E. L. Shaner

Editor-in-Chief
E. C. Kreutzberc Edizor
A. J. Hain

Monaging Editor
G. W. Birdsall Engineering Editor
J. D. Knox

Steel Plant Editor
Guy Hubbard
Machine Tool Editor
D. S. Cadot

Art Editor

ASSOCIATE EDITORS

G. H. Manlove W. I. Campaelel

Harold A. Knicht New York W. G. Gude B. K. Price L. E. Browne

Pittsburgh
Chicago
R. L. Hartford
E. F. Ross

Detroit
Washington
A. H. Allen
L. M. Lamm London
Vincent Delport

ASSISTANT EDITORS

George Urban Jay DeEulits
J. C. Sulifan La Verne Nock
New York
John H. Caidwell

BUSINESS STAFF

G. O. Hays

Business Manager
C. H. Bailey

Advertising Service
New Yark.......E. W. Kreutzberg
B. C. Snell
Pittsburgh S. H. Jasper
Chicago C. Pelott
Cleveland C. Jaenke
D. C. Kiefer
J. W. Zuber

Circulation Manager
MAIN OFFICE
Penton Building, Cleveland
BRANCH OFFICES
New YorkIIo East 42nd St. Chiscago520 North Michigan Ave. Pittsburgh Koppers Building Detroit6560 Cass Ave. CincingratiNational Press Building Cincinnati............ 1734 Carew Tower San Francisca...... 1100 Norwood Ave.

Oakland, Cali)., Tel. Glencourt 7559 Landon Caxton House Westminster, S.W. I

Published by The Penton Publishing Co.,
President and Clevetand, ohlo. E. L. Shaser. Preadent: F- G. STEMSEBACH, G. O. Hixs, vice Member, Audle Binisfmacer, Secretars.
elated Businers Pabersu of Clrculations: Asso13bers' Assoctatlon. Published every
United States, Cuba, Niexico subseriptlon In the year 34, two years, sô: European and lorelan Esues) 25c, one year $\$ 10$. Slagle copics (current enme
at Clereland second elass matter at the postome Cobyrighe las by by the Act of March 3 . 1879

AB

Volume 107-No. 21
November 18, 1940
READER COMMENTS 4
HIGHLIGHTING THIS ISSUE 19
NEWS
National Founders Hear Plea for Defense Labor Board 21
"Most Striking Economic Danger Today Is Inflation"-Sloan 24
Steclworks Operations for Week 25
Men of Industry 26
Management Asks for Speed in Expanding Apprentice Training 28
Obituarie: 29
Congress To Explore for Another Billion Dollars in Taxes 29
How the Presidential Election Is Viewed in Steel Communities 33
Financial 3^{8}
Government Defense Awards 39
Canadian Defense Awards for Week 41
WINDOWS OF WASHINGTON 31
MIRRORS OF MOTORDOM 35
EDITORIAL—Looking Ahead to 1944 42
THE BUSINESS TREND $+3$
TECHNICAL
New Tooth Design Improves Saw's Cutting Action-By K. W. Atkins 46
Industrial Canada at War 5^{8}
New Process Increases Speed of Electroplating 70
Training Apprentices for Special Work Affords Productive Years 76
Wind Power May Fced Vermont's Power Lines 99
Joining and Welding
Construction of Car Rearder Cuts Cost 5° Per Cent 50
Mctal Finishing
Stretch Test-New Method of Measuring Bond of Enamel to Metal-By J. E. Sams60
Progress in Steelmaking
Electric Furnace Iron-By Charles Hart 66
Matcrials Handling
New Radiator Plant Spotlights Efficient Handling 72
INDUSTRLAL EQUIPMENT 90
MARKET REPORTS AND PRICES 103
BEHIND THE SCENES 118
CONSTRUCTION AND ENTERPRISE 123
INDEX TO ADVERTISERS 132
PRODUCTION

Eight hours have passed. Eight hours of wages, steel, power -- a mounting tide of costs that crowds on the heels of output.
"Bottle Necks," by slowing down the even flow of output, cut into profits -- switch wages from production to overhead. So, it pays to eliminate the bottle necks, many of which can be removed without heavy investment or delay.

Ask for a Morgan Report.
R-78

The Flying Shear, first introduced by Morgan, has been developed to its present size and high degree of perfection, permitting new production peaks in continuous mills.

Morgoil Bearings ride on a film of oil. They cannot be equalled for low coefficient of friction, high load capacity, and freedom from wear. Available in all sizes and capacities for replacement.

HIGHLIGTING THIS ISSUE

［ THE RATE of steel production fell off half a point last week（p．25）to 96 per cent of in－ got capacity．This resulted from the need for furnace repairs and from a strike at Pittsburgh． Demand continues to gain（p．103）and deliver－ ies continue to fall a little further behind．Ma－ jor efforts of steel company sales departments are aimed at apportioning the supply of steel equitably．With employment and purchasing power improved，demand for ordinary peace－ time products，as automobiles，radios，refriger－ ators and the like，is growing．．．．A leading southern steelmaker（p．25）will expand its coke and pig iron capacity and will add to other facilities．

$$
\begin{aligned}
& \text { "When this rearmament effort is over . . . our } \\
& \text { economy should not find itself in the condition } \\
& \text { in which it was in the early twenties when we } \\
& \text { had over-expanded our in- } \\
& \text { No Chaos } \quad \text { dustrial plant without giving } \\
& \text { Later } \\
& \text { ent consideration to perman- } \\
& \text { Donald M. Nelson (p. 31) said } \\
& \text { in a defense commission conference last week. } \\
& \text { Various signs indicate the government will } \\
& \text { try to prevent chaos when the defense program } \\
& \text { tapers off. . . Machinery is being set up to } \\
& \text { encourage the financing of defense activities } \\
& \text { (p. } 31 \text {) through local banks. . . Dr. Harry A. } \\
& \text { Millis, General Motors grievance umpire, has } \\
& \text { been nominated (p. 23) as a member of the } \\
& \text { national labor relations board. }
\end{aligned}
$$

Supreme Court＇s decision in the Republic case （p．31）is hailed（p．21）as definitely outlawing the blacklisting of companies on defense work as a result of labor board

Handled

With Gloves charges not proven in court． ．．．Unless the President sets up a nonpolitical，bipartisan defense labor board，warns Edmund M．Toland（p．21），bias and prejudice will continue to hamper the defense program． ．．Alfred P．Sloan Jr．recommends lengthen．
ing of the work－week and（p．24）suspending overtime penalties．．．．Higher taxes are to be imposed（p．29）early next year．．．．Now func－ tioning（ p .32 ）is a machine tool priorities com－ mittee．．．．Since the election，says John D． Knox（p．33），some steel plant workers feel cocky and must be handled with gloves．

K．W．Atkins（p．46）describes a new tooth design for metal－cutting saws．It peels the chips into tight coils which，like wound－up clock springs，are under tension．

New Tooth For Saws

 The coil is free to uncoil and does so when the tooth emerges from the kerf，thus clearing the tooth complete－ ly for the succeeding cut．Blade performance is increased greatly．．．．With a new rod it is possible to join aluminum and its alloys（p．57） without using flux．．．．J．E．Sams（p．60）de－ scribes a new stretch test for measuring the attachment of porcelain enamel to sheets．The test results are immune to gage variations and correlate closely with impact and microscopic test values through a wide range．Charles Hart describes（p．66）the production of pig iron in electric furnaces．The subject is of unusual interest at this time because of the increasing amount of low－

Pig Iron Process

 cost power that is becoming available．．．．A materials handling system（p．72）is the heart of a new automo－ bile radiator plant which produces 6000 units daily；fourteen separate conveyor systems are in use．．．．R．D．Wearne（p．76）discusses some factors to be considered in hiring men to be trained as machine operators．．．．Much new and improved equipment is available（p．80）for production lines．．．．A new dye for concrete （p．95）is alkali－proof．．．．Standard shot and grit（ $p .97$ ）now are controlled as to toughness and hardness．
British ADVERTISE

The new leaded steel developed by INLAND

VOTE: Inland has licensed many steel makers in America and abroad to make this product under its patents.

 Win
 NO NEED FOP 4. NED FOR OR S SPRA/IN

WirHow The
EFFORT
DEMAND
ROM

> ourpy for

National Fonnders Hear Plea For Defiense Labor Hoard

Administration of Wagner Act by NLRB Scored.

Unity Between Labor, Industry Necessary to Rearming. Group Pledges Co-operation for Defense, Not Offense.

Close Watch on Federal Tax Legislation Advised.

- CO-OPERATION with the government in the execution of a national defense program was pledged by members of the National Founders association at the forty-fourth annual convention at the WaldorfAstoria hotel, New York, last week.
The founders' resolution, however, warned against confusing national defense with national offense and went on record for keeping the United States out of foreign wars.
Another resolution deplored the administration of the national labor relations act as revealed by the special house investigating committee. "The successful carrying out of the defense program," resolved the founders, "depends upon national unity of labor and industry, and we urge the administrative council to use every means in its power to the end that this association, in co-operation with other associations, urge upon congress a change in the personnel of the national labor relations board so as to insure an impartial administration of the act and to restore the confidence of both labor and industry."

A considerable portion of the convention program was devoted to labor problems.
While deploring the trend of many recent court rulings, James A. Emery, general counsel, National Association of Manufacturers, said the recent United States Supreme Court decision in the Repubtie Steel Corp. case was salutary in many of its effects.
The Supreme Court decision (see page 31), which ruled Republic did not have to repay PWA for work
relief wages paid to the company strikers, is remedial in character and not penal, he declared. It definitely outlaws, in his opinion, "mandatory blacklisting" of companies on defense work, due to charges by the board, not even proved in court, that they have been violating the Wagner law.

As a solution to many labor problems in the critical period of rearming, Edmund M. Toland, Washington, formerly general counsel to the congressional committee investigating the national labor relations board, suggested a body similar to the war labor board in the World war.
"If the President by executive order were to create under his emergency power a bipartisan non-

IV. D. Hamerstadt

Re-elected president, National Founders' association
political defense labor board with jurisdiction over industries vital to national defense; if the personnel of such board were to parallel the old war labor board; if such a board were to administer concurrently the various labor problems now spread throughout a number of various agencies, then some measure of order, some measure of unity might prevail, and our national defense program might go forward unimpeded by labor disturbances.
"Such a board of competent and unbiased personnel would restore the faith of the people in the govelnment's ability to administer the field of labor relations, a faith which looks askance at the sight of the labor member (Sidney Hillman) of the advisory commission of the national defense council, drawing an annual salary as president of a union affiliated with the CIO and serving as vice president of the latter organization, while his industrial colleagues have divorced themselves from all industrial positions."
The greatest problem with which such a board would have to deal would be the strike. But, he said, without prohibiting labor the right to strike, the right would be preserved and, at the same time, the threat to the defense program in the strike could be minimized by requiring notice of intent to strike and then requiring a cooling period.

The labor advisory committee, Mr. Toland remarked pointedly, is now composed of six representatives of the AFL, six of the CIO and four representatives of the Brotherhood of Railway Trainmen.
"If this situation is allowed to
continue, without industry having equal representation and a clarification of the labor defense policy of this administration, the same strife and discord that we have had as a result of the acts of the biased and prejudiced personnel of the national labor relations board will continue and will hamper and interfere with our defense pragram," the speaker concluded.
W. D. Hamerstadt, Rockwood Mfg. Co., Indianapolis, who was reelected president of the association, devoted his remarks largely to a review of the history of the organization, emphasizing particularly its accomplishments in the labor relations field, safety work and in the promotion of sound foundry management and practice.

Speaking particularly of labor relations, he said: "Many feel they are helpless in this field; that the numerous restrictions imposed by law have made it impossible for them to carry out any of their own judgments. We hope these restrictions will be modified so as to make the laws and regulations fairer and more workable. However, the fundamentals of the labor problem remain the same-wages, hours and working conditions equitable to both management and the employes."

Pointing out that it is usual for this country to be behind in its defense preparations, Mr. Emery said that upon this occasion the United States is in far worse position flnancially than at the time of the

World war, due particularly to the wasteful spending of the past seven and a half years. This will mean especially heavy taxation to meet defense burdens. Consequently, he said, it behooved all to watch tax legislation closely, that such may be as effective as possible and be confined to legitimate needs.
He said that it is high time for a re-examination of the whole system of taxation, and he foresaw the day, judging from the present trend, when there will be a sharp conflict between local and federal governments over questions of taxation, which will prove greatly detrimental to the country.

Most Orders Placed

So far as present appropriations are concerned the order-placing phase of the defense program is nearing the end, according to Harry L. Coe, technical advisor, National Association of Manufacturers.

Changes in the personnel of the advisory commission, with some present members returning to private business, were predicted. Mr. Coe believes their places will probably be fllled with appointees more in sympathy with the administration's economic and social policies. The impression prevails the Hill-man-Henderson influence will increase. Even in the current group votes are often split, five to two.

Substantial part of the three billions remaining for national defense is rather definitely allocated and the next few weeks will witness the

Steel Fin for Aircraft-Testing Wind Tunnel

5 This huge vertical fin structure, framed in a semicircle of sheet steel, is to be installed in the new Wright field wind tunnel at Dayton. O., to direct flow oi air where the tube makes a turn in direction. Tube's maximum diameter will be 40 feet, test chamber's. 20 leet. It will be large enough to test plane models with wing spreads up to 15 leet at wind speeds to 400 miles per hour. NEA photo
rounding out of the program. Next general activity will be in connection with production of required materials and every industry, directly or indirectly, will feel the guiding hand of government more or less forcibly applied, said Mr. Coe.

Priorities will be extended, not only to divert materials and labor into defense industries, but also to insure necessary production for civilian requirements. On many commodities not now so regulated, export and import licenses may be expected and government financing in various forms will become more general. Mr. Coe also feels facilities for recruiting labor will be largely government controlled and increases in basic wage scales may be expected with governmental support.
With government blessing, a drive for organizing all open shops is already in the making, he said, and recent attempts to use defense contracts as a club for forcing compliance with labor board decisions is an indication of what may be expected. In the background also is the threat of commandeering and governmental operation of industry.

Price control will discourage increases which might temporarily offset additional cost of production and heavier taxation will still fur. ther reduce recoverable proflt. Industry's one hope, according to Mr. Coe, is to demonstrate industry will be able to carry out the program under private management better than under any other system. He stressed the importance of becoming familiar with continually changing conditions under rules and regulations promulgated by congress, the President and other governmental agencies, including the treasury.

To date the operation of priorities has been by voluntary co-opera. tion and, according to Mr. Coe, the stronger trade associations have been of great assistance. Machine tools presented first serious problem, but in almost every case the priorities committees of the army and navy have succeeded in working out a satisfactory adjustment without employing mandatory autthority. As the full impact of large orders begins to filter down through industry, the situation will undoubtedly become worse. Mr. Coe declared the priorities committee of the advisory committee is endeavoring to guide this policy with intelligence and foresight.

It is becoming more evident daily that if industry is to even approach satisfactory production, reserve ca. pacity of the smaller manufacturers must be drawn into the program. It is no longer possible to expand manufacturing facilities through large purchases of machine tools,
output for that industry being already largely scheduled for next year. The solution is to fully utilize equipment now installed in the thousands of smaller shops.
Mr. Coe explained in detail the various amortization plans available to smaller plants. There will be many instances in which manufacturers serve as subcontractors, or supplying items necessary for national defense without appearing as direct contractors on government orders. In such cases a manufacturer is entitled to "certificates of necessity," and if additional facilities are required, may take advantage of the accelerated amortization features for the reduction of taxes. In such cases, Mr. Coe suggested the desirability of obtaining in addition a "certificate of nonreimbursement" as this establishes facts in the case and prevents complications when income tax returns are reviewed by the department of internal revenue.

Reviews Foundry Practices

Gottfrid Olson, foundry engineer, National Founders association, reviewed developments, methods and practices in the foundry industry, basing his remarks on a series of surveys conducted at numerous foundries at which production prob. lems were encountered. Citing advances made by the industry, Mr. Olson compared wall thicknesses, complicated design and intricate core work of such castings as the air brake cylinder, aircraft cylinder, automobile V-block with the foundry product of 25 years back. He noted also more exacting specifications by the ordnance department covering shells of $6,8,10$ and 12 inch diameter. A tensile strength of 50,000 pounds is now required compared with 28,000 pounds in 1910.

Need of skilled mechanics and the importance of time in the training of apprentices in connection with the defense program was stressed by William F. Patterson, chief of apprenticeship, United States department of labor.
Merryle Stanley Rukeyser, economic commentator for the Hearst newspapers, advised a long view of the industrial picture based on possible permanent changes in the economic structure three or four years hence rather than the short range outlook now stimulated by the defense program. Emotional economics are too prevalent. The deiense program has already revised industrial psychology as evidenced by the trend toward building up inventories. The hysteria as to possible shortages is not warranted, according to Mr. Rukeyser. The tax burden has not been reflected in prices or earnings as yet, but will be as defense orders
materialize. Industry should resist inflation at all costs. If business goes the easiest way as to wages and costs, prices will get out of hand, he said, urging against cost increases wherever possible.
E. L. Berry, assistant general manager, Link-Belt Co., Chicago, presented an interesting discussion of "Practical Industrial Management." While there are many definitions of scientific management, Mr. Berry believes that it may be described as an attack on conditions that are susceptible of exact formulation. He pointed out that it is a function of management to plan procedures and to follow through to see that the procedures or standards are applied to the plant.

Such incentive systems will be only as good as the honesty and common understanding of the company and the men participating in it, according to Mr. Berry. The men must have the proper understanding of just what such incentive schedules in the plant are all about if such schedules are to work properly. Just as the worker must have tools to perform his tasks, management must have tools, and the most important in this instance is observation.

All officers of the association were re-elected. In addition to President Hamerstadt, these include: D. C. Bakewell, Blaw-Knox Co., Pittsburgh, vice president; J. M. Taylor, Chicago, secretary-treasurer; and A. E. McClintock, commissioner. District committees:

First distrlct, the New England states:

Chairman, G. R. Holmes, The Mclagon Foundry Co., New Haven, Conn.; vice chairman, H. B. Johnson Jr., General Firc Extinguisher Co., Providence, R. I.; R. F. Harrington, Hunt-Spller Mrg. Co., Boston; Franklin Farrel III, FarrelBirmingham Co., Ansonia, Conn.; A. M. Cottrell, C. B. Cottrell \& Sons Co., Westerly, I. I.
Second district, New York and that part of New Jerscy north or a line drawn from Lambertville to Polnt Pleasant, and the Provinces or Ontarlo and Quebec in the Dominion of Canada: Chairman, Irving L. Jones, International Heater Co., Utica, N. Y.; vice chalrman, P. R. Van Duyne, Meeker Foundry Co., Newark, N. J.; Hamilton Garnsey Jr., Goulds Pumps Inc., Seneca Falls, N. Y.; C. P. Clark, Clark Bros. Co., Olean, N. Y.; J. H. Hornung, Otis Elevator Co., Yonkers, N. Y.

Third distrlet, Pennsylvania, Delaware, Maryland, District of Columbla, and that part of New Jersey south or a line drawn from Lambertville to Point Pleasant and including these two towns: Chairman James H. Anderson, The Cooper-Bessemer Corp., Grove Clty, Pa.; vlce chairman, G. L. Coppage, The Pusey \& Jones Corp., Wilmington, Del.; George R. Casey, Treadwell Engineering Co., Easton, Pa.; S. P. Hazard, R. D, Wood Co., Florence Pipe Foundry \& Machine Co., Philadelphia; E. C. Moore, Erie city Iron Works, Erle, Pa.

Fourth district, the lower peninsula of Michigan, Ohio, Kentucky, Indiana and West Virginia: Chairman, M. W. Manz, The Ohlo Brass Co., Mansfleld, o.; vice chalrman, George Cannon, Campbell, Wyant \& Cannon Foundry Co., Muskegon, Mich.; R. W. Gillisple, The Jerfrey Mrg. Co., Columbus, O.; I. R. Wagner, Electric Steel Castings Co., Indlanapolis; John M. Price, Ferro Machine \& Foundry Co., Cleveland.
Fifth district, Illinois, Missourl, Oklahoma, Nebraska and Lowa: Chairman, A. H. Head, John Deere Tractor Co., Waterloo, Iowa; vice chalrman, C. B. Magrath, Greenlee Foundry Co., Chicago; E. L. Berry, Link-Belt Co., Chicago; J. F. Culver, Century Electric Co., St.

Named to

Labor Board

- Appointment of Dr. Harry A. Millis as a member of the national labor relations board is expected to result in a long overdue revamping of the board's staff. Dr. Millis' views are understood to be akin to those of Dr. William Leiserson, who has stated publicly his opinion that many of the board's attaches are unfit for their positions. Dr. Millis, for many years a University of Chicago professor, and a veteran labor dispute arbiter. will succeed J. Warren Madden whose term expired. NEA photo

Louis; Ira G. Whitney, A. Y. McDonald Mrg. Co., Dubuque, Ia.

Sixth district, Wisconsin, Minnesota, upper peninsula of Michigan, North Dakota, South Dakota and the province of Manstoba in Canada: Chairman, C. F. Wehr, Wehr Steel Co.. Millwaukee; vice chairman, Willam J, Grede, Spring City Foundry Co., Waukesha, Wis.; F. H. Clausen, Van Brunt Mfg. Co., Horicon, Wls.; H. O. Menk, The Harnischfeger Corp., Milwaukee.

Seventh distriet, Virginia, North Carolina, South Carolina, Georgia, Florida, Alabama, Mississippl, Arkansas, Loulsiana, Texas and Tennessec: Chalrman, G. E. Jones, U. S. Plpe \& Foundry Co., Bessemer, Ala.; vice chairman, Foskett Brown, Gray \& Dudley Co., Nashville, Tenn.: John D. Capron, Glamorgan Plpe \& Foundry Co., Lynchburg, Va.; W. C. Trout, Lufkin Foundry \& Machine Co., Lufkin, Tex.; Warren Whitney, James 13 . Clow \& Sons, Birmingham, Ala.

"Most Striking Economic Danger Today Is Infiation"-Sloan

- "KEYSTONE of our defense of the American way of living today, tomorrow and always, in the world now existing, is the strongest, the most virile, the most aggressive economy that the creative genius of America can devise." This was the message delivered by Alfred P. Sloan Jr., chairman, General Motors Corp., before the annual meeting, Academy of Political Science, Hotel Astor, New York, Nov. 13.
Such an economy, said Mr. Sloan, finds its strength in the productive power of its industry, its plant, its equipment its workers-especially its technicians and management-.. all supported by the material resources which enable it to develop the necessitics of defense as well as the needs of peace.
"I can conceive of a weak defense based upon a strong economy. I cannot conceive of a strong and competitive defense based upon a weak and declining economy. That is impossible."

Now that the. present political regime has been re-established in power, continued Mr. Sloan, "Let us hope that industry can expect more than a breathing spell necessitated by the program of national defense. Ironically the very individuals, the very industrial organizations, which, during the past few years, have been under political attack and held up to public scorn as enemies of the public interest have now become vital instrumentalities of national defense. The nation turns to them to protect itself against aggression."

The demands confronting this country at present emanate from three sources, said the speaker. These are the normal peace-time demands of our people; the abnormal demands of our defense program, and the abnormal demands incident to the defense needs of Great Britain.

All these demands can be met, Mr. Sloan advised, but more work and more efficient work will be required. The speaker suggested a longer work week be establishedsix days instead of five-and that present overtime penalties be sus-
pended. Steadier work and longer hours would result in larger earnings and a higher living standard.

Priorities control of materials should be enforced when necessary, both to insure proper distribution of essential equipment and materials and to avoid starting an inflationary price movement.
Inflation, declared Mr. Sloan, is the most striking economic danger today. "Price disorders exert a profound influence on the economy. They work against the efficient mobilization of the nation's resources. An inflationary process affects prices, profits, rents and wage rates very unevenly. It creates arbitrary and useless changes in the distribution of real income.

It leads to endless controversies. Experience demonstrates that once the vicious spiral is under way is it almost impossible to check.
"Probably the wage rate presents the greatest danger and the one hardest to control. The principle is sound that the defense program should not be made the occasion for increases in wage rates that cannot, generally speaking, be justified. . . . Only when living costs increase as a result of the disturb. ance of the primary price level should wage rates be adjusted to protect living standards."

Storm Damage Cuts Iron Ore Shipments

- Severest storm damage on the Great Lakes in 27 years resulted last week when two lake freighters foundered off the east coast of Lake Michigan, midway between the north and south ends, near Luding. ton, Mich. Known loss of lives, including several washed overboard from grounded vessels, was 57.

Freighters sunk in the storm included the William B. Davock, $7200-$ ton ore and coal carrier, operated by Pickands, Mather \& Co., Cleve land; and the Anna C. Mincir, 4200 ton Canadian grain carrier, owned by Sarnia Steamships Ltd., Sarnia, Ont. Two small fishing tugs were also reported lost.

At least six vessels were ground-

Steel Bombproof Shelter To Guard Edison Relics

Steel and concrete subterranean vault to guard papers, models and other mementoes of the late Thomas A. Edison is being built at the plant of Thomas A Edison Inc., West Orange. N. J. The structure is being made bombproof aqainst eventualities of war. Inspecting the work is Charles A. Edison, governor-eled of New Jersey, and Norman R. Speiden, director of historical research for the Edison laboratory. Wide World photo
ed during the storm, several sustaining considerable damage. Many others were damaged severely, requiring immediate repairs.
The ore carrier, Sparta, operated by G. A. Tomlinson, Cleveland, had been grounded near Munising, Mich., in a storm several days earlier. After inspection revealed damage was too great, the 3832 -ton vessel was abandoned.
Storm's effect decreased by about $2,000,000$ tons the total estimate of ore that will be transported to lower lake docks and yards this year. Numerous ships must be docked for repairs, cutting the shipping season short. Plans had been to extend the season into December, weather permitting. More than 2,000,000 tons had been delivered at lower lake docks in the first nine days of November.

TCI Expands, Increases Capacity 20 Per Cent

- A broad program involving an expansion of the steelmaking and finishing facilities at Birmingham, Ala., of the Tennessee Coal, Iron \& Railroad Co., United States Steel Corp., subsidiary, was announced last week at Birmingham by Robert Gregg, president.
The new facilities will result in approximately a 20 per cent increase in the ingot capacity, a little more than 400,000 tons, and a corresponding increase in the finishing capacity of the corporation's southern subsidiary.
These improvements, which will require about 18 months to complete, will place the company "in a materially improved position to carry out any obligations which may be required as a consequence of the national defense program.'
They comprise the following important features:

Construction of an additional battery of coke ovens and an addition. al blast furnace at Fairfield steelworks; improvements to the existing open-hearth furnaces; development of ore and coal mining facilities to meet the requirements of the new blast furnace; additions and improvements to the plate mill at Fairfieid, including a new 140 -inch, fourhigh plate mill; additional wire. drawing, galvanizing and finishing facilities at the Fairfield wireworks; and additional processing and fin ishing facilities at the Fairfield sheet mill.

These changes will necessitate enlarged operations at the ore mines, coal mines and quarries, including mechanical equipment, additional transportation facilities, and, to the extent necessary, enlargements and improvements in the steam and electrin power plants and the water
supply system.

PR(IDUTIDN... Down

I STEELWORKS operations last week declined $1 / 2$-point to 96 per cent, because of repairs and a strike interruption. Three districts made slight increases, three went to lower levels and six were unchanged. A year ago the rate was $93 \frac{1 / 2}{2}$ per cent; two years ago it was 63 per cent.

Detroit Unchanged at 93 per cent, 24 of 26 open hearths in serv. ice.

Cincinnati-One open hearth was taken off for repairs, lowering the rate 6 points to 88 per cent.

St. Louis-Held at 85 per cent for third consecutive week.

Birmingham, Ala.-Steady at 100 per cent for the third week, all 24 open hearths in production.

Youngstown, O. - Advanced 1 point to 93 per cent, with three bessemers and 72 open hearths in production. Republic Steel Corp. added one open hearth.

Chicago-Rose 2 points to 99 per cent, equaling the alltime high of Aug. 26 and Oct. 14.

Pittsburgh-Repairs and a strike at one plant lowered production 3 points to 94 per cent.

Wheeling-Sustained operations at $981 / 2$ per cent indicate heavy backlogs.

Central eastern seaboard - Although minor fluctuations occurred

District Steel Rates

Percentage of Ingot Capactty Engaged In Leading Districts

Week	Same
ended	week
Nov. 16 Change	19391938

Pittsburgh	94	3	94	52
Chlcago	99	$+2$	93	60
Eastern Pa.	94	None	87	36
Youngstown	93	$+1$	90	60
Wheeling	98.5	None	93	66
Cleveland	88	+ 1.5	90	79.5
Buffalo	90.5	- 2.5	93	49
Birmingham	100	None	94	68
New England	85	None	100	80
Cincinnat	88	- 6	88.5	75
St. Louls	85	None	81	51.5
Detroit	93	None	95	82
Average	96	-0.5	93.5	63

in furnace operations the rate averaged 94 per cent, as in the two preceding weeks.

New England-Continued at 85 per cent.

Buffalo-One open hearth was taken off for repairs, lowering the late $21 / 2$ points to $901 / 2$ per cent.

Cleveland-Completion of furnace repair raised the rate $11 / 2$ points to 88 per cent.

Bethlehem Opens New Bar Mill at Euffalo

P Bethlehem Steel Co. last week started operations at its $\$ 4,500,000$ bar mill addition at Buffalo. First steel to be rolled was shell rounds in the smaller sizes. Plant's capacity will be 15,000 tons of bars monthly.

The addition comprises six connecting buildings located in the town of Hamburg, just west of the Lackawanna city line. They are equipped with the latest type furnaces, temperature and pressure controls and bar-cooling apparatus. The addition replaces the old No. 6 12 -inch bar mill.

One of the advantages resulting from the improved and relocated mill is the elimination of a bottleneck in the finishing department. The new mill can operate two or three shifts.

The new structures contain 404,000 square feet of floor space, 228 mo tors furnishing an aggregate of more than 9000 horsepower, 13 cranes.

Edward F. Entwisle, manager of the plant, said the improvements will enable better service to the automotive and other bar-consuming industries in the lakes area.

MEN of INDUSTRY

E J. A. INGWERSEN has been named manager, sheet and strip sales division, American Rolling Mill Co., Middletown, O., and F. E. Wortley has been promoted to man ager of midwestern sales, succeeding Mr. Ingwersen.

Mr. Ingwersen, after several years of newspaper work, joined Armco in 1923 in the personal relations division. In 1925 he was transferred to the sales division and subsequently served as a salesman in the Chicago district; assistant manager, ingot iron sales section; manager in charge of hot and cold-rolled sheet sales, and in 1939 was made manager of midwestern sales.
Mr. Wortley joined Armco in 1912 as a salesman in the New York district. In 1929 he was transferred to Pittsburgh and became assistant district manager in charge of ingot iron sales there in 1930. He later was promoted to district manager at Cleveland, and in 1939 was named assistant manager of midwestern sales, located in Middletown.

George J. Kruse Jr., forging engineer, General Metals Corp., Houston, Tex., has been named manager, Western Forge \& Tool Works, Oakland, Calif.

Paul J. Darling, the past 11 years associated with Steel Sales Corp., Chicago, as salesman and recently as assistant sales manager, has been promoted to sales manager.
W. C. Buchanan, president, Globe Steel Tubes Co., Milwaukee, has been elected a director, Allis-Chalmers Mfg. Co., Milwaukee, to flll a vacancy on the board.

David S. Lewis has been appointed assistant to T. W. Pennington, sales manager, Jessop Steel Co., Washington, Pa. Mr. Lewis joined the sales department of Jessop in 1928.

John F. Ditzell has been named general sales manager, Shafer Bearing Corp., Chicago. Mr. Ditzell was for a number of years a sales executive of Stewart-Warner Corp. Chicago.

Oliver Smalley, president, Meehanite Metal Corp., Pittsburgh, was re-elected president, Meehanite Research Institute of America Inc., at its twelfth annual meeting in Milwaukee, Oct. 30.
W. P. Knecht has been appointed

J. A. Jngwersen

F. E. Wortley
district sales manager at Worces. ter, Mass., for Universal-Cyclops Steel Corp., Bridgeville, Pa. He succeeds W. J. Long, who has been transferred to Bridgeville.

Lee F. Frampton has been appointed sales representative by A. Milne \& Co., New York, for its tool and drill steels in the Blue RidgeOhio valley territory, with headquarters at 401 Thirteenth street, Parkersburg, W. Va.

Gordon H. Chambers, vice president, Foote Mineral Co., Philadelphia, has recently returned from an extended vacation to South America. Mr. Chambers visited Peru, Bolivia, Argentina, Brazil, Porto Rico and Haiti.

Bruce P. Hetler, heretofore general sales manager, Blackmer Pump Co., Grand Rapids, Mich., has been made manager in charge of engineering sales, and J. B. Trotman,
formerly manager, turbine pump division, Roots-Connersville Blower Corp., Connersville, Ind., has become general sales manager in charge of sales distribution and ad. vertising.

Alfred R. Conti, until recently an assistant in the sales office of Vas. coloy Ramet Corp., North Chicago, Ill., is now representing the company as a salesman in the Illinois, Indiana and western Michigan territory.
R. A. Karr has been appointed metallurgist, Copperweld Steel Co., Warren, O. He formerly was associated with Battelle Memorial inv stitute, Columbus, O., and later with Central Alloy division of Republic Steel Corp.

Harvey L. Miller has been named manager of the district office recently established by Wheeling Steel Corp., Wheeling, W. Va., at 2508 Gulf building, Houston, Tex. I. G. Thompson continues as district sales manager at Dallas, Tex.
Arthur F. Schuck, the past ten years a member of the general executive organization of Sears, Roebuck \& Co., Chicago, has joined the staff of McClure, Hadden \& Uriman Inc., Chicago, management en gineers.

Herman L. Cook, well known ceramic engineer and enameling superintendent of the Norge division, Borg-Warner Corp., Muskegon Mich., has resigned to join the sales service staff of O . Hommel Co ., Pittsburgh.
M. L. Frey, formerly contact metallurgist for Republic Steel Corp ${ }_{7}$ Detroit, has been named aircraft metallurgist for Packard Motor Car Co., Detroit, working under direction of W. H. Graves, chief metallurgist. Mr. Frey was with Republic five years, three in the Buffalo territory and two in Detroit.
R. N. Miers has been appointed eastern district engineer of AllisChalmers Mfg. Co.'s steam turbine division, with headquarters in Bos . ton. The past six years Mr. Miers has been engaged with steam turbine sales and general engineering matters at Milwaukee.
L. G. Atkinson has been appointed manager of a new section of the circuit breaker sales department,

Westinghouse Elestric \& Mfg. Co., East Pittsburgh, Pa. After two years in the Westinghouse student course, he joined the engineering department, switchgear division. In 1936 he went into the sales department of switchgear and now has been made head of sales for small De-ion circuit breakers.

Dr. Edward Bartow, who has been granted a year's leave of absence as emeritus professor of the University of Iowa department of chemistry and chemical engineering, has joined the research laboratories of Johns-Manville Corp., Manville, N. J., as chemical consultant.

Clyde E. Lowe, representative in the Pittsburgh area for the metal cleaner department of Cowles Detergent Co., Cleveland, has been transferred to Chicago. He will work with James H. Rhodes Co., Chicago, Cowles metal cleaner distributor in the Chicago territory.
N. K. Koebel, the past five years metallurgist, Eastman Kodak Co., Rochester, N. Y., and for a year prior to that research fellow at Battelle Memorial institute, Columbus, O., has been made metallurgist in charge of research and technical problems, Lindberg Engineering Co., Chicago.
W. C. Doemel, formerly manager, Webster Mfg. Inc., Tiffin, O., has been appointed superintendent, Vulcan Mold \& Iron Co., Latrobe, Pa. He will be in complete charge of the company's manufacturing operations, effective Jan. 1, 1941.
R. T. Dunlap, who until a few months ago was superintendent, and is now plant manager, is resigning Jan, 1 to become works manager, Vulcan Iron Works, Wilkes-Barre, Pa.

Jack F. Wolfram, formerly experimental engineer for Oldsmobile division, General Motors Corp., Lansing, Mich., has been appointed assistant chief engineer in charge of engine, transmission and axle design.
Maurice A. Thorne, heretofore chassis engineer, has been named assistant chief engineer in charge of body, chassis, electrical and acces. sory groups and office administra tion.
John Oswald, body engineer since 1929, has become director of styling.

[^0]joined General Electric in February, 1919, as a test man; a year later was transferred to the power and mining engineering department, remaining with that department until 1931. He then was transferred to the International General Electric Co. and took up work in Russia. He returned to the industrial engineering department in 1933.

Mr. Mohler, educated at Virginia Polytechnic institute, joined the company in 1926 as a test man, and two years later was transferred to the industrial control engineering department. In 1929 he joined the steel mill section of the industrial engineering department.

Donald R. G. Cowan has resigned as chief statistician, commercial research department, Swift \& Co., Chicago, to become manager of commercial research for Republic Steel Corp., Cleveland. A native of

Donald 1R. G. Cowan

Stroud, Ont., Mr. Cowan was graduated from Queen's university in 1917 where he won the Sir James Gowan prize in political science. He received his M. A. degree from the University of Toronto in 1918, and took graduate courses at the University of Minnesota, University of Chicago and Northwestern university, receiving his Ph. D. degree from the University of Minnesota in 1934. He joined Swift \& Co. in 1925 and served as chief statistician since 1935. Throughout his career he has been a teacher of economics, marketing and allied subjects in midwestern colleges and universities and at present is president, American Marketing association.

Israel Citron, Citron-Byer Co., Trenton, N. J., has been re-elected president, New Jersey chapter, In stitute of Scrap Iron and Steel Inc. Other officers re-elected are: First vice president, Irving I. Werblin, Werblin Bros., Somerville, N. J.; second vice president, Harry Wische,

Lowenstein Bros. Inc., Newark, N. J.; third vice president, Irving Feldman, P. Feldman \& Sons Inc., Elizabeth, N. J.; secretary, Murray Kunin, Schiavone-Bonomo Corp., Jersey City, N. J.; treasurer, Eli Bussell, Plainfield Iron \& Metal Co., Plainfleld, N . J.
R. R. Danielson, Metal \& Thermit Corp., and vice president of Porcelain Enamel institute, Chicago, announces appointment of Dr. G. H. McIntyre, director of research, Ferro Enamel Corp., Cleveland, as chairman of the committee on the research associate at the national bureau of standards. This committee supervises the work of Dr. Paul Smith, who has served as research associate for the institute the past three years.

James Work has been elected chairman of the board, Brewster Aeronautical Corp., Long Island City, N. Y. Other officers elected include: George F. Chapline as president and general manager; Dayton T. Brown as vice president in charge of experimental research and development, and William L. Smith, vice president in charge of materiel.

Mr. Chapline formerly was vice president in charge of sales, Wright Aeronautical Corp. Mr. Smith resigned from Western Electric Co. last October to Join Brewster. Until Aug. 20, 1940, he was director of air purchases for the British Purchasing commission, a duty assumed in December, 1939, when Western Electric granted him a leave of absence as contract engineer.

Irvin A. Brlnkman, Mackintosh Hemphill Co., Pittsburgh, has been elected general chairman, metals section, executive committee, National Safety council, Chicago, for the term 1940-41. Vice chairmen are: H. J. Spoerer, Youngstown Sheet \& Tube Co., East Chicago, Ind., and R. H. Ferguson, Republic Steel Corp., Cleveland.

Chairmen of other committees are: Engineering, J. E. Culliney, Bethlehem Steel Co., Bethlehem, Pa.; foundry, J. H. Holzbog, Chain Belt Co., Milwaukee; health, Dr. T. Lyle Hazlett, Westinghouse Elec tric \& Mfg. Co., East Pittsburgh, Pa.; membership, Frank W. Kelsey, Jones \& Laughlin Steel Corp., Aliquippa, Pa.; poster, N. B. MacHose, Bethlehem Steel Co., Lackawanna, N. Y.; program, Jacob L. Ridinger, Inland Steel Co., East Chicago, Ind.; publicity, W. A. Jarvis, Chase Brass \& Copper Co., Waterbury, Conn.; railway car builders, P. J. Brand Puliman-Standard Car Mfg. Co., Chicago; statistics, Earl Fyler, Car-negie-Illinois Steel Corp., Gary, Ind.

Management Asks for Speed in Expanding Apprentice Training

- OUR RATE of mobilization in this country must be greatly accelerated. While many executives point out that they are witnessing conditions similar to those in 1916, the national defense administrative body is more efficient.

This was the message of Alvin E. Dodd, president, American Management association, who spoke at the opening session of the association's fall production conference last week in Cleveland.
We still have certain bottle. necks but they are not of such caliber as confronted industry during the last World war. He cautioned that manufacturers are close to a priorities system.
G. H. Prudden, works manager, Vega Airplane Co., Burbank, Calif., told how his company, faced with the necessity of rapidly expanding its working force, turned to scientific selection methods in finding workers who were properly qualified. He asserted that the employment office is able to weed out the temperamental misfits, the "goldbricks" and other undesirable applicants.
"On the other hand, we are frequently able to direct men to suc-
cess by proper placement. It is unfortunate that many men have not had vocational guidance. If they are temperamentally suited to the work and have the right attitude, we will train them. We have 5000 men in training now."

In conclusion the speaker referred to skill. This quality is considered, not for the purpose of selecting geniuses, but to avoid such obvious mistakes as placing an exceptionally intelligent individual in a routine, monotonous job on which he soon will become stale and dissatisfied.

Scrap Increased

W. H. West, assistant factory manager, Thompson Products Inc., Cleveland, announced that in one year the personnel at his plant increased from 1591 to 3960 workers. Plant expansion brought new problems. Analyzing facts it was found that new and inexperienced help was perhaps the major cause for an increase in scrap and repair during the expansion program.

Experienced help was used for supervision and the proportion of inexperienced rose rapidly. The problem of maintaining quality and quantity of production became near-

Air Corps Commander Inspects Training School

- Brig. Gen. Rush B. Lincoln (in uniform). United States army air corps, listens to an explanation of instruction methods at the Rising Sun School of Aeronautics, Philadelphia, where more than 100 army enlisted men are enrolled. General Rush is making a nation-wide tour of schools training men for technical work with the air corps. NEA photo
ly insurmountable. Scrap and repairs on some items equalled pieces shipped and it was necessary to work overtime to meet schedules. With the cost of the product mounting steadily, it became necessary to remedy the situation.

Consequently, a learners' program was established. Experienced inspectors were placed on all shifts to trace daily scrap and repairs to their source and assist in determining the cause. Layoff periods to men persistent in causing repairs and making scrap proved helpful.

Inadequate and poorly designed tools and poorly maintained equip. ment contribute in a large measure to the cause of scrap and repairs, the speaker stated. Operations causing the largest number of rejections were carefully studied and improvements resulted. In some instances, customers were requested to revise specifications, with excellent results to both parties. Routings were corrected to improve the product, and production lots increased.
The plan of having the customer's inspectors sent to the plant has resulted in a better understanding of the customer's requirements, the speaker explained. Overlapping of the third and day shift supervision also proved helpful.

Despite the fact that the aviation indestry has about 100,000 workers, it will be necessary to have from 500,700 to 600,000 workers to meet production schedules for airplanes, according to W. F. Patterson, chief of apprenticeship, division of labor standards, department of labor, Washington. A small percentage of workers in this industry will have to be skilled mechanics. In the shipbuilding and construction industries, the ultimate skilled workers will be about 60,000 , according to Mr. Patterson.
The situation today, the speaker stated, is that whereas the country had previously committed itself to a comparatively slow-growing national system of apprenticeship, now it becomes necessary to do in one year what we had normally planned to do in 15 years.

October Gear Sales

Gain 18 Per Cent

E Gear sales in October were 18 per cent higher than in September and 53 per cent above October, 1939, according to the American Gear Manufacturers' association, Wilkinsburg, Pa. The association's index for October stood at 216 compared with 183 in September, and 141 in October last year.

For ten months this year, gear sales showed an advance of 18.7 per cent over the comparable period in 1939.

Congress To Explore for Arother Billion Dollars in Taxes

WASHINGTON

- GOVERNMENT tax officials are planning to get at least another billion dollars out of business and the people of the country in a new tax bill which it is believed will be taken up shortly after congress convenes on Jan. 3. Details have not yet been worked out, but there is much talk of more taxes on excess profits and individual incomes.
Secretary of the Treasury Morgenthau already has committed the administration to seek more revenue from the next congress.
Congressional leaders probably will be consulted before any decisions are made. While such conferences are in progress, however, Secretary Morgenthau will present his plan for increasing the federal debt limit $\$ 15,000,000,000$ to $\$ 20,000$,000,000 above the present $\$ 49,000$,000,000 restriction, to finance the defense program.
Upward revision of the recentlyenacted excess profits tax was taken almost for granted by a number of treasury officials. From this revision alone, they hinted, the revenue possibilities run as high as $\$ 500,000,000$.
The corporate excess profits tax, logether with the increased corporate income tax enacted with it a few weeks ago, were said by some to necessitate a similar increase in
individual income tax rates which might bring in upward of $\$ 100,000$, 000 more taxes.

Officials said that while the excess profits law is designed to capture a portion of the extra profits apparently ahead for corporations as a result of the defense program, nothing had been done to tax similar profits which individuals might reap from the preparedness spending.

Taking a contrary view, others argued that the individual income tax law provides for such situations automatically, with its graduated rates from 4 to 79 per cent.

Although congress has been manifestly reluctant on the subject, Secretary Morgenthau and the administration have indicated their intention of seeking legislation to tax the income from all future issues of governmental securities. If enacted, however, this levy would not produce much for several years, or until the volume of new securities reached high totals.

Copperweld Steel Adds Two Electric Furnaces

- Copperweld Steel Co. has started construction on a 25 -ton and a 10 ton top-charging electric furnace at its Warren, O., plant. When the furnaces are completed in January

Tacoma Bridge To Be Rebuilt

[^1]the company will have three 25 -ton furnaces and the 10 -ton unit for the production of all grades of alloy steel.
S. E. Bramer, president, also announced the company recently has added two heat-treating furnaces, bringing total heat-treating capacity to 1200 tons a month, and two annealing furnaces to raise annealing capacity to 3000 tons a month.

Third Woodward Stack
 To Be Air Conditioned

- Woodward Iron Co., Woodward, Ala., has let contracts to Shook \& Fletcher Supply Co., Birmingham, for air conditioning the company's third blast furnace at a cost estimated at $\$ 125,000$.

The first two Woodward stacks were air conditioned in 1939 with equipment supplied by the Carrier Corp., Syracuse, N. Y. A description was presented in Stefl, Nov. 20 and $27,1939$.

Died:

E EUGENE W. PARGNY, former president, American Sheet \& Tin Plate Co., in New York, Nov. 9. Mr. Pargny retired as president of American Sheet \& Tin Plate, Jan. 1, 1934, after serving in that capacity since 1909. Born in Louisville, Ky., he first became associated with the steel industry in 1882 with the Apollo Iron \& Steel Co.
A. W. Lucas, the past 11 years New England sales manager for Jessop Steel Co., Washington, Pa., Oct. 26, in New Haven, Conn.

George W. Charles, 83, at one time treasurer and director, Kokomo Steel \& Wire Co., Kokomo, Ind., now a part of Continental Steel Corp., in Kokomo, Nov. 5.

Emil Vilter, 69, chairman of the board, Vilter Mfg. Co., Milwaukee, in that city, recently. Mr. Vilter was president from 1919 until 1934.

Verne E. Sorge, 56 , president, Pyramid Stamp \& Tool Co., Detroit, in that city, Nov. 11. He was at one time identified with the foreign sales department of Hudson Motor Car Co., and founded the Pyramid company in 1919.

Frank M. Raymond, 59, vice president, Raymond Mfg. Co., Corry, Pa., in Corry, Nov. 7. A native of Corry, Mr. Raymond spent practically his entire life there with the exception of several years at Seattle as Pacific Coast representative of Climax Mfg. Co. Mr. Raymond also was vice president, Associated Springs Corp., parent company.
 manufacturer - here the lots are small, yet tolerances of $+.0000^{\prime \prime}$ and -. $0005^{\prime \prime}$ are held with ease. Parts range from 3 inches to 8 inches in

Send for your copy of the No. 11 Blanchard Catalog. length; $.015^{\prime \prime}$ to $.020^{\prime \prime}$ of stock is ground off each surface; materials are Mild Steel, Vulcan Tool Steel, and Machine Steel. This is a typical installation where the new No. 11 Blanchard Grinder is earning profits on parts which vary in quantity, length, thickness, and material - parts on which profits are lost with a machine of less modern design than the Blanchard.

Your own surface grinding jobs will be analyzed by Blanchard engineers without obligation - just send them complete information.

BLANCHARD

By L. M. LAMM
Washington Editor, STEEL

Conference To Facilitate Rearmament Program.

Plan Utilization of All Industrial, Banking Resources. Supreme Court Rules Against NLRB in Republic Case.

Machine Tool Priorities Committee Is Established.

WASHINGTON

- CONFERENCE was held last week to facilitate the defense program by utilizing all available units of the nation's industrial and banking system. Attending were members of the national defense advisory commission, army and navy procurement officers, governors of the federal reserve system. Representatives of the 12 federal reserve banks and 24 branches, representatives of the treasury and commerce departments, reconstruction finance corporation and the securities and exchange commission also attended.
The conference was arranged by Ernest G. Draper of the board of governors and Donald M. Nelson, co-ordinator of national defense purchases, to familiarize the reserve bank officers with the defense commission's plan of dealing with smaller business and industrial establishments in relation to the delense program.

Mr. Nelson stated: "The fulfillment of the defense program has raised a grave challenge which the commercial banks of the nation must face. The future status of the commercial banking system will in large part be influenced by the manner in which our local banks rise to meet this challenge of providing total finance for total defense."
Brig. Gen, H. K, Rutherford, chief of the war department's planning division, described the industrial planning activities of the war department. Col. John W. N. Schulz, of the war department's procurement division, explained the methods used of the army in making purchases of materials and supplies; and location of the various army procure-
ment centers. Capt. David I. Hedrick, of the ordnance division of the navy, described the purchasing methods used by the navy department.

Stacy May, director of the bureau of research and statistics, defense commission, described the present regional distribution of defense contracts in terms of the federal reserve districts, and the volume and type of such contracts. Especially prepared maps were furnished to each of the reserve bank officers showing the location of all army and navy procurement depots in relation to the federal reserve banks and their branches.

Explains Plant Facilities Contract

David Ginsberg, legal advisor to the defense commission's price stabilization division, discussed the recently drafted plant facilities contract and the proposed uniform provisions of the war and navy department supply contracts which have been drafted by legal experts of the armed services, the treasury department and the defense commission. Mr. Ginsberg also discussed the legal aspects of the assignment of claims against the government resulting from defense contracts. Peter R. Nehemkis Jr., of the office of the director, small business activities, discussed the methods which will be used in keeping federal reserve bank officials supplied with current information on procurement needs.

Mr. Nelson made it clear that although he hoped his office would be regarded by small business men as "their friend at court", the plan is neither "the millennium for small
business" nor a design for "converting little business men into big business men." He said there is no reason for thinking of big business or small business as separate industrial compartments.
"Our job," he stated, "is to think in terms of men, materials and money, which means thinking of industry as a whole. Total defense requires the utilization of all available plant capacity; of all available man power; of all available financial resources . . .
"When this rearmament effort is over-as we all hope it will soon be -our economy should not find itself in the condition in which it was in the early twenties when we had over-expanded our industrial plant without giving due consideration to permanent civilian requirements."

Mr. Nelson referred to President Roosevelt's suggestion that one-half of our defense production go to Great Britain. In this connection, he emphasized the heavy burden being placed upon the "army of subcontractors" who were "feeding the assembly lines for guns, tanks, and planes." The army and navy having let over $\$ 8,000,000,000$ of contracts, the defense commission wants to make sure there will be no interruption in the flow of materials due to inadequate financial resources of the smaller business units.

To this end the federal reserve system will serve as operating agent for the defense commission. At the request of the federal reserve board, an officer has been designated in each federal reserve bank and branch to handle all problems relating to field and technical activities of the smaller business enterprises. The board has designated Ernest G. Draper as its representative in this work.

It is expected federal reserve bank officers will report on availability of small business enterprises in their districts to participate in the defense program; to familiarize local banks with the procedure to be followed in accepting assignment of government claims as security
for loans; to encourage local banks to make loan commitments on condition that borrowers obtain government contracts; to furnish business enterprises in their districts with information on the procedure to be followed relative to obtaining defense contracts; and to assist small business enterprises to obtain necessary financing from their local banks.
By utilizing the services of the federal reserve banks in their terijtories, the smaller business men will be in a position to obtain promptly information they require to play their part in the defense program.

SUPREME COURT FINDS FOR REPUBLIC STEEL, CORP.

In a decision rendered last week by the United States Supreme Court in the Republic Steel Corp. case, it was held that the national labor relations board does not have the right to require a company, found guilty of violating the labor act, to reimburse governmental relief agencies for wages paid employes held to have been deprived of their regular work.

Asserting that "the theory advanced by the board proceeds upon a misconception" of the labor law, the court declared that the Wagner act is "essentially remedial" and "does not carry a penal program declaring the described unfair labor practices to be crimes."
The court held that the board had exceeded its powers in ordering the corporation to reimburse the government for relief money paid to Republic workers who were found to have been illegally discriminated against by the company.

Under the board's decision, said the court in an opinion written by Chief Justice Hughes, the payments of Republic to the governmental relief agencies are conceived "as being required for the purpose of redressing, not an injury to the employes, but an injury to the public." So conceived, "these required payments are in the nature of penalties imposed by law upon the employer."

But, said the court, "the act does not prescribe penalties or fines in vindication of public rights or provide indemnity for community losses as distinguished from the protection and compensation of employes."
"We do not think that congress intended to vest in the board a virtually unlimited discretion to devise punitive measures, and thus to prescribe penalties or fines which the board may think would effectuate the policies of the act."

The Wagner act, said the court, gives the board power to carry out "remedial measures" against unfair labor practices-but "to go further and to require the employer to pay
to governments what they have paid to employes for services rendered" is an "exaction" for which "we find no warrant."

In agreement with the opinion of the chief justice were three of President Roosevelt's appointeesJustices Reed, Frankfurter and Murphy. Justice Roberts did not participate in the decision.
The Black-Douglas dissenting opinion held that "a back-pay order as applied to the employer will effectually aid in safeguarding" the rights guaranteed by the Wagner act.

The knowledge of the employer, they said, "that he may be called upon to pay out the wages his employes would have earned but for their wrongful discharge, regardless of any assistance the government may have rendered them during their unemployment, might well be a factor in inducing an emplover to comply with the act."

The sum paid by relief agencies to the workers, which the board wanted Republic to pay back, has been estimated at irom $\$ 200,000$ to $\$ 400,000$. The dispute grew out of the "Little Steel" strike of 1937.

The board has made similar reimbursement orders in a number of cases.
Some observers saw in the Republic decision indirect support for opponents of the contention that the government should not make defense contracts with firms found guilty by the labor board of violating the Wagner act.
The official stand of the war department is that past violation of the Wagner act is no bar to defense contracts except insofar as potential labor troubles may impede a firm's production.

MACHINE TOOL PRIORITY COMMITTEE ESTABLISHED

Priorities board has announced the establishment of a machine tool priority committee to co-ordinate national defense, commercial and expori demands on the machine tool industry.
The committee, composed of representatives of the industry, the army, navy and defense commission, will formulate policies governing operation of the voluntary preference rating system, now in effect, as it applies to machine tool contracts. Such policies will be submitted through Donald M. Nelson, administrator of priorities, to the priorities board for consideration and approval.

Mason Britton, assistant directol: of the machine tools and heavy ordnance division of the defense commission, has been appointed administrative officer of the committee. Mr. Britton, working under the direction of the administrator of priorities, will carry out policies
formulated by the committee and approved by the board. He will handle all pertinent cases that may arise and will maintain the necessary contacts with industry and with government departments.

The committee will not be concerned with questions of precedence between various national defense contracts placed by the army and navy. This function will remain in the hands of the priorities committee of the army and navy munitions board.

Members of the machine tool priority committee are: Mr. Britton, administrative officer; Clayton R. Burt, president of the Pratt and Whitney division, Niles-BementPond Co., and chairman of the machine tool builders defense committee; Frederick Geier, president of the Cincinnati Milling Machine Co.; Lieut. Col. A. B. Johnson, chief of the machine tool committee of the army and navy munitions board, representing the army; and Commander E. R. Henning, member of machine tool committee of the army and navy munitions board, representing the navy.

LEADERS IN CONGRESS TO SEEK AD.JOURNMENT NOV. 19

On November 19, leaders of both the house and senate are going to make an effort to adjourn congress sine die.

There is considerable opposition to congress adjourning, especially among the Republican membership of both houses of congress on the basis that an emergency might come up unexpectedly any time. This view also is shared by some of the Democratic members. Effort was made some time before congress recessed for the election to have it adjourned but it was not possible for the leaders to corral sufficient votes for this.
Regardless of whether congress adjourns at that time, the new session convenes on Jan. 3.

DOUGLAS AIRCRAFT AWARDED $\$ 11,254,700$ FOR EXPANSION

War department announced last week award of a $\$ 11,254,700.71$ cortract to Douglas Aircraft Co., Santa Monica, Calif., for plant expansion construction by Douglas' subsidiary, Western Land Improvement CO., at Long Beach, Calif.
New facilities will be constructed under terms of the emergency plant facility contract and the company will furnish funds for constructionGovernment will repay cost of the expansion over a five-year period; at end of that time contractor will have option to purchase the property at cost less some pre-arranged rate of depreciation or at some negotiated sum.

How Presidential Election Is Viewed in Steel Commmonities

By J. D. KNOX
Steel Plant Editor, STEEL

ELAST WEEK various mill towns around the Pittsburgh district were visited and wherever possible a conversation was opened with mensteel men, men who handle the controls up in the pulpits in rolling mills, men who ore down heats in the open-hearth shop, men who still carry a dinner pail packed by the Mrs., regardless of their occupation over in the mill.
To avoid being lopsided stops were made at a few works adminis. tration buildings to get a slant on what top management is thinking. Conversation invariably centered around the outcome of the presidential election and its relation to steel operations in the next few months.
Men spoke freely and some of their opinions are set down hereinafter though not in the same language as originally spoken. The emphasis may not be as strong as when spoken in steel mill parlance
but the gist is retained and from it the general pulse of the thoughts of men throughout the mill or of those sitting on leather covered swivel chairs directing company policies can be discerned.
One fellow who works in the elec tric gang told me he would like to have been a mouse in some of the thickly carpeted offices high up in the metropolitan buildings when some of the big boys arrived the morning after the election. What a headache they must have had when they got a glimpse of the votes cast in the counties where steel plants are located in such states as Indiana, Ohio and Pennsylvania, he went on to say, but how fickle is human nature.
"How can men in plants like this one," he said pointing with his left index finger to the various buildings within the plant enclosure, "bite the hand that's feeding them. Here's my company that for many years

Welded 'Iron Lung'" Completed in 28 Hours

This mechanical respirator was made by 30 volunteer workers in the Post Products Co. plant in Grand Rapids. Mich., in 28 hours to save the life of the son of a fellow employe. The child had been stricken with infantile paralysis and no "iron lung" was available in the state. The father's co-workers copied structural details from a standard respirator, cut parts from 14 -gage metal and are welded the pieces together. Wires, valves, gages and motors were installed and the unit completed three days belore the disease reached the crucial stage. Photo, courtesy, Lincoln Electric Co., Cleveland
has been spending thousands of dol-lars-yes, millions-on employe wel. fare, on employe representation, and on pensions, and on plant improvement. Other companies have heavy expenditures along this line as well. Yet thousands of men enjoying the privileges made possible by the expenditures of these companies go to the polls and cast a vote for regimentation just because some dude who never ate out of a dinner pail tells them to do it."

He was interrupted to explain what he meant by his use of the term regimentation.
"Brother, it doesn't take any explanation," he said. "Awhile back the word is passed around that your wage is going to be so much. Did the boys at the front office fix it? You don't have to reply, Buddy, the answer is 'No'."

Orders from Washington

Continuing he said: "They tell you that your presence in the plant is not desired until it comes time for the turn to start. Is this the kind of rule that the company officials tacked up on the bulletin boards scattered over the plant? It is not. They let it be known that a guy can only work eight hours a day and 40 hours a week. Did the boys up at the front office put this plan into effect? Sure they did but only when they were told to do so by the boys down where the cherry blossoms bloom, where everyone hails you as 'My friend'. That's the kind of dope I mean when I speak of regimentation. The fellows out in the shop are working under it but they don't seem to recognize it though."

Just to illustrate how shallowseated the talk of present day conditions are in the minds of some workmen, consider the following conversation with a colored man who has just finished his "trick" in the pickling department, and his friend.
"Howya, Sam. What ya saying, boy?"
"O.K., Slim. Howya doin'?"
After one of the colored men learned where his friend was working he inquired, "De 'lection goin' to kick yo' job out from under you? Howya like 'lection, anyway?"
"All right with me, ah guess," was the reply. "The ol' lady and me gotta 'nough to eat. She gotta job; ah gotta job. What's da use kickin'. Naw, I'se not complainin', we's got dem ol' picklin' machines a bobbin' up and down and ah hears say that we gotta 'nough orders to keep us goin' for long time. Naw, I'se got no kick comin' from de 'lection."

While in conversation with a top executive, it so happened that workmen at his plant began to change
(Please turn to Page 98)

By A. H. Allen
Detroit Editor, STEEL

Packard Marine Engine Precision Astonishes Experts.

Rush Construction on Rolls-Royce Engine Plant.

Skilled Labor Shortage Will Develop Next Summer.

Aayy Men Trained in Torpedo Boat Operation.

BLASE gasoline engine experts are drawing gasps of amazement as they inspect the precision innards of Packard's 1350 -horsepower marine engine, now being built in the Packard " M " division at a rate of two units every three days. Until recently activity in this division had been kept under cover, but in the past week or two a few privileged visitors have been shown through the plant.
Facilities are being expanded as rapidly as possible to permit a production rate of three engines per day. Working force includes 495 hourly rate men, $40-50$ apprentices and 28 salaried employes. Ninetythree of the V-12 engines had been delivered as of last week and orders for some 700 more are on hand, for delivery to the navy department, to Canada and to Great Britain. The engines are used to power the navy's torpedo boats of the PT10 type, the latter using three engines per boat.
An idea of the size of the engine can be realized from the size of the pistons-6-inch diameter-and the weight of the six-throw forged alloy steel crankshaft-about 175 pounds. Cylinder barrels are machined from forged steel blanks and are bolted to the sand cast aluminum crankcase. Cylinder heads also are aluminum castings, as are crankcase pans. All steel parts, such as crankshaft, cylinder barrels, rods, camshaft and the like are machined and ground over their entire surface, and-are beautiful examples of steel finishing.
Unusual feature of the crankshaft, and one tending to reduce its
weight appreciably, is that the
crankpins and main bearings are bored out and the cranks angularly drilled for lubrication passages. In assembly light alloy plugs are fitted into either end of the hole in the pins and bearings, drawn up by bolts and tightly sealed against leak of lubricant.
After the engines are assembled on stationary cradles which can be rotated and locked in any one of eight positions, the unit is given a test run of 10 hours and is then returned to a "teardown" department where is is completely disassembled and every part minutely inspected before reassembly and final test. This procedure is in accordance with manufacturing practice for all aircraft engines and in fact Packard will use its marine engine division as a sort of training ground or pilot plant for procedures to be employed in the Rolls-Royce engine program.

Labor Shortage Likely

Many of the skilled machinists, grinders, inspectors and assemblers for the Rolls-Royce plant will be trained in the present " M " division. Apprentice training classes now being conducted will supply additional workmen. However, with 13,600 men needed when the Rolls plant is up to full production, there will still be a shortage of skilled help, and this is a problem which is causing Packard no little worry. Already it seems likely about 4000 of the 10,000 men now employed on automotive work will have to be transferred to the Rolls program,

[^2]and thousands more will need to be recruited from the outside eight or nine months hence. Many of those to be transferred are men with 10 or 15 years experience at Packard, and should provide a valuable nucleus around which to build the full working force.
Preliminary studies of unemployment in this area indicates about 120,000 men out of work, and only about one out of ten of these can be considered "employable" for this type of work. This means a total available supply of 12,000 men to be drawn from, and with the Ford, Chrysler, Murray, Briggs and other defense program activities also draining this reservoir, the pinch is really going to be felt next summer when it comes to manpower.

These bridges will be crossed when the time comes. Meanwhile, construction is being rushed on 594,356 square feet of new plant space at Packard, supplementing the present $3,100,000$ square feet devoted to car manufacturing. The Rolls-Royce engine program will require a total of $1,059,438$ square feet, indicating that 465,082 square feet of present space must be given over to the aircraft engine development.
New construction involves a foulstory olfice and administration building, backed up by an $85,000-$ square foot assembly building, scheduled for completion by Feb. 1; a test and teardown building containing 40 test cells and space for tearing down and inspecting engines after first test runs; and a new plant for machining and heat treating, covering 119,187 square feet, to be completed in April.

The test celis in the teardown building are estimated to cost about $\$ 50,000$ each, of which $\$ 10,000$ is for soundproofing. Propeller and engine noise, calculated to average around 140 decibels, will be muffled down to 70 decibels, avoiding the necessity of locating these test cells far out in the country where the noise would be unobjectionable.

First three experimental, hand-

MIRRORS OF MOTORDOM-Continued

built Rolls engines are expected to be finished by March 15, with six more completed by July 15 . By Aug. 15, the company expects to have the first 15 engines ready for shipment and to have enough equipment erected and in operation to bring production rate to six per day.

Returning to the marine engine program for a moment, one little known activity is the school which Packard engineers are conducting for the navy department in which a small group of navy men is being given a three-week training course in technical details of design and operation of the engine and the boats in which they are used. Later this training program will be expanded to provide a thoroughly schooled personnel to man the fleet of torpedo boats to be built by the United States.

- THAT this city really is going "bugs" on aircraft engines was proved by the turnout last Monday of over 300 metallurgists at a meeting of the American Society for Metals to hear R. R. Moore, chief metallurgist, Naval Aircraft Factory, Philadelphia, discuss aircraft metallurgy as it applies to radial engines in particular.
He prefaced his remarks by pointing out that aircraft engines have progressed steadily in weight-topower ratio from 1922 when the best average was $2^{1 / 2}$ pounds per horsepower to the present day when some 1000 -horsepower approved engines have been reduced to 1.1 pounds per horsepower. This reduction has been achieved mainly
by increasing the horsepower rather than by cutting weight. Higher compression ratios, higher speeds, better cooling and leaded gasoline have been contributing factors in increasing power.

Weight of the average radial en-

Automobile Production

Passenger Cars and Trucks-United States and Canada

	1938	1939	1940
Jan	226,952	356,692	449,492
Feb.	202,597	317,520	422,225
March.	238,447	389,495	440,232
April. .	237,929	354,266	452,433
May.	210,174	313,248	412,492
June	189,402	324,253	362,566
July.	150,450	218,494	246,171
Aug.	96,946	103,343	89,866
Sept.	89,623	192,678	284,583
9 mos.	1,642,520	2,570,370	3,160,060
Oct.	215,286	324,688	
Nov.	390,405	368,541	
Dec.	406,960	469,120	
Year	2,655,171	3,732,608	

Estimated by Ward's Reports		
Week ended:	1940	1939†
Oct. 19	114,672	70,114
Oct. 26	117,080	78,210
Nov. 2	118,092	82,690
Nov. 9	120,948	86,200
Nov. 16	121,943	86,700

gine in use today breaks down into about one-half light alloys and onehalf alloy steel, with perhaps 1 to 2 per cent bronze. Selection of steels for aircraft engines depends on many factors beyond the mere S.A.E. number. They include per-

Power for Uncle Sam's Torpedo Boats

Packard's 1350-horsepower marine engine. Main engine elements are of sand cast aluminum alloy, except for cylinder barrels, crankshaft, camshalt, connecting rods, valves, etc. which are alloy steel, finish ground on all surfaces
formance and fabrication details, uniformity, depth of hardening, tendency to warp, forgeability, machinability and the like.

Citing same specific choices, Mr. Moore mentioned that for studs and small fittings requiring tensiles of 170-175,000 p.s.i., S.A.E. 2330, 3140, 4140 and 6150 steels, heat treated, were used.

For small forgings, rocker arms, smaller connecting rods: S.A.E. 2330 or 2340.

For larger forgings, crankshafts, connecting rods: $4340,4345,4150$, because of deep hardening characteristics, good Izod impact values and freedom from quenching cracks.

Aircraft carburizing steels include $3115,3312,2512$ and 4615. The 2512 is considered good for highly stressed parts, although some builders prefer 3312 because of its better machinability.
For valve springs, the choice includes music wire given a halfhour draw at 500 degrees, or S.A.E. 6150 wire, quenched and drawn to 200,000 p.s.i. tensile.

Beryllium Bronze Used

For valves and valve seat inserts a 14 per cent nickel, 14 chrome and 2.5 tungsten steel has been adopted generally. Valve tips and seats are Stellited to improve wear; stems are nitrided. Valve seat inserts of aluminum bronze or beryllium bronze have proved effective.
Exhaust stacks and collector rings have been found most service. able and best appearing if made of 18.8 chrome-nickel steel with a stabilizer added. These parts are welded and cracks at the welds can be avoided by heating the part at 1950 degrees and air cooling

Two aluminum alloys, found excellent for use in cylinder heads for radial engines, are one with 4 per cent copper, 2 nickel and 1.5 mag nesium; and one with 10 copper. 1.2 iron and 0.2 magnesium. Greatly improved cooling of these heads has been accomplished by making fins deeper and more closely spaced, some today being $1^{1 / 6}$ inches deep and with less than $1 / 4$-inch pitch.

Pistons generally are of forged aluminum, this material having been found more reliable than cast aluminum because of freedom from blowholes, dross and similar defects, although it was admitted that forgings still are susceptible to cold shuts, laps, cracks and blisters, requiring unceasing vigilance on in spection.

Crankeases are called upon to withstand severe stresses in these engines and aluminum forgings are used widely, supplying vield strength of 35,000 p.s.i., tensile of 48,000 and elongation oí 14 per (Please turn to Page 100)

GETS COST REDUCTION AND SERVICE RECORD AS WELL

F_{i}or the reduction gear assembly of Hits famous air-cooled Model AB gasoline engine, the Wisconsin Motor Company selected the Torrington Needle Bearing for small size and high capacity. And, in addition, they secured two other important advantages-reduction in machining and assembly costs, and a service recorl of no bearing failure in $I, 800$ installations.
"We adopted the Torrington Needle Bearing," says A. H. Wehmeyer, Assistant Chief Engineer, "because in our gear reduction unit, the center between the main take-off shaft and the engine crankshaft was so close that it meant the use of a bearing with minimum radial thickness and at the same time a high load capacity.

> "And," adds Mr. Wehmeyer, "since the Needle Bearing has these qualities, and required a minimum diametrical bore for installation, we cut down the machining and assembly cost. As far as service is concerned, we have shipped out 1,800 reduction unit installations on the en-

gine, and, to date, have not received one complaint due to bearing failure."

Performance like this is typical of the Torrington Needle Bearing - for it is engineered for long life under severe conditions. And its ready adaptability to product design is another characteristic. Because of its simple construction, small diameter and long axis, its ease of assembly and lubrication; it introduces no design complications. In fact, it frequently offers opportunities for simplification in the design of surrounding
(Abmer) Dinanmembled gear reduction lowaing on the Mondel AB WISCONSIN air-cooled induatrial camine illuatrates how twin Nededle Bearings contribute to long, trouhle-frec anti-friction lerformance.
(Left) Crosn-section shawa how readily the Torrington Needle Bearing adapta ithelf to compact desinn.
members, with consequent savings in space, weight and cost.
The Torrington Engineering Department will gladly work with you in adapting the advantages of the Needle Bearing to your product. For further information write for Catalog No. 10. For Needle Bearings to be used in heavier service, request Booklet 103 X from our associate, the Bantam Bearings Corporation, South Bend, Ind.

The Groifington Company Gorrington, Contr, U.S.S.A.

Mokers of Needle and Ball Bearings
New York Boston Philadelphia Detroil Cleveland Chicago Londan, England

TORRINGTON NEEDLE BEARING

financial

STEEL INDUSTRY EARNINGS $3^{1 / 2}$ TIMES THOSE OF 1939

STEEL industry's return on net worth in first nine months this year was at an annual rate slightly less than 7 per cent, according to a compilation by the National City Bank of New York. United States Steel Corp.'s rate was 7 per cent; that of 25 other iron and steel companies, 6.9 per cent. In the period last year, U. S. Steel's annual rate of return was 1.3 per cent, against 3 per cent for the other 25 .

The industry's net earnings rate in first three quarters compared with 10.8 per cent, average rate of return for the period of 291 leading manufacturing corporations in 18 industrial groups, including steel. It was the lowest return on net worth of all the groups listed excepting petroleum products, which earned an average return of 6.7 per cent.
Highest rate of return in the nine months was earned by the drugs and soap industry, with 20.4 per cent. Automobile builders, other than General Motors Corp., ran a close second, 19.7 per cent. General Motors' rate of return was 16.3 per cent. Miscellaneous metal products manufacturers and automobile equipment fabricators also had relatively high rates of return, 17.3 per cent and 15.2 per cent respectively.

Greatest increase in proflts over first three quarters last year was reported by the 26 major steel companies, whose aggregate net profit in the nine months was more than three
and a half times as great as in the period in 1939. Building equipment manufacturers' profit was slightly more than doubled; railway equipment fabricators' aggregate net income increased about two and a half times and paper products manufacturers' about three times.

In the nonmanufacturing indus. tries, including 59 companies and five groups, mining and quarrying reported largest rate of return on net worth, 14.4 per cent, in the nine months. Lowest was coal mining with 0.8 per cent. Average annual rate of return of the 350 corporations was 10.4 per cent, against 7.4 per cent in the period last year.

Third quarter earnings statements of the same 350 companies show, in the aggregate, a 14 per cent decline in net income from this year's second quarter. Increase over third period last year, however, was 23 per cent. Their profit in the first nine months was 42 per cent greater than in the corresponding period last year.

Accompanying summary, prepared by the bank, compares earnings of 23 industrial groups. Net profits are shown as reported by the companies, after depreciation, interest, taxes and other charges and reserves but before dividends. Net worth includes book value of outstanding preferred and common stock and surplus accounts at beginning of each year.

Study Processing of Domestic Manganese Ore

- Processes for production of standard ferromanganese from low-grade domestic ores will be tested by the bureau of mines during the remain-

Profits of Leading Corporations for First Nine Months

der of the current fiscal year. Congress recently appropriated $\$ 2,000$, 000 for this purpose and the bureau will use this to start construction and field work.

Little information is available from the bureau as plans are still in the formulative stage. It is understood, however, the experiments will be conducted at Rolla, Mo., Minneap. olis, Boulder City, Nev., and Salt Lake City, Utah, in the bureau's present experimental stations. Some additional construction work will be necessary.

Bureau officials have said they will test all available processes.

Warner \& Swasey Co. Observes Guest Day

- Warner \& Swasey Co., Cleveland, set apart Friday, Nov. 15, as guest day. Several hundred customers, stockholders and other friends, by special invitation, were received by officials and conducted through the plant. Manufacture of turret lathes and tooling equipment continued throughout the day.
On the following day, the annual open-house for the 2500 employes and their families was held at the plant.

A feature of special interest was the addition, recently completed. into which workman and machines have just been moved. The addition practically doubles the length of the heavy machining and assembly shop. This part of the plant has heavy traveling cranes running its entire length.
In order that full advantage might be taken of this and other additional floor space, a complete new production layout was made to provide most effective location of much additional equipment as well as for the logical relocation of practically all other equipment throughout the entire plant. This project has included rearrangement of the stockroom, to which a large basement extension has been built.

Visitors gained impressions of im. proved efficiency, especially that resulting from substantial increase in area of the ground level crane room. This permits straight-line flow of turret lathes in being assembled. tooled, tested and finished. Another thing of equal importance is that it has made room for location of planers and certain other heavy machining equipment on solid foundations close to the assembly line and close to the point where bed castings and other heavy parts enter the plant.
This arrangement eliminates costly and troublesome trucking and clevator lifting of these heavy parts cluring the course of machining and does away with their "back tracking" through busy production aisles after they have been machined.

$\mathbf{\$ 7 5 , 3 1 3 , 0 0 0}$ Aireraft Award Tops
 Week's Defense Contracts

- GOVERNMENT defense contracts reported last week by the war and navy departments aggregated $\$ 102$, 816,482 . Most awards were small, with navy department's contract to Consolidated Aircraft Corp., San Diego, Calif., for aircraft totaling $\$ 75,313,000.74$ the principal exception. Army's increasing preparations for housing, feeding, clothing and equipping the hundreds of thousands to be drafted have been evident the past several weeks in increased quartermasters' corps awards. War department announced the following:

Quartermaster Corps Awards

Alan-Lawrence Co. Inc., New York, temporary housing, Ft. Totten, New York, $\$ 119,600$.
Imerican Seating Co., Grand Rapids, Mlch. 200,000 metal folding chalrs, $\$ 330,000$.
Autocar Co., Ardmore, Pa., tractor trucks, 8292,334 .
Baker \& Co., Boston, rehabliltation or bulldings, Boston Harbor, Ft. Andrews, Ft. Strong, etc., $\$ 145,473$.
Bass, Joseph A., Co. \& W. C. Smith Inc., Minneapolis, lemporary housing, Savanna, Ill., ordnance depot proving ground, $\$ 283,400$.
Christopher Construction Co., Cleveland, Increase to water distribution system, Ft. Custer, Milchigan, $\$ 48,365.89$
Clarin MIg. Co., Chieago, 200,000 metal folding chairs, $\$ 406,000$.
Epp, Leo, San Francisco, cover for maln supply reservolr, Presidio of San Francisco, $\$ 40,377$.
General Motors Corp., Chevrolet division, Detrolt, trucks, $\$ 850,363.59$.
Flassell-Taylor Co., Shreveport, La., warehouse (shop), Barksdale fleld, Loulslana, \$101,970.
Haines \& Haines, Dowagiac, Mich., gasoIne fllling stations at Ft. Custer, Michigan, $\$ 6240$.
Harrls \& McBarney, Jackson, Mich., increase to electrical distribution system, Ft, Custer, Michigan, $\$ 49,884.94$.
Herring-Hall-Marvin Safe Co., Hamilton O., 825 fleld safes, $\$ 28,286.25$.

Hyde, George H., Inc., Watertown, N. Y., warehouses, Madison barracks, New York, $\$ 3256$.
Jennings, J. O., Co., Loulsville, Ky., temporary housing, Jeffersonville, Ind., QM depot, $\$ 92,300$.
Kimbrough Construction Co., Mobile, Ala, steel warehouses at Selma, Ala., and at Montgomery, Ala., munlcipal arport, \$30,756.
Kirk Building Co., Kansas City, Mo., signal corps warehouse, Patterson teld, Ohlo, $\$ 77,700$.
Merrill, R. D., Construction Co., Helena, Mont., temporary housing. Wendover Ileld, Utah, \$159,572.
Owen-Ames-Klmball Co., Grand Raplds, Mich, temporary bulldings, Ft. Cus. Pearen Michigan, $\$ 2,078,815$.
bor, Mich., temporary., Benton MarBengamin ., temporary bulldings, Ft.
Pitisburgh Des Harison, Indiana, $\$ 245,500$. Francisco Des Molnes Steel Co., San Francisco, elevated steel water tank, Salt Lake municlpal alrport, Salt Lake Soper, Utah, $\$ 21,943$.
system, Madison Watertown, N. Y., utllity $\$ 24,632,44$, Madison barracks, New York,

Southern

Co., Iaclesonville Ang \& Architectural
o. Jacisonville, Fla., construction
work at cantonment camp, Tallaliassee alrport, Florida, \$1,020,605.
Turner, Lee T., Washington, comfort statlon, Arlington natlonal cemetery, Vi!ginia, \$17,127.
Weddle, E. E., Noriolk. Va., temporary housing, Virginia Bench, Va., \$118,634. Westcott, Frank T., North Attleboro, Mass., additions to existing flltration plant for Ft. Monroe, VIrginla, water supply system at Blg Bethel, Va., $\$ 28,-$ 890.

Wilkinson, J., Boston, electrical work, Fl . Wetherll! and Ft. Getty, Rhode Island, $\$ 25,355$.
Yellow Truck \& Coach Mifg. Co., Pontiac, Mich., trucks, with special bodiles and equipment, $\$ 2,682,434.90$.
Yerlngton \& Getman Bros., South Haven, Nlch., sewer pumping stations and force mains, Ft. Custer, Mlchigan, $\$ 333,520$.

Signal Corps Awards

Burke Electric Lo., Erie, Pa., generators, \$67,932.
Connecticut Telephone \& Electric Co., Meriden, Conn., test sets, $\$ 49,327.04$.
Continental Electric Co. Inc., Newark, N. I.. generators, $\$ 49,817.50$.

Cook Electric Co., Chicago, switchboards, \$53,950.
Couch, S. H., Co. Ine., North Qulney, Mass., terminal strips, $\$ 35,021.58$.
Daven Co., Newark, N. J., components for remote control. $\$ 124,396.20$.
Eicor Inc., Chicago, dynamometer un!!s, $\$ 59,381$.
Farnsworth Television \& IRadio Corb. Ft. Wayne, Ind., radio recelvers, $\$ 652,189$.
Homelite Corp., Port Chester, N. Y., power unit, $\$ 538,640.70$.
R. C. A. Mfg. Co. Inc., Camden, N. J., radlo recelvers, $\$ 187,166$.
United States Electric Mfg. Corp., New York, flashlights, $\$ 105,932.12$.
United Transformer Corp., New York, radio tllters, $\$ 107,667.20$.
Widin Metal Goods Co., Garwood, N. J., mast sections, radio sets, $\$ 235,999.50$.

Corps of Emplneers Awards

Le Rol Co., Milwaukec, air compressors, $\$ 976,500$.

Chemical Warfare Service Awards
National Lead \& Oil Co., Plttsburgh, tin. lead solder, $\$ 10,708.04$.
Wolverine Supply \& Mig. Co., Pittsburgh, hose guards, $\$ 9083$.

Air Corps Awards

Bendix Aviation Corp., Eclipse Aviation division, Bendix, N. J., generator assemblles, $\$ 60,258.20$.
Cofling Holst Co., Danville, Ill., chain holst, $\$ 4537$
Dravo Corp., Cleveland, furnishing and installing piping system, exhaustor and blower, $\$ 99,981$.
Gosiger, G. M., Machinery Co., Dayton, O., chain holst, $\$ 10,028$.

Harrington Co., Philadelphia, chain hoist. $\$ 10,530$.
Hayes Industries Inc., Jackson, Mich., wheel and brake assemblles, malntenance parts, $\$ 77,940.23$.
Heald Machine Co., Worcester, Mass., grinders, $\$ 75,126.80$.
Lurkin Sale Co., Saginaw, Mich., gages, \$14,020.72.
Reading Chain \& Block Corp., IReading, Pa., chain holst, $\$ 40,950$.
Ryerson, Joseph T., \& Son Inc., Chicaro, steel tubing, $\$ 191,975.86$.
Starrett, L. S., Co., Athol, Mass., gages, $\$ 20,943.56$.

United Arreraft Corp., Pratt \& Whitnes Alrcraft division, East Hartford, Conn., maintenance parts, $\$ 480,024.20$.
Yale \& Towne MIg. Co., Philadelphla, chain holst, $\$ 56,700$.

Ordnance Department Awards

Allegheny Ludlum Steel Corp., Brackenridge, Pa., gages, $\$ 1920$.
Amerlcan Cutter \& Engineering Co., Detroit, tools, $\$ 38,570.50$.
American Locomotive Co., Rallway SteelSpring division, New York, artllery materiel, \$1204.52.
Auto Ordnance Corp., Bridgeport, Conn. small arms materiet, $\$ 3,108,854.61$.
Barwood \& Co., Philadelphia, gages, $\$ 4818$.
Bausch \& Lomb Optleal Co., Rochester, N. Y., flre control cquipment, sizs,152.23.
isiggs \& Stratton Corp., Milwaukee, artllery ammunition components, \$276,250 .
lrown \& Sharpe Mfg. Co., Philadelphlin, gages, \$8824.18.
Budd Wheel Co., Detrolt, artillery ammunition components, $\$ 405,760$.
Carter Carburetor Corp., St. Louls, artillery ammunltion componerts, \$259.534.

Cincimati Mijling Machine \& Cincinnati Grinders Inc., Cinelnnoti, grinding machines, $\$ 4113$.
Colt's Patent Fire Arms Mrg. Co., Hartford, Conn., small arms matertel, $\$ 240$.
Derbyshire Machine \& Tool Co., Philat alelphia, tools, \$4490.
Engstrom, O. L., New York, dies, \$!149.
Ex-Cell-O Corp., Continental lool Works division, Detiolt, cutters, $\$ 2161.75$.
Fldellty Mach ne Co., Phlladelphla, tools, $\$ 8950$.
G. M. C. Mfg. Co., Long Island City, N. Y., artllery ammunition components, \$84,900.

General Tool \& Mig. Co., Irvington, N. J., tools, $\$ 28,500$.

Greendield Tap \& Die Corp., Greenileld, Mass., gages, $\$ 2056.09$.
Jaeger Machine Co., Columbus, O. machinery, $\$ 1374.40$.
Modern Tool \& Die Co., Philadelphia, gages, $\$ 66,745$.
Moore, J. W., Machine Co., Everett, Mass., gages, $\$ 5620$.
National Forge \& Ordnance Co.. Irvine, Pa., forgings, \$139,633.23.
Niles-Bement-Pond Co., Pratt \& Whitney division, West Hartiord, Conn., gages, $\$ 2070$.
Peters Engineering Co., Philadelphia, ches, $\$ 5600$.
Preclse Tool \& Mig. Co., Farmlniton, Mich., gages, \$3394.
Prentiss, Henry, \& Co. Inc., New York, machinery, \$9205.
Smith Bros. Mig. Co., Findlay, O., artillery ammunition components, \$128, 384.50 .

Southern States Equipment Co., BIrmIngham, Ala., artillery ammunition components, $\$ 440,534$.
Sperry Gyroscope Co. Inc. Brooklyn, N. Y., flre control equipment, $\$ 116,000$. Stevens Walden Inc., Worcester, Mass.. tools, \$2278.66.
Stewart-Warner Corp., Chicago, artillery ammunition components, $\$ 352,227$.
Unjon Twist Drill Co., Athol, Mass., hobs, cutters, $\$ 6033.23$.
Vtnco Corp., Detroit, gages, $\$ 245,900$.
Warner Electrle Brake Co., Belolt, Wls.,
artillery materlel, $\$ 28,040.58$.
Wledemann Machine Co., Phlladelphia, gages, $\$ 47,320.50$.

Navy department announced the following awards:
Agutter, J. J.. \& Co., Seattle, fre alarm and watchman's system, naval ammunition depot, Puget Sound, Wasnington, $821,085$.
American Distrjet Telegraph Co., San Francisco, burglar-proof cabinets and alarm system, offlce of Inspector of naval material, San Francisco, $\$ 2418.24$.

Bolander, Eric, Construction Co., Livertyville, Ill., roads, walks and drainage for four new barracks, naval training station, Great Lakes, Ill., \$46.188.89.
Nelson's, Frank, Sons, Philadelphta, equipment and plping in boller room bullding No. 35, naval home, Philadelphia, $\$ 10,800$.
Raymond Concrete Plle Co., New York, core borings at navy yard, New York, $\$ 7500$.
Watson Elevator Co., New York, electric frelght elevator, building No. 23, navy yard, New York, $\$ 6204$.

Hureau of Supplies and Accounts Awards
Acme Machine Tool Co., Cincinnati, turret lathe, $\$ 6067.80$.
Amerlcan Brass Co., Waterbury, Conn. copper-nickel alloy tubing, $\$ 197,055.37$. American-LaFrance-Foamite Corp., Elmlra, N. Y., flre extingulshers, \$5237.84.
Axelson Mig. Co., Los Angeles, engine lathe, $\$ 13,654.35$.
Baker-Raulang Co., Cleveland, electrlc truck, $\$ 6442$.
Boston Insulated Wire \& Cable Co., Boston, electrlc cable, $\$ 5737.80$.
Bullard Co., Bridgeport, Conn., vertical boring mills, $\$ 31,207.35$.
CincInnatl Milling Machine \& Cincinnati Grinders Inc., CIncinnati, vertical milling machine, $\$ 8457$.
Circle Wire \& Cable Corp., Maspeth, L. I., electric cable, $\$ 5301$.
Consolldated Alrcraft Corp., San Dicgo. Callif,, airplanes. $\$ 75,313,000.74$.
C-O-Two Fire Extinguisher Co., Newark, N. J., flre extinguishers, \$39,208.50.

Crane Co., Chlcago, valves, $\$ 22,927.50$.
Crescent Truck Co., Lebanon, Pa., electric trucks, $\$ 5243$.
Electric Storage Battery Co., Philadelphla, storage batterles, $\$ 37,305.80$.
General Drop Forge Co. Inc., Buffalo, alloy steel forgings, $\$ 10,801$.
General Electric Co., Schenectady, N. Y., heat and flame-resistant cable, $\$ 13,068$.
Leland-Gifford Co., Worcester, Mass., sensitive drilling machines, $\$ 13,860$.
Lodge \& Shipley Machine Tool Co, Cincinnati, engine lathes, $\$ 14,141$.
MacLane Hardware Co., New York, general purpose scoops and shovels, $\$ 14$,743.84.

Mercury Mfg. Co., Chicago, electric trucks, $834,906.80$.
Mine Safety Appliances Co., Pittsburgh, cutters " X " " and cartridges, $\$ 58,170$.
Okonlte Co., Passaic, N. J., cable, \$12,284.40.

Phelps Dodge Copper Products Corp., Habirshaw Cable \& Wire division, New York, cable, \$74,412.
Pittsburgh Forgings Co., Coraopolis, Pa., alloy steel forgings, $\$ 12,135.50$.
Prentiss, Henry, \& Co. Inc., New York. drilling machines, $\$ 29,408.94$.
Scovill Mfg. Co, Waterbury, Conn., copper-nickel alloy condensen tubes, cables, $\$ 93,814,32$.
Steel Improvement \& Forge Co., Cleveland, alloy steel forgings, \$6535.50.
Storms Drop Forging Co., Springfleld, Mass., nickel-copper alloy, steel forgIngs, $\$ 21,389.40$.
Telephonies Corp., New York, radio head sets, $\$ 41,300$.
Westinghouse Electric \& Mrg. Co., East Pittsburgh, Pa., ranges, $\$ 8128.50$.
Willard Storage Battery Co., Cleveland, storage batterles, $\$ 52,146.50$.
Willams \& Wells Co., New York, unlversal test indicators, $\$ 30,366$.
Yale \& Towne Mig. Co., Automatic Transportation Co. division, Chlcago, electric trucks, $\$ 19,645,40$.

Bureatu of Yards and Docks Awards
Day \& Zimmerman Inc., Philadelphia, bulkhead and nll, naval academy, Annapolis, Md., \$331,400.
Slotnik, J., Co., Boston, 600 housing units, to be erected in vicinity of Kittery, Me, for the navy yard, Portsmoutn, N. H., $\$ 1,944,065$.

Purchases Under Walsh-Mealey Act

(In Week Ended Nov. 2)

Iron and Steel Products
Alrcraft Hardware Mfg. Co. Ine., New York Allegheny Ludlum Steel Corp., Watervllet, N. Y. American Steel \& Wire Co., Cleveland American Steel Foundries, Chlcago Animal Trap Co. of America, Lititz, Pa. Arguto Ollless Bearing Co., Philadelphla Bethlehem Steel Co., Bethlehem, Pa.

Boston \& Lockport Block Co., New York
Camillus Cutlery Co., New York
Carnegle-Illinols Steel Corp., Plttsburgh

Carpenter Steel Co., Reading, Pa.
Chicago Bridge \& Iron Co., Birmingham, Ala.
Christlana Machine Co., Christiana, Pa.
Collins Co., Washington
Columbla Steel Co, Provo, Utah
Consolidated Steel Corp. Ltd., Los Angeles
Crescent Tool Co., Jamestown, N. Y.
Crucible Steel Co. of America, New York
Darby Corp., Kansas Clty, Kans
De Long Hook \& Eye Co., Philadelphla
Doehler Dle Casting Co., Pottstown, Pa.
Duffin Iron Co., Chicago
Eastern Rolling Mill Co., Baltimore
Ehrmeyer, John, t/a Abenell Co., Chicago
Eladio Rodrjguez Portela, Rio Pledras, P. R.
Ellicott Machine Corp., Baltimore
Ex-Cell-O Corp., Detrolt
Fisher-Plerce Co., Neponset, Mass
Ft. Pitt Bedding Co., Pittsburgh
General Electric Co., Schenectady, N. Y.
General Machinery \& Supply Co., San Francisco
Grabler Mfg. Co., Cleveland
Harrlsburg Steel Corp., Harrisburg, Pa.
Hayes Mrg. Corp., Grand Rapids, Mich.
Heintr Mrg. Co., Philadelphla
Ingersoll-Rand Co., New York
Islands Welding \& Supply Co. Ltd., Honolulu, T. Ir. Jenkins Bros., Bridgeport, Conn
Jessop, William, \& Sons Inc., Boston
Jones \& Laughlin Steel Corp., Plttsburgh
Karp Metal Products Co., Brooklyn, N. Y.
Keystone Steel \& Wire Co., Peoria, Ill.
Kilby Steel Co., Anniston, Ala.
Latson Tool \& Stamping Co., Attleboro, Mass.
Leschens, A., \& Sons Rope Co., St. Louls
Maclane Hardware Co., New York
Milburn, Alexarder, Co., Baltimore
Minneapolls-Honeywell Regulator Co., Minneapolis
Mocoroa Arsuaga, M., Inc., San Juan, P. R.
Muth, George F., Co. Inc., WashIngton
National Tube Co., Chicago
North American Iron \& Steel Co. Inc., Brooklyn, N. Y.
North \& Judd Mrg. Co., New Brltain, Conn.
Parker Appllance Co., Cleveland
Phillips \& Davies Inc., Kenton, O.
Pittsburgh Screw \& Bolt Corp., Pittsburgh
Pittsburgh Steel Co., Pittsburgh
Porter, H. K., Inc., Everett. Mass.
Prentice, G. E., Mig. Co., New Britain, Conn
Pressed Steel Tank Co., West Allis, Wis.
Purolator Products Inc., Newark, N. J.
Reeves Steel \& Mrg. Co., Dover, O
Republle Steel Corp., Cleveland
Richmond Radiator Co. Inc., Uniontown, Pa
Sheffield Steel Corp., Kansas City, Mo.
Southern Pipe \& Casing Co., Azusa, Calif.
Steel Improvement \& Forge Co., Cleveland
Struthers Wells-Titusville Corp., Titusville, Pa.
Templeton, Kenly \& Co., Chicago
Truscon Steel Co., Youngstown, O.
Union Metal Mig. Co., Canton, O.
Unlted-Carr Fastener Corp., Cambridge, Mass.
United States Electrical Tool Co., Cincinnati
Universal-Cyclops Steel Corp., Bridgeville, Pa.
Utica Cutlery Co., Utica, N. Y.
Velt \& Young. Phtladelphia
Vulcan Steel products Co., Brooklyn, N. $\underset{\text { I. }}{ }$
Wagner, A. F., Iron Works, Milwaukee
Weatherhead Co., Cleveland
Youngstown Sheet \& Tube Co., Youngstown, 0 .

Commodity
Bolts
Amount
$\quad \$ 16,457.30$
Steel bars and rods $27,089.18$
Volute springs $\quad 21,250.00$
Coat hooks $\quad 11,900.00$
Punches, dles $\quad 16,085.00$
Forgings, reinforce-
ment bars, steel
rods, sluice liners $311,372.85$
Blocks, tackle $19,804.12$
Pocket knives $35,849.64$
Molybdenum steel,
steel, bars, forg-
steel, bars, forgIngs

949,173.27
Steel rods $\quad \mathbf{1 5 5 , 8 7 4 . 8 3}$
Penstock liners $\quad 38,000,00$
Cast-iron anchors $\quad 14,908.55$
Machetes $\quad 21,947.85$
$\begin{array}{ll}\text { Reinforclng bars } \quad 20,283.7 \\ \text { Inlet plpes } & 13,900.00\end{array}$
Wrenches, pllers $81,964.92$
$\begin{aligned} & \text { Steel rods, sheets, } \\ & \text { plates }\end{aligned} \quad \mathbf{7 6 , 9 5 3}$.
Mine cases $\quad 74,304.00$
$\begin{array}{ll}\text { Coat hooks } & 16,540.00\end{array}$
$\begin{array}{ll}\text { Die castings } & 40,650,00 \\ \text { Structural steel } & 27,252.00\end{array}$
Steel, sheets $\quad 21,992.50$
$\begin{array}{ll}\text { Selector boxes } & 27,994.40 \\ \text { Steel sheets } & 41,415.75\end{array}$
$\begin{array}{ll}\text { Ladder, cutter } & 54,820.00 \\ \text { Drainage tanks } & 13,562,50\end{array}$
Fuse covers $\quad 12,818.78$
Metallic belt links $\quad 419,200.00$
$\begin{array}{ll}\text { Howltzers } & 92,938.00 \\ \text { Wrenches } & 13,507.6+1\end{array}$
$\begin{array}{ll}\text { Pipe fittings } & 41,755.94 \\ \text { Separators } & 14,200.00\end{array}$
$\begin{array}{ll}\text { Shells } & 46,610,00\end{array}$
Steel doors $\quad 16,376.40$
$\begin{array}{ll}\text { Drills, heads } & 16,786.50 \\ \text { Ammunition boxes } & 10,680.00\end{array}$
Valves $\quad 15,819.60$

Cabinet assemblies, Wire nalls
Screw posts $\quad 95,268.14$
$\begin{array}{ll}\text { Guards, valves } & 13,347,04 \\ 15,812.00\end{array}$
$\begin{aligned} & \text { Miscellaneous sup- } \\ & \text { plies }\end{aligned} \quad 11,490.41$
$\begin{array}{lr}\text { Torches } & 20,203 \\ & 171,200,2\end{array}$
$\begin{array}{lr}\text { Telescope mounts } & 10,2,931.79 \\ \text { Iron pipe } & 10,9841.00\end{array}$
Steel tubing $\quad 15,156,82$
$\begin{array}{ll}\text { Cargo booms } & 15,636.00 \\ & 78.678 .52\end{array}$
$\begin{array}{ll}\text { Loops, slldes } & \text { 78,678.52 } \\ \text { Tube venders } & 23,999.10\end{array}$
$\begin{array}{ll}\text { Tube benders } & \mathbf{2 3 , 9 9 9 . 1 0} \\ \text { Intake gates } & 70,00.90\end{array}$
$\begin{array}{ll}\text { Intake gates } & \mathbf{7 8 , 0 0 0 . 0} \\ \text { Anchor bolts } & \mathbf{8 5 , 9 7 4 . 0 0}\end{array}$
$\begin{array}{ll}\text { Barbed wire } & 44,619.50 \\ & 25,651.50\end{array}$
$\begin{array}{ll}\text { Wire cutters } & 25,651.50 \\ \text { Clasps } & 28,50.40\end{array}$
$\begin{array}{ll}\text { Clasps } & 47,470.00 \\ \text { Shells } & 10392.10\end{array}$
$\begin{array}{ll}\text { Filters } & 10,392,13 \\ \text { Cans and covers } & 18,122,13 \\ & 32333,23\end{array}$
Steel, steel rods $\quad 32,333.23$
$\begin{array}{ll}\text { Cast-iron anchors } & 42,704.19 \\ 47,124.1\end{array}$
$\begin{array}{ll}\text { Bolts and nuts } & 35,859.21 \\ \text { Steel pipes } & 17.500 .00\end{array}$
$\begin{array}{lr}\text { Forgings } & 127,000.00 \\ \text { Forgings } & 20,0000\end{array}$
$\begin{array}{ll}\text { Ratchet jacks } & 20,930.00 \\ & 10,040.005\end{array}$
Reinforcing bars $\quad \begin{aligned} & 10,040.0 \\ & 27,166.92\end{aligned}$
$\begin{array}{lr}\text { Plle shells } & 169,214.06 \\ \text { Brass fasteners } & 100,911.50\end{array}$
$\begin{array}{lr} & 20,911.50 \\ \text { Electric drills } & 145,115.88\end{array}$
Steel rocis
Tableware
25,025.00
15,630.00
25.576.08

Fence
Grating and hand ralling

14,988.00
$21,208.93$
Connector
Nickel steel, wire
nettin"

Purchases Under Walsh-IIealey Act (Cont.)

Nonferrous Metals and Alloys
Aluminum Co. of America, Pittsburgh
Amerlean Brass Co., Waterbury, Conn. American Metal Co. Ltd., New York
Barlum Reduction Corp., South Charleston, W. Va. Bart Laboratorles, Belleville, N. J.
Crane Co., San Diego, Callf.
Crosby Co., Buffalo
Kennecott Sales Corp., New York
Kidde, Walter, \& Co. Inc., New York
Pennsylvania Smelting \& Refining Co., Philadelphia
Revere Copper \& Brass Inc., Ballimore

Scovill Mig. Co., Waterbury, Conn.

Machinery and Other Equipment

Allis-Chālmers Mig. Co., Milwaukee
American Laundry Machinery Co., Cincinnati
American Sheet Metal Works Inc., Portland, Oreg. American Tool Works Co., Cincinnati
Axelson Mig. Co., Los Angeles
Blaw-IKnox Co., Pittsburgh
Bliss, E. W., Co., Brooklyn, N. Y.
Borg Warner Corp., Rockford Drilling Machine divislon, Rockford Ill.
Brown \& Sharpe Mifg. Co., Providence, R. I.
Bucyrus-Erle Co., South Milwaukee, Wls.
Bullard Co., Bridgeport, Conn.
Caterpillar Tractor Co., Peoria, 111
Cinclnnati Milling Machines \& Cincinnati Grinders Inc., CIncinnatl
Clark Equipment Co., Buchanan, Mich
Cleveland Tractor Co., Cleveland
Cone Automatic Machine Co. Inc., Windsor, vit
Consolldated Machine Tool Corp., Rochester, N. Y.
Ellicott Machine Corp., Baltímore
Essley, E. L., Machinery Co., Chicago
Gallon Iron Works \& Mfg. Co., Galion, O
Gardner-Denver Co., Quincy, Ill.
General Motors Corp., Diesel Engine division, Cleveland
Gleason Works, Rochester, N. Y.
Guibersorn Diesel Engine Co., Dallas, Tex
Harnischfeger Corp., Milwaukee
Harris, R. L., Inc., Knoxville, Tenn.
Harvey Metal Corp., Chicago
Hill, C. V., \& Co. Inc., Trenton, N. J
Hussmann-Ligonler Co., St. Louls
Ingersoll-Rand Co., New York
international Harvester Co., Chicago
jones \& Lamson Machine Co., Spring feid, vt.
Kearney \& Trecker Corp., Milwaukee
Kight, W. B., Machinery Co., St. Louis
Koehring Co., Milwaukee
LeBlond, R. K., Machine Co., Cincinnati
Lodge \& Arms Inc., Philadelphia
Lodge \& Shlpley Machine Tool Co., Cincinnati
Marion Steam Shovel Co., Marion, 0.
Monarch Machine Tool Co., Sidney, o.
National Engineering Co., Chicago
Niles Bement Pond Co., Pratt \& Whitney division West Hartiord, Conn.
Ohio Locomotive Crane Co., Bucyrus, 0
Osgood Ca, Marion, O.
Paasche Airbrush Co. Inc., Chicago
Pangborn Corp., Hagerstown, Md.
Plrseh, Peter, \& Sons Co., Kenosha, Wis
Prentiss, Henry, \& Co. Inc., New York
Rockford Machine Tool Co., Rockford, ill.
Simmans Machine Tool Corp., Albany, N. Y
Star Smewing Machine Co., New York
Star Iron \& Stecl Co., Tacoma, Wash.
Stedrast \& Roulston Inc., Boston
Swind Machinery Co., Phlladelphla
Tyler Fixture Corp., Niles. Mich.
Universal Elliott Fisher Co., New York
Vandyers Crusher Co., Cedar Rapids; Iowa
Wandyck Churchill Co., Phlladelphia
Wallace \& Tiernan Co. Inc., Belleville, N. J
Warnor \& Swasey Co., Cleveland
Conn Farrel Foundry \& Machine Co., Waterbury, Conn.
Whatson Stilman Co., Roselle, N. J.
Westinghowcase \& Fixture Co. Inc. , Los Angeles
Yale \& Towne Mre \& Mrg. Co., East Pittsburgh, Pa.
Co. division Mrg. Co., Automatic Transportation
York Safe divion, Chicago
Youngstown Lock Co., York, Pa.
loungstown Miller Co. Inc,, Sandusky, ö.

Commodity
Amount
Aluminum conductor
$\$ 12,595.95$ Cartrldge cups 73,950.00 Lead antimony alloy $43,350.00$ Strontium peroxide $103,750.00$ Mirrors

84,000.00
Brass pipe 13,625.76
Cartridge cases
1,175,600.00
Copper ingots
74,100.00
Fire extingulshers $100,290.00$
Lead antimony alloy $26,400.00$
Admiralty metal
tubes
21,285.61
$32,850.00$

Tractors $\quad \$ 1,196,409.00$
Laundry equipment $30,289.00$ Mill exhaust system $18,760.00$ Lathes 232,126.00 Lathe $\quad 13,576.00$
Road construction equipment

20,472.00
Bodymakers $\quad 30,60 \overline{5} .00$
Clutch parts 19,711.75
Screw machines $\quad 74,695.51$
Shovels, crane $136,287.20$
Boring mill $\quad 17,633.00$
Crane
11,202.36
Milling machines
29,092.00
Tractors
Tractors
Lathes \quad 20,065.00
Pumps
Honlng equipment
Graders
Alr compressors
18,692.00
17,539.40
11,885.00
20,939.70
Engine parts
16,198.98
Cutting machine $45,547.00$
Dlesel engines 2,933,345.86
Crane, power shovel $49,641.00$ Tractors

27,654.00
Refrigerators $\quad 283,500.00$
Refrigerators 307,650.00
Air compressors $\quad 14,855.00$
Tractors $2,305,373.54$
Lathes
118,606.00
Milling machlnes $\quad 40,866.30$
Boring machines $24,298.00$
Paver
Lathes
Drilling machines
Lathes
Shovels
hovels
Mixing machlne
24,013.91
105,759.00
16,997.00
285,976.00
40,305.00
18,204.00

Machines, shapers, $47,824.85$
Crane
Crane
Drying units
$18,325.00$

Shot blasting equip-
ment
$12,456.00$
Pumping engines $\quad 11,683.00$
Boring mill, grinders $43,429.00$
Planer $\quad 22,250.00$
Lathes $\quad 29,880.00$
Sewing machines $113,410.25$
Gantry cranes. $\quad 105,380.00$
Boring mill $\quad 31,706.40$
Boring machine $\quad 24,160.50$
Refrigerators $\quad 88,560,00$
Accounting machines $31,064.00$
Cradle assemblles $92,400.00$
Boring mill $31,655.00$
Water puriflcation
units
$95,710.53$
Lathes
183,645.00
Machines
Presses
17,000). 00
Refrigerators
49,400.00
Turbine parts 388,150.00

Electric crane
Cradle assemblies
Reclaimers

Canadian War Orders

For Week $\$ 7,271,763$
TORONTO, ONT.
Hydro-electric power developments in Ontario to cost $\$ 12,000,000$ have been approved by the provincial cabinet, it was announced last week by Dr. T. H. Hogg, Toronto, chairman of the power commission.

The Dominion government will build a $\$ 3,000,000$ factory at London, Ont., to build airplanes, principally trainers.

Last week the government announced 1649 war material contracts, aggregating $\$ 7,271,763$. Orders include:

Shiphullding: North Sydney Marlne Railway Co. Ltd. North Sydney, N. S., $\$ 11,278$; Halirax Shipyards Ltd., Halifax, N. S., $\$ 29,422$; General Supply Co. of Canada Ltd., Ottawa, Ont., $\$ 55,212$.
Instruments: Air ministry, England, \$30,000; war office, England, \$5250; Instruments Ltd., Ottawa, $\$ 45,070$; J. F. Hartz Co. Ltd., Toronto, $\$ 12,372$.

Mechanical transport: International Harvester Co. of Canada Ltd., Ottawa, \$5530; Truck Engineering Ltd., Woodstock, Ont., $\$ 59,265$.

Aircraft: Air minlstry, England, \$12,960: Avlation Electrlc Ltd., Montrcal, Que., 864,598 ; Dominion Holst \& Shovel Co. Ltd., Montreal, $\$ 13,900$.

Electrical equipment: War offlce, England, $\$ 8060$; R.C.A. Vlctor Co. Ltd., Montreal, $\$ 8376$; Canadian General Electric Co. Lid., Ottawa, $\$ 63,191$; CrouseHInds Co. of Canada Ltd., Toronto, \$15,396; Exide Batterles of Canada Ltd., Toronto, $\$ 96,457$

Machinery: Dominion Hoist \& Shovel Co. Lid., Montreal, $\$ 46,170$; Williams \& Wilson Ltul., Montreal, \$5678; Canadian Ingersoll-Rand Co. Ltd., Montreal, $\$ 5961 ;$ Canadlan Fairbanks-Morse Co. Ltd., Ottawa, \$14,136; International Harvester Co. of Canada Ltd., Ottawa, $\$ 12,538$.

Tools: Canadian Pratt \& Whitncy Air craft Co. Ltd., Longueull, Que., $\$ 16,013$.

Munitions: Anaconda American Brass Ltd., New Toronto, Ont., $\$ 34,280$.
Miscellancous: Dominion Rubber Co. Ltd. Ottawa, $\$ 43,000$; Enamel \& Heating Products Ltd., Sackville, N. B., $\$ 6913$; Moffats Ltd., Weston, Ont., $\$ 6913$; E. G. M. Cape \& Co., Montreal, $\$ 67,000$; John Playton, WInripeg, Man., $\$ 42,000$; Ernest A. Jones, Leaside, Ont., $\$ 81,000$; W. E. Emerson \& Sons, West St. John, N. S., \$72,000; M. F. Schurman, Summerside. P.E.I., $\$ 132,000$.

Construction: Anglln-Norcross Ontario Ltd., Toronto, $\$ 278,024$; Canadian Comstock Co. Ltd., Toronto, $\$ 229,748$; Pool Construction Co. Ltd., Regina, Sask., $\$ 807,316$; Buchan Construction Co., Calgary, Alta., $\$ 200,635$; Northern Construction Co., and J. W. Stewart Ltd., Vancouver, B. C., \$183,000; Laviolette Construction Co., Three Rivers, Que., $\$ 90$, 000; Acme Construction Co., St. John N. B., $\$ 493,000$; Collet Freres Ltd., Montreal, $\$ 87,000$; Disher Steel Construction Co., Toronto, $\$ 125,000$; Acadla Construc tion Co., Ltd., Halifax, N. S., \$110,000.
a Orders for electrical goods booked during third quarter totaled \$411, 595,431 , compared with $\$ 268,120,065$ in second quarter. In third quarter last year they were $\$ 212,001,139$, according to the bureau of the census.

Looking Ahead to 1944

- THE industrial worker, of course, knew far in advance of the 1940 elections that his employer would vote for Willkie. Why, then, was it that so many industrial workers consciously and deliberately voted the other way?

An analysis of the election reveals that the Willie crusade won good support from the farmer and from the worker in the typical small industrial communities throughout the country. That is, from workers who are members of comparativeby small manufacturing organizations, who are close to their bosses, who are interested in their small communities and who to a large extent own their own homes.

In the pivotal states he had a majority until he came to the great industrial centars. In these centers, where many payrolls include thousands of names, where most news about labor disturbances periodically emanates, where the union organizers find their greatest opportunities, the majority of workers looked to Mr. Roosevelt as their good friend, the champion of the common man. They did not so look to their employers.
"Sure the boss is going to vote for Willkie," remarked one worker during the campain. "If I were in his place I would too. But I work with my hands-Roosevel is my man."

Stael believes that all employers should feel very much concerned over this situ-
ation, but it also believes that they need not necessarily feel discouraged. The sharp increase in the Republican vote of 1940 as compared with that of 1936 in itself is proof that a great many more people today have a sounder view toward our economic problems than they had four years ago.

While it has been a difficult job for manufacturers to create and foster the right kind of public and industrial relations, they have made great progress in this direction and there can be no doubt but that the better understanding which now exists between employers and employer at a great many plants was a big factor in encouraging a greater amount of sound thinking in 1940.
The important thing for employers to remember at this time is that their efforts to develop an appreciation of the mutuality of interest between employers and employes have not failed. They have surceeded. The only lack is that they did not succeed on a big enough scale.

Had one out of every 11 of all the voters marked his ballot differently the 1940 resuit would have been reversed. Just a little difference would have spelled victory instead of defeat. This fact should be remembered in looking ahead to 1944.

The BUISINESS TREND

Uptirn in Industrial Activity IBroadening

E CONSUMER goods industries are now participating to a greater degree in the general upswing of industrial activity. The sharp increase in production recorded among the heavy industries since early summer, with the resulting gain in employment and greater purchasing power, is reflected in the more pronounced upturn in operations of many consumer lines. New records recently established in retail automobile sales illustrates this trend.
During the week ended Nov. 9, Steel's index of activity edged upward to a new all-time peak of 130.3 .

A year ago the index stood at 117.2. The index average for October climbed to 127.8 , compared with 113.5 the previous month and 114.9 in the corresponding 1939 period.

The national steel rate remained at 96.5 per cent during the week ended Nov. 9. Automobile output advanced further while electric power output and revenue freight traffic declined slightly.

Extent of the upturn in industrial output in recent months is indicated by the record October steel ingot and pig iron output.

STEEL'S index of activity gained 0.1 point to 130.3 in the week ended Nov: 9 :

Steel Ingot Operations

(Per Cent)

Week	endoul	19.10	1939	1938	1437
Aug.	3	90.5	60.0	40.0	84.5
Aug.	10	90.5	62.0	40.0	84.0
Aug.	17	90.0	63.5	41.5	81.0
Aug.	24	90.5	63.5	43.5	83.0
Aug.	31	91.5	64.0	44.5	83.0
Sept.	7	82.0	62.0	41.5	72.0
Sept.	14	93.0	74.0	46.0	80.0
Sept.	21	93.0	79.5	48.0	76.0
Sept.	28	93.0	84.0	47.0	74.0
Oct.	5	93.5	87.5	48.5	66.0
Oct.	12.	94.5	89.5	51.5	63.0
Oct.	19	95.0	91.0	51.5	53.0
Oct.	26.	95.5	92.0	54.5	51.0
Nov.	2.	96.5	93.0	57.5	47.0
Nov.	9	96.5	93.0	61.5	39.0

Auto Production

(1000 Units)

17\%HK	-ruided	1:140	1484	114\%	14*7
Aug.	3	17.4	28.3	14.8	78.7
Aug.	10	12.6	24.4	13.8	103.3
Aug.	17	20.5	13.0	23.9	93.3
Aug.	24	23.7	17.5	18.7	83.3
Aug.	31.	27.6	25.2	22.2	64.2
Sept,	7	39.7	26.9	17.5	54.0
Sept.	14	66.6	41.2	16.1	30.1
Sept.	21	78.8	53.9	20.4	28.0
Sept.	28	95.9	62.8	25.4	45.8
Oct.	5	105.2	76.1	37.7	72.0
Oct.	12	108.0	75.9	50.5	89.7
Oet.	19	114.7	70.1	68.4	91.9
Oct.	26.	117.1	78.2	73.3	90.2
Nov.	2.	118.1	82.7	80.0	89.8
Nov.	9.	120.9	56.2	86.3	85.3

Electric: IPAwer Output
(Mlllion KWH)

Wepk emimal	1940	1031	1488	19.7
Aug. 3	2,605	2,325	2,116	$2,262$
Aug. 10.	2,589	2,333	2,134	2,301
Aug. 17	2,606	2,368	2,139	2,304
Aug. 24	2,571	2,354	2,134	2,321
Aug. 31.	2,601	2,357	2,149	2,154
Sept. 7	2,463	2,290	2,048 2,215	2,281
Sept. 14	2,639	2,444	2,215	2,266
Sept. 21.	2,629	2,449	2,154	2,275
Sept. 28.	2,670	2,470	2,139 2,154	2,250
Oct. 5	2,641	2,465	2,154	2,276
Oct. 12	2,665	2,495	2,183	2,252
Oct. 19	2,687	2,494	2,214	2,255
Oct. 26.	2,711	2,539	2,207	2,202
Nov. 2.	2,734	2,537	2,209 2,209	2,176
Nov. 9.	2,720	2.514	2,209	

Steel Ingot Pruduction
(Unit 100 Net Tons)

	Monthly Total 1940 1039	Weckly 1940	$\begin{gathered} \text { Averize } \\ 19839 \end{gathered}$
Jan.	5,655.3 3,578.9	1,276.6	807.9
Feb.	4,409.0 $3,368.9$	1,065.0	842.2
Mar.	4,264.8 3,839.1	962.7	866.6
Apr.	$3,974.7 \quad 3,352.8$	926.5	781.5
May	4,841.4 3.295 .2	1,092.9	743.8
June	5,532.9 3,523.9	1,289.7	821.4
July	5,595.1 3,564.8	1,265.9	806.5
Aug.	6,033.0 4,242.0	1,361.9	957.6
Sept.	5,895.2 4,769.5	1,377.4	1,114.4
Oct.	6,461.9 6,080.2	1,458.7	1,372.5
Nov.	6,147.8		1,433.0
Dec.	5,822,0		1,317.2
Total	51,585.0		$989.4 \dagger$

†Weekly average

Finlshed Stecl Shipmenta
U. S. Steel Corp.
(Unlt 1000 Net Tons)
$\begin{array}{lllll}1940 & 1999 & 1938 & 1937 & 1936\end{array}$
$\begin{array}{lllllll}197 & 1145.6 & 8709 & 570.3 & 1268.4 & 7959\end{array}$ $\begin{array}{llllll}\text { Feb. ...1009.3 } & 747.4 & 522.4 & 1252.8 & 747.4\end{array}$
$\begin{array}{lllllll}\text { Mar. } & \text {. } & 931.9 & 845.1 & 627.0 & 1563.1 & 863.9\end{array}$ $\begin{array}{lllllll}\text { Apr. } & \text { Ap } & 907.9 & 771.8 & 550.5 & 1485.2 & 1080.7\end{array}$ $\begin{array}{llllll}\text { May . . } 1084.1 & 795.7 & 509.8 & 1443.5 & 1087.4\end{array}$ $\begin{array}{llllll}\text { June .. } 1209.7 & 807.6 & 525.0 & 1405.1 & 978.0\end{array}$ $\begin{array}{llllllll}\text { July } & \text {. } 1296.9 & 745.4 & 484.6 & 1315.3 & 1050.1\end{array}$ $\begin{array}{lllllll}\text { Aug. . } 1455.6 & 885.6 & 615.5 & 1225.9 & 1019.9\end{array}$ $\begin{array}{lllllll}\text { Sept. } & . & 1392.8 & 1086.7 & 635.6 & 1161.1 & 1060.7\end{array}$ $\begin{array}{lllllll}\text { Oct. } & \cdots .1572 .4 & 1345.9 & 730.3 & 876.0 & 1109.0\end{array}$ Dec. $14444.0 \quad 765.9 \quad 539.51178 .6$

Total \dagger. 11707.37315 .514097 .711905 .0
tAfter year-end adjustments.

New tooth design for metal-culting sams employs special curved gullet which coils chips, eliminating entirely the choking up of the teeth that heretofore severely limited

blade performance

B AMONG THE most useful, but at the same time least appreciated of machine tools, are metal-sawing machines used for cutting off bars, billets, forgings, etc. Regardless of type-which may be reciprocating, band, or circular-these sawing machines very commonly are placed in locations which soon would "break down the health" of almost any other kind of machine tool. What little operating and service attention they receive is apt to be from individuals who, to say the least, are not keenly appreciative of fine points of machine tool design and maintenance.

Nevertheless, these machines go on week after week and month after month performing faithfully and well their unspectacular but highly necessary service in all kinds of plants-ranging from the oneman basement job shop to the latest glass and stee! aircraft engine plant employing thousands.

Having tried, in the foregoing paragraphs, to rip aside an undeserved veil of obscurity from metal sawing machines, we now want to go a step further by pointing out that in line with the general trend in the machine tool industry these machines have been improved tremendously in the past few years-this being true of every size and type.

As a result it is indeed a far cry from the spindly. slow, inaccurate "belt-driven hacksaw" which clanked and chattered in a dark corner of almost every stockroom in days gone by, to the rugged, powerful and accurate production cutting-off machine of today.

Designers of modern cutting-off machines deserve high commendation for their recent achievements as machine tool engineers in the best sense of that term. Up-to-the-minute features embodied in their current models include: Electrification; hydraulic cutting feed and work clamping: automatically varying cutting
feed pressure to suit conditions at different stages of the cut (as, for example, when going through a round bar) : improved "quick return" mechanisms which minimize noncutting time: automatic stock feeding, gaging to length and clamping which speed up mass production of gear blanks and various other duplicate parts: and rigid, neatly styled frames - both cast and fabricated.

Like any other machine tool, a metal sawing ma-chine-regardless of size or type-is, in the final analysis, primarily a device for bringing tool and work into controlled contact to the end that the tool shall operate on the work with the highest possible degree of efficiency. Therefore, the performance of the machine-no matter how capably designed and built it may be, is limited by the capabilities of its. cutting lools. There have been periods in the history of metal sawing machines when machine tool eng:neering got ahead of tool engineering, thus causing the saw blade to be the limiting factor in production performance.
Situations of that kind never exist very long in

Fig. 1-Diagram shows how curling action prevents metal from jamming in teeth

the American metalworking field. Recognizing their responsibilities, saw blade manufacturers began to work hand in hand with metal sawing machine manufacturers. As a result, a number of newly designed machines actually have been developed to make it possible to take full advantage of recent notable improvements in straight, band and circular saw blades.
The situation is comparable to that of a number of years ago, when production milling machines temporarily outgrew the capabilities of milling cutters. Thereupon, tool engineers appeared on the scenes with new types of coarse tooth milling cutters of high speed steel, which made necessary still more rugged and more powerful milling machines. One development without the other would have been of no practical utility-any more than would a higin power rifle without high power propellant, or vice versa,

An interesting case in as far as the metal sawing machines are concerned is the curled chip system of metal cutting introduced recently by E. C. Atkins \& Co. in connection with blades of a wide variety of shapes and sizes-including power hack saw blades, circular milling saws, circular segmental inserted looth cold saws, and metalcutting bands.

While high speed steel has for 15 or 20 years been recognized as a desirable material for metal-cutting saw blades, the performance of these high speed steel blades has often been limited by the failure of the blades to clear themselves of chips properly. Therefore, tool engineers of the Atkins company tackled the blade problem from the standpoint not only of improving the ability of each individual tooth in a blade to cut efficiently but also to clear itself of chips completely following each pass through the work.

The result of their investigations in the basic theory of metal cutting, and of their practical experiments with all types of blades on materials ranging from copper to the latest tough alloy steels, is a wholly new form of tooth. This new tooth is of pronounced hook shape as compared to the old familiar angular shape. It is shown diagrammatically in Fig. 1, which depicts a section of a circular saw in the process of cutting. Each tooth culminates in a hard, keen cutting edge which bites into metal in much the same manner that a properly designed "parting tool" does in a lathe.
As each tooth of the saw comes into contact with the work, it immediately starts to peel up a chip. Then, as the tooth progresses, this chip is lifted by the wedging action of the tooth. Following the contour of the specially curved gullet of the new style tooth, the chip is curled naturally into a tight coil under tension like a wound-up clock spring. The instant the tooth emerges from the kerf, this tightly wound chip is free to uncoil-which it does suddenly thus kicking itself out of the gullet and clearing the tooth completely for its succeeding cut. This does away entirely with the choking up of the teeth which results in the difficulties known as "gilding" and "sled̀-runner effect."
Fig. 2, which is a closeup of an actual cut being taken by a heavy duty circular saw on a large diame-

Fig. 2-Top to botlom clearly shows progressive development of curled chips from firs! cut in top tooth gullet to full grown chip in botlom. Note, too, that no chips are lodged in gullets of unoccupied or nonengaged teeth
ter steel bar, shows six of the new chip curling teeth in various stages of cutting. The upper tooth is just starting to pick up a chip from the solid metal; the next four teeth demonstrate the progressive formation of the coil in the gullet; while the tightly coiled chip in front of the sixth (lower) tooth is shown as it is at the instant before the tooth emerges and the chip springs out of the gullet.

Fig. 3. (Left)-Notice the curled chips on vise bed in cutting these 7×7-inch billels. Fig. 4. (Right)-Solid-tooth milling saw with radial clearance ground by patented cup wheel method

This clearing action is further demonstrated in Fig. 3, which shows a 7×7-inch billet being cut by one of the new type straight blades in a Peerless reciprocating. type machine. The curled chips, as they appear after having ejected themselves from the gullets between the teeth, can be seen lying on the bed of the machine in front of the work. This unretouched photograph, Fig. 3, brings out certain other important points in regard to these new chip curling teeth. While they may appear to be surprisingly coarse in pitch if judged by the standard of a conventional blade of this size, it will be noticed that the surfaces left on the work are remarkably smooth, true and free of chatter marks and burrs. This is due to the clean cutting action of the correctly shaped teeth and to the fact that there are no chip-clogged gullets to burn and score the work, draw the temper
of the teeth, and force the blade off its true course. Because these blades do not "wander off the line," even when being fed into the work at two to five times the conventional rate, breakage is greatly reduced. The unique "buttressed design" of these relatively coarse pitch teeth give them unusual strength to stand up to the heavy cuts which they take. It should be mentioned that with these blades, heavy cuts are taken under much less feeding pressure and driving power than might be assumed from the "huskiness" of the chips.

The free cutting action of thesc chip-curling metal-cutting saws is not altogether due, however, to the unusual profile of their teeth. The method of grinding these teeth also has a lot to do with their per.

Fig. 5-Section of segmental saw showing how replaceable segments are readily inserted
formance. As may be apparent from Figs. 2 and 4, the system as far as the saw blades is concerned, involves a unique method of grinding the teeth in groups of two. Because of this grind, no one tooth has to take a cut to the full width of the kerf. The first tooth of a pair-called the "roughing tooth"is bevel ground to take a deep V shaped cut. The second-or "finishing tooth"-which is ground square and to full width, then has only to sweep out two narrow chips at the sides to complete the kerf. This system of grinding has much to do with the chatter-free action of these saws.

In the case of the solid tooth milling saws of chip curling type, the teeth are "radial clearance ground." All teeth take a full width cut, but through the use of a patented cup wheel grinding method, the teeth are "dished in" on both sides from the point of the tooth toward the center of the saw. This eliminates side friction and galling even when working in copper. These (Please turn to Page 95)

How to get MORE PRODUCTION
 from present equipment

There are two ways-faster speeds-or fewer interruptions.
Ten to one, you've checked on the speed question-but what about interruptions? Particularly interruptions caused by poor tool performance?
Every time a machine or press must be shut down to "touch up" the tools, regrind or replace them, it cuts down your production, upsets schedules and jacks up unit costs.
Frequent shut-downs on this account are an indication that tools and dies are falling short of the job, and tieing knots in your production capacity.
By improving the performance of your tools, you can wipe out this production handicap. Carpenter Matched Tool Steels will help you do it. Send for booklet that shows how to insure better tool performance with the modern methods that are fast becoming standard practice

On this job of blanking and forming brass rotary contacts - a Carpenter Matched Tool Steel stopped die breakage and saved five shutdowns on 100,000 run.

FREE-New Booklet Shows How To Get More Produclion From Present Equipment ... THE CARPENTER STEEL CO. 139 W. Bern St., Readlna, Pa. Withour obligation, gend meyour new illustrated booklet that shows how to increase output per machine
\qquad iven)

Fig. 1-Schematic operating diagram of inert car retarder. Top, retarder at rest: below, wheel in retarder

Casts Shiced in Halli

All-welded inert car retarder of simple construction cuts cost 50 per cent, thus making the unit available for many installations where the higher cost would be prohibitive

- A CAR retarder is a machine located in the track over which freight cars are moved (generally by gravity), its purpose being to control the speed of the cars, or retard their motion.

Experience has shown that friction applied to the sides of the wheels near the rim gives the most efficient means of retardation. To accomplish this, most practical designs provide members known as shoes and means for bringing these shoes in contact with the sides of the moving wheels with sufficient pressure to produce frictional forces which will act upon the wheels in such manner as to cause the desired retardation. It is desirable, in order to prevent any tendency to bend or twist the wheels, that the pressure produced by the shoes against each side of the wheel should be equal.

There is considerable variation in the thickness of wheels, also the shoes are subject to wear, there. fore, provision must be made for controlling and regulating the force applied to the shoes.

A device which utilizes the weight and motion of the car to actuate the retarding mechanism, thus dispensing with the necessity of any outside motive power and at the
same time accurately proportioning the retarding effect to the weight of the car to be controlled, is the design of the inert retarder in Fig. 1. In service, the shoes are adjusted while the retarder is at rest so that the distance between the inner and outer shoe is less than the minimum thickness of a car wheel. When a wheel enters the retarder, the shoes are spread apart by means of tapering ends on the shoe rails. This causes the floating pivot to rise, lifting the inside bracket from its resting position on the flange of the track rail. As the wheel continues to enter the retarder, its flange gradually rides up on the ramp on the inner shoe, thus lifting the wheel off the track rail, transferring its weight from the track to the clamping brackets which pivot on the rockers and clamp the wheel between the two shoe beams.

The compact simplicity of the inert retarder, Fig. 2, was made possible by using stock shapes and are welding.

To check the theoretical perform.

[^3]ance of the new device, a small quarter size model was built before any work was actually started on the real job. It consisted of only the first pair of brackets at the entering end of the retarder.

The various members, their 10 cation and relation to each other are shown in Fig. 2 and are as fol. lows:

A-Inside bracket
B-Outside bracket (adjustable)
C Inside shoe beam (with ramp)
D-Outside shoe beam
E-Track rail
F-Inside clamp (with rocker, adjustable)
As these several members are all subassemblies, they will be described and analyzed here separately.

Inside Bracket A : The principa! over-all dimensions of this part are shown in Fig. 3. The two outer plates are flame cut from 2 -inch thick hot-rolled steel, SAE 1020, net weight approximately 76 pounds each. Connecting plate is the same material 1-inch thick, weighing about 57 pounds. The three pieces were blocked up and tack welded to position them, then braced with screw jacks between the two outer plates and tilted so a flat fillet weld could be applied at the joints. This

ALTER EGO: Literally "one's other self"-the atill, small voice that questions, inspires and corrects our conscious action.

ALTER EGO: Can't you make up your end of our mind to settle on Lincoln machines?

Not yet, because I can't be sure that two controls on arc welders are necessary.

ALTER EGO: How can you possibly be sure when you don't understand?

But, I hear that other machines do well with just one control.

ALTER EGO: Listen, when a man no longer is
anxious to do better than WELL-he's done for. All right. For the sake of argument, call me anxious.

ALTER EGO: OK-now let's put it up to Lincoln.
LINCOLN SUGGESTS: Dual Continuous Control of "Shield-Arc" Welders is the ONLY WAY to fit the arc to the job-and to do each job the way it should be done. Its "Job Selector" gives you any TYPE of arc. Its Current Control gives you any arc INTENSITY. Result: You get maximum welding speed and maximum weld quality at all times. This new arc welding technique-what it means to you-is explained clearly in Bulletin 412.

IINCOLN GHILID-APC WELDING

We're in the Business of

"GOOD"LUBRICATION just isn't enough today! That's why SoconyVacuum engineers are trained to go beyond that and help you get maximum efficiency from your machines with minimum oil consumption.
FIRST OF ALL - the Socony-Vacuum Man is careful to recommend exactly the right oil or grease for each individual machine in your plant. That means you will get a lubricant
that's adapted to limited feeds... that's designed to give you reliable, long-term service.
THEN - in close cooperation with your own operating men-proper systems of application are worked out for each type machine. By using the "correct'" oil, in the right place, at the right time, in just the right amounts - our man is usually able to help you use less and less oil!

CALL
 IN Socony-Vacuum for

 Courr PathourDo- SKilled Lubrication counsil of a Socony-Vacuum man backed by 74 years' experience . . . the greatest in the Petroieum Industry.
2. A COMPLETE LINE of Lubricants . . . the scientifically correct lubricant for every type of machine you now own ... or will buy.

a) NEW UBRIORNTS ahead of new needs . . .developed in close cooperation with machine builders by famous Socony-Vacuum laboratories.

27 Half a MIMON GASE HSTORIES to suide our engineers in recommending Lubright use of these lubricants to earn Lubricatior Profits for you.

2- DISTRIBUTIDN throughout the world of high-quality lubricants.

SOCONY-VACUUM OLL CO, INC. Standard Cil of New York Division o White Star Division - Lubrite Division Chicago Division - White Eagle Division - Wadhams Division - Magnolia Petroleum Conmpany General Petroleum Corporation of Calfornia

weld was made by the "step-back" method. To avoid distortion, the steps were taken alternately on hoth sides of the joints. Electrodes for the first passes were $1 / 4$-inch Lincoln Fleetweld 7; the final pass with $5 / 16$-inch electrode.

The finished "\%-inch fillet was of satisfactory appearance, perfectly in accord with the rest of the work. As the welds were carefully applied and the work allowed to cool thoroughly before removing the screw jacks, no serious distortion was encountered and no stress relieving was considered necessary.

The long slot in the connecting plate was machined before assembly. The two holes in this piece, as well as the reamed holes in the side plates, were drilled after welding. There are four of these inner brackets used on the retarder.

Overhead Cost Not Included

In considering the following cost analyses, as they are not estimates but actual expenses, it must be remembered that this was experimental work, that no special fixtures or equipment were provided. and that consequently the labor charges are high. The 8 cents per pound charge for steel is based on the net weight of flame-cut parts and includes cutting. No burden or overhead is included in these fig. ures. Table I shows total cost of are welded bracket A to be $\$ 21.55$.

Outside Bracket B : Dimensions are shown in Fig. 4. Four of these parts were used. The same proced. ure as for bracket A was followed in welding this part. The outside rocker and clamp are, however, in. tegral parts of bracket B. Table I shows total cost of arc welded bracket B to be $\$ 32.84$.

Inside Shoe Beam C (With Ramp and Outside Shoe Beam: Fig. $\overline{5}$ shows shoe beam C and its construction. The rail used is a standard 105-pound Carnegie section No. 10524 and the reinforcing plates are also standard Carnegie sections No. 10524-A. The ramp is 2 -nch cold-rolled steel, SAE 1020. The complete beam weighed about 1200 pounds.

In service, this beam is bolted to the four inside brackets spaced 4 feet $101 / 2$ inches apart and the reinforcing plates are arranged to

Fig. 2. (Top)-Location and relation of various members

Fig. 3-Inside bracket A-principal dimensions. Welds are $\overline{3}$-inch fillets. both sides as shown: involve 5.5 pounds of $1 / 4$-inch rod. 8.25 pounds of $5 / 16$-inch

Fig. 4-Outside bracket B. Here the $\%$. inch fillet welds involved 5.75 pounds of $1 / 4$-inch rod, 8.75 pounds of $5 / 16$-inch

STEEL

N SHEET AND STRIP mills, nowadays, the order for "Voss leveling" shows on more and more lift cards.
It shows on more and more sheets, too. A consistently flatter product reflects the trouble-proof backed-up operation of a Voss

Ungerer Leveler. Edward W. Voss, 2882 West Liberty Avenue, Dormont, Pittsburgh, Pa.
VOSS
UNGERER LEVELER

come central between the brackets. As the greatest strain on this member occurs when the wheel in the retarder is midway between the brackets, it may be considered as a simple beam fixed at both ends with a single concentrated load at the center.
The welding of these shoe beams presented some interesting features. The first was welding the ramp to the rail. The ramp was given a slight gradual curvature so when one end was placed against the web of the rail, the opposite end stood about 12 inches away from the adjacent web. Fillet welds then were made and the two pieces pulled together perfectly.
All the welds on this piece were thoroughly peened between passes to relieve welding stresses. As the outside shoe beam D is exactly the same as beam \mathbb{C} except for the ramp on the inside beam, the two beams were welded at the same time. They were blocked about 6 inches apart in the center and the ends pulled together and firmly clamped. This left the outside of both pieces slightly convexed and against this outside convexed surlace the reinforcing plates were welded using $1 / 4$-inch Lincoln Manganweld electrodes.
Due to the type of service expected from these shoe beams, it is perfectly feasible to use for the rails and splice plates, parts which have served their purpose as track material. Such old rails were used in building the retarder and proved

Fig. 5. (Left)-Illustrates the inside shoe beam C
Fig. 5. (Left)-lllustrates the inside shoe clamp F $1 / 2$-inch fillets
perfectly satisfactory, an added economy.
By clamping the two beams together as noted above and carefully peening all welds, little warping was in evidence. To relieve any possible internal stresses, the entire beams were placed in a furnace, then slowly and uniformly brought up to 1500 degrees Fahr. and held at that temperature for about 6 hours. They were carefully blocked up to prevent distortion. After cooling in the furnace for about 16 hours, they were taken out and allowed to cool slowly in air.
Assuming a cost of $\$ 0.03$ per pound for the steel and combining all labor charges, costs as shown in Table I were $\$ 84.94$ for inside beam C and $\$ 69.27$ for outside beam D .
Track Rail E: The work on this part consisted only of welding eight pieces each $41 / 2$ inches long of 3 x z_{i}-inch commercial steel angle to the underside of the flange of a $39-$ foot length of a standard 105-pound rail. These pieces were so located that they acted as confining stops for the brackets. About 11 pounds of Manganweld electrodes were used for this work.
Inside Clamp F, with Rocker: This piece, shown in Fig. 6, provides the adjustable fulcrum for the inside bracket A, as may be seen by reference to Fig. 2. By sliding

No. of Parts	TABIE I-Costs of Puilding Experimental Inert Retarder		
	Name of Part	Unlt	Total
4 4	A Inside Bracket		
1	B Outside Bracket	\$21.55 $\mathbf{3 2 . 8 4}$	$\$ 86.20$ 131.36
1	C Inside Shoe Beam	84.94	84.94
1	E Outside Shoe Beam	69.27	69.27
	E Inack Rall	Not inc	
	Set of Miscellaneous Pa	2.37	$\begin{array}{r} 9.48 \\ \mathbf{3 5 . 0 0} \end{array}$
Tot			416.9

the clamp and rocker toward the shoe beam, the lever arm of bracket A is shortened and the clamping pressure of the inside shoe beam reduced. One-half-inch fillets, made with $1 / 4$-inch Fleetweld 7 electrodes, were used. Total cost of arc welded clamp F was $\$ 2.37$.

A steel casting was used to clamp the outside shoe beam to the brackets and provide adjustment. The remaining parts of the device consisted of tie plates and shims with the necessary pins, bolts, nuts, washers, lag screws, spikes, etc.

Table I details cost of the completed retarder as made. The saving of 50 per cent in cost by arc welding over previous constructions makes this inert retarder available for a great many installations where the higher cost of other designs would make their use prohibitive.

Rod Joins Aluminum Alloys Without Flux

\square By the use of Colaweld T rod, aluminum and its alloys may be joined without flux, according to Colonial Alloys Co., East Somerset, Trenton avenue and Martha street, Philadelphia. It also eliminates the necessity of roughening the metal surfaces. The absence of flux is said to remove the dangers of toxicity and burns to the worker, and progressive corrosion to the metal.

The method of application is similar to soldering. The rod has excellent depth penetration and alloying with aluminum base metal. It has a high strength bond, unusual corrosion resistance and good aluminum color match. It is easily machined, electroplated and polished, and can stand severe bending, working and forming. Applicable to practically all aluminum base alloys including castings, forgings, and wrought forms, it also is an excellent joining material for $18-8$ stainless steel.

G CANADA'S role as supplier of war materials to the United Kingdom has necessitated large-scale expansion in the Dominion's metalworking and metal producing ndustries. New plant construction completed or under way aggregates nearly $\$ 200,000$,000 and is estimated to have a capacity for producing $\$ 800,000,000$ worth of war materials annually.

To aid in this expansion, United States manufacturers have supplied large quantiies of machine tools and other equipment. More than a million gross tons of iron and steel products were shipped to the Dominion in the first eight months this year to supplement production of Canada's own mills. The Dominion ranks second only to the United Kingdom as an iron and steel customer of the United States.

The expansion program includes capacity for practically all types of war materials -ships, guns, shells, aircraft, mechanical ground transport units, instruments, electrical equipment and explosives.

Photos: 1-Welding clips for Bren guns. 2-The sleek hull of a Canadian corWeqte takes form. Note knock-down scaffolding. 3-lengths of steel, feeding into a muttiple spindle automatic, start to become countless fo-millimeter anti-arcraft shells. 4The Canadian Bren gun, from the shapeless lump of steel, right, to business-like finGhed product, left. With 75 per cent or more of the original metal removed in machinQ ing, speed really counts. 5-Large machine shop in Canadian Bren gun plant. Note wiring ducts that permit quick rearrangement of machines for most efficient sequence of operations. 6-Canadian soldiers testing a finished bren gun. \%-Gaging outside diamedifof shells. . . Canadian official photos, passed by censor.

S T \|i $\mathbb{E} T$

 To Test It

Important because it permits more accurate grading is this new method of measuring the attachment of porcelain enamel to sheet metal. Test results immune to gage variations, correlate closely with impact and microscopic test values throughout wide range

BY J. E. SAMS
American Rolling Mill Co. Middletown, O.

- IN ALL porcelain enameling work it is essential to have some measure of the attachment of the porcelain enamel to the metal underneath. However, the physical and chemical characteristics of this attachment make it difficult to measure the force necessary to separate the enamel from the metal. If fragments of enamel continue to cling to the metal at a spot subjected to distortion, a degree of adherence is considered to exist. This permits judging the attachment by such methods as bending (1) and impact testing $(4,5,6)$. Other methods include sticking (2,3) and microscopic examination $(7,8,9,10)$ of the metal-enamel interface. See bibliog-

[^4]

Fig. 1-Typical specimen being stretch tested in a tensile machine
raphy at end for these references.
Chief advantages of the impact method, widely used at present, are that it involves simple equipment, is quickly completed and comparj. son of results between samples of same gage affords a fairly accurate index of the adherence. In this test, within the gages suited to the dimensions of the test equipment, an analysis of the concave side of an impact spot is observed in grading the bond. This drawn area may be considered to be comprised of a series of concentric rings of infinitely narrow width, each differing from the adjoining ring by a minute percentage of stretch or draw. The time-saving factor possibly is the largest contributor to the popularity of the impact test.

However, a careful consideration of this test leads to the conclusion that the impact test areas are produced essentially by stretching. On

Fig. 2-Grades ranging from excellent, left, to very poor, right, are easily established as shown by this possible system. Dark specimens, left. have lost less enamel during the tost stretch

STEEL

Grinnell Company, Inc. • Grinnell Company of the Pacific - Grinnell Company of Canada, Led. - General Fire Extinguisher Company American Moistening Company - Columbia Malleable Castings Corporation - The Ontario Malleable Iron Company, Lid.
 able to mantuacter
from $U \cdot S \cdot S$ Stels.
from U.S.S Stcels.

TRADE-MARK FOR U.S.S STEELS for deneral use. This STEELLS for deneral use. This hasic label is designed forproducts manufactured from U-S.S Steels, applying to the kencral to pecific trades.

TRADE-MARK FOR U•S•S STAINLESS STEEL WARE TAINLESS STEEL WARE the finest Stainless Stecl has ben where Stainless Steel is only a feature or trim to a product this seal mrovides additional sales appeal.

TRADE-MARK U•S.S VIT. RENAMEL FOR PORCERAIN ENAMELED PROD. UCTS OPA PARTS A which elearly indicates that Which elearly indicates that the parts which can t be seen
are chosen with os much care and thought of quality as those

TRADE-MARK FOR U•S'S COPPER STEEL where the manufacturer employs copper steel because of its superior life under certain conditions This seal gives his product the sales benefit of his choice.

\Rightarrow Manufacturers of steel products find U•S•S

trade-mark promotion a new aid to retail selling

THE retail salesman, whether he sells equipment for kitchen, laundry or bath or any of the countless specialties for home, farm or office, is forced to bring out all his reserves in selling to consumers today. They want factsplenty of them. Proof of quality-unquestioned proof.

For this reason, an effort was made to aid manufacturers to translate their choice of $\mathrm{U} \cdot \mathrm{S} \cdot \mathrm{S}$ Steels into terms of increased sales. The result was our U•S S Steel Quality Sym-bol-a mark which gives added prestige and character to any product and gives the retail salesman a powerful selling aid.

Actual point-of-sale support was given to this move. Through national advertising and promotion, the consumer has been educated in the purchase of articles containing steel--he has been shown the importance of looking for the $\mathrm{U} \cdot \mathrm{S} \cdot \mathrm{S}$ Quality Symbol when buying anything made from steel. He is being told that by this sign he will know the manufacturer has used the best steel for its purpose money can buy.

Thousands of inquiries attest the power of this advertising. Excellent cooperation and interest have been shown by retailers. The manufacturers using this FREE SELLING AID report such good results that they plan to tie in stronger than ever in 1940.

If you are interested in knowing how you, too, may have this FREE merchandising help, we will gladly give complete information on request, furnish unquestioned proof that the $U \cdot S \cdot S$ trade-mark helps sell goods more readily.

AMERICAN STEEL \& WIRE COMPANY, Cleveland, Chicago and Newo York
CARNEGIE-ILLINOIS STEEL CORPORATION,
Pittsburgh and Chicago
COLUMBIA STEEL COMPANY,

San Francisco

TENNESSEE COAL, IRON \& RAILROAD COMPANY, Birmingham
United States Steel Export Company; New York

UNITED STATES

 STEELthis basis it is considered feasible to elongate flat enameled specimens to provide a fractured enamel surface affording a more easily graded series of specimens and giving tests directly reproducible and independent of sheet thickness. With the impact test, results of tests on different gages are not comparable due to the differences in force distribution as the thickness of the specimen increases. While large impact test areas produced with larger equipment might be more truly representative than the present impact spots, even so a controlled ratio of the depth of impression to the diameter of the impact would be difficult to maintain. For this reason the flat stretched specimens appear to be superior even to a semicontrolled impact test. At the present stage of development, the flat stretched type of sample may be more useful in the laboratory where precision is more important than speed. While the stretch test is limited to flat specimens, it has been found that microscopic appearance of the enamel-steel interface is directly associated with adherence so that method provides a good means of examining irregular enameled surfaces.

Stretch samples may be metal strips of any gage with the midsection enameled. A sample 2 inches wide provides a grading area free of any edge effects from shearing or enameling. Length of the enameled section may vary without any appreciable effect upon the test. A 4 -inch long test area has been chosen because a 2×4-inch grading area lends itself nicely to visual observation. Too large a test area makes testing difficult while one too small may prove to be nonrepresentative.
Portions of the sample extending from each end of the enameled sec-
tion are held in the grips of the stretching machine. Length may vary, depending on the amount of surface necessary for the grips. Both 2 and $31 / 2$-inch grip lengths have been used satisfactorily. The grip areas are wiped free of enamel before firing to assist in holding. Gage marks exactly 4 inches apart are placed symmetrically on one side of the sample. These permit measuring the amount of stretch

Fig. 3-Sample showing effect of stretcher strain lines in the metal
by use of calipers and a finely divided scale. After coating with enamel in the regular manner, the portions at the ends beyond the gage marks are brushed off before the piece is fired.

Per Cent Elongation: Records show that ingot iron sheet samples drawn 5 per cent or more have definitely exceeded the elastic range and are being plastically deformed. A percentage not greater than 15 prevents reaching the ultimate strength with resultant necking down and possible breaking. These facts, coupled with the appearance of samples tested in various stages of stretch from 1 to 12 per cent elongation indicated the tentative choice of 8 per cent as the standard elongation for all stretch tests. This value appears to give excellent results.

Gage: Specimens of any gage
may be stretched, assuming the tensile testing equipment can handle the load. Whereas impact spots are difficult to compare in samples of different gage because the spots are different shapes, the uniformity of stretched surfaces enables one to make comparisons easily regardless of gage of the material.

Rate of Elongation: Several stretch specimens were prepared similarly from a 20 -gage sheet to determine if the rate of elongation affected the appearance of the stretched sample. Rates ranging from 0.087 to 8.70 inches per minute were tried, and the fractured surfaces appeared very much alike. Additional specimens from the same sheet were blanked in the shape of an Izod impact-tensile sample and enameled. When tested in an Izod impact machine to attain a speed of stretch equivalent to that obtained by weight dropping showed close correlation between the samples pulled on the tensile machine. Thus rate of elongation appears not critical.

Direction of rolling likewise seems to have little influence as in several instances samples were selected from a sheet, one with its length parallel to the rolling direction and the other transverse to the rolling direction with no significant differences between samples being noted when tested.
Strain lines: Some enamel samples when stretched show alternate light and dark areas caused by stretcher-strain lines in the middle. The difference in degree of bond is only apparent because of the nature of the strain line. It is con. sidered safe to judge the adherence
(Please turn to Page ${ }^{96)}$

Fig. 4-This series of samples shows close correlation between results of impact stretch and microscopic methods of testing. From left to right, samples represent

JIEL LWLLU Sending Presses

Building TANKS

 at AMERICAN CAR ANheavy plates quickly formed heat-treated abmor plates straightene Three Steelweld Presses are doing heavy pr duction work in the plants of American Car an Foundry Company. Three more large ones ar being made for them. One of these will be th largest Steelweld Press ever built.
Steelweld Presses are serving many plants worl ing on defense equip. ment. Plate is easily bent, formed and multipunched to close tolerances. Steelwelds are especially adaptable to the quick straightening of heavy heat-treated armor plates.
It will pay you to investigate the many possibilities of this modern and proven tool.

JUST OFF THE PRESS

30-page catalog. Complete construction and engineering details. Mail request for free copy on your company letterhead.

The Gleveland Crane \& Engineering Co. Steelweld machinery diviston
 WigKLIFfe, Онio.

Part I
Smelting iron ore in Sweden in high-shaft and pit-type electric furnaces involves use of charcoal and coke. Exhaust gases are recycled or used for auxiliary operations. Type of flux varies

园 ARC FURNACES of the direct heating series and equipped with two or more electrodes suspended from the roof are used in electric smelting of iron ore at the present time. Only two general types are in operation: (1) the Electrometalls or high-shaft furnace of Sweden, and (2) the low-shaft or pit-type furnace as offered by Tysland-Hole and Siemens-Halske.

The Electrometalls furnace shown in Fig. 1, is the highest development of this type of furnace today. ${ }^{1}$ The trend in the lines, have kept pace with modern blast-furnace design. The high-shaft furnace lends itself to skip filling and is fitted with tuyeres immediately under the crucible roof, whereby the gases are recycled and the roof preserved.

Failure of the Electrometalls furnace in Norway, because of its inability to meet silicon requirements and to use coke as the fuel, led to trials of the pit-type furnace, which is shown in an intermediate stage

[^5]
By CHARLES HART

President
Delaware River Steel Co.
Chester, Pa.
in Fig 4, and which found its greatest perfection in the furnace designed by Hole ${ }^{2}$ (Fig. 3). This type of furnace is now being installed in the greatest number throughout the world. It is lateral filled, with electrodes at the angles of an equilateral triangle. The Sie-mens-Halske ${ }^{3}$ type (Fig. 2) is essentially the same as to electrode arrangement, but is center filled, which permits mechanical charging.

Electrodes Too Small

The inadequacy of the available electrodes became apparent in the early efforts at electric smelting. The early experiments with the

[^6] Aprll 1940.

Electrometalls furnace required electrodes with a cross-sectional area of 242 square inches, three in number, made up of smaller ones bound together, which were so short that butt-end loss was excessive and amounted to as much 25 40 per cent in extreme cases. The prefabricated electrode ${ }^{1}$ as now produced has met all requirements, in that practically any diameter within reason is available. Excessive loss is avoided by joining the ends by screw threads, and these electrodes are essentially continuous. The Soederberg electrode ${ }^{2}$ consists of sheet-iron tubes welded in place and filled with electrode material as required, and in effect are continuous. The Electrometalls furnace is equipped with eight Soederberg electrodes 28 -inch diameter. The Spigerverks furnace (Fig. 3) has three electrodes of the same type 43 inches diameter.
The five Electrometalls furnaces have an electric power intake of 6300 kilowatts each, and produce a 6300 kilowatts each, and pro Thomas
pig iron suitable for the

Go as far as you like... with KEMP of BALTIMORE

Kemp Dryers will give you any required degree of desiccation down to the commercial ultimate -a dew point of minus $76^{\circ} \mathrm{C}$. Available with single or twin towers for intermittent or continuous operation, standard Kemp units are built from 10 to 100,000 c. f. per minute capacity to operate at pressure from atmospheric to 2,500 pounds per square inch. Activation of the Silica Gel is accomplished by gas, electricity, or steam as desired.
While these Kemp Dryers first made their appearance in industry as a part of the now famous

*SILICA GEL which has millions of ultra-microscopic poros, removes moisture by a combination of surface adsorption and capillary attraction. It is reliably estimated that the interlor pare surface of one cubic inch of Silica $G_{\text {el }}$ is in excess of 50,000 square feut

Kemp Atmos-Gas Producer (fired by the patented and exclusive Kemp Industrial Carburetor), this comprehensive 1940 line of dryers is designed for operation with all types of atmosphere machines for the drying of gases, liquids, or solids.

Write for the latest Dryer Bulletin, and then if you don't see what you want, ask for it. Kemp is prepared to design and build to your special requirements in a minimum of time. Address The C. M. Kemp Mfg. Company, 405 E. Oliver St., Balto., Md.

KEMP
0 I
BALTIMORE

Gilchrist steel process, using a high phosphorus sintered magnetite. This improved furnace uses twothirds charcoal and one-third highash coke and coke breeze. Electrometalls electrode consumption is about 20 pounds per ton of pig iron produced, with a power consump. tion of 2500 kilowatt hours.
The high-shaft furnace, although eminently successful in Sweden, failed to meet the requirements in Norway because of the lessened electrical resistance of coke when heated as compared with charcoal, and on this account failed to produce high-silicon foundry iron.
Tysland ${ }^{2}$ brought forward the Tysland furnace in 1922, after experimentation which resulted in a direct-heating series arc type, still with an open top. It was tried out at the Christiania Spigerverks (Oslo Nail Works) in 1925. Ivar Hole ${ }^{5}$ took over in 1928 and improved upon the Tysland design by building an airtight nonexplosive furnace, essentially the same as shown in Fig. 4 except that it was equipped with gas-exhausting machincry. Soederberg electrodes are used as indicated by the stamping room as shown. The latest arrangement ${ }^{9}$ (Fig. 3) is trefoil in character, with electrodes placed at the angles of an equilateral triangle. Lateral charging is maintained and its advantages may be seen in the $a b$. sence of erosion at the charging hoppers, as compared with that shown adjacent to each electrodean erosion fittingly attributed to lurbulence. ${ }^{11}$
The Radex brick are made in Austria, either of magnesite or of chrome and magnesite mixed. Bricks of equal quality to this hightemperature brick are produced by the American refractory companies. The Chamotte brick are a first grade fire-clay brick
Location of the charging doors has a beneficial effect on electrode consumption, which is placed at 17 to 22 pounds per ton. Owing to the use of coke, this compares most favorably with the Electrometalls practice on charcoal. The electrodes can be increased in number and as much as 175 volts may be used. It is possible therefore to greatly in crease the daily production of 100 tons now possible from a 12,000 . kilovolt ampere furnace. Practically all carbonaceous materials serve as fuel, but a preference for coke and coke breeze is indicated.

Efficiency of Furnaces

In Table I relative results obtained on the two furnaces just described are shown.:
The Spigerverks furnace had a rating of 9600 kilowatts, but the highest reached was 7500 kilowatts. It is evident that situation would have been helped materially had
this furnace worked on coke, for which it is particularly designed. Therefore, all comparisons are unfair to the Norwegian furnace. The real test for these furnaces is in their commercial results. The Electrometalls furnace shows a matelial advantage over the Spigerverks in consumption of charcoal and current, and by these standards a ratio of 11 to 10 in favor of the Swedish outfit is indicated. But in reality, by figuring the costs of the materials used, the commercial ra-

Fig. 2-Electric low-shaft furnace built by Siemens and Halske

Fig. 3-Smelting zones, Spigerverks furnace at Imatra works, Finland. (From H. Willners, supplement to relerence 2.)
tio changes to 5 to 4 in favor of the Tysland-Hole design.

A better gage of the efficiencies of the smelting furnaces is reflected in the analyses of the escaping gases. Table 2 gives a comparison of the gases from the Electrometalls and Spigerverks furnaces. These furnaces worked under the most favorable conditions. The analysis of the gas from a normal blast furnace equipped with a Gayley dry blast, as reported by the
late A. E. Maccoun, ${ }^{8}$ is also shown.
The CCr:CO ratio in Table 2 is the true index of the relative efficiency of the two electric furnaces, while the Maccoun column, with reference to columns 1 and 2, indicates the relative value of the electric furnaces when compared with the blast furnace. In the former case only sufficient carbon is added to the charge to completely reduce the oxides pertinent to the operation, while in the latter the heat for fusion and other purposes is furnished by the combustion of the coke. The gases in each case respond to results obtained from the Mathesius formula, ${ }^{\text {, }}$ in that the Elce trometalls analysis indicates some reduction above the tuyeres. The Spigerverks furnace, with neither tuyeres nor stock, indicates maximum reduction in the hearth. The Maccoun results show economy due to indirect reduction in the stack.

Blast Furnace Reactions

The normal blast furnace burns seven-eighths of the charged carbon completely to CO , which is immediately converted into CO by the ever present incandescent coke, and at a point practically 50 feet below the stockline the $C O=$ from the flux enters the gas stream. The various reactions as between the materials in the furnace result in a gas of the analysis shown in the third column of the table. A contributing factor to the efficiency of these three furnaces is the possibility of using the gases in auxiliary operations. Data covering this feature are shown in the table. It is impossible to convert the Spigerverks gas into electricity in competition with hydroelectric current, unless the cost of such power exceeds 2.33 mills per kilowatt-hour, because the current made from this gas in a modern reciprocating gas-engine plant would cost the same amount, and would be made up of 0.088 mill for operating costs with the balance chargeable to interest and depreciation. Its value as a fuel for other operations, figured at 0.9 -mill per kilowatt-hour, equals approximately $\$ 1$ per ton on the pig iron produced.
The Electrometalls furnace gas shown has a lower energy value, but the reduction within the furnace was more effective owing to the recycling of the gas. Were it not for this feature, the carbon dioxide content would be 10 per cent or less and the gases would be proportionately more valuable for use as fuel.
The great volume of gas coming from the blast furnaces, as shown in Table 2, results from the nitrogen content in the air. The blast furnace is cited as being the most efficient of all the processes used in iron and steel metallurgy. The

Fig. 4-Norwegian pit-type electric furnace
maximum heat value obtainable from the case quoted ${ }^{3}$ is $22,000,000$ B.t.u. While the calorific value of the escaping gas is nearly $11,000,000$ B.t.u., of which roughly 20 per cent is available for purposes other than in the furnace operation. This, however, is increased to 70 per cent when applied to furnaces equipped with reciprocating gas engines. It would seem, therefore, that the demands upon energy is based upon the work to be done. This work varies with the types of ores used, the value of the fuels, and the quality of the pig iron desiredand there is no short cut available. Rich gases indicate poor reductive reactions in the furnace.

The carbon dioxide content in the electric furnace is of such moment that burned lime is preferable as a flux, rather than the natural

\footnotetext{
TABIE I-Comparison of Furnaces
Electro-Splgermetalls verks
Charcoal per gross ton, 1b. $810 \quad 887$ Flectric energy per g.t., $\begin{array}{llrr}\text { kw.-hr. } & 2,040 & 2,166 \\ \text { Yleld of ore, } \% & 56.8 & 57 \\ \text { Hen }\end{array}$ Agglomerates in mix, \%.. $89.1 \quad 85.5$ $\begin{array}{cccc}\text { Iron analyses, \%: S1. } & 0.50 & 0.62 \\ \text { Mn. } & 1.00 & 0.61\end{array}$ Mn. kw, 3,775 5,067 Average daily production,
gross tons
$44 \quad 56$
TABIE II-Comparison of Gases

Electro- Gases metalls	Spigerverks ${ }^{7}$	Maccoun ${ }^{8}$
Carbon dioxide, \% . 23.00	15.00	16.23
Carbon monoxitle, \% 62.00	78.00	22.75
Hydrozen, \% 1.50	1.00	0.02
Methane, \% 1.50	1.00	1.39
Nitrogen, \% 1.50	1.00	58.86
Ratio CO_{2} to CO . . 1:2.69	1:5.20	1:1.49
Gas per ton, cu. ft. 18,259	22,600	132,524
Heat value per cu. rt., B.t.u. 279	292	80
Temperature of escaping gas, deg. F. 392	480	32

stone. However, in the Swedish practice a preponderance of fines is undesirable. In Norway it has been found worth while to use calcium ferrite, made by the Rolfsen process, as a flux. This practice has the added feature of reducing the slag volume.
(Concluded in next week's issue)

References

1. R. M. Miller: The Feasibility of Esablishing an Iron and Steel Industry in the Lower Columbia Rtver Area, Using Electric Pig Iron Furnaces. Portland, Ore., 1936.
2. I. Hole: The Tysland-Hole (Splgerverks) Furnace for Smelting Iron Ores. Teknish Tidskrift (1939) 69.
3. M. Kauchtschischwili: SlemensVeroffentlichungen Aus dem Gebjete der Elektrochemle, 1937.
4. The Carbon Electrode. The NationI Carbon Co Inc. New York.
5. I. Hole: Electric Smelting of Iron Ore in the Norweglan Splgerverks Furnace. Jernkontoret's inn. (1937).
6. R. Durrer: Electric Smelting. Staht und Eisen (1939) 59.
7. E. Forander: New Problems of Swedish Pig Iron and Direct Steel Production. Jernkontoret's Ann. (1939) 123
8. A. E. Maccoun: Blast Furnace Ad vancement. Year Book Amer. Iron and Steel Inst., 1915.
9. W. Matheslus: Chemical Reactions of Iron Smelting. Year Book Amer. Iron and Steel Inst., 1917.
10. C. W. Wright: Consular Reports (1938).
11. The Spigerverks Furnace at Imatra Works. Teknish Tidskrift (1939) 69. 12. E. T. Hodge: Report on the Available Raw Materials for a Pacifle-Coast Iron Industry. Portland, Ore., 1935 .
12. P. J. Raver: The Feasiblity of Iron and Steel Production in the Northwest. using Columbla River Hydroelectric Power, Administrator of the Bonneville prolect. Portland, Ore., Dec.. 1939. 14. Lake Superlor Iron Ores, published by the Lake Superlor Iron Ore association, Cleveland, 1938.

Addendum No. 2 Adopted

[: The manufacturers Standardization society of the Valve and Fittings Industry, 420 Lexington avenue, New York, announces the adoption of MSS "Standard Practice" No. SP-25-1936. This is intended to clarify Rule 2b and also includes in Rule
$4 b$ the products made of alloy steels recently added to American Standard B16e.

New Insulation Has Many Applications

\& Industrials Inc., 1530 Chestnut street, Philadelphia, announces a new insulation material for use on all types of ovens, furnaces, boilers, breechings, checker chambers and steam piping. It also may be used for other applications in reducing heat losses by conduction, convection and radiation.
The material, called Atoz, is available in dry form and is mixed to the proper consistency by the addition of water alone. It is readily spread on horizontal or vertical surfaces and, because of its adhesive qualities, is particularly adaptable to covering rounded shapes and irregular surfaces.
Its thermal coefficient is 0.33 B.t.u. per hour per square foot per degree Fahr. for a 1 -inch thickness. Its acoustical coefficient is 0.65 at a frequency of 512 cycles. One hundred pounds of the material will cover approximately 80 square feet to a thickness of 1 inch. It adheres to wood, steel, glass or any other surface-is easy to pateh, and can be cut, nailed or screwed. It also withstands severe vibration and may be colored or painted.

New Process Increases Speed of Electroplating

- Rapid, uniformly bright deposits, free from pits and other imperfec. tions, are features of a new highspeed copper electroplating process recently announced by Electroplating division of E. I. du Pont de Nemours \& Co., Wilmington, Del. It makes possible heavy deposits of brass, 0.001 -inch or more in thickness.
Prepared salts provide a simple, quick preparation of the new bath, which will plate immediately, eliminating the "breaking in" period.
The process operates without polarization at high anode current densities, giving proper composition and color of plate and the purity necessary to maintain efficient operation of the bath.
The relatively low temperature of operation, 40 to 50 degrees Cent. (105 to 125 degrees Fahr.) assures ease of control and economical operation. A uniform bright yellow color may be obtained over a wide range of current densities. This means that uniform color over recessed objects is now possible. The characteristics of the deposit may be constantly maintained throughout the process by means of definite chemical control.

The 98 -inch hot and cold strip mills in the Cleveland plant of Republic are the widest, fastest and most modern continuous strip mills in the world. Steel rolls from these mills at a speed of 24 miles an hour-up to 91 inches in width-in a wide range of analyses and finishes-to be coiled or cut into sheets.
These mills, completed three years ago to serve the peacetime needs of America, gave to automotive manufacturers, tank makers and other fabricators finely-finished sheets wider than èver before were avail-able-helped speed the making and cut the production costs of many products.
Today, these mills are rolling huge quantities of steel-sometimes as much as

4000 tons in a single day. And now, in these mills along the lazy Cuyahoga River and far from scenes of conflict, more than two thousand men who know steel work in safety to insure the comfort and progress of America-and its greater security.

Yet this is only one of the many improvements in plant facilities made by Republic that will help our country in any national emergency when the need is paramount for more and better steel-first line of national defense.

The line of steels and steel products manufactured by Republic is so diversified that we have prepared a complete listing in Booklet No. 199. A copy will be sent you upon request.

Conveyorization of radiator manufacture saves floor space and eliminates trucking and manual handling. Here is part of a $1220-$ loot tank delivery conveyor, with triple-deck carriers. Photos courtesy Mechanical Handling Systems Inc., 4600 Nancy. Detroit

New Radiator Plant Spotlights Eficient Mandling

PART I

- MODERN METHODS of fabricating, assembling, testing and painting automobile radiators and heater cores have been correlated and in tegrated with a network of overhead conveyor systems in the new 240×600-foot plant of Fedders Mfg. Co., Owosso, Mich., to the end that production of 6000 units per day is possible with an absolute minimum of manual movement of parts or assemblies in transit.

Fourteen separate conveyor systems are used to move material through various stages of fabrication, each designed with fixtures, hooks or carriers particularly adapted to the work at that point and each geared to the proper speed with relation to other conveyors so that a synchronized flow is achieved through the entire plant. Total length of the conveyor systems is

Unusually complete mechanical handling systems aid production of 6000 automobile radiators daily. Fourteen separate conveyors, totaling over a mile in length, synchronize and correlate fabricating operations. Core ribbons formed at 200 feet per minute. A 680foot conveyor system supplies coils of ribbon to rollers. A triple-level conveyor facilitates core assembly. Both sides of assembled core are soldered automatically on special conveyor
close to 5600 feet, or well over one mile.

A typical automobile radiator is made up of a core formed from strips of copper and brass, soldered
at their edges; a 2 -piece top tank of brass; a bottom tank of brass; inlet and outlet castings of malleable iron; sidewalls and sidewall reinforcement strips of terneplate; three tieclips of steel on the top tank; dome, dome cup and filler of brass, soldered to the top tank; overflow tube of brass, and lamp-wire clips. These various units are made in separate suboperations, routed on conveyors to assembly stations, the assembled radiator tested under ait pressure, washed, spray painted, baked and packed for shipment.

Cores are formed from copper and brass ribbon, width depending upon depth of the radiator; average being around 3 inches. Copper and

Lines of presses, left, flank a belt conveyor which moves tank stampings, sidewall strips and reinforcing to assembly stations. Notice how the monorail track, right, is stepped down to bring the proper carrier tray flush with these benches where outer core strips are bent and lock seamed

GO0d OPerators for 0xy-Acetylene Flame-

 Cutting Machines can be developed rapidly

As industry faces production schedules which involve a need for shaping huge quantities of steel, oxyacetylene flame-cutting can be used effectively to ease the burden which will be imposed on your machine tools.
By means of flame-cutting, steel of almost any commercially used size or thickness can be cut to any desired shape, and to relatively close tolerances. Usually little or no machining is required. Equally as important, operators of flame-cutting machines can be trained to do a good job in a short time-often in only a matter of weeks.

A few of the many types of work which operators of average training and ability are doing every day-using both stationary and portable flame-cutting machines-are shown in the pictures at the right.

and Linde can help

you train them

The Linde organization includes a staff of experienced engineers
 and service operators who can help you train operators and put flame-cutting to work at once in your plant. In addition, Linde can supply everything you need to use this process-gases, apparatus, and supplies.
If you would like to know more about how you can use oxyacetylene flame-cutting, flame-hardening, welding, gouging, descaling and other related processes to maintain stepped-up construction and production schedules, ask Linde.

The Linde Air Products Company
 Unit of Union Carbide and Carbon Corporation

30 East 42 nd Street
New lork, N. Y.
[15
Offices in
Principal Cities
In Cinada: Dominion Oxygen Company, Limited

Stack-Culting-tiphtly clamped stacks of plate can be flame-cut to shape rapidly and economically.

Bevel-Cutting-ability to bevel steel is valuable in plate-edge preparation for fabrication by welding.

Circle-Culting-true circles can be cut for the manufacture of parts such as gears, flanges and rings.

Heavy-Cutting-In adlition to cutting licht or medium steel, oxy-acetylene machines produce accurately shaped parts from havy hillets or forgings.

READ THE RECORD.

what / δ SPEED CASE STEEL

Speed Case Steel is BY PROOF one of the best money making steels produced today. It excels in all requirements AT ONE TIME. Strength, Ductility, Carburixing qualities have NOT been sacrificed to obtain MONEY MAKING MACHINABILITY. factory production records from users PROVE this. Every statement made in our odvertising is backed by FACTS! SPEED CASE can make MORE MONEY for YOU!

Performance Records from our customers show that SPEED CASE STEEL OUT-PERFORMS S.A.E. $1112, \mathrm{X} 1112, \times 1020, \mathrm{X} 1314, \mathrm{X} 1315,1115$ STEELS. Chart below shows comparison of Speed Case with 6 other steels.

	MACHINABILITY SFPM.	DUCTILITY	STRENGTH and SHOCK	CAREURIZING
SPEED CASE SAE 1112	$\begin{aligned} & 220-300 \\ & 140-170 \end{aligned}$	Very Good Poor	High Low	Excellent Poor
SPEED CASE SAE X1112	$\begin{aligned} & 220-300 \\ & 200-250 \end{aligned}$	Very Good Poor	High Low	Excellent Poor
SPEED CASE SAE X1020	$\begin{aligned} & 220-300 \\ & 120-130 \end{aligned}$	Very Good Very Good	High High	Excellent Excellent
$\begin{aligned} & \text { SPEED CASE } \\ & \text { SAE } \times 1314 \end{aligned}$	$\begin{aligned} & 220-300 \\ & 140-155 \end{aligned}$	Very Good Fair	High Medium	Excellent Good
SPEED CASE SAE X1315	$\begin{aligned} & 220-300 \\ & 125-135 \end{aligned}$	Very Good Fair	High Medium	Excellent Good
SPEED CASE SAE 1115	$\begin{aligned} & 220-300 \\ & 125-145 \end{aligned}$	Very Good Very Good	High Medium	Excellent Good

WRITE FOR FULL DETAILS ON SPEED CASE STEEL
Sole Licensec for Eastern States

THE FITZSIMONS COMPANY
 YOUNGSTOWN, OHIO

Girls fold and rack inner strips firs cores, then place them on conveyor trays at hand
brass ribbon is fed into rolling machines which form the special types of corrugations required at a speed of 200 feet per minute, automatically cutting the strip to length as it is formed. A 680 -foot conveyor system, with carriers on 40 -inch centers, supplies coils of copper and brass ribbon to the rolling machines.
Each core comprises a series of formed copper and brass ribbons or segments, each segment including an inner copper ribbon which is placed inside an outer brass ribbon, the latter folded to rectangular shape and the ends lockseamed. As the ribbons are cut to length they are placed on a core assembly conveyor which is 180 feet long and carries 100 fixtures with three shelves each. This conveyor passes by the rear of bending machines, and the chain is suspended at three levels so that each level of shelves will be brought flush with a certain group of bending machines, the latter all at the same level.

Travel from Conveyor to Conveyor

Thus, at one group of 12 machines, men take the outer brass strip from the cutting machine, locate it in the bender, actuate the machine which folds one end over against a die and lock seams the ends. Inner ribbons are folded by girls on a similar group of machines and the two assembled at a third group of benches. The assembled core units then are placed on the conveyor which moves them to the soldering conveyor.
The above-mentioned combination copper and brass units are assembled one next to the other to form the conventional "honeycomb" radiator core, perhaps 30 or 40 inuilidual units being required for a core assembly. These units are locked into an aluminum frame resting on flat cast iron frame surface of the soldering conveyor. As the frames approach the solder, they are automatically removed from the plates and are placed over the solder pot, first being dipped into a flux bath, and then into the solder. The cores are immersed in flux and
(Please turn to Page 100)

Assembled inner and outer copper and brass strips comprising complete core are locked in frame carried along automatically to soldering tank where upper and lower surfaces are dipped into solder. Nole overhead conveyor de. positing empty frame at right Core, assembled to top and bottom tanis, is hung on universal fixture trcieling on conveyor loop, where hand soldering operations are performed quickly and conveniently

Training Apprentices for Special

Work Afiords Productive Years

Training apprentices to operate various groups of machines rather than to become all-around mechanics affords them two or three productive years. Alter a decade a large percentage of the men become specialists in their line of work. The accompanying article was the author's discussion of a paper. "Maintenance Shops in the Steel Plant" by T. R. Moxley, general master mechanic, Wheeling Steel Corp., Steubenville, O.. presented at the annual convention of the Association of Iron and Steel Engineers, Chicago. Sept. 24
a FACTOR which should be considered before we decide to "sign up" a man for four years is: Are we entitled to take four years of a man's time without compensating him properly for the time spent, or prepare him for a special occupation since the modern trend seems to be in specializing? I know that a difference of opinion exists on these points and the value of mechanics developed by the latter method, but if we take 100 boys and start them through the "school of experience," the first four years are spent in acquiring fundamental

By R. D. WEARNE
Superintendent of Shops Carnegie-Illinois Steel Corp. Gary, Ind.
knowledge. It will then take another four to eight years to develop their skill and broaden their knowl edge to that of a recognized good, all-around mechanic, while the latter system gives to the shop in two years a man capable of producing on one of the various machines work comparable to that produced by the more versatile apprentice with four to six years of training.

This modern trend is something that has come from mass produc tion and the increasing demand for larger shops in centralized maintenance, where a journeyman machinist is not essential for every machine, and about 75 per cent of the boys who finish their apprenticeship will, at the end of two to three years, be found working on one of several groups of machines, either on cylindrical or plane surface work, with a small percentage possibly working on gear cutters. This means that we could possibly have

Takes Strip Steel "on the Fly"

Wapable of handing 0.015 to 0.220 gage, 18 -inch strip steel coming from the mill at speeds up to 452 feet per minute, this Broden tension reel is now in operation at Bopp Steel Co.'s plant in Detroit. The strip enters the slot in the block, is gripped and the block simultaneously accelerated. A tight coil is formed in three to four turns. Strip tension can be maintained constant at any value between 600 and 3000 pounds regardless of strip speed. Photo courtesy Reliance Electric \& Engineering Co., 1088 Ivanhoe road, Cleveland
taken the same boys and in two years trained them to operate the same machines, giving them two to three productive years that under the apprentice system would have been used in training them to handle machines which we will not later ask them to operate.

At the end of 10 years, probably 90 per cent of the boys have become specialists in one line or the other, and from the remaining 10 per cent we probably will develop our supervisors, and it is my opinion that these are the boys we should choose earlier in their training period and to whom special effort should be applied in their training.

Many Machine Shops Obsolete

As to the cost of maintaining a large machine shop, if you have a modern shop of your own you can probably answer the question best yourself because a number of the larger machine shops in the industry at this time are more or less obsolete, making costs appear to be out of line. Most of you appreciate the fact that you need better machines, but unless you can show an appreciable saving over a short period of time the appropriation for new machines is not readily forthcoming. An approach to this perplexing problem for shop super visors is to develop the unit costs on modern machines as against obsolete units now used and to present to management a statement of savings possible with modern machines and modern cutting tools.

This is the line we are pursuing at the present time to convince man. agement that investment in madern tools is the road to lower costs and better shops.
There is one thing not discussed in Mr. Moxley's address that I believe should be part of every maintenance shop. It is not the machines, but the system by which work is scheduled to the various machines.

In a large shop it is important to schedule all work so that the job units reach the assembly floor in time to meet a predetermined schedule. Large numbers of orders released without careful consideration as to availability of machine time in the several groups will develop overloading, which, in turn, cause delays to schedules and a surplus of partly finished orders awaiting assembly.
In the smaller shops the foreman will probably do his own scheduling, but in the large shops this would occupy too much of the foreman's time and should be the function of a scheduling department. whose duties are to properly route and schedule the work in relation to the availability of machine groups.

FOR proof that some nuts are better than others, no more outstanding example could be chosen than EMPIRE Cold Punched Nuts.

Because of the demands of American industry for a truly superior product, RB\&W built at Coraopolis, Pa., the largest and most modern nut manufacturing plant in the world, and the only plant in the United States devoted exclusively to the manufacture of nuts. Here all administrative and production facilities are concentrated on a single product-special machinery, neither duplicated nor equalled elsewhere, has been developed only for making that prod-uct-every energy is focused on the manufacture of better nuts!

In the manufacture of EMPIRE Cold Punche Nuts, punching is done at right angles to th flow lines of the steel, eliminating danger o stripping or splitting. Then the nuts are re punched, an exclusive RB\&W operation tha accurately centers and finishes the hole. A bur nishing operation, originated by RB\&W, give "semi-finished" nuts a flawless plate-like finish Tapping by a principle developed at RB\& produces precise accuracy and cleanness thread. A remarkable intra-plant transporta tion system governs all these processes througl to the final operation of dating each keg th moment it is packed, insuring rapid, accurat delivery to the buyer of a nut that is better.

Here's What Then

\therefore... the 1940 Yearbook of Industry issue is a fine job, both in its editorial contents and its advertising pages. It should be an invaluable reference to the industry for some time to come.'

I have just been looking through your January 1st issue of STEEL and want to compliment you on not only its makeup but also its editorial contents. I can realize, more than ever before, the truth of the statements of your field representatives to the effect that your Annual Issue is kept through the year as a buyer's reference."

I looked it over very thoroughly as have all the other executives of our company. You are to be congratulated on this very excellent number.
"...I am quite confident that any manufacturer would like to keep this as a reference book because of the interesting technical information it contains. The book was widely circulated in our own organization and favorably commented upon. From an advertising point of view it is an attractive buy and an issue in which we like to be represented. Congratulations on a splendid job."
your 1940 Yearbook of Industry issue certainly covers the field. It has plenty of useful information in it and undoubtedly will be kept by many for information purposes during the year."
in my estimation it is really the highspot of a year's consistently fine editorial service.

I have thoroughly examined the January lst issue of STEEL and apparently several other citizens throughout the country have done so because we have received a few inquiries from our ad, which, incidentally, was swell. I would suggest that you furnish a good-sized nail with your next Yearbook so that your recipients con firmly secure it to their desks, as I have had to run this one down about sixteen different times in order to have it in my desk for reference from time to time."
will be retained and used throughout the year by a large majority of your subscribers."
". . . it is truly a yearbook of the industry and well repays a careful study because it outlines to myone the current state of the art, the prospects lor the coming year and, through the medium of the advertising, brings together in one issue the news of what manufacturers are offering industry in the way of improved equipment. I like particularly the careful way in which this issue is departmentaiized, which makes it easy to use during the remainder of the year as a reference medium."
we wish to offer our congratulations on your very fine achievement in publishing the recent onnual issue. To us the outstanding feature was the care that had been given to make readily avail able the remarkable amount of information it contained. The very fine editorial arrongement was supplemented by a good index, and of no less importance is the arrangement worked out by your bindery so that the book con readily be opened ond will lie open at any point.'
we feel that your Yearbook issue gets better each year."
we are pleased to extend to you our congratulations for the advancement shown in the last Annual Review Issue compared to previous issues. While you have not had to apologize for any of the previous issues, at the same time, it is pleasing to note from year to year, the issues improve in appearance and interest."

I want to congratulate you not only on the appearance and the typography but also on the character of the articles you had in the last issue. It was a splendid piece of work from every stondpoint."
it seems to grow better each year and is an accomplishment in which we feel you com take just pride.'

Said in 1940

"... what I noticed more than anything else was the fact that I didn't locate a single second rate ad in the whole issue. A few outstanding ads can usually be seen in any good trade publication, but 402 pages, each and every page well above average, plus the outstanding pages is an accomplishment."

I looked through your Yearbook issue very carefully and want to compliment you on it. It is hard for anyone who is not a publisher to appreciate the details and extreme care exercised in its preparation. But, in the finished book we can easily see that there has been very commendable work done."
"...I was impressed with the fact that this issue is, in truth, a real reference book of industry, and that the editorial content was such that it would be referred to many times by individuals and companies. I was impressed with the orderly presentation of the amount of material, and the comprehensiveness of the undertaking.'
it is very evident that a comprehensive view of all phases of the industry it serves is represented on its pages and in a manner that makes it usable ond at the same time altractive."
we enjoyed your Yearbook very much and we believe that it is. a very profitable one not only for the readers but for the advertisers. We have received some favorable comment on our advertisement and trust that it will do us a lot of
good."
.on the day of the arrival of the annual issue of STEEL, the 'Yearbook of Industry' issue, I went through it quite carefully and want to say that I think an excellent job was done in presenting a comprehensive review of the year's developments in industry. I want to compliment you particularly on the extensive index which was included and which made it so easy to find subjects of speciai interest to the reader
your 1940 Yearbook of Industry was a real surprise and we believe, it outdoes anything you have previously published. We believe the manner in which you departmentized this edition has proven of real assistance to your readers. This edition is evidence of the big lift you have given your publication during the past ten years. Congratulations!"
we wish to advise that the January issue of STEEL, your 1940 edition Yearbook of Industry, was received several weeks ago and we wish to assure you that it is a very interesting number and has a number of fine items. This issue will be passed along to a number of different departments which I know each and every one will enjoy, as some of the departments have already been looking forward to receiving this copy.
my general impression of your Yearbook issue was in its favor and it might interest you to know that STEEL is as well received in this office by the people who read it as any magazine that comes to us. Several of our men have at differen! times made enthusiastic comments, particularly on the editorial content of STEEL."
extreme interest has been taken in reading the various editorial comments and descriptive articles in your Yearbook issue and wish to compliment you on the excellent character and composition of the issue."
regarding the Yearbook, I thought this was the finest issue of any trade publication I had ever seen. It was excellent both editorially and typographically and we were well pleased with the position and appearance of our full page advertisement.
" \ldots. the 1940 Yearbook of Industry issue is a splendid piece of work and certainly will demand a wealth of attention from the readers of STEEL. I am very sincere in this excression."

Gas-Fired Unit Heaters

- Surface Combustion Corp., Toledo, O., has placed on the market a new line of Janitrol gas-fired unit heaters. Self-contained, the line includes the propellor fan type in capacities from 50,000 to 225,000 B.t.u.'s-the blower type with centrifugal fan in capacities from 75,$0 C 0$ to 450,000 B.t.u.'s-the floor

type in capacities of 60,000 to 1,250 , 000 B.t.u.'s and the duct type in capacities of 65,000 to 225,000 B.t.u.'s. The units operate automatically and may be controlled by separate thermostats or operated in multiple. Features included in the new design are the MultiThermex heat exchanger and the Amplifire burners. Installation is merely a matter of suspending the unit from the ceiling and making the gas and electric connections. No water or steam is used.

Hob-Checking Fixture

- Michigan Tool Co., 7171. East McNicholas road, Detroit, announces a new hob-checking fixture for routine checking of hobs after sharpening. It will check for radial sharpening, spacing of flutes and runout of hubs. It also can be used for checking single form relieved cutters or form gashing cutters for
sharpening and spacing. The fixture has a maximum capacity of 12 -inch diameter and 15 inches between center. Its dial indicator can be moved in both horizontal and vertical planes, while the head carrying the indicator can be moved parallel to the centers for checking at either end of a long hob. The up and down movement of the indicator is accomplished by a micrometer barrel having a graduated dial. Inaccuracies in readings are avoided

by mounting the index plate on the arbor, permitting making the centers solid. The paul which engages the index plate is mounted on the headstock of the fixture in such a position as to prevent chance of loosening in its seat. Overall dimensions of the fixture are 38 x 25×20 inches. Furnished with each fixture are an index plate, a $11 / 4 \times 6$-inch arbor and one indicator.

Air-Bloc Hoist

因 Ingersoll-Rand Co., Phillipsburg, N. J., has introduced a flexible, welded, link-chain Air-Bloc hoist for use in machine shops, assembly lines, maintenance shops, shipping and receiving departments in handling of light loads up to 700 pounds. Available in three sizes identified as LC-3, LC-5 and LC-7,

it weighs less than 75 pounds and can easily be moved from one job to another. An automatic up and down stop control prevents damage
to the hoist from overrun of chain in either direction. Another safety feature prevents the load from dropping even if the air supply fails. The hoist is powered by a 4 . cylinder, radial-type air motor. The throttle control permits easy and accurate spotting.

Hardening Machine

- Ohio Crankshaft Co., 6600 Clement avenue, Cleveland, announces a new type MG 10 Tocco Junior machine for localized surface hardening of small parts. It also can be used for brazing, soldering, annealing, heating for forming and other similar purposes. Combining preset full automatic timing controls specially designed water cooled transformers and easily changed fixtures, this machine is compactly built. It is available in five models ranging from 10 to 80 kilowatt output. Each machine has

one to three hardening stations. In ductors are bolted to standardized attachment flanges centered in the transformer panels. Quench and cooling hose lines lead from connections flanking the station panels. Stations may be equipped with automatic feeding and handling devices and can be set up for either intermittent or continuous hardening. The entire machine including the motor generator is mounted on a rigid cast iron base. The motor generator has been designed for use within the new Junior and embodies all features of the larger generators. It supplies 9600 cycles of high frequency current at 220 u to 440 volts.

Machinists' Tools

Z George Scherr Co. Inc., 128 Lafayette street, New York, announces a line of GS machinists' tools which consist of machinists combination sets with drop forged hardened square heads, hardened center head, hardened blade and reversible protractor head; a machinists' combination set with hardened blade and center head, protractor and square head of cast iron 4,6 and 8 -inch dividers; 4,6 and 8 -inch inside and outside spring calipers; hardened and tempered center gages; thick-

A TIN-FREE, HIGH-STRENGTH, COPPER-SILICON ALLOY With an Outstanding Record of Dependable Performance

Here is a metal that represents true economy. Moderate in price, readily adaptable to a vast number of industrial needs, Everdur is a decidedly economical metal to use. Because of this, it has won an enviable position in practically every field of engineering and manufacture.

- Everdur was developed for engineering uses requiring a metal with a tensile strength comparable to that of steel, and the corrosion resistance of copper.
- It is a strong, tough, workable and durable metal and can be cast, machined, drawn, rolled, spun, stamped and forged.
- Its high endurance limit makes it exceptionally valuable for many applications involving excessive vibration.
- Strong, tough, dense welds can be made readily by the usual welding methods -oxy-acetylene torch, carbon or metallic arc, or resistance welding.
For screw machine and furret lathe production, free-cutting rods in conventional shapes are available from stock.
- Tin-free, high-strength castings can be made from Everdur Ingots with regular brass and bronze foundry equipment.
O Its non-magnetic property overcomes the handicaps imposed by stray magnetic fields in the manufacture of some types of electrical equipment.
Everdur holds a fifteen-year record of dependable performance on tasks where other metals failed in a relatively short period.
This non-rust, trade-marked, Anaconda Alloy is produced in four standard compositions, and in all standard commercial forms.
Considering its many desirable properties, Everdur has rightfully been called a "Premium Metal at a Moderate Price".

Review the partial list of its applications on the following pages, then let our Technical Department help you to determine where Everdur can do a better, more dependable job-for less money in the long run.

Do these successful uses of Everdur suggest a possible solution to some intricate or troublesome metal problem in your plant?

BATTERY AND PLATING RCIOMS
-PICKLING EQUIPMENT
Ducts, electrical conduit, baskets, bolts, drains, dryers, sludge lines, tumbling barrels, wire brushes.

RAILWAY EQUIPMENT OCOMOTIVE ROUNDHOUSES
-LOCOM water tanks, ice Air conditioning and signal enduit, welding rods.
bunkers, hardware, electrical bunkers, hardware, electrical conduit,

OIL FIELDS AND REFINERIES
Chain, bolts, cable, agitator tanks, condenser and heat exchanger tubes and plates, conduit, sludge lines.

BRIDGES-ENGINEERING STRUCTURES
Bridge plates, bolts, tie rods, rivets, electrical conduit, castings, angles, channels, framing members, shatfing.
Bridge plates, bolts, tie rols, framing members, shafting.

* EVERDUR METAL is produced solely by THE AMERICAN BRASS COMPANY

MARINE FIELD-DOCKS-SHIPYARDS Fuel tanks, marine hardware, wood and lag screws,
 SEWAGE TREATMENT PLAN 5 Sreens, weirs, filters, frames, lanks, bars, anchors, valve stems, bolts, man-hole steps

BREWERIES-DISTILLERIES-DAIRIES
Kettles, vats, filters, screens, hop strainers, wort pans, process tanks, electrical conduit.

PULP AND PAPER MILLS
and welded fittings, pulp knotters, screens, doctor blades, save-all pans, electrical conduit.

ELECTRICAL EQUIPMENT - POLE LINE HARDWARE
 Circuit breakers, screws, bolts, nuts, washers, rivets, studs, clamps, springs, sockets, U bolts, eye bolts, turnbuckles, and many other accessories.

CHEMICAL AND PROCESS INDUSTRIES
Pipe lines, kettles, stills, welded fittings, valves, unfired
 pressure vessels, pumps, storage tanks, electrical conduit, evaporators.

Send for these Anaconda Publications

For additional information on Everdur Me write for any or all of these booklets. They available without cost. Address:

The American Brass Company, General Offices, Waterbury, Conn.

E-5 Applicalions, Physical Propertias and Consia
E-1 Casting Ingols-Foundry Practice and Proced
B-22 Anaconda Electrical Conduit
E-9 Fabricated and Walded Fitlings

All these commercial forms-and more

make possible economical assembly of ALL-EVERDUR engineering structures

Everdur Metal is produced by The American Brass Company in the form of Sheets, Strips, Plates, Wire, Rods, Bars, Shafts, Tubes, Shells, Pipe, Hot Pressed Parts, Drawn Shapes, Angles and Channels, Casting Ingots and Special Products. It is also fabricated into many finished forms which can be obtained from leading manufacturers.

... and a Special Service

Everdur Metal is regularly furnished in these four principal compositions.

	Copper $\%$	Silicon $\%$	Manganese $\%$	Lead $\%$
Everdur 1010	95.80	3.10	1.10	.
Everdur 1015	98.25	1.50	.25	.
Everdur 1012	95.60	3.00	1.00	.40
Everdur 1000*	94.90	4.00	1.10	\ldots

*Casting Ingats Only.

Service Engineers of The American Brass Company are prepared to cooperate in the solution of special metal problems. Their practical experience in many branches of the metal industry frequently enables them to determine the one best metal for a specific
application, and the correct procedure for its fabrication. Your inquiries will receive the close attention of trained, experienced production and technical staffs. This service is maintained for your convenience and its use entails no obligation.

ANAEONDA THE AMERICAN
 General Offices: Waterbury, Connecticut
 BRASS COMPANY
 Subsidiary of Anaconda Copper Mining Company enosha, Wis. Torrington, Conn. Waterbury, Conn.

 MANUFACTURING PLANTS-Ansonia, Conn. - Buffalo, IN. Y. - Detroit, Mich. - Kenosha, Wis. - Torrington, Conn. - Wala OFFICES AND AGENCIES - Allanta, Ga. - Boston, Mass. - Buffalo, N. Y. - Chicago, ill. - Cincinnati, Ohio - Cleveland, Ohio - Denver, Cola Detroit, Mich. - Houston, Texas - Kenosha, Wis. - Los Angeles, Calif. - Milwaukee, Wis. - Minneapalis, Minn. - Newark, N. J. • New York, NY. Philadelphia, Pa. - Piltsburgh, Pa. - Providence, R. I. - Rochester, N. Y. - St. Louis, Mo. - San Francisco, Calif. - Seattle, Wash. - Syrocuse, N. Y. Washington, D. C. - Waterbury, Conn.

HEAVY MEDIUM OR LIGHT

One factor in every branch of the Metal-Working Industry - heavy, medium, or light manufacturing or fabricating - is the availability of a dependable and suitable labor supply. Illinois is the second largest metal-working State in the Nation, with more than 300,000 workmen skilled in every phase of the Industry. Two thousand, three hundred plants turn out over $\$ 3,000,000,000$ worth of products annually -14% of the national output. All types of metal products, from the smallest to the latgest, from the most simple to the most intricate, are made here.

The steady growth of the Metal-Working Industry in Illinois has created a desirable labor situation. Skilled workmen gravitate to localities where their qualifications and experience will assure steady employment. Illinois has achieved its dominant position in the Metal-Working Industry because of the following combination of advantages offered manufacturers and fabricators of metal products. Proximity to the Nation's Ore-Producing Center -Excellent Rail, Highway, and Water Transportation to the Markets of the Nation and the World-The Huge Middle West Market Within Overnight Shipping Radius-Low Cost Fuel-Abundant Power.

Investigate the Industrial Advantages of Illinois

Write the Illinois Development Council at Springfield for a special report containing complete details of the factors in the profitable operation of a metalworking plant which are available in Illinois.

ILLINOIS DEVELOPMENT COUNCIL state house - springrield, illinois

TRAINED FOR INDUSTRY

In the educational system of Illinois, vocational training is an important function. Each year, constantly increasing numbers of young men are entering industry with a background of basic training which equips them to fit into the skilled labor needs of the Metal-Working Industries. The continuance of an ample reserve of skilled labor, which is a vital consideration in plans involving future expansion, is assured for industries located in Illinois.

AN ABUNDANCE OF SKILLED WORKMEN

The diversification which characterizes the Metal-Working Industry in Illinois has provided thousands of workers with training and experience in every phase of the production and fabrication of metals. This is an important factor in efficient operations, particularly in this Industry which is facing the problem of meeting "stepped-up" production schedules recessitated by the constantly increasing demands for industrial and defense materials.

ness gages; depth gages; surface gages; magnifiers. Hook, sliding caliper, flexible and narrow tempered rules also are included in this line.

Roller Chain

- Diamond Chain \& Mfg. Co., Indianapolis, has placed on the market a new No, 88 eight-millimeter chain for service where other roller chains are too heavy or bulky. In spite of its minute dimensions, 0.315 inch pitch, with rollers 0.197 -inch diameter by 0.125 -inch width, the chain is made to the same standards
as larger chains. The 192 individual parts in each foot of chain are assembled to a total length tolerance of only plus 0.0156 -inch minus 0.000 . It is equally practical for dependable power transmission at extremely high speeds, and for applications for which maximum compactness without sacrifice of enduring accuracy is essential.

Index Centers

E Hardinge Brothers Inc., Elmira, N. Y., announce new index centers incorporating features to speed up production in the milling of pre-
 industries working toward a common goal, each one has to gear its production to the next. There can be no weak links or the finished product will be delayed.
Now, in this National emergency, with so many specialized products on order, there are thousands of new designs and redesigns which must be drawn out in the drafting room and transmitted to the shop. Blueprints are the simplest and most satisfactory method of reproducing these engineering drawings.
The C. F. Pease Company-for 30 years the leader in the Blueprinting Industryhas upped its production of Quality Blueprinting Machines by operating night shifts in its new, modern plant. Additional space is being planned and new improvements are constantly being built into every machine, in an effort to strengthen the reproduction link in the Defense Program. The Pease Company is proud to be a part of the great National plan to maintain Peace, and toward this end will continue to furnish the finest Blueprinting Equipment available.

cision parts. The accompanying il. lustration shows the construction of one of these units. The box-like con. struction minimizes overall height to act as a base for the spindle section. The spindle section swings through an arc of 220 degrees and is graduated in degrees for settings from 10 degrees below horizontal to 20 degrees beyond vertical. A vernier in minutes is incorporated for fine settings. The 2 -piece draw spindle is ground to take collets which have a range by fractions from $1 / 16$ to 1 inch round, $7 /$-inch hexagon or $23 / 32$-inch square. Precision hardened spiral bevel gears and a nitrided spiral bevel pinion provide a 4 to 1 ratio between the spindle and the index plate crank. Four index plates are furnished, together with a chart listing all divisions obtainable from 2 to 360 . The index plate mounting is independent of the gearing with the spindle and crank, being engaged between the two by the clamp on the outer periphery of the index plate. Antifriction bearings provide support for all gears and shafts. The spindle section has large swivel bearings and locks to secure angular settings. The index head is arranged for right hand mounting. Its keys fitting the table are removable. The base of the head has a cross key way to permit placing

the spindle parallel to the milling machine cutter spindle. Both index head and tailstock have a cont bined length of $14 \frac{3 / 4}{6}$ inches. A similar index head also is offered for spiral milling. This incorporates all features of the plain indey: head and is furnished with a chart covering all leads from 0.600 to 42.656 inches.

Voltage Regulator

- Westinghouse Electric \& Mfg. Co., East Pittsburgh, Pa., has placed on the market a new quick-acting rheostatic regulator for small alternating and direct-current generators. Known as the Silverstat Junior, it is available in direct current ratings up to 25 kilowatts and alternating current ratings up to 44 kilovolt-amperes. The voltage of the machine to be regulated is connected across the regulator coil, and any change in voltage results in a corresponding change in the magnetizing effect of the coil on

SEND FOR THIS
 NEWвоок

STEE CASTINCS

HANDBOOK

It will help you

 furn out a better, more modern productThe new Steel Castings Handbook, just off the press, summarizes the experiences of hundreds of engineers, designers, metallurgists and steel foundrymen. It is the most complete handbook on Steel Castings ever compiledconveniently arranged for quick referencewell illustrated, attractively printed and durably bound.

The book contains over 500 pages of facts, ideas, tables, charts and illustrations-all designed to help you manufacture a better and more modern product, often at a substantial cost saving. It should be on your desk or in your library right now.

Ask your foundryman to show you the New Steel Castings Handbook, and tell you how to secure your personal copy. The book is valued at $\$ 2.00$ per copy, postpaid, and the supply is limited. Steel Founders' Society of America, 920 Midland Bldg., Cleveland, Ohio.
the magnetic circuit. The attractive force on an armature will be increased or decreased causing the armature to seek a new position. This will either close or open, in sequence, an assembly of silver buttons to short out or insert steps of a carbon-plate resistor in series with the field circuit of the generator. Nonoxidizing silver buttons assure clean contacts

Spray Gun

(m O. Hommel Co., 209 Fourth avenue, Pittsburgh, announces a new model Kingbee spray gun for spray
ing wide surfaces. It features a finer atomization, speedier distribution of material, is very easily cleaned, will not clog, is sturdily constructed and will resist a great deal of wear.

Angle Plate

a Wesson Co., 1050 Mt . Elliott avenue, Detroit, has introduced a new machine tool fixture for increasing the range of work done on drill presses, grinders and milling machines. Called the Wesson Universal angle plate, it is fitted with a slotted top plate. The plate may be

YOU GET THE SIDIIIST RUNS in GRUN Sillidn L bu Speed Cleaning and FINISHN METALS withthe AIRRESTR and the AIRLESS

 ror speen least 90% onded in trom 5 to 15 min ordinarily in this equipment is ludes proditets ancin by other utes and this includes 5 times as reauire ${ }^{4}$ mothods. The principal factor in WHEELA--poses the work to the blast, but - poses the work with which prodThe principal incomparable performBRATOR'S airless WHE This unit ance is thasting unit. per minute TOR blastivabrasive per los. per throws more sorsower (300 motor) and with less horsepow a motor 15 ther minute using harder than any oyet throws it harder ever derised conblasting system be perfectly trolled. the nilsh cal instead
trollod. The use of steel another element effectiveof sand is ane speed and effector. of sanses the wHEELABRATOKS increas of the steel abrasive, indue ness of unlike steel and causes an added sand, rapidly and cas has an it does down rapel abrasive that it does advantage, too, adouble do piece. diees to piece. picee to wheek abr for its The design also accounts for exequipment in cleaning. Tumblast uses equperiority in the Tumblass cenample, exclusive excels not onlyucts can be loaded Tablast, The WHEELABRATOR or fraglle The for cleaning flat or ange and used for gives better because: (1) throws pleces, gives cleaning because it throws faster cleaning or unth rather WHEELABRA long swath such as abrasive in a narrow stream oscillating abrasiv a narrow an oscillatioch thall thrown from span is ment is that thr (2) the bombardment inain nozzle; (3) the bombucts remam longer; (3) (4) the procasive stream continual: path of the of the ork is in the patire length since the work the the en and (5) since revolving tables, surzone; an on revolving exposed abrasive
face. Fally Designed WHEELAWith specially Dinets, the same obtained
BRATOR Cab cleaning is ote ex BRATOR Cad cleaning complete exlity of speed rapid and to the blast work because raple woik the the work posure of the subjecting, spinning of achleved by tipping, sing through
to a rotion whiter.
an ex which excels and com-
the blast chamber.
veyor whe rapidity and it ex
in the
pleteness with which
pleteness
\qquad
2 FOUMDRY BCIIPMENT CO. so9s.aYakis.
OFFICES IN PRINCIPAL CITIES
CABLE ADDRESS: AFECO
adjusted in three planes-each completely graduated. With this device, parts which are too large or of too irregular shape to be conveniently held in a vise can be clamped by means of T-slots in the top plate.

Tapping Machine

- Cleveland Tapping Machine Co, 1725 Superior avenue, Cleveland, has placed on the market a B-2 vertical tapping machine which incorporates the clutch mounted on the drive shaft, leaving the tapping spindle free. This arrangement makes it possible to tap $1 / 2 \cdot 13 \mathrm{P}$, in boiler plate at 360 revolutions per minute. Clutch adjustment is so sensitive that the pressure on it, the speed, and tap can be changed in 90 seconds. The table of the machine measures 12×16 inches and is equipped with a large oil trough. It may be easily adjusted for height, by rack and gear and swings horizontal. It also has a vertical move ment of 34 inches. Because the clutch is not mounted on the tap. ping spindle, the rigidity of the latter can be controlled. The spindle revolves on ball bearings with-

in a 2 -inch quill. Lubrication is applied directly to the tap by an oil line. Speeds may be changed as desired by changing the 4 -speed pulley on the motor. The machine is powered by a $1, \mathrm{i}$ horsepower motor.

Multi-Versal Machine

- Hack Machine Co., 440 North Oakley boulevard, Chicago, has introduced a new Multi-Versal machine designed to perform as a multipurpose machine tooi, and to make possible the practical application of the inachine to both reciprocating and rotary cutting. Built-in features consisting of the

PITTSBURGH STEEL COMPANY

1643 GRANT BUILDING
PITTSBURGH, PA.
More than 320 miles of bright, husky Pittsburgh Welded Joint Fence, and 8 miles of Pittsburgh Chain Link Fence, protect the entire right-of-way and interchanges of the famous Pennsylvania Turnpike. Yes, it's the largest single order of fence ever sold! More important, it typifies the high regard of responsible authorities for the superior qualities of Pitts-burgh-the only fence sold under a manufacturer's Certificate of Specified Quality! Pittsburgh's Fence line includes Farm and Poultry Fence in hinge-joint, welded-joint and lock-joint types; Industrial Fences; Close-mesh Welded Fence Fabrics; and superb designs of Lawn Fence. All are of special analysis copper bearing steel, heavily coated with pure, ductile, non-cracking zinc for longest life. Whether for protecting a highway, safeguarding an industrial plant, or fencing a farm-always specify Pittsburgh!
reciprocating ream ram, and the master head reduce the number of attachments needed, but increase applications. It features focused control, simplified operations, rapid changeover, new electric system with pushbutton controls, illuminated vernier scales, touch feed controls and high speed auxiliary head for angular work. The base carries a 2 -horsepower motor which operates a worm gear drive and a bronze worm wheel fitted into a gear housing integral with the base. The worm gear, through a shaft, drives a compound eccentric and, by means of a scotch yoke, it permits adjustable vertical recipro-
cating motion to the ram, delivering ample power for heavy cutting. The Master head receives its power through a V-belt from a motor adjustably attached to it. Six backgeared speeds for driving cutters, ranging in size from a 1 -inch end mill to an 8 -inch face mill are provided. This master head can be elevated within the ram by means of either hand or power feed. It also serves as a carrier for all removable attachments and is fitted with a central boss about the spindle which serves to centrally locate attachments. The maximum height of the master head spindle above the table is 20 inches-the minimum

height is 6 inches. The taper hole in the spindle is fitted with sleeves to take B \& S and Morse tapers and an adapter for spring collets. The exterior of this spindle is threaded, with a shoulder to take chucks. The nose of both the master head and the vertical head spindles are identical.

Air Valve

- C. B. Hunt \& Son, 1862 East Pershing street, Salem, O., announce a new double 4 -way hand-operated air valve for controlling two individual double-acting air cylinders with only one valve. It has many industrial possibilities on air operated clamps, fixtures, knives or any application where it is necessary to have one point of control for two cylinders that lead and lag each other in their respective actions. The sketch illustrates a conventional hook-up of this new valve to two double-

acting cylinders where the work stroke of the first cylinder (A) ad. vances before that of the seeond cylinder (B) ; and the return stroke of cylinder (B) is completed before the corresponding stroke of the first cylinder (A).

Cut-Off Machine

- Quijada Tool Co., 5474 Alhambra avenue, Los Angeles, announces an abrasive cut-off machine capable of handling structural shapes, round stock and tubing up to 6 inches outside diameter. It makes straight or angle cuts at fast speeds. Shielded ball bearings are used on both the 3 -horsepower and wheel spindle. The quick acting vise provides a rigid support on both sides of the cut. The machine is equipped with a variThe machine is equipped with a rim
speed of the cutting wheel constant. This simple adjustment is made by moving a pointer until it coincides with the rim of the wheel.

Drilling Machine

Hamilton Tool Co., Hamilton, O., has placed on the market a Varimatic drilling machine which features an infinitely variable speed adjustment in two ranges of speeds. These are provided by a 2 -step driving and spindle pulley. The complete speed range of the machine is 840 revolutions per minute to 9300 revolutions per minute with a con-
stant speed 1725 revolutions per minute motor providing the power. This machine also can be furnished with a higher minimum and a greater maximum speed by changing the driving pulley and belt. A graduated speed dial on the speed changing hand wheel shows the speeds at which the spindle is operating. The drilling unit is self-contained and swings radially on the column, locking to any position. All controls are manually operated. The $6 \frac{1}{2}$. inch vertical adjustment of the drilling unit is accomplished by an elevating screw. The base of the machine measures $15^{1 / 2} \times 10$ inches. Overhand of drilling unit from cen-

rodine

Makes Pickling Efficient

\author{

- Stops Waste of Acid and Metal.
}
- Prevents Over-Pickling.
- Eliminates Acid Fumes.
- Reduces Acid Brittleness.
- Cuts Costs.
- Increases Tonnage.

Bulletin on request

AMERICAN
DEPT. 310.
Detroil, Mich., 6339 Palmer Ave., E.
Canadian Branch, Walkerville, Ont.

ter of chuck to column is 5 inches. The machine is powered by a $1 / 4$. horsepower 1725 -revolutions per minute vertical motor.

Rivet Heater

图 American Car \& Foundry Co., 30 Church street, New York, announces a Berwick electric aluminum rivet heater featuring twelve slots on each side so that 24 rivets can be heated at one time. It will handle rivets from $1 / 6$ to $11 / 8$ inches in diameter. Equipped with automatic temperature control, the heater will reach any degree of temperature between 0 and 1000 degrees. Within three minutes, 24 rivets of practically any size can be heated to 400 degrees. This heater can be used for annealing rivets, or for heating them to drive while hot. The rating of the unit is approximately 16 kilovolt amperes and it can be built for any al. ternating current voltage. There are two ranges of speed-high, to get the heater hot, and the other

slow, to keep it heating. The heat is generated by a number of 430 . watt units. The entire oven is insulated with a 3 -inch thickness of asbestos bricks or sheets. The weight of the machine is approximately 400 pounds.

Voltmeter

© General Electric Co., Schenectady, N. Y., has introduced a new portable 15 -kilovolt high-resistance voltmeter for approximate indications of voltage. It is for use on 6900 and 12,000 -volt circuits. It has a scale marked 0.15 kilovolts and is constructed to withstand 30 kilovolts momentarily since this voltage may be experienced when phasing out 15 kilovolt circuits.

When used for phasing-out service, the instrument will show ap. proximately 0 voltage if the correct phase relationship is obtained, or will go off-scale, indicating an im-

proper connection. Basically, the voltmeter consists of a miniature instrument connected in series with a $1 / 4$-watt neon lamp and two highvoltage resistors, treated to maintain stability under varying atmospheric conditions. A transparent plastic tube encloses all parts. The indicating instrument used is a rec-tifier-type milliammeter.

Pump Head

- Peerless Pump Co., 301 West avenue 26, Los Angeles, announces improvements in the design of geared heads for its deep well tur-
bine pumps. The take-off shaft of each pump now can carry increased loads. Double-row ball bearings support horizontal and vertical shafts, and are placed adjacent to the spiral bevel gears. An extra heavy-duty thrust bearing supports the lower end of the geared shaft sleeve, while an additional thrust bearing supports the outer end of the horizontal shaft.
All bearings are lubricated by an oil pressure system. To prevent leakage of oil from the outer bearing on the take-off shaft, an oil seal is embodied on the end of the bearing housing. The head assembly is streamlined and the gearing is com-

AMERICANRadial BEARINGS

Use them wherever the load is radial, and American Radial Bearings will return dividends on your investment . . . dividends in friction-reduction . . . dividends in length of satisfactory service.
American Radial Bearings, of the grooved inner-race lype, are simple in design, pre-
cise in construction. This style of bearing can be furnished in any standard S.A.E. dimension, with either the inner or outer race grooved for cage retainment. Both races and rollers are made from a special, heat-treated alloy steel.
Specily American Radial Bearings next time.

AMERICAN ROLLER BEARING COMPANY, PITTSBURGH, PA. Pacific Coast Office: 321 W. Pico St., Los Angeles

A M PRCM A

Heavy-Duty ROLLER BEARINGS
pletely housed. Standardized speed ratios of 1 to $1,11 / 3$ to $1,1 \frac{1 / 2}{}$ to 1 , and 2 to 1 are provided.

This head, known as the Gearturbo provides for connection with a flat belt pulley, V-belt or for direct connection through a needlepoint or universal shaft to gas engines, steam engines or any other power unit.

Magnet Filter

■ S. G. Frantz Co. Inc., 161 Grand street, New York, announces a new PQ permanent magnet FerroFiltel for lube oil purification. It magnetically extracts coarse and small iron particles (even as microscopically fine as $1 / 25,000$-inch diameter) from suspension in lube oil circulating systems at no operating or main. tenance cost. The filter consists of a stack of magnetized screens enclosed in a cylindrical casing through which the oil flows. These have triangular mesh openings of about $1 / 8$-inch.
Although offering little resistance to the flow, their design presents hundreds of feet of strongly magnetized edges to the oil. These edges comb and recomb the oil. The mag. netic particles are held firmly to the screen edges until the filter is cleaned. The unit is placed in the oil pipe line and becomes part of the circulating oil system.

Carbon Brush Concaver

- Ideal Commutator Dresser Co., 5076 Park avenue, Sycamore, Ili.. announces a carbon brush concaver which facilitates the forming or brushes to the commutator curvature. It is used as a templet to locate accurately the arc segment on the cutting guide slot, which are corresponds to the contour of

the commutator or slip ring. After this segment is found the new brushes may be formed without further setup. Any electric drill or electrical shaft drive may be used to operate the cutting head. The complete unit includes aluminum guide casting, cutting file, removable angle plate with clamping device and C clamp. It takes practically any size brush for 4 to 48 -inch diameter commutator.

Better Bites

(Concluded from Page 48)

milling saws usually are mounted between driving flanges of " 3 -dowel pin" type, as depicted in Fig. 4. This insures transmission to these cutters of the power to drive them to take the extraordinarily heavy cuts of which they are capablesuch as, for instance, that of an 8 inch blade cutting through a 2×3 inch bar of SAE 1020 steel in 30 seconds.
An unusual thing about the new curled-chip system is that teeth of exactly the same shape as far as profle is concerned give equally satisfactory results regardless of whether employed on metal-cutting band saw blades of 8,10 or 12 teeth per inch; on power hack saw blades 14 to 24 inches in length; on milling saws 6 to 16 inches in diameter; or on inserted tooth cold saws from 11 inches up to approximately 10 feet in diameter.

Stand Heavy Service

These inserted-tooth cold sawsthe design of which is shown clearly in Fig. 5-are capable of the hardest kind of service in the latest types of heavy duty circular sawing machines. These segments, which are readily replaceable, have cutting edges on their teeth which are integrally fused in place-not merely welded or brazed in the old-fashioned conception of those terms. The bodies of these segments are of tough alloy steel which will not crack under conditions such as is encountered in steel mills, forging plants, shipyards, ordnance establishments, etc.
Tests conducted under practical working conditions indicate that under ordinary circumstances, the solid and segmental saws built on the curled-chip system can be operated safely at the following speeds in the materials specified in the table:
Aluminum-Up to 5000 lineal feet per minute
Brass, copper cast-- 1400 lineal feet per minute
Brass, drawn- 1400 lineal feet per minute
Copper- 350 lineal feet per minute
Bronze- 350 lineal feet per minute
Carbon Steel- 150 lineal feet per minute
Nickel, chrome-nickel steel - 56 lineal feet per minute
High speed steel-- 33 lineal feet per
minute
Nonrusting steel- 33 lineal feet per
minute minute
Of course, these figures are only approximate and in some cases the safe speed may be found through operating experience, to be somewhat higher. When it comes to recommending feeds and tooth spac-
ing, no general rules can be given. Those factors vary widely in accordance with the nature of the shapes to be cut--whether tubing, structurals, solids or billets. The experience of the saw manufacturer should be called upon in determining these factors, and initial cuts should be watched carefully to make sure that behavior is entirely satisfactory.

Rigid holding of the work is of course of tremendous importance toward enabling the saws to be pushed to their utmost capabilities with power and rigidity of sawing machines of equal importance.

Concrete Dye Now
 Made Alkali-Proof

E Colorflex, a dye for concrete floors made by Flexrock Co., Dept. S, 2300 Manning street, Philadelphia, now is reported to be totally alkali proof. It is available in four colors -battleship gray, linoleum brown, tile red and emerald green. In addition to being alkali-proof, the dye has withstood tests of concentrated sulfuric acid, a 50 per cent solution of water and sulphuric acid, carbolic acid and spillage of alcohol that was ignited.

Trake any key feature of these famous doors - you'll quickly see how it boosts door efficiency: First, Kinnear Rolling Doors are more ideally suited for timesaving, step-saving Motor Operation. And take their vertical, coiling upward operation! That saves floor, wall and ceiling space, and keeps the doors out of the way of plant operations and all traffic when open. Or look at the rugged, all-steel construction! That not only assures longer wear - it also gives you protection against intrusion, riot, sabotage and theft - it defies weather, resists

This rugged Kinnear Motor Operator opens the doors, quickly, smoothly, easily. Built for long, carefree, economical, heavyduty service! Easily added to any Kinnear Rolling Donr-whether new or now in service.
accidental damage and repels fire. Again, there's Kinnear's positive, effective spring counter-balance-assuring smooth, easy operation! Check the other gains your plant will make with Kinnear Rolling Doors . . . write for complete catalog TODAY! The Kinnear Manufacturing Company, 1780-1800 Fields Ave., Columbus, Ohio.

Stretch it . . . To Test it

(Concluded from Page 64) on such samples on the portions between the initial strain lines, as these portions probably are elongated about 5 to 8 per cent, the clongation value selected for the test. Fig. 2 shows a sample of this.

Grading: Generally the appear ance factors that have been considered when grading impact spots apply to the grading of stretch samples, with the possible example of stretcher strain on the latter. Dark test areas indicate more enamel
clinging to the metal than on light test areas. Close-packed fine particles have been taken to mean that a greater frequency of points of attachment exist than with coarse particles. In either case, all enamel except that which is close to the base metal shatters and becomes detached from the specimen, leaving small enamel particles attached to the metal surface. Grades ranging from excellent to very poor may be established. A possible system suggested for comparison is shown by the samples in Fig. 3.
To check correlation of results

The Parade of HELICALS AND HERRINGBONES to Industry

is Ninety-eight more Helical and Herringbone gears are on their way for use in industry's business of transmitting power. Day by day Horsburgh \& Scott Herringbone and Helical gears are becoming more popular because of their greater
accuracy greater resistance to wear. These and many other features make them most economical, smooth and quiet for transmitting power between parallel shafts.
obtained by stretch testing with microscopic and impact methods, a test series was run in which the enamel processings were varied. Fig. 4 represents a group showing effect of variation in the firing time from 1 to $91 / 2$ minutes at 1600 degrees Fahr. All samples were examined by impact, stretch and m. croscopic methods. All samples are from the same 20 -gage sheet. The portions tested by impact and those microscopically examined were enameled as one piece with the portion to be stretched. They then were sheared apart and tested.
Two impact spots appear with each sample. The upper spot is made by an impact machine which allows an 8 -pound weight to fall $221 / 2$ inches on a $1 / 2$-inch steel ball in contact with the sample. These spots are a full $1 / 6$-inch deep. The lower impact spots were made in the same way except that a 5 -pound weight was allowed to fall $12 \frac{1}{4}$ inches on the ball. This was insuf. ficient to draw the metal $1 / 8$-inch, so the grading area is considerably reduced and its appearance changed somewhat. The band or fringe of fractured enamel forming an outer border of these shallow impact spots appears much like those ob. tained with early fracturing with 1,2 or 3 per cent stretch.

Bond Variations Noted Readily

Detailed examination of Fig. 4 will show that the differences in bond due to variations in enameiing practice are more readily detected on the flat stretched specimens than on the impact spots. in a good many cases the impacts looks alike while a difference can be observed readily in the drawn sam ples. Perhaps this is partly because the drawn samples have a larger and more representative test area which can be judged more easily by the eye.
The photomicrographs show the interface between the enamel and the metal. A layer of iron oxide exists at the interface in the cases of extremely poor bond, but disappears and is replaced by interlocking fingers of metal and enamei as the bond tends to improve.
It is evident the stretch testing method has a number of advantages which make it extremely valuable in judging the comparative adherence of porcelain enamel to sheet metal. The only important limitation of the method appears that it is confined to flat specimens and is not adaptable to checking irreg. ular surfaces. However, this should prove no serious fault as in any enameling control method adopted in actual production work it would be simple to process flat test speclmens along with regular work to check enameling practice.

Usual tensile-testing equipment
may be supplanted by a device now being contemplated having one fixed grip and one movable, the lattel connected by a gear system to a small motor. Specimens could then be clamped in position and, by using automatic stops, be drawn as desired without the need of gage marks. Grips could be designed to hold enameled surfaces firmly, thus permitting samples to be cut directly from enameled panels and tested. This device should reduce the testing time per sample to where it would be comparable with the impact test.

hibliography

1. R. R. Danielson and W. C. Lindemann, "A Method for Testing the Cross-Bending Strength of Enamels," Jour. Amer. Cer. Soc., 8 (12), 795 (1925).
2. W. N. Harrison and G. T. Thaler, "A Test for the Adhesiveness of Vitreous Enamels to Metal," Jour. Amer. Cer. Soc., 11 (11.), 803-11 (1928).
3. N. N. Cholodilin, "Manufacture of Enamel Colors and Enamel," ZitelnTech. Soc., Serles 28, No. 2247, 9 pr (1936).
4. R. R. Danlelson and B. T. Sweely, "The Relations Between Composition and Properties of Enamels for Sheet Steel," Jour, Amer, Cer. Soc., 6 (10) 1011-29 (1923).
5. H. H. Holscher, "Vltreous Enamel Impact Machine,', Jour. Amer. Cer. Soc., 15 (6), 353-57 (1932)
i. J. E. Hansen, "A Manual of Porcelain Enameling," Enamellst Publishing Co., 1937, p. 360-364.
6. Walter C. Rueckel and R. M. King, "Mechanles of Enamel Adherence, I, II, and III," Jour. Amer. Cer. Soc., 14 (10), 777-94 (1931).
7. H. E. Ebright, C. D. Clawson, and I. T. Irwin, "Some Sheet-I ron Ground-Coat Reboll and Bond Studles Using Several Enameling Stocks," Jour. Amer. Cer. Soc., 16 (7) 305-11 (1933).
8. R. M. King, "Mechanies of Enamel Adherence X , The Iron Oxide Layer in Sheet Steel Ground Coats," Jour. Amer. Cer. Soc., 17 (7), 215-219 10. J. J
9. J. Canfleld, "Things We Are Learning About Adherence," Enam eling Observer, 1 (3), 3 (1938)

Plastic Packing Now
 Has Reinforced Back

Crane Packing Co., 1800 Cuyler avenue, Chicago, announces a new development in the manufacture of its Super-Seal plastic packing. It is now being made with a patented tape back reinforcement securely vulcanized to the outer sur face of the packing. This rein forcement replaces the old frictional woven cotton jacket and now a nonfrictional surface bears directly against the moving part. Due to the reinforcement, this new packing is extremely pliable and can be bent around small diameter rods and shafts without fracturing or cracking, or formed into small inside diameter rings without distortion.
Super-Seal itself is a dry-graph-
itized plastic
long-fiber asbestos, antifrictional metal particles and special binders. It contains no oils that can be driven off by heat or pressure and it is recommended for centrifugal and rotary services such as centrifugal feed pumps, low-pressure steam rods, valve stems, centrifugal pumps, rotary pumps and expansion joints. It is available in six styles for special services.

Each of the types is available in sizes from $1 / 4$ to 1 inch graduated by sixteenths, in coils, standard length spirals or in die-formed rings or sets to stuffing-box dimensions.

"Controlled" shot, Grit To Aid in Finishing

Standard shot and grit now can be controlled by a new process so that each size is given the correct processing in order to produce the best degree of toughness and hardness in relation to its size, according to National Metal Abrasive Co., 3560 Norton road, Cleveland. Both shot and grit now can be bought to give the most advantageous results for each particular application. Their use is claimed to reduce operating costs.

There's no substitute for Kester Cored Solders when you're building quality equipment. When you solder metal parts, you have to be sure they're going to stay soldered or the entire usefulness of the product itself is endangered.
That's why manufacturers in every branch of industry are standardizing on famous Kester Solders. Every spool is guaranteed highest quality and is registered to exceed the Class " A " specification of The American Society for Testing Materials. This is the highest solder stamdurd.
When you work with many kinds of metals and alloys, from gray iron to stainless steel, you need many types of solder to get the best results.

Here's where QUALITY COUNTS!

Kester makes them all.
The varieties of Kester solder-alloys, solderfluxes, strand and core-sizes are almost endless.
Kester engineers, with 43 years of solder experience back of them, can help you select the right solder for each metalworking operation. Ask for their expert advice on your soldering problems. They can save you time and money and help you improve your products.
There is no obligation for this cooperation.

KESTER SOLDER COMPANY

4222 Wrightwood Avenue, Chicago, Illinois

As Workers View Election

(Concluded from Page 33)

turns. We were sitting in his office in one corner of the works administration building. We could look out of the window and see the No. 1 gate. He called attention to the crowd of men coming through the clock house and then said, "I was down in Washington last week and I was fortunate enough to see the crowd of government employes pour out of the buildings there. If you don't think the government has an army of men working, you should check it with your own eyes.

Boy, that crowd of men coming out of our plant now is a pigmy along side that of the Capitol. If we had to have as many employes to run our plant as I saw there, we'd sink in 24 hours."
The question was asked concerning the attitude of the men out in the shop since the election. "There has been no change in some parts of the plant," he replied, "though some of our foremen report the men are getting more cockey and have to be handled with kid gloves."
This condition seemed to prevail in many other plants as well.

In one section of a steelmaking

An engineering masterpiece is the George Washington Bridge, handling over 20,000 heavy vehicles a day. Like the George Washington Bridge, GARLOCK 90 Waterproof Hydraulic Packing is also constructed for heary duty. Manufactured from the longest fibre, imported roving, sorted and graded by tlax experts and braided with extreme care, GARLOCK 90 is unusually strong and durable. Recommended for rams, accumulators, hydraulic pumps, elevator plungers or outside packed pumps handling cold water or cold oil. All sizes from $1 / 8^{11}$ to 3^{11}.

THE GARLOCK PACKING COMPANY, PALMYRA, N. Y.

In Canada:

The Garlock Packing Co. of Canada Ltd., Montreat, Que.

district there is a fabricating plant on the outskirts of the city. A high executive of this company in ques. tion formerly was the sales manager of a large steel company. He knows how to sell steel and he knows how to buy steel. His telephone operator announced my presence and in the course of time we were engaged in conversation in his office.
"I voted for F.D.R. the first time," he stated. "I've always voted the Democratic ticket. The gentleman made mistakes, I grant you. Plenty of them. But I'm always willing to give a fellow a second chance, so I voted for him the second time hoping that hed do at least a little better. If you've seen what I've seen the past four years then you'll understand why a Democrat of long standing cast his vote for a Republican the other day
"Yes, but how does it come you've got the President's picture hanging on your wall?" I inquired.
"For two reasons," he said with a twinkle in his eyes. "First, the fellows who look over your books for tax purposes, don't usually squint so closely when they see that photograph; and second, when the Republicans come in for contributions they take a look at the picture and not knowing my political stand they sort of wonder how much to request." And then he burst into a roaring laugh. No wonder he can buy and sell steel to advantage.

Armament Program-Leverage

"I'll tell you, J.D.," he says, "the party has the armament program to play with and it seems to me they'll soon use it as a leverage. They've got to become more triendly with industry for they're going to need the steel mills more than ever. At the same time they've got to be on friendly terms with labor. In other words they've one end of the lasso around the industrial body and the other end around the labor body and in short order we may expect a pull, first in this direction and then a pull in that direction. The armament program will ring the bell. The canaries will begin to sing. They'll say, 'Industry, you be patriotic and show the country what you can do in the face of emergency; labor, see how the mills are humming and how your job is assured for months to come:"
"Yes, but the war will not always be with us."
"That's right and how solemn the thought. Back in 1932 we were working our mills at 10 per cent of capacity. The work was shared. All our men at least got a few days work. The picture wasn't pleasant. work. The picture wasn't plege will
One of these davs the bugle
announce she's over and then what? When the armament program collapses, then what are the boys going to say? I may be crazy in some of my assertions, but I'll bet we'll not be working 10 per cent of capacity."
While chatting with another steelworks official he pointed out that we're living in the land of "Give Me". "Give me this and give me that. Old age pensions, relief served on various platters, grocery orders here, coal orders there. Too many WPA workers are playing leap frog in the land of "give me". The sooner we recognize man must earn his bread by the sweat of his face until he returns unto the ground, and not by leaning on a shovel, the sooner our country will be restored to normalcy."
"Some feel that the election was lost because
My statement, however, was never completed for he interrupted, "Lost, my eye. Some folk were just on the losing side, that's all. Nothing was lost. The same prin ciples that existed before election still remain in all their freshness. Let us not forget them for they still are worthy of serious consideration as long as we're playing Alice in Wonderland."
His parting remark was this:"The boys down at Washington probably will make every effort to get back of business, for some one in this country will be called upon to pay the taxes for the emergency condition that has been set up in our land. If they're smart, they'll not let the grass grow under their feet."
Much more could be written but enough has been presented to give a cross section of thought out where iron ore is brought into the plant in open hoppers and finished steel sneaks out the finishing end in sealed cars or wrapped for trucking to various points of destination.

Wind Power May Feed Vermont's Power Lines

Wind power may soon feed vermont power lines according to Industrial Butletin, published by Arthur D. Little Inc., Cambridge, Mass.

Utilizing vanes patterned after

 airplane wings with a wing-spread approximating that of the largest modern bombing planes, the initial experimental vento-electric station is designed to produce 1000 kilowatts enough to light five 100 -watt lamps apiece for 2000 families. Its location on Grandpa's Knob, atop a Green Mountain ridge near Rutland, was selected after elaborate meteorological investigation. It is expected to provide wind sufficiently steady for an availability factor greater than that for stored wateras used in New England, and electric power competitive with the cheapest firm power now available. The project depends not only upon current research in aerodynamics and meteorology, but also upon recent engineering developments of numerous industries.

The principal problem has been to provide the generating unit with accurate speed regulation, despite tremendously fluctuating wind velocities. Uncontrollable gusts would raise the output from 1000 to 3000 kilowatts in less than 3 seconds and seriously overload the generator. Patentable developments are claimed to overcome this prob-
lem together with other problems, such as ice-formation, which have arisen during the development studies.

The choice of a site can make or break the installation. Although this initial installation is on a mountain top, meteorological surveys indicate that suitable winds exist at such diverse locations as the Great Plains and on various marine islands.

With capacity from other sources available to control current frequency and for use when a wind station is becalmed, a dependable supply of electricity may be provided for general distribution.

Await Your Call

- You can avoid costly, irritating delays when purchasing bronze bearings. Simply specify "JOHNSON GENERAL PURPOSE" - and your order will be shipped the same day it is received. Vast stores of over 800 individual sizes are maintained in every principal industrial center. Every bearing is the highest quality possible . . . machine finished to standard tolerance for immediate assembly.

JOHNSON GENERAL PURPOSE BEARINGS will cut your maintenance costs. Cast in S.A.E. $64-$ Copper 80%; Tin 10%; Lead 10% - they deliver unexcelled performance and long bearing life. For SERVICE and ECONOMY - try Johnson Bearings on your next job.

Write for Nem CATALOGUE

76 Pages - fully illustrated - lists and describes the most complete sleevebearing service in the world. Write for your free copy Today.

MATERIALS HANDLING-Continued

New Radiator Plant

(Continued from Page 75)
solder only about $1 / 4$-inch on each face; careful control of the level of flux and solder is essential to hold this depth.

The solder tank is kept filled from an auxiliary preheat pot. The tank is heated through pipes at the bottom in which butane gas is burned at $1 \frac{1 / 2}{2}$-pounds pressure. Temperature of the solder is held closely by means of recording and controlling pyrometers.

Frame Lifted by Overhead Arms

A turnover station is provided after one face of the core has been soldered. Following the soldering of the reverse face, the frame is lifted off the core by overhead arms and returned to the starting point on an overhead conveyor. Cores are placed on a roller table and are moved to an operator who gives each unit what is termed a "header" dip in another solder tank, the header being the end of the core where the lockseams of the outer ribbons are exposed.

Cores next are assembled to top and bottom tanks, being mounted in universal fixtures, 12 of which are carried on a 40 -foot chain conveyor loop. Tanks are attached to the core by hand soldering irons. At this point the outlet fitting also is soldered to the bottom tank.

The assembled cores and tanks then are placed on trays carried on a 108 -foot chain with 36 fixtures which move the units to the first test station. One end is sealed and air pressure introduced at the other
end while the assembly is submerged in water. Rising bubbles indicate any leaks, which are quickly repaired with torches or hand soldering irons. From this point, a 60 -foot chain conveyor with 20 hangars carries the radiators to the next operation, termed the "sidewall solder-off," involving another conveyor system duplicating that used in assembly of tanks and cores, except that only 10 universal fixtures are provided on the 40 -foot loop. Here sidewall assemblies (strips and reinforcing) are torch soldered to the core.

(Concluded Next Week)

Mirrors of Motordom

(Concluded from Page 36)

cent. However, some engine builders are preparing to change to forged steel crankcases, in the hope of still further strengthening this vital part without undue increase in weight.

Cylinder barrels are the most expensive parts of radial engines and must be of steel free from any inclusions. First made from S.A.E. 1015 steel, with 218-221 brinell, they are now generally of S.A.E. 4140, with $300-337$ brinell. Some 1000 horsepower engines are using nitralloy steel for barrels, the bore being nitrided to a case depth of $0.020-0.025$-inch which gives Vickers hardness of $850-1000$ and provides a barrel which will last the life of the engine.

Another vital element in radial engines is the master rod bearing.

Furnished in both Round Strand and Flattened Strand constructions

- in either Slandard or Preformed Type.

Practice today is to use a steel shell, solid or split with $1 / 32$-inch of lead bronze lining. The bronze contains 20 per cent lead, with slight amounts of silver or tin for hardening. Mr. Moore suggested that the need may be evident shortly for something better and he suggested the use of a steel backing lined with pure silver, perhaps coated with lead or a mixture of lead and indium.

Quality, Vital Consideration

A vital consideration in all aircraft steel is the control of quality. Small defects are serious. Grain flow in forgings must follow the contour of the part. Holes, small fillets, sharp corners, even rough machined surfaces often prove to be stress raisers which have a devastating effect on fatigue life. Even identifying marks on steel, stamped or etched, may be the nuclei of fatigue cracks.
Magnaflux testing, with both direct and alternating current, is used widely to detect small cracks in finished steel parts which may es. cape visual detection or which may have been easily covered over by grinding.
Mr. Moore illustrated a wide assortment of parts in which fatigue cracks were detected by the magna. flux method. Failures originating from this cause are common in the automotive industry, although their results usually do not prove so disastrous as they might be in the airplane engine.

An interesting point brought out in the discussion of Mr. Moore's presentation was the fact that completely new standards for aircraft steels now have been developed and henceforth will be specified on drawings of parts. These specifications are known as aircraft material standards (A.M.S.) and are available from the Society of Automotive Engineers at $\$ 6$ per set. Steel specifications cover not only analy. ses but also other factors such as hardenability, magnaflux testing. etc.

A few examples of the corresponding S.A.E. and A.M.S. speciflcations are as follows:

S.A.E.	A.M.S.
1112.	501
1335.	541
4340.	6412 $6250-2 \cdot 34$
3312.	

*Depending upon carbon content, the four varieties covering from 8 to 17 points of carbon.

Mention also was made of a new method for testing nonmagnetic 18 . 8 chrome-nickel steel wire for small defects. In use at the Naval Aircraft Factory, the method is electrolytic in nature, being based on the behavior of eddy currents.

By LA SALLE STEEL COMPANY

ANOTHER LEADING FIRM ADOPTS NEW BAR STEEL

Kalamazoo Railway Supply Replaces H. T. 4140 with
STRESSPROOF

"Kalamazoo Means Service to You" is the slogan of onc of the Nation's largest railway equipment manufacturers, the Kalamazoo Railway Supply Co. It is not surprising therefore to find among the materials this firm uses in building its equipment the new all-purpose steel bar STRESS. PROOF.
This new cold finished bar, for example, is used for drive axles in the " 51 " and "52" railway motor cars famous in railway maintenance circles for rugged construction and simple cconomical operation.

Straightening is Eliminated

Their drive axle is 63 inches long, keyseated in the center and threaded at either end. Until quite recently heat treated SAE 4140 was the standard steel for this part, principally because it possessed the required strength. But a heat treated steel is far from easy to machine, and warping after machining-particularly over a 5 -foot length-calls for subsequent straightening.
When shown that STRESSPROOF would undoubtedly solve both problems, and was at the same time strong enough to stand up under heavy duty service characteristics of railroading, a first order was put into
slock.

Machining at 80% of Bessemer screw
(Conrinued on Page 2, Col. 3)

Users of Flats Find Unvarying Uniformity Key to Lower Costs

Bright, Smooth Surface and Freedom from Defects Make La Salle Flats Valuable Aids to Stepped-Up Efficiency

"Re-engineering" of specifications to take advantage of modern steels generally concern bars in carburizing, alloy, heat treating or other grades. Flats, to many usersand suppliers as well-are just flats and don't ordinarily receive much consideration.
Yet according to La Salle representatives who regularly make the rounds of steel users, flats in the right grades and finish offer almost unlimited opportunities for whitling down production costs. Here's a composite picture drawn from the experience of dozens of users who have discarded the "just plain flat" idea in favor of the grade shown superior by factual data and comparative cost records.

Rejections Reduced by User

Company "A" was a manufacturing concern which used a large supply of flats in fabricating racks, stampings, guides and similar items. From past experience, the firm had accepted as a matter of course a high percentage of rejects.
Pitted and rough surfaces were a common occurrence, often necessitating great wattage of material. Seldom was fabrication possible without grinding down flats to a smooth surface.
An analysis of the user's steel problem

by a La Salle representative hrought this condition to the management's attention. A trial order of La Salle flats was run through the plant with resulte along this line:

Grinding Is Minimized

Grinding which was formerly regarded as a major production operation, was minimized to the point where a good thare of parts could be made from the material just as received from the La Salle mill. Bright, shiny finish and smooth surface without defects often made possible plating and other operations without any-or at best very little-grinding. Corners were clean, sharp and square. Sizes were well within standard accuracies. Of course, costs on flat applications came down and "La Salle" regularly went on future purchase orders for flats.

Uniformity Assured by Control

Behind this typical occurrence in the user's plant is a story of unusual control. Since the first requirement in flats is uni-formity-in structure of steel as well as surface-La Salle guarda quality right from the start. Metallurgical specifications for the material-from the first manufacturing operation are set up within predetermined tolerances-and rigidly held within those tolerances.

Thus the raw material is several steps ahead in uniformity before a single finighing operation takes place. From that point on, each subsequent step is examined for quality. The result is a product so reliably uniform that plant after plant has standardized on La Salle Flats with significant reductions in production costs.

Advantages of 1020-90 Analysis

La Salle Flats are available in the wellknown La Salle 1020-90 (now designated as SAE X-1020) analysis. This is the grade developed by La Salle and commonly recognized as the best non-alloy case carburizing steel available. At the time of its introduction it set a new high standard for uniformity-a uniformity that pays dividends to the user of flats in terms of excellent carburizing qualities, freedom from surface defects and exceptional homogencity, density, normality and resistance to shock.

Complete Size Range Available

All standard sizes are regularly carried in stock, from $1 / 8^{\prime \prime}$ thick by $1 / 4^{\prime \prime}$ wide to $2^{\prime \prime}$ thick by $12^{\prime \prime}$ wide (plus flats $3^{\prime \prime}$ thick by $6^{\prime \prime}$ wide) in 12 foot lengths. And despite

[^7]
Metallurgy FOR THE SCREW MACHINE ENGINEER

Everyone knows there is more to the machining of steel than pushing the starting button. The skill of the operator, the tools used and the equipment are all of primary importance.
But of equal importance with these 3 is a knowledge of steel on the part of the machinist. Different steels naturally require different cutting techniques. It is the operator with a general knowledge of the various grades who will not only find his work made easier and faster, but will also be able to report larger production runs day after day.
The operator's greatest machinability problems generally stem from the higher carbon alloy steels since they are usually furnace treated and the resultant structure can vary considerably.
Alloy steels are usually machined in the annealed condition and it is the structure resulting from the annealing treatments that determine their machinability. At approximately the same hardness the structure may be lamellar pearlite or completely spheroidized.
Now lamellar structure is considered desirable for drilling, broaching, milling or similar types of cutting or where smooth finish through light finishing cuts is desired. Spheroidized type of structure, on the other hand, is usually found best for heavy form cutting and lathe cutting where a considerable volume of metal is to be removed. Where a combination of machining operations of both types are required combination structures are employed. Improvements in machining qualities are noted when any of the above structures are Cold Drawn.
Heat Treated-in-the-Bar Alloys are pro-

Right: One of thn famous "Kalamazoo Safety First" line of Safliway motor cara. STRESSPROOF unnd STRESSPROOF Mind
for the drive axile for the drive arle,
repigacing
H. T.
4140 at considerahle savings in production cost.

Bolow: Close-up of STRESSPROOF motor cur drive axle. $\Lambda \times 10$ is 63 inches long.

LA SALLE FLATS ANSWER NEED FOR UNIFORMITY

current increased demand, supplies are available for prompt mill shipment, an atribute of the long-standing La Salle policy of maintaining production facilities considerably in excess of the greatest demand in any 3 months' period.
duced to minimum physical strengths and the structure therefore is controlled by the specified physical properties. Incorrect quenching practices distort the desired structures from a machining standpoint and result in a wide variation of center to outside hardness.

Therefore, when machining the hard steels insist on steels that have been correctly treated at the mill such as La Salle's TUFTORK (Heat Treated 4140), Annealed 3140 and Annealed 4140 . It will speed up production and help considerably in extending tool life and holding down rejections.

STRESSPROOF Shafts Re-

 duce Machining Operations For Railway Supply Firm (Continued from Page 1. Col. 1) stonk and with minimum warpage, STRESSPROOF pulled down production costs. Machining rates were upped, and costly Machining rates were upped, elminated. straightening operations entired from lowerStill further savings resulted material costs. To cap it off, one of the Nation's large railway systems ran exhaustive tests on cars with the STRESS. PROOF axles and gave them unqualified approval.

When Not to Use STRESSPROOF

STRESSPROOF by reason of its unique wearing qualities can be substituted for case carbutized steel in many applications. It should be ized steel in many applications. noted, however, Y , 90,000 or $100,000 \mathrm{lbs}$. p.sti. minimum (depending on size), and therefore, is not suitable for parts case carburized and subb jected to high unit pressures and severe Brinelling action.

Anolytit	Comparative	Physical Brinell Hardness	Properties $\substack{\text { Tenito } \\ \text { Strength } \\ \text { pui }}$	Alloy Heat $\substack{\text { Yield } \\ \text { Point } \\ \text { pin }}$	Treating Steel-(Heat Treated			Purpose
					$\begin{aligned} & \begin{array}{l} \text { Elonga. } \\ \text { tion } \\ z^{2} \\ \hline \end{array} \\ & \hline \end{aligned}$	$\begin{gathered} \text { Reduc- } \\ \text { tion of } \\ \text { Area } \% \\ \hline \end{gathered}$	$\begin{aligned} & \text { Izod } \\ & \text { Impact } \\ & \text { Fr. Lbst } \end{aligned}$	
TUFTORK (Heat Treated La Salle 4140)		230-290	125,000	105,000	16	50		A heat treated in-the-bar steel. Parts require no heat treating after machining. Physical properties shown are guaranteed minimum.
4140)La Salle 4140	$\begin{array}{r} 600 \\ 800 \\ 1000 \\ 1200 \end{array}$	$\begin{aligned} & 436 \\ & 372 \\ & 292 \\ & 236 \end{aligned}$	$\begin{aligned} & \hline 220,000 \\ & 189,000 \\ & 147,000 \\ & 118,000 \end{aligned}$	$\begin{array}{r} 196,000 \\ 137,000 \\ 123,000 \\ 90,000 \end{array}$	$\begin{aligned} & 11 \\ & 14 \\ & 18 \\ & 24 \\ & \hline \end{aligned}$	$\begin{aligned} & 38 \\ & 49 \\ & 56 \\ & 64 \\ & \hline \end{aligned}$	$\begin{aligned} & 7 \\ & 24 \\ & 56 \\ & 83 \\ & \hline \end{aligned}$	Best machining of all alloy steels. Combines strength, toughness and reliable response to heat treatment.
$\begin{aligned} & \text { La Salle } \\ & 3135 \\ & 3140 \end{aligned}$	600 800 1000 1200	$\begin{aligned} & 420 \\ & 355 \\ & 270 \\ & 225 \end{aligned}$	212,000 175,000 136,000 110,000	$\begin{array}{r} 185,000 \\ 148,000 \\ 110,000 \\ 85,000 \\ \hline \end{array}$	$\begin{aligned} & 10 \\ & 13 \\ & 17 \\ & 23 \end{aligned}$	$\begin{aligned} & 37 \\ & 51 \\ & 57 \\ & 64 \end{aligned}$	$\begin{aligned} & 6 \\ & 30 \\ & 65 \\ & 89 \end{aligned}$	Standard alloys for years, now beims replaced by TUFTORK and La Salle 4140 in many applications.

Address: Dept. 11-A, Box 6800 - A, CHICAGO, ILL.

MANUFACTURERS OF

Cold Drawn Shafting

Ground Shafting

Turned and Polished Shafting Bessemer Screw Steels
Open Hearth Carburizing Steels
Alloy Carburixing Steel
Open Hearth Heat Treating Steels

Alloy Heat Treating St
STRESSPROOF STEELS
Leaded Steels
Furnace Treated Hot Rolled Steels
Special Sections

Most Steel Departments

Experience Mare Gains

Sales and shipments are stepped up

 again. Only output remains stable. Major job is to dole tonnage equitably.
MARKETIN TABL®\|D*

Demand

Increases constantly.

Uniformly stronger.

production

Off $1 / 2$ point to 96 per cent.

ELEMENTS of the steel situation become ever more tense with sales and shipments increasing, deliveries falling further behind and prices on the few doubtful products strengthening. Only production remains relatively stable because it is at virtual full capacity. But capacity is being increased, announced plans of a southern steelmaker to step up pig iron, coke, and other facilities, being perhaps a forerunner of more general gains to come.
Ingot production last week sagged $1 / 2$-point to 96 per cent, due to furnace repairs and a strike at Pittsburgh. This was the first recession since the first week in September, but is not regarded as significant.
Major efforts of sales departments are directed towards apportioning steel equitably, separating urgent needs from those more remote and making a distinction between regular and transient customers. Worries as to ultimate sufficiency of supply become more acute, though according to one theory the spring will witness calmer conditions as by that time structural steel for new plants and machinery for their operation will have been taken care of. It is possible, too, that consumers will have built up inventories well by then.

A surprisingly large share of new steel business is due to expanding civilian uses. High industrial operating rates, with attendant good employment, have created spending power which results in purchasing of automobiles, radios, refrigerators and luxury items, thus setting into motion an ascending cycle of steel consumption and production.

That conditions are changing rapidly is shown in lot-rolled sheets, which a fortnight ago were most relaxed in delivery at three to four weeks. But a sudden demand appeared after the election which has iorced several producers out of the market for 1940.
Some major producers report orders booked for shipment as far ahead as July at prices then prevailing. Though consumers exert increasing pressure for producers to name first quarter prices, they are less concerned than in other years, since assured delivery is the main consideration.
Quiet in pig iron sales contrasts with steel, but iron shipments this month are the best for the year as
consumers lay in stocks for the winter. Fluorspar prices are higher at around $\$ 20.50$ per ton, partly because of good exports, whereas we usually import.

Automobile production increases more slowly, but with a new high of 121,943 units for the week ended Nov. 16, comparing with 86,700 a year ago, up 995 for the week.

Prices show the most definite trend upward in several weeks. The steel scrap composite has changed for the first time in six weeks, rising 17 cents to $\$ 20.71$, due to two advances of 25 cents at Chicago. Iron and steel composite is 1 cent higher at $\$ 38.07$, while finished steel is unchanged at $\$ 56.60$.

A leading pig iron producer has kept all salesmen at home for three weeks. Steel salesmen usually solicit only products where demand has lagged, such as tin plate and oil pipe. Other salesmen contacts are made to maintain goodwill only. Conspicuous because of its sluggishness is tin plate, which remains at 44 per cent operations, probably lowest in the industry. Apparently negotiations on contracts for 1941 have not yet been completed, it being customary to make no price announcement until this is accomplished. No change is indicated.

The more farsighted are already contemplating possible surpluses of equipment and materials when world conditions become peaceful again, many expecting to draw on post-World war experiences to cope with the situation.

Steel ingot production gained in three areas last week, fell in three and was unchanged in six, resulting in a general rate of 96 per cent. Youngstown improved 1 point to 93 per cent, Chicago 2 points to 99 and Cleveland $11 / 2$ points to 88 per cent. Declines were: Cincinnati, 6 points to 88 , Pittsburgh, 3 points to 94 and Buffalo, $2^{1 / 2}$ points to $901 / 2$ per cent. Unchanged were Birmingham at 100 per cent, St. Louis at 85, Detroit at 93, Wheeling at $98 \frac{112}{2}$, New England at 85 and eastern Pennsylvania at 94 per cent.

Considering the long period of high operations equipment is regarded as having held up remarkably well. The widespread call for all facilities in the rush of last quarter, 1939, may account for the good condition of machinery now.

COMPOSITE MARKET
 AVERAGES

Iron and Steel Composite:-Pig Iron, scrap, bllets, sheet bars, wire rods, tin plate, wire, sheets, plates, shapes, bars, black plpe, ralls. alloy steel hot strip, and cast iron pipe at represen tative centers. Finished steel corrposite.-
hot strip. nalls, tin plate, plpe. Steelworks Scrap composite:-Heavy melting steel and compressed sheets.

COMPARISON OF PRICES

Representative Market Figures for Current Week; Average for Last Month, Three Months and One Year Ago

Finished Material
Steel bars, Pittsburgh
Steel bars, Chicago
Steel bars, Phlladelphla
Iron bars, Chlcago
Shapes, Pitisburgh
Shapes, Phlladelphia
Shapes, Chicago
Plates, Plitsburgh
Plates, Phlladelphla
Plates, Chicago
Sheets, hot-rolled, pittsburgh Sheets, cold-rolled, Pittsburgh.
Sheets, No. 24 galv., Plttsburgh.
Sheets, hot-rolled, Gary
Sheets, cold-rolled, Gary
Sheets, No. 24 galv., Gary.
Bright bess., basic wire, Pitts.
Tin plate, per base box, Pitts..
Wire nalls, Pittsburgh

Semifinished Material

Sheet bars, Pittsburgh, Chicago. Slabs, Pittsburgh, Chicago
Rerolling billets, Pittsburgh.
Wre rods No. 5 to singh, Pltts.

Nov. 16,	Oct.	Aug.	Nov.
1940	1940	1940	1939
2.15 c	2.15 c	2.15 c	2.15 c
2.15	2.15	2.15	2.15
2.15	2.47	2.47	2.47
2.47	2.25	2.15	2.15
2.25	2.10	2.10	2.10
2.10	2.215	2.215	2.215
2.215	2.25	2.10	2.10
2.10	2.10	2.10	2.10
2.19	2.10	2.10	2.275
2.15	2.15	2.15	2.10
2.10	2.10	2.10	2.10
2.10	2.10	2.10	2.00
3.05	3.05	3.05	3.05
.3 .50	3.50	3.50	3.50
2.10	2.10	2.10	2.09
3.05	3.05	3.05	3.05
.3 .50	3.50	3.50	3.50
.2 .60	2.60	2.60	2.60
.	$\$ 5.00$	$\$ 5.00$	$\$ 5.00$
255.00			
2.55	2.55	2.55	2.55

Pig Iron	Nov. 16, 1940	$\begin{aligned} & \text { Oct. } \\ & 1940 \end{aligned}$	Aug. 1940	$\begin{aligned} & \text { Nor. } \\ & 1939 \end{aligned}$
Bessemer, del. Pittsburgh	\$24.34	\$24.34	\$24,34	\$24.34
Basic, Valley	22.50	22.50	22.50	22.51
Basic, eastern, del. Philadelphia	24.34	24.34	24.34	24.34
No. 2 roundry, Pittsburgh	24.21	24.21	24.21	23.211
No. 2 foundry, Chicago	23.00	23.00	19.38	19.38
Southern No. 2, Blrmingham	19.38	19.38	19.38	19.38
Southern No. 2 del. Cincinnati.	23.06	23.06	23.06 25.215	${ }_{25.215}^{23.06}$
No, 2X, del Phlla. (differ. av.)	25.215	25.215	23.215	23.00
Malleable, Valley	33.00	23.00	23.00	23.00
Malleable, Chicago	23.00	23.00	30.34	30.34
Lake Sup., charcoal, del. Chicago	30.34	30.34	30.34	23.17
Gray forge, del. Pittsburgh	23.17	- 23.17	125.33	105.33
Ferromanganese, del. Pittsburgh	125.33	125.33	129.33	105.
Scrap				
Heavy melt, steel, Pitts. ...	$\$ 21.50$ 19.75	$\$ 21.30$ 19.75	\$18.15	19.25
Heavy melt. steel, No. 2, E. P Heavy melting steel, Chicago	19.75 20.25	19.75 19.85	18.15	17.45 205
Heavy melting steel, Chicago	24.50	24.05	22.00	20.50
Ralls for rolling, Chicago.....	- 23.25	23.25	21.05	21.50
Colre				
Connellsville, furnace, ovens.	\$4.75	\$4.75	\$4.75	$\begin{array}{r} 85.00 \\ 6.00 \end{array}$
Connellsville, loundry, ovens	5.75	5.75	11.25	11.25
Chlcago, by-product fdry., del.	11.75	11.75	11.25	11.25

STEEL, IRON, RAW MATERIAL, FUEL AND METALS PRICES

Sheet Steel

list Inolled

Mitsburgh
Chicago, Gary .
Cleveland
Detrolt, del.
Butfalo
Sparrows Point, Md.
New York, del.
Phlladelphia, del.
Granite Cily. Ill.
Middletown, O .
Youngstown, 0 .
Blrmingham
Pacifle Coast ports
Pittswurgh

Cold Rolled

Chlcago, Gary
Burfalo
Detrolt, dellvered
Philadelphia, del.
Philadelphia, del.
Granlte City, Ill.
Middletown, O.
Puctlle Coast ports $\quad 3.70$.....
Galvanized No. 24
Plitsburgh
Chlcago, Gary
Buttalo
......... . 3.50 c
Philadelp Point, Md.
New Yort, dellvered
Birmingham

Except when otherwise designated, prices are base, f.o.b. cars.

Buftalo

Paclic Cont port....... 2.40
Zhlcago 2.25 c
Phlladelphla, del. 2.37 c PIttsburgh, rellned3.50-8.00c Terre Haute, Ind. $-8.15 c$
2.15

Relnforcing

New	Billet Bor	
Chicago,	Gary, Burcalo,	
Cleve.,	Blrm., Young.,	
Sparro	ws Pt., Pl	2.15 c
Gule por		2.50 c
Paclic	st	2.60 c
	Steel Bars, B	
Itsbur	Gary, Chi-	
cago,	Buffalo, Cleve-	
land,	Brm.	2.05
Gulf por		2.40

Wire Products

Pitts-Cleve.-Chicago-Birm. base per 100 lb . keg in carloads
standard and cement ronted whe nalls . .
Polished fence staples Annealed fence wire.
Galv. rence wire
Woven wire fenclng (hase C. L. 'olumn)

Single loop bale tles, (base C.L. column)
Gulv, harbed wire, 80-rod spools, base column
Twisted barbless wire, rolumn
To Mannfacturing Trade
Base, Pills. - Cleve. - Chicago Blrmingham (except spring
Brluht hess wire)
wire. 2.60 c
Spring wire
2.60 c
3.20 c

Worcester, Mass., $\$ 2$ higher on bright basic and spring wire.

Cut Nails

Carload, Plttsburgh, keg. . $\$ 3.85$

Cold-Finished Bars

	Carbon	Alloy
Piltsburgh	2.65e	3.35 c
Chicago	2.65 c	3.35 c
Gary, Ind.	2.65 c	3.35 c
Detrait	2.70 c	-3.45c
Cleveland	2.65 c	$3.3 \overline{\mathrm{c}} \mathrm{c}$
Buffalo	2.65 c	3.35 c

Alloy Bars (Hot)

(Base, 20) tons or over) Plitsburgh, Buffalo, Chi. rago, Massillon, Canton, liethlehem			
	Allo		
S.A.E.	Dirt.	S.A.E.	P.
	0.35	3100	
	0.75	3200	
2500	1.70	3300.	3.80
	2.55		
11000	10 0.25		
4 4no $n .20$ to $0.30 \mathrm{Ato}, 1.50-$			
$51000.80-1.10 \mathrm{Cr}$.........			
6100 Cr, spring fats			
6140			
Cr, N., Van,			
Carbon Van.			
9200 spring flats			
Electrle Purnace up			

Alloy Plates (Hot)

2.05 c
.40c 70 c

67
56
70
70.
3.50 c

Track bolts, base
Car axles forged, Pltts.,
Chicago, Birmingham.
3.15 c Tie plates, base
2.15 c

Base, light ralls 25 to $60 \mathrm{lbs} .$, 20 lbs., up $\$ 2 ; 16 \mathrm{lbs}$. up $\$ 4 ; 12$ lhs. up $\$ 8 ; 8$ lbs. up $\$ 10$. Base rallroad spikes 200 kegs or more; base plates 20 tons.

Bolts and Nuts

Fiob. Pittsburgh, Cleveland, counts for carloads additional 5%, full containers, add 10%.

Carrlage and Machine
1/2 x 6 and smaller. 68 ort Do., ${ }^{\text {Pr }}$ and
and shorter $\times 6$ - hn . 66 off Do., $/ 1$ to $1 \times 6-\ln$. and shorter
1 解 and larger, all lengths 62 off
All dlameters, over 6 -in. long
Tlie bolts

Stove Balts

In packages with nuts separate $72.5-10$ off; with nuts attached 72.5 off; bulk 82 off on 15,006 over 3 -in
Sten volts
Plow bolts

semilinished hex. U.S.S. S.A.E. $\begin{array}{lll}1 / 2 \text {-inch and less. } & 66 & 70 \\ 18 & \text { I-Inch } & 63 \\ 65\end{array}$
18 - 1 -Inch
$14 / 8-13 / 2$-inch
$\begin{array}{ll}63 & 65 \\ 61\end{array}$
2K and larger .. 60
Ilexamon Cap Screws
Upset 1 -in., smaller ...70.0 off
Square Ilead Set Screws
Upset, 1-in., smaller 75.0 oft
Headiess set screws64.0 orl
Piling

P tisburgh. Chic and Gary, Cleveland Youngstown, Middletown, Blrmingham Detrolt, del.
Phtladelphia, del.
New York, del. Pacific Coast ports Cooperage hoop, Young., Pltts.; Chicago, Birm.. Cold strip, 0.25 carbon and under, Pittsburgh, Cleveland, Youngstown Chicago
Detroit, del.
Worcester, Mass.
Carbon
0.26 - 0.50
$0.51-0.75$
$0.76-1.00$
Worcester, Mass. \$4 higher.
Commodity Cold-Rolled Strlp
Pitts.-Cleve.-Youngstown 2.95 c Chicago
Detrolt, del.

Rails, Fastenings

(Gross Tons)
Standard rails, mill.$\ldots .00 .00$
Relay ralls, Pittsburgh
20-100 lbs. 32.50-35.50
Light ralls, billet qual.,
Pltts., Chicago, B'ham. $\$ 40.00$
Do., rerolling quality. . 39.00
Cents per pound
Angle bars, blllet, mills.
Do., axle steel
2.70 c

Splkes, R. R. base
2.35c

Strip and Hoops
over:
Rivets, Washers
F.o.b. Pitts., Cleve., Chgo., Structural …........... 3.40 c F- inch and under 65-10 off Wrought washers, Pitts.,

Chi., Phila., to Jobbers
and large nut, bolt
mfrs. l.c.l. $\$ 5.40$; c.1. $\$ 5.75$ off

Welded Iron,

 Steel PipeBase ilscounts no steel pipe. Pitti-, Lorain, is. to consumers In earlgads. Gary, Ind., 2 points less on lap weld, 1 polnt less on bun weld. Chlcago dellvery $2^{1 / 2}$ and $11 / 2$ less, respectively. $21 / 2$ and $1 \frac{1}{2}$ less, respectively.
Wrouglit plpe, Plttsburgh base.
luitt Weld
Steel
In.
$1-3^{1 / 2}$
$1 / 4$
$1-1^{3 / 4}$
$1^{11 / 2}$
$2^{1 / 2}$

BIk.	Galv.
$63^{1 / 2}$	54
$66^{1 / 2}$	58
$68^{1 / 2}$	$601 / 4$
30	13
34	19
38	$21^{1 / 2}$
$37_{1 / 2}$	21^{2}

lap Weld
 Steel

213
$2^{1 / 2}-3$
$3^{1 / 2}-6$
7 and 8
2
$21 / 2-31 / 2$
4
$41 / 2-8$
$9-12$

2" O.D.	13	13.04	15.03
21400.D.	13	14.54	16.76
2 处"O.D.	12	16.01	18.45
$21 / 2$ O.D.	12	17.54	20.21
2 "O.D.	12	18.59	21.42
$3^{\prime \prime}$ OD.	12	19.50	22.48
31/2"O.D.	11	24.62	28.37
4" O.D.	10	30.54	35.20
$41 / 2$ "O.D.	10	37.35	43.04
5" O.D.	9	46.87	54.01
$6^{\prime \prime}$ O.D.	7	71.96	82.93

Cast Iron Pipe

Class B Pipe-Pet Net Ton
6-in., \& over, Blrm. \$45.00-46.00 4-In., Blrmingham., 48.00-49.00 4-in., Chicago 56.80-57.80 6-ín. \& over, Chlcago 53.80-54.80 6-1n. \& over, east fay. $\quad 49.00$ Do., 4-in. 52.00 Class A Pipe $\$ 3$ over Class B Stid. figs., Birm., base $\$ 100.00$.

Semifinished Steel

Iterolling lillets, Slabs (Gross Tons)
Pltsburgh, Chicago, Gary,
Cleve., Buffalo, Youngs.
Blrm., Sparrows Point. . $\$ 34.00$
Duluth (bllets) 36.00
Detrolt, dellvered 36.00
Forging ?ualliy ibheta
Pitts., Chi., Gary, Cleve.,
Young, Buffalo, Blrm.. 40.00
Duluth 42.00
Sheet Ihars
Plits., Cleveland, Young
Sparrows Polnt, Bur-
falo, Canton, Chlcago. . 34.00
Detroil, delivered 36.00 Wire IRods
Pills., Cleveland, Chicago,
Birmingham No. 5 to an

- Inch Incl. (per 100 liss.) $\$ 2.00$
 Worcester up $\$ 0.10$; Galveston up $\$ 0.25$; Pacille Coast up s0.50.
Pitts., Chi., Youngstown,
Coatesville, Sparrows Pi. 1.90c

Coke

Price Per Net Ton
Beenhva Ovens
Connellsville, fur... \$4.35- 4.60
Conmellsville, filry. . 5.25-5.50
Connell. prem. firy. 5.75- 6.25
New River fdry.... 6.50-7.00
$\begin{array}{ll}\text { New River fary. ... } & 6.50-7.00 \\ \text { Wise county rdry ... } & 5.50-6.50\end{array}$
Wise county fur. ... 5.00-5.25
Newark, N. J., del... 11.88-12.38
Chicago, outside del. 11.00
Chicago, dellvered. 11.75
Terre Haute, del.
Milwaukee, ovens. . $\quad 11.25$
New England, del. . 12.50
St Louls, del. 11.75
Birmingham, ovens. 7.50
Indlanapolls, del.... 11.25
Cincinnatl, del....... $\quad 11.00$
Cleveland, del.
Buffalo, del.
Detrolt, del.
11.55
11.50

Phiadelphla, del. .. 11.63

Coke By-Products

Spot, gal., freight allowed east Pure and 90% benzal ... 15.00 c
Toluol, two degree 27.00 c
Solvent naphtha 26.00c

Per lb. f.o.b. Frankford and
Phenol (less than 1000
lbs.) 1000 i............. 14.75 c
Do. (1000 lhs. or over) 13.75 c
Eastern Plants, per lb.
Naphthalene flakes, balls,
bbls. to jobbers 7.00 c
Per ton, bulk, f.o.b. port

Pig Iron
Dellvered prices include switching charges only as noted. No. 2 foundry is $1.75-2.25$ sil.; 25 c diff. for each 0.25 s11, above 2.25 sll.; 50c dift. below 1.75 sll. Gross tons.

Basing Polnts:	No. 2 Fdry.	Malleable	Basic	Bessemer
Bethlehem, Pa,	\$24.00	\$24.50	523.50	\$25.00
Blrmingham. Ala.s	19.38		18.38	24.00
Blrdsboro, Pa.	24.00	24.50	23.50	25.00
Buffalo	23.00	23.50	22.00	24.00
Chicaso	23.00	23.00	22.50	23.50
Cleveland	23.00	23.00	22.50	23.50
Detroit	23.00	23.00	22.50	23.50
Duluth	23.50	23.50		24.00 24.00
Erle, Pa.	23.00	23.50	22.50	24.00 25.00
Everett, Mass.	24.00	24.50	23.50	25.00 23.50
Granite City, In.	23.00	23.00	22.50	23.50
Hamllton, 0.	23.00	23.00	22.50	
Neville Island, Pa,	23.00	23.00	22.50	23.50
Provo. Utah.	22.00			
Sharpsville, Pa.	23.00	23.00	22.50	23.50
Sparrow's Point, Md.	24.00		23.50	
Swedeland, Pa.	24.00	24.50	23.50	23.00
Toledo, O . \ldots.	23.00 23.00	23.00 23.00	22.50 22.50	23.50

ISubject to 38 cents deduction for 0.70 per cent phosphorus or higher. One producer quotes $\$ 2$ higher on bessemer, $\$ 1.50$ higher on other grades.

Dellvered from Basing Points:			
Akron, O., from Cleveland...... 24.3	24.39	23.89	4.8
Baltimore from Birmingham		23.66	
Boston from Birmingham....... 24.12			
Boston from Everett, Mass...... 24.50	25		25.50
Boston from Buftalo 24.50	0	24.00	25.50
Brooklyn, N. Y., from Bethlehem 26.50	27.00		
Canton, O., from Cleveland	24.39	23.89	24.8
Chicago from Birmingham..... $\dagger 23.22$			
Clnclnnati from Hamliton, O.... 23.24	24.11	23.61	
Cincinnati from Birmingham.... 23.06		22.06	
Cleveland from Birmingham.... 23.32		22.82	
Mansfleld, O., from Toledo, O.. . . 24.94 Milwaukee from Cnlcago...... 24.10	24.94	24.44 23.60	24.44 24.60
Milwaukee from Chicago........ 24.10	24.10	23.60	4.60
Muskegon, Mich., from Chicago,			
Newark, N. J., from Birmingham 25.15			
Newark, N. J., from Bethlehem 25.53	26.03		
Philadelphia from Birmingham 24.46		23.96	
Phlladelphia from Swedeland, Pa. 24.84	25.34	24.34	

Phlladelphia from Swedeland, Pa. 24.84125 .34 24.34 69 , 34 .
Pitisburgh district from Nevilie.
Island
$\begin{array}{llllllll}\text { Saginaw, Mich., from Detroit.... } & 25.31 & 25.31 & 24.81 & 25.81\end{array}$
St. Louls, northern

No. 2 Malle-
Fdry. able Basic

Ferroalloy Prices

Ferromanginese, $78-8 \% \%$, carlots, duty pd....... $\$ 120.00$
Ton lots 130.00
Less ton lots 133.50
Less 200 lb . lots..... 138.00 Do., catlots del. Pilts. 125.33
Splegelelsen, 19-21\% dom. Palmerton, Pa., spot. Do., 26-28\%
Ferrusillicon, 50%, preight allowed, c.l.
alo lot
Do., ton lot
87.00

Do., 75 per cent 135.00 Do., ton lots 151.00 Spot, $\$ 5$ a ton nigher.
slicomangunese, c.l., $2^{1 / 2}$ per cent carbon. ... 118.00 2% carbon, $108.00 ; 1 \%, 133.00$ Contract ton price $\$ 12.50$ hlgher; spot $\$ 5$ over contract.

Ferrotungsten, stand., 1b. con. del. cars

Ferrovanadium, 35 to 40%, lb., cont. . 2.70-2.80-2.90
Feronhospharis, gr. ton, c.l., 17-18\% Rockdale, Tenn., basis, $18 \%, \$ 3$ unitage, 58.50; electric turn., per ton, c. l., 23$26 \%$ f.o.b. Mt. Pleasant, Tenn., 24% is unitage
Ferrochrome, 66-70 chromilum, 4-6 carbon, cts. lb., contalned cr., del. carlots

Do. less-ton lots 12.00 c
less than 200 lb lots $12.2 \overline{\mathrm{o}}$
$67-72 \%$ low carbon: Car- Ton Less loads lots ton
2% carb... 17.50c 18.25c 18.75c
1% carb... 18.50c 19.25c 19.75c
0.10% carb. 20.50 c 21.25 c 21.75c
0.20% carb. 19.50 c 20.25 c 20.75 c Spot $1 / 4 \mathrm{c}$ higher
Ferromolybdenum, 55-
65% molyb, cont, f.o.b. mill, 1 b .
Calclum molybdate, lb. molyb. cont., f.o.b. mill
Ferrotitanium, $40-45 \%$, lb., con. ti., f.o.b. Niagara Falls, ton lots.. Do., less-ton lots. $20-25 \%$ carbon, 0.10 max., ton lots, lb.. Do., less-ton lots. Spot 5 c higher
Ferrocolumbium, 50-60\%, contract, 1b. con. col., f.o.b. Niagara Falls. . Do., less-ton lots.....

Spot is 10c higher
Technical molybdenum trioxide, 53 to 60% molybdenum, ib. molyb. cont., f.o.b. mill. 0.80

Ferro-carbon-titanlum, 15 -
18%, ti., 6-8\% carb., carlots, contr., net ton. $\$ 142.50$

St. Louls from Birmingham.†23.12
St. Paul from Duluth
TOver 0.70 phos.
No. 2 MalleFdry. able

Bastc
Bessemer
26.13

Low Phos.
Basing Points: Birdsboro and Steelton, Pa., and Buffalo, N. Y., \$28.ธ̃, base; $\$ 29.74$ deltvered Philadelphia.

Gray Forge
Valley furnace $\$ 22.50$ Lake Superlor fur. $\$ 27.009$
Pitts, dist. fur. 22.50 do., del. Chicago...... 30.34
\$22.50 Lake Superior Charcoal

Lyles, Tenn.
$\$ 27.01$
26.50

+SIlvery

Jackson county, 0 ., base: $6-6.50$ per cent $\$ 28.50 ; 6.51-7-\$ 29.00$; $7-7.50-\$ 29.50 ; 7.51-8-\$ 30.00 ; 8-8.50-\$ 30.50 ; 8.51-9-\$ 31.00 ;$ $9-9.50-\$ 31.50$; Buffalo, $\$ 1.25$ higher.

Bessemer Ferrosllicon†

Jackson county, O., base; Prices are the same as for silverles, plus $\$ 1$ a ton.
The lower all-rail dellvered price from Jackson, O., or Buffalo is quoted with rreight allowed.
Manganese differentials in sllvery Iron and ferrosilicon, 2 to 3%, $\$ 1$ per ton add. Each unit over 3%, add $\$ 1$ per ton.

Refractories
Per 1000 f.o.b. Works, Net Prices D

Fire Clay Brick

Super Quality
Pa., Mo., Ky..

First Quality

Pa., Ill., Md., Mo., Ky..
Alabama, Georgla...... 47.50
Alabama, Georgla....... 547.50
New Jersey 52.50
Second Quality
Pa., Ill., Ky., Md., Mo.
Georgia, Alabama
New Jersey
Ohlo
intermediate
Intermediate quality
Maileable Bung Brick
All bases
Sillea Brlck
Pennsylvania
Jollet, E. Chlcago 55.10 Do, barge 47.
Birmingham, Ala. 47.50 No. 2 lump......... . 20.00-21.00

WAREHOUSE STEEL PRICES

Base Prices in Cents Per Pound, Delivered Locally, Subject to Prevailing Differentials

	Soft Bars	Bands	Hoops	Plates z-in. \& Over	Structural Shapes	Floor Plates	Hot Rolled	Sheets Cold Rolled	Galv. No. 24	Cold Rolled Strlp	Carbon	$\begin{aligned} & \text { rawn } \\ & \text { S.A.E. } \\ & 2300 \end{aligned}$	$\begin{aligned} & \text { S.A.E. } \\ & 3100 \end{aligned}$
Boston	3.98	3.86	4.86	3.85	3.85	5.66	3.51	4.48	4.66	3.46	4.13	8.88	7.23
New York (Met.)	3.84	3.76	3.76	3.76	3.75	5.56	3.38	4.40	4.30	3.51	4.09	8.84	7.19
Philadelphia	3.85	3.75	4.25	3.55	3.55	5.25	3.35	4.05	4.25	3.31	4.06	8.56	7.16
Battimore .	3.85	4.00	4.35	3.70	3.70	5.25	3.50		5.05		4.05	
Norfolk, Va.	4.00	4.10	4.05	4.05	5.45	3.85		5.40		4.15	...	
Buftalo	3.35	3.62	3.62	3.62	3.40	5.25	3.05	4.30	4.40	3.22	3.75	8.40	6.75
Pittsburgh	3.35	3.40	3.40	3.40	3.40	5.00	3.15		4.45		3.65	8.15	6.75
Cleveland	3.25	3.30	3.30	3.40	3.58	5.18	3.15	4.05	4.62	3.20	3.75	8.40	6.75
Detrolt	3.43	3.23	3.48	3.60	3.65	5.27	3.23	4.30	4.64	3.20	3.80	8.70	7.05
Omaha	3.90	3.80	3.80	3.95	3.95	5.55	3.45		5.00		4.42	
Clincinnat	3.60	3.47	3.47	3.65	3.68	5.28	3.22	4.00	4.67	3.47	4.00	8.50	7.10
Chicago	3.50	3.40	3.40	3.55	3.55	5.15	3.05	4.10	4.60	3.30	3.75	8.15	6.75
Twin Citles	3.75	3.65	3.65	3.80	3.80	5.40	3.30	4.35	4.75	3.83	4.34	9.09	7.44
Milwaukee	3.63	3.53	3.53	3.68	3.68	5.28	3.18	4.23	4.73	3.54	3.88	8.38	6.98
St. Louis	3.62	3.52	3.52	3.47	3.47	5.07	3.18	4.12	4.87	3.41	4.02	8.52	7.12
Kansas Clty.	4.05	4.15	4.15	4.00	4.00	5.60	3.90	5.00	4.30	
Indlanapolls	3.60	3.55	3.55	3.70	3.70	5.30	3.25	\ldots	4.76	\ldots	3.97
Memphis	3.90	4.10	4.10	3.95	3.95	5.71	3.85	...	5.25		4.31	\ldots	
Chattanooga	3.80	4.00	4.00	3.85	3.85	5.68	3.70	\ldots	4.40	\ldots	4.39	
Tulsa, Okla.	4.44	4.34	4.34	4.33	4.33	5.93	3.99	\ldots	5.71	...	4.69	\ldots	
Birmingham	3.50	3.70	3.70	3.55	3.55	5.88	3.45		4.75		4.43	\ldots	
New Orleans.	4.00	4.10	4.10	3.80	3.80	5.75	3.85		4.80	5.00	4.60	\ldots	
Houston, Tex.							4.20		5.25				
Seattle	4.00	3.85	5.20	3.65	3.75	5.75	3.70	6.50	5.00		5.75		
Portland, Oreg.	4.25	4.50	6.10	4.00	4.00	5.75	3.95	6.50	4.75	..	5.75		
Los Angeles	4.15	4.60	6.45	4.00	4.00	6.40	4.30	6.50	5.25		6.60	10.55	9.80
San Franclsco.	3.50	4.00	6.00	3.35	3.35	5.60	P:u	6.40	5.15		6.80	10.65	9.80

	$\begin{aligned} & \text { TOB5. A.E. } \\ & 1050 \end{aligned}$	Hot-rol 2300 Serles	$\begin{gathered} \text { ed Bars } \\ 3100 \\ \text { Serles } \end{gathered}$	$\begin{aligned} & \text { (Unann } \\ & 4100 \\ & \text { Series } \end{aligned}$	$\begin{gathered} \text { aled) } \\ 6100 \\ \text { Series } \end{gathered}$
Boston	4.18	7.75	6.05	5.80	7.90
New York (Met.)	4.04	7.60	5.90	5.65	
Phlladelphla	4.10	7.31	5.86	5.61	8.56
Baltimore	4.45				
Norfolk, Va.					
Buffalo	3.55	7.10	5.65	5.40	7.50
Pltisburgh	3.40	7.35	5.75	5.50	7.60
Cleveland	3.30	7.55	5.85	5.85	7.70
Detroit	3.48	7.67	5.97	5.72	7.19
CInclınatI	3.65	7.69	5.99	5.74	7.84
Chicago	3.70	7.35	5.65	5.40	7.50
Twin Cities	3.95	7.70	6.00	6.09	8.19
Milwaukee	3.83	7.33	5.88	5.63	7.73
St. Louls.	3.82	7.47	6.02	5.77	7.87
Seattle	5.85		8.00	7.85	8.65
Portland, Oreg.	5.70	8.85	8.00	7.85	8.65
Los Angeles	4.80	9.55	8.55	8.40	9.05
San Franclsco.	5.00	9.65	8.80	8.65	9.80

BASE QUANTITIES

Abstract

Soft Bars, Bands, Hoops, Plates, Shapes, Floor Plates, Hot Rolled Cheets and SAE 1035-1050 Bars: Base, 400-1999 pounds; Rolled $300-1999$ pounds in Los Angeles; 400-39,999 (hoops, 0-299) in San Franclsco; 300-4999 pounds in Portland. Seattle; 400-14.999 pounds in Twin Cities; 400-3999 pounds in Birmingham.

Cold Rolled Sheets: Base, 400-1499 pounds in Chicago, CincInnatl, Cleveland. Detrolt, New York, Kansas City and St. Louls: 450-3749 in Boston: $500-1499$ in Buffalo; 1000-1999 in Philadelphia, Baltímore; 300-4999 In San Francisco, Portland; any quandelphia, Baltimore; 300-4999 in San Francisco

Galvanized Sheets: Base, 150-1499 pounds, New York; 1501499 in Cleveland, Pittsburgh, Baltimore, Norfolk; 150-1049 in Los Angeles; 300-4999 in Portland, Seattle, San Francisco; 450-3749 In Boston; $500-1499$ in Birmingham, Burfalo. Chicago, Cincinnath Detrolt, Indlanapolis, Milwaukee, Omaha, St. Louis, Tulsa; 1500 and over in Chattanooga: any quantlty in Twin Cities; 750-1500 In Kansas City; 150 and over in Memphis; 25 to 49 bundles in Philadelphia.

Cold Rolled Strlp: No base quantity; extras apply on lots of all size

Cold FInlshed Bars: Base, 1500 pounds and over on carbon, except 0-299 in San Francisco, 1000 and over in Portland, Seattle: 1000 pounds and over on alloy, except 0-4999 in San Francisco.

SAE Hot Rolled Alloy Bars: Base, 1000 pounds and over. except 0-4999. San Franclsco: 0-1999. Portland, Seattle.

CURRENT IRON AND STEEL PRICES OF EUROPE

Dollars at Official Rates of Exchange

Export Prices f.o.b. Port of Dispatch-
 By Cable or Radio

		Continenta North	Channel or ses ports.				8			French *FFranes				Relch timark
	Britlsh gross tons		*Quoted In	Fdy. ple tron. Sl. 2.5.	24.24	8	0		17.18	788	\$31.44	950	\$25.33	63
	U. K. Dorts	dollars at	aterling	Baslc bess. ple Iron.	22.83	5	13	0 (a)			29.79	900	27.94	(b) 69.30
	fsd	current value	£ 3 d	Furnace coke	6.77	1	13	5	4.91	225	10.92	320	7.64	19
Puand ry, $2.50-3.00$ st.		\$33.23	3180	Blllets	42.42	10	10	0	26.62	1.221	42.20	1,275	38.79	96
Hematie, Phos. .03-05				Standard ralls	2.30 c	12	15	8	1.69 c	1.692	2.06 c	1,375	2.38 c	132
Hullets.				Merchant bars	2.78 c	15	8	6†t	1.53 c	1.530	2.06 c	1.375	1.08 c	110
Wire rods, No. 5 gage		\$31.95	3150	Structural shades.	2,46c	13	13		1.49 c	1.487	2.06 c	1,375	1.93 c	107
Standard reils.....		80.71	$\begin{array}{rrr}7 & 2 & 6 \\ 5 & 15 & 0\end{array}$	$\begin{aligned} & \text { Plates. }+1 / 4-\ln \text {. or } 5 \\ & \text { mm. } \end{aligned}$	2.55 c	14	3	$0+1$	1.95 c	1,951	2.42 c	1.610	2.29 c	127
Merchant bara..		848.99 2.77 c	$\begin{array}{rrr}5 & 15 & 0 \\ 7 & 6 & 0\end{array}$	Sheets, black	3.49 c	19			2.30 c	2,295\$	2.85 c	1,900\%	2.50 c	144:
Structurss shapes	2.97 cc 2.79 cc 15	2.77 c 2.83 c	$\begin{array}{lll}7 & 6 & 0 \\ 7 & 8 & 0\end{array}$	Sheets, galv., corr.,										
Sloete, black, 24 gage	3.04 c 10178	3.53 c	960	24 ca . or 0.5 mm . .	4.07 c	22	12	6	3.59 c	3.589	4.80 c	3,200	6.68 c	370
or u .5 mm m. $24 . .$.				Platn wire.	3.83 c	21	5	0	2.34 c	2.340	3.00 c	2,000	3.11 c	173
8beets, gal., 24 ga.	$\begin{array}{rrrr}4.01 \mathrm{c} & 22 & 50 \\ 4.61 \mathrm{c} & 25 & 12 & 6\end{array}$	2.98e	7170°	Bands and strips...	2.91 c	16	3	6ヶt	1.71c	1,713	2.48 c	1,650	2.29 c	127

Domestic Prices at Works or Furnace-

Last Reported

[^8]British shlp-plates Continental bridge plates. $\$ 24 \mathrm{gs}$ ti to 3 mm baslc price Brisish quotations are for baslc open-hearth steel. Continent ususlly for basic-bessemer atel. (a) del. Milddlesbrough. $5 s$ rebate to approved customers. (b) bematite. ${ }^{\circ}$ Close annealed $\dagger+$ Rebate of $15 s$ on certain conditions.
**Gold pound sterling not quoted. $\$:$ No quotatlons

IRON AND STEEL SCRAP PRICES

Lorrected to Friday night．Gross tons delvered to consumers evcepr where otherwise stated：tindicates brokers prices

SIEFT GIHPINGS，I．OONE

Chicago ．．．．．．．．．．．16．00－16．50 Circinnatl，dealers．12．00－12．50 Detrolt ．．．．．．．．．．． $14.00-14.50$ St．Louls ．．．．．．．．．．13．00－13．50 9.00 lutonto，dealers．

HUSIIEI，NN

Hirmingham．No． 1 Buffalo，No． 1. Chleago，No． 1 Cincin．No 1 deal Cincin，No． 1 deal Cincin．，No． 2 deal Cleveland，No． Detroit，No． 1 new． 1 17．00－17．50 Vulleys，new，No． 1 29．50－20．！ lowonto，dealers

HACHINE THIENIMAK（J．oHE゙）
Hirmingham ．．．．．．． 7.50
14.30

19．50－20．00 19．00－19．50 19．00－12． 0

Chicaso
Cincinnatl，dealers Cleveland，no alloy Detrolt
Eastern Pa．
Los Angeles
New York
Pittsburgh
St．Louis
Sin Franciscu
Toronto，dealers
14．25－14．75 $9.75-10.25$ 13．50－14．00 $\div 9.75-10.25$ 14．50－13．00 $4.111-5.116$ $\div 9.00-9.50$ 15．50－16．00 11．00－11．50 $7.25-5.00$ ralleys ．．．．．．．．．．．14．00－14．51）

GHOVEI．ING TUItNI

Burfalo
．．．．．．．14．50－15．00
Cleveland ．．．．．．．．．14．00－14．50
Chicago ．．．．．．．．．．．．．．．．．．．．．14．00－15．50
Chleago，spel，anal．．15．00－15．50 Detroit ．．．．．．．．．． $12.00-12.50$
Pilis．，alloy－free
$17.00-17.50$
IKORINGS INU TIUNIN（BS
For Rlast Furnace lise
Boston district．
$+8.00-8.25$
Buffulo
Cincinnati，dealers
Cleveland
Fastern P＇a
Detroit
New York
Pittsburgh
Totonte，dealers

ANIE TURNINGA

Buffalo
Buiralo …．．．．．．．17．00－17．50
Boston distrlct
Chlcago，elec．rur．．
Fast．Pa．elec．Iur Fast．Pa．elec．lur．．19．50－20．2． St．Louls ．．．．．．．．．．．13．25－13．75 Toronto ．．．．．．．．．．．7．25－7．50

CAST IRON HOHRINGS
Birmingham
Boston dlst chem $+9.75-10.00$
Boston dist．chem．－$\div 9.75-10.00$ Buffalo
Chicago
Cincminati de．．．．．．．．13．75－14．25
Cleveland ．．．．．．．．．．14．00－14．50
Detroit ．．．．．．．．．．．．．$+11.75-12.2 \overline{2}$
E．Pa．，chemical．．． 15.0 ）
New York ．．．．．．．．$\uparrow 10.00-10.50$
s1．L．ouls ．．．．．．．．10．00－10．50
Toronto，dealers ．．．7．25－7．50

Cnicago
23．00－23．50
VNGI．E IBAIEMETETA．
Chicago ：．．．．．．．．．．23．00－23．50 St．Louls

21．50－22．00

ぐIる！

Buifalo ．．．il
Chicago，leat
Eastera Pa．
Pittsburgh
St．Louls
STEFEI．IRAII．A．NHOBIRT
Birmingham
Buffalo
Buthalo ．．．．．．．．． $25.50-26.00$
Chlcago（3 rt．）．．．．．23．00－23．50
Chlcago（2 ft．）．．．． $23.50-24.00$
Cincinnati dealers $23.75-24.25$
Cincinnati，dealers $23.75-24.25$
Det！oit 2 ft and less $27.00-27.50$
St L ft e less．．23．75－24．00

Blrniingham
Boston districi．
†14． $15-15.00$ Now York

17．00 Boston district

Bulfalo ．．．．．．．．．．．14．50－15．00
Cnlcago，net ．．．．．．14．00－14．50
Cinclnnatl．dealers．12．25－12．75
Eastern Pa．．．．．．．．． 18.50
N゙ew York ．．．．．．．$+12.00-12.511$
St．Louls
14．00－14．50
R．II．ISOAd WIEOL（iHET
Birmingham ．．．．．．． 16.00
Boston district
$+9.50-11.111$
Eastern Pa．．No． 1 ． $20.00-20.50$
St．Louls，No．1．．．．14．50－15．00
SL．Louls，No．2 ．．．16．50－17．00

Boston district．．．．$\dagger 12.00-12.25$
Buflalo－．．．．．．．19．50－20．00
C＇leveland ．．．．．．．．．19．00－19．50
Detroit ．．．．．．．．16．25－16．75
Piltsburgh $\quad 19.50-20.00$

Bustun तlstrlet
Chicago，heavy

t．oly fllosiplloIf（＇s

Cleveland，crops．．．．23．50－24．00

Pills．，billet，bloom．
$28.00-28.50$
I．OW lllos．I＇INC：IINCis
Buifalo ．．．．．．．．．．25．00－25．50
Chícago
Cleveland
Eastern Pi
Sealte
Detroit
18．M1］．N FOIR IBOI．I．INO

Eastern Pa．
25．00－25．54
St．Louis， $11 / 4-3$ N＂．．． $19.75-20.25$
adr whele．s
Birmingham，Iron． 15.00 Boston dist．，iron．．$+15.50-16.00$ Buffalo，steel ．．．．．25．50－26． 90 Buffalo，steel ．．．．．． $21.05-217$ Chicago，fron $\begin{aligned} & \text { Chicago，rolled steel } 21.25-21.75 \\ & \text { 23．24．00 }\end{aligned}$ Cincin．，iron deal．．．20．00－20．50 Eastern Pa．，iron．．．22．50－23．00 Eastern Pa．，steel．．25．50－26．C0 Pittsburgh，iron．．．．22．00－22．50 Pittsburgh，steel ．．27．50－28．00 St，Louis，iron．．．．．．20．50－21．50 St．Louis，steel ．．．．22．00－22．50

Vo． 1 （BNTT stital
Rirmingham
17．0月
Boston No 1 mach $17.25-17.50$ N．Eng del No 2 1650－17．00 N．Eng．del．textile．20．50－21． H Buffalo，cupola．．．．19．00－19．5́ i3uttallu，mach．．2u．00－20．5u Chlcago，agri．net．．16．00－16．50 Chicago，auto net． $18.00-18.50$
Chlengo，rallr＇d net 17．25－17．75 Chleago，match．net．17．75－18．25 Clneln．，mach．deal．．21．00－21．50 Cleveland，mach．．22．50－23．50 Detrolt，cupola，net．$\dagger 16.75-17.5$ Eastern Pa，cupola．22．50－2s．00 E．Pa．，No．2．．．．．．19．50－20．00
E．Pa．，yard fdry．．． $16,50-17,00$
Los Angeles
Plttsburgh，cupola． $21.00-21.50$ Pittsburgh，cupola．21．00－21．50 Sear Fiancisu 14．50－16．00
St．L．agri．mach．．19．75－20．25 St．L No． 1 mach．．20．50－21．00 loronta，Nu． 1
mach．，net dealers 18, （It）－｜x．al

HLDVY（：AS゙

Boston djst．break．．$\uparrow 15.50-15.75$
New England，del．．．17．00－17．50
Buffalo，break．．．．．18．00－18．50
Cleveland，break，net $16.50-17.00$
Detroit auto net．．$\dagger 17.00-17.20$
Detroit，break．．．．．． $14.75-15.25$
Detrolt，break．．．．．． $14.75-15.50$
Eastern Pa．．．．．．．．．130ij－14．ıи
Los Ang．，iluto，
New York break．．．$\dagger 16.00-16.2 \mathrm{it}$
－TOUE l＇J．ATLG
Birminghan ．．．．．．11．00－12．00 Boston district．．．．．$+\frac{13.50-14.00}{17.00-17.50}$
Buffalo ．．．．．．．．．．． $17.00-17.50$
Chicago，net ．．．．．．． $13.00-13.05$
Cincinnatl，dealers． $12.75-12.20$
Detroit，net ．．．．．．．． $11.50-12.00$
Eastern Pa．．．．．．．$\div 13.50$
New York Iciry ．．．．14．50－15．100
Toronto dealers，nel

MAI．I．EABLIS
New England，del．．．22．00－E300 Buffalo
Chicago，R．R．．．．23．75－24．20
Cincin．agri．，deal．． $18.25-18.150$
Cleveland，rall
Cleveland，rail＇．．．．24． $22.50-23.010$
L．os angeles
Plttsburgh，rail ．．． $25,00-25.50$
St．Louls，R．R．

Spanish，No．African baslc， 50 to 60%
Chinese wolframite，
nel zon．duty pd．523．50－24．00 Brazll iron ore， 68 － 69\％ord．．．．．．．
I．ow phos． max．l F O．B．Rio Janelro．
Scheellte，imp．．．．．

Ores

Inke superlur lrun Ore
Grosa tom， 51 \％\％
Lower Lake Ports
$\begin{array}{llr}\text { Old range bessemer } & . . . & \$ 4.75 \\ \text { Mesabi nonbessemer } & . . . & 4.45 \\ \text { High phosphorus } & 4.35 \\ \text { Mesabi bessemer ．．．．．．．} & 4.60 \\ \text { Old range nonbessemer．．} & 4.60\end{array}$

Nom．
Eastern l．ocal Ore
Cents，unit，del．E．Pa．

Sheets, Strip

Sheet \& Strip Prices, Pages 104, 105
Pittsburgh-Bookings have heen running ahead of deliveries, resulting in building up fair backlogs in sheets and strip. Miscellancous buying has been good. Releases on previous commitments from large buyers, including household equipment and automotive interests, have been fair. Most sources here expect reaffirmation of prices shortly, although there is no indication when the announcement may come. Galvanized sheet operations remain unchanged at 81 per cent.
Cleveland - Hot-rolled sheets, on which deliveries were most relaxed among flat-rolled products, experienced sudden and brisk demand after election, resulting in a highly sold-out condition. Some producers are out of the market for the rest of the year. Only two weeks ago deliveries could have been made in three weeks. Some producers can make best delivery on wide coldrolled sheets, for late December. An unusual inquiry is for high carbon, high manganese strip for helmets, manufacture of which is hard on machinery.
Chicago-Sheet and strip mill schedules are congested as orders continue. Deliveries range well into next year and much tomnage is being booked for first quarter. Inquiries and orders are well diversified, and significantly are for normal manufacturing needs and not fol national defense except indirectly.

Boston - More orders for narrow cold strip are being booked for delivery in first quarter at open prices. Mills are generally sold up for the remainder of the year and some curtent quarter tonnage will go over into next year. Consumers are pressing for delivery in addition to placing prospective business. Sheet buying is maintained with secondary distributors placing additional replacement volume.
New York - While some sheet sellers can still make deliveries within four weeks, most have little to offer for shipment over the remainder of the year. Consequently, the trade believes that the time is near when some producers, for the sake of the record, will formally open books for first quarter. No price changes are expected.
Philadelphia-Sheet backlogs continue to accumulate because of expanding consumption and forward orders. Deliveries have backed up further but buyers generally are protected on current needs by previous commitments. Many inquiries defense appearing from fabricators of defense products. The marine corps quartermaster, Philadelphia, closes Lov. 22 on 4200 galvanized corru-

tosneezeat

TTHERE is a job always waiting for your crawler crane. So much in demand are these machines by department heads that some firms have found it necessary to route their machines from job to job. Here is a Northwest in the Evansville, Indiana plant of the Chrysler Corporation. This machine has saved as high as $\$ 3,497.70$ a year over previous methods employed. From unloading steel it progresses to handling scrap, borings and turnings, and finishes up on coal, doing odd lifting jobs in between.
Your Northwest Crawler goes anywhereno expensive overhead systems, no tracks.
The expense of steam operations becomes a thing of the past. As with your trucks, operating expense stops when the engine stops. As these machines earn for others so they will earn for you. A crane for every job-gasoline, Diesel, or electric. Let us give you more details.

NORTHWEST ENGINEERING CO.
1805 Steger Building, 28 East Jackson Boulevard Chicago

Illinois

Built in a
range of 18 sizes - $4 / 2$ to 40 fons copa-
cify
gated containers, 16 to 32 gallon capacity.
Buffalo-Contracts for 1941 delivery are becoming more numerous in sheets and strip as nills have little tonnage for this quarter. Diversifled armament buying is more than taking up the slack appearing in a few minor consuming lines. Production holds around 85 per cent of capacity.

Cincinnati - Backlogs of shee: mills are growing steadily, under the influence of national defense demand and steady specifications from other sources. It is likely considerable tonnage awaits formal opening of books for first quarter. The opinion is held generally that prices will be reaffirmed. Delivery prob lems, though aggravated by priorities, are not yet serious.

St. Louis-Sheet and strip de mand continues to broaden, with defense requirements figuring more prominently. Priorities have not interfered with the regular flow of customer deliveries. According to producers most current materials being shipped to customers is apparently going into production.
Birmingham, Ala.-While current bookings of sheets and strip, particularly sheets, have shown some inclination to ease off, sufficient tonnage is on hand to maintain steady production for weeks, with backlog for the new year. Strip is being turned out in nominal quantity only.

Toronto, Ont. - Miscellaneous purchases by electrical trades and others engaged in peace-time production, with large tonnage orders from automotive industry and other war requirements, are stimulating sheet sales. Mills are accepting orders for delivery into second quarter, reporting no sheets available for delivery this year on new order account.

Plates

Plate Prices, Page 104

Pittsburgh-Backlogs continue to mount, with new defense business developing on all sides. Local mills are far behind on deliveries, and in some cases are unable to supply estimates as to when deliveries could be expected, particularly on wide material.

Cleveland - February is the earliest delivery possible on wide or heavy plates, a commodity which is in the class with shapes, bars and structurals for tightness. To replace, repair and augment the Great Lakes fleet, which suffered in the recent storm, large tonnages of plates will be needed. Jobbers are among those most anxious for plates for prompt deliverv.

Chicago-With the heavy con-
struction industry booked to near full capacity for weeks, mills are unable to keep shipments of plates abreast of orders. Deliveries are lengthening and no signs of easing are in sight. Warehouse sales of plates are better than for some time.

Boston - Shipyard specifications are outstanding in plate demand with miscellaneous orders tending heavier. Boiler shops are placing more orders and tank requirements for army camps are mounting. Railroads are placing orders for maintenance only. Deliveries on wider plates and alloys are lengthening.

New York-The first real wave of plate specifications against the heavy ship distribution made by the navy in September, involving 200 vessels, is expected to appear in January, and to complicate an already bad delivery situation. Even though specifications against this huge program will be released over a period of several years, with much to be added to shipbuilding facilities before the work can be put under full swing, initial specifications are expected to be heavy. Except for universal plates, which are still available in three to four weeks, little plate tonnage is now available before the end of this year, and in the case of the wide sizes, little can be had before eight or nine weeks. Particularly in view of this situation, early action in the formal opening of books for first quarter is expected, with prices in all probability to be reaffirmed.
Philadelphia-Some producers will accept light narrow plate business for December, with January earliest for heavy material. Demand is widely spread, best outlets being shipyards, railroads, various types nt tank fabricators and equipment builders. Floor plates are active, aided by brisk export demand.

Birmingham, Ala. - Plates are being booked in substantial volume, although hardly equal to the tonnage of a few weeks ago. Deliveries are still considerably delayed, and sufficient tonnage is on books for an indefinite period.

Seattle-Shipbuilding has developed acute demand for plates. Some delay in shipping larger orders is reported. Large tonnages are to be placed in the near future. Smaller shops report an improved volume of business in jobs involving 20 to 50 tons each.

San Francisco-Plate bookings aggregate 5645 tons and brought the total to date to 183,911 tons, compared with 90,326 tons for the corresponding period in 1939. General Engineering \& Drydock Co. secured 3200 tons for four mine sweepers for the navy.

Toronto, Ont. - Plate demand is well sustained, with practically all orders for delivery this year going to United States producers. Can-
adian mills are fully booked for several months. Plans are under way for building number of large cargo vessels for Great Britain in Canada which will have stimulating effect on plate demand early next year. More extensive warship construction also is under consideration for which plate will be required, as well as for war tank work.

Plate Contracts Placed

3200 tons, four mine sweepers for nayy, to General Engineering \& Drydock Co., Alameda, Callf.
1500 tons, oll tanks, Rlchfleld Oll Co., Seattle, Wash., to Chlcago Bridge \& Iron Works, Chicago.
1445 tons, ten steel coal barges, Leetsdale, Pa., to Dravo Corp., Pittsburgh. 350 tons, 500,000 -gallon tank and tower, Elemendorf Field. Alaska, to Pitts-burgh-Des Molnes Steel Co., Plttsburgh.
250 tons, including 75 tons shapes, navy lighter, to Bethlchem Steel Co., Seattle; Assoclated Shipbullders, Seattle, general contractor.
215 tons, punched plates, Baltimore, to Central Iron \& Steel Co., Harrisburg, Pa.
150 tons, welded buoys, Ehlladelphia, to Acme Steel Co., Chicago.
115 tons, buoys, Sewalls Point, Va., to Acme Steel Co., Chicago.
100 tons, 200,000-gallon tank and tower, Hill Field, Utah., to Piltsburgh-Des Molnes Steel Co., Plttsburgh.
100 tons, 200,000-gallon tank and tower, March Fleld, Callf., to Plttsburgh-Des Molnes Steel Co., Plttsburgh.
Unstated, ore pots for additional unit Alcoa plant, Vancouver, Wash., to Steel Tank \& Plpe Co., Portland.
Unstated tonnage, two elevated steel water tanks, Fort Story, Va, and state rifle range, Virginia Beach, Va, to w. F Caldwoll Couisville, Ky. inv. $6174-40$, bids Nov. 9.

Plate Contracts Pending

2900 tons, 12 to 42 -inch, welded steel plpe, San Diego, Callf.; bonds roted for $\$ 1,300,000$ and bids are expected to be called soon.
150 tons, $30-\mathrm{In}$. welded steel pipe, Spokane, Wash.; bids Nov. 21.

Tin Plate

Tin Plate Irices, Page 104
Pittsburgh-No change has been noticed in tin plate, operations holding steady at 44 per cent of capacity. So far as can be learned, negotiations on contracts for 1941 have not yet been completed. ACcording to custom, there will be no price announcement until these negotiations have been finished, but best advance information indicates reaffirmation of the current price.

Bolts, Nuts, Rivets

Bolt, Nut, Rivet prices, page 105
Demand is exceedingly strong, with November sales in better vol ume than last month. Buying is well diversified. On stock goods fairly prompt deliveries can still

STEEL
be promised. Good demand for defense projects, such as tanks, trucks and ships, begins to appear in volume.

Bars

Bar Prices, Page 104
Pittsburgh-Backlog in merchant bars is moving up and mills are well loaded. Deliveries have begun to drop behind, although the situation is not serious. However, it is virtually imposible to get immediate delivery on orders being placed now.

Cleveland - Deliveries have been extended further to ten to twelve weeks. Some producers report sales of bars and other steel items 20 per cent better than a month ago; others find business unchanged. At least three northern Ohio makers are working on shell steel contracts.

Chicago - Situation for steel bars becomes tighter week by week, as orders are unabated and deliveries more extended. Orders are now being booked for February and March shipments. Alloy and carbon grades are in chief demand, with pulchasers pressing for delivery ahead of schedule. Buying is well distributed by industries, with automotive, farm implement and forging makers in the lead.
Boston - Although well covered with protective orders, bar consumers continue to press for deliveries, notably alloys, with more spot volume being placed as defense program needs increase. Consumption tends upward steadily, including bolts and nuts, small tools, shipyards and chain-making. Demand is broadening with machine tool builders placing replacement orders in some instances.
New York-Most bar sellers have little to offer for shipment over the remainder of the year. Small rounds and flats can be had during the latter part of December, but larger rounds, particularly two inches and larger, are difficult to obtain much under eight to ten weeks. Exceptions are few. Cold-drawn carbon bar shipments average a week to two weeks more extended than on hot carbon bars. Alloy bar deliveries range around 15 weeks and in some instances longer; and where specially heat treated, deliveries run well into second quarter.
Philadelphia - Consumers and warehouses are seeking to enlarge stocks in anticipation of heavier requirements. Mills are able to accumulate little additional business the remainder of this quarter, being completely sold out on some sizes until next period. Specifications are steadily being entered against

WHY BE"IN A FOG"

ABOUT A-C MOTOR SELECTION?

let GraybāR aid you in FITTING MOTORS TO THE JOB

When you put your motor and motor-control problems up to Graybar, you get a double assurance of sure performance: (1) GRAYBAR offers the complete line of General Electric motors and controls - backed by G-E research and manufacturing facilities - the line which Graybar experience has proved of greatest value to its customers; (2) Graybar representatives and specialists "on call" are prepared to assist you in choosing the right equipment for the job - service to you is their primary responsibility.

Whether you're selecting motors for plant motive power or types to be "built on" to equipment for resale - it will pay you to put your problem up to Graybar.

blanket commitments for first quarter.

Buffalo - Additional forward covering is expanding bar backlogs. Diversified industrial demand is coupled with pressure by warehouses. Extensions on common open hearth grades range from four to six weeks and alloy specially treated grades range eight to sixteen weeks.

Toronto, Ont. - Merchant bar sales developed more action during the past week or ten days and some purchases were made in Buffalo to augment Canadian supply for quick delivery. Mills report booking covering output to the year end, with
orders pouring in from the automotive industry and a variety of other sources.

Birmingham, Ala. - Bar production, while steady at close to 90 per cent, is hardly on a par with plates and shapes. As heretofore, concrete reinforcing constitutes most bar bookings.

Fluorspar

Fluorspar Prices, Page 106
Cleveland-Exports of American fluorspar to India and other foreign countries are reported, whereas usually the United States is an im-

SNIE
 MAINTENANCE
 TIME \quad LABOR

with an Elmes HYDRAULIC FORCING PRESS

WHEELING this Elmes Hydraulic Forcing Press to the job often saves half the time required to move the job to a press.

This press cuts time and labor costs, insures better workmanship and more secure jobs. It will suit every requirement in pressing on and off armatures, couplings, gears, wheels, cranks, etc.

With its adaptability to such a wide variety of jobs, it is highly serviceable in shop maintenance departments and its moderate cost and low upkeep recommend it for use even as an emergency tool.

The Press is available for immediate shipment. Write for prices and complete specifications.

* The Elmes Hydraulic Forcing Press is available with vertical screw adjustments, with or without truck wheel mounting, or with crane hook attachment for portable service. Base frames may be set on wheels or permanently located. Cylindor and ram are mounted with rack and pinion reverging gear. Hand, Belt or Motor Pumpsare optional.

> Also Manufaclured in Canada WILLIAMS \& WILSON, LTD. Distrihulors
.
SINCE 1851
porting nation. The Tata Iron \& Steel Co. is reported one of the Indian purchasers. Kentucky and Illinois producers are said to be speeding up in anticipation of brisk demand and a tight supply. The market is decidedly stronger, with quotations on washed gravel and No. 2 lump $\$ 20$ to $\$ 21$ per net ton.

Pipe

Pipe Prices, Page 10 i
Pittsburgh-Railroad buying of pressure tubing has gained somewhat. Demand for standard pipe continues to exceed the immediate supply and the cushion of stocks held at consignment points is running low. Mechanical tubing releases from various manufacturers have been good, but there is no sign of improvement in oil country business.

Cleveland-Sales of merchant pipe continue at a better rate than shipments and beyond all expectations, with evidences that it will continue for many weeks. Deliveries are more extended.

Boston - Resale pipe prices are steadier, with mills firmer on replacement tonnage. Demand for merchant pipe is somewhat above normal for this season, due to considerable emergency construction. Prospective requirements for housing are substantial. Considerable pipe is also going into shipbuilding. Cast pipe demand has slackened with requirements for cantonment work generally covered.
Seattle-Market conditions have improved, demand is heavier and sales from warehouse stocks are more numerous. About 750 tons are pending for system improvements at Seattle and Everett, gen. eral contracts placed.
San Francisco-Movement of cast iron pipe in small lots is heavy, though few inquiries of size have developed recently. Awards aggregated 345 tons and brought the total to date to 42,385 tons, compared with 35,368 tons for the corresponding period in 1939.

Steel Pipe Placed

3410 tons, welded pipe, DeKalb county, Georgia, to American Rolling Mill Co., Middletawn, Pa .

Steel Pipe Pending

Unstated, 4800 reet 30 -jnch, also accessories, for Spokane, Wash.; bids Nov. 21.

Unstated, 4950 reet 3 and 4 -inch, King county district No. 56, Seattie: blds county astrict No. 56, Ser. 21.

Cast Pipe Placed

200 tons, 16 -inch, Alameda, Calif, to Cast Iron Pipe Co., Birming. Amer, Ala.
129 tons, 10-inch. Arcadla, Calif., to

United States Pipe \& Foundry Co., Burlington, N. J.

Cast Pipe Pending

460 tons, 6 to 12 -inch, Myrtle street extenslon, Seattle; Argentleri \& Colarosso, Seattle, general contractors.
135 tons, two system expansion projects, Everett, Wash.; Hugh G. Purcell, Seattle, low,
130 tons, 6-inch. Sacramento. Calif.; United States Pipe \& Foundry Co., Burlington, N. J., low.

Rails, Cars

Track Material Prices, lage 105
Railroad buying continues at moderate rate and heavy expected rail requirements for 1941 work have not appeared. New York, New Haven \& Hartford has placed 15,600 tons, award of accessories yet to be made. Louisville \& Nash. ville is in the market for 3600 cars, Wheeling \& Lake Erie for 415 cars, and St. Louis Southwestern has asked court permission to buy 400 cars.
Builders are only moderately busy, although cars placed this year far outnumber those awarded last year.

Locomotives Placed

Brazilian and Bollvian governments, four mogul-type locomotives, to Vulcan Iron Works, Wilkes-Barre, Pa., for operation between the two countries.

Rail Orders Placed

New York, New Haven \& Hartford, 15,000 tons, reported placed; distribution of accessorles is expected shortly.

Car Orders Placed

Denver \& Rio Grande Western, 500 box cars, to Pressed Steel Car Co., PIttsburgh.

Car Orders Pending

Louisville \& Nashville, 3000 hoppers, 500 gondolas and 100 box cars; bids asked.
St. Louls Southwestern, 400 cars; 50 flat, 50 gondolas, 100 nfty-foot box, 200 forty-foot box; court permission asked.
Wheeling \& Lake Erle, 415 freight cars; 300 box, 65 hopper and 50 11at cars.

Buses Booked

[^9]Stages Inc., two 29-passenger for Edwards Motor Transit Co. Inc., New Haven, Conn., one 37-passenger and one 22 -passenger, for Fitchburg \& Leominster street Rallway Co., Fitchburg, Mass.; two 37 -passenger for Bowen Motor coaches, Fort Worth, Tex.,

Wire

Wire Prlees, lage 105

Pittslurgh - Wire products deliveries, particularly specialties, are running farther behind, with considerable volume of new business being placed. Pressure is heaviest in manufacturers' wire items, al-
though there has been good interest in merchant products and jobber buying has been heavy. Deliveries on many items are well into first quarter, and most buyers have been reassured that prices will remain unchanged.
Cleveland-A producer who makes a wide variety of products reports wire products as the most belated in deliveries of all, usually 90 days being the best promised. The active building program is taking nails, with automobile makers and general manufacturers buying wire. Prices are the firmest in years.

Chicago - Wire products continue in strong demand with a heavy

METALLURGICAL CONTROL

23,000 Pound Hydraulic Press Frame -Cast by Strong

- Every step in the process of making a Strong Steel Casting is under exacting metallurgical supervision and control. Thus, impurities are reduced to a negligible minimum. That means steel castings that are STRONG for quality, tensile strength, elasticity and ductility beyond the average standards of the steel casting industry. See the Strong way-you are always welcome at the plant-and you will want Strong Castings.

STRONG STEEL FOUNDRY COMPANY, BUFFALO N. Y.
volume of new business and consumers pressing for deliveries. Mill backlogs are substantial and deliveries more extended. Producers note a sharp increase in orders for valve spring wire since Swedish wire of this grade is no longer available.

Boston - Orders reaching wire mills continue in excess of shipments in most instances. Demand is widely diversified, including a wide range of specialties and manufacturers' wire. Rope mills are making little progress in reducing backlogs and are being pressed for deliveries. The same applies to spring wire and electrical goods, some of
the latter contracts for government supply being on priority.

Shapes

Structural Shape Prices, Page 104
Pittsburgh - Tonnage has declined slightly in industrial inquiry, although there is still a good volume of unplaced business. Suppliers here are of the opinion the bulge is past, with a substantial part of the construction necessary to get the defense program under way already placed. Deliveries con-

DAMASCUS
 Manganese and Alloy Steel CASTINGS

FROM $1 / 2$ TO 1000 POUNDS

1940

Produced in our modernly equipped foundry from electric furnace steel and heattreated in automatically controlled gasfired furnaces.
We are in position to manufacture specialties made of manganese and alloy steel castings and invite concerns to write us about their requirements.
tinue to run 60 to 90 days and farther than that in some cases. Pressure remains heaviest in large sections.
Cleveland - Structurals continue one of the three or four items in most demand. Producers expect that within six months business will abate somewhat, when buying will shift to other products. Much of the business is due to peace time expansion due to high industrial operations and employment.

Chicago - Structural fabricators are working at top speed and finding it difficult to obtain an even now of material from mills. All shape rolling facilities in the district are booked for weeks ahead and taking orders only for first quarter. Government construction predominates, although no new inquiries of size are out for figuring at the moment.

Philadelphia-Fabricated shape awards are small but several large lots are pending, including 3000 tons for shipways and 1500 tons for a turret shop for the New York Shipbullding Corp. Shape deliveries average close to eight weeks, with some special sections further extended.

Seattle-Demand for shapes is exceptionally active and fabricating shops are operating full. Heavy construction projects indicate additional large contracts in the near future. The week's awards include 5000 tons to Bethlehem Steel $\overline{\mathrm{C}}$. for an addition to the Alcoa plant, Vancouver, Wash., and 1145 tons for two Washington state bridges to the Missouri Valley Bridge \& Iron Co., Kansas City, Mo.

San Francisco-Demand for structural shapes continues strong. Bids have been taken on 5500 tons for seven warehouses at Hill Field, Utah. Bids have also been opened on 200 tons for a chemistry building for the University of Nevada, Reno.

Toronto, Ont. - While structural steel awards are below the October and September high records, volume is well above most former years. War construction projects call for large tonnages, with some 10,000 tons pending.

Shape Contracts Placed
 5000 tons, addition to Alcoa plant, Yan-

couver, Wash., to Bethlehem steel Co., Seattle.
3615 tons, bridge, Mississippi ilver. Chester, Ill., to American Bridge Co., PIttsburgh.
1600 tons, four mine sweepers for navy, to General Engineering \& Drydock Co., Alameda, Callf.
1500 tons, depot supply bullding, way department, Duncan Fleld, San Antonlo. Tex., to Mosher Steel Co., Houston, Tex.
1210 tons, powerhouse and plant addlllon, Plymouth, Mich., to Wisconsin Brldge \& Iron Co., Milwaukee.
1200 tons, two bridges, Wake Island, to Columbia Steel Co., San Francisco.
1060 tons, miscellaneous buildings, Edgewood arsenal, Maryland, to Belmont Iron Works, Eddystone, Pa.
1000 tons, state span Spokane rlver, Washington state, to Missourl Valley Bridge \& Iron Co., Kansas City, Mo.; C. \& F. Teaming \& Trucking Co. Butte, Mont., general contractor.
955 tons, Los Angeles Junction rallroad bridge, Los Angeles, to Columbla Steel Co., San Francisco.
875 tons, office and store bullding, Schenectady, N. Y., to American Bridge Co., Pittsburgh.
870 tons, state project No. 6234, Dunn county, Wisconsin, to Mllwaukee Bridge Co., Mllwaukee.
650 tons, factory building for BendixWestinghouse company, Elyrla, O., to R. C. Mahon Co., Detrolt.

610 tons, addition, St. Vincent's hospltal, New York, to Harris Structural Steel Co., New York.
535 tons, mess hall, project No. 15, Quonset Point, R. I,, to Harris Structural Steel Co., New York.
518 tons, undercrossing Santa Fe tracks, Arcadia, Callf., to Columbla Steel Co, San Franelsco.
500 tons plus, six substations for Bonneville project, to Bethlehem Steel Co., Seattle.
500 tons, engine repalr building, war department, Duncan Field, San Antonio, Tex., to Mosher Steel Co., Houston Tex.
475 tons, health center; West Virginla, to L. Schrelber Sons Co., Norwood, 0 .
405 tons, alt corps hanzar, Fort Knox, Ky., to Hansell-Elcock Co., Chlcago. 400 tons, two 250 -ton overhead traveling cranes, Central Valley project, Corarn, Calif., to Lakeside Bridige \& Steel Co.
300 tons, bullding, Plastie Mrg. Co., Day ton, O., to Burger Iron Co., Akron, O.
300 tons, ash tower 1, for Consolldated Edison Co., New York, to Amerlean Bridge Co., Plttsburgh.
30 tons, machine shop addition, Amer tran Chain Co., Pennsylvania, to Reating Metalcraft Co., Reading, ${ }^{3}$ d.
360 tons, naval bulldings and accessories, Steel Co phan, to Pltsburgh-Des Moines Steel Co., Pittshurgh; Charles H. Tompkins Co., Washington, contractor; Rosslyn Steel \& Cement Co., Washington, awarded reinforcing steel.
280 tons, addition. Foster-Wheeler Corp Camerct, N. J., to Belmont Iron Works, Eddystone, Pa.
280 tons, naval lowers, naval academy, Annapolts, Md., to Weatherly Steel Con, Weatherly, Pa., through Vanguard Constructlon Co., New York
270 tons, MeCrory store, York, Pa., to Bethlehem Contracting Co., Bethlehem, Pa, also 120 tons, Joists, to Bethlehem Steel Co, Bethlehem, Pa.
280 tons, air corps shop building, BarksIron Co Lia., to Mississipni Steel \& \& Taylor, She., Jackson, Mlss.; Glassell \& Taylor, Shreveport, La., contractor; J, B. Bealrd Corp., Shreveport, awarded reinforcing bars.
Pa_{i} to P , S . Pa_{s} to R. S. MeMannus Steel Construc-
tlon Co. Inc., Buftalo; Gilmore, Carmichael \& Olsen, Cleveland, general contractor.
230 tons, ore dock spouts, etc., Allouez, Wis., for Great Northern rallway, to American Bridge Co., Pittsburgh.
230 tons, post office, Charleston, W. Vo., to Ingalls Iron Works, Blrmingham, Ala.; T. G. Egan Engineering-Refractory Co., Brooklyn, contractor.
215 tons, state highway bridge, Table Rock, Neb., to Omaha Steel Works, Omaha, Neb., bids Oct. 31.
210 tons, building, Edo Alreraft company, College Point, N. Y., to Grand Iron Works Inc., New York.
210 tons, Hbrary, Harvard unlversity, Cambridge, Mass., to A. L. Wllson Structural Co., Cambridge, Mass.
205 tons, mill building, Franklin, Pa., to Truscon Steel Co., Youngstown, O.
200 tons, addition, Ducommun Metal \& Supply Co., Los Angeles, to Consol-
idated Stcel Corp., Los Angeles
sco tons, building addition, Wright fleld, Dayton, 0 ., to Burger Iron Co., Akron, 0 .
200 tons, seattle transportation commission garage and shops, to WisconsIn Bridge \& Iron Co., Milwaukee; Gjarde Construction Co., Scattle, general contractor.
185 tons, plant addition, Detroit, to R. C. Mahon Co., Detroit.
185 tons, machine shop extension, Chester, Pa, to Lehigh Structural Steel Co., Allentown, Pa.
180 tons, addition, Bell Telephone Co., Norfolk, Va., to Bethlehem Fabricators, Bethlehem, Pa.
160 tons, dispensary, project No. 31, Quonset Point, R. I., to Belmont Iron Works, Eddystone, Pa.
145 tons, state bridge Chelan county, Washington, to Missouri Valley Brldge \& Iron Co., Kansas City, Mo.; C. \& F.

JONES roller bearing pillow blocks and bearing units are built to solve those tough drive problems where stamina and the ability to "take it" are mighty important.
One look at these bearings will convince you that they belong to the Jones drive family. They have that sturdy look and years of maintenance records have proved how they stand up to the job.
These bearing units are practical . . . double row Timken roller bearings are locked firmly to the shaft by means of a tapered split steel adaptor and clamp nut . . . an effective seal retains lubricant and prevents the admission of dust and foreign matter . . . they are easily removed from the shaft.
The Jones organization will be pleased to give you complete details showing range of sizes built, dimensions, construction specifications and prices. Just ask for Bulletin No. 56.
W. A. JONES FOUNDRY \& MACHINE CO.

4437 Roosevelt Road, Chicago, Ill.

Teaming \& Trucking Co., Butte, Mont., general contractor.
140 tons, mold loft. Orange, Tex., to Consolldated Steel Corp., Los Angeles.
125 tons, Caney creek bridge. Harriman Tenn., for Tennessee valley authority. to American Bridge Co., Pittsburgh.
120 tons, construction contract No. 389-6-2, Galveston county, Galveston, Tex., to Maxwell Steel Co., Fort Worth, Tex. 115 tons, Y. W. C. A. addition, Harrisburg, Pa., to Reading Steel Products Co., Reading. Pa.
100 tons, East addition, hospltal and administration building, Mall, Washington, to Barber \& Ross Co., Washington; CMH. Co., Washington. contractor: Hudson Supply \& Equipment Co., Washington, awarded reinforcing bars.

Shape Contracts Pending

20,000 tons, high level deck truss bridge,

Thames river, New London, Conn.; bits next month.
12,500 tons, Fairhaven Village Inc., Buffalo, pling included; project inclutles nine apartment houses; additional 1100 tons will be required for garage.
8000 Lons, transm'ssion towers, Grand Coulce dam, Washington; blds Nov. 25.
8000 tons, factory bulldings, Westinghouse Electric \& Mig. Co., East Plttsburgh, Pa.
5000 tons, elevated highway sections, approaches Brooklyn-Battery tunnel, Brooklyn side, contracts $\mathrm{B}-13$ and $\mathrm{B}-15$; bids Nov. 29.
4000 tons, seven warehouses, Ogden, Utah, for government.
4000 tons, assembly shop, Hunters Point drydock, San Francisco; blds Nov. 20.
3000 tons, plus unstated tonnage piling. rehabilitation of shipways, New York Shipbullding Corp., Camden, N. J.

NEWPORT PRODUCTS Hot Rolled Sheets - Newport Electrical Sheets - GOHI Pure Iron-Copper Alloy Sheets • Globe Brand Galvanized Steel Sheets, Roofing and Siding - GOHI Enameling Iron Sheets - KCB Copper Steel Sheets - Newport long Terne Sheets - Newport Galvannealed and Del.uxc Metal Sheets.
 quickly recognize the outstanding superiorities of GOHI Enameling Iron and the many production advantages made possible through its use, with the result that this fine metal is accorded top rating by those who demand the utmost in performance, whose manufacturing facilities are geared up to highest operating efficiency.
GOHI Enameling Iron is metallurgically pure, free from grease and pickle marks. The smooth, satiny surface holds the enamel tightly - many common enameling troubles are eliminated, and the appearance and longevity of the finished product are immeasurably improved.

3000 tons, cracking lowers, Bayonne. N. J., Baton Rouge, La., and Baytown, Tex., for Standard Oil Co. of New Jersey.
1931 tons, Missouri highway bridges: St. Louis county, 1241 tons; Wayne county, 437 tons and slx others, 260 tons: blds Nov. 19.
1800 tons, manufacturing building, for Danley Machine Specialties Co., Cicero. III.

1500 tons, turret shop, New York Shlpbullding Corp., Camden, N. J., Leonard Shuffer, Philadelphia, contractor; blds Nov. 19.
1500 tons, alr corps hangar No. 1 and fllght hangars No. 1, 2, and 3, Howard Field, C. Z.; N. P. Severin Co., 222 West Adams street, Chleago, low on general contract at $\$ 1,869,976$.
1210 tons, 896 steel towers, stubs, anchors and spectals, Coulee-Puget Sound transmission line; blds to Bonneville project, Portland, Oreg., Nor: 25.

700 tons, hospltal bulddng, for Hartford hospltal, Hartford, Conn.
450 tons, factory bullding, for Dow Chemical Co., Bay City, Mich.
3TE tons, bridge, Bakersfleld, Callf., for state.
350 tons, alteratons to craneways, Phlladelphla, for government.
315 tons, power house, for Hercules Powder Co., Parlln, N. J.
300 ton's, four bulldings, naval supply depot, Oakland. Callf., spectication 10111; blds Nov, 27.
285 tons, pedestrian overpass, contract E-6, Brooklyn, N. Y., for Triboro bridge nuthority.
265 tons, generator house, for Elizabethtown Consolidated Gas Co., Elizabeth. N. J.

235 tons, shell assembly plant, Edgewusd. Md., for government.
201) Lons, shipping bullding, for Wyman Gordon Co., Worcester, Mass.
50 Ions, warehouse for Steel Products
Engineering Co., Springlield, O.; buis in
135 tons, mezzanine statlons, subwar, contract S-10-E, Chlcago.
120 Lons, extenslon 7 , paper machhie building, for Nekoosa-Edwards Paper Co., Port Edwards, Wis.
110 ions, addition, artillery shell shish building 55, Phlladelphia, for army:

Reinforcing

Reinforcing Bar Prices, paze 105
Pittsburgh - A new buying wave has stiffened prices. Tendency in this section is to bring rail bars to a parity with billet steel, although few contracts have been let on that basis. Apparently normal seasonal factors will have little effect on the market this winter.

Chicago - Sudden arrival of severe cold weather may slow construction. Mills are in a position to handle additional tonnage, held back by inability of engineering departments to provide specifications.

Philadelphia-Reinforcing orders are mainly for lots under 100 tons. but shipments are heavy, with considerable business still in prospectWhile prices are not rigid the market has strengthened materially the past 60 days. When not available

STEEL
from stock, deliveries are five to seven weeks.
Seattle-Small tonnages are numerous and are increasing rolling mill backlogs. Prices are firm and demand is active. Plants are operating to capacity. Merchant bars are moving in steady volume. Business pending includes 800 tons for Washington state highway projects, hids Nov. 19.

Reinforcing Steel Awards

1600 tons. seven additional hangars, Gravelly alrport, Washington, to Bethlehem Steel Co., Bethlehem, Pa., through John MeShain Inc., contractor. 1400 tons, Panama Canal, schedule 4450. to Bethlehem Steel Co., Bethlehem Pa .
1000 tons, navy yard supply plers, Norfolk, Va., to Bethlehem Steel Co., Bethiehem, Pa., through McLean Construction Co., contractor
E00 tons, United States army cantonment, Fort Meade, Md., to Bethlehem Steel Co., Bethlehem, Pa., through Consolidated Engineering Co., contractor.
500 tons, alreraft engine plant, Ford Motor Co., Dearborn, Mich.; Bryant \& Detwiler, contractors; Ford to furnlsh and Pabricate concrete bars.
400 tons, West Rich street housing project, Columbus, O., to Truscon Steel Co., Youngstown, O., through Henke Construction Co., contractor.
325 lons, highway projects, RC-40-87, Westchester county, and RC-40-97, Dutchess county, New York, to Wickwire Spencer Steel Co., New York; John Arborio Inc., Poughkeepsie, N. Y., contractor.

300 tons, Edgewood housing, Akron, 0. (i Truscon Steel Co., Youngstown, U., through Lloyd Bros. Inc., contractor.
3.00 tons, Swanson homes housing project, Portsmouth, Va., to Truscon Steel Co., Youngstown, O, through William Muirnead Construction Co., contractor,
360 tons, Edgewood arsenal, additional improvements, Harford County, Va., 10 Bethlehem Steel Co., Bethlehem, Pa. through Cummins Construction Co. contractor.
290 tons, East River drlve, contraci 33 , New York, to Truscon Steel Co., Youngstown, O., through DIMenna \& Sons, contractors
270 tons, Pine Camp Barracks, WaterTown, N. Y., to Truscon Steel Co. Ine Butry, O.: John W. Cowper Co. Inc., Bultalo, general contractor.
225 ions, highway project RC-40-84, Cayuga county, New York, to Wickwire Speneer Steel Co., New York; Mohawk Paving Co. Inc., Buffalo, contractor, $\$ 198,642.40$; blds Oct. 16, Albany.
" 00 tons, Northern Pump Co. plant, Min-

Concrete Bars Compared

Week ended	Tons
Week ended Nov. 16	8,780
Week ended Nov. 9	6,344
This week 1039 Nov. 2	10,936
Weekly averase	7,849
Weekly average, year, 1940	9,602
Weekly average 1939	9,197
Total to date,	12,417
Total to date, 19	453,165
Includes awards	441,6\%

neapolis, to Truscon Steel Co., Youngstown, O., through G. F. Cook ConstrurtIon Co., contractor.
200 tons, light flxture plant, westinghouse Electric \& Mrg. Co., Cleveland, to Truscon Steel Co.. Youngstown, O., through Austin Co., contractor.
200 tons, Hercules Powder Co. plant, Belvidere, N. J.. to Bethlehem Steel Cr. Bethleliem, Pa., through Bechtel-Mc-Cone-Parsons, contractor
150 tons, naval torpedo station Improvements, Newport, R. I., to Bethlehem Steel Co., Bethlehem, Pa., through Tredennick-Blllings, contractor.
140 tons, bridge, Orange, Conn., to Truscon Steel Co., Youngstown, O.; Marlanl Construction Co., New Haven, contractor.
130 tons, service parts bullding, Chevrolet Motor Co., Saginaw, Mich., to Truscon Steel Co., Youngstown, O.,
through O. W. Burke Co.
30 tons, warehouse, Warren Telechron Co., Ashland, Mass., to Joseph T. Ryerson \& Son Inc., Chicago. through J. W. Bishop Co., contractor
120 tons, low rent housing project No. Illinois 18-1, Rock Island, Ill., Lo Bethlehem Steel Co., Bethlehem, Pa
100 tons, WPA sewer, southwest side. Chicago, to Concrete Steel Co., Chlcago.

Reinforcing Steel Pending

2927 tons, Panama Canal, schedule 4506. 2000 tons. TNT plant, E. I. du Pont de Nemours \& Co., Wilmington, Del.i Stone \& Webster, englneers and contractors
1300 tons, Curtiss-Wright Corp. expanslon, Checktowaga, N. Y.; blds Nov. 8.

A. W. CADMAN MANUFACTURING CO., PITTSBURGH

A. W. CADMAN MANUFACTURING CO. 2816 Smallman St., Pittsburgh, Pa.

Gentlemen: Please send me your two interesting bulletins 'BEARINGS \& BEARING METALS" and "CADMAN METALS". I understand there is no obligation-that these bulletins are reference works.

NAME:
COMPANY:
ADDRESS

Behind the Scenes with STEEL

Frankenstein

(1. Q. tests for weeding out the unfit applicants for machine tool jobs are a swell idea so long as you don't make the mistake a bunch of college professors recently made over east. They couldn't pass their own quizzes.

More I. Q.

- To get at the same problem Lockheed Aircraft has devised a psychology quiz for rating of job applicants and all you have to do is quiz your man, then graph the following characteristics: Hysteroid, Manic, Aslistic, Paranoid, Epileptoid. Then it's every man for himself.

Old Copies Wanted

- We hope one of our old-time subscribers will be able to help out Edmund E. Johnston of Saginaw. Mich., who is most anxous to get a half-dozen issues of Iron Trade Revief, as Steel was known then, for the year 1898. If you have a loose file back that far, will you let us know? Ours are all in bound volumes.

Slogan Snapper

E One hobbiest we know keeps his Leica busy snapping snappy slogans. He says dry cleaners are the greatest punsters, for example: Milli-kin Clean It . . . We'll Clean It Or Dye . . . Come Clean With Me and I'll Dye For You. Favorite among truckers was "You Call-We Haul." One that he couldn't photograph was the Chinese laundry truck with the trick horn that plays This Is The Way We Wash Our Clothes.

And He Meant It!

- Speaking of slogans, there is the story still told around the office here of one hard-working and conscientious young chap on the staff of our contemporary magazine. The Foundry, a few years ago. Of all the things The Foundry could be justly proud, one in particular has always been their pertinent descriptive slogan which adorns all of their stationery, cards, promotion pieces, etc. Wherever

Metals Are Cast, You'll Find The Foundry. As we get it, one day our hero's eycs widened, his heart stepped up a beat and with bubbling enthusiasm he rushed in to the boss and said he had an idea. An idea, he says, for a slogan for The Foundry. And what is it, says the boss, thinking to himself it would have to be good to replace the old standby. Well, by now you've probably guessed what our hero said. That's right, he stood there in all earnestness and suggested line-for-line the same slogan that had been right under his nose every day he came to work!

Prize Winner

- We learn that the Bantam Bearings advertisement, "Space Savers," which appeared in Steel's July 22 issue has been selected by the Dartnell Corp. as one of the best trade paper advertisements of the year.

Alter Ego

- Speaking of advertisements, belated orchid for Lincoln Electric's clever use of the Strange Interlude idea in their "Atter Ego" scries. When our other self starts in lecturing us (particularly atter one of those bad nights), we could hardly use his comments in print.

Idea Dept.

- If you are wondering what to do at your next trade show exhibit, herc's a novel and by no means overexploited way of showing your prospects "how it works." Use a transparent mirror or Belgian mirror (if you can buy one!), set at a 45 degree angle in a shadow box. Then with the aid of a double-dissolving rheostat the equipment can be made to fade gradually from view, while the "hidden feature" slowly makes its appearance. Finaliy, the equipment fades out completely, leaving only the single feature which you wish highlighted. Then the process is reversed, and the cycle repeated. A motor and cams, plus light, do the trick but we suggest you don't try to build this yourself.

Shrdel.

1100 tons, warehouse, Belvedere Corp., Lawrenceburg, Ind.
563 tons, Panama Canal, schedule 4524. 560 tons, Marltime training schook, Hueneme, Callf.; general contract to Zoss Construction Co., 1015 West Fourth stieet, Los Angeles at $\$ 480,500$.
400 tons, factory and offlee bullding, General Tlre \& Rubber Co., Akron, 0 .
400 tons, wnrehouse, Norfolk \& Western rallway, Sewalls Polnt, Va.; blds Nov 18.

350 tons, flood protection project, Massllion, O .
300 tons, housing project, Little Rock, Ark.
300 tons, Norton housing project, Barberton, O.; blds Dec. 11.
300 tons, Including 73 tons shapes, Seattle naval reserve armory; bids at Olympla, Nov. 12 and 15.
23 tons, agronomy bullding, Universlty of Minnesota, Minneapolis.
240 tons, Illinols highway department, route 8 , Peoria, Ill.
217 tons, Harrison homes, Illinols prolect 3-2A, Peoria, Ill., blds Nov. 4.
200 tons, Gully brook condult, section 1, Hartford, Conn.; W. W. Wyman Inc., contractor.
177 tons, ensineering bullding, Marquette unlversity, Milwaukee.
160 tons, state highway, No. 313, Athens county, Ohlo; blds Nov. 15.
150 tons, warehouse bullding 801 , Sears, Rocbuck \& Co., St. Louls, Fruln-Colnon Contracting Co., St. Louls, contractor.
190 tons, bridges and highway work, Lake, Grant, Josephine, Lincoln and Multnomah countles, Oreg., for state, bilds opened.
130 tons, research laboratory, Rochester, Minn.
100 tons, warchouse, Central Steel \& Wire Co., Chicago.
100 tons, flood wall, United States engineers, Muncle, Ind.

Pig Iron

Pig Iron Prices, Page 106
Pittsburgh - Production continues heavy, with Carnegie-Illinois Steel Corp. announcing an additional stack in blast at Edgar Thomson works this week. However, to offset this action the two stacks at Pittsburgh Crucible Steel Co.'s plant at Midland, Pa., have been on bank due to a strike. This affects the iron supply of other companies in the district since one stack has been supplying basic pig iron. New coke prices for the first quarter have not yet been settled, although they are expected within the next week or two. In all probability, supply contracts will be between $\$ 5.00$ and $\$ 5.25$, with spot prices at the higher level.

Cleveland - Inquiry is light but shipments are slightly ahead of the large tonnages of October. Consumers are well covered for the rest of the year. One large producer has kept salesmen at home for three weeks because of reluctance to sell. First quarter prices are expected by Dec. 1. Producers com ment on the reasonableness of prices, $\$ 23$ today comparing with
$\$ 33$ as the ceiling during the World war. Some idle and some semiobsolete furnaces still exist which would operate again if prices were higher, thus making larger production possible. Soon producers will have decided whether they will al low December contracts to be ex. tended into 1941.
Chicago-Gray iron and malleable foundries are increasing melt as demand for casting grows. Sellers are flooded with orders and are shipping on a full capacity schedule. Merchant blast furnaces are operating to their limit and shipping some of the current tonnage from stocks.
Boston - Shipments of pig iron against fourth quarter contracts are brisk, although buying is limited by ability of producers to take on additional tonnage beyond regular customer estimated requirements. Foundry melt tends upward. Producers of castings for machine tool trade continue most active.
New York-Pig iron specifications this month have been especially heavy, due not only to increasing requirements, but to a desire by a number of consumers to get matelial in yards before winter. Orders have been relatively small, as most consumers are covered for the remainder of the year and, in a number of important cases, beyond.
Philadelphia-Consumers are more anxious to take in iron against contracts in view of rising consumption and talk of tight supplies in coming months. Foundry operations are expanding, the district averaging 85 to 90 per cent. Orders for early shipment are limited to fill-in lots, but large tonnages on sellers' books will not be delivered until next quarter. Inquiry for them is moderate with prices still unnamed. Foundry coke movement is off from October, when consumers anticipated recent price advance.
Cincinnati-Demand for pig iron is at the highest level of the year with no letdown in sight. The iron is going for current needs. Spot buying in small lots is accelerated but furnaces are not entering com mitments for first quarter until opening of books Dec. 1 . Armco has delayed lighting of a furnace to be put on merchant iron, until Nov, 20. By-product coke is avail. able for current needs but the situation is perplexing oven interests
St. Louis-With melters generally covered for this year, purchasing of pig iron has dropped to small proportions. Shipments, however, continue high, reflecting partly the steadily broadening melt. Repre sentatives of southern blast furnaces report that all orders are subject to confirmation.
Toronto, Ont. - Merchant pig iron sales are increasing. Some in terests belleve that heavier requirements for pig iron for steelmaking
and increase in merchant require ments this year, may soon result in shortage. Scarcity of some lines of scrap also is a factor that may have a bearing on pig iron markets soon.

Scrap

Scrap Prices, Page 108
Pittsburgh - Prices on current railroad lists are at about the same level as last month. Demand for open-hearth material is not active at the moment, although buying is expected. Scrap now moving is at quoted levels. Blast furnace material is probably the most active, fair quantities of various cast grades being sold at current flgures.

Cleveland-Only routine scrap business is being done but quotations are firm as holders are slow
to part with supplies. Cast scrap is strong and prices depend on urgency of need.
Chicago - Somewhat heavier trading in scrap the last few days has lifted prices 25 to 50 cents a ton on most important grades. Within the past week, No. 1 heavy melting steel has taken two 25 -cent advances and is now selling within the range of $\$ 20$ to $\$ 20.50$, the latter figure established by a sale to a small mill. With dealers still holding back supplies, brokers are paying $\$ 20.25$ and $\$ 20.50$ for tonnage to meet current contracts. Despite the strong tone and ingot-making operations at 99 per cent, mills are not seeking scrap tonnages. Chief shortage of material is in electric furnace grades and railroad malleable.

Boston - Iron and steel scrap prices are somewhat mixed, but tend higher, notably cast grades for do-

- When it's a question of wire, it will pay you to remember Page-wire for Industrial use, for Welding, for Fencewire of Iron, Steel Alloys, Stainless Steels.
SHAPED WIRE in cross sections up to .250 sq. in. and widths to $3 / 8^{\prime \prime}$. Square, Keystone, Flat, Round, Half-round, Hexagon, Octagon, Triangular, Diamond, etc.

WELDING WIRE - a complete line to make certain that the Page recommendation meets the conditions required of the weld. For Iron, Alloy Steels, Stainless Steels.

Certainly it is worthwhile to remember
PAGR FOR WURE

PAGE STEEL AND WIRE DIVISION monessen, pennsyivania

In Business for Your Safety

Because Parker-Kalon Cold-forged Socket Screws, Wing Nuts, Cap Nuts and Thumb Screws are made to such exacting standards, both small users and large enjoy the benefits that come with accuracy, strength, good design and fine finish. No wonder, then, that so many thousands have standardized on Parker-Katon. Samples and prices are yours for the asking. Write.
PARKER-KALON CORPORATION 194-200 Varick Stect New York, N. Y.

mestic shipment. In addition, blast furnace material for eastern Pennsylvania and district delivery has a slightly stronger tone. The first export cargo to England in several weeks, 4500 tons, cleared from Boston last week.
New York - Transfer of steel scrap accumulated on barges to cars for shipment to eastern Pennsylvania is practically complete. Substantial domestic shipments are maintained and accompanied by some further buying at $\$ 16.50$, f.o.b. cars, for No. 1 heavy melting steel. An eastern mill is reported to have bought close to 20,000 tons at about this price. Foundries are also taking in supplies and prices on all grades are firm and generally unchanged. Export business lags for lack of boats.

Philadelphia Prices show greatest strength in cast grades, several of which have advanced further. Heavy melting steel is unchanged but firm with heavy mill demand met without difficulty: Low phosphorus scrap is active for electric furnace plants and better foundry operations are strengthening cast grades. One boat is being loaded for export but relatively light foreign movement is in prospect for the near future. A threatened strike of local scrap yard workers is expected to come to a head this week.

Buffalo-Steelmaking grades were boosted 50 cents a ton on a sale of approximately 5000 tons to a mill consumer. On the basis of the sale No. 1 heavy melting was quoted at $\$ 21$ to $\$ 21.50$ a ton while the differential on No. 1 busheling and compressed sheets was cut from $\$ 2$ to $\$ 1.50$ a ton. Specialties also jumped 50 cents a ton on sales at $\$ 25.50$ to $\$ 26$ a ton.

Detroit - Not in several years has there been as heavy movement of scrap in this territory as in the past two months. Result is that the leading consumer is well supplied and hard pressed to accommodate more. Busheling, heavy melting steel, plate scrap, compressed bundles and loose clippings are all quoted 25 cents a ton below previous prices. With prices easier and supplies ample, buyers for small outstate steel mills who normally never enter the Michigan market are seeking tonnage.

Cincinnati-Prices on several of the lighter grades of iron and steel scrap were advanced 25 to 50 cents. Efforts at stabilization are evident. but dealers contend material is not being attracted in quantities to support the high melting rate. Some dealers are slow to release tonnage while replacement stocks are so scarce. Bidding on current railroad lists is active.

St. Louis-Mills and foundries are still out of the scrap market, except for small tonnages of special
material, and buying activity is confined largely to covering contracts by dealers and brokers. Prices in the main are steady. Certain steel specialties, including car axles, springs, knuckles and couplers and guard rails, are higher. Cast and malleable grades, which are scarce, are slightly higher.

San Francisco-While prices in the San Francisco metropolitan district continue firm those in the Los Angeles area are off 25 cents a net ton, as there are more open-hearth producers in the northern area than in the southern part of the state. Los Angeles district prices are now $\$ 12.50$ to $\$ 13$ a net ton for No. 1 and $\$ 11.50$ to $\$ 12$ a net ion for No. 2 heavy melting steel.

Seatlle-. Export outlets closed, the market is admittedly weaker. However, rolling mills are not press ing their advantage. Whereas a recent top price of $\$ 16$ per gross toll was paid by local interests, mills have established a level of $\$ 15$. Some material that failed to get aboard ship before the embargo deadline is being offered to domestic users. Tidewater stocks ate ample for pending needs and receipts are fair.

Warehouse

Warehouse prices, lage 107

Cleveland-Jobbers are selling as much as carlots at a time and often doing what is a normal mill busi. ness. Jobbers find it increasingly difficult to build up depleted stocks. They note that mills frequently prefer to sell direct to customers with identified projects in mind than to warehouses who are stocking for less definite uses.

Chicago - Indications are that November warehouse sales will surpass those of the two preceding months. Inquiries are particulariy heavy. Demand is well diversified both as to product and consuming industry, with a large but indefinite aggregate springing from national defense. Mill deliveries are slowing with some products becoming exceedingly tight, notably plates and bars.

Philadelphia-Sales are fully maintaining the October pace and are generally satisfactory regarding dfversification and price steadiness. Some distributors make further additions to stocks to obviate delayed mill deliveries.

Buffalo - Warehouse busitless holds around the peak of the current movement. With replenishing supplies from the mills delayed stocks of many items are low. Prices are strong.
Cincinnati - Jobbers are being pressed to maintain stocks on buildpressed to maintain stocks onand for
ing items in view of demand
plant additions. These sales aid in sending volume to a new high for the year, other needs showing no sign of taperins.
St. Louis-Warehouse interests report sales this month in such volume that total will be the peak for the year to date. The general manufacturing trade is offering principal support to general business at the moment.
Seattle-Plates, shapes and sheets are in best demand and are moving in increasing tonnages. Shipbuilding requirements call for prompt delivery and are reducing local stocks. The price situation is unl changed, firm at present levels.

Nonferrous Metals

New York - Nonferrous metal prices held firm and generally unchanged last week despite a further tightening in the supply situation. Demand continued excellent with sales equal to or in excess of production. Sellers look to foreign sources for additional supplies.
Copper - While mine producers continued to quote electrolytic at 12.00 c , Connecticut, on allocated business, custom smelters and brokers offered metal at $\%$ to $\%$ cent a pound premium. Producers are sold solidly well into February. Domestic refined stocks dropped 20,695 tons last month to only 164,618 tons, equal to about six weeks' requirements, as shipments rose to 103,771 tons, a new all-time high. An estimated shortage of 80,000 tons next year may be covered by importation of South American copper. Shipments of copper from Chile to Japan may be canceled if the metal is needed for national defense in this hemisphere.
Lead - Consumers are buying around 20,000 tons of lead per week while producers are shipping about 15,000 tons and producing about 12 , 500 tons. A substantial portion of recent sales have involved lead of foreign origin. Although producers are sold out for the balance of this year, they held prices unchanged at 5.65 c , East St. Louis

Zinc-Common grade sales are averaging two to three times current output as consumers cover their far iorward requirements. Stocks are now equivalent to less than one week's shipments, restricting new business to about 6000 tons, the present output rate.
Tin-Priricipal markets remained unusually calm following the loss of 1500 tons of Australian pig lead in the South Seas on the first Amer ican boat sunk in the war. Straits spot held steady at 50.50 c to 50.75 c , reflecting this country's one year supply, the large amount afloat, and the slack 45 per cent tin plate op-

Nonferrous Metal Prices

Heavy Copper and Wire

New York, No. 1	$62^{1 / 2}-9.87^{1 / 2}$
Cleveland, No. 1	9.371/-9.871/6
Chleago, No. 1	9.75-10.00
St. Louis	9.37 $\%$

Steel in Europe

Foreign Steel Prices, Page 107
London-(By Cable)-Steel and iron demand continues unabated in Great Britain with producers working at capacity. The recent increase in prices has had no effect on demand. The situation in hematite pig iron is easier as domestic output is increasing. Ore imports are slightly irregular but domestic delivery is heavier. Tin plate exports continue quiet. Output of sheets and galvanized sheets is
mainly absorbed by domestic requirements.

Ferrocalloys

Ferronlloy Prices, Page 106
New York-A leading seller has reaffirmed contract prices for first quarter on ferrovanadium, ferrotitanium, alsifer and its complete line of foundry alloys, as well as following action of other sellers in reaffirmation of ferrosilicon and ferrochrome contract prices.

Virtually all ferroalloy sellers

THE
 STARTING POINT of (14)

 FORGINGSCARBON - ALLOY AND SPECIAL BASIC ELECTRIC STEELS

COMPLETE control of all processing C from selection of the melting charge to the finished condition is the N.F.\&O. guarantee of quality in forgings furnished to your specifications - Smooth Forged, Hollow Bored, Rough or Finish Machined. Die Blocks and Piston Rods

National Forge and Ordnance Co. IRVINE, WARREN COUNTY, PENNA., U. S. A.

"UNICHROME"
 RACK COATING W "FOUR to ONE
 BETTER
 THAN THE BEST
 MATERIAL PREVIOUSLY USED"

THIS statement made by a recent "Unichrome"* Rack Coating-W user is typical of the enthusiastic praise carned by "Unichrome"* Rack Coat-ing-W wherever used.
We are sure you will agree that this new rack-coating material is indeed remarkable when you consider its unequalled combination of advantages:

1. Withatands hoiling cleaners and all phating solutions
2. Tough-withatands wear and cear of handling
3. Contana no ingredients harmful to pinting solutions
4. Culs contr-reduces frequency of recoatings
5. Fany to apply-"dip and force dry" method
6. Light in color-rasy to see how well the rack is covered
7. Any part of rack enn he reconted without reconting entire rack.

Write for Bulletin No. 20
Containing Complete Information-
llaters without rack coating facilities may have their racka conted with "Unichrome" Rack Conting-W* by Chromium Corporation of America, 4645 West Chicago Avenue, Chicago, III.; ISelke Manufncturing Company, 942 North Cicero Avenue, Chicamo, Ill.: or Lea Manufacturing Co., Waterhury, Conn.

UHITED CHROMIUM
 INCORPORATED

51 East 42 nd Street, New York, N.Y. 2751 E. Jefferson Aye., Detroit, Mich. Waterbury, Conn.

- Prede Mar

Rer. U.S. Yat. Ot
supervised construction and initial operation of a steel mill in Australia.
H. K. Hamilton is president of Hamilton Steel Co., which recently installed a stock of aircraft steels. W. C. Thompson is secretarytreasurer.

CONSTRUCTION

and ENTERPRISE

Ohio

barberton, O.-Columbla Chemical division of Pittsburgh Plate Glass Co.. E. T. Asphlundh, vice president, will start development of limestone quarry near here, including conveyor systems to move material. Cost is estimated at $\$ 2,000,000$.

CANTON, O.--Dlebold Safe \& Lock Cu. 2647 Navarre road, is building $\$ 15,000$ storage building. Melbourne Bros., 2101 Woodland avenue N.W., are contractors.

CLEVELAND-City councll has au thorized the federal government to talio up to 200 acres at municipal airport for site of $\$ 8,500,000$ aviation laboratory, tentatively decided on for that location. John F. Viotory is secretary of national advisory committee for aeronauties of the war department, charged with Inal decision on location.

CLEVELAND - Aluminum Co. of America, 2210 Harvard avenue, has bought 20 acres near its plant and will build two buildings for foundry purposes, 120×360 feet and 200×440 fect. F. A. Bllhardt, company engineer, Pittsburgh, is in charge.

CLEVELAND-Hertner Electrle Co., 12690 Elmwood avenue, will take blds

- Additional Construction and Enterprise leads may be found in the list of Shapes Pending on page 116 and Reinforcing Bars Pending on page 117 of this issuc.
soon through walter Caldwell, architect, 838 Engineers' building, for two-story' office building, 40×100 feet.

CLEVELAND - Schirmer Dornbirer Pump Co., 1719 East Thirty-ninth street, Waldo P. Schirmer, president, will build addition with 2100 square feet for manufacturing and assembly.

CLEVELAND - Thompson Products Inc., 2196 Clarkwood road, w. H. West. assistant factory manager, has plans. contingent on large government contract for valves and fuel pumps, for increasing facilitles three to four times.

CLEVELAND-Bennett Products Inc., C. R. Bennett, 14416 Potomac avenue, plans to start production of small automatic machines early in 1941 and is now seeking small plant.

CLEVELAND-Cleveland : Diesel Fngine division of General Motors Corp., 2160 West 106th street, announces a factory addition of 12,000 square feet and boiler room extension in addition to previous expansion program. Cost is estimated at $\$ 43,000$. George W. Codrington is general manager.

CONNEAUT, O.-General Electric Co.

Metorized onk N

THIS CATALOG CONTAINS -
112 pages of engineering data, weights and prices of the D. O. James line of Iotorized Reducers. It lists completely seection tables, service factors and character of load. Information therein will prove helpful to your engineering department in the selection of the proper type of Motorized Reducer.

MOTORIZED PLANETARY REDUCER Horizontal and vertical drive, made in 35 sizes, ratios 10 to $1200: 1$. $3 / 4$ to $75 \mathrm{H} . \mathrm{P}$.

MOTORIZED WORM GEAR REDUCER
With either horizontal or vertical drives. Made n 11 sizes, ratios 6 to 80:1 and a horse power range of $1 / 5$ to 50 H . P.

MOTORIZED
HEIICAL REDUCER
With either horizontal or vertical drive, 13 siges. ratios $1.1 / 4$ to $91 / 2 ; 1$. $3 / 4$ to $50 \mathrm{H} . \mathrm{P}$.
Sales and engineering offices in ALL
principal cifies

D.O. JAMES

D. O. JAMES MANUFACTURING COMPANY ESTABLISHED 1888
1120 WEST MONROE STREET - CHICAGO, ILLINOIS

FOR OVER 50 YEARS MAKING AIL TYPES OF GEARS AND GEAR REDUCERS

Get In On It!

Pangharn ROTOBLRST

 Rirless cleaning Equipment
- Smashes" Bottlenecks"

- Speeds Up Production - Lowers Costs

RIGHT NOW - Industry's job is to get finished goods into customers' hands -quickly-cheaply-and better made than ever before.
Pangborn Airless ROTOBLAST Barrels and Tables are in on this deal. They're smashing "bottlenecks"-getting castings and metal parts cleaned in from 40 to 60 per cent less time than ever before - with fewer rejects-with a new low for break-age-and with such a saving in cleaning costs that often the equipment is paid for out of savings in as little as a two year period. Let us send you the facts.
NEW BULLETIN ON ROTOBLAST BARRELS. Pictures, diagrams, installation data, performance schedules and other information on the $31 / 2,7,14,171 / 2,21$ and 28 cubic feet capacity sizes. Write for free copy today.

WII buld ane-story factory 100×500 feet for manufacture of lamp bases, to cost about $\$ 250,000$. Plans to be drawn liy E. J. Edwards, company engineer, Nela Park, Cleveland. Ten acres near Nickel Plate tracks at western edge of city have been bought as site.
DAYTON, O.-Duriron Co., 450 North Findley street, will let contract soon for a 100×180-foot foundry and $25 \times$ 170 -foot warehouse, to cost over $\$ 40,000$. Geyer \& Neuffer, Arcade building, are archltects.
ElyRIA, O.-Harshaw Chemical Co., 1945 East Ninety-seventh street, will enlarge Elyria plant on John strect by addition of 7500 square feet to processIng plant. H. E. Cowser is company engineer and is recelving bids.
LORAIN, O.-American Stove Co., Long avenue and Thirteenth street, is "nlarging plant by addition of 30×121 foot structure.
medina, O.-Permold Co., East Cleveland, 0 ., will bulld a two-story $80 \times$ 350 -foot plant here for manufacture of aluminum products, at cost of about $\$ 125,000$.
SANDUSKY, O.-Brown Industries Inc., Olver Rinderle, president, is adding 6000 square feet of factory space for production of castings for machine tool and automotive Industries.

Connecticut

BRIDGEPORT, CONN.-Peerless Aluminum Castings Co., care P . Petropks: architect, 952 Main street, has let gencral contract to A. Chilstlanson, 8is Dogwoad lane, Failfleld, Conn., for : one-story 50×152-foot plant.
DEVON, CONN.-Connecticut Light \& Power Co., Waterbury, Conn., plans expansion of plant at Devon, includine $43,000-\mathrm{kw}$ turbine generator and aux 11 larles, to cost over $\$ 3,500,000$.
STRATFORD, CONN.-Vought-SIkorsky dlvision, United Aircraft Corp., Maln street, has plans by C. W, Walker, 915 Main street, Bridgeport, Conn., for n nne-story 60×80-foot manuficturing buildine and 40×60-foot administration bulding. (Noted Oct. 28.)

Massaclusetts

NEW BEDFORD, MASS.-City clerk, dity hall, has plans for municipal airport, including runways, hangars and shops, at Shawmut avenue and Plainfield road, to cost about $\$ 569,000$.

Yermont

SPRINGFIELD, VT.-Fellows (;(\%): Shaper Co., River street, will buld : one-story 60×60-foot castings storagi unit. General contract to Harty. Blaney Construction Co., 25 Hamilton avenur. Boston.

New York

BETHPAGE, N. Y.-Grumman Aiteralt Corp., manufacturer of alreraft, will huld an addition covering about 500.. in square reet, costing $\$ 2,000,000$. Aus 8 g n and Cleveland, has contract for dosin and construction.
BUFFALO-Buffalo Nlagara Electric Corp. Colonel W. Kelley, vice president, arn Electric bullding, has let general nentact to General Electric Co., Schelidnition N. $\mathrm{Y}_{\text {, }}$ for a generator plant steam at the Charles R. Huntley steam plant, at cost of about $\$ 6,000,000$.

[^10]Inc., 122 East Forty-second street, New York, is engineer.

DANSVILLE, N. Y.-Foster Wheeler Co., manufacturer of oil refining and power plant equipment, will take bids soon for a $100 \times 120-$ foot plant addition costing over $\$ 40,000$, with equipment. T. R. Hugo, care owner, is engineer. (Noted Oct. 28.)

HUDSON, N. Y.-Universal Allas Cement Co., 135 East Forty-second street, New York, will bulld a two-sto:y 43×72-foot laboratory and two-story $60 \times 260-$ foot shop bullding. (Noted Sept. 30.)

NORTH TONAWANDA, N. Y.-National Grinding Wheel Co. Inc., Walck road. wilt bulld a two-story 85×130-foot plant, estimated to cost $\$ 75,000$. GenBral contract to Laur \& Mack Contracting Co. Inc., 1400 College avenuc, Niagara Falls, N. Y. J. Russ, care owner. is engineer.

OLEAN, N. Y.-City will build municipal alrport east of city, to cost about $\$ 100,000$. C. H. Weatherall is elty englneer.

New Jersey

ARLINGTON, N. J.-Standard Tool \&

High speed turning machines for turning round bars and tubes - automatic and continuous production - adaptable to precision turning or rough peeling - available in several types. THEMEDARTCOMPANY 3520 DeKalb St. - . . St. Louis, Mo.

SUPERIOR INGOT MOLDS STOOLS

TOOLSTEELAND
SPECIALMOLDS

SUPERIOR MOLD \& IRON COMPANY

PENN, PA. (Pittsburgh District)
Phone: Jeannette 700

SAFETY!

When heat's a factor-nothing is more important than SAFE operation of Ladle Cranes. And safety calls for I.W.R.C. ropes, because hemp center ropes can't take the intense heat.

For many years Macwhyte has supplied leading steel-makers with I. W. R. C. Ladle Crane ropes. Macwhyte men, with lifetimes spent in rope making. know how to make I. W. R. C. ropes with safety second to none! For SAFETY'S sake try a MACWHYTE Whyte Strand 1.W.R.C. rope on your Ladle Cranes. Available in 6×37 flexible or 6×19 standard flexible constructions.

MACWHYTE COMPANY 2912 Fourteenth Aye., Kenosha, WIscousin Manulacturers of wire rone (PREformed and regular) snd braided wire rope sllngs. New York Pittsburgh Chlcago Ft.
Worth Portland Seattle San Franclsco Disiributors ihroughout the U. S. A.

No. 488

MADE TO SOLVE

 YOUR PROBLEMSCall on Hubbard's long experience and skill in developing and manưacluing patts like these, to accomplish the resulls you are after in those various design and production problems.
Send in your drawings, or describe your problem. Your inquiry will bring real assistance and the advantages of long experience. [JTAMPI

M.D.HubbardSpring Company

420 Central Ave., Pontiac, Mich.

THEPURE

PURE THREE POINT LUBRICATION A Complete Line of Industrial Petroleum Products

A Pure Oil engineer will help solve your lubrication problems. Write today.

PURE

B1L日B.

1

Mininity
 Mि1

WELDED STEELPARTS..
GKS welded and preformed steel parts, ranging GKS welded and preformed steel in sizes from small light weight stamplngs to large heavy steel machine bseses. are writetoday for further iniormation on the
facture of your duplicate steel parts.

Mig. Co., 237 Laural avenue, is asking bids on a two-story 100×160-foot plant addition. J. T. Simpson, 6 Atlantic street, Newark, N. J., is architect.

LONG BRANCH, N. J.-City plans construction of sewage disposal plant as WPA project, at cost of $\$ 207,984$. W. D. Cougle, 1105 South Broad street, Trenton, N. J., is engineer.

Pennsylvania
PITTSBURGH-Peoples Natural Gas Co., 545 Wllllam Penn way, will bulld 90 miles of gas pipe line from Limestone township, Clarion county, to Hebron townshlp, Potter county, Pennsylvanla, at cost of more than $\$ 100,000$.
READING, PA--Reading Sheet Metal Products Co. Inc., Canal and Chestnut streets, has plans ly Muhlenberg, Yerkes \& Muhlenberg, Ganster bullding, for a manufacturing plant on Third street, to cost about $\$ 40,000$. (Noted Nov. 4.)

READING, PA.-Reading Steel Casting Co., Tulpehocken street, will bulld a machine shop costing about $\$ 75,000$.

YORK, PA.-York Sare \& Lock Co. has let general contract for two plant units on a 197-acre site to Cummins Construction Co., 803 Cathedral street, Baltimore. Estimated cost $\$ 1,700,00$. with equipment.

Mlehlgan

ANN ARBOR, MICH.--Buhr Machine Tool Co. will hulld a plant adtltion on plans by Fry \& Kasurin, architects, Ann Arbor, Mich.

AUBURN HEIGHTS, MICH.--Superior Metal Products Co. has plans by W. D. Knox, Pontiac, Mich., for a factory anil office adultion.
BATTLE CREEK, MICH.-American Stamping Co. is bullding a two-story plant addition. Edward Tuttle, Battle Creek, is architect.

DETROIT-Snyder Tool \& Engineering Co. has let general contract to Darin \& Armstrong Inc., Detroit, for an office and crane runway addition to its plant.

DETROIT-Commerclal steel Treating Corp. has given contract to H. C. Wrlght, Detrolt, for a $\$ 30,000$ plant addition.

DETROIT-A A A Springs Inc. has been incorporated to manufacture springs, with $\$ 3000$ capital, by Ritchle S. Barrie, 17728 John R. street, Detroit.
FERNDALE, MICH.-Triangle Englneering Co. has been incorporated with $\$ 25,000$ capital to manufacture j1gs, tools and machines, by Charles M. Smillie Jr., 22747 Woodward avenue, Detrolt.

PLYMOUTH, MICH. - Kelsey-Hayes Wheel Co., Detroit, will build a plant and bollerhouse in Plymouth, 280×840 feet. Giffels \& Vallet Inc., is architect.
SAGINAW, MICH.-Wilcox-Rich divislon Eaton Mig. Co., Herbert P. Russell, plant manager, will bulld 120×186-foot addition to house aircraft engine parts manufacture.

Illinois

[^11]ANDERSON, IND.-Delco-Remy divf-
sion, General Motors Corp., O. V. Badely. general manager, 2401 Columbus avenue. will build a power plant, including boilers, on East Twenty-seventh street. to supply steam and power to plants 3 and 7, at cost of $\$ 75,000$; prellminary survey under way for $450 \times 600-\mathrm{root}$ plant at East Twenty-ninth and Monroe strects, estimated cost $\$ 350,000$, with equipment.

ANDERSON, IND.-Board of publle works plans to expand municipal power plant, including 1200 -horsenower boller, superheater, economizer and auxiliaries, at cost of about $\$ 300,000$. Russell 13 . Moore \& Co., Indiana Pythian bullding, Indianapolis, are consulting engineers.

SOUTH BEND, IND.-Bendix Aviation Corp. will add 150,000 square feet to manufacturing space for national de-
ronse production of aircraft carburetors. landing gears, alrcraft hydraulic appaiatus and similar products. Austin Co., Cleveland, has contract. (Noted Oct. 14.)

Virginia

NORFOLK, VA.-Virginia Smelting Co., West Norfolk, will build a four-story plant addition. General contract to J. P. Peddyjohn, Lynchburg. Va. Cost estimated over $\$ 40,000$. Ballinger Co., 105 South Twelrth street. Philadelphia, engineer.

Missouri

ST. LOUIS-Sterling Aluminum Prod"ets Inc., 2925 North Market street, wlll bulld a factory at North Market and Glasgow streets, 81×112 feet. Edward

MECHANICAL POWER PRESSES

of

ALL TYPES AND SIZES

Horn

Reclinable
Straight Side
Roll and Dial Feeds
Double Action
Double Crank
Punching Toggle

Our Specialty:
Patent Percussion Power
Presses
ZEH \& HAHNEMANN CO. 56 Avenue A.

Newark, N. J.

RYERSON CERTIFIED STEELS

represent the highest quality obtainable in each
class and type of material. All kinds from standard carbon grades to special alloys in stock for Immediale Shipment. Write for Stock List. Joseph T. Ryerson \& Son, Inc. Plonts at: Chicago, Milwaukee, St. Louis, Cincinnati, Delroit, Cleveland, Buffolo, Baston, Philadelphia, Jersey City.

WIRE

Iron-Stecl-Alloy
Round - Flat - Shapes All Sises and Finishes
Also Wire Screen Clolh
The Seneca Wire \& Mfg. Co. Fostoria, Ohio

FIRTH-STERIIIG
 TOOL STEELS - STAINLESS STEELS - SINTERED CARBIDES FOR COMPLETE SHOP TOOLING • McKEESPORT, PA.

SUPERIOR

STEELCORPORATION

HOT AND COLD ROLLED STRIP STEELL
AND SUPERIOR STAINLESS STEELS
Successfully serving steel consumers for almost half a century

EXECUTIVE OFFICES - GRaNT BLDG.. PITTSBURGH. PA GENERAL OFFICES AND WORKS - CARNEGIE.

TOOL STEEL PROGRESS

Since 1示4
WILLIAM JESSOP \& SONS, Inc.
New York-Chicago-Boston-Detroit-Toronto

STANLEY

Steel Makers Since 1871

* BILLETS * SLABS * * STRIP STEEL \star

THE STANLEY WORKS NEW BRITAIN, CONN. - BRIDGEPORT, CONN. HAMILTON, ONTARIO

B ELLMONT $\frac{R \quad O N}{\text { PHILADELPHIA }}$ NEW YORK Engineers - Contractors - Exporters STRUCTURAL STEEL-BUILDINGS \& BRIDGES RIVETED-ARC WELDEI
belmont Interlocking Ciannel Floor
Man Otice-Phila., W'rite far Catalogue
(1) Wh York Ofice-4h Whall St.

Just published . . . new reference book "Handbook of Special Steels-Their Properties, Uses, Fabricators." Write for it!

A. ALLECHENY LUDLUM STEEL GORPORATION
 AL. oliver aulidine
 pITHSDVRGH, 82.
 Sales olfices and Complete Stocks in all Principal cites

LACLEDE PRODUCTS
STEEL PRO - BLOOMS AND BILLETS - WROUGHTSTETELCTCIPE CONDIT - HOT ROLLED STRIP - STEL JOISTS - MERCHANT BARS AND WIRE MESH
SHAPES
LACLEDE STEEL

For Accuracy -

Whitehead Quality Stampings

Solve the problem of product haws dus to inferior stampings. For 37 years, WHITEHEAD SHAMPINGS have years, whitizizad for orcuraty. Exbeen recognized for orcuracy. Experienced workmanship is your es surance of quality stampings that surance of qualiry stampurity. Be maintain your product quaik. assured of a reliable sevrce of stampings. Get WHITEHEADI Send for cotolog.
EST. 1903
WHITEHEAD STAMPING CO.
1667 W. Lafayette Blvd.
Detroit, Mich.
J. Lawler, 3736 West Pine boulevard, is archltect.

Wisconsin

LACROSSE, WIS.-IREA has allocated $\$ 1,100,000$ to Tri-State power co-operatlve, Lawrence Cole, co-ordmator, for two additional $4000-\mathrm{kw}$ turbo-alternating units, construction of tie-line between Genoa plant and Trempealeau substatlon of Wisconsin power co-operative and auxillary equipment.

MANITOWOC, WIS.-Manitowoc Shipbullding Co. will erect a welding shop costing $\$ 87,000$ and make additions to machine shop and office, to glve facllithes for construction of ten submarines.
NORWALK, WIS. - Village, V. C. Wrick, clerk, is taking bids on materials for construction of sewage disposal plant to cost $\$ 27,000$. Frank J. Davy \& Son, 502 Main street, LaCrosse, Wis.. Is consulting engineer
PHILLIPS, WIS.-REA has allocated $\$ 300,000$ to Price electric co-operatlve, Arthur G. Johnson, president, for 360 miles rural transmission lines to serve 364 custamers. Wisconsin development authorlty, 522 Tenney building, Matlison, Wis., is consulting engineer.
READSTOWN, WIS.-Village, R. Sherfleld, clerk, is taking bids on materials for sewage disposal plant and sewers to cost $\$ 270,000$, a WPA job. Frank J. Davy \& Son, 502 Maln street, LaCrosse, Wis., are consulting engineers.

Minnesota

BaUDETTE, MINN.-REA has allocated $\$ 196,000$ to North Star electric cooperative, Clarence Peterson, co-ordlnator, for 227 miles rural transmission lines to serve 538 customers. General Englneering Co., 2944 Cedar avenue, Minneapolls, is consulting engineer.
BRECKENRIDGE, MINN.-City, Ruth Hamliton, clerk, holds special election Sov. 18 on $\$ 75,000$ in bonds to aid llnancing WPA sewage disposal plant.
MAHNOMEN, MINN.-REA has allocated $\$ 155,000$ to Wildwood electrle cooperative for 204 miles rural trans. mission tines to serve 424 customers.
MINNEAPOLIS - Pioneer Engine Works, L. W. York, president, 1515 Central avenue, has plans by A. B. Dunham, 315 Essex bullding, for a one-story factory addition costing over $\$ 40,000$ with equipment.
RUSH CITY, MINN:-Vllage, Harry L. Sherman, clerk, takes bids to Nov. 20 for power plant bullding, generating and auwiltary equipment and distribution system. Ralph D. Thomas \& Associates 1200 Second avenue South, Minneapolis, are consulting engineers.
WHEATON, MINN.-Village, M. I. Fridgen, clerk, Is taking blds to Nov. 2 i With sewers an of sewage disposal plant, Wh sewers and watermains. G. M. Orr i Co, $5: 2$ Baker Arcade building, Minneapolls, is consulting engineer.

Nebraska

KEARNEY, NEBR-City, Mrs, Ha:riette J. Nelson, clerk, is making survey tor sewage disposal plant to cost about S220,000, Douglas MeKnight, Lineoln, tehr., is consulting engineer.

Iowa

CLINTON, IOWA-Interstate Power Co. spend $\$ 100,000$ for improving its and ash ince, including additional boller and ash and dust ellminators
STANTON, IOWA-REA has allocated Oscar to Nyman electric co-operative, Osear Wenstrand, president, for 149 mlles
rural transmission lines 10 serve 379 customers.

California

LONG BEACH, CALIF. - Industrial Metals \& Supply Co., 1631 West Anaheim street has been formed by L. A. Wells and Walter Schenk.

LOS ANGELES - Advance Aircrart Tool Co., 6767 Romalne street, has been formed by Samuel M. Tymann and Leo Schnigel.

LOS ANGELES-I-lockaday-Newby Alrcraft ine. has been incorporated with 100 shares no par value, by Noel Hockaday, Burbank, Calif., H. L. Newby, South Pasadena, Calif., and associates. H. C. Brillant, Chapman bullding, Los Angeles, is representative.

LOS ANGELES-Presteel Corp. has been incorporated with $\$ 75,000$ capital by Austin Sherman, Los Angeles, and assoclates.

LOS ANGELES-Columbla Stamping \& Mfg. Corp. has been incorporated with $\$ 50,000$ capital by J. E. Franklin, Curt W. Bohman and Elsie Wyatt, Los Angeles. P. Harold Decker, Title Insurance bullding is representative.

LOS ANGELES-Atrcraft Machinery Corp. has been incorporated with $\$ 75,000$ capital by Harold W. Nash and assoclates. Marcus, Rawbin \& Nash, 608 South Hill street, are representatives.

SAN DIEGO, Calif.-Tenbar Machine Co. has been incorporated with $\$ 25,000$ capital by Harold A. Tenney, Dave Bell and L. G. Maple. Renwlek Thompson, 504 Flrst National Bank buiding, Sän Diego is representative.

VAN NUYS, CALIF.-Adel Preciston Products Corp., 10737 Vanowen street, is bullding an addition 122×182 feet, costIng about $\$ 29,000$.

WILMINGTON, CALIF. - Wilmington Welding \& Boller Works, 115 North Marine avenue, has been formed by Henry D. Wallace and assoclates.

Oregon

THE DALLES, OREG.-Wasco county electric co-operative is taking bids for 265 mlle power line for which $\$ 240,000$ is available. P. L. Aclkins, Wenatchee, Wash., is engineer.

Washington

DAVENPORT, WASH.-Lincoln county electric co-operative is taking bids for $435-$ mile power line. Plans are by Columbia Engineering Co, Wenatchee, Wash., and cost is estimated at $\$ 400,000$.

SEATTLE-Tennent Steel Casting Co. Inc., recently incorporated, has estabIlshed plant at 3444 Thirteenth avenue S. W. for manufacture of carbon, alloy and speclal steel castings. Noted Oct. 28.)

SEATTLE-J. A. McEachern Co. has general contract for a steel fabricating shop 275×298 feet, costing $\$ 125,0 n 0$, for the navy at plant of Seattle-Tacoma Shipbuilding Co., where 20 destroyers are to be built.

VANCOUVER, WASH.-Aluminum Co. of America has completed construction of second unit and has started work on three additional units. Fill is being made by dredging turning basin in Columbla river.

WASHOUGAL, WASH.-Northwestern Electric Co. will spend $\$ 20,000$ on improvements at local substation, adding (36,000 -volt transformer, swltching and other equipment.

Canada

ST. JAMES, MAN.-Department of munitlons and supply, Otlawa, Ont., will call bids soon for one-story engine test-

Ing shop 100×400 feet, costing $\$ 100,00$ o, G. K. Shells, Ottawa, is deputy minister, Northwood \& Chlvers, 406 Nanton bullding, WInnipeg, Man., architects.

NEW GLASGOW, N. S. - Steel Furnishing Co., Washington street, manufacturer of springs and metal products, has let general contract for plant addition to Fraser, Mason \& Fraser, to cost about $\$ 65,000$. H. Scott Cameron, 239 washington street, is manager.

TORONTO, ONT.--Viceroy Mfg. Co. Ltd., 345 Royce avenue, manufacturer of rubber goods, Is buliding plant addition to cost $\$ 150,000$. Harold J. Smith, 6it Charles street, Is architect.

WINDSOR, ONT.-Walker Metal Products Ltd., 1511 Kildare road, has given general contract to Hein Construction Co., 172 Aylmer avenue, for plant addition estimated to cost $\$ 45,000$, with equipment. H. M. Gregor is manager.

Ouir aim is to render

 service. A little more complete . . . more hospitable...more pleasing ... than even the most exacting guest expects.CIIAS. II. I.OTY Manager

Every Ruom Olutside wilh Private llath Singto from $\$ 2.50$ Double from $\$ 4.00$

CASS AT BAGIEX AVE. gartage in connection

ROTARY SQUARING KNIVES
for Modern Requirements

- HOT D IP••••• GALVANIZING

Shloment via boat, truck or any rallioad. Over 40 yeass in one location.
ENTERPRISE GALVANIZING CO. 2525 E. CUMBERLAND St., PHILADELPHIA, PA.

FOR SALE

20 Steal Gondolas 50 Ton $40^{\prime} \mathrm{long}$ 20 Ton Amrrican Steam Locomative Crane 300 Kw Skinner Uniflow Generator 120, 180 and 240 MP Falrbanks Diesels 150 KW Whrthington 2300 Volt Dlesel

WHAT DO YOU NEED- OR WART TO SELL!
MISSISSIPIL VALLEE EQUIPMENT CO.
SIIA Iocust Street St. Louls, Mo.

-REBUILT-

ELOWERS - FANS - EXHAUSTERS
Conneraville-Roots positive blowers. Centritugals for gan and oll burning. Gaul blast, grinder and dust exhauaters. Ventlating tans and roof ventlatora
GENERAL BLOWER CO.
404 North Peorla St. Chicago. III.

Rails-"1 Ton or 1000"

NEW RAILS-5000 tors-All Bectlons-All Biren. REll A1sen, pracbically on rood as New. ACCEGBORIEA-Every Trat Accestory earmed In mioct-Angle and Bplice Bars, Bolte, Nutis. Frogs.
Buy from Onf Source-Sare Time and Momey Phone, Write, or Wire
L. B. Foster company, Inc.

PITTBBURGE SEW YORE CHICAGO

FOR SALE

4 Practically new Monel plekle crates and hangers, welded construction, 126 in. $x 4 \bar{j}$ in., sultable for weights up to 15,000 pounds. Write for dimenslons. Bargain for quick buyer. Address Box 344, STEEL, Penton Bldg., Cleveland.

WANTED

Charging Machines for charging Blllets or Ingots into furnace; capmelty lets or Ingots into furnace; capmelty $11 / 2$ tons to 5 tons. Can use overhead crane type, cat crawler type or wheel type. Send detalls, price and locatlon for inspection. Address Box 352, STEEL, Penton Bldg., Cleveland.

FOR RENT OR SALE

Modern $10^{\prime \prime}$ Rolling Mill Including $16^{\prime \prime}$ break down rolls For Rent or Sale with all necessary equipment in New York Metropolitan Distrlct. Address Box 330, STEEL, Penton Bldg., Cleveland.

WANTED

SECOND-HAND GALVANIZING EQUIPMENT P. O. Box 1991 Birmingham, Alabama

Boring Mills $42^{\prime \prime}$ Bullard, $72^{\prime \prime}$ Niles, B.D. Bater, 22-P Logemann, Pump and motor. Draw Bench, 30,000 lbs. W-F, 22^{\prime} draw, M.D.

Grinder, Knlfe 10° Bridgeport. M.D. Grinder, Roll $30^{\prime \prime} \times$ 76" $^{\prime \prime}$ Farrel, M.D. Press, Forging 150 ton United Steam Hyd. Pipe Machs, $2-4-6-8-12^{\prime \prime}$ Willams, M.D. Shears Plate, $10^{\circ} \times 1 / 4^{\prime \prime}-48^{\prime \prime} \times 1 / 4^{\prime \prime}-96^{\prime \prime} \times$ 1/2", M.D.
Sheet Levellers, $48^{\prime \prime}-60^{\prime \prime}-84^{\prime \prime}$ McKay, 17 roll, M.D.
Slitters Gang, 18' W-F, 36" Yoder, M.D.
WEST PENN MACHINERY CO.
1208 House Bldg.
Pittsburgh, Pa.

800-TON HYDRAULIC PRESS
IIORGAN ENGINEERING COMPANY Model No. 95. 800-ton capaclty; 2 rams, Bed area approx. $48^{\prime} \times 15^{\prime} 20^{\prime \prime}$ stroke; 4^{2} day-light. Complete with pump and Ings. First-class condition.

BARGAIN PRICE BEFORE MOVING
FAIK MILL SUPPLY CO., INC.
18 Ward St.
Rochester, N. \mathbf{j}

WANTED

HULLDOZER: Hilles \& Jones No. 2 or equal, stroke about $1^{11 / 4}$ " for straightening. PUNCH: Shallow throat, $1^{\prime \prime}$ thru $1^{\prime \prime}$. INDUSTRIAL EQUIPMENT CORP. P. O. Box 1047

Pittslourch, Pa.

KIRK \& BLUM
 WELDED MACHIME BASES, PEDESTALS and FRAMES lathe pails
 GEAR and BELT GUARDS
 Pressed Steel Louver Panels and Cover Plates
 THE KIRK \& BLUM MIFG. CO.
 $2: 22$ Spring Grove Ave. Cincinnati, Ohio

Send Your Inquiries for
ACID PROOF CONSTRUCTION TO THE
Sauereisen Cements Co.
pittsburgh (lis), penna.
Manufacturers of Insa-Lute, Technical and Industrial Cements . . . Compounds

Send your inquilies for
SPECIAL ENGINEERING WORK
A. H. NILSON MACHINE COMPANY, BRIDGEPORT, CONN.
deslgners and builders of wite and sibbon andock forming machines.
We also solicit your bids for cam milling

PATTERN EQUIPMENT

WOOD or METAL
Made Right and Delivered When Promised.

THE WELLMAN BRONZE \& ALUMINUM COMPANY 6011 SUPERIOR AVE. CLEVELAND, OHIO

Positions Wanted

ALES REPIRESENTATIVE DESIRES connection. Wide acquaintance amone steamship and steel offlclals in Great Lakes area. Excellent training in electrical and radio neld. Reply Box 3̄̄3, STEEL, Penton Bldg., Cleveland.

PLANT MANAGER; TWENTY-FIVE YEARS experience, machine shops, sheet metal, foundry. Methods, costs, management; standards and controls. Capable, alert, aggressive; engineer. Will negotlate wlth llve industry, central states; salary STEEL, Penton Bldg., Cleveland.
ENGINEERING POSITION IN PITTSburgh District by college grad. Seven years' experience strlp mill and furnace work. Now employed. Address Box 359, STEEL, Penton Bldg., Cleveland.

Help Wanted

WANTED-IIIGII GRADE PLANT SUPERintendent for modern structural steel shop In southern steel center. Must have had experjence, be a good handler of men, must be able to plan work and get low, costs. Floaters and those not quallined please do not reply. Address Box 361, STEEL, Penton Bldg., Cleveland.
STRUCTURAK. STEEL DETAILER FOR Fabricating Shop located in Southwest, 1000 tons monthly capacity. Address Box 35T, STEEL, Penton Bldg., Cleveland.

ENGINEER EXPERIENCED IN DESIGN and detalling, Relnforcing Bar Fabricatand cllmate ding 6000 tons yearly. Nilce city STEEL, Penton Bldg., Cleveland.

WANTED: STRUCTURAL STEEL DESICNER: Must have ability design bulldings, bridges and plate work. First-class relerences important. State salary expected in fenton letter. Address Box 347, STEEL, Penton Bullding, Cleveland.

CLASSILIED RATES

All classlflcations other than "Positlons Wanted," set solid, minimum 50 words, 5.00 , each additional word 10 ; all capitals minimum 50 words, 6.50 each additional word .13: all capitals, leaded minimum 50 words 7.50 , each additional word .15 25 words wanted, set solid, minimum 25 words 1.25 . each additional word .05 all capitals, minlmum 25 words 1.75 , each additional word .07; all capitals, leaded minimum 25 words 2.50 , each additiona] word .10 Keyed address takes seven words. Cash with order necessary on "Positions Wanted" advertisements. Replies forwarded without charge
Classiffed pages are 3 columns, each column $21 / 4$ inches wide.
Forms close Wednesday preceding publication date.

Employment Service

SALARIED POSITIONS $\$ 2,500$ to $\$ 25,000$

This thoroughly organized advertising servlce of 30 years' recognized standing and reputation, carries on preliminary negotiations for positions of the caliber Indicated above, through a procedure individuallzed to each cllent's personal require ments. Several weeks are required to negotlate and each individual must finance the moderate cost of his own campalgn. Retaining iee protected by refund provision as stipulated in our agreement. Identity is covered and, if employed, present positlon protected. If your salary has been $\$ 2,500$ or more, send only name and address for cietails. R. W. Bixby, Inc., 110 Delward Bldg., Buffalo, N. Y.

Representatives Wanted

SALES AGENTS WANTED-TO REPREsent modern electric foundry located in mid-west on commerclal steel castings; stralght commission on all buslness de: veloped. Address Box 356, STEEL, Penton Bldg., Cleveland.

Do You Want to Sell USED or SURPLUS Machinery?

- STEEL can help you contact prospects by placing your advertisement before 60,000 readers in the metalworking and metal-producing industries.
- Place your advertisement in the "Used and Rebuilt Machinery" section of STEEL.
- Rates are moderate. Send in your copy today. Write STEEL, Penton Building, Cleveland, Ohio.

Accounts Wanted

SALIES ENGINEER, WISCONSIN TERRItory with excellent industrial contacts wishes additional line, commission basis, and assures aggressive productive representation. Address Box 349, STEEL, Penton Bidg.. Cleveland.

DO YOU WANT MORE DETROIT IBUSINESS?
Established manuracturers agency (engineers) with excellent automotive and industrial contacts would like additional line. Greatly interested in repeat, volume business to sell present established connections. Address Box 360, STEEL, Penton Bldg., Cleveland.
ALERT, AGGRESSIVE SALESMAN wants one or two reputable products (machine tools, small tools, etc.) to supple. ment llnes now belng explolted, steel, bolts, etc. Washington-Baltimore territory. Address Box 355, STEEL, Penton Bldg., Cleveland.

OPPORTUNITIES AND PROFITS

are of equal interest to distributors and manufacturers-use an ad on thisers know you are interested in taklng on new lines.

Castings

PENNSYLYANIA

NORTH WAIES MACHINE CO., INC., North Wales. Grey Iron, Nickel, Chrome. Molybdenum Alloys, Semi-steel. Superior quality machine and hand molded sand hlast and tumbled

0 HIO

THE WEST STEEL CASTING CO., Cleveland. Fully equipped for any production oroblem. Two 1 is ton Elec. Furnaces. Makers of high grade light steel castings, also alloy castings subject to wear or high heat.

Bids Wanted

Federal Works Agency, Public Bulidings Administration, Washington, D. C., Uct. Administration 1940. Sealed proposals in duplleate will be publicly opened in this office at will be publicly opened in this orflce at
1 P. M., Standard Time, Nov. 29, 1940 , 1 P. M., Standard Tlme Nov. 29, 1940 , for construction of the U. S. P. O, Oak Park Station, Fint, Mich. Upon applica-
tion, one set of drawings and speciflcathon, one set of drawings and speciflica-
tions will be supplied free to each gentions will be supplied free to each gen-
eral contractor interested in submitting aral contractor interested in submitting a proposal. The above drawings and specifcatlons MUST be returned to this
office. Contractors requiring additional sets may obtain them by purchase from thls office at a cost of $\$ 10$ per set, which will not be returned. Checks offered as payment for drawings and specifications must be made payable to the order of the Treasurer, U. S. Drawings and specifications will not be furnished to contractors who have consistently falled to submit proposals. One set upon request, and when considered in the interests of the Government, will be furnished, in the discretion of the Commissioner, to builders' exchanges, chambers of commerce or other organizations who will guarantee to make them available for any sub-contractor or material firm interested, and to quantity surveyors, but this privilege will be withdrawn if the sets are not returned after they have accomplished thelr purpose. W. E. Reynolds, Commissioner of Public Bulldings, Federal Works Agency.

ADVEITISING INDEX

Where-to-Buy Products Index carried in first issue of month.

Page

A

Abart Gear \& Machine Co.
Abrasive Co., Division of Simonds Saw \& Steel Co.
Accurate Spring sifg. Co
Acme Galvanlzing, Inc.
Acme Steel \& Malleable Iron Works
Air Reduction
Alrtherm Mfg. Co.
Ajax Electrothermic Corp.
Ajax Flexible Coupling Co.
Ajax Manufacturing Co.
Alan Wood Steel Co.
Allegheny Ludlum steel Corp
Allen-Bradley Co.
Allis-Chalmers Mrg. Co.
Alrose Chemical Co.
American Aglle Corp.
American Brass Co., The
81, 82, 83
American Bridge Co
Amertcan Chain \& Cable Co., Inc.
American Chaln Division
Amerlcan Chain \& Cable Co., Inc.,
Ford Chain Block Division.
Amerlan Chain \& Cable Co., Inc.,
Page Steel \& Wire Division.
American Chain Division of American
Chaln \& Cable Co., Inc.
American Chemical Paint C
American Engineering Co.
American Flexible Coupling Co.
American Forge Dlvision of the Amer-
Ican Brake Shoe \& Foundry Co
American Foundry Equipment Co., The
American Gas Association
American Hot Dip Galvanizers Association
American Lanolin Corp.
American Monorall Co.
American Pulverizer Co.
American Roller Bearing Co
American Rolling Mill Co., The
American Screw Co.
Amerlcan Shear Knile Co.
American Steel \& Wire Co.
American TInning \& Galvanizing Co.
Ampeo Metal, Inc.
Amsler-Morton Co., The
Andrews Steel Co., The
Apollo Steel Co.
Armstrong-Blum Mrg. Co.
Armstrong Cork Co.
Atlantle Stamping Co.
Atlantic Steel Co.
Atlas Car \& Mifg. Co.
Atlas Drop Forge Co.
Atlas Lumnite Cement Co .

B

Babcock \& Wilcox Co.
Bailey, Wm. M., Co
Baker-Raulang Co.
Baldwin-Duckworth Division of Chair Belt Co.
Baldwin Southwark Division of The Baldwin Locomotlve Works
Bantam Bearlngs Corp.
Barnes, Wallace, Co., The, Division of Assoclated Spring Corporation
Basic Dolomite, Inc.
Bay Clty Forge Co.
Beatty Machine \& Mifg. Co.
Bellevue-Stratford Hotel
Belmont Iron Works
Berger Manufacturing Dly., Republle Steel Corp.
Bethlehem Steel Co.
Birdsboro Steel Foundry \& Machine Co.
Blssett Sieel Co., The
Blanchard Machine Co.
Blaw-Knox Co.
Blaw-Knox Dlvision, Blaw-Knox Co.
Bliss \& Laughlin, Ine.
Bower Roller Bearing Co.
Brassert, H. A., \& Co
Brldgeport Brass Co.
Broderlek \& Bascom Rope Co.
Brooke, E. \& G., Iron Co.
Brookville Locomotive Co.
Brosius, Edgar E., Inc.

Brown \& Sharpe Mrg. Co. Brown Instrument Co., The
Bryant Chucking Grinder Co.
Buffalo Galvanizing \& Tinning Works Bullard Co., The
Bundy Tubine Co.

C

Cadman, A. W., Mrg. Co.
Canton Pattern \& Mifg. Co., The
Carboloy Co., Ine.
Carborundum Co., The
Carey, Philip, Co., The
Carnegle-Illinois Steel Corp.
Carpenter Steel Co., The os., Inc.
Cattie, Joseph P.,
Central Screw Co
Chain Belt Co.
Challenge Machinery Co., The
Chambersburg Engineering Co.
Chandler Products Co.
Chandeago Perforating Co
Chicago Rawhide Mfg. Co.
Chromium Mining and Smelting Corp., Lid.
Cincinnati Grinders, Inc.
Cincinnat Milling Machine Co
CIncInnatl Shaper Co., The.
Clark Controller Co.
Cleveland Cap Screw Co.
Cleveland-Cliffs Iron Co.
Cleveland Crane \& Enginecring Co. Cleveland Hotel
Cleveland Punch \& Shear Works Co.
Cleveland Tramrall Division, Cleve-
land Crane \& Engimeering Co.
Cleveland Twist Drill Co., The
Inside Front Cover
Cleveland Worm \& Gear Co., The
Climax Molybdenum Co.
Columblan Steel Tank Co
Columbia Steel Co.
.62, 63
Columbus Die, Tool \& Machine Co
Commercial Metals Treating, Inc,
Cone Automatic Machine Co., Irc.
Continental Machines, Inc.
Contlnental Roll \& Steel Foundry Co.
Contmental Screw Co.
Copperweld Steel Co.
Corbin Screw Corp.
Cowles Tool co.
Cowles To

-

Fanner Mfg. Co.

Page
Page

-

Hallden Machine Co., The
Hanlon-Gregory Galvanlaing Co.
Hanna Furnace Corp.
Hanniffn Mfg. Co.
Harnischfeger Corp.
Farrel-Birmingham Co., Inc.
Farval Corp., The
Federal Machine \& Welder Co.
Finn, John, Metal Works
Firth-Sterling Steel Co.
Fitzsimons Co., The
Flexrock Co.
Flood Co., The
Ford Chain Block Division of Ameri-
can Chain \& Cable Co., Inc.
Foster, L. B., Co.
Foxboro Co., The
Fox Grinders, Inc.
Fuller Brush Co.
G
Garden City Fan Co.
Garlock Packing Co., The
General Blower Co.
General Electric Co.
General Electric Co., Lamp Dept.
Globe Brick Co., The
Granite Cily Steel Co.
Grant Gear works
Graybar Electric Co.
Great Lakes Steel Corp.
Gregory, Thomas, Galvanizing Works Grinnell Co., Inc.
Gulf Oll Corporation
Gulf Refning Co.

H

Harrington \& King Perforating Hays Corp., The
Heald Machine Co.
Heppenstall Co.
Heppenstall Duty Electric Co.
Hillside Fluor Spar Mines
Hindley Mfg. Co.
Hobart Bros.
Hodell Chain Co., The
Horsburgh \& Scott Co.
Hubbard \& Co
Hubbard M D. Spring Co
Hubbard, M. D., Spring Co.
Huther Bros. Saw Mig. Co.
Huther Bros. Saw Mig. Co.
Hyatt Bearings Divis.on, General Mo-

- Koch, George, Sons
-

128

Criswell, James, Co
Cruclble Steel Company of Amerjca
Cullen-Friestedt Co.
Curtis Pneumatic Machinery Co.
Culler-Hammer, Inc......Back Cover

Damascus Steel Casting Co
114
Darwin \& Milner, Inc.
Davis Brake Beam Co.

- Dearborn Gage Co.
—

Detrolt Leland Hotel
Detroit Rex Products Co.
Dlamond Expansion Bolt Co., Inc.
Differential Steel Car Co.
Hyatt Bearings Dlvis,on,
tors Sales Corporation
Hyde Park Foundry \& Machine Co..
I
Illinois Clay Products Co.
Illinois Development Council
Independent Galvanizing $C O$.
Indusirial Brownhoist Corp.
Industrial Equipment Corp.
Inland Steel Co.
International Correspondence Schools
Internatlonal Nickel Co., Inc.
Internatlonal Stacey Corp.
Isaacson Iron Works

.f

Jackson Iron \& Steel Co., The......... 12
James, D. O., Mfg. Co.
J-B Engineering Sales Co
Jessop Steel Co.
Jessop Steel Co.
Jessop, Wm., \& Sons, Inc.
Johns-Manville Corp.
Johnson Bronze Co.
Jones \& Lamson Machine Co.
Jones \& Laughlin Steel Corp. -
Jones, W. A., Foundry \& Nachine Co. 115
Joslyn Co. of California
Joslyn Mifg. \& Supply Co.

K

Kantlink Spring Washers
Kardong Brothers, Inc.
Kearney \& Trecker Corp.
Kemp, C. M., MIf. Co.
Kester Solder Co.
Kimball Safety products Co.
King Fifth Wheel Co.
Kingear Mig. Co.
91 Kirk \& Blum Mrg. Co.
Differential Steel Car Co.
Dravo Corp., Englneering Works Div.
Lravo Corp., Nachinery Dlvision. ... 128
der Spring \& Mira. Co.

E

Electric Controller \& Mig. Co.

Electrlc Storage Battery Co.
Electro Alloys Co., The
Elmes, Charles F.. Engineering Works 112
Enterprlse Galvanizing Co.
erdle Perforating Co., The
Erle Bolt \& Nut Co.
Erie Foundry Co.
Eureka Fire Brick Works
Excelsior Tool \& Machine Co.
Fainir Bearing Co., The
Ex-Cell-O Corp.

- ADVERTISING INDEX

Where-to-Buy Products Index carried in first issue of month.

Koppers Co.
Koven, L. O., \& Brother, Ine Kron Co., The
\mathbf{L}
Laclede Steel Co.
Lake City Malleable Co.
Lamson \& Sessions Co., The
Landls Machine Co.. Inc.
Landis Tool Co.
Lang Machinery Co.
Lansing Stamping Co.
LaSalle Steel Co.
Page

Latrobe Electric Steel Co.
Lawrence Copper \& Bronze
LeBlond, R. K., Machine Tool Co., The
Leeds \& Northrup Co.
Lee Spring Co., Inc.
Lehigh Structural Steel Co.
Leschen, A., \& Sons Rope Co.
Lewls Bolt \& Nut Co.
Lewls Foundry \& Machine Division of Blaw-Knox Co.
Lewls Machine Co., The
Lincoln Electric Co., The
Linde Air Products Co., The
Lindemuth, Lewls B.
Link-Belt Co.
Loftus Engineering Corp.
Logemann Bros. Co.
Lovesoy Flexible Coupling Co.
Ludlow-Saylor Wire Co., The.
Me
Mekay Machlne Co.
Mckee, Arthur G., Co.
McKenna Metals Co.

M

Mackintosh-Hemphill Co.
Macwhyte Co.
$\overline{26}$
Marr-Galbreath Machinery Co.
Mathews Conveyer Co.
Maurath, Inc
Medart Co.. The
Mesta Machine Co.
Metal \& Thermit Corp.
Michigan Tool Co.
Midyale Co., The
Milwaukee Foundry Equipment Co
Mississlppl Valley Equipment Co.
Missouri Rolling Mill Corp.
Moltrup Steel Products Co.
Monarch Machlne Tool Co., The
Monarch Steel Co.
Morgan Construction Co.
Morgan Engineering Co Inside......... 18
Morrison Engineering Co..Inside Back Cover
Morton Salt Co.
Morton Salt Co.
Natlonal Acme Co., The
National Bearing Metals Corp.
National Broach \& Machine Co.
National Carbon Co., Ine
National Cylinder Gas Co
National-Erle Corp.
National Forge \& Ordnance Co
National Lead Co.
Natlonal Machinery Co.
National Roll \& Foundry Co
National Screw \& Mrg. Co.
National Steel Corp.
National Telephone
Navinal Telephone Supply Co., Inc
New Departure Co.
tow Departure Division General Mo
New Sales Corp.
New Jersey Zinc Co.
New York \& New Jersey Lubricant Co.
Niagara Machine \& Tool Works
Nlies Steel Wrod \& Co.
Sleel Corp. Products Dlv., Republic Nilsol Corp.
Niltralloy A. H., Machine Co.
Noltralloy Corp., The
Norma-Hoffmann Bearings Corp.
Northern Engineerinufacturing Co
Northern Engineering Works
Norton Co., The

Ohlo Electric Mff. | Co. |
| :---: |

November 18, 1940

Ohio Ferro-Alloys Corp.
 Page

Ohio Locomotlve Crane co.., The...... 126
Ohlo Seamless Tube Co., The Ohlo Steel Foundry Co., The Oxweld Acetylene Co.

```
l
```

Page steel \& Wire Division of American Chain \& Cable Co., Inc.
Pangborn Corp.
Parker-Kalon Corp.
I'ease, C, F., Co., The
Pennsylvanla Industrial Englneces
Pennsylvan'a Salt Mrg. Co.
Penola, Inc.
Perkins, B. F., \& Son, Ine,
Petroleum Iron Woiks Cu., The
Pheoll Mrg. Co
Pittsburgh Ciushed steel Co'.
Pittsburgh Gear \& Machine Co
Pittsburgh Lectromelt Furnace Corp.
pittsburgh Rolls Division of BlawKnox Co.
Pittsburgh Steel Co.
Plymouth Locomotive Works, Div
The Fate-Root-Heath Co.
Poole Foundry \& Machine Co.
Pressed Steel Car Co., Inc.
Pressed Steel Tank Co.
Prest-O-Lite Co., Inc., The
Progressive Welder Co.
Pure oll Co., The

Raymond Mfg. Co., Division of Assoclated Spring Corp.
Reliance Electrle \& Engineering Co. Republic Stcel Corp.
Revere Copper and Brass, Inc.
Rhoades, R. W., Metaline Co., Inc.
Rlvelside Foundry \& Galvanizing Co. Lionsevelt Hotel
Rucmelin Mrg. Co.
lassell, Burdsall \& Ward Bolt \& Nui Co.
lustless Iron \& steel Corp.
Ryerson, Joscph T., \& Son, Ire.

s

St. Joseph Lead Co.
Salem Engineering Co.
Samuel, Frank, \& Co., Inc.
San Francisco GalvanizIng works
Sanitary Tinnlng Co., The
Sauereisen Cements Co.
Sawyer Electrical Mfg. Co.
Scovill Mrg. Co.
Scully Steel Products Co.
Sellers, William, \& Co., Ine
Seneca Whre \& Mrg. Co., The
Shafer Bearing Corporation
Shakeproal Lock Washer Co.
Shaw-Box Crane \& Hoist Diviston,
Manning, Maxwell \& Moore, Inc..
Shell Oll Co., Inc.
Shenango Furnace Co., The
Shenango-Penn Mold Co
Shepard Nlles Carane \& Holst Corp.
Shoop Bronze Co., The
Shuster, F. B., Co., The
Simonds Gcar \& Mfg. Co
Simonds saw \& Sieel Co.
Sinton Hotel
SKF Industries, Inc.
Snyder, W. P., \& Co.
Socony-Vacuum Oll Co., Inc.
South Bend Lathe works
Standard Galvanizing Co.
Stanrlard Stcel Works
Stanley Works, The
Steel \& Tubes Division, Republic sted Corn.
Steel Conversion \& Supply Co.
Steel Founders' Society of America
Steelweld Machinery D:vision, Cleve-
land Crane \& Engineering Co.
Stewart Furnace Dlvision, Chltago
Flexible Shaft Co.
Strong Steel Foundry
Sturtevant, B. F., Co.
113

Sun Oil Co
Page
Sun Oil Co.
Superior Mold \& Iron Co. $1 \overline{2 \bar{a}}$
Superior Steel Corp.
Surface Combustion Corp.
Sutton Engineering Co.
Swindell-Dressler Corp.

T

Tennessee Coul. Iron \& Rallroad Co. 62, 63
Thomas steel Co., The
Thompson-Bremer \& Co
Tide Water Assoclated Oil Co.
Timken Roller Bearing Co.
Timken Steel \& Tube Division, The
Timken Roller Bearing Co.
Tinnerman Products, Inc
Toledo Scale Co.
Toledo Stamplng \& Mig. Co.
Tomkins-Johnson Co.
Torrington Co., The.
Townsend Co.
Tri-Lok Co The 128
Truscon Steel Co.

\mathbf{U}

Union Carblde \& Carbon Corb.........11, i3
Únion Drawn steel DW. Repubile
Steel Corp.
United Chromium, Inc. 123
United Engineering \& Foundry Co.... -
United Maintenance Sales Co,
Unlted States Steel Corp., Subsidaries
62, 63
American Bridge Co.
American Steel \& Wire Co.
Atlas Lumnlte Cement Co.
Carnegle-Illinols Steel Corp.
Columbla Steel Co.
Cyclone Fence Co.
Federal Shipbullding \& Dry Dock Co,
National Tube Co.
Oll Well Supply Co.
Scully Steel Products Co.
Tennessee Coal, Iron \& Railroad Co.
United States Steel Export Co.
Universal Atlas Cement Co.
Virginia Bridge Co.
Unlted States Sterl Export Co.......6.62, 6;3

V

Valley Mould \& Iron Corp..... Front Cover Vanodium-Alloys steel Co.
voss, Edward w.

W

Waldron, John, Cory.
Warner \& Swasey Co.
Washburn wire Co.
Wean Engincerlng Co., Inc.
Weinman Pump \& Supply Co., The
Weirton Steel Co.
Wellman Bronze \& Aluminum Co
Westinghouse Electrle \& Mrg. Co.
West Penn Machinery Co.
West Steel Castlng Co.
Wheeling Steel Corporation
Whitcomb Locomotive Co., The
Whitehead Stamping Co.
Whekwire Brothers. Ine.
Wickwlre Spencer Steel Co.
Wileox, Crittenden \& Co., Inc.
Williams, J. H., \& Co., Inc.
Wilson, Lee, EngIneering Co.
Wisconsin Steel Co.
Wht Cornice Co., The
Wood, R. D., Co.
Worthington Pump s Aachinery Corp.
Worth Steel Co.
Wyckoff Drawn steel Co.

Y

Jate \& Towne Mfg. Co.
Youngstown Alloy Casting Corp.
Youngstown Sheet \& Tube Co., The
youngstown Welding \& Engineering
Cu., The
Z

INDUSTRY

 calls for speed

And GAS comes through with siepped-up production, new economies

The accelerated trend to Gas for industrial heating processes today is peculiarly significant. It is proof that this modern fuel-quick-heating, accurately controllable, flexible, and economical-has all the characteristics to recommend it for the speedier production that industry demands.

Gas is quick-heating-which means

CASE HISTORIES

Proof that Gas Speeds Production,

 Improves Quality, Culs Cosis1. "One new Gas-fired radiant tube furnace increased output $21 / 1$ times that of two previously used furnaces using another fucl"-Wilson Steel and Wire Co., Chicago.
2. "Our work calls for precision control with speed. Low-cost Gas meets this with speed. Low-rose Supply Co., Torrance, Calif.
3. "Better Product- 25% fuel saving" with gas, says Forsberg Manufacturing Co., Bridgeport, Conn.
shorter time cycles, faster production. Gas is accurately and automatically controllable, both as to temperature and furnace atmosphere-which means precision manufacture, better quality, fewer rejects. Gas is flexible and adaptable to any plant layoutwhich means it can be fitted into a production operation quickly, easily and economically. And Gas is low in cost-which means production economy, bigger profits.

Investigate Gas for your plant. Your Gas Company will show you how Gas can step up your own production and, if you wish, give you facts on how other companies in your line have used Gas equipment to solve specific problems in manufacturing.
AMERICAN GAS ASSOCIATION
INDUSTRIAL GAS SECTION . . . 420
LEXINGTON AVE., NEW YORK CITY

GAS...

preferred fuel for all industrial heating

The Detroit plant of Eaton Manufacturing Company finds that Gas and modern Gas equipment make for both efficiency and economy in hardening and tempering a wide variety of springs. Equipment used comprises Gas-fired draw furnaces using the modern principle of recirculated air. Close control of temperature and atmosphere assures uniformity, reduces "rejects" and gives unusual flexibility of production.

Gas thus plays its part, with modern Gas equipment, to produce high-grade springs-just as it does in many other metals industries. Wherever there is a heat treating problem, Gas and modern Gas-fired equipment can offer real advantages.

And the Soule Steel Company of San Francisco-to name another plantfinds Gas of advantage in producing rust-proofed steel sash. It built in the West the largest bonderizing plant in existence there, and obtained smooth efficiency and continuous operation with the help of Gas company engineers. "Only Gas fuel," says this company, "could give us the necessary self-contained mechanical and thermal efficiency. Quick, unvarying temperatures at such low cost are possible with no other fuel."

There's no heating energy so efficient -or flexible-or economical-as Gas for hardening, annealing, tempering, normalizing, carburizing and a score of other industrial heating processes. Gas is the preferred fuel because it is quick heating, clean, flexible, accurately controllable and highest in utilization value.

Whatever your industrial heating requirements, your Gas company can offer helpful advice. Why not find out what Gas and the latest Gas-fired equipment can do for you?

[^0]: Leonid A. Umansky has been named assistant manager, industrial engineering department, General Electric Co., Schenectady, N. Y. Francis Mohler has been made en gineer, steel mill section, succeeding Mr. Umansky. Born in Russia, Mr. Umansky was educated at the Poly technic Institute of Petrograd. He

[^1]: While engineess expressed various opinions last week regarding the cause of the collapse of the $\$ 6.403 .000$ Narrows suspension bridge at Tacoma. Wash., the state toll bridge authority announced insurance is ample to cover immediate rebuilding. The main cables withstood the 42 -mile gale but hangers supporting the roadway snapped. NEA photo

[^2]: Material appearing in this department is fully protected by copyright, and its use in any form whatsoever without. permission is prahibited.

[^3]: Data and illustrations from an award study submitted to the James F. Lincoln arc Welding Foundation by George E. Roberts, designer, General Rallway Sisnal Co., Rochester, N.

[^4]: From paper presented at Fifth Porcelain Enamel Institute forum, Un!versity of Illinols, Urbana, 111., Oct. 1618, 1940.

[^5]: ${ }^{1}$ References at end of article.

[^6]: From a paper presented at the Pittsburgh meeting of the American Instlute of Mining and Metallurgical Engineers,

[^7]: (Continued on Page 2, Cal. 2)

[^8]: Helsa ferromanges. $6.21-1100$

[^9]: d.c. Motors Co., New York: Ten 31passenger for Safety Motor Transit Corp., Roanoke, Va.; ten 39-passenger and one 37 -passenger for Alexandrla, Alexandria Washington Transit Co., Alexandria, Va.; seven 29-passenger lor Mrginia Stage Lines, CharlottesVille, Ya.; four 31-passenger for Philadelohia Transportation Co., Philadelphia; four 33-passenger, two 37passenger and two 29-passenger, for Morda Motor Línes Corp., JacksonFille, Fla.; three 29 -passenger for Sunshine Bus Lines Inc., Dallas, Tex., slx 33-passenger for Edwards Motor Transit Ca, Inc., Williamsport, Pa.; two 29passenger for Denver-Salt Lake-Pacinc

[^10]: COLLEGE POINT, N. Y.-Edo Niruraft corp, will build a two-story addiing containing 50,000 square feet, costing over $\$ 150,000$. Brown \& Mathews

[^11]: CHICAGO-Handy Button Machine Co. 50 North Western avenue, has plans by A. Epstein, 2001 West Pershing road, for a one-story plant at Twenty-third and Rockwell streets, costing aboul $\$ 125,000$.

 CHICAGO-CIty asking blds on 29 escalators for State and Dearborn streets subways, to close Dec. 5 .

 ## Indiana

