p. 106—108°, [a]¹⁸ - 31·7° in H₂O (*hydrochloride*, m.p. 198—200°; *picrate*, m.p. 185—187°; 3-Ac derivative, m.p. 176°), which similarly forms 3-(*p-acetamido-benzenesulphonamido*)*pyrrolidone*, m.p. 222—224° (decomp.), and an amino-a-(p-aminobenzenesulphonamido)-n-butyric acid, m.p. 259— 260° (decomp.). R. S.


Dihydropyridones.--See B., 1943, II, 74.

Compound formation between the isomeric hydroxydiphenyls and pyridine.-See A., 1943, II, 88.

Co-ordination tenacity of unsaturated molecules. A. Gelman (Compt. rend. Acad. Sci. U.R.S.S., 1941, **32**, 347-350),---The co-ordination tenacity of unsaturated mols. under normal conditions (not to be confused with the relative stability of the derived com-

(not to be confused with the relative stability of the derived complexes) decreases in the order: NO > CO > CHPh:CH₂ > C₄H₆ and C₂H₄ > C₃H₈ and C₄H₈. In 3 days, CO displaces C₃H₆ from C₈H₈N·H[PtCl₃·C₃H₆] in H₂O, to give C₃H₈N·H[PtCOCl₃] (I), which with C₆H₃N affords Pt carbonylpyridinedichloride, [PtCO(C₆H₆N)Cl₂] (II); substitution occurs similarly in the case of ethylene Zeise's salt, and this method is the best for preparing CO compounds of Pt. Neither C₃H₈ nor C₂H₄ displaces CO from (II). NO reacts slowly with the C₂H₄ salt, and after 20 days, 50% of Pt nitrosylpyridine dichloride, [PtNO(C₃H₆N)Cl₂], is formed, which is unchanged with an EtOH solution of CHPh:CH₂. A slightly acid solution of C₆H₆N·H[PtCl₃(CHPh:CH₆)] with CO gives (I) (+H₂O), convertible into (II). An acidified solution of (I) and NO (2 months) give a complex, (C₆H₆N·H)₂PtCl₆, also obtained from C₅H₅N,HCl and Na₂PtCl₆. Pt propylenepyridine dichloride, Pt(C₃H₆)(C₃H₈)(Cl₃, thus the co-ordination stability of (III) is > that of C₂H₈. (III) and [Pt(C₂H₄)NH₃Cl₂] give a complex, [PtCl₂(C₃H₈)(C₃H₈)(-G₄H₆. Attempts to make compounds with two or more unsaturated mols. failed. A. T. P. more unsaturated mols. failed. A. T. P.

Steroids and sex hormones. LXXIX. 5-Methyl-2-ethylpyridine, a dehydrogenation product of solanidine. V. Prelog and S. Szpil-fogel [with E. Stahlberger] (*Helv. Chim. Acta*, 1942, 25, 1306-1313).—Dehydrogenation of solanine or solanidine (I) by Se in a sealed tube at 300-320° gives 5-methyl-2-ethylpyridine (II), characterised as the picrate, m.p. 143.5-144.5° or (indef.) 150-150.5°,

acterised as the piorate, m.p. $143\cdot5-144\cdot5^{\circ}$ or (indef.) $150-150\cdot5^{\circ}$, and styphnate, m.p. 170° (decomp.). (I) is probably A. Et β -amino- Δ° -pentenoate, b.p. $105^{\circ}/13$ mm., obtained by passing NH₃ into a mixture of NH₄NO₃ and COEt·CH₂·CO₂Et in Et₂O, is converted by CMeNa(CO₂Et)₂ fol-lowed by HCl into $4:6-\overline{dihydroxy}$ -5-methyl-2-ethylpyridine, m.p. 238° , transformed by POCl₃ at 210° into the $4:6-Cl_2$ -compound, b.p. $125-130^{\circ}/12$ mm., which is reduced (Raney Ni in MeOH containing NaOMe) to (II), b.p. 73-76° (bath)/12 mm. Analogously NH₂·CMe²CH·CO₂Et and CHMe(CO₂Et)₂ afford $4:6-\overline{dihydroxy}$ -, m.p. 276·5° (bath)/12 mm., and 2: 5-lutidine (picrate, m.p. 170·5°) result. M.p. are corr. H. W. H. W.

Synthetic production of growth substances. S. S. Nametkin and N. A. Dzbanovski (*Compt. rend. Acad. Sci. U.R.S.S.*, 1941, **32**, 330– 332).—Syntheses of 3-indolyl-acetic (heteroauxin) and -butyric acid, and of a-C10H7 CH2 CO2H, are discussed. A. T. P.

Synthesis of γ -3-indolylbutyric acid by a new procedure. S. S. Nametkin, N. A. Dzbanovski, and A. G. Rudnev (*Compt. rend. Acad. Sci. U.R.S.S.*, 1941, 32, 333-335).—Indole and MgEtI in PhOMe (not in Et₂O) at 65-70° give C_8H_6N ·MgI, converted by Cl·[CH₂]₃·CN in PhOMe, first cold and then at 120 tor 1 in the three clicks red), into a complex, decomposed by cold aq. AcOH-C₆H₈ to γ -3-indolyl-butyronitrile, which is hydrolysed by boiling 20% aq. KOH (8 hr.; yield 83.5%) to the -butyric acid (cf. Jackson A. T. P. $Cl \cdot [CH_2]_3 \cdot CN$ in PhOMe, first cold and then at 120° for 1 hr. (mixture

Solubilities and compositions of the phospho-12-tungstates of diamino-acids and of proline, glycine, and tryptophan.—See A., 1943, II, 82.

Nitration of lepidine and 2-chlorolepidine. S. E. Krahler and A. Burger (J. Amer. Chem. Soc., 1942, 64, 2417-2419).--8-Nitro-lepidine (I) and Br give 8-nitro-4-dibromomethylquinoline (89%), m.p. 111:5-112:5°, hydrolysed by AgNO₃ in 60% AcOH at 100° to 8-nitroquinoline-4-aldehyde (II) (97%), m.p. 163-173°, which is obtained less well from (I) by SeO₂. KMnO₄-COMe₂-H₂O at 40° converts (II) into 8-nitrocinchonic acid (71%), m.p. 253-254° (decomp.), which, when heated with Cu-bronze at 100 mm., gives 8-nitroquinoline. 2-Chlorolepidine (III) and Br in NaOAc-AcOH 8-nitroquinoline. 2-Chlorolepidine (III) and Br in NaOAc-AcOH give 2-hydroxy-4-dibromomethylquinoline (12%), m.p. 307-308° (decomp.), whence the aldehyde could not be obtained. Condensation of o-C₆H₄Cl·NO₂, CH₂Ac·CO₂Et, and a trace of HCl over

 H_2SO_4 in vac. and then heating in paraffm at 240° gives 8-*chloro*-4-*hydroxyquinaldine* (**W**) (29%), m.p. 229—230°, converted by POCl₃ at 100° into 4 : 8-*dichloroquinaldine* (**W**) (85%), m.p. 87—88° (with 7-2 dust circa quinaldine) With beiling prioridine (**W**) gives (with Zn dust gives quinaldine). With boiling piperidine, (\mathbf{V}) gives 8-chloro-4-piperidino- (\mathbf{V}), m.p. 124— 125° (picrate, m.p. 161— 163°), and with boiling NaOMe–McOH gives 8-chloro-4-methoxy-quinaldine (\mathbf{VII}), m.p. 122— 124° . The product previously (A., 1942, II, 36) believed to be 2-chloro-5-nitrolepidine is the 8-NO₂-compound (cf. believed to be 2-chloro-5-nitrolepidine is the 8-NO₂-compound of Kermack A., 1942, II, 150). The 8-chlorolepidine compounds of Kermack *et al.* (A., 1933, 513) are the quinaldine derivatives (**IV**)–(**VI**). With $CH_2(CO_2Et)_2$ -NaOEt-EtOH and then KOH-EtOH, (**III**) gives only 2-ethoxylepidine. The prep. of 2-keto-4-methyl-1: 2-di-hydroquinoline-1: 8-diazoimide, m.p. 236-237.5°, is improved; in boiling EtOH it gives 2-hydroxylepidine and MeCHO. R. S. C.

Reaction between halogen derivatives of 6-methoxyquinoline and alkoxides. A. M. Berkenheim and L. V. Antik (J. Gen. Chem. Russ., **alroyhuss.** A. M. Berkenheim and E. V. Antak (J. Gran. Rass., 1941, **11**, 537–540).—7-Bromo-6-methoxyquinoline (I), m.p. 110– 111° (prepared by Skraup's reaction from 4 : 2 : 1-NH₂·C₆H₃Br·OMe), when heated with ONa-[CH₂]₂·NEt₂ (**II**) for 5·5 hr. at 120–180°, gives 6-methoxyquinoline, instead of the expected 6-methoxy-7- β -diethylaminoethoxyquinoline. 7-Bromo-6-ethoxyquinoline, m.p. 89-90° (Skraup synthesis), 8-bromo-6-methoxyquinoline, m.p. 65-66° (Sandmeyer reaction, from 8-amino-6-methoxyquinoline), and 8-iodo-6-ethoxyquinoline react in the same way as (I) with (II) or NaOEt. R. T.

Condensation of 8-hydroxy-6-methoxyquinoline with γ -halogeno-a-diethylaminopropane. A. M. Berkenheim and N. S. Spasoku-kotski (*J. Gen. Chem. Russ.*, 1941, 11, 541–544).—6:8-Dihydroxy-quinoline and NaOEt in EtOH with p-C₈H₄Me:SO₃Me yield 8hydroxy-6-methoxyquinoline, the Na salt of which condenses with NEt₂: $[CH_2]_3$ -Cl in EtOH (5 hr. at 50°) to 6-methoxy-8-y-diethyl-aminopropoxyquinoline, b.p. 198—200°/1—1.25 mm. This does not exhibit any anti-malarial properties. RT

Condensation reactions of *iso*quinoline-1-aldehyde. R. S. Barrows **Condensation reactions of** isoquinoline-1-aldehyde. R. S. Barrows and H. G. Lindwall (J. Amer. Chem. Soc., 1942, 64, 2430—2432).— 1-Methylsoquinoline (prep. from the 3 : 4-H₂-derivative by boiling with Raney Ni; 70—75% yield) with SeO₂ in warm dioxan (later at 100°) gives isoquinoline-1-aldehyde (42%), m.p. 55—55.5° (reduces Tollens' reagent; adds NaHSO₃; semicarbazone, m.p. 195—197°; oxime, m.p. 171—172°; phenylhydrazone, m.p. 174—175°). With MeNO₂ and NHEt₂ (2 drops) this gives 1-β-nitro-a-hydroxyethyliso-quinoline (71%), m.p. ~106—107°; with COPhMe-alkali gives, according to the conditions, β-hydroxy-β-1-isoquinolylpropiophenone (85%), m.p. 114:5—115°, β-1-isoquinolylacrylophenone (60—77%), m.p. 145:5—146°, or ac-diphenyl-y-1-isoquinolyl n-pentane ac-dione (85%), in.p. 1145—115, b-1-isoquinolylarylopizenone (60—11%), m.p. 1455—146°, or ac-diphenyl-y-1-isoquinolyl-n-pentane-ac-dime (42%), m.p. 133—133-5°; with CH₂Ph-CN-NaOEt-EtOH gives $a-phenyl-\beta$ -1-isoquinolylarylonitrile (92%), m.p. 96·5—97°, and with CH₂Ph-CO₂Et-NaOEt-EtOH gives Et β -hydroxy-a-phenyl- β -1-iso-quinolylpropionate (45%), m.p. 134·5—135.5°; Perkin condensation with CH₂Ph-CO₂H does not occur. 1 : 3-Dimethyl-6: 7-methylene-diovrisorupinoline and SeO in diaxan give (2) 3 methyl 6: 7-methylenedioxyisoquinoline-1-aldenyde (34%), m.p. 186.5—188.5° (oxime, m.p. 215—216°). R. S. C

Deamination of 8-nitro-5-aminoisoquinoline. B. Keilin and W. E. Cass (*J. Amer. Chem. Soc.*, 1942, 64, 2442—2444).—5-Acetamidoiso-quinoline with $KNO_3-H_2SO_4$ at 15—20° gives the $8-NO_2$ -derivative (71%), m.p. 226—228°, hydrolysed by conc. HCl to 8-*nitro-5-amino-*isoquinoline (97%), m.p. 268—270° (decomp.) [*hydrochloride*, +H₂O and anhyd., m.p. 289—291° (decomp.)], which with $NaNO_2$ -HCl at -10° to 0° and then H_3PO_2 gives 8-chloroisoquinoline (1) (70%), new m.p. 55:5-56:55° (*thirrate* m.p. 1895—191:55°). *Et o.chloroiso* new m.p. $55\cdot5-56\cdot5^{\circ}$ (picrate, m.p. $189\cdot5-191\cdot5^{\circ}$). Et₂ o-chlorobenzylideneaminoacetal, b.p. $114-117^{\circ}/2$ mm., with $P_2O_5-H_2SO_4$ gives 9% of (I). M.p. are corr. R. S. C

Reaction of carbazole with malonic esters to 1:9-malonylcarb-azoles. P. Baumgarten and M. Riedel (*Ber.*, 1942, 75, [*B*], 984– 986).—Thermal condensation of NH₂Ph with CH₂(CO₂Et)₂ under different conditions, alone or in the presence of PhNO2, paraffin, or different conditions, alone or in the presence of PhNO₂, paramn, or $n-C_{12}H_{25}$ OH or under the influence of NaOEt, or decomp. by heat of $CH_2(CO\cdotNHPh)_2$ does not give substituted quinolines, which are readily derived from NH₂Ph and CHR(CO₂Et)₂ (R = aryl or Et). Analogously NHPh₂ and $CH_2(CO_2Et)_2$ at ~240° give 2 : 4-diketo-1-phenyl-1 : 2 : 3 : 4-tetrahydroquinoline, m.p. ~300° (decomp.), in ~80% yield. Indole is not reactive. Carbazole does not react phenyi-1:2:3:4-tetranydroquintointo, hip, esote (decomplying $\sim 80\%$ yield. Indole is not reactive. Carbazole does not react with $CH_2(CO_2Et)_2$, $CH_2(CO+NH_2)_2$, or $CH_2(COCl)_2$, but is transformed by $CHEt(CO_2Et)_2$ at 270–280° into 1:9-ethylmalonyl-carbazole (I), m.p. 257–258°. 1:9-Phenylmalonylcarbazole, m.p. 207–208°, is obtained similarly. (I) is oxidised by $KMnO_4$ to carbazole-1-carboxylic acid, m.p. 270–271°. Reduction (Clemmensen) of (I) affords 1(β): 9- μ -ethylacryloylenecarbazone, m.p. 128–129°, oxidised (KMnO₄ in COMe₂ at room temp.) to (I). H. W.

Chemotherapeutic search for antimalarials. I. Synthesis of amino-3-methoxy- and 8-chloro-1-amino-3-methoxy-acridine. V. Samant (Ber., 1942, 75, [B], 1008-1015).-m-Nitro-p-1-amino-3-methoxy-B. V. Samant (Ber., anisidine is converted by diazotisation and subsequent boiling with H₂O containing CuSO₄, NaBr, and Cu wool into 4-bromo-3-nitro-anisole, b.p. 153-154°/13 mm., m.p. 32°, which condenses with

103

o-NH₂·C₆H₄·CO₂H, Na₂CO₃, and reduced Cu in boiling 4-methyl-cyclohexanol to 2'-nitro-4'-methoxydiphenylamine-2-carboxylic acid (I), m.p. 228-230° (decomp.), and with 4-chloroanthranilic acid, m.p. The set of the second H. W. ally described.

Preparation and therapeutic properties of certain acridine derivatives. III. 5-Styrylacridines and their quaternary salts. W. Sharp, (Miss) M. M. J. Sutherland, and F. J. Wilson (J.C.S., 1943, Sharp, (Miss) M. M. J. Sutherland, and F. J. Wilson (J.C.S., 1943, 5–7).—5-Methylacridine (I) (metho-p-toluenesul/phonate, m.p. 204°) and o-NO₂·C₀H₄·CHO give $a_{-}(o-nitrophenyl)-\beta_{-}(5-acridyl)ethanol, m.p. 177°. m-NO₂·C₀H₄·CHO and (I) with ZnCl₂ afford 5-m-nitrostyryl-acridine (II), m.p. 210°, and without ZnCl₂, <math>a_{-}(m-nitrophenyl)-\beta_{-}(5-acridyl)ethanol, m.p. 145°, and an isomeride (cis-trans?) of (II), m.p. 207°, are obtained. Reduction of (II) yields 5-m-aminostyryl-acridine, m.p. 234° (lit. 232–234°); the Ac derivative, m.p. 252°, can be converted into the methochloride, decomp. >200°. Similarly, with ZnCl_{4}(I) and <math>d_{2}$ -NO₂·CH₂ Criftone (II) for the start of the methochloride for the start of the methochloride for the start of the methochloride for the start of can be converted into the methochloride, decomp. $>200^{\circ}$. Similarly, with ZnCl₂ (I) and p-NO₂·C₆H₄·CHO give 5-nitrostyrylacridine, m.p. 293° (Br-substitution product, m.p. $>360^{\circ}$), and without ZnCl₂, a-(p-nitrophenyl)- β -(5-acridyl)ethanol, m.p. 174°, is formed in addi-tion. 5-p-Aminostyrylacridine, m.p. 242° (lit. 209°), yields an Ac derivative, m.p. 263°, whence the methochloride hydrochloride, de-comp. $\sim 250^{\circ}$. 5-p-Dimethylaminostyrylacridine methochloride, de-comp. $>200^{\circ}$, is also described. These results do not agree entirely with those obtained by Porai-Koschitz et al. (A 1907 i 974) with those obtained by Porai-Koschitz et al. (A., 1907, i, 974) FŔS

Examples to brained by Polar-Rosentrz et al. (A., 1904, 1904, 974). F. R. S. **Complex formation between iodine and μ-thiodihydroglyoxalines**. T. B. Johnson and C. O. Edens (J. Amer. Chem. Soc., 1942, **64**, 2706-2708).-2-Thiol-4: 5-dihydroglyoxaline (I) [prep. from (CH₂, NH₂)₂ with CS₂ and then conc. HCl at 100^o] absorbs 6 I in aq. KI at room temp. to give bis-4: 5-dihydro-2-glyoxalinyl di-sulphide and therefrom the additive compound (II), C₈H₁₀N₄S₂, HI,2I₂, m.p. 119°. The periodide (III), C₈H₁₄N₄S₂, HI,2I₂, m.p. 67°, of di-4-methyl-4: 5-dihydro-2-glyoxal-inyl disulphide is similarly obtained from 2-thio-4-methyl-4: 5-di-hydroglyoxaline [prep. as (I)], m.p. 100°. In boiling H₂O, (II) gives di-4: 5-dihydro-2-glyoxalinyl sulphide hydriodide (IV), I, and H₂SO₄; by this method (III) gives only an oil. With aq. NH₃, (II) gives exothermally, inter alia, (I) and NH₄I. CH₂Cl-CO₂H and (I) in boiling H₂O give 4: 5-dihydro-2-glyoxalinylthiolacetic acid, m.p. 223° (decomp.). With I-KI-H₂O, (IV) gives a periodide, C₈H₁₀N₄S,HI,I₃, m.p. 170-175°, converted at 125° into (IV) and I. 5-Methyl-4: 5-dihydro-2-glyoxalinylthiolacetic acid, m.p. 215°, is pre-pared as above, but (IV) gives only its hydrochloride. 2-Thiol-5-methylglyoxaline with I-KI-H₂O gives di-5-methyl-2-glyoxalinyl di-sulphide periodide, C₈H₁₀N₄S₂,HI,I₂, cryst., decomp. when heated. R. S. C.

Ultra-violet absorption spectra and structure of N-phenylpyrazolone derivatives. IV. General survey of spectra and structure in relation to pharmacodynamic action. N. A. Valjaschko and V. I. Blizniukov (*J. Gen. Chem. Russ.*, 1941, **11**, 559–566).—Antipyrine (**I**) and pyramidone (**II**) are complex mesomeric systems, of which those having the hydrazo- and diazo-structures of $NHPh\cdot NH_2$ (III) predominate; the pharmacodynamic action of (I) and (II) is connected with these structures. The lower toxicity of (I) and (II) as compared with (III) is ascribed to resonance in the pyrazolone ring, which causes reduced lability of the electrons of the N atoms. The effect of substituting a 2-Me or a 4-NMe₂-group into the pyrazolone ring is still further to favour the above structures as compared with (III).

Iminazolines.-See B., 1943, II, 76.

1-Carbamyl-5-methylpyrazole-3-carboxylic acid. A. L. Lehninger (J. Amer. Chem. Soc., 1942, 64, 2507-2508).-CH₂Ac·CO·CO₂H and NH₂·CO·NH·NH₂,HCl in warm H₂O give 1-carbamyl-5-methyl-pyrazole-3-carboxylic acid (80-85%), decomp. from 155°, m.p. 232-234° (corr.) (cf. von Auwers et al., A., 1930, 789), from which the CO·NH is prepared by builting with H O the $CO\cdot NH_2$ is removed by boiling with H_2O . R. S. C.

Hydrolysis of acetylsulphanilic acid derivatives. III. S. I. Lurie, O. I. Starobogatov, and E. S. Nikitskaja (*J. Gen. Chem. Russ.*, 1941, **11**, 545—549).—The Ag salt of 2-methylglyoxaline (**I**) and p-NHAc·C₄H₄·SO₂Cl (**II**) in EtOH (1.5 hr. at the b.p.) yield 1-p-acet-amidobenzenesulphonyl-2-methylglyoxaline, m.p. 93—94.5°, readily hydrolysed with production of p-NH₂·C₆H₄·SO₃H by HCl in aq. EtOH

(30 min. at the b.p.). β -Bromoethylphthalimide and (I) in xylene (6 hr. at the b.p.) yield β -(2'-methyl-1'-glyoxalinyl)ethylphthalimide, m.p. 161-162°. This is heated with N₂H₄ in EtOH (30 min. at m.p. 101–102^{-//}. This is neated with N_2H_4 in EtOH (30 min. at the b.p.), 10% HCl is added, and boiling is continued for a further 90 min., affording β -(2'-methyl-1'-glyoxalinyl)ethylamine dihydro-chloride, m.p. 196–198°, which, condensed with (II) in aq. COMe₂ gives the corresponding N-acetylsulphanilamide, m.p. 212–214°, hydrolysed by HCl in co. EtOH to the β -(2'-methyl-1'-glyoxalinyl)ethylamide. gives the corresponding N-activisin phantiamate, in p. 212–214, hydrolysed by HCl in aq. EtOH to the β -(2'-methyl-1'-glyozalinyl)-ethylamide of sulphanilic acid. 4-Amino-2-phenylquinoline (**III**) and (**II**) in C₅H₅N (15 min. at the b.p.) yield the 2'-phenyl-4'-quinolyl-amide of N-acetylsulphanilic acid, m.p. 269–270°, hydrolysed as above to p-NH₂·C₆H₄·SO₃H and (III).

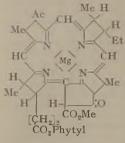
Ultra-violet absorption spectra of barbituric acid derivatives. III. Ionisation and 5-monosubstituted barbituric acid derivatives. IV. 5:5-Disubstituted barbituric acid derivatives. R. E. Stuckey (Quart. J. Pharm., 1942, 15, 370-376, 377-383).-III. The increase in the absorption (A., 1941, II, 148) of barbituric acid (I) on dilution In the absolution (11, 1014, 11, 11) to be a set of the spectra of follows the increase in the degree of ionisation. The spectra of 5-methyl- (II), m.p. $205-207^{\circ}$, and 1:5-dimethyl-barbituric acid (III), m.p. $171-172^{\circ}$ [from CHMe(CO₂Et)₂, NH₂·CO·NHMe, and EtOH-NaOEt], in aq. acid and alkali are similar to those of (I). Origination (HO) or composition of an exclutions of (II) and (III) Oxidation (H_2O_2) or evaporation of aq. solutions of (**II**) and (**III**) gives 5-hydroxy-5-methyl-, m.p. 225—227°, and 5-hydroxy-1: 5-di-methyl-barbituric, m.p. 166—167°, respectively. 1:3:5-Trimethyl-barbituric acid could not be prepared from CHMe(CO₂Et)₂ and CO(NHMe)₂

IV. 5: 5-Disubstituted barbituric acids in general show a peak in alkaline solution at ~ 2500 A. and thereby allow the determination of small amounts (if known) in extracts etc. 5:5-Dimethylbarbituric acid is anomalous and presumably forms a stable keto ion; differences in other properties are noted. 1:5:5-Trimethyl-barbituric acid (from Ag 1-methylbarbiturate and MeOH-MeI) also shows only end absorption in both acid and alkali. The l: 3:5:5-Me4 compound resembles other derivatives methylated in the 1and 3-positions. HB

N-Aralkylbarbituric acids. A. Ardis, J. S. Buck, and R. Baltzly (*J. Amer. Chem. Soc.*, 1942, **64**, 2514).—1-Benzyl-, m.p. 64°, and 1-β-phenylethyl-, m.p. 74°, -5-ethyl-5-n-butylbarbituric acid and 1-benzyl-, m.p. 87—88°, and 1-β-phenylethyl-, m.p. 106—107°, -5-ethyl-5-iso-mwlbabituric acid are prepared. R. S. C amylbarbituric acid are prepared.

Chemotherapy of bacterial infections. VII. Synthesis of sulphanilamide derivatives of the pyrimidine group. K. Ganapathi, C. Deliwala, and M. V. Shirsat (Proc. Indian Acad. Sci., 1942, A. Delivala, and M. V. Shirsat (*Proc. Indian Acad. Sci.*, 1942, **A. 16**, 115—125; cf. A., 1941, II, 338).—Addition of a mixture of HCO₂Et and EtOAc to powdered Na in dry Et_2O at 0° and treatment of the product after remaining overnight at room temp. with sulphan-ilylguanidine (**I**) and NaOEt in EtOH gives 2-sulphanilamido-pyrimidone (**II**), m.p. 268—269°, in 50—60% yield. Successive additions of (**J**) and CH₂Ac·CO₂Et or its a-alkyl derivatives to NaOEt in EtOH and boiling of the mixture lead to the following 2-sulphanil-mida.A-methyl-*Ealkyldwirmidones* in which the alkyl is represented In FIGH and bointing of the initiate feat to the following 2-supplication amido-4-methyl-5-alkylpyrmidones in which the following 2-supplication by H, m.p. 253—254°, Me, m.p. 238—239°, Et, m.p. 208—209°, Bu^{α} , m.p. 121—122°, isoamyl, m.p. 190—193°, and n-C₆H₁₃, m.p. 108—110°. 2-Acetsulphanilamido-4-methyl- (**III**), m.p. 273°, and -isoamyl, m.p. 228—229°, -pyrimidone are obtained similarly. 2-Sulphanilamido-4-methylpyrimidone (**IV**) is considerably resistant to boiling 3N-HCl but suffers some hydrolysis when boiled for ~6 hr with 37°C, HCl - 2-amino-4-methylpyrimidone results but to boiling 3N-HCl but suffers some hydrolysis when boiled for ~6 hr. with 37%, HCl; 2-amino-4-methylpyrimidone results but NH₂·C₄H₄·SO₂·NH₂ could not be isolated. (**IV**) appears indifferent towards 30%, NaOH. (**IV**). Me₂SO₄, and aq. NaOH in boiling COMe₂ yield 2-sulphanilylmethylamido-1: 4-dimethylpyrimidone, h.p. 160—165° after shrinking. (**III**) and boiling POCl₃ yield the com-pound, C₁₃H₁₃O₃N₄ClS, m.p. >280°, which does not give a halogen-free compound when boiled with Zn dust and H₂O. 2-Amino-4-methylpyrimidone is transformed by NaOH and Me₂SO₄ into 2-amino-1: 4-dimethylpyrimidone, m.p. >280°, which when dissolved in NaOH and treated with NaHCO₃, p-NH₂·C₆H₄·SO₂Cl, and COMe₂ affords 2'-amino-4'-methyl-6'-pyrimidonyl p-acetamidobenzenesulphon-ate, m.p. 193—194°. Acetsulphanilylguanidine and mesityl oxide ate, m.p. 193-194°. Acetsulphanilylguanidine and mesityl oxide (V) in boiling abs. EtOH containing NaOEt give 2-sulphanilylimido-(V) In bolling abs. EtOH containing NaOEt give 2-sulphanitylimido-4:4:6-trimethyl-2:3:4:5-tetrahydropyrimidine (VI), m.p. 190– 193° (Ac derivative, m.p. 241–242°), and 2-sulphanilamido-4:4:6-trimethyl-4:5-dihydropyrimidine, m.p. 228–230° (Ac derivative, m.p. 217–218°). In different experiments compounds, $C_{13}H_{18}O_2N_4S$, m.p. 130–135° and 190–193°, respectively, were obtained from (I) and (V). (II), (V), and (VI) are devoid of therapeutic activity. H. W

H. W. N¹-Sulphanilamidoalkylpyrimidines. G. W. Raiziss and M. Frei-felder (J. Amer. Chem. Soc., 1942, 64, 2340-2342).—p-NHAc·C₆H₄·SO₂Cl and the appropriate aminopyrimidine in C₃H₅N at 60° give 55—95% of 2-N⁴-acetylsulphanilamido-4-methyl-, m.p. 244°, -4-ethyl-, m.p. 274°, -4-n-propyl-, m.p. 258°, -4-isobutyl-, m.p. 233°, -4-n-amyl-, m.p. 222—223°, -4-hexyl-, m.p. 216°, -4: 5-di-methyl-, m.p. 272—273°, -5-methyl-4-ethyl-, m.p. 286°, and -4-phenyl-, m.p. 287°, -pyrimidine, 2-N⁴-acetylsulphanilamido-5: 6: 7: 8-tetra-hydroquinazoline, m.p. 259°, and 2: 5-di-N⁴-acetylsulphanilamido hydroquinazoline, m.p. 259°, and 2:5-di-N⁴-acetylsulphanilamido-pyrimidine, m.p. 295° (decomp.), hydrolysed by boiling 5%


NaOH to the corresponding p-NH₂·C₆H₄·SO₂·NH-compounds (40–60% yield), m.p. 235–236°, 242°, 212–214°, 232° 226°, 204°, 222° 215°, 264°, 247°, and 241–242°, respectively. The 4:5-Me₂ and 4-Me compounds have good antipneumococcal (type II) activity 4-Me compounds have good antipneumococcal (type 11) activity (mice), the Et derivative slight activity, but the others none. NH:C(NH₂)₂,H₂CO₃ with ONa·CH:CH·COR in MeOH gives 2-amino-4-isobutyl-, m.p. 119°, -4-n-amyl-, m.p. 90°, and -5-methyl-4-ethyl-, m.p. 157°, -pyrimidine. 2-Amino-4-hexylpyrimidine, ob-tained from COMe·C₆H₁₃·n, has m.p. 92—93° (cf. A., 1941, II, 377; 1942, II, 151) and is oxidised by HNO₃ to 2-amino-5-n-amyl-pyrimidine-4-carboxylic acid. (I) does not condense with iso-cytosine divisine or purines such as adenine or guanine. cytosine, divicine, or purines such as adenine or guanine.

R. S. C.

Synthesis of aminobenzoylenecarbamides and of dihydroxyquin-oxalines isomeric with "luminol." E. H. Huntress and (Miss) J. V. K. Gladding (J. Amer. Chem. Soc., 1942, 64, 2644—2649).— Analogues of luminol differing therefrom in arrangement of the CO J. V. K. Gladding (*J. Amer. Chem. Soc.*, 1942, 64, 2644—2649).— Analogues of luminol differing therefrom in arrangement of the CO and NH in the heterocyclic ring are not chemiluminescent when oxidised $[H_2O_2-K_3Fe(CN)_e]$. 6:2:1-NO₂·C₆H₃(NH₂)·CO₂H (I) with KCNO-AcOH in H₂O and then NaOH at 40° gives 5-nitro-2:4-dihydroxyquinazoline (67%), m.p. 357—358° (sealed tube), sol. in alkali, and converted by Me₂SO₄-5% KOH into the 1:3-Me₂ ether (77%), m.p. 275—277°. 2:4-Dihydroxyquinazoline with fuming HNO₃-H₂SO₄ gives the 6-NO₂-derivative (86%), m.p. 331— 332° (Me₂ ether, m.p. 213—214°). 4:2:1-NO₂·C₆H₃(NH₂)·CO₂H with CO(NH₄)₂ at 200° gives 7-nitro-2:4-dihydroxyquinazoline (76%), m.p. 337° (decomp.) [K salt; Me₂ ether, m.p. 229—230° (uncorr.)], and some amide. 3:2:1-NO₂·C₆H₃(NH₂)·CO₂H (II) and CO(NH₄)₂ at 180—190° give 8-nitro-2:4-dihydroxyquinazoline (III) (68%), m.p. 272—273° (sealed tube) [with conc. HNO₃-H₂SO₄ at 100° gives the 6:8-(NO₂)₂-compound, m.p. 263—265° (uncorr.); Me₂ ether, m.p. 217—218°], and some 3-nitro-2-aminobenzamide, m.p. 234—235° [hydrolysed to (II), m.p. 267—268° (decomp.); with CO(NH₂)₂ at 200° gives (III]]. (II) is obtained by the reactions, (a) 3:1:2-NO₂·C₆H₃Me-NHAc \Rightarrow (neutral KMnO₃) 3:2:1-NO₂·C₆H₃(NHAc)·CO₂H (74%) \Rightarrow (II) (87%), and (b) 3:2:1-NO₂·C₆H₃(CO₂OA) (aq. NH₃) 3:1:2-NO₂·C₆H₃(CO₂H)·CO·NH₂ (70%) \Rightarrow (Hofmann) (II) (90%). (I) is prepared thus: 3:2:1-NO₂·C₆H₃(COA)H₃)₂ \Rightarrow (12:2-NO₂·C₆H₃(CO₂H)·CO·NH₂) (76%) \Rightarrow (Hofmann) (II) (90%). 5, m.p. 295° (decomp.; sealed tube), 6-, decomp. >330°, 7-, m.p. >350°, and 8-amino-2: 4-dihydroxy-quinazoline, m.p. 279—281° (decomp.); are prepared from the NO₂-compounds by SnCl₂-HCl. 3:1:2-NO₂·C₆H₃(NH₂)₂ and Et₂C₂O₄ at the b.p. give 5-nitro- (60%), m.p. 295° (decomp.; sealed tube), 6-, decomp. >330°, 7-, m.p. >350°, and 8-amino-2: 3-dihydroxy-quinoxaline (aq. Na₂S) 5-amino-2: 3-dihydroxyquinoxal stated, m.p. are corr. (block). R. S. C.

Bacteriochlorophyll. III. H. Mittenzwei (Z. physiol. Chem., 1942, 275, 93-121; cf. Fischer et al., A., 1938, II, 297).—Further confirmation of the fine structure of dehydrobacteriophæophorbide and chlorophyll a is found in the identity of the phytol from bacteriophæophytin with that of stinging nettles now established by means for the Ag salt of the corresponding phthalate. Also the oxime of "natural" 2-acetylchlorin e_6 is identical with that from the synthetic material. Natural 2-acetylmethylpheophorbide is smoothly converted by methanolysis into 2-acetylchlorin e_6 Me₃ ester. Ringclosure of bacteriochlorin e_6 Me₃ ester (**I**) to bacteriomethylphæophorbide (**II**), m.p. 260°, is effected with some difficulty by KOMe-MeOH in boiling C₅H₅N or by NaOMe-MeOH in COMe₂. Optical activity of the bacterio-substances can be observed by use of white light but the vals. are influenced to an unusual extent by the presence of small amounts of impurity. (II) is not satisfactorily hydrogenated directly, with Pd-tetrahydronaphthalene or Pd-HCO₂H, genated diffectly, with Γd -tetrahydonaphthache of T d-theory, but is transformed by Al($OPr\beta_{j_3}$ into bacterio-2-deacetyl-2-a-hydroxy-mesomethylphæophorbide, which could not be caused to crystallise but passes in a high vac. into bacterio-2-deacetyl-2-vinylmethyl-phæophorbide. Similar reduction of (I) to non-cryst. bacterio-2-de-deacetyl-2-deacetyl-2-deacetyl-2-deacetyl-2-de-bacterio-2-deacetyl-2-deacetyl-2-deacetyl-2-de-deacetyl-2-deacetyl-2-deacetyl-2-deacetyl-2-de-deacetyl-2-deacetyl-2-deacetyl-2-deacetyl-2-de-deacetyl-2-deac acetyl-2-a-hydroxymesochlorin e_8 Me_3 ester, softens at 128°, proceeds more readily and does not cause loss of the "bacterio" type of spectrum. It loses H_2O at ~200°. A cryst. Ac derivative could not be prepared but the structure of the compound is established by its re-oxidation by KMnO₄ in C_5H_5N to (I). In a high vac, it passes into bacterio-2-deacetyl-2-vinylchlorin e_6 Me₃ ester (III), m.p. 240— 241°, with only small amounts of chlorin e_6 and 2-a-hydroxychlorin (III) can be catalytically hydrogenated to the 2-Et compound $\mathcal{E}_{\mathfrak{s}}$. (III) can be catalyficanly hydrogenated to the better compound (IV), which adds $\operatorname{CHN}_2 \cdot \operatorname{CO}_2 \operatorname{Et}$, but the change is not quant. and the ultimate evidence of the presence of CH_2 :CH is afforded by dehydrogenation with p-O:C₈H₄:O. Oxidation of (I) or (II) by CrO_2 -H₂SO₄ gives no methylethylmalaimide (V) but only small amounts of a colourless liquid. The same result is obtained by the oxidation of (III), whereas 2-acetylchlorin e_8 Me₃ ester affords (\mathbf{V}). These observations can only be explained by the assumption that the "superfluous" H atoms of the bacterio-series are attached to nucleus II particularly since (\mathbf{IV}) gives (\mathbf{V}) which can only proceed

from nucleus I. Products of the oxidative fission of nucleus III have never been unquestionably isolated. The most important evidence in favour of the position of the "superfluous" H atoms

in nucleus II is obtained by the optical examination of the basic products of fission H of the bacterio-derivatives. The oil is strongly dextrorotatory and most probably consists of *d*-*a*-methyl-*a*'-ethylsuccinic anhydride, so that the H atoms in the aa' positions are already present in the initial material. The acid fractions of the oxidation of the chlorophyll a, 2-acetyl-, and bacterio-series invariably give a colourless, lævorotatory liquid which appears to be a hæmotricarboxylimide; nucleus IV is therefore similar in all derivatives of the chlorophyll and bacteriochlorophyll (VI)H. W

series. The annexed structure is proposed for (VI).

Reactions of morpholine. A. R. Ingram and W. F. Luder (J. Amer. Chem. Soc., 1942, 64, 2506-2507).-Morpholine and SnCi₄ give a 2 : 1 additive *compound*, m.p. 215-235° (decomp.). In hot CCl₄ or CHCl₃ rapidly, or slowly in the cold, it gives the hydrochloride and (2) Let is or 1 di chlorenethyline metholice. and (?) 1-tri- or 1-di-chloromethylmorpholine, respectively.

R S C

Amino-ketones. I. Synthesis of amino-alcohols and ay-diamino-Amino-ketones. 1. Synthesis of amino-alconois and ay-utamino-compounds from β -amino-ketones. N. H. Cromwell, Q. T. Wiles, and O. C. Schroeder (*J. Amer. Chem. Soc.*, 1942, **64**, 2432—2435).— CHPh:CH·COMe with morpholine or piperidine in light petroleum (b.p. 88—100°) at the b.p. and then 0° and finally with HCl gives δ -morpholino- (I), m.p. 152°, and δ -piperidino- δ -phenylbutan- β -one-hydrochloride (II), m.p. 158°, converted by KOH-NH₂OH,HCl-MeOH-H₂O at room temp. into a-morpholino-, m.p. 107°, and a-thierdime-maximize-a-thenylbutane m. 105° respectively, which MeOH-H₂O at room temp. into a-morpholino-, m.p. 107°, and a-piperidino- γ -oximino-a-phenylbutane, m.p. 105°, respectively, which with H₂-Rancy Ni-EtOH give the base and Ph·[CH₂]₂·CHMe·NH₂ but with Na-EtOH give γ -amino-a-morpholino-, b.p. 130°/1 mm. (*Bz* derivative, m.p. 158°), and -a-piperidino-a-phenylbutane, b.p. 112°/1 mm. (*Bz* derivative, m.p. 144°), respectively. Catalytic hydrogenation of (I) or (II) causes fission, but 3% Na-Hg in H₂O, kept just acid by HCl, at -3° yields δ -morpholino- (hydrochloride, m.p. 156°; benzoate hydrochloride, m.p. 236°) and δ -piperidino- δ -phenylbutan- β -ol, b.p. 137°/1 mm. (hygroscopic hydrochloride; benzoate hydrochloride, m.p. 217°). Ph β -morpholino-, m.p. 178° (unchanged by Na-EtOH), and β -anilino- β -phenylethyl ketoxime, m.p. 131°, are also prepared. R. S. C.

Benzylideneaminomorpholine compounds. L. Dugan, jun., and H. M. Haendler (J. Amer. Chem. Soc., 1942, 64, 2502).—4-o-, m.p. 75--76·5°, -m-, m.p. 145--147·5°, and -p-hydroxybenzylidene-, m.p. 167--168°, 4-o-, m.p. 99--101°, and 4-m-nitrobenzylidene-, m.p. 114--114·5°, 4-vanillylidene-, m.p. 153--154·5°, and 4-piperonylidene-aminomorpholine, m.p. 76--77°, 4-p-salicylidene-, m.p. 161--162°, -piperonylidene-, m.p. 167·5--169°, -vanillylidene-, m.p. 205--207°, -furfurylidene-, m.p. 208--209°, and 4-p-a-o'-hydroxyphenylethyl-idene-aminophenylmorpholine, m.p. 206--207°, are described. Benzylideneaminomorpholine compounds. L. Dugan, jun., and

R. S. C.

2-Phenyloxazole. p-Substituted derivatives. J. J. Rosenbaum and W. E. Cass (J. Amer. Chem. Soc., 1942, 64, 2444—2445).— Et_2 p-nitrobenzylideaminoacetal, m.p. 56—57°, b.p. 165—168°/2 mm., or p-NO₂·C₆H₄·CO·NH·CH₂·CH(OEt)₂ with P₂O₅-H₂SO₄ gives 2-p-nitrophenyloxazole (I) (40% and 45%, respectively), m.p. 163·5— 164·5°, oxidised by KMnO₄ or aq. Br to p-NO₂·C₆H₄·CO·NH₂ and reduced by H₂-Raney Ni-EtOH or SnCl₂-conc. HCl to 2-p-amino-phenyloxazole, m.p. 121—123° [picrate, m.p. 182·5—184° (decomp.); Ac, m.p. 191·5—192·5°, Bz, m.p. 163·5—164·5°, p-NHAc·C₆H₄·SO₂, m.p. 226·5—228°, and p-NH₂·C₆H₄·SO₂ (II) derivative, m.p. 191·5— 192·5°]. Deamination yields 2-phenyloxazole, whence (I) is regen-erated by KNO₃-H₂SO₄ at room temp. and later 70°. M.p. are corr. erated by KNO₃-H₂SO₄ at room temp. and later 70°. M.p. are corr. (II) is less effective than sulphathiazole in staphylococcal, or than sulphanilamide in streptococcal, infections in mice. R.S.C

Taste differences in compounds having :N·C(:S). **linking.** C. Y. Hopkins (*Canad. J. Res.*, 1942, 20, **B**, 268-273).-OH·CHMe·CH₂·NH₂ (25 g.) and CS₂ (38 g.), refluxed with EtOH-KOH, yields 2-thion-5-methyloxazolidine, m.p. 72-73°; with 50 g. of CS₂, the corresponding thiazolidine, m.p. 72-73°; with 50 g. of CS₂, the corresponding thiazolidine, m.p. 72-73°; with 50 g. of CS₂, the corresponding thiazolidine, m.p. 93-94°, is obtained in poor yield (cf. Gabriel and Ohle, A., 1917, i, 563). COMe·CHMeCI with KCNS in aq. NaHCO₃ at room temp. affords 2-keto-4: 5-dimethylthiazoline, m.p. 149-150°, and with NH₂·CS₂NH₄ in EtOH at room temp. 2-thion-4: 5-dimethylthiazoline, m.p. 166-168°. Tcherniac's method (*J.C.S.*, 1919, **115**, 1071) applied to COMe·CH₂CI gives 2-keto-4-methylthiazoline, m.p. 193°. 5-Bromo-2-keto-4-methylthiazoline, m.p. 150°, was prepared by the method of Ochiai and Nagasawa (A., 1939, II, 455). OH·CMe₂·CH₂·NH₂ with CS₂. refluxed in KOH-EtOH, yields 2-thion-4: 4-dimethyloxazolidine, m.p. 123-125°. All m.p. corr. For taste differences in above and other compounds, see A., 1943, III, 236. F. O. H.

Reactions of retene- and phenanthra-quinoneimine with aldehydes. New example of an aldol-type condensation. C. W. C. Stein and A. R.

M.p. are corr.

Day (J. Amer. Chem. Soc., 1942, 64, 2567–2569).—Retenequinone-imine (I) with Pr^aCHO in presence of NH₂Bu^a or NEt₃ in boiling abs. EtOH gives 84-92% of 2-n-propylreteneoxazole, m.p. 100·5–101·3°. Similarly, (I) and PhCHO in EtOH + NH₂Bu^a (68%), NEt₃ (84%), or piperidine (92%) gives 2-phenylreteneoxazole (II), m.p. 174·5– 176° (occasionally 178–180°), but use of NH₂Ph gives only 9·7% and of C₅H₅N or NaOEt gives none; use of KOH-EtOH gives ~25% of (II), much side-reaction occurring. o-OH·C₄H₄·CHO-(I)-NH₂Bu^a in EtOH give 2-o-hydroxyphenylreteneoxazole (51%), m.p. 245·5–247°. Phenanthraquinoneimine with PhCHO and piperidine (97%), NEt₃ (77%), or NH₂Ph (17·5%) in EtOH gives 2-phenyl-phenanthroxazole, m.p. 205–206°, or with Pr^aCHO-NEt₃-EtOH gives 2-n-propylphenanthroxazole (50%), m.p. 84–86°, neither con-densation occurring in absence of base. The primary reaction is an aldol-type condensation thus (B =base): "C₁₀O·C₁₁₀(NH)·+ an aldol-type condensation thus (B = base): $C_{(9)}O C_{(10)}(.NH) +$ $B \rightleftharpoons B\mathrm{H}^+ + [\cdot\mathrm{CO}\cdot\mathrm{C}\cdot\mathrm{N}]^- \rightleftharpoons (+ \operatorname{RCHO}) [\cdot\mathrm{CO}\cdot\mathrm{C}\cdot\mathrm{N}\cdot\mathrm{CHR}\cdot\mathrm{O}\cdot]^- \rightleftharpoons$ (+ RCHO) ·CO·C:N·CHR·OH \rightleftharpoons ·C(OH):C·N:CR·OH \rightarrow (II) etc. R. S. C.

Reactions of retene- and phenanthra-quinoneimine with Schiff bases. New example of an aldol-type condensation. C. W. C. Stein and A. R. Day (*J. Amer. Chem. Soc.*, 1942, 64, 2569-2573).--Retenequinoneimine (I) with *benzylidene-n-butylamine* (II), b.p. 112—113°/4 mm., in boiling, dry EtOH gives 78% [93.5% if 2 mols. of (**II**) are used] of 2-phenylreteneoxazole (**III**). The reaction occurs also in PhMe and 1 mol. of NH_2Bu^{α} is evolved; (**II**) is not hydrolysed to PhCHO; a reaction mechanism is discussed similar to that for the reaction with RCHO-base (preceding abstract) with NR replacing the second O, but it is uncertain whether loss of NH₂R NK replacing the second O, but it is uncertain whether loss of NH₂K occurs at or after ring-closure. The basicity of the Schiff's base or presence of a stronger base affects the yield : *e.g.*, CHPh:NPh and (I) give 21%, but in presence of piperidine (IV) (1 equiv.) give 90% of (III); with CHPr^a:NBu^a, (I) gives 7% of 2-*n*-propylreteneoxazole, but if (IV) is also added gives 23%; CHPr^a:NPh with or without (IV) gives no oxazole. CHPr^a:NBu^a is dimeric (Rast), CHPh:NPh and CHPh:NBu^a are mainly monomeric, but CHPr^a:NBu^a is trimeric is trimeric. and CHPIniNBL^a are manipulation monometic, but CHPI in the Bernard Bernard

Riboflavin monoborate, m.p. 290-292°, and tetrabenzoylriboflavin, m.p. 131-136°.-See A., 1943, III, 189.

Phenylthiolthiazolines. J. B. Niederl and W. F. Hart (*J. Amer. Chem. Soc.*, 1942, **64**, 2487–2488). —Contrary to expectation (A., 1941, II, 206), CH₂:CH:CH₂:NCS with PhSH, o- and m-C₆H₄Me·SH (I), etc. gives 2-phenyl-, m.p. 171°, 2-o-tolyl-, m.p. 164°, and 2-m-tolyl- (II), m.p. 139°, -thiol-5-methylthiazoline, which are stable to acid and yield the corresponding picrates, m.p. 141°, 133°, and 118°, respectively. With aq. NaHCO₃, (II) gives (I) and 5-methylthiazolid-2-one, keto-, m.p. 39°, and enol (hydrochloride, m.p. 204°) form. R. S. C.

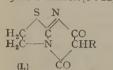
Properties of the nitrogen carbon nitrogen system in N³-hetero-cyclic sulphanilamides. R. G. Shepherd, A. C. Bratton, and K. C. Blanchard (*J. Amer. Chem. Soc.*, 1942, **64**. 2532-2537).—Contrary Blanchard (J. Amer. Chem. Soc., 1942, 64, 2532—2537). —Contrary to statements in the literature, notably Ewins et al. (B.P. 512, 145, 517, 272; B., 1940, 94, 326), sulphapyridine (I) and CH₂N₂-Et₂O give 50—80% of a 7:3 mixture of 2-sulphanilyl-N-methylamino-pyridine, 2-X:SO₂-NNC₂H₂N (II), m.p. 86:5—87°, and 2-sulphanilylimido-1-methyl-1:2-dihydropyridine, 2-X:SO₂-NNC₂H₂MMe (III), m.p. 232—233°. N⁴-Acetylsulphapyridine and CH₂N₂-Et₂O give more slowly a 6:4 mixture of 2-N⁴-acetylsulphanilyl-M-methylamino-pyridine (IV). m.p. 119:5—120°, and 2-N⁴-acetylsulphanilyl-imido-1-methyl-1:2-dihydropyridine (V), m.p. 239—240°. The Na salt of (I) with Me₂SO₂ or CH₂PhCl gives, as main products, (III) and 2-sulphanilylimido-1-benzyl-1:2-dihydropyridine (VI), m.p. 235°, respectively. The appropriate Na salt and halogen derivative yield similarly (V). 2-N⁴-acetylsulphanilamido-1-carbethoxymethyl-, m.p. 212—213°, and -1-benzyl-1:2-dihydropyridine (VII), m.p. 213–214°, 2-sulphanilylimido-1-carbethoxymethyl-, m.p. 200° 5—201° [and thence, by KOH-MeOH, the 1-CO₂H'CH₂ derivative (VIII), +H₂O, m.p. 97—98°], and -1-carbamylmethyl-1:2-dihydropyridine (IX), m.p. 230° (decomp.) [with alkali gives (VIII)], 2-sulphanilylimido-3, methyl-2:3-dihydropyridine (IX), m.p. 213–230° (decomp.) [with alkali give 2-N⁴-acetylsulphanilylimido-3-methyl-2:3-dihydrohiazole, m.p. 231—232° (decomp.), hydrolysed by NaOH-EtOH to 2-sulphanilylimido-1-β-hydroxyethyl-1:2-dihydro-yridine (XII), m.p. 184—185°, and -3-β-hydroxyethyl-1:2-3-dihydro-pyridine (XII), m.p. 184—185°, and -3-β-hydroxyethyl-2:3-dihydro-pyridine (XII), m.p. 184—185°, and -3-β-hydroxyethyl-1:2-3-dihydro-pyridine (XII), m.p. 184—185°, and -3-β-hydroxyethyl-1:2-3-dihydro-phyridine (XII), m.p. 184—185°, and -3-β-hydroxyethyl-1:2-3-dihydro-phyrid to statements in the literature, notably Ewins et al. (B.P. 512,145,

 $\rm CO_2Me\text{-}CH_2$ compound by $\rm CH_2N_2$ into an alkali-labile substance, and (v) spectroscopic evidence. In abs. EtOH 2-imino-1:2-di-hydropyridines and -2* 3-dihydrothiazoles show absorption max. at 3215 and 2600 A., respectively. Absorption spectra show that (I), balls and 2000 A., respectively. Absorption spectra show that (1), its Ac derivative and sulphathiazole contain large amounts of the imino-form in EtOH. 2-Aminothiazole and $CH_2I \cdot CO_2Et$ at $130 - 180^\circ$ give 2-*imino-3-acetoxyethyl-*, m.p. 153-5-154-5°, and thence 2-imino-3-hydroxyethyl-2: 3-dihydrothiazole (*picrate*, m.p. 159-5-161°). The ring-Me and $-OH \cdot [CH_2]_2$ compounds are approx. as active biologically as the parent compounds in vivo (less in vitro), but the 2 XSO DWA compounds are alterent inpotting. Magnetic but the 2-XSO₂·NMe-compounds are almost inactive. M.p. are corr R. S. C.

Sulphanilamides of thiazoles etc.—See B., 1943, III, 63.

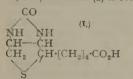
Chemotherapy of bacterial infections. VIII. Synthesis of carbchemomerapy of oacterial infections. With Synthesis of carb-oxylic acid derivatives of 2-sulphanilamidothiazole. K. Ganapathi, C. V. Deliwala, and M. V. Shirsat (*Proc. Indian Acad. Sci.*, 1942, **A. 16**, 126–128).—Addition of CH₂Cl·CO₂Et and HCO₂Et to Na in dry Et₂O and, after neutralisation, treatment of the product with CS(NH₂)₂, yields *Et 2-aminothiazole-5-carboxylate*, m.p. 160– 161°. 2-Sulphanilamidothiazole derivatives are obtained by con-densing the concentrative product bioscherowith CS(NH₂)₂. densing the appropriate aminothiazole with p-NHAc $C_{a}H_{4}$ -SO Cl in presence of $C_{5}H_{5}N$, hydrolysing the product with 5N-HCl-EtOH (1:1) which may remove only Ac, and removal of the ester group by alkali. Protracted hydrolysis may cause decarboxylation. The following are described : Et 2-sulphanilamidothiazole-5-carboxylate, following are described : Et 2-sulphanilamidothiazole-5-carboxylate, m.p. 227—228° (Ac derivative, m.p. 228—229°); 2-sulphanilamido-4-methylthiazole-5-carboxylic acid, m.p. 195°; Et 2-sectsulphanil-amido-4-methylthiazole-5-carboxylate, m.p. 154° and 248° after resolidification; 2-sulphanilamidothiazole-4-acetic acid, m.p. 182° (Et ester, m.p. 170—171°); Et 2-sulphanilamido-4-methylthiazole-5-acetate, m.p. 183—184° (Ac derivative, m.p. 203—204°); a-2-sulphanilamido-4-thiazolyl-hexoic acid, m.p. 157—158°, and "-tert.-" bulyric acid, m.p. 174° (Et ester, m.p. 169—170°); 2-sulphanilamido-4-methyl-, m.p. 236—237°, and -4:5-dimethyl-, m.p. 248—244°, -thiazole. HW -thiazole.

Thiazoles. XXVI. Acyl derivatives of 2-aminothiazoles. E. J. Masters and M. T. Bogert (*J. Amer. Chem. Soc.*, 1942, **64**, 2712–2713; see below).—2-Aminothiazole (I) with $CH_2(CO_2Et)_2$ and NaOEt-EtOH gives approx. equal amounts of *Et N-2-thiazolylmalonamate* (II) and $P_2(M_2) = 140.5^\circ$ (II), m.p. 149-149.5°, and malondi-2-thiazolylamide, darkens at (II), m.p. 149—149-5°, and malondi-2-thrazolylamide, darkens at $\sim 258^{\circ}$, decomp. 271° [also obtained from (II) at > the m.p. or in boiling NaOEt-EtOH]. CO₂K:CH₂·CO₂Et gives similarly N-2-thiazolylmalonamic acid (54%), which at the m.p., 185.8—186.6°, gives CO₂ and 2-acetamidothiazole, m.p. 206.5—207° (lit, 203°), also obtained from (I) by Ac₂O. CHEt(CO₂Et)₂ gives only (46%) *Et N-2-thiazolylethylmalonamate* [a-carbethoxy-n-butyr-2-thiazolylamide], m.p. 117.8—118.8°. Cyclisation does not occur (cf. loc. cit.) as (I) cannot react as a 2-NH; compound. M.p. are corr.


Reactions and derivatives of 2-aminobenzthiazole. R. S. C. Jauregg and E. Helmert (*Ber.*, 1942, 75, [*B*], 935—949).—o-NO₂·C₉H₄·NH₂ is converted by diazotisation and treatment with with CoCl₂-KCNS at 0—10° into *o-nitrothiocyanobenzene*, m.p. 136° (corr.) transformed by a ESSO. NH, at 100° into 2 converted with $\operatorname{CoCl}_{2}^{-}\operatorname{KCNS}$ at $0-10^{\circ}$ into o-nitrothiocyanobenzene, m.p. 136° (corr.), transformed by aq. FeSO₄-NH₃ at 100° into 2-aminobenz-thiazole (I), m.p. 130-131° [hydrochloride, m.p. 238-240°; Et H sulphate, m.p. 130-132°, obtained from (I) and Et₂SO₄-H₂O at room temp. and reconverted into (I) by dil. alkali hydroxide; Ac derivative (II), m.p. 189-192°]. 2-Hydnocarpamidobenzthiazole, m.p. 87-89°, obtained by use of the acid chloride in C₆H₆-C₆H₆N, is physiologically inactive. EtI and (I) give 2-amino-3-ethylbenzthiazoline, m.p. 83-87°. (II), EtI, and NaOEt in abs. EtOH at 100° followed by alkaline hydrolysis yield 2-ethyliminobenzthiazoline, b.p. 142°/0·14 mm., m.p. 88-89°. 2-Ethylimino-3-ethylbenzthiazoline, at 130-140° afford 2-imino-3-B-diethylaminothylbenzthiazoline, b.p. 165-175°/0·2 mm. [dihydrochloride, m.p. 263-265° (decomp.)]. 165-175°/0·2 mm. [dihydrochloride, m.p. 263-265° (decomp.)] 165—175[×]/0·2 mm. [ainydrochtoride, m.p. 263—265[×] (decomp.)]. Similarly, 2-amino-6-ethoxybenzthiazole (**II**) gives 2-imino-6-ethoxy-3-β-diethylaminoethylbenzthiazoline, b.p. 190—205[°]/0·4 mm. [di-hydrochloride, m.p. 241—242[°] (decomp.)]. When heated with NEt₂·[CH₂]₂·OH, quartz sand, and P₂O₅ at 200[°] (**I**) yields a fraction, b.p. 160—180[°]/0·2 mm., and a compound, C₂₀H₂₂N₄S₂, possibly $S < C_{6}^{L}H_{4} > N \cdot [CH_{2}]_{2} \cdot NEt \cdot C < S > C_{6}H_{4}$, m.p. 88—89[°] (sulphate, m.p. 220, 222[°] coftance et 205[°] and chrinks tearther at 210[°] when $S < C_{(:NEt)} > N-[CH_2]_2 \cdot NEt C < S > C_6H_4$, m.p. 88—89° (sulphate, m.p. 230—233°, softens at 205° and shrinks together at 210° when slowly heated; ethiodide, m.p. 224°). Freshly distilled MeCHO and (I) in C₆H₆ yield 2-imino-3-a-hydroxyethylbenzthiazoline, m.p. 120— 122° when rapidly heated, which with P₂O₆ and (I) in C₆H₆ at room temp. gives di-aa 2-imino-3-benzthiazolinylethane, m.p. 165—167°. (I) when heated at 230° under N₂, preferably in presence of Pd-C or with quartz-P₂O₅-H₂O at 200°, affords 2-imino-3-benzthiazolyl-2'-benzthiazoline, m.p. 257—258° (Ag and Na, m.p. >360°, salts). (II) is transformed by NH₄Cl at 230—250° into 2-imino-6-ethoxy-3-6'-ethoxy-2-benzthiazolylbenzthiazoline, m.p. 217—219°. 2-Acet-amidobenzthiazole is oxidised by H₂O₂ in AcOH at 100° to 1-keto-2-acetamidobenzthiazole, m.p. 196°, hydrolysed by HCl (d 1·19)-aq. Pr^aOH at 100° to 1-keto-2-aminobenzthiazol endorsthiazoline, de-comp. 225°, darkens at 220°. 1-Keto-2-imino-3-ethylbenzthiazoline, de-

comp. 225°, darkens at 220°. 1-Keto-2-imino-3-ethylbenzthiazoline,

m.p. $211-213^{\circ}$, is obtained similarly. Diazotised arsanilic acid and (I) yield the compound, $C_{13}H_{11}O_3N_4SAs$, m.p. $176-178^{\circ}$ (C5H5N salt). H. W.


Benzthiazoles.-See B., 1943, II, 75.

Thiazoles. XXV. Thiazolidinopyrimidines of barbituric acid type. E. J. Masters and M. T. Bogert (J. Amer. Chem. Soc., 1942, 64, 2709–2712; cf. A., 1942, II, 153).—Adding (CH₂)₃NH to 48%HBr at 0—5° (not the reverse addition) gives Br·[CH₂]₂·NH₂, HBr (2004)

56. 2709–2712; cf. A., 1942, II, 153).—Adding $(CH_2)_2NH$ to 48%HBr at $0-5^{\circ}$ (not the reverse addition) gives $Br\cdot [CH_2]_2\cdot NH$, HBr (80%), new m.p. 172:3–174:3°, and thence (KCNO) $Br\cdot [CH_2]_2\cdot NH\cdot CS\cdot NH_2$ (60%), new m.p. 173:6–174:2°, and (aq. NaOH) 2-aminothiazoline (86%), m.p. 84–85°, which, reacting as the 2-NH: compound, with $CH_2(CO_2Et)_2$ in boiling NaOEt-EtOH (not alone at 195°) gives 4:6-diketo-1:4:5:6-tetrahydro-thiazolidino-3':2'-1:2-pyrimidine ["5:7-dioxo-2:3:6:7-tetra-hydro-5-thiazolo[3:2a]pyrimidine ["[1]], R = H] (88%), m.p. 244:5–245:5. Use of CHR(CO_2Et)₂ gives 4:6-diketo-5-methyl- (72%), m.p. 272–276°, H₂C C C - thike (70%), m.p. 224:4–224:7°, -isopropyl-H₂C N CHR (76%), m.p. 262:3–262:8°, -phenyl- (45%), m.p. 247:2–247:7°, and -benzyl-1:4:5:6-tetrahydrothiazolidino -3':2'-1:2-pyrimidine [[1], R = Alk etc.] (82%), m.p. 241:9–242:3°. NaOEt-AlkI-EtOH converts the substituted [1] into 4:6-diketo-5:5-diethyl- (29%), m.p. 138:2–138:7°, -5-ethyl-5-isopropyl-[[1], R = Alk etc.] (82%), m.p. 89:7–90:3°, -5-phenyl-5-ethyl- (36%), m.p. 120:3–121:3°, and -5-benzyl-5-ethyl-1:4:5: 6-tetrahydrothiazolidino-3': 2'-1:2-pyrimidine [[1], R = H] gives the 6-N·OH-compound (61%), m.p. 175– 78°, converted by Na₂S₂O₄-NH₃-H₂O into the 6-NH₂-compound (54%), H-2, red at 174°, decomp. 194°. KCNO in hot H₂O then gives the 6-carbamido-derivative (80%), m.p. 261–263°, which with H₂C₂O₄ at 185° gives thiazolidino-2': 3'-2:3- or -3': 2'-1:2-uric acid (36%), m.p. >300°. M.p. are corr. R. S. C.

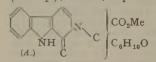
Structure of biotin: dethiobiotin. V. du Vigneaud and D. B. Melville (with K. Folkers, D. E. Wolf, R. Mozingo, J. C. Keresztesy, and S. A. Harris) (*J. Biol. Chem.*, 1943, **146**, 475–485; cf. A., 1942, II, 387).—Biotin (I) is converted into its Me ester, which with Raney

Ni in boiling 90% EtOH gives dethio-biotin Me ester [Me ε : 5-(4-methyl- $I_{\rm alp} = 10^{-1} {\rm GeV}^{-1} {\rm GeV}^{$ thiodiaminocarboxylic acid dihydrochloride $(\zeta_{\eta}$ -diaminononoic acid dihydrochloride),

S $(\sqrt{\eta}-diaminononoic acid dihydrochloride),$ m.p. 180—182°, $[a]_{D}^{29} + 4.04^{\circ}$ in MeOH. The corresponding sulphate (III), m.p. 242—243°, $[a]_{D}^{25} + 7.75^{\circ}$ in H₂O, is obtained from (II) and aq. Ba(OH)₂ at 140°, followed by H₂SO₄. (III) and HIO₄-aq. NaOH at room temp. (12 hr.), then at 40° (3 hr.) and 75° (2.5 hr.), give a product, which after sublimation in high vac. yields pimelic acid and a trace of adipic acid. Et e-bromohexoate and CHAcNa·CO₂Et give, after hydrolysis of the Et ester, b.p. 144—148°/0.9 mm., n-ketononoic acid m p. 30—40° ε-bromohexoate and CHAcNa·CO₂Et give, after hydrolysis of the Et ester, b.p. 144—148°/0·9 mm., η-ketononoic acid, m.p. 39—40°, b.p. 135°/0·9 mm.; its Et ester, b.p. 91—96°/0·4 mm., with EtO·NO-HCl-EtOH at 50°, followed by NH₂OH,HCl-NaOAc, affords Et ζη-dioximinononoate, m.p. 107—108°, hydrogenated (Raney Ni at 50—55°/140 atm.; liquid NH₃-MeOH) to Et ζη-diaminononoate [sulphate, m.p. 274° (decomp.)]. Phenanthrenequinone (**IV**) in EtOH converts the latter into Et 2-methyldibenzoquinoxaline-3-hexoate, m.p. 78—79°; the free acid, m.p. 186—187°, obtained by alkaline hydrolysis of the ester, is also obtained when (**III**) is con-verted into 'the free acid with Ba(OH)₂, followed by reaction with (**IV**). (\mathbf{IV}) A. T. P.

Structure of biotin: formation of thiophenvaleric acid from biotin. D. B. Melville, A. W. Moyer, K. Hofmann, and V. du Vigneaud (J. Biol. Chem., 1943, 146, 487-492).—The structure of biotin as 2'-Biol. Chem., 1943, 140, 487-492, ..., 116 structure of bloth as 2-keto-3: 4-glyoxalido-2-tetrahydrothiophenvaleric acid is confirmed. The diaminocarboxylic acid sulphate from biotin and Me₂SO₄-aq. KOH, followed by refluxing the acidified (HCl) mixture, give δ -2-thienylvaleric acid, m.p. 40-41°, identical with that obtained by reducing γ -2-thienoylbutyric acid (I), m.p. 92-94°, with Zn-HCl. (I) is prepared from glutaric anhydride and thiophen (Friedel-Crafts) and is oxidised by alkaline KMnO4 to thiophen-2-carboxylic A. T. P acid.

Cocarboxylase and related esters. J. Weijlard (J. Amer. Chem. Soc., 1942, 64, 2279—2282).—Aneurin hydrochloride with $H_4P_2O_7$ — $Na_4P_2O_7$ at 150—155° gives the orthophosphate ester, RH_2PO_4 , $+2H_2O$, m.p. 200—202°, with conc. H_2SO_4 at 150° give the Hsubpate ester, $RHSO_4$, $+H_2O$, m.p. 258—259° (decomp.), and with HPO_3 or $H_4P_2O_7-P_2O_5-Na_4P_2O_7-NaPO_2$ at \sim 150° gives the pyro-phosphate (cocarboxylase) (I), (\sim 10%), +0.75—1 H_2O , m.p. 238— 240°. 4-Methyl-5-hydroxyethylthiazole with $H_4P_2O_7$ at 150—160° gives the orthophosphate ester, $+H_2O$, m.p. 162°, but with HPO₂ at 150—155° gives the pyrophosphate ester (Ag salt, $RAg_3P_2O_7$, $+0.6HNO_3$, $+3H_2O$), which with 4-amino-2-methyl-5-bromo-

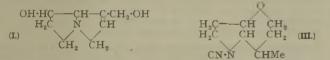

methylpyrimidine hydrobromide (II) in liquid paraffin at 110° gives (I) (10%), which is also obtained (10%) from 4-methyl-5- β -chloroethylthiazole, (II), and Ag₄P₂O₇ in liquid paraffin at 110°.

R S. C.

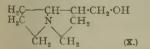
VII.—ALKALOIDS.

Formation of nicotine in plants grafted on tobacco.-See A., 1943, III. 292.

111, 292. Alstonia alkaloids. I. Degradation of alstonine to β -carboline bases and the reduction of tetrahydroalstonine with sodium and butyl alcohol. N. J. Leonard and R. C. Elderfield (J. Org. Chem., 1942, 7, 556-572; cf. Sharp, A., 1934, 538, 1117; 1938, II, 463).—The composition, $C_{21}H_{20}O_3N_2$, is confirmed for alstonine (I) from A. constricta, F. Muell, by analyses of the sulphate dihydrate, m.p. 195-196°, decomp. 208°, $[a]_{25}^{25} + 127^{\circ} \pm 2^{\circ}$ in H₂O, sulphate tetra-hydrate, m.p. 203-204°, $[a]_{25}^{25} + 120^{\circ} \pm 2^{\circ}$ in H₂O, H sulphate, m.p. 220-221° (decomp.), hydrochloride, m.p. 278-279° (decomp.), $[a]_{25}^{25}$ $\pm 141^{\circ} \pm 2^{\circ}$ in H₂O, nitrate, m.p. 252-254° (decomp.), hydriodide, m.p. 270° (decomp.), and perchlorate, m.p. 239-240°. (I) is hydro-genated (PtO₂ but not Pd in abs. MeOH) to tetrahydroalstonine (II), m.p. 230-231°, $[a]_{25}^{29} - 110^{\circ} \pm 2^{\circ}$ in CHCl₃, $[a]_{27}^{27} - 88^{\circ} \pm 2^{\circ}$ in C₆H₆N, which is not formed by attempted reduction of salts of (I) or (I) m.p. 230-231, $[a]_{\rm D}$ = 110 ± 2 in cfields, $[a]_{\rm D}$ = 68 ± 2 in cfields, which is not formed by attempted reduction of salts of (I) or (I) in AcOH in presence of PtO₂. (II) gives a colour similar to that of yohimbine in the Adamkiewicz test. Fusion of (I) with KOH gives harman (III), prisms or needles, m.p. 239-241° [further identified narman (111), prisms or needles, m.p. $239-241^{\circ}$ [urther identified as the picrate, m.p. $257-258^{\circ}$ (decomp.), aurichloride, m.p. $229\cdot5-230^{\circ}$ (decomp.), and CHPh: derivative, m.p. $204-205^{\circ}$], but no volatile amine; a pure compound has not been isolated from the considerable basic fraction. Similar treatment of (II) affords (III), norharman, base A, $C_{17}H_{18}N_2$, m.p. $171\cdot5-172\cdot5^{\circ}$ [picrate, m.p. >267° (decomp.)], which in HCl-EtOH shows a marked blue fluorsidered tentatively to be $C_{16}H_{16}N_2$ or $C_{16}H_{16}N_2$ on the basis of analysis of its *picrate*, m.p. 261° (decomp.), which also gives a strong blue fluorescence, and base *C*, considered tentatively to be $C_{17}H_{18}N_2$ on the basis of analysis of the *picrate*, m.p. 203.5-205.5° (decomp.). Indole-2-carboxylic acid is isolated from the acidic products of the fusion but a pure individual could not be isolated from the neutral fraction, which appears to contain indole derivatives. Thermal decomp. of (I) yields a series of bases all apparently derived from β -carboline although none has been definitely identified. These are *B*-carboline although none has been definitely identified. These are base D, $C_{17}H_{18}N_2$, readily isolated by taking advantage of the very sparing solubility of its *picrate*, m.p. 254—256°, in EtOH, which appears to be isomeric with base C; base E, $C_{18}H_{20}N_2$ or $C_{19}H_{22}N_2$ (*picrate*, m.p. 193-5—195°), not identical with Sharp's altyrine, and base F, $C_{13}H_{12}N_2$, m.p. 79—81° [*picrate*, m.p. 261—262-5° (decomp.); *hydrochloride*, m.p. 283—284° (decomp.)]. The ultra-violet absorption spectrum of F closely resembles that of 2-ethyl- β -carboline (IV). *a*-Aminobutalebyde Et acetal NPbEt/NH and fused 7nCl afford methiodide, m.p. $283-284^{\circ}$ (decomp.)]. The ultra-violet absorption spectrum of F closely resembles that of 2-ethyl- β -carboline (**IV**). γ -Aminobutaldehyde Et₂ acetal, NPhEt-NH₂, and fused ZnCl₂ afford 1-ethyltryptamine, b.p. 170-171°/2 mm. (phthalimide, m.p. 149-150°; picrate, m.p. 178-5-180.5°), converted by dill. H₂SO₄ and 40% CH₂O at 70° and subsequently by boiling dill. H₂SO₄ and 1-ethyl-2: 3: 4: 5-tetrahydro- β -carboline, isolated as the picrate, m.p. 224-225°, and p-NO₂·C₄H₄·CO derivative, m.p. 146-148°; the base is dehydrogenated by Pd-black at 160-170° to (**IV**), m.p. 41-42° (picrate, m.p. 227-228°; methiodide, m.p. 293-295°), not identical with F. Norharman ethiodide, m.p. 198-199°, is treated with an excess of NaOH and the ppt. is dried over P₂O₅ at room temp, and then at 100°, after which it is repeatedly treated with evaporating PhMe, thus giving 3-ethyl- β -isocarboline, m.p. 176-5-178.5° [ethiodide, m.p. 213-5-215°, also prepared from (**IV**)], which is not identical with F. 2-Ethyl- β -carboline, m.p. 193-195°, is obtained by treating tryptophan with EtCHO in dil H₂SO₄ and oxidising the product with K₂Cr₂O₇. The product obtained by the distillation of (**I**) with Zn dust appears identical with F. (**II**) is reduced by Na in boiling BuOH to hexahydroalstanol, m.p. 282-284° (decomp.), [a]₂^m - 78° ±3° in C₆H₅N [picrate, m.p. 237-238° (decomp.)]. CO₂Me of (**II**) is reduced to CH₂·OH and 2 H are added but the exact relationship of initial and the exact relationship of initial and


the exact relationship of initial and final substances is not clear. The ultra-violet absorption suggests that the compound is an $\alpha\beta$ -disubstituted

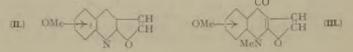
indole. The formula for (I) may be partly resolved as in (A). (I) is inactive in doses of 35 mg. per day in birds infected with avian malaria. M.p. are corr. H. W.


Alstonia alkaloids. II. New alkaloid, alstoniline, from A. con-stricta. W. L. Hawkins and R. C. Elderfield $(J_., Org. Chem., 1942, 7, 573-580)$.—The isolation is described of alstoniline (I), decomp. 372°, a minor alkaloid of A. constricta in which it occurs to the extent of 0.02-0.05% of the bark. It exists also as the cryst. monohydrate (II), $C_{22}H_{16}O_3N_2,H_2O$, decomp. 356°. Derivatives of (I) fall into two groups depending on whether or not this H_2O is present. (II) is obtained by neutralising the hydrochloride (III)

which contains 1 H₂O and decomposes over a wide range when which contains 1 H_2O and decomposes over a wide range when heated without melting, whereas (I) is derived by neutralising the anhyd. sul/phate (IV), m.p. 260—264° (decomp.). All derivatives of (II) (e.g. the picrate, decomp. 294°) retain 1 H_2O whereas com-pounds derived from (I) may or may not be anhyd. (e.g., anhyd. picrate, explosive decomp. >350°; anhyd. methiodide, decomp. without melting over a wide temp. range). (I) is transformed into (II) by crystallisation from 95% EtOH. The similarity between the ultra-violet absorption curves of (I) and (II) indicates that the ultra-violet absorption curves of (I) and (II) indicates that hydration does not involve a basic change in the arrangement of the double linking of the two substances. Aeration of a solution of (II) in EtOH for several hr. gives a cryst. product, $C_{22}H_{18}O_4N_2, H_2O$, m.p. 212—213°, provisionally named alsoniline oxide (V). Reduction (PtO₂) of (II) leads to the absorption of 2 H₂, the colour of the solution changing from dark orange-red to a strongly fluorescent yellow. On exposure to air in the working up of the product, the absorbed 2 H_2 is removed and 1 O is absorbed with product, the abstract 2 H_2 is removed and 1 of is abstract with production of (**V**). Attempts to isolate the reduced base by crystallisation under N₂ were fruitless. Similar reduction of (**III**) gives a H_4 -salt, m.p. 231–232° (decomp.), and of (**IV**) gives a H_8 -compound (**VI**), m.p. 233–234° (decomp.). These salts are stable to air. In one instance an attempt to form a methiodide of (II) by heating (II) with a large excess of MeI in C_4H_6 at 70° for several hr. led to a second form of (II), m.p. 189–190°. This is unstable, being oxidised when solid or in solution, by air to (\mathbf{V}) . All derivatives of (I) are optically inactive. (II) gives a negative result with Ehrlich's reagent. The colour changes of (\mathbf{VI}) in the Adamkiewicz reaction as modified by Harvey *et al.* are similar to those observed with tetrahydroalstonine and indicate the probable presence of a tetrahydro- β -carboline ring system. (II) gives an entirely different colour series with this reagent. The presence of 2 OMe in (\mathbf{V}) is indicated by analysis. A. constricta and several of its alkaloid fractions have been found to be inactive in avian malaria. M.p. HW

Structure of monocrotaline. VII. Structure of retronecine and related bases. R. Adams, M. Carmack, and J. E. Mahan. VIII. Proof of primary and sec. hydroxyl groups in retronecine. R. Adams and K. E. Hamlin, jun. (J. Amer. Chem. Soc., 1942, 64, 2593-2597, 2597-2599; cf. A., 1941, II, 154).--VII. Relative basic strengths of retronecine (I) and its derivatives and chemical reactions indicate the annexed structure. Retronecanol (II) and CNBr in Et,O give an oily additive compound, which, when kept at 2° or better (28%)

boiled in C_5H_5N , give the 1'-CN-derivative (III), m.p. 94·5—95° (corr.), hydrolysed by hot 15% H_2SO_4 to 4-methyl-2:3:5:6-tetra-hydropyrrolidino-3':2'-2:3-pyran, an oil [picrate, m.p. 121·5— 122·5° (corr.)], which with CNBr regenerates (III) and with MeI– COMe₂ gives 4:1'-dimethyl-2:3:5:6-tetrahydropyrrolidino-3':2': 2:3-pyran hydrobromide, m.p. 195—196° (corr.). The following pKH are recorded (cf. A., 1943, II, 102): (I) 8·94, platynecine (IV) 10·22, deoxyretronecine (V) 9·55, retronecanol (VI) 10·91, anhydro-platynecine (VII) 9·42, heliotridane (VIII) 11·48, heliotridene (IX) 10.60, and isprefragerene (X) (see below) 10·88. In accordance with 10.60, and isoretronecanol (X) (see below) 10.88. In accordance with (I) etc., Kuhn-Roth determinations show no CMe in (I), (IV), (VII),



10 °00, and isoreironecanol (X) (see below) 10 °88. In accordance with (I) etc., Kuhn-Roth determinations show no CMe in (I), (IV), (VII), or (X) and 0 °40--0 °69 CMe in (V), (VII), (VIII), and (IX). VIII. The presence of primary and sec. OH in (I) is proved. Platynecine benzoate, new m.p. 118-119°, $[a]_{19}^{59} - 88 °6°$, gives the Cl-compound, m.p. 72-73°, $[a]_{29}^{20} - 14 · 5°$ (cf. A., 1936, 1277), which with H₂-Raney Ni in EtOH at 2--3 atm. gives isoretronecanol benzoate (86%), m.p. 56-57°, b.p. 161 · 5-162 · 5° / 1 · 2 mm., $[a]_{29}^{28}$ -60 · 8° (hydrochloride, m.p. 181-182°, $[a]_{19}^{26} - 48 · 6°$), and thence (aq. NaOH) (X) [= 1-hydroxymethyl-H₂C - CH-CH-CH₂OH H₂C N CH₂ (K) (decomp.); pirrate, m.p. 194-195° (decomp.)]. With CrO₃-AcOH, added gradually, this gives 1-carboxypyrrolizidine, m.p. 228-229° (decomp.), $[a]_{29}^{26} - 65 · 8°$ [picrate, m.p. 220-221° (decomp.)], which with CH₂N₂ gives the Me betaine [chloroaurate, m.p. 224-225° (decomp.); pirrate, m.p. 194-195° (decomp.)]. Al(OBu⁷)₃-cyclo-hexanone-PhMe at the b.p. oxidises (II) to retronecanone (30%), unstable, b.p. 95-96°/15 mm., $[a]_{29}^{26} - 96 · 7°$ [picrate, m.p. 195° (decomp.); semicarbazone, m.p. 209-210° (decomp.); oxime, m.p. 167-168°, $[a]_{29}^{26} - 76 · 0°$]. M.p. are corr. [a] are in EtOH. R. S. C.

R. S. C.

Argentine plants. V. Identification and characterisation of alkaloids in Fagara coco (Gill), Engl. V. Deulofeu, R. Labriola, and F. De Langhe (J. Amer. Chem. Soc., 1942, 64, 2326–2328; cf. A., 1942, II, 275). Leaves and twigs (10 kg.) of this plant yield skimmianine (previously called β -fagarine) (13 g.), a- (I), (OMe)₂C₁₈H₁₂O₂:NMe (7 g.), dimorphic, m.p. 163° and 169°, [a] 0,

and γ -fagarine (II), $C_{13}H_{11}O_3N$ (6 g.), m.p. 142° (picrate, m.p. 177°; picrolonate, m.p. 174—175°). The structure of (II) is as shown, for with MeI at 100—105° it gives iso- γ -fagarine (III), m.p.

179°, and with KMnO₄ in hot COMe₂ gives γ -fagaraldehyde [2-hydroxy-4: x-dimethoxyquinoline-3-aldehyde], m.p. 185° (phenyl-hydrazone, m.p. 207°), and thence (KMnO₄-COMe₂) γ -fagaric acid, m.p. 215° [also obtained similarly from (**II**)], which in boiling dil. HCl yields 2: 4-dihydroxy-x-methoxyquinoline, m.p. 250° [NO-deriv-ation m.p. 216° 217° (decomp)]. (I) differs in behaviour and ative, m.p. 216—217° (decomp.)]. (I) differs in behaviour and structure. R. S. C.

VIII.—ORGANO-METALLIC COMPOUNDS.

Composition of magnesium alkyl chloride solutions in ethyl ether. C. R. Noller and A. J. Castro (J. Amer. Chem. Soc., 1942, 64, 2509 2510).—Previous views (A., 1940, II, 300) are incorrect, since dis-tribution of the Cl in MgBu*Cl-Et₂O depends on access of traces of R. S. C $H_2O.$

Condensations by sodium. XXI. Sodium *n*-octyl and *n*-decyl. A. A. Morton, J. B. Davidson, and R. J. Best. XXII. General theory of the Wurtz reaction. The initial step. A. A. Morton, J. B. Davidson, and H. A. Newey. XXIII. General theory of the Wurtz reaction. II. Second phase. A. A. Morton, J. B. Davidson, and B. L. Hakan. XXIV. Pyrolysis of sodium amyl. A. A. Morton and H. A. Newey. XXV. Reactions of sodium amyl with naphthal-ene acenaphthese and decaludrous of sodium amyl with naphthaland H. A. Newey. XXV. Reactions of sodium amyl with naphthal-ene, acenaphthene, and decalydronaphthalene. A. A. Morton, J. B. Davidson, T. R. P. Gibb, jun., E. L. Little, E. F. Clarke, and A. G. Green (J. Amer. Chem. Soc., 1942, 64, 2239–2240, 2240–2242, 2242–2247, 2247–2250, 2250–2253; cf. A., 1941, II, 123).– XXI. NaC₈H₁₇-n and NaC₁₀H₂₁-n resemble NaC₅H₁₁. Bubbling CO₂ into n-C₈H₁₇-n and NaC₁₀H₂₁-n resemble NaC₅H₁₁. Bubbling CO₂ into n-C₈H₁₇-(Cl (I) and Na in light petroleum at -10° gives n-C₈H₁₇-(Co₂H (49%)), n-C₇H₁₅-(CH(CO₂H)₂ (15%)), and n-C₁₈H₃₄ (7%); yields are 23, 26, and 6%, respectively, if CO₂ is passed over the surface; the supernatant solution alone gives no acid. With PhMe and Na at 72°, (I) gives 51% of n-C₉H₁₈Ph, but with C₉H₆ gives only C₈H₁₇(68%). BzOH (33%), and traces of CPh₃-OH and (?) n-C₃H₁₇Ph, and with PhOMe gives a little PhOH and acid. n-C₁₀H₂₁Cl with Na and CO₂ or PhMe gives similarly n-C₁₀H₂₁CO₂H (284%) + n-C₉H₁₆·CH(CO₂H)₂ (2·3%) or n-undecyl-benzene (74%), b.p. 296°±1° (p-sulphonamide, m.p. 95-7–96-2°), respectively. respectively.

XXII. It is not necessary to assume existence of free radicals AARL II is not necessary to assume existence of iree radicals for formation of NaAlk compounds. The yield of $\operatorname{NaC}_{5}H_{11}$ -n from Na (1 atom) and n-C₅H₁₁Cl (1 mol.) in n-C₆H₁₈ is raised to 72% by very rapid stirring. Primary AlkCl and Na produce insol., jelly-like coatings, readily penetrated by AlkCl and removed or burst by newly formed NaAlk; sec.-AlkCl give solid, impenetrable coatings which prevent further reaction. AlkCl give good yields of NaAlk as the halide can penetrate the coating of NaAlk without excedias the halide can penetrate the coating of NaAlk without reacting with it; such reaction deposits NaCl which stops further formation of NaAlk. Thus, high yields of NaAlk depend on presence of an excess of finely divided Na, absence of a protective coating on it, and an unreactive C-halogen linking. The assumption that the Na acts as a trap for ally radicals is penetived by the relatively and an unreactive C-halogen linking. The assumption that the Na acts as a trap for alkyl radicals is negatived by the relatively large size of the Na particles and by the fact that the yield of NaC₅H₁₁-n is the same whether C₅H₁₁Cl is added to Na or vice versa. Interaction of activated Na with Bu^aCl in light petroleum at 18-20° and pouring the mixture on to CO₂ gives 42·2% of Bu^aCO₂H and 3·3% of CHPr^a(CO₂H)₂. XXIII. Free radicals have no part in the second phase (NaAlk + AlkHal > Alk > of the Wurtz reaction. When the alkyl chains of

 $AlkHal \rightarrow Alk_2$) of the Wurtz reaction. When the alkyl chains of NaCH₂R and R'·[CH₂]₂. Hal are sterically adjacent during interaction, prototropic change leads to RMe and CHR'CH2; this distribution of paraffin and olefine predominates in the products from NaC_8H_{17} -EtHal and -PrHal, NaC_8H_{11} -AlkHal (12 examples), NaC_8H_{13} - C_8H_{11} Cl and $-C_8H_{17}$ Cl. The relative amounts are, however, somewhat obscured by the change, $NaAlk + AlkHal \rightarrow NaAlk' + AlkHal$, which occurs most readily with iodides and least the relative and the re readily with chlorides. When this change occurs readily, the yield of symmetrical Alk₂ should be high; this is so for interaction of $NaC_{5}H_{11}$ with AlkHal. Free radicals, if formed, should give the

 $NaC_{5}H_{11}$ with AlkHal. Free radicals, if formed, should give the same relative amounts of products independently of their source; this is not the case for $NaC_{8}H_{17}$ with MeCl, MeBr, or Mel. Reputed analogies requiring free radical mechanisms are false analogies. XXIV. Heating $NaC_{6}H_{11}$ at $110-120^{\circ}$ before interaction with CO_{2} reduces the amount of $n-C_{5}H_{11}$ ·CO₂H formed, a large fall in yield occurring at $80-90^{\circ}$; heating at $80-120^{\circ}$ leads to some tarry acids; $H_{2}O$ -sol. acids are also formed (max. at $90-100^{\circ}$), containing >1 $CO_{2}H$ per C_{5} -unit, the $CO_{2}H$ being attached to a remote C. XXV. $C_{10}H_{8}$ with $NaC_{5}H_{11}$ -n or $NaC_{8}H_{17}$ -n and then CO_{2} in light petroleum at 72° (N_{2}) gives $a - \beta C_{10}H_{7}$ ·CO₂H (14, 17),

1:3-+1:8-+2:6- $C_{10}H_5(CO_2H)_2$ (10, 15), and $C_{10}H_5(CO_2H)_3$ (2, 5%, respectively). Acenaphthene and NaC_5H_{11} - CO_2 give the 1:5-*dicarboxylic acid* (~50%), m.p. 292-294° (Et₂ ester), converted by CaO-Cu-bronze at 280° into the 5-CO₂H-compound and by KMnO₄ at 50-60° into 1:4:8- $C_{10}H_5(CO_2H)_3$. Decahydronaphthalene and NaC_5H_{11} - CO_2 very readily give the (? 1:4:5:8-) (CO₂H)₄-compound, m.p. 61-62° (*dianhydride*, m1p. ~300°); impure (?) amyl derivatives were obtained by alkylation. R. S. C.

IX.—PROTEINS.

Electrophoretic study of the proteins in rubber latex serum. C. P. Roe and R. H. Ewart (*J. Amer. Chem. Soc.*, 1942, **64**, 2628–2632).— Serum from unpreserved rubber latex (from Florida or Sumatra) contains seven electrophoretically distinct proteins, for five of which the relation between electrophoretic mobility and pH is determined. Preservation by NH₃ rapidly alters the proteins, reducing the separable components to two. Dry protein is obtained from rubber-free latex serum by sublimation in vac. without much alteration in electrophoretic properties. Modifications in procedure necessary for study of rubber latex are recorded. R. S. C.

Catalysed hydrolysis of amide and peptide bonds in proteins. J. Steinhardt and C. H. Fugitt (J. Res. Nat. Bur. Stand., 1942, 29, 315–327).—The rate of hydrolysis of amide and peptide linkings in wool and ovalbumin by strong acids of high mol. wt. is \gg by HCl, and the relative efficiencies of various acids as hydrolysing agents are in the same order as the affinities of their anions for the protein (cf. B., 1941, II, 338). Among compounds RO·SO₃H where R = alkyl, those containing 14 C atoms show max. hydrolytic breakdown produced by HCl, small amounts of the salt favouring decomp. of amide rather than peptide linkings. The effect of temp. on the rate of hydrolysis is decreased by addition of (I) to HCl. The mechanism of the catalysis and practical applications are discussed. C. S. W.

X.—MISCELLANEOUS UNCLASSIFIABLE SUBSTANCES.

New crystalline compounds of heparin. D. A. Scott, A. F. Charles, and A. M. Fisher (*Trans. Roy. Soc. Canada*, 1942, [iii], **36**, V, 49—51).—Ba-heparin in H₂O with excess of piperidine, sso-C₅H₁₁'NH₂, and n-C₅H₁₁'NH₂ yields cryst. compounds which after drying over NaOH retain all the activity of the heparin (cat blood), and contain respectively 8·3, 6·1, and 6·8% of N. They undergo no apparent change when heated at 110° for 1 hr. Na- and NH₄-heparin yield similar compounds. No analyses are given. A. LI.

Barbaloin. L. N. Owen and J. L. Simonsen (*J. Amer. Chem. Soc.*, 1942, **64**, 2516—2517).—Hydrolysis of barbaloin (**I**) by borax does not give MeOH (Rosenthaler, *Pharm. Acta Helv.*, 1934, **9**, 9; Cahn *et al.*, A., 1932, 1252). The mol. wt. (521) of barbaloin Me ether, ¹ determined by X-ray analysis, establishes the formula, $C_{21}H_{17}O_2(OMe)_7$. (**I**) is thus the corresponding $(OH)_7$ -compound.

R. S. C. **Penillic acid, an optically active acid from penicillin.** W. M. Duffin and S. Smith (*Nature*, 1943, 151, 251).—In aq. solution at pH 2, penicillin affords *penillic acid*, decomp. 175°, extracted with BuOH but not Et_2O , and recryst. from H_2O . It shows a pale blue fluorescence in ultra-violet light, gives a deep bluish-purple colour with ninhydrin, possesses some of the properties of an NH_2 -acid, but does not react to $FeCl_3$ like penicillamine. A. A. E.

Penicillamine, a characteristic degradation product of penicillin. E. P. Abraham, E. Chain, W. Baker, and (Sir) R. Robinson (Nature, 1943, 151, 107).—*Penicillamine*, $C_8H_{11}O_4N$,HCl (but conceivably $C_8H_9O_3N$,HCl,H₂O), is obtained by hydrolysing Ba penicillin at 100° for 1 hr. with 0·1N-H₂SO₄ and separating by means of HgCl₂. It is optically inactive. Three proton-binding centres at pH 2-0, 7·9, and 10·5, respectively, may be an acidic OH, the basic group, and a weakly acidic OH; N is present as NH₂ and the substance gives an intense bluish-purple ninhydrin reaction. A typical *a*-NH₂-acid structure is improbable. Unusual behaviour (detailed) suggests relationship to an NH₂-sugar and ascorbic acid. A. A. E.

XI.—ANALYSIS.

Review of organic microchemistry. L. T. Hallett (Ind. Eng. Chem. Lanal.], 1942, 14, 956-993).—The applications of micromethods to the following are reviewed and discussed in detail : synthesis and purification of org. substances, including recrystallisation, sublimation, chromatographic separation, extractions; physical methods, including weighing and determination of consts.; the use of the microscope, and analysis for elements and sp. groups. Throughout stress is laid on special micro-apparatus, and many designs are given in detail. An entensive bibliography is appended. L.D.R.

Identification of very small amounts of liquids.-See A., 1943, I, 101.

Preparation of "N/10-bromine,"-See A., 1943, I, 98.

Semimicro-determination of chlorine, bromine, and iodine in organic compounds. E. W. Peel, R. H. Clark, and E. C. Wagner (*Ind. Eng. Chem.* [Anal.], 1943, 15, 149–151).—The sample is fused in the Parr bomb with Na_2O_2 , KNO_3 , and sucrose, lactose, or BzOH, and Cl determined gravimetrically as AgCl. If Br or I is to be determined BrO₃' or IO₃' is reduced with N_2H_4 and determined as AgBr or AgI. Liquids are weighed into gelatin capsules for analysis. J. D. R.

Micro-determination of sulphur and halogens by melting with potassium.—See A., 1943, I, 98.

Iodoform reaction by methods of microscopy. H. F. Schaeffer (*J. Chem. Educ.*, 1942, 19, 15-16).—The technique of carrying out the reaction on hanging drop and ordinary slides is described.

L. S. T.

Analytical data for the systems carbon tetrachloride-acetic acidbenzene and carbon tetrachloride-tetrachloroethylene. W. R. McMillan and H. J. McDonald (*Ind. Eng. Chem.* [Anal.], 1943, 15, 114—116).—The ternary system C_6H_6 -CCl₄-AcOH is analysed by titration of the AcOH with standard NaOH; during the titration the C_6H_6 -CCl₄ phase separates and is centrifuged and analysed by *n* determination. Alternatively the sample may be analysed by measurement of *d* and *n*. The binary system CCl₄-C₂H₂Cl₄ is analysed by *n* determinations. J. D. R.

***** Acraldehyde determination in presence of formaldehyde and acetaldehyde by the polarographic method. R. W. Moshier (*Ind. Eng. Chem. [Anal.*], 1943, 15, 107–109).—CH₂:CH-CHO is determined polarographically in presence of CH₂O and MeCHO in LiCl solution buffered to pH 7.0—8.0 with Li₃PO₄. During the determination the temp. must be held const. to $\pm 0.05^{\circ}$. J. D. R.

Quantitative drop analysis. XVII. Gasometric determination of amino-nitrogen. J. Sandkuhle, P. L. Kirk, and B. Cunningham (J. Biol. Chem., 1943, 146, 427–432; cf. A., 1941, II, 276).—A modification of the Van Slyke gasometric method for determination of μ g. quantities of amino-N is described; 0.5 μ g. of N can be estimated, and 2 μ g. or greater amounts with accuracy. The method is applicable to protein hydrolysates. A. T. P.

Colorimetric determination of serine. M. J. Boyd and M. A. Logan (J. Biol. Chem., 1942, **146**, 279–287).—The CH₂O formed by distillation of 1—5 mg. of serine (or of an acid hydrolysate of protein adjusted to the alkaline side of Me-red) with IO_4' is condensed with $1:3:6-(OH)_2C_{10}H_4(SO_3H)_2$ and measured colorimetrically with an error of 1-2%. Serine is slowly destroyed by acid hydrolysis and the determination is affected by the presence of carbo-hydrates unless completely converted into furfuraldehyde derivatives by hydrolysis. The following vals. for serine-N were obtained: horse hæmoglobin 4.42, dog hæmoglobin 4.22, collagen 3.22, ovalbumin 6.27, salmine 3.23, casein 4.75% of the total N. H. G. R.

Possibility of differentiating between small amounts of cerebroglucosides and -galactosides. J. Brückner (Z. physiol. Chem., 1942, 275, 73—79).—1 c.c. of 0.01% sugar is mixed with 1 c.c. of orcinol reagent (2% in 20% H_2SO_4) and floated on 3 c.c. of 92% H_2SO_4 . The layers are mixed and the colour is observed immediately and after 8, 15, and 30 sec., stabilisation being sufficiently achieved by cooling in ice. Glucose and galactose (I) can thus be identified separately and their relative proportions can be determined in their mixtures. In the investigation of cerebro-galactosides and -glucosides impure preps. and organ extracts can be used provided that the carbohydrates are carefully removed. The lipoid extract of human blood corpuscles shows the reactions of (I) and hence contains a cerebrogalactoside. H. W.

Cryoscopic analysis of styrene, indene, and dicyclopentadiene. E. H. Smoker and P. E. Burchfield (*Ind. Eng. Chem.* [Anal.], 1943, 15, 128–129).—Cryoscopy offers a precise analytical method for the determination of small quantities of impurities in styrene, indene, and dicyclopentadiene. Depressions of f.p. of these on addition of 0-4% of p-xylene are recorded, and molal dispersions are given. J. D. R.

Determination of concentration of chlorophyll. D. I. Saposhnikov (Compt. rend. Acad. Sci. U.R.S.S., 1941, **32**, 369—371).—Chlorophyll (**I**) is determined from the width of the band I in the absorption spectrum, measured by a drum spectrometer, and the thickness of the solution layer. The widths of the bands are to each other as the square root of the respective amounts of (**I**). A. T. P.

INDEX OF AUTHORS' NAMES, A., II.

APRIL, 1943.

ABERNETHY, J. L., 88. Abraham, E. P., 115. Abramovitch, B., 81, 88. Adamson, D. W., 102. Ahl, A., 97. Allen, C. F. H., 85. Anthes, H. I., 79. Antik, L. V., 104. Ardis, A., 108. Ayres, E. B., 85.

100

100

21

ż

t1

BAKER, B. R., 88. Baker, W., 115. Balatdy, R., 106. Bance, S., 92. Barber, H. J., 92. Barrows, R. S., 104. Bartet, H. D., 87. Barusch, M. R., 99. Bautet, P. D., 87. Barusch, M. R., 99. Bautet, P. B., 80, 104. Baxter, J. G., 90. Bedrintzeva, A. B., 78. Bembry, T. H., 84. Bennett, D. J., 95. Berkenheim, A. M., 104. Berlin, A. S., 92. Best, R. J., 114. Blanchard, R. C., 109. Blangey, L., 87. Bizniukov, V. I., 105. Bogert, M. T., 110, 111. Bognar, R., 84. Bottorf, E. M., 94. Bottown, L. M., 94. Botown, J. S. L., 96. Bruckner, J., 116. Bruwe, J. S., 106. Buogen, M. C., 77. Bruwne, J. S. L., 96. Bruckner, J., 116. Burdet, P. E., 116.

BUrger, A., 103.
CARLSON, G. H., 88.
Carmack, M., 113.
Cass, W. E., 104, 108.
Castro, A. J., 114.
Chabrier, P., 82.
Chain, E., 115.
Charg, F. C., 99.
Charley, J., 90.
Charley, A. F., 115.
Chatt, J., 86.
Clarke, E. F., 114.
Cogblan, C. A., 92.
Connolly, E. E., 81.
Cook, W. A., 85.
Corte, J. W., 94.
Controls, J., 84.
Curtios, J., 84.
Curtios, J., 87.
Cromwell, N. H., 108.
Cunningham, B., 116.

DANE, E., 91. Dansi, A., 86. Davidson, J. B., 114. Day, A. R., 108, 109. De Langhe, F., 113. Deliwala, C. V., 106, 110. Deno, N. C., 91. Deulofeu, V., 113. Dillon, R. T., 82. Dorofeev, V. V., 100. Drahowzal, F., 78. Duffan, W. M., 115. Dugan, L., jun., 108. Durham, D. A., 86. Du Vigneaud, V., 111. Dzbanovski, N. A., 103.

Edens, C. O., 105. Elderfield, R. C., 112. Elks, J., 89. Evans, T. W., 78. Ewart, R. H., 115.

Ewart, R. H., 115. FANTA, P. E., 86. Parquhar, J. P., 78. Fatzer, W., 101, 102. Favorski, A. E., 84. Ferri, C., 86. Fierz-David, H. E., 87. Fisher, A. M., 115. Flaschentrager, B., 81. Fleury, P., 84. Folch, J., 80. Folkers, K., 111. Foster, R. E., 94. Freidlina, R. C., 78. Freidler, M., 106. Freund, E., 81. Furst, A., 97. Fugitt, C. H., 115. Fuson, R. C., 94.

GANAPATHI, K., 106, 110. Gelman, A., 103. Gibb, T. R. P., jun., 114. Gladding, J. V. K., 107. Goldberg, A. A., 83. Goldberg, M. W., 96. Golmov, V. P., 92. Green, A. G., 114. Grigsby, W. E., 90. Groot, C., 77. Grummitt, C., 87.

Grummitt, C., 87. HAENDLER, H. M., 108. Hakan, B. L., 114. Hallett, L. T., 115. Harmin, K. E., jun., 113. Harn, R. M., 83. Hardegger, E., 96. Harris, S. A., 111. Hart, W. F., 109. Hasan-Zade, G. R., 84. Hauser, C. R., 81, 83, 85. Hausermann, H., 98. Haward, R. N., 82. Hawkins, W. L., 112. Hawkins, W. L., 112. Hawoth, R. D., 91. Hazlet, S. E., 86. Hegedus, B., 93. Helferich, B., 84. Helmert, E., 110. Hennion, G. F., 85. Hess, W. C., 83. Hey, D. H., 87, 88. Hiller, A., 82. Hind, J., 90. Hoss, O., 91. Hofman, M. M., 96. Hofman, K., 111. Hopkins, C. Y., 108. Howard, H. W., 83. Hubacher, M. H., 90. Hudson, C. S., 83. Huntress, E. H., 107. Huston, R. C., 87.

INGLE, A., 93. Ingram, A. R., 108. Ivanov, V. I., 84.

JACOBS, T. L., 89. Jeger, O., 99. Johnson, T. B., 105. Jones, B., 91.

Jones, B., 91. KAGAN, J. B., 78. KATRET, P., 101, 102. Kavanagh, K. E., 83. Kazanski, B. A., 92. Keilin, B., 104. Keresztesy, J. C., 111. King, G., 80. Kirk, P. L., 116. Klaut, H., 97. Kline, E. R., 90. Koch, K., 79. Krahler, S. E., 103. Krishnaswamy, B., 100. Kursanov, D. N., 85. Kuschnerev, M., 81. Kusserow, G. W., 97.

Kusserow, G. W., 97. Langenbeck, W., 82. Langenbeck, W., 82. Lauterbach, T., 101. Leonard, N. J., 112. Levina, R. J., 78, 86, 90. Lieberman, S., 99. Lindwall, H. G., 104. Linnell, W. H., 88. Little, E. L. 114. Logan, M. A., 116. Logan, M. A., 116. Lorenz, R., 81. Luder, W. F., 108. Lurie, S. I., 105. Lustig, H., 83. Lutz, R. E., 100.

McCorkt.F., M. R., 93. McDonald, H. J., 116. McElvain, S. M., 79. McGinn, C. E., 100. McLeese, S. F. de C., 85. MoMillan W. R., 116. Mahan, J. E., 102, 113. Malkiel, S., 79. Marini-Bettolo, G. B., 88. Mason, J. P., 79. Masters, E. J., 110, 111. Meloy, C. R., 87. Meiville, D. B., 111. Mikluchun, G. P., 94. Mittenzwei, H., 107. Morrow, R. W., 88. Morton, A. A., 114. Moshier, R. W., 116. Moyer, A. W., 111. Mozingo, R., 111. Mustafa, Z., 99. Murty. K. S., 93.

NAMETKIN, S. S., 103. Nesmejanov, A. N., 78. Newberg, C., 83. Newey, H. A., 114. Newman, M. S., 95. Niederl, J. B., 109. Nikitskaja, E. S., 105. Noller, C. R., 99, 114. Norton, H. M., 79.

Owen, L. N., 115.

PANOR, E. M., 86. Papa, D., 93. Parschikov, P. G., 90. Peel, E. W., 116. Pingert, F. P., 85. Platchinger, I., 100. Plattner, P. A., 97. Post, H. W., 79. Prelog, V., 103. Price, C. C., 86, 91, 92. Pritchard, R. R., 95.

Pritchard, R. R., 95, Raiziss, G. W., 106, Rajagopalan, S., 99, Ralston, A. W., 98, Rangaswami, S., 101, Reims, A. O., 92, Remick, A. E., 77, Rey, E., 98, Ricche, A., 79, Ricche, A., 79, Ricchel, M., 104, Riemann, U., 95, Robertson, J. A., 94, Robertson, W. v. B., 81, Robeston, C. D., 90, Robinson, R., 115, Rosenbaum, J. J., 108, Rudnev, A. G., 103, Ruds, F. E., 78, 80, Ruttovski, E. N., 82, Ruzicka, L., 96, 97, 98, 99, Ryan, M. J., 87.

Kyan, M. J., 87.
SABETAV, S., 96.
Samant, B. V., 104.
Sandkuhle, J., 116.
Saposhnikov, D. I., 116.
Sargent, H., 78.
Schaeffer, H. E., 116.
Schaeffer, H. E., 116.
Schatter, M. J., 83, 92.
Schroeder, O. C., 108.
Schtscheglova, N. A., 86.
Schwenk, E., 33.
Scott, A. F., 102.
Scott, A. W., 90.
Scott, D. A., 115.

Segebrecht, E. W., 93. Seshadri, T. R., 93, 100, 101. Shaikmahamud, H. S., 88. Shapiro, S. H., 79. Shepherd, R. G., 109. Shirsat, M. V., 106, 110. Simonsen, J. L., 95, 115. Skeln, P., 85. Skinner, G. S., 92. Smith, S., 115. Smoker, E. H., 116. Soliman, G., 99. Spath, E., 81. Spaskukotski, N. S., 104. Speck, S. B., 94. Stablerger, E., 103. Stamm, G., 87. Stanfield, J. A., 85. Starobogatov, O. I., 105. Stevaly, H. E., 95. Steinard, J. J. S., 510. Steinard, J., 115. Stickle, R., 87. Straneo, C., 97. Stuckey, R. E., 106. Suida, H., 78. Sullivan, M. X., 83. Sutherland, M. M. J., 105. Swift, L. J., 96. Szpilfogel, S., 103. THEORALD, C. W., 101.

THEOBALD, C. W., 101. Tomisek, A. J., 92. Traubaud, L., 96. Trefiliev, I. A., 100. Treibs, W., 80.

VALJASCHKO, N. A., 105. Van Slyke, D. D., 82. Vasserman, E. S., 79. Vaughan, W. E., 78, 80. Venning, E. H., 96.

Venning, E. H., 96. Waxac, G., 95. Wagner, E. C., 116. Wagner, Jauregg, T., 110. Walter, E. D., 96. Way, Y. M., 91. Weijlard, J., 111. Werner, J., 84. Wessely, F., 100, 101. Westheimer, F. H., 90. Whitcher, W. J., 89. White, T., 82. Whitman, B., 92. White, J., 108. Wiles, O. T., 108. Wileson, F. J., 108. Wilson, F. J., 108. Wilson, S. J., 108. Windaus, A., 95. Wolf, D. E., 111. Wood, B. L., jun., 90. Wood, J. H., 85. Woolman, A. M., 92. Wynne, W. P., 86.

ZABIRINA, K., 82. Zelinski, N. D., 84. Zelvin, R. R., 85. Zemplen, G., 84. Zuhlsdorff, G., 95.

JUDACTAN

ANALYTICAL REAGENTS WITH ACTUAL BATCH ANALYSIS

You are invited to compare the above actual batch analysis with the purities

guaranteed by the specifications of any competing maker in this Country or abroad

THE GENERAL CHEMICAL & PHARMACEUTICAL CO. LTD.

Chemical Manufacturers, Judex Works, Sudbury, Middlesex