

General Electric's 'troining programs produce fully qualified workers quickly, p. 56

EDITORIAL STAFF
E. L. Silanen

Editor-in-ChiseJ
E. C. Khevtrineag Elitor
A. J. Main
J. I) Kiour Engineering Editor Guy Humband Abthur F. Macconoche: Coneribuzing Editor

```
D. S. Cadot
``` Art Editor

\section*{Assoclate Edifors}
G. II. Manloye, W. G. Gude, W. J. Cabirbele
New York
B. K. Phice, Join M. Caldweit, L. E. Browne Pietshurgh, R. I. Hantronn Chicago, E. F. Ross Detroí, A. H. Aleen Wrashingron. L. M. Lams Londoh, Vincent Delyort

\section*{Assistant Edifors}
J. C. Sullivan, Jay DeEulis, La Verne Nock D. B. Wiexin

BUSINESS STAFF
C. O. Hays

Business Manager
R. C. Japinke

Aderising Manager
C. H. Bailey

Aclertising Service
New York, E. W. Kieutzberg, K. A. Zollner Pitsburgh, S. H. Jasper, B. C. Snell. Chicago, L. C. Pelott Cleveland, R. C. Jaenke, D. C. Kiefen Los Angeles, F. J. Fuller J. W. Zuern

Circulation Munager
Main Offlce Penton Building, Cleveland, Ohio

\section*{Branch Offices}

Neit York. 110 East 42nd Sircet Chicazo............ 520 North Michigan Avenue Pittsburgh...................... Koppera Building Detroit........................ 6560 Cass A venue IF ashington. National Press Building Cincimati..................... 1734 Carew Tower Los Angeles, 130 North New Hompulire Avenae San Prancisco............ 1100 Norwood Avenue Oakland, Culif..... Tel. Glencourt 7559 Innitun.... 2 Caxton Strcet. Westminater, S.W. 1

Published by Tue Penton Publishing Co.. penton Building, Cleveland, Ohio. E. L. Shaner, President and Treasurer; G. O. Hays, Vice President; F. G. Steinebach, Secretary.
Member, Audit Burean of Circulations; Asmociazed Businen Mapers, Inc., and National Publishera' Absociation.
Published every Monday. Sulbecription in the United Stater and possersions, Canada, Mexico, Cuba, Central and South America, one year \$6; Single copics (current issura) 25 c .
Ste
Entered an secoud clasa matter at the postofice
at Cleseland, under the Act of March 3, 1879.
Copyright 19.12 by the Penton Publishing Co.

\section*{CONTENTS \\ Volume 111 -No. 13 \\ \\ September 28, 1942}
NEWS
War Contract Revisions "Should Work Both Ways" 22
U. S. Steel Directors Meet in Chicago, Inspect War Plant Facilities 25
Sustained Steel Output Depends on Scrap Drive's Success 26
Men of Industry 28
Obituaries 29
Scheduling Plan Is Considered To Replace Priorities 30
Priorities-Allocations-Prices 31
Two Vice Chairmen, Steel Chief Appointed to Production Agency 37
Board Supports CIO in Attempts to Extend "Little Steel" Ruling 38
Toolnaker Explains Fears of Workers 39
Propeller Plant Workers Devise Means To Utilize Tools to Utmost 46
Canada's Shipbuilding Program Expanded; Making Own Magnesium 48
Three Plants Win "E" Burgees; One Awarded Maritime "M" 50
Republic's Valley Plants Win Flags for Bonds, Production Records 51
Peru To Build \(\$ 15,000,000\) Steel Plant with United States Loan 52
FEATURES
Behind the Scenes with Steel 4
Highlighting This Issue 19
Editorial-Something Wrong Somewhere 21
Windows of Washington 32
Mirrors of Motordom 41
Wing Tips 44
The Business Trend 53
Industrial Equipment 84
New Business 107
Construction and Enterprise 110
TECHNICAL
Apprentice Training Program Developed by GE 56
Fighting the Production Battle with Ideas 59
New Training Films Show Aluminum Fibrication Details 60
Cuts Hardened Steels To Speed Production 61
Removing Heat-Treat Scale 64
Manufacture of High-Quality Steel, Heterogeneity of Ingots 68
Low-Cost Box Allows Safe Breakage of Test Samples 72
Recommended Procedure for Hand Grinding Carbide Tools 74
How To Cut Structural Steel Requirements by 40 Per Cent 77
Maintaining Battery-Powered Industrial Trucks 80
PRODUCTION
Steelworks Operations for Week27
MARKETS
WPB Manifests Concern Over Winter Scrap Supply 91
Market Prices and Composites 92
Index to Advertisers 118
Where-to-Buy Products Index carried quarterly

\section*{3 Million Tons of iron and steel scrap are wanted every month . . . Are you doing your part to help America win her battle of production?}

\section*{CONSERVATION AUTHORITIES RECOMMEND THESE 8 STEPS TO GET IN THE SCRAP}

Put some one individual in charge of scrap in all departments of your business and GIVE HIM AUTHORITY TO ACT.
2 Comb the plant and yards for dormant scrap, aban2 doned equipment, old boilers, pipe, moulds, obsolete dies and parts, material now being destroyed which has salvage value.
3 Survey all plant equipment, particularly idle stand3 by or discarded machines, with a view to applying or converting them to useful production.
SEGREGATION:
4 Identify, classify and segregate scrap and supervise its handling to avoid contamination. This will increase its value.

Provide separate containers, clearly marked, tor each class of scrap material.

Repair or rework worn or broken cutting tools Keep unusable small pieces and turnings segregated. Even high speed steel grinding dust is valuable.
Dismantle discarded equipment promptly into its components-electrical, fastenings, lumber, etc.-so that these parts may be utilized or scrapped.

Sort blanks, short ends, cut-downs, clippings, etc., for possible reuse for smaller parts made in the same or other departments.

Recover and reclaim used cutting oils, lubricants, surplus paints and spray finishes.

Sort sweepings and miscellaneous waste to recover scrap values.
5 Constant reminders in the form of posters, illustrations of right and wrong methods, pay envelope enclosures, house organ publicity, etc., are potent aids to the conservation program.
6 Release for scrap, obsolete engravings, electrotypes, and standing types for catalogs, forms and advertising material.
7 Inspect all refuse to detect avoidable waste and excessive rejections. Educate production executives to correct such conditions at the source.
8 For information and assistance on special phases of 0 conservation and salvage communicate with Industrial Salvage Section, Conservation Division, War Production Board, 9th Floor, Washington Gas Light Building, Washington, D. C., or with nearest regional office

The metallurgical experience of our technical staff is available
to aid you in these and other technical phases of metal salvage.

\section*{दREP GGRAP MOVING INMO WमR PBODUCYION!}

\section*{CONTRACTS}

War manufacturers are becoming increasingly impatient over the inequalities of the contract renegotiation law (p. 21). Many believe that it should recognize losses as well as profits. . . Treasury Department has explained its rules for the return of excessive profits.

> TAXES Expenditures are outracing taxes E. L. Shaner, Stexl's editor-in-chief, (p .21). Why is Congress so blind to the revenue aspects of the tax problem?

\section*{W ASHINGTON \\ The CIO has moved} (p. 32) into the quarters formerly occupied by the Grand Old Party and believe the union has arrived at the stage of labor "statesmanship". Labor, in the belief of many people, having already taken over the government, now is in control of a former stronghold of political opposition. . . A major reorganization of the War Production Board brings several topflight executives into the war production program (p. 37). . . Industrial executives (p. 33) are advised to beat the government to the draw and publicize their own salaries-along with their income taxes, charitable donations and other contributions. . .

\section*{CONSERVATION}

Steel can be saved by adopting new processes, says Willard F. Rockwell (p. 49), whose company is proving the statement in the manufacture of differential pinions. . . Practically unheralded are the achievements of the packaging industry, which, finding difficulty in converting to war production, nevertheless has aided the program by devising new types on containers using less critical materials. . . F. W. Mettler shows how advances in welding design have made it possible to cut the weight of structural steel required for buildings by 40 per cent (p. 77). Additional material can be saved by taking full advantage of continuity in design made possible by welded rigid frame construc. tions.

LABOR Most of the basic steel producing companies have been ordered by the National War Labor Board to "show cause" why they should not accept the provisions handed down by the board in cases involving the "Little Steel" companies and United States Steel Corp. subsidiaries (p. 38). An unprecedented action,
the ruling virtually commands all steel producers to grant the closed shop and checkoff system as well as retroactive wage increases to last February. More favorable news on the labor front is found in the number of valuable suggestions from employes (p. 44) for speeding up production of war materials. Particularly impressive is the attempt of a propeller manufacturer's employes to utilize their machine tools to the fullest advantage. Also encouraging is the response of metalworking companies' employes to the War Bond campaign (p. 51). Many have all workers subscribed to the drive and have been awarded the Treasury "T". . . Ray E. Ellis tells how General Electric's apprentice training program produces fully qualified workmen (p. 56). Three new motion picture films produced by Aluminum Co. of America to assist in training workers (p. 60).

\section*{PRODUCTION}
F. G. Gepfert describes a drill that speeds production by allowing machining of fully hardened parts (\(p .61\)); salvages parts when an error is discovered after hardening; eliminates distortion resulting from heat treating parts after machining. . . A really practicable suggestion system (p. 59) gets results by enlisting workers' knowledge of the job. Some ideas increase output sharply.
United States Steel Corp. directors meet in Chicago to inspect new steelmaking facilities (p. 25).

SALVAGE Scrap needs for the remainder of the year can be met if the current WPB campaigns reach their goal (p. 25). War Materials Inc. will swing into full operation within a few days.

\section*{MAINTENANCE}

Maintenance of industrial trucks is vital to war effort as they furnish one of the most important links in the materials handling system. F. L. Sahlmann outlines a program (p. 80) that assures effective work.

\section*{TECHNICAL}

Paul J. McKimm concludes his serics on the manufacture of high-quality low-cost steel by discussing the heterogeneity of ingots (p. 68). . . A highly successful setup for removing heat-treat scale from pipe is described (p. 64). . .Twelve diagrams show steps in connection with procedure given (p. 74) for wet or dry hand grinding of carbide tools. . . Details are presented (p. 72) for making an inexpensive box that affords safe breakage of test samples.

\section*{"Send us more scrap}

\section*{and, we'll make more steel"}
"We steelmakers can make more steel, if you'll send us more scrap! We are appealing to you because we need the help of American industry more than ever before.
"Do you know there is no longer such a thing as a scrap stock pile at the mill? We are charging scrap as it comes in from day to day. If scrap should suddenly stop reaching us we would be down to \(50 \%\) of capacity within 24 hours.
"It's so easy to look outside of industry at all the serap that could be gathered - old autombiles and the like. But, do you know that there is only about 1,000 pounds of scrap in an old jitney, and that only one of the Inland banks of furnaces melts
\(9,000,000\) pounds of scrap in 24 hours? That's 9,000 old autos a day - and they are just not coming in anywhere near that fast.
"That is why we are looking to industry to send us more scrap. Forget you've ever put on a drive. Start a new one now! Send to us, as soon as possible, that old building steel, unusable machinery, dead stores, and obsolete dies, jigs and fixtures.
"America is waiting for steel - our fighting men are waiting for ships, tanks, guns; shells.
"We steelmakers will make more steel for victory, when you send us more scrap."

September 28, 1942

\section*{Something Wrong Somewhere}

In the current fiscal year ending next June 30, the federal government probably will spend 80 billion dollars. The 1942 tax bill, now being considered by the Senate Finance Committee, will yield about 25 billion dollars.

One does not need to be a financial expert to realize that the proposed income from taxes is woefully inadequate in relation to expenditures. Consequently one wonders why Congress is so blind to the revenue aspects of the tax problem. Judging from most of the discussions to date, the legislative and executive branches of the government have been more concerned about the punitive and reform objectives of taxation than about the number of dollars it will yield.

Proof of this is found in the cold, uncomfortable fact that the House version of the bill already has invoked the law of diminishing returns. Months before the 1942 bill will be enacted, the proposed levy upon corporations was so high that certain costs of manufacturing were destined to be borne more heavily by the government through tax losses than by the manufacturer in direct payments.

Consider the 5 per cent wage increase granted employes in "Little Steel." Under the provisions of the House bill, for every dollar of wage increase, the government would lose 90 cents in taxes from the corporation employer and would recover 15 cents in increased taxes from the employe recipients of the raise. Thus for every dollar of industrial wage increases, Uncle Sam would suffer a net loss of 75 cents in taxes. The employer would pay only 10 cents out of every dollar of increased wages.

Clearly something is radically wrong. If taxes are so high that a company cannot absorb ordinary manufacturing costs, then the rate is defeating the purpose of taxation. On the other hand, if wage increases are so liberal or so frequent that they are a subsidy to labor rather than a legitimate item of manufacturing cost, then there is something haywire in the national wage policy.

\title{
War Contract Revisions "Should Work Both Ways"
}

Present system means hardship for companies incurring loss or abnormally low profit. Senate tax chairman proposes 5 per cent on ordinary contracts, 1 per cent for facilifies financed by government

RENEGOTIATION of war contracts should work both ways-to drain off excessive profits and to recompense mamufacturers who make an abmormally low profit or incur a loss. This was the consensus expressed at the ammal meeting of the Controllers Institute of America in Chicago last week.

The law authorizing various military procurement officers to renegotiate war contracts has been bitterly criticized by many war mannfacturers who found thenselves whip-sawed between that act and the federal revenue acts.

That the present statutes are working hardships on some manufacturers who are going all-out for war production appears indisputable.

The law governing renegotiation of contracts last week was deseribed as one of the most far-reaching, umnecessary and dangerous pieces of legislation that has been enacted by the Congress by Hosene Seybold, vice president and comptroller, Westinghouse Electric \& Mfg. Co. before the controllers' meeting.

Asserting that sections of the act refer to renegotiation when excessive profits have been realized or are likely to be realized, Mr. Seybold said that the question has been raised as to whether or not consideration should be given to requests for renegotiation where profits are too low. This apparently has not yet occurred to congressmen or other government officials.

\section*{Senate Committce's Ideas}

Washington officials hast week made several attempts to patch up what is obviously an unsatisfactory situation.

The Senate Finance Committee placed the problem in the hands of a sevenmember subcommittee after Chairman Walter F. George, Gcorgin, had moved to limit war profits to 5 per cent on ordinary contracts and 1 per cent where facilities were financed by the government. His proposal would impose a 100 per cent tax on all profits exceeding 5 per cent after payment of all other taxes, and on all profits exceeding 1 per cent on contracts executed in plants financed by the govermment.
The Bureau of Internal Revenue issued
a formula (page 23) for the repayment of excessive profits to the government.

Neither proposal grants any relief for the manufacturer who makes an abnormally low profit or who incurs a loss.

Considering the stringent terms and

William P. Witherow
Proposed "Allantic Charter for Business"
"frecelom from inflation; frecdom from unwise taxes; freedom from strikes and freedom for management to run its own affairs, as far as is possible with war-time restrictions"

Roscoe Seybold
Renegotiation law . . . "dangerous and unnccessary"
conditions under which manufacturers are expected to accept contracts, the freedom with which the government can change manufacturing conditions, wage rates, materials prices, and other costs, there is a threatening probability that the contract may result in a loss or an extremely low profit, Mr. Seybold said.
"If we must have such a law, renegotiation should recognize the advisability of increasing profits to the manufacturer as well as returning excess profits to the government."

The War Department appears to contemplate the exercise of renegotiation powers by each contracting officer, said Mr. Seybold. Chances are that in many cases the person to whom this authority has been delegated will not be competent to determine the effect of his determination on the corporation's financial structure.

It would be unfair to consider the machine tool inclustry, which after the emergency may be faced with a depression, in the same profit class with an industry which will be little affected by termination of the war production program.

\section*{Suggests More Equitable Tax}

The law providing for renegotiation of war contracts is to remain in cffect for the duration of the war and for three years thereafter, Mr. Scybold pointed out.

He questioned the treatment of excess profit renegotiation in federal income and excess profits tax returns. Acknowledging that the Bureau of Internal Revenue had ruled that it would give full credit for these renegotiated profits, in a letter to Chairman Carl Vinson of the House Naval Affairs Committec, Mr. Seybold said the ruling may be limited in its application and does not cover all phases of the problem.
" \(\mathrm{U}_{\mathrm{p}}\) to the present time," he said, "we are not aware that any ruling has been published with respect to the tax effict on renegotiation of subcontracts."
Elimination of excess profits is amply cared for in the proposed corporation tax bill now being considered by Congress, Mr. Seybold declared.
"I am entirely in sympathy with a program of taxation that returns to the Treasury all possible funds for financing the war problem, and I believe that all industrial corporations realize not only the necessity but the desirability of that sort of program. But the return of excess profits to the government can be accomplished more equitably and more efficiently by means of a properly developed tax program than through the administration of the renegotiation law."
William P. Witherow, president of the National Association of Manufacturers, and head of Blaw-Knox Co., Pittsburgh,
proposed to the institute members an "Atlantic Charter for Business."
Mr. Witherow asserted the four freedoms for business well could be "freedom from inflation," "freedom from unwise taxes" that will deplete the essential resources of the country, "freedom from strikes," and "freedom for management" to run its own affairs as far as is compatible with wartime restrictions.

Two realities of war, said Mr. Witherow, are the mammoth problem of paying for it and the treacherous threat of inflation.
"These," he said, "cannot be put off until the war is won. They are part and parcel of how to win the war."

The tax program, he added, must pay
for the war and "sop excess purchasing power to ward off and stop inflation cold.
Much could be done to eliminate delays if the government would in some way correlate its efforts on taxes, prices, wages and the renegotiation of contracts. This, he said, would free management from many distractions and expedite war production.

Thomas H. Sanders, chief, WPB Cost Analysis Section, defended renegotiation of contracts before the controllers. He denied that such renegotiation had delayed war production.

He said the WPB will permit war contractors to charge part of their normal advertising expenditures against war work.

\section*{Treasury Establishes Rules for Return of Excess War Profits}

COMPANIES returning money to the government as a result of renegotiation of war contracts should refund only the amount of profits above federal income and excess profits taxes paid or assessed on the sum involved, according to a Bureau of Intemal Revenue opinion handed down last week.

This applies in cases where the renegotiating agreement provides for reduced contract prices to be retroactively
applied to prior taxable years for which returns already have been filed and income and excess profits taxes already paid or assessed.

The bureau stated that in such cases no such refund or abatement of these taxes should be made since the taxes should be considered as a recapture of a portion of the excessive profits and as such offset against the total excessive profits. The repayment, the bureau
said, should not be allowed as a deduction in the income and excess profits tax returns of the taxpayer for any taxable year.

The bureau also outlined procedure in cases where the renegotiating agreement becomes effective before tax returns have been filed or taxes paid or assessed. In this instance the gross income to be reported by the corporation should not include the excessive profits so rebated and no tax attributable to excessive profits thus will be assessed or paid.

Same procedure should rule in cases involving a cost-plus-fixed-fee contract where an item for which the taxpayer has been reimbursed is disallowed as an item of cost and the taxpayer is required to repay to the United States the amount disallowed.
A "statement of policy" gave the following applications:
Example: The "M" Corp. filed a return for the calendar year 1941 on March 15, 1942, reporting therein an amount of \(\$ 1,000,000\), which was subsequently in the year 1942 held by one of the designated renegotiating agencies to be excessive profits realized in performance of a contract, on which excessive profits income and excess profits taxes aggregating \(\$ 400,000\) were paid. The \(\$ 400,000\) taxes should not be refunded and the remainder of the excessive profits, or \(\$ 600,000\), should be repaid by the corporation to the government.

The \(\$ 600,000\) repaid to the government

\section*{VERMONT RAILROAD MACHINISTS MAKE PARTS FOR NAVAL VESSELS}

TWENTY-four hours a day, weekdays and Sundays, locomotive shops of the Central Vermont Railway turn out stern tube bearings for United States naval craft, in addition to regular maintenance work. Man with the strow hat is M.C. Baker, foreman, explaining a detail to Oscar Remillard, machinist. Canadian National Railways photo
will not constitute an allowable deduction from gross income for any taxable year. This produces the correct result. Excessive profits, before federal taxes, of \(\$ 1,000,000\) would have been recaptured by the government, \(\$ 400,000\) through the medium of taxes and \(\$ 600\),000 by direct repayment to the government, with no aftermath affecting federal taxes.

To hold otherwise, for instance, to hold that the \(\$ 1,000,000\) should be repaid to the govermment and allow such repayment as a deduction for income tax purposes for the year 1942 , when the effective rate of tax, for example, is 75 per cent, would produce the following incorrect result: The tax benefit in 1942 would be \(\$ 750,000\). The taxpiyer would have paid \(\$ 1,400,000\) to the government and derived a tax benefit of \(\$ 750,000\).

The taxpayer, therefore, would have paid only \(\$ 650,000\) net to the government, whereas the excessive profits admittedly were \(\$ 1,000,000\). Different re-
sults would be obtained in other cases depending upon the factors of income and effective rates of taxes being different from those in this example.

Another example: The " X " Corp. filed a return for the calendar year 1942 on March 15, 1943. In February, 1943, it was determined that the taxpayer had realized during 1942 excessive profits in the amount of \(\$ 1,000,000\), and the parties agree that during 1943 repayment of such excessive profits will be made to the government in designated amounts per month until the entire amount of the \(\$ 1,000,000\) excessive profits is repaid.

The gross income to be reported by the corporation in its return for 1942 should not inclucde the \(\$ 1,000,000\), and no tax attributable to excessive profits will thus be assessed or paid. No deduction from gross income will be allowed for any year for the amount of the excessive profits excluded from gross income and repaid to the government.

\section*{NEWS NOTES}

\section*{British Air Mission Inspects Detroit Plants}

Key figures in British aircraft production last week visited the Packard and Ford marine and aircraft engine plants in the Detroit area. The party, numbering a dozen, recently arrived from England and is starting a tour of American war production plants contributing to the allied air effort. Purpose of the trip is a study and exchange of ideas for aircraft production betterment.
The visitors are sixusored by the British Ministry of Aircraft Production as a mission to the United States. Besides Ministry executives, they include production heads of British aircraft plants.
Accompanying the delegation was Merrill C. Meigs, chief of WPB's aircraft section. With him were Alex Dunbar, comptroller general, Ministry of Aircraft Production; D. W. Mitchell, Ministry of Aircraft Production (secretary to the mission) and Sir Charles Bruce-Gardner, chairman of the Society of British Aircraft Constructors.

British manufacturing representatives were: B. W, A. Dickson, director of Vick-ers-Armstrong (Spitfire fighters); S. D. Davies, production mamager of A . V . Rowe \& Co. (Lancaster bombers); J. D. North, joint managing director BoultonPaul Co. \& Boulton Aircraft Co. (Defiant planes); W. C. Devereaux, chair-
man and managing director, High Alloys L.td.; and A. R. Smith, mamaging director, Ford Motor Co. of England.

\section*{Structural Institute Announces Design Contest}

American Institute of Steel Construction, New York, last week announced another amual bridge design competition, open to bona fide registered students of structural engineering and architecture in recognized technical schools of the United States and possessions. It oflers three cash prizes of \(\$ 200, \$ 100\) and \(\$ 50\), respectively, for the designs placed first, second and third. Certifcates, signed by the Jury of Award and Officers of the Institute, will be awarded to the prize winners and to those whose designs are given honorable mention.
Subject of the design is a steel grade separation carrying a highway over the four-track main line of a railway, a navigable canal, and a dual four-lane highway, to which there shall be oneway connection with the overhead crossing.

\section*{"Train Women Immediately For Production Lines"}

War inclustries in the Detroit district were urged last week by the WPB to take immediate preparatory steps toward
using women workers on production lines.

In a letter to manufacturers' associations, D. J. Hutchins, WPB Detroit regional chief, emphasized that a definite shortage of manpower in the district will appear within a few weeks and that the available supply of wonen must be utilized then.

Recent registration for women war workers in Wayne, Oakland, Macomb and Washtenaw counties determined that 180,000 are willing to accept industrial work. Of this number, 53,000 registrants indicated they had previous factory experience.

Steps should be taken immediately by the various war plants to analyze jobs now done by men which could be readily filled by women," said Mr. Hutchins. "Under the present priorities system there is a method of providing means to set up necessary facilities for women workers in plants, such as restrooms, first aid rooms, etc."

\section*{Offers Foremen Training in "Breaking in" New Workers} PITTSURGII
While manpower shortage is not especially serions now in this district, it will become an increasingly difficult problem within the next year, according to C. S. Coler, director of WPB's Training Within Industry program, here.

About 50,000 additional workers will be needed in the next 12 months to replace those taken by the armed forces.

The Training Within Industry division has evolved a highly successful 10 -hour course to show supervisors how to break in new men, a sample of which was given to the Pittsburgh Foundrymen's Association by Mr. Coler and his associntes. The division has a large number of skilled teachers which it sends to the plants of interested concerns. These men train the foremen in the art of breaking in a new man on any job, regardless of its type or how complicated it may be, through a breakdown of the job and through a technique of instruction which uses the simplest possible approach. The training is frec to all plants.

\section*{MEETING}

\begin{abstract}
American Gear Manufacturers Association: Twenty-fifth semiannual meeting will be held at Skytop Lodge, Skytop, Pa., Oct. 15-17, and essentially will be devoted to members' part in the war effort. Association announces its headquarters have been moved from Wilkinsburg, Pa., to 301-302 Empire building. Pittsburgh.
\end{abstract}

\title{
Directors Meet in Chicago, Inspect New Facilities for War Work
}

\section*{CHICAGO}

BECAUSE of the importance of this Midwest center in the United States Steel Corp.'s war production effort, the board of directors met here last Wed-nesday-the first meeting of directors in the history of the corporation to be conducted outside New York. It was devoted mainly to affairs of the Chicago district, and provided an opportunity for the directors to inspect facilities, principally in South Chicago and Gary. Last prior inspection was two years ago, when directors made a swing around the country to visit the various plants.
It is understood the Chicago meeting marked the beginning of a more or less regular cycle of mectings away from New York. No definite plan has been established, but cities will include major steelmaking centers, such as Pittsburgh, Birmingham and Chicago.
Directors attending the meeting were: Irving S. Olds, chairman; Benjamin F. Fairless, president; Enders M. Voorhees, chairman of the finance committee; William A. Irvin, former president; William J. Filbert, retired chairnan of the finance committee; Sewell L. Avery, chairman, United States Gypsum Co., Chicago; Philip R. Clarke, president, National City Bank, Chicago; Leon Fraser, president, First National Bank, New York; Thomas
W. Lamont, partner, J. P. Morgan \& Co., New York; George A. Sloan, president, Nutrition Foundation Inc., New York; and Robert C. Stanley, chairman and president, International Nickel Co. Inc., New York.

Also attending were: William Averell Brown, secretary, United States Steel Corp., New York; J. Carlisle MacDonald, assistant to chairman, New York; John H. Osmers, general assistant to chairman, New York; and B. H. Lawrence, vice president, United States Steel Corp. of Delaware, Pittsburgh.

\section*{District's Program Outlined}

At a press conference Mr. Olds said: "Today every ton of steel produced by United States Steel in the Chicago district is going into America's war effort. Through loyal and effective cooperation between employes and management, steel is being turned out by our plants in this area in continually greater quantities for ships, tanks, guns, planes, and other war uses. Improvements and additions to existing plant facilities are rapidly being completed, and will soon result in a larger flow of steel and steel products to feed America's war machine.
"A tank armor plate plant is under construction by Carnegie-Illinois Steel Corp. in the Chicago district, for account

United States Steel Corp. directors in Chicago: Left to right, Philip R. Clarke, Robert C. Stanley, George A. Sloan, William A. Irvin, Beniamin F. Fairless, president, Ircing S. Olds, chairman, Enders M. Voorhees, chairman of finance committee, Thomas W. Lamont, William J. Filbert, Leon Fraser, Sewell L. Avery
of the United States Army. This plant will be in operation carly in 1943, and will supply shaped tank armor plate ready for speedy assembly on tanks to be erected at Midwestern tank arsenals.
"Tubular Alloy Steel Corp., a new subsidiary, has acquired the plant of National Tube Co. at Gary. This new company will produce alloy and stainless tubing for aircraft structures, motor parts, bearings, tank tractor tubing, and oil refinery tubing. The work of installing machinery and equipment is now in progress. Tube reducing machines, key equipment for the production of aircraft tubing, have been installed and immediately placed in operation without waiting for the installation of the remaining machines.
"Last year American Steel \& Wire Co. announced plans for rehabilitation and expansion of its facilities in this district, including a new coarse rod mill and a new mill for the maunfacture of merchant products at Joliet, and various improvements in its facilities at Waukegan are already in operation. Others at Joliet will be in operation by the first of the year. It is expected that the project will be completed and producing to aid the war effort during the first half of 1943.

\section*{Expansion Outlay \(\$ 67,000,000\)}
"Carnegie-Illinois in addition to constructing the armor plate plant, has been active in expanding its facilities in the Chicago area for steel production. This program involves an expenditure of more than \(\$ 67,000,000\). Major items include projects at the South Chicago steel works, Gary steel works, and Gary sheet and tin mills.
"At the Gary Works, the work of rebuilding 12 soaking pits is practically completed. One coke oven battery was rebuilt and resumed operations last month. Another which is being rebuilt will resume operations about Dec. 1. A new battery of coke ovens, being built for account of the Defense Plant Corp., will be completed early next year. A program for increasing facilities to provide slabs for the new armor plant is well advanced.
"The South Chicago works of Carne-gie-Illinois is United States Steel's manufacturing center for electric furnace steels, which are used extensively in aircraft construction. Existing electric furnace facilities are being increased by the installation of an additional furnace and additional finishing facilities. Two new electric furnaces were placed in operation in 1941.
"At Gary sheet and tin mills, the installation of additional electrolytic tin-
(Please turn to Page 105)

\title{
Sustained Steel Output Depends On Success of Scrap Campaigns
}

NEED for scrap in the remainder of the year will be met if drives fostered by the industrial and general salvage sections of WPB are successful, according to R. D. McGiffert, assistant chief, Industrinl Salvage Scction, Philadelphia district.
Speaking before the Association of Iron \& Steel Engineers at their annual technical session in Pittsburgh last week, Mr. McGiffert indicated the farm and home drives are expected to supply \(4,000,000\) tons during the last half of the year; the industrial drive \(3,000,000\) tons, and the active market \(10,000,000\) tons. He said these were established by a Gallup poll, and are believed to be reasonably accurate. The big job remains that of bringing the existing material to market.
The active market scrap is moving well and according to schedule. The general salvage section is organizing drives for home and farm scrap in all sections of the country, and the industrial salvage section, with the aid of the newly organized War Materials Inc., and the Special Projects section of the Bureau of Industrial Conservation, expects to reach its quota on industrial matenial.
The industrial drive is centered in 13 regional offices, each of which is directed by a regional chief and is staffed with field representatives. Through a newly evolved plan, the steel industry will help this organization by detailing 2000 salesmen from the producers and 1000 additional from warehouses to assist field men in tracking down industrial scrap.

\section*{Community Organization}

Most communities have already been organized to assist the drive. A committee of industrialists is set up, this committee to contact all plants and have each plant establish a salvage chairman, with authority to condemm material and clear it out. The formula which should be applied is the usefulness of material. Any item which has not been used for three months, or which will not be used in the next three months, slould either be sold to someone who can use it immediately or scrapped.

It is expected that a concentrated drive will-shortly be launched in Philadelphia with the aid of the steel salesmen. The Industrial Salvage Section is confident that all the industrial scrap in the city can be cleaned up in six weeks
to two months. If the program appears to be successful, similar methods will be used in drives in other industrial centers.

Aid will be given this program by the Special Projects Section, in getting out unusual scrap which does not ordinarily occur in industrial plants, and by War Materials Inc., for scrap which cannot be salvaged under the ceiling price. The co-operation of these agencies will facilitate the movement of almost every type of industrial scrap, and, with the cooperation of industry, should guarantee an adequate supply to keep the furnace at capacity.

\section*{Organization of WMI Is Nearly Completed}

War Matcrials Inc., still struggling through its orgarizational difficulties, expects to swing into full operations about Oct. 1. Already some scrap is being brought out through this organization, but the sustained action drive will begin about that time.

Currently the energies of many of its employes are being directed to the setting up of competent personnel, estab-
lishing methods and procedure, and mapping the program to be established. Blanks have been distributed to a large segment of the scrap trade on which they are to report the existence of material which requires the services of WMI before it can be brought to market.

While much of the future activity of the company will revolve about these reports and their contents, additional programs will be established whereby obvious sources of scrap, such as slag dumps, mines and abandoned wells, will be systematically investigated.

\section*{Salvage Committee Suggests Scrap Campaign Organization}

Suggestions for organizing scrap collection campaigns in industrial plants were offered last week by the American Industries Salvage Committee, New York, representing members of the iron and steel industries.

Among suggestions offered were the following:
1. Head up the campaign by appointing an able executive of the company, armed with authority to act.
2. Use posters, illustrations, pay-envelop stuffers, and all other publicity means to enlist all employes in scrap campaign.
3. Comb plant and yards for dormant scrap and unusable and abandoned cquipment.
4. Survey all plant equipment, particu-

Town donates jail to metal drive: Citizens of Old Ripley, Ill., turned out-all 115 of them-to see the metal parts of their jail, long unused, in a parade doun Main street to the scrap pile. NEA photo
larly idle, standing or discarded machines.
5. Classify and segregate scrap and supervise its handling.
6. Make each foreman responsible for preventing spoilage and waste in his department.
7. Report promptly equipment which is obsolete. If equipment has not been used in three months, and it can't be proved that it will be used in the next three, turn it over where it can be used or scrap it.
8. Salvage usable parts from equipment marked for scrapping.
9. Speed return of scrap to mills and refincries through existing channels. Report regularly on collections of scrap to the Inclustrial Salvace Committee set up by the War Production Board in your community.
10. Enforce monthly re-checks in every department to find scrap material previously overlooked.

\section*{Scrap Consumption Shows Slight Increase for August}

Consumption of iron and steel scrap in August is estimated by the Institute of Scrap Iron and Steel Inc., Washington, at \(4,645,000\) gross tons, which is a slight increase over the \(4,600,000\) tons for July and 4,518,000 tons for August, 1941.

In eight months consumption of scrap is placed by the Scrap Institute at 37,088,000 gross tons, which compares with \(35,466,000\) tons in the corresponding period of 1941 and \(25,706,000\) tons in the like months of 1940.

These consumption figures include both home scrap, which is produced within steelmaking plants and foundries, and purchased scrap, the former being about 55 per cent and the latter 45 per cent.

\section*{Steel \& Wire Plants Set}

\section*{46 New Records in August}

American Steel \& Wire Co. plants set 46 new production records in August, which brought total since Pearl Harbor to 569 . The Worcester, Mass., and Joliet, Ill. works each contributed nine new marks; Donora, Pa., five; Cuyahoga Works, Cleveland, and New Haven, Conn., and Trenton, N. J., works four each. American works, Cleveland, and Waukegan, Ill., plant each made three new high. Consolidated Works, Cleveland, broke two records, and Central furnaces, Cleveland, Allentown, Pa., works and Duluth plants each contributed one new high.

International Business Machines Corp., Endicott, N. Y., recently dedicated its second war munitions plant built there within a year.

\section*{STEEL}

\section*{STEADY}

PRODUCTION of open-hearth, bessemer and electric furnace ingots last week held at 98 per cent, four districts making small gains and three declining, with five at unchanged rates. A year ago the rate was 96 per cent; two years ago it was 93 per cent, both based on capacity as of those dates.

Chicago-Steady at \(1021 / 2\) per cent. The only facilities not engaged are down for repairs. Three blast furnaces are being relined and 35 are active.

St. Louis-One open hearth taken out for repairs reduced production 3 points to 92 per cent.

Detroit-With only one open hearth idle, production rose 6 points to 95 per cent.

Cleveland-Addition of an open hearth by one interest and a slight decrease by another caused production to advance \(1 / 2\)-point to \(931 / 2\) per cent.

Pittsburgh-Advanced 1 point to 96 per cent.

Wheeling-Declined 4 points to \(80 \frac{1}{2}\) per cent.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{District Steel Rates} \\
\hline \multicolumn{5}{|l|}{Percentage of Ingot Capacity Engaged in Leading Districts} \\
\hline & Week ended & & & \begin{tabular}{l}
ame \\
week
\end{tabular} \\
\hline & Sept. 26 & Change & 1941 & 1940 \\
\hline Pittsburgh & 96 & +1 & 98 & 88.5 \\
\hline Chicago & 102.5 & None & 101 & 96 \\
\hline Eastern Pa. & 96 & -0.5 & 95 & 92 \\
\hline Youngstown & 95 & None & 98 & 84 \\
\hline Whecling & 80.5 & -4 & 91 & 97 \\
\hline Cleveland & 93.5 & + 0.5 & 95.5 & 86 \\
\hline Buffalo & 90.5 & None & 90.5 & 97 \\
\hline Binningham & 95 & None & 95 & 97 \\
\hline New England & 100 & None & 90 & 85 \\
\hline Cincinnati & 92 & +9 & 83 & 88 \\
\hline St. Louis & 92 & - 3 & 91 & 80 \\
\hline Detroit & 95 & + 6 & 87 & 94 \\
\hline Average & 98 & None & \({ }^{9} 96\) & -93 \\
\hline
\end{tabular}

\footnotetext{
\({ }^{\circ}\) Computed on basis of steelmaking capacity as of those dates.
}

Cincinnati-Completion of open-hearth repairs by one interest lifted the rate 9 points to 92 per cent

Buffalo-Unchanged at \(901 / 2\) per cent, only necessity for furnace repairs preventing a higher ratc.

Central eastern seaboard-Slight adjustment of units caused a drop of \(1 / 2\) point to 96 per cent.
Youngstown, O.-Held at 95 per cent with 75 open hearths and three bessemers active, despite a scrap and labor shortage. Schedule for this week is at the same rate. Another blast furnace will be blown in this week.

New England - All open hearths are in operation and the rate is 100 per cent for the second week.

Birmingham, Ala. - Continued at 95 -per cent with 23 open hearth furnaces in service.

\section*{Republic Exceeds 1940 Ingot Record at Mid-September}

In slightly more than nine and a half months of 1942 steel ingot production of Republic Steel Corp. exceeded total output for the entire year 1940, more than \(6,100,000\) tons, which was a record for Republic up to that time. This mark was passed at 3 o'clock in the aftemoon of Sept. 20.

If raw material shortages do not become more serious company officials believe the ingot total for 1942 will substantially exceed the all-time record set in 1941.

FRANK EDWARD FLYNN, district manager, Republic Steel Corp., Warren, O., has been elected president for 1943 of the Association of Iron and Steel Engineers. Other new officers of the association are first vice president, C. L. McGranahan, assistant general superintendent, Pittsburgh Works, Jones \& Laughlin Steel Corp.; second vice president, J. L. Miller, assistant combustion engineer, Republic Steel Corp., Cleveland; treasurer, J. S. Murray, electrical engineer, Follansbee Steel Corp., Follanshee, W. Va.; secretary, F. H. Dyke, superintendent, blooming bar and hot strip mills, Wheeling Steel Corp., Steubenville, O. Mr. Flym, the president-elect, has been associated successively with Superior Sted Co., Phillips Sheet \& Tinplate Co., later Weirton Steel Co., and Trumbull Steel Co. at Warren, where he became assistant vice president in charge of operations. When Trumbull was taken over by Republic, he was appointed assistant district manager, Warren-Niles district, and was made manager in 19:35.

Bert Dingley, former executive vice president, Marmon-IIerrington Co., Indiamapolis, Ind., has been elected president in a recent reorganization of company's management authorized by its directors. Vice presidents elected to assist him include R. C. Wallace, in charge of engineering; Seth Klein, in charge of production; C. Alfred Campbell, in charge of public relations; and George E. Reynolds, in charge of company's eastern district. Elected to replace D. I. Glossbrenner, secretary and treasurer who has resigned to enter the military service, are William P. Nottingham, secretary, and Harold Debaun, treasurer. John J. Klein, assistant to the chaimnan, has been elected assistant secretary, and L. M. O'Connor, assistant treasurer. A. W. Herrington continues as active chairman of the board.

\section*{- 0 -}
D. F. Woods, for 17 years general agent, Chicago \& Eastern Illinois railroad, Pittsburgh, has been appointed to a new position as general freight agent at Chicago. G. T. Whitmore, assistant general agent, Detroit, will succeed Mr. Woods at Pittsburgh. Martin C. Wright of Chicago, will succeed Mr. Whitmore.
A. W. Zimmer has rejoined Reo Motors Inc., Lansing, Mich., as works manager after am absence of two years during which he was associated with Allison Engineering Co., Indianapolis, Ind.
\[
-0-
\]

Walter J. Kelly, acting manager of industrial relations, Temnessec Coal, Iron

Frank Edward Flynn

A. W. Herrington
\& Railroad Co., Birmingham, Ala., and John H. Williamson, acting assistant manager of industrial relations for the company, have been appointed manager and assistant manager, respectively, of that department. James F. Vance, former manager, is permanently retired.

\section*{\(-0-\)}

Elbert E. Husted has been elected president, Titeflex Metal Hose Co., Newark, N. I., succeeding the late C. W. Fletcher. He joined the Titeflex organization in 1924 and represented the firm in a sales capacity until 1930, when he was made sales manager. He was made vice president in 1936, and general manager in 1938.

Marvin J. Udy, vice president in charge of research and technology, Chromium Mining \& Smelting Corp. Ltd., Montreal, has been made a member of corporation's board of directors. H. V. Glunz, formerly superintendent, has been made vice president in charge of production.

Leonard W. Reeves, assistant to act-
ing manager of main plant, Thompson Products Inc., Cleveland, has been named vice president and general manager, Toledo Steel Products Co., Toledo, O. subsidiary. John M. Kerwin, general superintendent, Clarkwood Road plant, Cleveland, has been promoted to factory manager, Andrew Karabinus, divisional superintendent, succeeds Mr. Kerwin.

\section*{- 0 -}

William T. Hedlund, director, Elastic Stop Nut Corp., Union, N. J., has been elected president. He was formerly vice president in charge of engineering, Electrolux Corp., New York, and is widely known as a patent authority.

Reginald Everett Gillmor, president, Sperry Gyroscope Co., Brooklyn, N. Y., has been elected chairman of the executive committee, Fairchild Engine \& Airplane Corp., New York, of which he has been a director since 1941.

Dr. C. F. Burgess, inventor of the standard Burgess Battery, has been awarded the Edward Goodrich Acheson Medal and \(\$ 1000\) prize by the Electrochemical Society. Medal and prize represent the highest award in that field.

\section*{- - -}
A. G. York, formerly assistant to the president and managing director, Forged Steel Fittings Division, Watson-Stillman Co., Roselle, N. J., has been named vice president in charge of sales for the entire company. He fills the vacancy created by the resignation of J. C. Grindley. Other appointments include R. W. Dinzl, vice president in charge of engineering; F. H. Stillman, assistant to the president and assistant secretary; and William Woidt, assistant secretary.
-0 -
Walter L. Maxson has been appointed manager, crushing cement and mining machinery division, Allis-Chalmers Mfg. Co., Milwaukee, succeeding Herman Schifflin who is retiring. Before entering the employment of Allis-Chalmers in 1927, Mr. Maxson was a professor of metallurgy at Colorado School of Mines, and served as consulting engineer in mining and metallurgy.
C. B. Carr will contiune as manager of the Cleveland district sales staff of Gisholt Machine Co., Madison, Wis., with headquarters at \(902 \mathrm{~N} . \mathrm{B}\). C. building, Cleveland, assisted by Ray Hering, and by R. J. Miller Jr., who has been transferred from the plant in Madison. In the issue of Sept. 21, it was reported that Roy Hunter, who died Sept. 13, was Gisholt's district manager in the

Cleveland territory, whereas he was direct sales representative in northern Ohio and western Pennsylvania.

\section*{-0-}

Loren T. Robinson, vice-president, Campbell-Ewald Co., Detroit automobile advertising agency, has been commissioned a major in the Army Air Corps. He joined the agency 20 years ago.
-0-

Herman E. Bakken, assistant director of research, Aluminum Research Labori-tories of Aluminum Co. of America, New Kensington, Pa., has been made associate director by Dr. Francis C. Frary, director of research. J. D. Edwards continues as associate director. Other promotions include E. T. Dix Jr., chief metallurgist, and R. L. Templin, chief engineer of tests, who have been appointed assistant directors. Mr. Bakken entered the employ of the bureau in 1919 and, except for a period of two years in which he supervised research and development of American Magnesium Corp.'s plant in Niagara Falls, N. Y., he has been continuously engaged at the laboratories. Mr. Dix's service with the company dates from 1923. He became chief metallurgist in 1930. Mr. Templin was appoint-

R. L. Templin

E. T. Dix Jr.

Herman E. Bakken
ed chief engineer of tests in 1919 and his service with the laboratories has been uninterrupted.

\section*{- O -}

Gerald N. Abt, formerly field sales manager, has been appointed sales manager, tool division, Barcalo Mfg. Co., Buffalo.

John W. Schlendorf, formerly associated with Carnegic-Illinois Steel Corp.'s
sheet sales department, has been appointed Cleveland district manager for Century Steel Corp., Chicago. He will handle sheet purchases as well as sales.

\section*{- 0 -}

Robert A. Miller, formerly assistant chief tool engineer, hoist division, Wil-lys-Overland Co., Toledo, O., has been appointed head of a new enginecring division of the Agerstrand Corp., Muskegon, Mich.

\section*{OBITUARIES}

Edward W. P. Smith, 56, consulting engineer, Lincoln Electric Co., Cleveland, died Sept. 19. Before joining Lincoln, over 20 years ago, he served in the electrical inspection department of the city of Cleveland and was subsequently employed by Westinghouse Electric \& Mfg. Co. at Pittsburgh. During the past year, he had traveled extensively in the interests of the war production program, giving expert advice and lectures on welding techniques as applied to construction of war equipment.
\[
-0-
\]

Harry J. Sweeney, 38, chief metallurgist, Republic Steel Corp. and professor of the Youngstown College chemistry department's metallurgy division, died Sept. 14 in Youngstown, \(O\).
R. D. Hunt, executive vice president, Dexter Co., Fairfield, Lowa, manufacturer of washing machines, died in Iowa City, Iowa, Sept. 15. He was one of the founders of the Amcrican Washer and Ironer Manufacturers' Association.

Otto Mueller, 55, managing director, Pressed Steel Co., Oxford, England, died in that city Sept. 13. He formerly was associated with the Edward G. Budd

Mfg. Co. in Philadelphia and Detroit and was sent to England by that company in 1926 to manage the Pressed

Edward W. P. Smith

Steel plant. His last visit to this country was in 1932.
\[
-0-
\]

Henry Lanz, 67, president, Northwestern Plating Works, Chicago, died in Riverside, Ill., Sept. 15. A native of Austria, he came to the United States when a boy.
\[
-0-
\]

Ervin A. Wolff, vice president and general manager, Superior Mold \& Iron Co., Penn, Pa., died in Wilkinsburg, Pa.,

Sept. 12. Prior to his connection with Superior Mold he was superintendent for the Pittsburgh Grey Iron Foundry Co. and Bollinger-Andrews Construction Co .
\[
-0-
\]

Robert T. Scott, 61, vice president, Chicago Pneumatic Tool Co., Chicago, and head of the New York City office, died Sept. 18 in Grand View, N. Y.

Isaac W. England, 69, vice president, Continental Can Co., New York, died at Glen Springs, N. Y., Sept. 18. He formed the Passaic Metal Ware Co., Passaic, N. J., to can food for the American army during the Spanish-American War. This company merged with Continental Can after World War I.

\section*{-0-}

George G. Knox, administrative officer of the Zinc Branch, War Production Board, died Sept. 20 at Washington. Following his service in the First World War, he became secretary and assistant to the president, United Verde Copper Co., New York. He had been in Washington about a year.

Edward H. Thomas, New York office manager, Farrel-Birmingham Co. Inc., Ansonia, Conn., died Sept. 13 in Pittsburgh. He was widely recognized in the cane sugar and marine industries as a capable designing engineer of equipment used by them.

\section*{Scheduling Plan Is Considered To Replace Present Priorities System}

THE ENTIRE priorities system may be abandoned before the end of the year and replaced with a complete and detailed scheduling plan which would affect every manufacturing plant in the United States, it was reported from Washington last week.

As expressed by one WPB official, a new production code which was heralded as the simplified successor of the allocation classification system is a "dead pigeon". The production code was introduced two months ago at meetings of industrialists in two or three cities but other scheduled meetings were dropped and the code was referred o a special WPB committee for further study. The committee is said to have taken no specific action.

The Production Requirements Plan set up to provide for material needs on a quarterly basis also may be dropped in its entirety or salvaged only in part.

Ferdinand Eberstadt, former chairman army and navy munitions committee, and new vice chairman of WPB (P. 37) is in charge of materials flow and is reported to have voiced criticism of PRP which does not provide for the more exact control of materials made necessary by growing shortages on every hand.

Priority system falls down for the reason practically all equipment for the Army and Navy take top ratings and there is constant competition for material. In the case of steel, little or no material is available under AA-2, which means practically all requirements are lumped in the topmost brackets.

Under the new scheduling system which appears to be definitely in the picture, the structure controlling production and flow of steel plates probably will be followed as a pattern. Plate control is regarded as entirely successful since production in the mills is scheduled to mesh with pre-determined shipbuilding and other needs.
Copper was placed under a somewhat similar system although not as complete control, beginning Sept. 1, when allocations were matched with scheduled production of material.
It is felt that the time now is ripe to institute a scheduling system since both Army and Navy have a better picture of just what finished products are needed and when. At the outset, it often was necessary to revise schedules overnight to meet needs for military equipment most pressing at the moment.

WPB officials emphasize the point that no new materials control system has been set up as yet but they are "taking a look at the whole picture". The present rating plan, of course, will be continued until a more workable setup can be devised.
Iron and Steel Branch, WPB, already has worked out a quota plan whereby fixed tonnages of steel, based on raw ingots, would be allocated to Army and Navy, Maritime Commission, lease-lend and civilian supply, designed to eliminate confusion arising from the present rating system.

This plan is being held in abeyance until an overall system can be worked out covering all materials, now being developed by a special committee.

\section*{Regional WPB Offices To Offer High Ratings for Emergencies}

To prevent stoppages or slow-downs in essential production that might arise from lack of small amounts of critical materials, WPB has authorized its regional offices to assign high preference ratings for the use of earmarked materials in emergency situations.
Under this regional emergency materials plan, preference ratings up to AAA to avoid positive losses of essential production and up to AA-2X for other emergency cases may be assigned.

The quantities of materials against which such preference ratings in the agreements may be assigned each month are not to exceed a small specified percentage of the available supply of each material.

During the first month only ten of the twenty-three specified materials may be authorized.

These are: Aluminum, brass, copper (refined), lead, nickel, pig iron, steel (scrap), (assorted structural), and (other except plate), zinc.

Other materials to be included later in the plan are: Cadmium, ferrochrome, cobalt, cork, fornaldehyde, molybdenum, rubber (crude) and (synthetic), tantulum ore, titanium ores, tin, tungsten, vanadium.

\section*{PRP Applications for Last Quarter Being Processed}

Production Requirements Plan certificates for the fourth quarter are being returned to applicants, it was announced
by Ernest Kanzler, Director General for Operations.

Applications have been analyzed, total estimated requirements have been balanced against available supplies and material, and the Program Adjustment Committee has made its recommendations for cutting back the requirements to balance the supply. These recommendations were passed on finally by the Requirements Committec last week and final processing of the fourth quarter Production Requirements Plan applications started.

Pending return of all the applications, the provisions of Priorities Regulation No. 11 for an interim procedure have been modified by Amendment No. 4. As before, companies which have not yet received their fourth quarter certificates may order up to 40 per cent of their estimated fourth quarter requirements for delivery in October. Amendment provides, however, that they may not apply preference ratings before receiving their certificate to more than 70 per cent of their estimated fourth quarter requirements, and they may not apply ratings under the interim procedure to a greater volume of material than they actually put into production in the first two months of the third quarter.

\section*{Sale of Single Lots of Carbon Steel Authorized}

Priorities Regulation No. 13, issued last July to provide uniform rules to govern sales to war industries of frozen stocks of restricted materials, has been amended to exclude any material rationed at retail levels, to include intracompany transfers of material in specified circumstances, and to clear up certain ambiguities which have come to light during the course of operations in the field.

Specifically included within the scope of the regulation by the amendment are sales made in the course of the liquidation of a going business or the assets of such a business. Intra-company transfers are allowed under the same conditions as are sales of the given material.

Schedule A to Regulation 13 also is amended to include a number of items placed under priorities control since its issuance, and to alter the conditions under which frozen or othervise idle stocks of certain materials may be disposed of.

The most important change in Schedule A permits sale for authorized uses, on ratings of AA- 2 X , of single lots of carbon steel of more than five short tons. Single lots are defined in the amended regulation as "all material of the same size and specifications at the same location." This change is expected to ex-

\section*{PRIORITIES-ALLOCATIONS-PRICES}

Weekly summary of orders and regulations issued by WPB and OPA, supplementary to Priorities-Allocations-Prices Guide as published in Section II of STEEL, July 6, 1942

\section*{M ORDERS}

M-89 (Amended): Corundum, effective Sept. 16. Includes control over use of corundum in consumers' hands. Covers corundum ores and superfine four as well as aluminum oxide suitable for abrasive use. Consumers file PD294 with WPB by 10 th each month. PD-294A is application of user for delivery. Suppliers file PD-293 by 10th each month with WPB.
M-198: Cryolite, effective Oct. 1. Provides for complete allocation and use control, requiring WPB authorization for delivery, receipt or consumption, except for receipt and use as an insecticide. Authorization requests are made to WPB on PD-592.

\section*{P ORDERS}

P-89 (Amendment): Chemical Plant Supplies, effective Sept. 19. Raises to A-1-a the rating assigned for obtaining all metnls appearing on List No. 1 of PD-25A for fourth guarter and all fabricated parts and equipment having a unit cost of \(\$ 250\) or less. Assigns A-1-c rating to all other materials needed for maintenance. repair and operating purposes. Rat-. ings higher than A-1-a will he assigned to repair plant breakdowns and for other emergencies upon anplication to WPB. Ratings may not be applied to purehase of metal containers or container materials without WPB authorization

\section*{L ORDERS}

L-163 (Amendment): Turbo-Blowers, effective Oct. 1. Revises definition of turbo-blowers covered by order to include those having capacity of 5000 cubic fet per minute or more, at a total equivalent sea level air pressure of \(11 / 2\) pounds per square inch or more.
L-173 (Amendment): Space Heaters, effective

Sept. 19. Removes restrictions of original order on production of gas unit heaters.
L-183: Electronic Equipment, effective Oct. 3. Prohibits production of such devices in excess of a minimum inventory required to meet deliveries on orders rated A-3 or higher, in no case exceeding \(124 / 2 \%\) of total 1941 sales. Bans transfers except on orders rated A-3 or higher. Does not cover devices used in liearing aids, telephone and telegraph equipment, medical and therapeutic equipment and light and power equipment

\section*{PRIORITIES REGULATIONS}

No. 11 (Amendment): Production Requirements Plan, effective Sept. 19. Revises interim procedure for placing of orders before receipt of certificates by companies operating under PRP. Prohibits application of preference ratings 10 more than \(70 \%\) of company's estimated fourth quarter needs and to a greater volume of material than actually put into production during July and August, 1942.
No. 13 (Amended): Sale of Idle Materials, effective Sept. 23. Permits sale for authorized use, on ratings of AA- 2 X , of single lots of carbon stcel of more than 5 net tons. Allows intra-company transfers under the same conditions as sales of the given material. Includes items placed under priorities control since issuance of original order.

\section*{PRICE REGULATIONS}

No. 222-Northern Softwood Lumber, effective Scpt. 23.
No. 223 -Northern Hardwood Lumber, effective Sept. 23.
No. 224-Cement, effective Sept. 23. Sets up specific maximum prices for 12 districts, covering sales by manufacturers within and outside their normal market areas.
pedite the movement from immobilized stocks of this essential war metal. Previously, sale of lots of more than five tons might only be made to producers of the material in the same form in which it had been purchased by the holders.

\section*{Price Ceiling on Rough and Machine Steel Castings}

Definition of steel castings in Revised Price Schedule No. 4I, steel castings, has been changed to make it clear that it covers both rough and machine castings.
Amendment No. 3 to the schedule, effective Sept. 24, 1942, states that "steel castings" means cast steel objects "whether rough or machined." Previously the words "whether rough or machined" did not appear in the definition.
OPA pointed out that machining operations on a casting performed by the foundry making the casting are covered by Revised Price Schedule No. 41. Machining operations on castings performed by persons other than the original producer are priced under Maximum Price Regulation No. 136, machines and parts and machinery services.

\section*{Holland Names Consultants to WPB Small Business Division}

Lou E. Holland, head of the WPB Smaller War Plants Division, has announced a board of consultants to serve in an advisory capacity to the division and to the Smaller War Plants Corp. of which Mr. Holland is chairman. Consultants named are:

George Trundle, Trundle Engineering Co., Cleveland.

William B. Stout, Stout Engincering Laboratories, Detroit.
Stanley A. Carlson, Howe Machinery Co., Passaic, N. J.
W. B. Connell, West Side Machine Works, Kansas City.
Ivan L. Johnson, Pacific Steel Casting Co., Berkeley, Calif.
"In the composition of this group of advisors," Mr. Holland said, "I have endeavored to combine high engineering talent and practical experience with the problems of small business. Mr. Trundle is the head of an engineering company well known throughout the country. Mr. Stout is known by everyone as an outstanding aircraft engineer. Mr. Carlson (who organized the Home Workshop
group in Passaic), Mr. Connell and Mr. Johnson are successful in operating small business enterprises and have had a great deal of experience in the past two years in the problems that confront small business in connection with its adjustment to the war economy."

\section*{Second-Hand Machine Tool Dealers Licensed by OPA}

Automatic licensing of all dealers selling used machine tools or extras, or sec-ond-hand machines or parts, has been announced by OPA.
Supplementary Order No. 20, effective Sept. 26, also requires every second-hand machine tool or second-hand machinery dealer to register with the Washington office of OPA or at any OPA regional State or district office.

A dealer's license may be suspended if he violates any provision of Supplementary Order No. 20 or any price schedule or regulation covering such machine tools and machinery. The dealer thereupon loses his privilege to do business.
Maximum prices for second-hand machine tools or extras are established in Revised Price Schedule No. 1, secondhand machine tools. Those for machines and parts are provided in Maximum Price Regulation No. 136 as amended, (machines and parts and machinery services).

Ceiling prices for used machine tools range from 50 to 95 per cent of the prices of equivalent new machine tools, according to age and condition. For the used machines and parts covered by Maximum Price Regulation No. 136 as amended, a maximum price of 85 per cent of the maximum price of the nearest equivalent new machine or part is permitted for a rebuilt and guaranteed machine, and 55 per cent if sold on an "as is" basis.
Supplementary Order No. 20 does not apply to retail sales of second-hand machine tools or extras, or second-hand machines or parts.

\section*{Plan To Switch More Steel Products to Bessemer Class}

Further efforts will be made to switch more steel products to bessemer steel, "which is far better than most people think it is", according to officials of WPB's Iron and Steel branch. Bessemer, normally used principally for screw machine stock and wire, can be used for plates, small structurals, sheets, pipe, bars, track spikes, nails and tie plates, it was pointed out. No plans are reported under way for additional bessemer capacity, however, due to lack of adequate pig iron supplies, but an effort will be made to make better use of existing facilities.

\title{
WINDOWS of WASHINGTON
}
important decisions still made at 718 Jackson Place. ClO's influence in national affairs traced by recent events. Drive is on to reduce paper work, ease pressure on manufacturers

FOR MANY years decisions reached in the dignified, graystone-faced building at 718 Jackson Place, in the shadow of the White House, have had an important influence in shaping policies that have molded our national destiny. There the Republican National Committee had its headquarters and there it was that powerful political personages like Mark Hama and Boies Penrose held sway.

Today the building has new occupants -but it has not lost one whit of its old prestige as an important headquarters for national policy making. The new owner is the Congress of Industrial Organizations, a body, as employers throughout the country so well know, which wields great political power at the present moment in our history.

The piecemeal manner in which news develops and is presented to the public might perhaps prevent the average observer from appreciating just how much influence the CIO exereises over our body politic today. It may be useful as a starter, therefore, to recall some recent developments and trends.

Sometime back CIO recommended the appointment of labor-management committees as a moans for increasing war production. Donald M. Nelson, as chairman of the War Production Board, gave approval to this recommendation with the result that more than 1400 such committees have been appointed to date. Incidentally, almost everybody conversant with the results now admits that this was a fine idea.
CIO went on record as being opposed to the federal sales tax on the ground that this would work hardships on workers with low incomes. Individual congressmen here and there rise to the floor and advocate a sales tax. But Congress as a whole so far has evaded this issue.

\section*{Wants Greater WYPB Representation}

Philip Murray, CIO's president, for some months has been insisting that labor be given greater responsibility in the War Production Board in order that it may contribute more effectively to the production drive. Recently Mr. Nelson gave assurance that he would shortly reorganize the board in keeping with this request.

CIO does not want a wage czar, nor does it favor freezing wages. Rather, it wants "stabilization" of wages. CIO feels that the present War Labor Board understands labor's needs. It likes the manner in which the board functions and
wants to have it continted as the govermment agency in control of wages. Careful readers of the speech that President Roosevelt broadcasted over the radio Labor Day drew the impression that this also is just about exactly what the President wants.
Recently the CIO United Automobile Workers of America revised a number of contracts relinquishing the doubletime pay for work on Sundays and holidays. None of the AFL unions followed suit. In his Labor Day speech President Roosevelt failed to refer to this subject whereupon the White House began to be bembarded with telegrams threatening fearful consequences. Immediately the President issued an executive order rescinding payment of double-time wages for Sundays and holidays.

\section*{Occupy 31/2 Floors}

This is only a small part of the record but it will serve by way of illustration.
A visit at CIO headquarters quickly shows that it is thoroughly organized and staffed to conduct many related activities. Its new headquarters contains quarters for the national officers, for a large and industrious publicity department, for a research staff, for a hardhitting organizing department and for legal and other activities. CIO occupies the fifth, fourth and third floors and
half of the second floor of its new building.
What are the CIO officers doing, thinking and planning these days? How do they look to the future? Are they satisfied with the progress they so far have made? What are their complaints? These are some of the questions that naturally come to mind on entering the portals of this historic building.

These questions may be answered at least in part by recalling what a CIO officer said a couple of years ago when he was questioned about the very considerable amount of violence and disorder that was incident to this body's origmal organizational drives. He thought a moment and explained that violence and disorder are characteristic of the organizing period but, he added, "when that period is over and the workers in a plant or an industry have been won over to union membership, then comes the period of labor statesmanship."

Today it is quite clear to an unbiased visitor that the CIO feels that the period of labor statesmanship has arrived and now is in full flower. CIO feels that it now is an accepted institution and that its policies are in the best interest not only of labor but of the country.
"We gave up the right to strike with Pearl Harbor," says a CIO spokesman. "No strikes have been authorized since then and no strikes will be authorized as long as the war lasts. Yes, there have been some unauthorized walkouts, and these have been very embarrassing to us.
"At the same time we have to be

CIO President Philip Murray and representatives of all CIO national unions and state councils confer on the organization's var-time policies. NEA photo
patient for the reason that people are human. Great numbers of workers are laboring under pressures. They work long and hard and many of them suffer from poor housing and transportation conditions. Their wives complain about high prices they have to pay at the grocery store, and for shoes and clothing of inferior quality. The men get irritated and high-strung and are in a mood to develop grievances. All of a sudden they decide to strike.

\section*{No Members Expelled}
"We , understand this situation and none of our unions so far has gone to the extent of expelling members. That is a very serious matter and it is much better for our war effort to exercise sympathy and patience than to take drastic action. These strikes never last very long and their effect on the total wareffort is negligible. On the whole we are proud of our record since Pearl Harbor. President Roosevelt and Donald M. Nelson have complimented us on numerous occasions, particularly on Labor Day when they and numerous other government officials congratulated labor on its part in the war production program.
"And don't forget," continued the spokesman, "that there are plenty of dumb foremen who do not know how to handle men when their nerves are at hair trigger. The same thing goes for many managements."

Questioned as to what CIO had in mind in demanding a larger share of responsibility in the direction of the war production program, the spokesman explained:
"The CIO wants more productionand we know how to get labor to produce more. Therefore, we should be given a greater opportunity to contribute to the production effort. To get the utmost from labor you have to function to a large extent by means of men who understand labor's psyehology. This fundamental truth is not as well understood as it should be.
"For example, when we recommended the appointment of labor-management committees there was a great deal of suspicion as to our motives. We were accused of trying to utilize a new device to gain more power. Fortunately, Mr. Nelson accepted our recommendation. More than 1400 such plant committees now are functioning all over the country and everybody now is informed about the improvement in production efficiency that has resulted from the activities of these committees. This idea should be carried out mniversally. There should be a labor-management committee in every plant. Labor can contribute brains as

THIS Double-V emblem has been adopted by the United Automobile Workers, CIO, and its local unions, according to union officials to signify " \(a\) determination to fight for democracy in the world and at home." It was conceived by the Pittsburgh Courier, Negro weekly newspaper
well as brawn when given the opportunity."

CIO is 100 per cent behind the sevenpoint program which President Roosevelt outlined carly this year and which he again reiterated in his Labor Day speech.
"We want rationing of all consumer goods," declares the CIO spokesman. "People with large incomes can lay in large stores of coffee, tea, canned goods, clothing and so on. The average worker with an hourly wage rate cannot do that. Between the rising cost of living, payment of taxes and the purchase of war bonds he does not have money left for such investments.
"To protect him and his family against the hoarders we need an all-out rationing system in which everyhody, no matter what the size of his bankroll, will share alike. We do not care whether
\(\$ 1000\) radio sets are rationed. We do insist on complete rationing of such necessary items as food and clothing."

The sincerity of the CIO drive for more war production is proven in numerous ways, particularly by its 62-page brochure entitled "Producing for Vic-tory-a Labor Manual for Increasing War Production." This breaks down into four sections "Improving the Efficiency of Production," "Increasing the Productivity of Equipment," "Effective Use of Materials," and "Effective Controls." This manual contains many valuable pointers; copies of it may be had from the CIO at 15 cents.

None of the foregoing is intended to reflect any falling off in aggressiveness on the part of the CIO. This organization, like any business organization, is taking advantage of every opportunity to increase its domination of labor and promote its future security. At present it is organizing the nonferrous smelter and refinery workers as well as the employes in the copper and brass mills. But it believes that while these drives will redound to the benefit of ClO , they also will be helpful to the production program, so that the country will be gainer rather than loser.

CIO hails it as a significant feature that in its present organizing effort it is meeting with no opposition from employers. This is in marked contrast with the stormy weather it encountered when it first appeared on the scenc. Under the present governmental policy and in the light of court decisions in recent years, it appears that employers in general take the attitude that it is futile to offer resistance to union organizing drives.

CIO's full program has not yet become operative. It has very firm ideas as to controlling business and employment after the war. It advocates such control through industry committees made up of representatives of labor, management and the public. More will be heard along these lines in the future.

\section*{Executives Advised To Publicize Salaries-Also Taxes, Benefactions}

Every now and then, as industrial executives know, the newspapers publish lists of fat salaries that are paid to topflight men in managerial positions. Once considered as information of a confidential character, large salaries now must be publicized by the Treasury Department under the law. Appearance of these lists, of course, creates discon-
tent among workers and their wives and provides fine ammunition for labor organizers and for politicians.

A public relations man from New York who spends considerable time in Washington raises the question as to how long the executives affected will continue to suffer silently.
"Some day." he says, "a public rela-

\section*{The DLOS2-100}

Here's smooth, flexible, fluid power for a wide variety of production jobs calling for pressures of up to 100 tons!

It's the DLOS2-100, one of the most versatile units in Denison's line of standard HydrOILic presses. Oil hydraulic operation makes it remarkably flexible; you can adjust its action to an infinite variety of straightening, assembling, bending and broaching requirements with hairsplitting accuracy! Tonnage is variable from approximately \(10 \%\) of capacity to full capacity . . speed can be varied by

\section*{HydroILic Press}
using either controlled-orifice valves or variable-delivery pumps . . . and moving a lever or pressing a button is all you do to control the operation of the press.
The compact, smooth-surfaced frame encloses the mechanism and controls, permitting fast operation with full safety. The DLOS2-100 has a maximum stroke of 18 inches: maximum daylight opening is 36 inches. It is available with either manual or electric controls, or both. Dual controls are available where highest possible safety factor is desired.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{DIMENSIONS} \\
\hline \multicolumn{2}{|l|}{DLOS 2-100} \\
\hline A & 18 \\
\hline B & 18 \\
\hline C & 36 \\
\hline D & 331/2 \\
\hline E & 138 \\
\hline F & 20 \\
\hline G & 40 \\
\hline H & 32 \\
\hline \(J\) & 64 \\
\hline K & 40 \\
\hline L & \(31 / 2\) \\
\hline M & 13 \\
\hline N & 7 \\
\hline P & 1\% \\
\hline Q & 11/2 \\
\hline RA & 76 \\
\hline RB & 38 \\
\hline SA & \(343 / 4\) \\
\hline TA & 2 \\
\hline TB & 1\% \\
\hline UA & 56 \\
\hline VA & 28 \\
\hline W & 20.000 \\
\hline X & 20.100 \\
\hline Y & 20,250 \\
\hline Z & 750 \\
\hline
\end{tabular}

NEW PRESS DATA!
Do you have your copy of our latest catalog listing Denison's complete line of standard Hydrollic Presses? Ranging up to 100 tons in capacity, these flexible presses will clear the way to faster accuracy on a multitude of bending, broaching. assembling and straightening jobs.
ENGINEERING DATA INCLUDED! 12 pages of useful engineering tables. in dexed for quick reference, are included in this catalog. Write for your free copy todayl

Priorities still have first call on Hydrollic Press oufpuf. Buf since conditions may change rapidly - even if only femporarily - we suggest you submit your requirements to us without delay. We'll tell you promplly the delivery we can make in your particular case. Write foday, or call your Denison representative.
tions man in one or another of the large corporations is going to steal this particular ball and run it across the line for a touchdown.
"He will release a story on the salaries his company paid its top officials during the previous year-and will beat the government to the draw. In his release he will not only state the amount of each salary but also the net amount that was left to the recipient after the payment of his income tax. It will list benefactions made by these individuals. It will tell about club dues and other expenses for essential business purposes. It will explain what amount of money was invested during the year to create additional jobs. It also will explain the importance of the services of these men in enhancing the position of the company and-of course-its employment position. The report would make it clear that these men are worth their keep and that they assist in stepping up our economy rather than siphon it off.
"Whether industrial managers like it or not," he concludes, "salaries no longer are secret. The quicker industrial executives realize that this game as to salaries can be made a two-sided affair, the quicker we will find them striking back in an intelligent and effective way. As things now are done, it is desirable that every corporation's annual report should set forth full and correct information as to top salaries."

\section*{New Group Reduces}

\section*{Request for Data}

The recently appointed War Production Board Committee for the Review of Data Requests from Industry already has made some headway in reducing the large amount of paper work which industry has had to do in order to furnish information. Joseph I. Lubin, chairman of this committee, states that effective steps have been taken to eliminate "bootleg" or unauthorized data requests, including those sent out by telegraph.

Since July 1, all new forms and reprints of old forms have been standardized in format and the size reduced so that they can be filled out in a typewriter with a standard carriage.

A number of specific eases of duplication reported by industry have been eliminated. In some instances telegrams have been sent to respondents advising them to discontinue the filing of a questionnaire, such as Cadmium Form PD442; also, certain other forms, as PD-99,

138 and 139, have been combined. Pending the complete revision of all forms, individual questions have been eliminated from some forms and respondents advised accordingly.
Recently representatives of the chemical industry were asked to review a new proposed standarclized form which, after several meetings, was unanimously approved both by the industry and WPB. It will be used in place of individual forms for future allocation of chemicals and will gradually replace forms now in use for this purpose.

As the forms used by each division and branch of the War Production Board are reviewed representatives of the affected industries will be called in as advisers and their recommendations requested.

Mr. Lubin points out that, while a great many forms are essential for direction of war production, it is intended to hold information requests to a minimum. Any manufacturer who has ideas as to how present paper work in reporting can be reduced will meet with a warm reception at Mr. Lubin's office, located in Room 5419, Social Security building, Washington.

It may be added parenthetically that the committee already has made itself unpopular with some officials in WPB. As a result of this committee's rulings, a number of data request forms may not be sent out despite the fact that the officials involved declare they call for needed information. Whether these complaints are justified or not, they tend to prove that the committee is doing its job aggressively.

\section*{Nonferrous Metals Transportation Advisory Committee Appointed}

Formation of a copper, lead and zinc producers industry transportation advisory committee was announced last week by T. Spencer Shore, chief of the WPB Division of Industry Advisory Committees. George C. Heikes, chicf of the WPB Zinc Branch, is government presiding officer.

\section*{"Effects of the War on \\ British Marketing"}

Careful study is being devoted in a number of government offices here to a new 74-page Department of Commerce book entitled "Effects of the War on British Marketing." It covers the English experience to date with price control, control of supply, "nucleus" firms and the effect of these activities on manufacturing, wholesaling and retailing organizations. It is regarded as of importance since it is anticipated that many measures that have sworked well in England will
be applied here. By reading it one gets a sort of review of our marketing methods of next spring or next summer. Copies of the book may be obtained from the Superintendent of Documents, Washington, at 15 cents.

\section*{Relieving Pressure}

\section*{On Manufacturers}

Demand for heat treating equipment has been so large that a number of companies manufacturing equipment of this type are sold far ahcad, with no help in sight. On top of this the demand has been coming from many different sources so that the heat treating equipment builders have been subjected to pressure from all directions. This has come from expediters who have been trying to get their particular orders higher up in the scale of priority in order to get quicker delivery.

Recently the War Production Board decided some action was necessary to free the heat treating equipment manufacturers from harassment of this kind It instituted a system whereby a number of larger manufacturers submit reports listing the orders on their books. The Heat Treating Unit of the Tools Division of WPB handles these reports, analyzing them from the point of view of military necessity, and arranges them according to the relative urgency of each order.

Reports are then made to the manufacturers who are able, as a result, to arrange their production schedules according to relative urgency. Under this arrangement the manufacturers are not permitted to change their schedules unless instructed to do so by WPB. That means that, to get action, expediters of customer, companies requiring heat treating equipment have recourse only to WPB.

So far this system has been applied only to manufacturers who have been highly pressured. The system may be made available to other heat treating equipment manufacturers who may become pushed in the future.

Although this system has been in operation only a short time, it has been found to promote manufacturing efficiency. The plants covered by the system have been able to increase their production by 5 to 8 per cent.

Directives issued under this system are signed by the Director General of Operations of the War Production Board. thus automatically relieving the manufacturers of any contract liability.

\section*{Two Vice Chairmen, Steel Chief Appointed to Production Agency}

LATEST reorganization of the War Production Board infuses top-notch executive and manufacturing ability into output of war matericl.
Outstanding among these appointments are:
1. Charles E. Wilson, president, General Electric Co., as WPB vice chairman to "be the top production authority in the war program and have the responsibility of seeing to it that programs and schedules for all phases of our war efforts are met". Mr. Wilson also will serve as chairman of a newly-organized Production Executive Committec, which includes high ranking officials of the Army, Navy and Maritime Commission.
2. Hiland G. Batcheller, president, Allegheny Ludlum Steel Corp., Pittsburgh, as chief of the WPB Iron and Steel Branch. Mr. Batcheller succeeds Reese H. Taylor, whon resigned to return to his position as president of the Union Oil Co. of California.
3. Transfer of Ferdinand Eberstadt, formerly a New York financial man, from the chairmanship of the Army and Navy Munitions Board to a vice chairmanship of WPB in charge of programs and schedules. He will be responsible for the flow of materials to manufacturers and producers throughout the war effort, taking over that job from James S. Knowlson, also a WPB vice chairman.

The shift will leave Mr. Knowlson free to give his time to the British-American Combined Production and Resources Board.

Mr. Eberstadt also will serve as chairman of the WPB requirements committee, and will have as his assistant Ernest Kanzler, Director General of Operations. Mr. Wilson accepted the WPB position after repeated requests from Donald M. Nelson, chairman of the war production agency, from the Secretary of War. the Secretary of Navy and finally from the President. Mr. Wilson has resigned from all positions he held with General Electric and will devote his full time to the new job.

In addition to being the top production authority, Mr. Wilson will head the Production Executive Committee organized by Mr. Nelson to bring together top officials of the WPB, the armed services and Maritime Commission to maintain a constant check on control of the production program. Committee will meet twice weekly. Other members are:

Lieut. Gen. Brehon B. Somervell, com-
manding general of the Army Services of Supply.

Maj. Gen. Oliver P. Echols, commanding general, Materiel Command for

Charles E. Wilson
"Top production authority in the war program" will be Mr. Wilson, until a few days ago president of General Electric Co.
the Army Air Force.
Vice Admiral Samuel M. Robinson, director of materiel and procurement for the Navy.

Rear Admiral Howard L. Vickery, vice chaiman, Maritime Commission. Mr. Wikson las been president of Gen-

Hiland G. Batcheller
President of Allegheny Ludlum Steel Corp., is now chief of the WPB Iron and Steel Branch. Mr. Batcheller succeeds

Reese H. Taylor who resigned
eral Electric since 1940 and associated with the company and its component. Sprague Electric Co., since 1899. He is the second top-fight GE executive to join the WPI;; Philip D. Reed, chairman of the board, now is serving on a special mission in England.
To insure that the company's war output, estimated to reach \(\$ 1,000,000,000\) this year, be uninterrupted, General Electric directors have called back Owen D. Young, retired chairman, and Gerard Swope, retired president, to their old positions for the war's duration.

Mr. Batcheller, new Iron and Steel Branch chief, has been in the steel business since he was 2.4 years old. His first jolb was with Carnegie Steel Co., which he joined in 1909. Six years later he joined Ludlum Steel Co. as assistant to the president, a position he held until 1930 when he was elected president.

In 1938, he initiated and brought to completion the merger of Ludlum and Allegheny Steel Co., Pittslurgh, and became president of the new company.

For many months he has been a member of a steel advisory committee of the Army-Nary Munitions Board and is well known to many ranking Army and Navy production officials.

David F. Austin, deputy chief of the branch, and acting chief since Mr. Taylor's resignation, has heen compelled by ill health to take an extended heave of absence.

\section*{Foreign, Domestic Commerce Director Granted Leave}

Carroll L. Wilson, director, Bureau of Foreign and Domestic Commerce, has been granted a leave of absence. Mr. Wilson has gone on leave for the purpose of assisting in the organization of the Committec for Economic Development. The committec is a voluntary body of American business men, under the chairmanship of Paul Hoffman, president, Studebaker Corp., independently organized in collaboration with the Department of Commerce for the purpose of exploring the economic areas in which the public interest can be served in the postwar period.

The committee will endeavor to carry on for business generally research activities which many business men will not have time to engage in because of the pressure of their responsibilities in the war effort.

The committee's overall objective is to develop, if possible, a program of public service for American business which can be co-ordinated with all other such developments at the close of the war.

Grosvenor Jones will be acting director of the bureau.

\title{
Board Supports CIO in Attempts To Extend "Little Steel" Ruling
}

FORTY-ONE steel companies have been told by the National War Labor Board "to show cause" why they should not incorporate provisions of the board's directive in the Carnegie-Illinois Steel Corp. case in contracts with the United Steelworkers of America.

Provision of the Carnegie-Illinois ruling called for a 44 -cent daily wage increase retroactive to Feb. 15, maintenance of membership and checkoff, and minimum daily wage guarantee. Similar provisions earlier had been handed down in the "Little Steel" case.

The unprecendented ruling by the board was made in an effort to equalize wages and contractual relations throughout the entire industry. The companies affected operate blast furnaces, steelworks, rolling mills, and steel foundries.

The retroactive wage feature has caused most of the difficulty in contracts that the union has been trying to obtain since its victory before the board in the "Little Steel" case. The companies have held that making the wage increase retroactive to February invalidates firm contracts in effect wilh the union. Some of the companies also have rebelled against inclusion of the maintenance of membership and the checkoff provisions.

\section*{Steelworkers Asked Action}

The board's request that the companies "show cause" was made upon demand by the United Steelworkers of America. The ruling reads as follows:
"The United Steclworkers of America, under date of Sept. 3, 1942, filed with the chairman of the National War Labor Board a request that the board direct certain companies in the basic steel industry to include in their collective barraining contracts with the United Steelworkers of America all provisions contained in the board's directive order of Aug. 26, 1942, involving Carnegie-Illinois Steel Corp. A copy of that order is attached hereto. Your company is included among those listed by the United Steelworkers.
"You are hereby requested to submit to the board within ten days your reasons, if any, why the provisions of the board's decision in the case of Carnegie-Illinois Steel Corp. should not be incorporated in your contract with the United Steelworkers of America."
Companies receiving the request:
Stathers Iron \& Steel Co., Struthers, 0. Allegheny Ludlum Steel Corp., Pittsburgh.

American Locomotive Co., Latrobe, Pa. Atlantic Steel Co., Atlanta, Gn. A. M. Byers Co., Pittsburgh. Continental Steel Corporation, Indianapolis. Empire Sheet \& Tin Plate Co., Mansfield, \(O\). Jones \& Laughlin Steel Corp., Pittsburgh. Latrobe Elie Steel Co., Latrobe, Pa. Pittsburgh Steel Co., Pittsburgh.
Sharon Steel Cory., Sharon, Pa.
Stanley Works (American Tube and Stamping Divisions), Bridgeport, Conn.
Universal-Cyclops Steel Corp., Bridgeville, Pa. Acme Steel Co., Riverdale, Ill.
American Chain \& Cable Co., Page Steel and Wire Division, Monessen, Pa.
Wheeling Steel Corp., Wheeling, W. Va.
Apollo Steel Co., Apollo, Pa.
Babcock \& Wilcox Tube Co., Beaver Falls, Pa. National Supply Co., Spang-Chalfant Division. Pittsburgh.
MacKintosh Hemphill Co., Pittsburgh.
National Eric Corp., Erie, Pa.
National Malleable \& Stecl Casting Co., Sharon, Pa.
Taylor-Wharton Iron \& Steel Co., Easton, Pa. United Engineering \& Foundry Co., Pittsburgh. United Engineering \& Foundry Co., Pittsburgh.
Lewis Foundry \& Machine Co., Coraopolis, Pa. Pittsburgh Rolls Corp., Pittsburgh.
National Alloy Steel Co., Blawnox, Pa.
Shenango Furnace Co., Pittsburgh.
Mercer Tube \& Mfg. Co., Sharon, Pa.
Moltrup Steel Products Co., Beaver Falls, Pa. Penn Iron \& Steel Co., Creighton, Pa. Pollak Stecl Co., Cincinnati.
Wheatland Tube Co., Philadelphia. Wyckof Drawn Steel Co., Pittsburgh

ROLL OF MISSING MEN

SUGGESTED for plants where absenteeism cuts production, forms like this containing names of absent employes are being used at Westinghouse Electric \& Mfg. Co.'s East Springfield, Mass., plant. No excuse is accepted. The missing man's name goes on the red and blue poster, \(11 \times 14\) inches in size, and duplicates appear all over the shop

Andrews Steel Co., Newport, Ky.
Reliance Steel Casting Co., Pittsburgh.
Heppenstall Co., Pittsburgh.
Jessup Steel Co., Washington, Pa.
Judson Steel Corp., Oakland, Calif.
Vamadium-Alloys Stecl Co., Latrobe, Pa
Columbia Stecl \& Shafting Co., Philadelphin.

\section*{78,000 in Bethlehem Shipyards Given \$15,000,000 Pay Increase}

Annual wage increases totaling about \(\$ 15,000,000\) and other concessions were granted to about 78,000 workers in eight shipyards of Bethlehem Steel Co. in a contract signed recently with the Industrial Union of Marine and Shipbuilding Workers of America-CIO.
The agreement, reached after more than a year's negotiations, provides for maintenance of union membership and checkoff, prohibits strikes and lockouts, establishes grievance and arbitration machinery, and provides for paid vacations and seniority rights.

Wage scales are \(\$ 1.20\) an hour for mechanics and \(801 / 2\) cents an hour for unskilled labor. These represent an 8cent increase over former rates.

\section*{10,000 Shipworkers Strike \\ Over 5-Cent Ferry Toll}

State militia and mobile police took over on Sept. 18 the approaches to the Pinto Island shipyard of Alabama Dry Dock \& Shipbuilding Co., Mobile, Ala., and the City Hall and Court House, as 10,000 shipworkers went on strike to protest a five-cent fee charged by the city's new ferry service to the plant. They later voted to return to work, pending a National War Labor Board hearing, only on condition that they would not be obliged to pay the fare.

The company previously had operated its own ferry service, but this was found to be inadequate. The city inaugurated the toll ferries as a war measure to supplement bus and automobile transportation at the express request of the Maritime Commission. The commission described the work stoppage as "unwarranted" and a violation of existing agreements and refused to discuss grievances with a delegation of workers until operation of the yards was resumed. A local official of the Shipyard Workers' Union, CIO, denied that the union had authorized the strike.

\section*{Social Service Agencies \\ Under McNutt's Direction}

United States Employment Service and three other social service agencies have been placed under the control of Paul V. McNutt, chairman of the War Manpower Commission, by President
(Please turn to Page 106)

\section*{Toolmaker Explains}

\section*{Fears of Workers}

Urges economic and political leaders to pledge efforts to avert postwar unemployment

WHAT is wrong with the morale of workers in this country's war plants? A Cleveland toolmaker, Rudolph R. Blumer, born in Switzerland, takes cognizance of the criticisms directed against war workers' morale and suggests a remedy, in an interesting letter to the Cleveland Plain Dealer.

His letter, in part, follows:
"You allude to the attitude of a very large section of our war workers in failing to see the necessity of all-out production and cite examples of how production is being retarded instead of pushed ahead.
"I am a worker in a war plant and I know only too well that these conditions do exist, and I fully realize to what frichtful consequences they may lead. If then, in my comment on your column, I point out some differences of opinion
it should be understood that in no shape, form or manner do I wish to justify, or excuse the mentioned abuses on the part of a good part of our war workers.
"Thurman Arnold, in his address at Cain Park, told us: 'The fear of postwar depression is laying a paralyzing hand on our efforts toward all-out production, and we should shake off that fear and take it for granted there will be no such depression.'
"Yet it is just this apprehension, I might say this anticipation, of a wave of reaction after the war which dampens the spirits of many war workers. Time after time in my feeble attempts to bolster the morale of some of my fel-low-workers I would cautiously hint that we ought to work a little harder, that instead of working less than in peacetime, we should work more.
"Usually the reply is: 'Why should we? As soon as the war is over we will be walking the streets.' I would point out to them that President Ronsevelt and his New Dealers have stood by us these eirht or nine years and there was not going to be a depression as long as he and his men were in nower. Most of the men will agree on this point, but

FEDERAL SHIP ENCOURAGES SLOGAN WRITERS

FIRST prize, \(\$ 100\) War Bond, was presented to William F. Wright, machine shop worker, for the slogan "E Doesn't Mean Enough" in a contest sponsored by Federal Shipbuilding \& Dry Dock Co.'s War Production Drive Committee. Gordon G. Holbrook, left, works manager of Kearny and Port Newark yards, shakes Wright's hand. Third from left is John W. Mahoney, electrician's helper, with a \(\$ 50\) bond for "Don't Talk Production-Produce." Right, Sinclair D. Cox, \(\$ 25\) bond, "Less Blarney-More Ships Like the Kearny." Ten thousand slogans were submitted
invariably will ask me: 'And how about the next administration? Will it stand by us as F. D. R. does?'
"The very people who have fought and criticized every social reform achieved by the New Deal, who have tried in 1936 and 1940 to saddle us with candidates unfavorably inclined toward such reforms, these very people are telling us now that social experimentation is a luxury that was all right in peace, but could no longer be afforded in a country at war. All right, it may be that we can no longer afford it, or even need it right now, but will the powers that have been fighting these very gains be willing to restore them to us once the war is over? Or will it again become more immortant to balance the budget than to feed hungry children?
"We have only to read the specches of senators like Taft, or Byrd . . . to realize that they are all set to take the country over and lead us back to what they so quaintly call a 'sound economy.'
"It may be sound according to their lights and their desires, but if memories serve us right we were told in Coolidge's and Hoover's time that theirs was a sound economy too. This would explain why a good many workers have no confidence in the future. They fear that business and finance want to rob them of the progress made.

\section*{Wants Assurance}
"As it is we are a divided people, the upper third fearing that something may change, the lower third feeling that nothing will change; that instead of going forward on the path of social progress we will go back to normaley, style 1920-1932. And the middle third does not know which alternative to fear or favor.
"There is only one kind of appeal that would be effective, in my opinion:
"If three or four top leaders each of the United States Chamber of Commerce, of the American Manufacturers Association, the Bankers Association, the committees would get together and this groun of economic and political leaders would declare in a plain, signed statement published in all principal papers over the land, they pledge their influence and their power to be used after the war towards an effort to utilize the resources of the country, its manpower and its industrial and productive equipment for the purpose of achieving economic security to all willing to do an honest day's work for an honest day's pay. If the principle is accepted that society owes every man, not a living, but the opportunitv to make a living honestly is accented, then we will be on our way to build a hetter finture here and all over the world."

\section*{Hyatt's Gift To Industry Ten Years Ago Is Helping To Win The War Today!}

CHUCKLESS GRINDING is helping to speed up America's war effort... make precision manufacture possible at a mass production pace . . . and avoid material waste.

This entirely new grinding method was invented by Hyatt nearly twenty years ago. Our races have been produced by this precision process ever since.

Later, this great advance in grinding technique was made available to all industry.

Therefore, in addition to helping us make more and better Hyatt Roller Bearings for war machines, this gift from Hyatt helps other vital plants speed the day of an ultimate American victory.

Hyatt Bearings Division, General Motors Corporation, Harrison, N.J., San Francisco, Chicago, Detroit, Pittsburgh.

Iron and steel likely to continue as basic materials for manufacture of tomorrow's motor car. . . Design jungle refrigerator. . . Industry 32 per cent past peak peacetime production rate

\section*{DETROIT}

SPECULATION on the shape and size of the postwar automobile is so full of "ifs" that no two opinions come even close to agreement. But a conservative analysis might stack up about as follows:

The burden of a long, hard war will necessarily grind individual resources down pretty thin. Backlogs of war bonds may have to be converted into tax payments. There will have to be a sharp scaling down of both wage levels and "job" levels. The people this will hit the hardest are those who at the moment are earning more. money than they ever thought possible. So, while there should be a fair market for automobiles, it is diffecult to see the enormons boom which some government economists are painting for the postwar period.

This means that the motor companies are going to be compelled to exert every means to provide value for the dollars they are able to capture from customers; and in turn the pressure will again be turned on supplicrs for "a price". The easiest way to give value is to take up where motor car manufacturing left off last year, rather than to launch out into new and untried fields where millions of dollars can be lost in a hurry.

\section*{Surplus of Lower-Octane Fuels}

Stylists are tossing off lavish conceptions of the motor car of tomorrow with little thought to the manufacturing problems involved. Dreamers talk airily of motors half the weight of present designs, burning 100 octane fuel and giving economy as yet untouched. They give scant attention to such facts as thisthat the only way to produce 100 octane fuel is as a by-product of the present motor fuels; so if automobiles are to use the present aviation type gasoline, what is to be done with the billions of gallons of the lower-octane fucls which refineries must produce to obtain the higher-octane products?

This is a problem even today when the demand for aviation gasolines is so high. Consumption of motor fuels is declining and will drop sharply again when gasoline rationing is introduced on a national seale. There are no storage facilities to handle the vast gallonage of motor fuel which the oil companies will have to keep on producing in order to meet requirements for aviation fuel. About the only answer is to dump the motor fuel and there have been occasions where this has been done. A smarter
idea, now reportedly being considered by oil companies, is to pump the excess fucl back into oil wells. This at least represents returning the fuel to its original source and does not appear quite so wasteful as turning it into sewers or dumps.

It may be well to discount predictions of radical imnovations in postwar motor cars. Manufacturers know fairly well what they can do with present designs, as far as cost is concerned and in their 40 years of experience they have seen a good many so-called imnovations in design go to the wall. Successful advancements can be narrowed down to a hand-ful- the steel body, the balloon tire, the high-compression engine, the hydraulic brake, coil springing, lacquer-type finishes, synchromesh transmissions, shatterproof glass. The rest have been minor refinements and embellishments, with the addition of more gadgets here and there. The fluid coupling and automatic transmission, representing an important improvement, still can be considered in the development stage, not having reached universal application or complete perfection.

It seems certain that steel is going to continue as the basic material for motor car construction. Obviously the light metals are going to be available in unprecedented quantities and at prices well below even their present level; but the manufacturing problem and the design problem will continue to be important obstacles. Present type of riveted or welded construction used on airplane fuselages will never be practical on automobiles because they are far too costly and suffer from an appearance standpoint.

Aluminum in fact has already been tried for automobile bodies, this being one project which the Aluminum Co. of America conceded was unfeasible. True, more experimentation may overcome previous objections, but who is going to underwrite the experiments when a perfectly suitable material is available in the form of steel?

With basic designs of motor cars not deviating too far from present concepts, the question then is what direction changes and improvements will take. Likely the first important improvement will be in transmissions. This trend has started with Chrysler's fluid drive and the Olds hydramatic transmission; but these are only a few steps in the direction of what will ultimately be developed -the completely automatic and infinitelv
variable ratio transmission. A promising device which accomplishes this which has had some application on buses is the hydraulic torque converter. One company now is building this equipment, but it is earmarked exclusively for the armed forces for use on tanks. However, it will be ready for postwar application to automobiles.
Export markets, if there are any left after the ravages of war, should prove a ripe field for motor car manufacturers. Much has been learned about improved methods of crating and shipping military equipment abroad, and this knowledge should be readily transhatable into seuding knocked-down automobiles to foreign buyers. Furthermore the possibilities of air shipment of export goods are tremenclous. The Army Air Forces, with the co-operation of operators of commercial air transport lines, have set up a veritable world-wide system of air freight and this network of supply lines will prove a boon to export shippers when peace comes.

\section*{Refrigerators for}

\section*{Distant Air Bases}

Airtemp Division of Chrysler Corp., working in co-operation with engincers of Pan American Airways, the Shear \& Turner Engineering Co. of Boston and the Lindsay Structure Division of the Dry-Zero Corp., Chicago, has made a notable contribution to the establishment of round-the-world bases for pilots and crews of these air cargo haulers. Special types of refrigerator buildings 78 feet long, 21 feet wide and \(81 / 2\) feet high, have been designed to be shipped knocked-down by air to bases in tropical jungles where they can be set up by native labor working under company supervision.

The structures are equipped with refrigerating units to preserve food supplies in the heat which sometimes rises to 130 degrees in the shade. Buildings are of a prefabricated type, involving a light and steel pre-stressed panel type of construction. Known as the Lindsay structure, the design achieves a high strength-weight ratio by placing 26-gage steel panels under tension between framing members, utilizing the strength of the steel panels to eliminate cross braces, gussets and struts. In addition, the accurately die-formed structure can be assembled quickly with simple wrenches, no welding or riveting being necessary. Likewise, disassembly is just as simple, permitting the buildings to be moved about and reassembled as desired. Inner wall panels carry the hermetically sealed

Seventy-eight foot refrigerator building under construction at one of Pan American Airways tropical bases. Buildings were shipped knocked-down and assembled in out-of-the-way locations by unskilled natives in three weeks each
compressor and refrigerating equipment, all piped and wired before shipment. The inner wall is set 8 inches away from the outer structural panel, with the space filled with insulation material. Roofs and floors are similarly insulated. The buildings are partitioned for various food storage conditions with temperatures ranging from 0 to 40 degrees Fahr. Fifteen unskilled natives and one Pan American supervisor have been able to erect one of the buildings in about three weeks.

\section*{War-Time Expansion in Automotive Industry}

Automotive Council for War Production reports production and employment in the automotive industry now are substantially above the highest level ever attained in peacetime, the industry now producing military equipment at an annual rate of nearly \(51 / 2\) billion dollars, or 32 per cent ahead of the peak peacetime yearly rate. Payrolls are rising at a rate of about 40,000 per month, and in August the industry was employing approximately 809,000 , a figure which is 20 per cent ahead of a year ago and 6 per cent ahead of the industry's previous peak.

New analysis of major armament contracts shows that seven companies are building aircraft engines in volume and two others are preparing to build them; nine companies are in production on fuselage subassemblies for airplanes; and four are manufacturing propellers. In addition, five companies hold contracts to produce complete aircraft of various types, and two of these companies have just about completed tooling work.

Military vehicles are being produced by 29 companies; seven are making
combat cars, half-tracs, tank destroyers and other armored vehicles. Eight companies are building tanks-medium, amphibian, light and special-purpose-with one plant alone turning out as many units as are produced outside the automotive industry.

Marine engines of several types and
sizes are in volume output in six automotive plants, one plant alone supplying more than half of Navy requirements.

Artillery, including aircraft and antiaircraft guns, tank and antitank cannons, field pieces, etc., is pouring from the plants of seven motor companies, while the eighth has nearly completed tooling. Gun carriages are being built by eight companies, and the same number of plants is turning out small arms. This survey covers some 772 motor vehicle, body, parts, tool and die plants.

Steady movement of war material from manufacturers' plants to embarkation points has thrown heavy load on railroad equipment, particularly flat-bottom gondola cars which are used to transport most crated products. Resultant shortage of these cars for other needs, such as movement of foundry sand, has meant that box cars or hopper cars will have to be used where formerly the flat-bottom cars were in service. It is difficult to remove bulk materials like sand from hopper cars where the material must be taken out by bucket or shovel, and not all plants are equipped to receive sand by dumping from the car. Furthermore box cars take a higher freight rate, despite voluble protests from shippers.

\section*{GRAHAM-PAIGE BUILDING "ALLIGATOR" TANKS}

AMONG weapons adapted to production in existing automotive plants is this amphibian tank shown during a test run on Lake St. Clair. Built by GrahamPaige Motors Corp., Detroit, the heavily armored vehicle is powered by an automobile engine which drives it twice as fast on land as on water. Known variously as the "Alligator," "Invasion Taxi" and "Jungle Jalopy," its effectiveness is reported to have been demonstrated in the Solomon Islands

\begin{tabular}{|c|c|c|c|c|}
\hline Height Position & Height Overall & Lift & TurnsIn. tersecting Aisles & Approximate Weight with Power Unit \\
\hline \(11^{1 / 8^{\prime \prime}}\) & \(83^{\prime \prime}\) & 113" & \(70^{1 / 2}{ }^{\prime \prime}\) & 7,000 lbs. \\
\hline \(11^{1 / 8 \prime}\) & 83" & 62" & 69" & 6,300 lbs. \\
\hline \(11^{\prime \prime}\) & 95" & 691/2" & \(76^{\prime \prime}\) & 7,500 lbs. \\
\hline
\end{tabular}

\section*{FORK TRUCKS}

F-23T

CRANES
Type Lbs. \({ }^{\text {Capacity }}\) a Length Width \(\begin{array}{llllllllll}\text { C-4 } & 3,000 \text { lbs. } 7^{\prime} & 107^{3 / 4^{\prime \prime}} & 50^{\prime \prime} & 12^{\prime}-19^{\prime} & 22^{\circ} & 15^{\prime \prime} & 41^{\prime \prime} & 17^{1 / 4^{\prime \prime}} & 69^{\prime \prime} \\ 10 & 10,800 \text { lbs }\end{array}\) \(\begin{array}{llllllllll}\text { CX-4 } & 6,000 \mathrm{lbs} 7^{\prime} & 13434^{\prime \prime} & 63^{\prime \prime} & 12^{\prime}-19^{\prime} & 204^{\circ} & 4058^{\prime \prime} & 63^{\prime \prime} & 161 / /^{\prime \prime} & 94^{\prime \prime \prime} \\ 13, & 13,400 & \text { lbs. }\end{array}\)

Elwell-Parker concentrates on these basic types, to give you deliveries of Trucks and Cranes that will meet your scheduled requirements, saving ormultiplying manpower to handle your War Loads. Ask ElwellParker Engineers to survey your Plant. The Elwell-Parker Electric Company, 4501 St. Clair Ave., Cleveland, Ohio.

Ideas for improvements in shop practice rolling into aircraft manufacturers by thousands, slashing time and costs. . . . Rushing spare parts. . . . 400 design changes in latest Flying Fortress

BECAUSE it is a comparative nevcomer to the field of mass production, aireraft mamufacturing offers exceptional opportunities for the introduction of new ideas and time-savins "shop kinks". Throughout the industry, an outpouring of ideas by men and women at work has developed principally from the stimulating effect of war production drives which most plants have lamehed in co-operation with the WPB.

Suggestions by the thousands are being, examined regularly and are introduced in plant operations as fast as they can be adapted. Savings in cost and time are being realized which could not be bought for any price in peacetime production, and the net effect may be that the aircraft industry will "come of age" long before its normal expectancy because of this foreed-feeding of war vitamins in the form of employe surgestions for improving production methods.

A quick look at some of the specific blants is of interest. An employe at Douglas Aircraft, observing the four hours of work involved in painting walkway stripes on topsides of wings, developed a grooved roller with an attached paint reservoir which completed the job
in 20 minutes and did away with the former procedure of masking the area adjacent to the 142 feet of striping and then spray painting the stripe. And the new striper costs only \(\$ 10\).

Two other Douglas employes went to work on an overhead drill that was giving a lot of trouble in the form of excessive drill breakage resulting from new operators' improper handling of the equipment. The inventors removed the human element altogether from the drill by fitting a regulator to it which controls the drill pressure automatically at a present level. In revisince the pressure control, they eliminated two Logan valves, two vertical check valves, one horizontal check valve, four solenoid valves, six microswitches, one air gage and several pipe fittings. As now set up, the machine drills three holes to the former one, completing 24,000 holes daily in Flying Fortress wing spars.

Two small castinos. a spring and three pins were involved in the assembly of stretcher-holder attachments for a Douglas cargo shin. Fitting them together took time, taxed assemblers' patience. So an ingenious employe worked out a combination snueezer tool attachment and iig for holding small parts together

\section*{"COMPOSITE" TESTS PROVE INTERCHANGEABILITY}

TWO "composite" Pratt \& Whitney aircraft engines with half the parts built by P. \& W. at East Hartford, Conn., and half by Chevrolet Motor Co. under license, move down the final assembly in an interchangeability test, which was successfully passed. Ford and Buick parts passed similar tests
until attaching pins could be squeezed and their ends spread. His suggestion saves 20 minutes per part and there are 26 parts per ship.
Still another keen-thinking employe, noting the frequent buckling and tearing of clural sheets after being struck in the lead-zine dies of a forging hammer, conceived the idea of making the mating hold-down edges wavy instead of llat, giving greater hold-down area. This simple kink licked the tearing problem -and netted its progenitor \(\$ 100\) in war stamps as well.

\section*{Many Other Awards}

Hundreds of other awards have been made to Douglas employes who are continuing to send in a flood of suggestions. Reading down a list of awards and the suggestions which earned them, the following devices are just a few of those mentioned: Burring tool guard; simplified uncoupling device; metal shield for painting windows; adjustable plate for filing bevels; clamp for spotwelding nut plates; adjustable drill iig: height lock for vertical cam follower for spar cap mill; combination spirit level and indicator; fixed gem bore sight; use of kerosene on hydropress form blocks; screen for air vent on motors; adjustable stop for air router motor: die holding spring for smoothing hammers; power rasp for wood, kirksite or plaster; and a sprine steel quick-change rivet set retainer, which saves 3 pounds of rubber bands per shift!

No one airplane company has a corner on shop suggestions. Skip across the country to the Glemn L. Martin plant on the East Coast where employes are feeding in shop sugqestions to win cash awards and membership in a new legion of honor which has been dubbed the Order of the Purple Martin. Hundreds already have been given awards for their ideas.

A sheet metal worker, observing that he had to use three separate portable drills to sink one hole in a certain part, sat down and designed a special tool which forms the hole in a single operation. Another workman devised a battery of machines to segregate usable parts such as rivets from floor sweepings and to return them to production. A third devised a special tool to permit slipping rubber tires on rims of beaching and landing gears without damage to rubber or rims. Another built a riveting hammer with a flexible peen to facilitate driving rivets in cramped quarters. Another worked out a simple device which prints and applies identification tape to tubing and small parts.

A power operated cleaning brush that

\section*{SHAFTS}

\section*{SUNOCO} helps machine better war Whether it's shafts or shells, axles or Oil is utilized on many operations. . .ith no sacriacks," Sunoco Emulsitying proving a production stimulan emulsifiable cuting ope
ting oil. Exceptionally Sunoco is increasing tooperties preserve the high heat-absorbing propermitting longer cutting edge of tools...en tool grinds, fewer operating periods bet changes - more productime outs
tion per shift. Sunoco is making possible greater feeds and speeds. Because of the excellent heat dis more in accuracy or finish. Maintenance of Sunoco is reducing rejects. finishes, lewer close tolerances, smoother to cut rejects to tool set-ups
a minimum. of Industry - experiSun Doctors of Ining experts - are enced metal-wornd able to show you ready, willing and speed your war how Sunoco call one in today. For production. Caw they are helping examples of how copy of "Helping others, get your america." Write
Industry Help Ampia
cleans hulls of flying boats preparatory to painting was the brainchild of a Martin production soldier and it yielded a 40 per cent reduction in cleaning time. A new locating tool for spot welding stiffeners on pilot seats now means three seats produced in the time two formerly required. A rotary file and guide has eliminated hand filing of aluminum skin and effected savin ss of thousands of man-hours. A new safety lock for crane controllers has anticipated the possibility of rrane arcidents and removed a potential hazard.

\section*{Need for Spares Grows}

The problem of keeping the Air Forces supplied with spare parts is no small task and manufacturers have been obliged to organize complete departments devoring their full time to spare parts schoruling, production and shipment. This activity at Bell Aircraft Corm.. Buffaln. N. Y., is in charge of R. Will-ing. M. E. Rene. Ted Hertel and Ray Hoemke, and a large staff.

Parts supply is carried out through

Speeding up hardness testing of bomber parts at Brewster Aeronautical Corp. has been effected by the use of a comparator in connection with a Rockwell tester, with foot control of the former leaving both hands of the operator free to handle parts. Comparator comprises a tablemounted yoke supporting a penetrator placed over an anvil. Die end of the penetrator is the same size as that used in the Rockwell instrument. The anvil moves upward against the penetrator under air pressure of 100 pounds per square inch. Depth of indentation is shoun by a dial indicator, which is calbrated against a Rockwell gage, with one segment or "reject area" painted red to facilitate quick reading by women operators
the co-operative efforts of the Materiel Division of the Army Air Forces at Wright Field and the contract and production control divisions at Bell. Orders for service parts are negotiated with the government by the contracts division and are divided into three classifications: Initial order contracts, regular stock orders and emergency orders.

When new planes are ordered, provision is made for shipment of an initial quota of parts to reach the same destination at the same time. Selection of parts and their quantities are decided upon in joint session between an Air Force "spares selection team" and the Bell contract division, assisted by engineers, service experts and estimators from the contractor's plant. Included in initial orders are everything from bolts and nuts to wing and fuselage assemblies, wi'h such other parts as are required to stock the major denots and provide for replacement requirements during the first few months that the plane is in service.

Supplementing initial orders, additional spare parts are also required by the Air Forces to maintain their regular stocks. These are established at control
depots, which are Air Force distribution points, and at supply bases or subdepots behind the lines and at the fighting fronts. As more planes go into service on wider fronts the demand for such parts mushrooms.

Most urgent of all demands-emergency orders-are being requisitioned daily by telephone and tele-raph from the material division at Dayton, \(O\). Nothing can stand in the way of these rush orders, preference being given to compretion and shipment of most vitally needed parts.

When an order is received by the Bell spare parts organization it must first be checked with the engineering department for nomenclature, accuracy of part numbers and for insurance that it is of current design. Next it must be checked with the planning engincers to see that it can be produced by the plant and installed in the field. Then price must be obtained from the estimating department, and a shipping date from production control. Finally arrangements must be made with production control for scheduling and shinpinr. Watch must be kent over other details such as segregating materials and crating.

\section*{Propeller Plant Workers Devise Means To Utilize Tools to Utmost}

Demand for more and more airplane propellers was a signal and a warning to production men at Hamilton Standard Propellers division of United Aircraft Corp., East Hartford, Conn., that ail available machine tools must be operated to their utmost, and that short cuts must be worked out.
Certain types of machine tools were found to be carrying much heavier loads than others. Therefore, an immediate need was to adapt operations wherever possible to other and less scarce machine tools, or to make one "critical" machine to do the work of two or more.
An example of this type of planning was the adaption of a Morton keyseater to do work which had been tying up a Pratt \& Whitney vertical shaping machine with a rotary table which was needed on other and larger work. The operation was the generation of a hex for wrench adjustment into the piston which serves as a combination piston and propeller retaining nut on all controllable pitch propellers.
The Morton keyseater, as shown by Fig. 1, opposite page, was converted into an automatic machine for this operation
by use of special fixtures. A Geneva motion with a cam arrangement was utilized, feed being obtained from the cam and divisions from the Geneva mechanism. The setup eliminated the need for a highly skilled operator, conserved floor space, provided an 80 per cent saving in labor and increased production 40 per cent.

Smooth finish of parts under stress loads, such as the spider which positions the blades, is a "must" in propeller manufacture. For instance, the arms of the spider. whether for a two, three or four-blade propeller, are bored through the center to cut down weight. All these bores must be polished.

To free for other use a turret lathe which was used on this job, production tion men of Hamilton Standard and Cheney Bros., designed the special eccentric polishing head illustrated in Fig. 2. Eccentricity is obtained by means of cams. Incorporation of a work holder and a feed mechanism made the machine semiautomatic and a special bob was designed to form the radii at the bottom of the arm bore.
The operator simply clamps the work in the holding fixture, starts the ma-

(1)

Fig. 2-Job of precision finishing these holes in propeller spider arms formerly tied up a turret lathe. Now this eccentric grinder fitted up with special indexing and work-holding device does the job in onethird the time

Fig. 3-This is the "incoming side" of a Lapointe broaching machine tooled up for making out of standard rectangular barstock, U-shaped retainers which previously required special extruded stock and a precision grinding operation

Fig. 4-Here we see the "outgoing side" of the same machine shown in Fig. 3. Note successive steps of notching, rounding and cutting-off, through which three finished retainers are dropped off at each stroke of the multitooled ram
chine and throws in the feed, whereupon the eccentric spindle continues to operate until a stop terminates the operation. Following withdrawal of the spindle the work table is indexed and the same procedure is repeated for each arm The entire operation of polishing armbores and radii is thus performed in less than one-third the time formerly required.

Hydromatic propellers require a large quantity of spring pack retainers, 16 being provided for each blade. These small U-shaped parts hold the springs which provide the drive between gear segment and propeller blade for changing pitch. They are in effect shock absorbers for this drive mechanism.
Originally, especially formed extruded bar stock was used. This was first (Please turn to Page 105)

Fig. 1-By fitting this Morton keyseater with Geneva indexing mechanism and cam feed, it was converted into an automatic "hexing" machine, thus releasing a Pratt if Whitney vertical shaper which was needed on other work of larger size

\title{
Shipbuilding Program Expanded; Dominion Making Own Magnesium
}

\section*{TORONTO, ONT \\ SHIPBUILDING activity in the Do-} minion has been extended until the program includes expendiṭures of \(\$ 750,000\),000 , an increase of more than 50 per cent over the value of contracts placed to the end of 1941. C. D. Howe, minister of munitions and supply, has announced that contracts have been awarded for nearly 300 cargo ships of 10,000 tons capacity, at cost of about \(\$ 600,000\),000 . A number of these craft have been launched and delivered.

Since the outbreak of the war Canadian yards have launched more than 200 combat ships, including corvettes, minesweepers, patrol boats, base ships and other vessels. Keels are being laid for two destroyers. Some 1000 smaller craft, ranging from lifeboats to motor torpedo boats, have been launched and 1500 more are under construction. Shipbuilding branch of the Department of Munitions and Supply has purchased 50
yachts and motor boats and 20 smaller craft have been chartered.

Shipbuilding is under way in 21 major shipyards and 58 smaller yards on the east and west coasts, the St. Lawrence and the Great Lakes. Personnel has increased to 40,000 workers. Under direction of a controller of ship repairs and salvage, extensive facilities for repair have been provided at cost of about \(\$ 6,000,000\). These include a floating dry dock, additional docking space, new machine shop buildings and tools for repair work.

In the construction of one corvette ten miles of pipe and tubing are used, 14 tons of anchor chain, 38 tons copper wire, 600 electric light bulbs, nearly 1500 bronze valves weighing from less than half a pound to more 700 pounds and 1000 tons of steel shapes and plates in the hull.

The new government-owned plant of Dominion Magnesium Co. at Haleys

\section*{LONDON BUILDS "TOWNS" 100 FEET UNDERGROUND}

LONDON: One hundred feet underground and capable of housing over 8000 persons, this gigantic new London bomb shelter contains complete eating, sleeping and medical quarters. A battle could rage above it, without harming its inhabitants, away from bombs, gas and shells. Eight of these towns are to be built beneath cities, four north and four south of the Thames and will be converted for underground railway systems after the war. Here one of the attendants is cleaning folding bunks which when pushed back give clear space for workers. NEA photo

Corners, near Renfrew, has been placed in operation and Canadian magnesium now is available for the first time. Until now Canada's entire supply has been imported from the United States. When demand became acute for flares, night bombs, shell fittings and pyrotechnics the metals controller and National Research Council devised new production methods. Research workers in Canada and the United States developed a thermal process for extracting metallic magnesium from dolomite, of which there are large deposits in Ontario.

Wartime Metals Corp., a governmentowned company, was formed to supervise production and Dominion Magnesium Co. was incorporated as a private concern to build and operate the \(\$ 5,000\),000 plant without profit. Entire output will be used for war purposes and new units will be added at once.
J. H. Berry, motor vehicle controller, has issued an order limiting production of clutches, axles and other essential passenger car and light truck replacement parts to 70 per cent of the quantity made in the corresponding three months of 1941 . The order permits manufacture of replacement parts for heavy trucks, buses and truck trailers, under a quota set at 125 per cent of 1941 production. Distributors' inventories in eastern Canada have been restricted to 60 days' supply but in western Canada, remote from manufacturing centers, 90 days' supply is allowed. Used parts must be returned in exchange for new, to be used for scrap.

All-out war production, with strikes and industrial disturbances postponed for the duration, was the keynote at the annual convention of the Canadian Congress of Labor. Labor Minister Mitchell and A. R. Mosher, president of the Congress, emphasized the necessity for maintaining constant production for the war effort.

\section*{Palladium Replaces Platinum In British Jewelry Trade}

Palladium alloys are finding increasing use in England in the jewelry trade as substitutes for the more expensive and less easily obtainable platinum alloys, according to unofficial reports to Washington.

Palladium is similar in general appearance and in other characteristics to platinum and is hardened by the addition of ruthenium, another member of the platinum metals group. These pal-ladium-ruthenium alloys are being used to replace iridium-platinum alloys, which are required for vital war purposes. The price of palladium is reported to have remained unchanged.

R. R. Nathan, left, chairman of WPB's planning committee, inspects differential pinions made by new Timken process that "speeds production and will save a million pounds of high-grade steel this year at the current production rate." At right, explaining the process, is Willard F. Rockwell, board chairman of Timken-Detroit Axle Co. Mr. Rockwell is now serving as director of production for the United States Maritime Commission

\section*{Forged Pinion Saves}

\section*{Tons of Steel}
"MAKING more-faster-from less, is a stiff challenge to American industry, but production men can be depended upon to come up with the answers," said Willard F. Rockwell, board chairman, Tim-ken-Detroit Axle Co., in a recent discussion of the steel situation. As an example of how steel can be saved, he described a new Timken process for making differential pinions, a small but important part of every military truck axle.
"Thanks to this new process, we are now making more differential pinions per day-are making them faster-and at the same time will save about 1,000 , 000 pounds of high-grade steel this year at the current production rate.
"These differential pinions have a special tooth form developed by Timken for the United States Army and require special gear cutting machines. Every driving axle requires four of these differential pinions and because nearly all Army trucks use three driving axles, 12 differential pinions per truck are required. With the tremendous volume of military trucks now being manufactured, we did not have sufficient gear
cutting capacity to meet 24 -hour per day production requirements.
"We turned to our forging division, and out of it all came a process for forging pinion teeth to the same finished dimensions and with the same accuracy as obtained from the gear cutting.
"We used to machine the smallest differential pinion from a piece of steel bar weighing 1.65 pounds. We now forge this pinion with the teeth forged to the accurate finished dimension, from a steel forging billet weighing 0.92 pounds, a steel saving of 44 per cent.
"On a larger differential pinion, we forge from 2.12 pounds of steel instead of machining from a piece of steel bar weighing 4.77 pounds, showing a saving of 55 per cent."

\section*{New Containers}

\section*{Conserving Tin}

Creation of new types of containers to meet the conditions of war has been one of the more important, if little publicized packaging developments which have taken place in the last year and a half. Process of change is continuous.
The containers industries are highly specialized, and, as a result, have not
been able to convert their facilities to the production of a large volume of direct war items. "Conversion" in the containers industries, has meant instead, the invention of new types, and adaptations of old types, to meet the peculiar requirements of war.
The steel shipping container industry, for instance, has turned out an American version of the "blitz" can-a multi-purpose 5 -gallon can which is used by the armed forces for carrying all sorts of liquids. This container can be used for water, oil, or gas, and can be carried by one or two soldiers. Although made of heavy steel, the cans are designed to float even when full.

Fibre can manufacturers have developed a shell container, a spiral wound tube with metal ends, which afords maximum protection to all sizes of shells from the time they are made until they are used.

\section*{Diversity of Products}

Diversity of the products which are needed by the armed forces indicates that there are few containers which do not have some degree of essentiality.

Containers are necessary to help maintain not only the man behind the gum but the man on the production front as well. Tin cans, for instance, are being used to pack fruits and vegetables going to the Army, to civilians, and to LendLease; containers are being produced to hold evaporated milk and other essential subsistence items; ration carns for distribution to soldiers are being produced by the million; for each antiaircraft or other shell requiring a fuse or motor, one hermetic seal must be produced; containers must be provided for the vital blood plasma for the Army and the Red Cross.

The collapsible tube industry is producing tin and lead tubes for burn ointments, medicinal products, and of comrse, shaving cream and toothpaste.

Steel barrel and pail industries are making twice as many containers this year as in nornal years. About 75 per cent of the total is going directly to the armed forces, while the need for the remaining 25 per cent can be traced indirectly to the war effort.

Among the steel containers going directly to war are those for oil and grease for tanks and airplanes, as well as for some food items such as shortenings. The indirect war items include paints, petroleum products, and fuel for productive machinery. The tight cooperage industry is also making a substantial contribution to the number of containers provided for those purposes.

Some of the large container companies have converted their machine shops to production of such items as gun mounts, breech blocks and shellmaking machines.

Fig. 1-Following award of the " \(E\) " to
 the Struthers Wells Titusville Corp., Titusville, Pa., President J. T. Dillon Jr. conducted the service officers on an inspection tour of the plant. Left to right: Lieut. Col. A. F. Witte, executive officer, Cleveland Ordnance District; Comm. R. G. Walling, resident inspector of Naval materiel; Mr. Dillon; Comm.
R. G. Lowry, British Navy

Fig. 2-Admiral Emory S. Land presents Labor Merit Insignia to oldest workers in each department on the occasion of presentation of the Maritime Commission " \(M\) " to Combustion Engineering Co. Inc., Hedges-Walsh-Weidner Division, Chattanooga, Tenn. Colored worker has 48 years of service

\section*{- 0 -}

Fig. 3-Licut Col. Edward H. Bowman, chief of Chicago procurement district, delivers the " \(E\) " pennant to George Purdy. president, Greenlee Bros. \& Co., Rockford, Ill. Colonel Bowman said: "The Army Air Force congratulates management and craftsmen on excellence in workmanship embodied in the critical machines which you build." Among those to which he had reference are huge "transfer machines" which are playing an important role in mechanized production of aircraft engines

\section*{- 0 -}

Fig. 4-Omaha Steel Works, Omaha, Nebr., received the burgee Sept. 9. Shown are participants in the ceremony, including Army and Navy officers, company executives and civic officials. In foreground are members of the Father Flanagan's Boys Town band

\section*{Republic's Valley}

\section*{Plants Win Flags}

Cited for records in bonds and production; veterans participate in ceremonies; Sons in Service

TWELVE veterans of World War I or fathers of sons now in service, representing as many departments, were chosen to raise the Treasury's "minute man" flag over Republic Steel Corp.'s Youngstown works. Flag was awarded after 92 per cent of employes had subscribed to company's payroll deduction plan for the purchase of War Bonds.

Flag was presented to Roy L. Leventry, district manager, by David E. Jones, chairman of the Youngstown Chamber of Commerce War Bond committee.

Mr. Leventry said the award "is proof that the men of Republic are supporting the war effort with their dollars as well as their work." Since Pearl Harbor, he added, the plant has broken 161 eighthour production records, 71 twenty-fourhour records, and 33 monthly records.

The "minute man" flag raised over Republic's Dilworth-Porter plant in Pittsburgh last Thursday, bore in the lower

Republic Steel Corp.'s Youngstown works receives the Treasury's "minute man" flag for exceeding the 90 per cent War Bond goal. In the background of above photo maiy be seen the large new blast furnace, built by Defense Plant Corp., which will be put in blast on or about Oct. 1
right-hand corner an additional " T " emblem, signifying that the employes had

MAJOR H. R. Battley, Army Air Corns, congratulates L. W. Kemp, manager of the International Smelting o Refining Co.'s Raritan Copper Works, Perth Amboy, \(N\). J., as the plant receives the Treasury " \(T\) " for 100 per cent employe participation in the War Bond drive. Left to right: J. A. Ramsey, chairman of the Middlesex county payroll saving committee; Mr. Kemp; Major Battley; Frederick Laist, vice president in charge of metallurgy and E.O. Sowerwine, assistant to the president, both of the Anaconda Copper Mining Co., parent organization
subscribed 10 per cent or more of the payroll to the purchase of bonds. Actually the 215 employes, representing 100 per cent participation, have pledged 11.2 per cent of their pay.

A committee of ten employes, headed by Bert Craig of the bar mill mechanical maintenance department, accepted the flag from C. B. Nash, reresenting the Treasury Department. The ceremony included dedication of a company service flag with 20 stars.
On the platform with the committee were B. F. Handloser, gencral superintendent of the plant, and two additional employes, John May and Walter Gilbert, each of whom has three sons in the service. They participated in the dedication of the service flag which was presented by Earl M. Richards, assistant vice president in charge of operations

Perfect score in the purchase of War Bonds was celebrated at the Truscon Steel Co. plant, Youngstown, when the "minute man" flag was raised last week. Truscon is a Republic Steel sulbsidiary.

All of the 2500 employes have signed up for purchase of War Bonds and subscribed for a total of more than 11 per cent of the payroll.
The flag was presented by Mr. Jones and accepted for the employes by W. M. Kelley, Truscon works manager. On the platform with Mr. Kelley and C. B. McGehee, general manager of sales, were more than dozen employes, sons in the armed services.

\section*{Peru To Build \$15,000,000 Steel Plant with United States Loan}

CONTRACT for establishment of a Peruvian steel, iron and coal industry was signed Sept. I at Lima, to cost \(\$ 15,000,000\), funds to be provided by the United States. Ministry of Fuels and Public Works of Peru approved and announced the project last week. H. A. Brassert \& Co., industrial engineers, of New York, Pittsburgh, Chicago and London, are contractors for the Peruvian government.
Construction cost will be met from a \(\$ 25,000,000\) credit granted to Peru by the Export-Import Bank under an agreement between the two countrics signed in April, 1941. The steel, iron and coal investment is self-liquidating and is to be amortized within seven and a half years after the beginning of production. Annual output of 100,000 metric tons of finished iron and steel products is planned.

The Brassert firm is to receive a fee of 7 per cent of the cost, excluding insurance and various other charges, and is to supervise teclmical operations of each new unit for six months after completion, before turning it over to the Peruvian govermment. Negotiation of the contract was carried out by Alexander C. Barker, vice president and a director of the Brassert company.
Three main territorial divisions are set up, as follows:
Exploitation of iron mines of the Marcona region, within ten to fifteen kilometers of San Nicolas and San Juan bays and 400 kilometers south of Callao.

Exploiting of coal deposits in the Santa and Chuquicara Valleys, about 110 kilometers inland from the port of Chimbote, which is 350 kilometers north of Callao.

\section*{Peri's Largest Development}

Installation of a blast furnace and steel producing and finishing mills, docks and transport facilities at the port of Chimbote, which will become the center of the new industry.
This development is the largest industrial program in the modern history of Peru. It is estimated 4000 men will be engaged in construction for two or three years. The completed works and allied industries will give employment to 5000 men.
Iron ore deposits of Marcona lie near the bays of San Nicolas and San Juan, either of which would provide suitable harbor and shipping facilities. The deposits are close to the surface and for the
first ten or 15 years at least mining wili be by the open-pit method. Drilling operations have proved up reserves of \(10,000,000\) tons, of which \(6,500,000\) tons are positive and the remainder probable. Plans call for open-pit mining of 500,000 tons per year for 15 years.

Exportation of iron ore to the west coast of the United States has been considered but probably will not be undertaken for some time, as it may prove more profitable to export pig iron from Chamhote than raw ore from Marcona.

\section*{Coal Reserves Are Large}

So far as known, Peru has the largest coal reserves of any South American country, including coal of high grade which can be exported advantageously and which is suitable for metallurgical purposes. Reserves are estimated at a billion tons, ranging from high-volatile bituminous to anthracite. The bituminous coals are at relatively long distances from seaboard and at present are inaccessible to economical transportation.

Initial development of anthracite production on a large scale for export and for consumption at the iron and steel plant will be at Galgada, on the Chuquicara branch of the railway. A single mine in this area will produce all the coal needed for the initial program, 500,000 tons per year. About 80,000 tons will be needed for the blast furnace and the remainder will be prepared for export.
Of raw materials, other than coal, ore and limestone, manganese is most indispensible and 700 to 1000 tons of S0 per cent ferromanganese must be inported amnually.
Organization of a cement industry at Chimbote is under consideration, to utilize the blast furnace slag in production of cement of Portland quality.

One of the principal installations at Chimbote will be a mole, with a deep water dock about 925 meters long. Work on the first section is now under way. The dock is planned to accomodate ore freighters up to 17,500 tons or more. The iron and steel plant proper will include one 300 -ton blast furnace; duplex steel plant; Curran-Knowles coke ovens; three-high breakdown mill; sheet bar mill; sheet mills; merchant mill; wire mill, bright and galvanized; factory for bolts, nuts, barbed wire, nails, ete.; cast iron pipe foundry; boiler and power p!ant.
The rolling mills are designed to roll
light sections and rails up to 35 kilograms per meter. Provisions has been made for installation of heavier production unito if sufficient demand develops.

This is the second steel plant development in South America for which the United States has made a loan. In September, 1940, the Export-Import bank loaned \(\$ 20,000,000\) to the Brazilian government for this purpose, an additional \(\$ 25,000,000\) to be furnished by Brazilian interests. The loan was to be payable in 20 semi-annual installments, the first to be due in three ycars from the date of the first advance.

Contract for building a complete steel plant was let in December, 1940, to Arthur G. McKee \& Co., Cleveland. It included coke ovens, a 1000-ton blast furnace, open-hearth plant with annual capacity of 350,000 tons, and rolling mills to produce a complete range of products from heavy semifinished steel, rails and structurals to finished sheets and tin plate. The plant was estimated to cost about \(\$ 36,000,000\), a company capitalized at \(\$ 45,000,000\) being formed. Two and a half to three years was estimated as necessary for corspletion.

Bolivia and the United States have signed an agreement for a metal production development to cost about \(\$ 25\),000,000 . At the request of the Bolivian government an economic mission from the United States is studying stimulation of metals production, particularly by small mines.

\section*{Mineral Production in Western China Improves}

Since the development of western Clina began, the government has attempted to promote and encourage mining, according to a report to the Department of Commerce.
A number of new concessions have been granted but these as well as older established operators are hampered by lack of techical personnel, machinery, and transportation facilitics.

Production in unoccupied China during 1941 is reported as 11,500 tons of tungsten, 7600 tons of antimony, 7000 tons of fine tin, and 120 tons of mercury. Increases in copper, lead, zinc, and gold were mentioned. The present coal output is estimated at \(6,000,000\) tons annually.
The 1941 production of foundry iron was 10,000 tons which was hardly sufficient to meet the more important requirements of the country.
One of the important discoveries was the oil fields in northern Kansu, which the Bureau of Mining states produced \(3,630,000\) gallons of crude oil last year.

\section*{THE BUSINESS TREND}

\section*{Activity Index Climbs} To New Peak Level

STEEL's index of industrial activity rebounded sharply from the slight dip recorded during the Labor Day week to reach a new peak of 176.7. This represents a gain of 5.5 points over the holiday week figure, more than recovering the ground lost during that period.

Further expansion in production of military goods has been noted in recent weeks, which accounts for the almost steady upward trend of Steel's index. Output of machinery, transportation equipment, and nonferrous metals are also showing steady gains. -

Growing shortages of materials and manpower in the face of rapidly expanding war needs continues to hamper output of military goods. Longer work-weeks have been
instituted in some lines to alleviate the shortage of skilled men.

Electric power consumption rose to a new record high during the week ended Sept. 19. Power output in that period amounted to \(3,756,922,000\) kilowatts, an increase of 14.8 per cent over that recorded in the like 1941 week. Output for the preceding holiday week has been revised upward slightly to \(3,583,408,000\) kilowatts.

Railroad freight traffic during the latest period is estimated to have recorded a sharp recovery from the less than seasonal dip registered during Labor Day week.

Steel ingot production har. fluctuated only slightly in recent weeks, holding steady at about 93 per cent of ea-j pacity. Last year at this tine the national steel rate stond at 96 per cent. The spread between current output and that of a year ago is larger than the percentage fig. ures would indicate, due to the steady expansion of production facilities in recent months. Steel scrap collec. tions are somewhat improved, but are only slightly more than sufficient to sustain steel production.

STEEL's index of activity gained 5.5 points to 176.7 in the week ending Sept. 19

Note: Weekly and monthly indexes for 1942 have been adjusted to offset the forced curtailment in automobile production and to more accurately reflect expanding steel production.

\section*{THE BUSINESS TREND}

\section*{Auto Production}
\begin{tabular}{|c|c|c|c|c|}
\hline Week ended & 1942 & 1941 & 1940 & 1939 \\
\hline Sept. 19 & 21.0 & 60.6 & 78.8 & 54.0 \\
\hline Sept. 12 & 19.6 & 53.2 & 66.6 & 41.2 \\
\hline Sept. 5. & 16.9 & 32.9 & 39.7 & 28.9 \\
\hline Aug. 29 & 21.1 & 40.0 & 27.6 & 25.2 \\
\hline Allg. 22 & 20.2 & 45.5 & 23.7 & 17.5 \\
\hline Aug. 15 & 19.2 & 45.6 & 20.5 & 13.0 \\
\hline Aug. 8 & 19.2 & 41.8 & 12.6 & 24.9 \\
\hline Aug. 1 & 18.3 & 62.1 & 17.4 & 28.3 \\
\hline July 25 & 18.3 & 105.6 & 34.8 & 40.6 \\
\hline July 18 & 17.9 & 109.9 & 53.0 & 47.7 \\
\hline July 11. & 23.0 & 114.3 & 65.2 & 61.6 \\
\hline July 4 & 22.7 & 96.5 & 52.0 & 42.8 \\
\hline June 27. & 22.9 & 127.9 & 87.6 & 70.7 \\
\hline June 20 & 23.2 & 133.6 & 90.1 & 81.1 \\
\hline June 13. & 22.3 & 134.7 & 93.6 & 78.3 \\
\hline
\end{tabular}

Figures since Feb. 21 last include Canadian trucks and automobiles and United States trucks.

Freight Car Loadings
(1000 Cars)
\begin{tabular}{|c|c|c|c|c|}
\hline Week ended & 1942 & 1941 & 1940 & 1939 \\
\hline Sept. 19 & \(900 \dagger\) & 908 & 813 & 815 \\
\hline Sept. 12 & 815 & 914 & 804 & 806 \\
\hline Sept. 5 & 888 & 798 & 695 & 667 \\
\hline Aug. 29 & 899 & 913 & 769 & 722 \\
\hline Aug. 22 & 889 & 900 & 761 & 689 \\
\hline Aug. 15 & 869 & 890 & 743 & 674 \\
\hline Aug. 8 & 850 & 879 & 727 & 665 \\
\hline Aug. 1 & 864 & 883 & 718 & 661 \\
\hline July 25. & 856 & 897 & 718 & 660 \\
\hline July 18. & 857 & 899 & 730 & 656 \\
\hline July 11 & 855 & 878 & 740 & 674 \\
\hline July 4 & 759 & 741 & 637 & 559 \\
\hline June 27 & 853 & 909 & 752 & 680 \\
\hline June 20. & 840 & 886 & 728 & 643 \\
\hline
\end{tabular}
\(\dagger\) Preliminary.
fTEEL

\begin{tabular}{|c|c|c|c|c|c|}
\hline 1300 & 1939 & 1940 & 1941 & 1942 & \\
\hline & गा11111 & TIITITM & TITIT1 & ， & \\
\hline 120 & & BUILDING & ONTRACTS & ， & 00 \\
\hline 1100 & & total valuation & N in 37 States & & 1100 \\
\hline \multirow[t]{2}{*}{－} & & & & ｜ & 1000 \\
\hline & & & & & \multirow[t]{2}{*}{800 吕} \\
\hline 8ี8 800 & & & & 1 & \\
\hline \＃ 700 & & & & & 700 \begin{tabular}{c}
a \\
n \\
\\
\hline
\end{tabular} \\
\hline \({ }_{2}^{5} 600\) & & & & \(N\) & \multirow[t]{2}{*}{\[
600
\]} \\
\hline 者 500 & & & & & \\
\hline 400
300 & & \(\checkmark\) & & & 400 \\
\hline 300 & \(\checkmark\) & & & & 300 \\
\hline 200
100 & & complite er & & & 200 \\
\hline 100 & CTEFEL & complite er & \({ }^{*}\) Doogt CORP & & \\
\hline & ＋لبいい & い1いいいい & いいいいい & 11，11．1 & \\
\hline
\end{tabular}

\section*{Construction Total Valuation}

In 37 States
（Unit：\(\$ 1,000,000\) ）
\begin{tabular}{|c|c|c|c|c|c|}
\hline & 1942 & 1941 & 1940 & 1939 & 1938 \\
\hline Jan． & \＄316．8 & \＄305．2 & \＄196．2 & \＄251．7 & \＄192．2 \\
\hline Feb． & 433.6 & 270.4 & 200.6 & 220.2 & 118.9 \\
\hline Mar． & 610.8 & 179.9 & 272.2 & 300.7 & 226.6 \\
\hline April & 498.7 & 406.7 & 300.5 & 330.0 & 222.0 \\
\hline May & 673.5 & 548.7 & 328.9 & 308.5 & 283.2 \\
\hline June & 1190.3 & 539.1 & 324.7 & 288.3 & 251.0 \\
\hline July & 943，8 & 577.4 & 898.7 & 2999 & 239.8 \\
\hline Aug． & 721.0 & 760.3 & 414.9 & 312.3 & 313.1 \\
\hline Sept． & & 623.3 & 347.7 & 323.2 & 300.9 \\
\hline Oct． & & 606.3 & 383.1 & 261.8 & 357.7 \\
\hline Nov． & & 458.6 & 380.3 & 299.8 & 301.7 \\
\hline Dec． & & 431.6 & 456.2 & 354.1 & 389.4 \\
\hline Ave． & & \＄500．6 & \＄333．7 & \＄295．9 & \＄266．4 \\
\hline
\end{tabular}

Machine Tool Output
（000 omitted）
\begin{tabular}{|c|c|c|}
\hline & 1942 & 1941 \\
\hline Jan． & \＄83，547 & \＄50，700 \\
\hline Feb． & 84，363 & 54，000 \\
\hline Mar． & 98，358 & 57，400 \\
\hline April & 103，364 & 60，300 \\
\hline May & 107，297 & 60，800 \\
\hline June & 111.147 & 63000 \\
\hline July & 113，600 & 57，900 \\
\hline Seven Months & 671，629 & 404，100 \\
\hline Aug． & & 64，300 \\
\hline Sept． & & 68，400 \\
\hline Oct． & & 77，200 \\
\hline Nov． & & 74，600 \\
\hline Dec． & & 81，435 \\
\hline Year & & \\
\hline 1942 est． & & 1，500，000 \\
\hline 1941 & & 775，300 \\
\hline 1940 & & 450,000 \\
\hline 1939 & & 210，000 \\
\hline
\end{tabular}

lathe work. This includes straight and taper turning, chuck and face plate work and thread cutting.

Next ho joins the bench and assembly group, where for ten more weeks he learns jig and fixture making.

Then he spends 12 weeks with the milling machine sroup, learning both plane and universal milling, the cutting of spur and bevel gears, the milling of cutters and reamers and special milling.

During the final ten weeks he learns to do all the various kinds of grinding, including surface and Blanchard grinding, cutter, internal and cylindrical grinding.

Shortly after entering the training room. the trainee attends study classes which are conducted either in the piant or in co-operation with local school authorities. Reports of his work both in the training room and at the study classes are received at reqular intervals by the sunervisor of anorentices, who closely follows his progress.

Throughout his training period the trainee is paid an hourly wage, which rises automatically every six months. Piece work pay or other competitive wage scales are banned since the production of quality rather than quantity is the obicctive of the entire course.

Production Work: Further, all work done by the trainee during this perind is useful work; that is, it consists entirely

Fig. 3-Boardwork in a strength-of-materials class, made up of young men who have had three ycars in the apprentice course
of mechanical or production work obtained from the manufacturing department. Such work, it is felt, stimulates the trainee's interest and impresses upon him the effect of waste and spoilage.

His training room program completed, the trainee moves out to the shops. During the remainder of his apprenticeship here he acquires a thorough schooling in production under the direct supervision of a foreman who regularly reports his progress to the supervisor of apprentices. Hence no traince is allowed to become lost in the rroup of experienced workers around him.

In the meantime, committees composed of two or three general foremen, who themselves are annrentire course graduates, meet monthly with the supervisor to review the procress of each traince, length of time he has spent on one job, etc. Not until the last six months of the course is a traince kept on one job more than three months. By then his instructors know the type of work for which he is best fitted and hence try to place him in the manufacturing department doing that particular kind of work.

Three times a year reports of the trainee's progress are sent to his parents or guardian. If his marks are low, they are expected to urge him to apply him-
self more diligently. The conscientious trainee who seems to be failing is given all possible assistance. The traince who lacks interest or who deliberately neglects to apply himself, however, is dropped from the course.

Upon graduation, the trainee receives a \(\$ 100\) bonus and a graduation certificate. Graduates are urged to widen their knowledge by attending the various night schools conducted by the company. Many do, and in time some enter college and ultimately become engineers.

Course enrollment figures have shown a steady upward trend year after year, but the increase has been tremendous in the past two years. There were 830 enrollments as of mid-1940. whereas there were 1600 as of mid-1942.

Shorter Courses: Under the pressure of a growing need for war production workers, General Electric some time ago instituted a number of shorter courses. Among these is the "streamlincd" learners' course, the purpose of which is to teach an inexperienced worker one specific task thoroughly in a relatively short time.

Trainees of this short course, young men of 21 or slightly older, are tanght to run lathes, grinders, milling machines, drill presses, to read blucprints and to
perform simple assembly jobs. During the course, the classroom work is done in co-operation with local vocational schoo's.

The trainees begin in one of three ways-on nonproductive work under the direction of experienced men; on productive work under the supervision of expert mechanics; or by observing and serving as helpers to the older men. Trainees are paid while taking this course.

Yound men completing the course, consequently, are capable of doing many of the simpler forms of machine work formerly requiring expert craftsmen, thus freeing the latter for more important work.
"Pre-training": Too, not long ago General Electric put into effect a plan for "pre-training" groups of mechanics who regularlv test new machine tools purchased bv the company.

The plan had its incention when six mechanics made an "at-the-factory" studv of the manufacture. assemhly and testing of a number of large hobbing machines bought be the company.

Since the machines were urgently need-d, it was felt that valuable time could he saved if men were sent to the sumnlier's plant to become familiar with all phases of fitting. assembling and testing the tools initially upon their arrival at one of the General Electric plants.

It is the practice of manufacturers of such tools first to assemble and test them at the factory, then dissemble them and ship them, and again assemble and test them at their destination before they are put into actual service. It was found that the new method resulted in a total saving of three months' time over the former method.

Under the "pre-training" plan, the six mechanics are now acting as instructors to other General Electric mechanics, who ultimately will become proficient in
this time-saving method. Thus this idea has proved so satisfactory that this method is now being employed whenever large, complicated equipment is badly needed and time is an important factor.
Advance Training for Girls: An efficient emergency method still more recently put into effect was the advance training of girls for the production of war material, pending the completion of a new factory building.
The girls were trained in a garage, vacated by wartime restrictions on car salcs, for the production of important equipment for Army bombers so that when the new building was completed, they were prepared to begin production immediately.
Other Training: Other measures accelerating General Electric's plant-wide personnel training are;
-The calling from two to six weeks earlicr than usual this year of over 700 young graduate encineers to take the famous G-E "test" course. This course was established in 1894, when the company first sent recruiters to engineering colleges to hire outstanding seniors in advance of graduation. Among its 15,000 graduates are 19 General Electric vice presidents, a number of utility executives and several educators. The "test" course involves productive work and the testing of apparatus while the student learns additional engineering and company practices.
-Various courses designed to instruct Navy men in the care and operation of G-E submarine propulsion equipment, as well as other important G-E naval

Fig. 4. (Left)-Instructor in center is showing two apprentices how a cutting tool should be set on a shaper to work properly

Fig. 5. (Right)-Navy men learn details of a bearing housing assembly from instructor at right
equipment; to train British, Canadian, and United States Army and Navy men in the maintenance of airplane equipment for high-altitucle Myin-y, and to educate Army and Navy men in the care of radio equipment, searchights, gum controls, airplane locators, and similar devices.

These latter courses are given in the company's plants where the equipment studied is manufactured. They are largely a combination of theory and practice. The "students", who really are teachers being taught to go out and teach hundreds of others, are required to learn complete assembly and disassembly of the various devices studied, as well as to detect and correct faults intentionally placed in them.

Thus, from the apprentice boy studiously working at his lathe to the young graduate engineer enthusiastically reporting for "test", General Electric's varinus courses in its far-fluns plants are daily -in many plants 24 hours daily, seven davs weekly-contributing to the speed, efficiency and mounting volume of the company's war material production program.

Upgrading: As for uparading new workers, it has been found that the increase of war production on one hand and the steady drain of the draft on the other has put such a great premium on the competent, conscientious young worker that he is promoted upward to more exacting work as rapidly as his ability warrants.

Every new worker, as well as older ones, is under the close observation of his foreman from the outset. Once his supervisor determines that the worker's competence exceeds the requirements of his job, he is promptly promoted.

The occasional young worker whose progress is hampered by a temporary loss of self-confidence, or some environmental maladjustment, is given special attention.

IN ANSWER to the call of War Production Chief Donald M. Nelson, America's industrial army is turning out a new type weapon by the thousands - not bombs or gums, but ideas to help win the battle of production.

In at least one major company of an American war industry, this "Battle of Wits" is not new. It has been going on for 32 years during which "idea-minded" workers have saved a million and a quarter dollars in valuable time and materials. These workers are the employes of the Westin-house Electric \& Mfg. Co., which inaugurated a suggestion system at its East Pittsburgh works in 1910.

Since that day, these employes have offered more than 102,000 written suggestions, and nearly one-third have been put into practice to increase production, improve methods of manufacture, save materials or provide greater safety. During 1941 alone, more than 5800 ideas were accented, many of them contributing directly to improving and accelerating war production.

One workman found a way to cut his machine in half and increase its output materially; another apnlied a simple device to increase production of power generator parts 40 per cent; a third designed a machine to steo up 20 times the manufacture of tiny lamps used in precision aiming of bir guns.

Suggestors Rewarded: And as the ideas came in. checks went nut to the sugoestnrs-checks ranging from \(\$ 2.50\) to \(\$ 1200\). Indeed. manv consistent suggestors amone Westinghouse shop emp'oyes count the month a failure which has not produced extra money from surgestion awards. which are based on the savinos their ideas make possible.

Ed Brannaran of Newark, N. J., is one follow like that. Since this 29 -year-old workman began assembling delicate electrical metering instruments at the Westinghomse Meter Works in August, 1938, 330 of his ideas have been accented and put into nractice. Ed has profited to the extent of \(\$ 2580\) in suggestion awards and ranks first in the number of suggestions accented among the company's 83,000 employes throughout the nation.

How does he do it? By concentrating on one thing-the desion of the instruments he assembles. All of his surgestions have recommended changes in these drawings and designs. Inasmuch as the meter works is producing war orders almost exclusively, every improvement Mr. Brannagan suggests for these electrical instruments is a boost for Uncle Sam, and an answer to Donald Nelson's request for helpful ideas.

Stephen Ligette is the number one idea-man at the Sharon, Pa ., works where Westinghouse produces electric

A \(\$ 1200\) suggestion: Turning a mistake into an improved technique, Max Kholas, shop maintenance worker, devised a method of so cutting and gluing cot-ton-web belting that it can replace more expensive machine belts, saving time and materials. That idea brought Kholas a \$1200 check from the company. Here he is studying various types of cotton-web belt adonted as a result of his idea

\section*{Fighting the}

\section*{Production}

\section*{Battle with \\ IDEAS}
transformers and related equipment for the transmission and regulation of power needed for war production. His \(\$ 1070\) idea to replace insulating tape with less costly material topped all other suggestions in his division within the last year.

For sheer originality in increasing production, however, Mike Ferry took top honors with his idea to divide an existing machine in half and yet make it do 50 per cent more work.
Mr. Ferry operated one end of a long machine at Sharon which cut and trimmed the fin-shaped steel pipes that go together to form a transformer radiator. These radiators are needed to keep the transformers cool as the apparatus "steps up" or "steps down" electric power to the required voltages. Insulating oil in the transformer is run through the radiator and cooled during its winding journey.

Cuts Machine in Half: The machine Mr. Ferry and a co-worker operated consisted of a long table with a turret die or cutting tool at each end. Each of the operators placed a radiator section on the table so that the turret dies could shape or flange the openings on one end of each section simultaneously. Then they turned the sections around to flange the other two ends. Many of these pipe-like sections were 14 feet long and so unwieldy that the operator of one
cutting tool had to wait until the other finished before he could perform his half of the job.

Mr. Ferry saw a way to break this bottleneck. Why not cut the machine in two, making each end a separate operation? Then each man could work steadily without interfering with the other. He submitted his idea and the cut was made. As a result, production of the radiator sections has been stepped up 50 per cent.

Another Sharon workman, Michael Dunn, found a way to increase the speed and prolong the life of a huge milling machine which cuts grooves in steel transformer pieces. The cutting tools of the machine are similar to the big saws found in lumber mills, but they are made of sheets of tungsten-carbide so thin that they vibrated or "chattered" while cutting.

To eliminate this vibration, Mr. Dunn suggested mounting pads of Micarta plastics so that the pads pressed against both sides of each rotary saw. As a result, a smoother cut was made possible, the life of the tool was increased 30 per cent and the machine could be run at a higher speed without risk of tool breakage.

Increased production of important gunsight lamps by more than 2000 per cent resulted from a suggestion turned
(Please turn to Page 66)

\title{
NEW TRAINING FILMS
}

\author{
show aluminum fabrication details
}

THREE NEW motion picture films have been produced by Aluminum Co. of America to assist in training workers in the fabrication of aluminum. The films are intended to aid instructors in the presentation of methods of welding, riveting and machining aluminum. All films are black and white, with sound, and are available in 16 and 35 mm . sizes.
"How To Weld Aluminum" passes on the know-how essential in torch welding, are welding, brazing and resistance welding aluminum. Demonstration welds are made in close-up for each of the welding processes to illustrate proper technique. For example, in discussing torch welding, there is a pictorial presentation of flame adjustments, fluxes and how they should be mixed, welding wire, preparation of work, and then the actual welding operation in which the student can see metal melt in front of his eyes and watch proper methods of torch manipulation. A feature of this and the other films is the presentation of defects and wrong methods so the student can recognize them and avoid them.

The film, "How To Rivet Aluminum", graphically portravs methods used in making and testing rivets, preparing work for riveting, the actual process and final inspection. The picture discusses alloys commonly used in rivets, how rivets are driven hot and cold, and how to handle heat-treated rivets. Technique used in squeeze riveting, automatic and semi-automatic machine riveting, hand and pneumatic hammer riveting and blind riveting are described in detail.
"How To Machine Aluminum" presents an outline of the best practices to employ when machining aluminum with either hand or machine tools. The picture discusses alloys commonly employed, including the soft alloys as well as free cutting types, the proper top and side rake and the proper clearance for the tools, tool materials and finishes, cutting compounds, speeds and feeds.

\section*{CUTS HARDENED STEELS}
-to permit drilling after parts have been hardened
-to eliminate distortion when heat treating is done after cirilling
-to salvage parts when an error is discovered after hardening -to speed production by allowing machining of fully hardened parts

THE STORY of how a tool designed originally for salvage operations developed into a production tool for use ou hardened steels is today of vital interest to men in industry faced with the task of increasing war production.

The tool is a drill of unique design made of a new alloy material called "Hardsteel" and now available in sizes \(1 / 8\)-inch and up.

The first uses of this drill were in die shops, rectifying mistakes not discovered until after the die had been hardened. For instance, the new drill was used on a die for making mess trays, drilling holes quickly and successfully for the insertion of stop pins, as shown in Fig. 1 , in the full hardened metal-material harder than a shop file.
Another case of salvage occurred when a manufacturer of pneumatic tools found that he had a quantity of hardened steel liners in each of which the shop had forgotten to drill nine holes before hardening. With a Hardsteel drill, the holes were quickly made, saving a heavy investment in machine time and material.

The finished liners, illustrated in Fig. 2 , were then successfully put into final assembly.

With such operations as these taking place in shops all over the country, it was not long until plant men began to sense the value of these drills as production tools wherever steels hardened to 40 rockwell C or higher were involved.

For example, these drills have eliminated some of the troubles caused by distortion in hardening for an aircraft engine manufacturer. Under the original shop procedure, camshafts of SAE 4620 steel were drilled and reamed before hardening. Owing to the unequal masses of metal in the cams and bearings, hardening after drilling and reaming caused sufficient distortion to necessitate an ex-

\author{
By F. G. GEPFERT \\ Vice President \\ Black Drill Co. \\ Cleveland
}
pensive, difficult and time-consuming straightening operation. At the same time, the bore was not as true as was desired.
To correct these troubles, a \(43 / 64\)-inch Hardsteel drill is now chucked and mounted on the turret of a lathe as shown in Fig. 3. The camshaft, fully hardened to 60 rockwell C , is rotated at 700 revolutions per minute as the clrill is fed to the work by hand. After penetrations to about \(1 / 4\)-inch, well through the case, the drill is backed off and the camshaft rifle drilled and reamed in the usual manner.
The new method has resulted in substantial improvements. Operations have been cut down. Production has been speeded. Rejects have been almost completely eliminated.

Another manufacturer making camshafts for straight-in-line V-type aircraft engines formerly left a plug on one end of the shaft to permit chucking for the grinding operation. After hardening, this plug was ground off-a costly and time-consuming operation. Since the introduction of the new type drill, the shafts are now cut to exact final length. The shafts are then drilled to within 1 inch of the far end before hardening, leaving the end solid for a center for the grinding operation. After hardening, a Hardsteel drill easily takes out the metal in the solid end to complete the drilling.
A large metal fabricator contracted to drill about twelve hundred \(11 / 32\)-inch countersunk holes in disks of \(1 / 2\)-inch hardened heat-treated high-alloy plate. Trials with ordinary high-speed drills proved absolutely futile. With the new

Fig. 1. (Top, right)—Drilling holes for stop pins in a hardened die that is heing used to make Army mess trays. The Hardsteel drill cuts the material readily as shown by the chips
Fig. 2. (Center)-These hardened steel cylinder liners for air tools were saved from the scrap heap when someone forgot to drill the holes before the heat treating operation. They were salvaged by drilling the required holes in the fully hardened material using a Hardsteel drill
Fig. 3. (Bottom)-A Hardsteel drill cuts through the case of a camshaft that has been hardened to a value of 60 rockwell \(C\). The drill is held stationary, and the work revolved

type drill in a Buffalo drill press running at 1500 to 2200 revolutions per minute with coolant, the operator was able to drill 7 pieces-a total of 56 holes -in 8 hours. The resulting holes were very clean and a delivery deadline was net.
Recently this same alloy material has been used successfully in reamers and tool bits, many of which already are used to speed up production jobs on harclened steels.

A large chain manufacturer needed 625 large links made of 3140 nickelchromium steel-each link 16 inches long, 4 inches wide and \(1 / 2 / 2\) inches thick with a \(24 / 4\)-inch hole at each end through the \(1 \frac{1}{2}\)-inch dimension. Strict specifications called for a hardness of 400 to 500 brinell in the finished link.

The links were cut from an alloy bar, using an oxyacetylene torch. The two holes were then burned out, keeping them about \(1 / 4\)-inch smaller in diameter than the finished hole size.

When the job went into production originally, the holes were reaned to size and the piece hardened to the specified value. But this method was found impractical because hardening produced distortion up to as much as \(1 / 32\)-inch, throwing the pin holes at the ends of the links out of alignment.
As a last resort a complete change of procedure was tried in which tool bits
made of the new material helped to a satisfactory solution of the problem.

The links and holes were eut out as previously described, then the piece was heat treated and normalized to the required hardness. After this treatment it was found to be impossible to remove metal to bring the holes to size with any of the tools tried until two \(3 / 8\)-inch Hardsteel tool bits were used in the boring operation.

These bits, by the way, are mounted 1 t/8 inches apart in a boring bar on a heavy engine lathe. They are ground as fly cutters-cutting metal away from both sides of the hole simultaneously. The work is clamped into a master plate and revolves. The roughing cut is about \(3 / 16\)-inch. The finish cut of \(3 / 32\)-inch follows immediately after the completion of the roughing cut as the boring head travels into the holc. Chips come away uniformly, leaving a smooth and highly polished pin bearing surface in the hole.

Not only is this company able to turn out a better and more accurate link by boring after hardening, but production is fast because only \(21 / 2\) minutes is required to bore each hole with tool bits of the new alloy.

Hardsteel is just what the name im-plies-a special alloy available in drills, reamers and tool bits. It was developed especially for cutting hardened steels,
plastics and other hard materials such as amorphous carbon. It is speeding production and cutting rejects" in hundreds of America's industrial plants and changing shop practice in many of them because it permits full hardening of steel pieces before drilling, reaming and machining, thus eliminating the misalignment caused by any distortion that may result from heat trentment of the finished piece.

\section*{Substitution of Glass Fiber Tape Successful}

Successful substitution of glass fibes tape in place of mica as coil insulation in the primary coil of induction-type brass furnaces is reported by the Western Cartridge Co., East Alton, Ill.

Use of the insulation made it practicable to increase furnace temperatures to the point where it was possible to produce five pours of 1500 pounds each during each 8 -hour shift.

Furnaces in the Western Cartridge plant have a sleeve-shaped form composed of ceramic material which retains the helical flat copper coil. The glass fiber tape was spiraled between turns in the coil to form a double helix composed of alternate layers of copper and glass fiber tape. Insulation between turns in the coil is required to prevent short circuiting.

\section*{makes sleeve brick in longer lengths}

A NEW type of sleeve for hot metal ladles is extruded through a die at extremely high pressure in lengths as long as practicable for handling in making up stopper rod assemblies in the steelworks or foundry. Use of these longer length sleeve brick reduces the probability of rod joint failure by 50 to 70 per cent. Similar economy in labor and cementing materials used in making up joints also is afforded.

Rod assemblies, using long length sleeve sections, are obtained at no greater cost than of their equivalent volume in ordinary short length sleeve brick. These longer sleeves are customarily ordered as double or triple lengths of the standard sleeve used in each plant.

Formation of air pockets in the clay during mining is eliminated by the deairing process which produces a material of uniform density, free from laminations.

The new sleeve brick are made by National Fireproofing Corp., Pittsburgh. The company also manufactures hot metal ladle pouring nozzles in the same manner as the sleeves.

IT'S "JUNK" TO YOU... - There's a harvest of scrap in your plantobsolete dies, jigs, patterns and moulds; idle water tanks and their supports; scraps of rods, bars and other steel shapes . . It's "junk" to you, But, it means Victory to America. Every pound of scrap brought back into the market boosts production of tanks, guns, planes and ships. You can launch your own salvage campaign without waiting for a community drive. Delegate one man to find every article of doubtful use around your plant and give him the authority to do a real salvage job. Get in the scrap... and do it now. ALAN WOOD STEEL COMPANY, Conshohocken, Pa.

Fig. 1 (Left, above) - Lengths of uncleaned pipe are seen here in the loading position on the entry side of the machine which cleans the pipe exterior. Note the wide roll set at an angle at left. This revolves the pine and simultaneously causes it to
pass through the cleaning machine due to the angle of drive Fig. 2 (Right)-Here pipe is emerging from the machine in Fig. 1 which cleans the pipe exterior by means of two abrasive units blasting upward at the pipe as it passes through

\section*{Removing Heat-Treat Scale}

IN ALMOST every manufacturing step in the production of seamless steel tubing heavy heat-treat scale is formed. This has always been a vexing problem because of high cleaning costs and the difficulty of removing the scale uniformly. Recently National Supply Co., Spang-Chalfant Division, Ambridge, Pa., decided to do something about it.
For many years the tubing made by this company was cleaned by an outside jobbing concern. Inasmuch as this arrangement did not afford the proper control and close supervision desired, the company determined to incorporate the cleaning operation with their other manufacturing processes.
The problem consisted of cleaning both the interior and the exterior of all "Spang" low-carbon and high-alloy seamless steel tubing, which varies from 2 to 14 inches outside diameter and from 18 to 50 feet in length. A cleaning system built by American Foundry Equipment Co., Mishawaka, Ind., was specially designed to handle this application.

The equipment here includes an airless Wheelabrator for cleaning the exterior of the pipe and an air blast for descaling the interior.

It is difficult to give standard production figures as to cleaning speed because this depends entirely upon the size of tubing, the type of steel from which the tubing is made, and the condition of the scale due to previous heat treatments. However, \(4 \%\)-inch standard low-carbon tubing is being cleaned at the rate of

18 feet per minute for the exterior and 14 feet per minute for the interior.

External Cleaning: A special cabinet housing two standard Wheelabrator blast units is used for cleaning the outside of the pipe. See Fig. 1. These two units are mounted in the bottom of the cabinet so as to blast upward and in direct line with the rotating tube as it passes through the cabinet on the conveyor mechanism. Since the distance between the blast units and the surface to be blasted is constant for all sizes of tube, uniform cleaning is assured.

\section*{Pipe Travel Continuous}

Travel of the tubing on the conveyor rolls through the eabinet is continuousloading being handled at one end of the cabinet and unloading at the other. As the complete length of tube enters the cabinet, another tulbe is rolled into position for entry into the blasting area. After external cleaning, the pipe is automatically rolled off the conveyor upon skids and is ready for the internal cleaning step.

Due to the different types and sizes of tubing and the diverse scale encrustations encountered, each of which may require a slightly changed cleaning speed, the conveyor rolls can be varied as to the number of revolutions per minute and as to the skew angle. This makes it possible to control the length of time the pipe is held in the blasting arca.
In Fig. 1, a number of lengths of uncleaned tubing are in the loading position at the entry side of the machine.

The tube on the conveyor rolls has just entered the cabinct for external cleaning.
In Fig. 2 the cleaned tube is shown being discharged. The operator is controlling the flow of metallic abrasive to the two blast units.

Internal Cleaning: The air blast machine, specially designed for cleaning the interior of the tube, is located adjacent to the Wheelabrator cabinet. As the externally cleaned tube leaves the cabinet, it is rolled on skids to the air blast machine where cleaning of the interior is accomplished with a lance-type blast nozzle long enough to blast the entire interior surface of the long pipe. See Fig. 3.
This nozzle is inserted into the end of the rotating pipe, which is supported on revolving steel disks. Both the speed at which the tube rotates and the feed of the nozzle can be regulated to obtain the most effective cleaning.

The storage hoppers and the air blast tank, which controls the mixing of air and stecl grit abrasive to the desired proportions, are mounted on a steel car riding on a track. As the nozzle travels into the pipe, cleaning as it progresses, the whole blast mechanism rides forward, being drawn by a steel cable.

A belt conveyor, mounted under the pipe cleaning device, returns the spent abrasive from the far end of the pipe to the boot section of the elevator for recirculating in the blasting equipment.

Fig. 3 shows the operator blowing dirt out of the interior of a \(5 \frac{1}{2}\)-inch tube

\section*{UNCLE SAM WANTS HIS SHIPS FAST}

\section*{A) The World's Largest Job Galvanizing Plant is breaking all records for SPEED!}

Bring 'em on! The faster they come the better we like it. Plates, shapes, fabricated assemblies, chain, rods, bolts, nuts-everything from the biggest articles to the smallest-we can handle them all without delay. We now have not only the world's largest job hot-dip galvanizing plant but also the world's fastest. Our extra facilities (we have capacity to spare) and our streamlined production methods enable us to receive, galvanize, and ship material faster than ever before. It's "in and out" the same day, if necessary. That's how we're doing our part to help speed Uncle Sam's armament program. Send your Navy and Maritime Commission materials to us for hot-dip galvanizing or pickling and painting. We are centrally located, convenient to steel mills, fabricating plants and shipyards.

HANLON-GREGORY
GALVANIZING COMPANY, PITTSBURGH, PA.

Fig. 3-Here an operator is blowing dirt out of the interior of a pipe, using a compressed air nozzle, prior to starting the blasting nozzle through
prior to inserting the air blast nozzle. The far end of the pipe fits into a metal housing which serves as a hood for removal of air to the dust collector and as a catch housing for spent abrasive to be returned by the belt conveyor.

After the interior of the tube is cleaned, the nozzle is retracted, the tube kicked off the disks to nearby skids, and a new length of tube rolled into cleaning position.

\section*{Fighting with Ideas}
(Continued from Page 59)
in by Matthew Westphal at the company's Lamp Division works in Bloomficld, N. J. The tiny lamp, about half the size of a walnut and used in delicate mechanisms for aiming big guns, was made entirely by hand until Mr. Westphal recently redesigned the lamp so it could be turned out on high speed machines.

Now valuable floor space formerly used by girls sitting at work benches is available for other use, and the girls have been placed on other important jobs. In addition, the machine-made lamp requires only half as much glass tubing as had the old model.

At the Westinghouse South Philadelphia Works, C. R. Sturm suggested a way to eliminate the "prime coat" or base coat of paint on certain electrical marine equipment, thus freeing workmen who now can spend about 4500 additional hours a year on more productive activity. The idea also saved 1000 gallons of paint and netted Sturm \(\$ 500\).

What is most interesting to the engineers who study each suggestion submitted is the relative simplicity of the really good ideas. Simplicity is the key not only to a valuable idea but to the success of the entire Westinghouse suggestion system.

Red Tape Avoided: "Our workers do not have to cut through a lot of red tape to get a hearing for their ideas," explains W. G. Marshall, Westinghouse vice president. "When they sce a way to do their job better, they merely jot down the idea on a slip of paper and drop it in the shop mail. From that point on, the suggestion machinery is automatic.
"Once these slips of paper are delivered to suggestion headquarters, they are serially numbered, classified as to type of product, operation and the cmploye's name, then filed in numerical
order. Each suggestion then is acknowledged so that the employe knows his idea is receiving consideration.
"Before the suggestion committee makes any attempt to pass on the ideas," Mr. Marshall continued, "conies are forwarded to that member of the committec representing the plant department most familiar with the subject. All suggestions recommended by the various department representatives for acceptance are further considered by the committee as a whole."

At the Westinghouse East Pittsburgh works where the suggestion system was introduced in 1910, the committee consists of seven men including a permanent chairman and secretary and five temporary members. They meet once a month, or oftener if necessary, and determine the amount of each award to be made. When it is possible to make reliable estimates, awards are based upon ten per cent of the first year's savings the suggestion will produce.

Employes Get 18 Per Cent of Saving: But some ideas do not lend themselves to a ready estimation of future savines, and in those cases the originality of the idea plays a big part in the final decision. Since 1910, Westinghouse workcrs have been paid \(\$ 231,671.20\) in suggestion awards- 18.5 per cent of the estimated annual savings these suggestions made possible.

At the East Pittsburgh works, two veteran workmen today are engaged in a friendly race that typifies the spirit behind this idea offensive. Since his first contribution in 1913, John F. Carlson has eamed awards for 164 practical ideas, but at last count he trailed Michael J. Defino, whose total is 177 .

This pair, setting the pace for more than 20 years, agree there is no secret formula involved in idea production.
"I just keep my eyes open and watch for improvements wherever I may be
working," says Mr. Carlson. "I've worked as a switchboard wireman and assembler, inspector and estimator since coming with Westinghouse in 1903, and most of my suggestions have involved improvement in plant apparatus or the elimination of hazards."

For example, he suggested a rearrangement of the telephones in a factory office which simplified the handling of calls. Large lamps in one of the freight elevators were being broken continually. The versatile Carlson suggested a way to protect the lamps and there was no more breakage.

Saves War Materials: Mike Defino, current leader at East Pittsburgh, works in the company's electric meter division. Recently he saved scarce war materials by suggesting a way to repair nichrome steel hooks used to hold copper plates in oxidizing furnaces. Previously, the hooks became partly disintegrated by the 2000-degree Fahr. temperature and could not be repaired.

By developing a color coding system for connecting the wires in welding control equipment, he saved valuable working time. With the ends of the wires painted different colors, workmen now swiftly match each wire with its proper connection.

Although the actual cash saving of many suggestions is relatively small, others are worth thousands of dollars in time and materials.

The top award won by a Westinghouse employe was the \(\$ 1200\) check that went to Max Kholas for turning a mistake into an improved production method. A former soldier in the Russian Czarist army, Max came to America in 1905 and has worked as a machine belt mender at Westinghouse for 22 years.

One day in 1939, while doing a routine job of mending and fitting belts to keep machine wheels turning, Max found he had miscalculated on the order
(Please turn to Page 89)

ONLY PORTER Builds a Complete line of Locomotives for Industry

\section*{F. K. POBTHB COMPANZ, INC.}

Fig. 1-Split ingot free of lenticular blowholes. Fig. 2-Low-carbon steel ingot poured with a green wooden block on the stool
.

The Manufacture of
HIGH-QUALITY LOW-COST STEEL

\author{
Heferogeneity of Ingots
}

By PAUL J. McKIMM
Cleveland

SEGREGATION of some of the principal constituents in cast-steel ingots is evident in all rimmed or effervescent steel and varies over wide ranges.

Extreme chemical variance is attributed to refining in the furnace bath, that is, a well-refined heat will have a minimum amount of segregation and as furnace conditions drift to that of poor practice segregation becomes more pronounced. For instance, if an ingot has a ladle analysis of 0.08 per cent carbon (killed test) the actual steel analysis will be approximately 0.06 per cent earbon because between an open test and one that is killed with a few pellets of aluminum there is a carbon differential of 2 to \(21 / 4\) points. Therefore, the carbon variation in a split ingot will be 0.06 to 0.07 per cent. Usually 0.03 per cent carbon is found in a well-made stecl while in one of poorer practice it may be 0.01 per cent. The maximum top core carbon rarely will be higher than the recorded ladle carbon until the latter conforms to ranges usually above 0.12 per cent at which point the top ingot core carbon will be
slightly higher. In still higher carbon specification the whole range moves up. With a 0.25 per cent carbon the top ingot core carbon will be 0.28 to 0.29 per cent.

The natural phenomenon of segregation which occurs when molten steel cools slowly and changes to the solid state is troublesome. When molten metal is poured into a cast-iron mold the so-called "skin" which preceeds the rising metal is of the same analysis as the average ladle content. This "skin" is from \(1 / 8\) to \(3 / 16\)-inch thick and forms the ingot wall aided by the rimming action. The wall extends from the surface to the columnar row of spherical blowholes and

This concludes the series of articles on "The Manufacture of High-Quality Lowcost Steel." Other articles in the series and the date of their publication in STEEL are: Basic Open-Hearth Iron, June 25, 1941 p. 62.

Basic Open-Hearth Scrap, July 7, 1942 p. 68.

Basic Stcelmaking Practice, Aug. 11, 1941, p. 87.

The Melting Plase, Sept. 29, 1941, p. 78;
always ranges from 1 to 4 inches thick in well-made steel. During solidification, gases are evolved causing the rimming action, the most pure steel solidifying first, forcing the more impure mother liquor toward the center top core. As the metal becomes more and more impure the time of solidification becomes greater which widens the gap between the liquidus and solidus. The most impure area of an ingot usually will be in the uppermost core but frequently areas adjacent to blowholes will show evidence of impure metal and excessive segregates. Two general methods are employed for checking stecl for segregation: One is to split an ingot off center so that the surface can be machined smooth for macro, sulphur or visual examination and drilling taken for analysis at regular intervals from the top to bottom and from the edge to center. The second is that of a crop test which is sufficient for process purposes. After testing a great number of split ingots it will be found that the highest point of carbon will be in the top core while the wall will be uniform throughout as well as the bottom third portion or higher. If there is any lower variation it will be in the top wall. For example, an ingot from a ladle carbon of 0.08 per cent will contain throughout 0.04 per cent carbon and
if any one point be lower it would be 0.03 per cent carbon in the top wall. Therefore, it is most practical to crop the top of the ingot free from all visual imperfections, such as pipe or sponginess, and then shear a cross section for chemical analysis. Drillings should be taken in the true center known as "TM" (top middle) and in the edge known as "TE" (top edge) and these will indicate maximum and minimum variation. The last two ingots are not always representative of the heat due to contamination with slag and in cases of a ladle reaction the analysis will be greatly out of line.

The best method for ladle samples is to obtain three from each heat. Samples not thoroughly killed with aluminum, as indicated by blowholes and a cauliflower sinkhead, are not used on account of possible low-carbon results. Double poured and dirty samples likewise are not used. Crop samples from slabs are selected and by extensive research it was found that the difference between the top center and top edge will show the maximum segregation in the prime steel.

Fig. 5 is a sketch of a slab for sampling. Point A represents the center or top core while either point \(B\) can be drilled for the edge sample. Fig. 6 shows a method for sampling sheet bar, plates and other thin sections. The sample is drilled from surface to surface at the center line which yields the two wall and the core areas at the point of maximum average. With sheet and cold strip the customary practice is to fold a number of laps nver on themselves where drillings will represent several core arcas and twice as many surface areas. Sheet analysis are representative because croppage eliminates most of the high-segregate portions so that the variance at this point is only about 0.03 to 0.05 per cent in carbon and can be ignored.

In order to determine metalloid segregation for different sections of a heat, three laboratory samples were taken from each heat, one at the eighth, one at the sixteenth and another at the twentyfourth ingot, the total number of ingots being 28.

The following analyses are representative and show that steel is uniform in the ladle.
\begin{tabular}{|c|c|c|c|}
\hline Ladle & \multicolumn{3}{|c|}{Position of Ingot} \\
\hline Test & 8th & 16th & 24th \\
\hline Carbon, \% & 0.13 & 0.13 & 0.13 \\
\hline Manganese, \% & 0.41 & 0.42 & 0.42 \\
\hline Phosphorus, \% & 0.009 & 0.009 & 0.011 \\
\hline Sulphur, \% & 0.025 & 0.025 & 0.024 \\
\hline
\end{tabular}

Similar results were obtained when taking a sample of the last ingot not showing slag. A slight increase usually is found in phosphorus of 0.001 to 0.002 per cent toward the end of pour. This is attributed to the action of the basic slag on the more acid and the consequent
reduction of phosphorus from the slag by the carbon in the steel. Neither do the metalloids segregate to any appreciable extent when the solid steel is reheated.

Often considerable variation in analyses from one section of a heat to another occurs because of a reaction on a ladle skull and it is essential to prevent skulls or cold heats generally if quality steel is to be attained.

\section*{Gases Cause Blowholes}

Although primary segregation is not dependent on gas evolution nevertheless it has some relationship. In rimming steels the gases evolved immediately after pouring consists of about equal proportions of carbon-monoxide and nitrogen. At the beginning of solidification and when the rimming action is the most vigorous the proportion of carbon-monoxide gas increases until it comprises about 80 per cent of the total gas evolved. The proportion of hydrogen given off is small at first but it increases slowly as the rimming action subsides; finally, toward the end the proportion of hydrogen equals that of carbon monoxide. The proportion of nitrogen decreases fairly rapidly to a low point. Hydrogen and nitrogen migrate from the greatest crosssectional area toward the ingot wall and promote the commonly encountered honey-comb lineal blowholes in thinwalled ingots.

Furthermore, hydrogen in the uppermost area of the ingot tends to escape but during solidification it often is entrapped, and forms globular or stringer blowholes or possibly interstitial spaces between the dendrites. After solidification most of the hydrogen is present in supersaturated solution, so that it builds up absolute pressure within the steel which may result in high internal stresses, as is familiar in pickling. It is not definite what the chemical or thermodynamic concept of solution pressure of a gas in a solid really means in terms of strength of the solid.

A favorable feature is that hydrogen has a high diffusivity in steel so that its harmful effects may be overoome by heat treatment. The harmful effect is that umusual amounts of hydrogen may influence the control of rimming action, since aluminum or other deoxidizers have no effect upon it. While hydrogen during the later stages of solidification evolves more than other gases and hence most likely forms blowholes, or accumulates in the interstices between dendrites. it does not form a stable solid compound with steel; its presence in solution, therefore, tends to set up internal stresses which increase in magnitude as the temperature drops.

Representative gases leaving a rimmed
ingot and in the order of their emission, follow:
\begin{tabular}{|c|c|}
\hline Gas & Per Cent \\
\hline Carbon monoxide & 5 \\
\hline Hydrogen & 27 \\
\hline Oxycen & -6 \\
\hline Nitrogen & 67 \\
\hline
\end{tabular}

Nitrogen present in steel as occluded gaseous nitrogen and as iron nitrides promotes brittleness and affects the thermal transformation points.

With new improvements in analytical methods for determining the total gas particularly hydrogen in finished steel, the lower the hydrogen appears to be. Practically no hydrogen exists or at least never more than 0.0004 per cent. However, hydrogen diffuses through iron rapidly; in fact, it can be driven off from solid iron at low temperatures or a low red heat. Therefore, the solubility relations of hydrogen and steel never wauld suffer such a sudden change as to cause

Fig. 3-Low carbon rimmed steel made with an iron charge of 69 per cent

SHOWING CROSS SECTION OF CROP

SHOWING CROSS SECTION OF BILLET
the actual liberation of hydrogen to form blowholes.:

The difference in heterogeneousness especially the type of blowholes which is evident in split ingots is that the surface of the lenticular blowholes always are bright and silvery similar to steel subjected to bright anncaling which indicates that the cavity either must have contained a reducing gas or at least a neutral one, and ite is reasonable to assume that it was either hydrogen or nitrogen or a mixture of both. These lenticular blowholes are sort of a pencil formation and generally confined to an area about 30 per cent up from the bottom whether the ingot is big-end down or up. The globular blowholes aligned on the inner side of the ingot wall and those usually of larger size at the upper ingot section always are coated with oxide indicating that an oxidizing action has taken place.

\section*{Blowholes Usually Corrugated}

The lenticular or pencil blowholes usually are corrugated as though they were a long ellipse which had been corrugated. This condition never has been explained but must be connected with their mode of formation during solidification.

Fig. 1 shows a split ingot free of lenticular blowholes. The row of cavities is 6 inches from the surface. These blowholes are minute, the top core area being solid. This heat had the full calculated yield into slabs. This is an exceptionally high-quality rimmed ingot.

Fig. 3 is representative of a low-carbon rimmed steel produced from a 160 -ton heat having a charge of 69 per cent iron; the ore charged was replaced with blast furnace sinter and soaking pit cinder. This is also an excellent rimmed ingot having a wall of over 5 inches. It is free of honey-combs and is solid to the extreme top.

Fig. 4 illustrates a 0.08 per cent carbon rimmed steel and is offered to show an ingot absolutely free from any blowholes or cavities or discontinuities whatsoever. The chemical segregation was

Fig. 4-Low-carbon rimmed steel ingot free from defects. Fig. 5-Cross section of a slab crop showing locations for test drillings. Fig. 6-Sheet, plate or strip showing the ideal location for securing sample
in line with that of any other normal ingot.

At the time the movement toward the large hot strip mills began, tests were made to deternine the effects of segregation that might be encountered in molds of different thickness. Molds each \(16 \times 48,20 \times 48,24 \times 48\) and \(32 \times 48\) were compared with a set of \(17 \times 17\)-inch molds. These different sets were placed on one drop so that steel from one heat and ladle could be used for the test.

Samples were obtained from the top and bottom of the first and last ingot of each group and drillings taken at the edge of the shear end of the slab, mean (between edge and center) and middle (center).

A wide variation existed in the phosphorus and sulphur analysis at the top of the ingots which was attributed to a difference in the height of the sample. Extensive research suggested the use of a 24 -inch thick ingot. When heavier ingots were desired molds 26,28 or more
\begin{tabular}{cccc}
\begin{tabular}{c}
Ladle \\
analyses
\end{tabular} & \begin{tabular}{c}
Per \\
Edge of \\
top crop
\end{tabular} & \begin{tabular}{c}
Carbon \\
Middle of \\
top crop
\end{tabular} & \begin{tabular}{c}
Edge of \\
bottom crop
\end{tabular} \\
0.07 & 0.03 & 0.04 & 0.04 \\
0.08 & 0.03 & 0.06 & 0.03 \\
0.09 & 0.04 & 0.09 & 0.04 \\
0.10 & 0.04 & 0.09 & 0.06 \\
0.11 & 0.04 & 0.07 & 0.07 \\
& & & \\
0.12 & 0.05 & 0.12 & 0.07 \\
0.13 & 0.08 & 0.14 & 0.08 \\
0.14 & 0.11 & 0.14 & 008 \\
0.15 & 0.11 & 0.17 & 0.09 \\
0.16 & 0.08 & 0.16 & 0.10 \\
& & & \\
0.17 & 0.09 & 0.18 & 0.09 \\
0.18 & 0.11 & 0.21 & 0.13 \\
0.19 & 0.09 & 0.17 & 0.10 \\
0.20 & 0.11 & 0.20 & 0.12 \\
0.21 & 0.12 & 0.22 & 0.14 \\
& & & \\
0.22 & 0.10 & 0.22 & 0.11 \\
0.23 & 0.15 & 0.25 & 0.17 \\
0.24 & 0.23 & 0.27 & 0.28 \\
0.25 & 0.16 & 0.28 & 0.16 \\
0.26 & 0.15 & 0.29 & 0.16 \\
0.36 & 0.40 & 0.40 & 0.37 \\
\hline
\end{tabular}
inches thick were employed. The best over-all results concerning segregation, slab yield and uniform ultimate quality were secured with \(32 \times 48\)-inch ingots.

The table, center, below, indicates segregation for different ladle carbon analyses. The ladle tests were killed with aluminum.
These amalyses were selected at random from hundreds of crop segregation tests and readily indicate the variation to be expected in rimmed steel. The top crop middle test will vary over wide limits depending on the condition of the sample; at this location the carbon increases with a greater number of blowholes. The segregation will vary with the gencral condition of the steel in the furnace. The better refined heat will segregate to a lesser degree and vary with pouring practices as well as with different size molds.

\section*{Reacts to Box Annealing}

Relation of segregation to physical values or the ultimate performance long has interested steelmakers. No noticeable difference in physical properties are found when the carbon in the finished steel is 0.03 to 0.06 per cent. Steel of this grade readily responds to normal box annealing or, in the case of hot mill sheets, to the long treatment, i.c., normalizing and box annealing. Hot-rolled strip made from this grade and finished at the proper temperatures will possess suitable physical values \({ }^{1}\).

A few years ago, steel with varying physical values either was diverted to a lower grade specification or retreated at considerable cost. Hot-rolled sheets for extra deep drawing were given a normalize, pickle, one or two cold roll passes for flattening and a box anneal. After the full treatment the top portion of the box frequently was found to be granulated and was returned for complete retreatment; the bottom section of the

The art and science of making fine tool steels have been practiced in the Disston plant for 87 yearssince Henry Disston pioneered with the first crucible saw steel ever made in America.

Quality has always been the first consideration. Today, skilled specialists, trained in the Disston tradition, produce high grade tool steels by the most modern methods. Painstaking selection of materials; accurately controlled melting practice in electric furnaces; careful, expert supervision of every step in the finishing processes-these achieve the quality that distinguishes Disston Steels.

Under precise metallurgical and chemical control Disston can produce, within close limits, desirable
alloys of seven or eight elements. Inherent and apparent grain size can be prederermined. Soundness and cleanliness can be maintained at exceptionally high levels.
One of the high grade Disston Tool Steels of special note is MANSIL-a deep-hardening, nondeforming, uniform manganese-chromium-tungsten alloy steel with excellent machinability. Use Mansil for intricate tools and wherever varied cross sections must be deeply hardened.
Experienced help for tool-makers: Disston metallurgical engineers will be glad to help you select tool steels for best performance and longest tool life ... If you have not received your free copy of the illustrated 73 -page book, "Disston Tool Steels," write today to Henry Disston \& Sons, Inc., 926 Tacony, Philadelphia, Pa., U. S. A.

annealing charge sometimes was badly under-annealed and was returned for a re-annealing; and only the midsection was applied to the respective order. Even this latter portion of the batch lacked uniformity.

At one plant sheets were withdrawn from the annealing furnaces having a rockwell hardness, B scale, from 20 to 65 and the ductility just as variable. But with the advent of cold reduced strip many producers discarded the old theory that segregation was the sole cause of these variables and that it exerted little influence in normalizing and annealing practices. However, cold-reduced strip is charged direct to the box annealing furmace either in coils or sheared lengths so that with uniform annealing the charge is soaked thoroughly above pre-established annealing temperatures. No granulation is encountered with normally processed cold-reduced strip because heavy reductions overstrain the metal. Only when the material is critically strained will excessive grain growth be encountered. Cold strip is annealed at temperatures several hundred degrees higher than hot mill sheets formerly were
subjected in the normalizing process.
Experiments with the use of "green" wooden blocks in both rimmed and killed grades of steel disclose little information. In some cases wooden blocks were placed in the mold before starting the pour which in other cases were placed on top after the ingot was filled. In both instances vigorous reactions took place but invariably this practice tended to promote or increase the tendency of thinskinned ingots and to add porousness to the upper area of the ingot to the extent that normal top croppage would not eliminate it.

\section*{Wooden Block Detrimental}

Fig. 2 illustrates a split ingot treated by placing the wooden block on the stool. This heat was of 0.08 per cent carbon and 0.31 per cent manganese having 15 pounds of aluminum added to the ladle for deoxidation. The aluminum in this case was too much and the ingot grew about 3 inches. Honey-comb blowholes extended along the two edges and higher up in the ingot. This is a poor ingot and cannot be heated right.

With killed steel the use of wooden
blocks has a detrimental effect in that it benefits the top pipe somewhat giving a solid top section but driving the pipe lower in the ingot or promoting extensive secondary piping.

Green piles (tree saplings) frequently are used for puddling the top of both rimmed and killed steels. In the case of rimmed steel it has little or practically no value. But with killed steel it has many advantages. Metal is poured to the base of the hot top when such is employed, then puddled. The adjoining ingot is poured and again puddled and the process continued until the whole heat is poured. The system should be worked out according to the size of ingots as to whether one or two ingots are filled to the base of the hot top before refilling the hot top of the first. Where hot tops are not used the same practice should be employed leaving the metal lower in the mold and back pouring a header, in which event the top of the mold itself is utilized as a hot top.

The use of green poles are most advantageous in the risers for steel castings especially in casting mill rolls.
(Continued Next Week)

\section*{Inexpensive Box Affords}

\section*{SAFE BREAKAGE OF TEST SAMPLES}

Plans for building an arc-welded breaker box for fracturing iron and steel test pieces

SAFETY is forefront in all production programs today. For instance, here is a breaker box built by are welding which has proved its worth in the safe breaking of samples at open-hearth shops and blast furnaces.

Test pieces usually are taken from each heat that is madc. In many plants, the test piece, measuring about \(2 \times 1 \times 5\) inches, is placed on an open block and broken with a heavy sledge. These test pieces must be made for observation of structure-also for laboratory use. When the test piece is handled in this manner, broken pieces of steel fly in all directions -many times causing bruises, broken teeth, and serious eye injuries.

The accompanying drawings, by courtesy of Hobart Brothers Co., Troy, O., are complete plans for building a safe breaker box by are welding. When using this box, the operator places the test piece in a closed compartment; strikes the pestle with a sledge; and the test piece is broken safely inside the box. The breaker box, built according to these plans, costs only \(\$ 20\).

Plans for the box were submitted in Hobart's arc welding contest by M. Earl Lohr, planning engineer, Bethlehem Steel Co., Johnstown, Pa.

\section*{NILSON} automatic metal wire forming machine

The Nilson line includes machines for forming paper clips, buckles, gate hooks, cout and hat hooks, ceiling hooks, wire ears, cable rings, screw eyes, sash chains, automobile slide chains, flat open link chains, staples, cotter pins, hose c!amps, etc. Nilson also makes wire straighteners, wire reels, frame bending machines and special presses.

The machine pictured here is a simple and ingenious contrivance. Sturdy, solid, compact, requiring little space, it is a highly efficient and practical machine for forming wire and punching patterns from ribbon stock. Various patented features and extra attachments make it a necessary factor in reducing the manufacturing cost of your product. The Nilson automatic metal wire forming machine turns out the work faithfully, accurately and speedily-and it functions a long, long time free from repairs and replacements.

THE A. H. NILSON MACHINE COMPANY

\title{
RECOMMENDED GRINDING PROCEDURE
}

\author{
For Wet or Dry Hand Grinding Carbide Tools
}

WITH THE tremendous increase in useage of carbide tools to speed production under the impetus of the war program, the problem of establishing proper grinding techniques for such tools has become of immediate importance.

Incorrect grinding may sacrifice a considerable portion of the increased output per machine and per man-hour, made possible by carbide took, by necessitating more frequent shutdowns for tool changes with resultant loss of time.

Some worthwhile "tips" on the procedure to follow in wet or dry hand grinding of these tools are outlined here by J. R. Longwell, factory manager, Carboloy Co. Inc., Detroit. These recornmendations are supported below by illustrations, and are as follows:
Roughing: Using 60 -grit silicon carbide straight wheel.
1. Rough top face. Rough grind top face of the tool, leaving about \(1 / 32\) inch land at the cutting edge.
2. Rough front relief (front clearance). Set table at 4 degrees greater than finished relief angle desired at the cutting edge, rough grind the front secondary relief, leaving about \(1 / 32\) inch land at the cutting edge.
3. Rough side relief (side clearance). Leaving table at 4 degrees greater
than finished angle desired, rough grind the side secondary relief, leaving about \(1 / 32\)-inch land at the cutting edge.
Finishing: Using 100 -grit crown face cup wheel or 100 -grit diamond wheel.
4. Finish top face. Set table rest at the finished top face angle desired. Finish grind top face of tool.
5. Finish front relief (front clearance). When continuing from operation No. 4, reverse motor and use other side of wheel so wheel will revolve against cutting edge of carbide tip. Set rest at finished angle desired. Finisly grind front relief of tool.
6. Finish side relief (side clearance). Leaving table rest at finished relief angle desired, finish grind side relief of tool.
Lapping: Use 220-grit diamond wheel or a silicon carbide wheel.
(Advisable on tools used for precision boring, facing and turning and for tools used for machining aluminum.)
7. Top face. Set table rest at finish top face angle desired, lap the top face. (Note: When grinding on top face is necessary, it should always precede grinding on side or front relief.)
8. Side relief. When continuing from
operation No. 7 , reverse motor and use other side of wheel so wheel will revolve against cutting edge of the carbide tips-that is, from tip to shank. Set table rest at finished relief angle desired (usually 1 degree less than under operations 5 and 6) and lap the side relief.
9. Front relief. Leaving table rest at finished angle desired, lap radius on nose of tool. Using light pressure, slowly describe a frec-hand arc. If necessary to repeat, remove tool to different position on wheel.
11. Keep the tool moving back and forth across the wheel at all times while roughing, finish grinding and lapping.
12. Keep the tool rocking during the roughing and finishing, as illustrated below.

\section*{American Engineering Standardizes Pumps}

American Engineering Co., Philadelphia, announces completion of a standardization program on sixteen sizes of its Hele-Shaw fluid power pumps. This move affects pumps in both low and high pressure ranges, including pump capacities of \(0.25,0.4,0.75,1.5,3,6,9,12\) and 18 in the high pressure series, of \(0.25,0.4,1.5,4,7,12\) and 18 in the low pressure series.

The standardization enables the company to increase production, improve deliveries in the face of procurement difficulties, and make replacements of completed units and replacement parts available promptly, it is reported.

\section*{Air Conditioning for a rivet}

\section*{. . . and}

Silly? To air condition rivets? Not at all. When aluminum rivets are cooled to sub-zero temperatures they can be riveted faster and more perfectly . . . speeding up airplane production.
Many of us think of air conditioning only in terms of comfort for human beings. Yet today, air conditioning's most important job is to keep the machines and materials of war industry at desired temperatures and humidities.
To meet these wartime needs, revolutionary advances in air conditioning technique have been made.

Temperature and humidity are maintained far more exactly than ever before. Equipment is more compact, more flexible.

With the coming of peace, this experience will be applied to the making of improved air conditioning equipment for all sorts of uses.
Packaged air conditioners will be smaller, more compact, more cco-nomical-many more homes will
have them. And in offices and factories, air conditioning will lower costs and increase efficiency. General Electric will be a logical source of all types of this new equipment for air conditioning, refrigeration, heat transfer and heating.
Air Conditioning and Commercial Refrigeration Department, Division. 422, General Electric Company, Bloomfield, New Jersey.

Air Canditioning by
GENERAL (3) ELECTRIC

\section*{BOMBARDIER'S Friend}

We are the Bombardier's Friend, producing Bomb Racks, Bomb Shackles, Cannon Parts and other military aircraft hardware 24 -hours daily.

And after our Bombardier and All his fellow fighters have won, we plan to continue serving him.

Golden opportunities will follow victory. To those looking ahead the progressive Spriesch organization offers extensive facilities-plus invaluade
experience in designing and producing dies for experimental work and mass production, for parts or complete assemblies, ingenuity in stamping and metal machining.

Investigate Now for the future by sending for a brochure picturing our complete facilities to be available after victory. Joseph J. Cheney, President.

\begin{tabular}{|c|}
\hline\(\star\) WE OEFER \(\star\) \\
INGENUITY \\
and extensive facilities to pro- \\
duce intricate or simple designs \\
-experimental pieces or mass \\
production-complete assemblies \\
or parts with maximum ascuracy \\
minimum waste atreasonable cost \\
AFTTER VICTOORY \\
\hline
\end{tabular}

Fig. 1-This building, approximately \(200 \times 245\) feet, cost only \(\$ 2.21\) per square foot. Its steel framework is an arc welded rigid-frame structure

\section*{How To Cut}

\title{
Structural Steel Requirements
}

\author{
By 40 Per Cent
}

AN IMPORTANT tonnage of structural steel could be saved in new singlestory plants and plant additions if the steel frameworks were designed for welded rigid-frame construction and if wood purlins were utilized instead of steel purlins.
Some idea of the amount of steel which could be saved in this manner can be had from noting that for buildings of the type shown in the accompanying illustrations, conventional truss structures with steel purlins require approximately 8.4 pounds of steel in the frames for every square foot of building area. By changing to wood purlins about 2 pounds per square foot is cut from this weight, reducing the total to about 6.4 pounds of steel per square foot of building area. Then by changing to welded rigid-frame type of structure, an additional 20 per cent can be saved since this type of building can be

By F. W. METTLER
Consulting Structural Engineer 4004 Bluestone Road Cleveland Heights, 0 .
constructed with only about 5 pounds or less of steel in the framework per square foot of building area.

If, however, steel purlins are used, an economy in weight of steel in the purlins can be gained by designing them as continuous over trusses or frames-they may be welded or bolted in the field. This may save 15 to 25 per cent of the purlin weight. Also in beam construction, great economies may be obtained by taking full adrantage of continuity in design.
In addition to these important economies in a material which is daily becoming more difficult to obtain, even with high priorities, other economies accrue since the shop falbrication and field

Fig. 2-Steelwork in course of erection. Note extreme simplicity of framing Fig. 3-A more clean-cut appearing interior would be hard to imagine
cost on this type of building are much lower than on conventional constructions. As of July 1, 1942, fabricated and erected structural steel prices were approximately as follows: Buildings with roof trusses, \(\$ 150\) per ton; all beam conventional design, \(\$ 140\) per ton; allwelded design, \(\$ 120\) per ton. Field welding on the building shown was sublet for the sum of \(\$ 350\) or \(\$ 3.18\) per ton of steel used.

The building illustrated provides new storage and shipping facilities for the Commercial Bookbinding Co. at West 110th street and Western avenue, Cleveland. The 1 -story structure measures 200 feet by 244 feet 9 inches. Outside walls are 13 -inch brickwork, the sides fronting on the two streets having a light gray face brick with black terra cotta trim and stone coping.

Roof construction is a 2 -inch planking on \(6 \times 12\)-inch wood roof inists and 4 -ply asphalt roof covering. Floor construction is 5 -inch concrete reinforeed with \(6 \times 6\)-inch steel wire mesh.

The steel framework is an are-welded rigid-frame structure with roof beams being placed on an incline to form a lean-to. One end of the lean-to has a vertical face to permit the use of regular sidewall sash instead of the more expensive monitor sash.

Foundations were designed for a soil pressure of 4000 pounds per square foot. Column bases are encased in the 5 -inch concrete floor slab, thus assuring fixed end conditions in designing the frame. The soil is hard clay.

Cost of this building was \(\$ 2.21\) per

square foot, which included all mechanical trades as well as the sprinkler system, which was extended from the main building across one of the streets. This cost was based on prices as of January, 1941, and would have to be modified to meet today's prices.

The use of wond purlins in addition to lowering the amount of steel required makes possible further economies by eliminating the considerable amount of work involved in bolting wood nailing strips to steel purlins, which would have been necessary had steel been used. This not only contributed to the cost saving but also was a factor in speeding the construction of the building.

As mentioned previously, shop fabrication and field erection costs on this type of building are much lower than for conventional construction using truss-type members. In truss work there are a large number of various details to be cut, laid out and punched, then assembled and riveted to complete the finished member. In welded design, the rafter can be an ordinary rolled section with simple punching for field erection and purlin clips, while the columns are also plain rolled sections with the knee welded at the top for the future rafter connection.

By referring to the accompanying illustrations it will be noted that small tie plates were are welded to the column sections with bolt holes for attaching adjoining members. These tie plates were used for shop as well as field assembly after the members had been assembled and lined up. A weld bead was run around the tie plates after this hitd been done. Then the welding of the flanges and web was completed, the assembly bolts were removed and the holes filled with weld metal.
Note the tall column sections are made of standard structural H-sections to which are welded special sections which form the knee, on top of which is welded a similar H -section to complete the column.

The amount of steel used in the build-

Fig. 4-Small tie plates tiere used to hold sections in place by means of bolts till welding was completed. Then bolts were removed, holes plugged with weld metal
Fig. 5-Column sections were standard H-sections with a specially fabricated knee inserted as shoun here
Fig. 6-Tic plates were used for shop as well as field erection
ing illustrated was 110 tons or 4.5 pounds of steel per square foot of building. A conventional type building recently handled by the writer, of very simple beam and column design, using wood purlins and with spans closely conforming to the building illustrated, weighed 5.6 pounds of steel per square foot, which is a saving in weight of 20 per cent in favor of the welded design. Due to the simplicity of design of the welded frame the cost of preparing drawings is very low, 32 hours being used in making shop drawings for the building illustrated, which is but 36.3 cents per ton.

This building is composed of six spans 33 feet 10 inches long and one 39 feet 2 inches. In the first six spans, 14 -inch 30 -pound wide flange beams were used for rafters and columns, and in the seventh span 16 -inch 36 -pound wide

\section*{HOW TO IMPROVE YOUR WELDING}

STEEL'S latest wartime handbook is now ready. Arranged in eleven sections, the seventy-two chapters contain two hundred pages-a selecton of STEEL'S outstanding material of the past two years, including E. W. P. Smith's excellent series of fourteen articles "How To Get the Most from Arc Welding"; plus "Weldability"; "How To Keep Welding Machines Welding"; "Conserving Electrodes", and over 50 others.
"How To Improve Your Welding" is available at once at \(\$ 2.00\) per copy. Please send your order to STEEL, Readers Service department. Penton building, Cleveland. On orders originating in Ohio please include \(3 \%\) sales tax.
flange beams were used. The knees were made of plates welded together of the same thickness as the webs and flanges of the beams.
To sum up, in welded design, there are no knee braces or other longitudinal bracing needed as in truss design. We do not have trusses to interfere with placing of machinery or other equipment, lighting, ease of painting and general maintenance against corrosion.
Dunbar Co., Cleveland, was general contractor on this job. City Iron Works Inc., Cleveland, was the fabricator. The writer served as the architect and engineer.

\section*{Chemical Powder Repairs Cracks in Iron}

A powerful chemical powder reported to waterproof masonry and repair cracks in concrete and iron is announced by Weather Seal Co., Dept. S, 10 East Pearl street. Cincinnati.
Called Drye, it is said to be equally effective for inside or outside use. It also can be used for hardening and waterproofing cement and mortar when included in the mix and is suitable for patching cement floors and bonding tile to cement.
The powder, which is mixed only with cold water, also repairs cracks in iron and can be used as a fumace cement.

In paste form when applied, the product can be readily brushed or troweled on the walls or surface to be waterproofed. Only one application is required for outside work; two coatings if applied inside.
The company also has available a colorless waterproofing, Liqui-Drye. This is scarcely visible where applied and is for porous types of masonry.

\section*{Matched} for Production

S
Sourt man Tum lime miciad

Take advantage of the time-saving features of South Bend Turret Lathes for work that is adaptable to multiple tooling and simultaneous cuts. Use South Bend Engine Lathes for second operations, turning between centers, and for the difficult jobs that require engine lathe versatility. And select South Bend Toolroom Lathes for your precision toolroom work.

There is a practical size and type of lathe for every class of work. South Bend Engine Lathes and Toolroom Lathes are made in five sizes: \(9^{\prime \prime}, 10^{\prime \prime}, 13^{\prime \prime}\), \(141 / 2^{\prime \prime}\) and \(16^{\prime \prime}\) swings. South Bend Turret Lathes are made in three sizes: No. 2-H, Series 900, and Series 1000. Write for a copy of our new Catalog No. 100B in which the entire line of South Bend Lathes is illustrated and described.

ALLDAYY "E- BURGEE awarded to the Soutla Benal lathe Worke for outatanding perforauance in the praduction of Navy matériel.

Fig. 1. (Above)-Assembling tilt motor after servicing. Fig. 2. (Left, center)Chucking operation of tilt motor clutch. Fig. 3. (Left, bottom)-Adjusting brushes while servicing tilt motor

\title{
MAINTAINING....
} Battery-Powered Industrial Trucks

\author{
By F. L. SAHLMANN \\ Transpurtation Department General Electric Co. \\ Schenectady, N. Y.
}

BATTERY - POWERED industrial trucks, possibly because of their ability to operate longer without proper maintenance than most similar equipment, are often neglected to the point where their normal span of usefulness is seriously impaired before they are finally inspected and overhauled.

Today, such negligence is inexcusable. No previous emergency in the country's history has necessitated the rigid maintenance of industrial equipment that must be employed now because replacement equipment is almost impossible to obtain. Thus what we have must be kept working.

Regular inspection and overhauling are the only positive guarantees of the continuous, efficient performance demanded by the 24-hour-a-day, 7-day-aweek production schedules now so common. The following suggestions, then, are designed to facilitate the care and maintenance of the electrical end of this important piece of equipment:

General Precautions: The batteries, sole source of propulsive energy, should be inspected and serviced at regular intervals, according to the recommendations of the battery manufacturers. Any replacements required should be made without delay.

Buth the traction motor, which propels the truck, and the hoist motor, which drives the pump on trucks equipped with hydraulically operated hoist and tilt mechanisms, or the gear box on gear or chain drive hoist and tilt mechanisms, should be inspected monthly and overhauled approximately once a year.

The controller, the commutator, the contactor, the accelerating resistor and all allied parts also should be inspected and overhauled at like intervals.

Naturally, local conditions and the skill of the operator will dictate the frequency of inspection and overhauling.

Traction Motor-Monthly Inspection: -Remove dirt from commutator cover and surrounding parts to prevent it from falling into the motor.
-Remove commutator cover and examine mechanism, noting that copper surface has a smooth polished appearance and is free of copper beads and grease.
-See that the brush-holder mechanisms seat on brushes and that shunts and terminals are tight.
-Wipe carbon dust from cables and brush holders.
-Remove dirt from brushes by lifting springs and raising and lowering
brushes in the carbon ways. Do not snap the springs as this may chip the brushes.
-Replace short or broken brushes with new ones of the proper grade. If only partial replacement is made, grind new brushes to same length as the other brushes in the motor.
-Inspect connections for tightness.
-Examine the interior of motor for charred or broken insulation or other injuries and replace damaged parts.
-Replace commutator cover.
Traction Motor-Annual Overhauling: -Remove motor from truck and clean it on the outside.
-Remove commutator cover and raise the brushes from the commutator to avoid damaging them.
-Remove the nuts from the studs at the pinion end of motor and withdraw the armature complete with commutator -end bearing assembly and pinion end framehead assembly throum pinion end. Important: To obtain maximum life from bearings, they must be kept free of dirt. Therefore, when bearing assemblies are removed from motor, keep them covered.
-hemove the pinion-end assembly and commutator-end bearing assembly from armature, employing suitable puller.
- HBow out dust and dirt from armature, using clean DRY compressed air and wipe clean of oil and grease with a cloth saturated with carbon tetrachloride.
-If armature is found in gond condition, proceed as follows:
-Bake at least 12 hours at 120 degrees Cent. (250 degrees Fahr.)
-While hot, paint with a varnish such as Glyptal No. 1201. Paint the string beads but take care to keep the commutator clean.
-Bake for twelve hours at 120 de grees Cent. (250 degrees Fahr.) (Note: If it is found necessary to remove arma-

Fig. 4-Sectional ciew of tupical traction motor for battery-powered truck
ture coils due to grounds, short circuits, or other damage, it is recommended that the complete armature be sent to the nearest service shop for repairs and rewinding.)
-Take out the cap screws at the commutator end and remove the framehead.
-Blow out the interior of motor with clean DRY compressed air and wipe clean of any oil and grease with carbon tetrachloride.
-If field coils are tight and in good condition, paint them with varnish such as Glyptal No. 1201. Also, paint the interior of the motor with varnish, using care not to get any varnish on the polepicce faces. Otherwise, remove field coil as follows: Discomect the cables and remove the cap screws holding field piece to frame. Then slide out the pole and coil through end of frame ancl slip coil off pole. Keep each pole, coil and any accompanying shims together. Upon reassembly, parts should be returned to their original position. Use new lock washers with pole-piece cap screws. Make sure that contact surfaces are clean, cables are properly reconnected and cap serews drawn up tightly. Check the coil polarity. Guard against loose connections at all times.
-Remove dust and dirt from brush holders and cables with carbon tetrachloride.
-Note that brush-holder mechanisms operate properly; that brushes are free in carbon ways; that shunts and terminals are tight and that carbon ways are not rough or worn. Brushes should never be allowed to wear so short that the pressure arm of the levers rests on the top of the brush-holder carbon way instead of on top of the brush. All brushes must have the same length to obtain an even distribution of current. (Note: New hrushes may be fitted to the commutator brusi holder by placing a strip of fine sandpaper between the end of the brush and the commutator with the rough side of the sandpaper aqainst the brush.)
-Pole-piece cap screws must be tight
and locked with lock wishers.
-Reassemble parts on armature. When replacing bearings, use a suitable brass sleeve so that the pressure will be on the immer race of the bearings.
-Reassemble armature in frame, putting in new brushes if necessary.

The commutator shotid never be lubricated siuce the brushes contain sufficient lubrication. A dirty and greasy commutator will collect carbon dust in the grooves between the segments. This condition will cause a short circuit. The commutator should be kept smooth and concentric with the armature bearings. If the commutator brush surface should become rough, burned, pitted or excessively worn, the armature should be placed in a lathe and the copper turned down just enough to give a true surface. The mica between the copper commutator segments is undercut to \(3 / 64\)-inch below the copper brush surface on new commentators and should be undercut as often as necessary to prevent the mica from becoming flush with the copper brush surface. Slightly round all sharp edges on the copper segments after turning or undereutting and remove all chips, sharp edges and copper dust from the grooves between the segments. Care must be taken to prevent the copper chips and dust from lodging in the armature winding while reconditioning the commutator by using a suitable head covering over the end windings.

Pump Motor-Inspection and overhauling:

The same procedure suggested for the inspection and overhauling of the traction motor should be followed in the case of those industrial trucks equipped with a motor-driven gear-and-chain or hydraulically operated hoist and tilt mechamism, except for the differences in the method by which the motor is removed or opened.

Details vary according to the particu-

Fig. 5-Typical motor controller and reverser for battery-powered truck

lar type of truck inwolved, but in general it is necessary first to discommedt the coupling between the motor and the pump. The mounting serews may be differently located, but an inspection will make it readily apparent what changes need to be made in the routine as already mentioned in connection with the traction motor.

\section*{The Controller:}
-Blow out all dust and grit with clean DRY compressed air.
-If required, oil contact cam rollers through holes provided insulating support and oil reverser shaft bearing. Use an accepted lubricant in a long snout nil can.
-Replace any broken springs or shunts and cheek all connections for cleanliness. Tighten if loose.
-lnspect contact tipss for cleanliness and wear and carefully remove any roughness on contact surfaces with a clean fine file. Contact tips worn half way through should be replaced.
-At yearly overhan period, remove, clean and repack main shaft bearings with an accepted ball-bearing grease.
-Both the contact (ip pressure and the tip gap (distance between the tips when the contactor is open) should be checked periodically.

Contactor shoukd be inspected at the

F'ig. 6. (Left, above)-Approved method of removing ball bearing from shaft

Fig. 7. (Bottom)-Recommended method of measuring final contact-tip pressture on electric control contactor as used in battery-powered trucks
same time the controller is inspected, as follows:
-Use clean DRY compressed air to blow out dust and grit, being sure to blow out all metallic dust from contact points.
-Replace any worn or broken points.
-If the contact tips are badly burned. dress down with a fine file. (Do not waste contact metal.) Replace tips when worn halfway throumh.
-Inspect calbe and shunt commections for loose or faulty electrical contiact.
-P'eriodically check contact tip pressure and tip gap.

Note: Specific information relative to coil operation and contactor adjustment should be obtained from the manufacturer.)

\section*{Accelerating Resistor:}
-Blow out all dust and dirt with clean DRY compressed air and cheek all comections for tightness.
-Check both resistor riblom and porcelain iusulator for damage or breakage.

Proper mantenance of this important piece of industrial equipment will largely eliminate expensive breakelowns and replacements. To be effective any such maintenance program need but be based on the common-sense but often disregarded theory of preventing trouble before it starts. And it works.

\section*{Standard Deals with Spot Welding Aluminum}

Americin Welding Society, 33 West Thirty-ninth strect, New York, recently approved and published an emergeney standard covering the spot welding of aluminum allows in aircraft entitled "Tentative Standards and Recommended Practices and Procedures for Spot Welding Aluminum Alloys".

Result of nine months' concentrated work by a technical committee, the report consists of tentative recommendations for standards of weld quality and performance as well as general recommendations of the best practices and procedures to be followed in spot welding aluminum alloys in the aircraft industry: It also contains a general discussion of the theory of spot welding. particularly as applied to aluminum in aircraft.

Subjects covered by the report include
standards of weld quality, surface preparation for spot welding, welding technique, methods of testing, methods of inspection, design of spot-welded parts, welding equipment and installation, as well as a short dissertation on personnel requirements and production methods. The standard is available from the society's headquarters for \(\$ 1\).

\section*{Publishes Lectures on Heat Transfer}

Heat Transfer by Natural and Forced Convection is the title of an engincering bulletin recently issued by the engineering experiment station of P'urdue university, Lafayette, Ind. Identified as research series No. 84, the publication embraces a series of lectures presented at the university last April by Allan P. Colburn, professor of chemical engineering.

Lectures included deal with the introduction of convection, free convection,
forced courection and applications to the design of heat exchangers.

\section*{Inventor Demonstrates Versatile Tool}

An electromagnetic tool that can be used as a chisel to remove burs, and flexible enough to be used as a drill or polisher was demonstrated by its inventor, Jack Rowe, in Moscow, Idaho, recently. The tool, with refinements, has great possibilities in both war work and other industries, the demonstration revealed.

Working on the electromagnetic principle, the tool's plunger operates a chisel vibrating alont 120 times per second. Several industrialists seem to be interested in the development and, if plans materialize, the tool will be produced in several types and sizes, it is reported.

We named 'em AMERICAN HEAVY DUTY Roller Bearings 25 years ago . . . and their performance has made that name "stick" ever since.

\section*{Here's what we mean by HEAVY DUTY:}

Take the toughest, most abusive, gruelling, continuous service you can think of . . . the most ponderous, powerful equipment needed for that kind of job. Put AMERICANS into that equipment for that service and they will
function smoothly, flawlessly, with minimum maintenance for maximum periods : . . often outlasting the equipment itself. Engineered to withstand terrific strains and stresses, they are brutally strong beyond expected needs yet precise as a fine watch in operation.
That's why most major manufacturers of oil country equipment and many producers of industrial machinery specify AMERICANS only. HEAVY DUTY? We'll say they are!

\title{
AMERICAN ROLLER BEARING COMPANY PITTSBURGH, PENNSYLVANIA
}

Pacific Coast Office: 1718 S. Flower Strect, Los Angeles, California

\section*{INDUSTRIAL EQUIPMENT}

\section*{Polishing Brush}

Osborn Mfg. Co., 5401 Hamilton atyenue, Cleveland, announces a new polishing brush especially designed for use in conjunction with airplane engines and parts. Purpose of the brush

is to get into inaccessible places to rereal any possible scratches or cracks that may develop trouble later.

The brush is of tampico fiber. The polishing material used with the brushes is usually a very finely powdered alundum, fine enough to go through a 240 mesh screen, and suspended in a suitable pasty material. The brush does not impart a luster as high as that given by other polishing devices. The finish it provides is miform.

\section*{Tool Holder}

Lane-Wells Co., 5610 South Soto street, Los Angeles, has developed a tool holder saia to cut tool changing time to approximately 5 seconds. It consists of a tool post which can be fitted to any engine lathe carriage compound rest.

Clamped into the tool post in a cyl-

indrical member are the detachable heads. The tool bits used for boring, turning, etc., are fastened into the heads. Drills and reamers also can be used here.

In practice the lathe operator has several heads each carrying a tool to perform a certain operation on the stock. The first is placed in the tool holder
and locked in place by a quarter-turn of the control handle. As soon as the operation on the stock is performed ny the first tool, the operator releases the head, replaces it with the second head, locks it in place and is ready for the next operation. If a particular tool must be removed and then reinserted in the tool holder, as for example when a particular working operation is interrupted by other work to be done, the tool holder permits the original tool to be reinserted in the tool holder in exactly the same position it originally occupied, it is said.

\section*{Fire Defense Unit}

American-LaFrance-F o a m it e Corp., Elmira, N. Y., amounces a 100 -pound Alfie carbon dioxide engine for use on both electrical and oil fires. It also is eduipped wilh an Anti-Statik hom to protect the operator from static charge. The unit features a third swivel wheel for easy mancuvering, and a retaining lateh which releases hom instantly. It is recommended for fires in flammable

liquids, alcohol storage, electrical machinery, and for other class \(B\) and \(C\) fires. It is reported to smother fire instantly with carbon dioxide gas which expands upon discharge to 450 times its stored volume. The gas is noncorrosive, nonpoisonous and odorless.

\section*{Shock-Proof Pump}

Hydra-Motive Inc., 253 St. Aubin avenue, Detroit, has introduced a redesigned vane-type, variable delivery pump which features heavier section reinforcing webs, conical instead of flat cover plate for increased resistance to shock, and standard mounting bracket. This is said to make the pump adaptable as a replacement for existing pumps, or as now equipment.

Adoption of standard mounting permits the pump to be used without changing current designs. Its delivery is infinitely variable from 0 to 4 gallons per
minute with operating pressures of 1000 pounds per square inch with a top "short-interval maximum" of 3.500 pounds per square inch.

To permit maximum selection of adjustment, a split stator instead of the conventional solid ring is employed. Ad-

justment and limit screws on the outside of the housing allow for varying the delivery to any anount required within the operating range.

\section*{Communication System}

Executone Inc., 415 Lexington avenue, New York, has introduced an improved executive Monitor commmoncation system consisting of two or more master stations connecting up to 19 remote stat tions. These can communicate with each other, or can carry on two-way voice-amplified conversations with remote desk or trumpet-type substations in outlying departments.

An interceptor control feature enables the assistant at the monitor station to intercept all incoming calls originating at the remote stations. Both executive and monitor stations are equipped with busy signals which illuminate to show when other stations are in use. The executive station, however, has the optional facility

of right-of-way busy stations for emergency use.

A paging button enables the user of any master station to call all other stations simultaneously, for paging and locating persons instantly, and for issuing emergency warnings or general amouncements to the entire staff. Persons called
can reply remotely without leaving their work to approach the station. Power consumption for the entire system is only 46 watts.

\section*{Gun Spot Welder}

Sciaky Bros., 4915 West Sixty-seventh Street, Chicago, ammounces a radicaltype P-1-R gun spot welder capable of welding under steady production conditions corrosion-resisting steel, pickled steel, zinc-coated steel and Monel metai in thicknesses of 0.016 inch plus 0.016 inch up to 0.064 inch plus 0.064 inch. It will also weld two unequal thicknesses up to a total welded thickness of 0.500 inch, provided one of the two thicknesses does not exceed 0.040 ined.
Offered in both stationary and buggymounted units, it is equipped with :l special welding timer and operates on single-phase alternating current, 220 or 440 volts. Hydraulic pressure is supplied by a hydro-pnemmatic booster. which can feed a gion able to supply a maximum electrode pressure of 1800

pounds with 90 pounds per square inch air supply.

Fixed or crowded jigs can be reached easily with the portable buggy-mounted gun. The greatest possible area reached by the stationary unit is represented by a circle of 21 feet in diameter.

Secondary cables are thin, flexible and short; reduction in size is made possible because of the use of fixed heary watercooled copper bars in the length of the secondary circuit.

\section*{Fluorescent Circuit}

General Electric Co., Nela Park, Cleveland, amnounces a new circuit for fluores cent lighting fixtures and a specially designed ballast control unit-a system said to make possible saving of millions of pounds of critical metals, and improving lighting efficiency.

The new circuit permits the use of only one ballast with four 100 -watt fluorescent lamps. The two lamps on each phase of the new circuit start in sequence and operate in series. Thus, one ballast does the work of two, effecting economies
in any fluorescent installation where the new circuit can be used. Although it is designed for use only with 100 -watt Huorescent lamps and on 254, 265, and 277 -volt circuits, many new war plants have this voltage available.

\section*{Solderless Connectors}

Ilseo Copper Tube \& Products Co., Mariemont, Cincimati, has placed on the market their latest development in multiple solderless connectors. Two of these new multiple connectors now are available-LU4 which holds wires from

(0) to :3.50,000 circular mils and LUG which holds wires from 250,000 to 500 ,000 circular mils.
The comnectors are simple in design, connections being made with a wrench or pliers. The comectors have ample contact area to carry sustained overloads, it is claimed.

\section*{Comparator Stand}

Vard Inc., Pasadena, Calif., has placed on the market a Vard external comparator stand for checking rapidly outside diameters to close tolerances. Cast from a special fine-grained iron, it is slow to react to temperatures.

Unit weighs 30 pounds and any standard make dial gage fits the slide, which

travels on a fast acting Acme thread and slides on hiund-scraped ways machined out of the casting. Set position is assured, after initial setting with gage blocks, by two lock screws.
A quick change of working tables is permitted by a large knurled screw in the base. The company is offering
tables in the following dimensions: Fourinch diameter circle: \(6 \times 6\) inches square and \(6 \times 12\) inches rectangle.

\section*{Fluorescent Light}

Lumidor Mfg. Co., Los Angeles, has introduced a new portable fluorescent service light adjustable from 30 inches to 7 feet and designed to project light into inaccessible places. It is being used by the Army for servicing planes at night and for indoor use to project light under the wings and fusclages of airplanes in an area which is maviably in shadow from overhead lighting.

Outdoors, the light is casily portable: (merely tipped and rolled on its casters) and throws illumination in any direction -upward or downward, horizontally or vertically, or in any angle of a 180 -de-

gree are. The unit is adjusted without tools. A balanced cast iron base makes the light practically impossible to upset. Other features include power factor correction for the two 48 -inch 40 -watt Hourescent lamps and a high-baked anamel reflector.

\section*{Angle Swivels}

Trabon Engineering Corp., Cleveland, has introduced a new line of straight and 90 -degree angle swivels for use in making oil, grease, air and other line connections between stationary, and revolving, oscillating or other moving surfaces. These are available in two different constructions for different requirements.

The standard ball-bearing swivels are available in \(1 / 8,1 / 4,3 / 8,1 / 2,3 / 4\) and 1 -inch pipe sizes These units turn freely at any pressure without binding and should always be used if space permits. Light duty swivels are built without bearings. They are for use only in lighter work where space limitations do not permit
the use of ball-bearing swivels.
Both are furnished regularly with right hand threads in both head and stem. Swivels with left hand threads in either

the head or stem, or in both head and stem, and swivels of special materials for liandling corrosives, cte., can be furnished on special order.

\section*{Boring Mill}

Yoder Co., Cleveland, has introduced an improved No. 3-A horizontal boring mill which operates on a different power principle, providing the operator with "power touch control" in which the touch and turn of the hand control replaces gear shifting levers. It causes the positive power flow drive to put every allowable amount of power on the tool. Also, feeds may be set to a maximum without limitations of step gears.

Another feature of this power principle includes quick stopping obtained by dynamic braking which is quick and shockless. The power flow drive embodies all advantages of a variable speed direct-current system from in alternatingcurrent source.

Torque output compares favorabiy

and to advantage over older types of drives and is applied clirectly without a large number of intermediate speed change devices. The machine also has a wide range of speeds-16:1 speed rariation on spinclle and feed.

\section*{Fleet-Fillet Electrode}

Lincoln Electric Co., 12818 Coit road, Cleveland, has introduced a new Fleetweld 11 are welding electrode for use with the Fleet-Fillet technique of arc welding. It is reported to be a fast Howing electrode, providing deeper penetration of metal into the root of the joint.

Of the shielded are type, it is heavily coated to exclude oxides and nitrides from the weld. The electrode is held at an angle of 45 to 60 degrees with the horizontal plate, and 90 degrees with the electrode path along the joint.

Are produced is so short, the electrode coating practically touches the metal, it is said. Designed to complete a weld in one pass, the electrode is made in 18 inch lengths and two diameters, \(1 / 16\) and \(1 / 4\)-inch.

\section*{Inserted Section Saw}

Henry Disston \& Sons Inc., Philadelphia, is offering a new inserted section salw which combines advantages of both the inserted tooth and solid tooth type salws. It is a continuous rim saw with inserted sections rather than inserted teeth-one that can be readily sharpened on an automatic grinder.

The saw provides a maximum number

of teeth for any given diameter and cuts smoothly. It can be operated at speeds up to 5000 feet per minute. This design is said to permit a thimer blade and cutting edge to be used thus cutting a narrower kerf.

Design of inserts is such that cutting load is transmitted from each insert directly to the blade approximately at right angles to the resultant force, and not to adjacent inserts or to rivets. The full thickness of the blade extends to the extreme diameter, giving maximum support to the inserts.

The inserts are quickly and easily re placed should they be damaged. Special emphasis is laid upon the fact that it is not necessary to return this saw to the: factory to have it refitted.

\section*{Magnifying Units}

Boyer-Campbell Co., 6540 Antoine street, Detroit, has introduced four new Super Sight models adapted to close inspection, small parts assembly and precision machining. These are designated as Nos. 95ZC, 89ZC, 89 U and 44ZC.

The first has two magnifying lenses
(top lens 5 inches and lower lens 4 inches). The lower lens is adjustable, both being lighted separately. The No. 89ZC consists of one magnifying lens (5 -inch diameter). It is suitable for inspection, small parts assembly and bench work. The third mit has one magnifying lens fitted with safety lens to protect magnifying lens when required. The fourth also has one magnifying

lens (4-inch diameter). All of the mangnifying umits are equipped so they cal be used in any position.

\section*{Double End Milling And Centering Machine}

Sundstrand Machine Tool Co., Rockford, Ill., recently introduced a new double-end milling and centering milchine for milling to length and centering (in one handling) both ends of shafts ranging from \(1^{1 / 8}\) to 6 inches diameter by 14 to 72 inches long.

Machine features a base of one-piece cast iron having horizontal ways. Crosswise to the bed ways are two subbases which, in tura, have way's on which cross feeding heads are attached. The lefthand subbase is fixed but the right-hand base is adjustable for handling various lengths of stock.

Mounted to the bed ways between the two heads are two screw-operated self-centering vises for holding the work. These also are adjustable for handling

various lengths. The drive to the heads is by means of a main drive slaft driven by a fluid motor. Each milling head of the machine is independently motor driven and carries a cam-operated automatic centering spindle.

In a cycle of operation the operator loads a shaft into the work holding vises. He then presses the eycle control

button which starts cross feed of the heads toward the front of the machine to mill both ends of the part to length. On completion of the cross feed for milling, the heads return toward the rear of the machine until the centering spindles are in correct position and then stop.

The centering spindles travel automatically longitudinally in a cycle of rapid approach, feed, rapid return and stop. The cycle is completely automatic so one operator can run several machines. Parts are handled but once thus the milling and the centering is in a definite relation and can be accurately controlled.

\section*{Diaphragm Pump}
T. Shriver \& Co., Harrison, N. J., has introduced a new design to its line of diaphragm pumps. It is a modernized top feed, bottom discharge unit which is adapted particularly for handling slarries or suspensions which contain a high percentage of crystalline or guick settling solids which may be corrosive, abrasive, heary or valuable, delicate or hazardous.
The material is fed into the upper manifold of the pump through the ball valves and into the heads at each end of the

pump in a clean sweeping motion. This does not permit settling or accumulation of solids in the pump heads.

Positive displacement of the material is effected by means of double-acting pistons which are always immersed in a bath of lubricating oil. Since the working mechanism is separated from the liquid heads by rubber diaphragms, there can be no effect by the material on the mechanisin.

Feature of the pump is the interchangeability of the valve manifolds so it may be fed from the bottom and discharged at the top. The pump is being offered in a complete range of capacities from 1 to 100 gallons per minute and for delivery pressures up to 100 per square inch and a suction lift as high as 18 feet.

\section*{Welding Gun}

Progressive Welder Co., 3050 East Outer drive, Detroit, is offering a new welding gun for providing the light pres-
sures required when welding brackets or clips to light gage alloy steels. The gun operating pressure is hydraulic with partially counter-balancing continuous air pressure. The latter also serves to retract automatically the points when hydraulic

pressure is released.
Features of the gun include screwadjustable stroke (up to 3 inches) to take care of a wide range of work sizes, and quick interchangeable adapters for electrodes to use the gun for a wide variety of work shapes. Concentric, kickless and highly flexible welding cables and electronic controls are used in the complete assembly.

\section*{Infra-Red Expander}

Infra-Red Engineers \& Designers, 1633 East Fortieth street, Cleveland, is offering a new Duplex infra-red expander, capable of expanding roller, ball, taper, needle and other bearings, pistons, con-

DUPLEX EXPANDER
necting rods etc. to insure exact fit and easier assembly.
Parts to be "fitted" are merely placed on the unit's plate glass shelf where they
are "showered" by uniformly distributed heat rays. Heater units of the expander are wired for 375 -watt lamps. Tempera tures at which parts are subjected mas be controlled by adjusting distances of the heaters and the glass plate away from work.

The expander includes two V-type in-sulated-reflective heater units, (for top and bottom) \(11 \times 28 \times 9\) inches deep, wired. Both housings are insulated with compressed fiberglas 1 inch thick (except face and four 2 -inch holes for lamps). The plate glass shelf is tempered shatterproof and heat-resisting. It measures \(11 \times 28 \times 1 / 4\)-inch. Detachable side reflector plates also are included although not always needed.

\section*{Alloy Sprayer}

Alloy-Sprayer Co., 2040 Book building, Detroit amomed a new self-contained, portable metal atomizer capable of spraying any neutral alloy which has a melting temperature of up to 600 clegrees Fahr. for protective coating, reproducing like-

ness, ete. It is recommended for use in spotting or checking dies, reproducing molds and for making templets. It is said to be especially suitable where accuracy of reproduction is so fine that even pin scratches must be reproduced.

The sprayer requires only connectingin with electric power and factory air pressure lines for operation. No special protection is required for the operator other than that there be adequate ventilation. Due to the peculiarity of atomized metal as deposited by this method, the operator doing the spraying can hoid light weight work in his bare handswithout any danger of burning his hands.

The sprayer is of 12 -cubic-inch cat pacity and it is equipped with electrical elements for heating the metal in the heavily insulated pot. Temperature control is variable to suit individual alloys over a range of 100 degrees by a rheostat switch.

A thermostat holds the metal at any pre-set temperature. Latch cover automatically seals top of pot against air leakage during spraying. Heating contents of the pot up to the melting point requires approximately 12 minutes.

\section*{Fighting with Ideas}

\section*{(Continued from Page 66)}
of a new endless cotton belt for a highspeed grinding machine. The new belt was 6 inches too long.

Tries Own Remedy: "I tried to shorten the belt by cutting it and gluing the ends to-ether," he recalls, "but the glue repeatedly failed to hold. The problem interested me. I knew that metal fasteners would not be satisfactory in this case because of the vilbration they would cause. It seemed there should be some way to make glue do the job.
"Keeping after the problem, I discovered a special waterproof cement we had never tried on belts that make the two ends of the cotton belt hold together."
Intrigued by the discovery, he obtained 50 feet of belt to contimuc experiments on his own initiative. Kholas' supervisors placed additional supplies and equipment at his disposal, and working with engineers assigned to this problem.

Max helped develop a method of cutting and gluing which enabled cot-ton-web belting to replace on many machines the leather belts then used by Westinghouse.
Result-longer life for belts, less production time out for machines, and reduction in the cost of belt maintenance. When used on high-speed machines, the new cotton belts last at least twice as long as leather and cost onl!! approximatcly one-third as much. The cotton belts are more efficient and their use frees leather for war purposes, company engineers point out.

Machine Does More Work: The engineers also are taking their hats off to Albert Bachofer for showing them a way to make a machine building war equipment work 40 per cent faster.
Forty-one years a machinist with Westinghouse, this 62 -year-old workman suggested a device to eliminate tool breakage and increase the production of rotors, essential parts of electric power generators.

His job is operation of a cutting tool which grooves deep, narrow slots in steel rotors for the insertion of copper windings. The magnetism that generates elcetricity is created in these windings when the rotor spins. Each slot is cut by moving the rotor back and forth for hours under the stationary tool -as though a carpenter were moving the board under his planer.

Like the carpenter's wood planer, the planer for steel cuts in only one direction.

On the return or back stroke, the platner tool formerly was dragged through the fresh cut, causing friction which
slowed operations and often jammed or broke the tool.

Why not, Mr. Bachofer suggested, lift the eutting tool clear off the rotor slot at the end of the forward stroke so that its backward movement would be unimpeded? Adopting his idea, engineers designed an automatic lift. The veteran workman's reward for the time and material saving suggestion was \(\$ 750\).

Women Suggest, Too: Feminine ingenuity, too, has solved many production problems at Westinghouse. Consider the case of Miss Mary Gaslevich. who earned a \(\$ 60\) award for suggesting
that Micarta (plastic) airplane pulleys be packed for shipment while some still were being tested, rather than beginning the packing after testing machines were stopped. This simple improvement avoided a "wasted" time interval of machine idleness.

A storeroom ledger clerk at East Pittsburgh, Miss Mary Gallagher, helped the company save war-important aluminum in the manufacture of a small lamp reflector used on electrical control apparatus. The aluminum casting, from which the reflector was fabricated, had been furnished by an outside supplier in

T. shaft broke in a Venezuelan plant. Knowing the speed and economy of the Thermit process, the management shipped the crankshaft over 2000 miles to Jersey City, where it was Thermit welded and re-shipped to South America.
For over 40 years, Thermit welding has been saving valuable production hours by putting large broken parts back to work in a few daysinstead of the weeks or months needed to replace them.
Savings of several thousand dollars over replacement costs are not infrequent.
Thermit welding also has many advantages for fabrication of large, heavy parts. Preparatory work is simple, there is no manipulation or "positioning" and large, expensive castin\$s are eliminated in favor of small forgings or flame-cut shapes.
Booklet, "Thermit Welding," sent on request.
Specialists in welding for nearly 40 years. Manufacturers of Murex Electrodes tor are welding and of Thermil for repair and fabrication of heavy parts.
a "standard size". When the casting was processed to produce the finished reflector, some aluminum was cut away as scrap. Not concerning herself with such matters as "standard" sizes, Miss Gallagher suggested that the supplier furnish a slightly smaller casting eloser to the exact size of the reflector.
Engineers investigated and found that even though new machinery would be required by the supplier to cut the piece to the new size, the silving in aluminum would make the change advisable, Westinghouse, accordingly, furnished the new equipment and Mary Gallagher was rewarded with a \(\$ 27\) check.
"Keeps Us on Our Toes": When asked what they think of the suggestion system, managers and workers speak the same language. Says shop workman Carlson: "There is no question but this system keeps us on our toes and brings
to light a lot of improvements which never would be turned up otherwise. You know, a man on the job every day is bound to see a lot of things that no one else would notice no matter how carefully he searched."
As manager of employe relations at Westinghouse, T. H. Owens adds this endorsement to Mr. Carlson's testimony: "Both the company and the employes benefit from a suggestion system, and I think the statistics prove that the suggestions rate as high in quality as they do in quantity. From 1910 through 1941 we received 101,962 suggestions, of which 33,089 were put into practice. That is a 32.5 per cent average, and that average is rising steadily.
"During the 32 years the plan has been in operation, we have paid an average of \(\$ 7\) for each suggestion, and the estimated saving brought about by all suggestions has been \(\$ 1,251,530.73\).

\section*{CLEANS CARTRIDGE BELT LINKS RAPIDLY}

IN CLEANING links for .30 and .50 caliber machine-gun bullets, this \(27 \times 36\) inch Wheelabrator Tumblast airless abrasive blast cleaning machine built by American Foundry Equipment Co., Mishawaka, Ind., does four things: It removes all scale encrustations, roughens surfaces of links for finishing, maintains a high production schedule and prevents breakage or damaging during cleaning

Suggestions Up 17 Per Cent: "Last year the number of suggestions increased 17 per cent over 1940; the number adopted was 21 per cent higher; cash awards were 36 per cent higher. These suggestors received \(\$ 46,415\), an average of \(\$ 8\) per suggestion.

Among the suggestions adopted since 1910, the greatest number concerned ways to improve our physical equipment, products and records. Better shop methods ranked second and ideas for safety devices, welfare and educational plans, finished a close third."

\section*{Effective Date of Enameled Utensile Standard Shifted}

Effective date for new production of multiple-coated, porcelain-enameled stecl utensils, commercial standard CS100-42, has been extended to March 30, 1943, according to the National Burcau of Standards, Washington.

This action was taken inasmuch as steel so far available has not been found to be sufficiently suitable for the production of enameled utensils to guarantee compliance with the standard without a serious waste of material and increased cost of production.

Also the situation with reference to certain chemicals necessary for enameling has changed several times, and the future supply is uncertain. In addition, the labor situation is making it increasingly difficult to maintain trained forces necessary to produce enameled utensils according to the standard.

\section*{NEMA Issues Switchgear Assemblies Standards}

National Electrical Manufacturers Association, 155 East Forty-fourth street, New York, reports that its recent issue of "Power Switchgear Assemblies Standards", publication No. 42-72, is a revision of the 1937 cdition.

The new standards cover assemblies of switchgear devices such as switches, interrupting devices, control, metering, protective and regulating equipment with associated interconnections and supporting structures.

General manufacturing and application standards applying to switchgear devices are contained in one section of the book. Standards for indoor metal-clad switchgear, removable truck switchgear, indoor cubicle switchgear, outdoor switch houses, enclosed low-voltare air circuit breaker switchgear (up to 600 volts alternating current and up to 750 volts direct current) and automatic switchgear are specifically envered.

Included also are definitions. graphical symbols and information pertaining to standard equipment.

\title{
WPB Manifests Concern Over Scrap Supply for Winter
}

\author{
Sets 7,000,000 tons as necessary stockpile at year end. . . Plate situation eases but sheet and bar deliveries are tight. . . Iron ore stocks well above last year's
}

DEMAND
No abatement in war needs

\section*{PRODUCTION}

Continues at 98 per cent

\section*{PRICES}

Unchanged at ceilings

INCREASING concern is being manifested by the War Production Board over prospects for next winter's scrap supply. Conservation division has set \(7,000,000\) tons as necessary reserve inventory at the end of the year to assure uninterrupted steel production at capacity through the cold months.

To attain this objective the salvage campaign is being intensified and scrap is being dragged out from many hidden sources. At present the flow is little more than sufficient to maintain steel output at the current high rate, tonnage being laid down for winter use being insignificant. An encouraging feature is the rise in monthly receipts by consumer plants, increasing from \(1,869,000\) tons in January to \(2,400,000\) tons in July, although requirements for steelmaking have been consuming this increased volume from month to month.

While heavy pressure continues for sheared plates October allocations point to easing demand for strip plate and some mills will be able to devote more tonnage to sheets than for some time. This shift indicates that pressing requirements are being met and stocks built up to a safe working margin. Some mills have been given no plate tonnage below the AA groups, with others allocated material as low as A-8-a, though the lower ratings cover little tonnage.

Delivery promises on sheets are becoming further deferred and many producers refuse to make firm promises. Buying is light, except for government requirements, and the tight situation is due in part to reduced allocations of semifinished steel. In some cases sheet mills are operating considerably below capacity for this reason. Considerable shect tonnage is on order for use in fabricating landing field mesh. Tonnage on mill books is almost exclusively in top ratings and some producers have more difficulty in meeting sheet deliveries than in plates. Government requirements, formerly almost exclusively in heavier gages, now have broadened to include nearly all specifications, even to cold-rolled electrical sheets.

Little change is noted in the pig iron situation, October allocations being expected to parallel recent months, with slight changes as more melters engage in direct war work. Sufficient iron is being supplied for all essential needs and melters in nearly all cases are pleased with distribution.

Output is being increased steadily and time lost for relining is being cut materially. Carnegie-Illinois Steel Co. has relighted its Clairton No. 1 stack after relining in 48 days. In most districts all stacks are in production, few being down for repair. Granite City Pig Iron Co. is meeting delays in rehabilitating its second stack, material deliveries being slow.

Bolt and nut demand is heavy and manufacturers meet difficulty in view of limited supply of steel bars. On top ratings many can not offer deliveries before next year. An inquiry is out for 500 tons of heavy construction bolts, all of one size. An inquiry for 800 tons of wrought iron bolts and 200 tons of wrought iron spikes has been placed.

Steelmaking operations last week held at 98 per cent of capacity for the fifth week. Only slight changes were made in active equipment. Pittslurgh advanced 1 point to 96 per cent, Cleveland \(1 / 2\)-point to \(931 / 2\), Cincinnati 9 points to 92 and Detroit 6 points to 95 . Wheeling dropped 4 points to \(801 / 2\) per cent, St. Louis 3 points to 92 and eastern Pennsylvania \(3 / 2\)-point to 96 . Unchanged rates were as follows: Chicago, 1021/2; Buffalo, \(901 / 2\); Youngstown, 95; New England, 100; Birmingham, 95.

Program of the Association of American Railroads for 80,000 freight cars in 1943 appears larger than can be realized in view of lack of steel for that purpose and conversion of many carbuilding shops to war production. Requirements for lend-lease and the armed forces are expected to be heavy and will take precedence over domestic car needs.

August consumption of Lake Superior iron ore totaled 7,155,202 gross tons, slightly under the July figure of \(7,175,845\) tons. The all-time high was \(7,239,788\) tons, smelted in May. For the year to Sept. 1 consumption was \(56,271,764\) tons, compared with \(49,712,949\) tons in the same period last year. Active furnaces Sept. I numbered 189, compared with 190 Aug. 1. Ore stocks at blast furnaces and on Lake Erie docks Sept. 1 totaled 43,236,172 tons, compared with \(36,468,769\) tons a year earlier.

Steel and iron composite prices are steady, controlled.' by OPA ceilings, in which no changes have been made. Finished steel composite is \(\$ 56.73\), semifinished steel \(\$ 36.00\), steelmaking pig iron \(\$ 23.05\) and steelmaking scrap \$19.17.

\section*{COMPOSITE MARKET AVERAGES}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Sept. 26 & Sept. 19 & Sept. 12 & One Month Ago Aug., 1942 & Three Months Ago June, 1942 & \begin{tabular}{l}
One \\
Year Ago Sept., 1941
\end{tabular} & Five Years Ago Sept., 1937 \\
\hline Finished Steel & \$56.73 & \$56.73 & \$56.73 & \$56.73 & \$56.73 & \$56.73 & \$62.18 \\
\hline Semifinished Steel & 36.00 & 36.00 & 36.00 & 36.00 & 36.00 & 36.00 & 40.00 \\
\hline Steelmaking Pig Iron & 23.05 & 23.05 & 23.05 & 23.05 & 23.05 & 23.05 & 22.84 \\
\hline Steelmaking Scrap & 19.17 & 19.17 & 19.17 & 19.17 & 19.17 & 19.17 & 19.05 \\
\hline
\end{tabular}

Finished Steel Composite:-Average of industry-wide prices on shects, strip, bars, plates, shapes, wire, nails, tin plate, standard and line pipe. Semifnished Steel Composite:-Average of industry-wide prices on billets, slabs, sheet bars, skelp and wire rods. Steelmaking Pig lron Composite:Average of basic pig iron prices at Bethlehem, Birmingham, Buffalo, Chicago, Cleveland, Neville Island, Granite City and Youngstown. Steelworks Scrap Composite:-Average of No. 1 heavy melting steel prices at Pittsburgh, Chicago and eastern Pennsylvania.

\section*{COMPARISON OF PRICES}

Kepresentative Market Figures for Current Week; Average for Last Month, Three Months and One Year Ago

Finished Material
Steel bars, Pittsburgh
Steel bars, Chicago
Stcel bars, Philadelphia
Shapes, Pittsburgh
Shapes, Philadelphia
Shapes, Chicago
Plates, Pittsburgh
Plates, Philadelphia
Plates, Chicago
Sheets, hot-rolled, Pittsburgh
Sheets, cold-rolled, Pittsburgh
Sheets, No. 24 galv., Pittsburgh
Sheets, hot-rolled, Gary
Sheets, cold-rolled, Gary
Sheets, No. 24 galv., Gary
Bright bess., basic wire, Pittsburgh
Tin plate, per base box, Pittsburgh
Wire nails, Pittsburgh

\section*{Semifinished Material}

\title{
Sheet bars, Pittsburgh, Chicag
} Slabs, Pittsburgh, Chicago Rerolling billets, Pittsburgh \(\begin{array}{lrrrrr}\text { Wire rods No. } 5 \text { to }{ }^{\circ} \text {-inch, Pittsburgh } & 34.00 & 34.00 & 34.00 & 34.00 \\ & 2.00 & 2.00 & 2.00 & 2.00\end{array}\)
\begin{tabular}{ccccc}
Sept. 26, & Aug. & June & Sept. \\
1942, & 1942 & 1942 & 1941 \\
\(\cdots\) & \(2.15 c\) & \(2.15 c\) & \(2.15 c\) & \(2.15 c\) \\
\(\cdots\) & 2.15 & 2.15 & 2.15 & 2.15 \\
\(\cdots\) & 2.49 & 2.49 & 2.49 & 2.47 \\
\(\cdots\) & 2.10 & 2.10 & 2.10 & 2.10 \\
\(\cdots\) & 2.22 & 2.22 & 2.22 & 2.22 \\
\(\cdots\) & 2.10 & 2.10 & 2.10 & 2.10 \\
\(\cdots\) & 2.10 & 2.10 & 2.10 & 2.10 \\
\(\cdots\) & 2.15 & 2.15 & 2.15 & 2.15 \\
\(\cdots\) & 2.10 & 2.10 & 2.10 & 2.10 \\
\(\cdots\) & 2.10 & 2.10 & 2.10 & 2.10 \\
\(\cdots\) & 3.05 & 3.05 & 3.05 & 3.05 \\
\(\cdots\) & 3.50 & 3.50 & 3.50 & 3.50 \\
\(\cdots\) & 2.10 & 2.10 & 2.10 & 2.10 \\
\(\cdots\) & 3.05 & 3.05 & 3.05 & 3.05 \\
\(\cdots\) & 3.50 & 3.50 & 3.50 & 3.50 \\
\(\cdots\) & 2.80 & 2.60 & \(\underline{10} 50\) & 2.60 \\
\(\cdots\) & \(\$ 5.00\) & \(\$ 5.00\) & \(\$ 5.00\) & \(\$ 5.00\) \\
\(\cdots\) & 2.55 & 2.55 & 2.55 & 2.55
\end{tabular}

Pig Iron

\section*{Scrap}

> Heavy melting steel, Pitts. Heavy melt. stecl, No. 2 , E. Pa. Heavy melting steel, Chicago . . Rails for rolling, Chicago No. 1 cast, Chicago

\section*{Coke}
\begin{tabular}{llrrrr}
Connellsville, furnace, ovens \(\ldots . . .\). & \(\$ 6.00\) & \(\$ 6.00\) & \(\$ 6.00\) & \(\$ 6.25\) \\
Connellsville, foundry, ovens \(\ldots . .\). & 7.25 & 7.25 & 7.25 & 7.25 \\
Chicago, by-product fdry., del....... & 12.25 & 12.25 & 12.25 & 12.25
\end{tabular}

\section*{STEEL, IRON, RAW MATERIAL, FUEL AND METALS PRICES}

Following are maximum prices established by OPA Schedule No. 6 issued April 16, 1941, revlsed June 20, 1941 and Feb. 4,1942 The schedule covers all Iron or steel Ingots, all seminnished Iron or steel products, all finished hot-rolled, cold-rolled Iron or steel products and any Iron or steel product which is further finished by galvanizing, plating, coating, drawing, extruding, etc., although only princlpal established basing polnts for selected products are named specifically. All seconds and off-grade products also are covered. Exceptions applying to individual companies are noted in the table

\section*{Semifinished Steel}

Gross ton basis excent wire rods, skelp.
Carhon Steel Ingats: F.o.b. mill base, rerolling Carbon Steel Ingois: F.o.b. mill
qual., stand. analysis, \(\$ 31.00\). qual-, stand. analysis, \(\$ 31.00\).
(Emplre Sheet \& Tin Plate Co., Mansfleld, O., may quote carbon steel Ingots at \(\$ 33\) gross ton, 1.0.b. mill.)
Alloy Steel Ingots: Pittsburgh base, uncropped. \(\$ 45.00\).
Rerolling Billets, Slabs: Plttsburgh, Chicago, Gary, Cleveland, Bulfalo, Sparrows Polnt. Birminghem, Youngstoun, \(\$ 34.00\); Detrolt, del. \(\$ 36.25\); Duluth (bll.) \$36.00.
(Wheeling Steel Corp. allocated 21,000 tons \(2^{\prime \prime}\) square, base prade rerolling blllets under leaselend during flrst quarter 1942 at \(\$ 37\), f.o.b. Portsmouth, O.; Andrews Steel Co. may quote carbon steel slabs \(\$ 41\) gross ton at established basing polnts.)
Forging Quality Blllets: Pittsburgh, Chlcago, Gary, Cleveland, Buffalo, Blrmingham, Youngstown, \$40.00; Detrolt, del. \$42.25; Duluth \(\$ 42.00\).
(Andrews Steel Co. may quote carbon forgIng bllets \(\$ 50\) gross ton at established basing polnts.)
Open Ilearth Shell Steel: Pittsburgh, Chicago base 1000 tons one slze and section: 3-12 In. \(\$ 52.00 ; 12-18 \mathrm{in} ., \$ 54.00 ; 18 \mathrm{in}\). and over \(\$ 56.00\).
Alloy Bllets, Slabs, Hooms: Plttsburgh, Chlcago, Buffalo, Bethlehem, Canton, Massilion. \(\$ 54.00\).
Sheet Bars: Pittsburgh, Chicago, Cleveland, Buffalo, Canton, Sparrows Point, Youngstown, \(\$ 34.00\).
(Emplre Sheet \& Tin Plate Co., Mansfield, O. may quote carbon steel shcet bars at \(\$ 39\) gross ton, t.o,b, mill.)
Skelp: Pittsburgh, Chicago, Sparrows Pt., Youngstawn, Coatesvlle, \(1 \mathrm{~b} ., \$ 1.90\).
Wire Rods: Pittsburgh, Chicago, Cleveland, Birmingham, No. 5-9/32 in., incluslve, per \(100 \mathrm{lbs} ., \$ 2.00\)
Do., over \(9 / 32-47 /\) f4-in.. Incl.. \$2.15. Wor-
cester add \(\$ 0.10\) Galveston, \(\$ 0.27\). Paclfic Coast \(\$ 0.50\) on water shipment

\section*{Bars}

Hot-Rolled Carbon 13ars: Plttsburgh, Chicago, Gary, Cleveland, Buffalo, Blrmingham, base 20 tons one size, 2.15 c ; Duluth, base 2.25 c ; Defrolt, del. 2.27c; New York del. 2.51c; Phila. del. 2.49 c ; Gulf Ports, dock 2.52c, all-rail 2.59 c Pac. ports. dock 2.50 c ; all rall 3.25 c . (Phoenlx Iron Co., Phoenlxyllle, Pa., may quote 2.35 c at established basing points.) Josiyn Mí. Co. may arne 2..2א. Chicasn base. Calumel Ste 350 Chicago barg warner produced on its 8 -Inch mill.) produced on its 8 -Inch mill.)
Rail steel Bura: Same urices as for hot-rolled carbon bars except base is 5 tons. (Sweet's Steel Co., Williamsport, Pa., may quote rall steel merchant bars 2.33 c f.o.b. mill
Hot-Rolled Alloy Rarg: Pittsburgh, Chicago, Canton, Massillon, Buffalo, Bethlehem, base 20 tons one size, 2.70 c Detrolt, del. 2.82 c .
\begin{tabular}{|c|c|}
\hline A & Alloy \\
\hline S.A.E. Diff & S.A.E. Diff. \\
\hline 0.35 & \\
\hline 0.75 & \(510080-1.10 \mathrm{Cr}\). . . 0.15 \\
\hline 300. 1.70 & 6100 Bars 1.20 \\
\hline 2.55 & 6100 Spr. flats.... 0.85 \\
\hline 3100. 0.70 & Carb., Van. 0.85 \\
\hline 3200. 1.35 & 9200 Spr. flats . . 0.15 \\
\hline 3300 3.80 & 9200 Spr. rounds, \\
\hline 3400. 3.26) & squares \\
\hline \(4100.15-25\) М10. 0.55 & T 1300, Mn, \\
\hline 46.00.20-. 30 Mo . & 1.51-2.00 0.10 \\
\hline 1.50-2.00; Ni. . . 1.20 & Do., carbon under 0.20 max. 0.35 \\
\hline Cold-Finished Carbon & Bars: Pittsburgh, Chi- \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{cago, Gary, Cleveland, Buffalo, base 20,00039.999 lbs. 2.65̈c: Detrolt 2.70.}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{Cold-Finished Alloy Bars: Plttsburgh, Chlcago,} \\
\hline \multicolumn{2}{|l|}{Gary, Cleveland, Buffalo, base 3.35c; Detrolt, del. 3.47 c .} \\
\hline \multicolumn{2}{|l|}{Turned, Ground Shafthg: Plttsburgh, Chlcago,} \\
\hline \multicolumn{2}{|l|}{Gary, Cleveland. Buffalo, base (not including} \\
\hline \multicolumn{2}{|l|}{turaing, grinding, polishing extras) 2.65e:} \\
\hline & \\
\hline
\end{tabular}

Reinforcing Bars (New ilillet): Pittsburgh Chicago, Gary, Cleveland, Birmingham, Sparrovg Point, Buifalo, Youngstown, base 2.15 c rall 2.61c; Pacinc ports, dock 2.80 c , all-rell rall
3.27 c .
Relnforclng Bars (Rall Steed): Plttiburgh. Chicago, Gary, Cleveland, Birmingham, base 2.15 c : Detroit, del. 2.27c; Gulf ports, drek 2.52c, all-rall 2.61c; Paciflc ports, dock 2.80c. all-rall 3.25 c .
(Sweet's Steel Co., Williamsport, Pa., may quote rall steel relnforcing bars 2.33 c , f.o.b. mill.
Iron Bars: Single refined, Pitts. 4.40 c , double reflned 5.40 c ; Pittsburgh, staybolt, 5.75 c ; Terre Haute, common, 2.15 c .

\section*{Sheets, Strip}

Hot-Rolled Sheets: Pittsburgh, Chlcago, Gury, Cleveland, Birmingham, Buifalo, Youngstown, Sparrows Pt., Middetown, base 2.10c; Granite City, base 2.20c; Detroit del. 2.22c; Phlla. del. 2.28c; New York del., 2.35c Pacific ports 2.65 c .
(Andrews Steel Co. may quote hot-rolled sheet: for shipment to Detroit and the Detroit area on the Middletown, \(O\). base.)
Cold-Rolled sheets: Pjttsburgh, Chicago, Cleveland, Gary, Buffalo, Younestown, Middletown, base, 3.05c: Granite City, base 3.15c; Detroit del. 3.17c: New York del. 3.41c: Phila. del. 3.39 c ; Pacifle ports, 3.70 c .

Galvanized Sheels, No. \&t: Plttsburgh, Chlcago, Gary, Blrmingham, Buffalo, Youngstown. Sparrows Point, Middletown, base 3.50 c ; GranIte City, base 3.60 c ; New York del. 3.74c Phila. del. 3.68 c ; Paciflc ports 4.05 c .
(Andrews Steel Co. may quote galvanlzed sheets 3.75 c at established basing polnts.)
Corrugated Galv. Sheets: Plttsburgh, Chicago, Gary, Birmingham, 29 gage, per square 3.31c. Culvert Sheets: Pittsburgh, Chicago, Gary. Blrmingham, 16 gage, not corrugated, copper alloy 3.60 c ; copper iron 3.90 c , pure Iron 3.95 c : zinc-coated, hot-dipped, heat-treated, No. 24 . Pittsburgh 4.25 c .
Enamellug Sheets: Pittsburgh, Chlcago, Gary,
Cleveland, Youngstown, MIddetown, 10 gage.
base 2.75 c ; Granite City, base 2.85 c ; Pacific ports 3.40 c .
Pittsburgh, Chicago, Gary, Cleveland, Youngstown, Middletown, 20 gage, base \(3.3 \overline{\mathrm{co}}\); Granite Clty, base 3.45 c ; Faclfic ports 4.00 c .
Electrical Sheets, No. 24:
\begin{tabular}{|c|c|c|c|}
\hline & Pittsburgh Base & Pacifle Ports & Granle City \\
\hline Fleld grade & 3.20 c & 3.95 c & 3.30 c \\
\hline Armature & 3.55 c & 4.30 c & 3.65c \\
\hline Electrical & 4.05c & 4.80 c & 4.15 c \\
\hline Motor & \(4.95 c\) & \(5.70 c\) & 5.05 c \\
\hline Dynamo & 5.65 C & 6.40 c & 5.75 c \\
\hline \multicolumn{4}{|l|}{Transformer} \\
\hline 72 & 6.15 c & 6.90 c & \\
\hline 65 & 7.15c & 7.90c & \\
\hline 58 & 7.65c & 8.40 c & \\
\hline 52 & 8.45c & 9.20 c & \\
\hline Eot-Ralled & Ittsburgh, & Chicago & Gary. \\
\hline
\end{tabular}

Hot-Rolled Strip: Pitisburgh, Chicago, Gary, Cleveland, Birmingham, Youngstown, Middeown, bsise, 1 ton and over, 12 inches wide 2.75 c . (Joslyn Mfg. Co. may quote 2.30 c , Chi2.75c. (Josly
cago base.)

Cold Itolled
Cold Itolled Sirlp: Pittsburgh, Cleveland, go base 290 c : Detroit del. 2.92c: Worcester ago, base 2.90c; Detroit, del. 2.92c; Worcester Commodity
Commoter Strip: Pittsburgh, Cleveland Youngstown, base 3 tons and over, 2.95c; Cold-FInlshed Surlup
Cold-FInlshed Surink Steel: Plttsburgh, CleveCarb. 2.80 c ; .51-.75 Carb., \(4.30 \mathrm{c}: .76-1.00\) Carb.. 6.15c; over 1.00 Carb., 8.35 c .

\section*{Tin, Terne Plate}

In PInte: Pittsburgh, Chicago, Gary, 100-1b. base box, \(\$ 5.00\); Granite City \(\$ 5.10\).
Tin Mill Rinck Plaie: Pitisburgh, Chicago, Gary, base 29 gage and lighter, 3.05e; Grante Clty, 3.15c; Pacific ports, boxed 4.05c.
Lone Ternes: Pittsburgh, Chicago, Gary, No. 24 unassorted 3.80 c .
Manufacturing Ternes: (Speclal Coated) Pltts-
burgh, Chicago, Gary, 100-base box \(\$ 4.30\);
Granite Cliy \(\$ 4.40\)
Ioofng Teraes: Pittsburgh base per pack age 112 sheets, \(20 \times 28\) In., coating I. C., \(8-1 b\). \(\$ 16.00 ; 30-1 \mathrm{~b} . \quad \$ 17.25 ; 40-1 \mathrm{~b}\). \(\$ 19.50\).

\section*{Plates}

Carbin Steel Plates: Plttsburgh, Chicago, Gary, Cleveland, BIrmingham, Youngstown Sparrows Point, Coatesville, Claymont, 2.10c: New York, del., 2.30-2.55c: Phila., del., 2.15c;
St. Louls, 2.34 c ; Boston, del., 2.42-67c; Prelfouls, 2.34 c ; Gosion, del., 2.42-67c Paclic ports, 2.65 c ; Gull Ports, 2.47 c .
Granite carbon plates \(2.35 \mathrm{c}, \mathrm{f} . \mathrm{o} . \mathrm{b}\). mlll. Central Iron \& Steel Co. may quote plates at 2.20 c , \(1.0 . \mathrm{b}\). basing points.)
Floor Plates: Pittsburgh, Chlcago, 3.35c; Gulf ports, \(3.72 \mathrm{c} ;\) Paclfe ports 4.00 c .
Open-liesth Altoy IIntes: Plttsburgh, Chi Open-llearth Altoy 1'la
cago, Coatesville, 3.50 c .
Wrought Iron Plates: Pittsburgh, 3.80c,

\section*{Shapes}

Struciural shnmes: Pittsburgh, Chicago, Gary, Blrmingham, Buffalo, Bethlehem, 2.10c; New York, del., 2.28e: Phila., del., 2.22c; Gulf ports, \(2.47 \mathrm{c}:\) Pacific ports, 2.75 c
(Phoenlx iron Co., Phoenixville, Pa. may quote carbing points and a moc Phoenlxville for ex borth:)
Steel Slipet Piling: Pittsburgh, Chleago, Butsteel Sipet 2.40 c .

\section*{Wire Products, Nails}

Wire: Pittslurgh, Chicago, Cleveland, Bir-
mingham (except spring wire) to manufacmingham (except spring wire) to manufacturers in carlonds (add \(\$ 2\) for Worcester) Bright baslc, bessemer Galvanized wire
Wire Iroducts to the Trade:
Standard and cement-coated wire nalls
pollshed and staples, \(100-\mathrm{lb}\). keg.
Annealed fence wire, 100 lb .
Galvanized fence wire, 100 lb .
Woven fence, 12 l g gage and lighter, per base column
Do., 11 gage and heavler
Barbed wire, 80 -rod spool, col
Tintsted barbless wire, col.
Single loop bale ties, col.
Fence posts, carloads, col.
Cut nila, Pltisburgh, carloads

\section*{Pipe, Tubes}

Wrlded lise: Base price in carloads to consumers about \(\$ 200\) per net ton. Base discounts on steel plpe Pittsburgh and Loraln, O. Gary, Ind. 2 points less on lap weld, 1 point less on butt weld
on wrought iron plpe.

\section*{Rails, Supplies}

Standard ralls, over 60-lb., f.o.b. mill, gross ton, \$40.00.
Light ralls (blllet), Pittsburgh, Chicago, Birmingham, gross ton, \(\$ 40.00\).
Relaying rails, 35 lbs , and over, fo.b. railroad and basing points, \(\$ 28-\$ 30\).
Supplles: Angle bars, 2.70 c ; tie plates, 2.15 c ; track splkes, 3.00 c ; track bolts, 4.75 c ; do. heat treated, 5.00 c .
-Flxed by OPA Schedule No. 46. Dec. 15.

\section*{Tool Steels}

Tool. Steels: Plttsburgh, Bethlehem, Syracuse, base, cents per \(16 .:\) Reg. carbon 14.00 c ; extra ening 24.00 c ; high car.-chr. 43.00 c .
HIgh Speed Tool Steels:
\begin{tabular}{|c|c|c|c|c|}
\hline Tung. & Chr. & Van. & Moly. & Pltts, base, per lb. \\
\hline 18.00 & 4 & 1 & & 67.00 c \\
\hline 18.00 & 4 & 2 & 1 & 77.00 c \\
\hline 18.00 & 4 & 3 & 1 & 87.00 c \\
\hline 1.5 & 4 & 1 & 8.5 & 54.00 c \\
\hline & 4 & 2 & 8 & 54.00 c \\
\hline 5.50 & & 1.50 & 4 & 57.50 c \\
\hline 5.50 & 4.50 & 4 & 4.50 & 70.00 c \\
\hline
\end{tabular}

\section*{Stainless Steels}

Base, Cents per lb.-f.o.b. Plttsburgh CHIROMIUM NICKEL STEEL
\begin{tabular}{|c|c|c|c|c|c|}
\hline Type & Bars & Plates & Sheets & H. R. Strip & C. R. Strij \\
\hline 302. & 24.00 c & 27.00c & 34.00 c & 21.50 c & 28.00 c \\
\hline 303. & 26.00 & 29.00 & 36.00 & 27.00 & 33.00 \\
\hline 304 & 25.00 & 29.00 & 36.00 & 2.3.50 & 30.00 \\
\hline 308. & 29.00 & 34.00 & 41.00 & 28.50 & 35.00 \\
\hline 309 & 36.00 & 40.00 & 47.00 & 37.00 & 47.00 \\
\hline 310. & 49.00 & 52.00 & 53.00 & 48.75 & 56.00 \\
\hline 311. & 49.00 & 52.00 & 53.00 & 48.75 & 56.00 \\
\hline 312 & 36.00 & 40.00 & 49.00 & & \\
\hline -316 & 40.00 & 44.00 & 48.00 & 40.00 & 48.00 \\
\hline -317. & 50.00 & 54.00 & 58.00 & 50.00 & 58.00 \\
\hline +321 & 29.00 & 34.00 & 41.00 & 29.25 & 38.00 \\
\hline \(\pm 347\). & 33.00 & 38.00 & 45.00 & 33.00 & 42.00 \\
\hline 431 & 19.00 & 22.00 & 29.00 & 17.50 & 22.50 \\
\hline \multicolumn{6}{|l|}{STRAIGHT CHEOMIDA\& STEEL} \\
\hline 403. & 21.50 & 24.50 & 29.50 & 21.25 & 27.00 \\
\hline - 410. & 18.50 & 2150 & 26.50 & 17.00 & 22.00 \\
\hline 416. & 19.00 & 22.00 & 27.00 & 18.25 & 23.50 \\
\hline +1420. & 24.00 & 28.50 & 33.50 & 23.75 & 36.50 \\
\hline 430 & 19.00 & 22.00 & 29.00 & 17.50 & 22.50 \\
\hline \$ \(\ddagger 430 \mathrm{~F}\). & 19.50 & 22.50 & 29.50 & 18.75 & 24.50 \\
\hline 442. & 22.50 & 25.50 & 32.50 & 24.00 & 32.00 \\
\hline 446 & 27.50 & 30.50 & 36.50 & 35.00 & 52.00 \\
\hline 501 & 8.00 & 12.00 & 15.75 & 12.00 & 17.00 \\
\hline 502 & 9.00 & 13.00 & 16.75 & 13.00 & 18.00 \\
\hline \multicolumn{6}{|l|}{STAINLESS CLAD STEEI, (20\%)} \\
\hline 304. . & & 818.00 & 19.00 & & \\
\hline
\end{tabular}

With 2-3\% moly. †With titanium. \(\ddagger\) With columbium. *Plus machining agent. \({ }^{*+H}\) High carbon. \(\ddagger \ddagger\) Free machinIng. Esincludes anneal Ing and pickling.
Baking Iroint Prices are (1) those announced by U. S. Steel Corp. Subsidlarles 10 r first quarter of 1941 or Ir effect April 16, 1941 at deslgnated basing points or (2) those prices announced or customarly quoted by other producers at the same designated points. Base prices under (2) cannot exceed those under (1) except to the extent prevaling in third quarter of 1940.
base prices in effect April 16. 1941
base prices in effect Aprif 16. 1941. Delt Eastern Michlgan, Gulf and Paclic Coast polnts ar deemed basing points excent In the case of
the latter wo areas when water transpartation is not avallable, in which case nearest basing point price, plus all-rall irelght may be charged.

Domestic Ceilnir prices are the aggregate of (1) governing basing point price, (2) extras and (3) transportation charges to the point of dellvery as customarily computed. Governing busing point is basing point nearest the consumer providing the lowest delivered price. Finergency basing point is the basing point at or near the place of production or orlgin of shlpment.

Seconds or off-grade iron or steel products cannot be sold at dellvered prices exceeding thase applying to material of prima quality.
Export celling prices may be elther the aggregate of (1) governins basing point or emer gency basing point (2) export extras (3) export transportation chargen provided they are Steel Export Co on 16191 Domestic Steel Export Co. on April 16, 1941 . Domestic tease iend tonnae

\section*{Bolts, Nuts}
F.o.b. Plttsburgh, Cleveland, Blrmingham. Chicago, Discounts for carloads additional \(5 \%\), ull containers. add 10
x 6 and Emaller \(\ldots 6\).
Do., \({ }^{2}\) and 86 - in . and shorter 63 , off
Do., to \(1 \times 6-\mathrm{ln}\). and shorter..... 61 off \(11 / 8\) and larger, all lengths 59 off All diameters, over \(6-\mathrm{m}\). long 59 off Tire bolts
Plow bolts
Stove Bolt
In packages with nuts separate 71-10 off: with nuts attached 71 off; bulk 80 off on 15.000 of 3 -inch and shorter, or 5000 over 3-In.
\begin{tabular}{|c|c|c|}
\hline Semifinished hex. & U.S.S. & S.A.E. \\
\hline 7elnch and less & 62 & 64 \\
\hline 1/2-1-Inch & 59 & 60 \\
\hline 1 1 年-11/2-inch & 57 & 58 \\
\hline \(1 \%\) and larger & & \\
\hline Hexaron Cap S & rews & \\
\hline Upset 1-in., smaller & & 64 oll \\
\hline Milled 1-In., smaller & & 60 0tt \\
\hline Square Head Set & Screws & \\
\hline Upset, 1-in.. smaller & & 71 oll \\
\hline Headless, 1/4-In., larger & & 60 oft \\
\hline No. 10, smaller & & 70 041 \\
\hline Piling & & \\
\hline Plttsburgh, Chlcago, Euffala & & 2.40 c \\
\hline
\end{tabular}

\section*{Rivets, Washers}
F.o.b. Plttsburgh, Cleveland, Chlcago,
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Structural . 3.75c} \\
\hline \multicolumn{2}{|l|}{\({ }_{\text {r }}\)-inch and under} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{Wrought washers, Plttsburgh, Chlcago,. Phlladelphla, to jobbers and large nut, bolt manufacturers 1.c.1. \$2.75-3.00 off}} \\
\hline & \\
\hline & \\
\hline \multicolumn{2}{|l|}{Metallurgical Coke} \\
\hline \multicolumn{2}{|l|}{Price Per Net Ton Beehtve Ovens} \\
\hline Connellsville, furnace & -\$8.00 \\
\hline Connellsville, foundry & 7.00-7.50 \\
\hline Connellsville prem. Idry. & 7.25-7.60 \\
\hline New River, foundry & 8.00-8.25 \\
\hline Wise county, foundry & 7.50 \\
\hline Wise county, furnace & 6.50 \\
\hline \multicolumn{2}{|l|}{By-I'rodact Foundry} \\
\hline Kearny, N. J., ovens & 12.15 \\
\hline Chicago, outside dellvered & 11.50 \\
\hline Chicago, delivered & 12.25 \\
\hline Terre Haute, delivered & 12.00 \\
\hline Milwaukee, ovens & 12.25 \\
\hline New England, dellvered & 13.75 \\
\hline St. Lauls, delivered & +12.25 \\
\hline Blrmingham, ovens & 8.50 \\
\hline Indianapolis, delivered & 12.00 \\
\hline Cincinnati, delivered & 11.75 \\
\hline Cleveland, dellvered & 12.30 \\
\hline Buffalo, delivered & 12.50 \\
\hline Detroit, dellvered & 32.25 \\
\hline Philadelphia, dellvered & 12.38 \\
\hline
\end{tabular}

Operators of hand-drawn ovens using trucked oal may charge \(\$ 6.50\). effective Aug. 12, 1942
Coke By-Products
Spot, gal., frelght allowed east of Omaha
Pure and \(90 \%\) benzal 15.00 c
Toluol, two degree
15.00 c
28.00 c
solvent naphtha
27.00 c
27.00 c

Industrial xylol ib. f.o.b. works
Phenol (car lots, returnable drums).
12.50 c Do. less than car lots Do. tank cars

Stern Plants, per ib.
phthalene flakes, balls, bbls. to Job-
Per ton, bulk, i.o.b. Dort
Sulphate of ammonla

\section*{Pig Iron}

Prices (in gross tons) are maximums fixed by OPA Price Schedule No. 10. effective June 10. 1941. Exceptions Indicated in footnotes. Allocation regulations from wices bold face, delluered light face.
\begin{tabular}{|c|c|c|c|c|}
\hline & \begin{tabular}{l}
No. 2 \\
Foundry
\end{tabular} & Haste & Ressemer & Manlleable \\
\hline Hethlehem, Pr., base & S25.00 & \$24.50 & \$26.00 & S25.50 \\
\hline Newark, N. J., del. & 26.62 & 26.12 & 27.62 & 27.12 \\
\hline Bronklyn, N. Y., del. & 27.65 & & & 28.15 \\
\hline Birdabura, \(\mathrm{I}^{\text {²a., }}\) del. & 25.00 & 24.50 & 26.00 & 25.50 \\
\hline Hirminstam, base & +20.38 & +19.00 & & - \\
\hline Baltimore, del. & 25.67 & & & \\
\hline Boston, del. & 25.12 & & & \\
\hline Chicago, del & \(\pm 24.47\) & & & \\
\hline Cincinnati, del. & 24.30 & 22.92 & & \\
\hline Cleveland del. & 24.12 & 23.24 & & \\
\hline Newark, N. J., del. & 26.24 & & & \\
\hline Phlladelphia. del. . & 25.51 & 25.01 & & \\
\hline St. Louls, del. . & \(\ddagger 24.12\) & 23.24 & & \\
\hline Hurfalu, base & 24.00 & 23.00 & 25.00 & 24.50 \\
\hline Boston, del & 25.50 & 25.00 & 26.50 & 26.00 \\
\hline Rochester, del. & 25.53 & & 26.53 & 26.03 \\
\hline Syracuse, del. & 26.08 & & 27.08 & 26.58 \\
\hline Cheago, base & 24.00 & 23.50 & 24.50 & 24.00 \\
\hline Milwaukee, del. & 25.17 & 24.67 & 25.67 & 25.17 \\
\hline Muskegnn, Mich., del. & 27.38 & & & 27.38 \\
\hline Cirveland, base & 24.00 & 23.50 & 24.50 & 24.00 \\
\hline Akron, Canton, O., del. & 25.47 & 24.97 & 25.97 & 25.47 \\
\hline Detroit, base & 24.00 & 23.50 & 24.50 & 24.00 \\
\hline Sasinaw, Mich., del. & 26.45 & 25.95 & 26.95 & 26.45 \\
\hline Dululh, base & 24.50 & & 25.00 & 24.50 \\
\hline St. Paul, del. & 26.76 & & 27.26 & 26.76 \\
\hline Erle, Pa., base & 24.00 & 23.50 & 25.00 & 24.50 \\
\hline Everett, Mass., base & 25.00 & 24.50 & 26.00 & 25.50 \\
\hline Boston. & 25.50 & 25.00 & 26.50 & 26.00 \\
\hline Granlte Clty, 111., base & 24.00 & 23.50 & 24.50 & 24.00 \\
\hline St. Louis, del, . & 24.50 & 24.00 & & 24.50 \\
\hline Humilton, O., base & 24.00 & 23.50 & & 24.00 \\
\hline Cincinnati, del. & 24.68 & 24.68 & & 25.35 \\
\hline Neville Isiand, Pra., base & 24.00 & 23.50 & 24.50 & 24.00 \\
\hline sPlttsburgh, del., No. \& So. sldes & 24.69 & 24.19 & 25.19 & 24.69 \\
\hline Provo, Utah, base & 22.00 & & & \\
\hline Sharpaville, Pa., base & 24.00 & 23.50 & 24.50 & 24.00 \\
\hline Sparrows Polnt, Md., base & 25.00 & 24.50 & & \\
\hline Baltimore, del. & 26.05 & & & \\
\hline Nteelton, Pa., base & & 24.50 & & 25.50 \\
\hline Swedeland, Pa., base & 25.00 & 24.50 & 26.00 & 25.50 \\
\hline Philadelphia, del. . & 25.89 & 25.39 & & 26.39 \\
\hline Toledu, O., base & 24.00 & 23.50 & 24.50 & 24.00 \\
\hline Mansfleld, O., del. & 26.06 & 25.56 & 26.56 & 26.06 \\
\hline Youngstown, 0. , base & 24.00 & 23.50 & 24.50 & 24.00 \\
\hline
\end{tabular}
*Bastc sllicon grade (\(1.75-2.25 \%\)), add 50 c for each \(0.25 \%\). †For phosphorus 0.70 and over deduct 38c. \(\ddagger\) Over 0.70 phos. \&For McKees
Rocks, Pa., add .55 to Neville Island base; Lawrenceville, Homestead, McRocks, Pa.. add 55 to Nevilie Island base; Lawrenceville, Homestead, Mc-
Keesport, Ambridge, Monaca, Allquippa, 84 ; Monessen, Monongahela Cty .97 (water) : Oakmont, Verona 1.11: Brackenridge 1.24.

High Shlicon. Sllvery 6.00-6.50 per cent (base) . 529.50 . 29.50 burgh Coke \& Iron Co. (Sharpsville. 6.51-7.00. \(\$ 30.50 \quad 9.01-9.50 \$ 3 \overline{5} .50 \mathrm{~Pa}\). Purnace only) and Struthers \(\begin{array}{rrrrr}\mathbf{7} .01-7.50 & 31.50 & 9.51-10.00 & 36.50 & \text { Iron \& \&teel Co. may charge } 50 \\ 7.51-8.00 & 32.50 & 10.01-10.50 & 31.50 & \text { cents a ton In excess of basing point }\end{array}\)
 8. \(51-9.00\).. \(34.50 \quad 11.01-11.50 \quad 39.50\) Bessemer and Malleable. Mystir F.o.b. Jackson county, O., per gross Iron Works, Everett, Mass., may ton. Buffalo base prices are \(\$ 1.25\) exceed baslng pnint nricos by 51 nur higher. Prices subject to additional charge of 50 cents a ton for each
\(0.50 \%\) manganese in excess of \(0.50 \%\)
\(1.00 \%\).
Ressemer Ferrosillicon
Prices same as for hilith silicon sil(For higher sillicon per gross ton entlal over and above the price of base grades is charged as well as for the
Charconi Ple Iron
Northern
Lake Superior Furn.
. \(\$ 28.00\)
Southern
Semi-cold blast, hlgh phos,
f.o.b. furnace, Lyles, Tenn.. \(\$ 28.50\) Semi-cold blast, low phos.,
f.o.b. furnace, Lyles, Tenn.

Gray Forze
Neville Island, Pay.
33.00

Valley, base
.523 .50

\section*{Basing points. Birdshorus}

Basing points: Birdsboro and Steelbase; \(\$ 30.81\), dellivered, Phlladelphia.
Switching Charges: Basing polnt
rices are subject to an addltional
charge for delivery within the
switching limits of the respective districts.
Sllicon Illiferentills: Basing polnt prices are subject to an additlonal charge not to exceed 50 cents a ton for each 0.25 sillicon in excess o hase grade (1.75 to \(2.25 \%\)).
Phosphorota Differenthat: Basing tion of 38 cents a ton for a reducus content of \(0.70 \%\) and over.
Mancanese Dliferentials: Basing
polnt prlces subject to an additlonal charge not to exceed 50 cents a on for each \(0.50 \%\) manganese con tent in excess of \(1.0 \%\).
Celling mites are the aggregate of (1) governing basing point (2) differentlals (3) transportation charges from governing basing pulnt to point of delivery as customarlly computed. Governing basing point is the one resulting in the lowest delivered price for the consumer.
ton, effective April 20, 1942. Cheser, Pa., furnace of Plttsburgh Coke \& Iron Co. may exceed basing polnt prices by \(\$ 2.25\) per ton, elfectlve

\section*{Refractories}

Per 1000 f.o.b. Works, Net Prices Flre Clay 13rick Super Quallty
Pa., Mo.,
First Quality
Pa., Ill., Md.. Mo., Ky.
\(\$ 64.60\)

Alabama, Georgla........... 51.30
New Jersey 56. . 56.00
Second Quality
Pa., Ill., Md., Mo., Ky. 46.55
\(\begin{array}{ll}\text { Alabama, Georgla., Ky. } & 46.55 \\ 38.00\end{array}\)
 Malleable lBung Ifrlek
All bases \(\$ 59.85\)

\(\begin{array}{lll}\text { Pennsylvania } & & 58.90 \\ \text { Jollet. E. Chicago } & \text {. } & 51.30\end{array}\)
Birmingham, Ala. 51.3
Isadle lirlek
(Pa., O., W. Va,. Mo.)

Domestic dead-burned grains,
net lon f.o.b. Chewelah,
Wash., net ton, bulk 22.01
net ton, hags
Net ton, f.o.b. Baltimore, Plymuuth Chrome Aeeting, Chester, Pa. \(\$ 54.00\) Chem. bonded chrome 54,00 Magnesite brick 76.00

\section*{Fluorspar}

Washed gravel, t.o.b. III.,
Ky.' net ton, carloads, all
rali Do., barge 23.00-25.00 No. 2 lump 23.00-25.00 (OPA May 11 established maximum
at Jan. 2. 1942, level.)

\section*{Ferroalloy Prices}

Ferromanganese: \(\mathbf{7 8 . 8 2 \%}\), carlots, gross ton, duty paid Atlantle ports, \(\$ 135\); Del. Plttsburgh \(\$ 140.65\); f.o.b. Southern furnaces \(\$ 135\); Add \(\$ 6\) per gross ton for packed carloads \(\$ 10\) for ton, \(\$ 13.50\) for less-ton and \(\$ 18\)
for less than \(200-1 b\). lots, packed. Splegelelsen: 19-21\%. carlots per gross ton, Palmerton, Pa, \(\$ 36\). viectrolytle manzanese: \(99.9 \%\) plus. less ton lots, per 1 b .42 .00 c . Ton lots 40.00 c . Annual contracts 38.00 c .
Chromium Metal: Per lb. contained chromium in gross ton lots, contract basis, frelsht allowed, \(98 \%\) 80.00 c , \(88 \% \quad 79.00 \mathrm{c}\). Spot prices 5 cents per lb . higher.
Ferrocolumblum: 50-60\%, per lb. contained columblum in gross ton lots, contract basis, f.o.b. Niagara Falls. N. Y. \(\$ 2.25\) : less-ton lots
\(\$ 2.30\). Spot prices 10 cents per lb. higher
Ferrochrome: 66-70\%; per lb. contalned chromlum in carloads, frelaht allowed, \(4.6 \%\) carbon 13.00 c ; ton lots 13.75 c ; less-ton lots 14.00 c ; !ess than \(200-1 \mathrm{~b}\). lots 14.25 c . 6672\%, low carbon grades:
\[
\begin{array}{cccc}
\text { Car } & \text { Ton Less } \\
\text { loads loss } & \text { 200 } \\
\text { lon } & \text { lbs. }
\end{array}
\]
\(2 \%\) C... 19.50 c 20.25 c 20.7 cc 21.00c \(\begin{array}{lllll}1 \% & \text { C. } & 20.50 \mathrm{c} & 21.25 \mathrm{c} & 21.75 \mathrm{c} \\ \mathbf{2 1} & 22.00 \mathrm{c} \\ 0.20 \% & \text { C. } & 21.50 \mathrm{c} & 22.25 \mathrm{c} & 22.75 \mathrm{c} \\ 23.00 \mathrm{c}\end{array}\) \(0.10 \%\) C. 22.50 c 23.25 c 23.75 c 24.00 c
Chromium briguets: Contract basis in carloads per lb., irelght allowed 8.25 c : packed 8.50 c ; gross ton lots 8.75 c ; less-ton lots 9.00 c ; less 200lb. lots 9.25 c . Spat prices \(1 / 4\)-cent higher.

Ferromulyhdenam: 55-75:6. per in. contained molybdenum, l.o.b. Lan geloth and Washington,
nace, any quantity 95.00 c .
Calclum Molybdate (Molyte): 40 \(45 \%\), per ib. contained malybdenum contract basis, f.o.b. Langeloth and Washington. Pa., any quantity 80.00 c .

Molybdic Oxide Briquets: 48-52\% per 1 b . contained molybdenum, 1.0.b Langeloth, Pa., any quantity 80.00c
Molybdenum Oxide: 53-63\%, per lb contained molybdenum in 5 and 20 ib. molybdenum contalned cans, t.o.b. Langeloth and Washington Pa., any quantity 80.00 c .
Molybdenum Powder: \(99 \%\) per 1 lb . In 200-lb. kegs, fo.b. York, Pa. 2.60: 100-200 lb. lots \(\$ 2.75\); under 100-1b. Jots \(\$ 3.00\).
Ferrophosnhorus: \(17-19 \%\), based on \(18 \%\) phosphorus content, with unitage of \(\$ 3\) for each \(1 \%\) of phosphorus above or below the base: gross tons per carload f.o.b. sellers works, with freight equallzed with Rockdale, Tenn.: contract price \$58.50, spot \(\$ 62.2\).

Cerrophosphorus: 23-26\%, based on \(24 \%\) phosphorus content, with unit age of \(\$ 3\) for each 1 if of phosphorus above or below the base; gross tons per carload f.o.b. sellers' works. with ireight equalized with Mit. Pleasant, Tenn.; contract price sio. spot \(\$ 80\).
Ferrodilicon: Contract basis in gross tons per carload, bulk, freight al lowed: unltage applles to each \(1 \%\) sillcon above or below base.

Carloads
74.50
1.50
135.00
1.80
170.00
2.00
10.25

Ton lats 587.00 Spot prices
Sillcon Metal: Contract basls per lb. f.o.b. producers' plants, trelght allowed: \(1 \%\) iron: carlots 14.50 c , ton lots 15.00 c , less-ton lots 15.25 c , less 200 lbs. 15.50 c .
silicon Metal: Contract basis per lb.: \(2 \%\) Iron: carlots 13.00 c , ton lots 13.50 c , less-ton lots 13.75 c , less 200 lbs . 14.00 c . Spot prlces \(1 / 4\)-cent hlgher.
Silicon 13riquefs: Contract basis; in carloads, bulk irelght allowed, per ton \(\$ 74.50\); packed \(\$ 80.50\); ton lots less 200-1b. lots lots per lb. less \(200-10\). lots per 4.250 .
spot 4 -cent per lb. higher on lesston lots; \(\$ 5\) per ton hlgher on ton lots and over.
Silicomanganese: Contract b a sis ireight allowed, I/ty carbon; In carloads per gross ton \(\$ 128\); ton lots \(\$ 140.50\). Spot \(\$ 5\) per ton higher. silleo-manganese Briqueta: Contract basis in carloads per pound, bulk frelght allowed 5.50 c ; packed 5.75 c : ton lots 6.00c: less-ton lots 6.25c; less \(200-1 \mathrm{~b}\). lots 6.50c. Spot prices \(1 / 4\)-cent higher.
Ferrotungaten: Carlots, per lb. contalned tungsten, \$1.90.
Tungsten Metal Puwder: 98-99 告. per 16 . any quantity \(\$ 2.55-2.6 \overline{5}\). Ferrotitanlum: \(40-45 \%\), f.o.b. N1agara Falls, N. X., per ib. contalned
titanlum: ton ints si.2.3: less-tan lots \(\$ 1.25\). Spuit 5 cents per it higher.
Ferrotitanlam: 20-25\%, 0.10 maximum carbon; per ib, cuntained titanlum; ton lats \$1.35: less-ton lots \(\$ 1.40\). Spot 5 cents per lb. higher. Hish-Carhun Ferrutitanlum: \(\mathbf{1 5 - 2 0 9 0}\). Contract basis, per gruss ion, fo.b lowed to destinations east of Missis sippl Rlver and Nurth of Bullimore and St Touls \(6-8 \%\) carbon \(\$ 142.50\) \(3-5 \%\) carbon \(\$ 157.50\).
Perrevanadium: \(35-40 \%\), contract basis, per lb. contalned vanadium. l.o.b. producer's plant with usual relght allowances; open-hearth highly-speclal grade \(\$ 2.90\).
Vanadium Pentuxlde: Technical grade, \(88-92\) per cent \(V . \mathrm{O}_{3}\) : con racts, any quantity. \(\$ 1.10\) per pound V.O \({ }_{3}\) montalned; spot 5 cents Ler pound hizher.
Tircunluni Altuss: 12-15\%, contract basis, carloads bulk, per gross ton 102.50: packed \(\$ 107.50\) : ton lots 108; less-ton lots \(\$ 112.50\). Spat \(\$ 5\) per ton higher.
Zirconlum alloy: \(35-40 \%\), contract basis, carloads in bulk or package, per lb. of alloy 14.00 c ; gross ton ots 15.00c; less-ton lots 16.00 c . Spot 14 -cent higher.
Alsifer: (Approx. \(20 \%\) aluminum, \(40 \%\) silicon, \(40 \%\) Iron) Contract baSis, f.o.b. Niagara Falls, N. Y., per lb. 7.50 c ; ton lots 8.00 c . Spot \(1 / 4\) cent higher.
stmanal: (Approx. 20\% each sillcon. manganese, aluminum) Contract basis, frelght allowed, per lb. of alloy: carlots 10.5Nr: ion lots nf alloy: carlats \(10.50 \mathrm{c}:\) ion
11.00 c , less ton lots, 11.50 c .

\section*{WAREHOUSE STEEL PRICES}

Base Prices in Cents Per Pound, Delivered Locally, Subject to Prevailing Differentials. As of April 16, 1 bus

\section*{BASE qUANTITIES}

Soft Bars, Bands, Hoops, Plates, Shapes, Floor Plates, Hot Rolled Sheets and SAE 1035-1050 Bars: Base, 400-1999 pounds; 300-1999 pounds in Los Angeles; 400-39,999 (hoops, 0-299) in San Franclsco; 300-4999 pounds in Portland; 300-9999 Seattle; 40014,999 pounds in Twin Cities; 400-3999 pounds in B'ham., Memphis.

Cold Rolled Sheets: Base, 400,1499 pounds In Chlcago, Cincinnati, Cleveland, Detrolt, New York, Omaha, Kansas City, St. Louls; 450-3749 In Boston; 500-1499 In Buftalo; 1000-1999 In Philadelphia, Baltimore: 750-4999 In San Francisco; 300-4999 in Portland, Seattle; any quantity in Twin Cities, New Orleans; 300-1999 Los Angeles.

Galvanized Sheets: Base, 150-1499 pounds, New York; 1501499 in Cleveland, Pittsburgh, Baltimore, Norfolk; 150-1049 in L.os Angeles; 300-10,000 in Portland, Seattle; 450-3749 in Boston; 500-1499 in Birmingham, Buffalo, Chicago, Cincinnatl, Detroit, Indianapolls, Mllwaukee, Omaha, St. Louls, Tulsa; 3500 and over in Chattanooga; any quantity in Twin Cities; 750-1500 in Kansas City; 150 and over in Memphis; 25 to 49 bundles in Phlladelphia: 750-4999 In San Francisco.

Cold Rolled Strlp: No base quantity; extras apply on lota of all slze.

Cold Finished Bars: Base, 1500 pounds and over on carbon, except 0-299 in San Francisco, 500-999, Los Angeles, 1000 and over in Portland, Seattle; 1000 pounds and over on alloy, except 0-4999 in San Francisco.

SAE Hot Rolled Alloy Bars: Base, 1000 pounds and over, except 0-4999, San Francisco: 0-1999, Portland, Seattle.
\begin{tabular}{|c|c|}
\hline \multirow[b]{6}{*}{Ores
Lake Superior
Gross ton,
Lower Lake} & Clirame Ora \\
\hline & Gross ton c.i.f. Baltimore; dry \\
\hline & basis; subject to penalties for guarantees \\
\hline & Indian and African, \\
\hline & 2.8:1 lump, 48\%... \$39.00 \\
\hline & Scuth Afrlcan (excluding war risk) \\
\hline Mnnessemer 4.45 & No ratlo lump, 44\%.. 28.00 \\
\hline High phosphorus 4.35 & Do. \(45 \%\).. 29.00 \\
\hline Mesabi bessemer 4.60 & Do. \(48 \%\). 34.00 \\
\hline Old range nonbessemer 4.60 & Do. concentrates, 48\% 33.00 \\
\hline Eastern Local Dre & Brazillan (nominal) \\
\hline Cents, unit, del. E. & 2.5:1 lump, \(44 \%\). 28.50 \\
\hline Foundry and basle 56- & 3:1 lump, 48\% 38.00 \\
\hline 63\%, contract...... 13.00 & \\
\hline Forelsn Ore & Manganese Ore \\
\hline Cents per untt, c.i.f. Atlantic & \multirow[t]{3}{*}{Including war risk but not duty, cents per unit cargo lots} \\
\hline ports & \\
\hline Manganiferous ore. 45- & \\
\hline 55\% Fe., 6-10\% Mang. Nom. & Caucasian, 50-52\% \\
\hline N. African low phos.... Nom. & S. Airlcan, 48\% 80.00-86.00 \\
\hline Spanish, No. Alrican & Indian, 50\% 80.00-86.00 \\
\hline basic, 50 to \(60 \%\)..... Nom. & Brazilian, \(46 \%\)....... 78.00-84.00 \\
\hline Erazll iron ore, 68-69\% & Cuban, \(51 \%\), duty free. 85.00 \\
\hline f.o.b. Rlo de Jamelra. 7.50-8.00e & Domestlc, 48\%, f.o.b. mines.. \(\$ 1.00\) \\
\hline Tungsten Ore & Molybdenum \\
\hline Chinese woltramite, per short ton unlt, duty & Sulphiae conc., lb., Mo. \\
\hline yald \(\$ 24.00\) & cont., mines 50.75 \\
\hline
\end{tabular}

ن் pajonb spearler

 mum \(\$ 1.00\) per ton.
Maximum Delivered Prices: Determined by adding eatabilshed transportation charges to shipping
point price, not to exceed by more than \(\$ 1\) (plus felat rate increase March 18, 1942) the prices 1isted
in the table for the nearest basing point. Certain exceptions specined in Revised Price Schedule No. in the table for the nearest basing point. Certain exceptions specined in Revised Price Schedule No.
4 (Amendment 1) appiy to St. Louls district consomers. to WPB allccations, to water shipments from

 are \(\$ 2.50\) hess (railroad grades \(\$ 3.50\) less; metelal trom whleh Nos. 1,2 and 3 bundles made is \(\$ 4\) less)
than for the corresponding grades of prepared scrap, except for heavy breabseble cost. In no case shall
 Rcmote Scrap: Consists of an grades, except railroad scrap, In Flordda, Montana, Idaho, Wyoming,
Nevada, Arizona, New Mexico, Texas, Oklahoma, Oregon, Washington, Loulsiana, Utah. Dellvered
price may price mavy exced by not more than \(\$ 5\) the price at the basing point nearest consumer's plant, provided
sworn detalis furnished OPA. Permission required to exceed by more than 35 the nearest basing point
price. Colorado scrap is remote scrap for Colorado consumers only.

 ing point, minus the lowest transpriation charge by rail, water or combination thereof. When vessel
movement is Involved, dock charges shall be so cents at Memphis, \(\$ 1\) at Great Lakes jorts, \(\$ 1.25\) at
New England ports, 75 cents elsewhere. New England shipping pelnt pricesi computed on most favor-

PRICES RAILROAD SCRAP
 both, scrap is at its shipping point when it has been placed f.o.b. rallroad
cases, maximum shipping point prices are: (1) For shipping points locat
price listed in the above table for scrap at the basing polnt in which品

Sinnequa
(suol ssois ui səoplad quịd suḷd

\section*{Sheê̂s, Strip...}

Sheet \& Strip Prices, Page 122
Sheet delivery promises, mainly tentative, are becoming more extended, and few mills will make firm commitments, even on AA-1 ratings. Inquiry and buying are limited on the part of consumers but allocations from Washington are heavy and backlogs are increasing at AA-1 and AA-2 ratings. Direct war needs, formerly emphasizing heavy gages, now include all specifications, even to cold-rolled electrical sheets. Some sellers are getting orders that had been cancelled with other mills because of hopelessness of obtaining delivery, the orders being placed as of the date of the original purchase. In some instances these shifts are made at the suggestion of WPB.

The quota system is proving effective in getting enlarged production on most pressing orders. Full rolling capacity is not engaged as allowances of semifinished are not sulficient to balance needs. Considerable tomages are now on order for landing field mesh fabricated from sheets.

Shipments of narrow cold strip by some resellers are lower, due in part to limited hot strip available; to get hotrolled an AA rating is required, tending toward the higher brackets. Demand is maintained for cold-rolled, orders averaging larger individually, with the ratio of low carbon slightly up, which with some mills gives a somewhat better balanced production schedule, heavily taxed annealing equipment limiting high carbon output. Deliveries under AA-2 are indefinite. Consumption for small arms accessories and ammunition, cartridge cups, links and clips is heavy. Total war requirements for stainless and alloy strip are relatively less than for some products and activity on these grades are below normal.

\section*{Plates...}

\section*{Plate Prices, Page 93}

Tank fabricators are bolstering their production by an increasing volume of work they do not normally handle, such as pontons, barge and ship assemblies and the like. This goes far in offsetting a decline in tank construction, which was first hit by limitation on civilian tank construction and later by completion of such work for cantonments, airplane bases and similar military establishments.

A substantial tomnage is being held up until the synthetic rubber program is clarified. One tank shop has had three successive cancellations in connection with one tonnage originally fabricated for synthetic rubber production.

Not from lack of steel but limitations in propulsion and other essential equipment tends to hold back small boat construction in sizes from 33 to 173 feet, particularly those over 40 feet, for which the government supplies the motors. Large additional orders probably would be placed if it were a question of hulls only, but until motors are available new contracts are held back. Numerous Now England yards are building all-steel units up to 173 fect. Most parts are prefabricated and later joined by welding. Some craft are of composite construction, all of steel except planking.

An inquiry is current in the East for 10,000 tons of plates for manufacture of

\section*{Swifter Driving • Reduced Effort - Less Spoilage \(=\mathbf{5 0} \%\) Less Assembly Time with Phillips Screws}

It takes less time to get more done with Phillips Recessed Head Screws, and assembly workers don't wear out as the day progresses.

Phillips Screws permit one-hand starting and driving. The screw clings to the driver in almost any position - no fumbling - no slipping - no crooked driving. One hand is always free to steady the work. And, with the slipping driver hazard eliminated, electric and
pneumatic power drivers are more often practical.

That isn't all! Less fatigue
fewer accidents . . . better work even from inexperienced operators.

All this adds up to \(50 \%\) savings -- in time, which is so vital today and cost, which will be a problem again tomorrow.

Any of the firms listed below will supply you.

PRILLIPS RECESSED HEAD SCREWS GIVE YOU fory (speedat lower cost) WOOD SCREWS - MACHINE SCREWS - ShEET METAL SCREWS - STOYE BOLTS - SPECIAL THREAD-CUTTING SCREWS - SCREWS WITH IOCK WAShers

\footnotetext{
Amerlean Scrow Co., Providence, R. 1.
The Bristol Co., Walarbury, Conn.
Central Screw Co., Chicago. 111 .
Chandles Products Corp., Cleveland, Ohio
Continental Screw Co., New Bedlord, Mass.
The Corbin Serow Corp., New Britain, Conn.
nternalional Scrow Co., Detroit, Mich.
The Lamson \& Sessions Co., Cleveland, Ohio
The Natimal Screw \& Mig. Co., Cleveland, Ohio

Now England Screw Co., Keene, N.H. The Charles Parker Co., Mesiden, Conn.
Parker KKalon Corp., New York, N.Y.
Pawtuckel Scrow Co., Pawtucket, R.I.
Pheoll Manufacluring Co., Chicago, III.
Russell, Burdsall \& Ward Boll \& Nut Co., Port Chester, N.Y.
Scovill Manulacturing Co., Waterbury, Conn.
Shakeproof Inc., Chicago, III.
The Southington Hardware Mig. Co., Southington, Conn. Whilney Screw Corp., Nashua, N.H.
}
not yet built up much inventory as a rule.

Backlogs of tomage destined for construction are thimer, about two months with few exceptions, while some shops have worked off all construction; two of the largest in the cast operate 70 por cent on building steel and are gradually shifting into miscellancous war equipment fabrication.

\section*{Reinforcing Bars...}

Reinforcing Bar Prices, Page 93
Curtailment in construction and engineering projects is restricting demand for reinforcing bars. Reduced rolling schedules under mill quotas are relative to the drop in requirements and supply
continues tight, some mills not shipping below AA-3. Several projects involving substantial tomnages are held back by low priorities. Buying for Panama is active but shipment for Atlantic bases are lower, except to a Rhode Island depot, which is taking heavy tonnages.

Reinforcing bar mills hope for a change in WPB policy to avert eventual shutdown and allow at least a minimum operating rate. At present rerolling mills are allowed 30,000 tons of rails per month and there also is available as a by-product of merchant bar mills about 45,000 tons of misrolled material and rejects, which ean be rerolled to acceptable products.

Current new business is less than 5

"It has increased production about \(30 \%\) " at Independent Preumatic Tool Co.

Used to cut off a great variety of stock cold drawn tubing (2335 S.A.E., 3115 S.A.E. and 3135 S.A.E.), angle iron, and round, hex and square bars in a wide range of sizes, this MARVEL No. 8 Metal-eutting Band Saw "has increased production about \(30 \%\) " in the cutting-off department of the Independent Pneumatic Tool Co., Chicago.
The most versatile metal-cutting saw built, the MARVEL No. 8 a truly universal tool. It handles work up to \(18^{\prime \prime} \times 18^{\prime \prime}\) cross seetion; cuts at any angle from \(45^{\circ}\) right to \(45^{\circ}\) left; does mitering, notching; saves warehouse delays and "culting extras" and saves hours of machining by roughing work to size and shape.

Culting-off nested small diameter fubing50 pieces per cut. On production jobs like this, the extreme accuracy and comparatively fine teeth of the blade produces smooth-edge, semi-finished pieces of every low cost.

ARMSTRONG-BLUM MFG. 60. "The Hack Saw People"
5700 Bloomingdale Ave., Chicago, U. S. A. Eastern Sales Offices
925 Lafayette St., New York, N. Y.

per cent of the average for the first six months this year. Backlogs are fairly heavy but are being worked off. Some contracts call for periodic shipments as far as third quarter next year. By the end of this year rollings are expected to be cut to a fraction of capacity unless new business is fortheoming.

\section*{Pig Iron..}

Pig Iron Prices, Page 94
Pig iron allocations for October delivery are due. Applications for tonnage for that month were at about the same rate as previous months, although the melt in some lines has become lighter, particularly in stove and soil pipe foundries.

There has been a decline in melt by foundries supplying machinery castings, as production has outstripped ability of machine tool builders to absorb castings as rapidly as produced. This situation is a recent development and probably was not reflected to an important degree in applications filed for October.

Tapering in some lines has been generally balanced by expanding war work in others, 10 notable overall change being apparent. Some additional foundrics have obtained war work and allocations have supplied them with iron, Manufacturers of stoves and other heating devices have made heavy shipments of their products and their iron inventories have been reduced.

Carnegic-Illinois Clairton No. 1 blast furnace was blown in Sept. 22 after relining. Complete relining and installation of an enlarged hearth was completed in 48 days, 21 days ahead of schedule. The only idle unit in the Pittsburgh district is the Neville Island stack of Pittsburgh Coke \& Iron Co., now being enlarged.

Granite City Pis Iron Co., Granite City, Ill., has met further delay in completing repairs to its second stack and date for blowing in has been moved forward to Dec. 1. When this stack is in production the company will have output of 1100 tons daily.

\section*{Scrap...}

\section*{Scrap Prices, Page 96}

Apprehension is being felt by the conservation division of VPPB over prospects for scrap supply for the winter. Paul C. Cabot, deputy director of the division, has amounced that unless local salvage committees and community groups do an exceptional job this fall steel production will be curtailed next winter.

The conservation division calls for 7,000,000 tons reserve by the first of next year to carry through the cold months when collections are slow. Monthly receipts by consumer plants have risen from \(1,869,000\) tons in January to 2,400,000 tons in July, an increase achieved at a time when normal sources have been much diminished.

Flow of scrap to the Pittsburgh district is not materially changed and some mills continue to dip into stock piles to maintain production at peak. No open hearths in that area are idle for lack of scrap.

Various proiects in the Buffalo district are yielding good returns. Since May an average of 132 pounds of metals per capita has been collected; automobile wrecking yards contributed 11,288 tons;
dealers' yards shipped 22,253 tons; the industrial salvage committee reports 26 ,014 tons from April 1 to Aug. 15; special projects section moved 6735 tons and has projects under way that will provide 23,200 tons within a short time.

St. Louis melters are receiving no more than is being consumed, though steel production is not being curtailed. One interest has taken 6000 tons from its reserves since July and now has only a ten-day supply. Another has only sufficient for one week. Considerable material collected at various points has not been picked up, because of lack of trucks and a concerted effort is being undertaken to gather these lots for preparation.
Cincinnati melters have been receiving sufficient for their needs and a slight surplus which has been added to reserves though the latter are far from normal for this time of year. Heavy melting steel has been in better supply but cast scrap is not as plentiful as recently.

Steelmakers continuc to be troubled by preponderance of low-grade material. There is more than normal proportion of No. 2 steel and inferior grades and some mills ordinarily using No. 1 steel have had to use a larger proportion of the less valuable grades.

Yards find difficulty holding labor and inexperienced workers frequently make errors in classifications, with the result mills must reject anything off grade, whether it be higher or lower grade than the classification for which they are paying. To accept such mis-graded material would subject them to penalty by OPA.

Chicago district consumers are receiving enlarged supply and the recent stringency seems to have been relicved. During August automobile wreckers broke up 4489 old cars and reclaimed 6171 tons of scrap. Illinois yards in the same month dismantled 9985 cars and recovered 11,232 tons of scrap material. Wreckers find difficulty in retaining workers and also in obtaining priorities on equipment, such as cutting torches. Supply of old cars is much smaller and scrap from this source is likely to dwindle in the next few months.

\section*{Tin Plate...}

Tin Plate Prices, Page 93
A large producer of tin plate has made a price on electrolytic plate 50 cents per base box below standard hot-dip plate and other producers are meeting the price. A Chicago mill has put its new electrolytic tin line in production but use of tin plate has been so restricted in recent months it is doubtful if its capacity can be fully engaged. For food pack cans made from hot-dip plate are required.

\section*{Bolts, Nuts, Rivets...}

Bolt, Nut, Rivet Prices, Page 93
Bolt and nut production continues limited by inability of manufacturers to obtain bar stock. Some leading producers are not offering even tentative delivery promises on larger rounds below AA-1 priorities and on these top ratings are indicating shipments no sooner than early next year.

The situation as to supplies in general appears discouraging from the PRP
aspect. Bolt and nut makers have been receiving a lighter tomnage against their quotas than they did in last quarter and it appears likely that less tomnage will be received against fourth quarter quotas, which will be established about midOctober. Meanwhile inquiry is heavy. A contractor in Virginia is inquiring for 500 tons of heavy construction bolts, all of one size, \(3 / 4 \times 18\) inches. This is an exceptionally large inquiry of this character.

\section*{Iron Ore...}

Iron Ore Prices, Page 95
August consumption of iron ore by blast furnaces in the United States and

Canada was 7,155,202 gross tons, compared with \(7,175,845\) tons in July and \(6,354,424\) tons in August, 1941, according to the Lake Superior Iron Ore Association, Cleveland. The record high was made in May, this year, at \(7,239,788\) tons.

Cumulative consumption to Sept. 1 was \(56,271,764\) tons, compared with \(49,712,949\) tons on the comparable period in 1941.

Iron ore on hand at blast furnaces and Lake Erie docks Sept. 1 was \(43,236,172\) tons, compared with \(37,326,533\) tons a month earlier and \(36,468,769\) tons a year ago. Of the total on hand Sept. 1 blast furnaces held \(38,124,374\) tons and Lake Erie docks 5,111,798 tons.

As of Sept. 1 blast furmaces active in

\section*{In this unit constructed drive axle assembly}

Here's the drive that's really tough! Motor and Drive are a single unit assembly, fully inclosed . . . reduces strain, simplifies construction Double Reduction Spiral Bevel and Spur Gears transmit the maximum power with minimum wear. Semi-elliptic Spring Suspension provides smooth riding, reduces shock -

Brakes are in the wheels for greatest safety Standardization of Parts and Easy Accessibility reduce maintenance time to the minimum.

For the complete story on the Mercury Drive Assembly and Mercury Material Handling Equipment write for Bulletin 201-5.

Mercury Pioneered and Perfected These Lift Truck Improvements:
 Single Unit Double Red
Drive Axle Assembly
All Welded Frame All Welded Frame
Special Trail Axle Design MANUFACTURING COMPANY 4140 S. Halsted St., Chicago, III. tractors • trailers • LIFt trucks
the United States numbered 179, compared with 181 a month earlier and 176 a year previously. Canadia had ten active stacks, compared with nine a month earlier and ten as of Sept. 1, 1941. The total active furnaces numbered 189 , compared with 190 a month previously and 186 a year carlier.

\section*{Steel in Europe...}

Fore:gn Steel Prices, Page 95
London (\(B y\) Cable)-Output of steel and iron in Great Britain is expected to increase during fourth quarter, every effort being made to press all equipment to the limit. Pressure for steel plates
is unabated, chiefly from shipbuilders, tank, locomotive and railroad car builders. The market for tin plate is clull.

\section*{Pacific Coast...}

Seattle-Bethlehem Steel Co. is installing its fifth open-hearth furnace at the Seattle plant and will have it in operation by the first of October.
While serap receipts were lower lass month, an increase is noted this month as salvage drives are being stressed. In one day 50 tons of local scrap was delivered at a Seattle mill. However, the grade of material collected from homes is far from desirable.

\section*{FIDELITY Quill Winder.}

\section*{Accurate Taper Winding of Wire for Weaving of Wire Cloth for FILTERS•SCREENS•SIFTERS, etc.}

The FIDELITY Quill Winder for accurate, high-speed taper winding of wire-six packages of uniformly even lay and taper at one timespeeds production for manufacturers of wire cloth for filters, screens, sifters, etc.

The taper is automatically governed by control buttons which reverse and successively shorten the traverse in the same operation.

Slow acceleration prevents wire stretching and breakage. Other outstanding advantages include: hydraulic control, individual motor drive, tension control on feeder, and automatic stop motion and yardage meter.

You can wind wire from spools or brake-controlled reels depending on your requirements.

\section*{For further information and details, write to}

FIDELITY MACHINE COMPANY
3908-18 Frankford Avenue, Philadelphia, Pa.

Demand for cast iron pipe continues heavy but dealers can consider onty high priorities which many cities, planning extensions, cannot obtain. An award or 250 tons at Bremerton, Wash., placed weeks ago, is still awaiting priority. Many housing projects are seeking water system materials which are difficult to obtain, 6 and 8 -inch pipe being especially scarce. Valley Construction Co., Scattle, is low \(\$ 133,381\) for cast iron and \(\$ 120,796\) for transite for a water system expansion at Kirkland, Wash. About 500 tons of pipe is involved. Milton, Wash., has federal approval for proposed \(\$ 27,200\) water system project including storage reservoir, 8000 feet of 4 -inch and 1200 feet of 2 -inch pipe and fittings.
Seattle has obtained priority for 500 tons of shapes for the Spokane street vaiduct, to be fabricated by Pacific Car \& Foundry Co., 75 tons of reinforcing to complete one section of the project. The entire jol) involves 1500 tons of reinforcing awarded to Bethlehem and 1225 tons of shapes placed with Pacific Car last January.

Portland Gas \& Coke Co. proposes to install storage tanks at Vancouver, Wash., for propane-butane, with equipment for manufacturing to augment the production of gas from petroleum at Portland. The new facilities are required to serve industrial demand in the Portland-Vancouver area. The project is said to have high priority and approval of federal officials.

\section*{Canada...}

Toronto, Ont.-Expansion in Canada's war production program is responsible for steadily increasing demand for finished and semifinished steel. Under present production rates, approximately 95 per cent, demand excecds domestic production by better than 40 per cent, with a further shortage expected before the end of the year when new enlargements to war plants go into operation, as predicted by the Department of Munitions and Supply. Increased war output will particularly affect aircraft, tanks, ships and guns. Practically all orders for steel now being accented by Canadian producers are directly associated with the war effort and receive the approval of the steel controller. It was reported last week that one war industry, with top priority rating, was unable to get delivery of steel, but arrangements are under way to correct this situation.
C. D. Howe, minister of mumitions and sumoly, announced that Canada's shipbuilding program has been increased by about 50 per cent. This indicates further sharp increase in demand for plates, sheets and other materials, and with Canadian plate mills producing well above rated canacity on backlogs. it is believed that additional tonmoge of plate will have to come from the United States. Rolling stock builders continue to complain of difficulty in getting steel, especially plates, with the result that deliveries of urgently needed cars are far behind schedule, some companies still trying to clean up 1940 contracts. Orders for sheets are piling up steadily, with frequent calls from automotive plants turning out war vehicles and from electrical equipment makers.

Orders for hars are pouring in and mills report backlogs on these materials extending into 1943, despite efforts to
hold down bookings．Bar deliveries，like sheets and plate，now are against approval by the steel controller．Carbon and alloy bars feature the market and even some of the more important war industries report difficulty in getting clelivery in sufficient volume for all needs．While bar mills maintain fairly good rolling schedules，it is stated that it has been necessary in some instances to divert steel from these units to meet require－ ments of plate and sheet mills．
Structural steel lettings and demand for reinforcing bars have taken a sharp slump．Restrictions on new construc－ tion projects are going into effect and by the end of the year it is expected sales in these departments will practically dis－ appear，except for special government approved work．Curtailment in this direction will make substantial tomages of steel available for other war needs． At present，however，fabricators are work－ ing at top speed and are still carrying record backlogs．Lettings for the ast weck fell to around 2000 tons．

Pig iron production continued at 100 per cent during the week，with no fur－ ther interruption by labor trouble．No shortage of merchant iron is reported，and some producers are carrying substan－ tial stocks of foundry and malleable grades．Demand is steady with little change from the preceding two or three weeks，but some improvement was re－ ported in foundry iron sales，which arc slichtly ahead of malleable，totaling about 6000 tons for the week．Some slowing in scrap receipts a few weeks ago stimu－ lated interest in pir iron，but larger supplies of scrap are relieving pressure on pig iron．

Scrap iron and steel receipts showed some uplift last week and further im－ provement is expected during the next month or six weeks．The betterment is almost entirely due to larger deliveries from riiral districts．Salvage campaigns also helped to improve offerings．A． Cope \＆Sons Ltd．，Hamilton，has re－ ceived contract for the removal of rails from London，Ont．，streets，and it is understond that other commumities are considering similar action．The Alberta Petroleum Association，Calgary，Alta．，has completed arrangements to get out 2500 tons of hivh grade steel scrap from the Turner Valley oil field．Incoming scran acain is said to exceed consumntion and consumers are adding to stock viles．De－ mand continues heavy for both steel and iron scrap materials．

\section*{Equipment．．．}

New York－More machine tool build－ ers find new orders are less than ship－ ments，the latter in most instances mount－ ing steadily each month．A large volume of machine tools remains to be bought， some contingent on design and method changes，but unless new mass produc－ tion demands arise for equipment，arms or munitions，leaders in the industry believe the＂hump＂has been passed in war tooling．Changes in the program account for scattered cancellations，but tools find a ready outlet for other shops； decline in buying for aircraft has been less than for other industries．Order backlogs remain at an all－time high with most shops．Negotiated contracts for various services continue active，but pool buying for second quarter，1943，has not started in volume，although pool orders on the books are high，estimated
at close to \(\$ 700,000,000\) ，most of the order to be shipped by the end of first quarter．

Boston－Purchase orders for materials including steels required by the machine tool industry，are 95 per cent in the AA－ 1 or AA－2 priority classification，but more difficulty is experienced in main－ taining well balanced inventories．Pend－ ing final approval of PRP for fourth quarter，some orders for supplies are being placed against the margin allowed， up to 40 per cent．Bearings and d．c． motors，controls，cutting tools，with de－ liveries frequently quoted six months or more，are tight，limited steel available plus heavy demand for other than metal cutting tool requirements being assigned for the pinch in bearings．In steels sul）．
stitutes are heavier，but tend to be re－ tarded by engineering change approvals Castings are being supplied in sufficient volume almost without exception and the chuck situation has improved in most cases．

Seattle－Scarcity of machinery and equipment is becoming more acute as dealers are able to furnish items for only the highest prorities involving defense projects．Gov．Arthur 13．Langlie，ad－ dressing the Washington Good Roads Association，stressed the reluctance of contractors to bid on state highway proj－ ects because they camnot obtain erpuip－ ment．The state highway fund is in ex－ cellent condition but because of war conditions，many major jobs are being postponed．

Mexaloy refractory mixtures possess dual economical factors when employed in open－ hearth and ladle use．Aside from increasing lining life，skulls come away quickly and cleanly－thus reducing labor and maintenance costs ．．．Ladle bottoms packed with this super－refractory mixture give twice their normal life because slags and metal do not stick to a Mexaloy surface ．．．Mexaloy is actually less expensive than ordinary loam coverings．Its inert charac－ ter makes it usable in both acid and basic practice．

THE UMITED STATES GRAPHITE 5月5innw

\section*{Nonferrous Metals...}

New York-H. O. King, chief, WPB Copper Branch, has announced that the supply of copper available to consumers in this country is averaging about 180,000 tons, of which 100,000 are derived from domestic mines, 50,000 from foreign sources, and 30,000 from scrap. He estimates that \(981 / 2\) per cent of the monthly supply is used for war work and only \(1^{1 / 2}\) per cent, or about 2700 tons, for less essential work.

Pressure for metal from industries engaged in war work is reflected in the WPB rulings that beginning Oct. 1 foundries will be able to obtain red metals only when their orders bear ratings of A-1-a or higher. Previously. WPB had informed brass and wire mills that they must request copper for November use only on orders with A-1-a ratings or higher, with the exception of orders placed with mills by Oct. 1 with ratings as low as A-1-k.

Demand for zinc also continues extremely heavy, causing government officials to hasten projects plammed to increase production. Construction of an electrolytic smelter in Colorado is being considered and may be ordered if the prospective ore supply appears adeguate.

The government also has started an exhaustive study of the nonferrous scrap situation, seeking means of increasing the recovery of copper, zinc, etc., from that source.

\section*{Metallurgical Coke... \\ Coke Prices, Page 93}

Little change has taken place in the beehive coke situation recently, only a few additional ovens being placed in production and about an cqual number are down for repairs. The market is strong, with all prices at ceiling level. Consumers have accepted the increase of 50 cents recently allowed by OPA and contracts have been rewritten to the higher level. No drop in demand followed the increase.

\section*{U.S. Steel Corp.}

\section*{(Concluded from Page 25)}
ning lines and equipment for chemical pretreatment of black plate is well along and will be completed during 1943. These new units will aid in conserving the nation's supply of pig tin, the source of which has been cut off by Japanese conquests in the Pacific."

Mr. Olds pointed out that steelmaking operations in the Chicago district have averaged over 100 per cent for 24 months, and 104 per cent for the first eight months of this year, a record which is better than for any other district. As to why this should be so, Mr. Fairless explained that the Chicago clistrict facilities are newer and more condensed, further that the scrap situation is more favorable because the plants produce a larger proportion of their own or home scrap, and that the district is most favorably located for supplies of purchased scrap.

For the corporation as a whole, Mr. Fairless regards the scrap situation as more comfortable and better than for some time. He expects continued improvement in scrap supply and anticipates that operations within the next year will not be curtailed by shortages. He cited as reasons for this viewpoint the present general interest of the public in salvage drives as a result of educational programs, and the fact that the new War Materials Inc. is now beginning to function and holds great promise. In the case of corporation plants, Mr. Fairless doubted that production is being significantly affected adversely by the inferior quality of present scrap.

\section*{Sponge Iron Uneconomical}

Questioned as to the prospects of sponge iron as a substitute for pig iron, Mr. Fairless stated that it holds little promise insofar as the corporation is concerned. Despite the fact there are some 200 patents bearing on the product, sponge iron can be produced, but not economically. The matter is largely one of iron metallics economics, in which the availability of iron ore, transportation facilities, and blast furnaces are the important factors.
Asked about the extent to which the steel industry can employ women, Mr. Fairless stated that the corporation now has more women workers than ever before and that the number is certain to increase, depending upon the shortage of men and the length of the war. How far the use of women can go in replacing men, he had no idea. To date, the situation has not become acute. Car-negie-Illinois Steel Corp., for example, has lost over 20,000 men, but there has been no real shortage.

Chairman Olds said the corporation has no finance program under consideration at present. Neither does it contemplate any change in its dividend policy. In this connection, however, he said that industry is faced with uncertainties which make it impossible to determine policy in advance. With no tax law yct passed, with no knowledge of future labor rates, and with war contracts under renegotiation, Mr. Olds declared that financial statements are little more than forecasts. As to renegotiated war contracts, he deplored the fact that no yardsticks have been established, and
no one knows when or how they will be concluded.

\section*{Propeller Plant}
(Contimued from Page 47)
milled out through the center, broached, cut off to proper size, then the outer surfaces were ground to required close tolerance.

Careful analysis of this job resulted in substitution of standard rectangular barstock for the special formed barstock, and in adoption of a self-feeding,

> Keep Ahead of Delivery Dates by Installing this MONORAIL

Underhung Single Beam Side-Braced CRANE
(Up to 45 ft. Span)

Furnished in Push Type-Hand Geared-Motor Driven Type-One, Two and Three Motor, Floor Controlled, Up to 5 Ton Capacity

\footnotetext{
* You are going to see a worthwhile pick-up in materials handling speed, and effect big labor savings when you install the standard Monorail Crane illustrated above.
Use either the Push-Type-Hand-Geared or Motor-Driven type equipped with 1, 2 or 3 motors operated by pushbutton control from the floor. Span up to 45 ft . between beam centers. Motor driven types have reducer units fully enclosed, running in oil. Trucks on all types are structural members of box construction for strength and rigidity. Steel wheels have double row ball bearings.
} as required.

WRITE TODAY-State fully your Monorail Crane requirements. Get new circular on complete Jib Crane line now. No obligation.

\section*{CHICAGO TRAMRAIL COMPANY}

2912 CARROLL ĀVE.
Phone KEDzie 7475
CHICAGO, ILI.

Lapointe broaching machine for handling it. To turn out the required volume or one machine it was found necessary to produce three complete retainers at each stroke of the machine.

As indicated in Figs. 3 and 4, the rectangular barstock is fed through a trough into the machine by a hydraulic floating clamp, which eliminates distortion of barstock and friction in feed mechanism. First three slotting broaches simultaneously cut slots in the barstock. The bar then is fed automatically to the next position by a special index device which assures exact alignment.
Next comes broach forming of the
three radii on the opposite side of the bar. This is followed by another exact feeding, preparatory to the final operation. This third operation is the parting of the first three units-those which have been slotted and on which the radii have been formed, this being done by hack saw blades operating as broaches, as depicted in Fig. 4.
After the machine is in operation and the barstock has started to feed, all three operations are performed simultaneously, and at each stroke of the machine three complete units are ejected. Cost analysis made since this specially tooled Lapointe machine has been in

\section*{INCREASE YOUR} FURNACE PRODUCTION

\section*{CONSERVE FUEL}
with
BLO Long Flame BNHRERS

\section*{MODERN DESIGN BURNERS}

Efficient combustion and uniform heating is assured by the modern design of Bloom Long Flame Burners.
CORRECTLY ENGINEERED
Economical and satisfactory performance achieved through good application engineering.

\section*{QUICK CHANGE-OVER}

With Bloom Combination Burners, you can change from gas to oil-or from oil to gas INSTANTLY! No delay, no shutdowns, and same heating results are continued after change-over.
WRITE for information, giving full data on
your present equipment and work handled.

\title{
NEW \\ BUSINESS
}

\section*{Plant Expansion, Construction and Enterprise, Government Inquiries, Sub-Contract Opportunities, Contracts Placed and Pending}

\section*{SUB-CONTRACT OPPORTUNITIES}

Data on subcontract work are lasued by reglomal offlces of the War Production Jonrd. Contact cliher the office lssulng the data or sour nearest fleld offec. Write, don't telephone, and mention key letlers and mumbers appearing before cach Item to assure prompt

Minneapolis ofice, Contract Distribution Branch of WPB, 334 Midland Bank building, is sceking contractors for the following:
S.O. No. 255: Chicago manufacturer needs subcontractor for . \(\mathbf{5 0}\)-calibre A.P. bullet coses. Equipment necded: Two four-spindie automatic screw machines or one 6 or 8 spindle automatic screw machine, size \({ }^{3}\) and - inch. Production will continue for the duration.
S. O. No. 232: Sources urgently required for forging 2000 one-piece links per month for duration. Oblong shape, \(101 / 2 \times 31 / 2\) inches and \(11 / 2\)-inches diameter.
S.O. No. 208: Various small parts, automatic or hand screw machine work. AA priority; urgent.
s.O. No. 238: Local firm desires to subcontrac work on micrometer adjustable spacing collars for milling machine cutter arbors. Operations require turning, tapping and threading. Threads are class 3 fit sizes from \(7 / 1\) to 2 -inch arbor. Sample and bhueprints at Minneapolis office.
S.O. No. 231: Chicago firm requires screw machine time to manufacture fuze parts. Drawings available.
S.O. No. 270: Sources reguired for manufacture of various generator parts, gears, pinions, bushings, housings, shafts, bearing assemblies, etc. Recuires lurning, boring and drilling capacity. Deliveries start in Oetober. extent to Marel, 19.43. Drawings and some parts at Minneapolis office.
S.0. No. 268: Screw machine capacity (multiple automatic) needed for six small fuze parts, four of brass and two of steel. Quantitios, 100.000 and up. Samples and drawings with prices, at Minneapolis office.
S.O. No. 266: Cutting of bevel gears, blank furnished by manufacturer. Two gears, 2000 each. Deliveries, 400 per month. Sample and drawings at Minneapolis office.
S.O. No. 265: Subcontract work available in production cuantities on the following tank assemblies: Bogie bracket, bogic arm and cap assembly, trailing idler arm, idler brackets, stop. Primary operations are boring, milling and drilling, Drawings at Minmeapolis office.
S.O. No. 244: Small screw machine part for 1 and \(11 / 2\)-inch machines. Operations are, turning, boring, eut-off. Quantity 100,000 . Material furnished, if necessary. A-1-a priority Also upsetting of small \(3_{1}\)-inch pins, operations, upsetting and cut-off. Quantity 25,000 subcontractor to furnish material. A-1-a priority.
S.O. No. 245: Three screw machine parts, hand screw acceptable; one small bolt assembly, one wire hook. Operations, turning, threading, .drilling, bending. and on some parts plating. Quantities, 60,000 and 120,000 A-1-a priority. Deliveries to start at once.
S.O. No. 262: Minneapolis prime contractor needs facilities for work on punches and dies. Large capacity wanted for internal and extemal grinding.
S.O. No. 254: Three operations on small hrass parts, two operations requiring automatic
screw machines, one of which can be handled on hand machinc. Quantities, 500,000 each. Delivery to start immediately. Contractor will fumish material. Samples at Mimeapolis office.
S.O. No. 260: Sources needed for manufacture of aircruft engine parts, including valve tappets, studs, piston pins, bushings, etc. Grinding operations required on most parts. Samples at Mimeapolis office.

Detroit office, Contract Distribution Brancl, Production Division, WPB, Boulevard building, is seeking contractors for the following:

No. 2391-2394, inclusive: Prime contractor seeks production for these four jols, quotations based on (a) subcontractor furnishing cast iron castings; (b) subeontractor performing machine operations only, prime fumishing castings; (c) subcontractor furnishing castings and performing machine operations. Order is for 18.000 on each joh on delivery schedule of 350 per day, starting Oct. 15. priority is AA2. Crank case, slal, mill, two operations; horizontal boring mill. four operations: H.D. drill; sensitive drill; lapper. Culinder. slah mill; mill; horizontal boring mill; D.D drill; sensitive drill: tapper; cylinder hone; mill vertical. Cylinder head (R.H.): dise grinder; sensitive drill; tapper. Cylinder head (L.H.), disc grinder; sensitive drill; tapper
No. 2381: Bearing housing, stainless steel. 11/1inch O.1)., type No. 416. which is furnished. Automatic screw machine. sensitive drill, broach. Orler is for 10,000
*o. 2382: Bearing retainer, stainless steel rod. 1 -jnch O.D.. which is furnished. Hand srew machine. two operations; sensitive drill; broach: Order is for 2000.
No. 2383: Adjusting stud, stainless steel, type No. 416 , \(\%\)-inch O.D., which is fumished. Hand screw machine sensitive drill. Order is for 2000.
No. 2378: Fuze seat, malleable iron castiners, which are funnished. Screw pachine. 11/4inch hexagon, H.D. drill; combined chamfer and face tool; cadmium platine. Prime contractor will also consider subiontractor furnising completed piece, castine and doing machinine. Order is for 125000 mm delivey selvedule of 1500 per day. Priority is A-1-a.
No. 2343: Prime contractor desires production facilites on commonent parts of a motor, 39 johs involved. Various trpes of ernipment and material involved. Heanirements 4000 , 6000 and 10000 units. On each joh 10 per cent of deliveries are to start Jon. 1. 1943, and 10 mer cent per month thercafter. Priority is AA1. Hlueprints at exhihit room.
No. 2332: Anvil. Material, WDX C.R. stcel, which is furnished. Automatic screw machine. cadmium plating. Order is for up to 150,000 pieces per month.
No. 2333: Material is WDX131.4 C.H. steel, which is furnished. Automatic screw machine, 663 collet; sensitive drill; cadmium
plating. Order is for up to 150,000 pieces per month.
No. 2337: Vibrating damper cone. G.M. No. 1112 or 2020 steel. Screw machine; mill; sensitive drill; tin plate; speerl lathe. Order is for 5000 or 10,000 on minimun delivery selucdule of 2500 per month. Priority is AA-1

Chicago office, Contract Distrihution Branch of WPB, 20 North Wacker Drive, is secking contractors for the following:
No. 39: Coupling. Turret lathes, A \(_{3}, 6\) and 61/2-inch chucking capacity. Slotting or milling machine. Material, hrass, prime to fumish eastings. Quantity, 1000 pieces each, production 250 pieces per weck. Number of pieces, 40 of various sizes. Toler:mces, liberal. Operations, first and second chucking, extemal and internal threading, some special threading.
No. 142: (a) Cylinder frame requiring 54 x 54 -inch \(\times 14\)-font planer with two side heads; horizontat loring mill, IQ-foot distance io out spindle support; Lucas-type horizontal boring mill, 4 -inch spindle, long platen trave); 10 -foot radial drill press. Material, steel castings, funished. Quantity, linited. Tolerances, liberal. (b) BAE \(18 \times 48\)-inch \(x\) 18 -foot planer with two side heads; horimontal horing mill 14 -foot distance outer spindle support; 10 -foot radial drill press. Material steel eastings. furnished. Quantity limited. Tolerances, liberal.
No. 179: Coupling. Iti-inch capacity hand screw machine, centerless grinder. Material, SAF-X1335 steel, fumished by prime. Quantity, 500. Tolerance, minimum .002. Second operation, intermal broaching.
No. 18.t: Centrifugal plunger pin. is \& \(\$\) No. 00 antomatic screw machine. Material, WDX1335, cadmium plated, to be furnished by subcontractor. Quantity, 600,000. Production 100,000 per month. Tolerance, minimum . 003. Prime to furnish gages.
No. 210: Adapter. Three-inch camacity antomatic screw machine. Material, WDIl15 C.R. steel, funished by contractor. Quantity, large. Prodnction 500 per day. Tolerances, 002.
No. 230: Trestle fittings, for steel castings. Quantity, 5000. Production, 300 ner week. Number of pieces, 11. Prime will furnish patterus, subcontractor to funish castinus, heat treated. Simple enstings, sizes \(2 \pi \times 3 \%\) to \(10 \times 12\) inches. One part requires a core.
No. 232: Carriage serew; \(3 / 2\)-inch capacity hand screw machine, thread-cutting precision bench lathe. Material, nickel silver, furnished by prime contractor. Quantity. 4000 . Tolerances. .001. Threads. .375-12 U.S.S. double thraad. Bench milling.
No. 236: (a) Flywheel, chucking turret lathe, 20 -inch swing over carriage, 24-inch heavy duty drill press. Material, forging, furnished by prime contractor. Ouantity, 4400 . Production, lots of 400.1000 and 1500 . Tolerances, minimum 002 . First and second operations. AA-1 rating. (b) Connecting rods and eans, for forging onlv. medirm size and medium weight. Quantity, 4400 pieces each. l'roduction, lots of 500.1000 and 1500. Number of parts. 15. (c) Also reouires forging facilities for two head bolts, largest diameter 1 2n-inch, lencth 30 inches, finished sizes. Quantity, 45,000 each.
No. 244: Hydraulic cylinder assemblies. This listing reçuires variety of machine operations and adapts itself to shops eguipped with

\section*{RUBBER LINED}

\section*{TANKS • PUMPS • PIPE • FITTINGS VALVES • SEWERS•FUME DUCTS}

\section*{WAR PLANTS STEEL BOXES for your Production Needs Prompt Shipment!}

SHOP BOXES
Straight Side A straight side shop hox with rigid handle box with rigid handle and hook hole each shon use where stack hop use where stack ing reature is not re uired.
No. 401- \(10^{\prime \prime} \times 16^{\prime \prime} \times 6^{\prime \prime}\) -18 Gauge85c No. \(402-12^{\prime \prime} \times 18^{\prime \prime} \times 8^{\prime \prime}\)
- 16 Gauge \(\$ 1.10\)

STACKING BOXES

An ideal all-purpose shop box. Sturdy allwelded construction. Heavy skids act as a positive stacking lock and reinforce box at point of maximum wear.
No. 601-10" \(\times 16^{\prime \prime} \times 6^{\prime \prime}\) - 18 Gauge .95 c

No. 602-12"x18"×8" - 16 Gauge \(\$ 1.25\)

Prices F.O.B. Factory, Philadelphia-Any Quantity! Order Today-Write, Wire or Phone

AMERICAN METAL WORKS, INC., 1530 Germantown Ave. Philadelphia, Pa.
milling machine, serew machine and lathe equipment of various types. Close machine work is required and parts are to be delivered completely assembled. Three types are required. Quantities to be determined Blueprints and specimen parts on display at room No. 8, Navy exhibit.
No. 243: Cage. No. 5 Toledo O.D. inclimable press or equal, \(31 / 2-\) inch capacity, chucking urret lathe, second operation, medium size drill press, extemal, internal and face grindcr. Material, AEC-3135-1 steel, furnished by prime contractor. Quantity, 1000 to 20,000 . Number of parts, 12 of various sizes. Tolerances, minimum .0005.
No. 245: Gages, ring, plug, profile, width and snap. Toolroom machinery; No. 2 horizontal milling machine with vertical milling attach ment or vertical mill of equal size; 6 and 10 inch swing toolroom lathe; modium size drill press; contour band saw; surface and in temal and external grinders. Material, gage stock, tool steel, furnished by prime contractor. Quantity, 32. Numher of pieces 15. Tolerances, minimum 0002 . Operaions, tuming, plam milling, contour sawing contour milling, drilling, grinding and lapping.

Milwauke office, Contract Distribution Branch of WPB, 161 West Wisconsin avenue, Milwaukee, Wis., is seeking contractors for the following:
WP376: Part, fuze seat. Qunntity, 125.000 at rate of 1500 per day. Start as soon as possible. Approximate size, \(11 / 2\)-inch hexaron, 1 inch bored and chamfered hole Material, malleable iron castings.

\section*{STRUCTURAL SHAPES...}

\section*{SHAPE CONTRACTS PLACED}

100 tons or more, one 50-ton dry dock crane Philadelphia, to Steel Iron \& Steel Co., \(\$ 262,350\), Tacoma, Washington; one 50 -ton dry dock crane, Bayonne, N. J., to Industrial Brownhoist Corp., \(\$ 210,672.20\); jib crane, Panama, to Lakeside Bridge \& Steel Co., Milwaukce, \(\$ 108,750\); one bridge cranc, Charleston, S. C., to Shaw-Box Crane \& Hoist div., Manning, Maxwell \& Moore, Muskegon, Mich., \$5801; contracts awarded by Bureau of Y゙ards \& Docks, Navy Department.

100 tons or more, 22 crancs, spare parts and tools, navy, to American Hoist \& Derrick Co. St. Paul, Minn., sch. 1498, negotiated, 413,380 , f.o.b. works.

SHAPE CONTRACTS PENDING
200 tons, pumping station, Torresdale, Pa., for Philadelphia board of water supply; bids sept. 28.
142 tons, state viaduct, Eric, Pa.; bids Oct. 2

\section*{REINFORCING BARS . .}

REINFORCING STEEL PENDING
2500 tons, pumping station, Torresdale, Pa, for Philadelphia board of water supply; bids Sept. 28.

1300 tons, filter station at Queen Lake, for Philadelphia board of water supply; bids pened Sept. 23.

316 tons, water supply and distribution system, army training and housing facilities, Lewis-

SHAPE AWARDS COMPARED

Includes awards of 100 tons or more.

\section*{LONGER LIFE for CENTERS when HARD FACED with}

COLMONOY faced centers last from 3 to 5 times as long as centers of high speed steel. The unbeen conted with COLMONOY No. 6. Note the uniformity of these oxy-acetylene welding applications.
The extremely high wear resistance of the hard surface of COLMONOY overlays will protect all vital wearing parts in the machine tonl industry. Mild steel parts coated with COLMONOY alloys wear from 3 to 10 times as long as new parts made of high alloy steel.

\section*{WRITE TODAY}

Learn about COLMONOY and what it is doing to conserve vital metals.

\section*{WALL-COLMONOY CORP.}

720 Fisher Bldg.
Detroit, Mich.
Branch Offices at:
New York City-Blasdell, N. Y.-Chicago-Tulsa Ens Whittier, Calif.-Other Branches in Canada

\section*{MODERN ANATYSIS}

Carbon
Determinator

Sulphur
Determinator

\section*{CARBON}

Accurate carbon determinations made in two minutes with the Carbon Determinator.

\section*{SULPHUR}

Accurate sulphur determinations made in three minutes with the Sulphur Determinator.

Accurate carbon and sulphur determinations in step with production will save labor and material. FURNACE
Use Varitemp Furnaces for combustion of all ferrous and nonferrous samples.
SPECTROGRAPH
Rapid and accurate spectographic analysis of metals.

\section*{HARRY W. DIPTHRT CO.}

9330J Roselawn Ave. DETROIT, MICH.

\section*{GLOBAL VIEWPOINT IS NOT NEW TO US}

On Their Way to Service that COUNTS

During more than forty years, Davenport Locomotives have measured up to the toughest of jobs on every continent and in virtually every industry. No wonder then that Betler-Built Davenports are in demand by the Army, Navy, our Allies, American producers of war goods, and builders of war facilities. Where vital transportation is of paramount importance you'll find the inbuilt STAMINA of Davenports an appreciated asset.

\section*{Better-Built DAVENPORTS}
are AVAlLABLE in
STEAM • GASOLINE • DIESEL
ELECTRIC Or MECHANICAL DRIVE
\(\underset{\text { EXPICE }}{\text { EXPORT }}\) BROWN \& SITES \(\begin{gathered}50 \text { Church St., N. Y. Y. } \\ \text { Cable Add. } \\ \text { Orosites" }\end{gathered}\)

\section*{ \\ .}

* Parachute flares-bomb components-bomb releases-ammunition boxes-fuse parts-electrical controls-aircraft fuel tanks-these are but a few of the armament assemblies where Central Screw Company products have been used, and more important, re-specilied.
Central's fast and accurale "cold upset" method of fabricating small parts in steel, brass and other suitable materials speeds deliveries. Heat treating expertly done. Plating applied to Government specifications. Write

\section*{CONCHETE BARS COMPARED}

Tons
Week ended Sept. 26 4,341
Week ended Sept. 19 13,30-4
Week ended Sept. 12
Week ended Sept. 5
Weekly average, 19.42
576

Weckly average, \(1941 \ldots . .\).
Weckly average, August, \(1942 \ldots\). 7,014
Total to date, \(1941 \ldots\).
Total to date, 1942
339,886
Includes awards of 100 tons or more.
town, Ill.; bids Sept. 19.
125 tons, sewage treatment plant, army training and housing facilities, Lewistow'n, Ill.; bids Sept. 22.
100 tons, expansion, Crucible Sted Cistings Co., Milwaukee; hids being taken.

PIPE ...

\section*{CAST PIPE PENDING}

100 tons or more, Navy, east and west yards, to Mercer Tube \& Mfg. Co., Sharon, Pa., sch. 1.174, negotiated, with separate inquiries included for Sewall's loint, Via, and San Francisco, \(\$ 574,391.01\).

\section*{RAILS, CARS ...}
car orders placed
Carnegie-Illinois Stecl Conp., eighty 100-ton mill service gondolas, to American Car \& Foundry Co., New York.

\section*{CAR ORDERS PENDING}

New York Central, twenty-five 4-8-2 steam locomotives; bids asked.

\title{
CONSTRUCTION
}

\section*{OHIO}

CLEVELAND-Aluminum Co. of America, Allen B. Norton, 2200 Harvard avenue, plans three-story factory building covering 13,000 square feet, costing \(\$ 300,000\). Plans being prepared hy Malcomson, Calder \& Hammond Inc., 1219 Griswold street, Detroit.

CLEVELAND-Superior Lite Co., 1193 East 105 th street, has bought site at 1203 East 105th street for future expansion. Joseph Rapport is president
CLEVELAND-Steel Fabricators Inc., 1215 Main avenue, Victor L. Parker, president, is building one-story addition to office space at 1252 Spruce avemue, N. W., at cost of about \(\$ 2500\).
CLEveLAND-National Screw \& Mfg. Co., 2440 East Seventy-fifth street, Mr. Bumham, purchasing agent, is building new loading dock and passage at 8210 Grand avenue at cost of about \(\$ 8000\).

CLEVELAND-R. E. Dvorak, 17912 Invermere, is huilding small shop structure costing \(\$ 2500\), at 19218 Redwood road.

CLEVELAND-Spero Electric Corp., B. E. Spero, president, is adding \(\$ 3000\) structure to present plant for additional storage space.
CLEVELAND - Harris-Seybold-Potter Co., 4510 Enst Seventy-first, street, manufacturer of printing presses, has plans for a new boilerhouse, to be built soon. Cost estimated at \(\$ 50,000\), with equipment.
Cleveland - McGcorge \& Hargett, 9.400 Quincy avenue, has plans for an industrial company for a plant to cost about \(\$ 20,000,-\) 000 , to be financed by Defense Plant Corp.
Cleveland - Locke Machine Co., H. G. Smith, president, 971 East Sixty-third street, has let contract for a one-story factory and office building, \(29 \times 40 \times 50\) fect to J . L . Huntong Co., Ninth-Chester building. Cost estimated at \(\$ 40,000\). H. Dercum, 4500 Euclid avenue, is engineer.

CLEVELAND-Spark-Lube Inc., is being organized by interests connected with Kinetic Mfg. Co., 2012 West Twenty-fifth street. L. M. Feild, vice president and general manager of Kinetic, and R. C. Hummer, secretary and treasurer, are incorporators. Charter of new company covers manufacture of screw machine products. Leroy C. Lancer, Guardian building, is attomey and statutory agent.
Cleveland-Green Ball Bearing Co. is being organized as a corporation separate from the Green Vacuum Cleaner Co., 7001 Superior avenue, in which the business originated. Samuel Green, of the parent company, will be president. Headquarters and shop of the new company will be at 1965 East Sixty-sixth street. Earl W. Aurelius, 630

Williamson building, is attomey and stathtory agent.
COLUMBUS, O.-Timken Roller Bearing Co., 1025 Cleveland avenue, has let a contract for two 2 -story factory buikings and boilerhouse to Hadlock-Krill Co., 2169 East Thirty-third street, Cleveland, for about \(\$ 150,000\).
COLUMBUS, O.-Sasco Anto Parts Co., 514 Parsons avenue, is building a plant on High street to cost about \(\$ 50,000\).
MANSFIELD, O.-Hartman Electric Mfg. Co., 37 East Fifth street, has bought from the Reliable Jack Co., Dayton, O., its manufacturing plant at Lucas, O., about six miles from here. Equipment includes 15 punch presses and will be utilized for production of metal stampings and switch parts for war contracts.
MEDINA, O.-Permold Co., E. G. Fahlman in charge, will build a factory and office building costing 840,000 . Christian, Schwarzenhurg \& Gaede, 1836 Euclid avenue, Cleveland, are engineers.
YOUNGStOWN, O.-William B. Pollock Co. is extending shop and locker space by a \(\$ 15,000\) addition at 101 Andrews avenue.

YOUNGSTOWN, O.-Arsene A. Rousseau, Mahoning Bank building, is preparing plans for an addition to a manufacturing plant here for an undisclosed owner.

\section*{CONNECTICUT}

HARTFORD, CONN.-Hartford Electric Light Co. has approved plansfor outdoor type power substation for distrihution feeder service, with installation to include voltage regulators and accessories.
STAMFORD, CONN. - Shick Inc. has awarded electrical contract for one-story, 62 x 200-foot factory to John Drenckholm, 882 Hope strect.

BRIDGEPORT, CONN.-General Electric Co., C. M. Snyder, manager, Bond strect and Boston avenue, will build plant additions \(82 \times\) 180 and \(82 \times 120\) feet, both two stories, at cost of ahout \(\$ 125,000\).
BRIDGEPORT, CONN.-Edwin Moss \& Son Inc., 555 Grant street, has a contract for a tool engineering plant for an industrial company, location and identity not disclosed. Plant will be \(94 \times 192\) feet, to cost \(\$ 137,400\).

\section*{MASSACHUSETTS}

HUNGHAM, MASS. - Bethehem - Hingham Shipyards Inc. will soon build a compressor station in conjunction with the new boilerhouse at the shipbuilding plant, at cost of about \(\$ 60,000\).
MALDEN, MASS.-Converse Rubber Co., 392

ESTABLISHED
1885
Prepare "CHIPS" and "SHOVELLING TURNINGS" with the profitable GRUENDLER STEEL TURNINGS CRUSHER

Large quantities of lang steel and high carbon stee turnings, long coils of brass allovs can be readily reduced to uniform "chips" which
bring a higher price and are easier to handle.

Writc for Bulletin Success
Auilt from sizes
1 Ion per hour to 8 lans per hour

GRUENDLER CRUSHER \& PULVERIZER CO.
9920-98 N. MARKET ST.
ST. LOUIS, MO

\section*{INDUSTRIAL TRUCKS AND} TRAILERS

Caster and Fifth Wheel Types

the ohio galvanizing \& mFg. co. Penn St., Niles, Ohio

\section*{"COWLES"}

ROTARY SQUARING KNIVES for Modern Requirements Highest Quality Long Service The Product of Many Yeara Specialization made by toolmakers
COWLES TOOL COMPANY Cleveland. Ohio

Pearl street, will build an addition to its experimental plant. Contract has been let to James Construction Co., 43 Haverhill strect, Boston. Vancy \& Pike, 40 Comhill, Boston, are engineers.
PALMER, MASS. - Wickwire Spencer Stecl Co. has let contract for additions to buildings 36 and 63 to the Aberthaw Co., 80 Federal street, Boston. Estimated cost is over \(\$ 40,000\).

\section*{PENNSYLVANIA}

ERIE, PA.-Lord Mfg. Co., Twelfth strect and Green Garden road, is building a one-story plant addition \(60 \times 300\) feet, to cost about \(\$ 90,000\).
PHILADELPHIA-Warner Co. Inc., 219 North Broad street, will build a magnesite mill for
the govemment, including a powerhouse, Defense Plant Corp. to finance cost. United Engincers \& Constructors Inc., 1401 Arch street, Philadelphin, enginecr.
RIDGWAY, PA.-Elliott Co., W. A. Elliott, vice president in charge of purchasing, Jeanette, Pa., will build an erecting shop. Prack \& Prack, 517 Martin building, N.S., Pittsburgh, are architects. J. W. Ryan, Jeanctte, is the company's general plant engineer.

\section*{MICHIGAN}

DETROIT-Rue Tool \& Gage Corp., 9825 Belleterre avenue, has been incorporated with \(\$ 10,000\) capital to deal in tools, dies, machinery, etc., by Albert W. Mackey, 1950 Brainerd avenue, Detroit.
DETROIT-Ceco Gauge \& Tool Co., 17113

IN ALL GRADES AND ANALYSES

\author{
Successfully Serving Steel Consumers for Half a Century
}

EXECUTIVE OFFICES: GRANT BLDG., PITTSBURGH, PA.
GENERAL OFFICES AND WORKS: CARNEGIE, PA.

\section*{THE HANNA FURNACE CORPORATION}

MEKCHANT PIG IRON DIVISION OF NATIONAL STEEL CORPORATION

\footnotetext{
Buffala
}

Detroit
New York
Philadelohia

West Six Mile road, has been incorporated with \(\$ 50,000\) capital to deal in tools, machined parts and machinery by Stanley J Kopec, 17113 Six Mile road.
DETROIT-Hammer Tool \& Die Co. has awarded contract to Emest Artt, Detroit, for an addition to its plant.

\section*{ILLINOIS}

CHICAGO-Darling \& Co., 4201 South Ashland avenue, has plans for a boilerhouse addition \(30 \times 40\) feet, 50 feet high. Solon L. Riley, 300 West Adlams street, is architect.

CHICAGO-Schmidt, Garden \& Erickson, 101 South Michigan avenue, have plans for an industrial plant costing over \(\$ 1,000,000\). H. J. Mavecty, 53 West Jackson houlevard, is engincer.

\section*{INDIANA}

MISHAWAKA-Indiana \& Michigan Electric Co., 220 Colfax avenuc, South Bend. Ind., has plans by American Gas \& Electric Service Corp., architect and engincer, 30 Church street, New York, for a power plant addition, turbine room and powerhouse, office and storage building, at cost of about \(\$ 550,000\).
TERRE HAUTE, IND.-Public Service Co. of Indiana, Traction Terminal building, Indianapolis, Ind, will let contract soon for a two-story powerhouse, unit No. 5. Sargent \& Lundy, 140 South Dearborn street, Chicako, are enginecrs.

\section*{MARYLAND}

BALTimore, MD.-Bendix Radio division of Bendix Aviation Corp., with Baltimore of fices at its plant in Towson, Md., has leased 11.000 square feet of floor space in the plant of Ditch, Bowers \& Tnylor Inc., McMeacham street and North avenue, for expansion of production operations.

BALTIMOHE, MD. - William Hutchinson's Sons, 1567 Ridgely street, manufacturer of automatic screw machines, is increasing output about 50 per cent by erection of a plant addition.
BALTIMORE, MD.-Glenn L. Martin Co., Middle River, Md., is erecting a two-story laboratory building.

\section*{ALABAMA}

BIRMINGHAM, ALA.-Birmingham Gas Co., Charles B. Gamble, president, has obtained WPB permission for an expansion program to add \(11,000,000\) cubic feet of gas daily to its output by tapping Woodward Iron Co. source of supply and obtaining a boosted output from Alabama By-Products Corp. Program will cost about \(\$ 200,000\).

\section*{GEORGIA}

ATLANTA, GA.-Plantation Pine Line Co., Healey building, will build 8 -inch pipe line from Greenshoro, N. C., to point near Richmond, Va., under approval of Office of Pe troleum Co-Ordinator, for Defense Plant Corp. Line is 175 miles long: second-hand pipe will be used; capacity 30,000 gallons of gasoline daily; cost \(\$ 3,600,000\).

\section*{MISSISSIPPI}

VICKSBURG, MISS.-War Departnent has let contract and authorization for construction and expurision of manufacturing plant in Louisiana to Commercial Solvents Corp., 17 East Forty-second street, New York, under supervision of Vicksburg engineers' of fice. Cost over \(\$ 5,000,000\).

\section*{LOUISIANA}

NORTH LISBON, LA.- big West Drilling Co. Grady Vaughn, Dallas National Bank building, Dallas, Tex., considers construction of natural gas absorption plant in North Lis-

\section*{GALVANIZING} GALUANIZED PRODUCTS FURNISHED Finest Work-fot ovet 40 Years ENTERPRISE GALVANIZING CO.

2525 E. CUMBERLAND ST.
PHILADELPHIA, PA.

\section*{CUT GEARS}

All Types and Sizes
Baldwin Roller Chain and Sprockets
Heat Treated Alloy Steel Gears to Customer's Specifications
Special Gears and Special Gear Units
PITTSBURGH GEAR \& MACHINE CO.
2680-2700 Smallman Sts., Pittsburgh, Pa.

TAYLOR-WILSON MANUFACTURING CO. 15 Thomson Ave.

Pittsburgh District
McKees Rocks, Pa.

\section*{SIMONDS! FRONT AND CENTER!}

FOR HONEST SERVICE, QUALITY WORK AND DEPENDABLE PRODUCTS, EXTENDED TO THE GEAR, CHAIN DRIVE AND COUPLING USERS OVER A PERIOD OF HALF A CENTURY, ACCEPT THE APPRECIATION AND ESTEEM OF YOUR CUSTOMERS, PAST AND PRESENT. MAY YOUR NEXT 50 YEARS BE AS USEFUL AS THE PAST 50!

Condumess of Sinonds gears drives \(\alpha\) couplings
THE SIMONDS GEAR \& MFG.CO.
25TH STREET, PITTSBURGH, PA.

RYERSON CERTIFIED STEELS

Ovar 10,000 kinds, shapas, slas. ... uniform high quality ... prompt, parsonol arvice. Write for Stock List. Joseph T. Byerson \& Son. Inc. Sleaf Sarvice plants at: Chisoso, Miwautea, St. Louls, Datrolt, Cincinnail,

\section*{B ELMONT \(\frac{R \quad O N}{\text { PHILADELPHIA }}\) NEW YORK \(\quad\) ORK S} Engineers - Contractors - Exporters STRUCTURAL STEEL—BUILDINGS \& BRIDGES RIVETEIR-ARC WELDED
melmont Interlocking Channei, Flogh Frite far Catalogue
Man Officu-lhila., Pa. New York Office-4 Whitehall St.

\section*{}
\(\qquad\)

bon area, Claiborne parish; gias to be sent to El Dorado, Ark., through 10 -inch pipeline to be built by Arkamsas-Louisinna Gas Co.

\section*{ARKANSAS}

LITTLE ROCK, ARK.-United States engineer office, Little hock, will be in charge of construction of a manufacturing plant in Arkansas. location not divulged, for which Sanderson \& Porter, 52 William strect, New lork, has contract for arehitectural and engineering work. Cost is estimated at more than \(\$ 5,000,000\).

\section*{TEXAS}

BIG SPRING, TEX,-War Department has awarded contract to Taylor Flectric Co., Big Spring, for electric distribution and street lighting system in Ward county; super-

is won through ability to place comfortable accommodations at your disposal ... serviced to your satisfaction priced to fit your requirements . . . so that you'll "tell the folks back home."

\section*{Datroit L@bลND HOTAL}

800 OOTSIDE ROOMS ALL WITH PRIVATE 日ATH . . . SIMGLE FROM \(\$ 2.75\). . . DOBBLE FROM \(\$ 4.50\) CHARLES H. LOTT General Manager
vised by Almmuerque, N. Mex., engineer office; cost under \(\$ 50,000\).
dallam county, tex.-War Deparment has avarded contract, under \(\$ 50,000\), to Flotation Systems Inc., Los Angeles, for gasoline system; supervised ly Tulsa, Okla., engineer office.
FORT WORTH, TEX-American Cymamid Co., 535 Fifth avemue, New York, has option on 6.2 acres for proposed erection of chemical plant to be operated by its subsidiary, American Cyamamid Chemial Co.
WaCO, TEX.-War Departmicut has annonnced award of a contract to Wood Engineering \& Construction Co., Waco, for a gasoline fueling system in Brazos county. Engineer office, Galveston, Tex., is in charge of construction, which will cost \(\$ 50,000\) to \$99,000.

\section*{WISCONSIN}

KENOSHA, WIS. - Nash-Kelvinator Corp, 5626 Twenty-fifth avemue, has let contract for an office building and a heat treating pit to Hunzinger Construction Co., Milwankee. Estimated to cost \(\$ 42,000\). E. W. Bernitt, care owner, is engineer.

\section*{CALIFORNIA}

HAWTHORNE, CALIF.-Northrop Aircraft Corp., 1001 East Broadway, is Luilding a wind tummel test house at cost of \(\$ 2800\).
LOS ANGELES-Norris Stamping \& Mfg. Co., 5215 Boyle avenue, Vernon, manufacturer of stamped metal goods, has plans for a boilerhouse \(40 \times 70\) feet, to cost \(\$ 30,000\), with auxiliaries. Webber \& Co., Hollingsworth building, Los Angeles, are engineers.

LOS ANGELES-Lee Welding Rod Mfg. Co. has opened a plant in Los Angeles. Lee Bergstrom is president, formerly vice presiclent of Bergstrom Steel Co. Ltd. Arthur G. Brown, formerly manager for Columbia Steel Co., is associnted in the new firm. Company is manufacturing welding rods of structural or mild steel type.
LOS ANGELES-Rapco Machine \& Tool Co. has been formed by R. A. Pageman to conduct business at 1801 East Slauson avenue, Los Angeles.

LOS ANGELES-Coast Centerless Grinding Co., 761 East Slauson avenue, is building a plant addition \(31 \times 43 \mathrm{fect}\), to cost about \(\$ 4000\).
LOS ANGELES-Pacific Aviation Inc., Los Angeles division, has been incorporated with \(\$ 750,000\) capital. Directors are P. J. Brady, W. M. Jameson and J. P. Daily, all of Los Angeles. E. J. Walther, 215 West Seventh street, Los Angeles, is representative.

LOS Angeles-Southern California Ornnmental Works has been organized by B. J. Savino and will locate at 7281 Santa Monica boulevard.
LOS ANGELES-Fluid Packed Pump Co. has been formed by John B, and Vera Reilly and will be established on Workman Mill road, Los Nietos, Calif.
LOS ANGELES-Baash-Hoss Tool Co., 5512 South Boyle avenue, is enlarging working floor space by addition of a mezzanine floor, at cost of \(\$ 5500\).

LOS ANGELES-Canital Aireraft Corp. has been organized with \(\$ 100,000\) capital. Directors are L. B. Gregg, West Los Angeles; O. S. McConnell and M. G. Fox, Los Angeles. Odell S. McConnell, 402 Pacific Mutual building, Los Angeles, is representative.

\section*{WASHINGTON}

CHEHALIS, WASH.-Floe Machine Works and Gustaveson Iron Works have combined facilities and contracted to fabricate valves, stems and other items for the Navy. Plants will be at maximum production in 30 days.
SEATTLE-Northwest Tale \& Magnesium Co., capital \(\$ 20,000\), has been incorporated by Ira Marshall and ássociates, to develop properties near Clear Lake, Wash.

SEATTLE-Anacortes Shipways, capital \$50,000, has been incorporated lyy L. P. Clark and associates, 912 Hoge building.
SPOKANE, WASH.-Knapm Refractory Ore Processing Co., Senttle, Walter R. Alexander, president, has completed negotiations for HFC loan insuring reopening and operation of Keep Kool mine near Pend Oreille. Joint operations will be prosecuted with ldaho Lakeview mines, whose mill is being reconditioned and new ecouipment installed, including diesel power and flotation cells. Capacity will be increased from 60 to 100 tons daily. Production will be 90 per cent zine and lead, mainly zinc.

\section*{CANADA}

GEORGETOWN, ONT.-Smith \& Stone Ltd., is receiving tenders through Kaplan \& Sprachman, architects, 305 Dundas street West, Toronto, for general contract, less mechanical trades, for erection of porcelain plant here to cost upwards of \(\$ 170,000\).
hamilto Shermim avemue North, is receiving hids through Prack \& Prack, architects, Pigott building, for further plant addition, one story and basement, \(80 \times 50 \times 30\) feet, to cost about \(\$ 12,000\).
LONBON, ONT.-Central Aircraft, W. S. Goodeve, manager, in association with Department of Munitions and Supply, Ottawa, H. H. Turnbull, secretary, is receiving tenders through Chapman and Oxles, architects, 372 Bay street, Toronto, for construction of plant addition here to cost, with equipment, \$375,000.

TORONTO, ONT.-Gray Forgings \& Stampings Lud., 710 St. Clarens avenue, has called tenders through Margison \& Baboock, engineers, 210 Dundas street West, for construction of plant addition, one story, 60 x 100 feet, to cost with equipment, about \(\$ 95,000\).
TORONTO, ONT.-Canadian General Electric Co. Ltd., 212 King strect West, has prepared plans and will call tenders for addition to machine shon at the Royce avenue works.

TORONTO, ONT.-Godson Contracting Co. Ltd., 203 Hichmond street West, has given general contract to Holby Contracting Co., 279 Rushholme road, for construction of addition to machine shop on Union street, to cost \(\$ 10,000\), equipment extra. Edgar A. Cross, 991 Bay street, engineer.

MONTREAL, QUE.- Aero Engineering \& Industries Co., subsidiary of Rakovsky Precision Works Ltd., 3480 Dominique street, has sccured a site on Rushbrook avenue, and will start work soon on construction of precision tool plant, to cost nbout \(\$ 60,000\). Plans by company's own staff, M. Goldwag, chief engineer.
QUEBEC, QUE-Department of Munitions and Supply, Ottawa, H. H. Tumbull, secretary, has given general contract to A. Deslauriers et Fils Limitee, 68 Lalement street, on a cost-plus basis, for addition to shipyards, to include several new buildings and extensions to existing structures, docks, cranes, etc., to cost about \(\$ 1,000,000\). 0 . J. McCulloch, 1440 St. Catharine street, West, Montreal, consulting engineer. Plant to be operated by Anglo-Canadian Pulp \& Paper Co., Ltd.; Morton Engineering \& Drydock Co., Ltd., and George T. Davie \& Sons.
VALCARTIER, QUE.-Department of Munitions and Supply, Ottawa, H. H. Turnbull, secretary, has given general contract to Magliore Couchon Ltd., 325 de la Salle street, Quebec, City, for construction of eight additional buildings in comection with the dominion arsenal here, to cost about \(\$ 400\), 000.

Amherst, N. S.-Canadian Car \& Foundry Co. Ltd., 29 Lansdowne avenue, in associa tion with Department of Munitions and Supply, Ottawa, H. H. Tumbull, secretary, has had plans prepared and will let contracts for construction of plant addition to cost about \(\$ 20,000\), equipment extra.

\section*{TOLEDO STAMPINGS}

Our Enginecring Department has had long experience in working out difficult stamping problems. We want to work with you on your development work as we have had great success in changing our expensive parts and units into steel stampings. Our production facilities can amply take care of almost all stamping requirements. Give us the opportunity of working with you.
 We Salicit Your Prints and Inrquiries
Toledo Stamping and Manufacturing Co. 90 Fearing Blyd., Toledo, Ohio
Detroit Office: Stornifoltz-Lovely Ridg., Detroit, Mich Chicago Office: 333 North Michigan Ave., Chicngo, Ill

\section*{CROSBY FOR STAMPINGS}

Our engineers are ready and able to help solve your stamping problems, in design of construction Crosby prices are consistent with QUALITY and SERVICE. In our 45 years of EXPERIENCE we have served over 100 different industries

Manufacturers of "Ideal" Trolley Wheels

\section*{THE CROSBY COMPANY}

BUFFALO. N. Y.

\section*{WEST STEEL CLEVELAND}

SMALL ELECTRIC STEEL CASTINGS
(Capacity 500 Tons Per Month)
"He Profirs Most
Who Serves Ihest"

CASTING CO. онIO, U. S. A.
 PIC IRON
E. SE FB BEODKE IBON CD. BIRDSBORO, PENNA

400 vULCAN 5 T. EUFFALO, N. Y.

\section*{\({ }_{\star \star \star}\) ROLL PASS DESIGN \({ }_{\star \star \star}\) \\ By W. Trinks}

These two volumes and Supplement comprise a complete digest of latest information on roll pass design ... written by the leading authority on the theory of roll pass design in the United States . . . these books comprise a complete treatise on fact and theory underlying all roll pass design including application of rolling principles rather than a compilation of passes . . . written in a manner that will appeal to roll designers, rolling mill equipment and mill operating men, and student engineers.

VOLUME I-Third Edition . . . 201 pages, 7 tables, 139 drawings, bound in red cloth over heavy bookboard covers, \(\$ 5.00\) postpaid (plus \(3 \%\) additional for orders delivered in Ohio)
Chapter I-Classification and Strength of Rolls.

Chapter II-Basic Principles Governing Entrance and Deformation.

Chapter III-Various Principles Underlying the Process of Rolling.

> VOLUME II-Second Edition . . . 246 pages, 21 tables, 7 charts, 176 illustrations, bound in red cloth over heavy bookboard covers, \(\$ 6.00\) postpaid. (plus \(3 \%\) additional for orders delivered in Ohio)
> Chapter I-The Rolling of Square or Nearly Square Sections.
> Chapter II-Rolls for Flat Sections.
> Chapter III-Rolls for Merchant Bar.
> Chapter IV-The Rolling of Shapes.
> Chapter V-Die Rolling.
> Chapter VI-Rolling Mill Torque.
> Chapter VII-The Rolling of Nonferrous
> Metals-Roll Passes for Seamless Tubes.

Have Copies of These Books Available When You Need Them... Order Today

\section*{USED and REBUILT EQUIPMENT}

\section*{FOR SALE}

1-Enterprise 18" Flash Trimmer
9-Two-high Strip Mills
1-500 KVA Electric Furnace Transformer
3-1200 KVA Electric Fumace Transformers
1-Toledo Scale Model 31-2200
1-Ajax Bolt-heading Machine
1-National Bolt-heading Machine

1-Two-way Shape Straightener
2-Trick Water Cooling Units
2-Hydraulic Pumps
1-Base for \(6,000 \mathrm{lb}\). Chambersburg Hammer
1-100 KW M. G. Set
1-200 HP MD G. E. Motor
2-100-ton Ladles

\section*{FOR SALE-COMBINE MACHINE}

John Waldron machine-4 rolls,-two steel ones bored for steam heating where hot combining is required-two upper pressure rolls are rubber and steel. Machine capable of combining material up to \(40^{\prime \prime}\) in width. Original cost \$14,500.00.
hetz construction co. - Griswold St. NE. -WARREN, ohio

\section*{For Sale \\ PLATE CROP ENDS}
from \(3 / 16\) to \(5 / 8^{\prime \prime}\) thick assorted to thickness unassorted to size. A-3 priority required.
gLENDALE STEEL CORPORATION
Clara IMace noar Central Ave. Glendale, L. I., N. Y.
Telephome IIAvemeyer B-1100

\section*{WANTED \\ UNIVERSAL IRONWORKER small or medium size. \\ Give description and cash price. richardson, Cawker, Kansas}

\section*{FOR SALE}

NO. 8 AJAX BULLDOZER
with direct motor drive 20 H.P. A.C. and Starter
IRON \& STEEL PRODUCTS, INC.
13462 S. Brainard Ave., Chirago, lllinois 37 Yenrs" Experience
"Anything containing IRON or STEEL"

\section*{-REBUILT-}

BLOWERS - FANS - EXHAUSTERS
Connersville-Roots positive blowers Centritugals for gas and cll burning. Band blast, arinder and dust exhausters. GENERAL BLOWER CO
North Peorla Ss. Chicaga, Chicago, \(\mathbf{i l l}\).

\section*{WANTED}

STEEL BUILDINGS
With or Without Crane RUNWAYS AND CRANES STEEL TANKS Of All KInds PIPE AND TUBES

Can Make Immediate Inspection
JOS. GREENSPON'S SON PIPE CORP.
National Stock Yards
(St. Clair Co.) Illinois

\section*{FOR SALE}

ONE \(21 / 2^{\prime \prime}\) AJAX UPSETTER
"Droplock" and One 3" National Upsetter "Bull gear lock drive". STANDARD TUBE COMPANY
Detroit, Mich.
Townsend 8-1900

> ROLLING MILLS and EQUIPMENT FRANK B. FOSTER 829 OLIVEREUILDING PITTSBURGH PA Cable Address \({ }^{\text {'TO }}\) 'OSTER" Pitsburgh

\section*{PRESSURE BLOWERS}
(3) Buffalo Forge 1200 cfm . (1) \(11 \mathrm{oz} .7 \times 7\) outlet, \(91 / 2\) inlet, with 71/2 HP. 220 volt 3 ph., 60 cycle, 1750 RPM motors. CENTRIFUGAL COMPRESSORS
400 CFM. 1802 Spencer Turbo Compressor. 1250 cfm . (1) \(3^{1 / 4} \mathrm{lbs}\). Gen. Elec. with 30 HP \({ }_{220}\) cim (130 \({ }^{31 /}\) libs. Gen. Elec. with 3 phase 60 cycle 3600 HPM 220/440
450 Cfm .@ 2 lb. Gen. Elec. with 6.2 HP .220 volt 3 phase 60 cycle 3600 RPM motor.
THE MOTOR REPAIR \& MANUFACTURING CO. 1558 Mamilton Ave.

Cleveland, Ohla

\section*{RAILS}

AND ACCESSORIES

RELAYING RAILS - Super-quality machine-reconditloned-not ordinary Relayers.
NEW RAILS, Angle and Splice Bars, Bolts, Nuts, Frogs, Swithes, Tie Plates, and all other Track Accessorles. Although our tonnages are not as large as here-
tofore, most slzeg are usually avallable from warehouse stocks.
house stocks. made to take care of emergency
Every efrort
regulrements. Phone. H'rtie or H'tre...
L. B. FOSTER COMPANY, Inc.

PITTSUURGH NEW YORK CHICAGO

\section*{Morefor Your Dollar! IRON \& STEEL PRODUCTS, INC. "ANYTHING containing IRON or STEEL" 37 Years' Experience \\ 13462 S. Bralnard Avoil Chicazo, lllinois
 \\ SELLERS - BUYERS - TRADERS}

\section*{WANT TO PURCHASE}

4 inch O.D. Boiler tubes; steel pipe of all sizes; Industrial plants; Mills; railroads; trackage, etc.
SONKEN-GALAMBA CORP. 108 N. 2d St. Kansas City, Kans. 108 N. 2d St.
We buy and sell.

Kansas City, Kans.
Gec our quotations.

\section*{FOR SALE \\ NO. 3 WILLIAMS, WHITE BULLDOZER}

Hydraulic Riveting Machines, \(48^{\prime \prime}\) throat, \(11 / 2^{\prime \prime}\) daylight
400 lb. Air or Steam-Operated Drop Hammer Address Box 490
STEEL, Penton Bldg., Cleveland, O.

\author{
Help Wanted
}

\section*{GENERAL FOREMEN AND FOREMEN FOR LARGE STEEL FOUNDRY}

WHO HAVE HAD SEVERAL YEARS OF FRACTICAL EXPERIENCE IN MAKING LARGE CASTINGS AND WHO HAVE A GENERAL KNOWLEDGE OF FOUNDRY PRAC TICE. JOBS ARE \(100 \%\) WAR PRODUCTION FOR THE DURATION. EXCELLENT OPPORTUNITIES FOR EMIPLOYMIENT AFTERWARDS. MEN NOW EMPLOYED IN DEFENSE WORK WHO HAVE NOT REACHED THEIR HIGHEST LEEVEL OF SIILL WILL BE CONSIDERED. PLANT LOCATED IN ST LOUIS DISTRICT. REPLY BOX
PENTON BLDG., CLEVELAND. STEEL,

\section*{WANTED}

Metallurgist to take complete charge of materials laboratory with leading aircraft engine manufacturer. Must be familiar with modern heat treat methods. Mid-West location. Reply Box 763, STEEL, Penton Bldg., Cleveland.

\section*{WANTED-METAKLURGIST}

Steel Foundry on Eastern Seaboard requires Ferous Metallurgist on Acid Electric Furnace Op eration. Thoroughly experienced to take complete charge of mixes and control. State in deail, experience, availability etc., in application Reply Box 77i, STEEL, Penton Bldg., Cleveland.

CONVERTER OPERATOR WANTED
Steel Foundry in the East requires experienced Side Blow Converter operator. Experience in use of electric eye control desirable. Give experience. etc. in detail, in application. Reply Box 773 STEEL, Penton Bldg., Cleveland.

WANTED: MAN WITH GENERAL OFFICE or field sales experience by large reputable manufacturer of seamless and electric welded tubing, alloy and carbon steels. Please apply giving full information, experience, etc., to Box 771 , STEEL Penton Bldg., Cleveland.
STRUCTURAL STEEL DESIGNERS AND estimators. Prefer men around 40 years old with sales experience. Good opportunity for right person. State salary expected. Organization located in South. Reply Box 770, STEEL, Penton Bldg., Cleveland.

WANTED: GENERAL MANAGER FOR STEEL Plate Fabricating Shop. Must be well qualified capable, interested in future welfare of self and company. Good Salary. Reply Box 776, STEEL, Penton Bldg., Cleveland

\section*{Positions Wanted}

WELDING SPECIALIST: ELECTRICAL ENgineer, past nine years, chief engineer and superintendent for welder manufacturer. Specialist on Spot Welders; equipment, production and designing for welding. Knows arc and flame welding. Diversified experience as design and mfg executive. Now available as welding specialist preferably aircraft. Full or part time assignments anywhere, anytime. Opportunity for essential service more important than salary. U. S. Dunn St. Joseph, Michigan.

\footnotetext{
IF YOU ILAVE AN OPPORTUNITY Use the "Help Wanted" columns of STEEL. Your advertisement in STEEI will put you in touch with qualifled, high-calibre men who have had wide training in the varlous branches of the Metal Producing and Metalvorking Industries.
}

\section*{Opportunities}

\section*{Opportunities}

\section*{STEEL BUILDING}
- We have 18 half or lean-to type trusses 28' 6" long, together with purlins, columns that will make a building \(60^{\prime}\) wide \(\times 144^{\prime}\) long, clear span or saw tooth with center row of columns. This material can also be erected as a building \(30^{\prime}\) wide \(\times 306^{\prime}\) long. Also have other miscellaneous trusses and structural materials.

HETZ CONSTRUCTION CO.-Griswold St. NE.-WARREN, OH!O

\section*{WE'RE GOING TO MOVE}
- Our present warehouse is going to be turned into a war plant. We are going to move into the Ward Baking Plant on West Market Street in Warren. We don't want to move our used equipment, structural steel, supplies, pipe, conduit, etc. If you are looking for a bargain, we invite you to make inspection and selection at earliest opportunity. No reasonable ofler refused.

HETZ CONSTRUCTION CO.-Griswold St. NE.-WARREN, OHIO

\section*{FOR SALE}

Structural Steel Building, \(132 \times 132\) 2 -in tongue and groove roof Building can be dismantled and moved. THE FOSTER STOVE COMPANY Ironton, Ohio

\section*{Employment Service}

SALARIED POSITIONS- \(\$ 2,500\) to \(\$ 25.000\) This advertising service of 32 years recognized standiny negotates for positions of calibre ind cated. Procedure individualized to your personal requirements. Retaining fee protected by refund provision. Identity covered. If salary has been \(\$ 2.500\) or more send for details. R. W. Bixby Inc.- 110 Delward Bldg.. Buffalo. N. Y.

```

Send your Inquilles for
SPECIAL ENGINEERING WORK
to the
A. H. NILSON MACHINE COMPANY, BRIDGEPORT, CONN.
designers and builders of wire and ribbon stock forming machines.
He also solicit your bids for cam milling

```

\section*{Castings}

KING FOUNDRIES, INC., NORTII wales, Pa. Grey Iron and Semi Steel Castings, nlso alloyed with Nickel, Chrome, and Molybdenum. Wood, Iron. Brass. and Aluminum Pattern work

\section*{ADVERTISING INDEX}

\title{
ADVERTISING INDEX
}

Norton Co., The

\section*{IN THE WAR PRODUCTION RACE} Good Grinding Wheols Win!

THE operators in your billet grinding department are important soldiers of production they are in competition with enemy workmen just as determined to win. They are in a race with victory as the goal . . upon the quality of the grinding wheels they use depends, to a great extent, speedy production in your plant.

There is quite a wartime race going on in industry today. In some steel mills, billet grinding departments are beating schedules. In others, there may be a lag that is slowing up production.

There is one way to get on the winning side in the wartime produc-
tion race . . have a wheel survey made right awayl Often present wheels need not be changed . . just a simple adjustment of equip. ment may be all that is needed.

Sterling Catalog No. 42 is an important book to have around when emergency grinding whel orders must be placed . . quickly!
May we send your copy today?

To be certain about your grinding department's efficiency, call in a Sterling engineer. He can tell you, after a short inspection, if your present wheels are doing a good job. If they are adequate, he will say so. If new wheels are indicated, he will select the type for your particular grinding job. Write us today, and a Sterling engineer will call at once . this is our contribution to early victory.
```

