BRITISH CHEMICAL AND PHYSIOLOGICAL ABSTRACTS ISSUED BY THE ## Bureau of Chemical and Physiological Abstracts [Supported by the Chemical Society, the Society of Chemical Industry, the Physiological Society, the Biochemical Society, and the Anatomical Society of Great Britain and Ireland] ### AUGUST, 1943 #### **BUREAU:** Chairman: L. H. LAMPITT, D.Sc., F.I.C. Hon. Treasurer: F. P. DUNN, B.Sc., F.I.C. JULIAN L. BAKER, F.I.C. G. L. BROWN, M.Sc., M.B., CH.B. H. W. CREMER, M.Sc., F.I.C., M.I.CHEM.E. C. W. DAVIES, D.Sc., F.I.C. H. J. T. ELLINGHAM, B.Sc., Ph.D., F.I.C. C. R. HARINGTON, M.A., Ph.D., F.R.S. L. A. JORDAN, D.Sc., F.I.C. G. A. R. KON, M.A., D.Sc., F.R.S. H. McCOMBIE, D.S.O., M.C., Ph.D., D.Sc., F.I.C. B. A. McSWINEY, B.A., M.B., Sc.D. Editor: T. F. BURTON, B.Sc. #### Assistant Editors: I. H. BIRKINSHAW, D.Sc., F.I.C.* H. BURTON, M.Sc., D.Sc., F.I.C. F. G. CROSSE, F.I.C. A. A. ELDRIDGE, B.Sc., F.I.C. W. JEVONS, D.Sc., Ph.D. E. E. TURNER, M.A., D.Sc., F.I.C., F.R.S. F. L. USHER, D.Sc. H. WREN, M.A., D.Sc., Ph.D. SAMSON WRIGHT, M.D., F.R.C.P.* * Assisted by J. D. BOYD (Anatomy), A. HADDOW (Tumours), F. O. HOWITT (Biochemistry), A. G. POLLARD (Plant Physiology), K. TANSLEY (Sense Organs), V. J. WOOLLEY (Pharmacology), and F. G. YOUNG (Ductless Glands). Indexer: MARGARET LE PLA, B.Sc. # A., II.—ORGANIC CHEMISTRY #### **CONTENTS** | I. | Aliphatic | 213 | VII. Alkaloids | 246 | |-----|--------------------------------------|-----|---|-----| | II. | Sugars and Glucosides . | 219 | VIII. Organo-metallic Compounds | 247 | | | Homocyclic | 222 | IX. Proteins | 247 | | IV. | Sterols and Steroid Sapogenins . | 235 | | | | | Terpenes and Triterpenoid Sapogenins | 239 | X. Miscellaneous Unclassifiable Substances. | 247 | | VI. | Heterocyclic | 240 | XI. Analysis | 247 | | | | | | | Offices of the Bureau: 56 VICTORIA STREET, LONDON, S.W.1 # REFRACTORY AND INSULATING CEMENTS of Fused ALUMINA and MAGNESIA for furnace work of all kinds are available to replace materials formerly imported. Appropriate grades are supplied for use with base, noble or refractory metal electric heating elements, and in contact with VITREOSIL, ALUMINA or metal surfaces. #### THE THERMAL SYNDICATE LTD. Head Office: Wallsend, Northumberland London Depot: 12-14 Old Pye Street, Westminster, S.W.1 ESTABLISHED OVER 40 YEARS. ## **Announcement** of the forthcoming publication of THIS work, first published in 1933 with 17 monographs, has now grown to 44 monographs, and as in previous editions the text has been brought completely up-to-date. Extensive bibliographies make reference to more than 1300 original publications. ● Send your order now to Dept. HD/7 and a copy will be sent on receipt from the printers. 175 pages Per Copy Post Free #### HOPKIN & WILLIAMS LTD. Makers of Fine Chemicals 16-17 ST. CROSS STREET, LONDON, E.C.1 #### NOW READY # VOLUME XXXIX OF THE ANNUAL REPORTS ON THE ## PROGRESS OF CHEMISTRY FOR 1942 Price 15s. 0d., post free. #### CONTENTS GENERAL AND PHYSICAL CHEMISTRY, by H. W. Melville. (Collaborators: C. E. H. BAWN, W. F. Berg, G. Gee). INORGANIC CHEMISTRY, by H. J. Emeléus. (Collaborators: A. L. G. Rees, A. J. E. Welch). CRYSTALLOGRAPHY, by J. M. Robertson. ORGANIC CHEMISTRY, by F. S. Spring and T. S. Stevens. (Collaborators: M. P. Balfe, J. W. Cook, J. Kenyon, E. G. V. Percival). BIOCHEMISTRY, by L. J. Harris. (Collaborators: C. G. Anderson, E. Chain, J. L. Cranmer, H. W. Florey, A. Neuberger, F. W. Norris, R. Markham). Publishers: THE CHEMICAL SOCIETY, BURLINGTON HOUSE, PICCADILLY, LONDON, W.1. ## BRITISH CHEMICAL AND PHYSIOLOGICAL ABSTRACTS ## A., II.—Organic Chemistry **AUGUST**, 1943. #### I.—ALIPHATIC. Chlorination of methane. Nitration of methane.—See B., 1943, 11, 205. Production of ethylene and ethylene chlorohydrin.—See B., 1943, II. 206. Photochemical reactions between vinyl chloride and chlorine or bromine, leading to the formation of $aa\beta$ -trichloroethane and $a\beta$ -dibromochloroethane.—See A., 1943, I, 206. Synthesis of olefine hydrocarbons by catalytic condensation and dehydration of aliphatic aldehydes. V. I. Komarewsky and T. H. Kritschevsky (J. Amer. Chem. Soc., 1943, 65, 547—548).—In presence of Cr₂O₂ or, less well, Al₂O₃ at 330—365°/20 atm., CH₂R·CHO; at 385—410°/20 atm., decomp. to CH₂R·CH:CHR + CO occurs (cf. A., 1942, II, 127). Complex products are also formed. Presence of H₂ leads to saturated products. Thus, in presence of Cr₂O₃ at 400° (N₂) EtCHO gives CHMe:CHEt (40%) and CHEt:CMe·CHO (18^{*}7%); Pra*CHO at 400° (H₂) gives CHEt:CHPra* (I) (51%), CHPra*:CEt·CHO (II) (4%), and CHEtBua*-CHO (III) (49%), at 365° (H₂) gives (I) (15%) and (II) (15·5%), and at 330° (N₂) gives (I) (15%) and (III) (8-1%); Bua*CHO at 400° (N₂) gives CHPra*:CHBua* (32%); n·C₅H₁₁*CHO at 408° (H₂) gives CHBua*:CH·C₅H₁₁*n (39%). In absence of a catalyst, Pra*CHO is unchanged at 402° (H₂). At 400° in presence of Cr₂O₃-Ni (H₂) gives (I) (17%) and (II) (15%), but in presence of Cr₂O₃-Ni (H₂) gives (I) (15%) and n·C₇H₁₆*(50%). EtCHO gives also δ-methyln-heptene (10%), b.p. 112—115°, and Pra*CHO gives also an undecene (5%). Catalytic polymerisation of acetylene. Preparation of vinylacetylene.—See B., 1943, II, 206. Addition of hydrogen fluoride to acetylenic compounds. A. L. Henne and E. P. Plueddeman (J. Amer. Chem. Soc., 1943, 65, 587—589).—Combination of HF with low-boiling acetylenes (>4 C) is best (75% yield of difluoride) effected by boiling the acetylene (1 mol.) into HF in a Cu flask at 0°. C₅H₃ or C₆H₁₀ is best dropped into HF stirred at -50°. Higher acetylenes (I mol.) are dropped into a solution of HF (5 mols.) in Et₂O or COMe₂ (1 mol.) at 0° and the mixture is then kept at room temp.; the oxonium compounds, Et₂O,2HF and COMe₂,2HF, are good solvents for the reagents and products but the combined HF is not available for addition; yields are 70—75% for rapid and 85—90% for slow addition; any unsaturated impurity is removed by a further reaction. ββ-Difluoro-butane, f.p. -117·3°, b.p. 30·92°/10 mm., -n-pentane, f.p. -93°, b.p. 59·7°/20 mm., -n-hexane, f.p. -82·5°, b.p. 87·4°/20 mm., -n-heptane, f.p. -62·2°, b.p. 112·7°/20 mm., and -n-octane (I), f.p. -53·2°, b.p. 137·5°/20 mm., CF₂EtPra, f.p. -89·3°, b.p. 87·4°/20 mm., and δδ-difluoro-n-octane (II), f.p. -45·9°, b.p. 137·3°/20 mm., are thus prepared. CF₂Et₂, f.p. -94·0°, b.p. 60·2°/20 mm., and n-heptylene difluoride, f.p. -82°, b.p. 119·7°/20 mm., are prepared from the corresponding dichlorides. Markovnikov's rule is valid: e.g., CMe²C·C₅H₁₁ gives 87% of (I) and 13% of (II) as determined by the f.p. curve. Further reactive groups in the acetylene often interfere: Δaθ-nonadi-inene gives ββθθ-tetra-fluoro-n-nonane, f.p. -2·3°/20 mm., b.p. 82°/20 mm., b.p. 87°/20 mm., but Δα-heptadi-inene is completely resinified. Other physical data of the products are recorded. n is valuable as a criterion of purity. R. S. C. Catalytic decomposition of ethyl alcohol in presence of magnesium oxide.—See A., 1943, I, 205. Condensation of epichlorohydrin with ethylene glycol; new polyfunctional derivatives. M. S. Kharasch and W. Nudenberg (f. Org. Chem., 1943, 8, 189—193).—Epichlorohydrin (I) condenses with (CH₂·OH)₂ in presence of conc. H₂SO₄ at room temp. and subsequently at 100° to a-chloro-y-β'-hydroxyethoxypropan-β-ol (II), b.p. 135—139°/3 mm. (yield 56%). (II) is transformed by OH-[CH₂]₂·ONa (III) into aγ-di-β-hydroxyethoxypropan-β-ol, b.p. 188—192°/2—3 mm., m.p. 30°, more conveniently obtained from (I) and (III). KOH-EtOH at 2° transforms (II) into aβ-epoxy-y-β'-hydroxyethoxypropane (IV), b.p. 92—94°/2 mm., converted by boiling H₂O into γ-β'-213 hydroxyethoxypropane-aβ-diol, b.p. $162-164^\circ/3$ mm., also obtained from (II) and boiling aq. Na_2CO_3 ; this is transformed by paracetaldehyde and a little 50% H_2SO_4 into 2-methyl-4-β-hydroxyethoxymethyl-1: 3-dioxolen, b.p. $113-115^\circ/8$ mm. (IV) is transformed by conc. aq. NH_3 into a-amino-y-β-hydroxyethoxypropan-β-ol, b.p. $141-144^\circ/2-4$ mm., and by NHMe2 into the a-NMe2-compound, b.p. $102-105^\circ/1-2$ mm. 2-Hydroxymethyl-1: 4-dioxan (V), b.p. $92-93^\circ/8$ mm., is obtained by treating (IV) with conc. H_2SO_4 at room temp. and then at 100° ; the 3:5-dinitrobenzoate has m.p. $106-108^\circ$ (decomp.). KOH-EtOH and (II) afford a-ethoxy-y-β-hydroxyethoxypropan-β-ol, b.p. $115-122^\circ/2$ mm., and (V). Dipole moments of derivatives of ethylene glycol and glycerides.—See A., 1943, I, 193. Utilisation of aliphatic nitro-compounds. VIII. Nitrotriols (nitro-glycerols) prepared from simple aldehydes. C. A. Sprang [with E. F. Degering] (f. Amer. Chem. Soc., 1943, 65, 628).—NO₂·CH₂·CHEt·OH (from MeNO₂ and EtCHO) (1 mol.), 40% aq. CH₂O (1 mol.), and K₂CO₃ in EtOH at room temp. give β-nitro-β-hydroxymethyl-n-pentane-aγ-diol, m.p. 141°. β-Nitro-β-hydroxymethyl-n-hexane-, m.p. 154—156°, -n-nonane-, m.p. 145—147°, and -ε-methyl-n-hexane-1: 3-diol, m.p. 144—146°, are similarly prepared. R. S. C. Production of isopropyl ether.—See B., 1943, II, 207. Action of polyhalogenated derivatives on organomagnesium compounds. G. Sanna [in part with S. Spano] (Gazzetta, 1942, 72, 305—312).—CCl₃·SCl with MgEtBr in Et₂O gives CCl_3 Et sulphide, b.p. $85^{\circ}/10$ mm., and (CCl₃·S)₂ (I), and with MgPhBr gives Ph CCl_3 sulphide, b.p. $135^{\circ}/10$ mm., (I), and Ph_2 . CCl₃·SO₂Cl with MgEtBr in Et₂O gives CCl_3 Et sulphone and CCl₃·SOEt, and with MgPhBr gives Ph CCl_3 sulphone, m.p. 121° , and Ph_2 . E. W. W. Sulphonium compounds. II. Derivatives of nitric and of organic acids. F. E. Ray and G. J. Szasz (J. Org. Chem., 1943, 8, 121—125).—Me₂S and MeNO₃ at room temp. slowly afford trimethylsulphonium nitrate (corresponding mono- and di-picrate, m.p. 199° and 70—75° respectively). MeEtS and MeNO₃ give a non-cryst. product transformed into SMe₃ picrate. Evidence of formation of a sulphonium compound from EtNO₃ and Me₂S was not obtained. SEt₃·NO₃ could not be obtained pure
from EtNO₃ and Et₂S but the product is convertible into SEt₃ picrate, m.p. 115°; the change is accelerated by C₅H₅N. Impure HCO₂SMe₃ is derived from Me₂S and HCO₂Me. Me stearate when heated with Me₂S for 200 hr. at 70° yields some solid and the product affords SMe₃ dipicrate. No visible change occurs between cottonseed oil and Me₂S but the aq. extract gives a picrate, m.p. 90° to a red liquid. Sulphonation of β-methylallyl chloride. Mobility of the olefinic linking in unsaturated sulphonic acids. C. M. Suter and F. G. Bordwell (J. Amer. Chem. Soc., 1943, 65, 507—517).— CH₂:CMe·CH₂Cl (I) (1·73 mols.) and dioxan, SO₃ (2·13 mols.) in (CH₂Cl)² at 0° give a solution (A), which with NH₂Ph gives exothermally 20% of NH₂Ph,H₂SO₄ (II) + NH₂Ph phenylsulphamate (III) (see below) with 80% of mixed monosulphonates; passing NH₃ into (A) gives similar mixed NH₄ salts. Purification of the NH₄ (B) or NH₂Ph (C) salts yields products which give AgCl with warm AgNO₃ but no SO₄" with KMnO₄ and thus are CH₂Cl·C(:CH₂)·CH₂·SO₃M (D); crude (B) give ~20% of SO₄" and thus contain <25% of CH₂Cl·CMe·CH·SO₃NH₄ (E), and crude (B) or (C) with aq. HNO₃-AgNO₃ at 100° give only ~65% of AgCl, indicating presence of ~35% of CHCl:CMe·SO₃M. The (II) and (III) are derived from β-methyl-β-chloromethylethionic anhydride (IV). CH₂Cl·CMe·CH-2·CMe·CMe·CMe·CMe·SO₃M. The (III) and (III) are derived from β-methyl-β-chloromethylethionic anhydride (IV). thiuronium salts, m.p. 103—105° and 123—128°, derived from (D) and (E), respectively, or vice versa. A 1:1 mixture (F) of CH₂:C(CH₂Cl)₂ and CHCl:CMe·CH₂Cl [obtained from (I) by Cl₂] with boiling aq. Na₂SO₃ gives Na a-chloro-β-methyl-Δα-propene-γ-sulphonate, decomp. 305—310° [and some disulphonate (V); with NaOH, but not AgNO₃, gives Cl'; with cold KMnO₄ gives no SO₄"], and thence the benzylthiuronium salt, m.p. 123·5—125°, and, by way of the acid chloride, the amide, m.p. 68—69°. With PCl₅ or POCl₃ and then Et₂O-NH₃, (B) give γ-chloro-β-methyl-Δα-propene-α-sulphonamide, m.p. 75·5—77°, which with O₃ gives 40% of H₂SO₄ but only 2% of CH₂O. With aq. Na₂SO₃, (B) give salts (**VI**), converted by POCl₃ into SO₂Cl·CH:CMe·CH₂·SO₂Cl, m.p. 78—79°, also obtained from (**V**) by PCl₅. The rearrangement occurs during prep. of (**V**) or (**VI**), since (a) (**V**) yields the corresponding dibenzylthiuronium salt, dimorphic, m.p. 139—141° and 158—159°, and (b) with O₃ gives 69% of CH₂O but only 9% of SO₄". Rearrangement also occurs during prep. of OPb derivatives. sponding differential sair, dimorphic, m.p. 138—141° and 158—159°, and (b) with O₃ gives 69% of CH₂O but only 9% of SO₄°. Rearrangement also occurs during prep. of OPh-derivatives: with PhOH in boiling 33% NaOH, (B) give Na α-phenoxy-β-methyl-Δα-propene-y-sulphonate (VII), darkens 340°, decomp. 345—350° (derived benzylthiuronium salt, m.p. 145—146°), also obtained from (IV) by PhOH and NaOH at 100° and from (I) by CISO₃H, followed by NaOPh. Its structure is proved by oxidation by aq. Br to C₆H₂Br₃·OH and failure to give SO₄′′ with KMnO₄. It is partly isomerised in hot AcOH, yielding then SO₄″ with KMnO₄ and CH₂O with O₃. With K₂CO₃ and PhOH in COMe₂ and then aq. Na₂SO₃, (F) gives Na γ-phenoxy-β-methylenepropane-α-sulphonate, dimorphic, m.p. 226—230° (derived benzylthiuronium salt, m.p. 117—118°), which with KMnO₄ at 0° and then the b.p. gives OPh·CH₂·CO₂H, with O₃ gives CH₂O (45%), with Br gives > a trace of C₆H₂Br₃·OH, and in hot 10% NaOH rearranges to (VII). With SO₃ in (CH₂Cl)₂ at 0°, (I) gives (IV) (50%), m.p. 66—68°, stable at —5° but not at room temp. (vac.), which in H₂O is acidic (litmus), yields SO₄″ but not Cl′ immediately, and is only slightly unsaturated, but in aq. alkali is highly unsaturated, yielding Cl′ and SO₄″ quantitatively when heated therein. R. S. C. Manufacture of formic acid.—See B., 1943, II, 207 Ozonisation of acetic acid and acetic anhydride. H. Paillard and E. Briner (Helv. Chim. Acta, 1942, 25, 1528—1533).—AcOH is very slightly attacked by O₃ yielding AcO₂H, which in presence of H₂O is decomposed with formation of H₂O₂. Ac₂O is even more slowly attacked. The bluish colour of a solution of O₃ in AcOH disappears when O₃ is removed and the ultra-violet absorption spectrum becomes identical with that prior to ozonisation. AcOH is therefore a very suitable solvent for ozonisation reactions. Derivatives of aldol and crotonaldehyde. II. α-Chlorocrotyl acetate. E. Spath and H. Schmid (Ber., 1940, 73, [B], 243—248). —The product of the action of AcCl on CHMe:CH·CHO at 35—40° is identified as α-chlorocrotyl acetate, b.p. 64—66°/8·5 mm., since it is readily hydrolysed by cold H₂O to CHMe:CH·CHO (identified as the semicarbazone) and converted by ozonisation in EtCl with treatment of the product with H O containing 7n dust quited. treatment of the product with H₂O containing Zn dust, quinol, and AgNO₃ into MeCHO; the yield of MeCHO is approx. equal to that obtained under similar conditions from CHMe.CH·CH(OAc)₂. PracHO and AcCl afford a-chloro-n-butyl acetate, b.p. 51—52°/ 9.5 mm. Preparation and properties of trifluoromethyl compounds. J. H. Simons and E. O. Ramler (J. Amer. Chem. Soc., 1943, 65, 389—392).—(CF₃·CO₂)₂Ba and boiling PCl₃ give trifluoroacetyl chloride (I) (53%), m.p. -146°, b.p. -27°, and thence the known CF₃·CO·NH₂. PBr₃ at 190° gives similarly trifluoroacetyl bromide (59·3%), m.p. -136°, b.p. -5°. With C₆H₆-AlCl₃ at ~5°—room temp., (I) yields trifluoroacetophenone (43%), m.p. ~40°, b.p. 75°/37 mm., 152°/730 mm., which is sol. in 10% aq. KOH, giving BzOH and a gas (? CHF₃), yields a cryst. NaHSO₃ compound, rapidly gives CHF₃ if a neutral solvent is present, gives a 2: 4-dinitrophenylhydrazone, m.p. 94·5—95·5°, does not give a cyanohydrin, with PCl₄ at 175° a neutral solvent is present, gives a 2:4-dinitrophenylhydrazone, m.p. $94\cdot5-95\cdot5^\circ$, does not give a cyanohydrin, with PCI₅ at 175° yields $\beta\beta$ -dichloro-aaa-trifluoro- β -phenylethane ($48\cdot5^\circ$), b.p. $89-90^\circ$ (resistant to SbF₃), and with MgPhBr-Et₂O gives diphenyltrifluoro-methylcarbinol (46°), m.p. $74-74\cdot5^\circ$, b.p. $157^\circ/17$ mm. CPhF₃ (133), Fe (1 g.), and Br (24 c.c.) at, successively, $60-70^\circ$, 56° , and 60° give $m\text{-}C_6H_4\text{Br}\text{-}CF_3$ (11) (52°), b.p. $151-152^\circ$, hydrolysed by boiling 80° 0 H₂SO₄ to $m\text{-}C_6H_4\text{Br}\text{-}CO_2\text{H}$; use of more Fe leads to 25° 0 of (11) and 8° 0 of $3:4:1\text{-}C_6H_3\text{Br}_2\text{-}CF_3$, b.p. $102-104^\circ/25$ mm., hydrolysed to $3:4:1\text{-}C_6H_3\text{Br}_2\text{-}CO_2\text{H}$. In Et₂O, (11) gives a Grignard reagent (100° 0), which with Me₂SO₄-Et₂O at the b.p. gives CPhF₃ (65° 0) and $m\text{-}C_6H_4\text{Me}\text{-}CF_3$ ($9\cdot1^\circ$ 0), b.p. 127° (hydrolysed to $m\text{-}C_6H_4\text{Me}\text{-}CO_2\text{H}$). $CF_3\text{-}\text{COl}$ 1 could not be prepared. An excellent yield of CPhF₃ is obtained from CPhCl₃ by HF at high temp./>1 atm. F is detected by pptn. by Ce(NO₃)₃-AcOH. temp./>1 atm. F is detected by pptn. by Ce(NO₃)₃-AcOH. Resolution and rates of hydrolysis of dl-a-bromopropionic acid and its glycine derivatives. A. F. Chadwick and E. Pacsu (J. Amer. Chem. Soc., 1943, 65, 392—402).—Yields by resolution of dl-CHMeBr·CO₂H (I) by alkaloids are low because of decomp. of the salts. dl-a-Bromopropionylglycine ions are equally unstable. Bromopropionylglycylglycine is resolved by quinine in 0.8% EtOAc solution, yielding a Na salt, $[a]_D^{20} + 27.7^\circ$ in H_2O , and an acid, $[a]_D^{10} - 18.0^\circ$. The kinetics of the first- and second-order reactions involved in removal of Br from the ions are investigated; mechanisms of the solution solut isms are discussed. Decomp. of the solid brucine salts is measured; that of (I) yields dl-lactylglycinelactone. R. S. C. Synthesis of methacrylic acid. T. White (J.C.S., 1943, 238-By careful control of conditions, Me isopropenyl ketone may be oxidised by strongly alkaline aq. NaOCl to CH2 CMe CO2H, the Me ester of which with the appropriate alcohol gives the ethylene di-, b.p. 122—126°/15 mm., and the n-hexyl esters, b.p. 86—88°/17 mm. F. R. S. Normal addition of hydrogen bromide to Δ^{β} -butenoic, Δ^{γ} -pentenoic, and Δ^{δ} -hexenoic acid in hexane. A. Michael and H. S. Mason (J. Amer. Chem. Soc., 1943, 65, 683—686).—Mixtures of $\operatorname{Br}\cdot[\operatorname{CH}_2]_{3-4}\cdot\operatorname{CO}_2H$ with CHMeBr· $[\operatorname{CH}_2]_{2-3}\cdot\operatorname{CO}_2H$ are analysed by the much faster reaction of the sec. bromides with AgNO_3 -HNO₃-H₂O-EtOH at 27°. When O₂ and peroxides are rigidly excluded, addition of HBr to $\operatorname{CH}_2\cdot\operatorname{CH}\cdot[\operatorname{CH}_2]_{1-3}\cdot\operatorname{CO}_2H$ is 88—100% (in one case 75%) ''normal.'' Wandering of halogen atoms in carbon chains and rings. V. C. D. Nenitzescu, I. G. Gavat, and D. Cocora (Ber., 1940, 73, [B], 233—237).—Addition of Δ^a -hexenoic acid (I) in C_6H_6 to AlCl₃ in C_6H_6 at 45—50° yields exclusively δ -phenylhexoic acid, b.p. 143° /1 mm. (chloride, b.p. 138° /11 mm.; amide, m.p. 75°). Under similar conditions but with CS₂ as solvent (I) and AlCl₃ give a mixture of partly halogenated Δ^β - and Δ^γ -acids, converted by hydrolysis followed by ozonisation into some (CH₂·CO₂H₂) but no Pr^CCO₂H. Migration of the double linking occurs in a direction opposite to Migration of the double linking occurs in a direction opposite to that of the classical Fittig reaction. This isomerisation is not general since Δ^1 -cyclohexenecarboxylic acid is not thus affected. β -Methyl- Δ^a -hexenoic acid, AlCl₃, and C₆H₆ give δ -phenyl- β -methylhexoic acid (II), b.p. 138—140°/1·5 mm. (chloride, b.p. 119°/5 mm.; amide, m.p. 78°). δ -Phenylpentan- β -ol, b.p. 124—125°/15
mm., objective by reduction of the corresponding ketone, is converted by PBr₃ into the corresponding bromide, b.p. 115°/10 mm., which is condensed with CH₂(CO₂Et)₂; the product is hydrolysed and decarboxylated to (II). Unexpectedly, sorbic acid, AlCl₃, and C₆H₄ afford (II). Esters of methylneopentylacetic acid. F. C. Whitmore, J. D. Surmatis, and J. N. Haimsohn (J. Amer. Chem. Soc., 1943, 65, 487). —Et, b.p. 176·8°/734 mm., Pra, b.p. 196·6°/734 mm., Bua, b.p. 213·8°/734 mm., and n-hexyl any-trimethyl-n-valerate, b.p. 247·2°/734 mm., are obtained from the acid by SOCl₂ and then ROH A monomeric aldehyde peroxide (isocarboxylic acid), H. J. Backer and J. Strating (Ber., 1940, 73, [B], 316—317).—Mainly comment on the work of Rieche et al. (A., 1940, II, 63). Previous work (A., 1934, 662; 1935, 498) has shown that 3-tert.-butyl-2:5-dihydrothiophen 1:1-dioxide gives an ozonide, hydrolysed to an isocarboxylic acid, convertible by alkali into CMe₃·CO·CH₂·SO₂·CH₂·CO₂H. A. T. P. Fatty acids. XII. Preparation of α - and β -linoleic acids by debromination in various solvents. Chemistry of these acids. J. S. Frankel and J. B. Brown (J. Amer. Chem. Soc., 1943, 65, 415—418; cf. A., 1943, II, 151).—The following nomenclature is adopted for linoleic acids: no prefix = the cis-cis acid (I) (Br₄ no. 102.9); α - the mixture obtained from the tetrabromides (II), m.p. 114—115°; β - product from liquid tetrabromides obtained by brominating (I) or the α -acid; crystallisation acid = product obtained by crystallising the acids from semi-drying oils; isomeric acids (cis-trans or trans-cis) = acids giving only liquid tetrabromides. Et₂O is the best solvent for debromination; $\Pr \beta_2 O$ and dioxan are also satisfactory; MeOH leads to Me esters; C_5H_5N is difficult to remove from the product; AcOH leads to acids of low I val. and Br, no.; light petroleum is useless. C_5H_5N leads to acids of Fatty acids. XII. Preparation of a- and β -linoleic acids by to remove from the product; AcOH leads to acids of low 1 val. and Br_4 no.; light petroleum is useless. $\text{C}_5\text{H}_5\text{N}$ leads to acids of correct Br_4 no. but low m.p. In MeOH liquid tetrabromides give only 40-60% of distillable acid, probably owing to polymerisation, but the yield from (II) is nearly quant. Oxidation of the a-acid gives $\sim 50\%$ of sativic acids, but little or none is obtained from the β -acid. α - and β -Acids contain $1\cdot 0-1\cdot 2$ and $1\cdot 9-6\cdot 4\%$ of conjugated acid. The β - differs from the α -acid mainly in containing only 15-53% of (I), 32-70% of isomeric acids, and 6-22% of much altered acids. The isomeric acids are not trans-trans, since they give no tetrabromide m p. 78% With two samples of of much actions are not trans-trans, since they give no tetrabromide, m.p. 78°. With two samples of β -acid the I val. rises with time, but this is only partly due to conjugation. β -Acid, obtained by debromination in C_6H_6N , had m.p. -2°. Crystallisation of the β -acid at low temp. has not been Heat-polymerisation of triglycerides. I. Tristearin and triolein. N. L. Phalnikar and B. V. Bidde (J. Univ. Bombay, 1943, 11. A. Part 5, 77-82).—Distillation of tristearin at 30 mm. yields stearic acid (58), tristearin (22), and stearone with traces of hydrocarbons (26%), with a negligible residue. Triolein similarly gives nonoic and oleic acids, triolein, and hydrocarbons with a trace of ketones, with a residue yielding on hydrolysis sebacic and oleic acids, and polymerised acid fractions, mol. wt. 553, 443, 539, and 634. In each case much acraldehyde and some CO2 are evolved. Condensations. XIX. Alkylation of β-keto-esters with alcohols and ethers in presence of boron trifluoride. J. T. Adams, B. Abramovitch, and C. R. Hauser (J. Amer. Chem. Soc., 1943, 65, 552—554; cf. A., 1943, II, 119).—Passing BF₃ into ROH (1 mol.) or R₂O (0.5 mol.) and COR'-CH₂·CO₂R'' gives COR'-CHR·CO₂R''; side-reactions are dehydrogenation of ROH or dealcoholation of ROH or dealcoholation of ROH or dealcoholation of ROH or dealcoholation of ROH or dealcoholation. R₂O to give olefines (which may polymerise), exchange of R" for R, and further reaction of the product. Time and temp. of reaction greatly affect the yield and under suitable conditions the yield of CHPr\(\beta\)Ac·CO₂Et (I), b.p. 97—98°/20 mm., by use of Pr\(\beta\)OH is increased to 67% cf. A., 1940, II, 374). Et α-cyclohexylacetoacetate, b.p. 146—148°/20 mm., is obtained in 32—34% yield and with 5% NaOH gives cyclohexylacetone. CH₂Ac·CO₂Et (**II**) with BuγOH or EtOBuγ (in this and other cases also BF₃) gives 6—14% of CHBuγAc·CO₂Buγ (and unsaturated hydrocarbons) and thence (H₂SO₄-AcOH) COMe·CH₂Buγ (23%), b.p. 123—126°. CMe₂Et·OH and (**II**) give an ester, hydrolysed to CMe₂Et·CH₂·COMe. (CH₂Ph)₂O and (**II**) at −70° to −10° give 18% of CH₂Ph·CHAc·CO₂Et, b.p. 164—166°/12 mm. CHMeAc·CO₂Et and Prβ₂O at 24° give CMePrβAc·CO₂Et (55%), b.p. 98—98·5°/15 mm., and COMe·CHMePrα (semicarbazone, m.p. 107—107·5°). Alkylation does not occur with (a) (**II**) and Bu^αOH, BuβOH, sec.-BuOH, Et₂O, or Prβ₂O, (b) CH₂Bz·CO₂Et and PrβOH, Et₂O, or Prβ₂O, (c) (**I**) and Prβ₂O, or d(d) CH₂(CO₂Et)₂ or MeNO₂ and Prβ₂O or BuγOH; (**II**) and BuOH give CH₂Ac·CO₂R (R = Bu^α or Buβ). R. S. C. Stereochemical relationships of the $\theta\iota$ -oxidostearic acids and the $\theta\iota$ -dihydroxystearic acids. D. Atherton and T. P. Hilditch (J.C.S., 1943, 204—208).—When the two isomeric forms of $\theta\iota$ -oxidostearic acid are treated with Et₂O-HCl, chlorohydroxystearic acids are produced which in presence of alkali re-form the original oxidoacid. Hence the inversion, which occurs when either of the $\theta\iota$ -(OH)₂-acids is converted into the chlorohydroxy-acids and the latter, through the oxido-compounds, into the isomeric form of the (OH)₂-acid, must take place during replacement of OH by Cl. This leads to the conclusion that no inversion takes place during the conversion of oleic and elaidic acid into the $\theta\iota$ -(OH)₂-acids, m.p. 95° and 132°, respectively, by means of BzO₂H, AcO₂H, or Caro's acid. Oxidation of resorcinol by hydrogen peroxide in presence of tungstic acid sol as catalyst. B. C. Kar (J. Indian Chem. Soc., 1942, 19, 499—500).—Oxidation of resorcinol with H₂O₂, in presence of tungstic or molybdic acid sol, gives CO₂ and maleic acid. The kinetics of the reaction are studied. A. T. P. Autocondensation of oxalacetic acid. F. L. Breusch and R. Tulus (Rev. Fac. Sci. Istanbul, 1942, A, 6, 144—149).—Oxalacetic acid I) in cryst. form occurs only as the cis- and trans-enolic modifications but in aq. solution is present also in the keto-form and, under certain conditions, as keto-hydrate (II). This latter form is subject to autocondensation with a second mol. of (I) to products which resemble citric acid and give the CBr₃·CO·CHBr₂ reaction. In conc. aq. solution the production of (II) is favoured by conc. alkalis, in dil. aq. solution by Ca... H. W. Preparation of lower aldonic acids by oxidation of sugars in alkaline solution. H. S. Isbell (J. Res. Nat. Bur. Stand., 1942, 29, 227—232).—Directions are given for the prep. of l-erythronic (I), d-threonic (II), d-lyxonic, l-xylonic, and d-arabonic acid (III) by oxidation with O_2 of the appropriate sugar in alkaline solution. (III) is obtained in ~70% yield in agreement with the results of previous investigators; with the other aldonic acids lower yields are obtained which do not differ greatly from those obtained by oxidation with air. The simplicity of the method is a great recommendation. (I) and (II) are separated as their brucine salts, the optical rotations of which are represented by: $[a]_2^{p_0} = -28\cdot 4 - 0\cdot 85C + 0\cdot 025C^2$ in which C is the g. of anhyd. brucine l-erythronate in 100 ml. of aq. solution, and $[a]_2^{p_0} = -28\cdot 5 - 0\cdot 9C + 0\cdot 025C^2$ in which C is the g. of anhyd. brucine d-threonate in 200 ml. of aq. solution. Synthesis of some a-acyletronic acids. W. Baker, K. D. Grice, and A. B. A. Jansen (f.C.S., 1943, 241—242).—a-Acetyltetronanilide (improved prep.) is hydrolysed in cold alkaline solution to a-acetyltetronic acid (\mathbf{I}), which condenses with aldehydes in AcOH and a little piperidine in poor yield to give a-(β' -phenylacrylyl)-, m.p. 138—140°, a-(β' -phenylpropionyl)-, m.p. 131°, a-(β' -p-anisylacrylyl)-, m.p. 164°, a-(β' -styrylacrylyl)-, m.p. 178—182° [reduced (\mathbf{H}_2 -Ni) to a-(δ' -phenylvaleryl)-, m.p. 81·5—82·5°], and a-(β' -2-furylacrylyl)-tetronic acid, m.p. 146—148° [reduced to the a(β' -2-tetrahydrofurylpropionyl)-acid, m.p. 73·5—74°]. The oxime of (\mathbf{I}) undergoes the Beckmann transformation (\mathbf{PCl}_5 - \mathbf{PCl}_3) to a-acetamidotetronic acid, m.p. 170°. Diethyl acetal of γ-methyl- Δ^{γ} -butenal. D. Kritchevsky (J.Amer.Chem.Soc., 1943, 65, 487).—CH₂:CMe·CH₂·MgCl and CH(OEt)₃ in boiling Et₂O give CH₂:CMe·CH₂·CH(OEt)₂ (24%), b.p. 154—155°, and then β-methyl- Δ^{β} -butenaldehyde-p-nitro-, m.p. 157°, and -2: 4-dinitro-phenylhydrazone, m.p. 181°, and -semicarbazone, m.p. 204—205°. R. S. C. Ultra-violet absorption spectra of tagetone and related ketones.—See A., 1943, I, 191. β -Alkylthiolethylamines and the corresponding carbamides, sulphoxides, and sulphones. K. W. Brighton and E. E. Reid (*J. Amer. Chem. Soc.*, 1943, 65, 458—459).—Adding RSH and then Br·[CH₂]·NH₂·HBr to NaOEt-EtOH and then boiling gives β-nbutyl-, b.p. 211°, β-n-, b.p. 231°, and β-iso-amyl-, b.p. 231°, β-nhexyl-, b.p. 252°, and β-n-heptyl-thiolethylamine, b.p. 270°, which yield their respective hydrochlorides, m.p. 118°, —, 167°, 131°, and 121°, carbamide derivatives, m.p. 91°, 101°, 111°, 99°, and 95°, sulphoxide hydrochlorides, m.p. 112°, 121°, —, 127°, and 123°, and sulphone hydrochlorides, m.p. 211°,
221°, —, 238°, and 230°. Iron pentacarbonyl as solvent and reaction medium.—See A., 1943, I, 198. High mol. wt. aliphatic compounds of nitrogen and sulphur. B. A. Hunter (Iowa State Coll. J. Sci., 1942, 17, 85—87; cf. A., 1941, II, 279, 283).—The following have been prepared: N-n-octadecyl-ammonium nicotinate, m.p. 78—79°, -nicotinamide, m.p. 91—92°, -pyrrole, m.p. 74—75°, 2:5-dimethyl-1-n-octadecyl-, m.p. 39—40°, and 1-n-dodecyl-pyrrole, b.p. 138—140°/1 mm., 1-n-octadecyl-m.p. 107—108° (Et₂ ester, m.p. 33—33-5°), and 1-n-dodecyl-pyrrole 3:4-dicarboxylic acid (Et₂ ester, b.p. 240—243°/5 mm.). n-C₁₂H₂₅°NH₂ with HNO₂ gives some n-C₁₂H₂₅°OH with n- Δ a-C₁₂H₂₄, converted into n-a β -C₁₂H₂₄Br₂, b.p. 156—158°/6 mm. Nitration of n-C₁₂H₂₅°CO₂H yields presumably n-a-NO₂°C₁₂H₁₄°CO₂H (Et ester, b.p. 150—160°/1 mm.). Contrary to Collin et al. (A., 1933, 1141), n-C₁₈H₃₇°SH has m.p. 31°. Contrary to the principles of homology, n-C₁₂H₂₅°SH with Na yields (n-C₁₂H₂₅)₂S. Fuming H₂SO₄ sulphonates n-C₁₇H₃₅°CO₂H at 50° and n-C₁₇H₃₅°CN, the Ba salt being isolated in the former case. Action of thionyl chloride on urethanes. L. C. Raiford and H. B. Freyermuth (J. Org. Chem., 1943, 8, 174—178).—Under the conditions of Warren et al. (A., 1935, 854), the production of an allophanate from NH₂·CO₂Et or NH₂·CO₂Bu^a (I) could not be confirmed. (I) and SOCl₂ in boiling C₆H₆ afford Bu^a allophanate, m.p. 149—150°, with a small amount of cyanuric acid. The action of SOCl₂ with N-aryl-substituted urethanes to give uretediones is sp., as far as tested, for the Ph derivative. Compounds containing "negatively" substituted Ph suffer no change when refluxed with the reagent but tar is formed when the substituent is alkyl. B-C₁₀H₁·NH·CO₂Et (II) is slowly transformed by SOCl₂ at 0° into Et 1-chloro-2-naphthylaminoformate, m.p. 94—95°, and Et 2-naphthyliminochlorosulphinate, m.p. 133—134°, which loses SO₂ when preserved particularly in sunlight and partly regenerates (II) when boiled with EtOH. Et 4-chloro-1-naphthylaminoformate, m.p. 143—144°, is obtained similarly from a-C₁₀H₇·NH·CO₂Et; it is hydrolysed by KOH-EtOH to 4: 1-C₁₀H₆Cl·NHAc, m.p. 97—98°. H. W. Amino-acids and their derivatives. V. Synthesis of α-amino-α-methylbutyric acid and α-amino-α-isopropylbutyric acid. L. Li, K. Lin, Y. Huang, and S. Kang. VI. Synthesis of α-amino-α-ethylvaleric acid. L. Li, K. Lin, Y. Huang, and A. Y. L. Huang. VII. Synthesis of α-amino-α-ethylvaleric acid. L. Li, K. Lin, Y. Huang, and A. Y. L. Huang. VII. Synthesis of α-amino-δ-methyl-α-isoamylhexoic acid (α-aminodisoamylacetic acid). Y. Huang, K. Lin, L. Li, and M. Lu (J. Chinese Chem. Soc., 1942, 9, 1—13, 14—30, 31—40).—V. CN·CHEt·CO₂Et, I. and NaOEt-EtOH-MeI give CN·CMEt·CO₂Et, b.p. 90·5—94°/18·5 mm., which with conc. H₂SO₄ at 37° (50 hr.) affords Et α-carbamyl-α-methylbutyrate, m.p. 46—46·5° [corresponding butyric acid, m.p. 99° (decomp.)]. Bromination in CHCl₃-aq. NaOH at −12° to −15° then yields the N-Br-derivative, converted by 30% aq. KOH at 50—70° into Et α-amino-α-methylbutyrate, b.p. 65—66°/20 mm. (picrate, new m.p. 151·5—152·5°; phenyl-carbamyl derivative, m.p. 114°; free butyric acid, m.p. 308°). A product, b.p. 95·5°/13·5 mm., containing 91% of (I), prepared from CN·CHNa·CO₂Et and EtBr-EtOH, reacts with PrβBr-NaOEt-EtOH to give CN·CEtPrβ·CO₂Et, b.p. 105—108·5°/15 mm., and thence (conc. H₂SO₄ at 100° for 25 min.) Et α-carbamyl-α-isopropylbutyrate, m.p. 88°; its N-Br-derivative and 30% aq. KOH at 60° afford Et α-amino-α-isopropylbutyrate, b.p. 52°/4·3 mm. (hydrochloride, m.p. 136·5—138°). The corresponding butyric acid, m.p. 283° (decomp.), affords a chloroacetyl derivative, m.p. 177·5°, a phenylcarbamyl compound, m.p. 181° (decomp.), and thence 1-phenyl-4-ethyl-4-isopropyl-hydantoin, m.p. 115·5—116·5°. VI. CN·CHPr·CO₂Et and Et-I-NaOEt-EtOH give CN·CEtPr·CO₂Et (II); pure (II) is converted by conc. H₂SO₄ at 100° (bath) into Et a-carbamyl-a-ethylvalerate (III), m.p. 86·5°; aq. KOH gives the corresponding acid (IV), m.p. 139·5—140°, also obtained from (II) by 26% aq. KOH at 120°, followed by conc. H₂SO₄ at 100° (bath). (III) and Br-10% aq. NaOH-CHCl₃ at -12° to -15° give the N-Br-derivative (V), converted by 30% aq. KOH at 50—60° into Et a-amino-a-ethylvalerate, b.p. 61°/3·8 mm. (hydrochloride, m.p. 80—86°). (V) with NaOMe-MeOH at room temp. overnight, then at 80°, affords Et a-carbomethoxyamino-a-ethylvalerate (VI), b.p. 92—93·5°/5 mm. Br-MeOH and (IV)-NaOEt-EtOH at 0°, followed by NaOMe, at room temp. overnight, then at 80°, yield Me a-amino-a-ethylvalerate, b.p. 94°/6·5 mm. (hydrochloride, m.p. 133—134°; phenylcarbamyl derivative, m.p. 122—124°), and some a-carbomethoxyamino-a-ethylvalerate (VII), m.p. 112° (decomp.) [obtained also from (IV) and Br-MeOH-NaOMe at 20°]. a-Amino-a-ethylvaleric acid, m.p. 303° (sealed capillary) (chloroacetyl, m.p. 191—192°, carbamyl, decomp. 187—187·5°, and hydantoin derivative, m.p. 145·5—146·5°), is obtained by hydrolysis of its Me or Et ester, by heating the respective hydrochloride with Ag₂CO₃, or by hydrolytic decomp., using aq. Ba(OH)₂ at 120—125° or 120—140°, of (VI) and (VII), respectively. VII. CN·C(CH₂Buβ)₂·CO₂Et, b.p. 157°/16 mm., and conc. H₂SO₄ at 100° (bath) give Et α-carbamyl-δ-methyl-α-isoamylhexoate, m.p. 65—66° (acid, m.p. 140—143°; diisoamylacetamide, new m.p. 118—118·5°), thence the N-Br-derivative (VIII), converted by 10% aq. NaOH at 25—30°, then at <20°, into carbethoxydiisoamylmethylcarbimide (IX), b.p. 126·5—127°/~5·5 mm. (NH₂Ph gives the phenylcarbamido-derivative, Et a-phenylcarbamido-8-methyl-a-isoamylhexoate, m.p. 118—119°). (IX) refluxed with fuming HCl yields, through the hydrochloride, m.p. 280—282° (decomp.), a-amino-8-methyl-a-isoamylhexoic acid (a-aminodiisoamylacetic acid) (X), m.p. 290° (decomp.) [phenylcarbamyl derivative, m.p. 177° (decomp.); chloroacetyl compound, m.p. 153°]. (IX) and a-amino-y-methyl-a-isobutyl valerate in N-NaOH at 70—80° afford N-(carboxydiisobutylmethyl)-N'-(carbethoxydiisoamylmethyl)carbamide, m.p. 184—185°. (VIII) and NaOMe-MeOH at 80—83° yield Et a-carbomethoxyamino-8-methyl-a-isoamylhexoate, b.p. 132—133°/~4·3 mm., hydrolysed by refluxing with aq. Ba(OH)₂ at 120—125° to (X). A. T. P. Synthesis of dl-serine. C. E. Redemann and R. N. Icke (J. Org. Chem., 1943, 8, 159—161).—Passage of $OH^{\cdot}[CH_2]_2 \cdot OEt$ over Cu chromite heated at $310-330^{\circ}$ in a vertical Pyrex tube gives $OEt^{\cdot}CH_2^{\cdot}CHO$ in $30-35^{\circ}$ /y yield. This is converted into dl-serine, m.p. $243-244^{\circ}$ (decomp.) after darkening at 228° (corr.), by the modified Strecker reaction. H. W. Characteristic reaction possibilities of natural compounds containing sulphur. A. Schöberl (Angew. Chem., 1940, 53, 227—232).— A lecture. Aliphatic carbodi-imides. II. E. Schmidt and W. Striewsky (Ber., 1940, 73, [B], 286—293).—Simplified methods for the prep. of OMe·CH₂·CNS (I) and OEt·CH₂·CNS are given. NH₂Me transforms (I) in Et₂O into N-methyl-N'-methoxymethylthiocarbamide, m.p. 76—77°, converted by HgO in dry Et₂O into methylmethoxymethylcarbodi-imide (II), b.p. 35·5—36·5°/10 mm., which slowly becomes acid when preserved yielding a solid which does not regenerate (II) when distilled. Similar methods are used in the prep. of N-methyl-N'-ethoxymethyl-, m.p. 83—84°; N-methoxymethyl-N'-n-propyl-, m.p. 58·5—59·5°; N-methoxymethyl-N'-isopropyl-, nep. 80·5—81·5°, or, less frequently, plates, m.p. 73—75° when rapidly heated or m.p. 80—81° softens at 73—75° when slowly heated; N-ethoxymethyl-N'-isopropyl-, m.p. 77—78°; N-methoxymethyl-N'-isopropyl-, and N-cyclohexyl-N'-ethoxymethyl-N'-methoxymethyl-, m.p. 103—104°, and N-cyclohexyl-N'-ethoxymethyl-, m.p. 109—110°, -thiocarbamide. These are converted respectively into methylethoxymethyl-, b.p. 46—47°/10 mm.; methoxymethyl-n-propyl-, b.p. 61·5—62·5°/10 mm.; methoxymethylisopropyl, b.p. 62·5—63·5°/10 mm.; methoxymethylisopropyl, b.p. 62·5—63·5°/10 mm.; methoxymethylisopropyl, b.p. 97—98°/10 mm.; cyclohexylmethoxymethyl-, b.p. 110°—110°/10 mm.; and cyclohexylethoxymethyl-, b.p. 117·5—118·5°/10 mm., -carbodi-imide. Hydrogenation of adiponitrile.—See B., 1943, II, 209. [Manufacture of] unsaturated ether nitriles, cyanoalkyl ethers of monohydric alicyclic alcohols, and cyanoalkyl ethers of ether alcohols. —See B., 1943, II, 208. #### II.—SUGARS AND GLUCOSIDES. Carbohydrate formation in nature.—See A., 1943, III, 534. Lead tetra-acetate oxidations in the sugar group. III. Triphenylmethyl ethers of β -methyl-D-arabinopyranoside and of α -methyl-L-fucopyranoside. Determination of their structures. R. C. Hockett and D. F. Mowery, jun. (J. Amer. Chem. Soc., 1943, 65, 403—409; cf. A., 1939, II, 407, 493).— β -Methyl-D-arabinopyranoside (I) (0·133) with CPh₃Cl (0·16 mol.) in C_5H_5N at 23° (18 days) gives the 2-CPh₈ ether (II) (40%), m.p. 143—145°, [a] $-79\cdot7^\circ$ in EtOH, $-75\cdot8^\circ$ in CHCl₃, and 2: 3-(CPh₃)₂ ether (III) (6%), m.p. 191—192°, [a] $-81\cdot7^\circ$ in CHCl₃, $-58\cdot6^\circ$ in C_5H_5N , and a syrup, which with $Ac_2O-C_5H_5N$ at 0° gives the 3-CPh₃ ether 2: 4-diacetate (IV), m.p. 202—203°, [a] $-107\cdot6^\circ$ in CHCl₃. In boiling NaOMe–MeOH, (IV) gives β -methyl-D-arabinopyranoside 3-CPh₃ ether (V), +2MeOH, m.p. 157—159°, [a] $-103\cdot7^\circ$ in CHCl₃, $-93\cdot3^\circ$ in MeOH, which resists the action of Pb(OAc)₄ in C_5H_5N (proof of structure). The structure of (II) could not be thus determined, since reaction in C_5H_5N is so fast that the difference for β -methyl-D-glucopyranoside and (I) is indistinct. AcOH causes perceptible hydrolysis of the CPh₃ ethers, but can be used as solvent for rate determinations if allowance is made for this consumption of reagent; thus, (II) is shown to contain the cis-glycol grouping. (III) gives β -methyl-D-arabinopyranoside 2: 3-(CPh₃)₂ ether 4-acetate, m.p. 193—194°, [a] $-98\cdot8^\circ$ in CHCl₃, [a]²⁶ $-109\cdot7^\circ$ in C_5H_5N ; when kept in AcOH at
60°, this loses the CPh₃ to give a solution which is attacked by Pb(OAc)₄ at a rate characteristic of trans-glycols, thus establishing the structure of (III). CPh₃·OAc is unaffected by Pb(OAc)₄-AcOH. CPh₃ is removed from (III) by AcOH at 60° but not from (IV) at room temp. CPh₃Cl converts (V), but not (II), into (III). 50% of (III) is obtained by using 4 mols. of CPh₃Cl per mol. of (I). a-Methyl-L-fucopyranoside gives 81·5% of the 2-CPh₃ ether, m.p. 127—128° (corr.), [a] $-58\cdot0^\circ$ in CHCl₃ (cf. A., 1934, 635) (3: which is proved as above and confirmed by the similarity of its $[M]_D$ to that of (\mathbf{II}) . The OH at $C_{(2)}$ is thus the most reactive sec. OH. Unless otherwise stated, [a] are $[a]_D^{20}$. R. S. C. Mutarotation of β -D-altrose. N. K. Richtmyer and C. S. Hudson (J. Amer. Chem. Soc., 1943, 65, 740—741).— β -D-Altrose exhibits mutarotation which is very rapid at first (cf. A., 1935, II, 135; also Austin et al., A., 1934, 759). Its initial $[a]_D^{20}$ is, by extrapolation, \sim -69°, its final $[a]_D^{20}$ +33·1°, in H_2O . R. S. C. Hydrogenation of invertible saccharides.—See B., 1943, II, 209. Synthesis of disaccharide acetates in the mannose series. E. A. Talley, D. D. Reynolds, and W. L. Evans (f. Amer. Chem. Soc., 1943, 65, 575—582).—Acetobromomannose (\mathbf{I}), β -D-mannose 1:2:3:4-tetra-acetate, CaSO₄, Ag₂O, and I in CHCl₃ give 6- β -D-mannosido-6- β -D-mannose octa-acetate (39%), m.p. 152—153° (corr.), [a] $_{D}^{25}$ +19·6° in CHCl₃, which is shown to be the normal form by constancy of [a] in HCl-CHCl₃ and by hydrolysis by NaOMe-MeOH or acid to 6- β -D-mannosido- β -D-mannose, softens 70°, decomp. 90—95° (phenylosazone, m.p. 122—128°); absence of I leads mainly to a syrup, probably containing ortho-esters. β -D-Glucose 1:2:3:4-tetra-acetate (\mathbf{II}) with (\mathbf{I}) and CaSO₄ in CHCl₃ (presence of I leads mainly to the normal acetate) yields d- (\mathbf{III}), m.p. 168—169° (corr.), [a] $_{D}^{30}$ +17·1° in CHCl₃, and 1-(β -D-glucoside 1:2:3:4-tetra-acetate)-D-mannose 3':4':6'-triacetate 6:1':2'-orthoacetate (\mathbf{IV}), m.p. 174—174·5° (corr.), [a] $_{D}^{32}$ —27·6° in CHCl₃, and a residue, whence very dil. HCl and hot \mathbf{I} 2O wield an emorphous normal ceta Ac₄GlO·C*Me O·CH OAc·CH HC·OAc HC CH₂·OAc yield an amorphous normal octaacetate (V), softens 83—87°, [a]²³ 0 +33·5°. (III) and (IV) are stereoisomerides at C* of the orthoacetate (A; Ac₄Gl = glucose tetra-acetate residue linked to C* by C₍₆₎·O), since acid removes eight and alkali removes acid removes eight and alkali removes seven Ac. Moreover, in HCl-CHCl₃, [a]_D²⁸ of (III) and (IV) changes very rapidly to +44° and +43°, respectively, the rate being independent of the [HCl] provided that I mol. of HCl is present; this is followed by a slower decrease in [a], the rate of which is dependent on the [HCl]. In HBr-CHCl₃, there is a similar very rapid rise in [a], followed by a slower further rise at a rate dependent on the [HBr]. The rapid rises are due to hydrolysis to (II) + acetochloror acetobromo-mannose (VI), respectively; this is confirmed by the crude product formed in HBr showing the darkening and evolution of HBr characteristics of (VI). The subsequent slower changes are due to decomp. of (II), which in HCl- or HBr-CHCl₃ shows a decrease and rise, respectively, of [a] at rates similar to those found for (III) and (IV). The normal acetate structure of (V) is shown by removal of 8 Ac by alkali, by stability in HCl-CHCl₃, and by conversion by HBr-AcOH-Ac₂O at -2° into acetobromo-6-β-D-mannoside-D-glucose (VII), m.p. 172—172-5° (rapid heating), decomp. ~182°, [a]_D³⁰ +151·5° in CHCl₃ [yields two trisaccharides (not yet described)]. With AgOAc-AcOH-I-CaSO₄ in CHCl₃, (VII) yields an acetate (VIII), softens 90—94°, [a]_D²⁵ +43°. Purification of (V) or (VIII) by "flowing" chromatography on Al₂O₃ (freed from alkali by AcOH) yields pure 6-β-D-mannosido-β-D-glucose octa-acetate (normal form), softens 90—95°, [a]_D¹⁸ +38·9° in CHCl₃, from which alkali removes eight Ac. Synthesis of an epimeric pair of trisaccharides containing mannose units. E. A. Talley and W. L. Evans (J. Amer. Chem. Soc., 1943, 65, 573—574).— β -D-Mannose or -glucose 1:2:3:4-tetra-acetate with acetobromo-6- β -D-mannosido-D-glucose, CaSO₄, Ag₂O, and I in CHCl₃ gives 12- β -D-mannosido-epi- β - (I) (46%), m.p. 112—113° (corr.), [a] $^{\circ}_{12}$ +14:3° in C₆H₆, +11:2° in CHCl₃, and - β -gentiobiose hendeca-acetate (58%), m.p. 118—119° (corr.), [a] $^{\circ}_{12}$ +20:2° in CHCl₃, respectively, insol. in Et₂O. The possible identity of (I) with the trisaccharide acetate from "Konjac" mannan (Nishida et al., A., 1930, 1413) is discussed. Synthetic glycosides of strophanthidin. F. C. Uhle and R. C. Elderfield (J. Org. Chem., 1943, 8, 162—169).—Strophanthidin is converted by acetobromoglucose in anhyd. dioxan containing Ag_2CO_3 , anhyd. MgSO₄, and I into strophanthidin β -d-glucoside tetra-acetate, m.p. $240-250^\circ$, softens at $\sim 165^\circ$ dependent on rate of heating, $[a]_2^{b7} + 24^\circ$ in CHCl₃. Strophanthidin β -d-galactoside tetra-acetate has m.p. $236-237^\circ$ (decomp.), softens at 230° , $[a]_D^{b} + 16^\circ$ in CHCl₃, β -d-xyloside triacetate, m.p. $240-250^\circ$ (decomp.) after softening, $[a]_D^{2b} - 10^\circ$ in CHCl₃, and β -l-arabinoside triacetate, m.p. $\sim 200^\circ$ (decomp.), softens at $\sim 155^\circ$ greatly dependent on rate of heating. The acetates are hydrolysed by Ba(OMe)₂ in MeOH to strophanthidin β -d-glucoside, m.p. $234-236^\circ$ (decomp.), softens at 228° , $[a]_D^{2b} + 21^\circ$ in H_2O , β -d-xyloside, m.p. $152-154^\circ$ (decomp.), after softening, $[a]_D^{20} 31^\circ$ in EtOH, and non-cryst. β -d-galactoside. Pharmacologically the glycoside acetates are considerably less potent than the glycosides, which, in turn, are more potent than the aglycons. Introduction of Ac into the latter causes greatly increased activity whereas acetylation of the sugar compound lowers activity in most cases. The activity of the glycosides falls within the same general range whereas that of their acetates varies over a much wider range. H. W. Constitution of the polysaccharide synthesised by the action of crystalline muscle-phosphorylase. W. Z. Hassid, G. T. Cory, and R. M. McCready (J. Biol. Chem., 1943, 148, 89—96).—The polysaccharide (I), [a]p +150° in N-NaOH, synthesised by the action of cryst. muscle-phosphorylase on glucose 1-phosphate is similar in properties to that formed by potato-phosphorylase and to the amylose fraction from potato starch. It is sparingly sol. in $\rm H_2O$ and rapidly retrogrades from solution; it produces a more intense blue colour with I than do natural starches and in contrast to the latter is almost completely hydrolysed to maltose by β -amylase. It does not activate muscle-phosphorylase. The methylated synthetic muscle-polysaccharide gives 0.6% of tetramethylglucose on hydrolysis, indicating a chain length of \sim 200 units. The main product of hydrolysis is 2:3:6-trimethylglucose; a small amount of dimethylglucose is also present. (I) appears to consist of long, unbranched chains in which the glucopyranose units are joined by a-glucosidic linkings between $\rm C_{(1)}$ and $\rm C_{(4)}$. Solution viscosities of the amylose components of starch. J. F. Foster and R. M. Hixon $(J.\ Amer.\ Chem.\ Soc.,\ 1943,\ 65,\ 618-622)$.—The dependence of η in $(CH_2\cdot NH_2)_2$ on concn. is determined for amylose pptd. from maize, potato, tapioca, and lily bulb starch by BuOH, "cryst." amylose and amylodextrin from maize, amylose extracted from maize by hot H_2O , and synthetic starch. The results fully confirm the deductions from titration by I (Bates et al., A., 1943, II, 157). Synthetic starch behaves anomalously in both cases, probably owing to heterogeneity. R. S. C. Determination of the liquefaction of starch. K. Mayer (Z. physiol. Chem., 1939, 262, 29—36).—The liquefaction of starch by enzyme solutions which contain saccharifying enzymes can be studied by using as substrate starch which has been oxidised by I. This material is not attacked by saccharifying amylases. H. W. Changes of starch during oxidation. F. F. Farley (Iowa State Coll. J. Sci., 1942, 17, 57—59; cf. A., 1938, II, 47½).—Hydrolysis of maize starch (I) paste oxidised by Br produces 50.7% glycuronic anhydride equiv. and the presence of glycuronic acid units was confirmed by its isolation. Oxime formation is equiv. to a sec. OH in 65—75% of the glucose anhydride units. CO₂H groups are produced in excess of the uronic acid units and there is evidence for splitting of hexose units at a glycol grouping. A mechanical theory of the electrolytic oxidation of (I) granules by alkaline NaOCl is proposed; industrial application of the theory depends on cheap power and the discovery of a suitable anode to replace Pt. Configuration of starch and the starch-iodine complex. I.' Dichroism of flow of starch-iodine solutions. R. E. Rundle and R. R. Baldwin. II. Optical properties of crystalline starch fractions. R. E. Rundle and D. French (J. Amer. Chem. Soc., 1943, 65, 554-558, 558-561).—I. After staining with I, blue-staining starch pastes and the BuOH-ppt. (I) from maize or potato starch show dichroism of flow (qual. observation described); red-staining starches, waxy maize and glutinous rice starches show only traces of dichroism; glycogen and the residue from (I) purified by adsorption on cellulose show no dichroism. The dichroic solutions absorb light with its electric vector parallel to the flow lines more strongly than if the vector is normal thereto. The dichroism requires that the long axes of the I mols. be parallel to the long. axes of the starch-I complex; of two possible structures, one (A) is that in which the starch forms a
helix enclosing the I (cf. Freudenberg, A., 1940, II, 120). II. The cryst. amylose of Kerr et al. (A., 1943, II, 156) consists of optically negative, probably uniaxial platelets; after staining with I, these are highly dichroic, light with its electric vector in the plane of the platelets being the more weakly absorbed. The birefringence of (I) is very similar; (I) forms rosettes of flattened spherocrystals and probably consists of the platelets of Kerr et al. with the normals in one plane. These results are in best accord with structure (A); a three-dimensional structure is proposed. Oxidation of cellulose; reaction of cellulose with periodic acid. H. A. Rutherford, F. W. Minor, A. R. Martin, and M. Harris (J. Res. Nat. Bur. Stand., 1942, 29, 131—141).—In the early stages of the oxidation of cellulose by HIO_4 (when $\sim 1\%$ of the glucose residues is attacked) the reaction is confined to the oxidation of sec. OH groups to CHO and results in the rupture of the C chain between $C_{(2)}$ and $C_{(3)}$ of the glucose unit. In accordance with this mechanism 2 CHO result from each mol. of HIO_4 consumed. CHO of periodic acid-oxycellulose (I) can be converted into CO_2H , titration of which provides an independent check on the content of the former. (I) is characterised by its susceptibility to further attack by alkaline solutions. The alkali-sensitivity of these materials, as measured by solubility in hot, dil. NaOH and by cuprammonium fluidity, appears α CHO content. Alkali-lability practically ceases with the complete transformation of CHO into CO_2H . This suggests that the sensitivity of (I) to alkali does not depend solely on the rupture of the glucose ring between $C_{(2)}$ and $C_{(3)}$ but is related to the sp. instability towards alkali of the dialdehyde formed during the oxidation. H. W. Fractionation of cellulose acetate. A. M. Sookne, H. A. Rutherford, H. Mark, and M. Harris (J. Res. Nat. Bur. Stand., 1942, 29, 123—130).—By fractional pptn. by EtOH from COMe₂ solution 2 kg. of technical cellulose acetate has been separated into 15 fractions varying in degree of polymerisation from 30 to 380. The distribution of chain lengths in the initial material (excepting the first fraction) is deduced from the viscosimetrically-determined chain lengths of the fractions. The first fraction is not completely sol. in COMe₂ or OH·[CH₂]₂·OMe and therefore no estimate of the degree of polymerisation can be obtained. A large proportion of the ash and haze-producing materials is contained in this first fraction. All the other fractions have very low ash contents and with the exception of the fractions of very low degree of polymerisation the Ac contents are const. A phase diagram showing some of the solubility relationships of the starting material and several of the fractions is given. Formation of anhydro-structures by alkaline deacylation of a partly substituted cellulose acetate p-toluenesulphonate. T. S. Gardner and C. B. Purves (J. Amer. Chem. Soc., 1943, 65, 444—449).—A cellulose acetate p-toluenesulphonate (A., 1942, II, 397) containing 0·196 primary and 0·054 sec. p-C₆ H_4 Me·SO₃ per glucose residue with an excess of N-NaOH in MeOH gives an anhydrocellulose (I), analysis of which and of the derived (Ac₂O-C₅ H_5 N; 60°) acetate (II) suggests presence of 0·060 OMe, 0·007 p-C₆ H_4 Me·SO₃, and 0·183 anhydro-groups per glucose residue. With 2·3% HCOH at 130° (40—50 hr.), (II) gives the equi- MeOĤ at 130° (40–50 hr.), (II) gives the equilibrium mixture (0·025 mol.) of a- and β -3: 6-anhydroglucofuranoside and an anhydrodihexose (III) (0·022 mol.) [Me_8 derivative (IV), b.p. $136-140^{\circ}/10^{-3}$ mm., $[a]_D^{20}+94^{\circ}$ in CHCl₃]. (III) probably has the structure shown, since (IV) is stable to hydrolysis and methanolysis and having regard to the current interpretation of the action of alkali on p-toluenesulphonates. Since (I) has a chain-length ~200 and swells, but does not dissolve, in 5—17% aq. NaOH, cuprammonium or Triton F solution, or org. solvents, it probably contains many (III) units joined by 1:4- and crossed linkings. R. S. C. #### III.—HOMOCYCLIC. Physical data of monoalkylcyclo-pentenes and -pentanes. A. W. Schmidt and A. Gemassmer (Ber., 1940, 73, [B], 359—366).— Grignard synthesis from AlkCl and cyclopentanone gives 1-alkyl- Δ^1 -cyclopentenes, hydrogenated (PtO₂-AcOH) to cyclopentanes (cf. A., 1939, II, 361). The following are prepared: 1-octyl-, m.p. $-36\cdot5^\circ$, b.p. $110-111^\circ/11$ mm., -decyl-, m.p. $-16\cdot5^\circ$, b.p. $111^\circ/0\cdot05$ mm., -dodecyl-, m.p. $-2\cdot5^\circ$, b.p. $117^\circ/0\cdot1$ mm., -tetvadecyl-, m.p. $11\cdot5^\circ$, b.p. $128-130^\circ/0\cdot05$ mm., -hexadecyl-, m.p. $24\cdot5^\circ$, b.p. $148-150^\circ/0\cdot05$ mm., and -octadecyl- Δ^1 -cyclopentene, m.p. $30\cdot5^\circ$, b.p. $178-180^\circ/0\cdot05$ mm.; 1° -octyl-, m.p. $-44\cdot5^\circ$, b.p. $106^\circ/10$ mm., -decyl-, m.p. $-23\cdot5^\circ$, b.p. $117-118^\circ/0\cdot06$ mm., -dodecyl-, m.p. $-7\cdot5^\circ$, b.p. $116-117^\circ/0\cdot05$ mm., -tetvadecyl, m.p. 8° , b.p. $129^\circ/0\cdot05$ mm., -hexadecyl-, m.p. $19\cdot5^\circ$, b.p. $149^\circ/0\cdot05$ mm., and -octadecyl-cyclopentane, m.p. 28° , b.p. $180^\circ/0\cdot05$ mm. Other physical consts., e.g., d and η , are recorded, and some m.p. curves are shown. Production of aromatic hydrocarbons.—See B., 1943, II, 210. Polyisopropylbenzenes. I. Preparation and properties of two ditwo tri-, and one tetra-isopropylbenzene. A. Newton (J. Amer. Chem. Soc., 1943, 65, 320—323).—In presence of 96% $\rm H_2SO_4$ at 30—40° $\rm C_6H_6$ and $\rm C_3H_6$ give $\rm C_6H_4Pr\beta_2$ (1:3-:1:4-58-6:41-4 pts.), $\rm C_6H_3Pr\beta_3$ (1:2:4-:1:3:5-83-7:16-3 pts.), $\rm C_6H_4Pr\beta_4$ (only 1:2:4:5-), and alkyl sulphates. In presence of AlCl₃ at 60°, there are formed $\rm C_6H_4Pr\beta_2$ (1:3-:1:4-65-4:34-6 pts.), $\rm C_6H_3Pr\beta_3$ (only 1:3:5-), and $\rm C_6H_2Pr\beta_4$ (only 1:2:4:5-). Physical properties of the products are given. R. S. C. Rearrangements in the Friedel–Crafts alkylation of benzene. H. Gilman and R. N. Meals (J. Org. Chem., 1943, 8, 126—146).— Examination of the literature shows that primary alkyl compounds give both primary and sec.-alkylbenzenes and higher temp. favour the formation of the latter. sec.-Alkyl compounds afford sec. and never primary alkylbenzenes. isoAlkyl compounds appear to have little tendency to form isoalkylbenzenes and give largely tertalkylbenzenes which are the exclusive products from tert.-alkyl compounds. Under mild experimental conditions C_6H_6 and a primary n-alkyl bromide in presence of AlCl₃ give a mixture of alkylbenzenes in which Ph is probably attached to each C of the alkyl residue. The evidence obtained does not indicate any appreciable branching of the alkyl chain under the experimental conditions used. n- C_6H_{13} Br and C_5H_6 in presence of AlCl₃ give a-, β -, and γ -phenylhexane and n- $C_{12}H_{25}$ Br affords a mixture of dodecylbenzenes in which a- and ζ -phenyldodecane have been identified. The a-Ph derivatives have been isolated from C_6H_6 and n- $C_{14}H_{20}Br$, n- $C_{16}H_{33}Br$, and n- $C_{18}H_{37}Br$. The a-phenylalkanes are prepared synthetically by Clemmensen reduction of the appropriate Ph alkyl ketone or by the Wurtz-Fittig reaction. sec.-Alkylbenzenes are obtained from the appropriate ketone and Grignard reagent followed by dehydration of the carbinol with 60% H₂SO₄ and subsequent reduction of the olefine by Na and EtOH. The hydrocarbons are finally transformed into their sulphonamides or derivatives thereof. The following are described: n.-hexadecyl-, b.p. 202—213°/7 mm., n-tetradecyl-, b.p. 188—189°/6 mm., n-dodecyl-, b.p. 164°/4 mm., n-heptyl-, b.p. 240—244°/1 atm., and n-hexyl-benzene, b.p. 220—222°/1 atm.; β-phenyldodecan-β-ol, b.p. 174—177°/7 mm.; γ-phenyldodecan-γ-ol, b.p. 168°/5 mm.; γ-phenyldodecan-δ-ol, b.p. 170°/4 mm., ε-phenyldodecan-ε-ol, b.p. 166—168°/5 mm., ζ-phenyldodecan-ζ-ol, b.p. 169—170°/6 mm., β-phenylhexan-β-ol, b.p. 120°/10 mm., and γ-phenylhexan-γ-ol, b.p. 134°/27 mm., β-, b.p. 160—162°/5 mm., γ-, b.p. 165°/7 mm., δ-, b.p. 153—154°/5 mm., ε-, b.p. 156—157°/6 mm., and ζ-, b.p. 161°/9 mm., -phenyldodecene, β-, b.p. 156-157°/6 mm., and ζ-, b.p. 171°/13 mm., δ-, b.p. 164°/17 mm., ε-, b.p. 161°/7 mm., γ-, b.p. 171°/13 mm., δ-, b.p. 164°/17 mm., ε-, b.p. 168°/75 mm., and ζ-, b.p. 153°/6 mm., -phenyldodecane, β-, b.p. 208-7—210°/741 mm., and γ-, b.p. 200—203·5°/1 atm., -phenylhexane; hexadecyl-, m.p. 97°, tetradecyl-, m.p. 97·5—98°, dodecyl-, m.p. 97·5°, α-methylundecyl-, m.p. 99°, α-ethyldecyl-, m.p. 56°, α-n-propylnonyl-, m.p. 60°, heptyl-, m.p. 99°, α-ethyldecyl-, m.p. 56°, α-n-propylnonyl-, m.p. 60°, heptyl-, m.p. 91°, 76°, α-n-butyloctyl-, m.p. 103°, α-n-propylnonyl-, m.p. 112—112·5°, α-n-butyloctyl-, m.p. 103°, α-n-propylnonyl-, m.p. 112—112·5°, α-n-butyloctyl-, m.p. 107—107·5°, and α-n-amylheptyl-, m.p. 128°, -β-naphthalenesulphonamides; α-ethyldecyl-, m.p. 107—107·5°, and α-n-amylheptyl-, m.p. 128°, -β-naphthalenesulphonamides; α-ethyldecyl-, m.p. 107—107·5°, and α-n-amylheptyl-, m.p. 108°, -β-naphthalenesulphonamides; α-ethyldecyl-, m.p. 107—107·5°, and α-n-amylheptyl-, m.p. 107°, respectively, of α-, β-, Polymerisation of styrene in presence of 3:4:5-tribromoberzoyl peroxide. C. C. Price and B. E. Tate (J. Amer. Chem. Soc., 1943, 65, 517—520).—3:4:5:1-C₆H₂Br₃·CO₂H [best (60%) prepared from p-NH₂·C₆H₄·CO₂H according to Sudborough (A., 1894, i, 244)] with SOCl₂ and then Na₂O₂-C₆H₆ at 0·5° gives di-3:4:5-tribromobenzoyl peroxide (I) (18%), m.p. 183—185°. With (I) in C₆H₆ or dioxan, CH₂·CHPh (II) gives polymers, C₆H₂Br₃(C₈H₈)₁₂O₃, C₆H₂Br₃(C₈H₈)₁₅O₇, and C₆H₂Br₃(C₈H₈)₃₆O₁₉. Presence of one C₆H₂Br₃ per mol. indicates the reaction mechanism, but the source of the O is unknown. Very little Br is introduced into polystyrene
(III) by (I) in C₆H₆. k for removal of (I) from C₆H₆ at 80° in presence of (III) is 0·0102—0·0108, but in presence of (III) is 0·0019. Bz₂O₂ and (II) in dioxan give a polymer, Ph(C₈H₈)₃₁O₃, only slightly degraded by boiling cone. HCl—AcOH. O-free (III) is unaffected by peroxide-containing dioxan in light. Ester groups in polystyrene made with chloro- and bromo-benzoyl peroxides. P. D. Bartlett and S. G. Cohen $(J.\ Amer.\ Chem.\ Soc., 1943, 65, 543-546)$.—Styrene and $(p\cdot C_6H_4Br\cdot CO_2)_2$ (I) (explodes at 148°) in boiling C_6H_6 give polymers containing $10\cdot 7\%$ (II) and $11\cdot 5\%$ of Br. (II) is stable to boiling 20% aq. KOH (cf. Price et al., A., 1942, II, 304), but, when boiled for a long time with NaOEt-EtOH, yields 53% of $p\cdot C_9H_4Br\cdot CO_2H$ and a residue containing 36% of the Br. Thus, (II) contains $\sim 36\%$ of the (I) as $p\cdot C_6H_4Br$ and $\sim 64\%$ as $p\cdot C_6H_4Br\cdot CO_2$. Hydrolysis of (II) by NaOEt-EtOH-PhMe with later addition of H_2O is less satisfactory. Styrene and $(p\cdot C_6H_4Cl\cdot CO_2)_2$ (decomp. 138°) at $81-84^\circ$ and then $100-103^\circ$ give a polymer containing $0\cdot 096\%$ of Cl, which by hydrolysis by NaOEt-EtOH-PhMe with later addition of H_2O is shown to contain $\sim 12\%$ of $p\cdot C_6H_4Cl$, but the Cl content $(0\cdot 015\%)$ of the monomer renders this result uncertain. R. S. C. Addition of triphenylmethyl to β -methyl- Δ^a -buten- γ -inene. A. F. Thompson, jun., and D. M. Surgenor (J. Amer. Chem. Soc., 1943, 65, 486—487).—CPh₃Cl, Hg, and CH:C-CMe:CH₂ in C_6H_6 -N₂ at room temp. give $aaa\gamma\gamma\gamma$ -hexaphenyl- δ -methyl- $\Delta^{\beta\gamma}$ -hexadiene (47%), m.p. 184— $185\cdot5^\circ$ [contains 2 C:C (H₂-PtO₂-AcOH)], which with O_3 in EtOAc at 0°, then H_2 -Pd-CaCO₃, and finally Ag_2O gives CPh_3 -CO₂H and COMe- CH_2 - CPh_3 . R. S. C. Dialkylation of naphthalene. II. Synthesis of 2:6-diphenylnaphthalene. C. C. Price and A. J. Tomisek (J. Amer. Chem. Soc., 1943, 65, 439—440; cf. A., 1943, II, 126).—Phenylsuccinic anhydride (prep. from the acid by AcCl), Ph₂, and AlCl₃ in boiling CS₂ give 4- β -carboxy-a-phenylpropionyldiphenyl, m.p. 175·5—176°, oxidised by KMnO₄ to p-C₆H₄Ph·CO₂H and reduced by Zn-Hg-conc. HCl-AcOH-C₆H₆ to β -phenyl-y-4-diphenylylbutyric acid, m.p. 120·5—121°, which with, successively, SOCl₂, AlCl₃-CS₂, Zn-Hg-HCl-AcOH-C₆H₆, and Se at 290—320° gives 2:6-C₁₀H₆Ph₂, m.p. 233—234°, thus proving the structures of the products of Boudroux (A., 1929, 1050) and Pokrovskaja et al. (A., 1940, II, 161). R. S. C. Electronic distribution and chemical reactivity in condensed unsaturated hydrocarbons. N. Svartholm (Arkiv Kemi., Min., Geol., 1942, 15, A. No. 13, 13 pp.).—A discussion of the $C_{10}H_{\rm B}$ mol. indicates that a picture of the electron distribution can be obtained by a comparison of separate superposition diagrams for unexcited and singly excited structures. This method is applied to anthracene, phenanthrene, chrysene, 1: 2-benzanthracene (I), pyrene, 1: 2: 3: 4-and 1: 2: 5: 6-dibenzanthracene, and 3: 4-benzpyrene. A closer quantum-mechanical study of electron distribution in (I) gives a superposition diagram in general agreement with the simpler treatment. Electron distributions in (I) and the three last-named compounds are briefly correlated with chemical reactivity. Action of magnesium methyl iodide on methyl α-phenylcinnamate. Synthesis of 2-phenyl-1: 1-dimethylindene. C. F. Koelsch and P. R. Johnson (J. Amer. Chem. Soc., 1943, 65, 565—567).—CHPh:CPh·CO₂H (I) (from CH₂Ph·CO₂H, PhCHO, and NaOAc in Ac₂O) with MeOH—H₂SO₄ gives the Me ester, which with MgMeI in Et₂O gives CHPh:CPh·CMc₂·OH (II) (50%), m.p. 69—70° (lit. 68°) (absorbs Br; gives no CHI₃). Ph·[CH₂₁₂·CO₂H [obtained (85%) by electrolytic reduction of (I)] gives the Me ester, b.p. 168°/8 mm, which with MgMeI—Et₂O yields γδ-dithenyl-β-methylbutan-β-ol (86—88%), m.p. 68—69°, dehydrated by H₂SO₄-AcOH at 100° to αβ-di-phenyl-γ-methyl-Δβ-n-butene (III), b.p. 150°/10 mm. Oxidation of (III) by CrO₃-AcOH at room temp. gives CH₂Ph·COPh, but Br in CHCl₃, later boiling AcOH, gives 2-phenyl-1: 1-dimethylindene (IV) (45%), m.p. 61—62°, also obtained in ~10% yield from (IV) H₂SO₄-AcOH and oxidised by CrO₃-AcOH to α-o-carboxyphenyl-isobutyrophenone (V), m.p. 210—211° (stable to KMnO₄). The products of Earl et al. (A., 1931, 340) formulated as (IV) and (V) are 3-phenyl-1: 1-dimethylindene and α-o-benzoylphenylisobutyric acid, respectively. Thermal isomerisation of indene derivatives. C. F. Koelsch and P. R. Johnson (J. Amer. Chem. Soc., 1943, 65, 567—573).—Pyrolysis of 1:3- (I), 1:2- (II), or 2:3-diphenylindene (III) at 450° in N₂ of 1:3- (I), 1:2- (II), or 2:3-diphenylindene (III) at 450° in N₂ gives an equilibrium mixture, (I) 8—20%, (II) 4—6%, (III) 47—65%, which is unchanged by further pyrolysis (cf. A., 1940, II, 355). The still readier isomerisation, (II) — (III), prevents deduction whether the Ph migrates from C₍₃₎ or C₍₁₎. The possibility of migration from C₍₁₎ is proved by three examples. (i) At 490° 1:1:3-triphenylindene [prepared by interaction of CPh₂:CH·MgBr with COPh₂ to give CPh₂:CH·CPh₂·OH (in AcOH gives CPh₂:CCPh₂) and subsequent dehydration by H₂SO₄-AcOH; 64% yield] gives 86% of 1:2:3-triphenylindene (and a red gum), which is also obtained from 2:3-diphenylindone by MgPhBr, followed by AcOH + H₂SO₄ (1 drop). (ii) Rapid pyrolysis of 3'-phenylspirofluorene-9:1'-indene (IV) at 490° gives, probably reversibly, 80% of 9-phenyl-1:2:3:4-dibenzfluorene and 17% of unchanged (IV). (iii) 1:3-Diphenyl-1-methylindene (prep. from 3-phenyl-3-methylindan-1-one BzOH; the (VII) is derived from 1:3-diphenyl-3-methylindene, formed to a small extent by migration of Me. Structures are proved as follows. Crude CHMeBr·CHBr·CO₂H (prep. from CHMe:CH·CO₂H and Br in Et₂O at 10—15°) with C_cH₆ and AlCl₃ gives CHPhMe·CHPh·CO₂H, m.p. 182—183° (lit. 180—181°), which with hot PCl₅— and then AlCl₃—C₆H₆ gives 2-phenyl-3-methylindanone (70%), m.p. 84·5—86°, b.p. 196—200°/13 mm.; with MgPhBr and then 1% H₂SO₄—AcOH this gives 79% of (V). 2:3-Diphenyl-indanone similarly yields 70% of (VI). Me migrates only if the ring contains also Ph. 3-Methylindone, b.p. 91—92°/24 mm. [OMe·C₆H₄·CH. derivative, m.p. 114—115° (lit. 113°); picrate, m.p. 76—77°], in 1% H₂SO₄—AcOH at room temp. yields a non-volatile, oily polymeride, depolymerised by distillation with a few drops of H₂SO₄ at 1 atm., but is unchanged by pyrolysis at 490° (cf. Mayer by polymerate, depolymerated by distinction with a 12 m entropy of the probably obtained from (IX) and MgMeI; dehydration of (VIII) in boiling C_6H_6 by P_2O_5 (H_2SO_4 -AcOH gives a polymeride) gives 2-methylindene (55%), b.p. 97—99°/24 mm. (unstable picrate, m.p. 79—79·5°), unchanged by pyrolysis at 490°. At 490° 3-phenyl-1: 1-dimethylindene (X), m.p. 50—51°, b.p. 184—187°/27 mm. [(? 2-)NO_2-derivative, m.p. 141—142°], gives ~63% of unchanged (X) and 26% of 3-phenyl-1: 2- (XI) + 1-phenyl-2: 3-dimethylindene (XII), since the oily mixture with CrO₃-AcOH at room temp. yields o-C₆H₄Bz·CMe₂·CO₂H (XIII) and 2-acetylbenzophenone (XIV). m.p. 99° [disemicarbazone, m.p. 214—216° (decomp.)], whereas (X) gives only (XII) and (XII) gives only (XIV). Pyrolysis of (XII) also gives (X), (XI), and (XII) 60% of unchanged 2-phenyl-1: 1-dimethylindene is recovered after pyrolysis at 490°, but the oily fraction yields o-C₆H₄Bz·CO₂H (indicating migration of Ph from C₍₂₎), and possibly (XIII), which would arise from (X). Migration from C₍₂₎ thus occurs if C₍₁₎ is fully substituted, but a secondary rearrangement then occurs. A mobile H on the indene is essential for the migration. The reaction mechanisms are discussed. for the migration. The reaction mechanisms are discussed Resonance structure of anthracene and phenanthrene. C. V. Jonsson (Arkiv Kemi, Min., Geol., 1942, 15. A. No. 14, 9 pp.).—The electron distributions, bond strengths, and resonance energies (R) in C₁₀H₈, anthracene (I), and phenanthrene (II) are considered. A simplified quantum-mechanical treatment is employed in which only unexcited and singly excited canonical structures are included; the no. of structures to be considered is thus reduced to 52 for (I) or (II). For (I) and (II), respectively, R=4.54 and 4.78 e.v., and vals. of the exchange integral (which are probably several % too high) are 1.60 and 1.63. The relative strength of a linking can be estimated by counting the no. of possible unexcited structures in which it occurs. A less reliable estimate of the probable electron density at a given atom may be made by counting the no. of singly excited structures in which ineffective linkings start from that 225 (Clemmensen) to 1-β-phenylethyl-cyclohexane-1-carboxylic acid, m.p. 93° (Et ester, b.p. 111—112°/5 mm.; anilide, m.p. 130—131°), cyclised by 75% (vol.) H₂SO₄ to 1-keto-, b.p. 145°/3 mm. (semicarbazone, m.p. 187—188°), which on Clemmensen reduction yields 1:2:3:4-tetrahydronaphthalene-2:2-spirocyclohexane, b.p. 115—117°/ 3 mm. Se-dehydrogenation of this yields phenanthrene. 1-p-Methylphenacyl- (prep. as above), m.p. 129—130° (semicarbazone, m.p. 166°; Me ester, b.p. 180—182°/5 mm., m.p. 65—66°), similarly yields 1-β-p-tolylethyl-cyclohexane-1-carboxylic acid, m.p. 99—100° (Et ester, b.p. 115—116°/6 mm.; p-toluidide, m.p. 128—129°), and 1-keto-7-methyl-, b.p. 158—160°/4 mm. (oxime, m.p. 139—140°), and 7-methyl-1: 2: 3: 4-tetrahydronaphthalene-2: 2-spirocyclohexane, and 7-methyl-1: 2: 3: 4-tetrahydronaphthalene-2: 2-spirocyclonexane, b.p. 155—156°/8 mm., dehydrogenated to 3-methylphenanthrene, whilst 1-p-ethylphenacyl-, m.p. 117—118° (semicarbazone, m.p. 144°; Me ester, b.p. 202—203°/7 mm.), gives 1-β-p-ethylphenylethyl-cyclohexane-1-carboxylic acid, m.p. 87—88° (Et ester, b.p. 104—105°/6 mm.), and 1-keto-7-ethyl-, b.p. 195—197°/9 mm. (semicarbazone, m.p. 203—204°), and 7-ethyl-1: 2: 3: 4-tetrahydronaphthalene-2:
2-spirocyclohexane, b.p. 168—169°/8 mm., dehydrogenated to 3-ethylphenanthrene. In no case was any anthracene derivative obtained. Aromatic cyclodehydration. X. 10-Phenyl-9-alkyl- or -9-aryl-Aromatic cyclodehydration. X. 10-Phenyl-9-alkyl- or -9-aryl-anthracenes. C. K. Bradsher and E. S. Smith (J. Amer. Chem. Soc., 1943, 65, 451—452; cf. A., 1941, II, 127).—Crude o-C₆H₄Cl·CPh₂·OH with red P and I in boiling AcOH gives o-C₆H₄Cl·CHPh₂ (47·5%), converted by CuCN in C₅H₅N at 200° into o-CN·C₆H₄·CHPh₂ (I) (81%), m.p. 82—84° (lit. 89°). With MgPhBr, (I) gives an imine, hydrolysed only by boiling HCl too-C₆H₄Bz·CHPh₂ (60%), m.p. 84—86°, which in boiling 34% aq. HBr-AcOH (81% yield) or with 2 drops of H₂SO₄ in AcOH at 100° (95% yield) gives 9:10-diphenylanthracene, m.p. 247—248°. With MgRI, (I) gives similarly 9-phenyl-10-methyl- (50%), m.p. 112·5—113·5°, and -10-ethyl-anthracene (47·5%), m.p. 107—108·5°. R. S. C. Condensation of unsaturated amines with aromatic compounds. Preparation of β-substituted phenylethylamines. A. W. Weston, A. W. Ruddy, and C. M. Suter (J. Amer. Chem. Soc., 1943, 65, 674—677).—In presence of AlCl₃ (3 mols.), but not of BF₃—Et₂O or conc. H₂SO₄, at 0° and later the b.p., CH₂·CH·CH₂·NH₂ (1 mol.) and C₆H₈ (excess) give 85—94% of CHPhMe·CH₂·NH₂ (I), b.p. 97—98°/19 mm. [m.p. 143—144·5° (lit. 146—147°, 123—124°); this and other m.p. in parentheses refer to the hydrochlorides]. Ph. 97—98°/19 mm. [m.p. 143—144·5° (lit. 146—147°, 123—124°); this and other m.p. in parentheses refer to the hydrochlorides]. PhF and PhMe give similarly mainly β-p-fluorophenyl- (59%), b.p. 105—106°/22 mm. (m.p. 149—150°), and β-p-tolyl-n-propylamine (90%), b.p. 116—117°/22 mm. (m.p. 174—176°), respectively, orientations being proved by oxidation to impure p-C₆H₄F-CO₂H and p-C₆H₄(CO₂H)₂, respectively. Condensation with PhOMe was unsuccessful. p-C₆H₄Me·SO₂·NMe·CH₂·CH·CH₂CH·CH₂CH [prep. from p-C₆H₄Me·SO₂·NHMe by CH₂·CH-CH₂CH; [prep. from p-C₆H₄Me·SO₂·NHMe by CH₂·CH-CH₂CH] and KOH in a little EtOH; 89% yield], b.p. 190—193°/12 mm., and Na in Bu^aOH give 48% of CH₂·CH·CH₂·NHMe, b.p. 65°. 33% NH₂Et and (II) give CH₂·CH-CH₂·NHMe; b.p. 65°. 33% NH₂Et and (II) give CH₂·CH-CH₂·NHMe; b.p. 61—64°, is obtained (~30%) by shaking NHMe₂·HCl with (II) and aq. NaOH at >1 atm. 33% NH₂Me and CH₂·CMe·CH₂Cl in warm EtOH give methylallylamine (15%), b.p. 86—86°5°; NHMe₂ gives dimethyl-β-methylallylamine (15%), b.p. 82·4—82·6°/750 mm. The appropriate substituted allylamine with C₆H₆ and AlCl₃ gives β-phenyl-n-propyl-methyl- (III) (47%), b.p. 86—87°/10 mm. [m.p. 145—145·5° (lit. 148—159°)], -ethyl- (77%), b.p. 93°/10 mm. (m.p. 158·5—159·5°), -butyl- (66%), b.p. 121—123°/12 mm., and β-phenyl-isobutyl-amine (84%), b.p. 75—76°/5 mm. (m.p. 221—222·5°), and -di-n-butyl-amine (45%), b.p. 148—150°/12 mm., and β-phenyl-isobutyl-amine (84%), b.p. 87—88°/10 mm. (m.p. 199—200°). CHPhMe·CH₂Br with NH₃-EtOH at 80—90° gives 32% of (I) and much CH₂:CPhMe (IV), and with NH₂Me-EtOH at 5° gives 32% of (III) and 51% of (IV). The oral toxicity of most of the hydrochlorides to mice is recorded. N-Benzylamides as derivatives for identifying the acyl groups in esters.—See A., $1943,\ II,\ 248.$ Derivatives of 1:2:4:5-tetrachlorobenzene. I. Nitro- and amino-compounds. A. T. Peters, F. M. Rowe, and D. M. Stead $(I-C.S., 1943, 233-235).-2:3:5:6:1-C_8HCl_4\cdot NH_2\cdot (I), m.p. <math>107-108^\circ$ (lit. 90°) (improved prep.) (diazonium zincichloride; azo- β -na β -hthol, m.p. 212° ; $A\varepsilon_1$, m.p. $213-2!.4^\circ$, and $A\varepsilon_2$ derivative, m.p. $175-176^\circ$), is diazotised by NO·SO₄H at 60° . With $2:3-0H\cdot C_{10}H_6\cdot COCl-PhNO_2$, (I) affords 2:3:5:6-tetrachloro-2'-hydroxy-3'-naphthantilde, m.p. 232° . Diazotised (I) with aq. NaOAc at room temp. (4 days) yields 3:4:6-trichlorobenzene-2-diazo-1-oxide, m.p. $117-118^\circ$ (decomp.). 2:3:5:6:1:4-C.Cl. (NO₂) (II) (modiroom temp. (4 days) yields 3:4:6-trichlorobenzene-2-diazo-1-oxide, m.p. $117-118^\circ$ (decomp.). $2:3:5:6:1:4\cdot C_6\operatorname{Cl}_4(\operatorname{NO}_2)_2$ (II) (modified prep.) and Sn-HCl-EtOH or $\operatorname{Na}_2\operatorname{S}_2\operatorname{Q}_4$ —aq. EtOH give the corresponding diamine, m.p. $222-223^\circ$ [Ac_1 (III), m.p. 276° , and Ac_4 derivative, m.p. $205-209^\circ$]. Diazotisation (NO·SO₄H) of (III), followed by coupling, gives 2:3:5:6-tetrachloro-4-aminobenzeneazo- β -naphthol, m.p. $257-258^\circ$ (decomp.). (II) with aq. $\operatorname{Na}_2\operatorname{S}_2\operatorname{Q}_4$ —EtOH, or $2\cdot 8\operatorname{N-EtOH-NH}_3$ at $110-120^\circ$, yields 2:3:5:6-tetrachloro-4-nitroaniline, m.p. $216-217^\circ$ [AcCl-PhMe at $110-120^\circ$ gives the Ac_1 , m.p. $252-253^\circ$, and boiling $\operatorname{Ac}_2\operatorname{O-H}_2\operatorname{SO}_4$ yields the $Ac_2\operatorname{C-H}_2\operatorname{SO}_4$ yields the $Ac_3\operatorname{C-H}_2\operatorname{SO}_4$ reduced by $\operatorname{Na}_2\operatorname{S}_2\operatorname{Q}_4$ —a. EtOH to 2:3:5:6-tetrachloro-4-aminodiacetanilide, m.p. $194-195^\circ$]; diazotisation (NO·SO₄H at 60°) and coupling then gives the $azo-\beta$ -2:3:5:6-tetrachloro-4-aminodiacetanilide, m.p. 194—195"; diazo-isation (NO·SO₄H at 60°) and coupling then gives the azo-β-naphthol, m.p. 282—284° (decomp.), and the azo-2'-hydroxy-3'-naphthanilide, m.p. 296° (decomp.). 2:3:5:6-Tetrachloro-4-nitro-2'-hydroxy-3'-naphthanilide has m.p. 269—270°. 4:2:3:5:6:1:NO₂·C₂Cl₂·OMe (IV). m.p. 112—113° (lit. 105—106°), prepared from 2:3:5:6:1-C₆HCl₄·OMe and HNO₃ (d 1·5) at 0°, or from (II) and 0·2N-NaOMe, is reduced by Na₂S₂O₄-aq. EtOH to the corresponding amine (V), m.p. 107—108° (Ac₂ derivative, new m.p. 105—106°; azo-β-naphthol, m.p. 204—205°; 2:3:5:6-tetrachloro-4-methoxy-2'-hydroxy-3'-naphthanilide, m.p. 208°). 2:3:5:6-tetrachloro-4-mitrophenol, m.p. 148—149° (decomp.) (acetate, m.p. 113—114°), also obtained in small yield during amination of (II), and in the prep. of (IV) by NaOMe. Diazotised (V) with aq. NaOAc at room temp. yields 2:3:5:6-tetrachlorobenzene-4-diazo-1-oxide, explodes at 131° (darkens at 120°), converted by Ac₂O into 2:3:5:6:1:4-C₆Cl₄(OAc)₂, and by β-C₁₀H₇·OH in 1'0, NaOH into 2:3:5:6:1:4-C₆Cl₄(OAc)₂, and by β-C₁₀H₇·OH in 1'0, NaOH into 2:3:5:6:1-NO₂·C₆Cl₄·N₂HSO₄ (replacement of NO₂). $NO_2 \cdot C_6 Cl_4 \cdot N_2 HSO_4$ (replacement of NO_2). Ethyl p-aminobenzenesulphonate. L. A. Walter (J. Amer. Chem. Soc., 1943, 65, 739).—Et sulphanilate, m.p. 78—80°, unstable, is prepared by hydrogenating (PtO₂; 30—40 lb.; HCl-EtOH) p-NO₂·C₆H₄·SO₃Et and is isolated as unstable hydrochloride. R. S. C. Derivatives of 2:5-diaminobenzenesulphonamide. A. R. Goldfarb and B. Berk (J. Amer. Chem. Soc., 1943, 65, 738—739).—5:2:1-NO₂·C₆H₃(Cl·SO₂Cl (I) (from p-C₆H₄Cl·NO₂ and ClSO₃H at 120—130°), m.p. 85—87°, with 28% aq. NH₃ gives the amide (II), m.p. 184—185°, which with CuSO₄—(NH₄)₂CO₃-28% aq. NH₃ at 120° gives 5:2:1-NO₂·C₆H₃(NH₂·SO₂·NH₂ (86%), m.p. 208°, reduced (alkaline Na₂S₂O₄) to 2:5:1-(NH₂)₂C₆H₃·SO₂·NH₂ (70%), m.p. 184°. With CaCO₃—CO₂ in boiling NH₂Ph, (II) gives 5:2:1-NO₂·C₆H₃(NHPh)·SO₂·NH₂, m.p. 168—169°, and thence (Na₂S₂O₄ or H₂-Raney Ni-EtOH) 5-amino-2-anilinobenzenesulphonamide, m.p. 164° OH·[CH₂]₂·NH₂ (excess), (I), and KOH in H₂O give, with cooling, 2-chloro-5-nitro- (58%), m.p. 133—135°, or, without cooling, 5-nitro-2-β-hydroxyethylamino- (73%), m.p. 119—120°, converted as above into 5-nitro-2-amino-, m.p. 149—150°, 2:5-diamino- (dihydro-chloride, m.p. 184°), and 5-amino-2-β-hydroxyethylamino-, m.p. 162—163°, -benzenesulphon-β-hydroxyethylamide. R. S. C. 163°, -benzenesulphon-β-hydroxyethylamide. Alkylphenols.—See B., 1943, II, 210. o- and m-Tolyl butyrate. Preparation and properties. B. E. Mirza and G. D. Advani (J. Univ. Bombay, 1943, 11, A, Part 5, 87—91).—o- and m-Cresol with PrCOCl yield respectively o- (58) and m-tolyl butyrate (72.6%). Physical data are given. A. Li. Nitrosation of phenols. XIX. The three cresols and their methyl ethers. Some semicarbazide reactions. H. H. Hodgson and E. A. C. Crouch (J.C.S., 1943, 221—223).—HNO₂ reacts normally with o-and m-cresol to give 5:1:2-(I) and 6:1:3-NO·C₀H₃Me·OH (II), respectively; p-cresol similarly affords 3:1:4-NO₂C₀H₃Me·OH (III), or 3 days, yield 3:5:1:2-(NO₂)₂C₀H₂Me·OH (III), but at > -5° give 5-nitroso-o-tolyl Me ether (IV), m.p. 53·5°. (I) and (IV) are oxidised by dil. HNO₃ at 40° to (III). m-C₀H₄Me·OMe similarly gives 6:1:3-NO₂·C₀H₃Me·OH (V) or 6-nitroso-m-tolyl Me ether (VI), m.p. 22°. Oxidation (dil. HNO₃) of (II) and (VI) gives (V). (VI) and NH₂OH,HCl-NaOAc-β-C₁₀H₁·OH-aq. EtOH afford 4-methoxy-2-methylbenzeneazo-β-naphthol, m.p. 193°; (IV) does not react similarly. p-NO₂·C₀H₄·NH·NH₂ with (IV) or (VI) gives 4'-nitro-4-methoxy-3-, m.p. 187·5°, or 4'-nitro-4-hydroxy-2-methyldi-azoaminobenzene, m.p. 205° (decomp. from 185°), respectively. With NH₂·CO·NH·NH₂,HCl and NaOAc in MeOH, (IV) yields probably 4:3:1-OMe·C₀H₃Me·N(OH)·N·N·CO·NH₂, converted by boiling NH₂Ph into 4-methoxy-3-methylhydrazobenzene-N-diazocarb-Nitrosation of phenols. XIX. The three cresols and their methyl boiling NH₂Ph into 4-methoxy-3-methylhydrazobenzene-N-diazocarboxylamide, m.p. 238°, whereas (VI) affords 4-methoxy-2-methylbenzenediazoaminocarboxylamide, m.p. 230°, unchanged by boiling NH, Ph. The difference in reactivity of (IV) and (VI) is ascribed to the different anionoid character of the O atoms of the NO-groups. Oxidation of resorcinol by hydrogen peroxide in presence of tungstic acid sol as catalyst.—See A., 1943, II, 217. **Preparation of 4-nitroresorcinol.** N. B. Parekh and R. C. Shah (J. Univ. Bombay, 1943, 11, A, Part 5, 101-103).— $2:4:1-(OH)_2C_6H_3\cdot CO_2H$ with HNO₃ ($d\cdot 1\cdot 42$) at room temp. yields $5:2:4:1-NO_2\cdot C_6H_2(OH)_2\cdot CO_2H$ (Me ester similarly prepared), decarboxylated by AcOH-HCl-H₂O in a sealed tube at $140-145^\circ$ to 4:1:3-123. NO₂·C₆H₃(OH)₂, m.p. 122° (cf. lit.). Indirect
phenol-aldehyde condensations. J. B. Niederl and J. S. McCoy (J. Amer. Chem. Soc., 1943, 65, 629—631).—Contrary to Koebner (B., 1933, 514), 4:1:3:5-OH·C₆H₂Me(CH₂·OH)₂ (I) and pcresol with a little conc. HCl at room temp. (exothermic reaction rising to 63°) or with HCl gas in AcOH give a product, C₃₂H₃₂O₄, H₂O (A; R = Me), m.p. 215° (tetraacetate, m.p. 125°). p-C₆H₄Br·OH and (I) in HCl-AcOH give a similar product (A; R = R = R) $\begin{array}{c} \text{and (I) in } \text{Hcl-AcOH give a similar} \\ \text{product } (A; \text{ R} = \text{Br}), \text{ m.p. } 210^{\circ} \\ \text{($tetra-acetate, m.p. } 111^{\circ}). \text{ The} \\ \text{'' blocked''} m\text{-}4\text{-xylenol and (I) in} \\ \text{HCl-AcOH give } 3:5\text{-di-(2'-hydroxy-3':5'-dimethylbenzyl)-p-cresol, m.p. } 116^{\circ} \text{($triacetate, m.p. } 143^{\circ}). \\ \text{The products do not couple with } o\text{-}C_{6}H_{4}\text{Me}\text{-}N_{2}\text{Cl.} \\ \text{R. S. C.} \end{array}$ Interconversion of hexestrol and isohexestrol [dimethyl ethers]. D. A. Peak and W. F. Short (J.C.S., 1943, 232).—When undried H_2S is passed slowly through isohexestrol Me_2 ether or hexestrol Me_2 ether at $305-310^\circ$ (bath) interconversion occurs. isoHexestrol is unchanged by C_8H_8N -piperidine at 250° and Ac_2O at 250° (after hydrolysis), and is completely decomposed by H_2S at AC_2O Factors determining the course and mechanism of Grignard reactions. VI. Synthesis of hexestrol dimethyl ether (γδ-dianisylhexane). M. S. Kharasch and M. Kleiman (J. Amer. Chem. Soc., 1943, 65, 491—493).—Adding ρ-OMe·C₆H₄·CHEtBr (I) (prep. in situ) in PhMe at -80° to MgPhBr and CoCl₂ (5 mol.-%) in Et₂O at -20° to -10° gives (ρ-OMe·C₆H₄·CHEt)₂ (II) (41%) and Ph₂ (40%). Use of 15 mol.-% of CoCl₂ gives 27% of (II), of NiCl₂ (5 mol.-%) gives 14%, of FeCl₃ (5 mol.-%) gives 29%, but of CrCl₃, MnCl₂, or CuCl₂ (5 mol.-%) gives none. Replacing MgPhBr by pure MgMeBr (+15 mol.-% of CoCl₂) gives 27% of (II). Thus, (I) and •CoCl give ρ-OMe·C₆H₄•CHEt•, which then dimerises. Formation of 3:4-dimethoxy-6-ethylphenol by the ozonisation of methyl 3:4-dimethoxy-6-ethylcinnamate. E. Spāth and M. Pailer (Ber., 1940, 73, [B], 238—242).—The product of the action of HCN on 1:3:4-C₆H₃Et(OMe)₂ in presence of AlCl₃ and HCl is shown to be 3:4:6:1-(OMe)₂C₆H₂Et·CHO (I) by the formation of m-hemipinic acid on vigorous oxidation. (I) and CH₂(CO₂H)₂ in AcOH at 100° afford 3:4-dimethoxy-6-ethylcinnamic acid, m.p. 169—171°. The Me ester, m.p. 96°, is transformed by ozonisation in CHCl₂ and treatment of the product with boiling aga AgNO. 169—171°. The *Me* ester, m.p. 96°, is transformed by ozonisation in CHCl₃ and treatment of the product with boiling aq. AgNO₃ and Zn dust into 3: 4:6:1-(OMe)₂C₆H₂Et·CO₂H, 3:4-dimethoxy-6-ethylphenol (II), b.p. 100° (bath)/0·04 mm. (benzoate, m.p. 88—90°), and (I). 2:5:4:1-(OH)₂C₆H₂(OMe)·COMe is reduced (Zn-Hg and HCl) to 2-methoxy-5-ethylquinol, m.p. 151—153° (vac.), which is methylated to (II). It is improbable that (II) is formed from (I) by H₂O₂ liberated during decomp. of the ozonide. It is more probable that partial decomp. of the ozonide occurs during passage of O₃ and the products are further changed by O₃. H. W. Polyhalogeno-o-anisidines and their derivatives. W. S. W. Harrison, A. T. Peters, and F. M. Rowe $(J.C.S., 1943, 235-237).-1:2:4:5:C_6H_2Cl_4$ and aq. NaOH-MeOH at 160° give $2:4:5:1-C_6H_2Cl_3$ OH (I) and thence $(Me_2SO_4-aq. NaOH) \ 2:4:5:1-C_6H_2Cl_3$ OMe (II). (I) and $4NO_3$ (d $1\cdot43$)-AcOH give the $2\cdot NO_2$ -compound, m.p. $92-93^\circ$ (lit. 81°), and (II) $-1NNO_3$ (d $1\cdot5$) at $5-10^\circ$ compound, m.p. $92-93^{\circ}$ (lit. 81°), and (II)-HNO₃ (d 1·5) at 5—10° afford 3: 4: 6-trichloro-2-nitroanisole (III), m.p. $19-21^{\circ}$, b.p. 288° . (III) and Fe-aq. AcOH-EtOH yield 3: 4: 6-trichloro-o-anisidine (IV), m.p. $61-62^{\circ}$; its Ac_1 (AcCl-PhMe), m.p. $181-182^{\circ}$, or Ac_2 derivative ($Ac_2O-C_5H_5N$), m.p. $128-129^{\circ}$, and HNO₃ (d 1·5) at <10° give 3: 4: 6-trichloro-5-nitro-o-acetanisidide (V), m.p. 237° , hydrolysed by H_2SO_4 at 100° (bath) to the amine (VI), m.p. $121-122^{\circ}$ (Ac_2 derivative, m.p. $142-143^{\circ}$). (IV) or (VI) and HNO₃ (d 1·5)-AcOH at <10° give 2: 3: 5-trichloro-4-nitro-6-methoxy-N-nitroaniline, m.p. $116-117^{\circ}$ (decomp.), converted by boiling AcOH into 2: 3: 5-trichloro-6-methoxy-p-barzoquinne m.p. 159° Diazotised (IV) m.p. 116—117 (decomp.), converted by boning Acon into 2. 6. trichloro-6-methoxy-p-benzoquinone, m.p. 159°. Diazotised (**IV**) [NO·SO₄H at 100° (bath)] and β -C₁₀H, OH in AcOH or aq. NaOH give the azo- β -naphthol, m.p. 166°. (**IV**) can also be diazotised through the hydrochloride (prep. by HCl-CHCl₃), and after 24 hr. at 0° demethylation occurs and 3: 4: 6-trichlorobenzzene-2-diazo-1-oxide (VIII) m.p. 110° (decomp.) false obtained from the diazonium (VII), m.p. 118° (decomp.) [also obtained from the diazonium EtOH sulphate from (IV) and aq. NaOAc at 5—10°], is obtained. EtOH at 150° converts (VII) into (I); (VII) with alkaline β -C₁₀H₇·OH yields 2: 3:5-trichloro-6-hydroxybenzeneazo-β-naphthol, m.p. 226-228°. Decomp. of the diazonium salt from 2:4:3:5:1-NH₂:C₆HClBr₂·OMe is also accompanied by demethylation, giving 4-chloro-3: 5-dibromobenzene-2-diazo-1-oxide; thus halogen in position 6 is not necessary for demethylation. (VI) (diazotised, using NO·SO₄H) gives 3: 4:6-trichloro-5-nitrobenzene-2-diazo-1-oxide and thence 2:3:5-trichloro-4-nitro-6-hydroxybenzeneazo-2'-hydroxy-3'-naphthanilide (VIII), m.p. 285°. (VI) diazotised and coupled in AcOH, or even in AcOH-H₂SO₄, affords 2:3:5-trichloro-4-nitro-6-methoxybenzeneazo-2'-hydroxy-3'-naphthanilide, m.p. 282°, and a little (VIII). ittle (VII). Reduction (Fe-aq. AcOH-EtOH at 70°) of (VI) gives 3:4:6-trichloro-2:5-diaminoanisole, m.p. 121—122° [2:5-Ac2 derivative, m.p. 342° (decomp.); 2-Ac derivative, m.p. 202°, obtained by reducing (V), gives 2:3:6-trichloro-5-methoxy-4-acetamidobenzene-azo-β-naphthol, m.p. 267—268°]. 2-Diacetyl-3:4:6-trichloro-5-amino-q-anisidine, m.p. 142° is obtained by reducing the severence. 32-5-naphthot, m.p. 142°, is obtained by reducing the corresponding 5-NO₂-compound. (IV) and Br-AcOH at 15° yield 3:4:6-trichloro-5-bromo-o-anisidine, m.p. 101° (Ac derivative, m.p. 236—237°; azo-β-naphthol, m.p. 195°; the derived diazo-oxide yields 2:3:5-trichloro-4-bromo-6-hydroxybenzeneazo-2'-hydroxy-3'-naphthol anilide, m.p. 274°). (IV) and dry Cl_2 in CHCl_3 give tetrachloro-o-anisidine, m.p. 95° , and thence 2:3:4:5-tetrachloro-6-methoxy-benzeneazo- β -naphthol, m.p. 204° . A. T. P. Action of sulphuryl and benzenediazonium chlorides on aromatic thioethers. A. V. Rege, J. W. Airan, and S. V. Shah (J. Univ. Bombay, 1943, 11, A. Part 5, 83—86).—4:4'-Dihydroxy-3:3'-diacetyl-(I) and -dicarboxy-(II), and 2:2'-dihydroxy-3:3'-dicarboxy-dinaphthyl sulphide (IV) with PhN₂Cl in aq. NaOH at ~0° yield respectively 4-benzeneazo-2-acetyl-1-acetyl-1 and 126° 4 benzeneazo-1 bydroxy-3 and this naphthol, m.p. 136°, 4-benzeneazo-1-hydroxy-2-naphthoic acid, 1:2- $\begin{array}{lll} PhN_2\cdot C_{10}H_3\cdot OH, & \text{and} & 1\text{-benzeneazo-2-hydroxy-3-naphthoic acid.} \\ With & \text{SO}_2\text{Cl}_2 & \text{in} & \text{C}_6H_6, & \textbf{(I)} & \text{and} & \textbf{(II)} & \text{yield respectively} & 4:2:1-\\ & \text{C}_{10}H_5\text{ClAc}\cdot OH & \text{and} & 1:4:2\text{-}OH\cdot C_{10}H_5\text{Cl}\cdot CO_2H; & \textbf{(III)} & \text{gives no isolable product and} & \textbf{(IV)} & \text{does not react.} & \text{C}_{10}H_8 & \text{with} & \text{SO}_2\text{Cl}_2 & \text{in} & \text{Et}_2\text{O} \\ & \text{yields} & 1\text{-}C_{10}H_7\text{Cl} & \text{and} & 1:4\text{-}C_{10}H_6\text{Cl}_2. & \text{A. LI.} \\ \end{array}$ yields 1-C₁₀H₇Cl and 1: 4-C₁₀H₆Cl₂. Interaction of indene and styrene bromohydrins with sodium sulphite. Cleavage of alkali sulphonates with sodium in liquid ammonia. C. M. Suter and H. B. Milne (J. Amer. Chem. Soc., 1943, 65, 582—584).—Indene bromohydrin (I) and hot aq. Na₂SO₃ give Na indan-2-ol-1-sulphonate (II) (83%) [characterised by conversion by Ac₂O into the acetate (of the Na salt), m.p. 235—236° (corr.)] and ~2% of trans-indene glycol. The reaction may occur by way of indene oxide (III), since with Na₂SO₃ this gives chiefly (II) but NaHSO₃ affords (at 80—90°) a mixture of cis- and trans-glycols and a little (II). Crude OH·CHPh·CH₂Br (IV) with hot aq. Na₂SO₃ gives Na β-hydroxy-β-phenylethane-a-sulphonate (V) (derived p-chlorobenzylthiuronium salt, m.p. 182—183°) with some OH·CHPh·CH₂·OH and Ph·[CH₂]₂·SO₃Na (VI) [derived from CH₂:CHPh or CHPhMeBr present in the (IV); derived p-chlorobenzylthiuronium salt, m.p. 197°]. With Ac₂O, (V) gives the acetate, which at 180—200° gives AcOH and CHPh·CH·SO₃Na, the p-chlorobenzylthiuronium salt, m.p. 199°, derived therefrom being also obtained from (CHPh·CH·SO₃)₂Ba. Aq. NaCN and (I) give only 1-indanone and the glycols. Na in liquid NH₃ reduces (II) (proof of structure), (III), or (I) [by way of (III)] to 2-indanol. Na in liquid NH₃ reduces sulphonates containing S·C·Ar or S·C·C·C·C+₂, but not saturated aliphatic sulphonates; e.g., CH₂Ph·SO₃Na gives PhMe, Na₂SO₃, and a little (CH₂Ph)₂; CHPhMe·SO₃Na gives PhMe, Na₂SO₃, and a little (CH₂Ph)₂; CHPhMe·SO₃Na gives PhMe, H₄Me·CHMe·CH₂·SO₃Na gives Na₂SO₃ and (?) CH₂·CMe₂; but p-C₆H₄Me·CHMe·CH₂·SO₃Na gives Na₂SO₃ and (?) CH₂·CMe₂; but p-C₆H₄Me·CHMe·CH₂·SO₃Na, (V), and (VI) are unaffected. Rôle of neighbouring groups in replacement reactions. VI. cyclo-Hexylene ethyl orthoacetate. S. Winstein and R. E. Buckles (J, Amer. Chem. Soc., 1943, 65, 613-618).—The reaction mechanisms Amer. Chem. Soc., 1945, 65, 613.—118 feaction inectianisms previously indicated (A., 1943, II, 117) are confirmed. cis- (I) or trans-cycloHexane-1: 2-diol (II) with CMe(OEt)₃ and
a trace of p-C₄H₄Me·SO₃H (III) gives 65—70% of Et cis- (IV), b.p. 92—93°/10 mm., and trans-cyclohexylene Et 1: 2-orthoacetate, [CH₂] CH·O CMe·OEt, b.p. 95—96°/10 mm., respectively, yielding (I) and (II), respectively, by hydrolysis. Hydrolysis of (IV) is measured by change in the miscibility temp. of (IV)-EtOH-H₂O with mineral oil; at room temp. it is very slow in NaOEt-EtOH, very rapid with (III)-EtOH, but has a half-reaction time ~25 min. in 2% AcOH. 51% of (IV) is recovered after interaction of trans-2-acetoxycyclohexyl p-toluenesulphonate with KOAc-EtOH if H₂O is rigidly excluded and AcOH formed is removed. Acid hydrolysis of (IV) in ad. EtOH yields 95.5% of cis-2-acetoxy-H₂O is rigidly excluded and AcOH formed is removed. Acid hydrolysis of (**IV**) in aq. EtOH yields 95.5% of cis-2-acetoxy-cyclohexanol and 4.5% of (**I**); in AcOH containing a little H₂O the yields are 92 and 8%, respectively. With (**III**) and Ac₂O in hot AcOH, (**IV**) gives an ester hydrolysed to (**I**); with KOAc-Ac₂O-AcOH, (**IV**) gives a product, hydrolysed to pure (**II**); with Ac₂O-AcOH a product is obtained, which by hydrolysis yields mostly (**II**); Ac₂O alone at 130° leads to 43% of pure trans-diacetate (**V**) and a residue, hydrolysed to (**II**) (cf. Post et al., A., 1938, II, 123), but at room temp. gives, after hydrolysis, mainly (I) [no (V) is formed]. With HCl-LiCl-AcOH at room temp., (IV) gives trans-2-chloro-1-acetoxy- (68%) and cis-1:2-diacetoxy-cyclohexane (32%). trans-2-Ethoxycyclohexanol (prep. from the oxide by $\rm H_2SO_4-EtOH$; 80% yield), b.p. 86—86.5°/15 mm., with $\rm H_2SO_4-Ac_2O$ gives the acetate, b.p. 91—92°/10 mm. Ac₂O gives the acetate, b.p. 91—92°/10 mm. R. S. C. Tervalent carbon. II. Unsymmetrical hexa-aryldimethyl peroxides. E. L. Buhle, (Sr.) M. L. Whalen, and F. Y. Wiselogle (J. Amer. Chem. Soc. 1943, 65, 584—586; cf. A., 1942, II, 13).— Treating CPh₃CI (1 mol.) + CAr₃CI (1 mol.) with Hg-C₆H₆-N₂ for 17 hr. and oxidising the filtrate in air yields mainly CPh₃·O₂·CAr₃. This is the sole product (60—62%) when CAr₂CI is p-C₆H₄Ph·CPh₂CI (I) or (p-C₆H₄Ph)₂CPhCI (II), and (I) + (II) give only (65%) diphenyl-p-xenylmethyl phenyldi-p-xenylmethyl peroxide, m.p. 175° (instantaneous). The peroxide is formed from the free radicals, for 1 mol. each of CPh₃Cl and (p-C₆H₄Ph)₃CI (III) give mainly (CPh₃)₂O₂ and [(p-C₆H₄Ph)₃C]₂O₂ with 13% of CPh₃ tri-p-xenylmethyl peroxide (IV), m.p. 148°; this is because widely differing degrees of dissociation of C₂Ar₆ give differing concus. of CAr₂; thus, use of 3 mols. of CPh₃Cl and 1 mol. of (III) increases the yield of (IV) to 36%. CPh₃Cl and 1 mol. of (III) increases the yield of (IV) to 36%. CPh₃ diphenyl-p-xenylmethyl, m.p. 177° (decomp.; instantaneous), and phenyldi-p-xenylmethyl, m.p. 177° (decomp.; instantaneous), are described. Structures of the peroxides are proved by cleavage by Na-Hg, HI, or red P-I-AcOH. R. S. C. Preparation of methoxyphenylacetic acids. H. A. Weidlich and M. Meyer-Delius (Ber., 1940, 73, [B], 325—327).—Me 3: 4-methylenedioxymandelate (I) and Zn-HCl-AcOH afford a substance, C₂₂H₂₀O₃, m.p. 256—257° (darkens) (Me₂ ester, m.p. 95—96°), and 25°% of homopiperonylic acid (II), m.p. 128—129°. (II) is obtained in 96% yield from (I) and H₂-Pd-HBr-AcOH. Me o-methoxymandelate, m.p. 46°, and the p-isomeride are similarly hydrogenated at 55—60° and room temp., respectively, to o-, m.p. 124°, and p-OMe·C₆H₄·CH₂·CO₂H, m.p. 85—86°, respectively; BzCO₂Et affords OH·CHPh·CO₂H, which is unaffected under various conditions. A. T. P. Effect of heat on mandelic acid. W. R. Angus and R. P. Owen (J.C.S., 1943, 249—250).—OH·CHPh·CO₂H (but not its O-acyl derivatives or esters) undergoes change in structure and composition on being melted (the f.p. curve of mixtures of the r- and l-acids cannot thus be determined by the usual methods) probably owing to internal ester formation. The extent and products of condensation appear to be governed by the temp. and method of heating. A. T. P. Stability of racemates. Mandelic acid and its derivatives. W. R. Angus and R. P. Owen (f.C.S., 1943, 227-230).—M.p. or f.p. curves for mixtures of active and r-mandelic, acetyl- and propionyl-mandelic acids, and of Me, Et, and Buß mandelates have been determined. Racemate stability is increased by acylation and by esterification. The f.p. of the active acids are considerably higher than those of the corresponding r-acids, whilst the f.p. of the r-esters are a few degrees higher than those of the active forms. O-Propionyl-r- $(+2H_2O)$, m.p. $\sim 50^{\circ}$, anhyd. m.p. $51\cdot 2^{\circ}$, and -1-mandelic acid, m.p. $70-71^{\circ}$, $[a]_{15}^{15}-124\cdot 5^{\circ}$ in EtOH (vals. for other solvents given), were prepared from the mandelic acid and EtCOCl. O-Benzoyl-r-mandelic acid, m.p. $114-115^{\circ}$, is similarly prepared. C. R. H. Resolution of enantiomorphs. II. Liquid-liquid extraction. E. Shapiro and R. F. Newton (J. Amer. Chem. Soc., 1943, 65, 777—779).—Partial resolution of OH·CHPh·CO₂H (I), OAc·CHPh·CO₂H (II), o-NO₂·C₆H₄·CH(OR)·CO₂H (R = H and Ac), and HCO·NH·CHPh·CO₂H has been achieved by fractional distribution of the brucine salts between H₂O and CHCl₃. Multiple extractions gave a 10% resolution of (I) and (II). (I) has been partly resolved by a countercurrent extraction column. W. R. A. Addition of phenol ethers to substituted cinnamic acids. B. D. Patel and K. V. Bokil (J. Univ. Bombay, 1943, 11, A, Part 5, 92—100).—With the appropriate phenol ethers in presence of 80% H₂SO₄ at room temp. CPhMe:CH-CO₂Et yields Et β-phenyl-β-panisyl-, b.p. 210—217°/12 mm. (free acid, m.p. 100—102°; Me ester, b.p. 200—205°/5 mm.), -β-p-ethoxyphenyl-, b.p. 200—210°/8 mm. (free acid, b.p. 270—275°/20 mm.; Me ester, b.p. 185—195°/7 mm.), and -β-6-methoxy-m-tolyl-butyrate, b.p. 210—218°/14 mm. (free acid, m.p. 118°; Me ester, b.p. 190—200°/8 mm.), p-C₆H₄Me-CMe:CH-CO₂Et yields Et β-p-anisyl-, b.p. 230—235°/10 mm. (free acid, m.p. 130°; Me ester, b.p. 210—215°/6 mm.), -p-ethoxyphenyl-, b.p. 220—228°/6 mm. (free acid, m.p. 112°; Me ester, b.p. 210—220°/9 mm.), and β-6-methoxy-m-tolyl-β-p-tolyl-butyrate, b.p. 205—215°/6 mm. (free acid, m.p. 130—132°; Me ester, b.p. 220—225°/10 mm.; anilide, m.p. 140—141°), p-OMe-C₆H₆-CMei-CH-CO₂Et yields Et β-p-anisyl-β-p-ethoxyphenyl-, b.p. 240—250°/11 mm. (free acid, m.p. 99—100°; Me ester, b.p. 245—255°/9 mm.), and β-6-methoxy-m-tolyl-butyrate, b.p. 245—250°/12 mm. (free acid, m.p. 120°; Me ester, b.p. 235—240°/9 mm.), p-OEt-C₆H₄-CMei-CH-CO₂Et yields Et β-p-anisyl-β-c-methoxy-m-tolyl-butyrate, b.p. 246-250°/12 mm.) (free acid, m.p. 120°; Me ester, b.p. 235—240°/9 mm.), p-OEt-C₆H₄-CMei-CH-CO₂Et yields Et β-ethoxyphenyl-β-6-methoxy-m-tolyl-butyrate, b.p. 240-250°/12 mm.) ester, b.p. 245—250°/10 mm.), o-OMe·C₈H₄·CMe·CH·CO₂Et yields Et β -o-anisyl- β -p-anisylbutyrate, b.p. 230—235°/10 mm. (free acid, m.p. 118—119°), and 6:3:1-OMe·C₆H₃Me·CMe·CH·CO₂H (from 4:6-dimethylcoumarin and Me₂SO₄ in NaOH at 50°) yields β -p-anisyl-, m.p. 158° (Me ester, m.p. 86—87°, b.p. 240—250°/20 mm.), β -p-ethoxyphenyl-, m.p. 148° (Et ester, m.p. 72°; anilide, m.p. 149°), and β -6-methoxy-m-tolyl- β -4-methoxy-m-tolylbutyric acid, m.p. 157° (Et ester, m.p. 84°; Me ester, m.p. 84—85°; anilide, m.p. 144°). a- and β -C₁₀H₇·OH with CH₂Ac·CO₂Et and 80% H₂SO₄ at room temp. yield respectively 4-methyl-1:2-a β -(85) and -1:2- β -a-naphthapyrone (70% yield), converted by Me₂SO₄ and EtOH–NaOH into β -1-methoxy-2-, m.p. 137° (Et, b.p. 280—290°/9 mm., and Me ester, b.p. 280—285°/14 mm.), and β -2-methoxy-1-naphthylcrotonic acid, m.p. 188—189°, respectively, neither of which, like CPh₂·CH·CO₂H, adds phenol ethers under the above conditions. adds phenol ethers under the above conditions. A. Li. Synthetic anthelmintics. VI. β-p-Anisyl-γ-alkylbutyrolactones. K. Paranjape, N. L. Phalnikar, and K. S. Nargund (J. Univ. Bombay, 1943, 11, A. Part 5, 104—110).—p-OMe·C₆H₄·COPr, CH₂Br·CO₂Et, and Zn in boiling PhMe give Et β-hydroxy-β-p-anisylhexoate, b.p. 155°/25 mm. (free acid, b.p. 168°/25 mm.), dehydrated (P₂O₅ in C₆H₆) to Et β-p-anisyl-Δβ-hexenoate, b.p. 170°/20 mm., the free acid, b.p. 210°/25 mm. (anilide, m.p. 110°), from which (10% KOH at room temp.) with 60% H₂SO₄ at room temp. yields β-p-anisyl-γ-ethyl-γ-butyrolactone, b.p. 185°/20 mm., demethylated (HBr-AcOH) to the OH-lactone, b.p. 198°/35 mm. Similarly obtained are β-hydroxγ-β-p-anisyl-heptoic, b.p. 190°/30 mm. (Et ester, b.p. 160°), -nonoic, b.p. 235°/45 mm. (Et ester, b.p. 220°/50 mm.), -octadecoic, m.p. 65° (Et ester, m.p. 58°), and -eicosanoic acid, m.p. 71° (Et ester, m.p. 60°), β-p-anisyl-Δβ-heptenoic, b.p. 195°/20 mm. (Et ester, b.p. 170°/20 mm.; anilide, m.p. 105°), -nonenoic, b.p. 240°/25 mm. (Et ester, b.p. 225°/45 mm.; anilide, m.p. 101°), -octadecenoic, m.p. 48° (Et ester, decomposes when heated; anilide, m.p. 68°), and -eicosenoic acid, m.p. 76° (Et ester, m.p. 68°), β-p-anisyl-γ-propyl-, b.p. 186°/16 mm., -n-anyl-, b.p. 245°/30 mm., -tetradecyl-, b.p. 299°/25 mm., and -hexadecyl-γ-butyrolactone, m.p. 58°, and β-p-hydroxy-phenyl-γ-propyl-, b.p. 220°/35 mm., -n-anyl-, m.p. 44°, -tetradecyl-γ-butyrolactone, m.p. 78—79°. p-Anisyl hexyl ketone (from C₆H₁₃·COCl, PhOMe, and AlCl₃) has b.p. 240°/50 mm. Esters of dihydrochaulmoogric acid and dihydrochaulmoogryl alcohol. K. Burschkies (Ber., 1940, 73, [B], 405—408).—Et chaulmoograte is hydrogenated (PtO₂-EtOH) to Et dihydrochaulmoograte, b.p. 210—220°/0·05 mm. [aq. NaOH-EtOH gives the free acid (I), m.p. 71°, whence (SOCI₂) the chloride (II), b.p. 205—215°/0·1—0·2 mm.], converted by Na–EtOH at 120° (after initial reaction) into dihydrochaulmoogryl alcohol (III), m.p. 29—30°, b.p. 180°/0·2 mm. The appropriate alcohol and (II) in N₂ give cholesteryl (prep. in (c_8H_6) , m.p. 94°, Δ^4 -octadecenyl [also from (I)], b.p. 256—270°/0·1 mm., and CH_2Ph [from (I)], b.p. 220—230°/0·2 mm., dihydrochaulmoograte. (III) and
the respective chloride in C_8H_6 and N₂ afford dihydrochaulmoogryl oleate, b.p. 250—260°/0·15 mm., and cinnamate, b.p. 255—265°/0·05 mm. Peptides of dehydrogenated amino-acids. D. G. Doherty, J. E. Tietzmann, and M. Bergmann (J. Biol. Chem., 1943, 147, 617—637).—N-NaOH and acetyldehydrophenylalanine azlactone (I) are added successively to a suspension of glycine in COMe2; after several hr. the solution yields acetyldehydrophenylalanylglycine, m.p. 194—195°, when treated with N-HCl. The following are obtained similarly: acetyldehydrophenylalanylphenylserine, m.p. 226—228° (decomp.), converted by Ac2O and anhyd. NaOAc at 40° into the azlactone (II), m.p. 184—186°, of acetyldehydrophenylalanylglycine (IV), m.p. 208—209° (corr.); benzoyldehydrophenylalanylglycine (IV), m.p. 180° (decomp.); acetyldehydrophenylalanylphenylserine (V), m.p. 180° (decomp.); acetyldehydrophenylalanylphenylserine (V), m.p. 180° (decomp.); acetyldehydroleucylglycine, m.p. 185—187°, by hydrolysis of the Et ester, m.p. 130—132°, obtained from NH2°CH2°CO2Et and acetyldehydroleucine azlactone, b.p. 68—69°/0·15 mm. [corresponding acid, m.p. 155—157°, and its amide, m.p. 205—207° (corr.)]. trans-Phenylserine Et ester and carbobenzyloxyglycylechenyloxyglycyl-dl-phenylserine, m.p. 161—163°; the azlactone, m.p. 141—142°, of this substance (corresponding amide, m.p. 164—166°) yields carbobenzyloxyglycyldehydrophenylalanine, m.p. 168—170°. Acetyldehydrophenylalanyl-1-alanine, m.p. 195—196° (decomp.), [a]₃³⁵ +69·6° in C₃H₃N, -1-phenylalanine, m.p. 213—215° (decomp.) (becomes discoloured at 221°), [a]₃³⁶ +45·0° in C₃H₃N, and 1-tyrosine, m.p. 228·5—229·5° (decomp.) (becomes discoloured at 221°), [a]₃³⁶ +45·0° in C₃H₃N, and 1-tyrosine, m.p. 228·5—229·5° (decomp.) (becomes discoloured at 221°), [a]₃³⁶ +45·0° in C₃H₃N, and 1-tyrosine, m.p. 228·5—229·5° (decomp.) (becomes discoloured at 221°), [a]₃³⁶ +45·0° in C₃H₃N, and 1-tyrosine, m.p. 228·5—229·5° (decomp.) (becomes discoloured at 221°), [a]₃³⁶ +45·0° in C₃H₃N, and 1-tyrosine, m.p. 228·5—229·5° (decomp.) (becomes discoloured at 221°), [a]₃³⁶ +45·0° in C₃H₃N, and 1-tyrosine, m.p. 228· sine, m.p. 218° (decomp.), is obtained similarly. (IV), p-OH·C₈H₄·CHO, Ac₂O, and NaOAc give the acetylazlactone, m.p. 231—233° (corresponding azlactone, m.p. 235—238°), of benzoylde-hydrophenylalanyldehydrotyrosine, m.p. 164—166° (decomp.) [amide, m.p. 228° (decomp.)]. The azlactone, m.p. 171—173°, of acetylde-hydroleucyldehydrophenylalanine, m.p. 215—216° (decomp.), has been prepared. Carbobenzyloxyglycyldehydrophenylalanyl-l-glutamic acid, m.p. 177—179° (decomp.), [a]₅0—28-0 in C₅H₅N, and -phenylserine, m.p. 168—170°, are described. (II) and the required NH₂-acid give acetylbis(dehydrophenylalanyl)-glycine, decomp. 216° (decomp.), [a]₅0—255·1°, [a]₅0 282·9° in C₅H₅N, -1-leucine, m.p. 235—236° (decomp.), softens at 225°, [a]₅0 2+25·6° in C₅H₅N, -1-phenylalanine, m.p. 229—230° (decomp.), darkens at 256°, [a]₅0 —173·2° in C₅H₅N, -1-tyrosine, m.p. 172—173·5° (decomp.), [a]₅0 —173·2° in C₅H₅N, -1-proline, m.p. 203—204° (decomp.), [a]₅0 —183·6° in C₅H₅N, -1-proline, m.p. 203—204° (decomp.), [a]₅0 —182·6°. 1-Cystine and (I) give bis(acetyldehydrophenylalanyl)-1-cystine, m.p. 212—213° (decomp.), [a]₅0 + 19·5° in C₅H₅N, Acetylbis(dehydrophenylalanyl)dehydrophenylalanine, m.p. 233—235°, is converted into acetyltris(dehydrophenylalanyl)-1-phenylalanine, m.p. 201—202°, becomes yellow at 172—173°, [a]₅0 —35·4° in C₅H₅N, and -phenylserine, m.p. 199° (decomp.); this gives acetyltris(dehydrophenylalanyl)dehydrophenylalanine, m.p. 247—249° (decomp.), converted into bis(acetyldehydrophenylalanine azlactone, m.p. 247—249° (decomp.), converted into bis(acetyldehydrophenylalanine ablactone, m.p. 247—249° (decomp.), converted into bis(acetyldehydrophenylalanyl)-1-phenylalanine, m.p. 201—202°, becomes yellow at 172—173°, [a]₅0 —36·1° in C₅H₅N. M.p. are corr. H. W. Chlorination of benzoic acid. H. G. Biswas and S. J. Das-Gupta (J. Indian Chem. Soc., 1942, 19, 497—498).—BzOH with aq. KClO₃—HCl affords 3: 4: 1- and 2:5:1-C₆H₃Cl₂·CO₂H, separable through their Ba salts. A. T. P. Ester group in polystyrene made with chloro- and bromo-benzoyl peroxides.—See A., 1943, II, 223. Polymerisation of styrene in presence of 3:4:5-tribromobenzoyl peroxide.—See A., 1943, II, 223. Isomorphism of organic compounds. V. Nitrobenzoic acids and substituted benzoic acids. H. Lettré (Ber., 1940, 73, [B], 386—390; cf. A., 1938, II, 324).—M.p. curves show that 1:1 compounds are formed from: o-NO₂·C₆H₄·CO₂H and BzOH (I), m- (II) or p-C₆H₄Me·CO₂H (III), or m-C₆H₄Cl·CO₂H (IV); m-NO₂·C₆H₄·CO₂H and (I), (II), (III), (IV), o-C₆H₄Me·CO₂H, o-C₆H₄·Cl·CO₂H, o- or m-C₆H₄Br·CO₂H, m-C₆H₄I·CO₂H, or p-OH·C₆H₄·CO₂H; p-NO₂·C₆H₄·CO₂H and (I), (III), or p-C₆H₄R·CO₂H (R = Cl. Br. I, or OH). In the other cases investigated, mixed crystal or eutectic formation is noted. Michael reactions. C. F. Koelsch (J. Amer. Chem. Soc., 1943, 65, 437—439).—Attempts to effect Michael reactions with CH₂:CH·CN (I) or CH₂:CH·CO₂Me (II) with NaOR-ROH led to addition of ROH. Thus, MeOH + a trace of NaOMe with (II) at 30—35° gives OMe·[CH₂]₂·CO₂Me (77%), b.p. 137—143°, and EtOH with (I) gives β-ethoxypropionitrile (89%), b.p. 170—173°. However, Michael reactions with these and similar compounds proceed well in absence of a solvent, when a trace of NaOR-ROH is used at <50°. Thus, CH₂Ph·CN (III) with (II) gives γ-carbomethoxy-α-phenyl-[20—23%; 24% obtained by NaNH₂ in an excess of (III)], b.p. 187—190°/18 mm., with CHMe·CH·CO₂Et gives γ-carbethoxy-α-phenyl-β-methyl- (63—68%), b.p. 170—175°/10 mm., with CMe₂·CH·CO₂Et affords γ-carbethoxy-α-phenyl-ββ-dimethyl-, b.p. 195—200°/23 mm., with CHPh·CH·CO₂Et gives γ-carbethoxy-αβ-diphenyl-, forms, m.p. 100—101° and 59—60°, with Me₂ maleate give βγ-dicarbomethoxy-α-phenyl- (50%), b.p. 198—203°/10 mm., and with Et₂ maleate gives βγ-dicarbethoxy-α-phenyl- (52—58%; 46% in EtOH), b.p. 185—187°/1 mm., -butyronitrile. With (I), (III) gives α-phenyl-β-methyl- (76%), b.p. 193—197°/14 mm., and with ρ-OMe·C₆H₄·CH·CH·CN gives α-phenyl-β-p-anisyl- (72%), m.p. 135—136°, -glutaronitrile. CHPh·CH·CN with (III) gives α-phenyl-β-methyl- (76%), b.p. 193—197°/14 mm., and with ρ-OMe·C₆H₄·CH·CH·CN gives β-phenyl-α-p-anisyl-glutaronitrile (26%), m.p. 136°, -glutaronitrile. CHPh·CH·CN with (III) gives α-phenyl-β-methyl- (76%), b.p. 193—197°/14 mm., and with ρ-OMe·C₆H₄·CH·CN gives β-phenyl-α-p-anisyl-glutaronitrile (26%), m.p. 138—187°/13 mm., gives β-phenyl-α-p-anisyl-glutaronitrile (26%), m.p. 140—142°, and with m-aminophenylactonitrile (IV), b.p. 183—187°/13 mm., gives β-phenyl-α-p-anisyl-glutaronitrile (26%), m.p. 140—142°, and with m-aminophenylactonitrile (IV), b.p. 183—187°/13 mm., gives β-phenyl-α-m-aminophenylactonitrile (IV), b.p. 183—187°/13 mm., gives β-phenyl-α-m-aminophenylactonitrile (IV), b.p. 183—187°/13 mm., gives β-phenyl- 3:4-Dimethoxyphenylsuccinic acid. K. P. Dave, J. J. Trivedi, and K. S. Nargund (J. Univ. Bombay, 1943, 11, A. Part 5, 111—112).—3:4:1-(OMe) $_2$ Ce $_6$ H $_3$ ·CHO with CN·CH $_2$ ·CO $_2$ Na and 10% NaOH at 40° yields a-cyano- β -3:4-dimethoxyphenylacrylic acid, m.p. 200° (Me ester, m.p. 122°), the Et ester, m.p. 152°, of which with aq. EtOH-KCN gives a product hydrolysed (dil. HCl) to 3:4-dimethoxyphenylsuccinic acid, m.p. 130° [Me $_2$ ester, m.p. 65°; an- hydride, m.p. 124°, whence the anilic, m.p. 151°, and p-toluidinic acid, m.p. 158—159°, and imide, m.p. 172° (softens at 163°)]. Diene syntheses. V. E. Lehmann (Ber., 1940, 73, [B], 304—309; cf. A., 1938, II, 488).—CH₂:CH·CH₂·MgBr and CH₂:CH·CH₂Br BzCl yield phenyldiallylcarbinol (I), b.p. 119—120°/13 mm.; o-tolyldiallylcarbinol (II) has b.p. 131—132°/10 mm. (I) or (II) and SOCl₂-CHCl₃ give the carbinyl chlorides, converted by distillation with NaOH at 270—280° into δ-phenyl- or δ-o-tolyl-Δαγδ-heptatriene, respectively, and thence by (:CH·CO)₂O in C₆H₆ at 105—110° into 3-phenyl-, m.p. 174° (slow heating) (anhydride, m.p. 157-5°), or 3-o-tolyl-3-allyl-Δ⁴-tetrahydrophthalic acid, m.p. 236—237° (previous sintering), respectively. The NaHSO₃ compound of 2-m-4-xylyl-2-methyl-Δ³-tetrahydrobenzaldehyde (A., 1935, 978) and aq. KCN yield the corresponding cyanohydrin, which with HCl affords 2-m-4'-xylyl-2-methyl-Δ³-tetrahydro-mandelamide, forms, m.p. 213—214° and 158·5—159°, hydrolysed [boiling NaOH-EtOH (6 days)] to the -mandelic acid, m.p. 149° [Ac₂O-AcOH at 100° (bath) yields the anhydride, forms, m.p. 105—106° and 83—83·5°], hydrogenated (Pd-BaSO₄-AcOEt) to 2-m-4'-xylyl-2-methylhexahydromandelic acid, m.p. 182°. Alkyl β-nitroalkyl phthalates.—See B., 1943, II, 211. Synthesis of 2:4-dimethoxy- and -dihydroxy-isophthalic acids (Miss) K. S. Radha and R. C. Shah (J. Indian Chem. Soc., 1942, 19, 495—496).—3:2:4:1-CHO·C₆H₂(OMe)₂·CO₂H (A., 1939, II, 22) and KMnO₄-10% aq. NaOH yield 2:4-dimethoxyisophthalic acid, m.p. 222—223° (Me_2 ester, m.p. 78—80°; 1-Me H ester, m.p. 150—151°), demethylated by AlCl₃ in boiling light petroleum to 2:4-dihydroxyisophthalic acid, m.p. 179—181°. A. T. P. Preparation of aldehydes by disruptive oxidation of the ethylene linking. R. R. Davies and H. H. Hodgson (J.S.C.I., 1943, 62, 90—92).—Alkaline KMnO₄ is preferable to CrO₃ for the oxidation of stilbene derivatives to aldehydes, whilst CrO₃ is much superior for the oxidation of R·CH·CHMe to R·CHO. Higher yields (piperonal from isosafrole; vanillin from isoeugenol) are obtained when dispersing agents are present, and this is attributed to ephemeral formation of double compounds with the aldehyde when produced. Ethers of protocatechualdehyde.—See B., 1943, II, 211. Reaction of Grignard reagents with oximes. II. Action of aryl Grignard reagents with mixed ketoximes. K. N. Campbell, B. K. Campbell, and E. P. Chaput. III. Mechanism of the action of magnesium aryl halides on mixed ketoximes. New synthesis of ethyleneimines. K. N. Campbell, B. K. Campbell, J. F. McKenna, and E. P. Chaput (J. Org. Chem., 1943, 8, 99—102, 103—109;
cf. A., 1939, II, 366).—II. CArAlk:N·OH (I) and MgArX (II) yield β-NH₂-alcohols. (II) is prepared in Et₂O and the solvent is removed by heating to 150—155°; PhMe is added to the residue followed by dropwise addition of (I) in PhMe at 150°. The following (m.p. of the hydrochloride and Bz derivatives, respectively, being in parentheses) are prepared thus or from COAr·CH₂·NH₂ and (II): β-aminoa-phenyl-a-p-tolyl-, m.p. 104—105° (183—184°; 142—143°), -a-phenyl-a-p-anisyl-, m.p. 159—160° (232—234°; 193—194°), -a-phenyl-a-p-anisyl-, m.p. 134° (162—163°; -), and -a-phenyl-a-p-alphenyl-a-p-tolylpropanol, m.p. 74—75° (239°; 195—196°); β-aminoa-phenyl-a-p-tolylpropanol, m.p. 74—75° (239°; 209—211°). LIL Evidence is addition of show that ethyleneimines are inter- mino-aa-aipenyioulanot, in.p. 17—18 (235, 205—217). III. Evidence is adduced to show that ethyleneimines are intermediates in the above conversion of (I) into β-NH₂-alcohols. If the reaction between CPhEt.N·OH and MgPhBr is effected by using a conc. Grignard reagent and hydrolysing the reaction complex with acid and ice, NH₂-CHMe·CPh₂-OH (III), m.p. 103—104°, is obtained in 30—40% yield. If no acid is used in the hydrolysis or if the complex is hydrolysed with acid at 0°, immediately made basic with aq. NH₃, and extracted the product is 2:2-diphenyl-3-methylethyleneimine (IV), m.p. 74·5—75° [hydrochloride, m.p. 139—140°; picrate, m.p. 199—200°; NHPh·CS derivative, m.p. 126·5—127°; derivative, C₂₂H₁₇O₃N₂·CO₂H, m.p. 190—192°, from 3:1:2-NO₂·C₆H₃(CO)₂O]. (IV) is isolated in better yield when the Grignard reaction is effected in PhMe at 135—145° and the complex is hydrolysed without use of acid or the acid solution kept very cold and worked up immediately. If the acid mixture is kept or allowed to get warm both (III) and (IV) are obtained. If the Grignard reaction is carried out in Et₂O and the mixture hydrolysed without use of acid (IV) and much unchanged oxime result. (IV) reduces KMnO₄ very slowly. It is rapidly hydrolysed by warm 2n-H₂SO₄ or 6n-HCl to (III) or to COMe·CHPh₂, NH₃, and (III) if the reaction is prolonged. (III) is converted by SOCl₂ in CHCl₃ followed by KOH–EtOH into (IV). MgPhBr and CPhPra·N·OH in PhMe at 150° afford 2:2-diphenyl-3-ethylethyleneimine, m.p. 44·5—45° (hydrochloride, m.p. 144·5—145°; 1-C₁₀H₇·NH·CO, m.p. 184—185°, and noncryst. NHPh·CS derivative); it is hydrolysed by 3n-H₂SO₄ to NH₂·CHEt·CPh₂·OH. aβ-Unsaturated amino-ketones. VIII. Reaction of primary amines with 1:3-diketones and bromine derivatives of phenyl styryl ketone. Ethyleneimines. N. H. Cromwell, R. D. Babson, and C. E. Harris. IX. Colour and constitution. N. H. Cromwell and R. S. Johnson (J. Amer. Chem. Soc., 1943, 65, 312—315, 316—319; cf. A., 1943, II, 243).—VIII. CH₂Bz₂ (I mol.) with boiling CH₂Ph·NH₂ (I) or cyclohexylamine (II) (2 mols.) and a drop of conc. HCl gives Ph β-benzylamino-, m.p. 101° (hydrobromide, m.p. 172—174°, obtained by HBr-Et₂O-C₈H₈ and hydrolysed in H₂O), or β -cyclohexylamino, m.p. 78°, -styryl ketone, respectively, which both decolorise Br-CHCl₃, are sol. in 6N-HCl, and are hydrolysed therein to CH₂Bz₂; CHCl₃, are sol. in 6N-HCl, and are hydrolysed therein to CH₂Bz₂. COMe·CH₂Bz gives similarly Ph β-benzylamino-, m.p. 62°, and β-cyclohexylamino-propenyl ketone, m.p. 54° (with COMe·CH₂Bz gives an oil), sol. in dil. acids and hydrolysed therein to COMe·CH₂Bz. (I) or (II) (4 mols.) with CHPhBr·CCHBr·COPh (1 mol.) in EtOH or CHPh·CBr·COPh (2 mols.) in Et₂O at 0° gives 2-benzoyl-3-phenyl-1-benzyl- (III), m.p. 108°, or -1-cyclohexyl-ethyleneimine (IV), m.p. 107°, respectively, unaffected by Br-CHCl₃ or H₂-Raney Ni at 50 lb.; (IV) is accompanied by a mixture, m.p. 85—90°, of, probably, (IV) and CH₂Ph·CBz·N·C₆H₁₁. CHPh·CBr·COPh (1 mol.) with (I) (1 mol.) in Et₂O-light petroleum at -10° to -5° gives Pha-bromo-β-benzylamino-β-phenylethyl ketone (V), m.p. 75—77° (decomp.) [hydrobromide (VI), m.p. 157—159° (decomp.), separates from C₆H₆], which generates ionic Br in EtOH-AgNO₃, slowly in aq. HNO₃-AgNO₃, and not in H₂O, with tetrahydroquinoline in from C₈H₆], which generates ionic Br in EtOH-AgNO₃, slowly in aq. HNO₃-AgNO₃, and not in H₂O, with tetrahydroquinoline in EtOH at room temp. slowly or with C₅H₅N in warm EtOH yields (III), and in C₆H₆ slowly gives (III) also. With dry HBr-C₆H₆, (III) gives (VI), with dry HCl-C₆H₆-Et₂O at 0° or 6N-aq. HCl at 85° gives Ph α-chloro-β-benzylamino-β-phenylethyl ketone hydrochloride (VII), m.p. 167—169° (decomp.), but with dry HCl-Et₂O gives the hydrochloride, m.p. 129—131° (decomp.), of (III). (VII) is converted into (III) by C₅H₅N in warm MeOH, whilst (III) and boiling 15% H₂SO₄ gives the betaine, +NH₂(CH₂Ph)·CHPh·CH(COPh)·O·SO₃-, m.p. 218° (with small amounts of PhCHO and COPh·CO·Ch₂Ph), insol. in H₂O or EtOH, sol. in KOH-EtOH or aq. Na₂CO₃, whence m.p. 218° (with small amounts of PhCHO and COPhCOCH₂Ph), insol. in H₂O or EtOH, sol. in KOH-EtOH or aq. Na₂CO₃, whence it is regenerated by acid, and converted by hot KOH-aq. EtOH into (III). In aq. HCl at 85°, (IV) gives Ph a-chloro-β-cyclohexylamino-β-phenylethyl ketone hydrochloride, m.p. 187—189° (decomp.). PhCHO and 33% aq. NH₂Me give exothermally CHPh:NMe (70%), b.p. 183—185°, hydrogenated (Raney Ni) in EtOH at room temp./ 45 lb. to NHMe-CH₂Ph, b.p. 184—186°. M.p. are determined in a preheated both preheated bath. IX. Absorption spectra of the compounds discussed above and loc. cit. support the structure assigned. In EtOH, Ph·[CH₂]₂·COPh (VIII) and CHPh·CH·COPh (IX) have max. at 3275 and 3350 A. (VIII) and CHPh:CH-COPh (IX) have max. at 3275 and 3350 A. and ϵ 0.0418 and 2.040 \times 10⁻³, respectively; in C_6H_6 , (IX) has a max. at 3275 A. and ϵ 1.468 \times 10⁻³. NHR at $C_{(a)}$ of (IX) gives visible colour and absorption at 3500—4100 A. with a max. at ~4000 A. and ϵ 2—3 \times 10⁻³ in EtOH, the max. being at shorter λ and ϵ slightly increased in C_6H_6 . NHR at $C_{(\beta)}$ of (IX) has little effect on colour or the position of the max. but greatly increases ϵ (14—20 \times 10⁻³ at 3500 A.). α -Br in (IX) has little effect on the position of the max. but decreases ϵ (0.876 \times 10⁻³ at 3300 A.), but simultaneous presence of NRR' at $C_{(\beta)}$ has great effect (ϵ 18·5 \times 10⁻³ at 4025 A.). Absorption of the imines closely resembles that of (VIII); e.g., (III) has a max. at 3275 A. and ϵ 0.0623 \times 10⁻³ in EtOH. Resonance accounts for most of these results. R. S. C. Polymethylbenzoylnaphthoic acids. R. H. Martin (J.C.S., 1943, 239-241).—1: $2\cdot C_{10}H_6(CO)_2O$ (I), $1:2:3\cdot C_6H_3Me_3$ (II) (excess), and AlCl₃ at room temp. give $1\cdot (3':4':5'-trimethylbenzoyl)\cdot 2-naphthoic acid$ (III), m.p. $273-274^\circ$ [Ac₂O-C₅H₅N gives the acetoxy-lactone (IV), $C_{23}H_{20}O_4$, m.p. $231-232^\circ$, hydrolysable to (III)], and $2\cdot (3':4':5'-trimethylbenzoyl)\cdot 1-naphthoic acid$ (V), m.p. $191-192^\circ$ (accton) lacton (burstless $191-192^\circ$) (burstless $191-192^\circ$) (accton) lacton $191-192^\circ$ (burstless $191-192^\circ$) $191-192^$ and 2-(3': 4': 5'-trimethylbenzoyl)-1-naphthoic acid (\mathbf{V}), m.p. 191—192° (acetoxy-lactone, m.p. 161·5—162·5°; benzoyloxy-lactone, m.p. 191·5—192·5°). (III) or (\mathbf{V}) with KOH at 260—280° or 280—340° gives 3: 4: 5: 1-C₆H₂Me₃·CO₂H and 2- or 1-C₁₀H₇·CO₂H, respectively. 2: 1-C₁₀H₆Me·COCl and (\mathbf{II})-AlCl₃-CS₂ at 0°, then at room temp., give 1-(3': 4': 5'-trimethylbenzoyl)- (\mathbf{VI}), m.p. 150—151°, and 1-(2': 3': 4'-trimethylbenzoyl)-2-methylnaphthalene, m.p. 108—108·5°. (\mathbf{VI}) and SeO₂-H₂O at 235°, followed by Ac₂O-C₅H₅N, yield (\mathbf{IV}). (\mathbf{I}), 1: 2: 3: 4-C₆H₂Me₄, AlCl₃, and PhNO₂ at 0° (12 hr.), then at room temp. (60 hr.) afford 2-(2': 3': 4': 5'-tetramethylbenzoyl-1-naphthoic acid, m.p. 241·5—242·5°, converted by BzCl and a little conc. H₂SO₄ at 100° (bath) into (probably) 5: 6: 7: 8-tetramethyl-1: 2-benzanthraquinone, m.p. 203—203·5°. Prep. of 1: 2: 3: 4-C₆H₂Me₃·MgBr and (\mathbf{I}) give a difficultly separable mixture of acids. Alkylation of ethyl 3-methyl- Δ^2 -cyclohexenone-4-carboxylate (Hagemann's ester) and related substances. L. I. Smith and G. F. Rouault (J. Amer. Chem. Soc., 1943, 65, 631—635).—Adding piperidine to CH₂Ac·CO₂Et (2 mols.) and paraformaldehyde (1 mol.) with cooling, heating at 100°, and treating the resulting crude Et₂ 3-methyl-Δ²-cyclohexenone-4: 6-dicarboxylate (I) with boiling NaOEt-EtOH (1 mol.; 2 mols. give 10%) gives Et 3-methyl- Δ^2 -cyclo-hexenone-4-carboxylate (II) (40—50%), b.p. 142—144°/15 mm. [semicarbazone, m.p. 165—167° (lit. 169°)] (cf. A., 1896, i, 393; 1939, II, 412). In boiling aq. H₂SO₄, (I) gives 3-methyl- Δ^2 -cyclo-hexenone (III) (24%); b.p. 75—77°/10 mm., in H₂SO₄—AcOH—H₂O gives (III) (44%) and (II) (8%), and in H₂O at 200° gives (III) (25%) and (II) (21%). NaOMe—MeI—MeOH at 5°, later 20°, and finally the b.p. converts (II) into 2: 3-dimethyl- Δ^2 -cyclohexenone finally the b.p. converts (II) into 2:3-dimethyl- Δ^2 -cyclohexenone (IV) (37%), b.p. $90-96^\circ/14$ mm. [semicarbazone, sinters $200-205^\circ$, m.p. 222° (lit. 225°)], and its $4\text{-}\mathrm{CO}_2\mathrm{Et}$ -derivative (V) (17%), b.p. $138-142^\circ/12$ mm.; MeBr at $<10^\circ$ gives 49% of (IV). EtBr, (II), and NaOEt in boiling EtOH give the $4\text{-}\mathrm{CO}_2\mathrm{Et}$ -derivative (55%) (VI), b.p. $141-143^\circ/9$ mm. (semicarbazone, m.p. $160-164^\circ$), of 3-methyl-2-ethyl- Δ^2 -cyclohexenone (VII) (27%), b.p. $82-85^\circ/9$ mm. (semicarbazone, m.p. $190-194^\circ$) [obtained from (VI) in 62%, yield by KOH-EtOH]. Perhydrogeranyl bromide, (II), and NaOEt in boiling EtOH give only (49%) Et 3-methyl-2-perhydrogeranyl- Δ^2 -cyclohexenone-4-carboxylate, b.p. $182^\circ/4$ mm. (semicarbazone, m.p. $85\cdot5-87^\circ$, formed
slowly), and thence (KOH-EtOH) 3-methyl-2-perhydrogeranyl- Δ^2 -cyclohexenone (54%), b.p. 153-3-methyl-2-perhydrogeranyl- Δ^2 -cyclohexenone (54%), b.p. 153—154°/3 mm. (semicarbazone, m.p. 93—95°). Condensing CH₂Ac CO₂Et with MeCHO by piperidine at the b.p. and hydrolysing the product by 25% (vol.) H_2SO_4 gives 3:5-dimethyl- Δ^2 -cyclohexenone (19%), b.p. $81^\circ/9$ mm, its $4\text{-}CO_2\text{Et}$ (6%), b.p. $146^\circ/12$ mm., and $4:6\text{-}(CO_2\text{Et})_2$ -derivative (a little), b.p. $205^\circ/11$ mm. Pd-C d (A., 1940, II, 351) at 200° converts (**IV**) into o-3-xylenol (53%), but other reagents were unsuccessful. reagents were unsuccessful. Reactions catalysed by aluminium chloride. XIX. Synthesis of stereoisomeric 1-keto-9-methyldecahydronaphthalenes. C. D. Nenitzescu, E. Ciorānescu, and V. Przemetzky (Bev., 1940, 73, [B], 313—315; cf. A., 1939, II, 268)— $CO_2Me^*[CH_2]_2\cdot COCI$, 1-methyl- Δ^1 -cyclohexene, and AlCl₃ in PhNO₂ at room temp. (2 days) give Me γ -keto- γ -2-methyl- Δ^1 -cyclohexenylbutyrate, b.p. 150—160°/15 mm., converted by N_2H_4, H_2O -NaOEt-EtOH at 180° into γ -2-methyl- Δ^1 -cyclohexenylbutyric acid (I), b.p. 159—160°/9 mm., 175°/20 mm. [p-bromophenacyl ester, m.p. 78° (lit. 65—66°)]. Prolonged warming with alkali causes migration of the double linking in (I), and the product then affords a colourless NN'-di-p-dimethylaminophenyl-carbamide, m.p. 148° (cf. Zetzsche et al., A., 1939, II, 467). The chloride of (I) with AlCl₃ in cyclohexane at 0°, then at room temp., and finally at 40°, yields (cf. Linstead et al., A., 1938, II, 268) cis-, b.p. 92—93°/5 mm. [semicarbazone, m.p. 223° (decomp.)], and trans-8-methyl-1-ketodecahydronaphthalene, b.p. 82—83°/5 mm. (semicarbazone, m.p. 185°). Reactions catalysed by aluminium chloride. XIX. Synthesis of (semicarbazone, m.p. 185°). Oxidation of cholesterol. Isolation of 1-keto-2:13-dimethyl- $\Delta^{9:14}$ -dodecahydro-7-phenanthrol.—See A., 1943, II, 235. Monomeric fluorenone peroxide. G. Wittig and G. Pieper (Ber., 1940, 73, [B], 295—297; cf. A., 1939, II, 22).—Fluorenone (I) and \sim 1·5n-Et₂O-H₂O₂ + P₂O₅ at room temp. give the monomeric fluorenone peroxide (II), $C_{12}H_8>C.O.O.$, m.p. $108-108.5^\circ$, converted by $Ac_2O-AcOH-H_2SO_4$ at 0° for 48 hr. into (I) and the lactone, m.p. $94-95^\circ$ [also obtained from (I) and $Ac_2O-H_2O_2-H_2SO_4$], of $o-OH\cdot C_9H_4\cdot C_9H_4\cdot C_9H_0$. A. T. P. Condensation of acyloins with ethyl acetate. R. B. Woodward and E. R. Blout ($J.\ Amer.\ Chem.\ Soc.,\ 1943,\ 65,\ 562-565$).—Adding $Pr^{\alpha}CO_{2}Et$ and then EtOAc to Na wire in $Et_{2}O$, evaporating, and heating the residue at 100° gives 2-ethyl-4-n-propylcyclopentane-1:2-dione (I) (32%), m.p. 119·4—120·5°. This structure, contrary to that proposed by Bouveault et al. (A., 1907, i, 479; 1910, i, 92), is proved by rapid neutralisation of 1 NaOH, formation of a reddishviolet colour with FeCl₃ (enolisation), and similarity of its absorption (max. at 255 m μ .; log ϵ 4·12) in EtOH to that (max. at 258 m μ .; log ϵ 4·08) of dimethyldihydroresorcinol. The autoxidation of (I) in air is characteristic of alkyl-substituted cyclic β -diketones. The other reactions (*loc. cit.*) of (I) are also explained by this structure and analogous structures apply to the other products described by Bouveault et al. The condensation involves the reactions, OH·CHPra·CO·CHEt·COMe ← COPra·CH(OH)·CHEt·COMe → 3hydroxy-2-ethyl-4-n-propyl- Δ^4 -cyclopentenone \rightarrow (I). Electrolytic preparation of quinhydrone. R. E. Ely (Ind. Eng. Chem. [Anal.], 1943, 15, 284—285).—Quinol is oxidised electrolytically in H₂O to a 75% yield of 98% pure quinhydrone. Effects of environment and aggregation on absorption spectra of dyes.—See A., 1943, I, 192. A. Rieche and W. Rudolph (Ber., 1940, 73, [B], Dinaphthones. A. Rieche and W. Rudolph (Ber., 1940, 75, [D], 335—342).—8:2-NHAc·C₁₀H₆·OH and aq. FeCl₃—HCl (or CuO-PhNO₂) at 70° afford 1:1'-(8:8'-diacetamido-2:2'-dinaphthone) (I), m.p. 332° (phenylhydrazone, m.p. 314°), reduced (Zn in aq. NaOH or AcOH) to 8:8'-diacetamido-2:2'-dihydroxy-1:1'-dinaphthyl (II), m.p. 289—290°; Me₂SO₄ then yields (probably) the 2:8:2':8'-Me₄ derivative, m.p. 244—245°. (II) is reconverted into (I) by K₃Fe(CN)₆-aq. NaOH, and with conc. HCl at 180° affords 1:1'-dinaphthylene-2:8'-2':8-dioxide (III). m.p. Dinaphthones. dinaphthylene-2:8'-2':8-dioxide (III), m.p. 242°. 8:2- $C_{10}H_6$ Cl·OH and aq. K_3 Fe(CN)₆-NaOH yield impure 1:1'-(8:8'-dichloro-2:2'-AcHŇ NHAc NaOH yield impure $1:1' \cdot (8:8'-\text{dichloro}-2:2'-\text{dinaphthone})$, m.p. $168-193^\circ$, converted by aq. Na₂S₂O₄-NaOH at 70°, through the corresponding dinaphthol, into (III). 8:2-NHAc·C₁₀H₆·OH and Ac₂O-NaOAc-AcOH give 8-acetamido-2-acetoxynaphthalene (IV), m.p. 184° , and (excess of Ac₂O) some Ac_3 compound, m.p. $98-99^\circ$. (IV) and SO₂Cl₂-C₆H₆ yield 8:5:7:2-NHAc·C₁₀H₄Cl₂·OAc, m.p. 212° , hydrolysed by aq. m 18 for (5) Sn de 11: Na 20: aq me NaOH to 5:7-dichloro-8-acetamido-2-naphthol, m.p. 263°, which is oxidised by aq. K_3 Fe(CN)₆-aq. NaOH at 90° to 1:1'-(5:7:5':7'-tetrachloro-8:8'-diacetamido-2:2'-dinaphthone), m.p. 304° (decomp.). 2:7:8-(OH)₂C₁₀H₅-NHAc and aq. FeCl₃-HCl at 70° afford 1:1'-(8:8'-diacetamido-7:7'edihydroxy-2:2'-dinaphthone), m.p. 310°. Aromatic hydrocarbons and their derivatives. XXX. Syntheses in the perylene series. E. Clar (Ber., 1940, 73, [B], 351—353; cf. A., 1940, II, 273).—1-\(\textit{\beta}\)-Naphthoxyanthraquinone and AlCl₃-NaCl at 140°, then at 200°, give 12:6'-oxido-1':2':1:2-benzperylene (I), m.p. 280—281°, and 12:6'-oxido-1':2':1:2-benzperylene. (I) quinone (II), C₂₄H₁₀O₃; (II) is also obtained by oxidising (I) with CrO₃ or, better, with air in AcOH or xylene. When O₂ is passed through the above AlCl₃ melt, (II) is obtained, with a little (I). (I) forms an adduct with (CH·CO)₂O much more readily than perylene. A. T. P. Mechanism of the diene reaction. F. Bergmann, H. E. Eschinazi, and M. Neeman (J. Org. Chem., 1943, 8, 179—188).—Dicyclohexenyl (I) and p-O.C₆H₄:O (5:1) at 100° afford isomeric adducts, C₃₀H₄₀O₂, m.p. 247° and 212°, converted by KOH-EtOH at room temp. into enols, m.p. 327° and 310—312°, respectively. (I) and 1:4-naphthaquinone (5:1) at 100° afford the substance (II), m.p. 207—208°, converted by KOH-EtOH into a quinone, m.p. 248°, and by AcOH-conc. HBr into the compound (III), m.p. 234—235°. Fumaric acid and (I) do not react at 100° but at $190-200^\circ$ yield an adduct identified as the dianilide, $\rm C_{28}H_{22}O_2N_2$, m.p. 312° . The adduct, $\rm C_{20}H_{26}O_2N$, m.p. 187° , is obtained from (I) and β -nitrostyrene; it does not undergo catalytic hydrogenation. With CO(CH:CHPh)_2 at $180-190^\circ$ (I) yields the double adduct, $\rm C_{41}H_{50}O$, m.p. $208-209^\circ$. Maleic anhydride and 3:4:3':4'-tetrahydro-1:1'-dinaphthyl (IV) give the adduct (V), m.p. 256° , converted by $\mathrm{CH_2N_2}$ into the corresponding Me_2 ester, m.p. 168° , which is isomerised and hydrolysed by boiling $\mathrm{BuOH-NaOBu}$ to an acid , m.p. 239° ; a second isomeric adduct, m.p. 260° , is formed in small amount. Condensation in boiling PhNO₂ leads to the substance (VI), m.p. 275° . (IV) and p-O:C₆H₄:O at 125—150° afford the substance (VII), m.p. 268° , which is unchanged by HBr–AcOH. (IV) and 1:4-naphthaquinone (1:2) at 130° give the adduct (VIII), m.p. 226° . trans-(CHBz)₂ and (IV) do not react in boiling C₆H₆ but at 200° the compound (IX), m.p. $236-238^\circ$, is slowly formed; it is dehydrated by boiling Ac₂O containing H₃PO₄ (d 1·75) to the corresponding furan, C₃₆H₂₈O, m.p. $272-273^\circ$. H. W. #### IV.—STEROLS AND STEROID SAPOGENINS. Oxidation of cholesterol. Isolation of 1-keto-2:13-dimethyl-\$\Delta^9:^{14}\$-dodecahydro-7-phenanthrol and preparation of derivatives. H. Köster and W. Logemann (\$Ber\$, 1940, 73, [B], 298—304). The product obtained from the mother-liquors after oxidising cholesteryl acetate dibromide and separating dehydroandrosterone and pregnenolone acetates is heated with dil. \$H_2SO_4\$; the resulting compound with \$Ac_2O\$ at \$120^\circ\$ for 2 hr. affords \$1\$-keto-2:13-dimethyl-\$\Delta^9:^{14}\$-dodecahydro-7-phenanthryl acetate, (\$\mathbf{I}\$), m.p. \$128-129^\circ\$, \$[a]_0^{\mathbf{B}}\$O = 87^\circ\$ [oxime, m.p. \$166-169^\circ\$; semicarbazone, m.p. \$243^\circ\$ (decomp.)], hydrolysed (aq. \$H_2SO_4\$-MeOH at \$50-60^\circ\$) to \$1\$-keto-2:13-dimethyl-\$\Delta^9:^{14}\$-dodecahydro-7-phenanthrol (\$\mathbf{I}\$], m.p. \$133-134^\circ\$, \$[a]_0^{\mathbf{B}}\$O = 88^\circ\$. Hydrogenation (\$16\$ mols. of \$H_2\$; \$PtO_2\$-AcOH) of (\$\mathbf{I}\$) (followed by oxidation with \$CrO_3\$-90% \$AcOH\$) gives the acetate, m.p. \$144-145^\circ\$, \$[a]_0^{\mathbf{B}}\$O = \$12\cdot2^\circ\$ (oxime, m.p. \$154-156^\circ\$), of \$1\$-keto-2:13-dimethylperhydro-7-phenanthrol, m.p. \$128-129^\circ\$ (3:5-dimitrobenzoate, m.p. \$192-192^\circ\$). 193·5°); these are probably identical with the compounds obtained from β-ergostenyl acetate by Achtermann (A., 1934, 1000). (II) and Al(OPrβ)₃ in boiling PhMe-cyclohexanone yield 1:7-diketo-2:13-dimethyl- $\Delta^9:1^4$ -dodecahydrophenanthrene, m.p. 140—141°, [a]³₀+128°. (I) and boiling MgMeI-C₆H₆-Et₂O afford 1:7-dikydroxy-1:2:13-trimethyl- $\Delta^9:1^4$ -dodecahydrophenanthrene, m.p. 162·5—163°, oxidised by Al(OPrβ)₃-PhMe-cyclohexanone to 7-keto-1:2:13-trimethyl- $\Delta^9:1^4$ -dodecahydro-1-phenanthrol (III), m.p. 195·5—196·5°, [a]⁵₀+94·1°. CH-CK (prep. in liquid NH₃) with (I) in C₆H₆-Et₂O yields 1:7-diketo-2:13-dimethyl-1-acetylenyl- $\Delta^9:1^4$ -dodecahydrophenanthrene, m.p. 217—218·5°, [a]⁵₀-108·5°, converted by Al(OPrβ)₃ into 7-keto-2:13-dimethyl-1-acetylenyl- Δ^8
-dodecahydro-1-phenanthrol (IV), m.p. 131—132°, [a]⁵₀+77·7°. [a] are in CHCl₃. (III) and (IV) have no physiological activity. Dehydration of cholesterol in liquid sulphur dioxide. R. H. Levin $(J.\ Amer.\ Chem.\ Soc.,\ 1943,\ 65,\ 627-628)$.—In (liquid) SO₂ at $100-140^\circ$, cholesterol gives 9-33% of dicholesteryl ether, m.p. $203-205^\circ$ (cf. lit.) [tetrabromide, m.p. $164-166^\circ$ (decomp.)]. Presence of anhyd. CuSO₄ gives 54% at 100° and 40% at 135° , of CuSO₄, $5H_2$ O gives 76% at 100° but resins at 135° , of powdered glass gives 29% (remainder resinified), of CuCl₂ gives 26%, and of S gives 18%. Cu, Raney Ni, FeSO₄, CaSO₄, and Na₂CO₃-Cu₃(PO₄)₂ inhibit the reaction. R. S. C. Bile acids and related substances. XX. Attempted preparation of Δ^{p} -cholenic acid. H. B. Alther and T. Reichstein (Helv. Chim. Acta, 1943, 26, 492—511; cf. A., 1938, II, 497).—Me $12(\beta)$ -hydroxyis oxidised by CrO_3 in AcOH at 18^{o} to Me 12-keto-cholanate, m.p. $107-108^{o}$, $[a]_{b}^{16}+87.7^{o}\pm1^{o}$ in $COMe_2$; a form of m.p. 152^{o} (Ohta, A., 1939, II, 371) has not been encountered. It is hydrolysed and then brominated in AcOH (stable to CrO_3) to a mixture of acids separated by Et_2O into 11(a)- (II), m.p. $196-197^{o}$ (decomp.), $[a]_{b}^{16}+31.9^{o}\pm2^{o}$ in $CHCl_3$ [Me ester (III), m.p. $60-64^{o}$, $[a]_{b}^{19}+26.6^{o}\pm2^{o}$ in $COMe_2$], and $11(\beta)$ - (IV), m.p. $171-174^{o}$ (decomp.), $[a]_{b}^{15}+16.2^{o}$ in $CHCl_3$, -bromo-12-ketocholanic acid. (IV) yields a Me ester (V), m.p. $77-79^{o}$, $[a]_{b}^{17}+19.8^{o}\pm2^{o}$ in $COMe_2$, also isolable when the crude acid is used. (V) and boiling C_5H_5N afford Me 12-keto- Δ^{o} -cholenate (VI), m.p. $89-90^{o}$, $[a]_{a}^{20}+93\cdot1^{o}\pm2^{o}$ in MeOH, which when pure invariably separates as needles from the slowly cooling solutions but, when crude, sometimes gives leaflets, m.p. $72-74^{o}$. Its prep. is rendered difficult by a very tenacious impurity and its homogeneity is best judged by the height of the absorption max. in the ultra-violet. The prep. of (VI) from (III) and (V) is described. 12-keto- Δ^{o} -cholenic acid has m.p. $145-146^{o}$. Hydrogenation (PtO₂ in AcOH) of (VI) gives a mixture of Me cholanate and Me $12(\beta)$ -hydroxycholanate. Reduction of crude (VI) by N_2H_4 , H_2O and NaOEt at 170^{o} with subsequent methylation affords a mixture of Me cholanate (VII) and Δ^{o} (VIII) and Δ^{11} -cholenate (IX) whereas pure (VI) yields a mixture of (VIII) and Δ^{11} -cholenate (IX) whereas pure (VI) yields a mixture of (VIII) and Δ^{11} -cholenate (VI), and a Me 9:11-oxidocholanate, m.p. $74\cdot5-76^{o}$, $[a]_{b}^{10}+18\cdot8^{o}\pm2^{o}$ in COMe₂; the last with boiling H_2SO_4 -MeOH followed by Bile acids and related substances. XIX. Methyl 3(a)-hydroxy- Δ^{11} -norcholenate and 3(a)-hydroxy- Δ^{11} -bisnorcholenate. P. Grandjean and T. Reichstein (Helv. Chim. Acta, 1943, 26, 482—492).—Me 3(a)-hydroxy- Δ^{11} -cholenate and MgPhBr give the non-cryst. carbinol which with $Ac_2O-C_5H_5N$ at 18° affords diphenyl-3(a)-acetoxy- Δ^{11} -norcholenylcarbinol (I), m.p. 151— 153° , $[a]_2^{14}$ $+47\cdot3^\circ\pm3^\circ$ in COMe₂. (I) is dehydrated by boiling AcOH to diphenyl-3(a)-acetoxy- Δ^{11} -bisnorcholenylethylene (II), m.p. 142— 143° . Successive treatments of (I) with Br-CHCl₃, CrO₃-AcOH, and Zn dust-AcOH give mainly (II) with little acid. Me 3(a)-acetoxy- Δ^{11} -norcholenate (III), m.p. 133— 134° , $[a]_2^{16}$ $+56\cdot2^\circ\pm2^\circ$ in COMe₂, is best obtained by direct oxidation of (II) by excess of CrO₃ followed by esterification (CH₂N₂) and re-acetylation. (III) is hydrogenated (PtO₂ in AcOH) to Me acetylnorlithocholate, m.p. 159— 160° , and converted by HCl-MeOH in CHCl₃ at 18° into Me 3(a)-hydroxy- Δ^{11} -norcholenate (IV), m.p. 140— 141° . (IV) and MgPhBr afford the non-cryst. carbinol; the non-cryst. acetate is dehydrated by boiling AcOH to the resinous diphenyl-3(a)-acetoxy- Δ^{11} -ternorcholenylethylene. This is oxidised by CrO₃ and the acidic portion methylated and acetylated to Me 3(a)-acetoxy- Δ^{11} -bisnorcholenate, m.p. 99— 100° , $[a]_0^{12}$ $+10\cdot7^\circ\pm2^\circ$ in COMe₂. Me 3(a)-hydroxy- Δ^{11} -bisnorcholenate has m.p. 107— 108° . M.p. are corr. (block); limit of error $\pm2^\circ$. Bile acids and related substances. XXII. 11-Keto- and 11(a)-hydroxy-cholanic acid. H. Reich and T. Reichstein (Helv. Chim. Acta, 1943, 26, 562—585).—Me Δ^{11} -cholenate (I) is converted by HOBr into a difficultly separable mixture (II) of substances which is therefore directly oxidised (CrO₃) and then debrominated (Zn dust). Chromatographic (Al₂O₃) fractionation of the product leads to a little (I), mainly Me 11-ketocholanate (III), m.p. 88—89°, [a] $^{19}_{15}$ +46·0° \pm 1° in COMe₂, and Me 12-keto- Δ^{9} -cholenate, m.p. 88—90° The change can be effected by HOBr in aq. Bu $^{\nu}$ OH or, more conveniently, by NHAcBr in aq. Bu $^{\nu}$ OH or aq. COMe $_2$, HOCl or chloramine-T in presence of a trace of acid may also be used whereby similar intermediates with Cl for Br are formed. The constitution of (III) is established from the known position of the double linking in (I) and the non-identity of (III) and Me 12-ketocholanate. CO in (III) is very non-reactive and cannot be detected by the usual reagents, but (III) is slowly hydrogenated (PtO $_2$ in AcOH) to Me 11(a)-hydroxycholanate (IV), m.p. 87—88°, [a] $^{16}_1$ +49-8° \pm 2° in COMe $_2$, quantitatively reoxidised (CrO $_3$) to (III). The most conclusive preliminary evidence of the configuration of (IV) is found in attempts to separate (II) chromatographically with very active Al_2O_3 , which yield Me 11:12-dibromocholanate, Me 11(a):12(a)-oxidocholanate (V), m.p. 64-5—65-5°, [a] $^{20}_1$ +47-5 \pm 9° in COMe $_2$, and an amorphous Br-compound, probably Me 9:11-dibromo-12-hydroxycholanate. (V) differs from the 11(β):12(β)-ester obtained by oxidising (I) with CrO $_3$. Hydrogenation (Raney Ni) of (V) gives Me cholanate and (IV). (IV) is slowly transformed by Ac_2O in C_5H_5N at 100° into a non-cryst. acetate and by AcOH-HCl into a mixture mainly of (I) and Me Δ^5 -cholenate, leaflets, m.p. 49-5—50°, or needles, m.p. 67—67-5°, [a] $^{16}_3$ +39·15° \pm 1° in COMe $_2$ [most conveniently obtained from (IV) and POCl $_3$ in C_5H_5N at room temp.]. The following oxidations with NHAcBr are recorded: trans-androsterone to androstanedione (VI) in 58·5% yield; androstanediol to (VI) in 82·5% yield; Me 12(β)-hydroxy- to Me 12-ketocholanate in high yield; Me deoxycholate to Me diketocholanate; deoxycorticosterone to an entirely neutral product, probably Δ^4 -pregnen-21-al-3:20-dione; progesterone is scarcely attacked and cryst. products are not obtained from 21-acetoxy- Δ^4 -pregnene-17(β): 20-diol-3-one and substance J. M.p. are corr. (block). Bile acids and related substances. XXIV. Esters of $3(\beta)$ -hydroxy-11-keto- and $3(\beta)$: 11(a)-dihydroxy-cholanic acid. J. Press, P. Grandjean, and T. Reichstein (Helv. Chim. Acta, 1943, 26, 598—606).—Me $3(\beta)$ -acetoxy- Δ^{11} -cholenate (I) is transformed by NHAcBr in aq. COMe₂ at 20° into a difficultly separable mixture converted by oxidation (CrO₃), debromination (Zn dust), and chromatography (Al₂O₃) into (I), Me 11-keto- $3(\beta)$ -acetoxycholanate (II), m.p. 173—174°, $[a]_1^{17}$ +56·4° ±2° in COMe₂, and Me 12-keto- $3(\beta)$ -acetoxy- Δ° -cholenate (III), m.p. 192—193°, $[a]_1^{\circ}$ 9° +73·9° ±4° in COMe₂. (III) is closely similar to Me 12-keto- $3(\beta)$ -acetoxycholanate, m.p. 184—186°, $[a]_1^{\circ}$ 9° +77·9° ±2° in COMe₂, from which it is best differentiated by its ultra-violet absorption spectrum. (II) is rather more readily obtained by cautious hydrogenation (AcOH containing a little PtO₂) of Me 3: 11-diketocholanate and separation of the products by digitonin, thus giving much Me $3(\beta)$ -hydroxy-11-ketocholanate (IV), m.p. 152—153°, $[a]_1^{\circ}$ 1 +39·4° ±2° in COMe₂, with little 3(a)-OH-ester. (IV) is acetylated to (II). Energetic reduction of (II) leads to Me 11(a)-hydroxy-3(β)-acetoxycholanate, m.p. 139—140°, $[a]_1^{\circ}$ 0 +50·0° ±2° in COMe₂, oxidised to (II). (I) and Br in CHCl₃ give Me 11: 12-dibromo-3(β)-acetoxycholanate, m.p. 172—175°. M.p. are corr. (block); limit of error ±2°. Bile acids and related substances. XXI. 12-Keto-3(a)-acetoxyand 3(a)-hydroxy-Δ*-cholenic acid. E. Seebeck and T. Reichstein (Helv. Chim. Acta, 1943, 26, 536—562).—The greatest difficulty in the prep. and investigation of 3(a)-hydroxy-Δ*-cholenic acid (I) is its isomorphism with 3(a)-hydroxy-Δ*1-cholenic and lithocholenic acid. These acids are very difficult to separate and characterise, the only certain method being by chromatography after acetylation, methylation, and treatment with BzO₂H. An approx. determination of each component in a mixture may thus be effected. The (I) of Chakravorty et al. (A., 1940, II, 179) is shown to be nonhomogeneous. 12-Keto-3(a)-acetoxycholanic acid is brominated according to Longwell et al. (ibid., 95), and the product is separated with difficulty into 11(β)-bromo-12-keto-3(a)-acetoxycholanic acid (II), m.p. 220—222°, [a]¹⁷ +39·2°±2° in COMe₂, and the corresponding 11(a)-acid (III), m.p. 179—182°. (II) and (III) with CH₂N₂ in Et₂O afford Me esters (IV), m.p. 160—161°, [a]¹⁶ +37·5°±1° in CHCl₃, and (V), forms, m.p. 100—101°, and 159—161° [a]¹⁶ +47·3°±2° in CHCl₃, respectively. The isolation of (II) is not always reproducible and the esters can be obtained directly from the crude brominated product whereby (V) is copiously but (IV) sparingly secured. (VI) is readily transformed by
boiling C₅H₅N into Me 12-keto-3(a)-acetoxy-Δ*-cholenate (VI), m.p. 145—147°, [a]¹⁶₂ +110·8°±2° in CHCl₃, [a]¹⁶ +40·4°±1·5° in COMe₂, the homogeneity of which is best established by its ultra-violet absorption spectrum; (V) under similar conditions is little affected by C₅H₅N but passes into (VI) in boiling collidine. (VI) with 1% HCl-MeOH at 18° gives Me 3(a)-hydroxy-12-keto-Δ*-cholenate (VII), m.p. 115—116°, [a]¹⁶ +93·2°±2° in COMe₂, hydrolysed by alkali to the acid, m.p. 173—174°, [a]¹⁶ +96·1°±5° in COMe₂ [semicarbazone, m.p. 270° (decomp.)], which is acetylated by boiling AcOH-Ac₂O to 12-keto-3-acetoxy-Δ*-cholenic acid, m.p. 205—206°, [a]¹⁶ +99·2°±2° i acetyl-lithocholate (XI). (VIII) and excess of BzO₂H in CHCl₃ give Me = 9:11-oxido-3(a)-acetoxycholanate (XII), m.p. $121-122^{\circ}$, $[a]_0^{13}+44\cdot1^{\circ}\pm^{\circ}$ in COMe₂ (main product), and Me 11:12-oxido-3(a)-acetoxycholanate, m.p. $140-142^{\circ}$. Similar reduction of pure (VI) leads to a mixture (XIII) containing (IX) and (X) but apparently no (XI). Hydrogenation (Raney Ni in MeOH) of (XII) gives inconclusive results but (XI) is obtained by treatment of (XIII) with H_2 -PtO₂ in AcOH. Me 11(a)-hydroxy-3(a)-acetoxycholanate, m.p. $146-148^{\circ}$, is transformed by SOCl₂ or POCl₃ in anhyd. C_5H_5N at room temp. into (IX), m.p. $138-140^{\circ}$, $[a]_0^{14}+62\cdot9^{\circ}\pm2^{\circ}$ in COMe₂, converted by BzO₂H in CHCl₃ into (XII) and hydrolysed by KOH in boiling EtOH to (I), m.p. $190-192^{\circ}$, $[a]_0^{13\cdot5}+46\cdot9^{\circ}\pm2^{\circ}$ in abs. EtOH (acetate, m.p. $176-179^{\circ}$, $[a]_0^{13}+60^{\circ}\pm2^{\circ}$ in COMe₂) (Me lithocholate has $[a]_0^{13}+32\cdot8^{\circ}\pm2^{\circ}$ in COMe₂). (IX) is oxidised by CrO₃ in AcOH at 40° to (VI). Non-cryst. materials are obtained from (XII) and boiling HCl-AcOH followed by methylation and acetylation of the crude product. M.p. are corr. (block); limit of error $\sim\pm2^{\circ}$. Bile acids and related substances. XXV. Esters of 3-keto- and 3(a)- and $3(\beta)$ -hydroxy- Δ^{11} -ætiocholenic acid. A. Lardon and T. Reichstein ($Helv.\ Chim.\ Acta,\ 1943,\ 26,\ 607-619), -3(a):\ 12(\beta)-Dihydroxyætiocholanic acid is converted by successive treatments with <math>CH_2N_2$ and $Ac_2O-C_5H_5N$ at 100° into $Me\ 3(a):\ 12(\beta)-diacetoxyætiocholanate,\ m.p.\ 149-150^\circ,\ [a]_2^{B^5}+149\cdot 8^\circ\pm 1\cdot 5^\circ$ in $COMe_2$. This is converted by HCl-MeOH at 18° into $Me\ 3(a)\cdot hydroxy\cdot 12(\beta)-acetoxyætiocholanate,\ m.p.\ 141-142^\circ,\ [a]_1^{B^7}+143\cdot 6^\circ+3^\circ$ in $COMe_2$, oxidised by CrO_3 in AcOH at 18° to $Me\ 3$ -keto- $12(\beta)$ -acetoxyætiocholanate (I), m.p. $95-96^\circ$, $[a]_1^{B^6}+138^\circ\pm 2^\circ$ in $COMe_2$. Alkaline hydrolysis of (I) followed by re-esterification yields the $12(\beta)$ -OH-ester (II), m.p. $144-145^\circ$, $[a]_1^{B^6}+105\cdot 9^\circ\pm 2^\circ$ in $COMe_2$. BzCl and abs. C_5H_5N in C_6H_6 at 20° followed by MeOH- C_5H_5N and AcOH convert (II) into $Me\ 3\cdot keto-12(\beta)$ -benzoyloxycholanate (III), unstable transparent granules, m.p. $148-150^\circ$, or stable granules or prisms, m.p. $197-198^\circ$, $[a]_1^{B^6}+117\cdot 9^\circ\pm 3^\circ$ in $COMe_2$; in an individual experiment in which the treatment with AcOH was omitted the product appeared to be the corresponding $Me_2\ acetal$, m.p. $115-117^\circ$, $[a]_1^{B^6}+105\cdot 7^\circ\pm 2^\circ$ in $COMe_2$, converted by boiling aq. AcOH into (III). (III) at $330-340^\circ/12$ mm. and later at $380-400^\circ/12$ mm. gives $Me\ 3\cdot keto\cdot \Delta^{11}\cdot atiocholenate\ (IV)$, m.p. $133-135^\circ$, $[a]_1^{B^6}+79\cdot 1^\circ\pm 2^\circ$ in $COMe_2$, hydrogenated (PtO_2 in AcOH) to $Me\ 3\cdot keto\cdot \Delta^{11}\cdot atiocholenate\ (IV)$, m.p. $131-133^\circ$, $[a]_1^{B^6}+79\cdot 1^\circ\pm 2^\circ$ in $COMe_2$. The 1:1 compound of (V) and (VI) has m.p. $142-143^\circ$. (V) or (VI) is oxidised by CrO_3 in AcOH to (IV). $Me\ 3(a)$ -and $3(\beta)$ -acetoxy- $\Delta^{11}\cdot atiocholenate\ have m.p. <math>99-100^\circ$, $[a]_1^{B^6}+79\cdot 7^\circ\pm 2^\circ$ in $COMe_2$, and m.p. $70-72^\circ$, $[a]_1^{B^1}+62\cdot 5^\circ\pm 2^\circ$ in $COMe_2$, and m.p. $70-72^\circ$, $[a]_1^{B^1}+62\cdot 5^\circ\pm 2^\circ$ in $COMe_2$, respect Bile acids and related substances. XXIII. Esters of 3:11-diketo-, 3(a)-hydroxy-11-keto- and 3(a):11(a)-dihydroxy-cholanic acid. A. Lardon and T. Reichstein [with, in part, P. Grandjean] (Helv. Chim. Acta, 1943, 26, 586—598).—Me 3-keto- Δ^{11} -cholenate (I) in COMe2 is treated with aq. NHAcBr at room temp. and the crude product is oxidised (CrO3 in AcOH), debrominated (Zn dust in AcOH), and separated (Al2O3) into unchanged (I), Me 3:11-diketo-cholanate (II), m.p. 82— 84° , $[a]_0^{15}$ +61·7° $\pm 2^\circ$ in COMe2 and Me 3:12-diketo- Δ° -cholenate (III), m.p. 130— 131° , $[a]_0^{15}$ +71·7° $\pm 2^\circ$ in COMe2. The brominated product from (I) contains Me 11:12-dibromo-3-ketocholanate, m.p. 136— 138° , and (probably) Me 11(a):12(a)-oxido-3-ketocholanate, m.p. 126— 124° . Similar bromination, oxidation, and debromination of Me 3-acetoxy- Δ^{11} -cholenate leads to Me 11-keto-3(a)-acetoxycholanate (IV), m.p. 132— 133° , $[a]_0^{17}$ +67·1° $\pm 2^\circ$ in COMe2, and Me 12-keto-3(a)-acetoxy- Δ° -cholenate (V), m.p. 149— 150° , $[a]_0^{17}$ +102·5° ± 1 ·5° in COMe2. (IV) is converted by alkaline hydrolysis, esterification, and oxidation into (II) and (V) similarly into (III). (IV) is hydrogenated (PtO2 in AcOH at 20°) to Me 11(a)-hydroxy-3(a)-acetoxycholanate (VI), m.p. 146— 148° , $[a]_0^{17}$ +70·7° $\pm 2^\circ$ in COMe2, reoxidised to (IV). Acid hydrolysis followed by methylation and reacetylation of (VI) gives a product, m.p. 135— 137° , $[a]_0^{15}$ +59·7° $\pm 2^\circ$ in COMe2, which, although apparently homogeneous, is probably a mixture of Me 3(a)-acetoxy- Δ^\bullet - and Δ^{11} -cholenate. M.p. are corr. (block). Preparation of homologues of 3-hydroxy-12-ketocholanic acid. E. Schwenk, B. Riegel, R. B. Moffett, and (Miss) E. Stahl (J. Amer. Chem. Soc., 1943, 65, 549—551).—Deoxycholic acid 3-H succinate (prep. in C_5H_5N), m.p. $231-232^\circ$, $[a]_D+51\cdot5^\circ$ (Me_2 ester, m.p. $98-100^\circ$), with CrO_3 -AcOH at room temp. and then boiling aq. alkali gives 3-hydroxy-12-ketocholanic acid, $[a]_D+86\cdot6^\circ$ (lit. $+110^\circ$) (3-H succinate, m.p. $242-244^\circ$; 3-acetate Me ester, m.p. $148\cdot5-150^\circ$). Similarly, nordeoxycholic acid 3-H succinate, m.p. $241-242^\circ$, $[a]_D+54\cdot8^\circ$, gives 3-hydroxy-12-ketonorcholanic acid 3-H succinate (77·3%), m.p. $257-258^\circ$, and thence the free acid, m.p. $250-251^\circ$, $[a]_D+69\cdot7^\circ$ (3-acetate, m.p. $207\cdot8-209\cdot5^\circ$, $[a]_D+99\cdot7^\circ$), the semicarbazone, decomp. $\sim 250-275^\circ$, of which with NaOEt-EtOH at $180-200^\circ$ gives norlithocholic acid (>44%), m.p. $183-200^\circ$ gl for (5) Sn de 11: Na aq. 183·5° (cf. lit.). Bisnordeoxycholic acid 3-H succinate, m.p. 234—235°, $[a]_{\rm D}$ +33·9°, gives 3-hydroxy-12-ketobisnorcholanic acid, m.p. 298—299°, $[a]_{\rm D}$ +84·6° [3-acetate, m.p. 246—247°, $[a]_{\rm D}$ +65·9°; semicarbazone, decomp. ~210—230° (gas)], by way of its 3-H succinate, m.p. 252—254°. Crude 3-hydroxy-12-ketoætiodeoxy-cholic acid 3-H succinate, m.p. 161—169°, gives 3-hydroxy-12-ketoætiocholanic acid, m.p. 213—215°, $[a]_{\rm D}$ +127·2° (3-acetate, m.p. 205—206°). [a] are in dioxan. M.p. are corr. R. S. C. Authentio Δ^1 -androsten-17-ol-3-one, an isomeride of testosterone. A. Butenandt and H. Dannenberg (Ber., 1940, 73, [B], 206—208).—2-Bromoandrostan-17-ol-3-one acetate passes without isomerisation in boiling collidine into Δ^1 -androsten-17-ol-3-one acetate (I), m.p. 122° , $[a]_2^{19} + 47\cdot 2^\circ$ in EtOH [oxime (+1H₂O), m.p. 112° (decomp.), softens at 98°]. (I) is hydrolysed (KOH in boiling MeOH) to Δ^1 -androsten-17-ol-3-one (II), m.p. 150° , $[a]_3^{18} + 53\cdot 3^\circ$ in EtOH, the constitution of which is established by its absorption spectrum, and by its oxidation (CrO₃ in AcOH) to Δ^1 -androstene-3: 17-dione, m.p. $138-139^\circ$, $[a]_5^0 + 144\cdot 0^\circ$ in EtOH, which is reduced (Na-Pr\$OH) to isoandrostane-3: 17-diol, m.p. $163-164^\circ$ (diacetate, m.p. 122°). According to the Fussganger test (II) belongs to the most active class of compounds of the androsterone series whereas in the other tests it is much inferior to testosterone. The pronounced cestrogenic activity previously ascribed to the Δ^1 -unsaturated compounds of the androstane series appears to be confined to the isomeric "hetero- Δ^1 -compounds." Sterols. CLIII. Sapogenins. LXV. Kryptogenin, a new type of sapogenin from Beth root. R. E. Marker, R. B. Wagner, D. P. J. Goldsmith, P. R. Ulshafer, and C. H. Ruof (J. Amer. Chem. Soc., 1943, 65, 739).—Roots of Trillium erectum contain about equal amounts of diosgenin (I) (A., 1941, III, 62) and hryptogenin (II), C₂₇H₄₂O₄, m.p. 187—189°. With Na-Pr^BOH, (II) gives (I) (isolated as acetate) and with $\rm H_2-PtO_2$ in $\rm Et_2O+AcOH$ (a little) gives the 5:6- $\rm H_2$ -derivative, m.p. 169—171°, which with $\rm CrO_3-AcOH$ gives 3-dehydrotigogenoic acid. The structure shown is assigned to (II). No details are given. #### V.—TERPENES AND TRITERPENOID SAPOGENINS. Inversion of menthone with hydrogen chloride in benzene. A. Weissberger and D. S. Thomas, jun. (*J. Amer. Chem. Soc.*, 1943, 65, 402—403).—Inversion of *l*-menthone (I) by HCl in C_6H_6 at $20\cdot0\pm0\cdot1^\circ$ is shown kinetically to proceed by way of a complex, (I) +2HCl. Synthetic production of camphor from pinene. IV. Oxidation of borneols to camphor. B. G. S.
Acharya, R. C. Shah, and T. S. Wheeler (J. Univ. Bombay, 1943, 11, A, Part 5, 113—115).—Methods of oxidising borneol to camphor are reviewed. 96% of camphor is obtained from isoborneol with 35% HNO₃-50% H₂SO₄ at 75—85°. Reaction of β -naphthol with dienes. J. C. Salfeld (Ber., 1940, 73, [B], 376—385).— β -C₁₀H₇·OH (I) and a-phellandrene at 130° give an adduct (II), C₂₀H₂₄O, m.p. 139—140° (p-nitrobenzoate, m.p. 164—165°). (I) and Me sorbate at 180° yield the lactone, 2: 3-C₁₀H₆·CH·CH₂·CH;CHMe (III), m.p. 102—103°, which with Me₂SO₄-MeOH-aq. KOH gives the corresponding OMe-acid, m.p. 114-115°, and with Br-AcOH-Et₂O affords the dibromide, m.p. (II.) $$\stackrel{\text{Me}}{\bigcirc}$$ $\stackrel{\text{Pr}^{\beta}}{\bigcirc}$ (IV.) 222—224° [Zn–EtOH gives (III)]. With $\Delta^{1:3}$ -cyclohexadiene, (I) affords an adduct, $C_{16}H_{16}O$, b.p. 175—178°/l mm. (picrate, m.p. 121°; p-nitrobenzoate, m.p. 171—172°). (II) with Se at 275°, or with HCl–MeOH, gives the compound (IV), m.p. 105—106° (picrate, m.p. 126—127°), also obtained in small amount from (I), a-phell-andrene, and ZnCl₂-AcOH at 0° (2 days), then at room temp. (1 day), and then at 100° (bath) (1 hr.). Br–AcOH converts (IV) into a Br_1 -derivative, m.p. 130—132°. (II) is hydrogenated (Pd–C; EtOH; 1 mol. of H_2) to a H_2 - (p-nitrobenzoate, m.p. 135—136°) or (3 mols. of H_2) H_6 -derivative (p-nitrobenzoate, m.p. 177—179°). The p-nitrobenzoate of (II) and BzO₂H in CHCl₃ give an oxide, $C_{27}H_{27}O_5N$, m.p. 179—180°, hydrolysed by KOH–MeOH to a compound, $C_{20}H_{24}O_3$, m.p. 153—154° (non-cryst. acetate). (III) similarly affords an oxide, $C_{16}H_{14}O_3$, m.p. 144—145°. Triterpenediols. VI. Faradiol and arnidiol. J. Zimmermann (Helv. Chim. Acta, 1943, 26, 642—647; cf. A., 1941, III, 714).— The isolation of faradiol (I), m.p. 236—237°, [a]_D +44·5° in CHCl₃ (diacetate, m.p. 163—167°, [a]_D +55·5° in CHCl₃), and arnidiol (II), m.p. 257°, [a]_D +82·7° in CHCl₃ (diacetate, m.p. 193°, [a]_D +80·4° in CHCl₃), from arnica, sunflower, and coltsfoot is described. The diketone obtained by oxidation of (I) has m.p. 242° and that from (II), m.p. 254° (dioxime, m.p. 268°). The diacetates of dihydrofaradiol and -arnidiol have m.p. 196° and 210°, respectively. Dihydro-faradiol and -arnidiol give the same diketone, m.p. 182° (dioximine, m.p. 253—254°). (I) is distinguished from (II) by the position of the double linking and the steric position of the OH groups in the mol. (I) diacetate is isomerised by 90% HCO₂H to a substance, C₃₄H₅₄O₄, m.p. 255°, [a]_D +89·6°. Triterpenes could not be obtained from the disc florets, fruits, recepticle, stalk, and upper stem, pericarp, or seeds of sunflower but only from the ray florets. The same sitosterol glucoside is present in all parts of the plant; it is characterised by its tetra-acetate, m.p. 168°. H. W. Carotenoids from the blossoms of the chrysanthemum. Chrysanthemaxanthin.—See A., 1943, III, 615. Cardanol derivatives.—See B., 1943, II, 212. #### VI.—HETEROCYCLIC. Condensation of 2-furylacetic acid with o-nitrobenzaldehyde. E. D. Amstutz and E. R. Spitzmiller (J. Amer. Chem. Soc., 1943, 65, 367—369).—K 2-furylacetate, o-NO₂·C₆H₄·CHO, and Ac₂O at, best (100·7% of crude ketone), 75° give cis- (I) (42·6%), m.p. 192—192·4° (corr.), and trans-o-nitro-a-2-furylcinnamic acid (II) (23·2%), m.p. 137·6—138·2° (corr.), configurations referring to Ph and furyl. With a trace of I in PhNO₂ at 210° , (II) gives $\lesssim 58\%$ of (I). Decarboxylation of (I) and (II) gives cis- (III), b.p. $152-164^{\circ}/3$ mm., and trans- β -o-furylstyrene (IV) (15%), m.p. $92\cdot8-93\cdot6^{\circ}$ (corr.), respectively. In quinoline at 230° , (III) gives a trace of crystals, possibly (IV). With FeSO₄-aq. NH₃, (II) gives o-amino-a-2-furyl-cinnamic acid (78%), m.p. 156° , which resists "Pschorr" ring-closure. R. S. C. Tetrahydropyranyl amino-alcohols. G. H. Harnest and A. Burger (J. Amer. Chem. Soc., 1943, 65, 370—372).—(CHMeCl·CH₂)₂O does not react with CHNa(CO₂Et)₂ (I) or NaI-COMe₂. Tetrahydropyran-4-carboxylic acid is obtained in 52% yield by successive condensation of (Cl·[CH₂]₂)₂O with (I), hydrolysis (KOH-aq. EtOH), and decarboxylation (175—185°). With SOCl₂ it gives the acid chloride, b.p. 93—95°/21 mm., and thence (CH₂N₂-Et₂O) 4-diazo-, m.p. 42—45° (decomp.), and (48% aq. HBr-Et₂O at 0°) 4-bromo-acetyltetrahydropyran, lachrymatory, m.p. 50—53°. With NHR₂ (2·5 mols.) in Et₂O at room temp., this (1 mol.) gives 4-diethylamino-, m.p. 152—155°, 4-piperidino-, m.p. 177—179°, and 4-morpholino-acetyltetrahydropyran hydrochloride, m.p. 214—219°, reduced by H₂-PtO₂ in EtOH to 4-a-hydroxy-β-diethylamino-, m.p. 140·5—142°, -piperidino- (II), m.p. 208—210° (acetate hydrochloride, m.p. 213—213°), and -morpholino-ethyltetrahydropyran hydrochloride, m.p. 213—216° (acetate hydrochloride, m.p. 223—225°). NH₃-Et₂O and (I) give the amide, dehydrated by P₂O₅ at 180—280°/20 mm. to 4-cyanotetrahydropyran, b.p. 100—102°/25 mm. Et 4-cyanotetrahydropyran-4-carboxylate has b.p. 130—134°/23 mm. (cf. lit.). (II) is analgesic. Some tetrahydropyranylhydantoins are mild anticonvulsants, but not hypnotic. M.p. are corr. R. S. C. Vitamin-E. XL. Synthesis and properties of 4-hydroxy-3:4:5-trimethyl-1-isopropylcoumaran. L. I. Smith and J. A. King (J. Amer. Chem. Soc., 1943, 65, 441—444; cf. A., 1941, II, 326).—Adding Na and then COMePrβ to PrβCO₂Et gives CH₂(COPrβ)₂ (28%), b.p. 62—63°/3 mm., which with NaOEt-EtOH and then O'C₆HMe₃'O at <25° (later 0°) gives δ-2:5-dihydroxy-3:4:6-trimethylphenyl-βζ-dimethyl-n-heptane-γε-dione (76%), m.p. 135—135·5°. With a drop of H₂SO₄ in AcOH this gives a-5-acetoxy-2-isobutyroxy-3:4:6-trimethylphenyl-γ-methylbutan-β-one (I), m.p. 113°, or with boiling HCl-EtOH gives 4-hydroxy-3:5:6-trimethyl-1-isopropylberz-furan, m.p. 118° (acetate, m.p. 69—70°), also obtained similarly from (I), and reduced by H₂-Ranev Ni at 125°/1300 lb. to 4-hydroxy-3:5:6-trimethyl-1-isopropyl-1:2-dihydrobenzfuran (II), m.p. 112° (acetate, m.p. 72—73°). Aq. AuCl₃ or FeCl₃ oxidises (II) to 2:3:5-trimethyl-6-β-hydroxyisoamyl-1:4-benzoquinone, an oil, reduction of which by Na₂S₂O₄-H₂O-MeOH or boiling Zn-AcOH yields (II) directly, no quinol being obtainable. Condensation of α -substituted acetoacetates with phenols. VI. Condensation of phenols with ethyl acetosuccinate. VII. Condensation of substituted phenols with ethyl acetosuccinate. R. H. Shah and N. M. Shah (J. Indian Chem. Soc., 1942, 19, 481—485, 486—488).—VI. CO_2Et -CHAc+CH₂+CO₂Et has been condensed with phenols in the presence of different catalysts. Resorcinol yields (POCl₃ or P₂O₅) Et 7-hydroxy-4-methylcoumarin-3-acetate [acetate (I), m.p. 98°; benzoate, m.p. 138° (lit. 127°)], or (AlCl₃) the free acid [acetate (II), m.p. 199—200°; benzoate, m.p. 190—191°]. (II) is decarboxylated by Cu-bronze in boiling quinoline. (I) is converted by AlCl₃ at 120—125° into 7-hydroxy-8-acetyl-4-methyl-coumarin-3-acetic acid. Orcinol (POCl₃ or H₂SO₄) yields the Et ester, m.p. 206° (lit. 198—200°) (acetate, m.p. 91—92°), of 5-hydroxy-4:7-dimethylcoumarin-3-acetic acid, m.p. 270° (acetate, m.p. 183—184°). Pyrogallol yields (conc. H₂SO₄, H₂O-cooling) 7:8-dihydroxy-4-methylcoumarin-3-acetic acid, m.p. 270° (acetate, m.p. 224—225°), or [H₂SO₄ (ice-cooling) or POCl₃] its Et ester, m.p. 206° (lit. 186°) (acetate, m.p. 123—124°). Phloroglucinol yields (80°)₀ H₂SO₄) 5:7-dihydroxy-4-methylcoumarin-3-acetic acid, m.p. >285° (acetate, m.p. 169—170°) or (POCl₃) its Et ester, m.p. 250° (acetate, m.p. 114—115°). a- and β-C₁₀H₂YOH yield respectively 4-methyl-a-, m.p. anyaroxy-4-methylcotmarin-3-acetic acta, in.p. >288° (acetate, in.p. 1169—170°) or (POCl₃) its Et ester, in.p. 250° (acetate, in.p. 114—115°). a- and β-C₁₀H₁·OH yield respectively 4-methyl-a-, in.p. 253—254° (AlCl₃, POCl₃, or 80% H₂SO₄), or its Et ester, in.p. 141° (lit. 137°), and -β-naphthapyrone-3-acetic acid (conc. H₂SO₄) (Et ester, in.p. 101°). m-Cresol yields (conc. H₂SO₄) Et 4:7-dimethyl-coumarin-3-acetate, in.p. 106° (free acid, in.p. 193—194°). VII. With CO₂Et·CHAc·CH₂·CO₂Et, Me β-resorcylate yields (80% H₂SO₄) Me 7-hydroxy-4-methylcoumarin-6-carboxylate; 2:1:3-C₆H₃Ac(OH)₂ yields (POCl₃) Et 7-hydroxy-8-acetyl-4-methylcoumarin-3-acetate, in.p. 167—168° (acetate, in.p. 221—223°), or (80% H₂SO₄) the free acid, in.p. 262—263°; 2:1:3-C₆H₃Bz(OH)₂ yields (POCl₃) Et 7-hydroxy-8-benzoyl-4-methylcoumarin-3-acetate, in.p. 196—197° (acetate, in.p. 177°; free acid, in.p. 255°); 4:1-C₁₀H₆Cl·OH yields (conc. H₂SO₄) Et 6-chloro-4-methyl-1:2-a-naphthapyrone-3-acetate, in.p. 185—186° (lit. 181—184°), or (80% H₂SO₄) the free acid, in.p. 276—277° (anilide, in.p. 265—266°); 4:1:3-C₆H₃Cl(OH)₂ yields (POCl₃) or conc. H₂SO₄) Et 6-chloro-7-hydroxy-4-methyl-coumarin-3-acetate (acetate, in.p. 169°; free acid, in.p. 263°), but 4:1:3-C₆H₃Br(OH)₂ gives (POCl₃) Et 7-hydroxy-4-methylcoumarin-3-acetate. The effect of substituents on the reaction is discussed. Constitution of evodionol. F. N. Lahey (Univ. Queensland Papers, Dept. Chem., 1942, 1, No. 20, 14 pp.).—Evodionol (I) is shown to be 7-hydroxy-5-methoxy-6-acetyl-2: 2-dimethyl-1: 2-benzpyran (cf. Univ. Queensland Publication, 1940, 1, 17). With NH₂OH,HCl and BaCO₃ Queensland Publication, 1940, 1, 17). With NH₂OH,HCl and BaCO₃ (excess) in boiling EtOH (not other conditions) it gives an oxime, m.p. 89° (green FeCl₃ colour; brown Cu compound proves the presence of OH·C·C·C·N·OH), and with PhCHO and NaOH in ~50% EtOH at room temp. gives a CHPh¹ derivative (II), m.p. 94° (brown FeCl₃ colour). Dihydroevodionol (the derived chroman) (III) gives similarly an oxime, m.p. 132° (violet FeCl₃ colour; brown Cu derivative, cf. above), a CHPh² (IV), m.p. 118° (red FeCl₃ colour), and, by boiling HNO₃-H₂O-EtOH, the 8-NO₂-derivative, m.p. 158·5°, a 2:4-dinitrophenylhydrazone, m.p. 188°, and acetate, m.p. 84—85°. The Me ether (V) of (I) gives a 2:4-dinitrophenylhydrazone, m.p.
114°. The Me ether of (III) gives a 2:4-dinitrophenylhydrazone, m.p. 169°, and CHPh² derivative (VI), m.p. 114°. The Me ether of (III) gives a 2:4-dinitrophenylhydrazone, m.p. 160–161°, is converted by SOCl₂ into the amide, C₁₅H₂₁O₄N, m.p. 172°, from which, however, only a trace of amine is formed by hydrolysis. H₂-PtO₂ at 2 atm. reduces (II) to tetrahydrobenzylidene-evodionol which, nowever, only a trace of amine is formed by hydrolysis. H₂-PtO₂ at 2 atm. reduces (II) to tetrahydrobenzylidene-evodionol [7-hydroxy-5-methoxy-6-β-phenylpropionyl-2:2-dimethylchroman], m.p. 88° (reddish-brown FeCl₃ colour), hydrolysed by 40% KOH-EtOH at 230—250° to the known 7-hydroxy-5-methoxy-2:2-dimethylchroman, m.p. 103°, and Ph-[CH_{2]2}·CO₂H; this proves the structure of (I) except for the position of the Ac. Hydrogenation of (VI) gives similarly the known 5:7-dimethoxy-6-β-phenylpropionyl-2:2-dimethylchroman, an oil (oxime, m.p. 129·5°), which proves the structure of (I) except for the position of the free OH ionyl-2: 2-dimethylchroman, an oil (oxime, m.p. 129.5°), which proves the structure of (I) except for the position of the free OH. The dibasic acid (VIII), C₁₅H₁₈O₈, obtained from (I) by KMnO₄-COMe₂ (loc. cit.) is termed evodionic acid; at 140—150° it yields a glassy acid (IX) and small amounts of AcOH, 4:2:6:1-OH·C₆H₂(OMe)₂·COMe (and thence the Me₃ ether), and 3:5:1-C₆H₃(OMe)₂·OH (X) [yields s-C₆H₃(OMe)₃; more formed at 250°; also obtained from (IX)]; (IX) is converted by MeOH-H₂SO₄ into 3:5:4:1-(OMe)₂C₆H₂Ac·O·CMe₂·CO₂Me, m.p. 76°, which is similarly obtained from (VIII) and is synthesised from 4:2:6:1-OH·C₆H₂(OMe)₂·COMe by CMe₂Br·CO₂Me and K₂CO₃ in COMe₂; these products confirm the structure of (I). In boiling 25% NaOH, (I), but not (IV), yields COMe₂, confirming the 2:2-dimethyl-1:2 these products confirm the structure of \mathbf{I}). In boiling 25% NaOH, (\mathbf{I}) , but not (\mathbf{IV}) , yields COMe₃, confirming the 2:2-dimethyl-1:2-benzpyran structure. O₃ in CCl₄ converts (\mathbf{V}) into 6-hydroxy-2:4-dimethoxy-3-acetylbenzaldehyde, m.p. 76—77° (red FeCl₃ colour; reduces AgNO₃-NH₄), converted by MeI-K₂CO₃-COMe₂ into 2:4:6-trimethoxy-3-acetylbenzaldehyde, m.p. 84° (no FeCl₃ colour), which with KMnO₄ in aq. COMe₂ yields 2:4:6-trimethoxy-3-acetylbenzoic acid, m.p. 149—150°, and thence (heat at 160°) 2:4:6:1-C₆H₂(OMe)₃·COMe. Interaction of (\mathbf{VIII}) with KOBr is re-interpreted thus: 1:3:2:5:6-CO₂H·C₆HAc(OMe)₂·O·CMe₂·CO₂H (\mathbf{VIII}) \rightarrow 6:2:4:1:3-CO₂H·CMe₂·O·C₆H(OMe)₂(CO₂H)₂ \rightarrow 3:5:2:4:1- $(OMe)_2$ ·C₆HBr₂·O·CMe₂·CO₂H, which with Na-Hg yields 3:5:1-C₆H₃(OMe)₂·O·CMe₂·CO₂H (\mathbf{XI}) . (\mathbf{XI}) is synthesised from (\mathbf{X}) by CMe₂Br·CO₂Me in NaOEt-EtOH (later hydrolysis by KOH-EtOH) and, when heated with soda-lime, gives s-C₆H₃(OMe)₃ and an oil. and, when heated with soda-line, gives $s \cdot C_8H_3(\text{OMe})_3$ and an oil, possibly $1:3:5 \cdot C_8H_3(\text{OMe})_2.\text{OPr}\beta$, which is also an oil when prepared from (**X**) by $\text{Pr}\beta I - \text{K}_2\text{CO}_3 - \text{COMe}_2$. Pyrolysis of $3:5:4:1-(\text{OMe})_2\text{C}_8H_2\text{Ac}\cdot\text{O}\cdot\text{CMe}_2\cdot\text{CO}_2\text{H}$ also gives a little $s \cdot \text{C}_8H_3(\text{OMe})_3$. Aq. KMnO₄ oxidises (**VII**) in COMe₂ to 5:7-dimethoxy-2:2-dimethyl- chroman-6-glyoxylic acid, m.p. 169° (decomp.) (2:4-dinitrophenylhydrazone), B2OH, and 5:7-dimethoxy-2:2-dimethylchroman, an oil, identified by conversion by $HCl-Zn(CN)_g-Et_2O$ into the known 8-CHO derivative (semicarbazone, m.p. 217° ; 2:4-dinitrophenylhydrazone, m.p. 242°). Boiling (II) or (IV) in 10% H_2SO_4 containing some EtOH gives 5-methoxy-8:8-dimethyl-1:2-pyrano[3:2-g]-flavanone [5-methoxy-2':2'-dimethyl-pyrano-5':6':6:7-flavanone], m.p. 126° , and its 6:7-[3':4'] H_2 -derivative, m.p. 145- 146° , respectively. 5:7-Dihydroxy-6-acetyl-2:2-dimethylchroman (improved prep.) with MeI and K_2CO_3 in boiling COMe2 gives, after 2 hr., 5-hydroxy-7-methoxy-6-acetyl-2:2-dimethylchroman (XII), m.p. 88° (2:4-dinitrophenylhydrazone, m.p. 192°), isomeric with (I), or, after 12 hr., the 5:7-Me2 ether, m.p. 91° , identical with the Me ether of (III). 2:6-Dibromobenzoquinonechloroimide gives, as expected, a positive test with (XII), but not with (I) or (III). positive test with (XII), but not with (I) or (III). Spectrographic study of evodionol and its derivatives.—See A., 1943, Chemical constituents of lichens found in Ireland. parella, Ach. Constitution of variolaric acid. D. Murphy, J. Keane, and T. J. Nolan (Sci. Proc. Roy. Dublin Soc., 1943, 23, 71—82).—Extraction of the lichen with COMe₂ gives variolaric acid (I), new formula $C_{16}H_{10}O_7$, m.p. 296° (decomp.) after darkening, which gives a purple colour with FeCl₃, no colour with CaOCl₂, and a blue colour with 2:6-dichloro-p-benzoquinonechloroimide. When kept in 10% KOH at room temp. (I) affords ochric acid, $C_{16}H_{12}O_8$, m.p. 221—223° with evolution of CO when rapidly heated. When kept in 10% KOH at room temp. (1) affords ochric acid, \$C_{16}H_{12}O_8\$, m.p. 221—223° with evolution of CO when rapidly heated, and when boiled with 50% aq. KOH it gives a substance (II), \$C_{14}H_{14}O_5\$, m.p. 194—195°, insol. in aq. NaHCO3\$, and a compound (III), \$C_{15}H_{14}O_7\$, m.p. 188.5° (decomp.) when slowly heated or m.p. 194—196° (decomp.) when rapidly heated. (II) with \$Me_2SO_4\$ in cold or boiling aq. NaOH gives a \$Me_1\$ ether, m.p. 128—129°, whereas \$CH_2N_2\$ gives a non-cryst. product. With excess of \$CH_2N_2\$ (III) gives a \$Me_4\$ derivative, m.p. 108—109°, whilst with a restricted proportion a \$Me_1\$ ester, m.p. 217—218°, results. (II) and (III) do not give cryst. acetates. (I) and \$Ac_2O\$ containing a little conc. \$H_2SO_4\$ at room temp. afford a diacetate, m.p. 245—246° after darkening. (I) is transformed by an excess of \$CH_2N_2\$ in \$COMe_2\$ at room temp. into its \$Me_2\$ ether, m.p. 260—261° (blackens), converted by boiling with 10% or 50% aq. KOH into the substance, \$C_{16}H_{10}O_6\$(OMe)_2\$, m.p. 246° (decomp.); hence (I) contains 2 aromatic OH but no \$CO_2H\$. With \$KOH-MeOH\$ (I) gives a \$Me_1\$ ester (IV), \$C_{16}H_{11}O_7\$(OMe), \$1.5H_2O\$, m.p. 243° (decomp.), converted by \$CH_2N_2\$ into its \$Me_3\$ ether, m.p. 181—182°. When fused with \$KOH\$ (I) gives orcinol and \$3:5:1\$-(OH)_2C_6H_3*CO_2H\$. (IV) is converted by \$CH_2N_2\$ into its \$Me_3\$ ether, m.p. 181—182°. When fused with \$KOH\$ (I) gives orcinol and \$3:5:1\$-(OH)_2C_6H_3*CO_2H\$. (IV) is converted by \$CH_2N_2\$ into its \$Me_3\$ ether, m.p. 181—182°. When fused with \$KOH\$ (I) gives orcinol and \$3:5:1\$-(OH)_2C_6H_3*CO_2H\$. (IV) is converted by \$CH_2N_2\$ into its \$Me_3\$ ether, m.p. 181—182°. The lichen also contains mannitol. H. W. Pyridines.—See B., 1943, II, 212. Reduction of 3-acetylpicolines. A. Dornow and H. Machens (Ber., 1940, 73, [B], 355—358).—3-Acetyl-2-methylpyridine (I) and N_2H_4 , H_2O at 125° give the hydrazone, which with a little KOH at 150° gives 2-methyl-3-ethylpyridine, b.p. 67—69°/14 mm. (picrate, m.p. 140—141°; methiodide, m.p. 136°), also obtained by Clemmensen reduction of (I). Similarly prepared (Wolff-Kishner) is 2:6-dimethyl-3-ethylpyridine (II), b.p. 75°/13 mm. (picrate, m.p. 122°). Et 2:6-dimethylpyridine-3-carboxylate and boiling EtOAc-NaOEt (free from EtOH) give after hydrolysis by 10% HCl 3-acetyl-2:6-dimethylpyridine (III), reduced to (II). Hydrogenation (PtO₂-VIC) H₂O) of (III) gives 2: 6-dimethyl-3-a-hydroxyethylpyridine (IV), m.p. 69°, also obtained by Clemmensen reduction of (III), or similarly from the corresponding 3-CH₂Br·CO compound after treatment with AcOH-KOAc. (**IV**) and CrO₃-AcOH give (**III**). 2-Methyl-3-α-hydroxyethylpyridine has b.p. 142°/12 mm. A. T. P. 3: 4-Substituted pyridines. II. β-4-Pyridylpropionic acid. J. R. Stevens and R. H. Beutel (J. Amer. Chem. Soc., 1943, 65, 449—451; cf. A., 1942, II, 328).—CN·CH₂·CO·NH₂ (I) with CO₂Et·CO·CH₂·CO₂Et and piperidine (II) in warm MeOH gives Et 2: 6-dihydroxy-3-cyanopyridine-4-carboxylate, softens 120°, liquid at 150°, isolated as piperidine salt (36%), m.p. 180—181°; with CO(CH₂·CO₂Et)₂, and (II) in boiling MeOH it gives Et 2: 6-dihydroxy-3-cyano-4-pyridylacetate (31·5%), m.p. 239°. CO₂Et·[CH₂]₂·COC1 and CHNA ACO Et in C.H., give Et, β-keto-g-acetyladihate (18/42). 3-cyano-4-pyridylacetate (31·5%), m.p. 239°. CO₂Et·[CH₂]₂·COCl and CHNaAc·CO₂Et in C_6H_6 give Et_2 β -keto-a-acetyladipate (18·4%), b.p. 65—76°/5 × 10⁻³—10⁻⁴ mm., converted by NH₃-Et₂O at 0° into Et_2 β -ketoadipate (III) (60%), b.p. 65—70°/10⁻³ mm. With NHPh·NH₂ at 100°, (III) gives 1-phenyl-3- β -carbethoxyethylpyrazolone (86%), m.p. 107·5°, and with (I) and (II) in EtOH at 85° gives Et β -2 : 6-dihydroxy-3-cyano-4-pyridylpropionate (36·5%), m.p. 247°, hydrolysed by conc. HCl at 150° to β -2 : 6-dihydroxy-4-pyridyl-propionic acid, m.p. 268—269°. With POCl₃ at 175° this gives β -2 : 6-dichloro-4-pyridyl- (57%), m.p. 127°, sublimes 115°/10⁻³ mm., and thence (H₂-PdCl₂-C; MeOH; 30 lb.) β -4-pyridyl-propionic for 105 acid (77%), m.p. 208°. OEt·[CH₂]₂·Br, (III), and NaOEt–EtOH give Et_2 β -keto-a- β '-ethoxyethyladipate (20%), b.p. 90°/5 \times 10-4.mm., which could not be condensed with (I). Synthesis of pyridinium ethanols. IV. Syntheses with carbethoxymethylpyridinium bromide. F. Krohnke (Ber., 1940, 73, [B], 310—312; cf. A., 1939, II, 104).—CO $_2$ Et·CH $_2$ ·NC $_5$ H $_5$ Br (I) and m-NO $_2$ ·C $_6$ H $_4$ ·CHO in aq. NaOH-EtOH at 0° give β -hydroxy- α -carboxy- β -m-nitrophenylethylpyridinium betaine, m-NO $_2$ ·C $_6$ H $_4$ ·CH(OH)·CH(CO $_7$ -)·N+C $_5$ H $_5$, m.p. 157° (decomp.); the o-C $_6$ H $_4$ Cl analogue decomposes at 145—147° (picrate, m.p. 119—120°). (I) and 2:5:1-C $_6$ H $_3$ Cl $_2$ ·CHO in aq. NaOH-EtOH at 0°
afford β -hydroxy- α -carbethoxy- β -2:5-dichlorophenylethylpyridinium bromide, m.p. 148° (decomp.), converted by aq. NaOH at room temp. into the corresponding betaine, m.p. 140° (decomp.). (I) and aq. NaOH-EtOH at 0° give a 1:1 compound, m.p. (vac.) 110°, of C $_5$ H $_5$ N+·CH $_2$ ·CO $_2$ -and NaBr. A 1:1 compound, m.p. 158—159°, of NHPh-CO·CH $_2$ ·NC $_5$ H $_5$ Br (A., 1939, II, 208) and m-NO $_2$ ·C $_6$ H $_4$ ·CHO is prepared in EtOH-N-NaOH at 0°. Action of dipyridinium radicals on para-hydrogen.—See A., 1943, I. 204. Reduction of quirfoline and substituted quinolines in liquid ammonia. C. M. Knowles and G. W. Watt (J. Amer. Chem. Soc., 1943, 65, 410—412).—Passing $\rm H_2$ into quinoline, 5-nitro- (I) or -amino-, or 8-amino-quinoline in $\rm NH_3$ containg an excess of $\rm NH_4Br$ at -33.5° gives, without development of colour, 1: 4-dihydroquinoline (II) [isolated as the dimeride, m.p. $>80^\circ$ (decomp.), of the $\rm Ac_2$ derivative], the trimeride, m.p. $>155^\circ$ (decomp.), of 5: (III), or the dimeride, m.p. $>125^\circ$ (decomp.), of 8-amino-1: 4-dihydroquinoline (IV), respectively. Reduction by Na in $\rm NH_3$ gives the same products more rapidly, but colours develop prior to the blue due to Na; however, products were isolated as the dimeride, m.p. $>100^\circ$ (decomp.), of the benzoate of (II), the Et_4 derivative, m.p. $>160^\circ$ (decomp.), of (III) [from (I)], and the Bz_3 derivative, m.p. $>160^\circ$ (decomp.), of (IV); the Bz_3 derivative, m.p. $>95^\circ$ (decomp.), of (III) is also used for isolation. Na reduces 8-nitroquinoline in $\rm NH_3$, yielding (IV), which is isolated as the Et_4 derivative, m.p. $>155^\circ$ (decomp.), but $\rm H_2$ gives a gum unless $\rm Et_2O$ is used as diluent. Cessation of reduction at the $\rm H_2$ -stage precludes the 1: 2- $\rm H_2$ -structure for the products. Quinoline derivatives.—See B., 1943, III, 160. aβ-Unsaturated amino-ketones. VI. Mechanisms of the reactions of sec.-amines with aβ-unsaturated α-bromo-ketones. N. H. Cromwell and D. J. Cram. VII. Reaction of piperidine and benzylmethylamine with bromine derivatives of benzylidene-acetone and -acetophenone. N. H. Cromwell and I. H. Witt. VIII. Reaction of primary amines with 1:3-diketones and bromine derivatives of benzylideneacetophenone. Ethyleneimines. N. H. Cromwell, R. D. Babson, and C. E. Harris (J. Amer. Chem. Soc., 1943, 65, 301—308, 308—312, 312—315; cf. A., 1942, II, 149).—VI. Contrary to the literature (A., 1941, II, 271), sec.-amines add to compounds, >C.CBr-COR, to give α-bromo-β-amino-ketones, which readily dissociate into their components and, under the influence of strong bases, rearrange to α-NH₂-ketones. The rearrangement probably proceeds by reversible formation (inhibited by presence of acid) of a salt, NCH-COR Br, which by interaction with other reagents leads to varied types of products. Tetrahydroisoquinoline (I) (prep. from isoquinoline by H₂-Cu chromite in EtOH at 180°/1800 lb.) and CHPh.CBr·COMe (II) by NaOAc in boiling 95% EtOH], m.p. 30—31°, b.p. 114—117°/1 mm., in light petroleum-Et₂O at -15° give a-bromo-β-tetrahydroisoquinolino-β-phenylethyl Me ketone (III) (91%), m.p. 102—103°, which rapidly generates ionic Br in EtOH but only slowly in HNO₃-EtOH. With boiling NaOEt-EtOH, (III) gives a tetrahydroisoquinolino-β-phenylvinyl Me ketone (92%), m.p. 90—91°, unaffected by (I) in EtOH. aβ-Bistetrahydroisoquinolino-β-phenylethyl Me ketone (IV), m.p. 169—170°, is obtained exothermally from (I) and (III) (75%) or (II) (63·4%) in EtOH. Tetrahydroquinoline (V) eacts with neither (II) nor (III). In EtOH at room temp. (III) and (V) give β-tetrahydroquinolino-α-tetrahydroisoquinolino-β-phenylethyl Me ketone (43·7%; 30·5% formed in Et₂O), m.p. 107—109°, which in boiling 15% H₂SO₄ is hydrolysed to tetrahydroisoquinolino-α-tetone (VI) (hydrochloride, m.p. 213—215°), also obtained from (I) and CH₂Cl·COMe. In EtOH at 0° morpholine and (III) give (IV) (27·9%) and an inseparable mixture of α-tetrahydroisoquinolino-β-morpholino-β-phenylethyl Me ketone; a mixture is also formed in Et₂O; hydrolysis of the mixture gives (VI) as sole isolable product. Piperidine and (III) in Et₂O at 60° give only 5·3% of β-piperidino-tetrahydroisoquinolino-β-phenylethyl Me ketone (VII), m.p. 150—51°; in EtOH only (IV) (19%) is isolated. α-Bromo-β-morpholino-β-phenylethyl Me ketone (PIII) and (I) in Et₂O at 0° give (IV); in EtOH only 5·9% is obtained. α-Bromo-β-piperidino-β-phenylethyl Me ketone (PIII) and (I) in Et₂O at 0° give (IV); in EtOH only 5·9% is obtained. α-Bromo-β-piperidino-β-phenylethyl Me ketone (IX) and (I) in Et₂O or EtOH at 0° give (VII) (36·4 and 40·3%, respectively), which in 15% H₂SO₄ at 100° gives PhCHO, piperidinoacetone [oxime, m.p. 122—123° (lit. 104°)], and a little CH₂Ph·CO·COMe. In EtOH, (**V**) and (**IX**) give exothermally 48·5% of (**VII**) (in Et₂O, 12·7%). In EtOH at room temp. (1 day), (**III**) gives (**IV**) (26%) and then, by treatment of the filtrate with morpholine at room temp., aβ-dimorpholino-β-phenylacetone (**X**) (5·5%), and 95% of the residual (**III**) is recovered. Similarly, (**VIII**) in EtOH with subsequent treatment with (**I**) gives (**X**) (15·3%) and then (**IV**) (31·4%). With H₂-PtO₂ in C₆H₆ at 28°/1·2 atm., a-bromo-β-piperidino-β-phenylpropiophenone gives piperidine (**XI**) and Ph·[CH₂]·COPh; with I-KI-acid, complex condensation products containing no Br or N are formed. a-Bromo-β-piperidino-β-phenylpropiophenone with H₂-PtO₂ in C₆H₆ at ~28°/1·2 atm. gives 82·7% of CH₂Bz₂. a-Bromobenzylideneacetophenone and dry HBr-Et₂O at -5° give CHPhBr·CHBr·COPh; a-piperidinobenzylideneacetophenone and dry HBr-C₆H₆ at 0° give piperidine hydrobromide. VII. COMe·CH₂Bz (1 mol.), (XI) (2 mols.), and conc. HCl (1 drop) at the b.p. give a small yield of γ-piperidino-α-phenyl-Δβ-buten-α-one, m.p. 97—98°, which in dil. HCl gradually gives COMe·CH₂Bz (nearly 100%). β-Piperidinobenzylideneacetophenone does not condense with CH₂Bz₂. CHPh:CBr·COMe (XII) and (XI) in Et₂O-light petroleum at -30° give (IX), m.p. 80—82°, which gives ionic Br more rapidly in EtOH than in HNO₃-EtOH and with boiling NaOEt-EtOH gives α-piperidino-β-phenylvinyl Me ketone, m.p. 56—58° (hydrolysed by acid to CH₂Ph·CO·COMe). With (IV) in EtOH, (IX) gives α-piperidino-β-tetrahydroquinolino-β-phenylethyl Me ketone, m.p. 126—127°. CHPhBr·COHBr·COMe (XIII) and (XI) in EtOH at room temp. give αβ-dipiperidino-β-phenylethyl Me ketone, m.p. 106—108°, is obtained from NHMe·CH₂Ph (XIV) by (XII) in Et₂O-light petroleum at -5° or (XIII) in EtOH. CHPh:CBr·COPh (XV) and (XIV) in Et₂O-light petroleum at 0° give α-bromo-β-benzylmethylamino-β-phenylpropiophenone (XVI), m.p. 109—110° (slowly releases I from HI; readily gives ionic Br in EtOH), converted by NaOEt-EtOH into α-benzylmethylamino-β-phenylacrylophenone, m.p. 73—75°, which in 5% HCl gives CH₂Ph·COBz. αβ-Di(benzylmethylamino)-β-phenylpropiophenone, m.p. 142—144°, is obtained (a) from (XIV) and (XVI) in moist Et₂O, (b) with (?) an isomeride, m.p. 102—103°, from (XIV) and (XVI), or (c) in poor yield, with (?) 3-benzylmethylamino-2: 4:5-triphenyl-1-methyl-Δ3-pyrroline, m.p. 118—120°, from (XIV) and CHPhBr·COPh in EtOH. In EtOH. (XVI) (1 mol.) and (V) (2 mols.) give α-benzylmethylamino-β-tetrahydroquinolino-β-phenyl-propiophenone, m.p. 150—153°, hydrolysed by acid to ω-benzylmethylaminoacetophenone (oxime, m.p. 96—97°), which is also obtained from COPh·CH₂Br. M.p. are corr. and determined in a preheated bath. 5:5-Disubstituted hydantoins. H. R. Henze, L. M. Long, R. J. Speer, and T. R. Thompson (J. Amer. Chem. Soc., 1943, 65, 323—325).—Data of Marsh et al. (A., 1940, II, 289) are erroneous. H₂-PtO₂ in EtOH reduces 5-phenyl- to 5-cyclohexyl-5-methylhydantoin, m.p. 214·6—215·8°. p-NH₂·C₈H₄·COMe, KCN, and (NH₄)₂CO₃ in 50% EtOH at 57—60° give 5-p-aminophenyl-5-methylhydantoin, m.p. 186—188°. Bucherer's method fails with p-NMe₂·C₆H₄·COPh, but KCN and (NH₄)₂CO₃ in fused NH₂Ac at 140° yield di-5-p-dimethylaminophenylhydantoin (38%) (colourless), m.p. 276—280°. Mesityl oxide gives a poor yield of 5-methyl-5-β-methylpropenylhydantoin, having a low m.p. (identified by hydrogenation to the Buβ compound), and 3-hydroxy-3: 5: 5-trimethylpyrrolidone, which is identified by conversion into 2-hydroxy-αγ-dimethyl-γ-valerolactone (I) and is also obtained from diacetoneamine by aq. KCN. COMe·CH₂·CMe₂·OH gives (I), 5: 5-dimethyl- (probably formed by way of COMe₂) and 5-methyl-5-β-hydroxyisobutyl-hydantoin, m.p. 180—181°, and a substance, (?) α-ureido-αγ-dimethyl-γ-valerolactone, m.p. 209—210°. M.p. are corr. Synthesis of pyrazolesulphanilamides. II. G. Sanna [in part with (Signa.) V. Sollai] (Gazzetta, 1942, 72, 313—317; cf. Sanna, Rend. Sem. Fac. Sci. Cagliari, 1940, 10).—Antipyrine (I) with CISO₃H gives the chloride (II), m.p. 191°, of 1-phenyl-2: 3-dimethyl-5-pyrazolone-4-sulphonic acid, m.p. 277° [NH₄ salt, m.p. 277°; Cu salt, amide, m.p. 229° [239°]). With CO(NH₂)₂, (II) gives NN'-bis-(1-phenyl-2: 3-dimethyl-5-pyrazolone-4-sulphon)carbamide, m.p. 165°. With 2-aminopyridine (III), (II) in H₂O at 1100°, or at the m.p., gives 1-phenyl-2: 3-dimethyl-5-pyrazolone-4-sulphon-2'-pyridylamide, m.p. 244°. (II) and (III) under other conditions [in EtOH?] give a substance, m.p. 96°. p-NHAc-C₆H₄-SO₂Cl and 4-aminoantipyrine give the Ac derivative, m.p. 267°, of 4-p-aminobenzenesulphonamido-antipyrine, m.p. 213°. (I) and CISO₃H at 70°, followed by cooling, addition of H₂O, and reduction by Zn, give 4-thiolantipyrine, b.p. 135°/5 mm. Dinaphthylenedi-imine and dehydrodinaphthylenedi-imine. A. Rieche, W. Rudolph, and R. Seifert (Ber., 1940, 73, [B], 343—350). —1:1'-(8:8'-Diacetamido-2:2'-dinaphthone) and boiling aq. H₂SO₄ (130°) give dehydrodinaphthylenedi-imine (dinylin) (I), m.p. 312° (sulphate, m.p. 279—280°; ferrichloride; CuCl₂, CoCl₂, ZnCl₂, and SnCl₂ salts), also obtained from 2:2'-diamino-8:8-dimethoxy-1:1'-dinaphthyl and FeCl₃ or 8:
8-dimethoxy-1: 1'-dinaphthyl and FeCl₃ or AlCl₃. (I) with H_2O and Al_2O_3 gel or SiO₂ gel at $\sim 300^\circ$ in H_2 gives 1: 1'-dinaphthylene 2: 8'-2': 8-dioxide, with NaNO₃- H_2SO_4 at $\Rightarrow 4^\circ$, then at room temp., affords a NO_2 -derivative, m.p. 344°, and with Br-AcOH gives a Br_2 -compound, m.p. $> 360^\circ$. Aq. NaOH-Na₂S₂O₄ at 60° converts (I) into (probably) a H_2 -derivative, m.p. $\sim 310^\circ$, which forms salts with mneral acids. (I) and boiling NH.Ph yield 3-anilinodinylin m.p. 262° 1:1'-NH₂Ph yield 3-anilinodinylin, m.p. 262°. 1:1'-(5:7:5':7'-Tetrachloro-8:8'-diacetamido-2:2'-(5: 7:5': T-Tetracmoro-o. o Glasson dinaphthone) and boiling $H_2O-H_2SO_4$ (1: 2) give A. T. P. 5:7:5':7'-tetrachlorodinylin, m.p. >360° Transformation of some oximinopyrroles into pyrimidine derivatives, Ciamician's reaction, and the constitution of nitrosopyrroles and pyrrole-aldehydes. T. Ajello (Gazzetta, 1942, 72, 325-333). The action of PCl₅ on 4-oximino-2:3:5-triphenylpyrrole (I) to The action of PCl₅ on 4-oximino-2:3:5-triphenylpyrrole (I) to give β-benzamido-aβ-diphenylacrylamide and thence 6-hydroxy-2:4:5-triphenylpyrimidine (cf. ibid., 1940, 70, 460) proceeds by way of the hydrochloride of (I), which loses H₂O to give 4-chloro-imino-2:3:5-triphenylpyrrole, as is shown by Zn reduction to the 4-NH₂-compound. With PCl₅, 3-oximino-2:5-diphenylpyrrole gives β-benzamido-β-phenylacrylamide, m.p. 85° (oxime, m.p. 182°, and hydrazone, m.p. 196°, both reduced to 6-amino-2:4-diphenylpyrimidine, m.p. 120°), which when heated in AcOH or EtOAc slowly gives 6-hydroxy-2:4-diphenylpyrimidine. It is suggested that in the Ciamician reaction, a 2-CHCl; compound is intermediately formed. Nitrosopyrroles may have a NN oxide bridge, and an oxide bridge may explain the non-reactivity of pyrrole-aldehydes. oxide bridge may explain the non-reactivity of pyrrole-aldehydes. E. W. W. Two heterovitamins-B₁. P. Baumgarten and A. Dornow (Ber., 1940, 73, [B], 353—355).—Mainly a discussion of previous work (A., 1940, II, 291) and of structures. A. T. P. Triazines.-See B., 1943, II, 213. Nucleic acids. XV. Synthesis of nucleotides (muscle-adenylic acid, cytidylic acid). H. Bredereck, E. Berger, and J. Ehrenberg (Ber., 1940, 73, [B], 269—273).—Adenosine is converted by CPh₃Cl in dry C_5H_5N at 100° into triphenylmethyladenosine, $[\alpha]_D^{20} - 17^\circ 6^\circ$ in C_5H_5N , transformed by $Ac_2O-C_5H_5N$ at room temp. into the diacetate, which is hydrolysed by acid to adenosine diacetate, m.p. $181-181^\circ$. This is converted by PPh₂·OCl in C_5H_5N followed by hydrolysis into muscle-adenylic acid in very small yield. Cytidine nitrate and $\mathrm{CPh_3Cl}$ in anhyd. $\mathrm{C_5H_5N}$ afford triphenylmethyl-cytidine, similarly transformed into cytidylic acid, identified as the brucine salt, $[a]_2^{\mathrm{D}} - 15\cdot 3^{\circ}$ in 35% EtOH. Sedimentation and diffusion behaviour of nucleic acid preparations. H. G. Tennent and C. F. Vilbrandt (J. Amer. Chem. Soc., 1943, 65, 424-428).—The sedimentation velocity, diffusion consts., and apparent sp. vol. of eight nucleic acid preps. are determined and used to calculate mol. wts., frictional ratios, shape factors, and (for 5 preps. giving measurable sedimentation consts.) mol. dimensions. Three Na thymonucleates, prepared under very mild conditions, exist in solution as very long mols., having mol.wt. ~500,000. Thymonucleic and yeast nucleic acid, pancreas polynucleotide, and Ba thymate have mol. wt. 3000—7000. The cross-sectional diameter Ba thymate have moi. wt. 3000—1000. It could be seen that \sim 15 A., in agreement with X-ray dimensions (16 \times 7 A.). R. S. C. Polymorphism of riboflavin.—See A., 1943, I, 178. Aryldiazomorpholides. R. A. Henry and W. M. Dehn (J. Amer. Chem. Soc., 1943, 65, 479—480).—Benzene- (I), m.p. 29—30°, ο-, m.p. 32—33°, and p-toluene-, m.p. 49·5—50·5°, naphthalene-a-, m.p. 82—83°, and -β- (II), m.p. 99·5—100·5°, m-xylene-2-, an oil, diphenyl-4-, m.p. 110·5—111°, m-, m.p. 83—84°, and p-nitrobenzene-, m.p. 137·5—138·5°, ο-, m.p. 20—22°, m-, an oil, and p-chlorobenzene-, m.p. 54—55°, 2: 5-dichlorobenzene-, m.p. 76—77°, m-, m.p. 23—34°, and p-knywohenzene- (III), m.p. 99·5—90° priodphenzene-33—34°, and p-bromobenzene- (III), m.p. 89·5—90°, p-iodobenzene-, m.p. 140·5—141·5°, m-chlorotoluene-6-, m.p. 59—60°, m-bromotoluene-4-, m.p. 48·5—49·5°, 2 : 6-dibromotoluene-4-, m.p. 87—88°, p-anisole- (IV), m.p. 69—70°, and p-morpholinobenzene- (V), m.p. 209—211°, -diazomorpholide and diphenyl-pp', m.p. 253—255°, and 3:3'-dimethyldiphenyl-4:4'-bisdiazomorpholide, m.p. 140.5-141.5°, are prepared. Excepting (IV), they are stable when solid. In are prepared. Excepting (**IV**), they are stable when solid. In conc. HBr or HCl, (**V**) gives 4-p-bromophenylmorpholine hydrobromide, m.p. 114·5—115·5°, or hydrochloride, decomp. 192—194°, respectively. With C_6H_6 and AcOH (1 mol.) or, better, C_6H_6 -AlCl₃, they give Ph₂ derivatives. They are unaffected by Ac₂O. With aq. H1O₄, (**III**) gives I, p-C₆H₄BrI (7%), p-C₆H₄I·NO₂, and tar. With SO₂, (**I**), (**II**), and (**III**) give products, m.p. 142—143·5°, 181—182·5°, and 155—156°, respectively, insol. in but decomposed by hot conc. HCl, sol. and slowly decomp. in cold aq. alkali. In boiling aq. NaOH, the product from (**III**) gives p-C₆H₄Br·SO₂H. M.p. are corr. M.p. are corr. High mol. wt. aliphatic compounds of nitrogen and sulphur.—See A., 1943, II, 218. Thiazans.—See B., 1943, II, 212. Transformation of pyrrole- into isooxazole-derivatives. T. Ajello and (Signa.) C. Petronici (Gazzetta, 1942, 72, 333—342).—2:3:5-Trimethylpyrrole with Na and C₅H₁₁·O·NO gives the Na salt (I) of 4-oximino-2:3:5-trimethylpyrrole, amorphous, which is isolated by action of aq. CO₂. With boiling 0·5n·HCl, (I) gives 3-acetyl-4:5-dimethylisooxazole (II), b.p. 190—195°/759 mm. [oxime (III), m.p. 180° (168°?) (Bz derivative, m.p. 123°); semicarbazone (IV), m.p. 249°; phenylhydrazone, m.p. 156°; azine, m.p. 124°], which with boiling aq. HNO₃ gives 4:5-dimethylisooxazole-3-carboxylic acid, m.p. 154°. With NH₂OH,HCl in H₂O-EtOH at 100°, (I) gives γ-methylhexane-βδε-trione trioxime (V), m.p. 168° (Bz₃ derivative, m.p. 138°). With boiling KOH-EtOH-H₂O, (V) gives the oxime, m.p. 73°, of 3-methyl-4-β-keto-sec.-butyl-1:2:5-oxadiazole, an oil (semicarbazone, m.p. 165°), which is hydrolysed by boiling 50% KOH-EtOH to AcOH and 3-methyl-4-ethyl-1:2:5-oxadiazole, an oil (oxidised to 3-methyl-1:2:5-oxadiazole-4-carboxylic acid). oil (oxidised to 3-methyl-1: 2: 5-oxadiazole-4-carboxylic acid). With EtOH-HCl, (\mathbf{V}) gives, after brief heating, (\mathbf{III}), and, after longer heating, (\mathbf{II}). With aq. NH₂·CO·NH·NH₂.HCl at 100°, (\mathbf{I}) gives γ -methylhexane- $\beta\delta\epsilon$ -trione $\beta\epsilon$ -disemicarbazone δ -oxime, m.p. 234°, hydrolysed by boiling conc. HCl to (\mathbf{IV}). Absorption and resonance in dyes.—See A., 1943, I, 192. Effects of environment and aggregation on absorption spectra of dyes.—See A., 1943, I, 192. Colour and constitution of polymethine dyes.—See A., 1943, I, 192. #### VII.—ALKALOIDS. Veratrine alkaloids. XV. Rubijervine and isorubijervine. W. A. Jacobs and L. C. Craig (J. Biol. Chem., 1943, 148, 41—50).—Accumulated analytical data indicate that jervine, rubijervine (I), and probably germine are C₂₇ alkaloids built up on the same general hydrocarbon ring which is probably identical with or closely related to that of the sterols. The isolation of (I), m.p. 240—242°, [a] b +19.0° in EtOH, from the final viscous mother-liquors from the hellebore roots by hydrolysis followed by treatment with CHCl3 is described. (I) is accompanied by isorubijervine, $C_{27}H_{43}O_2N$, m.p. $235-237^{\circ}$, $[a]_D^{25}+6\cdot5^{\circ}$ in EtOH, or (+EtOH), m.p. $215-217^{\circ}$ (hydrobromide, sinters >275°, softens to a resin at 290–295°). (I) gives a hydrobromide, m.p. (indef.) $265-270^{\circ}$, a hydriodide, m.p. $(-250-270)^{\circ}$, a hydriodide, m.p. $(-250-270)^{\circ}$, a hydriodide, m.p. $(-250-270)^{\circ}$, and (-250-293—296° after softening, and an Ac_2 derivative, m.p. 160—163° The basic fraction obtained by dehydrogenation (Se) of (I) is essentially 5-methyl-2-ethylpyridine; there is no evidence of cevantharidine. The neutral fraction contains a relatively large hydrocarbon fraction $C_{18}H_{18}$, m.p. $74-77^{\circ}$ [picrate, m.p. $131-132^{\circ}$; additive compound, m.p. $144-145^{\circ}$, with $s\text{-}C_{8}H_{3}(\text{NO}_{2})_{3}$], probably a methylcyclopentenophenanthrene (suggested also by absorption enectrum) and a phenol, $C_{18}H_{18}O$, m.p. $136-138^{\circ}$. H. W. essentially 5-methyl-2-ethylpyridine; there is no evidence of cev- Veratrine alkaloids. XVI. Formulation of jervine. W. A. Jacobs and L. C. Craig (J. Biol. Chem., 1943, 148, 51–55).— Analyses of jervine (I), m.p. 237–238° after softening, [a]₂²⁵ –147° in EtOH, its hydrochloride, parallelograms, m.p. 330–334° (decomp.) after changing to needles at 280°, hydriodide, m.p. 302–305°, nitroso-, m.p. 250–253°, N-acetyl-, m.p. 224–225°, softens at 210°, and diacetyl-jervine, m.p. 147–153° from dil. COMe₂ or 154–163° from MeOH, support the formula C₂₇H₃₉O₃N for the base. (I) liberates 4 mols. of CH₄ at 95° (Zerevitinov) and hence probably contains 1 reactive and 2 sluggish OH. (I) is reduced by Na in BuOH to tetrahydrojervine, m.p. 227–229°, which does not yield a sparingly sol. sulphate, but by H₂–PtO₂ in AcOH to a mixture of isomerides from which tetrahydrojervines, m.p. 228–232° (sparingly sol. sulphate) and m.p. 210–212°, are isolated. H. W. Veratrine alkaloids. XVII. Germine; its formulation and degradation. L. C. Craig and W. A. Jacobs ($J.\,Biol.\,Chem.$, 1943, 148, 57—66; cf. Poethke, A., 1938, II, 35).—It is shown that germine (I) is $C_{27}H_{43}O_{8}N$ and is therefore isomeric with cevine (II). The mother-liquor from the directly
crystallising alkaloids of Veratrum album is hydrolysed and treated with CHCl₃, giving a cryst compound of CHCl₃ and (I) contaminated with rubijervine, which is removed by crystallisation from MeOH. (I) (+2MeOH), m.p. \sim 220° after softening (decomp.) at \sim 163-173°, [a] $_{\rm D}^{25}$ +5.0° in 95% EtOH, contains 8 active H (Tschugaev-Zerevitinov) as does (II). (I) and COMe₂ in EtOH containing HCl afford acetonyl-(II) and COMe₂ in EtOH containing HCl afford acetonyl-[isopropylidene-]germine, m.p. 235—239° (decomp.) after softening and becoming discoloured [hydrochloride, m.p. 275° (decomp.), shrinks at 255°]. The mother-liquors from (I) contain isogermine, m.p. 260°, darkens >245°, sinters >250°, [a]_D²⁵ +46·5° in EtOH. (I) is oxidised by CrO₃-H₂SO₄ at room temp. and subsequently at 95° to Me₄ hexanetetracarboxylate, m.p. 63—64°, [a]_D²⁵ +21° in MeOH, obtained previously from (II); no indication of the pro-duction of the precursor of deceiving acid was obtained. The main, volatile basic product of the dehydrogenation (Se) of (I) is 5-methyl-2-ethylpyridine. The volatile hydrocarbon fraction probably contains $C_{18}H_{18}$. The undistilled dehydrogenation mixture affords cevanthridine and cevanthrol. Protoveratrine is hydrolysed to a cryst. alkamine, $C_{27}H_{43}O_9N$, which is shown to contain a double linking by reduction to dihydroprotoverine, $C_{27}H_{45}O_9N$. Similarly (I) affords dihydrogermine. These tert. bases, like (II) and solanidine, must be hexacyclic compounds. Adsorption in relation to constitution. Adsorption of alkaloids by silica gel.—See A., 1943, I, 199. #### VIII.—ORGANO-METALLIC COMPOUNDS. Mercuri-compounds.—See B., 1943, III, 161. Modern methods of preparative organic chemistry. I. Syntheses with organic lithium compounds. G. Wittig (Angew. Chem., 1940, 53, 241—247).—A review. #### IX.—PROTEINS. Structure of the protein molecule.—See A., 1943, I, 194. Periodic structure of proteins. A. G. Ogston (Trans. Faraday Soc., 1943, 39, 151—158).—The theory of Bergmann and Niemann (A., 1937, III, 168; 1938, III, 210) is examined mathematically, and the numerical conditions that must be fulfilled by a regular periodic structure are established. A simple diagrammatic test, requiring full analytical data and applicable to complex structures, is described. F. L. U. Absence of β -alanine from proteins. M. A. Pollack (J. Amer. Chem. Soc., 1943, 65, 484—485).—Since the hydrolysates from silk fibroin, horse hæmoglobin, ovalbumin, gelatin, casein, and lactoglobulin possess no growth-promoting properties for yeast, the proteins do not contain β -alanine. R. S. C. Simple method for the approximate estimation of the isoelectric point of soluble proteins.—See A., 1943, III, 517. Denaturation of fibrinogen by anticoagulants.—See A., 1943, III, 372. # X.—MISCELLANEOUS UNCLASSIFIABLE SUBSTANCES. Oxidative degradation of halogen-substituted spruce-lignins. W. Lautsch and G. Piazolo (Ber., 1940, 73, [B], 317-320).—Bromolignin and boiling $Co(OH)_3$ (from $CoSO_4, 7H_2O$ -aq. $NaOH-H_2O_2$) +10% aq. KOH (in O_2) afford 6-bromovanillin (8% yield), m.p. 176° , and a little vanillin. Iodolignin, obtained by the action of KI-I on the OAc-Hg-compound, similarly yields 10% of 5-iodovanillin (cf. Freudenberg et al., A., 1940, II, 352). Structural aspects are discussed. A. T. P. Fine structure of lignins.—See A., 1943, I, 195. #### XI.—ANALYSIS. Micro-analytical determination of oxygen. J. Unterzaucher (Ber., 1940, 73, [B], 391—404).—Schütze's method (A., 1940, II, 199) is improved. A. T. P. Determination of sulphur in organic compounds by hydrogenation. W. Theilacker and W. Schmid (Angew. Chem., 1940, 53, 255—256). —The ter Meulen method is improved by using platinised SiO₂ wool with a modified absorption train. A SiO₂ reaction tube is necessary only for cyclic S compounds (e.g., thianthren), where bright red heat is needed. M. H. M. A. Micro-extraction and micro-titration of fatty acids. D. Stretten and G. F. Grail (Ind. Eng. Chem. [Anal.], 1943, 15, 300).—8—20-mg. samples of fatty acids are titrated using 0·16N-NaOH delivered from a micrometer-driven micro-burette, a-naphtholphthalein indicator, and 90% MeOH as solvent for acid and alkali. A micro-extraction apparatus for extraction of fatty acids is described. J. D. R. Separation of acetic, butyric, lactic, and d-gluconic acid. S. Preiss (Biochem. Z., 1940, 306, 130—136).—In a modification of the procedure of Wiegner and Magasanik (A., 1922, ii, 532), PrCO₂H and most of the AcOH are separated from the other acids by repeated distillation. When the residue is contuously extracted with Et₂O for 24 hr., lactic acid and the remainder of the AcOH are removed and determined after evaporation of the Et₂O, by addition of excess of alkali and titration with acid. d-Gluconic acid (insol. in Et₂O) is determined in the same way in the residue from the Et₂O extraction. W. McC. Ascorbic acid. I. Detection and estimation. W. R. Fearon and E. Kawerau (Sci. Proc. Roy. Dublin Soc., 1943, 23, 103—110). —Available methods for the detection and determination of ascorbic acid (I), dehydroascorbic acid (II), and "bcund" ascorbic acid are classified and discussed. (I) is detected by the development of a violet colour with o-C₆H₄(NO₂)₂ and 20% NaOH; the test is not given under defined conditions by (II), glutathione, cysteine, creatinine, or uric acid and only more slowly by reducing sugars. (II) in solution buffered to pH 4 gives a stable, grass-green colour when gently boiled; the test is not given by (I) or by any of the familiar biological acids, sugars, proteins, and related substances. (I) is determined by titration with standard Fe^{***} solution in presence of AcOH; 1% KCNS is used as indicator. (I) can also be determined by titration with I using xylene as a partition indicator. H. W. N-Benzylamides as derivatives for identifying the acyl group in esters. O. C. Dermer and J. King (J. Org. Chem., 1943, 8, 168—173).—Many esters and free acids can be converted into cryst. N-benzylamides by boiling CH₂Ph·NH₂ in presence of salt catalysts (e.g., NH₄Cl). The method fails for esters of inorg. acids, sulphonic acids, CO-acids, polynitro-aromatic acids, and some halogenated fatty acids. Esters of alcohols of high mol. wt. may require preliminary methanolysis. The amides formed by OH-acids, OAlkacids, and polybasic acids, or by their respective esters, constitute excellent identifying derivatives whereas those from fatty acids melt too low and too close together to be useful. The following -benzylamides are new: a-methyl-n-butyr-, m.p. 47·5—48·5°; isovaler-, m.p. 53—54°; m-tolu-, m.p. 74·5—75·5°; a-ethyl-n-butyr-, m.p. 76—77°; phenoxyacet-, m.p. 84·5—86·0°; myrist-, m.p. 89—90°; p-aminobenz-, m.p. 89—90°; glycoll-, m.p. 103—104°; o-iodobenz-, m.p. 109—110°; anilinoacet-, m.p. 113—114°; diglycoll-, m.p. 124·0—124·5°; anthranil-, m.p. 124-125°; ethylmalon-, m.p. 137—138°; diethylmalon-, m.p. 137·5—138·5°; m-hydroxybenz-, m.p. 141—142·5°; 2-furylacryl-, m.p. 145—146°; n-butylmalon-, m.p. 166·0—167·5°; phenylethylmalon-, m.p. 167—168°; citr-, m.p. 169-170°; glutar-, m.p. 169·5—170°; p-nitrophenylacet-, m.p. 185—186°; adity-, m.p. 188—189°; phenylsuccin-, m.p. 189—190°; naphthal-, m.p. 196·5—197·5°; fumar-, m.p. 203·5—205°; cinnam-, m.p. 225—226°; terephthal-, m.p. 264—266°. β-Benzylaminopropionbenzylamide hydrochloride (from CH₂:CH·CO₂Me) has m.p. 236—237°. M.p. are corr. Chromatography as a means of separating amino-acids. J. L. Wachtel and H. G. Cassidy (J. Amer. Chem. Soc., 1943, 65, 665—668; cf. A., 1942, II, 249).—Details are given for separating glycine, leucine, phenylalanine, and tyrosine by chromatography on C from H₂O. The mixture is separated on one column into (a) the first two and (b) the second two acids named and these pairs are then separated on further columns. Some of the tyrosine is lost by decomp. R. S. C. Sugar analysis by alkaline ferricyanide method. Determination of ferrocyanide by iodometric and other procedures. D. T. Englis and H. C. Becker (Ind. Eng. Chem. [Anal.], 1943, 15, 262—264).— $K_4 \text{Fe}(\text{CN})_6$ is oxidised with I in acid solution in presence of PO4" or F' to remove Fe and prevent the reverse reaction. Room temp. with 60—75% excess of I for 15 min. is used, and the vol. is adjusted to give $[K_3 \text{Fe}(\text{CN})_6] < 0^{-}01\text{M}$. The excess of I is titrated with Na₂S₂O₃. A comparison of the results obtained on the reduction of alkaline $K_3 \text{Fe}(\text{CN})_6$ by glucose and fructose, by direct oxidation of $K_4 \text{Fe}(\text{CN})_6$ by I, by indirect determination of $K_3 \text{Fe}(\text{CN})_6$ iodometrically, and by direct oxidation of $K_4 \text{Fe}(\text{CN})_6$ with $\text{Ce}(\text{SO}_4)_2$ shows good agreement and indicates that the by-products of the primary oxidation of sugars have a negligible effect on any of the methods used to determine $K_3 \text{Fe}(\text{CN})_6$ consumed. J. D. R. Micro-colorimetric determination of tryptophan. H. W. Eckert (J. Biol. Chem., 1943, 148, 205—212).—The sample is dissolved in 1·2n·HCl and treated with 1% NaNO₂; after 30 min. 4% NH₂·SO₃NH₄, is added followed after 10 min. with 10 c.c. of H₂O and finally 0·1% NH₂·[CH₂]₂·NH·C₁₀H₇-a,2HCl (I). The red colour attains max. intensity in 30—60 min. If the material is colourless, the blank consists of 1·2n·HCl treated in the same way. If the sample gives a colour other than red, a close approximation may be secured by adding a small amount of Na₂SO₃ to the coloured solution after the reading on the colorimeter is taken. After the red colour has disappeared the blank reading is made. Similarly the addition of KH₂PO₄ and NaNO₂ will discharge the red colour, or the sample may be treated exactly and described except that in the last step 5 c.c. of H₂O are added in place of (I). If these methods are inadequate, the mixtures are extracted with Bu^aOH and the filtered extracts are examined colorimetrically.
Spectrophotometric analysis of tissue staining.—See A., 1943, III. 554 #### INDEX OF AUTHORS' NAMES, A., II. AUGUST, 1943. ABRAMOVITCH, B., 216. Acharya, B. G. S., 239. Adams, J. T., 216. Advani, G. D., 226. Airan, J. W., 228. Ajello, T., 245, 246. Alther, H. B., 236. Amstutz, E. D., 240. Angus, W. R., 229. Atherton, D., 217. 近はは W. Atherton, D., 217. Babson, R. D., 232, 243. Backer, H. J., 216. Baker, W., 217. Baldwin, R. R., 221. Bartlett, P. D., 223. Baumgarten, P., 245. Becger, E., 245. Bergmann, F., 235. Bergmann, M., 230. Berk, B., 226. Beutel, R. H., 242. Bhide, B. V., 216. Biswas, H. G., 231. Bokil, K. V., 229. Bordwell, F. G., 214. Bradsher, C. K., 225. Bredereck, H., 245. Breusch, F. L., 217. Briner, E., 215. Brown, J. B., 216. Buckles, R. E., 228. Burger, A., 240. Burschkies, K., 230. Butenandt, A., 239. Campbell, B. K., 232. Campbell, R. N., 232. Campbell, K. N., 232. Cassidy, H. G., 248. Chadwick, A. F., 215. Chaput, E. P., 232. Clar, E., 235. Cocora, D., 216. Cohen, S. G., 223. Cory, G. T., 221. Craig, L. C., 246. Cram, D. J., 243. Cromvell, N. H., 232, 243. Crouch, E. A. C., 226. Dannenberg, H., 239. Das-Gupta, S. J., 231. Dave, K. P., 231. Davies, R. R., 232. Degering, E. F., 214. Dehn, W. M., 245. Dermer, O. C., 248. Doherty, D. G., 230. Dornow, A., 242, 245. ECKERT, H. W., 248, Ehrenberg, J., 245. Elderfield, R. C., 220. Ely, R. E., 234. Englis, D. T., 248. Eschinazi, H. E., 235. Evans, W. L., 220. FARLEY, F. F., 221. Fearon, W. R., 248. Foster, J. F., 221. Frankel, J. S., 216. French, D., 221. Freyermuth, H. B., 218. GARDNER, T. S., 222. Gavat, I. G., 216. Gemassmer, A., 222. Gilman, H., 222. Giorănescu, E., 234. Goldfarb, A. R., 226. Goldsmith, D. P. J., 239. Grail, G. F., 247. Grandjeau, P., 236, 237, 238. Grice, K. D., 217. HAIMSOHN, J. N., 216. HAIMSOHN, J. N., 216. HARNEST, C. E., 243. HARTIS, C. E., 243. HARTIS, M., 221, 222. HARTIS, M., 221, 222. HARTIS, M., 221, 222. HARSIG, W. Z., 221. HAUSER, C. R., 216. Henne, A. L., 213. Henry, R. A., 245. Henze, H. R., 244. Hilditch, T. P., 217. Hixon, R. M., 221. Hockett, R. C., 219. Hodgson, H. H., 226, 232. Huang, A. Y. L., 218. Hudson, C. S., 220. Hunter, B. A., 218. ICKE, R. N., 219. Isbell, H. S., 217. JACOBS, W. A., 246. Jansen, A. B. A., 217. Johnson, P. R., 224. Johnson, R. S., 232. Jonsson, C. V., 224. KANG, S., 218. Kar, B. C., 217. Kawerau, E., 248. Keane, J., 242. Kharasch, M. S., 213, 227. King, J., 248. King, J. A., 240. Kleiman, M., 227. Knowles, C. M., 243. Koelsch, C. F., 224, 232. Koster, H., 235. Komarewsky, V. I., 213. Kritchevsky, D., 217. Kritschevsky, T. H., 213. Kröhnke, F., 243. Lahev, F. N., 241. Lardon, A., 238. Lautsch, W., 247. Lebmann, E., 232. Lettré, H., 231. Levin, R. H., 236. Li, L., 218. Lin, K., 218. Logemann, W., 235. Long, L. M., 244. Lu, M., 218. McCoy, J. S., 227. McCready, R. M., 221. Machens, H., 242. Mark, H., 222. Marker, R. E., 239. Martin, A. R., 221. Matin, R. H., 233. Mason, H. S., 216. Mayer, K., 221. Meals, R. N., 222. Meyer-Delius, M., 229. Michael, A., 216. Milne, H. B., 228. Minor, F. W., 221. Mirza, B. E., 226. Moffett, R. B., 238. Mowery, D. F., jun., 219. Murphy, D., 242. Nargund, K. S., 230, 231. Niederl, J. B., 227. Neeman, M., 235. Nenitzescu, C. D., 216, 234. Newton, A., 222. Newton, R. F., 229. Nolan, T. J., 242. Nudenberg, W., 213. OGSTON, A. G., 247. Owen, R. P., 229. Pacsu, E., 215. Pailer, M., 227. Paillard, H., 215. Paranjape, K., 230. Parekh, N. B., 227. Patel, B. D., 229. Peak, D. A., 227. Peters, A. T., 226, 227. Petronica, C., 246. Phalnikar, N. L., 216, 230. Piazolo, G., 247. Pieper, G., 234. Plueddeman, E. P., 213. Pollack, M. A., 247. Press, J., 237. Press, J., 237. Press, J., 237. Prece, C. C., 223. Przemetzky, V., 234. Purves, C. B., 222. Radha, K. S., 232. Raiford, L. C., 218. Ramler, E. O., 215. Ray, F. E., 214. Redemann, C. E., 219. Rege, A. V., 228. Reich, H., 236. Reichstein, T., 236, 237, 238. Reid, E. E., 217. Reynolds, D. D., 220. Richtmyr, N. K., 220. Richtmyr, N. K., 220. Richtmyr, N. K., 220. Riche, A., 234, 244. Riegel, B., 238. Rouault, G. F., 233. Rowe, F. M., 226, 227. Ruddy, A. W., 225. Rudolph, W., 234, 244. Rundle, R. E., 221. Ruof, C. H., 239. Rutherford, H. A., 221, 222. SAFELD, J. C., 239. Sanna, G., 214, 244. Schmid, H., 215. Schmid, E., 219. Schmidt, E., 219. Schmidt, A. W., 222. Schöberl, A., 219. Schwenk, E., 238. Seebeck, E., 237. Seifert, R., 247. Sen-Gupta, S. C., 225. Shab, N. M., 240. Shab, S. V., 228. Shab, S. V., 228. Shapiro, E., 229. Short, W. F., 227. Simons, J. H., 215. Smith, E. S., 225. Smith, L. I., 233, 240. Sollai, V., 244. Sookne, A. M., 222. Späth, E., 215, 227. Spano, S., 214. Speer, R. J., 244. Spitzmiller, E. R., 240. Sprang, C. A., 214. Stahl, E., 238. Stad, D. M., 226. Strevens, J. R., 242. Strating, J., 216. Stretten, D., 247. Striewsky, W., 219. Surgenor, D. M., 223. Surmatis, J. D., 216. Suter, C. M., 214, 225, 228. Svartholm, N., 223. Szasz, G. J., 214. Talley, E. A., 220. Tate, B. E., 223. Tennent, H. G., 245. Theilacker, W., 247. Thomas, D. S., jun., 239. Thompson, T. R., jun., 223. Thompson, T. R., 244. Tietzmann, J. E., 230. Tomisek, A. J., 223. Trivedi, J. J., 231. Tulus, R., 217. UHLE, F. C., 220. Ulshafer, P. R., 239. Unterzaucher, J., 247. VILBRANDT, C. F., 245. WACHTEL, J. L., 248. Wagner, R. B., 239. Walter, L. A., 226. Watt, G. W., 243. Weidlich, H. A., 229. Weissberger, A., 239. Weston, A. W., 225. Whalen, (Sir) M. L., 229. White, T. S., 239. White, T., 215. Whitmore, F. C., 216. Winstein, S., 228. Wiselogle, F. T., 229. Witt, I. H., 243. Wittig, G., 234, 247. Woodward, R. B., 234. ZIMMERMANN, J., 240. # JUDACTAN #### ANALYTICAL REAGENTS WITH ACTUAL BATCH ANALYSIS Each Batch subjected to INDEPENDENT ANALYSIS before label is printed You are invited to compare the above actual batch analysis with the purities **ACTUAL** **BATCH** **ANALYSIS** guaranteed by the specifications of any competing maker in this Country or abroad THE GENERAL CHEMICAL & PHARMACEUTICAL CO. LTD. Chemical Manufacturers, Judex Works, Sudbury, Middlesex