EDITORIĀL STĀFF
E. L. Shaner

Editor-in-Chief
E. C. Kreutzberg Editor
A. J. Hain

Managing Editor G. W. Birdsall Enginecring Editor J. D. Knox Steel Plant Editor Guy Hubrard Machine Tool Editor Arthur F. Macconochie Contributing Editor

D. S. Cadot

Art Editor

ASSOCIATE EDITORS

G. H. Manlove W. J. Gude
W. G. Gork
New York
B. K. Price

John H. Caldwell

Pittsburgh
R. L. Hartford

Detroit
A. H. Allen
E. F. Ross

Washington
L. M. Limm

London
Vincent Delport
ASSISTANT EDITORS
J. C. Sullivan Jay DeEulis

La Verne Nock
BUSINESS STAFF
G. O. Hays

Business Manager
R. C. Jaenke

Advertising Manager
C. H. Bailey

Advertising Service
New York.......E. W. Kreutzberg B. C. Snell

Pittsburgh.. S. H. Jasper

Chicago L. C. Pelott

Cleveland. R. C. Jaenke D. C. Kiefer
J. W. Zuber

Circulation Manager
MAIN OFFICE
Penton Building, Cleveland
BRANCH OFFICES
New York.irio East 42nd St. Chicago......520 North Michigan Ave. Pittsburgh.
.Koppers Building
Detroit... .6560 Cass Ave. Washington. National Press Building Cincinnati........... 1734 Carew Tower San Francisco........inoo Norwood Ave. Oakland, Calif., Tel. Glencourt 7559 I.ondon. W..... 2 Caxton St.

Westminster, S.W. 1

Tubhished by The Penton Publishina Co.. Penton Bullding, Cleveland, Ohio. E. L. SiANER. President and Treasurer:' G. O. Hiys. Vice President: F. G. Strinenach, Sccretary.
Member. Audls Bureau of Circulations: Asso-
cinted Business Papers Inc., and National PubClishers' Assoclatlon.
Published every Monday. Subscriptlon in the United States and possesslons. Canadn, Mexico. Cuba, Central and South America, one yeur sc two years \$10; all other countries, oue year $\$ 12$ Single coples (current lissues) 25 c .
Entered as second class matter at the postoffice Copyright 1042 by the Penton Publishling Co.

Volume 110-No. 10
March 9, 1942
BEHIND THE SCENES WITH STEEL 4
HIGHLIGHTING THIS ISSUE. 27
EDITORIAL—Blueprint for More Production Now 29
NEWS
Nelson's Inspiring Message to Nation 3°
Industry Pledges Support to Nelson's Accelerated Program 32
Bethlehem's Report to Employes Stresses Need for Peak Production 33
Pig Iron Production 34
January Payrolls, Employment Near All-Time Records 35
Steelworks Operations for Week 35
Steel Expansion Program to Cost Two Billion 35
Men of Industry 3^{6}
Priorities-Allocations-Prices 3^{8}
Steel Specifications Changed To Conserve Alloys 39
United States Agrees To Aid Brazil Develop Iron, Rubber Resources 43
OPA Organization Realigned To Meet New Duties, Responsibilities 4
Rationing Program for Trailers, Trucks, Truck-Tractors Formulated 45
Two Years' Expenditures for New Steel Facilities Exceed Billion 51
go Per Cent of Steel in Canada Now in War Work 52
Heavy Steel Products Lead in Year's Production 53
Domestic Manganese Program "To Produce 600,000 Tons Annually" 56
"Majority in New Labor Force Must Be Women" 57
WINDOWS OF WASHINGTON 40
MIRRORS OF MOTORDOM 47
THE BUSINESS TREND 59
TECHNICAL
Job Instructor T'raining 62
Aircraft Drop Forgings-By A. H. Milnes 64
Conversion of Porcelain-Enameling Furnaces ta War Work 68
Converts Toy Factory to War Production 70
Abrasive-Disk Cutting Wastes Little Metal-By Arthur F. Macconochie 88
loining and Welding
Automatically Welded Seal Withstands 1125 Pounds Pressure 94
Weldability-By Harold Lawrence 72
Progress in SteelmakingManufacture of High-Quality, Low Cost Steel (Deoxidation) - By Paul J.McKimm76
A Lighter Weight Cast Iron Mold Stool-By William W. Bergman 86
Materials HandlingWell Planned Materials Handling Aids Contractor To Get Jump onWar Work
Metal FinishingAutomatic Metal Spraying Equipment Finishes Aircraft CylindersQuickly92
INDUSTRIAL EQUIPMENT 98
HELPFUL LITERATURE 107
MARKET REPORTS AND PRICES 109
CONSTRUCTION AND ENTERPRISE 128
INDEX TO ADVERTISERS 138
PRODUCTION•PROCESSING•DISTRIBUTION•USE

was born in Worcester County, Massachusetts, in 1821. Typically
American in its Service to Humanity, this great institution is also typically American in its call for your help - without compulsion.

Plan to keep giving - generously . . . Send your contributions to your local chapter.

MORGAN
CONSTRUCTION
COMPANY

H I G H L I G H T I N G THIS ISSUE OF ゴ『 巴

Abstract

Manufacturers are urged to read，again and again，the message which Donald M．Nelson broadcast to the public last Monday night．Steel （pp．30－32）prints it in full．He asked for a 25 per cent increase in war production with exist－ ing facilities－but he did much more than that． His address，in the opinion of E．L．Shaner， Steel＇s editor－in－chief（p．29）＂was by all odds the most practical call to action which free people have heard or read in this war．＂Assign－ ment of production quotas with day－by－day score－ boards in each shop，the establishment of awards to meritorious workmen，with messages and speeches from the soldiers and sailors who use the weapons to the workers who make them are measures calculated to inject vitality in the pro－ duction drive．

Steel warehouses are prohibited from accept－ ing deliveries in excess of assigned quotas（ p ． 42）；ratings covering mining machinery repairs have been elevated；cutting

Zinc Pool Is Growing

 tool manufacturers must use the Production Requirements Plan after April 1；warning is given of a shortage in chlor－ inated solvents；the zinc pool is growing rapidly in size；lead pool for March is 15 per cent of January output；use of jewel bearings is fur－ ther restricted；copper will be available to the railroads．．．．Conservation Order M－81 which restricts tin and terne plate can sizes has been modified so as to permit shipment of cans of any size if already manufactured or in process on Feb． 11.WIPB officially sponsors the new AISI－SAE standard steels（p．39）；bus manufacturers no：\％ have an industry advisory committee．．．．OPA is reorganizing to meet new

Standard Steels
 Made Official

 duties and responsibilities（p． 44）．．．．The United States will help to develop Brazil＇s iron and rubber resources（p． 43）．．．．Rationing of trailers，trucks，truck． tractors has been formulated（p．45）；building materials are under new restrictions．．．．Thedomestic manganese program is expected to re－ sult in annual production（p．56）of 600，000 tons． ．．．Steel strapping carries an A－10 rating under P－100（p．53）．．．．Vastly improved tanks are seen as forthcoming in the near future（p．47）． ．．． 1942 Lake ore movement is expected（p．50） to top $85,000,000$ tons．．．．More government in－ quiries and subcontract opportunities are an－ nounced（p．55）．．．．The famous Wrigley sign in Times Square succumbs to the scrap drive （p．58）．

WPB＇s job instructor training program is aimed to train（ p .62 ）supervisors in the art of so instructing both new and old hands as to get them into maximum war produc－

Instructor Training

 tion quickly．．．．Only minor adjustments are required to swing idle porcelain enamel－ ing furnaces（p．68）and the facilities of a toy factory（p．70）into war pro－ duction．．．．Paul J．McKimm（p．76）details the deoxidation phase in the manufacture of high－quality，low－cost steel．．．．A newly de－ signed lighter weight cast iron stool described by William W．Bergman（p．86）bezides giving more service uses about 32 per cent less cast metal．．．．Aircraft cylinders are now being iurned out on a high production basis by auto－ matic metal spraying equipment（p．92）：a two－ machine line now is turning out a finished part every 75 seconds．In a fifth article dealing with forgings，A．H． Milnes（p．64）takes up the subject in relation to aircraft，pointing out factors to be considered in turning out quality drop

Aircraft Forgings

 forgings．．．．Harold Law－ rence（p．72）discusses meas－ uring of weldability by the use of the hardness test，and tells what must be done to interpret results prop－ erly．．．．A well planned materials handling set－ up（p．83）enabled a West coast contractor to get into war production 4 months from the time a contract was awarded：．．．Arthur F．Mac－ conochie（ $\mathbf{p} .88$ ）relates the advantages of abra－ sive－disk cutting of steel and hard metals．
Whenever

Steel is Needed.

In peace and wat, in good times and bad-year-in year-out for a century Ryerson stocks of steel have been American industry's prompt, dependable source of supply.

Today, war production requirements come first but Ryerson is serving, too, the needs of other essential industries from which flow the goods that feed, clothe and house the nation,- that supply its power, its minerals and other raw materials all part and parcel of the mighty war endeavor.

The two-fold Ryerson function is to supply steel

Joseph T. Ryerson \& Son, Inc., Chicago, Milwaukee, St. Lovis, Cincinnati, Detroit, Cleveland, Buffalo, Boston, Philadelphia, Jersey City. where needed, without delay - and to aid in the most effective, intelligent use of that steel in every way that experience and skill can suggest.

Wartime demands have made inroads in Ryerson stocks, but Ryerson resources are at your command, to assist you in meeting any problem of steel supply or application.

fuEL

March 9, 1942

BLUEPRINT FOR MORE PRODUCTION NOW

No American can afford to ignore or to discount the tremendous importance of the message which Donald M. Nelson addressed to the public last Monday night.

It was by all odds the most practical call to action which free people have heard or read during this war.

Most of the famous utterances of Winston Churchill and Franklin D. Roosevelt have dealt with lofty ideals and matters of broad policy. These eminent statesmen have been forced to temper their remarks to meet the exigencies of delicate diplomacy abroad and embarrassing politics at home. For this reason --perhaps--their speeches, while deserving the highest rating as state papers, have fallen short of inducing the people of free nations to shake completely their attitude of complacency

Mr. Nelson, unrestrained by considerations of state and party, was able to speak more plainly. He went right to the heart of the foremost problem of the hour, which is more production now by American industry.

With straight-from-the-shoulder word punches, he drove home the basic idea that anyone who is not doing every single thing within his individual power to see that the planes, tanks, guns and ships-which the boys in Bataan and in the Indies need so desperately--are getting into their hands faster and in ever-increasing quantity, is in reality "helping the Axis win this war."

Mr. Nelson announced a new, intensive production drive. Shop quotas will be established and every plant will be asked to keep a "production scoreboard." He hopes to develop inter-plant competition--the popular American sport of outdoing the other fellow in performance.

It will work. It worked marvelously well in World War I. It will work now despite restrictions imposed by law and custom in recent years.

Mr. Nelson will arrange for men on the battle line to tell men on the production line how equipment of their construction performs under fire. This is a capital idea. It will do more for morale than 50 Acts of Congress and a dozen fireside talks.

Mr. Nelson asks for a 25 per cent increase in production with existing facilities. If every one of us does his level best, we will make it 30,35 or 40 per cent. The WPB chief reminds us that we have but 10 months- 304 days (now shrunk to 297 days)--to achieve our goal for this critical year.

Time enough for American industry, imbued with the right spirit, to help all Americans to rediscover America in 1942!

Editor-in-Chief

Work as You Never Worked Beiore!

Nelson's Inspiring Message to Nation

EDITOR'S NOTE: The radio speech March 2 by Donald M. Nelson, chairman, War Production Board, is reproduced here in full because it generally is considered to be the "blueprint" and keynote for industrial operations in the critical "ten silver months" ahead

My fellow Americans:
I have come to this microphone tonight to talk about one thing, particularly to the managers and the workers of American industry. It is deadly serious. I want to ask you a question I have been asking myself:

Are you doing everything within your power today to put more weapons into the hands of our fighting men?
I emphasize today because the arms we produce tomorrow, next month or next year are not going to the men who need them today, and they need them desperately today.

Let us look at the other side of the picture for a minute. In Germany, in Japan, in the conquered countries, millions of men are bound to their tasks under threat of death, under threat of concentration camps, under the whip and the goad of the secret police.
We are not fighting enemies whose production is free. We are fighting enemies where management is force and where labor is forced. Both, upon pain of death, must do exactly what they are told and exactly as much as they are told. They are actually slaves. That is what we are up against-a Germany and a Japan whose production is at its peak.
So, I ask you-all of you free men and free womencan we beat it? The answer is to be found particularly in what you men in the war production plants-management and labor-what you do about it now-today.

"What Have You Done About It Yourself?"

I have talked to men who blame labor for lack of production. I have talked to labor leaders who blame management for lack of production. I have talked to managers who blame their suppliers. I have talked to suppliers who blame scarcity of materials. And I have talked to a lot of people who blame Washington.
My answer to each of these people has been: What have you done about it yourself?
To the business men who blame labor, I say:
What have you done to settle the problem forthrightly instead of merely complaining? Have you really tried to remove the causes of just complaints against working conditions in your plant?
To the representatives of labor, I say: Have you really gone to the limit to adjust your differences without stopping production?

To those who whine that Washington hasn't done enough for them I say:
Where is your initiative? Where is your enterprise? You are always talking about preserving free enter-
prise. What is it? Do you usually get business by waiting for the customer to call you and ask you to take an order? Have you made a thorough study of what the customer wants? Are you prepared to convert your machinery to those needs? Can you show us what you can do? There isn't time for the Army and Navy to determine what every plant can make. There must be initiative and enterprise at the other end of the transaction.

If you can show the Army and Navy what you can do and are prepared to do it, most of the problem is solved.

Almost without exception, every one of these people I have talked to feels the urge to do more. The trouble is not with their intentions. The trouble is rather too strong a tendency to pass the buck-to blame the other fellow. Work is slowed down, production is lost and the men in the foxholes with MacArthur, the men in the Indies, our boys on land and sea and in the air are the first to suffer, and suffer death.

. . . "Helping the Axis Win This War"

So I ask industry; I ask the men in the plants; I ask all of you who can contribute so much to ever greater production-look into your hearts, look into your minds-be honest with yourselves individually and answer my question:

Are you doing today every single thing within your individual power to see that the planes, the tanks, the guns and ships, the ammunition and equipment those boys need desperately is getting into their hands faster and in ever-increasing quantity.

I'm not talking tonight merely to hear the sound of my own voice. Nor am I appealing to you. I am telling you that unless we can answer that question with a loud, positive yes, we are, in reality, helping the Axis win this war.

It is the production line that supplies the battle line. But it is on the battle line that freedom is being defended-where your right to free enterprise; your right to collective bargaining; your right to criticize; your right to worship as you please-it is on the battle line that those things you hold more precious than all else are being defended. It is on the battle line that men-fathers, sons, brothers, boys you know, have pledged their lives to this thing for their country, for you and for me. And their success in this heroic undertaking depends entirely upon what we-you and I-here at home-you and I on the production linedo to give them the stuff they need to destroy the enemy.
Let's put it another way. Have you clenched your

Donnld M. Nelson, Delivering lis Radio Address
fists, impatient to get at the Japanese for what they did at Pearl Harbor? How many MacArthurs does it take to make you mad. Doesn't your blood run faster as you read of the undersea raiders operating within a forpedo's length of our own shores?

If these things have left you indifferent; if these things have not brought you to your feet alert and mad, determined that they shall stop and that those who inflict this bloodshed upon us shall be destroyed, then you are not worthy to be called American.

But I' know that most of you are mad. So, I ask you to put that heat and indignation-that fight-into that job of yours, whatever the job may be. It doesn't matter whether you tend a lathe, boss a production line or manage the plant. If you, every one of you, start tomorrow putting that extra bit of drive; that extra head of steam; that extra measure of determina. tion into the job at hand, we can win with a minimum loss of blood and treasure.

In doing that we carry the fight into our plants. We then move faster toward our goals, by which I mean the 60,000 military planes, the 45,000 tanks, the 20,000 anti-aircraft guns and the $8,000,000$ tons of merchant ships the President has said we must have this year.

"Greatest Production Job in History"

This is the task before us. It is the greatest production job in history.. And it must be done this yearthe year 1942. We have but ten mpnths to go- 304 daysin which to strengthen our striking power to a point where victory can come within our grasp.

Think for a moment of 304 days- 304 days out of three score years and ten the life of a man. In the lives of men now living those 304 days immediately ahead can shape the whole course of history for a thousand years, and shape it to our way of life.

Is it not then worth while to give up all else but war and production for war during those 304 days? Could any right, privilege, profit or material possession of which we voluntarily deprive ourselves during those 304 days to gain our end compare with what we gain by so doing? Failure to achieve that end can mean the end of freedom throughout the world for centuries to come.

Can we not understand what that would mean not only to those now living but to generations yet to
come? I think we can and by dedicating ourselves wholly to this task we'll make those goals-yes, and exceed them.

To help us do all this and to give us the genuine feeling of participation that we need, the President has asked us for a great production drive. I am, therefore, writing the management and workers in plants engaged in primary war production asking them to set up joint management-labor committees within each of those plants to run this drive to push production up to and beyond the President's goals.

And right here I want to say that this is no sly scheme to speed up men and machines for profits' sake. It is instead a job in which we all can take a hand, and share in its success. Out of it must come greater production per machine and much greater use of each machine now operating. We cannot always wait for new ones.

"We Must Have Full, Three-Shift Operations"

We must have full, three-shift operations of those we have. We cannot be satisfied until we've come as close as possible to the limit of 168 hours of work per machine per week.

In doing that I am confident we can increase production at least 25 per cent on existing equipment. That we must do and let no man fear that by putting more steam into his effort he'll soon run out of work. It is because there is so much yet to do that we must move faster than we have thus far.

To bring the goals closer to men and management I am assigning production schedules to the primary producers. They'll get a quota for the drive. These quotas are based on what we know a plant can do to meet the President's goals.

They are not, however, the most the plants can do. No man can set a limit upon our will and determination once we have resolved to do our utmast.

That each man may measure his determination visually I am asking the plants to erect a production score-board within the shops upon which each schedule can be laid out. There every man can see what lies ahead each day. In fact the joint committee can mark each shift's progress toward the goal.

"Every Workman Can Be a Member of the Team"

I want quotas broken down for each division within the plant so that every man working on every contract can be a member of the team.

On the way he does his job depends the fate of all of us--the fate of our soldiers, sailors and airmen, of our families and friends.

Upon the way that job is done rest all our hopes for future years.

We Americans love competition-the matching of wills and skills in sport and trade. Here in this plan, we have in effect the greatest competition of all time in which the wills and skills of American industrymen and management-can really make freedom ring around the world.

In this production drive I am also asking the joint committees in each plant to provide machinery whereby each man may submit ideas and suggestions for doing the job better. These ideas and suggestions will be studied each week by the committees. Those found sound will be forwarded to Washington. Our engineering staff will examine them. Those proved valuable will be made available to other plants. Thus we tap a vast new reservoir of ideas, welding our productive genius into a united effort for victory.

Our Army and Navy have systems of commending merit of high order in the line of duty. There is also merit of a high order on the production line in this war. I have therefore proposed that the production soldier shall also be recognized for meritorious service to his country.

Individuals making special contributions to greater production will, upon recommendation of the local plant committees and subject to review by a national board, be given awards of merit.

As I have studied our production problems, it has seemed to me unfortunate that the men in the war
plants so seldom have an opportunity to know how the plane, the tank, gun or ship they have constructea, nas performed.
Consequently, I am asking the Army and the Navy to arrange for men at sea and at the front who are using these instruments of warfare, to report directly to the men who built them. I want them to tell us how the job's been done. They are the only ones who really know. To do this we will use every possible means to extend a line of communication between the plants and the theaters of war.

Here in Washington, we can but outline the basic framework of this production drive. We can give guidance and make suggestions. Success depends upon the men and women in industry - the men and women out there on the production line. The war can be lost in Washington. It cannot be won here. That can be done only on the battle lines that now extend around the world and on the production lines that extend across this nation. Those production lines will determine whether we hold the battle lines and whether ultimately we crush the enemy.
Hard months are ahead. You know that. The materials for war are for the most part materials of peace. Peace has given way to war and many of the materials which gave us those conveniences we have come to take for granted must now be devoted ex-
clusively to the production of guns, tanks, planes, etc.
In the months ahead there will be privation and there will be hard work. Yet, if I understand the temper of the American people, there will not be complaint or protest if the job is well done. But to do it well, those of us on the production line have got to get into this fight now. It's a fight in which no holds are barred. Our enemy has suspended all the rules. We can't fight by the book. For that reason nothing can be allowed to delay production.
There must be sweat and action on the production line to match the blood and action on the battle-line.
We must train our sights on 168 hours per week of machine-time to match the 168 hours per week of ma-chine-gun time.
The men of the production-line dare do no less than the men of the battle-line.
So, in closing, let me remind you once more that the slaves of Germany and the slaves of Japan are producing arms at a peak which we must equal and then surpass-quickly.
I therefore say to you free men and free women on the production-line-to the free management of American industry-work as you've never worked before that we may defeat an enemy more ruthless, brutal and bloody than we ever faced before.

Industry Pledges Support to Nelson's Accelerated

War Materials Program

FURTHER increase in the tempo of war materials production was undertaken by steel and metalworking companies last week, in line with program outlined by WPB Chairman Donald M. Nelson in his address to the nation March 2.

Mr. Nelson ordered an immediate speedup in arms production to better the President's goal for planes, tanks, guns and ships, and proposed round-the-clock operations to boost output on existing machines by 25 per cent.

A four-point program to achieve the goal was advanced:

1. Establishment of joint labormanagement committees in each war plant to direct production "up to and beyond the President's goal."
2. Assignment of production quotas to each primary producer, with day-by-day scoreboards in each shop.
3. Awards of merit to workmen "making special contributions to greater production."
4. Speeches and other reports, by soldiers and sailors, who use the weapons, to the workmen who build them.

Some of these proposals already are in effect in plants producing arms. A favorable reaction by industry and labor to Mr. Nelson's address indicates they will be instituted in others in the immediate future.

Proposal for the joint shop committees came as a surprise to some plant managers, due to seeming similarity to the proposai by CIO

President Philip Murray for joint labor-management planning of production. Analysis of Mr. Nelson's speech, however, reveals a fundamental difference in the two proposals. Where the Murray plan contemplated co-operative planning at

the top and on an industry basis, the Nelson program proposes closer teamwork in the shop, where the work is done, for the sole purpose of speeding up war production.

With the other proposals, this involves no more than the ordinary ingredients for teamwork that many companies have employed for years.

Many industrial leaders immediately pledged full support to the program. Some said they would not only meet Mr. Nelson's goal but would exceed it.
B. F. Fairless, president, United States Steel Corp., wired the war production chieftain as follows:
"Every man and every faculty in United States Steel is squarely behind the production program outlined in your radio address last night. Armed forces fighting to defend the liberties of the United Nations can count on the production soldiers of United States Steel to back them to the limit until final victory is won."

PRODUCTION indicator in one of the American Car \& Foundry Co.'s plants on war work. Daily output is shown by means of lights. A contest was held recently to decide on a slogan. and a machinist received a prize for submitting the winner: "Volume for Victory"

Bethlehem's Report to Employes

Stresses Need for Peak Production

"WE CANNOT all serve in the front lines but we can all help to see that America's war production can never be called 'too little and too late'" said E. G. Grace, president, Bethlehem Steel Corp., in the company's annual report to employes.

Bethlehem has assumed responsibility for the manufacture of over $\$ 1,000,000,000$ worth of vessels and war materials and is currently adding to these responsibilities, Mr. Grace stated.

Company's average rate of operations, ingots and castings, in 1941 was 101.5 per cent, against 93.3 per cent in 1940. Ingot capacity rose to $12,700,000$ tons per year, an increase of 850,000 tons, representing five times its capacity in World War I.
"Every forward surge of the tide of aggression has demonstrated that victory almost inevitably goes to the side with the greatest mass of equip. ment," said Mr. Grace in an appeal to employes for acceleration of war output. "That makes production a vital phase of the fight to preserve our liberties. Furthermore, this country can't set its sights too high on war material production. The excess beyond that necessary to win will bring victory with less expenditure of human lives.
"In this great work every one of the 200,000 employes is playing a vital part. We are assuming almost daily additional responsibilities for more production in various lines needed by our government and allies
for successful prosecution of the war. That places a high responsibility on each of us to see that our respective duties are carried out with the utmost efficiency and speed. It is urgent that equipment be rushed to our fighting forces. The sooner they can start carrying the war to the enemy the sooner victory can be won and the wastage of war stopped
"Never before in the history of America has there been such urgent need to accomplish great feats of production in a hurry. I am confident that Bethlehem will more than measure up to any job it may be called upon to handle."
Mr. Grace pointed out that from
the outbreak of this war up to the time of America's involvement approximately $\$ 200,000,000$ had been authorized for facilities to equip Bethlehem plants for their part in the growing emergency, $\$ 95,000,000$ of which was for facilities to be owned by the government but operated by Bethlehem. Since then over $\$ 150,000,000$ more has been authorized for facilities to handle the corporation's increased production under war conditions, $\$ 126,000,000$ of which is being supplied by the government.
A total of 45 ships slid down the ways in Bethlehem shipyards during 1941 and it is expected that launchings will average two per week in 1942, the report states. Beth lehem's shipbuilding program includes not only naval vessels, but also mass production of "Liberty Fleet" ships of which 62 were on order in 1941. Orders from the U. S.
(Please turn to Page 125)

Mr. Grace Writes a Caption

"This country can't sel its sights too high on war material production." said Mr. Grace. "The excess beyond that necessary to win will bring victory with less expenditure of human lives"

Daily Average Pig Iron Output in

February Second Highest on Record

PIG IRON production in February aggregated $4,503,962$ net tons. This was a drop of 454,823 tons from the January figure. However, February was a 28 -day month; its daily average rate of 160,856 tons was the second highest record in history and was exceeded only by the December rate of 161,774 tons. In F'ebruary the daily rate was 6.81 per cent above that of January.
The February production was un 6.58 per cent from February of 1941, and up 36.30 per cent from February of 1940 , thus demonstrating the rapidity with which capacity has increased over the past two years.
The two-month total for 1942 was $9,462,747$ net tons, compared with 8 ,873,059 for 1941 and $7,328,924$ in 1940. This is an increase of 6.6 per cent over 1941 and 29.07 per cent over 1940.
The 1942 daily average so far has been 160,408 , against 150,284 in 1941 and 121,884 in 1940.
The average operating rate in Fêbruary was 97.22 per cent of ca-
pacity as of Jan. 1, 1942, being fig. ured on the basis of 28 days' production in comparison to the daily capacity of 165,463 net tons.

Total stacks at the end of February numbered 232. Stacks active on the last day of the month numbered 220 , compared with 219 at the end of January and 218 at the end of December.

Merchant iron, including ferromanganese and spiegeleisen, was produced in the amount of 621,829 net tons in February, or 13.80 per cent of the total. So far in 1942 it has been 13.89 per cent of the total. In all of 1941 it averaged 14.58 per cent of the total, thus indicating a trend toward a lower percentage for merchant iron.
Only change in the operating picture that developed during the month was the blowing in of the Provo, Utah, stack.

Rustless Iron \& Steel Corp. reports net profit for the year of $\$ 2,334,627$, equal to $\$ 2.42$ a share

PIG IRON STATISTICS

Abstract

${ }^{1}$ First half, 1942 percentage of capacity is based on capacity of $60,393,980$ net tons, as of Jan. 1, $1942 .{ }^{2}$ Second half percentages based on $57,937,170$ net tons as of July 1, 1941, and first half on 57,609,590 net tons as of Jan. 1, 1941. ${ }^{3}$ Based on 55,628,060 net tons as of Dec. 31, 1939. 'Based on 56,242,790 net tons as of Dec. 31, 1938. Capacities by AmerIcan Iron and steel Institute.

	1942	1941	1940
Jan.	4,958,785	4,666,233	4,024,556
Feb.	4,503,962	4,206,826	3,304,36S
Two mos. total.	9,460,747	8,873,059	7,328,924
March		4,702,905	3,270,575
April		4,340,555	3,139,043
May		4,596,113	3,497,15'
June		4,551,040	3,813,092
July		4,766,216	4,060,513
Aug.		4,784,639	4,234,576
Sept.		4,721,337	4,172,551
Oct.		4,860,033	4,437,725
Nov		4,707,194	4,397,656
Dec		5,014,995	4,542,864
Total.		55,918,086	46,894,676

FERRLAIR IRON IPRODLCTION

-Includes ferromanganese and splegelelsen.

on 926,212 common shares, after federal income and excess profits taxes. Company paid $\$ 1,275,993$, or $\$ 1.28$ a common share, in 1940.
In 1941 period, federal income and excess profits taxes totaled $\$ 5,325,000$, compared with $\$ 1,274$, 000 in preceding year.

Effect of Freight

Rate Increase on

Steel Studied

WASHINGTON
FULL reaction of the steel industry to the railroad freight rate increase authorized by the Interstate Commerce Commission last week is not yet measured in terms of price changes for iron and steel.
The increase is expected to take effect March 18. It is 6 per cent on finished iron and steel products, pig iron and scrap; 3 per cent on furnace slag other than ground open-hearth basic slag; and 4 to 6 cents per gross ton for coal and coke. The rates on iron ore are not advanced.

Inclusion of scrap caused considerable surprise in the industry, due to the difficulty experienced in finding amounts sufficient for current needs, and the long distances over which much of it must be carried to the furnaces.
As steelmakers studied the decision, opinion was divided as to its ultimate effect. However, they generally were inclined to accept the increases, seeing little possibility for an appeal, since this was a revenue and not a rate case.

Chicago district producers were quoted as saying they saw little justification in the rise for higher steel prices at this time.
Pittsburgh executives saw indications of a 15 to 20-million-dollar increase in costs to the entire industry, mainly on inbound materials, since more steel is now moving on an f.o.b. mill basis than normally.
A Cleveland mill official predicted a 12 to 15 per cent increase in costs, with a total freight bill increase to the mills of $\$ 20,000,000$ to $\$ 25,000,000$.

This year capacity steel operations have whittled iron ore stock piles to the point where companies have been forced to resort to the more expensive overland haul, where normally this traffic is moved by vessel. One traffic expert inclines to the belief that this factor was taken into consideration when ore rate increases were waived.

Steel Expansion

Program To Cost

Two Billions

WASHINGTON
WPB steel experts estimate the steel expansion progam, from 1940 through completion of the program, will cost about $\$ 2,000,000,000$. This figure includes both government and private expenditures, and is some. what higher than the estimate for 1941 and 1942 spending by the American Iron and Steel Institute (see page 51).

Kequests for expansion projects still are being received by WPB. These are expected to continue throughout the emergency. Current requests are largely for electric furnaces, and facilities for making wire and aircraft tubing.

January Payrolls, Employment Ne'ar

All-Time Records

PAYROLLS of the steel industry in January totaled $\$ 118,785,000$, an increase of $\$ 22,551,000$, or more than 23 per cent over the total of $\$ 96,234$, 000 for January last year, according to American Iron and Steel Institute.
In December, 1941, payrolls totaled $\$ 117,221,000$. The amount for January this year was only slightly below the record for any month, $\$ 118$,890,000 last October.
Wage-earning employes in the industry received an average of 99.2 cents an hour, or nearly 15 per cent more than the average of 86.6 cents an hour in January of last year. In December, 1941, the average was 99.9 cents an hour, the highest average wage ever recorded.
Wage earners worked an average of 39.2 hours per week in January, the same as in January, 1941. In December, 1941, wage earners averaged 38.2 hours per weak.

Total employment in the steel industry during January rose 5000 to a toal of 651,000 . This was 53 ,000 more than the 598,000 that were employed in January 1941. In December, 1941, 646,000 were employed in the industry.
The number of steel employes in January was only 3000 less than in last August, when the record of 654,000 employes was established.

PRODUCTION .

PRODUCTION of open-hearth, bessemer and electric furnace ingots last week advanced $1 / 2$-point to $96^{1 / 2}$ per cent. Three districts gained, two lost and seven were unchanged. A year ago the rate was 97% per cent; two years ago it was $63^{1 / 2}$ per cent, both computed on the basis of capacity then existing.

Youngstown, O.-Operations re mained at 91 per cent last week, with 71 open hearths and three bessemers active. Two more open hearths will be in operation this week, bringing the rate to 93 per cent.

Central eastern seaboard-Production held at 90 per cent for the seventh week, though scrap supply is precarious.

Chicago-Advanced $1^{1 / 2}$ points to $1031 / 2$ per cent. Five producers made gains and one receded.

Detroit-Held steady at 84 per cent in spite of narrow margin of scrap supply.

Birmingham, Ala.-Unchanged at 95 per cent, with 23 open hearths active.

District Steel Rates

Percentage of Ingot Capacity Engagea In Leading Districts

	Weak ended Mar. 7	Changé	Same week	
Plttsburgh	95.5	None	98	(1)
Chicago	103.5	+ 1.5	100	60
Eastern Pa.	90	None	95	60
Youngstown	91	None	97	41
Wheeling	85.5	- 1	88	90
Cleveland	91.5	$+2.5$	91.5	73
Bufealo	79.5	None	93	55.5
Birmingham	95	None	90	78
New England	95	None	92	75
Cincinnatl	94.5	$+7.5$	95	54.5
St. Louls	78	-10.5	93	65
Detroit	84	None	92	78
Average	96.5	$+0.5$	97.	63.5

*Computed on steelmaking capacity as of those dates.

MEN of INDUSTRY

WILLIAM S. FORD, president of the management engineering firm of Wm. S. Ford Inc., Milwaukee, has joined Trundle Engineering Co., Cleveland, as vice president in charge of the latter's Chicago office and operations in that territory. S. A. Peck, vice president, heretofore in charge at Chicago, has been transferred to Cleveland and will be active in all phases of the company's operations. The clientele of the Ford organization will be served by Trundle Engineering under supervision of Mr. Ford, who will maintain his Milwaukee office.

Howard G. E. Smith has been elected a director, Fedders Mfg. Co., Buffalo, to fill the vacancy created by death of Louis F. Fedders. Mr. Smith is the company's attorney.

Richard G. Taylor has joined the Scaife Co., Oakmont, Pa., as assistant to A. V. Murray, secretary. He formerly was associated with LaSalle Steel Co., Chicago, in a sales capacity.

James L. Mahon, for 30 years foundry superintendent at Detroit for American Car \& Foundry Co., and associated with the company since 1898, has been appointed Detroit district manager.

Harold R. Wegner, formerly metallurgist, Brown-Lipe-Chapin Division of General Motors Corp., Syracuse, N. Y., has resigned to become metallurgist and plant superintendent, Syracuse Heat Treating Corp., Syracuse, N. Y.

George A. Fowles has been named a sales engineer, synthetic sales division, B. F. Goodrich Co., Akron, O., with cable and wire insulation problems as his special field.

Howard C. Waldron has become superintendent of foundries, Nordberg Mfg. Co., Milwaukee. He succeeds John H. Champion, who has retired after 30 years with the company.

George T. Weisbeck has resigned as vice president and general manager, Van Buren Products Co., to become president, Niagara Ship-
building Corp., Buffalo. He succeeds K. Bruce MacDonald, who has resigned to devote his full time to the presidency of Buffalo Pressed Steel Co.
A. Donnally Armitage has been elected president, J. H. Williams \& Co., New York and Buffalo, succeeding the late J. Harvey Williams. Willard C. Kress has been named vice president in charge of manu-

William S. Ford
facturing, while E. J. Wilcox has become vice president in charge of stock products sales. Hugh Aikman and Clark M. Fleming have been re-elected secretary and treasurer, respectively. Mr. Fleming has also been elected a director.
T. F. Barton, manager, New York district, and W. B. Clayton, district manager at Dallas, Tex., General Electric Co., have been elected commercial vice presidents of the company, retaining their respective positions.
F. B. Bell, president of Edgewater Steel Co., Pittsburgh, since organization 25 years ago, has been elected chairman of the board of directors. He has been devoting most of his tirne to work in the War Production Board and asked that he be relieved of the detailed duties of president.
D. S. Bell was chosen president, and J. H. Baily, D. W. McGeorge, and W. F. Carey were re-elected to the offices of vice president, secretary;
and treasurer, respectively. M. A. Smith was elected to the new office of vice president and general manager. J. F. Manns was elected assistant secretary; D. S. Bell and W. IF. Carey, as directors.

Fred H. Ragan Jr., formerly purchasing agent, White Motor Co., Cleveland, and the past two years director of sales and purchases, Orrville Body Co., Orrville, O., is now associated with Clark Equipment Co., Battle Creek, Mich., as purchasing agent, railway division.
C. J. Stakel has been appointed assistant manager, Lake Superior iron mines, Cleveland-Cliffs Iron Co., Cleveland. Stanley W. Sundeen has been made assistant superintendent at Cliffs shaft mine, succeeding Mr. Stakel.

Walter Larkin, senior inventor, Fidelity Machine Co., Philadelphia, has been awarded a certificate of merit by Franklin Institute, Philadelphia, "in consideration of his admirable machine designing involving the ingenious application of known mechanical movements to the invention of circular knitting machines of special types."

Robert D. Williams has been named a research engineer, Battelle Memorial Institute, Columbus, O., where he will assist in the institute's welding research. He formerly was a member of the faculty in the department of mechanical engineering, University of Illinois.
E. S. Coldwell, vice president, Ford, Bacon \& Davis Inc., New York, has been elected a director.

Fred L. Thompson, vice president in charge of engineering department, Illinois Central railroad, Chicago, retired March 1 after 46 years' service. Charles H. Mottier, heretofore chief engineer, has been named Mr. Thompson's successor.
$+$
Frank S. MacGregor, director, priorities division, E. I. du Pont de Nemours \& Co., Wilmington, Del., has replaced Milton Kutz as assistant general manager, R. \& H. chemicals department. Mr. Kutz has been on

leave of absence for several months due to ill health, and upon his return will assume new duties as sales advisor and assistant to general manager, R. \& H. chemicals department.
C. M. Mason has been appointed district sales manager at Cleveland for Jones \& Laughlin Steel Corp., Pittsburgh. He succeeds E. A. France, who has retired after 37 years of service. Since October, 1938, Mr. Mason has been district sales manager in Buffalo. H. B. Shepherd, associated with Jones \& Laughlin's Cleveland office since 1929, has been named assistant district sales manager there.
E. H. Hughes, since April, 1938, district sales manager at St. Louis, has been transferred to Buffalo as district sales manager, while G. G. Marshall, identified with the Buffalo office since 1934, has become assistant district sales manager there.
L. S. Berkey has been named district sales manager in St. Louis. Since 1940 he has been resident manager of sales in Toledo, O . He has been succeeded in that post by E. S. Lewis, the past several years in the corporation's general sales office at Pittsburgh.
P. B. Turner has been made manager of export sales in New York. Since 1938 Mr. Turner has been special representative in the New York office. W. R. Spindler has been named assistant to manager of export sales.

Fred H. Lewis, heretofore district sales manager in the Chicago territory for Wall Chemicals Division, Liquid Carbonic Corp., has been appointed sales manager of that division.

Forrest E. Ricketts, vice president, Consolidated Gas Electric Light \& Power Co., Baltimore, has been awarded the 1941 Lamm medal of the American Institute of Electrical Engineers "for his contribu-
tion to the high reliability of power supply systems, especially in the design of apparatus for selective relaying and circuit reclosure." The medal and certificate will be presented to him at the annual summer convention of the institute in Chicago, June 22-26.

Byron A. Boynton has been appointed general credit manager. Pittsburgh Coal Co., Pittsburgh, and its subsidiaries.

Walter Williams, formerly in the Chicago sales territory for Manning, Maxwell \& Moore Inc., Bridgeport, Conn., has been assigned to the St. Louis district, replacing Harold Moore.
C. S. Craigmile, vice president, Belden Mfg. Co., Chicago, has been elected president, Greater Chicago Safety Council for the fourth consecutive year.

George P. Lozier, superintendent, Electric Furnace Co., Salem, O., has been re-elected president, Salem Manufacturers' Association.

Irving L. Simmons, since 1909 bridge engineer, Chicago, Rock Island \& Pacific railroad, Chicago, retired March 1 after 39 years in the engineering department.
E. E. Walsh, general purchasing agent, Pennsylvania railroad, has been named assistant to C. D. Young, vice president in charge of real estate, purchases and insurance. E. J. Lamneck, purchasing agent, has been made general purchasing agent, while J. S. Fair Jr., heretofore assistant stores manager, has become acting purchasing agent.
S. J. Newman, president, Newman Brothers Inc., Cincinnati, was elected president for the fourth successive term of the National Association of Ornamental Metal Manufac-
turers, while Henry J. Neils, Flour City Ornamental Iron Co., Minneapolis, was re-elected president, National Association of Ornamental Non-ferrous Metal Manufacturers, and B. W. Stonebraker, Roanoke Iron Works, Roanoke, Va., re-clected president, National Association of Ornamental Iron Manufacturers, at the joint annual convention in Cincinnati, Feb. 20-21. Jim Condon, 209 Cedar avenue, Takoma Park, Washington, was re-elected national secretary of the above associations.
W. Stapley Wonham, vice president, Wonham Inc., and partner of Carter \& Co., member of the New York Stock exchange, has retired from the securities business and will devote his time to Wonham Inc., export and sales engineering firm.

Dr. Hugh S. Taylor, chairman, department of chemistry, Princeton University, Princeton, N. J., has been awarded the Longstaff medal of the Chemical Society of London. The medal is conferred every three years upon a fellow of the society "who, in the opinion of the council, has done most to promote the science of chemistry by research."

John A. Finley has been named a research engineer, Battelle Memorial Institute, Columbus, O ., and has been assigned to research in metallurgy. Mr. Finley formerly was associated with Carnegie-Illinois Steel Corp., Chicago.

James L. Caruth, Cleveland manager of National Lead Co. since 1937, has been appointed assistant manager of the Pacific coast branch at San Francisco. Ellis E. Busse will succeed Mr. Caruth as manager at Cleveland.

Eric G. Orling has been named assistant manager at Cleveland. He formerly was associated with Eagle-Picher Sales Co., Cincinnati.

PRIORITIES-ALLOCATIONS PRICES

as published in Section Two of STEEL of Feb. 23, 1942

'M" ORDERS

M-9-s (Amendment): Copper, efrective Feb. 25, 1942. Revokes proposed assignment of A-9 rating for replenishment of stocks by warehouses hantling copper and copper products. Asslgnment would have become effective Feb. 28.
M-9-c (Amendment): Copper, efrective Feb. 28, 1942. Permits use or copper for essential operating parts and essential maintenance and repair parts for railroad cars, locomotives and equipment
M-11-i: Zine, effective March 1, 1942. Sets March pool at 50% of December, 1941 , production of high grade and/or speclal high grade, 40% of all other grades of metallic zinc; 20% or December production or lead rree zinc oxide and 10% of leaded zinc oxide output.
M-15-b (Amendment): IRubber, effective March 1, 1942. Revises list of prod. ucts for which rubber and latex may be used up to certain percentages of average monthly consumption in year ended March 31, 1941, except for war orders. Use in rubber-lined tanks plpes and fittings ralsed from 100% to 140%, electricians' gloves "rom 100% to 200%, ilre and mill hose cut from 180% to 40%, suction and weld ing hose from 140% to 100%, conveyor belts from 140% to 125%
M-19 (Amendment): Chlorine, affective Feb. 25, 1942. Prohibits chlorine use in bleaching of foodsturts, wiping rags and waste, and in manufacture ol cosmeties. Other uses, except water and sewage treatment, cut 40% to 90% below consumption in year ended June 30, 1941.
M-21-b (Amendment): Steel Warchouses, effective Feh. 28, 1942. Prohibits warehouses from accepting steel deliveries in excess of thelr assigned quotas from any person or company. Permits accumulation up to 90 days or ratings higher than A-9 on dellverles to customers, Steel obtained by a warehouse on a rating higher than A-2 must be delivered on orders with simflar rating unless held at least 90 days Wire rope omitted from products to which quotas may be assigned.
M-38-f: Mead, effectlve Feb. 28, 1942 Sets March pool at 15% or January production.
M-50 (Amendment) : Jewel bearings, ef fective Feb. 28, 1942. Prohibits use of large ring jewel bearings or vee jewel bearings excent on orders rated A-9 or higher. Includes smaller ring jewe bearings than covered by ortginal order. Exempts from order restrictions any jewel bearing which by Jan. 15 . 194'2, had been physically incorporated in a device where it was subject to iniction.
M-73-a1: Mon's and Boy's Clothing, issued
For additional revisions and additions please see Sterl of March 2, p. 39.

March 2, 1942. Spectiles style of sults and overcoats made of wool.
M-79 (Amendment): Asbestos, effective Feb. 28, 1942. Permits use of 85 per cent magnesla and other types of plpe covering on ship installations where temperatures under 200 degrees Fahr. occur.
M-100: Rationing of Trucks, Truck-tractors and Trailers, effective March 9 , 1942. Program will be administered jointly by WPB and Office of Defense Transportation. Appllcation forms and Instructions to applicants avallable at truck and traller sales agencies. Applicants approved by WPB and ODT receive Certincate or Transier, issued by Director of Industry Operations, permitting purchase of vehicle. Preference glven to military forces, police, public health and sanitation services, communication services and transportation directly connected with war effort.
M-181 (Amendment): Tin, Plate, Terne Plate, effectlve March 3, 1942. Permits can manufacturers to deliver untit Dec. 31, 1942, cans of any size for primary and secondary products which were completely made, or whose parts were completely cut on Feb. 11. Canners permitted io use such cans and cans of sizes other than those spectned in the order in ihetr possession Feb. 11.

"P" ORDERS

-18-at (Extension): Cutting Tools, erfective Feb. 28, 1942. Extended to July 1, 1942, but after latter date manufacturers must obtain priority assistance under Production Requirements Plan.
P-45 (Revised): Motorlzed Fire Apparatus, eftective Feb. 28, 1942. Assigns A-2 rating to material entering into such equipment dellvered on defense orders. Rating is limited to quantitles and kinds of material specilically authorized by Dírector of Industry Operations as indicated on copy of PD-8:2 returned to the producer.
I'-53 (Amendment): Textile Machinery Parts, effective Feb. 28, 1942. Raises from A-10 to A-8 the rating avallable for dellveries of materials to producers of spare parts for maintenance and repair of textile machinery and equipment.
P-55 (Amended): Defense Mousing lrojects, effective when issued, Suppllers who process materlal furnished to contractor or subcontractor in substantial amount may not extend ratings on orders they fill. Assistance should be obtalned under Production Requirements Plan. Subcontractors making only minor changes in material they install may extend ratings. All extensions of ratings by builders or subcontractors must be countersigned by authorized agent of FHA. Suppliers who do not process the materials do not require countersignature.

P- ${ }^{-1}$ (Amendment): Mnes, effective March 2, 1942. Ralses former A-3 rat ing to A-1-c for materlals for repair and maintenance of essential mining machinery, subject to quarterly quota to be established for each enterprise by Director of Industry Operations Less essential mining, inciuding sand, gravel, stone, clay, gypsum, talc, soapstone and slate may use A-1-c rating only in cases of imminent breakdown. A-10 rating assigned to supplies not immediately connected with actual production. Suppliers may extend rat ings. Does not cover mines more than 30% of whose production value consists of gold and/or sllver.
I-56-a (Amendment): Mining Mathiners and Equipment, issued March 2, $194{ }^{2} 2$ provides for assignment of rating or rattigs to a producer based on the pattern of ratings on the orders he is flling. Ratings will be assigned quarterly on PD-25A.
P-68 (Amended): Steel Plant Malntenance, Repalr, Operating Supplies, ef fective Feb. 27, 1942. Extends availablity of ratings to Canadian plants and to plants engaged in production of detinned iron and steel scrap. Adds A-10 rating, applicable to materials for other repairs, malntenance and operating supplies, even though not for property and equipment used in and essential to production or specitled Iron, steel and related products. Each producer must flle PD-228 with WPB on March 31, 1942 and seml-annually therearter.
P-89 (Amendment): Chemical Plants March 2, 1942. Redetines operating supplies to include lubricants, fuels, catalysts and small perishable tools Excludes materials physically or chemlcally incorporated into the producer's products, and materlal other than catalysts which enter into chemical reactions pertinent to manurac turing. Permits Canadlan firms to use ratings.
P-100 (Amendment): Repairs, Maintenance, Operating Supplies. Authorize frms engaged in examining indusrial installations for the purpose or discovering derects to use A-10 rating to obsain operating supplles.

"I" ORDERS

L.-1-a (Amendment) : Trucks, Truek Trailers, effective March 2, 1942. March production quota for medium trucks (weighing less than 16,000 pounds) cancelled. Unused portion of February quota must be completed by March 31. Production of trucks of any size limited to amount of partlally and fully fabricated materials on hand Feb. 28. Amendment to L-1-c, effec live Feb. 28, extends ban on sales and dellyerles of new trucks to March 8. Effective Feb. 25 , flre apparatus exempted from limitations on sales, pruvided buyer has A-10 or better rating. Effective Feb. 27, tank vehicles
to be used in transportation of petroleum products released for dellvery

L-5-c (Amendment): Mechanical Refriforators, effective Feb. 27, 1942. Prohibits manufacturers from disposing of inventory materlals and parts excent to other refrigerator companies for use in making units permitted under L-5-c or for repair and maintenance parts. Manufacturers must flle with WPB by March 15 estimate of raw material and parts inventory aftel completing quota of refrigerators.
1.-43: Motorized Fire Appuratus, Effec live Feb. 27, 1942. Eliminates use of flre bells, alumlnum, copper, copper base alloy, nickel, chromium, cadmium, tin, zinc, steel, neoprene and other synthetic rubbers, except for limited use in specifle list of products. Manufacture of motorized apparatus prohibited except to 1111 defense orders. Slzes of ilre engine pumps standardized.
L-46: Flectrie Power, effective Feb. 27, 1942. Provides for integration of generating systems by utilitles and industries and curtailment in consumption in Niagara frontier area in event of power shortage.
L-50: Telephone Industry, effectlve March 2, 1942. Limits changes in equipment and facilities of telephone compantes. Bans conversion of manual offices, replacement of existing instruments of users unless beyond repair, installation of extension phones in residences.

1-57: Gas Masks and Anti-Gus Devices, effectlve March 3, 1942. Prohibits manufacture or sale of such items for protection against enemy attack, unless ordered by government agency and bullt to Army Chemlcal Warfare Service specincations. Also prohiblts sale or delivery of materials for use in unapproved masks. Does not apply 10 masks for non-military purposes.

L-f0: Plstols, Rifles, Shotguns, effective Feb. 27, 1942. Prohiblts disposition of new guns, except sales to federal, state, local and Alled governments and Lend-Lease. Sellers must report their inventorles within 45 days.

1RRICE SCHEDULES

No. 2 (Amendment) Scrab and Secondary Aluminum, effective Feb. 26, 1942. Exempts from provisions of the schedule excessive Inventorles of aluminum materials purchased by Metals Reserve Co.

No. 80 (Amendment)-IIthopone, effeclive Feb. 27, 1942. Permits non-manufacturing dealers and exporters to 1111, at higher than celling prices, contracts made prlor to Feb. 2, 1942. Ar fects only lithopone on hand or in transit Feb. 2. Detalled reports on such dellveries must be furnished OPA within ten days.

Steel Institute Omits

Banquet from Program

Fifty-first general meeting of the American Iron and Steel Institute will be held at the Waldorf-Astoria hotel, New York, May 21, as previously announced. The general session will be held in the morning and the special session in the afternoon as usual, but owing to war-time conditions there will be no banquet in the evening. This will be the first general meeting in the institute's history that the banquet has been omitted.

Steel Specifications Changed To

Conserve Strategic Alloys Supplies

WASHINGTON

CHANGES in steel specifications to further the war production drive were announced last Friday by WPB. They are designed to conserve supplies of steel alloys, most important material used in war.
(For detailed information on new standard steels, see Sterl of Feb. 16, pp. 64 and 65, also Steel of i'eb. $9, \mathrm{pp} .70,99$ and 100 .)

With the rapid increase in production it became evident that unless steel alloys were conserved there would not be enough for both the war program and essential civilian demands.

Anticipating this shortage, representatives of the steel industry, the Society of Automotive Engineers, the American Iron and Steel Institute and other technical bodies were called together by WPB to discuss emergency steel specifications.
The conservation of alloying elements in the specifications is based upon the principle that small quantities of several different alloys are more effective than large quantities of any single element.
It appears that these national emergency steels and certain others containing less strategic elements, or none, will soon be the only steels available. Therefore it is imperative, it was explained, that industry take the necessary steps to change over as quickly as possible, so as to be prepared when the supply of habitually used steels is cut off.

Some Heats Already Made

Steel containing the strategic elements, nickel, chromium, tungsten, cobalt and vanadium, may only be used on extremely important functional parts, it was pointed out. Hence industry is to be urged to use carbon and intermediate manganese steel ($1000-1100-1200$ series), and carbon molybdenum series 4000 , manganese molybdenum, series 8000 -$8100-8200-8300,400$ and 500 series; or silico manganese, series 9200 wherever possible.
WPB issued analyses of alternate steels available in Table I of its report on these new specifications, with existing steel specifications listed in Table II, with the national emergency equivalents of such specifications. It was stated that those interested in obtaining these steels can apply to their regular steel sources. Heats have already been made by a number of companies including the following:
Bethlehem Steel Corp., CarnegieIllinois Steel Corp., Copperweld Steel

Co., Pittsburgh Crucible Steel Co., Republic Steel Corp., Rotary Electric Steel Co., Steel \& Tube Division, Timken Roller Bearing Co. and Youngstown Sheet \& Tube Co.

The board states that in the early stages of this program it may not be possible for a user to obtain the exact bar size or shape to which he is accustomed, and it may be necessary to accept some other size. Test steels should be ordered in the usual manner.

Production of Medium Trucks After February Quotas Banned

WPB has prohibited further construction of medium trucks, after completion of February quotas, in order to save large quantities of critical materials, particularly rubber and steel.

Production quotas established for medium trucks for March have been canceled, and the only kind of trucks for which continued production will be permitted are those having a gross vehicle weight of 16,000 pounds or more.

Manufacturers were ordered by WPB to make no further trucks of any sizes unless they can be produced from semifabricated or fabricated materials which were on hand Feb. 28. Further fabrication of material is prohibited.

The order, Amendment No. 4 to Limitation Order L-1-A, retains the prohibition against equipping trucks to be produced under it with tires. Under previous orders, tires may be placed on these vehicles only to enable their delivery to dealers, after which the tires must be returned to the manufacturer.
The new order, which will concentrate truck production on the heavier types necessary for hauling war supplies, will not affect the recent WPB authorization for manufacturers to carry over into March certain unfinished portions of production quotas established for February. These quotas, announced last January, allow manufacturers to produce medium and heavy trucks at a rate 15 per cent higher than in February, 1941.
To keep present trucks and buses in operation, WPB has raised priority rating for materials for production of replacement parts from A-3 to A-2. The change, contained in amendments to Limitation Order L. 35 and Preference Rating Order P-107, applies only to parts for medium and heavy trucks, truck trailers, passenger carriers and school buses.

Windows of WASHINGTON

Abstract

Converted strip mills now looked to for fast shipments of plates for marine construction, under new plan . . . Modification of can conservation order allows use of large stocks on hand for primary and secondary products . . . No ceiling put on purchase of remelted aluminum classified as scrap . . . Such materials deemed useless to holders.

WASHINGTON
MUCH of the steel plate for merchant ships henceforth will come from mills that last year were turning out sheet steel for automobile bodies, according to C . E. Adams, chief, WPB Iron and Steel Branch.

A plan for the use of plates from converted strip mills was worked out by representatives of the branch and of the Maritime Commission and will go into effect immediately. It is expected to speed greatly shipments of steel for the "Liberty ship" fleet and to help solve one of the most perplexing materials problems, that of abnormal demand for plates.

Under the plan, items of similar size were grouped together in a new bill of materials. Specific items will be obtained from strip mills with facilities suitable for the production of the sizes involved. Thus any one mill will deliver plates of a specific size to a number of shipyards.

High speed strip mills were built to take care of large orders of one size, automobile body steel being the outstanding example. The new plan, which, in effect, applies assembly line methods to the shipbuilding program, enables the Maritime Commission to take advantage of this facility.
Heretofore, only about 10 per cent of the steel plate required for the Liberty ships has come from strip mills. Under the new program 80 or perhaps 90 per cent will be strip mill plate.

The new combined bill of materials and the ordering program will govern on approximately 770 new ships for which no material has, as yet, been ordered or scheduled.

Tonnage for the Maritime Commission is the largest item for steel plates in the entire war program and the Liberty ship schedule represents more than half the commission's requirements. The working out of this arrangement
is expected to ease a part of the burden on sheared plate mills which have been faced with a war demand far beyond their capacity to produce. The plan will not free steel plate for civilian use, but will make possible the fulfillment of essential war orders.

Can Conservation Order Provisions Modified

Provisions of Conservation Order M-81 which restrict sizes for primary and secondary-products cans made of tin plate or terne plate have been modified by WPB.

A telegraphic amendment of the order sent to the industry by J. S. Knowlson, director of industry operations, permits manufacturers to deliver this year cans of any size for primary and secondary products which were completely manufac tured, or whose parts were completely cut, on Feb. 11.

Canners are permitted to buy and use such cans, and also cans of sizes other than those specified in the order which were in their possession on Feb. 11.

The WPB Containers Branch explained that both manufacturers and canners have on hand considerable can stocks of sizes other than those specified by the order, as well as stocks of processed tin plate which can only be devoted to the manufac. ture of cans of the sizes for which the plate was originally designed.

Use of these cans is expected to release considerable storage facilities. Use of tin plate will not be increased, since there is at present no quantity limitation upon pri-mary-products cans, and the cans used for secondary-products pursuant to the telegraphic amendment will be charged to the canners' quotas.

Conservation Order M-81 defines primary products cans as those used to pack fruits and vegetables of primary importance. In the main, they represent products for which the De-

By L. M. LAMM
Washington Editor, STEEL
partment of Agriculture has set production goals, or which would spoil if not canned when fresh. No limit is placed by the order on the number of such cans.

Secondary-products cans are used to pack fruits and vegetables regarded as of secondary importance, some of which can be dried.

Brake Shoe Price Increase Rescinded at OPA's Request

Complying with a request of the OPA, the American Brake Shoe \& Foundry Co., New York, has rescinded the recent increase in its price of brake shoes. With the withdrawal of the $\$ 2$ per net ton price advance made on Jan. 1, 1942, the company's brake shoe prices are again at Oct. 1, 1941, levels.

Furchases of Idle Aluminum Stocks Excepted from Ceiling

Purchases by Metals Reserve Co. of idle or excessive inventories of aluminum materials, in accordance with the program announced by the WPB Division of Industry Operations, will be excepted from provisions of the aluminum scrap price schedule. This ruling was made in Amendment No. 1 to Revised Price Schedule No. 2.

A high percentage of the materials involved in this program will be remelted for further use. Therefore, they would be classified as scrap under provisions of Price Schedule No. 2. In view of the fact that such materials have been rendered useless in the hands of their holders by war restrictions, WPB has recommended that Metals Reserve Co. buy such materials at prices higher than the maximums established for scrap in Price Schedule No. 2.

Exceptions of such purchases from the price schedule's provisions

was granted by OPA at WPB's request in order to carry out this program.

Steel Warehouses Prohibited From Buying Over Quotas

Steel warehouses are prohibited from accepting deliveries of steel in excess of their assigned quotas from any person or company by the terms of Amendment No. 3 to Supplementary Order M-21-i) issued by WPB.

The restrictions previously imposed by the order applied only to deliveries from steel producers. The chief purpose of this amendment is to prevent the warehouses from obtaining deliveries of products listed in schedule A of the order in excess of quotas from other sources such as automobile companies which may have steel for sale at the present time.

The order has also been amended to permit warehouses to accumulate preference ratings higher than A-9 on deliveries to their customers up to a period of 90 days so that they may place with their suppliers an order for a minimum commercial quantity. However, any steel obtained by a warehouse through extension of a rating high. er than A-2 may not be delivered by the warehouse to any customer except on orders which bear a rating higher than A. 2 until such stock has been held for at least 90 days.

Higher Rating Assigned for Mining Machinery Repair

Higher ratings for repair and maintenance of essential mine machinery and lower ratings or complete elimination of ratings for nonessential mining purposes are provided by an amendment of Preference Rating Order P-56. The higher ratings will assure continuous production from the mines of such essential materials as copper, iron, coal, and similar materials.

At the same time, Preference Rating Order P-56-a, which formerly assigned a single rating to material entering into the production of mining machinery and equipment, has been amended to permit the assignment of rating or ratings to a producer based on the pattern of ratings on the orders he is engaged in filling by a procedure similar to the Production Requirements Plan.

Gold and silver mines will no longer be permitted to use the ratings assigned for repair and maintenance by P-56. Gold placer mines were not previously included in the order.

The A-3 rating formerly assigned to materials for repair and maintenance of mining machinery has been withdrawn, and an A-1-c rating has
been assigned to materials for the repair and maintenance of essential machinery with specified restrictions, subject to a quarterly quota to be established for each mining enterprise by the director of industry operations. Certain less essential mining operations, including sand, gravel, stone, clay, gypsum, talc, soapstone and slate may use the A-1-c rating only in cases of imminent breakdown.

The A-8 rating assigned to materials for maintenance and repair not covered by the A-1-c rating is continued in effect, and an A-10 rating is assigned to repair, maintenance and operating supplies such as office supplies which are not closely connected with actual production.

Suppliers will hereafter be permitted to extend ratings on orders received from mine operators, and the system of reports required in connection with both P-56 and P-56-a has been simplified.

Cutting Tool Manufacturers Warned To Use PRP After July 1

Manufacturers of cutting tools have been warned by the Director of Industry Operations that beginning July 1 at the latest they must use the Production Requirements Plan to obtain priority assistance.

Preference Rating Order P-18-a, under which specified manufacturers of cutting tools have been entitled to use a preference rating of A-1-a on their orders for materials entering into their production of defense products, has been extended to July 1, 1942, but will be allowed to expire on that date. It was scheduled to expire on Feb. 28.

All manufacturers who have been operating under P-18-a are advised to submit applications under the Production Requirements Plan, and PD-25A application forms are being sent to them so that they will have an opportunity to familiarize themselves with the new procedure.

WPB Warns of Shortage of Chlorinated Solvents

Fabricators of metals have been warned by the WPB Chemicals Branch to investigate every possible cleaning method other than chlorinated solvents applicable to their operations.

A shortage in chlorinated solvents already exists, caused by the vast increase in metal fabricating, the branch said, and the situation will get worse, instead of better, as time goes on.

At least 30 per cent of the cleaning operations in the metals industry now being done with chlorinated
solvents can be accomplished by the use of other materials, such as mineral spirits, non-chlorinated-sol-vent-water emulsions and alkalis.

March Zinc Pool Requirements

50 Per Cent of December Output
Zinc producers are required to set aside 50 per cent of their December, 1941, production of high grade and special high grade zinc and 40 per cent of all other grades for the March pool.
Lead free zinc oxide requirements are set at 20 per cent of December production and leaded zinc oxide at 10 per cent. No zinc dust is set aside for the month.

February requirements were 40 per cent for all types of zinc and 10 per cent for zinc oxides.

Lead Pool Set at 15% of January Production

The March lead pool has been set at 15 per cent of January, 1942, production in Order M-38-f. While the percentage is unchanged from last month, the actual amount of metal set aside for specific shipments is larger, since the base period is changed from December, 1941, to January, 1942, production being larger in the latter month.

Further Restrictions Imposed On Use of Jewel Bearings

Further restrictions on the use of jewel bearings have been announced by the director of industry operations.

Order M-50 has been amended to prohibit the use of large ring jewel bearings or vee jewel bearings except on orders with a rating of A-9 or higher. The original order, effective March 1, limited deliveries by suppliers but did not cover usage.

Two other changes are made: large ring jewel bearings are redefined for size to include smaller ones than originally covered by the order, and an exception is made so that the restrictions of the order do not apply to any jewel bearing which by Jan. 15, 1942, had been physically incorporated in a device where it was subject to friction.

Railroads Permitted To Use Copper for Essential Needs

Use of copper for essential operating parts and essential maintenance and repair parts for railway locomotives, cars and equipment will be permitted under an amendment to Order M-9-c issued.

Amendment adds railroad uses to list " B " of the order, which permits the use of copper where the use of less scarce material is impractical.

BRAZILIAN and United States officials signed a series of agreements in Washington last week providing for American financial aid in developing Brazil's iron and rubber resources. Left to right, seated: Carlos Martins, Brazilian ambassador; Acting Secretary of State Sumner Welles; Brazilian Finance Minister Arthur de Sousa Costa. Standing to the rear of Mr. Welles is Federal Loan Administrator Jesse Jones. NEA photo

United States Agrees To Aid Brazil

Develop Iron, Rubber Resources

FOUR important accords providing for large scale production of strategic materials, especially iron and rubber, in Brazil and for United States financial assistance to that country were signed last week in Washington. United States will exten: lend-lease aid to the South American republic.
The four agreements provide:
A program for the mobilization of the productive resources of Brazil and fer a line of credit of $\$ 100,000$, 000 to be made available through the Export-Import bank.

Expanded assistance to Brazil under the lend-lease act in order that the Brazilian government may speed up armament for self defense.
Establishment of a $\$ 5,000,000$ fund by the Brazilian government for developing the raw rubber production in the Amazon valley and adjacent regions. The Rubber Reserve Co. agrees to purchase Brazilian rubber for tre next five years.
Agreements for the development of the Itabira mining properties and the Victoria-Minas railroad, with accompanying arrangements for the acquisition by the United States and Great Britain of high grade iron ores to be produced.
In connection with the last agree-
ment, Federal Loan Administrator Jones said the Export-Import bank had agreed to lend Brazil $\$ 14,000,000$ for the rehabilitation of the railroad and mines and for improving ore-

Lend-Lease Aid Above 47 Billion Dollars

Authorized dollar limit on aid which the President may provide to the United Nations under lendlease rose past the 47 billion dollar mark when the fifth supplemental war appropriation bill received final approval by Congress last week.
loading facilities at the port of Victoria.

The amount of credit to be extended under lend-lease was not made pubiic. Brazil already has been allotted about $\$ 98,000,000$ under a previous agreement, and it is believed the additional credits will total at least as much.

A $\$ 20,000,000$ loan was made to Brazil by the Export-Import bank
in 1940 to finance purchases of steel mill equipment in this country.

In addition to direct aid by the goverrment a number of private industries are co-operating with Brazil in developing that country's resources and in building up its defenses. Last week a Brazilian government mission and officials of the Wright Aeronautical Corp., Paterson, N. J., signed an agreement under which Brazil will build aircraft engines under a Wright license.

Midwestern Plant Producing New Model Medium Tanks

Mass production of a new medium tank for the Army has begun at a new Midwestern plant, William H. Harrison, director of the WPB Pro duction Division, announced last week.
Known as the M-4 medium tank, it is the forerunner of thousands of similar design that will be built this year as part of the program for 45,000 tanks set by President Roosevelt as the goal for 1942.

Other plants now turning out M-3 medium tanks shortly will begin making the M-4. Some plants will begin building M-4's while finishing the last of their orders for M-3's and will have two models leaving production lines at the same time. In other plants, extensive plans are being made so the first of the new type tank will follow immediately after the last of the old type tank.
As other new tank arsenals come into production, they will begin with the M-4 medium models. Dates originally set for delivery of the first tanks from these new sources have been advanced considerably in order to meet the President's requirements. It is expected that several more tank plants will be in mass production in the near future.
The new medium tank will use cast steel and welded hulls to a much greater extent than the M-3 and a change in design will increase the effectiveness of its armament.
Meanwhile, additional plants are being made ready to build light tanks to augment those that now are producing this type of combat vehicle. Plans currently call for several new types of light tanks and they will come into production when facilities now being prepared are ready.
When the tank program gets in full swing it will be drawing its heaviest support from the locomotive, automotive and farm machinery industries.

National Youth Administration is training youths between the ages of 16 and 24 at more than 4000 welding work stations, under the direction of Col. Frank J. McSherry.

OPA Organization Realigned To

Meet New Duties, Responsibilities

WASHINGTON
REALIGNMENT of executive personnel of the OPA to meet the expanded responsibilities arising out of the new Emergency Price Control Act and the rationing authority vested in his office by the WPB has been announced by Price Administrator Henderson.
The changes create three deputy administrator posts in place of one; break down the price division into four separate divisions-food and apparel, industrial materials and equipment, general products, and fuel-and place an assistant administrator in charge of each; set up a new rent division, also under an assistant administrator; and provide for the organization of a rationing division.

John E. Hamm, deputy administrator, has been made senior deputy administrator, second in command to Mr. Henderson. J. K. Galbraith, until now assistant administrator, has been named staff deputy administrator, and John S. Keir has been appointed acting administrative deputy administrator. Mr. Keir, executive vice president of the Dennison Mfg. Co., has accepted the new post on a part-time temporary basis and will only serve until Mr. Henderson can fill the post perma:tently.

Hamm To Handle Rationing

For the time being, Mr. Hamm will handle the organization of the new Rationing Division, with the assistance of Harold Rowe, who will have executive responsibility for food rationing, and Paul M. O'Leary, who will direct planning and analysis. Both Rowe and O'Leary have been assistant directors of the Price Division. During Mr. Hamm's temporary assignment to rationing, Mr. Keir will act for the administrator on all matters previously handled by Mr. Hamm. David Ginsburg continues as general counsel.

Mr. Galbraith, as staff deputy ad. ministrator, will assist Mr. Henderson on policy matters relating to labor, shipping, transportation, taxation, and other policy matters not specifically assigned to OPA organizational units. He also will represent the price administrator in contacts with other agencies, such as the War Production Board, the Petroleum Coordinator, the Transportation Coordinator, etc., and before Congressional committees, and the like. He will review, on behalf of the administrator, all policy statements to the public and work of consultants not specifically attached
to OPA operating units.
In addition, Mr. Galbraith will organize and direct the work of the Research Section, the Transportation Section and the Questionnaire and Financial Reporting Unit.

The four new assistant administrators, and the Price Divisions of which each has charge, are as follows: Food and Apparel DivisionHoward Tolley, on loan from his post as chief of the Bureau of Agricultural Economics, Department of Agriculture.

Industrial Materials Division Donald Wallace, hitherto, assistant director of the Price Division, in charge of metals, rubber, machinery, and automobiles and trucks.

Porter Heads Rent Division

General Products Division-Herbert F. Taggart who in addition will continue as head of the Division of Accounting, Analysis and Review.

Fuel Division - Vacancy, appointment of assistant administrator to be announced shortly.

The new Rent Division is in charge of Paul A. Porter, formerly executive assistant to Chester C. Davis, commissioner in charge of agriculture of the National Defense Advisory Commission and now Washington counsel for the Columbia Broadcasting System. Mr. Porter, will be assistant administrator, while Karl Borders, who has been in charge of the Rent Section of the Price Division, will be director of the New Rent Division.
The various price sections under the former Price Division, together with price executives and all personnel, have been assigned among the new price divisions as follows:
Food and Apparel Division-Howard Tolley, Assistant Administrator Food, Textiles and Apnarel, Leather Footwear, Fertilizer, Farm Macninery.

Industrial Materials \& Equipment Division -Donald Wallace, Assistant Administrator-Iron and Steel, Copper and Brass, Zinc and Lead, Industrial Machinery, Lumber, Chemicals.

General Products Division-Herbert Taggart, Assistant Administrator and Chief Accountant, Consumer Durables, Rubber, Paper and Pulp, Autos and Parts, Building :Materials.

Fuels Division - Assistant Ad-ministrator-Petroleum, Hard Fuels.
"Leather Footwear" and "Fertilizer" are new price sections, the executives for which will be announced shortly.

All new assistant administrators are authorized to make decisions re-
specting maximum price regulations, subject only to review, if necessary, by the administrator or his deputies.
C. A. Bishop, who has been special assistant to the administrator, has been appointed official secretary to the OPA. R. K. Thompson has been named executive assistant to the administrator. Robert E . Sessions, executive assistant to the assistant administrator, under the former set-up, now has been designated as assistant to acting administrator Keir, and will function also as a staff assistant to the administrator for liaison in connection with Mr. Henderson's membership on the WPB. There are no changes in the Consumer Division, now headed by Dexter M. Keezer, assistant administrator of the OPA, with Dan A. West as director.
Donald D. Kennedy has been named chief of the Castings Unit of the OPA Iron and Steel Section. He replaces J. E. McDonough, who is a major in the reserve forces and has been called into the service.
George C. S. Benson, professor of public administration, Northwestern university, Evanston, Ill., has been appointed assistant director of OPA in charge of field co-ordination.

Personnel Changes in
 War Production Board

W. F. Vosmer, Cleveland, has been appointed head of the Hot-Rolled Carbon Bar and Semifinished Unit of the WPB Iron and Steel Branch. Mr . Vosmer has been sales manager of the carbon bar division of the Republic Steel Corp., since 1930.
Ralph J. Stayman, Pittsburgh, has been named head of the Distressed Stock Unit. Mr. Stayman has been a special representative of the bar and semifinished materials division of the Carnegie-Illinois Steel Corp. at Pittsburgh.

Orrin H. Baker, Chicago, will be head of the Rail Unit. Mr. Baker has been assistant manager of sales of the railroad materials division, Car-negie-Illinois Steel Corp. at Chicago.

Three men have been appointed assistants to the head of the Plate and Shape Unit. They are: A. L. Meyer, Wynnewood, Pa., who has been with the Great Lakes Steel Corp.; A. S. Hoff, Chicago, who was with the Inland Steel Co.; and R. A. Marble, Pittsburgh, of CarnegieIllinois, Pittsburgh. All of these men have been active in plate and shape sales in the companies with which they have been associated.
D. Edwin Gamble, Chicago, vice president and general manager of the Borg \& Beck Division of the Borg.Warner Corp., has joined the staff of the Ordnance Branch, WPB Production Division.

Rationing Program for Trailers,

Trucks, Truck-Tractors Formulated

WASHINGTON
RATIONING program for all types of new trucks, truck-tractors and trailers has been announced today by J. S. Knowlson, director: of industry operations.

The plan, effective March 9, will be administered jointly by the War Production Board and the Office of Defense Transportation. It is set forth in Order M-100.

Since the start of the year, sales and deliveries of new trucks and trailers have been prohibited by the so-called "freeze" orders. Rationing will permit gradual release of "frozen" stocks and make these vehicles available to government and essential civilian users.

Application forms and necessary instructions to applicants will be made available at all truck and trailer sales agencies. These forms will furnish data upon which WPB, in consultation with ODT, will determine if an applicant is entitied to purchase a restricted vehicle.

OPA Rations Autos

OPA has been given authority to ration passenger automobiles, but will not handle the rationing of commercial vehicles.

Preliminary estimates indicate that approximately 196,000 trucks and truck trailers will be available for rationing during the next 22 months.

Vehicles required by the Army and Navy, the Marine Corps, Maritime Commission, lend-lease, and certain other designated war operations will be released under a general "Governmental Exemption Permit," which will enable war agencies to make purchases without adhering to the routine outlined for non-war users.

Persons outside the exempted categories must send their purchase applications to one of the "Local Allocation" offices of ODT, which also serve as field offices of the Bureau of Motor Carriers of the Interstate Commerce Commission.

Upon approval by a "Local Allocation" officer, the application will be sent to ODT headquarters in Washington. If approved there, it will be forwarded to WPB for review and action. WPB approval, in the form of a "Certificate of Transfer" issued by the director of industry operations," will enable the applicant to purchase the type of truck or trailer he desires from any dealer in the country who has such a vehicle in stock.

The ODT is authorized to estab-
lish appeal boards to review rejected applications.

Under the program, five "Usage Classifications" are established. These, subject to revision, show the order in which trucks and trailers will be released for sale, according to their place in the wat program. The classes are:

1. Vehicles used by the military forces in the field; police, firefighting and other public health services; mail, telegraph, telephone and organized radio communication services, and water supply, sewage and garbage disposal and other sanitation services.
2. Vehicles used on fixed military and naval posts; transportation of all materials and equipment directly connected with the war effort, including farm and forest products; construction, maintenance and supply of essential rail, highway, water, pipeline, and air transportation facilities; transportation of materials for construc tion of defense housing projects; transportation of materials for construction and maintenance of public utilities in addition to those classed under No. 1, and transportation of persons engaged in business and industry directly connected with the war effort.
3. Vehicles used to transport ice and fuel for heating and power to the ultimate consumer; farm and forest products indirectly connected with the war program; essential roofing, plumbing, heating, electrical, building and vehicle repair services; waste and scrap materials; persons in business and industry indirectly connected with the war program, and in the services of public and private schools.

Preference Rating Won't Help

4. Vehicles used to transport persons or goods not connected with the war program, including all forms of retail delivery except of ice and fuel.
5. Vehicles used for nonessential functions.
With a limited supply of trucks and trailers, WPB offers no encouragement to persons who can qualify only under classes 4 and 5. These two classes were established so that there would be a "preference" guide in the event that the available supply was not exhausted under classes 1, 2 and 3.

An important feature of the program is that a preference rating, whether granted before Jan. 1, before March 1 or after the ration-
ing plan becomes effective, will not enable the holder to obtain a truck or trailer. The only way to secure a commercial vehicle will be to obtain a certificate under the rationing plan.
WPB established production quotas for medium and heavy trucks for February at a rate 15 per cent above February, 1941. Quotas also were fixed for March, but these may be canceled because of the shortage of rubber for tires and the effort to hasten conversion of the vast automotive industry to war work.

New Restrictions on Building Materials Ordered by WPB

A new defense housing critical list has been issued by the Housing Priorities Branch, Division of Industry Operations.

The new list is more specific than the original issued on Sept. 19, 1941, which it supersedes and nullifies. It is based upon the present critical position of many materials essential to the construction and equipment of housing, and is subject to revision as changes in the situation develop.
Preference ratings assigned to deliveries of scarce materials for defense housing projects may be applied only to items appearing on the new critical list, which was drawn up to conform to the limitations placed upon the uses of a number of scarce metals since the issuance of the original list last September.

Some major changes in the new list are:
Steel bearing plates are climinated and steel stair construction is further restricted.

Tin coating for sheet metal coverings on fire doors is eliminated.

The use of metal lath is further curtailed.

Detailed specifications are included for builders' hardware so as to reduce the use of the more critical metals to a minimum.

Armored cable, metallic cable, metallic raceways, and metal outlet boxes are allowed only where other methods are prohibited by the National Electric Code.

Private telephone systems are prohibited.

Quantity and sizes of roughing in materials for plumbing and gas distribution are limited to meet the minimum requirements of the "Emergency Plumbing Standards" issued by the Defense Housing Co-ordinator, Dec. 26, 1941.

Copper coils for hot water generators and heat exchangers are not allowed.

Steam or hot water systems are allowed only for installations serving two or more families; metal jackets for boilers are not allowed.

IERSATILE

Abstract

Motor companies analyzing shipping and servicing of war equipment, as well as production. Will set up schools to train army mechanics at own cost . . . Look to diesel power for tank installations . . . General Motors will build three types of complete airplanes . . . Help dealers by repurchasing frozen new models . . . Automobile material inventories are heavy

DETROIT

WAR headlines are pretty bleak reading these days and to Detroit, which has been called a city of perpetual optimists, the bad news is particularly trying. If it were possible to lift the curtain of military secrecy which has been dropped over the war activities of the automobile industry, considerable comfort and encouragement could be derived. The industry would like to tell and show the public how it is helping to bring our military forces to a parity with the enemy, but strict regulations muzzle official lips.

Some generalities can be drawn, however. One is that the motor manufacturers are not contenting themselves with merely producing the weapons, they are attacking ag. gressively the problem of shipping the material in the most economical way and of servicing the equipment after it goes into action. And beyond that they are studying and analyzing new types of equipment, both combat and transport, lending the benefit of their engineering knowledge to the military services. Already some of these new vehicles are going into production, one example being a heavy four-wheeled armored car, with power steering and power brakes, which Chevrolet will build.

Devise New Crating
 For War Materials

With their detailed knowledge of export shipments, automotive experts are in a good position to advise on shipping of war goods. In one case, study showed that approximately four times the amount of material could be shipped by crating knocked-down units over the former system of shipping assembled units. Hence automotive experience is being utilized to change over former methods, thereby stimulating the movement of war material to the world battle:lelds.

When it is realized that it takes four months for a medium tank to get from Detroit to Libya, for example, the vital importance of shipping can be appreciated. Transport of these tanks can be likened to a huge pipeline extending from Michigan to Africa. Before any of the tanks can be made ready for combat work at their destination, the entire pipeline must be filled with finished units, so that eventually they will be dropping off in Libya just as fast as they drop off the assembly line here.

Then there is the matter of servicing tanks in the field. One automobile company is spending a good many millions of dollars of its own money to set up schools to train army men in the technical features of tank construction, servicing and operation. Eventually it is believed 20 such schools will be set up around the country, with the army supplying selected recruits who will spend several weeks learning tank details. Cost of this training work is estimated to be $\$ 10$ per man per week, and this expenditure is being absorbed by the manufacturers.

Extent of this training activity can be appreciated from the fact that army estimates call for 30 per cent of the personnel of an armored division to be trained mechanics. There are about 15,000 men in an armored division, and it is expected to outfit eventually something like 20 divisions.

Diesel power appears promising for tanks. For one thing, greater cruising range for the fuel load carried is possible, and diesel engines have several times the service life of radial engines, now used in some tanks. Radial engines were selected originally because they had lighter weight and were unencumbered by cooling systems. But tank service is a grueling proposition, with engines operating at full-throttle

[^0]

By A. H. ALLEN
Detroit Editor, STEEL

nearly all the time. The diesel is a rugged type of plant, can be serviced readily, and can be produced in large quantities in a short time. Where extra cruising range is desired, jettison tanks are employedarmored tanks outside the hull storing spare fuel, which are thrown overboard when the fuel is loaded into supply tanks.

Big Three Collaborate
 On Engineering Tanks

The critical rubber situation is prompting investigation of metal tank treads. Rubber treads have a life of around 600 miles in rough going. Steel or iron treads can be substituted and probably will have a longer life, but throw the wear problem on pins and add to the operational noise of the tank. Incidentally, studies are well along on such problems as reducing noise level inside tanks, air conditioning interiors, etc. Engineers of Ford, Chrysler and General Motors are collaborating with army officials on the whole tank picture and speedy progress is expected. Competitive lines between these three companies, if they ever did amount to much, are clear down now and there is complete interchange of information on tank problems. Interchangeability of parts produced by the three companies likely will result.

Fire power of tank guns is another vital consideration, particularly at the moment. Not much can be said about it, except that if shell velocities can be stepped up from their present level, the range of fire power is thereby increased, suggesting that smaller-caliber ammunition of the high-velocity type, greater quantities of which could be carried in a tank, might make for greater attacking power than the larger-caliber ammunition with slow. er velocity and shorter range.

Temporary disemployment result-
ing from changeover of motor plants to war production is not nearly as severe as had been anticipated. Taking the case of General Motors as typical of the industry, early estimates indicated employment as of March 1 would be around 148,000 persons. Instead it totaled nearly 162,000. Average employment for the entire year of 1939 for GM was only 152,000 and average working hours only 35 per week. In Feb bruary of this year, the average work week was 44 hours. This shows GM has now reached a level of war activity greater than its total normal business activity in 1939 .

86 of 90 Plants on War Work

In a recent radio address, C. E. Wilson, GM president, summarized the outlook by saying the corporation "has 90 factories or producing units, with approximately 65 million square feet of floor space, of which 86 are already producing war ma-
terial or are being rearranged and retooled for war production. War work will be found for the remaining four, or they will be sold or leased to the government or other contractors."

Mr. Wilson also revealed the corporation is preparing to produce three different types of complete airplanes, in addition to the parts work for the North American bomber now under way. While he did not say so, it is learned that two of the planes-a dive bomber and a torpedo bomber-will be furnished by the new Eastern Aircraft Division. The third, a bomber, will be produced in the middle west at a new plant.

Help for the nation's ice-bound automobile dealers whose stocks of frozen cars were threatening to paralyze dealer operations came recently with the announcement by divisions of General Motors that after April 1 the corporation will

How To Make Your Car Last Longer

HOW to make present automobiles last longer is a question uppermost in everyone's mind. Here are five angles, developed by the engineering department of the Pontiac Motor Division. Particularly impressive are the gains achieved by lowering driving speeds
buy back from dealers any unused or undamaged 1942 models on the basis of net cost to the dealer plus transportation charges, plus storage charges of about $\$ 15$ a month since Jan. 31. Other auto companies probably will follow suit, and the repurchase agreements will be extended to stocks of parts and accessories if dealers so desire.

To Redistribute Cars
 From Dealer Stocks

The distressed dealer need not sell back his entire stock if he prefers to retain some of it. Assumption is that the manufacturers will redistribute the repurchased cars to other dealers who want them. Three reasons were advanced for the repurchase agreement: (1) To relieve unbalanced dealer inventories, (2) to minimize wild bidding for available sales by liquidating dealers, and (3) to prevent cars from falling into illegitimate hands.

Some interesting observations on manufacturers' inventories for parts and materials were in the annual report of K. T. Keller, president of Chrysler Corp., to stockholders meeting April 21. As of Feb. 1, Chrysler had in its inventories and on order materials in various stages of fab. rication, for 53,484 civilian passenger cars and light trucks previously authorized by the government, but which, following Feb. 10 could not be used for such vehicles. Much of this inventory will be used in producing vehicles and other products under the war program and for service requirements, and the remainder is expected to be available when production of cars for civilian use is resumed.

May Build New Melting Plants

In addition to the fabricated parts and partly fabricated parts for these cars, there were raw materials in inventory and on order which are not immediately suited to war use. Estimates place the value of these slow moving raw materials and parts on hand and on order at about $\$ 40,000,000$.

Foundry circles in Detroit have heard reports of plans for erection of two new electric steel melting and casting plants in the metropoli\tan area for production of largesize armor castings, presumably for tank parts. These would be apart from the armor plant now going up at Ford's Rouge works, where a combination of four cupolas, four bessemer converters and electric holding furnaces before long will be processing armor steel for casting purposes.

Plans also are under way for a new plant to supply aluminum forg. ings for aircraft engines, to be located outstate.

CONTROLLED QUALITY リリコココI

Jones \＆Laughlin Steel Corporation AMERICAN IRON \＆STEEL WORKS • PITTSBURGH，PA．

Iron Ore Requirements Expanding;

Shipments May Exceed 85,000,000 Tons

New vessels building . . . Conversion of auto-
mobile carriers proposed . . . Canadian ships may

haul larger tonnage

STEADILY increasing shipments of Lake Superior iron ore will be required for the next several years to feed an expanding steel industry operating at capacity to produce the No. 1 raw material of war.

Shipping and mining authorities expect the 1942 movement will exceed the record 1941 shipments of $80,116,000$ tons; this year's movement may exceed $85,000,000$ tons. For 1943 even more will be required, and with about $11,000,000$ tons annual carrying capacity added, may reach $95,000,000$ tons or more. In 1944, when most of the new steel capacity now projected or building will be in operation, requirements may run as high as $120,000,000$ tons. To move the latter tonnage, considerably more carrying capacity than is now in sight would be required.

Carrying capacity, of which there has been a comfortable surplus in all normal years, may limit the tremendous expansion required in the ore movement. The fleet worked at capacity in 1941 and was favored by unusually good weather to achicve its 80 -million-ton record. Last year's total tonnage exceeded best expectations of shippers and government officials by $5,000,000$ to $8,000,000$ tons.

Fleet capacity will be increased by the five large new carriers to be launched this year by the Pittsburgh Steamship Co. All will see service during 1942, according to present plans.

Sixteen vessels have been ordered by the Maritime Commission, ten placed with Great Lakes Engineering Works at River Rouge, Ecorse, Mich., and six with American Shipbuilding Corp., Lorain, O. All are exvected to be completed in 1943.

These new ships will add approximately $11,000,000$ tons to the fleet's annual capacity. However, the add-
ed capacity will be scarcely sufficient to meet 1943 requirements.

To meet the expanding demand for ore, various proposals have been forwarded for increasing the fleet's carrying capacity. In the original steel expansion program advanced by the former OPM Iron and Steel Branch, it was proposed to build 25 new lake freighters. Shortage in materials and congestion in lake shipbuilding capacity resulted in the compromise letting of contracts for 16 carriers.
Later the War Production Board suggested that 17 automobile carriers be converted to the ore trade. These vessels, made idle by the moratorium on auto production, could add a substantial tonnage to ore carrying capacity. but the problem of conversion is difficult. Lake shipyards are crowded and the steel plates and other materials necessary for conversion are scarce. Many shipping experts believe the attempt to switch over these vessels to the ore trade would result in a slowing down of the present new vessel construction program as well as delaying necessary repairs to the present fleet.

Canadian Vessels To Help

Canadian ore vessels, which were permitted to carry cargoes between United States ports last season will again figure in this year's traffic, permission having been granted by Congress. Tonnage carried by the the Dominion freighters will depend to large extent on the exigencies of war. Ordinarily they are engaged in the grain trade and, if diverted to ore carrying a diversion of grain traffic would be required. Normally this would not be practicable, but war conditions may make it necessary.

All-rail shipments will be in-
creased moderately. Probably an additional half million tons will move to Granite City, Ill., to supply a new blast furnace there. Other demands on the railroads' rolling stock, however, will make any considerable expansion in all rail shipments unlikely.

Some increase in carrying capacity can be obtained by diverting upward bound coal traffic and downward bound grain traffic to rail shipments. Upward bound vessels going light and without necessity for stopping for unloading could shorten time required for trips. Likewise, those vessels carrying grain down the lakes, mostly Canadian, could carry ore. Such diversion would be uneconomic in ordinary times but may be resorted to as a war measure.

The full ore fleet will start operations as early as weather conditions permit and, in fact, may push the weatherman more than ordinarily. Present plans call for the fleet to be on the alert by April 1, ready for a start as soon as ice conditions allow.

Government agencies will aid with ice breakers and possibly blasting crews. These aids, however, will be of an emergency nature and will be called upon only if ships are halted by jammed ice. Lake shippers are skeptical of the value of ice breakers for opening a channel to the upper lakes before weather conditions become favorable.

During the season a new lock at Sault Ste. Marie will be constructed by the government. Congress has approved a measure to build the project at a cost of $\$ 8,000,000$. It will be completed during 1942.

In the 1941 season some delay was occasioned when a bridge over one of the present locks collapsed. The loss to the ore traffic however,
did not exceed 200,000 to 300,000 tons.

The new lock is necessitated not only by the Soo's increased traffic but also by its strategic importance. Military and shipping experts have emphasized that a few well placed enemy bombs could effectively disrupt iron ore shipments.
Upper lakes mining areas have been active throughout the winter. Underground mines have been working steadily and stockpiling ore in preparation for the season's opening. Open pit mines were favored during the early part of the winter by mild weather and continued operations.

Major attention has been given to mining equipment. Many companies have ordered or received new power shovels, trucks and other implements. Equipment on hand has been given a thorough overhauling.
While delivery of such equipment has been delayed by the tremendous demand, the mining companies have been aided by high priority ratings -A. 3 in many cases. Deliveries, reportedly have been fairly satisfactory, although some trouble was experienced recently in obtaining equipment requiring rubber. This problem, however, now is in process of solution.
Oliver Mining Co., United States Steel Corp. subsidiary, has placed orders for seven power shovels and 61 trucks, deliveries of which have been made or are expected to be made soon.

Two Years' Expenditures for New

Steel Facilities Exceed Billion

NEARLY $\$ 1,100,000,000$ in private and government funds was expended in 1941 or allotted for expenditure in 1942 to increase steel output for war needs, according to a survey just completed by the American Iron and Steel Institute.

The outlay by steel companies themselves for new equipment and construction last year was $\$ 295,000$,000 , and this year they are planning further expansions at a cost of $\$ 260,000,000$.

The government in 1941 spent $\$ 130,000,000$ to install certain new steel equipment wanted for special war work, and for 1942 approximately $\$ 414,000,000$ in government funds has been allotted for the development of steel facilities. Plans for still larger additional expenditures by the government are under consideration.

The institute survey showed that of 176 steel companies replying to the questionnaire, 134 representing more than 90 per cent of the industry's capacity planned expansion or improvement of their plants this year.

The investment in new steel plants and equipment from 1935 through 1942 totals \$2,207,000,000. From 1929

TO INCREASE carrying capacity of the Great Lakes iron ore fleet, the War Production Board has asked that 17 vessels formerly hauling automobiles be converted to ore freighters. Automobile carriers, such as the one pictured above, have been disemployed by the ban on automobile production, but their conversion to the ore trade would involve extensive and expensive alterations. NEA photo
to 1939 , the industry increased its capacity by over $10,000,000$ net tons of ingots and since the beginning of 1939, the increase in capacity has been nearly $7,000,000$ tons to the present total of approximately 88 , 500,000 tons. Total capacity at the beginning of 1929 was approximate ly $71,500,000$ tons.

This additional capacity, built while the nation was at peace, was not fully employed until the war emergency arose. A reserve capacity thus was created, which is now proving of incalculable value in prevent ing shortages of materials essential to the war effort.

25\% Above Previous Record

The steel industry, as a result of its expansion and modernization program, was able to produce nearly $83,000,000$ net tons of steel last year, or about 97 per cent of its capacity, despite strikes and shortages of scrap and other raw materials. This output, a new record, was about 25 per cent more than was ever before produced in a single year.

Steel production for war equipment is being facilitated as producers and consumers concentrate on a relatively small group of standard steels rather than thousands of spe-cial-order steels, according to the nstitute.
Standard steels on which emphasis is being laid consist of 87 alloy steels and 77 carbon steels, selected after two years' study and research by steelmakers and metallurgists. Previously carbon and alloy steel had been made in 4000 combinations of chemical elements.

In 1941 the groups of standard steels represented approximately 90 per cent of total carbon steel output, 70 per cent of alloy steels made in the open hearth, 85 per cent of electric furnace alloys and 100 per cent of stainless steels. In 1942 it is expected standard steels will constitute an even greater proportion. Steel plant efficiency has been materially improved with greater production of standard steels, both producers and consumers sharing in the advantage of production on a large scale.

Blast furnace operators are trying "every trick of the trade" in an effort to increase pig iron output for war purposes, according to the institute. They also exchange with one another "their most private and formerly closely-held operating :secrets."

Shortage of scrap has increased
need for more pig iron and to meet the emergency blast furnace capacity has been increased about $4,600,000$ tons in the past two years, and new furnaces with annual capacity of over $7,000,000$ tons are planned.

Since it will be a year or more before all the new stacks are in operation, executives of the industry recently asked blast furnace superintendents to use all their experience and ingenuity to get maximum output immediately from existing furnaces, to forget production costs for
the time being and to use any expedient that will produce even a few more tons of pig iron per day.

Among emergency methods now being tried is washing and cleaning of coal to remove sulphur and ash before making it into coke. Experiments are also being made in grading coke to size as some kinds of ore yield more iron when coke of a particular size is used for fuel. Another method being tried is operation of blast furnaces at temperatures higher than usual.

"Old Timer" Silvery Iron Producer
Gives Way to Modern Blast Furnace

JISCO stack of the Jackson Iron \& Steel Co., Jackson, O., is scheduled to be blown out April 1 and will be replaced by a complete new blast furnace of increased capacity.

The stack made its first cast of silvery pig iron Oct. 6, 1908, and has been producing this specialty since. The present campaign of seven years has been one of the longest made by a furnace on silvery iron. During this period several tonnage records have been established by the furnace.

The projected expansion program includes, in addition to the new stack, a new hot blast stove, which already is completed, and installation of a Carrier air conditioning system to dehumidify the hot blast.

Auxiliary furnace equipment has been expanded to help handle the increased tonnage of raw materials. This equipment includes two dieselelectric traveling cranes, a diesel-
driven ore unloader, and an addition to the trestle high-line. Company also is adding to its water system to insure a sufficient supply for the new and enlarged plant.

Urgent need for silvery pig iron in the war production program necessitates completion of the project as soon as possible. To speed the work the company's property will be flood-lighted and construction will be pushed 24 hours a day, seven days a week.
Conservative estimates place at three months the period the furnace will be out of blast.

Small quantities of coal, mined on the company's own property near the cast house, are mixed with coke in the present Jisco stack, shown in the accompanying photograph. Furnace gas is run into a precipitator, conducted through insulated mains, and burned under the boilers and stove.

90 Per Cent of

Steel in Canada

Now in War Work

TORONTO, ONT.

THAT 90 per cent of available Canadian steel is being used directly for war purposes is the statement of F. B. Kilbourn, Canadian Steel Controller. The remaining 10 per cent is limited to purposes high up in the essential class, such as cans for foodstuffs, coal shovels, repair parts for buses.

A long list of products has been banned from further manufacture. Baby carriages are included. Button manufacturers must use wood or plastics. Chain link fences probably will be barred. Orders have been issued for cessation of manufacture of metal ski poles, fishing rods, golf clubs. None of these may be sold in Canada after April 29. J. R. Nicholson, Deputy Controller of Supplies, states that permits may be issued for reasonable use of inventories of materials now in hands of manufacturers.

Steel wool, metal kitchen scrapers and other kitchen utensils, metal lawn rollers, paper weights, metal ornaments and decorations have been put on the prohibited list.

New instructions issued to the metal trades prohibits use of virgin tin for any purpose without written permission of the Metals Controller, of the Department of Munitions and Supply. Permission will be granted only for war materials and most essential civilian products.

Tungsten supply is so short that even in high-speed steel tools tung. sten content has been reduced from 18 to 6 per cent. Molybdenum and vanadium will be used instead, though a shortage is developing in the latter.

Restrictions on export of motor vehicle parts are to be extended. On and after March 2 an export permit from the Department of Trade and Commerce will be required for export of replacement parts and accessories for passenger cars, motor trucks, buses, chassis and engines.

Record Steel Output

January production of steel ingots and castings in Canada established a new monthly record with 257,069 net tons, a gain of 5 per cent over 244,846 tons in December. Pig iron output was 163,156 net tons, 3026 tons less than the all-time record of 166,182 tons in December. Dominion Bureau of Statistics rates steel ingot production at 97 per cent of capacity and pig iron at 94 per
cent. Ten of 11 blast furnaces are in operation, the one idle stack undergoing repairs at the Algoma Steel Corp. plant at Sault Ste. Marie, Ont. Algoma Steel Corp. has completed arrangements with the government for erection of an additional blast furnace with capacity of 1000 tons per day, to be completed late this year. Dominion Steel \& Coal Corp. Ltd., Sydney, N. S., also will start work soon on a new stack.

Steel capacity of Canada at the end of January is estimated at 2, 647,000 net tons annually of basic open-hearth steel and 317,000 tons of electric furnace steel, a total of 2 ,964,000 tons. Steel castings capacity is estimated at 200,000 tons.

Dominion Bureau of Statistics has changed its base from gross to net tons in reporting production and capacity figures. January production, with comparisons, in net tons:

		Steel Ingots, castings	Pig	Ferro-

Heavy Steel

Products Lead in

Year's Production

PRODUCTION of semifinished and finished rolled steel products for sale in 1941 established a new record at $65,361,688$ net tons, an increase of 34.5 per cent over the prior high, $48,584,860$ tons in 1940, according to the American Iron and Steel Institute. Some of the total in 1941 represents conversion of ingots and semifinished products carried over from the previous year.
In production of individual steel products, more standing records were made in 1941 than in any previous year. Except in rails and certain varieties of pipe, new peaks were established for nearly every major class of steel product.

Among materials produced in record quantities were sheets and strip, tin plate, alloy bars, reinforcing bars and sheet piling. Records were also almost certainly made in plates, heavy structural shapes and merchant bars.
Heavy steel products comprised a larger proportion of total output for sale in 1941 than in nine years, reflecting the shift in demand from manufacture of consumers' goods to war equipment.
Plates, shapes, bars, billets and other heavy steel accounted for 60 per cent of the total made for sale last year, while light steel, such as sheets, tin plate and wire rods, amounted to 40 per cent. Heavy

AMERICAN IRON AND STEEL INSTITUTE Capaetity and Production for Sale of Iron and Stoel Producta									
		$\begin{aligned} & 8 \frac{8}{8} \\ & \frac{8}{8} \\ & \frac{1}{2} \frac{1}{8} \end{aligned}$	d	Amull Clopeliy Net tocas (a)					
		Cmmit Mools							
							mana		
		Tow				$\underset{*}{\text { Enom }}$			
	Ingots, blooms, billets, tlabs, atheet bern, etc.		42	1	xxxxxx	595,525	x x		167, 829
	Heavy tructural ataper		0	2	5,047,000	403,215	94.0		xixixi
	Sted piling.		4.	3	327, 000	38,009	142.9		x 11818 x
	Platco-Steared and Univerol	20	4	7,100,760	-713,282	1182		13,353.	
	Skelp.	7.	5	1 $\times 1 \times 8 \times 8$	--- 83,520	$\mathrm{x} \times 1$		53.4.605	
	Railo-Standard (over 60 lba)	$\underline{1}$	6	-3,563,600	123,253	40.7		x $\mathrm{xixxx}^{\text {x }}$	
	Likht (50 lba, and under).	6	7	- 302,800	8,019	31.2			
	All other (Ind. yirder, guard, etc.)	2.	8	102,020	1,360.	15.7		18×8××	
	Splice bar and tie p'rate.	13.	9	1,161,740	54.150	54.9.		x×x818x	
	Bars-Merchant.	41	1011121314151516		- 593.129	x $\times \mathrm{x}$		82, 151	
	Concrete reinfordng-New billet	18			-164,527	- $\times 1 \times$		x \times x \times x \times x	
	Rerolling.	12			-17,023	$\begin{aligned} & 3 \\ & 5 \times x \\ & 5 \\ & 5 \times x \end{aligned}$		x $\times \times \times \times \times \mathrm{x}$	
	Cold finisted-Carbon.	23			--111.545.			x $\times \times \times \times \times 8$	
	Alloy-Hot rolled.	18			-147,788			- 30,154	
	Coid finished.	18			19.377			x \times x \times x \times x	
	Hoopa and bating bande	3.			6,136				
	Total arss..	65	17	13,601,85.0	1,059,525	91.7		112,305	
	Tocl steel ban (rolled and forged).	16.	18	--182,3110	--.13, 3771	86.3	-	x $\times 8 \times 8 \times 8$	
	Pipe and tube-B. W.			-2,227,040..		72.8			
	$\text { L. } \mathrm{V}$	8	20	$904,402$	$41,714$	54.3		1181881	
	Elcetri	7.	21	1,165,450	--56,331	56.9.		888888	
	Seamle	13	22	3,031,160	- 162,565	$6 \mathrm{6}, 1$		191919	
	Con	8.	23	186,280	- 14.702	93.5		8181880	
	Mestanical Tubin	10	24	- 402,600	---33,153	60.9		xx+1x:x	
	Wire rods	20		\xxıx	-110, 5 j 5	xx		17,590....	
	Wire-Drawo.	43.	25	2,348,6,90	-200,987	100.7		3,70,	
	Naila end stapler	19		-1,157,650	...--. 61.478	62.5			
	Barbed and twistod	15	${ }_{28}^{27}$	-	- 26,666	66.8		\% $\times 1 \times \times \times \mathrm{x}$	
	Woven wise leno	16	28	774,785	-20,100	30.5		x XXXXXX	
	Dase ties.	11	29	120,030	- 5,480	53.3			
	All other wire procucts	\bigcirc	30 31	71,020	-3,103	51.4			
	Fence posta	11.	31 32	107,160	- 3,020	33,?		xxxxixx	
	Black plate.	11		342,100	- 51, 877	$\overline{178,5}$			
	Tin plate-Hot rolled.	6	33	508,620	37.355	86, 4.			
	Cold reduced.	11		35 3,871,340	270, 005	85.1.			
	Sheets-Hot rolled	28	36	x $\mathrm{x} \times \mathrm{xxx}$	-543.905	$x \geq$		13,915	
	Calvapised	15	3738		- 1112,326	¢ 18		x \times x $\times 1 \times \mathrm{x}$	
	Cold rolled	16			- 205,391	: $: \geq$		x $\times 1 \times 8 \times 1$	
	All other.	13	39	18181818	47,866	± 81		8.1889	
	Toral siletts.	30.	40	13,088,370	-903,579	81.7		13,945	
	Strip-Hot rolled	25		$\begin{array}{l\|l} 41 & 2,89,100 \\ 42 & 1,580,360 \\ \hline \end{array}$	-152,763	52.1		14. 340	
	Cold rolled.	40			-100,962	74.8	-		
	Wheels (car, rolled steet)	5	43	- 424,820	--21,401	50.3		x×x×x×x	
	Axies	6		- 453,470	--20,261	52.6		\% \times x $\times 1 \times \mathrm{x}$	
	Track spiken	11	4	$\begin{array}{r} 320,940 \\ \hline 76,600 \\ \hline \end{array}$	- 14,722	54.0		x×××××x	
	All other..	6	45		---3,052	137.6		x $\times \times \times \times 8$	
	Total stefl prodicts	17.0	47	xxxxxx	5.557,539	x $\times 1$		397,172	

	Pig iron, ferto inanganate and spiegel. Ingot mouids..	$\frac{20}{5}$	$\begin{array}{r}48 \\ 48 \\ \hline\end{array}$		$\begin{array}{r} 29,0501 \\ -65,681 \\ \hline \end{array}$	$\begin{aligned} & 1 \times 2 \\ & \times \times 8 \end{aligned}$		122. $2 \times 2 \times 1$
	Ean	12	50	177,115	10,125	67.3		807
	Pipe and tut	3	51	109,300	7.580	81.7		12x:181
	All other.	2	52	71,000	2,177	36.1		112: 21
	Total iron products (items 50 tu 52)	15	53	292,915	19,891	79.9		807

(a) To be revised.

* In accordance with Government policy, export ficures cennot be publisised.
steel products comprised 58.5 per cent of the total in 1940, 55 per cent in 1939 and less than 54 per cent in 1938. From 1933 through 1935 heavy steel products at times formed as little as 52.5 per cent of the total.

Details of January production of steel for sale are shown in the accompanying tabulation.

Steel Strapping Carries

A-10 Rating Under P-100

Steel strapping is interpreted as "operating supplies" and as such carries a rating of A-10 under Preference Rating Order P-100, according to Acme Steel Co., Chicago. Because this order forbids the application of the rating to "nonferrous material to be used as pack-
aging supplies," there has been some misunderstanding to the effect that steel strapping could no longer be obtained. Steel strapping is "ferrous" material and therefore is eligible to receive an A-10 rating on Order P-100.

There is still sufficient steel available to supply essential needs of industry, and especially where no conservation of needed material results from the replacement of steel by substitutes. This is particularly true of steel strapping which permits the use of lighter weight boxes, makes possible the bundling and skid-handling of hundreds of products which would otherwise be packed in heavier and more expensive containers, thus adding to freight, storage and handling problems.

Activities of Steel Users, Makers

AXELSON Mfg. Co., Los Angeles, is celebrating its fiftieth anniversary this year. Its principal production has been in pumps and other equipment for petroleum production. During World War I a line of machine tools, including heavy-duty lathes and accessories, was developed and this feature also is being pushed. Part of the company's facilities have been converted to production of aviation parts for warplanes.

DeVilbiss Co., Toledo, O., has moved its St. Louis sales and service branch to new quarters at 2737 Washington avenue.

Service badges have been awarded by Hanson-Van Winkle-Munning Co., Matawan, N. J., manufacturer of electroplating equipment and supplies, to all employes who have been with the company for five years or more. Various lengths of service are indicated by different materials used in badges.

An educational calendar showing 11 basic types of machine tools is being distributed by Continental Machines Inc., Minneapolis, and Doall Co., Des Plaines, Ill. Special attention is given to chip production in a study of fundamentals of machine shop practice. The calendar is large and is designed to be hung in the shop where all machine-shop and production men can read it easily.

Despatch Oven Co., Minneapolis, has moved its purchasing, engineering, sales and executive offices to 722 Central avenue, to provide additional manufacturing and assembly facilities at its factory which remains at 622 Ninth street Southeast.

Pennsylvania Transformer Co., Pittsburgh, has appointed the following sales representatives: As. sociated Engineers, 747 Martin building, Birmingham, Ala.; R. D. Cope \& Co., Southland Building annex, Dallas, Tex.; W. Porter Jones, 910 Fidelity building, Cleveland; J. E. Murray \& Co., Midlanci building, Kansas City, Mo.; Williamson Sales Co., P.O. Box 1194, Shreveport, La.

Lincoln Electric Co., Cleveland, has changed the addresses of the following branch offices: Oklahoma City office is now located at 19 North Ellison street, with R. L. Looney, manager, in charge; Milwaukee, 733 North Van Buren street, with F. C. Archer continuing as district manager; Chattanooga, Tenn., 1111 James building, R. M. Daniels
in charge; Chicago, 323-325 East Twenty-third street, G. E. Tenney, manager; Dayton, O., 246 Wiltshire boulevard, R. P. Sharer, manager. Fuchs Machinery \& Supply Co., Lincoln's office in Omaha, Nebr., is now located at 521 South Fifteenth : treet.

Manning, Maxwell \& Moore Inc., Bridgeport, Conn., has distributed a jobbers' salesmen's hobby club roster to about 6000 jobbers' representatives, containing the home address and hobby of all those to whom the book has been sent. It includes many photographs showing salesmen at work on their hobbies and lists more than 110 spare-time activities. The purpose was to build goodwill among salesmen, and the response has been encouraging.

Alan Wood Steel Co., Conshohocken, Pa., is renovating the iron ore mine at Oxford, N. J., recently purchased from Warren Foundry \& Pipe Co., Phillipsburg, N. J. Improvements include an ore crusher, a trolley railroad in the mine and latest type dump cars and trolley locomotives. Materials and equipment have been ordered.

The company also purchased the Scrub Oak mine, near Wharton, N. J., which it had been operating for some time under lease. Produc-
tion from the old McKinley vein will be started soon, after an interruption of several years.

General Electric Co., Schenectady, N. Y., in 1941 paid employes $\$ 95,203$ for 12,453 suggestions, a large portion of which were ideas for speeding or improving war production. This was 22 per cent more than $\$ 77$,477 in 1940. Total suggestions numbered 40,834 , or 24 per cent more than in 1940, and the number accepted was 8 per cent greater. Many employes took their awards in defense bonds.

Plant Conversion Industries, 55 Liberty street, New York, has been organized to aid manufacturers in converting their plants to war production. It announces it has engineering, plant survey, retooling, equipment and plant financing services and has established branch engineering and auditing staffs in key cities.

The group is headed by Maxwell J. Mangold, its organizer. It offers its services to manufacturers seeking to obtain subcontract work and to prime contractors wanting to place part of their requirements.

Allegheny Ludlum Steel Corp. employes have instituted a voluntary payroll allotment for the purchase of defense bonds, effective through all of the company's seven plants.

SPOT welding aluminum alloy members of airplane duct system at aircraft parts plant of Briggs Mig. Co., Detroit. Close inspection of reinforcing strips shows closely spaced welds. with only four rivets used, equally spaced along the strips. Successful welding depends on accurate control of electrode pressure, current and position of parts, plus frequent dressing of electrode tips

Government Inquiries

The following prime contracts are pending, with closing dates for blds as Indicated. QR refers to quantity required. BIddinf forms on these Items can be obtained only by wirlng, meationling schedule number, to the Procurement Branch of the service heading the list of requirements. Fleld offices of Contract Distrlbution Branch, WPlt, generally have avaliable for Inspection and examination, schedules, Invitations, speclficatlons and drawings (where required) concerning
these contracts.

BUREAU OF SUPPLIES, ACCOUNTS NAVY DEPARTMENT, WASHINGTON
443-Machines, milling, vertical, QR-7. Blds Mar. 12.
452 --Crane, Crawler type, gasoline engine driven, double drum, with 40^{\prime} boom, complete with tools and accessorles, QR-1. Bids Mar. 13.
458-Steel bunks, double deck, with 2 fabric springs, QR-13,753; single deck, QR-1524, Bids Mar. 17.
466-Strect sweepers, gasoline, motor driven, of the latest destgn, complete ready for use, QR-19. Blds Mar. 17.
171-Hand and leg Irons, QR-2,998. Bids Mar. 20.
479-Buoys, cylindrical and mooring, QR-232. Blds Mar. 17.
483-Metallic mercury, U.S.P. redistilled, In 5 lb . earthenware or glass bottles, QR-15,700 lbs. Bids Mar. 17.
476-Ammunition boxes, mark 1 , for 40 mm . ammunition, QR-200,000. Bids Mar. 13.
4,78-Calcium carblde, in 100 lbs . drums, lump slize, QR-400 ibs., nut, QR-1,420,000 lbs ., $1 / 4 \mathrm{size}, \mathrm{QR}-150,000 \mathrm{lbs}$. Blds Mar. 20 .
182-Door closers, liquid, QR-4,928. Bids Mar. 20.
48 f -Mechanical clocks, type A, 24 hr . dial, 6" dial, QR-1,700, $81 / 2^{\prime \prime}$ dial, QR700; clocks, mechantcal, type $\mathrm{B}, 12 \mathrm{hr}$ dial, 6" dial, QR-4,300. Bids Mar. 13.
4504-Countersinks, high speed steel, taper shank (Morse) No. 237 Deg. angle, dia. of body $2^{\prime \prime}$, Morse taper shank No. 3. QR-48, Reamers, high speed steel, bridge, spiral flutes, taper shank, "Morse" type R. 21/32" and $25 / 32$ ", QR-30 of each, Countersinks and drills, type C (combined) carbon steel, double polnt, stralght shank, dia. of body $\mathrm{I}^{7}{ }^{7 \prime}$, dia. of drlll ${ }^{2}{ }^{3 \prime \prime}$ ", QR-750. Bids Mar. 14.
4505 -Pipe, brass, seamless, grade A, Standard welght, $21 / 2 "$, IPS, $12-16^{\prime}$ long, QR-7,100 ft . Tublng, brass, seamless, grade I, type C, 300 pounds working pressure, per sq. in. O.D. 1.135", wall thlckness, . $065^{\prime \prime}$, QR-3800 ft., O.D. 3.5" $x .122^{\prime \prime}$, QR-400 ft . Bids Mar. 13.
4510 -Rope, wire, regular lay, 600° rects, Phosphor bronze, 6×19, ilbre core, type. C, fis" dia. QR-16,800 ft . Stecl, extra strong, galv. 6×37, hbre core, "/s" dia. type D. QR-2400 it. Steel, plow, high grade, uncoated, 6×37, type E dla. $5 /{ }^{\prime \prime}$ ", QR-37,200 ft. Cllps, wire-rope, steel or Iron, galv. QR-560. Bids Mar. 14.
4521 -Tubing, steel, cor. res. cold drawn $1 / 4$ hard, finish "C", polished outside. random commercial lengths, $1.00^{\prime \prime} x$ $.058^{\prime \prime}$ thick, QR-180 lin. ft. Blds Mar. 13.

4526-Irons, soldering, electric, heavy work, 115 volts, type D , pyramidal point, QR-315. Drills, electric, portable, universal current, voltage 115 , chuck or Morse paper chuck, type B. Size max, of drill $1 / 4$ " and $z^{\prime \prime}$, QR-94 of each. Bids Mar. 14.
4527-Shackles, anchor, screw, dia. 2/2" and $1^{\prime \prime}$ length, QR-4460. Thimbles, steel, galv. Manila and wire rope, QR-2240. Bids Mar. 14.
4515-Wrenches, socket, handies, ratchets, etc., QR-misc. Blds Mar. 13.
4518-Cutters, router, high-speed steel, heat-treated, guaranteed sultable for R. L. Carter routing machines, QR-
472. Blds Mar. 13.

4520-Nickel-copper-alloy, sheets, QRapprox. 4,100 lbs.; seamless, QR-approx. 394 lbs.; Electrodes, welding (covered) nic. cop. alloy, Class "B" Bi'" dlameter, $18^{\prime \prime}$ long, QR-100 lbs. Bids Mar. 14.
4547-Pneumatic grinders, portable rotor type, wheel size $2^{\prime \prime}$, QR-12, $4^{\prime \prime}$, QR24, $8^{\prime \prime}$, QR-6. Blds Mar. 14.
4549-Frames: hack saw, adjustable, straight handle, QR-7,238. Blls Mar. 16.

4550-Chains: type A, welded, crane, close Ilnk, wrought Iron, black \%" dia. of wire, QR-26,400 lbs. Bids Mar. 16.

4568-Vises: hand, parallel jaw, type V, class B , opening (minimum) $\mathbf{1}^{\prime \prime}$, width of Jaws $11 / 4^{\prime \prime}$ to $11 / 2 "$, Q12-50; vises: machinists', bench, swivel-base, station-
ary taw, iype VII, class B, opening of jaws (minimum) $4^{\prime \prime}$, width of jaws (approx.) $3^{\prime \prime}, ~ Q R-400$. Bids Mar. 17.
$45(04-T u n g s t e n$ annealed steel, grade W, machine cold-rolled, rivet, class HG, heat treated; tinned plate, bolt material steel, sheet steel, flat, galv., QIRLarge. Bids Mar. 17.
1565-Adjustable wrenches, combination box and open end; double end; englneers; screw, monkey; type \mathcal{C}, heavy duty wrenches, QR-Large. Bíds Mar. 14.

1571-Reamers, bridge, taper shank, spiral fluted, H.S.S., normal dia. 21/64" Morse taper No. 1, QR-18. Blds Mar. 17.

157(i-Springs, open box type berth, (bullt-in), QR-213. Bids Mar. 17.
$4577-S a w s$, hole, tungsten high speed steel cutting edge, QR-360; arbors, hole saw, solid hexagon shank, fur nished with 1 high speed steel pllot or center drill, QR-96. Bids Mar. 17.
4588 -Bolts: steel, NCTS, carriage, black and galvanized, sq. neck, with sq. nuts machine black, hex. head and nut; lag-steel bolts and deck; machine, screw, steel, NCTS, hexagon, castellated and regular nuts; iron or steel, lock: spring steel; and phosphor bronze washers; boat, copper rlvets rivet, copper burrs, QR-Large. Hids Mar. 17.

Sub-Contract Opportunities

Abstract

Data on subcontract work are issued by local offices of the Contract Distribution Branch, PB. Contact elther the ofice lsauing the dats or your nearest district ofrlce. Dath on prime contracts also are Issued by Coniract Distribution of sour nearest dices, which ususily have drawinge and specificalionk, hut bids should be submitted directly to contracting ofticers as indicated.

Production Dlvision, Contract Distributlon liranch of WPB, 1617 Pennsylvania boulevard, I'hlladefphia, reports the following subcontract opportunitles:
2-187-1: Dayton, O., flrm requires subcontracting facilities on the following items: (a) Nuts, 10,000 per day-requiring automatic serew machines for at least 1 -inch hex bar steel. (b) Clips, 20,000 per day-requiring stampforming presses, spring tempering furnaces. (c) Pins, 10,000 per day-requiring plain, 20 -Inch wide table, horizontal millers; small external grinders and heat treating racllities. (d) Wedge, 10,000 per day-requiring turret lathes, small slze millers, heat treating facllities, small drop hammer. (e) Body, 5000 per day-requiring copper brazing facllttes, external grinders and plain grinders, and heat treating facilities. (f) End connectors, 10,000 per day and (g) links which require same facilitles as item "d". Material for above items-seamless steel tubing, sheet phosphor bronze, hex bar steel, small steel forgings. Toleranecs: 0.005 to 0.0025 -inch, material to be furnished by subcontractor. Plans and spectfleations on tlle at Philadelphia office.
4-135-1: Philadelphia firm requires subcontracting facilities on tank turrets weighing approximately 4500 pounds each. Material which is cast armor steel will be furnished by prime contractor. Tolerances, 0.005 -Inch. Quanlity, 1200. Tools required: 12 -foot or larger boring mills vertical, horizontal boring mills having $41 / 2$ to 5 -inch spindle.
4-B6-1: Michigan firm requires subcontracting facilities for QE gun parts. Thirty component parts are required with 2100 of each part necessary at rate of 300 to 500 sets per month. Ma-terial-bars and forgings will be furnished by prime contractor. Tolerances
are close. Equipment for ParkerizIng, heat treating, milling and prollling is necessary.
1-136-2: The government wishes to secure for planning purposes potental subcontractors for $90-\mathrm{millimeter}$ gun mounts. Drawings and speciflcatlons are on tlle at this office.
4-137-1: Government arsenal requires subcontracting facllities for chill molds for 75 and $90-\mathrm{mllllm}$ meter guns. Tools required are: Engine boring lathes, 48×24-Inch; taper attachments-master boring bar avallable for tooling up; crane facllitles; heal treating equipment; material-gray fron cast-Ings-Spec. $14 \times$ S 15(2); tolerances+ or - $1 / 6$-inch; quantitles-twelve 22,900 pounds each, $75-$ millimeter, and ten 44,500 pounds each, 90 -millimeter. A-1-A priority. Rush.
5-136-1: Brooklyn, N. Y., firm requires subcontracting facilities for manufacturing blanks for 1-S-5 driving cut. Material-Hyma steel (Union Drawn Steel Co.) or approved equivatent to be furnished by subcontractor. Ten to twenty thousand pleces are required, tolerances, + or -0.010 . Production to start immediately. Automatic multi-spindle serew machines $31 / 2$ to $3^{1 / 2}$-inch required.
-138-1: Allentown, Pa., firm requires subcontracting faclilties to manufacture the following: Three thousand T128 socket slugs, flve thousand T20 socket slugs, flve thousand A22 socket slugs, ten thousand RF22 socket slugs. Ma-terial-SAE 6120 and SAE 6150 cold rolled steel - will be furnished by prime contractor. Tolerances: +0.000 , -0.005 and + or -0.003 -inch. Tools required: automatic serew machines. Production to start as soon as possible. Prints are on flle at this office.
5-138-2: Norfolk, Va., 11 rm requires subcontracting facilities on 50,000 drop forgings, materlal to be SAE 1020
steel. Each dirop forging weighs approximately 8 pounds. Production to start as soon as possible.
12-137-1: Philadelphia prime contractor desires to locate subcontractor with experience in the construction of surrace condensers. Items to be subcontracted are ten 7800 -square-foot surface condensers to be fabricated according to paragraph U-69 of the ASME code for unflred pressure vessels. Elght-foot boring mill is required to machine component parts: 14-foot planer is required to machine assembled shell structure. First 3 of a lot of 10 to be complete by December, 1942, and 3 per month thereafter. Specifications and blue prints can be viewed at thls office.

12-137-2: Indiana prime contractol requires subcontractors to machine completely large and medium size steel and manganese bronze castings. Ten different sizes are involved. Quantity 500 each. Machine tools required, 24, 36 , 48 -inch swing lathes; 3 -inch horizontal boring mill; 36-Inch planer. Necessary tools, Jlgs, gages, etc., to be furnished by subcontractor. Furnishing of patterns and material opthonal. Order to be completed by Nov 1, 1943. This job carries A-1-a priorlty rating. Drawings can be vlewed at this office.
12-157-3: A Philadelphia prime contractor desires the subcontracting of cutting of serrations on end of shaft. Dimension of shaft $1^{1 / 4}$ " O.D. by "J ${ }^{\prime}$ " long. Dimension of serration .8536 P.D., number of serrations 48. Material S.A.E. 1045. Type of machine required -7A Type Fellows high speed gear shaper. There is a large quantity or these shafts io be cut.
14-136-1: Phltadelphia Ordnance District requires prellminary planning and procurement for varlous types of fuzes Steel (bar and sheet), brass (rod and strip) seamless brass tubing and steel musle wire are required. 'rools necessary for the work include inulti-spinde screw machines ($4^{\prime \prime}$ io :2\%") and sear cutting equipment. Quantities and dates not settled.
14-137-1: A government arsenal requires subcontracting assistance on trall stops. Plate metal work up to $1 / 4$ " is required with butt welding and seam welding. Materlal-low alloy Steel, grade 2; to be furnished by prime contractor. Fifty items required at commerclai tolerances. Priority A-1-r. Plans and spectileations at Phlladelphia orfice.
15-136-1: Bronx, N. Y., firm requires subcontracting facilities on special bolts bored flllister heads, spuds, etc. Close precision automatic screw machines, preciston grinders, drill presses and millers are required. Material-SAE 2330 steel bar stock to be rurnished by subcontractor. Varlous quantities are required, from 6000 to 20,000 pieces. Production to start at once at rate of 100 ver day.

Chicaro office, Contract Dlstribution Branch of WPIB, 20 North Wacker Drive, is seeking contractors for the following:

5-J-113: A large Midwest manuracturing company finds it necessary io sublet work for machining motor end shlelds, made from SAE-X-4130 steel forgings. Quantity requirement 750 per month, based on a priority of A-1-a. The prime contractor will for the present furnish the forgings, but eventually the subcontractor will be required to also furnish the forgings. All tools to be the property of the prime contractor. Planning, as set up by the prime contractor, will require the tollowing equipment: Potter \& Johnson machines, vertical milling machines.

Domestic Manganese Program "To

Produce 600,000 Tons Annually"

WASHINGTON
A VAST manganese production program from low-grade domestic ores was announced last week by William L. Batt, WPB Director of Materiais.

Seven small projects and three large ones have been recommended for federal financing.

The new plants, plus those already in operation, should produce well over 600,000 tons a year in high grade manganese concentrates, as compared with 30,000 tons domestically produced in 1939 and 40,000 tons in 1940.

The United States never has been more than a negligible producer of manganese because deposits in this country are low grade and present difficult engineering and technical problems in their recovery.

Intensive studies and experiments carried on during the past year by the United States Bureau of Mines and Geological Survey and by private groups have developed methods that will produce high-grade manganese concentrates from 10 to 12 per cent ores. Results of the various tests have been evaluated by the Advisory Committee of the National Academy of Sciences and several have been recommended to the WPB for development.

These will be applied on the three large projects that will produce more than two-thirds of the expanded domestic output--in the Cuyuna range of Minnesota, the Missouri

River area in South Dakota and in the vicinity of Boulder Dam in Netada.

The Cuyuna Range, largest of the three projects, has presented the most difficult extraction problem. The method finally adopted is a sulphuric and sulphurous acid leach, by which manganese sulphate is formed, then kiln-treated to produce 60 per cent manganese oxide concentrate.

More than a million tons of ore a year will be treated at a govern-ment-built plant to be erected in the area.

In the South Dakota area, 16 per cent manganese concentrate will be extracted from 1 and 2 per cent manganiferous shales. Ore dressing followed by a blast furnace smelting process will be used to extract the metal from some five million tons of clay annually.

At the Nevada mill, a sulphurous acid method will be used on 20 per cent ores to produce 60 per cent concentrates. The plant will handle 300,000 tons of ore annually.

In addition to these three large projects, seven small ore dressing plants are to be built in Arkansas, Montana, Utah, Nevada, Georgia, and Tennessee to treat production from small mines. These plants will treat from 150 to 500 tons per day of crude ore and will produce high grade manganese concentrates and an appreciable amount of manganiferous iron ore.

Labor Force

Must Be Women"

SHORTAGE of skilled and semiskilled labor caused by the draft and growing production schedules has stimulated demand for women workers in war plants. Applications by women for jobs also are reported to be increasing.

Women now hold only one of every ten jobs in essential war industries, whereas they held one out of four jobs at the peak of industrial effort in the World War I.

At present, only 500,000 women are employed in all defense industries, compared with two and one-quarter million in 1918. At least $7,000,000$ additional women between the ages of 14 and 44 could be drafted into these ranks, about onefifth of them coming from the normal labor force. War Production Board has estimated that among the $2,000,000$ new workers who must be drawn into the labor force in 1942, the majority will be women.

A limited indication of the abrupt increases that may arise is noted in an analysis of shifts in World War I employment. In the iron and steel industry the ratio was raised from 29 women per 1000 in 1914 to 95 after the second draft.

Westinghouse Electric \& Mfg. Co., East Pittsburgh, Pa., has established a special separation reserve

完
 .右 -
\qquad

\qquad

8
fund in which it is setting aside the equivalent of half of 1 per cent of its payroll each month. The fund will be for the benefit of employes who may be laid off during the change from emergency to normal produc-

LEFT, girl workers in naval aircraft plant. Philadelphia. Below, girls in Goodyear Aircralt's Akron, O.. plant learn use of sheet metal shears, and train to be junior draftsmen under Goodyear industrial instructor

Republic Steel Increases War

Service with Plant Expansions

CONTRIBUTIONS being made by Republic Steel Corp. to the war program are set forth by T. M. Girdler, chairman, and R. J. Wysor, president, in the company's annual report. These include:

Units now under order will greatly increase the company's electric furnace steel capacity.

Additional facilities are under way for increased production of forging steels for aircraft engine parts.

Light armor plate is being produced for aircraft and land vehicles, including tanks and trucks.

The Steel and Tubes Division has developed and put into commercial operation a welded alloy steel tubing process for use in airplane construction.

A large gun bloom forging plant is under way.

A rough turn and bored gun forging plant has been authorized.

Truscon Steel Co., Republic's subsidiary, has filled and is filling orders for steel barracks, airplane hangars, etc.

Production of steel plate, vital to shipbuilding, has been substantially increased.
Shell production is absorbing large tonnages of the bar mills' output.
Production of low phosphorus pig iron, necessary in making acid open hearth steel, has been increased.

The report showed sales and operating revenue of $\$ 483,812,368$, as compared with $\$ 305,293,356$ for 1940. Total payrolls increased in 1941 from $\$ 97,570,848$ in 1940 to $\$ 137,079,363$. Taxes jumped from $\$ 16,034,921$ to $\$ 57,277,622$, and net income from $\$ 21,113,507$ to $\$ 24,038,339$.

Working capital mounted nearly $\$ 5,000,000$ from $\$ 105990,562$ to $\$ 110$,841,036.

"Donald Nelson Salvage Program'' in Missouri

ST. LOUIS
Following a census of 803 automobile wrecking yards in Missouri by WPA and the Department of Agriculture for the War Production Board a statewide campaign to collect scrap from Missouri industries is under way. Clifford W. Gaylord, president, Gaylord Container Corp., and brigadier general commanding the Missouri state guard, is chairman. The drive is under direction of the Chicago regional office of the Bureau of Industrial Conservation of the WPB, and will be known as the "Donald Nelson Salvage Pro-
gram." Meetings will be held in St. Louis and Kansas City.
Result of the census of automobile wrecking yards revealed 12,600 tons of scrap, which can be reclaimed from 20,024 cars at an estimated yield of 1200 pounds each. Favorable results have been noticed already. However, shipments are not as great as sales, bad weather delaying preparation.

MEETINGS

American Tool Engineers'
 Program for St. Louis

Tenth annual meeting of the American Society of Tool Engineers Inc. is scheduled for March 26.28 , in St. Louis. Features of the program:

Thursday, March 26 2:30 p.m.

"Defense Contract Distribution, Finding Faclilies for Contract Placements, and

Problems of small Shops", by Clifford Ives, state director, contract distribution branch, War Production Board, Milwaukee.
"Management Problems Involved in Plant Conversion", by Hugh H. C Weed, vice president, Carter Carburetor Corp., St. Louis.

8:00 p.m.
General Problems of Nonderense Industries", by Arthur Stockstrom, president. American Stove Co., St. Louls. Metallurgical Problems Involved in Materlals Substitution", by Dr. D. 12. Kellog, Westinghouse Electrle \& Mrg. Co., East Pittsburgh, Pa.

```
Friday, March 27 9:30 a.m.
```

Cutting Tool Design", by A. H. d'Arcambal, vice president, Pratt \& Whitcambal, vice president, Pratt \& ney Co., Div. Niles-Bement-Pond Co., ney Co.t Div. Niles-Bement-Pond Co., wi Hartord conn.
Salvaging Worn-Out Cutting Tools", by L. W. Lang, president, National Tool Salvage Co., Detrolt.
"Cutting Tool Life and Cutting Fluids" by Prof. O. W. Boston, University of Michigan. Ann Harbor, Mich.

2:30 p.m.

"Government Specifications and Inspectors", by F. E. Allison, chler inspector, 'Wagner Electric Corp., St. Louls.

> 8:00 p.m.

Annual banquet: Speaker to be announced.

$$
\text { Suturday, March } 28
$$

$$
9: 30 \text { a.m. }
$$

Problems of the Service Influencing Deslgn, Procurement and Production", by Col. K. B. Wolfe, material division, Army Air Corps, Wrikht, Dayton, O. Manufacture of Aircrait Engines", by H. E. Linsley, Wright Aeronautical Corp., Paterson, N. J.

Spectacular Gum Sign Goes Into War-Metal Hopper

WORKMEN are dismantling the Wrigley sign in Times Square, New York, to salvage critical metals for war production. A block long and ten stories high, the "spectacular", as such signs are known in the trade, used 35.220 electric bulbs, as many sockets, 80 miles of covered copper wire and 1080 leet of neon tubing. All that-will remain when the workmen complete their task will be a structural steel frame which is a part of the building on which it rests. The sign is estimated to have consumed enough electric power to illuminate a city of 10,000. ACME photo

The BUSINESS TREND

Conversion to War Toods

Dutpint Gathers Momentum

CONVERSION to war production continues to gather momentum. Most of the large manufacturing concerns formerly producing consumer goods have made marked progress in converting output to war materials. The same trend, although naturally at a slower pace, is occurring among numerous small plants throughout the country.

Despite government restrictions and manufacturers' own rationing schemes, which tend to hold commitments down in civilian goods lines, incoming orders still exceed deliveries in leading industries.

Steel's index of activity in the iron, steel and metalworking industries edged downward throughout February, primarily reflecting the cessation of automobile assemblies. A slight downward tendency in revenue freight carloadings and electric power consumption also occurred.

During February the weekly index averaged 129.5, compared with the January average of 131.3; while in February, 1941 the index stood at 132.3. The all time monthly peak recorded by the index was 138.7 in June of last year.

STEEL'S index of activity advanced 0.1 points to 129.1 in the week ended Feb. 28:

Week Ended	1941	1940	$\begin{array}{cl} \text { No. } \\ \text { Drta } \end{array}$	1942	1941	1940	1939	1938	1937	1036	1935	1934	1933	1932	$19: 1$
Dec. 27.	120.5	107.5	Jan.	131.3	127.3	114.7	91.1	73.3	102.9	85.9	74.2	58.8	48.6	54.6	69.1
			Feb.	129.5	132.3	105.8	90.8	71.1	106.8	84.3	82.0	73.9	48.2	55.3	75.5
	1942	1941	March		133.9	104.1	92.6	71.2	114.4	87.7	83.1	78.9	44.5	54.2	80.4
	1942	1941	Aprll		127.2	102.7	89.8	70.8	116.6	100.8	85.0	83.6	52.4	52.8	81.0
Jan. ${ }^{3}$	124.7	114.5	May		134.8	104.6	83.4	67.4	121.7	101.8	81.8	83.7	63.5	54.8	78.6
Jan, Jan, 17	131.2	128.2 130.8	June		138.7	114.1	90.9	63.4	109.9	100.3	77.4	80.6	70.3	51.4	72.1
Jan. 24.	133.7	130.7	July		128.7	102.4	83.5	66.2	110.4	100.1	75.3	63.7	77.1	47.1	67.5
Jan. 31.	133.9	132.0	Aug.		118.1	101.1	83.9	68.7	110.0	97.1	76.7	63.0	74.1	45.0	67.4
Feb. 7	130.6	132.7	Sept.	126.4	113.5	98.0	72.5	96.8	86.7	69.7	56.9	68.0	46.5	64.3
Feb. 14.	129.8	132.3	Oct.		133.1	127.8	114.9	83.6	98.1	94.8	77.0	56.4	63.1	48.4	59.2
Feb. 21.	129.0	131.2	Nov.		132.2	129.5	116.2	95.9	84.1	106.4	88.1	54.9	52.8	47.5	54.4
Feb. 28.	I29.1	133.0	Dec.		130.2	126.3	118.9	95.1	74.7	107.6	88.2	58.9	54.0	46.2	51.3

THE BUSINESS TREND-Continued

The index registered a slight increase of 0.1 point to 128.5 during the latest week. This compares with the 133.0 level for the corresponding week last year.

Total production remains fairly steady as rising output of war goods offsets curtailment in civilian lines.

Steelmaking production eased during January to $1,609,334$ net tons on a daily average basis, compared

Where Business Stands Monthly Averages $1941=100$			
	$\begin{aligned} & \text { Jan., } \\ & 1942 \end{aligned}$	Dec., 1941	$\begin{aligned} & \text { Junı, } \\ & 1941 \end{aligned}$
Steel Ingot Output	101.2	101.9	98.3
Pig Iron Output	104.4	1030.6	98.3
Building Construction	63.3	86.2	61.0
Auto Output	69.4*	71.0	122.4
Freight Movement	94.8	93.6	85.0
Wholesale Prices	109.2	96.3	92.6
*Preliminary.			

with $1,620,814$ in December and $1,563,902$ during January, 1941.

Machine tool production rose contraseasonally to $\$ 85,200,000$ during January. This is up only slightly from the December output, but represents a gain of 68 per cent over the $\$ 50,700,000$ worth of tools produced in January last year. It is estimated that 1942 output will top $\$ 1,500,000,000$, or almost twice the record production of $\$ 775,300,000$ registered last year. This record-breaking output estimated for 1942 is expected to be brought about by the rapid completion of the expansion programs already underway, simpli-

Industrial

 WeatherTREND:
Sidewise

fication of product, working longer hours, and more extensive subcontracting.

Foundry equipment orders reached an all-time peak during January. The Foundry Equipment Association's index of new orders rose to 532.7 in January, against 481.1 recorded by the index the preceding month and 285.3 in corresponding period last year.

Shipments of finished steel products of United States Steel Corp. totaled 1,738,983 net tons in January, compared with $1,846,036$ in December and $1,682,454$ in January a year ago.

The Barometer of Business

Financial Indicators

	Jan., 1942	Dec., 1941	Jan., 1941
30 Industrial Stocks	111.11	110.67	130.17
20 Rall stocks \dagger	28.01	25.33	29.01
15 Utilities \dagger	14.41	14.38	20.17
Par value, listed Bonds, NYSE, $(\$ 1,000,000)$	\$59.08	\$58.24	\$54.14
Bank clear'gs, daily average (000 omitted)..	\$1,210,900	\$1,303,592	\$1,005,944
Commerclal paper, interest rate (4-6 months).	0.56	0.56	0.56
- Com'l. loans (000 omitted)	\$11,241,000	\$11,370,000	\$9,337,000
Federal Reserve ratio (per cent)	90.8	90.8	91.0
Capital flotations (000 omitted)			
New Capltal	\$181,760	\$121,001	\$95,539
lerunding	\$151,478	\$95,427	\$324,573
Federal Gross debt. (mll. of dol.)	\$60,012	\$557,938	\$62 ${ }^{\mathbf{S}} \mathbf{4 5 , 8 9 0}$
lhallroad earnings ...	\$68,966,000	\$80,548,631	\$62,357,404
Stock sales, New York stock exchange	12,993,665	36,390,492	13,312,960
Bond sales, par value $(\$ 1,000,000)$	\$220.6	\$225.2	\$230.8

[^1]
Commodity Prices

	Jan., 1942	Dec., 1941	Jan., 1941
steel price average...	\$56.73	\$56.73	\$56.73
U. S. Bureau of Labor's			
index	95.3	93.6	80.8
Wheat, cash (bushel)	\$1.308	\$1.285	\$0.915
Corn, cash (bushel)	\$0.83	\$0.83	\$0.69

Industrial Indicators

	Jan., 1942	Dec., 1941	Jan., 1941
Plg Iron output (dally average, tons)	169,961	161,774	150,524
Iron and steel serap consumption (tons)	4,590,000	4,634,000	4,278,000
Gear Sales Index	288	243	259
Machine Tool Output	\$85,200,000	\$85,100,000	\$50,700,000
Foundry equipment new order index	532.7	481.1	285.3
Finished steel shipments (Net tons)	1,738,983	1,846,036	1,682,454
Ingot output (average weekly; net tons).....	1,609,334	1,620,814	1,563,902
Cost of Living (U. S. Dept. of Labor index)	111.9	110.5	100.8
Dodge bldg. awards in 37 states (\$ Valuation)...	\$316,846,000	\$431,626,000	\$305,205,000
Fabricated structural steel shipments (tons).	157,986	176,126	164,590
Automoblle output	295,000*	302,518	524,073
Coal output, tons	48,540,000	46,667,000	44,070,000
U. S. Dept. of Labor (90 industries, factory): Av. wkly. hrs. per worker†	41.2	40.3	39.8
Av. weekly carnings \dagger	\$33.69	\$32.80	\$27.89
Cement production, bbls. \dagger	13,810,000	14,931,000	11,195,000
Cotton consumption bales	946,909	887,326	844,839
Freight Car Awards	4,253	8,406	15,169
Car loadings (weekly av.)	771,284	761,500	690,884

Steel Ingot Operations
(Per Cent)

Week anded	19.12	1941	1940	1939
Feb. 28....	96.0	96.5	55.5	56.0
Feb. 21	$96.0 \dagger$	94.5	67.0	55.0
Feb. 14	97.0	96.5	69.0	55.0
Feb. 7	96.0	97.0	71.0	54.0
Jan. 31	97.0	97.0	76.5	53.0
Jan. 24	97.0	95.5	81.5	51.5
Jan. 17	96.0	94.5	84.5	51.5
Jan. 10.	96.5	93.0	86.0	52.0
Jan. 3	97.5	92.5	86.5	51.5
Weck ended	1041	1940	1939	1938
Dec. 27.	93.5	80.0	75.5	40.0
Dec. 20.	97.5	95.0	90.5	52.0
Dec. 13.	97.1	95.5	92.5	58.0
Dec. 6	96.5	96.5	94.0	61.0
Nov. 29.	95.0	97.0	94.0	61.0

tSince Feb. 21 rate is based on new capacity ligures as of Dec. 31 last.

Auto Production

Week ended	1942	1941	1940	1939
Feb. 28.	30.1	126.6	100.9	78.7
Feb. 21	25.7 \dagger	129.2	102.7	75.7
Feb. 14	29.8	127.5	95.1	79.9
Feb. 7	37.1	127.7	96.0	84.5
Jan. 31	73.3	124.4	101.2	79.4
Jan. 24	79.9	121.9	106.4	89.2
Jan. 17.	75.0	124.0	108.5	90.2
Jan. 10	59.0	115.9	111.3	86.9
Jan. 3	18.5	76.7	87.5	76.7
Week ended	1941	1940	1939	1938
Dec. 27	24.6	81.3	89.4	75.2
Dec. 20.	65.9	125.4	117.7	92.9
Dec. 13.	96.0	125.6	118.4	102.9
Dec. 6	90.2	124.8	115.5	100.7
Nov. 29.	93.5	128.8	93.6	97.8
Nov. 22.	76.8	102.3	72.5	84.9

Freight Car Loadings
(1000 Cars)

Week ended	1942	1941	1940	1939
Feb. 28.	781	757	634	594
Feb. 21	775	678	595	561
Feb. 14	783	721	608	580
Feb. 7	784	710	627	580
Jan. 31	816	714	657	577
Jan. 24	818	711	649	594
Jan. 17	811	703	646	590
Jan. 10	737	712	6768	587
Jan. 3	674	614	592	531
Week ended	1941	1940	1939	1938
Dec. 27	607	545	550	500
Dec. 20	799	700	655	574
Dec. 13.	807	736	681	606
Dec. 6.	833	738	687	619
Nov. 29.	866	729	689	649

tually DOING the instructing job.
The sessions are led by experienced industrial men, serving part time, who have been specially trained to do this job. The quality of the work of these "OPM trainers" is kept at a high standard through supervision from headquarters.

This training is given without cost to all companies holding war production contracts or subcontracts. The WPB trainers receive a modest hourly compensation out of federal funds, administered by the State Vocational Board. All that is necessary for a plant to get started is to notify the district representative of the WPB-OPM's Training Within Industry Branch, or one of the district representative's training consultants. A schedule supervisor will call promptly to meet with the plant superintendent, personnel manager or some other designated person to complete all arrangements for the first group and subsequent groups.

This program does not teach foremen how to assemble axles, or run a milling machine, or mix chemicals in a powder plant. What it does is to impress on the supervisors who do know how to assemble axles or run a milling machine or mix chemicals in a powder plant how to pass along that knowledge to others in the most simple, effective and rapid manner. The most technically competent supervisors, the master mechanics, are often the ones who benefit most by this simple drill in imparting knowledge. How to explain a new job to a worker is a skill every supervisor needs every day.

Notice that we say "explain a new job to a worker." We express it that way for a purpose. This program helps explain the job. Where the worker comes from does not matter. The technique is just as applicable to a worker transferred across the aisle or across town, as to one from the farm. The 10 -hour program is compact, carefully planned, practical and without a moment of wasted time. It is a single-purpose training tool and an efficient one.

Suppose you are about to instruct a man how to do his job. This is an extremely important project to the man-and to you-and to national war production. Perhaps the man has been with you for years. Or maybe he is green starting his first job. But first let's get organized!

What You Want To Do: Go back in your own memory. Remember how you felt the first day on a new job?-The time you were "stumped" by a new "wrinkle" on the job?The time when you caused some
scrap or rework?-The time you got hurt?-The times when the boss corrected you and your work? Perhaps you like the way he did itor perhaps you didn't?
Any worker assigned to you feels the same way. He wants to make a good showing. You realize this. You are interested in four things:
-Having the new worker come up to the quality and quantity requirements of production as quickly as possible,
-Avoiding accidents which will injure the worker,
-Avoiding damage to machines or equipment,
-Spoiling as little work as possible.

How You Can Do It: Most of us just "jump right in" and start instructing or correcting a workman without much thought or planning. Perhaps you do the same. But you may know the job so well that you've forgotten the things that "stump" the learner.
You may know it so well that you don't plan how to "put it over."

You may know it so well that you don't pick out the "key points" -the "knacks"-the things that make or break the operation.

To instruct a man rightly takes just a little extra time at the moment, but it saves hours and days of time later on and prevents a large part of the scrap, spoiled work and accidents. The following plan is simple and easy to follow. Furthermore, it works.

Before instructing, there are four GET READY points for you to watch. You can do them in a few minutes.

When instructing there are FOUR BASIC STEPS to follow. They really are no different from what you may now be doing. But they help you do it well and thoroughly.

At least they have helped thousands of others.

How To GET READY To Instruct:

 The four GET READY points you should take care of before instructing are:1. Have a time table. -How much skill do you want the man to have? -How soon? When faced with a "breaking in" problem, don't say, "It takes time . . .," or "He just has to learn." Say to yourself instead: "How much time . . . ?"

Here is an easy way to do it. Answer to yourself this statement: ". . . (employe) . . . should be able to (do what job) and do it (how well) by (what date)." Better yet, put down the names of your men on a piece of paper. Set yourself some dates when you are going to try to have them able to do the jobs they need to know. Time is short.
2. Break down the job. There is one right way to do every job. You know too that there are a few "key points" in every operation that make or break it. If these key things are done rightly, the whole operation is right. If any one of them is missed, the operation is wrong.-If you put the job over to the worker with these key points made clear he will really "get it."He will do the operation right the first time.-He won't be "fighting" the work-making mistakes-getting hurt.

There is an easy, quick way to get the job clearly outlined in your mind. Fill out a "breakdown sheet" (see illustration) for each of your operations. It only takes 3 to 5 minutes. This is for your own use; it is not to be given to the worker.
3. Have everything ready-the right tools, equipment and materials. When you so much as "touch" a job in front of a worker, set the

JOB BREAKDOWN SHEET FOR TRAINING MAN ON NEW JOB

paite oferation

Important steps in the Operation	"Key, Points" "feel," timins, special information

correct example. Don't miss a trick. When you have everything right, he is more likely to do the same.
4. Have the work place properly arranged-just as the worker is expected to keep it. The same thing applies here as above. You must set the correct example. Put his bench, desk, stock pile or wherever he is to work in proper order before you start to put over the job to him. He won't do it if you don't do it.

HOW TO INSTRUCT: Here is what you should do every time you instruct a man or correct his work:
Step I. PREPARE the worker to receive the instruction-put him at ease. Remember he can't think straight if you make him embarrassed or scared.-Find out what he already knows about this job. Don't tell him things he already knows. Start in where his knowledge ends.-Get him interested. Relate his job or operation to the final product so he knows his work is important.-Put him in the right position. Don't have him see the job backward or from any other angle than that from which he will work.

Step II. PRESENT the operation -tell him, show him, illustrate, ask. -"Put it over" in small "doses." He (the same as all of us) can't catch more than six or eight new ideas at one time and really under. stand them.-Make the "key points" clear. These will make or break the operation-maybe make or break him.-Be patient, and go slowly. Get accuracy now, speed later.-Repeat the job and the explanation if necessary.
Step III. TRY OUT his per-formance-have him do the job, but watch him.-Then have him do it again, but have him EXPLAIN to YOU what he is doing and why. All of us find it easy to observe motions and not really understand what we are doing. You want him to UNDERSTAND.-Have him explain the key points.-Correct his errors, but don't bawl him out or indicate that he is "thick" or "dumb."-Continue doing all this until YOU know HE knows. He may have to do the job half a dozen times.
Step IV. FOLLOW-UP-put him on his own. He has to "get the feel" of the job by doing it himself. -Tell him the man to see if he needs help. Make this definiteyourself or someone you designate. The wrong person might give him a "bum steer."-Check him frequently, perhaps every few minutes at the start to every few hours or few days later on. Be on the lookout for any incorrect or unnecessary moves. Be careful about
(Please turn to Page 105)

DROP FORGINGS

craft purposes and the increased demand for special requirements such as grain size control, magnaflux inspection, etc., have added consider ably to the problems of the steelmaker. It is not within the scope of this paper to examine the fundamentals of steelmaking as applied to aircraft steels except insofar as they reflect upon the subsequent processing and ultimate quality of the product. In general, steels melted in the electric furnace are specified because of their greater purity.

It is interesting to note that the platinum-rhodium immersion pyrometer developed by Dr. Schofield of the National Physical Laboratories is now being used extensively in England for the determination of liquid steel temperatures during both melting and pouring. The more accurate control of working and casting temperatures provided by this method is proving of great value in the production of "clean" steel. The use of such an immersion pyrometer has been found particularly beneficial in counteracting the tendency of many steel melters to allow the temperature of the bath to fall appreciably from the "white slag" stage onward and to boost the temperature immediately prior to tapping-which procedure inevitably leads to "dirty" steel, particularly where large alloy finishing additions are made. For some reason the use of immersion pyrometers has received little acceptance in the United States.
British practice is to employ small furnaces. A size around 30 tons is considered the maximum for satisfactory operation. However, much larger furnaces are employed satisfactorily by American producers.

Elaborate inspection is made at the steel mill in order to maintain a close control on quality. American and British inspection requirements for aircraft quality steel are quite similar and include micro examination, macroetches, magnaflux checks, grain size control, physical tests and chemical analysis. British practice favors micro examination, while American practice relies to a large extent on magnaflux tests for cleanliness. But a combination of the two is to be preferred and is frequently specified. Micro, macro, magnaflux and physical tests are
normally required from the top and bottom of the first and last ingots in the heat, but tests from intermediate ingots are also desirable with larger heats.

Soak vs. Anneal: A point of difference between British and American practice in processing at the steel mill is in the treatment of the ingots after casting. American practice is to charge the ingots into the soaking pits for reheating to rolling temperatures immediately after stripping, whereas some British manufacturers prefer to give the ingots a double annealing treatment after stripping before charging to the preheaters for rolling. One object of this treatment is to minimize the danger of hair-cracks during subsequent processing, and the treatment has been found to be helpful in this respect.

For production of major aircraft forgings such as crankshafts, the ingots or billets should be ground or machined all over. With American production methods this must be carried out in the first conversion size or on the finished billet. But where the British practice of annealing the ingots is used, the ingots themselvas are machined all over prior to rolling. This has the advantage of reducing troubles on rolling due to ingot skin defects.

Hair-Cracks: With many of the alloy steels, extreme care is necessary in handling after rolling. Many of these steels, particularly those containing molybdenum, are susceptible to hair-cracks (or flakes), and it is necessary to control the rate of cooling from rolling temperatures if trouble is to be avoided in this direction. Insulated cooling pits are desirable for this purpose, although cooling under ashes may be effective. "Flakes" in alloy steels cannot be healed up satisfactorily by subsequent working. They will always be reflected in the fatigue properties of the material. Fig. 1 shows a macroetch of a piece of "flaked" steel. The "flakes" of course are nothing more or less than cracks, but their effect in lowering fatigue strength can be serious as they act as focal points for the spread of fatigue cracks throughout the entire piece or throughout a critical portion.

Aircraft Quality Forgings: The production of aircraft forgings is a
job for the expert who has the experience and technique necessary to maintain the high standards embodied in the term "aircraft quality". With the weight factor so important in aircraft, the designer is compelled to maintain a close control and to use as low a safety factor as possible. Therefore "quality" must be the primary consideration. The manufacturing technique (including details of equipment, die construction, forging reductions, processing and inspection) should be carefully established for each component, and these details should be confirmed as satisfactory by tests, such as grain flow checks, prior to commencing bulk production. Subsequent routine inspection throughout production then is made to insure that the procedure is consistent and that satisfactory quality is maintained.

For the production of forgings which are made by an upsetting process under a drop hammer, it is necessary to cut the stock into individual lengths for each forging. This is done by shearing, cold sawing or on a cut-off machine, according to the size, nature, and application of the stock. In the case of forgings produced by a simple upsetting operation such as gears, bevel pinions, and the like, it is preferable to use sawed stock rather than sheared stock since a truer billet is obtained and there is less likelihood of offsetting the grain flow in upsetting. Forgings which do not require upsetting can normally be made straight from the bar, providing the handling difficulties are not prohibitive.

Equipment: The choice of equipment depends on the size and nature of the forging to be produced, and frequently a number of hammers are teamed up to carry out the various stages of forging. The open frame or blacksmith hammer finds an important place in the production of drop forgings and is often used to carry out preliminary operations to provide a "use" or form suitable for further work in the dies of the drop hammer. Such hammers are steam or air driven, and the stroke can be varied at will by the operator. The Smith hammer uses roughing tools as distinct from the dimensionally accurate dies of the drop hammers. Principal ones
used are flat tools, V tools, and swage tools, although various forms of hand tools may also be used.

The drop hammer proper uses dies to shape the metal and aims at reproducing forgings within close tolerances. The board drop hammer relies solely upon gravity for the energy of the blow, and the weight of the ram plus the dies together with the height of the stroke determines the force of the impact. The air or steam-driven drop hammer uses air or steam to raise the ram and also to increase the intensity of the blow. The full blow of such a hammer is about double that of a board hammer of the same rating, although the blow is variable to any degree.

Dies: The dies used in a drop hammer contain the finished impressions to produce the final shape required. In addition they may contain numerous other impressions for preliminary forging operations aimed to produce the ultimate shape in various predetermined stages. These impressions are known as edger, fuller, bender, and so on. Fig. 2 shows die blocks for a master connecting rod where use is made of "fullering" and "edging" before finishing in the final impres sion. The two impressions for these operations are placed on left and
right of the final impression seen in the center.

Fig. 3 shows die blocks for forging the center portion of a built-up crankshaft for a double-bank radial aircraft engine. It illustrates the use of the bending operation as a "bender" impression is incorporated in the die blocks. Fig. 4 shows die blocks for a bevel gear forging which provide for upsetting and "dishing" prior to finishing in the main die cavity.

In general, steel forgings are produced at temperatures above the Ac_{3} point; that is, in the more plastic "face center cubic" austenitic range. Here plastic flow takes place, the direction of flow being vitally important in its bearing on the ultimate quality of the forging. The basic principles of plastic flow due to mechanical work are the same whether the work is carried out under a drop hammer, a hydraulic press or an upsetter, and depend on the fact that metal under pressure tends to flow in the direction of least resistance.

However the method of application of stress affects the mechanics of plastic flow to a considerable degree and this has an important bearing in actual forging practice.

Metal Flow: The drop hammer produces an impact pressure which

PRODUCTION of Bren gun magazines, originally done by hand welders at Bmo, Czechoslovakia, now is being maintained on an automatic basis at a Canadian munitions plant. Illustration above shows one of two General Electric automatic hydrogen welding machines which are being used to weld the outside and inside seams of tive magazines at one time after all five are clamped in a fixture. This same operation was done in two steps by the British formerly-the inside and outside seams being treated separately
is of maximum intensity at the mo ment of contact and falls off rapidly as the energy of the blow is absorbed by the work done in deformation of the metal. Thus the work done depends on the energy of the original blow, and since a number of blows are normally required to produce the deformation desired, plastic flow under such conditions is "erratic." On the other hand with a hydraulic press or an upsetting machine, the pressure is a minimum at the moment of contact and builds up in direct proportion to the resistance to flow and is at a maximum at completion of the stroke. Here the work done depends more upon the ultimate pressure.

Metal Flow Smeoth

Under such conditions the metal flow is smooth and uniform. The impact pressure of the drop hammer tends to break down the structure to a greater extent than the more uniformly applied pressure of the hydraulic press or upsetter, but the dangers of excessive reduction are increased since this erratic flow is also more likely to break up the fiber structure. Moreover, if the impact pressure of the drop hammer is too light it is possible to get a condition where flow is occurring at the surface but not at the center of the piece. These characteristics of drop hammer work must be understood in order to establish correct forging procedure for the drop hammer.

But regardless of what equipment is used, the nature of the metal or the shape of the piece being forged, it will be found that the resistance to plastic flow depends on the following factors: First, the coefficient of resistance to flow-a value depending on internal friction or viscosity of the metal itself; second, the rate of application of pressure; third, the cooling effect of the forging dies; fourth, the surface resistance between the hot metal and the dies.

The coefficient of resistance to flow of the metal is a constant for any one metal at a definite temperature. This coefficient of resistance normally increases with in creased carbon or alloy content, but decreases with increased temperature. Carbon has little effect on the resistance to flow at slow rates of deformation. But with high speeds of deformation such as are present in drop forging, the resistance increases with carbon content. Alloying elements, particularly chromium, also tend to increase resis tance to flow.
The rate of application of stress is a function of the strength of
(Please turn to Page 105)

Which of these are your Big Production Problems NOW?

- Getting increased output from machines and presses?
- Too frequent repairing and regrinding of tools and dies?
- How to conserve vital tool steels?
- Training tool makers and apprentices faster and better?

MAY WE HELP YOU FIND THE ANSWERS ?

Changing over to full wartime production and jumping your plant capacity above the old "maximum" brings up a lot of tough problems-all at once.

If you have more than your share of these problems brought on by industry's conversion to wartime work-perhaps Carpenter's vast experience with tool steel problems can be of help to you. We can help iron out some of the tool-making kinks, and help you get the new jobs done in the shortest possible time.

A talk with your nearby Carpenter representative can often lick a tool problem that is causing production trouble. Lost time spent for regrinding, repairing and replaying tools that fail prematurely can often be saved. And the services of Carpenter's

Metallurgical Department are available to help you get to the bottom of tool troubles anywhere along the line.

Another shirtsleeve assistant for your tool room and hardening room is "Tool Steel Simplified". Your tool designers will find much of value in the chapter on "The Relaion of Design to Heat Treatment". Three chapters on heat treating offer many helpfut ideas for your hardening room. "Spark Testing", "Furnace Atmosphere", "Quenching" and many other chapters in this timely handbook will be valuable aids in solving your tool production problems now. "Tool Steel Simplified" costs only $\$ 1.00$ in the U.S.A.- $\$ 3.50$ elsewhere, so put it to work in your plant. Send for your copy today.

THE CARPENTER STEEL COMPANY Dept. 51 - READING, PA.

This country is now engaged in a gigantic effort to convert our industrial production from civilian to war goods. Donald M. Nelson. WPB head, has stated that production NOW is the thing, for one tank now is worth ten a year from now. Only 10 per cent of our industrial production now is in the form of war goods. This must be increased to 40 per cent this year.

The following article is one of a series which STEEL is carrying devoted to explaining what can be done to convert plants to war production quickly.

-The Editors

CONVERSION

. . . . of porcelain-enameling furnaces to war work

MANY fabricating parts previously porcelain enameled are now or soon will be fabricating parts for war work. This means that some enameling furnaces will no longer be used for firing porcelain enamel. Of course there will be some exceptions, as in the production of stoves, sanitary ware, cooking utensils, reflectors and other essential items.

As yet there are extremely few applications for porcelain as a substitute for critical materials on war goods according to the Ferro Enamel Corp., Cleveland, in a recent article in The Enamelist. Some few plants may continue to operate on war work which they have devel-

oped through their ingenuity and resourcefulness, but there still will be many plants with idle furnaces.
Applying these idle furnaces to help out in heat-treating operations has been called impractical, but there are already a number of plants which are not only doing heat treating in enameling furnaces but are doing it at a fair profit as well.
Steel castings, forgings, bar stock and other shapes must be annealed to relieve stresses before machining. This means that the parts must be brought up to about 1650 degrees Fahr. and then cooled. Length of time for heating depends on thickness, shape and area of ex-
posed surface. Of course the exact heating and cooling cycle required for any part can be specified by the metallurgist representing the plant which will machine the part.

The change of shell steel specifications to a type requiring heat treatment to develop the desired physical properties means that an enormous load has been placed upon the heat-treating facilities of the country. There is no doubt whatever but that the furnace facilities of porcelain enamel plants can be utilized in some form or other to help out in heat-treating operations. Even with A-1-a priorities, it takes time to build normalizing and heattreating furnaces. And in the meantime manufacturers of war equipment are looking for needed facilities such as may already be available in the enameling plant or enameling department.

A Typical Example

In one typical case, round bar stock had to be annealed. A local enameling plant undertook the job and converted a 5×12-foot electric furnace over for this work. As shown in the accompanying diagrams, a sloping frame in the furnace permits the periodic withdrawal of annealed bars and the introduction of cold bars into the furnace. Since the hot bars must cool slowly to retain proper physical structure in the metal, a slowcooling chamber was built as indicated in the drawing.

This furnace, which would have been idle due to lack of enameling work, is now operating at a fair profit. This is not an outstanding exceptional application of ingenuity to make use of idle furnaces, but is simply typical of what can be done.

It has been suggested that if you have or anticipate having idle furnaces, you should get in touch with your local Office of Contract Distribution or your local chamber of commerce and find out who in your locality needs annealing capacity. Find out the size, shape, weight and quantity of parts to be annealed and the heating cycle specified by the metallurgist. Then if your own engineers cannot evolve a way of revamping your furnace (if such revamping is necessary) to handle the work profitably, call in reliable furnace engineers, preferably the ones who built your furnace, and ask for their recommendations.

Diagrams showing box annealing equipment used in converting a 60 x 120 -inch box electric furnace previously used for porcelain enameling into a unit that now handles annealing of round bar stock for a war plant

Philadelphia Worm Gear Units are made in both horizontal and vertical types and in a wide range of horsepowers and ratios. They're designed right, they're built sturdy. Write today for full details.

"HERE'S ANOTHER FIRM THAT HAS A REALLY DEPENDABLE DRIVE'

A group of Philadelphia Worm Redueers installed on steel mill equipment.

For years Philadelphia Worm Gear Speed Reducers have proven their dependability by operating in almost all lines of industry, under practically all conditions without giving trouble. They have a reputation for satisfaction that's based on actual performance. Today, when your hard pressed production schedules depend so much on the steady operation of all your equipment, be sure to pick the drive that has stood the test of time . . . insist on Philadelphia Worm Gear Reducer.

PHILADELPHIA GEAR WORKS

INDUSTRIAL GEARS AND SPEED REDUCERS limitorque valve controls

Philadelphia LMITORQUE CONTROL operates all types of valves, ole., colly, from convenient stations.

Philadelphia WORM GEAR SPEED REDUCER right angle drives vertical or horizontal. and horsepowers.

philadelphia MotoRcouceR
 ERIE AVENUE \& G STREET PHILADELPHIA, PA. New York, Pittsburgh, Chicago

CONVERTS

Toy Factory to War Production

FROM toy trains to parachute flare casings is the work history of Stephanie Cewe whose skill with this electric screwdriver has been turned to the aid of Uncle Sam's war machine. At upper left, she is shown at her former job-assembling locomotives for toy trains. Today she operates the same power-driven screwdriver in her assembly work on flare casings shown at left, below.

Lucille Ceiko is another one of the thousands of workers who are turning their skill to the production of vital parts for our war machine. At upper right she is shown at her peacetime work-drilling castings for toy locomotives in a large eastern plant. Today she uses the same press (lower right) but with different drills to make holes in parachute flare casings through which wires are to be inserted. Office of Emergency Management photos by Hollem.

SMALLER POT FURNACES ...

OR\{ Large Installations for Hardening, Quenching and Drawing HIGH EXPLOSIVE SHELLS

MAHR makes 'em all

> ASTONISHINGLY PROMPT DELIVERIES are being made on furnaces of all kinds, but plans for new equipment should be discussed now. Ask for special bulletins on any type of furnace you need, and let our engineers consult with you and offer their suggestions. WRITE TODAY. gextion Mrite ToD

- Yes, whether it's a preheating torch, a blacksmith or rivet forge, a pot furnace, a tool furnace or a complete high explosive shell hardening, quenching and drawing installation, MAHR engineers have made them all. No matter what your heat treating requirements may be, MAHR'S quarter of a century of experience in making all types of furnaces for all kinds of work is at your service. Today, when time is all-important-when the job must be done quickly and right the first time, place your confidence in this large and experienced organization.

Fig. 1. (Left, above)_Faster speeds of travel bring about greater hardness of the heat-aflected zones. Fig. 2. (Center)-Both size and type of the electrode influence the hardness of the heat-affected zone. Fig. 3. (Right)-Multiple passes with $3 / 18$ inch bare electrode lower the hardness of the heat-affected zone

W E L
 D
 A
 B I L
 I
 T
 Y

. . . . is it practical to measure it by hardness tests? Mr. Lawrence shows that such tests can be utilized but that certain considerations must be understood to interpret the results properly

SINCE hardness tests may be made quickly and accurately, it is not surprising that they were early employed for the measurement of weldability. Although weldability has many ramifications, all of which cannot be reviewed in this discussion, it may be considered as that property of the base metal which permits a welded joint to be produced without any sharp difference in mechanical properties from the center of the weld deposit to a point beyond the heat-affected zone of the base metal.

Furthermore, there is a relationship between hardness and tensile properties in low-carbon steels that is most convenient. Hardness is the clue to tensile strength, yield strength, ductility and similar characteristics. Nor is the utility of hardness measurements restricted to the carbon steels. Similar observations yield valuable information for determining the physical properties of the low-alloy steels as well. But the use of hardness readings is restricted to a particular class of steel if the proper interpretations are to result. Certainly hardness values cannot be used interchangeably for both mild steels and low-alloy steels.

Alloying elements, as a general rule, increase the hardness of the steel in greater proportion than the ductilities are reduced. Thus a low. carbon steel and an alloy steel of identical hardnesses may have vastly different ductilities. Often the carbon steel may demonstrate an elongation of 20 per cent in 2 inches while the low-alloy steel with the same hardness will elongate 30 per cent in 2 inches. It is this difference that has tended in recent years to bring hardness measurements into undeserved disrepute as an index of weldability. The hardness
values themselves are not at fault. Rather a too loose and unwarranted generalization of such values has been responsible for their condemnation by some.

Every welding practice is aimed at making the weld deposit, the heat-affected zone and the parent plate exhibit as close to the same

By HAROLD LAWRENCE
Metallurgist and
Welding Engineer

mechanical properties as can be accomplished with the simplest welding procedure. Hardnesses of the parent metal ought to be unaltered by the welding process. Likewise ductility and strength should be disturbed but little; the ductility should remain unimpaired while the tensile strength should not be unduly increased.

Now the hardness of steels is an important index to their microstructure. And the microstructure in turn is responsible for the mechanical properties of the steel. Thus the hardness tells us the microstructure, and the microstructure yields information as to the mechanical properties. But the microstructure is born of the heat-treating cycle through which the heataffected zone passes. Therefore the heat-treating cycle is pointed out by the hardness.

As most of the weld metal deposits employed for the welding of both the plain carbon (low-carbon) and the low-alloy steels lead to outstanding combinations of desirable physical properties, the main point of study is the heat-affected zone of the parent metal. It is this narrow band of steel that has been subject-
ed to many hardness studies in an effort to establish the weldability of the steel in question. The actual deposition of the weld metal (and throughout this article it is assumed that this part of the welding process is correctly accomplished) is important only as it determines the amount of heat that is put into the joint.

The physical dimensions of the joint have a definite influence as they, particularly the thickness, establish the rate at which the welding heat is withdrawn-that is, the cooling rate of the heat-affected zone. Preheating is a factor that influences hardness values and associated mechanical properties. And finally, although this is far from the least effective of the matters influencing hardness and weldability, the chemistry of the base material must be understood.

One of the best studies of the effect of heat input on the hardness of the heat-affected zone of a weld was made by Dr. W. G. Theisinger from whose data the information of Fig. I has been approximated. Once the correct current conditions have been established for the deposition of metal from a metallic arc electrode, the hardness of the heat-affected zone may be varied by changing the speed of travel. If the rate of progression of the arc is low enough, sufficient heat is put into the parent plate to bring about a slow cooling rate and a reasonable hardness. However when the rate of travel is quite fast, the heat input merely serves to dissolve the carbon in the iron as austenite without adding enough heat to buffer the cooling curve against the formation of martensite with its accompanying high hardness.

This viewpoint considers that the arc is serving two functions-one,

Motch \& Merryweather Cold Sawing Machines for single and multiple cutting handle up to 14-1/2" square and 16 "round stock.

Not so long ago, while a visiting technician was still "getting set" to time the operation, the Motch \& Merryweather Cold Saw had flashed through the cut-in a matter of seconds. Speed like that, with clean, square sections, without chatter, without burrs, and without scrap, does not just happen, nor is it achieved over night. It is due in large measure to the perfected design and experienced workmanship of the M. \& M. Segmental Saw Blade.

The remarkable records being made by the Motch \& Merryweather Cold Sawing Combination (saw, blade and grinder) spring from a continuous contact with the metal-sawing field that reaches back over twenty years.

$$
\star \quad \star \quad \star
$$

Only Motch \& Merryweather builds cold sawing machines, saw blades and saw grinders, and assumes full responsibility for the complete installation.

The M. \& M. Automatic Saw Grinder imparts the correct tooth contour, which means greater speed and fewer sharpenings.
If your production depends on presses, you have a very real stake in
Ferracute's Dhepsints of today. They may be your best weapon in the coming
peace-time battle "the surviyal of the fittest."
For it is the sound engineerind principles of Ferracute design that are - . and
will be - responsible fon economy, precision and speed of Ferracute
press performance.
Ferracute's engineers and its specialists in feed attachments and
biehrif roduction methods are vigilant to maintain this superionty of

- recuirements. This constant search for improvement in design
goes teadily forward even while Ferracute hangs up new re:ords
for p ess deliveries to vital defense plants.

Typical of Forracute's advanced engsneering and designingFerracute Presa P G 3.
The third sfie of the Streamlined Series of punchifg presses of the geared type.

Ferracut Press D D G 2.
A double- ction inclíneable press used o. make a difficult combination blank nd pierce peration automatically.

FERRACUTE
 MACHINE COMPANY

PRESSES AND PRESS BRAKES

Bridgeton, New Jersey

Ferracuit Press S D G 112.

A special-purpose, double-action press of tie-rod constructon designed for use with multple dies and automatic feed.

the deposition of weld metal; the other, the heat treatment of the base metal. Very often the welding of hardenable steel is accomplished in just this fashion. Smalldiameter electrodes are selected solely for the purpose of introducing enough heat at slow rates of travel to prevent the formation of a hard and brittle heat-affected zone alongside the weld.
Oftentimes the investigation of the hardness of heat-affected zones has been conducted by means of single beads deposited automatically on specimens of standard and suitable dimensions. Important as these studies are to the gathering of fundamental information, more multiple-pass welds are made than single-pass welds. In the former the heat left by the preceding pass may act as a preheating treatment or, if the joint is quite long, there may be no preheating influence because of the long time of cooling before the second pass is made. In both cases, though, the second bead serves to draw, or temper, the first bead as a post-heating operation.
The influence of different sizes and types of electrodes as well as that of multiple passes has been demonstrated by R. W. Emerson. In Fig. 2 can be seen the difference in the hardness of the heat-affected zone as brought about by two different sizes and types of electrodes used at about the same rate of travel of from 8 to 12 inches per minute. Again the heat input is the variable as, at the same travel speed, greater heat comes from the use of larger electrodes or from the use of coated electrodes.
The coating on electrodes serves to insulate the cooling weld metal, thereby lowering the cooling rate to promote a lower hardness in the heat-affected zone. This influence becomes increasingly greater as we progress from very light coatings of AWS-ASTM Grade E6012 to the heavy coatings that are found on the flat position electrodes of the AWS-ASTM Grade E6030 type.
At times compromises are indicated. Because of the attention we

Fig. 4-(Left, above)-Hardness increases with greater thickness of base metal due to quenching effect of surrounding metal

Fig. 5-(Right)-Weld hardness is increased as carbon content becomes greater. Higher preheating temperatures lower weld hardness as shown by dashed lines
are giving to factors affecting the hardness of the parent plate, the problem of warping should not be overlooked. Applying greater heat input to lower the cooling rates to avoid dangerous hardness values may often result in more pronounced warping.

Fig. 3, also taken from Emerson's data, proves the beneficial heat treatment that may be attributed to the use of multiple passes. The very best adaptation of this principle to successful welding without preheating is in the welding technique known as block or cascade welding where the repeated application of many short beads close together prevents the build-up of hardness in susceptible parent metal. The same type of specimen was employed for the data of Figs. 2 and 3 with manual welding at a rate of 8 to 12 inches a minute on a 3 -inch round 10 inches long. Hardness surveys were made on a slice cut 6 inches from the start of the weld.

In the work of H. J. French and T. N. Armstrong is the excellent example of the effect of greater plate thickness on hardness shown as Fig. 4. Once the heat is put into a joint, the mass of the plate acts

[^2]exactly like a quenchin: medium. A good way to visualize this phenom enon is to take a light-gage plate and an oxyacetylene torch. Play the torch on the plate and see how long it takes for a red color to appear. Not very long, is it? Now take a plate of considerable thickness and play the torch on it exactly as was done with the light-gage plate. It takes a long time for the color to appear. Yet the same amount of heat was being applied to the surface in each case. Only the greater heat capacity or cooling power of the heavier plate retarded the appearance of color.

Light plates, therefore, have little heat capacity and cool the heat-affected zone at a relatively slow rate. This property of light-gage metal accounts for the successful arc welding of SAE-X4130 steel in aircraft work. In heavier gages the steel is unweldable without careful preheating and postheating.

French and Armstrong show the maximum weld hardness to be expected in a 2 -per-cent nickel steel of varying thickness using a constant speed of travel and a fixed current and voltage condition. Although a nickel steel was used in the example, the same type of curve would result with any steel. The principal difference would exist in the slope of the line, which changes for each type of base metal and for each set of welding conditions.

Joint design, other than thickness, has an influence on hardness that ought to be recognized. A narrow V , for instance, is subject to a greater hardening of the heat-affected zone than is a wide V. Mass quenching and speed of travel both exert an influence in joints of differing widths. As a rule, the wider the joint, the slower is the travel speed and the lower is the hardness of the heat-affected zone.

Thus anything that tends to increase the heat in the parent meta! also lowers the hardness of the heataffected zone. Slowing the rate of travel has this effect. Increasing the size of electrode at the same rate
(Please turn to Page 106)

The Manmiacture of

HIGH-QUALITY, LOW-COST STEEL

IDexidationtan

COMMON STEELS are the basic foundation for the higher-carbon grades, commercial alloy, high-tensile low-alloy and all of the S.A.E. grades. If the base steel is of good quality then a satisfactory alloy or other S.A.E. grade can be produced merely by adding the necessary alloying elements accompanied by closer temperature control during pouring, reladling in some cases, slower pouring using smaller nozzle, special designed mold or special treatment of the ingot top with or without hot-top, etc.

Representative heats of a series produced under slightly different charging and/or working practices showed extremely wide variance in ultimate quality, both for intermill rejections, physical variance and performance in fabrication. Table I shows practice under two periods.

Approximately 50 heats were tabulated immediately preceding a change in the steelmaking practice and 50 heats after the change. Further improvements were developed later with rejections being reduced to nil.

Total rejections under "Poor Practice" varied from 68.90 per cent per heat to as low as 0.69 per cent per heat while those under "Good Practice" varied from 30.60 per cent per heat io nil.

When segregation of the carbon even with high normal manganese

By PAUL J. McKIMM
Cleveland
was so great that the ingot wall which corresponds to the hot strip edge dropped to 0.025 per cent carbon, excessive cracked edges occurred which caused rejection of the final cold reduced material from its original order to one of a narrower width. This necessitated side shearing thereby adding to the cost.
Table II shows a total loss of 22.70 per cent under "Poor Practice". The straight rolled shows a loss of 18.00 per cent against 28.60 per cent for broadside rolling. That is, with the same steel the straight rolled was 10.60 per cent lower. The highest was 33.2 per cent and three heats, which were the last of the group, had no rejections and these were established as the general practice. Under "Good Practice" a total rejection for steel defects of 9.70 per cent is shown. The straight rolled shows 8.10 per cent against 9.80 per cent for the broadside or a difference of 1.70 per cent. Broadside material is where the edges of the slab correspond to the end of the strip.
None of the slabs were scarfed or chipped in either period which further demonstrates that within the scope of good practical limits such quality can be consistently

Charging a ladle of molten iron after the scrap charge has been melted
maintained requiring no conditioning.

The difference between straight and broadside rolling during the good period of only 1.70 per cent was due to the overall improvement in quality generally. The wide difference between the two modes of rolling during the poor period is due to the fact that more excessive and extensive breaking occurred during the slabbing process. If a break in the steel under broadside rolling affects 80 per cent of the width of the slab, it will affect 80 per cent the length of the hot strip and necessitate this amount of loss; the same defective steel when straight rolled will only cause a loss of 10 or possibly 15 per cent. Often it is necessary to shear the slab through the resulting defect thereby affecting two slabs which means a loss of 80 per cent on two strips in the one case and 10 to 15 per cent on iwo strips in the other.

Steel Was Over-Oxidized

The greatest source of difficulty was over-oxidation of the steel which was attributed to an unbalanced charge, a deficiency of lime for the quality of the scrap used and indirectly to a gradual change in the technique of shaping and refining of the metal. The deoxidation prac. tice had slipped considerably from standard which permitted the ingots to drop in the molds excessively. The ingots because of their thick walls, even to the extent of 4 inches, could not absorb heat rapidly in the soaking pits and, therefore, after a few passes in the blooming mill were somewhat like a thin walled ingot. The steel was "dry" and "bony" and because of its physical condition would not elongate or flow at rolling temperatures. The result was large and extensive breaking or tearing and excessive crowsfeet, snakes and seams in the slabs.

The improvement shown for the "good period" continued until rejections for steel defects were nil. No conditioning of the slabs was necessary. Where there is no breaking of the ingot during the slabbing passes the ingot is free of scabs and burned areas and, hence, no conditioning is required.

Several heats had all of the manganese added to the ladle and this procedure was immediately established as standard practice and for a 10 -year period no manganese was added to the bath except in the case of high-manganese steels, which contained in excess of 1.00 per cent manganese. Under this condition

CRANE

7 HELP YOU Train Piping Crews 2 HELP YOU Get Betier Service from Valves and fitings

Today's situation calls for round-the-clock production. That means your plant must get better service from valves and fittings, and have better-trained men to keep piping on the job. Crane Shop Bulletins for maintenance workers are aimed to help you get both. Their wealih of practical pointers aids in guiding new men, as well as assists veteran crews in stepping up efficiencyं of piping equipment.

If your plant is not enjoying the benefils of this timely service, as are countless others, you will certainly want to get in touch with your local Crane Representative today. There is no charge or obligation.

TIPS on valve TRIM TO HELP KEEP PIPING ON THE JOB PIPING

m

CRANE CO., GENERAL OFFICES: 836 SOUTH MICHIGAN AVENUE, CHICAGO
$V A L V E S \cdot F / T T / N G S \cdot P / P E$
$P L U M B / N G \cdot H E A T / N G \cdot P U M P S$

all manganese was added to the bath to avoid reladling.

Some of the heats were "ored" so closely that it could not be worked out of the bath thoroughly. In many cases iron had to be charged after the oreing to meet the carbon

Pouring a heat of basic open-hearth steel into big-end-down molds
specification. In order to prevent the ill effects of an improperly shaped-up bath where the heat was ored too closely or worked "soft" otherwise, the iron addition was made before the completion of the lime boil; or, sufficient iron was charged to require an ore addition of about 2000 pounds to make sure that the heat was properly shapedup. The required additional time by this method soon caused the first helpers to shape their heats up correctly in the first place.

Deoxidation with aluminum generally is based on the iron oxide but this has never proved successful in producing a quality rimmed ingot and should be used only as a medicine to cause the ingot to begin action immediately after the shut-off and yield a suitable rimming action.

With scrap heats it is necessary to carburize and the simplest and cheapest medium for this purpose is coke although in some cases amorphous graphite and other ma-

Fable I-Data on Representative IIeats

TABLE II- Data on Rolling of Ifeats

Rolling procedure	No. of Peats Pejections, \%	No. of heats Rejections, \%
Broadsided	. 2228.60	26 9.80
Straight rolled	$17 \quad 18.00$	208.10
Broadsided and stralght rolled	. 417.30	$7 \quad 12.20$
Total and average.....	43 22,70	539.70
rejections, \% \%	No. of heats	No. of heats
0 to 10.	16	41
10 to 20.	12	9
20 :0 30.	8	
30 to 10.	2	3
101050.	3	
50 to 60.	3	
601070.	3	6

terials are used but no difference can be found in the resultant steel. Sufficient carburization gives the bath the desired carbon content to facilitate the proper working and shaping-up.

Several heats with different type charges were made aiming for 0.10 to 0.15 per cent carbon and carburizing with amorphous graphite in the mold during pouring. The amount was calculated to yield $0.20,0.30$ and 0.40 per cent carbon, respectively. Part of the treated ingots were rolled and part of each group were split for segregation analysis. The results were excellent. This test merely was conducted as a study to prove that in cases of emergency, a lower carbon heat could be made and the ingots coverted to any highcarbon range.

Importance of Graphite

Amorphous graphite also used for recarburizing can be calculated readily to yield a definite carbon increase. The reason this material is of paramount importance in the production of acid steels is on ac count of the high cost of low-phosphorus pig iron over the basic grade. In this practice a charge can be developed using some basic iron, eliminating all the higher cost low-phosphorus iron, finish off the charge with plate scrap and the like, and carburize by charging amorphous graphite. The most logical method is to cover the furnace bottom with a layer of scrap, add graphite in 50 or 100 -pound bags, charge more light scrap for coverage and then continue with the balance. A better method is to charge the graphite in metal containers or drums or to bury it in between layers of turnings or borings in charging boxes. The recovery for the carbon constituent is approximately 75 per cent. It is a good practice to add sufficient silicon pig, containing about 15 per cent silicon, with the charge to compensate for the deficiency of iron in the charge. A safe procedure is to calculate a higher carbon than the specification to permit the proper refinement of the heat. This usually is about 0.10 to 0.15 per cent higher for the low-carbon ranges and up to 0.30 to 0.40 per cent for the higher carbon ranges. This practice has been followed for some time with heats of 30 to 40 tons and in carbon ranges over 0.75 per cent for steel having the most severe requirements and including all types of mill rolls without a single failure in quality.

When a graphite carburizer is employed in basic steel practice it usually is added on the bottom or sandwiched in between the lime charge for most efficient results. Crushed electric furnace electrodes

Another crane in the die storage department makes possible an efficient die-storage scheme that should prove advantageous to many others. The die storage room has been provided with shelves on which the dies are stored in step fashion in numbered positions. Thus any die can be picked up or set in place without disturbing other dies. Locations of dies are quickly found by means of an index.

Cleveland Tramrail Division
The Cleveland Crane \& Enginefring Co 1125 EAST 283 ho St. WIGKLIFEE. Ohio. MANUFACTURERS OF CLEVELAND CRANES CLEVELAND TRAMRAIL STEELWELD BENDING PRESS efficient die storage room. The electric chain hoist does the hard lifting. A gentle push moves the crane to any point on the runway.
Below: These valuable men spend less time handling materials and more time with actual production because of the help of this inexpensive Cleveland Tramrail crane.
will serve the purpose equally well.
Heats foam for many reasons. In general, the quantity of carburizer must be sufficient to insure at the meltdown a carbon content at least 0.30 to 0.40 per cent carbon above the specified analysis. When hot metal is added irrespective of whether the heat is worked with or without ore in the charge (high-iron heats) the condition of the scrap and the proper time must be well selected. That is, hot metal should be added as soon as the scrap charge has fused and melted down somewhat; it reacts at once with the liquid scrap and accelerates the melting time and increases the tons per hour. When hot metal is added before the scrap has been melted, a great amount of the reacting energy or metallurgical heat is lost. If hot metal is added too late, the reaction may become so violent as to impair the furnace bottom and banks and cause the bath to foam and flow over the door sills thereby necessitating extra labor in cleaning up and having an ill effect on steel quality.

Charging hot metal too early or too late has a detrimental effect on the steel quality and the time of the heat. Where the metal is added too early the cold scrap lowers the
temperature of the hot metal to such a degree that the action is greatly retarded. There is a time loss of 45 minutes or more depending on the extent of heat present in the cold part of the charge. When added too late foaming frequently occurs and time is also lost because during the foaming stage the action is valueless.
The importance of charging hot metal at the correct moment was developed by tabulating a large number of heats at several steelworks. Heats having the fastest charging time and naturally the shortest time of charge to hot metal were the heats of the greatest duration while heats having the greatest time in charging and longer period to hot metal charge were heats of the shortest duration. The time factor was twice as long and the duration time of the heat was extended as much as three hours. Heats requiring the longest charging time averaged 11 hours 27 minutes while a large number of heats with about half the time of charging averaged about 12 hours and 37 minutes. F'ast charging of the cold material chills the bottom, the banks and the furnace generally, a greater time allowance must be made before the hot metal is added to permit a rise

Armored Cable Simplifies Plant Expansion

MATERIALS AND TIME. so vital in the present world battle, besides expense were cut to a minimum recently by installation of this General Electric varnishedcambric interlocked-armor cable for power distribution shown in a midwest plant producing 155 millimeter shell. Only a little over one third as much material is required for such an installation compared with the heretofore conventional system. Besides doing away with conduits, elbows etc., this flexible cable, because of its metallic covering, acts as a ground, protecting workers from shocks. It can be bent at right angles, see arrow, and around obstructions without injuring any part of the insulation
in the temperature of the cold material so that when the iron is added reaction begins immediately. A time differential of 1 hour and 10 minutes means considerable difference in tons per hour.

The cold iron charge melts more rapidly than the scrap and shortly a molten mass is formed which in turn promotes a speedier melting of the scrap; hence, the reducing or reacting constituents (silicon and carbon) present in the pig iron are distributed quickly throughout the liquified mass. With this system of charging cold pig iron decarburization never occurs earlier nor at accelerated speed to promote soft heats or to require an increase in the amount of iron to obtain the proper carbon at the meltdown or to necessitate extra additions of pig to give the desired carbon content at this stage of the process.

SAE Manual Unifies

Aircraft Drawings

Society of Automotive Engineers, 29 West Thirty-ninth street, New York, announces completion of a manual of aircraft-engine drafting room practice to help unify practices of different aircraft-engine manufacturers. It consists of seven sections:

Preparation of drawings, dimensioning by the decimal system, standardized parts, gears, thread specifications, materials, miscellane-ous-abbreviations and symbols for use on drawings.
"Up to now each engine and en-gine-accessory manufacturer has had his own manual," John A. C. Warner, secretary and general manager of the SAE, explained in announcing the publication. "However, because of the technical differences between these company manuals, the government asked the society to develop a standard manual which would make universal the language of design and manufacturing engineers."

The Manual is being distributed in loose-leaf form, copies of which are available at $\$ 1.50$ each.

Service Pipe Made By Special Process

To relieve the shortage of galvanized pipe and copper tubing, the Hill-Hubbell process is now being made available in S-P steel service pipe according to Hill, Hubbell \& Co., 3091 Mayfield road, Cleveland. These exterior "factory processed" coatings are offered in sizes from $3 / 2$ to $11 / 2$ inches with special interior cement linings. In addition, regular water works enamel linings and coatings are available in sizes 2 inches and up.

NIAGARA MACHINE AND TOOL WORKS, BUFFALO, N. Y.

Well Planned

MATERIALS HANDLING

.... helps contractor to get jump on war work

EXPANSION and rearrangement of an already busy plant was the problem which confronted the offlcers and engineering staff of the Webster-Brinkley: Co., 651 Alaska street, Seattle, when it signed a contract with the United States Maritime Commission to fabricate and assemble 252 steam steering engines.

How to avoid bottlenecks, make capacity use of existing equipment and improvise tools that could not be obtained promptly were questions that were successfully answered. This firm has been in business for years as founders and machinists specializing in elevating, conveying and transmission equipment for saw mills, mines, canneries and other heavy operations.
Working under a limited time schedule, a fast assembly line production setup was imperative. This phase of the problem was successfully met while special machinery for this particular job was developed by company engineers. The result is that within four months from the time the contract was awarded, the plant was in scheduled production, finishing one complete steering engine daily, as originally planned.

While the construction of an additional plant bay was under way, other units of the organization were busy making patterns for the iron, brass and steel foundries, also developing drill jigs and machinery for quantity production. Because of the lay of the land, the addition had to be built at right angles to the original shop. The new structure measures 40 by 150 feet, 24 feet in height. Because steel was not obtainable for this building, timber construction was adopted. The upper section is a continuous row of

Fig. 2-Upper, right, special boring, drilling fixture for steering engine line
Fig. 3-Lower, a subassembly line feeding the main assembly line
windows giving maximum light.
How to use current equipment to the best advantage and to obtain additional machines were difficulties that were overcome. Many machine tools were not obtainable within reasonable time and consequently engineering ingenuity was brought into play. One machinery fixture developed by the engineering staff is a base plate combination boring fixture and drill jig as shown in Fig. 2. This piece of equipment bores the crankshaft bearings, locates the hole for the worm and pinion shaft as well as serving as a drill jig. This tool was developed in order to relieve congestion on shop tools that could have been used for the same

Fig. 1-Above, view of the steam steering engine assembly line as seen from the starting end
purposes, and additional tools of the same nature were not obtainable readily and in time to fit into the schedule.

As Fig. 2 indicates, a Van Norman portable boring bar is used to bore the vertical hole at the same tim? the special bar is simultaneously boring the crankshaft bearing. High speed Carboloy tool bits are used on both bars. Boring of the crankshaft bearing requires seven minutes.

At the outset, Webster-Brinkley Co. adopted the policy of subcontracting, antedating the government's request that this be done and

co-ordinating with the plan since announced by OPM. A dozen or more smaller shops are furnishing parts such as castings and doing machine work for which they are well equipped. The job of co-ordinating these subcontracts with the work at the main plant as it prog. ressed involved no little planning to avoid delays or congestion.
The steam engines for which the local firm holds the contract are of British design. As is well known, the modern freighters built for the Maritime Commission are being equipped with electric or electrichydraulic steering engines. This type of steam engine was specified due to the existing bottleneck in the electric hydraulic industries.
The engines weigh five tons complete, and in assembling, a number of heavy pieces have to be handled. The sole plate of cast iron, the first piece laid, weighs 1200 pounds; the engine base, 3000 pounds; the tiller, 1000 pounds; while the rear columns, cylinder blocks and other heavy parts also require handling by crane equipment. Over the assembly line four jib cranes are in service along with two 5 -ton bridge cranes. In the original shop there is a complete layout of cranes and other modern equipment.

To insure rapid and constant pro duction, line assembly was necessary, and the plans to this end adopted by company engineers are working out most successfully. First a track of 25 -pound railroad rails was laid the entire length of the assembly bay and extending 30 feet outside, a total length of 180 feet. See Figs. 1 and 4. The engine
are built up on this track, moving forward once each day: As each complete unit reaches the end of the track, it is immediately loaded into a freight car on a siding serving the plant. The assembly work is done in one shift, with each man performing one operation, each worker being selected and trained for his specific job.

On the assembly track, 6 -inch wheels of cast iron with turned and polished sheet shafting axles, $17 / 16$ inches in diameter, are used as rolling stock. On each set of four wheels for each engine are placed shipping skids of Douglas fir, 6×6 inches \times 6 feet in length, to which is bolted the engine bed plate. There are 16 engines on the production line as each unit requires 16 days to complete.

In addition to the main assembly line, many parts are put together in subassemblies. One example is shown in Fig. 3, where the cylinders are reamed, valve cages pressed in and reamed, the pistons, valves and heads assembled in place and the insulation and lagging put on. Here again the value of line production is apparent as the work is planned to progress from station to station while mounted on 4 -wheel welded steel-frame dollies, shown clearly in Fig. 3. Black \& Decker electric stud drivers, electric nut wrenches and electric screw guns are in use on these assembly operations. The various tools are carried on a monorail, being counterbalanced for easy handling. Steel frames equipped with rubber-tired casters carry the cylinders from each operation.
Officers of Webster-Brinkley Co.

Fig. 4-Left, the steam steering en gine assembly line as seen from the finishing end
are highly pleased with the results of their careful planning, evolved in the face of many difficulties, and expect to complete the entire lot well in advance of contract require ments. At this writing the plant i_{j} about one month ahead of schedule. The handling layout is to be credited for much of this.

New Type Pipe for Corrosive Solutions

A new line of cement-asbestos pipe, called Roxite, for handling a wide range of mildly corrosive solutions and for transporting processing water which must be free of metallic contamination, etc., is being offered by United States Stoneware Co., Akron, O. Pipe in the line are coupled by Flexlock sleeves and fittings which eliminate the use of tools or threading on the pipe for assembling.

Besides the standard units, pipe also is available with a synthetic coating which offers adequate protection for many types of highly corrosive conditions according to the company. Several types of these coatings are being offered. Each is said to be suitable for a particular range of service, both in respect to the fluid handled and the mechanical severity of the operating conditions. The pipe are made in standard lengths of 14 feet with inside diameters of $\pi / 3$ to 8 inches.

Solves Dust Problem Causing Foundry Rejects

American Magnesium Corp., Cleveland, reports it has found in its foundry a new solution to the old problem of free dust and sand settling into molds and causing rejects. The solution is in the form of a new heating and ventilating system which by means of amount, direction and rate of air delivered prevents dusts from being blown about and dilutes the smoke-laden atmosphere.

Equipment used consists of 10 Carrier Thermadjust heat diffusers, supplying 135,000 cubic feet of outside air per minute to the foundry. Mounted in an inverted position along the side walls, the units are 9 feet above floor level. From long slotted outlets, a low velocity flow of outside air is fanned downward and toward the center of the floor at the correct temperature to offset heat losses through ventilators. Overblows which swirl dust and other impurities around the foundry are eliminated by discharging the air at this low velocity.

Tower ${ }^{\text {STHNLLIURAL }}$ 37 w. van Buran strat

CHICABD, ILLINDS

Fig. 1-All-weld ingot buggy carrying five 20×57-inch molds and their lightweight stools

Fig. 2-Surface condition of two lightweight stools after 501 and 518 heats respectively. The center was gouged out 5 inches at end of campaign
Fig. 3-Bottom of light-weight stool designed for 20×57-inch ingots. This weighs 2644 pounds less than a solid stool designed for same size ingot

WHENEVER a lighter weight stool is discussed by open-hearth operators the trend of thought usually is toward one with either a cast-iron or refractory insert. The American Rolling Mill Co. decided to attack this problem from a new angle, namely, by making the stool heavier at the center and lighter at the ends. In 1935 a light stool for 19×42-inch ingots was developed. This stool weighed 3200 pounds compared to 4700 pounds for a solid stool designed for the same size ingot. Making the stool lighter at the ends effected a reduction of 1500 pounds in the weight of the solid stool which is equivalent to a saving of 32 per cent of cast metal for each stool.

The newly designed stool was cored out under each end and its thickness at the center increased 1 inch, thereby making it heavier and stronger where the stream of molten

A Lighter Weight

CAST-IRON

 MOLD STOOLBy WILLIAM W. BERGMANN
Open-Hearth Engineer
American Rolling Mill Co.
Middletown, 0 .
steel hits during the pouring operation. This change increased the life of the stool and decreased the number of stickers.

Life of the first 15 experimental stools averaged 279.3 heats, ranging from 105 to 460 heats per stool. Following the test all stools for the open-hearth shop were made of this light-weight design. During 1937 the average life was 152 heats per stool.

The top surface of two lightweight stools is shown in Fig. 2. One stool shows the surface condition after a life of 501 heats and the other after 518 heats which was the largest number of heats ob. tained from the light-weight units. When the stools were taken out of service and scrapped the center of each was cut out about 5 inches.

A view of the bottom of a lightweight stool weighing 5656 pounds, is shown in Fig. 3. A solid stool for the same size ingot would weigh 8300 pounds. During the last two years the average life was 104 heats
for light stools of this type designed for 20×57-inch ingots. The saving of material for this size stool is 2644 pounds. Occasionally the life of this weight stool reaches as high as 250 heats before scrapping is necessary.

A stool for a 20×57-inch ingot is 44 inches wide, $77^{1 / 2}$ inches long and 10 inches thick at the center. The end section is $41 / 2$ inches thick and the three ribs beneath the end section are $4^{1 / 2}$ inches thick. Four different size ingots are poured on this stool which decreases the life considerably. This is attributed to the pouring of a small size ingot, 20×36 inches, on a stool designed for a 20×57-inch ingot.

An all-weld ingot buggy carrying five 20×57-inch molds and five light-weight stools is shown in Fig. 1. The total weight on the buggy including the ingots is 233,000 pounds. The stool life on this buggy is at least 15 per cent better than obtained from our cast buggies. The full length of the stool is supported by this welded buggy. Stool life is shortened when a long stool is used on an old-style cast narrow buggy which does not support the outside ends of the stools.

	1935	1936	1937	1938	1939	1940	1941
Wt. of stool scrapped per ton of steel poured, lbs.	7.00	6.60	4.22	5.58	6.26	8.5	8.20
Stool life: No. of heats	92	97	152	123	123	102	106
Avg. wh. of ingots poured, tons.	5	5	5	5.30	5.75	6.50	6.50
Design of stool used: Solid, small, \%	100						
Light, smali, \%o	...	15	100	80	50		
Jight, Jarge, \%o	\ldots	...		20	50	100	100

ABRASIVE-DISK

 ๑T T T T
. . . . of steel and other metals wastes little material, can be employed on extremely hard alloys

By ARTHUR F. MACCONOCHE

Head, Department of Mechanical Engineering
University of Virginia
University Station, Va.
And
Contributing Editor, STEEL

Fig. l-Cutting head of abrasive-disk cut-off machine made by Andrew C. Campbell Division, American Chain \& Cable Co. Inc., Bridgeport, Conn.

AMONG THE various methods now in use for cutting metals, including nick and break, burning, and the circular saw (see Sterl, Feb. 10, 1941, p. 54, and Dec. 15, 1941, p. 72) the use of an abrasive disk offers some advantages and has certain limitations. On the credit side we may write a saving in steel over the saw of the inserted tooth type, together with an ability to tackle hard materials which the saw would find difficult or impos. sible to cut. On the debit side is the slower speed of operation.
On plain carbon unheat-treated stock the performance indicated in Table I may be expected. If stainless or high-speed steel is being cut, both the time required and the cost are some 25 per cent higher than indicated in Table I. In the case of the larger sizes of material such as 4 to 6 -inch, a small scoring wheel is used to insure parallelism within small tolerances, let us say, of the order of 0.010 -inch on a 6 inch billet.

From all reports the performance of the abrasive disk on aluminum alloys is especially satisfactory. Wheel costs are low-much lower than on steel-and the cutting time much shorter. For instance, on certain alloys of aluminum, the cutting time on 4 -inch diameter stock is only 30 seconds as compared with $3^{1 / 2}$ minutes in the case of a steel billet of the same diameter.

As indicated above, the special virtue of cutting with an abrasive disk resides in its capacity for handling hard materials, thus avoiding (on occasion) the necessity for annealing the metal before cutting -a task which might otherwise have to be undertaken if the saw were used.

Fig. 1 gives a good general idea of the design of the cutting head of a machine of this type. In action the head carrying the cutting disk is given a rocking motion in the direction of the cut in order to prevent binding and to speed the operation.

TABLE I-Data on Cutting with an Abrasive Disk

Stock			Wheel			
Size	Area	Wheel Dia.	Thickness	Wheel	Life	
Inch	Inch	Inches	Inch	Cost	in Cuts	Time To Cut
1	0.785	18	43 or 3/8	\$2.10	610	10 seconds
$131 / 4$	1.227	18	${ }^{3 / 3} 5$ or $3 / 8$	2.10	400	14 seconds
$14 / 2$	1.767	18	3 or $3 / 4$	2.10	300	25 seconds
1 \%	2.405	18	品 or $3 / 4$	2.10	219	35 seconds
2	3.14	18		2.10	169	50 seconds
214	3.97	18	$3^{3} 2$ or $1 / 8$	2.10	132	75 seconds
23	4.90	18	, ${ }^{3}$ or $3 / 4$	2.10	86	90 seconds
2%	5.94	18	$3^{3} \mathrm{l}$ or ${ }^{\text {\% }}$	2.10	69	110 seconds
3	7.06	18	$3{ }^{3} 18$ or 36	2.10	52	$21 / 2$ minutes
$31 / 2$	9.60	20	1/4	3.15	40	3 minutes
4	12.50	20		3.15	35	$31 / 2$ minutes
5	19.60	20	1/4	3.15	20	5 minutes
6	28.70	20	3.	3.15	10	6 minutes

For trimming action such as ends of billets for shell forgings, a special attachment (not shown) is provided which rotates the shell as the job progresses. Thus no time is lost in cutting "air," and the disk may be used until it is worn to a small diameter.
Fig. 2 exhibits a cross section of the machine. The cutting head rocks about a center immediately underneath the work table and on the center line of the stock, the eccentric drive being in evidence on the left in Fig. 2-that is, in the rear of the machine. An interesting feature of this assembly is the powerful spring which removes any backlash and renders the action smooth and silent. The amount of back-and-forth movement of the cutting wheel is regulated by an adjusting screw after releasing a nut, both labeled.

Mixture Keeps Wheel Sharp

A proprietary product known as Codol is added to fresh water to form the coolant used. This mixture prevents rust and appears to have an important effect in preserving the sharpness of the rub-ber-bonded abrasive wheel, a characteristic of considerable importance to effective performance, since a wheel which has become glazed or dull tends to wander from the straight and narrow path through the work. The coolant is fed to both sides of the wheel in equal amounts, thus insuring equal temperature on both sides.
All operating factors are controlled automatically by the machine itself, thus reducing the influence of the human element to a

EC\&M Duplex 29-R Magnet with special hanger for stirrup-hook
attachment on slab-turning crane. Center-line of magnets is placed on edge of slab and when lifted, the slab rotates on magnets and hangs vertically as shown. Magnets and slab are then lowered until edge of slab touches ground-skids. Operator then starts bridge motion of

Fig. 2-(Left above)-Cross sectional view from side showing main working parts of the Campbell Cutamatic abrasive-disk cutting machine. Stock is shown in position. Outer and inner, also the mean position of the cutting disk is shown. At left can be seen the driving arrangements and the means employed to give the cutting head its oscillating movement
Fig. 3-(Right)-Cross sectional view from front of machine. Here control lever, wheel stop and work stop also are visible. To protect the operator the wheel is covered by guard
minimum. Once these conditions are established for any particular job, all that the operator has to do is to insert and remove the work, start and stop the machine, as conditions require.

The completeness of the protection afforded the operator from the effects of abrasive dust is evidenced by the use of standard squirrel-cage open-type motors, all grit being retained in the wheel guard and eventually carried off by the coolant stream.
The oil gage indicating the pressure required to counterbalance the motor and to control the cut is shown in the upper left of the front view diagram, Fig. 3. To establish this pressure at the proper level, the oil feed motor must be started and the handwheel marked "pressure control" adjusted until the gage reads 120 or other value according to requirements of the work at hand. The various positions of the control lever are also shown, position 4 being the operating position. Position 2 returns the wheel to the starting position after an automatic contact has moved
the lever to position 3. A work stop, capable of primary adjustment to the nearest full dimension and of fine adjustment to intermediate sizes, is also provided. Tension of the driving motor belts is controlled by the position of the swingtype motor bracket.

In operation, the chart provided is first consulted to determine the proper pressure to which the pressure dial must be set for the size and type of metal to be cut. Similarly the feed figure is found from the chart. The stock is now fed into the machine and the wheel lowered hydraulically until it clears the work by about an inch. The wheel height gage seen in the upper right of Fig. 1 is now set and the machine is ready to begin work.
The two rows of spirally dis. posed holes in the disk keep the wheel from loading, relieve the wheel from buckling strains and assist in carrying the coolant to the cut.

A single operator can handle two to four of these machines, it is reported.

Ampco Issues

Revised Bronze Table

A "Table of Bronze Specifications to Government Requirements" which lists in parallel, bronze specifications that are largely used by government contractors is announced by Ampco Metal Inc., 1745 South Thirty-eighth street, Milwaukee. It lists all alloy grade numbers cast by the company to these various governmental specifications. In addition it gives the chemical composition of each alloy The table is offered by the company free of charge, upon request.

Makes New Camouflage Paint Available

A new camouflage coating, development of which is based on United States Army specifications for camouflage or visual deception for industrial areas is announced by Truscon Laboratories, Detroit. It also is suitable for civilian projects where the intent is for users to avail themselves of the results of the studies by the Army corps of engineers in the selection of colors on buildings, and similar structures to make them less visible to the eye or camera.

The coating is being offered in nine colors-plus black and white. Colors are dead flat and do not show any reflections. Other colors avail. able are loam, dark green, field drab, light green,, olive drab, earth red, earth brown, earth yellow and sand.

Fig. 1-(Left, above)-General viev of automatic metal spraying layout. Left rear, air compressor; right rear, air drier; center, 6 -station automatic metallizing machine. Note gages and controls mounted above each of the 5 operating stations. The sixth, in front here, is the loading-unloading station

Fig. 2-(Right)-Closeup of automatic metallizing machine in operation. Spray guns automatically travel up and down to cover entire surface of part which spins during operation. Spray gun angles, rates of travel, etc. are precisely controllod to apply coating evenly to full depth of fins

AUTOMATIC METAL SPRAYING

 equipment applies a superior protective finish for aircraft cylinders on a high-production basis. Two-machine line turns out a finished part every 75 secondsPROTECTION of exterior surfaces of aluminum alloy aircraft parts has been the subject of much investigation. The most common method used is painting, but even the best paints have a limited re. sistance to salt water spray. Moreover, since both a priming coat and a finishing coat must be applied and each of these must be baked for a considerable time, the process is slow, even when handled on automatic conveyors.

A speedier process is metallizing in which pure molten aluminum, itself highly resistant to corrosion, is sprayed on the parts. Many technical details had to be overcome in order to make the process fit into a modern production line, but now at one of the Wright Aeronautical Corp. plants production metallizing of radial engine cylinders is a reality. The "production line" here is composed of only two machines-an automatic sand-blasting machine
and an automatic metallizing machine.

To obtain proper adhesion of the sprayed metal, the surfaces of the cylinders must be thoroughly sand blasted. This is done on a specially designed Wheelabrator supplied by American Foundry Equipment Co., Mishawaka, Ind. This machine is self-contained and has eight long arms projecting radially from a central hub. Main housing is open at the loading station where heavy rubber curtains protect the operator from flying abrasive. The arms rotate within the housing. As each arrives at the loading station, a finished cylinder is removed and a new one slid into place. The finished cylinder is handled with cotton gloves to avoid contaminating the surface and producing spots to which aluminum spray would not adhere.

Since the lower portion of the cylinder barrel, or skirt, and the
bottom face of the flange are not blasted, they are protected by a heavy rubber cuff mounted on the arm. The machine indexes automatically every 65 seconds, and once the arms have passed through the curtain into the main housing they start to revolve on their own axes so as to present every surface of the parts equally to the blast.

Seven individual centrifugal blasting wheels are employed, each one rotating at 2250 revolutions per minute and being set at an angle to assure complete coverage of all surfaces of the part. Approximately 10 pounds of No. 20 Alundum abrasive are used to blast each cylinder. As the grains break down, they maintain their sharpness until they become too small to be effective. As the abrasive is used, it falls to the bottom of the housing, where it is picked up by a bucket elevator and passed through a cleaner. Then the "fines" or extremely small particles are removed before the abrasive is returned ic the main supply hopper.

The amount of abrasive handled by each wheel is indicated by an ammeter connected to its driving motor, the power used being proportional to the load. The seven instruments are mounted on a panel easily visible to the operator to enable him to tell instantly if the supply to any wheel is interrupted.

An adjustable timer permits varying the cycle time, but it has been found a 65 -second cycle assures adequate cleaning and allows the machine to keep slightly ahead of the metallizing equipment.

From the blasting machine, cylinders go directly to the completely automatic metallizing machine seen in Figs. 1 and 2. Manufactured by the U. S. Galvanizing \& Plating Equipment Corp., Brooklyn, N. Y., in collaboration with Metallizing Engineering Co. Inc., Long Island City, N. Y., this equipment applies the coating evenly to the full depth of the fins by holding the guns at exact angles which are impossible

to maintain with hand operation. The machine comprises six stations, each controlled by reduction gears and fully adjustable to various motions and speeds. A finished part can be produced every 75 seconds.

Parts are loaded at the first station upon a fixture which supports and properly centers them. Then the machine indexes to the next station, where the part rotates at a predetermined speed while a single Metco spray gun, mounted on a mechanically operated post, passes up the cylinder at one angle and then passes down at another angle, the change in angles being made automatically as the post reaches the

Fig. 3-Group of cylinders for Wright Cyclone 14 -cylinder radial engines. These cylinders have been sprayed with aluminum to prevent corrosion. The problem here was to arrange spray guns to coat properly the deep openings between the fins
top and bottom of its stroke. See Fig. 2.

At the third station, the parts are brought in front of two Metco spray guns similarly mounted, but at fixed opposing angles. These also pass up and down, spraying the upper and lower fin surfaces. The following station (No. 4) has two more guns set at different angles. These pass up and down and spray the side surfaces of the head only, while at the fifth station a manual unit is used to spray the upper head surfaces. The sixth station is used for inspection and unloading, but a manual unit is used for touch-up work. Completed cylinders are seen in Fig. 3.
Each spray gun has an individual set of gages and controls mounted on a panel above each station within easy reach of the operator. These panels can be seen in Figs. 1 and 2. Wire is fed to each gun separately
from a reel mounted a short distance away from the machine.

Compressed air is supplied by a 60 -horsepower 6-cylinder watercooled Schramm air compressor with a 260 -cubic-foot delivery. It can be seen in the background at left in Fig. 1. Air is dried by passing through a 300 -cubic-foot capacity water-cooled air drier seen in background at the right in Fig. 1. Manufactured city gas is employed as the heating medium for the metal spraying guns. It is compressed by a 3 -horsepower 2 -cylinder compressor. Oxygen is piped over from a bank of cylinders located in the boiler house annex. An exhaust fan connected by a duct to the top of the machine removes the fumes of the burned gases. As an added precaution, the operators are previder with respirators to prevent their breathing in the minute particles of metal.

Of course automatic metal spray ing can be used to advantage for finishing many other metal products. The fact that it has been applied successfully to such a difficult part to finish as this radial aircraft engine cylinder shows that even ex. tremely complicated shapes can be handled efficiently.

AUTOMATICALLY WELDED SEAL

.. . withstands 1125 pounds per square inch pressure in regular production test

Fig. 1-Below, compressor housing at left has been prepared for automatic welding by application of flux, appearing as a white smear around the joint. Housing at right has been welded. Note smooth bead surface

WHERE GREAT strength and an air-tight seam is required, automatic carbon are welding offers a logical solution, particularly in quantity production. Such an application was made recently by engineers of a nationally-known electric refrigerator manufacturer. This refrigerator utilizes a compressor housing which is tested to 1125 pounds per square inch and which must be absolutely air-tight and leak-proof.

This unit, before and after welding under the automatic electric arc, is shown in Fig. 1. At the left is a compressor housing which has been prepared for welding by application of a special flux, which may be seen as a white smear around the seam. The two pieces of the head fit one within the other so that the final weld, as shown at the right, is really a lap weld.

Decreases Costs

Other than application of the flux, no special preparation of the shells is required, according to company engineers. The new method decreases costs, results in less leakage and gives a better appearance. The shells, which enclose the motor and compressor of the refrigerating unit, are deep drawn from $1 / 9$-inch material.
A view of the "Electronic Tornado" autcmatic carbon arc welding machine, supplied by Lincoln Electric Co., Cleveland, is shown in Fig.

A WAR MESSAGE

to
 ALL EMPLOYERS \star From the United States Treasury Department

Winning this War is going to take the mightiest effort America has ever made-in men, in materials, and in money! Every dollar, every dime that is not urgently needed for the civilian necessities of food, clothing, and shelter, must, if we are to secure final Victory, be put into the war effort.
An important part of the billions required to produce the planes, tanks, ships, and guns our Army and Navy need must come from the sale of Defense Bonds. Only by regular, week by week, pay-day by pay-day investment of the American people can this be done.

This is the American way to win. This is the way to preserve our democratic way of life.

Facing these facts, your Government needs, urgently, your cooperation with your employees in immediately enrolling them in a

PAY-ROLL SAVINGS PLAN

The Pay-Roll Savings Plan is simple and efficient. It provides, simply, for regular purchases by your employees of United States Defense Bonds through system-atic-yet voluntary-pay-roll allotments. All you do is hold the total funds collected from these pay-roll allotments in a separate account and deliver a Defense Bond to the employee each time his allotments accumulate to an amount sufficient to purchase a Bond.

The Pay-Roll Savings Plan has the approval of the American Federation of Labor, the Congress for Industrial Organization, and the Railroad Brotherhoods. It is now in effect in several thousand companies varying in number of employees from 3 to over 10,000 .
In sending the coupon below, you are under no obligation, other than your own interest in the future of your country, to install the Plan after you have given it your
consideration. You will receive-1, a booklet describing how the Plan works; 2, samples of free literature furnished to companies installing the Plan; 3, a sample employee Pay-Roll Savings authorization card; and 4, the name of your State Defense Bond administrator who can supply experienced aid in setting up the Plan.

To get full facts, send the coupon below -today! Or write, Treasury Department, Section B, 709 Twelfth St., NW., Washington, D. G.

HOW THE PAY-ROLL SAVINGS plan helps your country

I. It provides imraediate cash now to produce the finest, deadliest fighting equipment an Army and Navy ever needed to win.
2 It gives every American wage earner the opportunity for financial participation in National Defense.

3 By storing up wages, it will reduce the current deraand for consumer goods while they are scarce, thus retarding inflation.
4. It reduces the percentage of Defense financing that must be placed with banks, thus putting our emergency financing on a sounder basis.

5 It buildsa reserve buying power for the post-war purchase of civilian goods to keep our factories running after the war.

6 It helps your employees provide for their future.

Fig. 2-Shown above is the automatic welder that makes the joint at a speed of 18 inches per minute. Work is entirely enclosed during welding. Note special fixture to hold work in position. Operator watches arc through peep hole seen at left of chamber
2. The special flanged cup seen below the welding head holds a compressor housing unit and revolves it at a timed speed while the carbon draws an arc at the seam. No filler wire is used in this application, and the only flux required is the Type 130 Lincoln automatic flux which is mixed with water and painted on the seam previous to insertion in the machine.

A peep-window for viewing the weld as it progresses may be seen to the left of the carbon, on the side of the box in which the work is done. Further to the left is the control panel.

Engineers at the plant say that this set-up produces a dense, smooth weld with no pronounced crater at the finish. The machine welds at a speed of 18 inches per minute in this operation. The cost is less than five cents per unit for welding, and that includes labor, material, current and overhead.

The welding is done at an angle of 30 degrees. The only finishing operation required after welding is wire brushing.

Two Days MachiningGenerator on Job Again

Two days of machining on the job recently, and an old waterwheel generator was again found among the "ranks of the em. ployed". Ordinarily, machining a rotor of this type generator would require removal of the shaft to a shop where it could be swung on a lathe. And this could not be done without practically disman. tling the whole station.

How it was done? Under the supervision of R. J. Ruedy of General Electric's Boston office, a rig was made up to grind the shaft fit by rotating the grinder around the vertical stationary shaft. It consisted of an upper and lower guide, each with three adjustable brass blocks for centering and maintaining close running clearance.

The two guides were joined together rigidly by two pieces of stiff channel iron, so spaced that they rode on smooth portions of the shaft which were true in accordance with the original machining. A compound tool rest was secured on one of the channels to support a small motor-driven grinder with a 2 -inch wheel operating at about 13,000 revolutions per minute.
Next a 20 -inch wooden pulley was secured to the lower guide
and belted to a $1 / 3$-horsepower, 148-revolution per minute gearmotor with small pulley. This drove the rig and grinder around the shaft at about 14 revolutions per minute. The parallel feed of the tool rest was connected to a 6 -spoke starwheel below the wooden pulley and a stationary pin was located to turn the feed screw one spoke for each revolution of the rig thereby accomplishing an automatic feed of the grinder up and down the shaft. A collector ring from an old single-phase motor was mounted on top of the assembly to supply power to the grinder.
In two days the shaft was trued up to fit satisfactorily. A pin gage was made for the new diameter with allowance for the fit.
The thrust block with its bore built up by metal spraying was ground out to this pin gage. It was then warmed to about 75 degrees Cent. which allowed it to slide in place on the shaft easily.

Develops New Metal For Collapsible Tubes

A new collapsible tube metal, called Sheffalloy, is announced by New England Collapsible Tube Co., New London, Conn. Based upon tests, it is said to be a good alternative for metals normally used in the manufacture of collapsible tubes, containing all the characteristics of appearance, pliability and strength of the former metal.

Comprising a blend of available metals-melted, mixed, tempered and toughened according to a new formula, the new tubes are said to preserve and protect tooth paste, shaving creams, cosmetics, ointments and other products as efficiently as ever. The metal also may be utilized as containers for many other products, even those containing ingredients of strongly acid or alkaline characteristics, when inner tube coatings are used.

Gas Cylinders Must Be Kept in Circulation

Chlorine and ammonia cylinders must be kept in circulation or many users of these chemicals may have difficulty in obtaining supplies, according to R. J. Quinn, of Mathieson Alkali Works Inc., New York, producers of both materials.

In spite of heavier shipments producers can get no new cylinders and existing supply must serve all users. If all are kept circulating demands of essential industries probably will be met. Idle cylinders should be shipped back at once, Mr. Quinn points out.
 Now York, N. Y., Wm. C. Dickey - Pittsburgh, Pa., McKoo-Oliver, Inc. - St. Louis, Mo., Hubbell \& Co. San Francisco, Calif., W. S. Hanford - Houston, Texas, The Corbetl-Wallace Corp. - Cleveland, Ohio, E. F. Bond - Detroit, Mich., H. L. Sevin Los Angeles, Calif., Ducommun Metals \& Supply Co. . Seattlo, Wash., Barde Steel Co. P Portlond, Oregan, Barde Steal Co. Montreal and Toranto, Canada, Drummand, MeCall \& Co., Lid.

Punch and Die Holders

Strippit Corp., 1200 Niagara street. Butialo, announces new compact Naropunch punch and die holders which punch $3 / 16$-inch maximum holes on a minimum center to center distance of \$-inch with shut height of $6^{3 /}$ inches. They also em-

briy ue skective stripping jexuure

 It the exinct sutiesims action rew
 of mexinls. Set Sumb p S\% Feb 2 Sit The dies and gumdurs are be

 tooderis

Milling Machine

GuEVin S OL Wustimgun Square

0.001 -inch with a minimum of attention. The unit is especially adapted to thread-milling and formmilling operations. All motion of the machine is in the cutting head. The part itself is rigidly held by

its fixture. Large, irregularly shaped parts are accommodated as easily as small ones. Parts ranging from 3 -inch diameter to 20 inches diameter. inside and outside, are handled. Spindle of machine is driven by a 3-horsepower motor at speeds of 40 to 370 revolutions per minute. Clockwise or counterclockwise rotation of the cutting head is controlled by a switch of the valve control. A selector switch permits the machine to be operated manually when automatic cycle of operation is not desired. Feed cycle ranges from $1^{1 / 2}$ to S minutes per cycle.

Sharpening Machine

Howe se Son Inc., Hinsdale, N.. H. announces a new automatic, highspeed sharpening machine for sharpening and reconditioning various types of saw blades. It wili handle hack saw blades 10 any length, width or pitch, band saiw and meat saw blades to any size. circular saw blades up to 20 inches diameter. metal or wood rip, and metal slituing saw blades and millins curters up to $5 / 22$-inch thick. The machime features a constant speed

of 53 seth per minute and operates $0 \pi=$ sinslephase $=$ horsepower 110 roit mase. The srinding wheel is 5 inctes in diameter. $5 / 16$ inch wide and tus a

the band saw holding attachment, one wheel truing device and electric light mounted on arm.

Chucking Machine

Machine Tool Division, Nylen Products Co., St. Joseph, Mich., has introduced a new 6 -inch vertical automatic chucking machine designed to turn and face, or bore and face, or contour and dome in one simultaneous operation. It is electrically operated, and its controlled hydraulic feed has single level control. A heavy, rigid construction makes it possible for the machine to handle heavy cuts. The operator loads and moves the lever up after which the complete cycle of work, including starting and stopping, is automatic. Because all obstructions are out of the way, loading is quick and easy. Work

is performed with minimum down time. One operator can handle two or more machines; unskilled labor can produce precision work on the machine after little practice.

Socket and Tool Set

Bonney Forge \& Tool Works, Allentown, Pa., announces a new T4-piece socket and tool set for mechanics known as set No. BB1. It includes an assortment of 14 sockets with double hexagon openings from $7 / 16$ to 1 inch; 3 extradeep sockets with double hexagon openings from $13 / 16$ to 1 inch; 2 sockets with $1 / 2$ and $9 / 16$-inch double square openings; 15/16-inch drag link socket; 14-inch brace; 11 inch sliding $T: 5$ and 10 -inch extensions: cross handle; universal joint: hinge handle and reversible ratchet. In addition it includes 4 TuType wrenches combination box and open end) with openings from T/16 to 5/S-inch: 6 Zenel engineers'
wrenches with openings fgrom $3 / 8$ to 1 inch; 4 Zenel tappet wrenches with openings from $1 / 2$ to $11 / 16$ inch; 5 Bonaloy box wrenches with openings from $3 / 8$ to 1 inch; 4 assorted chisels; 7 assorted punches; 1 pry bar; 8 assorted screw drivers;

$31 / 2$-ounce and 1 pound ball pein hammers; 1 adjustable plier; 1 ig. nition plier; 1 adjustable hack saw frame and blade and one standard feeler gage. The entire assortment is furnished in a strong metal box measuring $223 \times 10^{3 / 4} \times 9$ inches.

Double-Ribbon Mixer

H. K. Porter Co., 4975 Harrison street, Pittsburgh, announces a new large double-ribbon type mixer designed for use in mixing automobile body insulating material. It features a total operating capacity of 2000 gallons. Its mixing bowl is 6 feet wide by 9 feet 2 inches long by $6^{1 / 2}$ feet high. The tank, fabricated of plain steel, is driven from both ends by machine cut gears riding on

antifriction bearings. Motor drive is mounted on the same base as the machine itself. Mixing is accomplished by means of spiral ribbons arranged to create a positive folding action on the material inside the cylinder. End seals prevent contamination.

Fluorescent Lamp

Hygrade Sylvania Corp., Salem, Mass., announces a new fluorescent lamp for low temperature operation. Known as type LI, it starts and operates at temperatures as low as 0 degrees Fahr. when used in conjunc-
 CAN COME IN INDUSTRY TOO!
 ever-clean air is recognized as an industrial necessity. Practicall y every now delense plant has been supplied with AAF air filtration and dust control equipment, and hundreds of additional installations have also bern made in existing plauts whose facilities are required for war material production. The American Air Fiter Company is operating 16 to 24 hours a day in order to meet industry's air filtration and dust control needs, supplying better than 92% ol its output to war materials manulacturers. Adequate dust protection will help you thaintain your stiff production schedules.

 AN

48 Central Avenue, Lsuisvilte, Kentucky

IA CAMDA, DARLNG AROTHERS, IMITED, NONTRBAL, P.O.
tion with Mirastat No. 4. The lamp is being offered in only one wattage and color- 40 watt T-12 medium bipin base 3500 degrees white fluorescent unit-having an ostimated life of 1400 hours.

Belt Vulcanizer

B. F. Goodrich Co., Akron, O., announces an improved square end No. 28 belt vulcanizer which is said to allow greater service. It is now made with a square instead of a diagonal end, making it possible to cure wider belts. Widths of 34 inches can be cured with the vulcan-
izer placed at right angles across the belt. By placing the vulcanizer at an angle of approximately 22 degrees, a 28 -inch belt can be cured, at an angle of 30 degrees, a 24 -inch belt, and at a 45 -degree angle a 16 inch belt. The platen now measures $11 \times 36^{1 / 2}$ inches, with an overall length of 41 inches. The unit weighs 380 pounds complete with sheet iron platen covers, curing pad and two 25 foot lengths of extension cord.

Magnetic Separator

S. G. Frantz Co. Inc., 221-5 Centre street, New York, has developed

ITS BINTG BALTHD UP

" " " but this time it's for a good purpose. Here a Horsburgh \& Scott Double Reduction Herringbone Speed Reducer is driving a metal scrap baller and doing a fine job. Smooth, powerful, quiet transmission of power with design for large starting and momentary overloads are all inherent qualities of Horsburgh \& Scott Reducers. There's a Horsburgh \& Scott Reducer for every purpose in industry . . . learn about the complete line of Herringbone, Helical and Worm Gear Speed Reducers.

Send note on Company Letterhead for Speed Reducer Catalog 39

THEHORSBURCH \& S.COTT CO.
GEARS AND SPEED REDUCERS
5112 HAMILTON AVENUE © CLEVELAND, OHIO, U.S.A.
a permanent magnet FerroFilter featuring greater capacity than previous models. Designated as the PQ-6, it has a capacity of 200 gallons per minute. Its pipe size connection is 3 inches. The unit has

no moving parts and stands $155 / 8$ inches from the floor. It is especially useful in removing harmful fine iron and steel particles from circulating coolant systems of machines used in tapping, grinding, deep hole drilling, reaming axd rifling, also from circulating lubricating oil systems of pumps, diesel and blooming engines, rod mills and roll grinders.

Generators

Century Electric Co., 1806 Pine street, St. Louis, offers new, modernized revolving field, alter-nating-current generators for continuous duty in isolated plants or to supplement other available power supply. The generators are available in sizes from $71 / 2$ to 75 kilovolt-ampere; 4,6 , or 8 pole; 1800, 1200 or 960 revolutions per minute; 60 cycle; for belt or coupling drive or flange mounting.

They are wound for various standard voltages, single phase 2 and 3 -wire, 3 -phase 3 and 4 -wire or 2 phase 4 -wire. The neutral may be brought out for 3 -phase 4 -wire systems for light and power. The generators meet AIEE and NEMA voltage regulation standards.

Cleaning Stone

Ideal Commutator Dresser Co., 5076 Park avenue, Sycamore, Ill., announces a new cleaning stone for removing excess film and dirt from commutators. It cleans while the
motor or generator is running by holding it against the commutator and moving it slowly across the face. It also cleans film from the brush seats and helps to re-seat

brushes. So-called "excess color", "skin" or "film" resulting from oxidation around paper mills, chemical plants, printing departments and die. sel locomotive generators can be removed by the stone.

Portable Colorimeter

Photovolt Corp., 95 Madison avenue, New York, has introduced a new model 400 photoelectric colorimeter for portable service in either the laboratory or plant. It is

built into a wooden housing with cover and carrying strap. It works from any alternating or direct current 110 -volt outlet and is claimed to be exceedingly simple in operation. The readings are definite and independent of the judgment of the operator.

Mass Spectrometer

Westinghouse Electric \& Mfg. Co., East Pittsburgh, Pa., is offering a new mass spectrometer for gas analysis. It is essentially a highvacuum tube containing electrodes, filament, slit system and an electron collector. The gas or vapor to be studied is subjected to bombardment by a narrowly defined beam of electrons in the order of 10^{-8} amperes. The pressure of gas in the ionization chamber where the bombardment takes place, is about $10^{-4} \mathrm{~mm}$ of mercury or lower. The ions thus formed are accelerated through two narrow parallel slits in two parallel plates at a potential difference of
from 100 to 1000 volts. The ions emerge from the second slit as a narrowly defined beam of very nearly the same energy. This beam is then deflected by a uniform magnetic field designed to sort the ions according to their mass-to-charge ratio. Thus the spectrometer gives directly information about the relative abundance of different kinds of molecular ion fragments formed when molecules of a particular kind are struck by electrons of known energy. For quantitive indication of the gas to be measured, the ions strike a metal cup connected to ground through a very high resis-
tance. The voltage developed across this resistor is fed to the grid of an electrometer tube. This amplifies the current so it can be read with a sensitive galvanometer. Entire assembly is enclosed by steel panels. The unit is mounted on a rub-ber-tired truck for complete portability.

Tensioning Tool

Signode Steel Strapping Co., 2600 North Western avenue, Chicago, announces a new fork type stretchor for steel strapping which makes it possible to bind noncompressible packages tightly and to strap

24 YEARS EXPERIENCE IN VOLUME PRODUCTION OF AUTOMOTIVE PARTS available on
 Subcontract or Co-Contract basis

Can you use these facilities?
-A modern 5 acre plant, only 4 years old, completely equipped for immediate volume production of any or all of the items listed below.

- A force of engineers, production men and crafismen which, af peak volume, loials 800 -all men trained for years in meeting the exacting demands and volume requirements of the automobile indusiry.
For 24 years the American Metal Products Com-
pany has been a volume praducer of parts and equipment for the automobile, truck and allied industries. Due to curtailed automobile production, the complete facilities of American Metal Products Company-plant, equipment and manpower-are available for immediate volume production, on a subconiraci or coconlract basis, on any or all of the ltems listed here.

For full details as to how we can fit into your production requirements, write, wire or phone

properly those with extremely small surface dimensions. The new tensioning tool has no "foot" or base thus assuring tight strapping without any slack after removal of the stretcher. Two models are available varying in size and weight of strap they accommodate.

Crank Shapers

General Engineering \& Mfg. Co., 1523 South Tenth street, St. Louis, announces a new line of Gemco multipurpose, heavy duty crank shapers which are offered in three models, plain, production and universal, in sizes ranging from 16
to 24 -inch stroke. Gears, shafts, crank block and crankpin are of hardened alloy steel. Long, deep V-type ram, internally ribbed and braced for rigidity, has generous-ly-proportioned highly-finished sliding surfaces and Timken roller bearings to insure smooth action and accuracy. Rocker arm, actuated through duplex gears, is of high tensile semisteel, strongly ribbed and braced. Main shaft carries an oversize twin disk clutch and friction brake for instant starting and stopping of ram. Through a back gear arrangement controlled through two levers, eight ram speeds are available. A chart

PERFECTION,-no less,-is demanded of the parts made for a fighting airplane engine. Hidden flaws there dare not be. Material and workmanship must be perfect.

The Ahlberg inspector you see in this picture is searching for hidden flaws by means of the Magnaflux test,-a test so sensitive that a faint microscopic crack, invisible at the surface, is revealed by means of magnetism as a thin red line.

The reputation of Ahlberg bearings for perfection results from the combination of merciless inspection, of the finest materials and the use of methods and equipment that is the last word in precision manufacturing.

That is why you will find Ahlberg bearings so often used where perfect performance is the only thing that counts.

plate indicates lever settings. Builtin force-feed lubrication system, embodying self-cleaning automatic oil filter, serves all bearings and internal sliding parts. A feature of this system is the automatic Lubri-

gard which prevents starting of the ram under the following conditions: 1. When supply of oil in reservoir is insufficient; 2. when pressure in oil system has fallen below a predetermined minimum; 3. when there is a leak or other failure in the oil pressure system. Table is universal type having T. slots on both sides and top. It is carried on a deep cross rail, with adjustable gibs both at top and bottom, mounted on square vertical guides integral with the wide box column of the machine. The table has independent power rapid traverse and powerful vise with graduated base. All control levers, handles, buttons, dials and charts are positioned for ease of observation and operation.

All-Purpose Jack

Buda Co., Harvey, Ill., is offering an improved heavy-duty model 2215-S all purpose automatic lowering ratchet type jack which has a capacity of 15 tons, with a $131 / 4$-inch

rise and a height closed of $22^{1 / 2}$ inches. It is specially designed for outside work such as is found in oil fields, construction jobs, utilities, etc. As shown by the illustration, it has a hinged base which permits it to be tilted for various kinds of work, such as pole pulling and lift-
ing or moving machinery, heavy equipment, etc. The jack is furnished as standard with double lever socket chain type cap and with 5 -foot chain with one lift and one grab hook.

Hydraulic Valve

Galland-Henning Mfg. Co., 2753 South Thirty-first street, Milwaukee, is introducing a new type Nopak high-pressure hydraulic valve which is said to overcome tiring valvelever manipulation and the "pres-sure-locking" trouble experienced by users of hydraulic power at pressures of 1000 pounds or more. Its lever is as easy to operate from either "on" position as from "neutral." Also the balanced hydraulic

pressure inside the valve eliminates pressure lock. The valve has only one moving part, and is being offered in four sizes to fit the most common sizes of hydraulic pressure lines, $\%$, $1 / 2, x / 1$ and 1 -inch. Spindle of the unit, the only moving part, is a one piece forging, heat treated and hardened.

Shell Marking Machine

Jas. H. Matthews \& Co., 3942 Forbes street, Pittsburgh, is offering a No. 79 heavy duty marking machine for marking 105 and 155 millimeter and 5 and 6 -inch shell. Featuring high speed operation, it records the required data by means

of interchangeable steel type, set up in a roller die in the machine. The machine can be changed quickly for various lot numbers, date of manufacture, size and other neces-

WIRE GOES TO SEA in hundreds of forms, many of them Naval sccrers, of course. But among those we can rell you about is this stout wire rope sling, used to hoist seaplanes back aboard their" mother ships."
"SHOW YOUR COLORS!" Proudly, JohnC. Mundt, Roebling employee with a 50 year service record, breaks our the two Naval award flags over the Roebling plants. Bencath him, the rumble of machinery continues unbroken, producing for American defense at breakneck speed.

The Pacemaker in Wire Products
JOHN A. ROEBLING'S SONS COMPANY
TRENTON, NEW JERSEY - Branches and Warehouses in Principal Cffies
sary lettering. Depth of marking is controlled by simple adjustments. Shell roll down the gravity feed way, and are selected automatically and ejected at high speed. The machine weighs approximately 2000 pounds and handles shell quickly.

Skid Platform

Yale \& Towne Mfg. Co., 4530 Tacony street, Philadelphia, announces a new Timber-Lock skid platform which uses no steel in the frame yet is said to give all the strength inherent in steel welding. It is made of tough oak and so constructed as to
practically defy breakage, it is said. This strength is claimed to be due to a new interlocking "wood-weld" process to tie supporting leg runners and deck boards into one inseparable unit. Instead of just placing the platform deck on the supporting leg runners and nailing, deep cut grooves run along the entire length of the platform deck boards. Into each of these grooves, the supporting hard oak leg beam is tightly fitted thus interlocking platform and beams in a vise-like grip. To further insure this rigidity, beam and deck are bound together with specially cement-coated, spiralled heli-

cal nails, binding platform and beams at double rowed 1 -inch alternate intervals along the entire platform length. Legs are of formed steel bars, joined to the leg beam by heavy forged steel bolts.

Oil Cooler

Bell \& Gossett Co., Morton Grove, Ill., has introduced a line of rapid oil coolers for heat treating processes. These are used to maintain a constant temperature in the

oil quench bath. Illustration shows the self-contained oil cooler, a unit which combines all necessary equipment, except the quench tank, in a compact package. The company also is offering a complete engineering service in connection with the design and installation of these systems.

Lift Type Drum Carrier

Ernst Magic Carrier Sales Co., 1456 Jefferson avenue, Buffalo, is now offering a new 14-inch lift model carrier for placing and removing 55 -gallon drums on and off skids, scales and platforms. It features a lifting device which lifts containers vertically into locked pocontainers vertically into locked po-
sition on the carrier without any aid on the part of the operator. Raising of the container is controlled by lowering a handle which normally is at a horizontal position. mowel carrier for new 14 -inch and re-

This is the patented, exclusive Kemp Industrial Carburetor, the machine that provides complete premixing of gas and air to provide new savings, new heat liberation, new flexibility and new control in almost every type of ferrous and non ferrous heat processing.

As the basic unit in Kemp heat treating the Industrial Carburetor supports gas immersion melting in modern tin stacks, provides fuel for inert gas and for recirculating radiators in annealing covers, for Kemp Radiatube Roll Heaters, may be set for exactly the desired flame characteristics whether reducing, oxidizing or for complete combustion . . . and save 15 to 40 percent in fuel. For engineering details and assistance, address The C. M. Kemp Manufacturing Company, 405 East Oliver Street, Baltimore, Maryland

KEMP
 of
 BALTIMORE

Instructor Training

(Concluded from Page 63)

your taking over the job too soon, or too often. Don't take it over at all if you can point out the helps he needs.

Get him to look for key points as he progresses-Taper off this extra coaching until he is able to work under normal supervision.

Use This Plan. You will find it amazing that such greatly improved results can come from such a simple plan. Use it, or whatever part of it applies, every time to put over a new operation, check a man's work, or change a work procedure. Truly, if the worker hasn't learned, the instructor hasn't taught!

Publishes Company

History for Employes

From cook stoves to massive reclamation project castings, from cast iron to an epoch-making high tensile bronze, from domestic water heating boilers to gigantic modern gas holders-that is part of the story portrayed in the 225 -page book, Iron Men and Their Dogs, recently published by Bartlett Hayward Division, Koppers Co., Baltimore, for its employes.

Prepared under the direction of Walter F. Perkins, vice president of Koppers Co., and general manager of the Bartlett Hayward Division, the book was written by Ferdinand Latrobe. Stated to be factually correct, it retraces the progress of the organization since it began back in 1837 as a stove maker to its present status, describing its role in the de. velopment of the nation and the three times it participated in the defense of our country.

The book really is a "slice" of American tradition narrowed down to the accomplishments of men in one company-bringing home to em ployes through the interwoven history of a growing country and company that "faith in our country, our state and ourselves is alone the bulwark of our nation today."

Drop Forgings

(Concluded from Page 66)

steel at high temperatures. It is only stress above the elastic limit which results in deformation. However, elastic limit and tensile strength are uncertain values at high temperatures since the rate of application of strain brings about changes which are more or less absent at room temperatures.

For example, a steel analyzing 0.18 per cent carbon and 0.70 per cent manganese when tested at 680
degrees Cent. (1250 degrees Fahr.) for a time of loading of 5 seconds showed a maximum stress of 14.3 tons and elongation of 18.6 per cent. For a time of loading of 35 sec onds, it showed maximum stress of 6.2 tons and elongation of 31.0 per cent.

Therefore the rate of application of stress is important, and in general it is found that materials behave as though they were harder under the hammer than under the press due to the time element involved in the flow of metal. Speaking broadly, it is possible to work
to lower temperatures with slow loading. This last has not so much importance in forging steel but it is vitally important in nonferrous forging where embrittlement due to strain hardening is likely to occur. Magnesium alloys must be worked slowly under a hydraulic press. On the other hand many of the aluminum alloys have a finer grain structure if worked at high speeds. Obviously the nature of the material worked greatly influences method to be employed and the results that will be obtained.
(Concluded Next Week)
 weld failures is sometimes as difficult as looking for a black cat in a cellar At one plant, pronounced weld porosity was encountered on starting automatic welding of a stainless clad conrainer 70^{\prime} long $\times 12^{\prime}$ in diameter.

After experimenting with various techniques and different types of electrodes, no two successive X-rays were found acceptable. At this point the Murex engineer suggested analyzing the mild steel portion of the stainless clad plate. When this proved to be Silicon-killed steel containing appreciable quantities of Manganese and Silicon, switching to a highly fluid, "hot" electrode provided the answer. Following the change, only 5 or 6 pinpoint defects occurred in each 100 linear feet of welding.

The accumulated experience of our engineering staff with welding procedure, weld design and shop practice is available to help speed war production in your plant.

METAL \& THERMIT CORPORATION 120 BROADWAY, NEW YORK,N.Y.

Specialists in welding for nearly 40 years. Manufacturers of Murex Electrodes for are welding and of Thermit for repair and fabrication of heavyparts.
algany - chicago - pittsburgh

Weldability

(Concluded from Pege 75) of travel has this effect. Increasing the amount of coating on the electrode has this effect. Increasing the number of beads or passes above one has this effect. And now, as might be expected, preheating has the same effect.

In Fig. 5, also taken from the data of French and Armstrong, is seen a lower maximum weld hardness as the amount of preheat is increased. There is a pronounced lowering of the maximum weld hardness with a carbon content of 0.50 per cent by
a preheat of 250 degrees Fahr., while the preheat level of 600 de grees Fahr. is still more effective.

Of course the chemistry of the base metal is a prime consideration in any investigation of weldability. Most important is the carbon content. Next in importance are the alloying elements. Weld hardening, as may be seen also in Fig. 5, increases as the amount of carbon becomes greater.

Carbon is added to steel to increase its strength. This is accomplished frequently at the expense of ductility. Surely this is the situation in the case of welded steel.
 must be stripped off and the metal core roughened thoroughly by blasting s) that new rubber will adhere properly after vulcanizing. Heretofore the blasting job was costly, it consumed a great amount of time, and it tied-up production.

To eliminate this condition the Samuel Bingham's Sons Mfg. Co., Chicago, large producers of ink rollers, installed an American WHEELABRATOR Special Cabinet in 1939 . Small rollers that formerly required 20 minutes to process with air blast equipment are now being cleaned in 20 sec onds. Large rollers that required as long as 6 hours to finish are now being handled in 5 minutes. Operation of the machine is continuousloading being handled at one end of the cabinet and unloading at the other.

While you may not be confronted with a problem exactly like this, it is quite possible that you do have one of an equally difficult nature. If so, be sure to get a WHEELABRATOR demonstration and see for yourself how this modern, speed-cleaning prccess will give ycu faster pio duction at lower cost.

Holpful Literature

1. Surface Plates

Machine Products Corp.-4-page Illustrated bulletin contains prices, sizes, welghts, type of finish for surface plates, angle plates, slotted angles, universal angles, box parallels, measuring angles, tool makers knees and cast iron hand knobs, hand wheels, offset hand wheels, and alloy cast handles.

2. Hydraulic Hose

Chicago Metal Hose Corp.-2-page and 4 -page illustrated bulletins give complete data and specifications on "CelluLined" hydraullc hose for high pressure applications and "Avioflex" flexible metal hose for oil connections. Cellulose lining is claimed to provide ample protection against deterioration.

3. Die Casting Machines

Phoenix Machine Co.-8-page illustrated bulletín, "For Dense, Homogeneous Dle Castings', gives details or "LesterPhoenix" die casting machines for aluminum, brass, magnesium, tin and zinc alloy die castings. Machines are described and operating features explained.

4. Springs

Lee Spring Co,-4-page publication "Lee-Spring Builder" gives engineering data on design of springs. Various spring formulas are listed, with explanations of how they are derived and used.

5. Potentiometer

Bristol Co.-16-page Illustrated bulletin No. 507 presents complete description and application information on "Pyromaster" round chart, direct marking, recording pyrometer. This instrument is offered as pyrometer, tachometer, resistance thermometer or millivoltmeter.

6. Aluminum Bronze

Ampco Metal, Inc.-1-page data sheet No. 98 deals with subject of "Ampco Grade 18 and Its Modincations." Table compares physical properties of this grade with other compasitions of aluminum bronze.

7. Air Raid Shelters

Armco Drainage Products Association -8-page llustrated bulletin, "Air Rald Shelters," pictures and describes corrugated plpe shelter made to accommodate up to 50 persons. It is made of 90 -inch "Multi Plate" plpe in lengths of 2% feet. Gas-tight end walls and gas lock or chamber can be provlded.

8. Oil Coolers

Bell \& Gossett Co.-8-page Illustrated bulletin No. OC-741 is descriptive of "RapId" oll coolers for cooling quenching ofl at controlled rates. This equipment is said to assure uniform quenching bath temperature. Detalls of oll quenching methods are given.

9. Hoists

Euclid Crane \& Hoist Co.-12-page illustrated bulletin No. 838 11sts features of line of standard electric holsts for use with overhead rall systems. Complete specifications are glven for holsts, covering construction, controllers, brakes and wiring.

10. Furnace Inspection Door

Gillette Klln Sales Co.-4-page leaflet describes inspection door which is applicable to varlous types of industrial furnaces such as heat treating ovens, boilers and kllns. Method of Installation is explained with sketches.

11. Welding and Punching

Progressive Welder Co.-Cardboard folder contains collection of 24 pictorial bulletins which depict diversified applications or resistance welding and punching equipment. Adaptions of standard machines and special machines are shown, and their uses explained briefly.

12. Air \& Hydraulic Cylinders

Galland-Henning Manufacturing Co-12-page illustrated bulletin No. 82 describes "Nopak" self-regulating cushioned cylinders which are designed for alr or hydraulle service. Dimensions, covering diameter, length of stroke, and other detalls, are tabulated.

13. Metal Working Equipment

Yoder Co.- 8 -page illustrated bulletin briefly explains reatures of line of metal working equipment for steel mills, automotive factorles, aircraft industry, structural shops, and sheet metal workers. Numerous machines are pictured and described.

14. Straightening Machine

Taylor-Wilson Manufacturing Co.-4page illustrated bulletin deals with slx sizes of straightening, sizing and burnishing machine for high production work. Explained are detalls of construction, operation, and specifications. Close-up fllustrations show construction features.

15. Rustless Fastenings

H. M. Harper Co.-80-page 1942 catalog and price list sets forth sizes, types, compositions and recommendations for non-ferrous and stainless steel bolts, nuts, screws, washers, and other miscellaneous fastenings. Several pages are devoted to tables of welghts, comparative chemical and mechanical properties of various metals, and other helpful date.

16. Rolling Doors

Kinnear Manufacturing Co.-40-page bulletin No. 31 glves general description of line of rolling doors, listing design and construction features, and showing numerous installations in diversified industries. Types covered include steel rolling service doors; labeled automatic fre doors; fire shutters for windows; rolling grilles; and sliding barrier and wood rolling doors.

17. Motor \& Generator Care

Ideal Commutator Dresser Co.-6-page illustrated folder describes commutator and ring resurfacers, commutator and ring grinders, commutator mica undercutters, commutator saws and cutters, commutator cleaning stone, carbon brush seater, carbon brush concaver and miscellaneous tools.

18. Tractors

Atlas Car \& Manufacturing Co.-4page Illustrated bulletin NO. 1262 Ilsts leatures and specifications for threewheel tractors whlch have maximum drawbar pull of 2100 pounds and turning radius of $631 / 2$ inches. Photographs show tractors in use.

19. Electric Welding

General Electric Co.-4-page lllustrated bulletin No. GES-2704 is entitled, "Reducing Welding Costs with A-C Welding." Examples of savings effected through use of alternating current welding in various types of products are glven.

20. Wood Working Machines

DeWalt Products Corp,-17-page illustrated bulletin No. 941 describes features and advantages of "DeWalt" woodworking machine with which it is possible to do cross-cutting, angle cross-cutting, bevel cross-cutting, ripping, bevel ripping, dadolng, angle dadolng, plowing, rabbeting, shaping, routing, boring, groaving, tenoning and bevel rabbeting.

fTEELReaders' Service Dept.

1213 West Third St., Cleveland, Ohio

V-V
3-9-42
Please have literature circled below sent to me.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
17	18	19	20	21	22	23	24	25	26	27	28	29			
30	31	32	33	34	35	36	37	38	39	40					

Name Title

Company
Products Manufactured \qquad

BUSINESS REPLYCARD

No Postage Stamp Necessary if Mailed in the Unitad States

21. Heat Treating Ovens

Paul Maehler Co. 4 -page illustrated bulletin describes varled types of heat treating ovens. Serles of installation photographs, accompanded with explanatory paragraphs, show ovens used for treating springs, brass and aluminum shapes, shell casings, and miscellaneous automoblle parts.

22. Overnight Concrete

Atlas Lumnite Cement Co.-16-page 11lustrated booklet SM-1-42 describes use of "Lumnite" cement in making concrete which has full working in less than 24 hours of placing. It also tells how to get fast results on concrete work in cold weather, using minimum of protectlon.

23. Centrifugal Water Pumps

Chain Belt Co.-22-page illustrated catalog No. 400 describes line of centrifugal water pumps in capacitles ranging from 3,000 to 125,000 gallons per hour. Included are detalled information and specifications concerning design and manufacturing of pumps, as well as selection data on how to plek pump for specifle job.

24. Gages

Ashcroft Gage division, Manning, Maxwell \& Moore, Inc.-60-page illustrated catalog No. 1000 deals with complete line of recording gages and gage testing equipment. There are slzes from $21 / 2$ up to 24 -inch dial slze for pressures from few ounces of water pressure up to 25,000 pounds per square inch. Construction peatures are explained in detall, with unassembled views of various parts.

25. Burring Compound

Lea Manufacturing Co.-4-page booklet is entitled "Burring with the Lea Method." It gives general description of compounds which are used separately or In combinations on varlous types of wheels. Using correct combination of compound, wheel composition and speed, undesirable sharp edges and jagged surfaces can be removed without destroying surrounding areas.

26. Fastenings

Shakeproof, Inc-140-page catalog No. 42 lists engineering data, general description, recommended uses, types of threads, finishes, and other information on line of fastening devices. Covered are lock washers, thread-cutting screws, "Sems" fastening units, suring washers, locking and plain terminals, locking gears, and small precision stampings.

27. Beryllium Copper

American Brass Co.-12-page engineering data section No. B-21 gives complete data on beryllium copper heat treatable alloy. Physical constants, applications, avallable forms, physlcal properties, fabricating procedures and mechanical properties are glven.

28. Lubricant

Fiske Brothers Refining Co.-4-page illustrated publication "The Lubriplate Film," explains advantages of grade No. 130-A for use in war production equipment. Results of tests are cited to prove that lubricant retards wear, rust and corrosion.

29. Nitriding

Nitralloy Corp.-40-page illustrated data book covers "Nitralloy" and nitriding process. Included are tables, charts and data on composition of nitriding steels, preliminary treatment, physical properties and machining of these steels. Bibllography and list of applications are included.

30. Acid Resistant Alloy

International Nickel Co.-16-page 11lustrated bulletin T-3 is entitled "Monel in Sulfurle Acld." It treats such subjects as corrosion process, factors affecting corrosion, plant processes and corrosion tests, pickling of iron and steel, and acid treatment of petroleum products and cool distillates.

31. Colloidal Graphite

Acheson Collolds Corp. - A-page lllus trated bulletin No. 182.6 is one of series pertaining to application of colloldal graphite to Industry. Entitled "Use of Colloldal Graphite. Lubricants in Ball Bearings," bulletin gives results of test conducted at National Physical Laboraconducted at Na

32. Overhead Rail Systems

Cleveland Tramrall dlvision, Cleveland Crane \& Engineering Co.-12-page Illustrated bulletln No. 20004-A treats subfect of how to determine where overhead materlal handing equipment can be used proftably. Features of overhead rail systems are explained in text and with illustrations of representative installations.

33. Processing Equipment

Amsler-Morton Co-20-page Illustrated bulletin is entitled ""25th Annversary - Scenes From 25 Year Story of Eng1neering Progress." It shows numerous installations of company's equipment in metal working industries, coal handling plants, and glass plants. Each photograph is briefly explalned.

34. Multiple Grinding

Fitchburg Grinding Machine Corp.Illustrated bulletin deals with "Fitchburgh Multiple Precision Grinding." It tells how complete independent grinding wheelhead units can be applied in speclal multiple automatic grinding machines for high production grinding opchines f

35. Acid Proof Masonry

Keagler Brick Co.-8-page illustrated catalog describes use of "Toronto" actd proof brick for such work as plekling and galvanizing tanks, gutters, floors, sewers and similar work. Two pages deal with new "Monolithic" brick wall construction. Sketches show standard brick shapes.

36. Roller Bearings

Bower Roller Bearing Co.-4-page 11lustrated bulletin, "Secrets of Bower Roller Bearing Design and Quality," glves pictorial explanation of princlpal design features of tapered roller bearings. Action of bearing under varlous types of loads are shown.

37. Bearings

Timken Roller Bearing Co.-12-page supplement lists data on basic dimenslons, ratings and prices on 687 bearings widely used in military work. Requests for bulletin must be made on company letter-head.

38. Flow Meters

Merlam Co.- 8 -page illustrated cata$\log C-10$ describes U-type manometers, draft gages, well type manometers, nonsplll mercury pressure gages, and flow meter accessorles and parts. Instruments are pictured and described with detalls of construction, operation and prices.

39. Air Cylinders

Hannifin Manufacturing Co.-4-page bulletin No. 58 describes line of Model NB double-action rotating air cylinders for chuck operation. They feature adjustable "Leakproof" piston packing and special plston shape for reduced air consumption and rapid operation

40. Insulation Materials

Johns-Manville-52-page illustrated booklet GI-6A contains information and recommendations on high and low temperature insulations for industrial needs from minus 400 to 2500 degrees Fahr. Data are given on refractory praducts and castables, roofs, friction materials, electrical insulation and condult, water line pipe, vent plpe and stacks, and packings and gaskets.

fTEEL Readers' Service Dept.

1213 West Third St, Cleveland, Ohio
Please have literature circled below seat to me.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
17	18	19	20	21	22	23	24	25	26	27	28	25			
30	31	32	33	34	35	36	37	38	39	40					

Name \qquad Tille

Company
Products Manufactured

Address

BUSINESS REPLY CARD
No Postage Stamp Necessary if Mailed is the United Staten

FIRST CLASS

FERMIT No. 36 (Sac. 510 PLieR) Mlevaland, Ohio
4

Closer Steel Control

As War Eifiort Grows

Strip mills to furnish more ship plates. Most orders now in top priorities. Scrap shortage continues to retard steel output

Demand

War needs heavier.

prices.

At ceiling levels.

Production

Up $1 / 2$-point to $961 / 2$ per cent.

CLOSER control of steel production and consumption is being imposed by Washington as war production is intensified. Warehouses are not allowed to accept supplies from any source in excess of their quota, pig iron users are warned not to take shipment of more than they can consume in any month and tighter lines are being drawn on use of tin plate.

Shipment of steel for civilian use has practically disappeared and fabricators whose normal lines of production have been suspended are canceling contracts with mills. At the same time they are being allocated tonnage for use in their converted production for war purposes, in some instances larger supply than they had used for their regular lines.

Trend of orders to the higher priority range continues and mill shipments are more closely confined to top ratings in practically all products. In most cases shipment under B ratings is practically stopped. The latter applies to pig iron as well.

Tin plate production is at about 92 per cent of capacity but curtailment is imminent under new regulations. A number of details remain to be ironed out in this product. Completion of electrolytic tinning lines by several steelmakers is relied on to take up the slack caused by discontinuance of production by regular tin mills.

Demand for structural shapes is increasing, for war needs. This includes expansion of shipbuilding facilities and a number of additional explosive manufacturing plants in various parts of the country.

Plate consumption is at a record rate. Some ship delay has been caused by slow plate shipments to manufacturers of propulsion equipment and other fittings. This condition is being corrected by allocations. Emphasis is being placed on plate production by strip mills and plans are under way to increase capacity, looking to an addition of 100,000 tons annually to the 400,000 tons now in operation. WPB has worked out a plan for production of 80 to 90 per cent of steel plates for cargo vessels from this source, relieving universal and sheared plate mills for production of heavier gages.

Little change is noted in the scrap situation and some steelmaking equipment remains idle. Tonnage from automobile wrecking yards has begun to move but the total is disappointing compared with expecta-
tions. Search for scrap by various public agencies has been intensified and is producing results. Organized collection of farm scrap is broadening. Since automobile production has been stopped a large source of scrap has disappeared and products now being made by automotive manufacturers do not yield sufficient to make up the loss.

Sheet deliveries are confined almost entirely to top priorities and most March schedules allow for deliveries only at A-1-j or higher, considerably more restricted than in February. Conversion of strip mills to plate production has cut sheet output sharply.
In practically all products mill schedules are continually upset by specific allocations for special purposes, necessitating rearrangement and causing delay for other consumers. Most producers carried over unfilled allocated tonnage from February.

Coke pig iron production in February attained the second highest daily average rate on record, 160,856 net tons, compared with the highest rate, 161,774 tons in December, 1941, and was 6.81 per cent greater than in January. Total February output was $4,503,962$ net tons, 454,823 tons less than the January total, because of the shorter month. This was 6.58 per cent above the total production in February, 1941, and 36.30 per cent above February, 1940.

Steel ingot production last week rose $1 / 2$-point to $961 / 2$ per cent. Chicago advanced $11 / 2$ points to $1031 / 2$ per cent, Cincinnati $7^{1 / 2}$ points to $94^{1 / 2}$ and Cleveland $21 / 2$ points to $911 / 2$. St. Louis receded $101 / 2$ points to 78 per cent and Wheeling 1 point to $851 / 2$. Unchanged rates were as follows: Pittsburgh $951 / 2$, Youngstown, 91, eastern Pennsylvania 90, New England 95, Buffalo $791 / 2$, Birmingham 95 and Detroit 84.

Preparations are being made for an early start in movement of Lake Superior iron ore and the aim is to bring down at least $5,000,000$ tons more than was delivered in 1941. War Production Board has asked for $85,000,000$ to $90,000,000$ tons and weather conditions indicate a large early-season tonnage may make this possible.

Composite prices remain at the level of several months, OPA ceilings making no change. Finished steel composite is $\$ 56.73$, semifinished steel $\$ 36.00$, steelmaking pig iron $\$ 23.05$ and steelmaking scrap $\$ 19.17$.

COMPOSITE MARKET

AVERAGES

One	Three	One	Five
Month Ago	Months Ago	Vear Ago	Years Ago
Feb., 1942	Dec., 1941	Mar., 1941	Mar., 1937
$\$ 56.73$	$\$ 56.73$	$\$ 56.73$	$\$ 60.14$
36.00	36.00	36.00	39.24
23.05	23.05	23.05	22.10
19.17	19.17	20.15	21.25

	March 7	Feb. 28	Feb. 21
Finished Steel $\$ 56.73$	$\$ 56.73$	$\$ 56.73$	
Semininished Steel ...36.00	3600	36.00	
Steelmaking Pig Iron. 23.05	23.05	23.05	
Steelmaking Scrap . . 19.17	19.17	19.17	

making Scrap - 19.17
Finished Steel Composite:-Average or industry-wlde pices in shits, wide prices on billets, slabs, sheet bars, skelp and wire ard and line pipe. Pis Tron Composite:-Average or basic pig iron prices at Bethlehem, Birmingham. Buffalo, Chlcago, Cleveroas. Necille Island Granite City and Youngstown. Steelworks Scrap Composite:-Average of No. 1 heavy melting steel prices at Piltsburgh, Chicago and eastern Pennsylvania.

COMPARISON OF PRICES

Representative Market Figures for Current Week; Average for Last Month, Three Months and One Year Ago

Finished Material	Mar. 7. 194:2	$\begin{aligned} & \text { Feb. } \\ & 1942 \end{aligned}$	Dec. 1941	Mar. 1941	Pig Iron	$\begin{gathered} \text { Mar. } \\ 1942 \end{gathered}$	Feb. 1942	Dec. 1941	Mar. 1941
Steel bars, Pittsburgh	${ }^{2.155}$	2.15 c	2.15 c	2.15 c	Bessemer, del. Plitsburg	\$25.34	\$25.34	\$25.34	\$25.34
Steel bars, Chicago	2.15	2.15	2.15	2.15	Basic, Valley	23.50	23.50	23.50	23.50
Steel bars, Philadelphia	2.47	2.47	2.47	2.47	Basic, eastern, del. Philadelphia.	25.34	25.34	25.34	25.34
Shapes, Pittsburgh	2.10	2.10	2.10	2.10	No. 2 fdry., del. Pgh., N.\&S. Sides	24.69	24.69	24.69	24.69
Shapes, Phlladelphta	2.215	2.215	2.215	2.215	No. 2 foundry, Chicago	24.00	24.00	24.00	24.00
Shapes, Chlcago	2.10	2.10	2.10	2.10	Southern No. 2, Blrmingham	20.38	20.38	20.38	20.38
Plates, Pittsburgh	2.10	2.10	2.10	2.10	Southern No. 2, del. Cincinnati.	24.06	24.06	24.06	24.06
Plates, Philadelph	2.15	2.15	2.15	${ }^{2.225}$	No. 2X, del. Phila, (differ. av.)	26.215	26.215	26.215	26.215
Plates, Chicago	2.10	2.10	2.10	2.10	Malleable, Valley	24.00	24.00	24.00	24.00
Sheets, hot-rolled, Pittsburgh	2.10	2.10	2.10	2.10	Malleable, Chicago	24.00	24.00	24.00	24.00
Sheets, cold-rolled, Pittsburgh	3.05	3.05	3.05	3.05	lake Sup., charcoal, del. Chicago	31.34	31.34	31.34	30.34
Sheets, No. 24 galv., Pittsburgh	3.50	3.50	3.50	3.50	Gray forge, del. Pittsburgh	24.19	24.19	24.19	24.18
Sheets, hot-rolled, Gary	2.10	2.10	2.10	2.10	Ferromanganese, del. Pittsburgh	125.33	125.33	125.33	125.33
Sheets, cold-rolled, Gar	3.05	3.05	3.05	3.05					
Sheets, No. 24 galv, Gary.	3.50	3.50	3.50	3.50	Scrap				
Bright bess., basle wire, Plits..	2.60	2.60 $\$ 5.00$	2.60 $\$ 5.00$	2.60 $\$ 5.00$					
Tin plate, per base box, Pitts. Wire nalls, Pittsburgh.......	\$5.00 2.55	85.00 2.55	$\$ 5.00$ 2.55	$\$ 5.00$ 2.55	Heavy meltung steel, Pitts.....	\$20.00	\$20.00	$\$ 20.00$ 18.00	\$20.75
Wire nalls, Pittsburg	2.55	2.55	2.55	2.55	Heavy melting steel, Chicago	18.75	18.75	18.75	19.45
					Ralls for rolling, Chicago	22.25	22.25	22.25	24.00
Semifinished Material					No. 1 cast, Chicago	20.00	20.00	21.20	20.2
Sheet bars, Pittsburgh, Chicazo.	\$34.00	\$34.00	\$34.00	\$34.00	Colke				
Slabs, Pittsburgh, Chicago	34.00	34.00	34.00	34.00	Connellsville, furnace, ovens.	\$6.25	\$6.25	\$6.25	\$5.50
Rerolling blllets, Pittsburgh	34.00	34.00	34.00	34.00	Connellsville, foundry, ovens.	7.25	7.25	7.25	6.00
Wire rods No. 5 to \%-inch, Pits.	2.00	2.00	2.00	2.00	Chicago, by-product fdry., del.	12.25	12.25	12.25	11.75

STEEL, IRON, RAW MATERIAL, FUEL AND METALS PRICES

Except when otherwise designated, prices are base, f.o.b. mill, carloads.

Sheets, Strip

copper Iron 4.55 c , pure iron 4.60c.

.60c.		Dynamo. 5.65 c 6.40c
Enameling Sheets		Transformer
burgh, Chicago, Gary,		72. 6.15c 6.90c
Cleveland, Youngstown,		65. 7.15c 7.90 c
Middletown, 10 gage,		58.7.65c 8.40c
bas		$528 .8 .45 \mathrm{c}$ 9.20c
Granlte City, base	2.85 c	Hot-Rolled Strip
Pacific ports	3.40 c	Itsburgh, Chlcago, Gary,
Pittsburgh, Chicago, Gary, Cleveland, Youngstown, Middletown, 20 gage, base		Cleveland, Blrmingham,
		town, base, 1 ton and
	3.35	over, 12 Inches wide and
Granite City, base	3.45 c	
	4.00 c	Detroit, del.
Electrleal Sheets, No.	24	Pacifle ports
Pitts-	Gran	Cold-Rolled St
burgh Pacifle	Ite	Plttsburgh, Cleveland,
Base Por	City	Youngstown, 0.25 car-
Field gr... 3.20c 3.95c	3.30 c	bon and less
Armat. . 3.55 c 4.30c	3.65 c	Chlcago, base
Elect. . . . 4.05 c	$4.15{ }^{\circ}$	Worcester, base

Stainless Steels

TYPE	Baze Cents per	lb. f , o.b.	Pittsburgh	H. R.	C. R.
302	BARS 24.00 c	PLATES	SHEETS	STRIP	STRIP
303	26.00	${ }_{29.00}^{27}$	34.00 c 36.00	21.50 c	28.0610
304	25.00	29.00	36.00	27.50	33.00
304-20\%		-18.00	19.00		
308	29.00	34.00	41.00		
309	36.00	40.00	4700	37	35.00
310	49,00	52.00	53.00	48.75	47.00
311	49.00	52.00	5.3 .00	48.75	56.00
312	36.00	40.00	49.00		56.00
316	40.00	44.00	48.00	40.00	48.00
317	50.00	54.00	58.00	50.00	58.00
347	33.00	38.00	45.00	33.00	42 mo
410	21.50	24.50	29.50	21.25	27.00
416	18.50	21.50	26.50	17.00	22.00
420	19.00 24.00	22.00	27.00	18.25	23.50
430	19.05	28.00	33.50	23.75	36.50
430 F	19.50	22.50	29.00	17.50	22.50
431	19.00	22.00	29.00	18.75	${ }_{2}^{24.50}$
442	22.50	25.50			22.50
446	27.50	30.50	36.50	24.00	32.00
501	8.0 C	12.00	15.75	12.00	52.00
502	9.00	13.00	16.75	13.00	18.00

5.05c Detrolt, del. 2.90 c
5.75 c Other M1ch. pts. del..... 2.95 c

Commodity C.R. Strip
Pittsburgh, Cleveland, Youngstown, base 3 tons and over 2.95c
Worcester, base 3.35c

Detroit, del. 3.05 c
Other Mich. pts. del..... 3.10c Cold-Finished Spring Steel
Pittsburgh, Cleveland, base; add 20 cents for Worcester.
.26-.50 Carbon 2.80 c
$.51-.75$ Carbon
.7 .30 c
$.76-1.00$ Carbon

Over 1.00 Carbon 8.35 .

Tin, Terne Plate Tin Plate

Pittsuurgh, Chicago, Gary,
100-1b. base box....... $\$ 5.00$ Granite City
Tin Mill Black Plate
Pittsburgh. Chicago, Gary. base 29 gage and lighter 3.05 c Granite City 3.15e
Pacille ports, boxed 4.05e Long Ternes Pittsburgh, Gary No. 24 unassorted Paclic Ports 3.80c Special Conted Mfr. Ternes
Pittsburgh, Chicago, Gary
100-base box
G:anlle City
rooning Ternes
Pittsburgh base per package 112 sheets $20 \times 28 \mathrm{in}$., coating I.C.

$8-1 \mathrm{~b}$.	\ldots	$\$ 12.00$	$25-1 \mathrm{~b} . .$.	$\$ 16.00$
$15-1 \mathrm{~b}$.	.	14.00	$30-1 \mathrm{~b}$.	17.25

Steel Plate

Pittsburgh, Chicago, Gary,
Cleveland, Birmingham

Youngstown
Coatesville, Sparrow Point, Claymont
Gulf ports
Pactfic Coast ports
Steel Floor Plates
Pittsburgh
Chicago
Gulf ports
Paciflc Coast ports
Structural Shapes
Pittsburgh, Bethlehem, Chicago, Buffalo, Birmingham
St. Louls, del.
Paciflc Coast ports

Bars

Hot-Rolled Carbon Bars
Pittsburgh, Chlcago, Gary, Cleve., Blrm., base 20 tons one size
Detroit, del
New York, del.
Duluth, base
Philadelphia, del.
Gulf ports, dock
All-rall, Houston from
Al-rall, Houston from
Pac. ports, dock 2.80 c
All-rall from Chicago.. 3.25 c
Rall Stecl Bars
Pltts., Chicago, Gary,
Cleveland, Birm., base 5 tons
Detroit.
Detroit, del.
New York, de
Philadelphia, del. Gulf ports, dock
All-rall, Houston irom
Brmingham $\ldots \ldots . .2 .59 \mathrm{c}$
Pac. ports, dock $\ldots . . .2 .80 \mathrm{c}$
Pac. ports, dock 2.80 c
All-rall from Chicago. 3.25c

Hot-Rolled Alloy Bars

Pittsburgh, Chicago, Can-
ton, Massillon, Buffalo,
Bethlehem, base 20 tons
one size
2.70 c
2.80 c

4600 0.20-0.30 Mo.; 1.50-2.00 N1.
5100 80-1.10
5100 Spr. flats
6100 Bars
6100 Spr. fiats
Carb., Van.
Alloy

9200 Spr. flats
9200 Spr rounds squares 0.15 T $1300, \mathrm{Mn}$, mean 1.51-2.00 0.10
Do., carbon under 0.20
max.
Cold-Finished Carbon Bars Plits., Chleago, Gary,

Cleveland, Buffalo, base
20,000-39,999 lbs.
Detrolt
Pitts., Chicago, Gar Ba
Cleveland, Buffalo, base 3.35c Detroit
Galveston, add \$0.25; Pacille Coast, $\$ 0.50$.
Turned, Graund Shafting
Pitts., Chicago, Gary, Cleveland, Buffalo, base (not including turning, grinding, polishing ex-
tras)
2.65 c

Detrolt …........................ 2,70c
Relnforcing Bars (New Billet)
Pltts., Chicago, Gary
Cleveland, Blrm., Spar-
rows Polnt, Buffalo,
Youngstown, base
Gulf ports, dock
All-rall, Houston from Birmingham
Pacific ports, dock 2.50
Detroit, del.
Relnforclnc Bars (Rail St
Pltts., Chicago, Gary,
Cleveland, Birm., base. 2.15 c
Gulf ports, dock 2.50 c

All-rall, Houston from
Birmingham Paclific ports, dock 2.80 Detrolt del dock 2.25 Philadelphla, com. del. 3.06-3.50c Plttsburgh, muck bar.... 5.00 c Pittsburgh, staybolt 8.00c
Terre Haute com., f.o.b.
mill 2.15 c

Wire Products

Pitts.-Cleve.-Chicago-Birm. base per 100 lb. keg in carloads
Standard and cement
coated wire nalls. (Per Pound)
Pollshed fence staples.
$\$ 2.55$

Galv. Ience wire. $3.05 c$
Woven wire fencing (base
Single loop bale ties,
(base C. L. column)
Galv. barbed wire, 80-rod
spools, base column.
Twisted barbless wire,
column
To Manuincturing Trade
Base, Pitts.-Cleve. - Chicago
Birmingham (except spring wire at Birmingham)
Bright bess., bastc wire.. 2.60 c
Galvanlzed wire 2.60 c
Spring wire 3.20c
Worcester, Mass., 10c higher on
bright basic and spring wire.

Cut Nails

Carload, Pittsburgh, keg. \$3.85
Alloy Plates (Hot)
Pltts., Chlcago, Coates-
vilie, Pa. 3.50c

Rails, Fastenings

(Gross Tons)

Standard ralls, mill.... $\$ 40.00$ Relay ralls, base, 35 ibs.
and over 28.00-30.00
Light rails, billet qual.,
Pitts., Chicago, Bham. $\$ 40.00$
Do., rerolling quallty. 39.00 Cents per pound
Angle bars, billet, mills. . 2.70c
Do., axle steel 2.35 c
Splkes, R. R. base 3.00 c
Track bolts, base 4.75c
Do., heat treated
Car axles forged, Pitts.,
Chicago, Birmingham.. Tle plates, base 2.15c

Base, light ralls 25 to 60 lbs., 20 lbs., up $\$ 2$; 16 lbs. up $\$ 4 ; 12$ lbs. up $\$ 8 ; 8$ lbs. up $\$ 10$. Base rallroad splkes 200 kegs or more; base plates 20 tons.

Bolts and Nuts

F.o.b. Pittsburgh, Cleveland, Birmingham, Chicago. Dis-
counts for carloads additional 5%, full containers, add 10% Carriage and Machine
$1 / 2 \times 6$ and smaller...... $651 / 2$ off Do., ${ }^{8} \delta$ and $/ 8 \times 6-1 n$.
and shorter63 $1 / 2$ off Do., ${ }^{2}$ to $1 \times 6-\mathrm{in}$. and shorter
1 4* and larger, all lengths 59 nff All dlameters, over 6-in.
long
lire bolts
Stove Bolts
In packages with nuts separate n packages with nuts separate
$71-10$ off; with nuts attached 71 off: bulk 80 off on 15,000 of 3-1nch and shorter, or 5000 over 3-in.
Step bolts 56 off
Plow bolts 65 off
Semifinished hex. U.S.S. S.A.E.

$1 / 2$-inch and less.	
If-1-inch	5960
11/1-11/2-Inch	5758
1\%\% and larger.	56
Hexamon Cap	Screws
Upset 1-In., smaller	r 60 off
Square Head S	et Screws
Upset, 1-in., small	68 oft

Headless, $1 / 4$-in., larger. . 55 on No. 10, smaller 60 ofr

Piling

Pltts., Chgo., Buffalo.... 2.40c

Rivets, Washers

F.o.b. Pitts., Cleve., Chgo.,

Structural Bham.
Tif-lnch and under.......65-5 3.75
Wrought washers, Pitts,
Chi., Phila., to jobbers and large nut, bolt mfrs. l.c.l.

Tool Steels

Pittsburgh, Bethlehem, Syracuse, base, cents per lb.
Carb. Reg. 14.00 Oil-hard-
Carb. Ext. 18.00 ening . . 24.00
Carb. Spec. 22.00 Hlgh
car.-chr. 43.00
Higly Specd Tool Steels
Tung. Chr. Van. Moly.

18.00	4	1	\cdots	67.00
18.00	4	2	1	77.00
18.00	4	3	1	87.00
1.50	4	1	8.50	54.00
\cdots	4	2	8	54.00
5.50	4	1.50	4	57.50
5.50	4.50	4	4.50	70.00

Boiler Tubes

Carloads minimum wall seamless steel boiler tubes, cutlengths 4 to 24 feet; f.0.b. Pittsburgh, base price per 100 feet subject to usual extras. Jasp Welded

Sizes	Gage	Steel	coal Iron
11/2"O.D.	13	\$ 9.72	\$23.71
1% "O.D.	13	11.06	22.93
2" O.D.	13	12.38	19.35
24"O.D.	13	13.79	21.68
2\%"O.D.	12	15.16	
2\%"O.D.	12	16.58	26.57
2% "O.D.	12	17.54	29.00
3" O.D.	12	18.35	31.36
31/4"O.D.	11	23.15	39.81
$4^{\prime \prime}$ O.D.	10	28.66	49.90
5" O.D.	9	44.'25	73.93
$6^{\prime \prime}$ O.D.	7	68.14	
	Seamless		
		Hot	Cold
Sizes	Gage	Rolled	Drawn
1" O.D.	13	\$ 7.82	\$ 9.01
$1 y^{\prime \prime} \mathrm{O} . \mathrm{D}$.	13	9.26	10.67
11/2"O.D.	13	10.23	11.79
$1 \% " O . D$.	13	11.64	13.42
2" O.D.	13	13.04	15.03
2 4 "O.D.	13	14.54	16.76
21/4"O.D.	12	16.01	18.45
212"O.D.	12	17.54	20.21
2 \%"O.D.	12	18.59	21.42
3" O.D.	12	19.50	22.48
31/2"O.D.	11	24.62	28.37
4" O.D.	10	30.54	35.20
$4^{1 / 2}{ }^{\prime \prime}$ O.D.	10	37.35	43.04
5' O.D.	9	46.87	54.01
$6^{\prime \prime}$ O.D.	7	71.96	82.93

Welded Iron, Steel, Pipe

Base discounts on steel plpe, Pitts., Loraln, O., to consumers In carloads. Gary, Ind., 2 points less on lap weld, 1 point less on butt weld. Chicago delivery $21 / 2$ and $11 / 2$ less. respectively. Wrought pipe, Pittsburgh base. Butt Weld

Steel
tn.

In.	Blk.	Galv.
1/2	$631 / 2$	51
\%	661/2	55
1-3	$68 \frac{1 / 2}{}$	$571 / 2$
3/4	30	10
1-11/4	34	16
$11 / 2$	38	$181 / 2$
2	$3711 / 2$	18

Iron
$301 / 2$
314
12
14 1/2
18
12
Line Plpe, Plain Ends
1 to 3 , butt weld
2, lap weld
$21 / 2$ to 3 , lap weld.
$31 / 2$ to 6, lap weld
Seamless, 3 pts. lower discoun

Cast Iron Pipe

Class B Pipe-Per Net Ton
6-in,, \& over, Birm.. $\$ 45.00-46.00$ 4-in., Birmingham. . 48.00-49.00
4-in., Chicago 56.80-57.80
6-ln. \& over, Chicago 53.80-54.80
6 -in. \& over, east fdy. 49.00
Do., 4-in. 52.00
Class A Plpe $\$ 3$ over Class B
Stnd. fligs., Birm., base $\$ 100.00$
Semifinished Steel Rerolling lullets, Slabs (Gross Tons)
Pittsburgh, Chicago, Gary,
Birm., Sparrows Point. . $\$ 34.00$
$\begin{array}{ll}\text { Duluth (billets) } & \\ \text { Detroit, dellvered } 36.00 \\ 36.00\end{array}$ Forging Quality Billets
Pitts., Chi., Gary, Cleve.,
Young., Buffalo, Blrm.. 40.00
Duluth
Sheet Brars
Pltts., Cleveland, Young.,
Sparrows Point, Bur-
[alo, Canton, Chicago. 34.00
Detroit, delivered 36.00
Pitts., Cleveland Chicago,
Birmingham No. 5 to Jy-
inch Incl. (per 100 lbs.) $\$ 2.00$
Do., over 9_{2} to 䋨-in. incl. 2.15 Worcester up $\$ 0.10$, Galveston up $\$ 0.25$ and Paciflc Coast up $\$ 0.50$ on water shipments
Skelp
Pitts., Chi., Youngstown, lle, Sparrows Pt. 1.90c Shell Steel
Pittsburgh, Chicago, base, 1000
tons of one size, open hearth
3-12-inch $\$ 52.00$
18-inch and over 56.00
Colke
Price Per Net Ton
Bechivo Ovens
Connellsville, fur.... $\$ 6.00$
Connellsville, Idry. . 7.00-7.50
Connell. prem. Idry. 7.25-7.80
New River fdry. . . . 8.00- 8.25
Wlse county fdry.
Wise county fur. .-
Kearny, N. J., ovens 12.15
Chicago, outsjde del. $\quad 11.50$
$\begin{array}{ll}\text { Chicago, delivered . . } & 12.25 \\ \text { Terre Haute, del. .. } & 12.00\end{array}$
$\begin{array}{lll}\text { Milwaukee, ovens ... } & 12.25 \\ \text { New England, del. .. } & 13.75\end{array}$
$\begin{array}{ll}\text { New England, del. .. } & 13.75 \\ \text { St. Louls, del. } & 12.25\end{array}$
Birmingham, ovens. $\mathbf{8 . 5 0}$
$\begin{array}{ll}\text { Indlanapolls, del. . . } & 12.00 \\ \text { CinclnnatJ, del. } & 11.75\end{array}$
$\begin{array}{ll}\text { Cinclnnats, del. } & 11.75 \\ \text { Cleveland, del. . . . } & 12.30\end{array}$
Buffalo, del.
Detroit, del.
12.50
12.25

Phlladelphia, del. .. 12.38

Coke By-Products

Spot, gal., freight allowed east of Omaha
Pure and 90% benzol. . . 15.00 c
Toluol, two degree 28.00c
Solvent naphtha 27.00 c
Industrial xylol 27.00 c
Per lb. f.o.b. works
Phenol (car lots, return-
able drums) 12.50c
Do less than car lots.. 13.25 c
Eastern Plants, per $1 b$.
$\begin{array}{lcccc}2 & \ldots . . & 6 & 49 & 61 / 2 \\ 21 / 2-3 & \ldots & 64 & 52^{1 / 2} \\ 31 / 2-6 & \ldots . . & 66 & 54^{1 / 2} \\ 7 \text { and } 8 \ldots . . . & 65 & 52^{1 / 2}\end{array}$

Naphthalene fakes, balls,
bbls. to jobbers 8.00c
Per ton, bulk, f.o.b. port
Sulphate of ammonia. . . . $\$ 29.00$

Pig Iron

Prices (in gross lons) are maximums fixed by OPA Price Schedule No. 10, effective June 10, 1941. Exceptions indicated in footnotes. Allocation regulations from WPB Order M-17, explring Dec. 31, 1942 . Base prices bold face, dellvered light face.

	$\begin{aligned} & \text { No. } 2 \\ & \text { l'ounilry } \end{aligned}$	Rasle	Bessemer	Malleable
Bethlchem, Pa., base	\$25.00	\$24.50	\$26.00	\$25.50
Newark, N. J., del.	26.53	26.03	27.53	27.03
Brooklyn, N. Y., del.	27.50			28.00
Birdshoro, Pa., del.	25.00	24.50	26.00	25.50
Phtladelphia, del.				
Birmincham, base	$\dagger 20.38$	+19.00		
Baltimore, del.	25.61	24.73		
Boston, del.	25.12			
Chicago, del.	\$24.22			
Cincinnatl, del.	24.06	22.60		
Cleveland, del.	2.12	23.24		
Newark, N. J., del.	26.15			
Philadelphia, del.	25.46	24.58		
St. Louis, del.	± 24.12	23.24		
Butralo, base	24.00	23.00	25.00	24.50
Boston, del.	25.50	25.00	26.50	26.00
Rochester, del.	25.53		26.53	26.03
Syracuse, del.	26.08		27.08	26.58
Chicaro, base	24.00	23.50	24.50	24.00
Milwaukee, del.	25.10	24.60	25.60	25.10
Muskegon, Mich., del.	27.19	26.69	27.69	27.19
Cleveland, base	24.00	23.50	24.50	24.00
Akron, Canton, O., del.	25.39	24.89	25.89	25.39
Detrolt, base	24.00	23.50	24.50	24.00
Saginaw, Mich., del.	26.31	25.81	26.81	26.31
Duluth, base	24.50		25.00	24.50
St. Paul, del.	26.63		27.13	26.63
Erfe, Pa., base	2.4 .00	23.50	25.00	24.50
Everett, Mass., base	25.00	24.50	26.00	25.50
Boston	25.50	25.00	26.50	26.00
Granite City, Ill, base	24.00	23.50	24.50	24.00
St. Louls, del.	24.50	24.00		24.50
Hamilton, O., base	24.00	23.50		24.00
Cincinnat1, del.	24.44	24.61		25.11
Neville Island, Pa., base	24.00	23.50	24.50	24.00
Pittsburgh, del., No. \& So. sides	24.69	24.19	25.19	24.69
Provo, Ltah, base	22.00			
sharpsville, Pr., base	24.00	23.50	24.50	24.00
Sparrows Polnt, Md., base	e 25.00	24.50		
Baltimore, del.	25.99			
Steelton, Pra, base		24.50		25.50
Swedeland, Pn., base	25.00	24.50	26.00	25.50
Philadelphia, del.	25.84	25.34		26.34
Toledo, O., base	24.00	23.50	24.50	24.00
Mansfield, O., del.	25.9-4	25.44	25.44	25.94
Younsstawn, O., base	24.00	23.50	24.50	24.00

Basic silicon grade ($1.75-2.25 \%$), add 50 c for each 0.25%. †For phosphorous 0.70 and over deduct 38e. \ddagger Over 0.70 phos. 8 For McKees Rocks, Pa., add . 55 to Neville Island base; Lawrenceville, Homestead, Mc Keesport, Ambridge. Monaca, Allquippa, 84; Monessen, Mononiahela City . 97 (water): Oakmont, Verona 1.11; Brackenridge 1.24.

Hlgh Silicon, Sllvery 6.00-6.50 per cent (base) $\$ 29.50$ 6.51-7.00,. $\$ 30.50 \quad 9.01-9.50 . \$ 35.50$ 7.01-7.50 . 31.50 9.51-10.00. 36.50 $\begin{array}{rrr}7.51-8.00\end{array} .32 .50 \quad 10.01-10.50$. 37.50 $\begin{array}{llll}8.01-8.50 \ldots & 33.50 & 10.51-11.00 . & 38.50 \\ 8.51-9.00 \ldots & 34.50 & 11.01-11.50 . & 39.50\end{array}$ $8.51-9.00$. 34.50 11.01-11.50. 39.50 F.o.b. Jackson county, O., per gross ton. Bulfalo base prices are $\$ 1.25$ higher. Prices subject to addr each 0.50% manganese in excess of 1.00%.

Bessemer Ferrosllicon
Prices same as for high sillcon sil(For higher sllicon irons a differentlal over and above the price of for the hard chilling Irons, Nos. 5 and 6.)

Chareoal Ihg Iron
Northern
Lake Superior Furn. $\$ 28.00$
Chleago, del. 31.34
Southern
Semi-cold blast, high phos,
f.o.b. furnace, Lyles, Tenn.. $\$ 28.50$
Semi-cold blast, low phos.,
f.o.b furnace, Lyles, Tenn.. 33.00
Neville Island, Pa. $\$ 23.50$
Valley, base
23.50

Basing points: Birdsboro and Steelon, Pa., and Bulfalo, N. Y., $\$ 29.50$
ase; $\$ 30.74$, dellvered, Philadelphia.
Switching Charges: Basing point
prices are subject to an adiditional
charge for dellvery within the
switching limits of the respective districts.
Sillicon Differentials: Basing point prlees are subject to an addltional charge not to exceed 50 cents a ton
for each 0.25 silicon in excess of base grade (1.75 to 2.25%)
Phosphorous Differential: Basing
olint prices are subject to a reduc-
tion oi 38 cents a ton for phosphor-
ous content of 0.70% and over.
Manganese Differentlals: Basinz
charge not to exceed 50 cents a
ton for each 0.50% manganese con-
tent in excess of 1.0%.
Celling prices are the aggregate of (1) governing basing point (2) differentials (3) transportation charges from governing basing point to point of dellvery as customarily computed. Governing basing polnt is the one resultina in the lowest delivered price for the consumer.

Exceptlons to Celling I'rices: Pittsburgh Coke \& Iron Co. (Sharpsville, Pa. furnace only) and Struthers Iron \& Steel Co. may charge 50 prices for No. 2 Foundry point Bessemer and Malleable E Basic, Brooke Iron Malleable. E. \& G. ton in excess of bising point prices Expert Prices. In case of pxports only, the governing basing point nearest point of production may be used, plus differentials and export transportation charges.
Refractories

Fluorspar

Washed gravel, duty
Washet tide. net ton ... nominal Ky., net ton, carloads, ill Do., barge
No. 2 lump

Ferroalloy Prices

Fermmankaneae, 78-82\%', \quad Carlots, duty pd., seab'd. $\$ 120.00$ Carlots, del. Plttsburgh... 125.33 Add $\$ 10$ for ton. $\$ 13.50$ for less ton, \$18 for less than $200-\mathrm{lb}$. lots.
Spiegelelsen, 19-21\%, gross
ton, Palmerton $\ldots \$ 36.00$
Mankanese Brlquets, Contract carloads, bulk freight allowed, per lb.
Packed
Less-ton lots
Less 200-1b. lots
Spot $1 / 4 \mathrm{c}$ higher.
Manganese Electro, $99.9+\%$,
less car lots 42.00c
Chromlum Metal, per lb. contained chromlum
98\% Cr. ton lots. . 80.00 c . 85.00 c $88 \% \mathrm{Cr}$ ton lots. $79.00 \mathrm{c} \quad 84.00 \mathrm{C}$ Ferrocolumblum, 50-60\% 1.o.b. Niagara Falls, per lb. contained Cb on con-Less-ton lots (Spat 10c higher)
Chromlum Rriquets, per lb. frelght allowed

	Contract	Spot
Carlots	8.25c	8.50 c
Packed	8.50 c	8.75 c
Ton lots	8.75c	9.00 c
Less-ton lots	9.00 c	9.25 c
Less 200 lbs.	9.25 c	9.50 c

Ferrochrome, 66-70\%, irelaht allowed, 4-69, carbon, per pound contalned (chrome) Carloads

Less than $200-1 \mathrm{~b}$. lots 14.25 c pound:

F
Less ton lots
20-25 \%. C. 0.10 max. in
on lots per lb. contained
Less-ton lots
1.35
1.40
(Spot 5c higher)
Ferro-Carbon-Titanium, 15-
20\% Titanlum,
Carlots, contract 6-8\% C $3-5 \% \mathrm{C}$
agara Falls, freight al-
lowed to destinations east
of Mississippl and north of
Baltlmore and St. Louls. $\$ 157.50$
Ferrovanadium, $35-40 \%$, con-
tract per pound contained
vanadium $\$ 2.70-\$ 2.80-\$ 2.90$ (Spot 10c higher)
Vanadlum Pentoxide, Per lb. $\$ 1.10$ $\begin{array}{ll}\text { contained, contracts } \\ \text { Do. spot } & \$ 1.10 \\ 1.15\end{array}$
ZIrconlum Alloy, 12-15\%, carloads, contract, bulk $\$ 102.50$
Packed............... .107 .50 Packed . 107. Less ton lots 108.00
112.50 Spot \$5 a ton hiaher
$35-40 \%$, contract, carloads
bulk or packaze, per lb.

Spot is $1 / 4$-cent higher
lisifer, Per lb., f.o.b. Nl
asara Falls.
$\$ 1.90$
$\$ 3.50$
62.25
23-26\%, \$3 unitage, frelsht equalized with Mt. Pleas ant. Tenn., for 24% phos. Contract
Spot
Ferrosillcon, Gross tons
treight allowed, bulk

WAREHOUSE STEEL PRICES

Base Prices in Cents Per Pound, Delivered Locally, Subject to Prevailing Differentials. As of April 16, 1941 As Kansas City, Mo., Chattanooga, Tenn., Tulsa, Okla., and Portland, Oreg., were not named in the order fixing ceiling prices they

		Hot-rolled Strip		Plates 1/4-In. \& Over	Structural Shapes	Floor Plates	Hot Rolled	Sheets Cold Rolled	Galv. No. 24	Cold Rolled Strip	Cold Drawn Bars			
	Sort Bars			Carbon							$\begin{aligned} & \text { S.A.E. } \\ & 2300 \end{aligned}$	S.A.I.E.		
Boston	3.98	4.06	5.06		3.85	3.85	5.66	3.71	4.68	5.11	3.46	4.13	8.88	7.23
New York (Met.)	3.84	3.96	3.96	3.76	3.75	5.56	3.58	4.60	5.00	3.51	4.09	8.84	7.19	
Philadelphia....	3.85	3.95	4.45	3.55	3.55	5.25	3.55	4.05	4.65	3.31	4.06	8.56	7.16	
Baltimore .	3.85	4.00	4.35	3.70	3.70	5.25	3.50		5.05		4.04		
Norfolk, Va.	4.00	4.10		4.05	4.05	5.45	3.85		5.40		4.15			
Buffalo	3.35	3.82	3.82	3.62	3.40	5.25	3.25	4.30	4.75	3.52	3.75	8.40	6.75	
Pittsburgh	3.35	3.60	3.60	3.40	3.40	5.00	3.35		4.65		3.65	8.40	6.75	
Cleveland	3.25	3.50	3.50	3.40	3.58	5.18	3.35	4.05	4.62	3.20	3.75	8.40	6.75	
Detrolt	3.43	3.43	3.68	3.60	3.65	5.27	3.43	4.30	4.84	3.40	3.80	8.70	7.05	
Omaha	4.10	4.20	4.20	4.15	4.15	5.75	3.85	5.32	5.50		4.42			
Cincinnati	3.60	3.67	3.67	3.65	3.68	5.28	3.42	4.37	4.92	3.45	4.00	8.75	7.10	
Chicago	3.50	3.60	3.60	3.55	3.55	5.15	3.25	4.10	4.85	3.50	3.75	8.40	6.75	
Twin Cities	3.75	3.85	3.85	3.80	3.80	5.40	3.50	4.35	5.00	3.83	4.34	9.09	7.44	
Milwaukee	3.63	3.53	3.53	3.68	3.68	5.28	3.38	4.23	4.98	3.54	3.88	8.38	6.98	
St. Louls	3.64	3.74	3.74	3.69	3.69	5.29	3.39	4.24	4.99	3.61	4.02	8.77	7.12	
Indianapolis	3.60	3.75	3.75	3.70	3.70	5.30	3.45		5.01		3.97			
Memphis	3.90	4.10	4.10	3.95	3.95	5.71	3.85		5.25		4.31			
Birmingham	3.50	3.70	3.70	3.55	3.55	5.93	3.45	..	4.75		4.43			
New Orleans.	4.00	4.10	4.10	3.80	3.80	5.75	3.85		5.25	5.00	4.60			
Houston, Tex.	3.75	4.30	4.30	4.05	4.05	5.50	4.00		5.25		6.90			
Seattle	4.35	4.35		4.35	4.35	6.10	4.35	6.35	5.60		5.75			
Los Angeles	4.50	5.00	6.80	4.50	4.50	6.75	4.65	6.50	5.85		6.60	10.55	9.55	
San Francisco	4.10	4.60	6.35	4.25	4.25	5.95	4.25	6.40	6.00		6.80	10.80	9.80	

BASE QUANTITLES

Soft Bars, Bands, Hoops, Plates, Shapes, Floor Plates, Hot Rolled Sheets and SAE 1035-1050 Bars: Base, 400-1999 pounds; 300-1999 pounds in Los Angeles; 400-39,999 (hoops, 0-299) in San Francisco; 300-4999 pounds in Portland; 300-9999 Seattle; 40014,999 pounds in Twin Cities; 400-3999 pounds in B'ham., Memphis.

Cold Rolled Sheets: Base, 400-1499 pounds in Chicago, Cincinnati, Cleveland, Detroit, New York, Omaha, Kansas City, St. Louls; 450-3749 in Boston; 500-1499 in Buffalo; 1000-1999 In Philadelphia, Baltimore; 750-4999 in San Francisco; 300-4999 in Portland, Seattle; any quantity in Twin Cities, New Orleans; 300-1999 Los Angeles.

Galvanized Sheets: Base, 150-1499 pounds, New York; 1501499 in Cleveland, Pittsburgh, Baltimore, Norfolk; 150-1049 in Los Angeles; 300-4999 in Portland, Seattle; 450-3749 in Boston; 500-1499 in Birmingham, Buffalo, Chicago, Cincinnati, Detrolt, Indlanapolls, Milwaukee, Omaha, St. Louis, Tulsa; 3500 and over In Chattanooga; any quantity in Twin Cities; 750-1500 In Kansa! City; 150 and over in Memphis; 25 to 49 bundles in Phlladelphia; 750-4999 In San Francisco.

Cold Rolled Strip: No base quantity; extras apply on lots of all size.

Cold Finished Bars: Base, 1500 pounds and over on carbon, except 0-299 in San Francisco, 1000 and over in Portland, Seattle; 1000 pounds and over on alloy, except 0-4999 In San Francisco.

SAE Hot Rolled Alloy Bars: Base, 1000 pounds and over, except 0-4999, San Franclsco; 0-1499, Portland, Seattle.

EUROPEAN IRON, STEEL PRICES

Domestic Prices Delivered at Works or Furnace-

Ores

Lake Superiar Iron Ore
Gross ton, $51 \neq 2 \%$
Lower Lake Ports
Old range bessemer
Miesabi nonbessemer
High phosphorus
Mesabi bessemer
Old range nonbessemer

> Eastern Local Ore

Cents. unit, del. E. Pa.
Foundry and basic 56 -
63%, contract......
Foreign Ore
Cents per unit, c.i.f. Atlantic ports
Manganiferous ore 45 55% Fe., 6-10\% Mang. N. African low phos. Spanish, No. African basic, 50 to 600_{0}° Chinese wolframite, net ton, duty pd.
Brazil iron ore, 68-69\%
ord. F.O.B. Rlo Janeiro

Scheelite, imp. 23.50-24.00 Chrome Ore
Gross ton c.i.f. Baltimore; dry basis; subject to penalties for
Indian and
2.8:1 lump. 48%

South African (excluding war riak)

No ratlo lump, $44 \% \ldots$	28.00
Do.	45%
Do.	48%
Do. concentrates. 48%	29.00
Do.	50%

2.5:1 lump, $44 \%$$2.8: 1$ lump$44 \%$$3: 1$ lump48%No ratio lump..		

 No ratio lump. 48\% 35.00
Rhodesian nominal

Nom
Nom Triuding war risle
Including wat risk but not duty, cents per unit cargo lots Caucaslan, 50-52\%。
S. African, 48%

Indian, 50%
Brazilian, 48\%
Chilean, 48ヶ. 65.00
Cuban, 51\%, duty free. 81.00-83.00

Sulphide conc., lb., Mo. cont., mines

 mum $\$ 1.00$ per ton. Wered Prices: Determined by adding established ransportation charses to shoping point price, not to exceed by rnore than si the prites isted in the table for the nearest basing point. consumers, to WPB allocations, to water shipments from Duluth or Superior, Wis... to shilments of
billets, blooms and forge crops from PIttsburkh and to shlpments of electric and foundry grades from Michigan. are $\$ 2.50$ less than for the corresponding grades of prepared scrap. exeept for heavy breakable cast.
In no case shall electric furnace and foundry grades be used as the corresponding grade or grades prepared scrap,", Graveyard autos not considered unprepared scrap.
Remote Scrap: Consists of all grades, except ralitroad scrap, located in Florida, Montana, Idaho,
 exceed by not more than stisi price ait the basing point nearest consumner's plant, provided sworn

$\begin{gathered} \text { Heavy } \\ \text { Melting } \\ \text { Steel } \end{gathered}$	$\operatorname{Scrap}_{\text {Ralls }}$	Rails for Rolling	$\begin{aligned} & \text { sit } \begin{array}{l} \text { and } \\ \text { ander } \\ \text { under } \end{array} \end{aligned}$	rap 2 ft. andunder	$\begin{aligned} & 18 \mathrm{in} \\ & \text { und } \\ & \text { under } \end{aligned}$
21.00	22.00	23.50	24.00	24.25	24.50
19.75	20.75	22.25	22.75	23.00	23.25
	21.50	23.00			24.00
19.75	20.75	${ }_{22}^{22.25}$	22.75	23.00	23.25
20.25 18.85	21.25	22.75 21.35	${ }_{21.85}^{23.25}$	-23.50	23.75
19.25	20.25	21.75	22.25	22.50	22.75
19.00 17.00	20.00 18.00	21.50	22.00	-22.25	22.50
17.00 18.50	18.00 19.50	19.50 21.00	21.50	${ }_{21.75}$	22.00
18.00	19.00	20.50	${ }_{21.00}$	21.25	21.50
18.00 15.50	19.00 19.50	20.50 18.00	21.00 18.50	21.25 18.75	21.50 19.00

Pittsburgh, Brackenridge. Butler, Johnstown Midland, Monessen, Sharon, Steubenville Weirton, Canton, Youngstown, Warren
Claymont, Coatesville Harrisburg, Consho-
hocken. Phoenixvilie
Bethlehem
Cleveland, viddietown, Cincinnati, Portsmouth.
Ashlandi
Detrolt
Tora
criago
Kurn
Dt
Birmingh
geles, Snin Franclsco, Pittsbur
neque., Colo.
Portland, Oreg

portland, Oreg.

$\$ 20.00$
18.75
18.25
19.25
19.50
17.85
18.75
18.25
18.00
17.50
17.00
16.50
14.50

CAST IRON SCIRAP OTHER THAN RAILROAD | Grup A . |
| :--- |
| $\$ 18.00$ |
| |

 Unstripped Motor Biocks. Heavy Breakable Cast.
Charyng Box Size Cast:
Miscellaneous Malleable New Mexico A includes the states of Montana, Idaho, Wyoming, Nevada, Utah, Arizona and Gew Grup B includes the states of North Dakota, South Dakota, Nebraska, Colorado,
Kansas, Oklahoma Texas and Florida.

Sheets, Strip

Sheet \& Strip Prices, Page 110
While sheet schedules have shown little change recently a tighter situation is expected, due to diversion of an increasing proportion of strip capacity to plates and heavier demand for semifinished steel for other purposes.

Sheet delivery is fairly steady, A-1-a tonnage being promised at an average of seven to eight weeks. On lower A-1 classifications two months can be done in some instances, though promises are indefinite. On lower priorities promises are almost impossible to obtain.

Electric refrigerator manufacturers in most cases have cancelled orders on mill books and most seem to have sufficient inventory to run at the reduced rate allowed by Washington, production scheduled to stop at the end of April.

Mill schedules in some cases show March production absorbed on orders with A-1-j priority or higher and the trend is toward even higher ratings. In February some sheets were shipped at lower ratings.

Shops fabricating steel sheets are rapidly moving from production of regular products and changing to war production where conversion is possible. Range builders, household tank fabricators and makers of appliances are shifting production lines and in some instances already are buying sheets of all finishes in high ratings in greater volume than for normal consumption. Some producers are able to make better deliveries on cold-rolled sheets than on other grades.

Narrow cold strip mills are booking practically no non-rated tonnage, with the trend in new volume toward higher classifications, some producers reporting fully half their new business in the A-1 group. Current shipments include some low or non-rated tonnage but this is dwindling. An increasing number of consumers have converted to war goods production. Demand for high-carbon narrow strip is relatively higher than for low-carbon, cartridge clip steel contributing to this ratio.
Sheet consumers in the East will have to pay more for their steel when the 6 per cent increase in freight rates goes into effect later in the month but sellers of hot and galvanized sheets with plants in the Pittsburgh, Wheeling and Ohio areas will receive less because they will have to absorb much more than they will gain by the increase in the rate from Sparrows Point, the eastern basing point, owing to the longer hauls from their plants. On the other hand, some eastern producers, it is pointed out, will not only be able to pass the increase along, but will actually gain by virtue of their closer proximity than Sparrows Point.

Plates

Hate Prices, Page 110
Plate producers believe about 60 days will be required to bring

Tells How to Get More Production from your METAL-CUTTING SAWS

Under today's wartime conditions, Simonds' leadership in the manufacture of Metal-Cutting Saws involves a special duty to help all saw-users get the utmost in production on metal-cutting jobs.
Year after year, knowledge accumulates . . . resulting in better methods that increase production. This knowledge is now available in the compact Simonds handbook, "Metal-Cutting Methods", to help you choose the most efficient operating procedure. This new book is free to users of metal-cutting saws. Write for your copy now, to:

SIMONDS SAW AND STEEL COMPANY 470 MAIN STREET, FITCHBURG, MASS.
smooth working of allocations. Considerable delay is being experienced in clearing forms due in producers' hands at the beginning of the month, because of errors on the part of consumers. One large mill reports a heavy percentage of error, resulting in the forms being returned. One cause was the short time allowed for filing.

Shipyard requirements dominate allocations but greater attention is being given to needs of ship propulsion machinery manufacturers. This and other types of equipment are said to be causing delay in getting ships into operation.

Considerable over-allocation of plates continues but this probably
will be corrected by a larger share of ship plates being provided by strip mills. Iron and Steel Branch, WPB, has worked out a plan by which 80 to 90 per cent of steel required for EC-2 vessels will be produced on strip mills converted to production of plates. Formerly only about 10 per cent was from these mills. The plan will be applied to about 770 new ships for which no material has been placed. It is thought this will expedite deliveries of ship steel.
Various measures are being taken to increase strip plate capacity and hope is held that the present rate of 400,000 tons annually may be increased by 100,000 tons.

3758 tons of nickel steel hot-rolled round bars for dielock chain cable for an eastern navy yard. Republic Steel Corp. Cleveland, was low on 2500 tons at $\$ 260,763.08$, delivered, and Carnegie-Illinois Steel Corp., Pittsburgh, was low on 1258 tons at $\$ 102,854.06$, delivered. Youngstown Sheet \& Tube Co. and Crucible Steel Co. of America also bid.
Hot carbon bars are still available in seven to eight weeks on A-1-a priorities, although some producers have little to offer under 10 weeks. Hot alloy bars have been reported as being offered in 11 weeks by one mill on such priorities, with an additional three months, however, where the bars are subject to special heat treatment. Compared with several months ago there is general improvement in deliveries of alloy bars for war work, due, some believe, to the more exacting regulations for protecting supply for such requirements.

Allocation of hot-rolled bars to cold drawers, scheduled for April 1, again has been postponed, no definite date being set. It is believed it may not be put into effect for at least three months. Reasons for delay are not known.

Wire

Wire Prices, Page 111
Bookings and shipments of wire and wire products continue to rise in priority. New tonnage, notably specialties, is in excess of deliveries. Most business being booked is at A. 3 rating or higher,

Some finishing mills are operating seven-day schedules, especially in heat-treating departments. An eastern mill has ordered additional gas-fired heat treating equipment, to be in operation by June.

Wire rod supplies are limited, alloys being tightest, with the trend toward greater volume.

Rails, Cars

Track Material Prices, Page 111
Freight car awards in February totaled 11,725 units, the largest number since June, 1941, when 32,749 were bought. Total for two months this year is 15,978 , compared with 20,667 in the same period a year ago.

	1942	1941	1940	1939
Jan.	4,253	15,169	360	3
Feb.	11,725	5,508	1,147	2,259
2 mos.	15,978	20,667	1,507	2,262
March		8,074	3,104	800
April.		14,645	2,077	3,095
May.		18,630	2,010	2,051
June		32,749	7,475	1,324
July		6,459	5,846	110
Aug.		2,668	7,525	2,814
Sept.		4,470	9,735	23,000
Oct.		2,499	12,195	19,634
Nov.		2,222	8,234	2,650
Dec		8,406	7,181	35
Total		21,499	66,889	57,775

Heavy locomotive and freight car buying continues as carriers seek to provide facilities for heavy traffic demand. Car builders are operating to the limit of steel supply but current buying has been greater than deliveries, backlogs

TO KEY MEN:
Can You Use Sheet Metal Working Dala for War Products - and Post-War Plans?

- "Build 'em fast" counts most these grim days, yet construction engineers are not losing sight of the post-war value of buildings erected now for army ordnance and arms prodnction.

That's why corrugated galvanized Armco Ingot Iron is being used for roofing and siding on so many new structures needed for America's victory-drive. Engineers are sure of fast, easy erection and long, low-cost service life.

There are other important advantages too-in war or in peace. Metal buildings can be dismantled and erected again on another site. They assure protection against fire and, when grounded, from lightning.

Armco Ingot Iron has proved its worth in industrial service. This metal has the longest record of service of any low-cost iron or steel sheets. Installations dating back as far as 1909 are in good condition. Yet galvanized Anmco Ingot Iron, with all its durability, costs only about Ic a pound more than ordinary galvanized steel.

If you are designing or constructing buildings for war production write for complete information about galvanized Armco Ingot Iron". We'll give you proof of its long life and low maintenance cost. The American Rolling Mill Company, 811 Curtis Street, Middletown, Ohio.
${ }^{\dagger}$ For immediate painting and long paint life ask about galvanized Anmco Ingot Iron Paintcmip.

A LABEL KNOWN TO MILLIONS

being extended. Some use of wood instead of steel is of slight assist ance and larger utilization is planned.

Union Pacific has placed 30 large high-speed freight locomotives, in addition to 20 of the same type on which deliveries are now being made.

CAR ORDERS PLACED
Chicago, Rock Island \& Pacillc, 650 freight cars: 350 fifty-ton auto box cars to Pressed Steel Car Co., Pittsburgh, and 300 fifty-ton flat cars to its own shops.

CAIR OIRDERS PENDING

Denver \& Rio Grande Western, 1500 rreight cars; 1000 seventy-ton drop door, 450 nfty-ton flat-bottom and 50
seventy-ton drop-end mill type gondolas, bids asked.
Treasury Department, 1000 thirty-ton flat cars, reported contemplated for export to Australia

LOCOMOTIVES PLACED

Union Pacific, 30 high -speed 4-6-6-4-type freight locomotives, to American Locomotlve Co., New York; in addition to 20 of the same type now being delivered.

BUSES BOOKED

Twin Coach Co., Kent, O.: Twenty-one 44-passenger for Surface Transportation Co., New York; fifteen 35-passenger and lue $29-p a s s e n g e r$ for Milwaukee Electric Rallway \& Transport Co., Mllwaukee; ten 35 -passenger for Akron Transportation Co., Akron, O.; seven 27-passenger for Georgla Power Co., Atlanta, Ga.; flve 27 -passenger

for Ohio Rapid Transit Co., Newark, O.; four 31-passenger for BremertonCharleston Transportation Co., Bremerton, Wash.; four 31-passenger for Birmingham Electric Co., Birmingham, Ala.; three 23-passenger for Springfield Gas \& Electric Co., Spring feld, Mo. two 35 -passenger for Schenectady, N. Y.

Structural Shapes

Structural Shape Prices, Iare 111
Structural steel demand is in creasing as additional war plants come out. These include extensions to shipbuilding plants and expansion in the TNT program. Two Boston engineering firms have contracts for at least three units in various parts of the country. These will also require large quantities of plates for tanks and pipe. Plain material for ship construction is also in great demand. Other war projects now being planned include gasoline refineries and synthetic rubber plants. Several additional airplane hangars have been awarded recently.

SILAPE CONTRACTS PLACED

2800 tons, extrusion plant, Extruded Metals Defense Corp., to Whitehead \& Kales Co., Detroit.
2400 tons machine shop addition for Navy, to Bethlehem Steel Co., Seattle; General Construction Co., Seattle, contractor.
2300 tons, aluminum extrusion plant, Bohn Aluminum \& Brass Corp., to Midland Structural Steel Co., Cicero, Ill. (to be fabrlcated by Four V structural Steel Companies, Chicago.)
2000 tons, aluminum extrusion plant, Bohn Aluminum \& Brass Corp., to Midland Structural Steel Co., Cicero, 111. (to be fabricated by Four v Structural Steel Companies, Chicago); Krieghoif Co., Detroit, contractor.
1650 tons, state bridge, Black river, Essex, Md., to Bethlehem Steel Co., through Melwood Construction Co. New York, contractor.
1380 tons, fleting out pier, navy yard, to Bethlehem Steel Co., Bethlehem, よ'a.; Sanders Engineering Co., Portiand, Me., contractor.
1225 tons, Spokane street overcrossing Seattle, for state, to Pacific Car \& Foundry Co., Seattle.
700 tons, warehouse, Pontiac, Mich., Yellow Coach \& Mif. Division, General Motors Corp., to Duifin Iron Co., Chicago (to be fabricated by Four V Structural Steel Companies, Chicago.)
600 tons, two aeronautical equipment plants, Electric Auto-Lite Co., Toledo. O., to Bethlehem Steel Co., Bethlehem Pa.
E30 tons, tantalum carbide plant, for Tantalum Defense Corp., subsidiary of Fansteel Metallurglcal Corp., to Duffin Iron Co., Chicago; (to be fabricated by Four V Structural Stee Companies, Chicago); John Griffiths

SHAPE AWARDS COMPARED

Includes awards of 100 tons or more.

The Story of the Missing Fastener

- Slowly the massive hangar doors rolled back and into the early morning mists trundled a gleaming airship of terrific proportions . . . the world's largest bombing plane readied for its final trial flight. Seven times before, this tense moment had occurred in utmost secrecy, but today the field was crowded with military officials, designers, research engineers and brass hats.

In a roped-off area a mechanic stood with other workmen, he heard the four giant motors "rev-up"; saw the "all clear" signal flash from the

not this kind
tower. All four motors thundered and the ship rolled down the runway and into the air. . . then he started to remember. The left landing gear he had re-assembled it yesterday that bolt that fit so snugly had he put it in after he was called away? Oh! sure, Joe inspected the job . . . but did he notice?

Right then, nearly three years of intensive aircraft design and construction, an experiment costing over $\$ 3,000,000$ and the pride and hopes of countless men depended. . . not on correct design, accurate construction or safety factors . . . but on the absence or presence of a single boll.

This story is fictional to illustrate the supreme importance and necessity of nuts, bolts and fastenings to aviation and every industry. No other means of fastening will do all of the jobs done by nuts, bolts and rivets.

There is nothing fictional about the ability of Oliver Iron and Steel Corporation to produce the metal fasteners you use, dependably, uniformly excellent and promptly for all essential purposes.

\& Son Construction Co., Chicago, con tractor.
375 tons, initial section armor plate development, to Belmont Iron Works, Philadelphia.
200 tons, shop bullding, Fitchburg Englneering Co., Fitchburg, Mass., to Haarmann Steel Co., Holyoke, Mass.; J. B. Lowell Co.. Worcester, contractor; 5 tons of reinforcing bars to Joseph T. Ryerson \& Son Inc., Cambridge, Mass.
125 tons, access road bridges, stelton, N. J., to American Bridge Co., Plttsburgh; Charles F. Vachris Co., New York, contractor.
105 tons, shop for War Department, to Frank M. Weaver Co., Philadelphia.
100 tons, steel platforms, walkways, supports, stalrways and miscellaneous material, armory, to Builders Iron Works, East Boston, Mass.; Eastern Bridge Co., Worcester, awarded contract for erecting craneways, building 41.
Unstated tonnage, additional shipways and shop facllties, Sun Shipbuilding \& Dry Dock Co., to Belmont Iron Works, Philadelphia.

SHAPE CONTRACTS PENDING
27.826 tons, Panama; United States Steel Export Co. only bidder, March 3.
13,000 tons, also 50,000 tons reinforcing bars and miscellaneous steel approachIng 100,000 tons, Panama; Sam Rosoff Ltd., New York, awarded contract.
2600 tons, widening Whitestone bridge, New York.
1200 tons, gun shop, eastern location.
1000 tons, General Motors hangar; blds March 5.
1000 tons, navy yard hangar, Golder Construction Co., Philadelphia, general contractor, on fee basls.
830 tons, shed, for army, blds rejected; redesigned for wood construction.
650 tons, craneway and alterations, shop bullding, General Motors, Línden, N. J.
535 tons, general construction purposes; bids in to Navy.
200 tons, flve buildings, Floyd Bennett Fleld, New York.
150 tons, county hospltal, Havre De Grace, Md.; blds March 17.
Unstated tonnage, navy yard iorge shop. Thomas S. Gibson, Phlladelphia, contractor, on tee basis.
Unstated, two steel girder britges for Walla Walla, Wash., flood control project; bids to United States engineer, Portland, Oreg., March 11.
Unstated, two tunnels Deschutes Irrigation project, Oregon state; Kern \& kibbe, Portland, contractor, at \$374,000.

Unstated, Nisqually river power prolect No. 2, for Tacoma, Wash.; bids to Board of Contracts and Awards, March 23.

Unstated, transmission towers Willamette river crossing No. 2; C. J. Montag \& Sons, Portland, contractor, at $\$ 98$,910 , by Bonneville Power Administration.

Reinforcing Bars

Reinforeing Bar prices, pare 111
Reinforcing demand is increasingly active and deliveries on orders rated below A-3 are being delayed. Limitations on semifinished steel retard capacity operations and lower priority tonnage is being held up. Extensions against contracts placed months ago are frequent, numerous projects taking much more than first estimated. Housing requirements are heavier, with delayed deliveries likely.

RENFORCING STEEL AWARDS
4000 tons, Defense Plant Corp. aluminum

Dunking Improves Strength

- We have no accurate statistics as to the relative merits of dunked and undunked doughnuts . . . but we do know that dunking makes a world of difference in the strength of bolts.

As long ago as the days of the renowned Damascus swords, dunking or quenching played an all important role in the heat treating of steel. These keen blades were quenched by thrusting them fiery hot through the thigh of a slave. Through this "baptism in blood" these swords were supposedly endowed with courage and strength bevond all others.

There is no superstition in the modern heat treating of bolts and nuts. Carefully controlled heating cycles and scientific quenching in specially developed quenching fluids give bolts unusual levels of strength, hardness and ductility with better fatigue values. They can be as tough as armor plate, or given a carburized case harder than glass, with a strong, durable core. Other heat treating operations at various stages of manufacture give these fasteners the exact physical properties required for each specific job.

Oliver's heat treating facilities are complete and modernly flexible to produce every physical property required in your fastener specifications. Submit your fastening problems to Oliver for an expert opinion and a prompt solution for any and all War Production metal fastener requirements.

plant in Eastern Washington state, to Bethlehem Steel Co., Seattle.
1350 tons, power plant, Venice, Ill., Unfon Electric Light \& Power Co., to Laclede Steel Co., St. Louls.
1000 tons or more, army cantonment in Pacilic area, wported placed with Soule Steel Co., Portland.
800 tons, navy torpedo plant, to Joseph T. Ryerson \& Son Inc., Chicago; R. C. Wieboldt Co., contractor.

600 tons, machine shop addition for Navy, to Bethlehem Steel Co., Seattle; General Construction Co., Seattle, contractor.
500 tons, defense projects in Northwest, to Northwest Steel Rolling Mills, Seattle.
500 tons, tantalum carbide plant, North Chicago, Ill., for Tantalum Defense Corp., subsidiary of Fansteel Metal-
lurgical Corp. to Joseph T. Ryerson \& Son Inc., Chicago; John Griffiths \& Son Construction Co., Chicago, contractor.
200 tons, general defense projects in Paciflc area, to Northwest Steel RollIng Mills, Seattle.
104 tons, addition, Pressed Steel Car Co., Hegewisch, IIl., to Inland Steel Co., Chicago.

REINFORCING STEEL PENDING

4500 tons, powder plant, Hercules Powder Co.; Mason \& Hanger Co., New York, contractor; blds March 3.
2000 tons or more, army cantonments in Pacifle area; W. C. Smith Inc., L. H. Hoffman, Portland, and Howard S. Wright \& Co., Seattle, low for one project.
1500 tons, flood control project, Elmira, N. Y.; bids in.

Electric

ALL THE WAY/

Stokers, pulverizers, fans and oil burners are more and more becoming electrically driven. It is entirely logical therefore that an automatic combustion control system be operated electrically. Hays centralized control is operated entirely by electricity, employing enclosed mercury switches for the sensitive contacts, thus assuring freedom from trouble due to moisture, dust, dirt and chattering. Electric operation also simplifies installation and maintenance. Adjustments are made direct and are not dependent upon air pressures, oil pressures, and the numerous valve mechanisms made necessary by non-electric designs When considering automatic combustion control buy for tomorrow-buy electric-buy HAYS.

Antomatic

COMBUSTION CONTROL
THE MODERN SYSTEM-its Electric!

CONCRETE BARS COMPAKEI

Week ended March 7	9,054
Week ended Feb. 28	2,175
Week ended Fel. 21	3,469
This week, 1941	17,722
Weekly averare, 1942	7,621
Weekly averame, 1941	13,609
Weekly :tverage, Feb., 1942	3,489
Total, 1911	101,283
Total, 1942	68.586

300 tons, Bybery state hospital; blds March 6.
105 tons, concrete slab bridge on treated timber pile foundations, Spring streetHog Island, Hull, Mass.; bids March 13, R. W. Coburn, chief engineer, state department of public works, Boston.
Unstated tonnage, federal flood control project, Mt. Holly, N. J.; general contract to Foundations Inc., Morristown, N. J.

Unstated, second Nisqually river power project, Tacoma, Wash.; blds to Board of Contracts and Awards, March 23. Unstated, two tunnels Deschutes Irrlgation project, Oregon; to Kern \& Kibbe, Portland, low at $\$ 374,000$, by Reclamation Bureau.

Pig Iron

Pig Iron Prices, Page 112
March pig iron allocations show a higher average of priorities as the number of A ratings increases and average inventory position recedes. Some tonnage is still being allocated on B ratings but this is growing smaller and request for iron under the low ratings is less. Consumers are making every effort to obtain high priority business and in some cases refuse to quote on B ratings if they can avoid it. Allocation in the B range seems likely to disappear soon.

Deliveries against A-10 ratings probably will be confined in April to maintenance and repair work covered by blanket priority. Shipments on April allocations will reflect 6 per cent higher freight rates.

Orders for machine tool castings in New England shops are steadily broadening, shops formerly depending on one or two foundries now spreading requirements among five or six.

Numerous pig iron consumers, particularly foundries have received letters recently from the Compliance Division, WPB, warning against ordering more than they are able to consume. Various companies thus warned have written for further information, pointing out that such overbalancing may occur temporarily in the course of normal allocations and that any accumulation is reflected in the inventory statement.

Aliquippa stack No. 3 of Jones \& Laughlin Steel Corp. was out 24 days in February for relining, resuming before the end of the month.

Plans are said to be under way for reopening of the Addyston, O., plant of United States Pipe \& Foundry Co. for production of castings for the Navy Department.
Buffalo pig iron producers and others, who have an established
trade in eastern New York and New England and who have to equalize with eastern basing points, will be forced to absorb a substantial proportion of the 6 per cent increase in freight rates, now apparently scheduled for March 18. It is pointed out that while they will be able to benefit from the increase in the rate from the eastern basing point involved to the point of consumption, they will lose more than they gain by having to allow the increase in the freight rate from their own furnaces to the consuming plant, due to the much longer haul usually involved.

Scrap

Scrap Prices, Page 114
Little change is apparent in the steel and iron scrap market, supply being tight and numerous consumers restricting operations because supplies are insufficient to keep all equipment in operation. In some areas slightly better movement is noted, material from automobile wrecking operations beginning to reach melters. Total receipts from this source seem likely to be disappointing and once cleared these yards will not yield a continuing flow.

Scrap supply at Detroit continues to hamper steel production, four of Ford Motor Co.'s ten open hearths being idle, while Great Lakes Steel Corp. maintains 15 of its 16 furnaces. Concentration of shipments to Ford threatens supply to Great Lakes. One automotive plant normally supplying 20,000 tons a month now has only 2000 tons at best. Another automobile plant recently offered 150 cars, nearly all of which was allocated to specific melters.

In many instances railroads are not offering their accumulations, the tonnage to be allocated by government agencies direct to consumers, through designated brokers. Municipal rail removal programs are beginning to increase supply of

Tool Steel Scrap

Cents per pound, to consumers

 f.o.b. shipping point Tungsten Types (For each 1% tungsten contained) Solid scrap containing over $12 \% \ldots 1.80 \mathrm{c}$ Solid scrap containing 5 to $12 \% \ldots . .1 .60$ Turnings, millings containing over 12\% 1.60Do., 5 to 12%. 1.40

Turnings, millings, solids under 5%

Molybdenum Types
Solid scrap, not less than 7% molybdenum, 0.50 vanadlum....... 12.
Turnings, millings, same basis..
Solid scrap, not less than 3% mo-
lybdenum, 4% tungsten, 1%
vanadlum
vanadium \quad milngs, mame basis.
(Molybdenum and Tungsten Types)
Solid scrap, each 1% contained tungsten
Solid sorap, each i\% molybdenum. . 80
Millings, turnings, each 1% tungsten
Millings, turnings, each 1% molybdenum
rails for foundry use, but cast scrap shows no increase.

Cincinnati scrap consumers who recently made recommendations to Washington for relaxing some rules are awaiting announcement of decision. One end sought was designed to make larger supply of remote scrap available.
Large scale scrapping of old tools, dies, jigs, fixtures, idle machinery, conveyor systems and the like seems certain in view of the long-term scrap outlook.
Heavy snow last week in the Buffalo area practically stopped collection and preparation and melters were dependent on supplies from outside, railroads being able to continue car service.

Greater part of 9000 tons of structural steel scrap from the Atlantic avenue elevated highway, Boston, to be wrecked, is expected to go to a central New England steelworks, to be sold unprepared on the basis of $\$ 12.55$, f.o.b. . Boston.

Until instructions are received from Washington as to increased freight rates on scrap it seems that shippers will have to absorb the increase on grades quoted on a delivered basis, such as open-hearth and electric furnace steel, while consumers pay the increase on grades quoted on a shipping point basis.

Illinois Central railroad has started an intensive search of its lines and shops to gather all scrap ma-

for parts needing extreme wear resistance

When long life is an important factor in the selection of parts - when you must have a metal that can "take it"-your designing engineers can specify Ampco Metal with assurance that it will give maximum service life under the toughest conditions.

Ampco Metal is a special alloy series of the aluminum bronze class, available in six alloy variations. Of course, it has high physical properties and unusual tensile strength, but it also has controlled hardness and superior resistance to wear, corrosion and fatigue. It gives many times the service life of ordinary bronzes and is just the metal for that troublesome part that is weak or failing.

AMPCO LITERATURE Available

Headquarters for Bronzes

AMPCO METAL, catalogue 22
Ampcoloy-Industrial Bronzes Calalogue
Ampco-Trode Coated Aluminum Bronze Welding Rod Ampco Metal in Machine Tools Ampco Metal in Bushings and Bearings
Ampco Metal in Dies
Ampoo Metal in Acid-Resistant Service
Ampeo Metal in Aircraft
Ampco Metal Centrifugal Castings
Ampco Metal in Heavy Machinery
Ampco Metal in Gears

When you need a reliable source of supply for that government contract-when you need better industrial bronzes for machine parts, submit your problems to Ampco engineers. We make bronzes to government specifications. Literature sent free on request.

AMPCO METAL, INC.
Department 5-3 Milwaukee, Wisconsin

terial that can not be reused for repair work. From the beginning of the defense program this road has contributed 281,119 tons of scrap iron and steel and 1072 tons of nonferrous scrap.

Warehouse

Warehouse Prices, Page 113
Closer restrictions on supply of steel to warchouses are imposed by amendment No. 3 to order M-21-b, issued by the Director Industry Operations. This provides that houses may not accept delivery of steel in excess of assigned quotas, even though the source is other than a producer. Previous restric-
tion applied only to shipments from producers
Another change allows warehouses to accumulate ratings above A- 9 on deliveries to customers up to a period of 90 days, so that orders may be placed for a minimum commercial quantity. Steel obtained by a warehouse through extension of a rating higher than A-2 may not be delivered to a customer except on an order higher than A-2. Small warehouses are allowed to buy certain products in minimum carload lots, despite restrictions on quarterly deliveries, provided tonnages are not in excess of annual quota.

While turnover of stocks covered by top ratings is high, volume

could be tripled were products available. Replacements are confined largely to material sold on high priorities, which are frequently re-extended, but deliveries are tightening, due to accumulation of high ratings with mills. Plates are most difficult to obtain, with light shapes next. Some distributors are unable to obtain delivery on galvanized sheets, though cold-finished are slightly easier. Small-lot inquiry takes increasingly higher ratings. Chromium or nickel alloy bars are replaceable only on ratings of $\mathrm{A}-1-\mathrm{j}$ or better.

Pacific Coast

Seattle-Major projects pending in the Pacific Northwest include the Kaiser shipyards, the second Nisqually power plant at Tacoma, the aluminum plant in eastern Washington, proposed expansion of Seattle's Skagit power project and several large army and navy construction jobs.

Four Portland firms have contracts totaling $\$ 800000$ for construction of the shipyard, including offices. administration building, machine, paint, carpenter, sheet metal, electrical shops, rig ging loft, etc. This plant is scheduled for completion in 30 davs, and will have all modern equipment. Kaiser Company has leased more than 187 acres for the yard, plant to cost $\$ 20.000 .000$. Application has been filed for four additional ways, making a total of 12 . Original contract for 65 10,500-ton Liberty ships is expected to be increased to 89 , all to be built by the end of 1943.

Tacoma board of contracts and awards has called bids March 23 for the $\$ 11,000.000$ second Nisqually power plant, bids in whole or in four sections for dam and works, tunnels, intake structures, surge tanks. penstocks and powerhouses at Alder and LaGrande. Unstated tonnages of shanes, plates and bars will be required. Bids are called March 16 for steel transmission towers for the double-circuit, 35 mile transmission line. Seattle has applied for federal funds to increase canacity of the Skagit municipal plant.

United States engineer, Portland. has received a low ioint bid, said to be about $\$ 2,000,000$. from W. C. Smith Inc., L. H. Hoffman. Portland and Howard S. Wright, Seattle, for an army center involying large quantities of materials. Other similar projects are out for figures and 1000 tons or more of steel pine is reported placêd for one of these jobs.

Bethlehem Steel Co., Seattle, has taken 4000 tons of concrete bars for an aluminum plant. 600 tons for a navy yard project, and 2400 tons of shapes for the latter. Soule Steel Co. is reported to have been awarded 1000 tons or more of concrete bars for an armv cantonment and Northwest Steel Rolling Mills. Seattle, is furnishing 500 tons of merchant bars and 200 tons of concrete bars for defense work. Bids are in to the navy for 535
tons of shapes and United States engineer, Portland, has called tenders March 11 for two steel girder bridges for the Walla Walla, Wash., flood control project.

Both rolling mills and fabricating plants are working under heavy pressure and accepting no additional orders except those essential to the war program. Backlogs are large. The scrap situation continues to give concern, particularly in cast iron, which is especially scarce. All potential sources of supply are being explored.

Canada

Toronto, Ont.-The advance of $\$ 5$ per ton on a number of steel materials recently announced by Algoma Steel Corp. Ltd. has not yet been followed by similar action by Steel Co. of Canada Ltd., Ham ilton, and Dominion Steel \& Coal Corp., Sydney, N. S. The advance in Algoma Steel's prices, however, has resulted in much discussion among steel interests, especially consumers, and at the moment they are unable to give any clear statement as to what the increase will mean with regard to their contracts with the government.

As far as Canadian steel prices are concerned a rather unique situation has developed and buyers are waiting for some pronouncement from the Steel Controller that might give them some idea as to their position with regard to old contracts and the recently advanced prices.

War contracts continue to pour from the Department of Munitions and Supply and manufacturers are maintaining a flow of fresh orders to steel mills well in excess of the latter's production capacity. Imports from the United States also are being increased steadily to meet Canadian war demands. A.s far as plates and sheets are concerned there has been no change. The government controls all output and mills are accepting only such orders as are approved by the Steel Controller and are delivered under his direction. According to word from Ottawa there will be sharp gain in plate demand within the next couple of months when plants engaged in war tank production start speeding output, and boiler plants, now under construction, are completed and go into production on boilers for Canada's shipbuilding program.
The situation in merchant bars is becoming more serious daily. Inquiries for bars are increasing and mills are making no definite promise regarding delivery.

Minor tapering in sales has developed in the merchant pig iron markets with total orders running to about 8000 tons. The decline, however. was due to shortage of iron rather than falling off in actual requirements. Orders, all going through the Steel Controller, are held to lots of 300 tons or less, while producers are delivering in one to two cars, only to melters engaged on war work and iñ most
urgent need. Melters primarily engaged in peace-time operations, but with a minority of war business, are able to get deliveries of iron only for their work that is associated with war.

Deliveries of steel scrap to local dealers again show improvement. Some shipments were received from outside sources, although most supplies are from local producers. Automobile wreckers are operating at about 40 per cent of normal production, having to contend with weather conditions but with lack of cars for wrecking the chief factor. Iron scrap materials are appearing in small volume only, with no indication of immediate improvement.

Metallurgical Coke

Coke Prices, Page 111
Shortage of coking coal-for beehive ovens continues, although mining facilities on the better quality seams are being pushed. In some instances new operations are being started by independent beehive operators and there is a possibility of increasing coke supply. There is considerable talk of opening new mines in the coking coal area, but little has developed.

Not much action has resulted from the request of WPB that coal users increase inventory, to lessen transportation demands later in the year and to avoid shortages if transportation should be curtailed.

. . SO DOES PRODUCTION

- If a modern army is to attain any measure of success, it must have complete and fast-moving lines of supply backing it to the limit. Likewise, high speed machines turning out shells and guns, planes and tanks, must have supply lines to keep them producing. In America's great plants today where war materials are made, Mathews Conveyers are keeping parts and assemblies flowing to and from machines with speed and control. It's a Mathews job to keep vital material moving.

If you are manufacturing war material, or anything vital to the success of the war effort, you can get Mathews Conveyers to handle that material. Rely as usual on your Mathews Engineer.

MATHEWS CONVEYER CO., ELLWOOD CITY, PENNA.

MATHEWS CONVEYERS FOR MEBYAANKED PRDDIICTION

Tin Plate

Tin Plate Prices, Pare 110
Tin plate production continues at 92 per cent of capacity but a decline is imminent when curtailments have been worked out. New electrolytic lines will take up the slack as they are put in operation.

First signs of output reduction probably will be in small hot mills, which were started recently to help carry the load. No plans have been made to convert these mills to other products but this possibility undoubtedly will be thoroughly examined.

Preference rating has bcen given
on equipment for electrolytic lines. Delay was met in obtaining priority for rubber but it has been decided the savings in tin more than balance the quantity of rubber.

A problem is lack of proper ratings on black plate for use in untinned cans. Before the can order was issued sheet mills diverted a certain tonnage of black plate for tin mills on the assumption ratings would be issued. Now that ratings have been announced untinned cans have not been covered. Some of these cans will be classed as vital but meanwhile this black plate has no rating and cannot be supplied. Since tin plate has been frozen

No matter how tough the test-how difficult the problemturn to Pangborn for blast cleaning that is QUICKER, CHEAPER and BETTER.

If pushed for production-install airless ROTOBLASTING -use it twenty-four hours a day-seven days a week. Pangborn Barrels, Tables and Special Cabinets have stamina and strength-have proven they can take itBY CONTINUOUS INCREASED PRODUCTION.
For speed-for control-for lower cost cleaning-shift gears quickly into ROTOBLASTING. Costs have dropped as much as 50%. Production has increased as high as 80%. And quality goes up to the very top.

For quickest possible delivery-place tentative orders NOW.

WORLD'S LARGES MANUFACTURER OF BLAST CIEANING \& DUST CONTROL EQUIPMENT

plate users who intended to shift to untinned material will have nothing available.

Clarification is needed on the position of packers of nonessential products and their can suppliers in regard to frozen stocks of tin plate now on hand. This probably will be resold to packers who can use it.

Refractories

Refractories Prices, Page 112
Consumers of silica and fire clay brick, like consumers of coal, are being urged by Washington to store up all the supplies they feel able to purchase, so as to relieve a likely congestion of shipping facilities later on. So far action by consumers in this respect is said to be somewhat disappointing, although the movement is undergoing some expansion.

On the other hand, magnesite and magnesite brick are scarce and Washington, therefore, is urging consumers to lay in no more than is absolutely necessary. There apparently is enough to meet all requirements, but certainly not enough to permit any extra accumulation in buyers' stockpiles.

Meanwhile, prices are unchanged, there having been no revision in many weeks. Sellers generally look for no early change, at least not for the next three or four months, unless there is an appreciable increase in cost of labor and fuel. However, they are quoting on the basis of prices ruling at time of delivery.

Iron Ore

Iron Ore Prices, Page 113
Early opening of navigation on the Great Lakes is expected under present weather and ice conditions, probably before April 8, the date of opening last year. Movement of iron ore is expected to be 5,000 , 000 to $6,000,000$ tons more than the $80,116,360$ tons moved last year. WPB ore committee has asked 85,000,000 to $90,000,000$ tons for the season. Larger ore supply is needed to make up for scrap shortage by providing more pig iron.

Start is being made earlier than usual on putting ships in condition for early trips and the entire fleet will be in action as soon as conditions permit.

Steel in Europe

Foreign Steel Prices, Page 113

London-(By Cable)-Steel ingot output is expanding in Great Britain under pressure for all forms of steel. Demand for shipbuilding material, tank and boiler plates, colliery and railroad material continues intense. Special alloy steels are in increasing demand. The position in scrap is tightening materially.

Ferroalloys

Ferroalloy Prices, Page 112
Ferroalloy prices for secona quarter are expected to be announced this week. The trade ex-
pects there will be little or no change in most items in this classification.

Equipment

Boston-Trend toward allocations in machine tool distribution mounts steadily with some shops almost completely on this basis. Bookings are accumulating with a strong wave of orders during the last two weeks. For the bomber and aircraft building program hundreds of tools are being placed through Wright Field,. Dayton, O., and heavy purchases are being made by an Eastern Pennsylvania steel company. Additional orders are being placed by manufacturers of bearings, the latter in some instances urging engineers to specify bearings of standard size and tolerance where possible. Machine builders are also streamlining production by temporarily dropping some units and specializing on more active lines. Demand for automatic screw machine equipment is notably heavy and shop backlogs are at an all-time high. Operating three crews 24 hours daily, seven days per week, some shops in the grinding field are producing five times as many tools as under normal pre-emergency schedules. Broader sub-contracting is also a factor in stepping up output, more builders letting out large orders for work who normally sub-let only castings, motors and limited numbers of fixtures.

Seattle-Electric equipment leads the market, public agencies being the leading buyers as private purchasers are unable to get their requirements. Dealers report stock replacements slow and unsatisfactory many items being unobtainable within reasonable time. AllisChalmers Mfg. Co., Milwaukee, will furnish circuit breaker for the Tillamook power station of Bonneville Power Administration, low at $\$ 6926$. Bids are in to the same agency for 65,000 feet of copper wire, Contractors Equipment Co., Portland, is low $\$ 16,332$, for furnishing a power shovel.

Castings for Anchors

Cast steel anchors for merchant and navy ships are taking large tonnages of castings, current inquiries approximating 80C0 tons, of which 1750 tons are for delivery at New England points. Stockless anchors for lend-lease are included in the inquiries.

Bethlehem Report

(Concluded from Page 33)

Navy and Maritime Commission since the first of the year call for the building of 182 more ships.

As a result of steps taken more than a year ago, facilities that more than double Bethlehem's already large capacity for heavy forged products for the Navy are now com. ing into play. Gun forgings, armor,
shells, ship shafting and torpedo forgings are being turned out at an ever increasing rate.

Equipment for making cylinders and other forged parts for airplane motors has kept up with the successively stepped-up airplane production program.

Substantial increases in total pay and rates of pay of employes are reported. Total wages amounted to $\$ 364,354,322$ in 1941 as compared with $\$ 212,232,884$ in 1940, and average earnings rose from 94.1 cents an hour in 1940 to $\$ 1.07$ in 1941. A peak of $\$ 1.13$ was reached in the last quar-
ter of 1941.
Social security taxes paid by Bethlehem in 1941 amounted to \$13,733,000 . These were in addition to pension disbursements of $\$ 797,000$, the cost of vacations with pay, amounting to $\$ 4,200,000$ and other measures for the advancement of the general welfare and security of employes. The relief plan for Bethlehem employes distributed $\$ 1,003$,790 in disability benefits and $\$ 921$,351 was paid in death benefits.

For statement of Bethlehem's earnings, taxes and dividends, see Steel, Feb. 2, page 21.

- Jessop WASHINGTON contains no tungsten, nickel, chromium, or other strategic alloys-therefore, deserves first consideration for tool and die applications while the nation is at war. Since carbon is the only alloying element present, the production of WASHINGTON is entirely independent of foreign sources of supply.
Unless an alloy steel is necessary, you can help conserve our imported alloys-and at the same time reduce your tool steel costs-by specifying Jessop WASHINGTON water hardening tool steels for your tool and die applications. WASHINGTON is our highest quality carbon tool steel and is very carefully processed to insure maximum productivity. Send for our descriptive Bulletin 142.

Dravo Receives 'First

All-Navy Navy E'

PITTSBURGH

The first all-navy navy " E " award has been made to an American industry. This award, which differs from the conventional navy " E " pennants, is made when several branches of the navy concur in their citation for meritorious service incidental to the national defense and war effort. The Dravo Corp., Pittsburgh, was so honored last Thursday by the Bureau of Yards and Docks and the Bureau of Ships. The company had previously received the individual navy " E " awards for participation in the naval construction program.
The new award is not a permanent citation, but is subject to review every six months. If at the end of that time operations of the
company indicate a continued performance meriting the excellence award of the navy, the all-navy " E " is re-awarded for another six-month period. A chevron strip is affixed to the flag for every six months of continuous meritorious work done for the navy.

The ceremonies with respect to presentation were participated in by a large number of naval and governmental officials. The award was made by Rear Admiral William Carleton Watts, USN, retired. Lowell Thomas, nationally known radio commentator, acted as master of ceremonies for the program. A welcome on behalf of the County of Allegheny was given by John J. Kane, chairman of the board of commissioners. Congressman James A. Wright, of the thirty-fourth district of Pennsylvania, and Senator James J. Davis of Pennsylvania also spoke. The award was accepted by J. D.

\star Deliveries are controlled by government. Page mills are at capacity. As a user of wire, there are things you might do.
SHAPED WIRE. Use a standard shape. Avoid special runs. A wide variety of shapes is available: oval, hex, octagonal, square, channel, keystone, etc.; diameters to $3 /{ }^{\prime \prime}$, end section areas to .250 sq. inches. WELDING ELECTRODES. Conserve. Check with Page Distributor. Be sure your rods
are correct in analysis and diameter. Insist that your men do not bend electrodes and that they use each one down to the holder. GENERAL WIRE. Change in analysis, shape or diameter might improve your position. Check waste. The situation in such products as Spring Wire, Bond Wire, Telephone Wire, etc. is not subject to early improvement.

If Page experience can help work out changes, our cooperation is yours.

PAGE STEEL AND WIRE DIVISION - MONESSEN • pennsylvania
In Business for Your Safety

PFCH: for Wire

AMERICAN CHAIN \& CABLE COWPANY, Ine. BRIDGEPORT CONNECIICUT

Berg, chairman of the board of Dravo Corp.

Highlight of the affair was the launching of a new submarine chaser, the third of these ships to be launched from the Dravo marineways under the navy program.

OPA Makes Exception

In Magnesite Schedule

War demands for dead-burned grain magnesite, essential in maintenance of basic open-hearth steel and other metallurgical furnaces, necessitating some production at high costs resulted in issuance of Amendment No. 1 to Revised Price Schedule No. 75, permitting some sales at prices higher than the established maximums.

Amendment also permits sellers to add to maximum prices an addition. al charge when deliveries are made from stock accumulations other than at the point of production; and allows an additional charge to cover incurred costs for packing for export shipments.

The exception to the maximum price (due to high-cost war production) is for sales by the Westvaco Chlorine Products Corp. from stocks at Permanente, Calif., to its regular customers in that state, the maximum price being set at $\$ 32.00$ per ton f.o.b. Chewelah, Wash. Additions for delivered prices and sales in bags or sacks are the same as those set for other domestic sales. A similar exception has already been made for sales by this company from its plant in Patterson, Calif.
The maximum price for other domestic shipments of maintenance grades in bulk remains at $\$ 22.00$ per ton f.o.b. Chewelah. A delivered price in excess of the maximum f.o.b. Chewelah price may be charged, consisting of such maximum price plus a transportation charge computed at carload rate from Chewelah to the delivery point designated by the buyer.

When the buyer asks delivery from stocks at some point other than the place of production, a delivered price in excess of the maximum f.o.b. Chewelah price may be charged, consisting of such maximum price plus a transportation charge to the point of accumulation and from such place to the place of delivery designated by the purchaser, and $\$ 1.00$ per ton.

A charge of $\$ 4.00$ per net ton is permitted for domestic grades in bags or sacks.
The maximum f.a.s, price for export shipments of maintenance grades shall be the maximum price for delivery to the export dock, plus $\$ 7.50$ per net ton when the product is packed in double jute sacks, or $\$ 12.50$ per ton when packed in wooden barrels.

Mar.	Electro, del. Conn.	Copper- Lake, del. Midwest	Casting, reflnery	Strants Tin, New York Spot Futures	$\begin{aligned} & \text { Lead } \\ & \text { N. Y. } \end{aligned}$	Lead East St. L.	$\begin{aligned} & \text { Zinc } \\ & \text { St. L. } \end{aligned}$	$\begin{aligned} & \text { Alumi- } \\ & \text { num } \\ & 99 \% \end{aligned}$	Antimony Amer. Spot, N.Y.	Nickel Cathodes
2-6	12.00	$12.12^{1 / 2}$	11.75	$52.00 \quad 52.00$	6.50	6.35	8.25	15.00	14.00	35.00

F.o.b. mill base, cents per lb. except as F.o.b. mill base, cents per io. except as . 1200 c Conn copper

Sheets

Anodes

Copper, untrimmed

Wire

Yellow brass (hlgh)

OLD METALS

Dealers' Buying Prices
No. 1 Composition Red Brass

Nonferrous Metals

New York- New maximum price schedule for copper and copper alloy scrap, other than brass mill scrap, became effective March 27. Other important OPA developments included the authorization for Harshaw Chemical Co. to pay 11.25 c a pound for special purpose copper scrap, issuance of the order providing that prices paid by MRC for idle or excessive inventories of aluminum materials will be exempted from provisions of the aluminum scrap price schedule, and that certain contracts for sale of lithopone may be completed at higher than established prices.

Copper - Due to increasing demand for copper for war work, certain essential and other uses must be cut further or eliminated. Some consumers with ratings as high as A. 1 have been unable to secure all needed tonnages.

Lead-Total stocks continue to increase, amounting to 106,859 tons as of Feb. 1. WPB still needs to allocate only a small part of domestic production.
Zinc-WPB has lifted requirements for the March pool to the following rates: 50 per cent of December, 1941, production of high grade and special high grade zinc and 40 per cent of all other grades; 20 per cent of December production of lead-free zinc oxide and 10 per cent of leaded zinc oxides. February requirements were 40 per

Composition Brass Turnings
New York 9.25

Light Copper

New York	0
Cleveland	8.00
Chlcago	8.00
St. Louls	8.00
Cleveland	6.25-6.50
Chicago	6.50
St. Louls	

Lend
New York . 5.25-5.bu
Cleveland 5.40-5.50
Chicago . 5.25-5.60
5.25-5.35

Old Zinc
New York \ldots. $5.00-5.25$
Cleveland
St. Louis . $4.50-5.50$

Aluminum
Old castings 10.50
Segregated borings 8.50
Old sheet . 10.50
Clips, pure
9.50

SECONDARY METALS
Brass ingot, 85-5-5-5, 1.c.1
13.25

Standard No. 12 alumlnum
14.50

HERE is how you barricade a blaze so it can't spread into other parts of a factory. In openend booths or drying ovens, in spaces. not equipped with fireproof doors, you spray fire-killing gas across the openings. The gas is carbon dioxide . . . and fire can't pierce this screen.

This is extra fire protection that may be combined with LUX Built-in extinguishing Systems. The LUX screening nozzles aren't meant for extinguishing. They
simply provide a fire-stop. Actual fire extinguishing is handled by LUX Shielded Nozzles within the enclosure. These totally flood the space with LUX carbon dioxide gas, creating an atmosphere in which fire can't live.
If you have an "open-end" fire hazard in your plant, you can use LUX screening nozzles to knock flames back. Then, in a front-andrear pincers, quickly overwhelm the blaze in a blast of carbon dioxide snow-and-gas.

ENGINEERING FACTS-LUX Screening Nozzles are used in pairs, opposed in position, laterally. One set of nozzles aims carbon dioxide gas directly across opening, cuts off inrush of air. Second set aims at an inward angle, to dilute oxygen which may penetrate the first screen.

BIG FURNACE

Heavy "Fluid-Fusion" Welded Vessels made at the Sharon plant of General American Transportation Corporation get their baptism of fire in a huge car-type annealing furnace. Oil-fired under automatic temperature control which varies less than 10° at 1100° to 1200° F., this heat treatment effectively relieves stresses of all types. G. A. Pressure Vessels pass the most critical tests without a quiver. They make good because they are made right.

PLAEE AND WELDING DIVISION GENERAL AMERICAN TRANSPORTATION

CORPORATION

cent for all types of zinc and 10 per cent for zinc oxides.

Tin-Conservation measures have allowed interests in this country to maintain their supplies at a high level, being only slightly below the Dec. 7 total. MRC continues to sell small lots at the $\grave{2} 2$-cent base price.

Canada will require 500,000 more tons of iron and steel scrap than will be available from regular sources in 1942, according to estimates by Harry Lewis, Toronto scrap dealer.

Mr. Lewis is advocating the organization of a systematic collection campaign in the Dominion and the development of import sources, particularly in South America.

In 1940, Canada imported 415,981 tons of scrap from the United States.

CONSTRUCTION

and ENTERPRISE

Ohio

BRILLIANT, O-American Gas \& Electric Co., Philip Spon, vice president, Thirty-third street, New York, has acquired tract on Ohio river here for erection of power plant.

Cleveland - Carey Machine Co, 9600 Cassius avenue, has applied for permission to extend machine shop witin an addition 90×117 feet. J. Fred Connelly is president.

CLEVELAND - Barth Stamping \& Machine Works, John J. Barth, manage:; has again applied to city zoning authorl' thes for permission to erect hardening and storage rooms at plant at 3811 West Thirty-fourth strect.

CLEVELAND-Austin Co., 16112 Euclid avenue, is in charge of plans for magnesium plant to be erected in northeastern Ohlo. First part of program is well under way.
CLEVELAND-Bishop \& Babcock Mig. Co., 4901 Hamilton avenue, is planning building to house heat treating department at plant on East Fifty-flfth street.

CLEVELAND-National Acme Co., 170 East 131st street, will start work immedately on 80,000 -square foot addition to plant. This is in addition to expansion reported in January.
CLeveland-Cowles Tool Co., Edward A. Cowles, president, 2086 West 110th street, is constdering expansion of office and plant.

CLEVELAND-Ajax Mig. Co., 1441 Chardon road, Euclid, O., will add 20,000 square feet to present faclities, estimated to cost $\$ 100,000$. John R. Blakeslee is president, and W. W. Criley, general manager.
CLEVELAND - Cleveland Automatic Machine Co., 2269 Ashland road, is continuing enlargement program reported last year, and latest is an addition 46 $x 120$ feet to building T.
COLUMBUS, O.-Universal Concrete Plpe Corp., Columbus, will establish $\$ 40,000$ plant on llve-acre tract in Kentucky.

LIMA, O.-Ohlo Steel Foundry Co.,

HERES A ROUCH TOUGH JOB

made \&asy
 WITH
 BISCO
 TOOL STEEL TUBING!

- Five sections of 7" BISCO Tool Steel Tubing are used in this gang press to stamp out sandpaper dises. Day after day, millions of needlesharp cutting edges in the abrasive material tear at the die surfaces. Yet 128,000 dises were stamped in one setting. Each die stamped out 25,600 abrasive dises without being taken out for sharpening! This figure doubles all previous records of any other die steel.

No time, labor or money was wasted in costly boring operations to make these dies. BISCO Tool Steel Tuhing was simply cut to specifications out of stock carried in our warehouse. Exact in size, the dies were ready for use upon delivery.

```
Also stocked for IMMEDIATE DELIVERY:
Flnished Bars
Alloy Steels
Aircraft Steels
in all S. A. E. grades
```

Free Catalog on Request

"We Get More Work Out of Our I.B. Cranes"

Users praise the steady, low cost, material handling ability of I. B. Cranes.

Equipped with hook, magnet, or bucket, I. B. Cranes do a top-notch job under all conditions.

Above right: This close-up of the rear window shows the perfect ventilation and 360° visibility offered the operator in the new, patented monitor type cab which is standard on all Industrial Brownhoist gasoline and Diesel cranes up to 40 tons capacity. Monitor-type cabs also reduce motor noise and heat thus increasing the operator's comfort. Write today for further facts.

INDUSTRIAL BROWNHOIST

BAY CITY, MICHIGAM - DISTRICT OFFICES: MEW YORK philadelphia, pittsburgh, cleveland, chicago
BUILDS
BETTER
CRANES

Direct Subway Entrance to all Points of Interest

 New York's Popular HOTEL Lincoln44th TO 45th STS. AT 8th Ave.

1400 ROOMS each with Bath, Servidor, and Radio. * Four fine restaurants awarded Grand Prix 1940 Culinary Art Exhibition.

MARIA KRAMER
Presideal
John L. Horgan Gen. Mgr.

HOTEL EDISON
Same Ownership

 welding fabrication by asking for our booklet WP 20 , gladly upon request.

John E. Galvin, president, plans to spend approximately $\$ 13,000,000$ for erection of plant, comprising about 12 buildings, including steel casting foundry, heat treating, machine shop, power plant, etc.

MONROEVILLE, O-Monroeville Cooperative Grain Co., Leo J. Cook, manager, will expand milling racilities with 670-square foot mill bullding.
tiffin, O.-Hanson Clutch \& Machine Co. will erect an assembly bullding adjacent to its plant at cost of about \$8500.
TOLEDO, O.-Defense Plant Corp. has allocated $\$ 7,200,000$ for plant here to be operated by Lycoming Motors Corp.

Connecticut

BRIDGEPORT, CONN.--Singer Mfg. Co. has contracted for erection of twostory warehouse and showroom, estimated to cost $\$ 90,000$.

BRIDGEPORT, CONN. - Dictaphone Corp. has plans for one-story addition, 60×200 feet. Estimated cost $\$ 60,000$, with equipment.

NAUGATUCK, CONN. - An aniline manufacturing unit is to be erected here at the United States Rupber Co. plant.
NEW HAVEN, CONN.-Whe Rope Corp. of America Inc. has approved plans for two-story addition, 105×150 feet. Estimated cost $\$ 75,000$.

NORWALK, CONN.-Extruded Plastics Co. will begin construclion soon of onestory addition, 25×125 feet. Cost $\$ 50,000$, with equipment.
PORTLAND, CONN.-Portland Foundry is building 40×90-foot addilion to its main plant here.

Massachusetts

CHICOPEE FALLS, MASS.-Chicopee Mrg. Corp. has begun construction of one-story addition, 43×48 feet. Estimated cost, including alteratlons and improvements in existing building, $\$ 25,000$.
SPRINGFIELD, MASS.-American Saw \& Mrg. Co. has awarded contract for erection of addition, estimated to cost over $\$ 14,000$.

SPRINGFIELD, MASS. - Gilbert \& Barker Mrg. Co. will bulld three-story addilion, 70×115 rect.

IRhode Island

PAWTUCKET, R. I.--Davis-Jones Wire Co. will build three one-story additions, estimated to cost $\$ 60,000$.

New Jersey

NEWARK, N. J.-To expand its facillties, Muller Sheet Metal Works, Newark, has purchased a one-story factory building at 836 Lalayette street.
NEWARK, N. J.-Sheet Metal Products Co., Newark, has leased a one-story bullding on Congers street, Bloomfleld, N. J.

Pennsylvania

EASTON, PA.-Lehigh Foundry Co., Frank E. Shumann, president, sustained damage by flre to its plant here.

SHALER TOWNSHIP, PA.-Plans are being completed and bids will be taken early this month for two additions to waterworks here. Estimated cost $\$ 50,000$ Chester Engineers, 210 East Parkway N.S., Pittsburgh, engineers.

Michigan

DETROIT-Active Industrial Engineer ing Co., 12917 Jefferson avenue East, has been incorporated with $\$ 10,000$ capital, to design and process tools. Cor-

- Tool and die workers, maintenance men, repair crews, makers of experimental parts, must have quick service coday. When a small spring breaks, when wire forming is needed, when a new design is required, they can perform the job quickly by using the correct size of XLO music wire. There is a constant demand for XLO music wire.
XLO comes to you in attractive packages in red and silver for all standard sizes of music wire in units of $1 / 4 \mathrm{lb} ., 1 / 2 \mathrm{lb} ., 1 \mathrm{lb} .$, and also special 5 lb . packages. Wire sizes from .003 to .200 .
Johnson Steel \& IFire bas enlisted a beaty production of masic wire for the war.

- Shenango-Penn Castings are improved in many other ways over ordinary castings. They have an average of from 8 to 20% greater tensile strength. They have greater density and uniform grain structure. They save you pattern costs and machine time. Write for descriptive bulletins on our Ferrous and Non-Ferrous Production. 70 Tons of Castings Stocked for Quick Shipment

SHENANGO-PENN

MOLD COMPANY 401 W. THIRDST., DOVER, OHIO

TAYLOR-WILSON MANUFACTURING CO. 15 Thomson Ave. McKees Rocks, Pa.

READ ABOUT RESULTS

of Tests Made With

 Mold Growths Which Authorities Say Cause
athetes

2
18

The reports of eminent bacteriologists who made tests of Hubbellite Floors covering a period of over two years, have recently been published. Reprints of these reports will be
gladly sent upon request. You will find results of these tests of particular interest if you have a problem in the maintenance of sanitary floors in wash, locker and shower rooms.
H. H. ROBERTSON CO., Farmers Bank Bldg., Pittsburgh, Pa.

GET FASTER PRODUMTION WITH HOBART ABC WELDERS!

[^3]"One of the World's Largest Builders of Arc Welding Equipment"
respondent: J. Fred Edgar, 12917 East Jefferson avenue.
DETROIT-Walcott Machinery Co., 430 Buhl bullding, has been organized with $\$ 250,000$ capital to manufacture machinery products. Gust Dahlen, 12134 Minden street, correspondent.

GRAND RAPIDS, MICH.-Bids are beIng asked for construction of an addition to the plant of the Grand Raplds Stamping DIvision of the General Motors Corp. the new unlt to be 65×100 feet.

GRAND RAPIDS, MICH. - Haviland Products Co. has plans for a $\$ 25,000$ of flee and manufacturing bullding. H. B. Rohloff, Grand Raplds, has been awarded contract.
HILLSDALE, MICH.-Hillsdale Tool \&

Mfg. Co. has been granted permission to build a 40×64-foot addition to its j. iant.

HILLSDALE, MICH.-Hillsdale Foundry Co. will build a 40×40-foot addition to its plant.
JACKSON, MICH.-H. R. Graf, Jackson architect, is taking Ilgures for shop ad dition to factory of Industrial Automatic Co., Jackson.

LANSING, MICH. \qquad Granger Bros. Lansing, have been awarded contract for an addition and alterations to factory bullding here for Nash-Kelvinator Corp. (Noted March 2).
LUDINGTON, MICH.-Austin Co.. Detroit, has contract for construction of chemical plant here for Dow Magnesium

THE HANNA FURNACE CORPORATION
MERCHANT PIG IRON DIVISION OF NATIONAL STEEL CORPORATION
Buffalo
Detroiz
New York
Philadelphia
Boston

Corp., an afflliate of Dow Chemical Co., Midland, Mich. (Noted March 2)

PORT HURON, MICH.-Mueller Brass Co. has awarded contract to Austin Co., Detroit, for office bullding and factory addition, estimated to cost $\$ 139,000$.

SAGINAW, MICH.-Spence Bros., Saglnaw, have contract for addition to plant of Wickes Bros., Saglnaw. (Noted Feb. .6).

TECUMSEH, MICH.-James Kramer, Hudson, Mlch., has acquired the H. Brewor \& Co. plant and equipment here, and will convert the plant for defense work

WYANDOTTE, MICH. - Pennsylvania Salt Mrg. Co. has awarded contract to F. H. Martin Construction Co., Detroit for an ammonia plant here.
YPSILANTI, MICH.--R. S. Gerganoff, Ypsilantl archltect, is taking fgures for construction of addition to plant of Motor State Products Co., Ypsilanti.

Illinois

CHICAGO-Stewart-Warner Corp., DIversey at Wolcott, will be the operating lessee for a $\$ 20,000,000$ ordnance works for the War Department, to be Innanced by Derense Plant Corp.

KEWANEE, ILL.-Walworth Co., Kewanee, is building a plant near St. Louls, covering 16 acres, for the manufacture of steel valves and fittings.

PEORIA, ILL.-R. G. LeTourneau Inc. R. G. LeTourneau, president, is considerIng establishment of iron plant, to in clude blast furnaces and open hearths for processing deposits of fron ore

PLANO, ILL.-West Specialty Co. recently sustained severe damage by flre to its foundry, core, cleaning and cupola housing rooms. Work of rebullding will begin soon.
ROCK ISLAND, ILL.--Construction will start soon on an ordnance plant for the War Department to be located in the Middle West. General engineering supervision will be the United States engineer for the Rock Island district. Hazelet \& Erdel, Chicago, architects and englneers. J. L. Simmons Co. Inc., Decatur, IIl., general contractor.

SPRINGFIELD, ILL.-I. F. Loucks \& Co., Scattle, is reported to be planning construction of a soybean processing plant somewhere in rilinols, estimated cost of which is $\$ 3,000,000$.

Mississippi

JACKSON, MISS.-W. G. Avery Body Works has acqulred bullding on Ricks street which it will convert Into box manufacturing plant

Tennessee

MANCHESTER, TENN,-CIty, Thomas A. Johnson, plans $\$ 51,000$ extension 10 waterworks; will build fltration plant Walter L. Picton, engineer, 711 Ameri can Bank bullding, Nashville, Tenn.

Louisiana

HOUMA, LA.-City will take bids March 26 for furnishing and installing internal combustion engine-driven generating unit and equipment and also extension of present power plant building.

West Virginia

HINTON, W. VA.-United States en gineer office, Huntington, W. Va., wil take blds March 12 for furnishing labor and materials and designing, furnishing and delivering two turbines with acces sorles and two sets of governing equipment for Bluestone dam power plant (Noted Jan. 10.)

HUNTINGTON, W. VA.-Huntington Industrial Corp., B. C. McGinnis, chair

5634 Fillmore St., Chicago, Ill. New York Oflice- 114 Liberty St.

 III
 25TH STREET, PITTSBURGH, PA

FURNACES OF ALL KINDS
Chicago Flexible Shaft Co., Dept. 112, 5600 Roosevelt Road, Chicago, U. S.A. Canada Factory; 321 Weston Rd..,S., Toronto e Now York Otheo; 11 W. 42 nd 5 t., N.Y.

Pickling of Iron and Steel

-By Wallace G. Imhoff

Price Postpaid \$5.00

This book covers many phases of pickling room practice and construction and maintenance of pickling equipment.

THE PENTON PUBLISHING CO. Book Department
1213 W. 3rd St.
Cleveland, 0 .

NEW CATALOG For

 WAR INDUSTRESRIGHT NOW...
Harper can supply war industries and other priority holders with fastenings. This 1942, 4 color, 80-page Catalog gives details. Write for complimentary copy today. Harper maintains

4320 STOCK ITEMS

of non-ferrous and stainless bolts, nuts, screws, washers, rivets and related items . . . and operates special machinery to produce a host of "hard-to-make" fastenings. Today Harper Products are being used by thousands of war manufacturers. Mail your Catalog request now.

THE H. M. HARPER CO 2646 FLETCHER STREET
CHICAGO, JLIINOIS

ENTERPRISE GALVANIZING COMPANY
2525 E. Cumberland St., PHILADELPHIA, PA.
HOT DIP GALVANIZING

$\leqslant-1)$ PIKEFIASH-
FASM- 1 - F B ACCURATE INSPECTIONS in a hurry are an Important factor in all defense plants and operatlons. Routine Inspection of product and process equipment is a unveryal practice in ndustry foday. o mee be atiached to any "FLASH-O-LENS" which you may now be usling. In the body tube is a graduated scale reading directly to thousandths. Magniticatlon up to 40 X is avaliable s of greatest value even in the darkest corser of the shop. Send for flustrated catalogue.
MANUFACTURED BY E. W. PIKE \& COMPANY, Elizabeth, N. ,
Please send me catalog and full information on your illuminated lenses
Signed..
man of building committee, will soon call bids for plant on Washington street, to be operated by Huntington Precision Corp., eastern branch of Adel Precision Corp., Burbank, Callf. Robert S. Kllgore, 301 Eighth street, Huntington, will supervise construction.

Missouri

VALLEY PARK, MO.-City, Theodore R. Reilling, mayor, plans sanitary sewer extension; has DPW grant of $\$ 25,370$. Caldwell Engineering Co., Jacksonville, III., engineer

Wisconsin

WAUNAKEE, WIS. - Waunakee Canning Co. has awarded contracts for construction of one-story plant addition here, 100×200 feet, to cost more than $\$ 50,000$, with equipment.

Welcome
 to PITTSBURGH'S NEWEST HOTEL

400 rooms, all with outside view and bath.
Radio in
every room.

Rates
SINGLES
$\$ 3.30$ to $\$ 4.40$
DOUbles
$\$ 5.00$ to $\$ 6.50$

Most Conveniently Located Hotel in Downtown Pittsburgh

Texas

EL CAMPO, TEX.-City, J. S. Carroll mayor, has DPW grant of $\$ 40,000$ for improvements to sewage disposal system, estimated to cost $\$ 95,000$. J. H Wilkins, Bay Cily, Tex., consulting engineer.

EL PASO, TEX.-Headman-Ferguson \& Carello, engineers, P.O. Box 375, El Paso, will have plans completed in about six weeks for extension of sewage disposal system.

GOOSE CREEK, TEX.-City, J. H. Meek, mayor, will soon call bids for waterworks improvements, including elevated tank, to cost $\$ 124,582$. Charles P. Smith, Orange, Tex., consulting engineer.

HOUSTON, TEX.-City, J. C. McVea, water department director, will soon call bids for drilling an additional water well and installing two pumps and motor. Estimated cost $\$ 45,000$.

MART, TEX.-City, C. Roy Chambers, mayor, has plans in progress for sewel and waterworks improvements: $\$ 90,000$ bonds available. Koch \& Fowler, englneers, Great National Life bullding, Dallas, Tex.

ROCKPORT, TEX.-CIty, J. E. Moore. mayor, has DPW grant of $\$ 65,000$ for sewer system and disposal plant. M. C. St. John, engineer, 4101 Polk avenue. Houston, Tex.

VICTORIA, TEX.-Clty, Ben T. Jordan, mayor, plans waterworks improvements, costing approximately $\$ 59,000$. E. F. Miles, engineer.

Iowa

SPENCER, IOWA-Wagg Battery Mrg. Co., Wapello, Iowa, has started erection of factory here.

California

LOS ANGELES-Clary Multiplier Corp, will erect an addition 108×150 feet to its factory at 1524 North Main street.

LOS ANGELES-An addition to the machine shop of General Machine Works 48×66 feet, is reing arected at :002: San Fernando road.

LOS ANGELES-Bechtel-McGone-Parsons Corp., 601 West Firth street, has been awarded contract to design and erect three synthetic rubber plants in the Los Angeles area for the Kaiser Co., 1552 Latham Square building, Oakland, Callf. Loan of $\$ 25,000,000$ has been approved by RFC.

Washington

SEATTLE-Parker \& Hill, engineers, are preparing plans for proposed $\$ 60,100$ water and sewer system at Keyport. Wash.

SPOKANE, WASH.-Columbia Metals corp. has been organized with $\$ 100,000$ capital by J. O. Gallagher and assoclates, care of Graves, Kizer \& Graves, Old Nutlonal Bank building.

TACOMA, WASH.-National Blower \& Sheet Metal Co. has been incorporated with $\$ 45,000$ by Robert H. Colman and assoclates, Washington bullding, to manufacture and deal in sheet metal and allied materials.

Canada

VANCOUVER, B. C--Vancouver Iron Works Ltd., 1155 West Sixth street, W. T. Fraser, manager, has completed plans and will place contracts soon for plant addition, to cost $\$ 75,000$, including equipment.
BRANTFORD, ONT-Cockshutt Plow Co. Ltd., Mohawk street, is having plan prepared for another addition to plant to cost, with equipment, about $\$ 45,000$ W. J. Phillips is manager.

HAMILTON, ONT.-Dominion Foundries \& Steel Ltd., Depew street, has let general contract to Frid Construction Co. Ltd., Terminal building, lor construction of one-story universal mill bullding, 60×72 feet.
HAMILTON, ONT.-National steel Car Corp. Ltd., Kenilworth avenue North, Robert S. Hart, vice president, has given general contract to Frid Construction Co. Ltd., Terminal building, for construction of shell plant. Estimated cost $\$ 300,000$, including equipment.

FAMILTON, ONT.-Union Drawn Steel Co. Ltd., 2 Webber street, has let general contract to Pigolt Construction Co., 36 James street South, for plant addltion to cost about $\$ 50,000$. H. M. Sweeney is general manager

LONDON, ONT. - London Concrete Machinery Co. Ltd., Cabell avenue, plans to start work early in April on plant addition, estimated to cost about 330,000 , with equipment. Henry Pocock is general manager

ORILLIA, ONT. - Fahralloy Canada Ltd., 25 King street West, 'Poronto, Unt., Norman F. Parkinson, president, hats awarded general contract io C. V. Bennett Construction Ltd., West street, Or illia, for construction of foundry bultding, to cost $\$ 60,000$, with equipment.
RENFREW, ONT. - Renfrew Electric: \& Refrigerator Co. will make repars to factory recently damaged by fire and erect new plant to cost about \$55,000.

ST. THOMAS, ONT. - Canada Vitrified Products Ltd., J. A. Sutherland, secretary, plans to start work barly in May on plant addition to provide additional 10,000 rect of lloor space.

TORONTO, ONT. - Aluminum Goods Ltd., 158 Sterling road, has had ilats prepared and will call bids soon zor construction of plant addition at 4006 Dundas street West, one-story, 50 x 185 feet, costing $\$ 50,000$, with equipment.

TORONTO, ONT.-Massey-Harris Co. Ltd., 915 King street West, has let general contract to Walter Davidson is Co., 188 Duke street, for addition and alterations to truck assembly building, to cost, with equipment, about $\$ 50,000$.

WELLAND, ONT.-Dominion Oxygen Co. Ltd., 159 Bay street, Toronto, Ont., plans construction of plant on jatn avenue here to cost about $\$ 25,000$, with equipment.

WELLAND, ONT.-Page-Hersey Tubes Ltd., 100 Church street, Toronto, has ac:quired a 35 -acre site adjoining its plant here and is considering plant addition.

WINDSOR, ONT.-Chrysler Corp. of Canada Ltd., 300 Tecumseh boulevard East, is having plans prepared by Hutton \& Souter, architects, Pigott building, Hamllton. Ont., for another addition to plant here. Estimated cost about \$250,000.

DARTMOUTH, N. S.-Department or Munitions and Supply, Ottawa, I-I. H. Turnbull, secretary, has awarded generai contract to Foundation Maritime Ltd., 1538 Sherbrooke street West, Montreal,' for addition to plant here to cost $\$ 160$,000. Ross \& Macdonald. 1010 St. Catharine street West, Montreal, architects.

MONTREAL, QUE.-R.C.A. Victor Co. Ltd. 976 Lacasse street, is having plans prepared by W. K. Gordon and L. I.yman, architects, 2058 Victoria street, for plant addition to cost about $\$ 40,000$.

SHAWINIGAN FALLS, QUE.-Aluminum Co. of Canada Ltd., Sun Lire bullding, Montreal, is having plans prepared by its own staff for large addlition io plant here.

THURSO, QUE.-Singer Mfg. Co. is having plans prepared for plant addition to cost about $\$ 85,000$, with equipment.

Steel Makers Since 1871

STRIP STEEL

HOT ROLLED - COLD ROLLED SPECIAL CARBON - ALLOYS
THE STANLEY WORKS NEW BRITAIN, CONN.-BRIDGEPORT, CONN. HAMILTON, ONTARIO

LD'S FIMEST PRE-FIMISHED METALS • SHEETS \& COILS AMERICAN
NICKEHDHI company

HOT-DIP GALVANIZIHG PRACTICE By W. H. Spowers Jr.
An up-to-date treatise on zinc coatings of steel that will gppeal to those who daily are engaged in surfacing metals with zinc. 200 Pages-45 Illustrations-4 Tables -7 Charts. Price $\$ 4.00$ Postpald.

THE PENTON PUBLISHING COMPANY
Penton Building Book Department
Cleveland, Ohio
550-S

SMALL ELECTRIC STEEL CASTINGS (Capacity 500 Tons Per Month)
 WEST STEEL CLEVELAND
 "He Profite Most Who Serves Bast"
 CASTING CO.
 OHIO, U. S. A.
 Better Stee:
 Castings

CROSBY FOR STAMPINGS

Our engineers are ready and able to help solve your stamping problems, in design or construction. Crosby prices are consistent with QUALITY and SERVICE. In our 45 years of EXPERIENCE we have served over 100 different industries.
Manufacturers of "Ideal" Trolley Wheels
THE CROSBY COMPANY
BUFFALO. N. Y.

Since 1774
 IT(O)T STM ETET
 T T (O) G D ESM

TYILTATK NFSSUP \& SOAS TNC.

Principal Office: 627-629 Sixth Ave., New York Cily CHICAGO. BOSTON• DETROIT TORONTO

B ELIMONT $\frac{R O N}{\text { PHILADELPHIA }}$ NEWYORK ORK Engineers - Coniractors - Exporters

 STRUCTURAL STEEL-BUILDINGS $\&$ BRIDGES Riveted-ARc WeldedBelmont Interlocking Cilannel. Flooit Write for Catalogue
Mriu Orfice-Phila., Pan. New York Office-4 Whitehall St.

FIRTH-STERLIIIG

TOOL STEELS - STAINLESS STEELS - SINTERED CARBIDES FOR COMPLETE SHOP TOOLING - McKEESPORT, PA.

ATLAS DROP FORGE CO., LANSING, MICH.

- USED and REBUILT EQUIPMENT量 - MATERIALS

RAILS

AND ACCESSORIES

RELAYING RAILS - Super-quality machine-reconditioned-not ordinary Relayers.
NEW RAILS, Angle and Splice Bars, Bolts, Nuts, Frogs, Switches, Tie Plates, and all other Track Accessories.
Although our tonnages are not as large as heretofore, most
Every effort made to take care of emergency requirements. Phome, Wrife or W'tre

> L. B. FOSTER COMPANY, Inc

PITTSBURGII NEW YORK CIIICAGO

BETTER USED EQUIPMENT

for Immediate Delivery-at Low Prices CONVERTERS
-DUPLEX ROTARY CONVERTERS G. E., (Identical) $1500 \mathrm{KW}-750 \mathrm{~kW}$ 500 RPM, 13,200 V., 3 phase, 25 cycle, to 1300 - 650 volt direct current. Com plete with Transformers, Reactances, Switch Gear and Conirols.

Motors - Sheet Steel Piling - Hoists Cranes - Misc. Items

Write-lFirc-ihone
DULIEN STEEL PRODUCTS, Inc. 11611 So. Alameda Tel. Kimball 9151 SEATLE PORTAND

FOR SALE

Morefor Your Dollar! IRON \& STEEL PRODUCTS, INC.

36 Years' Experlence

13462 S. Brainard Ave., Chicazo, illinols "Vad som helat som innehalle JARN oller STAL" SELLERS - BUYERS - TRADERS

F~틀․․․․․․

CAN HELP YOU SELL OR BUY
Surplus or used machinery and equipment. Send in copy instructions for an advertisement in this column. Your ad will reach the important men in the metalproducing and metalworking industry. Write today to STEEL, Penton Bldg., Cleveland.
GEAR CUTTERS, Spur $30^{\circ}, 40^{\circ}$ \& 84^{*}, M.D.
GEAR PLANERS, Bevel 30^{*} \& $54^{\prime \prime}$ Glengon, M.D.
LATHIPS, $48^{\circ} \times 22$ S1 ${ }^{\prime}$ \& $48^{\circ} \times 2635^{\prime}$ Johnson.
PLANERS, $30^{\circ} \times 30^{\circ}{ }^{\circ} 8^{\prime}{ }^{\prime}, 30^{\circ} \times 36^{\circ} \times 10^{\circ} d 30^{\circ} \times 30^{\circ} \leq 11$
PUNCH, Multiple "'E" L\& A, cap. 340 tons

> LANG MACHINERY COMPAN
> LANG MACHINERY COMPANY
> 28th Street \& A.V. R.R.
> Pittsburgh, Pa

We Pay BEST PRICES for

Iron and Steel material and equipment; Industrial plants; Milis, rallroads; trackage, etc. For highest
SONKEN-GALAMBA CORP. 108 N. 2d St. Kansas City, Kans. Webuy and sell. Gei our guotations.

WELDERS

$300 \mathrm{amp} ., 12 \mathrm{KW}, 0 / 40$ volt Hobart ball bearing with 400 amp. 25 volt Llicoln ball benring with 20 HP.. 3 phase, $220 / 440$ volt 1800 KPM M.D.
 KF Motor.

THE MOTOR REPAIR \& MFG. CO. 1558 Hamilton Ave. REPAIR \& MFG. CO. Cleveland, ohlo

-REBUILT—
 LOWERS - FANS - EXHAUSTERS Connersville-Roota Dositive blowers entricugaig for gas and oll burater Ventlating fans and roof ventlators
 GENERAL BLOWER CO.
 of North Pearia St. Chicago, lll.

FOR SALE

Approximately 10,000 lbs. Angles $1 / /^{\prime \prime} \mathrm{x} 3 / 4^{\prime \prime} \mathrm{x} 3 /{ }^{3 \prime}$ in 7 -ft. and 8 -ft. lengths.
MORTON PRODUCTS COMPANY
MORTON, ILLINOIS

FOR SALI

Approximately 600 squares of cor rugated rooflng in good shape, with steel building, 60' steel trusses. Apply Thos. G. Patridis, 2941 Virginin Park, Detroit, Mich

Send your Inaulriei for
SPEGIAL ENGINEERING WORK

lo the

A. H. NILSON MACHINE COMPANY

 BRIDGEPORT, CONN.detignets and bullders of wite and ribbon tock lorming machines.
Fe also sollcit your bids for cam milling

Castings

NUKTH WALES MACHINE CO. INC North Wales. Grey Iron, Nickel, Chrome Molybdenum Alloys. Seml-steel. Superio quallty machine and hand molded sand biast and tumbled.

WANTED

Contact with well equipped machinery manufacturers for building press brakes, squaring shears, presses, etc., of a long established line, on contract orders having high priority rating. Address Box 654, STEEL, Penton Bldg. Cleveland.

Employment Service

SALARIED POSITIONS

$\$ 2,500$ to $\$ 25,000$
This thoroughly organized advertising service of 32 years' recognized standing and reputation, carrles on preliminary negotiations for positions of the caliber indicated above, through a procedure individualized to each client's personal requirements. Several weeks are required to negotlate and each individual must finance the moderate cost of his own campalgn. Retaining fee protected by refund provision as stipulated in our agreement. Identity is covered and, if employed, present positlon protected. If your salary has been $\$ 2,500$ or more, send only name and address for detalls. R. W. Bixby, Inc., 110 Delward Bldg., Buffalo, N. Y.

CLASSIFIED RATES

All classifications other than "Positions Wanted," set solld, minimum 50 words, 5.00 , each additional word .10 ; all capitals, minimum 50 words, 6.50 , each addilional word .13; all capitals, leaded, minimum 50 words 7.50 , each additional word . 15 . "Positions Wanted," set solid, minimum 25 words 1.25 , each additional word .05 ; all capitals, minimum 25 words 1.75 , each additional word .07; all capitals, leaded, minimum 25 words 2.50 , each additional word .10. Keyed address takes seven words. Cash with order necessary on "Positions Wanted" advertisements. Replies forwarded without charge.

Displayed classlfled rates on request.
Address your copy and instructions io STEEL, Penton Bldg., Cleveland.

IF YOU HAVE AN OPRORTUNITY

 TO OFFERUse the "Help Wanted" columns of STEEL. Your advertisement in STEEL will put you in touch with quallned, high-calibre men who have had wide tralning in the various branches of the Metal Producing and Metalworking Industrles.

Help Wanted

STRUCTURAL STEEL DESIGNER AND ESTIMATOR

With sound technical engineering education and knowledge of designing structural steel buildings and bridges, wanted for permanent employment by large independent fabricator. Those with Selective Service Exemption preferred. State salary, training, experience and references first letter. Address Box 660, STEEL, Penton Bldg., Cleveland.

WANTED: IN JOBBING FOUNDRY LOcated In Eastern Pennsylvanla, producing steel castings, electric process, ranging from 1 lb . to 2 tons, a man who is thoroughly familiar with heading and gating and has a good knowledge of molding and core making and is capable of handling men; acting in the capacity of assistant to foundry superintendent. In reply, please state age, experience and salary desired. Address Box 635, STEEL. Penton Bldg., Cleveland.

WANTED: YOUNG ENGINEER CAPABLE estimating and designing plate work. Should have plate shop experience. State salary desired first letter. Address Box 649, STEEL, Penton Bldg., Cleveland.

SUPERINTENDENT FOR SMALX SILEET, plate and light structural fabricating shop. Must be experienced in cutting. layout, setup and welding. Give age, resume of experience and salary desired. Address Box 659. STEEL. Penton Bldg. Cleveland.

WANTED: HEAT TREATMENT ENGIneer. Experienced with WD-4150 material preferred. Address Box 643. STEEL, Penton Bldg., Cleveland.

Help Wanted

LEBANON STEEL FOUNDRY
 Has an opening for an
 ASSISTANT PLANT ENGINEER

Duties will include construction and maintenance of buildings and equipment.
Applications, giving full informa. tion with respect to education and experience and enclosing photograph which will not be returned, should be addressed to Walter S. Giele, Lebanon Steel Foundry, Lebanon, Pa.

Wanted metallurgist - Capanle of oversecing the production of straight carbon and alloy steel castings-clectric furnace-steel foundry located in Eastern Pennsylvania. Prefer a man who is famillar with gamma-raying castings and magnetic testing. In reply state age, experience and salary expected. Address Box 650, STEEL, Penton Bldg., Cleveland.

MANUEACTURERS' REPRESENTATIVE. To represent well-known line of Government approved rust preventive coatings. Excluslve territories open in principal citles. Write full details of past experlence and type of accounts you are now contacting. Address Box 657, STEEL. Penton Bldg., Cleveland.

WANTED-MAN WITH EXTENSIVE EXperience to serve as assistant superintendent of blast furnaces in large steel company. 35 to 45 years of age with technical training preferred. State salary expected. Address Box 637, STEEL, Penton Bldg., Cleveland.

WANTED - EXPERIENCED METALIURgical engíneer for research only. Address Box 658, STEEL, Penton Bldg., Cleveland.

Advertise

IN STEEL
The "Used and Rebuilt

> Equipment" section is the weekly meeting place for buyers and sellers of good used or surplus machinery and supplies. Displayed classified rates are moderate.
> Send your instructions today to STEEL, Penton Building, Cleveland.

ADVERTISING INDEX

Where-to-Buy Products Index carried in first issue of month.

Abrasive Co.
Acheson Colloids Corp.
Acme Galvanizing Corp
Acme Steel \& Malleable Iron Works
Ahlberg Bearing Co.
Air Reduction
Ajax Electrothermic Corp
Alan Wood Steel Co
Allegheny Ludlum Steel Corp
Allen-Bradley Co.
Allis-Chalmers Mrg. Co.
Alrose Chemical Co.
American Aglle Corp.
American Air Filter Co., Inc.
American Brass Co., The
American Brass Co.,
American Bridge Co. Chain \& Cable Co., Inc.
Amerlean Chain \& Cable Co., inc. American Cable Division
Amerlean Chain \& Cable Co., Inc.
American Chain Division
merican Chain \& Cable Co........
Ford Chain Block Divislon
Amerlean Chain \& Cable Co., İnc. Page Steel \& Wire Division
American Chain Division of American Chain \& Cable Co., Inc.
American Chemical Paint Co.
American Engineering Co.
American Foundry Equipment Co.... 106
American Gas Association
American Hot Dip Galvanizers Assoclation
Amertcan Lanolin Corp.
American Metal Hose Branch of The American Brass Co.
American Metal Products Co
American Monorall Co.
American Nickeloid Co.
American Pulverizer Co.
Amerlean Roller Bearing Co.
Amerlean Rolling Mill Co., The.
American Screw Co
American Shear Knife Co.
Amerlean Solder \& Flux Co.
American Steel \& Wire Co.
American Tinning \& Galvanizing Co
Ampco Metal, Inc.
Amsler-Morton Co., The
Andrews Steel Co., The
Apollo Steel Co.
Armstrong-Blum Mfg. Co.
Armstrong-Blum M
Atlantic Stamping Co.
Atlantic Steel Co.
Allas Car \& Mrg. Co.
Atlas Drop Forge Co.
Atas Lumnite Cement Co.

B

Babcock \& Wllcox Co.
Balley, Wm. M., Co.
Baker-Raulang Co.
Baldwin Southwark Division, The Baldwin Locomotlve Works
Bantam Bearings Corp.
Barnes, Wallace, Co., Division of Assoclated Spring Corporation
Basic leefractories, Inc.
Bay City Forge Co.
Bay state abrasive Products Co.
Bellevue-Stratford Hotel
Bellis Heat Treating Co.
Belmont Iron Works
Berger Manufacturing Div., Republic Steel Corp.
Berkeley Equipment Co
Bethlehem Steel Co.
Blrdsboro Steel Foundry \& Machine Co.
Blssett Steel Co., The
Blanchard Machine Co.
Blaw-Knox Co.
Bliss \& Laughlin, Ine.
Bloom Engincering Co.
Bower Roller Bearing Co.
Bridgeport Brass Co.
Bristol Co., The
Broderick \& Bascom Rope Co.
Brooke, E. \& G.. Iron Co.
Broslus, Edgar E., Co.
Brown \& Sharpe Mig. Co.
Brown Instrument Co., The
Bryant Chucking Grinder Co
Bryant Machinery \& Engineering -
Bryant Machinery \& Engineering Co.

C-O-Two Fire Fquip

Crane Co.
Crawbuck, John D., Co.
Crosby Co., The
Cuban-imerican Manganese Corp
Cullen-Friestedt Co.

Cutler-Hammer, Inc. Back Cover

Darwin \& Milner, The
Davis I3rake Beam Co.
Dayton Rogers Mfg. Co.
Dearborn Gage Co.
22 Denison Engineerlng Co., The
DeSanno, A. P., \& Son, Inc.
Detroit Flectric Furnace Division,
Kuhlman Electric Co.
Detrolt Leland Hotel
Diamond Expansion Bolt Co., Inc...
Diamond Teol Co.
Dietert, Harry W., Co.
Disston, Henry, \& Sons, Inc.
Dow Chemical Co., The
Downs Crane \& Holst Co.
Dravo Corp., Englneering Works Div
Dravo Corp., Machinery Div.
Duifin Iron Co.
Dullen Steel Products, Inc.
E
Easton Car \& Construction Co
Edison Storage Battery Dlv. of Thomas A. Edison, Inc.
Electrle Controller \& Mifg. Co.
Electrlc Storage Battery C
Electro Alloys Co., The
Electro Metallurgical Co
Elmes, Charles F., Engineering Works
Enterprise Galvanizing Co.
co.

Electric Furnace Co., The

Equipment Steel Products Division of
Union Asbestos \& Rubber Co.
Erdle Perforating Co., The
Erde Perforath
Erie Forge Co.
Erie Foundry Co.

Euclid Crane \& Hoist Co.
Eureka Fire Brick Works
Ex-Cell-U Corp
Farnir Bearing Co., The
Fairbanks, Morse \& Co.
Fanner Mrg. Co.
Farquhar, A. B., Co., Ltd
Farval Corp., The
Ferracute Machine Co.
Fidelity Machine Co.
Finn, John, Metal Works
Firth-Sterling Steel Co.
Fitchburg Grinding Machine Corp.
Fltzsimons Co., The
Ford Chain Block Division of Ameri
can Chain \& C'able Co., Inc.
Foster, L. B., Co., Inc.
Four V Structural Steel Companies
Foxboro Co., The
Frantz, S. G., Co., Inc
Fuller Brush Co.
Gage Structural Steel Co.
Galland-Henning Mig. Co.
Galvanizers, Inc.
Garrett, Geo. K., Co.
General American Transportation
General Blower Co.
Ceneral Electric Co.
Gisholt Machine Co.
79 Globe Brick Co., The
Goodyear Tire \& Rubber Co., The
Granite Clty Steel Co.
Grant Gear Works
Graver Tank \& Mfg. Co., Inc.
Graybar Electrle Co.
Great Lakes Steel Corp.
Greentleld Tap \& Die Corp.
Gregory, Thomas, Galvanizing Works
Grinnell Co., Inc.
Gruendler Crusher \& Pulverizer Co... 131
Hagan, George J., Co.
Hallden Machine Co., The
Hanlon-Gregory Galvanizing Co.
Hanna Engincering Works
Hanna Furnace Corp.
Hannifin Mrg. Co.
Harbison-Walker Reiractories Co.
Harnischreger Corp.
Harper, H. M., Co., The
Harringtor: \& King Perforating Co..
Hays Corp., The
Heald Machine Co.
Heppenstall Co.
Hevi Duty Electric Co.
Hill, Jantes, Mfg. Co.
Hindley Mig. Co.
Hobart Bros. Co.
Homestead Valve vifg. Co
Horsburgh \& Scott Co.
Hubbard \& Co.
Fiubbard, M. D., Spring Co.
Huther Bros. Saw Mrg. Co.
Hyatt Bearings Division, General Mo-
tors Corporation
Hyde Park Foundry \& Machine Co..
Ideal Commutator Dresser Co.
Illinois Clay Products Co.
Independent Galvanizing Co
Industrial Brownhoist Corp.
Ingersoll Steel \& Dise Division, BorgWarner Corp.
Inland Steel Co.
International Nickel Co., Inc.
International Screw Co.
International-Stacey Corp.
Iron \& Steel Products, Inc.
Isaacson Iron Works

J

Jackson Iron \& Steel Co., The
James, D. O., Mfg. Co
$\mathrm{J}-\mathrm{B}$ Engineering Sales Co.
Jessop Steel Co.

Johnson Bronze Co.
Johnson Steel \& Wire Co., Inc.
Jones \& Lamson Machine Co.
Jones \& Laughlin Steel Corp.
Jones, W. A., Foundry \& Machine Co.
Joslyn Co. of California

	ge	New Jersey Zinc Co.	Socony-Vacuum Ofl Co inc.
Kardong Brothers, Inc.		New York \& New Jersey Lubricant Co.	South Bend Lathe Works
Keagler Brick Co., The		Nlagara Machine \& Tool Works...... 82	Southington Hardware Mrg. Co.
Kearney \& Trecker Corp.		Niles Steel Products Div., Republic	Standard Galvanizing Co.
Kemp, C. M., Mfg. Co.	104	Steel Corp.	Standard Steel Works
Kester Solder Co.		Nilson, A. H., Machine Co. 136	Stanley Works, The
Kidde, Walter, \& Co., I	127	Nitralloy Corp., The	Steel \& Tubes Division, Republic Steel
King Fitth Wheel Co.	132	Norma-Hoffmann Bearings Cor	Corp.
Kinnear Mig. Co.		Northwest Engincering Co. 93	Steel Founders' Society of Amerlca
Kirk \& Blum Mfg.	136	Norton Co.,	Steelweld Machinery Division, Cleve-
Koppers		0	d Crane \& Engincering Co..
Koven, L. O., \&		Ohio Crankshaft Co.	Sterling Grinding Wheel Div. of The
Kron Co., The		Ohio Electric Mrg. Co.	Cleveland Quarries Co.
1.		Ohio Galvanizing \& Mrg. Co. Ohio Knlfe Co., The	Stewart Furnace Division, Clucago Flexible Shaft Co.
Laclede Steel Co.		Ohio Locomotive Crane Co., The..... 135	Strom Steel Ball Co. .
Lake City Malleable Co.		Onio Seamless Tube Co., The -	Strong Steel Foundry Co.
Lakeside Steel Improvement Co., The		Ohio Steel Foundry Co., The . Front Cover	Stuart, D. A., Oll Co.
Lamson \& Sessions Co., The		Oliver Iron \& Steel Corp. 119	Sturtevant, B. F., Co.
Landis Machine Co.	13	Oster Mfg. Co., The	Sun Oil Co.
Lang Machtnery Co.	136	Oster Mes. Co., p	Superior Steel Corp.
Latrobe Electric Steel		Page Steel \& WIre Division Ameri-	Surface Combustion Sutton Engineering
Lawrence Copper \& Bron		can Chain \& Cable Co., Inc. 126	Swindell-Dressier Corp
Layne \& Bowler, Inc.		Pangborn Corp. 124	
LeBlond, R. K., Machine Tool Co., The		Parker, Charles, Co.	T ${ }^{\text {T }}$
Lee Spring Co., Inc.		Parker-kalon Corp. 20,21	Taylor-Wilson Mrg. Co.
Lehigh Structural Steel Co.			Tennessce Coal, Iron \& Rallroad Co.
Leschen, A., \& Sons Rope Co.		arkin, Wllliam M., Co	Thomas Machine Mfg. Co.
Levinson Steel Co., The		Pawtucket Screw	Thomas Steel Co., The
Levinson Steel Sales Co.		Penn Galvanizing Co	Thompson-Bremer \& Co.
Lewin-Mathes Co.		sylvania Indus	Tide Water Associated Oil Co
Lewis Bolt \& Nut Co.		Pennsylvania Salt Mrg. Co. $\overline{11}$	mken Roller Bearing Co
Lewls Foundry \& Machine Division of		Perkins, B. F., \& Son, Inc. 118	Timken Steel \& Tube Division, The
Blaw-Knox Co.		Pheoll Mrg. Co.	Timken Roller Bearing Co.
Lewis Machine Co., The		Philadelphta Gear Works	Tinnerman Products, Inc.
Lincoln Electric Co., The			Titanium Alloy Manufacturing
Lincoln Engineering Co.		Pittsburgh Crushed Ste	oledo Stamping \& Mrg. Co.
Lincoln Hotel	129	Plttsburgher Hotel, The 134	Tomkins-Johnson Co., The
Linde Air Products Co., The		Pittsburgh Gear \& Mach	Torringlon Co., The
Link-Belt Co.		h Lectro	Truscon Stecl Co.
Logemann Bros.		h Rolls	
Lovejoy Flexible Coupling Co.			
Lubriplate Division Fiske Brothers		ymouth Locomotive Works Division	Union Carblde \& Carbon Corp
Refining Co.		Of The Fate-Root-Heath Co.	Union Drawn steel Div., Republic
Lyon Metal Products,		Poole Foundry \& Mach	Steel Corp.
Mc		Pressed steel	United Chromium, Inc.
McKay Machi		Progressive Weld	United Engineering \& Foundr
McKee, Arthur			United States Graphite Co.
McKenna Metals			United States Steel Corp., Subsidiaries
		Racine rool \& Machine	4, 15
M		Ransohoff, N., Inc.	Cited States Steel Export Co. 14, 15
MacDermid, I		Raymond Mfg. Co., Division of Asso	
Mackintosh-Hemphill		ciated Spring Corp.	Valley Mould \& Iron Corp.
Macklin Co.	3	Reading Chain \& Block Co	Vanadlum-Alloys Steel Co.
Macwhyte Co.		dy-Power Co.	Vanadium Corporation of America
Machler, Paul, Co., The		Electric \&	Van Dorn Iron Works Co., The ...
Mahr Manuracturing Co.	1 Inside Fronl Cover	Vaughn Machinery Co., The
Mallory, P. R., \& Co., Inc		Republic Steel Corp. 23	Veeder-Root, Inc.
Mathews Conveyer Co.	123	Revere Copper and Brass, inc.	
Maurath, Inc.		Rhoades, R. W., Metallne Co., Inc	W
Mercury Mig. Co.		Riverside Foundry \& Galvanizing Co.	Waldron, John, Corp.
Mesta Machine Co.		Robertson, H. H., Co. 131	Walker-l'urner Co., Inc.
Metal \& Thermit C	105	Roebling's, John A., Sons Co. 103	Wall-Colmonoy Corp.
Michigan Tool Co.		Rollway Bearing Co., Inc	Warner \& Swasey Co.
Microsnatic Hone Corp.		Roosevelt Hotel	burn Wire Co.
Midland Structural steel	85	Roper, George D., C	Watson-Stillman Co., The
Midvale Co., The		Ruemelin Mrg. Co.	Wayne Chemical Products Co.
Mliwaukee Foundry Equipment		IRussell, Burdsall \& Ward Bolt \& Nut	Wean Engineering Co., Inc.
Missouri Rolling Mill Corp.		Co.	Weinman Pump \& Supply Co., The
Moltrup Steel Products Co.		Ryerson, Joseph T., \& Son, Inc. 2%	Welrton Steel Co.
Molybdenum Corporation of America			Welding Equipment \& Supply Co.
Monarch Machine Tool Co., The			Wellman Bronze \& Aluminum Co.
Monarch Steel Co.		Samuel Frank \& Co.	Wellman Engineering Co. 133
Morgan Construction Co.	26	San Franclsco Galvanizi	Westinghouse Electric \& Mfg. Co.
Morgan Fingineerlng Co.			West Penn Maclinery Co.
Morton Salt Co.			West Steel Casting Co.
Motch \& Merryweather Machinery Co.	73		Wheeling Steel Corporation
Motor Repalr \& Mfg. Co.	136		hitcomb Locomotive Co.. The
		Scully Steel Products Co	tehead Stamping Co.
National Acme Co.		Sellers, Wm., \& Co., Inc.	Corp.
National Bearing Metals Corp.		Shakeproof, Inc.	athers, Inc.
National Broach \& Machine Co.		Shaw-Box Crane \& Holst Division,	illilams, Critienden \& Co
National Carbon Co., Inc., Carbon		Manning, Maxwell \& Moore, Inc...	Illams, J. H., \& Co.
Sales Division.		Sheffield Corp., The	ngineering Co.
National Cylinder Gas Co.		Shell Oll Co., Inc.	Witt Cornice Co.,
National-Eric Corp.		Shenango Furnace Co., The	
National Forge \& Ordnance		Shenango-Penn Mold Co. 131	Worth Steel ${ }^{\text {cho. }}$
National Lead Co.		Shepard Niles Crane \& Hoist Corp.	Wyckofr Drawn Steel Co
National Roll \& Foundry Co.		Shuster, F. B., Co., The	
National Screw \& MIfg. Co.		Sllent Holst Winch \& Crane Co.	
National Steel Corp.18,	132	Simonds Gear \& Mrg. Co. 133	Yale \& Towne Mrg. Co.
National Telephone Supply Co., Inc.		Simonds Saw \& Steel Co. 115	Yoder Co., The
National Tube Co.14,	15	Sisalkraft Co., The	Youngstown Alloy Casting Corp.
New Departure, Division General		SKF Industries, Inc.	oungstown Sheet \& Tube Co., The
Motors Corp.		Smith Oil \& Refining Co.	Z
New England Screw Co.		Snyder, W. P., \& Co.	Zeh \& Hahnemann Co.

Here's a race that proves you can save precious production hours by use of the new Airco "45" High Speed Machine Cutting Tip. Both of these cutting torches, mounted on Airco Radiagraphs, started cutting this heavy steel slab together. But at the end of 45 seconds, one cutting machine is far ahead of the other-the machine equipped with the Airco " 45 " High Speed Tip. Measurement of the lead taken by the Airco " 45 " equipped machine in a little less than two minutes proves that this tip cuts 20% to 30% faster than the standard cutting tip.

The Airco " 45 " tip, developed at a time when greater
production is a critical need of the war effort, has a nozzle with a divergent exit portion - a design that makes it possible to eject a narrow, high velocity stream of cutting oxygen. As a result of burning a narrower cut, or kerf, the Airco " 45 " cuts faster and more economically. In order to obtain these higher speeds, oxygen pressures of from 85 to 125 psi must be used.

Put your machine gas cutting operations in high gear with Airco " 45 " High Speed Machine Cutting Tips. They are at present available in sizes to cut metal up to 8 inches thick.

General Offices: 60 EAST 42nd ST., NEW YORK, N. Y.
IN TEXAS
MAGNOLIA-AIRCO GAS PRODUCTS CO.
General Offices: HOUSTON, TEXAS
OFFICES IN ALLPRINCIPAL CITIES

Arything and Euerything for GAS WELDING or CUTTING and ARC WELDING

[^0]: Materfal appearing in this department is rully protected by copyright, and its use In any form whatsoever without permission is prohibited.

[^1]: \dagger Dow-Jones Serles.
 -Leading member banks Federal Reserve System.

[^2]: References
 Weldability - Cracks and Brittleness under External Loads, The Welding Journal, August, 1941.
 The Eifects of Carbon on the Welding of Plain Carbon Steels, The Welding Journal, August, 1939.

 Report of Subcommittee on Welding of Low-Alloy Steels, The Welding Journal, January, 1938.
 Veldability of Medium Carbon Steel by R. W. Emerson, The Welding Jou'nal, October, 1938.
 Weld Hardening of Carbon and of Alloy Steels by H. J. French and T. N. Armstrong, The Welding Journal, October. 1939.

[^3]: New production demands require new production speeds! quire new production speeds!
 With Hobart Arc Welding, metal With Hobart Arc Welding, metal
 labrication work is greatly iabrication work is greafly
 speeded up because non-prospeeded up because non-pro-
 ductive time is almosi eliminatductive time is almost eliminated. With Hobart's exclusive Hemote Conitol operator regulates the welding heat at the work, removing the necessity of returning to the machine to make arc adjustments: and with 1,000 combinations of current and voltage lo choose from he can get Write today for full details.
 HOBADT

