BRITISH CHEMICAL AND PHYSIOLOGICAL ABSTRACTS

ISSUED BY THE

Bureau of Chemical and Physiological Abstracts

[Supported by the Chemical Society, the Society of Chemical Industry, the Physiological Society, the Biochemical Society, and the Anatomical Society of Great Britain and Ireland]

OCTOBER, 1943

BUREAU:

Chairman : L. H. LAMPITT, D.Sc., F.I.C.

Hon. Treasurer : F. P. DUNN, B.Sc., F.I.C.

JULIAN L. BAKER, F.I.C.

G. L. BROWN, M.Sc., M.B., CH.B.

H. W. CREMER, M.Sc., F.I.C., M.I.CHEM.E.

C. W. DAVIES, D.Sc., F.I.C.

H. J. T. ELLINGHAM, B.Sc., PH.D., F.I.C.

- C. R. HARINGTON, M.A., PH.D., F.R.S.
 L. A. JORDAN, D.Sc., F.I.C.
 G. A. R. KON, M.A., D.Sc., F.R.S.
 H. McCOMBIE, D.S.O., M.C., PH.D., D.Sc., F.I.C.
 B. A. McSWINEY, B.A., M.B., Sc.D.
- F. G. YOUNG, D.Sc., PH.D.

Editor : T. F. BURTON, B.Sc.

Assistant Editors :

J. H. BIRKINSHAW, D.Sc., F.I.C.*

H. BURTON, M.Sc., D.Sc., F.I.C.

F. G. CROSSE, F.I.C.

A. A. ELDRIDGE, B.Sc., F.I.C.

W. JEVONS, D.Sc., Ph.D.
E. E. TURNER, M.A., D.Sc., F.I.C., F.R.S.
F. L. USHER, D.Sc.
H. WREN, M.A., D.Sc., Ph.D.
SAMSON WRIGHT, M.D., F.R.C.P.*

 Assisted by J. D. BOYD (Anatomy), A. HADDOW (Tumours), F. O. HOWITT (Biochemistry), A. G. POLLARD (Plant Physiology), K. TANSLEY (Sense Organs), V. J. WOOLLEY (Pharmacology), and F. G. YOUNG (Ductless Glands).

Indexer : MARGARET LE PLA, B.Sc.

A., II.—ORGANIC CHEMISTRY

CONTENTS

I.	Aliphatic		• •			289	VII. Alkaloids	311
II.	Sugars and Glucosides	•				294	VIII. Organo-metallic Compounds	314
III.	Homocyclic .					296	IV Destains	_
IV.	Sterols and Steroid Say	pogeni	ins			304	IX. Proteins	314
V.	Terpenes and Triterper	noid S	apog	enins		306	X. Miscellaneous Unclassifiable Substances.	314
VI.	Heterocyclic .		•	•	•	308	XI. Analysis	315

Offices of the Bureau : 56 VICTORIA STREET, LONDON, S.W.I

Publishers : THE CHEMICAL SOCIETY, BURLINGTON HOUSE, PICCADILLY, LONDON, W.I.

Announcement : Now Ready !

THIS work, first published in 1933 with 17 monographs, has now grown to 44 monographs, and as in previous editions the text has been brought completely up-to-date. Extensive bibliographies make reference to more than 1300 original publications.

• Send your order now to Dept. HD/9 and a copy will be sent by return.

HOPKIN & WILLIAMS LTD. Makers of Fine Chemicals 16-17 ST. CROSS STREET, LONDON, E.C.I

Demy 8vo

175 pages

4/- Per Copy Post Free

THE JOURNAL OF BIOLOGICAL CHEMISTRY FOUNDED BY CHRISTIAN A. HERTER AND SUSTAINED IN PART BY THE CHRISTIAN A. HERTER MEMORIAL FUND EDITORIAL BOARD: HOWARD B. LEWIS. RUDOLPH J. ANDERSON. ELMER V. MCCOLLUM. W. MANSFIELD CLARK. WILLIAM C. ROSE. HANS T. CLARKE. WILLIAM C. STADIE. CARL F. CORI. DONALD D. VAN SLYKE. EDWARD A. DOISY. HUBERT B. VICKERY. A. BAIRD HASTINGS.

SUBSCRIPTION PRICE

Beginning with January, 1939, 5 volumes to be issued a year £1 1s. 9d. per volume, post free

> INDEX TO VOLS. 101-125 8s. net to Subscribers 12s. net to Non-Subscribers

British Agents : BAILLIÈRE, TINDALL & COX 7 & 8 HENRIETTA STREET, LONDON, W.C.2

VOLUME XXXIX OF THE ANNUAL REPORTS

ON THE

PROGRESS OF CHEMISTRY

FOR 1942

Price 15s. 0d., post free.

CONTENTS

GENERAL AND PHYSICAL CHEMISTRY, by H. W. MELVILLE. (Collaborators: C. E. H. BAWN, W. F. BERG, G. GEE).

INORGANIC CHEMISTRY, by H. J. EMELÉUS. (Collaborators: A. L. G. REES, A. J. E. WELCH).

CRYSTALLOGRAPHY, by J. M. ROBERTSON .

ORGANIC CHEMISTRY, by F. S. Spring and T. S. Stevens. (Collaborators: M. P. Balfe, J. W. Cook, J. Kenyon, E. G. V. Percival).

BIOCHEMISTRY, by L. J. HARRIS. (Collaborators: C. G. ANDERSON, E. CHAIN, J. L. CRANMER, H. W. FLOREY, A. NEUBERGER, F. W. NORRIS, R. MARKHAM).

> Publishers: THE CHEMICAL SOCIETY, BURLINGTON HOUSE, PICCADILLY, LONDON, W.1.

BRITISH CHEMICAL AND PHYSIOLOGICAL ABSTRACTS

A., II.–Organic Chemistry

OCTOBER, 1943.

I.—ALIPHATIC.

Application of group theory to isomerism in general.-See A., 1943, I, 220.

[Rates of] organic reactions.-See A., 1943, I, 258.

Theory of racemism. C. S. Hudson (*J. Amer. Chem. Soc.*, 1943, **65**, 1239-1240).—The designation, "racemate," is definitive for substances which do not tautomerise, but is not so for tautomeric substances, for which the no. of possible racemates is the no. of tautomeric forms. Examples of the latter type are "rac." arabinose R. S. C. (5 possibilities) and -perseulose.

Deuterohexane, m.p. 18°, from $a\beta$ -dideuterononoic acid.—See A., 1943, III, 580.

Action of sodium ethyl on (-)- β -bromo-octane.—See A., 1943, II, 284

284. **Preparation of unsaturated hydrocarbons** [from alcohols] by silica gel. A. Rollett and H. Maurer-Stroh (Ber., 1940, 73, [B], 740— 741).—SiO₂ gel (I) is as good as Al₂O₃ and better than clays for prep. of olefines from alcohols. Clays vary in quality, rapidly become inactivated by deposition of C, and are not fully reactivated by burning off the C. C_2H_4 is formed by passing EtOH over (I) in a Cu tube at 300—550° (best 550°), fine-pored being better than coarse-pored (I). At 250° a little Et₂O, but no C_2H_4 , is formed. At 450—550°, Et₂O gives nearly 100% of C_2H_4 . At 450—500° Pr^βOH gives similarly C_3H_6 , Bu^βOH gives a 3 : 1 and Bu^aOH gives a 2 : 1 mixture of (CHMe;)₂ and CH₂:CHEt. At 300° cyclohexanol gives H₂O and cyclohexene, and at 600° gives (CH₂:CH)₂ and C₂H₂. R. S. C. Rubher, polyisoprenes, and allied compounds. IV. Relative

Rubber, polyisoprenes, and allied compounds. IV. Relative tendencies towards substitutive and additive reaction during chlorin-ation. G. F. Bloomfield (*J.C.S.*, 1943, 289–296).—In the chlorin-ation of CCl₄ solutions of rubber at 77° in N₂, determinations of the quantity of HCl formed and of the Cl content and I val. of the proquality of RCI formed and of the CI content and I val. of the pro-duct show that the reaction is mainly substitutive during the absorption of the first Cl_2 , additive and substitutive (to approx. equal extents) with the second Cl_2 , and mainly substitutive with the third Cl_2 per C_5H_8 unit. The marked apparent loss of unsaturation, as shown by I val., during chlorination is probably due partly to cyclisation and partly to a steric effect of the substituted Cl atoms. The first state of chlorination is accompanied by complete The first stage of chlorination is accompanied by considerable decrease in η due (?) to autoxidation, and the products are rubber-like, but if exposed to air lose HCl and set hard. The course of the reaction is little influenced by light or change of temp., or by O_2 of anti-ordente though these give less stable products. The above anti-oxidants, though these give less stable products. The above interpretation is confirmed by the fact that the products of chlorination at -30° or -80° lose no HCl when warmed to 80° in absence of air, and by the observations that chlorination (1 mol. Cl_2 per mol.) of 1-methylcyclohexene at 80° is 79% (calc. from HCl evolution) or 76% substitutive (calc. from I val.), while the marked differences between observed and calc. I vals. of similarly chlorinated dihydro-murcana and source are much diminiched by reduction (72). myrcene and squalene are much diminished by reduction (Zn + AcOH) of the products. Mono-, b.p. $88-90^\circ/15$ mm., and di-chlorodihydromyrcene, b.p. $48-50^\circ/0.01$ mm., have been isolated.

A. Li.

A. LI. Geometric isomerides of piperylene. D. Craig (J. Amer. Chem. Soc., 1943, 65, 1006—1013).—Fractional distillation of a commercial concentrate (A) yields cis- (I), b.p. $43\cdot8^{\circ}/750$ mm., and trans-piperylene (II), b.p. $41\cdot7^{\circ}/745$ mm. (cf. Dolliver et al., A., 1937, II, 364). (:CH-CO)₂O reacts rapidly with (II) at 100° to give 3-methyl-44-tetrahydrophthalic anhydride (nearly 100%), but only slowly with (I) to give polymeric resins (cf. Robey et al., A., 1941, II, 117; Farmer et al., A., 1932, 141). SO₂ and (I) or more readily (II) yield 2-methyl-2: 5-dihydrothiophen 1: 1-dioxide (III), a H₂O-sol. oil: this difference in reaction rate permits ready prep. of pure (I): yield 2-methyl-2: 5-dihydrothiophen 1: 1-dioxide (III), a H₂O-sol. oil; this difference in reaction rate permits ready prep. of pure (I); pyrolysis of (III) yields pure (II). CuCl-NH₄Cl-H₂O-HCl-Cu wool absorbs (I) or (II) to give insol. compounds, gradual thermal decomp. (60—90°) of which affords good fractionation. Mixed tetrabromides are obtained from (I) or (II) [(I) gives a relatively high yield of *threo*-tetrabromide, m.p. 114°] and with Zn regenerate mixtures of (I) and (II). n-C₅H₁₂ is obtained from (I) or (II) by H₂-Raney Ni at 29—35°/~35 atm. (I) is the chain and (II) the boat form.

R. S. C.

Nitration of methane.—See B., 1943, II, 271.

Production of magnesium alkoxides.—See B., 1943, II, 272.

Optically active $\alpha\gamma$ -dimethylallyl alcohols. M. P. Balfe, H. W. J. Hills, J. Kenyon, H. Phillips, and B. C. Platt (*J.C.S.*, 1943, 348–351; cf. A., 1936, 820).—(+) and (-) refer to the sign of rotatory 351; cf. A., 1936, 820).—(+) and (-) refer to the sign of rotatory power of optically pure substances and d- and l- to substances of unspecified optical purity. (+)-CHMe:CH·CHMe·OH (**I**) is con-verted by SOCl₂ or (better) PCl₃-C₅H₅N into l-ay-dimethylallyl chloride (**II**), which gives largely racemised products with MeOH or Bu*OH probably because these reactions are initiated by ionisation of (**II**) and with solid KOAc or AgOAc possibly due to the hetero-geneous reaction conditions. In horitogeneous medium (**II**) and NaOMe give a highly racemised product, suggesting that the unimol. (ionisation) mechanism controls even the homogeneous replacement (ionisation) mechanism controls even the homogeneous replacement. Hydrolysis of (I) by H_2O gives a *lawo*-alcohol (III) similar in magni-tude of rotatory powder to the (+)-alcohol. By methods which produce optically active derivatives from (+)- or (-)-alcohol (III) gives an optically inactive H phthalate and methyldibromo-*n*-propylcarbinol; it does not therefore contain the normal form of (-)- $a\gamma$ -dimethylallyl alcohol. (III) is convertible into an acetate, a_{5461}^{*} -0.66° (l = 1), and a CHMePr^a·OH, $[a]_{5611}^{18}$ +0.3° (l = 1), these vals. being ~2% of those of the corresponding derivatives of (I). It appears that the major product of the hydrolysis of (II) is *dl*-CHMe:CH-CHMe·OH but that an optically active impurity of unknown nature is present. A laworotatory substance appears also to be formed during the mutarotation of (I) since the change, though erratic, leads to a fall in [a] with ultimate change in sign; a specimen (ionisation) mechanism controls even the homogeneous replacement. to be to instance the initial and the initial of (1) since the change in sign; a specimen having $a_{161}^{20} + 0.70^{\circ}$, $a_{6461}^{70} - 2.66^{\circ}$ after 48 hr. at 70° had $a_{161}^{70} - 3.22^{\circ}$ and, after cooling, $a_{6461}^{20} + 0.47^{\circ}$ (l = 1) and the alcohol recovered from the action of (I) and PhNCO is lævorotatory but from (I) which has become havorotatory during mutarotation the recovered alcohol is also havorotatory. The H phthalate obtained from the alcohol at various stages of its mutarotation diminishes (by $\geq 10\%$) in rotatory power but this change is much less marked than that of the parent alcohol and the sign of rotation of the phthalate is always the same even when that of the alcohol from which it is obtained in reversed. A survey of the literature suggests that the mutarotation of the unsymmetrically substituted allyl alcohols is due to aniono-tropic rearrangement with concomitant racemisation but this reversed. H. W.

Stereoisomerism of unsaturated compounds. VI. Composition of divinylglycol from acraldehyde. System meso-dl-diethylglycol. W. G. Young, S. J. Cristol, and F. T. Weiss (J. Amer. Chem. Soc., 1943, 65, 1245—1246; cf. A., 1939, II, 399).—Hydrogenation (PtO₂; 95% EtOH) of (CH₂:CH·CH·OH)₂ [obtained by reduction of CH₂:(H·CHO (I)] gives a mixture [whence meso- (II) and dl-(CHEt·OH)₂ are isolated] which is shown by thermal analysis [eutectic contains 21.5% of (II)] to be 52:48 mixture. The same mixture is obtained if (I) was mixed with CHMe:CH·CHO.

R. S. C.

Volatile borates of polyhydric alcohols and the activation of boric acid. R. E. Rippere and V. K. La Mer (J. Physical Chem., 1943, 47, 204-234).—Interaction of H_3BO_3 with polyhydric alcohols has been investigated by determining the amount of liberated H_2O . Ethyl-ene, propylene, trimethylene, $\beta\gamma$ -, $a\gamma$ -, and *iso*-butylene glycol form borates, $R < 0 > B \cdot OH$. The boiling ranges at 1 mm. or less are 176—187°, 110—114°, 147—151° (3 mm.), 112—117°, 107—109°, and 76—79° respectively. A compound with glycerol is formed but could not be isolated. Glycerol Et₁ and Bu₁ ethers and glycerol chlorohydrin form compounds of the same general type, the boiling ranges at <1 mm. being 145—150°, 162—165°, and 160—165° (decomp.) respectively. Three mols. of OH-[CH₂]₂·OMe combine with 1 mol. respectively. The most of Of P_{212} be combined with 1 mot. of H_3BO_3 or HBO_2 to a compound of the same type as Me_3BO_3 with a boiling range $91-99^\circ$ at <1 mm. Propylene and ethylene glycols "activate" H_3BO_3 in titrations in presence of H_2O , although not to the same extent as mannitol. C. R. H.

Reactions of ethers with chromous halides. F. Hein and H. Kraft (J. pr. Chem., 1940, [ii], 154, 285-308).-CrCl₂ or CrBr₂ and dioxan in N₂ give fission products which cannot be isolated; treating the reaction product with NH₃ gives*ppts.*, which after washing with NH₃ gives*in the ppts.*, which after washing with NH₃ gives*ppts.*, which after washing with NH₃Et₂O, have sometimes the composition, 3NH₃,CrHal₂·O·[CH₂]₂·O·CrHal₂,3NH₃ containing indefinite amounts

290

of $\text{Et}_2O + \text{NH}_3$ of solvation (cf. A., 1930, 1019). However, the ppts. are often solvated mixtures thereof with $\text{Cr}(O^{-}[\text{CH}_2]_2 \cdot O]_3\text{Cr}$. ppts. are often solvated mixtures thereof with $Cr(O \cdot [CH_2]_2 \cdot O)_3 Cr$. Treatment with $p \cdot C_6 H_4(NH_2)_2$ (I) gives similar mixed ppts. in which 1 mol. of (I) replaces each $3NH_3$. The double fission is proved by formation of $(CH_2 \cdot OH)_2$ as sole alcohol (only $H_2C_2O_4$ formed by oxidation with HNO_3) when the NH₃ adduct is heated in H_2O . $CH_2Ph \cdot OEt$ similarly gives *products*, $CrHal_2 \cdot OEt, 3NH_3$, $+xEt_2O$, and mixtures thereof with $Cr(OEt)_3$. MeOH at -50° to -60° gives *products*, $CrHal_2 \cdot OMe, 3NH_3$, $+xEt_2O$. $(CH_2Ph)_2O$ reacts to give, presumably, $CrHal_2 \cdot O\cdot CH_2Ph$, but the ppt. produced by NH₃ is difficult to analyse. Aryl alkyl and diaryl ethers and cineole do not react with $CrHal_3$. Methylfurfuraldehyde and furfuraldehyde not react with CrHal₂. Methylfurfuraldehyde and furfuraldehyde react but the products were not investigated. The fate of the second fragment of the ethers is unknown. The ppts. formed by NH_3 are all amorphous. The first portions are greenish, the later portions reddish-violet. At -50° to -60° a liquid phase is formed containing the product in liquid $NH_3 + ROR'$; warming removes the NH_3 (and Me_2O); washing with Et_2O then give products similar in composition to those above but resinous and almost black. similar in composition to those above but resinous and almost black. Fresh ppts. immediately give AgHal from AgNO₃, indicating their structure as $[Cr \circ OR, 5NH_3]Hal_2 + mROR' + nNH_3$; the NH₃ of solvation is detectable by odour. Keeping over H₂SO₄ in vac. removes first the "excess" of NH₃ (giving odourless products) and then the ability to give ionisable Cl, which is interpreted as gradual conversion into $[CrHal_2 \circ OR, 3NH_3] + mROR'$; these products are odourless. Warming the products in H₂O causes the colour to change through violet-red and dark red to dark green, giving finally gels owing to hydrolysis to $CrCl(OH)_2$. Keeping the products, particularly solvated $3NH_3$, $CrCl_2 \circ O:CrCl_2, 3NH_3$, in MeOH causes alcoholysis to $Cr(OMe)_3$. EtOH causes slower formation of $Cr(OEt)_3$. Cr(OEt)₃. R. S. C.

Mercaptan syntheses with thioacetic acid. B. Sjöberg (Ber., 1941,

Mercaptan syntheses with thioacetic acid. B. Sjöberg (Ber., 1941, 74. [B], 64—72; cf. A., 1939, I, 86).—Epichlorohydrin and AcSH at 60° (I uptake min. after 12 hr.) give 75% a-acetyl-, SAc·CH₂·CH(OH)·CH₂Cl (I), b.p. 94°/0·4 mm., which, on further heating at 60° or on prolonged interaction of the starting materials, is partly converted into β -acetyl-thiochlorohydrin, SH·CH₂·CH(OAc)·CH₂Cl (II), b.p. 69—70°/1 mm., which, in con-trast to (I), consumes I; (I) is converted into (II) to the extent of 80% at room temp. in 14 days. ay-Dichlorohydrin acetate (III), b.p. 76°/12 mm., and AcSK in EtOH at 60° give: (i) unchanged (III), (ii) a β -diacetylthiochlorohydrin (IV), b.p. 105—110°/1-7 mm., 95°/0·9 mm., and (iii) a β y-triacetyl-ay-dithioglycerol, b.p. 135— 140°/1-7 mm. (I) and AcCl give (IV), b.p. 102—103°/1 mm. (I), (II), and (IV), on trans-esterification (MeOH-1% HCl), afford thiochlorohydrin (V), b.p. 57°/1·3 mm. (CMe₂ derivative, b.p. 74— 75°/15 mm.); the three specimens of (V) show identical unimol. de-comp. coeffs. in aq. alkali. AcSH and CH₂:CH·CH₂Cl at 60° give 79% of a-acetyl-y-chloropropyl mercaptan, b.p. 83—84°/10 mm., which, with MeOH-HCl, affords 81% of y-chloropropyl mercaptan, b.p. 52°/12 mm., 145-5°/760 mm., also obtained from Br·[CH₂]₃·Cl and KSH. J. WA.

Preparation of allyl and methylallyl methylacrylates by thermal Treparation of allyl and methylallyl acceleration of a methylallyl acceleration of allyl and a methylallyl acceleration of allyl acceleration of allyl and methylallyl acceleration of allyl acceleration of a methylallyl acceleration of allyl acceleration of a methylallyl acceleration of allyl acceleration of allyl acceleration of a methylallyl acceleration of allyl acceleration of a methylallyl acceleration of allyl acceleration of a methylallyl acceleration of a then 100—110 these give the a-action stoom praces, b.p. 90-719 mm., and 106°/19 mm., respectively, pyrolysis of which, best at 475—500°, yields 70—75% of allyl, b.p. 67°/50 mm., and β -methylallyl β -methyl-acrylate, b.p. 63°/17 mm. Pyrolysis is thus readier than that of the lactates (A., 1943, II, 251). Allyl and β -methylallyl α -OH-esters are more stable than the Bu or OPh·[CH₂]₂, less stable than the Me, Et, or CH₂Ph, and as stable as the OMe·[CH₂]₂, esters.

R. S. C

Vitamin-E. XLII. Long-chain compounds with recurring "iso-prene" units. L. I. Smith and G. F. Rouault (J. Amer. Chem. Soc., 1943, 65, 745-750). Methods of introducing isoprene units into aliphatic chains and of converting unsaturated alcohols into the next lower acid are described. Slow distillation of perhydrogeranyl palmitate (prep. from citronellol by H_2 -catalyst and then RCOCl at 150°) at 310° gives 27% of $Pr^{3}\cdot[CH_{2}]_{3}\cdot CHMe\cdot CH: CH_{2}$ (I), b.p. 152°/740 mm., and much unchanged ester, but that of the stearate at 360° gives 84% of (I). KMnO₄ converts (I) in COMe₂-NaHCO₃ at 7° into ac-dimethyl-n-heptoic acid (45%), b.p. 115°/3 mm. (S-benzyl-thiuronium salt, m.p. 141—143·5°). Adding the crude derived (PCl₆) chloride (decomposes when distilled) to p-cresol and AlCl₃ at 145° gives 3-ac-dimethyl-n-heptoyl-p-cresol (69%), b.p. 144°/3 mm., which, with H₂-Raney Ni at 195°/1700—3700 lb. (in EtOH) and then 175°/1700—2400 lb. (no EtOH), gives 4-methyl-2- $\beta\zeta$ -dimethyl-n-heptylcyclohexanol (96%), b.p. 133°/3 mm. (dinitrophenylurethane, an oil), dehydrated by a little p-C₆H₄Me·SO₃H (II) (not H₃PO₄) to 5-methyl-1- $\beta\zeta$ -dimethyl-n-heptyl- Δ -cyclohexene (87%), b.p. 141°/15 mm. 6% O₃ in EtBr and then 30% H₂O₂ (H₂O₂ alone gives a poor yield) in AcOH converts this into z-heto-yn λ -trimethyl-n-tridecoic acid aliphatic chains and of converting unsaturated alcohols into the next

(92%), b.p. 170°/4 mm. With Zn-Hg and EtOH-HCl this affords Et $\gamma\eta$ -trimethyl-n-tridecoate, b.p. 160°/3 mm., which with H₂-Cu chromite at 250°/2800 lb. gives $\delta\theta\mu$ -trimethyl-n-tridecanol (85%), b.p. 140°/3 mm., converted by gaseous HBr at 120° into the bromide ($\pm 57\%$), b.p. 135°/2-3 mm., the Grignard reagent from which with MeCHO yields $\zeta\kappa\xi$ -trimethyl-n-pentadecan- β -ol, oxidised by Na₂Cr₂O₂-H₂O-AcOH-H₂SO₄ to '' phytol ketone'' (95%). 3-Dodecoyl-p-oresol, m.p. 43-45°, b.p. 190°/3 mm., with H₂-Raney Ni in EtOH at, successively, 150°, 165°, 185°, and 200° (all at 1700-2800 lb.) yields 4-methyl-2-n-dodecylcyclohexanol (III) (78%), f.p. ~28°, b.p. 178°/2 mm., but in absence of a solvent at 175°/2200 lb. and then (iresh catalyst) 225° gives 1-methyl-3-n-dodecylcyclo-hexane (55%), b.p. 148°/2 mm. With Na₂Cr₂O₂-H₂SO₄-H₂O-AcOH, (III) gives 4-methyl-2-n-dodecylcyclohexanone (86%), b.p. 170-171°/3 mm. (semicarbazone, m.p. 86-89°; 2: 4-dinitrophenyl-hydrazone, m.p. 68-72°), and with (II) at 180° gives 5-methyl-1-n-dodecyl-A¹-cyclohexene (74%); KHSO₄ at 320° gives 60%; H₂PO₄ gives none), b.p. 190°/3 mm. This yields, as above (not by KMO₄), *e-keto-y-methylstearic acid* (93%), b.p. 190°/3 mm., and thence Ei *y-methylstearate*, b.p. 175°/3 mm., and δ -methyl-n-octadecan-aol (58%), b.p. 170°/3 mm. Pr&COCl gives only 25% of 3:1:4+ Pr&CO-C₆H₃Me·OH. R. S. C.

sec.-Butyl stearate, linolenate, b.p. 193—195°/<0.01 mm., and oleate, b.p. 163—165°/<0.01 mm.—See A., 1943, III, 670.

Enol ether-acetal equilibrium in the ethyl acetoacetate series. F End etner-acetal equilibrium in the etnyl acetoacetate series. F. Arndt, L. Loewe, and M. Ozansoy [with A. Gonenç and Z. Lugal] (Ber., 1940, 73, [B], 779-782).—Heating 1 mol. of AcCl with CH_AccCO_2Et and $CH(OEt)_3$ gives $OMecCMe:CHcO_2Et$ (I), m.p. 31°, but use of 0-1 mol. of AcCl gives ~4 parts of (I) and 1 part of $(OEt)_2CMecCH_2:CO_2Et$ (II) (cf. Claisen, A., 1894, i, 66; 1896, i, 463; 1898, i, 421). (I) or nearly pure (II) is converted by 2-4 mols. of NaOEt in cold or hot EtOH into a 3:1 mixture of (I) and (II), require persone of on conjulying fragmentic (I) (CH AccO proving presence of an equilibrium favouring (I). CH₂Ac·CO₂Et and OEt·CH:NH,HCl,HgCl₂ in EtOH at 0° and then room temp. give a mixture, whence removal of (I) by fractional freezing at -20° gives 80–90% pure (II); this boils at 81–83°/6 mm. or 68–69°/2 mm., but at 760 mm. gives (I) + EtOH. R. S. C.

Identification of ascorbic acid.—See A., 1943, III, 667.

Autoxidation of ascorbic acid.-See A., 1943, I, 259.

Preparation of substituted malonic esters.—See B., 1943, II, 273.

Synthesis of a-bromoadipic acid. J. von Braun and F. Meyer (Ber., 1941, 74, [B], 19–21).—Br'[CH₂]₃·CO₂Et with CHNa(CO₂Et)₂ in Et₂O gives 61% of CH(CO₂Et)₂·(CH₂]₃·CO₂Et (I), b.p. 172–174°/ 13 mm., and a small fraction, b.p. 200–204°/13 mm., probably $(CO_2Et)_2([CH_2]_3\cdotCO_2Et)_2$. (I) and Br react readily giving Et_2 a-bromobutane-aaδ-tricarboxylate, b.p. 186°/12 mm., which when carefully hydrolysed with fuming HBr gives the (impure) free bromo-twicneburg id mon 125 145° prosing on chort heating at tricarboxylic acid, m.p. $135-148^\circ$, passing on short heating at $\Rightarrow 145^\circ$, with loss of CO₂, into a-bromoadipic acid (70%), m.p. 126° (*Et*₂ ester, b.p. $138^\circ/0.6$ mm.). J. Wa.

(Ei2 ester, b.p. 138°/0.6 mm.). J. WA. Action of diazomethane on mannosaccharic acid. O. T. Schmidt and H. Kraft (Ber., 1941, 74, [B], 33-49; cf. A., 1938, II, 42).--Mannosaccharic acid (I), m.p. 128° (obtained pure from the amide via the K and Ag salts), with dry and then moist CH₂N₂ gives a substance (OMe, 39·2, 39·02%), b.p. 138-142°/0·15 mm., [a]₂^{BD} -28·1° in MeOH. Similarly, mannosaccharodilactone (II) affords að-dimethylmannosaccharodilactone (III), m.p. 143°, [a]₂^{BD} +249° ($\pm 2\cdot5^\circ$) $\rightarrow -44^\circ$ ($\pm 2\cdot2^\circ$) after 12 months (in H₂O) (diphenyl-hydrazide, m.p. 183-186°, [a]₂^{BO} -57·54° in MeOH), stable to Fehling's solution but consuming 0·2 I per mol.; more I is consumed as NaOI, giving CHI₃. (III) and aq. NH₈ give að-dimethylmanno-saccharodiamide (IV), m.p. 183-186° (decomp.), [a]₂^{BO} -55·39° ($\pm 0\cdot5^\circ$) (hemihydrate in H₂O). Attempts to prepare the free acid from (IV) via Na and Ag salts give (III). (IV) with NaOCl followed by NH₂·CO·NH·NH₂ gives no (NH₂·CO·NH)₂(V), whereas the diamide of (I) under the same conditions gives 72% of (V). Anhyd. (II) with 10-11 mols. of CH₂N₂ gives Me₂ aa'-dimethoxymuconate (cis-trans form) (VI), m. p. 139-140° [also obtained from (III) with CH₂N₂], reduced (H₂-PtO₂ in EtOAc) to a mixture of liquid racemic and meso- (VII) -forms of Me₂ aa'-dimethoxyadipate. (VII), m.p. 53°, is also obtained by methylating meso-aa'-dihydroxyadipic acid with CH₂N₂ followed by MeI-Ag₂O. aa'-Dimethoxy-2-pyrone-6-carboxylic acid (Me ester, m.p. 215°), m.p. 261° (decomp., sinters 234°). In one case the methylation product of (II) is distilled in a poor vac. and Me₂ aa'-dimethoxymuconate (cis-cis form?) (VIa), m.p. 63-64°, b.p. 130-150°/3-5 mm. (free acid, m.p. 169-171°), is obtained, Me₂ aa'-dimethoxymuconate (cis-cis form?) (VIa), m.p. 63-64°, one case the methylation product of (II) is distilled in a poor vac. and Me_2 aa'-dimethoxymuconate (cis-cis form?) (VIa), m.p. 63-64°, b.p. 130-150°/3-5 mm. (free acid, m.p. 169-171°), is obtained, passing on hydrogenation into (VII) and its dl-form. (VIa) decomposes on keeping to give Me_2 aa'-diketodihydromuconate (?), m.p. 120-121°, and on irradiation in C₆H₆ in presence of I is converted into an isomeride (trans-trans form?) (VIb), m.p. 115-116°, identical with the product from CH₂N₂ and aa'-dihydroxymuconic acid, m.p. 226-227°. J. WA.

Preparation of D-galacturonic acid from pectin. E. Rietz and W. D. Maclay (J. Amer. Chem. Soc., 1943, **65**, 1242–1243).-74-80% yields are obtained by use of Pectinol 46 AP. R. S. C.

Hydrogenolysis of sulphur compounds by Raney nickel catalyst. R. Mozingo, D. E. Wolf, S. A. Harris, and K. Folkers (J. Amer. Chem. Soc., 1943, 65, 1013-1016).—Relatively large amounts of Chem. Soc., 1943, **65**, 1013—1016).—Relatively large amounts of Raney Ni containing absorbed H₂, but without added H₂, convert aliphatic or aromatic RR'S, RS:SR', RR'SO, or RR'SO₂ in, e.g., boiling EtOH or MeOH into RH, R'H, and (?) Ni sulphides. Thus, $S([CH_2]_4 \cdot CO_2H)_2$ (2·5 g.) and Raney Ni (25—30 g.) in boiling 75% EtOH give 94% of Bu°CO₂H; *y-methylthiol-n-butyric acid*, b.p. 143— 144°/16 mm., gives Pr^aCO₂H; *y-methylthiol-n-butyric acid*, b.p. 143— 144°/16 mm., gives Pr^aCO₂H; *j*-(-)-[S·CH₂·CH(NHB2)·CO₂H]₂ gives $L^{(++)}$ -NHBz-CHMe·CO₂H, $[a]_D^{2n}$ +9·7° in EtOH, thus correlating the configurations; *dl*-SMe·[CH₂]₂·CH(NHB2)·CO₂H gives NHBz·CHEt·CO₂H, and the derived hydantoin, m.p. 109—110°, behaves similarly; *p*-C₈H₄Me·SH, (*p*-C₈H₄Me·S)₂, or (CH₂Ph)₂S gives PhMe; Ph₂S, Ph₂SO, and Ph₂SO₂ give C₆H₆. R. S. C.

Catalytic preparation of cyclic acetals of aldehydes and ketones. Willfang (Ber., 1941, 74, [B], 145-153; cf. A., 1938, II, 2).---CO-compounds, except hydroxy-carbonyl compounds such as aldol, (best), AlCl₃, FeCl₃, or SbCl₅ give cyclic acetals. The reaction is not particularly sensitive to moisture and, after the catalyst is destroyed particularly sensitive to moisture and, after the catalyst is destroyed with alkali or an org. base, the products are readily purified by distillation. Acetaldehyde, 45% yield, b.p. $158-162^{\circ}/760$ mm., crotonaldehyde, 75%, b.p. $68-70^{\circ}/1^{\circ}5$ mm., cyclopentadecanone, b.p. $100-120^{\circ}/0.003-0.006$ mm., m.p. $\sim 33^{\circ}$, camphor, 83%, b.p. $114-122^{\circ}/1.85$ mm., bromoacetophenone, 65.3%, b.p. $133^{\circ}/1.5$ mm., and benzophenone γ -chloropropylene acetal, 71%, b.p. $159-167^{\circ}/2-3$ mm., m.p. 44.5° , and chloral, 54%, b.p. $94-100^{\circ}/14-15$ mm., and E_{t_2} ketone γ -bromopropylene acetal, 68.5%, b.p. $82-85^{\circ}/2$ mm., are described. The halogen atoms in the above compounds are very inert towards C_5H_5N , KI, anhyd. NaOAc, $AgNO_3$, Mg, and NaOH. J. WA.

Determination of paracetaldehyde.-See B., 1943, II, 269.

Reduction of chloral by organometallic compounds. acaa-Tri-chlorobutan- β -ol. H. Gilman and R. K. Abbott, jun. (J. Org. Chem., 1943, 8, 224–229).—In the reaction between CCl₃-CHO and Chem., 1943, 8, 224—229).—In the reaction between CCl₃·CHO and MgEtHal there is no significant production of CCl₃·CHEt·OH (I), the main product being CCl₃·CH₂·OH formed by reduction. (I) does not appear to be formed from CCl₃·CHO and PbEt₄. CCl₃·CHO and CH₂N₂ afford trichloropropylene oxide (II), b.p. 39—40°/11 mm., transformed by MgMeI in Et₂O into aaa-trichloro-y-iodopropan- β -ol, m.p. 54—55°. With LiMe in Et₂O at -75° (II) gives (I), b.p. 169—171°/738 mm. (p-nitrobenzoate, m.p. 70—71·5°), hydrolysed by Na₂CO₃ in boiling aq. EtOH to OH·CHEt·CO₂H. In the Lucas test (I) passes into aaaβ-tetrachloro-n-butane, b.p. 134—135°/742 mm. CCl₃·CHO and CH₂Ph·MgCl afford CCl₃·CH₂·OH in small amount. H. W. H. W.

Catalytic degradation of heptaldehyde in the vapour phase. Such and S. Fan (J. Amer. Chem. Soc., 1943, 65, 1243–1245).— Passing $n-C_6H_{13}$ ·CHO (I) over Ni at 250° in absence of H₂ (cf. A., 1942, I, 233; apparatus modified) gives liquids $[43-67\%; n-C_6H_{14}$ (II) including 1·9–15% of unchanged (I) and 24–30% of C_6H_{12}), CO 48·2–57·4, H₂O 12·0–18·9, CH₄ 13·1–14·4, O₂ 1·6–5·4, CO₂ 0·4–1·4, unsaturated gases 0·6–1·8, and N₂ (by difference) 11·1– 19·9%. Absence of H₂ causes rapid depreciation of the Ni. The C. H₂ is probably the $\Delta\beta$ -isomeride (b p - n), it is probably the $C_{\beta}H_{12}$ is probably the $\Delta\beta$ -isomeride (b.p.; n); it is probably the primary product, giving (II) by interaction with the H₂ formed. A considerable part of the (I) is completely converted into gases. Reaction is incomplete at 200° ; $\sim 35\%$ of the liquid product is then C.H.12. R. S. C.

Catalytic conversion of ethyl alcohol into acetone.—See B., 1943, II, 269.

Production of amines.—See B., 1943, II, 273.

Compounds of gallium.—See A., 1943, I, 233

Stovaine analogues. W. T. Olson and F. M. Whitacre (J. Amer. Chem. Soc., 1943, 65, 1019–1020).—Passing CHEt;CH₂ (prep. by adding Bu^aI to KOH-EtOH at ~90°) into aq. HOCl gives CH₂Cl-CHEt·OH, b.p. 53–55°/17 mm., which with NHEt₂ in C₈H₈ at I20° yields NEt₂·CH₂·CHEt·OH, b.p. 74–75°/22 mm. [benzoate, b.p. 120–122° (corr.)/2 mm. (hydrochloride; picrate, m.p. 112°). isoButylene oxide, NHEt₂, and a little H₂O at 105–110° give NEt₂·CH₂·CH₂·OH of 5–68°/23–25 mm. (picrate, m.p. 99-2– 100·2°; benzoate hydrochloride, m.p. 149·5–150°). NH₂·CHEt·CH₂·OH and EtBr in boiling aq. Na₂CO₃ give NEt₂·CHEt·CH₂·OH (I), b.p. 86–87°/25 mm. [hydrochloride, an oil; benzoate, b.p. 124–126° (corr.)/2 mm. (hydrochloride); picrate, m.p. 113–114°)]. Anæsthetic action of the above benzoate hydro-

off; denzoate, b.p. 124-126 (corr.)/2 mm. (hydrochronide); pictate, m.p. 113-114°)]. Anæsthetic action of the above benzoate hydro-chlorides (prep. by BzCl in boiling C_8H_8) and those of stovaine, NEt₂·CH₂·CMeEt·OH, and NMe₂·CH₂·CMe₂·OH are recorded; (I) is comparable with novocaine. Ethylation of NH₂·CMe₂·CH₂·OH gives only NHEt·CMe₂·CH₂·OH, m.p. 74·5-75° (picrate, m.p. 124·7-125·3°; hydrochloride, m.p. 136·5°). M.p. are corr.

R. S. C.

Reaction of formaldehyde with l-(+)-aspartic and -glutamic acids. D. C. Carpenter and F. E. Lovelace (J. Amer. Chem. Soc., 1943, 65, 1161--1165).—Measurement of [a] and [H'] during interaction of CH_2O with l-(+)-aspartic and -glutamic acids shows 1:1 (mol.) interaction, followed by interaction with a second mol. of CH_2O to give unstable compounds. Equilibrium consts. are calc. The initial products are $OH \cdot CH_2$ compounds (cf. A., 1943, II, 122). R. S. C.

R. S. C. p-Toluenesulphonyl-aspartic acid, m.p. 159—160° (anhydride, m.p. 158·5—160°; benzyl esters, m.p. 135·5—137° and 108·5—109°), -asparagine, m.p. 174·5—175·5°, and *-iso*asparagine, m.p. 177·5—178°. —See A., 1943, III, 604.

New type of complex silver compounds with tervalent silver.—See A., 1943, I, 260.

II.—SUGARS AND GLUCOSIDES.

Effect of boric acid on the caramelisation of sugars. M. Niculescu (Z. anal. Chem., 1941, 122, 335-344).—Data showing the inhibiting effect of H₃BO₃ on the caramelisation of solutions of glucose, lactose, sucrose, and milk are discussed. The effect is attributed to combination between H₃BO₃ and the sugar. L. S. T.

Action of diazomethane on acyclic sugar derivatives. IV. Ketose synthesis. M. L. Wolfrom, R. L. Brown, and E. F. Evans (J. Amer. Chem. Soc., 1943, 65, 1021-1027; cf. A., 1943, II, 57).-D-Arabonic acid tetra-acetate and PCI₅ in Et₂O give D-arabony chloride tetra-acetate (85%), m.p. 74—75°, $[a]_{22}^{22}$ +46° (cf. A., 1942, II, 395). Adding KHCO₃ and then Br to crude aldehydo-D-galactose chloride tetra-acetate (85%), m.p. $14-15^{\circ}$, $[a]_{D}^{cr} + 46^{\circ}$ (cf. A., 1942, II, 395). Adding KHCO₃ and then Br to crude aldehydo-D-galactose penta-acetate (modified prep.) in H₂O at 25° gives D-galactonic acid penta-acetate (modified prep.) in H₂O at 25° gives D-galactonic acid penta-acetate (modified prep.) in H₂O at 25° gives D-galactonic acid penta-acetate (44%), m.p. 127-130°, $[a]_{D} + 16\cdot5°$, converted, as above, into the chloride penta-acetate (I) (90-92%), m.p. 80-81°, $[a]_{D}^{a} + 3°$ [gives the known amide and the Et ester penta-acetate, m.p. 110-111°, $[a]_{D}^{27} + 9\cdot5°$ (cf. Kohn, A., 1895, i, 504)], which with CH₂N₂ in Et₂O at 0° gives 1-diazo-1-deoxyketo-D-galaheptulose penta-acetate, pale yellow, m.p. 136-137°, $[a]_{D}^{23} + 64°$ (const.). This evolves N₂ slowly in H₂O at room temp., more rapidly if heated or in presence of Cu^{*}, Ag', or acids, and reduces aq. AgNO₃ or halogens. With NH₃-MeOH at 0-5° it gives 1-diazo-1-deoxy-D-galaheptulose (71%), m.p. 140° (decomp.), $[a]_{D}^{23} + 82°$ in H₂O \rightarrow (at 0°) +93°, unstable in H₂O at room temp. or, more so, in aq. HCO₂H, and in boiling AcOH yields keto-D-galaheptulose hexa-acetate, forms, m.p. 100-102° and 116-117°, $[a]_{D}^{23-27} - 1-6°$ in CHCl₃, -20° in C₆H₆ (different X-ray diagrams), which is the enantiomorph of keto-L-perseulose hexa-acetate (Khouvine et al., A., 1938, II, 219) and with aq. Ba(OH)₂ at 0-5° gives D-galaheptulose [D-perseulose; D-galat-fructoheptose] (55%), $+0.5H_2O$, m.p. 101-102° (102-103° after drying), $[a]_{D}^{25} + 90.6° \rightarrow +75\cdot3°$ in H₂O (with L- gives d1-per-seulose, m.p. 136-137°). D-Glucoheptulose, softens 168°, m.p. 171-173°, $[a]_{D}^{B} + 67°$ (const.) in H₂O, is obtained from its hexa-acetate in 776' wield by Ba(OH) at 0-5° seulose, m.p. 130-137°). D-Glucoheptulose, softens 108°, m.p. 171-173°, $[a]_{D}^{31} + 67°$ (const.) in H₂O, is obtained from its hexa-acetate in 77% yield by Ba(OH)₂ at 0-5°. NHPh·NH₂ and (I) in Et₂O give D-galactonophenylhydrazide penta-acetate, m.p. 136·5-137°, $[a]_{D}^{31} + 36°$, converted by ZnCl₂-Ac₂O at 0° and then room temp. into D-galactonacetphenylhydrazide penta-acetate, m.p. 218°, $f_{-129}^{-129} + 29°$ which is also obtained from D-galactonophenylhydrazide penta-acetate, m.p. 218°, $+23^{\circ}$, which is also obtained from D-galactonophenylhydrazide [a]29 by $Ac_2O-C_5H_5N$ at room temp. (cf. Robbins et al., A., 1940, II, 266). by $A_{2}O = C_{3}H_{3}$ at room temp. (cf. Robbins *et al.*, A_{1} , R_{2} , R_{3} , $R_$ otherwise stated, [a] are in CHCl₃. R. S. C.

Glucosidation of 2:3:6-trimethylglucose. K. Freudenberg and W. Jakob (*Ber.*, 1941, 74, [*B*], 162—163; cf. A., 1943, II, 255).— The small amount of dimethylglucose isolated from methylated starch (I) owes its origin to demethylation of trimethylglucose under starch (1) owes its origin to demethylation of trimethylgiucose under the conditions used for methanolysis, or hydrolysis of (I) and glucosidation. The following are very mild conditions. 2:3:6-Tri-methylglucose affords 94% of the methylglucoside when treated with Si(OMe)₄, MeOH, and HCl at 80°, or 95% at 20° when HCl is replaced by AcCl. CH(OMe)₃ can replace Si(OMe)₄. J. Wa.

Constitution of 1-phenyl-d-fructosone. H. Ohle and M. Hielscher (Ber., 1941, 74, [B], 18–19).—1-Phenyl-d-fructosone (I) was known to react with only 1 mol. of NHPh·NH₂ and the possibility of a mol. rearrangement in its prep. had to be considered. However, (I) with o-C₈H₄(NH₂)₂ in boiling EtOH gives 2-phenyl-3-d-arabo-tetrahydroxybutylquinoxaline (II), m.p. 198°, $[a]_{D}^{20}$ —145° in aq. C₈H₈N (1:1). (II) with 3 mols. of NHPh·NH₂ in boiling H₂O and H₂ gives much unchanged (II) and 2-phenylquinoxaline-3-aldehydephenylhydrazone, m.p. 176°, which shows the anticipated colour reactions.

Vitamin-P.-See A., 1943, III, 579.

J. WA.

Mechanism of polysaccharide production from sucrose. S. Hestrin and S. Avineri-Shapiro (*Nature*, 1943, 152, 49-50). Levan sucrase shows optimal activity at pH 5.5; its solutions are stable at 0° but are inactivated by boiling. Production of levan from raffinose is not regarded as proceeding by way of intermediately

formed sucrose. It ceases when levan concn. is 300-500 mg.-%; increase in initial sucrose concn. beyond a necessary min. does not shift the position of the levan end-point. Known poisons of respiration or glycolysis do not retard levan production. A. A. E.

Egonol. XII. Egonol glucoside from the fruits of "Taiwan-Egonoki." S. Kawai and K. Sugimoto (Ber., 1940, 73, [B], 774– 776; cf. A., 1943, II, 275).—This plant is Styrax formosanum, Matsum (cf. A., 1939, II, 32). It yields egonol diglucoside (I), $C_{31}H_{38}O_{15}$, $\pm 2H_2O$ (lost at 110°/12 mm.), m.p. 143° (decomp.), $[a]_{21}^{21}$ (anhyd.) $-29\cdot8^{\circ}$ in AcOH, which in boiling 10% H₂SO₄ gives egonol (II), $C_{21}H_{20}O_{6}$, m.p. 107°, and (only) glucose. (I) thus is

 $C_6H_{11}O_6 \cdot C_6H_{10}O_6 \cdot [CH_2]_3 -$

of lignans and (II) are formed from 2 C_6-C_3 and $C_6-C_3+C_6-C_2$ units respectively. units, respectively.

Molecular constitution of amylose and amylopectin of potato starch. W. Z. Hassid and R. M. McCready (J. Amer. Chem. Soc., 1943, 65, 1157—1161).—Potato starch contains $\sim 20\%$ of amylose (I), [a]_D +155° in N-NaOH. Methylation and end-group analysis (I), [a]_D +100 in the entropy anose units per mol. of (I) but only 25 units for amylopectin (II), $[a]_D$ +161° in N-NaOH. Hydrolysis of (II) by β -amylase is stopped at 54% conversion (*i.e.*, 13–15 units) by side-chains. R. S. C.

Separation and determination of amylose and amylopectin in potato starch. R. M. McCready and W. Z. Hassid (J. Amer. Chem. Soc., 1943, 65, 1154—1157).—When potato starch is treated with H_2O at 60—70°, the granules swell but do not burst. Centrifuging the filtered solution separates amylopectin (I). MeOH then ppts. amylose (II), which is insol. in H₂O, completely hydrolysed bv β -amylase, and gives a brilliant blue colour with I, is identical with the amyloamylose of Samec and Mayer (A., 1921, i, 707), and the anilytoanilytose of Santovic and Mayer (R_{1} , $rost_{1}$, $rost_{1}$, $rost_{2}$, $rost_{2}$) resembles synthetic starch. 60-64% of whole starch is hydrolysed by β -amylase. The amounts of (I) and (II) in mixtures of starch are determined colorimetrically by I-KI. R. S. C.

Constitution of starch. E. Bois (Canad. Chem., 1943, 27, 362, 364). —The unit of the starch mol. is a pentahexose (I) of which successive pairs of hexoses (overlapping) represent gentiobiose, cellobiose, maltose, and sucrose; this is associated with a second similar but oppositely oriented (I), giving a decahexose (II) with OH groups blocked by oxonium linkings. Amylose comprises four (II) units in a closed ring, whereas amylopectin is composed of chains of (II) associated with P. I. A. P. associated with P.

Structural difference of starches differentiated colorimetrically by iodine. M. Samec (Ber., 1940, 73, [A], 85-92).—A lecture sum-marising the differences between amylose (blue I colour) and amylo-roctin (Cold I colour) in the start of t pectin (red I colour) in their mol. wt., behaviour on dialysis, pptn. by EtOH and tannin, adsorption on cotton, effect on H_2O_2 , oxidation by $KMnO_4$, and hydrolysis by acid and enzymes. The P content has no significance. A pictorial representation of the enzyme attack R. S. C. is given.

Dextrins from maize starch.—See A., 1943, III, 682.

Determination of carbonyl groups in chromic anhydride oxystarch and oxycellulose by means of hydroxylamine. E. K. Gladding and C. B. Purves (*Paper Trade J.*, 1943, **116**, *TAPPI Sect.*, 150–155).— The reaction >CO + NH₂OH,HCl = >CN·OH + H₂O + HCl is followed by titration of the liberated HCl with standard alkali. The highly buffered nature of the system renders the method unsuitable for technical oxycelluloses although massive amounts of >CO are determined with an accuracy of $\sim 5\%$. Simple sugars condense in first-order reactions which are complete within either 1.5 or 18 hr. at 20° and the >CO groups are classified as fast or slow. All CHO in periodate oxycellulose (**I**) or oxystarch are fast although the reactions are not of the first order. When unswollen linters is oxidised with increasing amounts of CrO_3 in AcOH at 20° up to 28% of the oxidant is accounted for as CO_2H and "fast" CO in the insol. (I) and H₂O-sol. products result even with relatively small amounts of oxidant. Unswollen, powdered starch is not appreciably affected under the same conditions. With highly swollen linters. duplicate oxidations proceed very much more rapidly and cause no perceptible production of H₂O-sol, material until an oxidation level of ~0.3 atom of O per glucose unit is reached. ~75% of the O con-sumed below this level is represented by insol. (I) but the recovery falls sharply thereafter. The fate of the remaining 25% is not elucidated though it may have produced slow CO groups in (I). The chemical course of oxidations which are not accompanied by substantial swelling may be dominated by the extent of the colloidal surface present in the original material. The colloidal condition of the latter is not nearly so crit. when the CrO₃ is dissolved in $0.2 \text{N-H}_2\text{SO}_4$, probably because aq. solutions exert a powerful swelling H. W. action.

Action of nitric acid on vegetable seed shells.-See A., 1943, II, 286.

III.—HOMOCYCLIC.

Halogenation of cyclohexane.-See B., 1943, II, 274.

Catalytic hydrogenation of benzene over metal catalysts.-See A., 1943, I, 260.

Number of structural isomerides in simple ring compounds. I. T. L. Hill (*J. Physical Chem.*, 1943, 47, 253-260).—Mathematical. General functions for determining the no. of possible structural isomerides in substituted symmetrical ring compounds have been C. R. H. derived.

Determination of benzene. Detection and estimation of benzene in presence of toluene, xylene, and other substances.—See B., 1943, II, 269.

Photometric determination of benzene, toluene, and their nitroderivatives.—See B., 1943, II, 270.

Organic reactions with boron fluoride. XXVI. Friedel-Crafts type alkylations with boron trifluoride. G. F. Hennion and R. A. Kurtz (J. Amer. Chem. Soc., 1943, 65, 1001–1003; cf. A., 1942, II, 84).—tert.-Alkyl halides and CH_2PhCl readily alkylate C_6H_6 in The second seco R. S. C. re-used, particularly if re-saturated with BF_s.

Colorimetric determination of alkylbenzenesulphonates.-See B., 1943, II, 270.

Ethylenic stereoisomerism. VI. Crystalline *cis*-stilbene. C. Wey-gand and I. Rettberg (*Ber.*, 1940, **73**, [*B*], 771—773).—Various old samples of *cis*-(CHPh')₂ (**I**), prepared from (CPh')₂, contained (CPh')₂, (CH₂Ph)₂, and/or *trans*-(CHPh')₂ (**II**), since they yield in AcOH the adducts thereof with $s-C_{6}H_{3}(NO_{4})_{3}$ (**III**), m.p. 155° (lit. 96°; ? dimorphism), 102°, and —, respectively. The final filtrate is freed from (**III**) by chrysene; the residual (**I**) is fractionated; a colourless distillate, b.p. 93°/0.08 mm., crystallised (m.p. 1°) when scratched; a yellow distillate crystallised when seeded. When freshly prepared from CHPh:CPh·CO₂H and freed from (**II**) by (**III**), (**I**) crystallised spontaneously. R. S. C.

Tribenzylsulphonium hydrogen sulphate and hydroxide. O. Haas and G. Dougherty (J. Amer. Chem. Soc., 1943, 65, 1238–1239).—In conc. H_2SO_4 at 70—80° (CH_2Ph_2S (I) gives (CH_2Ph_3S ·HSO₄, m.p. 171°, and thence tribenzylsulphonium hydroxide, m.p. 133° [when heated, gives (I) and CH_2Ph ·OH], and the additive compound, (CH_2Ph_3SI ,HgI₂, m.p. 137–138°; the nitrate is an oil.

R. S. C.

Absorption of light by ac-dien- γ -inenes.—See A., 1943, I, 217.

Conversion of 2:7-dibromofluorene into 2:7-dibromophen-anthrene. W. G. Brown and B. A. Bluestein (J. Amer. Chem. Soc., 1943, 65, 1235—1236).—2:7-Dibromo-9-formylfluorene, m.p. 171° (acetate, m.p. 219°), is obtained in 85% yield by boiling 2:7-di-bromofluorene in KOEt-Et₂O and then adding HCO₂Et. It is reduced by Al(OPr β_3 -Pr β OH to 2:7-dibromo-9-fluorenylcarbin o (58%), m.p. 154° (acetate, m.p. 190°), which with P₂O₅ in boiling xylene gives 2:7-dibromophenanthrene, m.p. 207° (lit. 202°, [quinone, m.p. 321° (lit. 323°)] (cf. A., 1941, II, 247). R. S. C.

Dehydrogenation. III. Dehydrogenation of a methylspiran. M. Levitz and M. T. Bogert (J. Org. Chem., 1943, 8, 253—255).— 1: 1-Pentamethylene-1: 2: 3: 4-tetrahydronaphthalene (Perlman et al., A., 1937, II, 11) is oxidised by CrO_3 in AcOH to 4-keto-1: 1-pentamethylene-1: 2: 3: 4-tetrahydronaphthalene, b.p. 140—142°/3 mm. [semicarbazone, m.p. 204:5—205:5° (corr.)]. This is converted by McMeI into the corresponding carbinly which is dehydrated by by MgMeI into the corresponding carbinol, which is dehydrated by by higher halo the corresponding called on the state of the state of

Arylnaphthacene series. III. A. Weizmann (J. Org. Chem., 1943, 8, 285–289; cf. A., 1939, II, 548).—Me₂ benzylsuccinate, b.p. 125–135°/1·5 mm., is converted by PhCHO and Na powder in Et₁O 135°/1.5 mm., is converted by PhCHO and Na powder in Et₄O followed by hydrolysis into benzylbenzylidenesuccinic acid, m.p. $160-162^{\circ}$, which is hydrogenated (Pd-BaSO₄ in boiling Pr^aOH or Pr^{β}OH) to a mixture of s-dibenzylsuccinic acids, transformed by conc. H₂SO₄ at 100° into 5: 11-diketo-5: 5a: 6: 11: 11a: 12-*hexa*-hydronaphthacene (I), m.p. 220-222°. With LiPh in Et₂O under N₂ at room temp. (I) affords the peroxide, C₂₄H₁₆O₃, m.p. 295-298°, and with 1: 3: 6-Li·C₆H₃Br·OMe it gives (?) 5-*heto*-6: 11-di-(5-bromo-2'-methoxyphenyl)-5: 5a: 6: 11: 11a: 12-*hexahydronaphtha*-cene, m.p. 278°, which is resistant towards boiling AcCl. With Li·C.H.Me-p (I) yields 5: 11-di-p-tolylnaphthacene, m.p. 335-336° Li·C₆H₄Me-p (I) yields 5: 11-di-p-tolylnaphthacene, m.p. 335-336°. H. W.

1:2:3:4-Dibenzphenanthrene and its derivatives. I. Synthesis with chrysene as starting material. F. Bergmann and H. E. Eschinazi (J. Amer. Chem. Soc., 1943, 65, 1413-1417).—Chrysene,

 $- \bigcirc O \cdot CH_2$. The skeletons

AcCl, and AlCl₃ in CS₂ at room temp.— 60° give 2- (I), m.p. 145°, and some (? 4-)acetyl- (II), m.p. 254°, and x : y-diacetyl-chrysene, m.p. 296° (cf. Funke et al., A., 1936, 472). MgMeI (3 mols.) and (I) in and some (? 4-)acetyl- (II), m.p. 254°, and x: y-diacetyl-chrysene, m.p. 296° (cf. Funke et al., A., 1936, 472). MgMeI (3 mols.) and (I) in Et₄O, later boiling xylene, give 2-a-hydroxyisopropyl-(III) (60°), m.p. 172°, and 2-isopropenyl-chrysene (IV) (25%), m.p. 161°, b.p. 220°/2 mm. [picrate, m.p. 144°, also obtained from (III)]. Adding conc. H₂SO₄ to (III) in cold AcOH gives (IV), but at 100° a dimeride, m.p. 307°, is obtained. (II) gives similarly (?4-)isopropenylchrysene, m.p. 288°. MgEtBr and (II) give β -2-chrysenyl- Δ B-n-butene (V) (68%), m.p. 159—160° [inert towards (:CH·CO)₂O (VI); picrate (VII), m.p. 132—133°], and β -2-chrysenyl- Δ B-n-butene (V) (68%), m.p. 159—160° [inert towards (:CH·CO)₂O (VI); picrate (VII), m.p. 132—133°], and β -2-chrysenyl- α B-140°), and -h-exene, m.p. ~40° (picrate, m.p. 129—130°), respectively. H₂-Pd-BaSO₄ reduces (IV) or (slowly) (V) in EtOAc to 2-isopropyl-, m.p. 137° (picrate, m.p. 144—145°), and 2-sec.-butyl-chrysene, m.p. 100° (picrate, m.p. 134°), checked, in boiling Ac₂O, (III) or, less well, (IV) with (VI) gives 4-mothyl-1: 2: 3: 11-tetrahydro- (VIII) (80%), dimorphic, m.p. 262°, dehydrogenated by Pb(OAc)₄ in boiling AcOH to 4-methyl-(20%); Br-NaOAc-AcOH gives 30% of impure product) (IX), m.p. 325°, 2': 1'-9: 10-naphthophenanthrene-1: 2-dicarboxylic anhydride. Distilling (VIII) with Se at 310—320° yields a small amount of a substance (picrate, m.p. 139° (picrate, m.p. 140°; 7: 8-quinone, m.p. 178°), which with Se at 310—320° yields a small amount of a substance (picrate, m.p. 165°). Heating (IX) with basic Cu carbonate in quinoline gives 4-methyl-2': 1'-9: 10-naphthophenanthrene-1: 2-dicarboxylic anhydride. Distilling (VIII) with Se at 310—320° yields a small amount of a substance (picrate, m.p. 165°). Heating (IX) with basic Cu carbonate in quinoline gives 4-methyl-2': 1'-9: 10-naphthophenanthrene-1: or -2-carboxylic acid, m.p. 292—293°. Carcinogenic activity is affected by alkyl side-chains in so far as they simulate, sterically, active ri

III. Diphenylene and tetraphenylene. Benzcyclooctatetraenes.

Benzcyclooctatetraenes. **III.** Diphenylene and tetraphenylene. W. S. Rapson, R. G. Shuttleworth, and (in part) J. N. van Niekerk (J.C.S., 1943, 326-327).—The Grignard reagent from 2:2'- $(C_8H_4Br)_2$ with CuCl₂ in Et₂O yields diphenylene and 1:2:3:4:5:6:7:8-tetrabenz- $\Delta^{1:3:5:7}$ -cyclooctatetraene, m.p. 233° [Br- (Br and a trace of Fe in CCl₄), m.p. 182°, and $(NO_{2)4}$ -derivative (HNO₃, d 1:5, +H₂SO₄ on the CCl₄ solution), m.p. 195—197°], which is unaffected by KMnO₄ in boiling COMe₂, and forms no additive compounds with picric or styphnic acid or C₈H₃(NO₂)₃. Crystallographic data confirm the constitution. A. LI.

Crystallographic data confirm the constitution. A. Li. Perylene and its derivatives. LII. A. Zinke and H. Troger [in part with E. Posch]. LIII. Synthesis of 2:3:10:11-dibenzo-perylene. A. Zinke and E. Ziegler (*Ber.*, 1941, 74, [*B*], 107—115, 115—118).—LII. Perylene (I) with Br vapour or with Br in C_8H_8 gives an unstable *compound*, $C_{20}H_{10}Br_4$, readily passing with loss of Br into a mixture of 3: 9 (II), m.p. 287°, and 3: 10-dibromoperylene (III), m.p. 221°. (III) with conc. H_2SO_4 , then H_2O , gives 3: 10-perylenequinone. (II) and (III) with Br vapour give unstable Br₂-derivatives which decompose on keeping, heating to 140—150°, or treatment with KI, with regeneration of (II) and (III). 3: 9-Di-benzoylperylene readily absorbs ~8 Br. The unstable dark additive compound readily loses Br to give 3: 9-dibromo-4: 10-di-benzoylperylene, m.p. 355°, converted by KOH in boiling NH₂Ph or quinoline into *iso*violanthrone. The amount of I taken up by (I) depends on concn. in C_8H_4 . 3: 9-Dinitro- and 3: 9-dicyano-perylene do not react with Br and 3: 9-dichloroperylene reacts only in solution with Br and not with the vapour. in solution with Br and not with the vapour.

LIII. 9:9'-Diphenanthryl, m.p. 188—189°, from 9-bromo-phenanthrene and Cu powder at 330—350°, with AlCl₃–NaCl at 120—130° gives 2:3:10:11-dibenzoperylene (**IV**) [1 (or 4):12 (or 9)-quinone, m.p. 330° (darkening)], m.p. 343—345° (sinters at 327°) and 299—300° in admixture with the supposed (**IV**) of Brass *et al.* (A., 1939, II, 207) I. WA.

(A., 1939, II, 207). J. WA.
Synthesis of physiologically active amines. Amines derived from phenyl styryl ketones. J. Algar, A. Hickey, and P. G. Sherry (Proc. Roy. Irish Acad., 1943, 49, B, 109-119). — Ph a-chloro-β-amino-β-phenylethyl ketone hydrochloride, m.p. 195°, is prepared from COPh-CHBr-CHPhBr (I) by EtOH-ML3 followed by EtOH-HCL. Ph a-chloro-β-methylamino-β-phenylethyl ketone hydrochloride, m.p. 195°, is prepared from COPh-CHBr-CHPhBr (I) by EtOH-ML3, followed by EtOH-HCL. Ph a-chloro-β-methylamino-β-phenylethyl ketone hydrochloride, m.p. 190°, similarly prepared from (I) and aq. NH₂Me, yields Ph β-methyl-amino-β-phenylethyl ketone hydrochloride, m.p. 191°, with Pt-H₂-H₂O. Ph a-chloro-β-methylamino-β-p-anisyl-, m.p. 170°, and -β-3: 4-methylenedioxyphenyl-ethyl ketone hydrochloride, m.p. 174°, are similarly prepared. Reduction (H₂, Pt, EtOH-HCl) of COPh-C(:N-OH)-CH₂Ph gives β-amino-ay-diphenyl-n-propyl alcohol hydrochloride (II), m.p. 250° (decomp.) (free amine, m.p. 115°). β-Amino-a-phenyl-y-3: 4-methylenedioxyphenyl-n-propyl alcohol, m.p. 142° [hydrochloride (III), m.p. 197° (decomp.)], is similarly obtained. Ph 3: 4-methylenedioxyphenyl-n-propyl alcohol, m.p. 96°, yields an oxime (poor yield), m.p. 169°, which could not be reduced by Pt-H₂ or Na-Hg and EtOH. COPh-CL₂·NMe₃Cl (+H₂O), new m.p. 204° (decomp.), is obtained from the oxides of Ph styryl or p-methoxystyryl ketone and EtOH-NMe₃. In general only the compounds having NH₂ a to CO or OH [(II) and (III)] have marked physiological action and cause a reduction in blood pressure. physiological action and cause a reduction in blood pressure.

and the second division of the second divisio

J. H. BA.

Synthesis of 4: 5-trimethyleneisoquinoline etc.—See A., 1943, II, 278

Monoreduction of dinitronaphthalenes in acid solution and of **intronaphthalenes in acid solution and of 1:5- and 1:6-dimitronaphthalene by aqueous solution sulphide.** H. H. Hodgson and H. S. Turner (*J.C.S.*, 1943, 318–319).—Reduc-tion of 1:6-C₁₀H₆(NO₂)₂ with SnCl₂ in AcOH-HCl yields 6:1-NO₂·C₁₀H₆·NH₂ whilst aq. EtOH-Na₂S gives 5:2-NO₂·C₁₀H₆·NH₂. 1:3-C₁₀H₆(NO₂)₂ with SnCl₂ gives 3:1- and 4:2-NO₂·C₁₀H₆·NH₂. 1:5-C₁₀H₆(NO₂)₂ with Na₂S gives 5:1-NO₂·C₁₀H₆·NH₂, whilst 1:5-and 1:8-C₁₀H₆(NO₂)₂ with SnCl₂ (excess or deficit) afford the C₁₂-H₆(NH₄). C10H6(NH2)2. I. H. BA.

New reaction of sulphanilamide. W. T. Somerville (J. Chem. Educ., 1943, 20, 238).—Sulphanilamide gives a bright orange coloration with substances containing lignin (I). The reaction detects the presence of (I) in paper, wood, and various vegetable fibres. Manila hemp (no reaction) can be easily distinguished from aniline subhate. L. S. T. aniline sulphate.

Preparation of phenols.—See B., 1943, II, 275.

Separation of individual cresols and xylenols from their mixtures.-See B., 1943, II, 270.

Stimulation of formation of additive compounds between bases and phenol derivatives by lipoid solvent.—See A., 1943, I, 259.

Preparation of pentabromophenol and bromanil from phenol. M. Kohn (J. Chem. Educ., 1943, 20, 117).—Working details are given.

Halogeno-p-tert.-octylphenols.-See B., 1943, II, 275.

Long-chain compounds with recurring "isoprene" units.—See A., 1943, II, 291.

Formation of phenols by ozonisation of benzene derivatives. II. E. Spath, M. Pailer, and G. Gergely (*Ber.*, 1940, 73, [B], 795-804; cf. A., 1943, II, 227).—Phenols, as well as acids and aldehydes, are cf. A., 1943, II, 227).—Phenols, as well as acids and aldehydes, are often obtained when substituted CHPh:CHR (R usually = CO_2Me) or PhCHO are treated with O_3 (1.5 mols.) in CHCl₃ at 0° and the product is boiled with Zn dust and a little AgNO₃ in H₂O. The OH replaces the CH:CHR or CHO. OAlk, probably best o- or p-, or other accelerating substituents must be present, but general rules cannot be laid down. The following are yields of phenol, acid, and aldehyde, respectively, from CHPh:CH·CO₂Me, having the named substituents: 2:4:5-(OMe)₃ 48:2, 2:4, 7:8; 3:4-(OMe)₂-6-Et 46:4, 5·1, 11·5; 2:4-(OMe)₂-6-Me 27·1, trace, 72·0; 4-OMe-2:5-Me₂ 22·0, 5·2, 61·7; 6-OMe-3:4-Me₂ 15·9, 15·0, 54·0; 2:4-(OMe)₂ 15·0, 2·2, 28:8; 2:3:4-(OMe)₂ trace, 15·0, 83·5%; p-Me and 4:a-Me₂ trace, --, --. isoApiol give 5·0, 2·3, and 54·3%, respectively. (CHPh:)₂ gives no PhOH. Yields of phenol and acid, respectively. (CHPh:)₂ gives no PhOH. Yields of phenol and acid, respectively. (CHPh:)₂ gives no PhOH. Yields of phenol and acid, respectively. (CMe)₃ 4·1, 3·1; 3:4-(OMe)₂-6-Et 14·5, 21·0; 2:4-(OMe)₂ 14·0, 39·1; 2:4-(OMe)₂-6-Me 8·0, 11·6; 4-OMe-2:5-Me₂ 4·4, 14·5; 6-OMe-3:4-Me₂ 3·9, 18·0; 5-B·r-3:4-(OMe)₂ trace, 15·1%. 6-Methoxy-3:4-dimethylbenzaldehyde (prep. from 6:3:4:1-OH·C₆H₂Me₂·CHO by Me₂SO₄-KOH-MeOH), m.p. 66°, with CH₂(CO₂H)₂ and piperidine at 100° gives 6-methoxy-3:4-dimethyl-cinnamic acid, m.p. 168° (Me ester, m.p. 64-66°). Similarly are prepared 4-methoxy-2:5-dimethyl-, m.p. 190° (Me ester, m.p. 55°), and 5-bromo-3:4-dimethoxy-cinnamic acid, m.p. 142° (Me ester, m.p. 55°), and 5-bromo-3:4-dimethoxy-cinnamic acid, m.p. 142° (Me ester, m.p. 55°), and 5-bromo-3:4-dimethoxy-cinnamic acid, m.p. 142° (Me ester, m.p. 55°), often obtained when substituted CHPh:CHR (R usually = CO_2Me) 101°), 2:3:4-trimethoxy-, m.p. 173° (lit. 172°) (Me ester, m.p. 55°), and 5-bromo-3:4-dimethoxy-cinnamic acid, m.p. 142° (Me ester, m.p. 78°). The following are also described: 6:3:4:1-, m.p. 146° (lit. 142·5—143·5°), and 4:2:5:1-OMe·C₆H₂Me₂·CO₂H, m.p. 168° (lit. 163—165°); 5-methoxy-o-4-xylenol, m.p. 69—70°; 3:5-dimethoxy-o-cresol, m.p. 107°; 2:4:6:1-(OMe)₂C₆H₂Me·CHO, m.p. 62°; 2:3:4:1-(OMe)₃C₆H₂·CO₂H, m.p. 100—102° (lit. 99°, 100°); 2:4;1-(OMe)₂C₆H₃·OH, m.p. 28° (benzoate, m.p. 90); 2:4:5-tri methoxyphenol, m.p. 59—61°; 2:5-dimethoxy-3:4-methylenedioxy-phenol, m.p. 84°; 2:3:4-trimethoxyphenyl benzoate, dimorphic, m.p. 70° and 80° R. S. C. m.p. 70° and 80° RSC

Ethylenic stereoisomerism. V. Molecular compounds of stereo-isomeric ethylenes [stilbenes]. C. Weygand and T. Siebenmark (Ber., 1940, 73, [B], 765—770; cf. A., 1939, II, 36).—cis-(p-OMe·C₆H₄·CH:)₂, prepared by half-reduction of (p-OMe·C₆H₄·CE)₂, is contaminated with the *trans*-form and (p-OMe·C₆H₄·CH₂)₂; it exists in a stable, m.p. 37°, and metastable form, m.p. 36°. m-

exists in a stable, m.p. 37', and metastable form, m.p. 36'. m-Methoxy-a-m-anisylcinnamic acid (prep. from m-OMe·C₆H₄·CH₂·CO₂Na, m-OMe·C₆H₄·CHO, and Ac₂O at 90° and then 160—170°), m.p. 167°, with Cu chromite in quinoline at 230° gives cis-3 : 3'-dimethoxystilbene (**I**), b.p. 133°/0·2 mm., converted by illumination (ultra-violet) in C₆H₈ into the trans-isomeride, m.p. 165°. 2: 2'-Dimethoxybenzildihydrazone, m.p. ~230° (decomp.), and HgO in boiling xylene (not C₆H₈) give 2 : 2'-o-anisylosotetrazine, $N \ll CR - CR \gg N$ (R = o-anisyl), m.p. 138°, and a small amount of

2: 2'-dimethoxytolane, m.p. 126°. o-Methoxy-a-o-anisylcinnamic acid (prep. as above), m.p. 210°, gives, as above, cis-2 : 2'-dimethoxytilbene (II), m.p. 86-88°, and thence (irradiation) the trans-form (together with a substance, m.p. 193°). Methoxystilbenes and s-C₈H₃(NO₂)₈ (III) in AcOH give additive compounds as follows: 2(III) + 1 mol. of cis-2: 2'-, m.p. 102-103° (IV), cis-4: 4'-, m.p. 62-90°, trans-3: 3'-, m.p. 137-138°, and trans-4: 4'-(OMe)₂, m.p. 155°; 1(III) + 1 mol. of trans-2: 2'-(OMe)₂, m.p. 102-103°. With $C_{10}H_8$ in EtOH, (IV) ppts. the additive compound, $C_{10}H_8 + (III)$, and the filtrate yields (II). trans-(CHBz;)₂ and its 4: 4'-Me₂, 4: 4'-Et. and 4-Me derivatives give additive compounds, containing and the infate yields (11). There of $B_{1/2}$ and the infate yields (11). There of $B_{1/2}$ and the infate yields (12) where $C_{1/2}$ and the infate yield of the derivatives give additive compounds, containing 2 mols. of 2:4:6:1-(NO₂)₃C₆H₂·OH; no such compounds are obtained from the *cis*-isomerides, nor from the *cis*- or *trans*-4:4'-Pr^a₂ or 4-Et derivative. The theoretical expectation that the *cis*-forms, or 4-Et derivative. richer in energy, would combine with more (III) etc. is not justified. Steric causes may play a predominant role. R. S. C.

Steric causes may play a predominant rôle. R. S. C. Phenolic constituents of pine heart-wood. Synthesis of pino-sylvin dimethyl ether [3:5-dimethoxystilbene]. G. Aulin-Erdtman and H. Erdtman (Ber., 1941, 74, [B], 50-56; cf. A. 1939, II, 259). -2:6-Dibromopinosylvin Me₂ ether (I) [from pinosylvin Me₂ ether (II) and Br in CHCl₃], m.p. 135-136^o, on oxidation (KMnO₄) affords BzOH (85%) and $3:5:2:6:1-(OMe)_2C_{9}HBr_{2}\cdotCO_{2}H$ (III). (I) or (II) is further brominated to tetrabromopinosylvin Me₂ ether, forms, m.p. 195-197^o (IV) and 172-173^o, which give no colour with $C(NO_{2})_4$ or conc. H_2SO_4 . $3:4:1-(OMe)_2C_{9}H_3\cdotCH:CPh\cdotCO_2H$ is decarboxylated (Cu chromite in boiling quinoline) to $3:4:1-(OMe)_2C_{9}H_3\cdotCH:CHPhe (45\%)$, m.p. 111^o; 3:5-dimethoxy-a-phenyl-cinnamic acid (70%), m.p. 202-204° [from $3:5:1-(OMe)_2C_{9}H_3\cdotCHO$ and $CH_2Ph\cdotCO_2H$, and PbO in boiling Ac_2O], similarly gives (mainly) isopinosylvin Me₂ ether (V), b.p. 150° (bath)/0·2 mm., oxidised to BzOH (54%) and $3:5:1-(OMe)_2C_{9}H_3\cdotCO_2H$ (32%)' The 2:6- Br_2 -derivative (VI), m.p. 173-174^o, of (V) is oxidised to BzOH (67%) and (III) (48%). (V) or (VI) is brominated to (IV). When (V) is heated to the b.p. (>350°), (II) is formed in practically 100% yield. J. WA. Preparation of diazonaphthols and nitration of 4-bromoacet-1-

Preparation of diazonaphthols and nitration of 4-bromoacet-1-naphthalide. H. H. Hodgson and S. Birtwell (*J.C.S.*, 1943, 321– 322).—4-Nitro-, m.p. 130—133° (decomp.), 4-bromo-, m.p. 133° (decomp.), 4-chloro-, m.p. 138° (decomp.), and 4-iodo-naphthalene-1:2-diazo-oxide, m.p. 142° (decomp.), are prepared from 2:4:1-NO₂·C₁₀H₅R·NH₂ by one or more of four methods given for "diazotisation." Nitration [HNO₃ (d 1·42)–AcOH at 50—65°] of 4:1-C₁₀H₅Br·NHAc is inhibited by CO(NH₂)₂; 2:4:1-NO₂·C₁₀H₅Br·NHAc has new m.p. 231—233°. 2:4:1-NO₂·C₁₀H₅Cl·NH₂ and -NO₂·C₁₀H₅Br·NH₂ (improved preps.) exhibit chromoisomerism. [I.H. BA.

chromoisomerism. . H. BA.

Nuclear alkylation of amino-substituted aromatic ethers.—See B., 1943, II, 275.

4:4'-Diaminodiphenyl sulphone-2-sulphonamide.—See B., 1943, III, 225.

Synthesis and rearrangement of deca- and tetra-hydronaphthalene diols. J. English, jun., and G. Cavaglieri (J. Amer. Chem. Soc., 1943, 65, 1085–1089).—1-Keto-cis-decahydronaphthalene [does not MgMeI in Et₂O give 1-methyl-cis-decahydro-1-naphthale [does not 76-77°/12 mm. 1-Methyl-trans-decahydro-1-naphthal (90%), b.p. 93°/5 76—77°/12 mm. 1-Methyl-trans-decahydro-1-naphthol, b.p. 93°/5 mm., is dehydrated by KHSO₄ at 120—130° to mixed 1-methyl- $\Delta^{J:2}$ -trans- and $-\Delta^{I:9}$ -octahydronaphthalene, b.p. 65°/5 mm., which with BzO₂H in CHCl₂ at 0° give mixed epoxides, b.p. 83°/7 mm. The mixture is hydrated by 10% H₂SO₄ at 0—10° to 1:2-trans-dihydroxy-1-methyl-trans- (I) (36%), +3H₂O, m.p. 79, and 1:9-trans-dihydroxy-1-methyl-decahydronaphthalene (II) (15%), m.p. 97°, converted by Pb(OAc)₄-AcOH at 40—45° into β -2-acetylcyclo-hexvl-brobionic acid cryst. (d-benzyltbjocathamide salt m p hexyl-propionic acid, cryst. (ψ -benzylthiocarbamide salt, m.p. 156.5–157.5°; with some -propaldehyde), and 2- δ -heto-n-amylcyclo-156-3-157.5°; with some-propatentyde), and 2-6-keto-n-amytcyclo-hexanone, an oil [disemicarbazone, m.p. 207-209° (decomp.)], respectively. In boiling 30% H₂SO₄, (I) gives 2-keto-1-methyl-trans-decahydronaphthalene (III), b.p. 98°/10 mm. [semicarbazone, m.p. 208-209° (decomp.); oxime, m.p. 149°; 2:4-dinitrophenylhy-drazone, m.p. 170-171° (decomp.)], and a small amount of (?) 1-methyl-3:4:5:6:7:10-hexahydronaphthalene (IV), b.p. 82°/7 mm. The structure of (III) is proved by Clemmensen reduction to 1-methyl-trans-decahydronaphthalene, b.p. 54°/4 mm. which with Pd-C-H The structure of (**III**) is proved by Clemmensen reduction to 1-methyl-trans-decahydronaphthalene, b.p. $54^{\circ}/4$ mm., which with Pd-C-H₂ at 350° gives 1-C₁₀H₇Me. In boiling 30% H₂SO₄, (**II**) gives (**IV**) and a small amount of (?) 1-keto-9-methyldecahydronaphthalene [semicarbazone, m.p. 200—202° (decomp.)]. KHSO₄ at 120—130° dehydrates 1-methyl-1: 2:3:4-tetrahydro-1-naphthol to 1-methyldehydrates 1-methyl-1:2:3:4-tetrahydro-1-naphthol to 1-methyl-3:4-dihydronaphthalene, b.p. 84°/5 mm., which with BzO_2H in CHCl₃ at 0°, gives, by oxidation and rearrangement, 2-keto-1-methyl-3:4-dihydronaphthalene, b.p. $103^{\circ}/3$ mm. {semicarb-azone, m.p. 194° (decomp.) [lit. 200–202° (decomp.)]} (and poly-merides), and with KMnO₄ in COMe₂ at -40° (later room temp.) gives 1:2-cis-dihydroxy-1-methyl-1:2:3:4-tetrahydronaphthalene (~60%, variable), b.p. $135-140^{\circ}/4$ mm., rearranged in boiling 30% H₂SO₄ to 2-keto-1-methyl-1: 2:3:4-tetrahydronaphthalene, b.p. H_3SO_4 to 2-keto-1-methyl-1: 2:3:4-tetranydronaphtnatene, c.p. 105—107°/3 mm. [semicarbazone, m.p. 194° (decomp.)]. 1-Keto-2-methyl-1:2:3:4-tetrahydronaphthalene (semicarbazone, m.p. 199°) has b.p. 98°/3 mm. Contrary to Musser et al. (A., 1938, II,

182), hydrogenation of a-C₁₀H₇·OH gives mainly the *trans*-decahydro-1-naphthol. R.S.C.

Synthesis of camphononic acid and dl-pinonic acid.-See A., 1943, II, 306.

Course of reaction in the transformation of aa-dibromoaceto-phenone into mandelic acid by aqueous alkali. E. B. Ayres and C. R. Hauser (J. Amer. Chem. Soc., 1943, 65, 1095—1096).—Passing 5% NaOH through COPh·CHBr₂ at 15° and then immediately into 10% AcOH gives 15% of BzCHO, which is thus an intermediate in the formation of OH·CHPh·CO₂H. The reaction mechanism is R. S. C. discussed.

Methoxyphenylacetic acids. H. A. Weidlich and M. Meyer-Delius (*Ber.*, 1940, 73, [B], 631; cf. A., 1943, II, 229).—The methods used in the prep. of methoxyphenylacetic acids (*loc. cit.*) have been described by Hahn *et al.* (A., 1939, II, 368). A. T. P.

Wandering of halogen atoms in carbon chains and rings.—See A., 1943, II, 216.

1943, II, 216. **Catalytic dehydrogenation of 2-substituted 5 : 6 : 7 : 8-tetrahydro-naphthalene derivatives.** M. S. Newman and H. V. Zahm (*J. Amer. Chem. Soc.*, 1943, 65, 1097—1101).—Dehydrogenations below are effected by 20% Pd-C (prep. described) at 210—310° (N₂). CO₂Me in a side-chain is unaffected by dehydrogenation; thus $R\cdot[CH_2]_n\cdotCO_2Me$ (R = 5:6:7:8-tetrahydro-2-naphthyl here and below) (n = 0—3) gives 2-C₁₀H₇[CH₂]_n·CO₂Me. Ketonic CO adjacent to R is reduced to CH₂; thus COMeR (prep. by a Friedel-Crafts reaction in CS₂ at <10°), b.p. 132·5—134·5°/3·5—4 mm., gives 63% of 2-C₁₀H₇Et and some 2-C₁₀H₇·COMe [semicarbazone, m.p. 222—223° (decomp.)], and Me γ -keto- γ -6, H₆ and subsequent esterification of the acid (I), m.p. 114—116°], f.p. 31·0°, b.p. 170— 172°/1·5—2 mm., gives 70% of 2-C₁₀H₇·[CH₂]₃·CO₂Me + the derived acid [obtained by reduction of the OH-ester, which then (a) is dehydrated and reduced and (b) lactonises by loss of MeOH and is then hydrogenolysed (see below)]. C·O·X adjacent to R is hydro-genolysed; thus γ -5: 6: 7: 8-tetrahydro-2-maphthyl-y-butyrolactone [obtained from (I] by Na-Hg], f.p. 33·2°, b.p. 173—175°/1 mm., gives 71% of 2-C₁₀H₇(EL)₃·CO₄H, and CH₂R·OH gives 67% of 2-C₁₀H₇Me + RMe. 5: 6: 7: 8-Tetrahydro-2-naphthaldehyde (II) (prep. by Rosenmund reduction of the acid chloride in cymene), b = 116—116°(3 mm [*cemicarkarane* m n 2923—294° (decomp)] (prep. by Rosenmund reduction of the acid chloride in cymene), (prep. by Rosenmund reduction of the acid chloride in cymene), b.p. 116—119°/3 mm. [semicarbazone, m.p. 223—224° (decomp.)], gives $C_{10}H_8$ and tetrahydronaphthalene. $Me\ \beta$ -5:6:7:8-tetra-hydro-2-naphthylacrylate [(II) and $CH_2(CO_2H)_2$ in C_5H_6N at 100° afford the acid (III), m.p. 170·8—171·8°], m.p. 40°, b.p. 157— 158°/2·5—3 mm., gives 2- $C_{10}H_7$:[CH₂]₂·CO₂Me (89%). a-5:6:7:8-Tetrahydro-2-naphthylethyl alcohol [prep. from COMeR by Al(OPr^β)₃ in Pr^βOH; if the reaction mixture is allowed to become hot during isolation 2-vinyl-5:6:7:8-tetrahydronaphthalene, b.p. 96°/2 mm., results], b.p. 120—121°/2 mm., gives a polymeride and a little 2- $C_{10}H_7Et$. RCOCl gives a mixture. The following are incidentally described. RCO₂H [prep. from COMeR by Ca(OCl)₂-Na₂CO₃-NaOH-H₂O-dioxan at 100°], m.p. 154—155° (chloride, b.p. 121— 122°/2 mm.; Me ester, b.p. 149—150°/4—4·5 mm.). CH₂R·OH [from RCHO by H₂-PtO₂-FeCl₂ (trace) in EtOH], b.p. 133—134°/4 mm. Me 5:6:7:8-tetrahydro-2-naphthylacetate (from CH₂R·OH by, successively, SOCl₂, NaCN-MeOH-H₂O, H₂SO₄-H₂O-AcOH, and HCl-MeOH), b.p. 141—143°/4 mm. (acid, m.p. 97—97:5°). Me β -5:6:7:8-tetrahydro-2-naphthylpropionate, b.p. 136—137·5′ 2·5—3 mm. [acid, m.p. 81—82° (cf. lit.)], obtained with some bimol. product from (III) by Na-Hg-Ni (trace) in neutral solution and subsequent esterification. γ -5:6:7:8-Tetrahydro-2-naphthyl-butyric acid [from (I] by Clemmensen reduction], m.p. 47—49°, b.p. 195—200°/4·5—5 mm. (Me ester, b.p. 181—184°/3·5—4 mm.). M,p. are corr. R. S. C. b.p. 116—119°/3 mm. [semicarbazone, m.p. 223—224° (decomp.)], gives $C_{10}H_8$ and tetrahydronaphthalene. Me β -5:6:7:8-tetra-M.p. are corr. RSC

Treparation of aminobenzoic acid esters of substituted monoalkyl-amino-alcohols. W. F. Ringk and E. Epstein (*J. Amer. Chem. Soc.*, 1943, **65**, 1222—1226).—NHR•CH₂·CMe₂·OH (R = n-hexyl, b.p. 224—228°, n-heptyl, b.p. 242—246°, β-octyl, b.p. 245—248°, and β-ethyl-n-hexyl, b.p. 245—248°) (prep. as A., 1940, II, 85, but in 60% PrβOH; yields ~45%) with p-NO₂·C₄H₄·COCl (I) in aq. alkali give solid esters, reduced by Fe-HCl etc. to β-n-hexyl-, m.p. 169— 171°, β-n-heptyl-, m.p. 169—172°, β-β'-octyl-, $+0.5H_2O$, m.p. 154— 156°, and β-β'-ethyl-n-hexyl-, m.p. 141—143°, -amino-tert--butyl p-aminobenzoate sulphate, B₂, H₂SO₄ (corresponding hydrochlorides are oils). NH₂·CMe₂·CH₂·OH with AlkHal in boiling Pr^βOH gives 20—60% of β-ethyl-, m.p. 72—73°, b.p. 167—169°, β-n., m.p. 55— 57°, b.p. 183—186°, and -iso-propyl-, m.p. 45—46°, b.p. 192— 194°, and -sec.-butyl-, b.p. 186—190°, β-n., m.p. 59—60°, and -iso-amyl-, m.p. 73—74°, b.p. 211—215°, β-n-hexyl-, m.p. 50—60°, and -iso-amyl-, m.p. 73—74°, b.p. 211—215°, β-n-hexyl-, m.p. 55—52°, b.p. 253—258°, β-β'-octyl-, b.p. 250—226°, β-n-heptyl-, m.p. 50— 52°, b.p. 253—258°, β-β'-octyl-, b.p. 250—255°, β-β'-ethyl-n-hexyl-, m.p. 15—17°, b.p. 249—255°, and β-n-decyl-, m.p. 55—57°, b.p. 235—300°, -isobutyl alcohol, converted by (I) in aq. NaOH at 35— 40° and then Fe-HCl into β-ethyl-, m.p. 245—246°, β-n-, m.p. 192—192.5°, Preparation of aminobenzoic acid esters of substituted monoalkyl-iso-, m.p. 225.8—228°, and -sec.-butyl-, +H₂O, m.p. 202—205°, β -n-, m.p. 209—211.8°, and -iso-amyl-, m.p. 202—203°, β -n-hexyl-, m.p. 212.5—213.5°, β -x-ethylbutyl-, m.p. 198—199.5°, β -n-heytyl-, m.p. 197—198°, β - β -octyl- (II), +0.5H₂O, m.p. 137—140°, β - β -ethyl-n-hexyl-, m.p. 154—158°, and β -n-decyl-, m.p. 141—142°, -iso-butyl p-aminobenzoate hydrochloride. β -Ethyl- (sulphate, m.p. 223— 924°) en (hydrochloride m.p. 192, 104°) and iso-around (with hits butyl p-amimobenzoate hydrochloride. B-Ethyl- (sulphate, m.p. 223– 224°), β -n- (hydrochloride, m.p. 192–194°) and -iso-propyl- (sulphate, m.p. 188–189°), β -n- (hydrochloride, m.p. 205–208°) and -iso-butyl-(sulphate and hydrochloride, oils) -aminoisobutyl m- and β -n-butyl-aminoisobutyl o-aminobenzoate, m.p. 68–69° (hydrochloride, sulphate, and phosphate, oils), are similarly prepared. p-NO₂°C₆H₄·CO₂°[CH₂]₂·NHBu^a, when kept for several weeks, iso-merises to p-nitrobenz-N- β -hydroxyethyl-N-butylamide, m.p. 195– 106° (cf Kyrgrag et al. A. 1049 U 1982). merises to p-mirocenz-N-p-hydroxyethyl-N-butylamide, m.p. 195– 196° (cf. Kremer et al., A., 1942, II, 283). Pharmacological data are reported for the esters. The iso- are very potent anæsthetics and less toxic than the tert.-butyl esters. They are vasodilators in cats (intravenous injection), but are synergistic with adrenaline. The most effective product is (**II**), which is 24 times as effective as cocaine for surface anæsthesia and 8 times as effective as procaine for conductive anæsthesia for conductive anæsthesia. R. S. C.

By-Diaryladipic acids.—See B., 1943, II, 276.

Conversion of an alcohol into the corresponding aldehyde by a less volatile aldehyde with the aluminium alkoxide as catalyst. Influence of an ethylene linking in the reactant aldehyde. R. R. Davies and H. H. Hodgson (J.S.C.I., 1943, 62, 109—110).—Al alkoxides act as catalysts for the conversion of the alcohol into the corresponding aldehyde through reaction with a less volatile aldehyde. Cinnamaldehyde is a more reactive aldehyde than PhCHO due to its ethylenic linking. An explanation of the reaction is given based on H bonding.

on H bonding. Alkylation and other reactions of 9-formylfluorene. W. G. Brown and B. A. Bluestein (J. Amer. Chem. Soc., 1943, 65, 1082-1084).--9-Formylfluorene (I) [prep. from fluorene by HCO₂Et and KOEt ($80-90^\circ$) or NaOEt (65°) in Et₂O], b.p. 189-192°/10 mm., un-stable, with Me₂SO₄-KOH-H₂O gives 9-methyl- (II), and with Pr^βBr, cyclohexyl bromide, or CH₂PhCl in KOH-aq. EtOH gives 9-isopropyl-, m.p. 54-55°, 9-cyclohexyl-, m.p. 115-116° [not identical with the compound, m.p. 102-103°, of Miller et al. (A., 1935, 741)], or 9-benzyl-fluorene (77%), m.p. 132-133° (also ob-tained from Et 9-fluorenylglyoxylate and CH₂PhCl in boiling NaOH-H₂O-EtOH), respectively. With CH₂O in aq. NaOH, (I) gives 9-fluorenylcarbinol (III). Hydrogenation (PtO₂; EtOH; 3 atm.) of the enol acetate or benzoate of (I) gives (II) and the acetate or benzoate, respectively, of (III). The K salt of (I) with CICO₂·CH₂Ph in H₂O gives CH₂Ph $\beta\beta$ -2: 2'-diphenylenevinyl carbonate, m.p. 149-5°, hydrogenated very slowly to (II) (poor yield). R. S. C.

R. S. C

LXIV. Synthesis and properties Lignin and related compounds. of y-hydroxy-y-4-hydroxy-3-methoxyphenylpropan-a-one. K. A. West and H. Hibbert. LXVIII. Synthesis and properties of a- and y-ethoxy-a-4-hydroxy-3-methoxyphenylpropan- β -one and their methyl ethers. M. Kulka and H. Hibbert (*J. Amer. Chem. Soc.*, 1943, 65, 1170—1172, 1185—1187; cf. A., 1942, II, 158).—LXIV. Veratrole, Cl:[CH,]₂:COCl, and AlCl₃ (4 mols.) in CS₂ at 50° and then 1 100° (2a column) sinu A hydroxy 2 methons of hydroxy at 50° and then Veratrole, Cl·[CH₂]₂·COCl, and AlCl₃ (4 mols.) in CS₂ at 50° and then at 100° (no solvent) give 4-hydroxy-3-methoxy- β -chloropropiophenone (I) (60%), m.p. 101-102°, converted by KOAc-AcOH at 100° into 4-hydroxy-3-methoxy- β -acetoxy- (II) (67%), m.p. 80-81°, and thence (BaCO₃ in boiling H₂O) - β -hydroxy-propiophenone (III) (55%), m.p. 109-110°. CH₂N₂-Et₂O converts (I), (II), and (III) into the known veratrole derivatives. With Et₂SO₄-1·5% NaOH at the b.p., (II) gives the Et ether, oxidised by KMnO₄ to 3: 4: 1-OMe·C₈H₃(OEt)·CO₂H. With 2% HCl-EtOH, (III) gives 4-hydroxy-3-methoxy-β-ethoxypropiophenone, forms, m.p. 72-74° and 35-37° (with CH₂N₂ gives the veratrole derivative). 72% H₂SO₄ at room temp. or boiling 5% H₂SO₄ or 1% NaOH converts (III) into lignin-like products.

lignin-like products.

LXVIII. a-Ethoxy-a-4-acetoxy- (prep. from the 4-Br-compound by AgOAc in boiling EtOH), an oil, with NaOEt-EtOH at room

by AgOAc in boiling EtOH), an oil, with NaOEt-EtOH at room temp. gives a-ethoxy-a-4-hydroxy-3-methoxyphenylpropan- β -one (80%), m.p. 62—63° (semicarbazone, m.p. 173:5—174:5°), methylated by CH₂N₂ to a-ethoxy-a-3:4-dimethoxyphenylpropan- β -one (2:4-dimitrophenylhydrazone, m.p. 141—142°). β -Nitro-y-ethoxy-a-4-hydroxy-3-methoxyphenyl- Δ^{a} -propene (from vanillin by NO₂:[CH₂]₂·OEt, a little NH₂Me,HCl, and Na₂CO₃ in EtOH at room temp.; 30% yield), m.p. 78—79°, with Fe-FeCl₃-HCl-EtOH-H₂O at the b.p. and then 7N-H₂SO₄ at room temp. gives y-ethoxy-a-4-hydroxy-3-methoxyphenylpropan- β -one (68%), an oil (semicarbazone, m.p. 144—144:5°). 3:4:1-(OMe)₂C₆H₃·CHO gives similarly β -mitro-y-ethoxy-a-3:4-dimethoxyphenyl- Δ^{a} -propene, m.p. 90—91°, and y-ethoxy-a-3:4-dimethoxyphenylpropan- β -one (67%) (2:4-dimitro-phenylydrazone, m.p. 114—116°). R. S. C.

Synthesis of a-acyltetronic acids.—See A., 1943, II, 217.

Friedel-Crafts reaction of lactones. III. Dehydrogenations with aluminium chloride. H. Beyer and H. Schulte (Ber., 1941, 74, [B], 98-106; cf. A., 1937, II, 291, 377).-CH₂Bz·CO₂Et, NaOEt, and

epichlorohydrin in EtOH afford δ -chloro-*a*-benzoyl- γ -valerolactone (**I**), m.p. 105—106° (p-*nitrophenylhydrazone*, m.p. 159°), which with C_6H_6 and AlCl₃ at 80—90° for 1 week gives acidic products (A), 1-benzoyl-1:2:3:4-tetrahydronaphthalene (**II**), b.p. 182—183°/0·5 mm. (semicarbazone, sinters at 168°, m.p. 171°), and Ph $\gamma\delta$ -diphenyl-n-butyl ketone (**III**), m.p. 108—109° (semicarbazone, m.p. 180—181°; p-*nitrophenylhydrazone*, m.p. 137—138°). (**II**) is reduced (H₂, PtO₂) to phenyl-1:2:3:4-tetrahydro-1-naphthylcarbinol, b.p. 186—187°/ 0·6 mm., m.p. 101°, and (Clemmensen) to 1-benzyl-1:2:3:4-tetrahydro-1-naphthylcarbinol, b.p. 186—187°/ 0·6 mm., m.p. 101°, and (Clemmensen) to 1-benzyl-1:2:3:4-tetrahydro-1-naphthylcarbinol, b.p. 186—187°/ 0·6 mm., m.p. 101°, and (Clemmensen) to 1-benzyl-1:2:3:4-tetrahydro-1-naphthylcarbinol, b.p. 186—187°/ 0·6 mm., m.p. 101°, and (Clemmensen) to 1-benzyl-1:2:3:4-tetrahydro-1-naphthylcarbinol, b.p. 186—187°/ 0·6 mm., m.p. 101°, and (Clemmensen) to 1-benzyl-1:2:3:4-tetrahydro-1-naphthylcarbinol, b.p. 186—187°/ 0·6 mm., m.p. 101°, and (Clemmensen) to 1-benzyl-1:2:3:4-tetrahydro-1-naphthylcarbinol, b.p. 186—187°/ 0·6 mm., m.p. 101°, and (Clemmensen) to 1-benzyl-1:2:3:4-tetrahydro-1-naphthylcarbinol, b.p. 186—187°/ 0·6 mm., m.p. 145—146°/0·6 mm. whore the phenyl-1-100°/ 0·100°/ hydronaphthalene, b.p. $145-146^{\circ}/0.6$ mm., which is also obtained by Clemmensen reduction of 1-keto-4-benzyl-1:2:3:4-tetrahydropertane, b.p., $206-207^{\circ}/0.18$ mm, mp. $39-40^{\circ}$. (A) contains 1: 2-OH·C₁₀H₆·CO₂H (hydrazide, m.p. $212-213^{\circ}$) which must be formed from (I) by loss of PhMe. J. WA.

Properties of 4-methoxydibenzoylmethane [benzoylanisoylmethane]. R. P. Barnes and A. Brandon (J. Amer. Chem. Soc., 1943, 65, 1070–1072).—p-OMe·C₆H₄·CO·CH:CHPh and Br in CS₂-CCl₄ give the dibromide (I), m.p. 162°, converted by KOAc in boiling AcOH the dibromide (I), m.p. 162°, converted by KOAc in boiling AcOH into p-a-bromo-, an oil, which with boiling NaOMe-MeOH gives p- β -methoxy-, semi-cryst., -cinnamoylanisole. With conc. HCL-MeOH this gives p- β -hydroxycinnamoylanisole (II), m.p. 128—129°, which with NH₂OH,HCl in boiling aq. MeOH yields 5-phenyl-3-p-anisylisooxazole (III), m.p. 119°, also obtained from (I) by NH₂OH,HCl-EtOH-H₂O and then KOH. Identity of (III) with the misnamed isooxazole of Pond et al. (A., 1901, i, 35) is due to the compound considered to be p-OMe·C₄H₄·C(OH)·CH·COPh reacting as and being identical with (II). R. S. C.

Optical activity in the trans-hydrindane and -decahydronaphthalene series. W. Hückel and H. Sowa (Ber., 1941, 74, [B], 57—63).—The remarkable high rotation of optically active trans- β -hydrindanone (I) suggested investigating whether a symmetrical ring system with trans-fusion of the rings gave rise to so high a rotation or whether it was to be attributed to the induced dissymmetry of the CO group. trans-fusion of the rings gave rise to so high a rotation or whether it was to be attributed to the induced dissymmetry of the CO group. Distillation of (+)-cyclohexane-1 : 2-diacetic acid (II), [a]]⁶ +48.35° in EtOH, affords (--)-(I), [a]]⁶ - 301.8° in C₆H₆, which is reduced (H₂, Pt-black, AcOH) to a mixture of (-)-trans-hydrindanol, m.p. 12°, [a]J⁶ -12.46° (homogeneous), -7.83° in C₆H₆, -9.77° in tetrahydro-naphthalene, -11.95° in cyclohexane, -14.07° in EtOH (phenyl-urethane, m.p. 131--132°, [a]]^{8*5} -18.67° in EtOH), isolated as the H succinate, m.p. 48-50°. Impure trans-decahydro- β -naphthyl-amine II (III) and HCO₂H at 120° afford the formate, m.p. 124°, and formyl derivative, m.p. 168°). (III) is resolved through the a-bromo-d-camphorsulphonate, m.p. 168°, [a]]⁶ +71.7° in EtOH, to (+)-(III), m.p. 106°, [a]]² +2.14° (hydrochloride, [a]]² +0.92° in H₂O; Ac, m.p. 175--176°, [a]]² +2.14° (hydrochloride, [a]]² +0.92° in H₂O; Ac, m.p. 175--176°, [a]]² +2.14° (in the trans-dist of 75% of (-)- and 25% of (+)-base. (+)-(III) with NaNO₂ in 10% AcOH gives (?) deca-hydro- β -naphthol II (IV), m.p. 72°, [a]]⁶ ±0° in EtOH, -2.7° in (?) cyclohexane, -1.8° in tetOH), after purification through the H pthalate, m.p. 173°, [a]]² -1.4° in EtOH. The toluenesulphonate, m.p. 63°, [a]]²⁰ -1.75° in EtOH), after purification through the H pthalate, m.p. 173°, [a]]²⁰ -1.4° in EtOH. The toluenesulphonate m.p. 63°, [a]]²⁰ -1.75° in EtOH), after purification through the H pthalate, m.p. 173°, [a]]²⁰ -1.4° in EtOH. The toluenesulphonate of (IV) and NaOEt give a mixture of (IV), decahydronaphthyl Et ether (formed with Walden inversion), b.p. 100°/15 mm., and (-)-trans- Δ^2 -octahydronaphthalene, b.p. 72°/13 mm., [a]]²⁰ -262°, which is oxidised (KMnO₄) to optically impure (II), m.p. 151°, [a]]⁹ +40.5°, containing ~10% of (-)-(II), indicating ~90% resolution of (III). J. WA. of (III).

Oxido-ketones in the indene series. C. F. H. Allen and J. W. Gates, jun. (J. Amer. Chem. Soc., 1943, 65, 1230–1235). —4:5-Dibromo-a-benzylidene-, m.p. 244°, and a-benzylidene-4:5-dimethyl-phthalide, m.p. 166°, and thence 5:6-dibromo-2:3-diphenyl-, m.p. 196°, and 2:3-diphenyl-5:6-dimethyl-1-indenone, m.p. 229°, are prepared (method: A., 1943, II, 196). Adding 15% H₂O₂ to the appropriate indenone and aq. NaOH in EtOH at, usually, $60-70^{\circ}$ gives 2:3-epoxy-2:3-diphenyl-5:6-dimethyl-, m.p. 197°, 5:6-dibromo-2:3:-epoxy-2:3-diphenyl-, m.p. 178°, and 2:3-epoxy-2:3:5:6-tetraphenyl-4:7-dimethyl- and 2:3:4:7-tetraphenyl-4: indenone do not thus react. The epoxy-compounds are peroxidic, liberating I from KI-AcOH; with dry HCl-AcOH at room temp., liberating I from KI-AcOH; with dry HCl-AcOH at room temp., hydrolysis to 2: 3-dihydroxy-2: 3-diphenyl-5: 6-dimethyl- (II), m.p. 145°, -2: 3: 5: 6-tetraphenyl- (III), m.p. 215°, and 4: 5-dibromo-2: 3-dihydroxy-2: 3-diphenyl-1 (III), m.p. 216°, acd 4: 5-dibromo-2: 3-dihydroxy-2: 3-diphenyl-1 (IV), m.p. 208°, 3: 4: 6: 7-tetraphenyl-(V), m.p. 230°, and 6: 7-dibromo-3: 4-diphenyl-isocoumarin, m.p. 229°, are obtained. (IV) and (V) are similarly obtained from (II) and (III), respectively; (II) and (III) are thus intermediates, others being the 1: 2-epoxy-1: 3-dihydroxy indanes (A) and 4-hydroxy-3: 4-dihydroisocoumarins. (V) dissolves in aq. NaOH (not Na₂CO₃) and then, by careful acidification, yields Ph 2-carboxy-a: 4: 5-triphenyl-benzyl ketone (VI), m.p. 244°, whence it is regenerated by warming alone or in solution. Structures are proved by oxidation of (V or

(VI) by CrO_3 or $KMnO_4$ to BzOH and $4:5:2:I-C_6H_2Ph_2Bz\cdot CO_2H$. 2 mols. of MgMeI add (Grignard machine) to (V), but the product is dehydrated to give Ph a: 4:5-triphenyl-2-isopropenylbenzyl ketone, m.p. 256°; MgPhBr and (\mathbf{V}) give Ph a: 4:5-triphenyl-2-a-hydroxy-benzhydrylbenzyl ketone, m.p. 186°. The other isocoumarins are stated (no details) to behave similarly. Weitz et al. (A., 1921, i, 869) misinterpreted the similar reactions of 2 : 3-diphenyl-1-indenone. misinterpreted the similar reactions of 2:3-diphenyl-1-indenone. This yields an epoxide, glycol (VII) (adds 1 MgMeI; 2 active H), lactone [which, like (VII), is oxidised to BzOH and o-C₆H₄Bz·CO₂H], and derived acid. Warm alkali destroys (III), but converts (II) or (VII) into respectively 1-benzoyl-2-phenyl-4:5-dimethyl-, m.p. 132°, or 1-benzoyl-2-phenyl-isobenzfuran (VIII) (the "yellow substance" of Weitz et al.). (VIII) is unimol., adds 1 MgMeI, contains no active H, does not form a quinoxaline, resists H₂O₂, but is oxidised by CrO₃ to BzOH and o-C₆H₄Bz·CO₂H and by KMnO₄ or HNO₃ to o-COPh·C₆H₄·CO·COPh. Its structure is thus established. Its formation from (VII) occurs by way of o-OH·CHPh·C₆H₄·CO·COPh and o-C₆H₄·CHPh-CHPh-CH2(H)>O. Only the epoxide (IX), new m.p.

and $o-C_6H_4 < CBz(OH) > O$. Only the epoxide (IX), new m.p.

58—59°, is formed from 3-phenyl-2-ethyl-1-indenone by alkaline H_2O_2 . This yields, as above, 2:3-dihydroxy-3-phenyl-2-ethyl-1-indanone, m.p. 122°, and 4-phenyl-3-ethylisocoumarin, m.p. 101°. With 30—32% HBr-AcOH at 10—15°, (**IX**) gives 3-bromo-2-hydroxy-3-phenyl-2-ethyl-1-indanone (80%), m.p. 129°, whence MgMeI does not remove the Br. In boiling AcOH (6 hr.) or 15% HBr- or 30% H_2SO_4 -AcOH (10 min.), (**I**) gives 4-benzoyl-4-phenyl-2:3-4':5'-diphenylbenz- Λ^2 -cyclobutenone (**X**), brick-red, m.p. 219—220°, which adds 2 MgMeI contains no active H, is oxidised to 219—220°, which adds 2 MgMeI, contains no active H, is oxidised to BzOH and $4:5:2:I-C_8H_2Ph_2Bz\cdotCO_2H$, in boiling KOH-EtOH gives (**VI**), and with $Zn(OAc)_2$, KOAc, or NH_2OH , HCl in hot AcOH gives (V) (reaction mechanism discussed). The CO of epoxy-ketones is very reactive; e.g., $a\beta$ -epoxy- β -phenylpropiophenone rapidly gives a 2 : 4-dinitrophenylhydrazone, m.p. 205°. The labile grouping, $CH \rightarrow C(OH)$ • (B), as in (A) (above), is held to explain various " re-

arrangements." E.g., oxidation of cyclic ketones to lactones by Caro's acid involves the reactions, $\cdot CH_2 \cdot CO_2 \rightarrow \cdot CH(OH) \cdot CO \cdot \rightarrow (B) \rightarrow \cdot CH_2 \cdot O \cdot CO \cdot$; (B) is also an intermediate in the conversion of CHBz₂ • OH into CH₂Bz • OBz by distillation and of CPhBz₂ • OH into CHPhBz • OBz. R. S. C.

Simple and practical preparation of 2-methyl-1: 4-naphthaquinone from naphthalene. P. P. T. Sah, W. Brüll, and H. Holzen (*Ber.*, 1940, 73, [B], 762).—The following reaction series is recommended.

Water-soluble derivatives of menadione [2-methyl-1 : 4-naphtha-quinone]. A. R. Menotti (J. Amer. Chem. Soc., 1943, 65, 1209— 1211).—1 : 2 : 4-OiC₁₀H₅Me(O (I) with aq. NaHSO₃ at 0° gives the insol., hygroscopic additive compound (II), $+3H_2O$, m.p. (capillary) $\sim 126^\circ$ (immersed at 115°) or (micro) losses solvent at 100° and melts at 154—157° (decomp.) (benzylisothiocarbamide salt, m.p. 126·5— 128°), but at 90—100° slowly gives 2-methyl-1 : 4-naphthaquinol-3-sulphonic acid (sol. Na salt), isolated as K salt (III), $+2H_2O$, loses solvent at 100° and melts at 193—196° (decomp.) [also obtained with much 2 : 1 : 4-C₁₀H₅Me(OH)₂ from (II) in boiling H₂O]. With Ac₂O-AcOH, (III) gives the K salt diacetate (IV), m.p. $> 205^\circ$ (de-comp.). 2 : 1 : 4-C₁₀H₅Me(OAc)₂ and ClSO₃H in CHCl₃ at 25° give, after treatment with KCl, K 2-methyl-1 : 4-naphthaquinol-3-sulphon-ate monoacetate, $+H_2O$, m.p. (micro) 168—170° (decomp.); after loss of solvent at $\sim 100^\circ$), and some (IV). (II) is identified by con-version into (I) (95—98%) by 10% aq. NH₃, by Crawer's test, or crystallo-optical properties (detailed). (III) is identified by form-ation of a scarlet ppt. with the Fe^{**} o-phenanthroline complex, formation of a red colour in dil. alkali, or crystallo-optical properties Water-soluble derivatives of menadione [2-methyl-1:4-naphthaformation of a red colour in dil. alkali, or crystallo-optical properties (detailed). R. S. C.

Model experiments on the use of cyclopentadiene in the synthesis of Model experiments on the use of cyclopentadiene in the synthesis of sterol-like compounds. C. F. Koelsch and F. J. Lucht (*J. Amer. Chem. Soc.*, 1943, **65**, 1240—1242).—3-Methylcyclohexenone does not react with cyclopentadiene (**I**). I: 2: 4-OC₆H₃Ph:O (improved prep.) and (**I**) in warm MeOH give (?) 2-phenyl-5: 8-endomethylene-5: 8: 9: 10-tetrahydro-1: 4-naphthaquinone (88%), m.p. 70·5—71°, reduced by Zn dust in AcOH at 70° to the 2: 3: 5: 8: 9: 10-H₆reduced by Zn dust in AcOH at 70° to the 2:3:5:8:9:10- H_6 -quinone (75%), m.p. 149-5—152°, which by Clemmensen reduction gives a substance, $C_{17}H_{20}$, b.p. 136—138°/4 mm. Contrary to Niederl et al. (A. 1939, II, 416), cyclohexanone and m-cresol give 4-cyclohexenyl-m-cresol (14%), b.p. 180—190°/25 mm. [and a dimeride, m.p. 142—143° or (+COMe₂) softens 106°, m.p. 111— 113° (decomp.)], hydrogenated (PtO₂; AcOH) to 4-cyclohexyl-m-cresol, m.p. 69—70°, b.p. 166—169°/19 mm. Coupling with p-SO₃H-C₆H₄·N₂Cl and reduction by Na₂S₂O₄ then yields 6-amino-4-cyclohexyl-m-cresol (78%), pink at 170°, m.p. 182°, oxidised by K₂Cr₂O₇-H₃SO₄ to 2-cyclohexyl-5-methylbenzoquinone, m.p. 60— 61° (derived quinol, m.p. 146—148°), which with (I) in boiling MeOH gives 2-cyclohexyl-10-methyl-5: 8-endomethylene-5: 8: 9: 10-tetrahydro-1: 4-naphthaquinone (96%), m.p. 75-77° (with Zn-AcOH gives a substance, m.p. 71-78°). R. S. C.

IV.—STEROLS AND STEROID SAPOGENINS.

Formation of ergostatetraene-B during the acetylation of ergosterol. H. A. Stansbury, jun. (J. Amer. Chem. Soc., 1943, 65, 1243).— Ergosteryl acetate, prepared from ergosterol by boiling Ac_2O , is R. S. C. accompanied by a small amount of ergostatetraene-B.

accompanied by a small amount of ergostatetraene-B. K. S. C. Thiocholesterol. T. Wagner-Jauregg and T. Lennartz (Ber., 1941, 74. [B], 27-32).—The "thiocholesterol" of Montignie (A., 1931, 481) is a dithiocholesteryl phosphate (S: P = -2:1). Cholesteryl bromide and NaCNS in boiling aq. EtOH give cholesteryl thiocyanate (I), m.p. 129°, $[a]_D - 10.97^\circ$, reduced (Zn-Hg, aq. HCl) to thiocholesterol (II), m.p. 99.5°, $[a]_D - 23.85^\circ$ [cinnamate, m.p. 141-142° (turbid), 224-226° (clear), $[a]_D - 9.96^\circ$; chaulmoograte, m.p. 67-69°, $[a]_D - 9.28^\circ$; CH₂Ph ether, m.p. 98.5°, $[a]_D - 31.7^\circ$]. (I) with NaOEt-EtOH, KOH-aq. EtOH, or K₂CO₃-C₅H₁₁°OH affords dicholesteryl disulphide, m.p. 144.5°, $[a]_D - 41.78^\circ$, which is reduced (Zn-Hg, aq. HCl, PhMe) to (II). [a] are in CHCl₃. J. WA. Deoxycholic acid. Preparation from cholic acid. G. A. D.

Deoxycholic acid. Preparation from cholic acid. G. A. D. Haslewood (*Chem. Products*, 1943, **6**, 65–66).—An account of work previously abstracted (A., 1942, II, 365; 1943, II, 199). Lithocholic acid is a by-product and arises from 3-hydroxy-7 : 12-diketocholanic S. A. M. acid.

Bile acids. LX. M. Schenck (Z. physiol. Chem., 1940, 264, 267-273).-When 7-nitrodeoxybilienic acid (I) is treated with HNO_3 (d 1.4) for 48 hr. at room temp., 6-nitrobilianic acid (II) is formed. (II) is also formed from bilianic acid dioxime and HNO_3 ; in this case (I) is an intermediate. 6-Aminobilianic acid, which reduces $AgNO_3-NH_3$ on heating, is oxidised to cilianic acid by J. N. A. Fehling's solution.

Behaviour of Δ^1 -unsaturated steroid ketones on reduction by fermenting yeast. A. Butenandt, H. Dannenberg, and L. A. Surányi (Ber., 1940, 73, [B], 818—820).—Yeast fermenting in aq. sucrose reduces Δ^1 -androstene-3: 17-dione or Δ^1 -androsten-17-ol-3one to isoandrostane-3: 17-diol, but does not affect Δ^1 -cholestenone or Δ^1 -allopregnenedione. The position of the CC and the nature of the $C_{(17)}$ -substituent thus both affect the reducibility of the Δ^{α} -ketones. R. S. C. Δ^{α} -ketones.

Sterols. CLIV—CLVII. Sapogenins. LXVI. Sapogenin of Tri-gonella foenum-graecum. LXVII. Pennogenin, nologenin, and feeso genin, three new sapogenins from Beth root. LXVIII. Steroidal sapogenin from Balanites aegyptica, Wall. R. E. Marker, R. B. Wagner, D. P. J. Goldsmith, P. R. Ulshafer, and C. H. Ruof. LXIX. Wagner, D. P. J. Goldsmith, P. R. Úlshafer, and C. H. Ruof. LXIX. Isolation and structures of thirteen new steroidal sapogenins. New sources for known sapogenins. R. E. Marker, R. B. Wagner, P. R. Ulshafer, E. L. Wittbecker, D. P. J. Goldsmith, and C. H. Ruof (J. Amer. Chem. Soc., 1943, 65, 1247, 1248, 1248-1249, 1199-1209).-LXVI. The sterol from the seed of T. foenum-graecum is diosgenin (I) (cf. Soliman et al., A., 1943, II, 99). LXVII. (Cf. A., 1943, II, 239.) The sterols from Beth root yield (I) (35-60%) isolated as acetate), kryptogenin (II) (20-40%) isolated as acetate), pennogenin (II), $C_{27}H_{42}O_4$ (10-20%), m.p. 247°, and small amounts of nologenin (IV), $C_{27}H_{44}O_5$, m.p. 265°, unsaturated (diacetate, m.p. 180°), and fesogenin (V), $C_{27}H_{40}O_3$, m.p. 180°, un-saturated. (III) has the structure shown, for it contains 2 OH, no

CO (absorption spectrum), with boiling Ac₂O gives a monoacetate, m.p. 200°, and after prolonged treatment with HCl-EtOH yields (II). (∇) contains a conjugated system, since with H₂-Pd-BaSO₄ it gives a H₂-, m.p. 213°, and with Na-EtOH a H₄-derivative, m.p. 240°. LXVIII. "Nitogenin" (Kon *et al.*, A., 1939, II, 332) from Balanites aegyptica is really (1).

LXIX. Isolation of thirteen new sapogenins and new sources of known sapogenins from Mexican and U.S. plants are briefly for known subgemins from Mexican and 0.3. plants are oblight recorded. Hecogenin (VI), $C_{27}H_{42}O_4$, forms, m.p. 245°, 253°, and 268°, is obtained from 22 plants [1.3% from Agave toumeyana, Trel.; 0.7% from A. gracilipes, Trel.; >0.33% (dry wt. in all cases) from the others]. The structure

follows from its conversion by boiling Ac₂O into a monoacetate,

forms, m.p. 243° and 252°, resistance to Clemmensen reduction, forms, In.p. 245 and 252, restance to CO_3 to hecogenone (VII), $\operatorname{C}_{27}H_{40}O_4$, m.p. 240° (CO at $\operatorname{C}_{(3)}$), and then to hecogenic acid (VIII), $\operatorname{C}_{27}H_{40}O_4$, m.p. 240° (CO at $\operatorname{C}_{(3)}$), and then to hecogenic acid (VIII), $\operatorname{C}_{27}H_{40}O_4$, m.p. 268° (decomp.) (fission between $\operatorname{C}_{(2)}$ and $\operatorname{C}_{(3)}$; Me₂ ester, m.p. 187°), and Wolff-Kishner reduction to tigogenin. Mano-genin (IX), $\operatorname{C}_{27}H_{42}O_5$, forms, m.p. 241–243°, 254°, and 264° (di-acetate, forms, m.p. 215°, 242°, and 255°), is isolated from 25 plants [abundantly in Manfreda maculosa, Hook; 0.53% from A. huachu-censis, Baker; $\geq 0.17\%$ from other plants]; it is the 2-OH-deriv-ative of (VI), since with CrO₃ it gives (VIII) and by Wolff-Kishner reduction gives gitogenin (X). Yucca schottii, Engelm., Y. elata, Engelm., and Y. flaccida, Haw., yield yuccagenin (XI), $\operatorname{C}_{27}H_{42}O_4$, forms, m.p. 246° and 252° (diacetate, m.p. 178°), which with H₂-PtO₂ and a little AcOH in Et₂O gives (X), with H₂O₂ gives a tetraol, $\operatorname{C}_{27}H_{44}O_6$, m.p. 350° [with CrO₃-AcOH and then, after dehydration, Zn-AcOH gives chlorogenic acid], and is thus the $\Delta^{5:6}$ -derivative of (X). Y brevifolia, Engelm., Y. harrimanit, Trel., and Samuela carnerosana, Trel., contain hammogenin (XII), $\operatorname{C}_{27}H_{40}O_6$, m.p. 242° [diacetate, forms, m.p. 243° and 260°; also present in the mother-liquors from (XI) obtained from Y. schottii], which gives a semi-carbazone but resists Clemmensen reduction, gives (XI) by Wolffformation of a semicarbazone, oxidation by CrO_3 to hecogenone (VII), liquors from (**XI**) obtained from Y. schottii, which gives a semi-carbazone but resists Clemmensen reduction, gives (**XI**) by Wolff-Kishner reduction, is hydrogenated (PtO₂; Et₃O + a little AcOH) as diacetate to the diacetate of (**IX**), and is thus the 12-CO deriv-ative of (**XI**). Rockogenin, C₂₇H₄₄O₄, m.p. 221° (acetate, m.p. 206°), is isolated with much (**VI**) from A. gracilipes, Trel.; it is 12-dihydrohecogenin, being obtained from (**VI**) by H₂-PtO₂ or Na-EtOH and oxidised to (**VII**) by CrO₃-AcOH. The saponins from A. huachucensis, Baker (1360 kg.), yield (**IX**) (22%), (**X**) (50%), (**VI**) (22%), and agaogenin (**XIII**) (5%), C₂₇H₄₄O₅, m.p. 242° (triacetate, m.p. 228°). (**XIII**) is 12-dihydromanogenin, being obtained from (**IX**) by H₃-PtO₂ or Na-EtOH and oxidised by CrO₃ to (**VII**). Furcogenin (**XIV**), C₂₇H₄₂O₄, m.p. 225°, is obtained from Furcræa selloa and, with much smilagenin (**XV**) and little (**XI**), from Y. flaccida, Haw. It has the β -configuration at C₍₃₎, giving a ppt. with digitonin Haw. It has the β -configuration at $C_{(3)}$, giving a ppt. with digitonin in EtOH. It gives a monoacetate, m.p. 225°, is reduced (Wolff-Kishner) to (XV), but resists Clemmensen reduction, and thus has the formula shown. Samuela carnerosana, Trel., and Y. schottii,

Engel., contain samogenin (**XVI**), $C_{27}H_{44}O_4$, m.p. 210–212° (diacetate, m.p. 195–198°; digitonide), and mexogenin (**XVII**), $C_{27}H_{42}O_5$, m.p. 246° (diacetate, m.p. 208°). (**XVI**) is unaffected by boiling HCl-EtOH, is converted by NaOEt at 200° into episamogenin (a-con

carbazone but resists Clemmensen reduction, by Wolff-Kishner reduction gives (XVI), and is thus the 12-CO-derivative of (XVI). Dioscorea testudinaria and 12 other plants yield (I) and yamogenin (XVIII), $C_{27}H_{42}O_3$, m.p. 200–201° (acetate, m.p. 180–182°); this yields (I) by isomerisation of the side-chain, is hydrogenated as acctate in $Et_2O + AcOH$ to neotigogenin acetate, and thus has the structure shown. The saponins from Y. schottii (1364 kg.) yield

(XI) (59%), (XV) (13%), (XII) (13%), (XVI) (8%), (X) (2%), (XVII) (1%), and texogenin (XIX) (4%), $C_{27}H_{44}O_4$, m.p. 171—172° (diacetate, m.p. 170—172°). (XIX) is converted into (XVI) by boiling HCl-EtOH and is thus the $C_{(22)}$ -epimeride of (XVI). The annexed structure is suggested for (IV), since it contains 4 OH, with boiling

Ac_O gives a diacetate, m.p. 200° (Part LXVII, m.p. 180°), and in boiling HCl-EtOH gives (III) and then (II). The mother-liquor

from (IV) (from Beth root) yields kappogenin (XX), $C_{27}H_{44}O_4$, m.p. 230°, the structure of which is proved because it possesses 3 OH gives a diacetate, m.p. 178°, with boiling 2N-HCl-EtOH gives (I), and

with CrO_3 at 25°, followed by hydrolysis, gives $\Delta^{5:16}$ -pregnadien-3(β)-ol-20-one. Sarsasapogenin is isolated from 26 (1% from Y. elata, Engelm.), (**XV**) from 28 (0.8% from Y. flaccida, Haw.; 0.75% from A. lophantha), (**X**) from 16 (1-1-1% in A. schottii, Y. filamen-tosa, L., and Manfreda virginica, L.), chlorogenin from 2, tigogenin from 10 (0.88% from Y. whipplei typica), (**I**) from 29, (**II**) from 12, and sitosterol from 18 new sources (0.14% from Y. arizonica, MCKEl.). R. S. C.

Steroid glucuronide, m.p. 267—269°, from human urine [steroid, m.p. 212—213° (corr.) (acetate, m.p. 192—194°; oxime, m.p. 223— 225°)].—See A., 1943, III, 656.

V.—TERPENES AND TRITERPENOID SAPOGENINS.

Unambiguous synthesis of camphor. I. Synthesis of camphononic acid. N. C. Ganguly (J. Indian Chem. Soc., 1943, 20, 101–104).— CMe₂Ac-CO₂Et (100 g.), condensed with CN·CH₂·CO₂Et in AcOH-NH₂Ac, gives *Et a-cyano-βγγ-trimethylglutaconate*, b.p. 145°/4 mm., which adds HCN to give *Et aβ-dicyano-βγγ-trimethylglutarate*, b.p. 170°/5 mm. Boiling for 30 hr. with 72% H₂SO₄ hydrolyses this to 20 g. of camphoronic acid, m.p. 168°. Me₃ camphoronate (b.p. 134°/3 mm.), obtained using CH₂N₂, is partly hydrolysed (on the primary CO₂Me) by NaOH-MeOH; the mono-acid is then converted into its chloride by SOCl₂ in C₆H₆ in presence of C₅H₅N. Following the technique of Bachmann *et al.* (A., 1940, II, 225), the acid chloride in C₆H₆ is treated successively with CH₂N₂ in *Et*₃O and Ag₅O in MeOH, thus giving Me₃ homocamphoronate, b.p. 150°/5 mm. This with Na dust and a trace of EtOH in C₆H₆ gives Me₂2: 2: 3-trimethyl-cyclopentanone-3: 5-dicarboxylate, b.p. 157°/9–10 mm., which, when refluxed for 20 hr. with 20% H₃SO₄, gives camphononic acid, m.p. 230–231° (lit. 232°) [oxime, m.p. 189–190° (lit. 186–187°); *Et* ester, b.p. 106–110°/8 mm.]. S. A. M. Unambiguous synthesis of camphor. I. Synthesis of camphononic

Synthesis of dl-pinonic acid. F. L. N. Rao (J. Indian Chem. Soc 1943, 20, 97–100).—trans-Pinic acid (for synthesis of A., 1937, II, 377) is converted into trans-1-carbethoxy-2:2-dimethylcyclobutane-3-acetyl chloride (A., 1938, II, 283, 412), which, with NHPh2 but ale-3-acetyl childle (X., 1938, 11, 288, 412), which, with $RHPH_2$ in C_bH_sN , gives the -3-acetdiphenylamide, m.p. 99–100°. 95% H_2SO_4 , at 60–65°, gives the corresponding -1-carboxy-compound (m.p. 139–140°), the acid chloride of which (prepared by using SOCl₂) with CdMeCl in Et₂O gives trans-dl-pinondiphenylamide (yield 30%) (senicarbazone, m.p. 204–205°, undepressed by adding a sample, m.p. 205–206°, prepared from pinonic acid). Boiling MeOH-KOH gives dl-pinonic acid, m.p. 103–105°. S. A. M.

Attempted preparation of a tetracyclic hydrocarbon of the camphane

CMe (I) -2° affords: (i) not quite pure cyclocam-phanyl Me ether (III), b.p. $64^{\circ}/12$ mm.; (ii) $C_{10}H_{16}O$ (IV), sublimes at $82-84^{\circ}$, m.p. (not sharp) $160-163^{\circ}$, $[a]_{20}^{20} + 27\cdot72^{\circ}$; (iii) unchanged (II). When MeOH-free NaOMe is used (III) is not formed. (IV) gives an inhomogeneous 3:5-di-nitrobenzoate (different fractions, m.p. $126-134^{\circ}$). (IV) with CrO_3 gives cyclocamphane-2-one and is a mixture of cyclocamphan-2-ol (3: 5-dinitrobenzoate, m.p. 138°) and its epimeride. The formation of these products is attributed to the production from the nitroso-urethane of a diazotate, instead of a diazo-compound, which loses N_2 to give the Na-derivative of (IV) and reacts with MeOH to give (III) J. WA.

isoAlcohols of the camphane series. II. 2-isoHydroxycyclo-Camphor is completely reduced (H_2 -Pt-black-AcOH) at 40-50 atm. and room temp. to 20% of isobornyl acetate and 80% of iso-borneol (3:5-dinitrobenzoate, m.p. 139°; previously recorded m.p. 133° is a misprint; A., 1931, 1068). Camphor and epicamphor reduced in methylcyclohexane (I) give respectively isoborneol and

>90% of cpi-isobornyl 3:5-dinitrobenzoate, m.p. 118-119°. cyclo-Camphan-2-one, purified through the semicarbazone, reduced in (I) gives iso-cyclocamphanol 3: 5-dinitrobenzoate, m.p. 112—113° (Kofler micro-m.p. 116°), $[a]_{D}^{22}$ —75·65° in PhMe (additive com-pound with a-C₁₀H₄·NH₂, m.p. 163—164°). iso-cycloCamphanol, m.p. 180—181°, $[a]_{D}^{29}$ —36·07° in C₆H₆, as Na-derivative, undergoes inversion at 230° in C₆H₆ to cyclocamphanol (3: 5-dinitrobenzoate. m.p. 138-139°). I. WA.

ω-Benzoylcamphene. Y. Asahina and T. Sano (*Ber.*, 1940, 73, [B], 747-753).—Data of Lipp *et al.* (A., 1927, 883; 1929, 1308) are modified and extended. The product (**I**), b.p. $145-150^{\circ}/4$ mm., obtained from ω-benzoylborneol by KHSO₄ at $180-190^{\circ}$, consists mainly of ω-benzoylcamphene (**II**) with a little ω-benzoyltricyclene (**III**).

CH2 CH—CMe2 CH2	CH C+CH2Bz
	(III.)

boltaned from a-benzoylcamphene (II) with a little w-benzoyltricyclene (III). It gives a small amount of the semicarbazone (IV), m.p. 210– CH₂—CH₂—CH₂C+C+2Bz CH₃—CH₄—C+C+2Bz CH₄—CH₄—C+C+C+2Bz (III). With KMnO₄ in COMe₂, (I) gives BzOH, cam-phenione, and a little (III), m.p. $^{59-60^{\circ}}$, b.p. $^{-115^{\circ}/5}$ mm. [semi-carbazone = (IV)]. MgPhBr in boil-ing Et₂O, followed by aq. NH₄Cl, converts (III) into ac-diphenyl- 5 -tricyclenylethylene (V), m.p. 70–71°, b.p. $^{-154^{\circ}}/_{0}$ -066 mm. With MgPhBr in boiling Et₂O, (I) gives the diphenylcarbinol, C₂₃H₂₆O, b.p. 174°/0.06 mm., dehydrated by twice boiling with Ac₂O into a (? mixed) hydrocarbon, C₂₃H₂₄, b.p. 172–173°/0.08 mm., which with O₃ in CHCl₃ gives tricyclenic acid, C₁₀H₁₄O₂, sinters 149°, m.p. 151°, and COPh₂, and with KMnO₄ in COMe₂ gives much (V) and substances, C₂₃H₂₆O₂, m.p. 160°, and C₂₃H₂₄O₃, m.p. 196–198°, and an acid, C₁₀H₁₆O₃, m.p. 190–192°. Camphenylideneaceto-nitrile (VI), b.p. 128°/14 mm., with MgPhBr in boiling Et₂O and then aq. NH₄Cl gives (II), b.p. 125–127°/0.03 mm. [containing a little (III), present in (VI)], which with KMnO₄ or MgPhBr (and then O₃ or KMnO₄) gives the same products as does (I). No hydro-carbon, C₂₃H₂₄, m.p. 83–84°, could be obtained. R. S. C.

Cafesterol. II. P. N. Chakravorty, (Miss) M. M. Wesner, and R. H. Levin (J. Amer. Chem. Soc., 1943, **65**, 929—932; cf. A., 1943, II, 40).—Cafesterol (I) which is probably diterpenoid (prep. described), has m.p. 147—151°, $[a]_{30}^{30}$ —156° in CHCl₃; the solution darkens and [a] becomes -161° in 2 weeks. The acetate, m.p. 162—165° (160— 165°) [absorption max. at 290 mµ. (ϵ 6300, de-creases on irradiation)], with H₂-Pd-C in EtOH at 34 lb. gives tetra-hydrocafesteryl acetate (II), m.p. 152— $154^{\circ}5^{\circ}$, $[a]_{30}^{30}$ — $20^{\circ}4^{\circ}$ in CHCl₃, and thence tetrahydrocafesterol (III), m.p. $154^{\circ}5^{-}-157^{\circ}$ (cf. Wettstein et al., A., 1942, II, 198, 371). (CH·CO)₂O combines with (I) in C₆H₆ at 35—40° in 0.5 hr. or slowly at room temp. to give the adduct, C₂₄H₃₀O₆, m.p. 190—192°, $[a]_{30}^{30}$ — 43° in COMe₂, wherefore (I) contains CC·CC. With Zn dust at 180— $200^{\circ}/1.5$ mm. (20 min.), followed by distillation at 0.02 mm., (II) gives oxcafestanaldehyde, followed by distillation at 0.02 mm., (II) gives oxcafestanaldehyde, To low of the second s

R. S. C.

Cafesterol. III. isoCafesterol. P. N. Chakravorty, R. H. Levin, (Miss) M. M. Wesner, and G. Reed (*J. Amer. Chem. Soc.*, 1943, 65, 1325—1328; cf. supra).—Adding Na to cafesterol (I) in boiling EtOH gives isocafesterol (II), m.p. 156—159° [not depressed by (I)], $[a]_{19}^{19}$ —108° in CHCl₃, —114° in COMe₂ [acctate (III), m.p. 163—167°, not depressed by the acetate of (I)]. (I) absorbs 2 and (II) absorbs 2·5 O from o-CO₂H·C₆H₄·CO₃H in Et₂O; both absorb 8 Br; in presence of Pd-C in EtOH they give the same H₄-deriv-ative. With (CH·CO)₂O in warm C₆H₆, (II) gives an adduct, m.p. 177—180° (decomp.), $[a]_{19}^{19}$ —45° in COMe₂, converted into (III) by Ac₂O-C₆H₅N, and regenerating (II) at 130—160°/0·01 mm.; the adduct from (I) similarly regenerates (I) at 125—145°/0·008 mm., so that the adducts also differ. Boiling NaOMe-MeOH does not convert (I) into (II). In conc. HCl, (I) gives a blue and (II) a pink colour, so that acid does not reverse the change. In Pr^gOH, (I) has colour, so that acid does not reverse the change. In $Pr^{\beta}OH$, (I) has an absorption max. at 292 m μ . ($\epsilon \sim 6500$) and (II) at 226 m μ . (ϵ \sim 8300); thus the ethylenic linkings in (I), but not in (II), are probably in the same ring; partial structures are suggested.

R. S. C.

Rubber, polyisoprenes, and allied compounds. IV. Relative tendencies towards substitutive and additive reaction during chlorin-ation.—See A., 1943, II, 289.

Constitution of l-pimaric acid. W. Sandermann (Ber., 1941, 74, [B], 154—161). A mixture of pine rosin acid [crude l-pinaric acid (I)] and ($(C \cdot CO_2Me)_2$ (II) in Et₂O has $[a]_D - 75^\circ \rightarrow +87.5^\circ$ (const.) in 46 hr., indicating, together with the absorption spectrum of (I), that the two double linkings of (I) are in the same ring. (I) and (II) at 180° afford no updatible uncertaintied budgescales (II) at 180° afford no volatile unsaturated hydrocarbon and the adduct gives no definite product with Pd-C at 300°, whilst (I) alone gives 80% of retene. The "residual acid," m.p. 162-168°, [a]p $+55^{\circ}$ in Et_2O , is obtained from crude (I) after removal of (I) as the

benzoquinone adduct and contains 50% of *d* pimaric acid, abietic acid, and "proabietic" acid. J. WA.

VI.—HETEROCYCLIC.

Tetrahydrofurfuryl ethers etc.-See B., 1943, II, 283.

3-Chloro-2-ethoxy-2-methyltetrahydrofuran.-See B., 1943, II, 277.

Condensation of pyromucic acid with N-methylolamides. R. O. Cinnêide (Proc. Roy. Irish Acad., 1943, 49, B. 143-150).-Pyromucic acid and OH-CH₂-NHBz in conc. H₂SO₄ give 5-N-benza anidomethylfuran-2-carboxylic acid (I), m.p. 168-169-5° and 191-192° (two forms) (Et ester : labile m.p. 95-96°; stable m.p. 125-127°). Oxidation of (I) with K₃Fe(CN)₆ gives furan-2: 5-dicarboxylic acid; (I) with boiling HgCl₂-H₂O (or H₂O at 150-170° in sealed tube) gives 2-benzamidomethylfuran (II) and tetra(chloromercuri)-furan. The Na salt of (I) with boiling HgCl₂-H₂O vields 5-benzamido furan. The Na salt of (I) with boiling $HgCl_2-H_2O$ yields 5-benzamido-methyl-2-chloromercurifuran, m.p. 162–164°, which with boiling aq. HCl gives (II). Pyromucic acid and OH·CH₂·NH·CO·C₆H₄Me-p (prep. described) give 5-p-toluamidomethylfuran-2-carboxylic acid (III), m.p. 195–198°, which reacts like (II) with $HgCl_2-H_2O$ on Laptice a cardid to be Duromycic acid and o mitroburkhdrawn (11) m.p. 195–198°, which reacts like (11) with $HgCl_2-H_2O$ on heating in a sealed tube. Pyromucic acid and o-nitrobenzhydroxy-methylamide, m.p. 114–117° (prep. described), give 5-N-o-nitrobenzamidomethylfuran-2-carboxylic acid (IV), m.p. 195–198°, which reacts like (I). Preps. of 2-p-tolu-, m.p. 102°, 2-benz-, m.p. 101-102°, and 2-o-nitrobenz-amidomethylfuran, m.p. 107-108°, are also given. J. H. Ba. are also given.

Pyrones and related compounds. II. New reaction product of acetonedicarboxylic acid and acetic anhydride. R. Kaushal, P. B. Bhisse, and S. S. Deshapande (J. Indian Chem. Soc., 1943, 20, 51– 53).—CO(CH₂·CO₂H)₂ is converted by Ac₂O into 2 : 6-dihydroxy-1 : 4-pyrone and 3'-keto-6-methyl-3' : 4'-dihydrocyclobutadieno-1' : 2'-2 : 3-1 : 4-pyrone-5-carboxylic acid (I), m.p. 157° (NH_2Ph salt, m.p. 185°). If a considerable excess of Ac₂O is used (I) is the sole product. Its structure is confirmed by its production from Ac₂O and dehydr-H. W acetocarboxylic acid.

Action of acids on 2:3-epoxy-2:3-diphenylindanone.—See A., 1943, II, 266.

Structural chemistry of naturally occurring flavones and flavonols. P. S. Rao and T. R. Šeshadri (Proc. Indian Acad. Sci., 1943, 17, A, 119-141).—An account of the chemistry of the members of the **H**. W group.

R. S. C. 1901, 6, 415), whose results are briefly recapitulated.

Rubrofusarin, C₁₅H₁₂O₅.—See A., 1943, III, 600.

Esters of 1: 4-dioxan-2: 3-diol.—See B., 1943, II, 277.

Action of alkalis on substituted benzdioxins. H. Irving and E. G. Action of alkalis on substituted benzdioxins. H. Irving and E. G. Curtis (J.C.S., 1943, 319–321).—8-Nitro-6-methyl-2: 4-bistrichloro-methyl-1: 3-benzdioxin (I), m.p. 175—176°, is prepared from 3: 1: 4-NO₂·C₆H₃Me·OH and chloral hydrate in conc. H₂SO₄. It is un-affected by EtOH–KOAc but EtOH–KOH opens the hetero ring, giving 5-nitro-4-ethoxy-m-toluic acid (II), m.p. 148–149°. 7-Nitro-6-methyl-2: 4-bistrichloromethyl-1: 3-benzdioxin, m.p. 143°, gives the 2: 4-bistrichloromethylene compound, m.p. 101°, with EtOH–KOH. (I) with SnCl₂ in Ac₂O–AcOH–HCl gives 8-amino-6-methyl-2: 4-bistrichloromethyl-1: 3-benzdioxin, m.p. 140° (Ac deriv-orting m.p. 1715°) which with EtOH–KOH with EtOH–KOH. methyl-2 : 4-bistrichloromethyl-1 : 3-benzaiozin, m.p. 140° (AC deriv-ative, m.p. 171.5°), which with EtOH-KOH gives the 2 : 4-bisdi-chloromethylene compound, m.p. 121° (Ac derivative, m.p. 201°). 5 : 7-Dichloro-6-methoxy-2 : 4-bistrichloromethyl-1 : 3-benzdiozin, m.p. 189-190° (from the OH-derivative and Me₂SO₄-aq. KOH), gives the 2 : 4-bisdichloromethylene derivative, m.p. 114.5°, with EtOH-KOH. 6-p-Tolueneazo-2 : 4-bistrichloromethyl-1 : 3-benzdiozin with EtOH-KOH else gives the 2 : 4-bistrichloromethyl-1 : 3-benzdiozin with EtOH-6-p-Tolueneazo-2: 4-bistrichloromethyl-1: 3-benzdioxin with EtOH-KOH also gives the 2: 4-bisdichloromethylene derivative, m.p. 147–148°. Di-(6-nitrobenzdioxinyl)-8: 8'-ketone with aq, NaOH gives CH_2O and 5: 5'-dinitro-2: 2'-dihydroxy-3: 3'-bishydroxymethylbenzo-phenone, m.p. 260° (phenylhydrazone, m.p. 226–227°). These results confirm the mechanisms previously (A., 1934, 531) proposed. 4: 1: 3-OEt-C_{6}H_{3}Me-CO_{2}Et [from 4: 1: 3-OH-C_{6}H_{3}Me-CO_{2}H (III), Et_{2}SO_{4}, and K_2CO_3 in COMe₂ or from the Et ester of (III), EtBr, and NaOEt] is hydrolysed (aq. EtOH-KOH) to the *acid*, m.p. 76–78°, which is nitrated to (II). Nitration of (III) gives the 5-NO₂-derivative, new m.p. 176–177°, decarboxylated (boiling quinoline) to 3: 1: 4-NO₂-C_{6}H_3Me-OH. J. H. BA.

Condensation of phosphorus oxychloride-acridone with dimethyl-aniline. K. Gleu and A. Schubert (*Ber.*, 1940, 73, [*B*], 757-761).— Acridones and POCl₃ give compounds, $[o-C_{6}H_{4} \ll {}^{CCl}_{NR} > C_{6}H_{4} - o]PO_{2}Cl_{2}$, in which the Cl at C(5) is very reactive. Thus, melting 10-methylacridone, $POCl_3$, and $NPhMe_2$ gives a blue melt (A) (X = PO_2Cl_2), which in ice gives the carbinol, converted by boiling MeOH into

5-methoxy'-[5-p-dimethylaminophenyl-10-methyl-5: 10-dihydroacridine (I), m.p. 170°. The OMe in (I) is mobile, for, with boiling EtOH, (I) gives 5-ethoxy-, m.p. 139°, with dil. HCl and then NaOH gives impure 5-hydroxy- (II), m.p. 129°, unstable, and with 13N-aq. NH₃ gives 5-amino-, m.p. 146°, -5-p-dimethylaminophenyl-10-methyl-5: 10-dihydroacridine. Treating (I) with 2N-HCl and then with NaOH until pptn. of (II) begins, heating at 60°, and saturating with NaCl yields the blue 5-p-dimethylaminophenyl-10-methylacridinium chloride $(A \leftrightarrow B)$ (X = Cl) +2·5H₂O, which in an excess of mineral acid gives nale vellow non-resonating sol salts in which mineral acid gives pale yellow, non-resonating, sol. salts in which both N are combined with acid; a *nitrate*, $[C_{22}H_{21}N_2]NO_3,2HNO_3$, is isolated. 10-Phenylacridone similarly yields 5-*methoxy*-, m.p. 210–211°, 5-ethoxy-, m.p. 154°, and 5-amino-, m.p. 181°, -10-phenyl-5-p-dimethylaminophenyl-5: 10-dihydroacridine, and a blue acridinum chloride. R. S. C.

Interaction of phosphorus oxychloride-acridone with Grignard reagents. K. Gleu and A. Schubert (Ber., 1940, 73, [B], 805-811). —The compound obtained from acridone and POCl₃ with MgPhBr in Et₂O gives PPh₂O₂H, 5:5'-diacridyl, and Ph₂. With 10-substit-ated acridones further reduction occurs. Thus, 10-methyl- or 10-phenyl-acridone gives 10:10'-dimethyl- to 10:10'-diphenyl-5:5'-diacridylidene with after treatment with HNO 10:10'-(impthyldiacridylidene with, after treatment with HNO3, 10: 10'-dimethylor 10: 10'-diphenyl-diacridylium dinitrate. R. S. C

Diketopyrazolidines. H. Ruhkopf (*Ber.*, 1940, **73**, [*B*], 820—822). —Diketopyrazolidines are obtained from (*a*) N_2H_4 , H_2O (excess), $CR_2(CO_2Et)_2$ (*R* = H, alkyl, or aryl), (*b*) NHPh·NH₂, $CR_2(CO_2Et)_2$ (*R* = H or alkyl, not aryl), or (*c*) (NHPh)₂, $CH_2(CO_2Et)_2$ (not its derivatives), and, in all cases, NaOEt in EtOH at 180—200°. The products containing no case which there are a substituted to *R*. derivatives), and, in all cases, NaOEt in EtOH at 180–200°. The products containing no, or one, substituent on N are acetylated by boiling Ac₂O, but di-N-substituted products are unaffected. Thus are prepared 3:5-diketo-4:4-diethyl- (90%), m.p. 270° (lit. 256°, 260–261°), -4:4-di-n-propyl- (70%), m.p. 256° [some CPr^a₂(CO₂H)₂ is also formed], -4-phenyl-4-ethyl- (I) (70%), m.p. 198° (3-O-Ac derivative, m.p. 1595°), -4-ethyl-4-n-propyl- (70%), m.p. 225°, -4:4-diallyl- (70%), m.p. 280°, and -1:2-diphenyl- (90%), m.p. 173·5°, -1:2-pyrazolidine. These products are fairly sol. in H₂O and stable to acid and alkali (e.g., boiling 50% KOH for 50 hr. or autoclaving at 10 atm.); they have no, or a weakly acid, taste, never a bitter one, and resemble pyrazolones in physiological action but have no advantage thereover. With Br in hot AcOH, (I) gives 3:5-diketo-1:2-phenylethylmalonyl-4-phenyl-4-ethylpyrazolidine (40%), CPhEt CO·N-CO CPhEt, m.p. 238°, and some CPhEt(CO₂H)₂. R. S. C.

CPhEt(CO₂H)₂.

R. S. C.

Bacterial inhibition by metabolite analogues. V. Reactions and antibacterial properties of *p*-diazine di-N-oxides. H. McIlwain (J.C.S., 1943, 322-325).—The di-N-oxides of the following have been prepared by treatment of the appropriate base in AcOH with 100-vol. H₂O₂: quinoxaline, m.p. 238-239°, 2-methylquinoxaline (I), m.p. 180-181°, 2-methyl-3-n-amylquinoxaline, m.p. 107°, and 1:2:3:4-tetrahydrophenazine, m.p. 188°. Iodinin [di-N-oxide of the dihydrourphenazine, obtained from Chemehorthurum (of the dihydroxyphenazine obtained fron Chromobacterium iodinum (cf. Clemo *et al.*, A., 1938, II, 248)] could only be prepared using $BzO_2H-C_6H_6$. The oxides retain the basic characters of the diazines, but those with saturated 2-substituents have also acidic properties, explained as due to tautomeric oxime forms. (I) changes in alkali to a blue product, the conversion being accelerated by light. Two quinoxaline di-N-oxides characterised by unsubstituted 2-positions react with keto-methylene compounds in dil. alkaline solution. All the di-N-oxides are readily reduced to the diazines, whilst quinoxalines, but not phenazines, undergo further fission $(Zn-H_2SO_4)$ $to c_6H_4(NH_2)_2$ and monoketones. All the di-N-oxides are inhibitory to bacterial growth in concns. in which their parent diazines are inactive. F. R. S.

Preparation and cleavage of *d*-arabo-tetrahydroxybutylquinoxaline. H. Ohle and M. Hielscher (*Ber.*, 1941, **74**, [*B*], 13—17; cf. A., 1934, 392).—Optimal conditions for the prep. of 3-*d*-arabo-tetrahydroxybutylquinoxaline (**I**) from fructose (62% yield) are given. Glucose and mannose give only 35% yields. Cleavage of (**I**) with 5 mols. of NHPh·NH₂ in boiling H₂O (H₂ atm.) proceeds slowly, giving a ppt. of quinoxaline-3-aldehydephenylhydrazone (**II**) (9%), m.p. 234°, NH₃ (18.4%), unchanged (**I**) (73%), and NH₂Ph (11%). Cleavage in alkaline solution shows that 2.79 mols. of NHPh·NH₂ are consumed per mol. of (**I**), but no H₂O-insol. material is produced. Cleavage in boiling dil. AcOH (H₂ atm.) gives unchanged (**I**) (60%) and a *compound*, C₁₈H₁₆O₃N₄ (**III**) (29.5%), m.p. 218°, [a]⁵_D = 19·1° Preparation and cleavage of *d-arabo-tetrahydroxybutylquinoxaline*.

in $C_{s}H_{s}N$; repetition on a large scale gives a small amount of **(II)**. **(III)** with $Ac_{2}O-C_{s}H_{s}N$ gives a *triacetate*, m.p. 123-124°, $[a]_{D}^{22}$ +81.5° in $C_{s}H_{s}N$, $[a]_{D}^{21}$ +64.4° in CHCl_a. Catalytic deacetylation (Zemplén) regenerates **(III)**, which thus retains the side-chain of **(D**) J. WA. of (I).

New syntheses of heterocyclic compounds. II. 2-Phenyl-3:4:6:7-dibenzo-1:5-naphthyridine. V. A. Petrow, M. V. Stack, and W. R. Wragg (J.C.S., 1943, 316-318).-2-(o-Benzamido-phenyl)pyridine (I), m.p. 117° [picrate, m.p. 155° (decomp.)], is obtained from the corresponding NH₂-compound [picrate, m.p. 185-186° (decomp.)], and the 3-o-derivative (II), m.p. 132° [picrate, m.p. 168° (decomp.)], is similarly prepared from the NH₂-compound [picrate, m.p. 164° (decomp.)]. 2-Amino- furnishes 2-acetamido-3-phenylquinoline (III), m.p. 107-108° 2-(o-Benzamidophenyl)-quinoline (IV), m.p. 124°, is obtained by benzoylation of the NH₂-derivative. Attempts to cyclise compounds (I)--(IV) have not been successful. Benzoylphenacylamine, m.p. 125-126°, prepared along with the Bz₂ compound, m.p. 173-174°, from the corresponding amine, condenses with isatin in EtOH-KOH to form 3-benzamido-2-phenylquinoline-4-carboxylic acid, m.p. 254-255°, which with H₂PO₄ gives 3-amino-2-phenylquinoline [3-NHBz- (V), m.p. 179-180°, and 3-pnitrobenzamido-derivatives, m.p. 223°]. Cyclisation of (V) with P₂O₅ affords 2-phenyl-3:4:6:7-dibenzo-1:5-maphthyridine, m.p. 197-198° (monopicrate, m.p. 240-241°), whilst the corresponding Ac derivative yields an unidentified product, m.p. 199°. F. R. S.

Ac derivative yields an unidentified product, m.p. 199°. F. R. S. Synthesis of nitrogenous hetero-rings. XX. Synthesis of dibenz-pyridocoline derivatives. III. Synthesis of 3':4':3'':4''-tetra-methoxy-1:4:5:8-tetrahydro-2:3:6:7-dibenzpyridocoline [etc.]. S. Sugasawa, K. Kakemi, and H. Kazumi (Ber., 1940, 73, [B], 782-789; cf. A., 1939, II, 281),—Diveratryl ketone (prep. from Pb homo-veratrate at 240—270°/vac.; not from alkaline-earth salts), m.p. 98—99° (oxime, m.p. 108—111°), with (NH4)₂CO₂ and HCO₂H at 170—175° gives the N-CHO derivative, m.p. 129—130°, hydrolysed by hot 20%, HCl to ββ'-di-3: 4-dimethoxyphenylisopropylamine (I), m.p. 88—89° (picrate, decomp. 147—149°; Bz derivative, m.p. 156°), and cyclised by POCl₃ in xylene at 100° to 6: 7-dimethoxy-3-veratryl-3: 4-dihydroisoquinoline (II), an oil (perchlorate, m.p. 230—232°). H₂ converts (II) in presence of PtO₂ and a little HCl in EtOH into 6: 7-dimethoxy-3-veratryl-1: 2: 3: 4-tetrahydroisoquinoline hydro-chloride, m.p. 206° [Bz derivative, m.p. 149—150°, of the base (III)], which with CH₂O in aq. HCl at 100° gives 3': 4': 3'': 4''-tetramethoxy-1: 4: 5: 8-tetrahydro-2: 3: 6: 7-dibenz-quinolizine [-pyridocoline] (IV), m.p. 283—284° (decomp.) [hydrochloride, +0·5H₂O, m.p. 272° (decomp.); methiodide, +4H₂O, brown at ~250°, decomp. 266°]. Heating (III) in 90% (HCO₄H, treating the product with POCl₃ at room temp. and then 100° and finally with KI in dil. HCl gives 3': 4': 3'': 4''-tetramethoxy-1: 4: 4a: 8-tetrahy-dro-2: 3: 6: 7-dibenzpyridocolinium iodide, +H₂O, m.p. 190—192° (decomp.), which absorbs 2 H (catalyst) to give (IV) and with I in FtOH vives the 1: 4: 5: 8-H_visomeride m p. 225—226° [also gives dro-2: 3:6:7-dibenzpyridocolinium iodide, $+H_2O$, m.p. 190—192° (decomp.), which absorbs 2 H (catalyst) to give (**IV**) and with I in EtOH gives the 1:4:5:8-H₄-isomeride, m.p. 225—226° [also gives (**IV**) by hydrogenation (2 H)]. (**I**) gives (Schotten-Baumann) the N-homoveratryl derivative, m.p. 138—139°, converted (PCl₃-xylene) into 6:7-dimethoxy-1:3-diveratryl-3:4-di-, +H₂O, m.p. 150° (hydrochloride, +1.5H₂O, decomp. 180°; picrate, +1.5H₂O, decomp. 196—197°), and thence -1:2:3:4-tetra-hydroisoquinoline (**V**), m.p. 134—135° (hydrochloride, +0.5H₂O, decomp. 214—215°). CH₂O-aq. HCl at 100° converts (**V**) into a mixture, which by chromato-graphy (Al₂O₃-C₆H₆) gives 3':4':3'':4''-tetramethoxy-1-veratryl-I:4:5:8-tetrahydropyridocoline (**VI**), m.p. 172° (hydrochloride, decomp. 229—230°), and a mixture, m.p. 110—130°, possibly con-taining veratryltetrahydroisopalmitin. With, successively, 3:4:1 (OMe)₂C₆H₈·CH₂⁻COCl-NaOH, POCl₃-xylene, and KI, (**III**) gives

Pyrazoles, pyridylpyrazoles, etc.—See B., 1943, II, 302.

Constitution of 1-phenyl-d-fructosone.—See A., 1943, II, 294.

Effect of caffeine and other iminazole compounds on hæmatins and their derivatives. J. Keilin (*Biochem. J.*, 1943, 37, 281–289).— When caffeine (I) is added to an alkaline solution of protohæm, the solution turns from reddish-brown to red and the two diffuse absorption bands are replaced by much stronger bands of shorter λ ; the solution is no longer opalescent, and no ppt. is formed on keeping. A similar effect is produced by (I) on meso-, deutero-, and hæmato-hæm. The product so obtained is not a caffeine-hæmochromogen since the (I) combines with the porphyrin and not with the Fe^{**}. ~ 20 mols. of (I) per mol. of hæm or prophyrin are required for complete transformation. (I) also reacts with CO-protohæm (II). and the two absorption bands at 565 and 542 m μ , are shifted to 590 and 551 m μ ., respectively. Only 1 mol. of (I) per mol. of (II) is required to produce this change. (I) gives no reaction of this type with CO-hæms such as those derived from hæmato-, deutero-, and meso-hæmatin. It is suggested that a CO-caffeine-hæmochromogen may be formed, or the (I) may react with the porphyrin. Only (I)and chlorocaffeine (III) out of a large no. of purines including theobromine, theophylline, and 1:3:7-trimethyluric acid react in this way with hæm, (II), porphyrin, and metallo-porphyrins. The fact that (III) behaves like (I) shows that the H in position 8 can be replaced by Cl, but not by O. Thymine, cytosine, and uracil are without effect on various hæms or their porphyrins. Of all the glyoxaline compounds tested only pilocarpine, and to a smaller extent I-methylglyoxaline, react like (I) with the porphyrin, but, in contrast to (I), they yield parahæmatin, hæmochromogen, and COhæmochromogen compounds with hæmatin, hæm, and CO-hæm respectively. Globin and certain serum-proteins react with porphyrin in the same manner as (I) does, whilst none of their constituent NH_{a} -acids including histidine gives the reaction, and it is suggested that either these proteins contain another, not yet isolated, constituent having the above properties, or that the glyoxaline ring of histidine, when it is part of a polypeptide chain, may have some of the properties of the glyoxaline rings of (I) and pilocarpine. The bearing of the results on the physico-chemical properties and pharmacology of ₁(I), and on the mechanism of (II) diuresis, is discussed. J. N. A.

Chlorophyll-c.—See A., 1943, III, 703.

Benzthiazoles.—See B., 1943, II, 302.

Aldehydo-methylene derivatives of quinolines, benzoxazolines, and thiazolines.—See B., 1943, II, 278.

Quinolines ox- and thi-azolines.—See B., 1943, II, 278.

Thiazinocyanines. II. Cyanines containing the dihydro-1:3-thiazine nucleus. (Miss) F. M. Hamer and R. J. Rathbone (*J.C.S.*, 1943, 243-249; cf. A., 1942, II, 182).-2-Thiotetrahydro-1:3-diazine with Me₂SO₄ gives the 2-Me, b.p. 155-160°/50 mm., and with Et₂SO₄ affords the 2-*Et* derivative, b.p. 145-150°/40 mm. The Me compound with MeI yields 2-methylthioldihydro-1: 3-diazine methiodide (I), m.p. 132-133°, with considerable loss on crystallis-ation; the 2-*Et* ethiodide (II), m.p. 98°, is similarly obtained. C_3H_5 N and (I) form 2-thio-3-methyltetrahydro-1: 3-thiazine, m.p. 88°, and the 3-*Et* compound, similarly obtained, has m.p. 68°. 2-Methyldihydro-1: 3-thiazine methiodide with NPhCH-NHPh gives and the 3-Et compound, similarly obtained, has m.p. 68° . 2-Methyldihydro-1: 3-thiazine methiodide with NPh:CH·NHPh gives 2- β -anilinovinyldihydro-1: 3-thiazine methiodide, m.p. 165° (Ac derivative, m.p. 180— 185°). 2-Methylbenzoxazole ethiodide, NEt₃, and (II) in EtOH afford [2-(3-ethyldihydro-1: 3-thiazine)][2-(3-ethyl-benzoxazole)]-, m.p. 260° (decomp.), and [2-(3-methyldihydro-1: 3-thiazine)][2-(3-ethyl-6: 7-benzbenzoxazole]-methincyanine iodide, m.p. 264° (decomp.) is prepared from (I), NEt₃, and 2-methyl-6: 7-benzbenzoxazole ethiodide. [2-(3-Methyldihydro-1: 3-thiazine)][2-(3-methylbenzthiazole)]-methincyanine iodide, m.p. 283° (decomp.) m.p. 264° (decomp.) is prepared from (I), NEt, and 2-methyl-6: 7-benzbenzoxazole ethiodide. [2-(3-Methyldihydro-1: 3-thiazine)][2-(3-methylbenzthiazole)]-methincyanine iodide, m.p. 283° (decomp.), is obtained from (I), 2-methylbenzthiazole methiodide, and K₂CO₃, whilst the corresponding Et derivative, m.p. 265° (decomp.) (lit. decomp. 238°), is prepared from (II) and the ethiodide. Similar preps. are made from (I) or (II) with the appropriate benzthiazole derivative: [2-(3-methyldihydro-1: 3-thiazine)][2-(3-methyl-4:5-, m.p. 226° (decomp.) [Et compound, m.p. 238° (decomp.)], and -6: 7-benzbenzthiazole]]-methincyanine iodide, m.p. 267° (decomp.) [Et compound, m.p. 254° (decomp.)]; [2-(3-thyldihydro-1: 3-thi azine)][2-(5-chloro-3-sthylbenzthiazole]]-, m.p. 251° (decomp.), [2-(3-methyldihydro-1: 3-thiazine)][2-(6-chloro-, m.p. 283° (decomp.), -(6-acetamido-, m.p. 279° (decomp.), and -(3-ethyldenzthiazole]]-methincyanine iodide, decomp. 249°; [2-(3-ethyldihydro-1: 3-thiazine)] [2-(3-ethylbenzstenazole)]methincyanine iodide, m.p. 264° (decomp.), and the corresponding Me derivative, m.p. 271° (decomp.); [2-(3-methyldihydro-1: 3-thiazine)][2-(1-methylquinoline)]-, m.p. 125°/de-comp.), [2-(1-ethylquinoline)-, m.p. 189° (decomp.) [Et derivative, m.p. 169° (decomp.)], [4-(1-methylquinoline)]-, m.p. 264° (decomp.), and the corresponding Me derivative, m.p. 271° (decomp.); [2-(3-methyldihydro-1: 3-thiazine)][2-(1-methylquinoline)]-, m.p. 164--165° (de-comp.), and [4-(1-ethylquinoline)]-methincyanine iodide, m.p. 202° (decomp.), [Et derivative, m.p. 243° (decomp.); [2-(3-methyldihydro-1: 3-thiazine)][2-(3-ethylbenzoxazole)]-, m.p. 270° (decomp.), and -3(-ethylbenzthiazole)]-trimethincyanine iodide, m.p. 270° (decomp.), and -3(-ethylbenzthiazole)]-trimethincyanine iodide, m.p. 270° (decomp.), 5: 2'-(3'-ethylterahydro-1': 3'-thiazyl)-3-ethylrhodanine, m.p. 102°; 5: 2'-(3'-ethylterahydro-1': 3'-thiazyl)-3-ethylrhodanine, m.p. 102°; 5: 2'-(3'-ethylterahydro-1': 3'-thiazyl)-3-ethylrhodanine, m.p. 102°; 5:2'-(3'-ethyltetrahydro-1':3'-thiazyl)-3-ethylrhodanine, m.p. 102° 5:2'-(3'-methyltetrahydro-1':3'-thiazyl)ethylidene-3-rhodanine, m.p. 195° (decomp.); and 5: 2'-(3'-methyltetrahydrothiazolyl)ethylidene-3ethylhodanine, m. p. 219° (decomp.). Absorption max of the various dyes have been compared. Replacement of the thiazoline by the dihydro-1: 3-thiazine nucleus produces a bathochromic shift.

F. R. S.

VII.—ALKALOIDS.

Alkaloids of Thermopsis rhombifolia (Nutt.), Richards. R. H. F. Manske and L. Marion (Canad. J. Res., 1943, 21, B, 144—148; cf. A., 1943, 11I, 294).—T. rhombifolia (excluding roots) contains N-methylcystisine (0·107), thermopsine (0·048), 3-methoxypyridine, rhombifoline (0·022), $C_{16}H_{20}O_2N_2$ (?) (perchlorate, m.p. 242°; picrate, m.p. 207°), cytisine (0·009), rhombinine (0·04%), $C_{16}H_{22}O_2N_2$ (?) [perchlorate, m.p. 243°], and neutral compounds A, $C_{19}H_{20}O_{10}$, m.p. 218—220°, and B, $C_{22}H_{16}O_6$, m.p. 257°. All m.p. are corr. A. LI.

Alkaloids of papaveraceous plants. XXXVIII. Bocconia arborea, Wats. R. H. F. Manske (Canad. J. Res., 1943, 21, B, 140–143).— B. arborea (excluding roots) contains chelerythrine (0.86), protopine (0.04%), allocryptopine, alkaloid P61, C₂₁H₁₉O₅N (? 2 OMe and 1 NMe groups), m.p. 210°, and neutral compounds A, C₂₀H₁₇O₄N, m.p. 302°, B, C₂₀H₁₅O₄N, m.p. 191°, and C, C₂₁H₃₃O₅N, m.p. 332° (shrinks at 327°). Phenolic alkaloids are absent. All m.p. are corr. A, LI.

(shrinks at 327°). Phenolic alkaloids are absent. All the definition of the form of the expected 2-methylindole-5-carboxylic acid. Similarly, n-bualde-hyde-p-carboxyphenylhydrazone, m.p. 230° (decomp.), which, when heated with anhyd. ZnCl₂ to 175–185°, yields 2-methylindole and not the expected 2-methylindole-5-carboxylic acid. Similarly, n-bualde-hyde-p-carboxyphenylhydrazone, m.p. 170°, failed to yield the expected indole derivative. Na 1:2:3:4-tetrahydrocarbazole-6-carboxylic acid (1 mol.) [from cyclohexanone-p-carboxyphenylhydrazone (Collar and Plant, A., 1926, 735)] with dry Cl-(CH₄)₂NHEt₂Cl (II) (1 mol.) (Gough and King, A., 1928, 1231) at 150° for 1½ hr., liberation of base by aq. NH₅, and treatment with Et₂O-HCl affords β -diethylaminoethyl-1:2:3:4-tetrahydrocarbazole-6-carboxylate hydro-chloride, m.p. 241–242°. cycloHexanone-m-carboxyphenylhydrazone yields on cyclisation with 20% H₂SO₄ two acids, m.p. 286° and 212°, probably 1:2:3:4-tetrahydrocarbazole-5- and -7-carboxylic acid, but neither gave the corresponding acid chloride with SOCl₂ or SOCl₂-C₃H₅N. o-NH₂·NH·C₆H₄·CO₄H (from anthranilic acid) is freed from o-diazobenzimide by reduction with Zn-AcOH, addition of HCl, and removal of the imide by filtration; with cyclohexanone-ocarboxynbenziburdene-ocarboxylic acid, but neither gave the corresponding acid chloride with SOCl₂ or SOCl₂-C₃H₅N. o-NH₂·NH·C₆H₄·CO₄H (from anthranilic acid) is freed from o-diazobenzimide by reduction with Zn-AcOH, hexanone, the acid (warm, aq. hydrochloride) gives cyclohexanone-ocarboxynbenziburdene-ocarboxynbenzi addition of HCl, and removal of the imide by filtration; with cyclo-hexanone, the acid (warm, aq. hydrochloride) gives cyclohexanone-o-carboxyphenylhydrazone, m.p. 162°, cyclised by 20% H₂SO₄ to 1:2:3:4-tetrahydrocarbazole-8-carboxylic acid, m.p. 203° (Ei ester, m.p. 76°), the Na salt of which with dry (II) at 150° for 2 hr. and treatment as above gives β -diethylaminoethyl-1:2:3:4-tetrahydro-carbazole-8-carboxylate hydrochloride, m.p. 208°. In an attempt to prepare 4-chloro-1:2:3:4-tetrahydrocarbazole-6-carboxylic acid, 2-chlorocyclohexanone is treated with excess of NHEt₂ in presence of NaI at room temp., giving (2-keto-1-cyclohexyl)diethylamine [2-diethylaminocyclohexanone], b.p. 188°/742 mm. (hydrochloride, m.p. 226—228°). Camphor in EtOH, refluxed with (I) and NaOAc for 2 hr., gives camphor-p-carboxyphenylhydrazone, m.p. 251°; for 2 hr., gives camphor-p-carboxyphenylhydrazone, m.p. 251°; attempts to cyclise this to 1-methyl-1: 4-(dimethylmethylene)-1:2:3:4-tetrahydrocarbazole-6-carboxylic acid failed, as 1:2:3:4-tetrahydrocarbazole-o-carboxylic acid failed, as did attempts to prepare the corresponding -8-carboxylic acid from camphor-o-carboxyphenylhydrazone, m.p. $224-226^{\circ}$ (decomp.). Et cyclohexan-2-one-1-carboxylate with diazotised p-phenetidine gives 1-Et 2-ketopimelate p-ethoxyphenylhydrazone, m.p. 114°, cyclised by 10% H₂SO₄ in EtOH to Et₂ γ -(2-carboxy-5-ethoxy-3-indolyl)butyrate, m.p. 93°; the free acid, m.p. 206°, is decarboxylated by heating with a subscripts of the carboxylate decarboxylate by heating m.p. 93°; the free acid, m.p. 206°, is decarboxylated by heating with a small amount of powdered glass to 220–230° to γ -(5-ethoxy-3-indolyl)butyric acid, m.p. 133° [Et (III), m.p. 69°, and Me ester (**IV**), m.p. 84°] (III) is reduced (EtOH-Na) to δ -5-ethoxy-3-indolyl-butyl alcohol, b.p. 215°/2 mm. (phenylurethane, m.p. 117–118°). (**IV**) with N₂H₄, H₂O-EtOH at 130–145° yields γ -(5-ethoxy-3-indolyl)-butyrhydrazide, m.p. 157°, which with aq. HNO₂ at 0° gives the corresponding azide; this added in small amounts to H₂O at 100° fails to yield NN'-bis-(5-ethoxy-3-indolyl)propylcarbamide, but the waste liquor affords γ -(5-ethoxy-3-indolyl)propylammonium chlorid, m.p. 205° chloride, m.p. 205°. F. O. H.

chloride, m.p. 205°. F. O. H. Strychnine alkaloids. CX. Strychnone and ψ -strychnine as byproducts of the preparation of ψ -strychnine. Further experiments in the series. CXI. Transformations of dihydro- ψ -strychnine. H. Leuchs and F. Rack (Ber., 1940, 73, [B], 731-739, 811-817).--CX. The neutral by-products (10-15%) obtained during oxidation of strychnine (I) in CHCl₃ by Fehling's solution (A., 1937, II, 435) contain strychnone (II) (3-4.5%), C₂₁H₂₀O₃N₂, sinters 240°, m.p. ~268° (decomp.; vac.), [a] - 667°/d in CHCl₃, and ψ -strychnone (III) (~0.5%), C₂₁H₂₀O₄N₈, m.p. 315-317° (decomp.; vac.), [a] +33.3°/d in CHCl₃. In (II) the CH₂ next to N-b has been oxidised to CO, so that (II) is "diamidostrychnine" and its neutral properties are accounted for. H₂-PtO₂ converts (II) in 50% AcOH into a H₂derivative, m.p. 165-175° (vac.), [a] -365°/d in CHCl₃. 12x-HCl at room temp. hydrolyses (II) to the NH₂-acid, "strychnone hydrate" (IV), sinters 200°, m.p. 220-225° (vac.), and an amorphous, blue product, C₄₂H₂₃O₆N₂,HCl. (IV) is sol. in NH₃ or HCl; its hydrochloride is readily hydrolysed. Ac₂O at 100° reconverts (IV) into (II). H₂-PtO₂ converts (III) in 50% AcOH into its H₂-derivative, sinters 290°, m.p. ~330° (decomp.; vac.), [a] +116°/d in AcOH, previously obtained as an impurity in dihydro- ψ -strychnine. Adding SO₂ to strychnine oxide in warm aq. HCl gives (I) and an inner salt, C₂₁H₂₂O₂N₂,SO₃, m.p. 270-275° (decomp.; vac.), containing a semipolar N-S linking. ψ -Strychnine reacts with aq. SO₂ only in presence of pptd. MnO₂; warming this mixture gives C-sulphonic acids, (a) decomp. 280-305°, [a] -150°/d in 0·1N-NaOH, and (b) +5H₂O, [a] (anhyd.) -189°/d in 0·1N-NaOH. At 100-125°/vac., (b) becomes orange and loses >5 H₂O, presumably forming an anhydro-salt or lactone. Zn dust in boiling 50% AcOH converts (a) into strychninesulphonic acid-I, [a] -230° in 0·1N-NaOH. N-Methyl-sec.- ψ -strychnine (V), with SO a sulphonic acid. [a] -128.0°/d, and a mixture, [a] -31.8°/d in other and in aq. Hisr (1 mol.) gives only a Br₁-compound (50%) [perdiorate (VII): Br is attached to a C₄H₄ nucleus]. Only amorphous material is obtained from (V) by KMnO₂-COMe₂. The methoperchlorate (VII) of (V) and Br (4 atoms) in H₄O give similarly only a perbromide, whence SO₂ yields the Br₁-derivative methoperchlorate, sinters 250°. decomp. 265–270°. With NaOMe₂ (VII) gives the O.Me ether (VIII). C₂H₄₂O₃N₂ (Acotains CC-OMe), which with aq. N4OH,HCl at 100° and then AIClO₄, or a trace of hot HClO₄, yields the methoperchlorate, C₂₂H₄₂O₃N₂ (MeClO₄, m. p. 290–295° (decomp.) with Br-CHCl₃ at 0° and then AIClO₄ (VIII) gives a perbromide and thence a Br₂-derivative methoperchlorate, C₂₂H₂₂O₃N₂Br₂McClO₄, decomp. 260–330°. Reduction of the methiodide of (VIII) by Na-Hg in H₂O gives an amorphous mixture, whence MeI yields a small amount of a salt. C₂₁H₄₂O₃N₂ (MeI, m.p. 275–278° (decomp.); Na-Hg reduces (VIII) in MeOH to a product, m.p. 170–172° (vac.). Oxidation of (VIII) by KMO₄-COMe₂ gives no identifiable products; that of the ether, C₂₁H₄₂O₃N₂ (M), results only in hydrolysis to the base, C₃₃H₄₀O₃N₂ (*Perchlorate*). The base, C₄₁H₄₀O₃N₂, m.p. 148° (A, 1938, II, 2038), with CNBr in C₄H₃ gives the quaternary salt (derived perchlorate, m.p. ~280°) and cyanoamide, C₂₄H₃₁O₃N₂, m.p. 110° (decomp.); (IX) gives similarly a quaternary salt (derived methoperchlorate, C₂₁H₂₉O₃N₂, sinters 155°, m.p. 165–166°. The base, C₃₂H₂₉O₃N₂, obtained by reducing the methiodide of (V) by Na-Hg, with KMo₄ in COMe₂ at 0° gives 10°, of a neutral substance, C₂₄H₂₉O₃N₂, obtained by reducing the methiodide as hydrochloride or hydrobromide and gives the Me ether (XI), m.p. ~200° vac.). With Cl₂-CCl₄ (X) in HCl gives a Cl₄-derivative, sinters 270°, m.p. 280–282° (decomp.; vac.), [a] -597° (d in CHCl₃, best isolated by way of the Me et

CX1: H₂-PtO₂ converts ψ -strychnine in HCl-H₂O-AcOH partly into dihydro- ψ -strychnine (**X**), C₂₁H₂₄O₃N₂, m.p. 240—243° (vac.), [a] +38·7°/d (lit. +34·5°) in CHCl₃, which is purified as hydrochloride or hydrobromide and gives the Me ether (**X**I), m.p. ~209° (vac.). With Cl₂-CCl₄, (**X**) in HCl gives a Cl₁-derivative, sinters 270°, m.p. 280—282° (decomp.; vac.), [a] -59·7°/d in CHCl₅, best isolated by way of the Me ether, m.p. 212—215° (vac.), [a] +51°/d in CHCl₅. With aq. Br-HBr, (**X**) gives the Br₁-derivative, m.p. 240—244° (decomp.; vac.), [a] -61° in CHCl₃ [Me ether, m.p. 205— 207° (vac.)]. With PhCHO and NaOMe-MeOH, (**X**I) gives a little benzylidene-, m.p. 209—215°, [a] -108°/d in CHCl₃ (positive Otto reaction) (much ψ -derivative is formed), and thence (Na-Hg in HCl-MeOH-H₂O) benzyl- ψ -dihydrostrychnine, m.p. 208—212° (vac.), decomp. 220° [m.p. 235—238° (decomp.; vac.)] (hydrochloride), which is also obtained by catalytic hydrogenation of benzylideneor benzyl- ψ -strychnine, m.p. 125—135° (vac.), decomp. 145°. Boiling NaOMe-MeOH converts (**X**) into isodihydro- ψ -strychnine Me ether (**XII**), sinters at 325°, m.p. ~345° (decomp.; block), [a] +116°/d in CHCl₃, which yields isodihydro- ψ -strychnine, 332—334° (decomp.; vac.) [CHPh: derivative, m.p. 190—192° (decomp.) (negative Otto reaction]]; this absorbs 6 H (PtO₂; HCl-AcOH-H₂O), yielding 13·4% of a base, C₂₁H₂₄O₂N₂, m.p. 226— 228°, [a] -42° in CHCl₃ (perchlorate, sinters ~141°), previously (A, 1934, 312) obtained from isodihydrostrychnine and in which N(a)·CO·CH₂·CH·O·CH₂ has been converted into N·CO·CH:CH + OH·CH₂· In Ac₂O (blue solution) or Ac₂O-C₃H₅N at 100°, (**XII**) gives the ON-Ac₂ derivative, m.p. 248—250° (decomp.; vac.). In Ac₂O at 100°, (**X**) or (**XI**) gives a sall, C₂₃H₂₇O₄N₂ClO₄, m.p. ~280—285° (decomp. from 270°; block), and ~10% of the N-Ac derivative, m.p. 267—269° (decomp.; vac.) (the main product formed by Ac₂O-C₃H₅N); this salt absorbs 6 H (PtO₂

Veratrine alkaloids. XIX. Protoveratrine and its alkamine, protoverine. W. A. Jacobs and L. C. Craig (J. Biol. Chem., 1943, 149, 271-279; cf. A., 1942, II, 240).—Protoveratrine (I), $C_{39}H_{67}O_{13}N$, decomp. 275° (depends on rate of heating) after darkening and sintering, and warm aq. NaOH-MeOH, followed by CHCl₃ extraction and saturation with CO₂ [limits formation of (III)], give, after decomp. of the CHCl₃ compound, protoverine (II), $C_{27}H_{49}O_{9}N$, anhyd. (dried at 120°/2 mm.) or $+H_2O$, slowly softens and melts at 210-216°, or +2MeOH, softens to a resin at 195-200°, $[a]_2^{56} - 12°$ in $C_{3}H_{3}N$. A little isoprotoverine (III), decomp. 264° after sintering and darkening, $[a]_2^{26} - 42°$ in $C_{3}H_{4}N$, is also isolated, and it can be obtained by isomerisation of (II) with aq. MeOH-NaOH at 50°. (II) and COMe₂-HCl-MeOH yield acetonylprotoverine, $C_{30}H_47O_9N$, sinters and colours at >235°, and gradually melts to a dark mass at 253-256° [hydrochloride, m.p. 278-281° (decomp.), after sintering]; (I) does not give a similar derivative. (II) and Na-BuOH (but not H_2 -PtO₂) afford a H_2 -compound, decomp. >300°, increasing decomp. at 330-335°, $[a]_{25}^{26} - 54°$ in $C_{5}H_{5}N$. (III) and H_2 -MeOH-PtO₂ yield a H_2 -derivative, slow decomp. at 315-320° after softening and discoloration, $[a]_{25}^{26} - 49°$ in $C_{5}H_{5}N$. (III) behaves as a tert, base, and contains a double linking and probably 9 OH groups, and is a hexacyclic tert. sterol base. Structures of (I) and (II) are discussed, and the relation between veratrine and potato alkaloids is noted (cf. Prelog et al., A., 1943, II, 106). A. T. P.

Lunamaridine, C₁₀H₁₅O₂N, m.p. 209—210°, from bark of *Lunasia* amara.—See A., 1943, III, 675. L 3 (A., 11.)

VIII.—ORGANO-METALLIC COMPOUNDS.

Mercurated aryl alkyl ketones.—See B., 1943, III, 225.

IX.—PROTEINS.

Polarographic researches on proteins. I. Polarography as a research method. C. Tropp. II. Application to changes of state of fibrinogen. L. Jühling, C. Tropp, and E. Wohlisch. III. Albumin, globulin, fibrinogen, plasma, and serum. C. Tropp, L. Jühling, and F. Geiger (Z. physiol. Chem., 1939, 262, 199-209, 210-224, 225-242).—I. An exposition of the method and its application to proteins.

II. Pure fibrinogen (I) behaves polarographically like other Scontaining proteins, giving the typical double step curve. Heatdenaturation of (I) in 10% CO(NH₂)₂ solution causes elevation of both protein steps. When treated with thrombin in 10% CO(NH₂)₂ the corresponding elevation of both steps is only seen after dilution of the CO(NH₂)₂ content to 3%. Trypsin elevates both protein steps at room temp. and at 40° . When the action of the enzyme is prolonged, the first step disappears and the second is flattened. The first step is correlated with the acid-amide linking. The elevation of the second step marks the increase in cystine materials due to enzyme action. The flattening of the second step denotes that under the influence of continued alkaline enzymic hydrolysis the liberated cystine escapes detection owing to oxidation.

that under the influence of continued alkaline enzymic hydrolysis the liberated cystine escapes detection owing to oxidation. III. Albumin and globulin (II), like (I), show a definite elevation of both protein steps on heat-denaturation. The max. protein concn. permitting polarographic analysis is for (II) 3-2%, for (I) 0.48%, for other proteins intermediate concns. The polarographic dilution curves are shown as plane diagrams which differ for each protein. All show a "cross-over effect" due to the lowering of the second below the first step. At high dilutions all the protein systems show similar behaviour. The plasma and serum diagrams are interpreted as interference diagrams of the corresponding basal proteins. The proteins examined can all be differentiated polarographically. J. H. B.

Fractionation of protein mixtures by electrophoresis. H. Gutfreund (*Biochem. J.*, 1943, 37, 186—189).—Proteins are separated by electrodialysis in a buffer at the isoelectric point of the one to be purified. The others collect at the top or bottom of the cell, and are separated by carefully removing suitable portions of the cell contents, leaving the desired protein electrically homogeneous.

R. L. E.

Iron proteins of spleen. Structure of ferritin. R. Kuhn, N. A. Sörensen, and L. Birkofer (*Ber.*, 1940, **73**, [*B*], 823—837).—Ferritin (**I**) is obtained by Laufberger's method (A., 1938, III, 208) from the spleen of horses, dogs, cats, or jackals, but not from that of guineapigs, rabbits, or a whale, although the spleen of the latter group was rich in Fe. Spleen containing (**I**) is stable at 80°; others coagulate. (**I**) is dimorphic and has $[a]_{cd}^{21} \pm 30^{\circ}$ in H₂O. All the Fe is Fe^{TT}, being liberated as Fe^{TT} by dil. HCl but unaffected by 2:2'-dipyridyl. Reduction to Fe^{TT} is impossible without removal of Fe from the mol. (**I**) has no catalase, peroxidase, tyrosinase, aldehyde-dehydrase or -mutase action, confirming the view that biological catalysts function only when a change of valency is possible. The Fe content of (**I**) can usually be raised to ~21% (cf. *loc. cit.*), but occasionally to 24%. Dialysis against N-HCl removes the Fe and all the P. The S is entirely accounted for as cysteine (**II**) and methionine (**III**). Hydrolysis by boiling 6N-H₂SO₄ gives $Fe_2(SO_4)_3$, H₃PO₄, guanine, adenine, thymine, cytosine, a reducing sugar (**IV**) (? deoxyribose; gives no pentose reaction), and NH₂-acids. Determination of the N content of the purines, the reducing power of (**IV**), and the H₃PO₄ indicate that these ingredients are totally accounted for as the thymonucleic acid of Levene *et al.* (cf. A., 1908, i, 587). (**I**) containing 21·1% of Fe contains also 54·5% of protein and 12·1% of nucleic acid; the residual 33·4% necessitates the Fe being present as FeO₂H (theory 33·6%) and excludes its presence as Fe(OH)₃. The absorption spectrum of (**I**) (steady rise in a from 0 at 600 mµ. to ~2300 at ~380 mµ.; no max.) resembles that of Fe(NO₃)₃ at pH 6·6 (acetate buffer), confirming the presence of Fe^{TT}. Quant. measurement of the pptn. by (NH₄)₂SO₄ confirms the homogeneity of (**I**). Determination of various NH₂-acids shows that no one NH₂-acid can be attached to all the F

X.—MISCELLANEOUS UNCLASSIFIABLE SUBSTANCES.

A., H.--XI,
speciosa, Mass., 4·1 and 1·0, A. hypoleuca (Muelenb.), Wain., 3·4 and
1·4, and A. heterochroa, Wain., 1·2 and 0·45% [contains also a
(?) hydroxyanthraquinone) dye, ? blastenin, m.p. 278?]. In Ac₂OC₈H₈N at 75°, (I) gives the acetate, m.p. 225-227° (loc. cit., m.p.
178°), which gives no colour with C(NO₂)₄. Boiling AcOH dehydrates
(I) to anhydrozeorin acetate (II), m.p. 211-215° (loc. cit., 158°), [a]³⁰
+94·52° in CHCl₂, and mixed isomerides (III), m.p. 65-75°. Crude
(II) and (III) are hydrolysed by boiling 20% KOH-MeOH to pure
(m.p. 211-214°) and impure anhydrozeorin, C₂₀H₈₀O, respectively.
HCl-EtOH dehydrates (I) to zeorinin (IV), C₃₀H₈₀O, m.p. 181-183°,
[a]³⁰ +50·0° in CHCl₃ (yellow in C(NO₂)₂; acetate (V), m.p. 197200°; reddish-violet Liebermann reaction]. Na₂Cr₂O, oxidises
(IV) in AcOH at ≥60° to zeorinone, C₃₀H₈₀O (CO in place of CH₂),
m.p. 184° (no acetate or oxime). With CrO₃-AcOH at 60-66°. (V)
gives a saturated [C(NO₂)₄] acetate, C₃₂H₆₂O, m.p. 230-236° [oxime,
m.p. 293° (decomp.)], containing CO in place of CH₂ and CH·C·OH in place of CC. BzO₂H-CHCl₂ or 30% aq. H₂O₂ in AcOH converts
(IV) in to zeorinin oxide (VI), m.p. 286-289° (289°), [a]²B⁴ + 62·5° in CHCl₄ [acetate, m.p. 255-257°, 3180 obtained from (V) and hydrolysed by KOH-MeOH to (VI)], which with conc. HCl-EtOH at 100° gives is odehydrozeorinin (VII), m.p. 183-185·5° [reddish-violet Liebermann reaction; orange red in C(NO₂)₄; acetate, m.p. 223-227°].
(VII) contains 2 C:C and, when hydrogenated (Pt-black; AcOH), slowly absorbs 2 H to regenerate (IV) having the difficultly reducible C:C. H₂-Pd-black reduces (IV) to deoxyzeorin (VIII), C₃₀H₅₉O, m.p. 166-167°, [a]³B⁴ + 48·62° in CHCl₃ (red Liebermann reaction; orange red in C(NO₂)₄; acetate, m.p. 223-227°].
(VII) contains 2 C:C and, when hydrogenated (Pt-black; AcOH

Mould tissue. XVI. Isolation of fungus cerebrin from the mycelium of Aspergillus sydowi. N. Bohonos and W. H. Peterson (J. Biol. Chem., 1943, 149, 295–300; cf. A., 1938, III, 151).—A cryst. lipin (I), $C_{46}H_{93}O_5N$, m.p. $142\cdot5$ — 143° , $[a]_D^{22}$ +11·9° in C_5H_5N , obtained from A. sydowi, is probably identical with fungus cerebrin (Reindel et al., Annalen, 1940, 544, 116). (I), obtained by Et_2O extraction of the insol. residue after autolysis and alkali extraction of extraction of the insol. residue after autolysis and alkali extraction of the mycelium, is purified through the *tetra-acctate*, $C_{64}H_{10}O_9N$, m.p. 67-67.5°, $[a]_{13}^{23}$ +20.6° in CHCl₃. (I) appears to be bound in mould tissue, as it is not obtained from unautolysed mycelium. It is degraded at 235°, H_2O is lost, and a product, m.p. 74-75° (softens at 71°), is obtained. (I) and Pb(OAC)₄-CHCl₃-AcOH at 40-50° yield (a) a ketone, $C_{16}H_{32}O$ (dinitrophenylhydrazone, m.p. 94-95°), and (b) a product hydrolysed by boiling HCl-MeOH to (probably) a compound, $C_4H_8O_3$ (2:4-dinitrophenylhydrazone, decomp. 270-280°), and (mainly) the Me ester, m.p. 68-71°, of a OH-acid; the free acid (II), $C_{26}H_{32}O_3$, m.p. 102.5-104.5° (NH₄ salt; chloral derivative, m.p. 65-66°), is obtained by boiling KOH-EtOH. (II) and Pb(OAc)₄-AcOH give (probably) an aldehyde (semicarbazone, m.p. 113-5-114°). Data confirm the structure suggested for fungus cerebrin by Reindel *et al.*, who also prepared similar derivatives. . T. F

Caneine, $C_{12}H_{24}O_{3}N_{2}$, m.p. 188—189° (picrate, m.p. 120—121°), and kitagine, $C,H,O_{3}N$, m.p. 240—242°, from jack beans.—See A., 1943, 111, 702.

XL. Enzymic degradation of polymeric carbohydrates. Lignin. XL. Enzymic degradation of polymeric carbohydrates. VII. Fractionation of linden wood and enzymic degradation of the fractions. T. Ploetz (Ber., 1940, 73, [B], 790-794).—When linden wood (*Tilea tomentosa*) is digested for 14 days with $(CH_2 \cdot NH_2)_2$ -CuO, ~34% of a residue (A) is obtained. Acid ppts. ~42% from the solution; ~24% remains sol. The components of lower OMe content are preferentially dissolved. A fraction containing 75% of pentosan had 3·28% of OMe, indicating that the OMe of the sugars occurs mainly in the pentosans. (A) is rapidly attacked by snake venom (cf. loc. cit.); up to 50% degradation the loss in wt. is accounted for by the sugar in solution; thereafter discrepancies occur. 58:5% degradation is finally achieved: the insol. material Lignin. accounted for by the sugar in solution; thereafter discrepancies occur. 58.5% degradation is finally achieved; the insol. material (B) is then a 1:1 lignin-sugar complex, containing only a little pentose. Treatment of (B) with $(CH_2 \cdot NH_2)_2$ -CuO leaves 8.8% of residue, containing 78.9% of lignin; acid ppts. from the solution a small amount of material which is degraded enzymically to the 1:1 complex, which now contains no pentose. Treating the solution from (B) with acid gives a product, which suffers 62.1% of enzymic degradation, the insol. portion (C) then containing 39% of lignin. Repetition on (C) of the two degradative procedures gives an insol. material containing 53.8% of lignin, *i.e.*, the 1:1 complex. R. S. C.

R. S. C. Reaction of sulphanilamide [with lignin].-See A., 1943, II, 298. Lignin esters.—See B., 1943, II, 281.

XI.—ANALYSIS.

51.00

New technique for ultimate micro-analysis of organic compounds. R. Belcher and C. E. Spooner (J.C.S., 1943, 313-316).—A technique is described for the micro-determination of C, H, S, and halogens in POLITECHNIK

org. compounds, by combustion at 800° in a rapid stream of O_2 (50 ml. per min.) without catalysts. Ag gauze near the exit absorbs interfering acid gases, S being determined gravimetrically in the aq. extract of this. Halogens and N oxides are absorbed in external A. LI. absorbents, halogens being determined titrimetrically.

Micro-determination of nitrogen in organic compounds by Kjeldahl's method. E. I. Aizenschtadt (Zavod. Lab., 1940, 9, 233-234). --Reduction of NO₂- and NO-compounds by glucose often requires boiling for 2 - 5 b boiling for 3-5 hr. J. J. B.

Semi-micro-analysis of anions.—See A., 1943, I, 262.

Tentative method for the determination of mono- and di-un-saturated glycerides. A. R. S. Kartha and K. N. Menon (*Proc. Indian Acad. Sci.*, 1943, **17**, **A**, 114—118).—The fat or oil is oxidised Indian Acad. Sci., 1943, 17, A. 114—118).—The fat of oil is oxidised by $KMnO_4$ —COMe₂ and tri-saturated glycerides are removed. The mixture of mono- (I), di- (II), and tri-azelaoglycerides, dissolved in Et₂O, is washed 5 or 6 times with 5% aq. Na₂CO₃ and the extract and washings are rejected, thus removing all the monobasic acids, triazelain, and a portion of the (II). The solution is cautiously extracted with 10% aq. K₂CO₃ and H₂O to extract (I) and (II). The combined extract and washings are acidified with dil. H₂SO₄ to Congerred and thoroughly extracted with Et₂O. The extract is extracted with 10 γ_0 eq. 122 and 122 are acidified with dil. H_2SO_4 to The combined extract and washings are acidified with dil. H_2SO_4 to Congo-red and thoroughly extracted with Et₂O. The extract is dried over anhyd. MgSO₄ and the solvent is removed completely under reduced pressure at a very low water-bath temp. The sap. val. of a portion of the residue is determined, this corresponding with a mixture of (I) and (II). The remaining residue is dissolved in Et₂O and washed alternately with NaHCO₃ and H₂O; the com-bined washings and extract are acidified with dil. H₂SO₄ and the pure (II), after being dried, are used for determination of sap. val. The method is applied to the oils of Mimusops elangi and Jatropha H. W.

Polarographic determination of small concentrations of aldehydes and peroxides. M. N. Michailova and M. B. Neiman (Zavod. Lab., 1940, 9, 166–168).— 10^{-8} g. of MeCHO or H_2O_2 can be estimated in presence of a large excess of O₂ by the height of the polarographic J. J. B. wave.

Identification and determination of β -phenylisopropylamine and β -phenylisopropylmethylamine. G. Dultz (Z. anal. Chem., 1940, 120, 84-88).—The two compounds are detected by the use of Kofler's micro-m.p. and sublimation procedure (cf. A., 1942, II, 1). For the determination tablets are extracted with CHCl₃ in presence of NoRM end of Micro M of NaOH, excess of 0.01N-H₂SO₄ is added, the CHCl₃ removed, and the excess of H₂SO₄ titrated with NaOH using Tashiro's indicator (100 c.c. of 0.03% Me-red + 15 c.c. of 0.1% methylene-blue). N

Determination of nicotinic acid. R. G. Martinek, E. R. Kirch, and G. L. Webster (*J. Biol. Chem.*, 1943, **149**, 245–249).—3:4:1-NH₂·C₆H₃(OH)·CO₂H is preferred to NH₂Ph etc. as chromogenic amine in the CNBr-nicotinic acid reaction; the method is less crit. with respect to pH control and time of comparison of colour; the colour reaches a max. in 5 min. and is stable for $\neq 15$ min. A. T. P.

Determination of nicotinic acid; modifications of the micro-biological method.—See A., 1943, III, 753.

Determination of nicotinic acid and its amide.—See A., 1943, III, 684

Determination of nicotine and nornicotine in mixtures. Markwood (J. Assoc. Off. Agric. Chem., 1943, 26, 283-289) .-Nornicotine (I) is converted into nitrosonornicotine and unchanged nicotine (II) is removed by steam-distillation at pH 10. The procedure is repeated after methylation of (I) to (II) with CH_2O-HCO_2H . Recoveries of 97–98% are recorded. A. A. E.

Spectrophotometric methods. Determination of quinine by absorption spectrophotometry. J. Carol (J. Assoc. Off. Agric. Chem., 1943, 26, 238-241).—With the aid of a Beckmann quartz spectrophotometer quant. measurements could be made at 250.5, 318.0, and $347.5 \text{ m}\mu$. Many compounds frequently present in preps. of quinine show no absorption at $347.5 \text{ m}\mu$, so that separation is frequently unnecessary. Separation from aloin, podophyllin, anthraquinone derivatives, other cinchona alkaloids, and yellow dyes is necessary.

A. A. E. Lignin. XXXVIII. Determination of lignin. K. Freudenberg and T. Ploetz (Ber., 1940, 73, [B], 754-757).—The concn. of H₃SO₄ used in determining lignin can be that which gives the min. yield, but sometimes, *e.g.*, with linden, no such min. exists. It is thus better to use that concn. which gives a "lignin" having max. OMe content, i.e., for Picea excelsa and Tilea tomentosa 75 and for Fagus silvatica and Sambucus nigra 66.4-66.5%. The analytical method is detailed. R. S. C.

INDEX OF AUTHORS' NAMES, A., II.

OCTOBER, 1943.

Jakob, W., 294. Jühling, L., 314.

KAKEMI, K., 310. KAREMI, K., 310. Kartha, A. R. S., 316. Kawai, S., 295. Kazumi, H., 310. Kenyon, J., 290. Kirch, E. R., 316. Koelsch, C. F., 303. Kohn, M., 298. Kraft, H., 290, 292. Kuhn, R., 314. Kulka, M., 301. Kurtz, R. A., 296.

La MER, V. K., 290. Lennartz, T., 304. Leuchs, H., 312. Levin, R. H., 307. Levitz, M., 296. Lipp, M., 306. Loewe, L., 292. Lovelace, F. E., 294. Lucht, F. J., 303. Lugal, Z., 292.

Lugal, Z., 292. MACLAY, W. D., 293. McCready, R. M., 295. McIlwain, H., 309. Manske, R. H. F., 311, 312. Marke, R. E., 304. Markwood, L. N., 316. Martinek, R. G., 316. Maurer-Stroh, H., 289. Menon, K. N., 316. Menonti, A. R., 303. Meyer, F., 292. Meyer, P.elius, M., 300. Michailova, M. N., 316. Mozingo, R., 293.

NEIMAN, M. B., 316.

Newman, M. S., 300. Niculescu, M., 294.

OECKINGHAUS, E., 306. Ohle, H., 294, 309. Olson, W. T., 293. Ozansoy, M., 292.

PAILER, M., 298. Peterson, W. H., 315. Petrow, V. A., 310. Phillips, H., 290. Platt, B. C., 290. Ploetz, T., 315, 316. Posch, E., 297. Proth, N., 306. Purves, C. B., 295.

Purves, C. B., 230.
RAC, F. L. N., 306.
Rao, F. L. N., 306.
Rao P. S., 308.
Rapson, W. S., 297.
Rathbone, R. J., 311.
Red, G., 307.
Rehberg, C. E., 291.
Rettberg, I., 296.
Ringk, W. F., 300.
Rippere, R. E., 290.
Rollett, A., 289.
Rouault, G. F., 291.
Ruhkopf, H., 309.
Ruo, C. H., 304.

SAH, P. P. T., 303. Samec, M., 295. Sandermann, W., 307. Schenck, M., 304. Schmidt, O. T., 292. Schubet, A., 308, 309. Schulte, H., 301. Seshadri, T. R., 308. Sherry, P. G., 297. Shuttleworth, R. G., 297. Siebenmark, T., 298.

Sjöberg, B., 291. Smith, L. I., 291. Sorensen, N. A., 314. Somerville, W. T., 298. Sowa, H., 302. Späth, E., 298. Spooner, C. E., 315. Stack, M. V., 310. Stansbury, H. A., jun., 304. Sugawasa, S., 310. Sugawasa, S., 310. Sugamasa, S., 310.

TROGER, H., 297. Tropp, C., 314. * Turner, H. S., 298.

ULSHAFER, P. R., 304.

VAN NICKERK, J. N., 297.

VAN NICKERK, J. N., 234.
WAGDET, JAURGE, T., 304.
Webster, G. L., 316.
Weidlich, H. A., 300.
Weisz, F. T., 290.
Weizmann, A., 296.
Wesner, M. M., 307.
West, K. A., 301.
Weygand, C., 296, 298.
Whitacre, F. M., 293.
Wilthecker, E. L., 304.
Wohl, D. E., 293.
Wolfrom, M. L., 294.
Wragg, W. R., 310.

Yosioka, I., 314. Young, W. G., 290.

Zанм, H. V., 300. Ziegler, E., 297. Zinke, A., 297.

ABBOTT, R. K., jun., 293. Aizenschtadt, E. I., 316. Algar, J., 297. Allen, C. F. H., 302. Arndt, F., 292. Asahina, Y., 307, 314. Allin-Erdtman, G., 299. Avineri-Shapiro, S., 294. Ayres, E. B., 300.

BAFF, M. P., 290. Barnes, R. P., 302. Belcher, R., 315. Bergmann, F., 296. Beyer, H., 301. Birkhofer, L., 314. Birkhofer, L., 314. Birkhofer, L., 314. Botomfeld, G. F., 289. Bloostien, B. A., 296. 301. Bobenos, N., 315. Bobis, E., 295. Brandos, A., 302. Braun, J., 292. Hrown, W. G., 296, 301. Briol, W. G., 296, 301. Bruni, G., 308. Bruni, G., 308. Butenandt, A., 304.

CAROL, J., 316. Carpenter, D. C., 294. Cavaglieri, G., 299. Chakravorty, P. N., 307. Cinnéide, R. O., 308. Craig, D., 289. Craig, L. C., 313. Cristol, S. J., 290. Curtis, E. G., 308.

DANNENBERG, H., 304. Davies, R. R., 301. Deshapande, S. S., 308. Dougherty, G., 296.

Duetz, G., 316.

ENGLISH, J., jun., 299. Epstein, E., 300. Erdtman, H., 299. Eschinazi, H. E., 296. Evans, E. F., 294.

FAN, S., 293. Fisher, C. H., 291. Folkers, K., 293. Freudenberg, K., 294, 316.

GANGULY, N. C., 306. Gates, J. W., jun., 302. Gergely, G., 298. Gilman, H., 293. Gladding, E. K., 295. Gleu, K., 308, 309. Gonenç, A., 292. Goldsmith, D. P. J., 304. Gutfreund, H., 314.

Gütheund, H., 314. HAAS, O., 296. Harrier, F. M., 311. Harsis, S. A., 233. Haslewood, C. A. D., 304. Hassid, W. Z., 295. Hauser, C. R., 300. Hein, F., 290. Hennion, G. F., 296. Hestrin, S., 294. Hibbert, H., 301. Hickey, A., 297. Hiekscher, M., 294, 309. Hill, T. L., 296. Hills, H. W. J., 290. Hodgson, H. H., 298, 299, 301. Holzen, H., 303. Hudson, C. S., 289. Hückel, W., 302.

IRVING, H., 308.

JACOBS, W. A., 313.

ERRATUM.

Abstracts A., II, 1943.

Line Page

16* For (58) read (52). 216

* From bottom.

JUDACTAN

ANALYTICAL REAGENTS WITH ACTUAL BATCH ANALYSIS

You are invited to compare the above actual batch analysis with the purities competing maker in this Country or abroad

guaranteed by the specifications of any

THE GENERAL CHEMICAL & PHARMACEUTICAL CO. LTD. Chemical Manufacturers, Judex Works, Sudbury, Middlesex

PRINTED IN GREAT BRITAIN BY RICHARD CLAY AND COMPANY, LTD, BUNGAY, SUFFOLK.