BRITISH CHEMICAL AND PHYSIOLOGICAL ABSTRACTS ISSUED BY THE ### Bureau of Chemical and Physiological Abstracts [Supported by the Chemical Society, the Society of Chemical Industry, the Physiological Society, the Biochemical Society, and the Anatomical Society of Great Britain and Ireland] #### DECEMBER, 1943 #### **BUREAU:** Chairman: L. H. LAMPITT, D.Sc., F.I.C. Hon. Treasurer: F. P. DUNN, B.Sc., F.I.C. JULIAN L. BAKER, F.I.C. G. L. BROWN, M.Sc., M.B., CH.B. H. W. CREMER, M.Sc., F.I.C., M.I.CHEM.E. C. W. DAVIES, D.Sc., F.I.C. H. J. T. ELLINGHAM, B.Sc., Ph.D., F.I.C. C. R. HARINGTON, M.A., PH.D., F.R.S. L. A. JORDAN, D.Sc., F.I.C. G. A. R. KON, M.A., D.Sc., F.R.S. H. McCOMBIE, D.S.O., M.C., Ph.D., D.Sc., F.I.C. B. A. McSWINEY, B.A., M.B., Sc.D. F. G. YOUNG, D.Sc., Ph.D. Editor: T. F. BURTON, B.Sc. #### Assistant Editors: J. H. BIRKINSHAW, D.Sc., F.I.C.* H. BURTON, M.Sc., D.Sc., F.I.C. F. G. CROSSE, F.I.C. A. A. ELDRIDGE, B.Sc., F.I.C. W. JEVONS, D.Sc., Ph.D.† E. E. TURNER, M.A., D.Sc., F.I.C., F.R.S. F. L. USHER, D.Sc. H. WREN, M.A., D.Sc., Ph.D. SAMSON WRIGHT, M.D., F.R.C.P.* * Assisted by J. D. BOYD (Anatomy), A. HADDOW (Tumours), F. O. HOWITT (Biochemistry), A. G. POLLARD (Plant Physiology), K. TANSLEY (Sense Organs), V. J. WOOLLEY (Pharmacology), and F. G. YOUNG (Ductless Glands). † Assisted by A. E. J. WELCH (Physical Chemistry). Indexer: MARGARET LE PLA, B.Sc. # A., II.—ORGANIC CHEMISTRY #### **CONTENTS** | I. | Aliphatic | 349 | VII. Alkaloids | 398 | |-----|--------------------------------------|-----|---|-----| | II. | Sugars and Glucosides . | 355 | VIII. Organo-metallic Compounds | 401 | | | Homocyclic | 357 | IX. Proteins | 401 | | IV. | Sterols and Steroid Sapogenins | 374 | | 401 | | V. | Terpenes and Triterpenoid Sapogenins | 376 | X. Miscellaneous Unclassifiable Substances. | 401 | | VI. | Heterocyclic | 380 | XI. Analysis | 403 | Offices of the Bureau: 56 VICTORIA STREET, LONDON, S.W.I # **Announcement:** Now Ready! HIS work, first published in 1933 with 17 monographs, has now grown to 44 monographs, and as in previous editions the text has been brought completely up-to-date. Extensive bibliographies make reference to more than 1300 original publications. Demy 8vo 175 pages Per Copy - Post Free #### HOPKIN & WILLIAMS Makers of Fine Chemicals 16-17 ST. CROSS STREET, LONDON, E.C.I # THE JOURNAL BIOLOGICAL CHEMISTRY FOUNDED BY CHRISTIAN A: HERTER AND SUSTAINED IN PART BY THE CHRISTIAN A. HERTER MEMORIAL FUND #### EDITORIAL' BOARD: RUDOLPH J. ANDERSON. W. Mansfield Clark. HANS T. CLARKE. CARL F. CORI. EDWARD A. DOISY. A. BAIRD HASTINGS. HOWARD B. LEWIS. ELMER V. McCollum. WILLIAM C. ROSE. WILLIAM C. STADIE. DONALD D. VAN SLYKE. HUBERT B. VICKERY. #### SUBSCRIPTION PRICE Beginning with January, 1939, 5 volumes to be issued a year £1 1s. 9d. per volume, post free > INDEX TO VOLS. 101-125 8s. net to Subscribers 12s, net to Non-Subscribers > > British Agents: BAILLIÈRE, TINDALL & COX 7 & 8 HENRIETTA STREET, LONDON, W.C.2 #### CHEMICAL SOCIETY MEMORIAL LECTURES VOLUME I, 1893-1900 (Reproduced by a photolithographic process) Price 10s. 6d., postage 7d. #### CONTENTS THE STAS MEMORIAL LECTURE. By J. W. Mallett, F.R.S. With an additional Facsimile Letter of Stas. Delivered December 13, 1892 THE KOPP MEMORIAL LECTURE. By T. E. Thorpe, D.Sc., F.R.S. Delivered February 20, 1893 THE MARIGNAC MEMORIAL LECTURE. By P. T. CLEVE. 1895 THE HOFMANN MEMORIAL LECTURE. By the Rt. Hon. Lord Playfair, G.C.B., F.R.S.; Sir F. A. Abel, Bart., K.C.B., F.R.S.; W. H. Perkin, Ph.D., D.C.L., F.R.S.; H. E. Armstrong. Delivered May 5, 1893 THE HELMHOLTZ MEMORIAL LECTURE. By G. A. Fitz-Gerald, M.A., D.Sc., F.R.S. Delivered January 23, 1896 THE LOTHAR MEYER MEMORIAL LECTURE. By P. P. Bedson, M.A., D.Sc., F.I.C. Delivered May 28, 1896 THE PASTEUR MEMORIAL LECTURE. By P. FRANKLAND, Ph.D., B.Sc., F.R.S. Delivered March 25, 1897 THE KEKULE MEMORIAL LECTURE. By F. R. JAPP, F.R.S. Delivered December 15, 1897 E VICTOR MEYER MEMORIAL LECTURE. By T. E. THORPE, Ph.D., D.Sc., LL.D., F.R.S. Delivered February 8, 1900 E BUNSEN MEMORIAL LECTURE. By Sir H. E. Roscoe, B.A., Ph.D., D.C.L., LL.D., D.Sc., F.R.S. Delivered March 29, 1900 THE FRIEDEL MEMORIAL LECTURE. By J. M. CRAFTS. 1900 THE NILSON MEMORIAL LECTURE. By O. Pettersson. Delivered July 5, 1900 VOLUME II, 1901-1913 (Reproduced by a photolithographic process) Price 8s. 0d., postage 7d. #### CONTENTS THE RAMMELSBERG MEMORIAL LECTURE. By Sir Henry A. Miers, F.R.S. Delivered December 13, 1900 THE RAOULT MEMORIAL LECTURE. By J. H. VAN'T HOFF, P.R.S. THE WISLICENUS MEMORIAL LECTURE. By W. H. PERKIN, Jun., F.R.S. Delivered January 25, 1905 THE CLEVE MEMORIAL LECTURE. By Sir Thomas Edward Thorpe, C.B., F.R.S. Delivered June 21, 1906 THE WOLCOTT GIBBS MEMORIAL LECTURE. By F. WIGGLESWORTH CLARKE. Delivered June 3, 1909 THE MENDELÉEFF MEMORIAL LECTURE. By Sir William A. Tilden, F.R.S. Delivered October 21, 1909 A. TILDEN, F.R.S. E THOMSEN MEMORIAL LECTURE. By Sir Thomas EDWARD THORPE, C.B., F.R.S. Delivered February 17, 1910 THE BERTHELOT MEMORIAL LECTURE. By H. B. DIXON, F.R.S. Delivered November 23, 1911 THE MOISSAN MEMORIAL LECTURE. By Sir William Ramsay, K.C.B., F.R.S. Delivered February 29, 1912 THE CANNIZZARO MEMORIAL LECTURE. By Sir William A. Tilden, F.R.S. Delivered June 26, 1912 TILDEN, F.R.S. BECQUEREL MEMORIAL LECTURE. By Sir OLIVER Delivered October 17, 1912 THE LODGE, F.R.S. THE VAN'T HOFF MEMORIAL LECTURE. By JAMES WALKER, F.R.S. THE LADENBURG MEMORIAL LECTURE. By F. S. KIPPING: Delivered October 23, 1913 Publishers: THE CHEMICAL SOCIETY, BURLINGTON HOUSE, PICCADILLY, LONDON, W.1. ## BRITISH CHEMICAL AND PHYSIOLOGICAL ABSTRACTS #### A., II.-Organic Chemistry #### DECEMBER, 1943. #### I.—ALIPHATIC. Conception of the outcome of chemical reactions. Its origin, operation, and limits. M. Trautz (J. pr. Chem., 1943, [ii], 162, 121—147).—A general historical review of the author's views. It is stressed that the activated state involves formation of a new and chemically distinct entity which is an intermediate common to reactants and products. R. S. C. Proton mobility and influence of substituents, especially carbonyl and sulphonyl. F. Arndt and B. Eistert (Ber., 1941, 74, [B], 423—454).—Theoretical. The following are discussed: characteristics of proton mobility; proton mobility and constitution; simple hydrides and the field effect; increase in acid nature by substituents; mesomerism and resonance; H exchange and the change in acid nature by substituents; kinetics and energy balance of proton mobility; electronic theory of the SO₂ group. H. B. Preparation of β -chloro- $\Delta\beta$ -butene.—See B., 1943, II, 337. Macromolecular compounds. CCCXII. Caoutchouc. LV. Halogen derivatives of rubber hydrocarbons. Hermann Staudinger and Hansjürgen Staudinger ($J.\ pr.\ Chem.,\ 1943,\ [ii],\ 162,\ 148-180$; cf. A., 1942, II, 293).— K_m (determined by η at 20°) for squalene in PhMe and for squalene hexahydrochloride in PhMe, CHCl₃, or tetra-PhMe and for squarene nexanydrochioride in PhMe, CFIC13, or tetrahydrofuran are $4\cdot2$ and $5\cdot4\times10^{-4}$ or, after allowance for the differing sp. gr., $3\cdot6$ and $5\cdot9\times10^{-4}$ respectively. The reason for the increase due to halogen is obscure. Hydrochlorides of balata (I) and caoutchouc (II) are prepared having mol. wts. (determined osmotically) 45,000-410,000 and K_m (in PhMe) $0\cdot42-0\cdot79$ and $1\cdot0-1\cdot3\times10^{-4}$, respectively; since (I) and (II) have $K_m 1\cdot2-1\cdot3$ and $1\cdot7\times10^{-4}$, respectively, the decrease due to halogen is due to ring-shortening by respectively, the decrease due to halogen is due to ring-shortening by cyclisation of uncertain nature; the cyclisation is also evidenced by low Cl contents, this deficiency being larger for (I) than for (II) in agreement with the respective K_m . A pronounced fall in K_m with increasing mol. wt. is shown. Interaction of ZnEt₂ with the hydrochlorides of (I) and (II) in PhMe-N₂ at -20° , raised later in steps to 40° , gives ethylpolypranes, from which some HCl has been lost and which have only about half the original degree of polymerisation; products having mol. wt. 50,000-165,000 have K_m $0.72-0.95 \times 10^{-4}$, changes from the hydrochlorides being relatively slight. If the decrease in K_m for the hydrochlorides had been due to crumpling If the decrease in K_m for the hydrochlorides had been due to crumpling of a long chain under the influence of the Cl, replacement of the Cl of a long chain under the innuence of the C, replacement of the Ci by Et should have returned K_m to approx. its original val. Absence of such a return confirms the view that the hydrochlorides are cyclised products. The product formed from (I) and HBr at 0° is very unstable; a "dibromide" (56·16% Br; theory 70%) had K_m 0·61 × 10⁻⁴, indicating cyclisation also in this case. Chloroprene, having mol. wt. 115,000, has K_m 1·65 × 10⁻⁴, thus resembling (I), (II), and Buna, and further confirming the cyclisation of the hydrochlorides. In horsely a proper of chlorides are controlled. chlorides. Laboratory preps. of chloro-caoutchouc, -balata, and Buna 85, and three technical chloro-rubbers, having 54.90-65.92% of Cl and mol. wt. 82,000-410,000, have $K_m 0.30-0.49\times10^{-4}$ in PhMe; the very low K_m , similar to that of cyclocaoutchouc, indicates much cyclisation, in which the side-chains probably participate; this is confirmed by inactivity of the Cl-products towards LiMe, LiPh, and $ZnEt_2$ (cf. the pinene hydrochloride derivative, $C_{10}H_8Cl_{10}$) this polycyclic polyterpene structure explains also the stability of the chloro-rubbers and thus their suitability for use in varnishes. K_m for various rubber derivatives are compared and low vals. explained as due to cyclisation in all cases. η increases with concn., particularly for the long mols. (high K_m). When
rubber and its derivatives are stretched, the small aggregates of long mols. are compressed laterally into large aggregates, which then act as crystals under X-rays; plasticisers function by easing the sliding of these aggregates over one another. The elasticity is due to the contraction of these aggregates over one another. of these aggregates over one another. The elasticity is due to deformation of the side-chains during stretching (compression); its extent thus depends on the nature of the branching and side-chains. Purification of the products examined is described. Configuration of $\Delta^{\alpha\gamma}$ -butadiene.—See A., 1943, I, 295. Absorption of light by organic molecules and ions according to quantum mechanics.—See A., 1943, I, 295. Assignment of absorption bands in conjugated systems of chromophores.—See A., 1943, I, 296. Effect of acidifying substituents on chromophoric systems.—See A., 1943, I, 296. Physico-chemical properties of chromophoric groups.—See A., 1943, I, 296. Conjugation of chromophores and constitution of organic compounds.—See A., 1943, I, 296. Production of carbon tetrachloride.—See B., 1943, II, 306. Influence of oxygen and sulphur atoms on the velocity of hydrolysis of the carbon-halogen bond.—See A., 1943, I, 310. Catalytic action of activated silica-alumina. Action of activated clay on n-octyl alcohol and cyclohexanone. A. V. Frost (Compt. rend. Acad. Sci. U.R.S.S., 1942, 37, 223—225).—Boiling n- C_8H_{17} . OH and activated Caucasian clay with removal of H_2 O gives C_8H_{18} 33%, C_8H_{18} 4%, $C_{16}H_{34}$ 6%, $C_{16}H_{32}$ 4%, higher saturated (2%) and unsaturated hydrocarbons 13%, tar 2%, H_2 O 11%, gas and losses 17%, and other products 5%. Boiling cyclohexanone with the clay gives C_6H_6 (~5%), cyclohexane, methylcyclopentane, and PhOH. Marine products. XIV. Astrol.—See A., 1943, III, 895. Diphenylurethane of nerol. Y. R. Naves and A. V. Grampoloff (Helv. Chim. Acta, 1943, 26, 1393).—Contrary to the suggestion of Palfray et al. (Bull. Soc., chim., 1943, [v], 10, 131), the diphenylurethane of nerol, m.p. 52°, is a well-defined individual. H. W. Benzoylation of erythritol and preparation of derivatives of O-benzoylglycollaldehyde." H. Ohle and G. A. Melkonian (Ber., 1941, 74, [B], 291—294; cf. A., 1943, II, 393).—meso-Erythritol (I) and 5 mols. of BzCl in C₅H₅N afford 98% of meso-erythritol tetrabenzoate (II), m.p. 188—188-5°. (I) and 2 mols. of BzCl afford some (II), with the 1:4-di-(III), m.p. 148°, and 1:2:4(?)-tri-benzoate, m.p. 108—108·5°. (III) and Pb(OAc)₄ in C₆H₆ afford OBz·CH₂·CHO [phenylhydrazone (unstable), m.p. 80—81°; 2:4-dinitrophenylhydrazone, m.p. 185°] and an isomeric erythritol 1:3(?)-dibenzoate, m.p. 142°, already present in the (III) used. Synthesis of optically active β -phosphatidic acids. E. Baker, I. B. Cushing, and H. O. L. Fischer (Canad. J. Res., 1943, 21, B, 119—124).—dl- and 1(-)-Glyceryl a-benzoate, m.p. $66\cdot 5-67^\circ$, $[a]_{\rm D}-16\cdot 8^\circ$ in EtOH [from d(+)-isopropylideneglycerol benzoate and aq. AcOH at 80°], with CPh₃Cl in quinoline at 100° , then at room temp., yield respectively dl-, m.p. $124-125^\circ$, and 1-y-triphenyl-methylglyceryl a-benzoate, m.p. $89-90^\circ$, $[a]_{\rm D}-12\cdot 6^\circ$ in EtOH, $-22\cdot 1^\circ$ in C_5H_5N , $-11\cdot 5^\circ$ in C_6H_6 , which with POCl₃ in C_5H_5N , then $K_3{\rm CO}_3$ under Et₃O, yield K dl-, m.p. $174-175^\circ$ (bath preheated to 145° , then heated at 10° per min.), and 1-a-benzoyl-y-triphenyl-methyl- β -glycerophosphate, m.p. $174-175^\circ$, converted by reduction (H_2 , Pd) or hydrolysis (dil. HCl at room temp.) into K dl- and (impure) l-a-benzoyl- β -glycerophosphate, $[a]_{\rm D}+9^\circ$ in $H_2{\rm O}$, respectively. Production of sodium formate.—See B., 1943, II, 307. Thermal decomposition of *n*- and *iso*-propyl formates.—See A., 1943. I. 309. Catalytic oxidation of hydroxylated and unsaturated fatty acids.—See B., 1943, II, 339. Inhibitors of the enzymic oxidation of unsaturated fatty acids.—See A., 1943, III, 915. Investigation of the metabolism of fats with deuterium as indicator. II. Formation of oleic acid from carbohydrates.—See A., 1943, III, 904. Esters of glycollic acid.—See B., 1943, II, 307. Preparation of lactic acid.—See B., 1943, II, 338. Effect of citrate on rotation of molybdate complexes of malate, citramalate, and isocitrate. H. A. Krebs and L. V. Eggleston (Biochem. J., 1943, 37, 334—338; cf. Auerbach and Krüger, A., 1923, ii, 884; B., 1924, 32).—The optical rotation of the molybdate complexes of malic, citramalic, and isocitric acid is increased by citrate, the magnitude of the increase (sometimes >100%) depending on the conen. of the substances. Account must be taken of this in the polarimetric determination of the acids by the molybdate 350 method. A procedure for determining malic and isocitric acid polarimetrically in presence of molybdate and citrate is described. The equilibrium mixture of citrate, isocitrate, and cis-aconitate which exists in presence of liver- or muscle-aconitase (at 38° and pH 6.8) contains 89.5, 6.2, and 4.3% respectively of these acids. The proportions are but little affected by increasing the pH to 7.4. Addition of MgCl₂ shifts the equilibrium in favour of citrate. Ether-like compounds. XXIV. Synthesis and reaction velocities of higher ether-acids. M. H. Palomaa [with S. Lehtimäki and A. Valkola] (Ber., 1941, 74, [B], 294—298; cf. A., 1939, I, 206).—The acids, $OMe^{\cdot}[CH_2]_n \cdot CO_2H$ with n=1-4, have previously been studied and the series is now extended to n=5-8. When n=2, the relations of $OMe^{\cdot}(MeO^{+})$ retained to $OMe^{\cdot}(MeO^{+})$. the velocities of (MeOH) esterification and acid hydrolysis of the ester are a min. due to intramol. factors. The temp. coeffs. for esterification and hydrolysis throughout are ~2.5, indicating similar energies of activation. Kinetic results are tabulated. OMe·[CH₂]₅·Cl (I), KNa(CN)₂, and KI afford e-methoxyhexonitrile, b.p. 76—78°/2·5 mm., hydrolysed to e-methoxyhexoic acid, b.p. 131—132°/5—6 mm. ζ -Methoxyheptoic acid, b.p. 160—162°/16—17 mm., is obtained from (I) by a malonic ester synthesis. OMe·[CH₂]₅·MgCl and (CH₂)₂O afford η -methoxyheptyl alcohol, b.p. 96—97°/3 mm., converted into the chloride (II), b.p. 77—78°/6·5 mm., with SOCl₂ and C₅H₅N, and then into η -methoxyoctonitrile, b.p. 107—108°/6·5 mm., which is hydrolysed (KOH in aq. MeOH) to η -methoxyoctoic acid, b.p. 144—145°/3 mm., m.p. 7°. θ -Methoxynonoic acid, b.p. 146—147°/1 mm., m.p. 10°, is obtained from (II) by a malonic ester synthesis. the velocities of (MeOH) esterification and acid hydrolysis of the (II) by a malonic ester synthesis. Keto-acids, enol-lactones, and cyclic ketones. I. Reaction of succinyl chloride with ethyl sodiomalonate. I. So-called "ethyl succinylmalonate" (ethyl 2-butanolidenemalonate) and ethyl succinyldimalonate. II. Reaction of succinyl chloride with ethyl sodiomalonate. P. Ruggli and A. Maeder (Helv. Chim. Acta, 1943, 26, 1476—1498; 1499—1501).—I. The product of the action of (CH₂·COCl)₂ (I) on CHNa(CO₂Et)₂ is shown to be Et 2-butanolidenemalonate [Et 5-keto-2-tetrahydrofurylidenemalonate] (II), densed only to a very small extent by Na in boiling C_6H_6 but gives mainly the salt $CO_2\text{Et-CH:C}(ONa)\cdot[CH_2]_2\cdot CO_2\text{Me}$, which regenerates (III) when acidified. With KOH in abs. MeOH at room temp. (III) affords the salt $CO_2\text{K}\cdot[CH_2]_2\cdot C(OK)\cdot CH\cdot CO_2\text{Et}$, which, when acidified, gives $Et \ \beta$ -keto- δ -carboxy-n-valerate, m.p. 57—58°, which acidified, gives $Et \ \beta$ -keto- δ -carboxy-n-valerate, m.p. 57—58°, which gives a violet colour with FcCl₃ and does not yield an enol-lactone when its aq. solution is evaporated. It is characterised by the labile semicarbazone, m.p. 180—181° (decomp.), which passes into 1-carbamylpyrazol-5-one-3-propionic acid, decomp. 195°, when kept in the reaction mixture. Gradual addition of (I) [modified prep. best by treatment of (CH₂·CO)₂O with SOCl₂ in presence of ZnCl₂] to a well-cooled suspension of CHNa(CO₂Et)₂ in anhyd. Et₂O gives as main product (II), m.p. 68°, which gradually gives a red colour with FeCl₃ due to scission of the enol-lactone ring and ultimately a ppt. of basic Fe^{III} succinate. With KOAc or NEt₃ in abs. EtOH (II) gives an intense blue colour which soon becomes green and ultimately pale yellow; if H₂O is added to the green solution the blue colour reappears temporarily and a blue oil is pptd. The constitultimately pale yellow; if H₂O is added to the green solution the blue colour reappears temporarily and a blue oil is pptd. The constitution of (II) is established by its hydrogenation (PtO₂ in EtOH at room temp.) followed by hydrolysis to $CO_2H \cdot [CH_2]_3 \cdot CH(CO_2Et)_2$, m.p. 139°, decarboxylated to ($[CH_2]_2 \cdot CO_2H)_2$. H₂O at 100° hydrolyses (II) to $CH_2(CO_2Et)_2$, (IV) characterised by its transformation by $NH_2 \cdot CO \cdot NH \cdot NH_2$, HCl and KOAc into the K salt of 1-carbamyl-4-carbethoxypyrazol-5-one-3-propionic acid, $NH_2 \cdot CO \cdot N \cdot N = C \cdot CH_2 \cdot CO_2H$ decomp. 206—207°. (II) is hydrolysed by conc. ag. Na_2CO_3 at 10—15° to nearly homo- hydrolysed by conc. aq. Na₂CO₃ at 10—15° to nearly homogeneous (III), which cannot be distilled unchanged under diminished pressure and slowly decomposes when kept. The salt, $C[:C(CO_2Et)_2]:O$ Cu, gradual decomp. >250°, is described. Under strictly defined conditions, purified (**IV**) affords a semicarbazone, m.p. $153-154^\circ$ (decomp.), softens at 150° . (**IV**) is transformed by anhyd. NaOAc in boiling C_6H_6 into (**II**). With NH_2Me azoñe, m.p. 153—154 (decomp.), soltens at 150 . (11) States formed by anhyd. NaOAc in boiling C₆H₆ into (II). With NH₂Me in abs. EtOH at 0° (II) gives (CH₂·CO·NHMe)₂, m.p. 174—175°, and with
NH₂Ph at 40° it yields (CH₂·CO·NHPh)₂, m.p. 226°. With NH₂·CO·NH·NH₂,HCl and KOAc in aq. EtOH at room temp. (II) affords succindisemicarbohydrazide, m.p. 195—197°, softens at 192°; if the time of reaction is reduced and the solution is treated with NH₂ the Kealt decomp. 224° of 1 carbamyl-4-carbethoxywith NH3 the K salt, decomp. 224°, of 1-carbamyl-4-carbethoxypyrazol-5-one-3-propionsemicarbohydrazide is obtained. CHNa(CO₂Et)₂ and (**II**) in warm Et₂O afford Et_4 succinyldimalonate [Et_4 β e-diketohexane-aa $\eta\eta$ -tetracarboxylate] (V), m.p. 67—68° [mixed m.p. with (II), 51—55°). (V) gives an immediate, permanent red in.p. with (1), S1 = 50. (\mathbf{v}) gives an intensity permanent colour with FeCl₃ but no colour with KOAc. It is relatively stable towards strong mineral acids. The Cu and Hg* compounds are described. With NH_2 ·CO·NH·NH₂ (\mathbf{V}) affords $\alpha\beta$ -di-(1-carbany)-4carbethoxy-3-pyrazol-5-onyl)ethane, decomp. 207-209, and with NHPh·NH₂ in aq. AcOH at 100° it gives $a\beta$ -di-(4-carbethoxy-1-phenyl-3-pyrazol-5-onyl)ethane, m.p. 188— 189° . (∇) is converted by anhyd. NEt₃ in abs. Et₂O at room temp. into (II) and CH₂(CO₂Et)₂. II. Subjection of the non-cryst, material left after the isolation of (II) to distillation in a high state of the condition and carbons. of (II) to distillation in a high vac., intense cooling, and cautious treatment with NH₃, Cu(OAc)₂, and Hg(OAc)₂ leads to the isolation of further quantities of (II), its hydrolytic product (IV), and a small amount of (V) arising from the interaction of (II) and CHNa(CO₂Et)₂. As new product is obtained Et_4 2:5-furylidenedimalonate (VI), CH:C(CHR₂) or CH_2 ·C(:CR₂) or CH_2 ·C(:CR₂) (R = CO₂Et), m.p. 82—83°. CH:C(CHR₂) Very slowly (VI) gives a red colour with FeCl₃ which is ultimately converted into a red-brown ppt. of basic Fe^{III} succinate. With KOH or NaOH in EtOH (VI) gives an immediate, intensely yellow colour; the K salt is hygroscopic and decomposes readily on exposure to air. (\mathbf{V}) could not be converted into (\mathbf{VI}) by dehydrating agents such as NaOAc in boiling C_6H_6 or by the action of Ac₂O on the Na₂ compound of (\overline{V}). Towards the end of the condensation of (\overline{I}) with CHNa(CO₂Et)₂ more or less dark colours are produced in the pptd. Na compounds which according to alkalinity vary from red through dark violet to greenish-black and on neutralisation and extraction with Et₂O pass as a red colour into the oil. In presence of a slight excess of mineral acid the colour is yellow. Treatment of the oil with a little $\mathrm{NH_3}$, amine, $\mathrm{NaHCO_3}$, or dil. alkali or even with $\mathrm{NHPh_2}$ gives indicator-like, dark violet colours which disappear on addition of acid. These colours are not given by pure (∇), but the violet, blue, and green tones are invariably observed when weak bases act on (II) in org. media. They are probably due to the true CH₂·CO C(CO₂Et)₂, which was possibly Et₂ succinylmalonate, obtained on two occasions by shaking the "residual oil" with obtained on two occasions by sharing the reduction of the Na₂CO₃. It has m.p. 109°, gives yellow solutions with alkalis and org. bases and is transformed by NHPh·NH₂ into (CH₂·CO·NH·NHPh)₂. A reaction mass with typical indicator properties is best obtained from (I) or (II) and CHNa(CO₂Et)₂ in mol. ratio 1:3 or 1:1 respectively. Autoxidation of l-ascorbic acid.—See A., 1943, III, 667. Effect of protoporphyrin on autoxidation of l-ascorbic acid.—See A., 1943, IIĪ, 667 Antigenic properties of hyaluronic acid.—See A., 1943, III, 925. New steroid glucuronide from human urine.—See A., 1943, III, Ring structures and mutarotations of the modifications of D-lacturonic acid. H. S. Isbell and H. L. Frush (J. Res. Nat. Bur. galacturonic acid. H. S. Isbell and H. L. Frush (J. Res. Nat. Bur. Stand., 1943, 31, 33—44).—In nature of mutarotation a- (I) and Stand., 1943, 31, 33—44).—In nature of mutarotation a- (1) and β - (II) -D-galacturonic acid strongly resemble a- (III)- and β - (IV) -galactopyranose respectively. For the hydrated form of (I) $[a]_D^{10} = +44.83^\circ \times 10^{-0.0148} + 10.26 \times 10^{-0.16} + 51.90^\circ$, corresponding to an initial [a] of $+107.0^\circ$ and an equilibrium val. of $+51.9^\circ$. For (II) $[a]_D^{20} = -31.84 \times 10^{-0.0148} + 6.21 \times 10^{-0.13} + 56.72^\circ$, corresponding to an initial [a] of $+31.1^\circ$ and an equilibrium val. of $+56.7^\circ$. In addition to the parallelism in the course of the mutarotation reactions the moly rotations and other properties indicates rotation reactions, the mol. rotations and other properties indicate that (I) and (II) are an $a-\beta$ -pyranose pair analogous to (III) and (IV). Oxidation of (I) or (II) by Br in acid solution gives optically active δ - and γ -mucolactones. The formation of optically active lactones is evidence that the ring forms of (I) and (II) are oxidised without the intermediate formation of either the open-chain modification of (I) or (II) or of free mucic acid and the production of both lactones established a relatively rapid pyranose furanose interconversion of (I) and (II). (II) is oxidised by Br more rapidly than (I). Oxidation measurements show that Na galacturonate is a salt of (II). (II) is conveniently obtained by repeated digestions of (I) with hot, glacial AcOH. Resolution of a-xanthogeno-n-butyric acid into optically active antipodes. A. Fredga and M. Tenow (Arkiv Kemi, Min., Geol., 1943, 16, B, No. 9, 5 pp.).—By successive uses of the alkaloids in aq. EtOH r-, m.p. $60-60\cdot 5^\circ$, is resolved into (-)-, m.p. $31-32^\circ$, $[a]_D^{25}-102^\circ$ in CHCl₃, $-92\cdot 9^\circ$ in EtOAc (cinchonidine salt), and (+)-, m.p. $31\cdot 32^\circ$, $[a]_D^{25}+92\cdot 8^\circ$ in EtOAc [strychnine $(+2H_2O)$ salt], -axanthogeno-n-butyric acid. Derivatives of β-thiolisobutyric acid. A. Fredga and O. Martenson (Arkiv Kemi, Min., Geol., 1943, 16, B, No. 8, 6 pp.).—CH₂:CMe·CO₂H and SH·CH₂·CO₂H (water-bath) give β-acetylthiolisobutyric acid, m.p. 40—40·5°, converted by aq. NaOH, followed by aq. CH₂Br·CO₂H, into β-carboxymethylthiolisobutyric acid, m.p. 71—72°, also obtained from SH·CH₂·CO₂H-aq. NaOH-CH₂Br·CHMe·CO₂H at room temp., or from CBrMe₂·CO₂Et-Na-EtOH, followed by SH·CH₂·CO₂Et, and hydrolysis with HCl. SH·CMe₂·CO₂H, aq. NaOH, and CH₂Br·CO₂H-KHCO₃ (neutralised) afford α-carboxymethylthiolisobutyric acid, m.p. 106—107·5°. A. T. P. Production of acraldehyde.—See B., 1943, II, 308. Polymerisation of acetaldol. L. N. Owen (J.C.S., 1943, 445-446). Cryoscopic determinations in $\rm H_2O$ and dioxan show that dimeris- soxy-J (215) 五百 Part of 100 100 70 i ii şē ation of freshly distilled aldol is complete in ~4 hr.; there is no alteration in mol. wt. of each sample over a period of several hr. In one case, when an aq. solution of viscous aldol was kept for several weeks, there was a gradual fall in mol. wt. In AcOH (favours polymerisation), the mol. wt. is independent of the age of the aldol and corresponds to 20% of monomeride + 80% of dimeride. Freshly distilled aldol and a small amount of AcOH or BzOH show a rise in temp. and a marked increase in η in ~10 min.; with quinol, pyrogallol, α - or β -C₁₀H₂·OH, or p-NH₂·C₆H₄·OH, the sample becomes viscous in ~1 hr., thus behaving like pure aldol. A. T. P. Dimeric glyceraldehyde ay-diphosphate. E. Baer and H. O. L. Fischer (J. Biol. Chem., 1943, 150, 213—221).—Successive addition of PPh₂OCl and r-glyceraldehyde to dry C₅H₅N at 10—15° and subsequently at room temp. gives glyceraldehyde ay-di(diphenyl phosphate), m.p. 110—111°, transformed by catalytic hydrogenolysis in MeOH with H₂ and PtO₂ at room temp. into dimeric glyceraldehyde ay-diphosphate (I), CH₂R-CH-CHR-O-CH-CH₂R [R = O-PO(OH)₂], identified as the Ra H (+2HO) and Ca H (+2HO) selts. The identified as the Ba_2 H_4 (+2 H_2 O) and Ca_2 H_4 (+2 H_2 O) salts. The normal Ca and Ba salts are amorphous. Short acid hydrolysis of (I) gives glyceraldehyde γ-phosphate whereas prolonged hydrolysis leads to AcCHO. Towards alkali (I) is remarkably stable. A hydro- lysis by phosphatases from dog fæces at pH 9-6 is described. [By O. Meyerhof.] (I) has been tested for biological activity directly, after partial acid hydrolysis and after incubation with alkali. The negative results show that a substance of constitution and configuration such as (II) cannot be the expected intermediary between glyceraldehyde γ-phosphate and glyceric acid αγ-diphosphate in carbohydrate metabolism. H. W. phate in carbohydrate metabolism. Synthesis of dl-glyceraldehyde γ -phosphate. E. Baer and H. O. L. Fischer (J. Biol. Chem., 1943, 150, 223—229).—Dimeric glyceraldehyde $a\gamma$ -di(diphenyl phosphate) is converted by 30—32% HBr in AcOH at room temp. into glyceraldehyde a-bromide γ -Ph₂ phosphate (dimeric) (I), CH₂R·CH<O-CHBr·OCH₂R [R = O·PO(OPh)₂], m.p. 161—162°, and by HCl in pure dioxan into the corresponding dimeric α-chloride (II), m.p. 146—147°. (II) with 2:4-(NO₂)₂C₆H₃·NH·NH₂ in boiling 2·5ν-HCl affords methylglyoxal-2:4-dinitrophenylosazone (III) in 97% yield. (I) is converted by reductive cleavage with PtO₂ and H₂ in dry AcOH or, preferably, by treatment with boiling 4% AcOH-COMe₂ into glyceraldehyde α-bromide γ-H₂ phosphate (dimeric) (IV), best purified as its additive product (V) with 2 mols. of dioxan. N-HCl at 100° for 1 hr. or N-NaOH for 20 min. at room temp. liberates 99·4 and 96·0% respectively of the H₃PO₄ from (V), which also gives (III) when treated with 2:4-(NO₂)₂C₆H₃·NH·NH₂. (IV) and (V) are readily hydrolysed to glyceraldehyde γ-H₂ phosphate, best isolated as the Ca salt. General methods for the formation of ketens. C. F. Hurd, F. W. Cashion, and P. Perletz (J. Org. Chem., 1943, 8, 367—372).—No general method of preparing CHR:CCO exists. Zn and CH, Br-COBr (I) give
HBr, EtOAc, CH₂Br·CO₂Et, and CH₂Br·CO-CHBr·COBr (characterised by conversion by aq. NH₃ and then aq. Br into aay-tribromoacctoacctamide, m.p. 118°). Keten is also not obtained from (I) by Cu-bronze (gives HBr), Na (gives HBr), Mg (no reaction), or Mg + MgI₂-Et₂O-N₂ (gives I). CH₂Cl·CO₂Et with Zn gives HCl and with Mg + MgI₂ or NaI gives I, but no keten. OAc-CHMe-COBr, b.p. 160°, and Zn in Et₂O give HBr but no CHMe:C:CO. no CHMe:C:CO. Oxidation of ketones.—See B., 1943, II, 339. Bromination of ketones.—See B., 1943, II, 308. Autoxidation of Δ^a -unsaturated ketones. I. Peroxide formation and association processes. H. Albers and W. Schmidt (f. pr. Chem., 1943, [ii], 162, 91—112).—Thin films of CHMe.CH·COMe (I) evaporate, leaving a very small, soft residue. Those of CHMe.CH·CH.CH·COMe (II) rapidly change to a resin. Passing O_2 through (I) at $20\pm0.05^\circ$ leads to absorption of ~0.5 atom of O and formation of <1% of peroxide but of much MeCHO. Similar passage of O_2 through (II) gives a peroxide very rapidly, with only traces of O_2 and MeCHO; up to 1.75—1.8 atoms of O are absorbed before the liquid becomes too viscous to allow passage of gas. The before the liquid becomes too viscous to allow passage of gas. The peroxidic product (III) explodes when heated. Quant. measurements during the reaction indicate dimerisation of the peroxide, which is confirmed by determination of mol. wts. which is confirmed by determination of mol. wts. $\eta_{sp.}$ increases enormously during the reaction (from 1.46 to 14,614), this being ascribed to association rather than to polymerisation by primary valencies; the trans-form of the dimeric peroxide, CHAc:CH·CH·CH·CH·CH·CH·CH·CHAc, is particularly suited to give linear aggregates leading to high η . The resins of the films are formed by decomp. of the peroxide, probably with concomitant polymerisation by primary valencies. (III) is readily sol.; it is thixotropic in C_0H_0 ; thermal dissociation occurs at higher temp. (e.g., 50°). Inability to polymerise accounts for inability of (III) to catalyse polymerisation of styrene. Alkylation of hydrazine. O. Westphal (Ber., 1941, 74, [B], 759—776).—Alkylation of N_2H_4 with AlkHal generally proceeds thus: $N_2H_4 \rightarrow NH_2 \cdot NHAlk \rightarrow NH_2 \cdot NAlk_2 \rightarrow NH_2 \cdot NAlk_3Hal$ (I). If, however, Alk has a large vol. (e.g., Pr^{β} , CH_2Ph) formation of (I) is hindered or prevented, and $NHAlk \cdot NAlk_2$ (II) or, under favourable conditions, $(NAlk_2)_2$ results. Formation of (II) is also favoured by use of AlkCl, the reactivity of which decreases with increase in chain-length. If the reaction is carried out at $>110^{\circ}$ with AlkCl the yield of (I) falls and that of (II) rises (max. at $150-160^{\circ}$ and diminishes at $>170^{\circ}$). Formation of (I) is favoured when Alk is small but none results when AlkCl is $> C_2H_3 \cdot Cl$, at which point the yield of (II) also at >170°). Formation of (I) is favoured when Alk is small but none results when AlkCl is >C₈H₁₇Cl, at which point the yield of (II) also begins to fall and is nil at >C₁₂H₂₅. McCl could not be used since the reactions are usually carried out in glass tubes. Reaction proceeds differently when, e.g., a steel autoclave is used; the lower AlkCl thus give unsaturated hydrocarbons, NH₃, NH₄Cl, and evilsmelling bases. The following (II) are obtained, usually with monoand di-substituted hydrazines, from N₂H₄ (\sim 1·25 mols.), AlkCl (\sim 1 mol.), and sufficient EtOH to give a homogeneous solution at 150—155° unless stated otherwise: triethyl- (9·5%), b.p. 43—44°/30 mm., triallyl- (12% at 100°), b.p. 61—63°/11 mm., tripropyl- (25%), b.p. 59—61°/11 mm. [with (CH·CO)₂O in boiling C₈H₆ gives maleic monotripropylhydrazide, m.p. 65—66°], tributyl- (36%), b.p. 102—104°/11 mm. (15% of NH₂·NBu₃Cl also formed; maleic monotributylhydrazide, m.p. 60—61°), trihexyl- (42%), b.p. 172—174°/14 mm. (maleic monotrihexylhydrazide, m.p. 57—58°), and trioctyl-hydrazine (34%), b.p. 186—187°/4 mm. These are colourless, stable liquids which are somewhat sensitive to O₂ at high temp. reduce aq. NH₃— (34%), b.p. 186—187/4 mm. These are colouriess, stable liquids which are somewhat sensitive to O₂ at high temp., reduce aq. NH₃-AgNO₃ in the cold, are not affected by yellow HgO, are weak to very weak bases, and show 1 active H (Zerevitinov at 90°; ~0·33 at 25°); the viscosity rises with increased C content. PrβCl at 150° gives NN- or NN'-diisopropylhydrazine (49%), b.p. 32—34°/12 mm.; sec.-BuCl at 145° affords a disec.-butylhydrazine (28%), b.p. 86—87°/11 mm.; PuγCl in beiling MoOH gives text, butylhydrazine hydroxine sec.-BuCl at 145° affords a disec.-butylhydrazine (28%), b.p. 86—87°/11 mm.; Bu°Cl in boiling MeOH gives tert.-butylhydrazine hydrochloride, m.p. 202° (after sublimation; transformation point at 122°). The following are also described: mono-, b.p. 80—81°/14 mm., and di-hexyl-, b.p. 138—140°/14 mm., mono-, b.p. 112—114°/12 mm., and di-hexyl-, b.p. 185—187°/12 mm., m.p. ~26° (Ac derivative, m.p. 81—82°), mono-, b.p. 176—177°/15 mm., m.p. 31° (hydrochloride, m.p. 68°), and di-dodecyl-, m.p. 55·5° [oxidised (HgO in C₈H₆) to tetradodecyltetrazen, m.p. 52·5°], mono-, m.p. 57—58° (hydrochloride, m.p. 84°), and di-hexadecyl-hydrazine, m.p. 74—75° (corresponding tetrazen, m.p. 70°). NHMe·NH₂ and C₁₂H₂₅Cl in EtOH at 110° give N-methyl-N-dodecylhydrazine (82%), b.p. 150—153°/11 mm., m.p. ~18° (corresponding tetrazen, m.p. 39°; methodide, m.p. 126°; ethobromide, m.p. 82°). Cyclic maleit monododecylhydrazide is described. Prep. of (NAlk₂)₂ from (II) is best carried out with AlkBr (1·5—2 mols.) and an equiv. amount of freshly pptd., finely divided Mg(OH)₂ in EtOH at 140—150°. In the absence of alkali decomp. occurs; KOH is unsatisfactory since it causes olefine formation. (NAlk₂)₂ are unstable to acids at high temp.; when not quite pure they alter slowly in light. Tetra-propyl-, b.p. 88·6—89·9°/11 mm., and -butyl-hydrazine, b.p. 133—134°/12 mm., are described. mm., are described. Synthesis of δ -diethylaminoisoamylamine required for the manufacture of atebrin. P. C. Guha, P. L. N. Rao and T. G. Verghese (Current Sci., 1943, 12, 82—83).—NEt₂·CH₂·CHO,HCl and COMe₂ yield a-diethylamino- $\Delta\beta$ -penten- δ -one, b.p. $103-105^\circ/30$ mm., reduced (Raney Ni) to NEt₂·[CH₂]₃·COMe. CH₂Cl·CH(OEt)₂ with COMe₂ gives a-chloropentan- β -ol- δ -one, b.p. $128^\circ/15$ mm., which could not be dehydrated. Reaction between chlorohydrins and ammonia or amines. I. Reaction mechanism. L. Smith [with T. Nilsson] (J. pr. Chem., 1943, [ii], 162, 63—70).—For interaction of α -chlorohydrin with an excess of dil. aq. NH₃, NaOH, and CHPhMe·NH₂ (I) at 20°, $k=5.63\pm0.08$ to 5.84 ± 0.12 (58.0 at 40°), 6.07 (62.0 at 40°), and 5.3— 5-9, respectively, proving that the rate-controlling step in the reaction with the amines is formation of glycide (II). For interaction of (II) with an excess of d-(I) or 0'0554N-NH₃ at 20°, k = 0-0133 and (up to 40% reaction) 0-0038—0-00365, respectively. For analysis of the reaction mixture containing NH₃, 99% of the remaining NH₃ is removed in 10 min. by distillation at \sim 14 mm. For interaction of epichlorohydrin with NH₃ or (I) at 20°, k=0.0175 and 0-050—0-051 respectively. 0.051, respectively. Monoalkylation of ethylenediamine with alkylene oxides. L. J. Kitchen and C. B. Pollard (J. Org. Chem., 1943, 8, 342—343).—By use of an excess of diamine, (CH₂)₂O, aβ-epoxy-n-propane or -isobutane, or styrene oxide gives good yields of mono(hydroxyalkyl) compounds. Thus are obtained (in MeOH at 40—50°) N-β-hydroxy-n-propyl- (41%), b.p. 112°/10 mm. (dihydrochloride, m.p. 184·7—185°; picrate, m.p. 191—192·5°; phenylthiocarbamide derivative, m.p. 149·8—150°), N-β-hydroxy-β-methylpropyl- (87%), b.p. 103·7°/10 mm. [dihydrochloride, m.p. 195·7—196·4°; picrate, m.p. 198·5—200·5° (decomp.)], N-β-hydroxy-β-phenylethyl-, m.p. 76—80°, b.p. 184·8°/10 mm. (dihydrochloride, m.p. 196·7—200·8°), and N-β-hydroxyethyl-ethylenediamine, b.p. 123°/10 mm. [picrate, m.p. 224° (decomp.); dihydrochloride, m.p. 114·3—115·2°]. M.p. are corr. Preparation of amino-ethers and their acyl derivatives.—See B., 1943, II, 339. Determination of amino-acids.—See A., 1943, II, 404. Amino-acid esters.—See B., 1943, II, 339. Preparation of β-alanine. F. Weygand (Ber., 1941, 74, [B], 256-257).—CN·CH₂·CO₂Et is hydrogenated at 40 atm. in AcOH containing PtO₂ and conc. H₂SO₄ to 74% of β-alanine Et ester, b.p. $55-56^\circ/9-10$ mm., hydrolysed [Ba(OH)₂] to 72% of β-alanine, m.p. 195° . Amino-acid composition of tyrosidine. NN'-Diacetyl-l-ornithine, m.p. 156°, $[\alpha]_0^{15}$ +6·3° in Et0H.—See A., 1943, III, 846. Preparation of cystine, methionine, and homocystine containing radioactive sulphur. A. M. Seligman, A. M. Rutenburg, and H. Banks (J. clin. Invest., 1943, 22, 275—279).—Radioactive CH₂Ph·S·H (prep. using S or H₂S from active BaSO₄) was converted into radioactive S-benzylhomocysteine by way of CH₂Ph·S·[CH₂]₂·Cl and the phthalimidomalonate, and this was converted into methionine (21% yield) by Na-BuOH (giving radioactive dl-homocystine; yield 24%) followed by MeI. The synthesis of radioactive dl-cystine (21·5% yield) from CH₂Ph·S·H via CH₂Ph·S·CH₂Cl and S-benzyl-cysteine is also described. In each case 0·06 mol. of radioactive BaSO₄ was used. **Resolution of** dl-pantothenic acid with cinchonidine. R. Kuhn and T. Wieland (Ber., 1941, 74, [B], 218).—The biologically inactive (—)-form of pantothenic acid (I) forms the less sol. salt with quinine, which is therefore not particularly suitable for isolating the biologically active (+)-(I). Cinchonidine, however, affords cinchonidine (+)-pantothenate (II), m.p. 178—179°, [a] $_{\rm D}^{19}$ —62.8° in H₂O, as the less sol. salt. The biological activity of (II), calc. in terms of (+)-(I), is twice that of the racemate. #### II.—SUGARS AND GLUCOSIDES. Esters of
methanesulphonic acid in the sugar group. IV. B. Helferich and H. Jochinke (Ber., 1941, 74, [B], 719—725).—Contrary to previous work (A., 1939, II, 468), 1:2-isopropylidenegluco-furanose 5:6-diacetate 3-methanesulphonate is converted by HBr-AcOH-Ac₂O into 1:2-a-bromoethylideneglucofuranose 5:6-diacetate 3-methanesulphonate is converted by HBr-AcOH-Ac₂O into 1:2-a-methanesulphonate is converted by HBr-AcOH-Ac₂O into 1:2-a-bromoethylideneglucofuranose 5:6-diacetate 3-methanesulphonate (I), which with C_6H_6 -MeOH- C_5H_5 N at room temp. gives the 1:2-a-methoxyethylidene derivative, m.p. 160—161° (sinters ~156°), [a]_D^2 +13·1° (corresponding a-amyloxy-, m.p. 91·5°, [a]_D^2 +5·1°, and a-benzyloxy-compound, m.p. 132°, [a]_D^2 +0·49°) (undergoes quant. elimination of the 5- and 6-Ac with aq. MeOH-NaOH at 30°). Ag₅CO₃ and (I) in moist COMe₂ give, with difficulty, d-glucofuranose 2(?):5:6-triacetate 3-methanesulphonate (II), m.p. 119°, [a]_D^2 (in EtOH) +22·4° (20 min.) \rightarrow +17·4° (3 days) when recryst. from H₂O, [a]_D^2 (in EtOH) +59·6° (15 min.) \rightarrow +17·2° (7 days) when recryst. from H₂O and then from EtOH. (II) reduces Fehling's solution, is decomposed by alkali, does not give a pure compound with MeSO₂Cl-C₅H₅N, and is acetylated CH-OAC (C₅H₅N-Ac₂O at room temp.) to (?) d-glucofuranose O CH-OAC 1:2:5:6-tetra-acetate 3-methanesulphonate, forms, m.p. CH-OR 96—97·5° and 112°, [a]_D^2 +80·2°, which [like (II)] affords (I) with AcOH-HBr. Divsopropylidenefructose 3-methanesulphonate messalphonate with HBr-AcOH-Ac₂O gives a bromo-CH₂-OAC fructose triacetate 3-methanesulphonate [probably (A), R = MeSO₂], m.p. 119°, [a]_D^2 -178·4°, converted by Ag₂CO₃ in MeOH into the methylfructoside triacetate 3-methanesulphonate, m.p. 122° (decomp.), [a]_D^2 -10·8°. [a] are in CHCl₃ unless stated otherwise. Thiocyanic esters of glucose and cellobiose. A. Müller and A. Wilhelms (Ber., 1941, 74, [B], 698—705).—6-p-Toluenesulphonates (but not the sec. esters) of sugar derivatives are converted by KCNS in abs. COMe₂ at 130° (sealed tube) into 6-thiocyanates. Thus β-glucose tetra-acetate 6-p-toluenesulphonate gives 47% of β-glucose tetra-acetate 6-p-toluenesulphonate gives 47% of β-glucose tetra-acetate 6-thiocyanate, m.p. 117—118°, [a]₂³¹ +27·9°, converted by AcOH—HBr at room temp. into 1-bromo-α-glucose triacetate 6-thiocyanate, m.p. 135°, [a]₂³¹ +15·6°, also obtained from the corresponding 6-p-toluenesulphonate. α-Methylglucoside triacetate 6-thiocyanate, m.p. 101—103°, [a]₂³¹ +15·8° (from the 6-p-toluenesulphonate), with N-MeOH–NaOMe at room temp. and reacetylation gives di-α-methylglucosidy 6: 6'-disulphide hexa-acetate, m.p. 157°, [a]₂³¹ +254°. Contrary to Fischer (A., 1914, i, 662), acetobromoglucose and KCNS in COMe₂ give 1-thiocyanoglucose tetra-acetate (I), m.p. 132—133°, [a]₂¹⁹ -20·9° (+½ COMe₂), -21·8° ("anhyd."), converted by N-MeOH–NaOMe and reacetylation into isothiotrehalose octa-acetate (poor yield), [a]₂¹⁰ -45·4°, and by MeOH–NH₃ into diglucosylamine octa-acetate. (I) reduces Fehling's solution with pptn. of CuS. At 141°/14 mm. or in boiling xylene, (I) rearranges to glucose tetra-acetate 1-thiocarbimide (loc. cit.), [a]₂³⁰ +1·9°, which with MeOH–NH₃ and AlkOH gives 1-glucosylthiocarbamide, m.p. 210—212° (decomp.) (lit. 215—216°), and the corresponding Me, m.p. 182—184°, [a]₂³⁰ +13·6°, and Et thiocarbamate, [a] $_{\rm B}^{\rm B}$ +18·4°, respectively. Acetobromocellobiose and COMe $_{\rm a}$ -KCNS afford only cellobiose hepta-acetate 1-thiocarbimide (+2COMe $_{\rm a}$), m.p. 205—206°, [a] $_{\rm B}^{\rm B}$ -8·6°, m.p. ("anhyd.") 208—209°, whence the Me, m.p. 207—209°, [a] $_{\rm B}^{\rm B}$ +12·8°, and Et thiocarbamate, m.p. 198°, [a] $_{\rm B}^{\rm B}$ +30·7°. [a] are in CHCl $_{\rm a}$. 2:6-Dimethylglucose. K. Freudenberg and G. Hüll (Ber., 1941, 74, [B], 237—244; cf. A., 1943, II, 256).—2:6-Dimethylglucose (I) forms two highly cryst. tris(azobenzoyl) derivatives and hence the presence of (I) in the hydrolysis product from fully methylated potato starch cannot be overlooked, nor can (I) arise from hydrolysis of 2:3:6-trimethylglucose. Glucose, H₃BO₃, COMe₂, and conc. H₂SO₄ afford 1:2-isopropylidene-d-glucofuranose 3:5-monoborate (II), m.p. 90—100°, which is acetylated (Ac₂O, NaOAc) and hydrolysed to 1:2-isopropylidene-d-glucofuranose 6-acetate (III); Ac₂O and C₅H₅N afford (III) and much 1:2-isopropylideneglucose 3:5:6-triacetate. (II), C₅H₅N, and (OMe·CH₂·CO)₂O afford 1:2-isopropylidene-d-glucofuranose 6-methoxyacetate, m.p. 95°. (III), PhCHO, and ZnCl₂ (better than P₂O₅) give 3:5-benzylidene-1:2-isopropylideneglucose 6-acetate, which, with KOH-Me₂SO₄, gives 3:5-benzylidene-6-methyl-1:2-isopropylideneglucofuranose (IV) and some 3:5-benzylidene-1:2-isopropylideneglucofuranose, m.p. 148-5-150°. (IV) gives on hydrolysis (0·5»-H₃SO₄, in aq. EtOH) 6-methyl-glucose, m.p. 144—145° [osazone, m.p. 186—187°; tetra(azobenzoate), m.p. 141—143°, [c]²⁰₂₀₅₃ +180° in CHCl₃], and is reduced (Pd-C, H₂) to 6-methyl-1:2-isopropylideneglucofuranose, m.p. 71°, which, with KOH and CH₂PhCl, gives 3:5-dibenzyl-6-methyl-1:2-isopropylideneglucofuranose, m.p. 71°, which, with KOH and CH₂PhCl, gives 3:5-dibenzyl-6-methyl-1:2-isopropylideneglucofuranose, m.p. 71°, which, with KOH and CH₂PhCl, gives 3:5-dibenzyl-6-methyl-1:2-isopropylideneglucofuranose, m.p. 10°, and in the control of th Chemistry of sulphite cooking. XLI. Effect of sulphite-cooking acids on different types of sugars. Fermentation of sulphite liquors of diverse origins. E. Hägglund, H. Heiwinkel, and T. Bergek (J. pr. Chem., 1943, [ii], 162, 2—18).—Heating fructose in H₂O containing CaO (1·2%) and SO₂ (4·43%) at 75°, removing polythio-acids by H₂SO₄ at 75°, SO₂ in air at pH 6, and sugars by fermenting, and finally treating with BaCO₃ gives a Ba salt and thence the brucine salt, C₆H₁₃O₆, H₂SO₃, C₂₃H₂₆O₄N₂, m.p. 258° (corr.), of a fructose-sulphonic acid. This loses SO₂ when evaporated in H₂O or slowly when heated (not cold) in 2N-NaOH or 10—15% H₂SO₄, and does not reduce Fehling's solution. It is probably a rearrangement product of the primary unstable additive product. Small amounts of sugar-sulphonic acids (A) are present in sulphite liquor prepared at low pH, but in less acid solutions are converted by hydrolysis and oxidation into aldonic acids. The stability of the additive product of glucose and SO₂ is a max. at pH 6·6, decomp. becoming very rapid particularly at higher pH. (A) are not fermentable and hardly affect the fermentation of glucose. The unstable sugar-SO₂ products of sulphite liquor are also not fermentable but strongly decelerate the fermentation of glucose. Acidic liquors yield a sugar-sulphonic acid with a low Cu no. which is greatly increased after hydrolysis; a more alkaline liquor gives different acids for which the change in Cu no. is much less. Prior treatment of sulphite liquor with alkali increases the fermentation 7—10 times by destruction of the labile additive products. Effects of high pressure on the inversion of sucrose and the mutarotation of glucose.—See A., 1943, III, 683. Hellebrin, a crystallised glycoside from Helleboris niger root. W. Karrer (Helv. Chim. Acta, 1943, 26, 1353—1367).—The drug is defatted with Et₂O and extracted with H₂O. The aq. extract is treated successively by Pb(OAc)₂ and Na₂HPO₄ after which the glycoside is adsorbed on C. The adsorbate is extracted with MeOH-CH₂Cl₂ and the residue from this extract is treated with abs. EtOH, thereby giving crude hellebrin (I), $C_{36}H_{52}O_{15}$, best cryst. from MeOH. It has m.p. 283—284°, $[a]_{10}^{20}$ —23·4°±0·2° in 50% MeOH. (I) gives a red colour in conc. H₂SO₄ and a blue to green Liebermann cholestol reaction. It does not give the Legal test or the Baljet reaction, thus indicating the presence of a 6- rather than a 5-membered lactone ring. This probability is confirmed by the close similarity of the absorption spectra of (I), scillaren A, and bufagin. The negative reaction of (I) with CCl₃·CO₂H indicates the absence of a double linking in the hydrophenanthrene ring system. Physiologically (I) is second only to convallatoxin (II) in cardiac activity. (I) is not converted into a cryst, genin by boiling aq. or aq. alcoholic H_2SO_4 ; the sugar component is glucose. When kept in 2.5% HCl-MeOH (III.) Me Me R $$C_{12}H_{21}O_{10}\cdot O$$ $C_{12}H_{21}O_{10}\cdot O$ $C_{12}H_{21}O_{10}\cdot O$ $C_{12}H_{21}O_{10}\cdot O$ at 38° for several days (I) affords a-methyl-d-glucoside and a compound (III), m.p. $\sim 206^{\circ}$, which contains 1 OMe but no active H. The ready methylation indicates the presence of CHO as in (II), k-strophanthin, and β -antiarin; the action of the acid leads to loss of sugar and 1 H₂O and production of a cyclosemiacetal with simultaneous etherification of the OH of the acetal. This behaviour considered in conjunction with the constitution of the known cardiac glucosides suggests the structures (I) and (II). KOH–MeOH at 0° and subsequently at room temp. transforms (I) into Me isohellebrinate, $\rm C_{37}H_{54}O_{18}$, decomp. $\sim\!230^{\circ}$, softens at $195-200^{\circ}$, which has very little cardiac activity. (I) and boiling $\rm Ac_2O-NaOAc$ give hellebrin hepta-acetate, m.p. (indef.) $159-165^{\circ}$, in which all the Ac residues are in the sugar component. H. W. Chemical nature of vitamin-P.—See A., 1943, III, 579. Limit dextrins and starch. V. Fermentability of starch break-down-products.—See A., 1943, III, 684. Enzymic degradation of starch. Structure of starch molecules. K. Myrbāck (J. pr. Chem., 1943, [ii], 162, 29—62).—A lecture. Starch is a much-branched chain mol. Enzymes degrade all the straight-chain parts until they meet a P substituent, a branch, or an isomaltose linking. Limit deartins contain these "abnormal" portions. Enzymes first anchor themselves to the non-reducing end of the chain and attack the sixth unit (which is near in space) and so lead often to many six-unit dextrins or
six-membered rings. Micellar theory of cellulose. T. Lieser (Ber., 1941, 74, [B], 708—714).—In reply to Staudinger (A., 1938, II, 45) it is pointed out that the results of recent work (which is reviewed) make it clear that the majority of the reactions of cellulose and its derivatives are micellar, not macromol., in character. When by special methods the micelles are themselves dispersed as macromols., all the functional groups are reactive, whereas normally those in the interior of the micelles do not react since they are inaccessible. Fine structure of cellulose fibre.—See A., 1943, I, 300. Electron-microscopic investigation of degradation of cellulose fibres. —See B., 1943, II, 345. #### III.—HOMOCYCLIC. Demjanoff's reaction for the enlargement of rings. Y. R. Naves and P. Bachmann (Helv. Chim. Acta, 1943, 26, 1334—1337; cf. Demjanoff et al., A., 1903, i, 403).—The hydrocarbon fraction which accompanies cyclocitronellol and the trimethylcycloheptanols when Demjanoff's reaction is applied to dihydrocyclogeranylamine contains 2-methylene-1:1:3-trimethylcyclohexane in addition to 1:1:4-trimethylcycloheptene. H. W. Attempted synthesis of a cyclooctatetraene. cis-trans-Isomerism of substituted di- and tri-phenylbutadienes. G. B. Bachman and R. I. Hoaglin (J. Org. Chem., 1943, 8, 300—315).—Attempts to prepare cyclooctatetraene (I) by a Pschorr-type synthesis from CHPh:CH:CH:CH:C₀H₄:NH₂-0 (A) failed. Reactivity of (I) is expected because inability to assume a planar form prevents its having a high resonance energy. cycloDecapentadiene should be more "benzenoid" since it can assume the planar form annexed. Three steric forms of (A) or its derivatives are synthesised. Structures assigned below are based mainly on analogy. cis-trans-a-Phenyl-δ-onitrophenylpentadienoic acid (II), m.p. 208—209°, is obtained (80—85%) from o-NO₂·C₆H₄·CH·CH·CHO (III), CH₂Ph·CO₂Na, at 140—145°. It is converted by Cu chromite in quinoline at 210—220° into cis-trans-a-phenyl-δ-o-nitrophenylbutadiene (IV) (75%), m.p. 79—80°, and is reduced by boiling FeSO₄—NH₃–H₂O to cistrans-a-phenyl-δ-o-aminophenylpentadienoic acid (85—90%), m.p. 202—203°, which by decarboxylation affords cis-trans-a-phenyl-δ-o-aminophenylbutadiene (V), an oil (hydrochloride, softens 195°, decomp. 210—215°). o-NO₂·C₆H₄·CH₂·CO₂Na [best (55%) obtained from CH₂Ar-CO·CO₂H by H₂O₃], (III), and Ac₂O at 110—120° give trans-trans-δ-phenyl-a-o-nitrophenylpentadienoic acid (VI) (23·5%), m.p. 203—204°, converted by Cu chromite in quinoline into trans-trans-a-phenyl-δ-o-nitrophenylbutadiene (VII), m.p. 98—99°, which is also obtained from (IV) by a trace of I in boiling PhNO₂ and in 10% yield by treating CHPh:CH·CH:CH·CO₂H in COMe₂ with o-NO₂·C₆H₄·N₂Cl in aq. HCl and treating the product with aq. CuCl₂-NaOAc. FeSO₄-NH₃ reduces (VII) to trans-trans-a-phenyl-δ-o-aminophenylbutadiene, m.p. 132—133° (hydrochloride, decomp. 224—226°), which is also obtained from (V) by boiling dil. H₂SO₄-trans-cis-γ-Phenyl-a-o-nitrobenzylidene-Δβ-butenoic acid (VIII), m.p. 187—188°, is obtained (17%) from o-NO₂·C₆H₄·CHO (IX), CHPh:CH·CH₂·CO₂Na, and Ac₂O at 100° or (64%) from CHPh:CH·CH₂·CO₂Na, and Ac₂O; with FeSO₄-NH₃ it gives the lactam, m.p. 257—258°, of trans-trans-γ-phenyl-a-o-aminobenzylidene-Δβ-butenoic acid. The cis-acid (X), m.p. (solvent-free) 237—238° (decomp.) (improved prep.; cf. Stobbe et al., A., 1906, i, 91), with ${\rm FeSO_4-NH_3}$ gives the amorphous $cis{\rm -NM_2-acid}$ (XI) (hydrochloride, decomp. 276—278°) (loc. cit.), but with a trace of I in boiling PhNO₂ gives an anhydride (XII), m.p. 256—257°, hydrolysed by alkali to an isomeride, +H₂O, of (X) which after softening at ~130° re-forms (XII). Attempts to cyclise (XII) failed. Number of structural isomerides in simple ring compounds. II. T. L. Hill (J. Physical Chem., 1943, 47, 413—421).—Mathematical. Equations permitting the calculation of the no. of structural isomerides in a simple symmetrical ring of n members for any val. of n and for any kind of substitution have been derived (cf. A., 1943, II, 296). C. R. H. New benzene substitution rule. G. N. Copley (Ind. Chem., 1943, 19, 505—510).—If X be the atom attached to the C_4H_6 nucleus in a compound C_6H_4XY then the group Y which contains X is an o-p-directing group when the valency of X is >4 and a m-directing group when the valency of X is <4. Although the rule holds good in nearly all cases where the valency is taken to be the ordinary classical valency of the atom in question it is more satisfactory to determine the valency by the four-bond max. rule, which is discussed in detail; it is then in complete accord with the electronic theory. H. W. Alkylation of aromatic hydrocarbons.—See B., 1943, II, 309. Fhysical data of p-alkyltoluenes.—See A., 1943, I, 300. Scission of alkyl groups in the Friedel-Crafts reaction. J. von Braun and O. Schattner (Ber., 1941, 74, [B], 22—26).—When the chlorides of dialkylacetic acids (CHR₂·COCl) react (Friedel-Crafts) with C₆H₆ there are formed, in addition to COPh·CHR₂, higher-boiling homologues containing a group R in the p-position since oxidation yields p-C₆H₄(CO₂H)₂ (I). n-C₁₀H₂₁Br condensed with n-C₁₀H₂₁·CH(CO₂Et)₂ gives Et₂ didecylmalonate, b.p. 196—198°/0·2 mm, which is hydrolysed (alkali) and decarboxylated to give dindecylacetic acid, m.p. 54° (Me ester, b.p. 218—222°/13 mm., m.p. 26°). The chloride, b.p. 240—242°, with AlCl₃ and C₆H₆ (standardised conditions) affords mainly ω-di-n-decylacetophenone (II), b.p. 218—220°/0·3 mm., and a small quantity of an oil, C₃₈H₆₈O, b.p. 290—300°/0·3 mm., oxidised by HNO₃ to (I). (II) gives no cryst. derivatives and is reduced (Ni, H₂) to β-decyldodecylbenzene [ββ-didecylethylbenzene], b.p. 218—222°/0·7 mm. Diheptylacetic acid, m.p. 28°, b.p. 200°/13 mm., is conveniently obtained from (C₇H₁₅)₂C(CO₂Et)₂, b.p. 200°/13 mm.; the chloride, b.p. 178—180°/14 mm., C₆H₆, and AlCl₃ give diheptylacetophenone, b.p. 224—228°/12 mm., reduced (Clemmensen) to β-heptylnonylbenzene [ββ-diheptylethylbenzene], b.p. 203—205°/14 mm., and an oil C₂₉H₄₀O [? heptylphenyl a-heptylotyl hetone], b.p. 270—274°/0·5 mm., oxidised (HNO₃) to (I). Diisoamylacetyl chloride, b.p. 106°/12 mm., C₆H₆, and AlCl₃ give ω-diisoamylacetyl chloride, b.p. 116—218°/0·3 mm. PrβCOCl gives isobutyrophenone, b.p. 210—230°, as sole product. iso-C₅H₁₁·CHMe·COCl affords methylisoamylacetophenone, b.p. 152—154°/16 mm., and a substance, C₁₉H₃₉O, b.p. 216—218°/0·3 mm. ββ-Diisoamylethyl bromide and KCN give 100% of (iso-C₅H₁₁)₂CH·CH₂·CN, b.p. 126°/11 mm., hydrolysed to the acid, b.p. 161—163°/11 mm., via the amide, m.p. 91°; the chloride, b.p. 120—125°/13 mm., U. Na. Diene synthesis with β-nitrostyrene. C. F. H. Allen, A. Bell, and J. W. Gates, jun. (J. Org. Chem., 1943, 8, 373—379).—CHPh:CH·NO₂ (I) reacts readily with dienes (cf. A., 1937, II, 147). With (CH₂:CH)₂ in PhMe at 150°, isoprene at 70—80°, (CH₂:CMe)₃ at 100°, (CHPh:CH)₂ or (CH₂:CPh)₂ in o-C₆H₄Cl₂, (I) givés 1-nitro-2-phenyl- (II) (70%), m.p. 103°, 1-nitro-2-phenyl-4 or -5-methyl- (58%), m.p. 52°, 1-nitro-2-phenyl-4:5-dimethyl- (III) (82%), m.p. 96°, 1-nitro-2:3:6-triphenyl-(IV), m.p. 130° (with N oxides and a product, m.p. 76°), or 1-nitro-2:4:5-triphenyl-Δ⁴-cyclohexene (9%), m.p. 175°, respectively. With cyclo-hexa- or -penta-diene, (I) gives 1-nitro-2-phenyl-3:6-endo-methylene- (100%), b.p. 145°/1 mm., respectively. With phellandrene, it gives a product, C₁₈H₂₃O₂N (25%), m.p. 85°, b.p. 195°/1 mm. With tetraphenylcyclopentadienone in C₆H₂Cl₃ (no reaction in absence of a solvent), (I) gives C₆HPh₅, CO, and N oxides. With 10-methylene-9-anthrone in boiling AcOH. (I) gives N oxides, 3-phenylbenzanthron-7-one, and 2-nitro-3-phenyl-1:2:3:3-a-tetrahydrobenzanthr-7-one (3%), m.p. 255° (oxidised by CrO₂-AcOH to 1-benzoylanthraquinone). With 1:2-diphenyl- or 1:2-diphenyl-4:5-dimethyl-isobenzturan in boiling EtOH. (I) gives 3-nitro-1:4-epoxy-1:2:4-triphenyl-6:7-dimethyl-1:2:3:4-tviphenyl-6:7-dimethyl-1:2:3:4-tviphenyl-6:7-dimethyl-1:2:3:4-tviphenyl-6:7-dimethyl-1:2:3:4-tviphenyl-6:7-dimethyl-1:2:3:4-tviphenyl-6:7-dimethyl-1:2:3:4-tviphenyl-6:7-dimethyl-1:2:3:4-tviphenyl-6:7-dimethyl-1:2:3:4-tviphenyl-6:7-dimethyl-1:2:3:4-tviphenyl-6:7-dimethyl-1:2:3:4-tviphenyl-6:7-dimethyl-1:2:3:4-tviphenyl-6:7-dimethyl-1:2:3:4-tviphenyl-6:7-dimethyl-1:2:3:4-tviphenyl-6:7-dimethyl-1:2:3:4-tviphenyl-6:7-dimethyl-1:2:3:4-tviphenyl-6:7-dimethyl-1:2:3:4-tviphenyl-6:7-dimethyl-1:2:3:4-tviphenyl-6:7-dimethyl-1:2:4-tviphenyl-6:7-dimethyl-1:2:3:4-tviphenyl-6:7-dimethyl-1:2:4-tviphenyl-6:7-dimethyl-1:2:4-tviphenyl-6:7-dimethyl-1:2:4-tviphenyl-6:7-dimethyl-1:2:4-tviphenyl-6:7-dimethyl-1:2:4-tviphenyl-6:7-dimethyl-1:2:4-tviphenyl-6:7-dimethyl-1:2:3-t-tviphenyl-6:7-dimethyl-1:2:3-t-tviphenyl-6:7-dimethyl-1:2:3-t-tviphenyl-6:7-dimethyl-1: Alkyl-oxygen fission in sulphinic ethers. M. P. Balfe, J. Kenyon, and A. L. Tárnoky (J.C.S., 1943, 446; cf. A., 1943, II, 9).—Alkyl-O fission in sulphinic esters may occur analogously to the case of carboxylic esters. The racemising alkyl-O fission is promoted by the electron-release of an aromatic substituent in the alkyl group. Rearrangement of (—)-phenylmethylcarbinyl dl-p-toluenesulphinate to dl-p-tolyl a-phenylethyl sulphone involves alkyl-O fission. Other examples are discussed. A. T. P. Magnetic investigations of organic substances. XX. True carbon diradical with para "free valencies." E. Müller and E. Tietz (Ber., 1941, 74, [B], 807—824).—4:3:5:1-NH₂·C₆H₂Cl₂·CO₂H, m.p. 291° (obtained in 15% yield from p-NH₂·C₆H₄·CO₂H and KClO₂ in AcOH-NaOAc-conc. HCl), gives (CH₂N₂-COMe₂) the Me ester (I), m.p. 82°, converted (Sandmeyer) into Me 3:5-dichloro-4-iodobenzoate, m.p. 98°. This with "Naturkupfer C" (previously heated in N₂) at 280° affords Me₂ 2:6:2':6'-tetrachlorodiphenyl-4:4'-dicarboxylate (II), m.p. 152°, which with p-LiC₆H₄Ph in C₆H₆ yields 2:6:2':6'-tetrachloro-4:4'-di(hydroxydi-p-diphenylylmethyl)diphenyl (III), m.p. 248—249° (deep blue halochromism with conc. H₂SO₄), obtained with
difficulty from admixed resinous products. SOCl₂ and (III) in C₆H₆ give the 4:4'-di(chlorodi-p-diphenylylmethyl) derivative, m.p. 295—296°, converted by Cu or "mol." Ag in C₆H₆ and N₂ into a dark brown solution (layers >3 mm. are non-transparent) of 2:6:2':6'-tetrachloro-4:4'-di-p-diphenylylmethyldiphenyl (IV). The solution is decolorised rapidly by air giving a diperoxide, bright yellow, m.p. 155—156°, which does not liberate I from acidified KI. Solid (IV), m.p. 180—182°, is diamagnetic and is considered not to possess any diradical character. Solutions are paramagnetic; the diradical content of a 1-9% solution in C₆H₆ is computed to be 73 + 7% at 20°, and 80 ± 8% at 80°. Comparison of the absorption spectra of (II) and Me 3:5-dichlorobenzoate, m.p. 58° [by deamination of (II), and of (C₆H₄·CO₂Me-p)₂ and MeOBz shows that for each pair the difference is largely in the height of the extinction. 2:6:2':6'-Tetrachloro-4:4'-dibenzoyldiphenyl and p-LiC₆H₄Ph give a noncryst. dicarbinol (blue-red halochromism with conc. H₂SO₄), which with SOCl₂-C₆H₆ affords 2:6:2':6'-tetrachloro-4:4'-di(phenyl-p-diphenylylmethyl)diphenyl, m.p. 272—273°. This is converted by Hg. Cu, or Ag in C₆H₆ into 2:6:2':6'-tetrachloro-4:4'-di(phenyl-p-diphenylylmethyl who doubts the correctness of the conception of compounds of the type of $({\bf IV})$ and $({\bf V})$ as '' doubled '' ${\rm CAr_3}.$ Rates of dissociation of penta-arylethanes. W. E. Bachmann, R. Hoffman, and F. Whitehead (J. Org. Chem., 1943, 8, 320—330).—Rates of dissociation of C₂Hα₅ in o-C₆H₆Cl₂-C₅H₅N-EtOH at 80°, determined by I-C₅H₅N-EtOH (A., 1940, II, 122), are given as half-lives in min. in parentheses below. CPh₂ArNa and CHPh₂Br in C₆H₆ give ααββ-tetraphenyl-α-2-, m.p. 167—168° (decomp. in air), 190—202° (decomp. in N₂) (54·2), -α-3-, m.p. 183—188° (decomp. in air), 196—198° (decomp. in N₂) (50·3), and -α-9-phenanthrylethane, m.p. 149—152° (decomp. in air), 152—155° (decomp. in N₂) (5·7). CPh₂ArCl, CHPh₂Br, and Hg in Et₂O-C₆H₆-N₂ give ααββ-tetraphenyl-α-1-phenanthryl-, m.p. 123—134° (decomp. in air), 125—135° (decomp.; vac.) (0·45), and -2-fluorenyl-ethane, m.p. 168—176° (decomp.; vac.) (0·45), and -2-fluorenyl-ethane (I), m.p. 147—148°, and converted by I-C₆H₆-EtOH-C₅H₅N at 100° into C₅H₅N,CHPh₂I and diphenyl-2-fluorenylcarbinol Et ether (II), m.p. 15°. MgPhBr and 2-benzoylfluorene in Et₂O-C₆H₆ give di- C_5H_5N , CHPh₂I and diphenyl-2-fluorenylcarbinol Et ether (II), m.p. 115°. MgPhBr and 2-benzoylfluorene in Et₂O- C_6H_6 give diphenyl-2-fluorenylcarbinol (III), m.p. 143—144°, converted by $AcCl-C_6H_6$ or $HCl-C_6H_6$ -CaCl₂ into the chloride, m.p. 114—115°, which with $Hg-C_6H_6-N_2$ and then air gives the peroxide, m.p. 172—173°. With H_2SO_4 -EtOH, (III) gives its Et ether (II) and with H_2SO_4 -MeOH gives its Me ether (IV), m.p. 108—109°, converted by 45%0 Na-Hg in Et₂O- N_2 and then EtOH and H_2 O into (I). Na reacts with $C_{(9)}$ of the fluorene nucleus of (I), since the product obtained therefrom by MeI is 2-benzhydzyl-9-methylfluorene m.g.45% Na-Hg in Et₂O-N₂ and then EtOH and H₂O into (I). Na reacts with C₍₉₎ of the fluorene nucleus of (I), since the product obtained therefrom by MeI is 2-benzhydryl-9-methylfluorene, m.p. 119—120°, which is also obtained by treating the Na derivative of (IV) with MeI and by treating 9-methylfluorene with BzCl-AlCl₃-CS₂, boiling the product with MgPhBr-C₆H₆, and reducing the carbinol thus obtained by red P-I-H₂O-AcOH. CHPhArBr (prep. from CHPhAr·OH by AcBr) with CPh₃Na gives aaaβ-tetraphenyl-β-1-, m.p. 174—180° (decomp. in air), 178—182° (decomp. in N₂) (12·4), -2-, m.p. 145—155° (decomp. in air), 153—157° (decomp. in N₂) (32·8), and -3-phenanthryl-, m.p. 162—174° (decomp. in air), 174—181° (decomp. in N₂) (24·9), -β-0-, m.p. 138—144° (decomp. in air), 146—147° (decomp.; vac.) (63·2), -β-m-, m.p. 149—153° (decomp. in air), 168—170° (decomp.; vac.) (54·2), and -β-pfluorophenyl-, m.p. 150—155° (decomp. in air), 156—157·5° (decomp.; vac.) (66·6), -β-0-, m.p. 139—147° (decomp.; vac.) (66·6), -β-0-, m.p. 139—147° (decomp.; vac.) (22·2), and -β-m-tolyl-, m.p. 149—157° (decomp.; vac.) (66·6), -β-0-, m.p. 139—147° (decomp.; vac.) (20·2), and -β-manisyl-, m.p. 139—142·5° (decomp.; vac.) (20·2), and -β-m-anisyl-, m.p. 139—142·5° (decomp.; vac.) (20·2), and -β-m-anisyl-, m.p. 139—142·5° (decomp.; vac.) (20·2), and -β-m-anisyl-, m.p. 139—142·5° (decomp.; vac.) (10·8). 2-C₁₀H₇·CHPh·OH (prep. from 2-C₁₀H₇·CHO and MgPhBr) with AcBr-C₆H₆ gives a-2-naphthyl-benzyl bromide, m.p. 74—75°. o-C₆H₄F·COPh with Al(OPrβ)₃—PrβOH gives o-fluorobenzhydrol, m.p. 41—42°, and thence the bromide, b.p. 172—178°/17 mm. PhCHO and m-C₆H₄F·COPh with Al(OPrβ)₃—PrβOH gives o-fluorobenzhydrol, m.p. 26—27°, b.p. 178—179°/16 mm., and thence the bromide, b.p. 172—178°/14 mm., and m-C₆H₄Fr·CHPh·OH, m.p. 78·5—79° (lit. 81°), are also prepared. Preparation of 1:3-dinitronaphthalene. H. H. H. Hodgson and S. Pitterll (LC S. 10·42) 420° and the local transportant and S. Preparation of 1:3-dinitronaphthalene. H. H. Hodgson and S. Birtwell (J.C.S., 1943, 433).—2:4:1- $C_{10}H_5(NO_2)_2$ -NH $_2$ (I) (improved prep.) is diazotised in H_2SO_4 and added to AcOH (3 parts to 1 part of H_2SO_4) at $<20^\circ$, followed by Cu_2O at 5° to 25—30°; 1:3- $C_{10}H_6(NO_2)_2$, m.p. 146—147°, is obtained in 82% yield, and is also formed (78%) when 2:4-dinitro-p-toluenesulphon-1-naphthalide and NO·SO $_4$ H- $_2SO_4$ at $<10^\circ$ is added to AcOH at $<20^\circ$, and the hydrolysed product (I) diazotised and treated with Cu_2O . Reactions catalysed by aluminium chloride. XXII. Syntheses of hydrophenanthrene derivatives. C. D. Nenitzescu, E. Cioranescu, and M. Maican (Ber., 1941, 74, [B], 687—693).—The mixture of unsaturated and Cl-ketones obtained from cyclohexene, CH₂Ph-COCl, and AlCl₃ in PhNO₂ at 0°—room temp. is reduced (Na-H₂O-Et₂O) to a-cyclohexyl-β-phenylethyl alcohol (I), b.p. 170°/15 mm., m.p. 56°. Ph hexahydrobenzyl ketone, b.p. 170—171°/20 mm. (semicarbazone, m.p. 195°), from C₆H₆, cyclohexylacetyl chloride (II), and AlCl₃ at 45°, is similarly reduced to β-cyclohexyl-a-phenylethyl alcohol, b.p. 175°/20 mm., which [like (I)] is converted by distillation with P₂O₅ in a vac. into 1:2:3:4:9:10:11:12-octahydrophenanthrene (contains a little spiran; dehydrogenated to phenanthrene). Methylcyclohexene, CH₂Ph-COCl, and AlCl₃ in PhNO₂ give mixed ketones (from which 2-methyl-Δ1-cyclohexenyl CH₂Ph ketoxime, m.p. 153°, is obtained) reduced to a-2-methylcyclohexyl-β-phenylethyl alcohol, b.p. 179—183°/14 mm., whence (P₂O₅) 12-methyl-1:2:3:4:9:10:11:12-octahydrophenanthrene, b.p. 155—157°/18 mm. 2-Methyl-Δ1-cyclohexenylacetyl chloride, C₆H₆, and AlCl₃ afford 4-phenyl-2-methyl-cyclohexylacetic acid, b.p. 190—192°/5 mm., m.p. 98°. p-Anisyl hexahydrobenzyl ketone, b.p. 169—170°/5 mm., m.p. 45° (semicarbazone, m.p. 186°) [from PhOMe, (II), and AlCl₃ in PhNO₂], is reduced to the carbinol has 160—170°/5 mm., m.p. 45° (semicarbazone, m.p. 186°) [from PhOMe, (II), and AlCl₃ in PhNO₂], is $(P_2O_5 \text{ at } 3 \text{ mm.}) \text{ 7-methoxy-1} : 2 : 3 : 4 : 9 : 10 : 11 : 12-octahydrophen-1$ anthrene, b.p. 135-137°/3 mm., dehydrogenation (Se) of which gives phenanthrene Δ1-cycloHexenyl p-methoxybenzyl ketone, m.p. phenanthrene. Δ^{1} -cycloHexenyl p-methoxybenzyl ketone, m.p. 112 (from p-OMe-C₆ H_4 -CH₂-COCl, cyclohexene, and AlCl₃ in PhNO₂) (semicarbazone, m.p. 136°), could not be reduced satisfactorily. cycloPentylacetyl chloride, C₁₀H₈, and AlCl₃ in PhNO₂ give β -C₁₀H₇ cycloPentylmethyl ketone (III), b.p. 186—187°/3 mm., m.p. 61—62°, reduced (Na, aq. MeOH, Et₂O) to β -cyclopentyl- α -5: 6: 7: 8-letrahydro-2-naphthylethyl alcohol, b.p. 199—200°/5 mm., whence (P₂O₅) 3: 4-trimethylene-1: 2: 3: 4: 5: 6: 7: 8-octahydrophenanthrene, b.p. 172—173°/5 mm. Dehydrogenation (Se at 250°, then 360°) of this gives some 3: 4-trimethylenephenanthrene, The oxime, m.p. 120°. gives some 3: 4-trimethylenephenanthrene. The oxime, m.p. 120° of (III) with AcCl-PCl₅ at 0° affords cyclopentylacet-β-naphthyl-amide, m.p. 125°, hydrolysed [HBr (d 1·49)] to β-C₁₀H₇·NH₂. Reactions of hydrazoic acid. II. Quantitative study of the action with substituted benzoic acids. L. H. Briggs and J. W. Lyttleton (J.C.S., 1943, 421-425; cf. A., 1942, 11, 140).—Yields % of NH₃Ar formed from HN₃ and the following acids in the Schmidt reaction, using conc. H₂SO₄ (POCl₃ is an unsatisfactory catalyst) in C₂HCl₃ at 40°, are: BzOH 69, m-C₆H₄X-CO₂H (X = Cl 75, Br 72, I 62, OH 80, OMe 77, OEt 73, NO₂ 63, CN 59, CO₂H 57, Me 42), o-80, and p-OMe·C₆H₄·CO₂H 78, o-68, and p-NO₂·C₆H₄·CO₂H 41. The rate of reaction of the substituted acids, as determined by the time of half the evolution of N₂, is, in descending order of speed (m-series): Me > H > OEt > OMe > OH > Br > Cl > I > CO₂H > CN > NO₂. In general, this is in the reverse order of the strength of the acids In general, this is in the reverse order of the strength of the acids find dissociation const.). o-NO₂·C₆H₄·CO₂H is an exception, presumably because of an "ortho-effect." Speed of reaction depends on the character of the substituent according as this is electrophilic, e.g., NO_2 , or nucleophilic, e.g., Me. The total vol. of N_2 evolved and yield of amine produced do not bear a close relation, and explanations are suggested. No trace of amine is obtained when PhOMe, NPhMe₂, or PhNO₂ is submitted to the Schmidt reaction at 40°. The mechanism of the reaction is discussed. Colour and constitution. VII. Structures of mono- and dinitronaphthylamines based on their visual colours. Probable constitution of 1:2-naphthaquinone. H. H. Hodgson and H. S. Turner (J. Soc. Dyers and Col., 1943, 59, 218—220).—The NO₂·C₁₀H₆·NH₂ (I) (13 known isomerides) can each resonate into one of seven quinonoid structures; since all are red except 2:1-, 3:1-, and 4:1-NO₂·C₁₀H₆·NH₂, which are yellow, it is suggested that the other ten have a single linking between the central C
atoms, and the above three have a double linking. By analogy, the red 1: 2-O:C₁₀H₆:O should also possess a central single linking. Structures of (NO₂)₂C₁₀H₅·NH₂ are also discussed, and the effects of halogen substituents on the colours and structures of (I) are con- Sulphanilamide derivatives.—See B., 1943, III, 279. Complex compounds of diguanide with bivalent metals. V Copper and nickel m-phenylenebisdiguanidine and their salts. Råy and S. K. Siddhanta (J. Indian Chem. Soc., 1943, 20, 200—203). —m-C₆H₄(NH₂)₂,2HCl and dicyanodiamide (2 mols.) in hot H₂O give m-phenylenebisdiguanidine hydrochloride, which with aq. NH₃ and aq. NH₃-CuSO₄ affords the complex sulphate. This in aq. HCl with NH·C(:NH)·NH·C·NH2 KOH (excess) gives the complex base, $[CuB^+H_2^+](OH)_2$, which forms the anhydro-base [CuB] at 110°, for which the formula (A) is suggested. could not be prepared. Polarographic study of cis-trans isomerism of azo-compounds. A. Winkel and H. Siebert (Ber., 1941, 74, [B], 670—675).—Two stages are observed in the reduction of solutions of (m-SO₃K·C₆H₄·N.)₂ at a dropping Hg cathode. Illumination of the solutions by a quartz Hg lamp causes the second stage to diminish and ultimately to disappear, whilst the consumption of H (2 atoms H per mol.) remains unaffected. The phenomenon is attributed to the presence in the original solution of cis- and trans-forms in approx. equimol. proportion, the latter being converted into the former under the influence The cis-compound has a deeper colour than the transcompound and can be conc. chromatographically to the extent of 10%, or of 25% if the Et₂ ester is used. The polarographic behaviour of (.NPh)₂ in EtOH solution is similar to that of its disulphonic acid. The energy of the cis-trans transition, calc. from the reduction potentials, is 10.8 kg.-cal. per mol., in agreement with the val., ~12 kg.-cal., obtained from the heats of fusion. F. L. U. F. L. U. Radioactive disazo-dyes. II. Synthesis and properties of radioactive dibromo-trypan-blue and radioactive dibromo-Evans-blue. N 2 (A.. II.) L. H. Tobin and F. D. Moore (J. clin. Invest., 1943, 22, 155—159).—o-Tolidine was converted into the radioactive 5:5'-Br₂. derivative by means of 8ºBr (obtained from EtBr bombarded in a cyclotron) and this was converted into the disazo-dyes as usual; the dry products have activity $\sim 0.5 \mu c$, per mg, when fresh. The dry products have activity $\sim 0.5 \,\mu c$. per mg. when fresh. The brominated dyes are redder in shade than the non-brominated dyes; the absorption max. was shifted by bromination from 630 to 545 mm. for Evans-blue and from 600 to 550 mμ. for trypan-blue. Other properties are compared. Azo-compounds and their intermediates. XXV. Aminohydrazo-compounds. P. Ruggli and K. Hölzle (Helv. Chim. Acta, 1943, 26, 1190—1197).—Partial hydrogenation (Raney Ni–EtOH at room temp.) of p-NH₂·C₆H₄·N₂Ph (I) gives NH₂Ph and p-C₆H₄(NH₂)₂. Gradual addition of Zn dust and 35% aq. NH₃ to (I) in EtOH at 50—55° until the solution becomes colourless leads to 4-amino-temperature. hydrazobenzene (II), m.p. 81-84° to a brown melt, becomes yellow at ~50°. (II) is very unstable and decomposes completely within a few hr. even in a high vac. It is immediately disproportionated by Ac_2O but β -acetyl-a-phenyl- β -p-acetamidophenylhydrazine, m.p. 198—200° (decomp.) (also +MeOH), can be obtained by reduction of (I) in C_5H_5N with Zn dust and a little AcOH followed by acetylation with Ac₂O; hydrogenation (Raney Ni) transforms this into NH₂Ph and p-C₆H₄(NHAc)₂. Similarly o-NH₂·C₆H₄·N₂Ph (III) is reduced to 2-aminohydrazobenzene, m.p. 94—95° (decomp.), becomes yellow at 70°, which is somewhat more stable than (II), can be yellow at 70°, which is somewhat more stable than (II), can be preserved for 1 day in a vac., but rapidly becomes discoloured in air; reduction of (III) by Zn. dust in C₅H₅N containing a little AcOH followed by acetylation (Ac₂O) yields 2-acetamidohydrazobenzene, m.p. 167—168° (decomp.), oxidised by yellow HgO to o-NHAc·C₆H₄·N₂Ph. m-NH₂·C₆H₄·N₂Ph is reduced by NH₃-H₂S in EtOH to 3-aminohydrazobenzene, m.p. 107°, which is moderately stable in air when dry. 4-Amino-4'-phenylhydrazinodiphenyl, m.p. 139—141° (disproportionation), becomes pale yellow at ~100°, obtained by reduction (H₂S) of the azo-compound, is moderately stable in air and gives an Aco derivative. NHPh·NAc·C₆H₄·C₆H₄·NHAc. in air and gives an Ac_2 derivative, NHPh·NAc·C₆H₄·C₆H₄·NHAc, m.p. 232—233°, catalytically hydrogenated to NH₂Ph and m.p. 232—23 (C₆H₄·NHAc)₂. Union of aryl nuclei. VI. Reactions with 1-aryl-3: 3-dimethyltriazens. J. Elks and D. H. Hey [with (in part) J. W. Haworth and C. W. Pritchett] (J.C.S., 1943, 441—445; cf. A., 1940, II, 338).— NMe₂·N:NAr are prepared from ArN₂Cl-33% ad. NHMe₂-30% aq. NA₂CO₃. 1-Phenyl-3: 3-dimethyltriazen, b.p. 125—127²/19 mm., with boiling C₆H₆-dry HCl gives NHMe₂, PhCl, and Ph₂ (25%; increased to 37% in C₆H₆-AcOH), with PhNO₂ at 100° (bath) gives a mixture (35%) of p- (I) and o-C₆H₁Ph·NO₂, and with C₅H₅N-HCl at 100° (bath) yields 2-, 3-, and 4-phenylpyridine (51%). 1-p. Nitrophenyl-3: 3-dimethyltriazen, m.p. 144—145°, affords (I) (52%) with C₆H₆-HCl, and with C₆H₈N-HCl gives 50% of 2- + 3-p-nitrophenylpyridine; the m-NO₂-isomeride, m.p. 99—100°, with C₆H₆-HCl, but not with C₆H₆-AcOH, yields m-C₆H₄Ph·NO₂ (53%). 1-o-Carboxyphenyl-, m.p. 124—126° (decomp.) (C₆H₆-HCl gives o-C₆H₄Cl-CO₆H and no diaryl), and 1-β-naphthyl-3: 3-dimethyltriazen, m.p. 57—58°, are prepared; the latter and C₆H₆-AcOH yields (11%) and thence isomeric picrates, m.p. 199—200° (base, m.p. 99—100°), 177—178° [base (II), m.p. 69—70°], and 216—217°. 2-C₁₀H₇Ph (36%), and C₅H₅N-HCl give mixed 2-pyridylnaphthalenes (41%) and thence isomeric picrates, m.p. 199—200° (base, m.p. 99—100°), 177—178° [base (II), m.p. 69—70°], and 216—217°. β-C₁₀H₇·N₂Cl and C₅H₅N at 20—25°, and then SnCl₂-HCl-AcOH, afford (II), also obtained from β-C₁₀H₇·NAc·NO and C₅H₅N. 1-5′-Quinolyl-3: 3-dimethyltriazen, m.p. 30—40° (impure), with C₆H₆-HCl gives 5-chloroquinoline (picrate, m.p. 220—223°) and 5-phenylquinoline (13%), m.p. 82—83° (picrate, m.p. 210—211°). 1-Phenyl-3: 3-dimethyltriazen-3': 4'-dicarboxylimide, m.p. 251—253° (decomp.) [from 4:1:2-NH₂·C₆H₃·(CO)₂NH (III)], and C₆H₆-HCl give a little 4:1:2-C₆H₃Ph(CO)₂NH (IV), and with C₅H₅N-HCl, a mixture (49%) of 4-pyridylphthalimides, m.p. 232—243°, also obtained (m.p. 238—245°) from diazotised (III) and C₅H₅N at 40—50°. Me₂ 1-phenyl-3: 3-dimethyltriazen-3': 4'-dicarboxylate, m.p. 74—75°, and C₆H₆-HCl yield 4:1:2-C₆H₃Ph(CO₂Me)₂ (V) (66%). 1-o-Carbomethoxyphenyl-3: 3-dimethyltriazen, b.p. 180—182°/18 mm., and molten 2-C₁₀H₇·OMe-HCl or -AcOH at 100° (bath) afford 2:1-OMe^cC₁₀H₄·C₆H₄·CO₂Me-o (25 or 29% respectively). Diazotised molten 2- $C_{10}H_{2}$ -OMe-HCI of "ACOII at 100 (bath) and CoMe- $C_{10}H_{4}$ -Co $_{2}$ Me- $_{2}$ O(25 or 29% respectively). Diazotised (III) and $C_{6}H_{6}$ -aq. NaOAc at 5—10° give (IV), and 1:2:4-(CO $_{2}$ Me) $_{2}$ Co $_{6}$ H $_{3}$ -N $_{2}$ Cl and C_{6} H $_{6}$ -aq. NaOH or -NaOAc yield (V) (34 or A. T. P. 52% respectively). Production of phenol from cyclohexanol and cyclohexanone.—See B., 1943, II, 341. Manufacture of phenols.—See B., 1943, II, 341. Absorption spectra of m-substituted phenols; influence of nucleophilic substituents on electronic mobility.—See A., 1943, I, 271. Mesomeric anions containing nitro-groups.—See A., 1943, I, 295. Amino-acid ester salts of phenols.—See B., 1943, II, 341. Peroxidic degradation of substituted aromatic aldehydes and ketones to the corresponding phenols. II. Degradation with peracetic acid. A. von Wacek and A. von Bézard (Ber., 1941, 74, [B], 845—857).—o-OH·C₆H₄·CHO is oxidised by AcO₂H [containing 0·5% of p-C₆H₄Me·SO₃H (I) unless stated otherwise] at 35—40° to muconic acid and some o-OH·C₆H₄·O·CHO (II), b.p. 125°/12 mm. (with NHPh·NH₂ gives ? N-formyl-N'-phenylhydrazine, m.p. 147°), readily hydrolysed to o-C₆H₄(OH)₂. Use of Ac₂O-AcO₂H at 25° affords 88% of (II), which with Et₂O-CH₂N₂ gives o-anisyl formate, b.p. 109°/12 mm., hydrolysed to guaiacol. These results support the rearrangement mechanism (a) (A., 1943, II, 260) but do not preclude (b) direct attack by O at the C carrying CHO. That both mechanisms can operate is proved for 6:3:1-OH·C₆H₃Me·CHO, which with AcOH-AcO₂H [(I)-free; otherwise acetylation occurs also], methylation of the product, and subsequent hydrolysis gives 3:1:4-OH·C₆H₃Me·OMe (III) (b) and its 4:1:3-isomeride (IV) (a); similarly 2:4:1-OH·C₆H₃Me·CHO yields (III) (a) and (IV) (b). p-OH·C₆H₄·CHO with Ac₂O-AcO₂H gives p-OH·C₆H₄·OAc and p-C₆H₄(OAc)₂; with AcOH-AcO₂H [(I)-free] p-hydroxyphenyl formate, b.p. 150°/12 mm., m.p. 57°, results. The following oxidations are also effected: o-OMe·C₆H₄·CHO to o-OMe·C₆H₄·O·ChO (99%); 3:4:1-(OMe)₂C₆H₃·CHO to 3:4-dimethoxyphenyl formate, m.p. 57°; p-OMe·C₆H₄·COMe to p-OMe·C₆H₄·CHO is defined or and m-NO₂·C₆H₄·CHO to the corresponding acids. H. B. Stability of 2:2'-dihydroxydiphenylmethane. C. A. Buehler, D. E. Cooper, and E. O. Scrudder (J. Org. Chem., 1943, 8, 316—319).—p-C₆H₄Br·OH and CH₂O in H₂SO₄—H₂O at 80—90° give 5:5'-dibromo-2:2'-dihydroxydiphenylmethane (I), m.p. 183—184° (dibenzoate, m.p. 192°), reduced by Na in n-C₅H₁₁·OH at 160—170° to the stable (cf. lit.) 2:2'-dihydroxydiphenylmethane (II), m.p. 119—120° (dibenzoate, m.p. 76—77°), which gives xanthene when heated at 150—160° and then distilled. o-OH·C₆H₄·CH₂·OH, p-C₆H₄(Cl-OH, and a little conc. HCl at 30° give 5-chloro-2:2'-dihydroxydiphenylmethane, m.p. 128—129° (dibenzoate, m.p. 80—81°), reduced as above to (II). With KOH-Me₂SO₄-COMe₂-H₂O, (I) gives the Me₂ ether, m.p. 107·5°, and thence (CrO₃-AcOH) (2:5:1-OMe·C₆H₃Br)₂CO, m.p. 123—124°. Synthetic estrogens. II. Configuration of synthetic estrogens. F. von Wessely and H. Welleba (Ber., 1941, 74, [B], 777—785).—A more detailed account of work previously abstracted (A., 1942, II, 89). Reduction (H₂, Pd-black, AcOH) of
diethylstilbæstrol gives ~88% of dl- and 12% of meso-(p-OH·C₆H₄·CHEt)₂. dl-(CHPhMe)₂ has m.p. 12·5° and is obtained nearly pure by reduction of trans-(CPhMe.)₂. H. B. Ethers of 4-chloro-2-nitro-3:5-dimethylphenol. B. Jones (J.C.S., 1943, 445; cf. A., 1941, II, 221).—The k (0·0728) recorded for the CH₂Ph ether (loc. cit.) is for the hexyl ether. The following are prepared: Me, m.p. 166° , Et, m.p. 107° , Pr^a , m.p. 68° , $n\text{-}C_6H_{13}$, m.p. 41° , and $p\text{-}C_6H_4Br\text{-}CH_2$ ether, m.p. 105° , of 1:3:5:4:2-OH·C₆HMe₂Cl·NO₂. The CH_2Ph ether, m.p. 105° , is obtained from 4-chloro-3:5-dimethylphenyl CH_2Ph ether, m.p. 57° , and HNO_3 (d $1\cdot5$)—AcOH. Halogenation of phenolic ethers and anilides. XIV. m-Substituted phenyl ethers. B. Jones (J.C.S., 1943, 430—432; cf. A., 1941, II, 287).—Velocity coeffs. for the chlorination of m-C₈H₄X·OR (X = CO₂H, R = C_nH_{2n+1} where n = 1—9, C₁₂H₂₅, [CH₂]_m·Ph where m = 1, 2, or 3, and p-C₆H₄Hal·CH₂; X = NO₃, R = Me, Et; X = Cl, R = Me, CH₂Ph; X = F, R = o-NO₂·C₆H₄CH₂), 2:5:1·C₆H₃Cl₂·OR (R = CH₂Ph, p-C₆H₄Me·CH₂, p-C₆H₄Br·CH₂), and 5:2:1·NO₂·C₆H₃Me·OR (R = Me, Et, CH₂Ph), in 99% AcOH at 20°, are given. The relative directive powers of OR groups obtained from a ratio of velocity coeffs. are very similar to those found in p-C₆H₄X·OR, where chlorination yields a single homogeneous product. The following are new: m-isopropoxy-, m.p. 96°, -n-butoxy-, m.p. 62°, -n-anyloxy-, m.p. 72°, -n-hexyloxy-, m.p. 71°, -n-heptyloxy-, m.p. 80°, -n-octyloxy-, m.p. 73°, -n-nonyloxy-, m.p. 84°, and -n-dodecyloxy-, m.p. 91°, -benzyloxy-, m.p. 134°, -p'-fluoro-, m.p. 148°, -chloro-, m.p. 170°, and -bromo-benzyloxy-, m.p. 179°, -β-phenylethoxy-, m.p. 170°, and -bromo-benzyloxy-benzoic acid, m.p. 118°; 3:5-dichlorophenyl p-bromobenzyl ether, m.p. 68°; 4-nitro-o-tolyl Pra m.p. 51°, CH₂Ph, m.p. 79°, and p-methylbenzyl ether, m.p. 110°: m-fluorophenyl o-nitrobenzyl ether, m.p. 53°; m-chlorophenyl CH₂Ph ether, m.p. 65°; 2:5-dichlorophenyl CH₂Ph, m.p. 58°, p-bromo-, m.p. 77°, and p-methyl-benzyl, m.p. 58°, ether. A. T. P. Applications of camphor oil. II. cis- and trans-iso-Chavibetol Applications of camphor oil. II. cis- and trans-iso-Chavibetol alkyl ethers. E. Funakubo (Ber., 1941, 74, [B], 832—840).—trans-iso-Chavibetol Me, b.p. 126°/5 mm. (prep. by aq. MeOH-NaOH-Me₂SO₄), Et, m.p. 49·3—50·3° (aq. EtOH-NaOH-EtI), and Pr° ether, m.p. 44·2—45·7° (EtOH-NaOH-Pr°Br at 110—130°), with Et₂O-Br at room temp. give the dibromides (A), m.p. 94—95·7°, 118·5—119°, and 94—95·7° (? 97—98°), respectively, converted by KOH (≮5 mols.) at >90° into 3 · 4-dimethoxy-, b.p. 139°/4 mm., 4-methoxy-3-ethoxy-, b.p. 163—164°/7 mm., and 4-methoxy-3-n-propoxy-Δ°-propinylbenzene, b.p. 185°/9 mm., respectively. These are reduced (1 H₂, Pd-black, EtOH) to cis-isochavibetol Me (I), b.p. 137—137·5°/6 mm., Et, m.p. 38—39·8° (lit. 40—41°), and Pr° ether, b.p. 140— $141^{\circ}/6\cdot 5$ mm. (dibromide, m.p. $103-105\cdot 5^{\circ}$), respectively. With MeOH-KOH at room temp. (A) give 4:3:1-OMe·C_gH₃(OR)·CH:CMeBr [R = Et, b.p. $162-163^{\circ}/3$ mm., m.p. $67\cdot 3-68\cdot 8^{\circ}$, oxidised (aq. KOH-KMnO₄) to 4:3:1-OMe·C_gH₃(OEt)·CO₂H, m.p. $164\cdot 2-167\cdot 2^{\circ}$ (Ag salt)]. Small amounts of KOH at higher temp. give mixtures. The cis-isoeugenol Me ether [= (I)] of Boedecker et al. (A., 1931, 348) is probably impure. Absorption spectra of the cis- and trans-ethers are given. H. B. Constituents of red sandalwood. III. Synthesis of pterostilbene [4-hydroxy-3′: 5′-dimethoxystilbene]. E. Spāth and K. Kromp (Ber., 1941, 74, [B], 189—192; cf. ibid., 1940, 73, 881).—p-OH·C₆H₄·CH₂·CO₂H, m.p. 153—154° (lit. 150°) [obtained by demethylation (P + HI) of the OMe-acid] (as Na salt), and 3:5:1-(OMe)₂C₆H₃·CHO (I) (improved isolation) in Ac₂O at 160° afford (after hydrolysis) 3:5-dimethoxy-a-p-hydroxyphenylcinnamic acid (II), m.p. 228—229° (vac.). The oil obtained by decarboxylation (Cu + quinoline at 240—260°) of (II), when treated with conc. aq. HCl in MeOH at 20° for 36 hr., affords (cis →trans conversion) pterostilbene, m.p. 87—88°. Similarly, Na homoanisate and (I) give 3:5-dimethoxy-a-p-anisylcinnamic acid, m.p. 192°, decarboxylated to an oil, converted as above into pterostilbene Me ether, m.p. 56—57°, which is identical with resveratrole Me₃ ether (Takaoka, A., 1940, II, 328). βδζ-Tri-p-anisyl-αγε-heptatriene; problem of tautomerism or mesomerism? W. Schneider and H. Keller (Ber., 1941, 74, [B], 729—755).—The compound, $C_{28}H_{28}O_3$ (I), m.p. 113— 114° , obtained in 5—6% yield from PhOMe and SO₃H·CH₂·CO₂H (prep. described), is considered to be βδζ-tri-p-anisyl- Δ αγε-heptatriene; (I) may arise from CMeR:CH-CR:CH-CR:CH-COR (R = anisyl) by an acetolysis. Many of its reactions are explicable by the scheme CMeR:CH:CR:CH:CR:CH2 \longleftrightarrow CMeR:CH:CR:CH:CR:CH2 \rightleftharpoons CMeR:CH=CR>CH (A). (I) shows intense halochromism and gives a dihydrochloride [1 HCl lost in a vac.; useful for purification of (I)], perchlorate, detonates when heated, and a dihydrobromide stamnibromide, 2(I), H_2 SnBr $_6$. With 75 vol.- 9 0 H_2 SO $_4$, (I) (in C_6 1 H_6 1; subsequently removed) gives first a hydrolysable halochromic salt and then a stable sulphonic acid sulphate, C_2 8 H_2 7O $_3$ *SO $_3$ H, H_2 SO $_4$ 6, H_2 O $_4$ 0, green, m.p. $120-125^{\circ}$; with H_2 SO $_4$ 9, H_2 90 at 70° 0 a trisulphonic acid famorphous Ba salt, (C_2 8 H_2 5O $_1$ 2S $_3$ 9) Ba_3 1 results. (I) absorbs $2H_2$ 0 or reduction (Pd-BaSO $_4$ 4, AcOH) but titration with o-CO $_2$ H· C_6 H $_4$ CO $_3$ H (II) shows 3 double linkings. Demethylation (aq. AcOH-HBr) of (I) gives 3:5-di-p-hydroxyphenyltoluene ($+2H_2$ 0), m.p. 100° (loss of H_2 0); rapid heating), 108° (slow) resolidifying with m.p. 140° (diacetate, m.p. 139° 9), presumably formed by loss of PhOH from the intermediate (A, R = p-OH· C_6 H $_4$). ('CH·CO) $_2$ O and (I) in boiling C_6 H $_6$ give (mainly) amorphous material and \sim 20% of an adduct, C_3 H $_3$ O $_6$, m.p. $201-202^{\circ}$, which could not be reduced but contains one CiC [titration with (II)]. (I) is dehydrogenated by AcOH-Br or -30%H $_2$ O $_2$ to a compound, C_2 8 H $_2$ 6O $_3$ (III), m.p. $133-134^{\circ}$. Whilst oxidative degradation of (I) is inconclusive, (III) with AcOH-CrO $_3$ gives anisic acid and \sim 50% of anisil, thus indicating that it is 2:3:5-tri-p-anisyltoluene, formation of which involves migration of anisyl. Reduction (H $_2$ 9 PtO $_2$ 9. AcOH) of (I) results in absorption of 12-13 H $_2$ and gives a mixture. s-Tri-p-anisylbenzene similarly affords a mixture containing \sim 5% of 1:3:5-tricyclohexyl-cyclohexane, m.p. $157-159^{\circ}$, also obtained (<50%) from s- C_6 H $_3$ Ph $_3$; the behaviour of related compounds [e,g], PhOMe, CH(C_6 H $_4$ ·OMe) $_3$ is investigated. N-Nitroalkyl-p-aminophenols.—See B., 1943, II, 340. Kerr effect in solutions of p-azoxyanisole.—See A., 1943, I, 298. 4-Nitro- and 4-amino-4'-acylamidodiphenyl sulphones.—See B., 1943, III, 279. $\mathbf{4:2':5'\text{-}Triaminodiphenyl}$ sulphone and derivatives.—See B., $1943,\ III,\ 279.$ Ultra-violet absorption of formaldehyde-phenol resins.—See A., 1943 I 295 Hardening process of phenol-formaldehyde resins. IV. A. Zinke and F. Hanus [with H. Prennschütz-Schützenau, H. Troger, and (in part) R. Möldner and K. Lercher] (Ber., 1941, 74, [B], 205—214; cf. A., 1939, II, 476).—The course of the hardening of 1:4:2:6-(I) and 1:2:4:6-OH·C₆H₂R(CH₂·OH)₂ is bound up with the step-wise elimination of H₂O and CH₂O; when R is a large substituent the two processes can be separated. Firstly, loss of H₂O leads to ether linkings since HBr affords bromides corresponding to the starting materials. In hardening, small amounts of cryst. sublimates are formed consisting of OH·C₆H₂R(CHO)₂; their formation is attributed to "cracking" and disproportionation of the—CH₂·O·CH₂— linkings and analogous cases are already known. The elimination of CH₂O is less easy to interpret. Assuming that a macromol. with CH₂ linkings between nuclei is formed, I mol. of CH₂O should arise from I mol. of dicarbinol but the max. found is 0.6 mol. The deficit must participate in further reactions such as formation of CH₂: ethers with phenolic OH groups, or CH₂ bridges with reactive nuclear positions forming cross linkings in the macromols. These processes should result in $\rm H_2O$ -formation in excess of 1 mol. which is, in fact, observed. Some $\rm CH_2O$ is used in methylating OH groups since the resins from (I) (R = Me and Cl) contain respectively 0.5 and 1.6% OMe. The p-toluenesulphonates of the phenolicarbinols with esterified phenolic OH give no CH₂O and the products contain ether linkings. It is suggested that CH₂O may condense with the CH₂ groups linking benzene nuclei and confirmation is sought, and found, in the behaviour of (II) (R = Me or Cl), (III) (R = Me or Cl), and (IV) (R = Me or Cl) which contain preformed CH_2 groups; these substances give less CH_2O and much more H_2O in proportion than do the mononuclear dicarbinols. 4:4'-Dihydroxy-3:5:3':5'-tetra(hydroxymethyl)diphenylmethane (V) affords 2 mols. of H_2O and only a trace of CH_2O . (III) (R = Cl) affords a pentaacetate, m.p. 142° , and the tetrabromide, from (V) has m.p. (crude) 169° . Hardening processes of phenol-formaldehyde resins. VI. "Salireton" [di-o-hydroxybenzyl ether]. E. Ziegler (Ber., 1941, 74, [B], 841—844).—o-OH·C₆H₄·CH₂·OH at 140° alone or in glycerol gives ~10 or ~16% respectively of (o-OH·C₆H₄·CH₂)₂O, m.p. 122—123° (dibenzoate, m.p. 115°) (cf. Giacosa, A., 1880, 716), which when heated above its m.p. affords o-OH·C₆H₄·CHO (I). 2:3:5:1-OH·C₆H₂Me₂·CH₂·OH and -OH·C₆H₂Cl₂·CH₂·OH with PhCHO in aq. EtOH-HCl give the 1:2-CHPĥ: ethers, m.p. 46° and 87—88°, respectively.
4:4'-Dihydroxy-3:3'-dimethyl-5:5'-di(hydroxymethyl)diphenylmethane similarly affords the 4:5:4':5'-(CHPh.)₂ ether, m.p. 140°; (I) gives no cryst. product. Hardening processes of phenol-formaldehyde resins. V. A. Zinke and E. Ziegler (Ber., 1941, 74, [B], 541—545).—2:3:5:1-OH·C₆H₂Me₂·CH₂·OH (I) at 135—140° (bath)/1 hr. gives 2:2'-dihydroxy-3:5:3':5'-tetramethyldibenzyl ether, m.p. 100—101°, converted [as is (I)] by HCl-C₆H₆ into 2:3:5:1-OH·C₆H₂Me₂·CH₂·Ch, m.p. 59°, and by boiling 3% NaOH into 2:2'-dihydroxy-3:5:3':5'-tetramethyldiphenylmethane, m.p. 148° [also obtained when 2:3:5:1-ONa·C₆H₂Me₂·CH₂·OH is fused or heated at 130—140°/vac., whereby CH₂O is evolved]. 4-Hydroxy-3-methoxy-5-hydroxy-methylallylbenzene [eugenotin alcohol] (II) resinifies when heated, but the 4-ONa derivative at 200° or, better, 125°/vac. gives 2:2'-dihydroxy-3:3'-dimethoxy-5:5'-diallyldiphenylmethane, m.p. 84°, also obtained from (II) and an excess of boiling 5% NaOH or from eugenol, CH₂O, and KOH. Reactions of OH-alcohols of type (I) are thus influenced by alkali. Symmetrical diaryldialkylethanediols. I. βγ-Diphenylbutane-βγ-diol. E. J. H. Chu and J. C. Chu (J. Chinese Chem. Soc., 1942, 9, 190—195).—Both modifications of (CPhMe·OH)₂ with AcOH-I yield CPhMe₂·COPh. F. R. G. Catalytic hydrogenation of dimedone (dimethyldihydroresorcinol), and a preparation of 1:1-dimethylcyclopentane. T. Henshall (J.S.C.I., 1943, 62, 127—128).—Dimedone has been hydrogenated under pressure in the presence of the Raney Ni catalyst, to furnish 3:3-dimethylcyclohexanol (I) (75% yield) and 3:3-dimethylcyclohexane-1:5-diol. (I) has been converted into 1:1-dimethylcyclopentane. Mechanism of formation of leuco-triphenylmethane dyes, and an analogy in the Perkin reaction. R. R. Davies and H. H. Hodgson (J. Soc. Dyers and Col., 1943, 59, 196—198).—The mechanism of the formation of leuco-triphenylmethane dyes appears to be a two-stage process, viz., (a) an initial aldol condensation between ArCHO and I mol. of arylamine, and (b) elimination of H₂O between the aldol and a second mol. of amine. Condensation of o-SO₃H·C₆H₄·CHO (I) (1 mol.) (prep. from o-C₆H₄Cl·CHO and aq. Na₂SO₃ at 170—175°/130—140 lb. per sq. in.) and NPhEt₂ (2 mols.) at 105—110° is examined in detail. Whereas only 2% of (I) is uncondensed after 18 hr., optimum production of the leuco-compound is obtained only after 36 hr.; the aldol stage seems to be attained quickly. The leuco-compound is oxidised by PbO₂-aq. AcOH and the dye estimated by TiCl₂. The mechanism of reaction is discussed. In standard Perkin reactions of PhCHO, o-OH·C₆H₄·CHO, or o-C₆H₄Cl·CHO with NaOAc-Ac₂O at ~180°, yields of CHPh:CH·CO₂H, coumarin, and o-C₆H₄Cl·CH:CH·CO₂H are 68, 43, and 47%, respectively, thus showing the electron-repelling effect of the OH and of the mesomeric Cl in decreasing the amount of aldol formation. A. T. P. Absorption of light by organic molecules and ions according to quantum mechanics.—See A., 1943, I, 295. Acidity constants, resonance energies, and light absorption of simple dyes.—See A., 1943, I, 296. Effect of acidifying substituents on chromophoric systems.—See A., 1943, I, 296. Preparation of substituted phenylacetic acids. C. Schöpf and L. Winterhalder [with W. Salzer] (Annalen, 1940, 544, 62—77).— Preparation of substituted phenylacetic acids. C. Schöpt and L. Winterhalder [with W. Salzer] (Annalen, 1940, 544, 62—77).— Methods of preparing these acids are discussed and some are investigated. 3:4:1-CH₂Ph·O·C₆H₃(OMe)·CHO (modified prep.), m.p. 62°, with H₂-PtO₂-MeOH or Al(OPrβ)₃-PrβOH at 95° (removal of COMe₂ as formed) gives good yields of 3-benzyloxy-4-methoxybenzyl alcohol (I), m.p. 73°, which with SOCl₂-C₅H₅N-CHCl₃ at -5° to 0° gives the chloride (II), m.p. 79°. With NaCN in MeOH, (II) gives 3-benzyloxy-4-methoxybenzyl Me ether, m.p. 58°, but in boiling EtOH-H₂O (not C₆H₆-H₂O) gives about equal parts of the oily nitrile and Et ether (III) with probably some (I). With boiling KOH-EtOH-H₂O, this mixture gives 3:4:1-CH₂Ph·O·C₆H₃(OMe)·CH₂·CO₂H (IV); the unchanged (III) with Et₂O-HCl affords (II). HNO3 (d 1·4) in AcOH converts (IV) into the 6-NO₂-acid, sinters 158°, m.p. 178—179°, hydrolysed to 3:4:6:1-OH·C₆H₂(OMe)(NO₂)·CH₂·CO₃H, m.p. 192° (Me ether, m.p. 203°) (A., 1927, 365). Me gallate (prep. by HCl-MeOH), m.p. 198°, Me₂SO₄, and NaOH in aq. MeOH at 35—40° and then the bp. gives much 4-Me ether, m.p. 136° (lit. 143—147°), which with CH₂PhCl and K₂CO₃ in boiling MeOH (later also C₆H₆) gives Me gallate 4-Me 3:5-(CH₂Ph)₂ ether (V) (52%), m.p. 121—122°, and a residue converted by boiling KOH-EtOH-H₂O into 2:6-dibenzyloxy-anisole, m.p. 106°, and gallic acid (CH₂Ph)₃ ether, m.p. 187°. The acid, m.p. 173°, obtained from (V) by KOH-EtOH-H₂O, with SOCl₂ at 50—60° gives the chloride, m.p. 125°, and thence ω-diazo-3:5-dibenzyloxy-4-methoxyphenacyl chloride, m.p. 93°, and with Ag₂O in MeOH at 50°, followed by boiling KOH-EtOH-H₂O, yields 3:5-dibenzyloxy-4-methoxyphenacylc chloride, m.p. 93°, and with Ag₂O in MeOH at 50°, followed by boiling KOH-EtOH-H₂O, yields 3:5-dibenzyloxy-4-methoxyphenacylc chloride, m.p. 93°, and with Ag₂O in MeOH at 50°, followed by boiling KOH-EtOH-H₂O, yields 3:5-dibenzyloxy-4-methoxyphenacylc ch Transamination reaction. Mechanism of the reaction between α-keto-acids and α-NH₂-acids. R. M. Herbst and D. Rittenberg (J. Org. Chem., 1943, 8, 380—389).—The α-H of the NH₂-acid is not involved in uncatalysed in vitro transamination. Firstly, when NH₂·CHPh·CO₂H (I) and AcCO₂H are boiled in H₂O containing 3·5% of D₂O, the PhCHO produced has > a trace of D. The NH₂·CHMe·CO₂H (II) produced has ~2 D, of which only a small part is on C_(a); most of the D enters the Me by a secondary reaction, for oxidation of (II) by Ag₂O-D₂O gives AcOH containing D in the Me and shaking AgOAc with D₂O introduces D; during transamination a labile intermediate, >CH·NH·C(:CH₂)·CO₂H \rightarrow >CH·N:CMe·CO₂H, may be involved. Secondly, NH₂·CDPh·CO₂H (III) with AcCO₂H in H₂O gives (II) free from D and PhCDO (>CHDPh·OH + BzOH free from D). (III) is prepared by shaking (I) in D₂O, the exchange being slightly catalysed by H+ and much by OH⁻. Only a small part of the α-D is removed from (II) when it is converted into the 3-phenyl-5-methylhydantoin and treated with alkali. Transamination proceeds by the reactions: NH₂·CHR·CO₂H + COR·CO₂H → CO₂H·CHR·N·CR·CO₂H → H⁺ + CO₂ + CHR:N·C-R·CO₂H → CO₂H·CHR·N·CR·CO₂H → (H+₂O) RCHO + NH₂·CHR·CO₂H. Syntheses in the phenanthrene series. G. Blumenfeld (Ber., 1941, 74, [B], 524—531).—CHPh:CH:CH:CH2 (I) (prep. in 39% yield from MgPhBr and CHMe:CH-CHO) with CH2:CH-CHO in boiling C₆H₆-quinol give 2-phenyl-3-tetrahydrobenzaldehyde (69%) (II), b.p. 150°/12 mm., which with CH2(CO₂H)₂ in C₅H₅N-piperidine affords 2-phenyl-3-tetrahydrocennamic acid, m.p. 107° [Et ester, b.p. 192°/13 mm. (III), obtained with an isomeride, b.p. 182°/13 mm., from (II), EtOAc, and Na; both forms are hydrolysed (EtOH-KOH) to the acid; hydrazide, m.p. 180°, from (III) only]. Reduction (IV), ? b.p. 162—166°/13 mm. (dinitrobenzoate, m.p. 101°); Al(OPrβ)₃-C₆H₆ affords 2-phenyl-Δ³-tetrahydrobenzyl alcohol, b.p. 163°/12 mm. The chloride, b.p. 148°/12 mm., from (IV) and PCl₅-CHCl₃ is converted (Grignard) into 2-phenylhexahydrophenylacetic acid, m.p. 112°, cyclised by warm conc. H₂SO₄ to trans-9-keto-1:2:3:4:9:10:11:12-octahydrophenanthrene, m.p. 96°. CH₂:CH-CO₂H and (I) in boiling PhMe-quinol give 2-phenyl-Δ³-tetrahydrobenzoic acid (V), m.p. 122°. The Me ester, b.p. 162°/14 mm., of (V) is hydrogenated (Raney Ni, MeOH) and then hydrolysed to the hexahydrobenzoic acid, which is converted (warm conc. H₂SO₄ or chloride with AlCl₃-CS₂) into hexahydrofluorenone (semicarbazone, m.p. 204°). CH₂:CH-CO₂Et and (I) at 100° give the Et ester (VI), b.p. 155—160°/15 mm., of a stereoisomeride (m.p. 103°) [also obtained by oxidation of (VI) and subsequent hydrolysis (aq. EtOH-KOH) affords 2-phenylhexahydrobenzoic acid, m.p. 110°. H. B. Benzoylation of erythritol and preparation of derivatives of Obenzoylgly collaldehyde.—See A., 1943, II, 350. 3:4-Dinitro-benzonitrile and -benzaldehyde. H. Goldstein and R. Voegeli (Helv. Chim. Acta, 1943, 26, 1125—1128; cf. A., 1943, II, 192).—NO2 at $C_{(4)}$ is mobile in the compounds 1:3:4- $C_6H_3R(NO_2)_2$ in which $R=CO_2H$, CN, or CHO. 3:4-Dinitrobenzonitrile (I), m.p. 92° (corr.), is not satisfactorily obtained by Sand- meyer's reaction from 3:4:1-(NO₂)₂C₆H₃·NH₂ but is prepared in 91% yield from 3:4:1-(NO₂)₂C₆H₃·CO·NH₂ and boiling SOCl₂. It is hydrolysed by H₂SO₄-AcOH-H₂O to 3:4:1-(NO₂)₂C₆H₃·CO₂H and converted by hot dil. NaOH into 4:3:1-OH·C₆H₃(NO₂)·CO₂H. (I) is converted by NH₃-EtOH, NH₂Ph-K₂CO₃, and piperidine into 3:4:1-NO₂·C₆H₃(NH₂)·CN, 3:4:1-NO₂·C₆H₃(NHPh)·CN and 3-nitro-4-piperidinobenzonitrile, respectively. 1:3:4-C₆H₃Me(NO₂)₂ is transformed by CrO₃ in Ac₂O-conc. H₂SO₄ into 3:4-dinitrobenzyl-idene diacetate, m.p. 94—95° (corr.), hydrolysed by boiling HCl to 3:4:1-(NO₂)₂C₆H₃·CHO, m.p. 64° (corr.). This yields NaNO₂ when treated with boiling dil. NaOH. The action of NH₂Ph or NHPh·NH₂ in presence of K₂CO₃ establishes the mobility of NO₂ (probably but not definitely) at C(4). Chlorine substitution products of veratraldehyde, veratric acid, and related compounds. L. C. Raiford and D. E. Floyd (J. Org. Chem., 1943, 8, 358—366).—Vanillin and Cl₂ in CHCl₃ at 40—50° give 4:5:3:1-OH·C₆H₂Cl(OMe)·CHO, converted in aq. NaHCO₃ by Me₂SO₄ at ~70° into 3:4:5:1-(OMe)₂C₆H₂Cl·CHO; with furnities 5:6-blows 6 without strange translatehyde, m. p. 1229 4:5:3:1-OH·C₆H₂CI(OMe)·CHO, converted in aq. NaHCO₃ by Me₂SO₄ at ~70° into 3:4:5:1-(OMe)₂C₆H₂CI·CHO; with fuming HNO₃ at 0—10° this gives 5-chloro-6-nitroveratraldehyde, m.p. 122—123°, oxidised by KMnO₄ in aq. C₅H₅N at 50—60° to 5-chloro-6-nitro-m.p. 190—191°, which yields 5-chloro-6-amino-, m.p. 188—189°, and thence 5:6-dichloro-veratric acid, m.p. 186—187° (Me ester, m.p. 95—96°) (cf. Mazzara, A., 1901, i, 720). 3:4:1-(OMe)₂C₆H₃·CHO gives similarly
3:4:6:1-(OMe)₂C₆H₂CI·CHO, and thence 6-chloro-2-nitro-veratraldehyde (I), m.p. 101—102°, and -veratric acid, m.p. 192—193°, and 6-chloro-2-aminoveratric acid (II), m.p. 163—165°. 3:4:1-OMe·C₆H₃(OAc)·CH(OAc)₂ gives the 6-Cl-derivative and thence, by way of its acetate, 2:6:3:4:1NO₂·C₆HCl(OMe)(OH)·CHO, which yields (I) and, successively, 2:6:3:4:1-NH₂·C₆HCl(OMe)(OH)·CHO, 3:2:6:4:1-OMe·C₆HCl₂(OH)·CHO, 2:6-dichloro-veratraldehyde, m.p. 119—120°, and -veratric acid, m.p. 115° [also obtained from (II]]. Similar reactions lead to 6-bromo-2-amino-, m.p. 101°, 2:6-dibromo-, m.p. 137°, 5-chloro-2-, m.p. 62—63°, 6-chloro-5-, m.p. 127—128°, 2-chloro-5-, m.p. 51—52°, and 5-chloro-6-bromo-, m.p. 119—120°, 2:5:6-trichloro-, m.p. 55°, 2:5:6-trichloro-, m.p. 94—95°, and 5-iodo-, m.p. 72—73°, -veratraldehyde and 2-, m.p. 200—202°, 5-, m.p. 189—190°, and 6-chloro-, m.p. 175—176°, 2:5-dichloro-, m.p. 183—184°, 6-chloro-5-, m.p. 189—190°, and 6-chloro-6-bromo-, m.p. 185—187°/5 mm.), 2:5:6-trichloro-, m.p. 164—165° (Me ester, b.p. 185—187°/5 mm.), 2:5:6-trichloro-, m.p. 175—176°, 2-chloro-5-, m.p. 175—176°, 2-chloro-6-bromo-, m.p. 183—184°, 6-chloro-5-, m.p. 189—190°, and 5-chloro-6-bromo-, m.p. 183—184°, 6-chloro-5-, m.p. 189—190°, and 5-chloro-6-bromo-, m.p. 184—185°. R. S. C. Volatile plant substances. XXIV. Composition of the essential Volatile plant substances. XXIV. Composition of the essential Volatile plant substances. XXIV. Composition of the essential oil and resin of lovage (Levisticum officinale, Koch). Y. R. Naves (Helv. Chim. Acta, 1943, 26, 1281—1295).—o-CHO·CeH4·CO₂H with MgBu°Br affords a-n-butylphthalide (I), b.p. 141°/2·4 mm. o-C₄H₄(CO)₂O, n-valeric anhydride, and Na n-valerate give n-butylidenephthalide, b.p. 141°/2·4 mm., hydrogenated (Raney Ni in 95% EtOH) to (I) and (PtO₂ in AcOH) to a-n-butylhexahydro-phthalide, b.p. 129°/1·3 mm., which is hydrolysed (50% KOH) to o-a-hydroxyamylhexahydrobenzoic acid, m.p. 97—97·5° (benzylthiuronium salt, m.p. 131·5—132°). Identification of aromatic carboxylic acids as ureides. II. F. Zetzsche and G. Voigt (Ber., 1941, 74, [B], 183—188; cf. A., 1940, II, 129).—N-Aroyl-NN'-di-p-dimethylaminophenylcarbamides are prepared from ArCO₂H and (p-NMe₂·C₆H₄·N·)₂C in a solvent (Et₂O, EtOH, C₆H₆, or COMe₂) and the colours of the products recorded in terms of W. Ostwald's colour nomenclature. o-Substituents, terms of W. Ostwald's colour nomenclature. o-Substituents, except NO₂, exert a hypsochromic effect. The o-, m.p. 152—153°, m-, m.p. 240°, and p-amino-, sinters from ~250°, o-, m.p. 166°, m., m.p. 137°, and p-salicylideneamino-, m.p. 207°, o-, m.p. 169—170°, m-, m.p. 115°, and p-benzoyl-, m.p. 154°, o-, m.p. 161°, m-, m.p., 138·5°, and p-nitro-, m.p. 210°, 2-methoxy-3-, m.p. 151°, -4-, m.p. 122°, and -5-methyl-, m.p. 153°, p-dimethylamino-, m.p. 205—212° (sinters and darkens from 157°), o-anilino-, m.p. 145°, o-phenyl-, m.p. 140°, and 4-nitro-2-amino-, m.p. 176° (darkens 170—172°), -benzoyl-, o-, m.p. 162°, m-, m.p. 170°, and p-nitrocinnamoyl-, m.p. 178° (sinters 175°), and 2: 6-dimethylbyridoyl-, m.p. 151°, -derivatives are described. and 2: 6-dimethylpyridoyl-, m.p. 151°, -derivatives are described. Lichen substances. XCVI. New depside "hypothamnolic acid." Asahina, M. Aoki, and F. Fuzikawa (Ber., 1941, 74, [B], 824— 831).—Et₂O extraction of (so-called) Cladonia uncialis (f. obtusata) S31).—B120 extraction of (so-called) clausonia unctuats (1. Somissata) (Japanese) yields usnic and hypothalamic acid (I), $C_{19}H_{18}O_{10}$, m.p. $217-218^{\circ}$ (decomp.), but no squamatic acid (cf. A., 1933, 159). CH_2N_2 then gives the Me_2 ester (II), m.p. $197-198^{\circ}$, or Me_2 ester Me_3 ether, m.p. 127° , which are cleaved by cold conc. H_2SO_4 to 3-Me 1-H 2-hydroxy-4-methoxy-6-methylisophthalate (III) and $Me \ 2: 4: 5$ -trihydroxy-3: 6-dimethylbenzoate (IV), m.p. $151-152^{\circ}$, or 3-Me 1-H 2: 4-dimethoxy-6-methylisophthalate 3-Me 1-H 2: 4-dimethoxy-6-methylisophthalate 3-Me 1-H 2: 4-dimethylisophthalate 3-Me 3.-Me 1-H 2: 4-dimethoxy-6-methylisophthalate and Me 5-hydroxy-2: 4-dimethoxy-3: 6-dimethylbenzoate, m.p. 45°, respectively. Reduction (2 H₂, Pd-C, AcOH) of the Me₂ ester, m.p. 158°, of thamnolic acid, m.p. 222°, gives (II). 1:4:2:3:5-C₆HMe₂(OH)₃, Zn(CN)₂, and Et₂O-HCl afford 2:4:5-trihydroxy-3:6-dimethylbenzaldehyde, m.p. 193°, the triacetate, m.p. 148° (prep. by Ac₂O-C₅H₅N), of Which is oxidised (aq. KMnO₄-COMe₂-MgSO₄ at 45°) to 2:4:5-triacetaxy- (II). (I) has the structure shown. 5-Amino-2-sulphanilylbenzoic acid and derivatives.—See B., 1943. Derivatives of 3:4-dihydroxy-2-carboxyphenylacetic acid. C. Schopf, I. Jackh-Tettweiler, G. Mayer, H. Perrey-Fehrenbach, and L. Winterhalder (Annalen, 1940, 544, 77—100).—Meconinecarboxylic acid (prep. from opianic acid by aq. NaCN at ~5—8° and then conc. HCl at 100°; 80% yield) with boiling HBr and then red P-HI (d 1·7) at 135° gives 3:4-dihydroxy-2-carboxyphenylacetic acid (I) (~50—60%), m.p. 220° (yellow at 212°) (blue FeCl₃ colour), and with aq. KMnO₄ yields 2-carboxy-3:4-dimethoxyphenylglyoxylic acid, m.p. 98°, which undergoes ring-closure when reduced. Evaporating meconjoulacetic acid (II) with 50% ag. KOH gives 2-carboxy-3:4with aq. KMnO₄ yields 2-carboxy-3: 4-dimethoxyphenylglyoxylic acid, m.p. 98°, which undergoes ring-closure when reduced. Evaporating meconinylacetic acid (II) with 50% aq. KOH gives 2-carboxy-3: 4-dimethoxycinnamic acid (80%), m.p. 178—180° [with warm acid regenerates (II)], hydrogenated (Pd-CaCO₃) as Na₂ salt in H₂O to β-2-carboxy-3: 4-dimethoxyphenylpropionic acid, +2H₂O, m.p. 125—127°, which with Ac₂O at the b.p. and then 200° yields CO₂ and 6: 7-dimethoxy-α-hydrindone (64%), m.p. 40—43° [semicarbazone, +H₂O and anhyd., sinters 214°, m.p. 217—219° (decomp.)]. The derived (amyl nitrite—conc. HCl-MeOH at 0° and then 50°) 2-OH·N. derivative, m.p. 209—211°, with PCl₅-Et₂O gives 2-carboxy-3: 4-dimethoxybenzyl cyanide, m.p. 104—108°, with, sometimes, 2-carboxy-3: 4-dimethoxyphenylacetamide, m.p. 176—178°, hydrolysed by aq. KOH to 2-carboxy-3: 4-dimethoxyphenylacetamide, m.p. 176—178°, hydrolysed by aQ. KOH to 2-carboxy-3: 4-dimethoxyphenylacetic acid (III), m.p. 115—117° (lit. an oil), which is also obtained from (I) by Me₂SO₄-NaOH (40° and then, for hydrolysis, the b.p.) and with 57°, HI-AcOH gives 3-hydroxy-2-carboxy-4-methoxyphenylacetic acid (IV), sinters 190°, m.p. 209—210° (decomp.) (bluish-violet FeCl₃ colour; 3-Et ether, m.p. 135—140°). Boiling MeOH-H₂SO₄ converts (I) into the Me₂ ester (V), m.p. 135—136° (and some Me 3: 4-dihydroxy-2-carboxy-phenylacetate, m.p. 196—198°, which can be further esterified), which with CH₂PhCl-K₂CO₃-MeOH gives 2: 3: 4: 1-CO₂Me·C₆H₂(O·CH₂Ph)₂·CH₂·CO₂Me (VI), an oil, hydrolysed successively to 2-carbomethoxy-, m.p. 100—102°, and 2-carboxy-3: 4-dibenzyloxyphenylacetic acid, m.p. 160—166°. Similar treatment of (IV) gives Me 3-hydroxy-2-carbomethoxy-4-methoxyphenylacetic acid, m.p. 60—65°], 2-carboxy- (VIII), m.p. 128—131°, and 2-carbomethoxy-3-benzyloxy-4-methoxyphenylacetic acid, m.p. 85—87°. With CH₂N₂-Et₂O, (III) gives the Me₂ ester, b.p. 203—205°/15 mm., and thence by half hydrolysis 2-carbomethoxy-3: 4-dimethoxyphe (III) gives the Me₂ ester, b.p. 203—206°/15 mm., and thence by half hydrolysis 2-carbomethoxy-3: 4-dimethoxyphenylacetic acid, sinters 75°, m.p. 83—85°; short treatment of (III) with HCl-MeOH gives Me 2-carboxy-3: 4-dimethoxyphenylacetate, m.p. 110—112°. With 1 mol. of CH₂PhCl and K₂CO₃ in MeOH, (V) gives (VI), unchanged (V), and a mixture, rapidly hydrolysed by aq. NaOH at room temp. to 3-hydroxy-2-carbomethoxy-4-, m.p. 179—184° (blue FeCl₃ colour), and 4-hydroxy-2-carbomethoxy-3-benzyloxyphenylacetic acid, m.p. 112—116° (no FeCl₃ colour), converted by prolonged hydrolysis at 100° into 3-hydroxy-2-carboxy-4- (IX), m.p. 186—188°, and 4-hydroxy-2-carboxy-benzyloxyphenylacetic acid, m.p. 160—163°, respectively, and by CH₃N₂ into Me 2-carbomethoxy-4-benzyloxy-3-methively. tively, and by CH2N2 into Me 2-carbomethoxy-4-benzyloxy-3-methtively, and by CH₂N₂ into Me 2-carbomethoxy-4-benzyloxy-3-methoxyphenylacetate, an oil (and a substance, m.p. 138—143°), and (VII), respectively, which by prolonged hydrolysis give 2-carboxy-4-benzyloxy-3-methoxyphenylacetic acid, m.p. 177—179°, and (VIII), respectively. With CH₂PhCl (1 mol.) and NaOMe-MeOH, (V) gives Me 3-hydroxy-2-carbomethoxy-4-benzyloxyphenylacetate, m.p. 90—95°, and thence (IX). Opianic acid Me ψ-ester (a-Me ether) with H₂-Pd-C in MeOH at 50—55° gives 3:4-dimethoxy-o-toluic acid, m.p. 95—96° (Me ester, m.p. ~30°, b.p. 156—157°/17 mm.), and meconine. In boiling HBr, (II) gives (45 min.) 3:4-dihydroxy-a-phthalidylacetic acid, +H₂O, m.p. 228—229° (decomp.), and anhyd. R. S. C. Synthesis of anthracene-9:10-dicarboxylic acid. H. Beyer and H. Fritsch (Ber., 1941, 74, [B], 494—499).—9:10-Dibromoanthracene (I) and CuCN in boiling quinoline give 9:10-dicyanoanthracene, m.p. 328—330°, hydrolysed (conc. H₂SO₄ at 100°) to anthracene-9:10-dicarboxylamide, m.p. 342—345° (decomp.) (does not give the acid with HNO₂). (I) and Mg (activated by EtBr) in Bu₂O-C₆H₆ followed by CO₂ afford 9-bromoanthracene-10-carboxylic acid. m.p. 273° [Me (by CH₂N₂ only), m.p. 114—115°, and Et (by CHMeN₂), m.p. 83°, ester; 1:1-adduct, m.p. 265° (decomp.), with (CH-CO) O₁ reduced (2 H₂, PtO₂, AcOH, room temp.) to the 1:2:3:4-H₄ derivative. Schlenk's method (A., 1914, i, 398) gives 9:10-dihydroanthracene-9-carboxylic, m.p. 206—207° [Me, m.p. 98—99° (lit 94—95°), and Et, m.p. 54—55°, ester; hydrazide, m.p. 206—207°], and -9: 10-dicarboxylic acid (I), m.p. 305—307° (decomp.) [Me₂ (II), m.p. 163—164° (clear at 165°), and Et_2 , m.p. 68—69° (clear at 70°), ester; dihydrazide, m.p. 310—312° (decomp.) (block)]. Se and (I) at 300° give anthracene but (II) at 220—230° affords Me_2 anthracene-9: 10-dicarboxylate, m.p. 180—181°, hydrolysed (boiling 200° MeOH—KOH) to the soid and 211° 241° 242° (decomp.) 20% MeOH-KOH) to the acid, m.p.
~341-342° (decomp.) Stereochemistry of inner complex copper salts. P. Pfeiffer and H. Krebs (J. pr. Chem., 1940, [ii], 155, 77—114).—Attempts to decide the configuration by preparing cis-trans isomeric or optically active 4-covalent Cu compounds failed. A planar configuration is favoured. Cu salicylaldehydemethylimine, dimorphic (green needles; black rhombic pyramids), m.p. 158°, is obtained from (a) o-OH·C₆H₄·CHO (I), Cu(OAC)₉, and NH₂Me in EtOH at room temp. (96% yield) and (b) from Cu salicylaldehyde (II) and NH₂Me in boiling EtOH; the brown (A., 1939, II, 479) or other form could not be isolated. Cu salicylaldehydeanil, m.p. 234—236° (Schiff, Annalen, 1869, 150, 197), is similarly obtained by both methods in only one form. Cu salicylaldehyde-p'-nitroanil, +C₅H₅N and "anhyd.," m.p. 309° (decomp.), and -a-naphthylimine, m.p. 241·5°, are obtained by method (b). 2:1-OH·C₁₀H₆·CHO, Cu(OAc)₂, and NH₂R in EtOH give Cu 2-hydroxy-1-naphthaldehyde-methyl·(III), m.p. 235°, and -1'-naphthyl-imine, m.p. 269—270°, and -anil, m.p. NH₂R in EtOH give Cu 2-hydroxy-l-naphthaldehyde-methyl- (III), m.p. 235°, and -1'-naphthyl-imine, m.p. 269—270°, and -anil, m.p. 238—239° [also obtained from (1 : 2-CHO·C₁₀H₆·O)₂Cu and NH₂Ph in xylene at 150°] (cf. loc. cit.), which are also obtained in only one form [except for (III)]. $\beta\gamma$ -Di-o-hydroxyanilo-n-butane, m.p. 232°, and benzilmono-o-hydroxyanil, +C₅H₅N, m.p. 90—120°, are obtained from o-NH₂·C₆H₄·OH by Ac₂ in boiling EtOH and Bz₂ in boiling C₅H₅N, respectively, but give no Cu derivatives. p-NH₂·C₆H₄·CO₂H and (II) in boiling C₅H₅N give the Cu, +C₅H₅N, salt of Cu salicylaldehyde-p'-carboxyanil; the derived Na_2 , +9H₂O and anhyd., and Ba salts are too unstable for attempts at resolution. p-NH₂·Ch₄·SO₄Na and (II) in boiling EtOH give the Na_2 , brownish-NH₂·C₆H₄·SO₃Na and (II) in boiling EtOH give the Na₂, brownish-red and dark brown forms, both +5H₂O and anhyd., and thence the Ba salts, brownish-red, +5H₂O and anhyd., and dark brown, +9H₂O and anhyd., all decomp. 350—370°, of Cu salicylaldehyde-p'-sulphoanii; derived alkaloidal salts are intractable; adding 0.66 equiv. of d-{Co(NH₂·[CH₂]₂·NH₂)₃}₃(SO₄)₃ (**IV**) to the Ba salt gives a salt, $+17H_2O$ and anhyd., the [M] of which coincide with those of (**IV**) (as bromide). Hal·[CH₂]₂·NH₂, HHal, (**II**), and NaOAc in boiling EtOH give Cu salicy/laldehyde- β -chloro-, m.p. 168°, and - β -iodo-ethylinine, m.p. 143—144°, the halogen of which could not be exchanged for NM₂. We salicy/labely the β -chloro-thylinine, m.p. 163°, and β -iodo-ethylinine, -iodo-ethylin imine, m.p. 143—144°, the halogen of which could not be exchanged for NMe₂. Ni salicylaldehyde-β-chloroethylimine, m.p. 175—177°, is similarly prepared. NH₂:[CH₂]₂·NEt₂ (V) and (II) give exothermally Cu salicylaldehyde-β-diethylaminoethylimine, green, m.p. 142°, but the di-imine could not be prepared. Warming (I) and (V) gives salicylaldehyde-β-diethylaminoethylimine, b.p. 168—172°/12 mm.; the derived methiodide, m.p. 148—149°, with Cu(OAc)₂ and anhyd. NaOAc in MeOH at 0° gives the Cu derivative dimethiodide, c₂₈H₄₄O₂N₄I₂Cu, +1·5H₂O and anhyd., m.p. 210—220° (decomp.; varies with rate of heating), which yields the dimetho-d-a-bromo-π-camphorsulphonate, green, +1·5H₂O and anhyd., m.p. 240—245° (variable); pptn. of only 50% of the salt gives a substance, the [M] of which is due solely to the anion. Ni, m.p. 246—247° (in boiling 96% EtOH or moist COMe₂ gives o-OH·C₆H₄·CH:N·C₆H₄·NMe₂-p, m.p. 134°), and Cu salicylaldehyde-p'-dimethylaminoanil, sinters 206—207°, m.p. 208·5° (dimethiodide; dimetho-a-bromo-π-camphor-sulphonate), are also prepared. 4: 1-SO₃H·C₁₀H₆·N₂Cl and pressol in NaOH give Na p-cresol-3'-azo-1'-naphthalene-4'-sulphonate, decomp. ~300°, and thence, by way of the Ba salt, the acid, +H₂O, decomp. ~300°, and thence, by way of the Ba salt, the acid, $+H_0O$, which with $Cu(OAc)_2$ in boiling EtOH gives the Cu derivative (A; R = 4:1-Cu) SO₃H·C₁₀H₆·), $+6H_2O$ (Na_2 salt, $+6H_2O$, too dark for optical measurement). 4:2:1-Cu SO₃H·C₁₀H₁·(Na_2) salt, $+6H_2O$, too dark for optical measurement). N'NR /2 N'NR / $_2$ too dark for optical measurement). 4:2:1-NaOAc in boiling MeOH give the Cu derivative [analogous to A, R = Ph], which is unstable and does not give quaternary salts. p-NH₂·C₈H₄·NMe₃Cl (prep. from p-NHAC·C₆H₄·NMe₃I described) is diazotised and coupled with p-cresol to give the salt, 2:5:1-OH·C₆H₃·Me·N₂·C₆H₄·NMe₃Cl-p, +1·5H₂O, m.p. 200—210° (decomp.; varies with rate of heating); with Cu(OH)₂ in boiling EtOH this gives the Cu derivative (A; R = p-NMe₃Cl·C₆H₄), sinters 185—190°, and thence the dimetho-a-bromo- π -camphorsulphonate, m.p. 223—224° (decomp.), which, when formed by half-pptn., has only very slight optical activity. very slight optical activity. Androtermone of Chlamydomonas eugametos; l-4-hydroxy-2:6:6-trimethyl- Δ^1 -tetrahydrobenzaldehyde. R. Kuhn and I. Löw (Ber., 1941, 74, [B], 219—231).—Hydrolysis (dil. acid or alkali) of picrocrocin (I) to d-glucose (II) and 2:6:6-trimethyl- Δ^1 :3-dihydrobenzaldehyde (safranal) (III) (A., 1934, 395) may occur in two stages with production of a hydroxyaldehyde and its subsequent dehydration. The reaction is now followed polarimetrically in 50 vol.-% EtOH since (III) is insol. in H₂O. Reliable observations are not obtained for alkaline hydrolysis as (II) is largely destroyed at the necessary [OH] but alkaline hydrolysis is best for prep. of (III). Hydrolysis with HCl is unimol, with energy of activation 7590 g.-cal, per mol, between 29.9° and 19.5° and 11,380 g.-cal, per mol. between 19.5° and 9°. No indication of the accumulation of mol. between 19.5° and 9°. No indication of the accumulation of an intermediate product was observed. (I) is a β -glucoside since emulsin at pH 6·0 and 27° affords 4-hydroxy-2: 6: 6·trimethyl- Δ 1-tetrahydrobenzaldehyde (IV), b.p. 80—90° (bath)/0·001 mm., $[a]_2^{10}$ $-84\cdot2^\circ$ and $-87\cdot2^\circ$ in 96% EtOH. The thiosemicarbazone, m.p. 191—192°, $[a]_2^{10}$ -64° in 96% EtOH (absorption band in EtOH at 305 m μ), of (IV) is hydrolysed by 2x-H $_2$ SO $_4$ to (III), b.p. -60° /0·001 mm. [thiosemicarbazone, m.p. 191° (decomp.), shows an absorption band in EtOH at 340 m μ .]. Comparison of the optical inactivation of (IV) by acid with hydrolysis of (I) shows that these proceed at the same rate, indicating that the latter process does not involve the same rate, indicating that the latter process does not involve (IV). The termone activity of (IV) is ten times that of (III), the abs. activity being 1.3 mols. per cell, and it is concluded that 1 mol. suffices to convert a hermaphrodite cell into a male cell. Synthesis of 3-hydroxy-4-methoxy- (homoisovanillin) and 3:4- Synthesis of 3-hydroxy-4-methoxy- (homoisovanillin) and 3:4-dihydroxy-phenylacetaldehyde (homoprotocatechnaldehyde). C. Schöpf, (Miss) E. Brass, E. Jacobi, W. Jorde, W. Mocnik, L. Neuroth, and W. Salzer (Annalen, 1940, 544, 30—62).—Methods of synthesising CH₂Ar-CHO are discussed; some are investigated. The mixture obtained from commercial eugenol Me ether (I) by MgMeI (Hirao, A., 1936, 839), with KOH-EtOH at 0° gives the insol. K salt and thence the benzoate, m.p. 67° (lit. 69°), of eugenol; the crude chavibetol (II) in the filtrate is purified by means of the benzoate, m.p. 49·5°, which yields pure (II), b.p. 124°/12 mm. Chavibetol CH₂Ph ether (III), m.p. 48°, is obtained from pure or, in better over-all yield, crude (II) by CH₂PhCl and K₂CO₃ in boiling MeOH. 3:4:1-CH₂Ph·O·C₆H₃(OMe)·CH₂·CO₂H with PCl₅- or, less well, pure SOCl₂—C₆H₆ gives the chloride, which with CH₂N₂-Et₂O at 0° and then room temp. gives 3-benzyloxy-4-methoxybenzyl CHN₂ ketone, m.p. 86°, converted in AcOH at 60—70° (finally 100°) into the CH₂·OAc ketone (77°₀), m.p. 106°. When boiled with Al(OPrβ)₃-PrβOH with removal of COMe₂, this gives γ-3-benzyloxy-4-methoxyphenylpropane-αβ-diol (IV) (94°₀), m.p. 110°, which is also obtained by treating AgOBz with I and then (III) in boiling C₆H₆ (absence of H₂O) and hydrolysing the product by NaOH-MeOH. obtained by treating AgOBz with I and then (III) in boiling C₆H₆ (absence of H₂O) and hydrolysing the product by NaOH-MeOH. With H₂-Pd-BaSO₄, (IV) gives α-3-hydroxy-4-methoxyphenylpropane-αβ-diol (chavibetol glycol), m.p. 88°, which could not be converted into CH₂Ar·CHO. The azlactone from 3:4:1-CH₂Ph·O·C₆H₃(OMe)·CHO with 10% NaOH-N₂ gives 3:4:1-CH₂Ph·O·C₆H₃(OMe)·CH₂·CO·CO₂H (V), m.p. 159°, reduced by H₂-PtO₂ and then -Pd-BaSO₄ in MeOH to 3:4:1-OH·C₆H₃(OMe)·CH₂·CH(OH)·CO₂H (VI), sinters 167°, m.p. 170°, whence no aldehyde could be obtained. The Me ester (prep. by CH N.) are not 148 150° of (V) gives similarly the Me ester m.p. whence no aldehyde could be obtained. The Me ester (piep. by CH₂N₂), m.p. 148—150°, of (**V**) gives similarly the Me ester, m.p. 62°, of (**VI**). Zn dust reduces (**V**) in 50% AcOH to a-hydroxy-β-3-benzyloxy-4-methoxyphenylpropionic acid, m.p. 129—130°, the Me ester, m.p. 87°, of which with MgMeI-Et₂O and then conc. aq. NH₄Cl gives a-3-benzyloxy-4-methoxyphenylisopentane-βγ-diol (**VII**), m.p. 86°. Pb(OAc)₄ oxidises (**IV**) or (**VII**) to 3-benzyloxy-, b.p. 155° (bath)/0·01 mm. (semicarbazone, m.p. 143—144°; 2:4-distinct heavily degrees and 151–152°) hydrogenated (Pd. MeOH) dinitrophenylhydrazone, m.p. 151—152°), hydrogenated (Pd; MeOH) to PhMe, and 3-hydrozy-4-methoxyphenylacetaldehyde, b.p. 110—115° (bath)/0·05 mm. (semicarbazone, m.p. 182—183°), which is stable at pH 3—4, fairly stable at pH 5—6, but unstable at pH 8. stable at pH 3—4, fairly stable at pH 5—6, but unstable at pH 8. When (I) or, less well, eugenol or safrole is heated with an excess of MgMeI-xylene-N₂ at 160—180°, the mixture contains 33% of 3:4:1-(OH)₂C₆H₃·CH;CH;CH₂, m.p. 47—58° (diacetate, b.p. 150—160° (bath)/12 mm., with O₃ gives no CH₂Ar·CHO). CH₂PhCl-K₂CO₃-COMe₂-N₂ then gives 3:4-dibenzyloxyallylbenzene (75%),
m.p. 37—38°, purified by chromatography (AlO₃; C₆H₆) and fractional freezing in MeOH and converted by AgOBz-I-C₆H₆ and then NaOH-MeOH-H₂O into γ-3:4-dibenzyloxyphenylpropane-aβ-diol (75%), m.p. 82—83°, and thence [Pb(OAc)₄] into 3:4-dibenzyloxy-(75%), decomposes at 0·01 mm. (semicarbazone, m.p. 158°), and (activated PdO → Pd-H₂-MeOH) 3:4-dihydroxy-phenylacetaldehyde (VIII) (semicarbazone, m.p. 200—201°). Under certain conditions (VIII) polymerises, as formed, in presence of the catalyst. In H₂O₇ (VIII) gives a violet colour with Schiff's reagent, a green colour with FeCl₃, and an orange-red colour with HIO₄ (stable o-quinone formed), reduces AuCl₃, cold NH₃-AgNO₃, and hot neutral AgNO₃. Its 2:4-dinitrophenylhydrazone, m.p. 169—170°, is unstable in acid; the p-nitro- and p-bromo-phenylhydrazone are too stable in acid; the p-nitro- and p-bromo-phenylhydrazone are too stable in acid; the p-nitro- and p-normo-pinelyinydrazone are too unstable to be isolated. Its stability decreases from pH 3—4 to pH 7—8. 3:4:1-CH₂O₂:C₆H₃·CH₂·CO·CO₂H (**IX**) with H₂-PtO₂ in aq. Na₂CO₃ gives a-hydroxy-β-3:4-methylenedioxyphenylpropionic acid (**X**), m.p. 101°, which with Pb(OAc)₄ gives CO₂ and only 31—34% of homopiperonal (**XI**). The Me ester, m.p. 130—131°, of (**IX**) in MeOH yields similarly the Me ester, m.p. 39°, of (**X**), converted by an excess of MgMeI into a-3: 4-methylenedioxyphenylisopentaneby an excess of MgMeI into a 1-3 - MacMilland Applications 0.06 mm., with B2O₂H in CHCl₃ gives all on, but the 2.3-(OAC)₂-compound, m.p. 65°, at 0° and then room temp. gives after 5 days ~50% of 2:3-diacetoxy-βγ-epoxy-n-propylbenzene, m.p. 86°. 4-Acetoxy-3-methoxy-βγ-epoxy-n-propylbenzene (similarly prepared), m.p. 50—52°, b.p. 133°/0.05 mm., in boiling 10% AcOH gives 3:4:1-OMe·C₈H₃(OAc)·CH₂·CH(OH)·CH₂·OH, b.p. 168°/0·03 mm. 3:4:1-(CH₂Ph·O)₂C₈H₃·CHO (improved prep.; 73% yield), m.p. 92—93°, gives the azlactone, m.p. 156—157°, which with alkali yielded no pyruvic acid. Br converts isoferulic acid in AcOH or its acetate in CHCl₃ into ω-bromo-3-hydroxy-, m.p. 95—96°, or -3-acetoxy-4-methoxystyrene, m.p. 101—102°, respectively. 3:4:1-(OMe)₂C₆H₃·CL;CH, m.p. 73—74°, b.p. 130°/15 mm. 3:4:1-(OAe)₂C₆H₃·CO·CH₂·OAc and Zn dust in AcOH at 70° give 3:4:1-(OAc)₂C₆H₃·COMe, m.p. 86° (2:4-dinitrophenylhydrazone, m.p. 192—193°) (cf. Voswinckel, A., 1910, i, 42; Birnbaum et al., A., 1930 II 372) Influence of alkylation on reactions of acid derivatives in the Friedel-Crafts synthesis. E. Rothstein and M. A. Saboor (J.C.S., 1943, 425-429).-Mechanisms are suggested for the two classes of reactions of acids or their chlorides or anhydrides and AlCl3 or P2O5, where the product is either a ketone or an unsaturated substance. The absence of an ionisable α -H leads to the formation of an unsaturated substance, usually polymerised, with loss of CO; in other cases, little CO is eliminated and a ketone results. Dry distillation cases, fittle CO is minimated and a Actolic Testis. By distinction of $(CPhMe_2 \cdot CMe_2 \cdot CO_2)_2$ Ca gives, with loss of CO and H_2O , an unsaturated hydrocarbon, $C_{12}H_{16}$, b.p. 154° , is obtained by distillation of the acid with sodalime. Normal reaction of acid derivatives with AlCl₃ and C_6H_6 is possible only where an a-H is present, and the aromatic nucleus will actobal itself to the CO graph prograph to the property in the second sec will attach itself to the CO group nearest to the one which is most ionised. The sole product from trimethylsuccinic anhydride, AlCl₃, and C₆H₆ is β-benzoyl-aa-dimethyl-n-butyric acid (I), m.p. 135·6° (or y-hydroxy-γ-phenyl-aaβ-trimethylbutyrolactone) [Me ester (or ether), b.p. 161°/8 mm.; excess of AcCl gives γ-phenyl-aaβ-trimethyl-Δβ-butenolactone, b.p. 145°/10 mm.; HI affords γ-phenyl-aaβ-trimethyl-methylbutyrolactone, m.p. 71°], also obtained by methylation (MeI-KOBu^γ) of the Me ester, b.p. 153°/7 mm., m.p. 46—47° (2: 4-dimitro-phenylhydrazone, m.p. 126°), of COPh·CH₂·CMe₂·CO₂H (II), m.p. 173° (2: 4-dimitro-phenylhydrazone, m.p. 198—199°). (II) is reduced (AcOH-HI-red P) to Ph·[CH₂]₂·CMe₂·CO₂H. Excess of AcCl converts (II) into γ-phenyl-aa-dimethyl-Δβ-butenolactone, m.p. 45°. Attempted synthesis of COPh·CMe₂·CHMe·CO₂H by methylating COPh·CMe₂·CH₂·CO₂H, m.p. 101—102° (Me ester, b.p. 131—143°/8 mm.), failed. Methylation of the Me ester, b.p. 164°/14 mm., of β-benzoyl-a-methyl-n-butyric acid, m.p. 78—79° [obtained from trans-(CHMe·CO)₂O, C₆H₆, and AlCl₃ at b.p., then at 100°], also gives (I). A ketone or CO-acid is not obtained by Friedel-Crafts reaction on the anhydrides or chlorides of text-acids. (CMe₂·CO)₂O and C₆H₆. ionised. The sole product from trimethylsuccinic anhydride, AlCl₃, A ketone or CO-acid is not obtained by Friedel-Crafts reaction on the anhydrides or chlorides of tert-acids. (CMe₂·CO)₂O and C_6H_6 -AlCl₃ at 0°, then gradually to 100°, give CO (60% yield in the cold), a neutral substance, $C_{20}H_{22}O_2$, m.p. 147—148°, and (mainly) β -phenyl-aa β -trimethyl-n-butyric acid (III), m.p. 179° [Me ester, m.p. 24—25° (Ag salt and MeI), or from CH₂·CMe·CMe₂·CO₂Me-C₆H₆-AlCl₃; anhydride, m.p. 87°; NO_2 -derivative, m.p. 232°], also obtained through its Et ester, b.p. 138°/11 mm., from Et β -chloro-aa $\beta\beta$ -tetramethyl-propionate, b.p. 70—74°/8 mm. (from the OH-ester and SOCl₂-C.H.N), and from the β -OH-ester (III) and conc. H.SO. methylpropionate, b.p. 70—74°/8 mm. (from the OH-ester and SOCl₂-C₆H₆N), and from the β-OH-ester. (III) and conc. H₂SO₄ yield 2: 2: 3: 3-tetramethyl-a-hydrindone, b.p. 142°/25 mm. (NO₂-derivative, m.p. 130—131°). β-p-Tolyl-aaβ-trimethyl-n-butyric acid has m.p. 178°. CH₂:CH·CMe₂·CO₂Me-AlCl₃-C₆H₆ afford, through the Me ester, b.p. 124—126°, β-phenyl-aa-dimethyl-n-butyric acid, m.p. 54—57°. (Bu^γCO)₂O (from the chloride and dry K or Ag salt at 100°) and C₆H₆-AlCl₃ afford PhBu^γ (55% yield), Bu^γCO₂H, and CO. COCl·CMe₂·CH₂·CO₂Me (Friedel-Crafts) gives (II), and (III) is similarly obtained from COCl·[CMe₂]₂·CO₂Me. Impure (?) COPh·CMe₂·CHMe·CO₂H (Me ester, b.p. 95°/0·3 mm.) is probably obtained from COPhPrβ (K derivative) and CHMeI·CO₂Et. Condensation of COPh·CMe₂Br with CMeNa(CO₂Et)₂ or CN·CHNa·CO₂Et, or of COPhPrβ (Na or K derivative) with CHBr(CO₂Et)₂ was not or of COPhPr^β (Na or K derivative) with CHBr(CO₂Et)₂ was not Action of sodium on ethyl β -methylbutane- $\alpha\beta\delta$ -tricarboxylate. [Structure of the methylated condensation product.] II. Struc-1. [Structure of the methylated condensation product.] II. Structure of the ethylated condensation product. R. N. Chakravarti (J. Indian Chem. Soc., 1943, 20, 173—177, 189—194).—I. The CO₂Et concerned in the Dieckmann cyclisation of CO₂Et·CH₂·CH₂·CMe(CO₂Et)·CH₂·CO₂Et (I) is that on C_(a), and not that on C_(b), as stated by Baker (A., 1931, 957). (I) with Na in C₆H₆ and then MeI (in situ) gives Et₂ 3:5-dimethylcyclopentanone-3:5-dicarboxylate (II), b.p. 135°/6 mm. (no colour with FeCl₃), hydrolysed (KOH-25% EtOH) to β-methylpentanc-aβδ-tricarboxylic acid (III), m.p. 178—179° (p-phenylphenacyl ester, m.p. 158°). (II) with boiling NaOEt-EtOH gives the Et₃ ester, b.p. 140—142°/5 mm., of (III), which with Na in C₆H₆ gives Et₂ 2:4-dimethylcyclopentanone-4:5-dicarboxylate, b.p. 130—133°/6 mm. (violet colour with FeCl₃). Hydrolysis with 6% HCl then gives 2:4-dimethylcyclopentanone-4-carboxylic acid, an oil [semicarbaxone, m.p. 173° (decomp.)]. CH₂Ac·CHMe·CO₂Et, CN·CH₂·CO₂Et, and NH₂Ac in AcOH (cf. Cope, A., 1938, II, 5) give Et₂ a-cyano-β-methyl-Δa-pentene-aδ-dicarboxylate, b.p. 148°/5 mm., which with HCN affords Et₂ aβ-dicyano-β-methylpentane-aδ-dicarboxylate, b.p. 176°/5 mm., hydrolysed (conc. HCl) to (III). II. (I) with Na in C₆H₆ and then EtI (in situ) gives Et₂ 3-methyl-δethylycolopentanone-3-5-dicarboxylate, b.p. 148°/5 md. which with HCN affords Et₂ aβ-dicyano-β-methylpentane-aδ-dicarboxylate, b.p. 176°/5 mm., hydrolysed (conc. HCl) to (III). II. (I) with Na in C_6H_6 and then EtI (in situ) gives Et_2 3-methyl-5-ethylcyclopentanone-3:5-dicarboxylate (IV), b.p. $142^\circ/6$ mm. (no colour with FeCl₃), hydrolysed (KOH-25% EtOH) to β -methyl- n-hexane-aβδ-tricarboxylic acid (V), m.p. 172—173°. Ketonic hydrolysis of (IV) gives 3-methyl-5-ethylcyclopentanone-3-carboxylic acid In-nexune-apo-incurooxynic acid (V), m.p. 172—173°. Retolic hydrolysis of (IV) gives 3-methyl-5-ethylcyclopentanone-3-carboxylic acid (VI) [semicarbazone, m.p. 191° (decomp.); Et ester, b.p. 110°/8 mm. (semicarbazone, m.p. 142—143°)]. Baker (loc. cit.) represented (V) as γ-methyl-n-hexane-aγδ-tricarboxylic acid (VII). (VII) was synthesised from CO₂Et·[CH₂]₃·CMe(CN)·CH(CN)·CO₂Et (Banerjee, A., 1941, II, 16) by ethylation with NaOEt and EtI to Et₂ γδ-dicyano-γ-methylhexane-aδ-dicarboxylate, b.p. 175°/5 mm., followed by hydrolysis with cone. HCl; it has m.p. 169°, depressed when mixed with (V). The Et₃ ester, b.p. 150°/5 mm., of (VII) with Na in C₆H₆ gives Et₂ 3-methyl-2-ethylcyclopentanone-3:5-dicarboxylate, b.p. 150°/8 mm. (violet colour with FeCl₃), hydrolysed by 6% HCl to 3-methyl-2-ethylcyclopentanone-3-carboxylic acid, m.p. 91° [semicarbazone, m.p. 213—214° (decomp.)]. CH₂Ac·CHEt·CO₂Et, CN·CH₂·CO₂Et, NH₂Ac, and AcOH give Et₂ a-cyano-β-methyl-Ac-hexane-aδ-dicarboxylate, b.p. 150°/5 mm.; addition of HCN and hydrolysis (conc. HCl) of the resulting Et₂ aβ-dicyano-β-methyl-hexane-aδ-dicarboxylate, b.p. 170°/4 mm., affords (V). The Et₃ ester b.p. 140°/5 mm., of (V) with Na in C₆H₆ gives Et₂ 3-methyl-5-ethyl-cyclopentanone-2:3-dicarboxylate, b.p. 130°/5 mm. (violet colour with FeCl₂), hydrolysed by 6% HCl to (VI). Syntheses in the sterol and sex hormone group. IV. Synthesis of 3-β-naphthylcyclopentanone derivatives. C. K. Chuang, J. H. Chu, and Y. S. Kao (Ber., 1941, 74 [B], 798—806).—2-C₁₀H₇·CO·[CH₂]₂·CO₂Et, CH₂Br·CO₂Et, and Zn in C₅H₆ give Et₂β-hydroxy-β-2-naphthyladipate (I), m.p. 84—88° [and acidic products from which is obtained by hydrolysis (aq. KOH) a
small amount of a β-2-naphthyldihydromuconic acid (II), m.p. 186—187°], which could not be dehydrated by SOCl₂–Et₂O, Ac₂O, or P₂O₅–C₆H₆. Hydrolysis (20% KOH at room temp.) of (I) gives β-hydroxy-β-2-naphthyladipic acid (III), m.p. 156—158° (decomp.) (p-nitrobenzyl ester, m.p. 132—133°), converted at 160—170° or by 6N-H₂SO₄ in boiling COMe₂ into the y-lactonic acid, m.p. 167—168° Hydrolysis of (I) with boiling EtOH–KOH affords a little (III) and a mixture (A) of unsaturated acids from which (II) is isolable. (II) [also obtained in poor yield from (III) and boiling Ac₂O] and (A) are reduced (H₂, Pt-black, AcOH) to β-2-naphthyladipic acid (IV), m.p. 168—169° (p-nitrobenzyl ester, m.p. 98°). The Me₂ ester of (IV) gives (Dieckmann) 3-β-naphthylcyclopentanone [semicarbazone, m.p. 199—201° mann) 3-β-naphthylcyclopentanone [semicarbazone, m.p. 199—201° (lit. 196—197°)]. Reactions catalysed by aluminium chloride. XXI. Route to 8-methylhydrindan-1-one. C. D. Nenitzescu and V. Przemetzky (Ber., 1941, 74, [B], 676—686).—cycloHexene (I) and CH₂Cl·OAc (II) in CS₂ at room temp. give 2-chlorohexahydrobenzyl acetate (III), b.p. 110—112°/14 mm. (the Cl is unaffected by boiling quinoline, NPhEt₂, or EtOH-KOH, by KOAc at 200°, or by reducing agents), which with C₆H₆-AlCl₃ at 45° affords 4-phenylhexahydrobenzyl acetate, b.p. 156—158°/12 mm. (I), 37% CH₂O-HCl (1 mol.), and ZnCl₂ at 0—45° give 2-chlorohexahydrobenzyl alcohol (IV). b.p. 105—107°/15 mm.; 2-bromohexahydrobenzyl alcohol, b.p. 120°/15 mm., and 2-chlorocyclopentylcarbinol, b.p. 92—93°/15 mm., are similarly prepared. (IV) with Na-H₂O-Et₂O affords hexahydrobenzyl alcohol, b.p. 182-185°/760 mm., and with Na-EtOH gives the 2-OEt-alcohol, b.p. 75°/10 mm., oxidised (aq. KOH-KMnO₄) to 2-thoxyhexahydrobenzoic acid, m.p. 96°. (III) and (IV) with solid KOH at 160° give \(\Delta \) 1-tetrahydrobenzyl alcohol (V), b.p. 90—93°/23 mm., attempted dehydrogenation (Cu at 300°) of which affords hexahydrobenzaldehyde. (I), 35% CH₂O, and conc. H₂SO₄ give the CH₂; ether, b.p. 63—67°/10 mm., of 2-hydroxymethylcyclohexanol; this is unchanged by dil. acids at 150° or by Al₂O₃ at 400°. 1-Methyl-\(\Delta \) 1-cyclohexene and (CH₂O)_x in AcOH-conc. H₂SO₄ afford 2-methyl-\(\Delta \) 1-tetrahydrobenzyl acetate; b.p. 95—100°/18 mm., and some of the corresponding glycol diacetate; hydrolysis (20% NaOH) of the mixture gives 2-methyl-\(\Delta \) 1-tetrahydrobenzyl alcohol (VI), b.p. 106—108°/20 mm., and the glycol [yields (VI) when distilled with p-C_xH₃Me·SO₂H]. The bromide from (VI) and PBr₃ is converted the mixture gives 2-methyl- Δ^{-2} -tevranyarocenzy, account (VI), 5.p. 106—108°/20 mm., and the glycol [yields (VI) when distilled with p- C_6H_4 Me·SO₃H]. The bromide from (VI) and PBr₃ is converted through the malonate, b.p. $162^\circ/15$ mm. (prep. in xylene at 120°), into β -2-methyl- Δ^{1} -cyclohexenylpropionic acid, b.p. $162^\circ/18$ mm., and thence (chloride, b.p. 112— $115^\circ/9$ mm., with AlCl₃ in cyclohexane) into 8-methylhydrindan-1-one, b.p. 98— $99^\circ/15$ mm., m.p. $39\cdot5^\circ$ (lit. 34° and an oil) [semicarbazone, forms, m.p. $214\cdot5^\circ$ and 224° (cf. lit.)] together with a little 8 methylbytex by condense and 224° 39.5° (it. 34° and an oil) [semicaroazone, forms, in.p. 214.5° and 224° (cf. lit.)], together with a little 8-methyltetrahydroindan-1-one (semicarbazone, m.p. 238°). β-Δ¹-cycloHexenylpropionic acid, b.p. 156—159°/18 mm. (p-bromophenacyl ester, m.p. 112°) [similarly obtained starting with (V)], is similarly converted into 4:5:6:7-tetrahydroindan-1-one, b.p. 124—125°/17 mm. (semicarbazone, m.p. 243°). cycloHexanone, Cl·[CH₂]₂·CO₂Et (or Br-ester), and Li in C₆H₆ give (after hydrolysis) mono- and di-cyclohexyllonecyclohex C_6H_6 give (after hydrolysis) mono- and d1-cyclohexylidenecyclohexanone and $\beta\text{-}2\text{-ketocyclohexylpropionic}$ acid, b.p. $180\text{--}182^\circ/15$ mm., reduced (Na–Hg, H₂O) to the 2-OH-acid lactone, b.p. $145\text{--}150^\circ/^2$ vac. $CO_2\text{Me}\cdot[\text{CH}_2]_2\cdot \text{COCl}$, (I), and AlCl₃ in PhNO₂ at room temp. afford Me $\gamma\text{-keto-}\gamma\text{-}\Delta^1\text{-cyclohexenylbutyrate}$, b.p. $170\text{--}175^\circ/20$ mm., the semicarbazone, m.p. $141\cdot 5^\circ$, of which with EtOH–NaOEt at 160° gives $\gamma\text{-}\Delta^1\text{-cyclohexenylbutyric}$ acid, b.p. $165\text{--}167^\circ/22$ mm. This is cyclised (as above) to 1-keto- $\Delta^9\text{-cottahydronaphthalene}$ (semicarbazone, m.p. 241°). CMe₂:CH₂ and (II) give $\gamma\text{-chloro-}\gamma\text{-methyl-n-butyl}$ acetate, b.p. $112^\circ/25$ mm., whilst CH₁:CH·CH₂Cl, CH-Cl-OMe, and ZnCl₂ afford $\alpha\beta$ -dichloro- δ -methoxy-n-butane, b.p. $170^{\circ}/760$ mm., converted by boiling 10% KOH into β -chloro- δ -methoxy- Δ^{α} -butene, b.p. $42^{\circ}/18$ mm. Carbon rings. XXXII. Productive preparation of cyclononanone. L. Ruzicka, P. A. Plattner, and H. Wild (Helv. Chim. Acta, 1943, 26, 1631—1637).—At room temp. the equilibrium cyclooctanonecyanohydrin (I) \(\delta \) cyclooctanone (II) + HCN lies almost entirely on the right side but at 0° (I) is obtained by the gradual addition of 37% HCl to an emulsion of (II) and KCN in Et₂O and is stabilised by conversion (well-cooled Ac₂O + AcCl) into the acetate, b.p. 94—100°/0·25 mm. This is hydrogenated (PtO₂ in AcOH containing a little 37% HCl at 60°) to cyclooctylmethylamine (III) and 1-acetoxycyclooctanecarboxylamide, m.p. 109°. Similar hydrogenation of (I) at 18° gives (III) (Bz derivative, m.p. 69—70°), 1-aminomethylcyclooctanol (IV), m.p. 35° (hydrochloride, m.p. 232°; N-Bz derivative, m.p. 132·5—133°), and 1-hydroxycyclococtylmethyl-1'-hydroxycyclococtylmethyleneamine, [CH₂], >C(OH)·CH₂·N:CH·C(OH) <[CH₂], b.p. 140—142°/0·1 mm., m.p. 105°, converted by Ac₂O and C₅H₃N in C₆H₅ into the monoacetate, m.p. 95°. (IV) is transformed by HNO₂ into cyclononanone (V), b.p. 94·5—95·5°/13 mm., m.p. 34°, purified through the semicarbazone, m.p. 183°. (V) is oxidised (CrO₃ in AcOH at 100°) to azelaic acid. M.p. are corr. H. W. "Dimeric 2-methylenecyclohexanone." C. Mannich (Ber., 1941, 74, [B], 557—564).—" Dimeric 2-methylenecyclohexanone" (I), b.p. 160—161°/14 mm., is (A); it gives a mono-semicarbazone, m.p. 206°, and -oxime, m.p. 123° (cf. A., 1928, 300). With 20% HCl (I) gives 1-hydroxy-2: 2'-diketo-αβ-dicyclohexylethane, m.p. 154—155° [dioxime, m.p. 195°, also obtained when (I) is treated with NH₂OH in weakly acid solution for a long time], which contains 1 active H and is reduced (H₂, PtO₂, EtOH) to 1:2:2'-trihydroxy-αβ-dicyclohexylethane, m.p. 154° (triacetate, m.p. 71—72°). Similar reduction of (I) gives the alcohol (II) [(A) with CH·OH for CO], m.p. 69—70° (acetate, b.p. 177—180°/12 mm.), converted by 20% HCl into the diether (III), b.p. $146-149^{\circ}/12$ mm. (II) and (III) are dehydrogenated (Pt-asbestos at $320-330^{\circ}$ in H_2) to $(o\text{-OH}\cdot C_6H_4\cdot CH_2)_2$. (I), (II), or (III) with aq. $A\text{cOH}-\text{CrO}_3$ at 60° gives $a\text{-keto-}a\text{-}2\text{-ketocyclo-}pentyl-y-1-hydroxy-2-ketocyclohexylpropane, m.p. <math>134^{\circ}$, cleaved by hot dil. KOH to cyclopentanone, y-2-keto-2:3:4:6:7:8-kexa-hydro-1-naphthylbutyric acid (IV), m.p. 111° [semicarbazone, m.p. 224° (decomp.)], and $\beta\text{-}1\text{-hydroxy-}2\text{-ketocyclohexylpropionic acid lactone}$ (V), m.p. 60° [semicarbazone, m.p. $\sim 196^{\circ}$ (decomp.); oxime, m.p. $124-125^{\circ}$]. Reduction (H₂, PtO₂, EtOH) of (IV) affords H₄-[semicarbazone, m.p. $\sim 209^{\circ}$ (decomp.)] or H_6 -derivatives, m.p. 147° ; (IV) probably arises from the intermediate ϵ -keto- η -1-hydroxy-2-ketocyclohexyloctoic acid. Oxidation (Ag₂O) of (V) gives γ -keto-azelaic acid reduced (Clemmensen) to azelaic acid. H. B. Rearrangement of "dimeric 2-methylenecyclohexanone" by acids. C. Mannich (Ber., 1941, 74, [B], 565—570).—" Dimeric 2-methylenecyclohexanone" or 1-hydroxy-2: 2'-diketo-αβ-dicyclohexylethane with boiling 20% H₂SO₄ gives the diketone (I), b.p. 155—156°/10 mm. (mono-semicarbazone, m.p. 157—158°, and -oxime, m.p. 156—157°), reduced (H₂, PtO₂, EtOH) to a CO-alcohol, C₁₄H₂₂O₂, b.p. 162—163°/12 mm. (II) [oxime, m.p. 198—199°; acetate (III), b.p. 171—172°/2vac.], or (exceptionally) an isomeric CO-alcohol, m.p. 94—95° (IV) (oxime, m.p. 149—150°), also
obtained from (III) and an excess of boiling N-EtOH-KOH. (II) or (IV) with Na-EtOH gives the glycol, C₁₄H₂₄O₂, m.p. 169—170° (diacetate, m.p. alcohol, m.p. 94—95° (IV) (oxime, m.p. 149—150°), also obtained from (III) and an excess of boiling N-EtOH-KOH. (II) or (IV) with Na–EtOH gives the glycol, $C_{14}H_{24}O_2$, m.p. 169—170° (diacetate, m.p. 73°). Boiling 10% KOH converts (I) into 1- β -2'-ketocyclohexylethyl-cyclopentane-1-carboxylic acid, m.p. 84° [semicarbazone, m.p. 198°; p-nitrophenylhydrazone, m.p. 156° (decomp.); CHPh: derivative, m.p. 126°], reconverted into (I) by P_2O_5 at 105°, and oxidised (KMnO₄; small amount) to ε -keto- η -1-carboxycyclopentyloctoic acid, m.p. 83° [semicarbazone, m.p. 171° (decomp.)], or (large amount) to a mixture of $H_2C_2O_4$, (CH₂·CO₂H)₂, glutaric, adipic, 1-carboxycyclopentylacetic, and cyclopentane-1: 1-dicarboxylic acid. H. B. Methylenequinones. Oxido-reductive dimerisation. H. von Euler, E. Adler, and A. O. Caspersson (Arkiv Kemi, Min., Geol., 1943, 16, A, No. 11, 14 pp.; cf. A., 1943, II, 189).—1:2:5-C₆H₃Me(OH)₂, 8% aq. NaOH, and 40% CH₂O (in N₂) at 2—5° (70 hr.) give 2:5-di-hydroxy-3-methylbenzyl alcohol (I), m.p. 156·5—157·5°; its 2:5-Me₂ ether, m.p. 74·5—75°, is oxidised by aq. KMnO₄-NaOH to 2:5-di-methoxy-m-toluic acid, m.p. 124—125°, converted by HBr-AcOH into the 2:5-(OH)₂-compound, m.p. ~190° (decomp.) (lit. 215°). Short treatment of (I) with HCl in EtOAc (solid CO₂ cooling), followed by aq. NaHCO₃, gives, through the corresponding benzyl chloride (II), the unstable 1:6:4:2-O:C₆H₂Me(OH):CH₂(A), and thence a quinhydrone (III), C₃₂H₃₂O₃, m.p. 210° (pre-heated bath). (III) is reduced by Zn-AcOH (not by SO₂ or SnCl₂) to aβ-di-(2:5-dihydroxy- 3-methylphenyl)ethane (IV), m.p. $286-287^{\circ}$ (pre-heated bath) (tetraacetate, m.p. 167°), oxidised by FeCl₃ in MeOH to the corresponding diquinone (V), m.p. 193° . (III) is synthesised from equal amounts of (IV) and (V) in MeOH. (II) is reduced by Zn dust in moist Et₂O or C_8H_6 to (IV). (A) is considered to undergo oxido-reduction to $2:5:3:1-(OH)_2C_6H_2\text{Me-}CH_2\cdots$ and the corresponding quinone; the radicals then dimerise. A. T. P. #### IV.—STEROLS AND STEROID SAPOGENINS. Oxidation of cholesterol and other unsaturated sterols in colloidal aqueous solution by molecular oxygen. S. Bergström (Arkiv Kemi, Min., Geol., 1943, 16, A, No. 10, 72 pp.).—An account of work previously abstracted (A., 1941, II, 139; 1942, II, 102, 230; 1943, II, 13). A. T. P. Cholesteryl thiocyanate. A. Müller and E. Båtyka (Ber., 1941, 74, [B], 705—707).—Cholesteryl p-toluenesulphonate (I) or benzenesulphonate and KCNS in abs. COMe₂ at 100° (sealed tube) give cholesteryl thiocyanate (II), m.p. 128—129°, $[a]_{1}^{19}$ —14·6° in CHCl₃ (cf. iit.) (5: 6-dibromide, m.p. 79—80°, $[a]_{2}^{19}$ —34·6 in CHCl₃), converted by boiling $C_{6}H_{6}$ -N-MeOH-NaOMe into dicholesteryl disulphide, $[a]_{2}^{19}$ —44·9° in CHCl₃. Thermal rearrangement of (II) could not be effected. (II) or (better) (I) and boiling NH₂Ph give N-phenylcholesterylamine, m.p. 189—190°, $[a]_{2}^{19}$ —35·6° in CHCl₃, and [from (II)] a substance, m.p. >220°. Cholesteryl chloride and NaI in COMe₂ at 180—190° give $\Delta^{3:5}$ -cholestadiene, m.p. 77—78°, $[a]_{2}^{19}$ —80·2° in $C_{6}H_{6}$. H. B. Acyl migration in the sterol series. M. F. C. Paige (J.C.S., 1943, 437—441).—Attempted partial hydrolysis of $3(\beta):6(\beta)$ -diacetoxy- Δ^4 -cholestene to $6(\beta)$ -acetoxy- Δ^4 -cholestene- $3(\beta)$ -ol failed. 3-O-Carbomethoxycholesterol (I) and aq. SeO₃-Ac₂O at 105—110° give 3-O-carbomethoxy-4-acetoxycholesterol (II), m.p. 160·5—161°, hydrolysed by boiling 5% KOH—MeOH to cis- Δ^5 -cholestene-3: 4-diol (III). Oxidation of (I) with aq. SeO₂ in AcOH at 100° gives (II) and the carbonate (IV), fn.p. 173—173·5°, of (III); (IV) is also obtained from (III) and PhMe-COCl₂-C₅H₅N-C₆H₆ at 70° (sealed tube). The 3: 6-ester was not isolated in either oxidation of (I), but was probably present as hydrolysis of the non-cryst. residues gives a little Δ^4 -cholestene-3: 6-diol. 4-Hydroxycholesterol and ClCO₂Me-C₅H₅N-Et₂O-C₆H₆ at room temp. afford 4-hydroxy-3-O-carbomethoxycholesterol, m.p. 157·5—159·5° (benzoate, m.p. 173—174°), acetylated (Ac₂O) to (II), which is also obtained similarly from the 4-monoacetate of (III) and ClCO₂Me-C₅H₅N. 3-O-Carbethoxycholesterol (IV), m.p. 163·16°, and 3-O-carbethoxy-4-acetoxycholesterol (IV), m.p. 163·16°, and 3-O-carbethoxy-4-acetoxy-Δ4-cholesten-3-of, m.p. 121—122·5° (hydrolysed to Δ4-cholestene-3: 6-diol); the same products and (IV) are formed by oxidation in AcOH. (V) is hydrolysed to (III) and can be obtained from the 4-monoacetate of (III) and ClCO₂Et-C₅H₅N afford 4-hydroxy-3-O-carbethoxycholesterol, m.p. 130·5—131° (benzoate, m.p. 131—131·5°), acetylated to (V). Acyl migration in the 3-monoacetate of (III) probably occurs through the orthocarbonate. The 3-monoacetate and EtCO₂H at 100° afford some 4-acetate; even in AcOH, conversion is incomplete in 6 hr., indicating an equilibrium reaction. (IV) and MeMgI (in Et₂O-dry H₂) give only Δ4-cholestene (VI). (II) reprobably first oxidised in AcOH to its 4-OH derivative, which rearranges to an orthocarbonate; loss of MeOH then gives (IV). The 3-O-CO₂Me- or -CO₂Et-derivatives of (III) are converted Constituents of the adrenal cortex and related substances. LXIV. Configurative connexion of $17(\beta)$ -hydroxypregnane derivatives with glycerol grouping in the side-chain. B. Koechlin and T. Reichstein (Helv. Chim. Acta, 1943, 26, 1328—1334).— $\Delta^{5:17}$ -Pregnadiene-3:21-diol diacetate is converted by OsO₄ in Et₂O at room temp. followed by Na₂SO₃ in boiling aq. EtOH and acetylation (Ac₂O-C₅H₅N at room temp.) into Δ^{5} -pregnene-3(β): $17(\beta$): $20(\beta)$: 21-tetraol 3: 20:21-triacetate, rhombs which pass into needles at 184— 185° and melt at 189— 190° , $[a]_{1}^{33}+5\cdot9^{\circ}\pm1\cdot5^{\circ}$ in COMe₂. It is hydrolysed by boiling KOH-MeOH to the tetraol (Prins records m.p. 215— 220° , or 220— 223° after prolonged keeping, $[a]_{1}^{34}-56\cdot2^{\circ}\pm5^{\circ}$ in COMe₂), converted by COMe₂ and anhyd. CuSO₄ at room temp. into Δ^{5} -20:21-isopropylidenepregnene-3(β): $17(\beta):20(\beta):21$ -tetraol, m.p. 201— 203° , becomes opaque at 100° , $[a]_{1}^{39}-62\cdot7^{\circ}\pm2^{\circ}$ in COMe₂. This is oxidised by Al(OBu⁷)₃ and COMe₂ in boiling C₆H₀ to Δ^{4} -20:21-isopropylidenepregnene- $17(\beta):20(\beta):21$ -triol-3-one, two forms, m.p. 146— 147° and 200— 204° without change at 147° , $[a]_{2}^{32}$ + $74\cdot7^{\circ}$ + 2° in COMe₂, which is hydrolysed to Δ^{4} -pregnene- $17(\beta):20(\beta):21$ -triol-3-one (I), identified as the diacetate, m.p. 196— 197° , $[a]_{1}^{18}+135\cdot9^{\circ}\pm2^{\circ}$ in COMe₂, identical with that obtained from the Δ^{4} -pregnene- $17(\beta):20:21$ -triol-3-one of Ruzicka et al. (A., 1939, II. $3\mathring{2}8$). (I) is therefore configuratively similar to allopregnane- $3(\beta):17(\beta):20(\beta):21$ -tetraol and Δ^5 -pregnene- $3(\beta):17(\beta):20(\beta):21$ -tetraol. M.p. are corr. (block); limit of error $\pm 2^\circ$. H. W. Steroids and sex hormones. LXXXVI. Products of the hydrogenation of Δ5:6-20:22_3(β)-hydroxynorcholadienoic acid. P. A. Plattner and J. Pataki (Helv. Chim. Acta, 1943, 26, 1241—1252).—Further examples are given of the formation of isomerides due to differing configuration at C₍₂₀₎. Those compounds which have a configuration at C₍₂₀₎ differing from that of cholesterol are termed 20-tso-derivatives. Me Δ5:6-20:22-3(β)-acetoxynorcholadienoate is hydrogenated (Pt in AcOH) to Me 3(β)-acetoxynorallocholanate (I), m.p. 162:5—163°, [a]]6 +11·7° in CHCl₂, hydrolysed to the 3(β)-OH-acid, m.p. 225—226°, [a]]5 +22·9° in EtOH (Me ester, m.p. 157—158°, [a]]6 +19·1° in CHCl₃), and a mixture which, after hydrolysis, gives 3(β)-hydroxy-20-isonorallocholanic acid, m.p. 249—251°, [a]]7 +18·2° in EtOH (Me ester, m.p. 169—171°, [a]]8 +16·4° in CHCl₃, and its acetate, m.p. 135—137°, [a]]5 +8·2° in CHCl₃). Δ5:6-20:22-3(β)-Hydroxynorcholadienoic acid is hydrogenated (Raney Ni in aq. EtOH-NaOH) to Δ5:6-3(β)-hydroxy-20-isonorcholenic acid, m.p. 263—264°, [a]]6 + 44·7° in EtOH, and Δ5:6-3(β)-hydroxynorcholenic acid (II), m.p. 244·5—245°, [a]]6 - 41·2° in EtOH (Me ester, m.p. 143—145°, [a]]6 +2-5° in CHCl₃, and its acetate, m.p. 132—134°). Hydrogenation of Me Δ20:22-3(β)-acetoxynorallocholenate (Pt in EtOH or AcOH) leads to (I); in presence of Raney Ni a mixture results containing predominatingly the 20-iso-form. Rapid addition of Me Δ5:6-3(β)-acetoxycholenate (III) in C₆H₆ to MgMeBr in Et₂O followed by alkaline hydrolysis gives Δ5:6-3(β)-hydroxynorcholenyldimethylcarbinol, m.p. 181·5—182·5° (lit. 192°), [a]_D -34·4° in EtOH, converted by Ac₂O in C₅H₅N at room temp. into the 3(β)-acetate, m.p. 165·5—166·5°, [a]_B7° -41·6° in CHCl₃, which is hydrogenated (PtO₂ in AcOH at 50°) to 3(β)-acetoxynorallocholanyldimethylcarbinol, m.p. 161—162°, [a]_bh +5·6° in CHCl₃, which is hydrogenated by an excess of MgPhBr into Δ5:6-23:24-3(β)-acetoxy-24:24-diphenylcholadiene, m.p. 172—173°, converted by successive treatmen Structure of choleic acids. N. P. Buu-Hoï (Z. physiol. Chem., 1943, 278, 230—235).—Deoxycholic acid (I) forms 8:1 compounds with chaulmoogric, m.p. 185—186°, hydnocarpic, m.p. 183°, dihydrochaulmoogric, m.p. 186°, and dihydrohydnocarpic acid, m.p. 182—183°, Et chaulmoograte, m.p. 187°, hydnocarpate, m.p. 186—187°, dihydrochaulmoograte, m.p. 188°, and dihydrohydnocarpate, m.p. 185—186°, chaulmoogryl, m.p. 185—186°, and dihydrochaulmoogryl alcohol, m.p. 186—187°, and Et κ-phenylundecoate, m.p. 174°. (I) forms 4:1 compounds with CH₂Ph·CO₂Me, m.p. 168—169° (after sintering), and BuOBz, m.p. 169—170°
(after sintering), and 6:1 compounds with Ph·[CH₂]₃·CO₂Et, m.p. 170—172° (after sintering), and 1-C₁₀H₇·CH₂·CN, m.p. 175—177° (after sintering). Hence the theory of Kratky et al. (cf. A., 1937, I, 118) requires modification. W. McC. Androstanolones substituted in the 17-position.—See B., 1943, III, 279. Steroids and sex hormones. LXXXV. D-Homoandrostane derivatives, a group of highly active androgens. M. W. Goldberg and E. Wydler (Helv. Chim. Acta, 1943, 26, 1142—1155; cf. A., 1943, II, 199).—trans-Dehydroandrosterone 3-monoacetate is converted by KCN and AcOH in EtOH at \Rightarrow 0° into its cyanohydrin, hydrogenated (PtO2 in AcOH) to 17-hydroxy-3(β)-acetoxy-17-aminomethylandrostane, m.p. 234—236°, which is converted by HNO2 into (mainly) 17a-keto-(I), m.p. 120—122°, and 17-keto-3(β)-acetoxy-D-homoandrostane (II), m.p. 102—104°, [a]p $-3\cdot7^\circ$ in dioxan [semicarbazone, m.p. 251—253° (decomp.)]. (II) is hydrolysed to 3(β)-hydroxy-17-keto-D-homoandrostane, m.p. 170—172°, [a]p +23° in dioxan, oxidation (CrO3, AcOH) of which affords 3:17-diketo-D-homoandrostane, m.p. 168—170°, [a]p -32° in dioxan. The isomeric 3:17a-diketone, m.p. 183—185°, [a]p -27° in dioxan, is obtained by hydrolysing and oxidising (I). Both diketones are converted by successive treatments with N₂H₄,H₂O and NaOEt into D-homoandrostane, m.p. 85·87°, [a]p $-3\cdot7^\circ$ in dioxan. Hydrogenation (PtO2 in AcOH) followed by benzoylation of (I) and chromatography of the product leads to D-homoandrostane-3(β): 17a(α)-diol 3-acetate 17-benzoate, m.p. 201—202°, [a]p +17·6° in dioxan (cf. A., 1940, II, 350), and -3(β): 17a(β)-diol 3-acetate 17-benzoate, m.p. 139—142°, [a]p — 0·7° in dioxan. These are partly hydrolysed (KHCO3 in boiling aq. MeOH) to the respective benzoates, m.p. 230—233°, [a]p — 59° in dioxan, and m.p. 154—155°, [a]p — 50·7° in dioxan. Complete hydrolysis gives 3(β): 17a(a)-, m.p. 217—218° [a]p +26° in dioxan, and 3(β): 17a(β)-dihydroxy-D-homoandrostane, m.p. 219—220°, [a]p — 60° in dioxan. Oxidation of the respective alcohols yields 3-keto-17a(β)-dihydroxy-D-homoandrostane, m.p. 29—220°, [a]p — 16° in dioxan. Oxidation of the respective alcohols yields 3-keto-17a(β)-benzoyloxyandrostane, m.p. 194—195°, [a]p +28° in dioxan (D-homodihydrotestosterone 17a(β)- and 17a(a)-benzoates). 3-Keto-17a(a)-benzoyloxyandrosta 17a(a)-acetoxy-D-homoandrostane (D-homodihydrotestosterone 17a(a)-acetate), m.p. $194-195^\circ$, $[a]_D+9\cdot 8^\circ$ in dioxan, obtained by acetylation of the OH-compound (loc. cit.), is converted by Br in AcOH containing conc. aq. HBr into the 2-Br-derivative, m.p. $214-215^\circ$, $[a]_D+21^\circ$ in dioxan; this affords a pyridinium compound, m.p. 280° (decomp.), which passes when heated into (?) Δ^4 -3-keto-17a(a)-acetoxy-D-homoandrostene, m.p. $158\cdot 5-160^\circ$, $[a]_D+80\cdot 3^\circ$ in dioxan. The derivatives of the D-homoandrostane series appear as active physiologically as the corresponding compounds of the natural steroid series. M.p. are corr. Constituents of the adrenal cortex and related substances. LXIII. 11-epiCorticosterone acetate and two isomeric anhydrocorticosterone acetates. C. W. Shoppee and T. Reichstein (Helv. Chim. Acta, 1943, 26, 1316—1328; cf. A., 1940, II, 350; 1941, II, 259).— Corticosterone acetate (I), m.p. 147.5— 148.5° , $[a]_{20}^{120}+195^{\circ}\pm3^{\circ}$, $[a]_{5161}^{120}+236^{\circ}\pm3^{\circ}$ in COMe₂, is converted by boiling conc. HCl-AcOH (1:9) (30 min.) into (after reacetylation) anhydrocorticosterone acetate (II), m.p. 159— 160° , $[a]_{18}^{18}+129^{\circ}\pm2^{\circ}$, $[a]_{181}^{18}+150^{\circ}\pm2^{\circ}$ in COMe₂ (yield 35— 40°), and 11-epicorticosterone acetate (III), m.p. 122— 125° , $[a]_{20}^{120}+187^{\circ}\pm4^{\circ}$, $[a]_{2041}^{120}+222^{\circ}\pm4^{\circ}$ in COMe₂. (III) does not give a colour with $C(NO_2)_4$, rapidly reduces Ag_2O — NH_3 , and gives a green fluorescence in conc. H_2SO_4 . Dehydraction of (I) under more energetic conditions (conc. Hcl—AcOH, 1:4) gives unchanged material, no (III), (II) (26°), an anhydrocorticosterone acetate (IV) (17°), m.p. 142— 143° , $[a]_{15}^{15}+98^{\circ}\pm6^{\circ}$, $[a]_{15}^{15}$, $[a]_{15}^{16}$ [a] $+215^{\circ}\pm8^{\circ},~ [\mathfrak{a}]_{5461}^{10}~+266^{\circ}\pm8^{\circ}$ in $COMe_2.$ In the Everse-de Fremery test (II) is 2-3 times more powerful than deoxycorticosterone acetate (V) and is about equally or somewhat less active towards adrenalectomised rats. In the former test (IV) is 2-3 times less active than (V). M.p. are corr. #### V.—TERPENES AND TRITERPENOID SAPOGENINS. cis-\$\Delta^2\$-Menthene. W. Hückel and H. Wagner (Ber., 1941, 74, [B], 657—662).—Catalytic reduction of \$l\$-piperitone (I), \$[a]_D - 50.6^{\circ}\$, is reinvestigated (cf. A., 1939, II, 434). It is established that (I) contains some racemate and that \$d\$-menthone is produced as well as \$d\$-isomenthone. Vals. of \$[a]\$ (for different \$\lambda\$) and various solvents) are given for \$d\$-neoisomenthol (phenylcarbamate, m.p. $91-92^{\circ}$, \$[a]_D^{20} - 12.4^{\circ}\$ in EtOH; H phthalate, m.p. $\sim 85-86^{\circ}$, \$[a]_D^{20} - 18.0^{\circ}\$ in CHCl3). \$d\$-isoMenthyl H phthalate has m.p. $116-117^{\circ}$ (lit. 107-108^{\circ})$. d-isoMenthyl p-toluenesulphonate (loc. cit.) with boiling EtOH-NaOEt gives 60% of cis-Δ^2-menthene (II), b.p. <math>46-48^{\circ}$ /10 mm., \$[a]_D^{30} + 45.2^{\circ}\$; differences in physical data for (II) and trans-\$\Delta^2\$-menthene are in accordance with the Auwers-Skita rule. Treatment of (II) with \$p\$-\$C_H_4Me*SO_3H\$ in EtOH causes a slight reduction in \$a_D\$; if this is not due to racemisation then (II) contains some \$\Delta^3\$-menthene (III). \$d\$-isoMenthylamine and HNO_2 give \$d\$-isomenthol and a mixture of (II) (50%), \$r\$-(III) (38%), and active (III) (12%). 1:5-meso-Methylenecycloheptane, the dicyclic ring homogue of norcamphane. J. von Braun and J. Reitz (Ber., 1941, 74, [B], 273—275; cf. A., 1937, II, 404).—Homonorcamphanecarboxylic acid in conc. $\rm H_2SO_4$ with $\rm HN_3$ in CHCl₃ affords 60% of 2-amino-1:5-meso(= endo)methylenecycloheptane (I), b.p. 69—70°/14 mm. (platinichloride, m.p. 275—280°; picrate, m.p. 180°; Bz derivative, m.p. ~95°). (I) is treated with Me₂SO₄ etc.; the methohydroxide with KOH yields 38% of 2-dimethylamino-1:5-meso-methylenecycloheptane, b.p. 83°/13 mm. (platinichloride, m.p. 173°; picrate, m.p. 197°), and 45% of 1:5-meso-methylene- Δ^2 -cycloheptene, b.p. 132°, which when hydrogenated over Pd gives 1:5-meso-methylenecycloheptane, b.p. 131°. Nitrobornylphenols.—See B., 1943, III, 239. Position of substituents in Reychler's sulphocamphoric acid and the so-called β -bromocamphor. G. Komppa $(J.\ pr.\ Chem.,\ 1943,\ [ii],\ 162,\ 19-28)$.—The ω -position of the Br in " β "-bromocamphor (I) and " β "-bromocamphoric acid (II) is substantiated. For steric reasons dl-(I), m.p. 78°, does not react with Mg or moist Ag₂O. The camphor skeleton of dl-(II), m.p. 207—208° (decomp.) (anhydride, m.p. 148—149°), is confirmed by reduction by Zn dust in AcOH to dl-camphoric acid (anhydride, m.p. 229°). In boiling 20% aq. KOH (Cu vessel), (II) gives dl- ω -hydroxycamphoric acid (III) (80%), m.p. 158—159°, converted by AcCl into the ω -acetate anhydride, m.p. 123—124°, and thence the ω -acetate toluididic acid, m.p. 124°. With dil. HNO₃. (III) gives indefinite products, but are corr. with 1% KMnO₄ at 60—70° gives a good yield of carboxyapocamphoric acid, m.p. 195—196°, which at > the m.p. yields (mainly cis-) apocamphoric acid, identified also as anhydride and anilide. The Me_2 ester (prep. by MeOH-H₂SO₄ or by way of the chloride), m.p. 137°, in boiling NPhEt₂ gives MeBr, CO₂, and Me dl-a-campholytate (IV) (~54%), b.p. 67—70°/8 mm., and thence by dil. HCl dl- β -campholytic (dl-isolauronolic) acid (V), m.p. 132—133° (dibromide, m.p. 138—139°). The El_2 ester, m.p. 102—103°, of (II) gives similarly the Et ester corresponding to (IV). With Ag₂O in aq. EtOH at 30°, (II) gives the stable lactone, dl- ω -camphanic acid (65%), m.p. 151—152°, which, when heated, gives (V) and CO₂. The true β -bromo- and β -hydroxy-camphoric acid of Toivonen (Ann. Acad. Sci. Fennicae, 1927, A, 29, No. 10) differ from (I) and (II) in m.p. Effect of phenyl group on rotatory power: phenylcamphoranilic acids and p-diphenylylimino-d-camphor. M. Singh and A. Singh (J. Indian Chem. Soc., 1942, 19, 145—148).—In comparison with that of other substituted camphoranilic acids, [a] $_{0}^{20}$ in MeOH of 4'-, m.p. 196—197° (shrinks at 194°), is abnormally high (+64°), that of 3'-, m.p. 204—205°; abnormally low (+40·8°), and that of 2'-phenylcamphoranilic acid, m.p. 181° [from camphoric anhydride, C₆H₄Ph*NH₂, and NaOAc at 130—135° (120° for the o- and m-compounds)], normal (+26·5°). In each case [a]_D of the Na salt is > of the free acid in org. solvents. p-Diphenylylimino-d-camphor (from camphorquinone, p-C₆H₄Ph*NH₂, and anhyd. Na₂SO₄ at 100°), m.p. 148—149°, [a] $_{0}^{20}$ +696·8° in MeOH, +720·7° in EtOH (anilino-camphor has [a] $_{0}^{20}$ +696·8° in MeOH), is reduced (Zn +10% KOH) to p-diphenylylaminocamphor, [a] $_{0}^{20}$ +82·3° in EtOH. A. Li. Sesquiterpenes. LX. Oxidative degradation of norcedrenedicarboxylic acid by nitric acid. P. A. Plattner and H. Klāui (Helv. Chim. Acta, 1943, 26, 1553—1559; cf. A., 1943, II, 97).—Cedrene (I) is brominated by (CH₂·CO)₂NBr in boiling CCl₄ and the crude bromocedrene (which cannot be distilled in a vac. without decomp.) is oxidised by KMnO₄ in boiling aq. COMe, followed by boiling aq. HNO₃ to norcedrenedicarboxylic acid (II). The mother-liquors from (II) contain CO₂H·CMe₂·CH₂·CO₂H and CO₂H·CMe₂·CH(CO₂H)·CH₂·CO₂H
(III). This has been obtained previously by the oxidation of cedrene and temporarily regarded as camphoronic acid (cf. Plattner, et al., A., 1943, II, 97; Treibs, Ber., 1943, 76, 160). Contrary to Treibs, (III), m.p. 145—145-5°, [a]_D—8° in H₂O, is best obtained by the protracted oxidation of (I) with HNO₃ (d 1·4) at 100—115°. Elimination of HBr from bromonorcedrenedicarboxylic ester carried out in an autoclave instead of a sealed tube gave relatively little dehydronorcederenedicarboxylic acid and much oily mother-liquor which, when oxidised with KMnO₄ in alkaline solution, yields trans-novcedvenedicarboxylic acid, m.p. 222·5—223°, [a]^{22·5}—53·3° in CHCl₃, converted by boiling Ac₂O into the norcedrenedicarboxylic anhydride, m.p. 126—127° M.p. Constitution of cafestol. V. A. Wettstein, F. Hunziker, and K. Miescher (Helv. Chim. Acta, 1943, 26, 1197—1218; cf. A., 1943, II, 199, 203).—Ozonisation of epoxynorcafestadienone (I) in $n \cdot C_0 H_{14}$ or CCl₄ and treatment of the ozonide with boiling H_2O gives as main product a difficultly volatile, non-cryst. acid (II) transformed by esterification (CH₂N₂), chromatographic purification, and alkaline hydrolysis into the Me H ester (III), $C_{18}H_{26}O_5$, m.p. 156—157°, [a] $B^8 + 25 \cdot 7^\circ \pm 2^\circ$ in dioxan. (III) is transformed by CH₂N₂ into the Me₂ ester, m.p. 53—55°, which gives a monosemicarbazone, m.p. 211—213° (decomp.). Although (III) cannot be hydrolysed, its OMe is not present in (II), which does not contain OAlk (Zeisel) and is transformed by EtOH and mineral acid into the Et₂ ester, $C_{21}H_{32}O_5$, m.p. 162—163°. (III) is converted by EtOH—mineral acid into the Me Et ester, m.p. 86—88°, and (IV) affords analogously an isomeric Me Et ester, m.p. 126—128°. In all probability (II) is therefore $C_{17}H_{24}O_5$ and contains only 3 intact C rings. The formation of (II) is accompanied by the elimination of 2 C but not of H and involves the loss of ethereal O and formation of CO₂. The furan ring and a C ring are opened. It appears therefore the $C_{(2)}$ and $C_{(3)}$ of the furan ring in cafestol (V) are attached to H whereas $C_{(4)}$ and $C_{(5)}$ participate in the formation of an ortho-condensed C ring. A strict proof that the furan ring of (V) is substituted at $C_{(4)}$ and $C_{(5)}$ participate in the formation of an ortho-condensed C ring. A strict proof that the furan ring of (V) is substituted at $C_{(4)}$ and $C_{(5)}$ and only in these positions is afforded by the observation that the adduct from cafestyl acetate (VI) and (CH·CO)₂O is converted by successive treatments with HCl-AcOH at 90°, 33% HNO₃ at 190—200°, and CH₂N₂ into 1:2:3:4-C₆H₂(CO₂Me)₄. Since a H has been shown previously to be attached to C₍₂₎, this must be true also of C₍₃₎ and the furan is in the $a\beta$ position to the lactone group. The substance does not decolorise Br-AcOH or KMnO₄-EtOH, does not give the Legal or Baljet reactions, and does not reduce Ag₂O-NH₃. It is stable towards O₃ and CrO₃-AcOH at low temp. Its alkaline hydrolysis leads to a compound, C₁₉H₂₄O₄, m.p. 257—261° (decomp.), which does not give a quinoxaline derivative. It probably has the partial structure CHCO. Analogously (VI) is oxidised by ρ - structure $C_{-C}(OAc)$. Analogously (VI) is oxidised by o- $CO_2H\cdot C_6H_4\cdot CO_3H$ and then acetylated to a hydroxydiacetoxycafestenolide, $C_{24}H_{32}O_7$, m.p. 197—198°. Crude (II) is transformed by Ac_2O followed by distillation in vac. into a dihetone (VII), $C_{16}H_{22}O_2$, m.p. 204—205°, characterised by a disemicarbazone, m.p. >400°, darkens >300°, showing according to Blanc's rule that the original ring A is 6- or 7-membered. Analogously the Me_2 or Me Et ester of (II) is cyclised by Na in boiling PhMe to a β -ketocarboxylic ester ketone, converted by boiling conc. HCl-EtOH into (VII). The ready formation of a m-nitrobenzylidene derivative, m.p. 227—229°, of (VII) is ascribed to the at. grouping in the contracted ring A since cafestol derivatives which contain CO or CH_2 exclusively in ring D do not react with ArCHO. $C_{(5)}$ or $C_{(8)}$ must be present in CH_2 and also the neighbouring $C_{(6)}$ or $C_{(7)}$ must be united to at least 1 H atom. 17 of the 20 C atoms of cafestol are thus accounted for and the nature and mode of union of all substituents and double linkings is explained. Piperonylidenenorcafestanedione has m.p. 164—165°. M.p. are corr. Triterpenes. LXXVII. Siaresinolic acid. L. Ruzicka, A. Grob, R. Egli, and O. Jeger (*Helv. Chim. Acta*, 1943, 26, 1218—1235).— Evidence is adduced in favour of the view that siaresinolic acid (I) is $\Delta^{12:13}$ -2:19-dihydroxy-28-olean- OH 19 16 CO₂H OH 19 22 OH is $\Delta^{12:13}$ -2:19-dihydroxy-28-oleanenic acid. (I), m.p. 279—280°, $[a]_D$ +39·2° in abs. EtOH (prep. from Siamese gum benzoin described), is converted into its Me ester (II), m.p. 182°, $[a]_D$ +44·9°, by CH_2N_2 in Et_2O (also obtained from the K salt and Me_2SO_4 in somewhat alkaline MeOH); the Et ester, m.p. 175—176°, $[a]_D$ +44·6° in EtOH, is prepared from EtI and the Ag-salt in boiling abs. Et_2O . (I) and Ac_2O prepared from EtI and the Ag salt in boiling abs. Et₂O. (I) and Ac₂O in C₅H₃N at room temp. afford 2-acety/siaresinolic acid [$\Delta^{12:13}$ -19-hydroxy-2-acetoxy-28-oleanenic acid], m.p. 282—284°, [a]_D +48·7°, converted by CH₂N₂ into the Me ester (III), m.p. 125—127° (lit. 110—120°), [a]_D +47·5°, also obtained by acetylation of (II) and hydrolysed to (II) by boiling KOH–MeOH. Passage of dry HCl through (III) in Ac₂O at 100° leads to Me isodiacety/siaresinolate, (IV), m.p. 234—236°, [a]_D +41·3°, also obtained from the corresponding acid, m.p. 262°, [a]_D +40°, and CH₂N₂. It is hydrolysed by boiling N-KOH to Me iso-19-acety/siaresinolate (V), m.p. 235—237°, [a]_D +40·7°, converted by Ac₂O–C₅H₅N at room temp. into (IV) and by Claisen's reagent at 150° into (I). Analogously the acid is converted by mild hydrolysis into iso-19-acety/siaresinolic acid, m.p. 235—237°, [a]_D +39°, and by vigorous hydrolysis into (I). (III) converted by mild hydrolysis into iso-19-acetylsiaresinoite deta, in p. 235–237°, $[a]_D + 39^\circ$, and by vigorous hydrolysis into (I). (III) and dry HCl in Ac₂O at room temp. afford Me iso-2-acetylsiaresinolate (VI), m.p. 237–238°, $[a]_D + 48.5^\circ$, also obtained similarly from (II) and acetylated (Ac₂O-HCl at 100°) to (IV). It is gently hydrolysed to Me isosiaresinolate, m.p. 205–206°, re-acetylated (Ac₂O-C₅H₅N at room temp.) to (V) and energetically hydrolysed to (II). iso-2-Acetylsiaresinolic acid, m.p. 273–274° (much decomp.), $[a]_D + 40^\circ$, is hydrolysed by boiling N-KOH-MeOH to (I). (V) is oxidised by $[a]_D + [a]_D [a]_D$ hydrolysed by boiling N-KOH–MeOH to (I). (V) is oxidised by CrO₃ ($\equiv 1.5$ O) in AcOH at room temp. to Me iso-2-keto-19-acetoxy-28-oleanenoate, m.p. 225—227°, [a]_D +50.4° (c = 1·43) and +48° (c = 2·29), which is not hydrolysed by boiling 2N-KOH in 2 days. Similarly (III) affords Me 19-keto-2-acetoxy-28-oleanenoate, m.p. 244—247°, [a]_D +107·6° (c = 1·56) and +110° (c = 3·36), which gives a marked yellow colour with C(NO₂)₄ and does not appear to yield a semicarbazone; it is hydrolysed by boiling N-KOH–MeOH or boiling conc. HCl-MeOH to Me Δ ^{13:18}-19-keto-2-hydroxy-28-ko0leanenoate (VII), m.p. 209—219° (lit. 189—190°), [a]_D -209·0°. It is also obtained from Me Δ ^{12:13}-19-keto-2-acetoxy0leanenoate and HCl in AcOH at room temp. (VI) is oxidised to Me iso-19-keto-2-ko0. It is also obtained from Me $\Delta^{12:13}$ -19-keto-2-acetoxyoleanenoate and HCl in AcOH at room temp. (VI) is oxidised to Me iso-19-keto-2-acetoxy-28-oleanenoate, m.p. $221-223^\circ$, [a]_b +62·2°, hydrolysed to the 2-OH-ester, m.p. $195-197^\circ$ [a]_b +46·0°, from which it is re-formed by Ac₂O-C₅H₅N at room temp. Addition of CrO₃ to a solution of (I) in AcOH containing conc. H₂SO₄ at room temp. gives a non-homogeneous product from which Me $\Delta^{12:13}$ -2:19-diketo-28-oleanenoate, m.p. $211-212^\circ$ (lit. $207-208^\circ$), [a]_b +139·8° (c = 0·361), +140·5° (c = 0·642) (oxime, m.p. $232-233^\circ$; semicarbazone, m.p. $233-234^\circ$), is isolated. It is also obtained from (II). It is not affected by Ac₂O-C₅H₅N at room temp. or catalytically hydrogenated in AcOH containing PtO₂. Oxidation (CrO₃ in AcOH at room temp.) of (VII) affords Me $\Delta^{13:18}$ -2:19-diketo-28-oleanenoate, m.p. $193-194^\circ$, [a]_D -189·0° [semicarbazone, m.p. $250-251^\circ$ (decomp.)], which does not give a yellow colour with C(NO₂)₄. The semicarbazone of Me $\Delta^{12:13}$ -2-keto-19-hydroxy-28-oleanenoate is transformed by NaOEt in EtOH at 180° into Me oleanenoate is transformed by NaOEt in EtOH at 180° into Me Δ^{12:13}-19-hydroxy-28-oleanenoate, m.p. 213-214°, which is unchanged by $Ac_2O-C_5H_5N$; it is oxidised to $Me\ \Delta^{12:13}-19$ -keto-28-oleanenoate, m.p. 204—205°. M.p. are corr. $[a]_D$ are in $CHCl_3$ unless otherwise stated. Triterpenes. LXXVIII. Introduction of additional double linkings into the α - and β -amyrin types with N-bromosuccinimide. L. Ruzicka, O. Jeger, and J. Redel [with, in part, W. Hofer] (Helv. Chim. Acta, 1943, 26, 1235—1240).— β -Amyrin acetate and (CH2°CO)2NBr in CCl4 at 100° afford β -amyratrienyl acetate (I), m.p. 185° , $[a]_{\rm D}$ +527 in CHCl3, which gives a marked brown colour with C(NO2)4. It is hydrolysed by alkali to β -amyratrienol, m.p. 179—180°, re-acetylated (Ac2O-C5H5N at room temp.) to (I). α -Amyrin acetate and (CH2°CO)2NBr in boiling CCl4 afford α -amyradienyl acetate (II), m.p. 166— 167° , $[a]_{\rm D}$ +334° in CHCl3. Similarly Me acetylursolate yields Me acetyldehydroursolate, m.p. 229— 230° , $[a]_{\rm D}$ +254° in CHCl3, hydrolysed (KOH-EtOH at 170°) to dehydroursolic acid, m.p. 277— 279° (decomp.), $[a]_{\rm D}$ +291° in C5H5N [acetate, m.p. 287— 288° (decomp.),
$[a]_{\rm D}$ +272° in C5H5N]. An amended method for the prep. of (II) from α -amyrin benzoate and S in CH2Ph·OAc under N2 at 220° is described. M.p. are corr. H. W. Triterpenes. LXXIX. Relationships between a-elemolic acid and the so-called " β -elemonic acid." L. Ruzicka, E. Rey, M. Spillmann, and H. Baumgartner (*Helv. Chim. Acta*, 1943, 26, 1638—1658).—Chemical and physical evidence shows that " β -elemonic acid." (I) is directly related to a-elemolic acid (II) in position of the double linking and hence should be termed a-elemonic acid (III). To avoid confusion it is proposed to discontinue the use of a- and β in this series and to adopt a rational nomenclature for the elemic acid group based on the name "elemane" for the unknown, saturated parent hydrocarbon. The old and new (in parentheses) nomenclature is as follows: (II) (elemandienolic); dihydro-aelemolic (IV) (elemenolic); β -elemolic (V) (epielemodienolic); dihydro- β -elemolic (VI) (epielemenolic); epi-a-elemolic (epi-isoelemadienolic); epidihydro-a-elemolic (epi-isoelemadienolic); (isoelemolic (II), from (IV) + SeO₂ (dehydroelemenolic or isomeric elemonic acid); (III) (iso-elemadienonic): dihydro-a-elemonic (VII) (iso-To avoid confusion it is proposed to discontinue the use of α - and β acid); (III) (isoelemadienonic); dihydro-a-elemonic (VII) (isoelemenonic); deemenonic); deoxo-a-elemonic (isoelemadienic); dihydrodeoxoa-elemonic (isoelemenic); deoxo- β -elemonic (elemadienic); dihydro-deoxoelemonic (elemenic); diketodihydro-2-elemolic (IX) (iso-elemendionolic); diketodihydro- β -elemolic (epi-isoelemendionolic); elemendionolic); diketodihydro- β -clemolic (epi-isoelemendionolic); dihydro- β -clemolaldehyde (epielemenolal); dihydro- β -tritelemol (epielemenol); β -tritelemodiol (epielemadienediol); trisnor-a-tritelemenoldicarboxylic (trisnorelemenoldicarboxylic); trisnor-a-tritelemenonedicarboxylic (isotrisnorelemenonedicarboxylic); trisnor- β -tritelemenonedicarboxylic (trisnorelemenonedicarboxylic) acid. The following general survey of experimental results in the series is given. Hydrogenation of the >CO group with Na and EtOH leads invariably to the isolation of epi-compounds since in this reaction the isomerides with normal position of OH are formed in very small amount. Catalytic and Meerwein and Ponndorf's methods yield compounds with normal and epi OH groups together in isolable amount although members of each series have not actually been isolated previously in all operations, since the separations have not been carried sufficiently far. Oxidation with CrO₃ or according to Oppenauer gives >CO compounds with unchanged position of the double linkings and those with conjugated double linkings (180-series). Dehydrogenation with Cu at 300° gives exclusively (Note: Period of the double linkings.) The following transitions are recorded: (IV) is oxidised by CrO₃ in aq. AcOH at 50° to (VII), m.p. 309—310°, [a]_D —97·0° [Me ester, m.p. 152—153°, [a]_D —95·3°; oxime, m.p. 233—234° (decomp.), [a]_D —11···2°], and (VIII), m.p. 251—252 [oxime, m.p. 235—237° (decomp.)]. (IV) is dehydrogenated by Cu powder at 270—300° to (VIII), m.p. 224—225° [oxime, m.p. 219—220° (decomp.)], reduced (PtO₂ in AcOH at room temp.) to (VI), m.p. 251—252°, [a]_D +14·9°, and by Na and EtOH to (V), m.p. 232—233°, [a]_D +9·6°. (V) is dehydrogenated by Cu powder to (VIII). (IV) is converted by NaOEt-EtOH at 180—190° followed by CH₂N₂ into Me elemadienolate (X), m.p. 149—150°, [a]_D —11·7°; treatment of the noncryst. residue with H₂ (PtO₂ in AcOH) followed by acetylation gives Me epiacetylelemenolate, m.p. 136·5—137°, [a]_D +15·35°. Me elemadienonate (XI) is reduced [Al(OPrB)₃ in PrBOH] to Me elemadienolate, m.p. 149·5—150°, [a]_D —13·8° (acetate, m.p. 114—115°, [a]_D —40·8°); the non-cryst. residue is hydrogenated and acetylated to Me epiacetylelemenolate, m.p. 137·5°, [a]_D +12·5°. Oxidation (Oppenauer) of (X) gives a mixture of approx. equal amounts of (XI) and Me isoelemadienonate. The alkaline hydrolysis of acetyl- and epiacetyl-elemadienolic acid has been followed quantitatively. Reduction of (VII) by Na and EtOH and acetylation of the product leads to epiacetylelemenolic acid m n. 253—254° >CO compounds with unchanged position of the double linkings. atively. Reduction of (VII) by Na and EtOH and acetylation of the product leads to epi-isoacetylelemenolic acid, m.p. 253-254° the product leads to epi-isoacetylelemenolic acid, m.p. $253-254^\circ$, oxidised (CrO₃ in AcOH at 100°) to epi-isoacetylelemendionolic acid (XII), m.p. $271-272^\circ$, [a]_D $+22\cdot6^\circ$. CrO₃ in AcOH at 100° oxidises (VII) to isoelementrionic acid (XIII), m.p. $291-292^\circ$, [a]_D $+6\cdot8^\circ$ also obtained similarly from (IX) and (V). (XII) is hydrolysed (boiling KOH-MeOH) to epi-isoelemendionolic acid, m.p. $275-276^\circ$, [a]_D $+3\cdot8^\circ$, oxidised (CrO₃ in AcOH at room temp.) to (XIII). isoAcetylelemendionolic acid similarly affords (IX), m.p. $269-270^\circ$, [a]_D $-11\cdot4^{\circ}$, oxidised to (**XIII**). M.p. are corr. (vac.). [a]_D are in CHCl₂. Triterpenes. LXXX. Further transformation of elemic acid. L. Ruzicka, E. Rey, M. Spillmann, and H. Baumgartner (Helv. Chim. Acta, 1943, 26, 1659—1671).—Various formulæ are tentatively advanced to explain the relationships of the elemic acids which cannot be brought into line with the proposals of Bilham et al. (A., 1942, II, 418). Elemenic acid is converted by SOCl₂ in boiling abs. hexane into the corresponding chloride, m.p. 115—116°, reduced (H₂-Pd-BaSO₄ in PhMe at 90—100°) to elemenal (I), m.p. 139—139·5°, [a]p +3·6°. This is converted (Na in C₅H₁, OH and N₂H₄, H₂O at 180°) into non-cryst. elemene, [a]p −9·83°, which gives a yellow colour with C(NO₂)₄; the azine, m.p. 214—214·5°, of (I) is occasionally obtained. isoElemenic acid is similarly converted through its chloride, m.p. 126—127°, [a]p −45·2°, into isoelemenal, m.p. 181·5—182°, [a]p −55·8° (oxime, m.p. 110—111°; azine, m.p. 205—206°), and thence into isoelemene, m.p. 92—93°, [a]p −77·8°. Ozonisation of Me acetylelemenolate in AcOH and decomp. of the ozonide with hot H₂O yields 95% of neutral, difficultly volatile material separated chromatographically into an aβ-unsaturated ketone (II), C₃₃H₅₂O₅, m.p. 177—178°, [a]p −36·3°, Me acetylisoelemendionolate (III), m.p. 146—147°, [a]p −26·3°, and a compound (IV), C₃₃H₅₄O₆, m.p. 211—213°, probably a mol. oxide or a diketone. (II) and (III) but not apparently (IV) are obtained after ozonisation in CHCl₃. Oxidation of acetylelemenolic acid by CrO₃ in AcOH at 70° leads to isoacetylelemendionolic acid, m.p. 261·5—262°, [a]p −28·3°; the Me ester, m.p. 146—147°, [a]p −25·8°, is hydrogenated (PtO₂ in AcOH at room temp.) to the aβ-unsaturated ketodihydroxy-ester, C₃₃H₅₂O₆, m.p. 266—266·5°, [a]p −56·4°, and a substance, m.p. 122—124°; both compounds give an intense yellow colour with C(NO₂)₄. Acetylelemadienolic acid is converted by SOCl₂ in boiling hexane into the chloride, m.p. 209—210°, [a]p −120·6°. A OH·CH compound from Me isoelemenonate could not be obtained by the action of NaOEt and HCO₂C₅H₁₁-iso at 20° or 0° Sapogenins.—See B., 1943, III, 280. #### VI.—HETEROCYCLIC. Preparation of 3-alkylchromones. Effect of substitution on the reactivity of the 2-methyl group in chromones. A. Zaki and R. C. Azzam (J.C.S., 1943, 434—435).—2-Methoxy-4-methylbenzoylacetone (I), m.p. 52°, prepared from the corresponding acetophenone and Na-EtOAc, with boiling HI gives 2:7-dimethylchromone, which with anisaldehyde in EtOH-NaOEt gives 4'-methoxy-2-styryl-7-methylchromone, m.p. 150°. The following are similarly obtained from the appropriate reagents: a-2-methoxy-4-methylbenzoyl-a-methylacetone, b.p. 190—192°/20 mm. (-a-ethylacetone, b.p. 197—200°/20 mm., -a-n-propylacetone, b.p. 206—210°/20 mm., -a-n-butyl-acetone, b.p. 207—210°/10 mm., and a-n-amylacetone, b.p. 215—220°/10 mm.); 2:3:7-trimethylchromone, 2:7-dimethyl-3-ethyl-, m.p. 51° (lit., liquid), -3-n-propyl-, m.p. 56—57°, -3-n-butyl-, and -3-n-amyl-chromone; 4'-methoxy-2-styryl-3:7-dimethyl-, m.p. 123°, and -7-methyl-3-ethyl-chromone, m.p. 114°; 4'-nitro-2-styryl-7-methyl-3-n-propyl-, m.p. 176—177°, -3-n-butyl-, m.p. 168—170°, and -3-n-amyl-chromone, m.p. 173—174°; a-2-methoxy-4-methylbenzoyl-a-benzylacetone, m.p. 67—68°; 3-benzyl-2:7-dimethyl-, m.p. 95°, and 4'-methoxy-2-styryl-3-benzyl-7-methyl-chromone, m.p. 176°. NaOEt and (I) in EtOH give a mixture of forms of a-benzoyl-a-2-methoxy-4-methylbenzoylacetone, m.p. 134—151°. Improved syntheses of 7-hydroxy- and 5:7-dihydroxy-flavanone, S. Fujise and H. Tatsuta (Ber., 1941, 74, [B], 275—278; cf. A., 1934, 416).—5:7-Dihydroxyflavanone (I), m.p. 170—175°, is obtained from phloroglucinol, CHPh:CH-COCl, and AlCl₃ in PhNO₂; resorcinol, similarly treated, affords 7-hydroxyflavanone (II), m.p. 182·5—184·5° (pure 186—188°), and 2':4'-dihydroxychalkone, m.p. 146°. (I), but not (II), may be purified by vac. sublimation (at 0·007 mm.), giving (I), m.p. 199—200°. Chromatographic methods of purification have also given useful results. J. WA. Constituents of Ampelopsis meliæfolia, Kudo (Haku-Tya). M. Kotake and T. Kubota (Annalen, 1940, 544, 253—271).—The leaves of this plant yield to hot H_2O a mixture, whence basic Pb accetate removes myricetin and ampelopsin (I) (7·4%), $+2\cdot5H_2O$, m.p. $245-246^\circ$ (hexa-acctate, m.p. $174-175^\circ$, and -benzoate, m.p. 174°). (I) is shown, as follows, to be 3:5:7:3':4':5'-hexahydroxy-flavanone. With CH_2N_2 -Et₂O it gives a Me_4 (II), m.p. 168° , and 5:7:3':4':5'-Me $_5$ ether (III), m.p. $194-195^\circ$ [acctate, m.p. 156° ; also obtained from (II) by CH_2N_2]. $MeI-K_2CO_3-COMe_2$ also gives (III), but $Me_2SO_4-KOH-MeOH$ gives the Me_6 ether (IV), m.p. $190-191^\circ$. KOH at $140-210^\circ$ converts (I) into $s-C_6H_3(OH)_3$ and gallic acid (V). With
$KMnO_4-H_2O-C_6H_6$, (III) gives the Me_3 ether of (V). In hot $KOH-MeOH-H_2O$, (IV) gives 2'-hydroxy-a:3:4:5:4':6'-hexamethoxychalkone (VI), m.p. 147° (orange-yellow FeCl $_3$ colour; adds Br), converted by $Me_2SO_4-25\%$ KOH-MeOH into the Me_7 derivative, m.p. 129—130°, and synthesised from 2:4:6:1-OH·C₆H₂(OMe)₂·CO·CH₂·OMe and 3:4:5:1-(OMe)₃C₆H₂·CHO in KOH-aq. EtOH at room temp. (later 30—40° and then 50—60°). Heating (III) in 10% KOH-EtOH-H₂ for 1 hr. gives a substance, m.p. 129—130°, pentamethylmyricetin, and 3:5-dimethoxy-2-3′:4′:5′-trimethoxybenzylidene-1:2-dihydrobenzfuran, m.p. 162—163°. Heating (III) in 10% KOH-MeOH for 3 min. gives epiampelopsin Me₅ (VII), m.p. 170—171°, and thence (Me₂SO₄) the Me₆ ether, m.p. 120°, both obtained also from (VI) by HCl-EtOH-H₂O under appropriate conditions. 10% KOH at 100° (1 hr.) converts (VII) into pentamethylampelopsic acid, 2:4:6:1-OH·C₆H₂(OMe)₂·C(OH)(CO₂H)·CH₂·C₆H₂(OMe)₃·1:3:4:5, very readily converted into the lactone, m.p. 158—159°, and with CH₂N₂-Et₂O giving Me hexamethylampelopsate, m.p. 150—151° (derived acid, m.p. 140°). Alcoholic acid or alkali dehydrates these products to pentamethylanhydroampelopsate, 2:4:6:1-(OMe)₃C₆H₂·C(CO₂Me):CH·C₆H₂(OMe)₃-1:3:4:5, m.p. 112—113°, hydrolysed to the acid (IX), m.p. 159—160° (Et ester, m.p. 150—151°), and thence by decarboxylation 2:4:6:3':4':5'-hexamethylchalkone, m.p. 143—144°. O₃ converts (VIII) or (IX) into 3:4:5:1-(OMe)₃C₆H₂·CHO. (III) is dehydrogenated by Pd-CHPh:CH·CO₂H at 170—175° or H₂O₂-NaOH-MeOH-H₂O to 3-hydroxymyricetin 5:7:3':4':5'-Me₃ ether; by the former method (IV) gives a compound, C₂₁H₂₂O₈, m.p. 145—146°. (I) has a = 0; it and the epi-derivatives are dl-forms of C₂₋₃ stereo-isomerides. Constitution of calycopterin, yellow colouring matter of the leaves of Calycopteris floribunda. R. C. Shah, V. V. Virkar, and K. Venkataraman (J. Indian Chem. Soc., 1942, 19, 135—138).— Calycopterin (dibenzyl ether, m.p. 185°) with Me₂SO₄ yields 3:5:6:7:8:4'-hexamethoxyflavone (I), but with CH₂N₂ in Et₂O gives 5-hydroxy-3:6:7:8·4'-pentamethoxyflavone, m.p. 124° (acetate, m.p. 107°; sparingly sol. K and Na salts; green colour with FeCl₃) [also obtained by partial demethylation (50% HBr-AcOH at room temp.) of (I)], and is therefore 5:4'-dihydroxy-3:6:7:8-tetramethoxyflavone. 3-Methoxyflavone is demethylated by anhyd. AlCl₃ at 100°, or by HBr-AcOH at 100°, but not at room temp. Kostanecki-Robinson reaction. V. Benzoylation of some ohydroxy-ketones. P. L. Trivedi, S. M. Sethna, and R. C. Shah (J. Indian Chem. Soc., 1943, 20, 171—172; cf. A., 1942, II, 60).— Resacetophenone, 2-acetylresorcinol, and phloracetophenone are benzoylated to 7- (cf. lit.), 5-, m.p. 234—235°, and 5:7-di-benzoyloxy-3-benzoylflavone, m.p. 167—168°, respectively. The OBz groups are then removed smoothly by conc. H₂SO₄ (5:7-dihydroxy-3-benzoylflavone has m.p. 145—146°) leaving the C-Bz groups intact. Subsequent heating with KOH-EtOH gives 7-, 5-, and 5:7-di-hydroxy-flavone, respectively. Parachors and constitution of pyrones.—See A., 1943, I, 299. Tetrahydrodibenzopyrans.—See B., 1943, II, 342. Natural coumarins. LVI. Constitution of sphondin. E. Spāth and H. Schmid (Ber., 1941, 74, [B], 595—598).—Sphondin (I) (A., 1936, 860) is not identical (mixed m.p.) with bergapten or allobergapten. With O₃ in CHCl₃ at 0° (I) gives 7-hydroxy-6-methoxy-coumarin-8-aldehyde (II), m.p. 191-5—192-5°, also prepared from scopoletin and (CH₂)₈N₄ in AcOH. Crude (II) [from (I)] and 1% H₂O₂ in 0.05N-NaOH at 18° give fraxetin [7:8-dihydroxy-6-methoxycoumarin]. (I) is, therefore, 6-methoxy-7:8-2':3'-furano-coumarin. Formation of 2:4-dimethyl-1:3-benzdioxins and their fission to o-vinylphenols. E. Adler, H. von Euler, and G. Gie (Arkiv Kemi, Min., Geol., 1943, 16, A, No. 12, 20 pp.).—aa-Di-6-hydroxy-m-tolylethane, m.p. 141° (diacetate, m.p. 136—137°), obtained by the action of conc. HCl on a cold solution of p-cresol (4 mols.) and MeCHO (1 mol.) in EtOH, CHMe(C₆H₂Me₂·OH-3:5:6)₂, CHMe(C₆H₄·OH-p)₂, and CHMe(C₆H₃Me·OH-3:4)₂ are converted by dry distillation under diminished pressure over frankonite into the corresponding vinylphenol, which invariably undergoes disproportionation when its separation from the large proportion of phenols produced simultaneously is attempted by distillation under atm. pressure; the final products are resins and the corresponding ethylphenol. 2:4:6:8-Tetramethyl-1:3-benzdioxin (1), m.p. 43·5°, is obtained in 30% yield when a solution of m-4-xylenol (0·5 mol.) and MeCHO (or paracetaldehyde) (1 mol.) in C₆H₆ is kept over 8n-HCl for 3 days at room temp. Under similar conditions p-cresol affords 2:4:6-trimethyl-1:3-benzdioxin (II), b.p. 115—120°/15 mm., m.p. 37°, in 40% yield and PhOH in Et₂O gives 2:4-dimethyl-1:3-benzdioxin (III), b.p. 90—95°/15 mm. (I) is converted by HCl in boiling EtOH, or by heating at 220—230° or at 120—150° in presence of frankonite, into 2-2'-hydroxy-3':5'-dimethylphenyl-4:6:8-trimethylchroman (IV), m.p. 131·5°, converted by Me₂SO₄-NaOH in aq. MeOH into the Me ether, m.p. 147°, and by Ac₂O containing a little conc. H₂SO₄ ar room temp. into ay-di-(2-acetoxy-3:5-dimethylphenyl)-n-butyl acetate, m.p. 112°. Passage of (I), (II), or (III) in N₂ or steam through a glass, porcelain, or metal tube at (best) 550°, 600—650°, or 400— 450° respectively gives 2: 4-dimethyl-6- (\mathbf{V}), b.p. $108^{\circ}/12$ mm., m.p. 43°, and 4-methyl-2-vinylphenol ($\mathbf{V}\mathbf{I}$), b.p. $116-117^{\circ}/15$ mm., $74^{\circ}/1$ mm., and o-vinylphenol. (\mathbf{V}) sublimes readily at room temp. (\mathbf{V}) is transformed by $CH_2Cl \cdot CO_2H$ and 27% NaOH into 3:5:7-trimethyl-coumaran-2-carboxylic acid (or 6:8-dimethylchroman-2-carboxylic acid), m.p. 99°. (\mathbf{V}) is converted by Br in Et₂O followed by aq. NaHCO₃ into the (?) trimeric quinonemethide, (C_9H_9OBr)₃, m.p. 133°. (\mathbf{V}) passes into ($\mathbf{I}\mathbf{V}$) when heated at 100° for 10 hr. ($\mathbf{V}\mathbf{I}$) is partly transformed by distillation under 1 mm. pressure into a viscous dimeride which passes into an alkali-insol. resin when distilled. With $CH_2Cl \cdot CO_2H$ and NaOH ($\mathbf{V}\mathbf{I}$) affords 4-methyl-2-vinylphenoxyacetic acid, m.p. 135° . Natural coumarins. LV. Synthesis of luvangetin. E. Späth and H. Schmid (Ber., 1941, 74, [B], 193—196; cf. ibid., 1940, 73, 1361). CH CH CH CH Me₂C OMe (II.) CO (II.) Natural coumarins. LV. Synthesis of luvangetin. E. Späth and the spath of Vat dyes (thianthrens, phenoxthionins, etc.).—See B., 1943, II, 344. Substituted 4-aminopiperidines. III. V. Hahn, E. Cerkovnikov, and V. Prelog (*Helv. Chim. Acta*, 1943, 26, 1132—1142).—Tetrahydropyran-4-carboxylamide is converted by Br-NaOH into 4-aminotetrahydropyran (hydrochloride, m.p. 218—219°; picrate, aminotetrahydropyran (hydrochloride, m.p. 218—219°; picrate, m.p. 175—175·5°; Ac derivative, m.p. 149—150°), from which ac-dichloro-y-aminopentane hydrochloride is obtained by the action of conc. HCl at 120—130°. It is converted by NH_Ph-EtOH at 150—160° into 4-amino-1-phenylpiperidine, b.p. 125—126°/0-7 mm. (dipicrate, m.p. 201—202°; dihydrochloride, m.p. 264—265°), in 67% yield. 4-Dimethyltetrahydropyran hydrochloride (corresponding picrate, m.p. 174·5—175·5°) is similarly transformed into ae-dichloro-y-dimethylaminopentane hydrochloride, m.p. 127—128° (corresponding picrate, m.p. 124—125°), which yields 4-dimethylamino-1-phenylpiperidine (I), b.p. 128—132°/1 mm., m.p. 47·5—48·5° (dihydrochloride, m.p. 252—253°; dipicrate, m.p. 203—204°). 4-Hydroxy-1-phenylpiperidine hydrochloride, m.p. 193·5—194·5° (corresponding hydriodide, m.p. 73—74°), is transformed by SOCl2 in CHCl3 into the glassy 4-chloro-1-phenylpiperidine hydrochloride (corresponding picrate, m.p. 163·5—164·5°), which is converted by anhyd. NHMe2 in abs. EtOH at 150° into (I) in 20% yield. 4-lodo-1-phenylpiperidine hydriodide, m.p. 189—190°, and piperidine in boiling abs. EtOH give 4-piperidino-1-phenylpiperidine, b.p. 165—186°/1 mm., and 1-phenyl-1:2:3:4-tetrahydropyridine, b.p. 125—130°/1 mm., in 27% and 47% yield respectively. 1-p-Tolyl-4-pyridone is reduced by Na and EtOH to 4-hydroxy-1-p-tolylpiperidine, b.p. 160—162°/0·25 mm., m.p. 88·5—39° (hydrobromide, m.p. 172—173°), transformed by 689% HBr at 175—185° into 4-bromo-1-p-tolylpiperidine, m.p. 78—79° [hydrobromide (II), m.p. 206·5—207°; picrate, m.p. 158°]. 4-lodo-1-p-tolylpiperidine, m.p. 92—93°), is described. Both compounds are converted by NHMe2 in abs. EtOH at 140—150° into 4-dimethylamino-1-p-tolylpiperidine in 36% yield. (II) and piperidine in abs. EtOH at 140—150° give 1-p-tolyl-1:2:5:6-tetrahydropyridine, b.p. 116—117°/0·1 mm. (picrate, m.p. 130—131°), in 56% yield and 4-piperidino-1-p-tolylpiperidine, m.p. 266°; dipicrate, m.p. 205—206°), in 244% yield. (II) and NH2Ph in abs. EtOH at 140—145° afford 4-anilino-1-p-tolylpiperidine (amorphous dihydrochloride; dipicrate, decomp. 205—210°; direinechate, decomp chloro-y-aminopentane hydrochloride is obtained by the action of conc. HCl at 120—130°. It is converted by NH₂Ph-EtOH at 150— piperidine which does not crystallise or give cryst. salts; its hydrobromide affords 4-piperidino-1-2': 4'-dimethylphenylpiperidine, a viscous liquid, b.p. 220-222'|1 mm. (dipicrate, m.p. 186-5-188'; dipicrolonate, m.p. 178-179'). Chelidonic acid and p-OMe·C₈H₄·NH₂ at 180' afford 1 p. gained 4 hydrogen m.p. 102-100' (1994). dipicrolonate, m.p. 178—179°). Chelidonic acid and p-OMe-C₆H₄·NH₂ at 180° afford 1-p-anisyl-4-pyridone, m.p. 185—186° (picrate, m.p. 188—189°); the hydrochloride, m.p. 159—161°, is reduced to 4-hydroxy-1-p-anisylpiperidine, b.p. 180—182°)0·2 mm., m.p. 76·5—77°, the hydrobromide, m.p. 225—226°, of which is transformed by 68% HBr at 175—185° into 4-bromo-1-p-hydroxyphenylpiperidine, m.p. 129—130° (hydrobromide, m.p. 222·5—223·5°), converted by piperidine in EtOH at 140—145° into the non-cryst. 4-piperidino-1-p-hydroxyphenylpiperidine
[dipicrate, m.p. 189—191° (decomp.); direineckate, m.p. 191—193° (decomp.)] and by NH₂Ph in EtOH at 140—145° into 4-anilino-1-p-hydroxyphenylpiperidine (dipicrate, decomp. 205—210°; direineckate, decomp. 205—210°). H. W. Novel preparation of a-hydroxypyrroles; example of an intramolecular correlated reaction. W. Siedel [with, in part, K. Theis] (Annalen, 1943, 554, 144—161).—A general method of preparing a-OH-pyrroles depends on simultaneous exchange of Br for OH and decarboxylation; if the latter is prevented, e.g., by esterification, replacement of Br does not occur. 3-Methyl-4-ethylpyrrole-2-carboxylic acid is converted by Br in cold AcOH into the 5-Br-derivative (I), which is converted by MeOH-conc. HCl into 5-methoxy-3-methyl-4-ethylpyrrole (II), b.p. 79—80°/10 mm., 85°/13 mm. [picrate, m.p. 152° (corr.); 5-methoxy-3-methyl-4-ethylpyrroleazobenzenesulphonic acid hydrochloride; m.p. 180—182°], and a non-cryst. compound, b.p. 127°/25 mm. Under civilia resiliance of them. 127°/2.5 mm. Under similar conditions 5-ethoxy-, b.p. 95°/11 mm., 5-propoxy-, b.p. 104—105°/11 mm. (these do not give picrates or azo-dyes), and 5-benzyloxy-, m.p. 136°, -3-methyl-4-ethylpyrrole are obtained. 5-Hydroxy-3-methyl-4-ethylpyrrole (isohydroxyopsopyrrole) (III), b.p. 156°/11 mm., 130—133°/3 mm., forms very volatile and hygroscopic crystals, m.p. 58—60°; it is obtained from (II) and saturated HCl-MeOH at 100° or from (I) and conc. aq. HCl. It does not give a picrate or azo-dye but affords a very hygroscopic hydrochloride, m.p. 78°, softens at 60°. Attempts to introduce the CHO into (III) by successive treatments with MgEtBr and HCO₂Et give isoopsopyrryl formate (IV), b.p. 116—117°/3 mm., which does give isoopsopyrryl formate (IV), b.p. 116—117°/3 mm., which does not give a picrate or an azo-dye and is hydrolysed by alkali to (III); isoopsopyrryl acetate has b.p. 118°/2 mm., 121—122°/3 mm. With HCN-HCl in Et₂O (III) gives an unidentified compound, b.p. 126—127°/3 mm. The proof that OH in (III) has replaced Br and not CO₂H of (I) is afforded by the prep. of Me isoxanthobilirubate, m.p. 205°, from (IV) and β-5-aldehydo-2: 4-dimethylpyrrole-3-propionic acid in boiling Ac₂O followed by hydrolysis and esterification (CH₂N₂) and of Me isoneoxanthobilirubate, m.p. 206°, from (IVI) and aldehydroposporyprolecathoxylic acid (V) followed by HCl-(III) and aldehydo-opsopyrrolecarboxylic acid (V) followed by HCl-(III) and aldehydo-opsopyrrolecarboxylic acid (V) followed by RCI-MeOH. Et 2:3:4-trimethylpyrrole-5-carboxylate in abs. Et₂O is transformed by SO_2Cl_2 at room temp. into Et 2-carboxy-3:4-dimethylpyrrole-5-carboxylate, which passes at 220° followed by distillation at $340^\circ/10$ mm. into Et 3:4-dimethylpyrrole-5-carboxylate, m.p. $95-96^\circ$; the corresponding acid, sublimes without melting at 180° , is converted by Br in AcOH at 0° into 2-bromo-3:4-dimethylpyrrole-5-carboxylic acid, no m.p., transformed by conc. HCl into 2-hydroxy-3:4-dimethylpyrrole, m.p. 135° (decomp.). This with (V) and 5-carboxylic acid, no m.p., transformed by conc. HCl into 2-hydroxy-3: 4-dimethylpyrrole, m.p. 135° (decomp.). This with (V) and NaOH in aq. MeOH at 100° affords 5-hydroxy-3: 3': 4-trimethylpyrromethene-4'-propionic acid, m.p. 289° (corr.) [Me ester, m.p. 223° (corr.), 234° (microscope)]. (I) and (V) in MeOH and 48% HBr yield Me 5-carbomethoxy-4: 3'-dimethyl-3-ethylpyrromethene-4'-propionate hydrobromide, m.p. 173° (microscope), softens at 168°; the free base affords a picrate, m.p. 138°, and salts, C₃₈H₄₆O₈N₄Cu, m.p. 138°; and C₃₈H₄₆O₈N₄Zn, m.p. 151°. Adermine.—See B., 1943, III, 256. Preparation of alkoxy-o-aminophenylacetic acids, alkoxy-oxindoles and -isatins. G. Hahn and M. R. Tulus (Ber., 1941, 74, [B], 500—519; cf. A., 1939, II, 387).—isoVanillin cyanohydrin and boiling Ac₂O-NaOAc give the diacetate, m.p. 84°, converted by the prolonged action of HCl in C₆H₆ into a-chloro-a-3-acetoxy-4-methoxyphenyl-acetamide, m.p. 135—136°; the -a-3: 4-dimethoxy-, m.p. 145°, and -methylenedioxy-phenyl, m.p. 107°, analogues are similarly obtained. These amides with HNO₃ (d 1·4) at <0° give a-chloro-a-6-nitro-3-acetoxy-4-methoxy- (I), m.p. 137°, -a-6-nitro-3: 4-dimethoxy--phenyl-acetamide (III), m.p. 168°, respectively. Reduction of (II) with H₂-Pd-AcOH affords 5: 6-dimethoxyoxindole (IV) (98%), m.p. 204—205°, with H₂-Pd-AcOH-HCl (2 mols.) gives (IV) (25%) and 6-amino-3: 4-dimethoxyphenylacetamide, m.p. 147° [as hydrochloride (V) (72%), m.p. 214°, converted by short treatment with warm AcOH 6-amino-3: 4-dimethoxyphenylacetamide, m.p. 147° [as hydrochloride (V) (72%), m.p. 214°, converted by short treatment with warm AcOH into (IV); the amide is hydrolysed by 2n-Na₂CO₃ at 70° to (IV)], with H₂-PtO₂-AcOH affords (IV) (22%) and (V) (76%), with H₂-Pd-MeOH affords (IV) (11%) and (V) (77%). Under the same reduction conditions (III) gives 94 and 0, 78 and 15, 88 and 7, 73 and 22, and 30 and 51%, respectively, of 5: 6-methylenedioxy-phenylacetamide hydrochloride, decomp. 190° (free base, m.p. 146—147°). Oxindole formation does not occur on reduction of (I) but the intermediate NH₂-amide undergoes hydrolysis; H₂-Pd-AcOH 147). Oxindole formation does not occur on reduction of (1) but the intermediate NH₂-amide undergoes hydrolysis; H₂-Pd-AcOH gives 6-hydroxy-3-acetoxy-4-methoxy-, m.p. 143°, and H₂-PtO₂-AcOH affords 3:6-dihydroxy-4-methoxy-phenylacetamide, m.p. 152—153°. Reduction of o-NO₂·C₆H₄·CH₂·CO₂H, 3:4:6:1-(OMe)₂C₆H₂(NO₂)·CH₂·CO₂H, and 3:4:6:1-(CH₂O₂C₆H₂(NO₂)·CH₂·CO₂H, (VI) with H₂-Pd-AcOH-IICl gives, as expected, mainly the NH₂-acid hydrochlorides, which are thermolabile. The free NH₂-acids are best obtained by reduction with H₂-Pd-McOH and adding C H₂ to the resulting solution; they can Habile. The free NH₂-acids are best obtained by reduction with H_2 -Pd-MeOH and adding C_6H_6 to the resulting solution; they can be diazotised and coupled with β - $C_{10}H_7$ -OH., 6-2'-Hydroxy-1'-naphthaleneazo-3: 4-dimethoxy-, m.p. 214— 215° , and -3: 4-methylene-dioxy-phenylacetic acid, decomp. 228— 229° , are described. 3: 4: 1- CH_2 O₂: C_6H_3 · CH_2 ·CO· NH_2 and $4NO_3$ at 0° give 6-nitro-3: 4-methylene-dioxy-phenylacetamide, m.p. 218— 219° , hydrolysed (6N-HCI) to (VI), new m.p. 184— 185° , also obtained by nitration of homoping-ropylic acid. Lestin (1-mel) and (VI) (1-mel) in A- CH_2 -12N-13N-14. piperonylic acid. Isatin (1 mol.) and (IV) (1 mol.) in AcOH-12N-HCl give 5: 6-dimethoxyindigotin, decomp. 334°. Excess of Br and (IV) in boiling CHCl₃ afford a tribromo-oxindole, m.p. 187°, converted by boiling 2N-NaOH into 7-bromo-6-hydroxy-5-methoxyisatin, decomp. 280° (darkens 250°). NaNO₂ and (**IV**) in AcOH give 5: 6-dimethoxyisatin-3-oxime, m.p. 213—214° (unaffected by dil. acid, alkali, AcOH- H₂O₂, or short treatment with AcOH-H₂SO₄; boiling acid ultimately causes demethylation), reduced (H₂, Pd, 80% HCO₂H, H₂SO₄) to 3-amino-5: 6-dimethoxyoxindole; the hydrochloride of this with hot 2N-NaOH in air affords 5: 6-dimethoxyisatin, decomp. 250—252° (darkens 220°). 5: 6-Methylenedioxyisatin-3-oxime, m.p. 242°, similarly gives 3-amino-5: 6-methylenedioxyoxindole hydrochloride, decomp. 200°, and thence 5: 6-methylenedioxyisatin, decomp. Synthesis of 2-pyridyl- and 2-quinolyl-dialkylcarbinols. B. Emmert and E. Pirot (Ber., 1941, 74, [B], 714—719; cf. A., 1939, II, 387).—Addition of HgCl₂ in cyclopentanone to Mg in anhyd. C₅H₅N gives (cf. loc. cit.) 1-2-pyridylcyclopentanol, b.p. 137—138°/13 nm., m.p. 84°, and 1:1'-dihydroxy-1:1'-dicyclopentyl. Similarly, cyclohexanone gives 1-2'-pyridylcyclohexanol (I), b.p. 143—144°/13 mm., m.p. 43°, and 1:1'-dihydroxy-1:1'-dicyclohexyl. With camphor (synthetic) Al must be used for Mg; 5% of 2'-pyridylborneol, b.p. 155—157°/12 mm., is thus obtained. Dehydration (KHSO₄ at 150°; conc. H₂SO₄ at 100°) of (I) gives (?) 1-2'-pyridyl-\Delta'-cyclohexene, b.p. 259°. With quinoline, use of much Al and HgCl₂ is necessary: COMe₂ thus affords 2-quinolyldinethylcarbinol, m.p. 67° (picrate, m.p. 110°), also obtained from Me quinoline-2-carboxylate and MgMeI; COMeEt gives 2-quinolylmethylcarbinol, b.p. 126 m.p. 110°), also obtained from Me quinoline-2-carboxylate and MgMeI; COMeEt gives 2-quinolylmethylethylcarbinol, b.p. 126–128°/0·1 mm. (picrate, m.p. 92—93°); cyclohexanone gives 1-2′-quinolylcyclohexanol, m.p. 66° (picrate, m.p. 145°). The Mg or Al is activated with I. No reaction occurs with 2: 6-dimethylpyridine, COMe₂, Al, and HgCl₂. The reaction cannot be applied to COesters, diketones, and RCHO; unsaturated ketones and CHPh.NPh (for C_5H_5N) are resinified. $C_{10}H_8$ (for C_5H_5N) does not react. It is unlikely that radicals play any part in the reaction; CRR′(MgCl)·OMgCl may be an intermediate. H. B. Solution colours of phenol betaines of the quinoline series. W. Schneider and A. Pothmann (Ber., 1941, 74, [B], 471—493).—7-Hydroxy-2-phenylquinoline-4-carboxylic acid is decarboxylated by distillation with Hg to 7-hydroxy-2-phenylquinoline (I), m.p. 229—230°, which with Me₂SO₄ at 120—130° followed by aq. KI gives the methiodide (II), m.p. 223°. 7-Methoxy-2-phenylquinoline from (I) and CH₂N₂ or by decarboxylation of 7-methoxy-2-phenylquinoline-4-carboxylic acid, m.p. 238° (from PhCHO, AcCO, H. and manisidine-4-carboxylic acid, m.p. 238° (from PhCHO, AcCO, H. and manisidine-4-carboxylic acid, m.p. 238° (from PhCHO, AcCO, H. and manisidine-4-carboxylic acid, m.p. 238° (from PhCHO, AcCO, H. and manisidine-4-carboxylic acid, m.p. 238° (from PhCHO, AcCO, H. and manisidine-4-carboxylic acid, m.p. 238° (from PhCHO, AcCO, H. and manisidine-4-carboxylic acid, m.p. 238° (from PhCHO, AcCO, H. and manisidine-4-carboxylic acid). (I) and CH₂N₂ or by decarboxylation of 7-methoxy-2-phenylquinoline-4-carboxylic acid, m.p. 238° (from PhCHO, AcCO₂H, and m-anisidine in EtOH at 70—80°)] similarly gives a methiodide, m.p. 206°, converted by HBr (d 1·78) at 140° (sealed tube) followed
by aq. KI into (II). A basic methiodide, (C₁₆H₁₃ON)₂,HI, m.p. 216°, is obtained from (II) and Ag₂O in cold H₂O; in warm H₂O, 7-hydroxy-2-phenylquinoline methyl betaine (+2H₂O) (III), m.p. 85° (rapid), 253° (slow heating), results. 6-Methoxy-2-phenylquinoline-4-carboxylic acid, m.p. 237° (from PhCHO, AcCO₂H, and p-anisidine), is demethylated (HBr) and then decarboxylated (Hg) to 6-hydroxy-2-phenylquinoline, m.p. 218°, the methiodide (+H₂O), m.p. 110—111° (rapid), 188° (slow cautious heating), of which with Ag₂O-H₂O gives the im-188° (slow cautious heating), of which with Ag_2O-H_2O gives the impure betaine (+>1 H_2O), m.p. 165—166°. The colours of this and (III) in various solvents (detailed) are similar. It is immaterial for colour production whether quinonoid formation can occur or not. In accordance with this view the betaine (+4H₂O), m.p. 85° (rapid), 217° (slow heating), from 2-p-hydroxyphenylquinoline methiodide (+H₂O), m.p. 209—210°, and Ag₂O-H₂O shows the characteristic colour changes of phenol betaines. 2-p-Hydroxyphenylquinoline-between the quinoline and Ph rings causes a considerable deepening in colour. 2-p-Hydroxystyrylquinoline (**IV**) gives (cf. Vonderwahl, Diss., Geneve, 1913) a methiodide (+H₂O) (**V**), m.p. 256°, and an ethiodide (+EtOH) (**VI**), m.p. 231° [described by Vonderwahl as (**V**)] [readily obtained from 2-methylquinoline ethiodide (**VII**) and colours (**V**) in Fig. 10 in Fig. 10 in Fig. 10 in Fig. 2 in the state of the colour colou (V) [readily obtained from 2-methylquinoline ethiodide (VII) and p-OH·C₆H₄·CHO in EtOH-piperidine]. With Ag₂O or, better, short treatment with boiling aq. EtOH-NH₃, (V) gives a basic methiodide, (C₁₈H₁₅ON)₄·HI,6H₂O, m.p. 149°, converted by aq. EtOH-NH₂ into the betaine (+3H₂O; 0·5H₂O lost rapidly in air; 1·5H₂O lost in a desiccator), m.p. 212° (sinters 190°); (VI) (in AcOH) with excess of NaOH affords the ethyl betaine (+3H₂O), m.p. 152°. The colours of both betaines are similar. The betaines (not isolated except in CHCl₃) from 2-m-hydroxystyrylquinoline methiodide (+H₂O), m.p. 244° (decomp.), and ethiodide (+H₂O), m.p. 231°, show relatively lighter colorations (yellow changing to red; ? change of dissolved hydrate to anhydride) which are independent of temp., indicating hydrate to anhydride) which are independent of temp., indicating hydrate to anhydride) which are independent of temp., indicating the possibility of a quinonoid limiting state in hydroxyphenyl-quinoline derivatives. CH₂PhCl and (IV) at 200—210° give the hydrochloride (+2H₂O), m.p. 292° (lit. 264—266°), of (IV) and the impure benzylochloride. The latter with aq. NaOH in CHCl₃ affords the benzyl betaine (+H₃O), m.p. 143—144° (softens from 130°), which shows a little deeper solution colours than the Me and Et analogues. 4-p-Hydroxystyrylquinoline methiodide (+1·5H₂O), m.p. 131° or 260° (stable) (from the 4-Me derivative and p-OH-C₆H₄·CHO in EtOH-piperidine), gives (NaOH) the betaine (+3H₂O), m.p. 234° (sinters from 207°), which are distinctly deeper in colour than the 2-derivatives. p-OMe-C₆H₄·CH:CH·CHO (VIII) could not be condensed with various quaternary iodides but (VIII) could not be condensed with various quaternary iodides but with (VII) in EtOH-piperidine gives 2-δ-p-anisyl-Δ^{αγ}-butadienyl-quinoline ethiodide, m.p. 259°, demethylated (aq. AcOH-HBr) to the p-OH-ethiodide, m.p. 193—194°, which affords the impure betaine (+1.5H₂O) (shows the expected deepening in colour). Attempted condensation of 4-methylquinoline ethiodide and (VIII) in HCO₂H at 100° gave, unexpectedly, 4-methyl-1-ethylquinolinium tri-iodide, m.p. 91°. With some of the betaines studied, e.g., those from (V) and (VI), it is found that for solvents of decreasing solvating power there is an increasing depth in the colour; in PhMe, C_5H_5 N, and dioxan the colours are displaced slightly towards the red and heating above room temp. produces no deepening. 8-Hydroxyquinoline-5-sulphonamide.—See B., 1943, III, 256. Syntheses and transformations of natural substances under conditions possible in the cell. VIII. Biogenesis of 1-benzyl-1:2:3:4-tetrahydroisoquinoline alkaloids. Synthesis of 6:7-di-hydroxy-1-3': 4'-methylenedioxybenzyl-1:2:3:4-tetrahydroisoquinoline under conditions possible in the cell. C. Schöpf and W. Salzer (Annalen, 1940, 544, 1—30; cf. A., 1936, 1002; 1937, II, 526).—Contrary to Hahn et al. (A., 1937, II, 76), 1-benzyl-1:2:3:4-tetrahydroisoquinolines can be synthesised under "natural" conditions from Ar [CH₂]₂·NH₂ and CH₂Ar'-CHO provided that Ar has a group activating the o-position. Natural alkaloids containing has a group activating the o-position. Natural alkaloids containing OAlk in the Bz nucleus are formed by way of the OH-derivatives, which are alkylated after cyclisation. The condensation occurs at pH 3—7; at pH 7 it is extremely rapid (30% in 13 min.). Self-condensation of CH₂Ar'·CHO occurs in acid solution, but at pH condensation of CH₂Ar'·CHO occurs in acid solution, but at pH ~7 is not rapid enough to interfere appreciably with the formation of the *iso*quinoline derivative. $3:4:1\text{-CH}_2\text{O}_2:\text{C}_6\text{H}_3\cdot\text{CH}_2:\text{OH}$ [prep. from piperonal by Al(OPr $^\beta$)₃-Pr $^\beta$ OH at 95°], m.p. 51°, b.p. 151°/13 mm., with SOCl₂-CHCl₃-C₅H₅N gives the chloride, b.p. 130°/13 mm., and thence (NaCN-EtOH-H₂O) the nitrile, b.p. 164°/14 mm., and (alkali) homopiperonylic acid, m.p. 128°. This with 3:4:1-(CH₂Ph·O)₂C₅H₃·(CH₂]₂·NCO (prep. *in situ* from the hydrazide by way of the azide) in boiling C₅H₆ gives CO₂ and *piperonyl-* β -3': 4'-dibenzyloxyphenylethylamide (74%), m.p. 119-121°, converted by PCl₅ in CHCl₃ at <0° and then room temp. into 6: 7-dibenzyloxy-1-biberonyl-3: 4-dihydroisoguinoline hydrochloride (70%). m.p. 205-PCI₅ in CHCl₃ at <0° and then room temp. into 6:7-dibenzyloxy-1-piperonyl-3:4-dihydroisoquinoline hydrochloride (70%), m.p. 205—207° [gives the methiodide (I), m.p. 204—205°, of the base], which with Zn dust in boiling 50% AcOH gives 6:7-dibenzyloxy-, sinters 105°, m.p. 108°, and with H₂-PtO₂ and then Pd-BaSO₄ in MeOH gives 6:7-dihydroxy-1-piperonyl-1:2:3:4-tetrahydroisoquinoline (II), sinters 123°, m.p. 128° (decomp.) [hydrochloride (III), +2EtOH, m.p. 256° (decomp.); picrate, sinters 153°, m.p. 159° (decomp.)]. (III) is determined (95·5—99%) in presence of 3:4:1-(OH)₂C₆H₃·[CH₂]·NH₂·HBr (IV) in much H₂O by pptn. of the picrolonate, m.p. (anhyd.) 243° (decomp.) or (+xH₂O) swells at 159°, m.p. 165—170° (turbid), decomp. 238—240°. With AgOAc and then Zn dust in aq. AcOH at the b.p. etc., (I) gives 6:7-dibenzyloxy-1-piperonyl-2-methyl-1:2:3:4-tetrahydroisoquinoline hydrochloride, +0·5H₂O (retained at 60°/high vac.), m.p. 105—115°. Safrole oxide (prep. by BzO₂H in CHCl₃; 50% yield), b.p. 149—150°/11 mm., in boiling 10% AcOH gives the glycol (90%), m.p. 82°, which with Pb(OAc)₄ gives homopiperonal (V). (V) is readily determined in H₂O by pptn. of its semicarbazone, m.p. 180°. (V) determined in H₂O by pptn. of its semicarbazone, m.p. 180°. (V) is stable for 3 days at pH 3—5, but undergoes self-condensation in ~24 hr. at pH 7 or 1 hr. at pH 9. The rates of disappearance of (V) and formation of (II) from mixtures of (IV) (1 mol.) and (V) (1·1 mol.) in H₂O (~0·01M.) are determined at pH 3—7 and 25°. (V) disappearance feater them IVI is formed particularly at pH.7. in such disappears faster than (II) is formed, particularly at pH 7; in such cases the semicarbazone is formed after heating but not in the cold; it is assumed that condensation gives initially and reversibly (OH)₂C₆H₃·[CH₂]₂·N:CH·CH₂·C₆H₃·CH₂O₂ or irreversibly (II). 3:4:1-CH₂O₂·C₆H₃·CH₂·CO·CO₂H is determined in H₂O as the *p*-nitrophenylhydrazone, m.p. 201°. The rate of its condensation with (IV) is faster at pH 7 than at pH 5, but in all cases much slower than that of (V). Thus, synthesis of isoquinoline alkaloids is by way of the aldehydes rather than of the pyruvic acids. Photographic sensitisers derived from quinaldine. M. Q. Doja and D. Prasad (J. Indian Chem. Soc., 1943, 20, 153—158; cf. A., 1943, II, 172).—p-NEt₂·C₈H₄·CHO and quinaldine methiodide, with piperidine in hot EtOH, give 2-p-diethylaminostyrylquinoline methiodide, m.p. 190°, yield 40%, range of photographic sensitisation 4200—6350 A. and of uniformly intense sensitisation 4400—5250 A. Corresponding figures for other alkiodides, obtained similarly, are: Et. 230°, 76%, 4200—6400, 4350—5000 A.; Pra, 198°, 67%, 4250—6150, 4400—5000 A.; Bua, 111°, 31%, 4200—6350, 4350—5000 A., respectively. Optical and dyeing properties are described. The syntheses have not been quite successful in producing a single sensitiser for panchromatic plates, owing to the failure to sensitise for a short region in the blue-green portion of the spectrum. Quinaldine n-propiodide, m.p. 145—146°, and n-butiodide, m.p. 193°, are new. Chemical constitution and antiplasmodic action. VI. Heterocyclic derivatives of 8-aminoquinoline and of 8-amino-6-methoxyquinoline. E. Cerkovnikov, V. Prelog, and P. Stern (Helv. Chim. Acta, 1943, 26, 1180—1185).—8-Amino-6-methoxyquinoline, Br·[CH₂]*Br, and CaCO₃ in EtOH at 150° afford 8-piperidino-6-methoxyquinoline, b.p. 240°/0·8 mm., m.p. 57—58° (dihydrochloride, m.p. 141—142°); in absence of CaCO₃ hydrolyws of OMe occurs. Under similar conditions Br¹[CH₂] & Br yields 8-hexamethyleneimino-6-methoxyquinoline, b.p. 240—245°/0·7 mm. (dipicrate, m.p. 168—169°; dipidrochloride; dipicrolonate, m.p. 222—223°). Analogously O([CH₂] Cl)₂ gives 8-morpholino-6-methoxyquinoline, b.p. 238°/0·5 mm. m.p. 122—123° (sulphosalicylate, m.p. 235—236°), and S([CH₂] Cl)₂ yields 8-thiomorpholino-6-methoxyquinoline, b.p. 240—241°/0·3 mm. (picrate, m.p. 190—191°; hydrochloride, m.p. 218—219°). 8-4′-Aminopiperidino-6-methoxyquinoline, b.p. 205—209°/0·1 mm. [irihydrochloride (I), m.p. 219—220°; dipicrate, m.p. 209—210°], is derived from NH₂·CH([CH₂]·Br)₂,HBr. (I), KOH, and Cl·[CH₂]₃·NEt₂,HCl in abs. EtOH at 140° yield
8-4′-y-diethylamino-propylaminopiperidino-6-methoxyquinoline, b.p. 235°/0·2 mm. [itra-hydrochloride, m.p. 217—218° (decomp.)]. 8-4′-Dimethylaminopiperidino-6-methoxyquinoline, b.p. 235°/0·2 mm. gives a dipicrate, m.p. 208—209° (decomp.). Compounds which do not contain OH or OMe at C(a) are physiologically inactive. Of the remaining compounds only those are active which have at least one free H united to N; this is not necessarily united to the N atom directly attached to the quinoline nucleus. Synthesis of nitrogen-containing heterocyclic rings. XXI. Synthesis of dibenzquinolizine derivatives. IV. Synthesis of 2':3':2":3"-tetramethoxy-1:2:6:9-tetrahydro-3:4-7:8-dibenzquinolizine. S. Sugasawa, K. Kodama, and H. Inagaki. XXII. Oxidation of β-phenylethylpyridinium salts. II. S. Sugasawa and H. Shigehara (Ber., 1941, 74, [B], 455—459, 459—469).—XXI. Et β-keto-y-3:4-dimethoxyphenylbutyrate [from 3:4:1-(OMe)₂C₉H₃·CH₂·COCl and CHNaAc-CO₂Et in Et₂O followed by aq. NH₃—NH₄CI] with 3:4:6:1-(OMe)₂C₉H₂(NH₂)·CHO in EtOH-piperidine at 29—30° gives Et 6:7-dimethoxy-2-3':4'-dimethoxybenzylquinoline-3-carboxylate, m.p. 140° (picrate, decomp. 179°; 1:2:3:4-H₄-derivative, m.p. 94—95°, readily obtained by H₂-PtO₂-dil. HCl). The free acid, decomp. 230°, with Cu chromite in quinoline at 230—235° gives 6:7-dimethoxy-2-3':4'-dimethoxybenzylquinoline (I), m.p. 205° (decomp.) (sinters ~100°) (hydrochloride, decomp. 234°; picrate, decomp. 199—200°), which is only slowly reduced to the 1:2:3:4-H₄-derivative, m.p. 99—100° [hydrochloride (II), decomp. 212—213°; 1-Bz derivative, m.p. 176°; 1-Me derivative picrate, m.p. 148—149°, obtained by reduction (H₂, PtO₂, EtOH) etc. of the methosulphate of (I)]. (II) with 40% (CH₂O and 2∞-HCl at 100° affords 2':3':2'':3":*tetramethoxy-1:2:6:9-tetrahydro-3:4-7:8-dibenzquinolizine (III), decomp. 80° (becomes red) (methiodide, decomp. 197—198°). The unstable hydrochloride, decomp. ~180° (sinters and becomes red ~90°), of (III) is dehydrogenated by passing air through a solution in EtOH containing Pt-black; the product with KI in aq. HCl gives a (?) tetramethoxydibenzquinolizinium iodide, C₂₁H₂₀O₄NI, m.p. 235°. (Becomes red) (methodiae, decomp. 191–198°). The unstable hydrochloride, decomp. ~180° (sinters and becomes red ~90°), of (III) is dehydrogenated by passing air through a solution in EtOH containing Pt-black; the product with KI in aq. HCl gives a (?) tetramethoxydibenzquinolizinium iodide, C₂₁H₂₀O₄NI, m.p. 235°. XXII. The generalisation previously made (A., 1939, II, 281) regarding the oxidation of 1-β-arylethylpyridinium salts to 1-β-arylethyl-2-pyridones is now found to be invalid. 2-Phenyl-4-3': 4'-dimethoxy-6'-methylbenzylidene-5-oxazolone, m.p. 167—168-5° [from 3: 4: 6: 1-(OMe)₂C₆H₂Me-CHO, NHBz·CH₂·CO₂H, and Ac₂O-NaOAc at 100°], is hydrolysed (10% NaOH in H₂) to 3: 4-dimethoxy-6-methylphenylpyruvic acid, m.p. 195—196-5°, which is oxidised (H₂O₂) to 6-methylhomoveratric acid, m.p. 102—104°, purified through its Et ester (IV), b.p. 162—164-5°/4 mm. Bouveault-Blanc reduction of (IV) gives 3: 4: 6: 1-(OMe)₂C₆H₂Me·(CH₂)₂O-H, b.p. 166—168°/4 mm. (p-nitrobenzoate, m.p. 114-5—116°), the bromide, b.p. 158—159°/4 mm. (prep. by PBr₃), of which with C₅H₅N at 110° affords 1-β-3': 4'-dimethoxy-6'-methylphenylpyridinium bromide, m.p. 154—156°. This is oxidised by aq. NaOH-K₃Fe(CN)₆ to the noncryst. 2-pyridone, which is converted by POCl₃ followed by aq. HCl-KI into 1': 2'-dimethoxy-4'-methyl-3: 4-dihydro-5: 10-dehydro-1: 2-benzquinolizinium iodide, decomp. 186·5—187° (becoming red) [the corresponding chloride readily absorbs 3 H₂(PtO₂-EtOH) to give a tert,-base (hydriodide, m.p. 225—226°)]. o-Methoxybenzylidene-hodanine, decomp. 250° (from o-OMe·C₆H₄·CHO, rhodanine, and AcOH-NaOAc at 100°), with 15% NaOH gives o-OMe·C₆H₄·CHO, rhodanine, and AcOH-NaOAc at 100°), with 15% NaOH gives o-OMe·C₆H₄·CHO, rhodanine, and HCl-KI into I': 2'-dimethoxy-4'-methyl-3: 4-dihydro-5: 10-dehydro-1: 2-benzquinolizinium iodide, decomp. 186·5—187° (becoming red) [the corresponding chloride readily absorbs 3 H₂ (PtO₂-EtOH) to give a tert.-base (hydriodide, m.p. 225—226°)]. o-Methoxybenzylidene-hodanine, decomp. 250° (from o-OMe·C₆H₄·CHO, rhodanine, and AcOH-NaOAc at 100°), with 15% NaOH gives o-OMe·C₆H₄·CH₂·CS·CO₂H, m.p. 133—135°, converted by EtOH-NaOEt-NH₂OH,HCl into o-anisylpyruvic acid oxime (V), decomp. 162·5°. Crude (V) with Ac₂O affords o-OMe·C₆H₄·CH₂·CN, new m.p. 71°, whence o-OMe·C₆H₄·CH₂·CO₂Et, b.p. 135°/10 mm., and o-OMe·C₆H₄·[CH₂]₂·OH, b.p. 123—124°/8 mm. (p-nitrobenzoate, m.p. 59°). 1-β-o-Anisylethylpyridinium bromide (corresponding picrate, m.p. 114—115·5°) is oxidised to 1-β-o-anisylethyl-2-pyridone, m.p. 130—131°, 2: 3: 1-(OMe)₂C₆H₃·[CH₂]₂·OH, b.p. 125—128°/2 mm. (p-nitrobenzoate, m.p. 111—112°), gives the pyridinium bromide (corresponding picrate, m.p. 111—112°), converted (as above) into the 2-pyridone and thence into 3': 4'-dimethoxy-3: 4-dihydro-5: 10-dehydro-1: 2-benzquinolizinium iodide, decomp. 182° (corresponding picrate, m.p. 135—136°). Reduction (H₂, PtO₂, EtOH) of the chloride affords 3': 4'-dimethoxy-3: 4: 6: 7: 8: 9-bexahydro-1: 2-benzquinolizine (picrate, m.p. 147·5°; hydriodide, m.p. 170°). 2: 5-Dimethoxybenzylidenerhodanine, m.p. 243°, similarly yields 2: 5-dimethoxyphenylphyruvic acid oxime, m.p. 153° (decomp.) (intermediate thio-acid, decomp. 186°), 2: 5-dimethoxybenzyl cyanide, m.p. 54—55°, 2: 5: 1-(OMe)₂C₆H₃·CO₂Et, b.p. 162—165°/8 mm., 2: 5: 1-(OMe)₂C₆H₃·[CH₂]₂·OH, b.p. 161°/8 mm. (p-nitrobenzoate, m.p. 76—77·5°; bromide, b.p. 149—150°/8 mm.), the pyridinium bromide, m.p. 53-54.5°, and picrate, m.p. 122°, the crude 2-pyridone, oromide, m.p. 133—34°5, and provide, m.p. 122, the critice 2-pyrhone, 1': 4'-dimethoxy-3: 4-dihydro-5: 10-dehydro-1: 2-benzquinolizinium iodide, m.p. 156—157·5°, and chloride, m.p. 63°, and 1': 4'-dimethoxy-3: 4: 6: 7: 8: 9-hexahydro-1: 2-benzquinolizine (picrate, m.p. 127—128·5°; methiodide, m.p. 158—159°). β-Nitro-2:5-dimethoxystyrene, m.p. 119—120·5° [from 2:5:1-(OMe)₂C₆H₃·CHO and MeNO₂ in EtOH-NH₂Me], is reduced electrolytically in EtOH-AcOH-cone. HCl at a Pb cathode to 2:5:1-(OMe)₂C₆H₃·[CH₂]₂·NH₂. The Ac derivative, m.p. 98—99°, of this gives 5: 8-dimethoxy-1-methyl-3: 4-dihydroisoquinoline, b.p. 144 gives 5:8-dimethoxy-1-methyl-3:4-dihydroisoquinoline, b.p. 144— $147^{\circ}/2$ mm., m.p. 67— 68° (methiodide, m.p. 198— 199°); catalytic reduction of the methochloride, m.p. 123— 125° , affords 5:8-dimethoxy-1:2-dimethyl-1:2:3:4-tetrahydroisoquinoline, b.p. 149— $150^{\circ}/5$ mm. (picrate, m.p. 209— 210°). The methosulphate of this with ~30% KOH at 100° gives β -2:5-dimethoxy-6-vinylphenylethyldimethylamine, b.p. 147— $150^{\circ}/10$ mm. (picrate, m.p. 170— 172°), reduced to the 6-Et derivative, b.p. 166— $169^{\circ}/25$ mm. (picrate, m.p. 182— 183°), which on further exhaustive methylation gives a product oxidised (KMnO₄) to 3:6:1:2-(OMe)₂C₆H₂(CO)₂O. H. B. Synthesis of nitrogen-containing heterocyclic rings. XXIII. Synthesis of ethyl 2':3'-dimethoxy-9-methyl-3:4:6:7:8:9hexahydro-1:2-benzquinolizine-7-carboxylate. S. Sugasawa, K. Sakurai, and T. Okayama (Ber., 1941, 74, [B], 537—541).—3Carbomethoxy-, decomp. 197°, 3-carbethoxy-, decomp. 195°, and 3-carbamyl-, m.p. 209°, -1-β-phenylethylpyridinium bromide (from Ph-[CH₂]₂·Br and the nicotinic acid derivative in xylene) are all oxidised by alkaline K₃Fe(CN)₆ to 1-β-phenylethyl-2-pyridone-5carboxylic acid (I), m.p. 190°. Reduction (Na-Hg, H₂O) of (I) gives 1-β-phenylethyl-2-piperidone-5-carboxylic acid (II), m.p. 140— 141°. Ph·[CH₂]₂·NH₂ and Et₂ α-formylglutarate give a product which is reduced slowly by H₂-PtO₂-EtOH-AcOH to the Et ester of (II): Et₂ α-formylsuccinate similarly gives the Et ester, b.p. CH₂ Similarly gives the Et ester, b.p. 170—180°/4 mm., of 1-β-phenylethyl-2-pyrrolidone-4-carboxylic OMe. CHMe CH-CO₂Et (III) 170—180°/4 mm., of 1-β-phenylethyl-2-pyrrolidone-4-carboxylic acid, m.p. 192—193°. Et₂ a-formyl-a²-methylglutarate, b.p. 108—113°/4 mm. (from CO₂Et·[CH₂]₂·CHMe·CO₂Et, HCO₂Et, and Na in Et₂O), with 3:4:1-(OMe)₂C₆H₃·[CH₂]₂·NH₂ similarly affords Et 1-β-3′:4′-iteridone 5 carboxylate by 208 dimethoxyphenylethyl-3-methyl-2-piperidone-5-carboxylate, b.p. 208—215°/4 mm., converted by POCl₃ in boiling PhMe into 2': 3'-dimethoxy-7-carbethoxy-9-methyl-3: 4:6:7:8:9-hexahydro-5:10dehydro-1: 2-benzquinolizinium chloride, m.p. 177—178°, which is reduced (H₂, PtO₂, EtOH) to Et 2':3'-dimethoxy-9-methyl-3:4:6:7:8:9-hexahydro-1:2-benzquinolizine-7-carboxylate (III), m.p. 115—116° (possibly one of the r-forms). Chemical constitution and antiplasmodic action. V. Derivatives of 2-chloro-5-amino-7-methoxyacridine. V. Prelog, E. Rajner, and P. Stern (Helv. Chim. Acta, 1943, 26, 1172—1180).—The following are obtained from the a-Br-ester and sec. amine (2 mols.) in C_6H_6 at 100° : Et a-diethylaminovalerate, b.p. $85^\circ/15$ mm. (reineckate, m.p. 123°); Et a-dipropylaminobutyrate, b.p. $90^\circ/16$ mm. (picrate, m.p. 94°); Et a-dibutylaminobutyrate, b.p. $133^\circ/17$ mm. (reineckate, m.p. 94°); Et a-dibutylaminobutyrate, b.p. 133°/17 mm. (reineckate, m.p. 119°). Reduction (Bouveault–Blanc) of the appropriate NH₃-ester gives the following : β -dipropylaminopropan-a-ol, b.p. 92°/12 mm. (reineckate, m.p. 128°); β -dipropylaminobutan-a-ol, b.p. 100°/16 mm. (hydrochloride, m.p. 121°); β -dibutylaminobutan- β -ol, b.p. 100°/16 mm. (reineckate, m.p. 127°). Treatment of the hydrochloride of the NH₃-alcohol with SOCl₂ in CHCl₃ and of the resulting chloride with 18°₀ NH₃-MeOH at 100—120° leads to the following: β -diethylaminopropylamine, b.p. 67°/18 mm. (picrate, m.p. 127°), and di-(β -diethylaminopropylamine, b.p. 67°/18 mm. (picrate, m.p. 132°); β -diethylamino-n-butylamine, b.p. 80°/20 mm. (picrate, m.p. 153—154°), and di-(β -diethylaminobutyl)amine, b.p. 145°/20 mm. (dipicrate,
m.p. 143°); β -diethylaminoamylamine, b.p. 84°/16 mm. (dipicrate, m.p. 143°); β -diethylaminoamylamine, b.p. 84°/16 mm. 154°), and di-(β-diethylaminobutyl)amine, b.p. 145°/20 mm. (dipicrate, m.p. 143°); β-diethylaminoamylamine, b.p. 84°/16 mm. (picrate, m.p. 163°); β-diethylaminopropylamine, b.p. 89°/12 mm. (dipicrate, m.p. 187°), and di-(β-dipropylaminopropyl)amine, b.p. 165°/12 mm. (dipicrate, m.p. 151°); β-dipropylaminobutylamine, b.p. 115°/18 mm. (picrate, m.p. 151°); β-dibutylaminobutylamine, b.p. 119°/16 mm. (picrate, m.p. 164°); β-piperidinopropylamine, b.p. 119°/16 mm. (picrate, m.p. 164°); β-piperidinopropylamine, b.p. 85°/25 mm. (picrate, m.p. 220°), and di-(β-piperidinopropyl)amine, b.p. 41′/25 mm. (picrate, m.p. 169°); β-piperidinobutylamine, b.p. 145°/25 mm. (dipicrate, m.p. 198°); α-aminomethylquinuclidine, b.p. 118°/14 mm. (dipicrate, m.p. 213°). Passage of NH₃ through 2:5-dichloro-7-methoxyacridine in PhOH at 170—180° gives 2-chloro-5-amino-7-methoxyacridine (I), m.p. 267° (lactate, m.p. 221—222°). Analogous methods lead to the following 2-chloro-7-methoxy-acridines: 5-α-quinuclidylmethylamino- (II), m.p. 157° (trihydrochloride, m.p. 5-a-quinuclidylmethylamino- (II), m.p. 157° (trihydrochloride, m.p. 282°); 5- β -piperidinopropylamino-, m.p. 165°; 5- β -piperidino-, butylamino-, m.p. 139°; 5- β -diethylaminopropylamino-, m.p. 115° (trihydrochloride, m.p. 254°); 5- β -diethylaminobutylamino-trihydro-shloride ($+1\text{H}_2\text{O}$), m.p. 245·5°]; 5- β -diethylaminoamylamino-, m.p. 112° [trihydrochloride, ($+1\text{H}_2\text{O}$), m.p. 219—220°]; 5- β -dipropylaminopropylamino-, m.p. 146° (dihydrochloride, m.p. 242°); 5-\(\beta\)-dipropylaminobutylamino- [dihydrochloride (III), m.p. 240°]; 5-\(\beta\)-dibutylaminobutylamino- [dihydrochloride (+1H20), m.p. 218°]. (I) is devoid of antiplasmodic action. (II) and compounds with dialkylamino-groups in the side-chain are highly active; (III) is exceptional in being slightly toxic. Substances with a piperidine residue are inactive. Polynuclear condensed systems with heterocyclic rings. VII. Ring-closure of 3-phenyl- and 3-benzyl-7: 8-benzocinchonic acids. W. Borsche and M. Wagner-Roemmich (Annalen, 1940, 544, 272—279; cf. A., 1937, II, 519; 1939, II, 348).—3-Phenyl-7: 8-benz-cinchonic acid, m.p. 282° (decomp.), is obtained from α-C₁₀H₇·NH₂ (I), CH₂Ph·CO·CO₂H (II), and CH₂O in hot aq. EtOH (22% yield) or from α-C₁₀H₇·NH·CHO (III) and (II) in EtOH at room temp. (42% yield) and, when melted with Cu-bronze, gives 3-phenyl-7: 8-benzquinoline, m.p. 106—108°. (I) and (II) with MeCHO in hot EtOH or PhCHO in hot AcOH gives 3-phenyl-2-methyl-, m.p. 292°, and 2: 3-diphenyl-7: 8-benzcinchonic acid, m.p. 271°, respectively. EtOH or PhCHO in hot AcOH gives 3-phenyl-2-methyl-, m.p. 292°, and 2:3-diphenyl-7:8-benzcinchonic acid, m.p. 271°, respectively, and thence 2:3-diphenyl-7:8-benzquinoline, m.p. 144°. Ph·[CH₂]₂·CO·CO₂H (**IV**), (**I**), and PhCHO in EtOH give 2-phenyl-3-benzyl-7:8-benzcinchonic acid (**V**), m.p. 278° (decomp.), and thence 2-phenyl-3-benzyl-7:8-benzquinoline, m.p. 132—134°. a-Naphthisatin with COMe₂ and KOH in hot H₂O-EtOH gives 2-methyl-, m.p. 238°, and with COPhMe gives 2-phenyl-7:8-benzcinchonic acid, m.p. 288° (decomp.). B-C₁₀H₂·NH·CHO with (**II**) or (**IV**) in hot EtOH gives 3-phenyl-5:6-benzquinoline), and 3-benzyl-5:6-benzcinchonic acid, m.p. 256°, respectively. Ring-closure of the cinchonic acids by conc. H₂SO₄ at ~80° or by SOCl₂-AlCl₃-PhNO₂ gives naphtho-1':2'-2:1-3-azafluoren-9-one, m.p. 287° (oxime, m.p. 281°), and its 4-Me, m.p. 231° (oxime, m.p. 278°), and 4-Ph derivative, m.p. 267° (oxime, m.p. 269°), reduced by N₂H₄,H₂O at 180—190° to naphtho-1':2'-2:1-3-azafluorene, m.p. 223°, and its 4-Me, m.p. 163°, and 4-Ph derivative, m.p. 189—190°, respectively. 3-Phenyl-2-benzyl-7:8-benzcinchonic acid could not be obtained, nor could (**V**) be cyclised. Hydantoins.—See B., 1943, II, 342. Barbituric acids, --- See B., 1943, III, 280. Many-membered cyclic compounds. XI. cycloDioctamethylenedi-imine (1:10-diazacyclooctadecane). A. Müller and L. Kindlmann (Ber., 1941, 74, [B], 416—422).—Sebacamide is converted (Hofmann) (Ber., 1941, 74. [B], 410—422).—Sebacamide is converted (Hofmann) into [CH₂]₈(NH₂)₂ (I), the Bz₂ derivative, m.p. 173° (lit. 140°, 168·5°, 169·5°), of which with PBr₅ gives [CH₂]₈Br₂ (II), b.p. 140—142°/13 mm. (not obtained from Ag sebacate and Br). Very dil. solutions of (I) (as dihydrochloride), (II), and NaOH or Na₂CO₃ in 50% EtOH containing ~0·5% of light petroleum and N₂ give 9—17% of cyclodioctamethylenedi-innine, m.p. 55° (sealed tube) [dihydrochloride, darkens ~365° without melting; (NO)₂-derivative, m.p. 72°; aurichloride; platinichloride; picrate], when regenerated from its di-ptoluenesulphonyl derivative (III), m.p. 182° ab-Di-p-toluenesulphonyl derivative (III), m.p. 182° ab-Di-p-toluenesulphonyl chordae; plaintinorae; parties, when regenerated from the article venesul phonyl derivative (III), m.p. 182° . $a\theta$ -Di-p-toluene sulphonamido-octane, m.p. 149° , and (II) added in successive portions to boiling C_5H_{11} -OH + K_2CO_3 give 30% of (III). The base slowly absorbs CO_2 from the air. M.p. are corr. Dipyrromethines.—See B., 1943, II, 313. Diopsopyrroquinone. W. Siedel and F. Winkler (Annalen, 1943, 554, 201—212).—5-Hydroxy-2: 4-dimethyl-3-ethylpyrrole is oxidised by Pb(OAc)₄ (2 mols.) in AcOH at 100° to an oil (I) from which 4-methyl-2-triacetoxymethyl-3-ethylpyrrolen-5-one (II), m.p. 124°, separates; it is not obtained when 3 mols. of the oxidant are used. (II) requires 4 mols. of NaOH for neutralisation but the pyrrolenonecarboxylic acid cannot be isolated; in its place, diopsopyrroquinone, CMe:CEt CC NH-CO (III), m.p. >300°, is formed in small amount. This is also obtained as by-product in the prep. of 5-methoxy-3-methyl-4-ethylpyrrole from 5-bromo-3-methyl-4-ethylpyrrole-2-carboxylic acid, its origin being due to the oxidation of an accompanying impurity, possibly 2:5-dihydroxyopsopyrrole. (III) is stable towards H_2O , acids, and alkalis, relatively stable towards heat. A quinhydrone could not be produced. The yellow colour of (III) is discharged by addition of 1 mol. of H₂ yellow colour of (III) is discharged by addition of 1 mol. of H₂ probably owing to destruction of conjugation by saturation of the linking joining the two nuclei. (III) is oxidised by HNO₃ to methylethylmaleimide (IV). The portion of (I) which remains liquid consists mainly of (IV). Alkaline hydrolysis of (II) in presence of H₂O₂ gives (IV). Cryptopyrryl formate, b.p. 135—150°/11 mm., gives only ill-defined oils when oxidised. Boiling MeOH-H₂O (1:1) appears to convert (II) into 4-methyl-2-diacetoxymethoxymethyl-3-ethylpyrrolen-5-one, m.p. 150—156°, whilst KOH-MeOH gives 1-methoxy-4-methyl-2-dimethoxymethylene-3-ethylpyrrolen-5-one, sublimes at 220° limes at 220°. Formation and properties of uretediones. L. C. Raiford and H. B. Freyermuth (J. Org. Chem., 1943, 8, 230—238).—Uretediones are obtained by adding PEt₃ to the liquid carbimide under N₂ at room temp., or by adding the catalyst to the molten carbimide or to a solution of it in dioxan. 1-p-Chlorophenyl-3-p'-tolyl-, m.p. 195°, 1:3-di-1'-naphthyl-, sublimes at 296°, and 1:3-di-2'-naphthyl- uretedione, incipient decomp. ~220°, are described. 1:3-Diphenyl-uretediones with substituents in Ph are obtained as follows, the yields being placed in parentheses: di-3'-methyl- (67), m.p. 159—160°; di-4'-methyl- (70), m.p. 185°; di-4'-ethoxy- (I) (95°), m.p. 181—182°; di-2-chloro- (37), m.p. 234—235°; di-3'-chloro- (72), m.p. 153—154°; di-4'-chloro-, (85), m.p. 155—156°; di-4'-bromo- (87), m.p. 203—204°; di-4'-nitro- (67), sublimes at 300°; di-4-phenyl- (38), m.p. 270° (decomp.); di-4'-benzeneazo- (nearly quant.), m.p. 281—282° (decomp.). (I) is hydrolysed by boiling KOH-EtOH to CO(NH-C₆H₄·OEt)₂-p. The biurets are usually obtained from the uretedione and two mol. proportions of the requisite amine in boiling EtOH. a_{Y} -Di-2'-naphthyl-e-n-butylbiuret has m.p. 117—118°. a_{Y} -Diphenyl-e-methyl-, m.p. 144—145°, -ε-ethyl-, m.p. 88— Indigo dyes of the cis-series. R. Pummerer and H. Fiesselmann [with O. Müller] (Annalen, 1940, 544, 206—239).—Dehydroindigo mingo dyes of the cis-series. R. Fullmine et and H. Flessenian with O. Muller] (Annalen, 1940, 544, 206—239).—Dehydroindigo does not react with (:CH·CO)₂O alone at the m.p. or in boiling C₆H₆, CH₂:CH·CN, CH₂:CH·CHO, CHCI:CH·OAC, CH₂:CH·CH₂·CNS, indene, dimethylfulvene, cyclopentadiene, or cyclohexene at 100° (exothermal; rising to 130—140°) to give a compound (A; R = Ph, CHR-CHR' CHR-CHR' R' = H) (I) (62%), m.p. 228—229°, with anethole + a little C₆H₆ at room temp. or, better (84%), in boiling C₆H₆ gives the compound (A; R = p·C₆H₄·OMe, R' = Me) (II), m.p. 164—165°, with safrole + some C₆H₆ at room temp. gives the compound (A; R = 3:4:1-CH₂O₂:C₆H₃·CH₂, R' = H) (III), with isosafrole + some C₆H₆ at the b.p. gives the compound (A; R = 3:4:1-CH₂O₂:C₆H₃·CH₂, R' = Me), and with isoeugenol Me ether at 100° gives the compound (A; R = 4:3:1-OH·C₆H₃·OMe, R' = Me) (IV). The solid products are lighter than indigo; they are blue in alcohols, phenols, or AcOH, but dark red in C₆H₆. PhCl, CCl₄, or other non-polar solvents, except that (III) is blue in all solvents. Differences in colour are not due to association, since (I) is unimol. in PhOH or PhCl; it is substituted. except that (III) is blue in all solvents. Differences in colour are not due to association, since (I) is unimol. in PhOH or PhCl; it is probably not due to solvation, but to existence of two forms (cf. below); these two forms are not stereoisomerides since (A) are necessarily derived from cis-indigo, nor to the betaine form of Kuhn (Naturwiss., 1932, 20, 618). (III) differs because the Ph is separated from the ring by CH₂ and resembles rather NN-diethylindigo. Structures are proved as follows. Conc. HNO_3
-AcOH or CrO_3 -AcOH oxidises (I) to "styrenedi-isatin" (V) (73%), m.p. 175° (di- $$o\text{-}C_6 H_4 \overbrace{\hspace{1cm}\text{CO}}^{\text{N}} \overbrace{\hspace{1cm}\text{CO}}^{\text{CH}_2} \cdot \text{CHPh} \overline{\hspace{1cm}\text{CO}}^{\text{N}} C_6 H_4 \text{-} o \quad (V.)$$ phenylhydrazone, m.p. 224°), which couples with hydroxythionaphthen to give the substance, $C_{40}H_{24}O_4N_2S_2$, m.p. 159—160° after sintering. (II) with HNO₃-AcOH gives similarly "anetholedisatin," m.p. 272—275°. With alkaline H_2O_2 at 100° (V) gives "styrenedianthranilic acid," "styrenedianthranilic acid," o-CO₂H·C₆H₄·NH·CH₂·CHPh·NH·C₆H₄·CO₂H-o (VI) (89%), m.p. 214—215° (blue fluorescence in EtOH or Et₂O, not in H₂SO₄), which in boiling Ac₂O gives 1-acetyl-2'-phenylindigotin (yellowish-green fluorescence in conc. H₂SO₄, not in Et₂O or EtOH; sol. in hot KOH-MeOH by enolisation). In boiling NaOH-, KOH-, or Ba(OH)₂-EtOH, or slower, aq. NaOH, KOH, Ba(OH)₂, Na₂CO₃, or Na₂HPO₄, (I) gives "styreneindigo yellow" (VII) (85%), sinters at 205°, m.p. 210° [Ac derivative, m.p. 189° (decomp.)]. Similar dyes are obtained from (II), (III), and (IV) (product has m.p. $220-230^\circ$). (VII) is sol. in NaHCO₃etc., fluoresces in org. solvents, is yellow in conc. H_2SO_4 , is readily and reversibly reduced by Na₂S₂O₄ with disappearance of the fluorescence, and dyes wool greenish-yellow (not fast). It is probably formed by way of (VIII). Distilling (VII) with Zn dust gives indole and NH₂Ph. Conc. HNO₃, CrO₃, or PbO₂ in AcOH, aq. alkaline KMnO₄ or K_3 Fe(CN)₆ converts (**VII**) into the compound (**IX**) (72—86%), m.p. 185-187° (2: 4-dinitrophenylhydrazone), which neutralises 2 NaOH rapidly and a third mol. slowly and with alkaline H_2O_2 gives (VI). H_2O_2 also converts (VII) or the " yellow " from (II) directly into (VI) and the <code>compound</code>, $C_{26}H_{20}O_6N_2$, respectively. R. S. C. Constitution of indigo [derivatives] as determined by absorption measurements. G. Scheibe, H. Dörfling, and J. Assmann (Annalen, 1940, 544, 240—253).—The absorption spectra of the adducts of dehydroindigo with styrene or anethole (cf. preceding abstract) dehydroindigo with styrene or anethole (cf. preceding abstract) in CCl_4 , C_6H_6 , iso- C_5H_{11} 'OH, EtOH, MeOH, and NH_2Ph differ only in the position of the max. and differ only in this way from that of indigotin in CCl_4 , C_6H_6 , iso- C_5H_{11} 'OH, or NH_2Ph . The blue and red colours are not due to cis-lvans isomerism since the adducts are cis-compounds. Distribution of the anethole adduct between aq. MeOH and C_6H_6 or CCl_4 precludes association in either solvent. Addition of iso- C_5H_{11} 'OH to the CCl_4 solution causes changes in the absorption of the styrene adduct which are incompatible with the existence of different compounds in the two solvents. Variations in colour ence of different compounds in the two solvents. Variations in colour ence of different compounds in the two solvents. Variations in color and absorption are thus due to mesomerism between (A; preceding abstract) and perhaps the form, $o\text{-}C_0H_4$ \sim C C \sim Ö- The safrole adduct and NN'-diethylindigo differ somewhat from the above compounds, but the causes are somewhat obscure. Condensation of chloral with 2-methyl-4-quinazolone, 2-methyl-3-amino-4-quinazolone, and some of their derivatives. P. Y. Kulkarni (f. Indian Chem. Soc., 1942, 19, 180—182).—2-Methyl-4-quinazolone and chloral (hot) yield 2- $\gamma\gamma\gamma$ -trichloro- β -hydroxypropyl-, m.p. $204-205^\circ$, which with Ac_2O yields $2-\gamma\gamma\gamma$ -trichloro- Δ -propenyl-4-quinazolone, m.p. 212° , and with 10% aq. NaOH at 60° gives 4-quinazolone-2-acrylic acid, m.p. $262-263^\circ$. Similarly 3-amino-yields $3-\beta\beta\beta$ -trichloro- α -hydroxyethylamino-, m.p. $151-152^\circ$, dehydrated (AcCl in C_5H_5N) to $3-\beta\beta\beta$ -trichloroethylideneamino-2-methyl-4-quinazolone, m.p. $104-105^\circ$. A. Li. Polynuclear condensed systems with heterocyclic rings. VIII-Diazaphenanthrenecarboxylic acids and diazaphenanthrenes. W. Borsche and M. Wagner-Roemmich (Annalen, 1940, 544, 280—286). Aminoquinolines, RCHO, and CH2R·CO·CO2H give sometimes diketopyrrolidines and sometimes diazaphenanthrenes. 3-Aminoquinoline, PhCHO, and CH₂Ph·CO·CO₂H (I) in EtOH at 100° give 4:5-diketo-2:3-diphenyl-1-3'-quinolylpyrrolidine, m.p. 369—270°. 5-Aminoquinoline (II) (prep. from the NO₂-compound by H₂-Pd-C in AcOH), b.p. 183—187°/16 mm., with PhCHO and (I) or Ph·[CH₂]₂·CO·CO₂H (III) gives 4:5-diketo-2:3-diphenyl-, m.p. 186°, and -2-phenyl-3-benzyl- (picrate, m.p. 252°), -1-5'-quinolyl-pyrrolidine, respectively. 6-Aminoquinoline (IV) (prep. from p-NO₂·C₆H₄·NH₂ by a Skraup reaction and subsequent hydrogenation; >90% yield), m.p. 116°, b.p. 192—195°/14 mm., with MeCHO and (I) at the b.p. (2 days) gives mainly 4:5-diketo-3-phenyl-1-6'-quinolyl-2-methyl-pyrrolidine, m.p. 203°, and ~10% of 3-phenyl-2-methyl-1:8-diazaphenanthrene-4-carboxylic acid, m.p. 288° (with loss of CO₂ to yield 3-phenyl-2-methyl-1:8-diazaphenanthrene, m.p. 144°), but with PhCHO and (I) in AcOH at 100° or (III) in hot EtOH, (IV) gives 2:3-diphenyl-(V) (55%), m.p. 278°, and 2-phenyl-3-benzyl-1:8-diazaphenanthrene-4-carboxylic acid (good yield), m.p. 272°, respectively, decarboxylated by Cu-bronze at the m.p. to 2:3-diphenyl-, m.p. 242—243°, and 2-phenyl-3-benzyl-1:8-diazaphenanthrene, m.p. 98°, respectively. 8-Aminoquinoline, b.p. 150—154°/16 mm., is obtained from the 5-NO₂-compound by H₂-Pd-C in AcOH or from S.hydroxyguinoline and CaCl 8NH at 220, 220° diketopyrrolidines and sometimes diazaphenanthrenes. 3-Amino-isoquinoline with hot PhCHO and (I) gives, in 1-2 days, 2:3-diphenyl-4: 7-diazaphenanthrene-1-carboxylic acid, m.p. 237° , and thence 2: 3-diphenyl-4: 7-diazaphenanthrene, m.p. 263— 264° . When heated for 1 day with SOCl₂ and then AlCl₃ in PhNO₂ at 50° or conc. H_2SO_4 at 100° , (\mathbf{V}) gives 4-phenylquinolino-5': 6'-1: 2-3-azafluoren-9-one, m.p. 242° (oxime, m.p. 213°), but ring-closure of the other acids could not be achieved. Polynuclear condensed systems with heterocyclic rings. IX. 7-Aminoquinolines and 1:5-diazaphenanthrene-4-carboxylic acids. W. Borsche and M. Wagner-Roemmich (Annalen, 1940, 544, 287—300).—m-NH₂·C₆H₄·OH (I) with CH₂Ph·CO·CO₂H (II) and PrCHO in hot EtOH gives 7-hydroxy-2-n-propylcinchonic acid, which at the m.p. (302°) gives CO₂ and 7-hydroxy-2-n-propylquinoline (III), m.p. 123° Lise of other appropriate aldehydes gives 7 hydroxy 2.1 2.2 hydroxy 2.1 2.2 hydroxy 2.1 hy m.p. (302°) gives CO₂ and 7-hydroxy-2-n-propylquinoline (III), m.p. 132°. Use of other appropriate aldehydes gives 7-hydroxy-3-phenyl-2-methyl-, m.p. 323° (decomp.), 7-hydroxy-2: 3-diphenyl (20%), m.p. 313°, and 7-hydroxy-2-2'-furyl-cinchonic acid (~50%), m.p. 311° 312°, and thence 7-hydroxy-3-phenyl-2-methyl-, m.p. 258°, 7-hydroxy-2: 3-diphenyl-, m.p. 277°, and 7-hydroxy-2-2'-furyl-quinoline, m.p. 265—266°. Ph:[CH₂] $_2$ ·CO·CO₂H (**IV**), (**I**), and MeCHO or PhCHO in hot EtOH give 7-hydroxy-3-benzyl-2-methyl- (50%), m.p. 307309° (decomp.), and 7-hydroxy-2-phenyl-3-benzyl-cinchonic acid, decomp. 327°, and thence 7-hydroxy-2-phenyl-3-benzylquinoline, m.p. 274°. With CaCl₂,8NH₃, (II) at 250° and then ~270° gives 7-amino-2-n-propylquinoline, m.p. 98° (picrate, m.p. 204°). 7-Hydroxy-2-phenylquinoline (acetate, m.p. 115°; benzoate, m.p. 123°; 8-PhN₂-derivative, m.p. 197°; with NaNO₂-AcOH gives 2-phenylquinoline-7: 8-quinone-8-oxime, m.p. 191°) with CaCl₂,8NH₃ at 250° and then 280—290° gives 7-amino-2-phenylquinoline (V) (~80°)6), m.p. 134° (picrate, m.p. 216°; Bz derivative, m.p. 222°; azo-dye, m.p. 233—234°, from 2:1-OH·C₁₀H₆·N₂Cl); 7-hydroxy-gives similarly 7-amino-2-phenylcinchonic acid (hydrochloride, +2H₂O, m.p. ~166°), converted at the m.p. (274°) into CO₂ and (IV). 2:4:1-(NO₂)₂C₆H₃·CH·CH·CO₂H (anilide, m.p. 222°) with SOCl₂-C₆H₆ and then AlCl₃ at 40—50° gives 2:4-dinitrobenzylidene-acetophenone, m.p. 151°, which with SnCl₂-HCl-AcOH gives exothermally the salt, (V),SnCl₂,HCl. With PhCHO and AcCO₂H at 100° (1 day), (V) gives 2:6-diphenyl-1:5-diazaphenanthrene-4-carboxylic acid, m.p. 268°, decarboxylated by Cu-bronze to give 2:6-diphenyl-1:5-diazaphenanthrene, m.p. 164° (picrate, m.p. 233—234°); use of (II) or (IV) gives 2:3:6-triphenyl-, m.p. 275° (decomp.), and 2:6-diphenyl-3-benzyl-1:5-diazaphenanthrene-4-carboxylic acid, m.p. 273° (decomp.), respectively, and thence 2:6-diphenyl-3-benzyl-1:5-diazaphenanthrene, m.p. 177°. m-NH₂·C₆H₄·OMe (modified prep.), b.p. 125—127°/13 mm., with AcCO₂H-paraldehyde or -PhCHO gives 7-methoxy-2-methyl-, m.p. 303°, and -2-phenyl-, m.p. 237—238°, respectively, with (II)-MeCHO or -PhCHO gives 7-methoxy-3-phenyl-2-methyl- (VI), m.p. 323°, and -2:3-diphenyl-(VII), m.p. 276—278°, and with (IV)-PhCHO-EtOH gives 7-methoxy-2-phenyl-3-benzyl-tinchonic acid (VIII), m.p. 295°. Decarboxylation by Cu powder gives 7-methoxy-2-phenyl-, m.p. 127—128° (picrate, m.p. 186—187°), -2:3-diphenyl-, m.p. 149°, and -2-phenyl-3-benzyl-quinoline, m.p. 129°. Cyclisation of New therapeutic agents of the quinoline series. I. Monopyridylquinolines. H. Coates, A. H. Cook, I. M. Heilbron, D. H. Hey, A. Lambert, and (in part) F. B. Lewis. II. Dipyridylquinolines. A. H. Cook, I. M. Heilbron, D. H. Hey, A. Lambert, and (in part) A. Spinks. III. Methoxy-, hydroxy-, and alkyl-pyridylquinolines. H. Coates, A. H. Cook, I. M. Heilbron, D. H. Hey, A. Lambert, and (in part) F. B. Lewis. IV. Lutidylquinolines. A. H. Cook, I. M. Heilbron, and L. Steger. V. Pyridylacridines. A. H. Cook, I. M. Heilbron, and A. Spinks. VI. Quinolyl-thiazoles, -amidines, and -pyrroles. H. Coates, A. H. Cook, I. M. Heilbron, and F. B. Lewis (J.C.S., 1943, 401–404, 404–406, 406–413, 413–417, 417–419, 419–420).—I. Existing spassmolytics are briefly reviewed, and their
relation to the present series is indicated. The variation of antispasmodic action with changing orientation and substitution among pyridylquinolines and related compounds is described. Diazotised 3-aminoquinoline and C₅H₅N give a mixture from which can be separated, through the picrates, 3-2'-pyridylquinoline, m.p. 101·5° (picrate, m.p. 227—229°), and an isomeride, m.p. 123° (picrate, m.p. 196° (decomp.)]. 2-p-Aminophenylpyridine undergoes the Skraup reaction to a mixture of 5-, m.p. 88—89°, and 7-2'-pyridylquinolines, m.p. 87—88°. 2-p-Aminophenylpyridine is similarly converted into 6-2'-pyridylquinoline, m.p. 82—83°, whilst 6-3'-, m.p. 32—34° (dipicrate, m.p. 249—250°), and 6-4'-derivatives, m.p. 104—105°, are obtained from the corresponding NH₂-compounds. Addition of C₅H₅N to the diazotised base from the reduction of 8-nitroquinoline leads to a mixture of 8-2'-, m.p. 74—76° [picrate, m.p. 209—210°, styphnate, m.p. 181·5—182·5° (decomp.)], 8-3'-, m.p. 111—112° (picrate, m.p. 226°), and 8-4'-pyridylquinoline, m.p. 127° [picrate, m.p. 238—240° (decomp.)]. The constitution follows from the prepof the 2'- and 3'-compounds from the 2- and 3-o-aminophenyl-pyridines by the Skraup reaction. pyridines by the Skraup reaction. II. Nitration of 2-p-acetamidophenylpyridine gives the -3-NO₂-compound, m.p. 142—143°, hydrolysed (NaOH) to 2-3'-nitro-4'-aminophenylpyridine, m.p. 148—149°. This undergoes the Skraup reaction to 8-nitro-6-2'-pyridylquinoline, m.p. 123—124°; reduced (Fe–HCl) to the 8-NH₂-derivative, m.p. 125—126°, which after diazotisation and treatment with C_5H_5N gives 6-2'-pyridyl-8-2'-(3' and 4')-pyridylquinoline, m.p. 118—121°. 2-3':4'-Diaminophenylpyridine, m.p. 126—126.5°, by reduction of the NO₂-compound, with benzil gives 2:3-diphenyl-6-2'-pyridylquinoxaline, m.p. 198—199°. The diazotised mixture of 3-aminophenyl-pyridines with C_5H_5N affords 1:3-dipyridylbenzenes the dinitrate, m.p. 110—120°, of which with hot H_2SO_4 gives 4-nitro-1:3-dipyridylbenzenes, m.p. 137—140°. This mixture after reduction undergoes the Skraup reaction (m-NO₂·C₅H₄·SO₃Na) to 6:8-dipyridylquinolines, m.p. 152—156°. p-Aminophenylpyridine is converted similarly into dipyridylbenzene, which is nitrated to 2:5-dipyridylaniline, converted (Skraup) into mixed 5:8-dipyridylquinolines, converted (Skraup) into mixed 5:8-dipyridylquinolines, containing a fraction, m.p. 167°. 2:5-dipyridylaniline, converted (Skraup) into mixed 5:8-dipyridylquinolines, containing a fraction, m.p. 167°. III. 2-3'-Amino-4'-methoxyphenylpyridine, m.p. 98° (Ac derivative, m.p. 171—172°), prepared from the corresponding NO₂-derivative, is converted (Skraup reaction) into 8-methoxy-5-2'- pyridylquinoline, m.p. 115—116° [picrate, m.p. 196—198° (decomp.)]. 2-3'-Amino-6'-methoxyphenylpyridine (Ac derivative, m.p. 168—169°). similarly gives 6-methoxy-5(or 7)-, m.p. 100—101° (picrate, decomp. 222°), and -7(or 5)-2'-pyridylquinoline, m.p. 95° [picrate, m.p. 215—216° (decomp.)]. Diazotised 5-amino-6-methoxyquinoline with NPhMe2 affords a triazen, $C_{12}H_{14}ON_4$, m.p. 82—83°. Diazotised 8-amino-6-methoxyquinoline with C_5H_5N yields a mixture of 6-methoxy-8-2'- (I), m.p. 106—107° (picrate, m.p. 247—248°), -3'- (II), m.p. 100° (picrate, m.p. 243—244°), and -4'-pyridylquinoline, m.p. 146° [picrate, m.p. 260° (decomp.)]. Nitration (HNO3-AcOH) and treatment with picric acid of 2-m-methoxyphenylpyridine gives in poor yield 2-2'-nitro-5'-methoxyphenylpyridine picrate, m.p. 190—191°, and two unidentified isomerides, m.p. 155—156°, and 273°. Diazotised 4-nitro-m-anisidine with C_5H_5N affords a mixture of 3-, m.p. 91—92° (picrate, m.p. 202—204°), and 156°, and 273°. Diazotised 4-nitro-m-anisidine with C_bH_bN affords a mixture of 3-, m.p. $91-92^\circ$ (picrate, m.p. $202-204^\circ$), and 2-2'-nitro-5'-methoxypyridine, m.p. 76° , which are reduced respectively to 3- (III), m.p. $131-132^\circ$ (deaminated to 3-m-methoxyphenyl-pyridine picrate, m.p. $160-162^\circ$), and 2-2'-amino-5'-methoxyphenyl-pyridine (IV) (picrate, m.p. $193-194^\circ$). 4-m-Hydroxyphenyl-pyridine, m.p. $227-228^\circ$, is prepared by boiling the diazo-solution from the 4-m-NH₂-compound. The Skraup reaction on (III) and (IV) gives 4-m-NH₂-compound. The Skraup reaction on (III) and (IV) gives (II) and (I) respectively, thus confirming the identities. o-C₆H₄(CO)₂O and 3-nitro-p-anisidine yield phthalo-3-nitro-p-anisidide, m.p. 150°; reduced (Fe–HCl) to the -3- NH_2 -compound, m.p. 188°, the diazosolution from which with C₅H₅N forms (IV), identified through the picrate. Nitration of (I) affords the 5- NO_2 -derivative, m.p. 192—193°, which is reduced (Fe–HCl) to the 5- NH_2 -compound, m.p. 124—125°. 2-, 3-, and 4-p-Aminophenylpyridine when heated with paraldehyde give respectively 6-2'-, m.p. 106—107°, -3'-, m.p. 65—66°, and -4'-pyridylquinaldine, m.p. 186°, whilst the 2'- and 3'-compounds with AcCO₂H afford 2-phenyl-6-2'-, m.p. 287—288° (decomp.), and -3'-pyridylquinoline-4-carboxylic acid, m.p. 301° (decomp.). Diazotised 2: 1: 4-NO₂·C₆H₃Bu^v·NH₂ with C₅H₅N forms a mixture of 3-nitro-4-text-butylpyridylbenzenes, isolated as picrates A (3-?), m.p. 217—218°, B (4-?), m.p. 231° (decomp.), and forms a mixture of 3-nitro-4-tert.-butylpyridylbenzenes, isolated as picrates A (3-?), m.p. 217—218°, B (4-?), m.p. 231° (decomp.), and C (2-?), m.p. 160°, from which the 3-(?)isomeride of the base has been liberated of b.p. 130°/high vac. Diazotised 3:1:4-NO₂·C₆H₃Bu^γ·NH₂ with C₅H₅N gives 2-nitro-4-tert.-butylpyridylbenzene, b.p. 170—190°/0·05 mm., reduced (SnCl₂-HCl) to the 2-NH₂-compound, b.p. 136—141°/0·02 mm., which undergoes the Skraup reaction to 8-pyridyl-5-tert.-butylquinoline, b.p. 120°/high vac. 2.3′. Nitro-4′c minophenylpyridine boiled with KOH gives the Skraup reaction to 8-pyridyl-5-tert.-butylquinoline, b.p. 120°/high vac. 2-3′-Nitro-4′-aminophenylpyridine boiled with KOH gives the -4-OH-compound, m.p. 125°, reduced to the 2-3′-amino-4′-hydroxy-derivative, m.p. 166—167°. This compound undergoes the Skraup reaction to form 8-hydroxy-5-2′-pyridylquinoline, m.p. 133·5—134°, which with CH₂N₂ affords a substance, m.p. >250°. Nitration of 3-p-acetamidophenylpyridine leads to the -3-NO₂-derivative, m.p. 169° (decomp.), hydrolysed (KOH) to 3-3′-nitro-4′-aminophenylpyridine, m.p. 176—177°. Reduction (PtO₂-H₂) of this compound gives 3-3′: 4′-diaminophenylpyridine, m.p. 122—123°, which with glyoxal forms 6-3′-pyridylquinoxaline, m.p. 144—145°, with benzil yields 6-3′-pyridyl-2: 3-diphenylquinoxaline, m.p. 194·5—196·5°, and with isatin forms two products, C₁₀H₁₂N₄, m.p. 275—276°, and 307—308° (decomp.). The appropriate pyridylaniline with CH₂Ac·CO₂Et affords 3-, m.p. 154·5°, and 4-4′-pyridylacetoacetanilide, m.p. 136°, which, after heating and successive treatments with HCl and aq. NH₃ gives s-bis-2-4′-pyridylphenylcarbamide, m.p. 278° (decomp.). NH₃ gives s-bis-2-4'-pyridylphenylcarbamide, m.p. 278° (decomp.). IV. Quinoline-2-aldehyde with NH₂·CM·CO₂Et gives Et₂ IV. Quinoline-2-aldehyde with NH₂·CMe:CH·CO₂Et gives Et₂ 4-2'-quinolyl-2: 6-dimethyldihydropyridine-3: 5-dicarboxylate, m.p. 190°, converted by HNO₃ into the -dimethylpyridine-3: 5-dicarboxylate, m.p. 91°, of which the Ag salt affords on heating 2-lutidylquinoline, m.p. 135° [picrate, m.p. 230° (decomp.)]. Quinoline-3-carboxylide ester and N₂H₄,H₂O yield quinoline-3-carboxyhydrazide, m.p. 190°, converted through the p-toluenesulphonyl derivative, m.p. 232° (decomp.), into quinoline-3-aldehyde, m.p. 70°. With CH₂Ac·CO₂Et, this aldehyde gives Et 4-3'-quinolyl-2: 6-dimethyldihydro-, m.p. 193°, converted similarly into the -dimethyl-pyridine-3: 5-dicarboxylate, m.p. 77°, and 3-lutidylquinoline, m.p. 100°. Quinoline-4-aldehyde similarly yields Et 4-4'-quinolyl-2: 6-dimethyldihydro-, m.p. 200°, dimethyl-pyridine-3: 5-dicarboxylate, m.p. 122°. and 4-lutidylquinoline, m.p. 122°. Et quinoline-5-carboxylate, b.p. 190—192°/15 mm., m.p. 10°, from the corresponding acid, is converted through the p-toluenesulphonyl derivative of the hydrazide, m.p. 200°, into quinoline-5-aldehyde, m.p. 96°. This undergoes the same reactions to give Et 4-5'-quinolyl-2: 6-dimethyldihydro-, m.p. 201°, -dimethyl-pyridine-3: 5-dicarboxylate, m.p. 79°, and 5-2': 6'-lutidylquinoline, m.p. 151° (picrate, m.p. 231—234°). Et₃ 4-pnitrophenyl-2: 6-dimethylpyridine-3: 5-dicarboxylate, m.p. 115°, from the corresponding H₂-ester, is reduced (Sn-HCl) to the -NH₂-ester, m.p. 145°, from which the free acid is decarboxylated to 4-p-amino-phenyl-2: 6-dimethylpyridine, m.p. 131°, converted (Skraup) into 6-lutidylquinoline (V), m.p. 84° (picrate, m.p. 224—225°). Et quinoline-6-carboxylate is converted through the p-toluenesulphonyl derivative of the hydrazide, m.p. 218° (decomp.), into quinoline-6-aldehyde, which forms successively Et₂ 4-6'-quinolyl-2: 6-dimethyldihydro-, m.p. 209°, -dimethyl-pyridine-3: 5-dicarboxylate, m.p. 97°, and (V). 5-Acetamidoquinoline, through its NO-derivative, with 2: 6-lutidine affords a mixture from which ca (decomp.)]. *m*-Aminophenyl-lutidine, m.p. 117° (lit. 110°), by the Skraup reaction forms a mixture of 7-, m.p. 125° (picrate, m.p. 223°), and 5-lutidylquinoline, m.p. 151° (picrate, m.p. 231—234°). Et quinoline-8-carboxylate, b.p. 194—197°/13 mm., from the acid, affords successively quinoline-8-carboxyhydrazide, m.p. 99°, and its p-toluene-sulphonyl derivative, m.p. 187°, quinoline-8-aldehyde, Et₂ 4-8′-quinolyl-2: 6-dimethyldihydro-, m.p. 161°, and -dimethylpyridine-3:5-dicarboxylate, m.p. 80°, and 8-lutidylquinoline, m.p. 132°. V. 2-p-Aminophenylpyridine with o-C₆H₄Cl·CO₂H, K₂CO₃, and Cu in C₅H₁₁·OH gives 4-2″-pyridyldiphenylamine-2′-carboxylic acid (7), m.p. 198°, cyclised (H₂SO₄) to 3-2′-pyridylacridone, m.p. 315—317°, which is reduced (EtOH-Al-Hg) to the -acridine, m.p. 140°. A similar series of reactions affords 4-3″-, m.p. 248—250°, and 4-4′-pyridyldiphenylamine-2′-carboxylic acid, m.p. 244°, 3-3″-, m.p. 314—316°, and
3-4′-pyridylacridone, m.p. 343°, and 3-3′-, m.p. 132°, and 3-4′-pyridylacridine, m.p. 179°. 2-2″-Pyridyldiphenylamine-2′-carboxylic acid, m.p. 165—166°, yields successively 1-2′-pyridyl-acridone, m.p. 186—187°, and -acridine, m.p. 111·5°. Nicotinic acid and NHPh₂ with ZnCl₂ afford 5-3′-pyridylacridine, m.p. 118°. Diazotised NHPh-C₆H₄'NH₂-p with C₅H₅N gives only one, 4-2″-pyridyldiphenylamine, m.p. 133° (picrate, m.p. 196·5°), also obtained by decarboxylation of (V). vI. 2-Cyanoquinoline with aq. NH₃ and H₂S gives quinoline-2-thioanide, m.p. 168—169°, which with CH₂Br·COMe affords 2-5'-methyl-2'-thiazylquinoline, m.p. 121·5—122·5°. Similarly, quinoline-3-, m.p. 197—198° (decomp.), -4-, m.p. 223° (decomp.), -5-, m.p. 187—188° (decomp.), -6-, m.p. 184—185° (decomp.), and -8-thio-anide, m.p. 112—112·5° (decomp.), and 3-5'-, m.p. 118—118·5°, 4-5'-, m.p. 82·5—83·5°, 5-5'-, m.p. 97—98°, and 6-5'-methyl-2'-thiazyl-, m.p. 90·5—91·5°, and 8-2'-thiazylquinoline, m.p. 69—70°. Quinoline-2- [picrate, m.p. 258—259° (decomp.)], -3- [hydrochloride, m.p. 168—169° (decomp.)], and -6-amidine [hydrochloride, m.p. 242° (decomp.)] are prepared from the corresponding cyano quinolines. The appropriate aminoquinolines with Et diacetylsuccinate in ACOH—EtOH afford Et 1-5'-quinolyl-, m.p. 99°, -6'-quinolyl-, m.p. 115°, -6'-methoxy-8'-quinolyl-, m.p. 141°, and -8'-methoxy-6'-quinolyl-2:5-dimethylpyrrole-3:4-dicarboxylate, m.p. 117°, and with (CH₂Ac)₂ yield 1-3'-quinolyl-, m.p. 167°, and 1-6'-methoxy-8'-quinolyl-2:5-dimethylpyrrole, m.p. 147°. 3:6-Diazacarbazole. E. Koenigs and P. L. Nantka (Ber., 1941, 74, [B], 215—217).—As 4-chloro-3-nitropyridine fails to undergo the Wurtz-Fittig reaction, 2: 7-diazacarbazole was not accessible from the anticipated 3: 3'-dinitro-4: 4'-dipyridyl. When 4'-pyridyl-3:4-pyridotriazole (I) (A., 1933, 720) is added to paraffin oil at 280—290° (or syrupy H₂PO₄) and the mixture heated at 320°, the diacid base, 3: 6-diazacarbazole (II), m.p. 328° (dinitrate, m.p. 275—276°; picrate, m.p. 310°; methochloride, m.p. 259—260°), is obtained in 60% yield. (II) does not give carbazole colour reactions and is inert towards Br, HNO₃, and NaNH₂ but adds Me₂SO₄ readily. Similarly, the 3'-NH₂-derivative of (I) affords 1-amino-3: 6-diazacarbazole, m.p. >350° (nitrate, m.p. >350°; picrate, m.p. 283°), which can be diazotised and coupled with a-C₁₀H₇-OH to give a bluish-red colour 74, [B], 215—217).—As 4-chloro-3-nitropyridine fails to undergo the Flavazole, a new heterocyclic system from sugars. I. 1-Phenyl3-(d-erythrotrihydroxypropyl)flavazole. Constitution of the sidechain. H. Ohle and G. A. Melkonian (Ber., 1941, 74, [B], 279—291; cf. A., 1943, II, 309).—Pyrazolo-3': 4'-2: 3-quinoxaline (I) is called "flavazole" and is numbered as shown. The substance C₁₈H₁₈O₃N₄ (II), obtained by the action of NHPh·NH₂ and boiling dil. AcOH on 3-d-arabotetrahydroxybutylguinoxaline, is on 3-d-arabotetrahydroxybutylquinoxaline, is shown to be 1-phenyl-3-(d-erythrotrihydroxypropyl) flavazole and the mechanism of its form- propyl)flavazole and the mechanism of its formation is discussed. (II) (improved prep.), CPh₃Cl, and C₅H₅N give 1-phenyl-3-(3'-triphenylmethyl-d-erythrotrihydroxypropyl)flavazole, m.p. $108-110^{\circ}$ after regeneration from the diacetate, m.p. $163\cdot5^{\circ}$, $[a]_{1}^{19}+65\cdot7^{\circ}$ in CHCl₃. (II), COMe₂, and H₂SO₄ afford 1-phenyl-3-(2': 3'-isopropyl-idene-d-erythrotrihydroxypropyl)flavazole (III), m.p. 147° , $[a]_{1}^{18}+1\cdot3^{\circ}$ in CHCl₃. Benzoylation of (III) in C₅H₅N affords the 1'-Bz derivative (IV) of (IXI), m.p. $132-133^{\circ}$, $[a]_{2}^{20}-35\cdot4^{\circ}$ in CHCl₃, and the isomeric 1-phenyl-3-(3'-benzoyl-1': 2'-isopropylidene-d-erythrotrihydroxypropyl)flavazole (V), m.p. 161° , $[a]_{2}^{26}+22\cdot3^{\circ}$ in CHCl₃. (IV), hydrollysed with AcOH, gives 1-phenyl-3-(1'-benzoyl-d-erythrotrihydroxypropyl)-flavazole (VI), two forms, m.p. $183-184^{\circ}$ and $175-177^{\circ}$, $[a]_{2}^{21}+11\cdot48^{\circ}$ with AcOH, gives 1-phenyl-3-(1'-benzoyl-d-erythrotrihydroxypropyl)-flavazole (VI), two forms, m.p. 183—184° and 175—177°, [a] 3_1 +11·48° and \sim +3° respectively; acyl migration is suspected to be the cause, but both forms regenerate (V) with COMe. The 1':2':3'-Bz₃ derivative of (II) has m.p. 155—155·5°, [a] 3_1 8 -74·2° in CHCl₃. (II), BzCl, and C₅H₅N afford the 3'-Bz derivative (VII), m.p. 185—186°, [a] 3_1 8 - -50° in C₅H₅N, and one other homogeneous substance, C₃₂H₂₄O₅N₄, presumably a dibenzoate, m.p. 159°. (VII) condenses with COMe. to give (V), which is hydrolysed (Zemplen) to 1-phenyl-3-(1':2'-isopropylidene-d-erythrotrihydroxypropyl)flavazole, m.p. 200—201° (VI) with Pb(OAc)₄ in C₅H₆ gives 60% of the theoretical CH₂O and 65% of (1-phenyl-3-flavazolyl)-O-benzoylglycollaldehyde, m.p. 147° [a] $^{20}_1$ 9 +101·1° in CHCl₃ [unstable phenylhydrazone, m.p. 124—125° [a] $^{20}_1$ 9 +101·1° in CHCl₃ [unstable phenylhydrazone, m.p. 110·5— 111°, [a]26 -152·1° in CHCl₃; unstable 2: 4-dinitrophenylhydrazone, m.p. 230° (decomp); dihydrophenylmethylosazone, m.p. 162—163°]. (VII) and Pb(OAc)₄ afford 1-phenylflavazole-3-aldehyde (VIII), m.p. 144° (red "phenylhydrazone," m.p. 196—197°, converted by acid into a violet-red form, m.p. 223°; 2: 4-dinitrophenylhydrazone, m.p. 271—272°), and OBz-CHQ, isolated as the 2: 4-dinitrophenylhydrazone m.p. 185° (cf. 4. 1943, II. 350) 2: 4-dinitrophenylhydrazone, m.p. 185° (cf. A., 1943, II, 350). (VIII) may be obtained by direct Pb(OAc)₄ oxidation of (II). Flavazole. II. Structure of the ring system. H. Ohle and G. A. Melkonian (Ber., 1941, 74, [B], 398—408).—Oxidation (CrO₃ in boiling AcOH) of 1-phenyl-3-aBy-trihydroxypropylflavazole (I) or the 3-CHO derivative (preceding abstract) gives 65—70% of 1-phenylflavazole-3-carboxylic acid (II), m.p. 244° (decomp.) (Et ester, m.p. 168°), decarboxylated at 260° (bath)/vac. to 1-phenylflavazole (III), m.p. 152·5—153·5°. 4:5-Diketo-1-phenyl-4:5-dihydro-ywyszale acrosi (from labout) 5 syrasoless 6 sy (III), m.p. 152·5—153·5°. 4:5-Diketo-1-phenyl-4:5-dihydropyrazole, an oil [from 1-phenyl-5-pyrazolone and p-NO·C₈H₄·NMe₂ (IV) in aq. EtOH-Na₂CO₃ and subsequent hydrolysis (dil. H₂SO₄ + Et₂O)], and o·C₈H₄(NH₂)₂ in aq. EtOH-AcOH afford the 4-o-amino-anilo-derivative, m.p. 274° (decomp.), converted by boiling NaOH into (III) (poor yield). The flavazole structure of (I) is thus confirmed. Contrary to Sachs et al. (A., 1902, i, 503), 4:5-diketo-1-phenyl-3-methyl-4:5-dihydropyrazole similarly gives the 4-o-amino-anilo-derivative (V) (+EtOH), and EtOH-free, both forms, m.p. 223° (decomp.), and not 1-phenyl-3-methylfavazole (VI), m.p. 133·5—134°. (VI) is obtained from (V) by boiling AcOH (36 hr.) or N-NaOH (~1 min.). (VI) does not react with PhCHO, is not attacked appreciably by SeO₂, and with Br-AcOH at 100° gives an additive compound [regenerates (VI) with cold EtOH]; the Me could not be oxidised (KMnO₄, CrO₃) to CO₂H. With CrO₂Cl₂-CS₂, (VI) affords di-(αβ-di-1-phenyl-3-flavazolyleihyl) ether, CrO_2Cl_2 - CS_2 , (VI) affords di- $(a\beta$ -di-1-phenyl-3-flavazolylethyl) ether, m.p. <math>356—358°. Attempts to synthesise 4:5-diketo-1-phenyl-4:5-dihydropyrazole-3-carboxylic acid [as an intermediate for the prep. of (II)] were unsuccessful. Et 5-keto-1-phenyl-4:5-dihydropyrazole-3-carboxylate (VII), new m.p. 181-5—182-5°, and NaNO₂ in 3-5N-KOH added to an excess of cold dil. HCl give the 4-oximinoester, m.p. 171—172° (decomp.), from which :N·OH could not be removed; with o-C₆H₄(NH₂)₂ and H₃BO₃ in dil. AcOH and CO₂ at 100° an adduct, C₁₈H₁₉O₃N₅, m.p. 260°, results. With (**IV**) in EtOH, (**VI**I) affords (mainly) Et₂ 5:5′-dihydroxy-1:1′-diphenyl-4:4′-dipyrazolyl-3:3′-dicarboxylate (**VIII**), m.p. 273° (decomp.) (discoloured at 263°) (diacetate, m.p. 169°) [the leucopyrazole-blue of Ruhemann (J.C.S., 1896, **69**, 1396)], and a little of the dye (A) (R = CO₂Et). With SeO₂-EtOH, (**VII**) gives (**VIII**). 4-Oximino-5-keto-1-phenyl-4:5-dihydropyrazole-3-carboxylic acid, m.p. (solvent-free) 209° (also +0·5-EtOH or xMeOH) (Chattaway et al., A., 1927, 1087), with EtOH-o-C₉H₄(NH₂)₂ affords a salt, C₁₆H₁₅O₄N₅, m.p. 161° (decomp.), but in aq. AcOH-H₃BO₃ gives an adduct, C₁₆H₁₅O₄N₅, m.p. 260—265° (decomp.). Oxidation of 1-phenyl-3-methyl-5-pyrazolone with SeO₂ in EtOH or AcOH affords 5:5′-dihydroxy-1:1′-diphenyl-3:3′-dimethyl-4:4′-dipyrazolyl, m.p. ~320°, or the dye (A) (R = Me), m.p. 242—244° (decomp.), respectively. Et 5-keto-1-phenyl-4:5-dihydropyrazole-4-carboxylate has m.p. 104° (from petroleum) or 118—119° [from EtOH-NaOH (trace)]. ester, m.p. 171-172° (decomp.), from which :NOH could not be Syntheses in the tetrazole series. II. J. von Braun and W Rudolph (in part with R. Michaelis) (Ber., 1941, 74, [B], 264—272; cf. A., 1933, 76).—CPhCl:NPh in CHCl₃ with 10% HN₃ in CHCl₃ gives ~100% of 1:5-diphenyltetrazole (I). Analogously prepared are: 1-phenyl-5-p-tolyl-, m.p. 136°; 5-phenyl-1-p-tolyl-, m.p. 132°; 1:5-di-p-tolyl-, m.p. 148°; 1-phenyl-5-o-tolyl-, impure; 1:5-di-o-tolyl-, impure; 1-phenyl-5-o-, m.p. 168°, -5-m., m.p. 156°, and -5-p-nitrophenyl-, m.p. 178°; 5-phenyl-1-o-, m.p. 168°, and 1-m-nitro-, m.p. 133°; 1:5-di-p- (II), m.p. 262°, 1:5-di-m-, m.p. 244°, 1:5-di-o-nitrophenyl-, m.p. 200°; 1-m-nitrophenyl-5-p-nitrophenyl; 1-phenyl-5-(2':4'-, m.p. 164°, and -(3':5'-dinitro)phenyl-, m.p. 208°; 5-phenyl-1-methyl-tetrazole (III), b.p. 144—146° [0·3 mm., m.p. 102—103°, NHBu^aBz, b.p. 186—190°/12 mm., is converted via CPhCl:NBu^a, b.p. 105° [high vac., into 5-phenyl-1-butyltetrazole (IV), b.p. 190—193° [12 mm. Benz-n-octylamide, m.p. 49°, is converted via n-C₈H₁₁-NiCPhCl, b.p. 170° [12 mm., into 5-phenyl-1-n-octyl-tetrazole, b.p. 205° [0·5 mm. n-C₁₇H₃₅*COPh (from C₁₇H₃₅*COCl, C₄H₆, and AlCl₃) is reduced (Clemmensen) to n-C₁₈H₃₇Ph, m.p. 29°, nitrated to p-n-C₁₈H₃₇·C₆H₄·NO₂, b.p. 250—252° [0·5 mm., which is reduced to p-octadecylantline, b.p. 240—245° [0·4 mm., and the Bz derivative, m.p. 118°, is
converted into 5-phenyl-1-p-octadecylphenyltetrazole (V), m.p. 80°. 2-Chloropyridine and 2-chloroquinoline and HN₃ (not NaN₃) give respectively "1:5-isobenztetrazole" (A), m.p. 159°, and "1:5-1 iso-a-naphthotetrazole," m.p. 157°. (III) does not react with Br even at 130—140°. 5-p-Tolyl-1-methyltetrazole, m.p. 113° (obtained from p-C₃H₄Me-CO:NHMe, m.p. 138°, b.p. 160°) 0·5 mm., via p-C₆H₄Me-CC!:NMe, b.p. 114° [14 mm.), reacts with NHEt₂ to give the NEt₂-derivative, C₁₂H₁₉N₅, m.p. 109° (oily picrate; hydro-the NEt₂-derivative, C₁₂H₁₉N₅, m.p. 109° (oily picrate; EtOH-NaOH (trace)] the Br-derivative is not obtained pure but reacts with NHEt2 to give the NEt_2 -derivative, $C_{12}H_{19}N_5$, m.p. 109° (oily picrate; hydrochloride, m.p. 135°), which reverts to the Br-derivative with BrCN. Me groups in tolyltetrazoles are oxidised (CrO₃ in AcOH) with difficulty; 1-phenyl-5-p-carboxyphenyl- (?), m.p. 267° (chloride, m.p. 104°), and 1:5-di-p-carboxyphenyl-tetrazole, m.p. 310° (chloride, m.p. 174°), have been isolated. Aromatic substituted tetrazoles are very 174°), have been isolated. Aromatic substituted tetrazoles are very stable towards HNO₃ but (IV) gives a p(?)-NO₂-derivative, b.p. 205°/0.5 mm., and, under vigorous conditions, (I) gives (II), m.p. 260°. Sulphonation introduces one SO₃H group into (I), the Na salt giving the anilide (VI), m.p. 213°. Reference compounds were synthesised as follows: p-SO₂Cl-C₆H₄·COCl, b.p. 150°/12 mm., m.p. 57° gives the dianilide, m.p. 251°, and then 1-phenyl-5-p-sulphonanilidophenyl-tetrazole (VII), m.p. 180°, mixed m.p. with (VI) 162—170°; m-sulphobenzdianilide, m.p. 166°, affords the m-isomeride, m.p. ~136°, of (VII); p-NHB2·C₆H₄·SO₂Cl, m.p. 176°, is converted through the anilide, m.p. 223°, into (VI), m.p. and mixed m.p. 213°. (IV) and (V) also undergo sulphonation and aq. solutions of the Na salts have foaming properties. have foaming properties. Tetrazole.—See B., 1943, III, 280. Tetrazole.—See B., 1943, III, 280. Wing-pigments of butterflies. VI. Leucopterin and xanthopterin. H. Wieland and R. Purrmann. VII. Synthesis of leucopterin. Nature of guanopterin. R. Purrmann (Annalen, 1940, 544, 163—182, 182—190; cf. A., 1940, II, 236).—VI. Numerous analyses show leucopterin (I) to be (C₆H₅O₃N₅)_x and xanthopterin (II) (C₆H₅O₂N₅)_x (x = 1 or 2); many derivatives are similarly revised. "Iminoleucopterin" (A., 1939, II, 392) is really (I) (X-ray spectra). It is best (63%) obtained by shaking Ba xanthopterin with O₂ and Pt in aq. NaOH-Na₂CO₃ (not 2n-HCl). Evaporating leucopterin glycol with 0·1n-LiCl (4 mols.) at room temp. (desiccator) gives 2-imino-5-hydantoinyl-oxamic acid (III) (58%) and -oxamide (IV) (20%) (loc. cit.); titrating with 0·1n-LiOH and evaporating at 100° gives (IV) (69%) and (III) (15%); titrating (IV) with 0·1n-LiOH and evaporating at room temp. gives (III) (50%). In 25% HCl at 75° (IV) gives 5-amino-2-iminohydantoin (64%) (dihydrochloride), which with KCNO in faintly acid solution gives 2-iminoallantoin (88%). Alkaline H₂O₂ converts (II) or di-iminouric acid into iminooxonic acid, NH—CO C(NH)·NH-CO₂H (Na salt; 12% and 16%, respectively). (II) contains a red dye, decomp. >300°, which 16%, respectively). (II) contains a red dye, decomp. >300°, which is difficult to remove but is obtained pure after catalytic dehydrogenation (yield up to 8%). Hot Ba(OH)₂ only very slowly decom- VII. 2:4:5-Triamino-6-hydroxypyrimidine and $\mathrm{H_2C_2O_4}$ at 140—260° give (I) (90%) and thence deiminoleucopterin (V). "Guanopterin" is really isoguanine; in boiling HCl it gives xanthine. X-Ray spectra of (V) and (I) from different sources support the identity. Structures are discussed in both papers. R. S. C. Oxidation of pyrrole derivatives with lead tetra-acetate. New porphyrin syntheses. W. Siedel and F. Winkler (Annalen, 1943, 554, 162—201).—Gradual addition of Pb(OAc)₄ to Et 2:4-dimethyl-3-ethylpyrrole-5-carboxylate in AcOH at \Rightarrow 20—25° gives Et 2-hydroxymethyl-3-ethylpyrrole-5-carboxylate (I), m.p. 126—128°, converted by Ac₂O at 100° into the acetate, m.p. 135—136°, and by 2N-HCl in boiling EtOH into Et₂ 4:4'-dimethyl-3:3'-diethylpyrromethane-5:5'-dicarboxylate, m.p. 128°. (I) and Me opsopyrrole-carboxylate condense in Ac₂O at 100° to Me 1':6-dicarbethoxy-1:3:6-trimethyl-2:5-diethyltripyrram-4-propriate m.p. 152—163°. 1: 3: 6-trimethyl-2: 5-diethyltripyrran-4-propionate, m.p. 152—163°, becomes yellow at 52°. Alkaline hydrolysis of (I) leads to the relatively stable acid (II), m.p. 155°, which could not be recrystallised. It is decarboxylated when heated at 160—170°, when boiled lised. It is decarboxylated when heated at 160—170°, when boiled with MeOH containing HBr through which air is passed, when kept for several days in MeOH exposed to air, or when suddenly (but not slowly) heated at 180° in a high vac. with formation of a mixture of ætioporphyrin I (III) and II (IV). When heated with Cu-bronze or ZnO at 160—170° (II) gives the Cu and Zn complex salts of (III) and (IV). Cryptopyrrole (V) (picrate, m.p. 135°) is identified among the products of the dry decarboxylation of (II). The intermediate ætioporphyrinogen, blackens at 200° after becoming discoloured at 140°, can be isolated if condensation by HBr in MeOH is effected rapidly: this passes slowly into (III) and (IV) when exposed to air rapidly; this passes slowly into (III) and (IV) when exposed to air but is relatively stable when dry. Condensation of (V) with 3-methyl-4-ethylpyrrole-5-aldehyde by 48% HBr gives 3': 4:5'-tri-methyl-3: 4'-diethylpyrromethene hydrobromide, m.p. 178—179°, and with 2-bromo-3-methyl-4-ethylpyrrole-5-aldehyde affords 5-bromo-3': 4.5', trimethyl-3: 4'-diethylpyrromethene hydrobromide (VI) m.p. with 2-bromo-3-methyl-4-ethylpyrrole-5-aldehyde affords 5-bromo-3': 4:5'-trimethyl-3: 4'-diethylpyrromethene hydrobromide (VI), m.p. 216—217° (decomp.). Bromination of either pyrromethene in AcOH affords a mixture of ~90% of the perbromide (VII), m.p. 147—148°, of (VI) and ~10% of 5-bromo-3': 4-dimethyl-5'-bromo-methyl-3: 4'-diethylpyrromethene hydrobromide, m.p. >300° [also obtained when (VII) is boiled with AcOH]. The mixture is converted by boiling HCO₂H into homogeneous (III). Analogous condensations using 2:3-dimethyl-4-ethylpyrrole give respectively 4:4':5'-trimethyl-3:3'-diethylpyrromethene hydrobromide, m.p. 181°, softening, and its 5-Br-derivative, swells at 247°, softens at 216°; either pyrromethene gives the perbromide, m.p. >300°, converted by boiling AcOH into 5-bromo-4:4'-dimethyl-5'-bromomethyl-3:3'-diethylpyrromethene hydrobromide, softens indistinctly at 285°, darkens at 180°, and by HCO₂H into homogeneous (IV). (III) appears to be dimorphous. Oxidation of Et 2:3-dimethyl-4-ethyl- pyrrole-5-carboxylate by Pb(OAc)₄ in AcOH and treatment of the product with Ac₂O gives Et 3-methyl-2-acetoxymethyl-4-ethylpyrrole-5-carboxylate, m.p. 106°, hydrolysed (KOH-MeOH) to 3-methyl-2-hydroxymethyl-4-ethylpyrrole-5-carboxylic acid, m.p. 135° (decomp.), which gives a mixture of (III) and (IV) when heated rapidly to 160—170° or treated with 48% HBr in boiling MeOH. A similar mixture also results from 4:4'-dimethyl-3:3'-diethylpyrromethane-5:5'-dicarboxylic acid and MeOH-HBr. 5-Carbethoxy-2:4-dimethylpyrrole-3-propionic acid is oxidised [Pb(OAc)₄ in AcOH] to the 2-hydroxymethyl compound, m.p. 277—278°. 5-Carboxy-4-methyl-2-hydroxymethylpyrrole-3-propionic acid does not melt when slowly heated but immediately melts with decomp. when placed on a plate heated at 200°; when heated at 240—250° or treated with 48% HBr-MeOH it gives coproporphyrin I Me₄ ester (VIII) (with on a plate neared at 200; when heated at 240—250 of treated with 48% HBr-MeOH it gives coproporphyrin I Me₄ ester (VIII) (with some coproporphyrin) in somewhat impure form and in small yield. 48% HBr-MeOH it gives coproporphyrin 1 Me₄ ester (VIII) (with some coproporphyrin) in somewhat impure form and in small yield. 2-Aldehydo-3-methylpyrrole-4-propionic acid and 2:4-dimethylpyrrole-3-propionic acid are condensed by 48% HBr to 3:3':5' trimethylpyrromethene-4:4'-dipropionic acid hydrobromide, mp. 200° (decomp.), darkens at 150—160°, which is converted by Br in AcOH into the 5-Br-compound, softens at 219—220° after darkening, and thence by treatment with AcCO₂H at 180° into coproporphyrin II Me₄ ester, mp. 292°, softens at 280°, which differs appreciably from (VIII) in Debye-Scherrer diagram. Et 2:3:4-trimethylpyrrole-5-carboxylate is oxidised [Pb(OAc)₄] and then acetylated to Et 3:4-dimethyl-2-acetoxymethylpyrrole-5-carboxylate, m.p. 132°; the corresponding acid, m.p. ~135° (decomp.), passes at 160—170° into octamethylporphin. Gradual addition of 2-methyl-3:4-dipropyl-pyrrole followed by ClCO₂Et to MgEtBr in Et₂O gives Et 2-methyl-3:4-dipropyl-pyrrole-5-carboxylate, m.p. 99—101°, oxidised by Pb(OAc)₄ in AcOH at room temp. to Et 2-acetoxymethyl-3:4-dipropyl-pyrrole-5-carboxylate simultaneously by KOH-MeOH and the alkalinsol. product is transformed by 48% HBr in MeOH into octapropyl-porphin, m.p. 290°, softens at 280°. Et 2:4-dimethylpyrrole-5-carboxylate is oxidised to Et 4-methyl-2-acetoxymethylpyrrole-5-carboxylate, m.p. 110—112° (sublimation); the free acid does not give a porphyrin according to the previous methods or when heated with AcOH in a sealed tube. Et 2-acetoxymethylpyrrole-5-carboxylate in the 2-acetoxymethyl carboxylate, m.p. 110—112° (sublimation); the free acid does not give a porphyrin according to the previous methods or when heated with AcOH in a sealed tube. Et 2-acetoxymethylpyrrole-5-carboxylate, m.p. 98—99°, obtained by oxidation of the 2-Me compound, is hydrolysed by 5% Na₂CO₃ in presence of COMe₂ to Et 2-hydroxymethylpyrrole-5-carboxylate, m.p. 83—84°, and by NaOH in aq. MeOH to 2-hydroxymethylpyrrole-5-carboxylate acid, m.p. >300°, which could not be condensed to a porphin. By use of a larger proportion of Pb(OAc)₄ it is possible to convert α-Me into α-CHO; the prep. of Et
2-aldehydo-4-methyl-3-ethylpyrrole-5-carboxylate, m.p. 90°, and 5-carbethoxy-2-aldehydo-4-methylpyrrole-3-propionic acid, m.p. 173°, is recorded. The yield of Et 2-aldehydopyrrole-5-carboxylate, m.p. 74—75°, is less satisfactory. Pb(OAc)₄ does not carboxylate, m.p. $74-75^\circ$, is less satisfactory. Pb(OAc), does not appear suitable for the conversion of α -Me into α -CO₂H. H. W. Chlorophyll. XCVIII. Conversion of porphyrins into dihydroxy-chlorins by the action of osmium tetraoxide. H. Fischer and H. Eckoldt (Annalen, 1940, 544, 138—162).—OsO₄ adds to porphyrins in Et₂O-C₅H₅N to give compounds, hydrolysis of which by Na₂SO₃ in boiling aq. MeOH and then esterification (CH₂N₂) gives dihydroxy-chlorins (A) (5—20%), the structure of which is proved by reactions given below and by absorption spectra (figures in parentheses are absorption max. in order of intensity). (A) differ from the parent porphyrins by 2 additional OH in ring IV. (A) are prepared from the compounds named as follows: actioporphyrin (hydrolysis by aq. Na₂SO₃; no esterification), m.p. >300° (6463, 4928, 5935, 5230, 6151, and 5443 A. in $C_5H_5N-Et_2O$); from deuteroporphyrin Me₂ ester, m.p. 229° (6413, 4914, 5868, 5198, 6112, and 5415 A. in $C_5H_5N-Et_2O$; cu salt, m.p. 208—212°) (a compound having absorption max. at 6720, 4892, 5215, 6107, and 6377 A. in $Et_2O-C_5H_5N$ is also formed); from coproporphyrin, (I), m.p. 251° [6438, 4953, 5901, 5248, 6138, and 5449 A. in $Et_2O-C_5H_5N$; Bz derivative (6507, 4991, 5310, 5931, 6236, and 5675 A. in Et_2O); from phylloporphyrin, compounds, m.p. 286° (6433, 5042, 5895, and 5383 A. in $Et_2O-C_5H_5N$; Cu salt, m.p. 233°), and m.p. 201—205° (6491, 5466, 5940, 5248, 4968, and 6175 A. in $Et_2O-C_5H_5N$); from rhodoporphyrin Me₂ ester, (II), m.p. 262° (5121, 5457, 6354, 5830, and 6051 A. in $Et_2O-C_5H_5N$); Cu salt, m.p. 233°; Bz derivative (6453, 5509, 5120, and 5871 A. in Et_2O). All these products are reduced by a little HI in AcOH at 100° to the original porphyrins. (I) and (II) do not react with NH₂OH. In HBr-AcOH, (I) gives a red compound (5489, 5095, 5751, and 6355 A. in Et_2O). Oleum converts (II) into an anhydro-compound, $C_{34}H_{38}O_5N_4$ (5573, 6375, 5210, 5800, and 6106 A. in Et_2O ; also obtained by conc. HCl), and (I) into a substance (6411, 5412, 5065, 5828, and 6116 A. in Et_2O). The absorption spectra of the (OH)₂-compounds from pyrroporphyrin and mesoporphyrin are almost identical; the z at ~640 m₄. is 3.5—4.0 × 10-4, but nowhere else >1.0 × 10-4; the similarity to mesopyrrochlorin is very great. "Propylrhodin" gives (as above) a compound, $C_{37}H_{44}O_5N_4$, m.p. 184°. Protoporphyrin Me₂ ester, m.p. 223° is obtained (~50%) directly from harmin by conception. absorption max. in order of intensity). (A) differ from the parent porphyrins by 2 additional OH in ring IV. (A) are prepared from MeOH, HCl-MeOH, and CH_2N_2 -Et₂O; with MgBr-OPr it gives the phyllin, m.p. 245° (cf. A., 1939, III, 343); deuteroporphyrin Me₂ ester gives similarly the *phyllin*, m.p. 248°. With Mn(OAc)₂ in warm AcOH ætio- and meso-porphyrin Me₂ ester give Mn salts, m.p. >330° and 266°, respectively. Nucleic acids. XVIII. Existence of guanineuridylic acid. H. Bredereck, E. Berger, and F. Richter (Ber., 1941, 74, [B], 338—342).—The existence of guanineuridylic acid is maintained (cf. Levene et al., A., 1940, II, 27; Gulland, ibid., 235). The yield of product (I) obtained by deaminating yeast nucleic acid (II) is improved (cf. A., 1939, III, 326) from 30 to 47.3%; the remainder is lost in the isolation of (I). The same method of isolation applied to (II) gave a yield of 49.5%. (I) contains N and P in the ratio 1.35 (calc. 1.35) and has an equiv. of ~4·3. Thymonucleic acid (III) gives similar yields of deaminated product [N: P = 1.26 (calc. 1.35); equiv. ~4·4]. (II) and (III) are thus completely deaminated but the tetranucleotide structure is preserved; hence (II) and (III) do not contain N-P linkings. Cleavage of some specimens of (II) with aq. C₅H₅N at 100° gives (no details) guanylic acid (G) and a trinucleotide (IV). Further cleavage of (IV) does not afford a dinucleotide but adenylic acid (A) appears to be liberated first. Thus, (II) and (IV) contain (G) and (A), respectively, as end-groups. (II) probably contains the combination (G)-uridylic acid-cytidylic acid-(A). Nucleic acids. XIX. Enzymic and chemical preparation of nucleosides from yeast nucleic acid. H. Bredereck, A. Martini, and F. Richter (Ber., 1941, 74, [B], 694—697).—Details are given for the isolation of guanosine, adenosine, cytidine, and uridine from the hydrolysate obtained from yeast nucleic acid (I) and an enzyme prep. (from sweet almonds). The same nucleosides are also obtained in approx. the same or a little higher yield from (I) and boiling aq. C_5H_5N (1:1 vol.) for $4\frac{1}{2}$ days. Hydrolysis of (I) with even very dil. NaOH is unsatisfactory since much deamination occurs. Morpholine periodide.—See B., 1941, III, 256. Phenthiazines.—See B., 1943, II, 310. Carbocyanines. - See B., 1943, II, 312. Ultra-violet absorption of dyes in solution.—See A., 1943, I, 271. Light absorption and energy propagation by loose complexes in organic dyes.—See A., 1943, I, 297. Quinoxaline cyanines. II. A. H. Cook and C. A. Perry. III. A. H. Cook and R. F. Naylor (J.C.S., 1943, 394—397, 397—401; cf. A., 1943, II, 47).—II. 3-Keto-2-methyl-3: 4-dihydroquinoxaline and its 4-N-Me and -Ph compounds give quaternary salts by addition to the basic N in the 1-position. In these salts the 2-Me is reactive and has been condensed with HCO₂H derivatives and aldehydes or equiv. compounds to give symmetrical and unsymmetrical oxygenated cyanines. Except for diminished solubility these deep blue dyes resemble those derived from true quinoxalines. The following are described: [2-(3-hydroxy-1-methylquinoxalines][(4-dimethylaminophenyl)]dimethincyanine iodide, m.p. 225—227°; [2-(3-keto-1-methyl-3: 4-dihydroquinoxaline)][2-(1:3:3-trimethylindoline)]-trimethincyanine iodide; [bis-2-(3-hydroxy-1-methylquinoxaline)]trimethincyanine acetate, m.p. 280° (decomp.); [2-(3-keto-1-methyl-3: 4-dihydroquinoxaline)][2-(1-methylquinoline)]-, m.p. 246°, [2-(3-hydroxy-1-methylquinoxaline)][2-(1-methyllenzoxazole)]-, m.p. 244°, and [2-(3-hydroxy-1-ethylquinoxaline)][2-(1-thylbenzthiazole)]-trimethinecyanine iodide, m.p. 260°; 2-keto-1: 3-dimethyl-1: 2-dihydroquinoxaline methiodide, m.p. 178° (decomp.); [2-(3-keto-1: 4-dimethyldihydroquinoxaline)]-[4-dimethylaminophenyl]]dimethincyanine sulphate (base, m.p. 180°), and -[2-(1:3:3-trimethylindoline)]trimethincyanine chloride, m.p. 135°; [2-bis-(3-keto-1: 4-dimethyldihydroquinoxaline)]trimethincyanine sulphate, m.p. 227°; [2-(3-keto-4-methyl-1-ethyldihydroquinoxaline)][2-(1-ethylbenzthiazole)]trimethincyanine chloride, m.p. 281°); [2-(3-keto-4-phenyl-1-methyldihydroquinoxaline)]-[2-(1:a: 3: 3-trimethylindoline)]trimethincyanine sulphate, m.p. 252°, -[2-(1-methyl-quinoline)]trimethincyanine sulphate, m.p. 255° (decomp.); [bis- III. Two quinoxalinemonomethincyanines have been obtained but attempts to extend the series have been unsuccessful. Several quinoxalines carrying reactive Me have been condensed with Et₂C₂O₄, and the resulting pyruvic acids or esters converted into diquinoxalinylmethanes by reaction with aromatic o-diamines. Although it has not been possible to quaternise these compounds to obtain monomethincyanines, the striking colours of their acid solutions are probably indicative of the colour of the unprepared cyanines. The following are described: [2-(1-methylbenzthiazole)]-[2-(3-keto-1: 4-dimethyl-3: 4-dihydroquinoxaline)]monomethincyanine iodide, m.p. 242°, and -[2-(1-phenyl-3-methylquinoxaline)]monomethincyanine iodide, m.p. 188°; 1-phenyl-3-methylquinoxaline-2-aldoxime chloride, m.p. 283°; Et 2-keto-1-methyl-1: 2-dihydroquinoxaline-3-pyruvate, m.p. 170° (acid, m.p. 218°; oxime, m.p. 158·5°; phenylhydrazone, m.p. 202°), and its condensation product, m.p. 228°, with o-OH·C₆H₄·CHO, 3·(2-keto-1-methyldihydroquinoxalinyl)-3-(2-keto-dihydroquinoxalinyl)methane, m.p. 355° and -1-phenyldihydroquinoxalinyl)methane, m.p. 300°; bis-3-(2-keto-1-methyl-1: 2-dihydroquinoxalinyl)methane, m.p. 331°; Et 2-keto-1-phenyl-1: 2-dihydroquinoxaline-3-pyruvate, m.p. 224° [acid, m.p. 226° (decomp.)]; 3-(2-keto-1-phenyl-dihydroquinoxalyl)-3-(2-keto-1-phenyl-dihydroquinoxalyl)-3-(2-keto-1-phenyl-dihydroquinoxalyl)methane, m.p. 372°; Et 3-methyl-4-quinazolonyl-2-pyruvate, m.p. 173° (phenyl-hydrazone, m.p. 168—169°); 2-(3-methyl-4-quinazolonyl)-3-(2-keto-dihydroquinoxalyl)methane, m.p. 265°; 2-carbethoxy-3-(3-methyl-2'-quinoxalyl)methane, m.p. 265°; 2-carbethoxy-3-(3-methyl-2'-quinoxalyl)indole, m.p. 153°, and -(2'-keto-1'-methyl-dihydroquinoxalyl)-3-(2-keto-1-phenyl-, m.p. 290° (decomp.), and -(2-keto-dihydroquinoxalyl)methane hydrochloride, decomp. >300°. F. R. S. #### VII.—ALKALOIDS. Constitution of ψ -conhydrine. E. Spāth and R. Lorenz (Ber., 1941, 74, [B], 599—603).—The structure of ψ -conhydrine [3-hydroxy-6-n-propylpiperidine] is now proved (cf. A., 1933, 516). Dihydro- ψ -conhydrinemethine (loc. cit.) is α -dimethylamino-octan- β -ol since it is oxidised (aq. AcOH–CrO₃ at 70°) to α -dimethylamino-octan- β -one (I), b.p. 75—80°/10 mm. (aurichloride, m.p. 83·5—84·5°; methiodide, m.p. 156—156·5°; methopicrate, m.p. 114—116°). n-C₆H₁₃·COCl and Et₂O–CH₂N₂ give α -chloro-octan- β -one, b.p. 91—96°/10 mm. (and surprisingly some n-C₆H₁₃·CO₂Et), converted by aq. NHMe₂ into (I). The alkaloid in *Eclipta alba* (Hassk). S. N. Pal and M. Narasimham (*J. Indian Chem. Soc.*, 1943, 20, 181).—3·1 g. of alkaloid, extracted from 4 kg. of the air-dried plant, was nicotine. S. A. M. Synthesis in the series of cinchona alkaloids. II. Synthesis of 6'-methoxyruban-9-ol. V. Prelog, R. Seiwerth, S. Heimbach-Juhász, and P. Stern (Ber., 1941, 74, [B], 647—652).—The yield of product
from Et quininate and β-1-benzoyl-4-piperidylpropionate depends greatly on the quality of the NaOEt used for condensation. Na powder in boiling C₆H₆ gives 88% of the CO-ester, hydrolysed to 6'-methoxyrubatoxan-9-one (I). With Br in 48% HBr and light (quartz lamp) (I) gives the 8-Br-derivative, converted by 5% Na₂CO₃ + Et₂O then N-NaOH into 6'-methoxyruban-9-one (II), m.p. 90—91° [picrate, m.p. 211—211·5° (lit. 173—174°); picrolonate, m.p. 226° (lit. 148—150°)] (cf. Rabe et al., A., 1922, i, 361). Bromination in the dark followed by the above procedure gives (II) and (probably) 5'-bromo-6'-methoxyrubatoxan-9-one, m.p. 270—271°. Reduction (H₂, PtO₂, MeOH) of (II) affords mainly 6'-methoxyruban-9-ol-A (III) (picrate, m.p. 224—225°) and a little -B [picrate, m.p. 226°, and 210° with that of (III)]. The dihydrochloride, m.p. 239—240°, of (III) is active against bird malaria and possesses pharmacological similarity to quinine (e.g., blood pressure; action on smooth muscle) and quinidine (e.g., action on frog's heart). The difference between these findings and those of Rabe et al. (see below) is unexplained. Cinchona alkaloids. XXXII. Synthesis of 6'-methoxyruban-9-ols; mode of action of quinine and quinidine. P. Rabe and G. Hagen (Ber., 1941, 74, [B], 636—647).—Et \$B-1-benzoyl-4-piperidyl-propionate (improved prep.) is condensed (NaOEt; no solvent) with Et quininate and the product hydrolysed (18% HCl) to 6'-methoxyrubatoxan-9-one, which with Br in 40% HBr gives the impure 8-Br-derivative dihydrobromide. This with aq. Na₂CO₃ + Et₂O at 0° affords 6'-methoxyruban-9-one (I), m.p. 89° (cf. A., 1922, i, 361), and some? dibromomethoxyrubanone, m.p. 66°. Cryst. (I) is a racemate; in solution (or when molten) it gives by a keto-enol change two enantiostereoisomerides and two cis-trans-isomerides. Reduction (H₂, Pd-black, 3—4% HCl) of (I) affords a mixture of four stereoisomeric 6'-methoxyruban-9-ols. The (++)-(--)-racemate, (C₁₈H₂₃O₂N₂)₂,6H₂O (II), m.p. (anhyd.) 179° (the signs refer to the configuration of C(g) and C(g) respectively), is readily separated from the oily (+-)-(-+)-racemate (III) through its sparing solubility in moist Et₂O. (II) is resolved through the Hd- and l-tartrates whilst (III) is resolved through the neutral dianisoyl-d- and -l-tartrates. The dianisoyl-d- and -l-tartaric acids used have [a][3-166° and [a][4]+148° in EtOH, respectively. Thus are obtained (++)-6'-methoxyruban-9-ol (IV) (+H₂O), m.p. (anhyd.) 187°, [a][4]+173.8° in EtOH [hydrochloride, m.p. 221° (decomp.), [a][4]+130.3° in EtOH; Hd-tartrate (+3H₂O), m.p. 150—155° (decomp.) (sinters 115°), [a][5]+124·1° in EtOH, m.p. (anhyd.) ~169° (decomp.)], [a][6]-123·7° in EtOH; l-tartrate (+H₂O), m.p. 234° (decomp.), [a][6]-135·1° in H₂O; H dianisoyl-d-tartrate (+MeOH), m.p. 188° (decomp.), [a][6]-135·1° in H₂O; H dianisoyl-d-tartrate (+MeOH), m.p. 188° (decomp.), [a][6]-135·1° in H₂O; H dianisoyl-d-tartrate (+MeOH), m.p. 188° (decomp.), [a][6]-135·1° in EtOH; l-tartrate (+MeOH), m.p. 221-223° (decomp.), [a][6]-135·1° in EtOH; l-tartrate (+MeOH), m.p. 221-223° (decomp.), [a][6]-135·1° in EtOH; l-tartrate (+MeOH), (decomp.), $[a]_{1}^{17}+12\cdot57^{\circ}$ in EtOH; dianisoyl-d-tartrate (+5H₂O), m.p. 155° (decomp.), $[a]_{2}^{19}-66\cdot4^{\circ}$ in EtOH], and (-+)-6'-methoxyruban-9-ol, an oil, $[a]_{3}^{14}-23\cdot25^{\circ}$ in EtOH [hydrochloride, m.p. 222—223°, $[a]_{1}^{18}-14\cdot4^{\circ}$ in EtOH; H d-tartrate, m.p. 135° (decomp.), $[a]_{2}^{19}+50\cdot02^{\circ}$ in EtOH, and -d-tartrate, m.p. 125–143° (decomp.), $[a]_{2}^{19}-73\cdot29^{\circ}$ in EtOH]. These are converted by HCl-CHCl₃ and then PCl₅ at room temp. into the respective 9-chloro-6'-methoxyrubans, m.p. 99° (sintering), $[a]_{1}^{19}+25\cdot6^{\circ}$ in EtOH (VI), m.p. 98–100° (sintering), $[a]_{1}^{19}+25\cdot6^{\circ}$ in EtOH (VI), m.p. 98–100° (sintering), $[a]_{1}^{19}-24\cdot71^{\circ}$ in EtOH (VII), m.p. $-101-102^{\circ}$, $[a]_{2}^{10}+79\cdot1^{\circ}$ in EtOH (VIII), and m.p. $-101-102^{\circ}$, $[a]_{2}^{19}-79\cdot02^{\circ}$ in EtOH (IX). Reduction (H₂, Pd-CaCO₃, EtOH-KOH) of (VI) and (VIII) gives (+)-6'-methoxyruban, $[a]_{2}^{19}+129^{\circ}$ in EtOH (hydrate, m.p. 66°); (VIII) and (VX) similarly give (-)-6'-methoxyruban, $[a]_{2}^{19}-129\cdot5^{\circ}$ in EtOH (no hydrate). (V) has no action against bird malaria. (IV) has a surprisingly favourable action in disturbances of cardiac rhythm. Cinchona alkaloids. XXXIII. heteroQuinine, a 1:1-hydramine. P. Rabe (Ber., 1941, 74, [B], 725—728).—Fractional distribution of quinine ("purissimum praecipitatum") between aq. HCO₂H and Et₂O gives a little resinous material (most weakly basic part) which yields through its neutral sulphate, m.p. 218° (darkens 210°), 0.006% of heteroquinine (I) (A, R = CH:CH₂, R' = 6-methoxy-4-quinolyl), m.p. 167°. (I) is insol. in alkali CHR·CH—CH₂ hydroxide (distinction from cupreine) and characteristic (I) gives the thalleioquine reaction. Attempts to isolate (I) from a viscous product (termed cunicipal control of the mother-liquers after processing cinchona bark were unsuccess ful; (I) may have been present since the most weakly basic part, an oil, gave the thalleioquine reaction. Attention is directed to heterohydrocinchonine (A., 1935, 99). Ergot alkaloids. VII. Alkaloids of the ergotoxine group; ergocrystine, ergocryptine, and ergocornine. A. Stoll and A. Hofmann (Helv. Chim. Acta, 1943, 26, 1570—1601).—Ergotoxine (I) preps. are usually mixtures of three well-defined alkaloids, ergocristine (II), ergocryptine (III), and ergocornine (IV). The name (I) is retained as a group designation for preps. described and used under this name. (I) is treated with two equivs of l-di-p-toluoyltartaric acid in 900/EtOH whereby a conjous crystallization of the tartaric acid in 90% EtOH, whereby a copious crystallisation of the mixed salts occurs. This is dissolved in abs. EtOH, from which the bulk of the *l*-di-*p*-toluoyltartrate of (**II**) separates. The main pptn. of alkaloidal salts occurs when the mother liquor is diuted to 80% with H₂O. A small further quantity is secured by diluting the filtrate to 50%, leaving in solution only a small proportion of salt which is recovered as base and united with subsequent end fractions. The operations are repeated with the heterogeneous cryst. fractions and the most freely sol. portions are treated with abs. and then with 70% MeOH. The method is nearly quant. A detailed description of the treatment of various preps. of (I) is given. The l-di-p-toluoyltartrates are more stable than other alkaloidal salts but their stability is only relative. To prevent transformation into the dextrorotatory isomerides of the alkaloids or their oxidative decomp. by air or light and to obtain lightly coloured materials the salts must remain in solution for the least possible time; if crystallisation does not occur within a few min. it generally does not occur at all. Unless absolutely necessary, the solutions should not be warmed and, if necessary, the heating should be restricted to a few sec. Solid substances and, particularly, solutions should be protected from light. The following are described: (II), best cryst. sec. Solid Substances and, particularly, solutions should be protected from light. The following are described: (II), best cryst. from COMe₂ from which it separates with 1 COMe₂, m.p. 160—175° (decomp.), $[a]_0^{20}$ —183°, $[a]_{6461}^{20}$ —217° in CHCl₃, $[a]_1^{20}$ —93°, $[a]_{4461}^{20}$ —107° in C_1^{20} H₂ N [1-di-p-tolucyltartrate, m.p. 191° (decomp.), $[a]_0^{20}$ —58° in abs. EtOH; hydrochloride, m.p. 205° (decomp.); phosphate, m.p. 195° (decomp.); ethanesulphonate, m.p. 207° (decomp.); d-tartrate, m.p. (indef.) 185—190° (decomp.)]; ergocristinine, new m.p. 226° (decomp.), $[a]_0^{20}$ —462°, $[a]_{6461}^{20}$ +576° in C_5H_5N , $[a]_{10}^{20}$ —187°, $[a]_{2661}^{20}$ +479° in COMe₂; (III), m.p. 212° (decomp.), $[a]_1^{20}$ —187°, $[a]_{2661}^{20}$ —126° in CHCl₃; $[a]_0^{20}$ —112°, $[a]_{2461}^{20}$ —133° in C_5H_5N [1-(1-di-p-tolucyltartrate, m.p. 186° (decomp.); phosphate, m.p. 198—200° (decomp.); d-tartrate; m.p. (indef.), 209° (decomp.); ethanesulphonate, m.p. 204° (decomp.)], converted by boiling McOH into ergocryptinine, m.p. 240—242° (decomp.) $[a]_1^{20}$ +408°, $[a]_1^{20}$ +396°, $[a]_{3461}^{20}$ +493° in COMe₂; (IV), m.p. 182—184° (decomp.), $[a]_1^{20}$ +396°, $[a]_{3461}^{20}$ +493° in COMe₂; (IV), m.p. 182—184° (decomp.), $[a]_1^{20}$ +103° in abs. EtOH; hydrochloride, m.p. 223° (decomp.); hydrobromide, m.p. 225° (decomp.); phosphate, m.p. 180—181° (decomp.); $[a]_1^{20}$ +103° in abs. EtOH; hydrochloride, m.p. 223° (decomp.); hydrobromide, m.p. 225° (decomp.); phosphate, m.p. 190—195° (decomp.); non-cryst. d-tartrate; very stable and cryst. ethanesulphonate, m.p. 209° (decomp.)], converted by boiling MeOH into ergocorninine, m.p. 228° (decomp.)], converted by boiling MeOH into ergocorninine, m.p. 228° (decomp.)], converted by boiling MeOH into ergocorninine, m.p. 209° (decomp.)], converted by boiling MeOH into ergocorninine, m.p. 209° (decomp.)], converted by boiling MeOH into ergocorninine, m.p. 209° (decomp.)], converted by boiling MeOH into ergocorninine, comp.)], converted by boiling MeOH into ergocorninne, m.p. 228° (decomp.), $[a]_D^{20} + 409^\circ$, $[a]_{3.61}^{20} + 512^\circ$ in CHCl₃, $[a]_D^{20} + 500^\circ$, $[a]_{3.61}^{20} + 624^\circ$ in C_5H_5N , $[a]_{3.61}^{20} + 414^\circ$, $[a]_{3.61}^{20} + 517^\circ$ in COMe₂. Photomicrographs of the crystals of the six alkaloids are given. A historical survey of (I) and ergotinine is given and the literature data are examined critically from the viewpoint of the new observations. M.p. are corr. H. W. Ergot alkaloids. VIII. Products of the fission of ergocristine, ergocryptine, and ergocornine. A. Stoll, A. Hofmann, and B. Becker (Helv. Chim. Acta, 1943, 26, 1602—1613).—Alkaline hydrolysis of ergocristine (I) gives d-lysergic acid (II), NH₃, COPr^β·CO₂H,
dl-proline, and dl-phenylalanine. The mol. sum of these 5 products less 4 mols. of H₂O is $C_{35}H_{39}O_{5}N_{4}$, identical with the formula determined analytically. (I) thus contains the structural units present in ergotinine preps. Treatment of ergocryptine (III) with N₂H₄ leads to dl-isolyserghydrazide in good yield. Thermal fission gives COPr^β·CO·NH₂ and a non-distillable, viscous oil which affords l-leucyl-d-prolyl-lactam, m.p. 148—150°, [a]₂₀²⁰ +92°, [a]₂₆₄²⁰ (decomp.), [a]₂₀²⁰ -10·8°, [a]₂₆₄²⁰ -13·4° in H₂O, and d-proline (IV), characterised as the salt C₆H₂O₂N,CdCl₂,H₂O, m.p. 210°. The results agree with the analytically established formula $C_{32}H_{41}O_{5}N_{5}$. Alkaline hydrolysis of ergocornine (V) affords (II). Its thermal decomp. leads to COPr^β·CO·NH₂ and l-valyl-d-prolyl-lactam, m.p. 147—149°, [a]₂₀²⁰ +88°, [a]₂₀²⁰ +32° in 20% HCl, and (IV), characterised as dimethyl-d-prolinebetaine aurichloride, m.p. 245°. Among the ergot alkaloids, the ergotamine group (ergotamine-ergotaminine; ergosine-ergosinine) is characterised by giving AcCO₂H as a-CO-acid. The ergotoxine group [(I)-ergocrystinine; (III)-ergocryptinine; (V)-ergocorninine] gives rise to COPr^β·CO₂H analogously. Differing in principle but still containing (II) as main component are ergobasine-ergobasinine in which (II) is present as the l-β-hydroxyisopropyl-amide. Veratrine alkaloids. XX. Further correlations in the veratrine group. Relationship between the veratrine bases and solanidine. L. C. Craig and W. A. Jacobs (J. Biol. Chem., 1943, 149, 451—464; cf. A., 1943, II, 246).—The unsaturated hexacyclic character of the veratrine bases is discussed. Attempts to hydrogenate (H_2 – PtO_2) germine (I) failed, but isogermine (II) gives (PtO_2 –MeOH) dihydroisogermine, m.p. 277—278° (previous darkening and softening), [a] $^{10}_{10}$ –61° in C_5H_5N . Dihydrogermine, m.p. 265° (shrinks at >258° to a resin), [a] $^{20}_{20}$ –57° in C_5H_5N (hydrochloride, decomp. >250°), is obtained from (I) and Na– $Bu^{\alpha}OH$. Rubijervine (III) and isorubijervine (IV) give (H_2 – PtO_2 –MeOH–AcOH) dihydrorubijervine, m.p. 222° (its Ac_2 derivative, m.p. 216—219°, retains the original basic character), and -isorubijervine, m.p. 244° (previous softening), respectively. (I) and aq. NaOH–MeOH at 50° yield (II), but similar attempts to isomerise (III) or (IV) were unsuccessful. Jervine, $C_{27}H_{39}O_3N$ (pentacyclic), remains in a special class, as it reacts as a sec. base and contains $\nleq 2$ conjugated double linkings which can be hydrogenated to tetrahydrojervine. (IV) readily forms a digitonide (cryst. within 30 min.), suggesting a $3(\beta)$ -OH group in the A ring of a steroid. (III) yields a digitonide on long keeping, but (I), (II), cevine, and protoverine do not. Veratrine alkaloids behave in some ways differently from solanidine (V) and related compounds. Methylcyclopentenophenanthrene is not isolated from the dehydrogenation of a veratrine base. Dehydrogenation of (V) gives (chromatographic separation) γ -methyl-1: 2-cyclopentenophenanthrene, m.p. 126—127°, 2-methyl-, m.p. 120—121°, and 1: 2-dimethyl-phenanthrene, m.p. 146—148°, and a small amount of a substance, $C_{27}H_{41}N$ or $C_{26}H_{37}N$, m.p. 183—197°; no fluorene hydrocarbon was isolated. Constitutions of the veratrine alkaloids are discussed, but they are not clear. Biscoclaurine alkaloids: constitutions of chondodendrine and trilobine. F. Faltis, L. Holzinger, P. Ita, and R. Schwarz (Ber., 1941, 74, [B], 79—97; cf. A., 1936, 1003).—Chondodendrine is degraded to a mixture of 6: 4'-dicarboxy-2: 3-dimethoxy-5-vinyl-diphenyl ether (I) (the sole product from isochondodendrine) and an isomeride (II). To establish the structure of (II) [already degraded to 4-carboxy-2: 2'-dimethoxydiphenyl ether (III); loc. cit.] as 5:5'-dicarboxy-2: 2'-dimethoxy-4-vinyldiphenyl ether, it was necessary to synthesise 4:5:5'-tricarboxy-2: 2'-dimethoxy-diphenyl ether (IV) (cf. King, A., 1939, II, 458). 4:5:1:2-C₆H₂Br₂(CO₂Me)₂, KOMe, and Cu at 170—180° give Me₂ 4-bromo-5-methoxy-phthalate (V), m.p. 82—84° [free acid, m.p. 195·5°, effervescing at 192°, purified with difficulty from traces of 4:5:1:2-C₆H₂Br₂(CO₂H)₂]. iso Vanillinoxime, m.p. 145—145·5°, and hot Ac₂O afford O-acetylvanillonitile, m.p. 122° (once, at room temp., isovanillinoxime acetate, m.p. 109·5°), hydrolysed (NaOH) to 3:4:1-C₆H₃(OH)(OMe)·CO, m.p. 131·5—132°. Ullmann condensation between (V) and 3:4:1-C₆H₃(OMe)·CO₂Me gives little (IV), and 3:4:1-C₆H₃(OMe)₂·CO₂H is a troublesome by-product. o-OK·C₆H₄·OMe, 3:4:1-C₆H₃(DMe)·CO₂Me (VII), mixed with some (VI) and 5-carboxy-2:2'-dimethoxydiphenyl ether, m.p. 167·5—168·5° [Me ester, m.p. 59·5—60°; in one experiment the phenolic portion contained (?) 2-bromo-2'-hydroxy-6:3'-dimethoxydiphenyl ether, m.p. 160—165°, possibly formed subsequently to transference of Br from (VI) to o-OH·C₆H₄·OMe]. (VI), KOPh, and Cu at 190° give some PhOMe, (VII), (VI), and 5-carboxy-2-methoxydiphenyl ether, m.p. 187—187·5° (Me ester, b.p. 120—140° [0·05 mm.). Me 4-bromo-3-methoxybenzoate (VIII), m.p. 55—55·8° (from the acid and CH₂N₂), o-ONa·C₆H₄·OMe, and Cu at 190° give impure m-OMe·C₆H₄·CO_Me, (VIII), and (III), m.p. 163—164°. The Ullmann condensation between (VI) and Me_2 4-hydroxy-5-methoxyphthalate, m.p. 93—94°, is very unsatisfactory and the main products are (VII) and 4:5:1:2-C₆H₂(OMe)₂(CO₂Me)₂. The ordinary diphenyl ether synthesis appears to have reached the limit of its scope in the prep. of these tricarboxylic acids, since transference of halogen and alkyl groups takes place readily as a result of the accumulation of CO2Me groups. More satisfactory results are obtained with intermediates groups. More satisfactory results are obtained with intermediates of a lower state of oxidation where side-chains can be converted into CO₂H subsequent to Ullmann condensation. iso Vanillin semicarbazone, m.p. 212° (decomp.), NaOEt, and N₂H₄,H₂O at 160° give 1:3:4-C₈H₃Me(OH)-OMe, which with AcCl and AlCl₃ in PhNO₂ gives 2:4:5:1-C₈H₂Me(OH)(OMe)-COMe (IX). m.p. 133° (VI), the K derivative of (IX), and Cu at 190° afford 5'-carbomethoxy-2:2'-dimethoxy-4-acetyl-5-methyldiphenyl ether, m.p. 131·5—132° (semicarbazone, m.p. 203—203·5° with decomp.); the free acid, m.p. 203—204°, is cautiously oxidised by alkaline KMnO₄ to the glyoxylic acid, C₁₈H₁₆O₈, m.p. 203° (phenylhydrazone, m.p. 187—189°), which is further oxidised (H₂O₂) to 4:5'-dicarboxy-2:2'-dimethoxy-5-methyldiphenyl ether (X), m.p. 250— methyldiphenyl ether (\mathbf{X}), m.p. 250—251° (Me_2 ester, m.p. 123—124°). (\mathbf{X}) is oxidised by hot alkaline KMnO₄ to (IV), mixed m.p. with the acid from the degradation of chondodendrine showing no depression. The biogenesis of this type of alkaloid is postulated to start with an enzymic dehydrogenation of coclaurine, followed by a continuous series of de- hydrogenations and methylations via magnoline and trilobamine to tetrandrine and to trilobine, for which (or for isotrilobine) structure Active principles of bark of Aegle marmelos, Correa. A. Mookerjee (Current Sci., 1943, 12, 209).—Young bark of both Bengal and Bihar origin yields (a) a coumarin (0.03%), m.p. 123°, (b) an alkaloid (0.003%), m.p. 175°, and (c) umbelliferone. Old bark of both regions yields umbelliferone and a different coumarin (0.6%), m.p. 187-188°; old Bengal bark yields the same alkaloid as the young bark, but old Bihar bark yields a new alkaloid (0.3%), m.p. 142°. #### VIII.—ORGANO-METALLIC COMPOUNDS. Mercurated aliphatic nitriles.—See B., 1943, III, 280. #### IX.—PROTEINS. Chemistry of chromatin. A. E. Mirsky and A. W. Pollister (Trans. New York Acad. Sci., 1943, [II], 5, 190—198).—A lecture summary of some of the authors' work in this field. (A) Recovery of crystalline thyroxine from iodinated casein. Recovery of *l*-thyroxine by direct acid hydrolysis of iodinated casein. E. P. Reineke and C. W. Turner (*J. Biol. Chem.*, 1943, **149**, 555—561, 563—570).—(A) Iodinated casein (**I**) is hydrolysed by boiling 561, 563—570).—(A) Iodinated casein (I) is hydrolysed by boiling aq. Ba(OH)₂, and in 2 experiments 100 g. gave 424 and 385 mg. of cryst. thyroxine (II), m.p. 230—232° (identified by I content, spectrographic absorption, and biological assay), respectively. (I) shows thyroidal activity equiv. to 3% that of dl-thyroxine (III). Since (II) is apparently formed in the protein in only the active l-form, the highest yield accounts for 28% of the activity of the original protein. Hydrolysis also gives an impure substance (3·4 mg.), insol. in acids, with activity equiv. to 2% of (II). Thus if all activity of (I) is assumed to be due to (II), the thyroidal activity of (I), as measured by the guinea-pig assay, is completely accounted for. (B) Hydrolysis of (I) by equal parts of 32% aq. H₂SO₄ and BuOH allows the products to be extracted in the BuOH; 0·1% of cryst. l-thyroxine (IV), m.p. 236—238°, [a]_D -4·2° in EtOH-aq. NaOH. 65% I, is isolated. The use of 20% HCl in the hydrolysis gives a lower yield of (IV). (IV) has apparently twice the potency of (III), as shown by its elevation of CO₂ output and loss of body wt. of guinea-pigs. Synthesis of (III) in an iodinated protein is probably due to oxidative coupling of 2 mols. of di-iodotyrosine and the elimination of one side-chain. elimination of one side-chain. A. T. P. #### X.-MISCELLANEOUS UNCLASSIFIABLE SUBSTANCES. Lignin. XLII. Pressure hydrogenation of lignin and lignin-containing waste liquors of the pine. K. Freudenberg, W. Lautsch, G. Piazolo, and A. Scheffer (Ber., 1941, 74, [B], 171—183).—Pine lignin (I) is hydrogenated in presence of aq. alkali at 80—140 atm. and ~250° or ~340° in attempts to crack the phenylpropane units and $\sim 250^{\circ}$ of $\sim 540^{\circ}$ in attempts to state the phenylpropane units with production of C_6H_6 , PhMe, or PhEt derivatives or their hydrogenation products; at $\sim 340^{\circ}$ S-containing substances (waste
liquors) can be successfully reduced. Using 5% alkali at 260° with a catalyst of moderate activity, (I) gives 45-50% of phenols, of which 15% [calc. on (I)] are monocyclic [o-OH·C₆H₄·OMe, creosol, o-C₆H₄(OH)₂, etc.] and traces of nuclear-hydrogenated lignin degradation products. Under the same conditions with Raney Ni or Rupe Ni, 36-40% of nuclear-hydrogenated products are obtained of which 15% consists of cyclohexanols. At 340°, there are formed 13—15% of phenols of cyclohexanols. At 340°, there are formed 13—15% of phenols and (mainly) nuclear-reduced products containing considerable amounts of cyclopentanols; 40% of neutral products, comprising 20% of monocyclic alcohols out of 27% of distillable material, is obtained, thus accounting for 53—55% of (I); the degree of activity of the catalyst or even its presence is of secondary importance. Lignin derivatives containing S (sulphite waste- or black-liquor) are best hydrogenated at 340° without a catalyst, affording corresponding yields of the same products. When o-OH·C₆H₄·OMe, 1:4:3-C₆H₃Me(OH)·OMe or 1:4:3-CHMe;CH·C₆H₃(OH)·OMe is hydrogenated at 260°/100 atm. cyclohexanol, 1-methyl- and 1-propylcyclohexanol are obtained respectively. cyclohexanol are obtained respectively. Lignin. XLIII. Distillation of lignin in hydrogen. K. Freudenberg and K. Adam (Ber., 1941, 74, [B], 387—397).—The yield of products obtained by dry distillation of lignin (I) is increased in H₂ but only decisively in presence of a hydrogenation catalyst. Ni is used either by pptg. Ni(OH)₂ or NiCO₃ on the (I) or, more simply and better, by passing Ni(CO)₄ over dry (I) at 180°. The Ni-(I) mixture is then heated rapidly to ~220° and temp. increased at such a rate (control necessary at 240°, 320°, and 350°) that distillation is uniform. Small amounts (27 g.) of (I) are distilled in glass tubes; larger quantities (250 g.) in a specially constructed apparatus (illustrated). The Et₂O-sol. distillates (A) from various (I) generally contained 65—70% of distillable phenols (B). The yields of (A) were larger and those of (B) smaller in the small-scale experiments; the composition of (B) also varied in the two cases. (A) contained small amounts of acids (HCO₂H, AcOH, and traces of EtCO₂H) and neutral products [up to 7% of (I)] in addition to (B) [up to 35% of (I)]. The following are identified in the distillate from pine-(I): PhOH, \$\rho C_6H_4Et·OH, guaiacol, \$\rho-creosol, \$\rho\$- and \$\rho\$-ethylguaiacol, isoeugenol, \$\rho C_6H_4(OH)₂, 4:1:2-C₆H₃Me(OM)₂, 2-methylcyclopentanol, cyclohexanediol, MeOH, and EtOH. All the products are in harmony with the view that (I) is a phenylpropane derivative. The residue from the experiments with pptd. Ni(OH)₂ or NiCO₃ ignites in air at 30—40° and can be used as a hydrogenating catalyst. in air at 30-40° and can be used as a hydrogenating catalyst Lignin. XIII. Cleavage of wood by nitration. H. Friese and W. Lüdecke (Ber., 1941, 74, [B], 308—313).—Under suitable conditions, e.g., in AcOH or CCl₄-AcOH, wood meal can be nitrated so that only nitro-N and no ester-N is introduced, no evolution of N oxides is observed, and OMe falls by ~1.7%. The nitro-wood (I) retains its structure and whereas wood cannot be titrated with NaOH (phenolphthalein), (I) consumes 1 mol. of NaOH per NO₂; this titration is a time reaction and the nitrogenous component dissolves, titration is a time reaction and the nitrogenous component dissolves, leaving a swollen cellulosic mass. (I) takes up Na from NaOMe–MeOH without dissolving but H_2O dissolves out about half of the product, leaving N-free cellulose. Alkali and CS_2 rapidly dissolve (I). No so-called lignin estimation can be carried out with 66% H_2SO_4 . Wood meal is unaffected by AcOH–NaNO₂. Isolated lignin cannot be nitrated without partial decomp. or without evolution of N oxides and a sharp fall in OMe $(15 \rightarrow 4\%)$ is observed. Nitrolignin (II) from (I) has 2 N : 27 C whereas ligninsulphonic acid has only 1 S : 27 C, and the latter can be further nitrated. When (I) is treated with $Ca(HSO_2)_2$ the (II) is extensively broken down and (I) is treated with Ca(HSO₃)₂ the (II) is extensively broken down and no insight into the reaction is gained. Methylated wood (OMe 36%) swells on nitration and the product has 1.8% N and 19.3% OMe. Beech bark (Fagus sylvatica). I. E. Clotofski, H. Weikert, and H. Nick (Ber., 1941, 74, [B], 299—307).—Distillation of finelyground bark with superheated steam or steam under reduced pressure ground park with superneated steam of steam under reduced pressure gave no identifiable Et₂O-sol. material. Extraction with org. solvents gives the following recoveries calc. on air-dried bark: EtOH 9·2, COMe₂ 7·6, dioxan 12·8, MeOH 12·2%; other solvents immiscible with H₂O give poorer results. The hot MeOH extract deposits a fraction (A) on cooling and the material in the mother-liquors is recovered and separated into H₂O-sol. (B) and H₂O-insol. (C) fractions. (A) consists of a parafin, m.p. 63—65°, and a wax giving, on saponification, an alcohol, $C_{20}H_{42}O$ (arachidyl? or eicosyl?) m.p. 73°, and an acid, $C_{20}H_{42}O_2$, m.p. 57—58°. (B) contains tannins and, on hydrolysis, gives 40% of sugars and 57% of phlobaphens. (C) is separated into Na₂CO₃-sol. material, consisting of a mixture of higher fatty and resin acids, and Na₂CO₃-insol. material, which, of higher fatty and resin acids, and Na₂CO₃-insol. material, which, on saponification, gives an alcohol (arachidyl ?), m.p. 72·5—73°, Hess' phytosterol, m.p. 132°, a substance, m.p. 225—227°, giving cholesterol reactions, and an acid, C₂₄H₂₈O₂ (carnaubic?), m.p. 70—71°. The extracted bark (OMe 6·13%) is hydrolysed with 12% H₂SO₄ (residue 90·9%, OMe 6·78%), then with 65% H₂SO₄ (residue 42·2%, OMe 12·32%); pentoses, but not hexoses, are liberated in the first stage, and both in the second (phenylosazone, C₁₈H₂₂O₄N₄, m.p. 204—205°). The behaviour of the extracted bark towards Schweitzer's reagent and Na₂SO₄ is reported. Schweitzer's reagent and Na₂SO₃ is reported. Pigment, C₁₀H₁₂O₃N, from Actinomyces.—See A., 1943, III, 845. #### XI.—ANALYSIS. Purification of substances by partial fusion and warm absorption.—See A., 1943, I, 320. Determination of small concentrations of electrolytes.—See A., 1943, I, 313. Spectroscopic method for the analysis of multi-component mixtures and its infra-red application.—See A., 1943, I, 319. Silver vanadate: use in micro-combustion of organic compounds. G. Ingram (J.S.C.I., 1943, 62, 175-176).—Ag₃VO₄ is a satisfactory oxidation filling, which also absorbs halogen and S etc. in the combustion of org. compounds. Possible substitutes for PbO₂, prepared by suspending suitable oxides on AgCrO₄, are capable of absorbing N oxides Micro-method for halogen determination in organic molecules according to A. Stepanow's principle. I. Irimescu and E. Chirnoagā (Z. anal. Chem., 1942, 125, 32—37).—The org. substance is dissolved in anhyd. EtOH and metallic Na added. Reaction to form Na halide is soon completed; H₂O is added, and the solution warmed. The halide is then determined gravimetrically as the Ag salt, or by Volhard's method. Reaction is effected in a specially-designed vessel to which a cooling condenser is attached. The method is unsuitable for liquid org. substances. A determination requires 40—70 min. Details of apparatus and procedure, and test data on aromatic org. substances, are recorded. L. S. T. Dumas nitrogen determinations.—See A., 1943, I, 310, 321. Micro-analysis of sulphur in organic substances. N. E. Gelman (Zavod. Lab., 1939, 8, 673—677).—Ter Meulen's semi-micro-method (A., 1934, 424) is adapted to determination of S in 3—5 mg. of volatile or non-volatile org. substances; halogen, As, N, or CNS' does not interfere. The error >0.16%. R. T. Determination of small quantities of boric acid in organic substances. E. G. Beckett and M. F. H. Webster (Analyst, 1943, 68, 306).—When the sample is ashed with Na₂CO₃, dissolved in conc. H_2 SO₄, and heated at 150° with 4:4'-diamino-1:1'-dianthraquinonylamine the optical density at \sim 6200 A. is a measure of B_2 O₃ content. L. A. D. Polarographic determination of vanadium [in organic compounds].—See A., 1943, I, 317. Characteristic reactions of citric and tartaric acid. A. Steigmann (J.S.C.I., 1943, 62, 176).—The hydroxy-pyrroles and -pyridines formed by melting aliphatic OH-acids with $CO(NH_2)_2$ at $160-200^\circ$ condense with suitable aldehydes in AcOH solution forming dyes which are characteristic for citric and tartaric acid. Effect of citrate on rotation of molybdate complexes of malate, citramalate, and isocitrate.—See A., 1943, II, 350. Anomalous amino-nitrogen values. H. E. Carter and S. R. Dickman (J. Biol. Chem., 1943, 149, 571—572).—o-, m-, and p-C₆H₄(OH)₂ submitted to the Van Slyke procedure at 24—28° for 30 min. give respectively vals. of 0.58, 1.03, and 0.36 atoms of NH₂-N per mol. Similarly, chrysogenin (N-free) appears to contain 2.73% N. Crude penicillin liberates N₂ from HNO₂, although other evidence indicates the absence of NH₂-N. R. L. E. Volumetric determination of glucose. M. Niculescu and N. Caplescu (Z. anal. Chem., 1943, 25, 416—423).—The glucose (I) solution is oxidised by warming with standard aq. $K_2Cr_2O_7$ and conc. H_2SO_4 . After dilution, the excess of $K_2Cr_2O_7$ is found by titration with aq. Fe NH₄ sulphate solution, using $K_3Fe(CN)_6$ as external indicator. The (I) to be determined should be 10-25 mg. and the quantities of $K_2Cr_2O_7$ and H_2SO_4 given must be adhered to. Test data and details of procedure are given. L. S. T. Determination of free and bound hexuronic acid. K. Freudenberg, H. Gudjons, and G. Dumpert (Ber., 1941, 74, [B], 245—247).— Apparatus and technique are described for decomp. hexuronic acids and polyuronides in a stream of $\rm N_2$ with 20m-ZnCl $_2$ solution at 160—165° and collecting CO $_2$ after suitable removal of furfuraldehyde and other anticipated volatile products. Determination
of amino-acids by the solubility-product method. S. Moore and W. H. Stein (J. Biol. Chem., 1943, 150, 113—130).— The principle of the method is that the solubility at 0° of a sparingly sol. salt of an NH₂-acid [that formed with an aromatic sulphonic acid (I) is normally used] is determined in the solution under investigation with and without the addition of a known amount of free (I). From the results and the (previously determined) solubility product of the salt, the concn. of the NH₂-acid in the solution is calc. The theory of the method as applied to the determination of leucine (II) and glycine (III) is discussed, and the experimental technique is described in very full detail. 1:2:5-C₆H₃MeBr·SO₃H is suitable for (II), and 5:1-NO₂·C₁₀H₆·SO₃H for (III). Other NH₂-acids interfere only in certain unusual circumstances. Using this method, the (II) content of ovalbumin was found to be 9-0%, and the (III) content of silk fibroin 43·8%. Use of glass fluorescent standard in the determination of aneurin (vitamin- B_1). G. Vastagh and F. Szegho (Z. anal. Chem., 1942, 125, 23—32).—The conditions under which the Zeiss glass fluorescence standard can be used in the thiochrome method for determining vitamin- B_1 have been investigated. The relationship between the quantity of - B_1 and the fluorescence intensity obtained with the glass standard is not linear. This is due, not to optical causes, but mainly to the unfavourable distribution coeff. between the aq. alkaline solution and the Bu $^{\beta}$ OH solution of thiochrome (I), which makes quant. extraction difficult. Filter-paper and the Bu $^{\beta}$ OH itself also have a fluorescence that cannot be neglected. Addition of NaCl improves extraction. The procedure described for the oxidation of - B_1 to (I), the extraction of (I), and the use of the glass standard permits the employment of a type of step photometry to the determination of - B_1 without the repeated prep. of comparison solutions. Determination of piperazine. III. A. Castiglioni (Z. anal. Chem., 1941, 121, 347—348; cf. A., 1941, II, 388).—10 c.c. of piperazine solution in 95% EtOH are treated with 10 c.c. of 5% $\rm H_2C_2O_4$ in 95% EtOH, and the whole is set aside for 8—10 hr. The ppt. is collected, washed with 95% EtOH, dried at 100—105°, and weighed. (CH₂)₆N₄ gives a ppt. with $\rm H_2C_2O_4$, and must be absent. Salicylic and quininic acids do not interfere. L. S. T. Nephelometric determination of nicotine. K. B. Trifonova (Zavod. Lab., 1939, 8, 731).—Nicotine is determined by comparing the turbidity developed in test and standard solutions on addition of 1% silicotungstic acid. R. T. Detection of native protein with pH indicators. M. Ishidate and T. Sakaguchi (Ber., 1941, 74, [B], 163—170).—The protein error (P.E.) of indicators is further developed as a spot test for native protein (cf. Feigl and Anger, Mikrochim. Acta, 1937, 2, 107). Of 27 indicators used, tetrabromophenolphthalein ester (I) is the most sensitive as it can detect casein, hæmoglobin, ovalbumin, and gelatin in limiting concns. of 0.004-0.005% (2—2.5 μ g.); next in order come Congo-red, bromophenol-blue, dimethyl-yellow, and metanil-yellow. Only dyes effective as pH indicators in the range 1.2-5.5 are found to be effective, and the P.E. is max. at about the isoelectric point and min. at pH ~2.5. The P.E. is first determined and then the protein is broken down with HCl or NaOH and, after neutralisation, the P.E. is again determined. Differences are marked with (I) and negligible with other indicators. Determination of gelatin.—See A., 1943, III, 928. Total nitrogen content of ovalbumin and other proteins. A. C. Chibnall, M. W. Rees, and E. F. Williams (Biochem. J., 1943, 37, 354—359).—The Kjeldahl process may give low vals. for the N content of proteins. This is due to the digestion period being too short (with proteins and protein hydrolysates it should be continued for $\not = 8$ hr. after the digest has cleared) and to the pronounced hygroscopic activity of anhyd. proteins which necessitates that moisture and N contents should be determined on separate samples of air-dried material. Using the technique described, the following vals. have been obtained for the N content of moisture- and ash-free protein: ovalbumin (native and uncoagulated) 15·76, edestin 18·7, β -lactoglobulin 15·58, casein 15·73, amandin 18·75, insulin 15·54, and horse carboxyhæmoglobin (moisture- unt ash-free) 16·8%. Foreman method for determination of dicarboxylic acids in protein hydrolysates. K. Bailey, A. C. Chibnall, M. W. Rees, and E. F. Williams (Biochem J., 1943, 37, 360—372).—Cystine (I) in the hydrolysate undergoes partial dismutation into the sulphinic and sulphonic acids during treatment with CaO and is pptd. with the Ca dicarboxylates by EtOH together with small amounts of (I), tyrosine, serine (II), and other bases. The Ca salts of the dismutation products are very insol. and interfere with the determination of aspartic acid (III) as Ca salt (IV). (I) may be removed as the Cu^I mercaptide prior to the CaO-EtOH treatment. A small amount of the more insol. NH₂-acids (methionine, tyrosine, leucine, and phenylalanine) contaminates the mercaptide ppt. but there is no loss of dicarboxylic acids or arginine and the purity of (IV) is such that no crystallisation is necessary. Significant amounts of both (III) and glutamic acid (V) may be isolated from the CaO-EtOH filtrate after removal of the bases and most of the NH₂-acid. The solubility of the Ca glutamate is relatively high, especially when some of the acid is dl-, but that of (IV) appeared to be small. A modified procedure gives vals. for the (III) and (V) contents of proteins accurate to within 2%. The application of solubility correction to results obtained by one complete CaO-EtOH treatment gives vals. > those in literature. The "hydroxyglutamic acid" fractions previously reported are mixtures of (III) and (V), dibasic dismutation products of (I), and (II) and its decomp. products in varying proportions, and no indication of the presence of any other dicarboxylic acid has been obtained. The results obtained by previous workers with Foreman's method are valueless from the point of view of the Bergmann-Niemann hypothesis. #### INDEX OF AUTHORS' NAMES, A., II. DECEMBER, 1943. ADAM, K., 402. Adler, E., 373, 381. Albers, H., 353. Allen, C. F. H., 358. Aoki, M., 367. Arndt, F., 349. Asahina, Y., 367. Assaman, J., 390. Azzam, R. C., 380. Azzam, R. C., 380. BACHMAN, G. B., 357. Bachmann, P., 357. Bachmann, W. E., 360. Baer, E., 353. Balley, K., 404. Baker, E., 360. Balfe, M. P., 359. Banks, H., 355. Bátyka, E., 374. Baumgartner, H., 379, 380. Becker, B., 400. Beckett, E. G., 403. Bell, A., 358. Bergek, T., 356. Berger, E., 397. Bergström, S., 374. Beyer, H., 368. Bézard, A., 362. Birtwell, S., 360. Blumenfeld, G., 366. Borsche, W., 388, 390. Brass, E., 370. Braun, J., 358, 376, 394. Bredereck, H., 387. Bredger, L. H., 361. Buehler, C. A., 363. Buu-Hoi, N. P., 375. CAPLESCU, N., 403. Buu-Hoi, N. P., 375. Căplescu, N., 403. Carter, H. E., 403. Castion, F. W., 353. Caspersson, A. O., 373. Castiglioni, A., 404. Cerkovnikov, E., 382, 385. Chakravarti, R. N., 371. Chibnall, A. C., 404. Chimoagă, E., 403. Chu, J. C., 365. Chu, J. C., 365. Chu, J. H., 372. Ciorănescu, E., 360. Clotofski, E., 402. Coates, H., 391. Cook, A. H., 391, 397. Cooper, D. E., 363. Copley, G. N., 358. Craig, L. C., 400. Cushing, I. B., 350. DICKMAN, S. R., 403. Dörfling, H., 390. Doja, M. Q., 385. Dumpert, G., 403. Есколот, Н., 396. Eggleston, L. V., 350. Egli, R., 378. Eistert, B., 349. Eiks, J., 362. Emmert, B., 384. Euler, H., 373, 381. Faltis, F., 400. Fiesselmann, H., 389. Fischer, H., 096. Fischer, H. O. L., 350, 353. Floyd, D. E., 367. Fredga, A., 352. Freudenburg, K., 356, 401, 402, 403. Freyermuth, H. B., 388. Friese, H., 402. Fritsch, H., 368. Frost, A. V., 350. Frush, H. L., 352. Fujise, S., 380. Funakubo, E., 363. Fuzikawa, F., 367. GATES, J. W., JUN., 358. Gelman, N. E., 403. Gie, G., 381. Goldberg, M. W., 375. Goldstein, H., 366. Grampoloff, A. V., 350. Grob, A., 378. Gudjons, H., 403. Guha, P. C., 354. Guha, P. C., 354. HAGGLUND, E., 356. Hagen, G., 398. Hahn, G., 383. Hahn, V., 382. Hanus, F., 364. Haworth, J. W., 362. Heilbron, I. M., 391. Heimbach-Juhász, S., 398. Heiwinkel, H., 356. Helferich, B., 355. Henshall, T., 365. Herbst, R. M., 366. Hey, D. H., 362. Holglin, R. I., 357. Hodgson, H. H., 360, 361. Holzle, K., 362. Hofer, W., 379. Hoffman, R., 360. Holzle, K., 360. Holzlinger, L., 400. Huckel, W., 376. Hull, G., 356. Hunziker, F., 377. Hurd, C. L., 353. INAGAKI, F. H., 386. Ingram, G., 403. Irimescu, I., 403. Isbell, H. S., 352. Ishidate, M., 404. Ita, P., 400. Jacobi, E., 370. Jacobs, W. A., 400. Jäckh-Tettweiler, I., 368. Jeger, O., 378, 379. Jochinke, H., 355. Jones, B., 363. Jorde, W., 370. Jorde, W., 370. KAO, Y. S., 372. KATER, W., 356. Keller, H., 364. Kenyon, J., 359. Kindlmann, L., 388. Kitchen, L. J., 354. Klaui, H., 377. Kodama, K., 386. Koechlin, B., 374. Koenigs, E., 393. Komppa, G., 376. Kotake, M., 380. Krebs, H., 369. Krebs, H., 364. Kubota, T., 380. Kubota, T., 380. Kubota, T., 380. Kuharni, P. Y., 390. Lambert, A., 391. Lautsch, W., 401. Lehtimäki, S., 351. Lercher, K., 364. Lewis, F. B., 391. Lieser, T., 357. Löw, I., 369. Lorenz, R., 398. Lüdecke, W., 402. Lyttleton, J. W., 361. Lyttleton, J. W., 361. MAEDER, A., 351. Maican, M., 360. Mannich, C., 373. Martensson, O., 352. Mayer, G., 368. Melkonian, G. A., 350, 393, 394. Michaelis, R., 394. Michaelis, R., 394. Micscher, K., 377. Mirsky, A. E., 401. Mocnik, W., 370. Moldner, R., 364. Mookerjee, A., 401. Moore, I. D., 361. Moore, S., 403. Müller, A., 355, 374, 388. Müller, A., 355, 374, 388. Müller, C., 389. Myrbäck, K., 357. Nantka, P. L., 393. Narasimham, M., 398. Naves, Y. R., 350, 357, 367. Naylor, R. F., 397. Nenitzescu, C. D., 360, 372. Neuroth, L., 370. Nick, H., 402. Niculescu, M., 403. Nilsson, T., 354. OHLE, H., 350,
393, 394. Okayama, T., 387. Owen, L. N., 352. PAIGE, M. F. C., 374. PAIGE, M. F. C., 374. Pal, S. N., 398. Palomaa, M. H., 351. Pataki, J., 375. Perrly, P., 353. Perry, C. A., 397. Perry-Fehrenbach, H., 368. Pfeiffer, P., 369. Piazolo, G., 401. Pirot, E., 384. Plattner, P. A., 373, 375, 377. Pollard, C. B., 354. Pollister, A. W., 401. Pothmann, A., 384. Prasad, D., 385. Prelog, V., 382, 385, 387, 398. Prennschütz-Schützenau, H., 364. Pritchett, C. W., 362. Przemetzky, V., 372. Pummerer, R., 389. Purrmann, R., 395. RABE, P., 398, 399. Raiford, L. C., 367, 388. Rajner, E., 387. Rao, P. L. N., 354. Råy, P., 361. Redel, J., 379. Rees, M. W., 404. Reichstein, T., 374, 376. Reineke, E. P., 401. Reitz, J., 376. Rey, E., 379, 380. Richter, F., 397. Rittenberg, D., 366. Rothstein, E., 371. Rudolph, W., 394. Ruggil, P., 351. 362. Rutenburg, A. M., 355. Ruzicka, L., 373, 378, 379, 380. SABOOR, M. A., 371. Sakaguchi, T., 404. Sakurai, K., 387. Salzer, W., 386, 370, 385. Scheffer, A., 401. Scheibe, G., 390. Schmidt, W., 353. Scheeffer, W., 364, 384. Schopf, C., 386, 388, 370, 385. Scherider, W., 364, 384. Schopf, C., 386, 388, 370, 385. Schwarz, R., 400. Scrudder, E. O., 363. Seiwerth, R., 398. Seligman, A. M., 355. Sethna, S. M., 381. Shah, R. C., 381. Shah, R. C., 381. Shigehara, H., 386. Shoppee, C. W., 376. Siddhanta, S. K., 361. Siebert, H., 361. Siedel, W., 382, 388, 395. Singb, A., 377. Singh, M., 377. Singh, M., 377. Singh, M., 379. Späth, E., 364, 381, 382, 398. Spillmann, M., 379, 380. Spinks, A., 391. Staudinger, Hansjürgen, 349. Staudinger, Hermann, 349. Steger, L., 391. Steignann, A., 403. Stein, W. H., 403. Stein, W. H., 403. Stein, P., 385, 387, 398. Stoll, A., 399, 400. Sugasawa, S., 386, 387. Szeghö, F., 404. TARNOKY, A. L., 359. Tatsuta, H., 380. Tenow, M., 352. Theis, K., 352. Tietz, E., 359. Tobin, L. H., 361. Trautz, M., 349. Trifonova, K. B., 404. Trivedi, P. L., 381. Troger, H., 364. Tulus, M. R., 383. Turner, C. W., 401. Turner, H. S., 361. VALKOLA, A., 351. Vastagh, G., 404. Venkataraman, K., 381. Verghese, T. G., 354. Virkar, V. V., 381. Voegeli, R., 366. Voigt, G., 367. Wacek, A., 362. Wagner, H., 376. Wagner-Roemmich, M., 388, 390. Webster, M. F. H., 403. Weikert, H., 402. Welleba, H., 363. Wessely, F., 363. Westphal, O., 254. Wettstein, A., 377. Weygand, F., 355. Whitehead, F., 360. Wieland, H., 395. Wieland, T., 355. Wild, H., 373. Wihelms, A., 355. Williams, E. F., 404. Winkel, A., 361. Winker, F., 388, 395. Winterhalder, L., 366, 368. Wyaler, E., 375. Zaki, A., 380. Zetzsche, F., 367. Ziegler, E., 365. Zinke, A., 364, 365. # JUDACTAN #### ANALYTICAL REAGENTS WITH ACTUAL BATCH ANALYSIS **ACTUAL** **BATCH** **ANALYSIS** Each Batch subjected to INDEPENDENT **ANALYSIS** before label is printed You are invited to compare the above guaranteed by the specifications of any actual batch analysis with the purities | competing maker in this Country or abroad THE GENERAL CHEMICAL & PHARMACEUTICAL CO. LTD. Chemical Manufacturers, Judex Works, Sudbury, Middlesex