

Electromagnetic method reveals defects in heat-treated parts. See Page 70

EDITORIAL STAFF
E. L. Shanfit

Editor-in-Chief
E. C. Knifutzaeme

Editor

A. J. Main	G. W. Biadsall
Mnnaging Edior	Engineering Edior
J. D. Knox	Guy Hunnand
Sreel Plank Editor	Machine Tool Edigor

Ahthun F. Macconoche
Contributing Editor
D. S. Cadot

Art Editor
Associate Editars
G. II. Manlove, W. G. Gube, W. J. Camreele Nev Yorl
B. K. Phice, John H. Calinell, L. E. Browne Pitishurph, R. I.. Hantford Chicago, F.. F. ISoss Detroit, A. H. Aleen IVashinglon, L. M. Lams Landon, Vincent Delirort

Assistant Editors

J. C. Sulifan, Jay DeEulis, La Verne Nock D. B. Wilkio

QUSINESS STAFF

G. O. IIAys

Business Manager K. Cu Japnke

g Мапа

C. 11. Halley

Vew York, E. W. Kineutzeehc, K. A. Zollnen Pirrsburgh, S. II. Jasper, B. C. Snell
Chicago, L. C. Pelatt

Cleteland, H. C. JaEnke, D. C. Kieyen Los Anfeles, F. J. Fuller
J. W. Zubun

Circulation Manager
Main Offlce
Penton Building, Cleveland, Ohio

Branch Officas

C O N T E N T S

 Volume 111-No. 3 J J 引July 20, 1942

NEWS

WLB "Stabilizes" Steel Wages By Directing Compromise Increase 4^{2}
Sponge Iron Experiments Would Retard War Effort, Metallurgists Report 45
Men of Industry 48
Obituaries $+9$
Plate Allocation Plan Should Be Extended to Other Products, Says Buyer 50
Priorities-Allocations-Prices 51
Special Electrical Specifications for Machine Tools Banned by WPB 55
Brass, Bronze Foundries Under Allocation Classification July 31 56
Increased Production of Domestic Chromium Sought by Bureau of Mines 56
Believes Diesels and Synthetic Oils Preclude Nazi Defeat for Lack of Fuel 57
Processes To Produce Aluminum from Ores in U. S. Analyzed 57
Labor 66 66
Dwindling Steel Warehouse Stocks Worry Eastern Manufacturers 105
Activities of Steel Users and Makers 107
Recovery Corp. To Thaw Frozen Steel Into War Channels 112
FEATURES
Behind the Scenes with Steel 4
Highlighting This Issue 39
Editorial-Government By Expediency Is Our Great Wcakness $+1$
Windows of Washington 52
Mirrors of Motordom 59
Wing Tips 62
The Business Trend 67
Industrial Equipment 92
New Business 129
Construction and Enterprise 132
TECHNICAL
American Industry Shares Its "Know How" To Reveal Shortcuts 7°
Flame Hardening Cylindrical Surfaces 76
Nonmetallic Bearings for Steel Mill Service 78
Handling Refractories 84
New Alloy Steel Applications 86
Keep Your Welding Machines Welding 88
PRODUCTIONSteclworks Operations for Week47
MARKETS
Steci Output Meets Heavy War Needs 115
Market Prices and Composites 116
Index to Advertisers 140

WITH THE HELP OF YOUR GraybaR LIGHTING SPECIALIST

You know that better lighting can stimulate production, reduce rejects and improve morale . . . but are you still concerned about the complexity of the changeover, and the time and money it will require?

Lighting of the highest SEEING QUALITY can be simpler than you think. The basic requirement is that it be correctly chosen to fit the visual task with adequate provision against glare and shadows.

The Graybar Lighting Specialist can help you "light up" for war work in a way that's simple and practical under present conditions. Whether your need is for fluorescent or incandescent, direct or indirect, indoors or outdoors, he has the facts on what's available and the experience to see that it's correctly applied.

To take advantage of this or other specialized Graybar services on signaling, power apparatus, and the like, just call your local Graybar office.

WHY HIS RECOMMENDATION TO YOU MAY BE

Siloray

SPEED-LIGHTS

SILVRAY SPEED-LIGHTS are the SIMPLEST source of lighting of high seeing quality, thanks to the light control principle of the silvered-bowl lamps. This means low first cost.

The reflector-hood serves as a self-contained ceiling, making possible efficient redirected lighting regardless of ceiling construction. This means low operating cost.
As quickly installed and easily moved as an ordinary open reflector. Can be cleaned and relamped by inexperienced employees. Widely applicable to present outlet spacing, using 150-200-300-500 or 1000 watt silvered-bowl lamps.

HIGHLIGHTING

this issue of 『『㔷を

NEWS

National War Labor Board＇s de－ cision in the＂little steel＂case is not likely to please anybody－and it certainly does not serve to advance in any way the cause of a stabilized labor policy（p．42）．E．L．Shaner， STEEL＇S editor－in－chief，cites the decision as an－ other example of government by expediency （p．41）．

Now that war production is approaching peak volume，Donald M．Nelson（p．60）stresses the danger of paring＂our civilian economy down too fine＂．This is the first encouraging word that has been given to non－war manufacturers in many months．People must be fed and housed， says Mr．Nelson，they must get to and from work，they must have the varied kinds of equip－ ment with which their work is done．

A most disquieting situation looms in refer－ ence to the scrap supply，with a pinch likely to come as early as October（p．115）．News of the results of the present salvage campaign， therefore，is awaited with utmost interest．．．． Germany also has a salvage program under way but is going about it in a somewhat differ－ ent way（ p .52 ）；Hitler has turned the job over to the Gestapo which forces compliance＂or else＂ ．．．．Predictions that the Nazis will be defeated because of shortage of fuel are misleading de－ clares B．B．Williams（p．57）．

PRODUCTION

War work now em－ ploys approximate－ ly $12,000,000$ persons and this total is to be stepped up to about $17,500,000$ by the year＇s end．A serious shortage is seen ahead（p．66）．

Steel ingot output last week rose half a point to 98 per cent of capacity（p．47）．Structural steel fabricators are turning to other types of production（p．115）．

SUBSTITUTION

Sponge iron is an inferior substitute for steel scrap，the processes by which it could be produced are costly and inefficient and still in the experimental stage，and establishment of sponge iron plants would be wasteful in the overall production effort．That is the studied opinion of the Advisory Committee on Metals and Minerals in a report to the War Production Board（p．45）．The report blasts completely the proposal of the Bureau of Mines to initiate a pilot plant program．

Steel has been found to be suitable for produc－ tion of shell cases，says the Secretary of War （p．52）．Ford Motor Co．reports progress in de－
velopment of steel castings for aircraft and air－ craft engines（p．60）．Substitution of antimony for tin is encouraged（ $p .56$ ）．

Fiber containers now are being made on ma－ chines which normally make tin cans（ p .108 ）．

PRIORITIES

Special electrical speci－ fications for machine tools are banned（p．55）．Manufacture of pow－ ered materials handling trucks is restricted．Ad－ ditional industry advisory committees have been established in the metalworking field（p．54）． The Smaller War Plants Corp．has been staffed．

Effect of the Allocation Classification System on brass and bronze foundries is explained（p．56）． Additional uses of tin and terne plate have been authorized．

The only priorities plan that has worked is that involving steel plate allocations；the fea－ tures of this plan should be applied generally， reclares A．S．Harms（p．50）．

Further depletion of steel warehouses makes it difficult for more war manufacturers to pro－ cure needed steel（p．105）．

TECHNICAL American industry is developing many

 shortcuts to speed war production work and many companies are doing everything they can to spread their＂know how＂so other companies can speed their work，too．More than a score of such developments（ p .70 ）were demonstrated by Westinghouse recently．Flame hardening is one of the newer produc－ tion methods that are being used to increase pro－ duction of war material．It has many advan－ tages for cylindrical parts，both on external and internal surfaces．Stephen Smith presents pos－ sibilities of the various procedures developed for such work and explains（p．76）their range of application．

Nonmetallic composition bearings for steel mill service have been improved greatly since their introduction some ten years ago，so now they find many applications in steel mill service（p．78） where they reduce power requirements，permit rolling more uniform section of product，reduce maintenance costs，according to Frank W．Vogt．

R．F．Wyer tells how to keep your welding machines welding．His tips on an effective main－ tenance program（p．88）can do much to help lo－ cate trouble and remedy it as well as to prevent it from occurring in the first place．With the present difficulty of obtaining equipment，main－ tenance information is more important than ever before．

More Plants to Help You Speed War Production

Men and Machines Available Immediately for Contracts or Sub-Contracts

More Middle Western and Eastern companies are continuing to list their available war production plamt facilitics with Inland Stecl Co. Some of these facilitics are summarized below to help bring the manufacturers in contact with "prime" contractors or Government agencies, and thus speed all-out war production.

Write or wire Inland for the names and addresses of any of the plants listed. We suggest that you get in touch with us, even if the plants and manufacturing equipment you require are not listed on this page, as we will gladly forward to you our entire list if you are interested.

Wis. farm mach. mif. has over 6,4,000 sq. ft. mff. sp.. including gray iron fdry, with 15 moulders. Excellent shipping facilities. Emp. 85 men-could operate two shifts. War work desired on machining and assembling. 15,000 sq. ft. warehouse il. sp. Equipment includes: 4 turret lathes, 3 engine lathes, $48^{\prime \prime}$ boring mill, $24^{\prime \prime}$ planer, milling machine, shaper, drill presses, are and spot welders, complete metal working shop and punch presses.

|S-57Nel. shect metal products jol. ber and agricultural equip. mfr. desires war work. Nearly $18,000 \mathrm{sq}$. ft. fl. sp. with 20 to 60 emp . General sheet metal shop includes all types of welding equip. working 28 gal $10 \frac{3}{16}$ ", also other small fabrication. Equip. includes bending brakes, sq. and cir. shears, punch presses, headers, rollers, har folders. seamers, grinders, drill presses, air compressors, etc.

IS-58Wis. sheet metal antomotive stamping and specialties mfr., haf over 14,000 sq. ft. f1. sp. and emp. 35 men per shift. Equip. includes Rockford straight side and open face presses-70 Ion cap. 7" stroke, $2-30$ ion cap. $5^{\prime \prime}$ stroke, 2-15 ion cap. $2^{\prime \prime}$ stroke; flywheel presses, 1-12 ton $6^{\prime \prime}$ stroke and 1-12 ton 11/2" stroke, 1-15 ton 1" stroke; electric seam and spot welders, engine and bench lathes $16^{\prime \prime}$ and $9^{\prime \prime}$ swing, step-toe shaper 12^{H} stroke, slitter milling mach.. drill presses, grinders, air comp., shears, metal forming rolls, brakes and cir. saws. Complete tool room for making own tools and dies.

IS-59
Ohio mifr., two factory buildings over 60,000 sq. ft.; 250 emp. Has complete facilities for war contracl work. 2-No. 4 punch presses $3^{\prime \prime}$ stroke; 1-No. 5 punch press $3^{\prime \prime}$ stroke; 1 Bliss Consolidated 4" stroke; 3 Sheridan embossing presses; 1 Bliss punch press $2^{\prime \prime}$ stroke; other equipment includes 1-6 hand metal brake; 1 Rosback hole punch press $27^{\prime \prime}$. $1-6^{\circ}$ Niagara power shear, 54 Singer sewing machines power driven: I Union special power
driven sewing machine, 1 Bliss metal litter; 1-12" power driven culof saw, - 10 " power driven rip saw; color work equipment; spray guns and silkscreen equipment.
Cf Ohio mfr. equip. for making light and medium weight gray iron and semi-steel castings up to 2001 h . each. Plant covers over two acres, active over 42 yrs. Has capable staff. desires war work sulicontracts.

IS-61Ind. struct. steel shop and gray iron firy... 60,000 sq. ft., 140 men, 18-3 ton clec. hoists, 1 Ryerson friction saw cuts $24^{\prime \prime}$ beams, flame cutting equip.. 2 -angle shears cap. $6 \times 6 \times$ $1 / 2^{\prime \prime}$ angles, 2 wide flange heam punches. punches for angles and flats. 1-sheet shear cap. ${ }^{2}$ " $\times 10^{\prime}, 2$ plate shears 48 x $1 / 2^{\prime \prime}, 2$-electric rivet heaters, 2 -Hanna riveters, rivet hammers, drill presses, reamers, 1-lngersoll Rand air comp., 1-Cincinati press brake cap. $\boldsymbol{T}^{3} \mathbf{I}^{\prime \prime} \times 12^{\prime \prime}$, misc. equip, incl. pipe cutting and thread machine, metal bandsaw, bar shear, ete. Foundry making gray iron castings 5 lh . to 1000 ll).-cap. $71 / 2$ lons per day.
S-0? Mich. machy. and idry, plant hours per month for broaching medium and heavy broach jobs. Machine has 10 ton cap. up to $12^{\prime \prime}$ wide, $60^{\prime \prime}$ long-latest hyd. lype capable of producing most ac. curate kind of surface broaching possible.
(A-S Wis. refrigerator mir. needs - U-U war work subcontracts. Over $158,000 \mathrm{sq}$. ft. fl. sp., incl. warehouse; employing 350. Sheet metal shop han dling anything up to 16 ga.. good shear and folding equip. including all kinds of welding units, conveyorized high-bake ovens, and complete wood working dept. Facilities include punch and drill presses; squaring and cir. shears; press. hending and hox brakes: wood planers: cutoff. hand rip and variety saws; moulders: horing mach.; shapers: jointers; riveters; arc, gun and spol welders: milling mach.; surface grindcrs: lathes and hack saws. Pia.) mir. of electro-plated metal sheets and coils. Complete facil. ities for plating and polishing, with over 89,000 sq. f1. f. sp. and nearly 300 emp. Handling stecl, zinc, brass, copper, tin plate, aluminum-sheets, coils, strip, flat wire all sizes, gages and tempers. Equip. includes electro-plating generatore, sheet buffing machines, coil buffing machines. 8' 16 ga. sq- shears, 4' 16 ga. sq. shear, No. 1 Waterbury Farrell rotary shear. 16 ga. $24^{\prime \prime}$ rotary shears, Hallden $26^{\prime \prime}$ leveler and auto. shear, grinders for enpravers plates, combination sheet and
 crimping mach., 甬" crimp 38" crimping mach... sonring mach.. nickel solutions. eopper. chromium and brass solations.
S-E5 Wis. structural steel plate and ornamental fablocicator, employing 150. Has 37,000 sq. ft. fl. sp. for war work subcontracts. Structural shop equip. incl. $15^{\prime \prime}$ and $40^{\prime \prime}$ cap. punches, 12' bending rolls, 6^{\prime} sq. shear $3^{3 \prime \prime}$ cap.. 6 brake No. 10 cap.. ligh speed shear No. 10 cap., $20^{\prime \prime}$ and $36^{\prime \prime}$ plain drill presses, No. 2 and No. 3 Spindle Barr drill presses, 7 welders. 7 " hack silw, $4 "$ angle roll, grinders and misc. hand tools. Mach. shop has: No. 2 spindle drill press, Fhather shaper 12", 3' and 4' radial drill presses, No. 3 and No. 25 universal mills, $20^{\prime \prime}$ single spindle drill press, 3 Monarch lathes, $26^{\prime \prime}$ planer, $6^{\prime \prime}$ cap. pipe machine, Millholland turret lathe, New Haven lathe $36^{\prime \prime}-10^{\circ}$ hed. Davis Key seater, and Racine power hack saw.
S-EC Nationally known Mo. stove mif. desiring direct or subomract war work, with complete equip. for metal forming incl. punch presses. brakes, and shears, also prepared to do heat treating. Large cap. for gray iron work up to 500 lls . per unit. Approx. 300,000 sq. fı. of sp. on R. R. siding.
IS-67 Imd. structural steel falurica. tracts or sub-contracts. Able to begin work at once. Complete fabricating shop, blacksmith shop, templet shop and two warehouses. Thirty-eight years' experience in light, heavy riveted and welded structures. Facilities for puncling. shearing. forming. bending. riveting and welding. Snall mach. shop equip. Ample room for receiving and shipping or outside fabrication and assembly.
IS-U8 Sollterm Mich. apriculumel \& hdwe. spec. mfr. with 30,000 sq. fi. fl. sp., wants sheet metal or assembly work. Equip.incl.elec. punch presses, and power shears--14 ga. cap. all widhs: high speed spot welders. Sheet metal shop incl. rollers, brakes. folders; tin shop; soldering fres.; modern paint larquer spray booths. Ample storage, own RR siding. Capable staff and ample labor.

AS THE EDITOR VIEWS THE NEWS

ゴ『『巴

July 20， 1942

GOVERNMENT BY EXPEDIENCY IS OUR GREAT WEAKNESS

For months the House Ways and Means Committee has been working hard to draft a revenue bill．It has considered recommendations of the Treasury department，heard arguments by representatives of taxpayers and weighed the desires of the Executive branch of the government．

From time to time it appeared that the committee was making progress in its effort to produce a sound，equitable bill．But on Tuesday it approved and reported to the House a measure so horribly mutilated by last－minute changes that many of its sponsors could scarcely recognize it．

Commenting on this mutilation，Representative Harold Knudson of Mine－ sola said：＂It is no longer any secret that the present formula was arrived at through a series of trades and shameless logrolling．In all my years on the Ways and Means Committee I have never seen any－ thing like it．＂

Mr．Knudson＇s sharp rebuke is deserved and timely．It applies not only to the tax situation but also to the attitude of the national govern－ ment on many current problems．In effect，he was charging that the tax bill was built on a framework of expediency．He could have added that we are living under a government which governs almost everything by expediency．

Unfortunately，another example of government by expediency came to at－ tention shortly after the tax bill was reported．It was the decision of NWLB in the＂little steel＂case．The board awarded the steelworkers less than half of their requested $\$ 1$ a day increase in wages，but grant－ ed＂union security＂in the form of a maintenance of membership clause and the check－off．In the case of the employes of two companies，a minimum daily wage guarantee was granted．

This decision，like the reported tax bill，is the product of compromise and expediency．It will not satisfy anybody．The wage grant，like the revenue measure，is retroactive－in itself an evidence of delay，in－ decision and neglect of the public＇s interests．

Another disheartening illustration of expediency is the manner in which Leon Henderson＇s lone and gallant fight against inflation is being sabotaged by pressure blocs and by executive leniency．

This nation has reached a stage in this emergency where expediency no longer is a virtue．The time has come for a strong stand on taxes， wages and prices．

Editor－in－Chief

WLB "Stabilizes" Steel Wages by

Directing Compromise Increase

Action contradicts President's anti-inflation program . . .
Maintenance of union membership and check-off granted to
USA in four independent companies . . New demands
expected to develop as result of decision

WASHINGTON

A FEW more holes were shot through the administration's antiinflation program last Thursday by the National War Labor Board which directed a 44 -cent daily wage increase for 157,000 employes of four "Little Steel" companies.
The board also recommended "maintenance of membership" for the United Steelworkers of America -CIO. Maintenance of union membership has been assailed by the steelmakers as the closed shop in camouflage.
To further insure the financial security of the union, the board also granted the check-off.
The WLB's decision generally was viewed as a major battle lost on the home front by anti-inflation-minded officials. It was a blow to OPA Administrator Henderson's efforts to maintain price ceilings. It was considered to be a repudiation of one of the seven points contained in the President's program to prevent run. away inflation.
If the four companies against whom the decision is directed accede to the board's recommendations, it appears probable that the remainder of the industry will be forced to grant similar increases. This will affect about 400,000 more employes.

A pattern will thus be set for determining the demands of automobile workers whose case is pending before the board. Then the aviation workers, and so on, until the increase becomes general.
Steel-with the automotive in-dustry-long has been the bellwether in the establishment of wage rates. Wage increases granted by
the steel industry inevitably are followed by comparable advances in other industries. This happened in 1936, 1937 and 1941.
Actual cost to the "Little Steel" companies-Bethlehem Steel Co., Republic Steel Corp., Youngstown

The recommended wage increase which will be retroactive to the date of certification of the case to the board last February, will raise the minimum hourly rate to 78 censs from the present $72^{1 / 2}$. Basic dails wages will be increased from the
"Do you work for wages? You will have to forego higher wages for your particular job for the duration of the war."-President Roosevelt, April 28.

Sheet \& Tube Co. and Inland Steel Co.-will not be great. Although the wage increase will total $\$ 21,000,000$ annually, 90 per cent or more of this amount will come out of federal profits taxes, as pointed out by the board's fact-finding panel.
For the steel industry as a whole, assuming the increase becomes general, the cost will be about $\$ 70,000$,000 yearly.
If the increase spreads to all wage earners, the total increase in wage costs will approximate $\$ 4,000,000,000$,
present $\$ 5.80$ minimum to $\$ 6.24$. Average steel wages in May were 101.1 cents an hour, or $\$ 40.44$ for ${ }^{2}$ straight 40 -hour week. The new rate will be about 106.6 cents, or $\$ 42.6$ for the straight 40 -hour week.

The board's fact-finding panel it reporting to the full board severa weeks ago found that the average steelworker's income in $1941{ }^{12} \mathrm{E}$ $\$ 1926.72$ and held that the unios "has not sustained its contention that wages in the steel industryan inadequate."
"The government of the United States will not order, nor will
Congress pass legislation ordering the so-called closed shop." -
President Roosevelt, Nov. 14, 1941.
the major portion of which will be deducted from the federal government's revenues.

Thus the gains of the wage earners will in large part become an added burden to persons with fixed incomes, already hit by increased taxes and higher living costs.

The union originally asked for 5 a day increase and the closed shos When rumors of the "compromise settlement leaked out last Wednes day morning through "authoritatur sources"-in advance of the board? official announcement on Thursdar afternoon-CIO leaders bitterly at
tacked those government officials who had been attempting to prevent inflation. Henderson particularly was on the receiving end of the union's criticism.
"OPA Administrator Henderson," read one earlier CIO release, "in. stead of playing shortstop on the

On Wednesday, after intimations of the board's decision had been published in the newspapers, Philip Murray, head of the CIO and of the United Steelworkers, accused Mr. Henderson of seeking to take over wage-fixing powers from the WLB and warned that labor has

"Unless wages are stabilized-that is to say. unless wage ad-

justments are limited to remedying sub-standard and inequitable conditions-cost of living cannot be held."-Leon Henderson, June 5.

President's anti-inflation team, tried to play first, second, third, pitcher, catcher and coach. One day he ap peared as an expert on taxation; the next day he fired salvos of sta tistics at the War Labor Board, attacking labor's request for wage increases to keep up in a measure with the rising cost of living . . . He has yet to devote equal attention to excessive war profits and bloated personal incomes."
"not yet given up its power to bargain for a fair living pay."
Mr. Henderson, incidentally, opposed the inclusion of wages in the price-fixing bill when that measure was before Congress and repeatedly has asserted that wages should not be frozen. Logically, he also has argued against widespread general increases in wage rates at a time when prices of commodities are frozen.

"Terminal" for Present Ratio of

Wages, Prices Sought by Board

William H. Davis, WLB chair man, called the decision a "wage stabilization policy which is based on maintaining the purchasing power of the hourly wage as of January, 1941. He added that it will "lead to a 'terminal' for the present ratio between wages and prices."
The board's opinion on the wage issue was written by Dr. George W. Taylor, vice chairman, and sets forth five "guiding principles." The vote on the wage issue was 8 to $\dot{4}$, with the labor members dissenting

On the union security provi sion, the employer members dissented. This provides that workers who do not wish to be bound by the maintenance clause and the check-off will have 15 days in which to resign from the union.
By unanimous vote, the board recommended a guaranteed mini mum daily wage.

Dr. Taylor outlined the five guiding principles as follows:
"In full recognition of its grave responsibility to the nation, and for reasons later detailed in this opinion, the National War Labor Board has determined that the following guiding principles should be applied in evaluating claims for wage increase:
"1-For the period from Jan. 1, 1941, to May, 1942, which followed a long period of relative stability, the cost of living increased by about 15 per cent. If any group of workers averaged less than a 15 per cent increase, the hourly wage
rate during, or immediately preceding, or following this period, their established peace-time stand ard has been broken. If any group of workers averaged a 15 per cent wage increase or more, their es tablished peace-time standard has been preserved."
"2-Any claim for wage adjustment for the groups whose peace time standards have been preserved can only be considered in terms of inequality or sub-standard condi tions specifically referred to in the President's message of April 27, 1942.".
"3-Those groups whose peace time standards have been broken are entitled to have these standards re-established as a stabiliza tion factor.
" 4 -The board, as directed by the President in his April 27 message, will continue to 'give due considera-
tion to inequalities and elimination of sub-standards of living'.
" 5 -Approximately 20 wage disputes, still pending before the board, were certified prior to the stabilization date of April 27. The question arises in these cases whether wage rates being paid on April 27, 1942, can or cannot be considered as 'existing rates' withir a meaning of the President's message or whether they then had the tentative character of the disputed rates. Due regard must be given to any factor or equality which would be arbitrarily exempt by 'a change of rules in the middle of the game'.
"The guiding principals outlined above insure in general that the claims for wage rate adjustments can be considered on an equitable basis and in a manner which will further the national purpose to stabilize the cost of living".

Dr. Frank P. Graham, public member, wrote the board's opinion on the union security issue. He pointed out that the check-off provided by the board was voluntary since any member of the union had 15 days during which time he can resign, rather than be bound by the check-off, and still keep his job.
"At present, the company forbids the collection of dues on company property, and provides no facilities anywhere for this purpose," he stated. "The problem is further accentuated by the difficulties and complications of many different nationalities and races among the workers, and the widely separated and far-flung locations of mills and homes and the limits of transportation. Since some of the companies make deductions for several other authorized items, due to the agency and causes in which the company believes or has an interest, steelworkers often have the impression that the companies are opposed to the union because they do not checkoff dues to the union.
"The check-off eliminates the picket line for collecting dues and their attendant abuses. The checkoff will save the time of the union later, for settlement of grievances and improvement of production. In
sharing by the company and the union of their common problem there are responsibilities for selfdiscipline and efficient production, through the maintenance of a stable membership and the prompt collection of union dues. This makes for a better and more co-operative company, and a more responsible and more co-operative union.
"The time, thought and energy given tense struggle for organization, maintenance of membership, and collection of dues, necessary and educationally valuable as they
are, should as fairly and wisely as possible now be concentrated on winning the war. The intense struggle to maintain the labor union should, by a stabilization of the union, give way to the larger struggle to maintain the American union as the hope of freedom and peace in the world."

Wage Increases Outrun Living Costs in Automotive Plants

DETROIT
Workmen in automotive plants are

Lieut. Gen. Armold, chief of Army Air Forces, last week congratulated CarnegieIllinois Steel Corp, for development and production of portable steel landing mats for use on air fields at remote posts. Perforated steel sections are 10 feet long. 15 inches wide. Accompanying photos show, above, runways in place at a U. S. outpost: below, an airfield under construction
now earning higher wages, both in terms of dollars and of actual purchasing power, than ever before in the history of the industry, accord. ing to data prepared by the Bureau of Labor Statistics. Overtime work and high wage rates for skilled workmen have advanced the average weekly income to $\$ 50.29$. This compares with $\$ 40.61$ a year ago and with $\$ 30.87$ three years ago. In terms of real earnings, the advance amounts to 40 per cent over 1939, despite rising living costs.

The bureau's statistics are conservative, as new war plants being operated by automotive companies are not included in the study. Including the latter plants, average weekly wage in the industry, for April, was $\$ 54.37$, while in May the figure rose to $\$ 54.89$.

Since early in December, average weekly wages have increased $\$ 9.32$ while the cost of living index has advanced only $\$ 6.55$ a week.

McNutt To Stop Labor
 Pirating in Critical Areas

WASHINGTON
Manpower Commissioner McNutt last week demanded "labor pirating" be stopped, announcing a program for co-operation with managementlabor groups for checking "pirating" between industries. The principal aim is to halt the practice in war industry areas. Where labor and management fail to agree on means, he will act to stop "raiding", he said. He will designate the areas of shortage as "critical labor areas" and will specify critical occupations, permitting such jobs to be filled only through methods approved by government.

Signs Final Amalgamated Pact; No Labor Trouble in 50 Years

GRANITE CITY, ILL.

G. Hayward Niedringhaus, president, Granite City Steel Co., and grandson of the company representative who negotiated the first agreement with the Amalgamated Association of Iron, Steel and Tin Workers, signed the final contract with the union on July 14. He then sent a letter to Ward Walcott, Pitts. burgh, president of the Amalgamated, in which he termed the company's record with the union as "unique in the annals of labor rela. tionships and collective bargaining."
"Our first agreement was signed in June, 1892, and since then annual conferences have been held and agreement reached without any dissensions or cessation of work," the letter stated. "This could not have been accomplished had there not always existed a wide and sympathetic mutual understanding of problems of both men and management. I
(Please turn to page 111)

Development of Sponge Iron Process

Would Retard War Effort, Research

 Council's Committee Reports to WPB
Government "would not be justified in putting money and energy into

it," metallurgists declare, as Congress appropriates $\$ 600,000$ for ex-

periment . . . Explain why it would be "a wasteful diversion"

SPONGE iron is an inferior sub stitute for steel scrap, the processes by which it could be produced are costly and inefficient, and the estab. lishment of sponge iron plants would be wasteful in the overall production effort.

These are among the conclusions contained in a report to the War Production Board by the Advisory Committee on Metals and Minerals, National Research Council of the National Academy of Sciences.

Release of the committee's study followed considerable agitation for the building of sponge iron plants by congressmen and the initiation of a pilot plant program and investigation by the Bureau of Mines, Department of the Interior.

Senator Joseph C. O'Mahoney, Wyoming, who as chairman of the Temporary National Economic Committee, "investigated" the steel industry several years ago, proposed that sponge iron plants be built "at the mouth of every ore mine" (Steel, June 29, p. 44). He said he had been told that sponge iron could be produced for $\$ 5$ a ton less than the cost of pig iron produced by the blast furnace method. Other congressmen, including Senator Harry S. Truman, Missouri, chairman of the war investigating committee, held ideas similar to those of early pro. ponents of the plan.

Congress made available to the Bureau of Mines $\$ 600,000$ under the head of "war prosecution" activities for the development of sponge iron processes. The bureau proposes to build two pilot plants to cost $\$ 500$, 000 (Steel, July 13, p. 60).
The Advisory Committee on Metals and Minerals points out that despite 100 years of effort, the last 30 of which have been extensive, the sponge iron process has gained no headway in this country and
practically none throughout the world.

Contrasting the large capacity of modern blast furnaces with the limited output of sponge iron plants, the committee finds that the latter process would require more manpower, more strategic materials, fuel, refractories, fluxes and ferromanganese than present methods.

Even if high-grade iron ores-much prized in present steelmaking practice - were diverted to the sponge iron process, the resultant product still would contain 6 to 8 per cent of impurities, making the use of it in steelmaking furnaces "extraordinarily costly in rate of out. put" and in labor and strategic materials, the committee reported.

Committee's Summary

Summary of the committee's conclusions follows:
1-The sponge iron process is not new. Having been available basically since before the adoption of the blast furnace and the open hearth, and having been before the iron and steel industry in its present form for over 30 years, the fact that this small-scale method has not been adopted is evidence of its inferiority compared to present large-scale processes.

2-One primary reason for the in. feriority of the sponge iron process is that it is not adapted to such large size units as are the present commercial processes. Also, the necessary automatic materials handling devices, so highly developed and efficient in the present process, are not developed and are not likely to be developed until after many years of operation. Hence, much more labor to do a given piece of work will be required for the sponge iron process.

3-The iron blast furnace and
coke oven not only handle tremendous tonnages of ore, flux, and coke and use a remarkably small amount of labor, but they require practically no repairs over long periods. For example, a blast furnace will run flve or more years without being shut down for repairs. The sponge iron furnace, however, has not been proved to have these advantages because it has never been operated for a long, continuous period. From experimental results, however, one is justified in assuming that furnace repairs will be very frequent and costly in materials, labor and supervision.

4-Sponge iron would represent a poor substitute for scrap as it is inferior in many respects, a few of which are:
(a) Sponge iron is finely divided and porous in nature and hence, is more readily oxidized in the openhearth furnace. Briquetting to overcome the fineness of division creates an additional operation requiring more labor, materials and equipment. Even the briquetted or highly compressed product is still more readily oxidized than scrap, resulting in loss of iron in the slag and the need for more processing in the steel furnace. This would reduce furnace output and require more labor, more fuel and more ferromarganese or other strategic reducing agent.
(b) Sponge iron, even when made from the purest iron ores available and when reduced by hydrogen, contains more impurities, e.g., silica, alumina, sulphur and phosphorus, than steel scrap. This requires the use of additional labor, fuel, fluxes, refractories and ferroalloys and results in a lower output per furnace. Iron ores pure enough to warrant the use of sponge iron in the steel furnace are not available for this use. There is an insufficient supply of such ore for the present needs of our established steel industry. To take such ores away from the present uses would drastically interfere with production, now highly geared to a rate of production never before equalled. And even if this were done, the above disadvantages would exist although to a lesser degree.
(c) The less pure ores that might be available for the sponge iron process would produce a product high in slag-making constituents requiring excessive use of fluxes, refractories, fuel, labor and ferroalloys which would make its use decidedly unwise in present steel melting operations. To build additional melting facilities for this marginal product would be more uneconomic than to build new conventional blast furnace and open-hearth or bessemer plants for reasons stated above.
(d) Unfortunately, the require-
ments for large amounts of cheap gas and pure ores cannot be met in any one locality. To make use of the large amount of natural gas available in Texas, only the very impure Texas ores could be used. To convert the product into steel or a steel scrap, melting equipment would have to be built. The total materials of construction, time for putting into operation and labor required for such a development would doubtless be greater than for the conventional process. This is especially true if viewed in the light that the sponge iron process is still experimental and many months of trial operation would be required before a commercial size plant could be safely designed and built.
e. If coal instead of gas is used as a reducing agent, still more slagmaking impurities such as silica, alumina and sulphur are introduced, making the sponge iron less suited than ever for conversion to steel. Moreover, coking coals are so plentiful and well distributed in the United States that the advantage claimed for the sponge iron process, that it can use noncoking coals, does not hold. Even in Texas the blast furnace being built in Houston to supply pig iron to the steel plant there from Texas iron ores will use coke made from nearby Oklahoma coking coals.
f. These observations are true for electric melting furnaces as well as for fuel fired open hearths. The electric furnace is better adapted to melting sponge iron than the open hearth because its atmosphere is not so oxidizing. Being a more expensive melting unit and requiring electrical equipment and other strategic parts as well as electric energy, such a use should not be considered at this time.

Pig Iron Is Best

5-Whereas sponge iron, as outlined in 4 above is less satisfactory than steel scrap as a melting stock for steel production, scrap is less satisfactory than pig iron. Numerous facts attest to this.
a. The steel industry pays more for pig iron than scrap.
b. The use of pig iron speeds up the steelmaking process; it may be added in molten form to the open hearth; it may be converted rapidly to steel in the bessemer; it makes possible the use of iron ore in the open hearth, thus providing steel direct from ore by a simple means less expensive than by way of sponge iron.
c. It is cheaper to handle pig iron, whether solid or molten, than scrap.
d. The claim often made that sponge iron, being low in carbon content, is purer and better than pig iron, is contrary to the facts. The slag-making impurities in sponge iron are costly to handle and the
low-carbon content is no asset. The silicon and carbon contained in pig iron enter into the steelmaking reaction and make possible the use of large amounts of iron ore in the charge. For example, by using 50 ,000,000 tons of pig iron in the openhearth charge, about $4,000,000$ tons of additional iron may be obtained from direct reduction of iron ore in the charge. This in itself represents an important method for direct reduction of iron ore, far more efficient and practical than the sponge iron method.

Full Use of Materials

6-From the viewpoint of efficient use of raw materials also, pig iron is superior to sponge iron. The by. product coke oven and the blast furnace both make use of all the raw materials going into them. They produce much needed by-products. In addition to the coke oven by-products so essential in our war time chemical industry, the by-product gas is used in the steel plant for melting and heating steel for rolling. The "waste" gas from the blast furnace is utilized in making power, melting steel, etc. The integrated steel plant needs more gas than it makes as by-product and hence wastes none of it. Even the blast furnace slag is put to good use for making cement, building roads or as aggregate for building construction.
7- Because no accurate detailed estimates of the cost of commercial sponge iron plants have been made, one is not justified in comparing plant costs of the sponge iron process with the conventional blast furnace process. However, the blast furnace has the theoretical advantage of lower cost and lower overall requirement of construction material because of its larger scale of operation.
8-Re-examination of the sponge iron process from these angles shows definitely that the process, which has never been operated satisfactorily on a large scale in this country, presents no advantages that would warrant its development at this time. The government would not be justified in putting money and energy into its development as a war measure. Devotion of time of the nation's production personnel to further attempts to commercialize this process would be wasteful. During the emergency those energies should be devoted to getting the most production of steel products possible by present established methods.
9-The steelmaking process as practical in this country is so high. ly mechanized and efficient and car ried on in such large units that the adoption of the small-unit sponge iron process, not possessing mechanical handling equipment and not read-
ily adapted to use it, would be a step backward in our efficient utiliza. tion of labor and materials.

10-The undertaking of a program to produce sponge iron to supple. ment the supply of iron and steel scrap is inadvisable because even though sponge iron would serve as a poor substitute for scrap, it would do so at the expense of labor, fur: nace capacity, fuel and other essen. tial raw materials. The net result would be a loss rather than a gain in overall production.

11--If, as a result of a scrap shortage, open-hearth furnaces be came idle, then the steel plants would use sponge iron, if it were available, in spite of its disadvantages. If the establishment of the sponge iron process requires diver. sion of materials of construction from essential uses such as ships, blast furnaces, aluminum plants, etc., then the value of the availability of sponge iron would be counteracted by loss of production in other places. Hence, it is necessary to weigh the need for sponge iron producing capacity against ils cost in other strategic products. Ac tually it becomes a question as to whether a scrap shortage should be averted by construction of sponge iron capacity or more blast furnaces.

Still Experimental

12 The sponge iron process is not established on a commercial size scale, and experimental demonstra. tions have not proved that large op erations can be established with cer. tainty in any given time. The pro duction of sponge iron is still experi mental and furthermore much test work (costly in terms of steel pro duction) would be needed before sponge iron could be used regularl! for steel production.
13-The blast furnace production of pig iron is a long established operation, efficient in use of labor, raw materials and by-products. Its product, pig iron, is the most satis. factory form of iron from which to make steel. Hence, additional iron to supply the nation's steel re. quirements can best be made by the production of pig iron in the corr ventional blast furnace.
14-There are so many unfavor able aspects to the sponge iron proo ess that its development would appear to be a retardation of the over all war effort. Diversion of ouf iron ores, diversion of electric fur nace capacity or of materials of $c o n$ struction, diversion of raw materials labor and energies would be a higb price to pay for the development of a substantial production of sponge iron whose utility is so questionable The establishment of sponge irop plants would be wasteful in overall productive effort.
15-The undertaking of a large research and development program
for the production of sponge iron as a substitute for scrap is inadvisable at this time. Research and development are justified, however, for the development of a suitable process for making powdered iron for use in the new "powder metallurgy." Since the requirements for powdered iron are measured in thousands of pounds and the current price 10 to 12 cents a pound, processes similar to the sponge iron process should apply. Such a program of investigation is now under development for the War Production Board.

Recommend Sponge Iron
 Plant for St. Louis

Immediate construction of a sponge iron plant in the St. Louis area to cost $\$ 4,000,000$ has been recommended to the WPB by four men who recently investigated a similar plant at Muskogee, Okla.
Those signing the recommendation were H. A. Buehler, Rolla, Mo.; state geologist; Frank J. McDevitt, production contract manager for WPB in St. Louis; Lieut. Col. E. H. Sager, chief of the manufacturing service, St. Louis Ordnance District; and John R. Keyes, WPB manager, Tulsa, Okla.
Purchase of the Muskogee plant, which has a capacity of $2^{1 / 2}$ tons daily, for $\$ 25,000$ and allocation of $\$ 6000$ for moving and re-erection in St. Louis, also was urged in the report.

Plans To Make Sponge from Low-Grade Oregon Ores

Electro Thermic Reduction Co., Y. R. Cornelius, general manager, Cascade Locks, Oreg., reports it will have the first unit of a sponge iron plant in operation within a month. Low-grade ore from the Scappoose and St. Helens, Oreg., areas and iron sand from the Columbia river will be used, it is stated. The first unit will be of 5 tons capacity and it is "planned to expand to 250 tons per ciay" when feasibility is proven. The plant is four miles from Bonneville dam, which will furnish power.

Shape, Piling Output

At War-Time Peak
Increased production of structural shapes and steel sheet piling to keep pace with expanded plate output was announced last week by Reese H. Taylor, chief, Iron and Steel Branch, WPB.

Specific directives issued by the branch resulted in shipments of 481 ,. 182 tons of shapes in June. The previous high mark since the beginning of the war was 451,000 tons in November. Production for the past several months has ranged from 425,000
to 435,000 tons.

PRODUCTION Up
PRODUCTION of open-hearth, bessemer and electric furnace ingots last week rose $1 / 2$-point to 98 per cent. Four districts advanced, five declined and three were unchanged. A year ago the rate was 95 per cent; two years ago it was 88 per cent, both based on capacities as of those dates.

St. Louis-Steelmaking continued at $955^{1 / 2}$ per cent last week. This rate is expected for some time.

Buffalo-Advanced $23 / 2$ points to 93 per cent as Republic Steel Corp. relighted its only idle furnace after repairs.

Chicago-Addition of two open hearths which had been idle for lack of scrap raised the rate $1 / 2$ point to 102 per cent, arresting the downward trend of the past six weeks. No furnaces are idle except for repairs.

Cincinnati-Removal of three open hearths for repairs caused the rate to drop $31 / 2$ points to $881 / 2$ per cent.
Birmingham, Ala.-Unchanged at 95 per cent, 23 open hearths being in operation.

Cleveland - Withdrawal of two open hearths by one interest and ad-

District Steel Rates

Percentage of Ingot Capacity Engaged In Leading Districts

	Week ended		Same week	
	July 18	Change	1941	1940
Plttsburgh	94	-1	99.5	81
Chicago	102	$+0.5$	100	05
Eastern Pa.	96	None	97	86
Youngstown	96	+1	98	84
Wheeling	83.5	+6	91	94
Cleveland	94.5	-0.5	95	63
Buffalo	93	+ 2.5	93	90.5
Birmingham	95	None	90	88
New England	90	- 2	95	75
ClnclnnatI	88.5	- 3.5	85.5	84
St. Louls	95.5	None	98	65
Detrolt	85	- 4	86	95
Average	98	$+0.5$	*95	-88

-Computed on basis of steelmaking capacity as of those dates.
dition of one by another producer caused a loss of $3 / 2$-point to $94^{1 / 2}$ per cent.
New England - Furnace repairs caused a decline of 2 points to 90 per cent.
Detroit-Repairs to four open hearths kept them idle most of last week, lowering the production rate 4 points to 85 per cent.
Pittsburgh-Production declined 1 point to 94 per cent because of furnace shifts resulting from need for repairs.
Wheeling-Regained the 6 points lost the previous week, to $83^{1 / 2}$ per cent, as scrap supply improved.
Central eastern seaboard-Maintained output at 96 per cent for the seventh week. Long idle blast furnace stack has been relighted on basic iron.
Youngstown, O. Steel production rose 1 point to 96 per cent last week, with 76 open hearths and three bessemers in service. Republic Steel Corp. had all eight units in production at its Warren, O., plant, the first full operation in this district in several months. The same rate is scheduled for this week.

Reports New Record

"Continuing the march of recordshattering performances by Chicago district plants of Carnegie-Illinois Steel Corp., the United States Steel subsidiary's South Chicago Works established a new blast furnace production record for the first seven days of July with a total output of 76,129 net tons," company reports. "This exceeded the previous best performance over a 7 -day period by almost 500 tons."

Clifford O. Michards

R. Nevin Watt

Waller H. Evans

Joseph G. Broz

CLIFFORD O. RICHARDS, heretofore assistant purchasing agent, Taylor-Wharton Iron \& Steel Co., High Bridge, N. J., has been promoted to purchasing agent, succeeding R. C. Schaeffer, resigned. Prior to joining the company in January, 1941, he was associated with Fitz Chemical Co., subsidiary of J. T. Baker Chemical Co. Mr. Richards' office will be at the Easton, Pa., plant.
C. W. Meyers has been named special representative in the aviation field with the manufacturer's products division, sales department, American Steel \& Wire Co., Cleveland. Since 1937 he has been assistant manager, metallurgical department.
E. J. Bausch, formerly representative in the Chicago district for Follansbee Steel Corp., Pittsburgh, has become associated with Lapham. Hickey Co., Chicago. The latter company has been appointed sales representative in that area for Fol. lansbee.

Douglas B. Rader, designer and advertising consultant, has been named director of advertising, Lindberg Engineering Co., Chicago. He replaces R. C. Onan, who was recently made Lindberg's district sales manager in Milwaukee. Robert S. Aitchison has been named sales promotion manager.
J. A. Comstock has assumed responsibility for all material control functions and will have charge of the physical and chemical laboratories now established as a part of the inspection department, Pratt \& Whitney Aircraft Division of United Aircraft Corp., East Hartford, Conn.
A. W. F. Green continues as materials engineer with responsibility for material development functions and will devote his entire time to engineering phases of material and process activities.
R. Nevin Watt has been appointed general sales manager, Baldwin Locomotive Works, Philadelphia. He will have general supervision over all sales of the Locomotive and Ordnance Division and Standard Steel Works Division, reporting to William H. Harman, vice president in charge of sales.

Stewart McNaughton will continue as sales manager for steam locomotives; Clyde G. Pinney as foreign sales manager; and Gunther H. Froebel as sales manager, ordnance and general products.

Walker H. Evans has been named sales manager, Standard Steel Works Division, succeeding Mr. Watt, while Joseph G. Broz, formerly sales manager for Baldwin De LaVergne Sales Corp., has become sales manager, Diesel Division.

Jack Singleton, member, American Society of Civil Engineers, and the past 15 years district engineer at Topeka, Kans., for the American Institute of Steel Construction, has been granted a leave of absence for the duration. He has been commissioned a major in the Corps of Engineers.

Ira J. Snader, division manager of Republic Aircraft Products Division, Aviation Corp., has been made vice president of manufacturing of the corporation. He will be succeeded at Republic by Sterling B. Withington, formerly general manager, Brunswick-Balke-Collender Co., Muskegon, Mich. Mr. Snader joined

Aviation Corp. in December, 1940, and eight years before that was in charge of standard machine tool de. sign and production, Ex-Cell-O Corp., Detroit. He is vice president and a director, American Propeller Corp., subsidiary of Aviation Corp., and he will continue to have his office in Detroit.

Lincoln Johnson, vice president in charge of the foreign department, Manufacturers Trust Co., New York, is now serving as an advisor to the Metals Reserve Co., Washington.

Raymond C. Cosgrove, vice president and general manager, Manufacturing Division, Crosley Corp.. Cincinnati, has been re-elected a director, Radio Manufacturer's Association for a term of three years.

William W. Miller has joined the executive staff of Stewart-Warner Corp., Chicago, as head of its legal department. He formerly was associated with the firm of Tenney, Sherman, Rogers \& Guthrie, Chicago.
P. D. May has been appointed South Carolina farm products agent for Tennessee Coal, Iron \& Railroad Co., Birmingham, Ala., suc. ceeding D. D. Whitcomb, who has been promoted to farm products marketing agent at Birmingham. Mr. May's headquarters will be in Leesville, S. C.

James C. Tweedell, since $193{ }^{\circ}$ manager, export division, York Ice Machinery Corp., York, Pa., has as. sumed duties of general sales manager for the duration. He succeeds John K. Hertzler, who has undertaken a special assignment in a ci-
vilian capacity with the Army-Navy Joint Munitions Board, Washing. ton.
S. P. Kinney, formerly vice presi. dent, H. A. Brassert \& Co., has formed his own company, known as S. P. Kinney Engineers, to handle the manufacture, sale and installation of all accessory equipment previously made and distributed by the Brassert organization. (Steel, July 6, p. 71). Headquarters are at 233 Oliver avenue, Pittsburgh.

Joseph A. Elwood, until recently factory manager, Hydraulic Division, Sundstrand Machine Tool Co., Rockford, Ill., has been appointed general works manager, George Gorton Machine Co., Racine, Wis. Well known in machine tool circles, Mr. Elwood was for 19 years associated with C. W. Nash of

Josewh A. Elwood

Nash Motors, and was division superintendent in charge of tools and production of the Racine division from its inception. Later he was associated with the Ajax plant of Walker Mfg. Co.
S. H. Mortensen, engineer in charge of A.C design for ten years, has been named chief electrical engineer of the Allis-Chalmers Mfg. Co. plants at West Allis, Wis., Cincinnati, Boston and Pittsburgh. He joined the company in 1905.

Ernest S. Jefferies has been elected president, Universal Boring Machine Co., Hudson, Mass. Charles A. Clarke has been elected vice president and chairman of the board; Joseph Wiggin, vice president, and Alson H. Goodsell, treasurer.

Philip W. Frieder, Philip W. Frieder Co., Cleveland, has resigned as vice president, Institute of Scrap Iron and Steel Inc., Washington. His resignation follows his acceptance of

S. I. Kinney
the post of technical consultant on scrap to the Metals Reserve Co. Everett B. Michaels, Hyman-Michaels Co., Chicago, treasurer of the institute, has been elected vice president succeeding Mr. Frieder, while Hiram Winternitz, president, Charles Dreifus Co., Philadelphia, has become treasurer, replacing Mr. Michaels.

Dr. V. E. Wellman has been named manager of the newly created chemical and pigments department of the purchasing division, B. F. Goodrich Co., Akron, O. Dr. Wellman formerly was special technical assistant to T. G. Graham, vice president in charge of manufacturing.

George J. Cossmanm, associated with Graybar Electric Co., New York, over 42 years, has become assistant district manager of the company's central district, with headquarters in Chicago.
T. H. Beecher has become manager of Graybar's Indianapolis office, succeeding A. J. Callaway, who has been appointed a major in the Air Force.

E. S. Jefferies

DIED:

Arthur K. Reading, 59, assistant chief, Forgings and Castings Unit, Iron and Steel Branch, War Production Board, Washington, July 8, in that city. A graduate of Purdue University in 1905 with a bachelor of science degree in mechanical engineering, he joined the Office of Production Management, predecessor of WPB, in October, 1941. Prior to that he was associated with Zimmerman Steel Co., Bettendorf, Iowa, as general manager, and mechanical engineer, Bettendorf Co.
S. Houghton Cox, 62, vice president and a director, Cleveland Twist Drill Co., in Pasadena, Calif., July 12. After he was graduated from Williams College in 1904, Mr. Cox joined Cleveland Twist Drill, founded by his father. Mr. Cox's brother, Jacob D. Cox III, is president of the company.
A. .J. C. Robertson, 65, head of the naval architect department, Fairbanks, Morse \& Co., Beloit, Wis., July 10, in that city.

Harry T. Colling, 52, president, H. T. Colling Co., Cincinnati, in that city recently. He was head of the Cincinnati Die and Toolmakers Association.

Edward N. McKinney, 85, associated with James McKinney \& Son, Albany, N. Y., fabricators of structural steel and iron work, July 12, in that city.

Emmett K. Conneely, 58, manager of railroad sales, Republic Steel Corp., Cleveland, in Pittsburgh, July 10. Prior to joining Republic in 1933 he was vice president, Standard Steel Car Co., Pittsburgh.
J. G. McMillan, 47, secretary, J. N. Landay Co., Pittsburgh, July 11. He also was secretary, Pittsburgh chapter, Institute of Scrap Iron and Steel Inc.

John R. Bucher, 55 , sales manager of the Canton, O., division of Hill Acme Co., Cleveland, July 8 , in Canton. Mr. Bucher was formerly associated with the Canton Foundry \& Machine Co.

Earl C. Moss, 71, district manager of the Chicago office, Morse Chain Co. division, Borg-Warner Corp., from 1905 to 1938, and thereafter consulting engineer, at his home in Kenilworth, Ill., July 8.

Plate Allocation Plan Should Be Applied to Other Products, Says Buyer

By W. S. HARMS

THE PRIORITIES situation as it relates to all steel products except plates appears to be getting worse every day. Any buyer will agree that since the plate allocation plan was established, with its monthly filing of the PD-298 application form and the PD- 299 consumption form, he knows "where he is at"-on steel plates.
He prepares a list of his minimum requirements monthly, and assuming he is doing important defense work he generally obtains what he needs. In any case, the War Production Board approves or disapproves his application.

Consumers, however, are discovering that bars, billets and structural shapes are not coming through -even though on order with an A-1-a rating for a long time.

Plates were supposed to be one of our most critical items, and for that reason the PD-298 application form was introduced. The result has been that each user has obtained plates for war work; inventories have been used to the fullest extent; production has been flowing smoothly on a monthly schedule, and our national capacity has been equitably distributed.

When it was first introduced four months ago, buyers complained against the paper work the plate allocation program caused them and their stores departments. Now we realize it has forced us into good procurement and stores practices, and has enabled WP'B to do a good job of caring for our requirements on a month-to-month basis.

Before the plan was put in effect it was almost impossible to obtain plates except with an A-1-a. Today they are approved for rolling on the basis of end-use, as shown on PD-298.

If a production run were to require plates and bars for an important Army job with an A-1-a rating the following sequence probably would be noted:

Order No. 100P for 40 tons of plates entered June 24.

Required Aug. 30.
Plate requirement form PD. 298 for August showing the above order filed on June 30, with the producer and WPB.

July 25 buyer is advised P.O. 100P is approved for August rolling.

Shipment made Aug. 30.
Order No. 101B for 20 tons of flat bars entered June 24, 1942. (Same time as plate order).
Required Aug. 30.
About July 25 the user asks the
steel producer for a promise.
When a reply is received it prob. ably is to the effect that in view of the fact the mills are operating 95 per cent on allocations the producer can make no promise, even on an A-1-a item, and suggests the user get an allocation.
If the item is an odd size it may be included in some rolling and possibly show up the day after much time and money have been spent in securing part of it from warehouse.
In summary, the buyer does not know what may happen and in selfdefense the production department makes up schedules on the basis of inflated requirements, ordering way beyond actual immediate needs.

It is appreciated that the M-21-C plate order with the PD-298 and

Abstract

THE AUTHOR has had extensive experience with government priority regulations-first for a large steel corporation in a mid-western manufacturing district and more recently as a buyer for an equipment manufacturer. He has studied the rules trom producers' and consumers' viewpoints. Last week there were indications the government is preparing to put in effect the changes he has advocated and which are explained in this article, written for STEEL.-THE EDITORS.

PD-299 forms has caused a great deal o1 work. But it has in the long run saved time-and, more important, has saved steel. The officials and the clerks in WPB who have made it work deserve praise. Since this system has worked so well with sted piates, let us give serious eonsideration to using it for other basic products, such as billets, shapes and bars.

According to producers the chief difficulty today is not the rolling space but the steel supply. This situation would selp clarify the application of the PD-298 system to the other commodities, since it would in effect be not so much an application for rolling space as it would be an application for the ingots necessary to roll the item.

Carbon steel billets could easily be harcled on the present plate fiom, or one similar to it. If on July 30 all consumers were ordered to submit to producers-a copy going to W.PB - a list of all billets needed by Sept. 30, the steel producers could file with WPB by Aug. 15 the tctal available for billet and other
cornmodities. On the basis of the end-use stown, WPB could then allo. cate or approve the most important orders, to the limit of available capacity.
The first result of a general ap. plication of the plate order would be that consumers would find they did not need nearly as much tonnage of billets, bars and other commodities as they thought they did. It would relieve pressure on producers. It would let the user know where he stood within six to eight weeks after placing his order, and it would give him delivery within ten to 13 weeks.

The resulting benefits to the war production program and to the eco. nomic condition of the industry when the war is over would be incalculable.

It may be objected that rolling cycles of many structural shapes and bar sizes stretch over much more than a month's period. This is true whichever system is used to schedule the mill, but arrangements could be made to approve the nec. essary steel for rolling, the actual rolling to take place in the normal sequence, even if eight weeks later. And it would not be necessary to make the ingots or billets and lay them aside to await rolling, since an arrangement could be made to give the steel producer a certain amount of free tonnage each month for contingencies. The approved steel would go into this contingency reserve in the month that it is approved, and it would be taken from it in the month of the first rolling of the product ordered.

If this, or similar system were instituted it also would call for a consumption and inventory report on the commodity involved, similar to the PD-299 form on plates. The effect of this report should be noted for it has forced a revamping of inventory and stock applications in many plants, to their benefit as well as to the benefit of the critical material situation.

The new Allocation Classification system as outlined in Prioritics Regulation No. 10 seems to be "a good idea with no place to go." Surely one does not expect the steel producer to take the responsibility of rolling a USA 4.30 (Priority A-1-a) before a USN 7.30 (Priority A-1.a) if he has not enough capacity to roll both. And to roll the order of the oldest date is just dodging the issue.

However, if we would establish a monthly application form for each important steel commodity showing a new end-use code, the proper WPB branch could immediately decide which was the most important for the month in question. A month later the item left off would be resubmitted and again reviewed by the authorities who should know which comes first.
If we want to go all out let us
go all out with the one priorities regulation which has been an unqualified success. To win this war we must not only get tremendous production, we must get the right material at the right time. Events are coming so fast that it would be well if we all took stock of ourselves and our requirements every 30 days.

My experience working with the PD-298 in a large steel producer's organization-and now on the other side buying steel for a large con-sumer-convinces me that we can apply the plate allocation system as outlined. In fact, if we do not adopt such a plan or one similar to it, we are in for more difficulties. Perhaps a better system can be worked out, but the Production Requirements Plan is very cumbersome, and the PD-298 set-up is well organized and needs only to be extended with minor changes in the necessary forms and organizational procedures.

Quota System for Each Product And Each Producer Announced

WASHINGTON
In a far-reaching move designed to channel steel output more directly into vital products, Reese H. Tay. lor, chief, Iron and Steel Branch, WPB, last Thursday announced a quota system for each of the vari-
ous steel products and for each producer who makes them.

Purpose is "to balance steel production among the various products needed for war." Thus recent emphasis on semifinished steel for ship. ment abroad, plates, shapes, alloys, rails and rail accessories, and tin plate have resulted in diversion of steel from bars, sheet, pipe, wire and similar products.

By establishing quotas for each product and for each producer, the maximum necessary output of each product will be possible.
It has been the policy in recent months, Mr. Taylor said, to obtain the greatest possible tonnage of steel plates without regard to the effect of this diversion of steel on other products.
The new policy does not mean a decline in plate production necessarily. That will depend upon the relative need for other products and upon the overall supply of steel ingots. Companies which produce only plates will be expected to continue to produce the highest tonnage possible. Those with a diversified line will be expected to fill their quotas of other products before they turn out any over-quota plates.
With the total supply of steel ingots necessarily limited, the quota plan is expected to effect the best possible use of available raw material.

PRIORITIES-ALLOCATIONS-PRICES

Abstract

Weekly summary of orders and regulations issued by WPB and OPA, supplementary to Priorities-Allocations-Prices Guide as published in Section II of STEEL, July 6, 1942.

M ORDERS

M-9-c (Amendment): Copper, effective July 10. Permits use of copper In manufacture of blnoculars and valves for ship use after Aug. 1.
M-81 (Amendment): Tin llate and Terne Plate Cans, effective July 9. Authorzes use of cans on hand or in process on July 1 for certain products, includIng chemicals and paints, previously omitted from permitted categorles of M-81.
M-112 (Amended): Antimons, effective July 11. Removes restrictions on dellverles of up to 50 tons per month of ores or concentrates by domestic mlnes. Permits dellvery of 25 tbs. or less of contalned antimony to any one person in one month, without an allocation. Limits antimony use in ceramic coatings to acld-resistant applications. Permits non-ceramie coatings to use up to 2% antimony.
M-12d (Amended): Iron and Steel Conservation, effective July 13. Extends production ban to additional list of clilian articles. Adds new list of products which may be made without restrictlon for Army, Navy and Maritime Commission. Appeals from order restrictions are to be illed on PD-500 at WPB fleld offices. Until this form is
avallable PD-437 should be used.
M-150 (Amendment): Aromatic Petroleum Solvents, effective July 11. Extends order restrlctions to cover all grades of xylol derlved from coal tar and all other sources.

L ORDERS

I.- 28 (Amendment): Incundescent and Fluorescent Lamps, effectlve July 10. Specifles that restrictions on welght of lamp bases apply only to weight of metals in such bases. Includes Panama Canal among agencles given 90 day exemption from restrictions of the order.
L-29 (Amendment): Metal Signs, effective July 15. Changes provisions under which slgn manufacturers may dispose of frozen inventorles of iron and steel to conform to Priorities Regulation No. 13.
L-33 (Amendment): Portable Lampsand Shades, effectlve July 13 . Permits manufacturers to use existing supplies of parts previously prohibited, provided parts at least partlally fabrlcated and In inventory of manuracturer or supplier prior to March 23, 1942.
L_-39 (Amended): Fire Protective Equipment, effective July 11. Prohiblts man-
ufacture of stirrup pumps or parts except for Army, Navy, Marltime Commission. War Shipping Administration, Defense Supplies Corp. or Lend-Lease Permits assembly of parts contalning no nonferous metals and at ledst partlally rabricated by Jul: 11. Prohlbits use of copper or its alloys in inls ex Ingulshor pumps excent tetrachluride extlngulshers.
L-59 (Amendment): Metal liastering IBases, effective July 11. Restricts manufacturing during four months beginning July 1 by those companies using more than 14,000 tons of metals during 1941 to 10% of average Iron and steel use and to 25% of average zinc use in 1940-41. Small companies restrjcted to 50% for Iron and steel and 35% for zinc.
L-62 (Amendment): Metal Houselnold Furniture, effective July 11. Permits assembly until Sept. 1 of dle castings for Venetian blinds, provided they were fabricated and In stock Miarch 20. contain not over 2% aluminum and cannot be used for any other purpose.
1.-89: Elevators, effective July 9. Requires WPB authorization for manufacturers to llll orders for elevators equipped with other than single speed $A C$ or DC rheostatic control, or equipped with other than manually operated doors or gates; also orders for revised control or other parts and accessorles. Authorization appled for by purchaser on PD-411. PD-562 fled by manufacturers with application for permission to continue production on restrict ed orders already in process.
I.-11\%: Industrial Iower Trucks, effective July 10. Prohibits manufacturers from accepting orders unless rated $A-9$ or higher on PD-1A or PD-3A certilicate. Dellveries limited to orders placed before July 10 and rated A-1-k or higher or to orders placed after July 10 rated A-9 or higher on PD-1A or PD3A. Production llmited after July 10 to standard models, after Aug. 15 to "approved standard models" as subsequently deflned by WPB. Limits use of specifled crltical materials.
1.-121 (Amended): Construction Lumber, effective July 10 . Extends order until Aug. 13.
14-147: Machino Tools, effective July 10. Prohiblts production of tools calling for spectal electrlcal speclilcations after July 15.

P ORDERS

P-73 (Amended): Nonferrons Smelters and Refiners, effective July 14. Permits smelters and reflners of 13 nonferrous melters to contlnue to operate under this order during the third quarter rather than flle applications under the Production Requirements Plan.
P-12G (Amendment): IRefriceration, Ar Condithoning Machiners; issued July 9 , retroaclive to June 30 . Extends ratIngs for emergency repairs to commer clal equipment to Sept. 30.

PRICE SCHEDULES REGULATIONS

No. 70 (Amendment): Scrap and Secondary Lead, effective July 13. Permits scrap sellers to charge buyers for copper contained in terminals of submarine batterles. Provides that maximum prices for copper content of lead-covered copper cable be determined in accordance with Schedule No. 20 as amended.
No. 16 (ifmendment): Zinc Oxides, effective July 9 . Changes effective date of regulation from June 22 to May 11. Permits maximum price of 7 cents per 11. on zinc oxides containing 35% or more lead, between May 11 and June 22.

Nelson receives report on steel expansion program. Some projects canceled . . . Post-war planning started by British and American groups . . . Steel prohibited in more civilian articles

WASHINGTON
A COMPLETE survey-report of the steel expansion program now in progress was submitted last week to Donald M. Nelson, after having been approved by subordinate officials. Just how much of the report will be made public depends on Mr. Nelson's views.

The original $10,000,000$-ton increase planned for steel ingots was increased to $11,000,000$ tons before new projects were canceled recently. It is now recommended that the fig. ure be cut to 9,700000 tons. It is understood also that a pig iron expansion program is recommended in the report, proposing an increase of $10,045,000$ tons in annual capacity.

June War Expenditures
 Increase 6.3 Per Cent

Average daily rate of war expenditures by the federal government in June rose to $\$ 158,600,000$, according to WPB tabulations. This includes Treasury disbursements and amounts paid by the Reconstruction Finance Corp. and its subsidiaries.

June spending compares with an average daily rate of $\$ 149,200,000$ in May, a 6.3 per cent increase. The rate of increase in June over May was lower than in preceding months. Percentage gain in May over April was 10.7 per cent; in April, 12 per cent; and in March, 20.9 per cent.

Half of the nation's factory output now is war materials, according to estimates by the Federal Reserve Board. Among durable goods production, the war share is 70 per cent, the board's figures show.

Hitler Orders Confiscation of All Unused Iron and Steel

Hitler has ordered confiscation of all unused iron and steel in Germany, including finished castings and spare parts, a Berlin domestic broadcast revealed last week.

The campaign will be enforced by the uniformed police under Heinrich Himmler, Gestapo chief. Factory managers who fail to comply with the new decree will be arrested.

Material to be collected, the broadcast said, "includes in particular old iron, unprocessed iron and steel material, of unusual kinds and measurements, half finished iron and
steel material and castings from canceled orders, finished iron and steel products and finished castings which had been stocked by industry and the armed forces as spare parts, but which, owing to a change of types are no longer needed, and, finally, shut-down plants under special conditions.
"The general compliance with metal control will be ensured by the fact that each offense against the natural obligations of the manager falls under penal stipulations of the order of the Fuehrer of March 21.
"Further active support of the total action will be brought about by the uniformed police through a special decree of the Reich leader's S.S."

American, British Groups
 Planning for Reconstruction

British industrialists, through the Federation of British Industries, have laid down far-reaching plans for the post-war period and have asked their government to work out a system of consultations on world problems with the United States.
The federation's "report on reconstruction" concluded that:
"Policing the world against aggression" is basic to post-war economic organization and prosperity.
Some larger grouping of nations economically, regardless of political aspects, appears inevitable, and that this might entail "an alteration of our past conceptions of national sovereignty."
Starting point in the new setup is close co-operation between the United Kingdom and its dominion partners, including India, and the United States, and calls for intimate collaborations with Russia and China.
A primary economic problem will be the raising of world purchasing power.
Economic situation of the British Isles may be so changed by the war that the country may not adapt itself easily to free and unrestricted world trade, and may come into sharp conflict with ideas of the United States.

British policies after the war will depend to large extent on the way in which the United States decides to settle the lendlease accounts.
Study of post-war problems also
is underway in the United States by a staff working under the direction of Undersecretary of State Sumner Welles, and collaborating with some members of Congress.
The study will cover a broad field, including the economic, political and social trends to be taken into account when the peacemakers start to revamp a world disrupted by global war.

Congressmen interested in the study said it would be based on President Roosevelt's program of the four freedoms: Freedom from want, freedom from fear, freedom of speech and freedom of religion.

Steel Replaces Brass in Shell
 Cases; 30 Firms Hold Orders

Substitution of steel for brass in the manufacture of all artillery cartridge cases will take place in the next few months. Disclosure by Secretary of War Stimson of the changeover coincided with announcement last week by the War Department that over 30 manufacturers are now making the new steel cases. They were found by ordnance ex. perts to be "as satisfactory as cases made from brass."
Similar experiments are reported just beginning in the field of small arms ammunition, with preliminary tests showing good results. The switch, adopted to conserve copper, was made after a year of experiments and development work of several industrial firms.

Mr. Stimson stated that another important development in ordnance manufacture is the conversion of steel components formerly produced by forging, casting and automatic screw machine processes to pressed steel.

Prohibit Use of Steel in Additional Civilian Articles

Manufacture of an additional long list of civilian articles has been prohibited by the WPB by an amendment to the iron and steel conservation order, M-126.
Garden tools, hospital equipment, merry-go-rounds, magic lanterns, umbrella shafts and vanity cases are typical of the many items specified in Supplementary List A added to the order. Manufacture of many of these articles already has been stopped by Order M-21, which limits deliveries of iron and steel to preference ratings of A-10 or higher.
A manufacturer of items on Supplementary List A is given 30 days to process iron or steel for these purposes, with a limit of 75 per cent of the average monthly weight of

AMERICAN MONORAIL EOUIPMENT

Heppocomerve Eroay and hroceanesifficiency

AMERICAN MONORAIL Overhead Handling Systems play a vital part in speeding up production in hundreds of plants working on war materials.

American MonoRail Equipment relieves men from lifting and carrying and enables them to give full time to production-keeps materials and products on scheduled routes, without congestion, delay and damage in transit.

American MonoRail Equipment is engineered to meet the particular requirements of each problem. Supplied for manual, electric, or automatic operation. There is no delay or shutdown during installation. Let an American MonoRail Engineer show you how it can be done in your plant.
THE AMERICAN MONORAIL CO.

13102 ATHENS AVENUE

CLEVELAND, OHIO

- Light duty cranes with chain hoists solve the problem of handling heavy castings.

- Easy movement of hard-to-handle loads on a simple power operated MonoRail crane.

IF You Plan to BUILD
The complete facilities of our engineering staff are at the disposal of any company-their architects or engineers-planning to expand or construct new buildings. This service is yours for the asking.
all metals processed by him in 1941. Assembly of these articles is permitted for an additional 30 days.

A new list, C, is added for Army, Navy and Maritime Commission orders. Articles on List C for these governmental agencies may be manufactured without restriction. List A restrictions do not apply to Army-Navy-Maritime contracts until Aug. 4 and Supplementary List A restrictions until 60 days from issuance of order.

No other metal or rubber may be used to manufacture any article, production of which is stopped by M-126.
Appeals, as heretofore, must be fled with the WPB field office for the district in which the plant is located to which the appeal relates. A new form, PD-500, is provided for these appeals. Until PD-500 is available in fleld offices the current form, PD-437, may be used. Final handling of appeals, formerly located in New York, has been transferred to a new appeal branch in Washington.

War Plant Contractors May Obtain Steam, Power Equipment

Limitation Order L-117 has been amended to allow contractors engaged in the construction of indus. trial plants to obtain delivery of heavy power and steam equipment to be used in such plants by exlending preference rating certificates on orders issued to the persons for whom such plants are being constructed. Heretofore, Order L-117 permitted heavy power and steam equipment to be delivered only to the person to whom a preference rating certificate or order was originally issued.

Antitrust Prosecutions Called "Modern Miracle of Propaganda"

National Association of Manufacturers, Washington, in a report on patent litigation started by the Department of Justice, charges Thurman Arnold, assistant attorney general, with engineering "one of the modern miracles of propaganda", to give Congress and public the impression that the patent system inter. fered with the war program. In re ality, the government has long held the power to authorize production for its use at any time of any product, regardless of patents, NAM states.

Processes for production of rubber, aluminum, magnesium, optical instruments, chemicals or other strategic or eritical material or product are "open to preemption by sovernment,"

The report further declared that Mr. Arnold's attack questioned property rights in patents which had been upheld through courts for over

103 years; and that cases of alleged abuse, now subject of antitrust suits, were cited by him as typical examples to justify changing the patent system as a war emergency measure.

Benjamin Schwartz To Head BEW Scrap Metals Section

Benjamin Schwartz has been appointed chief, Scrap Metals Section of the Board of Economic Warfare. Mr. Schwartz was formerly director general of the Institute of Scrap Iron and Steel, and vice president of Schiavone Bonomo Corp., New York and Jersey City, N. J.

The Scrap Metals Section of BEW will have the responsibility of organizing and developing new sources of supply of the scrap metals in the twenty-one republics of North and South America (exclusive of the United States), Africa, Australia and all other countries available to the United Nations, for importation to the United States.

Under an executive order of the President, the Board of Economic Warfare, of which Vice President Wallace is chairman, has been given the responsibility of development, procurement and stockpiling of certain strategic materials, including scrap iron and various nonferrous scrap metals, to be imported to this country.

More Industry Advisory Committees Appointed

Additional industry advisory committees in the metalworking field were appointed last week by T . Spencer Shore, chief of the WPB Division of Industry Advisory Committees. They are:

Industrial Refrigeration

J. M. Fernald, chief, Air Conditioning and Commercial Refrigeration Branch, government presiding officer.
Members are: W. H. Aubrey, Frick Co. Inc., Waynesboro, Pa.; F. H. Faust, General Electric Co., Bloomsleld, N.. J.: D. F. French. Carrier Corp.. Syracuse, N. Y:.: G. A. Heuser, Henry Vogt Machine Co., Louisville. Ky.: H. F. Hildreth. Westinghouse Electric \& Mrg. Co., Springtleld. Mass.: F. D. Kirk, The Vilter Mrg. Co. Milwauker: C. E. Whson, Worthington Pump \& Machinery Corp.. Harrlson, N. J.: P. B. Zimmerman, Airtemp Division, Chrysler Corp.. Dayton. O.: O. Z. Klopsch, Wolverine Tube Division, Calumet \& Hecla Cunsolidated Copper Co. Detrolt: Charles Knox. Baker Ire Machine Co. Inc. Omaha, Nebr.; Marshall G. Munce, York Ice Nachinery Corp.. York, Pa_: G. E. Wallace. The Cteamery Package Mifg. Co.. Chicago: K. A. Weatherwax, Acme Industries Inc., Jackson, Mich.

Forged ixe. Hatchet. Hammer

John L. Hasnes, chief. Bullding Materials Branch, government presiding oftlaer.
Members are: H . W. Conarro. Warren Are \& Tool Cu., Wharnen. Pa.: J. B. Par sons. Mayhew Steel Products Inc., Shelburne Falls, Mass.: Charles F. Grifith. Griftith Tool Works, Philadelphla: L. B.

Hough, Collins Co., Collinsville, Conn., Mark J. Lacey, The Peck Stow \& Wilcox Co., Southington, Conn.; E. S. Mulford, Henry Cheney Hammer Co., Little Falls, N. Y.: K. Clyde Council, The Councli Tool Co., Wananish, N. C.: Fayette R. Plumb. Fayette R. Plumb Inc., Philadelphia; W. W. Rector, American Fork \& Hoe Co., Cleveland; O. A. Rixford, Rlxford Mfg. Co., E. Highgate, Vt.; Sanford S. Vaughan, Vaughan \& Bushnell Mfg. Co., Chicago.

Directors for Smaller War Plants Corp. Appointed

Lou E. Holland, president, Double Rotary Lawn Sprinkler Corp., Kansas City, Mo., has been appointed chairman of the WPB's Smaller War Plants Corp. The corporation was established under terms of recent congressional legislation to aid small companies obtain war contracts, has $\$ 150,000,000$ capital.

Four other directors were named to the board. They are: James T. Howington, Louisville, Ky. Vice president of the Girdler Corp., Louisville, Mr. Howington has been manager of the WPB fleld office at Louisville since September, 1941.

William S. Shipley, York, Pa., chairman of the board of York Ice Machinery Corp., and a leader in the "York Plan" of subcontracting and pooling plant facilities.

Albert M. Carter, Murphysboro, Ill., director and past president of the First National Bank of Murphysboro. He is president of a small company which mines kaolin, near Anna, Ill.
Samuel Abbot Smith, Boston, president of the Thomas Strahan Co. of Chelsea, Mass.

Col. Louis Johnson Appointed President of General Dyestuff

Col. Louis Johnson has been selected to serve as president of General Dyestuff Corp., New York, it was announced last week by Leo T. Crowley, alien property custodian. Control of General Dyestuff Corp. was seized by the custodian July 6.
Colonel Johnson, Assistant Secretary of War from 1937 to 1940, just returned to the United States from India, where he was on a mission as personal representative of President Roosevelt.

General Dyestuff, according to Mr. Crowley, is the sales agency of General Aniline \& Film Corp., dye manufacturing firm which formerly was controlled by I. G. Farben, the German chemical trust, but which has been under government control, since March of this year. Management of General Dyestuff consequently is linked closely to the war effort, and Colonel Johnson's selection as president of the firm was dictated largely by his unique knowl. edge of Army requirements and of the international ramifications of the present conflict.

Special Electrical Specifications

For Machine Tools Banned by WPB

WASHINGTON

TO ACCELERATE the manufacture of machine tools, WPB has prohibited production of tools calling for special electrical specifications.

Special electrical specifications include nonstandardized types of electrical controls, motors, and other equipment not normally used by machine toolmakers. They also include methods of attachment of such ap. pliances which represent departures from the usual technical practices.

Issuance of Order L-147 is expected to expedite increased production of machine tools through simplifying manufacturing specifications. In the past, machine tool purchasers have made a practice of developing their own specifications, with the result that the toolmaker was forced to spend time and effort in analyzing the specifications and re-adapting his production processes for each new order.

Production of machines was frequently held up by inability of the
toolmaker to procure immediately the special type of electrical equipment called for by different types of specifications. Or the opposite situation developed where the toolmaker was forced to accumulate excessive amounts of special equipment to be stored until the appearance of the customer's machine in the production line.
With certain exceptions, machine tool builders in the future will comply with machine tool electrical specifications recently established by the American Standards Association and known as American War Standard Machine Tool Electrical Stand-ards-C74-1942. The standard was developed by the National Machine Tool Builders Association, which requested the American Standards Association to carry it through the ASA Emergency Procedure. Electrical equipment manufacturers, machine tool builders, and users of machine tools, together with representatives of ASA committees

Navy Transport Launched at Long Beach

NAVY transport vessel. U. S. S. DOYEN, slides sidewise down the ways in recent launching at Consolidated Steel Corp.'s Long Beach, Calif., shipyard. NEA photo
on the National Electrical Code, Rotating Electrical Machinery, Electrical Industrial Control Apparatus, etc., were brought together and agreement reached on the final standard.

The standard has been found to provide satisfactory electrification for most purposes, and only under special conditions will machine tool builders be authorized to produce tools which do not comply with these specifications.

Certain exceptions to the WPB regulations are listed in the order. These include orders placed by the Army, Navy or Maritime Commission for their own use and orders authorized by the WPB. Permission for the latter will be considered only if a letter setting forth the reasons why special electrical specifications are necessary is sent in triplicate addressed to the Tools Branch, Ref: L-147, War Production Board.

For orders received before July 15 calling for special electrical specif. cations, provision is made for delivery if the tool builder's engineering department had approved the specification before July 10. Likewise, delivery may be made if the special motor, control, wiring or other device has already been received by the builder or will be received within 30 days after issuance of the order.

If the machine is ready for delivery but is held up because of non-delivery of special equipment, the builder must request the purchaser to take the equipment normally applied by the builder to his machines. If the purchaser declines, the machine is to be shipped with standardized equipment to the next order scheduled under General Preference Order No. E-1-b for which the tool is suitable. Exception to the regulation is made only through permission of the WPB.

Industrial Power Truck Manufacture Restricted

Strict control of production and distribution of industrial power trucks-the types designed primar. ily for handling material in and around factories, warehouses, docks, airports and depots-has been ordered by the WPB.

Effective immediately, manufacturers are prohibited from accepting order for an industrial power truck other than an order rated A-9 or higher on Preference Rating Certificate PD-1A or PD-3A. In addition, no manufacturer may deliver, and no person may accept delivery of, any industrial power truck except on an order placed before July 10 bearing a rating of A-1-k or higher, or on an order placed after that date rated A-9 or higher on PD-1A or PD-3A.

Brass, Bronze Foundries Under

Allocation Classification July 31

WASHINGTON
EFFECT of the Allocation Classification System on brass and bronze foundries obtaining metal was explained last week by the WPB Copper Branch.

The system designating end-use of metals to facilitate allocation will operate after July 31 and must be complied with by foundries. They must report deliveries to customers during the previous month on Forms PD-123A and PD-123B, showing the final end-use of products in each shipment. On the basis of this report, and the application form PD. 59 revised, foundries will be allocated new material to replace that shipped.
That foundries may know exactly how products were used and may report to WPB fully, they must obtain from each customer the appropriate allocation classification symbol and purchaser's symbol, to show the end-use of material delivered on that order. This information is to be included on the purchase order.

Some question exists among foundries as to whether end-use must be reported for orders placed some time ago. The Copper Branch says that any delivery made after

June 30, 1942, must be reported on Forms PD-123A and PD-123B, even though the order was placed many months ago.

Although an order carries a low rating, it may be vital to the war program. Certain orders bearing preference ratings lower than A-1-k may be received and be reported to WPB for possible authorization. Following are end-uses for which the Copper Branch will seriously consider authorizing copper if the orders should bear a rating lower than A.1-k:
Railroads, streetcars, buses, public utilities, maintenance and repair of essential industrial equipment, mines, petroleum industry, waterworks, hospitals and health supplies, maintenance and repair of schools, textile industries engaged in production of material for Army or Navy use, defense housing (critical list) in specific areas designated by the Building and Material Branch as being essential for war purposes, fire-fighting equipment, essential repair for farm machinery, essential repair for elevators, essential repair for food preservation machinery and dairy equipment and essential parts for road-building equipment.

Increased Production of Domestic

Chromium Sought by Bureau of Mines

MORE intensive studies of proc. esses for domestic chromium production have been started by the Bureau of Mines. Congress has made available a $\$ 75,000$ appropriation to finance the studies.

Two of these processes, according to Dr. R. R. Sayers, bureau director, appear destined to increase domestic output. These are (1) A beneficiation process for low-grade ores which has passed successfully all tests so far and has proved to merit large-scale pilot tests to determine best operating conditions for commercial use; (2) an electrolytic method for recovering high-grade chromium from domestic ores.
In seeking more effective means of recovering chromium from the extensive deposits of low-grade chromite ores, particularly in western states, the bureau is operating several pilot plants in its laboratories at Boulder City, Nev. Pilot plant lests show that the new bene-
ficiation method-a roasting and leaching process-is capable of increasing the chrome content of lowgrade ore and of raising the ratio of chromium to iron from about 1.7 to 1 to as much as 30 or 40 to 1. Research by the bureau indicates that it probably will be most economical to produce a residue having a ratio of 5 parts chromium to 1 part iron. When the iron content is lowered, production of standard ferrochromium from the ore thus is facilitated.
Definite recommendations for construction of commercial plants utilizing the bureau's roasting and leaching process will be made when final data are prepared upon com. pletion of the tests.
A third process-known as the sponge chromium process-also was developed by bureau metallurgists and is used successfully on a commercial basis for making high-purity chromium from chromite ores.

The electrolytic method involves
the treatment of an aqueous chromium sulfate solution prepared by extracting chromium from chromite minerals as soluble sodium chromate. Electric energy consumed in obtaining high-purity chromium metal from ores by this method is less than half that required by the usual electro-deposition process, bureau metallurgists report.

Additional Uses of Tin. Terne Plate Permilted by War Board

Tin and terne plate which had been put in process by May 16 and roofings, furnace pipe, and fittings in inventory on May 16 may be used for repairs, regardless of ratings, and on defense housing under an amended version of Suplementary Order M-21-e Amended order also adds certain items to the list which may use tin or terne plate, and relieves warehouses of the necessity for reporting to WPB on Army and Navy orders, but does require the warehouse to obtain a certıfication from its customer on these or. ders.
Schedule A of the original order, listing products which may use tin and terne plate, is extended by the addition of certain kinds of dairy ware, textile spools and bobbins, gasoline tanks, radiators for internal combustion engines, chaplets, skimgates, and tin forms for found. ry use, torpedoes for oil and gas well shooting, and carbide nonexplosive emergency lights. Each of these new permitted uses is restricted as to type of plate, and amounts of tin and terne that may be used in each item.

Net effect of the amendment 1 s to unfreeze certain inventories and to permit additional uses of tin and terne plate, not because the short. age of tin is any less critical, but because the items permitted fill a necessary place in both military and civilian economy.

Substitution of Antimony for

Tin Encouraged; Control Eased
Control over antimony, important pigment base and lead and tin alloy, has been revised by an amended General Preference Order M-112. Supplies of antimony have become relatively more plentiful, and the order as amended will encourage the substitution of antimony for tin.
Chemical derivatives, with the exception of antimony oxide and sulphide, are removed from control of the order. Frit is included.
Amended order frees deliveries up to 50 tons per month of ores and concentrates by United States mines.

Deliveries of 25 pounds or less of contained antimony are permitted to any one person in one month, without an allocation.

Believes Diesels and Synthetic Oils

Preclude Nazi Defeat for Lack of Fuel

PREDICTIONS of an early defeat of Germany which are based on supposed lack of fuel are likely to prove misleading, according to B. B. Williams, president, CooperBessemer Corp., in a letter to the editor of Steel. He states:
"There are two factors which make it much less likely that Hitler will be stopped by lack of engine fuel than is popularly believed. The first is the development in Germany of synthetic oil and substitutes, which are vital in that country because of limited oil supplies but which, of course, are not considered in any discussions of engine fuels in the United States because of our great reserves. The second is the remarkable development of the diesel engine in that country.
"On my last visit to Germany, I had the opportunity, because of my connection with the Cooper-Bessemer Corp., to investigate the production of diesel engines and the manufacture of fuels. Thousands of diesel engines were being constructed in Germany even thenfor installation in tanks, trucks, tractors, trains and airplanes. In Germany, the diesel aircraft engine, as you perhaps know, is a reality, and thousands of Hitler's planes are thus powered. This application of the diesel engine principle to the German war machine has resulied in a tremendous sav. ing of fuel-and has upset the calculations of many 'experts.'
"As you know, the work done by a diesel engine per gallon of fuel, whether it is to propel an airplane, pull a train, or dig a ditch, is about one and one-half to two times as much as that done by an automobile engine. In addition, the fuel is much cheaper.
"But the foregoing facts are rather widely known. The development of synthetics and substitutes in the Axis countries is the factor which really upsets the calculations of those who believe that the answer to the entire problem is merely a matter of adding up the total producions of the various oil fields under Nazi domination and then dividing the result by a figure representing the fuel consumption of the German military organization per day.
"By the beginning of 1939, a tax of 51 cents a gallon had been imposed in Italy on gasoline, and a 36 -cent tax in Germany. The reason? To encourage the development of synthetic and substitute fuels. There also were direct sub-
sidies. At that time, about one quarter of all motor vehicle transportation in the Axis countries was accomplished with synthetic or substitute fuels.
"Gasoline made from coal gases was widely used. Alcohol made from vegetables was blended with straight gasoline. There were experiments with ammonia and acetylene. Some 25,000 vehicles in Europe used compressed gases as fuel. The German motorist, who had to pay 60 cents a gallon for gasoline, could use city gas at a price equivalent to 43 cents a gallon. Fortyone cents worth of methane also
took him as far as a gallon of gasoline. Propane-butane fuel was more expensive-equivalent to 61 cents a gallon-but one tank full took the motorist some 225 miles.
"Other substitutes for gasoline and oil are oil made by hydrogena. tion, pulverized coal suspended in oil and oil 'cooked' from corn, wood, algae, seaweed, leaves and similar substances in combination with limestone.
"It is logical to assume that the rapid growth of synthetics and substitutes in Germany has been accelerated by the war. Although facts are hard to obtain since the war began, on either the diesel engine development in Germany or the synthesis of fuel, it appears to me that enough is known for those who predict an early defeat for Hitler on the basis of fuel exhaustion to be more cautious."

Processes To Produce Aluminum from

Ores in U. S. Analyzed by Metals Group

REPORT on procedure to be followed in production of alumina from domestic raw materials has been filed with the WPB by the Advisory Committee on Metals and Minerals of the National Academy of Sciences, National Research Council. Dr. Clyde Williams, Battelle Memorial Institute, Columbus, O., is committee chairman. Report bears the signature of Dr. Zay Jeffries, chairman of the Metals Conservation and Substitution Group.

The document is based on the fact that projected production of metallic aluminum in the United States is now seven to ten times the peacetime rate; also that in the past all our aluminum has been obtained from bauxite, part of which was mined in the United States and part in Dutch Guinea. With the Bayer process there has been an incentive in the dast to use low-silica bauxite since increases in the silica content resalt 111 loss of rapidly increasing quantities of the alumina contained in the ore. Because the war renders it difficult to get ships to bring in bauxite from Dutch Guinea, and because our requirements have increased on so vast a scale, it now becomes necessary to utilize domestic material which would not have been considered under normal conditions.
In repo:ting on a washing process by which the silica content of high-silica bauxite may be reduced, making the ore available for economical treatment with the Bayer process, the committee states that the original plan to add limestone and soda to the high-silica bauxite
and sinter this mixture has been changed. It now is planned, at one plant, first to put all the bauxite directly through the Bayer plant, thus running it entirely on high-silica material. About 70 per cent of the contained alumina will be removed directly. The tailings, or "red mud" (so-called because of the color it gets from contained iron), will then be subjected to the limesoda sintering operation.
The sintered product will be leached and the liquors will be added to the Bayer process liquors. The tailings from this operation will contain very little alumina.
Recovery of alumina from a ton of high-silica bauxite, treated this way, is expectetd to be about comparable to recovery from a ton of low-silica bauxite when treated with the Bayer process alone.
Report recommends consideration of installation of such sintering plants at the other Bayer process plants in this country. It recommends extraction of alumina in millions of tons of "red mud" that have accumulated during the years that the Bayer process has been in use.

It recommends a modifled Pedersen process for production of alumina from clay in which there is no dependence on a Bayer plant. This process, in brief, consists of sintering the clay with lime and subsequently leaching with soda; further research work will be required to develop this process.
The committee reports that work also is going forward with an acid process for the treatment of alunite; this shows promise.

Is a salvage derecine worling in your plants

DETROIT

"DURING this calendar year fac. tories in the United States will turn out war goods of one kind or another to a value of approximately $\$ 45,000,000,000$. Next year, I expect that the figure will rise to seventy or seventy-five billions at current prices, and I do not believe that it can ever rise much above that figure, because I think that is just about the limit our cconomy can stand. The materials which would be needed to get production substantially higher than that simply are not available, and as far as we can see now they cannot be made available. But in any case, getting to the forty-five billion dollar level this year will be a splendid achievement, and raising the level to seventy-five billions next year will be nothing less than mag. nificent."

So spoke Donald M. Nelson, WPB director, to 1300 executives from the automotive industry and its parts suppliers, gathered here July 10 to signalize the first birthday of the automotive council for war production. Mr. Nelson flew here from Washington to address the formal banquet- $\$ 4$ per plate-concluding the day's festivities. He did not arrive until about 5 p.m. and the council staff was biting its

Nelson pays tribute to 'know-how' and ingenuity of automotive industry's management and workers. Urges continued "search for ways of doing more, faster, with less"

collective nails all day for fear inclement weather would force the WPB chief to cancel his trip. A private wire to the capital was being held open so Mr. Nelson could telephone his remarks in the event of an emergency.

The speakers' table at the banquet was a cross section of the brass hats of the automotive industry throughout the Middle West, and seldom has such a collection of industrial talent been assembled at one time. It was significant of how the industry has swept aside all competitive barriers and joined hands in the common task of production. Perhaps also significant was the fervor and enthusiasm shown by the entire assemblage in singing the national anthem prior to the program's start.

Pointing out that the automotive industry's share of war production now represents about one-sixth of the entire national effort, Mr. Nelson emphasized the tremendous responsibility resting on the shoulders of the industry. He noted that in May the industry turned out

ONE of the newest types of Army trucks being produced by the Dodge division of Chrysler Corp., in Detroit, this "low silhouette" model is easier to conceal in brush and tall grass than previous models, and a lower center of gravity also makes tipping more difficult. F. J. Lamborn (right). Dodge production manager. and J. W. Hutching, assistant general sales manager, are shown in the new truck which, with a command-reconnaissance car and an army carryall, will tour Army camps for the next three months to familiarize personnel with the new vehicles
$\$ 63,000,000$ worth of aheraft emgines and $\$ 24,000,000$ worth of tanks, but he added that by the end of this year aircraft engime production must be pushed up to $\$ 150,000,0.0$ a month and tank production must be quadrupled.
"But hrawn alone will not win this battle of mroduction," Mr. Nelson continued. "It lakes brains as well. We have not only got to work harder than we ever worked be-fore-we have got to work more intelligently. We have got 10 find every possible way of making one hour's work do the task of twoof making one pound of vital material do what formerly took two pounds. I am going to ask this industry to take the lead in bringing this about.
"II feel that the greatest single contribution which the attomotive industry will make to our war effort will come right in this connection. One of the finest things I have seen in our war program is the way in which the men of this industry-from engineers and executives all the way down to the men at the benches have applied their knowledge of machines and materials, their know-how in the mass production field, to this very difficult task of getting speedy volume production of munitions.
"The word ingenuity is the key word all the way through. You men have been extremely ingentous in adapting your industry to war production, ingenious in find. ing ways to make an old machine do the job instead of getting a new one specially made for the purpose, ingenious in saving material by cutting down on the size of the casting that goes to be machined, ingenious in working out simple: little steps to save labror and machine time in the fabrication of complicated bits of war materiel.
"If I could give you just one message tonight I would like to say-continue to be ingenious. Never for a moment let up in your search for ways of doing more, faster, with less. You have the chance to revolutionize the whole art of producing for war. And until victory has been won this nation's only thought must be producing for war."

For one of the first times since the war effort began in this country, attention was called to the im-
polamere of socelled civilian pro. duction, The WDIS chtef eautioned that in all alloost effort we cannot make th distmellon between civillan and millisiry production, the milllary effort resting squatoly upon the eiviltan effort, Spedfleally, he sidh, "If we should pare our celvillan seonomy down too the in our of fort to phit every possible bit of sitrength into war production, we should fill stratght finto dlsaster. Propple must be fed and housed and clothed, they must be mble to get to and from work, they must have the virded kinds of equlpment with when thels worls ts done. The proslastlon which is needed in orter
(1) meet that hill of particulars is every bit as important as the production which is needed for actual war goods -and I do not like to speats of it as clvilian production. I much prefer to call it nonmilitiry production."

Granting the importance of letling milliary organizations determine thelr own needs, Mr. Nelson emphasized that the direction of the nattonal economy as a whole must rest in clvilian hands. He predicted that the recently realigned organization of the WPB gives the mathinery by which the proper balance in overall production can be maintained.

This matter of balance in production was cited as the most important single objective toward which the WPB now is working by Robert R. Nathan, 34 -year-old chairman of the board's planning committee, in a press conference here preceding Mr. Nelson's address. Mr. Nathan impressed his audience as a clear-thinking, outspoken individual with a comprehensive grasp of the military and economic situations. Of necessity, his comments were of a broad theoretical and statistical nature since he has had little production experience, h is career having centered around serv-
(Please turn to Page 113)

Ford Experiments with Steel Castings for Aircraft

WXAMPLIES of progtess made by Ford Motor Co, foundry twhmtehns III Hdapthes vast sitee: to alocraft dall wheraft enghe requhements is shown ill H1e two accompanylig 11 . lastratlons. Above ato shown cast stoet eramkense soctlons to teplace forked almmbum alloy. Assombly of tront, center and was sections is shown of the lathe, "pper photo,
 loxs while 14 the right is the freen sathd mold in wheth the cobter soce Hon ts catial. At present the sted ussombly is a llthe heavere than lis
 chamens bte expeded to bring them down to 4 barlty. Steol is Ford No. If amalysils, whth high carbon atad hagh stlkou. Gasthes these pheres matheres pressille of : :llumbum forg
 pirformame datia on sted extstings of this tym at low temperatur ale. (10 saty the lexst. messers.
L.atmer Illustratton shows ath insentobs intaptatton of centedusal gesthes in ith athphame lamding geve
plyot. Hitherto this part has been bullt up by welding 18 soparate pleces of rolled steel into the secHon shown on the table in the foreground. Of the three pieces, the
two at the left are conventional design; the third is centrifugally cast. By casting the part, a saving of 15 feet of welding is achieved, and the part is 3 pounds lighter. In tests,

the casting withstood a load far in excess of design load. Because of the boss on one side, the design does not have a symmetrical cross section; hence in centrifugal casting the mold must be counterbalanced on the side opposite this boss. By this means the rotating mold is brought into balance, except for the sew seconds before it has been filled with molten metal. On the table in the right background is a main strut anie casting which replaces a torging and suves 25 per cent of the wols and fixtures required to machine the forying. To the rear of this part is a single atuminum athoy stamping for the yilot's encosure on a bomber. developer to repber a builtup assembiy nequiring shoces of dies and fivturs for forming and astumbling.

MORE AND MORE Production "ON THE WAY" With Micrafinished Precision

Stock removal, up to $.060^{\prime \prime}$ or $.075^{\prime \prime}$ at rares as high as 65 cubic inches per hour, to generate correct size, straightness and roundness, is the dominant feature of Micromatic Honing. The Micromatic Honing Process (available with Automatic Microsize for bores up to $2^{\prime \prime}$ in diameter and $6^{\prime \prime}$ long) will generate uniform size within
$.0002^{\prime \prime}$ to $.0005^{\prime \prime}$-bore accuracy within $.0001^{\prime \prime}$ to $.0002^{\prime \prime}$-removing sufficient stock to get the desired results. Applications to ordnance have included gun tube honing, before and after rilling -gun case honing-internal honing of recoil cylinders-external honing of recoil pistons-reconditioning in placement of worn gun tubes up to $16^{\prime \prime}$ caliber.

Typical gun barrels regularly honed in production by Micromatic equipment include 50 caliber machine guns- 20 millimeter cannon, 37 millimeter cannon, as well as other and larger calibers up to and including $16^{\prime \prime}$ and $18^{\prime \prime}$, and from $30^{\prime \prime}$ up to 75 feet in length.

External honing of recoil piston rods generates accuracy within .0001" to .0003" and any desirable finish.

Recoil cylinders Micromatic honed. Circular illustration-looking down the bore. The regularity of the eccentric rings (α phenomenon of smooth surface finish) evidences round and straight accuracy generated in typical ordnance applications within $.0005^{\prime \prime}$ to $.0007^{\prime \prime}$ as measured with both star and electric gauges.

Typical of tooling used for honing large caliber guns is this hydraulically actuated tool. This tool was designed for bores $18^{\prime \prime}$ in diameter, 62 feet long.

Abstract

Aircraft engine production at rate of $900,000,000$ horsepower annually in sight . . . Automakers' output has not yet reached that of old-line builders... Standard tools used to advantage

AIRPLANE Enghe manufacture is well on the way to becoming fuly mass production, even in the automotive man's deffintton of the terin. Accordhg to present plans. by the end of 1913, two radial en. shae butders, with thetr allled sup. pllers, will be furbing out someHibse like Alty mbllion horsepower a month. Adet to this the output fom phats supplying latub-cooled engines and the production of some other biteratt engine bulders, and The staghering lotal of $75,000,00,0$ horsepower a month appears likely.

Ihls is far mote horsepower than automobile enghe bulders ever fin'med out even in the most fertile month in thelr molitte hastory. The world has seem nothing like it-athplame mgines at at rate of 900,000 , (0) ho horsepower a searr.

Two suppliers in the madial engine Heht atre Pratt of Whitney and Wrght Aeronatial Corp. They operate about neck-and-neck as fin as volume of output goes and size of individual embines is concernod. It present theme are roughly four stase of matial engines- those in the 150.530 (takeotr) horsepower class, used in traming plames and in tamks: those in the $12(6) .14(\mathrm{H})$
horsepower lange for medium and heaty bombers; those in the 1800 $200{ }^{\prime}$ horsepower category for pursuit ships and bombers; and finally the new super-engines in still higher horsepower class for super-bombers and pursuits now in the preliminary stages.

These two principal builders of radlal engines are not too far apart even on the designs of their respective power plants, but they do have two different philosophies as far as policy for building up to mass production is concerned. The Wright people prefer to build and operate their own plants, although of course Studebaker and Chrysler have now been drawn into their picture. Pratt \& Whitney, on the other hand, feeling that it was a little short on topside personnel to manage and opcmate its own plant, has preferred to license established companies to build its various types of engines. Thus we see Buick, Ford, Chevrolet, Nash-Kelvinator, Jacobs and Continental geating up large plants to supplement the outpouring of Pratt \& Whitney radials firm the sprawling plants at East Hiattord, Comn.
When the automotive companies

 The United Stutus Aumy is Suing meckea by exper tions io the Find diant et

first announced their entrance into the radial engine field, many of the wiseacres nodded their heads sagely and said: "Well, now we will really see some production. These automotive boys will show those rad.al engine people some tricks in turning out stuff in quantities."
It is now nearly two years since Ford decided to go ahead with a large new plant to build P and W engines. Similarly, Buick has spent about 18 months in getting set to turn out 1200 -horsepower P and W's in volume. Chevrolet at Tonawanda, N. Y., has been equipping several plants there for the past year and is just now beginning production. Nash has yet to get under way. Still the total number of engines coming from these plants is only one-tenth of the total number built by Pratt \& Whitney in the: last two years.

Special vs. Standard Tools

This is not intended to reflect adversely on the automotive companies, whose engineers have done a marvelous job, but actually as yet they have taught the licensor no "tricks" in mass production with which it was not already familiar.

One of the most important differences between the general manufacturing policy of the engine builders like Pratt \& Whitney and the automotive companies is in the matter of types of tools selected. It has always been the practice of P and W engineers to lay out any manufacturing process on the basis of using standard types of machines and machine tools to which are added special jigs and fixtures. In contrast to this, the general automotive technique has been to design and build special-purpose machines which can be manned by lessexperienced operators and will turn out parts in greater volume than the standard machines with special fixtures. many of which require skilled operators.
The difficulty with special-purpose machines is that they do not lend themselves so well to accommodating design changes They are fine in production of automobiles, where disigns are more or lese frozen at the start of a model year. They renosent one of the principal reasas why Amerivan automobiles can be built and sold at comparatively bw oss. In amplane ensines small Gesign changes are irtquent. As an examonle, take the case of one Pmat \& whitney engine in which ther wern of changes after engine Went into the graduction line. All of these were effected without interapoing manutacturims, an acheve-

THERE'S MORE THAN ONE SHOT IN THE TOOL STEEL MAGAZINE

F
OR every machining job, there is a tool steel which will produce optimum results as regards the amount of work done per machine hour and per grind.
Teaming up the right tool steel with the job frequently shows phenomenal improvement. For instance, with a connecting rod broach made of DBL High Speed Steel, a well-known engine builder secured 13,533 pieces for the life of the broach, against a previous
best average of 8000 pieces. The increase is almost 70%. A similar company, using $3 / 8^{11}$ twist drills made of DBL, secured an average of 30% more holes per grind than with 18-4-1.

War production calls for the best possible performance from every machine tool, new or old. Let our engineers help you to determine the right tool steels to use on your jobs, for improved results. At the same time, they'll make you familiar with
the best alternate steel, for your protection in the event of possible future shormesses in supply.

Allegheny Ludlum STEELCORPORATION
GENERAL OFFICES: PITTSBURGH, PENNSYLVANLA
ment hardly possible when process Ins equipment is all of the spectal purpose type.
Mued hies been sald about the subleet of tolerances in itrplane en gine manufacturing. As far as dimenstoma! tolerances are concerned, they de not differ radically from alutomotlve practice, But in the mat tel of fits and finishes, there is a shate difference. Fits in an alrplane conglne are much closer than In sth automotive practice, which is to say elenrances are less; finfshes we likewlse much more important, parts In penerad boing machined, Hround and lapped all over, with magmilux inspection relled on to detect mieroseople eracks which mhpht be focal polnts for fattgue faflumes. Shatp eorners and short matlus fllets are "out" in afrplane ehsines for the sime reason.
Cost of building alrplathe engines has been estimated roughly at $\$ 10$
per horsepower, making an engine for a nomber valued at about $\$ 12$,000. Ohviously these costs will come down as volume moves up, even in spite of higher labor costs. How much is not yet definitely established, but a certain propeller manufacturer finds costs down 20 per cent in spite of a 75 per cent advance in wage rates-explained solely by increasing volume and efficiency of operation. Certainly $\$ 10$ per horsepower is far out of line for automobile engines, which come closer to $\$ 1$ per horsepower. But perhaps it is not fair to compare 21 -jewel movements with spring. driven alarm clocks.

Special Form Provided for Raising Aircraft Ratings

Spectal form has been prescribed for use by the armed services in raising the level of preference rat-
ings on orders for planes and parts. Under the terms of Priorities Regulation No. 12, issued June 26, the armed services have been authorized to rerate some outstanding contracts to give preference to a strategic program of military production. In most cases, the higher ratings are assimned only tu individual contracts for specific quantities of materiel.

Aircraft production is carried on largely under open-end, continuing contracts and it would disrupt production schedules to rerate these existing contracts without limita. tion. The new form, PD-4X-1, has been provided for assignment of new ratings to deliveries of specified planes and parts in a definite production period.

Regulation No. 12 permits the assignment of ratings of AAA, AA.1, AA-2, etc., to existing orders of specific authorization from WPB.

Willow Run Plant Nears "Bomber-an-Hour" Goal

FRODUCTION scenes from the Ford Willow Run. Mich. Samber plant. Mane than F 2000 men and women new are nepurted omployed in the tall-mile long. quarter mile wide fictery now solling ait deasincughts off the assombly line in guto glant toshisn. When in tuil pao duction. foretay will deifres a bomber an hour.

Awwnpinging phetas shewr Abse time al hecry piesses thet sinump out bambe: sertions a warking
 orsconbling outer wite sechans lewe sight jos where

HTo wasemblen inme: winge NEX photus

- Hobart Brothers Co., Box ST-722 Troy, Ohio, U.S.A.

Send me at once a FREE copy of the New Hobart Catalog. complete with details and specifications. I'm especially interested in:
\square Electric Drive Gasoline Drive \square Hobart Electrodes]. Send details on the new Hobart Arc Welding Trade School

NAME

LABOR

＂Labor Prioritios＂Announced By U．S．Sorvice at Bulfalo

BUFIFALO

The general fodustrial pleture contlous to leolleet a quilekening in war productlon，but theore are inds－ catlons that lack of labor may soon wheet the upsurge．Leo A．Sweeney， didstidet superintendent of the Unit． ed States bimpluyment Servee，re－ ports that libor＇supply priorthes for war molustites have been establshed ＂as a refd opmothag polley of the service＂．＂These priforthes will be aceorded on the following basls：
1．Fistablishments holding war contracts．
2．Eistablishmonts holding subs． contrates trom was contractors．
（3．Eatablishmmen providing equpment and supples for war con－ tractors or thed subeontractors．
1．All phases of aghentmoe．
5．Essemblal civilian activities such as publie utlithes，tansporta－ thon，hospltals，ete．

12．500，000 Now Employed in War Industries：5，000，000 To Be Added

Will plants tiphlly are drying If the avallable supply of labor， Chatrman Pabl V．McNutt of the War Manporver Commission sald last wow．
Appoximately $12.500,(00)$ persons ate working it dired wat employ． ment，fucluding war phants and tramsportation，power production ath fovernmental employment di－ esely contuected with the was．
＂Wiar cmployment has peactically doubled in the seven months since Peurl Harbor：＂Mlr，MeNutt said．
＂Under present schedules，5，000 （0）mote will be addect to the wat industry force during the last six months of $192 \mathrm{~F},{ }^{\prime \prime}$
Genersal latow shortages are aro Notrot in many war industry cen． ters and will spread rapidy in the next few monthe．
The bew war employment esti－ mate of 12.2 ond（00 compares with मrvionsty amouncer estimates of S，0000 on Awil 1 and 8 govono （13 Jan．1．＇the arerage wat em－ foyment for the last there months at 1041，mast of it＂pretharl blak W6：＂was Raplow the pourth Ghartey fartre in 1.540 was 1.400000
Mr．Nownt！poimexi out that the fotal hacterse ia war emphoyment in the strond quatter totalere EjxD．

 なった。

 （1）Lithont of the stabhyable um
employed， $2,000,000$ or more from housewives，young people，older workers and others not in the labor market．Obviously，the employment of $5,600,000$ by war industry in six months，plus the number taken by the armed forces，has absorbed most of the workers who were immediate－ ly available．We must move more quickly now to utilize our reserves －our women，Negroes，older work－ ers，disemployed white－collar work－ ers，altens and others．＂

＂Serious Manpower Shortage May Develop by Year＇s End＂

Business prospects have become the prospects of the war，according to the Cleveland Trust Co．＇s month． ly Rulletin．

Recent developments make it ap－ pear probable that large numbers of Ameriean troops will be engaged in
combat，and that shortages of civ． ilian goods will be severe．Our worst shortages from the national point of view are going to be those of scarce materials of man power，and of ship－ ping，it states．

Probably shortages in civilian goods will begin to be generally felt at about the time that there is gen－ eral realization that the man power shortage is becomirrg serious．This situation might develop by the end of this year．

American Gear Manufacturers As－ soclation，Wilkinsburg，Pa．，reports industrial gear sales in June were 12.7 per cent below those of May and 24.7 above June，1941．Total for six months ending with June was 35.6 per cent above the comparable period last year．The compilation does not include automotive gears or gears for high－speed turbines．

Steel Plate Shipments－by Type of Mill

THE BUSINESS TREND

Activity Index Revised To Meet War Conditions

IN ORDER to reflect industrial activity under wartime conditions more accurately, Steel has revised its index of activity in the iron, steel and metalworking industries.

Originally the index was based upon four indicators -steelworks operating rate, electric power output, revenue freight carloadings and automobile production. Weekly figures were used. The weights allotted to these factors were $40,20,20$ and 20 respectively.

Several wartime developments have tended to outmode this weighting. Automobile production was curtailed to the point where it was not a criterion of
the activity of the facilities of the automotive industry, now largely engaged in war production. Steelmaking capacity has been and is being expanded at a rate far above normal. Thus the steelworks operating rate does not reflect the steady increase in actual production caused by increases in capacity.

To compensate for these wartime conditions, Steel has dropped automobile output as an ingredient of the index and has weighted steel at 50 , power output at 25 and revenue carloadings at 25 . At the same time it is using a figure for steel which relates the weekly operating rate to periodic increases in steelworks capacity.

These changes have the effect of lifting the index appreciably. The current figure of 167.1 would have been 140 on the old basis. The new method of calculation has been carried back to Jan. 1, 1942. The year 1926 remains the base year.

STEEL's index of activity gained 1.2 points to 167.1 in the week ending July 11:

Week Eniled 1942	1941	Mo. Data	1942	1941	1940	1939	1938	193*	1936	1935	1934	1458	193\%	1931
May 9...... 167.7	135.9			127.3	114.7	91.1	73.3	102.9	85.9	74.2	58.8	48.6	54.6	69.1
May 16...... 168.4	136.1	Feb.	165.7	127.3	105.8	90.8	71.1	106.8	84.3	82.0	73.9	48.2	55.3	75.5
May 23...... 168.3	138.6	March	164.6	133.9	104.1	92.6	71.2	114.4	87.7	83.1	78.9	44.5	54.2	80.4
May 30....... 166.2	128.4	April	166.7	127.2	102.7	89.8	70.8	116.6	100.8	85.0	83.6	52.4	52.8	81.0
June 6..... . 168.6	138.4	May	167.7	134.8	104.6	83.4	67.4	121.7	101.8	81.8	83.7	63.5	54.8	78.6
June 13..... . . 169.8	138.7	June	169.4	138.7	114.1	90.9	63.4	109.9	100.3	77.4	80.6	70.3	51.4	72.1
June 20, 169.5	138.7	Juls		128.	102.4	83.5	66.2	110.4	100.1	75.3	63.7	77.1	47.1	67.3
June 27.	138.8	Aug.		118.1	101.1	83.9	68.7	110.0	97.1	76.7	63.0	74.1	45.0	67.4
July $4 \ldots . . .165 .9$	120.9	Sept.		128.4	11.5	98.0	72.5	96.8	86.7	69.7	- ${ }^{\text {c. }} 9$	68.0	46.5	64.8
july $11{ }^{\text {a }}$ 167.1†	133.4	Oct.		133.1	127.8	114.9	83.6	98.1	94.8	77.0	56.4	63.1	48.4	59.2
		Nov.		132.2	129.5	116.2	95.9	84.1	106.4	88.1	54.9	52.8	47.5	54.4
¢Preliminary.		Dec.		130.2	126.3	118.9	95.1	74.7	107.6	88.2	. 88.9	54.0	46.2	51.3

[^0] more accurately reflect ixpanding steel prodaction.

Wrath Mnded	1942	1911	1：40	1949
July 11	97.5	95.0	88.0	50.5
July 4	97.5	92.0	75.0	42.0
Junc 27	98.5	99.5	89.0	54.0
June 20.	99.0	99.0	88.0	54.5
June 13.	99.0	99.0	86.0	52.5
June 6	99.0	99.0	81.5	53.5
May 30	99.0	99.0	78.5	52.0
May 23	99.0	100.0	75.0	48.0
May 16	99.5	99.5	70.0	45.5
May 9.	99.0	97.5	66.5	47.0
May 2	99.0	95.0	63.5	49.0
April 25	98.5	96.0	61.5	49.0
April 18.	98.5	98.0	61.5	50.5
Aprll 11	98.5	98.0	61.0	51.5
April 4	98.0	98.0	61.5	53.5
Mar． 28.	97.5	99.5	61.0	54.5
Mar． 21	95.5	99.5	62.5	55.5
Mar．14．．	95.5	98.5	62.5	56.5

Ghectras Power ontpuis
（MIllan KWHI）

it mintud	1818	1011	（1， 0	10：3
，		11，1．11	－100\％	
Juls 1	3.121	W，sitio		29．1－15
1 unt ${ }^{-7}$	21，16\％	：1，121	＂，（b）	2,8 ， 27
luthe	3，13：－1	－ 4,0610	2.3 （\％）${ }^{2}$	2，36\％
Juthe 1：3	$3,-16.1$	1．14ic	2，（6its	2， 3.41
IUtu	1，412	4． 11.12	3,309	2，3：29
May 10		＋3，924	2.278	2.186
May $\because ⿰ 口 口$	8.8981	8，012	2.589	2.778
luy li	8，457	2.988	2，550	2，735
Mns 9	－1， 3151	－ 3,975	2，514	2，289
Alas	3，3125	－3， 915	3，5（14	2，245
April	3， 3 \％）	2，924	2．4499	114
prit is	3，308	2.874	13，3：58	2，263
1		2，S42	2，540	$\cdots .235$
mint	8．449	\cdots	－ 4 4！ 4	2,244
－	8.848	2，250i	2，524	2，272
r．	4，847	2，tkit	$\because .308$	2，354
14	4．437	－M64	12，550	3，276
	4，301			

Auto Prodnction
（1000 Units）

Wepk pnded	$19+2$	1941	1940	1989
July 11	23.0	114.3	65.2	61.6
July 4	22.7	96.5	52.0	42.8
June 27	22.9	127.9	87.6	70.7
June 20.	23.2	133.6	90.1	81.1
June 13	22.3	134．7	93.6	78.3
June 6.	22.0	133.6	95.6	65.3
Mas 30	21.5	106.4	61.3	32.4
May 23	21.6	133.6	96.8	67.7
May 16.	21.5	127.3	99.0	80.1
May 9	21.5	133.6	98.5	72.4
Muy 2	220	130.6	99.3	71.4
April 25.	21.9	108.2	101.4	86.6
April 18.	21.7	99.9	103.7	90.3
Aprll 11.	23.0	99.3	1019	88.1
April 4	223	116.3	101.7	87.0
Mar． 23	29．9	124.2	103.4	86.0
Mar． 21.	28.9	113．5	103.4	89.4

tCanadian trucks and automobiles and Linited States trucks，since week of Feb． 21 last．

Frelght Me lewhings
（！MN（x）s？

Wixk ratal	194＊	1341	1543	1353
入れご， 5	（2）	ミ－3	－－	6\％t
コにご， 4	7 Ca	7＋	ぶ：	5 xc
	Sik	3 y	\cdots	B8
3－¢ ¢－1	こ0	जn	\cdots	643
2れ！に！	人83	58	－＝	248
こいいい く	－ Cl^{3}	Sk	－\％	（2）
	T2i	\cdots	ざ	308
1tハ3～心．	54	2x	心で	ES5
Mny－isi ．．．	SN0	大亏1	573	625
Mi＊3 ？	5	ぶ，	हैं：	353
M．3：	N0	－2	S2\％	52
	St	\cdots	54	388
Alsir is ．．	ご5	72	が	539
Alyl it．．．．	Ni4	（1）	kis\％	$3{ }^{3}$
Nriti \＄	30	（2）	ミ゙ご	515
Mir！－S	23	ミ2\％	ご	E24

Finished Steel Shipments
U. S. Steel Corp.
(Onit 1000 Net Tons)
$\begin{array}{lllll}1942 & 1541 & 1940 & 1939 & 1938\end{array}$

$\begin{array}{llllll}\text { Jan.. . } & 1738.9 & 1682.5 & 1145.6 & 870.9 & 570.3\end{array}$ Feb... $1616.61548 .51009 .3 \quad 747.4 \quad 522.4$ Mar... $1780.9 \quad 1720.4 \quad 931.9 \quad 845.1 \quad 627.0$ $\begin{array}{lllllll}\text { Apr.. . } & 1758.9 & 1687.7 & 907.9 & 771.8 & 550.5\end{array}$ $\begin{array}{llllll}\text { May. . } & 1834.1 & 1745.3 & 1084.1 & 795.7 & 509.8\end{array}$ $\begin{array}{llllll}\text { June. . } & 1774.1 & 1668.6 & 1209.7 & 807.6 & 525.0\end{array}$ $\begin{array}{llllll}\text { July. . } & \ldots & 1666.7 & 1296.9 & 745.4 & 484.6\end{array}$ | Aug. . | |
| :--- | :--- | :--- | :--- | :--- | :--- | Sept. $1664.21392 .81086 .7 \quad 635.6$ Oct. 1851.3 1572.4 $1345.9 \quad 730.3$ Nov. $1624.21425 .41406 .2 \quad 749.3$ Tot. \dagger. 15,013.7 11707.37315 .5 †After year-end adjustments.

		1940 INGOT PR ED BY AMERICAN IR	1941 ODUCTION		

Steel Ingot Production

(Onit 100 Net Tons)

	Monthly	Total	Weekly	
	1942	1941	1542	1941
Jan.	7,124.9	6,922.4	1,608.3	1,562.6
Feb.	6,521.1	6,230.4	1,630.3	1,557.6
March.	7,392.9	7,124.0	1,668.8	1,608.1
April.	7.122.3	6,754.2	1,660.2	1,574.4
May.	7,386.9	7,044.6	1,667.5	1,590.2
June	7,022.2	6,792.8	1,636.9	1.583 .4
July		6,812.2		1,541.2
Aug.		6,997.5		1,579.6
Sept.		6,811.8		1,591.5
Oct.		7,236.1		1,633.4
Nov.		6,960.9		1,622.6
Dec.		7,150.3		1,617.7
Total	. .	$22,836.9$		1,588,7

Freight Car Awards

	1942	1941	1940	1939
Jan.	4,253	15,169	360	3
Feb.	11,725	5,508	1,147	2,259
March	4.080	8,074	3,104	800
April	2,125	14,645	2,077	3.095
May	822	18,630	2,010	2,051
June	0	32,749	7.475	1,324
6 mos.	23,005	94,765	16,173	9,532
July.		6,459	5,846	110
Aus.		2,668	7,525	2,814
Sept.		4,470	9,735	23,000
Oct.		2,499	12,195	19,634
Nov.		2,222	8,234	2,650
Dec.		8,406	7,181	35
Total		121.499	66.889	57,775

Anerican Indnstry Shares Its "Know How" To Reveal

$$
\begin{aligned}
& \text { PRODUCTION } \\
& \text { SHORTCUTS }
\end{aligned}
$$

MORE THAN a score of new engineering developments and ideas that could be used to help speed war production were revealed in a recent demonstration by Westinghouse Electric \& Mfg. Co., East Pittsburgh, Pa.
Dr. A. A. Bates, who directs chemical and metallurgical work at the Westinghouse Research Laboratories where many of the technical advances were discovered said:
"We believe this demonstration illustrates the willingness of many big companies to şhare their specialized 'know how' with all American industry to help in this national emergency. It is our hope that the thousands of small factories now working day and night on war production will flnd these technical advances helpful."

Devices demonstrated ranged from a simple screw-driver-like cotter-pin spreader, Fig. 21, to the elaborate photoelastic setup in Fig. 4 used to study stresses in huge bolts. The nut and bolt, one of the oldest and most common of all fastening devices, defies both mathematical stress analysis and strain measurement. But with the photoelastic analysis, Dr. M. Hetenyi of Westinghouse Research Laboratories discovered that a nut with either a tapered thread or a tapered lip will increase the effective strength of the fastening as much as 40 per cent.

The discovery was made by using transparent three-dimensional plastic models of bolts. Stresses simulating those in actual service were applied to the models which were held under stress while given a heat "froze" the stresses in the material. When such a model is sectioned and viewed by passing polarized light through it, stress distribution is revealed. Here it showed that maximum stress usually occurs at the thread nearest the bottom of the nut. Using
this information, it has been possible to design turbine bolts in which the stresses were more evenly distributed, greatly increasing their effective strength. Since the nut and bolt is a basic fastener, the technique can be applied to many industries.

Instead of 8 hours, 15 minutes now suffices to determine the grain sizes of metallic powders used by numerous industries in making pressed, molded metal parts. Since the quality of the metal part produced depends on the uniformity of the metal grains, particle size determination is most essential. An electric eye is set up to measure the amount of light passing through a glass tube as shown in Fig. 2. Then 1 gram of the metal powder is mixed with 0.1 quart of acetone and a wetting agent such as isopropyl xanthate and placed in the tube.

Curves Determine Sizes

As the particles settle, the liquid clears, permitting more light to pass to the electric eye. By reading at regular intervals the milliameter that is connected to show light intensity on the electric eye, a series of values are obtained from which a curve is plotted showing the rate at which the specimen clears. Comparing this curve against standard curves for particles of known size, it is possible to determine not only the average size but also the relative quantities of different size particles in the test specimen. Grain sizes as small as 0.00004 -inch can be determined.

A newly developed automatic dew-point recorder employs a new electronic tube that can discover as little as 0.004 of 1 per cent of water vapor in furnace gases used in heat-treating work. The recorder is accurate within 1 per cent of dew-point temperature.

Since it is automatic, it not only frees the furnace operator from the need for frequently checking the furnace atmosphere, but it can be used to make a continuous record, operate alarms, etc.

A new kink makes it possible to tighten the huge alloy steel bolts for high-temperature highpressure turbines without inducing torsional stress. To insure that they have been stretched just enough to produce the desired stress, these big bolts have a hole down through their center for measuring their length before and after tightening.

In the new method, the nut is tightened on the cold bolt until it is snug. Then an electric heater unit is inserted in the hole through the bolt center and the current applied. The heat developed causes the metal to expand, lengthening the bolt. It requires about 5 minutes per inch of bolt diameter for the bolt to elongate enough to allow the nut to be given a predetermined amount of turn. Since some of these bolts are 6 inches in diameter, up to 30 minutes may be required. Then the heater is removed, and the bolt cooled quickly by compressed air. A special micrometer checks the stretch of the bolt, a measure of the desired stress. Permissible tolerance on the measured length is minus 10 per cent to plus 20 . The result is a bolt, tensed to any desired amount, yet without any torsional stress to reduce effective strength of the bolt.
Fig. I shows a number of interesting solutions to problems involved in making dies for molding plastic parts, indicative of shortcuts that have made possible a 400 per cent increase in die production in the Westinghouse moldmaking department during the last year.

Extreme left, Fig. 1, shows a
right-angle piece or bracket. First attempts to drift or press the 0.002 inch step on the end of this piece failed as the distortion in heat treating the die caused this drift to be nullified. A small insert with this 0.002 -inch step was hardened separately and then fitted into the main die, giving the result desired.

The tiny "button" shown being held in the hand in Fig. 1 is made in a 24 -cavity mold, each cavity being precisely the same as the others. The point of junction for the eccentric diameter must be held to an 0.008 -inch radius to as sure both necessary strength and proper clearance.

To do this, the top die of the mold, which forms the head of the button, is hobbed or cold pressed from a master. Bottom dies are bored in a lathe and then counterbored eccentric with a series of special built drill blocks, gun drills and reamers. The 0.008 -inch radius is drifted on this eccentric diameter by means of a master drift which assures the same radius for all the cavities. In final inspections when this 0.008 -inch radius is magnified 65 times, the uniformity of all pieces is established.

Manufacturing Cost Cut

Because of the difficulty of putting the scroll design, second from left, in Fig. 1 on paper, the scroll die at right was machined as a re. duced duplicate of a model that was eight times the size of the die. Proper curvature and shape were obtained by filing this center core and constantly checking against the model.

A simplified method of making die strippers increases the life of metal stamping dies and improves the quality of the stampings. Stripper accuracy is equal to that of the die. Best of all, the manufacturing cost is only $1 / 3$ to $1 / 15$ that of the conventional method, which is to make the stripper from a single piece by laying out, jig boring, sawing and hand filing the slots. Such a piece is shown at E, Fig. 22. It is extremely difficult to obtain uniform clearance in slots by this method-a factor that hastens die wear.

By the new method, a disk A Fig. 22 of the proper grade of tool steel is machined to the outside diameter of the slot edge. Then equidistant slots are cut on a milling machine using a ground form cutter to obtain the exact slot contour. To this spider B, Fig. 22, an outer ring C is shrunk and copper brazed in a controlled atmosphere furnace at 2050 degrees Fahr. This brazed assembly is then machined as at D and put to use.

Much time is saved by using a tubular drill for extracting solid

Fig. 1-Molding and diemaking kinks help ircrease die production 400 per cent

Fig. 2-Electric eye reduces grain size test to 15 minutes instead of 8 hours

Fig. 3-Electromagnetic method reveals sub-surface defects in heattreated parts without touching the surface thus marring or denting highly polished sur
faces is avoided
Fig. 4-Setup for photoelastic study to determine stress distribution results in increasing effective strength of bolt-
ed fastenings as much

$$
\text { as } 40 \text { per cent }
$$

test samples from castings, forgings, rolled and welded parts. Also it is usually possible to sample the part being tested without weakening it. Too, the surface of the material (one end of the cylindrical sample) is preserved for inspection. The method replaces the usual slow and laborious sawing procedure.

As shown in Fig. 23, the drill is essentially a tubular member hav-
ing a number of cutting teeth at one end. The spring and pin shown at the right form a removable centering device used in starting the cut. Procedure is to first drill a pilot hole about $1 / 8$-inch in diameter and $1 / 6$-inch deep with a standard twist drill. This is done with an ordinary stationary or portable air, electric or hand drill, no jigs being necessary. Next the twist
drill is replaced by the tubular cutting member and the spring and pin placed in it. Centering pin is allowed to extend a little beyond the drill teeth so the nipple of the pin can be inserted in the pilot hole.
When the drill has cut into the work about a x_{8}^{7}-inch, it is withdrawn to permit the pin and spring to drop out. Drilling to the de-

Seventeen Ways To Speed Production

sired depth is then resumed. The solid core formed inside the tubular drill is removed from the part by flexing until it breaks off at the base. Fig. 23 shows such samples mounted both diametrically and longitudinally in plastic (lucite or moldarta), then ground and polished for examination.

Stamping production is doubled and rejects are cut down considerably in punch press operation by the simple expedient of blowing air down through a $1 / 4$-inch hole in the upper die. The air causes the stamped part to rise with the upper die. When the air is shut off, the stamping falls into the operator's hand, thus eliminating scratches and the necessity of prying the work loose from the lower die.

The innovation is used on a press stamping pieces of aluminum as thick as $1 / 4$-inch where formerly it was difficult to eject the stamped pieces without harming the finish and slowing production. Usual methods of ejection could not be used, for the vacuum cups
proved quite impractical.
The solution was found in the ap. plication of the inverse relation of air pressure to velocity. The principle can be demonstrated by placing over the end of a spool a cardboard disk with a pin through it to prevent slide-slip. No amount of blowing through the other end can blow the cardboard away from the spool even when hung below the spool where gravity would seem to make it drop. Air leaving the spool end at high velocity strikes the disk and escapes between it and the spool. This escaping air must overcome inertia and friction, and this causes a reduced air pressure on the spool side of the disk. Result is a balance of atmospheric pressure against gravity such that the disk "floats" close to the end of the spool.

This same idea is applied to removing the stampings. An 80 -pound air line is connected to the press to blow air through a $1 / 4$-inch orifice drilled in the upper die. Air pressure is applied at the start of the

Seventern Wisys To Speed Production (Cont'd.)

Flg. 15 Preserving life of emery dises
Welding and brazing shunts
Fig. 16 Welding and brazing

Doubles life of emery dises Cuts cost and labor; eliminates drilling and bolting

Machine consisting of turntable, cutter and centering pin cuts about one inch from outside edge of emery disc. Disc cleaned with naphtha to remove grlt and allow emery to cut with efficlency of new disc. A punch press can also be used
Shunt welded or brazed directly to current carrying part. Flexible stranded shunts of copper wlre, of the order of .008 inch can be welded without flux; otherwise, phos-copper flux is used. Welding machine used has automatic timer and an air cyllnder
Fig. 17 Preventing solder-iron from burning out

Increases life of solderiron maintalns correct temperature

When not in use, tip of Iron remains in housing. Thermostat control in housing disconnects iron when it begins to overheat. Stand developed to hold iron when not in use is plugged into stand. Tip of iron fits into a housing. Thermostat in housing shuts off iron when overheating occurs. Holder used in two sizes for less than 1 inch and from 1 to 1 雉 Inch.
Fig. 18 Attaching plastic trim $\begin{gathered}\text { Economical and secure } \\ \text { to metal parts }\end{gathered}$ to metal parts
assembly

Fig. 19 Connecting plpe Eliminates threading.
Fig. 19 Connecting plpe Eliminates threading.
Ellminates threadtng. Saves time.

Operates similar to hydraulic molding press. (1) heated plate carrying colls. (2) removable fixture whlch clamps plastic to metal. (3) air cylinder ralses parts against heated plate. (4) space heaters. (5) thermostat control. Fixture exerts pressure of 50 lbs . on each stud at $285^{\circ} \mathrm{F}$. From 15 to 20 seconds required to heat and form plastic stud properly to form and rivet head. Stud formed on plastic plece clurlng molding Saves time.

Malleable Iron sleeve fits over pipe ends. Nuts on each end, when tightened, compress a rubber gasket around end of each pipe. Stands pressure of 150 pounds per inch. Handles oll, gas, air heater, water and other fuids
Fig. 20
Testing electrical circults

Speeds testing 30 per cent cuts operating costs 30 per cent
Fir. 21 Opening cotter pins Saves time; speeds production

Unstripped circult wire dipped in mercury wells or electrolytic salt solution in contact with wells conducts current for testing short and open clrcults
End resembing screw driver blade is cut out leaving two prongs. One prong is rounded to flt eye of cotter pin; other prong flattened to facllitate obening of pln. Heat treated tool steel used

Fig. 22-Milling and brazing technique cuts die costs to only $1 / 3$ to $1 / 15$ of former costs
upstroke by a valse connected to the crankshaft. As the upper die rises, the stamping rises with it because of the reduced atmospheric pressure above the piece. At top of stroke, air is cut off and the piece drops into the operator's hands for quick removal.

Fig. 3 illustrates a setup for demonstrating a development that detects sub-surface haws in heattreated parts such as bearing races and similar cylindrical objects. It employs a simple magnetic method that works with speed and accuracy yet does not contact the inspected part, thus marring or denting highly polished surfaces is avoided.

When a symmetrical piece of steel is properly heat treated and then magnetized, the external magnetic field is uniform. However, any defect in the heat treatment such as a hard or soft spot changes the permeability of the faulty re-

Fig. 23-Hollow drill saves time in cutting test specimens, enables most parts to be sampled without weakening them, preserves surface of material for inspection
gion and the resulting magnetic pattern.
In actual testing, the heat-treated part is first demagnetized completely to wipe out all traces of residual magnetism. Next the piece is rotated while being strongly magnetized so the flux extends outward from the surface being tested. This flux is explored by a pickup coil in which is induced a voltage that is amplified and indicated by an oscilloscope shown at the left in Fig. 3. The pickup is shown below the rotating part which is being magnetized by the powerful permanent magnet held in the operator's hand.
The sweep circuit of the cathoderay tube in the oscilloscope is syn-
chronized with the rotation of the test piece. The result is that a uniform trace is produced on the oscilloscope screen, with faults showing up as dips. Twelve index points on the screen correspond to points 30 degrees apart on the circumference of the sample being tested. This allows any fault to be quickly spotted on the periphery within a few degrees of its location.

While the setup in Fig. 3 affords only a visual indication, it is possible to add a relay system to produce an audible signal. Likewise, the system could be set to operate automatic machinery for segregating defective pieces coming from a production line.

Provides Trucks with Storage Battery Power

Going "all out" in its effort to co-operate with the government and industry in moving swiftly and safely the rapidly mounting volume of war materials and machines, Clark Tructractor Division, Clark Equipment Co., Battle Creek, Mich., makers of gas-powered industrial trucks and tractors, is now providing the vehicles with full electric equipment for storage battery power where electric operation seems best fitted to the job.

The machimes lift from 2000 to

7000 pounds, using a liydraulic vane type pump driven by a special serieswound motor. The same pump operates the tilting unit, which enables the operator to tilt the load back 10 degrees in 5 seconds for safe riding, and tilt it forward 3 degrees in 1 second for tiering.

The trucks feature four speeds forward and four in reverse, with speeds up to 6 miles per hour under full load.

In addition, trucks will climb 7 y per cent grades under their maximum loads. A General Electric drive motor mounted directly to the axle drives each unit through a ring gear and pinion.

New Angle Meter

Quickens Pipe Bending

A new model angle meter which facilitates making of pipe bends up to 126 degrees and Y layouts is reported by Interstate Sales Co., 1123 Broadway, New York. It has the following features: Extends the range of angles of bend up to 126 degrees; enables laying out of bends and Y 's directly on pipe, sheet metal, etc., and also for multi-piece bends; requires no calculations; available flat or folded for field use.

Overall size of angle meter is 12 $\times 12$ inches. It is printed in 3 colors.

The spark plugs Eddie doesn't sell will help smash the Axis

"You know how it is when a spark plug in your car stops firing? Seems to drain all the power from your engine. It's the same way in an airplane or tank. And for each plug in your eagine a bomber has a dozen By taking good care of my customers' plugs I not only save them gasoline and money, but I also save a lot of plugs for use on Schicklgruber."
When Uncle Sam stopped the manu facture of cars for general use, he did more than change the greatest auto mobile plants in the world into arse nals for tanks and planes. He also re leased the giant facilities of the spark plug manufacturers for the making of war materials. But in giving these firms new things to make and ner alloys to make them of, he handed them new problems with every sheaf of blueprints.

In cooperation with the Revere Technical Advisory staff, leading spark plug manufacturers made the conversion smoothly with a minimum of headaches. For Revere not only supplies industry with sound copper alloys, produced with the help of the most exquisitely accurate instruments known to metallurgy, but also provides skilled assistance in the methods of processing and fabricating.

Copper is one of the most vital of all war materials. Every ounce goes directly into the essentials of modern warfare. Fortunately, Revere is well equipped, with modern plants, improved machines and advanced techniques, to supply a substantial part of our nation's mounting needs. And Revere research is continually exploring new frontiers in copper alloys to provide us all with stouter, keener, swifter tools for victory.

REVERE COPPER AND BRASS INCORPORATED
 Founded by Paul Revere in 1801
 EXECUTIYE OFFICES: 230 PARK AYENUE, NEW YORK

Abstract

Must be top-flight men of proven ability, capable of directing the many divisional operations of one of the world's largest aircraft-engine plants.

The Dodge Chicago Plant, division of Chrysler Corporation, now heing built in the Chicago area, wishes to have associated with it a large group of men who have demonstrated their specialized talent, executive ability and high character.

The contract held by Chrysler Corporation for the production of aircraft engines is an outstanding commitment in the war program. It requires doing another high-precision job on a mass-production basis.

This gigantic plant will be one of the world's largest under one roof. Machine tools, equipment and facilities will be the finest and most modern. The personnel must measure up to the same high level of individual efficiency.

This war project demands executive supervision of men, materials and machinery on a scale heretofore unknown in industry. The Dodge Chicago Plant, division of Chrysler Corporation, is determined, therefore, to select as executives men who can guarantee the performance required by patriotic necessity and exacting manufacturing standards.

The Production Execulives chosen for this painstaking task must he experts, backed by years of proven skill-hoth technical and managerial. Thousands of able Americans will work under their direction in round-the-clock shifts. Thousands of precision instruments and production tools will be the responsibility of these top men. That is why they all must be exceptionally good!

executives wanted for the following divisions-

ALUMINUM FOUNDRY MAGNESIUM FOUNDRY FORGE
heat treating \& plating:

MACIINE SHOP:
Crankease - Crankshaft Connecting Rod \& Piston Cylinder Head \& Barrel Assembly Gear Cutting - Precision Parts

ASSEMBLY \& RE-ASSEMBLY INSPECTION
WORKS ENGINEERING
master mecilanics

NOTE: Here is an unusual opportunity for men who are eager to become affiliated with a large organization engaged in the production of vital war materials. Give age, qualifications and salary expected. Proof of cilizenship required. All correspondence will be kept confidential. Appointments aill be made for personal interviews at your convenience. Address your application to Box 729 , care of this paper.

Nue-inet kat mill for rolling high carbon shonle: and ralve stebla Com postion heatings ars water lubricated through 3/16-inat tukes !hrotah hous ing:
kLOCKS of laminated makelite were thed out on small merchant and rod mill stands about 10 vents aso. Since then the type of bake lite pesins as weth as the kind of cottot labries that are wed to swe strensth to besist shocks and impata have constanty ber: improved. better weating moperthes are made presible today by 4 se of variots mineat diless by virstue of the fact that they constantly polish the roll neck while in opeckelion. Mantutac tuting technique providts the unt lormtey of matectal in each stage of its manufacture, which is necessary it a product is goins to be depended uport to do at rextain job. In the equiy dievs this quality tequent 4isk uncertain Todan, however, special coating and dryiny equipment is used in molding these beat. ings.

Bzkelice and cottor ane now. as them, the mane constituerts of consposition bearings Molds are used to produce bearings of all shapes and sizes. Typical ohe brase designs are duplicited, thus permitimge ins. stallations in small mills withou installation expense. Limeds and see. atate thrust coliars designed to fit lawe milt chucks ame machined aceurately to take loads frequently greate: thith ? tons per square inch of bearing surface.

Water only in most cases is used as a lubricant. Dil or grease.

One humirea and sixy-inget thigh plole sinll with :CP cill eftocting: if compasition batirys Rewer comsumg lion Has raduco i? gen cent Fuc ton al rolleck provilut with this !yrot buarimg

NONMETALLIC BEARINGS

For Steel Mill Service

By FRANK W. VOGT
Eastern Sales Manager Ryorlex Division loseph T. Ryerson \& Son lnc Jersey City. N. I.
however, is used successfully on installations such as pinions, slippers (or pressure pads) for universal couplings, table rolls, feed rolls, etc. In fields outside the steel industry, oil is extensively used on composition bearings. Some examples are Syratory rock crushers, rubber mills, and paper mill dryer drums. The combination of grease and water has adrantages on many mills, the details of which misht be summed up briethy.

The right kind of grease is important. Some sreases actually increase the friction while others hely to reduce the power required. The best resutts have been obtained when water is used with the type of grease generally known as "tallow base", Some greases carry graphite to the extent of approximately ξ per cent but there still remains a question in the minds of many mill men as to the actuai value of ohis ingredient.
Some lamye steel companies first started using these bearings be cause the mitl motors were underpowered for the increased moderm rolliog requiremeat; others because of the need for more uniform seetion of peoduct to meet competitive demands; others becuuse of the dieHeulity to propertw lubricute metal-
lic bearings; and still others because antifriction bearing maintenance costs had become excessive.

Fecently another stimulus to extending the use of composition bearings has developed. With many metallic bearing materials on the list of restricted metals some concerns are making a determined effort to change over to water lubricated bearings wherever possible.

Engineering departments are being brought into this picture more and more as operating departments request composition bearings on new equipment. Recently two new alloy merchant mills were ordered by two eastern concerns. Both of these are being equipped with Ryertex as well as two remodeled plate mills. A large 4 -high plate mill also is being built with scale breaker and broadside stands equipped with composition bearings. In designing rolls for use on composition bearings, engineers and roll men find the roll necks can be made larger. For heavy duty mills this is a distinct advantage as the rolls can be made much stronger and thus roll breakage is reduced.

As more experience is being gained in operating these bearings it becomes easier to suggest workable ideas as to practical arrange ments of scale guards, water guards, wipers and other deviees that are needed on many installations. Scale guards are necessary on plate mills. blooming mills and other large standi Different types of guards are used depending on whether "hot

Blast Furnace at broke all previous world's records for one month's all pig iron production with

41,782 TONS

 RECORDS BREAKINGPRODUCTION

TONS WORLD'S RECORD

DURING the past 6 months three blast furnaces, designed and built by Arthur G. McKee $\mathbb{\&}$ Company (censorship prevents disclosure of names and locations) have broken all previous world's records for pig iron production.

These results are definite evidence of the performance obtained from advanced engineering and skilled construction combined with efficient operation.

We are proud of the part McKee has played in providing the facilities with which the Iron and Steel Industry is waging the battle of production.

Irthur G. Ichee \& Compaily
\star Engineens and bontractars * 2300 CHESTER AVENUE CLEVELAND, OHIO

tops" are to be contended with or only the usual large quantities of beavy mill scale. Water guards have been developed that effectively keep water off dry rolling stands in the steel and brass mills. Pinion stands are equipped with still a different kind of guturd that is exsy to instali on open-type housings.

Greases of various kinds have been tried on large reversing mills and small cold mills. This type of lubrleation here seems to help, as in both cases it is necessary to start the mill under load. The starting torque under lead without grease is high, but normal when a small amount of the right kind of grease

Four-high broadside stand of 80 -inch continuous hot strip mill with backup rolls equipped with totally enclosed composition bearings
is used. Too much grease frequently is worse than not enough, which principle also holds for many metallic bearings.

In the early stages of the introduction of composition bearings all sorts of things were encountered, such as thrust collar troubles, too tight end-screws, not enough water, water in wrong place, bad roll necks, etc., any one of which was in itself enough to call the job off temporarily.

By now, however, most users either have been helped out of their difficulties or found their way out by themselves. These experiences have been catalogued into a set of rules and a booklet on "How to Install and Operate Composition Bearings", has been printed for the wopress purpose of keeping new users out of trouble on their initial applica. tion of these products.

The foregoing problems are constantly being discussed in meetings of rolling mill men and in every day conversation between sales engineers and operating men. They usually are found to resolve themselves into simple matters that can be dealt with once the operating conditions and limitations of the material are understood by both parties.

To illustrate this point a case of a short bearing life is sighted. A large mill had been equipped with composition bearings for several months when the bottom roll bearing life dropped to one-tenth of what used to be considered normal. The bearing liners were checked by the factory and found to be u_{p}. standard. Further investigation revealed that the bottom of the bearing seat was not flat but high in the center. This caused the chuck to spread and in the meantime the bearing was subjected to loads of perhaps 15,000 to 20,000 pounds per square inch instead of 3000 to 4000 pounds. The seat was machined flat and bearing life returned to normal.

A word of explanation should be added in an effort to clear up any question that might be raised to statements made in advertising literature about composition bearings lasting two to ten times as long as metallic bearings or in exceptional cases as high as 100 times While these statements always have a true

Twenty-three-inch 3 -high structural and will mill completely euuipped with composition bearings with an average sourer saning oi cre: 28 get nem:
story back of them it is not always given in detail. For example, a continuous rod mill bearing was found to last over 100 times as long as babbitt. This was on the finishing end of the mill. The real explanation is that when babbitt was used with grease for lubrication the bearing never could be properly lubricat. ed because the water kept washing off the grease. Obviously this was a case of "poor lubrication" but it was the best that could be expected under the circumstances. By chang. ing over to a bearing that required water only for lubrication and with the water easy to apply continuously at the right place the conditions were radically changed. It is no wonder that the new type bearing lasted 100 times as long.
Many jobs in steel and brass mills now are difficult to lubricate with grease or oil and where water can be used without any trouble. These are the first places to look for in extending the use of composition bearings. These places may be large users of power. Many installations in positions like this show savings of 50 per cent and more, simply because the fundamental operating conditions are changed. No brass or babbitt bearings operate at their best with water for lubrication under heavy rolling mill loads.

A summary of power saving expectations on various type mills are given herewith so that 50 per cent reductions will not be taken as a figure for all mills changed over to composition bearings:-

Steel Mills
 Per cent
 Blooming mills (reversing) .. 10 Continuous billet and bar mills Roughing stands
 10
 Intermediate stands
 20
 Finishing stands
 30
 Merchant Mills
 25
 Plate mills (3 high).
 Sheet mills (3-high roughing) 25Sheet mills (2 -high skin pass) 50Cold strip mills (2-high)
 20
 Brass Mills
 Breakdown stands (hot)
 20
 Breakdown stands (cold)
 20
 Running down (cold)
 30
 Finishing stands (cold)
 30

Mill owners and operators are becoming more familiar with two important factors:

1-Composition bearings have been installed in and are being used daily on a large number of both old and modern mills.
2-The records of operating costs conclusively show that large savings are being made through (a) power saving, (b) longer bearing life, (c) better section, (त) less down time.

IFTER THE WAR--

NO DEPRESSION

Ce look down the road and plan or the dawn of that better day hen peacetime needs will once nore be the first line activity of merican industry and labor. t is evident that the enormous apacity of our new plants and nodern equipment will permit merica, for the first time, to nake enough of all kinds of oods to ho around to all our eople.
ost-war costs can be very low ccause these new factories will e"charged off" by the time the art is over. Furthermore. raftsmanship is on the increase ud working with the hand is o longer looked down upon. A ast rescrvoir of new and imroved products will be ready flow to every corner of the and if the profit motive and the merican enterprise system preail. We cannot tolerate anther prolonged depression, inrference with business or an conomy of scarcity.
here are two schools of thought at are advocating methods of ontinuously spreading our prohetion among our people. nder one plan, certain acaemic thinkers would limit prouction, would sulbsidize the deompetent plant, the national cht would continue to mount ad the profit motive would be ifled. Our capitalistic system nd democratic processes could ot long endure under such a
nother sehool of thought wors unrestricted free enterrise, elimination of monoplies, corrections of restraints Hused by patents, cessation of necomonic deterrence by nions, a lax program that ould encourage new enterprise nd a free competitive prouctive coonomy.
usincssmanagement is puting shouse in order for posit-war roductivity that will be ossible if the "doers" and not e politicians predominate in lamning.
or peace adaptability, the new rocess known as Contour Sawis is ideal. Without a single lange, each DoAll can he put work catching up on the vast ray of civilian goods that will : in demand as soon as the: st shot is fired

> WINS THE bATTLE OF Out of the great American caldron they come in everincreasing quantities-tanks, planes, jeeps, helmets, guns, bullets.
Behind the allied fighting forces stretch miles of production lines, thousands of modern machine tools, millions of workers on the job 24 hours a day.

DoAll saved 18 hours on this job. Production cutoff of angle irons Former method, torch and grind-off burr.
Wherever you go you'll find DoAll, the lightweight machine tool that saws through any metal or alloysteel blocks a foot thick, bars, flats, sheets, tubing, etc. Occupies small space-can b shoved into the regular work line to relieve heavy millers and higher priced shaper of over-load work. Cuts out special parts and tools without dies. Saws 70 to 80 shapes at one time from stacked sheets.

DoAll is the fastest precision method to remove metal. Does a week's work ir a day-a day's work in an hour-an hour's work in 15 minutes.

Flexing Bars for Dynamometers. Production cutting from $1^{\prime \prime}$ Swedish steel.

Cutting openings in 12 gauge 48 steel tank covers.

IN WAR OR PEACE

DoAll can save you valuable time and money. Let factory-trained man come to your plant and in a fev minutes, show you many ways in which DoAll cat increase your production.

NEW BOOK

Case histories of DoAll perform ance. Photographically told, with short sentences, for busy executives. Send for copy.

> MACHINES, IWC.

1324 S. Washington Ave. MINNEAPOLIS, MINN.

Associated with the DoAll Company, DesPlaines, Ill. Manufacturers of B nd Saws and Band Files for DoAll Contour Machines

Flame Hardening

(Continued from Page 76) For hardening round sections there are four general methods which may be used, and refinements to these may be worked out when the quantity of production warrants develop. ment of special apparatus.

These four techniques are described as band progressive, spiral band progressive, band spinning and progressive spinning. The method chosen for a particular job depends on the nature of the work and the facilities available. The most uniform hardness is produced by the "spinning" method, which thus is usually the most satisfactory.

Essentially the two "progressive" methods are direct adaptations to circular work of the technique applied in hardening flat surfaces, where the work is moved slowly past the heating flames and quench jets. In the spinning technique, on the other hand, the work is revolved at fairly high speed before the flames, heating entire circumferential areas before they are quenched. The advantage of spinning is that it eliminates overlaps or soft zones. All four methods are applicable to hardening either external or internal cylindrical surfaces, continuously or in localized bands.

Band Progressive Method: Largediameter cylinders, rolls, shafts and sleeves may be flame hardened by the band progressive method. The work is usually mounted on a lathe or other machine which can be geared to rotate the work at circumferential speeds of from 3 to 10 inches per minute. The heating tip is then mounted on the lathe carriage tool post or similar mount capable of lateral movement parallel to the axis of rotation of the work. The multi-flame tip is water cooled and may have a built-in set of water jets which act as a quench, or be followed closely by a separate

Fig. 8-Progressive band hardening being employed on a 63 -inch diameter forged lathe spindle of SAE 1040 steel. Speed of rotation is regulated for hardening to between 400 and 450 brinell and to a depth of $1 / 8$-inch. Westinghouse Electric \& MIg. Co. photo
quenching stream. Hardening is accomplished by rotating the work past the flames at a peripheral surface speed which may range from 3 inches per minute for a $1 / 4$ inch depth of hardness to 6 inches
per minute for a $1 / 16$-inch depth. These figures are subject to some variation according to the thickness of the object heated.

Upon completion of one revolution of the circular object the flames are extinguished and the heating tip shifted to a new position for hardening the next adjacent band. A narrow space of $1 / 8$ to $1 / 4$.inch should be left between tip positions to allow for heat conduction outside the flame-swept zone. As additional pre-
(Please turn to Page 97)

Fig. 4-Depth of hardening is readily controllable in the spinning method. These shaft sections show hardening all the way through at right, deep hardening at the left, with shallow hardening at the top. Numbers indicate hardness values. Shallow type retains core ductility, so is usually preferred
Fig. 5-Two or more segmental flame-hardening tips form a ring of flames around the work for external hardening by the spinning method. Adjustable tips are shown at the right, designed to handle a variety of work
Fig. 6-Valve plug at left is unhardened, while plug at right has been hardened and is ready for surface grinding. An auxiliary water quench prevents burning of edges of holes during flame hardening. Hamer Oil Tool Co. photo

Fig. 7-A standard flat flame-hardening tip, as wide as practicable, is used in progressive band and spiral methods. These tips are water cooled. For the lighter types of work, they have self-contained quench

the RIGHT pegs in the RICHT HOLES

today's No. 1 Thoblerv in war production

- During the first days in school, our little boys and girls are earnestly fitting pegs and blocks into the holes where they belong. It's one of their earliest problems in school life.

Today, in Washington, the nation's key production men are engaged in a grim and all-important version of this same basic problem. Theirs is the gigantic task of fitting the complicated pegs of America's industrial and material resources into the largest war production program the world has ever known.

Into this complex problem, The Sisalkraft Co. has found the places where its products fit.

For over twenty years The Sisalkraft Co. has led in the development and production of reenforced, waterproof papers. For over twenty years, FIBREEN has been wrapping and protecting goods and materials, in transit and in storage.

Today FIBREEN continues to protect huge quantities of war materials
of all kinds - guarding them against damage from rain, dust, sea water or salt air during long exposure to all kinds of weather - keeping them in condition for use and action at destination.

FIBREEN fits-because it's durable, completely waterproof, a mazingly strong. It's used as a wrap, as a cover, or as a bag - in almost any size or shape - for planes, tanks and trucks or small arms, medical supplies, delicate instruments and vital repair parts.

It further fits the war program because it is produced many times faster than woven fabrics, with only a small portion of the labor, and at far less cost. In addition, it releases such vital materials as burlap and canvas for other important war needs-and costs much less.

Other Sisalkraft papers are also doing their part. They are being used to
cure concrete floors in arms plants or runways of flying fields - and to help build strategic military and access roads-providing a better cure, with fewer man-hours, and at lower cost.

And farmers are using Sisalkraft papers to help solve their major problem of storing grains and feeds - and to provide the silos they need so badly.

That's how the entire production of The Sisalkraft Co. today is confined to essential war uses.

If your product fits the war program - if you are concerned about the delivery of your products in the same excellent usable condition as they leave your factory-write us and see if FIBREEN is the answer to your problem. Tell us what you make and bow you now pack it.

THE SISALKRAFT CO.
Manufacturers of Sisalt raft, Fithren, Sisal.X,
Sisaltape and Copper Afrnored Sisilleaft Sisaltape and Copper-A Fmored Sisalkraft
205 W . WACKER DRIVE - CHICAGO, ILL. New York San Francisco London Sydney In Canada Write to Alexander Murray \& Co.etpmitici at Monsreal, Toronto, Halifax, Saint Jobn.

Winnipeg, Vancowver

 if lamiling themblek for Hntme a) mon heath furmaces is helles. Imed ly a cmmber of ste0 compankes in comperaton with refractory mand. Fachuresa, Cooperallon is exsential almee the syatem most be installed Hest at the Hant of the permetory mandfacture brome his castomes: the steed hathe cant obtam any hemett. Atwantages inclute the
 of thme by both maker and haser, ex. palnshon of bitholomse storase est pachly, matembon of shapes from Chathame athd embsequent spectlot of hassothy yherattons.

Oth latan stey exmpans now wevines its thetorick ofl pallets stomed in tox sats. lobth given wh lumber is lised in makits: pat. tets, 36×15 molle ill stan, it : (t)st of es whlls meht Gach mallet hotds Bot brkk, so assembled as to athow mbtmum shirtins of indiNGthat limschs.

Tathel hata am stacked mo-hish it the frobth nat: in of the end

Filg. 1 (Lolt)-Pallet loads are stacked two-high in freight car. Note refractory mhapon no assomblod as to assure minimum shifting of individual bricks, even thongh of odd shape. Fig. 2 (Right)-Powered fork trucks of compact design are natlly manouvered up and down ramps, through narrow aisles

HANDLING
 REFRACTORIES

with fork trucks and pallets cuts costs, speeds masonry operations
and 16 in the other end, the remainIng: spate being veserved to permit the operation of a nower truck within the cart, Each group of palIV losds is bound with No. S wire (i) form at thating load, a condifon Bscisted by chamfered skids. limat maper is laid berween indivitual pwille lowds. Four bulkheads of mugh smen ouk timber are used

in each car. Bulkheads and pallets are returnable. They are shipped back to the brick plant and are used continuously.
On arrival at the steel mill, the box car is spotted in position to bring the car door opposite to a concrete ramp extending from car floor level to brick-house level. Fiss. 1 and 2 show the unloading operation, using a gas-powered fork truck capable of maintaining its rated speed under load and of nesotiating ramps and narrow aisles.
Two men unload a car of brich in an hour-one machine operator and one man in the car to straighten loatis This rapid operation releases the freight car ouickly for more arips an especially valuable boint in view of the presens need for cars It is expected that perfoction at the method, pertays by stecistumphins Individual pallet Ioads at the bries plam, will ezable the maching buccove to handle the unwating oproation withow belp

Fis. 4 shows pelle: lazis being

[^1]T.AKE a good look at this gloating scoundrel . . . our evil enemy . . . the Axis. He's smirking, but by conservation, you can help have him scowling in double-quick time . . . As makers of the Exide-Ironclad Batteries used for power in so many material han-
 dling operations, we urge regular battery care. Follow these four simple rules and Save to Win!

MAKING BATTERIES LAST HELPS STOP THE AXIS!

1Keep adding approved water at regular intervals. Most local water is safe. Ask us if yours is safe.

2 Keep the top of the battery and battery con2 tainer clean and dry at all times. This will assure maximum protection of the inner parts.
3 Keep the battery fully charged-but avoid excessive over-charge. A storage battery will last longer when charged at its proper voltage.
4 Record water additions, voltage, and gravity readings. Don't trust your memory. Write down a complete record of your battery's life his. tory. Compare readings.
If you wish more detailed information, or have a special battery problem, don't hesitate to write to Exide. We want you to get the lang-life built into every Exide Battery. Ask for booklet Form 1982.

THE ELECTRIC STORAGE BATTERY COMPANY, Philadelphia
The H'orld's Largest Manufacturers of Storage Batteries for Every Purpose Exide Batteries of Canada, Limited, Toronto

NE
 (National $\left.\begin{array}{l}\text { Emergency }\end{array}\right)$

ALLDY

THE NEW NE steels already have been used successfully in a considerable variety of applications, 60 of which are set forth in the ac companying list. This list identifies

Fig. 4-Pallet loads are easily tiered four-high in the brick house as shown here. High tiering greatly increases capacity of the brick house by using "air" space
creases brick-house capacity. Fig. 3 shows withdrawal of brick loads and their deposit on flat car for transfer to the furnaces. Company track extends down the center of the brick house, and the power truck tiers pallet loads two-high on flat car of intra-plant railway from floor level.

Unloading from box car and loading to flat car formerly were accomplished by conveying the brick mechanically to crews who tossed them by hand to other men who piled them in storage or on flat car bed. This method resulted in many broken brick corners. As a consequence, masons on the furnaces were compelled to use damaged brick which were perfect when they arrived at the mill. This slowed brick-laying operations and definitely increased costs needlessly at this point.
Mills experimenting with this
method of handling refractories are reluctant to release figures of cost saving, pending improvements in the system. Results recorded to date have demonstrated that the economies possible amply justify an investment in the construction of adequate brick-house floors and unloading ramps.
Similar handling method for refractory material has been developed by engineers at the foundry of Pontiac Motor Division, Pontiac, Mich., where important economies have been reported in handling costs.

Welding Society Offers Book of Welding Terms

Two booklets, one on the definitions of welding terms including a master chart of welding processes, and another on recommended prac. tices for inspection of fusion welding (tentative) are being offered by the American Welding Society, 33 West Thirty-ninth street, New York. Both publications can be obtained from the society's headquarters for 40 cents each.
the NE steels by numbers, together with the numbers of the standard steels they replace in individual ap. plications.
By applying to steel producers
and other suppliers, consumers can obtain metallurgists' recommendations as to the best NE steel for a given application and procedure to be followed in working with it.

NE Steel Applications

NE Steel	Application
S02. 4	. Ball studs
	Machine tool shafts
	Steering gear worms
8339	. Steering arm studs
	Connecting red bolts
	Brake adjustment bolts
	Chain links
	Truck gears
$5+42$. Dil well tool joints
	Socket wrenches
	Wrenches
	Chain pins
	Die inserts
	Drill shanks
	Low temperature studs
	Locomotlve side rods
	Locomative plsion rods
	Locomotive crank pins
S4t\%	. Steering knuckles
	Levar holders...
	Tractor shafts and gears
	Truck axles
SistSi20	. Gears
	Transmisslon gears
	dir drlll parts
	Ring and pinlon gears
	Chuck Jaws
	Conl cutting chain bushings
	Machine tool gears
	Roller bearing cups and cone

KEEP YOUR

WHILE modern ate welding sets represent the highest in simplicity and reliability, they require periodic attention from a maintenance standpoint if they are to be kept in the best opreating condition. With the aceent on production in shipyards, ordnance plants, and welding shops of all types, the failure of even a few sets is sometimes costly. A systematized maintenance program will pay dividends in terms of better welder performance and longer life.

Selection: The right welding set must be selected for the job, becatuse a maintenance program will be discouragingly difficult if misfit equipment is being used. To insure moper choice of the rating of a single-operator set, the maximum curent, load voltage and duty factor (ratio of are time to total time) must be taken into account. Except in the smallest sizes, most sets are rated on a one-hour load. Their rating is the current which they will deliver for one hour without interruption, without excecaing a prescribed temperature rise.
since this method of rating, chosen as a simple standard for compatison, does not take into account

Fig 1. (Directly above) -Hand-operated grease guns should always be used on pressure-relie! lubricated bearings. Add grease slowly to permit excess to vent from relief pipe. Fig. 2. (Right)

By R. F. WYER
Welding Engineer
General Electric Co
Schenectady, N. Y. -Sanding brushes to a good fit with the commutator is essential whenever new brushes are installed.
actual operating conditions, it is not always economically sound to choose the size next larger than the maximum operating current contemplated. However, for this same reason duty factor should be taken into account when new equipment is being considered to make certain that the set is big enough for the job.

Installation: Proper installation can do much to keep the welding equipment at work and to hold troubles to a minimum. In wiring up a welding set, care should be taken to provide adequate branch circuit conductors, and fuse clips large enough to accommodate the necessary fuses. It should be observed that motor-generator type welding equipment have full-volt-
age motor starters almost without exception, so that due consideration must be given to the high starting current of the motors.

Care should be taken to ground the frames of all welding equipment in order to avoid shock or annoying tickles when a grounded person touches the frame of the equipment. Even with equipment in perfect operating condition, under some conditions it is possible to receive a harmless but irritating sensation of shock from ungrounded equipment due to the passage of infinitesimal capacity or leakage currents. In addition to protecting against this annoyance, adequate grounding of machine frames is also a desirable safety precaution

Sure, design for cost-saving is always important . . . but right now design for saving manhours and materials is vital.
ALTER EGO: Isn't that just what the designers of this trailer chassis did? By changing over to welded design, they've saved 20% in man-hours and 25% in weight of iron and steel, in addition to costs such as shown.

Yes, but how about the manhours required to change over designs and to convert production to welding?

ALTER EGO: It's simple and quick. Designs can be changed gradually, one part at a time. Production fixtures for the welded parts can be built easily and quickly.

Then, doesn't that account for the industry-wide swing to welding? Everybody sees in this process a means of getting into production quicker and producing faster . . to win the war.

ALTER EGO: Not only to win this war but to survive in the Battle for Business after this war. Why shouldn't we start by studying the Lincoln Handbook of Design and Practice and applying some of its suggestions? Everyone says it's the authentic reference guide on arc welding.
"Procedure Handbook of Arc Weiding Design and Practice." 1120 pages. 1557 Illustrations. Price $\mathbf{\$ 1 . 5 0}$ postpaid in U.S.; $\$ \mathbf{2} .00$ elsewhere.

THE LINCOLN ELECTRIC COMPANY cleveland, ohio

agatnst ham resulting from insula thon fitlure in equipment of leads, or improper connections.

Resardless of the type of satety "round connection which is installed, adequate fow resistanee worl leats should always be used. and care should be taken to secure sood comection between the work lead and the work. If this is not done, it is possible under some circumstamers to overheat the safety

Fie d Bebw-Blowing dust out o: a welding mochine should be done caredally with low-pressure air to aroid (riving abrasive dust inso insulation
Fig. §. (higi:t)-Card racoris on evary weidity machite in the slant will wave time and money. Recordings made after mapetion and serves indicale Gny machine sounting exeessive ex yonsh the Guse then con be corrected before an smergeney occurs

Fig. 3-The "megger" is a convenient instrument for determining the condition of insulation by indicating its resistance to leakage currents. It is a valuable aid in predicting coming trouble
ground connection by the passage of welding current through it.

In the location of welding equipment, ventilation is a very important consideration. The life of electrical insulation is seriously shortened by overheating, and overheating is bound to result where insufficient ventilation is provided. Particularly where large numbers of welding equipment are to be located in small enclosures, considerable study should be given to the problem of supplying clean, cool ventilating air. Where small houses or temporary sheds are located in hot sunshine, the heat absorbed from the sun added to the heat dissipated by the welding equipment may raise the ambient temperature above 100 degrees Fahr, and cause severe overheating.

In such cases, large louvers or other ventilating openings should be provided in the building not only at the bottom but near the
roof to give good air circulation and keep the ambient temperature below 100 degrees Fahr. In some instances, it is desirable to provide exhaust fans to assist in removing heated air from the upper part of such enclosures.

Records: The competent maintenance man will have a record of all welders under his care. One of the most useful and easy-to-handle references is a card file. All repair work, with its cost, can be entered on the record, and any welder requiring excessive attention or expense can be investigated and causes determined and corrected.

Inspection records will also serve as a guide to tell when welders should be replaced because of the high cost to keep them in operating condition. Misapplications, abuses, and the like will also be disclosed.

Periodic Inspection: A systematic and periodic inspection of motors and generators is necessary to insure best operation. While some welders are installed where conditions are ideal-where dust, dirt and moisture are not present to an appreciable degree-most machines are located where some sort of dirt accumulates on the windings. This
(Please turn to Page 99)

INDUSTRIAL EQUIPMENT

Holder and Type

Acromark Corp., Elizabeth, N. J., has introduced a new Hercules holder and type for stamping numbers and letters into "hard-to-reach" positions on castings, forgings and

machined parts of steel, cast iron, bronze and other metals or material. Factors contributing to this is the extra body of this style type giving sufficient strength to permit required length necessary to reach into sunken cavities, and the additional support to the type body provided by the redesigned holder allowing it to extend to the limits that the marking position allows. Construction of the marking device in no way retards the quick changing type feature it formerly featured, it is said.

Extension Light

Hygrade Sylvania Corp., Ipswich, Mass., has introduced a new fluorescent extension cord light for use in close work and inspection such as

the restricted areas of bomber wings. The light fixture is so cool that it may be clipped to the worker's belt or hooked into the
lapel of his coat, leaving both hands free, according to the company.

In replacing a deactivated lamp it is only necessary to remove two end cap screws, loosen two screws in other end and tilt back the guard. The unit consumes only 8 watts. Its protective grille is of heavygage steel. Greatest advantage of this P-7 unit, according to the company, is its low brightness, instrumental in reducing eye fatigue.

Aircraft Relay

General Electric Co., Schenectady, N. Y., announces a new 4 -pole relay, designated CR2791-Glook, for aircraft applications. Its features are light weight, permanence of contact position and assurance of operation under severe vibration conditions,

and operation at high altitudes at rated current.

The relay has a maximum continuous current rating of 10 amperes at 12 or 24 volts direct current and a maximum make or break current rating of 50 amperes at 12 or 24 volts, direct current. The normally open contacts have a tip travel of $3 / 64$-inch. The relay weighs 0.281 -pound, and its coil wattage is 1.80. It measures $2^{1 / 2} \times 15 / 32 \times$ $125 / 32$ inches.

Plomb Bob

Aero Tool Co., 231 West Olive avenue, Burbank, Calif., has introduced a new precision plomb bob particularly adaptable to armament and jig installation, as well as other operations where precision aligning is necessary. Its special feature is the novel use of phonograph needles to assure a true and constantly sharp point.
The needle is held by a watchmaker's pin chuck at the indicating
end, and the hole for the suspension wire is held to exact size, and is absolutely centered with the indicating point. Upper part of the bob is threaded into the lower. Three bearing surfaces between these parts hold them concentric.
Thus by simply rotating one part.

upon the other it is possible to raise or lower the indicating point over $1 / 2$-inch without losing concentricity. This adjustment is said to be important in the aligning of gunsights and other armament installations.

Portable Test Pump

Watson-Stillman Co., Roselle, N. J., has introduced a new motordriven, portable test pump for use in boilers, tubing and all kinds of high-pressure vessels. It, together with its motor, is mounted on a hand truck for portability, and all parts are enclosed for protection against air-borne abrasives.
The pump is a 3 -plunger vertical

unit. Its $1 / 2$-inch diameter plungers have a 2 -inch stroke. Driven by the 3 -horsepower motor at 100 revolutions per minute, the pump develops 8200 pounds per square inch
maximum pressure at $1 / 2$ gallon per minute capacity. Equipment includes pressure gage, safety valve, needle valve for pressure regulation, motor, motor starter, disconnect switch and 25 feet of rubber cable.

Tool Stands

Lyon Metal Products Inc., 3119 Clark street, Aurora, Ill., has introduced new tool stands to accommodate tools for workers on one, two or three-shift operations. These are especially suitable around produc-

tion machines and toolrooms as toters up to the job; for assembly lines, parts and tool transporters for maintenance men. Drawers embodied can be locked and they are equipped with easy sliding and flat key locks.

Shell Sprayer

Eclipse Air Brush Co., 400 Park avenue, Newark, N. J., has placed on the market a shell sprayer for

spray coating 8 -inch shell in a vertical position. It applies the inside coating with a semi-automatic spray gun fitted with a long extension

YET this rugged hoist embodies all that is fine in design and engineering. For the tough round-theclock job, for trouble-free service and for versatile adaptability, you can do no better than install a ShawBox Load Lifter Hoist.

Here are some features:

1. "One-point" lubrication.
2. Hyatt Roller Bearings and Ball Bearing Motor.
3. Safety upper stop; lower blocks; sure brakes.
4. Two-gear reduction drive; sealed against oil leaks; steel interchangeable suspension.
'Load Lifter' electric hoists are built with lifting capacities of 500 lbs . to $40,000 \mathrm{lbs}$. in all combinations required for industrial lifting necessities. They are adaptable to almost every working condition within their capacities. Send for Bulletin 350.

'LOAD LIFTER' Hoists

MANNING, MAXWELL \& MOORE, INC. MUSKEGON, MICHIGAN

[^2]nozzle. The outside is sprayed manually by the same operator who handles the inside coating operation. Each shell is rotated by an air-motored tripod with a ring at the top to protect the driving band from paint.

Gear Shaver

Michigan Tool Co., 7171 East Mc. Nichols road, Detroit, has introduced a new $865-36 \mathrm{~A}$ rotary gear shaver utilizing the crossed-axis principle of gear finishing for handling gears up to 36 inches in diameter. It is equipped with two
criving spindles.
As on a former machine, work on this unit is driven, the cutter in engagement with the gear "following" the gear. Three methods of finishing gears are available in this machine. In the first method, suited to finishing of wide face gears the cutter in addition to having an infeed toward the gear is also reciprocated parallel to the axis of the gear. This is accomplished by placing the slide which carries the cutter head in a horizontal position.

Amount of infeed, per stroke, length of stroke, number of oscillations after reaching center distance,

Write for our latest bulletin showing typical Graver-welded jobs.

```
STCLL ST0Ra6L tak<S
        STCtL sTopact rams %
        WhPOR CONSGNANIOS SHSTCM
        wetotD COSslzuction
        statss acuevise
            x-Ratwe
        ABREATEO STECL AMO
        Fagmicato sitchano
        MONPOMND SNE FLATL
        watea sortemets
        natikntion grsicms
        nilRatlogimiens
            clanititRs
            siwabL iguFMck?
```


GRAVER

MACHINERY bases and frames can be welded by Graver in less time than would be required to make patterns for castings. Here's a definite saving of time-and no pattern expense.

A Graver-welded job is delivered to you ready for use-only a minimum of machining necessary. Again-time and money saved.

When a combination of two or more dissimilar metals-mild steels, alloy steels, steel castings or forgings-is required, they can be quickly welded into a single unit, thus increasing the life of the unit and eliminating repairs and replacement parts. That's a further saving in time and money.
There is no dead weight in Graver-welded machine bases. Ample strength and weight where needed, but no excess metal.
Modern equipment plus expertly trained and experienced welders insure a finished product that will meet the most rigid requirements both in specifications and inspection, and the phrase "Welded by Graver" has come to mean complete satisfaction-economy-and production speed-to Graver customers.

etc., are all separately controllable, the controls being electrical.

In the second method, used for quick finishing of gears having narrower face width than the cutter, the slide is set vertically, the cutter, however, being in the same relationship to the gear as in the first method. Infeed is not used here, but the cutter head is located so the axis of the cutter and the axis of the gear, when viewed vertically, are at proper center distance from each other for correct depth of cut. In this second method, the gear is placed on the machine out of mesh with the cutter, the cutter is brought into mesh and the machine is started.
The third method represents a combination of the first and second methods. The cutter slide is again vertical, but infeed is used, the cutter head reciprocating vertically in. stead of horizontally as in the first method, the gear being finished by a number of vertical "passes" instead

of one as in the second method. The last two methods are both suitable for gears having a narrower face width than that of the cutter.

Various colored lights are used to indicate to the operator the various circuit conditions existing during the operations. On this machine gears as small as 4 inches in diameter can be handled with cutters down to $8 \frac{1}{2}$ inches in diameter. Maximum cutter face width which can be used is 6 inches with maximum diameter of 12 inches. The spindle nearer the cutter handles gears from 4 to 18 inches in diameter, while the farther spindle is suitable for gears from 18 to 36 inches in diameter.

Straightening Machine

Medart Co., Potomac and DeKalb streets, St. Louis, is offering an improved line of 2 -roll standard bar

and tube straightening, sizing and polishing machines. Eight sizes are now included in the line, ranging
from a bar and tube capacity of $1 / 16$ to 9 inches in diameter.

Models in the line feature greatly increased speed and facility of operation. The wider angularity of roll adjustment now possible gives a greater variation in work operations, ranging from adjustments for high speed straightening to more exacting operations of sizing and polishing on all types and conditions of hars.

Rolls are of Smavroc forged tool steel, heat treated, tempered and highly polished. The concave roll is of Medart design. The outstanding features of "continuous, end-toend feeding" and "instant reversal of workpiece direction" have been retained in these newel models.

Weighing Scale

Beaumont Birch Co., 1501 Race street, Philadelphia, has introduced a new automatic weighing scale for handling coal and other free-flowing bulk materials rapidly and accurately. It is a totally enclosed unit with

a dust-tight welded steel case.
Scale's outstanding feature is a vibrating metal feeder deck which conveys the material from feed hopper. It is being offered in three standard units to handle quantities from 1 to 30 tons per hour. Larger sizes having weighing capacities up to 60 tons per hour can be furnished.

Service Stations

Alemite Division, Stewart-Warner Corp., 1800 Diversey Parkway, Chi-

cago, is ofiering three new portable service stations for industrial lubrication. Each is designed for mount.
ing on hand or electric trucks, to enable on-the-spot lubrication of equipment in all parts of a plant.
Other outstanding features include ease of operation-each unit can be handled by one man, or several operators can work from the same unit simultaneously; convenient hose lengths which facilitate servicing; combination of control valve and meter for registering amount of lubricants used; outlets for both high pressure and volume lubrication; facilities for handling all grades of grease, oils and slushing compounds. The standard models of 4 and 6 -unit capacity, include a
high pressure pump with 20 feet of hose on reel, for power lubrication of pressure gun fittings, also low pressure power pumps with 15 feet of hose on reel for dispensing gear lubricants and machine oils. Two or more hand-operated low pressure pumps, depending on model size, for dispensing lubricants and oil, and a hand-operated pump for loading hand guns, are part of the equip. ment.

Advance models have capacity for six 50 -pound lubricant units. Pumps include one of high pressure with 20 feet of hose on reel for pressure gun lubrication, and

two of low pressure with 15 feet of hose on reel for gear lubrication.

Outstanding feature of the Advance model is a power head of magazine type which can be transferred readily from one pump to another making each a power-operated pressure pump. All models are suplied with air compressor, or with air hose for quick connection to plant air lines.

Coal-Fired Unit Heater

Dravo Corp., Neville Island, Pittsburgh, has placed on the market a coal-fired unit heater equipped with
an under-feed stoker of either bituminous or anthracite type. It also is being offered with either hopper or bin feed for hand firing with undergrate fan.
Units are available in eight sizes from 750,000 to $4,000,000$ B.t.u. output per hour. Each heater is entirely self-contained, having its own combustion chamber and distributing warm air either directly from outlet vents into the area to be heated, or through a simple duct system.

The coal burning series follows the combustion plan previously used in oil and gas-fired heaters sold by

Dravo. Corrugated combustion chamber with its fins and deflectors makes possible heat transfer to a moving air stream about the same

rate per square foot of surface as obtained in the boiler and transmission of heat from combustion chamber to water.

Furnace temperatures are kept down because the large portion of the heater surface above the refractory is in sight of the fire. Practically three-fourths of the heat recovered is by means of radiation into this "black surface" in the upper part of the combustion chamber. The bridgewall also is cooled by means of a duct through its center which conducts a flow of air from one side of heater to the other.

Industrial Wheels

French \& Hecht Inc., Davenport, Iowa, announces a line of cast, semisteel industrial wheels, suited to a wide range of materials handling services, in diameters from $41 / 2$ to 20 inches. Wheels in the line feature molded-on solid compound tires. As three types of compounds are available, the wheels can be equipped with a compound best suited to meet conditions to which they are subjected.

One type compound, the standard, is used for all normal duties; the resistant compound tire for service where oils, ordinarily destructive to

rubber and certain compounds, are prevalent; and static-dissipating compound for use in ordnance and chemical plants, flour mills, grain elevators and other establishments where static discharge is a hazard,

Also offered by the company is a brickbarrow wheel with solid, molded-on compound tire, 16 inches outside diameter, with plain or roller bearings and Nu-Seal bearing protectors.

Flame Hardening

(Continued from Page 82)
cautions against overlapping or reheating of hardened bands, extra quench jets should be provided at both ends of the heating tip, and in some cases an auxiliary cooling flow of water may be directed at the adjacent zones. This should be held as close to the flames as possible.

The band progressive method is generally used in cases where it is not essential that the hardness be perfectly uniform over the entire length and on parts whose extremely large diameters make it economical. ly impractical to employ the spinning methods. It is also employed on parts having flanges or shoulders which confine the area to be hardened as shoulders sometimes prevent the use of the other methods.

Spiral Band Progressive Method: While the foregoing method is suitable for hardening either localized bands such as bearing surfaces or for treating the entire length of a shaft or cylinder, the spiral band progressive method is somewhat bet ter suited to the latter type of work. In this method, as the work re. rolves, the heating tip is moved laterally at such speed as to move one tip-width along a line parallel to the axis with each complete revolution of the work, thus heating a continuous spiral band covering the entire surface of the work in one operation.

The same precautions against overlaps and edge zone softening should be observed as in the band progressive method. In addition a separate water quench should be provided at the ends of the work to prevent burning of the edges as the flames start and finish the spiral. The advantage in this technique is the elimination of soft end zones, which occur at the starting-stopping point of each band in the band pro. gressive method.
Hardening Threads: Heavy spiral threads may be flame hardened us. ing an adaptation of this technique. Instead of a broad, multi-flame tip, a 2 -flame bulbous type tip is recommended, one flame serving as a pre. heater. Torch travel is synchronized with the thread turns, with both flames directed at the root of the thread. Water quenching jets are provided immediately behind the flames, covering two threads, and a secondary quench is placed several threads behind. The size of tip and distance from the work vary with the thread size and must be determined in practice. Quenches must be se positioned as to prevent any drawing action from the areas already hardened.

The method described above may be applied to hardening Acme and
small worm threads, and large Brown \& Sharpe screw threads. Large worm threads are hardened in the same way except that standard gear hardening tips are employed, providing for uniform heating and hardening of both sides of the thread.

Mounting the Work: Where it is impractical to set up large cylin. drical objects on a lathe, they may be mounted on a pair of rollers and rotated by suitable means. Torch movement is then provided by mounting the heating tip and quench on a Radiograph or other machine capable of giving slow lat-
eral motion parallel to the axis of rotation of the work and synchronized with its rotation to effect a spiral hardened band without overlapping. This setup is used principally on external surfaces, but it may also be applied to large diameter internal surfaces.

Band Spinning Method: For hard. ening comparatively narrow bands of complete circumference the band spinning method produces far bet ter results than the progressive method previously described, prin cipally because soft zones are eliminated. It is best applied to small and medium diameter cylindrical ob-

jects and may also be used for small gears and screws. There are no overlaps or soft zones, and the uni. form, overall heating before quenching permits hardening to any desired depth of penctration. Where the quantity of production warrants the increased investment in equipment, the spinning method is by far the most satisfactory.

As in the methods already outlined, a broad flat tip of the width of the band to be hardened is employed. The quench may be incorporated in the heating tip or be separate from it. In either case, the heating and quenching are separate, successive
operations. The work is mounted on a spindle or lathe and revolved at a surface speed of about 1000 circumferential inches per minute. The flames are allowed to impinge upon the work for only a brief period, usually less than 1 minute and often as little as 10 seconds on small diameters. Simultaneously with the extinguishing of the flames the quenching jets are turned on and allowed to play upon the spinning part until it is fully cooled.

Two or more heating tips spaced equidistant around the work may be used on the larger diameters to assure a short heating interval and

You save time two ways when you purchase Johnson Universal Bronze Bars. First, you get excellent delivery service...on more than 350 stock sizes.

Orite for free
STOCH
IIST

Then, Complete Machining-I.D.-O.D. -ENDS-eliminates costly machining .. eliminates all danger of imperfections or undersurface defects. Why not try Johnson UNIVERSAL Bronze on your next job? Your local industrial supply distributor carries a complete stock.
thereby to secure the desired surface hardening effect with shallow penetration.

The speed of this process lends itself to automatic co-ordination and control. If the parts to be hardened are small, they may be released automatically from the spindle and dropped into a quenching bath, rather than using specifically located quenching jets. Small gears may be hardened readily by this spinning method, the only precaution neces. sary being that the flames should be withdrawn somewhat so as not to burn the tops of the gear teeth. The gear revolves in a soaking heat instead of the more intense heat commonly applied, thereby causing uniform heating of tooth faces and root as well as the top.
An example of how automatic control features may be adapted to the spinning process is found in a shop where gasoline engine crankshafts are hardened on four bearing surfaces. Since the four surfaces are not all the same width, the heating time is adjusted for each by a cam movement controlling the lighting and extinguishing of the four sets of heating flames. Heating time varies from 45 seconds for the narrowest bearing to 56 seconds for the widest, and the entire hardening process is completed in 2 minutes. The work is done on a converted lathe bed, and production on this operation totals 175 crankshafts per S.hour day.
(Continued In August 3 issue)

National Cylinder
 Markets New Fluxes

New line of four welding fluxes for both ferrous and nonferrous metals is being offered by the National Cylinder Gas Co., 207 West Wacker drive, Chicago. Field-tested on jobs of all types, precautions have been taken on the whole line to reduce noxious fumes, bubbling and boiling.
Flux No. 1 is for welding cast iron. It floats to the surface the heavy oxides which form during welding and keeps them liquid so that a dense, nonporous and ductile weld can be produced.
No. 2 is a cast iron brazing flux which produces a good bond at low base temperature and holds the bronze being applied at a uniform molten consistency.
No. 3 brazing flux, suitable for brass, bronze, copper, steel and malleable iron is so compounded that it reduces atmospheric oxidation and keeps flux glaze at a minimum.
The fourth flux, No. 22, is an aluminum flux for sheet, cast, wrought and alloys. Its fluxing action is fast and effective as it floats out oxides and impurities which form during welding.

Issues New Arc Welding Inspection Chart

Lincoln Electric Co., Coit road, Cleveland, has issued a new handy arc welding inspection wall chart suitable for serving as a quick check reference for inspectors checking welds. Its illustrations show the inspector what the beads look like if the current is too low, normal, too high or if the speed is too low or too high.

The chart also illustrates the Fleet-Fillet technique of welding and, by means of a graph, shows how large electrodes speed up welding production.

Develops Subsitute for Grinder Feed Wheels

Safety Grinding Wheel \& Machine Co., Springfield, O., announces a newly developed substitute for rubber in the manufacture of regulating wheels for centerless grinders. Called Saftoid, the product is reported to cost less and give the same service as the rubber wheels.

Tubing, Converter Steel

Topics of ASTM Meeting
Notable in the session devoted to steel at the forty-fifth annual meeting of the American Society for Testing Materials at Atlantic City, N. J., recently, was the report of committee A.1, presented by Norman L. Mochel, chairman, also a paper discussing the comparative quality of converter cast steel.

Particularly important recommendations made by the committee report were those in the field of pipe and tubing, where a new method of determining elongation values based on pipe wall thickness is being established in two of the country's most basic specifications for welded and seamless steel pipe (A 53) and for lap-welded and seamless steel pipe for high-temperature service (A 106).
Incorporated in these standards is a new method of determining flattening test requirements by means of a formula which establishes more rational values based on pipe sizes and grades. These two specifications also will permit the use of acid bessemer seamless material and the electric resistance welding process.

At the meeting, two new pipe specifications also were approved, one covering copper-brazed tubing suitable for general engineering uses, and the other covering welded alloy open-hearth iron pipe.

A paper by Sims and Dahle, Battelle Memorial Institute, discussed the quality of converter cast steel. It described results of rather ex-
tensive tests in comparison with steels made by other melting proccesses. It revealc
similar compositions the mechanical properties at room temperature followed well known effects of composition and inclusion type.

Low-temperature notched-bar im. pact properties were found to be dependent upon deoxidation practice without relation to process of manufacture. The same was true with strain age-hardening effects. Standard fatigue and notched-bar fatigue results are in accord with tensile properties, rather than with notched-bar impact properties.

According to the authors, the melting medium is of little moment in determining the properties of cast steel.

Keep Welding

(Continued from Page 90)

lowers insulation resistance and cuts down creepage distances.

Steel mill dusts are usually highly conductive, if not abrasive, and lessen creepage distances. Other dusts are highly abrasive and actually cut the insulation in being carried through by the ventilating air. Fine cast iron dust quickly

The Lo-Hed Hoist is Applicable To Any Monarail Sysierm There's a Balanced Lo-Hed Electric Holsi For Every Purpose
Look in your Classified Telepbone Directory under "A-E-CO LO-HED HOISTS" for your nearest representatire. OTHER A-E-CO PRODUCTS: TAYLOR STOKERS, MARINE DECK AUXILIARIES, HELE-SHAW FLUID POWER

BALANCE

was only the beginning of the story of this hoist

When one of our representatives saw the plcture of this ad he rald, "Yes, thls illustrates our bis point. the balanced arrandement of the motor and drum about the heann. But there's more to the La-lled atory in these times than balance. Listen.
"When I see a customer, I don't have to sell him on balanced deslign, all-spur gear drive, heavy duty holat motor and all other features The customer takes me by the arm Lo-lled and says, 'Sce points to at lieen runnine every day for 5 years. . . on three shifts now. . . not a cent for repalrs yet.' Then the customer sells me of in LoHed.
We make no claim that a lo-lled will run for 5 years or 10 years without a cent for upkeep. But it is true that loo-Heds are precision built to last for years. It ls true record for low maintenance. And it is true that they sell themselves to customers. If you need an electric hoist now, buy one that will be on the job years from now. Buyalo-lled. Send for the 28 -pare l.o-lied catalos today.

AMERICAN ENGINEERING CO 2484 Aramingo Avenue, Phila., Penna.
\square Please send me your completecata-
log of LO-HED IIOISTY
Ask your representafice to yet in
touch with me promptly.
vame
Company
Street Address
City
(Please print Dlalnly)
penctrates most finalathes mato Hals.
Hone the destrablity of inspectlose motors perlodleally. If condl Hons we extremely severe, weokly Insperefon and pathal dembln: tre deatrable. Most motors require : complete averhnulims and thomoneh clebnlas: about once a sear.
Onee In Weoks from the weekly wermins, the motor athd renerator पhould be hlow ollt with dry com pressed 116 (about 25 to 30 pounds per stuate low hapessume) Where comduethe: and abrisive dusts ate presemt, even lower possmbe maty be meressing, fald stetlon is to be peramed, as dimman cill easily bo
caused by blowing the dust and metal chips into the insulation. On most motors the windings are fairly accessible, however, and the air can be properly directed to prevent such damage.

Once a Year: About once a year, welders should be overhauled. First, the heavy ditt and grease should he removed with a heavy, stifi brush, wooden or flber scrapers and cloths. Rille cleaning bristle brushes cati be used in air ducts. Dry dust alld ditt can be blown off, using dry compressed atr at moderate messure Care must be taken to direct the air so that the dust will not caluse damage and will not be

moving materials [RSTHFR... at lower cost with the MMiMURI "Trachless Train"

Where loads are heavy and the haul is long the Mercury
"Trackless Train" is your best bet work continuously, handing The manding idle to be loaded or union anywhere that is not confined to fixed path, but may go axy exactly suited movement necessitates. Trailers canterial movement can to the materials to be moved and moduction schedules. be systematired to tie in with percury "Tug" Electric,
The tractor illustrated is the Mopular Mercury "A-310. Model A- 540 , the trai vailable where required. The "Banty Gas tractors are also avaikere conditions are not too severe for congested aneas and where "Super Huskie" for heavy duty operation, the "Huskie" and "Super Huskie Mercury "Trackless Train,"

Tumitas
 TRURERS
 LNT TRUESS

pocketed in the various corners Grease, oil and sticky dirt are easily removed by applying cleaning liquids such as carbon tetrachloride.

If the welder can be spared from service long enough, the insulation of the motor should be dried out by heating to from 90 to 100 degrees Cent. While the motor is still warm, a high-grade insulating varnish should be applied.

The varnish may be sprayed or brushed on. After applying the varnish, the best results are obtained by baking for 6 to 7 hours at about 100 degrees Cent. If the machine must be put back into service quickly, or if facilities are not avail able for baking, fairly good results will be obtained by applying one of the varnishes which dry in a few hours at ordinary room tempera tures.

Lubrication: Manufacturers' instructions regarding lubrication of bearings should be carefully noted. These instructions should be kept near the welder so that they are readily accessible. Usually greasepacked bearings have sufficient lubricant when shipped from the factory to last about a year under normal conditions of cleanliness and temperature. When sets are operated in unusually dirty atmos. pheres, run continuously 24 hours per day, or exposed to extremes of temperature, it would be well to shorten the bearing inspection and lubrication interval down to six months or less if experience war rants An occasional check of bearing temperature by feeling with the hand may disclose undue heating hefore damage is actually done. Once a luhtricating routipe has been estainlished, is should be carried out, and hy reliable men who will follow instructions.

It is pretty generaily established that outside of sross peglect for has perious of time the major atues of bearing troubles are oversreasing and din Overgreasing re sults in excrasive heating of the tearing fregueaur mith chaming whin braking down of the grease uth cumsquest Joss of its proter tive cualitizes.
Din acrisionelly geas tito a baring through the use al srease that is cargiza machat or stared in ur wuerai cuntainems छuite as fre quontly it sits an armugh careleshess in hotection farms while bearincs fre dinasmuibes or whened for anspution. The Prewnajay is ob ctuas lant ditan manemone:

Evect pert of to hearion assem-
 kits and surnw stmme to blace in at plam li, ico immentiatery on Tr mowsh, sat lit drughen or wheruise Sillat shaula gre he malleen mith but if thetargh choening in a suitshe sinvat
 Frass shmoti mut he autores of
touch a bearing.
Grease must be clean. If there is the slightest doubt of its purity, it should be thrown away. Grease is cheap compared with bearings and lost man-hours. Only a high grade of grease should be used for ballbearing lubrication.

Brushes: Brush inspection is important. The first essential requirement for the satisfactory operation of brushes is the free movement of the brushes in their holders. Uniform brush pressure also is necessary to assure equal current distribution. Adjustment of brush holders should be set so that the face of the holder is approximately $1 / 8$-inch up from the commitator: any distance greater than $1 / 8$-inch may cause brushes to wedge, resulting in chattering and excessive sparking.

It is essential that the correct grade of brush for a specific application be used. Recommendations as to the correct grade of brush

Table I-Trouble, Cunses and What To Do

Trouble

Machine falls to hold heat

Causes

Rough or dirty commutator Brushes may be worn down to limtt of adjustment or life Brush springs may have lost adjustment or my be broken Flield circuit may have varlable resistance connection or intermittent open circuit
Electrode lead or work lead connectlons may be poor
Wrong grade of brushes may have been installed on generators
Field rheostat or tap switches may be making poor contact and overheating
Brush-shifting or other mechanlcal current-adjusting mechanism may have loose or worn links

What To Do
Commutator should be trued or cleaned
Replace or readjust brushes
Replace or readjust brush springs
Check lleld current with ammeter to discover varying current. This applies to both the main generator and exciter if used.
Tighten all connectlons
Check with manufacturer's recommendations
Inspect rheostat and clean and adjust finger tension on switches
Check current-adjusting mechanism for back-lash and play

Trouble
Motor trips oft line
Cuuses

Power clrcult may be singlephased
Welder may be operating above current capacity
Welding electrode or work leads may be too long or tos small in cross section
\therefore Ablent temperature may be $t 00 \mathrm{hlgh}$

What To Do
Check for one blown fuse or dead line
Check load against welder name plate. Check duty cycle
Check terminal voltage while machine is loaded; it should not exceed 30 volts on small machines or 40 volts on large machines when operating at rated current
Make sure that temperature in motor-gensrator room or housing does not exceed 100 F . and that there is no interference with normal ventllation of the machine

Trouble
Machine falls to start

Causes
Power circult may be completely dead
Power circuit may be slnglephased
Power line voltage may not be sultable for motor, or may be extremely low; may be accompanied by chattering of the motor starter.
Machine may be Jammed
Motor starter may be singlephased
Overload protectlng relays may be trlpped

What To Do

Look for open disconnect switch, fuses removed from clips, or blown fuses

HOW TO MAKE LONG-LASTING DOORS

 LAST STILL LONGER Long before high-speed day-andnight war production began to throw severe, extra demands on all industrial equipment, Kinnear Rolling Doors had proved their capacity for long-lasting, low-cost service under hardest use. To make sure that your rolling doors give you every extra ounce of time-saving convenience for the duration, and long after, we offer the following maintenance suggestion:
ADJUSTING

See that the spring tension of manually operated doors is adjusted for smoothest, easiest operation. Just remove the pin from the adjustment wheel (see sketch), insert a steel rod in one of the holes, increase the spring tension by turniug the wheel clockwise to the required point, and replace the pin. If the tension is too great, turn the wheel in the opposite direction.

1 in a series, this ad will be 1 SL followed by ser arat others sug. gesting simple steps thas operating at Kinnear Rolling Doorsh extra years peak efficien of sertice.

THE KINNEAR MFG. CO., 1780-1800 FIELDS AVENUE, COLUMBUS, OHIO SAVING WAYS

dook fot one blown fuse or one denil lime
Chock voltike wilh voltmeter. furtlrubury tit the moment of allompled statilng
See that almalure tutns over posily liy finma, and lools for
 Chorels to swo that nll llagers on stirter make contact when closiod
sor lhat pulay eontaces hro closed wnd that startir pleks tif when bush liutton is मressed. 130 sure to remove cullsa ur trlpplang

Csumes

May be running the wrons why
(ienerator or exciter brushes may be loose or missing Exelter may not be operating

Fleld elroult $n f$ generator or exclter may be open
Generator may be reversod in polarity due to another machine or incorrect operition in parallel with another machine
Series fleld and armature circult may be open-circuited

What To Do

Check direction of rotation with manufacturers instructions or direction arrow. On 3 -phase

W'eliler stirts but fulls fo sunolute
motors, direction of rotation may be changed by interchanging any two leads
Be sure that all brushes bear on the commutator and have proper spring tension
Check exciter output voltage with voltmeter or lamp
Check for open circults in rheostat, field leads, and fleld colls. Also check resistors and rectHers, if any. Some machines glve low output when flelds are open
Flash the fleld with a storage battery or another generator nrst with one polarity and then with the other to see if It builds up (Flash exclter lleld if set has separate exciter)
Check circuit with ringer or voltmeter

Trouble

Welding are is
loud and spatters
excesslvely

Causes

Cu:rent setting may be 100 nigh
Polarity mas be wrong

What To Do

Check setting and current ouiput with ammeter
Check polarity
l'is reversing polarity or try an eleciade of the opposite poaldity
""Flashing" the tleld of a generator or exciter is a method of establishing the iesidual magnetism of the fleld structure with the proper polarity to causc the machine to "build-up," or generate voltage. It consists of passing a relatively heavy current through the fleld wintings momentarily, using an external source of direct curent to supply the power.

If a low-soltage source, such as a storage battery, is used, the series fleld of the generator should be flashed; if a higher voltage source such as another generator or exciter is used, the shunt tleid should be flashed.
should be obtained from the manufacturer of the welder only.

Broken brushes imply two possibilities: Incorrect brush grade or mechanical defects (such as unbalanced, rough or eccentric commutator). To eliminate brush breakage, both factors should be corrected.

Check the brushes to make sure that they will not wear down too far before the next inspection. Keep extra sets of brushes available so that replacement can be made when needed. It is false economy to use brushes down to the absolute minimum lensth before replacement. Cases have been known where brushes have worn down until the metal, where the pigtail connects to the brush, was touching the commutator. This, of course, was causing damase to the commutator.
Make sure that each brush surface, in contact with the commutator. has the polished finish that indicates sood contac:, and that the polish covers all of the surface of the brush. When replacing a brush be sure to pu: it in the same brush
holder and in its original position. It has been found helpful to scratch a mark on one side of the brush when removing it, so that it will be replaced properly.
When installing new brushes, fit them carefully to the commutator. Sand only until the curve of the brushes is the same as that of the commutator. Be sure that the brush shunts (pigtails) are fastened securely so that current will not overheat the brushes and brush holders.
Check the springs that hold the brushes against the commutator.
Commutators: Inspect the commutator for color and condition. It should be clean, smooth and glossy, with a color varying from straw to chocolate brown where the brushes ride on it. A bluish or reddish color indicates overheating of the commutator. Roughness of the commutator should be rerioved by sandpapering or stoning. Never use enatry cloth or an emery stone. Use a "fine" stone or number 00 sandpaper unless the commutator is in bad condition, when the job may be started with a "coarse" stone and finished with "flne."

For this operation, press the stone or sandpaper against the commutator with moderate pressure with the motor running, and move it back and forth acress the commutator surface. Use care not to come in contact with live parts.
If the commutator is very rough as evidenced by pronounced up and down vibration of the brushes, the armature should be taken out and the commutator turned down in a lathe. When this is done, it is usually necessary also to cut back the insulation between the commutator bars slightly. If the commutator is found to be dirty when the generator is inspected, it should be wiped clean with a piece of canvas or other cloth that is free from lint.

Never put oil on the commutator. Proper selection of brushes gives the commutator all the lubrication required to prevent excessive wear and to build up a good smooth operating glazed surface on the copper.

Transformers: The are welding transformers of alternating-current welders require a minimum of maintenance, but this fact should not be allowed to result in neglect. On fan-cooled units, fans should be cleaned and lubricated about once a year. Windings should be blown out at least twice a year in very clean locations, and more often in dusty places. At the time of this periodic attention, all connections and coil supports should be checked for tightness. Manual current adjusting mechanisms should be lubricated often enough to prevent stiff operation of the hand-wheel or crank, making sure that a fairly high melting-point grease is uniformly distributed over the full
length of screws and guides. On motor-operated controls, lubrication at more frequent intervals may be required, as evidenced by slowing down of the motor or noise from the gearing: This point should be checked at least three times a year, and more often if experience justifies it.

Abuses: While most welding equip. ment is designed to stand up under unusually adverse operating conditions, some not infrequent circum stances will cause serious impair ment of not complete interruptions of their service.

One bad practice, for example, is that of leaving weather-protecting
tarpaulins thrown over ma=hines in operation, in such a way as to interfere with the free passage of ventilating air into and out of the equipment. Cases are known where welders have been equipped with canvas flaps permanently installed on inlet and exhaust air openings, resulting in severe overheating and very short equipment life.
Improper connection of extension leads for either the electrode or work terminals is not at all uncom. mon. This results in a high resistance circuit from welder to are and return with resulting variations in welding current, particularly when the leads are moved

so as to change the resistance of the connections. This is a frequent cause of complaints by welding operators that the heat is not steady. The remedy for this is to make sure that connections are kept tight, and that all connections are made with cables equipped with properly installed cable lugs or terminals. It is practically impossible to bolt or wedge untinned flexible cable to another conductor and secure a good low-resistance joint. Soldered or reliable solderless connectors or terminals should always be used.
The use of excessively long elec-
trode or work leads with motorgenerator type welders will result in overheating of the motor when operating in the upper part of the current range unless extraordinarily large cables, or a number connected in parallel, are used. Overheating, of the motor from this cause is a frequent reason for mo-tor-generator welders tripping off the line with consequent loss of production.
A source of trouble which is not protected against by the motor overload relays is the intentional or unintentional application of long continued short circuits on the gen-

MANY WAR FACTORIES BASE THEIR PRODUCTION STRATEGY ON THOMASTRIP DEPENDABILITY AND PERFORMANCE

THE DEMAND for higher and atill higher production places more rigid demands upon your cold rolled strip steel. Since Thomastrip is made with extreme care throughout every operating procedure, it will meet your increasingly strict requirements. Thomas steel is uniform in high quality and meets specifications accurately. Not only is Thomastrip available in the usual chemical and physical properties, but also in a wide variety of electro-coated as well as hot tin coated finishes. Let Thomas engineers help you to plan your war production strategy. Write or send samples today.
THE THOMAS STEELCO...WARREN, OHIO

erator. Poor cable or cable connection insulation may be responsible for unintentionally short circuiting a generator for long periods of time. This results in the flow of very heavy generator current, but because of the low generator voltage involved, does not require sufficient power input from the line to cause the motor overload relay to trip. While the motor is not damaged, the generator may be seriously overheated or burned out.

The use of improperly bonded structural steel systems or building frameworks for the welding current return circuit is undesirable. The high resistance path thus afforded the welding current may result in overheating of the welder motor, and in addition, there is always the possibility that arcing or overheating of some poor connection, possibly quite remote from the scene of operations, may go unnoticed and start a fire.

No attempt should be made to adjust welding current output by any means other than those provided and recommended by the manufacturer of the equipment. Shifting the brushes on generators not designed for brush-shifting control will usually result in inferior welding characteristics, impaired commutation, and short brush life.

In transporting welding equipment, rough handling resulting in permant mechanical damage is all too frequent. Motor-generator sets mounted on steel wheeled running gear should be moved only at slow speeds-never behind fast-moving trucks or other vehicles. They should be eased over obstacles and depressions such as flange clearance grooves in tracks. Slings used for transportation of welders by crane should be carefully arranged to avoid damaging control boxes, handles, and other equipment mounted on the outside of the set.

Care should be taken to avoid using are welders out-of-doors in unfavorable weather. Many machines now on the market are designed to be both semiprotected and dripproof. This does not mean, however, that these welders should be used in rain or other precipitation without suitable protection.
At the discretion of the user, of course, dripproof or even open motor-generator sets can be operated out-of-doors, provided they are protected from obviously damaging conditions by tarpaulins or temporary shelters. These must be arranged so as not to hinder ventilation of the equipment, as previously discussed.

Common troubles and their remedies: In spite of the reliability of the modern arc welder, troubles will occur. The causes and remedies for the majority of such troubles are given in Table I.

Dwindling Steel Warehouse Stocks

Worry Eastern Manufacturers

NEW YORK

RAPID depletion of warehouse stocks in the East is concerning not only distributors, but manufacturers engaged in a wide range of war work. Some of the latter predict jobber stocks will be virtually exhausted before the year ends, and they believe that should this develop, war production will be crippled severely.

Even now, manufactures often must go far afield to obtain small items, and often at cost of considcrable delay and effort. This in itself is not new. But it is the ex.ent to which it is now being donc, combined with the fact that not even this is going to help much longer at the rate warehouse stocis are shrinking, that is causing concern.

Due also to difficulty in obtaining steel, manufacturers are having to resort to an increasing number of substitutions-not only in the matter of sizes and analyses, but, in same cases, of changing over to entirely different materials. However, there are limits to which this can be done. Also, there is bound to be waste in time and materials, especially where over-size pieces are turned down or sheared to required size.

Stocks Important

While granting there is terrific demand for steel from many directions, manufacturers contend it is highly essential to them and to the war effort that there be stocks upon which they can draw for scattered items as the need arises. To carry all the sizes and specifications they might need in meeting every contingency of operation and maintenance would be poor economy, even if it were possible. At present, it would not only be poor, but outrageous economy, and obviously impossible. Yet stocks they can turn to for small special items (clearly needed for war work) are of more importance than ever before.

As indicated, many consumers are having to go far afield these days for such items. One large chain manufacturer recently had to go as far west as St. Louis to obtain $21 / 2$ tons of hot-rolled bars for an urgent Navy order taking an A-1-a rating. Such cases, he points out, are coming up practically every other day. Difficulty in obtaining steel has caused an eastern Penn. sylvania interest, heavily engaged in war work, to call upon his branch offices in Baltimore, Boston, Chicago, Detroit, Houston, New York, New Haven, Philadelphia and St. Louis
to assist in the procurement of steel. By this procedure practically all warehouses can be contacted as far west as St. Louis and as far south as Houston, Tex. But even with all this help this manufacturer is often required to ask the Army Ordnance Department for assistance in obtaining some items.

Incidentally, this particular pur-
chaser summarizes his position by saying that before last winter he was successful in obtaining any quantity and size in commercial grades and all types of alloys from stock, but that today he can purchase practically no alloys from stock and finds the sizes and quan. tities of commercial grades limited. Frequently, his company is handicapped through inability to obtain stock from iron and steel distributors.

A chain manufacturer advises that for many years the steel warehouses have played a very important part in supplying his plants with

THERMIT
Speciolisfs in welding for nearly 40
for are welding and of Thermil for
numerous steel items. "Naturally," he says, "the large portion of our steel requirements is purchased from the mills; however, the small items of 500 or 1000 pound lots of cold-rolled steel, machine steel, black and galvanized sheets, etc., which we order both for production and maintenance, are no less important to our operations.'

A turbine manufacturer is expertencing much difficuty in obtaining smatl steel and brass stock requirements from warehouses. "We alwars felt that the warchouse was a necessary unit in our commercial picture more so now than ever,
yet we have been given to under. stand that they are themselves experiencing the same kind of difficulties in obtaining their requirements in the various metals." This consumer hoped that something would be done and done quickly to insure the continued operation of warehouses.

A manufacturer of forging and pressing equipment in eastern Pennsylvania asserts that it has been his practice to buy, as much as possible, from the warehouses, as the quantities of steel ordinarily purchased do not warrant going direct to the steel mills. Up until the

present, this company has been experiencing no particular difficulty, but is now encountering delay in obtaining certain sizes of cold-finished stock through inability of the warehouses to get material from the mills. As a result, the company is using substitute materials where quick delivery is essential.
A hydraulic turbine and valve manufacturer has been seriously handicapped in obtaining steel bar requirements. It has been necessary, frequently, for this company to accept substitute analyses or substitute sizes in order to keep abreast of production requirements.
On numerous occasions, this manufacturer has found it necessary to inquire many times for the same lot of steel before finally being successful in obtaining an acceptable quantity. There have been a number of requisitions which the comvany has been forced to carry along in its purchasing department for at least six months before finally being able to purchase all of the items required.
"Our situation here," says a company executive, "is such that only infrequently can we place mill orders for bars. We manufacture custom-built equipment and naturally the sizes cover a wide range. However, even with the wide range in sizes, our inquiries are always eagerly sought by the warehouses as attractive tonnage, miscellaneous lots often making 40,000 pounds carload.

Job Delayed a Year

"At present, we have several or ders on mill books for a number of sizes of heavy flats, to which we had to extend various ratings, some of which were good and some not so good. We have received some of the items from the mills, but, as you can well appreciate, they are unable to ship the items on the lower ratings, and this has handicapped a job which we have had on our books for practically a year, due to the fact that we are unable to get several sizes of bars.
"Very frankly, in our opinion, we think that the warehouse as a source of service to the manufacturer engaged in this vital war program is a very essential unit and should be given consideration. A delay in receiving small stock items of bars very often seriously handicaps emergency war effort and we believe some relief should be given to the warehouses in order that they in turn can relieve a critical situation facing the manufacturers of war materials."

A manufacturer of electrical measuring instruments and pyrometers, etc, notes the increasing difficulty of distributors in obtaining stock replacements and believes this difficulty is going to work a
double hardship on plants such as his. "'While we do use a considerable quantity of iron and steel products, we do not use such quantities as to order on every size the quantity required by a mill and wait for delivery."
A ball and roller bearings producer regards warehouse service as essential, not so much from a production standpoint, although his company does occasionally pick up small quantities of cold-rolled strip steel and low carbon bars when there is delay in shipment from the mills, but from a maintenance standpoint. The company continually is purchasing bars, shapes and sheets for this purpose.
Asserting steel warehouses are cspecially important at this time, an eastern Pennsylvania manufacturer, engaged in war work, points out that in many instances his company requires small quantit es of steel bars, sheets, plates which are not suff.ciently large to place with a mill, but which could easily be handled by a warehouse if they had the necessary material on hand.

We are at the present operating cn the basis oi 95 per cent war work and frequently find that in connection with government contracts we require a few bars of hotrolled material of special analysis and our only chance of filling our order is to pick up this material through a warehouse.

No Steel-Machine Redesigned

"Recently in connection with one of our government contracts we required approximately 1000 pounds of hot-rolled flat bars and after contacting seven warehouses by telephone in this locality we were unable to pick up the necessary material. It was then necessary for us to call all of our outside connections with the hope of picking up this material from some warehouse at a distant point, but inasmuch as we were not successful it was necessary to redesign the apparatus using other material.
"Our experience over the past several months has been that the steel warehouses in this vicinity have not been able to replenish their stocks; consequently, it is very dif ficult and sometimes impossible to obtain the small amount of material required in connection with special jobs.'

A manufacturer of condensers special purpose compressors, big pumps and blast furnace blowers regards warehouse services as highly important. All his products are important to the war effort and in many cases urgently wanted for direct army and navy use. To com plete this made-to-order machinery, bar stock, hexagons, flats, in some sizes are always needed in quantities far below those economical for the mills to roll.

Activities of Steel

Users and Makers

Formation of a plant war pro duction drive committee was an nounced last week by Herbert H. Pease, president, New Britain Machinery Co., New Britain, Conn. Feature of the plan is to increase attendance of company's 3500 em ployes through issuance of "perfect attendance awards." Program also includes a slogan contest, pledges of all-out efforts by workers, post
er displays, progress indicators and supply to the men of informative pamphlets on war efforts.
Colonial Broach Co., Detroit, will soon double its broach manufacturing capacity in that city by occupying a new plant which is in addition to facilities created by the erection of its second plant in that location about a year ago. Area of the latter also is being increased 20 per cent, to be occupied by Colonial Bushings Inc. and New Method Steel Stamps Inc.

Orders received by General Electric Co., Schenectady, N. Y. in the

AQUA SOL "D" GRINDING COMPOUND

This compound was particularly designed for micro finishing bearings, wrist pins, aircraft and engine parts. The most remarkable feature of this new grinding compound is its ability to settle fine chips; it does this faster and more completely than any compound or coolant we have ever seen.

NO. 22 NON-SCRATCH DRAWING COMPOUND

No single compound or even a set of half a dozen will fit all purposes. We have, therefore, made many brands to fit different working conditions and preferences. In 1917 we developed the first washable-in-water compound that ever had been offered; today we are always pleased to supply working samples and servicemen for demonstration purposes. We also work out special lubricants for special jobs.

NO-SEP LUBRICANT

This lubricant is known as "the lubricant that lengthens the life of tools". If you have difficulty in maintaining limits in tapping or threading jobs, find excessive wear or breakage of taps or tools, try NO-SEP. It is widely used in war plants for broaching, drilling, boring and other cutting operations on hardened, toughened steels.
SPATTER-EX AND FLASH-EX
Spatter-EX prevents the bonding of welding spatter to parts which are to be welded. Flash-EX protects welding holder jaws from becoming jammed with flash; prevents adhesion of welding spatter on multi-pass welds, or on single welds where the heat is intense. Both compounds are water-soluble.
PROTEX NON-RUST OILS BEAT CORROSION! Ideal for protecting shipments and exports against rust damage. Extensively used on steel stocks. machines, parts, tools, dies, etc. which must be placed in storage. For a few months protection, use No. 20 Protex Non-Rust Oil; for long storage, use our F.B. Protex.

MELTOMATIC PASTE SOLDER

Brush the material on, apply heat, and wipe. It's a revolutionary process; saves time.

ALUMINUM CUTTING OIL Has great penetrating power. plus ample lubrication; increasea tool life.

B CEMENT FLOOR CLEANER

For maintaining factory cleanliness; excellent for oil-soaked floors; cleans in a jiffy

WAYNE CHEMICAL PRODUCTS CO.
Dependable Service to the Melal Working Industries for over 25 years
9502 COPELAND ST.
DETROIT, MICHIGAN

second quarter of 1942 amounted to $\$ 566,250,000$, an increase of 115 per cent over the corresponding period of last year, Charles E. Wilson, president, reported last week. Orders for the six months ending June 30 totaled $\$ 865,370,000$, an increase of 66 per cent.

For outstanding achievement in production of equipment vital to the United States Navy, the Navy " E " burgee, symbol of "Work Well Done", was presented to the De Laval Steam Turbine Co., Trenton, N. J., June 29, at which time also
the employes received the " E " lapel insignia. Production of equipment for the Navy by the company during the first four months of 1942 exceeded in equivalent man hours its entire production during World War I.
A. Jay Hofmann has moved to larger quarters at 31 North Narberth avenue, Narberth, Pa. In addition to cranes and mill equipment the organization will handle compressors, diesels, steel buildings and contractors' equipment, under direc. tion of Frank W. Hofmann, and

AVOID DELAY IN FURNACE CONSTRUCTION Use Refractory Concrete!

...It is available and adaptable

YOU can get the materials for Refractory Concrete and Refractory Insulating Concrete nowor whenever you want them. Refractory Concrete is made withLUMNITE as the binder for refractory aggregates. LUMNITE is sold by building supply dealers throughout the United States and in Canada. Aggregates can be easily obtained or prepared in your plant.

Added to availability is the adaptability of Refractory Concrete and Refractory Ifsulating Concrete. This also eliminates delay. Cast-in-place Refractory Concrete is formed to fit the job. Any thickness or shape of wall or arch can be placed without limitation by the size of masonry units, without cutting, and without waiting for special shapes.
High cold-strength speeds up the construction schedule. Refractory Concrete is ready for service in short order, usually before installation of burners and accessories is com-
pleted. You do not have to wait for Refractory Concrete.
Pre-cast units of Refractory Concrete can be made in your plant, ready for installation as needed. Special shapes, made in any form desired, can be stored or installed the day after molding-without pre-firing.
Let us tell you where you can get LUMNITE and aggregates for Refractory Concrete and Refractory Insulating Concrete. Write The Atlas LUMNITE Cement Company (United States Steel Corp. Subsidiary), Dept. S, Chrysler Building, New York City.

[^3]liquidation of idle tonnages of new and used steel, steel tanks and tow. ers and general surplus materials, under direction of E. L. Hofmann.

Due to increased industrial activity in the Northwest and the need for greater sales coverage in that area, Cutler-Hammer Inc., Milwaukee, has elevated its Seattle office to the status of district sales office. T. N. Bristow, of the Seattle office, assumes the title of district manager.

With testimonials of esteem in recognition of their accomplish. ments, 206 veteran employes of Lincoln Electric Co., Cleveland, who had served 10 to 35 years, recenily received service pins from company officials.

Machine Tool Builders Appoint Eastern Agents

More machine tool manufacturers who formerly were represented in New York and New England by Henry Prentiss \& Co., sales agency which retired from business May 31, have announced appointment of ncw representatives.

Blanchard Machine Co., Cambridge, Mass. and Racine Tool \& Machine Co., Racine, Wis., will be served in the Syracuse, N. Y. district by C. H. Br-ggs Machinery Co. of that city. George Keller Machinery Co. will represent both firms in the Buffalo district.
In New York city and vicinity, Rudel Machinery Co. will handle the Racine line. No change is made in the latter's New England sales area, where it is represented by Wigglesworth Machinery Co., Cambridge, Mass., and LyndFarquhar Co., Boston.

Making Fiber Containers On Tin-Can Machines

Process developed by the American Can Co., New York for making cans of fiber bodies on machines normally used for manufacture of metal containers was announced last week. It will be made available to the canning industry for the duration when perfected through actual production. It is expected to find ready acceptance by manufacturers of drypack products.

Under the new method fiber is cut to sheets of tin plate size, lithographed on presses formerly used for reproducing designs on tinplate, then sheared and formed into bodies. Ends will be seamed on the container with the machines now in use.

Greatest merit of the process, according to company, is that no new machinery is required.

"Iechain"
 PROCESS ROLLS

Other Mackintosh-Hemphill Praducta:
Rolling Machinery

Shape Straighteners Strip Coilers

Shears
Levellers

Pinions

Special Equipment
Iron-Steel Castings
The NEW Abramsen Straightener
Improved Johnston Patented Corrugated
Cinder Pots and Supports
Heavy Duty Engine Lathes

More tons and lower cost per ton rolled; less slippage; greater bite; better surface
and resistance to fire cracking-these are the profit making advantages you get
with "TECHNI" Process Blooming and Slabbing Mill Rolls. These extra qualities are made possible by the "TECHNI" Process, an exclusive development of Mackintosh-Hemphill, which regulates the quality and grain size of the rolls with as much exactness as the best modern steel practice regulates the quality of steel.

Make your next set of rolls "TECHNI" Process.

Since 1803-Pioneers, Engineers and Builders

FOR BLOOMING AND SLABBING MILLS

When America has paid the price . . . in full.

In blood, yes . . . in tears, and in SWEAT! We free people have always been ready to toil for our pleasures. Now, we must sweat for Victory!

The men of Cooper-Bessemer realize that Victory means hard work . . . long hours . . . maximum effort. Since Pearl Harbor, production of engines and compressors has been stepped up twice, is being nearly doubled again. Every man wants to make good engines better, make better engines faster.

Today, there's a quicker tempo, with grim determination to do the job . . . to pay the price of Victory . . . NOW!

THE COOPER-BESSEMER CORPORATION

Mount Vernon, Ohio

Plants at Mount Vernon, Ohic, and Grove City, Pa.

A tspical S-cylinder dipect-reversing
Cooper-Bessemer Marine Diesel Engine

Signs "Final Pact"

(ConcTuded from page 44) deeply regret circumstances are such that the Amalgamated Association, with its fine traditions, is passing out of the picture."
The letter pledged the company future co-operation with the new union in the same spirit. Of the 7000 members of the Amalgamated Association 1500 are employes of the Granite City Steei Co.
The new contract will be binding on the new union. It provides for a continuation of the previous rates of pay, with compensation for increased living costs to be negotiated later. Union representatives who signed this contract included grandsons of the signers of the original union contract with the company.
War Department Asks for
Check Up on Steel Employes
PITTSBURGH
Investigation of all employes of Pittsburgh district steel companies, "from top executives to bottom-rank workers," was ordered last week by the War Department at a meeting attended by steel men and leaders of the CIO and AF of L unions. Purpose is to prevent sabotage or other efforts to reduce production.

Capt. Richard Brown, United States Army, told industrialists that the investigation into private lives of all concerned must be begun within ten days or their war contracts will be re-negotiated and a definite clause inserted to insure execution of the order. Labor representatives were told that government would not stand for interference from any source.
(Additional labor news will be found on page 66.)

"Aluminum Forgings for WPB' ${ }^{\prime}$ in Old Tin Mill

Carnegie-Illinois Steel Corp.'s Shenango tin plate plant at New Castle, Pa., will be taken over by the WPB and will be converted into an aluminum forging plant, Senator Joseph Guffey, Pennsylvania, announced in Washington last week.

Twelve large forging presses will be installed and about 2000 work. men employed, according to the senator. Considerable of the labor force displaced when the tin mills discontinued operations will be absorbed in the plant.

The forging presses will occupy space now occupied by 40 hot tin mills; Shenango's finishing mills still are in operation.

No date was given for starting or completing the conversion.

The tin mill plant suspended on June 13 because of inability to obtain sufficient tin and steel. Only ten mills were operating when the plant closed.

Canada Has Spent

Five Billions on

War Production

TORONTO, ONT.
VALUE of Canadian contracts and commitments on dominion, United Kingdom and other accounts to the end of June totaled almost $\$ 5,000,000,000$, according to a report by C. D. Howe, minister.

Preliminary figures show that for
the period from July 14, 1939, to June 30,1942 , the total was $\$ 4,877$,063,532 . Contracts placed on Canadian account, including plants and extensions, part of which is chargeable to other Empire countries under the air training plan, general purchases and contracts totaling $\$ 36,350,004$ awarded by the Civilian Aviation division of the Department of Transport, totaled $\$ 2,453$,698,533. Aggregate orders for stores placed on United Kingdom account, with United Kingdom commitments for plants, extensions and orders for output of some of these plants amounted to $\$ 2,046,646,193$, an esti-

We want to help you BEAT YOUR BEST RECORDS!

Increase the upward swing of your production curve by adding Scaife Company's production facilities to your own!

Two roads are open-(l) release your own factory equipment for war production by letting Scaife make your cylinders, tanks, etc. (2) sub-contract to Scaife, manufacturing operations involving:
\star Arc Welding-hand, automatic or semi-automatic
\star Brazing, Spot Welding \star Pressure Testing
\star Drilling and Tapping \star Drawing and Stamping
\star Hot Dip Galvanizing $\quad \star$ Hot or Cold Riveting

Send your blueprints for quotations.
mated figure, which includes the United Kingdom's share in foint projects. Contracts awarded on other accounts totaled $\$ 340,368,802$.

Nearly 335,000 contracts have been placed on Canadian account by the department and its predecessors, with average value of $\$ 7300$. The peak for such awards was reached in the quarter ending June 30, 1942, with a monthly average of 18,029 , compared with 13,214 in the same period in 1941 and 4048 in the corresponding quarter in 1940 .
Contracts placed on Canadian account include: Aircraft, $\$ 420,248$, 713; alloys and metals, $\$ 9,248,201$;
construction and defense projects, $\$ 224,610,982$; land transport, \$227,813,638; machinery, $\$ 21,235,613$; munitions,, $\$ 72,927,512$; ordnance, $\$ 211$, 644,079; shipbuilding, $\$ 437,369,973$.

Canadian iron and steel imports in April were valued at $\$ 37,160,000$, compared with $\$ 37,914,000$ in April, 1941. Vehicles represented the larg. est value, $\$ 8,794,000$. Other imports included rolling mill products, $\$ 8$,614,0c0; machinery, except agricultural, $\$ 7,332,000$; farm implements, $\$ 2.732 .000$: engines and boilers, $\$ 1$,545,000 ; pig, ingots, blooms and billets, $\$ 1,038,000$.
The Canadian government has

Over 24 years of effort in the specialized field of heat- and corrosion-resistant alloy castings have given MICHIANA experience covering the widest diversity of application. To this long practical experience MICHIANA has the specialized metallurgical engineering skill, modern facilities, and trained foundrymen to insure uniformity of quality in alloy castings needed to meet the present day demands for greater production. AICHIANA alloys are doing their part in the heat treating required to develop maximum properties in materials for machine tools and war equipment, and are performing vital functions in connection with the fumaces and handling of work through these furnaces.

MICHIANA experience is of your service at all times.

MICHIANA PRODUCTS CORP. Michigan City, Indiana

be organized with assistance of WPB's Inventory and Requisitioning Branch. It probably will be the clearing agency and fiscal agent for the government. If the procedure of CRC is followed there will be two divisions, Inventory and Requisition, which are responsible for assembling information on frozen stocks, and WPB's Iron and Steel Branch, which will decide how much material can be used "as is" and how much must be bought at subsidy prices and scrapped.
Officers and members of the board, location of the office and operating details on SRC are expected to be announced soon.
In its first progress report it is disclosed that CRC has directed 500 tons of copper and copper alloy products from frozen inventories into war work. Ernest A. Tupper, chief, Inventory and Requisitioning Branch, WPB, stated last week that "by the end of the week over 1000 tons of idle and excessive inventories of copper will be flowing weekly directly and indirectly into produc. tion of munitions, tanks, planes and ships, as the result of voluntary sales by industry, with the WPB acting only as a clearing house."

Mr. Tupper also said "WPB and the CRC, acting as agent of Metals Reserve Co., an RFC corporation, originally expected to pick up over a half billion pounds of copper and brass. However, as a result of the issuance of priorities regulation No. 13 , which permits the movement of frozen inventories under certain circumstances to specified buyers, it is now believed that as much as 150 ,000,000 pounds of copper will find its way into war production without further government assistance."

Mirrors of Motordom

(Concluded from Page 60)

ice in various government departments.

Mr. Nathan made one interesting observation, to the effect that the salvation of thousands of small businesses this fall rests with the success of the new Smaller War Plants Corp. He indicated that unless this new agency does a good job, many of these small plants face bankruptcy, but that efficient administration of the SWPC could "use" these plants in the overall war effort, instead of merely trying to "save" them.

The Automotive Council for War Production is becoming an increasingly potent instrument in the furtherance of war production among plants in the automotive industries -and this includes several hundred of the parts manufacturers as well as the former automobile and truck builders. The council's personnel is being expanded steadily and new
services instituted. One of the latest is a confidential bulletin of technical progress in war production which will be circulated throughout the industry, giving tips on how one plant or one group has perfected some technical innovation to speed their effort, and thus making the information available to all. A former local editor for a leading trade magazine has been hired for this task.
It is interesting to speculate on what the eventual course of this complex war council of the motor industries will be. Normally one would expect it to disband with the cessation of war and revert to the
former Automobile Manufacturers Association. But the strong possibility is seen of the group continuing as a means of demonstrating how an aggressive industry can function independently of government aid, or "domination" if you care to use the word. In effect, the council conceivably could be a weapon for combatting "federalization" of the automobile industry if, as many insist, the prospects are for nationalization of all industry under some form of state capital. ism following this prodigious war effort. In any event, the course of the automotive council in the years ahead will bear watching.

... FOR FLAMING LIQUIDS, ELECTRICAL FIRES

Different fires need different extinguishing methods. For example, we don't tell you to use Kidde extinguishers on paper and rubbish fires. That's not their main job, although they of ten do it.

The real fire fighting job of Kidde extinguishers is killing electrical and flammable liquid fires. These fires need smothering. Kidde blankets them in a fast-expanding blizzard of carbon dioxide snow-and-gas, one of the fastest of all known
extinguishing agents, clean, dry and non-contaminating.
The Kidde fifteen-pounder shown in the illustration carries a heavy punch against industry's toughest fires. If you're protecting flammable liquids or electrical equipment, here's your fire fighter. Its 15 lbs. of carbon dioxide give it ample hitting power to knock down blazes that baffle ordinary extinguishers. That's why it's industry's favorite among all Kidde models!

whitcomb Locomotives

In the battle of production, there is no retreat

America is so completely committed to the struggle for survival as a free nation that any lagging looms in the light of a major disaster. But there is no lagging when WHITCOMB DIESEL LOCOMOTIVES are on the job. They are always ready for action and are mighty easy to handle. The WHITCOMB LOCOMOTIVE has the power to move more tonnage faster-helping to step up production schedules. The ruggedness to stay on the job in the toughest kind of service-preventing loss of valuable time. Operating economy beyond fondest expectations-reducing costs to a minimum. These are some of the advantages Whitcomb owners are praising. Send for descriptive literature and lear how WHITCOMB can help you in the battle of production.

DEMAND
Increasing pressure for deliveries for war purposes of high rotings.

PRODUCTION
Advanced $1 / 2$ point to 98 per cent of copocity.

Ceiling levels govern in oll iron and steel products.

Steel Dintput Meets Heavy War Needs

Scrap situation disquieting as probability of reserves for winter use fades . . . Shape output at record in June . . . Ship program calls for added tonnage ... Sheet mills seek orders to keep busy

ALL efforts of the steel industry are centered on supplying requirements for war production, which are on the increase.

Output is holding as near capacity as conditions will permit and deliveries are being strictly supervised by the War Production Board. Changes in ratings are frequent in the effort to meet insistent needs first, resulting in frequent changes in rolling schedules. Close control of inventories has prevented accumulations by some consumers while others had insufficient supply. In general, not more than 45 days stock is being allowed and in most cases much less. Increased demand is pushing ratings progressively higher and allocations cover the greater portion of orders.

The mosti disquieting feature of the situation is practical certainty of insufficient scrap supply next winter, indications already appearing. Some observers believe the pinch will be felt as early as October. Current consumption to sustain near-peak steel output is using all available tonnage and insufficient reserves will be accumulated. Already melters who had been able to lay down some stocks are using them to maintain production. Results of the nationwide campaign for salvage are awaited with utmost interest. Many predictions are made that they will be disappointing. Meanwhile some reliance is being placed in expected larger pig iron supply to replace missing scrap. Additional blast furnaces will be in service later in the year and practically all are exceeding rated capacity.

Pig iron distribution is well stabilized and varies from month to month only as war contracts are more widely distributed. Large reserves existing early in the year have been liquidated and distribution is closely geared to consumption.

Structural steel fabricators, losing much work by curtailment of building construction, are turning to subcontracting on products for which their equipment is suited. Lighters, barges and pontons are among products they have taken over in quantit: and numerous assemblies for shipbuilding are being made in fabricating shops. Shape requirements for the

Maritime Commission's Liberty ship program will total $1,500,000$ tons and plates $6,500,000$ tons. War Production Board reports a new peak in production of structural shapes in June, shipments being 481,182 tons, the previous high during the war era being 451,000 tons in November. A large part of this total was for shipbuilding.

Better plate distribution is being achieved and topheavy shipyard inventories have been reduced, the effort now being to maintain a level of 45 to 60 days supply. Some mills are falling behind schedule, part of June tonnage being delivered in first half of July. Shipbuilding demand is causing plates to be shipped from remote producing centers, some being supplied to New England shipyards from mills at Birmingham, Ala.

Steelworks operations last week advanced 1,2 -point to 98 per cent of capacity. Only scarcity of scrap and necessity for furnace repairs prevented a higher rate. Chicago broke its declining trend and rose $-1 / 2$-point to 102 per cent. Buffalo regained $21 / 2$ points to 93 per cent, Wheeling advanced 6 points to $83^{1 / 2}$ and Youngstown was up 1 point to 96 . Cincinnati lost $31 / 2$ points to $881 / 2$ per cent, Cleveland $1 / 2$-point to $941 / 2$, New England 2 points to 90, Detroit 4 points to 85 and Pittsburgh 1 point to 94 per cent. Rates were unchanged at St. Louis, 95%; Birmingham, 95 ; eastern Pennsylvania, 96.

Steel bar deliveries continue to lengthen and producers are loaded heavily with directives in the effort to keep up supply for most essential needs. This requires frequent revision of ratings. Deliveries on cold-rolled bars vary widely, recent bids on a Navy inquiry developing a range of 90 to 240 days. Promises on high-rated alloy bars reach into first quarter. Some SAE grades are being automatically changed to NE specifications.

Composite iron and steel prices are unchanged, governed by price ceilings. Finished steel composite is $\$ 56.73$, semifinished steel $\$ 36.00$. steelmaking pig iron $\$ 23.05$ and steelmaking scrap $\$ 19.17$.

COMPOSITE MARKET

AVERAGES

Finished Stecl Composite：－Average of Industry－wide prices on sheets，strip，bars，plates，shapes，wire，nalls，tin plate，stand－ ard and line pipe．Semilinished Steel Composite：－Average of industry－wide prices on bllets，slabs，sheet bars，skelp and wire rods．Steclmaking Plg Iron Composite－Average of basic pig iron prices at Bethlehem，Birmingham，Buffalo，Chicago，Cleve－ land，Neville tsland，Granite City and Youngstown．Steelworks Scrap Composite：－Average of No． 1 heavy melting steel prices at Plttsburgli，Chicago and eastern Pennsylvanla．

COMPARISON OF PRICES

Representative Market Figures for Current Week；Average for Last Month，Three Months and One Year Ago

Finished Material
Steel bars，Pittsburgh
Steel bars，Chicago
Steel bars，Philadelphia
Shapes，Plttsbursh
Shapes，Philadelphia
Shapes，Chicaso
Plates，Pittsburen
plates，Pllladelpha
Plates，Chicago
Sheets，hot－rolled，pittsburgh
sheets，cold－rolled，Filtsburgh
Sheets，No．2t galv．，Pittsburgh．
Sheets，hot－rolled，Gary
Sheets，colit－rolled，Gary
Sheets，No． 24 galv，Gary
Bright bess．，basle wire，pitts．
Tin plate，per base box，Pitts．．
whe malls，Pltsburgh

July 18，	June	Apr．	July
1942	1942	1942	1941
2.15 c	2.15 c	2.15 c	2.15 c
2.15	2.15	2.15	2.15
2.47	2.49	2.49	2.47
2.10	2.10	2.10	2.10
2.215	2.22	2.22	2.27
2.10	2.10	2.10	2.10
2.10	2.10	2.10	2.10
2.15	2.15	2.15	2.15
2.10	2.10	2.10	2.10
2.10	2.10	2.10	2.10
3.05	3.05	3.05	3.05
3.50	3.50	3.50	3.50
2.10	2.10	2.10	2.10
3.05	3.05	3.05	3.05
3.50	3.50	3.50	3.50
2.60	2.60	2.60	2.60
$\$ 5.00$	$\$ 5.00$	$\$ 5.00$	$\$ 5.00$
2.55	2.55	2.55	2.55

Semifinished Material

Sheet bars，Pittsburgh，Chicago．$\$ 34.00 \$ 34.00$ Slabs，Fittsburgl，Chlcago ．．．．． $34.00 \quad 34.00 \quad 34.00 \quad 34.00$ Revolling billets，Pittsburgh ．．． $34.00 \quad 34.00 ~ 34.00 ~ 34.00$

Pig Iron $\begin{array}{llll}1942 & 1942 & 1942 & 1941\end{array}$
Bessemer，del Pittsburgh Basic，Valley ．．．．．．．．．．．．．．．．． $23.50 \quad 23.50 \quad 23.50 \quad 23.50$ $\begin{array}{llllll}\text { Basic，eastern，del．Philadelphia．} & 25.34 & 25.39 & 25.39 & 25.34\end{array}$ $\begin{array}{llllll}\text { No．} 2 & \text { idry．，del．Pgh．，N．\＆S．Sides } & 24.69 & 24.69 & 24.69 & 24.69\end{array}$ No． 2 loundry，Chicago ．．．．．．．．． $24.00 \quad 24.00 \quad 24.00 \quad 24.00$ $\begin{array}{llllll}\text { Southern No．2，Birmingham．．．} & 20.38 & 20.38 & 20.38 & 20.38\end{array}$ Southern No 2 del Cincinnati No．2X，del．Phila．（differ，av．） Malleable，Valley．
Malleable，Chicago
Lake Sup．，charcaal，del．Chicago
Gray forge，del．Pittsburgh $\quad 31.54$
$\begin{array}{llllll}\text { Ferromanganese，del．Plttsburgh } & 140.65 & 140.65 & 125.63 & 125.33\end{array}$

Scrap

Heavy melting steel，Pitts．．．．．．$\$ 20.00 \$ 20.00 \quad \$ 20.00 \quad \$ 20.00$ Heavy melt．steel，No．2，E．Pa．． 18.75 Heavy melting steel，Chicago． Ralls for rolling，Chicago $\begin{array}{ll}18.75 & 18.75 \\ 22.25 & 22.25\end{array}$ No． 1 cast，Chicago

Coke

| Connellsville，furnace，ovens $\ldots .$. | $\$ 6.00$ | $\$ 6.00$ | $\$ 6.00$ | $\$ 6.25$ |
| :--- | :--- | ---: | ---: | ---: | ---: |
| Connellsville，foundry，ovens $\ldots .$. | 7.25 | 7.25 | 7.25 | 7.25 |
| Chicago，by－product fdry．，del．． | 12.25 | 12.25 | 12.25 | 12.25 |

STEEL，IRON，RAW MATERIAL，FUEL AND METALS PRICES

Following are maximum prices established by OPA Schedule No． 6 issued April 16，1gil，revised June 20,1941 and Feb．4， 1912 The schedule covers ill Iron or steel Insots，all seminnished fron or steel products，all finished hut－rolled，cold－rolled iron ar steel priducts and any iron or steel product which Is further fintshed by galwanlzing，plating，coating，drawing，extruding，etc．，although only princlpal established basing points for se－ lected products are named specificalls．All seconds and off－rrade products alsu are covered．Exceptlons applying to individual companies are noted

Semifinished Steel

iniss ton hasis excent wire robis，skel
Carbuth Steel Ingris：F．o．b．mill base，rerolling
qual．，stand，analysis $\$ 31.00$
（Empire Sheet \＆Tin Plate Co．，Mansfleld．O． may quate carbon steel ingots at S＇3＇\} gross （on，f．0．b．mill．$)$
Alloy Steel Inmots：Pltsburgh base，uncropped． 8.5 .00

Rerolling Bllets．Slabs：Pittsburgh，Chicago． Gary，Cevelant，Buffalo，Sparrows Point． Elymingham，loungstoun，$\$ 7.00$ ：Detroit，del． S35．25：Duluth（bll．）$\$ 36.00$.
itheeling Sieel Corp．silocated 21.000 tons 2 ＂ square thase grade rerolling billets under lense－ lend during tirst quarter 1542 st $\$ 37$ ．\＆．0．b． Purtsmmuth，O．：Andmews Steel Co．may quote arbon sted slabs ffi gruss lon at established basing pelnts．）
Fursinc Quallis Rllets：Pillsburgh，Chicaco， Gary，Cleseland，Butalo，Birmingham，Younas－ （thwt，$\$ 40.00$ Detront，del．$\$ 52.25$ ：Duluth， $5+2.00$ ．
Andrews Steel Co．maz quote carbon fors
 milnts．）
Open llearih Shell simel：Pitishurgh．Chicamat． hase low tons one size and sectan：3－10 in． sin $00: 12-15$ in． 554.00 ： 15 in．sind over \＄5k，00．
Alloy Hillets，Siaba，Rlomins：Pilisburah．Chim csico Buflalu，Bethlehem，Cantun，Massillon， SH．CO．
Sheet 1Fars：Pistsburch，Chicaso，Cleveland． Buftale Canton．Eparrows Muint，loungstow？a． 84．00．
（Enmpire Sheet \＆Tin Plate Cu，NInstield， 0 ． may quole carbun steel sheet bars at sia gross （เy，f．ub．mill．）
Skelp：Pittsburgh，Chicaco，Smarnuws Pt．． foungstown，Comesville．Ib．，\＄1．0n．
Wire Finds：Fittsbunkh，Chicagu．Cleveland， Blmingtam，No．5－9，in in．，inclusive．per 10u lhs． 5200
D2，vier $\$ / 59-47$ eftin．incl．，\＄2．15．Wior－
cester add 50.10 Galveston，$\$ 0.27$ ．Paciflc Coast $\$ 0.50$ on water shipment

Bars

1lot－Rolled Carhun Harm：Pitisburgh．Chicago Gary，Cleveland．Buftalo，Birmingham，base 20 tons one size， 2.15 c ：Duluth，base 2.25 c ； Delroit，del．2．2c：New York del．2．51c；Phila． del．2．49c；Gulf Ports，dock 2．52c，all－rail 2.59 c Pac．ports，dock 2.50 c ：all rall 3.25 c ． IPhnemx Iron Co．．Phoenixillle，Pa．，may quote 2.35 c at established basing points．） Jostyn Mig．Co．may quote 2．35c．Chicago base．）
Rall Steel Rars：Same prices as for hot－rolled carbon bars except base is 5 tons，
（Sweet＇s Steel Co．，Williamsport，Pa．．may＇ quile rail steel merchant bars $2.3 \mathrm{~m}_{\mathrm{c}}$ f．o．b． mill．
Int－Rolled Alloy Rars：Pittshurgh，Chicagn， Canton，Massillon，Buffalo，Bethehem．base 20 tons ane size．2．70e Detroit，del．2．82c．

	Alloy		Alloy
S．A．E	DIfr．	SA．E．	DINT．
3000	0.35	5104 Spr．flats	0.15
$21(4)$	0.15	5100 S0－1．10 Cr	0.15
3800	1.70	6100 Bars	1.20
25×1	$2 . ⿰ 幺 幺$	6100 Spr．nats	0.85
3100	0.70	Carb．．V＇an．	0.85
200	1.35	9200 Spr．flats	0.15
$3 \mathrm{z00}$	3.80	9200 Spr．rounds．	
3100	3.20	squares	0.40
1101 ．15－29 Mo．	0.55	T 1500，Mn，nean	
$46.00-30.30$ Mo．		1．51－2．00	0.10
1．50－200；Ni．．	1.30	Do．．carbon under	

Cold－yinished Carhon Esars：Piltsburgh．Chi－ cras．Gary，Clevelsta，Buftalo，base m，000 39.999 3bs．2．65e：Detroit 270 ．

Cold－Finished Alloy Riva：Pitishursh．Chicaco Gary；Cleveland．Buntalo，base añ̄̃：Detroit del． 3 4ic．
Turned，Ground Shaftine：Pltsburgh，Chlespo Gsis：Clevedand．Butialo．base（not Includins luming grinding．polishing extras）$\Rightarrow 65 \mathrm{c}$ ： Detroit 2 تुe．

Reliforcing Hars（Now Hillef）：Pittsburgh Chicago，Gury，Cleveland，Birmingham，Spar－ rows Point，Buffalo，Youngstown，base 2.15 c ： Detroit del．2．27e：Gull ports，dock 2．52c，all－ rail 2．61c：Pacific ports，dock 2．80c，all－rail

Relnforming Ikirs（Itall Steel）：Pittsburgh． Chicago，Gary，Cleveland，Birmingham，base 2．15c；Detmolt，del．2．27c：Gulf poris．dock 2.52 c ，all－rail 2．61c：Facific ports，dock 2.50 c ． all－rail 3．25c
（Sweet＇s Steel Co．，W＇illlamsport，Pa．，may quote rail steel reinforcing bars 2．33c，f．o．b． mill．
Iron Hars：Single refined，Pitts．4．40c，double refined 5.40 c ；Pittsburgh，stas＇bolt．5．75c：Terre Haute，common， 2.15 c ．

Sheets，Strip

11nt－Renled Sheetc：Pitisburgh，Chicago，Gary． Cleveland，Birmingham，Buffalo，Ynungstown， Sparrows Pt．．Middletown，base 2.10 c ；Grantte Cits，base $2.20 c:$ Delrnit del．2．22c：Phila．
del．2．2se：New York del．，2．35c Pacllic del 2.28 c ：
Andrews Sieel Cn．may quote hot－rolled sheets for shipment to Delroit and the Detrult area on the Middletown．O ．base．）
Cold－Rulled slıeets：Pitsburgh，Chicago，Cleve－ land，Gars：Buffalo，Younsstown，Jiddletown， base，3．05c；Granite City，base 3.15 c ；Detrnit del．317c：New Y゙ork del．3．41c：Philla．del， de，
$3.39 \mathrm{c}: ~ P a c i f i c ~ p o r t s . ~ 3 .-0 c . ~$
Calvanized sheats，No．it：Pittsburth．Chl－ Galvanized Shefis，No．\＆：Pittsburyh．Chi－
cago，Gary，Birmingham．Buntalo，Foungstown， cazo，Gary，Birmingham．Burialo，Ioungstown， Sbarrows Point，Middletown，base $3.50 c$ ；Gran－ ite city bnse 3.60 c ：New York del Phila del．3．6Sc：Pacific ports 4.05 c ．
（Andrews Sieel Co．may quote gand （Andrews Sieel Co may quote galvan
sheets $3 . \operatorname{tac}$ at established basing points．） Currueated Gislv．Sherts：Pittsburgh，Chicago， Gary．Birmingham． 29 gage，per square 3．31c． Gary：Birminaham， 29 sase．per square 3．ac． Culvert Sheets：Pitisburgh．Chicaso，coaper alloy 3.60 c ；copper irmn 3.90 c ，pure inon 3.95 c ； zinc－couted，hot－dipped，heat－treated．No．24， Plttsburgh 4．Eシc．
Finsmeling sheets：Pitusburah，Chicago，Gary． Cleveland．Youncstonn．Middletown， 10 gage．
base 2．75c；Granlte City，base 2．85c；Paclne perts 3.40 c
Plttsburgh，Chicago，Gary，Cleveland，Youngs－
town，Middletown， 20 gage，base 3.35 c ；Granite Clty，base 3.45 c ；Pacific ports 4.00 c ．
Electrleal Sheets，No． 24

析和右	Pittsburgh	Paciflc	Granlte
	Base	Ports	Clty
Fleld grade．	3.20 c	3.95 c	3.30 c
Armature	3.55 c	4.30 c	$3.65{ }^{\text {c }}$ c
Electrical	4.05 c	4.80 c	4.15 c
Motor	4.95 c	5.70 c	5.05 c
Dynamo	5.65 c	6.40 c	5.75 c
Transformer			
72	6.15 c	6.90 c	
65	7.15 c	7.90 c	
58	7.65 c	8.40 c	
52	8．45c	9.20 c	
Itot－Rolled Strip：	pittsburg	Chlca	Gar

Ilot－Rolled Strip：Pittsburgh，Chleago，Gary， Cleveland，Birmingham，Youngstown，Middle town，base， 1 ton and over， 12 inches wide 2.75 c ．（Joslyn Mis．Co．may quote 2.30 c ，Chi 2.75 c ．（Josly

Cold Rolled Strip：Pittsburgh，Cleveland Youngstown， 20 ， cago，base 2.90 c ；Detrolt，del． 2.92 c ；Worcester base J．00．
Commodity C．R．Sirlp：Pittsburgh，Cleveland Youngstown，base 3 tons and over， 2.95 c Worcester base 3.35 c ．
Cold－Finlshed Spring Steel：Pittsburgh，Cleve－ Carb． 2.80 c ； $.51-.75$ Carb． 4.30 c ； $.76-1.00$ Carb．， 2.80 c ； $.51-.75$ Carb．， 4.30 c
Carb．， 6.15 c ；over 1.00 Carb．， 8.35 c ．

Tin，Terne Plate

Tin Plate：Pittsburgh，Chicago，Gary，100－1b． base box，$\$ 5.00$ ；Granite City $\$ 5.10$ ．
TIn MII Hack 1＇late：Pittsburgh，Chicago， Gary，base 29 gage and lighter， 3.05 c ；Gran Ite City， 3.15 c ：Faciflc ports，boxed 4.05 c ．
Long Ternen：Pittsburgh，Chicago，Gary，Na 24 unassorted 3．80c．
Manufaclurlng Ternes：Pittsburgh，Chicago， Gary， 100 －base box $\$ 4.30$ ；Granite Clty $\$ 4.40$ Rowfig Ternes：Plitsburgh base per pack－
age 112 sheets， 20×28 in．，coating I．C．， 8 － lb ． age 00；15－Ib．$\$ 14.00 ; 20$－lb．$\$ 15.00 ; 25-\mathrm{lb}$ $\$ 16.00 ; 30$－lb．$\$ 17.25$ ； $40-1 \mathrm{~b}$ ．$\$ 19.50$ ．

Plates

Carbon Steel Plates：Pittsburgh，Chicago Gary，Cleveland，Birmingham，Youngstonn Sparrows Polnt，Coatesville，Claymont， 2.10 c New York，del．，2．30－2．55c；Phila．，del．，2．15c；
St．Louls，2．34c；Boston，del．，2．42－67c Pacific ports，2．65c；Gulf Ports，2．47c．
Pacifle ports， 2.65 c ；Gulf Ports， 2.47 c ．
（Granite City Steel Co．may quate carbon Granite City Steel Co．may quate carbon
plates 2.35 c ，f．o．b．mill．Central Iron \＆Steel plates 2.35 c ，f．o．b．mill．Central Iron \＆Stee Coints．） quote plates at 2.20 c, f．o．b．basins noints．
Fhour Plates：Pittsburgh，Chicago， 3.35 c
Gulf ports， $3.72 \mathrm{c}: ~ P a c l f i c ~ D o r t s, ~$ Guif ports， $3.72 \mathrm{c}:$ Pacific ports， 4.00 c ．
Open－Ifearth Allos Plates：Pitsburgh，Chi－ cago，Coatesville， 3.50 c ．
Wrought Iron Plates：Pittsburgh， 3.80 c ．

Shapes

Structural shapes：Pittsburgh，Chicago，Gary， Blrmingham，Buffalo，Bethlehem，2．10c；New York，del．，2．28c：Phila．，del．
ports， 2.47 c ；Pacifle ports， 2.75 c ．
（Phoenix Iron Co．，Phoenixville，
Phoenix Iron Co．，Phoenixwilie，Pa．may quote basing solnts，shapes at 2.30 c at established Steel Shert Pll
Alat Pling：Pltsburgh，Chicago，Buf

Wire Products，Nails

Wire：Pittsburgh，Chicago，Cleveland，Bir－ mingham（except spring vire）to manufac turers in carloads（add $\$ 2$ for Worcester） Braght basic，bessemer wire．．．．．．．．．． 2.60 C
Galvanized wire Galvanized wire ．．．．．．．．．．．．．．．．．．．．．． 2.60 .20
Spring wire
Standard and to the Trade
polished and cement－coated wire nalls， Annealed fence staples， $100-\mathrm{lb}$ ．keg．．．
Annealed fence wire， 100 lb ．
Gnlvanized fence wire， 100 lb ． $10 . .$. ．．．．．
Woven fence， $121 / 2$ gage and ilghter，per base column
Do．． 11 Rage and heavier
Barbed wire，so－rod spool，col
Single loop bale ties，col
Fence posts，
Cut naits，Pittsburgh，carloads

Pipe，Tubes

Welded Plpe：Base price in carloads to con sumers about $\$ 200$ per net ton．Base dis counts on steel pipe Pittsburgh and Lorain point less on butt weld．Pittsburgh base only on wrought fron pipe．
Whatt Weld

Rails，Supplies

Standard ralls，over $60-1 \mathrm{~b} .$, f．o．b．mill，gross on，\＄40．00．
Light rails（bllet），Pittsburgh，Chicago，Bir－ mingham，gross ton，$\$ 40.00$ ．
Relaying rails， 35 lbs．and over，f．o．b．rall－ road and baslag points，$\$ 28-\$ 30$ ．
Supplles：Angle bars， 2.70 c ；tle plates， 2.15 c rack spikes， 3.00 c ；track bolts， 4.75 c ；do heat treated， 5.00 c ．
Flxed by OPA Schedule No．46，Dec． 15.

Tool Steels

Tool Steels：Pittsburgh，Bethlehem，Syracuse， base，cents per lb．：Reg．carbon 14．00c；extra ening 24.00 c ；high car．－chr． 43.00 c ．
HIgh Speed Tool Steels：
Tung．Chr．Van．Moly Pltts．base，

18.00	4	1	Moiy．	67.00
18.00	4	2	1	77.00
18.00	4	3	1	87.00 c
1.5	4	1	8.5	54.00 c
5.50	4	2	8	$54.00 c$
5.50	4	1.50	4	$57.50 c$
	4.50	4	4.50	$70.00 c$

Stainless Steeis

Base，Cents per lb．－f．o．b．Plttsburgh CHROMIUM NICKEL STEEL．

Type	ars		ets	H．R．	C．R．
302.	24．00c	27.00 c	34.00 c	21.50 c	28.00 c
303	26.00	29.00	36.00	27.00	33.00
304	25.00	29.00	36.00	23.50	30.00
308.	29.00	34，00	41.00	28.50	35.00
309.	36.00	40.00	47.00	37.00	47.00
310	49.00	52.00	53.00	48.75	56.00
311	49.00	52.00	53.00	48.75	56.00
312.	36.00	40.00	49.00		
－316	40.00	44.00	48.00	40.00	48.00
－317	50.00	54.00	58.00	50.00	58.00
＋321．	29.00	34.00	41.00	29.25	38.00
$\ddagger 347$ ．	33.00	38.00	45.00	33.00	42.00
431	19.00	22.00	29.00	17.50	22.50
STHAIGIIT CHROMIDM STEEL					
403	21.50	24.50	29.50	21.25	27.00
－ 410	18.50	21.50	26.50	17.00	22.00
416.	19.00	22.00	27.00	18.25	23.50
＋1420．	24.00	28.50	33.50	23.75	36.50
430	19.00	22.00	29.00	17.50	22.50
\＄\＄430F．	19.50	22.50	29.50	18.75	24.50
442	22.50	25.50	32.50	24.00	32.00
446	27.50	30.50	36.50	35.00	52.00
501	8.00	12.00	15.75	12.00	17.00
502	9.00	13.00	16.75	13.00	18.00
STAINLESS CLAD STEEL（20\％）					
304		18.00	19.00		

With $2-3 \%$ moly．†With titanium．\ddagger With columbium．＊Plus machining arent．t†High carbon．\ddagger Free machining．\S Includes anneal－ ing and pickling．
Basing I＇olnt Irrices are（1）those an－ nounced by U．S．Sieel Corp．Subsidiaries for Arst quarter of 1941 or in effect April 16， 1941 at designated basing points or 2 those prices announced or customarily quoted by other pro－ prices under（2）cannot exceed those under （1）except to extent prevaillng in third quarter of 1940 ．
Extras mean additions or deductions from base prices in effect April 16， 1941.
Dellvered prices applying to Detrolt，Eastern deemed basing polnts except in the case of
the latter two areas when water transports tion is not avallable，in which case nearest basing polnt price plus all－rall freight may be charged．

Donestic Celllng prices are the aggregate of （1）governing basing point price，（2）extras and（3）transportation charges to the poin of delvery as customarily computed．Gov erning basing palnt is basing point nearest the consumer providing the lowest delvered price Energency basing point is the basing point a or near the place of production or arigin of shipment．
Dlslocated tonnaze：Producers shipping ma－ terial outside thelr usual marketing areas be－ cause of the war emergency may charge the basing point price nearest place of production plus actual cost of transpartation to destina
\qquad Seconds or off－grade iron or steel products cannot be sold at dellvered prices exceeding those applying to material of prime quality． Export（1） gregey basing point（2）export extras（3）ex gort transportation charges provided they ar port transportation charges provided they are Steel Export Co．on April 16，1941．Domestic or export extras may be used in case of Lease－Lend tomage．

Bolts，Nuts

F．o．b．Plttsburgh，Cleveland，Blrmingham， Chicago．Discounts for carloads additional 5% ，full containers，add 10
埗 $x 6$ and smaller ．．．．．．．．．．．．．．．．．．．．．651／2 of
Do．，$\frac{0}{2}$ and $5 / 8 \times 6$－in．and shorter $631 / 6$ of 114 and larger all leneths shorter．．．． 61 of All diameters，over 6 －in．long

Tire bolts
 Tire bolts

Plow bolts
59 off
50 off

In packages with nuts separate $71-10$ off： with nuts attached 71 off：bulk 80 off on 3－1n．

Rivets，Washers
F．o．b．Plttsburgh，Cleveland，Chicago，
Structural ．．．．．
Wrought washers，Pftisburgh，Chicago，
Philadelphta，in jobbers and large nut，
bolt manufacturers l．c．l．．．．．．．$\$ 2.75-3.00$ of

Coke By－Products

Spot，gal．，frelght allowed east of Omaha Pure and 15.00 c Tolvol，two degree 28.00

Industrlal xylol
27.00 c

Industrial $x y$ Per ib．f．o．b．works
Phenol（car lots，returnable drums）
Do．less than car lots
Do．tank cars
11.50 C

Naphthalene flakes，balls，bbls．to job－
Per ton，bulk，f．o．b．port
8.00 c

Sulphate of ammonia ．．．．．．．．．．．．．．．．．．$\$ 29.00$

Pig Iron

Iricen (In urges (rons) nre maximums flxed by OPA Price Schedule No. 10, kffective June 10, 1931 Exceptions indlcated In fontnotes. Alloca ton rexulating frum wisk order

BBante willeon grade (1.75-2.25\%), add 50 c for each 0.23%. tFor Rocks. Pht add .ts to Neville Island base; Lawrenceville, Itomestead, Mc אiesport, Ambridge, Monaca, Alloulppa, 8s: Monessen, Monongahela Clty . 07 (water); Oakmont, Verona 1.11; Brackenridse 1.24.

Hish Sllicon, Sllvery

6.00-6.50 per cent (base)
 7.01-7.50. . $31.50 \quad 9.51-10.00 \quad 36.50$ 7.51-8.00 $\quad 32.50$ 10.01-10.50. 37.50 ${ }_{8}^{8.01-81-50} .33 .50$ 10.51-11.00. 38.50 8. 0 . 34.50 11.01-11.50. 39.50 ton. Buffalo base prices are $\$ 1.25$ hisher. Prices subject to additional charge of 50 cents a ton for each 0.50% manganese in excess of 1.00%.

Prices same as for high silicon sill very iron, plus $\$ 1$ per gross ton rotial over sid above the a ential over and above the price of for the hard chilling lrons well as and 6.)
 ```Charcoal Pig Iron \\ Lake Superlor Furn \\ Chicago, del.```
 . .328 .00 .31 .54
 Seml-cold blast, high
 f.o.b. furnace, Lyles, Tenn.. $\$ 28.50$ t.o.b. furnace, Lyles, Tenn
 Gray Forke
 33.00
 Newille Island, Pa. $\$ 23.50$ Valley, base............ 23.50
 Law Phosphorus
 Basing polnts: Blrdsboro and Steelton, Pa., and Buffalo, N. Y., $\$ 29.50$ base: $\$ 30.81$, delivered, Phlladelphia. Switching Clarges: Basing point Switching Clarges: Basing point prices are subject to an additional charge for dellvery within the disiricts.
 Silicun Differentials: Basing polnt prices are subject to an additional for each 0.0 exceed 50 cents a ton base grade (1.75 to 2.25%).
 Phospharous Differential: Basing tion of 38 cents a ton for a reduc ous content of 0.70% and phasp
 Manganese Differentials: Basing point prices subject to an additional charge not to exceed 50 cents a on for each 0.50% manganese con ent in excess of 1.0%
 Celling prices are the aggregate difrerentials charges from governing basing point to point of dellvery as customarlly computed. Governing basing point is the one resulting in the lowest dellivered price for the consumer.

Exceptions to Celling Prices: Pittsburgh Coke \& Iron Co. (Sharpsville, Pa. furnace only) and Struthers Iron \& Steel Co. may charge 50 cents a ton In excess of basing point prices for No. 2 Foundry. Basic. Bessemer and Malleable. Mystic Iron Works, Everett, Mass., may exceed basing point prices by $\$ 1$ per ton, effective Aprll 20, 1942.
Export I'rices: In case of exports only, the governing basing polnt nearest point of production may be used, plus differentials and export
Refractories
Per 1000 f.o.b. Works, Net Prices Fire Clay IBricls
Pa.. Mo., Ky. Quality
Pa., Ill., Md., Mo., Ky. $\$ 64.60$ Alabama, Georgla New Jersey 51.30
51.30
56.00
43.00

Pa.. Ill., Mde, Mo., Kuality Alabama, Georgia

 OhloIalleable IBung IBricle
All bases
Silica Brick
Pennsylvanla $\$ 59.85$ Jolist, E. Chicago $\$ 51.3(1)$
58.90 Blrmingham, Ala. 58.90
 31.00
29.00

Domestlc dead-burned grains
net ton l.o.b. Chewelah,
Wash., net ton, bulk 22.00
net ton, bags 26.00
net ton, bags
Hasic Brlck
Net ton, f.o.b. Baltimore, Plymouth Meeting, Chester, Pa.
Chrome brick bonded chrome........ $\$ 54.00$
Chem, bonded chrome
Chem. bonded magnesite

Fluorspar

Washed gravel, foob. Ill.
Ky., net ton, carloads, all
rail $.23 .00-25.00$
No. barge
(OPA May 11 established 23.00-25.00 at Jan. 2, 1942 , level.)

Ferroalloy Prices

 gross ton, duty puld, Atlantle ports, 5125: Del. Dittshureh \$140.65: 8.0.b Southern furnuces \$155: Add \$6 ber gryse ton for wicked carluads $\$ 10$ for less that som-1b. luts, packed. sulemetelven: 19以 5 s. carlots per tuse ton. loilmertom, lin. \$3it. Atanxanewe striquete: Contract basls in carlowats ber peund, bulk Treich alkn ack , hack y rex: fon
 seo-1b. hots 8.50c. Spot prices 4 biectolvile maneameve: פ0.9\% plus less varlots. 140 10, 43.006.
Chromium Metal: l'te 1b, eontaher chromlunt in sross ton lots, con tratt bowis, frefght sllower, 580
 cents mey lb, higher
Fremmblumblum: (a)-exis, per tb. contsliev eolumblum in gross ton ats, eventract busples. fon b viamer Eillis, N1. I, se.2si less-ton lots E.3. \%h, Spot prless 10 cevits per la hisher.
Feinwhombe: tsi-708: per lb, conalind chromlum in carlesds. freight alloweyt. 4-6\% curben 1200e: tore ots 13 tow lessoton wos
 73\%, low estrbon srades:

$$
\begin{aligned}
& \text { Car Ton Less Less } \\
& \text { luda lots ten ibs. }
\end{aligned}
$$

 sumt is そu higher
Chmomum hriguets: Comerach masis
in carlonds per lb, frelght allowed 8. 2 se: packed 5.50 c ; gross ton lots s.isc; less-ton lots 9.00 c ; less $200-$ lb. lots 9.25 c . Spot prices s -cent hicher.
Ferromolybdenum: 55-75\% per 1 m . contalned molybdenum. \&.o.b. Lanseloth and Washincton. Pa, furnace, any quantity 95.00 c .
Caletum Molsbuate (Molyte): 40$45 \%$. per ib . contalned molybdenum. contract basis. f.o.b. Langeloth and Washineton. fa., any quantity. so.00c.
Molstide Oxide Rriquets: $45-50 \mathrm{c}$. per ib, contained molybdenum, f.o. b. Langeloth, Pa., any quantity 80.00 c . Molybienum Oxide: $53-63 \%$. per 1 b . contained molsbdenum in 5 and 20 lb. mulybdenum contalined cans. f.o.b. Lanseloth and Washington, Fa. any quantly so.00c.
Molybdenum Fowder: 99e per lb . In 200-1b kess. lo.b. York, Pa. SN. $60: 100-200 \mathrm{lb}$. lots $\$ 2.75$; under 100-10. luts $\$ 3.00$.
Fierrophosphorus: 17-199, hased on $15{ }^{5}$ phosphorus content. With unitase of $\$ 3$ for each 15 of phosphorus acove or below the base: Enoss forks. with freight equalized with Wraks, with treight equalized with Rowidate. Temn.
serrophosphurus: $33-2 \times 5$, based on 245 phosphorus content. with unitase of $\$ 3$ for each 15 of phosphorus above or bellw the base: sross tons per caricau feb. sellers works. Men fank. Thn ; contract price Sis. spot $\$ 30$.
Fermalticua: Contract basis in gross
tons per carload, bulk, frelght allowed: unitage applies to ea
sllicon above or below base.

	Carlnads	Ton lots
50\%	\$ 74.50	\$ 57.00
Unitage	$\pm .50$	1.75
75%	135.00	151.00
Unitage	1.80	2.00
85%	170.00	188.00
Unitage	2.00	2.20
90-95\%	10.75 c	11.

Spot prices si-cent higher.
Sllicon Melal: Contract basls per Ib., f.o.b. producers' plants, freight allowed: 1% iron: carlots 14.50 c , ton lots 15.00 c , less-ton lots 15.25 c , less 200 lbs. 15.50 c .
silicon Metal: Contract basis per lo.: $2 \% \mathrm{c}$ iron: carlots 13.00 c , ton lots 13.50 c , less-ton lots 13.75 c , less 200 Jbs. 14.00 c . Spot prices 34 -cent higher

Slucon Rriquets: Contract basis; In carloads. bulk freight allowed, per ton $5 T 4.50$; packed $\$ 50.50$; ton lots $\$ 84.50$; lesseton lots per $\mathrm{lb}, 400 \mathrm{c}$ ess 200 -ib. lots per $1 \mathrm{~b}, 4.25 \mathrm{c}$. ton lots: $\$ 5$ per ton higher on ton lots and over.
sillcontanganese: Contract basls reisht allowed. 1 is ce carbon: in carloads per gross ton S12S: ton lots $\$ 140.50$. Spot $\$ 3$ per ton higher. Ferrotungsten: Carlots, per lb. contained tunssten. \$1.90,

Iungxten Netal Powder: $98-99 \%^{\circ}$ per lb. any quantity $\$ 250-2,65$.
Ferrutitsnluna: $40-45 \%$ 1.0.b. Niagara Falls, N. I., ger ib. contalaed
lots \$1.25. Spot 5 cents per ib hleher.
Ferrolltanium: $20-25 \%, 0.10$ maxi mum carbon: per lb. contained tl tanlum: ton lots $\$ 1.35$; less-ton lats \$1.40. Spot 5 cents der 1 b . higher High-Carhon Ferrotitanium: 15-20? Contract basis, per gross ton, f.o.b Niagara Falls, N. X.. Ireight al lowed to destinations east of Missis sippl River and North of Baltimore and $S t$. Louls, $6-8 \%$ carbon $\$ 142.50$: $3-5 \%$ carbon $\$ 157.50$.
Ferrovanadium: $35-40 \%$, contract basis, per lb. contalned vanadium f.o.b. producer's plant with usua frelsh thowances: open-hearth grade $\$ 2.70$: speclal grade $\$ 2.80$ highly-special grade $\$ 2.90$.
Vanadium Pentoxide: Technical grade, SS-92 per cent Vi=Os: contracts, any quantity siiv per pound Vo contained: spot 5 cents per pound higher.
Zirconfum Alloys: 12-15\%, contract basis. carloads bulk. per gross ton s10s. : pack 10.50 . 12.50. Spot $\$ 5$ per ton hicher.
Zlreonlum alloy: $35-10 \%$, contract basis. carloads in bulk or package per lb. of alloy 14.00c: gross ton lots 15.00 c : less-ton lots 16.00 c . Spo: li-cent higher.
Alsifer: (Approx. 20% aluminum 40% silicon. 40% iron) Contract ba sis. 1.0.b. Niagara Falls, N. Y., pe lb. 7.50 c ; ton lots 5.00 c . Spot ! cent Migher.
Simanal: (Approx 20% each sill con. mansanese, aluminum. Con tract basis, freight allowed. per lo.
of alloy: carlots 10.50 c : tun lots

WAREHOUSE STEEL PRICES

Base Prices in Cents Per Pound, Delivered Locally, Subject to Prevailing Differentials. As of April 16, $19 \neq x$

		Hot-rolled Strip		Plates \%-1n. \& Over	Structural Shapes	Floor Plates	Hot Rolled	Sheets		Cold Rolled Strip	-Cold Drawn Ears-			
	Solt Bars			Cold Rolled				Galv. No. 24	Carbon		S.A.E. 2300	$\begin{array}{r} \text { S.A.E. } \\ 3100 \end{array}$		
Boston	3.98	4.06	5.06		3.85	3.85	5.66	3.71	4.68	5.11	3.46	4.13	8.88	7.23
New York (Met.)	3.84	3.96	3.96	3.76	3.75	5.56	3.58	4.60	5.00	3.51	4.09	8.84	7.19	
Phlladelphia	3.85	3.95	4.45	3.55	3.55	5.25	3.55	4.05	4.65	3.31	4.06	8.56	7.16	
Baltimore	3.85	4.00	4.35	3.70	3.70	5.25	3.50		5.05		4.04			
Norfolk, Va.	4.00	4.10		4.05	4.05	5.45	3.85		5.40		4.15			
Burfalo	3.35	3.82	3.82	3.62	3.40	5.25	3.25	4.30	4.75	3.52	3.75	8.40	6.75	
Pittsburgh	3.35	3.60	3.60	3.40	3.40	5.00	3.35		4.65		3.65	8.40	6.75	
Cleveland	3.25	3.50	3.50	3.40	3.58	5.18	3.35	4.05	4.62	3.20	3.75	8.40	6.75	
Detroit	3.43	3.43	3.68	3.60	3.65	5.27	3.43	4.30	4.84	3.40	3.80	8.70	7.05	
Omaha	4.10	4.20	4.20	4.15	4.15	5.75	3.85	5.32	5.50		4.42			
Cincinnati	3.60	3.67	3.67	3.65	3.68	5.28	3.42	4.37	4.92	3.45	4.00	8.75	7.10	
Chicago	3.50	3.60	3.60	3.55	3.55	5.15	3.25	4.10	4.85	3.50	3.75	8.40	6.75	
Twin Citles	3.75	3.85	3.85	3.80	3.80	5.40	3.50	4.35	5.00	3.83	4.34	9.09	7.44	
Milwaukee	3.63	3.53	3.53	3.68	3.68	5.28	3.38	4.23	4.98	3.54	3.88	8.38	6.98	
St. Louls	3.64	3.74	3.74	3.69	3.69	5.29	3.39	4.24	4.99	3.61	4.02	8.77	7.12	
Indlanapolls	3.60	3.75	3.75	3.70	3.70	5.30	3.45		5.01		3.97			
Chattanooga*	3.80	4.00	4.00	3.85	3.85	5.80	3.75	4.50		4.39			
Memphis	3.90	4.10	4.10	3.95	3.95	5.71	3.85		5.25		4.31			
Birmingham	3.50	3.70	3.70	3.55	3.55	5.93	3.45		4.75		4.43			
New Orleans.	4.00	4.10	4.10	3.80	3.80	5.75	3.85		5.25	5.00	4.60			
Houston, Tex.	3.75	4.30	4.30	4.05	4.05	5.50	4.00		5.25		6.90			
Seattle	4.20	4.25	5.45	4.75	4.45	6.50	4.65	7.60	5.70		5.75			
Los Angeles	4.50	4.95	6.80	4.50	4.50	6.75	4.65	6.50	5.85		6.10	10.55	9.55	
San Francisco.	3.95	4.50	6.25	4.65	4.35	6.35	4.55	6.40	6.10		6.80	10.80	9.80	
${ }^{\text {- Not named }}$	OPA	ce order.									6.80	10.80	9.80	

	$\begin{aligned} & \text { S.A. } \\ & 1035- \\ & 1050 \end{aligned}$	Hot-rolled Bars		(Unannealed)	
		2300	3100		
		Series	Series	Series	series
Boston	4.28	7.75	6.05	5.80	7.90
New York (Met.)	4.04	7.60	5.90	5.65	
Philadelphia	4.10	7.56	5.86	5.61	8.56
Baltimore	4.45				
Norfolk, Va.			...		
Buffalo	3.55	7.35	5.65	5.40	7.50
Pittsburgh	3.40	7.45	5.75	5.50	7.60
Cleveland	3.30	7.55	5.85	5.85	7.70
Detroit	3.48	7.67	5.97	5.72	7.19
Cincinnatl	3.65	7.69	5.99	5.74	7.84
Chicago	3.70	7.35	5.65	5.40	7.50
Twin Cities	3.95	7.70	6.00	6.09	8.19
Milwaukee	3.83	7.33	5.88	5.63	7.73
St. Louls	3.84	7.72	6.02	5.77	7.87
Seattle	6.25		8.00	7.85	8.65
Los Angeles	4.80	9.55	8.55	8.40	8.80
San Francisco.	5.45	9.80	8.80	8.65	9.05

EUROPEAN IRON, STEEL PRICES

Dollars at $\$ 4.021 / 2$ per Pound Sterling

Export Prices f.o.b. Port of Dispatch-
By Cable or Radio

> BRITISH Gross Tons f. U.K. Ports

Domestic Prices Delivered at Works or

Furnace-

Foundry No. 3 Pig Iron, Silicon 2.50-3.00.	825.79	1. ${ }_{6}^{8} 80{ }^{\text {d }}$
Basic psg iron	24.28	606 (a)
Furnace coke, f.o.t. oven	7.56	1176
Billets, basic soft, 100 -ton lots	49.37	125
Standard rails, 60 lbs . per γ ard, 500 -ton lots \& over	2.61 c	1 ± 10
Merchant bars, rounds and squarếs, under 3-inch	3.17 c	17120
Shapes.	2.77 c	15
Ship plate	2.91 c	$16300+$
Boiler plares	3.06 c	$1706 \dagger \dagger$
Sbeets, black, 24 gage, 4-ton lors and over.......	4.10c	22150
Sheets, galvanized 24 gage, corrugated, f-ton lots \&	4.70 c	26
Flain wire, mild drawn, eateh weight coils, 2 -t	4.70c	26
lots and ov	+.28c	23 150
Bands and strips, hot-rolled	3.30 c	1870
(15) del. Middlesbrough. $\mathrm{is}^{\text {s }}$ rebate io approve	customers	\dagger Rebate

IRON

款

 Scrap shipped by motor vehlele is at its shipping point when loaded．For shipping points within
ousing points，maximum is price listed in table minus lowest switching charge．When outside basing

 （Amendmont 1）apply to St．Louls district consumers，to WPB allocations，to water shipments irom
Duluth or Superion，Wis，to shipments of bllets，blooms and forge crops from Pittsburgh and to

 Unprepared Serap：Above prices are for prepared scrap．Maximum prices for unprepared scrap

Pittghurah，Brnevariflage Butier，Johnatown， Mjdiand，Moneexsori，Sharon，Steubrenville， Weirlon，Caritom，Toungstovin，Warren．	\＄20．60
Claymirit，Contorville Harsimburg，Consho－	
hiselen，Phornlyville ．．．．．．．．	18.75
bethiehers	18.25
Buffiler	19.25
Clevelind，Midiletown，Cincinnati，Portsmouth，	
Detroft	17.85
roledo	
（hicago	18.75
cokorno	18，25
buluth	18.00
St．Loufs	17.50
Sirmingham，Athenta，Alabama City Tos An－	
Minges，San Franeisen，Pittsburg，Callf．	
Minnequá，Colo．．．．．．．．．．．．．．．．．．．．．．．．．．．．	16.50
seattle ．．．．	14．50）

 0
n

n 2 $00^{\circ} \mathrm{EZ}$ 00 そZ SLもも
 งสสสี่ ixin

$$
\begin{aligned}
& \text { Marhine BLAST } \\
& \text { Sfiop }
\end{aligned}
$$

曾
dVuns aVOHTIV

 Rhlosine point prlens fin

Sheets, Strip

Sheet \& Strip Prices, Pioke 116
Including allocations there are nine ratings ahead of A-1-a tonnage under the revised priority setup, which renders the system ineffective as operated in the past, forcing re-adjustments on strictly rated volume, which dwindled steadily as directives and allocations rise. While some outstanding tonnages of sheets are being placed for war work, notably for drum sheets, overall consumption is declining. On the whole, fewer directives are being applied to sheet deliveries than on some products, but top rating is required to assure supplies of semifinished for rolling. Delivery promises on A-1-a orders are being withdrawn and directives operate in fact as a frozen delivery promise, which may be applied to low ratings, A-2 or lower, if the importance of the order warrants after review. There is no lack of inquiry for all finishes of sheets, distribution as to end use, geared to war production and limited output, being the main problem.

Sheet production is declining and some producers are competing for both hot and cold-rolled carbon material carrying high ratings, to obtain allocation of semifinished to engage idle capacity on sheet mills. This tonnage is limited and six to eight weeks delivery is promised on both hot and cold-rolled.

Galvanized sheets are especially tight. restricted by lower-rated requirements for building and regulations curtailing use. A recent sheet purchase in the East involves 1000 tons for chemical bombs.

Frozen stocks of steel which must be liquidated are much lower in New England than in most districts, but included a substantial tonnage of stainless sheets originally purchased for fabrication of soft drink container-coolers, which has been resold.

Orders for narrow cold steel strip have slackened thus far this month with shipments above bookings. Rerollers have heavy backlogs on which specifications tend to increase each month, numerous fabricators, having equipped for war production, now getting into heavy production. This tends to lift cold strip specifications, although some fabricators have difficulty in getting dies and other new units. Adequate supply of hot strip is a major difficulty with rerollers, only top ratings being of value. Backlogs and bookings also run heavily to high carbon and alloys, although demand for stainless lags; numerous substitutions are being made for stainless, even for war requirements, and producers of this grade are not heavily booked.

Plates

Plate Prices. Pase 11\%
Plate allocations are broadening as fabricating shops take on an increasing volume of war work as subcontractors. Other plate consumers are increasing consumption. A substantial portion of miscellaneous production is related to ship. building. Deliveries to shipyards
are better balanced, some of the heavier inventories having been lowered, and the effort is being made to maintain stocks at 45 to 60 days requirements. On the whole, shipyard requirements are as heavy as ever, additional shipways bring. ing further demand. Liberty ships for the Maritime Commission will require about $6,500,000$ tons of plates and 1,500,000 tons of shapes.

Some producers carried June deliveries over to the middle of July, as May deliveries in some cases absorbed full production through June. Sheared plates are delayed more than universal, the latter being somewhat easier while sheared mills are pressed.

Heavy demand is resulting in dislocated tonnage deliveries in the ef-
fort to meet requirements. Plates are being shipped to New England shipyards from as far away as Birmingham, Ala.

Bars

Bar Prices, l'are 116
Bar mill books are heavily loaded with directives and revision of ratings is frequent to assure shipment of more important war tonnage. Deliveries continue to lengthen. Some mills now are taking new business on both hot and cold-rolled carbon bars on directives only and some producers can make better shipment on bessemer than open hearth. Wide difference on coldrolled delivery was noted in recent bids on 700 tons for a navy yard,

SpECIAL CUT GEARS SPEED REDUCERS

Brad Foote products, special cut gears and speed reducers are turning the wheels in every conceivable industry manufacturing the material so urgently needed today.

Their uninterrupted performance, the many years of specialized research, experience in speed reduction gear manufacture and unusual plant facilities have made this organization one of the most important of its kind.

GEARS IMMEDIATE SHIPMERT

We have on hand subject to prior sale, Spur, Change, Bevel, Mitre, Worm \& Worm Gears in sizes 3 to 20 pitch.

For all dimensions send for Bulletin No. 111.

130I S. cicero avenue • • cicero. ILLINOIS
frombens ranging from :60 10 240 dhys.

Govermment surchashas officers bryinte direet for navy yards, ursemals and depots flad it rolatively casy lo obtaln revised hyser rat biss hut prlvate consumers, even those emgaged on war production, expodence much delay, due in part to confuston as to procedure,

Corbon bats for remelling, for a government shop, formely bought direct on opern blds, bsow are belng allocated. Dellvery of hils:rated
 Lix mex vern althong volume shlpments of aftermate athoy emer: Hency batw can be mado In August ly somse mills. Orders phaced for gome SAE: Rydes atre nutomatleally

High-speed tool steels are somo what casjer.

While demand for cold-finished is strong, notably in larger diamelers for plercing, definite delivery promises are hampered by limited volume of hot bars for processing and cold-rolling capacity is not fully engaged. Much small-size volume for shot is being distributed by directives. Large rounds, four-inch and over, are heavily sold ahead and orders for hot material, taken orlginally at A.1-a, are around 10 weeks and becoming more extended.

Pipe

Pipe l'rices, Pake 117
Cast hron plipe buying is conflined to govermment needs, utility and

WHFA IGH GOMS w THE DARYNESS

If rou nte wheented with Bcarines anc bewnitu meftis but bare heret isken Pime to brusk ugy wh pydiment amà is. lintule information regarding them. the enlire mblect men remain throwato in dinkmest. A littio liget furs you on she
 thinkint. The A. UV. Ceviman Numala= tmorme CA tmmen the sexthoth or the sadiect with tw" sankleas Senzimers

 oll n he swe whiceres whit the sublect of Demings race fine theraine mevels. the twokicts may se kus ko the arsking. When de why karm! genke?
municipal buying being light, largely for repair and replacement. A New Jersey foundry has been loaded with more than 50,000 tons for war plants, deliveries on which extend into October.

Replacement of distributor stocks of steel pipe, especially lap-weld, is becoming tighter. Demand for buttweld tapers. due to lack of private building. Distributors, faced with replacement difficulties, seek to confine sales to higher ratings which they can re-extend against new mill purchases.

Welded tubing is being more frequently substituted for seamless. Aircraft alloy grades are scarce and mills are heavily sold ahead. Shipyards are taking much steel pipe and several large contracts for alloy valves have been placed for the Navy.
It now appears that the mill price was shaded by a jobber on a 15.000 -ton mill shipment of 8 -inch and smaller steel pipe for delivery at a Navy supply depot.

Rails, Cars

Track Material Prices, Pase 11\%
As a result of government re. strictions on freight car building no domestic freight cars were awarded in June. Total bookings for first half, some of which are frozen and will not be built until the ban is removed, totaled 23,005 cars, compared with 94,765 in the corresponding period in 1941. Comparisons for four years follow:

	1942	1941	1940	1939
Jィп.	4.253	15.169	360	3
Feb.	11.725	5.50 S	1.147	2.259
March.	4.050	S. 074	3,104	800
April	2.125	14.645	2.07	3,095
Mas.	52	18.630	2.010	2,051
June	0	32.749	7.475	1,324
6 mos.	23.005	94.765	16,173	9,532
July		6,459	5, 54.6	110
Aus		2,665	7.525	2,814
Sept		4.470	9,735	23.000
Oct.		2,499	12.195	19,634
Nov.		2,222	5,234	2,650
Dec.		8,406	T,181	35
Total		121,499	65.589	57.775

Structural Shapes

siructural shame rricen Page 11 :
Review of projects suspended several weeks ago has restored some tonnase to backlogs, an instance being a powerhouse and other war construction which inwived 6500 tons on books of a Pennsylvania fabricating shop. Most plain material deliveries this monit, are erainst directives, mainly to shipyards The Maritime Commission's Liberix shio program will requin about iswow tors of shapes and enswow tons of plates. Lishters being prefohticated by mumberots strweural shose will be Essembled by a yand on the Atlartic chast.
lnauiry for enginereng and constraction mene has all but disap-
 dias of mork on which their
 with welang tecilithes bave an antaniaxt A shov on the East is mevating its weliting equioment 24 hours of for ans rectlong feld wowment for shom wrk

Reinforcing Bars

Reluforcing lar I'rices, Pare 117
Inquiry for concrete reinforcing bars has slackened materially but mills have heavy backlogs and requirements frequently require directives to obtain desired delivery. In spite of current shortage of semiflnished steel for this purpose sev eral distributors, notably one with direct mill affiliations, have built up stocks for immediate delivery on contracts with high rating.

Reinforced underground fuel tanks in New England are replacing usual steel containers, the third group being placed lecently, for which 5000 tons of bars have been divided between two distributors. About 150 tons of turnbuckles also will be required.

Wire

Wire I'rices, I'nge 117
Wire finishing mills buying rods outside are confronted with curtailment in additional departments by limited supplies, an already tight situation in rods being aggravated by lend-lease allocations which are dislocating production schedules. Meanwhile specifications and orders for specialties are heavier and with some mills bookings exceed shipments. Producers in some cases are turning down inquiries for additional wire for rope mills. Demand for camouflage netting is brisk, makers of screen cloth benefiting. High carbon rounds and stock requiring heat treating predominate in bookings, flat wire lagging. Aircraft requirements, in cluding alloys, are substantial, although the use of alloys is restrict ed where possible.

Pig Iron

Pig Iron Prices, Puge 118

Pig iron allocations are largely stabilized, varying little from month to month except for changes resulting from new war contracts. Dis. tribution is geared closely to inventory and higher priorities, the latter tending steadily to upper ratings. Minor changes in analvsis are frequently accepted by melters to aid distribution.

Snme manufacturers of civilian goods are being given iron in an effort to keep alive industries which are unable to convert to war production. How long this can be continued depends on demand for purely war production. In the face of diminishing serap supply a sreater proportion of pig iron may be diverted to steelmaking, cutting off supply to these melters.

One effect of conversion to war work is that some melters formerly using large tonnages of pig iron now are engaged on work requiring fewer castings and increased tonnage of rolled steel. This shift has released considerable pig iron for other consumers. Machine tool builders continue to use large tonnages of castings, for which sufficient iron is being provided.

A reconditioned blast furnace in eastern Pennsylvania has been relighted after long idleness and will
provide additional supply for that area.

Large reserves in hands of consumers early in the year have been liquidated and the effort now is to keep inventory at about 45 days supply. Increases in monthly supply are confined mainly to upper ratings and in cases where there is unusual need for castings. Some cast iron pipe foundries are engaged on castings for war work, replacing their normal product.

Scrap

Scrap Prices, Pate 120
Expectation of severe scrap shortage continues to grow and some ob-
servers even predict actual stringency will be felt by mills by the end of October, increasing from then on. Current receipts are barely sufficient for melters in some districts while in others steel production is maintained only by using stocks accumulated in recent months. In some districts open hearths are idle for lack of material.

Results of the nationwide drive are awaited with interest but general opinion is that they will be disappointing, as previous efforts have done much to bring out most of the dormant scrap. Automobile wrecking yards continue to contribute to the flow but are well depleted. Shortage of labor is caus-

OPERATION: ROUGH TURNING 155 MM. SHELL.

rool	No. Shell per Regrind (Average)
KENNAMETAL (Grade KM).	130
KENNAMETAL (Grade KH).	127
KENNAMETAL (Grade K3H).	157
CARBIDE A.	105
CARBIDE B.	85
CARBIDE C.	98
CARBIDE D.	91

STYLE 11

Because it removes more metal per regrind and more metal per tool life, KENNAMETAL is proving itself the most economical of all steel-cutting carbides, regardless of price.

In the shell machining test deseribed, KENNA. METAL Grade KM turned more shells per tool than any other material tested, exceeding by more than 100% the number turned by some tools. One set of KENNAMETAL KM tools turned more than

STYLE 9 3000 shells during the useful life of the tools.

KENNAMETAL machines steels of all hardnesses up to 550 Brinell at economical speeds and feeds, thus "hurrying up" production and reducing machining costs. Write for the facts about KENNAMETAL.
*INVENTED \& MANUFACTURED IN U.S.A.

AMERICAN
SHEAR KNIFE CO.
HOMESTEAD - PENNSYLVANIA
ing motor blocks to be sold without being cleaned.

Much industrial scrap now being produced is going direct to steel suppliers, bypassing dealers. Reclaimed rails usually are allocated and railroad scrap moves almost entirely by allocation. Railroad offerings are smaller than normal, carriers repairing such parts as can be reconditioned, as new parts are difficult to obtain.

Trend toward better supply of cast scrap grades continues, while steelmaking material is scarce. Rig. id inspection is bringing about more careful grading and loading and rejections are fewer. Borings and turnings are in good volume but differentials do not appear broad enough to stimulate close segregation for strictly blast fur. nace and chemical use.

In New England revised freight rates result in moving scrap previously frozen in northern Maine but the total is not sufficient to increase supply materially. In that area heavy melting steel and low phos deliveries have slowed. Steelworks reserves are not down to the low point of last spring but efforts to build inventories have failed.

St. Louis mills continue steel production at a high rate, at the expense of reserves and no tonnage is being added to stock. Deliveries from the Southwest have declined and flood conditions continue to have some effect on collections.
In the Detroit district scrap receipts are slightly above consumption but not sufficient to permit building appreciable reserves. Yards are better stocked than a month ago, one cause being stricter observance of OPA regulations on quality, necessitating slower movement through yards.

Water receipts at Buffalo total about 125,000 tons since naviga. tion opened, the larger part from upper lake ports, with some tonnage by barge from the East. In

Tool Steel Scrap

Cents per pound, to consumers f.o.b. shipping point

Tungsten Types

(For each 1% tungsten contained)
Solld scrap containing over 12%... 1.80 Solld scrap contalning 5 to $12 \% \ldots .1 .60$ Turnings. millings containing over 12%

Turnings, millines, sollds under 5\%

Molybdenum Tynes

Solld scrap, not less than 7% moyhdenum, 0.50 vanadum....... 12.50 Turn!ngs, millings, same basis. ... 10.50 Solld scrap, not less than 3% molybdenum, 4% tungsten, 1% vanadium
Turnings, millings, same basis. ... 11.50
Mixed Scrap
(Molybdenum and Tungsten Types) Solld scrap, each 1% contained tungsten
Solld sorap, each 1% molybdenum. . 80
Millings, turnings, each 1%
tungsten
1.40

Millings, turnings, each 1\% molyb-
denum

Keagler?lukem

MONOLITHIC
ACID PROOF
CONSTRUCTION BRICK SHAPES

SHOWING SINGLE BRICK LINING (PATENT APPLIED FOR)

Here is a new brick shape, manufactured of fire clay by the deairated method, and highly resistant to acid. It guarantees maximum strength of acid proof wall, and is particularly adapted for high temperature pickling tank construction. The bricks are so shaped that walls may be made $5^{\prime \prime}$ or $8^{\prime \prime}$ without using additional brick. The type shown above is especially adapted as a sheathing for steel rubberlined tanks, concrete shell tanks, acid pits or wooden tanks. Samples and catalogs sent on request.

SHOWING DOUBLE BRICK LINING
(PATENT APPLIED FOR)

KEAGLER BRICK CO.

efficiency! Babbitt-lipped Laminum shims, for pressure-lubricated systems, prevent oil and pressure losses. Body of shim retains all Laminum features of quick precision adjustment by peeling . . . in factory assembly or field service.
The . 003 or .002 in . laminations are bonded into a molid unit . . . easy to peel.
Laminum shims are cut to your apecifications. For repairs or maintenance, get stock shim materials from mill supply dealers. (Write us for illustrated shim application file-folder and Laminum wample.)
Laminated Shim Company Incorporated

spite of this addition to local collections mills have not been able to accumulate reserve stocks for winter.

Conditions have improved sufficiently in the Chicago area to allow two idle open hearths to be relighted after three weeks lost time. About 500 state-owned trucks and a large crew of WPA labor will canvass the rural regions of Illjnois.

Michigan automobile wrecking yards in June moved 19,865 tons of scrap, it is officially announced, about 600 yards contributing. This represented 30,000 old cars. In addition to metal scrap 1206 tons of rubber was reclaimed.

Warehouse

Warehouso Prices, Page 119
As steel warehousemen hope for aid in obtaining more steel to serve customers engaged in war production a mixed situation prevails as to current replacements and quotas on most products. In some cases distributors were forced to ask mills to stop shipments on some items late in June, quotas for that month being filled. Others received and now are getting only a fraction of the tonnage due them. In general, all are short of galvanized sheets and large bar rounds.

A large eastern distributor normally carrying balanced inventory on standard products for five to six months now has less than two months supply, badly depleted as to sizes. In one instance a warehouse was able to fill only two items of 80 in a recent inquiry.

In New England normally 20 to 25 per cent of steel consumption moves through warehouses and this situation probably has worked out to the benefit of distributors there by affording a wide base for figuring auotas. Most steel bought by machine tool builders and hundreds of small consumers in that area is purchased from warehouse. Not until the present pinch have some ever bought steel from mills.

Pacific Coast

Seattle-The inland route for the proposed highway to Alaska is criticised by Pacific Coast interests who are advocating a railroad west of the Rockies. In this connection the Pacific Great Eastern railway, an uncompleted project in British Columbia, owned by that province, is the center of interest. This line could be extended to connect Prince George, B. C., and Vancouver, B. C., making the line accessible to Pa cific Coast railroads. United States capitalists have made an offer for the road but it has been rejected.

Foundations are being placed for the aluminum rolling mill near Spokane, Wash., and steel and machinery are arriving. Bonneville Power Administration fails to confirm reports that it is building two additional $230-\mathrm{kv}$ steel power transmission lines to serve Spokane war industries but Administrator Paul J. Raver announces his agency is prepared to care for needs of the Spokane area.

The policy of army and navy to

18 MATN 8TAEsT

COMPANY, Inc. s\&

Precision Cylinder Construction Means Better Use of Air Power

 ni. 2 ,

Use wood in place of steel, where possible, it relieving pressure on Coast rolling mills, which are now making inroads on an enormous backlog. Additional contracts for high priorities are being taken for large contractors who have defense projects in hand.
The Ross dam extension, a unit or Seattle's Skagit power project, has been granted priority for 550 tons of reinforcing steel required but the job is delayed, awaiting release of contractors' equipment. Scarcity of steel has halted the Spokane street viaduct, Seattle, revised plans being to complete onethird of the project. until required materials are available. The viaduet involves a total of 1500 tons of reinforcing placed with Bethiehem Steel Co., Seattle, early in the year. The steel salvage scrap campaign continues to bring satisfactory receipts from the interior but consumers are buying direct in most cases as dealers are working under a handicap, being restricted to 30 and 60 -day inventories. Mills are well supplied and are increasing stocks. Foundries also have ample cast scrap on hand. The trade is anxious about the near future when the country will have been swept clean and unfavorable weather inbevies the flow of materials, esserially in view of reduced invenfuries in dealers wards.

Cities find it difficult to obtain suitable priorities for cast iron pipe and many improwments are being gostroned. Several housing profefts involve sizable tonnages which will be swanker: soon Kine County Gisurk No ez has received bids for 350 toms alternate for trassite fog UES being sivi46 amd $\$ 30103$ re Secretively Mienemoth \& CO Seattle, Who \& binate ball ut- netter in Suttio invokes two -ives of mater give thong undated, bide soon-

Bolts, Nuts Sires

 how ied three month and beynecion highboy mated wemarge warren
 campus percutrecomts acerumting
 bethink bath lucre and small sion
 sion maimalimita hackiuss sore gevibers ane sem un c haminuiged
 vas and ane thrsathynth white EIF-
 Fincempots 3 ne obtained uni 35 pats in sims costs have how er made (7) Whens (ont temper

Panels

Penates. Otic - Sores of
 (Sha mia so wan imuluts is beenrimy Those astute kernite ahmad turn il sur
 Toursecaitai Consumers. Cuman's madder Pot Brewactiom of i whir SupButs bis bsidurweil much t mme errdeanery sheath cupacels for momus-
 Sikh with reserve tho the later was
 Finsechaty for Anther lares expandwain in Brimmer stein owicur. IT
his connection the Steel Co. of Canada Ltd., Hamilton, this week announced plans for installation of bessemer and electric furnaces to cost about $\$ 2,775,000$, while enlargements also are to be proceeded with immediately at other Canadian stee! mills. To obtain urgently needed labor it is reported that many civilian plants may have to close down to release employes for war work.

Canada has about reached the top of her stride in shipbuilding and the only handicap to enlargement is supply of steel. Plate and sheet production is being maintained at maximum capacity and the government is directing all output into war industry, chiefly shipbuilding, tank and military vehicle production.
Inquiries for merchant bars are heavy and while mills are accepting orders delivery is uncertain. Demand is specially heavy for alloy and carbon bars and supplies are not sufficient for actual war requirements. Some consumers have been fairly successful in keeping plants supplied but others have been forced to curtail operations.
Pig iron sales are steady with all shipments under direct supervision of the steel controller. There has been some switching of orders from one producer to another and it is reported that a larger quota of the merchant demand has been swung over to the Canadian Furnace Co., which operates the only direct merchant furnaces in Canada. Other blast furnace operators require their pig iron for their own steelmaking activities.

Further slowing in scrap offerings from the rural districts has appeared. Offerings from automobile wreckers has dropped to a mere trickle, but larger tonnages are appearing from industrial plants. Remote sections are starting to pour in scrap with the result that supnlies are keeping abreast of actual consumption. Consumers are tapping every available solrce and are chieflv concernerd with building stock piles against scarcity later in the year.

Iron Ore

Iron Ore Prices, lake 119
Every ore carrier in the fleet of Inland Steel Co, has broken its best prior cargo-carrying record since the present season opened L. E. Block, flagship of the fleet, a consistent maker of new records, docked July 8 with its largest cargo, 16,252 gross tons of iron ore, from Superior, Wis. Its largest cargo in 1941 was 15.834 tons. This was its fifteenth arrival at Indiana Harbor this season. The latest high mark by this ship compares favorably with the Great Lakes record for ships of all capacities.

Iron ore fleet of the Pittsburgh Steamship Co., largest on the Great Lakes has transported 500 , 000 gross tons more ore to Julv 1 this year than in the comparable period in 1941, during which season more ore was carried than in any previous year. Increased movement was due to the earlier opening of navigation, deeper draft allowed
and increased dock efficiency. The Pittsburgh fleet consists of 68 steamers and two barges, with a single-trip capacity of 770,000 tons.
First of the company's five new ships. LEon FRAser, launched last spring, set a new high for a single cargo, with 16,863 tons. Four sister ships are expected to be in service during the present season. The five new vessels will have a season capacity of $2,500,000$ tons at present water levels.
Canadian ships in the ore trade, carrying ore to United States ports had carried $1,198,5 \mathrm{C} 0$ gross tons of ore to July 12. A total of 29 Canadian ships were involved in this movement. In 1941 season 21 ships
were used and total ore for the season aggregated 705,572 tons. In 1941 Canada's participation did not start until July 15.

Steel in Europe

Foreign Steel Prices, Page 1!!

London- (By Cable)-Steel producers in Great Britain expect a rise in prices, due to an increase on price of coal. Order books of steel works are well filled and allocations are generous. Imports of iron ore for third quarter are severely restricted. Demand for heavy structurals is quiet but demand is in creasing for ship and tank plates.

MECHANICAL POWER PRESSES

of

ALL TYPES AND SIZES

Horn
Reclinable
Straight Side
Roll and Dial Feeds
Double Action
Double Crank
Punching
Toggle
Our Specialty:
Patent Percussion Power Presses

ZEH \& HAHNEMANN CO.
56 Avenue A.
Newark, N. 1.

A carburizer to be versatilely efficient must possess properties other than its performance with molten steel．No． 348 Mexican Graphite is especially sized and processed and con－ veniently packaged to conserve a minimum of space in the furnace and on the floor．The densest，most soluble carbon obtainable for use in acid open hearth charges ．．．free of sulphur and harmful impurities ．．．provides over 70% carbon recovery with consistent， dependable results．Quiet action with 100% scrap charges．We invite correspondence regarding your problems．

THE UHITED STRTES ERRPHITE

へへへへへへへへへへ

S ．．．．．．．5．50－6．25	
Auto radiators	6．50－7．25
Red Brass，borings \＆turnings	8．50－9．25
Zinc	
Old	5．00－5．75
New clippings	6．50－7．25
Aluminum	
Clippings	10．00－10．75
Cast	8．75－9．50
Plstons	8．75－9．50
Sheet	9．00－9．75
Lead	
Heavy	5．00－5．50
Mixed babbitt	4．50－ 5.25
Electrotype shells	5．00－5．75
Stereotype，Linotype	6．25－7．00
Tin and Alloys	
Block tin pipe	44．00－46．00
No． 1 pewter ．．．．．．．．．．．．．．．． 3	32．00－38．00
Solder joints	7．75－10．00
SECONDARY METALS	
Brass Ingot，85－5－5－5，l．c．1．	13.25
Standard No． 12 aluminum	14.50
Magnesium	
（12 pound rod， 4 ln ．diam．）	
99．8\％ingot，carlots	22.50
100 lb ．to carlots	24.50
Extruded sticks， $1 / 6$ to 2 lb ．	
Carlots	32.00
100 lb ．to carlots	34.00

Nonferrous Metals

New York－A shortage of labor in mines，caused chiefly by the movement of workers to the air－ craft and shipbuilding industries which are paying increasingly high－ er wages，is checking the uptrend in output of copper，lead and zinc． Donald Nelson，chairman of WPB， is quoted as saying：＂We are not getting the expanded output of cop－ per that we expected for this year．＂ The planned copper requirements are not being met．

Officials of WPB，Army，Navy and Manpower Commission have been meeting with representatives of the mining industry on the pro－ duction problem．Officials indicate that with supply running behind requirements there may be serious trouble in key war production in－ dustries later in the year．Officials estimate there is an actual short－ age of from 4000 to 5000 mine workers now and that 2000 to 3000 more will be needed this fall．

Smelters and refiners of 13 non－ ferrous metals，including copper， lead and zinc，operating under Order P－ 73 need not file PRP applj－ cations for the thind quarter and will continue to operate under P－73 for that period．All serially num－ bened copies of $p-73$ have been ex－ tended to Oct．1． 1912.

After July 31 copper and brass foundries must revort all deliverics to customers during the previous month on Forms PD－123．A and PD－ 123B showing br the use of a simple set of symbols the final end－ use of products in each shipment．

Basic lead sulphaie white and blue prices declined tive as of Mav 11．1992．Sellers of lead scrap materials have been sranted permission in Amendment ㅊ． 3 io Revised Price Schedule N No． 70 to charge buvers for the copper contained in terminals of submarine katteries．

Plant Expansion, Construction and Enterprise, Government Inquiries, Sub-Contract Opportunities, Contracts Placed and Pending

SUB-CONTRACT OPPORTUNITIES

Dala on mubcontract work are lsumed by regional officen of the War l'roduction Board. Contact elther the affice lssulng the data or your nearest fleld office. Write, don't telewhone, and mention key letters and numbers nppearing before each liem to assure nompt aftention and avoid detay.

Minneapolis office, Contract Distribu thon Branch of WPB, 326 Midland Bank bullaling, is seeking confrictors for the following:
S.0. No. 224: Miscellaneous gas engine parts, from small, simple valve pins to shafts, gears, liners and flywheels, in quantities from 200 to 24,000 . A varlety of pleces and machine requirements to choose from. Prints avallable for Inspection at Minneapolls office.
S.O. No. 228: Subcontractor required for 22 slzes condenser shafts, 250 to 1000 of each. Condenser cup bearing, 250 to 500. Condenser guide bearing 250 to 500. A-1-a priority. Materlal furnished. Work to be done on screw machines, beginning August 1. Blueprints at Minneapolis office.
S.O. No. 229: Electric connector socket houslng, 1000 per week. Socket pln, 20,000 per day. Socket, 30,000 per day. I,C 70 clamp ring, 50,000 at 1200 per day. LC 71 clamp ring, $50.000,1000$ per day Material furnished, priorlty A-1-a. Screw machine operations, operation layouts. Cam and timing speclfications avallable. Blueprints and sample at Minneapolis office.
S.O. No. 225: Machining of armature shafts, llve different sizes, quantities 2500 to $25,000,125$ to 400 daily. Shafts vary in length from 7 to 12 inches with largest diameter about 11/16inch. External grinding required on certaln dlameters. Some shafts require knurling and threading. Prints at MInneapolis office.

New Orleans, Iat, office, naval and marine section, i41 Canal bullding, is seeking contractors for the following:
Subcontractors desired for manufacture of masts and booms. Main mast 62 feet 3 Inches long, consisting of three swaged pieces, 21 feet nine inches x 27 inches O.D. $1 / 2$-inch thick; 14 feet x 25 inches O.D. $1 / 2$-lnch thick; 13 feet x 23 inches O.D., .32-inch thick and welded on plpe 15 feet 9 inches O.D. x 25-Inch thick. Foremast 54 reet long, three swaged pleces 18 reet x 12% inches O.D., . 375 -inch thick: 19 reet 6 inches $\times 10 \%$ inches O.D., . $365-$ inch thlck, and 19 feet 6 Inches $x 9$ inches O.D., . 25 -inch thick. Ten-ton boom 45 feet long consists of three swaged pleces 13 feet 6 inches long x 10% inches O.D. . 365 -Inch thick; 21 feet $x 12 \%$ inches O.D., 375 -inch thick and 13 feet 6 inches $\times 10^{3}$ inches O.D. 365 -inch thick. Prints at this office.

Subcontractor desired for manufacture of doors, hatch and manhole covers. To be made of dished plate or mild steel stifiened nat plate. Quantity, 87 units, in sets of six. Designs for
these watertight and weathertight doors are similar to those manufactured by Edward G. Budd Mfg. Co. Any doors simllar to these will be acceptable. A-1-a prlority.

Milwakeo offlce. Contritet Distribution Itranch of WPB, 161 West Wisconsin avenue, Milwaukee, Wis., is seeking montractors for the following:
WP316X: Subcontractor sought to machine steel locking ring, external dlameter 2 \%-inch, broached internally of an irregular form, radlus of whlch is .937 -inch, width $.385-$ inch and piece is medium knurled on exterior surface. Prime states it is possible to make plece economically on turret lathe with proper feed by machine normally using 2 ?e-inch capaclty four or $s l x$ spindle automatic. Prime will supply material, which may be solid bar stock, due to uncertainty of avallabllity of tubing.
WP320x: Boring mill facilitles wanted by prime on mills having capacity range from 36 to 55 Inches. Deliveries wlll be required one month or earller after sub recelves castings. Also require 40 hours per week for three or four months on 60 or 72 -inch boring mill. Tolerances range from .001 to .005 Drawings at Milwaukee office.
WH325: Subcontractors needed to make contour dles for 30 and 50 callber shells. Must have internal grinding equipment to do this work. Prime will furnish materlal.

New York office, Contract Distribution Hranch of WPIS, 122 East FortySecond street, New York, reports the following sulfeontract opportualties:

S-154: New Jersey manufacturer is seeking a subcontractor for production of steel spools cadmium or zinc plated to withstand 24 -hour salt spray test. Materials, 1 \%-inch cold-drawn steel bar, to be furnlshed by subcontractor. Tolerance, commercial. Machines required, automatlc screw machine and drill press. Quantities, 100,000 to 500,000 . Blueprints and samples at Newark, N. J., offlce, 20 Washington place.

D-32: Long Island City manufacturer is seeking automatic screw machine facilities, 1 s-inch swing, for production of steel spring sljp bolts and nuts, and brass studs. Quantity, spring clip bolts and nuts 6400 each; studs, 1600.
s-155: Ohio manufacturer is seeking subcontractor who can produce ring locks for gun trunnjons. Material, steel. Air Corps speciflcation WAS57-107-12,
diameter 2 in-inch by .385-Inch wide. Tolerances close. Quantity, 36,000, -500 dally. Machines needed, automatic screw machines, capacity 2 ? nch, or turret lathes, broaching equipment. Blue prints at thls office, 122 East Forty-second street.

S-156: Ohfo manulacturer seeks subcontractors with turret lathe and screw machine facilltes for production of steel precision parts. One is 1%-Inch diameter by $21 / 2$ inches long, the other 2 Inches djameter and $3 / \downarrow$-inch long. Material cold-drawn steel. Tolerance, 005. Quantity, 125,000 of each. Machines needed, $2-2 \%$-Inch turret lathes and $2-2$ - 4 -Inch four-splndle automatle screw machines. Materials furnished by prime contractor. Blueprints avallable at New York office.

D-33: Brooklyn manufacturer of ordnance items is seeking 4 or 6-spindle Gridley turret lathe facilities for machining of a large quantity of bomb tall ruze parts. Total of 50,000 of each of these parts is wanted in quantlies of 15,000 to 20,000 per month. Parts conslst of tube, carrler movable gear, body, cup bearing, cup body.
D-34: A Bridgeport, Conn., ordnance manufacturer is seeking single-spindle automatic screw machine faclities for rough machining of unlimited quantitles of .30 caliber steel bullet cores. Prime contractor whll furnish tools and material at cost. Material, manga-nese-molybdenum cold-drawn steel, FXS-318. Subcontractors with minimum of flve single-spindle automatic screw machines available are particularly desired.

S-157: Detrolt manufacturer seeks subcontractors who can produce end connectors for tanks, rough or machined complete. Made of cast steel, $6 \frac{1 / 2}{2} \mathrm{x}$ $51 / 2 \times 3$ inches. Tolerances, .005, large quantity, Machines needed, casting facilitles and, if possible, drilling ma= chlnes. Blueprints at New York ofice.

S-158: Pennsylvanla electrlcal flrm seeks subcontractors having automatic screw machines for production of parts of WD 1015 steel. Parts are 2.299-Inch diameter by 1.369-Inch long and 2.479Inch diameter and 3.299 -inch long. Commerclal tolerances. Quantity 250,000 . Machines needed, 3 or $3 \not / 4-1 n c h$ automatic screw machines. Blueprints at New York office.
1)-35: New York City radio manulacturer is seeking automatic screw machine facllities for manufacture of ra. dio parts. Materials and tools must be furnished by subcontractor. Three rotor sleeves are required. Material, H.H. brass tubing. Dimenslons, $x / 2$ $3 \frac{14}{4}$ and $1 / 2 \times 21 / 2$-inch. Quantity, 5000 each of two larger slzes and 10,000 of the smaller. Also required, stator support, H.H. brass rod, $1 / 4 \times 2 / 4-\ln$.h. Quantlty 20,000 .
s-l59: New Jersey manufacturer is seekIng subcontractors having planer millers for machining of parts. Must take work over 30 inches and must be equipped with vertlcal and two side heads. Continuous work available. Blueprints avallable at Newark dis-
trict office, 20 Washington place, Newark, N. J.
s-lfin: Ohlo manufacturer seeks subcontractors who can prorluce heavy forged propeller blades. Material, steel, X4340. Weight of metal required, 86 pounds weight of ninished forging 68 pounds; Length of forgings, 54 Inches; width, 7\% inches; slze of bar used, 3 3 3 -Inch: length of bar used, 40 Inches. Equipment required, 12,000 -pound hammer. heat treating facilities to attain hardness of 286 to 321 Brinell.
-162: New York manufacturer seeks subcontractors with facilities to produce small steel parts, of WDX 1314 steel, $1.57 \times 1.375-1$ nch diameter. Tolerances, .003. Quantity, $1,000,000$. Machines needed, automatic screw mochines, capacity. $I^{1 / 2}$-inch. Blueprint: at New York office.

STRUCTURAL SHAPES .

SHAPE CONTRACTS PLACED
10,000 tons, aluminum plant, New Jersey. to Bethlehem Steel Co., Bethlehem, Pa. 2400 tons building, Haskelite Mrg. Corp., Grand Raplds, Mich., to Whitehead \& Kales.
1250 tons, forge shop, Taylor Forge \& Pipe Works, Chlcaro, to Joseph T. Ryerson \& Son Inc., Chicaso.
750 tons Ohlo Steel Foundry Co., LIma, O., to Indlana Bridge Co., Muncie, Ind. 200 tons, two beam bridges, Winnebago county, Illinols, to Rock Island Bridge \& Iron Works, Rock Island, Ill.; Olson

IN ALL GRADES AND ANALYSES
Successfully Serving Steel Consumers for Half a Century

EXECUTIVE OFFICES: GRANT BLDG., PITTSBURGH, PA.
GENERAL OFFICES AND WORKS: CARNEGIE, PA.

EASY TO APPLY... EASY TO REMOVE - FOR FOREIGN OR DOMESTIC SHIPMLN'IS•

SHAPE AWARDS COMPARED

Week ended July 17
Week ended July 11 Week ended July 4 This week, 1941 Weekly average, 194% Weckly averare, 1041 Weekly average, June, 1942 Total to date, 1941 Total to date, 1941
Tons 14,700 14,332 7,332
12,700 12,700
35,030 $\mathbf{3 5 , 0 3 0}$
$\mathbf{2 5 , 2 6 0}$ 27,284 15,47.4 $804,0 \div 0$ $864,0 \neq 0$
707,280

Includes awards of 100 tons or more.

Construction Co., Waterloo, Iowa, contractor; bids June 12.
100 tons, plling, intake, octane plant, Standard Oll Co., Whiting, Ind., to Bethlehem Steel Co., Bethlehem, Pa.; Wenzel \& Henock. Milwaukee, contractor.

REINFORCING BARS

REINFORCING STEEL AWARDS
5000 tons, reinforced concrete underground fuel oll tanks, naval depot. divided, Truscon Steel Co., South Boston, Mass. and Joseph T. Ryerson \& Son, Inc., Cambridge, Mass.; Leonard Construction Co., New York, and James Monroe \& Sons Co., Attleboro, Mass., joint contractors.
3000 tons, synthetic rubber plant, for Synthetic Rubber Inc., to Carnegie-Illlnois Steel Corp., Chicago; Lummus Co.. New York, contractor.
800 tons, locks, Sault Ste. Marie, Mich., for government, to Ceco Steel Products Corp., Chicago; Great Lakes Dredge \& Dock Co., Chicago, contractor; bids June 15.
337 tons, Chain Belt Co., Milwaukee, to Worden-Allen Co., Millwaukee.
125 tons, Nash Kelvinator Corp., Kenosha, Wis., to Worden-Allen Co., Milwaukee; Huntzinger Construction Co., contractor.

REINFORCING STEEIG PENDING
Unstated, material for Anderson Ranci power house, Idaho; blds In to Reclamation Bureau, Denver, July 10.

PIPE . . .

CAST PIPE PENDING
2501 tons, King County, washington, water district No. 62; Michelotti \& Co., Seattle, low, $\$ 31,046$ for cast 1 ron; $\$ 30,162$ for transite; Gardner, Gardner \& Hitchings, Seattle, engineers.
Unstated, private housing project, Seat-

CONCRETE HARS COMPARED
Tons
Week ended July 17
Week ended July 11
Week ended July 4
This week, 1941
Weekly averake, 1942
Weekly average, 1941
Weekly average, June, $19+2$
Total to date, 1941
Total to date. 1942
9,302
4,953
38,285
14,972
14,072
10,085
10,085
13,609
K, 460
282,374
Includes awards of 100 tons or more.

JONES-LENLEY FRICTION CLUTCHES

TONES-LEMLEY friction clutches are built for a broad range of shaft sizes and ralings in both enclosed and open types for sleeve and coupling work. In addition they are available in a line of Jones-Lemley friction clutch
pulleys. This clutch modification is also used for gears, V-belt sheaves, sprocket wheels, etc. Sizes, ratings, dimensions, prices and other data are contained in Bulletin No. 60. Your request will bring a copy.
W. A. JONES FOUNDRY \& MACHINE CO., 4437 Roosevelt Rd., Chicago, Illinois

HERRINGBONE - WORM - SPUR-GEAR SREED REDUCERS - PULLEYS CUT AND MOLDED TOOTH GEABS O V-BELT SHEAVES - ANTI-FRICTION PHLOW BLOCKS - FAICTION CLUTGHES - TRANSMISGION AHLIANCES

25TH STREET, PITTSBURGH, PA.

ORNAMENTAI-INDUSTRIAL

For All Purposes

60 Years of Metal Perforating Prompt Shipments
Send for Metal Sample Plates
THE ERDLE PERFORATING CO. 171 York Street

Rochester, N.Y.

The Pug Knives shown above tell a graphic story of the unusual wear resisting qualities of COLMONOY hard-surfacing alloys and overlay metals.

1. New, 24 lb . pug knife, made of high alloy steel.
2. and 3. Same type, after only 3 months of service. Worn beyond efficient operation, with loss of aver half ole material.
3. and 5. Same type. Each blade coated with $11 / \mathrm{l} \mathrm{lbs}$. of COLMONOY Na. 6 . In constant use for over a year, and still operating efficiently.
COLMONOY alloys are playing a vital part in the machine tool industry. Use them on parts subject to great wear-lathe centers, dogs, chip breakers, machine fingers and cams, grinder feed fingers, forming and drawing edges, etc.

Write for Full Information

WALL-COLMONOY
 COIBI.

Buhl Bldg.
Detroit, Mich.
NEW YORK CITY-BLASDEILL, N. Y.-CIICAGO-TULSA WHITTIER, CALIF. -Other Branches in Canada
tle, Involving two miles of plpe; bids soon; Ed. F. Hughes, Seattle, engineer.

RAILS, CARS . . .

LOCOMOTIVES PENDING

Seaboard Alr Line, six 5400-horsepower dlesel freight engines and two 1000 horsepower desel switchers; applicatoon nled for proposed inancing.

Car orders placed
Chicago \& North Western, twenty-flve $70-$ ton, cast steel underframe flat cars,

own shops, Proviso, Ill.

Lehigh Valley, released by WPB, transportation equipment branch, 1000 hopper cars, 440 of steel construction, and 560 , wood and steel, to Bethlehem Stee] Co.. Bethlehem, Pa.

BUSES BOOKED

A.c.f. Motors Co., New York: Twelve 31passenger for Capital Transportation Co., Pine Bluff, Ark.; twelve 37 -passenger for Unton Bus Co., Jacksonville, Fla.; ten 37 -passenger for Southeastern Greyhound Lines, Lexington, K $y_{\text {; }}$ ten 31 -passenger for Middlesex \& Boston Street Railway Co., Newtonville, Mass.; ten 33 -passenger for Conestoga Transportation Co., Lancaster, Pa.; eight 33-passenger for

Valley Transportation Co., Lemoyne Pa.; seven 39 -passenger for Harrisburg Rallways Co., Harrisburg, Pa.; seven 37-passenger for Florlda Motor Lines Corp., Jacksonville, Fla.; four 45-passenger for Eastern Massachusetts Street Rallway Co, Boston: four 43-passenger for Peoples Transit Co., Dayton, 0 .

CONSTRUCTION

and ENTERPRISE

Michigan

DETROIT-Arrowsmith Tool \& Dle Inc. has been incorporated with $\$ 20,000$ capital to engage in tool and dle making, by William Arrowsmith, 9272 Quincy street.

DETROIT-Duplicate Machine Corp. has been organized with $\$ 50,000$ capital to deal in metals; Samuel W. Leib, 2057 Union Guardian bullding, is correspondent.

DETROIT - Grinding Inc. has been formed to do precision grinding; Robert E. Davis, 2914 PIngree street, is correspondent.

DETROIT-Grand Steel \& Mrg. Co. has been organized to do manufacturing: Sonia Mellon, 2705 Calvert avenue, is correspondent.
DETROIT-Austin Co., Detroit, has been awarded contract for addition to factory at 11111 French road for Clayton \& Lambert to cost $\$ 70,000$.
DETROIT-Sal-Way steel Treating Co. has given contract to Campbell Construction Co. for addition to factory at 14034 Woodrow Wilson.
DETROIT - Barton-Malow Co. has let sub-trades for factory at 1234 Mt . Ellott for McReynolds Die \& Tool Co.
DETROIT-Ring Screw Works has given contract to Whllam C. Peters, Detroit, for addition to factory at 1340 East Milwaukee.

DETROIT-Bennage \& McKInstrie Co. has contract for addition to factory at 20201 Hoover for Deluxe Dle Works.

DETROIT-Wlllam C. Peters has awarded sub-trades for addition to plant of Michigan Stove Co. at 6450 East McNichols. Estimated cost $\$ 72,000$.
DETROIT-George W. Auch Co. has contract for factory at 17272 Mt . Elliott for Enterprise Tool \& Gear Corp.
DETROIT-V. L. Graf Co., 9556 Grinnel, has awarded sub-trades for factory and office building to cost $\$ 52,000$.
DETROIT - Haberkorn-Barry Co. has been given contract for factory at 17271 Mt. Elllott for Schwartz Boring Co.

DETROIT-Embassy Industrial EngineerIng Co., 4465 Woodward avenue, has been organized to deal in metals, ores and minerals.

GARDEN CITY, MICH.-CIty plans waterworks extension costing $\$ 50,000$. G. Jerome \& Co., 1850 National Bank building, Detroit, engineer.
GROSSE POINTE MICH - Martin A. Preston Inc., Grosse Pointe Farms, was nwarded contract for ractory at McDougall and Franklin streets fo: Ulta-Lap Machine Co.
GROSSE POINTE, MICH.-Luclen Bouttelgler, Grosse Pointe, has been awarded contract for factory on Lowa avenue for Sterling Gauge Co.

HIGHLAND PARK, MrCH.-Clausen Co., Detroit, has been awarded contract

OIL IS AMMUNITION - and in the search for new sources of this essential war material modern drilling equipment is phaying a vitally important role. Typieal example of progressive design is this portable drilling unit built by Franks Manufacturing Corporation for quick location-tolonation moves, Drawworks, pumps, anxiliary engines, and rotary drive equipment are mounted on a siugle truck-and derrick can be folded down by special patented serew meehanism. Main thrast bearing on swived of this and similar Franks units is Bantam Flat Segmented Roller: main bearing and upper radial barimg in rotary table are Rantam 'Tapered Roller.

AIRCRAFT PARTS are formed in this 1900 -ton threceolumn press made by Williams. White \& Co. It is powered by an Oilgear Two Way Variable Displacement Pump equipped with two tspe ILI Bantam Radial Roller bearings on front and rear of rotor to insure efficient, dependable operation at all times.

MAN-HOURS SAYED in handling materials help keep production at peak lmels. lift trucks butt he Maclonald Truck and Manufacturing Co, are designeyl throughout for safets. smonthness, and spered and Maclonald selerted Bantam Quill Bearings for use on (ross-head (shown in cross-sertion drawing) and on tilt arms of these trucks.

BATTERIES OF THESE POWER-SQUARING SHEARS are being used in war production plants for squaring and trimming metal shects and for producing narrow strips. Among the many progressive engineering features included by Niagara Machine \& Tool Works is the use of Bantam Quill Bearings on the main shaft. For further information on these compact, high-capacity antifriction hearings, write for Bulletin H-10I.

[^0]: Note: Weekly and monthly indexes for 1942 have been adjasted to oftset the forced curtailment in automobile prodaction and to

[^1]: Ao :-ands stin kubee co teit

 opmator: of at the mast twa, eexily

[^2]: Builders of 'Shaw-Box' Cranes, 'Budgit' and 'Load-Lifter' Hoists and other lifting specialties. Makers of Asheroft Gauges. Hancock Valves. Consolidated Safety and Relief Valves and 'American' industrial instruments.

[^3]: Keep LUMNITE Castables in Stockif you prefer a factory-prepared mixture. Made with LUMNITE and selected aggregates, these castables are ready for use upon mixing with water. With LUMNITE castables you can have Refractory Concrete or Refractory Insulating Concrete in minimum time. LLMNITE Castables are obtainable from refractory manufacturers and distributors in all parrs of the United States and Canada.

 - Specify Castables"Made with LUMNITE" 4

