EDITORIAL STAFF
E. L. Shiner

Editor-in-Chief
E. C. Kreutzberg Editor
A. J. Haln

Managing Editor
G. W. Birdsall

Engineering Editor
I. D. Knox

Steel Plant Edifor
Guy Hubbard
Machine Tool Editor
Arthur F. Macconochie Contrihuting Editor

D. S. Cadot

 Art EnitorASSOCIATE EDITORS

ASSISTANT EDITORS

I. C. Sullivan Jay DeEulis	
La Verne Nock	D. B. Wilkin

BUSINESS STAFF
G. O. Hays

Business Manager
R. C. Jaenke

Advertising Manager
C. H. Bailey

Alverrising Service
New York......E. W. Kreutzberg B. C. Snell

Pittsburgh
S. H. Jasper

Chicago.
Cleveland
L. C. Pelott R. C. Jaenke D. C. Kiefer
J. W. Zuber

Circulation Manager

MAIN OFFICE
Penton Building, Cleveland

BRANCH OFFICES

New York............ 110 East 42nd St. Chicago 520 North Michigan Ave. Pittsburgh............ Kopprers Building Detroit. 6560 Cass Ave. Washington..... Nitional Press Building Cincinnati.......... 1734 Carew Tower San Francisco...... 1100 Norwood Ave. Oakland, Calif., Tel. Glencourt 7559 London 2 Caxton St. Westminster, S.W. I

Publifhed by TGE BhNTUN JuBlishina Co.. Penton Buithig. (Ieveland. Oho. E. L. Shastik, Previfent; and G. stunsurer:
Siember, Audts Burenu of Circulatons:
ctated Busfress l'upers luc., and Natlonal l'ubilshers Ashoclation.
Publlshed every Monday, Subscripton in the United States and phestenlulis, C'anada, Mexico Cuba. Central und shuti Amierlca. une year st: two yeara $\$ 10$: all other countries.
Single coples (current lsaues) 2 sc .
Entered as second class Inacter at the nostonlee at Cleveland. under the Act of Alarch 3 , 1 :ig. conyright 1942 by the i'enton lubilshing io.

Volume 110--No. 12
March 23, 1942
BEHIND THE SCENES WITH STEEL 4
HIGHLIGHTING THIS ISSUE 23
EDITORIAL-Now We Have a Cheer Leader 25
NEWS
Equipment Builder Converts Plant to Manufacture Guns 26
Bumper Manufacturer Awarded \$306,000,000 in Plate Orders 30
Arms Maintenance Program Offered Army, Navy by GM 32
Steelworks Operations for Week 33
Material Shortages Hamper Production in Occupied Europe 34
Priorities-Allocations-Prices 35
Bomb Production Accelerated by Spinning Process 35
Fewer Reports on Priority Orders to be Required by War Board 40
Dutics of 12 WPB Division Heads Clarified by War Production ChicE ${ }^{1}$ t^{2}
War Board Grants Railroads Broader Priority Assistance
War Board Grants Railroads Broader Priority Assistance
Iron, Steel Expansion Program Scveral Months Behind Schedule $+3$
Auto "Graveyard" Scrap Survey Organized in Northern Ohio 43
Canada to Make Magnesium Metal; New Plate Mill In 49
Men of Industry 50
Obituaries 51
Activities of Steel Users, Makers 52
Meetings 53
Assembly Line Methods Used to Build 200 Liberty Ships 55
Iron Ore Shipped from 165 Lake Superior Mines in 1941 56
Three Quarters of U. S. Steel Output for War Purposes 57
WINDOOWS OF WASHINGTON 36
MIRIORS OF MOTORDOM 45
THE BUSINESS TREND 59
TECHNICAL
Clutches Welded Oil-Tight Automatically 62
Builds Economical Scrap Breakers from Old Rotary Pumps 63
Converts Auto-Body Plant to Production of Aircraft Parts-By Herbert Chase 64
Load-Center Power Distribution System Saves Material and Time 72
Aircraft Drop Forgings 79
Metal Finishing
Substitutes for Zinc Coatings 68
Progress in Steelmaking
Modern Hearth Refractory Practice-By H. N. Barrett Jr. 80
loining and Welding Automatic Welding in Ship Construction 86
Matcrials Handling
Improved Packing Method Relieves Container Shortage, Steps Up Han- dling-By Paul Thompson $9+$
INDUSTRIAL EQUIPMENT 100
MARKET REPORTS AND PRICES 109
CONSTRUCTION AND ENTERPRISE 127
INDEX TO ADVERTISERS 136

11 PAYS 5 WAYS

Above: Ex-Cell-O Style 39-A for precision grinding internally threaded work. One of nine styles of Ex-Cell-O standard thread grinders.

1D2)CN ...Ex-Cell-O engineers, who introduced precision thread grinding to U.S. industry, are familiar with today's threaded work needs. Ex-Cell-O thread grinders are designed to meet these needs specifically.
4 CONGTRIGON . . Ex-Cell-O thread grinders are substantially, compactly built-io give years of service-with base, work table, confrols, compartments, etc., all integral parts of a uniform exterior design. Moving parts are made for precision operation. Work rable slides, for instance, are heavily ribbed and normalized to eliminate warpage. Hardened, ground and lapped steel rollers support work table on scraped ways. Anti-friction rollers are retained in steel carriers so that table moves with uniform freedom, preventing variation of table drag that would affect accuracy of work.
3 ADAPHABJLI \ldots Within the designed capacity of each of nine Ex-Cell-O standard thread grinding machines-automatics, universals, and plain production - a wide range of work is possible. Users of Ex-Cell-O precision thread grinders are flnding that on many work pieces more overall speed and economy are aftained by precision grinding all threads called for, including even those not requiring the extreme accuracy of grinding.

4WDI Y Mill 10 F SML $3 . \ldots$ Ex-Cello has developed precision thread grinding to cover the many requirements of American industry for precision threaded work. There are available nine different styles of Ex-Cell-O thread grinders-all standard machines - with greatest practical interchangeability in use of dressers and lead screw and nur assemblies.

5MADE BY DEPRENDABIE FIRM . . . only one standed acceptable at Ex-Cell-O- the greatest commercial accuracy it is possible to aftain, whether it be in the designing of precision thread grinders or any of the various other precision machines and fools bearing the Ex-Cell-O name.

HIGHLIGHTING THIS ISSUE OF ゴ『己运

Steel＇s review of recent developments in the iron and steel industry of Europe reveals that the race to produce implements of war is at terrific tempo（p．34）；it proves that Donald M．Nelson＇s call for all－out production here is a ringing challenge for all industry－no matter what the nature of its business has been in normal times．Manufacturers again and again are urged to use all their ingenuity in learn－ ing how they too can convert to war produc－ tion．Steel this week tells pictorially（pp．26－ 29）how facilities formerly devoted to produc－ tion of iron and steelworks equipment now are engaged on antiaircraft gun carriages；it tells how a spring and bumper manufacturer （p．30）has gone into production of armor plate．

While industry still is far short of all－out production，progress in that direction is rapid． General Motors Corp．（p．32）announces an im－ portant three－point program

Spin Bomb
Cases to help keep planes，guns and tanks at highest possible fighting efficiency．Produc－ tion of four－engined bombers on a moving assembly line is a reality（p．31）． A new spinning method has increased pro－ duction of bombs（p．35）．A new shipyard will turn out Liberty cargo vessels by assembly line technique（p．55）．．．．On the other hand （p．43），governmental red tape has thrown the iron and steel expansion program several months behind schedule．．．．In the meantime， plate supply（p．109）has caught up with most essential needs．

WPB＇s priorities staff has been reorganized （p．37）；additional civilian production will be curtailed；a press and shear builder may in－ crease his prices；two bil－
Priority Reports Reduced lions will be expended for communications equipment． ．．．Number of required re－ ports under priority orders has been reduced（p．40）；OPA no longer re－ quires affirmations of compliance；discounts on bale ties have been reinstated；plumbing and heating equipment will be simplified．．．．Du－
ties of WPB division heads have been clarified （p．41）．．．．Railroads have broader priority assistance（p．42）．．．．A scrap industry com－ mittee will function with OPA（p．125）．．．．St． Louis blast furnace will be dismantled and re－ assembled in Mexico（p．125）．．．．Low－grade Cuban nickel ores will be developed（p．54）．．．． Steel mills are authorized to pay higher freight on scrap（ $\mathbf{p} .36$ ）．．．．A portion of the lake iron ore fleet is moving northward，the earliest start in history（p．122）．

Conversion of an auto－body plant to produc－ tion of wing sections and other aircraft parts by adapting double－acting crank presses to work formerly done on drop ham－

Auto Bodies To

 Aircraft Parts mers is described（p．6t）by Herbert Chase．．．．Load－ center power distribution（ 1 ． 72）is an important develop－ ment as it saves important amounts of copper and other materials．．．．Use of dead burned magnesium oxide clinker（p．80）for basic open－ hearth and electric furnace bottoms minimizes repair and rebuild time，according to H ．N． Barrett Jr．．．．Economical scrap breakers were built（p．63）from old rotary pumps and welded structural sections to reduce long spiral－shaped cuttings to small pieces．Various substitutes for zinc coatings have been developed，many of which perform well according to information in a recent report（p． 68）issued by the American

Substitutes For
 Zinc Coatings

 Iron and Steel Institute．．．． Exceptionally large and fast automatic machines using the Unionmelt welding process （p．86）are doing important work in speeding our shipbuilding program．Much data on per－ formance of this equipment is presented．．．． An improved packing method（p．94）helps re－ lieve the container shortage by conserving ma－ terials，points out Paul Gibson．．．．Fluid－drive clutches are welded oil－tight in a high production setup（p．62）utilizing automatic shielded carbon－ arc equipment．
Whenever
 Steel is Needed.

In peace and war, in good times and bad -year-in year-out for a century-Ryerson stocks of steel have been American industry's prompt, dependable source of supply.

Today, war production requirements come first but Ryerson is serving, too, the needs of other essential industries from which flow the goods that feed, clothe and house the nation,- that supply its power, its minerals and other raw materials all part and parcel of the mighty war endeavor.

The two-fold Ryerson function is to supply steel

Joseph T. Ryerson \& Son, Inc., Chicago, Milwaukee, St. Louis, Cincinnati, Detroit, Cleveland, Buffalo, Boston, Philadelphia, Jersey City.

as the editor views the news

sTEEL

March 23
1942

NOW WE HAVE A CHEER LEADER.

A careful perusal of the speeches Donald M. Nelson has made in connection with his energetic drive for more production now shows that ho knows the average American citizen better than most of the supposedly astute politicians in Washington.

Apparently Mr. Nelson has enough imagination to realize that he can increase production by a substantial percentage if he can arouse the proper spirit throughout the nation. Therefore, he is bending every effort to promote teamwork, to inspire rivalry in achievement and to lift morale to the highest possible plane.

He has made remarkable progress in this direction. In less than two months he has whipped up an enthusiasm for production which now is growing by leaps and bounds daily. He is proving to be the cheer leader which the nation needs.

This cheer leadership business is vitally important. It is so important that every man identified in any way with industry should support Mr. Nelson to the hilt in his one-man campaign to re-create the fighting American spirit on the home front

Such support should be prompted by common sense and simple patriotism. But it also can be justified on the sordid basis of selfish interest. The spirit which Nelson is trying so hard to instill throughout the nation is the one thing that can save the institutions we cherish most highly. It is the one thing which will clear the path for the reforms that are necessary for the preservation of mrivate industry and free labor.

Some business men are dubious about the Nelson joint shop committees, about the administration's prolabor labor policy, and about unlimited nonessential government spending. All of the dire threats which these activities suggest will dissolve into thin air before the might of the spirit for unity in war which Mr. Nelson is trying to develop.

No OCD foolishness, no double time for Sundays, no restrictive labor legislation of any kind, no unnecessary government expenditures, no government persecution of any class can persist in the face of an American public which is fired by the spirit of determination to win.

If this nation ever was furnished a fortuitous inspiration, it is that which beckons now. MacArthur on the battle front; Nelson on the production line!

We cannot let them down.

Editor-in-Chief

OT many months ago steelworks equipment was coming out of the finishing end of a plant nestled in the hills of Pennsylvania; today 37 -millimeter antiaircraft guns are wheeled out the same doors and dispatched on their way to coastal or other points to spit bullets into axis planes and knock them from the skies.

The changeover from peacetime to wartime production was effected in a minimum of time. Machine tools long used for putting the finishing touches on heavy equipment for making finished steel were moved from one position to another and new units purchased to round out shop facilities. Cranes began to rumble overhead, and soon workmen were tooling iron and steel parts for the 37 -millimeter antiaircraft gun and assembling them into complete units.

Many of the steps involved in the machining, inspecting, and assembling of the gun are presented herewith. All photographs from the Office of Emergency Management, by Hollem.

1. This master machinist lays out precision parts that go to make up a 37 -millimeter antiaircraft gun carriage. Work of this kind demands a certain "tool room technique"
2. Milling operation on main frame of 37 -millimeter antiaircraft gun carriage. Job demonstrates the importance of such "crittcal machine tools," as large horizontal boring, drilling and milling machines
3. Ball and socket type leveling mounting for a 37 -millimeter antiaircraft gun carriage is machined in Bullard vertical turret lathe. Leveling assembly permits gun to be kept on an even keel on all types of terrain
4. In this particular milling operation a steel axle bracket mounted in swinging fixture
is being slotted on an arc of predetermined radius by a high-speed end mill in a Milwaukee milling machine
5. Hold-down clamp used in assembly of 37 -millimeter antiaircraft gun carriage involves face machining to predetermined radius. This is accomplished in a standard lathe by a special support for cross-slide tool rest. To enable quick loading and unloading of work a special face plate fixture has been designed
6. An important part in speedy and accurate control of 37 -millimeter antiaircraft gun is the traversing mechanism which must be heavy and manufactured to withstand shock of travel over rough terrain and rapid firing of gun. Typical of parts which make up this assembly is the steel casting shown herewith in process of being machined in a Giddings \& Lewis horizontal boring, drilling and milling machine

Plant to Manufacture Guns

10. Like α modern machine tool, the 37 -millimeter antiair craft gun mount has been "tailored to fit." Aiming and control are co-ordinated in such a way that by turning cranks mechanically connected to the elevating and swiveling mechanism, the gun can be made to follow its rapidly moving target. This is an illustration of control mechanism as seen from seat of man operating swiveling mechanism His companion positioned at his right operates a similar control for elevating gun. Note that maximum rigidity has been combined with a minimum of weight throughout entire mechanism by use of scientifically designed ribbed construction
11. View of assembly department looking from front to rear and showing progressive growth of 37 -millimeter antiaircraft gun mount from bare frame to finished product. This illus tration gives a particularly clear conception of the manner in which plates, shapes, tubes, forgings and castings have been combined to form a strong, rigid and light foundation for the gun. Special handling devices expedite assembly Incidentally, more than 200 subcontractors are contributing toward complete unit
12. Final adjustments are being made to this completed 37 millimeter mobile antiaircraft gun. Gun is shown in a traveling position with wheels set for towing over roads However, outrigger at left has been swung up as it would be if wheels were retracted to sel chassis down on the ground. Mechanic at right is seen giving a running test to elevating mechanism, gun being shown at almost maximum elevation

Spring Manufacturer

Awarded \$306,000,000 in

Armor Plate Orders

Pittsburgh district company accepts "parent" responsibility for subcontracting to 15 former competitors . . .
Short cuts discovered

IN A PITTSBURGH suburb a small company has been making auto springs and bumpers for 29 years. Now this company is going to make armor plate for tanks, and make it in relatively staggering quantities.
The largest production month the concern ever had in its two plants was $\$ 600,000$ worth of springs and bumpers. This will be multiplied by about 50 , for orders are now placed for $\$ 306,000,000$ worth of armor plate and the company will take the "parent" resporsibility on subcontracting to produce all the armor plate needed for M-4 and T-7 tanks.
Fifteen other spring and bumper companies, formerly competitors, have "pitched in" to help.

Executives of the "parent" company started a year ago to find out what war work could be done in their plants. Engineers studied thousands of war articles-shells, shot, plane parts, cannon, tanks, They visited other plants. They conferred with government procurement officials and Army and Navy officers. They picked armor plate as best suited to the largest percentage of their machines and skilled manpower.

Within 60 days this company will start turning out plate. It expects to reach a capacity equal to its peacetime peak by late June, and to double that by Nov. 1. Principal step in the processing of this armor plate is heat treatment. Similar procedure was followed to make springs and bumpers. The company had the furnaces and heat treatment experts. Some available presses could be used to
straighten the armor after hardening.
But engineers hit a snag. The Army required planed and machined edges for close tolerances so that when assembled on a tank the steel plates would fit perfectly. The plants lacked both machines and trained men to do it.
"Why do those pieces have to fi: so closely?" asked the engineers. "We could grind the edges instead of planing them, and weld the pieces together on the tank." This would be quicker work and make the tank stronger, the engineers contended, and they had the machines and men to do it. The War: Department approved the change. That solved one problem.

WPB Provided Equipment

They had no flame equipment to cut the plates to size. The WPB said it would get this equipment and lease it to the company.

Some drill presses were available to bore holes in the plates buc there were not enough. The WPB provided radial drill presses, as well as cranes to move the heavy plate. Also needed was shotblasting for cleaning the plate.

The Pittsburgh company had been supplying springs and bumpers to one auto corporation for 25 years. The corporation, with a large contract for tanks, needed armor plate. Large companies like to do business with suppliers that have proved their worth; so in a few days, a contract was signed.
"Give us 1000 sets a month-1500 -maybe 2500 ," said the corporation. The program grew to almost fantastic proportions.

Another large corporation had taken a contract to make tanks. It, too, had bought peacetime products from the spring and bumper concern, and it, too, called for armor plate--lots of it. That presented a new problem.
Executives of the spring company were called to Washington by an official of the Facilities Section of the Tank and Combat Vehicle Division of Army Ordnance. The War Department asked a lot of questions-"Couldn't other spring and bumper companies make tank armor plate?"-"How much armor plate could this branch of the auto industry turn out?"-"Would the concern become the 'parent' subcontractor and find adequate sources to provide the huge quantity of armor?"
The Washington conference was on a Saturday. On Sunday, letters went out to the other bumper makers, asking them to send representatives to a meeting in Toledo the following Wednesday.
They were all there, with engineers, production men and executives. The Army outlined the program of converting the entire spring and bumper industry.

The Pittsburgh company gave its one-time competitors a detailed resume of its year-long investigation of armor plate, together with blueprints, plans, manufacturing methods and results of tests.

Operations Divided

A second meeting was held within a week. More spring-making firms came in. So did a farm equipment manufacturer, and a plant that turns out interior hardware for autos. The companies took the blueprints and detailed plans and adopted the "parent" concern's methods. Two weeks later, 15 companies were allotted orders for a total of $\$ 25,000,000$ worth of plate a month.
Some of the companies make only certain pieces of the armor plate. The general plan follows auto production methods, combined with precision manufacturing. "Plant A" gets the steel from the mills, flame cuts the plate to size and ships the pieces to other companies. These plants heat treat, straighten, sand blast, drill, grinci and machine (some of the plants do only some of these operations). then ship the plate back to "Plant A," where it is painted, stenciled, assembled into sets, and shipped back to the tank plants.

The "parent" concern has move out old machinery and moved in new. Many of its 700 employes at the two plants stayed on the job to help set up the new plant. The management expects all of the men back soon-and many more, to be trained.

Here They Come! "Eyes" and Bombers in Mass Production

OUTSTANDING industrial pictures of the week, these two photos taken in Consolidated Aircraft Corp.is San Diego. Calif., plant. give evidence of the progress being made in mass production of aircraft for the fighting forces.
BELOW, mechanized assembly line for two-motored flying boats. These PBYs-called Catalinas by the

British flyers-are in service in considerable numbers as "eyes" for the United Nations" fleets. The flying boats weigh 15 tons, have a speed of more than 200 miles an hour, range of more than 4000 miles. ABOVE, heavy four-engined bombers on a moving assembly line.

NEA photos, passed by censor.

Arms Maintenance

Program Offered

Army, Navy by GM

GENERAL Motors Corp., Detroit, has announced a three-point program to help keep the planes and tanks and guns of the United Nations at highest possible fighting efficiency. (See Mirrors of Motordom, Steel, March 9, p. 47). As disclosed last week by C. L. McCuen, vice president in charge of engineering, General Motors has advised the Army and Navy that it will:

1. Help train the enormous number of mechanics required to keep a modern task force in motion by maintaining schools for Army and Navy instructors.
2. Place its own engineers in the field to expedite reports on operating experience so that its war products can be improved constantly.
3. Assist the Army and Navy in having replacement parts on the spot when needed.

The training job alone calls for expenditures totaling not less than $\$ 5,000,000$ for the current year. It will mean training thousands of instructors in scores of centers throughout the country.

Special staffs have been set up under Mr. McCuen to co-operate with the corporation's manufacturing divisions in promoting each of these three activities. John E. Johnson, former sales manager, General Motors of Canada Ltd., has been appointed director of the Department of Training Service; W. J.
(Photos, Top to Bottom)
TWO members of instructor training school for Army men at General Mo. tors Institute, Flint. Mich., disassembling clutch of diesel tank engines. Note twin engines with accessories mounted
on outersides

-

PROSPECTIVE instructors learn how to "flip" a diesel tank engine to inspect connecting rods, crankshaft and oil pump. The school is graduating 25 instructors a month for the armored force training center at Fort Knox, Ky.
C. E. WILSON (left), president, General Motors Corp., Maj.-Gen. Jacob L. Devers, chief of armored forces, and O. E. Hunt, vice president of GM, discuss new three-point war maintenance program launched by the corporation

Davidson, a General Motors engineer of wide experience, will have charge of the Engineering Service Group, while M. D. Douglas, Chevrolet parts and accessories manager, will handle parts distribution.
Present plans call for the department of training service to assist in or operate schools for ten GM designed products and a similar number designed outside of General Motors. In the former category are trucks, diesel engines, tanks, Allison aircraft engines and propellers. In the latter are air-cooled engines, guns of various sizes, planes and torpedoes.

In addition to training officers and enlisted men as instructors for service at camps and bases and in the field, General Motors also has taken on the job of developing technical information for the Army and Navy and material for Army and Navy manuals and instruction books.

Divisional heads have been warned of the urgency of the program and have been advised that schools should get under way at least 90 days before volume deliveries of any product reach the field. In the case of divisions making certain types of products-cartridge cases, for example-training schools are not needed. Other divisions, however, may have to organize schools even though they hold no direct war contract because of the importance of the parts subcontracted to them. This is true in the case of diesel engines for tanks.

Known as Four Echelon System

The General Motors Institute at Flint, Mich., has set up facilities for training men to staff divisional schools. If the divisions have no men with teaching experience available, they are advised to send experienced men to Flint for basic instruction in teaching.

The training program follows the design, standards and regulations set up for the armed forces and known as the Four Echelon System.

Under this system the enlisted personnel of the armed forces are trained for four different types of maintenance work. In the first echelon are the men who operate the equipment in the field. In the second echelon are field mechanics working from light repair units The third echelon includes men in semimobile shop units where major repairs and replacements are made, while the fourth echelon covers the permanent overhaul depots.
General Motors also has launched a co-operative program with the armored force training center at Fort Knox, Ky., training 25 men per month as diesel engine instructors. This school has been set up at the General Motors Institute, and the first class was graduated recently.

PRODUCTION .

PRODUCTION of openhearth, bessemer and electric furnace ingots last week remained steady at $95^{1 / 2}$ per cent. Four districts advanced, three declined and five were unchanged. A year ago the rate was $991 / 2$ per cent; two years ago it was $62^{1 / 2}$ per cent, both rates being computed on capacity as of those dates.

Youngstown, 0.-Rose 1 point to 95 per cent, with 75 open hearths and three bessemers in production. A drop of 1 point is scheduled this week with Republic Steel Corp. taking off one open hearth at Warren, O., because of scrap shortage.

St. Louis-Receded $1 / 2$-point to 83 per cent as one interest took off a large open hearth for repair and another added two small furnaces as scrap supply increased.

Chicago-Advanced 1 point to 104 per cent, $1 / 2$-point below the December peak. Scrap supply is barely sufficient for this rate. Three companies increased activity, two held even and one dropped several points.

Cleveland-Unchanged at 91 per cent.

Birmingham, Ala.-With 23 open

District Steel Rates

Percentage of Ingot Capacity Engaged In Leading Districts

[^0]hearths in production the rate remained at 95 per cent for the sixth week.

Central eastern seaboard-Steady at 88 per cent, scrap supply preventing a higher level.

Detrolt-Declined 4 points to 83 per cent because of scrap shortage. Ford Motor Co. steel plant is operating only about two-thirds capacity.

Cincinnati-Resumption by a producer after being shut down for repairs increased production 7 points to 87 per cent.
Buffalo-Lacking scrap for idle furnaces the rate remained steady at $79^{1 / 2}$ per cent.

New England - With all open hearths melting the rate attained 100 per cent, up 5 points.

Pittsburgh - Open-hearth repairs caused a drop of 1 point to 94 per cent.

Wheeling Held its rate steady at $81^{1 / 2}$ per cent.

Tennessee Coal \& Iron Orders 73 Koppers Ovens

Tennessee Coal, Iron \& Railroad Co., Birmingham, Ala., subsidiary of U. S. Steel Corp., last week awarded a contract to Koppers Co. for 73 Koppers-Becker coke ovens at Fairfield, Ala., according to Joseph Becker, vice president, Koppers Co.
The contract includes auxiliary equipment to process gas from these ovens. This order will raise the total of Koppers and KoppersBecker ovens at Fairfield to 509. Construction will begin at once.

Materials Shortages

Hamper Production

In Occupied Countries

England tightens controls over metals output following defeats in Far East . . . Russia regaining part of industrial capacity

By J. A. HORTON

British Correspondent, STEEL

Abstract

BIRMINGHAM, ENGLAND AMONG the many important developments in the war situation in the last three months none has more significance than the Russian comeback. The enemy, which at one stage was knocking at the very gates of Moscow, has not only been checked but driven back all along the enormous front, despite the hampering effects of the Russian

 winter.The effect on industry in the So. viet Union must be of considerable proportions, and although the "scorched earth" policy put out of action industrial capacity in many towns, the freeing of these towns from the invader will be followed as soon as practicable by a return to production, while of course, there is the fact that industrial areas which were menaced a few months ago can continue unmolested in their work of supplying the needs of the Russian fighting services.
The advancing armies are also capturing large quantities of ammunition and equipment from the retreating Germans, though how serviceable these may be is difficult to say.
One thing is certain; Hitler will make a desperate effort to check the Russian armies in the spring.
Reports from Germany received by the British Ministry of Economic Warfare indicate that a tremendous production drive is in progress, probably presaging a large-scale offensive. Recent changes in the German civil constitution have been undertaken in order to increase production to the maximum and reduce civilian consumption to a minimum. A minister of rationalization has
been appointed. The Germans are closing down textile factories in order to turn over workers to war production. A corresponding drive to increase the labor force is in progress, and German newspapers are forecasting the conscription of foreign workers in occupied countries. Factory work is tending more and more to be staggered owing to the shortage of electrical power. Thirty German propaganda fairs which were to have been held all over Europe this year have been canceled.
In the occupied zones of Europe Germany is doing all she can to keep up production but reports reaching London through reliable sources show that considerable difficulties are being met.

Hit By Coke Scarcity

In Belgium for instance, severe rationing of domestic coal has been necessary; gas is limited in supply and poor in quality. Furnaces have had to be damped down, factories put on short time, and metal works are periodically stopped by turns for lack of coke, several closing altogether. There is no doubt also that the bombardment by British airmen has interfered with production and indeed has put some works out of action altogether, while others will take months to repair. In Luxembourg, Spanish labor has been introduced to help on the production effort.
Recent reports from France show the effect of the war upon the iron and steel works. At the annual meeting of one of the big companies it was reported that only a few of the plants-and these mainly in the
unoccupied zone are able to work more or less normally. Yet these plants had record outputs during 1939 and in the first half of 1940. Some French blast furnaces in the East had to be blown out recently owing to shortage of coke.

An increasing shortage of raw materials is affecting the iron and steel position in Holland. Output is falling and the Nazi labor front chiefs are appealing for aid to put a stop to the deterioration. In shipyards in Holland and North Germany there are vessels on the ways upon which work has been suspended because necessarv materials are not available. The Nazi attempt to make good the deficiency by appealins for voluntary surrender of metal articles has apparently failed.
It is extremely difficult to discover exactly what is happening in Germany itself with regard to metals, but there are good grounds for believing that the war has curtailed Germany's supplies of many of the important alloying metals used in making special steels, which themselves are so vital in the manufacture of munitions of war. She has had to evolve substitutes, and among other discoveries, a German investigator claims that hydrogen can be used as an alloying element, under certain circumstances, giving the same results as a percentage of manganese and chromium.

Swedish Works Busy

The Swedish iron and steel works continue to work at capacity but some fuel shortage has been experienced recently and this may result in lower output during the next few months. Materials for shipbuilding are in great demand, and the engineering industries are buying at a high rate. The difficulties of obtaining raw materials are still great, particularly in regard to certain metals and alloys.
Britain's reverses in the last few weeks will lead inevitably to intensification of the war effort. Steel capacity is likely to be taxed to the utmost and steps are being taken to see that the needs of the services in armaments and munitions are supplied.
Iron and steel manufacturers have been successful to a great degree in keeping pace with the ever-growing needs of the war machine. Careful husbanding of resources has been directed by the Iron and Steel Control to prevent the indiscriminate use of high-grade steel alloys and also of hematite iron where another grade can be found suitable. In all districts of England and Wales the demand has been greatest for special steels and alloys used in the armament and munitions factories. Pres. sure is also heavy for steel plates
(Please turn to Page 124)

PRIORITIES-ALLOCATIONS-PRICES

as published in Section Two of STEEL, Feb. 23, 1942

'M" ORDERS

M-63. (Amendment): Imports of istrategic Materials, effective March 14, $194{ }^{\prime}$. Removes restrictions on imports of cadmlum, zine ores and concentrates, lead ores and concentrates and copper ores and concentrates.
M-80: Sole Leather, effectlve March 12, 1942. Provides that 80 per cent of top grade leather soles be set aside for military shoes.
M-81 (Interpretation): Tin Plate and Terne Plate, issued March 13, 1942. Permits canners to buy and use quantities of tin plate required to 1111 government orders.
M-93: Wood Puln, effective-March 12, 1942. Places entire wood pulp industry under allacation system, effective under allaca
May $1,1942$.
M-95: Rhodium, effective Mareh 11, 1942. Prohibits use in plating of jewelry. Present stocks of jewelers may be consumed but not replenished. Sellers of rhodium salts or solutions must report to WPB on PD-295. Consumers report on PD-296, listing stocks.

"P" ORDERS

1-19-6 (Amendment): Road project:effective March G, 1942. Eliminates extension of preference ratings granted a road project to the purchase of road bullding machinery and equipment. May be used to expedite delivery of repalr parts to prevent stoppage of work.
P-8f: Plumbing, Heating Repalrs, effec tive March 13, 1942. Assigns A-10 rating to materials for emergency repairs. Does not apply to copper parts or scarce materlals for which substior searce avallable.
P-88: Rallroad Material, effective March 17, 1942. Assigns A-1-a rating for materials needed for emergency repairs upon specifle approval of WPB; an A-3 rating for materials essential for track, structure, signal and train and locomotive repair and operation, including perishable tools; an A-8 rating cluding perishable tools; an $A-8$ rating
on all other maintenance repair and operating supplies. Use of A-3 and A-8 ratings is controlled by quarterly inventory statements submitted to WPB on form PD-352. Ratings for raw materiats and quantities thereof also determined by WPB on quarterly basis.
P-90 (Amendment): Production Requirements Plan, effective March 10, 1942. Permits companies using plan to use ratings assigned by other certificates to obtain material not regularly carrled in stock.
1-98 (Amended): I'etroleum Industry Materials, effective March 15, 1942. Includes office supplles and certain automotive equipment amone items to which preference ratings may be extended.
P-109 (Amendment): Aireraft l'roducts. effectlve March 11, 1942. Abollshes the distinction between material to be physically incorporated into aircraft products and other necessary material used to bulld military and naval aircraft. Applles to tactical types of aircraft.
P-109-a: Aircraft Products, effective March 11, 1942. Assigns A-1-b rating
For additional revisions and additions
please see STEEL of March 2. 1., 39.
March 9, p. 38, and March 16, 1. 39.
to production of tralner types of milltary and naval airerart. Otherwise slmilar to P-109 as amended.

"L" ORDERS

L-fi-e: Domestic Laundry Equipment, issued March 14, 1942. Companies which produced more than 60,000 units in the year ended June 30, 1941, must cease production April 15, 1942. Others must cease production May 15. Meanwhlle, production permitted at $1 \frac{1}{2}$ times the February quotas set under L-6-a.
L-21-at: Automatic Phonographs; Weighing, Amusement and Gaminy Mar chlnes, issued March 16, 1942. Production after April 30, 1942, prohlbited. Between March 1 and Aprll :0 production permitted inree times ihe February quotas. Effective immediately, fabrication of copper, copper alloy and stalnless steel prohiblted. Production of repair parts for slot machines banned.
L-27-a: Vending Machines, issued March 17, 1942. Manufacture prohibited aftel Aprll 30, 1942. Does not affect manufacturer of repalr parts if limited to rate of output during year ended June
1-32: Metalle Lifenso Plates, effective March 18, 1942. Prohibits state and local governments from issuing plates in one year in quantity more than 10% of welght of plates issued in corresponding year ended between June 30, 1941 and July 1, 1942, and then only to replace destroyed or lost plates, for new Hcensees or for "date iabs" not more than 4 square inches in size.
L- 42 (Addition): Plumbing and Meating Products, effective April 1, 1942. Schedule IV directs discontinuance of manufacture of medlum soil pipe; reduction in weight of extra heavy soll pipe, elimination of use of brass pipe plugs and brass-trap screws with soil pipe ilttings.

30, 1941.

L-52: Bicyeles and Parts, effective March 12, 1942. Untll March 31, production limited to 42 per cent of number of bicycles built in corresponding 1941 period. No bicycles may welgh more than 45 pounds. Production or Juvenile models prohibited after Aprll 1. No models after Aprll 1 may weigh more than 31 pounds. Output April 1 io June 30 limited to 42 per cent of 1941 average monthly rate. Metals used in manuracture generally limited to iron, unalloyed steel, sllver and gold.
L-54-b: Office Machiners, effective March 15. 1942. Halts, purchase, sale and rental of new machinery except to persons with preference rating of A-9 or higher issued on PD-1A or PD-3A certiffeates.
1.-56: Fuel Oil Consumption, effective March 14, 1942. Forbids fuel oll delivery in 17 eastern states, District of Columbia, Oregon and Washington, for use in new equipment unless installation completed within 30 days, or in converted facilities unless conversion completed within ten days. Permitted for new structures if foundations completed within 30 days and oll-burning equipment originally specifled.
1-69: Bright Work on Vehicles, effective March 14, 1942. Prohibits use of bright work on all types of motor vehicles and irailers, including replacement parts and accessories other than
ventilator window latches, external locks, cylinder caps and covers, windshield wipers and body trim screws.
L-70: Motor Fuel, effective March 19, 1942. Curtails by 20% gasoline dellverles to service stations and bulk consumers in 17 eastern states, District of Columbia, Washington and Oregon. Service station operations in curtallment areas limited to 12 hours dally 72 hours a week.

PRICE SCHEDULES

No, 20 Amendment-Copper and Copper Alloy Scrap, effective as of Feb. = 7, 1942. Excepts from the price schedule rallroad serap reprocessed under conversion agreements approved by WPB
No, 41 Amendment-Steel Ciastlngs, effective March 16, 1942. Wermits producers of rallroad speclalty castings to charge for certaln extras coupler repair parts and pattern costs customarily charged between Oct. 1 and 15, 1941.

No. 67 Amendment-Machine Tools, efrective March 13, 1942. Permits Niagara Machine \& Tool Works, Buffalo, to exceed its Oct. 1, 1941, 11st prices for three machine tools it manufactures.
No. 98 Ameniment-Titanlum, effective as of March 1, 1942. Permits American Zirconium Corp., Baltimore, to exceed maximum prices by the cents ber pound until may $2,1942$.

Bomb Production

Accelerated by

Spinning Process

BOMB production by a new spinning method, described as "revolutionary in character" has reached a point of efficiency where the proc ess can be utilized for turning out increasing quantities of this vital war weapon. This announcement was made last week by B. F. Harris, president, National Tube Co., United States Steel Corp. subsidiary, which developed and perfected the process.
(For illustrations relating to the process, see photos on page 57 , released in connection with U. S. Steel's annual report last week.)

Process is being utilized by the Army Ordnance Department which will have installed similar machines in plants of other manufacturers, and the National Tube Co. is lending its aid in educating these potential producers.

Bomb production by the spin ning method developed by the com(Please turn to Page 126)

Abstract

Steel mills to pay new 6 per cent freight surcharge . . . President says mobilization of workers not yet in sight Stricter limitation imposed on use of tin . . . Issuance of metal license plates banned... Program for controlling soft coal prices established.... War communications equipment production expected to reach $\$ 125,000,000$ monthly . . . Higher prices permitted for three types of machine tools . . . Civilian goods output curtailed further

WASHINGTON

STEEL mills may pay the new 6 per cent transportation surcharge, which became effective March 18, OPA ruled last week in Amendment No. 1 to Revised Price Schedule No. 4, iron and steel scrap. This emergency charge, which is effective for the duration of the war and to a period six months thereafter, does not represent a change in the basic rate structure.

OPA quarters explained that there will be no change in computing the shipping point price, but the additional freight charge may be added on to the price the consumer pays.

Illustrating this, OPA explained that the basing point price at Chicago for No. 1 heavy melting scrap continues at $\$ 18.75$ per gross ton. The old switching charge was 84 cents per gross ton. The shipper, under the old freight rates, would obtain a net return of $\$ 17.91$ per gross ton. Under the new setup, the shipper still will get $\$ 17.91$. However, the switching charge will be increased by 6 per cent to 89 cents per gross ton. Therefore, the mill consumer may pay $\$ 18.80$.

Mobilization of Workers
 Seen Unlikely Before Fall

President Roosevelt last Friday asserted no labor shortages which would require mobilization of workers are expected before this fall. Whether any new mechanism will be needed at that time to direct the flow of labor to war work is still uncertain, he indicated.

In his discussion of strikes, he quoted from a pamphlet issued by the National Safety Council. In 1941, $30,000,000$ man-days were lost through strikes, whereas respiratory illnesses ranging from colds to pneumonia caused the loss of $160,000,000$ man-days and industria! accidents caused the loss of 460,000,000 man-days.

The President read from a letter
sent to him by Donald M. Nelson showing that during February workers in the following industries worked these average numbers of hours per week.

Blast furnaces, 39.8; foundries, 46.9; electric machinery, 45.4; conper smelting, 39.6 ; brass and related products, 46.1; aluminum, 45.9; machine tools, 55 ; air-frames, 48.7; all engines, including aircraft, 51.1 ; shipbuilding, 48.2, and! explosives, 44.9.

Mr. Roosevelt explained that blast furnaces and copper smelters. the only two averaging under 40 hours, are on a four-turn basis.
Replying to a question, he said he had heard only 10 minutes before that workers at the Bethlehem shipbuilding yard in San Francisco had offered to work on Sundays free, and he remarked he thought it was a grand thing.

New Limitations Imposed
 On Consumption of Tin

Army, Navy and certain other governmental agencies usually excepted must conform to a list of special restrictions on the use of tin, according to the terms of Conservation Order M-43-a, as amended by WPB.
The amended order contains a long list of restrictions on the use of tin. Government agencies as well as civilian industry must conform to these:

1. Lead base alloy, other than solder, must not contain more than 12 per cent tin by weight. The same rule applies to tin alloy.
2. Prior to May, 1, solder may have a tin content of 38 per cent by weight. After that, the amount is reduced to 30 per cent.
3. Collapsible tubes must not have more than $7 / 1 / 2$ per cent tin by weight.
4. No virgin tin may be used in the manufacture or treatment of type metal.
5. Tin in terne for terne plate is

By L. M. LAMM
Washington Editor, STEEL
limited to 15 per cent by weight and for long ternes to 10 per cent.

Issuance of Metal License
 Plaies Prohibited by WPB

WPB has banned the issuance by state or other local governments of metallic license plates except to new licensees and for small "date tabs" to be attached to plates already in existence.
These restrictions, embodied in Limitation Order L-32, do not apply to metal already cut or stamped on March 18.
State and local governments, during a licensing year, are permitted to issue metallic plates in quantities up to 10 per cent of the weight of the plates issued during the corresponding license year ending after June 30, 1941, and before July 1, 1942, for the following purposes only:

1. As replacement plates for those that may have been destroyed or lost.
2. To new licensees or registrants.
3. For issuing "date tabs" not more than 4 square inches to attach to plates already issued.

Coonley Named Chief of WPB Industrial Conservation Branch

Howard Coonley, chairman, Walworth Co., New York, and former president of the National Association of Manufacturers, has been appointed chief of the Simplification Branch of the WPB Bureau of Industrial Conservation.

Bituminous Coal Division, OPA Co-operate To Control Prices

Arrangements through which the Bituminous Coal Division of the Department of the Interior and the OPA will co-operate in taking whatever steps are necessary to prevent
wartime inflationary prices for this important fuel were announced last week in an exchange of letters by Secretary Harold L. Ickes and Price Administrator Leon Henderson.

Under the arrangement, the Bi tuminous Coal Division will recommend to OPA steps leading to appropriate action under the powers vested in OPA by the emergency price control act with reference to bituminous coal prices charged by producers, distributors, and sales agents.

OPA also will welcome any advice the division may offer regarding prices of bituminous coal sold at retail.

The division is empowered under the arrangement to handle hearings, conferences, correspondence, etc., where needed in order to discharge its recommendatory function in regard to producer and wholesale prices.

The arrangement was worked out under section 201 (a) of the price control act providing that the price administrator may utilize the services of other federal agencies in administering the act.

Secretary Ickes, in thus making available to OPA the extensive facilities and information of the Bi tuminous Coal Division, together with the services of his staff of experts in preparing recommendations, is facilitating administration of the price control act on an effective and economical basis.

WPB Priorities Bureau

Appointments Announced

Appointments to the staff of the Bureau of Priorities, WPB, Division of Industry Operations, were announced last week by C. H. Matthiessen Jr., chief of the bureau. The executive staff of the bureau is now as follows:

Deputy chief, John P. Gregg.

Assistant chief, in charge of internal operations, Clem C. Crossland.
Assistant chief, in charge of policy, John H. Martin.

Assistant chief, in charge of enforcement, L. J. Martin.
Assistant chief, in charge of requirements, Henry P. Nelson; assistant, Jerome Low.
Assistant chief, in charge of priority specialists, Samuel S. Stratton; assistant, Spaulding Birss.

Assichant to the chief, assigned to Army and Navy Munitions Board, Clay C. Crawford.

Assistant to the chief, Arthur Harris.

Assistant to the chief, J. Wilton Peters.
Review and approval branch chief, Stanley L. Phraner.

Inventory branch chief, E. A. Tup-
per; assistant inventories, George P . Torrence; assistant, investigation, Hector J. Dowd.

Distributors branch chief, Linford C. White.

Compliance branch chief, John H. Ward.

Production requirements branch chief, A. L. Williams.

Education and industrial contact branch chief, E. E. Pratt.
Industrial contact section, Mason Manghum.

Head priority specialist, division of production, W. G. Glos,

Head priority specialist, office of petroleum co-ordinator, James E. Hughes.

Head priority specialist, division of materials, H. K. McCook.

Head priority specialist, division of industry operations, Joe M. Tucker.

Procedure section chief, E. V. Russ.

Civilian Goods Production Curtailed by War Board

Curtailment in the production of a variety of nonessential civilian goods was ordered last week by WPB.

Domestic laundry equipment, including washers and ironers, will be discontinued after April 15 or May 15 , depending on the size of the producer.
Purchases, sales and rentals of new office machinery have been halted, except to persons possessing a preference rating of A-9 or higher.

OPA has been granted authority to ration new and used typewriters.
Production of civilian radios and phonographs will be discontinued a.fter April 22.

Number of sizes of incandescent light bulbs to conserve critical materials is being studied. It is planned to reduce the number of sizes from 2500 to about 1000 , and also to reduce the number of voltages.

Manufacture of vending machines will be prohibited after April 30.

OPA Permits Higher Prices On Three Machine Tools

Niagara Machine \& Tool Works, Buffalo, has been authorized by the OPA to charge prices higher than its Oct. 1, 1941, list price for three of the machine tools it manufactures in order to encourage increased production of such machines for the war effort.

By a formal amendment to Price Schedule No. 67, the company is specifically allowed to sell its No. 59 single crank press for $\$ 4732$, its No. 612-G double crank press for $\$ 10,693$, and its 310 power squaring shear for \$2600.

The costs of manufacture of
these machines cannot be covered if sold on the Oct. 1 price level, the company maintained. The OPA has found this to be true and also that Oct. 10 prices, which the company listed and published before Oct. 1, are more in agreement with manufacturing costs. The amendment also allows the company to submit before April 15 the prices it proposes for other machine tools which are part of the series similar to the No. 59 single crank press and No. 612-G double crank press.
The company's request included 39 typical machines, but in the case of the remaining 36 , the request was denied because it was felt that the maintenance of Oct. 1 prices on these machines would not impose any serious hardship on the company.

Two Billions To Be Spent for War Communication Equipment

Production of communication equipment needed by the military services is expected to exceed a rate of $\$ 125,000,000$ a month by the end of the year, according to WPB estimates.

Program for this type of war materiel, including that delivered, on order, and yet to be allocated, amounts to approximately $\$ 2,000$,000.000 . About half of the program is for detector equipment; 20 per cent for aircraft and navigation equipment; 20 per cent for tank sets, walkie-talkies, etc.; and the remainder for telegraph, telephone, and miscellaneous cquipment. About 120 set models are included, ranging in cost from $\$ 75$ to $\$ 85,000$ a unit, each made according to the most rigid specifications of the Army and Navy.
Every facility of the radio manufacturing industry will be used to produce this volume of military communication equipment. Some of the facilities are being provided by the conversion of electrical appliance plants, telephone equipment plants, air conditioning plants, refrigeration plants, and others not normally associated with the radio industry. But the conversion that strikes nearest the average man is that of the manufacturers of home radio receiving sets. The WPB ordered that after April 22 there will be no more sets made for civilian use. Their usual outlets cut off, most of the manufacturers will turn their energies to the production of military equipment.

All sets for civilian demand were made by a group of 55 manufacturers, ranging from companies with complete technical equipment capable of building entire units from raw materials, to companies that only assemble parts supplied by other plants.

hii lime - ond

rederick W. Howe was ahead of his time, and so are you, when your plant is equipped with modern Jones \& Lamson Turret Lathes.
Modern Jones \& Lamson Turret Lathes are ahead of the times in many ways. Into these new machines have been built ample reserves of speed, rigidity and useful power to enable you to take full advantage of every improvement in hard alloy cutting
tools - available today or liable to become available in the immediate future.

Thus Jones \& Lamson Turret Lathes can help you meet the urgent demands of immediate wartime production and still be available to help you in the hard years that lie ahead.

Among other reasons, this is why it pays to put your production problems up to Jones \& Lamson. Write today, inclosing blueprints and ask for illustrated catalogs.

7A Jones \& Lamson Saddle Type Universal Turret Lathe with standard chucking equipment.

Springfield, Vermont, U. S. A.

PROFIT PRODUCING MACHINE TOOLS

MANUFACTUREIS OF: RAM \& SADDLE TYIE UNIVERSAI. TURRET LATHES . . . FAY AUTOMATIC LATHES . . AUTOMATIC THREAD GRINDING MACHINES . . . COMPARATORS . . . AUTOMATIC OPENING THREADING DIES AND CHASERS

Fewer Reports on Priority Orders

To Be Required by War Board

WASHINGTON
REPORTS required by WPB in connection with priority orders have been reduced by eliminating the requirement for submitting such reports from a substantial number of orders.

Priority Regulation No. 8 provides that all orders which require reports to be made on 43 PD forms are amended to eliminate that reuqirement, except for a few general preference rating orders. The forms which have been eliminated all have to do with the application of preference ratings assigned by " P " orders.

Regulation No. 8 is the first step in a move to eliminate all unnecessary or duplicating reports. The report forms which remain in use are being carefully studied, and an effort is being made to find others which can be eliminated.

Reports on the following forms need no longer be filed, except to the extent required by the orders listed in the last paragraph: 6, 6A, $13,14,30,30 \mathrm{~A}, 38,41,41 \mathrm{~A}, 42,42 \mathrm{~A}$, $43,43 \mathrm{~A}, 44,44 \mathrm{~A}, 45,45 \mathrm{~A}, 46,46 \mathrm{~A}$, $47,47 \mathrm{~A}, 48,48 \mathrm{~A}, 52,52 \mathrm{~A}, 56,56 \mathrm{~A}$, 57, 57A, 58, 58A, 63, 63A, 64, 65, $68,68 \mathrm{~A}, 74,74 \mathrm{~A}, 81,81 \mathrm{~A}, 93,119$.
When required by the following orders, reports on the forms listed above shall continue to be filed: 19,19 -a, $19-\mathrm{e}, 19-\mathrm{h}, 29,42,42-\mathrm{a}, 43$, $51,56-\mathrm{a}, 62,65,68,73,82,86,87$. 95, 115.

"Affirmations of Compliance"
 No Longer Required by OPA

OPA has removed the provision requiring the filing of "affirmations of compliance" from the last 35 OPA price schedules in which this requirement remained.

These affirmations were a carryover from the period when OPA issued maximum price schedules under executive order of the President. The affirmation requirement either previously had been removed or never was included in other OPA price schedules.

Since all of the price schedules issued before the emergency price control act became effective are now enforceable under the new statute, it was felt that the affirmation of compliance requirement no longer was necessary.

OPA Orders Discounts on

Bale Ties Reinslated

Producers of bale tie wire are required to reinstate customary minimum discounts of 40 cents per 100 pounds on their sales to manufac-
turers of bale ties, acording to an amendment to Price Schedule No. 6 , iron and steel products, issued by OPA.
"Bale ties" are short lengths of bale tie wire with a twisted loop in one end and are sold in bundles largely to bale agricultural products, wastepaper, old rags, etc.

Price Schedule No. 6 issued April 17, required that manufacturers of iron and steel products continue "customary and general discounts." Bale tie wire and bale ties are both covered by this schedule.

Order Further Simplification of Plumbing, Heating Equipment

Schedule IV to Limitation Order L-42 requires producers of cast iron soil pipes and fittings to put the following simplified practices in effect on April 1.

1. Discontinuance of the manufacture of medium soil pipes.
2. Λ reduction in weights of extra
heavy soil pipes.
3. Elimination of use of brass pipe plugs and brass-trap screws with soil pipe fittings.
Scledule IV is expected to result in the saving of considerable amounts of pig iron, scrap iron, and brass.

Producers are permitted to deliver soil pipes or fittings, not conforming to the simplified practices, if such pipes or fittings were in stock in finished form on April 1.

Previous schedules to Limitation Order L-42 required the simplification of valves, pipe fittings, metal jackets, fusible plugs, and tricocks.

Nelson Asks Senate Committee To Probe Guthrie Charges

WPB Chairman Donald M. Nelson last week asked the senate committee investigating the national defense program to investigate charges made by Robert R. Guthrie, former head of the Textile, Leather and Ciothing Branch of WPB, when the latter resigned.

Mr. Guthrie declared industry representatives, both within and without WPB had consistently blocked efforts to convert the dye, cotton, nylon, woolen and other industries to full war production.

COMMITMENTS by government and private industry for new war plant expansion and industrial facilities in 1941 and 1942 will have a dollar value equal to the aggregate value of all expenditures for new manufacturing plant and equipment from 1933 through 1939. Increase is concentrated in metal, metalworking and transportation vehicle industries. Commitments totaled $\$ 9,500,000,000$ by the end of 1941. Of this 85 per cent was government financed. New commitments made since then may increase the total war plant by 50 per cent.

The war plant expansion authorized is equivalent to a 42 per cent increase in the nation's entire peacetime manufacturing plant, as valued in 1940. Commitments of the Defense Plant Corp. alone reached $\$ 2.456,000,000$ at the close of 1941. Options for plant purchase were granted in $\$ 1,703,000,000$ of such contracts.

Chart reproduced from National Industrial Conference Board Road Maps of Industry. Sources of data: War Production Board: United States Department of Commerce and Conference Board.

Duties of 12 WPB Division Heads

Clarified by War Production Chief

WAR Production Chief Donald M. Nelson last week announced a series of orders clarifying authorities, functions and responsibilities of directors or heads of 12 divisions or offices of the WPB. The general administrative orders are numbered 11 to 22. In each case, the authority vested in the official named is subject to the direction of the WPB chairman.
No. 11 makes the director of the Production Division "responsible for the production on schedule of aircraft, ordnance, tanks, ships, acces sories, sub-assemblies and parts for them," and for construction of tools and industrial facilities with which to produce them. It gives him authority to "determine War Production Board policies, programs and methods in accordance with which the Army, the Navy and the Maritime Commission shall perform their functions with respect to production.'
No. 12 delegates to the director of the Purchases Division "general direction over war purchasing," in cluding the determination of the WPB policies in regard to purchase price and contract terms of all war purchasing by the various federal agencies and departments.
The order stipulates that members
of a purchases policy committee, consisting of procurement representatives of various federal agencies, shall assist and advise the director in the formation of policy. The order also gives to the division's plant site board authority to approve or disapprove war plant sites, giving primary consideration to speed and quantity of production in relation to housing, power and transportation facilities, labor problems, food supply, taking fertile land out of production, and similar aspects.

No. 13 gives the director of the Division of the Industry Operations responsibility "for obtaining maximum use of existing industrial capacity for the production of war material and essential products for civilian use."

WPB Points of Contact

In co-operation with other divisions of the WPB, the director of industry operations has authority to effect maximum conversion of industry to war production, issue priority and allocation orders, curtail normal products. The industry branches of the division are designated as the WPB points of contact with the various industries.
No. 14 makes the director of the Labor Division responsible for those
programs and policies of the WPB which affect labor's participation in the war effort, including labor supply and training and labor-management relations.

No. 15 delegates to the director of the Materials Division responsibility for making available materials needed for the war effort by expansion of production facilities and development of stockpiles. The order gives him authority to transmit to the War Shipping Administration priority schedules governing the transportation of materials and commodities essential to war production and essential civilian needs.
No. 16 gives the chairman of the Requirements Committee responsibility to determine the war and essential civilian needs of the United States and the other United Na tions, to ascertain the supply of required materials and the amounts by which they should be increased and to determine and approve allocations of fabricated and semi-fabricated products to other of the United Nations.

No. 17 makes the director of the Division of Civilian Supply responsible for decisiions of the WPB "regarding critical materials, services and facilities as they relate to (1) the health and productive capacity of the population of the country or (2) essential work of business establishments other than war production."
The other orders relate to the directors of the remaining divisions.

Bakery Machinery Manufacturer Now Produces Trench Mortars

ONE of the simplest of all "artillery" items - trench mortars - require the same rigid interchangeable manufacturing requirements as do larger, more complicated articles of ordnance. There is no compromise with accuracy or finish of important surfaces.

Nature of the work, as well as degree to which mass production is being applied, are indicated by this photograph made in the plant of Read Machinery Co., York, Pa. In peace time the company concentrates on manufacture of bakery machinery. Today 60-millimeter trench mortars are turned out in mass for the United States Army.

The workman demonstrates how the fire cap is assembled with smooth bore barrel. The mortars are "muzzle loaders". and the fire cap combines functions of fixed breech ring, universal joint mounting and firing pin.

A vaned bomb is dropped down the barrel, being "lobbed out" by a propelling charge in its base, detonated by striking the fixed firing pin in the bottom of the barrel. The gunner gets his hand out of the way-or else. NEA Photo

War Board Grants Railroads

Broader Priority Assistance

WASHINGTON

FAILROADS have been given new and broader priorities assistance by the WPB to enable them to obtain critical materials necessary to maintain and operate their properties.

Preference Rating Order P-88 sets up a four-point rating system for materials going into railroad maintenance and repair. The plan makes available:

1. An A-1-a rating for delivery of materials needed for emergency reoairs upon specific approval of WPB.
2. A rating on deliveries of raw materials, with the quantity and rating to be determined by WPB on a quarterly basis.
3. An A-3 rating for delivery of materials essential for track, structure, signal, communication system, and train and locomotive repair and oneration, including perishable tools. Use of this rating will be controlled by quarterly inventory statements to be submitted to WPB.
4. An A-8 rating on all other maintanance, repair and operating supplies, which also will be controlled by quarterly inventory.

Each railroad may start operating
under the order as soon as it has filed with WPB, on form PD-352, a statement showing its present inventories of repair and maintenance supplies. Pending the transition, the railroads will continue to function under P-100, the general maintenance and repair program carryi!!g an A-10 rating, and under orders F-8 and P-21, both of which have been extended until April 30 .

Orcler P-8 makes available an A-3 rating for materials going into the construction and maintenance of freight cars, and P. 21 makes the same rating available for repair and rebuilding of steam, electric or dicsel locomotives.

In another action affecting railroads, WPB extended until April 30 Preference Rating Order P-20, which makes available an A-3 rating for materials going into new construction of locomotives. Meanwhile, locumotive and freight car builders are being directed to change over to the Production Requirements Plan.

The ratings made available under P. 88 may be used by a railroad or a supplier, and certain restrictions are set forth to prevent accumula-

CCC Fails To Conserve

LEFT to rust in an open snow-covered field are these 23 road graders, part of the equipment which has been abandoned or destroyed as a Civilian Conservation Corps camp was abandoned in Pennsylvania. According to a copyright story in the Philadelphia Inquirer, the CCC also is permitting usable trucks and tractors to rust and rot in open fields. One camp storehouse is said to be "packed with at least 1200 good truck tires, some virtually new; unpacked cases of woolen and other wearing apparel have been burned. NEA photo
tion of excessive inventories. The order also directs railroads and supvliers to use conservation measures such as substitution, redesign and respecification to eliminate scarce materials.

Plate Shipments to Three Railroads Halted by WPB

In the first action of its kird taken under the terms of the steel plate allocation order, M-21-c, WPB has instructed suppliers of steel plates to make no further ship. ments, except for locomotive boilers and fire boxes, to the Pennsylvania railroad, New York Central railroad, and Louisville \& Nashville railroad.

Action was taken as a result of information contained in the first filing of a new inventory report called for by the WPB Iron and Steel Branch.

Reports showed that in the case of the Pennsylvania railroad, inventory on hand in plates was approximately seven times the reported average monthly use; in the case of the Louisville \& Nashville, inventory was more than 13 times the average monthly use, and for the New York Central the inventory was more than seven times the average monthly use.

Because of heavy military and naval demand for steel plate for tanks and ships, plate steel has been under strict allocation since Dec. 1, 1941.

Policy of WPB as expressed in Priorities Regulation No. 1, as amended, requires all users of scarce materials to keep inventories to a practicable working minimum.

Carriers' Requirements for
 Cars, Roils Ordered Filled

Acting on the recommendation of the Requirements Committee, WPB has directed that railroad requirements for 36,000 freight cars and $1,260,000$ tons of heavy rail in 1942 be filled, William L. Batt, chairman, Requirements Committee, announced last week.

The Iron and Steel Branch has been instructed to schedule March requirements for steel shapes, sheets, bars and rails and to continue schedules until the authorizations made by the Supply, Priorities and Allocations Board on Jan. 1, 1942, have been filled.

The Transportation Branch will determine the distribution of these materials among United States railroads.

[^1]
Iron, Steel Expansion Program

Several Months Behind Schedule

GOVERNMENT-sponsored iron and steel expansion program is not going very well. In general, the program is several months behind schedule and it continues to fall further behind.
Governmental red tape is the principal cause of delay. Other causes are priority difficulties, refusal by certain local union construction workers to work in threatening weather, and insufficient engineers, draftsmen and other specialists.

Delays caused by governmental red tape result from lack of co-operation between the WPB Iron and Steel Branch, the Defense Plant Corp. and the Army and Navy Munitions Board, and also from lack of close co-operation between some of the employes in these government offices.

All of the expansion projects originally were drawn up by the Iron and Steel Branch with individual iron and steel producers and then certified to the Defense Plant Corp. for financing. Delays caused by priority trouble came as a result of the Army and Navy Munitions Board overruling the priority ratings
given to these projects by the Iron and Steel Branch. As a result, the Iron and Steel Branch has had to resort to allocations in order to get materials and equipment for the liew plants. In fact, as high as 90 per cent of the materials and equip. ment for some of this new capacity has had to be placed under higher priorities or allocations.

The whole situation is a caus: of grave concern to the iron and steel companies involved. This is not because of any fears on their part that there will be any scarcity of iron and steel to prosecute the war and to provide for all essential civilian needs; present capacity is more than adequate to take care of all these requirements.

Rather, they fear that the blame in the end will be placed on their doorsteps and the real offenders overlooked.

The attitude of the iron and steel inclustry is: "We are carrying out all government orders; if the government tells us to build more iron and steel capacity, we will get to work and build it as rapidly as we can".

Auto "Graveyard" Scrap Survey

Organized in Northern Ohio

SURVEY of scrap in automobile "graveyards" is in process in Northern Ohio, designated as District No. 6 by the American Iron and Steel Institute and the WPB Bureau of Industrial Conservation.
The Northern Ohio effort is being directed by C. A. Ilgenfritz, manager of purchases and raw materials, Republic Steel Corp., Cleveland, and H. F. Black, field representative, Bureau of Industrial Conservation, temporarily located in the Republic building, Cleveland. At a meeting called by these men on Feb. 24, District No. 6 was broken down into six sections, each in charge of a captain as follows:
H. H. Waldschmidt, director of purchases, Youngstown Sheet \& Tube Co., Youngstown, O.; James Reed, Timken Steel \& Tube Division, Timken Roller Bearing Co., Canton, O.; W. J. Betzler, scrap buyer, Republic Steel Corp., Cleveland; H. O. Simmons, purchasing agent, Empire Sheet \& Tin Plate Co., Mansfield, O.; J. L. Tillman, vice president, Unitcast Corp., Toledo, O.;

Charles Knight, purchasing agent Wheeling Steel Corp., Wheeling, W. Va.

Captains have the responsibility of locating all auto graveyard scrap in their sections and seeing to it that it is made available for consumption. The plan is to work through scrap dealers or brokers who, it is believed, can do the job faster, more efficiently and economically than if consumers were to buy direct.

As in the other 15 districts into which the country is separated, dealers are authorized to buy auto graveyard scrap at OPA ceiling prices. Auto graveyard owners who co-operate will be allowed to keep a reasonable inventory of parts so that they may remain in business.

Scrap Collection Drive Started at Pittsburgh

PITTSBURGH
Designed to collect scrap from industrial plants in this district, a campaign was launched last week
at a meeting of the Purchasing Agents Association of Pittsburgh. George T. Weymouth, chief, WPB Industrial Salvage Section, announced the drive would be under the direction of a committee headed by Albion Bindley, vice president, Pittsburgh Steel Co., and George P. Rhodes Jr., WPB industrial salvage representative.

Mr. Rhodes will open an office here immediately to centralize workings of the "industrial center. operations plan," which will include salvage not only of metals but of all usable waste material. In addition, the plan covers use of obsolete equipment, unused machinery and unused inventories, and provides for a technical field service to assist in solution of these problems.

Subcommittee chairmen for the campaign are J. W. Miller, Jones \& Laughlin Steel Corp.; C. R. Stev. ens, Westinghouse Electric \& Mfg. Co.; P. B. Duffy Jr., F. J. Kress Box Co.; and I. J. Stinson, Pennsylvania Rubber Co.

Numbers of the general committee are G. F. Hallman, Luria Bros. Co.; S. N. Joyce, Pittsburgh Crucible Steel Co.; R. O. Keefer, Aluminum Co. of America; E. L. McGraw, Allegheny Ludlum Steel Corp.; Charles R. Miller Jr., United States Steel Corp.; L. M. Potter, Vanadium-Alloys Steel Co.; G. W. Sanborn, United Engineering \& Foundry Co.; E. L. Solomon, Max Solomon Co.; I. E. Walton, Heppenstall Co.; and D. L. Wilkoff, D. L. Wilkoff Co.

Daily Average Scrap Consumption At Record High in February

Average daily scrap consumption by steel mills reached an alltime high record in February, according to Edwin C. Barringer, president, Institute of Scrap Iron and Steel Inc., Washington, in announcing consumption of $4,276,000$ gross tons as compared with 4,172 ,000 gross tons in February, 1941. For the first two months this year, $8,866, C 00$ gross tons were consumed, against $8,450,000$ for the period in 1941.
"Reports from all parts of the country show the scrap situation to be easing," said Mr. Barringer last week. "With the advent of spring the supply of scrap should become more plentiful. We are working to get enough scrap to run the mills of the country at capacity. Scrap yard inventories are at their very lowest flgures and, in the main, yards throughout the country contain hardly enough scrap for the day-to-day preparation operations."

Mr . Barringer said there were indications that scrap collections from farms will exceed original estimates of $1,500,000$ tons.

Another vital Defense job for TOCCO Induction Heat-Treating

In U. S. A., Canada and England, more than 35 contractors have specified TOCCO Induction Heat-Treating for speedy, high-quality hardening of armor-piercing shot. Some of the advantages of this new, simplified electric hardening process for this vital production assignment:

Minimizes rejects. No cracking problems. Split-second accuracy assures uniform results. Shot individually treated, eliminating risks of conventional batch treatment.

Doesn't require skilled labor. Simplified, automatic control permits use of girl operators,
conserving skilled labor for other Defense work.
Can be installed in assembly line because unit is clean, cool, compact (only 7 ft . x 5 ft . max.).

Matches production requirements. Makes possible outputs of hundreds, thousands or tens of thousands daily, depending on number of TOCCO units used and their size (20 to 125 K.W.).

For peace-time, too. 99% of TOCCO Jr. machines for Defense jobs are standard-adaptable to peace-time jobs by simply changing the work fixture.

Our production of TOCCO machines has been expanded 600% to meet vital defense demands. We're at your service!

THE OHIO CRANKSHAFT COMPANY

 Cleveland, Ohio

World's Fasfest, Most Accurafe Heaf-Treating Process

Union blasts bring new limitation order on replacement parts manufacture . . . Ask wage increase every 90 days in new contract . . . Accept "upgraders" in independent tool shops; test of co-operation still to come . . . Experiment in leveling off peaks in local transportation loads . . . Materials are now the bottleneck . . . Dealers' facilities of doubtful value on war work

DETROIT

A LITTLE knowledge is a dangerous thing-particularly in the hands of those with the power to distort such knowledge for their own selfish purposes. A good example is action of the UAW-ClO in screaming to the public and the WPB that the Ternstedt division of General Motors was trying to put something over on the government by making replacement parts out of stainless steel, chromium plated die castings and other critical metals; and further that Allison engine production was being hindered because manufacture of automobile parts was using up critical materials.

There is absolutely no substance to these allegations, but there is good reason why they were made. A union convention is coming up shortly and new contracts are about to be negotiated with motor companies. It is always necessary to start a little drum beating and hocuspocus to direct attention to forth. coming activities. The union blasts were successful in arousing the WPB at least, for they had no sooner been released (and published in newspapers of course) than limitation order L- 69 was rushed out of the priorities office in Washington, completely restricting the use of critical metals in replacement parts.

Replacements at Premium

Under WPB sanction, the industry has been seeking to turn out a two-year supply of replacement parts in six months, so that after June all efforts can be concentrated on war production. A-3 priority was granted on materials for these parts, and everyone concerned took it for granted that such parts would naturally be the duplicates of those now on the cars for which they were designed. No one was trying to worm through any "loopholes" as the UAW charges. Now if you break a radiator grille on your 1939 Chevrolet, you will have to be content with a replacement that is painted and
not plated, if indeed you will be able to get one at all.

What is to be done with the stocks of material on hand for replacement parts is the next question. Little of it can be used on any war products now in the works. Perhaps the auto companies will have to advertise it for sale, just as Fisher Body was doing last week with its stocks of strip and sheet steel.

UAW Demands

Citing figures on lost time since Jan. I at Delco-Remy plants in Anderson, Ind., the UAW-CIO seeks to prove that aluminum and steel shortages causing the lost time could have been averted by transferring materials from service lines to the Allison parts lines. The aluminum foundry in particular is said to have lost 168,000 man-hours since Jan. 1. Actually this is less than one week's work, since the plant employs on three shifts a total of 1100 men. The attempt to link up this loss with continuation of service parts manufacture is ridiculous, but apparently the UAW made its arguments stick with the WPB.

Major demands which the UAWCIO has made for changes in its General Motors contract are an interesting commentary on the attitude of labor leaders in the current production drive. They will make fine reading for soldiers and sailors on duty at the far outposts of the world, and are as follows:

1. Contract to cover all employes, except those with authority to hire and fire, and those covered by other unions certified by iNLRB.
2. Conditions of employment to be:
a. New employes must become members within 30 days.
b. Present employes must become members within 30 days.
c. All employes to remain in good standing with local.
3. Shop steward for every 25 em-

[^2]

By A. H. ALLEN
Detroit Editor, STEEL

ployes; chief steward for every 150. 4. Seniority broken only by quit or discharge.
5. Five hours "call-in pay."
6. Time and one-half for Saturday. (Packard, Hudson and Briggs are about the only companies now paying this premium.)
7. Armistice Day added to list of double-time holidays.
8. Ten per cent night shift premium when more than half the hours worked fall between 3:30 p.m. and midnight; 15 per cent night shift premium for hours between midnight and 8:00 a.m. (Straight 5 per cent premium now is paid.)
9. Thirty-minute paid lunch period.
10. Flat increase of $\$ 1$ per day.
11. Increase in wages every 90 days based on cost of living index.
12. Defense bond of $\$ 100$ maturity value in lieu of vacation. (Present vacation allowance is 40 hours' pay-average rate $\$ 1.10$ per hour.)
13. Supervision shall not be allowed to work on any hourly rated jobs.
14. Fifteen days paid sick allowance time.
15. Sixty days' pay for employes entering military service. (GM now pays 80 hours wages or one-half month salary, has lost about 8000 out of 80,000 men eligible for military services.)

No Mention of Double-Time

No mention is made in the UAW demands of double-time for Sunday work, the omission being apparently a realization by the union that under swing shift operations where Sunday is a part of the regular 40 hour week, double pay cannot be justifled. The double-time proposal was made originally solely as a means of stimulating work spreading in depression years. It is included in the present GM contract with the union, but likely will be removed from any new contract. It was expected the War Labor Board would make a decision on Sunday pay in its recent examination of the
question, but the board surprised everyone, with the exception of the CIO, by referring the case back to the umpire for the contract who obviously could do nothing but interpret the wording of the contract which prohibited any suspension of double time for Sundays.

Companies winich have tried to operate work shifts on a 7 -day week basis, paying overtime for Saturday and Sunday, have found absenteeism mounting appallingly. In the case of General Motors it averaged only about 10 per cent, but Ford had absenteeism of 25 per cent, while in local tool and die shops it mounted to 56 per cent, completely disrupting work schedules.

"Upgrading" of Workers Likely

Acceptance of "upgraders" in the independent tool and die shops appeared possible last week following a meeting of the labor section of the WPB here, at which union representatives agreed to permit upgraders to work in exchange for stabilization of wages.

But failure to agree on wage levels at a later meeting brought a refusal from union leaders to permit these semi-skilled men to work in the job shops. The union demanded that auto companies raise the rates for their own tool and die makers 25 cents an hour to bring their rates equal to those paid by the
independent tool shops. Sidney Hillman presided over the meeting and after failure to reach agreement he left the city with no indication as to when discussions might resume.

Upgraders are men who have been doing similar work in production shops and are anxious to learn the more precise skill required in tool and die work, and to earn the higher wages. Thousands more men are needed in the independent shops today if they are to work to capacity, and the training of upgraders, hitherto resisted by workmen in the independent shops, is the best answer. Should these upgraders eventually be permitted to work in the independent shops it remains to be seen whether they will receive necessary co-operation from present workmen, or whether a campaign of passive resistance to the fancied encroachment will be waged.

As employment mounts in war plants, the problem of transportation becomes more acute, especially in view of restrictions on new cars and tires. National attention is being focused on the so-called Pontiac plan for co-ordinating city transportation facilities. Essentially it is a plan for leveling out peak periods in bus transportation by staggering the opening and closing hours of industrial plants in different sections of the city, deferring store openings and closings until after peak

Chrysler Preparing To Treble Tank Production

PRODUCTION at the Chrysler tank arsenal in Detroit is now at capacity and it is going to be trebled by a $\$ 40,000,000$ expansion program which will provide three more tank assembly lines. Here engineers are at work laying out floor plans of the expanded plant
periods in workmen loads, readjusting school hours, and persuading people to double up on private car iransportation.

Private cars in Pontiac were found to be carrying an average of 1.3 persons per trip and efforts are being made to raise this to 3.5 persons. Pledge cards, registration cards, instructions for organizing riding clubs, windshield stickers and lapel buttons are the devices used to popularize the more efficient use of private cars. Weeks of preparatory work went into the plan which was placed in effect last Tuesday.

Machines Allotted to Others

Dismembered automobile assembly lines are being dispatched to various sections of the country to meet critical equipment demands. An auto body company here sent welding machines to a shipbuilding company in Mississippi. A spotting press was shipped across the country to an aircraft plant. Two stamping presses have been turned over to a railroad shop in Pennsylvania for work on armored cars. Grinding machines have been sold to a company specializing in production of hypodermic needles. A 120-ton vertical forging press, one of six such machines in the entire country and formerly used to form wheel hubs, was sent to Milwaukee.

As war production mounts, operating difficulties shift gradually from equipment to materials. Right at the moment materials shortages constitute the one serious factor which is holding back production. Automobile production experts, used to having materials and parts "floats" ranging anywhere from a week to a month, do not like the prospect of operating from day to day on materials, constantly confronted by the danger of having to shut down an entire plant because of the lack of perhaps one small part.

It is certainly not possible to legislate sufficient materials into the plants needing them. About the only solution is to hold back a little on final assemblies until materials and parts banks can be built up to better levels. But the words "hold back" do not appear in the automobile man's lexicon.

Automobile dealers are being urged to convert their display rooms and repair shops into war production plants, according to a recent address by Cyrus McCormick, OPA executive, who said that between 500 and 1000 of the nation's 44,000 dealers already are producing war materials or are preparing to do so. While it is true that there are many minor items which might be handled in a dealer's repair shop,
(Please turn to Page 48)

ars ideal for defsnse production!

- The use of standard ETNA Swaging Machines for direct defense production is demonstrated by these two No. 72 ETNAS (one shown) employed by a prominent mid-western manufacturer for turning out $20 \mathrm{~m} . \mathrm{m}$. shells. The operation consists of swaging a narrow copper band around the shell . . . production is 900 per hour!
This clearly shows one of the many points of superiority embodied in swaging by ETNA. These units, helping to make shells now, can be used for normal work later! In
other words, an ETNA purchased now for defense, is a money-saving, money-making investment for future use.

If you taper or size tubing or round solids . . . if you have small tubing assemblies, you can save by swaging. Call in the ETNA man for recommendations on your requirements. ETNA Swaging Machines are available in $3 / 8^{\prime \prime}$ to $4^{\prime \prime}$ diameter capacities- $1^{\prime \prime}$ to $18^{\prime \prime}$ die lengths. Larger sizes are built to order.

Mirrors of Motordom

(Concluded from Page 46)

the major auto companies have discouraged their dealers from trying to set up to handle subcontracting from their factory organizations, principally because of the highly complex nature of most products and the lack of suitable equipment and skilled operators in most dealers' shops.
J. W. Frazer of Willys-Overland, is an exception, and has cited returns from a cross section of his dealer organization indicating availability of a number of lathes, shapers, grinders, welding machines and the like. Much of this equipment, however, likely is old and not too efficient, and the job of integrating the widely scattered shops would be terrific.

Deliveries of war materials by General Motors Corp. for the first quarter of this year will show an increase of 50 per cent over the last quarter of 1941 when deliveries totaled $\$ 158,300, \mathrm{co0}$. In the 60 days following Dec. 7, General Motors' war commitments, including projects under study, multiplied $23 / 1$ times, according to a recent statement of Alfred P. Sloan Jr., chairman, to stockholders.

Buick-built Pratt \& Whitney engines for bombers are being produced this month at the rate originally planned for next December, with production nine months ahead
of schedule. Trainload shipments are being made to airplane builders. H. H. Curtice, Buick general manager, states the originally scheduled 1942 output will be completed in the first six months of this year, and that by July the company will have built more engines than were scheduled originally through the first quarter of 1943. Official Air Corps 150 -hour endurance test on the engine was completed in two weeks and was wholly successful.

Personnel of governing boards for the five product divisions of the Automotive Council for War Production has been announced as follows: Aircraft engines - R. N. Brown, Packard; J. W. Hines, Studebaker; G. H. Bernard, NashKelvinator; W. R. Gerber, Chrysler; N. L. Bean, Ford; R. J. Beebe, Cadillac; E. R. Jacoby, Continerttal; Hugh Dean, Chevrolet, and C. A. Chayne, Buick.

Airframes-C. E. Bleicher, Chrysler; W. DeGroat, Ford; R. J. Scanlon, Hudson; A. J. Wettlaufer, Briggs; L. C. Hill, Murray; R. W. Clark, Hayes Mfg.; E. W. Higgins, Woodall Industries; A. J. Fisher, Fisher Body, and William C. Potthoff, Goodyear Aircraft.

Ammunition-E. A. Clark, Budd Wheel; P. C. Booty, International Harvester; G. F. Keyes, Mullins Mfg.; L. W. Klein, Gabriel Steel; K. C. Plasterer, Oldsmobile; William Steinweall, Stewart-Warner; H. Swanson, Falls Spring \& Wire; S.

Kropp Forge Co. Wins Navy 'E'' Pennant

UNITED States Navy "E" pennant and Bureau of Ordnance flag were presented to Kropp Forge Co.. Chicago. recently. Rear Admiral John Downes, commandant of the ninth naval district, is at the speakers stand. At right is Roy A. Kropp. president of the company, while at left a naval aide holds the flags which Admiral Downes presented to Mr. Kropp
D. Den Uyl, Bohn Aluminum, and H. E. Mead, Bowen Products.

Tanks, armored cars and partsDel S. Harder, Fisher Body; Henry Ensign, American Car \& Foundry; Dale Roeder, Ford; Jean Arnold, Cadillac; M. C. Evans, International Harvester; R. E. Ward, Mack Truck; R. J. Emmert, Yellow Truck, and E. J. Hunt, Chrysler.

In each case the first named man is chairman of the board.

Few Tires, but Trailer Industry Faces Boom

House trailer manufacturers will build a record output of 50,000 units in 1942 to be used only by workers in defense areas where other housing facilities are inadequate.

Manufacturers will be aided by operation of the Production Requirements Plan. WPB will insist that trailers are sold only to defense workers and that designs are simplified to conserve critical materials.

One of the most difficult problems confronting the trailer industry is the rubber shortage, and the resultant ban on the production and sale of tires. To keep the industry effective as a provider of defense housing, WPB has made available 4000 tires and tubes, or one set for each 50 trailers to be produced. These will be for defivery purposes only; aiter the trailer has its destination, tires will be removed and sent back to the factory and the trailer mounted blocks.

An additional restriction on the use of tires on trailers permits manufacturers to buy only one set of tires for every five trailers produced.

The WPB House Trailer Section also is working with the industry to perfect a wooden tire for use on a wooden wheel, and one with a steel rim for use over an old rubber tire. If such substitutes became available, the industry plans to use them instead of rubber tires for transporting the trailers from factory to consumer.

February Electric Truck Sales Reach 427 Units

Domestic bookings of electric industrial trucks totaled 427 units in February, Industrial Truck Statistical Association, Chicago, reports.

Total net value of chassis only was $\$ 1,495,730.86$, compared with $\$ 1,262,812.40$ in January.

Fifty-one nonelevating platform trucks had a net value of $\$ 153,725$; 345 cantilever trucks were valued at $\$ 1,222,630.86 ; 17$ light and heavyduty tractors had total net value of $\$ 29,110 ; 13$ crane trucks were valued at $\$ 86,400$; one special truck had a base chassis price of $\$ 3885$.

Canada To Make

Magnesium Metal;

New Plate Mill In

TORONTO, ONT.
WARTIME Metals Corp. has been organized to assume control of arrangements for production in Canada of metallic magnesium and for any other emergency projects that may be undertaken for production of metals. Head offices will be in Montreal. C. D. Howe, minister of munitions and supply, has announced that the government will spend about $\$ 5,000,000$ on a project near Renfrew, Ont., where a plant using a new thermal method for producing magnesium from dolomite is being constructed.
Dominion Steel \& Coal Corp. has placed its 110 -inch plate mill at Sydney, N. S., in operation two months ahead of schedule. Its capacity is 180,000 tons annually. After supplying freight car builders with material to hasten completion of rolling stock contracts the mill will send all its plates to shipyards. The mill was built in 1918, for war production but was closed and dismantled in 1920. Department of Munitions and Supply started rehabilitation in April, 1941.

Automobile wreckers have beeri
notified by F. B. Kilbourn, Canadian Steel Controller, that all wrecked cars on hand must be sold within 90 days. In the interval owners may remove parts for reuse or sale. After 90 days the Department of Munitions and Supply will take over unsold stocks, which will be scrapped.

Manufacture of civilian motor trucks in Canada has been forbidden by C. D. Howe, Minister of Munitions and Supply, except by permit. War needs for trucks will absorb all production. The order does not apply to buses. Trucks unsold in dealers' hands will be allocated by the dealers.
Polymer Corp. Ltd., a govern-ment-owned company, has been formed with headquarters in Toronto, Ont., to manufacture synthetic rubber. Plans are for production to be started before the end of 1943, plants to have capacity of 34,000 gross tons per year, all of which will be earmarked for war use. Four plants are planned.

War Stimulus For Vast
 Expansion in Chemicals

The chemical industry's total production this year is expected to exceed $\$ 2,000,000,000$, and great expansion is under way.
Since the outbreak of war nearly $\$ 1,000,000,000$ has been expended for new plants and conversion of

Kettle Manufacturar Now Produces "Tin Hats"

A CANADIAN plant which in peace time manufactured ketlles and other cooking utensils now is producing these helmets for the armed forces. Dubbed "tin hats" by the soldiers, the helmets actually are of high-grade steel, subject to exacting tests. NEA pholo. passed by Canadian censor
existing facilities for production of explosives and processing chemicals, mainly from government funds. Within the United States "safety belt," there are now close to 150 new chemical and powder plants, each of which took from eight months to a year to build.

Specific instances of expansion described as noteworthy are steppedup output of chlorine to make ethylene glycol for liquid-cooled engines; tetraethyl lead for 100 -octane aviation fuels; magnesium chloride for aircraft metal and chlorinated solvents. Emphasis also is laid on the growing importance of synthetic rubber.

New England's Arms Orders Over \$3 Billion

New England industries have contracted to turn out more than three billion dollars worth of ships, planes and other war materials, according to a survey by the New England Council.

Reporting in detail on the region's war effort, Theodore H . Beard, chairman of the council's industrial committee, said:
"In the flrst 18 months of the defense and war production program (June, 1940, through December, 1941) prime contracts and project orders of $\$ 50,000$ or over awarded in New England by the Army, Navy and Maritime Commission amounted to $\$ 3,184,381,000$. Supply contracts, which include aircraft, parts and engines and naval and merchant ship construction, as well as a long list of general manufactures, accounted for $\$ 2,694,238$,000 , or 84.6 per cent of the total awards, while the remaining 15.4 per cent represented project orders amounting to $\$ 490,143,000$ for new industrial facilities, housing, and the improvement and expansion of military and naval establishments in the region.
"Approximately 50 per cent of the supply contracts awarded in New England were for the construction of naval and merchant ships. Private yards located in Maine, Massachusetts, Rhode Island and Connecticut are building well over two-thirds of this tonnage on a dollar basis, with contracts amounting to $\$ 943,900,000$. The Fore River Yard of the Bethlehem Shipbuilding Corp. at Quincy, Mass., is the largest participant, with contracts totaling over $\$ 500,000,000$.
"The manufacture of aircraft, parts and engines accounts for 17.8 per cent of the total supply contracts awarded in New England through December, 1941. The total value of aircraft contracts amounts to $\$ 479,061,000,98.5$ per cent of which is being produced in Connecticut, notably in Hartford and Bridgeport."

MEN of INDUSTRY

H. E. ROMAN, heretofore assistant wire mill superintendent, Northwestern Steel \& Wire Co., Sterling, Ill., has been promoted to superintendent of the wire mill. He succeeds P. M. Murphy, who has become associated with the Republic Steel Corp. as superintendent of the wire mill in the Chicago district. W. A. Blum has been advanced from general foreman, wire drawing department, to assistant superintendent, wire mill, replacing Mr. Roman, while Alexander Skekel, formerly identified with Pittsburgh Steel Co., has become general foreman, wire drawing department.
M. L. Sloan has been advanced from assistant manager to manager of the lamp department, General Electric Co., Nela Park, Cleveland. J. E. Kewley continues as vice president in charge of the lamp department, Nela Park.

Ralph Kelly has been elected executive vice president, Baldwin Locomotive Works, Philadelphia. He formerly was vice president in charge of sales, Westinghouse Electric \& Mfg. ©o.

Edward R. Stettinius Jr., lend-lease administrator, and former chairman of the board, United States Steel Corp., entered the University of Virginia hospital, Charlottesville, Va., last week to be treated for a kidney ailment.

Robert Clade has been named works manager, valve division, American Car \& Foundry Co., Detroit. P. M. Sullivan, former assistant district manager at Detroit, has retired.
A. H. Wardwell has been named director of industrial relations, Pittsburgh district, Carnegie-Illinois Steel Corp. He recently was assistant to general superintendent, South Works, Chicago, and before that was assistant general superintendent at the McKeesport, Pa., plant.

William Harris, 2667 Beverly street, Highland Park, Salt Lake City, has been appointed sales representative and service engineer by the Mining Division, Carboloy

Co. Inc., Detroit, primarily for its Sinta-set products. He will cover the Northwest, including Washington, Oregon, California, Colorado, Idaho, Montana, Wyoming, Nevada, Utah, North and South Dakota.

Joseph T. Wright has been appointed manager, compressor and tool division, Worthington Pump \& Machinery Corp., Holyoke, Mass. He served as assistant works manager,

M. I. Sloan

Lodge \& Shipley Machine Tool Co., during World War I; subsequently organized J. T. Wright Co., Cincinnati, and when that organization was merged with Harris-SeyboldPotter Co., Dayton, O., Mr. Wright continued to serve the latter in vari. ous capacities.

Patrick Joyce, president, Chicago Great Western railroad, has been appointed chief of industrial plant protection for the Chicago area, which covers more than 1500 plants from Gary, Ind., to Waukegan, Ill.

George J. Morton, formerly associated with Northern Pump Co., Minneapolis, as production engineer, has been appointed plant manager, Bass Foundry \& Machine Division of National Industries Inc., Fort Wayne, Ind.
G. W. Roberts, executive vice president, Athey Truss Wheel Co., Chicago, has been elected chairman of the board, and A. E. Saidl, formerly
assistant secretary and assistant treasurer, has been made secretary and assistant treasurer. Ray Betsinger, vice president, has resigned to accept a position with the government in Washington.

Gordon C. Sleeper has been named a member of the executive staff, Republic Aviation Corp., Farmingdale, N. Y., as assistant to Ralph S. Damon, president. He formerly was associated with the brokerage firm of Reynolds \& Co., New York.
C. E. Lewis, general sales manager, Delco Appliance Division of General Motors Sales Corp., Rochester, N. Y., was elected president, Oil Burner Institute, at its annual meeting in New York recently.

French E. Dennison in charge of the small commercial refrigeration development department of York Ice Machinery Corp., York, Pa., has been called by the War Department to serve as chief inspector for the Philadelphia Ordnance District.
V. L. Sanderson, Philadelphia, and his associate, William Bradford, Wilmington, Del., have been appointed sales representatives in eastern Pennsylvania, southern New Jersey, Delaware and Maryland for Cochrane Corp., Philadelphia.

Earl O. Ewan, formerly in the public relations department of Johns-Manville Corp., New York, has been appointed assistant to the president in charge of public relations, Federal Shipbuilding \& Dry Dock Co., Kearny, N. J.

Thomas B. Myers, vice president and general manager, Hamilton Beach Division of Scovill Mfg. Co., Racine, Wis.; William W. Coleman, president, Bucyrus-Erie Co., South Milwaukee; and Frank R. Bacon, president, Cutler-Hammer Inc., Milwaukee, have been appointed to the advisory board of the Chicago Ordnance District.

Bailey Meter Co., Cleveland, has made the following additions to its field engineering staff: J. T. Elder and J. E. Wood have been assigned the Atlanta, Ga., territory; J. E. Luy-
pold, Seattle; E. P. Nye, Buffalo; R. B. Pogue, Milwaukee; W. D. Hil born, Houston, Tex.; J. J. Haslam, Kansas City, Mo.; J. J. Wilber, Cleveland; C. E. Hicks, New York; J. R. Powell, Pittsburgh; S. G. DukeIow, Denver; R. V. Johnson, Chicago; W. D. Robinson, Boston; and C. C. Holtzman, Philadelphia.

George W. Mason, president, Nash-Kelvinator Corp., Detroit, has been elected a director of Square D Co., Detroit, to succeed F. Eberstadt, who has resigned to accept a government post.

Salesmen Aid Westinghouse Conversion to War Output

How salesmen trained for peace time tasks have helped convert West inghouse Electric \& Mfg. Co. facili ties to all-out war production was described before the recent meeting of the American Management Asso ciation in New York by Tomlinson Fort, assistant manager of the company's central station sales.

When defense and war demands closed normal channels of business, Westinghouse drafted their salesmen to aid in the change over to manufacture of war materials.
"They familiarized themselves with priorities regulations, located many urgently needed subcontractors, found new war uses for peacetime machines, and aided in placing retired electrical machines in active duty," Mr. Fort said.

DIED:

Edward T. Fishwick, vice president and director, Worthington Pump \& Machinery Corp., Harrison, N. J., March 15, at his home in Glen Ridge, N. J. He has been associated with the company 50 years.

Ray L. Williams, 55 , service manager, Marion Steam Shovel Co., March 5, at his home in Marion, 0 .

Albert Fisher, 78, a co-founder and first president, Fisher Body Co., Detroit, in that city, March 15.

Charles A. Zentgraf, 56, for 12 years superintendent, Hill Acme Co., Cleveland, March 12, in that city.

Morris S. Towson, 76, president and general manager, Elwell-Parker Electric Co., Cleveland, March 17, in Orlando, Fla. Mr. Towson had been associated with Elwell-Parker since 1895.

Herman A. Uihlein, 55, president, Ben-Hur Mfg. Co., March 13, in San Antonio, Tex. He joined the Lavine Gear Co., Milwaukee, in 1910, and subsequently became president of the firm, now known as Ben-Hur Mfg. Co.

Henry M. Lucas, 73, president and founder, Lucas Machine Tool Co., Cleveland, March 2, in that

Irvin Works' Hospital and Reception Building

HOSPITAL, personnel olfices, and reception rooms for plant visitors are housed in this new building at Carnegie-Illinois Steel Corp.'s Irvin Works. Designed by Rust Engineering Co., Pittsburgh, it provides emergency hospitalization for accident cases and physical examination facilities for job applicants. Structure includes an officers gage controlling entrance to the plant for protection
city. Mr. Lucas formerly was with Warner \& Swasey Co., leaving that firm in 1900 to organize the Lucas company.

Henry J. Baier, 67, chief engineer and master mechanic, Cleveland Twist Drill Co., Cleveland, for 46 years before his retirement nine months ago, March 3 , in that city.
J. A. Callahan, general manager, marine division, Bendix Aviation Corp., in New York, Feb. 28. Before joining Bendix three years ago he was general manager, plumbing ware division, Briggs Mfg. Co., Detroit.

Angus Hopkins, 70, president, Hopkins Machinery Co., New York, March 1, in that city.

Thomas Goodall, 44, Chicago sales manager, E. F. Hauserman Co. Cleveland, in Evanston, Ill., Feb. 25.

Epley T. Fisher, 66, former president, C. H. Hoppe Foundry Co., Chi cago, Feb. 26, in that city.

William J. Chandler, 60, vice president and assistant secretary, Hansell-Elcock Co., Chicago, in that city, March 9.

Dwight B. Lee, 68, Detroit indus trialist, March 5, in that city. At time of his retirement in 1934 he was president and a director, Motor Products Co., and also a director of Kelvinator Corp.

Andrew Christianson, 74, formerly chief engineer, Pullman-Standard Car Mfg. Co., Chicago, and more recently assistant to president, O. C. Duryea Corp., Chicago, March 5, in Battle Creek, Mich.

Julius Blum, 57, president and treasurer, Julius Blum \& Co. Inc., New York, fabricator of ornamental iron, steel and plastics, Feb. 27, in that city. He also was an official of the company's affiliate, Bright Steel Corp.

Carl Pfanstiehi, 54, inventor and vice president and director of research, Pfanstiehl Chemical Co., Waukegan, Ill., at his home in Highland Park, Feb. 28. Mr. Pfanstiehl founded what is now known as Fansteel Metallurgical Co. and when he left the company 20 years ago the name was changed from Pfanstiehl to Fansteel. Mr. Pfanstiehl was granted 130 patents on metallurgical, automotive, electrical, chemical and radio inventions.

Sam R. Steinberg, 64, founder, Chicago Metals Co., Chicago Phoenix, Ariz., recently.

Activities of Steel Users, Makers

CATERPILLAR Military Engine Co., with corporate offices at East Peoria, Ill., has been formed as a wholly-owned subsidiary of Caterpillar Tractor Co. to co-operate with military engineers in planning and construction of an armament plant in Illinois. Final approval has been given by the War Department. The new company is headed by B. C. Heacock, president; T. R. Farley, vice president; William Blackie, secretary and treasurer. Directors in clude these officers and A. T. Brown and L. B. Neumiller.

International Business Machines Corp., New York, has munitions contracts on hand and under negotiations which, when completed, will amount to over $\$ 150,000,000$. The bulk of these munitions will be made at Endicott, N. Y., and large quantities will also be manufactured at Rochester and Poughkeepsie, N. Y., plants, the company states.

Riveting Apparatus Inc., 200 Magee building, Pittsburgh, recently organized, will manufacture equipment for driving rivets cold. The company has been assigned patents held by Raymond S. Osborne, covering a pressure control mechanism designed to drive rivets cold to a uniform size at a rapid rate.

Kollsman Instrument Division of Square D Co., Elmhurst, N. Y., will erect an addition to its plant to increase production of precision aircraft instruments. Equipment for the new plant, to be purchased by the parent company, will cost approximately $\$ 200,000$, while the building, which is to cost $\$ 500,000$, will be financed by Defense Plant Corp.

Ferro Enamel Corp., Cleveland, has modified its trade mark for war purposes. The old trade mark consisted of a check and circle, while the new trade mark is a circle with the word "Victory" in it.

Independent Pneumatic Tool Co., Chicago, recently moved its Detroit

SAME semicircular steel shelters that are keeping the soldiers warm in Iceland, above, are keeping the marines cool in the palm-studded Panama Canal Zone, below. The buildings are called Nissen huts. Wide World photos
branch to a new building at 15605 Woodrow Wilson avenue, the fourth service station to be completed in the past 15 months.

Surface Combustion Division of General Properties Inc., Toledo, O., has been awarded a contract to supply a Kathabar moisture control system for furnishing dry blast to Republic Steel Corp.'s new blast furnace at Alabama City, Ala.

Timken-Detroit Axle Co., Detroit, has released a sound film in color entitled "A Declaration of War on Inefficiency in Truck and Bus Operation and Maintenance." Film is designed to aid operators in pre-
venting breakdowns and deterioration of rolling equipment.

American Agile Co., Cleveland, has completed its expansion program begun six months ago. Installation of hydraulic equipment and other allied machinery has quadrupled the company's output of welding electrodes.

Reliance Electric \& Engineering Co. and W. J. Schoenberger Co., both of Cleveland, have been notified they will receive the Navy " E " pennant for excellence in ordnance production. Reliance will receive the award March 24 and Schoenberger on April 10.

United States Rubber Co. has been awarded contract by the War Department to operate a plant in Pennsylvania for manufacture of "TNT."

MEETINGS

Bend Testing Machine To Be Demonstrated at St. Louis

A NEW bend testing machine, designed and built under the auspices of a special subcommittee headed by W. R. Shimer, Bethlehem Steel Co., will be exhibited and demonstrated at the eleventh meeting of the Galvanizers Committee, Hotel Chase, St. Louis, April 20-21. Members of the committee will attend the opening sessions of the twenty-fourth annual meeting of the American Zinc Institute when subjects relating to slab zinc production and distribution will be discussed.
J. C. McQuiston, 602 Shields bullding Wilkinsburg, Pa., is manager-secretary May 10-20-National Metal Trades Assoclation. Forty-fourth annual conven Clon, Biltmore hotel, New York. Harry S. Flynn, Room 1021, 122 S. Milchgan avenue, Chicago, is secretary.
May 27-American Iron and Steel Instltute. Fifty-ilrst meetlng, Waldori-As torla, New York. George S. Rose, 1829 Empire State bullding, 350 Fifth avenue, New York, is secretary
U. S. S. Oberon, another C-2 cargo vessel built for the Maritime Commission by Federal Shipbuilding \& Dry Dock Co., Kearny. N. J., subsidiary of United States Steel Corp., was launched last week. This was the twenty-seventh vessel constructed by the company for the commission.

Want 'War' Instead of "Defense" on U.S. Bonds

Ralph E. Flanders, president, New England Council, Boston, last week forwarded to Secretary of the Treasury Henry Morgenthau Jr., a suggestion by the council that the word "War" be substituted for "Defense" on bonds and stamps being sold by the government. "Defense" was held to be appropriate only as long as the United States was not at war. It is becoming clear that defense measures will not only not win the war but that continued reliance upon such measures may lose the war. References to "defense" are said to maintain a harmful psychology in the public mind.

Convention Calendar

March 23-25-American Soclety of Mechanical Engineers. Spring mecting. Rice hotel, Houston, Tex. C. E. Davies, 29 W. 39th street, New York, is secretary.
March 26-28-American Socioty of Tool Engincers. Annual meeting at Hotel Jefferson, st. Louls. Ford R. Lamb, 2567 West Grand boulevard, Detrolt, is secretary.
April 6-7-Machine Tool Electriflcation Forum. Westinghouse Electric \& Mfg. Co., East Plttsburgh, Pa.
April 14-17-I Packaping Institute Inc. Packaglng Exposition and Conference, Hotel Astor, New York. H. L. Stratton, 342 Madison avenue, New York, is secretary
April 16-17 - Open-IIearth Committee. Twenty-flifth conference of open-hearth, blast furnace and raw materials committees, American Institute of Mining and Metallurglcal Englneers at Hotel Netherland Plaza, CIncinnati. F. T. Sisco, 29 W. 39th street, New York, is secretary.
April 20-21 - Galvanizers Committec. Eleventh meeting at Hotel Chase, St. Louis. Sponsored by Amerlcan Zinc Institute Inc. E. V. Gent, 60 East dind street, New York, is secretary.
April 20-21 - American Zinc Institute, Inc. Twenty-fourth annual meeting, Chase hotel, St. Louls. E. V. Gent, 60 East 42 nd street, New York, is secretary.
April 20-24-American Chemical Soclety. Annual meeting, Memphls, Tenn. Dr. C. L. Parsons, 728 Mills building, Washington, is secretary.
April 20-24-American Foundrymen's Assoclation. Foundry and Allied Industrial Show, Cleveland Auditorium and Exhibltion Hall, Cleveland. R. E. Kennedy, 222 Adams street, Chicago, is secretary.
April 23-25-Concrete Relnforcing Steel Institute. Eighteenth annual meeting, The Homestead, Hot Springs, Va. H. C. Delzell, 228 N. LaSalle street, Chlcago, is executlve secretary
Aprll 27-30-Chamber of Commerce of the U. S. of Amerlca. Thirtieth annual meeting at Washington. Ralph Brad1ord, 1615 H street, Washington, is secretary.
April 27-May 1-American Mining Congress. Nineteenth annual coal convention and exposition, Cincinnati. J. D. Conover, 309 Munsey building, Washington, is secretary.
May 11-13-American Gear Manufacturers Association. Flity-flrst annual meeting, Hotel Hershey, Hershey, Pa.

Machine Tool Plant Addition Erected in Four Weeks

RAPID expansion to increase facilities for the manufacture of turret lathes is underway at Gisholt Machine Co., Madison, Wis. Upper photo shows ground being broken for a new 50,000 -square foot addition. Lower view shows construction four weeks later. Scheduled to be completed by April 1, the addition will supply jobs for 550 more workers and will be operated on a three-shift, 168-hour week

Sub-Contract Opportunities

Data on subcontract work are issued by local ofices of the Contract Distribution Branch, WPB. Contact either the office lssulng the data or your nearest district office. Data on prime contracts also are issued by Contract Distribution offices, which usually have drawings and speclflcations, but bids should be submitted directly to contracting officers as indicated.

New York office, Contract Distribution Hrunch of WPIS, 122 East Forty-Second street, New York, reports the following subeontract opportunltles:
S-64: New Jersey flrm making bomb fuzes is seeking subcontractors to fur nish steel pins $1 / 2$-inch diameter, $11 / 2-$ inches long; brass pins $1 / 4$-inch diameter, 3 -inches long. Quantity is 250,000. Requires "OO" automatic screw machine. Drawings avallable for inspection.
S-65: Long Island alrcraft manufacturer needs subcontractors having internal and external grinding machines to handle work from $1 / 1$-inch to $1 / 2$-Inch dlameter, holding tolerances of .0005 .
s-6f: Long Island manuiacturer of radlo equipment for the Signal Corps is secking subcontractors who have large capaclty, multiple spindle automatle screw machines.
S-67: New York flrm making tractor cranes wants subcontractors to rurnish the following: Cast iron gear case; cast jron main hoist leg cap, $6 \times 3 \times 3$ inches: cast iron main hoist drum, 18 $x 12$ inches; cast steel main holst leg. $12 \times 14 \times 6$ inches. Quantity 25 per month. Requires 10 -foot planer, 3-foot radial drlll, horizontal borlng mill to swing 2-Inch boring bar or No. 5 Morris taper spindle. Prime contractor wll rurnish castings.
s-68: New York manuracturer is seeking subcontractors to furnish small cannon recoll mechanisms. Parts are steel measuring up to 21 -inches long, with tolerance to .0005 . Quantily is large. Requires proflers, milling machlnes, turret lathes, screw machines, external and internal grinders. Internal grinding may be excluded if subcontractor is otherwlse quallied.
S-69: Contractors sought to make one part of bomb rack, known as aircrart bar release. Part is steel, $12 \times 2 \times 1$ Inches. Quantity is 125,000 every three months. Requires steel forging facilities, including 1600 ton hammer.

Phlladelphia office, Contract llistribution Isranch, Iroduction Division, W'IS, 13road Street Station IBuilding, reports the following subcontract opportunitles: 15-157-1: East Hartford, Conn. IIrm requires subcontracting facilities on counterweight brackels, counterweight caps, counterwelghis, cylinder heads. plstons, front cone, rear cone and combination wrench. Tools required: small drop hammer forgings, drilling up to 7, turret lathes No. 1 \& No. 2 , milling machine No. 2 \& No. 3, automatle screw machines $34 / 4^{\prime \prime}$, cadmium and chromlum plating, bonderizing, heat treating and grinding. Steel to be SAE 6135-4640-1035-6150. Tolerances .001 . Plans and speciflcations on ile at Phlladelphia office and parts on view at Exhibit room.
15-138-3: Harrisburg, Pa. flrm requires subcontracting facillties on the following items: Bolts \& nuts, $y^{\prime \prime} \times 13 / 2$ dia., $1 / 2^{\prime \prime}$ to $7^{\prime \prime}$ in length and studs, wes " $^{\prime \prime}$ $1 / 2 "$ Dla., $21 /{ }^{\prime \prime}$ to 8 s" $4^{\prime \prime}$ in length. Material required is S.A.E. 1035. Tolerances: Commercial. Quantity: 16,625 bolts and nuts and 7,715 studs. Tools necessary for the work include singlespindle automatle serew machine or small turret lathe, and bolt threading and tapping machine.
16-138-1: Philadelphin flrm requires subcontracting facilities on the following: Seamless steel tublng from 84 to $15.00^{\prime \prime}$ Dia. 38,700 ft. required. Spectifcations
at this office. Also power distribution panels, switch boards and hydraulic manifolds required. Steel castings under 500 lbs. Bronze and copper sllicon castings 10 to 100 lbs. Drawings of the castings on flle at this offlce. Materials to be furnished by subcontractors. Tolerances: . 001 to .005.
13-139-2: Navy requires subcontracting facilities on secondary drainage pumps, complete assemblies and spare parts. Patterns for castings only to be furnished by prime contractor. Quantlty: Four complete pumps, assembled, and large quantity of spare parts. Tools required: Machine shop equipment for machining medlum size castings and iorgings Including equipment for making worm reduction gear. Ing. Prints and speclilcations are on Ile at this office.
4-137-1: A Government arsenal requires subcontracting assistance on trail stops. Plate metal work up to $1 / \mathrm{s}^{\prime \prime}$ is required with butt welding and seam welding. Material-low alloy Steel, grade 2 ; to be rurnished by prime contractor. Fifty items required at commercial tolerances. Prlority A-1-f. Plans and speclfications at Phlli. delphla office.
14-136-1: Phlladelphia Ordnance District requires preliminary planning and procurement for varlous types of fuzes Steel (bar and sheet), brass (rod and strip) seamless brass tubing and steel music wire are required. Tools neces. sary for the work include multi-spindle screw machines ($2 / 80$ to $2 \% \%^{\prime \prime}$) and gear
cutting equipment. Quantities and rates not settled.

Ainmenpolis office, Contract DistributIon Branch, Production Division, WPls Midand Bank building, is seeking contractors for the following:
No. 173: Local contractor has work avallable for shops capable of handing thread cutting on worm sharts and cutting of worm gears. Forgings will be furnished. Quantities: 6000 desired at the rate of 200 per week beginning about April 1. Subcontractors should have gear hobbers, engine or turret lathes, external grinders, complete facilities for machining bronze worm gears.
No. 175: Wanted: To sublet by out-oftown prime contractor-Miscellancous: Shaft turning, threading, key seating, splining, heat treating, grinding. Largest overall length 22 inches. Miscellaneous gear cutting of steel castings and blanks; largest 3 D.P. 85 tecth 3-inch face. A-1-a perference rating, reasonable tolerances, large initlal quantity and production schedule to ast for duration. May be bid on all or part of quantity for complete manufacture.

Low-Grade Cuban Nickel Ores To Be Developed

Nicaro Nickel Co., subsidiary of Freeport Sulphur Co., New York, will build a $\$ 20,000,000$ plant, under a Defense Plant Corp. contract, to develop low-grade nickel ores in Cuba.

Freeport engineers and metallurgists have been experimenting for two years with a process for developing the Cuban ores at a test plant near Freeport, Tex.

Navy Vessel Launched in Chicago

FIRST United States Navy vessel built in Illinois during World War II, a 136foot mine sweeper, slid down the ways at Chicago last week. Designed for inshore sweeping, the craft will proceed to salt water after equipment is installed and tests are made by Nayy officials. NEA photo

Assembly Line Methods Used To Build 200 Liberty Ships

Plates Prefabricated in Freight Car

Shops Also Speed Construction

ADAPTATION of the automobile industry's assembly line technique to build 200 Liberty cargo vessels by the end of 1943 was announced last week by the Maritime Commission.

A new shipyard, equivalent to 28 conventional shipways, will be built near New Orleans. A contract was signed with Higgins industries Inc., New Orleans.

Maritime Commission also announced award of a contract with W. A. Bechtel Co., San Francisco, for the construction of a six-way shipyard in the San Francisco Bay area and the construction of 34 Liberty ships.

The two contracts call for an expenditure of more than $\$ 400,000,000$.

Since February, 1941, 1456 Liberty vessels have been ordered by the commission.

PREFABRICATION is making possible the building of α Liberty ship every week at a large eastern shipyard; soon the yard will be turning out two of the simplified cargo vessels each week.
Subassemblies of the ships are fabricated in a huge plant, which formerly produced freight cars, and shipped six miles to the shipyard on flat cars, as shown above. Each subassembly is marked so that the shipyard workers know exactly where it goes. In upper

right photo, a worker in the mold loft is painting over the marks made on steel plates from wooden templates, or patterns. The original markings are scratched on the steel, and then are
brought out by painting in white.
At lower right, a maritime inspector is checking over, with the foreman, the stem assembly for a new member of the Liberty fleet. OEM photos

Iron Ore Shipped from 165 Lake Superior Mines in 1941

ONE hundred forty four mines contributed to the record-breaking tonnage of iron ore shipped in 1941 from Lake Superior ranges. This was 25 more than were in operation in 1940. Active in 1941 were 92 on the Mesabi range, compared with 71 in 1940. Vermilion range had six compared with five the prior year; Cuyuna 13 compared with 12; Gogebic 15 against 14, and Marquette 18 compared with 17. On the Menominee range 21 mines
were in production each year. Largest shipper in 1941 was the Sellers mine, Mesabi, wih $10,098,342$ tons, almost double the 1940 tonnage. Second largest was the Hull-Rust, $5,111,600$ tons. The Missabe Mountain mine shipped $4,603,065$ tons; Mahoning, 4,040,388 tons.

Total shipments from American mines in 1941, as announced by the Lake Superior Iron Ore Association, were $80,747,859$ gross tons, 26.3 per cent greater than 63,948 ,-

846 tons shipped in 1940, and 22.1 per cent more than $66,157,359$ tons in 1929. In addition, 462,747 tons were shipped in 1941 from the Michipicoten range in Canada.
Of the 1941 total Minnesota mines forwarded 64,060,726 tons and Michi-gan-Wisconsin mines $16,687,133$ tons. Mesabi range mines contributed 59,772,543 tons, approximately 74 per cent of the season total.
Details of 1941 and 1940 ship. ments in gross tons by mines follow:

MESABI RANGE

Mine	1941	7940	Mine	1941	1940	Mlne	1941	1940	Mine	1941	1940
Aad	463		Genoa-Sparta	50,685	49,330	Mesabi Chler.	431,078	716,617	Schley	263,137	
Adams Spruce			Gilbert (Schley			hllnnewas	814,573	1,088,635	Scranton	1,025,323	587,010
Group . . .	3,477,580	1,941,395	Tresp)	168,286		Minorca	21,533		Sellers	10,098,342	5,784,048
Agnew .	304.847	306,711	Godirey (Burt)	450,903	330,347	Milssabe			Shenango	384,742	203,272
Albany	807,949	5:24,742	Godirey (Glen)	143,902	219,339	Mountaln.	4,603,065	4,330,739	Sliver	71,191	$52,87.4$
Alice	85,430	54,225	Grant	581,691	1,064,000	Mississippi			Smith	4.876	
Alice Fayal	24,109		Greenway	290.518	34,072	No. 2...		21,327	Snyder		42,201
Alpenai	6,601	481	Harrison	457,348	1.617	Morris	1,722,808	1,660,68.4	South Agnew		60,750
Arelurus	1,037,912	808.149	Harrison and	,		Morrlson	1,026,673	799,606	South Uno		
Argonne	371,773		Patrick con-			North			G.N.	3.659	2.919
Bennelt	855,582	620,465	centrat.*	178,817	384,185	Harrison	199,309	84,025	South Uno		
Blwabik	1,012,757	1.019,851	Harrison			North			N.P.	13,055	19,651
Ifradiord	46,695		Annex		19,475	Harrison			Stein	378,687	150,064
Bray (Mesabl			Hartles-Burt.	237,842	729,414	Annex		188,847	Stephens (Pa -		
Chlef Tresp.)	143.249	167.920	Hawkins	507,331	316,318	North Uno			ciflc Tresp.)	3,715	2,086
Burt-Pool-			HIII Annex	3,645,950	2,991,068	N.P.	43,401		Stevenson ...	167,232	
Day	1,028,686	568,397	Hill Trumbull	1,254,576	1,087,064	Pacine	29,034	107,063	Susquehanna.	876,787	G06,628
Canisteo	556.128	-178,339	Hoadley	63,747	12.977	Patrick-Ann.	143,050	177,742	Union	72.095	144,288
Carol.	150,238		Holman-Cliffs.	939,947	125,274	Penobscot	532,441		VIrainia	316,819	193,372
Chates	81,838	19,983	Hull Rust..	5,111,600	3,901,971	Perkins			Wablen	278,238	
Commodore	61,895	1,869	Jo-Ann …	7,604	3,501.071	Annex	149,181		Wacootah	371,258	306,015
Coons	280,808	267.453	Judd	142,661	31,361	Pillsbury			Walker	51,014	
Corsica	706,478	679,358	Julia	22,115	15,207	(Bradford			Warren	416,340	
Dale	13,715	4,021	Kevin	937,458	81,047	Tresp.)	49		Webb	717,082	536,077
Danube	708,877	482,977	Lanedon		160, 14.4	Quinn	27.799	6,948	Wlsstar	9,463	
Draper	39.125		LaRue	282,460	104,351	Reed	3,081	35,533	York	93.461	60,542
Dunwoody	201,772	280,911	Leonard-Burt	234,391		Rouchleau					
Dunwoody	4,322		Leonidas	405,710	572,083	(Minnewas			Total	59,772,543	45,667,677
Fayal	11.203	16,025	Lincoln	804		Tresp.) ..	2,747				
Fraser	1,398,785	1,566,078	Mahoning	4,040,388	5,177,201	St. Paul-Day	190,964				
Galbraith	360,696	1,566,078	Majorca	151,467	5,177,201	Sargent	127,521	130,886			

MENOMINEERANGE

Mine	1911	1940	Mine	1941	1940	Mine	1941	1940	Mine	1941	1940
Bultic	7,924	2.738	Davidson			Homer	316,316	218,448	Tobin-		
Bates	158, 173	170.061	Group	318,624	300,920	James	318,008	210,360	Columbia	232,240	24,681
Bengal	397,645	280,045	Fogarty	39,851	43,607	Loretto		39,606	Virgil	275,562	172,090
Berkshlre		3,178	Globe-Cornell	63,791	57,486	Matilda	3,399	1,583	Wauseca	47,002	41,305
Beta ..	18,998		Hiawatha			Penn Mines.	881,693	661,924			
Bradtey	40,334	31,409	No. 1.	298,696	279,095	Ravenna-			Total	4,131,363	3,103,334
Buck	323,625 10,774	22-1,507	Hiawatha No.			Prickett Rogers	91,774 55,950	62,082 3,074			
Cuft	10,774		No. 2	230,984	274,232	Rogers	55,950	3,07.1			

MARQUETTERANGE

Sline	1941	1940	Mine	1941	1940	Mine	1941	1940	Mine	1941	1940
Athens	659,451	668,009	Gardner-			Mas	877,807	950,426	Stephenson	37,694	28,541
Blueberry	340,279	3631,651	Mackinaw. .	43,866	65,946	Mary Charlotte	281,887	187,517	Tidden	292,443	168,629
Cambria-			Greenwood ..	94,565	103,638	Morris	334,264	427,259	Volunteer	255,600	153,341
Jackson	316,257	303,95:3	Lake Superior			Negaunee	1,051.006	930,640			
Champion Clifs Shaft	106,928 638,246	611,891	Holmes Lloyd..	217,114 457,923	301,398 510,591	Princeton Richmond	12,476 236,585	273 178,760	Total	6.254.391	5,920,463

GOGEBIC RANGE

Mine	1941	1940	Mine	1941	1940	Mine	1941	1940	Mlne	1941	1940
Anvil	303,053	277.575	Ironton	181,273	236,443	Penokee Group	605,297	600,559	West Davis.	450,428	422,123
Cary	340,772	227,260	Keweenaw	398,764	383,628	Plymouth	607,169	706,658			
Fureka-	- 712	227,260	Montreal.	1,141,641	999,402	Puritan	50,055	222,746	Total	6,301,379	5,975,727
Asteroid	638.702	508,265	Newport	649,357	605,983	Sunday Lake.	611,515	572,306			
Geneva	62.183		Palms	33,100	2,977	Wakefleld	228,070	209,802			

CUYUNA RANGE

Mine	1941	1940	Mine	1941	1940	Sline	1941	1940	Mine	1941	1940
Alstead Gruup	237,358	170,930	Merritt	126.712	117,524	Chandler	172,421	113,601	Zenith	744,955	450,808
Armour No. 1	208,399	232,566	Northland	4,575		Ploneer	543.470	560.467			
Evergreen .	175,888	118,574	Pennington	122,091	8,891	Savoy	4,101	…	Total	(... 1,847,094	1,547,469
Hopkins		5,170	Portsmouth	169,527	160,421	Sibley	194,473	227,564	Fillmore	County, Minn.	
Huntlngton	59,292	Sagamore	451.236	255,544	Soudan	187,674	195,029	Fillmore	47	
Loulse Mahnomen	211,029 184,211	106,113 $4.33,993$	Wearne	186,802	118,439	GRAND				80,747,859	,948,846
Maroco .	184.922 3.92	-1.3.011	Total	2,441,042	1,734,176	*Tonna	allocated	to indlv	mines.	,74,859	,3-8,846

Three Quarters of

U. S. Steel Output

For War Purposes

MORE than three-fourths of United States Steel Corp.'s current steel shipments are for direct or indirect defense and lend-lease requirements, Irvings S. Olds, chairman, disclosed last week in the corporation's 1941 annual report.

The entire resources of the corporation and its subsidiaries have been at the call of the government throughout $1941, \mathrm{Mr}$. Olds said.

The report enumerated a wide variety of products being manufactured by subsidiaries for war purposes. In addition to all kinds of rolled and finished steel, the list included naval, maritime and other ships, armor and protective deck plate, bomb casings, unloaded shells, shell forgings, gun firing mechanisms, military pipe lines, naval propulsion equipment, submarine cable, torpedo impulse flasks, fabricated landing mats, wire netting for camouflage, steel for cartridge clips and bullet-core steel.
A feature of report is a series of photographs depicting operations at U. S. Steel plants with special emphasis on the manufacture of armor plate.

Shipments of rolled and finished steel during the year totaled more than $20,000,000$ net tons-an all-time high and an increase of more than one-third. over the shipments in 1940. The net tons of ingots produced by U. S. Steel subsidiaries also established an all-time record and represented an increase of more than one-fourth over the 1940 production. Rolled and finished steel production was maintained throughout the year in excess of full rated capacity, and ingot production was within a few points of full rated capacity. Important increases were

'Big Steel" Produces Casings for Bombs

CASINGS for bombs ranging from $17-$ pound iragmentation units to two-ton demolition bombs are being produced by United States Steel Corp. Processes in their manufacture are shown in accompanying photos, taken from the corporation's annual report. At top, suspension lugs are being welded to casings: center, casing is being "tailed"; lower photo shows nose and tail of casing being machined. Casings are formed from seamless tubing
made during the year in the rated ingot capacity

Gross capital expenditures for additions and betterments to facilities aggregated about $\$ 111,000,000$ in 1940, 1941, compared with $\$ 72,000,000$ in 1940. Unexpended authorizations for all purposes at the end of 1941 amounted to $\$ 185,000,000$ additional.

The chairman warned that short age of scrap may constitute a limitation upon the effort to maintain maximum production during 1942, unless ways are found to make available large additional quantities of this essential material.

In addition to steel, nearly onethird of the nation's output of tar, ammonium sulphate, benzol and toluol, as well as substantial quantities of tar acids, are derived as by-products from coking operations. Nitration toluol is utilized in the production of explosives and am monium sulphate will be used as fertilizer in increasingly larger quan tities as the production of many essential agricultural commodities is expanded.
Loss of production resulting from
strikes and work stoppages during 1941 was estimated by the chairman as the equivalent of 300,000 tons of steel, $5,000,000$ tons of coal and 19 days of ship production.

During 1941 the corporation disposed of the largest volume of products and services in its history and received for them the largest sum of money in its history. It paid to its workers not only the highest hourly wage but also the highest average annual wage in its history.
Net income of the corporation and subsidiaries amounted in 1941 to $\$ 116,171,075$ compared with $\$ 102$, 211,282 in 1940. After payment of like dividends for both years, there was left a balance for future needs of $\$ 56,138,390$ in 1941, compared with $\$ 42,178,597$ in the preceding year.
The dollar volume of sales in 1941 $\$ 1.6$ billion, was the highest in U. S. Steel's history; but reflecting the effect of unchanged scheduled prices of principal products in the face of increased tax, wage and material costs, the net income for 1941 was 41 per cent less than for 1929.
Cautioning that the 1941 net in-

How U. S. Steel Earned Its Living 1902-1941

lear of On) atlon	Products A Solll	services Hinusht	$\begin{aligned} & \text { Tuxes } \\ & \text { Pru- } \\ & \text { vlded } \end{aligned}$	Wear of Fucllities	Interest 01 Delst	13alance IRemainlng	Winges for Workers		nds ded Cinnmun	Future Needs	Total for Fuclllifes
1902	428.2	154.9	2.4	27.8	21.3	210.8	120.5	35.7	20.3	34.3	90.3
1903	395.4	161.2	3.1	29.3	25.6	176.2	120.8	30.4	12.7	12.3	55.4
1904	324.7	143.3	3.1	18.2	30.1	130.0	99.8	25.2		5.0	30.2
1905	409.4	151.3	3.6	28.0	29.8	196.7	128.1	25.2		43.4	68.6
1906	484.5	169.2	1.1	35.6	29.4	245.9	147.8	25.2	10.2	62.7	98.1
1907	504.7	171.6	5.4	32.9	29.4	265.4	160.8	25.2	10.2	69.2	104.6
1908	331.8	106.5	5.4	22.4	81.3	166.2	120.5	25.2	10.2	10.3	45.7
1909	442.5	142.3	8.7	29.3	[11.5	230.7	151.7	25.2	20.3	33.5	79.0
1910	492.6	160.2	9.2	30.2	30.6	262.4	175.0	25.2	25.4	36.8	87.4
1911	433.0	149.4	9.6	26.0	31.1	216.9	161.6	25.2	25.4	4.7	55.3
1912	535.5	218.2	9.8	31.1	\$32.6	248.8	189.6	25.2	25.4	3.6	54.2
1913	561.7	194.6	13.2	31.9	33.3	288.7	207.5	25.2	25.4	30.6	81.2
1914	413.2	156.2	12.6	25.1	33.2	186.1	162.7	25.2	15.2	$17.0{ }^{*}$	23.4
1915	524.9	192. 5	13.6	32.4	32.8	25.3 .2	177.3	25.2	6.4	44.3	75.9
1916	903.0	269.5	26.6	19.5	32.0	535.4	26.3 .9	25.2	44.5	201.8	271.5
1917	1276.4	370.4	252.3	50.6	31.0	572.1	347.9	25.2	91.5	107.5	224.2
1918	. 1328.2	380.9	297.6	40.7	30.7	578.3	453.0	25.2	71.2	28.9	125.3
1919	1109.9	396.2	81.6	45.5	30.1	556.5	479.7	25.2	25.4	26.2	76.8
1920	1295.8	452.1	76.2	46.7	29.3	691.5	581.8	25.2	25.4	59.1	109.7
1921	725.9	± 53.1	37.7	36.8	28.5	369.8	333.2	25.2	25.4	$14.0{ }^{*}$	36.6
1922	809.3	339.4	35.8	42.7	28.4	363.0	323.4	25.2	25.4	11.0	39.6
1923	1093.6	379.9	55.1	51.5	28.0	579.1	470.4	25.2	29.2	54.3	108.7
1924	920.7	270.6	45.3	48.9	27.3	528.6	443.5	25.2	35.6	24.3	85.1
1925	1023.8	340.9	50.9	56.1	27.1	548.8	458.2	25.2	35.6	29.8	90.6
1926	1087.2	:357.8	52.4	64.2	26.8	586.0	469.3	25.2	35.6	55.9	116.7
1927	. 962,0	330.1	46.3	58.9	26.1	500.6	412.7	25.2	49.8	12.9	87.9
1928	. 1011.0	:350.1	51.0	67.2	25.7	517.0	402.9	25.2	49.8	39.1	114.1
1929	. 1094.1	\%3.2	55.0	63.3	14.9	607.7	410.2	25.2	63.8	108.5	197.5
1930	840.2	251.8	48.1	58.6	5.6	476.1	: 571.7	25. 2	61.4	18.8	104.4
1981	551.1	192.7	\$4.2	47.3	5.5	271.4	258.4	25.2	37.0	49.2*	13.0
1932	288.7	144.1	31.7	10.3	5.3	67.3	128.5	20.7		91.9*	71.2*
1983	377.2	165.3	31.7	43.6	5.2	131.4	167.9	7.2	..	$43.7{ }^{*}$	36.5
1934	423.2	144.6	35.8	44.6	5.1	193.1	214.8	7.2		28.9*	21.7*
1935	544.2	198.2	38.4	47.6	5.0	255.0	253.9	7.2		6.1*	1.1
1936	796.3	295.5	52.9	56.8	4.9	[386.2	335.7	50.4		. 1	30.5
1937	1028.8	346.2	88.0	60.9	5.1	528.6	433.7	58.5	8.7	27.7	94.9
1988	611.4	229.7	48.8	49.2	8.3	275.4	28.3 .1	35.2		32.9*	$7.7{ }^{\text {® }}$
1939	857.1	306.7	67.0	61.2	9.3	412.9	371.8	25.2		15.9	41.1
1940	1080.9	361.6	85.4	71.1	13.6	549.2	447.0	25.2	34.8	42.2	102.2
19:1	. 1623.4	608.5	191.5.	95.8	6.0	721.6	605.4	25.2	34.8	56.2	116.2

[^3]come cannot be regarded as typical earnings, Mr. Olds stated: "Income in 1941, after income taxes and all charges except interest on funded debt, amounted to 7.02 per cent, as compared with 6.99 per cent in 1940, of the value of the net assets, the latter being the total assets less current liabilities. The average return for the five-year period 1937. 19.11, on this basis, was 4.59 per cent, while for the ten-year period 1932-1941, which included the deficit years of 1932, 1933, 1934, and 1938, the average return was equivalent to 1.85 per cent of the value of the net assets."

Employment averaged approximately 304,000 for the year 1941, a greater number of employes than in any year of its history, and representing an increase of 51 per cent since 1938. The total payroll during the same period increased 113 per cent.

Annual payrolls rose to a new high of $\$ 601,117,053$ compared with the total of $\$ 438,621,292$ in 1940 and with $\$ 420,072,851$ in 1929 .

More than 18,000 employes of subsidiaries are receiving intensive training for skilled jobs to meet pressing war-time requirements and to provide for personnel replacement as a result of America's par ticipation in the war, the report indicated. This employe training program, one of the largest in all of industry, has "contributed materially to the increase in the output of steel and other products."

The total tax provision of U. S. Steel in 1941 amounted to $\$ 191$ million, or 124 per cent more than in 1940. These taxes for 1941 were equivalent to $\$ 22$ for each outstanding share of common stock.

Steel Mill Inventories

Reduced in January

Value of steel mill inventories in January was 126.7, compared with 129.2 in December and 126.4 in January of last year, based on 1939 as 100, according to the monthly industry surrey of the Department of Commerce.

The department's figures show also that the value of steel mill new orders in January was 245, compared with 248 in December and 256 in January of last year, taking January, 1939, at 100.

Also taking January, 1939, at 100, the value of steel mill shipments in January was 242 , compared with 257 in December and 190 in January of last year.

There was an increase of 1 per cent in January over December in the value of unfilled steel orders and there was an increase of 102 per cent in January of this year compared with the same month of last year.

The BUISINESS TRENID

Index of Activity Declines Slightly

Steel's index of activity in the iron, steel and metalworking industries held unchanged during the week ended March 7 despite a decline in electric power consumption and steelmaking operations. A year ago the index stood at the 135 level, or substantially above the current index figure of 128.3 . The all time peak recorded by the index of 138.8 occurred during the week ended June 28 last year.

The national steel rate was off one point to 95.5 per cent in the week ended March 14 and also compared unfavorably with 98.5 recorded in the same week last year. Revenue freight carloadings advanced to 799,356 cars during the latest week, more than off-

setting the decline recorded in the preceding period.
Electric power consumption amounted to 3,357 ,444,000 kilowatts, off slightly from the previous week but represented a gain of 12.5 per cent over the total registered in the corresponding period a year ago.

Downward tendency in long range forward buying is illustrated in the Detroit Purchasing Agents Association's recent report which points out that 7 per cent of its members were buying nine months or more ahead in February, against 10 per cent in January and 18 per cent a year ago. The number buying on a hand-to-mouth basis rose to 7 per cent of the total, a proportion which had not existed since June, 1940.

STEEL'S index of activity remained unchanged at 128.3 in the week ended March 14:

Steel Ingot Operations

(Per Cent)

Week ended	1042	1941	1910	1949
Mar. 14....	95.5	98.5	62.5	56.5
Mar. 7.....	96.5	97.5	63.5	56.5
Feb. 28....	96.0	96.5	65.5	56.0
Feb. 21....	$96.0 \dagger$	94.5	67.0	55.0
Feb. 14....	97.0	96.5	69.0	55.0
Feb. 7....	96.0	97.0	71.0	54.0
Jan. 31....	97.0	97.0	76.5	53.0
Jan. 24....	97.0	95.5	81.5	51.5
Jan. 17....	96.0	94.5	84.5	51.5
Jan. 10....	96.5	93.0	86.0	52.0
Jan. 3....	97.5	92.5	86.5	51.5
Week ended	1941	1940	1939	1938
Dec. 27...	93.5	80.0	75.5	40.0
Dec. $20 \ldots$.	97.5	95.0	90.5	52.0
Dec. 13....	97.1	95.5	92.5	58.0

tSince Feb. 21 rate is based on new capacity llgures as of Dec. 31 last.

Eiectric Power Output					
(Million Klve)					
Wrek	ended	1942	1941	1940	1939
Mar.		3,357	2,965	2,550	2,276
Mar.		3,392	2,987	2,553	2,285
Feb.	28	3,410	2,982	2,568	2,294
Feb.	21	3,424	2,968	2,547	2,269
Feb.	14	3,422	2,959	2,565	2,297
Feb.	7	3,475	2,973	2,616	2,315
Jan.	31.	2,468	2,978	2,633	2,327
Jan.	24	3,440	2,980	2,661	2,340
Jan.	17	3,450	2,996	2,674	2,342
Jan.	10	3,473	2,985	2,688	2,329
Jan.	3	3,287	2,831	2,558	2.239
Week	puded	1941	194.0	1939	1038
Dee.	27	3,234	2,757	2,465	2,175
Dec.	20	3,449	3,052	2,712	2,425
Dec.	13	3,431	3,004	2,674	2,390
Dec.	6	3,369	2,976	2,654	2,377
Nov.	29	3,295	2,932	2,605	2,335

	T11	111	171		TTI	1	11	111		111	111	11	
				ELF	CTRIC	PO	WER	OUT	PUT				550
3500													3500
3450													3450
3400		+											400
) 3350			\%										$3350 \stackrel{\text { d }}{\sim}$
우 3300										-			3300 ర
- 3250									A				3250
F 3200													3200 E
${ }_{3} 3150$							i						3150
O 3100							i						3100
\% 3050							$1:$						3050 立
${ }^{1} 3000$						1	1						$3000{ }^{\text {O }}$
2950	!	-			\cdots		1						2950
U 2000	1		19	1.	\ldots		5						2900 Z
$\bigcirc 2850$			1941										2850 을
2800													2800
$\leqslant 2750$													2750
2700													2700
2650		\boldsymbol{T}											2650
2600			EL		Cowpled en	EDISON	ElECTRIC	Cinstimul					2600
0	$\frac{1111}{J A N}$	FEB.	$\frac{111}{\text { MAR. }}$	APR.	MAY	JUNE	JULY	AUG.	SEPT.	OCT.	NOV.	DEC.	0

Anto Production (1000 Units)

Week pinded	1942	1941	1940	1949
Mar. 14	30.6	131.6	105.7	86.7
Mar. 7	24.5	125.9	103.6	84.1
Feh. 28	30.1	126.6	100.9	78.7
Feb. 21	$25.7 \dagger$	129.2	102.7	75.7
Fel) 14	29.8	127.5	95.1	79.9
Feb. 7	37.1	127.7	96.0	84.5
Jan. 31	73.3	124.4	101.2	79.4
Jan. 24	79.9	121.9	106.4	89.2
Jan. 17.	75.0	124.0	108.5	90.2
Jan. 10	59.0	115.9	111.3	86.9
Jan. 3	18.5	76.7	87.5	76.7
Week ended	1941	1840	1939	1988
Dec. 27	24.6	81.3	89.4	75.2
Dec. 20	65.9	125.4	117.7	92.9
Dec. 13.	96.0	125.6	118.4	102.9
Dec. 6	90.2	124.8	115.5	100.7
Nov. 29.	93.5	128.8	93.6	97.8

tCanadian trucks and automoblles and United States trucks, since Feb. 21.

Freight Car Loadings
(1000 Cars)

Week ended	1942	1941	1940	1930
Mar. 14	799	759	619	595
Mar. 7	771	742	621	592
Feb. 28	781	757	634	599
Feb. 21	775	678	595	561
Feb. 14	783	721	608	580
Feb. 7	784	710	627	580
Jan. 31	816	714	657	577
Jan. 24	818	711	649	594
Jan. 17.	811	703	646	590
Jan. 10.	737	712	668	587
Jan. 3	674	614	592	531
Week ended	1941	1840	1939	1938
Dec. 27.	607	545	550	500
Dec, 20.	799	700	655	574
Dec. 1	807	736	,	6

fTEEL

Finished Steel Shlpments
U. S. Steel Corp.
(Unit 1000 Net Tons)
$\begin{array}{lllll}1942 & 1941 & 1940 & 1934 & 1938\end{array}$
Jan... $1738.91682 .51145 .6 \quad 870.9 \quad 570.3$
Feb.. . $1616.6 \quad 1548.51009 .3 \quad 747.4 \quad 522.4$
Mar... $1720.4 \quad 9319 \quad 845.1$ 627.
$\begin{array}{llllll}\text { Apr. } 1687.7 & 907.9 & 771.8 & 550.5\end{array}$
$\begin{array}{llllll}\text { May } & 1745.3 & 1084.1 & 795.7 & 509.8\end{array}$
$\begin{array}{llllll}\text { June . } \ldots . . & 1668.6 & 1209.7 & 807.6 & 525.0\end{array}$
$\begin{array}{llllll}\text { July . . } & \text {. . . } & 1666.7 & 1296.9 & 745.4 & 484.6\end{array}$
$\begin{array}{lll}\text { Aug. . } & \\ \text { Sept } \\ & 1753.7 & 1455.6 \\ 885.6 & 615.5\end{array}$
Sept. $1664.21392 .81086 .7 \quad 635.6$
$\begin{array}{lllllll}\text { Oct... } & 1851.3 & 1572.4 & 1345.9 & 730.3 \\ \text { Nov. } & 1624.2 & 1425.4 & 1406.2 & 749.3\end{array}$
$\begin{array}{llllll}\text { Dec.. } & 1846.0 & 1544.6 & 1444.0 & 765.9\end{array}$
Tot. \dagger. 15,013.7 11707.37315 .5
tAfter year-end adjustments.

1900	1938	1939	1940	1941	1942	1900
		,	-1゙11	11711	1110	
			NSHED STEE	L		
$\begin{aligned} & \text { n } 1700 \\ & 2 \\ & 0 \\ & \frac{5}{2} 1500 \\ & \frac{1}{z} \end{aligned}$			SHIPMENTS	$\rightarrow 4$		$1700^{\frac{0}{2}}$
				A	1	
						$1500{ }^{\circ}$
\%1300						宸
						$1300{ }^{\text {z }}$
						$1100{ }^{\circ}$
			V			
		A 1				900ㅇ
700						700
	A ${ }^{\text {comam }}$	142 compine	Br U. S. Stel corpe	ration		
	1ل1	بلиلй	U-1	11	1	500

Freight Car Awards

	1942	1941	1940	1939
Jan.	4,253	15,169	360	3
Feb.	11,725	5,508	1,147	2,259
2 mos..	15,978	20,677	1,507	2,262
March.		8,074	3,104	800
April.		14,645	2,077	3,095
May		18,630	2,010	2,051
June		32,749	7,475	1,324
July		6,459	5,846	110
Aug.		2,668	7,525	2,814
Sept.		4,470	9,735	23,000
Oct.		2,499	12,195	19,634
Nov.		2,222	8,234	2,650
ot		,499	889	

Steel Ingot Production

(Unit 100 Net Tons)

†Weekly average.

Construction Total Valuation In 37 States
(Cnlt: $\$ 1,000,000$)
$\begin{array}{lllll}1942 & 1941 & 1840 & 1999 & 1938\end{array}$
Tan. . $\$ 316.8 \quad \$ 305.2 \$ 196.2 \quad \$ 251.7 \quad \$ 192.2$
Feb $\quad 433.6 \quad 270.4 \quad 200.6 \quad 2202 \quad 118.9$
$\begin{array}{lccccc}\mathrm{Feb} . . & 433.6 & 270.4 & 200.6 & 220.2 & 118.9 \\ \mathrm{Mar} . & . & 479.9 & 272.2 & 300.7 & 226.6\end{array}$
$\begin{array}{lllllll}\text { April . } & . & 479.9 & 272.2 & 306.7 & 300.5 & 330.0 \\ 226.1 \\ \text { In }\end{array}$
$\begin{array}{lllllll}\text { May. . } & \cdots . . & 548.7 & 328.9 & 308.5 & 283.1 \\ \text { June . } & \ldots . & 539.1 & 324.7 & 288.3 & 251.0\end{array}$
$\begin{array}{lllllll}\text { July.. } & \cdots . . & 577.4 & 398.7 & 289.3 & 251.0 \\ & & 769.8 & 239.8\end{array}$
$\begin{array}{lllllll}\text { Aug. - } & \cdots & 760.3 & 414.9 & 312.3 & 313.1\end{array}$
$\begin{array}{llllll}\text { Sept. . } & \ldots . & 623.3 & 347.7 & 323.2 & 300.9 \\ \text { Oct... } & \cdots & 606.3 & 383.1 & 261.8 & 357.7\end{array}$
$\begin{array}{llllll}\text { Oct.. . } & \ldots . . & 606.3 & 383.1 & 261.8 & 357.7 \\ \text { Nov. . } & \ldots . . & 458.6 & 380.3 & 299.8 & 301.7\end{array}$

Ave........$\$ 500.6 \$ 333.7 \$ 295.9 \quad \$ 266.4$

WPB Seeks To Save Metal

 In Heating IndustryElimination of over 4500 kinds and sizes of pipes, ducts and fit. tings for warm air heating and airconditioning is proposed in a simplification program recently submitted to the industry by the Division of Simplified Practice, National Bureau of Standards, Washington, at the request of the War Production Board.

The program, believed to be an entirely adequate range of fittings, lists only about 15 per cent of the gravity type furnace pipes and fittings, and only 19 per cent of the ducts and fittings for forced air heatiug and air conditioning cur rently offered. A substantial reduction also is proposed in registers and faces with which the fittings connect.

WPB initiated the proposal in order to conserve sheet metal and to release production facilities for war purposes.
Various manufacturers involved
are being requested to review the program carefully which, if satisfactory, may become the basis for a government limitation order in the near future.
Manufacturers who have not already received a copy of the proposed recommendation are urged to communicate immediately with the Division of Simplified Practice, stating what tonnage of metal they normally consume per year in producing these products.

Castor Oil Now Speeds Cutting Operations

Cooler and faster cutting operations may be made with a new sulphurized cutting oil for high carbon steels developed by Pawling Refining Corp., Port Chester, N. Y. It also is claimed to be the only transparent sulphurized oil of this nature which enables the machine operator to see the cutting edge constantly.

Discovery of a new process by A. J. Paluszek, a company chemist, which permits complete distillation
of castor oil and produces a castor concentrate with entirely new properties led to the development of the cutting oil.

Castor oil, prior to the chemist's discovery, was the one organic oil which destroyed itself by solidification within its boiling range. The new essences, produced under the new process, it is claimed have "active oiliness" which gives greater lubrication not found in other oils, the oiliness being responsible for the unusual properties in the new cutting oil.

According to the producer, this new basic material will absorb in solution much more sulphur than by using animal fats-the castor concentrate producing a clear sulphur compound rather than an opaque inateriai.

Other products derived from this new process are: A new core oil of greater efficiency; a penetrating oil with greater penetrative ability; a castor oil industrial soap free of abrasives; cleaning compounds; wire drawing oil; lapping oil, roll oil for steel mills and others.

BUILDS ECONOMICAL SCRAP BREAKERS

from old rotary pumps and welded structural sections

National Steel Car Corp., Hamilton, Ont., Canada, produces shell for the British government on a large scale. Tons of long spiralshaped cuttings come from the lathes each day. But these cuttings are so bulky that scrap dealers will accept them only if they are broken into small pieces and breaking them appeared a tough job indeed.

By experimentation, it was found that these cuttings, due to their high carbon content, could be broken when bent at a 45 -degree angle. Breaking could be accomplished by running the cuttings through gears.
Since no suitable scrap breaker could be found, the company decided to make its own. A discarded rotary pump, bought at a low price at a local scrap yard, was converted into the main unit of the home-built scrap breaker.

For changeover from pump to breaker, the rotors were replaced with gears made of standard 10 inch pipe 36 inches long with 1 x

Left, side view of discarded rotary pump converted to scrap breaker. Upper right, rotor made from 10 -inch standard pipe. Ribs made from bar stock are evenly spaced. Spider also welded construction, keyed to shaft. Lower right, cross section through pump housing and welded breaker gear
$1 / 2 \times 36$-inch bars welded around the outside to form the teeth. See illus. trations. A hard-surfacing bead was then applied to each tooth top to prevent excessive wear. Two 10 -inch disks with 6 -inch holes were welded 14 inches from each end for stiffeners. Hubs were made from 6 -inch round steel 4 inches long with a keyed hole to fit the shaft which had been removed from the pump rotor. Hubs were held in place by four pieces of $2 \times 4 \times 1 / 2$. inch mild steel welded together as shown in the drawing.
The hopper to feed the breaker was constructed of $1 / 4$-inch plate are welded together and bolted to the top of the pump housing. Breaker was mounted on an angle-iron
frame about 18 inches high so that broken cuttings could be shoveled out easily from underneath it. Scrap breaker was driven by a $7 \frac{1 / 2}{2}$. horsepower motor, which had been geared down to 80 revolutions per minute.

This machine proved so successful, according to Harry F. Graham, company engineer, that three more were made. The largest of these three additional scrap breakers had gears 22×84 inches and stood 8 feet high. Arc welding made it possible to easily convert these old rotary pumps into efficient, economical scrap breakers. Welding equipment was furnished by the Hobart Brothers Co. located at Troy, 0.

ORIGINAL SHAFT \& GEAR

Auto-Body Plant

By HERBEFT CHASE

Abstract

. . . to production of wing sections and other aireraft parts by adapting double-acting crank presses to form parts previously made only on drop hammers. Except for trimming, parts are produced complete at one stroke of the press. Several unusual types of dies made from low-melting alloy and even from fiber are developed

In the accompanying article is a description of forming methods which promise to be an effective compromise between those originated in aircraft plants and those in auto body plants. It demonstrates that aircraft parts can be deep drawn on double-acting crank presses to produce a better appearing and more accurately sized product. . . .and the work can be turned out at a rapid rate with moderate labor costs. With the urgent demand for war production, especially of aircraft, these are important accomplishments which can well be utilized by others having similar production problems.

Possibly of equal importance. is this demonstration of how a little ingenuity and resourcefulness can result in converting important production facilities directly to war work. . . . using the same equipment and with the same workmen. Have you surveyed your plant facilities to see to what portion of our war production you can contribute?

ONE OF THE most important phases of the conversion of industrial capacity to war production is taking place in Detroit where the huge facilities of the nation's automobile builders are being converted for the production of war goods. Typical of the ingenuity and resourcefulness with which this task is being attacked is the case of Murray Corp. of America, Detroit. Formerly devoted to making automobile bodies, it now has successfully been converted into one of the important sources of wing sections and other portions of Flying Fortress planes.

As in any conversion program, it is highly desirable to adapt existing equipment and facilities to war production as far as possible for new equipment is not only costly but extremely difficult or impossible to obtain. Too, the added delay in obtaining it means a longer time before full production can be reached.

Thus one of the important problems at Murray was how to adapt the large double-acting crank presses to aircraft work-work usually accomplished on drop hammers in the press departments of aircraft manufacturers. The answer was found largely in the solution of the die problem. How it was solved effectively is a good portion of the conversion story in this plant.

Although drop-hammer work has been developed by aircraft plants so as to yield parts which meet requirements, the process is rather slow and the products turned out are not easily held within the dimensional limits commonly attained in drawing sheet steel in dies such as are used for automobile bodies. Work already done in the Murray plant, especially in double-acting crank presses, has shown that highgrade drawn parts for aircraft can be produced on these presses and that the work can be held within closer dimensional limits (besides being smoother) than the usual drop-hammer product.

The number of duplicate parts required in aircraft work is so small as compared with that always required for large-scale automobilebody production that it is not feas ible to use cast iron or steel dies of the same type used for auto bodies even if such dies were suited for the aircraft parts. It has been necessary, therefore, to find or develop ways of making less expen-
 sides in rapid succession, keeping press fully occupied
sive dies and at the same time to use materials which will not scratch the aluminum alloy sheet.
As far as die materials are concerned, dies developed at Murray are similar to or identical with those found in aircraft plants, including those employed in drop-hammer work. But the dies have been adapted for use ir, presses which do drawing (especially those of the double-acting type) as distinct from the hammering commonly employed in making aircraft parts of large size.

Of necessity, the dies must be low in cost yet capable of use for fairly long runs. Unfortunately, however, most runs are short, not
only because the number of parts required is limited but also because the sheet materials used are not available in sufficient volume to make the total number of stampings required at one time and then to store them for gradual use as assemblies are built up. In consequence, runs are often made of perhaps no more than a dozen pieces at a time. The saving comes in labor, which is far less than in drop-hammer work, especially as pieces made in the drop hammer often require much supplementary hand work to remove wrinkles before parts are produced of satisfactory smoothness. Parts made in double-acting presses are completed,
except for trimming, in a single stroke of the press. In addition, the time required for setting up the dies is relatively short.

Most of the dies for deep drawing are cast from a zinc alloy such as Kirksite (also extensively used in aircraft plants) which has adequate hardness and strength. See Fig. 1. This material is cast quite close to the required size so generally the working surfaces have only to be smoothed and bedded-in to make the dies ready for use. There is no Kellering and little or no other machining needed. The smoothing of the working surfaces is done with abrasive or scraping tools.

Both die and punch are made from

the zinc alloy which can be remelted and reused for making new dies when a given set of dies has served its purpose. The pressure ring (which grips the edges of the blank) is usually cast from the same alloy, but in some cases cast iron is employed as the flanged portion of the sheet gripped by it is subsequently cut off so scratches on that portion of the work are not of any consequence.

The procedure in making these drawing dies is as follows: First, a hardwood model of the part is made. Second, a plaster cast is produced from the wood model. Third, the model is used as a pattern in a sand mold to cast the die. Finally, the cast punch and die are bedded and relieved for metal thickness and are ready for use. A pattern is also made for the pressure ring. This pattern is used in a sand mold for casting the ring which is later bedded to fit the die. Some of the dies made in this manner are shown in accompanying illustrations.
Also suitable for making dies for drawing dural sheet in double-acting crank presses is a method that involves building the dies from hardwood and then facing them with a Cerrobend, a bismuth alloy. With a low melting point of only 160 degrees Fahr., this metal can be cast in contact with the wood without injuring the wood. Although this is a soft metal, it is expected to meet the requirements for at least short runs and, if injured in service, can easily be removed. Such a die is shown in Fig. 2.

Some parts are also being made by the Guerin process in hydraulic presses, following, in general, the methods developed in aircraft plants, although with some minor modifications in certain types of parts. While getting into production, some use is also being made of an Artz press or metal stretching machine, similar to those used in aircraft plants. Such presses have long been used in making model bodies and other development work in body plants and are being used by Murray only to make small quantities of aircraft parts to meet immediate assembly

Fig. 5-Dies made from vulcanized fiber, some of them 6 feet long, are mounted on steel backing plates and used successfully in forming by the Guerin process. Formed stampings are seen over two of the dies here. At the left is a templet used in making one of the dies

Fig. 6-One of the dry-ice boxes in which aluminum alloy sheet stock is kept cold to prevent age hardening while being transferred to forming presses so sheet can be formed while still near zero Fahr.
requirements pending the completion of dies for use in stamping presses.

A single half-die or punch, cast against hardwood in the manner last described above is also employed in an Artz press as a form over which a sheet is stretched in making certain parts as a preliminary to regular production later in drawing dies. In the Artz press, Fig. 3, the edges of the dural sheet are clamped to steel sheets which, in turn, are gripped in fixed clamping heads forming a part of the press, the dural sheet being arched over the wood form faced with Cerroband. Then the form is elevated by the hydraulic ram of the press, stretching the metal tightly over the form.

Such stretching causes the sheet to take the shape of convex portions of the form but, of course, leaves the sheet bridging over depressions of the form if any are present. At such depressions, the metal is hammered into the recesses by hand, using rubber hammers and wooden blocks which stretch but do not scratch the metal. The method will produce well-shaped pieces when done by skillful metal workers, but the process is, of course, much slower than produc tion in a drawing press.

Production by the Guerin method on hydraulic presses follows, except for some details in die construction, about the same methods used in Douglas and other aircraft plants. The ram or upper platen of the press is equipped with a thick rubber pad confined along the edges by a cast metal holder, the pad then serving as a universal female die. The other half of the die set (the male portion) is laid on a metal carrier which, when the press closes, is supported on the bed or lower platen
of the press. Pressure of the confined rubber against the sheet metal to be formed causes it to conform to the shape of the die. See Fig. 4. The press is equipped with carriers or tables which are rolled out on each of the four sides for unloading and reloading while one is under the ram. The carriers are advanced under the ram in rotation, thus greatly increasing the volume of work which the press can turn out.

Dies employed in the Guerin process in the Murray plant are made in most cases from vulcanized fiber sheets or slabs usually from $1^{1 / 4}$ to 2 inches in thickness. Construction of these dies is done in the model shop of the plant, using chiefly woodworking tools. If the die requires considerable depth, slabs of fiber are built up to the required height and are fastened to a steel plate to avoid possible warpage. This applies especially to large dies, some of which are 6 feet or more in length and may be 6 inches in depth. Some such dies are shown in Fig. 5.

Some dies used in the Guerin process have undercuts or are required to form rather deep flanges. Where the latter come at inside radii, there is a tendency for the metal to wrinkle. But such wrinkling can often be avoided if the flange is not turned down for the full depth. Instead, a step is employed which can be made from a separate piece of fiber fastened to the same plate as the main portion. The flange is thus formed smooth for, say, half its required depth with the remaining metal turned outward parallel to the top face to give a returned bend. Subsequently, this outwardly turned portion can be hammered down by hand. Although some wrinkles may be formed in so doing, they extend for

IOU ...

When you need him, he may have to take "the sleeper" to reach you - or he may be just a few miles away. © He is all but working for you, and it is easy to get him on the job. - He knows stainless and tool steels inside-out and has had experience that spells sudden death to production "bugs". In his briefcase is printed material to help you shoot output to new highs. - Get him working for you today by telling him about the tough problems you have to lick. - He is your Carpenter representative.

THECARPENTER STEELCO.
 Reading, Pennsylvania

only half the depth of the flange required and are more easily removed than if the upper part of the flange were wrinkled also, as would be the case if the stepped die were not used.

Thus several types of dies quite different from those used in automobile body work are being used successfully in the converted plant. For most of the new work the same

Fig. 7-Electric furnace and part of quench tank for heat treating aluminum sheet stock and blanks. Upon heating to temperature for required period, work and carrier are rolled down track into quench. When cool, work is transierred immediately to iceboxes (Fig. 6) in order to prevent age hardening
double-acting presses used for body work are employed. Dies are commonly tried initially with deep-drawing steel of the same thickness as the dural to be used subsequently. This practice avoids waste of dural stock as far as possible.
Something of an innovation is employed in this plant in the handling of the aluminum alloy sheet before it is used for forming. In early attempts at forming the sheet (which, of course, is purchased to Air Corps specifications), much trouble was encountered with the sheet tearing during or subsequent to forming. It was also found that the subsequent heat treatment caused formed pieces to go out of shape and that restriking them in the die in which they were formed did not yield satisfactory results.
It was concluded that heat treatment should precede forming. Age hardening between heat treatment and forming operations is prevented or greatly delayed by keeping the stock at or about zero Fahr. after heat treatment. So it was decided to build portable dry-ice boxes in
which the sheet could be stored immediately after heat treatment and transported to the presses for forming while still cold. The boxes, Fig. 6 , have double walls of wood, between which is granulated cork insulation. A slat shelf is at the top for the dry ice. By mounting the boxes on casters, it is possible to transport them readily from the heat-treating department to the presses so the stock is still near zero Fahr. when placed in the die for forming or drawing. As a result the material is soft when drawn and so does not split or crack or require heat treatment subsequent to drawing. Boxes are some 7 feet high, about $31 / 2$ feet wide and 6 feet from front to back, inside, so they can hold many large sheets if required.

Heat treatment of the aluminum alloy sheet stock or blanks is done in an electric oven in which the temperature is automatically controlled. Material to be heat treated is placed in a wheeled carrier which is rolled into one end of the oven. After being heated to the required temperature for the specified time, the carrier with its charge is rolled out at the other end of the oven and into a tank of cold water below floor level. When cool, the carrier is picked up by an electric trolley hoist and set on the floor where the charge can be transferred quickly to the ice boxes in which the material is stored until required at the presses.

SUBSTITUTES

For Zinc Coatings

VARIOUS substitutes for zinc as coatings of steel have been sug. gested by a committee of metallurgists selected from the - technical committees of the American Iron and Steel Institute. This group met at the request of the committee on manufacturing problems of the institute. The following is from their report.

Substitutions considered were lead base coatings; nonmetallic inorganic coatings; organic coatings. Such substitutes for zinc as aluminum, copper, nickel, chromium, tin, etc., can not be recommended due to their scarcity.

Lead has many desirable features as a coating metal and, as long as sufficient supplies are available, it can be adapted for certain purposes. Obviously, lead coatings cannot be substituted indiscriminately for zinc. They can be used readily on wire, may have some application to sheets,
but seem to have limited possibilities, if any, for pipe.
Some work has been done with a coating metal containing 4 per cent tin, 2 per cent zinc, 1 per cent antimony, and 93 per cent lead. The metal has been used successfully for coating small hardware which can be centrifuged to remove excess metal. Coatings produced are extremely light. Proponents of the alloy are investigating the possibility of using the metal for the machine coating of sheets. Most satisfactory results are obtained by employing coating temperatures between 750 and 800 degrees Fahr.
Another alloy analyzing about 94 per cent lead, 3.5 per cent antimony, and 2.4 per cent tin, with small amounts of bismuth and arsenic, is claimed to produce excellent results when applied as an extremely light coating to small hardware and pipe as well as a heavy coating to vari-
ous products formed from sheets. Coating temperatures around 600 degrees Fahr. are used. A molten salt cleaning bath appears essential when applying this coating metal.

Of the nonmetallic inorganic coatings, cement linings appear useful as a substitute for galvanized pipe in many places. Oxide coatings offer but little protection from rust.

Phosphate coatings have been used on steel for many years, but these alone afford little protection against corrosion unless they are covered with oil or paint. One phosphate treatment called bonderizing is used extensively as a pretreat. ment of steel prior to painting such articles as automobile bodies and window sash. While phosphate treatment promotes the durability of the painted or enameled article, the corrosion resistance of the article as normally finished is not comparable with galvanized material.

The usual type of phosphate coating will flake from steel on forming or bending. Therefore it must be applied after the article has been
(Please turn to Page 76)

"TECHNI" Process Alloy Rolls have great strength, excellent finish, unusual wearing quality, resistance to
slippage and are anti-fire cracking. These extra qualities you get with rolls are made possible by the "TECHNI"

Process, an exclusive development of Mackintosh-Hemphill, which regulates the quality and grain size of
the rolls with as much exactness as

Make sure you get the best-order
the best modern steel practice regulates the quality of steel...
"TECHNI" Process Alloy Steel Rolls.

OTHER MACKINTOSH-HEMPHILL PRODUCTS: Rolling Machinery . . . Shape Straighteners . . . Strip Coilers . . . Shears ...
Levellers . . . Pinions . . . Special Equipment . . . Iron-Steel Castings . . . The NEW Abramsen Straightener . . . Improved
Johnston Patented Corrugated Cinder Pots and Supports . . . Heavy Duty Engine Lathes

,
 shiverems

*Lack of proper protection... while in transit, or in storage

Faulty packing, insecure wrapping or improper materials can cause as much damage and delay as deliberate sabotage. Goods damaged in shipment cost this nation badly needed materials and man-hours of labor. They waste valuable shipping space in train, truck or boat, and their failure at a critical time, when needed most, may prove a disaster. There's no place, in time of war, for such costly bazards.

That's why FIBREEN is taking its place as an essential material in America's war program. It provides exceptional protection, at low cost, for goods in transit or in storage.

FIBRENN Effraviv Putation w wnensirIN STORAGE - FOR EMERGENCY USES

It safeguards the vital flow of materials, parts, and finished goods of war - from mill, to sub-contractor, to assembly line - and to all parts of the country and abroad.
FIBREEN is a tough, waterproof paper, reenforced with two plies of closely spaced steel-like fibres, embedded in two layers of special asphalt, between two sheets of kraft. It's clean, pliable, easy to use - as a wrapping, a lining for crates, and as a superior replacement for fabrics and materials no longer obtainable.
Production of FIBREEN is now being diverted to uses essential to the war program. If your products fall in this class-if you're interested in better packing methods and materials - we will try to help you. Write, explaining what you ship, and how you now pack it.

THE SISALKRAFT CO.

Manufacturers of Sisalkraft, Fibreen, Sisal-X, Sisaleape and Copper-Armored Sisalkrafi. 205 W. WACKER DRIVE. CHICAGO, ILL. NEW YORK SAN FRANCISCO LONDON SYDNEY In Canada Write to Alexander Murray \& Co., Limited, at Montreal - Toronto - Halifax - Saint Jobn. Winnipeg. Vancouver

Fig. 1-Use of Pyranol instead of oil further reduces size of this load-center substation installed in an ordnance plant. Unit is rated 1200 -kilovolt-amperes, employs easily removable draw-out type secondary air circuit breakers

LOAD-CENTER POWER DISTRIBUTION

Abstract

. . . an important system improvement that eliminates the high cost of excessive voltage drop in long, heavy, low-voltage circuits; reduces copper requirements; makes flexible layout possible

ANY IMPROVEMENT in electric power distribution systems is doubly important at this time because not only must every possible means be taken to keep machine production at highest efficiency by eliminating excessive voltage drops, but equally important is the saving possible in copper where new lines or a new system must be installed to take care of new plants or additional facilities. Since load-center power distribution cuts line losses, saves tremendous amounts of copper and costs considerably less to design and install as well as allows better performance of equipment served, this type of distribution system is being widely litilized in many new war plants and in the extension of existing facilities.
Estimates show $5,000,000$ pounds of copper and steel could be diverted to other vital production require-
ments if this system were applied to all expansions proposed and under way for 1942, according to engineers of the General Electric Co. who recently described the system in a paper presented to the American Institute of Electrical Engineers. Speedier installation would also allow plants to get under way faster.

What Is Load-Center Power Distribution? The system primarily provides for distributing high voltage to a number of load centers as shown in Fig. 2, where five such centers are served by high-voltage lines. From there on the power is distributed to the load by means of
short secondary feeders. This eliminates in one step the long secondary feeders which exist under the conventional radial distribution diagrammed in Fig. 3.

To visualize the difference between these two forms of power distribution systems, consider a typical medium-sized factory with a demand of 3000 kilovolt-amperes, a load density of 10 volt-amperes per square foot of floor area and supplied with power from two 13.2-kilovolt lines. Secondary distribution is at 480 volts. Building is assumed to be 400 feet wide, 750 feet long. Both the load-center system, Fig.

Fig. 2-(Left below)-Line diagram showing arrangement of circuits in a typical medium sized plant employing the load-center system of electric power distribution. Note the five substations served by high-voltage primary cables

Fig. 3-(Right)-Simplified line diagram of same plant as in Fig. 2 but here using the conventional radial system of electric power distribution. The much greater amount of heavy secondary cable needed is clearly evident

Fig. 4-Four basic circuit arrangements of load-center distribution, including a comparison of relative cost, voltage regulation, salety, service reliability, ease of operation and maintenance for a typical 3000-kilovolt-ampere plant. Note secondary network system is rated first as to reliability, next best as to salety, ease of operation

2, and the radial system, Fig. 3, are designed to give comparable service continuity.

Saving in Copper: Because low. voltage feeder runs are short, there is a tremendous saving in copper, also some saving in steel. Table I itemizes these savings for our example.

Lower Costs: Shorter low-voltage feeder lines mean lower cost of secondary cable. There also is a saving in substation costs because the smaller transformers have less secondary short circuit current and thus smaller secondary feeder breakers can be used. Instead of an outdoor switching station, a small com-

TABLE H-Savings in Cost with Load-Center Distribution			
Primary Switchgear Substations Cable			Load Center
	\$12,000	$\$ 13,100$	$\begin{array}{r} \text { Savings } \\ -\quad \$ 1,100 \end{array}$
	34,400	27,500	6,900
	10,100	3,900	6.200
	\$56,500	\$44,500	$\begin{aligned} & \$ 12,000 \text { or } \\ & 21 \text { per cent } \end{aligned}$

* Includes primary cable.
pact indoor metalclad structure is satisfactory and also reduces the cost.
Table II breaks down the total saving of 21 per cent for the particular example. While savings for small plants would be less, the percentage of saving would run approximately the same. Savings become greater for larger plants.
Reduced Engineering Expense: Because the substations of load-center distribution systems are small, they can be added when and where needed without extensive planning and forecasting. With a radial system, extensive forecasting of locations and magnitudes of loads is required in order to select the most advantageous location for the large sub. station.

Furthermore, small substations can be built and wired completely in a factory on a production line and thus arrive at the site ready for operation since it only is necessary to bolt one or two sections together, and connect to the line. Compare this with older methods in which detailed drawings are required for the assembly of the component piecemeal parts. This conservation of time and manpower is vitally impor.

Fig. 5-(Left below)-Curves showing how size of the load-center unit substation influences its cost per kilovolt-ampere. Also shows relative costs of 480 -volt secondary system as against 208/120-volt secondary. Fig. 6-(Center)-Cable size plotted as a function of transformer size (substation capacity). All illustrations furnished by General Electric Co., Schenectady, N. Y. Fig. 7-(Right)-These curves show effect of load density and substation size on the cost of the system per kilovolt-amperes of capacity. Load densities from 2 to 20 volt-amperes per square foot of floor area include practically all ranges encountered in ordinary industrial plants

tant in the present war program.
Only a simple functional specifica. tion is required for buying unit substations. No longer is it necessary to furnish a complete specification for every part. The saving in time and effort in preparing specifications is evident.

Better Performance of Equipment Served: With the load-center system, line voltage drop is less. This means line voltage is held at a much more uniform value so there is less light flicker and all motorized equipment operates at maximum efficiency. Often this can mean an important increase in production.

It is easier to finance load-center distribution systems since the small units can be added as the load grows; hence only moderate outlays of capital are required at any given time. The salvage value of load-center equipment is high because it is built as a unit and so can be moved bodily from one location to another, where it can be utilized 100 per ce:at.

This extreme flexibility is one of the major advantages of the new system. Equally important is that it assures service continuity since individual secondary networks can be installed for important production lines or equipment which must operate without interruption even though disturbances occur in other

ferro-carbon- Titanium

TAN

 improves quality and yield of MOT ROLLED

6ENERALOEFICES AND WORKSENMAGARA FALLS .N. W. U. S. A.

portions of the plant service systern.

Optimum Size of Unit Substation: This is determined principally by the cost of the unit substation itself. Smaller load-center units are more expensive because small cquipment inherently costs more per kilovoltampere. Larger load-center units become increasingly expensive because of the larger fixture needed to handle the higher short-circuit currents accompanying large transformer banks. Optimum size of transformers lies between 600 and 1000 kilovolt-amperes for 480 -volt secondaries, although 1200 to $1500-$ k!lovolt-ampere units may come within the limit of most economical sizes in certain cases. See curves in Fig. 5.

Cable cost also enters. For smaller units, more primary but less secondary cable is required and vice versa. However, there is an important increase in the amount of seconclary cable necessary to transmit

Fig. 8-Even in outdoor installations, compactness is desirable. This is a 150-kilovolt-ampere load-center unit substation. General Electric equipment
the power over the larger load area. Fig. 6 shows how cable cost varies with size of the unit substation. Note that the curve for the primary cable goes down with increasing size of substation, while the secondary cable curve goes up, the two crossing at a substation size of 400 kilovolt-amperes.

Load density too affects the overall system cost, principally because of the effects on cable cost. The total installed cost per kilovolt-ampere of load-center distribution for joad densities from 2 to 20 volt-amperes per square foot of floor area is shown in Fig. 1. Within these limits, the load density does not affect the economical limit shown in Fig. 5. This range of load censity will cover most factory instailations.

Curves in Figs. 6 and 7 are based on secondary voltage of 480 volts. When lower voltage secondaries are used, the cost per kilovolt-ampere of the system is higher because of the greater amount of seconciary cable and copper required and because of the increased cost of secondary switchgear. The two curves in Fig. 5 furnish a comparison. As can be seen here, the most economical size of transformers for 240 -volt or $120 / 203$-volt circuits is
between 300 and 600 kilovolt-amperes.

Load-center distribution systems lend themselves particulariy well to circuit arrangements which minimize or entirely eliminate service outages. This is an important factor as it reduces possibility of production stoppage or delay from accidents or deliberate efforts at sabotage.
Referring to Fig. 4, four basic circuit arrangements of load-center distribution are compared. Pri. mary selective sources provides two sources of power, thus making available an alternate source should a failure occur on one primary feeder. Outage time is limited to that period needed to switch over connections.

Secondary selective circuit arrangement offers greatest promise since it extends the duplication of supply to the low-tension bus, thus providing for continued service with either a transformer or a primary feeder out. Service reliability is extremely high, especially when the tie breaker is operated electrically, accomplishing an automatic trans. fer.

Secondary network system affords most reliable service of all for here load-center units are interconnected permanently by low-tension tie circuits. Thus emergency power can be obtained from adjacent load
(Please turn to Page 107)

Coating Substitutes

(Continued from Page 68)

fabricated. However, a new process has recently been developed which produces a thin phosphate coating that will not flake away from the steel on forming. This light-weight coating seems to afford insufficient protection against rusting and, so far, its only application has been for tin-mill black plate that is to be enameled or lacquered.

Vitreous enamel coatings may prove desirable substitutes for zinc coatings on certain applications, bui at present their cost and lack of formability restrict their application.

Combination zinc and phosphate coatings appear most promisinga thin electrolytic coat of zinc being followed by one or more coats of paint after the phosphate treatment. Zinc has notoriously poor paint-holding characteristics so must be chemically treated prior to painting, unless a special primer containing zine dust and zinc oxide is used. A number of steel mills are equipped to phosphate treat zinccoated steel, and the phosphate coating so produced does not flake away
on forming and serves to prevent peeling of the paint from the zinc. It is probable that a layer of electroplated zinc of the order of 0.1 ounce per square foot (possibly less), phosphate treated and subsequently painted, is a good emergency substitute for standard galvanizing of sheet steel.

Long-time service tests on steel lightly coated with zinc, phosphatetreated and then painted are not available, and it is therefore impos. sible to predict just how satisfactory such a material will be for different services. Experience with somewhat heavier coatings and the known ability of even an extremely thin coating of zinc to prevent rusting of the underlying steel would indicate that the suggested method has possible merit as a substitute for heavier zinc coatings.
The zinc-coated and phosphatetreated material as it leaves the mill is suitable for painting. Shipping, warehousing and fabrication usually make it necessary to clean the surface thoroughly before painting. A spray alkali cleaner, a vapor degreaser or a solvent wipe are satisfactory methods of cleaning. It is recommended that the manufacturer of the sheet be consulted re-
garding suitable methods of cleaning.

Consideration of organic coatings was accompanied by recommendations for surface preparation, including the light metallic treatments, chemical treatments and non. treatment. The first-named covers:

Flash Zinc Treatment: A flash coating consists of electrodeposited zine 0.0001 to 0.00001 -inch in thickness on each side of the sheet and hot dipping in a balanced aqueous phosphate solution containing an activating agent. This type of surface treatment will resist white rusting or discoloration in storage and allows the sheets to be shipped and warehoused before painting, if so desired. It also furnishes a surface that will give excellent paint adhesion.

Flash Terne Treatment: A light hot-dipped coating of terne metal, coated to a weight of 4 to 6 pounds per double base box-i.e., 112 sheets of 20×28 inches or equivalent-is used, preferably applied to cold-reduced metal base sheets, thereby minimizing porosity of the coating. This type of surface treatment is within itself an excellent surface for painting and can be shipped and
(Please turn to Page 98)

GHANN L. MARUN CO. COWS HUTO HICI MHAR

WHIT:

Corysin

- Producing precision parts of Martin bombers in quantity calls for high speed production of small lots and short runs of a wide variety of parts-a job made to order for Cleveland Single Spindle Automatics. And here is one of a large battery of Model A Clevelands recently installed in the Martin plants at Baltimore-kept steadily at work since they were installed. Still more Clevelands are being built for Martin as well as for virtually every other large aircraft builder in this country, in sizes from $11 / 16$-inch up to 8 -inch capacity. Ask for information to enable you to consider Clevelands in regard to your own small lot, short rum production. TEE CLEVELAND AUTOMATIC MACEINE COMPANY 2269 ASHLAND ROAD, CLEVELAND, OHIO

[^4]
Vital in Peace - Crucial in War. . .

Gias ${ }_{\text {doudedes ame }}$

for Victory!

From the moment the armament program began, it was certain Gas must play a vital role. That role has now become crucial.

For in armament, accurate heat treating and close tolerances are a "must." So Gas-as the clean, fast, controllable fuel-has become the "non-com" of defense and of war.

The tremendous increase in the use of Gas in the production of vital war materials is a tribute to this modern, high-speed, precision fuel.

In war-industry plants all over the country-for the production of guns, ships, tanks, planes, bombs, shells, and countless other implements of war Gas is the preferred fuel.

Why? Because Gas is industry's fastest fuel-quickheating, clean, flexible and accurately controllable.

When the emergency came, Gas was ready-with
new, improved Gas-fired equipment. That's because years had been spent on research, engineering and experiment.

All this knowledge is at your own disposal. Why not investigate? Call your Gas Company for information.

AMERICAN GAS ASSOCTATION
INDUSTRIAL and COMMERCIAL GAS SECTION
420 LEXINGTON AVE.. NEW YORK

FOR ALL
INDUSTRIAL HEATING

Fig. 6-Left, arrangement of lorces about an inclusion when metal around particle is stressed in a direction parallel to the length of the particle

Fig. 7-Right, similar diagram for analysis of forces around an inclusion when metal is stressed in a transverse direction

AIRCRAFT DROP FORGINGS

INADVERTENTLY, two illustrations were omitted from the artice "Aircraft Drop Forgings", Steel, March 16, 1942, p. 68 and 69. Those two diagrams appear at the top of this page. To be sure that all references to them are clear, that portion of the article in which reference is made to these drawings is reprinted below.

The heading of Table I which appeared was also incorrect so that table is repeated here with its correct title. The illustration labeled Fig. 6 in the March 16 issue should have been labeled Fig. 8 and the reference to it in column one, $p .68$, that issue, changed to Fig. 8.

Effects of Excessive Reduction: This matter of excessive reduction and its detrimental effects on the properties in a transverse direction can be explained further by a consideration of the effect of nonmetallic inclusions. There is no doubt that the effect of forging on nonmetallic inclusions does result in a difference in toughness and ductility in the two directions. That the effect of inclusions on the directional properties is worthy of consideration is shown in Fig. 6.

Referring to Fig. 6 if a stress T is applied in the direction shown, the concentration of stress P along the line XX is given by the following formula:

$$
\begin{aligned}
& P=T\left(1+\frac{2 b}{a}\right) \\
& P=T\left(1+\frac{2 b}{20 b}\right)
\end{aligned}
$$

If $a=20 b$, then:

This represents the state of affairs around an inclusion when a longitudinal stress is applied and it is seen that the concentration of stress is negligible so far as the factor of safety is concerned. But consider the state of affairs when a transverse test is applied, refer Fig. 7:
Again, $P=T\left(1+\frac{2 b}{a}\right)$
If $a=\frac{b}{20}$, then:

$$
\begin{aligned}
& P=T\left(1+\frac{40 a}{a}\right) \\
& P=41 T
\end{aligned}
$$

Within the elastic limit, this is the situation around an inclusion when a transverse stress is applied. In this case the concentration of stress is considerable. Actually the ductility present in steel results in a reduction of this concentration of stress since the inclusion will tend to elongate in the direction of the pull, but it is not until the conditions approach these present when a longitudinal stress is applied that this becomes negligible.

Direction	Yield Point Tons/Sq. In.	Max. Stress Tons/Sq. In.	Elongation Per Cent	Reductions of Area, Per Cent	lmpact f't. Lbs.
Longitudinal	43.0	51.0	23.5	61.0	64
20 degrees	43.0	51.0	23.1	59.0	64
40 degrees	43.0	51.0	23.5	58.0	45
60 degrees	43.0	51.0	16.5	28.0	27
80 degrees	43.0	51.0	15.0	26.0	18
Transverse	43.0	51.0	15.0	25.0	18

It can be seen therefore that inclusions which have been elongated by forging are, to all intents and purposes, the equivalent of holes when their effect on the transverse properties is considered. The greater the reduction, the greater the extension of the inclusions in the direction of flow and the greater the effect on the transverse properties.

It is because of this difference in the directional properties that such pains are taken to produce correct grain flow in aircraft forg. ings. During rolling and forging, the original dendritic structure formed on casting is distorted in the direction of work. Since diffusion does not go on to completion, the segregates present take up a position which is dependent on the direction of plastic flow. The actual grain structure can be controlled by subsequent heat treatment, but the segregates remain drawn out in the direction of flow and so affect the directional properties of the forging.

Charts Various Steps in Steelmaking Processes

Sequential steps in the manufacture of ferrous castings, open hearth, electric and bessemer steel and puddle iron are incorporated in a chart of blueprint form entitled "Outline of Metallurgy of Iron and Steel" recently prepared by F. E. Sanborn, 90 East Fourteenth street, Columbus, O .

The chart, which may be obtained for 50 cents, tabulates the representative analyses of various pig irons, and also each phase in the conversion of iron ore to such finished products as pipe, tubing, wire, tin, plate, sheets etc.

Modern Mearth
REFRACTORY
PRACTICE

Use of dead burned magnesium oxide clinker for basic open-hearth and electric lurnace bottoms minimizes repair and rebuild time. Material also employed to extend the hearth to new dimensions. Installation of ramming mixture is facilitated by a recently developed set of wooden forms

By H. N. BARRETT JR.
Basic Refractories Inc. Cleveland

MOST STEELMAKERS today are faced with the problem of obtaining the last marginal bit of output from production facilities. Repairs and maintenance are being held to a minimum and the time devoted to making those repairs, which are unavoidable, is shortened in any manner possible.

Two refractories, Ramix and Ramix 82, are being extensively

Fig. 1-Brickwork in completed state ready to receive Ramix hearth

Fig. 2-Full rammed hearth partially finished. Refractory has been carried to the skewback along the backwall

Fig. 3-Completed working hearth. No magnesite or dolomite is "burned-in" over the Ramix

Fig. 4. Cross-hatching indicates Ramix on α furnace lengthening job. Chill box has been moved back and refractory tamped between new brickwork and old hearth. Dotted line defines original location of lurnace parts

Fig. 5 Cross hatching shows application of Ramix to furnace which has been widened by moving frontwall buckstays. Dotted line defines original position of fumace components

Paper presented at the Ohio Section Meeting, Open-Hearth Committee, American Institute of Mintng and Metallurkical Engineers, Columbus. O., Oct. 17-18.

Fig. 6-Cross section of endwall (left) and of sidewall (right) showing forms used in ramming refractory in place
Fig. 7-Section of open-hearth bank (left) after application of fused material showing profile of Ramix construction. Longitudinal section (right) through endwall

Powerful thermal expansion rods resistlessly lock the gas-seal by contraction. . . open the seal by expansion. Every action is positive and error-proof in the Bailey Thermal Expansion Goggle Valve and 3 ways of operation electric, steam and manually ... assure full control in any emergency. Rugged, simplified
construction makes the Bailey Thermal Expansion Goggle Valve the longest wearing, surest control valve for gas mains you can use . . . at costs that are strictly rock bottom. - For dependability and economy combined with safety, specify Bailey Thermal Expansion Goggle Valves.

Operating a $120^{\prime \prime}$ Bailey Thermal Expansion Gogrle Valve manually.

used to save time on furnace re pairs and rebuilds without sacrificing in any manner the quality of the job.

Ramix is composed of a deadburned clinker containing approxi

Fig. 8-Start of installation showing form in place for first section of flat. Hearth lining refractory is introduced through opening left in backwall. This eliminates delay in feeding it to furnace which occurs when using doors and charging buggies, etc.

Fig. 9-About hall of tlat has been rammed and forms for banks have been placed. A more efficient method is to ram entire flat and then to erect bank forms the full length of furnace
mately 65 per cent of MgO (magnesium oxide) which has been carefully sized and bonded to yield on ramming a dense, strong structure. Ramix 82 , as the name implies, is made from a clinker containing approximately 82 per cent MgO . The same care in sizing and selection of bonds is exercised in making this grade as in producing the regular grade. Ramix 82 was developed to meet the needs of electric furnace operators producing high-speed tool steel, but has since been used by electric furnace and open-hearth shops making steels other than those of a tool steel grade.

Technical considerations indicate that for some services Ramix 82 may be superior to regular Ramix but generally it should be left to the operator to decide whether performance will justify the increased cost of Ramix 82.

Some of the repair applications of Ramix are illustrated in sketches 4 and 5.

Portions of banks or of bottoms which have been removed to eliminate hearth sections containing metal and/or slag are easily and cuickly replaced by tamping Ramix in the cavity. Many shops have lengthened their furnaces by moving the chill boxes back (Fig. 4) or have widened furnaces by moving front or backwall buckstays (Fig. 5). In either case Ramix can be used to advantage to extend the hearth to the new dimensions. Still other operators who have had trouble with ports and
burner floors due to heats lying high in the furnace and/or to foamy slags have reported that a 4 to 6 -inch surfacing of Ramix eliminates this refractory problem.

Repair jobs of this type have the following advantages:

1. Speed:

a) By proper scheduling, brickwork can proceed concurrently with the Ramix job and brick masons, freed from the time consuming job of fitting brick into irregular cavities, can be used to expedite the necessary rebricking.
b) As soon as the Ramix has been tamped in place the furnace can be brought to temperature, the hearth "dressed" and a heat charged.

2. Economy:

a) Ramix costs less per volume than basic brick and is installed by ordinary labor.

3. Safety

a) A Ramix repair has as high a magnesia content as have most magnesite and slag hearths, is more uniform in composition, is dense, highly resistant to slaking and is installed without slag or mill scale additions. Residual MgO in a Ramix 82 hearth is considerably higher than in a fused magnesite and slag hearth.

The use of Ramix subhearths has become fairly common practice in the last two years, and the development has reached a logical conclusion in the full Ramix hearths which are now in service in a large open-hearth shop. Figs. 1,2 and 3 illustrate the technique employed in the installation. A

Fig. 10-Flat with exception of tap hole section has been rammed. Front and back banks are rammed at same time. Man in foreground is following hammer operator and shoveling loose Ramix behind form. When material has been tamped to within $11 / 2$ inches of lop board, another plank is fastened to forms and procedure repeated

Fig. 11 -Entire flat has been rammed, banks in hall the lurnace not shown are completed, and remainder of banks are well on way to completion. Fumace ends can be rammed using forms, but in this furnace construction of brickwork did not make use of forms practicable

total of $79 \frac{3}{1}$ tons of Ramix was used to give a 15 -inch hearth in this 150 -ton furnace. The job was com pleted in 30 hours using two and three hammers. The furnace was dried with gas and wood fires. Oil then was used to raise the tempera. ture to 2900 degrees Fahr. This temperature was held until the moisture stopped seeping through the pan. The hearth then was slagged, the slag tapped, the oil taken off and the bottom cooled to 2000 degrees Fahr. The doors were raised and the temperature dropped to 1400 degrees Fahr. The furnace was brought back to temperature, the cracks sealed with screened magnesite (fine Ramix would probably have been better) and the bottom covered with raw dolomite. The yield on the first heat was 91.2 per cent. Since the time from the start of the installation until the first heat was charged was 196 hours (which includes 30 hours for ramming the bottom, 50 hours drying out green brickwork and 12 hours for slagging and chilling the hearth) it is apparent that this type of liearth
approaches the ultimate in speed of installation. Full rammed hearths should be of particular interest to operators of new shops, to shops which have, in the recent past, jumped from 40 to 50 per cent furnace operation to 100 per cent operation, and to shops constructing new furnaces. In each of these instances there is likely to be a shortage of skilled, experienced furnacemen to burn in a bottom. The installation of a full Ramix hearth requires a minimum of skilled furnace help.

A set of forms has recently been developed to facilitate the installation of Ramix hearths of subhearths. The forms are shown in Figs. 6 and 7. This method of installing banks has many advantages over the original method:

1. Speed. The dead burned clinker is confined and can be rammed as fast as it is fed to the form.
2. Ease. It is obviously much easier for the men to operate the hammers in a vertical rather than horizontal position.
3. Sounder, denser structure. The contour of the banks is predeter-

Fig. 12-Looking loward front of furnace showing completed Ramix subhearth. Alter forms are removed the junction of banks and flat is carefully rammed to insure good seal

Fig. 13-Finished hearth looking toward backwall. Taphole is seen in foreground

Fig. 14-Entire flat has been rammed, banks of other hall of turnace are completed and front bank of other half nearly finished. Boards have been added to the form as height of bank increases
mined by the shape of the forms and not subject to any hit-or-miss installation of the material. Since the ramming is done in a confined area the ultimate in density and strength is achieved. The terraced structure of the finished Ramix banks simplifies fusing grain magnesite in place as the magnesite adheres to the ledges rather than building up at the base of the bank.

Figs. 8 to 14 show the various steps in the installation of a Ramix hearth using the forms previously mentioned.

Operators, for many years, have made basic ramming and casting mixes in their own shops, hence no claim for originating this branch of the refractory art is made. However, it is believed that a contribution to basic refractory progress has been made by providing in Ramix and Ramix 82 scientifically designed and controlled magnesite ramming mixtures for the many applications which exist for products of this type in basic openhearth and electric furnace shops.

Chart Answers Over

400 Joining Questions

Over 400 fluxing questions dealing with welding, brazing or soldering are answered in a new chart prepared recently by Krembs \& Co., 669 West Ohio street, Chicago.
Metal working concerns interested in learning quickly what fluxes are suited to a given application may obtain complimentary copies by requesting the chart on their letterheads.

Racks of finished steel tubes are tiered four-high by a "Clark" Fork Truck for Piltshurgh Tube Co., Monaca, Pa., conserving floor space and resulting in the advantages quoted at the right
"Unit Packaging"
New, illustrated, 32-page bookle showing how to cut handling costs by using properly designed pack. ages for interplant shipment of materials and parts. A copy will be sent free on request.

and "Clark" gas-powered fork trucks stop only for fuel and change of drivers

They operate 24 hrs. a day - seven days a week!

With a mounting volume of things to be moved and a dwindling labor force, you need "Clark" Gas-Powered Fork Trucks to speed your production operations. Capacities from 1,000 lbs. to 7,000 lbs.,
tiering to 108 in. (higher if necessary), these trucks travel at from 1 to 7 m.p.h. climb ramps, thread congested aisles, main. tain their rated speed under load. Front wheel drive, rear wheel steer, convenient center control.

INVESTIGATE NOW

Time is precious-don't waste it. Write now for descriptive bulletins. Tell us what you have to handle.

CLARK TRUCTRACTOR

Div. of Clark Equipment Co.

127 SPRINGFIELD PLACE, BATTLE CREEK, MICH.
Manufacturers also of a completeline of Electric Batiery Truchs

CLARK CLIPPER

The dwarfs of the Clark line of fork trucks. Six models $1,000,1,500$ and $2.000-\mathrm{lb}$. capacities, with 60 in . and 108 in , tiering ranges. Four cyl. Continental "Red Seal" Engine.

E

 3
STEFL PLANT REFRACTORIES

IS STEPL VITAL TO VICTORY?

NO LESS VITAL ARE REFRACTORIES

WITHOUT Fireclay Brick, Silica, Chrome and Magnesite Brick -

- No giant shovels would be loading the ore at the Ranges.
- No furnaces would belch their clouds of flame at night, reddening the somber sky.
- No sentinel ingots, glowing with heat, would trundle the rails to the white hot pits.
- No mills with their thundering rolls would turn.
- There would be neither flying fortress nor the flashing fighter of the skies, no metals to make the ships, the planes and tanks, the guns and shells we so urgently need.

NEVER before in Harbison-Walker's history of more than three-quarters of a century have the products of the refractories industry been of such vital importance to our country. Harbison-Walker is bending every energy toward meeting its responsibility.

A COMPLETE REFRACTORIES SERVICE

HARBISON-WALKER products comprise refractories of various types and of widely differing properties, and include fireclay, super-duty fireclay, high-alumina, silica, magnesite, chrome and forsterite brick, acid proof brick, and insulating fire brick. Included also are fire clays, silica clays, various other clays for special purposes, chrome ore,
special furnace chrome, furnace magnesite, dead-burned grain magnesite, high temperature bonding mortars and bulk insulating materials.

With a complete line of furnace refractories and insulating materials, Harbison-Walker is able to recommend and furnish the correct combination for any service requirement.

YES . . . and long after the peace is made, this Farquhar Hydraulic shell nosing press will be still turning out shell cases to help insure that "it shall never happen again." With 350-ton capacity and using a 150 H.P. motor, the press shown here is just one of scores of Farquhar hydraulic draftees which are fighting the giant battle of production . . . to keep 'em flying and to keep 'em rolling.

Farquhar is supplying high speed hydraulic presses for: smokeless powder; blocking, graining and finishing; shell and cartridge case piercing and drawing; gun and shaft straightening; forging and extrusion; blanking and forming of aircraft parts; all types of metal working. All types, sizes, all capacities . . . from 3 to 7,000 tons. Hydraulic Press Division of the A. B. Farquhar Co., Limiterl, 195 Duke St., York, Pa.

JOINT 4 A

JOINT 4D

JOINT 4B

JOINT 4 É

JOINT 3A,3B,3C

JOINT 4C

JOINT 4F

TABLE Y-IDAta on Welding of Plates by Linionmelt Process In Ship Construction Thjckness, Speed Speed Welding Irod
Inches Joint No. Amps. Volts In./Min. Dla., In. Lb./Ft.
Joint: Two-pass Unjonmelt butt welds backed with platen or heavy structural shape. (Used for keel plating seams, lank tops, tweendecks, bulkheads, etc.)

Backing Eass						
145	1	400	32	28	$3^{3} / 1$	0.10
1/2	1	700	33	22	liis	0.23
			Finishing Pass			
1/4	1	500	30	27	${ }_{31}^{51}$	0.12
$1 / 2$	1	750	35	20	7 ${ }^{4}$	0.27

Joint: Melt-backed Unionmelt butt welds. (Tabulated conditions provide reinforcement or flat bead on backs of welds. Backing melt is $31 / 2$ inches deep above u $31 / 2$-inch dlameter ilre hose.)

1/4	2A*	960	42	38	1/4	0.15
1	2B*	960	37	22	1/3	0.33
\%	$2{ }^{\text {c }}$	1080	35	15	38	0.53
Jolnt: Copper-backed Unionmelt butt welds.						
1/4	$3 A \dagger$	725-825	$29-32$	28-31	130	0.14-0.23
$1 / 2$	3B†	1075-1175	34-37	20-23	1/is	0.38-0.45
7\%	$3 \mathrm{C} \dagger$	1200-1300	36-39	13-14	1/4	0.60-0.75

Nir Pressure Lb./Sq. Inch

3C $\quad 1200-1300 \quad 36-39 \quad 13-14$
Manual Weld Deposited in Downhand Positlon (Plates_rurned Over for Unionmelt

(Used as shown for flat keel, bottom shell, deck, bulkhead and tank top joints. All i 30 -desrec vees.)
$\begin{array}{lllllll}1 / 2 & 4 F & 700 & 35 & 13 & 1 / 4 & 0.40 \\ 4 & 4 F & 750 & 35 & 85 & 1 / 4 & 0.60\end{array}$
Joint: Integral steel-backed Unionmelt buit welds. (Minimum spacing, ie-inch.) Minimum Thicknes.s Backing

Joint: Positioned Unionmelt flllet welds. (These conditions if used in applying a flllet to each slde of the web plate will yield 100 -per cent penetrated tee joints with the work posittoned at 45 degrees where the thickness of the web plate is cqual to or less than the slze of the illlet leg.)

$1 / 4$	7	650	27	28	3	0.11
$1 / 2$	7	850	31	16	$1 / 4$	0.43
4	7	1080	31	11	$1 / 4$	0.95

[^5]These are the various joints on which data is given in the table
preciable overall allowances for shrinkage.

With this process there is nothing to indicate even at close view that perhaps 30 to 90 kilowatts of electrical energy is being transformed to heat, that welding rod is being melted at high rates, and that almost twice as much base metal as added rod metal is being fused because the arc is hidden under a granulated flux material fed by gravity through the welding head and laid along the seam to sufficient depth to cover completely the welding zone and the end of the bare steel welding rod. Excess flux is picked up from the completed mold by a vacuum collector on many of these machines.
Welding units of the type shown in Fig. 1 feed rod from coils of approximately 25 pounds weight and are used for making welds requiring up to about 2600 amperes. Welds of about $11 / 1$-inch thickness can be made in one pass with this machine. The equipment can be readily moved about on flat surfaces but must usually be handled by crane for longer moves.

Arrangement of this machine shown in Fig. 2 was especially designed for fillet welding where guiding must be accurate with provision for following any waviness in the plate. The same type unit is shown in Fig. 6 making the corner butt joint between the spar deck and shear strake of a Great Lakes ore freighter. Four 500 -ampere welding transformers are connected in parallel to supply the welding current to this automatic welding machine. Most yards use 1000 -ampere
 lets, carried by Baker 2000 16. Fork Truck

BAKER TRUCK cuts time 50\% returns 150% on investment in one year

PEQUANOC RUBBER CO. also conserves man power

"Eight months after we placed the Baker Fork Truck in service in our plant, our savings had paid for the original investment" writes T. Mace, Superintendent of Pequanoc Rubber Co., Butler, N. J.
Rubber sheets formerly handled with four-wheel hand trucks had to be loaded and unloaded singly for storage or shipment. Today the sheets are loaded onto pallets and the Baker Truck stores the pallet loads two-high in the warehouse. When shipment is by truck, complete pallet loads are placed on wheel pallets inside the truck, which can be pushed to position in the long truck. When shipment is by freight, the Baker Truck carries pallet loads right into the box car and places them in position, two-high, so that the customer will also save time by unloading them with his power trucks.

Baker Trucks are saving time and conserving man power in a wide variety of industrial plants. Let us estimate possible savings for you.

BAKER INDUSTRIAL TRUCK DIVISION of the Baker Raulang Company 2167 WEST 25 th street •• Cleveland, ohio
 by use of wheel pallets, which can be pushed into position.

One man with Baker Twik laca's böx-car in less than balf the time formerly required by six men.

transformers either singly or connected in parallel.

A few welding heads are supplied with direct current from standard welding generators. Regardless of the source of current, provision is made to make and break the supply current instantaneously at full load for starting and stopping a weld. A contactor operated from a small switch on the welding head may be connected in the primary supply lines to the welding transformers, in the output circuit of direct-current generators or in the field circuit if the generator field circuits can be isolated.
The head, shown in the inset in Fig. 5, must be mounted on a sub. stantial supporting structure. It is capable of feeding as much as 4000 amperes of welding current to welding rod as large as $1 / 2$-inch in di. ameter. Two of these large heads were installed in a shipyard in 1936. Since that time, many of the smaller units and additional large heads have been put in service in that yard. The highly developed methods of construction there and the use of large auxiliary mechanical equipment specially designed for mass production of tankers have led to a greater use of automatic welding than is found in any other shipyard. Figs. 5, 4 and 3 show a part of the installation of the large automatic welding equipment with closeup views of welding with the large heads.

The use of this process in shipbuilding will be even a more important factor in the immediate future in speeding welded construction. An operator and a helper can produce from 200 to 400 feet per 8 -hour day of finished seam in steel of average ship-plate thickness. Hence the use of this process releases many an arc-welding operator for the greater amount of welding which on any ship is not adaptable to automatic machine methods.

Prefabrication is the principal field of application of the Unionmelt welding process, although in many yards the machines are taken upon the ways for the welding of shell bottom plating, tank tops and decks. Prefabrication is applied to sections of tank tops, shell plating, bulkheads, shaft alleys and decks as well as sections of superstructure, king posts and booms of car-go-handling equipment.

Butt welds and fillet welds are the types principally made. Smaller fillets of less than about ${ }_{3}$-inch leg dimension are frequently made without positioning the pieces, but the large fillets tend to sag, and the pieces must be tilted so that the diagonal surface of the weld will be approximately horizontal.

In making butt welds, full advantage of the deep penetration of

Fig. 6-Making corner butt joint between spar deck and shear strake of an ore freighter

Unionmelt welding and its consequent capacity to weld considerable thicknesses in one pass cannot be taken unless some means is provided for supporting the molten metal from the under side. Several methods of backing welds and of combining manual are welding and automatic Union melt welding are indicated in the tables of data for various types of joints used in shipbuilding.
Joint 1 requires tightly fitted edges to prevent the weld metal from flowing through. But for plate thicknesses less than $1 / 2$-inch, contact with a platen or structural members on which the subassembly is laid is usually needed for additional chill to control the fluid metal. The edges must be straight and fitted tightly enough to exclude a shipfitter's feeler. If mill-sheared edges are used, it may be necessary to grind or otherwise condition the edges to obtain this result.
The weight of the plates assem. bled on a platen is usually sufficient to maintain satisfactory contact; but it may be necessary to hold them down by weights, roller or structural means. Note pistonactuated arms holding down work in Fig. 5.
Joint 3A requires uniformly close

Fig. 7-Shown above is a typical section through plug weld
and tight contact between the underside of the seam and the copperbacking to prevent the weld from running out. Uniformly sound welds require removal of all surface scale, rust and other material so that clean metal is exposed on the surfaces in contact with the copper-backing-up means.

In joint 4 series, the manual welds replace the initial Unionmelt weld of Joint 1. The manual weld must be sound, uniformly reinforced, and of a depth (measured by penetration plus reinforcement) at least one-half the plate thickness for plates up to $1 / 2$-inch thick in order adequately to back the finishing Unionmelt weld and assure complete overlapping.

The top manual pass in joint $4-5$ should be thoroughly cleaned of slag before Unionmelt welding.

With joint 5, the steel backing bar should bear uniformly on the underside of the seam in order to prevent fluid metal from running out. If considerable variation in edge-bevel and edge-distance is encountered, it should be compensated for by variation in welding speed to maintain desired reinforcing. The distances between the edges and the bevels tabulated are the minimum allowable.

If joints 6 and 7 are not fitted tightly, some method of damming the molten metal must be employed so as to prevent a runout. Cleaning by grinding or wire-brushing of the surfaces to be welded will permit the use of highest welding speeds and help to produce uniformly sound welds.

Procedures differ in detail in various shipyards, but generally the assembly of sections of hull, inner bottoms, bulkheads, and deck starts with the laying of the prepared plates on a large platen or on a skeleton table made of T-bars, Ibeams, or other structural steel shapes. Partly penetrated automatic welds are then made and the stiffeners are fillet welded to the plate, which is then turned over and automatically welded from the other side, with ample penetration into the weld previously made from the first side.

Frequently, the hull bottom plates are laid individually on the ways, an overhead weld is made on the underside of the plate by manual arc welding and, with this as backing, a Unionmelt automatic weld is made from above. Similar procedure is often used in applying deck or tank top plating, although sometimes the plate joints land on a flanged structural member or are fitted with a steel backing strip.

Plug welding is an operation of ship construction for which the Unionmelt process is well suited.
(Please turn to Page 107)

How a ledaniy

costs, time and CLEANER PENNSALT CLE

Ingersoll-Rand Company, famous manufacturer of pneumatic tools, compressors and other equipment, has achieved important savings in three cleaning operations by using two Pennsalt Cleaners.

1. For still tank cleaning of many metal parts prior to Parkerizing, Ingersoll-Rand uses a Pennsalt Cleaner saving time and labor.
2. Similar savings have resulted from Ingersoll-Rand's use of the same

Pennsalt Cleaner for still tank cleaning of metal parts after hardening.
3. In spray washers which clean iron and steel castings, forgings and bars, bronze, brass, zinc and aluminum parts . . about 10,000 different metal parts . . . Ingersoll-Rand uses another Pennsalt Cleaner with great success. This cleaner efficiently removes machine oil and polishing compounds from the metal parts, and also provides rust protection
between processing steps. By changing to Pennsalt Cleaner IngersollRand saves an estimated 37% in the cost of cleaning materials . . . and gets better results!

If you have a metal cleaning problem, there is a Pennsalt Cleaner which will meet your specific needs . . . and probably save you valuable time, labor and cost. Write today to our Pennsalt Cleaner Division, Dept. S, for information.

Fig. 1-Overhead model of cutter designed to be used with multiple rolls of tlexible packing material

FACING A drastic shortage in shipping containers, many manufacturers are finding the solution to their packing problems in an unusual packing material-Corroflex. While not a container, this new type of packing material replaces many types of containers including cartons, boxes, crates and bags. It is a paradoxical material, too, in that although it is corrugated it folds like uncorrugated material.

This flexible packing material is used for inter-department and intermill shipments as well as for shipments to consumers, for large ungainly products and for the endless number of sizes and shapes that pass over shipping-room benches. Thus it has many important applications in materials handling work. And while many shippers have turned to flexible packing to relieve shortages in shipping containers, they have found unexpected savings in material cost, packing time, ship. ping weight and space-savings that

By PAUL THOMPSON
Sherman Paper Products Corp. Newton Upper Falls, Mass. PACKING METHOD helps relieve container shortage in handling and shipping operations at same time effecting important savings in shipping weight and space
have often been in excess of 50 per cent.

Physical Characteristics: This packing material has several unusual characteristics. Although it is a corrugated product, it is different in that both the backing sheet and the corrugating sheet are especially selected for flexibility as well as for cushioning properties and strength. The backing sheet, which becomes the outer wrap in use, is No. I water resistant kraft. The corrugated cushion is the so-called " B " flute with 20 per cent more weight-bearing corrugations than the "A" flute commonly used in cartons.

In the manufacturing process, the tops of corrugations are indented diagonally, so that the material can be folded almost as easily as wrapping paper. The indenting tends to give greater resiliency to the corrugations by providing air pockets or mounds to act as load bearers. This air mound characteristic is augmented when the material is used, inasmuch as folding tends to make compartments in the corrugations.

Methods of Use: Packing operations with this material substitute
one or a limited number of sizes in place of a great range of container sizes. Cutters, used for dispensing the material in roll form, are designed for use on the bench, over the bench, and under the bench; for single rolls and multiple-roll units. Specially designed for this specific use, they allow the material to be cut as easily as wrapping paper is cut from a wrapping paper dispenser. The material is also available in sheets for larre volume use in production packing. Fig. 1 shows a typical setup with a cutter mounted above the packins bench and handling two rolls of Corroflex.
While sealing tape is most frequently used in packing with this material, steel banding, twine and stitching are also widely used.

Shipments of Small Products: For the packing of the endless stream of sizes and shapes that pass over packing benches, certain basic packing methods have been developed to cover cubical, odd shaped, and cylindrical products. Fig. 2 reveals one of the basic packing methods used in making up small packages.
Shipment of Large Products: Sug. gestive of wide adaptability of this

Fig. 2. (Left, below)-One of the basic packing methods used on small packages
Fig. 3. (Right)-Cream separator parts and packaging methods

$\left(\frac{1}{4}+1\right)^{5}$ Service

Structural material
Plates, various qualities
Floor Plates
Sheets: Hot Rolled, Cold Rolled, Galvanized, etc.
Bars (all shapes): Hot Rolled, Carbon and Alloy grades
Hot Rolled Strip Steel
Spring Steel - Tool Steel
Drill Rod
Cold Finished Bars, Carton and Alloy grades
Wire
Cor-Ten and Man-Ten Shapes, Sheets and Plates
Abrasion-Resisting Sheets and Plates
Eaves Trough, Conductor Pipe U•S•S Stainless Steel and Stainless products
Expanded Metal
Rails
Boiler Tubes
Rivets, Bolts, Nuts, Washers
Dardelet Rivet and Machine Bolts
Nails
Welders and Welding Accessories Chain
Clamps
Flanges
Expenders, etc.
Hoists, Shears, Rolls, Punches, Cut-Of Machines, Saws,
Nibblers, etc.

On Stock!

Dardelet Bolos

We can offer immediate shipment of both Dardelet Rivet liolts and Dardelet Machine Boles. These bolts save valuable time and bolts save valuable time and
labor and assure permanently labor and
tight holes:
tight hols:
The Dardelet Rivet Bolt is a ribbed bole with Dardelet selllocking thread, and is widely used for field erection of structural steal. Has recessed nut. Bolt is driven in and nut is applied with wrench Economical with The Machine Bolt with Bardelet self-locking thread is for gen. eraluse where vibration is present.
 < OF TODAY AND TOMORROW

Don't give upwithout calling Scully!
CHICAGOBRUnswick 2000
Teletype CG. 605
BALTIMORE GILmore 3100
Teletype BA. 63
BOSTON STAdium 9400
CLEVELAND HEnderson 5750
Teletype CV. 153
PITTSBURGHCEdar 7780
Teletype PG. 475ST. LOUISMAin 5235
MINNEAPOLIS - ST. PAUL NEstor 2821
NEWARK, N. J.

Blgelow 3-5920
Below 35920

FASTER PICKLING of Tin Plate aids canning of ARMY FOOD

Fig. 4. (Left, above)-Material used to pack automobile fenders to protect the fine linish. The wrapping is applied while work is held in a special jig

Fig. 5. (Right)-Identical parts packed in ordinary cartons, with the flexible packing material to illustrate savings in space that it permits
material is Fig. 4 which shows its use in packing automobile fenders. This is a production operation using specially designed workholding jigs. This product is typical of many which are pre-packed before being placed in stock to save time and avoid damage in stocking. Previously packed in crates, the new method has saved large sums in packing materials, in time and in shipping cost. The savings in space are obvious since the method permits replacing a cubical crate with a package that can be nested for shipment.

Inter-Plant Shipments: The great increase in subcontracting has brought about problems in packing for shipment between fabricating plant and assembly plant. Many manufacturers have found that Corroflex can be used effectively as a speedy method of packing, yet it affords adequate protection to the shipments and saves time in unpacking for further production. Methods range from individual wrapping to multiple-wrapping, with material being used between and outside nested products. The multiple package is then tied with rope or steel bands. For inter-departmental shipments, too, the flexible corrugated material is often used as a quick interlining cushion when products are stacked or packed loosely in tote boxes, on platform trucks or other transpor. tation units for haulage from one part of the plant to another.

Used as Inner Packing: In many cases where transportation hazards require greater outer protection than flexible corrugated can afford, this material is used advantageously as inner-packing in place of excelsior, shredded paper, sawdust, diecut inner partitions or inner boxes. The cream separator parts shown in Fig. 3 were formerly wrapped in paper and then placed inside-the
main bowl with shredded paper used for inner packing.

By replacing the paper wrap with flexible corrugated, the shredded paper could be eliminated, producing a cleaner package and eliminating damage through abrasion of the highly polished surfaces.

Saves in Packing Costs: While many manufacturers are turning to flexible corrugated because they are unable to secure containers, they find use of the new material often leads to important savings.

Shipments may run into hundreds or even thousands of different sizes, but it is generally not practical to have an equal number of container sizes. In packing, therefore, a certain percentage of the shipments must be placed in the rearest larger-size container. To make the container fit the shipment, two things can be done: The container can be cut down; or the excess space in the container filled with one of many stuffing or dunnage materials. The requirements of speed and labor costs usually favor the second alternative, thus adding extra space and weight to the shipment and using more material. Using flexible corrugated, the protection can be fitted to the package, reducing the amount of material needed.

Since round or odd-shaped products will not fit exactly into cubical containers, special consideration must be given to these unused areas to prevent the conventional container from breaking down at these points with subsequent damage through shifting of the product. The remedies of heavier containers, special reinforcements such as die-cut inner partitions, or other forms of inner-packing materials mean the use of extra materials as well as extra space. But flexible corrugated permits extra protection to be
given to corners or vulnerable points simply by using extra folds of cush. ioning material at these danger zones, at the same time providing a more exact fitting package.

Comparisons: Fig. 5 shows identical replacement parts as packed in cartons and as packed in Corroflex, suggesting the savings in space and weight which flexible packing makes possible.

While conditions vary greatly, great savings have been reported with flexible packing, in some cases more than 50 per cent on material, time, weight and space.

Uses for the flexible corrugated material are constantly being broadened through the progressive research of packaging engineers on the staff of the Sherman Paper Products Corp., Newton Upper Falls, Mass. The company also publishes data sheets which picture step-by-step operations in packing with Corroflex.

Twenty Days-and

An Order on Its Way

From drawing board to truck in 20 days-that was the record time in which eight specially designed 500 kilovolt-ampere, 3-phase, self-cooled Pyranol network transformers were made recently in one of the plants of General Electric Co., Schenectady, iv. $\begin{array}{r}\text {. }\end{array}$

Co-ordination was the main factor that made this fast work possible. Working day and night, both engineers and draftsmen prepared a special set of drawings for special approval. Next steel was allocated for both the transformers and switch boxes, and then things began to happen. Coils were wound and treated and tanks fabricated and welded on a co-ordinated schedule. Co-ordinated so all parts were ready for assembly at the same time.

Twenty days after the order was received from Washington, the units were readied for shipment to an important government project.

Coating Substitutes

(Concluded from Page 76)

warehoused before painting, if so desired.

Chemical Treatment on Black Sheets: In each of the following cases, it is to be understood that the surface of the sheet must be clean and free from scale, a condition which is usually achieved by standard pickling methods: Hot dip in a balanced aqueous phosphate solution containing an activating agent; cold dip in a solution containing phosphoric acid, phosphates and chromates; hot dip in aqueous chromic acid solution containing an activating agent; phosphoric acid wash after regular standard pickling; standard pickling methods using sulphuric or hydrochloric acid.

The surface of a sheet treated by any one of the first four of the above chemical solutions produces a clean metal surface having a protection suitable for receiving a paint coating. Sheets treated in this manner should not be shipped or warehoused and should be painted as soon as possible after receiving the treatment. A sheet treated by the last-named process will not have a rust-resistant surface; therefore, paint should be applied immediately after the sheet is dried.
Nontreatment of Black Sheets: Under this heading is proposed an untreated black sheet, preferably of cold reduced metal base having surfaces as free from scale and rust as it is practical to secure. It is not to be considered as a substitute for
galvanized sheets, but to be used as a base sheet for coating with a competitive low-cost red oxide of iron paint, flash-dried. This is the type of coated sheet that has been com. monly made and sold for many years and used mostly for roofing purposes.
In connection with desirable types of paints, considering availability of different ingredients, the following suggestions are made:

Vehicle: A processed oil, fortified with synthetics or water repellents as may be found available. The vehicle seems to narrow down to domestic processed oils with linseed oil predominating. Some synthetic resins may be available throughout the emergency, but from present indications, it appears that these may be restricted to ester gum, treated resins or some of the natural resins.

Pigments: High-grade red oxide of iron, fortified with other materials such as inhibitive pigments that may be found available.

Application: Roller coating with composition roller coating machine is preferred, painting one side of the sheet at one pass through the machine. The thickness of the coating should be from 0.8 to 1.5 -mil dry film, giving a coverage of from 300 to 1200 square feet of surface per gallon of paint. Oven-bake drying is recommended at from 15 to 30 minutes at approximately 250 to 350 degrees Fahr. The paint should be continuously agitated during the coating process to keep the pig ments in suspension.

The paint used should have a

New Kiln Makes 30 Per Cent More Grinding Wheels

MOST RECENT expansion at Macklin Co., Jackson. Mich., includes a new building with a continuous kiln shown which will increase production of vitrified grinding wheels by 30 per cent. This and other recent additions make Macklin one of the nation's most modern plants engaged in supplying grinding wheels to meet the needs of our rapidly expanding war production program
background of four to six years of satisfactory performance. It should have sufficient drying and hardness for stacking, packing and shipping; sufficient elasticity for moderate fabrication; a high degree of protection against the elements, embracing the acknowledged rust inhibitive type of available pigments; and finally, should have a surface appropriate for accepting any and all types of succeeding decorations.

It is also recommended that advisory information be given for re. coating of the sheets in the field immediately after application, and that consumers be cautioned to consult their local paint or roofing metal dealers for advice as to the proper field coating of paint.

Outside Uses: For coatings of outside surfaces subject to atmospheric exposure, the following recommendations are made:

Complete removal of scale and treatment of surface by hot or cold dipping in a balanced aqueous phos. phate solution containing an activating agent, and coating with an iron oxide base paint reinforced with an alkide type resin and baking for 30 minutes at 350 degrees F'ahr. or reinforced with inhibitors such as zinc chromate or zinc oxide.

Complete removal of coarse local scale by wire brushing or flame cleaning and application by brush, dip or spray of a coat of paint, using ordinary iron oxide base paint and linseed oil type vehicle.

For coating the inside of pipe used in underground water service, coal tar enamels may be used for pipe 4 inches and larger in diameter. No definite recommendation is made for smaller sizes. As a substitute for the above, one paint manufacturer suggested using a lacquer for coating inside surfaces of steel food and liquid containers.

A suggested substitute for an interior zinc coating on building pipe for water service is a low soluble cement which is impervious to water and suitable for use with water below the boiling point.

Recommendations are that all zinc-coated metalware such as tubs, pails, garbage cans and the like be continued with zinc as long as zinc is available. If no zinc is available, then black sheets may be used and either the flat sheets or finished ware coated with available sub. stances to suit each individual case.

Wire: There are no recommendations at this time for substitute coatings for wire products used out. doors. It is the opinion of the committee that such products should be furnished as at present as long as coating metals are available. For inside uses wire can be coated with a black japan or paint designed for the purpose.

Vertical Cutting Saw

Peerless Machine Co., Racine, Wis., is offering an improved vertical cutting power saw which now is capable of handling extremely large work. To handle such work its work-table has been extended to 35 inches. This permits huge slabs of Hardtem, tool steel, as long as 24 inches and any thickness up to 10 inches to be sawed through without turning the work. Elevating stock rollers on both sides of the worktable facilitate shifting work. These as well as the saw-blade feed pressure, and the blade lift are operated hydraulically. Blade of the ma-

chine travels vertically and is fed back and forth. The 3 -speed transmission provides blade speeds of 50,85 and 125 strokes per minute. By means of an automatic trip gage, it is possible to stop or start cutting action at any point in the work. The machine is powered by a 5 -horsepower motor running at 1800 revolutions per minute.

Blackout Ventilator

Trane Co., LaCrosse, Wis., has introduced a new blackout ventilator designed especially for blackout plants and for all buildings erected in the modern wartime blackout type of construction. It is available in three basic models-as an exhaust unit, summer supply unit and winter supply unit. All three models are light as well as weath-er-proof. The summer supply unit provides large volumes of outside air with perceptible air motion at all times. It is especially suited for
large industrial plants or where ventilation for particular industrial processes is needed. The exhaust unit has the same general design as the summer unit and, as the name implies, is merely an exhaust fan arrangement whereby the air in occupied areas is exhausted from the building. The winter supply unit is for application in conjunc-

tion with the existing heating system, and contains heating coils, face and bypass dampers and a propeller fan. Maintenance of these units can be accomplished from the rooftop rather than from below with the use of ladders. The hood arrangement hinges upward exposing the motor and blower assembly as well as the damper motor and its linkage. The hood is locked in place in the open position so that wind or other accidental means will not cause it to drop suddenly. It also can be locked in the closed position. Handles are provided for convenience. Capacities of the ventilators range from 1500 to 20,000 cubic feet per minute.

Scanning Unit

United Cinephone Corp., Torring. ton, Conn., announces a scanner which can be used wherever photoelectric control is desired from a reflecting surface 2 inches or less from the unit. It consists of a light source and two photo-tubes in a com-

pact housing ready for attachment to any photo-electric amplifying system. Light from the bulb mounted in metal housing A passes through the double converging lens in lens
barrel B then through aperture F. A highly concentrated spot of light strikes the surface being scanned H and is reflected back into the photo-tubes, its intensity being dependent upon the reflective quality of the scanned material. Thus, a registration mark on moving paper, or the travel of a meter pointer into the spot of light concentration will cause a change in the illumination reaching photo-tubes D and D^{\prime}. The response of the photo-tubes to this change in reflected light intensity is transmitted through a co-axial cable to a remote amplifier, making possible the control of auxiliary electrical devices. The unit is sufficiently flexible to operate with any standard sensitive amplifier.

Portable Hoist

Aviation Department, Whiting Corp., Harvey, Ill., announces a new portable Aero hoist of simplified design for the aviation industry. It consists of a single upright mast

equipped with riser steps and adjustable platform. A chain hoist raises and lowers the work or supports it at any desired height, and an extension keeps the hand chain safely away from the load. A brake locks the hoist in position. The unit is being made in 1 and 2-ton inodeis.

Transit Cranes

Bucyrus-Erie Co., South Milwaukee, Wis., announces two transit cranes, a 10 and 20 -ton unit, not only fully convertible from crane to clamshell, dragline, shovel and drag shovel service, but also designed for quick conversion from the wheel mounting to standard crawler mounting. Referred to as the $15-\mathrm{B}$ and the $22 \cdot \mathrm{~B}$, these units shorten nonproductive traveling time and step up output. Smaller of the two cranes is the $15-\mathrm{B}$, with a 10 -

Another Use for Steelwelds.. PUNCHES $5^{\prime \prime}$ to $\mathbf{8 "}^{\prime \prime}$ HOLES 25 TIMES FASTER!

Steelweld Bending Presses are versatile tools that can be adapted to many kinds of work by simply changing the dies. The same press that bends and forms plate can be set up to punch holes in a few minutes.

One Steelweld Press at the Dracco Corporation, Cleveland, does most of the metal work required in building Dracco dust collectors. It punches $5^{\prime \prime}$ to $8^{\prime \prime}$ holes singly in 12 -gauge and 10 -gauge plate, 25 times faster than formerly. It multi-punches 25 or more bolt holes at a time. It bends flanges and performs other forming operations.

This machine has been in continuous operation for more than 5 years without one cent of expense for repairs. It has been a big factor in stepping up production and reducing manufacturing costs at Dracco.

If you work with metal plate, it's to your advantage to have the facts on Steelweld Presses.

ROEBLING Qives ROUND . . . FLAT . . SHAPED

guides the Knife that

 fashions your shoes...

ROUND HIGHAND I.OW CARBON COMMON AND SPECIALTT WIRES
Hard Drawn, Soft Annealed or Tempered, in all Finishes-Bright, Liquor Finish, Coppered, Tinned, Galvanized.

FLAT HIGH AND LOW CARBON AND SPECIALTY WIRES

Hard Rolled, Annealed, Scaleless Tempered; Tempered and Polished, Tempered, Polished and Colored; Various FinishesBright, Tinned, Coppered, Hot or Flectrn Galvanized.

SHAPED WIRES
Farious Hish or Low Carbon Shaped Wires such as: Shaft Casing Wires, I Ream Sections, Space Block Wires, Square, Keystone, Oval, Half Oval, Half Round, etc.

Typical of the special steel wires made by Roebling for specialized uses is this shoc pattern edging. It adheres closely to the "jig saw" outlines of complicated shoe patterns, and guides the knife that cuts the leather.

Whether your wire requirements call for special shapes, special analyses of steel, or unusual tempering or finishing, Roebling can meet them. Rocbling experience, persomel and closely controlled steel making facilities solve all the problems of unusual specifications, as you want them solved.

JOHN A. ROEBLING'S SONS COMPANY
TRENTON, NEW JERSEY - Branches and Warehouses in Principal Ciries
ton maximum crane rating and convertible to $1 / 2$-yard excavator.
The second unit, the $22-B$, has a maximum crane rating of 20 tons and is convertible to a $3 / 4$-yard clamshell, dragline, shovel or dragshovel. Wheel mounting of the units consists of an allwelded base giving maximum strength per pound of weight. Tandem rear axle mounted on an equalizer beam assure full

traction over rough grounds. Dual worm drive applies power smooth ly. The transmission provides 10 forward and 2 reverse speeds. Use of two engines, one for propeling, the other for handling hoist, swing, etc., simplifies maintenance and repair. - Maximum speed on level ground is 27.5 miles per hour for the $15-\mathrm{B}$ and 31 miles per hour for the $22-\mathrm{B}$. Full-vision cabs are included with comfortable leather seats. The $15 \cdot \mathrm{~B}$ is equipped with vacuum booster-set air brakes on all four rear wheels and the $22-B$ carries Westinghouse internal air brakes on the rear wheels.

Air Heater for Ovens

Westinghouse Electric \& Mfg. Co., East Pittsburgh, Pa., has introduced a new air heater for ovens or furnaces used in annealing of aluminum, glass and other materials. Designed for temperatures of 750 to 1150 degrees Fahr., it has a heating element consisting of a onepiece nickel-chromium libbon, spirally wound around heavy porcelain insulators. Its rating is 5

When Oxy-Acetylene

Cutting Nozzles Look

 Like This..Clean Them

Good results in oxy-acetylene cutting depend upon an accurate flame adjustment, and this requires clean nozzles. In addition to making possible more accurate cutting, correct maintenance will make your nozzles last longer.

3. Next take a drill furo sizes smaller than the size recommended in the instruction booklet furnished with the blowpipe. Work it up and down in the gas orifices. Do not twist the drill. Then, using the recommended size drill, repeat this operation.

1. Clamp the blowpipe in a vise, inserting a soft material in the jaws to protect the tubes. Knock away loose slag with a file.

2. If you do not have the correct sizes of drills, use a piece of copper, or soft brass, wire. A satisfactory substitute drill can be improvised by doubling the wire from a Prest-O-Lite cylinder tag, and then twisting it in a vise until it is tight.

3. Wrap a piece of fine emery cloth around the file and clean the nozole end so that it is smooth and square.

4. After cleaning the nozzle, test the flames by lighting the blowpipe. All of the preheat flames should be the same shape and length, and the cutting oxygen jet should be straight and symmetrical, as shown in the illustrations above.

The Linde Arr Products Company

Unit of Union Carbide and Carbon Corporation ए1号
General Office: 30 East 42nd Street, New York, N.Y.
Offices in Other Principal Cities
In Canada: Dominion Oxygen Company, Limited, Toronto
You Can Obtain Coples of this Advertisement For Dissribution in Your Shop . . . or to Post on Your Bullerin Boards . . . Upon Request.

You may obtain without chage duplicate copies of the instres supplied by Linde. nished with blowpipsecautions and Safe Also available write for the copies you need. Practices.

> LINDE OXYGEN - PREST-O-LITE ACETYLENE UNION CARBIDE OXWELD, PREST-O-WELD, PUROX APPARATUS - OXWELO SUPPLIES

The words "I,inde," "Prest-O-Lite," "Union," "Oxweld," "Purox," and "Prest-O.Weld" are trade-marks of Units of Linion Garbide and Carben Corparation.

At the Bausch and Lomb Optical Compony plant this B-ton Reading Crane is helping to speed deliveries of one of the Navy's newest and most powerful weapons ... range finders for the big guns of the fleet.
Right now, this motor-driven Reading Crane is typical of many that are working in defense plants to speed the production and distribution of vital wartime products. In many cases Reading equipment that was originally installed to meet normal production needs is "doubling up" to carry the extra burden of speed to meet wartime needs.
Remember that when results and savings ore in the specifications . it pays to rely on Reading's engineering abilify.

READING CHAIN \& BLOCK CORP. DEPT. D-3

READING, PA.

Rendint
 Chain Hoists, Ilectric Hoisis, Cranes and Monorails

kilowatts for operation on 220 -volt circuits. The complete heater is only $2^{1 / 2}$ inches thick and requires a space 12×33 inches for mounting.

Bench Accessories

Lyon Metal Products Inc., Clark street, Aurora, Ill., announces several new and improved accessories on its heavy-duty steel work

benches. Each basic bench may be equipped with single drawer, 2 or 3 -shift drawer units for multiple shift operations, half-depth shelf, full-depth shelf, back and end stops, foot rest or full length bench riser. Channel-type stringer illustrated is used only when bench has no shelf. Shelves and stringer are of one piece for added strength and rigidity.

Abrasive Belt Surfacer

Hammond Machinery Builders Inc., 1611 Douglas avenue, Kalamazoo, Mich., has introduced a new 600 Dri-N-Wet abrasive belt surfacer which can be adjusted from vertical to horizontal position while running. Its belt tension and tracking device likewise can be adjusted while running, this being ac-

complished quickly by two handles. The machine is totally enclosed for safety. It is arranged for an individual dust collector or for connection to an exhaust system. The abrasive belt pulleys are of cast
iron and are dynamically balanced. Work table of the surfacer which is offered either as a bench or floor model, can be adjusted to any desired working angle. Unit illustrated, floor model, has all the features of the company's 660 Dri plus providing wet operation for grinding, polishing or surfacing. It is equipped with tank and pump unit and also can be equipped for water main connection only.

Resistance Welder

Thomson-Gibb Co., Lynn, Mass., announces a new resistance welding machine designed to attach a base plate or sealing disk to the base of aircraft, anti-aircraft and artillery shell. It produces a seal by making a projection weld around the entire outer edge of the disk-a method of avoiding danger of possible leak-

age through the shell which might cause premature explosion. The machine basically consists of a mo-tor-driven welding press powered by a 75 -kilovolt-ampere transformer equipped with a 10 -station automatic dial feed. The operator loads the shell and disks by hand, but thereafter operation is entirely automatic, including ejection of the welded shell upon a chute or conveyor.
The weld made is gas and flametight and is made by a ring projection on the disk which welds to the flat end of the shell. Accurate position is insured by a clamping mechanism which locates the shell and disk and applies a positive gripping action as each station reaches welding position. A tripping device opens and clamps and ejects the welded shell before each station returns to the loading position. The machine is water cooled by separate circuits to the transformer, projection welding electrode and lower terminal block. Its upper electrode is mounted on a low-inertia rubbercushioned block which provides selfalignment and quick follow up.

CAN YOU IIIPRIVIE 0V IIII PMPIIR RIIP?

Hundreds of "gadgets" have failed to measure up in usefulness to the simple principle of the paper clip. Just as scores of "gadgets" for
 locking a bearing to its shaft have failed to measure up to the Fafnir Wide Inner Ring Ball Bearing with Self-Locking Collar. Bored to inch dimensions, for slip fit on stock shafting, it requires no lock-nuts, adapters, shaft shoulders, or precise machining; it locks to the shaft with just a finger-twist.

This time-saving feature is built into every transmission unit in the complete Fafnir line. It's simple, positive, dependable ... and exclusively Fafnir. The Fafnir Bearing Company, New Britain, Conn.

Slip the shaft through the bearing. Lodk the collar with a finger-fwist. Set the screw to hold collor locked.

FAFNIR
 Ball Bearings

THEREŚS A WHALE OF A DIFFERENEE belween Two Peas in a Pod
 Two bearing balls ground and polished to

 the same measurements may look-and caliper - exactly alike. But there still may be hundredthousandths of difference between themenough so they don't deserve to work together in a bearing marked "Fafnir." * ** That is why, before final assembly, Fafnir inspectors gauge these polished balls between narrowing walls of polished steel. The balls thus group themselves into matched "teams" as exactly alike as 1942 precision methods can make them ... each team slated for many winning seasons in a hard-working, dependable Fafnir Ball Bearing. The Fafnir Bearing Company, New Britain, Conn.
Power Distribution

(Concluded from Page 76)

centers associated with different primary feeders. Electrical faults in primary feeders or transformers are removed automatically without secondary service interruption.

Cable: About 75 per cent of the material saved by the load-center distribution system is due to reduction in cable required. A conventional radial system that requires 94,000 pounds of material can be replaced by a load-center system ivith only 73,000 pounds. Some 17,000 pounds of this saving is cable. Both systems were calculated using the new type varnished-cambric in-terlocked-armor cable which reduces by about $2^{1 / 2}$ times the amount of material required for either system comparea with conventional wire and conduit installations. In the example above, the 25,000 pounds of copper, steel, rubber and other materials for a conventional wire and conduit job are replaced by only 7000 pounds of material on an equivalent interlocked-armor cable installation (load-center circuit system).
If this same example were wired using a conventional radial distribution system and with wire and conduit, some 67,000 pounds of material would be needed. This total could be reduced to but 24,000 pounds if interlocked-armor cable were used, illustrating the importance of this type of wiring. In interlocked-armor cable, the copper conductors are each insulated with varnished cambric, stranded together with treated jute fillers and the assembly wrapped with rubber-filled tape and a single braid of cotton saturated with a flame and moisture-resisting finish. Over all is a flexible, interlocked armor of galvanized steel tape, the final barrier to any mechanical damage.

Automatic Welding

(Concluded from Page 92)

Recently one shipbuilder found it was possible to produce as many as 76 plug welds per hour with one portable welding machine, fastening $1 / 2$-inch tank top plating to the flanges of angle-iron supporting structures. Fig. 7 shows a typical section of a plug weld. Simple, lightweight, hand-operated equipment has recently been introduced to facilitate plug welding.
With all methods of welding, cleanliness of plate edges and weldability of material are vital to success. Manual metallic are welds are often made with fair success but with questionable economy on plate which is wet, oily or dirty. Such conditions usually are not tolerated.
In Unionmelt welding, freedom
from gas-forming contaminants in the fusion zone is particularly important because of the unusually high welding speeds and the resulting rapid rates of initial cooling of relatively large volumes of molten metal in the weld. Contaminating materials such as water, oil, paint, heavy scale and rust are usually removed by wire brushing or rapid surface heating with a concentrated oxyacetylene flame. If the plates are carefully protected and the work of assembly and welding is properly organized, a light wire-brushing just before welding will be the only surface preparation needed.

Steel of questionable weldability is occasionally encountered in shipyards, and has sometimes required special procedures. Care in assem. bling and cleaning, slower speeds, higher quality welding materials, or perhaps additional passes of welding, tend to improve the results regardless of the method of welding being used.

Shipbuilders have shown keen interest in Unionmelt welding, though the process is relatively new. Its production rate is high; long training periods are not necessary for operators of the equipment; the investment cost is reasonable, and operating costs are attractive.

Wigh Priorities Rule

Steelmakers' Books

Plate deliveries better as strip mills increase output. Ore season in earliest start in history. Scrap still bottleneck

Demand

War needs predominate.

Prices

Steady at ceilings.

production

Steady at 95^{122} per cent.

BY FAR the greater part of steel orders on mill books is concentrated in upper priority brackets, shipments on ratings below A-1-b being slowed up and mills as a rule accepting no new commitments lower than A-1-j.

Plates are most in demand but the situation has been bettered in recent weeks and most essential needs are being met closer to schedule. Much relief is being afforded as plates from strip mills come out in larger tonnage. Revamping of plate shipping schedules for shipbuilding is under way, reassigning to strip mills some tonnage formerly allocated to sheared and universal mills. Bars are a close second in demand and congestion is increased by the variety of products demanded from bar mills.

As a result of closer supervision of inventory under new regulations of the War Production Board plate shipments have been stopped temporarily to shops of three railroads which had accumulated what was regarded as excessive inventory. This is regarded as the forerunner of other similar orders. Some inventory increase frequently results from failure to receive other steel needed to complete an assembly and in those cases no blame attaches, though further shipment may be held back.

Part of the iron ore fleet left lower lake ports last week, the earliest in history, and ice breakers are opening channels to Escanaba and Lake Superior ports, in the effort to start ore movement. With war demand increasing, the need for ore will be greater than last year and a record tonnage is needed. Weather conditions favor the early start and several million tons above last year's total is sought.

New freight rates, carrying a 6 per cent increase, went into effect last week on interstate shipments. Application to intrastate shipments has not been complete, some railroad commissions delaying action. New York made the increase effective last week and New Jersey will follow immediately. Indiana probably will put the rates into effect March 24 and Illinois April 13 , under present plans.

Refusal of Interstate Commerce Commission to suspend the rate increase on scrap and other commodities, as requested by the Office of Price Administration, has caused the latter to amend the scrap schedule
to permit addition of 6 per cent of the allowable freight charges where the ceiling is at point of delivery. This is to obviate a downward adjustment of prices by shippers, which the price administrator believed would tend to impede free flow of scrap into industrial production. On cast iron scrap other than railroad scrap when the ceiling is at basing points, increased transportation charges may be included also.

Semifinished steel requirements for war purposes are taxing integrated companies and mills relying on others for their supply find deliveries lengthening. As the latter have heavy orders with high priority the situation is becoming complicated. This applies in practically all products, bars, sheets, pipe and wire being especially affected. Semifinished producers find it difficult to follow priorities and must rely on special directives to move any order holding up vital war production. With a preponderance of A-1 preferences on books of all finishing mills, integrated or not, it is difficult to apportion raw material with exact relation to needs.

Steelworks operations last week held unchanged at $951 / 2$ per cent of capacity. Chicago gained 1 point to 104 per cent, only $1 / 2$-point under the all-time high in December. Cincinnati increased 7 points to 87 per cent as a plant down for repairs resumed production. New England lighted its last open hearth for a rise of 5 points to 100 per cent. Youngstown gained 1 point to 95 per cent. Pittsburgh lost 1 point to 94 per cent. Detroit 4 points to 83 and St. Louis $1 / 2$-point to 83 . Rates were unchanged at eastern Pennsylvania, 88 per cent; Cleveland, 91 ; Buffalo $791 / 2$; Birmingham, 95 ; Wheeling $81^{1 / 2}$ per cent.

With most steel production limited to high preference war needs many former steel uses are being replaced by wood as the only means of supplying the deficiency. Increasingly water tanks are being redesigned for timber construction and even rated war projects where wood can be used are being changed to that material to save steel for actual war requirements, as well as to speed completion.

Composite prices reflect the unchanged ceilings applying to steel and iron products, finished steel at $\$ 56.73$, semifinished steel at $\$ 36.00$, steelmaking pig iron $\$ 23.05$ and steelmaking scrap $\$ 19.17$.

COMPOSITE MARKET AVERAGES

Mar. 21	Mar. 14	Mar. 7	One Month Ago Feb., 1942	Three Months Ago Dec., 1941	One Year Ago Mar., 1941	Five Years Ago Mar., 1937
Finished Steel $\$ 56.73$	\$56.73	\$56.73	\$56.73	\$56.73	\$56.73	\$60.14
Semifinished Steel ... 36.00	36.00	36.00	36.00	36.00	36.00	39.24
Steelmaking Pig Iron. 23.05	23.05	23.05	23.05	23.05	23.05	22.10
Steelmaking Scrap .. 19.17	19.17	19.17	19.17	19.17	20.15	21.25

Finished Steel Composite:-Average of industry-wide prices on sheets, strip, bars, plates, shapes, wire, nalls, tin plate, standard and line plpe. Seminnished Steel Composite:-Average of industry-wide prices on billets, slabs, sheet bars, skelp and wire rods. Steemmang ig iron Composite-Average of basic pig iron prices at Bethlehem, Birmingham, Bufralo, Chicago, Cleveat Pittsburgh, Chicago and eastern Pennsylvania.

COMPARISON OF PRICES

Representative Market Figures for Current Week; Average for Last Month, Three Months and One Year Ago

Finished Material
Steel bars, Plttsburgh
Steel bars, Chicago...
Steel bars, Philadelphia
Shapes, Pittsburgh
Shapes, Philadelphia
Shapes, Chicago
Plates, Pittsburgh
Plates, Phlladelphia
Plates, Chleago
Sheets, hot-rolled, Pittsburgh.
Sheets, cold-rolled, Pittsburgh Sheets, No. 24 galv., Pittsburgh Sheets, hot-rolled, Gary Sheets, cold-rolled, Gary Sheets, No. 24 galv., Gary Sheets, No. 24 galv., Gary.... Bright bess., basic wire, Pitts..
Tin plate, per base box, Pitts. Tin plate, per base box
Wire nalls, Pittsburgh.

Mar. 21,	Feb.	Dec.	Mar.
1942	1942	1941	1941
2.15 c	2.15 c	2.15 c	2.15 c
2.15	2.15	2.15	2.15
2.47	2.47	2.47	2.47
2.10	2.10	2.10	2.10
2.215	2.215	2.215	2.215
2.10	2.10	2.10	2.10
2.10	2.10	2.10	2.10
2.15	2.15	2.15	2.225
2.10	2.10	2.10	2.10
2.10	2.10	2.10	2.10
3.05	3.05	3.05	3.05
3.50	3.50	3.50	3.50
2.10	2.10	2.10	2.10
3.05	3.05	3.05	3.05
3.50	3.50	3.50	3.50
2.60	2.60	2.60	2.60
$\$ 5.00$	$\$ 5.00$	$\$ 5.00$	$\$ 5.00$
2.55	2.55	2.55	2.55

Semifinished Material

Sheet bars, Pittsburgh, Chicago. $\$ 34.00 \quad \$ 34.00 \quad \$ 34.00 \quad \$ 34.00$ Slabs, Pittsburgh, Chicago..... $34.00 \quad 34.00 \quad 34.00 \quad 34.00$ $\begin{array}{lrrrrr}\text { Rerolling billets, Pittsburgh } & 34.00 & 34.00 & 34.00 & 34.00 \\ \text { Wire rods No. 5 to ? } & 2.00 & 2.00 & 2.00 & 2.00\end{array}$

Pig Iron

$\begin{array}{lrrrrr}\text { Ferromanganese, del. Pittsburgh } & 24.19 & 24.19 & 24.19 & 24.18\end{array}$

Scrap

| Heavy melting steel, Pitts....... | $\$ 20.00$ | $\$ 20.00$ | $\$ 20.00$ | $\$ 20.75$ |
| :--- | :--- | ---: | :--- | ---: | ---: |
| Heavy melt. steel, No. 2, E. Pa... | 18.75 | 18.75 | 18.00 | 18.65 |
| Heavy melting steel, Chicago.. | 18.75 | 18.75 | 18.75 | 19.45 |
| Rails ior rolling, Chicago...... | 22.25 | 22.25 | 22.25 | 24.00 |
| No. 1 cast, Chlcago............ | 20.00 | 20.00 | 21.20 | 20.25 |
| Coke | | | | |
| Connellsville, furnace, ovens.... | $\$ 6.25$ | $\$ 6.25$ | $\$ 6.25$ | $\$ 5.50$ |
| Connellsvlle, foundry, ovens.... | 7.25 | 7.25 | 7.25 | 6.00 |
| Chicago, by-product fdry., del.. | 12.25 | 12.25 | 12.25 | 11.75 |

STEEL, IRON, RAW MATERIAL, FUEL AND METALS PRICES

Following are maxtmum prices established by OPA Schedule No. 6 Issued April 16, 1941, revised June 20 , 1941 and Feb. 4, 1942 . The sehedule covers all iron or steel ingots, all semiflnished iron or steel products, all finished hot-rolled, cold-rolled Iron or steel products and any Iron or steel product which is further flnished by gnlvanizing, plating, coating, drawing, extruding, etc.. although only principal established basing polnts for selected produ

Semifinished Steel

Gross ton basis except wire rods, whelp Carbon Steel Ingots: F.o.b. mill base, rerulling qual., stand, analysis, $\$ 31.00$
(Empire Sheet \& TIn Plate Co., Mansfleld, 0. may quote carbon stecl ingats at $\$ 33$ gross ton, f.o.b. mill.)
Alhoy Steel Insots: Pittsburgh base, uncropped, \$45.00.
Rerolling billetn, Slubs: Pittsburgh, Chicago, Gary, Cleveland, Buffalo, Sparrows Polnt, Birmingham, Youngstown, $\$ 34.00$; Detrolt, del. \$36.00: Duluth (bil.) \$36.00.
(Wheeling Steel Corp. allocated 21,000 tons $2^{\prime \prime}$ square, base grade rerolling bllets under leaselend during first quarter 1942 at $\$ 37$, f.o.b. Portsmouth, O.: Andrews Steel Co. may quote carbon steel slabs $\$ 41$ gross ton at establlshed basing points.)
Forging Quality Hilletm: Plitsburgh, Chicago, Gary, Cleveland, Buifnlo, Blrmingham, Youngs town, $\$ 40.00$: Detroit, del. $\$ 42.00$; Duluth, $\$ 42.00$.
(Andrews Steel Co. may quote carbon forgIng billets $\$ 50$ gross ton at established basing points.)
Open Mearth Shell steel: Pittsburgh, Chicago, base 1000 tons one size and section: 3-12 in. $\$ 52.00 ; 12-18 \mathrm{In} ., \$ 54.00 ; 18 \mathrm{in}$. and over. \$56.00.
Alloy BHiets, Slabs, Bhoms: Pitsburgh, Chi caga, Buffalo, Bethlehem, Canton, Masslllon, \$54.00.
Sheet Riss: Pltsbursh, Chicago, Cleveland, Buftalo, Canton, Sparrows Point, Youngstown, \$34.00.
(Empire Sheet \& Tin Plate Co., Mansfleld, O. may quote carbon steel shect bars at $\$ 39$ gross ton, f.o.b. mill.)
Skelp: Pittsburgh, Chicago, Sparrows Pt. Youngstown, Coatesville, lb., $\$ 1.90$
Wire Rods: Pltisburgh, Chicago, Cleveland Birmingham, No. 5-9/32 in., inclusive, per 100 lbs., $\$ 2,00$. $9 / 32-47 / 6$-in., Incl., $\$ 2.15$. Wor-
cester add $\$ 0.10$ Gilveston, $\$ 0.25$. Hacific Coast $\$ 0.50$ on water shipment

Bars

Hot-Rolled Carbon Hars: Plttsburah, Chicago, Gary, Cleveland, Buffalo, Birmingham, base 20 tons one size, 2.15 c ; Duluth, base 2.25 c ; Detrolt, del. 2.25c: New Iork del. 2.51c; Phila. del. 2.49c: Gulf Ports, dock 2.50c, all-rail 2.59c; Pac ports, dock 2.80c; all-rall 3.25 c . (Phoenlx Iron Co., Phoenixville, Pa., mas Radl Steel Harn: Same prices as for hot-rolled carbon bars except base is 5 tons.
(Sweet's Steel Co., Whlliamsport, Pa., may quote rail steel merchant bars 2.33 c f.o.b mill: w. Ames \& Co., Jersey City, N. J., may quote 2.85 c , f.o.b. mill for 10 tons or over.)
Hot-Rolled Alloy Hars: Plttsburgh, Chicago, Canton, Massillon, Buffalo, Bethlehem, base 20 tons one size, 2.70 c Detroit 2.80 c .

Cold-Finlahed Carion Hars: Plttsburgh. Chicago, Gary', Cleveland, Buffalo, base 20,000 39.999 lbs., 2.65 c ; Detroit 2.70.

Cold-Finished Alloy Hars: Pittsburgh, Chicago, Gary, Cleveland, Buffaln, base 3.35c: Detrolt 3.45e, Galveston, add \$0.25, Pacife Coast S0.50 Turned, Ground Shafling: Pittsburgh, Chicagn, Gary, Cleveland, Buffalo, base (not including turning, grinding. polishing extras) 2.65 c ; Detrolt 2.70 c .

Relnforcing Barg (New Blllet): Pittsburgh, Chicago, Gary, Cleveland, Birmingham, Spar rows Point, Buffalo, Youngstown, base 2.15 c Detrolt del. 2.25c; Gulf ports, dock 2.50 c , allrail 2.59 c ; Paciffe ports, dock 2.80 c , all-rall 3.25 c

Relnforctag Hars (Rall Steel): Plttsbursh, Chlcago, Gary, Cleveland, Birmingham, base 2.15 c : Detrolt, del. 2.25c; Gulf ports, dock 2.50 c , all-rall 2.59 c : Pacifle ports, dock 2.80 c . all-rail $3.25 c$.
(Sweet's Steel Co. Willlamsport, Pa., may quote rall steel reinforcing bars 2.33 c , f.o.b. mill: W. Ames \& Co., Jersey City, N. J., may Iron Hars: Single reflned, Pitts. 4.40 c , double refined 5.40 c ; Pittsburgh, staybolt, 5.75 c ; Terre Haute, common, 2.15c.

Sheets, Strip

Hot-Rolled Sheets: Pittsburgh, Chlcago, Gary, Cleveland, Birmingham, Buffalo, Youngstown, Sparrows Pt., Middletown, base 2.10c; Granlte lel. base 2.20 c ; Detroit del. 2.20c: Phila. ports 2.65c.
(Andrews Steel Co. may quote hot-rolled sheets or shlpment to Detrolt and the Detroit area on the Middletown, O. base.)
Cold-Rolled Sheets: Plttsburgh, Chicago, Cleveland, Gary, Buffalo, Youngstown, Mlddletown, base, 3.05c; Granlte City, base 3.15 c ; Detrolt bel. 3.15c: New York del. 3.41c: Phlla. del. 3.39 c ; Pacinc ports, 3.70 c .

Galvanized Sheets, No. 24: Pittsburgh, Chlaga. Gary, Blrmingham, Buffalo, Youngstown. parrows Point, Middletown, base 3.50c: Granlte city, base 3.for: New York de
Philat del. 3.68c; Pacific ports 4.05 c .
(Andrews Steel Co. may quote galvanized sheets 3.75 c at established basing points.)
Corrusated Galv. Sheets: Pittsburgh, Chicago, Gary, Birmingham, 29 gage, per square 3.31c. Culvert Sheets: Pittsburgh, Chicago, Gary, Birmingham, 16 gage, not corrugated, copper alloy 3.60 c ; copper iron 3.90 c , pure tron 3.95 c ;
zinc-coated, hot-dipped, heat-trealed, No. 24, itsburgh 4.25 c .
Ennmeling Sheets: Pittsburgh, Chicago, Gary, base 2.75c; Granite City, base 2.85c; Pacinc ports 3.40 c .
Plttsburgh, Chlcago, Gary, Cleveland, Youngs Lown, Middletown, 20 gage, base 3.35 e ; Granite Clty, base 3.45 c ; Paclfic ports 4.00 c .
Electrimal Sheets. No. P4:

	Pittsburgh	Paeifle	Granlte
	Base	Ports	City
Fleld grade.	3.20 c	3.95c	3.30 c
Armature	3.55 c	4.30 c	$3.65 ¢$
Electrical	4.05c	4.80 c	4.15 c
Motor	4.95 c	5.70 c	5.05 c
Dynamo	5.65 c	6.40 c	5.75 c
Transformer			
72	6.15 c	6.90 c	
65	7.15 c	7.90c	
58	7.65 c	8.40 c	
52	$8.45 c$	9.20 c	

Hot-Rolled Sirip: Pittsburgh, Chicago, Gary Cleveland, Brmingham, Youngstown, Midde and less 210 c . Detroit del 2.20c. Pacilc ports 2.75 c . Cold ELolle
Cold folled Strip: Plttsburgh, Cleveland cago, base 2.90 c . Detrolt, del 2.90 c ; Worcester base 3.00 c .
Commodity C. R. Strip: Pittsburgh, Cleveland Youngstown, basc 3
Worcester base 3.35 c .
Cold-FInished Spring Steel: Pittsburgh, Cleve land bases, add 20 c for worcester: .26-.50 Carb., 2.80c, 51-. 75 Carb, 4.,3k, 76-1.00 Carb., 6.15c: over 1.00 Carb., 8.35c.

Tin, Terne Plate

Tin Plate: Plttsburgh, Chicago, Gary, 100-lb. base box, $\$ 5.00$: Granite Clty $\$ 5.10$.
Tin Mill Black Plate: Pittsburgh, Chlcago Gary, base 29 gage and lighter, 3.05 c ; Gran Ite Clty, 3.15 c ; Pacillc ports, boxed 4.05 c Long Terneн: Plttsburgh, Chicago, Gary, No 3.80 c .

Manufacturink Ternen: Plttsburgh, Chlcago Gary, 100-base box $\$ 4.30$; Granite City $\$ 4.40$. Roofing Ternes: Plttsburgh base per pack age 112 sheets, 20×28 In., coating I.C., 3-1b $\$ 16.00 ; 30-\mathrm{lb}$. $\$ 17.25$; $10-\mathrm{lb} . \$ 19.50$.

Plates

Carbon Steel Plates: Pittsburgh, Chlcago Gary, Cleveland, Blrmingham, Youngstown Sparrows Polnt, Coatesville, Claymont, S.10c New York, del., $2.30-2.55 \mathrm{c}$; Phlla., del., 3.15 c St. Louls, 2.34c; Boston, del., 2.42-67c Pacifle ports, 2.65c; Gulf Ports, 2.45c.
(Central Iron \& Steel Co. may quote carbon steel plates at 2.35 c at established basing points; Granlte Clty Steel Co. may quote shlp plates 2.25 c, f.o.b. mill.)
Flonr Plates: Pittsburgh, Chicago, 3.35 c Gulf ports, $3.70 c$; Pacific ports, d.00c.
Open-Hearth Alloy Plates: Plttsburgh, Chi Open-Heartl Alloy Plat
Cago, Coatesville, 3.50 c .

Shapes

 Structural Shapes: Pittsburgh, Chlcago, Gary,Birmingham, Buffalo, Bethlehem, 2.10c; New York, del., 2.28c Phila., del., 2.22c; Gulf ports, 2.45 c ; Paclfc ports, 3.75 c
(Phoenix Iron Co., Phoenisville, Pa. may quote carbon steel shapes at 2.30 c at established baslng points.)
Steel Sheet Pilint: Pltsburgh, Chicago, Burfalo, 2.40 c .

Wire Products, Nails

Wire: Pittsburgh, Chlcago, Cleveland, Bir mingham (except spring wire) to manufac turers In carloads (add 92 for Worcester): Brlaht basic, bessemer wire 2 . Galyanlzed wire
Spring wire
Wire Produrts to the Trade:
Standard and cement-coated wire nails
polished and staples, 100-lb. keg
Annealed fence wire, 100 db .
Woven fence, $121 / 2$ gage and lighter, jer base column
Do., 11 gage and heavier
Barbed wire, 80-rod spool, col.
Twisted barbless wire, col
Single loop bale ties, col.
Fence posis, carloads, col.
$\mathbf{4} .55$
3.05
3.40

67
70
70
70
59
69
63.85

Pipe, Tubes

Welded pipe: Base price in carloads to con sumers about $\$ 200$ per net ton. Base discounts on steel pipe Pittsburgh and Lorain, O. Gary, Ind, 2 points less on lap weld, 1
point less on butt weld. Fittsburgh base only point less on butt weld. Pittsburgh base only on wrought iron pipe.

Rails, Supplies

Standard ralls, over 60-lb., f.o.b. mill, gross ton, $\$ 40.00$.
Light ralls (billet), Piltsburgh, Chicago, Birmingham, gross ton, 340.00 .
Relaying ralls, 35 ibs. and over, f.o.b. rallroad and basing polnts, 328 - $\$ 30$.
Supplies: Angle bars, 2.70 c ; tle plates, 2.15 c track spikes, 3.00 c ; track bolts, 4.75 c ; do. heat treated, 5.00 c

Fixed by OPA Schedule No. 46, Dec. 15

Tool Steels

Tool Steels: Pittsburgh, Bethlehem, Syracuse, base, cents per 1b.: Reg. carbon 14.00 c ; extri carbon 18.00c: special carbon 22.00 c ; oil-hardening 24.00 c ; high car.-chr. 48.00 c .
Hikh Sued Tool Steels:

Stainless Steels

Base, Cents per lb.-f.o.b. Pittsburgh

Type	Bars	Plates	eets	H. R.	C. R,
302.	24.00 c	27.00 c	34.00 c	50	p
303	26.00	29.00	36.00	27.00	33.00
304	25.00	29.00	36.00	23.50	30.00
308.	29.00	34.00	41.00	28.50	35.00
309.	36.00	40.00	47.00	37.00	47.00
310.	49.00	52.00	53.00	48.75	56.00
311.	49.00	52.00	53.00	48.75	56.00
312	36.00	40.00	49.00		
*316	40.00	44.00	48.00	10.00	48.00
-317.	50.00	54.00	58.00	50.00	58.00
+321	29.00	34.00	41.00	29.25	38.00
1347	33.00	38.00	45.00	33.00	42.00
431	19.00	22.00	29.00	17.50	22.50
STRAIGHT CHROMIUM STEEL					
40.3	21.50	24.50	29.50	21.25	27.00
- 410	18.50	21.50	26.50	17.00	22.00
416.	19.00	22.00	27.00	18.25	23.50
††420	24.00	28.50	33.50	23.75	36.50
430	19.00	22.00	29.00	17.50	22.50
$\ddagger \ddagger 430 \mathrm{~F}$	19.50	22.50	29.50	18.75	24.50
442.	22.50	25.50	32.50	24.00	32.00
446	27.50	30.50	36.50	35.00	52.00
501	8.00	12.00	15.75	12.00	17.00
502	9.00	13.00	16.75	13.00	18.00
STAINIESS CLAI :STEEL (20\%)					
304.		18.00	19.00		

With 2-3\% moly, tWith titanium. tWith carbon ttFree machining. ssincludes annealing and plekling. Hasing Point Prices are (1) those an-
nounced by U. S. Stecl Corp. Subsidiaries for frst quarter of 1941 or In effect April 16, 1941 at designated basing polnts or (2) those prices announced or customarily quoted by other producers at the same designated polnts. Base prices under (2) cannot exceed those under (1) except to the extent prevalling in third quarter of 1940.
Extras mean additions or deductions from base prices in effect April 16, 1941.
Dellyered prlces applying to Detroit. Eastern Michean, Gulf and Pacifle Coast points are
deemed basing points except in the cage of the latter two areas when water transportation is not available, in which case nearest baslng polnt price plus all-rall frelght may be charged.

Domestle Celling prices are the aggregate of (1) governing basing point price, (2) extras and (3) transportation charges to the point of delivery as customarily computed. Govrning basing faint is basing point nearest the onsumer providing the lowest delivered price. Emergency basing polnt is the basing polnt at or near the place of production or orlgin of shipment.
Dislocited tonnage: Producers shipping maerial outslde thelr usual marketing areas because of the war emergency may charge the basing point price nearest place of production plus actual cost of transportation to destinaon.
Scconds or off-grade Iron or steel producis cannot be sold at delivered prices exceeding
hose applying to material of prime quallty.
fegatert celling pricen may be either the agrency basing governing basing point or emerenc basimptation charges provided (3) exhe as seaboard quotations of the u are Steel Export Co. on April 16, 1941. Domestic or export extras may be used in case of Lease-Lend tonnage.

Bolts, Nuts

F.o.b. Pittsburgh, Cleveland, Birmingham,
Chicago. Discounts for carloads additional 5\%, full containers, add 10% Carriage and Machine
$x 6$ and smaller. . $6-\ln$. and shorter $631 / 4$ off
Do., in and
Do., ${ }^{9}$ and 5 x 6 -In. and shorter $631 / 2$ off
Do., to $1 \times 6-\ln$. and ahorter...., 61 off 114 and larger, all lengths
11/4 and larger, all lengths.
All dameters, over 6 -in. long
All damete bolts
Slove Bolts
packages with nuts separate T1-10 off; with nuts altached 71 off; bulk 80 off on 15,000 of 3 -inch and shorter, or 5000 over $3 \cdot \ln$.
Step bolts
Plow bolts
560 ff

Semitinlshed hes.	U.S.S.	S.A.E.
$1 / 2$-inch and less	62	64
9, -1-Inch	59	60
11/4-11/2-inch	57	58

Piling

Pittsburgh, Chicago, Buffalo . . . 2.40c
Rivets, Washers
F.o.b. Pittsburgh, Cleveland, Chicago,

Blrmingham
Wrought washers, plitsburgh, Chicago
3.75 c

Philadelphia, to jobbers and large nut,
bolt manufacturers l.c.l. $2.75-3.00$ orf
Metallurgical Coke
Price Per Net Ton

Coke By-Products

Spot, gal., frelght allowed east of Omaha
Pure and 90% benzol 15.00 c
Toluol, two degree
Solvent naphtha
Industrial xylol
Per lib. f.o.b. works
Phenol (car lots, returnable drums)
Do. less than car lots
12.50 c

Do. tank cars
Eastern Plants, per ib.
Naphthalene flakes, balls, bbls, to job-
bers 8.00 c
Sulphate of ammonia

Pig Iron

Prices (in gross tons) are maximums fixed by OPA Price Schedule No 10, effective June 10, 1941. Exceptions Indicated in footnotes. Allocation resulations from WPB Order M-17, expirling Dec. 31, 1942. Base prices bold face, dellvered llght face.

	No. 2 l'oundry	Hasle	Hessenur	Malleable
Hethlehem, Pa., base	\$25.00	S24.50	\$26.00	\$25.50
Newark, N. J.. del.	$26.6 \pm$	26.12	27.62	27.12
Brooklyn, N. Y., del.	27.65			28.15
Hirdsburo, Pu., del.	25.00	24.50	26.00	25.50
Birmingham, base	$\div 20.38$	$\dagger 19.00$		
Baltimore, del.	25.67	24.79		
Baston, del.	25.12			
Chicago, del.	\$24.21			
Cincinnatl, del.	24.06	22.60		
Cleveland, del.	24.12	23.24		
Newark, N. J., del	26.24			
$l^{2} h l l a d e l p h l a, ~ d e l . ~$	25.51	24,63		
St. Louls, del.	\$24.12	23.24		
Suffalo, base	24.00	23.00	25.00	24.50
Boston, del.	25.50	25.00	26.50	26.00
Rochester, del.	25.53		26.53	26.03
Syracuse, del.	26.08		27.08	26.58
Chicaso, base	24.00	23.50	24.50	24.00
Mllwaukee, del.	25.17	24.67	25.67	25.17
Muskegon, Jtch., (lel.	27.38	26.88	27.88	27.38
Cleveland, base	24.00	23.50	24.50	24.00
Akron, Canton, O., del.	25.39	24.89	25.89	25.39
Detrolt, base	24.00	23.50	24.50	24.00
Suglnaw, Mich., del.	26.45	25.85	26.95	26.45
Duluth, base	24.50		25.00	24.50
St. Paul, del.	26.76		27.26	26.76
Erle, Pa., base	24.00	23.50	25.00	24.50
Everett, Mass., base	25.00	24.50	26.00	25.50
Boston	25.50	25.00	26.50	26.00
Granite City, III., base	24.00	23.50	24.50	24.00
St. Louis, del.	24.50	24.00		24.50
Heumilton, O., base	24.00	23.50		24.00
Clncinnati, del.	24.44	24.61	.	25.11
Neville Island, Pa., base	24.00	23.50	24.50	24.00
§Pittsburgh, del., No. \& So. sldes	24.69	24.19	25.19	24.69
Provo, Ufath, base	22.00			
Sharpsille, Pa., base	24.00	23.50	24.50	24.00
Sparrows Iolnt, Md., base	e 25.00	24.50	...	
Balthmore, del.	26.05			
Steelton, la., base		24.50		25.50
Swedeland, Pr., base	25.00	24.50	26.00	25.50
Philadelphla, del.	. 25.89	25.39		26.36
Toledo, 0 ., base	24.00	23.50	24.50	24.00
Mansfleld, O., del.	25.94	25.44	25.44	25.94
Youngstuwn, O., base	24.00	23.50	24.50	24.00

- Basic sllicon grade ($1.75-2.25 \%$), and 50 c for each 0.25%. tFor phosphorous 0.70 and over deduct 38c. \ddagger Over 0.70 phos. $\$ F$ or McKees Rocks, Pa., add 55 to Nevlle Island base; Lawrenceville, Homestead, McKeesport, Ambridge, Monaca, Aliquippa, 84; Monessen, Monongahela City . 97 (water); Oakmont, Verona 1.11: Brackenrldge 1.24.

Hish Silicon, Silvery 6.00-6.50 per cent (base) $\$ 29.50$亚 $\begin{array}{rlrl}6.51-7.00 & \$ 30.50 & 9.01-9.50 & \$ 35.50 \\ 7.01-7.50 & 31.50 & 9.51-10.00 & 36.50 \\ \text { Iran \& Steel } C 0\end{array}$ $7.51-8.00$. 32.50 10.01-10.50. 37.50 cents a ton in excess of baslage polnt 8.01-8.50 33.50 10.51-11.00. 38.50 prices for No. 2 Foundry, Baslc, 8.51-9.00. 34.50 11.01-11.50. 39.50 Bessemer and Malleable.
F.o.b. Jackson county, O., per gross Export Prices: In case of exports ton, Buffalo base prices are $\$ 1.25$ hlaher. Prices subject to addltional charge of 50 cents a ton for each 0.50% manganese in excess of 1.00%.

Bessemer Ferrosllicon

Prices same as for high sillicon sll
very iron, plus $\$ 1$ per gross ton. (For higher silicon irons a differential over and above the price of base grades is charged as well as for the
and 6.$)$ and 6.

Charcoal Plg Iron
 ake Superlor Furn.
 $\$ 28.00$
 Semi-cold blast, high phos, 31.34
 t.o.b. furnace, Lyles, Tenn. . $\$ 28.50$ semi-cold blast, low phos.
 Gray Forso
 Neville Island, Pa.
 523.50
 alley, base 23.50

Brsing polnts: Birdstorn and Stecl-
on, Pa., and Buffalo, N. Y., Ses.
Switching Charges: Basing point prices are subject to an addltional charge for dellvery within the istricts.
Silicon Differeuthals: Basing point prices are sublect to an additional charge not to exceed 50 cents a ton base grade (1.75 in 2.25%).
Phosphorous Differential: Basing point prices are subject to a reducinn ó 38 cents a ton for phosphor. us content of 0.70% and over.
Anamanesu Differentinis: Basinz harge not on for each 0.50 \% manganese conent in excess of 1.0%.
Celling prices are the aggregale of (1) governing basing point (2) differentials (3) transportalion charges from governing basing poin: to polnt of delivery as customarlly computed. Governing basing point is the one resulting in the lowest
nly, the governing basing point gearest point of production may be used, plus differentlals and export ransportation charges

Refractories

Per 1000 f.o.b. Works, Net Prices Fire Clay Brick
Super Quallts
Pu.. Mo., Ky. $\$ 64.60$
First Quality
Pa., Ill., Md., Mo., Ky. 51.30
Alabama, Georgla 51.30

Mulleubla Hung Brlek
All boses $\$ 59.85$
Silica Briek
Pennsy'lvanla $\$ 51.30$
Joliet, E. Chicago
58.90
Birmingham, Ala. 51.30

Vire rut
Domestle dead-burned grains,
net ton f.o.b. Chewelah. 22.00 net ton, bags 26.00 Basle Hrick
Not ton, f.o.b. Ballimore, Plymouth Chrome brick. Chester, Pa. $\$ 54.00$
Chem. honded chrome 54:0n Chem, bonded magneslte ... Gi. 00

Fluorspar

Washed gravel, duts
pd.. lide. net ton mominal Vashed gravel, f.o.b. III.,
Ky., net ton, carloads, ali Ky.; net ton, carloads, all rall
Do. barge $\$ 25.00$
25.00
25.00

Ferroalloy Prices

20-25\%, C. 0.10 max.i In on lots per 10. contalned

Less-ton Ints
(Spot 5c higher)
erro-Carbon-Titanhimi, 15 30% Titanium, 6-8\% C $3-5 \% \mathrm{C}$ Carlots, contract, f.o.b. Niagara Falls. freight alof Mississippl and north of Baltimore and St. Louls
$\$ 142.50$ \$157.50
Ferrovanadlum, 35-40\%, contract per pound enniained
sinadium $\$ 2.70-\$ 2.80-\$ 2.90$ (Spot 10 C higher)
Vanadlum Pentoxide, Per lb. contained. contracts \$1.10 rconlum Alloy, $12-15 \%$, carInads, contract, bulk $\$ 102.50$ Packed

Less ton lots
107.50
108.00

Spot S5 a ton hicher
$35-40 \%$, contract. carloads bulk or package, per ib alloy or packaze, per lb. 14.00c Do., ton lots iots 15.00 c Spot is $1 / 4$-cent higher
Alsifer. Per lb., C.o.l. Ni-
anara Falls.
Contract Spot
$\begin{array}{llll}\text { Carlots } & \ldots . . . \begin{array}{l}7.50 \mathrm{c} \\ \text { Con lots }\end{array} & 8.00 \mathrm{c} \\ \text { Ton } & 8.00 \mathrm{c} & 8.50 \mathrm{c}\end{array}$
immal, Per lb. of alloy,
contracts. frelaht allowed
(approx. 20% 5i. 20% Mn.
200_{0} All

		Less
Carlots	Ton Lots	Ton Lots
10.50 c	11.00 c	11.50 c

WAREHOUSE STEEL PRICES

Base Prices in Cents Per Pound, Delivered Locally, Subject to Prevailing Differentials. As of April 16, 1941
As Kansas City, Mo., Chattanooga, Tenn., Tulsa, Okla., and Portland, Oreg., were not named in the order fixing ceiling prices they

	Soft Bars	Hot-rolled Strip Bands Hoops	Plates y/4-in. \& Over	Structural Shapes	Floor Plates	Hot Rolled	Sheets Cold Rolled	Galv. No. 24	Cold Rolled Strip	-Cold Carbon	rawn S.A.E. 2300	S.A.E. 3100
Boston	3.98	$4.06 \quad 5.06$	3.85	3.85	5.66	3.71	4.68	5.11	3.46	4.13	8.88	7.23
New York (Met.)	3.84	$3.96 \quad 3.96$	3.76	3.75	5.56	3.58	4.60	5.00	3.51	4.09	8.84	7.19
Philadelphia	3.85	$3.95 \quad 4.45$	3.55	3.55	5.25	3.55	4.05	4.65	3.31	4.06	8.56	7.16
Baltimore ..	3.85	$4.00 \quad 4.35$	3.70	3.70	5.25	3.50		5.05		4.04		
Noriolk, Va.	4.00	4.10	4.05	4.05	5.45	3.85		5.40		4.15		
Butfalo	3.35	$3.82 \quad 3.82$	3.62	3.40	5.25	3.25	4.30	4.75	3.52	3.75	8.40	6.75
Plttsburgh	3.35	$3.60 \quad 3.60$	3.40	3.40	5.00	3.35		4.65		3.65	8.40	6.75
Cleveland	3.25	$3.50 \quad 3.50$	3.40	3.58	5.18	3.35	4.05	4.62	3.20	3.75	8.40	6.75
Detroit	3.43	3.43 3.68	3.60	3.65	5.27	3.43	4.30	4.84	3.40	3.80	8.70	7.05
Omaha	4.10	4.20 4.20	4.15	4.15	5.75	3.85	5.32	5.50		4.42		
Cinclnnat	3.60	$3.67 \quad 3.67$	3.65	3.68	5.28	3.42	4.37	4.92	3.45	4.00	8.75	7.10
Chlcago	3.50	$3.60 \quad 3.60$	3.55	3.55	5.15	3.25	4.10	4.85	3.50	3.75	8.40	6.75
Twin Cities	3.75	$3.85 \quad 3.85$	3.80	3.80	5.40	3.50	4.35	5.00	3.83	4.34	9.09	7.44
Milwaukee	3.63	3.53 3.53	3.68	3.68	5.28	3.38	4.23	4.98	3.54	3.88	8.38	6.98
St. Louis	3.64	3.74	3.69	3.69	5.29	3.39	4.24	4.99	3.61	4.02	8.77	7.12
Indianapolis	3.60	$3.75 \quad 3.75$	3.70	3.70	5.30	3.45		5.01	3.97 12
Memphis	3.90	$4.10 \quad 4.10$	3.95	3.95	5.71	3.85		5.25		4.31		
Birmingham	3.50	$3.70 \quad 3.70$	3.55	3.55	5.93	3.45	...	4.75	...	4.43		
New Orleans.	4.00	$4.10 \quad 4.10$	3.80	3.80	5.75	3.85		5.25	5.00	4.80	...	\cdots
Houston, Tex.	3.75	$4.30 \quad 4.30$	4.05	4.05	5.50	4.00		5.25		6.90	.. .	
Seattle	4.35	4.35	4.35	4.35	6.10	4.35	6.35	5.60		5.75	
Los Angeles.	4.50	$4.95 \quad 6.80$	4.50	4.50	6.75	4.65	6.50	5.85		6.10	10.55	9.55
San rranclsco	4.10	$4.60 \quad 6.35$	4.25	4.25	5.95	4.25	6.40	6.00	\ldots	6.80	10.80	9.80

	$\xrightarrow{\text { S.A.E. Hot-rolled Bars (Unannealed) }-\longrightarrow ~}$				
	1035-	2300	3100	4100	6100
	1050	Serles	Series	Serles	Series
Boston	4.28	7.75	6.05	5.80	7.90
New York (Met.)	4.04	7.60	5.90	5.65	
Philadelphia	4.10	7.56	5.86	5.61	8.56
Baltimore	4.45				
Nortolk, Va.					
Buffalo	3.55	7.35	5.65	5.40	7.50
Pittsburgh	3.40	7.45	5.75	5.50	7.60
Cleveland	3,30	7.55	5.85	5.85	7.70
Detrolt	3.48	7.67	5.97	5.72	7.19
Cincinnatl	3.65	7.69	5.99	5.74	7.84
Chicago	3.70	7.35	5.65	5.40	7.50
Twin Cities	3.95	7.70	6.00	6.09	8.19
Milwaukee	3.83	7.33	5.88	5.63	7.73
St. Louls	3.84	7.72	6.02	5.77	7.87
Seattle	6.25		8.00	7.85	
Los Angeles	4.80	9.55	8.55	8.40	8.80
San Franclsco.	5.60	9.80	8.80	8.65	9.05

[^6]
ASE QOANTITIES

Solt Bars, Bands, Hoops, Plates, Shapes, Floor Plates, Hot Rolled Sheets and SAE 1035-1050 Bars: Base, 400-1999 pounds 300-1999 pounds in Los Angeles; 400-39,999 (hoops, 0-299) in San Franclsco; 300-4999 pounds in Portland: 300-9999 Seattle; $400-$ 14,999 pounds in Twin Cities; 400-3999 pounds in B'ham., Memphis

Cold Rolled Sheets: Base, $400-1499$ pounds in Chicago, CinInnati, Cleveland, Detrolt, New York, Omaha, Kansas City, St Louls; 450-3749 in Boston; 500-1499 in Buffalo; 1000-1999 in Philadelphia, Baltimare; 750-4999 in San Franclsco; 300-4999 in Portand, Seattle; any quantity in Twin Citles, New Orleans; 300-1999 Los Angeles.

Galvanlzed Sheets: Base, 150-1499 pounds, New York; 150 1499 in Cleveland, Pittsburgh, Baltimore, Noriolk; 150-1049 in Los Angeles; 300-4999 in Portland, Seattle; 450-3749 in Boston 500-1499 in Birmingham, Buffalo, Chicago, Cincinnati, Detrolt indianapolis, Milwaukee, Omaha, St. Louls, Tulsa; 3500 and over In Chattanooga; any quantity in Twin Cities; 750-1500 in Kansas city; 150 and over in Memphis; 25 to 49 bundles in Philadelphis 100-4999 in San Francisco

Cold Rolled Strip: No base quantity; extras apply on lots of all size

Cold Finished Bars: Base, 1500 pounds and over on carbon, except 0-299 in San Francisco, 500-999, Los Angeles, 1000 and over in portiand, Seattle; 1000 pounds and over on alloy. except -4999 in San Francisca

SAE Hot Rolled Alloy Bars: Base, 1000 pounds and over except 0-4999, San Franclsco; 0-1499, Portland, Seattle,

PRICES FOR

 Commissions: No commission is payable except by a consumer to a broker for services rendeced,
the commission not to exceed 50 cents per gross ton. No commission is payable unless: The broker
guarantees the quality and delivery of an agreed tonnage the scrap is purchased al a price no higher

 price IIsted in the above table for scrap at the basing point in which the shipping point is located,
minus the lowest establlshed switching charge for scrav within the basing point; and (2) for shipping

 by common carrier. When hauled by seller charges are based on carload rate for rall shipment, mini-
mum $\$ 1.00$ per ton. arimum Delvered Prices: Determined by adding established transportation charges to shipping
polnt price, not to exceed by more than $\$ 1$ the prices listed in the table for the nearest basing point.

 < Coledo.
co:
co
an
eng
0

avais avoritva

 Scrap
Rails

20.75
21.50

 rows Point, Middletown, $24.00 \quad 24.25 \quad 24.50$ $23.00 \quad 23.25$

$\begin{array}{lll}18.50 & 18.75 & 19.00\end{array}$ CAST IRON SCRAP OTHER THAN RAILROAD
(Shjpping point prices in gross tons) มัที่า 21.00
19.75 20.50 19.75
20.25
18.85
 Birmingham, San Francisco. Mo. th

 $\$ 20.00$
20.00

Nǐ
룬율 Group A includes the states of Montana, Idaho, Wyoming, Nevada, Utah, Arizona and New Mexico. includes the states of North Dakota, South Dakota, Nebraska, Colorado. Kansas, Oklahoma, Texas and Florida in groups A and B, plus Kansas City, Kans.-Mo. 'Open Hearth Grades refer to No. 1 heavy melting steel, No, 1 hydraulic compressed black sheet
' No. 1 bundles, dealers' No. 2 bundles and No, 1 busheling. scrap, No. 2 heavy melting steel, dealers' No. 1 bundles, dealers' No. 2 bundles and No. 1 busheling. iron borings. Add $\$ 3$ for chemical borings, $\$$ o when chemical borings used in manufacture of explosives.
A basing point includes the swithing district of the city named. The Pittsburgh basing point in-

Sheets, Strip

Sheet \& Strip Prices, Page 110
Sheet tonnage on mill books continues to increase, with few sellers attempting to quote deliveries under A-1-j. While bookings are not being accepted for such low priorities some mills are making delivery on A-6 to A-10 business booked long ago. This is expected to disappear soon.

Heavy concentration of new business taken by large producers is in A-1 rating. This sends A-2 and A-3 rated tonnage to smaller mills, thus crowding out any lower.

Sheet buyers have been forced to place orders with other suppliers than their usual sources as a re sult of priority schedules, thus creating many new customer relations.

Many directives have been issued to free orders held back by other. tonnages of equally high preference, booked earlier. Most of these directives are in the form of better rating for the delayed tonnage, as A-1.a continues to assure prompt movement. Deliveries for most part are on schedule, according to rating.

One difficulty not vet solved is joint use of sheet mills for plates. sheets and tinmill products. Often choice between a plate allocation and an A-1-a sheet directive is difficult to make.

Andrews Steel Co. and Newport Rolling Mill Co.. which had been down for alterations and repairs for more than a week, are resuming production on an increased scale.

Narrow hot and cold-rolled strip production is denendent on semifinisher steel supnlv. Little hotrolled is available below A-3 ratino and while cold rollers still are able to cover nriority material belnw that classification from hot-rolled inventory most will he forced to narrow operations within 30 davs to the sunolv of hot-rolled available. Cold-rolled strip producers' bookings are heavier than last month but still are below capacity, with ratings tending higher.

New business contains an umustually high nroportion of high carhon and alloys. which tends to retard nutput bv frequent changes in analvsis. Alloy strin is nractically allocated above $\mathrm{A} \cdot 1 \cdot \mathrm{j}$ rating.

Plates

Plate Prices, Page 111
Conditions have improved in re^{2}. spect to plate deliveriss, cutput of continuous strip mills easing pressure on regular plate mills. New units under construction will improve the situation further but time will be required.

It appears that shipbuildine plants will be furnished all the ship plates they need through the remainder of this year. Expansion of facilities for ship construction and plate production seem likelv to run an even race. Smaller ships are using almost exclusively the product of strip mills, thus relieving universal and sheared plate mills of large tonnage. Plates for
larger vessels and armor plate must await new sources as demand increases.

Iron and Steel Branch, War Production Board, has advised suppliers to make no more plate shipments, except for locomotive orders and fireboxes, to the New York Central shops at Beach Grove, Ind., and all shops of the Pennsylvania and Louisville \& Nashville railroads until further notice, as inventories are regarded as excessive. It is stated the two former have: inventory for seven months use: and the latter for 13 months.

This may be the forerunner of further action by WPB along this line, as returns under the new Form 299 covering consumer inventory are studied in Washington.

In some cases it is believed excess inventory may have been causod by inability to use stocks effective. ly because of shortage of other products and unbalancing of specifications of plate stocks for which the consumer may not be responslble. In a firm effort to check accumulation it may be necessary to redistribute some stocks now in consumers' hands.

Between 250,000 and 275,000 tons, mostly plates, required for ships, is now being placed with several of the smaller commercial yards against a new navy program.

PLATE CONTRACTS PLACED

375 tons, floor plates, navy varlous dellveries, divided, American Pressed Steel Co., Philadelphia, and Central Iron \& Steel Co., Harrisburg; 650 tons, marine

STIDP handle heary dies alone. Not necessary to stop other machines to get help.

SAVE PRODUCTION TIME

MORE production per day from your machines if a Shoplifter is handy to do the heavy job of moving dies from storage racks to the press. In these times when maximum production of machines is of vital importance, much time and labor can be saved if the operator can handle the heavy work of changing dies without calling for help from other operators.

The Shoplifter is built for this job. Dependable and safe with a rated capacity of 500 lbs . (heavier machines up to 5000 lbs. can be furnished). Entire machine built of structural steel. Electrically welded throughout. Platform lifts 57" above floor and lowers to within $8^{1 / 4 "}$ of floor. Overall height $72^{\prime \prime}$. Size of platform 24 "x24" steel plate.

Crank, up and down, hoist unit.
 ECONOMY ENGINEARING CO.
 2659 W. Van Buren St., Chicago
 Price \$14750
 F.O.B. Delivered

on priority of A-10 or better.
boller plate, various dellverles, awarded Otis Steel Co., Cleveland, and Central Iron \& Steel Co., Harrisburg, Pa.

PLATE CONTRACTS PENDING
100 tons, 30016 -foot, 8 -Inch high carbon -Inch and one-quarter inch plate steel pipe, 20-inch, shore discharge plpe, U. S. Engineer, Phlladelphia; bids Malr. 30.

Bars

Mar Prices, Xage 110
Under broadened demand and with heavier specifications against old orders bars approach plates in intensity of demand. Mill back. logs are expanding with A-1-a and A-1-b deliveries up to 12 weeks and little available under 14 weeks on

A-1-c rating. Shipments on products of 13 and 14 -inch bar mills are tight for other than shell work and allocations usually are made for this material.

Alloy and cold-finished bars are most active and wide-scale conversion to war work is stimulating demand for all finishes. Forging shops are increasing releases as operations continue at capacity and tool steels are being consumed heavily.

Pipe

1'ipe l'rices, lage 111
Cast iron pipe buying is limited to higher priorities, with war plant

TIMES HAVE CHANGED. 'Control of the Air' is as essential in a war time economy as it is in the militaristic sense. It can no longer be ignored in any plant, regardless of size.

Dust spells inefficiency and waste-and these conditions cannot be condoned today when every shackle that keeps production in check $m u s t$ be loosed.

When the time comes "to do something" about the dust condition in your plant be sure to investigate "Dustubes"they have the high efficiency necessary to do your job better; and they are by far the simplest cloth type collector to install, operate, and maintain. Write for literature today.

expansions and export demand taking large tonnages. Delivery is an important factor in placing tonnage and some orders on A-1 rating are delivered in three weeks. Shipping space limitations tend to slow export movement. Normal municipal demand is being held down and substitution of nonmetal pipe is being urged for some new projects. This is opening a fleld for competitive material which may be felt later by cost pipe foundries.

Southern pipe foundries are operating six days a week but not at full capacity, due to scarcity of pig iron. Pipe plants are being converted to strictly war production in that district.

CAST PIPE PLACED

100 tons, housing project at Poulsbo. Wash., to Paclfe States Cast Iron Plpe Co., Provo, Utah.

STEEL PIPE PLACED

2100 tons, mainly 48 -inch midwestern ordnance works, to Bethlehem Steel Co., through Du Pont interests.

STEEL PIPE PENDING

127 tons, copper-nickel alloy condenser tubes, navy, Norfolk, Va. and Mare Island, Calif., blds in.

Wire

Wire Prices, Pago 111
Ratio of high-rated orders for finished wire products on books of mills producing their own wire rods is seriously threatening supplies of semifinished steel for nonintegrated mills, although the latter also have heavy orders for top priority requirements. Normal supply for the latter is not available either in carbon or alloy rods.

Aggregate volume being offered mills is heavy, but some is not being accepted, new bookings constantly increasing the proportion of higher ratings. While semifinished steel presents a problem, heat treating is another matter of concern in specialty departments, such equipment being generally operated seven days per week. Most wiremakers have materially in. creased heat treating equipment capacity, though some of this will not be in full operation for several weeks.

Heavy lend-lease demand is also curtailing wire rod supplies for domestic finishing. Nails by the thousands of kegs have been bought by the government on A.1-a rating and jobber shipments are much reduced. Barbed wire ex. ports are cutting into domestic supply.

Rails, Cars

Track Material Prices, Page 111
Freigh car production, already behind schedule, may be reduced further. Some car shops recently have been allocated shapes and bars to adjust unbalanced steel supply but this will not enable full production. Commercial car shops in the first two months this year completed 13,974 cars, not quite half their capacity of 14,000 per month. Railroad shops in the two months produced about 3500 cars,
which figure probably includes some rebuilt units.

For a number of months plates were in short supply but recently plates from continuous strip mills have been supplied in better volume but shapes, bars and sheets now are being received in much smaller tonnage than needed. While supplyof wheels and axles is increasingly tight this has not inter fered materially.

Orders placed so far this year are slightly behind output of commercial and railroad shops. Some inquiries are understood to be held back by inability to obtain definite promise of delivery. With better conditions in shops a large volume probably would be placed within a short time.

I.OCOMOTIVES IUACEB

Celaware \& Hudson, firteen 4-8-4 steam locomotives, io American Locomotive Co., New York.
Denver \& Rio Grande Western, six $5400-$ horsepower diesel-electric sreight locomotives, to Electro Motive Cord., LaGrange, Ill.
Navy, four 1000-horsepower 115-ton ditesel electric locomotives, dellvertes io Hingham, Mass., White Plains, Ma., Burns Clty, Ind., and Thorne, Nev., to Flectro Motive Corp., LaGrange, IIl.
Rlchmond, Frederleksbure \& potomac, ten 2-8-4 steam locomotives, to I.Ima Locomotive Works, Lima, ().
Southern Pacific, 70 locomotives, includIng 40 steam engines, 30 to Baldwin Locomotlve Works, Eddystone, Pa., 10 to Lima Locomotive Works, Lima, O., and 30 diesel-electric switeh engines, to American Locomotive Co., New York.

LOCOMOTIVES PENIIN:

War Department, Quartermaster Corps, nine to twelve 0-6-0 type switch engines, reported contemplated.

CAR ORDERS PLACEI)

Nutional Rallroads of Mexico, 200 tank cars, to American Car \& Foundry Co.. New York.
Union Pacille, 1000 fifty-ton gondolas io Pullman-Standard Car Mrg. Co., Chicago.

GAR ORDERS PENDING

Baldwin Locomotive Works, firteen 50ton drop-end gondolas; blds asked.
Bessemer \& Lake Frie, 800 9)-ton hoppers.
Duluth, Missabe \& Iron Range, 2000 sev-enty-live-ton ore cars.
Navy, 28 forty-ton flats and 15 forty-ton box; bids in.
Navy, flve armored deck cars, 275,001) pounds capacity, Dahlgren, Va., Hatf-ner-Thrall Car Co., Chicago, low, also on two caboose cars; American Car \& Foundry Co. low on one passenger and baggage car, and Edwards Cu., New York, low on one motoraller.
Texas \& Pacille, 500 ufty-ton box.

Bolts, Nuts, Rivets

Holt, Nut, Hivet Prices, lage 111
The first important allocation in the bolt and nut industry for some time is scheduled to be made shortly and will involve approximately 15,000 tons of bolts, nuts, washers, slit rings and rods for army engineers. It is planned to have shipments start April 1 and run through to June 30 , with the material to be used in the assembly of standard timber roof trusses and building frames. Bolt and nut producers are expected to advise the

WPB by March 26 as to what they believe they are in a position to handle.

Structural Shapes

Structural Shape Prices, Page 111
Most mills producing structural shapes are unable to accept any. thing with priority under A-1.j and the secondary market has heavy demand for A.1-a tonnage. Some fabricators are seeking abandoned plants which can be bought, dis. mantled and the structural steel used instead of new. Some plant expansions are being held up because of inability to obtain structural material.

Railroad car shops find their supply of special carbuilding shapes much reduced because of inability to obtain delivery under the A- \because rating given them.

SHAPE CONTRACTS PLACED
5830 tons, extension, Granite City Steel Co... Granite City, Ill., to Stupp Bros. Bridge \& Iron Co., St. Louis county, Missouri.
3500 tons, shipyards cranes on Pacifle Coast; to Pacillc Car \& Foundry Co., Seattle.
:2000 tons, expansion, propeller division. Curtiss-Wright Corp., to Harris Structural Steel Co. Inc., New York; John W. Ryan Construction Co., New York, contractor; blds March 13.
2000 tons, Commercial Solvents Corp.

Gor Action thats ACCURATP

When action is demanded for transmitting power, here's accuracy to better than one-thousandth of an inch . . . precision is one feature of all Horsburgh \& Scott Worms and Worm Gears. There are seven outstanding features that make Horsburgh \& Scott Worms and Worm Gears the finest obtainable . . . it will pay you to learn about these advantages.

Send note on Company Letferhead for 488 -Page Catalog 41

THEHORSBURCH \& SCOTI CO.

GEARS AND SPEPD REDUCERS
5112 hamiliton avenue - Cheveland, ohio, u. S. a.

Sterlingtun, La., to Stacey Bros. Gas Construction Co., Cincinnati.
1700 tons, manufacturing plant, Pull-man-Standard Car Mrg. Co., Chlcago, to Wendnagel \& Co., Chicago; Kaiser Ducett Co., Chicago, contractor.
1050 tons, hangar, General Motors Corp. Linden, N. J., to Amertcan Bridge, Co., Pittsburgh.
1000 tons, open-hearth building, sherfeld Steel Co., Houston. Tex., to Stupp Bros. Bridge \& Iron Co., St. Louls counly, Missouri.
600 tons, plant addition, Buffalo Machine \& Foundry Co., Buffalo, to Ernst lron Works, Buffalo.
300 tons, powerhouse addition, eastern navy yard, to Morris Wheeler \& Co Philadelphia.
280 tons, industrial plant bulldings, Norwood, Mass., to Whitenead \& Kales

Co., Detrolt, Mich.: M. Spinelli \& Sons Inc., Boston, coniractor; reinforcing bars to Morrison-Stevens Co., Boston. 233 tons, Peavey Falls Dam, Sagola Mich. for Wisconsin-Michigan Power Co., to Fox Rlver Boller Works, Appleton, Wis.
00 tons, various western derense projects, to Standard Steel Fabricating Co., Seattle.
175 lons, river crossing towers, Bonneville Dam, to Lehigh Structural Steel Co., Allentown, Pa.
100 tons, municipal housing project., Loulsville, Ky., to Sneed Architectural Iron Works, Loulsville; George H. Rommel Co., Louisville, contractor.
Unstated tonnage, Army hangar, control tower and boller house, shapes to Guibert Steel Co., Pittsburgh; bars to Dletrich Bros. Inc., Baltimore; (i.

Investigate the Wide Possibilitices

(2)

THE THOMAS STEEL CO., WARREN, OHIO SPEGIALIZED PRODUGERS OF COLD ROLLED STRIP STEEL

Electro coated and bright uncoated cold rolled Thomastrip offer wide possibilities for your Victory products. Thomas has had broad experience in meeting a wide range of special requirements, and in consistently duplicating them. Hence, difficult emergency specifications now receive experienced attention. Send sketches, parts, or describe by letter your "all out" products.

Louisville, $K y .$, to American Bullders Supply Co., Loulsville; George H. Rommel Co., Loulsville, contractor
440 tons, building, Edward Katzinger Co., Chicago, to Joseph T. Ryerson \& Son Inc., Chicago; B. W. Handler Construction Co., Chicago, contractor.
260 tons, sewage treatment plant, army cantonment, to Bethlehem Steel Co., Bethlehem, Pa.; bids March 7.
160 tons, plant, Yellow Coach \& Mrs. (division, General Motors Corp., Ponliac, Mich., to Great Lakes Steel Corp., Detrolt, through Taylor \& Gaskin, Detroit.
128 tons, health school, University of Michigan, Ann Arbor, Mich., to Great Lakes Steel Corp., Detroit, through Mcrae Steel Co.
120 tons, reservolr, army cantonment, to Ceco Steel Products Corp., Milwaukee; bids March 7

120 tons, Parker Rustproof Co., Marengo, Ill., to Republic Steel Corp., Cleveland, through Truscon Steel Co., Youngstown, O., through R. E. Dalley, contractor.
104 tons, state highway project, Willow Run, Mich., to Great Lakes Steel Corp., Detroit, through Ceco Steel Products Co., Detroit; F. J. Vanderveen, contractor.
100 tons, expansion, Victor Adding Machine Co., Chtcago, to Joseph T. IRyerson \& Son Inc., Chicago; Henry Eriesson Co., Chicago, contractor.

IEEINFORCNG STEEL PENDING

500 tons, plant addition, Buffalo Machine \& Foundry Co., Bufralo.
225 tons, grading, DA WIR-8, bridge 11, War Department building-road network, Arlington, Va.; blds March 27. Federal Works Agency, Dublic Roads Administration, Washington.
210 tons, bridge No. 11, Da WR-8, War Department road network, Arlington, Va.; bids March 30, Federal Works Agency, Public Roads Administration, Washington.
135 tons, paving, DA WR-8, War Department bullding-road network, Arlington, Va.; blds Murch 20 , Federal Works Agency, Publle Roads Administration, Washington.
105 tons, bridge No. 18, War Department bullding-road network, Arlington, Va.: bids March 23, Federal Works Agency, Public Roads Administration, Washington.

Pig Iron

Pig Iron Prices, Page 11:
Tendency toward higher priorities on pig iron orders continues and less iron is being shipped for other than war purposes. In general, shipments under B priorities have practically disappeared. Each month requests for iron show increased participation in war work. In machine tool manufacturing centers demand is heavy and iron is being supplied in sufficient tonnage to support tool production as an essential.

Shipments to New England melt-

CONORETE BARS COMPARED

Includes awards of 100 tons or more.
ers next month will be somewhat broader from outside sources, although less than might have been expected with the Everett furnace down for relining. A reserve built up in anticipation of this idle period has cushioned the situation. Foundries in that area are being asked to revise specifications where possible, to ease demand for malleable. Basic seems tighter that foundry grades.

Scrap

Scrab Prices, I'ase 114
Reclaiming scrap from automobile wrecking yards, farms, industrial plants and homes is gaining
momentum and aggregate tonnage shows an increase, although not yet sufficient to meet needs. Better weather is aiding collection and preparation. On the other hand, advancing season will tend to reduce flow from farms as seasonal work will prevent farmers from devoting time to scrap collection.

Material from these sources is nonrecurrent and once it is cleared there will be little further accumulation. This is especially true of wrecking of automobiles as the present situation will tend to keep cars operating as long as possible in absence of new supply.

On refusal of Interstate Com merce Commission to delay appli-

Here's the controller that can take it . . . that gives you longer operating hours . . . smoother performance lower maintenance . . . greater safety.

Operation is mechanical and cam actuated. Makes and breaks contacts clean as a whistle. No injurious arcing - no time out for repairs. Provides 3 running speeds either forward or reverse in Mercury Lift Trucks, 4 speeds in Mercury Fork Trucks.

And it's safe-Control handle must be returned to neutral before starting. Travel speed is electrically interlocked with brake pedal. A magnetic contactor is used to open main power circuit when the operator leaves his seat.

For the complete story on Mercury Snap Action Cam Operated Controller and the full line of Mercury Material Handling Equipment write for Bulletin 201-5

Mercury Pioneered and Perfected These Lift Truck Improvements:
The Hydraufic Lift
Snap Action Cam Operated
Sontroller
Single Unit Double Reduction
Drive Axle
Special Treit Frame
MANUFACTURING CO. 4140 S. Halsted St., Chicago, III.
cation of the 6 per cent freight rate increase on scrap OPA has issued an amendment to the price schedule which allows the added freight charge to be billed to the consumer. This is done to avoid downward adjustment of prices by shippers, which in the judgment of the administrator, would tend to impede free flow of scrap into industrial production.
In general scrap supply seems to have reached a level only sufficient to support current rate of consumption but not enough to allow idle open hearths to be returned to service. In many areas mills report they are receiving just enough to continue from week to
week, without accumulating any reserve for contingencies. Some allocations are being applied to aid consumers where supply is inadequate.

Pacific Coast

Seattle-Major awards by Bonneville Power Administration for generating and other equipment featured the week. General Electric Co. has the contract at $\$ 1,891,590$ to furnish transformers for Covington, Ampere and Mead substations, and a $\$ 877,415$ award for supplying circuit breakers to Ampere. Allis-Chalmers Mfg. Co., Milwau-
kee, is low at $\$ 866,535$ for furnishing synchronous condensers to the same agency.

Large contracts have been placed by United States engineers for cantonment construction in an unstated western area, the major award to a combination of Lovering Construction Co., St. Paul, Halverson Construction Co., Billings, and John Sletten, Great Falls, Mont. Another contract went to H.S. Wright, Seattle, L. H. Hoffman and W. C. Smith Inc., Portland, figures not released, while Strong \& MacDonald Inc., Tacoma, and Moore \& Roberts, San Francisco, were low on other units.

While engineers of the Washing. ton Toll Bridge Authority are working on plans for an enlarged and altered design to replace the Narrows bridge wrecked in a gale in 1940, it is announced that construction of a new structure will be postponed for the duration, due to financing difficulties and material priorities.
Rolling mills and fabricating shops are booked full, some plants reporting backlogs to the end of 1942. Additional tonnages are being placed by defense contractors under blanket agreements. Pacific Car \& Foundry Co. has 3500 tons for an unstated number of shipyard cranes. Henry Georg, Spokane, has the general contract for an army hangar involving 2200 tons or 4500 tons of shapes, depending on final decision. Alaska Road Commission will receive bids at Seattle, March 25, for 14 stee] bridges in Alaska calling for 1240 tons. On the same date Bonneville will open tenders for structures at nine substations. orthern Pacific railroad will rebuild and erect several new steel bridges in Washington state, eight crossings involved. United States engineer received no offers for construction of two steel bridges at Walla Walla, Wash.

Canada

Toronto, Ont.--Despite the fact that all other steel producers in Canada now have raised their prices $\$ 5$ per ton, the Steel Co. of Canada Ltd. continues at the old price. However, all producers are accepting orders only for future delivery at prices prevailing at time of shipment. Shipments going forward now from the company are $\$ 5$ per ton under competitors.

Toronto Shipbuilding Co., which has been held up by lack of steel for its shipbuilding operations, has obtained larger deliveries in the past few days and is increasing activity. Further supplies of plates and standard shapes have been shipped and additional quantities are expected daily. Improvement in plate deliveries largely is from Canadian mills. It is reported that plates from the United States are still slow and are affecting shipbuilding operations in a number of plants. In addition to shipbuilding a large part of Canada's output of plates is being diverted to plants
engaged in war tank construction, in an effort to increase deliveries of these machines to battle fronts.

Under pressure of increasing demand on war account, bar deliveries are being extended farther. Local mills representatives state that on new bar orders delivery cannot be promised in less than nine months, and only small supplies are available through warehouses. Most stocks have been frozen and can be used only by approval of the Steel Controller.
Merchant pig iron demand has been more persistent, with melters making special appeals to the Steel Controller for supplies to enable them to keep plants on schedule operation. Foundry iron sales rose to about 6000 tons, while malleable was around 3000 tons. Basic, going to electric furnace operators, is moving at around 1500 tons per week.
Scrap collections continue to improve under better weather conditions. Most incoming scrap is in steel grades. Demand for steel grades is expanding steadily and when surplus stocks are cleaned out under the proposed nation-wide collection program, there will be little chance of meeting all Canadian demands from domestic supply. Minor betterment was reported in cast scrap offerings during the week, but supply continues far short of requirements.

Tin Plate

Tin Plate Prices, Page 111

Tin plate production is decreasing, with curtailments scheduled at almost all plants. The national rate is estimated at 80 per cent, compared with a record 85 per cent the preceding week, with individual rates varying considerably, depending on pig tin supply.

Lower production is expected but the rate may be held an artificial level until the packing season by releasing tin scheduled for later use. This action would be balanced by abnormally low production late in the year. Supply of semifinished steel may be the governing factor in determining where reduction may best be made, as it is more feasible to supply steel at some points than others.

Semifinished Steel

Scmifinished Prices, Page 110
Demand for semifinished steel for the ordnance program is taxing facilities of integrated companies. Rail mills have heavy allocations of shell rounds, interfering with domestic rail programs. Export rails under lend-lease take precedence of domestic rails. Some short domestic spur lines and sidings for war plants have been given direc. tives over shell rounds recently.

Nonintegrated bar, sheet, pipe and wire mills find lengthening of deliveries on their semifinished supplies and large lots have been canceled where ratings were too low to give hope of delivery. Plans for semifinished steel allocations have not been worked out and earlier
rating plans have been deferred as promising no relief.

Coke Oven By-Products

Coice 13y-Froduct I'rices, I'age 111
As wal requirements increase, civilian requirements of coke oven by-products are correspondingly curtailed, supplies in some instances having practically halted. From coking operations, production has probably reached or is nearing a peak, with several additional toluol plants to be built. Toluol output is being directly allocated for munitions. Benzol sales are heavier, while industrial demand for phenol and naphthalene is heavy. Drop in requirements for the lacquer-
automobile trade is more than made up in other directions.

Producers and sales agents of benzol, toluol, xylol and solvent naphtha obtained from by-product coke ovens have been asked by OPA to continue first quarter prices through second quarter.

Prices prevailing in first quarter were established following a similar request by OPA last Decembei:

Ferroalloys

Ferroalloy Prices, lage 112

When ferroalloy prices werc ve. affirmed recently for second quarter spiegeleisen prices were held up, along with ferromanganese, the latter usually affecting spiegeleisen.

The delay is to await action by OPs on requests for higher ferromanganese price, which is expected during this month. Meanwhile spiegeleisen is steady at $\$ 36$, Palmerton, Pa., for 19-21 per cent.

First Ore Carriers

Leave Lower Lake Ports

Vanguard of the iron ore and coal fleet steamed out of the lower lake ports and headed for the upper lakes last week, opening the 1942 shipping season 12 days earlier than in 1941, and the carliest in history.

First vessels moving into the lake were fourteen cariers of the

Cleveland-Cliffs Iron Co.'s fleet of 23. Last year the same fleet gained about ten days on other fleets by dispatching about a dozen vessels from various lower lakes winter ports. First ore to arrive last year came in April 9 on a Cleveland-Cliffs vessel.
The Coast Guard's Cleveland dis trict headquarters reported progress being made at the Soo by the carferry icebreaker and four tugs. One of these was reported in ice 20 miles west of Old Mackinac Point in the Straits of Mackinac, and another downbound was mak. ing good progress in the lower St. Mary's river.

Assignment of fleet officers to vessels and the final meetings for
instructions have been concluded by most of the fleets in Cleveland.
In the Michigan-Wisconsin and Mesabi ore mining regions, mine operators have been making every effort to be ready for the early opening.
OPA announced last week a price ceiling on iron ore will be established soon, based on $\$ 4.45$ a ton for Mesabi nonbessemer, delivered at lower lake ports, and at customarily related prices for other grades. The proposed maximums are the same as those now quoted by Steel.

Iron Ore

Iron Ore Prices, Pare 113
February consumption of Lake Superior iron ore totaled 6,403,362 gross tons, compared with $7,158,423$ tons in January and 5,673,166 tons in February, 1940. Ore on hand at furnaces and Lake Erie docks March 1 totaled $27,525,822$ tons, compared with 33.919 .063 tons a month earlier and $24,195,165$ tons a year ago.

Furnaces in blast March 1 numbered 178, of which 171 were in the United States and seven in Canada, the same as on Feb. 1. A year ago 162 stacks were in blast in the United States and two in Canada.

Steel in Europe

Fioreign Steel Prices, Page 113
London- (By Cable)-There is little change in the general trend of the steel and iron market in Great Britain, the greater part of output going to war purboses. Emphasis continues on heavy plates and spe. cial steels. Terne plate for mantifacturing oil containers is in strong demand. Close control of steel has placed limits on the number of steel specifications.

Nonferrous Metals

New York-WPB is extending its restrictions on use of metals for nonessential products to the Army and Navy. Copper flashings for Army cantonments are banned, while articles on list A in the tin conservation order M-43-a must not have any tin used in their manufacture after April 1, either for governmental agencies or for private contract

Copper-Both WPB and OPA are trying to increase still further the production of refined copper. This may result in a cut in output of copper alloy ingots so that more scrap may be diverted into the refineries. WPB may order Maritime Commission to give Chilean and Peruvian copper a higher priority for shipping space.
Lead - Tin conservation orders are boosting the demand for lead since higher lead content coatings and alloys will be used in place of the tin materials. Supplies continue ti hold at about 75,000 tons monthly.
Zinc-American Zinc Institute estimates 1942 output will consist of 44.5 per cent of high grade and 55.5 per cent of all other grades

Let Hackney engineers help you develop new shapes and shells or improve on those now being used. Many times production has been speeded up, and the cost of an individual part reduced. Frequently overall weight is lowered-at other times strength is increased-while often both results are obtained. Write loday for full details.

1. Plain Open End Shell $24^{\prime \prime}$ diameter, $46^{3} /{ }^{\prime \prime}$ long. 2. Flanged Shell $14^{\prime \prime}$ diameter, $16^{\prime \prime}$ high. 3. Special Tapered Shell 22" diameter, $15^{\prime \prime}$ high. 4. Heat Exchanger 29' diameter, $46^{\prime \prime}$ long. 5. Diffuser Tube $4^{\prime \prime}$ diameter, $24^{\prime \prime}$ high.

- In hundreds of plants-in many indus tries-manufacturers are availing them selves of Hackney facilities. By using Hackney deep drawn shells, they have been able to increase the advantages of their product.

Pressed Steel Tank Company are specialists in the manufacture of seamless deep drawn shells and shapes of various sizes. Each shell is drawn from a solid circular sheet or plate of open hearth steel by means of high pressure hydraulic presses especially designed for this work. Hackney's Special Cold Drawing Process results in smooth finish, uniform thickness and temper. It assures elimination of aminations in the finished product.

PRESSED STEEL TANK COMPANY
208 S. LaSalle St., Room 1511, Chicago = 1387 Vanderbilt Concourse Bldg., New York 688 Roosevelt Bldg., Los Angeles

- 1461 So. 66th St., Milwauke

AIR-HYDRAULIC ACCUMULATOR

SCHLOEMANN Air-Hydraulic Accumulators are completely automatic. Fundamentally they consist of a Water Container, an Air Container and Electrically Controlled Regulating Apparatus.

The control of the water at the highest and lowest levels is by means of switches operated by floats contained in chambers of a communicating tube of the water bottle. The switch in the upper chamber controls the operation of the pump while that in the lower chamber controls the check valve which shuts off the accumulator at low water level.

```
- HYDRAULIC PRESSES O EXTRUSION PRESSES
- HIGH PRESSURE PUMPS-DOUBLE ACTING DUPLEX TYPE
- ENGINEERING OF COMPLETE HYDRAULIC SYSTEMS
```


British Report

(Concluded from Page 34)

for the shipbuilding industry and rolling mills are likely to be working to capacity for many months.

The same cannot be said in regard to heavy structural material for construction. Only a limited amount of this steel is being called for under present circumstances. Developments in the far East have put a greater strain on the British Navy and shipping space in the mercantile marine must be curtailed. It is clear that imports of steel will be drastically reduced if not stopped altogether, but fortunately users of foreign steel have built up supplies which will stand them in good stead during the coming months.
The position as far as semifinished materials are concerned is comfortable and likely to remain so for some
time. Moreover, it may be that under the government's concentration schemes some of the rerolling mills will have to close down or change over to other work.

An order recently issued restricts the manufacture of galvanized sheets. In future galvanized sheets will be produced in small quantities and only for special government orders. Means will have to be found for coating sheets to prevent deterioration, other than the use of spelter. Existing orders for sheets, however, will be carried out.

Tin plate makers have been informed by the Ministry of Supply that more supervision will have to be exercised in all departments in order to reduce the heavy percentage of wasters arising. Moreover, all wasters that may arise, whatever the percentage, must now be taken against prime contracts unless

Here's the WIRE SITUATION

* Deliveries are controlled by government. Page mills are at capacity. As a user of wire, there are things you might do.
SHAPED WIRE. Use a standard shape. Avoid special runs. A wide variety of shapes is available: oval, hex, octagonal, square, channel, keystone, etc.; diameters to $3 / /^{\prime \prime \prime}$, end section areas to .250 sq. inches. WELDING ELECTRODES. Conserve. Check with Page Distributor. Be sure your rods
are correct in analysis and diameter. Insist that your men do not bend electrodes and that they use each one down to the holder.
GENERAL WIRE. Change in analysis, shape or diameter might improve your position. Check waste. The situation in such products as Spring Wire, Bond Wire, Telephone Wire, etc. is not subject to early improvement.

If Page experience can help work out changes, our cooperation is yours.

PAGE STEEL AND WIRE DIVISION - monessen • pennsyivania
In Business for Your Safery
PHCH for Wire
AMERICAN CHAIN \& CABLE COMPANY, THE
ERIDEEPORT CONNECTICUT
the consumer has a special permit from the Ministry of Supply giving exemption from this condition. Discussions have been proceeding between the Ministry of Supply and consumers on the subject of the use of uncoated plates instead of tin plate, and it is stated that in future permits will only be granted for so-called "unassorted tin plate base (uncoated)" for many purposes where tin plate has been used to the present and that the basis price of this class of material will be 4 s less than the home trade quotation. Another suggestion by which tin consumption in the tin plate industry can be reduced is the use of terne plate, wherever possible in place of tin plate and there seems little doubt that terne plate production will be increased. Terne plate, is not, of course, suitable as substitutes for tin plate in more than a certain number of directions, but wherever possible they will be used to conserve Britain's tin supplies. All this has been brought about by the Japanese invasion of Malaya and the Dutch East Indies, thus endangering Britain's tin supplies.

Look For Labor Drain

Another side to the question is that the possibility of a further drain on skilled labor has to be faced, more especially among mill men. However, developments in this direction will no doubt depend upon official requirements of tin plate. Meanwhile, deliveries of oil plates are being maintained on quite a high level and makers have not very much room left on their order books for the next two or three months.

The scrap position is engaging the attention of the government. The Ministry of Works can call for returns of disused machinery and scrap metal at manufacturers' premises of all kinds, including engineering, shipbuilding and mining. There is no intention to take valuable machinery which must be preserved for use after the war, and that of firms closed by concentration schemes will not be requisitioned.

A recent appeal by a member of parliament to the public to assist the Ministry of Works to locate iron and steel scrap for munitions has brought a remarkable response. New drives are being instituted and there is no doubt that the steel industry will need a very big tonnage during the coming months. Indeed some merchants anticipate a tightening up in supply and demand in a very short time unless something can be done in the meantime. Labor difficulties in the collection and sorting of scrap tend to aggravate the problem.

For some years, rebates have been obtainable by purchasers of vari-
ous iron and steel products under certain conditions. These rebates, which in normal times were an important factor in encouraging the use of British material, ranged from 5 s on pig iron to 15 s on specified finished steel products, including certain rerolled products. It has hitherto been the practice to charge the full invoice price, users making application for the rebate on their purchases after three months.

Since there is no longer a choice between British and continental material and the general situation in other respects has rendered the rebate scheme largely if not wholly inoperative, it has now been arranged for the rebate to be deducted from the invoice price, and the net price will be charged, the object being to avoid an unnecessary waste of time and labor and to reduce paper consumption. However, the rebate scheme will remain in being, the change in procedure being purely a wartime measure.

Trend of wages in British industry is still upward and recent figures issued by the Ministry of Labor show the extent to which they have risen since October, 1938. As only one example of this, men in the metal, engineering and shipbuilding industries with an average earning of 75 s in October, 1936, are now being paid 112s.

Scrap Committee Named

To Function With OPA

A regional advisory committee on scrap under OPA price regulations was formed last week at a meeting in Philadelphia of iron and steel scrap dealers from New York City, New Jersey, Delaware, eastern and central Pennsylvania, Maryland and eastern Virginia.

Those appointed were Frank Con. tey, Frank Contey Inc., Jersey City, N. J.; Israel Citron, Citron-Byer Co., Trenton, N. J.; Barney H. Rubine, Hudson Iron \& Metal Co., Bayonne, N. J.; Herman Moskowitz, Schiavone-Bonomo Corp., Jersey City, N. J.; Frank Millner, Frank Millner Co., Trenton, N. J.; Joel Claster, Luria Bros. \& Co. Ino., Philadelphia; Abe Pollock, Mayer-Pollock, Pottstown, Pa.; Harry Kirchmana, Allegheny Iron \& Metal Co., Philadelphia.

Others named included Tomas Bentivoglio, Camden Iron \& Metal Co., Camden, N. J.; Gus Pollock, Bridgeton, N. J.; Jacob S. Shapiro, United Iron \& Metal Co., Baltimore; Marvin S. Plant, Klaff \& Co., Baltimore; Hyman Hyatt, Iron Metal Co., Arlington, Va.; Hyman H. Block, N. Block \& Co., Norfolk, Va.; Ban Luria, Luria Iron \& Steel Co., York, Pa.; George Nutman. Newton Iron \& Steel Corp., Brool:lyn, N. Y.; A. A. Gerson, Harlent

Metal Corp., New York; Marvin Lipman, Aero Scrap Iron Metal Co., New York; Arnold Winstein, Independent Scrap Iron Corp., Brooklyn, N. Y.; Robert Joseph, Commercial Steel \& Chemical Corp., New York.

Government Seizes Old Missouri Stack

A blast furnace owned by the former Missouri Valley Iron Co., St. Louis, has been commandeered by the federal government under the requisitioning act passed by Congress last October, according to the

St. Louis Globe-Democrat. The stack will be dismantled and shipped to the Nacional Financiera, Mexico City, by the American Rolling Mill Co. as agent.
The stack was last operated in 1924 and was last remodeled during World War 1. It has a height of 76 feet, hearth of 15 feet, four stoves, two blowing engines and annual capacity of 108,000 tons of pig iron.

Compliance Branch of the WPB Division of Industry Operations has announced it soon will undertake an investigation of pig iron distribution to check compliance with allocation orders.
 Augment your own facilities by sub-contracting to Scaife the making of cylindrical or welded products, or any manufacturing operations involving the following:
\checkmark Arc Welding-hand, automatic or semiautomatic.
\checkmark Brazing-Spot Welding.
\checkmark Drilling and Tapping.
\checkmark Hot-dip galvanizing.
\checkmark Pressure Testing.
\checkmark Drawing and Stamping.
\checkmark Hot or Cold Riveting.

For $\mathbf{1 0 0 \%}$ War Production-put SCAIFE in your production line!

Crowding Air Compressor Capacity to the Limit?

In stock for immediate shipment

One simple way to got more out of the air power now available, avoid additional compressor investmont, and improve efficiency, is to install Hannifin Pressure Regulating Valves. Many jobs on arbor pressos, air chucke, riveters, air vises, cylinders, and other pneumatic machinory can and other pandled at half theordinary bob bettor hand ine pressure.
Providing a prassure regulator for each individual machine not only means efficient use of the air power available, but allows quick and easy adjustrment for different types of work. The exclusive piston-typo design of Hannifin Pressure Regulating Valves provides large volumetric capacity and sensitive, accurate control of working pressures. Adjustmentican be made over the entire working range to deliver any reduced operating pressure desired. Construction is simple for long, dependable life without mainterance.
Three standard aizes-3/6, $1 / 2$, and $3 / 4$ inch, for use on initial pressures up to 150 lbs . Furnished complete with pressure gauge. Write for Bullatin 56-S.

HANNIFIN MANUFACTURING COMPANY
621-631 South Kolmar Avenue, Chicago, Illinois
Engineers . Designers. Manufacturers . Double-acting Pneumatic and Hydraulic Cylinders . All Sizes

HANNIFIN $\begin{gathered}\text { pressure } \\ \text { resulating } \\ \text { VALVES }\end{gathered}$

Speed Bomb Output

By Spinning Process
(Concluded from Page 35) pany is speedy and effective. The process is one in which many government officials as well as commercial operators now converting their plants to war production have shown great interest.

In developing the new process, heavy industry has taken a leaf from the book of the ancients, and utilizes, with great modern machines, the methods of the potter and his wheel. A pre-heated steel tube, turned at a high rate of speed, is fashioned quickly and with surprising precision, into the nose and main body of a bomb by a huge arm which swing into position and molds the revolving tube into the desired shape. Other machines, by the same method, shape the tail portion of the main bomb body with the ease of an old time potter forming his whirling clay.

Bombs of various sizes are made by this method, and after they leave the spinning machines they are normalized, finished, threaded, have carrying lugs welded on, are painted and shipped to loading plants as the first leg on their journey toward action.
About the same time that British soldiers were evacuating Dunkirk, bomb production on a large scale began at this plant after months of research experimentation, and limited production in an amazingly short time, men were trained to operate the great machines and to work effectively in the important finishing lines.

Tool Builders Warned Of Nickel Shortage

George C. Brainard, chief, WPB Tools Branch, last week warned machine tool builders the nickel shortage is becoming more acute and that the builders now face a situation where no nickel will be available for use in machine tools. Mr. Brainard suggested the builders immediately proceed to look for possible substitutions.

Blaw-Knox Reports Net Sales

Reach All-Time Record
Net sales of Blaw-Knox Co., Pittsburgh, reached a new high in 1941, according to the company's annuai report released last week by William P. Witherow, president. Last year's sales, largely reflecting the company's war effort, were $\$ 30,799,560$, compared with $\$ 18,481,802$ in 1940 and $\$ 13,065,144$ in 1939.

Net profit, after all charges including taxes, was equal to $\$ 1.25$ a share, compared with $\$ 1.02$ a share in 1940.

A genuine interest in your comfort by everyone from manager to doorman.

Decp beds, crisp linen, modern furnishings planned for comfort.

Convenience that saves time and moncy. Hotel Cleveland adjoins the Union Terminal and Terminal Garage, and is next door to everything you'll want to see in Cleveland.

CONSTRUCTION

and ENTERPRISE

Michigan

BAY CITY, MICH.-Henry C Weber Construction Co., Bay City, has been awarded contract for addition to plant of Bay Mrg. Division of Electric AutoLite Co. here.
DEARBORN, MICH.-Bryant \& Detwiler Co., 2304 Penobscot bullding, Detroit, has general contract for construction of magnesium smelter at the Rouge plant of Ford Motor Co. Giffels \& Vallet Ine., Detrolt, architect and engineer.

DETROIT-Gallagher Construction Co., 2136 Connor street, Detroit, has been awarded contract for $\$ 90.000$ addition to plant of Aeronautical Products Co. Derrick \& Gamber, Inc., 3500 Union Guaranty building, architect.

DETROIT - Atlas Engineering Co., 11725 Strathmoor, has let contract to Jos. M. Worswiek for addition to its fac tory. Paul R. Sewell is architect.
DETROIT-Federal Mogul Corp., 11031 Shoemaker street, has awarded contract to W. J. C. Kaufmann Co., 10610 Shoemaker street, for addition to its factory.

DETROIT-Hercules Tool \& Engineering Co., 6451 Dubols street, has been incorporated to manufacture jigs, tools etc. Correspondent: Ralph Beecroft, 12639 Indlana avenue.

DETROIT-Smith Automatic Heater Service Inc. has been incorporated with $\$ 10,000$ capltal by Wllliam 0 . Smith 19250 John J2 strect, to manufacture automatic heating equipment.

DETROIT-American Gage Corp. has been incorporated with $\$ 25,000$ capital to manuracture tools. Correspondent. Michael J. Morris, 324 East Kirby avenue.

DETROIT-Triple-A-Machine Products Inc., 9214 Otsego, has been organlzed to manufacture machine parts, tools, etc. Robert Anderson, 2045 Cameron avenue, representative.

FEIRNDALE, MICH.-Special Machine \& Engineering Inc., 3949 East Nine Mile road, has been organlzed with $\$ 50,000$ capital to manufacture tools, gages, etc. Representative: Gerald R. Marshall, 18611 Cherrylawn avenue.

GRAND RAPIDS, MICH. - Wolverine State Tool \& Dle Co. Inc. has been incorporated with 6000 shares of no par value by Whlliam DeVries. 123 Home street, to engage in machine shop work.

GRAND RAPIDS, MICH.-H. B. Rohloff, Grand Rapids, has been awarded contract for construction of $\$ 25,000$ chemical plant here for Havlland Products Co.

GRAND RAPIDS, MICH.-Work has been started here on $\$ 30,000$ addition to plant of Grand Rapids Stamping Division of General Motors Corp. Faulkner Construction Co., Detrolt, has ihe contract.

HOWELL, MICH. - Bruce Products Corp. is preparing plans for rebullding plant recently destroyed by ire.

JACKSON, MICH. - Paul Tilds, 2539 Woodward avenue, Detroit, is preparing plans for an addition and alterations to a plant here.

MUSKEGON, MICH.-Ground has been broken here for an addition to the plant of Muskegon Piston Ring Co.

YPSILANTI, MICH.-Motor State Produets Co., Ypsilanti, has let contract to LeKoning Construction Co., Ann Arbor,

by WELLMAN

Whether your casting requirements are simple or complicated, you can rely on Wellman for production that is exact in every particular. Our competent personnel with 31 years' experience plas the most modern cquipment and new plant facilities insure precision quality.

Due to addisional plant facilities, deliveries on castings in all metals are being made prompl13.

CASTINGS

Dowmetal
(Magnesium)

Aluminum

Copper Silicon-Heat Treated

Brorize
Phosphor-MangancseGoveriment - Ampeo

PATTERNS

Wood or Metal
+
THE WELLMAN BRONZE
\& ALUMINUM COMPANY 6011 Superior Ave. Cleveland, Ohio

- Use BISCO Tool Steel Iubing and stop the waste of costly stecl. At 40c a pound, this company had $\$ 17.20$ worth of turnings to sweep np. Defense needs the time, Jabor and materials which are unnecessarily lost through milling a solid bar.

BISCO Non-shrinkable, Oilhardening Tubes are stocked in exact sizes. When cut to your specifications, they are ready for use as ring dies, bushings, spacers, etc.

Ease your struggle for greater defense production at lower cost. Conserve man-and machine-power -use Tool Steel Tubing!

Free Catalog on Request

943 East 67th St. Gerkand, ohio- HEndetson 0995

Mich., for addition to its factory. R. S. Geranoff, Ypsilantl, architect.

Commecticut

HARTFORD, CONN.-Cushman Chuck Co., 806 Windsor street, has asked bids for two-story plant addition.
WESTPORT, CONN. - Sealund Corp. 589 Rlverside avenue, will bulld research and assembly plant, to cost about $\$ 4 \overline{5}, 000$.

Maine

BATH, ME,-Hyde Windlass Co., 2 Fedcral street, will take blds soon for twostory 100×300-foot factory. Cost over $\$ 40,000$ A. J. Harriman, 53 lront street. architect.

FREEDOM, ME.-Monmouth Camning Co., 256 Commerclal street, Portland, Me., is preparing plans for packing pant, to cost about $\$ 40,000$.

Massachusetts

HUDSON, MASS.- Owner, care of 1:. V^{\prime}. Aldrich, archited, 46 Lincoln street, has plans nearlng completion for one-story 50×90-foot plant. Estimated cost $\$ 6^{2} 2,-$ 000.

New York

ASTORIA, N, Y.-Morey Machinery Co. Inc., 4-57 Twenty-sixth avenue, Long lsland City, has plans by R. L. Lukowsky, 20-03 Newtown avenue, Long Island City. for one-story lactory; estimated cost \$75,000.

JAMESTOWN, N. Y.-Art Metal Construction Co., A. Larsen, president and general manager, plans plant addilion. Cost over $\$ 40,000$.

JAMESTOWN, N. Y.-E. A. Jacobson, 7 Clark avenue, plans erection of onestory 60×100-foot industrial bullding. costing $\$ 40,000$.

NEW YORK-National Lead Co., 1816 Trinity bullding, New York, will construct a plant in Tennessee to manuracture metallic magnesium

New Jersey

AMPERE, I. J.-Crocker Wheeler Electric Mig. Co. has let contract to John W. Ferguson Co., 152 Market street, Paterson, for one-story $140 \times 250-$ foot plant. Estimated cost $\$ 150,000$.

CLIFTUN, N. J.-Fastern Corrugated Container Co., 86 Thirty-fourth street, Brooklyn, N. Y., has had plans prepared by S. Shaw, 24 Walnut street, Newark, for altering one-story 50×60-foot plant addition. Cost $\$ 50,000$.
JERSEY CITY, N. J.-Transport Steel Products Inc. has been Incorporated with $\$ 10,000$. First National Bank, Jersey City, is agent in charge.

NEWARK, N. J.-Colton Electrte Mfg. Co, has plans by Wolf \& Gluckman, 350 Board street, for factory alterations and addition, to cost over $\$ 40,000$.

TRENTON, N. J.-Sloane-Blabon Corp. has let contract for erection of plant addition io cost $\$ 18,000$.

UNION CITY, N. J.-Steel Corp. of New Jersey has been incorporated with 200 shares of stock, with Jay M. Levenson as agent in charge.

Ohio

CANTON, O.-Canton Smelting \& Refining Co. will erect shop and office bulldings totaling 30,000 square reet of floor space at 2049 Dueber avenue. M. S. Silver is president.

CLEVELAND-Aeroll Engineering Co. is being incorporated to manufacture an undisclosed type of machinery. C. F. Needham, vice president, Chandler Products Corp., 1491 Chardon road, is agent for the new firm. Sydncy A. Davies, of Davies \& Eshner, Union Commerce building, is handing legal detalls.

CLEVELAND-Sabin Development Co.,
U. C. Sabin, secretary-treasurer, is starting expanslon of machine shop at 6603 Carnegle avenue.

CLEVELAND - Burdett Oxygen Co., 3300 Lakeside avenue, is considering plant expansion. Wllliam H. Loveman is president.

CLEVELAND-Cleveland Trencher Co. 20100 St. Clair avenue, manufacturer of excavating machinery, will expand factory by 2400 square feet.

CLEVELAND-White Motor Co., 842 East Seventy-rinth street, will extend assembly plant by 70,000 square feet. Robert F. Black is president.

CLEVELAND - Laganke Electric Co., 2400 Woodland avenue, Whbur Laganke, president, is planning to add 2000 square reet to factory.

CLEVELAND-Thornton Co., 6901

 Welcome
 to PITTSBURGH'S NEWEST HOTEL

400 rooms, all with outside view and bath. Radio in every room.

Rates

SINGLES
$\$ 3.30$ to $\$ 4.40$
DOUBLES
$\$ 5.00$ to $\$ 6.50$

Most Conveniently Located Hotel in Downtown Pittsburgh

A KNOTt HOTEL
Joseph F. Duddy, Manager

Morgan avenue, will enlarge metalworking plant with addition of 12,000 square feet. Frank A. MeCloud is president.

CLEVELAND-Austin Co., Cleveland, is reported to be supervising contractor for alrcraft bomber plant in Georgia, to be operated by Bell Aircraft Co., Buffalo. Estimated cost $\$ 30,000,000$.

LORAIN, O. -- F. J. McFadden, 442 Oberlin road, architect, has prepared plans for factory bullding to be erected near here.

MT. GILEAD, O.-North Electric Co., Gallon, O., care of Attorney Ellison S. Kauffman, Mt. Gllead, will establish branch assembly plant here, in connectlon with manufacture of switchboards
and other communications equipment at Galion plant.

SANDUSKY, O. - Farrell-Cheek Steel Co. plans construction of additional building, furnaces and equipment which will double present output.

WELLINGTON, O.-Sterling Foundry Co. will soon undertake a $\$ 500,000$ expanslon program which will increase output of gray iron castings to 1500 tons per month. Three bulldings whll be erected and considerable equipment will be added. Austin Co., Cleveland, is contractor.

YOUNGSTOWN, O.-McCabe-Riley Machine Corp. has been organized to do screw machine and turret lathe work by John A. McCabe, 618 Pasadena avenue. and Forest L. Rlley, 3602 Hudson drlve.

THE HANNA FURNACE CORPORATION
MLiKCHANT PIG IRON DIVISION OF NATIONAL STEEL CORPORATION
New York
Philadelnhia
Boston

Check These Features OF THE BERKELEY DRIVES
 ```- Built to Specifications \\ - Simplified Installation \\ - Longer Life \\ - Rigid-Built for Power \\ - Easier to Mount```
 Built in sizes from $1 / 2$ to 10 h . p., complete with pulley, sheaves, and V belts. Initial cost is the only cost. A type for every service.

Write for further information.

MODERN ANATISIS

Carbon
Determinator

Sulpleur
Determinator

CARBON

Accurate carbon determinations made in two minutes with the Carbon Determinator.

SULPHUR

Accurate sulphur determinations made in three minutes with the Sulphur Determinator.

Accurate carbon and sulphur determinations in step with production will save labor and material. FURNACE
Use Varitemp Furnaces for combustion of all ferrous and nonferrous samples.
SPECTROGRAPH
Rapid and accurate spectrographic analysis of metals.

harry w. DItTHRT co.

9330 J Roselawn Ave. DETROIT, MICH.

아앙 GALVANIZING

GALVANIZED PRODUCTS FURNISHED •
ENTERPRISE GALVANIZING CO. 2595 E. CUMBERLAND ST., PHILADELPHIA, PA.
"To Economize-Galvanize at Enterprise!"

Have It Galvanized by-
Joseph P. Cattie \& Bros., Inc. Gaul \& Letterly Sts., Philadelphia, Pa.

Philadelphia's Oldest, The Country's Largest Hot Dip Job Galvanizer
Galvanized Products Furnished

to be supervised by Unlted States engineer office, Tulsa

Missouri

ST. LOUIS-St. Louls Steel rroducts Co. has purchased a four-story bulldlng at 2101 Chestnut street, contalning 40,000 square feet of floor space, for expansion,

ST. LOUIS-H. B. Deal Inc., 1218 Ollve street, St. Louis, has been awarded contract by War Department for manufucturing plant in Arkansas at cost of over $\$ 5,000,000$. Construction will be supervised by United States engineel otilce, Vlcksburg, Miss.

Wisconsin

MILWAUKEE - Wehr Steel Co. nas been granted permit for a $\$ 30,000$ addition to its foundry on West Moblle street.

MILWAUKEE-Vllter MLs. Co., 2217 South First street, has plans by bisehweller \& Eschweller, 720 East Niason street, for one-story yis x 206-foot machlne shop.

MILWAUKEE-Milwankee Tool R Dik Co., 3411 West Hopkins street, is consideving erection of factory.

RACINE, WIS.-Belle Clty Malleable fron Co. has let general contract for onestory 110 x 200 -foot steel factory to Nelson \& Co. Inc., 1550 Yont street.

Minnesota

IRED WING, MINN. - Norlhern States Power Co., 2 South Barstow street, Eilu Clalre, Wis., plans electric power plant costing \$1,500,000.

Texas

CORPUS CHRISTI, IVKX, - Southern Paciflc Rallroad Co. will erect machine and repalr shop at 1424 South Tancahua street.

HOUSTON, TEX. - Rheem Mrg. Co., 1401 Lockwood street, has let contract to H. K, Ferguson Co., Hanna bullding, Cleveland, for 40×60-foot extension to plant, to cost $\$ 10,000$.

Iowa

CFDAR RAPIDS, IOWA - Link-Belt

Speeder Corp. has started construction of $\$ 75,000$ addition to its plant which will increase floor space by 20 per cent

Arizona

MORENC1, AlRIZ.-Whelps Dudge Corp. plans ore reduction and smelter plant expansion and improvements here.

California

DARWIN, CALIF. - Imperial Metals Inc, is constructing a mill costing more than $\$ 100,000$ which will process 250 tons of ore per day.
LOS ANGELES- Valley Tools Inc. has been organized with $\$ 75,000$ capital by John L. and Charles F. Taylor, of May wood, Calif., and Eugene Saylor, Glen dale, Calif. Charles B. Stewart Jr., 639 South Spring street, Los Angeles, is representative.

LOS ANGELES-Quality Tool Co. Ine. has been organized with $\$ 75, \cup 00$ capltal by J. E. MeCullough, Los Angeles; Leonalne Racy, Huntington ऐark, Callf., and Helen B. Brown, Burbank, Calif. Representative: Charles B. Stewart Jr., 639 South Spring street, Los Angeles.

RICHMOND, CALIF,-L, H. Nishklan, engineer, 155 Sansome street, San Francisco, will soon let contract for onestory 110×280-100t machine shop.

SAN FRANCISCO-General EngineerIng \& Dry Dock Co., 1100 Sansome street has let contract for machine shop additions to Younger Bros., San Anselmo, Callf.

Washington

TACOMA, WASH.-Wilkeson products Co., care of B. C. Grosscup, Republte building, Seattle, will build coke plant costing $\$ 200,000$.

Canada

BATHURST, N. B.-Canadian Barrels \& Kegs Ltd., waterloo, Que., is considering plant addition here, to include installation to dlesel power unit. Cost $\$ 40,000$.

MONCTON, N. B.-Clarke-Ruse Aircraft Ltd., Dartmouth, N. S., Clarke Ruse, president, is compleing plans for

airplane repair plant here, estimated to cost about $\$ 100,000$, with equipment.

BRANTFORD, ONT,-Brantford Coach \& Body Ltd., Mohawk street, is making arrangements for rurther addition to plant to cost about $\$ 25,000$. Schultz Construction Ltd., 45 Albion street, has contract for an addition now underway.
BRANTFORD, ONT.-Waterous Ltd., Market street, has had plans prepared and will soon let contracts for further addition to plant here to cost about $\$ 50,000$. D. M. Waterous is manager.

LONDON, ONT.-Canadian Can Manuracturers Lid., 284 York street, will let contracts soon through C. E. Marley Ltd., same address, for onc-story plant. addition.
ORILLTA, ONT.-Fahralloy Co. of Canida Ltd., 95 Barrle road, has let general contract to C. V. Bennett Construction Co. for plant addition to cost $\$ 125,000$. Equipment to be purchased includes motors and machinery, overhead crane, electrlc diven air compressors, welding machinery, sand mixers or molding machines, electric furnace for heat treatment of castings, electric grinders and polishers.
TORONTO, ONT. - Rogers-Majestle (1941) Ltd., 622 Fleet street, has let general contract to Carr \& Barnes Lid.. 481 Egllngton avenue West, for plant addition to cost $\$ 75,000$.

TORONTO, ONT.-Metal Stampings Ltd., Danforth avenue, Scarborough township, has let general contract to R. J. Hibbs Construction Lid., 15 Trent avenue, for plant addition to cost about $\$ 35,000$, with equipment.
TORONTO, ONT. - Dominion Bridge Co. Ltd., 289 Sorauren avenue, has given general contract to Anglin-Norcross Ontarlo Ltd., 57 Bloor street West, for construction of plant addition to cost $\$ 85,000$, equipment extra.

TORONTO, ONT.-John Inglis Co. Lid., 14 Strachan avenue, has given general contract to A. W. Robertson Ltd., 57 Bloor street West, for further additions to assembly building. Plans by Allward \& Gouinlock, architects, 57 Bloor street West.

WELLAND, ONT.-Page-Hersey Tubes Ltd., 100 Church street, Toronto, has let general contract to Dickie Construction Co. Ltd., 17 Yorkvlle avenue, for plant addltion. Plans by Marglson \& Babcock, englneers, 210 Dundas street. West, 「oronto.

WINDSOR, ONT.-S.K.D. Tool Co., 1673 Moy avenue, has glven general contract to Wllerid Loaring Construction Co., 1662 Ouellette avenue, for construction of plant addition, to cost about $\$ 35,000$, with equipment.

WINDSOR, ONT.-Ford Motor Co. of Canada Ltd. has had plans prepared by J. R. Porter, chiel engineer, for plant addition to cost about $\$ 85,000$, including equipment.

LAUZON, QUE.-Department of Munitions and Supply, Otlawa, H. H. Turnbull, secretary, has let general contract to Angus Robertson Ltd., 660 st. Catharine street West, Montreal, for construction of shipbuilding berths here.

LENNOXVILLE, QUE.-Union Screen Plate Co. of Canada Lid., Main street, has let general contract to J. A. Verret Ltd., 67 Second avenue, Sherbrooke, Que., for plant addition to cost about $\$ 25,000$, with equipment.

MONTREAL, QUE. - Department of Munltions and Supply, Ottawa, H. H. Turnbull, secretary, will call blds soon for war plant here. Fstimated cost \$1,500,000.

VILLE LA SALLE, QUE.-Jeftrey MIfg. Co., 300 St. Patrick street, has let general contract to A. F. Byers \& Co. Ltd., 1226 University street, for two-story plant addition.

FIRTH-STERIIIG

TOOL STEELS - STAINLESS STEELS - SINTERED CARBIDES FOR COMPLETE SHOP TOOLING • McKEESPORT, PA.

```
8 ELMONT
Engineers - Contraclors - Exporters
STRUCTURAL STEEL-BUILDINGS & BRIDGES
            Riveted-Airc Welded
```



```
    IFrite Sor Catalogaa
```


The Jackson Iron \& Steel Co. MANUFACTURERS OF
 PIG IRON SPECIALTIES Jackson. Ohio

1903-1942
THIRTY-NINE YEARS OF BETTER STAMPINGS

C'atalug on llequest

WHITEHEAD STAMPINGCO.

ATLAS DROP FORGE CO., LANSING, MICH.

CROSBY FOR STAMPINGS

Our engineers are ready and able to help solve your stamping problems, in design or construction. Crosby prices are consistent with QUALITY and SERVICE. In our 45 years of EXPERIENCE we have served over 100 different industries.

Manufacturers of "Ideal" Trolley W'heels

THE CROSBY COMPANY
 BUFFALO. N. Y.

HOT-DIP GALVANIZING PRACTICE
 By W. H. SPOWERS JR.

- 200 Pages 6×9
- 45 Illustrations
- 4 Tables
- 7 Charts

Price \$4.00 Postpaid Note: Orders for dellvery in Ohlo add 3\% for compulsory Sales Tax.

GIVES full and carefully reasoned explanations of the why and wherefore of galvanizing. All the latest methods and processes are described and very copiously illustrated by a large number of diagrams and photographs.

Highly recommended to the man on the kettle, the designer of galvanizing plants, the metallurgist, as well as to those who zinc coat steel commodities and containers, etc.

THE PENTON PUBLISHING COMPANY, Book Department, Penton Building, Cleveland, 0 .

USED and REBUILT EQUIPMENT MATERIALS

MOTOR GENERATOR SETS
125 KW, G. E. 125 v. D. C. with 3 phase 60 cycle 1200 RPM squirrel cage motor $5 \mathrm{KW}, G e n$. Elec. 125 volt, $D . C .3$ bearing. 2200 volt, 3 phase, 60 cycle, 1200 RPM motor. 5 KW , Westinghouse, 125 volt D. C. generator. 54 H.P. $220 / 440$ volt, 3 phase, 60 cycle, 1200 PM motor
THE MOTOR REPAIR \& MFG. CO. 1558 Hamilton Ave.

Cleveland, Ohio

We Pay BEST PRICES for

Iron and Steel material and equip ment; Industrial plants; Mills, rall ronds; trackage, etc. For highest offers, write
SONKEN-GALAMBA CORP.
108 N. 2d St.
Kansas City, Kans
Tre buy and sell
Get our quotations.

FOR SALE-IMMEDIATELY

1-No. 5 used WHITING Cupola 1-No. 7 used WHITING Cupola
Both complete with blowers.
Columbia Nachinery \& Ensineering Hamllton. Ohlo

RAILS

AND ACCESSORIES

RELAYING RAILS - Super-quality machine-reconditioned-not ordinary Relayers.
NEW RAILS, Angle and Splice Bars, Bolts, Nuts Frogs, Switches, Tie Plates, and all other Track Accessories.
Although our tonnages are not as large as beretofore, most s
Every eftort made to take care of emergency requirements. Phone, Write or Wite...
PITTSBURGII NEW YORK CHICAGO

More for Your Dollar!

IRON \& STEEL PRODUCTS, ING.
36 Years' Experience
13462 S. Brainard Ave., Chlcago, IIIInols "Minden ami VASSAT es ACZELT tartalmaz" SELLERS - BUYERS - TRADERS

BETTER USED EQUIPMENT

for Immediate Delivery-at Low Prices

CONVERTERS

-DUPLEX ROTAIEY CONVERTERS. G. E. (Identical) $1500 \mathrm{KW}-750 \mathrm{KW}$, to $1300-650$ volt 3 phase, 25 cycle, plete with Transformers, Reactances, Switch Gear and Controls.

Motors - Sheet Steel Piling - Haists Cranes - Misc. Items

W'rite-Wire-Phone
DULIEN STEEL PRODUCTS, Inc. 1611 So. Alameda Tel. Kimball 9151 Los Angol SEATTLE PORTLAND • SAN FRANCISCO

FOR SALE

Hydraulle Rlveting Machines, $48^{\prime \prime \prime}$ throat, $1 / 2{ }^{\prime \prime}$ dayllght.
400 lb . Alr or Steam-Operated Drop hammer Canton Portable Allte Bulldozer.
$2^{\prime \prime}, 4^{\prime \prime} \& 8^{\prime \prime}$ Bolt \& Pipe Threading Machines Metal Cleaning Machines. STEEL, Penton Blds., Cleveland

IF YOU WANT TO BUY OR SELL

 good used or rebuilt equipment or materials-Place an advertisement in this section. Write STEEL, Penton Bldg., Cleveland, Ohio

KIRK\& BLUM
Welded maghine bases. PEDESTALS and FRAMES lathe pans GEAR and belt guards
Pressed Steel Louvar Panels and Cover Plates

THE KIRK \& BLUM MFG. CO.

2822 Spring Grove Ave., Cincinnati, Ohis

Send your inaulries for
SPECIAL ENGINEERING WORK fo the
A. H. NILSON MACHINE COMPANY BRIDGEPORT, CONN.
designers and bulldary of wire and ilbben toek loiming maehines.
We also sollicit your blds for cam miling

Castings

NORTH WALES MACHINE CO. INC., North Wales. Grey Iron, Nickel, Chrome, Molybdenum Alloys, Semi-steel. Superior quality machine and hand molded sand blast and tumbled.

SAY IT HERE

If you have facilities to handle additional work. An advertisement in this section will tell others of your capacity, etc. Write STEEL, Penton Bldg., Cleveland.

Positions Wanted

PRODUCTION MANAGER OR SUPERINTENDENT WITH PROVEN ABILITY TO GET TOP PRODUCTION AND KEEP A STEADY FLOW. FROM RAW MATERIAL TO FINISHED PRODUCT. AUTOMOTIVE AND STEEL MILL BACKGROUND. JOB LOTS OR MASS PRODUCTION. THOROUGH MECHANIC. ADDRESS BOX 662 . STEEL. PENTON BLDG., CLEVELAND.

TWENTY YEARS' EXPERIENCE STRUCtural and Plate shop superintendent open for position. Furnish former employers rererences. Moderate salary untll proven results. Address Box 621. STEEL, Penton

Employment Service

SALAIRIED POSITIONS

$\$ 2,500$ to $\$ 25,000$
This thoroughly organized advertising service of 32 years' recognized standing and reputation, carries on preliminary negoted above, through a procedure indiviualized to each cllent's personal individmalzed to each client's personal requirements, Several weeks are required to negotiate and each individual must fnance the moderate cost of his own campaign. Retaining ree protected by recund provislon as stipulated in our agreement. Idenposition protected. If your salary has position protected. If your salary has been $\$ 2,500$ or more, send only name and adaress Ior detalis. R. W. Blxby, Inc., 110

Help Wanted

WANTED: IN JOBIBING FOUNDRY I.O cated in Eastern Pennsylvanla, producing steel castings, acld electric process, ranging from 1 lb . to 3 tons, a man who is thoroughly famlliar with heading and gating and has a good knowledge of molding and core making and is capable of handling men; acting in the capacity of assistant to foundry superintendent. In reply, please state age, experience and salary desired. Address Box 63z. STEEL, Penton Bldg. Cleveland.

WANTED-MAN WITH EXTENSIVE EX perience to serve as assistant superin tendent of blast furnaces in large stee company, 35 to 45 years of age with technical training prererred. State salary expected. Address Box 637, STEEL, Pen ton Bldg., Cleveland.
SUPERINTENDENT FOIR FOIRGE SHOI making 105 MM shells. All new equipment. Address Box 661, STEEL, Penton Bldg., Cleveland.

IE YOU HAVE AN OPPORTUNITY TO OFFEIR
Use the "Help Wanted" columns of STEEL. Your advertisement in STEEL STEEL. Your advertisement in STEEL will put you in touch with qualifled, high-calbre men who have had wide the Metal Producing and Metalworking Industries.

Help Wanted

ENDEIEIENCED METALLURGICAI ENGIneer wanted to organize, equip, and take charge of new heat-treating department for established manufacturer located in western Pennsylvania. Must be thorough ly famliar with furnace design and heat treating methods, particularly with respect to large products of circular shapes and capable of training men and installing cquipment. A man with steel mill and alloy experience preferred. Attractive sal ary to right man. State age, schooling nationallty, whether American cllizen draft status, previous business recoril, number of dependents. Write in confl dence to Box 663, STEEL, Penton Bldg. Cleveland.

WANTED METALLURGIST - CAPABLE of overseeing the production of straight carbon and alloy steel castings-electric furnace-steel foundry located in Eastern Pennsylvania. Prefer a man who is fa miliar with gamma-raying castings and magnetic testing. In reply state age, ex perlence and salary expected. Address Box 650, STEEL, Penton Bldg., Cleveland.
manufacturbirs' representative. To represent well-known line of Government approved rust preventive coatings. Exclusive territories open in princlpal citles. Write rull detalls of past experlence and type of accounts you are now contactIng. Address Box 657, STEEL, Penton Bidg., Cleveland

METAL CLEANING . . . two books that tell how to do it better

IMPACT CLEANING

by: W. A. Rosenberger

- This 480 page book contains full information on the latest and most approved methods of impact cleaning. including blast-cleaning and sandblasting. It tells the reader of approved methods of cleaning under all conditions and for all types of products.

A practical book telling how to reduce cleaning expenses by application of proved methods.

In three parts: Part one covers Nozzle Blast Cleaning Equipment; Part Two, Mechanical Impact Cleaning; Part Three, Ventilation of Impact Cleaning Equipment . . . all profusely illustrated and cross-indexed for easy reference. "Impact Cleaning", \$7* postpaid.

MODERN BLAST CLEANING \&VENTILATION by: C. A. Reams

- Mr. Reams, engineer, Ford Motor Co., has compiled this practical book from actual shop experience plus proved engineering information. His discussions of modern methods of blast cleaning and ventilating methods are applicable to all types of metal cleaning by the blast method.

Full information is given on selection of abrasives, abrasive cleaning methods, selection of equipmen!. abrasive reclamation, advantages and limitations, ventilation and reduction of industrial hazards, and scores of other helpful facts.

Illustrations and diagrams in this 213 page book increase its value to the plant engineer. "Modern Blast Cleaning and Ventilation", S4* postpaid.

ORDER TODAY FOR FREE EXAMINATION:

> You can examine either or both of these books at your leisure. send your order today. If after ten days you prefer to return them. we'll cheerfully cancel your bill. In ordering please give us your company name and your title.
> "Orders for dellvery in Ohio must be accompanied by an additional 3% to cover compulsory state sales tax.

THE PENTON PUBLISHING CO., Book Department, Penton Building, CLEVELAND, OHIO

Abrasive Co.
Acheson Colloids Corp.
Acme Galvanizing Corp.
Acme Steel \& Malleable Iron Works
Ahlberg Bearing Co.
Air Reduction
Ajax Electrothermic Corp
Alan Wood Steel Co.
Allegheny Ludlum Steel Corp
Allen-Bradley Co.
Allis-Chatmers Mfg. Co.
Alrose Chemical Co.
American Asile Corp
American Air Filter Co.. Inc.
American Brass Co., The
American Bridge Co.
Amerlcan Broach \& Machine Co.
Amerlcan Cable Division of American
Chain \& Cable Co., Inc,
American Chain \& Cable Co., inc. Amerlcan Cable Division
merican Chain \& Cable Co......
American Chain Division
American Chain \& Cable Co., Inc., Ford Chain Block Division
American Chain \& Cable Co., Inc., Page Steel \& Wire Diviston
American Chain Division of American
Chain \& Cable Co. Inc.
American Chemical Paint Co.
Amerlcan Enginecring Co.
American Foundry Equipment Co.
American Gas Association
American Hot Dip Galvanizers Asso ciation
American Lanolin Corp
American Lanolin Corp. Branch of The
Amerlean Brass Co.
Imerienn Metal Products Co.
American Monorail Co.
American Nlckelold Co.
American Pulverizer Co.
American Roller Bearing Co
American Rolllng Mill Co., The
American Screw Co.
American Shear Knife Co.
American Steel \& Wire Co.
American Tinning \& Galvanlalng Co Ampeo Metal, Inc.
:msler-Morton Co., The
Andrews Steel Co., The
Apollo Steel Co.
Armstrong-Blum Mig. Co
Atkins. Fu, C., \& Co.
Allantic Stamping Co.
Atlantic Steel Co
Atlas Car \& Mfr. Co.
Allas Drop Forge Co.
Atlas Lumnite Cement Co.
13
Babcock \& Wilcon Co.
Bailey. W'm. M., Co.
Baker-Raulang Co.
Baldwin Southwark Division, The
Baldwin Locomotive Works
Bantam Bearings Cord
Barnes, W'allace, Co., Division of A s sociated Spring Corporation
Basie Refractorles, Inc.
Bay City Forge Co.
Bay State Abrasive Products Co
Bellevue-Stratford Hotel
Beilis Heat Treating Co.
Belmont Iron Works
Berger Manufacturdng Dlu., Republic Steel Corp.
Berkeley Equipment Co.
Bethlehem Equipment Co.
Birdsboro Steel Foundry \& Machine Co.
Bissett Steel Co., The
Blanchard Machine Co.
Blaw-Knox Co.
Blaw-Knox Division, Blaw-ǩnox Co.
Bliss is Laughlin, Inc.
Bloom Engincering Co.
Bower Roller Bearing Co.
Bridgeport Brass Co.
Bristol Co. The
Broderick \& Bascom Rope Co
Brooke, E, \& G., Iron Co.
Brosius, Edigar E., Co.
Brown \& Sharpe Mig. Co
Brown Instrument Co., The
Bryant Chucking Grinder Co
Bryant Machinery \& Enginecring Co.

Euffalo Galvantzine \& Cinning worts
Bullard Co. The
Bundy Tubing Co.

C

Cadman, A. W., Mfs. Co
Carboloy Co., Ine.
Carborundum Co., The
Carey, Philip, Mrg. Co., The
Carnegle-Illinois Steel Corp
Carnegie-Ilinois Steel Co
Carpenter Stecl Co., lhe
Carpenter Ste
Cattie, Joseph P., \& Bros., Inc
Cellcote Co., The
Central Screw Co.
Chambersburg Engineering Co
Chandler Products Corp.
Chicago Metal Hose Corp.
Chicago Perforating Co.
Chicago Rawhide MIg. Co
Cinclnnati Grinders, Inc.
Cinclnnati Milling Machine Co.
Cinclnnall Shaper Co., The

Cowles Tool Co.
Crane Co,
Crawbuck, John J., Co.
Crosly Co., The
Co. .

Cuban-American Manaranese Corp. Cullen-Friestedt Co.
Culvert Division, Republle steel Co:p. Cunningham. M. E.. Co
Cutler-Hammer, Inc.

I)

Darwin \& Milner, Inc.
Davis Brake Beam Co.
Dayton Rogers Mif. Co.
Dearborn Gage Co.
Denison Englncering Co., The
DeSanno, A. P., \& Son, Inc.
Detrolt Electric Furnace Division.
Kuhlman Electric Co.
-ceroit Leland Hotel
Diamond Expansion Bolt Co., Inc. Diamond Tool Co

Equipment Steel Proclucts Division of
Union Asbestos \& Rubber Co. Frdle Perforating Co., The Erie Forge Co. Erie Foundry Co.
Etna Machine Co., The
Euclid Crane \& Hoist Co.
Eureka Fire Brick Works
Ex-Cell-O Corp.

Fairbanks Morse
Fanner Mrg. Co
Farquhar, A. B., Co., Lid
Farval Corp., The.
Ferracute Machine Co
Fidelity Machine Co.
Finn, John, Metal Works
Firth-Sterling Steel Co.

Fitchburg Grinding Machine Corp.

Fitzsimons Co., The
Ford Chaln Block Division of Ameri-
can Chain \& Cable Co., Inc.
Foster, L. B., Co.
Four \vee Structural steel Companies
Foxboro Co., The
Frantz, S. G., Co., Ine.
Fuller Brush Co.

G

Gage Structural Steel Co.
Galland-Henning Mfg. Co.
Galvanlzers, Inc.
Garrett, Geo. K., Co.
General Abraslve Co., Inc.
General American 'Iransportation
Corp.
General Blower Co. 134
General Electric Co. 18, 1
Gisholt Machine Co.
Globe Brick Co., The
Granite Clty Steel Co.
Grant Gear Works
Graver Tank \& Mrg. Co., Inc. 129
Graybar Electric Co
Graybar Electric Co.
Great Lakes Steel Corp. .
Greenleld Tap \& Die Corp.
Die Corp.
Gregory, Thomas, Galvanizing Works
Grinnell Co., Inc.
Gruendler Crusher \& Pulverizer Co.

H

Hagan, George J., Cu.
Hanlon-Gregory Galvanizing co.
Hanlon-Gresory
Hanna Engineering borks 130
Hannifln Mifg. Co. 126
Harbison-Walker Refractorles Co. . 87,88
Harnischfeger Corp.
Harper, H. M., Co., The
Harrington \& King Perforating Co..... 129
Hays Corp The
Heald Machinc Co.
Heppenstall Co.
Hevi Duty Electric Co.
Hill, James, MIfg. Co.
Hindley Mrg. Co.
Hobart Bros Co.
Homestead valve Nirg. Co.
Horsburgh \& Scott Co.
Hubbard \& Co.
Hubbard, M. D., Spring Co.
Huther Bros. Saw Mig. Co.
Hyatt Bearings Division, General Mo-
tors Corporation

Faston Car \& Construction Co
Economy Engineering Co.
Fdison Sto arre Battery Div, of Thom-
as A. Edison, Inc.
Elastic Stop Nut Corp.
Electric Controller \& Mfg. Co.
Inside Front Cover
Electric Furnace Co., The
Flectric Storage IJattery Co.
Electro Alloys Co., The
Electro Btetallurgical Co
Elmes, Charles F., Engineering Works
Enterprise Galvanizing Co
Hyde Park Foundry \& Machine (o. -

Ideal Commutator Dresser Co.
Illinois Clay Products Co.
Independent Galvanizing Co.
Industrial 13 rownhoist Corp.
Ingersoll Steel \& Dise Division, Borg-
Warner Corp.
Inland Steel Co. 121
International Nickel Co., Inc. 96
International Nickel Co., Inc.
International Serew Co.
International-Stacey Corp.
Iron \mathbb{R} Steel Proutucts, Inc. 134
Isaacson Iron Works
Jackson Iron \& Steel Co., The 133
James, D. O., Mfg. Co.
J-B Engineering Sales Co.
Jessop Steel Co.
Jessop, Wm., \& Sons, Inc.
Johns-Manville Corp.
Disston, Henry, \& Sons, Inc.
Dow Chemical Co., The
Dravo Corp., Englneering Works Div
Dravo Corp., Machinery Div.
Duffin Iron Co.
Dullen steel Products, Inc.

Johnson Bronze Co．
Johnson Steel \＆Wire Co．，Ine
Jones \＆Lamson Machine Co．
Jones \＆Laughlin Steel Corp．
Jones，W．A．，Foundry \＆Machine CO
Joslyn Co．of California
Joslyn Mrg．\＆Supply Co．
Kardong Brothers，Inc
Keagler Brick Co．，The
Kearney \＆Trecker Corp
Kemp，C．M．，Mig．Co．
kester Solder Co．
Kidde，Walter，\＆Co．，Inc．
King Fifth Wheel Co
Kinnear Mig．Co．
Kirk \＆Blum Mig．Co．
Koppers Co．
Koven，L．U．，\＆Brother，Inc．
Kron Ceo．，The

I．

Lactede Steel Co．
I．ake City Malleable Co．
lakeside Steel Improvement Co．，The 126
Lamson \＆Sessions Co．，The
Landis Machine Co．
，ang Machinery Co．
La Salle Steel Co．
Latrobe Electrlc Steel Co．
Layne \＆Bowler，Inc．
LeBlond，IR．K．，Machine Tool Co．，The
Lee Spring Co．，Inc
Lehigh Structural Steel Co．
Leschen，A．，\＆Sons Rope Co
Levinson Steel Co．，The
Levinson Steel Sales Co．
Lewin－Mathes Co．
ewis Bolt \＆Nut Co．
Lewis Foundry \＆Machine Division of Blaw－Knox Co．
Lewis Machine Co．，The
Lincoln Electric Co．，The
Lincoln Hotel
Linde Air Products Co．，The
Link－Belt Co．
Logemann Bros．Co．
Lovejoy Flexible Coupling Co．
Lubriplate Division Fiske Brothers
Refining Co．
Lyon Metal Products，Inc．
IIe
Mckay Machine Co．
McKee，Arthur G．，Co．
Mckenna Metals Co．
MacDermid，Inc．
MackIntosh－Hemphill Co
Macklin Co．
Macwhyte Co
Machler，Paul，Co．，The
Mahr Manuracturing Co
Mallory，P．R．，\＆Co．，Inc．
Mathews Conveyer Co．
Maurath，Inc．
Mercury Mfg．Co．
Mesta Machine Co
Metal \＆Thermit Corporation
Michigan Tool Co．
Micromatic Hone Corp．
Midland Structural Steel Co．
Midvale Co．，The
Milwaukee Foundry Equipment Co．
Missouri Rolling Mill Corp
Moltrup Steel Products Co．
Molybdenum Corporation of America
Monarch Machine Tool Co．，The
Monarch Steel Co．
Morgan Construction Co．
Morgan Engineering Co．
Morton Salt Co．
Motch \＆Merryweather Machinery Co
Motor Repair \＆Mfg．Co．
National Acme Co．
National Bearing Metals Corp
Vational Broach \＆Machine
National Carbon Co．，Inc．，Carbon Sales Division
National Cylinder Gas Co．
National－Erie Corp．
Nalional Lead Co．
National Roll \＆Foundry Co．
National Screw \＆MIg．Co．
National Steel Corp．
National Supply C．．．．．．6， 130
National Tube Co．

New Departure，Division General Motors Corp．

Bige

New England Screw Co．
New Jersey Zinc Co．
New York \＆New Jersey Lubrlcant Co． Niagara Machine \＆Tool Works
Niles Steel Products Div．，Republic Steel Corp
Nilson，A．H．，Machine Co
Nitralloy Corp．，The
Norma－Hoffmann Bearings Corjp．
Northwest Engincering So．
Norton Co．，The
0
Ohio Crankshart Co．
Ohlo Electric Meg．Co．
Ohio Galvanizing \＆Mrg．Co．
Ohio Knife Co．，The
Ohio Locomotive Crane Co．，The
Ohio Seamless Tube Co．，The
Ohio Seamless Tube Co．，The
Ohio Steel Foundry Co．，The
Oliver Iron \＆Steel Corp．
O＇Nell－Irwin Mfg．Co．
Oster Mfg．Co．，The
Page Steel \＆Wire Division Ameri－ can Chain \＆Cable Co．，Ine． Pangborn Corp．
Parker，Charles．Co．
Parker－Kalon Corp．
Parker Iust Proof Co．
Parkin，William M．，Co．
＇awtucket Screw Co．
Penn Gilvanizing Co．
Pennsylvania Industrial Engineers
Pennsylvania Salt Mig．Co．
Perkins，B，F．，\＆Son，Inc．
Iheall Mig．Co．
Fhlladelphia Gear Works ．
Pike，E．W．，\＆Co．
Pittsburgh Crushed Steel Co．
Pittsburgher Hotel，The
Fittsburgh Gear \＆Machine Co．
Pltsburgh Lectromelt Furnace Corp．
littsburgh Rolls Division of Blaw－ Knox Co
Plymouth Locomotive Works Division of The Fate－Root－Heath Co．
Poole Foundry \＆Machine Co．
Porter，H．K．，Co．，Inc．
l＇ressed Steel Tank Co．
Progressive Welder Co．
R
Racine Tool \＆Machine So．
Ransohoff，N．，lnc．
Raymmond Mrg．En．，Division of Asso－ clated Spring Corp．
lieading Chain \＆Block Corp．
Ready－Power Co．
Rellance Electric \＆Engineering Co Republlc Steel Corp．
Revere Copper and Brass．Inc．
Rhoades，R ．W．，Metaline Co．，Inc．
IRiverside Foundry \＆Galvanizing Co．
Robertson．H．H．，Co．
Roebling＇s，John A．，Sons Co．
Rollway Bearing Co．，Inc．
Roosevelt Hotel
Roper，George 1．，Corp
Ruemelin Mrg．Co．
Russell，Burdsall \＆Ward Bolt \＆Nut Co．
Ryerson，Joseph T．，\＆Son，lne．
S
Salem Engineering Co．
Samuel，Frank，\＆Co．，Inc．
San Francisco Galvantzing works
Sanltary Tinning Co．，The
Scaife Co．
Schloemann Engineering Corp．
Scovill Mrg．Co．
Scully Steel Products Co
Sellers．Wm．，\＆Co．．Inc．
Shakeproof，Inc．
Shaw－Box Crane \＆Holst Division，
Mannlng．Maxwell \＆Moore，Inc．
Sheffield Corp．，The
Shell Oll Co．Inc
Shenango Furnace Co．．The
Shenango－Penn Mold Co．
Shepard Niles Crane \＆Hoist Corp． Shuster，F．B．，Co．，The
Silent Holst Winch \＆Crane Co．
Simonds Gear \＆Mig．Co．
Simonds Saw \＆Steel Co．
Simonds Saw \＆Ste

SKF Industiles，Inc．
Smith Oll \＆Relining Co．
Snyuler，W．P．，\＆Co．
73 Socony－Vacuum Oll Co．，Inc．
South Bend Lathe Works
Southington Hardware Mfg．Co
Standard Galvanizing Co．
Standard Steel Works
Stanley Works，The
Steel \＆Tubes Division，Repubile stecl Corp．
Steel Founders＇Socicty of America
Steclweld Machinery Division，Cleve－
land Crane \＆Enginecring Co．．．．．．
Sterling Grinding Wheel Div．of The
Cleveland Quarries Co．
Stewart Furnace Division，Chleago
Flexible Shaft Co．
Strom Steel Ball Co．
Strong Steel Foundry Co．
Stuart，D．A．，Oil Co．
Sturtevant，\ddot{B} ．F．，Co．
Sun OII Co．

Wyckoff Drawn Steel Co．
Yale \＆Towne MIg．Co．
Yoder Co．，The
Youngstown Alloy Casting Corp．
Ioungstown Sheet \＆Tube Co．，The
Zeh \＆Hahnemann Co．

Superior Steel Corp．
Surface Combustion Corp．
Sution Enginceling Co．
Swindell－Dressier Corp．
Taylor－Wllson Mfg．Co．
Tennessee Coal，Iron \＆Railroad Co．
Thomas Machine Mig．Co．
Thomas Steel Co．，The
＂hompson－13remer \＆Co．
Tide Water Associated Oll Co．
Timken Roller Bearing Co
9：3 Timken Steal \＆Tube Division，The Timken Joller Bearing Co．
Tinnerman Products，Inc．．．．．Front Cover
Titanlum Alloy Manufacturing Co．．．． 75 Toledo Stamping \＆Mig．Co．
138 Tomkins－Johnson Co．，The
128 Torrington Co．，The
Truscon Steel Co．

U

Udylite Corp．The
Union Carbide \＆Carbon Corb
Linton Drawn Steel Dlv．，Republic： Steel Corp．
United Chromlum，Inc．
United Engineering \＆Foundry Co．
United States Graphite Co．
United States Steel Corp．，Subsidiarles gis
United States Steel FX， 1,1 （o．
V
Valley Mould \＆Iron Corp．
Vanarlium－Alloys Steel Co．
Vanudlum Corporation of Americil
Van Dorn Iron Works Co．，The
Vaughn Machinery Co．，The
Veeder－Joot，Inc．
W
Waldron，John，Corp．
Walker－Turner Co．，In
Warner \＆Swasey Co．
Washburn Wire Co．
Watson－Stlllman Co．，The
Wayne Chemical Products Co．
Wean Engineerins Co．，Inc．．．Back Cover
Weinman Pump \＆Supply Co．，The
Weirton Steel Co．
Welding Equipment \＆Supply Co．
Fellman Bronze \＆Aluminum Co．
Wellman Engineering Co．
Westinghouse Electric \＆Mig．Co
West Penn Machinery Co．
West Steel Castlng Co．．
Wheeling steel Corroration
Whitcomb Locomotive Co．，The
Whitehead Stamping Co．
Whitney Screw Corp．
Wickuire Brothers，Inc．
Wilcox，Crittenden \＆Co．，Inc．
Willams，J．H．，\＆Co．
Wilson，Lee，Engineering Co．
Witt Cornice Co．，The
Wood，R．D．，Co．
Worth steel Co．
\square

 a

129
$-$
3

Abstract

2
ren
有

Aerial Bombs Made from Steel Saved by Preformed Wire Rope

\star By lasting longer, preformed wire rope conserves steel which America greatly needs. For example, it conserved enough steel last year through longer service to make more than 73,000 aerial bombs for our armed forces.
\star Back of the armed forces-in the industries that provide their require-ments-preformed wire rope plays an important part by reducing the frequency of machine shutdowns. This wire rope lasts longer, it steadies production, and is easier and safer to handle. It saves both time and money.
\star Preformed wire rope is an essential to American industry-a necessity for the Nation.

PREFORMED WIRE ROPE

Ask Your Own Wire Rope

 Manufacturer or Supplier \qquad
[^0]: * Computed on steclmaking capacity as of these dates.

[^1]: Aircraft production has increased 50 per cent since Dec. 7 , War Production Chief Donald M. Nelson announced last week in his weekly radio report on the war effort.

[^2]: Materlal appearing in this department is fully protected by copyright, and its use in any form whatsoever without permission is prohibited.

[^3]: The data are based on the yearly earmings reported annuany to stockholders and have not been adjusted to rellect surplus charges and credits. The data are in some respects necessarily approximate rather than exact igures. For example, wages represented in inventory expansion in one year are more properly it subdivision of the succecding year's sales than of the glven years. Taxes are as accrued before adjustments. Products and services are alier approximating inter-company transportation revenues and include miscellaneous income and deductions. Certain of the previously published fisures have been revised-payroll for new construction having been excluded from wages for workers after 1926 and pension payments having been included in wages for workers after 1910; the net amounts of these revisions are shown in products and services bought and batance remalning items. ("denotes diffelt.)

[^4]: Newark, 15 Washington Street
 Cbicago, 565 W. Washington S
 Detroit, 2842 W. Grand Boulevard Cincinnati, 507 American Bldg.

[^5]: Edge preparation: 2 A-square; 2 B and $2 \mathrm{C}-$ no nose
 tJolnts: $3 A$ is 60 -degree vee, $1 / 6$-Inch nirse; $3 B$ is 60 -degree vee, $\frac{7}{4}$-inch nose; $3 C$ is 45-degree vec, i^{3}-1nch nose.
 SDimenston A is i-inch ror 4 E , $\dot{4}$-inch for 4 D .
 ftige preparation: Square for $1 / 4$-inch thickness and 30 -degree vee for $1 / 2$ and it-inch thickness.

[^6]: EUROPEAN IRON, STEEL PRICES
 Dollars at $\$ 4.021 / 2$ per Pound Sterling
 Export Prices f.o.b. Port of Dispatch-
 By Cable or Radio

 | | BRITISH
 Grose Tons f.o.b.
 U.K. Pórts | |
 | :---: | :---: | :---: |
 | Merchant bars, 3 -inch and ove | \$66.50 | |
 | Merchant bars, small, under 3-inch, re-rolled. | 3.60 c | 2000 |
 | Structural shapes........................... | 2.95 c | 15100 |
 | Ship plates.. | 2.90 c | 1626 |
 | Boiler plates | 3.17c | 17126 |
 | Sheets, black, 24 gage.......... | 4.00 c | 2250 |
 | Sheets, galvanized, corrugated, 24 gage. | 4.61c | 25126 |
 | Tin place, base box, 20×14.108 pounds | 86.20 | 1109 |

