to get more service from WIRE ROPE

Yes, wire rope is tough. It can stand up to the most rigorous service -and ask for more.

But that's no reason to abuse it. With a little care, by applying a few simple rules, you can get a tremendous amount of extra service from your rope.
1
Break it in with light loads
For example, when breaking in a new rope, don't slam on full power and speed right off the bat. Begin with fairly light loads. Operate at moderate speed. Give the strands of the rope a chance to seat down snugly and uniformly upon the core, so that each strand is carrying its fair share of the load. This way, the rope will assume its proper "constructional stretch" without damage, and you'll be assured of better spooling and easier handling throughout the entire life of the rope.

2
Treat it with consideration
After the rope is broken in, you can safely use whatever speeds and loads it was designed for. But don't be unnecessarily rough, even then. A smooth, gradual application of power is just as efficient as slamming into the load
with a jerk. The same is true of braking. It's the heavy jerks and surge loads that beat the guts out of a piece of rope. Nine times out of ten these can be avoided without losing time.

3 Know your rope
For example, if you're using a flexible 8 -strand rope for high-speed work, don't overload it. This rope is built to withstand bending fatigue and fast operation-not for heavy hogging lifts. The opposite is true of heavy-duty 6 -strand rope. Lift with it-but don't try to break speed records.

4 Right maintenance means plus service
Don't neglect the few simple maintenance precautions which require so little time yet return so much in extra service. Keep your rope properly lubricated. Don't operate it over sheaves that are abraded, damaged, or out of line. Fasten clips in the approved manner. Cut off a short length from the drum end of your rope from time to time so that. "grief spots" are relomated over sheaves and drums.

Wire rope is now a war weapon. Its proper use is a service to your country and to yourself. If you want good, dependable rope, and friendly service, get in touch with the Bethlehem Wire Rope distributor in your territory. He's always ready and willing to serve you.

Bethlehem Manufactures Wire Rope for all Purposes

LINES BEHIND THE LINES

BROACHING IS BETTER
 THE Americar WAY

FAST PRODUCTION with high finish is ob. tained by broaching sides of articulated rod for aircraft engine, shown in position (left) on American SB-48-15-2 Single-Dua! Machine.

M.cran GRINDING WHEELS

MACKLIN
 COMPANY

Manufacturers of GRINDING WHEELS - JACKSON, MICHIGAN, U. S. A. Distributors in all principal cifies
Sales Offices: - Chicago - New York - Detroit - Pittsburgh - Cleveland - Cincinnati - Milwaukee - Philadelphia

Purchasing Agents' Headaches

- What some P. A.'s are up against these days is enough to bring about many an early gray hair and reduce stout specimens of manhood to babbling wrecks. Here, for example, are a few of the replies a purchasing agent over East received from his regular sources of supply after writing them requesting new catalogs, price lists and other data:
"We are glad to advise the illustrations in our catalog are still O.K., only we have discontinued practically every item. If we sent you the whole list of what we are not making, the catalog would be uscless, as it is anyhow."
"Forget the prices. Also forget the descriptions. By the time you get this letter we don't know ourselves how or what we will be making the stuff out of."
"Thank you for your note indicating you still have one of our complete catalogs. Please return it at once. You ought to see the prices we are getting here for our waste paper."
"After reading your inquiry we are afraid you are thinking of sending us an order. It looks suspicious to us. Nevertheless, we will gladly meet you halfway by showing you how to calculate costs, if you promise to send the order to someone else."
"The only part of that catalog we are still certain about is the line that says, "Established in 1885." All other information and prices have been withdrawn."

Sherman Was Right

- But purchasing agents aren't the only ones with headaches. Just take the poor people who are gallantly sacrificing the use of paper liners for finger bowls since WPB recently prohibited their manufacture.

Johnny Russell-In Memoriam

- Have you Raymond Rubicam's "Johnny Russell-In Memoriam"? It ran first in the New York Times late in January and has since been broadcast over the radio, quoted in various newspaper columns and circulated to plant employes in booklet form. It is one of the most inspiring true stories to come out of the war so far and we feel sure the men all through your organization will get a tremendous lift from it. Copies of the little booklet are now available in quantity at cost price from the Writers' War Board, 802 Chanin Building, New York City.

Double-Talk

- Another very sad situation is developing and the implications and complications involved are so far reaching we shudder to think about them. Business men have become so benumbed by the double-talk of government regulations that they've started to use the same clear-as-mud language. At least it would seem that way from the following gem that appears in a recent advertisement for a well-known icebox. As you will see immediately, the item simply explains under what conditions the price quoted in the advertisement applies. It reads:

The suggested retail price may be charged only bs* anyone reselling this article if the maximum price for
that article as established by the person so reselling under the appropriate OPA regulations is at least equal to this suggested retail price.

Two Ways To Cure Absenteeism-No. 1

- "Adolph Hinder", shipping clerk of the Manufacturers Screw Products, Chicago, was found guilty of absenteeism and tardiness in a mock trial and sentenced to hard labor "in a war plant in the land of the free for the duration of the war". Request for a new trial was denied.

The mock trial was conducted to illustrate the effect of absenteeism on war production with Robert Gale playing the part of "Adolph Hinder" and Municipal Judge J. M. Braude presiding.

No. 2

- All of which is fine and dandy but we'll side with Judge Harold P. O'Connell, also of Chicago, who is conducting a one-man drive against absenteeism in his own little way. Over a recent week-end the judge put the bee on 12 defendants, arrested for drunken driving, to the tune of $\$ 100$ each after they admitted their little escapades had caused them to stay away from their war jobs at least a day. If the defendants stay sober until September 15, he told them he will vacate their fines-which may prove to be a wee bit difficult in Chicago but would be a snap in Ohio, the situation being what it is.

More On NE Steel Handbook

E Now, because of the unusual number of advance reservations which have piled up for copies of the new NE STEEL HANDBOOK and NE STEEL SELECTOR, we have doubled the original press run and as a result are able to reduce the selling price to only $\$ 1.00$ for both the handbook and selector.

They are on the press now and are promised for the week of April 12. All prepaid orders will be refunded 50 c and we suggest you check again now to see how many copies you will want if you haven't already placed your advance reservation. The Readers Service Department, Penton Building, Cleveland, \mathbf{O}., is the address.

Postwar Planning Reprint

- Also under consideration now is a 48 -page reprint booklet containing the complete series of ten articles on Postwar Planning which have run in Windows of Washington during the past two and a half months. Because of the amount of interest shown in this special report to industry we are anxious to give it even wider circulation as a contribution toward a more intelligent and better planned future after the war.

Wide Open Door

[^0]
DO YOU ALLY KNOW YOUR

 BARTURNER?

Here's How You Can

 Learn the Full Possibilities of Your Bar TurnerONE of the most important tools employed in metal turning is the Warner \& Swasey Single Cutter Bar Turner. It is used more than any tool on turret lathes set up for bar work.

Field studies in dozens of plants indicated the urgent need for a better understanding of the several fundamentals governing the setup and operation of this tool.

The information and many helpful hints assembled in the new Warner \& Swasey booklet, "Better Performance from Single Cutter Bar Turners", can improve performance of this basic turret lathe tool and increase production in your shop.

WARNER SWGISEY
Turret Iothes

Warner \& Swasey Operator's Service Bureau, Claveland, Ohlo Please send booklec, "Better Performance from Single Cutter Bar Turners".
Name.
Company
Address
City
State
1 work at (Company)

Just issued - new 32page illustrated booklet shows how to make the most efficient use of the Single Cutter Turner on bar work.

GET IT

QUICKLY BY USING THE CONVENIENT COUPON

Buffict

UNIEERSAL IRON WORKER

HIS giant heavy-duty tool, with a couple of operators at the

BUFFALO FORGE COMPANY

Buffalo, N. Y.
Branch Engineering Offices in Principal Cities
Canadian Blower \& Forge Co. Ltd., Kitchener, Ont.

A leading automobile manufacturer now makeing Pratt \& Whitney aircraft engines had done a remarkable job of mechanical production . . . and Was interested in stepping up the efficiency of the \& $:$ metal cleaning (chemical) operations.
I. A wide variety of steel and brass engine partsincluding the polished steel propeller shaft illus-trated-had to be cleaned of mineral cutting oil, black emery, or tallow polishing compound, prior to tin or cadmium plating... All work went through a solvent degreasing operation. Electrocleaning, with two kinds of cleaners, was carried on in two crane operated tanks, with both direct and reverse current. But even with this cycle, cleaning of polishing compound was not complete.

A Penn Salt technical representative was able to do a real job of improving this method. He eliminated the solvent degreaser-and with the same Pennsalt Cleaner in each tank, he used it
as both a soak-cleaner and electro-cleaner.
The resulting work was excellent. There were no rejects. The finish was judged to be the brightest ever obtained. Moreover, everybody in the plating room welcomed the elimination of the costly solvent degreasing operation.

What's your metal cleaning problem? Whatever the kind of metal or the type of material to be removed, you can benefit by the experienced advice of a Penn Salt technician. Let him tell you what the family of Pennsalt Cleaners is doing throughout industry today to save time, materials and labor. If you prefer, write fully to our Pennsalt Cleaner Division, Dept. S.

The following suggestions will help save many a micrometer-make others last longer and serve better:

DO NOT measure revolving work.
DO NOT JAM the work against the anvil by forcibly turning the spindle. This may spring the frame or force the measuring surfaces out of line.
Unless micrometers have special measuring surfaces, USE EXTREME CARE in measuring over cutting edges, such as reamers and drills.

DON'T OPEN a micrometer by twirling it.
DO NOT LOCK the Micrometer Caliper at a particular setting and use it for long periods as a caliper gage. The measuring surfaces are too small in area to permit such use for a considerable length of time without excessive wear.

In the grinding room, AVOID EXPOSING your Micrometer Caliper to a flood of coolant containing grit or emery.

DO NOT CARRY your Micrometer Caliper in a pocket in which there may be dirt or grit. Keep it in its box when not in use.

KEEP the measuring surfaces apart when putting the tool away. If left together, moisture on them can cause rusting.

FOLLOW lubricating and adjusting instructions issued by the manufacturer.

make them las

Micrometers cannot be replace easily today - don't let your be damaged - handle it with unusual care

pfreeze Cascade Unit (-120° F.) used prinking plug for landing strut.

DATA AND PART INFORMATION

Shrink-fit assembly of steel plug in airplane landing strut.
Diameter of Plug......... $\frac{3.880^{\prime \prime}}{3.879^{\prime \prime}}$
Diameter of Bore. $\frac{3.875^{\prime \prime}}{3.874^{\prime \prime}}$
Shrink of Plug.. .0026"@-120 ${ }^{\prime \prime} \mathrm{F}$.
Expansion of
Bors......... .0050" $@+450^{\circ} \mathrm{F}$.

FORMER DIFFICULTIES

Heating by torches did not impart uniform temperatures. Heating in oil bath alone did not produce sufficient expansion for assembly.

SOLUTION

The Deepfreeze Cascade $-120^{\circ} \mathrm{F}$. used on plug plus heating of bore results in permanent shrink-fit assembly, speeds operation.
(Above) Operator merely slips chilled plug into heated strut for a permanent sbrink-fit assembly

Megnfirgeze metal chilling speeds assembly of Landing struts . . . ELIMIMATES "FATIGUE" STRAINS

This is another excellent example of how intense cold ($-120^{\circ} \mathrm{F}$.) in conjunction with normal heating ($+450^{\circ} \mathrm{F}$.) has increased the production and improved the manufacture of airplane landing struts.

Formerly the female part of the assembly was heated with torches. This was unsatisfactory, because the torches did not impart a uniform heat nor was the heat intense enough for sufficient expansion. In addition, it was necessary to assemble the units with an arbor press which produced scratches in the mating surfaces... dangerous future fatigue and breaking points.
"Production Time Cut in Half"... Completes Operation in 10 Minutes The barrel of the DEEPFREEZE Cascade Unit is filled with a non-inflammable solvent which does not freeze at $-120^{\circ} \mathrm{F}$. The plug is immersed in the liquid, while the female part is subjected to an oil bath of $450^{\circ} \mathrm{F}$. and expanded .005". The plug is shrunk $.0026^{\prime \prime}$, making it simple for the operator to insert the plug by hand. Total time for the entire operation is approximately 10 minutes.

The Uses of Deepfreeze in YOUR Plant

Deepfreeze sub-zero temperatures (as low as $-120^{\circ} \mathrm{F}$.) can help you in the following metal working operations.

1-Shrinking of metal for ease of bearing assembly, etc.
2-Testing of metals for reaction of sub-zero temperatures to aircraft instruments, etc.

3-Treating of metals for prevention of growth or warp in gauges, etc.

free additional data and proof of the outstanding success of the Deepfreeze method for chilling metals are included in this booklet. Write for your copy today.

If:IIf:

\section*{HARPER stocks or makes EVERLLASTING Fastenings THESE FORMS
 THESE
 Alloys
 | ITEM | Brass | Bronze | Copper | Everdur | Monel | Stainless |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Cap \& Maeh. Serews: | | | | | | |
| Flat head. | STOCK | To Order |
| Round head | STOCK | To Order | To Order | STOCK | STOCK | STO |
| Fillister head | STOCK | To Order | To Order | STOCK | STOCK | STOCK |
| Special..... | To Order |
| Bolts: | | | | | | |
| Machine | To Order | STOCK | To Order | STOCK | STOCK | STOCK |
| Carriage | STOCK | STOCK | To Order | STOCK | STOCK | STOCK |
| Flat head... | To Order | STOCK | | To Order | To Order | To Order |
| Hound head | To Order | To Order | | To Order | To Order | To Order |
| Oval head. | To Order | To Order | | | To Order | To Order |
| Hangar Stove. | To Order | STOCK | | STOCK | To Order | To Order |
| Stove. | $\begin{aligned} & \text { STOCK } \\ & \text { To Order } \end{aligned}$ | To Order To Order | To Order To Order | To Order | To Order To Order | To Order To Order |
| rews: | | | | | | |
| Thum | STOCK | | | | | |
| Lag | STOCK | STOCK | To Order | STO | STOCK | STOCK |
| Wood | STOCK | To Order | | STOCK | STOCK | STOCK |
| Sel. | STOCK | To Order | | STOCK | STOCK | STOCK |
| Special | To Order |
| Studs | STOCK | | | | | |
| Threaded Fod | STOCK | To Order |
| Nuts: | | | | | | |
| Knurled. | STOCK | | | | | |
| Heavy American | | | | | | |
| Light American | STOC | STOCK | To Order | STOCK | TO | STO |
| Standard.... | STOCK | To Order | | STOCK | STOCK | STOCK |
| Regular American | | | | | | |
| Standard | STOCK | STOCK | | STOCK | STOCK | STOCK |
| Machine screw | STOCK | | | STOCK | STOCK | STOCK |
| Castellated | STOCK | To Order | To Order | To Order | STOCK | STOCK |
| Wing. | To Order | | | STOCK | | |
| Cap.... | STOCK | To Order | To Ordar | To Order | $\begin{aligned} & \text { TaOrdar } \\ & \text { STOCK } \end{aligned}$ | STOCK |
| Washers: | | | | | | |
| Regu | STOCK | To Order | STOCK | STOCK | STOCK | STOCK |
| Lock. | | | | STOCK | STOCK | STOCK |
| Special | To Order |
| Cotter Pins Rivets | STOCK STOCK | To Order | STOCK | To Order STOCK | STOCK STOCK | STOCK STOCK |

In the above table, "STOCK", meanm carried in stock: "To Order" means made to order. Harper stocke a total of 4320 items . . . large quantition of ench. Many are "Unusual and hard to get." Besides, the Harper epecial orderdepartment in fully equipped with dies, toole. taps and apecial machinery to make a
variety of "muper-unusual and out of the ordinary" facteninge.
YOU NEED OUR CATALOG
. . . and referance book. 80 pages-- calort -193 lllustrations - numerous table and other data. Free when requented on company latterheade.

THE H. M. HARPER COMPANY 2646 Fietcher St., Chicago, III.
45 W. Broadway, New York City

Offices in

ARH1

 Principal Cities
II i i P E B ehicagas

THEM界!

YYou are looking at the Board of Directors of one of the busiest companies in the world. It is the firm of Gremlin, Widget \& Finella, Inc., ${ }^{*}$ specialists in the new light-metal headaches - magnesium migraines, aluminum ailments and general alloy trouble.

As the Light Metal Age swings into mass production, this company finds itself with advance orders on hand for some of the biggest headaches in history, and already its record in the highly technical field of industrial interference is an impressive one.

One of the most notable achievements of G. W. \& F. has been their handling of the weight factor in horsepower development. For years they have kept the ratio of pounds to horsepower high in all types of engines, and only the sheerest engineering genius has succeeded in producing one horsepower with slightly less than a pound of metal - yet 5 or even 10 horsepower may be possible with a pound of the right alloy.

Likewise, this new subsidiary of the Headache Trust has done some pretty whimsical and spectacular things
with metal, causing magnesium dust to explode, and the metal to dissolve back into sea water like so much salt. Bearings have been known to crystallize within a few hours from vibration alone, and the ideal bearing surface is one so hard that the cost of working it is still a major headache.
As specialists in internal grinding, we at Bryant have helped to cure many a new and serious headache in the working of light metals, super-hard alloys, and other new materials. We have helped to develop safer processes for machining light metals, improved methods of grinding and finishing the super-hard tungsten-content alloys, and new techniques for working such materials as hard rubber, glass, graphite, plastics, bronze and cast iron, as well as centrifugally cast steels and alloys from hundreds of new specifications.

If your business calls for the use of precision machine tools, Bryant's Consulting Service can be of greater value to you today than ever before. We urge you to "Send for the man from Bryant!"

Am I eligible for an industrial truck or tractor under W. P. B. Limitation Order L-112? How do I go about ordering? What equipment is available? When can I expect delivery? Which type of equipment will best serve my needs?

For the vitally important job of keeping materials moving in your plant, you'll find invaluable the data contained in the new Mercury Reference Catalog.
Written specifically for the busy handling executive, and based upon the combined experience of leading material handling engineers, the book quickly and specifically presents factual information on the most modern material handling methods.

Every executive concerned with materials handling will profit from a study of this booklet. Write for your free booklet today.

MERCURY

ne Way to Save Steel ...AND THIS IS ONE

 advertisement-as required by the indiuidual specifications of the customer

is to produce less scrap WAY YOU CAN DO IT

This is an actual, practical, everyday example of how cold forging (upsetting) conserves raw materials and reduces scrap.
We realize that the difference in scrap produced in just this one common bolt product shows up in a startling way to you. However, you can be sure that this is not "trick" photography or in any sense a fake or exaggeration, for here are the facts relating to this photograph. The example shown at left is a $3 / 4 \times 6^{\prime \prime}$ S. A. E. hexagon head cap screw.

Weight of Finished Bolt per 1000 pieces, 849 lbs.
Raw Material Required

Milled from 1639 lbs. 759 lbs.

Made by Cold Forging 880 lbs. 31 lbs. 728 lbs.

In short, excepting for the bit of metal trimmed off the head of the cap screw made by the upsetting method, there is no scrap produced. Since the weight of 1000 pieces of these head trimmings is only 31 lbs ., the scrap loss that is measurable in production is less than .031 lbs. per bolt!
And obviously, the scrap loss in producing this same bolt by milling from the bar is 0.759 lb . per piece, or about 25 times as much!
That is why we can say that if a part that is made on a screw machine can be produced by the upsetting method you will save raw materials. Since heading and threading today is done to very close tolerances and with a minimum of scrap, it is extremely important to remember this when every pound of steel is "ear-marked" for a purpose-to win the war.
But that is not the only reason why, in war production, you should consider upsetting as a method opposed to a milled-from-the-bar product. Here are two more excellent reasons.

1. If a part now made on a screw machine can be made by upsetting, you can release a machine tool badly needed to make another part which can only be made by a screw machine!
2. Upsetting and threading a part, compared with producing the same part on a screw machine, is generally many times faster, and in every way as satisfactory or more satisfactory as the milled product.
There are still other good reasons why upsetting may solve a problem for you-and of course the relative importance of each reason we present will vary with your position in war production.
3. You can specify upset products with a reasonable expectation of getting better deliveries, withour sacrificing standards of accuracy, strength or finish. (Please refer to the photograph. Upsetting uses romnd wire for the part, which is more readily available, and less expensive, than cold bexagon drawn bar stock used by the milling process.)
4. Accuracy and finish? The aviation industry is now using products made by the upsetting method, which meet every laboratory test and the most exacting inspections.
5. Lamson \& Sessions make cap screws with a minimum tensile strength of $150,000 \mathrm{lbs}$. psi in diameters up to and including $1 / 2$-inch; up to $125,000 \mathrm{lbs}$. psi in diameters over that! A smaller bolt made by modern bolt practise will often PROVIDE ALL THE STRENGTH YOU WANT but will require much less material-and the saving of material thus gained can be put to other war production purposes.
Engineering departments less familiar than Lamson \& Sessions' engineers with these facts given you, can confidently come to bolt specialists for help-for our experts in bolt production are able and willing to give you correct information on your problems, and without obligation:
TEE LAMSON \& SESSIONS COMPANY, 1971 W. 85th St., Cleveland, 0.

These four books will help you in specifying and buying "standard" bolts, nuts and "specials"
THE LAMSON BLUE BOOK - is our complete Catalog of standard products excepting our Aircraft projucts.
"BOLTS, NUTS \& SCREWS"- 70 pages of technical and practical information. First copy gratis, requested on your letterhead. Additional copies \$1 each.
"BOLT. NUT \& RIVET STANDARDS"-175-page book published by the American Hole, Nut \& Rivet Manufacturers Association, 1590 Hanna Bldg.. Cleveland, Ohio. Price one dollar per copy. (Order from publssher, please.)
"SIMPLIFIED STOCK LIST"-OF bolts, nuts and screws, conforming to latest revisions of the Office of Price Administration, and of great value in showing you in what ratio quantities of various standard products are kept in stock for deliveries, by your jobbers and in our own (and other bole manufacturers') warehouse stocks.

speed production

Wartime Conservation means MORE than just conserving copper, steel, aluminum ... it means the most strategic possible use of all of the ingredients of Victory - materials, manpower, time and ingenuity.
These five major points comprise a complete program developed by Westinghouse for Wartime Conservation. This program packages up Westinghouse engineering experience in the entire field of electric and power equipment and related materials. Examples noted are but five of many specific recommendations.
This experience and these recommendations are offered fully and without obligation. If you are not already familiar with them, consult your Westinghouse representative or send for the book described below. Westinghouse Electric \& Mfg. Co., East Pittsburgh, Pa.

J-90478
"WARTIME CONSERVATION," a new 100-page book issued by Westinghouse, contains complete recommendations covering the points sugsested here. It will be sent you without cost, on request.
 selection, application and use of
 electrical equipment.

EXAMPLE

Various accessories will produce large increases in capacities of existing equipment, with a small use of critical materials. For instance, either air-cooling or oilcirculating equipment can increase transformer capacities up to 30%. Use of both can add as much as 60%.
2. Conserve by utiliing new developments that reduce
 need for critical materials and man-hours.

EXAMPLE

Hipersil*-a new electrical steel-increases the flux-carrying capacity of transformer and similar cores, large and small, up to 35%. Weight and amount of critical materials can be reduced as much as 50%.

©. (0) S- N \because by utiliz-

 ing available facilities for preventing breakdowns and reducing machine outages.
EXAMPLE

"Maintenance Hints" - a complete, pocket-size manual covering recommended upkeep practice for electrical apparatus--is a maintenance help available without charge. Check your Westinghouse representative for copies.

ing materials which in many cases can replace critical materials and do a better job.

EXAMPLE

Prestitema new pressure-molded porcelain which can be solder-sealed to metalis replacing bushing assemblies requiring rubber or gaskets to keep out moisture, in many types of electrical apparatus.

$$
\begin{aligned}
& \text { X } \\
& \text { N," a new 100-page book } \\
& \text { se, contains complete rec- } \\
& \text { ing the points susfested } \\
& \text { without cost, on request. }
\end{aligned}
$$

2. O) OQNME by tapping all sources of salvageable scrap.

EXAMPLE

Systematic planning can uncover many ways of reclaiming worn equipment and waste material. Samples of salvage forms and organization charts in use in Westinghouse plants will gladly be made available on request.

[^1]
NO CONTACT MAINTENANCE • NO WASTED CONTACT MATERIAL NO BEARINGS • NO PINS - NO PIVOTS • NO HINGES NO COPPER CONTACTS - NO FLEXIBLE JUMPERS

cccounts for the overwhelming pepularity of Allen-Draclloy Solencid Srerters

STARTERS • PUSH BUTTON STATIONS • LIMIT SWITCHES • RELAYS • CONTACTORS

The only moving part . . . the vertical solenoid plunger ... is shown in red. Are hood is broken away to reveal contacts.

No

 other starter is so simple
hence so TROUBLE FREE

Allen-Bradley Solenoid Starters are surprisingly simple in design. They have only one moving part ... the plunger that opens and closes the double break contacts with a straight line vertical motion.

This simple construction does away with pivots, pins, bearings, hinges, flexible jumpers, and other trouble-breeders that can gum up, corrode, or stick.

To be completely trouble-free, a starter must not only be simple . . . it must have double break contacts that can operate indefinitely without maintenance. A-B patented silver alloy contacts never need filing, dressing, or cleaning. You can install A-B Solenoid Starters . . . and forget them. They are good for millions of trouble-free operations. These features explain why A-B starters are so popular in machine tool and industrial applications.

Allen-Bradley Company, 1320 S. Second St., Milwaukee, Wis.

PRECISION is the "secret weapon" that flies "into the blue horizon" with the fighting lads who man American-made planes.
In America's aircraft plants and other metal-working industries, high speed automatic machinery specially designed and built by Davis \& Thompson, has advanced new standards of precision and speed higher precision parts, in greater numbers, are being made faster than ever before in history.

Fortified by many years of pre-war experience, Davis \& Thompson engineers are boosting production by creating multiple-spindle boring, drilling, milling machines and other high speed precision units . . . rugged, compact, hydraulically operated, fully automatic machines to meet specific requirements.

Write for copy of the book, "VICTORY PRODUCTION"

DAVIS \& THOMPSON COMPANY

 Milwaukee, Wisconsin, U. S.A.BUY MORE U. S. WAR BONDS!

The machine shown her:', for instance, automatically completes approximately 20 steps in the process of rough and finish-milling on aircraft engine connecting rods, on a single setup, with unvarying precision and speed that cuts production time down to a fraction of former methods. This uniform accuracy simplifies final inspection, precludes rejections, saves vital metal and manpower. The operator merely touches the proper control buttons on this hydraulically operated machine and ultra-automatic devices activate the complete operating cycle.

II \&T RUTTO-IIITIU
 high production machinery

WASHBURN WIRE COMPANY, NEW YORK CITY

CLEAN, UNIFORM BILLETS-STRIP-RECTANGULAR, ROUND, FLAT RODS TEMPERED AND UNTEMPERED FLAT AND ROUND HIGH CARBON WIRES

HERES PROOF OF THE

SUPERIOR PERFORMANCE OF

Gun Barrels . . . Consulted by a large ordnance plant on the possibility of obtaining greater production in the reaming of cartridge chambers in 1.1 gun barrels, a Gulf Lubrication Service Engineer recommended Gulf Electro Cutting Oil A. Result: production of reamed barrels increased 1500%-rejections reduced 50%.

37 Mm . Shot . . . A manufacture of 37 mm . shot increased production 30%, reduced tool regrinds and down time for machine maintenance 50%, reduced cutting oil consumption 50%, and obtained better finishes on the work through the use of Gulf L. S. Cutting Base B blended with Gulf Cut-Aid.

$$
\star
$$

Iorpedo Gears. . . By using the cutting oil recommended by a Gulf Lubrication Service Engineer, a manufacturer of torpedo parts increased output 41%, improved finish, and reduced rejects in cutting Monel metal gear blanks.

Tank Tread Pins . . . A manufacturer of tank tread pins increased production per tool dressing from 85 pieces to 600 pieces by using Gulf Lasupar Cutting Oil C.

Artillery Recoil Cylinders . . . By using Gulf L. S. Curting Base A, a large ordnance plant increased production 30% and increased tool life 300% in machining operations on hardened nickel chrome steel forgings for artillery recuil cylinders.

Bomb striker Nuts . . . Consulted by a manufacturer of steel striker nuts for bombs on the problem of 100% rejection of production due to torn threads in a tapping operation, a Gulf Lubrication Service Engineer recommended Gulf Lasupar Cutting Oil A and a suitable level on the end of the tap. Result: rejections entirely eliminated, production greatly increased.

As a result of proven performance, over a thousand plants with difficult machining operations have adopted Gulf Cutting Oils during the past six months. Here's the record of improved machining practice in these plants: Production increased as much as 300%, tool life increased as much as 2000%, and marked improvements in finish. Write or 'phone your nearest Gulf office today for effective help on your machining problems.

GULF OIL CORPORATION GULF REFINING COMPANY Gulf Building, Pittsburgh, Pa.

Phoso Courtesy Bell Aircruft Corporution

THIS airplane worker is finishing up a die for a fuselage part for Bell Airacobra P-39 pursuit planes. It's just another instance of how Bell Aircraft is speeding production with the help of improved finishing operations.
Finishing the die is a painstaking job calling for specialized skill. The rough casting must be scraped and then sanded and finished with coated abrasives to give the required fidelity to the specified contours and to produce the smooth surfaces necessary for perfect stamping operations.
This process is speeded by using Aloxite Brand

Aluminum Oxide Coated Abrasives in various forms specially adapted to the different contours encountered. Abrasive discs, No Lap bands and cloth shects are used as the particular operation requires. Net result to Bell: speed-up of the die preparation process and saving of precious man-hours for tooling operations.
The Carborundum Company has been a leader in developing a number of new forms of coated abrasives to meet the requirements necessitated by war production. A number of these items are described in our pamphlet "Weapons for Production." Send for your copy.

CARBORUNDUM
ABRASIVGN: N
THE CARBORUNDUM COMPANY, NIAGARA FALLS, N. Y.
MANUFACTURERS OF GRINDING WHEELS, COATED ABRASIVES, SUPER REFRACTORIES, HEATING ELEMENTS
Sales Offices and Warchouses in New York. Chicaro. Philadelphia. Detroit. Cleveland, Boston, Pittshurgh. Cincinnati, Grand Rapids (Carkorundum and Alovite are regialered trade markn of and indicat" munufacture by The Carbarundum Compans:

To meet exacting standards for fighting equipment, "Double Control" of Quality here at Weirton starts at the very first step in steel-making-with the iron ore. The combination of control by men and machines guards each step in the steel-making process-that's Weirton's "Double Control" of Quality.
Not ordinary men -not ordinary machines. The men who man the machines are highly skilled in the art and science of making better steel. Machines are the very latest-che most modern-developed by and for the steel industry.
Better steel for tanks, guns, cannons, ships, planes and all the many other items needed by our Armed Forces
is assured by Weirton's "Double Control" of Quality. Steel from Weirton is going to our Navy, our Army and our Maritime Commission . . . for Victory.

WEIRTON STEEL COMPANY Weirton, West Virginia

Sales Offices in Principal Cities

Division of
NATIONAL STEEL CORPORATION
Executive Offices - Pittsburgh, Pa.

MORE POWER for TLmerica

A1 the mighty power that America wields with guns，tanks，planes，and battleships comes from millions of tiny sources．Sources of day－and－ night working machines ．．．of smoothly rolling shafts ．．．of carefree bearings in rugged Pillow Blocks that guard them by retaining lubri－ cant and stopping the entrance of injurious material．Easy installation，inspection，and lubri－ cation are certain with these well－designed pillow blocks．And their exclusive 罖泛医 Triple Seals block all efforts of dirt and water to reach bearings on shafts $5 / 8^{\prime \prime}$ in diameter and up．Their presence on a machine or a lineshaft is a move toward Victory．
gix

－BCSfP Pillow Block helping to build Amar－ tea＇s powar on a 125 h．p．， 360 r．p．m．， 3 －phase， 60 －cycle， 208 volt unity motor buill by Electric Machinery Manufacturing Corp

The machine shown above is known as a $100^{1 "}$ Tank Mill. It is so named because it was planned for the mass production of parts for tanks. In designing this machine there were two principal factors involved, first-a construction which would permit building the machines on a quantity basis, thus permitting quick deliveries; and second-a construction insuring the utmost in productiveness of parts for tanks.

BETTS • BETTS-BRIDGEFORD • NEWTON • COLBURN • HILLES \& JONES • MODERN

The reason lies in the policy of the builders to make "hundred-dollar" tools as though they were "thousanddollar" machines. Every integral part must satisfy rigid standards . . . doubtful materials will not be trusted.

That policy has put Parker-Kalon Quality-Controlled Socket Screws on the "preferred list" of a good share of the power tool builders, and the makers of the motors that drive them. For P-K Socket Screws are made to the same uncompromising standard. "Doubtful screws"... screws that look all right but some of which fail to work right . . . are barred by the unequalled quality-control routine of the ParkerKalon Laboratory. P-K Screws have the extra dependability to stand unexpected strains . . yet they cost no more. Parker-Kalon Corporation, 194-200 Varick St., New York.

"Quality-Controlled" means . . .
Complete test and inspection covering; Chemical Analysis; Tensile and Torsional Strength; Ductility; Shock Resistance under Tension and Shear; Hardness; Head diameter, height and concentricity; Socket shape, size, depth and centricality; and Thread fit.

MORGAN 450-TON BLOOM AND SLAB SHEAR

- Among the many types of mill equipment built by Morgan, is the 450 -Ton Bloom Shear illustrated above for shearing $12^{\prime \prime} \times 12^{\prime \prime}$ blooms and equivalent slab sections. Shear is designed without flywheel or clutch for start and stop operation. Hold-down gag is of the independent hand adjusted type. A motor operated gauge is provided for gauging lengths from $2^{\prime} 0^{\prime \prime}$ to $15^{\prime} 0^{\prime \prime}$. Of massive construction, this shear is typical of the types of mill equipment Morgan designs and builds.

Ir's top-speed operation hour after hour in a printing press-no leeway for breakdowns that might delay the newspaper on its way to the waiting delivery trucks. So printing press makers picked the Torrington Needle Bearing for its ability to operate successfully in high-speed service, with little need of attention.

There's no question of high speeds in the steering column of a jeep, of course ...just an occasional turn through a fraction of a revolution. But that point of long life with little attention looked just as good to the jeep builders as it
did to the press manufacturers. They, too, turned to the Needle Bearing, not only for its ability to stand up in severe service, but for its low friction coefficient that gives quick response to the steering wheel, its small size that contributes to compact design, its effective system of lubrication, its ready availability for all essential applications.
THERES A THOUGHT HERE FOR YOU TO CONSIDER when you start the design of your postwar products. Whether your problem is one of oscillation or of high-speed rotation, the Torrington Needle Bearing will give your customers the advantages
of dependable operation, efficient lubrication, low starting and running friction. And of course, you will benefit by the Needle Bearing's low cost and ease of installation. You can get the preliminary information you will need by writing for Catalog No. 110, which lists sizes, rates, and typical applicationsand 'Torrington engineers will assist you in working out specific service problems.

THETORRINGTON COMPANY Esloblishad 1866 - Tarringion, Connectleut, U. S. A. Makert of Needle and Ball Eacings New York 8oston Philadelphia Datroit Cleveland Seattle Chicago San Francisea Los Angoles Toronto London, England

torringtan needle bearings

Draswing the Whtchm rubris or victuraz:

:AMOUS LIFE LINES

All Photos hy U. S. Army Signal Corps

EVERY SECOND is a crisis when tanks elash in the desert or planes dive for the kill. There is no time for mistakes . . . no time for repairing faulty mechanisms.

Bundy Tuhing fills an urgent role in providing vital lines for tanks, planes, PT boats, all types of fighting equipment.

Power boats, tandem rollers and Diesel engines depend on Bundy Tubing for fucl and lubrication lines. Hydraulic pressure is transmitted through Bundy Tubing for tank turrets and motor vehicles. Re-
frigerants for cooling ammunition and powder rooms pass through lines of Bundy Tubing. Structural or mechanical tuling is provided for radios, aircraft, gliders, tanks.

Whereverfuel and lubrication lines are needed, or where hydraulic pressure or refrigerants must be transmitted, Bundy Tubing is on the jol,.

We are proud that our product serves in so great a cause. We shall see to it that only the finest tubing Bundy can make goes into the equipment for our fighting forces. Bundy Tubing Company, Detroit.

U. 5. ARMY SEARCHLIGHTS such as this more and more frequently have their "life lines" - lubrication lines for trailer and for power generating units - made from Bundy Tubing.

BUNDY TUBING ENGINEERED TO YOUR EXPECTATIONS

Buy U. S. War Bonds

Gal in Your Scrap

BUNDYWELD doublewalled atel tubinz. hydrogen-brazed, copper-coasted insiúe. hydrogen-brazed, copper-coater insive and outacle. From Capilary fized up to walled tope is also available in stect. tincrabteal on the outnide. and in Monel.

BUNDY ELECTRICWELD nted tubing. Single-walled - hurt neldred -anncaled. Available nelurd-anncaled. Avaloble $2^{\text {n }} \mathrm{O}$. D. Can he furniwhed tincouted outside in malller sizen.

[^2]

BRYANT MACHINYRY \& BNGNXYRING COMPANY

 General Sales OHfices 400 W Madison St. - . Ghicago . III. . U.S.A.

The chasge over from the manciactare of beass sinell caciggs to steel cavi=gs. can ustally be accomplished by addi=g some Learier Mechanical Presses to the S=e. Mandfacturest interested can obeain faill incormation by adcressing our Enci=eering Departuex.

The Production of Steel Shell Cases.-

There are several different types of Cleveland Power Presses used in the production of shell cases, each type being particularly suited to perform a given operation or series of operations such as heading, sizing, drawing, indenting, etc., eficiently and economically.
The Press illustrated above is used for heading $75==$ shells. It is arranged with an electrically controlled air operated friction clutch and brake and equipped with a five station automatic dial feed. The Press has a capacity of 1200 tons and operates at 20 strokes per minute.

NOTICE

can now

be delivered

more promptly*

*Due to greatly expanded production facilities, Hardtem Die Blocks are currently available for quick delivery on AA and AAA ratings.

Heppenstall quality standards are unchanged. Hardtem Die Blocks are still scientifically forged
from the best acid open hearth alloy die block steel and heat treated by the exclusive Hardtem process which assures you more forgings per sinking. To obtain die blocks in a hurry, write or phone Heppenstall.

Why PREforming Conserves Steel, Makes Wire Rope Last Longer

(Note: More and more wive rope users change in PREformed rope each year. During peacetime the reasons for changing from ordinary to PREformed wive rope were primarily tu'o: the cost is lower; PRE formed is easier to bandle.

Today, with our nation at war and with steel at a preminm, there is another and most important reason for using $P R E$ formed. It lasts much longer under bigh speed, setere bending and continuous operation. PREforming thas conserves steel. It consertes workmen's time; rope changes are less frequent. It reduces the accident potential; there is no wickering to harm bands or dimage sheates.)

There are two kinds of wire rope. One is called Regular, or ordinary, wire rope. The other is known as PREformed.
In ordinary rope wires are held together under tension. The wires are laid into the rope by bending them to the desired shape. Bending and torsional stresses thus remain in the rope . . . are kept under control by seizing the ends of the rope.

If the wire breaks, it immediately wickers. If the seizing breaks, the strands

and rope wire both wicker. This causes damage and delay. In PREformed wire rope, the strands and wires are preshaped to the exact curvature they will
take in the finished rope. Bending and torsional stresses are eliminated (except of course when the rope bends over a sheave). If a wire breaks, it does not wicker but remains relaxed, thus causing no delay or damage.

Advantages of PREforming

PREformed wire ropes are like shoes that have been broken in. Instead of being stiff and unwieldy, they are flexible, easier to handle.

They are betrer adapted to bending and spooling, also. They resise kinking

when the rope is not under load.
PREformed wire ropes are easier to handle also because broken wires lay flat.

And finally, most important, PREformed wire ropes have greater resistance to bending and fatigue. This is

another way of saying that they last much longer, do a betrer job when the pressure is on, as it is today in war production:

When next you need wire rope, consider seriously the purchase of PREformed wire rope. Today the job we must all do is the "best" job possible. When it comes to wire rope there is no question as to which does the "best" job. It's PREformed.

Consult with Macwhyte

Don't overlook the help that Macwhyte engineers will gladly give you on any wire rope problem. Their advice gained from many years' work on all kinds of jobs is yours for the asking. Let us know the kind of work to be done; we will tell you the rope best suited for the job.
And this we urge you to do: take extra care of your present ropes. Inspect them regularly; lubricare them often. By so doing you can make them last longer and thus aid the war effort. That's what you want; that's what your country asks of you.
This is Number 13 in a series of informative articles prepared by the Macwhyte Company to help wire rope users obtain better and longer service from ropes on the job. All articles in this serics are available on request.

MONARCH Whyte Strand PRE-FORMED WIRE ROPE
... Macwhyte premier wire rope, famous for its strength, toughness, and internallubrication.

WaGWHITE, GOUPANY
 2940 FOURTEENTH AVE.

WITH process industries driving toward ever higher production of vital materials-acid bandling equipment must not fail. And in many cases Tellurium Lead is helping to keep it on the job.

One possible source of trouble in such equipment is vibration. The resultant dynamic or fatigue stresses, acting in combination with corrosion, are destructive to acid-resistant linings or coverings-more destructive than either factor alone.

To help combat this stress-corrosion, Tellurium Lead offers two important properties. First, it has the corrosion resistance for which lead is well known. Second, it has improved fatigue resistance. When tested in a Haigh "fatigue" testing machine, it exhibited a 60% greater endurance limit than lead without tellurium.

Another condition which sometimes causes trouble in acid processing is the repeated, drastic change in temperature to which

Sirengthens under Siress: A section of Tellurium Lead pipe (rop) and a secrion of regular lead pipe (botrom) were stamped with their respecrive names and pulled out at equal rates in a tensile testing machine. Nore how the Tellurium Lead pipe developed strength where it was work hardened by the stamping, whereas the other lead was weakened . and fractured.
tanks for heating and cooling are subjected. The continued expansion and contraction, with accompanying movement or working of the lining, may create severe stresses, resulting in failure. Some users report that, in certain cases of this kind, the use of Tellurium Lead results in definitely longer lining life.

This advantage of Tellurium Lead has been attributed, among other things, to its ability to work barden-to toughen and increase in tensile strength as it is worked.

This work-hardening property of Tellurium Lead tends to be of value in applications where lead must be bent, stretched or hammered-as in turnover points, elbows, flanges, coils and joints - as well as in equipment which must withrstand vibration.
Another factor in Tellurium Lead's resistance to corrosion under severe conditions of stress and heat is undoubtedly a result of its generally finer, more uniform grain

Finer Grain Structures: Photomicrographs of Tellurium Lead (left) and ordinary lead (right), showing the generally finer, more uniform grain structure brought about by, the addition of tellurium. Another significant point: In laboratory tests extruded strips of Tellurium Lead, annealed at $150^{\circ} \mathrm{C}$ for six months, showed no grain enlargement. Metallurgists agree that freedom from grain prowth means less danger of rapid corrosion at clevated iemperatures.
TELLURIUM LEAD
structure, shown in the photomicrographs below. As a result, the surface of Tellurium Lead sheet and pipe tends to be smoother, with less possibility of pitting and local corrosion.

Tellurium Lead of our manufacture is time-tested St. Joe chemical lead alloyed with a small quantity of tellurium. It is available in sheet or pipe form, or fabricated in coils for heating and cooling purposes.

For further information address the nearest Company branch listed below.

USERS "TELL" THE DIFFERENCE

"We find Tollurlum lead slands up much beller than olher lead under vibralion. The trouble we encountered leracking of the corrosion-resistant covering on rayon spinning machinesl has been entlrely - liminaled."
' We are using Tellurium Lead regularly in our steam jet mixer heads, as we feel it grearly improves resistance to erystalline fracrure under conditions of vibration or mechanical stress.'
"For the last iwo years we have purchased all our requirements in Tollurium lead. We find a considerable advantage In resistance to vibration crystallization."
"We find this material has a greatly improved resistance to so-called vibration crystallization.

NATIONAL LEAD COMPANY-New Yurk. Haiftmore. Isutfalo. Chleago. Cleveland, Clacinnati, st. Luuls. NatlonalBoston Lead Co., Boston: John T'. Lewle \& Isros. Co., Philedelphla; National Lead \& Oll Co. of Yenna., Pittsburgh: Georsia Lead Works. Atlanta; American Lead Corp., Indlanapolls; Master Metals, Inc., Cleveland; The Canada Metal Co.. Litd., Toronto, Montreal, WInnider. Vancouver.

 GRAVER WELDED CONSTRUCTION

Always important in any production problem, speed, efficiency, and economy are doubly important today. In the fabrication of machine bases, frames, and many other types of equipment, Graver Welded Construction is saving man-hours and money for hundreds of industries engaged in war production.

There are many reasons for this. In the first place, the expense and delay of pattern making are eliminated. Graver welding experts work directly from your blue-prints. Close tolerances are maintained and there is no deadweight. This modern method of construction insures maximum strength and rigidity resulting in years of trouble-free
service. Furthermore, assemblies can be built of two or more dissimilar metals. Mild steel, alloy steels, steel forgings and castings can be welded into a single unit.

Graver facilities include the most modern flame-cutting, forming, grit blasting, and arc-welding equipment manned by experts. A complete X-Raying service is available and Graver's stress-relieving furnace provides the means of minimizing residual stresses which may have developed during welding.

Consult Graver today. We shall be glad to discuss your welded construction problems with you and submit estimates on your requirements without obligation.

have you added up

 the facts on

MORE THAN $\mathbf{2 , 0 0 0}, 000 \mathrm{KW}$ serving war industries - in the electrochemical, steel, mining and transportation fields.

power conversion?

1. No major rofating or moving parts.
2. High short-time overload capacity.
3. Lightueight, compact, durable.
4. High Efficiency over entire load range.

The above characteristics, found only in the Ignitron Rectifier, add up to tangible advantages for d-e power users.

Ignitron operating costs are low. Simplified automatic operation, low are drop loss, the elimination of high starting demand and absence of any major moving parts hold operating and maintenance costs to a minimum.

Load shifting is seldom necessary with an Ignitron. It will handle high load swings casily, making it adaptable to widely diversified service conditions

Installation is casy, too. No special foundations are required. With its lightweight construction and vibrationless operation, an Ignitron can be installed on any level concrete floor of reasonable strength.

Equally important is the uniformly high efficiency of power conversion with the Ignitron, which can operate at full capacity 24 hours per day.

These are a few of the reasons why more than $2,000,000 \mathrm{kw}$ have already been installed. Ignitron may be the solution to your d-e power problems. Westinghouse Electric \& Mfg. Co., East Pittsburgh, Pa.

in the steel industry

The inherent advantages of the Ignitron Rectifier make it ideally suited for steel mill service. The mutstanding featore is its practically straight-line efficiency from light load to overload. Also, since there are no major moving parts to le affected by dirt and grit the Ignitron requires less maintenance: Operation can be made completely automatic to provide unatiended service.

For further information ahout the Ignitron Rectifier, write Dept. 7-N for your copy of Bowk B-3(024.

Free copies of this poster available.

Air Reduction

General Offices:

60 EAST 42 nd SIREET, NEW YORK, N. Y. IN TEXAS MAGNOLIA-AIRCO GAS PRODUCTS CO.

IDLE CYLINDERS ARE PRODUCTION SLACKERS: Keep' sm rolling for victory!

for our messengers of death...

D
OWN the narrow corridor of a gunner's sighting-line spin hot slugs of destruction to their mark . . . bullets wearing overcoats of a SuVeneer clad steel instead of the solid gilding metal jackets formerly employed.

A new fact, a new process-saving the country thousands of tons of precious copper a year for other war applications.

The SuVeneer* Clad Metal accomplishing this result is an exclusive Superior development-a process permitted without charge to a score of other companies for use through "the duration" in manulacture of material for million upon million of bullet jackets.

When the war is won, SuVeneer Clad Metal will offer strip steel in combination with other metals and alloys for a variety of new uses-stimulating the creation of better products for peacetime living.
*Trade Mark Reg. U. S. Patent Office

 finish, fewer man-hours
vital importance NOW.

CHAMBERSBURG ENGINEERING CO - CHAMBERSBURG, PA. THI cicostami a niw mithod of producino airflant stampinas

 datily iby yur mbur

CHAMBHRSBURG
Hammers cecostamps. presses

-

 quality

 quality
 DROP FORGINGS

 ON EVERY BATTLEFRONT

 ON EVERY BATTLEFRONT}

Inspectors hand out no rejection slips on work assembled with American Phillips Screws. These are the screw fastenings that drive straight, keep their heads, and keep the driver from skidding out to spoil work and slash hands. The firm fit between screw and bit permits the use of electric and pneumatic drivers, yet only one hand is needed to drive, so the other can brace the work. Screw sets up uniformly tighter, holds better. Head is unmarred, plumblevel on work surface. This unmatched speed and ease of driving keeps production at maximum levels to the end of the shift . . . enables women to do better work, and far more of it, than men could do with slotted-head screws.
American's engineering service, production concrol, and piece-inspecrion is so effectively co-ordinated that today scores of plants in every war industry are using millions of standard and special American Phillips Screws.

AMERICAN SCREW COMPANY
PROVIDENCE, RHODE ISLAND
Cbinalgo: 589 E. Illinois Street Detroit: 5-267 General Motors Bldg.

The Americon Phillips Recess Was Scientifically Envineered... The Modarn Key to Highest Forvening Speed And Grentest Economy in War Production Assemblies.

Fast Sinting Driver poitr automatwally cencers in the resess. . dits snmaly, Serew and driver "herome ate climinated.

Faster Driving S゙piral and power driving are made practical. Driver won' slip out of recess to infure workers or spoil material. (Aver ase time savimi is 505.)

Better Fastenings-Screw's are sct up unitormly tixht, without burring or Wreaking heads. A stronger, nearer ioh resulss and there are no sounes on wurk-surtace.

READY-POWER

 EQUIPPED ELECTRIC TRUCKS

CONTINUOUS POWER
READY-POWER (Gas-Electric) Units on new or existing electric truck equipment handle more loads per hour per day and per year than the same equipment battery powered. This means a saving in time as well as a saving in money by accomplishing a given amount of work in less time at a lower cost per ton handled. Since 1924, thousands of Ready-Power Units have been adapted by industry to their toughest iobs. READY-POWER'S reliability and superior performance have been proved. Ask for literature.

READY-POWER today serves industry better, more completely, than ever before with power units that cover the range of trucks from 2000 to 60,000 pounds rating. READYPOWER manufactures a complete line of Gas-Electric Power Units-nof complete frucks. You can secure new trucks complete with READYPOWER from truck manufacturers or you can get READYPOWER units to replace batteries for trucks now in operation in your plants.
Write for information, mantioning type of new trucks contamplated or make and type of trucks now being operated.

G-H Triple Compression Hydraulic Baling Press

This powerful, skillfully engineered, triple compression hydraulic baling press is equal to any and all requirements in the speedy, low-cost baling of sheet-metal scrap. Small clippings and stampings and such bulky items as sheet mill trimmings, auto bodies, fenders and oil drums . . . all look alike to this versatile three-compression baler. In steel mills, in heavy stamping plants, in metal working plants . . . and in the scrap-yards of America . . . it has set new records in preparing vital scrap-for-victory. There's a Galland-Henning Baler to meet your baling needs.

Illustration shows typical industrial installation of 150 T-C Hydraulic Baler - with cut-away view of pit.

T-C Balers are built in capacities from 4 to 20 tons per hour and more. Other G-H Scrap Metal Balers from $1 / 4$-ton per hour and up.

For Experienced Counsel on Baling Scrap-For-Victory, Wrife
GALLAND-HENNING MFG. GO.

IN New Guinea . . . North Africa . . . in every theater of action-war materials created in our plants are helping to smash enemy resistance. We're passing the ammunition to Tojo and his pal, Hitler, on land by means of the 75 mm . field gun shell forging shown above. And at sea we're giving them a taste of their own medicine through the medium of similar shell forgings designed for use in 3 -inch Navy antiaircraft guns.
And that's only part of it! Our tube forming equipment is working right along with our shell forging plants-in continuous production of WELDED STEEL TUBING for Smoke Shells, Utility Bombs, Steering Columns and Tie Rods for Motorized Equipment, and Links for Tank Treads.

We want to keep going full blast to help get this war won as soon as possible. We have capacity for additional work on certain items. We'd like to help you-if you need help in the way of Steel Forgings or WELDED STEEL TUBING. Write, wire or telephone and let us show you fully and completely just what we are prepared to do.

(Complete Tube Stocks Maintained by ot STANDARD TUBE SALES CORP., One Admiral Ave., Maspeth, L. I., N. Y. LAPHAM-HICKEY COMPANY, 3333 West 47th Place, Chicago, III. UNION HARDWARE \& METAL CO. 411 East First Street, Los Angeles, Calff.
 SURFACING jobs-any size, shape, grif, porosity or grade hardness! Whatever your requirements may be BAY STATE will serve you well. Send in your problems. We can help you.

$=3 \wedge$ Min Prone

Delivery of Pump is varied by changing the position of the "True Circle" pressure ring to the rotor-pumps only the amount of oil you need to do the job-no relief valve required. Racine tilted Vane Rotor design prevents gouging of chamber ring. Vanes tend to polish the surface and cannot seize.

Because the flow of oil is automatically varied, Racine Pumps operate at reduced horsepower. Momentary shock loads are avoided, hydraulic hammering and oil heating are reduced at constant operating pressures from 50 to 1000 lbs. per sq. in.
Racine Oil Hydraulic Pumps are made in three sizes-$0-12,20$ and 30 gal. per min. capacity at 50 to 1000 lbs. pressure per sq. in.

Equipped with standard automatic pressure controls; or with Solenoid, Lever or Hydraulic two pressure control; or with handwheel or lever for manual volume control.

RACINE OIL HYDRAULIC VALVES

With Bolanced Piston-"Sleove Type" Construction

Exclusive honed alloy "Sleeve Type" construction provides a continuous bearing and sealing surface-piston always in alignment, cannot sag.

These Racine FourWay Oil Hydraulic Valves are available in $3 / 8^{\prime \prime}$ to $11 / 2^{\prime \prime}$ standard pipe sizes with mechanical, electrical or manual operating device. Various porting arrangements can also be furnished to suit your requirements.

Racine makes available to all Tool Engineers and Designers a complete service for your oil hydraulic problems. For complete information, address Dept. S-P.

RACINE HYDRAULIC METAL CUTTING MACHINES

The Produclion Sows of Modern Industry
Racine's Metal Cutting Machine line is complete for either general purpose or production cuttingWet and Dry Cut Models. Hydraulically fed and controlled to produce fast, accurate and efficient metal cutting. Capacities $6^{\circ} \times 6^{\prime \prime}$ to $20^{\prime \prime} \times 20^{\prime \prime}$.

FOR YOUR PRODUGI PLANNING DIVISION

 SEYMOUR NICKEL
SILVER

 NICKEL SILVER 10\%-GRADEA 12%12\% -GRADEA 15%-GRADEA 15%-GRAD.

15%-F.T. 15% - F.T.
18%-GRADEA

25%-CUPRONICKEL
15% CIC 15%-CUPRONNIKEL
20%-CUPRONGEL

AVAILABLE IN: WIRE AND ROD $\begin{aligned} & \text { supplied Round, Har- Octagon, } \\ & \text { Halt-Oval. Hexagon, }\end{aligned}$ WIRE (FLAT) SHEET AND STRI if desired:

SEYMOUR PHOSPHOR BRONZE

HUNTING for data these days is expensive. Yet, a good understanding of the possibilities of materials being worked is necessary for best results. So, to save your time, here are the principal characteristics of two Seymour Alloys-longtime stand-bys in peace production, now vital features in war production:
SEYMOUR NICKEL SILVER - Takes any hardness from dead soft to spring temper. Excellent for deep draws and difficuls spinning. Has fine grain and good corrosion resistance. Its silvery white color makes it an ideal base for plated items. Leaded, it machines freely.

SEYMOUR PHOSPHOR BRONZE - Highly resistant to corrosion, abrasion, friction and fatigue. Produces springs that withstand almost indefinite flexure. Practically indifferent to thermal variation in most ordinary uses. Has wide application in electrical design. Available leaded; also in rods for welding.

ALLOY	Alloy Na .	COMPOSITION Approancole Pricent				Tensile strangth les. pir sa. in			Elangation peicent in 21n. min.																	
		Cow	Zinc	Tin	Lead	Hata spun			Hera spika	50tt																
	950	9500	4.00	500 500	1.00	$\begin{array}{\|c\|} \hline 105,000 \\ 61,000 \\ 12,000 \\ 115,000 \\ 60,000 \\ 6000 \end{array}$			$\begin{aligned} & 1.5 \\ & 3 \\ & 5 \\ & 20 \end{aligned}$	$\begin{aligned} & 50 \\ & 40 \\ & 65 \end{aligned}$																
	928	9100		800																						
	$\begin{aligned} & 910 \\ & 444 \end{aligned}$	9000		10.00																						
		8800		4.00	400																					
DITTO	Alloy No.			Demityor Spec. G		Grax.	Metiong Point ${ }^{\circ} \mathrm{F}$	Elect. Resist. I.ACS.		Elect Codetivis\% 1.A.cs. $20^{\circ} \%$																
		$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Katad } \\ \text { sexina } \end{array} \\ \hline \end{array}$	Soft	$4^{\circ} \mathrm{C}$																						
DITTO	$\begin{aligned} & 950 \\ & 494 \\ & 928 \\ & 910 \\ & 444 \end{aligned}$	5	30	8.86	320	552	1920	6.16.07.89.48.2		16.5 16.8 12.8 10.6 12.2																
		85 98				549 546																				
		100	52	88.76	. 316																					
		75	886		320	$\begin{aligned} & 546 \\ & 552 \end{aligned}$																				
AVAILABLE IN:	Gope RanaC (fiatientr)		Wath Renge (nchsive)		MISCELLANEOUS																					
SHEET BRIDGE PLATES CIRCLES COILS (STRP) WIRE WIRE (Flat) ROD ROD (Welding)			Rods up to $2 *$ sheets up to 40°		WIRE AND ROD suppliet Round haffownd, Graster-Round, Oval. Hef-Oul; Hexagon, Octagon. square. iriongular or Fozeythaged or bate. steer Awo stralp in roll fiaish ar fiteat Level. Stip Einnca if absirad.																					

Ass Though made by the same hands-carefully matched and fitted-these parts slip together in a final machine assembly. Both are accurate, right-and ready to fight for America.

Distance is no barrier to interchangeable manufacture when close limits of accuracy are
observed. This fact makes possible the larger manufacturing volume to speed up the war effort.

This close-tolerance machining is the work Gisholt Turret Lathes are doing as their part to hasten the day of Victory.

GISHOLT MACHINE COMPANY, 1217 East Washington Ave., Madison, Wisconsin Look Ahead... Keep Ahead...

With Gisholt improvements in metal turning

(17FURNACES

For Every Industrial Heat Treating Process

EF special atmosphere furnace scale free heat ireating machine sun cartridge clipscontinuously.

EF FURNACES ARE BUILT FOR EVERY PROCESS, INCIUDING:

Annealing	Carburizing	Hardening
Copper Brazing	Drawing	Nitriding
Billet Heating	Enameling	Process Heating
Bright Annealing	Forging	Normalizing
Scale-free Hardening	Malleablizing	Ceramic Firing, etc.

EF FURNACES ARE BUIIT IN VARIOUS TYPES, INCI,UIING:

	Bell Type
EF gas rired	Box Type
hearth type fur-	Car Type
nace nnnealing	Hearth Type
brass for car-	Pit Type
tridge cases.	Pusher Type
	Recuperative
	Roller Hearth
	Forging Furnaces

Chain Belt Conveyor Type
Chain Strand Conveyor Type
Continuous-miscellaneous types
Reciprocating Hearth
Rotary Hearth
Rotary Drum
Suspended Conveyor
Vertical Cylinder
Walking Beam

SOME ACCESSORIES WE BUILD FOR FURNACES

Conveyor Equipment
Transfer Mechanism Automatic Pushers Charging Machines Gantry Cranes
Transformers
Pressure Systems

Special Atmosphere Gencrators
Pumping Equipment
Continuous Quench Tanks
Quenching Machines
Washing Machines
Switchboards
Contactors, etc.

THE COMPANY AND ITS SERVICE

The Electric Furnace Company, with a background of over twenty-five years of furnace building experience, is prepared to furnish any type of kiln or furnace required for any firing or heat treating process.

With both electric and fuel divisions, EF engineers are in a position to make a thorough and impartial analysis of any furnace or heat treating problem and recommend and build the best size and type furnace for the job.
The Electric Furnace Company engineers have been able to improve heat treating processes, increase furnace production capacities or reduce the cost of heat treating operations in hundreds of prominent plants.

Consult EF Engineers on your next furnace or kiln problem. We shall be glad to give complete information, including installation and operating costs-and submit samples of products treated in equipment we have built.

We Specialize in Building Production Furnaces.

EF gas fired con tinuous roller hearth furnace annealing shell cases.

The Electric Furnace Co., Salem, Ohio
Gas Fired, Oil Fired and Electric Furnaces - For Any Process, Product or Production

EF gas fired special atmosphere installation heat treating shell forgings-automatically and scale free.

EF gas flred continuous roller hearth type furnace annealing 10,000 lbs. cartridge brass per hour

As Victory is reflected in the productive might of American industry, the shadow of the welder hovers over the crumbling bulwarks of the enemy.

Champion Welding Electrodes produce clean, smooth welds down to two inch lengths. All sizes and styles are available. Uncle Sam expects every operator to conserve by using the utmost utility in each electrode.

Be sure it's a stub before it's thrown away.

THE CHAMPION RIVET COMPANY

11200 Harvard Ave., CLEVELAND, OHIO EAST CHICAGO, INDIANA

FACH pound of scrap used in making I war steel replaces a pound of pig iron.

To make one pound of iron requires nearly four pounds of ore, coal and limestone.

So when you furn in a pound of scrap you also conserve four pounds of vital raw materials. Translate this saving into terms of the $6,000,000$ tons of steel scrap that the industry needs today. It is the equivalent of:
$12,000,000$ tons, or 240,000 carloads of iron ore.
$7,200,000$ tons, or 144,000 carloads of coal,
$3,000,000$ tons, or 60,000 carloads of limestone.
Think also of saving the millions of man hours of labor involved in mining, transporting and processing these 444,000 carloads of raw materials - enough to form a solid train stretching from Boston to San Francisco.

The more dormant scrap YOU salvage, the greater the amount of America's materials, machines and manpower is released for the all-important task of winning the war now.

Enlist GIRLS for MANpower

in Your Screw Driving Army

GIRIS WHITED
 For Assembly Work

 No Experience Necessary Easy Work
WOMEN DRIVE PHILLIPS SCREWS EASILY!

Now you can recruit women for your screw driving army and be sure of fast, skilled work from the very start.
Big muscles aren't needed to drive Phillips Recessed Head Screws. Further, it requires no mechanical aptitude ...even novices produce without wobbly starts, slant-driven screws and slips that cause accidents or mar work.
Automatic centering of the driver in the Phillips Recess makes such efficient use of turning power that screws set-up uni-
formly tight... with so little effort that workers maintain speed without tiring. Screw and driver "become one unit," making driving so easy and fool-proof that work is greatly speeded up, regardless of the driving method employed. In most cases, power driving becomes practical.
They cost less to use! Compare the cost of driving Phillips and slotted head screws. You'll find that the price of screws is a minor item in your total fastening expense ... that it actually costs less to have the many advantages of the Phillips Recess!

KEY TO FASTENING SPEED AND ECONOMY

The Phillips Recessed Head was scientifically engineered to afford:
Fast Starting - Driver point automatically centers in the recess ... fits snugly. Screw and drives "become one unit," Fumbling wobbly starts are eliminated.
Faster Driving-Spiral and power driving are made practical. Driver won't slip out of recess to injure workers or spoil material. (Average time saving is 50%.)
Easler Driving - Turning power is fully utilized by automatic centering of driver in screw head. Workers maintain speed without tiring.
Befter Fastenings - Screws are set-up uniformly tight, without burring or breaking heads. A stronger, neater job results.

Answer this important question in your own interest: What is the most sensible way to buy welding heat? On a theoretical or nominal rating which does not consider minimum and maximum output? Or on the WSR (Welding Service Range) which is actual delivered output over a usable range?

The WSR (Welding Service Range) method enables you to measure welding heat by the cost per ampere, based upon the machine's maximum output.
Measure this cost for P\&H Arc Welders. Then measure the added values in P\&H's single control and automatic arc response for all classes of work. Get
this accurate appraisal before you invest in welding equipment. See your P\&H Representative or write for the folder, "The Welder-Wise Way to Buy Welding Heat."

Gen. Offices: 4411 W. National Ave., Milwaukee, Wis.

Alloys in ENGINEERING STEELS

When chromium, silicon, manganese, molybdenum, fungsten, nickel, or vanadium are added to a plain carbon steel, the steel acquires new properties. Depending on the alloys added, and the amount, the steel is made stronger, tougher, harder, more heatresistant and more corrosion resistant. Such steels are called alloy steels. When these steels contain less than 5 per cent alloy and are used for mechanical parts, they are usually known as engineering steels. Shown here are some typical uses of engineering steels.

Minimum effective amounts of these alloys, largely obtained from scrap, are used in the wartime alternate National Emergency steels, which are in many cases satisfactory substitutes for the standard alloy steels.

However, because of service conditions in many applications, the standard steels of higher alloy content must be used. In ball bearings, for example, where abrasive wear is a problem, the usual steel is SAE 52100 , which contains $1.2-1.5 \%$ chromium and 0.30 -0.50% manganese.

For more than 35 years we have produced the ferro-alloys used in making alloy steels. If you have a problem in the selection, fabrication, or use of an alloy steel, call on us.

Petroleum Equipment . . . Pressure vessels, pipes, draw works shafting, drill collars, kelly bars, rotary table shafts, slush pump rods, and tool joints are usually made of enginearing steals

Machine Tools . . . Engineering sleels are used for precision lead serews, spindles, toolholders, gears, collots, feed fingers, cams, shoftings, pneumatic toolholders and pistons.

Planes. . . Propeller blades and shafts, connecting rods, shafts, racker arms and gears, cylinder liners, tubing, hydraulic parts, and structural parts are made of engineering steels.

Electro Metallurgical Company
Unit of Union Carbide and Corbon Corporation
30 East 42nd Stree: U[C New York, N. Y.
In Canoda: Electro Melallurgicol Company of Coneas, timited, Wellond. Ontorio

Electromet
Ferro-Alloys ©Meals

O^{F}F course, Fairbanks Scales are big, husky, and accurate. You have a right to expect these things in any' good scale - and particularly of Fairbanks Scales with the world's broadest scale manufacturing experience behind them.
The feature about Fairbanks Scales that may surprise you the most, is their ability to do things you don't expect of scales.
Here are a few of many jobs done by Fairbanks Scales:

- They count small parts - more accurately than manual counting
- They weigh carloads of coal in motion and make a printed record of each weight
- They automatically control paint ingredients
- They automatically control aggregates
- They "keep the books" in steel plants, making printed records of incoming and outgoing shipments
- They keep accurate records on chlorination in water treatment
- They record the flow of liquid chemicals
- They guard secret formulas in compounding
- They control batching in bakeries
- They prevent disputes by eliminating the human element in weighing.
$A^{\text {ND all of these things, only }}$
the beginning of the story, they do automatically and mechanically thereby eliminating human errors.
How Fairbanks Scales can be fitted into your production flow to speed up operations and eliminate errors may prove to be the most interesting discovery you ever made. Investigate now. Write Fairbanks, Morse \& Co., 600 S. Michigan Ave., Chicago, Illinois.

FAIRBANKS-MORSE

Tool engineers, machine tools and cutfing fools Pages 66-71.

EDITORIAL STAFF
E. L. Sitaneir

Editor-in-Chief
E. C. Kıeutzoerse

A. J. Ilamin Managing lifisor	C. W. Bmpant. Engincering Ealitor
J. 1). K mox	Guy Hunmaril
Steel I'lant Eiditor	Machine Tool Ititar

Aitioun F. Macconocitie:
Cuntributing Elitor

$$
\begin{aligned}
& \text { D. S. Cabot } \\
& \text { Art Evitor }
\end{aligned}
$$

Associate Editors

G. II. Mantove, W. (i. Gudh: W. J. Camibill.
New Jork
B. K. Phete, John II. Cabowhla, I. F. Bhowne Piltshurgh, R. L. Habtrone! Chicago, E. F. Itoss Detrnit, A. 11. Alseas W'ashington, L. M. Lamm Lonion. Vinceste Deludent

Assistant Editors

J. C. Suldivan, Jar Deliulis, Ia Velene Nugk 1). 13. Wilikin J. M. Kunta

BUSINESS STAFF

(f, O. Hays

Business Manuger
1R. C. Jatuke
Aherrising Marages
C. 11. Bansex

Afrratising Service
 l'itrshurfh. S. 11. Jasient, 13. C. Sinet.i. Chicaso, 1. C. Petott
Clermlend, 1R. C. Jabikis, D. C. Kiefielt
Lans Arigeles, l'. J. l'ulbela
J. W. Zurem

Circulation Manaser

Main Office

Penton IHaiditng. Clevelam, Ohio

Branch Offices

Newe Jorli.
Chicogn.
I'ifesbargh.
Imerait..
II ashington
Ciusimnati.
(2) • -
 Pentom 13 uilding: Cteveland, Ohio. F. L. SIAvia, Prenident and Ireasurer: (B, O. If
President; 1: (\%. Steivi,B ch, Sucretary
Member, Audit Iburean of Circalationst Ampariated
 Aswerintion.
Publinhed every Moshay. Subseription in the Linited States and posmessions, Canada, Nevieo. Culsa, Cumtral amd homb America, one year EO; Iwo years si0); all other countrien, one vear $\$ 12$. Single eopsice (current issues) 25c.
Fimered as wecond class matter at the pomoffire Fintered as second class nather at the postolfice

The Magazine of Mefalworking and Mefalproducing

A PR|L5, 1943

Volume 112

NEWS

20,000 Learn About New Techniques at Tool Engineers' Meeting 66
Tool Industry Produces "Itself Out of Business for a Decade" 70
Deliveries Slow, General Motors Makes Own Cutting Tools 71
Three State Legislatures Pass Measures Regulating Unions 72
Replacement Orders for Rejected Steel Must Get Top Priority 75

Priorities-Allocations-Prices	
WPB Exempts Certain Operators from CMP Inventory Restrictions	81
1	

WPB Exempts Certain Operators from CMP Inventory Restrictions 81
Construction of 400 -Ton Custom Mill at Butte, Mont., Approved. 89
Construction of 400 -Ton Custom Price Plan for Warchouses To Be Inaugurated Soon by OPA. 91
Men of Industry .. 92

Obituaries
94
Women in Industry 95
176 Lake Superior Iron Mines Contribute Record Ore Tonnage 97
Lakes Shipping Season May Open April 15; Cos 98
19,000,000 Deadweight Tons of Merchant Vessels Goal for 1943 100
Financial News
Financial News
FEATURES
4
Behind the Scenes with Steel
63
63
Highlighting This Issue 65
Editorial-A Place for Teamwork
76
76
Windows of Washington
83
83 86
Mirrors of Motordom
Mirrors of Motordom
Wing Tips 101
The Business Trend 132
Industrial Equipment 180
New Business 182
TECHNICAL
Job Training in the Shop 104
Carbon-A Refractory Material 106
Fatigue of Steels as Influenced by Design 112 112
Colorimetric Determination of Boron in Steel 114
Ryerson Data on NE Steels 116
Hardenability in Evaluating Properties of NE Alloy Steels 118
Rust-Inhibiting Wax Coatings 122 122
Increased Payloads Result from Loader-Equipped Cars 128
Tipping Cutting Tools Saves Alloying Materials

PRODUCTION

Steelworks Operations for Week

MARKETS

CMP Allotments in Full Force by Middle of April 165 166
Index to Advertisers 189
Where-to-Buy Products Index carried quarterly

MORGOIL BEARINGS
ride on a film of oil MORGAN CONSTRUCTION COMPANY - WORCESTER, MASS.

HIGHLIGHTING

this issue of ? 룰 园

TOOLING

Tool engineering developments of major importance in still further speeding up the tempo of the war production program are pointed out by Guy Hubbard (p. 66) in his report covering personal observations during the national meeting and exhibition staged by American Society of Tool Engineers at Milwaukee. . . This vital subject of wartime tooling also is dealt with effectively (p. 71) in a revelation as to how Ternstedt Mfg. Division has smashed its cutter bottleneck. . . Machine tool builders (p. 70) insure against possible future letdown by lining up subcontracts on war materiel work now. Ceiling prices on used machine tools may be eased to stimulate rebuilding.

W ASHINGTON
 Considerable attention is

 being focused upon food dehydration because of the importance of conserving vital cargo space in food shipments. Windows of Washington (p .76) discusses the postwar business opportunities of this project in the first of two articles. . . Petroleum operators, mining producers. and utilities have been exempted (\mathbf{p}. 81) by the WPB from inventory provisions of CMP Regulation No. 2. . . Office of Price Administration reportedly will establish ceiling prices on such products (p . 91) as sheets, bars, plates, strip and structural shapes. . . WPB has approved (p. 89) construction of a custom mill at Butte, Mont., to produce 400 tons of manganese each day.
WAR PRODUCTION

Maritime Commission believes
United States shipbuilders will produce $19,000,000$ deadweight tons of merchant vessels (p. 99) in 1943. In its annual report, the group reveals all shipbuilding records were broken last year. . . Various engineering features of the Douglas Aircraft plant at Oklahoma City (p. 86) are covered in detail in Wing Tips. The vast two-mile long windowless factory, which is producing transport planes, embodies a "breathing" wall of masonry that has conserved many tons of critical materials. . . Great Lakes shipping season is expected to open April 15. Operators believe the $95,000,000$-ton goal (p. 97) will be achieved without difficulty because of the new freighters being added to the lake fleet.

IN THE-NEWS From Detroit comes

 news that Henry Kaiser, shipbuilding magnate, has gained (\mathbf{p}. 83) a "toehold" in the auto inclustry. He has obtained the services of a well-known body designer and stylist to develop a modification of the jeep for the Army.Thirty-eight top flight auto executives are intensively studying manpower problems. Chriler released a detailed report of progress at its ne Jodge Chicago airplane engine plant. . . Another sample of how women in industry indirectly havit volutionized" (p.95) the interiors of war plants evidenced at the N. A. Woodworth Co., Ferndale, Mich. A beauty salon and cosmetic canteens are scaltered throughout the plant. An elaborate lounge which seats 160 has been provided as a "morale builder" during recreation periods. . . Kansas has adopted legislation controlling labor unions (p. 72). In Colorado and Texas similar measures, requiring annual financial reports and baming unfair labor practices, have been approved and await the governors' signatures.

TECHNICAL
Frank]. Vosburgh examines cartom as a material for applications where a refractory is needed (p. 106). He points out that well over a million pounds of carbon are used yearly in that capacity. Many applications where carbon can be used to advantage are detailed.
J. O. Almen concludes his discussion of how design and internal stresses influence fatigue of steels (p. 112) by examining gear applications. Contact impressions of gear teeth are pointed out as a valuable means of finding out how the load may be distributed on the gear teeth.

The great interest in addition of small quantities of boron in steelmaking has focused attention on methods of analyzing the boron content, since it is used in quantities of only a fraction of 1 per cent. Thus the description (p. 114) of an analytical procedure for determining boron content within an accuracy of plus or minus 0.0005 per cent is very timely. G. A. Rudolph and L. C. Flickinger describe the reactions, the equipment and procedure.
A number of simplified charts presented by C . Nilson and A. W. Herbenar (p. 118) aid in examining harclenability tests in evaluating NE steels. Walter Bridgeman explains the important place being assumed by rust-inhibiting wax finishes to protect metal surfaces (p. 122). . . E. S. Evans begins a timely description of a highly effective method of packing shipments in freight cars to avoid damage and fully utilize all space available (p. 125).
D. G. Clark shows how tipping cutting tools saves important amounts of alloying elements (p. 128). Maximum savings accrue when a carbide tipped tool is used in a toolholder, since this permits 0.10 pound of alloys to replace the pound required for a solid high-speed steel tool doing the same work.

FOR QUILK ACTION OIN STEEL
 Ryerson has maintained its leadership in the

"W ERE having better luck on steel, now," said imes a manufacturer the other day. "There were weare hen we had to 'phone and 'phone, but now plete going to the warehouse with the most comdeli stocks, with best facilities for handling and arolivery. We are saving the time of shopping calling Ryerson first.'

Sound reasoning, isn't it, when you want something, to go where you're most apt to get it. Whether it's fast service, a steady, reliable source, a cutting or fabricating operation that will facilitate your production, or just information and assistance, you're most apt to get what you want by calling Ryerson first!
steel business by making good every promise, by knowing the kind of service customers want and giving it to them, and above all else, by having in stock most of the time the kinds, shapes and sizes of steel they want, ready for immediate delivery.
Stocks are reasonably complete, considering the war demand placed upon them. But, whatever kind of steel you want, within the WPB plan; whatever service you would like to have, call Ryerson first! You'll get prompt, intelligent cooperationat Ryerson!
JOSEPH T. RYERSON \& SON, Inc., Chicago, Milwaukee, St. Louis, Cincinnati, Detroit, Cleveland, Buffalo, Boston, Philadelphia, Jersey City

RYER50I GTEEL-5GRUILE

as the editor views the news

ゴ『 巴 巴
April 5， 1943

A Place for Teamwork

In recent weeks there has been a noticeable inclination on the part of some business leaders to confer with responsible labor union officials on postwar social，economic and political problems．The object of these discussions is to find common points of interest on which capital and labor can unite to their mutual advantage．
Concurrently another movement affecting labor relations has been gaining headway．Kansas has passed a labor law，effective May 1，1943，which is intended to protect union members，non－union employs，employers and the public against improper union practices，such as racketeering．The governments of several other states have passed similar laws，or are con－ sidering legislation．
At first glance，it may seem that these two independent movements are contradictory．The conferences between business leaders and union officials may appear to be a courting of union power，whereas the state laws may be construed as an attack against this power．
We believe this is a narrow and distorted interpretation．We prefer to think that both movements are constructive and are pointed toward a com－ mon objective．
The conferences on postwar problems are intended to marshal the re－ sources of capital and labor for the preservation of private enterprise－ an aim which is just as vital to a wholesome union movement as it is to the owners of private enterprise．
The Kansas law and others which may be enacted are intended not to curb the legitimate power of unions but to discourage the abuse of union power．While some shortsighted union leaders may deplore these laws and fight hard against their enactment，union statesmen who are thinking of the future realize that a clean－up of racketeering，whether accomplished by law or otherwise，will be as beneficial to good unions as to employers and the public．
For every point in which the interests of capital and labor are antagonistic there are dozens in which their interests run parallel．Fortunate will be this nation when both sides recognize this fact and act accordingly．

Editor－in－Chief

20,000 Learn About New Techniques at Milwaukee

Abstract

Heat treating by "freezing," glass gages, salvaging broken tools, adapting standard machines for special purposes in war production, highlight eleventh annual convention and exposition

By GUY HUBBARD
Machine Tool Editor

Abstract

SCIENTISTS, physicians, surgeons

 and others of the learned professions periodically take advantage of "refresher courses" - usually called clinics - to keep up with the times in their respective fields. Why shouldn't engineers and production specialists do likewise?That was the question in mind when, in the face of mot-too-encouraging conditions, the American Society of Tool Engineers staged its eleventh amnual convention and machine tool and progress exhibition in Milwatukee, March 25-27, 1943.

What was the verdict? Sulfice it to say that $20,000 \mathrm{key}$ men of American and Canadiam industry responded to the call, were amazed and enlightened by what they heard at the technical meetings and saw in the 188 company and institutional exhibits, and have returned to their duties throughout the Arsenal of Democracy with hundreds of new ideas and fresh techniques with which they now face with renewed confidence
and renewed energy the ever-growing problems of material and worker shortages, and the mounting demands for better war materiel faster and in greater volume.

In other words, this ASTE venture turned out to be very much worth while as a "shot in the arm" to keep Uncle Sam wide awake on the joh of supplying all the United Nations with the quality and quantity of war goods which eventually, and we hope in the not-too-far distant future, will crack the citadels of the Axis powers on all fronts.

This writer, who spent three busy days at the Milwatuke comvention and

Engineering ingenuity and painstaking craftsmanship required in making and checking special tools, is emphasized by this array of punches and dies for motor laminations in the toolroom of the Westinghouse plant in Lima, O.
show, has been asked what his primary impression was. Well, here it is. My primary impression was (and is) that American engincers and techmicians now top the list in their ability to grasp the significance of new scientific discoveries and quickly to apply them successfully to the practical purpose of producing more and better goods for more people-at this time represented by the land, sea and air forces of the United Nations.

Just to illustrate how this co-operation between scientists and production specialists is working in this country, let me cite a few examples out of my recent Milwauke experience. First, consider the technical sessions, which incidentally were of very high caliber. There, for example, we heard Prof. O. W. Boston, College of Engineering, University of Michigan, give a paper on "Machinability Ratings of Metals and Cutting Fluid Recommendations" with special reference to mational emergency steels.

Professor Boston's laboratory at Aun Arbor obviously is not of the "ivory tower" variety. Rather, it is an experimental machine shop where things theoretical are reduced to usable machine shop facts by painstaking series of tests involving standard machinc tools equipped with special instruments which record exactly what goes on over wide ranges of speeds and feeds with various lubricants and coolants.

Out of this patient, common sense research, Professor Boston has evolved and constantly is evolving data on a wide varicty of materials, which give to machine shop men definite guidance on

Tool enginecrs mast "follow through" every step of the way from the initial design of tools, to their performance on the fimished product-as in the case of this big ring gear which is being checked for tooth spacing by means of a special dial gage at Westinghouse Nuttall works, Pittsburgh

Initial tooling setups demand close co-operation between tool designers and toolmakers, inasmuch as the engineering drawings have to be translated directly by the machine tools rather than interpreted through jigs and fixtures as in production work. OEM Defense Photo by Palmer, courtesy Frederick Colman \& Sons Inc.,

Detroit
speeds, feeds, coolants and type of tools which should be used for maximum efficiency in roughing and finishing work under production conditions. These tables of machimability factors-too extensive of course to reproduce hereare being made available to industry as rapidly as they are being worked out. To my mind this project is as sweeping in its effect as was Frederick W. Taylor's original work along this line about 50 years ago.
Stepping into another session, I heard a gentleman who described himself as a "country doctor" give a straight-from-the-shoulder talk as to what must be done to make machine shops fit for women to work in, and what kind of supervision they must have. Dr. B. I. Beverly knows, because as director of health and personnel, Republic Drill \& Tool Co., Chicago, he has accomplished things which are attracting competent women to that shop and causing them to remain there.

The Doctor "Prescribes"

Three of the many points which he stressed are: Keep the shop as clean, ordery and quict as it is possible for a machine shop of los: figure women workers as having about half the physical strength of men; and above all, don't let "Bull-of-the-Woods" type foremen have anything directly to do with supervision of women workers. There is a lot more to it than that, but this will give some idea as to the scope of the doctor's work in solving persomel problems related to manpower shortage.

Another experience at Milwaukee which sticks in my memory was that of hearing Arthur Schwart\%, chief tool research engineer, Bell Aircraft Corp., Buffalo, tell of the stunts being done in his shop with some home made cutters of unconventional design. Possibly "stunt" is not the right word for a job where an odd looking milling cutter with a cast body and two teeth shod with cast cutting alloy, removes metal so fast that a man literally has to stand at the machime with a pitch fork to keep the chips cleared out. Nor is it a stunt when wood saws rumning at 12,000 surface feet per minute are used successfully day in and day out to cut armor plate just as though it is wood. These and many other feats are in the production picture at Bell Aircraft.

Mr. Schwartz, I might add, uses simple terms in describing things. When low co-efficient of friction between tool and work is desirable, he likes "blank" metal tool bits because they are "blank slippery". That is plain talk that all men in industry understand. He did a grand joh of putting his paper across.

I heard T. J. Thompson, manager, in-

NEW OFFICERS

RAY H. MORRIS, President

D. D. BURNSIDE, First Vise President

C. V. BRINER, Second Vice President

President: Ray II. Morris, vice president, Hardinge Bros. Inc., Ilartford, Conn.
First Vice President: Douglas D. Burnside, superintendent. American Stove Co., St. Louis. Second Vice President: Cletus V. Briner, Assistant to president, Pipe Machinery Co., Cleveland.
Secretary: Earl V. Johnson, engineering representative, Firth-Sterling Steel Co., Dayton, O. Treasurer: Floyd W. Eaton, War Manpower Commission, Detroit.
Adrian L. Potter was re-elected executive secretang, with headquarters at ASTE main office in Detroit.
dustrial division, Corning Glass Works, Corning, N. Y., tell about glass gages and saw him toss heat treated glass blanks about as though they were tough metal. These tempered glass gage blanks had been heated, then as Mr. Thompson said, "dunked to quick freeze the outside surface", following which the core was allowed to cool slowly. Center holes are drilled with carbide drills using turpentine as a lubricant. Surfaces are wet rough ground up to 6000 feet per minute, then finished at 1000 to 2500 feet per minute with extremely slow traverse. Final cuts not exceeding 0.0004inch in depth should be taken with a dry wheel to glaze the surface.

Less than 0.020 -inch should be removed from the surface of glass gage blanks to avoid removing the tough outside "skin" already mentioned. Generous pilots must be provided to prevent chipping at the ends of plug gages. Markings can be etched or can be cut by tungsten carbide tools in an engraving machinc.

Rationing is a new experience for the average man-in-the-street, but is by now an old story to the man-in-the-shop as far as cutting tools are concerned. With vital alloying elements literally worth their weight in gold, it not only is desirable but a "must" to make existing cutting tools give up their last usable fraction of an inch in metal cutting. Speakers at the ASTE sessions dealt with this from two angles; first, provisions that allow "pushing" of tools as hard as possible as long as possible; second, that of repairing tools which have worn or broken under this heavy service. Typical of the first was the method revealed by Axel Lundbye, chief engineer, Crowell-Collier Publishing Co., Springfield, O., whereby cutting tools are hard chromium plated, thus lengthening their useful life-in the case of doctor blades used in shearing paper-from eight hours (unplated) to 110 hours (plated). Inasmuch as Mr. Lundbye's company offers the use of their patented process royalty-free to war industry for the duration, no further details are necessary here.

Spliced Cotton for Belting

Westinghouse, through R. W. Mallick, section engineer at East Pittsburgh, did likewise on that company's new technique for splicing cotton belting used to replace scarce nubber and leather belts. Belting may not exactly be a "tool" but many a tool is driven by it these days, so it is not out of place to mention it here.

Broken tools no longer are thoughtlessly tossed into the scrap bin. They are salvaged by silver alloy brazing (A. M. Setapen, Handy \& Harmon, New

Let those who are unduly impatient for delivery bear in mind that there is no royal road to accuracy of precision tools and gages. Unless exactly to specifications, they "infect" with inaccuracies the products on which they are used. Step-by-step checking-as of the thread gage on this precision measuring in-strument-therefore is a "must". Photo courtesy Pratt \& Whitney, West Hartford, Conn.

York dealt with that); by low temperature brazing (H. W. Foege, Eutectic Welding Alloys Co., New York, covered that); or by use of cast high speed steel welding rods (according to technique revealed by L. C. Gorham, Gorham Tool Co., Detroit). If you have broken broaches, milling cutters, drills, reamers, form tools, etc., hold on to them-and the pieces. As Dr. Munyon used to say: "There is hope!"

Among various new techniques emphasized at Milwaukee were high speed milling entters with sintered carbide blades set at negative rake angles. I heard Malcolm Judkins of Firth-Sterling Steel Co., McKeesport, Pa., describe the cutters and their use, but couldn't believe it. I looked at the cutters on display in the show. Still I didn't believe it. Finally, I visited the plant of Kearney \& Trecker, where I saw there cutters roughing out tough steel forgings at an anazing rate of speed (fire flew freely) but leaving surfaces which require littlo or no finishing. It is just one of those many things which can't work - but
does. Mathematicians figured out conclusively that bumble bees theoretically can't fly-but they do. One must have an open mind these days.

In passing, I should mention that among many other uses of induction heating, Frank Curtis, chief engineer, Van Norman Machine Tool Co., mentioned tempering and salvaging of tools. We will deal completely with Mr. Curtis paper in a later issue.

Exponents of hot and cold forging await the day when these processes will be so accurate that they will make matchining unnecessary. That this is no idle dream was proved at the convention by facts, figures-and samples, having to do with "forged-to-form" differential side gears. R. J. Goldie, president, Timken-Detroit Axle Co., Detroit, exDlained how these were produced in exceedingly rigid dies in powerful presses by hot forging and subsequent coining in accurate, rigid dies. About one pound of steel per gear is saved by this process, and Mr. Coldie sees the day not far distant when many gears will be
forged to close limits, then finished by shaving.
To try to cover the show comprehensively in a report of this kind is of course impossible. It had to be seen and seen again, and still again, to be appreciated fully and for its significance to soak in. However, I may be able here to hint at some of the trends which were indicated.

As far as machine tools are concerned -and a rather suprising number of them were shown-it was obvious that new cutting materials make it possible in many cases to do "heavy" jobs in light or medium duty machines. Instead of slow speeds and heavy feeds, these new machines and tools make it possible to attain the same ends by high speeds and lighter feeds per cutter revolution. This was amply demonstrated by a number of milling, boring and cutting-off machines-some of which have direct motor driven spindles.

Looking Into the Future

It looks very much as though the machine tool of the future is destined to do a great deal of its work at speeds which were associated with "open belt drive" in the pre-motorized era. This kind of equipment in some cases was originally most familiar in the field of woodworking but it is destined to be a big factor in metalworking from now on. Incidentally, these light, fast machines are ideal for women to operate.

The show demonstrated that undue consumption of elbow-grease in machine shops is a thing of the past. Heavy operations of control, positioning, chucking, clamping, etc., can be done pneumatically, hydraulically, electrically or by combinations therenf. Even the familiar bench vise is now power-driven-so I discovered at the show.

In the field of gaging, a trend toward direct comparison was evident in several directions-notably that of optical projection. Improved lens systems and screens make possible the quick superimposing of a greatly enlarged "shadowgraph" of the part itself, upon an equally enlarged theoretically correct and accurate outline drawing of the part, thus making possible almost instantaneous checking both of size and shape by relatively inexperienced inspectors. Without intending to belittle any of the more conrentional systems, this optical projection method hokds great possibilities and deserves careful attention, especially where great numbers of parts must be dealt with.
I have been asked what-if any one thing - in the show best exemplified Yankee ingenuity and convinced me that America still leads the field in finding new and unusual ways to accomplish
industrial ends. My answer to that one is:

"Heat treating by freczing"

Years ago a French-Canadian humberjack on Mount Ascutney in Vermont told me in all scrionsness: "The ax and saw make change when she get down to 50 below!" I didn't take much stock in it at the time. However, after secing re-
frigerating units at the Miwathee show which actually do "heat-treat" steel at 120-150 below z.cro Fahr.-thereby increasing its hardness several points-it looks as though that Vermont lumberjack actually had sensed a scientific principle which metallurgists finally have rediscovered, developed and put to work in the machine shops of America.

Industry Produces "Itself Out of Business for at Least a Decade"

POSITION of machine tool interests in respect to contract renegotiations has not yet been clarified, despite the fact a number of eompanies have had the matter up for discussion with the adjustment boards for some time.

Chief difficulty of the boards in meeting this problem is that they haven't been able to construct a yardstick to deternine how much profit machine tor. interests can keep to tide them over the postwar period.

Some of the factors being taken into consideration in arriving at a fair profit return for these companies include:

1. Machine tool output in the past four years is said to be equivalent to a normal demand through 1965.
2. During 1940 and 1941 machine tool interests were not able materially to build up cash reserves, for they plowed back earnings into new plants and inventories. Last year and this would appear to be the only chance these companies will have to build up reserses.
3. After World War 1 about onequarter of the industry either went broke or consolidated with other interests.

Taking Subcontracts

As a hedge against possibility of sharply curtailed operations during the closing months this year a number of machine tool interests are already making tests and otherwise preparing production facilities for subeontract war work. One plant is in production of aircraft wheel hubs, while another is making test runs on a precision part for diesel engines. Still another is said to be in position to make tanks if and when plant facilities become available. Official of one matchine tool interest is quoted as saying that if it were to accept all the orders for making aircraft engine parts offered them by Detroit matnufacturers, its plant could be kept busy through 1944.

Spread between machine tool output and rolume of new orders has been wid-
ening steadily in recent months. Production is nearly twice that of new orders, while deliveries on an average are extended slightly under six months, against eight at the close of last year.

The peak in machine tool demand appears to have been passed for the duration, although spurts in new orders may develop following radical changes in designs of military equipment or changing emphasis on type of equipment needed.

Considerable progress has been made in bringing about a more even distribution of order backlogs among machine tool builders by the transferring of idle units to plants urgently needing them. This has measurably aided production when new tools could not be obtained soon enough to meet requirements.

Supply of cutting tools used on machine tools, including reamers, milling cutters, taps, twist drills, dies and particularly broaches, is becoming tighter. Round the clock operations of most machine tools, indicate no let up in cutting tool requirements and skilled toolmakers are increasingly hard to find. No progress is being made against order backlogs despite the fact suppliers have sharply expanded output.
Move to reduce ceiling prices on used machine took and to widen the margin percentagewise between "as is" and rebuilt prices is still pending.
A. G. Bryant, president, Bryant Machinery \& Engineering, Co., in a letter to the War Department urged that the job of skimming off excess profits in the machine tool industry be left to the Treasury Department's tax collectors. Mr. Bryant said that the industry needs something more than moderate reserves for contingencies in the next few years.
"It is obvious that by equipping the country for war during 1940, '41, '42 and ' 43 , the industry has practically put itself out of business for at least a decade
"After World War 1, machine tool
production declined 90 per cent from $\$ 222,000,000$ in 1918 to $\$ 23,000,000$ in 1921.
"With the rapidly declining rate of new business . . . the industry shortly must be faced with the danger of producing at an actual loss. . .
"The industry camnot afford to give up a dollar of its earnings under renegotiation procedures. Price levels at this time must not deteriorate and in the face of higher costs and much lower volume later this year, some upward adjustments may be necessary. Any weakening in the discount basis to the longestablished machine tool distributors will be disastrous not only to them but to the industry as a whole and, therefore, to the peacetime economy as well as to the wartime effort of America."

Stilwell Cites Appeal for
 Careful Review of All Orders

The nation's machine tool builders have repeatedly urged that no more machine tools should be built for war production than were actually required by the war effort, Charles J. Stilwell, president, Warner \& Swasey Co., Cleveland. told members of the Manufacturers Club) of Mansfield, O., at their annual meeting last week.
"We urged that all existing machine tools be used to their maximum extent," Stilwell said. "We urged that orders for new machine tools be carefully reviewed hy the War Production Board and by the Army, the Navy and the Air Corpsto make sure that new orders did not exceed actual requirements.
"We further urged that the War Production Board inspect war production plants to see whether or not all new machine tools in those plants were actually being used-and that any machines not being used be sent to other plants where they could be put into use ipmmediately.
"These things are today being done. Today new machine tool orders are being carefully analyzed and representatives of the War Production Board are visiting war production plants and allocating to other plants any now machine tools which they find idle."

National Safety Council has launched a campaign against "off-the-joh" accidents that are hindering the war effort. Col. John Stilwell, president of the council, says such mishaps are as preventable as work accidents and that their prevention is just as vital to victory. In 1942 a total of 29,000 workers met death off-the-job; compared with 18,500 killed at work.

Deliveries Slow, GM Makes Own

Ternsiedf Division turns out 500 special purpose units daily. Has produced 50,000

A CUTTING tool war production program which has proved invaluable in manufacture of many types of armament has been instituted at Fisher Body's Ternstedt Manufacturing Divisio: plant, Detroit, as slow delivery of vital cutting tools threatened to delay Fisher's tank, antiaircraft gun, naval gun, bomber, aircraft instrument, and other projects.

As a rosult, some cutting tools which could not have been obtained for 15 weeks were built in a week or less. The program was started principally to assist in production on M-4 tanks, but subsequently it was expanded to give assistance to various other armament jobs in Fisher Body, and then to other divisions of General Motors Corp.

At present more than 750 different kinds of cutting tools are being manufactured, and since its inception the plant has turned out a total of more than 50,000 .

Although manufacture of cutting tools

Machining spiral flutes of an end mill. This tool is $31 / 2$ inches wide and 26 inches long. Cutting end is of high-speed steel, but the shonk end is of mild steel welded to the cutter
is as foreign to automotive building is is production of tanks or guns, nevertheless Ternstedt can now turn out up to 500 tools a day. Nearly all are built on special order to meet specific reçuirements, rather than on a mass production

Machining a blank for inserted-tooth cutter. This tool cotld not be obtained for 25 weeks from normal sources, but here it is being made on a three-week delivery promise
hasis of standardized types. Those now being turned out range in weight from 4 ounces to 100 pounds, and quantities of different types range from a single. tool to several hundred.

Numerous developments have been: achieved on this job in methods of making such tools. An example is improvement of the use of tool holders-a method whereby the cutting unit consists of a holder and the tool itself. When the tool breaks ar becomes dull, a new one can be inserted in the holder, eliminating replacement of the entire unit.
Development of this idea for cutting tools to be used in connection with tank ring and turret turning operations had resulted in a monthly saving of 30,000 pounds of steel a month, on this one. operation alone.

The plant also has devised a means of salvaging cutting tips on small tools. Such tips are usually small pieces of tungsten carbide fastened to the end of the wnit. When the tip becomes worn or broken it is removed by acid (disso)lving the copper brazing), reworked ank resharpened, then reinserted in the holder.
In this comnection it might be mentioned that a bulletin issued by the Central Procurement District of the Army Air Forces, Detroit, last September, outlined an acid method for removing tungsten carbide tips from tool shanks, hased on a procedure worked out at Ford Mo-
(Please turn to Page 163)

Three State Legislatures Pass Measures To Regulate Unions

STATE legislatures are taking action on measures imposing more control over trade unions. A bill requiring all unions to make unnual reports to the secretary of state recently passed both Houses of the Texas legislature and now awaits the govemor's signature. In Kansas a similar measure becomes effective May I.

The Texas bill requires all unions to elect officers amnually by majority vote, except those which continuously for four years have held their clections at three or four-year intervals and which have not charged more than $\$ 10$ for initiation. The annual reports would not be open to public examination.

Gow. Andrew Schoeppel in signing the Konsas bill said "labor has now come of age and it is my concept that it is now strong enough to accept cqual respomsibilitios with management."

The Kansas bill was the first important one regulating labor relations to be adopted this year by a state legislature. In some respects it is similar to the Wisconsin Employment Peace Act and a measure recently approved by one chamber of the Ohio legislature. A tripartite tribunal which includes a state labor commissioner is set up to represent employes. Listed among unfair practices are secondary boycott, failure to give notice of intention to strike, and coercion and intimidation of employes or their families. It also contains a "cooling off" provision concerning strikes and lockouts and requires an amual financial report by unions to membership and registration by unions. Salaries and wages paid mion officers and fees and assessments collected from members must be published. Jurisdictional disputes are declared illegal.

Both branches of the Colorado legislature have approsed a bill which would require labor unions to incorporate and would place them under closer serutiny of the state industrial commission. Like the Texas and Kansas measures, it calls for regular financial reports and chassifies sit-down strikes and secondary boycotts as unfair labor practices. Another provision outhws union initiation fees for temporary workers.

Management-Labor Council To Meet with Nelson Periodically

Formation of a management-labor council to meet periodically with the chairman and other top officials of WPB.
to discuss plans and policies as they may affect organized industry and organized labor and in gencral to bring both groups more intimately and effectively into the war program, was announced last week by Chaiman Donald M . Nelson.

The council will have eight members, four of whom have been named by Mr. Nelsom. They are:

Eric Johnston, president, Chamber of Commerce of the United States.

Philip Murray, president, Congress of Industrial Organizations.

Fred Crawford, president, National Association of Manufacturers.

William Green, president, American Federation of Labor.

Each of these men will select one additional member from his own organization to sit with him in the meetings of the Council.

48-Hour Week for Calumet Area Upheld by McNutt

Hope that the recent WNIC order for the 48 -hour week in the Calumet district begiming May 1 might be moderated or rescinded was blasted last
week when War Manpower Commissioner Paul V. MeNutt announced that original plans will be carried through.

Industry, labor and business groups had vigorously protested the move, and had carried their case to Mr. McNutt, who had promised consideration of their pleas and corrective action if justified. The delegation maintaned there is no shortage of manpower in the Chicago area at present and no sharp decrease in labor supply is expected in the immediate future.

Meanwhile, there is as yet no indication how the district's steel plants, most of which are in the Calumet area, will work out schedules to put their employes on a 48 -hour basis. Insofar as is known, no plan has been evolved for the problem is a complex one and will require extensive study.

Southern Operators, Miners

To Continue Negotiations

Possibility of a widespread shutdown of soft coal mines before the end of April was averted last week when Southern operators and miners agreed to continue negotiation for 30 days after contracts expired March 31. Northern miners and operators had reached a similar agreement earlier. Similar agreements have been signed in outlying districts.

Meanwhile, the National War Labor
-

VENTILATED WORK BENCH MINIMIZES DUST HAZARD

DUST-LADEN air is pulled downward through the grill and filtered in this ventilated work bench at the Caterpillar Tractor Co., Peoria, Ill., foundry. Such devices as these help prevent industrial illnesses, resulf in increased production of war materials

	Jan.	Fels.	March	April	Net T May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
1943	7,408	6,811										
1942	7,124	6,521	7,392	7,122	7,386	7,022	7,148	7,233	7,067	7,584	7,184	7,303
1941	6,922	6,230	7,124	6,754	7,044	6,792	6,812	6,997	6,811	7,236	6,960	7,150
PIG IRON PRODUCTION												
1943	5,194	4,766										
1942	4,983	4,500	5,055	4,896	5,073	4,935	5,051	5,009	4,937	5,236	5,083	5,201
1941	4,666	4,206	4,702	4,340	4,596	4,551	4,766	4,784	4,721	4,860	4,707	5,014

Board indirectly served notice on John L. Lewis, president of the United Mine Workers, that it intends to pass on all labor disputes not settled by peaceful procedures and to settle them on their merits. Mr. Lewis earlier had assailed the NWLB as a "packed court" and had indicated his unwillingness to submit the coal dispute to it.
Agreement to continue negotiations 30 days after contract expiration was reached after Dr. John R. Steelman, director of the Labor Department's conciliation service and understood to be representing the President personally, had intervened in the negotiations.
Principat issues in the dispute are Lewis' denands for a $\$ 2$-a-day wage increase, computation of a day's work on a portal to portal basis, and the unionization of about 50,000 minor bosses.

Aluminum Production Up 50 Per Cent Over 1941

Aluminum Co. of America's production last year inereased 50 per cent over the tonnage made in 1941, according to the company's annual report. Eightyfive per cent of output came from com-pany-owned plants and the remainder from government-owned Defense Plant Corp. units built and operated by the company.

When DPC plants now under construction are completed and placed in operation, aluminum capacity will be donble 1942 output. By the year end, total aluminum capacity will be $2,100,000,000$ pounds.

STEEL INGOT PRODUCTION BY MONTHS

Perentage	of Ingot Leading	Capacity Districts	Encaged	
	Weck ended		San we	
	Apr. 3	Clanase	1942	1941
pittshurgh	101	None	96.5	102
Chicago	99.5	+0.5	104.5	101.5
Eastern 1a.	9.5	+2	90	96
Youngstown	97	-1	94	97
Wheeling	88.5	None	82.5	88
Cleveland	93	+1	90.5	96
Buffalo	90.5	None	93	88.5
Himbingham	100	None	95	90
New England	100	$+5$	80	92
Cincinnati	91	$+11$	92	93.5
St. Louis	93	None	87	98
Detroit	94	None	88	74
Average	99.5	+0.5	-98	-98

Canada's Output Back
 To Normal After Strike

Steel production in Canada las returned to capacity following the strike interruption which reduced output in January. Pig iron output currently is at 93.3 per cent, due to blowing out one stack at Sault Ste. Marie, Ont., for relining.

Production comparisons in net tons fallow:

teel ingots castings		
245,588	157,46	
207,008	116,327	15,331
242,921	143,973	17,358
452,596	273,794	31,687
501,937.	307,129	35,362
102,067	217,55	29

Ingot Rate $99 \frac{1}{2}$ Per Cent, Up $\frac{1}{2}$-Point

Production of open-hearth, bessemer and electric furnace ingots last week was at $991 / 2$ per cent of capacity, $1 / 2$-point higher than the prior week. Five districts gained slightly, one declined and six were unchanged. A year ago the rate was 98 per cent; two years ago also 98 , based on capacity as of those dates.

Principal factors in the increase were resumption after flood in the Cincinnati district and after a short strike in eastern Pemnsylyania. Other changes were of minor character.

Steel Payrolls, Employment Down Slightly in February

Because of the short month, steel payrolls of $\$ 122,759,000$ in February were somewhat below the January figure of $\$ 129,760,000$, according to The American Iron and Steel Institute. In February, 1942, payrolls amounted to $\$ 108$,563,000.

Employment also declined to 635,000 from 637,000 in January. February, 1942, employment averaged 651,000 .

Wage-earning employes worked an average-of 41.6 hours a week, compared with 39.8 in January, and 39 in February last year.

Wages averaged 110.5 cents an hour, against 110.7 cents in January and 99.5 cents in February a year ago.

Plane Flew, Nelson Ready To Chute

CHICAGO

Domald M. Nelson's arrival in Chicago, March 31, to address the Economic Club of Chicago, was almost via parachute. Enroute from Washington on a navy plane with four of his assistants, Merrill C. Meigs, Syduey J. Weinberg, Divid M. Noyes, and Harry M. Gustalfson, they were compelled to circle the airport 45 minutes while the crew worked frantically to release a faulty landing gear.

Faced with the altemative of pararhute jumps or sticking with the plane in a crash landing, the passengers decided in favor of jumping and started preparation. In the nick of time, however, a mechanic freed the landing gear and the plane was landed safely. Commenting upon the exciting incident, Mr. Nelson said "the boys offered me a priority on the first jump."
"Today we are turning out more goods for war than we ever procluced for our patactime needs, yet we have enough industrial power left over to keep civilian standards of living at a high level," the WPB chairman told the group.

Regarding the outlook for continned maintenance of civilian gookls output, he stated: "At this time it is desirable that we do not curtail civilian production mach further. On the other hand, we must not be too optimistic. In these uncertain times there is no telling how heavily the hand of the war may yet fall upon us, though I am convinced that psychologically we Americans are now in fighting trim. We are ready for whatever may come."

Mr. Nelson asserted the nation this year will turn out more than 80 billion dollars worth of goods for war purposes. This eampares with 48 billion in 1942, 17 billion in 1941, and 4 billion in 1940.

Referring to recent WPB personnel changes, he said, "as a war agency, WPB must always be ready to reorganize when necessary to keep in line with the requirements of the dynamic war effort. Now that we are approaching production in full blast, if I had to find the keynote word for WPB work from now on it would be flexibility."

Industry Now Can Meet Demands of "Third Front"

Arriving March 3.1 for a three-day inspection tour of nearly a score of war plants in this area, Lt.-Gen. William 5. Knudsen, director of production for the

Army, stated in a press conference that American industry has reached a point in production where it can meet any demand put upon it-"even a second front or a third front". Expressing satisfaction with all lines of war production, with possible exception of airplanes, the general satid that with improvement now being made in plane output he was confident the 1943 goal of 90,000 would be reached.
"The efficiency now being attained, the constant improvement that is being achieved in all lines of industry are almost unbelievalle. It is the interchangeability of parts, no matter where they are manufactured in this country, that is licking the Axis."

Whereas we emerged from World War I predominant in motor transportation, he predicted the mation would come out of the present war predominant in air transportation.

\$867,938,150 Invested in Chicago Area War Plants

Investment in new plants, additions to plants and current computations of some of the larger war plants in the Chicago area announced during March amounted to $\$ 24,070,000$. According to the industrial department, Chicago Association of Commerce, the total figure for new inclustrial war plant facilities to date this year is $\$ 49,278,150$.

In addition to announcements of new plimets which hitherto have not been mentioned, there were some plant expansions under way in March whose estimates originally were too low.

Adding the figure for the first three months to the previous grand total of war plant investment in the Chicago area since beginning of the war effort, July 1, 1940, the total to date reaches the sum of $\$ 867,938,150$.

FREIGHT

Shippers Estimate Increase of 2.5% in Freight Carloadings

Freight carloadings in the second quarter of 1943 are expected to be 9,170,439 cars, 2.5 per cent above loadings in the same quarter in 1942 when they totaled $8,947,071$, according to estimates compiled by thitteen Shippers' Advisory Boards on the 28 principal commodities.
Percentage gains expected are coal and coke, 5.2 per cent; manufactures and miscellaneous, 10.4 per cent; ore, 4.8 per cent, and machinery and boilers, 4.6 per cent. Food commodities show
the greatest gains. Declines are anticipated as follows: Agricultural implements and vehicles other than automobiles, 35.6 per cent; cement, 20.9 per cent, and irun and steel, 5.7 per cent.

PERSONNEL

New Appointments Announced In WPB Operations Office

Orgamization of the Office of Vice Chairman for Operations and appointments to key positions have been announced by WPB Operations Vice Chairman Donald D. Davis.
John Hall, who has been director, Construction and Utilities Bureau, becomes deputy vice chairman for Industry Opcrations, and Wade T. Childress, who has been deputy director general for Field Operations, will continue the same duties with the title of deputy vice chairman.
John P. Gregg, who was United States secretary, Combined Production and Resources Board, has been named assisiant deputy vice chairman for Industry Operations, and James A. Folger will continue in his present position, assistant deputy vice chairman.

Four new top positions have been created in the Office of Operations Vice Chairman, as follows:

Scheduling officer, John Mohler; mailterials officer, Joseph E. Adams; orders officer, J. B. Walker; program implementation officer, John H. Martin.

Organization of most of the industry divisions under five bureans in the Office of Operations Vice Chairman remains unchanged, and all bureau and division directors have been reappointed to the positions which they held under the Director General for Operations, except that James Auten, formerly deputy director, Construction and Utilities Bureatu, is named director to sueceed Mr. Hall.

The Shipbuilding Division and the Radio Division, which for a time reported to Executive Vice Chairman Charles E. Wilsom, have been returned to the jurisdiction of the operations vice chairman and will report directly to the deputy vice chairman for Industry Operations. The Tools Division has also been rcturned to the Equipment Bureau.

The Government Division will hereafter report directly to the deputy vice chairman for Inchastry Operations, as will the Salvage and Conservation Divisions, the Concentration Division, the Mineral Resources Co-ordinating Division, the Procedures Division, the Office of In^{-} dustry Advisury Committees, the Office of Product Assignments, and the Redistribution Division.

Replacement Orders for Rejected Steel Must Be Given Top Priority

REPLACEMENT orders for steel which has been rejected by the producer's customer as not meeting specifications are given priority over all other orders, regardless of their rating or CMP authorization unless specifically directed otherwise by WPB. This ruling has been issued by WPB in a letter to steel producers.

Steel producers are allowed to replace such material without extension of an additional allotment and they must give replacement tomage preference on the production schedules.

If it is impossible to ship the replacement tomage on time, the producer must notify the Steel Division, WPB. Rejected material must be used, WPB ruled, under applicable rules pertaining to this class of material; otherwise, disposal must be made with the advice of the Steel Division.

WPB's public statement made no mention of the recent Carnegie-Illinois case but instructions evidently fit situations which were reported during the investigations.

Warehouse Ruling Covers
 Merchant Steel Products

WPB has revoked the steel warehouse order M-21-b and has substituted threepart control over deliveries of merchant trade steel products in a new order, M-$21-\mathrm{b}-2$, which is added to M-21-b-1 and CMP-4. (See also page 91.)
This permits warehouses to place orders for certain products up to a specified percentage of mill production set aside for warehouses under various Steel Division directives, such being elassified as controlled materials orders.

Warehouses also may replace in stock an unlimited quantity of merchant trade products of the same type sold on authorized CMP orders during the prior 90 days or on AA- 5 or higher ratings.
Orders for wire fence, bale ties, and similar items are not considered CMP and, therefore, mills are required to fill these only after CMP authorized orders for the same products in the same month

Rules on Iron and Steel Product Deliveries Clarified

To eliminate possible confusion resulting from the operation of the Controlled Materials Plan, certain formal changes in order M-21, governing de-
liveries of iron and steel products, have been made by WP13.

The order makes it clear that deliveries can be made on authorized controlled material orclers, and that deliveries by distributors can be made in atccordance with CMP Regulation No. 4.

Another change provides for the reporting of shipments wherever possibles by CMP allotment numbers or symbols, in lien of the group classifications formerly used.

WPB Issues Regulations for
 War Housing Construction

Procedures for the assignment of preference ratings and the allotment of materials for privately-financed war housing construction under the Controlled Materials Plan have been established by the War Iroduction Board and the National Housing Agency.

Under CMP, authorization to obtain controlled materials will be handled by the various claimant agencies to whose juriscliction the projects have been assigned. National Housing Agency, as claimant for the Wir Housing Program, will assign preference ratings and allot controlled materials in connection with the processing of applications for pri-vately-financed housing construction.

Paving the way for establishment of these procedures, a new order, $\mathrm{P}-55-\mathrm{b}$, has been issued. Consumers of materials must file: PD-105, the application form used for residential construction; and PD-105A, which contains a materials list. They are then granted a P-55-b order, which authorizes the beginning of construction provided that only those matterials are used which have been approved on the materials list. To obtain materials, consumers must submit to the National Housing Agency furm CMP-H-1 requesting allotments and preference ratings.

Calcium Metal Is Placed Under Full Allocation

Calcium metal, a vital material for metallurgical uses, has been placed under allocation by the War Production Board through issuance of order M-303. Application for authorization to use or accept delivery of calcium metal in any month beginning with May must be filed with WPB and the supplier on PD-600 by the fifteenth of the preceding month. A producer or distributor seeking au-
thorization to make delivery of calcium metal must file application with WPB on form PD-601 by the twentieth of the month preceding that in which delivery is plamed. Application for delivery in April must be filed as many days as ponssible in adrance.

Calcium metal is defined as any prodnet containing the element calcium not in chemical combination and in which any metallic constituents other than calcium do not constitute more than 15 per cent by weight.

Mill Orders Displaced Prior to March 22 Remain Valid

WPB has clarified Direction No. 1, mader CMP Regulation No. 1, to indicate that it was not intended to be retroactive. This direction protects consumers of steel whose orders have been plated with mills from displacement in mill production schedules by others which have received allotment numbers under authorized production schedules. "Purpose of the direction," Harold Boeschenstein, director of the CMP Division explained, "was to freeze the mill situation with respect to production schedules as of March 22, 1943. However, due to the use of the phrase 'on or before Marcl 22^{\prime} in the original text of Direction No. 1, some confusion was caused in steel mills."

Under the amendment of the direction, it is made clear that orders which were displaced in mill production schedules pricr to March 22 need not be reinstated.

Grinding Rods Held
 To Be Controlled Material

H. G. Batcheller, director, WPB Steel Division, has notified steel producers that grinding rods fall within the definition of hot-rolled bars contained on page 29 of the general instructions on bills of materials issued Nos. 14 under the Controlled Materials Plan. Grinding rods, he saicl, are held to be a controlled material and not a Class B proclwet.

PRP Units Provided Means To Obtain Production Supplies

WPB has amended Priorities Regulation No. 11-a to provide a means for assembly plants and other companies previously operating as PRP units to obtain needed production materials. Previously, such plants which did not require materials listed in Regulation 11 in their output had no procedure for getting these in the second quarter of 1943.

WINUUWS Ot WASHINGIUN

Dehydration of foods vital in saving precious cargo space. . . Process believed closely associated with future of vitamin enrichment. Equipment needs offer postwar opportunities

TO WHAT extent will the vast food dehydration program now being set in motion influence food preparation after the war, and what will be the stake of metals in this market?

That is a question worthy of considerable study because of the business opportunities to a large number of manufacturers that are involved.
It can be stated at the start that many of the men who are interested in dehydration believe that some of the development work now going on will have permanent value. At the same time, nobody is making any firm prophecies.

They point out that just as camned food tastes differ from fresh food, so dehydrated food tastes differ from either camned or fresh food. They point out that the only reason for dehydrating vegetables and meat on a large scale is because of the critical situation in transportation which makes it mandatory to make the fullest use of every cubic foot of precious cargo space.

What can be done toward this objective can best be appreciated by citing the loss in the original weight by trimming and dehydrating. Out of three parts of sweet potatoes two parts are water. All the other vegetables in the program contain more water than sweet potatoes. White potatoes yield $31 / 2$ pounds of water for each pound of dehydrated product. Nineteen pounds of fresh calbage yields one pound of delydrated cabbage. Four pounds of boned, trimmed
beef yields one pound of dehydrated beef.

Future of much dehydration now in effect depends upon a number of factors. There is a possibility that considerable food may be shipped by air after the war, in which event it might be desirable to eliminate water which can be replaced after the food reaches the consumer.

Another factor, mentioned above, is the extent to which people develop a taste for dehydrated food. Those interested already have used large numbers of persons as "gninea pigs" in trying out the products. Without having had any advance warning, large numbers of persons have eaten dimers at which only dehydrated vegetables, fruits and meat
have been served. Many have expressed themselves as "pleased" with the meal.

In this comnection it will be recalled that many processed foods that we now take for granted were a long time taking hold. Canned goods in general encoumtered a lot of opposition in the early days-particularly such foods as cvaporited and condensed milk.

One fact that may help is that dehydrated food is not necessarily new. We have had dried fruits of many different kinds since time unknown. We have had dried beans, peas, corn. In recent years we have had big developments in powdered milk, powdered eggs, dried soup stock aucl many other foods. In other words, it would seem that if dehydrators turn out a product that tastes good when requisitioned and eaten, the public will accept it. There is no popular prejudice to overcome as was the case with canned goods.

Two other factors may have considerable bearing on the future of food dehydration. One is the recent disposi-

After washing, carrots are passed over revolving carborundum rolls which remove outer skin. They then are carried along on an endless conveyor belt between rows of women who cut off the cnds and trim out defective spots

This machine can be improved:

THE HUMAN BODY, we've all been told, is the most perfect machine ever devised. Poets, doctors and engineers all agree on this point.

Yet even the human body is carpable of change and improvement. Take life expectancy, for example. Less than 100 years ago it was 35 years...todary, it is 63.3 ! And our soldiers today are 2 inches taller and 14 lbs . heavier than they were during the last war.

The important thing about these figures is this: No matter how highly developed a machine may be ...no matter how miraculous its accomplishments may seem, never make the mistake of assuming it cannot be
improved. Mistakes like this have caused the failure of more than one flourishing business!

The machine tool industry is busy todary making machines to make the 45,000 parts of bombing planes, 40,000 parts for tanks, and the multiple paris and instruments for ships, cannon, rifles, torpedoes and shells. And as a result of wartime experience, even such highly developed machines as Cone Multiple Spindle Automatic Lathes will surely be improved.

Cone Automatics are now being used to help build instruments of war. But in the peace to come, they will again be dedicated to building a better, brighter world.

ONE Automatic Machine Company, Inc., Windsor, Vermont

Steam blanching equipment (left) used in this particular carrot dehydration operation. Carrots are loaded in a perforated steel basket and lowered into the steam chamber with the aid of a crane. The specially designed apparatus at right is used first for exhausting air from the filled carrot cans, then replacing it with inert carbon dioxide or nitrogen, and finally for sealing the cans
tion to add vitamins to such foods as bread and milk. Many food experts bclieve that this trend toward vitamin-enriched foods is only in its infancy. It has been found through agricultural research that a carrot grown in one field may contain only a fraction of the vitalmin content of a carrol grown in an adjoining field. This also is true of spinach and other vegetables. There is the possibility, therefore, that dehydration may be found to have a close association with the future of vitamin enrichment. Mamufacturers however, will do well to keep themselves informed of the progress in this direction in view of the business opportunities that may be created as a part of this program in the future.

The other factor is that research work being done as a part of our fool program during the war probably will provide more information ahout human diet than ever before has been arailable. Many food experts, for example, long have believed that cancer and most other bodily ills spring from dict. Experiments have proved that malnutrition and deficiencies in diet actually do cause illnesses and death. At the same time a great deal remains to be learned as to just what food combinations actually will prevent bodily deterioration. Many studies now actively under way, amed at keeping our people healthy despite the food shortage during the war, per-

After blanching a truchload of trays of shredded cobbage is mushed into a tun-nel-type drier
haps will bring answers of great significance to industry both during the war and in the future.

It will be recalled that during the first World War much shipping space was saved by dehydration. In fact shipments of dehydrated vegetables during that war totaled $8,905,158$ pounds and included potatoes, onions, carrots, turnips and soup mixtures. These products did not become popular. They were of poor quality so that after 1919 the drying of vegetables declined rapidly.

There is no question but that a lot has been learned about dehydration of
vegetables and meats as a result of the present war program. The product now being turned out is more palatable, on the average, after reconstitution, retains a large percentage of its original vitamins, and stores well in the special types of packaging devised. However, there still are many angles about which more should be known. These gaps rapidly are being filled in by researeh, particularly that of the Agricultural Research Administration through its Bureau of Agricultural and Industrial Chemistry and other agencies. Agricultural Experiment Stations also are participating in this work.
In order to operate successfully, a dehydration plant must be adequately equipped. Preparation of the food for dehydration is the first step. Preparing facilities depend in large measure on

the type of food being handled. I: all plants there are facilities for an initial washing in water. At one plant carrots fresh from the field are dumped in a washer, then are peeled by passing them over revolving carborundum rolls. After peeling they are placed on an encless conveying belt between two rows of women who cut-off the ends and trim the flaws.

A plant that specializes on dehydrating white potatoes likewise must have a washer system. It may be furnished with abrasive peeling machines. It also has an endless belt conveyor on both sides of which sit women who trim out eyes and bad spots and slice the potatoes in strips. It may also be equipped with ricers.

A plant that for months has processed 100 tons of raw cabbage per 24 -hour day, is equipped first with the usual washing apparatus, then with specially designed machines for drilling out the cabbage cores. In addition there are slicing machines for reducing the cabbage to sizes suitable for drying.

Other vegetables that are being successfully dehydrated, and for which the
preparation facilities are of moderately specialized types, are rutabagas, sweel potatoes, onions, spinach, kale, chard, beet tops, mustard greens and beets.

The next operation after initial preparation in all instances is that known as "blanching", accomplished at a temperature of around 190 degrees Fahr. for most vegetables. This operation inactivates the enzymes, thus retarding deterioration of the food. There are several methods of blanching, steam or hot water being most commonly used. Preferred method appears to be that involving steam, itasmuch as it permits higher vitumin retention, also because water in some parts of the country contains salts in such excessive quantities that its direct use injuriously affects the product. Blanchers may be either batch or continuous in type.
After blanching, the food is transferred to the drying unit. This transfer operation requires certain equipment such as trays, conveyor belts, trucks, baskets and in some cases other items.
The second and concluding article will appear in the April 12 issue of Steel.

Cabbages after being washed are decored with special drilling machines (top right), drillings being removed by conveyor belt
Center, after air in can has been exhausted and replaced with inert atmosphere, the can is hermetically sealed with the aid of a special machine

Lower right, after decoring and trimming away outer leaves, cabbages are shredded and passed through a steam blancher where enzymes are made inactive to prevent fermentation in transport and storage
Below, all cabbage dehydrated for our armed forces and for lend-lease shipment is packed in incrt atmosphere, either carbon dioxide or nitrogen to prevent deterioration and loss of vitamin contents during shipment and storage

WPB-OPA RULINGS

PRIORITIES-ALLOCATIONS-PRICES

Weekly summary of orders and regulations issued by WPB and OPA, supplementary to Priorities-Allocations-Prices Guide as published in Section II of STEEL, Dec. 14, 1942̂

E ORDERS

E-5-a: Gages and Precision Measuring Hand Tools, effective March 26, revoking order E-5. Restricts sales and deliveries to approved users, distributors, and approved employees; and after May 1 to purchase orders bearing preference ratings of A-9 or higher and accompanied by certification that they will not increase purchasers' inventories beyond a 30 -day supply. Assigus to individunl workers same rating as that assigned by CAIP regulations to their employers for maintenance, repair and operating supplies.

L ORDERS

L-30-a (Amendment): Galvanized Ware and Non-Metal Coated Metal Articles, effective March 22. Permits manufacture of industrial fumnels for use in distribution of petroleum up to 50 per cent of total produced in year ended June 30, 1941. Pemits use in production of fumels: iron and steel in inventory on March 22 or obtained under Priorities Regulation No. 13; top cuts of steel; Bessemer pracessed steel; sheet mill seconds, rejects and wasters, 28 -gauge and heavier; tin mill lack plate rejects, 29 - and 30 -gauge; and iron and steel obtained from a warehouse as defined in M-21-b. Specifies dimensions as from 10 to 15 inches in diameter of howl, by $9 \frac{1}{2}$ to $12 \frac{1}{2}$ inches in depth, and gauges s from 22 to 30 . Permits sale of one- to 5 -gallon cans for use in mines to facilitate lubrication of mobile machinery; for operating supplies on railroads and common carriers. Permits production of cans designed or use on tank trucks for petroleum distribution.
L-30-d (Amendment): Houschold Articles, effective March 26. Permits proluction of can openers up to 50 per cent of total for year ended Junc 30 . 1941, plus amount required by the anned forces. Limits weight of each unit for civilian use to 12 ounces of metnl. Permits use of metal hooks and wire in inventory in production of wooden or paper cont hangers. Exempts commercial type baking pans from restrictions of the order. Pennits procluction of commercial type scoops up to 35 per cent of output in year ended June 30, 1941.
L-38 Amendment): Air Conditioning, Commercial Refrigerating Equipment, effective March 27. Restricts delivery of any new or used parts: to emergency service and to fill purchase orders bearing AA-4 or higher rating; to fill an authorized purchase order; to orders for dinect use by the amed services. All replaced mietnl parts must be clelivered to the supplier, producer or scrap dealer within 30 days. Application for authorization to purchase equipment must be made on DD-830 for industrial refrigeration or air conditioning equipment and on PD-831 for mall commercinl refrigeration equipment and machinery such as refrigerators and related equipment. Limits production of replacement parts to quantities not in excess of a producer's average monthly inventory of similnr parts during the first quarter of 1941. Production of тeplacement parts may be scheduled as if purchase orders bore ruting A-1. Permits a dealer or producer to loban parts for emergency repair service for a period of 30 days unrestricted by the order.
L-143-a: Hubber Processing Machinery, Equipment, effective March 26. Revokes order L-143 ns of April 9. Requires manufacturers and clealers in rubber processing machinery and equipment to file PD-553 by April 9, showing unsilled orders as of March 26. Prohibits production, rebuilding, reconditioning, delivery or acquisition without authori-
zation of WPB following applications on PD552 (revised).
-144 (Ameudment); Laboratory Equipment, effective March 24. Requires application on PD-620 for purchase of laboratory equipment for college military training programs, irrespective of the value of the items.
L-159 (Amendment): Plastics Molding Machinery, effective March 26. Places under allocation control following new or used parts or groups of parts for plastics molding machinery: cylinders, feed screws, straight heads, cross heads, jet attachments, temperature control units, and molds.

M ORDERS

M-11-L (Amendment): Zinc, issued March 23. Extends order until revoked. Expiration of order lad been scheduled for March 31, 1943. Applications for allocations must be made on PD-755 before 15 th of month preceding the calendar month in which delivery is wanted.
M-21-a (Amendment): Alloy Iron, Alloy Steel and Electric Furnace Carbon Steel, effective April 1. Requires each person melting alloy steel, including castings, to use alloy steel turnings in an amount not less than 8 per cent, including machine shop turnings in an amount not less than 4 per cent, of the total weight of alloy steel ingots and castings produced each month. Hequires prochucers of stainless steel castings to use a certain percentage of chrome-bearing scrap.
M-21-b-1: Steel Warehouses and Dealers, effective April 1. Permits warehouses to deal only in those product groups and types of steel in which they dealt in the first quar ter of 1941. Hequires dealers to operate on a stock replacement basis. Establishes procedure for dealer purchases; orders for seplacement of authorized sales must be certified by an endorsement provided by the order, which automatically makes the purchase an authorized controlled materina order. Permits ear-marking of warehouse stocks for a particular claimant agency where such ear-marking is agreed upon by the Steel Division and claimant agency inrolved. Deliveries from such ear-narked stocks are to be made only in accordance with specific directions issued at time stock is earmarked.
M-59: Palm Oil, effective March 24. Replaced by Food Distribution Order No. 38, effective March 24. Transfers control to Food Distribution Administration. New order continues same restrictions as order M-59 on processing, delivery and use of palm oil but provides exemption from the restrictions for any person using less than 2000 pounds per quarter. Continucs to restrict use to the manufacture of tin plate, terne phate, steel sheets, steel strip, and black plate and to processes yielding required percentages of glycerine.
M-193: Glycerine, replaced by Food Distribution Order No. 22, effective March 24. New order reduces permitted glycerine content of popular soaps to $4 / 5$ of 1 per cent. Continues restrictions contained in order M-193 as amended.
M-255 (Amendment): Steel Shipping Drums, effective March 29. Directs users to apply for authorization to purchase new steel drums or parts on form PD-835. Prohibits mantfacturers from selling, delivering, or using new steel drums and parts (except flanges, plugs, and cap seal) without specific nuthorization of WPB.
M-296: Ferrocolumbium, effective March 25. Permits use or delivery only with approval of WPB. Application for such approval must be made on forms PD-391 or PD-707. Applicants must report also on PD-805.

P-73 (Amendinent): Nonferrous Smelters and Refiners, effective March 24. Applications for maintenance, repair and operating supplies must be made directly to Mining Equipment Division of WPB. WPB will assign a serial number to each smelter or refiner who is entitled to receive priority assistance under provisions of P-73. Serial numbered producers must submit requirements on PD-760 for MRO supplies; written application for machinery and equipment. Forbids resale of material or equipment acquired under provisions of P-73 except to funther smelter or refiner or with approval of Mining Equipment Division.
P-120 (Revocation): Aluminun, Magnesium Plants, effective April 1. Hevokes order which had assigned preference ratings for acquisition of repair and maintenance materials by producers of aluminum and magnesium. These purchases now are made under CMP regulation No. 5.

PRICE REGULATIONS

Export Price Regulation (Aneendwent), effective April 2. Removes export maximum pricing provisions of revised price schedule No. 6 (Iron and Steel Products) and No. 49 (Resale of Iron or Steel Products) and combines them with certain changes under the Export Price Regulation. Exporters who are producers may charge the governing or emersency basing point prices; may add applicable extras and freight from basing point, or may use the f.as. port of exit orices of the U. S. Steel Export Co. in effect April 16. 1941. On Lend-Lease sales only, prochucers must use domestic ceiling prices established by Schedule 8 , except that (1) export extras shall apply where there are no published or filed domestic extras: (2) inland transportation charges are to be computed at export rates where applicable; (3) where there is no established domestic ceiline price for the product. the producer may use the export ceiling price.

Warehousemen may use as his basic price his maximum domestic selling price for his city or free delivery area plus actual transportation costs to the moint of exportation and other expenses incident to exportation. He may not add a premium on either export or lend-lease sales.

Export merchants who d, not perform warehowsing functions must use as his base price o:l both exports and lend lease sales his supplier's current maximum price to him phes certain export expenses. On export sales he is also permit'ed to add a specified pemiun representing his overhend and selfing expenses and his profit on the transaction.

Permits all types of exporters of iron and steel products who have shipped to the intended point of exportation to include in their selling prices the additional cost of effecting delivery at another point to which war exigencies have required diversion of the shipment. Prohibits addition of interest, financing charges, fees or commissions.
General Maximum Price Regulation (Amendments). Effective March 30, establishes maximum prices for aluminum sold by primary producers in pig form and are subject to discounts, quantity premiums, transportation allowances and other terms of sale in effect on sales of primary aluminum ingot during March, 19:42. Maximum prices in cents per pound for unalloyed grades on the basis of average aluminum content are 13.00 for 97% minimum; 14.00 , 99%; $14.50,99.6 \%$; $15.00,99.7 \%$; $16.00,99.8 \%$; $17.00,99.95 \%$; $24.00,99.9 \%$. Maximum prices for alloy grades with approximate composition are: $14.00,80-20 \mathrm{Al}-\mathrm{Cu} ; 15.00$, 88-8-4 Al-Cu Ni; 14.00, 88-12 Al-Si; 14.00. co-10 Al-Si; $14.50,87.5-10-2.5 \mathrm{Al}-\mathrm{Si}-\mathrm{Cu}$; $14.00,95-5$ Al-Mn; $16.5,90-10, \mathrm{Al}-\mathrm{Ni}$; 16.00, 97.5-2.5 Al-Cr.

Effective March 30, establishes spec:lic
maximum prices, uniform to all sellers at each producing point in the United States, for all grades of superphosphate.
No. 2 (Amendment): Aluminum Scrap and Secondary Aluminum Ingot, effective March 31. Permits secondary smelters in strictly defined instances to pay baling and briquetting premiums for $17 \mathrm{~S}, 24 \mathrm{~S}$ and 52 S plant scrap and to add $1 / 2$-cent a pound to their maximum prices for ingot made from the same scrap.
No. 41 (Amendment): Steel Castings, effective March 28. 'Authorizes foundrics to add all transportation costs above 50 cents per 100 pounds to their maximum prices for castings. Pennits foundries to sell castings in shipments of less than 100 pounds f.o.b. foundry, instead of delivered. Provides for price reductions amounting to about 25 per cent for cast armor hulls and hull sections for tanks and for some types of cast armor for the Navy. Restores maximum prices for bitts, bolliards, chocks and cleats to levels of the individual producers on July 15,1941 , or, if not sold as of that date, to the prices in the Comprehensive Report of the Steel Founders' Society of America for the third quarter of 1941. Exempts from control castings whose production cost per order is estimated to be less than $\$ 100$. Reassigns six types of ship and marine castings to schedules that give them the same maximum prices as the corresponding industrial castings.
No. 69 (Amendment): Primary Lead, effective April 3. Restores maximum prices for ingots and linked ingots that were reduced $\$ 5$ per ton on Jan. 20 to their former level of $\$ 10$ per ton over the maximum price for pig lead.
No. 188 (Amendments): Building Materials and Consumers' Goods. Effective March 23, permits manufacturers, wholesalers and retailers to increase maximum prices for 12 specified lines of finished silvervare and other articles containing newly-mined domestic silver by 36 cents for each troy ounce of fine silver contained in the article.

Effective April 2, authorizes regional administrators of OPA to provide individual adjustments of maximum prices for makers of regionally-produced materials.
No. 230 (Corrected Order): Reusahle Iron and Steel Pipe and Used Strictural Pipe, issued March 25. Makes following corrections in order as amended Feb. 3: Under black pipe in Table I price of threaded and coupled pipe with 4% inches outside diameter and 7.1 pounds per foot weight for zone 1 is $\$ 24.10$ per hundred pounds; prices are corrected for threaded and coupled pipe of various sizes and weights for zone 4; in division for galvanized pipe in Table I prices for plain ends are corrected; proper division is made between prices for steel casing and steel drive pipe in Table II.
No. 350: Packers' Tin Cans, effective March 31 in U. S. and Mny 15 in Alaska and Hawaii. Establishes specific prices for 90 per cent of the volume of packers' cans that are expected to be produced this year and provides a simple formula for pricing the remainder.
No. 351: Ferrous Forgings, effective March 31. Freezes all list prices in effect on Oct. 1 , 1941, and provides that ceilings far ferrous forgings sold without list prices hetween Jan. 1, 1941, and Oct. 1, 1941, shall be prices of the items at their last contract of sale during that period. A new forging closely comparable to a forging which a produeer ngreed to sell during this period js priced on the basis of the difference in unit costs between the two forgings resulting from the change in specifications. The latter method may be used only if it was the manufacturer's practice on July 22, 1942, to calculate prices on the basis of price previously charged for comparable forgings.
No. 354: Copper Sulphate, eflective March 29. Establishes maximum prices on the basis of $\$ 5$ per hundredweight, f.o.b. works in bags or barrels, for shipment of 26,000 lbs. or more of 99% crystals.

WPB Exempts Certain Operators From CMP Inventory Restrictions

PETROLEUM operators, mining producers and utilities have been exempted from the inventory provisions of Controlled Materials Plan Regulation No. 2. As a result of this exemption these operations revert to limitations imposed in P-$98-\mathrm{c}, \mathrm{P}-56$, and U-1, respectively.
p-98-c, relating to production, transportation, refining, and marketing of potroleum, will continue to govern their operations in the future, due to the issuance of Inventory Direction No. 3 under CMP Regulation No. 2.

In the instance of mining producers, the CMP inventory direction is merely a conforming action, inasmuch as the provisions of P-56, as amended March 17, maintain its inventory provisions in effect, despite CMP Regulation No. 2. In this case, no producer may receive any delivery of material which would increase his inventory to an amount greater than the minimum necessary to sustain his current level of operations.
Electric power, natural and manufactured gas, water, and central steam heat suppliers, are exempted from the terms of CMP Regulation No. 2 and will continue to be governed by the inventory provisions of Utilities Order U-1. Under this order, no producer engaged in any of these activities may schedule for delivery to himself during a calendar quarter any material to be used for maintenance, repair and operating supplies, or for any other purpose other than authorized additions and expansions the aggregate dollar volume of which exceeds one-third of the aggregate dollar value of withdrawals of material of the same class from inventory during the last nine months of 1942. In addition it is also provided in the case of electric power producers that not more than 50 per cent of permitted deliveries of wire, cable and bus bar may be scheduled for delivery from a supplier other than another producer of electric power. In the case of producers of gas, water, central steam heat, and public sanitation, not more than 75 per cent of permitted scheduled cleliveries of iron and steel pipe may be scheduled for deliver: from other than another producer.

Copper Shipments to

Steel Mills Restricted

H. O. King, director, WPB Copper D:vision, has notified all steel mills that after March 31 no authority is to be granted to receive copper, copper scrap or copper base alloy scrap for use in carbon
steel as so classified by the American Iron and Steel Institute.

He also notified the mills that after March 31. no authority is to be granted to receive copper, copper scrap, or conper base alloy scrap for use in alloy steel as so classified by the institute unless such use is specifically approved by the WPB Steel Division.

Simplify Allotment of Controlled Materials in Some Construction

Simple plan for the allotment of controlled materials under CMP for certain types of construction costing less than $\$ 10,000$ has been amounced by WPIS.

On March 4, IVPB empowered regional officers to authorize the beginning of agricultural and many types of commercial construction costing less than $\$ 10,000$. It is for construction started under this delegation of authority that the new procedure was established.
No application to a claimant agency for allotment of controlled materials is necessary for construction of this type. Under the procedure now set up, a simplified PD-200-C form applicable to these cases will be used. This form, which is an application for priority assistance or application to begin construction without priority assistance, requires submission of a materials list.
The materials it is proposed to use are listed and the forms are filed with the WPB district office. The forms then go to regional offices which make allotment of controlled materials and assign preference ratings on CMPL-127 forms. Attached to this form is a copy of the builder's PD-200-C showing the materials which have been approved

The two claimant agencies having jurisdiction over this type of construction, the Office of Food Administrator and the Office of Civilian Supply, WPB, have authorized regional directors to make necessary allatments.

Ferrous Foundry Advisory Committee Established

An advisory committee for the ferrous foundry industry has been established by the War Production Board. Members are: William Given, American Brake Shoe Co., New York; H. A. Houston, United Engineering \& Foundry Co., Pittsburgh.

Henry J. Kaiser retains Detroit contractor to develop modification of jeep, in co-operation with Tank-Automotive Center engineers. . . Manpower studies accelerated

DETROIT

NOW in process of development for the Tank-Automotive Center here is a new army vehicle of the jeep type, but embodying a number of important innovations adapting it to changing types of warfare being encountered in the field, particularly in the South Pacific. The design is being worked out by contractors retained by Henry J. Kaiser. These interests are all experienced automotive industry' men and are directing a score or more of their own engineers, co-operating with the TAC in developing details of the design.

Where the vehicle will be built and in what quantities are questions only the future can answer, but the move has all the appearances of an entering wedge into the motor industry by the Kaiser interests, particularly when added consideration is given to the reported retention recently of John Tjaardi \& Associates by the Kaiser Co., Tjaarda being a well-known body designer and stylist.

"Jeepette" To Be Lighter

Obviously little can be disclosed about the jeepette, since it is a new military project. However, a few deductions can be made from some of the generally known information about the development. In the first place, the limitations of air transport as far as weight is concerned would appear certainly to point to a vehicle with the same or near the same carrying capacity as the present jeep, or 4×4 reconnaissance-command car as is known technically, but with sharply reduced weight-say, 1000 pounds lighter, just to grab at a comvenient figure.

One logical way to attack the matter of weight reduction in a vehicle which is already cut down just about as far as is conceivably possible is to switch to an air-cooled engine instead of the present 4-cylinder L-head design, with aluminum and magnesium replacing most of the present cast iron. Such a change would also permit some economies in overall dimensions and thus allow more of the vehicles to be loaded into a cargo airplane.

If you care to speculate on the possibility of producing such a light-weight job, you can get 5 to 1 odds here that it will be in production before the year is out. Who will build it is a point
which is minimized by the project's sponsors. Automotive parts and equipment companies now in the business can supply most of the essential parts. About all that would be left is to set up some assembly facilities and no difficulty is looked for on this score.

With regard to engines, Continental Motors probably could supply all requirements, since Continental has built a wide variety of smaller radial engines, principally for aircraft.

There is little question but what the jeep has been the most popular and glamorous automotive development to come out of the present war. It has been extended from its original form to include an amphibian design and also an amphibian jeep trailer. A further step down the scale in weight and size would result in another revolutionary type of vehicle springing from the "know-how" of U.S. technicians.

Translating these military vehicles to postwar civilian uses is a favorite theme of such people as J. W. Frazer, president of Willys-Overland in Toledo, a principal builder of jeeps, and no one cam say for certain that he is wrong. However, judged on 40 years' progress of the motor industry in this country the ponsibilities of a light-weight smallsize car, even though well powered, are not too bright.

One thing sure at the moment is that the Kaiser interests are definitely in the Detroit automotive picture. Mr. Kaiser was here last week and gave rather cryptic interviews to the local papers in which he emphasized particularly the importance of maintaining a high level of production after the war so that there would be jobs for everyone.

Kaiser Spurs Associates

One of Mr. Kaiser's representatives here, associated with him for only a matter of months, maintains that he has never seen an executive with such a remarkable talent for getting things done and for spurring his associates on to accomplishing the impossible. This slant contrasts markedly with some earlier reports heard around Detroit about the West Coast tycoon.

In a series of meetings over the past week, 38 top executives and specialists of the auto industry have been mapping out a fact-finding program to get at the roots of manpuwer problems. Three
manpower groups have been set up to specialize in different aspects of the pro-gram-manpower supply, headed by Herman L. Weckler, vice president and general manager, Chrysler Corp.; worker morale, headed by George T. Chtistopher, president of Packard; and manpower utilization, headed by W. F Armstrong, vice president of Nash-Kelvinator.

Serving on Mr. Weckler's manpower supply committee are: R. W. Conder, Chrysler; H. W. Anderson, General Motors; R. G. Waldron, Hudson; C. E. Weiss, Packard; C. F. Ogden, Reo; Marvin Heidt, Bendix Aviation; Henry Roesch, Briggs; M. B. Lindquist, Murray Corp.; Ray Rausch, Ford; C. M. Young, L. A. Young Spring \& Wire; and J. A. Sweeney, Kelsey-Hayes.

Mr. Christopher's committee on worker morale includes L. C. Almen, Fruehauf Trailer; Harry Bemett, Ford; C. O. Chestnut, McCord Radiator; E. A. Clark, Budd Wheel; Lon Fleener, White Motor; J. E. Garlent, Motor Wheel; W. S. Gundeek, Studebaker; George J. Kelday, Intermational Harvester; W. O. McIntyre, Monroe Auto Equipment; C. J. Reese, Continental Motors; Dom Hulo, NashKelvinator; Charles Winegar, Chrysler; and an as-yet unamed General Motors representative.

Executives Study Manpower Problems

Studying manpower utilization under chairmanship of W. F. Armstrong are G. E. Winter of Continental Motors; J. H. Guuld, General Spring \& Bumper; H. E. Blond, Norge; George Huth, Chrysler; R. H. Daisley, Eaton Mfg.; W. D. Robinson, Briggs; E. F. Waite, Ford; B. D. Kunkle, General Motors; R. J. Emmert, Yellow Truck \& Coach; and Emmett Sheehan, United States Rubber.

A capacity crowd turned out to hear Paul G. Hoffman, president of Studebaker and chairman of the Committee for Economic Development, outline the purpose and organization of his postwar planning committee, as well as some of their preliminary thinking on the subject of postwar industry. Keynote of his 2 -hour address was this: "If our free society is to be maintained, productive jobs-millions of them-must be made available in the shortest possible space of time after hostilities cease. The burden of providing those jobs will rest largely upon private industry."
Commenting upon possible employment levels, he said, "The best estimates indicate that if we achieve an employment level of approximately 58 ,000,000 , with a normal work week, a satisfactory situation will prevail. . . . That spells out to $10,000,000$ more peace-
time jobs than were available in 1940."
Pointing to the toughness of industry's assignment, he urged individual enterprises to start their postwar planning of products and marketing now, cautioning that the environment in the postwar period must be favorable to the expansion of enterprise.

In conclusion he observed that, "The prospect is agonizing-and hopeful, and inspiring. It is hopeful because peace, when it comes, will find a huge pentup need and desire for goods, and many billions of dollars of savings available to permit people to translate their dcsires into buying demand. Industry's problem will be to meet the demand, not to create it.
"The prospect is inspiring, because at the end of the war business will have its biggest-and perhaps its last bigchance to help put the better world for which we are now fighting on the healthy economic basis which will keep it better."

Chrysler Reports Progress

Chrysler has released a timetable of progress at its vast Dodge Chicago plant where 18 -cylinder Wright engines will be built in quantities. It is as follows:
Feb. 27, 1942-Contract received from War Department to build aireraft engines.
April 16, 1942-Defense Plant Corp. contract received for building plant.
May 7, 1942-General contract let.
Junc 4, 1942-Ground broken for tool shop. Corporation executives go to aircraft engine manufacturing plants for preliminary training.
June 14, 1942-Administration and persommel buildings started.
July 1, 1942-Machining and assembly building started. First engine received by corporation for study.
July 13, 1942-Ground broken for main power house.
Aug. 1, 1942-Test cells, light and heavy forge shops and heat treat and die shop buildings under way.
Aug. 15, 1942-First dummy test cell developecl. First lathes for tool shop arrive.
Aug. 24, 1942-Ground broken for aluminum and magnesium foundries.
Sept. 1, 1942-Oil and chip storage buildings and second power house begum.
Sept. 21, 1942--Propeller test building started.
Oct. 1, 19-12-Executive personnel moves into administration building.
Oct. 10, 1942-Training classes begun for top supervision.
Oct. 23, 1942-Night and day construction force numbers 16,460 .

Nov. 15, 1942-Assembly section of main building ready for occupancy.
Dec. 15, 1942-Production machinery begins to arrive.
Jan. 1, 1943-Roof completed on heat treat and die shop.
Jan. 14, 1943-Large sections of aluminum and magnesium foundries occupied.
Jan. 15, 1943-Franework for light and heavy forge shops completed. First foundry equipment received.
Feb. 14, 1943 -First hammers for forge shops received.
Feb. 26, 1943-Roof completed on main building.
March 13, 1943-Total of 1800 production machines received.
March 16, 1943-First heat treat operations started. First aluminum castings poured.
March 25, 1943-Fifty per cent of required pilot line machinery received.
Speaking to directors of the corporation who met recently in Chicago for the first time, and inspected the new plant, K. T. Keller, president, said, "Tlee Dodge Chicago plant is the largest war contract undertaken by Chrysler. It and one other war job of substantial mag-nitude-a secret weapon-are still in the tooling stage. All other war products are in production and current shipments have gone beyond the billion dollar annual rate."

The tour, over 400 acres of former prairie and through the aisles of the manufacturing and final assembly building, which covers 80 acres under one roof, was made in open automobiles. All of the corporation's war work, now flowing at an annual rate beyond $\$ 1,000$,000,000 , has reached high levels of production, he disclosed.

Directors who made the inspection were July S. Bach, Carl Breer, Wadill Catchings, George W. Davison, J. E. Fields, John A. Harford, chairman, B. E. Hutchinson, Nicholas Kelley, O. R. Skelton, Matthew S. Slom, Harold E. Talbott, H. L. Weckler, Fred M. Zeder and President Keller.

U. S. Spending More Than
 All Other Belligerents

The United States this year will spend more for war purposes than all other belligerent nations, allies and enemies, combinect, according to the New York State Economic Council. The council's statement is based on estimates of $\$ 100,000,000,000$ expenditures by the United States. Germany is expected to spend $\$ 34,000,000,000$; Great Britain, $\$ 21,330,000,000$; Russia, $\$ 15,000,000$,000; Japan, $\$ 7,000,000,000$; Italy, $\$ 8,-$ $670,000,000$.

Forged Projectile Nose Saves Steel, Time, Cost

N. J. Bardell, superintendent, MidWest Forging \& Mifg. Co., Chicago Heights, Ill., received on March 23 the Chicago Tribune's diamond studded pin award presented monthly to Chicago area war plant workers for notable achievement for his idea that resulted in an improved armor piercing 37 -millimeter projectile.

This projectile, it is stated, conserves eritical alloy steel, reduces labor and steel requirements, and reduces cost approximately 14 cents each. The idea was born several years ago when ordnance officials doubted that the plant could be fitted into a war program.
Among other items, the company made a fence post with a forged top-the ordinary method for putting tops on such poles was to drive a malleable casting into the tube forming the pole. Mr. Bardell devised a way to apply the forging principle used on the pole tops for making the 37 -millimeter projectiles used by tank and antiaircraft guns. He made up several samples and, with J. L. Hench, president of the company, presented them to ordnance officials. Tests were made at two ordnance proving grounds and the results were said to amaze officials, for the projectiles were found to possess unusually high armor piercing qualities. Contracts followed.

With the method devised by Mr. Bardell, the projectile nose, or ojive, is squeezed, or compressed, into shape by forging-swaging machines, details of which operation may not be disclosed. With the conventional method, the nose was machined away with consequent loss of steel.

The method of compressing the steel grains in the nose, it is stated, accomplished something unexpected-a nose of great strength that gave it high armor piercing ability. This great strength made it possible to use a lower grade of steel than the high alloy grade commonly required for such projectiles. Thus, alloy steel is conserved for other uses. The method also reduced manpower requirements.

Mr. Bardell is the third person of Italian descent to win the Chicago Tribune's award. He arrived in Chicago Heights with his parents from Italy when he was 6 years old. He got as far as the eighth grade in school before going to work, but ability and initiative overcame his educational lack. He started with Mid-West Forging 21 ycars ago as a common worker and gradually rose to his present position as superintendent. He is 48 years old.

$\sqrt{\text { ICKERS }}$

HTHIROMOTIVE CONTROLS

> FOR WOMEN OPERATORS

THE rapidly increasing number of women workers on jobs normally done by men makes it necessary that machines now be engineered for women operators. There must be no heavy controls requiring brute force . . . women do have physical limitations.

Vickers Hydromotive Controls make this engineering easy. They're light-respond to the touch of the daintiest fingertip. They provide simplicity. Complex operations can be reduced to an easily grasped routine or to a completely automatic operating cycle. Positive and automatic overload protection is provided; controls can be interlocked so that work and machine cannot be damaged-

and possibility of injury to operator is very remote.
Such engineering not only makes machines more efficient with women operators-it also improves production with men operators. Let Vickers Application Engineers discuss with you the possibilities of improved machine controls.

ICKERS Incorporated

DETROIT, MICHIGAN

> Douglas Aircraft in production of C-47 "Skytrains" at new two-mile windowless plant in Oklahoma. . . Army officials inspect "breathing" wall that conserved critical materials

A LOOK behind the $17,000,000$ brick in nearly two miles of "breathing" windowless walls enclosing the new Oklahoma City, Okla., plant of Douglas Aircraft Co. Inc. discloses C-47 "Skytrains" already in production on a site where cattle were grazing just a year ago.

As Army engincers made their official inspection tour marking acceptance of the plant from the Austin Co., Cleveland, which designed the building and managed the construction under AAF supervision, thousands of Douglas men and women already on the job for several months worked without interruption on a long line of transports and on the thousands of parts required to make them.

Executives of building equipment and contracting companies accompanied Army officers, Douglas and Austin officials, and newsmen on a tour, March 26 , marking the first anniversary of ground-breaking.

When the Army Air Forces asked Austin engineers to design this new heavy aircraft manufacturing plant with the same controlled conditions provided in two earlier jobs, but with limited use of steel which made them possible, the idea of a "breathing" wall of mason-
ry was born. Instead of using fiberglass and steel, which gave side walls and roofs of the other plants a high insulating value, the builder designed a revolutionary brick wall over 50 feet in height, which is veatilated through open vertical joints in one course near the top and in two courses waist high near the bottom of the outer brick work.

Shatter Resistant Wall

Hollow ventilating tile serves as a flue through which air circulates vertically between these open joints. The tile has a perforated back which allows the 4 inch blanket of rock wool insulation to "breath," thereby preventing condersation and keeping it permanently dry. The wool is held in place by lightweight trussed wall ties which hold the many layers of the wall together and make it shatter resistant. They are the only steel in the entirc wall. While only a fraction as thick, the wall has the same insulation value as an 80 -inch solid brick wall and is the equal of the combination steel and fiberless type of construction. Roof is of "ferroglas" design for sound absorption, light reflection, as well as insulation.

While the new plant provides the same
working conditions and manufacturing facilities as the finest "controlled conditions" plant designed before the need for steel conservation became apparent, it has only half the steel required in earlier plants.

One hundred seventy tons of steel was saved, for instance, by the use of masonite instead of porcelain enamel in reflectors for more than 20 miles of continuous fluorescent lighting fixtures which have been equipped with a new double duty lighting mechanism (4-lamp, high power factor, 254 -volt ballasts instead of 2-lamp ballasts), which saves an additional 30 tons of vital materials, mostly copper and aluminum.

The nommetallic reflectors have a synthetic enamel surface equal to porcelain in light reflection qualities. They carry a double row of 100 -watt fluorescent lamps and are continuous in the huge assembly bay where sixteen minbroken strips provide uniform illumination of 55 footcandles. Mounted 40 feet above the floor, they are suspended from bar joists that rest on the monorail supports.

A white cement floor insures light refiection on the underside of wings and fuselages on the line. An inter-comnecting monorail system, serving the entire plant, will permit the lifting of loads up to 20 tons. Turntables at junction points where subassembly bays open into the wide assembly area provide for transfers between any two locations.

Built entirely of native brick, which was trucked from nearby yards without

About 200 tons of critical materials were conserved in lighting this new windowless aircraft plant in Oklahoma by using nonmetallic reflectors and 4-lamp instead of 2-lamp ballasts in the fluorescent lighting mechanism. A completely integrated manufacturing unit, the plant is now producing Skytrains, just a year after ground was broken

From under the wing of a cargo plane (above) is seen the large flight hangar with three telescoping turnover doors on either side. Clapboard siding used above the doors in these buildings is scarcely distinguishable from steel of the doors

Details of wall section, indicating how air is circulated within the wall is shown above. Trussed wall ties are the only steel in the design which is entirely new to industrial structures
tying up a single railroad car and would have represented more than 1400 carloads, the interior required a special paint suited for use on brick having a high alkaline content. It was found in a wax-fortified material which also gave the high side walls high light reflectivity and a resistance to dust which aids cleanliness. Interior walls are painted May green above a dark apple green dado.

Continuous bands of limestone and rough faced brick extend around all the structures making up this integrated plant, which includes a 700 -foot administration building, a huge hangar, and a large paint shop capable of accommodating two fully assembled transport planes in individual spray booths.

The main building houses under one
roof all of the facilities essential for manufacture and assembly of large twomotor transport planes identical with those which played an important role in the invasion of North Africa and have supplied South Pacific bases with a continuons How of anmunition, food and reinforcements.
Cafeterias, first aid stations, and production offices are housed in two story lean-to structures at frequent intervals on all sides. A central kitchen, office cafeteria, and dining room, as well as a contpletely equipped medical department, with surgery, X-ray, and therapentio treatment rooms, are located in the adjacent administration building. Buff glazed tile has been used throughont these and other employe service areas, while partitions in the offices are all of wood, also painted green.

The speed with which Douglas hals moved into production in the new plant follows many months of planning and close co-operation between design, engineering, construction, and production organizations. With their first southwestern plant just groing into operation on the assembly of bombers at Tulsat last year when this plant was authorized, Douglas immediately began to set up facilities for the training of men and women for this second plant in five strategic centers within a radius of 125 miles. At the same time was launched a comprehensive local training program in temporary manufacturing facilities set up in available industrial space.
When the first section of the plant was finished on Nov. 1 , the persomel was ready to staff it, and steadily increasing forces of men and women lave been recruited from farms, wil fields and nonessential businesses.

Imposing entrance (below) to administrative offices of the new Douglats plant in Oklahoma City. Limestone portal is the sole nonfunctional detail in the cast project which required $17,000,000$ common brick in its construction

Special tile welding booths have been provided for electric are welders. At center is a crew of bench welders, gas welding aluminum parts, and at left is a multipletorch pantograph-type of gas cutting machine

Army officials and executives present for the tour of inspection included: Brig.Gen. Ray G. Harris, Midwestern Procurement District, AAF, Wichita, Kan.; Col. Frank J. Wilson, district engineer, Tulsa; Major E. R. de Luccia, Office of the chief of engineers, Washington; F. W. Conant, vice president in charge of manufacturing, and A. E. Raymond, vice president in charge of engineering for Douglas Aircraft Co. Inc., Santa Monica; George A. Bryant, president; Albert S. Low, vice president for engineering and G. W. Plaisted, vice presi-
dent for sales, Austin Co., Cleveland.
A. D. Engle was project manager in charge of design and construction management for Austin. Major E. A. Cornell, was the area engineer. C. C. Pearson is manager of the plant for Douglas and Major George T. Chadwell, is the AAF resident representative.

Plane Executive Cites Need For Supervisors in Industry

Citing the critical need for more supervisory and executive talent in indus-

Ventilating ducts are provided in the cadmium plating section. Metal curtains extending 10 to 15 feet below the bottom chord of the trusses trap, process heat and gases cxhausted directly to the outside through fans and blowers. Photos by courtesy of Austin Co.
try and calling upon industry to bring together leadership aims of management and labor, C. W. Perelle, vice president, Consolidated Vultee Aircraft Corp., San Diego, Calif., told members of the Society for the Advancement of Management at a meeting in that city recently that about a year ago Consolidated Vultee had approximately 76 foremen, while today there are 1000 direct and indirect labor foremen.

Two reasons for shortage in supply of leaders were emphasized by Mr. Perelle. One was the sudden terrific expansion in production occasioned by war demands; the second a lack of foresightedness on the part of industry in the long-range development of leaders.

In addition to urging greater consideration to problems of developing adequate supervisory personnel, he pointed to the need for a more careful and thorough analysis of qualifications of potential leaders.

Andrews Steel Co. Under New Management

New officers of the Andrews Steel Co., Newport, Ky., purchased recently by Norman B. Schreiber and associates, include Mr. Schreiber as president; J. S. Greenberg, vice president and secretary; Herbert W. Boal, who continues as vice president and treasurer, and Charles H. Stamm, former vice president in charge of sales who becomes vice president for sales and production.

Directors elected in the reorganization are Frederick L. Schuster, partner in Lelman Bros., New York investment baukers; I. J. Harvey Jr., president, Flintkote Co.; Willian K. Jacobs Jr., Mr. Boal and Mr. Schreiber.

Mr. Schreiber was a member of MacDonald Bros Inc. of Chicago, industrial engineers who had served prior to the sale in a consulting capacity to the Andrews management. Until November, he also was a member of the faculty of the Illinois Institute of Teelnology.

As previously reported in Steel the new owners acquired all capital stock of the Andrews family. Founded in 1885 by Joseph A. and Albert L. Andrews under the name Globe Iron Roofing \& Corrugating Co., management at the time of the reorganization was in the hands of the second and third generations of the founders, retiring officers being Albert K. Andrew's, president; William N. Andrews and Joseph B. Andrews Jr., vice presidents, and Frank M. Andrews, secretary.

The name of Newport Rolling Mill was adopted for part of the establishment in 1890. The Andrews Steel Co. plant was built in 1908.

Construction of 400-Ton Custom Mill at Butte, Mont., Approved

BUREAU of Mines proposal to erect a 400-ton-a-day custom mill at Butte, Mont., to treat manganese ores produced by several mines in that area and thus provide more manganese, has been approved by the WPB Facility Review Committec.
Secretary of the Interior Ickes stated that the Domestic Manganese Co., prominent in the manganese field of Montana, has applied for a $\$ 250,000$ loan from the Reconstruction Finance Corp. to construct the mill. The company proposes to utilize old milling equipment in the Butte area for the plant and to resume operation of its modern nodulizing plant at Butte to produce ferrograde manganese nodules for steel. About 12 pounds of manganese are required for every ton of steel produced.
Carrying the proposal to WPB, the bureau pointed out that in formulating the project its exploratory crews had drilled more than 10,000 feet of test holes, had taken hundreds of ore samples, and had tested the contemplated
milling method. The bureau research revealed that the known reserves of carbonate manganese ore in four active mines in the Butte-Philipsburg area total about 175,000 tons of ore averaging 23 per cent manganese. When milled and nodulized, the ore averages from 51 to 59 per cent manganese.

Under the contemplated program, the ore delivered to the mill would be purchased by the Metals Reserve Co., which has been buying ore for stock-piling in the Butte-Philipsburg region. The Domestic Manganese Co. proposes to mill and modulize the stockpiled ore along with the newer ore produced by the mines.

Company officials informed the bureau that the milling plant could be constructed in about 90 days.

New Pacific Coast Tube Plant To Meet War Needs

Construction has been started at Los Angeles on a plant to manufacture ferrous and alloy metal tubing to supply mate-
rial to Pacific Coast consumers, mainly for airplane builders. Defense Plant Corp. is supplying funds for construction, cost being estimated at $\$ 1,750,000$. Pacific Tube Co. has been organized to operate the plant, and will supply working capital and has an option to buy the plant at the end of the war.
F. G. Harmon, for 16 years assistant general manager of sales for the Columbia Steel Co., San Francisco, is executive vice president, in charge of production. Clarence A. Warden Sr., Pliladelphia, is president and Clarence A. Warden Jr., is vice president and treasurer. R. H. Gabel, vice president in charge of engineering, has been production manager for Superior Tube Co., Norristown, Pa. Clarence H. Wallis will be plant superintendent. He has been superintendent of the cold-drawing department of National Tube Co., Elwood City plant, for 16 years of the 33 he has been with that company. Paul E. Kelly, of Superior Tube Co., will be secretary and assistant terasurer.

Plans are for completion of the plant in 90 diays. Products will inelude colddrawn seamless tubes of carbon and alloy steel from $1 / 2$-inch to $41 / 2$-inches and electric welled tubing from $1 / 2$-inch to 2 inches.

To meet the construction deadline sevcral steel factory buildings are being moved from Texas and re-erected. Used machinery is being moved from various points.

War Plants, Equipment Authorized by DPC

Additional authorizations for new war plant facilities were made last week by Defense Plant Corp. DPC will retain title to the facilities which will be operated by the contractors. Figures are approximate, and include:

Arkansas Fuel Oil Co., Shreveport, La., to provide facilities at a plant in Louisiana costing $\$ 350,000$.
Butcher \& Hart Mfg. Co., Toledo, O., to provide equipment for a plant in Ohio at a cost of $\$ 80,000$.

Commadity Credit Corp., Washington, to provide plant facilities in Wisconsin, Indiana and lowa at an average of $\$ 350,000$ each.

Wilbur B. Driver Co., Newark, N. J., to provide machinery and equipment for a plant in New Jersey, at a cost of $\$ 260,000$.

Otis Elevator Co., New York, to provide plant facilities in New Jersey at a cost of $\$ 750,000$.

Interstate Aircraft \& Engineering Corp., El Segundo, Calif., to provide additional facilities at a plant in Illinois,
at a cost of $\$ 500,000$ resulting in an overall commitment of $\$ 1,420,000$.

Old Dixie Distilling Co. Inc, Falling Creck, Va., to provide facilitiés in Virginia, at a cost of $\$ 1 \overline{5}, 000$.
S. F. Bowser \& Co. Inc., Fort Wayne, Ind., to provide equipment at a plant in Indiana at a cost of $\$ 90,000$.

Briggs Mifg. Co., Detroit, to provide additionat equipment for plants in Michigan and Indiana at a cost of $\$ 1,700,000$.

Ebaloy Foundries Inc., Rockford, Ill., to provide equipment for a plant in Illimois at a cost of $\$ 135,000$.

James A. Hammah Inc., Chicago, to provide transportation facilities to be nsed in Illinois, Wisconsin, Indiana, Michigatn and Iowa at a cost of $\$ 185,000$.

Commodity Credit Corp., Washington, to provide plant facilities in Wisconsin at cost of $\$ 350,000$.

Douglas Aircraft Co. Inc., Santa Monicit, Calif., to provide additional plant space in California at a cost of $\$ 185$,000 , resulting in an werall commitment of $\$ 10,800,000$.

Rohm \& Hatas Co., Philadelphia, to provide additional equipment at a plant in Tennessee at a cost of $\$ 50,000$, resulti g in atn overall commitment of $\$ 2$ 890,000 .

Ford Motor Co., Detroit, to provide additional facilities at a plant in Michigetr, at a cost of $\$ 365,0000$, resulting in ann overall commitment of $\$ 79,000,000$.

Tyeoon Tackle, Inc., Mismi, Fla., to provide additional equipment and madimery at a plant in Florida at a cost of $\$ 14,000$, resulting in ath overall commitment of approximately $\$ 360,000$.

Lear Avia Ince, Piequa, O., to provide: additional equipment for a plant in Ohios at at cost of $\$ 50,000$, resnlting in an overall conmaitment of $\$ 650,000$.

General Mentals Corp., Los Angeles, to provide facilities at a plant in Califorma it at eost of $\$ 172,000$.

Commodity Credit Corpo, Washington, to provide plant facilities at six locations in lowa at all average cost of $\$ 351,000$ each.

Commodity Cowdit Corp., Washington, for plant facilities four of which will be fogated in Illinois and four in Minnesota. Average cost of these facilities is $\$ 350$,OOO Cuch

Republic Steel Corp., Cleveland, to provide additiomal facilities at a plant in Commecticut al a cost of approximately $\$ 210,000$, resulting in an overibll commitmout of $\$ 1,150,000$.

Armstrong Cork Co., Lancaster, l'in, to provide additional equipment for a plant If l'emmsylvania at a cost of atproximately $\$ 30,000$ resulting in ath overall conmitment of $\$ 1,100,000$.

Bhomineld Mfg. Co., Chicage, to pro-
vide equipment at a plant in Illinois at a cost of $\$ 42,000$.

Pacific Chain \& Mfg. Co., Portland, Oreg., to provide plant facilities in Oregon at a cost of $\$ 200,000$.

Jessop Steel Co., Washington, Pa., to provide additional facilities at a plant in Pennsylvania costing $\$ 240,000$, resulting in an overall commitment of $\$ 1,600,000$.

Luscombe Airplane Corp., West Trenton, N.J., to provide additional plant facilities in New Jersey at a cost of $\$ 50$,000 , resulting in an overall commitment of $\$ 200,000$.

Corod Minerals Corp., Marion, Ky., to provide additional plant facilities in Kentucky at a cost of $\$ 70,000$, resulting in an overall commitment of $\$ 215,000$.

SUBSTITUTES

Steel Replaces Brass in

0.45 -Caliber Ammunition

A newly developed method, which makes possible the substitution of steel for brass cases in 0.45 -caliber ammunition, has been announced by the War Department. The manufacturing process, perfected by the Evansville Ordnance Plant working in comjunction with the Army's Frankford Arsenal, adyances the Army's program for conservation of critical materials another step. A changeover from brass to steel for all lypes of fixed and semifixed artillery ammunition was completed the first of
this year.
Saving in brass by the new process amounts to 1774 pounds for each 100 ,000 rounds of ammunition. The new cartridges with steel cases have been tested and accepted by the using services. Large-scale production is already under way. All plants making 0.45caliber ammunition will adopt the steel cartridge case.

Eight months ago the Evansville plant was close to a shut-down because of the acute brass shortage. Brass, which expands with the explosion of the powder charge and then contracts, permitting the extraction of the cartridge, had been universally used. The successful institution of steel, removing a serious limitation on ammunition production, was accomplished in six months. In the same period the Frankford Arsenal perfected a steel copper plated jacket for the 0.45 -caliber bullet which resulted in a saving of 780 pounds of gilding metal (90 per cent copper and 10 per cent zinc) for each 100,000 rounds.
An important saving also has been accomplished in ammunition packing boxes for 0.45 -caliber ammunition. Formerly lined with terne plate, they now have a recently developed waxdipped liner. By the elimination of solder, along with terne plate, an additional 7 pounds of tin for each 100 ,000 rounds is saved.
"DEAF MUTE BEST TEACHER"

DEAF mute teaches new girl employes how to build airplanes at the Vultee Aircraft plant, Downey, Calif. Company officials say new workers learn more quickly from the expressive gestures of mutes than from oral instructors. NEA photo

Zone Price Plan for Eastern Area To Be Inaugurated Soon by OPA

A MAJOR revision in the method of determining ceiling warehouse prices for heavy steel in the area from Maine to North Carolina is expected to be announced shortly by the Office of Price Administration. It is likely to become effective within a week alter amonncement.

To be known as Amendment if to Revised Price Schedule No, 49, it will establish dollars and cents ceining prices for four zones on such products as sheets, bars, plates, strip and structural shapes in carbon, alloy and stainless grades. Within the next few months the plan probably will be extended throughont the United States.

This was revealed recently by E. L. Wyman, chief, Warehouse Unit, OPA, Washington, in a discussion which also covered features of the proposed Amendment No. 13 to the same schedule, to be issued shortly, and Amendment No. 12 which was issued March 1.

He spoke on a forum sponsored by the Steel Distributors Institute Inc., New York, at the Hotel Commodore, that city, March 29. Other speakers were A. Oram Fulton, assistant director, Steel Division, War Production Board, Washington; J. R. Stuart, chief, Warehouse Unit, WPB, Washington; J. R. Mills, chief, Metals Division, OPA, New York; and Lymn Eaton, assistant deputy director, WPB, New York; with Morton A. Shapiro, counsel of the institute, pres.ding. More than 500 were present, including many from outside the city.

Outlines Pricing Formula

Outlining Amendment 14 , Mr. Wyman said that each of the four zones will represent the area customarily serviced by warehouses located therein and will be described in tables by state, and, where necessary, by county or other geographical unit. For each zone, he explained, there will be a zone price component index which will be a master table listing all of the elements of the ceiling price. Each part will have separate tables in which will be specifically listed in dollars and cents the exact charge or deductions which may be made.

The zone price component index will be used in determining the zone destination price, by which is meant the price at the buyer's destination located within a zone. It will consist, he said, of the
price at the most favorable basing point (mill base price) plus freight from basing point to the buyer's destination, plus spread, and quantity, quality, merchanctising, size, cutting and miscellaneous extras and deductions.
Sellers shipping from one zone to another will be permitted to charge the zone destination price for the zone into which they ship. Similarly, he added, sellers shipping from areas outside the four zones into a zone will be permitted to charge the zone destination price at the customer's destination.

Alternate Methods Provided

In these latter two cases, however, alternate prici.ng methods will be permitted which may be used at the seller's option. First, in shipping from one zone to another, the seller may use the zone destination price, as previously mentioned, or the zone shipping point price, by which is meant the price at a shipping point within a zone, plus freight to destination, minus a freight allowance at the rate of 15 eents per 100 pounds.

Secondly, when shipment is made from a "nonzoned" area into a zone, a seller may charge the destination zone price, as explained above, or the seller's country price at the city from which shipment is made plus treight from shipping point to destination, minus a freight allowance at the rate of 15 cents per 100 pounds.

Further, on shipments from a zone into the nonzoned area, the seller may charge his own zone shipping point price plus freight from shipping point to destination, minus a freight allowance of 15 cents per 100 pounds, or, at his option, the lowest combination price at destination.

Amendment 13, he said, will lead to several relatively minor changes. It will permit certain extras not previously allowed on NE steels, extras relating to stress relieving after cold working, aircraft quality and the extensometer test. These will be allowed, he explaned, because the new alloy steels are now being used by the aircraft industry. The proposed amendment will also permit an extra charge on NE steels when they are treated at an outside plant. The jobber in these cases will be permitted to charge his actual invoice cost for the treatment minus trucking charges, plus a profit margin of 30 cents per 100 pounds. This change is scheduled because there has
been a considerable increase in the amount of material treated for jobbers at outside plants.

Asserting there is a huge amount of idle, frozen and excess steel estimated to run into hundreds of thousiands of tons, Mr. Fulton urged jobbers to avail themselves as much as possible of these materials. such steel will not affect their quotas and their interest will do much in getting it into war production and other essential uses. Too, it will be much to their advantage to get this idle material off the market before the war is over.

Where the steel is nut usable in its present form, but by rerolling or reprocessing it can be used in war channels, the holder is paid by the government what is known as "limited cost", by which is meant the base price exclusive of freight charges for the primary form in which the material is bought, including analysis, size, shape, heat treatment, and tmish extras. It does not include, he said, unverifiable extras, such as quantity, testing, packing or freight. The Steel Recovery Corp, finances the reprocessing and sells at the current market price, absorbing the loss.

A thard type of transaction involves material useful only for remelting. In this case the govermment purchases at what is known as the "government price", which runs from 15 to 30 per cent discount from the "limited cost", the amount of discount increasing as the value of the material increases. While the holder suffers a discount from his cost, the price he receives is nevertheless as liigh as four, five or six times the value of the material if he sold it as scrap, which is its only possible use in the war effort.

WPB Revises Control Over
 Steel Warehouse Operations

Steel warehouse order, M-2l-b, is being split into three component parts. Deliveries of general steel products to warehouses and dealers are now governed by M-21-b-1, which was effective April 1; deliveries of pipe, wire products and other merchant trade products will be governed by a pending order; sales of these products are now controlled by CMP Regulation No. 4.
Purpose of order M-21-b-1 is to provide adequate warehouse stocks of general steel products so that small and emergency needs can be filled promptly, and also to guard against unnecessarily large accumulations of stocks by warehouses and dealers. The order divides distributors into two categories: Warehouses, which buy directly from steel
(Please tum to Page 178)

MEN of INDUSTRY

C. R. $\operatorname{CO} X$

G. 1. DANNEHOWER

ROY B. ROSE

Charles R. Cox, the past two ycars executive vice president, National Tube Co., Pittsburgh, has been elected president of National Tube and of Tubular Alloy Steel Corp., United States Steel Corp. subsidiaries. He succeeds Benjamin F. Harris, who recently resigned and is now consultant to Benjamin F. Fairless, president of United States Steel, in comection with war activities. Associated with National Tube since 1934, Mr. Cox has served as general superintendent of the Ellwood works, and as vice president in charge of operations, with offices in Pittsburgh.

- 0 -

Gilbert 1. Dannehower has been appointed sales manager, Swiss American Gear Cu., Jersey City, N. J. He will also manage sales of Cosa Corp., New York, exclusive importer of Swiss precision machinery. Mr. Dannehower has designed and manufactured machinery on which he holds seyeral patents and for the past four years was associated with Walker-Turner Co. Inc., Plainfied, N. J.

George E. Hochgesang has resigned as fouradry superinteudent, Youngstown Foundry \& Machine Co., Youngstown, O.
C. F. Langer has been appointed general superintendent of the strip mill, Republic Steel Corp., Cleveland, succeeding the late J. W. Hughes.

Thomas J. Adams has become chief metallurgist, Columbia Steel Co., Torrance, Calif., succeeding the late John Disario.
E. B. Finegan, chief traffic officer, Chicago, Milwaukee, St. Paul \& Pacific railroad, Chicago, has been elected pres-
ident, Traffic Club of Chicago. S. L. Felton, general traffic manager, Acme Steel Co., Chicago, is the new first vice president.

$$
-\mathrm{O}-
$$

Roy B. Rose has been named district manager for II. K. Porter Co. Inc., Pittsburgh, for the territory including eastern Peunsylvania, western New Jersey, Maryland and Delaware. He will be headquartered in Philadelphia where the company has opened offices in the Girard Trust building.
I. R. Sargent, formerly eastern district market development representative of Westinghouse Electric \& Mfg. Co., has been appointed acting manager of the market development department. He succeeds Donald C. Hooper, who is on active duty in the United States Navy.

William T. Goss has been elected vice president, Goss Printing Press Co., Chicago. Associated with the company 18 years, Mr. Goss has specialized on sales in the midwestern territory for a number of years.

-0-

George D. Keller has resigned as vice president, Studebaker Corp., South Bend, Ind. He has not announced his future plans.

$$
-0-
$$

Roy M. Smith, who joined RollerSmith Co., Bethlehem, Pa., in August, 1942, as assistant chief engineer, has been promoted to chief engineer, succeeding J. D. Wood, resigned. Before joining Roller-Smith, Mr. Smith was engineering manager for the Wiring Device Division of Bryant Electric Co.

$$
-0-
$$

C. O. Hedner, manager, hoisting equipment section, Yale \& Towne Mfg. Co., Philadelphia, has been elected chairman, Electric Hoist Manufacturers'

Association, New York. Sydney Buckley, president and general manager, Shepard Niles Crame \& Hoist Corp., Montour Falls, N. Y., has been named vice chairman of the association.

Dr. Charles M. Slack has been appointed assistant director of research, Westinghouse Lamp Division, Westinghouse Electric \& Mfg. Co., Bloomfield, N. J. After teaching physics at Columbia University for a year, Dr. Slack joined the research staff of the Lamp Division in 1927. He will direct experimental work on various lamp and electronic problems.

Dr. John W. Marden, the past 15 years assistant director of research, will assume charge of metals research, in addition to his present duties.

Allan S. Austin, secretary, Austin Co., Cleveland, and in 1938-39 managing director of Austin Engineers Builders Lid. of England, has been commissioned a captain in the military government division of the Army. Mr. Austin has spent the past two years on magnesium and other chemical plant expansion programs for war production.

- 0 -

J. E. N. Hume, commercial vice president, General Electric Co., Schenectady, N. Y., announces the following have been appointed industrial electronics specialists to be located in G-E offices throughout the country: I. C. Diefenderfer and D. C. Hierath, New York; J. F. Getz, Philadelphia; A. J. Moore, Boston; W. B. Frackelton, Chicago; L. E. Donahue, Los Angeles; J. A. Setter, Denver; I. F. Conrad, St. Louis; A. D. Boardman, San Francisco; L. B. Parsell, Detroit; L. R. Elder, Portland, Oreg.; Frank C. Neal Jr., Dallas, Tex.; R. H. Jackson, Atlanta,

Ga.; K. II. Keller, Cleveland; R. C. Norris, Cincinnati; A. M. Dawson, Pittsburgh; B. Cogswell, Buffalo; L. F. Stone, Newark, N. J.

$$
-0-
$$

R. J. Rowen has been named manager of the Wheeling, W. Va., district of Air Reduction Sales Co. The past two years he has been assistant manager there and before that was assistant to general sales manager in New York.

Frank J. De Rewal, former research chemist for Foote Mineral Co., Philadelphia, has been appointed to the research staff of Battelle Memorial Institute, Columbus, O., and assigned to its division of nonferrous metallurgy.

Verne C. Parker has been advanced to advertising manager, Simonds Saw \& Steel Co., Fitchburg, Mass. Mr. Parker serves also as advertising manager of Simonds Canada Saw Co. Ltd. Associated with Simonds since 1918 he was transferred to the advertising department a year later and worked as assistant to the late Roy D. Baldwin, who was advertising manager until his death in Felmary.

Edward B. Morrow has been elected vice president, Hercules Powder Co., Wilmington, Del., and Francis J. Kennerly has been named to succeed Mr. Morrow as treasurer. Mr. Kennerly, heretofore assistant treasurer, will be succeeded by Leslic W. Mason, presen \ddagger comptroller.

$$
-\mathrm{O}-
$$

Roy E. Kunde has been appointed to the newly created post of district traffic manager, Bethlehem Steel Co., Bethlehem, Pa. Mr. Kunde formerly was traffic representative of Bethlehem Supply Co., a subsidiary, at Tulsa, Olla., for three and one half years, and before that was assistant to district traffic manager of Bethlehem at Chicago for ten years.

- 0 -

Prof. F. C. Lea, D. Sc., has been elected president, Institution of Mechanical Engincers. Dr. Lea was professor of engineering at the University of Sheffield from 1924 to 1936 and on his retirement was appointed emeritus professor. He is a director of Messrs. Edgar Allen \& Co.

$-0-$

W. M. Wood, Decatur, Ill., for 25 years president, Mississippi Valley Structural Steel Co., Melrose Park, Ill., has been elected chairman of the board. He has been succeeded as president by R. D. Wood, Chicago. W. M. Wood, one of

R. J. ROWEN

VERNE C. PARKER
the founders, served as treasurer and chief engineer until his election to the presidency in 1918. R. D. Wood, who succeeds his brother as president, joined the company in 1906, and the past 20 years has been a vice president.

Officers re-elected include G. A. Caldwell, vice president, Decatur; C. R. Dick, vice president and treasurer, Decatur; J. B. Butler, vice president, St. Louis; and F. W. Ives, secretary, St. Louis.

$$
-\mathrm{O}-
$$

Sidncy R. Snow, since May, 1941, general superintendent of the Waukegan Works of American Steel \& Wire Co., Waukegan, III., has been trinsferred to Cleveland as assistant to vice president in charge of operations. He will handle operating costs. John R. Gaut has been named gencral superintendent of the Waukegan Works, succeeding Mr. Snow. Heretafore Mr. Gaut has been assistant general superintendent at that plant.
R. H. Knipping has joined Power Specialty Co., Houston, Tex., and will soon take over the San Antonio, Austin, Corpus Christi territory. Power Special-
ty Co. is agent for Centrifix Corp., Cochrane Corp., Erie City Iron Works, Foster Engineering Co., Hays Corp., J. E. Lonergan Co., Lummus Co., R-S Products Corp., and Thomas C. Wilson Inc.

$$
-0-
$$

John L. Collyer, president, B. F. Goodrich Co., Akron, O., has been named a member of the National Industrial Information Committee governing board, as announced by Alfred P. Sloan Jr., chairman of General Motors Corp. and chairman of the special industrial committes.

Harry F. Potter has been elected secretary, Crane Co., Chicago. Associated with the company 43 years, since 1931 he has been manager of branch houses, and is succeeded in that post by James A. Dwyer, manager of district No. 1. Mr. Dwyer will be assisted by A. H. Prasse. David J. Molloy, assistant manager of the New York branch, suceceds Mr. Dwyer as district manager, and will have general supervision of the main branches in Baltimore, Boston, New York, Philadelphia and Washington. He in turn is succeeded by George P. Gregory Jr. as assistant manager of the New York branch.

$$
-0-
$$

T. Spencer Shore, vice president and treasurer, General Tire \& Rubber Co., Akron, O., has been elected a director, Eagle-Picher Lead Co., Cincinnatt.

- -

Charles Belknap, chairman of the excoutive committee and executive vice president, Monsanto Chemical Co., St. Louis, has been elected president, succeeding Edgar Monsanto Queeny, who has become chairman of the board. Mr. Belknap will continue as chairman of the exccutive committce.
R. A. Schoenfeld, vice president and sales manager, Wheelco Instruments Co., Chicago, announces the following additions to the sales and service staff: Hugh Acock, formerly in the Tulsa, Okla., territory, has been named Texas district manager, with headquarters in Houston. C. II. Garrison has been named Kansas City representative, territory including western counties of Missouri, while Russell George has been added to the company's Combustion Safeguard Division, with headquarters in Chicago.

-0-

Wilson F. Howard has been appointed representative in charge of the Connecticut district for the Machinery Division of Austin-Hastings Co. Inc.,

MEN of INDUSTRY

Cambridge, Mass. Mr. Howard formerly was shop manager of Jones \& Lamson Machine Co., Springfield, Vt. He will be located at 1800 Park street, Hartford, Conn.
T. Laurence Strimple has been promoted to secretary, National Acme Co., Cleveland. Formerly assistant secretary and assistant treasurer, he succeeds George J. Steinbicker, who will continue as treasurer and also serve as a member of a newly created finance committee.

-0-

B. R. Kulp, chief engineer, Chicago \& North Western railroad, Chicago, has been appointed chief engineer as well of the system's affiliated Chicago, S!. Patul, Minneapolis \& Omaha railroad. R. R. Strother, chief engineer of the Omaha, with offices in St. Paul, has been named assistant chief engineer of
the North Western system, with headquarters in Chicago; L. R. Lamport, division engineer of the North Western Galena division, has become assistant to chief engineer; E. C. Vandenburgh, engineer of maintenance of the North Western, has become engineer of maintenance of the system; A. E. Bechtelheimer, engineer of bridges of the North Western, will serve in similar capacity for the system.

William J. Norman has been appointed assistant district manager of the Waverly plant of United States Steel Supply Co., Newark, N. J., and Walter P. McGuire has been named manager of the company's Philadelphia sales office. Mr. Norman, who has been a salesman for the company since December, 1939, was first employed by the United States Steel Corp. in 1912. Mr.

McGuire has been employed as a salesman in the company's Waverly plant since April, 1933.

Arthur M. Anderson, vice president, J. P. Morgan \& Co. Inc., New York, has been elected a director and a member of the finance committee of the United States Steel Corp., succeeding the late J. P. Morgan.

Alexander C. Brown, Deputy Director of the Steel Division, WPB, has resigned and will return to his position as first vice president of Cleveland Cliffs Iron Co., Cleveland.

$$
-\mathrm{o}-
$$

R. X. Raymond, a gear sales engineer, associated the past 15 years with D. O. James Mfg. Co., Chicago, is now in charge of the Minneapolis office, Fawkes building, 1645 Hemepin avenue.

OBITUARIES

James A. Farrell, president of the United States Steel Corp. from 1911 until 1932, and for five decades an active figure in foreign trade, died in New York, March 28. He was 80.

Although he retired as operating head of the corporation 11 years ago. Mr. Farrell remained a director until his death. As a founder and chairman of the National Foreign Trade Council, he labored continuously for forcign trade policies that would insure world peace and break the barriers of preferential trading systems.

Long a proponent of Anglo-American trade agreements, he urged in 1940 the establishment of an economic front by United States and Great Britain to combat the totalitarian block. He often was referred to as "The Dean of Foreign Trade."

Mr. Farrell was the hero of one of America's great success stories. His father, a ship owner and captain, was lost at sea when young Farrell was 15. The lad obtained a job in a New Haven, Conn., wire mill, working the then common 12-hour day. After working hours, be studied at home. After 14 months in the mill he became a mechanic, and a few years later moved to Pittsburgh, center of the steel industry, and joined the Pittshurgh Wire Co. as a laborer.

He became forentin before he reached voting age, and at 26 was sales manager for the company. Four years later he was general manager of the whole organization. That was in the panic year of 1893 and buyers were not tak-

JAMES A. FARRELL
ing steel. While other steel men were waiting for the storm to pass, Mr. Farrell invaded the foreign field and sold half of the company's output abroad.
In 1899, the Pittsburgh Wire Co. was merged to form the American Steel \& Wire Co. and Mr. Farrell became foreign sales manager. Two years later, the United States Steel Corp. was formed with American Steel \& Wire as a subsidiary, and Mr. Farrell headed the foreign development division. In 1903, the United States Steel Products Co. was organized to co-ordinate the foreign activities of all the corporation's subsidiaries. Mr. Farrell was its first president.

As a leader in the steel industry, Mr. Farrell was active in the American Iron and Steel Institute, serving as a vice president and chairman of its committee on foreign relations. For several years, he was also chairman of the committee
on foreign relations of the United States Chamber of Commerce.

He was awarded the first Gary Memorial Medal of the institute in 1929. Many other honors were bestowed upon him, including two decorations by the Vatican, honorary degrees by several universities, a commission in the French Legion of Honor and in the Order of the Crown of Italy.

$$
-0-
$$

Arthur T. Knoerzer, 45, vice president and general manager, Champion Corp., Hammond, Ind., died March 25, in that city.

$$
-0-
$$

John B. Goldsborough, 79, chairman of the board, Underpinning \& Foundation Co., New York, died March 26 at Croton-on-Hudson, N. Y. He directed construction of numerous subway projects.

Edward J. Fleming, 72, president, Fleming Foundry Co., Springfield, Mass. died recently in Jacksonville, Fla.

Norton J. Bund, 55, for 23 years a member of the advertising department, Electric Storage Battery Co., Philadelphia, died March 15.

Patrick F. Tiemey, superintendent of construction of the new Dodge-Chicago Division of Chrysler Corp., Chicago, died March 26, in that city.

William Berninger, traveling representative in Ohio, western Pennsylvania and central Indiana, A Leschen \& Sons Rope Cu., St. Louis, died March 4. He had been associated with the company since 1913.

Beauty salon and cosmetic canteen in a war plant! Such novel fucilities are provided for the 3000 women workers of N. A. Woodworth Co., manufacturer of aircraft parts, Ferndale, Mich. A few of the women are shown (above) resting in the comfortable lounge room which seats 160

These women (right) receive beauty treatments at the plant immediately after working hours. WeekIf cash credits are awarded to those with good attendance records, exchangeable for cosmetics

Lower left, young employes try out a new dance step during a recreation period

Lower right, potwder rooms are equipped with comfortable chrome chairs, make-tip mirrors, fluorescent lights and shelves for compacts and lipstick

RECORD TONNAGE CONTRIBUTED BY 176 LAKE SUPERIOR MINES

MINES shipping Lake Superior iron ore in 1942 numbered 176, compared with 165 in 1941 . Largest shipments were made by the Sellers mine, $10,331,860$ gross tons; second largest was the Hull-Rust with $9,089,295$ tons. Maloning mine held third position with $4,040,153$ tons. These mines are in the Mesabi range. Only two nines outside the Mesabi shipped (ver $1,000,000$ lons in 1042.

Missabe Monntain mine, which shipped 4,003,0 05 tons in 1841 and 4,330,739 tons in 1940, was not operated in 1942. The lease was surrendered to the state by the Oliver Mining

Co., United States Steel Corp. subsidiary, at the end of 1941 and was purchased by the North Range Mining Co., Negaunee, Mich. The property has been rehabilitated and will resume shipments in 1943.
Total shipments from United States mines in 1942, as announced by the Lake Superior Iron Ore Association, Cleveland, were $93,008,726$ tons, against $80,747,859$ tons in 1941. In addition 486,666 tons was shipped from the Michipicoten range in Canada. Details of 1941 and 1942 shipments in gross tons by mines follow:

MESABI RANGE

M1ne	1942	1941	Mine	1942	1941	Mine	1942	1941	Mine	1942	1911
Adnms Surue			Framer	1.5466,441	1,398,785	Leonard-Burt	865,932	234,391			
(\%ruab)	4,114.771	3,477,540	Gulbrallh	597, 484	38610,696	Leonard-Glen	750,103				1
Agnew		:04,847	Gentu-Sparta	20,669	50,685	Leonidas			Reed	1,049.958	2,747
Alan	50,090		Gilbert (Schley			Lincoln			St. Paul-Day.	312,240	190,96-4
Allaans	531,722	807,949	Tresp)	21.843	168,286	Lincoln	4,046,1	4,040,388	Sargent	131,733	127,521
Alce	2(4), 885	85, 4,01	Rodifrey (Buart)	6f6,226	143,902	Mahoning-Rust	21,336		Sauntry	418,777	
Allee Frayn	til	24.1049	Godirey (Glen)		581,691	Mahorca ${ }^{\text {M }}$ Mat	469,258	151,467	Schley	884,630	363,137
Alcturus		1,037! !1]	Greenway	196,262	290,518	Mesabl Chlef	261,370	431,078	Scranton	1,643.158	, 025.323
Arqumbe	(31.3, 93	371,773	Greenway Wash	75,339		Minnewas		573	Shenango	114,164	384,742
Arombe	1141,012		Gross-Marble.	280,496		Minorca	16.750		Sllver	73,146	71,191
lurbura	2512. 871		Hatison ${ }_{\text {Harrison }}$	6.18,010	457,318	Mountaln		4,603,065	Smith	4,241	4,576
Bummelt	1,213,53\%	655,542	Harrison and			Mississiopl		4,603,065	South Uno		
13wabik	5,2. 314	1.012,757	Patrek con- contrat.		178,817	No. 1	247,489		G.N.		3.659
Hradford Hras	19, 12.469	(16, 16.249	Hartley	433,186	178,817	Monse	16,203		South Uno		
		1,	Hartley-Burt	22,280	2317,842	Morris	1,496,671	1,722,808		53,	13,055 378,687
Day	1.019,1010	1.024,689	Hawkins	512,530	507,331	Miorrison	878,154	1,	Ste	353,5	
Canisten	86\%1.57\%	556, 128	11111 Annex	3,477,540	3,645,950	Niles (D	8,096				
Camtos) (131-			H1/1 Trumbull	1,338,415	1,254, 57.56	Norpac (Hull					
wablk 'l'resu.)) 787		Hondley	7,6133	63,747	Norpact Tresp.)	136,024		Stevenson	164,682 $1,011,593$	167,232 876,787
Carol	518.345	150,238	Homman-CIIf	$1,028,143$	9,39,947	North Harri-	136,24		Susquehann	$1,011.593$ 10,355	876,787 72,095
Chated)	70,47.3	81, 2.38 01,405		(1,080, 2095	5,111,600	son	91,804	199,309	Unlon Virginla	413,819	72,095 316.819
Couns	$7 \mathrm{THi4}$	284.808	Iron Chier			North Uno			Wableon	706.470	278,238
Corstea	793.0.41	7 $\mathrm{Kl}, 478$	(Grimi			G.N.	2,037		Wacootah	422,021	371,258
Cyurus	15,594.4		Tresp.	12,914		North Uno			Walker	183,996	51,014
1)'Autremment	[383. 7×4		J1-AEM		1.72694	N. ${ }^{\text {prabic }}$		29,034	Warren	715,402	416,340
Dale ${ }^{\text {Damub }}$?21	\% 73,715	Judd	167,108	142,664	pactic ${ }^{\text {patilek-Ann }}$	54,419 43,300	143,050	Webb	770,893	717,082
Datube Drukhas	186, 51.50		Jula	127	22,11	Patrick-Ann	-13,300	532,441	W/sstar		9,463
Diaper	181,110	310.125	Kevin	1,:110,079	937.453	Perkins Annex		149,181	York	110,816	93,461
Dunwoudy	41:3,875	211.80\%	La Rue	55.381	282,460	Pillisbury-Brad					
Fnymi No. 2	12:1,022	11,20.1	lamberton	508		ford Tresp.)		49	Tot	70,280,087	59,772,543

MENOMINEE RANGE

Ninc	11). ${ }^{2} 2$	1.44	Blne	19.12	19.41	Mine	1942	1941	Mlne	1942	1941
Hatile	5, 19.0 !	71924	forvidern			Homer	324,787	316.316	Rogers	38,951	0
Hintes	145,845	158, 17:3	Group	205, 923	318,62,	James	450,148	318,008	Tobin-Colum-	8,067	232,240
Hencal	W21,411	3697.045	Fugarty	12,722 70192	63,791	Mastodun	21,607		Virgel	193,470	275,562
13Ea	. 3.64 .47	18,9¢4	filube-Cuff	14,113		Matilia	2,825	3,399	Wauseca	142,155	47,002
Hralley	40,5351	40, 364	Illawath:	[150,0,014	298,649	Penn Mines	875,562	881.693	ZImmerman.	155,459	
Hut'k	5015,1591	1223,625	Hlawathn			Ravenna	66,528	91.744	Total	4,930,434	4,131,363
CuIf		10, 264	No. 2	26:3,013	230,984	Pricket	6,5,8	91,74			

MARQUETTE RANGE

Mane	$119+2$	1041	Mine	1+M2	10911	Mine	1942	1941 877,807	Mine Rlchmond	$\begin{aligned} & 1942 \\ & 234,153 \end{aligned}$	$\begin{aligned} & 1941 \\ & 236.585 \end{aligned}$
Archilatal	24,1019		Gartnet-			Masas Char-	901,698		Stephenson		37.694
Athens	132, 25	545,431	Matkinaw			Matie . ${ }^{\text {dar }}$	357,439	281,887	Tilden	241.537	292,443
13tucherry Cambuthank-	:129,14.4	30,2\%?	Greenwornd	121,80!	9,4,3i5	marrls	396,772	331,264	Volunteer	179,371	255,600
sin1	327,7x	316.257	Holmes	151,285	$217,11.1$	Negaunce	1,091,729	1,051,006	r		
Chamminy Clifs shaif	- ${ }^{28,205}$		Luxd	Sxt, 8	457.023	Irinceton	123,193	12.476	Total	6,540,731	6,254,391

GOGEBIC RANGE											
Mlue	1012	1941	Mine	1142	19.12	Mine	1942		Nine Wakeheld	$\begin{aligned} & 1942 \\ & 201,127 \end{aligned}$	$\begin{aligned} & 1941 \\ & 228,070 \end{aligned}$
Anvil	281, 的猃		brombun		181,273	Pennkee Group	611,2.41 (509) 970	605,29:	Wakent Davis.		
Cary	$4.23,511$	340,572	Kewematis	186, $1.112,418$		lismuath	6591,250	$\begin{array}{r} 607,169 \\ 50,055 \end{array}$	West Davis.		
Asterold	T20, 4 ¢ : 3	(63, 112	Nexpmit	5Ti.67,	$1-451.357$ 3,100	Sunday Lake	576.672	(611,515	Total	6,237,894	6,301,379

Shipping Season May Open April 15; Costs Are Increased

DESPITE a later opening of the Great Lakes shipping season this year, Heet operators anticipate no great difficulty in achieving the goal of $95,000,000$ tons of iron ore. Fleet capacity will be increased materially by the 16 Maritime Commission freighters which will be placed in service during the season and by the four comparatively new Pittsburgh Steamship Co. vessels which will be in service throughout the season.

Shippers expect the season will open about the middle of April, or possibly a little later, depending on temperature and winds. Last year the first boats were loaded at the upper likes on March 23, earliest in history. During March, 792,000 tons were moved, and in April, 7,789,182 tons.

For the 50 years preceding 1940 , average opening date of upper lake transportation was April 21. In many of these years, of course, there was no pressure for an early opening and vessel operators waited until weather conditions were en-
tirely favorable for fleet movement.
Necessity for moving $95,000,000$ tons this year will cause the Heet to start as early as possible. It is expected there will be periodic delays due to anchor ice at various ports, and ice breakers already have moved to clear these. At Buffalo, tugs last week were unable to make much progress in the harbor and around the breakwall. The car ferry St. Mans has been ordered out to attempt to clear the straits of Mackinac. Two Great Lakes Towing Co. tugs are breaking ice out of Port Inland and the tug Roen and a Coast Guard cutter are working out of Escanaba.

The $95,000,000$-ton goal for the season represents a reduction of $5,000,000$ tons from the War Production Board's original estimate of $100,000,000$ tons. The reduction was made when it became apparent that materials shortages would delay construction of some blast furnaces dependent on Lake Superior ore.

Stacks depending principally on lake

"BROTHERS" IN THE FIGHT

BOTH helping Uncle Sam to victory, this giant locomotive and General Grann tank are products of the Baldwin Locomotive Works, Eddystone, Pa. The locomotive is operated by the Duluth, Missabe \& Iron Range Railway, hauling iron ore from the northern Minnesota ranges to provide the steel for tanks, ships and munitions of war. It has 140,000 pounds tractive power and weighs more than $1,000,000$ pounds, with its tender. It is claimed to be capable of pulling more pay load than any other steam locomotive in the world. NEA
ore scheduled to be brought into oper tion this year include: Camegie-Illino Steel Corp., one at Gary, Ind., and tw at Braddock, Pa.; Bethlehem Steel Cu one at Lackawanna, N. Y.; Inland Ste Co., two at Chicago; Republic Ste Corp., one at Chicago and one at Clev land; Pittsburgh Steel Co., one at Mone sen, Pa., American Steel \& Wire Co one at Duluth. Some of these alread have been lighted.

Iron ore prices for the 1943 seaso have not yet been established by the O fice of Price Administration. Shippin costs will be increased this year by th transportation tax and by higher wag rates for seamen, and many shippers bo lieve an increase in ore prices should b allowed.

Escanaba Urges Ore Dock Building Be Completed

Inmediate completion of ore docks a Escanaba, Mich., as an additional facilit in meeting the increased tonnage of Lak Superior iron ore to be transported i 1943 is urged by the Chamber of Com merce of that city. The project was in itiated in the summer of 1942 as an alter mate route in case of damage to the lock at Sault Ste. Marie, ore to be carried b; rail to Escanaba and loaded into car riers for transport to lower lake ports.

The chamber has sent a letter to per sons in authority in Washington statins that the duantity of critical material re quired to complete the docks would no exceed the tonnage for one ore car rier and the cost would be negligible ir view of the benefits. Completion of these facilities, with docks already in service, is claimed to provide for movement of 40 , 000,000 tons of ore annually.

Original plans for this work were on the basis of an emergency measure in case of stoppage at the Soo, but the Escanaba chamber urges it as a valuable adjunct to the normal movement through the locks.

Form Ship Hardware Company

To provide sufficient marine hardware for Canada's shipbuilding industry, Keating Forging \& Foundry Ltd. has been formed as a subsidiary of Keating Sons Ltd., 335 Bourgeois street, Montreal. A plant is under way on Lachine canal, said to be the only modern plant in the Dominion planned and erpuipped for complete production of hardware for ships. A forge shop 90×1.50 feet is under construction and the entire plant is planned to be completed this year. The working force will be 1500 persons.

Truscon Steel Co., Youngstown, O., receives the " E " burgee. Left to right, holding the pennant: W. W. Kelley, works manager, and J. Lewis, chairman, shop committee, Local 404, IAM-AFL. At extreme left is Lieut. Col. T. H. Eickhoff, chief of industrial service, Cleveland Ordnance District, who presented the award

Caterpillar Tractor Co., Pcoria, Ill., presentation was attended by 25,000 persons. Holding the flag are, left to right: L. B. Neumiller, Caterpillar president; Brig. Gen. David McCoach, Army; Capt. E. A. Lofquist, Navy; Marritt Miles, "typical employe"
" M " award by the Maritime Commission was received by Federal Shipbuilding \& Dry Dock Co., Kearmy, N. J., for outstanding production. Holding the banner arc, left to right: Gordon G. Holbrook, works manager; Nathan Levin, labor spokesman for the labor management committee; and Rear Admiral Howard Vickery

Armed Services Cite Metalworking Companies

Joint Army-Navy "E" awards for outstanding production of war materials were announced last week for the following metalworking companies:
Allis-Chalmers Mfr. Co., West Allis works and electric control plant, Milwauke.
American Blower Corp., Columbus, 0.
Arms-Franklin Corp., Franklin, Pa.
Arrowhead Electric Co., Duluth, Minn.
Carpenter \& Paterson Inc., Medford, Mass.
Chicago Flexille Shaft Co., Chicato.
Crawford Mris. Co., Kansas City, Mo.
Denver Steel \& Iron Works Co., Denver.
Diamond Hill Machine Shop, Cos Cob, Conn.
Duval Engineering \& Contracting Co., George
D. Auchter Co., and Batson-Cook Co., Naval

Air Station, Jasksonville, Fla.
Eaton Metal Products Co., Denver.
Exeter Brass Works, Excter, N. II
Foxbors Co., Foxhoro, Mass.
Fred. S. Gichner Iron Works Inc., Washington.
Fyr-Fyter Co., Dayton, 0.
Gear Grinding Machine Co., Detroit.
Goode Construction Corp., Blythe Brothers Co., Harrison-Wright Co., Marine Barracks, New River, N. C.
C. L. Gougler Machine Co., Kent, 0 .

Hammond Brass Works, Hammond, Ind.
Herman Machine \& Tool Co., Tallmadge, $\mathbf{0}$.
Horst Mfg. Co., Detroit.
Intemational Telephone \& Radio Laboratories, New York; Great River, Long Island, N. Y.; and Telegraph Hill, Keyport, N. J.
Irwin's Yacht Works, Red Bank, N. J.

Jeffersonville Boat \& Machine Co., Jeffersonville, Ind.
Thomas Laughlin Co., Portland, Me. Lawson Machine \& Tool Co., Malden, Mass. Los Angeles Contracting Co. and O. W. Karn, Naval Opernting Base, San Diego, Calif.
Manning, Maxwell \& Moore Inc., Bridgeport, Conn., and Boston.
Depot of Supplies, U. S. Marine Corps, Philadelphia.
Merrill-Stevens Drydock Co., Miami, Fla,
National Rubber Machinery Co., Clifton, N. J. Oilgear Co., Milwankee.
Pacific Marine Supply Co., Seattle.
Wm. Powell Co., Cincinnati.
Purdy \& Henderson Inc., F. H. McGraw \& Co., Naval Air Station, Bermuda.
Hay-O-Vac Co., Madison, Wis.
Robbins \& Myers Inc., Springfield and Piqua, O.
Rockford Machine Tool Co., Rockford, III.
George D. Hoper Corp., Rockford, III.
Sanderson \& Porter, Pine Bluff Arsenal, Pine Bluff, Ark.
Sarco Mfg. Corp., Bethlehem, Pa.
Shartle Bros. Machine Co., Middletown, O.
Sivyer Stecl Castings Co., Milwankee.
Sterling Engine Co., Buffalo.
T. Stuart \& Son Co., Naval Ammunition Depoot, Hingham, Massachusetts.
Thompson Pine \& Steel Co., Denver.
Thordarson Electric Mfg. Co., Chicago.
Union Steel Products Co., Albion, Mich.
Hamilton Standard Propellers Division, Usited Aircraft Corp., Norwich, Conn.
Walz \& Krenzer Inc., Rochester, N. Y.
Waterbury Tool Division of Viekers Inc., Waterbury, Conn.
Wheland Co., Chattanoogn, Tenn.
Whiting Corp., Harvey, III,
Wollaston Brass \& Aluminum Foundry, North Quincy, Mass.
Wright's Automatic Machinery Co., Durham, N. C.

19,000,000 Deadweight Tons of Merchant Vessels Goal for 1943

UNITED STATES shiphuilders have broken every world record for volume shipbuilding, according to the Maritime Commission's annual report issued last week.
The industry has not only fulfilled the 1942 mandate of President Franklin D. Roosevelt for $8,000,000$ tons of shipping, but has exceeded the presidential directive by a considerable amount.

Meantime, American shipbuilding gives promise that it will be able to more than double, before the end of 1943, its record of more than $8,000,000$ deadweight tons during the fiscal year of 1942 and up to Dec. 31, 1942. Subsequent to the report, the Maritime Commission has announced that the shipbuilding goal for 1943 has been currently set at nearly $19,000,000$ deadweight tons, and adds that this can be stepped up to $20,000,000$ deadweight tons-the present shipyard capacity-if materials and supplies are available.

Admiral Emory S. Land, commission chairman, disclosed that a total of 8 ,090,800 deadweight tons of merchant shipping were placed in service in 1942. But this total did not include some 800

BRITISH FOREIGN MINISTER VISITS SHIPYARD

[^3]smaller craft and other vessels delivered to the armed services. He revealed that 746 Victory Fleet ships were delivered by Dec. 31, 1942. These included 542 Liberty-type vessels, 62 tankers, 5 ore carriers, 62 long range C-type ships, 55 cargo carriers for the British, 5 coastwise ships, and 15 special type craft.

Just how production was stepped up, once the Americun shipbuilding industry got into its war stride, is made ceident in the report. Under a war pressure tempo, montlly production is shown to have been stepped up to 713,900 tous in June, 1942, and further to $1,200,000$ deadweight tons in December, 1942. This production peak beat all previous ship construction records. The former top record was made in September, 1919, when 618,886 tons were delivered by American shipyards.

A principal factor contributing to the 1942 shipbuilding record was the inauguration of the Liberty ship plan of a simplified design. This permitted mass production methods and made ut possible to use prefabricated parts and replace the old method of plate riveting with modern plate welding.
Other factors which aided in expediting the building program were standardization of parts, centralized purchasing of materials for the shipyards, and the excellent morale maintained between management and labor.
Some idea of what this vast material problem has been can be seen by the fact that more than 800 plants situated in 32 states are supplying material for Victory Fleet construction. The "spreadwork plan" for the utilizing of many small plants was inaugurated by the commission early in 1941, far in advance of Pearl Harbor.

When the commission took over the job of rebuilding the merchant marine in 1937 there were only 10 American shipyards with 46 ways capable of building ships 400 feet or over, and half of these yards were being used for naval construction.

Ninety per cent of those who are now employed in ship construction had to be trained before they were employable. The total maritime shipyard personnel is now estimated to be well over half a million men and women. The commission now has in operation more than 60 shipyards turning out oceangoing cargo ships from more than 300 ways.

National Steel Expansions Financed with Own Funds

Extensive additions to productive facilities of National Steel Corp., Pittsburgh, required to broaden the company's service in the war program, have been provided in the last few years from its own capital and without recourse to supplementary financing from outside sources. Despite expenditures in 1942 alone of over $\$ 12,000,000$ for new construction and improvements to plant and equipment, National's ammal report shows an increase in working capital of $\$ 6,189,018$.
E. T. Weir, chairman, in a letter to stockholders accompanying the report, pointed out that the addition of three electrolytic tin plate coating lines was of major importance in this program. One of these lines is now in operation while the other two are to be completed by July. Additions to pig iron and metallurgical coke capacity, he said, have been found most beneficial. Coal reserves were enlarged during the year by purchases of considerable acreage in Pennsylvania and Kentucky.

Record-Breaking Year

All-time high records in production, sales, payrolls and taxes were recorded during the year. Although demand for steel pushed company's sales to a total of $\$ 219,851,175,10$ per cent over preceding year, increased taxes and operating expenses restricted earnings to $\$ 5.41$ per share.
Earnings for 1942 , after all charges including a reserve of $\$ 2,000,000$ for contingencies and postwar adjustments, amounted to $\$ 11,929,867$, as compared with $\$ 17,102,350$ for 1941 . Dividends of $\$ 3.00$ per share were paid in 1942 , and the balance of earnings, $\$ 5,330$,963.93 , was transferred to earned surplus.

Taxes amounted to $\$ 36,682,487$, or $\$ 16.63$ per share of stock, more than three times the carnings per share, and equivalent to $\$ 1,741.15$ for each of the company's 21,068 employes. Largest item of taxation was the $\$ 30,300,000$ set aside for federal taxes on income. This was net after deduction of a postwar refund credit of $\$ 2,075,000$. Taxes increased $\$ 10,697,044$ over 1941.

Total payrolls were more than 12 per cent greater than in the preceding year. The average wage per employe was $\$ 2$,503.48.

Company's debt was reduced by payment of $\$ 3,000,000 \mathrm{in}$ serial notes.
"Although war contracts are subject to renegotiation," Mr. Weir said, "confer-
ences have not proceeded to the point where any prediction can be made as to the effect of such renegotiation on the statement of earnings. We do not regard our earnings as excessive in relation to our volume of business, and renegotiation should not affect our statement greatly."

Superior Steel Corp.

Since November, 1942, Superior Steel Corp., Carnegie, Pa., has made available to 22 compctitive companies its process for manufacturing a copper-alloy clad steel for ammunition components. This contribution to the war effort was disclosed in company's annual report by Frank R. Frost, president.
Net profit for 1942 was $\$ 978,184$, equal to $\$ 8.63$ a share, against $\$ 653,358$, or $\$ 5.77$ a share, in 1941. Federal and state income taxes amounted to $\$ 310$,000. After $\$ 260,800$ debt retirement credit and $\$ 60,000$ postwar credit, excess profits tax totaled $\$ 2,910,000$. In 1941 these taxes amounted to $\$ 1,400,000$.

Calling attention to the dividend of 30 cents paid April 1, first payment in nearly 17 years, Mr. Frost stated that by comparison with 1926, the company is stronger funancially, its antiquated plant has been replaced with modern facilities and products are more diversified.

Superior's total sales in 1942 were $\$ 17,298,736,29$ per cent over 1941. Sales of copper-alloy clad steel made up approximately 60 per cent of the total.

Universal-Cyclops Steel Corp.

Net income of Universal-Cyclops Steel Corp., Bridgeville, Pa., in 1942 totaled $\$ 2,128,545$, or $\$ 4.26$ a share, after provision of $\$ 6,008,000$ for state and federal income and excess profits taxes and deduction of $\$ 612,000$ postwar credit. In 1941 company's net was $\$ 1,753,043$, or $\$ 3.51$ a share. Officials point out that because of the uncertainties involved, effect of renegotiation of war contracts ou company's position cannot be determined at present.

Follansbee Steel Corp.

Thirteen per cent increase in net profit ower 1941 was shown by Follansbee Steel Corp., Pittsburgh, in 1942. Last year's net, $\$ 511,711$, was equal to $\$ 1.76$ on common shares and compares with $\$ 445,964$, or $\$ 1.46$ a share, in previous year. Provision for federal income tax was $\$ 352,300$ algainst $\$ 297,500$ in prior period; general taxes totaled $\$ 262,712$; imortization and depreciation, $\$ 683,821$. Net sales in 1942 amounted to $\$ 15,188$, 456 , decrease of $\$ 241,689$ from 1941.

All members of the Follansbee board
of directors were re-elected at the annual meeting March 25 in Pittsburgh.

American Rolling Mill Co.

Charles R. Hook, president, American Rolling Mill Co., Middletown, O., has amounced that renegotiation of government contracts, still pending, is delaying the closing of company's books for 1942. He stated that net earnings for the year, as shown by tentative audited reports, were approximately $\$ 7,700,000$ after taxes and reserve for contingencies, without giving effect to such sum, if any, as may be payable to the government as a result of renegotiation and may not be charged against reserve for contingencies. Net profit for 1941 was $\$ 11$,228,475 .

Copperweld Steel Co.

Copperweld Steel Co., Glassport, Pa., reported net income for 1942 as $\$ 1,144$,489, exclusive of net credit adjustments of prior years, equal to $\$ 2.01$ a share on common. Including $\$ 124,045$ net adjustments of prior years, net income transferred to surplus account was $\$ 1,268,564$, or $\$ 2.25$ a share. Net profit for 1941 totaled $\$ 1,460,790$.

Steel Co. of Canada Ltd.

Steel Co. of Canada Ltd., Montreal, Que., last year had net profit of $\$ 4,805$,938 after income taxes, equal to $\$ 6.68$ a share on combined 7 per cent cumulative preferred stock and no-par ordinary stock. This compares with $\$ 4$,439,732 , or $\$ 6.17$ a share on combined stocks in 1941. Depreciation, including special depreciation for war plant and equipment, amounted to $\$ 4,597,243$ against $\$ 4,742,022$ in preceding year. Provision for income and excess profits taxes, including refundable portion, was $\$ 8,362,904$, against $\$ 3,520,000$ a year earlier.

Timken Roller Bearing Co.

Timken Roller Bearing Co., Canton, O., reported 1942 net income as $\$ 6,475$,262, after provision of $\$ 16,000,000$ for refund to government under contract renegotiation, proceedings on which are partially completed. Earnings are equal to $\$ 2.68$ a share, compared with $\$ 3.92$ a share on net income of $\$ 9,476,839$ in 1941.

New business booked by General Electric Co., Schenectady, N. Y., in 1942 amounted to $\$ 2,003,039,023$, a 77 per cent increase over total 1941 orders, according to Gerard Swope, president.

Industrial Volume Continues To Grow

INDUSTRIAL output continued to increase in the first three weeks of March as essential industries held or enlarged their gains recorded in February. Production of planes, tanks, ships, ammunition and parts is generally meeting the objectives laid down by the armed services, sparked by war expenditures which averaged $\$ 224,000$,000 a day in the first half of this month. This accelerated pace is reflected in at least one important index which rose in February to 203 per cent of the 1935-39 average from 199 the month before.

Indicating the extent of improvement in steel and metalworking industries in the past eight weeks, Streel's index of activity advanced to 179.6 on March 20 from 178.1 on Jan. 23 , an increase of 1.5 points. This com-
pares with an index figure of 163.9 on March 21, 1942, and a decline from the corresponding week in January last year of 3.5 points. Weekly ingot output last month was $1,720,970$ tons, against $1,672,403$ in January and 1,631,278 tons in February, 1942. Finished steel shipments rose 5600 tons in the latest month.
In the week ending March 27 the national steel rate edged down $1 / 2$ point from the top rate of 99.5 maintained by the industry since mid-February with only one $1 / 2$-point break during the period ending March 13. Decreased activity was attributed to need for furnace repairs. A year ago the rate was 97.5 per cent of capacity.

Electrical energy distributed by the power industry for the period closed March 27 totaled 3,928,170,000 kilowatt hours, compared with $3,345,502,000$ kilowatts in the like 1942 week and $3,892,796,000$ a month ago. Gain over the 1942 week is 17.4 per cent. Barring the usual seasonal factors tending to decrease consumption, the trend in power use since the first of the year, when distribution totaled $3,779,993,000$ kilowatts, is definitely up. Output

STEEL'S index of activity declined 0.7 point to 178.9 in the week ending Mar. 27:

Week			Mo.	1943	1942	1941	1940	1939	1938	1937	1936	1935	1934	1033	1932
Ended	1943	1942	Data	178.1	1942 165.7	127.3	114.7	91.1	73.3	102.9	85.9	74.2	58.8	48.6	54.8
Mar. 27	178.97 179.6	165.5	Jan.	178.1 178.8	165.6	132.3	105.8	90.8	71.1	106.8	84.3	82.0	73.9	48.2	55.3
Mar. 20 Mar. 13	179.6 179.0	163.9 164.1	Feb.	178.8	164.6	133.9	104.1	92.6	71.2	114.4	87.7	83.1	78.9	44.5	54.2
Mar. 6	178.2	164.8	April		166.7	127.2	102.7	89.8	70.8	118.6	100.8	85.0	83.8	52.4	52.8
Feb. 27	178.9	165.0	May		167.7	134.8	104.6	83.4	67.4	121.7	101.8	81.8	83.7	63.5	54.8
Feb. 20	179.0	165.1	June		169.4	138.7	114.1	90.9	63.4	109.9	100.3	77.4	80.6	70.3	51.4
Feb. 13	178.8	166.2	July		171.0	128.7	102.4	83.5	66.2	110.4	100.1	75.3	63.7	77.1	47.1
Feb. 6	178.6	166.3	Aug.		173.5	118.1	101.1	83.9	68.7	110.0	. 97.1	76.7	63.0	74.1	45.0
Jan. 30	178.6	167.9	Sept.		174.8	126.4	113.5	98.0	72.5	98.8	88.7	69.7	56.9	88.0	46.5
Jan. 23	178.1	167.4	Oct.		176.9	133.1	127.8	114.9	83.6	98.1	94.8	77.0	56.4	63.1	48.4
Jan. 16	178.9	166.6	Nov.		175.8	132.2	129.5	116.2	95.9	84.1	108.4	88.1	54.9	52.8	47.5
Prelin			Dec.		174.1	130.2	126.3	118.9	95.1	74.7	107.6	88.2	58.9	54.0	46.2

[^4]March 20 was 17.6 per cent over the corresponding week of last year, while total for March 13 was 17.5 per cent higher.

Construction contracts awarded in 37 states during February were valued at $\$ 393,517,000$, increase of $\$ 42$,856 over the January total but still more than 9 per cent below the $\$ 433,557,000$ reported in February, 1942.

Coal output rose sharply in February with the adoption of the six-day work week in the mines. Production,
$48,920,000$ tons, was at the highest level in many years, with operations in bituminous and anthracite fields raised to last summer's high point. January production was 47,029,000 tons and output in February, 1942, 43,840,000. Daily average output is close to $2,100,000$ tons.

New order index for foundry equipment stood at 399.5 last month, contrasting with 429.8 in the preceding period and 567.9 in the second month of 1942. Gear sales index rose to 303 , from 263 in January.

BUSINESS BAROMETER

Financial Indicators

30 Induxtrial Stocks
20 Rail Stocks ${ }^{\circ}$
15 Utilities ${ }^{\circ}$
Average Price of all listed bonds (N.I.S.E.)
Bank Clearings daily average (000 omitted)
Commercial Paper, interesi rate ($4-6$ months)
Com'l loans (000 amitted)
Fecderal Heserve ratio (per cent)
Cupital fotations (000 omitted) New Capital Hefunding
Federal gross deb: (millions of dollnes)
Prilroud earnings |
Stock sales, New York Stock Exchange

Fel., 19.43	Jan., 1943	Fcb., 19.12
$\$ 127.40$	$\$ 121.52$	$\$ 107.28$
29.80	28.57	27.85
16.87	15.57	13.83
$\$ 97.79$	$\$ 97.47$	$\$ 95.13$
$\$ 1,394,432$	$\$ 1,334,170$	$\$ 1,153,651$
		0.67
$\$ 9,643,000$	$\$ 9,738,000$	$\$ 11,374,000$

90.6

- Dow-Jones series. January, December, January, respectively. : Leading member banks Federal Reserve System.

Commodity Prices

STEEL's composite finished stecl price average

$\$ 56.73$	$\$ 56.73$	$\$ 56.73$
102.5	101.9	96.7
$\$ 1.59$	$\$ 1.325$	$\$ 1.293$
$\$ 1.17$	$\$ 1.10$	$\$ 0.98$

Industrial Indicators

	Feb., 1943	J:m., 1943	Feb., 1942
Commerce Dept.'s Mfgs. Index \dagger		255.0	
Orders . .	$\begin{array}{r} 239.0^{\circ} \\ 226.0^{\circ} \end{array}$	$\begin{aligned} & 255.0 \\ & 242.0 \end{aligned}$	184.0
Shipments lnventories	$\begin{aligned} & 226.0^{\circ} \\ & 177.5^{\circ} \end{aligned}$	$\begin{aligned} & 242.0 \\ & 177.6 \end{aligned}$	161.9
Industrial Production Index (Federal Reserve Board)	$203{ }^{\circ}$	199	172
Iron and Steel Scrap consumption (tons)	5,031,000 ${ }^{\circ}$	4,753,000	4,276,000
Gear Sales Index	303	268	353
Foundry equiment new order index	399.5	429.8	567.9
Finished steel shipments (net tons)	1,691,592	1,685,992	1,616,587
Ingot output (average weekly; net tons)	1,720,970	1,672,403	1,631,278

Dodge bldg. awards in 37 states (\$ Valuation)....

Fabricated structural steel shipments (Tons)	$10.4,836$	105,832	153,782
Coal output, tons	48,920,000	47,029,000	43,840,000
Coke Production (Daily Av.) Beehivet			
Bechivet By-Product \mid	21,386 174,044	$173,174$	$168,508$
Business failures; number \dagger	458	506	962
Business failures; liabilities	\$5,515,000	\$6,950,000	\$9,916,000
Cement production, bbls. \dagger	12,560,000	14,090,000	10,183,000
Cotton consumption, bales	878,154	915,479	892,288
Freight Car Awards	0	0	11,725
Car loadings (weekly av.)	766,500	727,450	780,750

Corn, cash (bushel)

Wrek ended	1943	1942	1941	1940	
Mar. $27 \ldots$	99.0	97.5	99.5	61.0	
Mar. $20 \ldots$	99.5	95.5	99.5	62.5	
Mar. $13 \ldots$.	99.0	95.5	98.5	62.5	
Mar.	6	99.5	96.5	97.5	63.5
Feb. $27 \ldots$	99.5	96.0	96.5	65.5	
Feb. 20	..	99.5	96.0	94.5	67.0
Feb. $13 \ldots$	99.0	97.0	96.5	69.0	
Feb.	$6 \ldots$	98.5	96.0	97.0	71.0
Jan. $30 \ldots$	98.5	97.0	97.0	76.5	
Jan. $23 \ldots$	99.0	97.0	95.5	8145	
Jan. $16 \ldots$	99.0	96.0	94.5	84.5	
Jan.	9	\ldots	97.5	96.5	93.0
Jan. $22 \ldots$	97.5	97.5	92.5	86.0	
Week ended	1942	1941	1940	1939	
Dec. $26 \ldots$	99.0	93.5	80.0	75.5	
Dec. $19 \ldots .$.	99.0	97.5	95.0	90.5	

Electric Power Output (Million KW1I)

Week anded	1943	1942	14.41	1940
Mar. 27	3,928	3,3.15	2.802	2,122
Mar. 20	3,947	3,357	2.809	2,424
Mar. 13	3,945	3,357	2.818	2,460
Mar. 6	3,946	3,392	2,835	2,404
Feb. 27	3,893	3,410	2,825	2,479
Fel). 20	3,949	3,424	2,820	2,455
Feb. 13	3,939	3,422	2,810	2,476
Feb. 6	3,960	3,475	2,824	2,523
Jan. 30	3,977	3,468	2,830	2.541
Jan. 23	3,974	3,440	2,980	2,681
Jın. 16	3,952	3.450	2,996	2,674
Jan. 9	3,953	3.473	2,985	2,688
Jan. 2	3,780	3.289	2,831	2,558
Week ended	1942	1941	1840	1939
Dec. 26	3,656	3.234	2,757	2,465
Dec. 19	3976	3.449	3.052	2.712
Dec. 12	3,938	3,431	3,004	2,674

Freight Car Loadings

	11000	Cars)		
Werk puded	1:14:3	1942	1941	11471
Mar. 27	774	805	792	628
Mar. 20	768	797	768	620
Mar. 13	769	799	758	619
Mar. 6	748	771	742	621
Feb. 27	783	781	757	634
Feb. 20	752	775	678	595
Feb. 13	765	783	721	608
Feb. 6	755	784	710	627
Jan. 30	735	816	714	657
Jan. 23	709	818	711	649
Jan. 16	755	811	703	648
Jan. 9	716	737	712	664
Jun, 2	621	674	814	592
Werk ended	1942	1941	1940	1939
Dec. 26	592	607	545	550

1Preliminary,

Bituminous Coal Production

Daily Average
Net Tons (000 omitted)

Week	ended	1943	1942	1941	1937
Mar.	20	2,060	1,825	1,879	1,871
Mar.	13	2,100	1,842	1,844	1,883
Mar.	6	2,125	1,693	1,791	1.851
Feb.	27	2,113	1,878	1,736	1,897
Feb.	20	2,027	1,833	1.736	1,807
Feb.	13	2,033	1,817	1,736	1,696
Feb.	6	1,980	1,793	1,683	1,634
Jan.	30	1,900	1,886	1,684	1,486
Jan.	23	1.867	1,886	1,656	1,605
Jan.	16	1,929	1,883	1,609	1,781
Jan.	9	1,883	1,842	1,691	1,780
Jan.	2	1,880	1,960	1,762	1,784

JobTraining in the

Shap

WHEN IT BECAME evident that standard apparatus must drop from production lines and something new in the small motor field take its place, this division of Westinghouse, like many others, was faced with the problem of re-training the old employes and training hundreds of new ones in half the time that it would ordinarily take.

When it became necessary to add a large number of new employes and step up production in the manufacturing of a new type apparatus, many different methods of instruction were tried but were found to be not as effective as the

Explaining the whole manufacturing operation, details of product and the like proves extremely helpful in orienting new employes. Movies and slides are used to illustrate talks detailing correct production methods, establish desired methods firmly in worker's mind
present method, which costs less, has complete follow-up and decreases rejects per operator. This particular setup enables supervision to test and try a new employe as to adaptability, good housekeeping, motion analysis, safety, etc., before placing him on production. It also shows up special techniques or inherent aptitudes which would not be brought out without basic training. It creates personal incentive and develops a questioning attitude. It establishes uniform methods and causes operators to be more receptive to new ideas. All these are vital.

It establishes a sincere realization of the individual's contribution to the war effort. It creates a more desirable atmosphere among workers, especially women. Past experience has thught us that most of our troubles were cansed, not by lack of instructions, but by lack of the proper follow-up of instructions.

Therefore, we searched for a method of instruction which would give us a complete followup from the time a new employe hats passed his physical examination until he is a 100 per cent efficient operator, at which time he takes his place alongside an experienced operator and is able to keep an established rato of efficiency with less fatigue than the employe who has not receised basic instructions.

Method of Presentation of Basic Training: When a foreman in charge of a particular department deems it necessary to add a new operator, he makes out a reguisition and instead of placing it directly with the employment office, it is sent first to the training school, where a record of it is made, and then it is turned over to the employment office. It may be possible for the supervisor of training to fill the job with an experienced or newly trained operator within a few hours.

Through this system, it is possible to schedule the number of new people that it will require to accommodate future increases in production or vacancies established by predetermined percentages of quits over any given period. This decreases the stress upon the cm ployment department and keeps the flow of new employes evenly distributed. As soon as the industrial relations department has completed its hiring records with the new employe, he is turned over to the training school. There he is required to fill out a special form, listing all of the different types of work that he may have done in the past years. This gives the supervisor of training a clearer and more comprehensive picture in placing the individual on the lype of work for which he is suited or best qualified.

It has been proved in many cases that the average person, when making out an application at the employment office, does not state more than one or two elements of past experience. Therefore, this method is employed to bring out the hidden facts. For example, a new girl was brought in as a winder, who had formerly worked as a waitress for 5 years. Upon close questioning it was found that prior to this she had operated an automatic riveting machine. The supervisor of training was aware

Refractory Material
 By FRANK J. VOSBURGH

Manager, New Products Division National Carbon Co. Inc. New York

WEDSTER defines refractory as, "Resisting ordinary treatment; difficult to fuse, reduce, draw out or the like; as a refractory ore or metal".

Accordingly carbon might well be considered a refractory material. The writer was much surprised however, when looking through a comprehensive book on refractories, to find in it almost no references to carbon and graphite as refractories.

This seemed a strange situation for though carbon and graphite are undoubtedly much better known in other than the refractory field of application, that is, as electrodes in various types of electric furnaces, as brushes in electrical equipment, as projectors in the motion picture industry, still the manufacture of carbon and graphite for purposes that can well be classified as refractory, runs into the million pouncls per year. Without carbon there would be no aluminum; ferroalloys for the most part would be nonexistent, as would of course, materials requiring ferroalloys such as stainless sted and the various tool steels, and many chemical and electrochemical processes would be seriously affected.

As a material to resist high temperature, earbon is second to none for it does not melt but volatizes at 3925 degrees Cent. $+K$ (6634 degrees Fahr.), and even at 2000 degrees Cent. (3632 degrees Fahr.) its strength under compression is about the sume nt room temperature. Against chemical attack too, carbon is highly resistant and there are few chemicals that attack it. The physical properties and characteristics of carbon and graphite are compared in Table 1. The graphite referred to is
that artificial graphite sold under the trademark "Acheson". It is produced in the electric furnace according to a process patented by Dr. E. G. Acheson, and should not be confused with natural graphite which is found and mined in many places through the world.

Thermal conductivity of the various types of refractories is compared in Fig. 2. Longitudinal data is by Physical Society, London; the ceramic data is from Transactions, Electrochemical Society, vol. 1 (1926), p. 125; carbon and graphite data intercalated by author. The chart brings out one point clearly, that is that the thermal conductivity factors of all the usual refractorics increase as the temperature increases, but the factors for carbon and graphite materials such as are used for refractory purposes, decrease under similar conditions. This fact was brought out in a paper presented before the A.I.M.E. by Dr. M. R. Hatfield and the writer, and published in Metals Technology, September 1941, ${ }^{2}$ The data from that paper were tabulated as shown in Table II.

The tabulation compares several grades of carbon; CB-4 was from a carbon block such as would be used for lining a ferroalloy furnace; S-grade was stock similar to that in large carbon electrodes; graphite was taken from a large electric furnace graphite electrode; "Carbocelli" t, porous carbon, was specially processed low-density (apparent density about 1.0$)$ carbon material primarily designed for use in filtration, acration, and diffusion applications; and, coke

[^5]Fig. 1-Ferroalloy furnace in the shop of the Broken Hill Proprietary Co. Lid., Newcastle, New

South Wales, Australia
Fig. 2-Chart showing the thermal conductivity of refractory materials
Fig. 3-Temperature gradient through two sections of grade CB-4 carbon
Fig. 4-Temperature gradient through grade " S " carbon backed by Carbocell, a porous carbon stock
Fig. 5-Temperature gradient through grade AGX graphite backed by Carbocell, a porous carbon stock.
Fig. 6-Chart showing the mean specific heats of refractory materials
Fig 7-Comparative linear expansion curves of refractory materials
particles were coke screened through 1-inch mesh with the dust removed-a good cheap inactive insulating material. (experimental data indicate thermal conductivity values directly applicable only to grades of stock specified. Manufacturers produce other grades of carbon and graphite with widely varying characteristics.)

The graphs (Figs. 3, 4 and 5) show the temperature gradients through three combinations of grades of carbonaceous material arranged for the experiment to simulate a furnace wall having two carbon blocks, each 12 inches thick, followed by 4 inches of granulated coke as insulation between the heat source and the steel plate representing the furnace shell.

A graph (Fig. 6) compares the mean specific heats of several of the generally

used ceramic refractory materials with those of carbon and graphite. Ceramic data is from Transactions, Electrochemical Socicty, vol. L (1926), page 127; carbon and graphite data intercalated
by author.
In selecting a refractory two properties always are given consideration, first, melting point and second, mean coefficient of expansion. A high melting point

Fig. S - Typical aluminum pot which uses a 23,000 -ampere Sodcrberg electrode
is a primary essential, but does not necessarily give a high-duty refractory. ${ }^{2}$ Carbon does not melt at any temperature but volatilizes at $3925+\mathrm{K}$. Also a refractory material should have as small a mean coefficient of expansion as possible. Carbon and graphite blocks with 0.00000188 and 0.00000153 respectively for the nomal refractory range up to 3000 degrees Fahr. (1649 degrees Cent.) are well below those of the generally used refractory material.

The effect of this factor is shown in Fig. 7.
Carbon as a refractory serves industry in many ways and in many places, but nowhere does it serve better than in

Silicon carbide	0.0000042
Fire clay (Av.)	0.0000051
Alumina	0.0000077
Silica	0.0000083
Chrome	0.0000114
Magnesite	000147

the production of aluminum. There, in the electrolytic cells, or so-called aluminum pots, the carbon pot lining completes the electrical circuit as the eathode of the cell and, equally important, satisfactorily withstands the chemical attack under fairly severe temperature conditions as well as a deal of mechanical abuse. Of course, the anodes of the cell are carbon electrodes.

Pots vary considerably in size, from 4 feet wide by 6 feet long up to cells 7 feet wide and up to 15 feet long. The carbon lining may be made of carbon

Fig. 9. (Top drawing)-Typical carbon hearth blocks. (Below)Typical aluminum pot

Here's help to Avoid Delays in Production

"TROUBLE SHOOTING" Common Causes of Premature Tool Failure

Abstract

Today, more than ever before, sound knowledge of "trouble shooting" is one of the essential requirements for getting the most out of your tool making facilities. Under all-out production, every care must be taken to get fools that will not fail prematurely and cause waste of skilled tool making time and interruptions in schedules. Discussed below are a few tips on "trouble shooting" that may be of help in your tool room.

Hardening Cracks - If a tool cracks in hardening, and there is nothing suspicious about the steel or the design, look at the nature of the crack. If the crack penetrates deeply-and does not parallel the length of the original bar-or if the crack shatters the piece, it may be due to one of two causes-too high a hardening heat, or placing a hard tool in a hot furnace.

In connection with this last cause, sometimes a tool does not come from the hardening just as the hardener wants it. He decides to reharden the job and throws it back into a hot furnace. This is a terrible strain on the hard tool and is likely to cause a shattered type of cracking. Since these tools cracked while still in the hardening furnace, the faces of the fracture will contain furnace scale. This definitely indicates that the tool either cracked on the first

FIG. 1 hardening-or cracked when placed in the furnace for the second hardening. Figure 1 shows the pieces of a tool that cracked in the furnace when an attempt was made to reharden it.

Soft Spots - After a tool has failed, the trouble can sometimes be traced to accidental soft spots that occurred in the wrong place. This is the time to investigate them and take steps to either eliminate them -or to chase them back where they will do no harm.

A prolific cause for "thumb nail" checks in chipping chisels (Fig. 2) is a soft spot occurring on the bit a short distance back from the cutting edge. The crack encloses the soft spol. The cure for this trouble is to switch to a brine quench, whereupon the solt spot will disappear-and with it, the thumb nail check.

Spalling-Hardening cracks that might be described as "spalling" or shelling off of corners and edges, are generally due to toolow a hardening heat or to non-uniform hardening heat.

The first cause can usually be distinguished from the second by the fact that there are likely to be soft areas on the underheated portions of the tool. A tool that has been non-uniformly heated may come out hard all over or it may contain soft spots. Fig. 3 illustrates a carbon steel reamer that was hardened from a lead pot and the extreme end spalled off in quenching. This tool was not in the lead long enough for the entire toal to become uniformly heated and only the end actually got through the critical far enough to properly harden. In order to demonstrate the lack of hardness on the body of the reamer, it was sawed part way with

FIG. 3 a hack saw and then broken the rest of the way. The spalled end, the "bald-headed fracture," and the soft body-all point to non-uniform underheating.

FIG. 4

Figure 4 is another example of "spalled" fracture from non-uniform heating. This is an oil-hardening tool steel. One corner has spalled off and the other has cracked. While the holes appear to have played a part in the failure, they are not the prime cause. This tool was soft on the flat faces which had not been hot enough, and was file hard on the spalled corners-a clear case of nonuniform underheating.

These tips on "trouble shooting" were taken from Chapter 18 of "Tool Steel Simplified". They are only a small part of the usable information contained in one chapter of the book. Other chapters discuss every phase of tool making - heat treating, quenching, furnace atmospheres, testing, etc. Put all this helpful information to work for you -right in your tool room. Order copies for the tool room men you want to train, for those you want to up-grade to better jobs.
THE CARPENTER STEEL COMPANY, 139 BERN STREET, READING, PENNSYLVANIA

"TOOL STEEL SIMPLIFIED"
315 pages $\quad 105$ illustrations Available at cost in the U.S.A. $\mathbf{\$ 1 . 0 0}$ a copy ($\$ 3.50$ elsewhere).
More than 35,500 copies of "Tool Steel Simplified" are now belng used in plants like yours to train new men, to "up-grade" older hands, save time, "trouble shoot"-get faster production.
blocks formed, baked to 1000 degrees Cent. (1832 degrees Fahr.), and then machined to fit the heavily reinforced irou pot with its installed current conductors, or the lining may be carbon paste tamped into the pot and around the current conductors while hot and plastic, and then baked into a monolithic lining by the heat developed in the cell by the electrolytic process. In either case the mass is the same, consisting of calcined anthracite coal par-

Fig. 10-Typical open-top ferroalloy furnace, carbon lined

Fig. 11-Assembly of hearth and wall blocks for small ferroalloy furnace

Table II-Thermal Conductivities of Furnace-Lining Stock
Heat flow Transverse therthrough mal conduclength of tivity K, B.t.u.
test column, per sq. ft. per

Material
CB-4 grade carbon
S gracle carbon
Graphite
"Carboced!" (porous carbon stock)

Cobe particles

ticles, calcined petroleum coke fiour mixed with tar or pitch to make a homogeneous mass which will bake out with a minimum of cracks, with good apparent density and the desired clectrical resistivity. This refractory use of carbon is enormous, for one cell may require up to 25,000 pounds of carbon lining which will have to be completely replaced within one or two years. For every 100 pounds of aluminum produced, from 50 to 75 pounds of electrodes and around $71 / 2$ pounds of carbon lining are needed.

The drawing (Fig. 9) is typical of modern aluminum pots. The carbon hearth blocks rum crosswise of the furnace in two sections from the shell inwards meeting at the center in a row of paste filled staggered joints. The joints between the blocks are 2 inches or so wide, wide enough so that the carbon paste filling the joint can be rammed in easily and thoroughly by hand, or with air gun rammers. In such small volumes the carbon paste bakes-in in a satisfactory manner with good density, free from cracks, and bonds the blocks together in a solid mass. Special highly conductive paste is rammed into

Fig. 12 - Lower layer hearth blocks, $15 x 30$ inches by up to 10 feet long, for ferroalloy furnace
Fig. 13-Second layer of hearth blocks and beginning of wall blocks near taphole

Table III-Heat Conductivity of Various Materials

Material	B.t.u. $/ \mathrm{sq} . \mathrm{ft}$. $/{ }^{\circ} \mathrm{F}$./hr./ft.	
Copper	224	$132^{\circ} \mathrm{Fabr}$.
Aluminum	75-181	((Room temp.)
Brass (Red)	93	\dagger (Room temp.)
"Karbate" No. 2 (Graphite base)	75	200° Fahr.
Admiralty	65	\ddagger (Room temp.)
Tantalum	32	\ddagger (Hoom temp.)
High-silicon cast iron	31	${ }^{\circ} \mathrm{6} 64^{\circ} \mathrm{Fahr}$ (Romip.)
Steel, 1\% carbon	26	${ }^{\circ} 64{ }^{\circ} \mathrm{Fahr}$. $32-212^{\circ}$ Fahr.
Chemical lead	20	132-212 Fahr.
Antimony lead	17-20	132-2120 Fahr.
18-8	7.3-17.0	132-212 ${ }^{\circ} \mathrm{Fahr}$
Nickel chromium $\text { (} 17 \% \mathrm{Ni} ., 13 \% \mathrm{Cr} \text {.) }$	8.5	I (hoom temp.)
"Karbate" No. 1 (Carbon base)	3	$100^{\circ} \mathrm{Fahr}$.
Boro-silicate glass	0.63	86-167 ${ }^{\circ}$ Fahr.
Chemical stoneware	0.83	
Fire clay brick	0.6-0.74	${ }^{\circ} 932{ }^{\circ} \mathrm{Fuhr}$.

\dagger International critical tables

-"Heat Transmission"-(McAdams, 1933) p. 314 .
\ddagger Chemical \& Metallurgical Engineering, Nov. 1938, pp. 633-659.
the slots in the blocks and around the iron-current conductors. The low walls above the hearth may be carbon blocks as shown or may be carbon paste tamped into wooden forms and baked-in as the furnace heats up in service.

Monolithic pot linings are cheaper than prebaked ones, but have several disadvantages. It is difficult, for one thing, to bake-in so large a mass of carbon paste without having shrinkage cracks develop which can make considerable trouble by causing metal leak-
(Please turn to Page 145)

That's what experience on the fighting front has proved, as Donald Nelson recently told newspaper men in Philadelphia. Under stress of battle, quality is of vital importance in guns, tanks, ammunition and planes.
It is up to American industry to maintain the highest uniform quality in these war materials for our fighting men.
While machine tools assure quantity-QUALITY can be obtained only by proper dimensional control through the use of reliable precision gaging equipment.

Sheffield's specialists in Dimensional Conirol are authorities on maintaining uniform quality in manufaclured parls.

Specialists in Dimensional Control
(Concluded from March 8 Issue)
PERHAPS the most generally misunderstood of all machine elements are the several classifications of gears. As ordinarily designed there is only one thing certain about gears and that is that they will not function as intended by the designer. When laying out a set of gears on the drafting board the mating gear teeth are represented by parallel straight lines, but no matter how carefully the gears are cut and heat treated the mating teeth will never again be parallel except by accident, and then only through a small load range.

The nature of the contact between two mating gear teeth is influenced (1) by the elastic characteristics of the housing in which they are contained, (2) by the elastic characteristics of bearings by which they are supported (3) by the clastic characteristics of the shafts upon which they are mounted, (4) by the elastic characteristics of the gears themselves, (5) by the accumulated dimensional crrors in all the supporting parts as well as the errors in the cutting of the gears, and (6) by the necessary and accidental clearances in the supporting parts.

The result of all this is that it is virtually impossible for the parallelism between mating teeth as visioned by the designer to exist in practice. If it should chance that two mating gear tecth are parallel at some load they cannot be parallel at any other load because the clastic deflections of some of the supporting parts are not linear with respect to the load.

As ordinarily designed the load on gear teeth is never uniformly distributed over the length of the teeth but is always concentrated toward one end of the teeth. This localization of the load is shown in Fig. 10, which is a record of the contact impressions of gear teeth under load in a commercial gear box. Load localization camot often be seen

FATIGUE of STEELS

as influenced by design and internal stresses

by examination of a gear that has been in service because, usually, each tooth of each gear makes contact with all of the teeth in the mating gear, and therefore the summation of all contacts under all load conditions will be seen by the examiner.

The illustration Fig. 9, however, is of a gear which failed in service. This gear was "rescued" while on its way to the metallurgical department to find what was wrong with the material to cause the fatigue failure. Note that the failed tooth is broken at one end, which, incidentally, is typical of almost all failed gear teeth.

An adjoining unbroken tooth shown in Fig. 10 testifies that failure occurred because only a small part of the tooth was actually supporting the load in spite of the generous tooth length that was provided by the designer. This gear would have been just as durable had it been designed to one-fifth the tooth width actually provided. Clearly this is a mechanical and not a metallurgical problem. The real trouble was inadequate support of the gears and other mechanical errors.

It may be argued fairly that this is an unusually severe case and not typical of gear fatigue. But actually the most unusual thing about it was that it could be diagnosed before it was cut into sections and the evidence etched away.

In case of fatigue failure of mating helical gear teeth of equal strength, fatigue will always occur in the tooth loaded on its acute angled end because

Fig. 9-Record of contact impressions of gear teeth under load in a commercial gearbox, indicating localization of load. Fig. 10-Gear teeth which failed in service because only a part of each tooth was supporting load; a mechanical and not a metallurgical problem

By J. O. ALMEN, Mechanical Engineering Dept Research Laboratories Section General Motors Corp., Detroit
the section is weaker at this end. Mating helical gears should be offset so contact cannot occur on the acute angled end by any mode of deflection. This is possible only where the torque is constant in direction.

The conventional approach to studies of fatigue of metals is through laboratory tests on several arbitrary forms of fatigue specimens. During the many years such tests have been made, a vast amount of fatigue data have been accumulated. These data have enabled us to formulate somewhat gencralized "laws" on the behavior of various specimens subjected to repetitive stresses of several kinds.

All gear teeth should be designed to afford a degree of tolerance for deflections, machining errors and warpage as has long been standard practice in spiral bevel, hypoid and in some spur and helical gears. This is accomplished by curving the teeth in such manner centerline of the gear width and thus as to concentrate the load near the avoid load concentration at the weaker extreme ends of the teeth.

The statement made earlier that there is no practical difference, from the standpoint of fatigue, between the various alloy steels must be amended when these steels are formed into gears because warpage is one of the many errors resulting in high fatigue vulnerability of gear teeth. However, the fatigue vulnerability due to nonuniform warpage can also be reduced by design, as has been described.

The pitting of gear teeth is a form of fatigue induced by compression loads on the contacting tooth surfaces. The magnitude of the compression stress varies with relative curvature of the contacting teeth in accordance with the Hertz formula; it varies with the degree of load concentration at the ends of the teeth and with the applied load. The load that can be carried varies with the hardness and, therefore, with the strength of the material, with the temperature and with the manner in which the lubricant is applied.

Design factors effective in reducing the load concentration at the ends of the teeth also reduce the compressive
(Please turn to Page 146)

This whe in truth the face that launched a thousand Americanships She was so beautiful, so serene ... and so damned uncomfortable!

Not alone from the bustles and the corsets and the voluminous billows of tent cloth. Daily her life was besieged with the drudgery and the discomforts of the Gilded Age: The flat iron, the wood stove, the wash tub and the carpet beater, gaslight and the coal grate, horsecars and hansom cabs. But all these things have changed . . . miraculously and wonderfully changed.

And that's the theme of this story: Change!
For today the world is changing faster than ever before, and the first 5 years after this war will be equal to any 25 years of the past. Because this is true, we at Jones \& Lamson have an important story to tell.

We were already 50 years old when Helen of

Troy was a girl. We began with the birth of the Machine Age in America, and even in the very birthplace. Many of the precision machine tools designed and developed by Jones \& Lamson engineers during more than a century of the company's history have literally made possible much of America's industrial change.

Because of this background and reputation, Jones \& Lamson engineers have actually been called upon by manufacturers - from the largest to the smallest - many thousands of times for counsel, service, or precision machine tools during a single year of this war!

If your business is manufacturing with metal . . . if you have problems today . . . and if you are looking alead to the swiftly changing markets, products and methods of manufacturing after the war . . . Jones \& Lamson engineers and service men can help you. They are at your call!
 mine the percentage of boron in 15 to 20 samples of steel in eight hours by the colorimetric method

By G. A. RUDOLPH and L. C. FLICKINGER
Youngstown Sheet \& Tube Co.
Youngstown, O.

ADDITTION of minute quantities of boron to steel in order to improve hardenability has urged the metallurgical chemist to produce an analytical procedure for the determination of boron accurate to plus or minus 0.0005 per cent. Since, in the average steel plant laboratory, duplication of analytical results in the second decimal place is considered good practice, except for phosphorus and sulphur, it can readily be seen the common laboratory practices involving gravimetric and volumetric procedures are inadequate.

Careful adherence to details for the determination of boron as set forth in the distillation-titration method ${ }^{1}$, and modifications thereof failed in our hands to give acceptable results. This method is time consuming and requires the use in part of boron free glassware.

A search of the literature ${ }^{23}$, revealed that boron in minute quantities produces a characteristic blue color with quinalizarin (1, 2, 5, 8-Tetrahydroxy-anthraquinone) in a medium of strong sulphuric acid (93 per cent by weight).

None of the ordinary elements cause
any interference with the reaction, except on rare occasions manganese is found in the insoluble portion, the oxide of which, in the presence of concentrated sulphuric acid, produces oxygen which destroys the color of the quinalizarin. The addition of a small amount of sodium sulphite prevents this interference. Oxidizing substances such as dichromates and nitrates destroy the pink color of the reagent. The chromates or dichromates formed during the fusion of the insoluble portion of the steel have been investigated by the authors using stecls having up to 1 per cent chromium, 1.50 per cent nickel and 0.50 per cent molybdenum. No interference was detected by these elements.

A careful analyst using the same reagents for his samples as he uses to make his standards can readily detect 0.0002 per cent boron in either the soluble or insoluble portion of the steel, giving an accuracy; or duplication of results less than 0.0005 per cent total boron in the sample.
Ordinary glassware is used. The authors use bacteria culture tubes for
dissolving the sample, pyrex or plain glass funnels for filtering and 125 milliliter flint glass oil sample bottles for comparison. No contamination from any of this glassware has been encountered.

It is necessary for the analyst to have his glassware clean and dry since any dilution of the final strength of sulphuric acid influences the depth of color. A sufficient amount of the 98.5 per cent sulphuric acid and quinalizarin reagent should be made to provide a supply to last two or three months. The standard colors last almost indefinitely if kept tightly stoppered, but should be remade whenever a new supply of the 98.5 per cent sulphuric is prepared.

An experienced analyst can determine boron in 15 to 20 samples of steel in eight hours by this method.

Reagents

Sulphuric Acid (98.5 per cent by weight)-To 1200 milliliters of ordinary concentrated sulphuric acid (specific gravity $1.84,95.5$ per cent) add 600 milliliters fuming sulphuric acid 20 per cent, mix well and allow to cool. This should be kepi tightly stoppered while not being used. Store in a glass stoppered bottle.

Quinalizarin Solution-Dissolve 0.01 gram of quinalizarin (E. K. Co. 2787) in 100 milliliter of strong sulphuric acid made by slowly adding 9 volumes of 98.5 per cent by weight sulphuric acid
(Please turn to Page 131)

4800 workers wil be hurt today

The safety hints given here are from "Piping Pointers" Bulletins-a Crane service aiding piping men in hundreds of plants in doing more to help win the war. Giving many "do's and don'ts" and "rights and wrongs" on keeping pipe lines at peak efficiency-conserving critical metals-and speeding piping jobs, these bulletins, based on Crane's 87 -year leadership in flow-control engineering, are especially valuable for training new maintenance men. Copies free on request from your Crane Representative or by writing to: Crane Co., 836 South Michigan Avenue, Chicago, Illinois.

4 Install relief valves where there is danger of
5 lnspect sprinkler system control valves regularly. Keep them open always.

RANE
VALVE

High Inertia Generators Designed To Save Copper

High inertia electric generators usually require large diameter rotors since inertia is proportional to the square of the radius. Large diameter rotors call for large amounts of copper. Confronted with the problem of providing generators of high flywhecl effect for an aluminum
plant, engineers at Westinghouse Electric \& Mfg. Co., East Pittsburgh, Pa., solved the problem by using extra-heavy rotor construction.

First it was decided to reduce the rotor diameter, but this normally required a length of 17 inches. By adopting the extra heavy rotor it was possible to cut the length to about $131 / 2$ inches.
Thus the inertia was obtained witi
steel and the copper requirements were held to a minimum at the same time.

The design saved nearly 1000 pounds of copper on each of eightecn 2250kilowatt generators. The machines are driven by diesel engines and without high-inertia generation is the pulsation of the reciprocating engines would be reflected in the voltage. This is said to have an adverse effect on the electrolytic cells where aluminum is deposited.

Ryerson Data on NE Steels

SUPPLEMENTING the data presented in the article, "Facts and Figurcs for Practical Use of NE (National Emergency) Steels", appearing on p. 76 of the March 29 issue of Steel is this table giving the physical properties of typical high-hardening steels. This information could not be included in the March 29 issue because of space limitations but is presented here because of its importance.

TABLE IX-Physical Properties of HIGI HARDENING NE Steels

A DIE CAST HEART FOR MECHANICAL LUNGS

A resuscitator and its die cast heart assembly
Each of the many models of resuscitation units produced by a prominent manufacturer is equipped with an assembly of four zinc alloy die castings which constitute the "heart" of the breathing mechanism.
These castings, illustrated above, have a number of ad. vantages over parts produced by other means. Their dimensional accuracy assures a "tight" assembly, they are complex in design to minimize machining and assembling costs, and they are tough enough to take abnormal abuse.

The latter point is important when one considers that these mechanical lungs are now seeing service with our armed forces in the field, as well as in civilian hospitals. The particular unit shown above can be converted - by a simple adjustment - into a resuscitator, an aspirator (drawing off throat secretions) or an inhalator.

QUESTIONS \& ANSWERS ON DIE CASTINGS

What is a die casting? What is the rate of production in

Send for your copy now

THE

 zinc
Alloy POT

A publiation issucd for many ycars by Tha New Jexary Zinc Company to report on frends and accomplishments in the Geld of die castings. Title Reg. U, S. Pat. OM. STEEL MAGAZINE EDITION No. 8
die casting? What shapes are possible in dic casting? Is the die casting process applicable only to mass production? If you want the answers to these questions, or if you have other questions on the subject of die castings, write for a copy of the booklet "Zinc Alloy Die Casting," just off the press.

ALL-DIE CAST BAND SAW GUIDE

The versatility of zinc alloy die castings is clearly illustrated in the band saw guide assembly shown below. Everything is die cast except the guide wheel and a tew screws. The manufacturer says:
"The design is such that had this been made in the usual way from rough castings and machined, the cost would have been prohibitive and the assembly would have been heavy and cumbersome. By die casting these parts the guide is very compact and very strong, but accurate for the work it has to do."

This guide can be assembled either right or left hand for use on any band saw above or below the table. It will operate on saws with a blade speed up to two or three miles per minute. A wide variety of war work is now being turned out with the use of this guide in shipyards, aircraft plants and other war industries.

Six die castings in the complete guide assembly

Iardenability in Evaluating Physical Properties of

$\binom{$ National }{ Emergency } :LUM डचह हैड

ABUNDANT metallurgical informiltion collected through years of experience in both the manufacture and application of steels now enables us to predict certain generalized effects of several elements on the physical properties of stecl. While the quantitative data in regard to factors affecting the physical properties of steels is not as good as the rualitative data, our knowledge is sufficient to permit us to predict the general characteristics which will be inherent in a steel either as a result of its composition or mode of processing.

The most recent major contribution in the field of metallurgy is the standardization of the end-quenched hardenabil:ty test. Such standard hardenability data may be advantageously used for the comparative selection of stecls.

After designing the NE steels to meet the composition limits of alloying elements specified by the War Production Board, it became essential to select a means of cvaluating these new compositions in terms of their physical properties so as to provide a means of determining the adaptability of the newly proposed compositions as substitute alloys. In view of the excessive time which would be required in obtaining data on standard tensile and other physical property tests on all alternate compositions, together with the pronounced variation in results which might be expected due to difference in heat-treat procedure, it was decided that compasison of stamdard end-quench hardenability data would serve as an adequate guide.

The advantages gained in the selection of the hardenability test as a comparative means of selecting the NE steels cannot be over emphasized, for it is generally conceded that physical properties such as tensile strength, yield point and ductility are closely related to harduess. The work of Janitzky and Baeyertz on SAE steels shows that definite relation-

[^6] Co., Center Line, Mich., Jan. 14. 1943.

For information on development of NE stecls and their properties, see Steex, Feb. 9, 1942, p. 70 ; March 16, p. 72; Jume 8, p. 66; June 15, p. 66; July 13, p. 80 ; July 20, p. 86 ; Aug. 3, p. 70; Aug. 17 , p. 40 ; Aug. 31, p. 41, p. 76; Sept. 7, p. 78 ; Oct. 19, p. 66; Nov. 9, p. 96 ; Dec. 28, p. 27; Jnn. 25, 1943, p. 84; Feb. 22, p. 102; March 1, p. 94; March 8, p. 90; March 15, p. 94 ; March 22, p. 78; March 29, D. 76.

For reports from users of NE steels, see Nov. 16, 1942, p. 106; Nov. 23, p. 90; Nov. 30, p. 62; Dec. 7, p. 112; Dec. 14, p. 99; Dec. 21, p. 70; Jan. 11, 1943, p. 60; Jan. 18, p. 66; Feb. 1, p. 100 ; March 8 , p. 109 ; March 15, p. 96; March 29, p. 72.

For latest revised list of NE ALLOY steels, sec March 1, p. 98.
For list of NE CARBON steels, see March 8, p. 90.
For list of AMS (Aeronautical Materials Specifications) steels, see Sept. 7, 1942, p. 78.
For details of WD (War Department) steels and complete listing, see Feb. 8, 1943, p. 80.
ships between tensile strength, yield point and ductility as a function of the hardness can be obtained regardless of the chemical composition of the alloys. Likewise, similar relationships may be expected from the NE steels which are also of the intermediate alloy class. It must be remembered that regardless of the composition, steels showing the same hardness, produced by tempering after hardening, will have the same tensile strength and yield point, providing the

By C. NILSON
Chief Metallurgist And
A. W. HERBENAR
Technical Metallurgist

original quenched structure is substantially martensitic or fully hardened.

It is the purpose here to present a general treatment of bardenability, its affecting factors and the interpretation of hardenability results, and furthermore, to illustrate the use of hardenability data in the evaluation of physical properties of steels.

Hardenability: The term hardenability refers to the ability of a steel, when quenched from its proper hardening temperature, to develop a definite hardness on the interia. In more technical terms, the hardenability of a steel is a measure of the extent of retardation of the austenite to ferrite and pearlite transforma-
(Please turn to Page 150)

Location Point	TABLE 1-Mardenability Test Results				
	Cooling Velocity	Distance from	R/C	R/C	R/C
	$\text { (a) } 1300^{\circ} \mathrm{F} \text {. }$	water cooled end (in ")	Hardness (high)	Hardness (low)	Hardness (average)
	1-Inch Round				
Surrace	120	4/32	58.0	53.0	58.0
2.s's	68	9/32	86.5	49.5	54.0
$1 /{ }^{\prime \prime}$	54	11/32	55.5	47.0	53.0
3010	48	12/32	54.5	45.0	51.0
$1 / 2$ "	45	13/32	54.5	440	49.5
2-Inch Round					
Surface	58	11/32	55.5	47.5	52.5
$1 /{ }^{\prime \prime}$	30	16/32	52.0	39.5	47.0
$1 / 2$ "	2.1	18/32	50.0	37.0	44.5
N"	19	21/32	48.5	34.5	41.5
$1^{\prime \prime}$	15	22/32	45.0	34.0	40.0
3-Inch Round					
Surface	30	16/32	52.0	39.5	47.5
\%s"	16	24/32	42.5	33.0	38.5
${ }^{\prime \prime}$	19	28/32	40.0	32.0	36.5
14\%	10	30/32	39.0	31.5	35.5
14.	9	33/32	37.5	31.0	34.5
4 -Inch Round					
Surface	15	24/32	42.5	83.0	38.5
Li"'	8	36/32	36.5	30.5	34.0
	6.5	40/32	35.5	30.0	33.0
116	5.5	18/32	33.0	28.5	31.5
$2^{\prime \prime}$	5.0	64/32	32.0	27.0	30.0

DISTANCE FROM QUENCHED END OF SPECIMEN SIXTEENTHS OF INCH
Fig. 1-Tentative hardenability band for 10 heats, 13 tests, of NE-8739

Fig. 2-Chart for using the hardness-cooling rate curve to predict hardness U-curves in various size rounds when oil or water quenched
Fig. 3-Hardenability curves of the U-type for NE-8739 steel

Fig. 4-Relationship between brinell hardness and tensile strength of NE-8000 series steels, normal expectancy
Fig. 5-Relationship between tensile strength and tempering temperature for NE-8000 steels, normal expectancy

Fig. 6-Relationship between tensile strength and yield point. for NE-8000 series steels, normal expectancy
Fig. 7-Relationship between tensile strength, reduction of area and elongation for the $N E-8000$ series steels, normal expectancy

(2) :

Cente Cowing Aatin of Ithimated Curan trom riurith
U* HARDENABIUTY CURVES FOR NE B739 STEEL

COPYRIGHT 18A3-jones a laughlin steel corporation

TEAMWORK POURING STEEL BACKS UP

America's steel mills today are producing steel for war at the all-time high rate of 95 million tons a year. 'This averages enough steel in one second's time to make four jeeps - a dozen gun-shields.

In the illustration you see a skilled crew pouring molten steel into man-high molds to become ingots

- unit measure of steel production - steel in its first solid form.

The men on the platforms and the cranemen mancuvering the huge ladles from aloft, make up real All-American teams, typical of those all along the steel front of 650,000 workers who are employ-

By doing many things a little faster, $\mathrm{J}_{\&} \mathrm{~L}$ is producing more steel for war.

OUR FIGHTING MEN

ing all their skill and teamplay to make every second count against the enemy and toward saving American lives on the battle fronts.

Jones \& Laughlin Steel Corporation

 Pittsburgh, PennsylyaniaCONTROLLED QUALITY STEEL FOR WAR 51EEL

STYLE AND STEEL

Hair-dos to heel heights - Preference for type of dress by women war workers is rerealed in survey conducted by Pitisburgh Sun-Telegraph's fashion editor Toni Drake. Women working in war plants (including J\&L) of three major industrics told what they wear on the job and during hours away from work. Most prefer coiffures long enough to be adaptable to many styles. A large percentage prefer dresses to slacks for wear on the job although slacks are required in many instances because of type of work. Low heel shoes and stockings are favored by a large majority. For off-the-job dress 84.6 percent roted high heels; stockings are favored by 98.4 percent. Rayon crepe is the leading selcection of fabrics for dresses. Most girls pay between $\$ 5$ and $\$ 10$ for date frocks. Many have fur conts. Results of survey also reveal girls in industry know more than average about correct complexion care.

Coquettish War Stamps. A style for the duration, having its nation-wide debut this Spring, is a series of corsages made of war stamps designed by leading American stylists and creators of fashions. The U. S. Treasury Department plans to bring out new designs from time to time and thereby establish a continuing fashion vogue. Corsages for women and boutonnieres for men contain 9 ten-cent stamps, are sold without profit.
Washington's gunsmith for his Virginia regiment, before the Revolution, Scotch John Fraser, whom Washington met on one of his expeditions to the "Forks of the Ohio" (Pittsburgh), attempted to produce iron from native ores as carly as 1749 .

For record steel plate production in war, thank American motor vehicle industry and other manufacturers of peace-time articles and domestic appliances made of steel sheets. Their demand for long, wide, casily workable sheets of steel led to invention and development in America of modern strip-sheet continuous rolling mills that used to turn out auto-body and refrigerator sheets at the rate of 100 yds . in 10 seconds. As war threatened, these great mills were quickly converted by ingenuity of American steel industry into astonishing producers of war-steel plates for ships, guns, tanks, army trucks, railroad cars, commando barges, light navy fighting craft and countless other priceless war-time applications not otherwise possible to produce without dangerous delay.
20 men in a row, representing a total of 514 years of service at $J \& L$, were sented on stage at the recent presentation ceremonies of the Army-Nary "E" production award to the Aliquippa Works of the Jones \& Laughlin Steel Corporation. This row of men was made up of superintendents of the various departments of the works and a veteran employe from ench of these departments.

WAX COATINGS

SPECIAL rust-inhibiting wax emulsions are now quite widely used for final finishang of a great variety of metal surfaces to provide an attractive protective finish that has the additional gutality of dryness not found in oil finisloes. They nlso are extremely effective as shop coatings to protect the surface of semi-finished or completely finished parts cluring the time that may lapse Wefore they are assembled into the finished product. Since such wax emulsions proxduce a hard, dry, profective finish, they combine excellent apparance with minst resistance and low cost of application.

These wax finishes are suitable for metal artieles and parts of all kinds. They provide groed coverage and in the case of pigmented black waxes, good hiding power. Too, they dry fast. They are easily applied by comentiomal dip or spme methods, either directly over the metal or over painted or plated surfaces.

The use of wases as rust inhibitors has been greatly aceelerated by the wat. This, of course, is dhe to the fact that materials for the usual electro-plated

Abstract

. . . . provide effective protection to metal surfaces. Hard, dry finish combines excellent appearance with rust resistance and low cost of application; well suited as shop coat to protect finished parts or work in process

coatings are practically unobtainable. Of course rust-inhibiting waxes camot be classified as permanent rust inhibitors but they do serve the highly useful purpose of providing treated or untreated metal surfaces with a substantial degree of protection against rust and corrosion.
Wax itself is protective, inert, dense and highly resistane to corrosion. It remains effective for a considerable length of time. Naturally, the exact dengree of protection depends on the size and nature of the metal surface as well as the service conditions to which it is subjected. Rust-inhibiting wax coatings are available in a clear finish,

[^7]black and a number of special types.
Unlike oils or greases, rust-inhibiting wax coatings produce a protective, rustinhibiting finish that is completely dry to the touch. This particular characteristic has been responsible for the wide use of such finishes on many metal surfaces, both interior and exterior. Rustinhibiting waxes have an advantage over all finishes for shop coatings in that they provide a dry thin film which cannot be removed easily by handling or by contact with paperboard or other absorbent materials. Thus the wax finish remains on the surface and can usually be depended upon to give longer protection than an oil. However, the initial resistance of waxes under some conditions may not be as high as that of some oils.
In one corrosion test, two brackels were tested for a 24 -hour period in (Please turn to Page 155)

cheching

Besides the two models illustrated-there are many other "HY-MAC" test units for various purposes in the field of aircraft. Here is a brief description of a few others:

T-103 Stationary Hydraulic High Pressure Tube Testerprimarily designed for testing flexible tubing but also used for checking short sections of plain metal tubing . . . as many sections as required may be tested af a time . . . the Hydraulic Pump is capable of a 1000 lb. per square inch pressure that may be built up to a $10,000 \mathrm{lb}$. per square inch pressure by means of a built-in intensifier.
T-104 Water Pressure Test for Aircraft Cylinder Heads. ... Heads are clamped into position on a trunnion that may be rotated for inspection. It is operated by a Hydraulic power plant capable of producing 1000 lb . per square inch, which is supplemented by a high pressure hand pump or intensifiers to accomplish whatever pressure is required. All of the mechanism is enclosed.
Send for complete information regarding "HY-MAC" HYDRAULIC TEST EQUIPMENT.

HYDRAULIC MACHINERY, INC.

G irls Can Do It. Can women operate battery industrial trucks? Can they charge and exchange the batteries? Do they make good operators? The February issue of Storage Battery Power contains an article describing the experience of one plant with women truck operators. If you have not received a copy, ask for one.

Truck Hours Daily. Using three 8 -hour batteries or, preferably two 12-hour batteries and exchanging them at corresponding intervals gives you a truck that will operate 24-hours a day with no truck time out for charging or watering of batteries. That's done while the batteries are out of the truck. And alkaline batteries are easy to exchange because of their light weight.
 oad-Time. Railroads have no more freight cars in number than during the last war, but are getting double the use out of them. Quicker loading and unloading and fuller loads thanks to lift and fork trucks which permit pallet and skid shipping are part of the reason. More freight cars would be on the road more time if identical pallet and skid systems were in use. Consignor and consignee can get together to standardize shipping procedure-save money for themselves-and help the war effort. Thomas A. Edison, Inc.

POWER

"It's the power unit best suited to the war production job." Here you have the answer to the preference for material handling trucks equipped with alkaline batteries. First, fewer trucks can do more work where storage batteries provide the motive power. There's no time off duty for repairs, "spare" trucks don't have to be on hand for emergencies and each truck can operate 24 hours out of 24 . Second, you can use a battery truck anywberein freight cars, elevators-it can
even be made explosion-proof. And, the advantages of alkaline batteries in such trucks are quite clear. They can be charged in 6 to 7 hours and require no periodic equalizing charges, thus permitting maximum use of charging circuits. Where d-c shop lines are available they can be charged direct from the lines by the use of control panels only. But most important of all, alkaline batteries are dependablethey are not subject to unexpected sudden failure.

INIDUSTIRY NEEDS TIE DEPENIDABILITY DF
Edison
alkalin ne BATTERIES

loader－equipped freight cars

By E．S．EVANS
President
Evans Producis Co．
Detroit freight cars can be alleviated in three ways，despite the order limiting con－ struction of new cars－by loading all cars to capacity，by reducing the time they spend in terminals and by elim－ inating duplicate shipments necessitated by damages sustained by original load． Figures show that cars spend more than five times as much time in terminals as they do on the road，and they are usually loaded only to about two－thirds capacity．

One device which strikes at the root of all three of these evils，the Utility loaider of the Evans Products Co．，De－ troit，can be installed inside any box car－old or new，steel or wood，single
or double sheathed．As can be seen in Fig．1，it consists of cross beams sup－ ported by a sted framework attached to the car walls．These cross beams， adjustable to $1 / 2$－inch intervals vertically and horizontally，provide fur multiple－
deck lowding to utilize the entire space inside the freight sar from floor to rood， brace the load securely in position with no slack and protect light or fragile commodities．They also make conven－ ient platforms for workmen to stand on when loading above their heads，is shown in Fig． 1.

Increasing the Payload：In 19：37 the

Fig．1．（Aboce）－Loading method utilizes cross beams sumported by sted framework which allows lowals to be packed to prevent horizontal and vertical movememt during shipment
Fig．2．（Left，below）－Leads like these automohile doors can be tiered to the roof，affording an increase in payload per freight car of from 20 to over 200 per cent
Fig．3．（Right）－L．C．L．loads are handled equally well by the Utility loader as shown here．Note cartons on floor held in place by cross beams

average weight of a box carlorad was 16.5 turis. In 104 carlads handled in Utility loader cars in commercial revesue service on which figures are available, the average weight was 24 tons per carkad in spite of the fact that these were all "problem" laads with bad case histories due to damage sustained or other difficulties. This average was based on more than 30 different commodities. On these same 30 com modities in unequipped cars the average load was 18 tons. The increase per carload due to fors-to-roof and end-toend loading made passible by the loador was actually 6 tons, or an increase of it/2 torns uiter the calculated average
its peculiar shape or other reasons and the heary expense of multiple decking such loads safeh: The crushing weakpess of cartons and crates in many instances makes it impossible for shippers to make evea a minimum load. However, the Utility loader permits tiering fragile loads safely to utilize all available space, and to transport them without damage.

Airplane parts, storage batteries, certain farm implements, automobile sheet metal parts, enameled stoves, glassware, transformers, and many other products which cannot be multiple-decked safely in ordinary box cars have been tiered to the raof without damage by the

Fig. 4-This tool engaging the tecth in the rack permits tightening load securely to prevent loads from becoming loose and hammering upon themselves. Thus the loader precents the cause of most shipping damages
for the United States on the 1937 figures. Thus the loader increases the payload approxirately $331 / 3$ per cent, and erery 100,000 cars equipped with the Uotiey loeder will be equivalent in payloud ruphatity to 133,000 box cars.

The flifice of Defence Transportathem has orturet tice ail cars with LiOl. (Fess thes cathad) shispreais be louded to its practical weight ar rebis capatity. The loutiter prumits chas beav-
 matiory Eroghe. Hewomer Alewite strit: athes to dowite or friphie deck lauds. Ahere now may probue:s which canon?
 conese of five femgitity of Che commisotes.

Utility loader, resulting in increases in payload ranging from 20 to over 200 per cent. Fig. 2 shows automobile doors tiered from floor to roof in a loaderequipped car.

Damage Elimination: Second only in importance as a war measure to increased loading to capacity is the elimination of damage and delays incident thereto. Every picce of merchandise damaged takes away from the war effort shelable lajor and manufacturing facilities It is a loss to the railroad, a boss to the receiver and, more importast stiti, necessitates using railroad avepune for replacement. A large procturagt of damages today are pre-
ventable damages, and this is particularly true of bon carkads. The Utility loader has been found to eliminate 95 per cent of damage in transit.
In the so-called "light weight commodities", total loss and damage in 195. was $\$ 9,356,923$. This type of damage can be eliminated almost entirely by use of this loader. Ninety jer cont of the damage accoung in transit in ordinary box cars is due to slack in the load. Tests made in loading automobiles using chocks or loading blocks for retaining the automobiles in position demonstrated that where the loading blocks were fastened to the floor ${ }^{1}$-inch away from the tires, the strain exerted on the bracing was 400 per cent greater than where the loading blocks were fastened tightly against the tires. This semi-rigid loading and elimination of slack is the basic principle of the Utility loader as far as damage elimination is concerned.

The elimination of slack through the use of a "persuader" to tighten the load unit by unit as shown in Fig. 4 prevents the loaded commodities from hammering on themselves. This climinates the progressive damage occuring when any part of the load fails because of inadequate or improper crating or assembly, which creates slack throughout the entire load in an ordinary box car. Any slippage during transit of the automobile doors in Fig. 2 would have caused serious damage to their fragile edges. However, the cross supporting them from below and bracing them from the sides allowed no loosening or play and gave them perfect protection.

Slack is a frequent cause of damage in L.C.L. shipments, which constitutes a large proportion of all box car loadings. About 45 per cent of United States Army shipments are less than carload. This type of shipment has always offered great difficulties, even prior to government orders for heavier loading. The bracing and bulkheading which are necessary in the conventional box car are often so applied that when part of the load is removed at an intermediate destination, the rest of the load is loosened and suffers damage in consequence. The loader permits each carload to be divided easily into separate compartments consigned to various consignees. Each compartment remains tight to its own destination, which helps prevent the misdelivery of goods, also.

Fig. 3 shows an L.C.L. load of various automobile repair parts of all sizes and shapes upon arrival at its destination. Note that the cartons on the floor are held firmly in place by crossbeams,
(Please turn to Page 159)

Scale 7 ree Work without CACARBURIZATION

 or 450 lb . F.-Wt./cu. ft. -125 lb . Packed in 200 lb . drums approxim. barrels. When used with Park Rectifier at rate of approximately $1 / 4 \%$ of bath weight per 24 hour day, to remove oxide impurities, which are easily removed daily from "sludge" formed at bottom of bath, this non-fuming salt produces scale free work without carburization or decarburization. Products can be oil or water quenched, with perfect solubility after quench. To reduce surface heat losses by bath radiation, etc., it is sometimes advisable to use Park Kase Carbon as a cover for top of bath. This will not burn up readily, and provides more economical operation. Salt operates in pressed, cast steel, treated alloy containers, or internally heated pots. RECTIFIER NO. 1-Powder-50-100 lb. drums.
PARK KASE CARBON POWDER -$50-100 \mathrm{lb}$. drums. Write today for bulletin No. 100.
 sted requiress a pound of alloy muterkids such as tengsten, chromium, tanadium atc.

Fig. 2-Where fool holders wre used, whloy materials are: required only in the in x ak mod bit showe below holder

How will YOU Answer This Big Question?

So the question is: "What technical improvements in manufacturing methods, developed in war work elsewhere, could be adapted to our peacetime operations?"
ALTER EGO: That's it- one of the questions being asked industrialists by the new Committee for Economic Development, urging PLANNING NOW for post-war business.

Well, here's one answer that I've found "elsewhere". This shipyard has boosted the speed of $3 / 8^{\prime \prime}$ fillet welds from 30 ft . per hour to 65 ft . with the "FleetFillet" Technique. We can apply this 111% speed increase to our peacetime operations - to cut costs of our products.
ALTER EGO: That's what we want-lower costs. But we also want to improve our designs so we'll advance on the two fronts on which the Battle for Business will be foughtCOSTS and PRODUCT QUALITY.

Let's look to Lincoln for the welding knowledge to put AND KEEP our costs and quality ahead of competition.
Ask your innerself:"What welding improvements 'DEVELOPED IN WAR WORK ELSEWHERE' can profitably be applied to our peacetime operations?"

THE LINCOLN ELECTRIC COMPANY CLEVELAND, OHIO
halo Courtesy Consolidated Noel Cry

\ldots and A-C WELDERS"

"Production-line welding in 10 days by women operators who never struck an are before? A few days ago we would have thought it impossible. Today, it's a fact!'

So states this official, who has supervised the training of more than 600 women welders, for producing tank trend shoes on seven continuous production assembly lines. The average woman worker quickly lenrns how to strike an are and run short beads-from then on she practices, practices, practices welding tank trend shoes. Usunily in ten days she is ready for actunl production welding (work must pass bend iests) where her initial work is carefully supervised by her instructor.
"One of the biggest factors that has made it possible -and successful," says this electrical engineer, "has been the use of a-c welders. We bought them originally because they were immediately available, although we had always used d-c.
"We found, however, that the freedom from arc blow made it much easier to develop qualified operators. Weld quality is excellent. Most important, we've had literally no maintenance in nearly a year of 24 -hour-a-day average operation."

$$
\star \quad \star \quad \star
$$

The 275 Westinghouse a-c 500 -ampere welders in operation at this plant are just a few of the many Westinghouse welders that are solving problems of availability, ease of operation and freedom from maintenance for many war plants. Ask for booklet B-3136. Westinghouse Electric \& Mfg. Co., East Pittsburgh, Pa.

J-21269
PLANTS IN 2S CITIES...

Boron in Steel

(Continued from Rage 114)

to 1 volume of water. Store in a glass stoppered bottle.

Standard Boric Acid Solutions-Dissolve 2.8578 grams of boric acid in 1000 milliliters of distilled water. This solution contains 0.5 -miligram of boron per milliliter and serves as the primary (A) base stock solution. Prepare a second (B) stock solution containing $0.01-m i l l i-$ gram of boron per milliliter by diluting 20 milliliters to (A) stock solution to 1000 milliliters with distilled water and a third (C) stock solution containing 0.001 -milligram of boron per milliliter by diluting 100 milliliters of the second (B) stock solution to 1000 milliliters.

Dilute Sulphuric Acid (1-4)-To 400 milliliters of distilled water slowly add 100 milliliters of concentrated sulphuric acid, specific gravity 1.84 . When cool dilute to 500 milliliters. Store in a glass stoppered bottle.

Apparatus

Test tubes 17 centimeters long with inside diameter 1.8 centimeters marked with a file at 10 mililiters.

Air Condensers-Glass tubes 3 millimeters inside diameter about 70 centimeters long, each fitted on one end with a No. 3 one-hole rubber stopper to fit the test tubes.

Bottle for developing the color of standards and samples. Preferably glass stoppered having at lenst 50 -milliliter capacity with inside diameter of 3 centimeters. The final solution in these bottles will have a depth approximately the same as the diameter.

After these standards are measured into dry comparison bottles, 20 milliliters of the 98.5 per cent sulphuric acid are added slowly and stoppered. When cool, 1.0 milliliters of the quinalizarin solution from pipette is added, the solution mixed by gently swirling and stoppered
tightly. After 15 minutes, the colors become fully developed and are ready for use. They are permanent if kept stoppered to prevent absorption of water.

One-gram portions of Burcalu of Standard sample No. 55 -a or other boron-free steel are weighed into seven dry, marked test tubes and treated as indicated in Table II.

The standard represented in Table II will be completed as described in the analytical procedure.

Procedure

One gram of the steel to be tested is placed in a marked test tube, 8 milliliters of $\mathrm{H}_{2} \mathrm{SO}_{4}(1-4)$ are added and the test tube stoppered with an air condenser, and placed in a beaker of hot water. When all action ceases, remove the test tube and cool with running water. Disconnect the air condenser, wash down the inside with two $0.5-\mathrm{mil}$ liliter portions of water, collecting these washings in the test tube. Dilute to the 10 -milliliter mark with distilled water, mix thoroughly and filter through a close, dry, 9 -centimeter paper, collecting the filtrate in a dry, small beaker or test tube. Reserve. This filtrate contains the boron which is soluble in $\mathrm{H}_{2} \mathrm{SO}_{s}$ (1-4).
Replace the beaker or test tube with another and wash the paper with distilled water then with dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ (1-20) and finally with water to remove all acid. Discard the washings. After all washings have drained from the paper, scatter 0.5 -gram of $\mathrm{Na}_{3} \mathrm{CO}_{3}$ on the inside of the paper. Place in a small platinum crucible (about 10 to 15 -milliliter capacity; a crucible used for volatile matter in coal will suffice), and ignite at a low temperature. When the paper is all or nearly all burned off, increase the temperature and fuse the
(Please turn to Page 149)

MULTIPLE-OPERATOR SETS

Do the work of 20 to 30 single-operator rotating sets. Stationary types for shop operation-semiportable types for use on shipways and similar applications. Ask for complete data.

Compact, single-operator control panels for fit-up work with multiple-operator sets. Extra capacity for light tack welding.

Write for latest literature. Westinghouse Electric \& Mfg. Co., East Pittsburgh, Pa.

J-21269

INDUSIKIAL EQUITIVINI

Reflector Latch

Sylsamia Electric Products Inc., Lighting Division, Salm, Mass, reports a new Captive latch-a powerful springtype fastening that holds the reflectors

of its line of composition reflector fluorescent fixtures securely to the top housing.

Easy to operate, the latch requires only a quarter turn to remove the reflector, it is said. No tools are neecled and, since the latel is an integral part of the top housing, it cannot become loose and drop ont. The lateh is inemspicuons in its position between the lamps and in no way affects the appearamee or efficiency of the reflecting surface.

Vacuum Creator

Leciman Bros. Inc., ACl45 Christie: strect, Newark, N. J., reports a vacuum creating outfit for testing all sorts of delicate instruments. Its vacum may be: adjusted tor any degree desired as also cim be the pressure. The outfit is offered

fumished with full automatio controls and automatic lobrication, The mathe is a slow rumbing mit, exceodingly equiet in opreration the comprany states.

Press Type Welders

lier Equipment Mfy. Co., Benton Harbor, Mish., :mmonces addlition of serics $\mathrm{P}-50$ and P - 100 antomatic air-01perated press type welders to its clectric welder line. These, it is reported, are designed for high speed precisiom projeetion and gemeral spue resistance welding of shect and structural sted assemhlies, wire and noutermens metals. They
are equipped with double-acting air cylinder and control valves to provide smooth speedy action.

Pressures depend on the size of cylinders and range from 800 to 4000 pounds readily adjustable by means of a regulating valve. Die platens with T slots hold projection welding dies, while for the spot welding operation each welder is supplied with two $21 / 2$-inch diameter by 8 -inch copper horns machined to accommodate $1 \frac{1}{4}$-inch watercooled electrode holders either at right angles or in offset position. Standard throat depths are 12 and 24 inches.

The series $\mathrm{P}-50$, shown in the accompanying illustration, is built in two trans-

furmer capacities, 30 and 50 kilovoltampere and the $\mathrm{P}-100$ in 75,100 and 150 kilowolt-ampere. The P-50s are supplied with either 4 or 5 -inch cylinders with 6 and 8 -inch for the P-100, NEMA types 1,2 and 3 controls of welding timing and sequence are available, making ahnost limitless combinations of operations possible.

Refrigerating Unit

Temprite Products Corp., 45 Piquette aweme, Detroit, recently introduced a moded $555-\mathrm{PD}$ refrigerating mit for use in obtaining good X-ray prints of war material being N-rayed for flaw detection and inspection.
To take X-ray film photographs on a production basis, the compans points out, extremely accurate limits must be mantained on three major points: Immersion time: solution strength and solution temperature. While the first two are at the discretion of the equipment operator, the third depends entirely npon conditions under which the equipment is used and may vary from day to day or hour to hour.

Lack of miformity in "solution temprature" maly mullify the first two factors and result in unsatisfactory prints. To
climinate this variable hazard, the mit illustrated circulates large quantities of controlled temperature water (at the recommended 65 degrees) around the

processing solution containers in the development tank. At the same time, according to the company, a large volume of clean controlled temperature water for washing the film or plates is always available because all used water is clrained off and not recirculated.

A feature of the unit is that the waste water contacts the fresh water inlet coil, thus pre-cooling it and permitting the use of much smaller refrigeration equipment on high eapacity installations. A simple adjusting handle on the outside of the cabinet can lower the water temperature of 65 degrees to 45 degrees for quick cooling in event fresh chemicals are dissolved in high temperature water or the system has been shut down for a considerable period.

Hand Tools

Precise Products Corp., Racine, Wis., amounces two new developments in the line of hand tools-a new power shop tool, aad a Coolfex flexible shaft attachment. One is used to aid the other in their versatile applications.

The shop tool runs 35,000 revolu-

tions per minute. At full load it develops 1/6 horsepower. With this power it can be used for touching up transmission gears, regrinding lathe centers. as an internal grinder in a lathe and for grinding radius to specification.

The tonl features a plastic casc, is

IN MAKING PLUG WELDS AND BOSSES CHANGE RODS BEFORE METAL AND SLAG COOL

BY USING the proper technique in making plug welds and bosses, it is possible to deposit a minimum of weld metal and save time besides. It is not necessary to clean slag between layers. Burn the rod right down to the stub-end and start the new electrode quickly before metal and slag cool. II spite of a nearly 80% increase in 1942 electrode production over 1941, the demand still exceeds the capacity of the industry to produce and every precaution for saving electrodes must be taken. We will gladly send you, without charge, reprints of the series of advertisements on this vital subject for posting in your welding department.

METAL \& THERMIT CORPORATION

120 BROADWAY, NEW YORK
Specialists in welding for nearly 40 years. Morufar-

Unretouched photo showing machine turning from IngAclad Stainless-Clad Plate.

Golden corn syrup is protected in color IndAclad SHEETS.

Stainless Vacuum Steaming Tank nearly 24 ft. lond by 8 ft. In diameter. in material cost.

Thitecentons of $3 / 16^{\prime \prime}$ IngAclad Plate Soap Kettles Instalied in a Canadian plant.

TO SERVE and to SAVE!

To those holding highrated war orders, IngAclad is available in Sheets 18 to 8 gauge, and in Plate form. Regularly supplied clad with 18-8 Stainless, but also available in other analyses.

Wealso produce Ingersoll SolidStainless and IIeat-Resisting Alloys. Send us your inquiries.

Designed as a peacetime product for serving the Process Industries and for the saving of precious alloys, IngAclad has become even more vital in time of War. New applications have been found by our Engineers cooperating with the Armed Services. When Peace is won, the knowledge of these achievements will speed the conversion of many plants to corrosion-resisting equipment through the lower material cost IngAclad makes possible.

Plan now for plant and product improvement tomorros. Investigate Ing-Iclad today. Write for special IngAclad Folder.

INGERSOLL STEEL \& DISC DIVISION BORG-WARNER CORPORATION 310 South Michigan Avenue, Chicago, lllinois Plunts: Chleago, Ill. : New Castle, Ind.; Kalamazoo. Mich.

SEGREGATED INTO USABLE FORM .REDUCED THE JEFFREY WAY!

Jeffrey can show you how to reduce alloy. ferrous or non-ferrous, "Hay" to one-third of original volume ... remove oil and cutting compounds . . . handle it by conveyor system .. meet today's demand for speed and space.

Long coils of segregated metal turnings need not be a tough salvage problem... when crushed to shoveling size they bring better price . . . save two out of three railroad cars.

Besides metal turnings crushers, Jeffrey can furnish a complete handling system ... conveyors, feeders, bins, elevators . . . designed specifically for your plant.

Wright hoists are built to carry more than their rated capacities, but like other well-made pieces of mechanical cquipment they should not be overloaded. Overloading is dangerous to men and imposes excessive strain on the hoist. Certainly, this is no time to take chances with either men or machines.

Watch she load hook. Wright load hooks are drop-forged from special steel which, when subjected to overloading, give visible warning by opening slowly. When the load hook has started to open, look to the top hook too, for while it is stronger than the bottom hook, it also may be reaching a danger point. When hooks show the effect of overloading, replace them immediately with new ones. Remember: repair parts are both easier and cheaper to get than a complete new hoist.

Send today for a free Crane Signal Chart. This chart ($36^{\prime \prime} \times 24^{\prime \prime}$) illustrates the various crane signals-and the use of the Wright system of crane signals will speed crane operation and promote safety. Write for your chart today.

WRIGHT MANUFACTURING DIIISION York, Pa., Chicago, San Francisco, Mew York AMERICAN CHAIN \& CABLE COMPANY, INC.
briderport, comncticut

In Business for Your Safety

 HARMLESIIINO! FEET, CLOT, $\begin{aligned} & \text { gummy grease and oil deposits, } \\ & \text { thereby eliminating fire hazards and }\end{aligned}$ thereby eliminating fire hazards and the cause of accidents due to slippery floors. Also neutralizes and soaks up acids around pickling vats, storage battery spillage, cleaning solutions, etc.

LESSENS FIRE DANGER

It's FIRE-SAFE. Classified as Non-Combustible by Underwriters Laboratories, Inc. It is used DRY; nothing to add; floors remain dry Easy to use. A good stiff brush is all equipment needed. Absorptive action; mildly abrasive. Inexpensive. May be used over and over until fully soaked.
Carey Grease Ball contains no acids or caustics. Does not harm hands, clothing or floors. No critical materials. Prompt shipment in convenient 50 -lb. bags from 45 branch warehouses. Write for FREE sample and full information. Address Dept. 71.

The PHILIP CAREY manuFacturing company

Dependable Products Since 1873
LOCKLAND. CINCINNATI, OHIO
In Canada: The Philip Carey Co., Ltd.
Office and Factory: Lennoxville, P. Q.

10-POUND SAMPLE brings
1000-LB. ORDER
A prominent metals fabrica tor had serious floor condition due to drippings from steel sheets after oil treat ment.

When the gummy, slippery mass of accumulated oil could not be removed by ordinary compounds, Carey Ordinary compounds, Carey Grease Ball was put to the
test. Results were so satistest. Results were so satis-
factory that a 1000 - 1 lb . order resulted.
plugs are provided, one for determining the oil level, one for filling and one for draining the oil.
The transmission in either horizontal or vertical design may be equipped for individual motor drive with the use of a motor base.

Gage for Depth Measuring

Beale \& Arnold Mfg. Co. Inc., 111 Glenwood avenue, Minneapolis, announces a Gauge Master for precision depth measuring. It is intended for use with a 2 -inch micrometer to determine quickly and accurately depths which heretofore could only be taken with is depth micrometer.
The unit, it is reported, can be used anywhere a depth micrometer is used and in many places where it is impos-

sible to use a depth "mike" because of the long barrel.

All parts of the gage are hardened. Surface coming in contact with the work is ground accurately to make depth measuring possible and accurate. It is equipped with two pins; each pin having a $1 / 2$-inch movement. With the pins any depth from zero up can be measured. In using the gage, place it on the work as shown above, loosen lock screw to allow pin to seat itself, set lock screw and measure with 2 -inch "mike" as indicated above. The micrometer reading then is the exact depth.

Blind Rivets

Cherry Rivet Cu., 213 Winston street, Los Angeles, repurts development of Cherry blind rivets designed primarily as a production speed-up for difficult rixeting jobs.

Due to the uniformity of their head formation and shank expansion and the clinching action secured, these units are being used extensively in speeding up aircraft production it is said. They can be applied rapidly in places where it is almost impossible to use a conventional rivet. Standard drilling and dimpling
tools are used to apply then.
Only special tool required is the gan which is used to pull the stem or manclril with sulficient force to head the rivet on the blind side and break the stem. As the mandril is pulled through

the rivet a tulip head is formed on the blind side and the pieces being riveted are securely clinched together.

Illustration shows before and after application. Use of the rivets in building pressure tight cabins proved highly successful, the company stated.

Thyratron Tube

General Electric Electronics Department, Schenectady, N. Y., amounces a new lightweight thyratron tube designed for applications where weight and space must be considered.

Designated as the GL-502, the new tube is a little over $21 / 2$ inches long, weighs about 2 ounces, is inert-gas-filled and of all-metal construction. It can be used in connection with industrial welding and any general control equipment.

The grid-anode capacitance is low enough so that the new tube is relatively unaffected by line-voltage surges. It has a maximum peak inverse anode voltage rating of 1300 volts, instantancous current rating of 500 milliamperes, and an average current rating of 100 milliam-

Werth Atrlean Invasion Port (Official U. S. Nerg Photo). Roustabout granes are hustling war materiel at home and overseas.

This Free-Roving
 Tractor-Footed
 FOLFTISOUL CHIIE

Smashes your Load-Handling Bottlenecks

W
bere you want it when you want it, this speedy loadster hustles bulky odd-shaped stuti in and out, up and over - gives you instant load-handling action that prevents costly delays, saves manpower. In hundreds of depots, airports, docks and defense plants, the ever-ready Roustabout Crane moves, stacks, loads anything to 5 tons - without a whimper. Powerfully built for years of overwork - boom rides a heavy-duty ballbearing turntable, enclosed gears run efficiently in oil. Wheel or crawler mounted, easy and inexpensive to operate. For fast action now, for cost-saving later, write for bulletin showing Roustabouts at work.

595 Now Stroet Manstiold Ohio
585 Newman Street, Mansfield, Ohio ROUSTABOUT CRANES

Load-Handitug Specialists sincer 1904

Shepard Niles "Lifrabour" general utifity hoist, equipped with push-type trolley, Where accurafe spoting is desired, handracked trolleys are recommended. Where considerable distance and fast travel speed is needed, a motor-driven trolley is an economical investment.

Noton-driven, Close Clearance or Low Head Room Hoist. Available with eikher push-ype, hand-racked or motor-driven trolloys.

THE purpose of a hoist is to lift, convey, and deposit materials. Sounds simple, doesn't it? However, in choosing the right type of hoist for any given job, many conditions must be given thorough study.

Weights of loads, speed and distance of travel, both vertical and horizontal, as well as frequency of use are among the many factors which must first be considered for maximum hoist efficiency.

Perhaps your materials handling problem is one which requires complete coverage of a large area. If so, a Single Beam Hoist, in conjunction with a Single Beam Crane, shown above, will do the job. Or, if your requirements are for lifting only, a boltsuspended hoist is the answer.

Whatever your materials handling problem, you may rest assured that Shepard Niles has the correct equipment for you. Put your problem up to a Shepard Niles representative.

SHEPAMD HLLES CRANE \& HOIST CORP.
peres. The cathode is quick heating and is rated at 6.3 volts, 0.6 ampere.

Air Powered Stacker

Lewis-Shepard Sales Corp., Watertown, Mass, is offering a new air powered stacker, a portable elevator for use in comection with various hazardous operations. Powered by a rugged air motor, the stacker will operate efficiently at the same air pressure and volume as industrial overhead air hoists.

Precise control of the stacker platform is at the operator's finger tips so that any speed of lifting or lowering between the maximum lop speed and zero is instantly obtainable. A "dead man" cable control stops the air motor

and stacker platform the instant the operator removes his hand from either one of the dual, holdover controls.
"Cable" control runs the full height of the stacker and is standard equipment. Units are offered in same speeds and capacities as the standard line of electric powered stackers: also in standard hinged and telescropic types for safety.

Glossmeter

Photovolt Corp.. 95 Madison avenue, New York, announces a new photoelectric glossmeter for measuring specular gloss of paiats and varmishes, ceramics, paper and machined or polished surfaces. It is particularly suited to register changes in specular gloss as a result of age, wear, abrasion, exposure to moisture, heat, light, vapors or sprays.

The unit comprises the instrument proper and the search unit which is onmested to it by a dexible cable. The search unit may ix placed on the sun-
ple to be tested. Or, the mit may be positioned with the opening pointing upwards so that the sample is placed on top of it. Samples can be of any size and may be measured in rapid suceession.

The instrument is portable and is available in two models. Model 650 is op-

erated by dry-cell batteries housed in the instrument casing; model 660 is huilt for operation from 105-125 volt, 50-60 cycles alternating current, and also can be furnished for operation from a storage battery. Both models can be provided with extra search units for diffused reflection. The instruments are self-contained and built into a portable housing with cover and carrying strap, Operation is simple and convenient, and requires no training on the part of the user.

Lathe Accessories

Kessler Aero Products Co., 211 West Palm avenue, Burbank, Calif., is offering two new accessories that are claimed to convert most small and medium size engine lathes into the speed range of hand production serew machines.

The first-the quick-acting collet closing attachment handles accurate duplicate work on bar and tubing stock from

$1 / 32$-inch up to and including $1 / 2$-inch diameter by chucking and releasing work while the lathe is running.
The lever-type cross slide used in conjunction with the callet closer permits forming and fast cut-off. Both attachments may be casily assembled without Devices that will help you INCREASE PRODUCTION

"Airgrip" Collet Chucks.
"Alrgrip" Expanding Arbors.

- Alr Operated Universal Three Jaw Chucks.
- High Speed Revoiving Air Cylinders.

Alr Operated Drill Press

 Chucks.- Air Filter, Automatic Lubricator and RegulatIng Valve Units.

Hand Control Operating

 Valves.Hydraulic Cylinders.

Double Acting Non-Rotating Air Cylinders.

Anker-Holth Mfy. Co.
 "AIRGRIP" CHUCK DIVISION 332 So. MICHIGAN AVE. • CHICAGO, ILL.

The Army-Navy "E" Flag that so proudly flies over our plants now carries two stars which demonstrates continuous outstanding achievement in the production of war materials by Wyckoff Production Soldiers. Since Pearl Harbor Wyckoff has been honored with four government merit awards - the Navy " E " in January 1942; the All Navy Burgee "E" in April 1942; the Army-Navy "E" with added star in August 1942, and in February 1943, a renewal of the Army-Navy "E" with two stars.

machine work or interference with the normal operation of the lathe.

Industrial Goggles

Kimball Safety Products Co., 7314 Wade Park avenue, Cleveland, is offering a new type Looks industrial goggle patterned much after those of an aviators' in size and shape. This de-

sign is saicl to provide unobstructed vision.

Lenses are of sheet cellulose acetate 0.040 -inch thick-giving considerable shock resistance and at the same time kecping the weight to the very minimum. The goggles feature a large area of indirect ventilation. They are designed to fit over the wearer's spectacles.

Carbide Tool Grinders

Standard Electrical Tool Co., Dept. B-21, 2488 River road, Cincimati, is offering a redesigned carbide tool grinder which now incorporates the latest features in construction. It is powered by a 3 -horsepower, 1150 revolution per minute motor.

Unit's spindle ends are each equipped

with heay steel backing plate for mounting cup type grinding wheels.

The new construction incorporates a rigid mounting for the work table at each side. The table is graduated and permits a 5-degree adjustment toward the wheel and 30-degree angle away from it. Each wheel is protected by a guard of special construction with an adjustable splash guard, latter being adjustable by means of a hand screw. Design of the machine permits optional use for either dry or wet grinding.

Job Training

(Continued from Page 105)
that in several days there would be an opening for a rivet machine operator so this new operator was immediately assigned to the riveting operation, saving training hours and automatically increasing production.
After the enrollment has been complated, the new employ receives alectore on the particular type of apparatus on which he will work. It has been found that starting with a completed unit and explaining its purpose, what tests it is required to stand, the qualities of workmanship, the conditions under which the apparatus must operate, and in general the requirements of the finished product, tends to create a desire (1) learn more about the component parts. While the instructor still has the new person's questioning attitude aroused, he immediately starts with the first operation and works back, step by step, operation for operation, until he has completed the assembly of all the component parts. To aid in this discussion, the employe is given a complate set of written instructions. A moving picture based on the complete instructions is also used. While doing this, the instructor explains the imporlance of simple operations, which the new person might fail to realize if he did not know how essential it is in the completed unit.

Operations Explained Carefully

The instructor, who is also trained in motion economy and time study, points out during the lecture the reasons for performing the operation in a certain way, such as placement and use of hand tools, arrangement of the work bench, good housekeeping in general, safety rules and regulations. Also at this time the operator is shown a "job card," which is made up of the following items: Quality, good housekeeping, safety, adaptability, quantity, mental aptitude, etc., each of which carries a certain number of credits, based upon its inportance.

After this general lecture, the new employe is then turned over to an individual instructor who is a specialist in specific operations and who has had special training in "instruction of new people" as prepared by the War Production Board. Once again the moving picture is brought back into use. This time to describe the technique or knack of operations, which enables the individual instructor to instruct a greater number of people at one time.

As the new employ starts his operatimon, his performance is watched very

Where Women are Employed

 In IndustryReduce Fatigue...
Make Lifting Easy
WITH
CURTIS AIR HOISTS

\#

A. If you are considering employing more women in your plant, you can convert most manual lifting perations, make tough jobs easy, and speed up your output with Curtis Air Powered Hoists.
Many heavy lifting jobs, formerly requiring male labor, may now be accomplished quickly and easily by women, using Curtis equipment.

Curtis Air Hoists provide these important advantages:

- Smooth, fast, accurate control of loads
- Low first cost - lowest operating expens
- Light weight - pendant, bracketed, or rope compounded types
- Immunity to abuse or overloads
- One-man or woman operation-fingertip control
- Do not require skilled labor

Hundreds of war production plants have increased production efficiency, reduced worker fatigue, saved thousands of man-hours by solving many material hoisting problems with Curtis equipment. Write for full information and free booklet, "How Air Power Is Being Used in Your Industry."
Conserve Metals - Buy War Bonds

ST. LOUIS - NEW YORK - CHICAGO - SAN FRANCISCO - PORTLAND
CURTIS PNEUMATIC MACHINERY DIVISION of Curtis Manufacturing Company 1996 Kienlen Avenue, Sc. Louis, Missouri

- Please send me your free booklet, "How Air Is Being Used in Your Industry," and further details concerning Curtic Air Hoists.

Name...
Firm.
Address.
City.

closely by individual instructors and is periodically checked by the supervising instructor. This is done simply and easily through the use of the "enrollment sheet" and what is called the "standard training specification," and the "job card." The specification sheet has been arrived at by taking the maximum number of weeks allowed for the so-called "learning period" and changing them into the minimum and maximum hours. In so doing, the records show an average decrease over old training period from 14 to 8 weeks and with fewer rejects per new employe.

This specification makes it possible to check the performance of the average new employe to the hour, instead of week. This is of great value, for if the new employe does not perform accordingly, there is evidence that something is wrong. It might be adaptability, it might indicate signs of poor follow-up on the part of the instructors, or it might be the mental attitude of the person. Whatever the cause, it acts as an alarm to the supervisor of training.

The Job Card: Each new employe receives a "job card" at the time of his enrollment in the school. It shows the

Up there alone, hobobobing with the scudding clouds in the white-flecked azure, what's in the back of his mind, while he scans an ocean monotonously empty?
There are long and glamorless stretches to patrolling. Plenty of time to think-in a detached way that doesn't distract his watchful eyes from sea or instrument panel. Plenty of time to see a sunlit street, a campus path, a breath-catching moment of bashful ardor under a genial moon. Whatever the image, it stands against the background of coming home to opportunity, to work, to fulfillment.

And that's what it will be if production is pushed, if paydays are bonddays and if spare hours are devoted to plans for supplying post-war markets-and thereby a job and home for this boy.
It's bis due
There'll be a hunger for the goods we've done without, but they'll not be identical goods. They'll be improved or entirely new. Made, quite probably, with machines that have yet to be built-machines that are typical of American ingenuity-perhaps even like some of those developed and made here at FIDELITY and described in "Facilities."
Write for a copy of this illuminating book.

FIDELITY MACHINE COMPANY
3908-18 FRANKFORD AVENUE, PHILADELPHIA, PA.
number of operations that are to be satisfactorily completed cach day and is periodically checked by the instructor to whom they have been assigued. It also carries all the items of the grading sheet. If the records show that the new employe is not progressing according to schedule, the head instructor takes personal charge of the individual case, analyzing it very carefully to determine what has caused the failure.

This may be done by questioning the new employe in regards to special techniques of performing the operations. In many instances, the personal record, which is kept by the instructor, may be of value, as each instructor has been trained in dealing with "human relations" which makes it possible for him to analyze conditions which might exist. After it has been established that the new employe has had every advantage of instruction on this particular operation, it is considered a matter of adaptability; so he is then reassigned to another joln This has three advantages: It establishes a more efficient working force. It creates good will toward supervision. It earries with it a higher standard of morale.

Using these methods, it was found that from souve 400 new employes who were given this type of basic train$\mathrm{ing}, 32$ were changed to different operations when they had reached the maximum allowed hours on their first assignment and were not up to schedule. Out of the 32 , only 4 completely failed, 7 were given another assignment of which but 2 completely failed.

It is interesting to note at this point, although 6 completely failed, the remaining 26 reached maximum efficiency after reassignment with lower percentage of rejects and in less time than the average new employe under old training methods. This, of course, is attributed to the fact that they all had received basic training and in general realized the importance of all operations pertaining to the finished apparatus. After the general lecture, each new employe must fill out questionnaire on each subject as presented.

Basic Training for Key People: A similar basic method has been used to train inspectors and group leaders in company policy, leadership, interpretation of production orders, motion economy, plaming and scheduling of daily operations, instructing of new people, interpretation of drawings, electrical specifications and diagrams. Visual inspection and testing of windings and inspection standards, etc. Each subject is then followed up with a questionnaire.

Use of Motion Pictures and Slide Films: Advantages of using motion pictures to instruct the different operations are:

- It creates interest of the new employe, partly due to human curiosity.
- It establishes in the mind of the new employe a uniform method of performing the operation.
-It gives the manufacturing engineer and the time study man a chance to perfect the method of performing the operations before presenting them to the new employe.
-The use of all tools and equipment can be brought out much more clearly while being explained by a trained instructor in a classroom under much more favorable conditions than exist on the production line where there is noise and much confusion for the new person. "Hearing is many times deceiving, but secing is belicuing."
-Each operator views all of the operations from the correct position.
-Through the use of motion pictures the new operator learns quickly how to operate unfamiliar machines.
-A complete set of sound slide film on job instructor training equipment is used as a refresher for foremen and instructors.

It has been proved many times that the best tool of teaching is the use of some repetitive method. Therefore, the film "loop" is used in showing many difficult operations, repeating the operation over and over before the eyes of the trainee.

It is also possible, when using the speed-controlled low-wattage type projector, to stop the operation at the most important point for the new employe to study. It can be used to demonstrate good housekeeping, the proper placement and arrangement of tools and materials. It is a means of bringing before the new employe hidden methods. When an operation has been selected and properly photographed and shown to the new employe with each technique of performing the operation explained by a trained instructor, the chances for mistakes are few.

Use of Slide Film and Sound Equipment: Through the additional use of sound and slide-film equipment, scheduled classes are held periodically on foremen-employe relations, inducting the new employe and results of training. It gives management the chance to train foremen or key people in the plaming of safety, improving production methods, motion analysis, plaming job instructions, without having long drawnout conferences or maintaining a large staff of technical instructors. Through the use of motion pictures, the foreman learns how to get the best from his men.

Planning and Scheduling Training Classes for Foremen, Assistant Foremen,

War workers find that Simonds Red Tang Files are easier to use . . . cut truer and faster, with less elbowgrease and fatigue . . . and require far fewer trips to the tool crib for replacements. That's because the teeth are shaped like those on a Simonds Metal Saw . . . they cut instead of scrape, and so stay sharp far longer. And what's more, all Simonds Red Tang Files are made to Simonds special standards of accuracy and quality... because they're under Simonds 100% Quality-Control every step of the way.

SIMONDS
 SAW AND STEEL CO.

1350 Columbia Road, Boston 127 So. Green St., Chicago 228 First St., Sen Francisco 520 First Ave., So., Seatte 311 S. W. First Ave., Portland, Ore.

FREE BOOK

tells how to care for-and get the most use out of fles, hacksaws, and bandsaws. How many copies d you want? W'rite today.

丸 Bought Your War Bonds This Week? *

Chief Production Clerks: If the training program for the new employe or for any other operator is to be successful, it must be well supported by supervisors in the shop who have received training in inducting the new employe. Therefore, a training program for the foremen, assistant foremen and chief production elerks is scheduled under the shop training program. The instruction and lectures are given by the supervisors of different departments which are as follows:
-Quality Control, by a member of supervising staff of cuality control
-Motion Analysis, by a member of supervising staff of time study
-Hman Engineering, by a member of inclustrial relations stafl
-Job Instructor Training, by an authorized instructor assigned by the Training Within Industry Office.

As soon as al group receives its instructions on all subjects, a new group is selected with a new member of each department presenting their particular sulject to the new group. At the end of each session, each member of the class is given a questionnaire to fill out corering in detail each subject. These are

carefully gone over and amalyzed.
It is here decided whether there is anyone who should attend another class or if they all have a complete understanding of the subjects as presented. This system has two advantages:

It helps to develop executive material while doing a job of training for the shop. It has been our experience that, regardless of how elaborate or how simple a training program is to be, it must first be well planned and scheduled and followed through in some form of practical examination, if it is to be suceessful.

Equipment Used: All equipment is bought by the company and is maintained and operated by certain individuals in several departments, such as time study, training school and industrial relations.

This method of analyzing the operations and taking pictures is quite broad, as it establishes the correct sequence of operation and gives the new employe a chance to visualize motion economy.

Slide and film on many different sub)jects can be purchased or rented. Many times during the making of a picture. extra motions or foreign elements are detected that would not be detected otherwise. This is, of course, why moving pietures are used to such a great extent by motion amalysis men. This method of training new employes has proved very successful in several departments and is now being extended to all other operations on winding and assembly. We feel that this method will be of great value in training women to operate machines and do other work now being performed by men who will be called to the Army.

If every industrial plant in America today had those lost hours and lost pieces of material that are wasted due to a "poorly trained operator" getting started on the job before he is ready, we would have "Much More-Much Earlier" for our fighting men instead of "Ton LittleToo Late."

"The Welding of Piping"

Book Offered by Airco

"The Welding of Piping" is the title of a 16 -page illustrated treatise prepared by Air Reduction Co.'s applied engineering department. It consists of a periodical series of articles covering various types of ferrous and nonferrous piping, their dimensions, fabrication, and estimates of welding and labor costs.

Coni-s may be procured on request from the company's offices, 60 East Frrtv-cecond street, New York.

Carbon-Refractory

(Concluded from Page 110)
age. Carbon paste shrinks up to 2 per cent in baking into the solid block, while preformed blocks after baking to 1000 degrees Cent. (1832 degrees Fahr.) shrink little thereafter. Also tamping in large masses of hot carbon paste is an unattractive job for the fumes are most unpleasant to breathe, the men should wear masks, and the volatile pitch vapors frequently burn the exposed skin of the workman. Again, as the carbon mass bakes out the pitch vapors fill the eell room and prove highly disagreeable.

Different kinds of carbon are used for different purposes dependent on the usage, but they are all treated about the same in installation. The paste is heated iij) in some sort of a metal box or pan placed over a coke or gas fire which ean be controlled to some extent. The temperature of the paste must be watched carefully, for it must be hot emough to bond well to the blocks but if it is too hot, too much of the volatile constituents will be driven off and the paste will be dry and brittle and will not even stick together. The usual range of temperature is 100 to 140 degrees Cent. (100 to 284 degrees Fahr.) depending on the type and amount of bond. Only small quantities of the paste should be heated up at a time and the surfaces to be bonded should be painted with tar before the paste is rammed against them. Fig. 8 shows a modern aluminum pot in an European plant, having a single Soderberg electrude covering practically the whole top of the pot.

Second in amount of carbon used for refractory purposes are the various types of ferroalloy furnaces, ferrosilicon, ferromanganese, etc., some calcium carbide furnaces and all furnaces producing phosphorus, ferrophosphorus, and phosphoric acid electrically. Such furnaces vary in size from a few hundred horsepower to 25,000 , and from a pot not much bigger than a good size watering trough to a shell 25 feet diameter and 8 to 15 fect deep. The first such usage of carbon was in the pot in which the first calcium carbide was produced at Spray, N. C. in 1896, and year by year has increased until its volume has reached important proportions.

While some aluminum pots have linings tamped in and baked in place, practically without exception furnaces of the ferroalloy type are lined with preformed and furnace-baked blocks cut or otherwise shaped to conform to the furnace dimensions. Such furnaces may be of relatively simple form, round, square, or rectangular, or in some cases may become complicated and involved, at least in the original design. In gen-
the design the better. Also, the larger the blocks and the fewer the joints, the less the chances are for leakage, runouts, cral it should be said that the simpler and trouble.
Such linings can be laid-up in two ways, one with all surfaces machined so that all joints are practically carbon block to carbon block, an expensive method not generally necessary, but preferred by some operators in spite of the cost. A special graphite cement in a thin layer is used between the blocks. The second method using wide joints is like that described in connection with
the aluminum pots and involves much less machining, and is consequently a little cheaper. Figs. 12, and 11 show the blocks for a ferroalloy furnace lining laid out on the assembly floor for checking.
(Concluded in next weeks issue)

References

"Carbon and Graphite" by F. J. Vosburgh, Chemical and Metallurgical lingincering, Nov. 1938 , and table ssme date stnd Oct. 1940.
2"Xhmperature Gratients Through Composition Carbon Columns and their Application to Blast Furnace Linings" by F. J. Vosburgh and M. 12. Hatfield. Medals Technology, Sent. 1941.

3"Thermal Expansion of Refractories" by P. H. Norton, Journal of the American Ceramic Society, Dec. 1925.

In military searchlights the fumes and heat reflected from the $6000^{\circ} \mathrm{F}$. arc flame cause ordinary carbon electrode holders to pit and oxidize rapidly. Made of Ampco Metal, the service life of these holders is greatly extended. Here the "unusual factor"-plus Ampco's ability to stand up under adverse condi-tions-dictates the continued use of Ampco Metal by the manufacturers of this equipment.
In many other fields also-where material is subject to wear, fatigue and failure-Ampco Metal has proved its ability to give genuine service. Over 2000 customers - the cream of the war production plants of the country-use Ampco bronzes regularly.
You may have unusual conditions that require a sturdy, reliable bronze. Test Ampco Metal under actual operating conditions and the results will justify your judgment. Send for Catalogue 22 today, describing this unusual bronze.

AMPCO METAL, INC.
DEPARTMENT S-4
MILWAUKE, WISCÓNSIN:

THE METAL WITHOUTANECUAL

Fatigue of Steel

(Continued from Page 112)

stress. Relative curvature and, therefore, compressive stress can be varied by the choice of pressure angle. In general, little is to be gained by designing wide-face gears except the doubtful satisfaction of dealing with smaller stress numbers.
In higl-speed gears, pitting may occur when gears are transmitting no load. This is sometimes seen in the reverse idler gear of automobile transmissions. Although this form of transmission
trouble is rare and occurs only whe ot.er conditio s, such as hardness, at unfavorable, it serves to emphasize the part played by the lubricant in promoting fatigue. A reverse idler rumning submerged in oil will trap the oil between the gear teeth and if the clearances are small will induce extremely high surface pressures.

Engineers are familiar with the high temperature generated in gear boxes when too generously supplied with oil, but this is not always interpreted as a fatigue hazard. High-speed gears should be lubricated by jets of low-riscosity

oil directed at the teeth as they are coming out of mesh, not on the incoming side. This form of lubrication will wash away the heat of friction while it is still on the surfaces of the teeth and will prevent excess oil from reaching the contacting teeth providing the sump is dry.
There is evidence indicating that oil further contributes to pitting fatigue by entering surface fissures where, under hydrostatic pressure, the fissures are extended until pieces are lifted out of the surfaces of the teeth.
The Road Ahead: There is still some distance to go before designers and producers of light-weight dynamically loaded machines can make full use of structural materials. They must learn they cannot tell the machine parts what to do but rather must do as they are told by the machine parts. The rate at which progress develops will, in large part, depend upon the accuracy of interpretation of the complaints made by the machine elements. These complaints are not easily interpreted because they are often made in terms not understood.
These things we know: Steel, under most laboratory conditions of repetitive stress, has a fairly well defined limit of stress, known as the fatigue endurance limit, below which it will endure for an infinite number of stress cycles. Also, the fatigue endurance limit of steel is roughly proportional to the ultimate strength of the material but the proportionality varies with the range of the applied stress. Under certain other test conditions, steel does not have a fatigue limit. Rough surfaces, notches, section changes and other discontinuities are detrimental to fatigue strength.
The preferred laboratory fatigue test specimen is carefully prepared to avoid all surface imperfections, abrupt section changes, internal stresses, and other stress raisers. This is considered necessary because the investigator is usually interested in the properties of the material undergoing test, and he naturally seeks to eliminate all factors that would tend to obscure these inherent properties. There can be no objection to this procedure as it refers to the test specimens, but the data thus obtained have little bearing on the fatigue characteristics of machine parts made from the same material and given the same heat treatment in which surface irregularities, abrupt changes in section and internal stresses are almost always present.
In presenting such fatigue data, the metallurgist may be likened to the seed catalog artist who paints the beautiful flower pictures that so arouse our gardening instincts every spring. The engineer is the garduer who hopefully plants the seeds and who reaps the disappointments of labors. The failure of the
garden is usually not the fault of the seeds. The catalog pictures are intended to show what can be accomplished under favorable conditions, and the artist should not be blamed for the poor garden soil, frost, drouth and the scores of other things that make the average garden look so unlike the catalog pictures. Similar disappointments are met when we attempt to apply the data from laboratory fatigue test on ideal specimens to the design of machine parts, more particularly for machines in which efficient use must be made of material under dynamic loading.
In the design of machines and equipment for heavy duty, where the number of units produced is small, the present practice of designing to large factors of safety is justified because the expense involved in preparing designs to approach the exact requirements would far exceed the savings in weight and material.

The same economic considerations that justify overdesign in low production volume equipment designs of low weight and high stress in many machine parts where weight is all important, as in airplanes or in large production volume machines such as automobiles, where both weight and cost must be considered. Obviously, the dynamically loaded parts of such machine should be designed with accurate knowledge of their fatigue strength.

When we try to apply quantitatively the accumulated laboratory fatigue data to such problems, we find that they are almost useless. Published data on fatigue assume (1) that stress can be determined, (2) that laboratory test specimens are representative of a material when that material is formed into a machine part, (3) that the amount and nature of the applied load are known, (4) that load variations occur in an orderly and predictable manner, (5) that representative fatigue curves can be constructed from a dozen or less specimens and (6) that machine parts must be stressed below the fatigue limit to be successful. These assumptions are not justified in practical design.

Stress Cannot Be Calculated: From the data on internal stresses that have been discussed, we may reasonably have some misgivings about the reliability of stress calculation. From experience with practical machine parts we can only conclude that stress calculation by textbook methods is wholly inadequate until we generously temper calculated results with experience.

For example, crankshafts can be stressed by the usual methods of calculation to 20,000 pounds per square inch; connecting rods are stressed to 40,000 pounds per square inch; valve springs to 90,000 pounds per square
inch; disk clutch springs to 180,000 pounds per square inch, while another form of disk spring supports, by calculation, 600,000 pounds per square inch. Obviously some of these stress values are ridiculous, but the formulas used in each case conform to the "laws" of mechanics. The actual stress in crankshafts is probably several times 20,000 pounds per square inch, while the 600,000 pounds per square inch in the disk spring is not reached because of yielding in local highly stressed regions.

The unreliability of stress calculations has almost been forgotten by seasoned
designers because they no longer take the numerical values of their stress calculations literally. Instead, they have learned by experience that, by the usual methods of calculation, the numerical values have different meanings for different machine parts-that is, somewhat rough empirical correction factors are applied.

Extensometer of Doubtful Valuc: There is a growing interest in various devices employed to make direct measurement of stress, such as photoelasticity, brittle lacquers, extensometers, and similar instrumentation, in the belief

The SAFE Modern Lubricant For Ball and Roller Bearings

1. Used and recommended by practically ALL makers of anti-friction bearings.
2. Makers of machinery and tools fitted with ball and roller bearings use NON-FLUID OIL to avoid bearing failures and insure most efficient service.
3. Steel mills guard against faults of using grease and obtain longest life from ball and roller bearings by using NON-FLUID OIL.

Used successfully in leading iron and steel mills.
Send for descriptive bulletin.

NEW YORK \& NEW JERSEY LUBRICANT CO.

Main Office: 292 MADISON AVENUE, NEW YORK

WAREHOUSES:

Chicago, III.
St. Louis, Mo.
Providence, R. I.

Detroit, Mich.
Atlants, Ga. Charlotte, N. N.
Greenville, S.
that these devices will provide accurate stress data. The accuracy of stress data from such measurements is usually greater than cam be obtained from the most involved mathematical analysis, but that they are far from reliable can easily be shown by fatigue tests. Two specimens of identical material, heat treatment and dimensions will show identical stress when measured by photoelasticity or by extensometer, yet these specimens may vary widely in fatigue strength depending upon minute differences in surface finish or internal stresses.

Since internal stresses are often desirable and are frecuently unavoidable due to processing operations such as machining, heat treating, straightening or grinding, as has been discussed, and since surface finishes vary all the way from rough forgings to lapped or honed surfaces, there is little reason to expect accuracy from extensometer readings and even less for photoelastic tests since the specimens for this test must be free from internal stresses and must be made of another material.

Photoclastic and extensometer readings are measures of elasticity in which the

When did you CHECK your ELECTRIC MOTOR BEARINGS?

Replace

Manufacturers of armament can secure replacement bearings with a minimum of delay. Write for our new calalogue. Il's free.

Most bearing failures are due either to improper fit or neglect. Proper care and attention will enable you to secure many additional hours of excellent service. In times like the present, it's a manufacturer's duty to keep every machine running at full capacity.
Few parts carry the same responsibility as bearings. Why not follow these easy steps to insure the maximum service from each one? Adopt a regular period of inspection. Make certain that every bearing is in perfect alignment. Keep them clean.
Take steps to avoid foreign matter of a gritty or abrasive nature from reaching the bearing. Lubricate at regular periods depending on the operating schedule. Make certain the lubrication is the correct grade and that it is clean.
If you follow these instructions, you will find that Johnson sleeve type bearings will usually outlast the unit in which they are installed. Johnson Bronze Company. 550 South Mill Street, New Castle, Penna.

changes in dimensions are the statistical average of all the material involved in the measurement. Fatiguc tests provide a strength measure of the weakest portion of the material involved, usually at the surface, even though it be submicroscopic in size. Obviously, we cannot expect agreement between fatigue measures of stress and the stress readings obtained from elastic measurements.

Even if stress could be determined, the fatigue data from laboratory specimens could not be used because machine parts cannot be finished with the care and exactness that is given laboratory specimens. Abrupt section changes cannot be avoided, high internal stresses are often present as a result of processing or because of local heating as from bearing friction, surfaces are subject to bruises and to corrosion of various kinds. These effects cannot be evaluated in terms of stress raisers in controlled laboratory specimens.

Operating Loads Rarely Known: In the kind of machines under discussion, the dynamic loads are rarely constant for any appreciable time but vary up and down the load scale in unpredictable manner. Only a small percentage of the total number of stress cycles are at maximum load, and this percentage will not be the same in the hands of any two operators. This brings up the question of damage by overstress and recovery by understress as has been observed by several investigators in tests of laboratory fatigue specimens. No doubt such effects occur also in dynamically loaded machine parts, but how are such laboratory data to be applied to machine parts when the schedule of overload and underload is beyond control?

This apparently hopeless situation is not, however, as hopeless as it seems. We have done a reasonably satisfactory job in the past without worrying too much about the shortcomings of the methods used. We may be certain that we will do better in the future as more experience is gained, and it is in the accumulation and organization of this experience that we can best serve the needs of the future. It is probable that fatigue studies will play increasingly important parts in future designs; but these studies will be based on fatigue tests of actual, full-scale machine parts instead of on laboratory specimens.

Fatigue Tests on Machine Parts: Fatigue tests of full-scale machine parts have been made by many laboratories for a long time, but since these tests have usually been made for the purpose of comparing one material, design or process with another material, design or process, the tests have been run at arbitray constant loads without thought to the fatigue curve characteristics and often without adequate correlation with service
requirements. Because of this procedure, we have made little use of the vast quantities of such fatigue data now locked in our files insofar as establishing a basis for evalulating material, design or process for future use is concerned.

In the few cases where fatigue data on machine parts have been properly organized, we find they reveal astonishing amounts of fundamental information about the many variables present in machine elements, many of which are not even qualitatively revealed by ideal laboratory fatigue specimens.

Fatigue data are mortality data, and it is just as ahsurd to expect that reliable acturial tables can be constructed from mortality data on a half dozen individuals as to expect reliable comparisons from fatigue tests on a half-dozen machine parts. When enougl machine parts are tested at constant load and plotted in the mamer of the well known mortality curve for human life expectancy, we find remarkable similarity to luman mortality experience.

Insufficient Test Data: Reliable life comparison of machine parts demands a large mumber of tests unless the life difference is great. It is obvious from the mortality charts that, on the basis of a few tests, the poorer design, material or process may rate higher than the better design, material or process. Yet nowhere in the literature do we find fatigue data approaching even the minimum requirements of reliability. The reason is largely that most investigators in this field, particularly in work on steel, assume we have no interest in data at any stress except the stress at which the specimen will endure indefinitely.

In practical fatigue testing of machine parts, it should be obvious that comparisons of material, design or processing camot be made unless the tests are run to failure and the comparisons are made on the number of stress cycles each will endure. This is true whether or not the part being tested is recquired to withstand in service a large number of stress reversals at maximum load such as a crankshaft or a relatively small number of stress reversals at maximum load, such as chassis springs.

Boron in Steel

(Concluded from Page 131)
residue 15 to 20 minutes. Allow to cool and add 5 milliliter distilled water, then slowly add dropwise $\mathrm{H}_{2} \mathrm{SO}_{4}$ (1-1) until all is dissolved and the solution is slightly acid. Avoid an excess of more than four or five drops. Transier to a marked test tube and rinse the crucible with two 1 -milliliter portions of water, add approximately 0.02 -gram $\mathrm{Na}_{8} \mathrm{SO}_{3}$,
cool and dilute to the 10 milliliter mark and mix well. This solution contains the boron which is insoluble in $\mathrm{H}_{2} \mathrm{SO}$, (1-4).

Pipette 2.0 milliliter alicquote of each of the two foregoing prepared portions into dry comparison bottles. Slowly add 20 milliliters of 98.5 per cent $\mathrm{H}_{2} \mathrm{SO}_{4}$ to each, stopper, cool and then add 1.0 milliliter of the quinalizarin solution from pipette, stopper and mix by swirling gently. The salts formed in the bottle containing the acid soluble portion will settle sufficiently for comparison after standing for an hour (prefer-
ably over night) while the color produced in the acid insoluble portion may be compared after standing 15 minutes since no salts are precipitated.

By starting smaller samples than 1.0 gram and/or by using smaller aliquots, greater percentages of boron may be determined.

Heferences

Hague \& Bright, National Bureau of Standards, Restarch Paper No. 21, page 125, 193 S.

Berger, K. C. and Truog, E., Industrial and Ensineering Chemistry, amalytical edition, Oet. 15, 1939, pages $540-545$.
aSmilh. G. S., The Analyst, volume 60, page 735. 1935.

A Real Aid to PRODUCTION

TYPE CDE-X FURNACE PRESSURE CONTROLLER

SERIES FOT PRESSURE INDICATOR

SERIES OT PHESSURE RECORDER

OPEN HEARTH

 PRESSURE CONTROLTonnage can be increased through more even operation and even operation also means fuel saving. Automatic control of furnace pressure, rates of fuel and air flow, ratio of fuel to air, constant volume or pressure of oil or gas relieves the operators of many timeconsuming details, allowing them to pay more attention to the steel making process.

When desired, the control of these various functions can be handled manually from a centralized panel through remote operation. Hays control is all-electric, simple to install, simple to operate, simple to understand.

The following Hary instruments may be used effectively in combination or separately for the functions indicated.

Type CDE-X Furnace Pressure Controller with external manual adjustment for automatically operating stack damper to hold pressure constant.

Series FOT Pressure Indicator provides an easily read measurement of lurnace pressure. Usually connected at furnace roof.

Series OT Pressure Recorder provides daily record (24 hr . chart) of furnace pressure. Shows timing of reversals and each change of pressure made by operator during the heat.

Hays partial or complete instrumentation is a REAL AID TO PRODUCTION. Hays representatives located in the principal cities of the U.S.A. and Canada will gladly supply complete information.
(Cominued from fiaks 118) lion at fucressed cooling rate from the hardenfos temorature. That conling rate which fust resule in complete transformathom of anstenife: "o martemsite is known as the crifical conling rate.

Fior a geeon type of quench, the rate of cualing st the center of a small section siat may be equisl to, or for excess of the critical conding mate under which comdition a fully martonstic: quenched strucfore would be ohtainod corresponding f10 it fully hardened exndition. If on the
wher hand the section was so large that the cooling rate at the center was less than the critical cooling rate, then only that portion of austenite on the periphery would be transformed to martensite while the center would be transformed to pearlite, a relatively coarse mixture of carbide and ferrite, and would merge into the hardened martensite zone.
Therefore, a steel that has not been thorsugh hardened will not exhibit the superior properties of a fully hardened stec:l when tempered after quenching. The reason for superior properties in a fully hardened steel is attributed to the

refinement of carbide precipitation which is effected through the decompusition of martensite on tempering.

Factors Affecting the Hardenability of Steels. The hardenability of any steel is dependent to the greatest extent on intensive factors related mainly to inherent properties of the steel and to a lesser extent on extensive factor which are mainly dependent on the method of heat treatment.

Intensive Factors: The intensive factors controlling the degree of hardenability of steels can be classified as these which directly affect the chemical analysis and those which, as a result of the method of processing, tend to show a pronounced effect on the hardenability characteristics.

Chemical Composition: The hardenability of a steel is mainly controlled by its chemical composition, the most important hardening element being carbon. As the carbon content of the sted increases, therefore, the greater will be its hardenability. Hardenability is not, however, entirely controlled by the carbon content, for other elements such as manganese, silicon, nickel, chromium, vanadium, molybdenum, tungsten, phosphorus, sulphur, etc. possess the property of lowering the critical cooling rate, although not all are effective to the same degree and therefore, permit the steel to harden to greater depths.

The influence of the alloying elements in lowering the critical cooling rate is probably four fold: One, they change the distribution and size of carbides in the ferrite matrix by reason of volume differences; two, they change the properties of the ferrite by dissolving in it; three, they change the quality or type of carbide as compared with cementite; and four they decrease the rates of diffusion which in turn decrease the rates of transformation.

The amount of any element which will decrease the critical cooling velocity is dependent of the extent of its action in regards to the above listed effects. The solid solution elements such as aluminum, nickel, silicon, phosphorus, sulphus and copper mainly lower the critical cooling rate by virtue of decreased diffusion, while the carbide forming elements such as molybdenum, chromium, :amadium and tungsten form stabilized carbides, the precipitation of which from ankenite is more slugsish Manganese wist in bout ways since moder certain cweditions it teas to be a strues carbite furmer as wew in sotid subutiona plement.

 which in ontse is it Entacrumet of
 ikg sxes. The burivembing factors tor
dements commonly fonnd in steel are an follows:

Carbon	30)
Manganese	8
Phespherrus	10
Sulphur	10
Silicon	5
Nickel	
Chromiun	5
Mulybilemm	13
Vanadium	20
Comper	

Copper

Method of Proeessing: The hated. cmability of steel is somowhat atlected by the muntacturing prosess, mandy in regard to the melting pactice and mill practioe.

Melting Practice: Variation in the hardemability of at sted can be attributed to the molting procedtre, since such factors as the deoxidation macetice, grain si\%e, nommetallies and minspecified impuritios do, under certain circmastances, materially elfeot large deviations from expectant hardemability resules.

Deoxidation Practice: It has long been known that heats of iclentical comeposition might possess different hardenability daracteristies by vitue of variations in sleoxiclation of the heats of steed. The deoxidation of a heat by means of ahminum may give lower hardenability than as similar heat which has been killed by silien wen thongh the grain size of both heats is identical. The effectiveness of the nse of deoxidbaers on hardenability has been indicated by the use of spectial alloyed deoxilizers such as "Gramal" or "Silicaz." the recently published report on special alloy addition agents, see Streal, March 15, p. 94, shows that special alloyed deoxidizers containing aluminum, calcium, manganese, silicon with small additions of powerful deoxidizers such as borm, zirconium and titanium increase the hardenability of high manganese steels from one to five times. In view of this new method of increasing the hardenability and reserving critical alloys, it will not be surprising to find such applications on steels in the near future.

Grain Size: Although grain size control is mainly the result of the deoxidation precess, the general statement that increased grain size results in increased bardenability steel holds true. This results from the fact that nucleation for the austenite transformation preferentially starts at the grain boundaries, therefore, the less grain boundaries present, the greater the retardation by virtue of insufficient nucleation.

Nonmetalics: Nommetallics such is oxides, sulphides, silicates or aluminates may either act as inhibitors of mucleation and thus increase the hardenability or they may serve as nuclei for the trans-
formation, in which case they would fond to decrease the hardenability.

Unspecilied lmpurities: ln many alloys, the presence of residnals or distimetly harmful alloys is seldom reported. The presemce of small amounts of chromimm, nickel, molyhdenum and erpper as well as arsenic, tin, phosphomes and sulphur are seldon reported alloongh the latter elements usuatly deomed harmful, coon though present in small yuantities, may exert a powerfil influence on the havdemability as well as physical properties of stere. This may be ath-
alagms to residuals from alloyed deoxidizers which materially afteot the hasdching chatacteristios of steds.

Mill Practice: Athough the effect of mill pratice on the havdenability characteristios of a heat of sted is not promomeed, such factors as ingot size, discord, and amonut of hot work might muterially uffeet abmomal lurdemability.
lugut size is a predominating factor in controlling sugregation. The lager the ingut size, the lower the froerang rate: with greater resultant sugregation and therefore an equivalent variation

For prompt, dopondable motal finishing information, call on Udylite. No organization is better equipped to give you information gained from installing plating, polishing and anodizing dopartmonts in many loading manufacturing plants throughout tho country. - Trained plating onginoers and electrochemists aro at your servico. Those mon know metal linishing and they can help you plan a new installation or revise your prosont one for
greator officiency. They know, also, that you want information quickly. - Udylite has a comploto lino of equipment socond to nono in terms of quality and officiont porformance. - and supplies . . . for every motal finishing noed. Salts, acids, anodes, buffing and polishing materialseverything required. © Call Udylite for prompt service on your finishing requirements. You pay no more for Udylite dependability.
in the hardenability from bottom to the top of the ingot.

The amount of discard on blooms and billets controls the segregation reminent from the ingot. The greater the discard the more uniformity in hardenability on billets from a siagle ingot.

The primary purpose of hot working steel s to break up all segregation or ingot patterns so as to insure uniform composition. The higher the temperalure aid the greater the working, the more uniform the hardening characteristics.

There are several indications that
banding, especially predominate in high manganese stecls contributed toward increased hardenability.

Extensive Factors: It has been pointed out that the main control in varying the critical cooling rate and therefore the hardemability of a steel is invested in the intensive hardenability factors. However, the extensive factors such as pretreatment, and quenching procedure have a marked influence, since these factors affect the means of attaining the critical cooling rate.

Treatment Prior to Hardening: The more homogeneons the structure prior to

Every day, tons of critical 100 l and die stecls are being saved for vital war needs by the use of EUREKA Electrodes for the welding of worn or fractured dies. These EUREKA Electrodes can be used to effect maintenance repairs in your shop on oil, air and water hardening and hot working stcels.
EUREKA Electrodes also save a vast amount of tool and dic steels when used for the composite construction of dies, by welding on the working edges of less expensive and easily procurable carbon stecls.
If you really want to save tool and die steels in the construction or repair of your dies it will pay you to write for our 16 -pase catalonue today. It describes in detail the use of the complete line of EUREKA Tool Steel Electrodes.

here is how it helps the war effort

\star Illustration shows typical fabricated dies. Arrows 1 point out tool steel electrode deposits used as cutting edges, neither of which are over $\frac{3}{16}$ inch thick. Arrows 2 indicate machine steel used instead of tool steel to lower die composition cost, and 3 refers to construction welds made of mild steel rod to hold die parts together.

* Write for information on "SUTTONIZING" our uelding
hardening, the greater and more uniform the hardenability of the steel. The employment of a high-temperature prenormalizing or annealing treatment prior to hardening produces maximum hardenability.

Quenching Procedure: The attachment of desired hardness can only be achieved by proper quenching procedures. Where the alloy content is insufficient to achieve the critical cooling rate, steps must be taken to provide quenching media with greater coolant power.
The higher the quenching temperature, the greater the homogenizing effect during austenzing and greater the hardenability.

The type of duenching media determines the maximum cooling velocity which is attainable. For extremely high cooling velocity it is necessary to resort to 5 per cent sodium-oxygen-hydrogen solutions, however, where the amount of alloying necessitates very low critical cooling rates, oils of various viscosities may be used. This effect is shown in curves of Fig. 2.

The temperature of the quenching media controls the viscosity. The viscosity in turn is inversely proportional to the cooling power. Therefore increased rates of cooling may be attained by heated quenching media.

Means of Comparing Hardenability Data: Hardenability characteristics of steel can be compared in several ways. A relative indication of the hardenability; merits can be calculated by means of a summation of hardenability factors of elements predominant in the chemical composition. It must, however, be strongly emphasized that this comparison number is not an absolute criterion of the hardenability, since combinations of alloys will in some respects affect the hardenability factors of each other.
The second means of comparing hardenability data is by actual end-quench hardenability tests which correlate absolute hardness as a function of measured cooling velocity:

Hardenability Levels: The hardenability level of any steel can be calculated in terms of its comparison number. For example, the hardenability heats of NE-8739 steel shown in Fig. 1 can be calculated in the following manner:

NE-8739 (Low)

$\begin{gathered} \% \text { Content } \\ \times 100 \end{gathered}$	Hardening Factor	Value
C. -37	30	1110
Mn - 81	8	648
$\mathrm{P}-3$	40	120
S -3	10	30
Si -30	5	150
Ni-46	4	184
$\mathrm{Cr}-46$	5	230

Mo-22 16		352
Comparison Number		2824
NE-8	39 (High)	
\% Content	Hardening	
X 100	Factor	Value
C-42	30	1260
$\mathrm{Mn}-99$	8	992
P-3	40	120
S-3	10	30
$\mathrm{Si}-30$	5	150
$\mathrm{Ni}-58$	4	232
$\mathrm{Cr}-68$	- 5	340
Mo-26	16	416
Comparison	Number	3340

It can readily be seen that the comparison number indicates the higher alloy heat of NE-8739 to have a greater hardenability. The mean speeified composition of NE-8739 shows a comparison number of 3064.

End-Quench Hardenability Data: This method of measuring hardenability, more commonly known as the Jominy test, consists of water quenching on end of a 1 -inch diameter cylinder of the steel under closely controlled test conditions. The properly prepared and heated bar is placed into a fixture and subjected to quenching by a controlled flow of water. In this way, a definite cooling rate corresponding to a given hardness along the length of the test cylinder is obtained. Fig. 1 shows the range of end-quench hardenability data obtained on NE-8739.

Conversion of Hardemability Data: Standard end-quench hardenability data, if available, can be used very advantageously to approximate the depth of hardening on any given section size, as well as to evaluate certain physical properties which might be obtained on tempering, providing the section under consideration represents a fully hardened condition.

Calculation of U-Curves: The depth of hardening on any section size can be ascertained by using as reference the cooling curve data in Fig. 2 and endquench hardenability data. For illustration, we have selected the hardenability data of the low and high heats of NE-8739 as shown in Fig. 1 and compared them with data actually taken at this plant employing an average type of oil quench. The analysis of the NE-8739 used for actual depth of hardness determinations was as follows: Carbon, 0.38 per cent; manganese, 0.86 ; phosphorus, 0.025 ; sulphur, 0.018 ; silicon, 0.32; nickel, 0.49 ; chromium, 0.51 ; molybdenum, 0.24 .
Table I shows the serquence of calculations made in obtaining depth of hardness curves for various section sizes. Column 1 represents arbitrarily selected reference points for the various section
sizes. Column 2 shows the cooling velocity at 1300 degrees Fahr. at the various selected points as obtained from the cooling rate curve in Fig. 2. Colunm 3 represents the position on the end-quench hardenability test which has an equivalent cooling rate to that shown in column 2. This may be read directly from the curves in Fig. 1. Columns 4, 5 and 6 represent the hardness values as read from the hardemability curve at the points of equivalent cooling velocity.
Fig. 3 shows the calculated data and actual data plotted as depth of hardness
curves. It cam be noted that within limits of calculation and experimentation the actual curves lie well in the region of hardness characteristic of the low and high hardenability heats of NE-8739.

Evaluation of Physical Properties: The physical properties of NE steels can be evaluated to surprisingly great accuracy providing the section sizes to which the physical properties refer have been fully hardened prior to tempering. For illustrative purposes, the evaluated physical properties of NE-8739 as characterized. by their depth of hardness curves can be compared with actual guenched and
 WAR DUTY FOR
REFRACTORY CONCRETE

$$
\begin{aligned}
& \begin{array}{l}
\text { YMCIC } \\
\text { COKE PLANTS } \\
\text { (BL-PROUUCI Ond Beehive) } \\
\text { OPEN HEARTH PLANTS } \\
\text { ROLLING MILLS } \\
\text { STEEL FINISHING MILLS }
\end{array} \\
& \text { NON-FERROUS SMELTERS AND FORGING PLANTS } \\
& \text { OUS SMELTERS AND REFINERIES } \\
& \text { QUICKSILVER MINES } \\
& \text { * } \\
& \text { SYNTHETIC REFINERIES } \\
& \text { HETIC RUBBER PLANTS } \\
& \text { POWER HOUSES }
\end{aligned}
$$

LUMNITE is now available for Refractory and Refractory Insulating Concrete only when it is to serve essential war production. We offer the help of our Representatives in using it most efficiently.

THE ATLAS LUMNITE CEMENT COMPANY
(United States Stael Corporalion Subsidiary)
CHRYSLER BUILDING, NEW YORK CITY
tempered physical data on a heat of NE-8739 taken by our laboratory.

Tensile Strength: It is evident that the maximum section size of NE-8739 which will fully harden, employing average quenching conditions is a 1 -inch round. Therefore, supposing a 1 -inch maximum section size part is quenched and drawn to 300 brinell. The tensile strength corresponding to this hardness as read from Fig. 4 will be 150,000 pounds per square inch. The drawing temperature as read from Curve B in Fig. 5 will be 1100 degrees Fahr.

The yield point corresponding to 150,-

000 pounds per square inch tensile strength is 130,000 pounds per square inch as read from Fig. 6.

The ductility characteristics as measured by the elongation and reduction of area can also be read from Fig. 7. For 150,000 pounds per square inch the curves show an elongation of 19 per cent and a reduction of area of 54 per cent.

A comparison of evaluated and actual physical propertics can now be made. Comparing respective actual and calculated values, we have: Hardness- 302 against 300 brinell; tensile strength-
presence of manganese and silicon which on their action as solid solution elements, similar to nickel, increase the toughness of ferrite.
-The machinability of NE steels is equivalent to, or better than a majority of SAE compositions of the same category. The contributing factors being attributed to decreased toughness of the matrix as well as better breakdown during annealing due to limited amount of carbide stabilizing elements. An example maty be cited where the isothermal annealing of SAE X-4340 resulted in a brinell harduess of 196 to 212 , while a similar cycle on NE-8949 resulted in a brinell hardness of 174 to 187.
-The high manganese oceasionally found in the NE steels might result in bad surface conditions and decarburization as a result of forging practice.
-The strong deoxidation tendencies of manganese and silicon may result in excessive banding in steels containing appreciable amounts of these elements. landing tends to produce abmormal headening and as a result marked distortion cluring heat treatment.
-Although the carburizing characteristics of some of the NE steels such as NE-8720 are comparable to the standard SAE-2315 and SAE-4615, it must be remembered that steels of this series especiatly high in manganese are subject to extremely brittle cases and grain growth tendencies in the core. Steels with high silicon content tend to retard carburization due to its strong graphitizing action.

Wax Coatings

(Continued from Page 122)

a salt spray chamber according to ASTM specifications. Both brackets were Parkerized. In addition, one of them was given a coating of Johnson's rustinhibiting wax No. 1569.

After the test the bracket which was not waxed showed definite pitting and corrosion while the bracket with the wax finish was completely free from pitting or blemishes of any kind.
In one of the most interesting tests conducted recently, ordnance parts finished with Parkerized Lubrite were coated with oil. Other identical parts received a rust inhibiting wax coating instead of oil. It was found that the wax not only gave better protection to the parts but materially improved the performance of the equipment. The reason was that the wax provides a dry lubrication, so cammot "gum" up parts under severe weather conditions. Wax always hardens quickly upon application.

Being dry it is not "soaked away" by contact with absorbent materials and
so retains its protective propertics for a considerable period of time. Also, dirt does not eling to the dry wax finish.

The desirability of a wax finish from the appearance standpoint is well known because the fine, satiny wax luster has depth of beauty and very good "eye appeal". A wax finish does not show fingermarks.

While wax finishes may be buffed to a high luster, they also can be designed to produce a dull lusterless finish where that type of surface is desirecl. For instance a black rust-inhibiting wax is used to give added protection to
bayonets and also to reduce light reflection. These waxes are also being used successfully over Parkerized ordnance items such as gum parts and Springfield rifle clips.

In most instances these rust inhibiting waxes are used over surfaces which have been Parkerized, Bonderized or treated in some similar manner. However, there are a good many instances where these finishes are used directly over bare steel as shop coatings. For example, one well-known manufacturer of clutches applies the wax directly over bare steel on clutch plate disks. Also, a manufacturer of tractor parts is ap-

A DETROIT ELECTRIC FURNACE SPOILS

 THE FUN OF THE

BPDUGMS MMTAI LOSS25. The Detrolt Fusnace was originally daveloped to conserve the nation's metal and fuel deposits. This is accomplished through last, ellicienl meling with lower melling losses and the foundry use of salvage materials.

SEVMS HFBOR. Fast melling assures a high rate of production per man hour. No fuel to hondle or store plus less dross and siag lo handle for secondary metal recovery result in lower, indirect labor cosis.

StyHS Phooi specr. Compact, fast and ellicient Delsoll Furnaces give high production per unit of floor space.
 accurate metallurgical conirol a Detroil Furnace improves metal qualily and results in a higher parcentage of finished perfect-sastings

Sty 25 NOITH2. Detroir Furnaces save lime, Iabor malerials, floor space and plant equipment. Write today for complete fecis.

plying it directly over the steel in the shop.

One of the largest uses at present is on steel kitchen utensils such as frying pans and similar items produced for the Quartermaster Department.

The question has been asked: "How about metals other than steel?" As a matter of fact, considerable work has been done in applying wax finishes to other metals. For example, the use of wax coatings to prewent the corrosion of certain magnesimm alloys now has been approved by the Navy. It also has been discovered that wax coatings
may be used satisfactorily on wire in place of zinc.

Now that the supply of tin is limited, the use of wax is of increasing value in providing additional protection to the present timplate and terne plate so that these materials may be used for the shipment of camed goods to our fighting forces abroad.
Low cost is also a feature of wax finishes for their high coverage makes them extremely economical to use. While exact coverage is determined by the nature of the surface and size of the article as well as the method of appli-

- In the building program of the rapidly expanding aireraft industry, Dravo Direct Fired Heaters are receiving substantial recornition. It is fitting that so modern a heating method should figure in the growth of this era's most significant indusiry.

For Drano Direct Fired IIGaters are as modern as flying! Compaet and selfcontained, they efliciently convert fuel into heat and quickly distribute it in the area where neded. The Dravo Direct lired Heating system excels the usual steam heating system:-its light weight saves large quantities of scarce metuls, its factory construction minimizes the man hours neded for actual installation, its high heat transfer efficiency reduces fuel requirements as much as twenty to twenty-five per cent:

Let us send you a general catalog (500) describing the range of sizes and types, as well as a speciad bulletin (506) setting forth the savings in critical materials that the modern henting system brings to industry.

DRAVO CORPORATION

Heater Department

Bronze Welding is Helpful in Keeping Equipment Running

With replacements for broken or worn machine parts frequently difficult to obtain on short notice, bronze welding takes on added importance as a maintenance tool.

For example, bronze welding can be used to good advantage in building up worn surfaces on pistons, shafts, and bushings, broken or worn gear teeth, stripped threads, and many other machinc parts that are subject to damage in service. The deposited bronze can be readily machined to correct shape and dimensions.
The bronze welding process is readily adapted to cast iron and steel. Because of the relatively low melting point of the bronze rod compared with the iron or steel, it is not necessary to preheat the entire part to a high temperature in order to obtain a satisfactory weld.

Memos on Brass-No. 37

Where case of hot working is essential, the copper-zinc alloys containing about 60% copper have outstanding advantages. At room temperatures, such alloys are somewhat harder and less ductile than the alloys with higher copper contents, but at elevated temperatures they have excellent working properties.

This giant extrusion press at Bridgeport is particularly adapted to the extrusion, in rod form, of the more refractory, corrosion-resisting copper alloys required in large quantities for many war applications.

High-Temperature Strength of Duronze III is Shown by Tests

Alloy Retains its Superior Physical Properties with Only Minor Variations up to Temperatures of $300^{\circ} \mathrm{C}$

The behavior of metals and their alloys at elevated temperatures is a matter of extreme importance in evaluating materials for many applications, such as oil refining and food manufacturing equipment and parts for valves and internal combustion engines. A series of tests recently conducted by Bridgeport indicates that Duronze III is outstanding in its retention of these properties at elevated temperatures.
The test procedure was as follows: Duronze III annealed rod, $1 / 2$ inch in diameter, was prepared in the form of tensile tests pieces machined down to .300 inch diameter at the test section. The ends were threaded and screwed into steel extensions which were attached to the jaws of a tensile testing machinc. A tubular resistance furnace, 12 inches long by 1 inch inside diameter, completely surrounded the 8 inch long sample. The sample was heated in the furnace chamber for one hour at the required temperature, and was held there throughout the tensile testing operation.

Results of Tests

Tensile tests were made at $20,124,196$, $300,350,400,500$, and 600 degrees C. The per cent elongation in 2 inches and the per cent contraction of area were also determined from the cold broken pieces at the conclusion of the tests.
Results of these tests are graphically indicated in Fig. 1. It will be noted that up to $300^{\circ} \mathrm{C}$. the loss in tensile strength is only about $41 / 2 \%$. The per cent elongation dropped slightly at the lower temperatures, but at 300° it again rose to its original value. The contraction of area is

Fig. 1. Tensile strength, per cent elongation, and per cent contraction of area of Duronze III per cent contraction of area of Dur
at elevated temperatures.
the same at 300° as at room temperature.
Beyond 300° Duronze III loses its tensile strength at a fairly definite rate. The ductility, after reaching a minimum at 400°, is largely restored at 500°. This explains the good hot working properties of Duronze III at still higher temperatures.

In contrast to Duronze III's retention of its physical properties at elevated temperatures, such materials as copper, commercial bronze, and yellow brass begin to lose much of their tensile strength between 150° and $200^{\circ} \mathrm{C}$. The advantages of Duronze III are especially marked, in view of the fact that the tensile strength of Duronze III at room temperatures is considerably superior to that of brass and most bronzes.

Hot Working Properties

The excellent hot working properties of Duronze III, as indicated by the restoration of its ductility at temperatures above $500^{\circ} \mathrm{C}$., are brought out also by the results of the hot hammer tests summarized in Fig. 2.

In these tests, slugs of Duronze III, $1 / 2$ inch in diameter by $3 / 4$ inch high, were heated to various temperatures and then subjected to the blow of a falling weight equivalent to 200 foot-pounds. As indicated by the reduction in height of the slug, Duronze III shows definite softening at about $600^{\circ} \mathrm{C}$., and this effect rapidly becomes more pronounced as the temperature rises. A 50% reduction in height is obtained at about $700^{\circ} \mathrm{C}$. These data are borne out by practical experience, which indicates that the best forging temperatures for Duronze III range from 700° to $750^{\circ} \mathrm{C}$.

Fig. 2. Hot harnmer tests on Duronze III

CAUSES OF CORROSION

This article, the first of two dealing with impingement corrosion, is the sixth in a series of discussions by C. L. Bulow, research chemist at Bridgeport Brass.

IMPINGEMENT CORROSION
Frequently certain types of the thicker corrosion films are formed, which when locally broken or removed favor the formation of a metal-ion concentration cell. That is, the oxygen concentration type of cell which has been discussed in previous articles in this series changes over into the metal-ion concentration cell.

This change frequently takes place in condenser tubes when an impinging stream of entrained gases wears through the corrosion scale and gains access to the pit beneath. When this occurs, the corrosion products in the pit are swept out, exposing the corroded metal free from corrosion products. The impinging stream then ccrrodes the metal by the removal of metalions. Gradually the shape of the original pit or pits changes over into the clean, almond- or crescent-shaped type characteristic of impingement attack. The pit is undercut on the upstream side and sometimes with a noticeable tail pointing downstream, as shown in Fig. 1.

NOTICEABLE ABSENCE OF CORROSION PRODUCTS IN IMPINGEMENT CORROSION CORROSION PITS FILM

METAL TUBE WALL

FIG. 1
Frequently a series of pits of this impingencent type will overlap, giving a serrated profile when a longitudinal section of a condenser tube is examined (Fig. 2).

The impingemert type of corrosion is

FIG. 2
elearly indicated in the flattened section of condenser tubing illustrated below. Note the bright, clear appearance of the corroded metal.

The reactions involved in the metal-ion concentration cell can be illustrated as shown in Fig. 3.

VERY OILUTE SOLUTION OF COPPER SALT ON BRASS SURFACE
CATHODE AREA
ANODE AREA
$\mathrm{Cu}^{+}+\mathrm{e} \rightarrow \mathrm{Cu}$
$\mathrm{Cu}_{\mathrm{u}} \rightarrow \mathrm{Cu}^{+}+\mathrm{e}$
$\mathrm{Zn} \rightarrow \mathrm{Zn}^{++}+2 \mathrm{e}$
FIG. 3
The copper dissolving in the anodic area yields copper-ions and electrons, and since the anodic solution is constantly being changed, the concentration of copper compounds in this area has no tendency to increase.

Effect in Cathodic Area

In the cathodic area, the copper compounds are being reduced to metallic copper, resulting in crystalline deposits of copper beneath the corrosion products or scale. Since copper corrosion products from a previous reaction are being reduced, it frequently means that as the reaction proceeds, the difference between the two areas drops. However, as long as this difference exists, the cell remains in operation, the area of low metal-ion concentration being corroded most rapidly. This cell is reversible and it is for this reason that a slight change in water velocity or point of impingement the cell may return to the oxygen concentration type.
(The subject of impingement corrosion and its causes will be continued in the next issue.)

NEW DEVELOPMENTS

Salvaging of parts made of brass, bronze, or copper, in which broken pieces of taps and drills have become embedded, is reported to be possible through the aid of a new acid mixture. According to the manufacturer, the parts with the embedded tool pieces are immersed in a bath of the acid diluted with water and then heated. It is claimed that the tool pieces can be completely eaten away by this procedure, without harmful effects to the brass, bronze, or copper.
(No. 430)

Milling cufters are said to consist of tungsten carbide tips bonded to a cast body with shock-resisting, chatter-dampening characteristics that facilitate smooth cutting of brass and other metals.
(No. 431)
Flag Terminals are said to be designed to meet the need for stacking a scries of parallel terminal connections on a single stud without loss of space. Terminals are of the solderless type, designed for either right or left hand installation, and are made of pure copper, electro-tinned. Wire size range is from No. 22 to No. 10.
(No. 432)
A hole-cutsing 100 l is designed for use in electric drills, lathes, or other machines accommodating Morse-taper or straight-shanked tools, it is reported. Tool is made in six sizes, for cutting holes ranging from $3 / 4$ to $4 \frac{1 / 2}{2}$ inches in diameter.
(No. 433)
A marking machine for tube and bar stock is provided with rollers so that it can be moved along the stock. According to the maker, it is self-inking and easy to operate. Ink is distributed by a built-in fountain and roller.
(No. 434)
Solderless connectors for welding cable are said to provide ease and speed of shop or field use, full protection of cables, and a high degree of safety. Conductivity of the fitting is said to be higher than that of the cable for which it is designed. A heavy-duty insulation sleeve is provided.
(No. 435)
A portable cleaner is said to take any type of metal parts and assemblies, and to be adaptable to the use of any cleaning solvent or compound, hot or cold. Machine is equipped with a strainer for filtering metal chips and other solid foreign matter; a packless pump powered by a $1 / 4$-horsepower electric motor; and a 1,000 -watt electric heating element, thermostatically controlled at 100 degrees F.
(No. 436)
A rotary bruah is designed for removing insulation from very fine copper wires without damaging the copper. Brush has an extremely soft surface, according to the maker.
(No. 437)
This column lists items manufactured or developed by many differont sources, and does not mean that any items hava boon tested or aro endorsed by tho Bridfeport Brass Company. We will gladly refor readers to the manufacturer or other sources for further information.

PRODUCTS OF THE BRIDGEPORT BRASS COMPANY

Exacutive Offices: BRIDGEPORT, CONN.-Branch Offices and Warehouses in Principal Cities

SHEETS, ROLLS, STRIPS - PHONO-ELECTRIC* ALLOYS -
Brass, bronze, copper, Duronve, for stamping, deep drawing, forming and spinning.
CONDENSER, HEAT EXCHANGER, SUGAR TUBESFor steam surface condensers, heat exchangers, oil refineries, and process industries.

PHONO-ELECTRIC* ALLOYSger wire and cable.
WELDING ROD - For repairing cast iron and ateel, fabricating ailicon bronze tanks.
L. EDRITE R ROD - For "Bridgeport" making automatic screw ma. chine products.

COPPER WATER TUBE-For plumbing, heatiag, underground piping.
DURONZE ALIOYS-Highstreng th silicon bronzes for cor-rosion-resistant connectors, marine hardware; hot rolled shoets for tanks, boilers. heaters, flues, ducts, fashings.

BRASS, BRONZE, DURONZE WIRE-For Cap and machine acrewi. wood screws, rivets, bolts, nuts.
FABRICATING SERVICE DEPT. -Engineering staff, apecial equipment for making parts or complete items.
BRASS AND COPPER PIPE"Plumrite": for plumbing, underground and industrial services.

Established 1865

Increased Pay Loads

(Continued from Page 126)
the $1 / 2$-inch intervals to which the cross beams are adjustable permitting the elimination of all slack. The upper tiers rest on other cross beams, thus preventing damage to the lower tiers.

The Utility loader also holds the load so compactly that vertical vibration cannot cause units of the load to bounce up and down inclependently, a condition which has proved disastrous in the past and is one of the major problems of the danage claim agent. When the load is held compactly, it dampens out vibration.

Recently in the shipment of bombs it was discovered that if the load consisted of only one layer of bombs on the floor of the freight car, harmonics or vertical vibration were brought up to a point where in at least one instance the car floors were smashed and the bombs fell through. When these bomb loads were made two or three limes heavier, vertical vibration was eliminated to an extent that insured safe carriage.

Claims Keep Going Up

The year 1940 showed an increase of 11 per cent in clamage claims. Since then claims have progressively risen until in the first 6 months of 1942 the increase was 46.4 per cent of that of 1941.

Unfamiliarity with the new commodities now being manufactured by industrial plants converted to war work, the increasing scarcity and flimsiness of packing materials and heavier loadings have added to the traffic manager's problems. Use of inexperienced men on loading docks, lack of proper bracing material, rush to get loads on their way -these have all contributed toward dangerously loose and shifting loads. These same conditions and the "wild" loads resulting have increased the damage to freight cars and railroad property, in certain instances even causing freight ears to roll over, endangering lives as well as property.
The Utility loader stabilizes the load, preventing this type of damage. The importance of this feature is indicated by the following remarks made by transportation director Joseph B. Eastman to railroads and shippers:
"The effect of adequate protection of freight in transport is of incalculable importance to the nation
"Every article that is destroyed means that much transportation effort, that many car days, that many pounds of our motive power have been wasted.
from now on an unnecessary loss or damage is " bow in behalf of the enemu."

> (Continued Next Weck)

Tipping Tools

(Concluded from Page 128) salves alloys now and there is also a saving on each resharpening because, when the bit is ground back, only a $1 / 10$ inch thickness of an area 3 -inch square is removed instead of a $1 / 10$ thichness of an area measuring 2×1-inch. Thus on every regrinding of the solid tool, five times as much alloy is lost by grind-
ing away as is lost from the tootholder bit.
There are places, however, where a toolholder cammet be nsed satisfactorilybecause of lack of space in setup, lack of rigidity or heat concluctivity. In these instances the practice of welding or brazing a small piece of cutting material (high-speed sted, alloy composition or sintered carbide) on a shank of ordinary steel saves all the searee alloys otherwise wasted in a solid higli-speed steel shank.

Where a wedded high-speed sted tip is preferred, it happens, fortunately, that the heat or temperature used in welling

FLUIDS-GASES - AIR

are the blood streams of your production Keep 'em Flowing with

HILLS.MGCANNA SAUNDERS PATENT DIAPHRAGM VALVES

In Brief...

- Separation of valve working paris from fluid prevents wearcorrosion - contamination of fluid.
- Diaphragm conforms to valve seat-assures positive leak : tight operation. No sticking, clogging or wire-drawclogging or wire-draw-
ing.
- Streamlined flow-no pockets or ports to obseruct flow-cuts friction - maintains pres. sure.
- Low cost-no packing required-nomachined surfaces - practically no maintenance.

Get the Entire
Interesting Story
Ask for Bulletin
No. V-41.

A Radically Different Principle of Valve Design Brought to Perfection by Hills-McCanna Engineers

A good valve made better-that's the story of the unique Saunders valve, as refined and improved by Hills-McCanna, over the past 11 years.
Steel mills and the metal working industry must maintain uninterrupted production, so the flow of the acids, pickling and galvanizing solutions, compressed air, hot and cold w.zter, etc. must be steady and constant.
The Hills-McCanna Saunders valve is just built for these conditions, because the diaphragm principle eliminates wear and corrosion of valve parts-prevents clogging, sticking, freez-ing-affords unobstructed passage of fluid thru valve-banishes leaks and wire-drawingneeds no seat re-surfacing-no repairspractically no maintenance.
These Valves have amply demonstrated their long, unfailing, money-saving performance in over 40 separate industries, on more than 500 different applications. They will never let you down.

For Your Position-Welding Problem . . . RANSOME HAS THE ANSWER

The latest Ransome development in position-welding equipment is shown above
Turning Rolls for rotating heavy cylindrical work.
The set of driving rolls is controlled by a variable-speed unit. Means for adjustment to accommodate cylinders from $2-\mathrm{ft}$. to $14-\mathrm{ft}$. diameter is provided. One or more sets of idler rolls are used, according to the length of cylinder being worked.

The Ransome line of positioners and rotating fixtures includes the unit that will help you produce smoother and stronger welds . . . in less time than with old metheds, and at a substantial reduction in cost.

Our engineers are ready to study your problem and to offer a specific solution.
3) Liferafure on Requesf

a piece of high-speed steel is about the same as the temperature used for hardening it so that the two operationswelding and hardening-can be done at one time. The melting or flow point of a welding material such as "Cinch Cement" is about 2250 degrees Falr, so that it works well on the tungsten types of high-speed like 18-4-1 and the cobalt types. It is also being successfully used on the 6-6 and 6-5-4 types of tungstenmolybdenum high-speed steel. But on these, greater care is required because the recommended hardening heat is just at the flow point and overheating should be avoided. On the higher molybdenum types of high-speed steel, where a hardening heat below 2250 degrees Fahr. is recommended, this method of welding tips presents difficulties and the brazing method is preferable to welding.

There is another method of tipping where a braze or solder having a melting point of around 1000 degrees Fahr. is used. The high-speed steel tip is first hardened and then brazed or soldered to the shank. In this case the brazing temperature must be closely controlled to avoid softening the hardened tip which will ocour if heated above the secondary hardness temperature. This low heat method is of more interest in connection with carbides than with highspeed steel.

The best way to conserve scarce alloys is, of course, through the use of sintered carbides where ever they can be used. The rapid development of the mechanized German war machine was accomplished through the wide spread use of tools tipped with sintered carbides. Tungsten carbides and their modifications with tantalum and titanium are now being used for machining almost every kind of material used in our own war program.

There are, however, some plants where the officials do not appreciate the present situation in the price of carbides or the recent improvements in quality. Some years ago, they may have decided it did not pay to use carbide at $\$ 1.00$ per gram, and now do not realize that at 5 cents a gram it costs less to equip many machines with carbide tools than with high-speed steel tools.

Fig. 4 shows a 2×1-inch tool with a $3 \times 1 / 2 \times 1$-inch carbide tip which woukl have cost about $\$ 50$ a few years ago. The tip alone, which is shaded, weighs 45 grams ($1 / 10$ pound of alloys) and then cost $\$ 45$. Today, this same tip cau be had for $\$ 1.85$ and in a better carbide.

This tool, if made of high-speed steel, requires $\$ 4.00$ worth of steel to which must be added the cost of shaping, hardening and grinding that very conservatively would amount to at least $\$ 2.00$, making the cost of the finished tool $\$ 6.00$

WE ARE CURIOUS"

is a questionnaire placed in Roosevelt rooms. Responses enable us to improve our service.

2 like the Roosevelt for is friendly pervices without any pretentiousness

is the answer we get most often

ROOMS WITH BATH FROM $\$ 4.50$

25\% Reduction on Room

Rates to Members of the
Armed Forces.

HOTEL

ROOSEVELT

MADISON AVE. AT 45 th ST.
NEW YORK
BERNAM G. HINES,
Managing Director

Direct Entrance from Grand Central Terminal

The finished carbide tipped tool sells for $\$ 5.65$ and will remove metal faster than high-speed steel, give a better finish and more accurate work. Although the same use of tipped tools is now sining tons of scarce alloys by keeping them out of the shanks of tools, the wider use of super high-speed steels, hard alloy compositions and sintered carbides in the form of tips should le encourage.

Radio Energy Used To Fire Explosive Rivets

Radio frequency energy now is used to detonate explosive rivets and speed production of aircraft, E. I. du Pout de Nemours \& Co., Wilmington, Del. anbounced recently.

The radio mit assures instant control of temperature in the firing tip, eliminateing time consumed in heating an electric riveting iron to operating degrees and in frequent changes from one tip temperalure to another. This method, the compang reports, is adaptable only to lard: scale production.

Explosive rivets were introduced two years ago, breaking a bad bottleneck in fastening airplane sections where riveters could work from only ore side. They are installed at a rate of 15 to 20 a minute.

The wet has a high explosive secreted in a cavity at the end of the shank. Heat applied to the rivet head detonates the charge. The explosion expands the charged end of the shank, forming a "blind" head and setting the rivet.

Engineers of Radio Corp. of America and of Du Pons developed the radio unit, which consists of an oscillator together with a specially prepared applicator to concentrate current directly into the rivet head. As current is induced in the head, the heat it creates fires the charge. Radio energy not only gives instant temperature control but prolongs indefinitely the lit? of the firing tip, it is said.

Former Steel Lockers Now of Fiberboard

Pressed hard fiberboard is being substitoted for steel by Sanymetal Products Co. Inc., Cleveland, in the fabrication of locker compartments. Although not waterproof, the fiberboard-is moisture resisting, due to its hard compressed form; and while it cannot be considered fireproof, it is so slow to burn that it offers almost as much protection as steel, the company reports.

Rabbeted parts or connections reinforced on the inside by the use of angle braces, add rigidity and strength to each structure.

ADD this extra MANPOWER

TO YOUR STAFF

By Using Dependable OAKITE WARTIME SERVICE

Thousands of war plants today are taking advantage of Oakite Technical Service because it provides a direct means of adding EXTRA manpower to their production and maintenance staffs ... entirely without cost to them.
Whatever your degreasing or cleaning problems, whether they are related to the preparation of war supply items for inspection, assembly and finishing, or the maintenance of essential plant equipment and machinery this EXTRA manpower is at your service ready to render practical, personal assistance in helping you solve them.

3 Data Manuals FREE!

Three data manuals ... free to produceton men who want to speedup volume on war orders and conserve man -hours on plant maintenance ... concisely describe successful methods and short cuts used in plants the Nation over. Write for YOUR copies today!

OAKITE PRODUCTS, INC. 34f Thames Street, New York, N. Y. Technical Service Representatives Located in All Principal Cities of the United States and Canada

SHIGON, INDO-CHINA Half Way

 Around the WorldLooking south across the China Sea loward Singapore stands the city of Saigon. IndoChina. There also, half way around the world, you will find layne Wells and Pumps producing millions of gallons of water daily.

Layne Wells and Pumps are in operation in all parts of the world. Their skilliful design. sturdy construction and amazingly long life features are known to engineers everywhere. Facing a world of the keenest compelition. Layne Wells and Pumps have long been rated as the finest that skill and experience can build.

Primarily designed and built for peacetime work. Layne Wells and Pumps, under rigorous war-time overload conditions, are today making a magnificent record. Failures are almost unknown-a splendid tribute to the company's slogan of "Better Built for Better Service."

Production is now nearly 100 percent for the war effort, but every effort is being made to keep private and municipal installations in operation. For literature. address.

LAYNE \& BOWLER. INC. Memphis, Tenn.

MEETINGS

Electric Metal Makers Guild

 To Meet in Chicago May 1Melting foremen, melters, and first and second helpers on electric furnaces will have an opportunity to discuss electric furnace steelnaking problems in special sessions of the Electric Metal Makers Guild sectional meeting, Hotel Morrison, Chicago, May 1.

The guild is admitting these men, cren though they are not members, to its sectional meetings as a training aid because of the increasing growth of electric furnace capacity in this comotry.

Two separate conferences, one on ingots and one on castings, will meet during the day followed by a joint session in the evening.

Round table discussions will follow the special group meetings. Leading the quiz section on castings will be Fred J. Blaney, Ohio Steel Foundries, Springfield, O.; Alfred Gierach, American Manganese Steel Co.; Martin McDonough, National Malleable \& Steel Castings Co.; George Messenger, Kensington Steel Co.; James C. Sweitzer, Sivyer Steel Castings Co.; and Ray Wilcox, Detroit Steel Castings Co.

The panel on ingot discussion will be comprised of J. E. Arthur, Crucible Steel Co. of America, Pittsburgh; W. M. Farnsworth, Republic Steel Co., Canton, O.; L. S. Fry, Joslyn Mfg. Co., Fort Wayne, Ind.; Harold Phelps, Rotary Electric Steel Co., Detroit; Joseph Scott, Driver Harris Co., Harrison, N. J., and Harry Walther, Timken Steel \& Tube Co., Canton.

Universities To Participate

In Midwest Power Conference
Subjects pertaining to production, distribution and utilization of power under wartime conditions will feature Midwest Power Conference, Palmer House, Chicago, April 8-9. The conference is sponsored by Illinois Institute of Technology with co-operation of nine universities in the Middle West and eight Chicago district engineering societies.

Nine technical sessions are scheduled. Among special highlights will be an address on "Company Organization of Manpower," by L. H. Hill, vice president, Allis-Chalmers Mfg. Co., Milwaukee, at luncheon on the first day, and another on "Logistics, the Science of Survival," by Col. James L. Walsh, New York, chairman, War Production Committee,

American Society of Mechanical Engineers, at an "All-Enginecrs" dimner on evening of that day.

-0-

American Gear Manufacturers Asso-ciation-Twenty-seventh annual meeting will be held at Westchester Country Club, Rye, N. Y., May 17-19.

National District Heating Associntion-The 3.the amual meeting will be held in Hotel Schenley, Pittsimrgh. June ?-10. Twelve technical committees will report and 28 papers will be presented on the war problems. John F. Collins Jr., 827 N. Euclid avenuc, Pittshurgh, is secretary-ireasurer.

Wire Association Elects
 Carl E. Johnson President

Directors of the Wire Association, at their ammal meeting in New York on March 27, elected Carl E. Johnson, superintendent of Bethlehem Steel Co.'s rod and wire mills at Sparrows Point, Md., president for the forthcoming year. Other new officers are D. D. Buchanan, manager of operations, Union Drawn Steel division, Republic Steel Corp., Massillon, O., vice president of the steel dision; E. W. Clark, mechanical engineer, wire and cable section, General Electric Co., Schenectady, N. Y., vice president of the nonferrous division; Richard E . Brown, publisher of Wire \& Wire Products, Stamford, Conn., executive secretary.

Plans werc laid for the 1943 convention which will be held this year in conjunction with the National Motal Congress and the American Snciety for Metals, Chicago, Oct. 18-29.

General Motors Makes Own Cutting Tools

(Concluded from Page 71) tor Co. Hot nitric acid is used to dissolve the copper brazing material between the tip and the shank, time of immersion varying between 30 minutes and 1 hour, depending upon the size of the tonl. Handling of hot nitric acid involves many hazards, however, and the process is not recommended for small shops seeking to reclaim such tool tips.

Where carbide tips are silver soldered to tool shanks, it is possible to remove them easily with a torch, since the melting point of silver is well below that of copper.

Another unusual development Ternstedt engineers have conceived is known as a tapping arbor with interchangeable cutters. The arbor is, in effect, a holder into which a-series of cutters is set. They must be so exact that cutters made for one arbor, or holder, heretofore could not be used in another holder.

The " 13 " stands for Bissett, of course, for it was Bissett service which made possible the prompt delivery of the bored shafts shown above. These 9 shafts- 14 feet long with $71 / 2^{\prime \prime}$ O.D. and $4^{\prime \prime}$ I.D.-were supplied to a war plant completely machined, heat treated and ready for use.

Would service like this simplify your buying? Get in touch with us.

NORMALLY CARRIED IN STOCK
N.F. Steels and Standard S.A.E. Stecls, buth Carlion and Alloy, Hot Holled and Cold Drawn

Chisel Steels
\star
Cumberland Ground Shafts

Drill Rod
\star
High Speed
Tool 1Bits

Shim Stecels

Tool Stecls

Tool Stecl Tubing

BUY WAR BONDS!
Boiler Tubing

PRODUCTION WITH THESE

 FASTER -- POSITIVE COMPOUNDS FOR STEEL ANODEX for Electra CLEANING of Steel prior to PLATING AND FINISHING ZINC-COPPER - CADMIUM
Try These "BIG 3" COMPOUNDS Now!

ANODEX, METALEX and METEX have been developed in answer to a demand for distinctively different compounds, especially formulated for specific cleaning operations and have been tested and approved in war pro-duction-found to be faster acting and more exacting-and are guaranteed to lower your operating costs . . . A qualified service engineer will be pleased to help you determine the most desirable compound for cleaning your product.

WRITE FOR 子ree dATA SHEETS

CMP Allotments in Full Force by Middle of April

Orders now promised not to be superseded until then. . . De-

 liveries show little change. . . Pig iron position easier. . . Zone plan for warehouse prices being prepared
DEMAND

Some shift in war needs.

PRODUCTION

Up $1 / 2$-point to $991 / 2$ per cent.
PRICES
New plan for warehouse ceilings.

STEEL consumers whose orders already have been placed with mills will be protected from displacement of such orders in mill schedules by direction No. 1 under CMP regulation No. 1.

This provides that orders promised for second quarter delivery shall not be displaced, in absence of specilic directions to the contrary, by any order, including authorized CMP orders, received before April 15. In effect this declares a moratorium mutil April 15 on CMP allotment numbers which could be aceepted only by displacing orders already promised for delivery.

This is causing some confusion in delivery promises and nothing definite can be done before mid-month, when orders not certified by CMP will be superseded by those which are. Producers will not know exactly where they stand until CMP acts on orders not now certified. Some producers have received such a large number of certified orders for second quarter that their sehedules probably will not be much dislocated, but at present they are unable to make definite delivery promises.

War Production Board officials are preparing for third quarter CMP allotments. Claimant agencies must report by April 15 their needs for third quarter. The steel re(quirements committee must report total needs to the overall WPB requirements board by May 1 and allotments will be announced May 15. This follows the same plan as for second quarter.

Broadly appraised, the delivery situation is little changed. Bars are most difficult of carbon steel products to obtain, especially in large sizes. Whatever the final effect of direction No. 1 it appears late May is about the best that can be counted on by a buyer at this time under a CMP allotment number. In cold-drawn bars the situation is even tighter, with late June about the carliest. Sheets are not far behind hot-rolled carbon bars and shapes appear tighter than recently, due to further curtailment of ingots for this purpose.

Steelmaking operations last week at $99^{1 / 2}$ per cent regained the $1 / 2$-point lost the week before, production beine resumed after a slight flood in the Cincinnati district and a brief strike in eastern Pennsylvania. Chicago advanced ${ }^{1 / 2}$-point to $991 / 2$ per cent, Clcveland 1 point to 93 . Cincinnati 11 points to 91 . New England 5 noints to 100 and eastern Pennsylvania 2 points to 95 . Youngstown pre-
sented the only decline, 1 point to 97 per cent, as two open hearths were taken out for repairs. Rates were unchanged at Pittshurgh, 101 per cent; Wheeling, $88 \frac{1}{2}$; Buffalo, $901 / 2$; St. Louis, 93; Birmingham, 100; Detroit, 94.

No hardship is being felt as to serip supply but in many instances receipts are less than consumption and reserves are being used. This eauses apprehension for the summer situation. With famers busy in their fields conntry collections have fallen off materially. Borings continue to clog the market in spite of WPB directions for use of a percentage in furnace mixtures. Remote scrap is not being aceepted freely. buyers objecting to the higher freight charges and preferring material originating nearer home.
lig iron is currently in good supply and April allotments in some instances were more generous than in recent months. In some cases inclters have reduced their requests, indicating a decline in their orders. The situation promises to tighten in the next fow months as numerous blast furnace stacks are showing effects of hard driving and must go down for relining. Already this effeet is shown in a few mits boing blown out. WPIB has allowed accumalation of reserves at stacks scheduled for relining, to tide over the idle period. New furnaces are coming into the picture slowly as construction is delayed by inability to obtain materials promptly. A large new stack at Bethlehem's Lackawimna plant is scheduled Io start this month.

A new plan for pricing warehouse sted is about to be amomed by Office of Price Administration in amendment No. 14 to revised price schedule No. 49. It will set up four zones, from Maine to North Carolina, in which dollars and cents prices will be established. The nlan later may be extended to cover the entire country. Provisions are made for prices on shipments between zoned and unzoned areas. Ceiling prices probably will not be materially altered as present prices in the zones hate been taken into account in formulating seherlules.

Composite average prices of steel and iron products are steady at ceilings in the absence of changes by the Office of Price Administration. Finished steel composite is $\$ 56.73$, semifinisher $\$ 26$. strelmaking pig iron $\$ 23.05$ and steelmaking scrap \$19.17.

COMPOSITE MARKET AVERAGES

Five

Finished Steel Composite:-Average of industry-wide prices on sheets, strp, bars, plates, shapes, wire, nails, tin plate, standard and line pipe. Semifinished Sted Composite:-Average of industry-wide prices on billets, slabs, sheet bars, skelp and wire rods. Steelmaking Pig Iron Composite:Average of basic pig iron prices at Bethlehem, Birmingham, Buffalo, Chicago, Cleveland, Neville Island, Granite City and Youngstown. Steelworks Scrap Compasite:-Average of No. 1 heavy melting steel prices at Pittsburgh, Chicago and eastem Pemasylvania

COMPARISON OF PRICES

Representative Market Figures for Current Week; Average for Last Month, Three Months and One Year Ago

Finished Material

Steed hars, Pittsburgh
Steel hars, Chicago
Steel hars, Philadelphia
Shajees, Pittshurgh
Shapes, Philotelelphia
Shapes, Chicago
1 latess, l'ittsburgh
Plates, Philadelphia
Plates, Chicago
Sheets, hot-rolled, pittsburgh
Sheets, cold-rolled, Pittsburgh
Sheets, No. 24 gillv., Pittshurgh
Sheets, hoot-rolled, Gary
Sheets, cold-rolled, Gary
Sheets, No. 24 galv., Gary
Bright hess., basic wire, Pittshurgh
Tin plate, per base box, Pittshurgh
Wire naik, Pittsburgh

April 3,	March	Jnn.	April,
1943	19.43	1943	1942
2.15 c	2.15 c	2.15 c	2.15 c
2.15	2.15	2.15	2.15
2.49	2.49	2.49	2.49
2.10	2.10	2.10	2.10
2.22	2.22	2.22	2.22
2.10	2.10	2.10	2.10
2.10	2.10	2.10	2.10
2.15	2.15	2.15	2.15
2.10	2.10	2.10	2.10
2.10	2.10	2.10	2.10
3.05	3.05	3.05	3.05
3.50	3.50	3.50	3.50
2.10	2.10	2.10	2.10
3.05	3.05	3.05	3.05
3.50	3.50	3.50	3.50
2.60	2.60	2.60	2.60
$\$ 5.00$	$\$ 5.00$	$\$ 5.00$	$\$ 5.00$
2.55	2.55	2.55	2.55

Semifinished Material

Shect bars, Pittshurgh, Chicugn
Slabs, Pittshurgh, Chicago
Herolling billets, pittshurgh
Wire rods No. 5 to ph-inch, Pitts.

$\$ 34.00$	$\$ 34.00$	$\$ 34.00$	$\$ 3.4 .00$
34.00	34.00	34.00	34.00
34.00	34.00	34.00	34.00
2.00	2.00	2.00	2.00

Pig Iron

Scrap

Heavy melting steel, Pittshurgh
Heavy melt- stecl, No. 2, E. Pa. Henvy melting steel, Chiengo laiks for rolling, Chicago No. 1 cast, Chicagn

Coke

Comnellsville, furnace, ovens	$\$ 6.50$	$\$ 6.00$	$\$ 6.00$	$\$ 6.00$
Commellsville, foundry, ovens	7.25	7.25	7.25	7.25	
Chicago, by-product falry., del.	12.25	12.25	12.25	12.25	

STEEL, IRON, RAW MATERIAL, FUEL AND METALS PRIECS

Following are maximum prices established by OPA Schedule No. 6 issued April 16, 1941, revised June 20, 1941 and Feb. 4, 1942. The sched ule covers all fron or steel ingots, all semifnished fron or steel products, all fintshed hot-rolled, cold-rolled iron or steel products and any fron or stecl product which is further finished by galvanlzing, plating, coating, drawing, extruding, etc., although only princlpal established basing points for selected products are named specincally. All seconds and off-grade products also are covered. Exceptions applying to Individual companies are noted in the table. Feleral tnx on freleht charges, effective Der. 1. 1942, not included in following prices

Semifinished Steel

Gigas fon lansls pxemit wire rods, skeln
Carbon Steel Ingots: F.o.b. mill base, rerolling qual., stand. analysis, \$31.00.
(Emplre Sheet \& Tin Plate Co., Mansfleld, O. may quote carbon steel lngots at $\$ 33$ gross ion, f.o.b. mill.)
Alloy Steel Ingots: Pltisburgh, uncropped, $\$ 45.00$.
Rerolling Billets, Slabs: Plttsburgh, Chicago, Gary, Cleveland, Buffalo, Sparrows Point, Birmingham, Youngstown, \$3A.00; Detrolt, del. $\$ 36.25$; Duluth (bil.) \$36.00.
(Andrews Steel Co., carbon slabs S41: Continental Steel Corp., billets $\$ 34$, Kokomo, to Acme Steel Co.; Nortliwestern Steel \& Wire Co. $\$ 41$, Sterling. I11.: Laclede Steel Co. \$34, Alton or Madison, Ili.: Wheeling Steel Corp. $\$ 36$ bise, billets for lend-lease, \$34, Portsmouth, O., on slabs on WPB directives.)

Furging ghnity mblets: Pltsburgh, Chicago, Giry, Cleseland, Buffalo, Blrmingham, Youngstown, $\$ 40.00$; Detroit, del. \$42.25: Duluth, \$42,00.
(Andrews Steel Co. may quote carbon forgIng billets $\$ 50$ gross ton at established basing points.)
Opm Hearth Shell Sieel: Pittsburgh, Chicago, base 1000 tons one slze and section: $3-12 \mathrm{in}$., $\$ 52.00$: $12-18 \mathrm{in} ., \$ 54.00 ; 18 \mathrm{in}$. and over. $\$ 56.00$.
Alloy billets, Elnbs, 13100 m : Pittsburgh, Chicago, 13uffalo, Bethlehem, Canton, Massillon. $\$ 34.00$.
Sheet 13ars: Pletsburgh, Chicago, Cleveland, Buffalo, Canton, Sparrows Point, Youngstown, s3ut. (Wheeling Steel Corp. $\$ 37$ on lend-lease sheet bars, $\$ 38$ Portsmouth, O., on WPB directses; Empire Shed \& TIn Plate Co., MansNeld, O.. carbon sheet bars, \$39, f.o.b. mill.) Skelp: Pltisburgh. Chlcago, Sparrows Pt. Younestowt, Coatesvlle, lb., \$1.90.
Wire Rods: Plitsburgh, Chicago, Cleveland, Birmingham, No, $5-9 / 32$ in., inclusive, per $100 \mathrm{lbs} ., \$ 2.00$
Do., over $9 / 32-47 / 64-\ln$., incl., \$2.15. Worcester add \$0.10; Galveston, so.27. Paclife Coast $\$ 0.50$ on water shipment.

Bars

Hot-Rolled Carlan Hars: Pittsburgh, Chlcago, Gary, Cleveland, Buffalo, Birmingham, base 20 tons one size, 2.15 c : Duluth. base 2.25 c : Detroit, del. 2.27 c ; New York del. 2.51c; Phlla. det. 2.49 e : Gulf Ports, dock 2.52c, all-rall del. 2.49e: Guli Ports, dock 2.52c, all-ra 2.59 : Pac ports, dock 2.80c. (Phoenix Iron Co., Phoenixville, Pa.. may quote 2.35 c at establishex basing joints. Joslyn Mig. Co. may quote 2.35 c , Chleago base. Calumet Steel Division, Borg Warner Corp., may quote 2.35c, Chicago Rail stecl 13ars: Same prices as for hot-rolled Rall stecl Bars: Same prices as
carbon bars except base is 5 tons.
(Sweet's Steel Co., Williamsport, Pa., may quote rail steel merchant bars 2.33 c f.o.b. mill.)
Hot-Rolled Alloy 1sars: Pitsburgh, Chleago, Canton, Massillon, Buffalo, Bethlehem, base 20 tons one size, 2.70 c ; Detrolt, del., 2.82c.
(Texas Steel Co. may use Chlcago base price as maximum f.o.b. Fort Worth, Tex., price on sales outside Texas, Oklahoma.)

AISI	$\begin{gathered} \left({ }^{\circ}\right. \text { Basic } \\ \mathrm{O}-\mathrm{H}) \end{gathered}$	AISI		(*Basic
Serjes		Series		-H)
1300	\$0.10	4100	(.15-.25 Mo)	0.55
			(.20-. 30 Mo)	0.60
2300.	1.70	4340		1.70
2500	2.55	4600		1.20
3000	0.50	4800		2.15
3100	0.70	5100		0.35
3200	1.35	5130	or 5152	0.45
3400	3.20	6120	or 6152	0.95
4000	0.45-0.55	6145	or 6150	1.20

[^8]Reinforcing Burs (New Billef): Pittsburgh, Chicago, Gary, Cleveland, Birmingham, Spar row's Point. Bulfalo, Youngstown, base 2.15c; Detrolt del. 2.27 e ; Gulf ports, dock 2.52 c . allrail 2.61c; Paclflc ports, dock 2.80 c , all-rail $3.27 c$.
Reinforcing Ikars (Rall Steel): Pittsburgh, Chicago, Gary, Cleveland, Birmingham, base 2.15 c ; Detroit. del. 2.27c; Gulf ports, dock 2.52 c , all-rall 2.61c: Pacific ports, dock 2.80 c all-rall $3.25 c$.
(Sweet's Steel Co., WIllamsport, Pa., may quote rall steel reinforcing bars 2.33c, f.o.b. mill.)
Iron Hars: Single reflned, Pitts. 4.40 c , double refined 5.40 c ; Pittsburgh, staybolt, 5.75 c ; Terre Haute, common, 2.15c.

Sheets, Strip

Hot-Rolled Sheets: Pittsburgh, Chicago, Gary, Cleveland, Blrmingham, Buffalo, Youngstown, Sparrows Pt.: MIddletown, base 2.10 c ; Granite City, base 2.20 c ; Detrolt del. 2.22c; Phila. del. 2.28c: New York del., 2.35c; Paclfic ports 2.65 c .
(Andrews Steel Co. may quote hot-rolled shects for shipment to Detroit and the Detroit area on the Middletown, O. base.)
Cold-Rolled Sheets: Pittsburgh. Chicago. Clereland, Gary, Bulfalo, Youngstown, Middletown. base, 3.05 c ; Granite Clty, base 3.15 c : Detroit del. 3.17c: New York del. 3.41c; Phila. del. 3.39 c ; Paclilc ports 3.70 c .

Gialramized Sheets, No, 24: Pittsburgh, Chicago, Giry, Birmingham, Buffalo, Youngstown, Sparrows Point, Middletown, base 3.50c; GranIte Cits, base 3.60 c : New York del. 3.74c: Phlla. del. 3.68c; Pacifle ports 4.05c.
(Andrews Steel Co. may quote galvanized sheets 3.75 c at established basing points.). Corrugated Galv. Shects: Pittsburgh. Chicago, Gary, Birmingham, 29 gage, per square 3.31c. Culvert Slieets: Plttsburgh, Chicago, Gary, Birmingham, 16 gage, not corrugated, copper alloy 3.60 c ; copper fron $3.90 c$, pure Iron 3.95 c ; zinc-coated, hot-dipped, heat-treated, No. 24, Pittsburgh 4.25c.
Ennmeling Sheets: Pittsburgh, Chicago, Gary, Cleveland. Youngstown, Middletown, 10 gage.
base 2.75 c ; Grante City, base 2.85 c : Pacinc Pittsburgh, Chicago, Gary, Cleveland, Youngstown, Middletown, 20 gage, base $3.3 \overline{\mathrm{c}}$; Granite Clty, bise 3.45 c ; Paelflc ports 4.00 c
Electrical slieets, No. 24:

	Pittsburgh	Paclfic	Granite
	Base	Ports	Clty
Field grade	3.20c	3.95 c	3.30c
Armature	3.55 c	4.30 c	3.65 c
Electrical	$4.0 \overline{\mathrm{c}}$	4.80 c	4.15 c
Motor	4.95 c	5.70 c	5.05 c
Transformer 5.7.			
72	$6.15 c$	6.90 c	
\bigcirc	7 フに!	7.90 c	
58	7.65 c	8.40 c	
52	$8.45 c$	9.20 c	

Cleveland, Birmingham Youngstown Gary, town, base, 1 ton and over, 12 inches wide and less 2.10 c ; Detroit del. 2.22c: Pacific worts 2.75 c , (Joslyn Mfg. Co. may quote 2.30 c , Chicago base.)
Coll Kolled Strip: Pittsburgh, Cleveland, caungstown, base 2.25 carbon and less 2.80 c ; Chicago, base 2.90 c ; Detroit, del. 2.92 c ; Worcester
base 3.00 c . Commodit
Commodity C. R. Strip: Pittslurgh, Cleveland, Youngstown, base 3 tons and over, 2.95c; Cold-Finished Surine
Cold-Finished Spring Steal: Pittsburgh, CleveCarb., 2.80c; $.51-.75$ Carb., $4.30 \mathrm{c} ; \quad .76-1.00$ Carb., 6.15c; over 1.00 Carb., 8.35 c .

Tin, Terne Plate

TIn Plate: Pittsburgh, Chicago, Gary, 100-1b, base box, $\$ 5.00$; Granite City $\$ 5.10$.
Electrolytic Tin Plate: Pittsburgh. Gary, $100-$ b. base box $\$ 4.50$

Tin Mill Hlack Plate. Pittsburgh, Chicago, rary. base 29 gage and lighter, 3.05 c : GranIte Clty, 3.15 c ; Paclfc ports, boved 4.05 c . 24 unassorted 3 Ittsburgh, Chlcago, Gary, No. 24 unassorted 3.80 c .
Manufacturins Ternes: (Special Conted) Pltisburgh, Chicago, Gary, 100 -base box $\$ 4.30$; Granlte City $\$ 4.40$.
Roofing Ternes: Pitisburgh base ner package 112 sheets; 20×28 In., coating I.C., $8-1 b$. $\$ 12.00 ; 15-1 \mathrm{~b}$. $\$ 14.00 ; 20-1 \mathrm{~b}, \quad \$ 15.00 ; 25-1 \mathrm{~b}$. \$16.00: 30-Ib. \$17.25; 40-1b. \$19.50.

Plates

Carlon Sited Plates: Pltisburgh. Chlcago, Gary, Cleveland, BIrmingham, Youngstown, Sparrows Polnt, Coatesville, Claymont, 2.10 c ; New York, del., 2.30-2.55c; Phila., del., 2.15 c ; St. Louls, 2.34 c ; Boston, del., $2.12-67 \mathrm{c}$; Pacifle ports, 2.65 c ; Gule Ports, 2.47 c .
(Granlte City Steel Co. may quote carbon plates 2.35 c . f.o.b. mill. Central Iron \& Steel Co. 2.20 c , i.o.b. basing points.)
Floor Plaies: Pittsburgh, Chicago, 3.35c. Gulf ports, 3.72c; Paclnc ports, 4.00c.
Open-Henth Alloy plates: Pittsburgh, Cht cago, Coatesville, 3.50 c .

Wroukit Iron Plates: Pittsburgh, 3.80 c .

Shapes

Siructural shapes: Pittsburgh, Chicago, Gary, Birmingham, Buffalo, Bethlehem, 2.10 c ; New York, del., 2,28c; Phila., del., 2.22c; Gulf ports, 2.47 c ; Pacific ports, 2.75 c ,
(Phoenlx Iron Co., Phoenixville, Pa. may quote carbon steel shapes at 2.30 c at establlshed basing points and 2.50 c , Phoenixville, for export.)
Steel Sheet Pling: Pittsburgh, Chicago, Buf-

Wire Products, Nails

Wire: Pittsburgh, Chicago, Cleveland, Birmingham (except spring wire) to manufac Pright basic, bessemer $\$ 2$ for Worcester) Galvanized wire

Wire Products to the Trade:
polished and cement-coated wire nails, polished and staples, $100-\mathrm{lb}$. keg
Galvanized fence wire, 100 lb .
Woven fence, $121 / 2$ gage and lighter, per Do., 11 tage
Barbed walre and heavier
Twarbed wlre, 80 -rod spool, col.
Single loop barbless wire, col.
Fence posts bale ties, col.
Fence posts, carloads, col.

Pipe, Tubes

Welded IPpe: Base price in carloads to consumers about $\$ 200$ per net ton. Base discounts on steel pipe Pittsburgh and Lorain, O.: Gary, Ind. 2 points less on lap weld. 1 point less on buit weid. Pltisburgh base only on wrought iron plpe.

$$
\begin{aligned}
& \text { Steel Butt Weld } \\
& \text { Sidat }
\end{aligned}
$$

Lap Weld

Steel				Iron	
In.	Blk.	Galv.	In.	Blk.	Galv.
2	61	491/2	11/4	23	31/2
$21 / 2-3$	64	521/2	11/2	281/2	10^{2}
31/2-6	66	541%		301/2	12
7-8	65	521/2	21/2, 31/2	2. 311/2	141/2
9-10	. $641 / 2$	52		. 331	18
11-12	. $631 / 2$	51	$41 / 2-8$ $9-12$	321/2	17
Boller Tubes: Net base prices per 100 feet,					
f.o.b.	Pittsburgh in carload lots, minimum				
vall	t lengt	4 to 2	$4 \text { feet. ir }$	nclusive. -Lap	Weld-
			less		Char:
O. D.		Hot	Cold		coal
Slzes	B.W.G.	Rolled	Drawn	Steel	Iron
$1{ }^{\prime \prime}$	13	\$ 7.82	\$ 9.01		
114"	13.	9.26	10.67		
112"	13	10.23	11.72	\$ 9.72	\$23.71
$1 \times$	13	11.64	13.42	11.06	22.93
$2^{\prime \prime}$	13	13.04	15.03	12.38	19.35
21/4"	13	14.54	16.76	13.79	21.63
21/4"	12	16.01	18.45	15.16	
214,"	12	17.54	20.21	16.58	26.57
$2{ }^{\prime \prime}$	12	18.59	21.42	17.54	29.00
$3^{\prime \prime}$	12	19.50	22.48	18.35	31.38
31/2"	11	24.63	28.37	23.15	39.81
$4^{\prime \prime}$	10	30.54	35.20	28.66	49.90
41/1"	10	37.35	43.04	35.22	
5 "'	9	46.87	54.01	44.25	73.93
$6^{\prime \prime}$	7	71.96	82.93	68.14	

Steel

Rails, Supplies

Standard rails, over 60-lb., lo.b. mill, gross ton, \$40.00.
Light ralls (billet), Pltsburgh, Chicago, Bir mingham, gross ton, $\$ 40.00$.
ofelaying ralls, 35 lbs. and over, f.o.b. rallroad and basing points, \$28-\$30.
Supulies: Angle hars, 2.70 c : tle plates. 2.15 c track spikes, 3.00 c ; track bolts, 4.75 c ; do heat treated, 5.00c.
© Flixed by OPA Schedule No. 46, Dec. 15,

Tool Steels

Tool steris: Pittsburgh. Bethlehem, Syracuse, base, cents per lb.: Reg. carbon 14.00 c ; extra carbon 18.00 c ; special carbon 22.00c; oll-hardenlng 24.00c; high enr.-chr, 43.00c.
High Sipeed Tioul Steels:

			Pitts. base.		
Tung.	Chr.	Van.	Moly.	per lb.	
18.00	4	1	-	67.00 c	
1.5	4	1	8.5	54.00 c	
	4	2	8	54.00 c	
5.50	4	1.50	4	57.50 c	
5.50	4.50	4	4.50	70.00 c	

Stainless Steels

Base, Cents per lb.-f.o.b. Pittsburgh CIHROMIUM NICKEL STEEL
Type Bars Plates Sheets H. R. C. R.

Type	Bars	Plates	Sheets	Strip	Strip
$302 \ldots$	24.00 c	27.00 c	34.00 c	21.50 c	28.00 c
$303 \ldots$	26.00	29.00	36.00	27.00	33.00

STAINLESS CLAD STEEL (20\%)

With 2-3\% moly. tWith titanlum. fWith columblum. carbon, $\ddagger \ddagger$ Free machining. ${ }^{3}$ Includes annealing and plckling.
Basing Point Prices are (1) those announced by U. S. Steel Corp. subsidiaries for flrst quarter of 1911 or in effect April 16, 1941 at deslenated basing polnts or (2) those prices announced or customarlly quoted by other producers at the same designated points. Base prlces under (2) cannot exceed those under (1) except to the extent prevalling in third quarter of 1940
Extrag mean additions or deductions from base prices in effect April'16, 1911.
Dellyered prices applying to Detrolt, Eastern Michigan Gulf and Pacifc Coast polnts are
deemed basing points except in the case of
the latter two areas when water transportation is not available. In which case nearest basing polnt grice, plus all-rall freight may be charged.
Donsestle Celling prices are the aggregate of (1) governing basing polnt price, (2) extras and (3) transportation charges to the point of delvery as customarily computed. Gov coning basing molnt is basing point nearest the consumer prowimg the lowest delvered price Emergency basinz point is the basing point a or near the place of production or origin.
Seconds, maximum prices: flat-rolled rejects 75% of prime prices: wasters 75%, wastewasters 65% except plates, which take waster
prices; tin plate $\$ 2.80$ per 100 ibs. terne prices; tin plate $S 2.80$ per 100 lbs.; terne plate $\$ 2.25$; semlflnished 85% of primes; other grades limited to new materlal cellings
Fxport celling prices may be either the ag gregate of (1) soverning basing point or emer gency basing point (2) export extris (3) ex port iransportation charges provided they are the f.a.s. seaboard quotrtions of the U. S. Steel Export Co. on April 16, 1941.

Bolts, Nuts

F.o.b. Pittsburah, Cleveland, Blrmingham, Chicago. Discounts for carloads additional 5% full containers, add 10% Carriage and Machine
1/2 $x 6$ and smaller Do. in and re............ 6 ind shorter
$651 \%_{2}$ off
$631, \frac{1}{2}$ off
Do., $\frac{y}{4}$ to $1 \times 6-\mathrm{in}$. and shorter
. 61 off
$11 / 6$ and larger, all lenzths 59 of
All diameters, over 6 -in. long
Tire bolts
59 off
Step bolts
50 off
560 off
Plow bolts
Stuve Bolt
In packages with nuts separate $71-10$ off; with nuts attached 71 off: bulk 80 off on 15,000 of 3 -inch and shorter, or 5000 over $3-1 n$.

Piling

Pttisburgh, Chlcago, Bulfalo

Rivets, Washers

F.o.b. Pltisburgh. Cleveland, Chlcago,

Structural
Birmingham
7_{7}-Inch and under
$3.75 c$
$5-5$ off
Wrought washers, Pittsburgh, Chicago,
Phlladelphla, to Jobbers and large nut,

Metallurgical Coke

Heehtre Ovens	. 50
Connellswilte, furnace	
Connellsville, foundry	$7.50-8.00$
Connellswille prem. fdry	7.75-8.10
New River, foundry	8.50-8.75
Wise county, foundry	8.00
Whse county, furnace By-Product Foundry	7.00
Kearny, N. J., ovens	
Chicago, nutside delivered	11.50
Chicago delivered	5
Terre Haute, delivered	12.00
Milwaukee, ovens	12.25
New England, dellvered	13.75
St. Louls, dellvered	+12.25
Birmingham, ovens	8.50
Indranapolls, dellvered	12.00
Cincinnatl, delivered	11.75
Cleveland, dellvered	12.30
Buffalo, dellwered	12.50
Detrolt, dellvered	12.25
Philadelphia, delivered	12.38

*Operators of hand-drawn ovens using trucked coal may charge $\$ 7,00$, effective Feb. 3, 1943.

Coke By-Products

Spot, dal., frelght allowed east of Omaha
Pure and 90% benzol
15.00 c

Coluol, two degree
Solvent naphthe
Industrial xylol per 1b. f.o.b. works
Phenol (car lots, returnable drums)
Do., less than car lots
Eastern Plants, per ib
aphthalone flakes, balls, bbls., to job-
Per ton, bulk io. 8.00 c

$\$ 29.20$

Pig Iron

Prlces din gross tons) are maximums flaed by OPA Price Schedule No. 10, effective June 10, 1941. Exceptions indicated In footnotes. Allocation regulatinns from WPB Order M-17, expiring Dec. 31, 1942, Bnse prices bold face, delivered light face. Federal tax on freight charges, effective Dec. 1, 1942, not included In following prices.

	Fominiry	Basle	Brssimar	Mallabl.
Bethlehem. Pia.. base	S25.00	\$24.50)	\$26.06)	\$25,50
Newark, N. J., del.	26.62	26.12	27.62	27.12
Brooklyn, N. Y̌., del.	27.65			28.15
Birdstara, Pa., del. .	2̄ิ.6\%	2.4.50)	26.00	25.50
Brmingham, base	120.38	119.0)		
Bultimure, del.	25.67			
Boston, del.	25.12			
Chicago, del.	. 124.47			
Cincinnati, del.	24.30	22.92		
Cleveland, del.	24.12	23.24		
Newark, N. J., del.	26.24			
Philateluhia, del.	25.51	25.01		
St. J.oulis, del.	124.12	23.24		
Ruifala, base	24.10	23.00	25.010	24.54
Buston, del.	25.50	25.01	26.50	3 S 200
Rotchester, del.	25.53		26.53	26.013
Syracuse, del.	26.08		27.08	26.58
Chicmen, base	24.00	23.50	24.50	24.00
Mllwaukee, del.	25.17	24.67	25.67	25.17
Muskegon, Mlch., del.	27.38			27.38
Clevelana, base	24.00	23.50	24.50	2.4.0)
Akron, Canton, O., del.	2.47	24.95	25.97	25. 17
Detrolt, base	24.00	23.50	24.50)	24.00
Saginsw, Mich., del	23.45	25.95	26.95	26.45
Duluth, base	24.50	24.00	25.06)	
St. Paul, del.	26.75	26.26	27.26	26.76
Eri, Pa., base	24.(X)	23.50	25.001	24.50
Everelf, Mass., base	25.00	24.50)	26.07	25.50)
Buston, del.	25.50	25.00	26.50	26.00
Gramite cits, ill. base	24.60	23.50	24.50	24.00
St. Lriuis, del.	24.50	24.00		24.50
Hamilion, O., base	24.00	23.50		24.00
Cinclnnati, del.	24.68	24.68		25.35
Neville Island, Pa., base sPiltsburzh, del	24.6 (1)	23.50	24.50)	24.00
No. \& Su. sldes	24.69	24.19	25.19	24.69
Provo, ltah, base	22.00	21.50		
Sharpwille, l'a., base	24.00	23.50	24.50	24.00
Sparrows Potnt, Md., base	25.00	24.50		
Baltimure, del.	26.05			
Steellun, Pra., base		24.50		
Stwrdel ind, Pu., base	25.00	2.4 .5 .1	26.00	-5.51
Phlladelphla, del.	25.89	25.39	-6.03	26.39
Toledo. O., bise	$24 .(0)$	23.51	24.50	24.00
Mansfleld, O., del.	26.06	25.56	26.56	26.06
Y'ounsslown, O., base	24.00	23.50	24.50	24.00
${ }^{\circ}$ Basic silicon grade (1.75-2.25\%), add 50 c for each 0.25%. IFor phosphorus 0.70 and over deduct 38e. 1Over 0.70 phos. §Fur McKees Rocks, Pa., add . 55 to Neville Island base; Lawrenceville, Homestead, McKeesport. Ambridge, Monaca, Aliquippa, 84; Monessen, Monongahela				

Ferroalloy Prices

frombancunest: i8-82cr. carlots. ross ton, duty padd, Atlantic ports 1.45: Del. Pitisburgh \$140.65; f.o.b. jnuthern furnates $\$ 135$; Add $\$ 6$ per aross ton for packed carloads $\$ 10$ for ion, \$13.50 fur less-ton and $\$ 18$ fur less than $200-16$, lots, sacked. Nolespipispon: 19-21r, carlots per aross ton, Plimerton, Pa. S36. Electrolstle manaunese: 99.9r plus, less ton lots, per Ib. 42.00 k , Ton lots 10.0 ore. Annual contracts 38.00 c . Chromium Matal: Per lb. contained chromium in gross ton lots. contract basis, frelght allowed, 98 s $80.00 \mathrm{c}, 88 \% 79.00 \mathrm{c}$. Sput prices B cents per lb. higher.
Ferracolumblam: 5(0-60) per lb contained columblum in gross ton lots, contract basis, f.o.b. Niagara Falls, N. i. F2. 30 , Sput prtces 10 cents per 16. higher.
Ferrachrame: 66-70c: per lb. cantained chromlum in carloads, freight allowed, 4-6"8 carbon 13.00c; ton loss than 20 -lb 72 cr. low carbon grades

Ferramonshdennem: 55-75\%f. per lb geloth modybdenum, f.o.b. Lan nace, any quantly 9. 0 onc.

Calelum Molybdate (Molyte): 40$45{ }^{\text {r}}$ r, per lb. contalned molybdenum contract busis. f.o.b. Langeloth and vashington, Pa., any quantits 80.00 c .

Molybile Oxide Briguets: 48-52C, per lb . contained molshdenum, f.o.b Langeloth, Pa., any quantity 80.00 c Molybiemmm oxid : $53-633^{c}$, per ib contained molsbdenum in 5 and 20 b. molybdenum contalned cans f.o.b. Langeloth and Washlngton
Pa., any quantly go.06e.

Molybdenam lowaler: 99\% per ib in 200 -lb. kegs, $f, 0, b$. Nok. Pa s2.60: 100-200 ib. Iots s2.75: under 1 (60.1b. lots S3.00).

Ferrophasibiarus: 1i-1yer, bised on 18\% phosphorus content, with unitage or $\$ 3$ for each $1 c_{c}$ of phosphor us nbove or below the base: gross tons per carload f.o.b. setlers works, with frelght equallzed with Rockdale, Tenn.: contract price S58 EO. spot \$62.25.

Ferronhonjumpus: 23-26 ${ }^{\circ}$. based on 245^{2} phosphorus content, with unit age of 53 for each 15 of phosphorus above or below the base: gross tons per carload f.o.b. sellers' works with freight equalized with MI Pleasant. Tenn. ; contract price $\$ 75$ spot $\$ 80$.
Ferrosillecin: Contract basis In gross tons per carload. bulk, freight atlowed: unitage applies to each 1^{c} silionn above or below base.
51) r°
Cirload

Inlta
75 c
Und Unitag
$85 r_{r}$ 85% Unitage Unitage
$90-95 c$:
car
irioads Ton lots - 87.00 Spot prices $1 ;$ 10.25c
-lllon Mrial: Contract basis pe b., f.o.b. producers plants, freigh tlluwed: 1 c Iron; carlots 14.50 m ton lots 15.00 c , less-ton lots 15.25 c , less 200 lbs . $1 \overline{3} .50 \mathrm{c}$.
sllicon Metal: Contract basls per ib.: 2% iron: carlots $13,00 \mathrm{c}$ ton lots 13.50 c , less-ton lots 13.75 c , less 200 lbs. 14.00c. Spot prices $1 /$-cent himher.
sllion Briduets: Contract basis: in carloads, bulk freight allowed. per ton 57.4 .50 : packed 580.50 : ton lots \$84.50; less-ton lots per 1 b . A.00c: less 200 - 1 b . $10 t \mathrm{~s}$ per 1 b .4 .25 c
Spit $1 / 4$-cent per lb , higher on lesston lots: $\$ 5$ per ton higher on ton lots and over.
Sllewmangangse: Cuntract basis frelght allowed, $11_{1}{ }^{\prime}$ re carbon; In rarlcads per fross ton $\$ 135$: ton lots $\$ 147.50$. Spot $\$ 5$ per ton higher. Nilleormanganese Briquets: Contract hasls in carloads per pound, bulk freight allowed 5.80 c ; packed 6.05 c : ton lots 6.30 c ; less-ton lots 6.55 c : less $200-3 \mathrm{~b}$. lots 6.80 c . Spot prices if-cent higher.
Ferrotungsten: Carlots, per Ib. contained tungsten. $\$ 1.90$ Tunksten Mria powder: 98-995 per m . any quantity $\$ 2.55-2.65$.
Ferrotitanlum: $40-45 \sigma_{c}$, f.o.b. Ni agara Falls, N. l., per 1 b . contained
titanfum: inn lots $\$ 1.23$; less-ton

Exceptoms to Calling rices: Pissburah Coke \& Iron Co. (Sharpsville. Pa. furnace only) and Struthers Irun \& Steel Co, may charge sit cents a ton in excess of basing poin mrices for No. 2 Foundry, Basle, Bessemer and Malleable. Mysife Iron Works, Everett, Mass.. may exceed basing point prices by s1 ner ton, effective April 20, 1912. Chester, Pa., furnace of Pittsburgh Coke \& Iron Co. may exceed basing poini prices by si2. 25 per ton, effective

Refractories

Per 1000 f.o.b. Works, Net Prlees

OhIo Mablable Bung Isrick
All bases
859.85

Pennsylvania
Iollet, E. Chicago 58.

Dry press
29.101

Magn slte
Domestle dead-burned gralns.
not ion f.o.b. Chewelah,
net ton f.o.b. Chewela
net ton, bass
net ton, basmé Brick
o.b. Baltimore, Plymuln

Net ton, Meeting, Chester, Pa.
Chrome brlek chrome $\$ 54.0 n$
Chem. bonded chrome 74.00
Magnesite brick magnesite.... (35.0n)

Fluorspar

Wiashed gravel, f.o.b. Ill.
Ky.. net ton, carloads, all rall barge
Do., $25.00-25.00-28.00$
No.
25 lump
No. 2 lump ifive Now. 23, $1942 ;$

WAREHOUSE STEEL PRICES

				$\begin{aligned} & \stackrel{y}{3} \\ & \frac{3}{2} \\ & \frac{0}{8} \\ & \frac{8}{4} \end{aligned}$							E E 䒹 0 $\frac{0}{0}$ 8		
Boston	$3.98{ }^{1}$	3.851	3.851	5.88^{1}	$3.71{ }^{1}$	4.061	5.66^{1}	5.11^{14}	$4.68{ }^{14}$	4.13^{21}	3.48	$7.75{ }^{23}$	6.05^{18}
New York	$3.84{ }^{1}$	$3.75{ }^{\text { }}$	$3.78{ }^{1}$	$5.56{ }^{1}$	3.581	$3.96{ }^{1}$	$3.96{ }^{1}$	5.00^{13}	$4.60{ }^{1}$	4.09^{21}	3.51	$7.60{ }^{23}$	$5.90{ }^{23}$
Philadelphia	$3.85{ }^{1}$	$3.55{ }^{\text { }}$	$3.55{ }^{1}$	$5.25{ }^{1}$	$3.55{ }^{1}$	$3.95{ }^{1}$	4.451	4.90^{14}	$4.63{ }^{25}$	4.08^{21}	3.31	$7.5{ }^{21}$	$5.86{ }^{21}$
Ballimore (city)	$3.85{ }^{1}$	$3.70{ }^{1}$	$3.70{ }^{1}$	$5.25{ }^{1}$	$3.50{ }^{1}$	4.00^{1}	$4.35{ }^{1}$	$5.05{ }^{17}$	5.00^{30}	4.04^{21}			
Baltimore (country)	$3.85{ }^{1}$	$3.70{ }^{1}$	$3.45{ }^{1}$	5.25	$3.25{ }^{1}$	$4.0{ }^{1}$	$4.35{ }^{1}$	$4.75{ }^{17}$	5.00^{20}	4.04^{31}			
Washington, D. C.	$3.95{ }^{1}$	$3.80{ }^{1}$	$3.80{ }^{\prime}$	5.35	$3.60{ }^{1}$	4.10^{1}	$4.45{ }^{1}$	$5.15{ }^{17}$	5.10^{20}	4.03^{21}			
Norfolk, Va.	$4.00{ }^{1}$	4.051	4.05^{1}	5.45	$3.85{ }^{\text {² }}$	4.10^{1}	4.10^{1}	$5.40{ }^{17}$	$4.50{ }^{34}$	$4.15{ }^{21}$			
Hethlehem, $\mathrm{P}^{\text {a }}$ 。 ${ }^{\text {a }}$		$3.45{ }^{1}$											
Clnymont, Del. ${ }^{\circ}$			$3.45{ }^{1}$										
Cortesville, Pa. ${ }^{\circ}$			$3.45{ }^{\prime}$										
Bullalo (city)	3.3.5	3.401	3.621	5.251	3.25	3.821	$3.82{ }^{1}$	$4.75{ }^{18}$	4.3010	3.75^{33}	3.52	$7.35{ }^{23}$	$5.65{ }^{33}$
Buffalo (country)	$3.25{ }^{1}$	3.301	$3.62{ }^{1}$	5.251	$3.15{ }^{1}$	$3.82{ }^{1}$	3.82'	$4.65{ }^{10}$	$4.20{ }^{10}$	$3.65{ }^{21}$			
Pittsburgh (city)	3.351	$3.40{ }^{1}$	$3.40{ }^{1}$	$5.0{ }^{1}$	$3.35{ }^{1}$	$3.60{ }^{1}$	$3.60{ }^{1}$	$4.75{ }^{18}$	$4.00{ }^{24}$	$3.65{ }^{11}$		7.45^{21}	5.75 \%
Pittslurgh (country)	$3.25{ }^{1}$	$3.30{ }^{1}$	$3.30{ }^{\text { }}$	$4.90{ }^{1}$	3.251	$3.50{ }^{1}$	3.501	$4.65{ }^{11}$	4.00^{24}	$3.65{ }^{21}$			
Cleveland (city)	$3.25{ }^{1}$	3.58	$3.40{ }^{1}$	5.18	$3.35{ }^{1}$	$3.50{ }^{1}$	$3.50{ }^{1}$	4.62^{18}	4.05^{4}	$3.75{ }^{21}$	3.20	7.55^{31}	$5.85{ }^{24}$
Cleveland (country)	$3.25{ }^{1}$	$3.58{ }^{1}$	$3.30{ }^{1}$	5.181	$3.25{ }^{1}$	$3.50{ }^{\prime}$	$3.50{ }^{1}$	4.62^{11}	$3.95{ }^{4}$	$3.65{ }^{21}$			
Detroit	3.431	3.651	$3.60{ }^{\text { }}$	$5.27{ }^{1}$	$3.43{ }^{1}$	$3.13{ }^{1}$	$3.68{ }^{1}$	4.84^{17}	4.30^{4}	$3.80{ }^{21}$	3.40	7.67^{24}	$5.97{ }^{24}$
Omalin (city)	4.10^{1}	4.151	4.151	5.75	$3.85{ }^{1}$	4.20^{1}	$4.20{ }^{1}$	5.52^{10}	4.77 ${ }^{24}$	4.42^{21}			
Omaha (country)	$4.00{ }^{1}$	$4.05{ }^{1}$	4.05^{1}	5.65	$3.75{ }^{1}$	4.101	4.10^{1}	$5.52{ }^{10}$	$4.77{ }^{24}$	4.42^{21}			
Cincinnati	$3.60{ }^{1}$	$3.68{ }^{1}$	$3.65{ }^{1}$	$5.28{ }^{1}$	$3.42{ }^{1}$	$3.67{ }^{1}$	3.671	4.92^{10}	$4.37{ }^{34}$	4.00^{21}	3.45	7.69^{13}	$5.09{ }^{47}$
Youngstown, $0 .{ }^{\circ}$.	. .						4.40^{13}				
Middletown, O.a					3.251	$3.50{ }^{3}$	$3.50{ }^{1}$	$4.40{ }^{13}$.			
Chicago (city)	$3.50{ }^{1}$	3.55	$3.55{ }^{1}$	5.15	3.251	$3.60{ }^{1}$	$3.60{ }^{1}$	4.851 ${ }^{10}$	4.10^{4}	3.755^{21}	3.50	$7.35{ }^{24}$	5.65^{38}
Chicago (country)	$3.40{ }^{\text { }}$	3.451	3.45	5.05	$3.15{ }^{\prime}$	$3.50{ }^{1}$	$3.50{ }^{1}$	$4.75{ }^{10}$	4.00^{4}	$3.65{ }^{71}$			
Milwauke	$3.83{ }^{1}$	3.681	3.68	$5.28{ }^{1}$	$3.38{ }^{1}$	$3.7{ }^{1}$	$3.73{ }^{1}$	$4.98{ }^{10}$	4.23^{4}	$3.88{ }^{71}$	3.54	7.33^{28}	$5.88{ }^{22}$
St. Paul	$3.75{ }^{\text {² }}$	$3.80{ }^{2}$	$3.80{ }^{2}$	5.40^{2}	$3.50{ }^{\text {a }}$	$3.85{ }^{1}$	3.85	$5.00{ }^{3}$	4.35	$4.34{ }^{21}$	3.83	7.70^{28}	6.00^{21}
St. Louis	$3.64{ }^{1}$	$3.69{ }^{1}$	3.691	5.291	3.391	3.741	$3.74{ }^{1}$	4.99^{10}	$4.24{ }^{4}$	$4.02^{\text {r }}$	3.61	7.72^{28}	6.02: ${ }^{\text {8 }}$
Indianapolis (city)	$3.60{ }^{4}$	$3.70{ }^{1}$	3.701	5.30^{1}	$3.45{ }^{1}$	3.751	$3.75{ }^{1}$	5.01^{10}	$4.25{ }^{24}$	$3.97{ }^{11}$
Indianapulis (country)	$3.35{ }^{1}$	$3.45{ }^{1}$	$3.40{ }^{1}$	5.051	$3.20{ }^{1}$	3.501	$3.50{ }^{1}$	$5.01{ }^{10}$	4.00^{24}	$3.97{ }^{21}$			
Memphis, Tern.	$3.90{ }^{3}$	$3.95{ }^{\circ}$	$3.95{ }^{\text {a }}$	$5.71{ }^{1}$	$3.85{ }^{\text {a }}$	4.10°	4.10^{1}	$5.25{ }^{11}$	4.66^{24}	$4.31{ }^{21}$	-..	-.	
Birmingham (city)	$3.50{ }^{3}$	$3.55{ }^{\circ}$	3.55	5.83 ${ }^{\text {a }}$	$3.45{ }^{\text {s }}$	$3.70{ }^{4}$	$3.70{ }^{3}$	$4.75{ }^{10}$	$4.78{ }^{31}$	4.43^{21}	.		
Birmingham (country)	$3.40{ }^{5}$	$3.45{ }^{\text {b }}$	$3.45{ }^{\text {b }}$	$5.83{ }^{\circ}$	$3.35{ }^{\circ}$	$3.60{ }^{3}$	$3.60{ }^{\circ}$	$4.75{ }^{10}$	$4.78{ }^{24}$	4.43^{21}			
New Orleans (city)	4.101	390	3.904	5.85	3.954	$4.20{ }^{\circ}$	$4.20{ }^{1}$	$5.25{ }^{\text {a }}$	$4.95{ }^{10}$	$4.60{ }^{11}$	5.00		
New Urleans (country)	4.00	$3.80{ }^{4}$	3.804	5.75	3.85	4.104	$4.10{ }^{1}$	$5.15{ }^{\text {m }}$	$4.95{ }^{10}$	$4.60{ }^{21}$			
Houston, Tex.	$3.75{ }^{2}$	$4.25^{\text {n }}$	$4.25{ }^{\text { }}$	$5.50{ }^{\circ}$	$3.75{ }^{1}$	4.30^{3}	$4.30{ }^{3}$	$5.25{ }^{24}$	5.433^{10}	$4.50{ }^{72}$			
Los Angeles	$4.35{ }^{1}$	$4.60{ }^{4}$	4.90^{4}	7.15	4.95	$4.90{ }^{4}$	$6.70{ }^{\prime}$	$5.95{ }^{19}$	$7.15{ }^{\text {* }}$	$5.70{ }^{23}$		9.55^{14}	$8.55^{\prime \prime}$
San Francisco (city)	$3.95{ }^{7}$	$4.35{ }^{3}$	$4.65{ }^{3}$	$8.35{ }^{\text { }}$	$4.55{ }^{7}$	$4.50{ }^{7}$	$4.50{ }^{7}$	$6.60{ }^{18}$	$7.55^{\prime \prime}$	$5.55{ }^{3}$		$9.80{ }^{\text { }}$	$8.80{ }^{\circ}$
San Francisco (country)	$3.85{ }^{7}$	$4.25{ }^{7}$	$4.55{ }^{\prime}$	$6.25{ }^{7}$	$4.45{ }^{1}$	$4.40{ }^{\circ}$	$4.40{ }^{7}$	$6.50{ }^{10}$	$7.45{ }^{10}$	$5.45{ }^{21}$		
Tacoma	4.20^{\prime}	$4.45{ }^{\text {a }}$	$4.75{ }^{\text {n }}$	$6.50{ }^{\circ}$	$4.65{ }^{\text {² }}$	4.25	$5.45{ }^{\circ}$	$5.70{ }^{\text {b }}$	$6.63{ }^{34}$	$5.75{ }^{27}$			
Senttle (city)	4.20^{8}	$4.45^{\text {n }}$	4.75	$6.50{ }^{\text { }}$	$4.65{ }^{\text { }}$	$4.35{ }^{\prime}$	5.45	$5.70{ }^{\text { }}$	6.83^{24}	$5.75{ }^{31}$			$8.00{ }^{3}$

[^9]
 basing point inclucles
Francisco basing point Alloy-Free
Low
Phos. \&
Sulphur $\stackrel{\circ}{\infty}$ Turnings
$\$ 19.50$ 18.50

 いन
 New
 Inferior Grades: Mistaximum prices of inferior grades shall continue to berr the sarne differential helowed on errades considered superior, uniess approved by OPA. Addition of specin1 preparation charges
allo
prohibited Purchase of electric fumnace or foundry grades for open hearth or blast furnace use per-
 inal industrial producer. Commissions: No commission is payable except by a consumer to a broker for services rendered. the coxmission not to exceed 50 cents per gross ton. No commission is payabie unlesss The broker
 Maximum Shipping Point Price: Where shipment to consumer is by rail, vessei or or combination of
both, scrap is at its price listed in the above toble for scrap at the basing point in which the shipping point point located, points located outside a basing point, the pricu in the above table for scrap nt the most favorable bass
 able basing point prices; maximum transportatien charge on scrap from New England, $\$ 6.65$ per ton. Serap shipped by motor velicle is at its shipping point when loaded. For shipping points within
basing points. maximum is price listed in table minus lowest switthing chare. When outside hasing
point, maxima my common carrier. When hauled by seller charges are based on carload rate for rail shipment, miniMaximum Delivered Prices: Detennined by adding established transportation charges to shipping
point price, not to exceed by more than $\$ 1$ (plus freight rate increase March 18, 1942) the prices fisted n the table for the nearest basing point. Certain excertions specifiod in Revised Price Schedule No.
4 A Amendment 1) apply to St. Louis district consumers, to WPB anlloations, to water shipments frorn Duluth or Superior, Wis., to shipnicnts of Dillets, bloons and forge crops from Pittsburgh and to
shipments of electric and foundry grades from Michigan; to shipments of turnings to ferroallov producers and of borinks to chemical users. Delivored prices of scrap shipped undor WYB allocations
may exceed pricos at nearest basing point by more than $\$ 1$, if most economical transportation is aused. Unprepared Scrap: Above prices ore for prepared scrap. Maximum prices for unprepared scrap
are $\$ 3.50$ less; (material from which Nos. 1,2 and 8 bundes made is $\$ 4$ less)
and
and

 sivom details furnished OPA. Permission required to exceed by mor
price. Colorado scrap is remote sorap for Colorade consumers only.

$\begin{aligned} & \text { ex } \\ & \text { 品 } \\ & 0 \\ & \text { ont } \end{aligned}$	8	 	
	-	 	
	$\begin{aligned} & 8 \\ & 10 \\ & 6 \end{aligned}$	 	$\begin{aligned} & 80 \% \\ & \text { Bin } \\ & \text { Nin } \end{aligned}$
	$\begin{aligned} & \text { BO } \\ & \text { oi } \\ & \text { O } \end{aligned}$	 	

Mixed
Bor., Turn.,

$\left\lvert\, \begin{gathered} \dot{B} \\ \infty \\ \sim \end{gathered}\right.$

Group A includes the states of Montana, Idaho, Wyoming, Nevada, Utah, Arizona and New Mexico.scrap, No. 2 heavy melting steel, dealers' No. 1 bundles, dealers' No. 2 bundles and No. 1 busheling.
No. 1 chem. borings. 1 per cent cil, $\$ 1$ urder, No. 2,15 per cent oil $\$ 2$ under heavy melting steel. No.
3 .melting steel, auto springs, crankshafts, $\$ 1$ over No. 1 heavy melting. +Toledo open-hearth grades cover
only No. 2 busheling.only No. 2 busheling
Absiny point ${ }^{\text {includes }}$ the switching, district of the city named. The Pittsburgh basing point ins-
cludes the switching districts of Bessemer. Homestead, Duquesne, Munhall and McKeesport. Pa. Cin-

Copper: Electrolytic or Lake from producers In carlots 12.00 c , Del. Conn., less carlots $12.123 / 2$. refinery; dealers may add $1 / \mathrm{c}$ for 5000 lbs . to carload: $1000-4999$ lbs. $1 \mathrm{c} ; 500-99911, \mathrm{c} ; .0-499$ 2c. Casting, 11.75 c , rennery for $20,000 \mathrm{lbs}$., or more, 12.00 c less than $20,000 \mathrm{lbs}$.

Brass Ingot: Carlot prices, Including 25 cents per hundred frelsht allowance; add $1 / 4 \mathrm{c}$ for less than 20 tons; 85-5-5-5 (No. 115) 12.25c; 88-10-2 (No. 215) 16.50c; 80-10-10 (No. 305) 14.25 c ; Navy G (No. 225) 16.75 c ; Navy M (No. 245) 14.75 c ; No. 1 yellow (No. 405) 10.00c: mankanese bronze (No. 420) 12.75 c .

Zinc: Prime western 8.25 c , select 8.35 c , brass snecial 8.50 c , intermediate 8.75 c , E. St. Louis, for carlots. For $20,000 \mathrm{lbs}$. to carlots add $\begin{array}{llll}0.15 \mathrm{c} ; & 10,000-20,000 & 0.25 \mathrm{c} ; & 2000-10,000 \\ \text { under } & 2000 & 0.50 \mathrm{c} \text {. }\end{array}$

Lead: Common 6.35 c , corroding or chemical 6.40 C , E. St. Louis for carlots; add 5 polnts for Chicaro, Minncapolis-St. Paul, Milwaukee Kenosha districts; add 15 polnts for Cleveland-Akron-Detrolt area, New Jersey, New York State, Texas, Pacific Coast, Richmond, In dianapolls-Kokomo add 20 points for Birmingham, Connecticut, Boston-Worcester Springfled. New Hampshlre, Rhode Island.

Primary Aluminum: 99\% plus, ingots 15.00 c del., pigs 14.00 c del.; metallurgical $94 \% \mathrm{mln}$. 13.50 c del. Base $10,000 \mathrm{lbs}$, and over; add $1 / 2 \mathrm{c}$ 2000-9999 lbs.: 1c less than 2000 lbs.

Secondary Aluminum: All grades 15.00 C per lb. excedt as follows: Low-grade piston alloy (No. 122 type) 14.50 c ; No. 12 foundry alloy ice ingot ($991 / 2 \%$ plus) 14.50 c ; stecl deoxid 1 z ice ingot ($991 / 2 \%$ plus) 14.50 c ; stecl deoxidizers in notchbars, granulated or shot, including ingot containing over 2% iron, Grade 1 (95 $97 \% \%$ 14.75c, Grade ${ }^{2} \quad(92-95 \%) \quad 14.50 \mathrm{c}$, Grade $3(90-92 \%$) 14.00c, Grade 4 ($85-90 \%$) 13.50 c , Grade 5 (less than 85%) 12.50 c . Above prices for $30,000 \mathrm{lbs}$. or more: add $1 / 4 \mathrm{cc} 10,000-$ $30,000 \mathrm{lbs}$: $1 / 1 \mathrm{c}$ c $1000-10,000$ lbs. : 1 c less than
1000 lbs . Prices include freleht at carload rate 1000 lbs. Prices include frels
up to 75 cents per hundred.

Magneslum: Commerclally pure (99.8%) standard ingots (4-notch. 17 lbs.) 20.50 c lb.: add 1c for special shapes and slzes, including $3-\mathrm{lb}$. ingot and $12-\mathrm{lb}$, round ingot; Incendlary bomb alloy 23.40 c , $50-50$ maknesium-aluminum 23.75 c . ASTM B8N-41T No. 1125.00 c , ASTM B94-40T No. 1325.00 c , all others 23.00 c . Prices for 100 lbs . or more; for $25-100 \mathrm{lbs}$. add 10 c ; for less than 25 lbs. 20 c : Incendlary bomb alloy f.o.b. plant any quantity; corload freight rate allowed all others for 500 lbs. or more.

Tin: Prices ex-dock, New York In 5 -ton lots. Add 1 cent for 2240-11,199 lbs., $11 / 5 \mathrm{c}$ 1000-2239, 2% c $500-999$, 3 c under 500 . Grade A. 99.8% or higher (includes Straits), 52.00 c ; Grade B. $09.75-99.79 \%$
incl, $51.621 / 4 \mathrm{c}$; Grade C , Cornish refined 51.621 hc ; Grade D, $99.0-99.74 \%$ incl. $51.121 / 1 \mathrm{c}$, Grade E, below 99%. 51.00 c

Antimony: American, bulk, carlots, f.o.b. Laredo, Tex., $99.0-99.8 \%$ grade 14.50 c , 99.8% and over (arsente 0.05% max. ; no other impurity to exceed $0.1 \% 15.00 \mathrm{c}$. Add $1 / 4 \mathrm{c}$ for lesscarlots to $10,000 \mathrm{lbs}$. $1 / 1 / \mathrm{c}$ for $9999-224 \mathrm{lbs}$: 2c for 223 lbs. and less.

Nickel: Electrolytic cathodes, 99.5% R.o.b. reftnery $35.00 \mathrm{c} \mathrm{lb} . ;$ pla and shot produced from electrolytic cathodes 36.00 c ; " F " nlckel shot or ingot for additions to cast fron, 34.00 c : Monel shot 28.00 c .

Mercurs: Prices per 76-lb. flask f.o.b. polnt of shipment or entry. Domestic produced In Callf., Oreg.. Wash., Idaho, Nev., Arlz. \$191: proin Mexico, Texas, Ark. $\$ 193$. Foreign, produced Arsenle: Prime, whlte, 99%, carlots, 4.00 c lb .

Beryllinm-Copper: $\mathbf{3 . 7 5 - 4 . 2 5 \%}$ Be., $\$ 15 \mathrm{lb}$. contalned Be.

Cadmlum: Bars, Ingots, pencils pigs, plates, rods. slabs, stiches and all other "regular"' stralght or flat forms 90.00 c lb ., del.: anodes, balls, discs and all other special or patented shapes 95.00 elb . del.

Cobalt: $97-99 \%, \$ 2.11 \mathrm{lb} . ; 100 \mathrm{lbs}$. or more on contract, $\$ 1.50 \mathrm{lb}$.
Indlum: 99.5\%, $\$ 10$ per troy ounce.
Gold: U. S. Treasury, $\$ 35$ per ounce

Sllver: Open market, N. Y., 44.75c per ounce Pintinum: $\$ 36$ per ounce.

IrIdlum: $\$ 165$ per troy ounce.
Palladlum: $\$ 24$ per troy ounce.

Rolled, Drawn, Extruded Products

(Copper and brass product prices based on 12.00 c , Conn., for copper. Frelght prepald on 100 lbs . or more.

Sheet: Copper 20.87 c ; yellow brass 19.48 c commerclal bronze, $90 \% 21.07 \mathrm{c}, 95 \% 21.28 \mathrm{c}$; red brass, 80% 20.15c, $85 \% 20.36 \mathrm{c}$; phosphor bronze, Grades A, B $5 \% 36.25 \mathrm{c}$; Everdur, Herculoy, Duronze or equly. 26.00 c ; naval brass 24.50 c ; manganese bronze 28.00 c ; Muntz metal 22.75 c ; nickel slluer $5 \% 26.50 \mathrm{c}$.

1tods: Copper, hot-rolled 17.37 c , cold-rolled 18.37 c : yellow brass 15.01 c ; commercial bronze $90 \% 21.32 \mathrm{c}, 95 \% 21.53 \mathrm{c}$; red brass 80% $20.40 \mathrm{c}, 85 \%$ 20.61c; phosphor bronze Grade A, B $5 \% 36.50 \mathrm{c}$; Everdur, Herculoy, Duranze or equiv. 25.50c; Naval brass 19.12c: manganese bronze 22.50 c : Muntz metal 18.87 c ; nickel sllver $5 \% 28.75 \mathrm{c}$.

Senmicss Tublng: Copper 21.37c; yellow brass 22.23 c ; commerclal bronze $90 \% 23.47 \mathrm{c}$; red brass $80 \% 22.80 \mathrm{c}$, $85 \% 23.01 \mathrm{c}$.

Extruded Shanes: Copper 20.87c; archltectural bronze 19.12 c ; manganese bronze 24.00 c , Muntz metal 20.12c; Naval brass 20.37 c .
Aneles and Channels: Yellow brass 27.98 c ; commerclal bronze $00 \% 29.57 \mathrm{c}$, $95 \% 29.78 \mathrm{c}$; red brass $80 \% 28.65 \mathrm{c}, 85 \% 28.86 \mathrm{c}$.
Copper Wire: Bare, soft, f.o.b. Eastern mills, carlots $15.371 / 2 \mathrm{c}$, less-carlots $15.871 / 2 \mathrm{c}$; weatherproof, f.o.b. Eastern mills, carlots 17.00c ess-carlots 17.50 c ; magnet, dellvered, carlots 17.50 c . $15,000 \mathrm{lbs}$. or more 17.75 c , less carlots 18.25 c .

Aluminum Sheets and Clrcles: 2 s and 3 s , nat mill finish, base $30,000 \mathrm{lbs}$. or more; del. sheet widths as indicated; circle diameters 9 and larger:

GaRe	Width	Sheets	Circles
$249^{\prime \prime}-7$	$12^{\prime \prime}-48^{\prime \prime}$	22.70 c	25.20 c
$8-10$	$12^{\prime \prime}-48^{\prime \prime}$	23.20 c	25.70 c
$11-12$	$26^{\prime \prime}-48^{\prime \prime}$	24.20 c	27.00 c
$13-14$	$26^{\prime \prime}-48^{\prime \prime}$	25.20 c	28.50 c
$15-16$	$26^{\prime \prime}-48^{\prime \prime}$	26.40 c	30.40 c
$17-18$	$26^{\prime \prime}-48^{\prime \prime}$	27.90 c	32.90 c
$19-20$	$24^{\prime \prime}-42^{\prime \prime}$	29.80 c	35.30 c
$21-22$	$24^{\prime \prime}-42^{\prime \prime}$	31.70 c	37.20 c
$23-24$	$3^{\prime \prime}-24^{\prime \prime}$	25.60 c	29.20 c

Lead Products: Prices to jobbers; full sheets 9.50 c ; cut sheets 9.75 c ; plpe 8.15 c , New York: 8.50c Phlladelphla, Balt!more, Rochester and Buffalo: 8.75 c , Chlcago, Cleveland, Worcester, Boston.

Zinc Iroducts: Sheet 1.0.b. mill, 13.15c; 36,000 lbe. and over deduct 7%. Ribbon and strip $12.25 \mathrm{c}, 3000$-lb. lots deduct $1 \%, 6000$ lbs. 2% 9000 lbs. $3 \%, 18,000$ lbs. 4%, carloads and over 7\%. Boller plate (not over 12") 3 tons and over $11.00 \mathrm{c} ; 1-3$ tons $12.00 \mathrm{c} ; 500-2000 \mathrm{lbs}$ $12.50 \mathrm{c}: 100-500$ lis. 13.00 c ; under 100 lbs. 14.00 c . Hull plate (over $12^{\prime \prime}$) add 1c to boller plate prices.

Plating Materials

Chromle Acld: 99.75% flake, del., carloads $16.25 \mathrm{c}: 5$ tons and over $16.75 \mathrm{c} ; 1-5$ tons 17.25 c 400 lbs. to 1 ton 17.75 c ; under 400 lbs .18 .25 c

Copper Anodes: Base 2000-5000 lbs., del.; ova 17.62c: untrimmed 18.12c; electro-deposited 17.37c.

Copper Carbonate: 52-54\% metallic cu; 250 lb. barrels 20.50 c .

Copper Cyanide: 70-71so cu, 100-lb. kegs or bbls. 34.00 c 1.0.b. Nlagara Falls.

Sodium Cyanlde: 9\%\%. 200-lb. drums 15.00c $10,000-\mathrm{lb}$. lots 13.00 c f.o.b. Nlagara Falls.

Nickel Anodes: 500-2999 lb. lots; cast and rolled, carbonized 47.00 c : rolled, depolarized 48.00 C .

Nickel Chloride: 100-lb. kegs or 275-lb. bbls 18.00 c lb., del.

Tin Anodem: 1000 lbs. and over 58.50 c , del. $500-99959.00 \mathrm{c} ; 200-49959.50 \mathrm{c}$; $100-19961.00 \mathrm{c}$.

Tin Crystals: 400-lb. bbls. 39.00e f.o.b. Grar selli, N. J.: 100 -lb. kegs 39.50 c .

Sodlum Stannate: 100 or $300-1 \mathrm{~b}$. drums 36.50 c , del. ; ton lots 33.50 c .

Zinc Csanide: $100-1 \mathrm{~b}$. kegs or bbls. 33.00 c i.o.b. Nlagara Falls.

Scrap Metals

Brass MIIt Allowances: Prices for less than 15,000 lbs. f.o.b. shipplng point. Add fis for $15,000-40,000 \mathrm{lbs}$; 1c for 40,000 lbs. or more

	Clean Heavy	Rod Ends	Clean Turning
C	10.250	10.250	9.50
Tinned Copper	9.625	9.625	9.37
Yellow Brass	8.625	8.375	7.87
Commercial bronze			
90\%	9.375	9.125	8.62
95\%	9.500	9.250	8.75
Red Brass, 85\%	9.125	8.875	8.37
Red Brass, 80%	9.125	8.875	8.37
Muntz metal	8.000	7.750	7.25
Nickel SII., 5\%	9.250	9.000	4.62
Phos. br., A. B. 5%	11.00	10.750	9.75
Herculoy, Everdur or			
Naval brass	8.250	8.000	7.50
Mang. bronze	8.250	3.000	7.50

Other than Brass MII Scrap: Prices apply on material not mecting brass mill specifications and are f.o.b. shipping point; add *e for shlpment of $60,000 \mathrm{lbs}$ of one group and HC for 20,000 lbs. of second group shipped in same car. Typical prices follow:
(Group 1) No. 1 heavy copper and wire, No 1 tinned copper, copper borings 9.75 c ; No. 2 copper wire and mlxed heavy copper, copper tuyeres 8.75 c .
(Group 2) soft red brass and borlngs, alumi num bronze 9.00 c ; copper-nlckel and borings 9.25 c : car boses, cocks and faucets 7.75 c ; bel metal 15.50 c : babbitt-lined brass bushings 13.00 c .
(Group 3) zincy bronze borings, Admiralty condenser tubes, brass plpe 8.00c: Muntz metal condenser tubes 7.50 c ; yellow brass 6.25 c condenser tubes $7.50 c$; yellow brass $6.25 c$ manganese bronze (lead 0.00\%-0.40\% 6.25 c , borings (lead $0.00-0.40 \%$) 6.50 c , (lead 0.41 1.00%) 5.50 c .

Aluminum Scrap: Prices fo.b. point of shlpment, respectively for lots of less than 1000 lbs. : $1000-20,000 \mathrm{lbs}$. and $20,000 \mathrm{lbs}$. or more plant scrap only. Segregated 2 s solids 10.00 c $11.00 \mathrm{c}, 11.50 \mathrm{c}$; all other sollds $9.50 \mathrm{c}, 10.50 \mathrm{c}$ 11.00 c : borlngs and turnings $7.50 \mathrm{c}, 8.50 \mathrm{c}$, 9.00 c : mixed sollds $8.50 \mathrm{c}, 9.50 \mathrm{c}, 10.00 \mathrm{c}$, mixed borlngs and turnings $6.50 \mathrm{c}, 7.50 \mathrm{c}, 8.00 \mathrm{c}$.

Ifad Scrap: Prices f.o.b. Doint of shipment For soft and hard lead, including cable lead, deduct 0.55 c from basing polnt prices for re flned metal.

Zinc Scrap: New clipplngs, old zinc 7.25c f.o.b point of shipment: add $1 / 2$-cent for $10,000 \mathrm{lbs}$. or more. New die-cast scrap, radlator grilles 4.95 c ; add $1 / 2 \mathrm{c} 20,000$ or more. Unsweated zlne dross, die cast slab 5.80 c any quantity.

Nlekel, Monel Scrad: Prices 1.o.b. point of ship ment: add $1 / 4 \mathrm{c}$ for 2000 lbs . or more of nicke or cupro-nickel shlpped at one time and 20,000 lbs. or more of Monel. Converters (dealers) allowed 2c premium.

Nickel: 98% or more nlckel and not over $1 / 4 \%$ copper 26.00c: $90-98 \%$ nickel, 26.00 c per 1 b . nickel contalned

Cupro-nlekel: 90% or more combined nickel and copper 26.00 c per 1 b . contained nickel, phus combined nickel and copper 26.00 c for contalned combined n

Monel: No. 1 castings, turnings 15.00c; new clippings 20.00 c : soldered sheet 18.000 .

Sheets, Strip

Sheet \& Strip Prices, Page 166
Orders for marrow cold strip to apply against directives for hot material for May rolling are appearing in greater volume under CMP, with allotment numbers; production quotas for most rerollers for that month will be unchanged, allowing operations at 85 to 90 per cent of copacity. Processing of PRP tonnage to CMP is proceeding and May and June rollings under the latter will ac:count for most tomnage.

Material already promised for delivery in second cuarter will not be displaced by CMP orders taken prior to April 15 , maless by special directive; this in ef-
iect protects consumers who placed orders before March 22 without assigned alktment numbers. By April 15 allotment numbers on approved CMP orders are expected to be assigned completely. By that time rerollers must have hot material schedules in for May and part of June and the influence of CMP will be increasingly felt as the quarter advances.

Striving for a balance in production schedules, producers are forced to watch bookings with a view of fitting orders into production quotas. High-carbon stock in some instances recpuires four anneals against two for other tomage. As regards alloys, sehedules for melting must be in 90 to 105 days aheard of cold-rolling. Demand continues heavy and is

for Zone 1 ; Zone 4 prices are corrected for threaded and compled pipe in various sizes and weights from $51 / 2$ to 7 inches outside diameter; in the division for galvanized pipe in Table I, prices for plain ends are corrected; table II provicles a division between prices for steel casing and steel drive pipe.

Wire

Wire Prices, Page 167

In general wire markets are static, despite much talk about a greater volume of wire products for the merchant markel. The fact remains that only a fixed tomatge of steel is asailable for conversion into wire and there is nothing to indicate that mill directives will be changed to permit any substantial increase of steel for this purpose.

Producers of merchant wire feel the big bulge is past for the current season inasmuch as the labor shortage will not permit farmers to spend much time mending their fences when the planting saason gets under way. A large volume of applications by farmers for additional wire has been made to local ration boards and certificates for a large tonnage have been issued. This means virthally nothing, however, as the farmer must first find the wire before he can buy it and few jobbers are able to supply much fence or barbed wire.

Volume of new business in manufacturers' wire items remains unchanged and miscellameons merchant products, including wire nails and similar items, are considerably below demand.

Rails, Cars

Track Material Prices, Page 167
While some locomative inçuiry is still being noted, domestic demand for railroad rolling stock generally is negligible. Little car inquiry has been noted in sevcral weeks, because of limitations placed on car construction. The program of 20,000 cars to be built for domestic carrriers in the first half has long since been settled and becanse of the uncertainty that even a substantial number of these cars cam be delivered before third quarter, and perhaps not until well iato that period, railroads see little point in getting estimates on new equipment. Delivery of steel against this 20,000 car program is not expected to get under way before May.
Railroads generally claim they need additional equipment badly, and it is estimated in some official guarters that they could well utilize 80,000 new cars this year.

Structural Shapes

Structural Shape Prices, Page 167
With deliveries ranging from five to six weeks on most tomange, shipyards and their subeontractors are taking a high ratio of structural steel and demand for buildings, bridges and engincering projects is small. Numerous contricts have been transferred to CMP and as the quarter adrances this plan promises largely to replace straight directives, which have applied to much tonnage, notably ships. in recent months.
While mills are usually well filled on Ship chanael and other lighter sizes, heavier sections are dull. While some restrictions on design operating against
the use of structural steel are lifted, conservation and speed in delivery are factors in placing contracts for fabricated work. A 1600 -ton building on Long Island was placed on a delivery basis, part of the material being on hand, and several hundred tons for a foundry building in New Jersey will be fabricated from III old steel frame structure.
Bookings of fabricated steel in Febraary were 29,560 net tons, compared with 228,688 tons in February, 1942. The decline has been constant since last lune when steel use was limited to war purposes. Shipments were 104,836 toms in February, against 164,599 tons in the same month last year. Tonnage asailable for fabrication within the next four months totals 475,575 tons. The
figures are by the American Lastitute of Steel Construction.

Reinforcing Bars

Heinforcing Bar Prices, Page 167
WPB has removed all size restrictions on the manufacture of concrete reinforeing bars from new billet steel during April and the order may be made permanent later.

Inguiry is light, with scattered price shading on larger tomnages. By crawing on inventories to meet limited buying, distributors are gradually lowering stocks, which are still ample for slack incuiry. On 500 tons for Pamama 15 bidders, mostly mills, quoted a wide range of prices

Time and again when plants producing essential war materials found the going tough-couldn't get quick deliveries on needed parts Diamond G had the answer!

Service on washers is our specialtyl And today quick service is our goal lor every order. From the order clerk in the office to the shipper on the loading plat-form-all are working to get your order to you in the shortest possible time. Rapid strides in manulacturing processes now make it possible to produce millions of Diamond G Lockwashers
every day . . from the smallest one for precision instruments to the largest for planes, tanks and battleships. Accurate and constant checking of quality assures Controlled Tension in every washer that means a plus in every in-stallation-one important reason why Diamond G Washers are found on every fighting front.

If your production is slowed because of deliveries on washers get in touch with Diamond G today. We're here to help you speed your war production for a quicker victory. Write

GEORGE K. GARRETT $\mathbf{C O}$.

on an f.o.b. basis, promising deliveries in three to ten days in several instances.

Scrap

Scrap Prices, Page 170
Uneasiness continues to be felt over the situation in steelmaking scrap, although no shortage has developed. However, some steelmakers find current receipts fall short of consumption and inroads are being made in reserve stocks in many instances. At the same time rural scrap is not being gathered, farmers being busy with spring work, and collections from that source are falling off.

Yard stocks from various scrap drives are being worked over as completely as
labor conditions will allow and this material is being shipped for use with better grades from industrial sources. Turnings continue a difficult problem and both dealers and consumers have a surfeit, much tonnage remaining unsold.

Remote scrap is not moving well as melters refuse to pay the high freight charges as long as supplies from nearby are available. Few directives are in effect as distribution is better than in the past.

Dealers in the Buffalo area complain that consumers are not accepting turnings even to the extent which WPB directs should be included in furnace mixtures. Mills state they are observing this rule but that they have large stocks on hand and cannot buy more.

$\because E A B M C$ IN ENDLESS

VARIETYFOR DESIGNERS "Perfection

$W_{\text {AR is the great stimulator }}$ -creates the necessity that in turn creates new standards of speed, strength, efficient performance; creates new and better products to meet those standards.

In the forefront of war production, in the forefront of post-war product pioneering is the anti-friction bearing.

In your planning for tomorrow, use Ahlberg's counsel.
Here you'll find a group of competent engineers, with a broad knowledge of industry's requirements and experienced in planning of new products.

One consumer is said to have about 25 , 000 tons in stock.

Receipts by consumers in the St. Louis district are fair to poor but vary between plants. Two melters have reduced reserves in the past 30 days and another has applied to Washington for a directive to increase its tonnage. One has a surplus of low-grade scrap but lacks better grades. Railroad scrap is in good supply but country scrap is light, showing effect of the advancing season.

Scrap supply is improving moderately in the Chicago district, although at no time recently has scrap been a limiting factor in steclmaking. Increased wage to yard labor has not been in force long enough to show its effects in holding workers.

Collections, except of industrial scrap, have lagged in the Cincinnati district in recent weeks, allowing yard workers to clear up much of the old accumulations. Foundries have fairly large inventory and are not eager to take in all that is offered. Heavy melting steel is in demand unless it carries high freicht charges. Country collections are expected to be light for some time as farm work broadens.
Institute of Scrap Iron and Steel Inc. has estimated February scrap consumption, both home and purchased, at 4,361,000 gross tons, compared with $4,-$ 753,000 tons in January and 4,276,000 tons in February, 1942.

Pig Iron

Pig Iron Prices, Page 168
April allocations of pig iron were somewhat freer than in recent months, in the experience of some sellers. This was shown not so much in recognition of lower ratings as that consumers were given more nearly their full requests. Many consumers did not ask for as much as usual as their order books are lighter and schedules for April promise to be reduced. Contrary to the generally easier situation charcoal iron allocations were restricted noticeably. This is attributed to one charcoal producer in the Lake Superior region blowing out in April for repairs and to labor shortage of another interest in the same area.
Output is being maintained at a maximum but the strain is beginning to tell on equipment. Numerous stacks are on the ragged edge and a number will be forced down for relining. CarnegieIllinois Steel Corp. has been forced to suspend Farrell No. 2 at Farrell, Pa. Carrie No. 7 at Rankin, Pa., is down for a patch, which will require about six weeks. This stack has been running nearly five years on the present lining. A stack in the Buffalo district is scheduled to blow out during April. A new furnace at the Lackawanna plant of Bethlehem Steel Co. is expected to be blown in within a month. This is No. 7 and will rank with stack H, which claims the world's monthly production record.

Pig iron supply is well balanced with demand for the present but it is believed the situation will tighten in coming months. As a hedge against shortened output producers have been able to build stocks at furnaces which are scheduled to go down for relining, under WPB permission to reserve tonnage for the idle period.

A new development in pig iron is undergoing test at several steel plants, small amounts of titanium and aluminum be-

WIRE STRAIGHTENING

and

 CUTTING MACHINERYGH SPED Machines for round wire, flat wire, welding wire, all kinds of wire.

The F. B. Shuster Company New Haven, Conn.

Straightener Specialists Since 1866

CORE BAKING OVENS

Standard, simplified, compact. Gas, coalwood, or oil fired. Deliveries on high priorities 2 or 3 days after receipt of ordex. Contact your foundry supply house or write:

THE G. S. BLODGETT COMPANY, INC. 53 maple stheet, burbington, yermont

$\mathbf{B Y}: B D O D E T T \equiv$

REEVES STEEL \& MANUFACTURING $C O$.

Dover, Ohio

SHEET STEEL AND SHEET STEEL PRODUCTS FOR WAR NEEDS
ing added. This is in the laboratory stage, expected to be of value in certain applications because of deoxidiziag equalithes.

Metallurgical Coke

Coke Prices, Page 167
Blast furnace operators are breathing easier now that the immediate possibility of a coal strike has been deferred. ThaWeak spot is not so much the supply of coal, but the supply of beehive coke. Most buyers of furnace coke are living from hand to mouth and have been unable to build up any backlog. The same is true of the beehive ovens, which hav:not been able to increase coal stocks.

Numbrer of owens in production remains virtually uachanged and the percentage of furnace and foundry coke also is static. Demand for foundry grades is a little more brisk and shippers find it increasingly difficult to obtain enough suitable cars.

OPA has included Mrnongalia, Preston and Upshur counties, West Virginia, under the same price regulation as the Comellsville region, which will give producers the advantage of the 50 -cent differential for coke from hand-drawn owens previously enjoyed by the Comellsville producers. This gives the West Virginia producers in hand-drawn ovens using trucked coal a price of $\$ 7$ per net ton, f.o.b. Connellsville, and $\$ 6.50$ for coke from machine-drawn ovens

ONE
 CLEANING
 OPERATION

or

COMPLETE INTER - PROCESS CLEANING

EQUIPMENT FOR THE sughtuc

does them all . . . and assures you greatest time-saving, laborsaving, cost-saving on cleaning, lubricating between draws, pickling, bonderiting, parkerizing, washing, rinsing, drying.

Tin Plate
Tin Plate Prices, Page 167
Some can producers are working with equipment engineers towards redesign of cammaking equipment so as to use tin plate in coils rather than boxed sheets as is now common practice. This development is a matural corollary to the use of electrolytic tin plate. Under the hot dip process it was not possible for a tin plate manufacturer to supply tin plate in coils because the nature of the operation required each plate to be dipped separately.
The electrolytic process normally produces tin plate in coils and some can manufacturers are now of the opinion that wastage can be reduced considerably through use of a continuous sheet of metal rather than individual sheets. The revision in equipment necessary to make this change is minor and consists merely of some means of handling the coil and shearing it at the begiming of the cammaking line. Some equipment makers have the problem already pretty well in hand and expect to be in a position to supply such units shortly.

Canada

Toronto, Ont. - Business held at a steady rate last week, with about 90 per cent of orders directly associated with war production. The war program is being revamped in some directions and it is stated that more emphasis is to be placed on production of fighting ships. Additional large contracts are said to be pending for construction of corvettes of a new design, and substantially larger tomages of steel will be allocated for this purpose. Iron and steel production in Canada also is moving upward and will be further lifted next month when Steel Co. of Camada Ltd., Hamilton, Ont., puts its new $65-$ ton electric furnace in operation. Both Algoma Steel Corp. Ltd., Sault Ste. Marie, Ont., and Dominion Steel \& Coal Corp., Sydney, N. S., are within a few weeks of blowing in new hast fumaces and also will have plant additions ready for step-up in steel production.

Marine boilermakers have been placing heavy orders for plate in the past week or ten days and it is stated that bookings on this aceount for second quarter are topping all previous records. Camadian plate mills continue to produce well above rated capacity, and it also is reported that plans are under way to boost plate imports from the United States.

Inquiries and orders for sheets continue steady and mills now are fully covered on production for second quarter. Electrical equipment makers have been consistent buyers in lots of 10 to 15 toms. Limited supplies of black and galvanized sheets still are being made: available to essential civilian consumers.

Carbon and alloy bar makers report heavy flow of new orders with record bookings for second quarter. As far as war industries are concerned, no shortage is reported but civilian consumers are having trouble obtaining supplies. War plants are beginaing to rebuild inventories and some have farly large stocks on hand. However, consumption of special steel bars is moving ahead at a rapid rate, indicating that requirements this year will be about 50 per cent higher than i: 1942.

Merchant pig iron sales have developed

Downes

SAFETY PLATE GRIPS

DOWNS CRANE $\&$ HOIST CO. 540 West Vernon Ave. • Los Angeles, Calif.

SIMONDS! FRONT AND CENTER!

FOR HONEST SERVICE, QUALITY WORK AND DEPEND ABLE PRODUCTS, EXTENDED TO THE GEAR, CHAIN DRIVE AND COUPLING USERS OVER A PERIOD OF HALF A CENTURY, ACCEPT THE APPRECIATION AND ESTEEM OF YOUR CUSTOMERS, PAST AND PRESENT. MAY YOUR NEXT 50 YEARS BE AS USEFUL AS THE PAST 501
(SIGNED)
Ponsumers of Sinsonds gears, driwes a conplings
THE SIMONDS GEAR \& MFG. CO. בSTH STREET, PITTSBUKCH, PPA.

25TH STREET, PITTSBURGH, PA.

ERDLE

ORNAMENTAL-INDUSTRIAL

For All Purposes

64 Years of Metal Perforating Prompt Shipments
Send for Metal Sample Plates
THE ERDLE PERFORATING CO.
171 York Street
Rochester, N.Y.

Every Smith Surlace Plate is a true Master Plate for close tolerance assembly and inspection. Scientifically designed. Precision built. On specifications requiring a total flatness tolerance of one ten-thousandihs of an inch, medium size Smith Surface Plates
have successlully met the test to the entire satisfaction of hard-toplease users. Tolerance on larger plates in proportion. Prompt delivery on slandard sizes ranging Irom 8" $\times 12^{\prime \prime} 1048^{\prime \prime} \times 96^{\prime \prime}$. For prices and delivery write, phone or wire.

SMITH TOOL \& ENGINEERING CO.
857 N. SANDUSKY AYE., BUCYRUS, OHIO

PRECISION MEASURING EQUIPMENT

LUFISPATENTED GUTTINE-OFF TOOL HOLDERSPATENTED OUTTING-OFF BLADES
For use on all makes and sizes of Automatic Screw Machines, Hand Screw Machines,
Turret Lathes, and Engine Lathes.
ONLY the PATENTED construction of LUERS cutting- off BLADES permite normal expansion of bursting chips-MEANS MAXIMUM CUTTING EFEICIENCY
Manufactured and Sold under License issued by John Milton Luers Pafents Inc.
more action, rising to above 11,000 tons last week. Blast furnace representatives credit the improvement to scarcity of scrap. The improvement was directly in foundry and malleable grades, the former sales totaling approximately 5000 tons against some 6000 tons of malleable iron. Little action was reported in basic iron. Pig iron production in Canada is down to 93.3 per cent, due to blowing out one stack at Sault Ste. Marie.

While scrap iron and steel receipts by local dealers show some improvement, incoming scrap is not keeping pace with consumer needs. Supply is almost exclusively from war plants. Salvage campaigns in the rural districts are expected to get under way within the next couple of weeks and it is stated that fairly large
tonnages will be available on the spring drive. Big stocks also are said to be held in northern Ontario ${ }^{3}$ mining areas and will start to move within the next week or ten days.

Firth-Sterling Reduces

Carbides 10 Per Cent

Firth-Sterling Steel Co., McKeesport, Pa., in addition to quantity discounts recently made, announces a special price reduction of 10 per cent on its complete line of carbides for cutting tools. The company terms this a "1942 war discount".
This is the seventh price reduction since September, 1940. Increased use of carbide tools and standardization of

COLLECTING PORTABLE GRINDER DUST WITH DOWN DRAFT EXHAUST BENCHES SERVED BY ROTO-CLONES!

Roto-Clone down draft exhaust arrangements such as are in use in the Cincinnati Bickford Tool Company's finishing deparment are in wide use for collecting fine portable grinder dusts. Generated dust is pulled downward from the grinding tools through the grilled bench tops and conveyed through ducts in underfloor pipe trenches to the Roto-Clone precipitators. These units may be conveniently located in unused space any where in the work room. Benches are available in a wide range of sizes and designs.

Complete information on the application of Roto-Clone to all types of industrial dust control is available without obligation. Send for free Bulletins.

AMERICAN AIR FILTER CO., INC.

sizes has made possible reductions totaling 80 per cent from the 1940 prices.

Steel in Europe

London - (By Radio) - War requirements of Great Britain are expanding steadily but steel output is maintainod at a rate sufficient to mect needs. Rerollers are heavily booked to the end of June, with some tonnage available for last half rolling. Substantial tonnages of plates are needed for ships, tanks, locomotives and other construction using heavy steel. Pressure for delivery of steel sheets is strong.

Nonferrous Metals

OPA has restored maximum prices for primary lead ingots and linked ingots to their former level of $\$ 10$ per ton over the maximum price for pig lead. The ceiling had been reduced to $\$ 5$ per ton over the maximum price for pig lead on Jan. 20 but this level was found to be insufficient to cover cost of production.

Erwin Vogelsang, director of the TinLead Division, warned the Tin Products Industry Advisory Committee last week that unauthorized sales of tin and the continued use of the metal for purposes that are prohibited by the tin conservation order will not be tolerated. The industry must put an end to the careless and wasteful use of tin alloys by consumers for purposes where either a substitute material or a lower tin content can be specified, he told industry representatives.

Revise Control Over

Steel Warehouses

(Concluded from Page 91)
mills; and dealers, who buy from warehouses or other non-mill sources.

The order permits warehouses to deal only in those product groups and types of steel in which they dealt in the first quarter of 1941. After CMP goes into full effect July 1, they will be permitted to obtain materials only to replace steel sold in the previous 90 days in accordance with CMP Regulation No. 4, plus small amounts to compensate for scrap loss.

Dealers will operate entirely on a stock replacement basis, and can shift freely within any particular type among the various general steel products. Order M-2l-b-1 establishes a procedure for dealer purchases and provides that orders for replacement of authorized sales must be certified by an endorsement provided by the order, which automatically makes the purchase an authorized controlled material order.
A provision permitting the ear-marking of warehouse stocks for a particular claimant agency is included, where such ear-marking is agreed upon by the Steel Division and the claimant agency involved. Deliveries from such ear-marked stocks are to be made only in accordance with specific directions issued at the time the stock is ear-marked.

To Speed Victory! We Are ready to serve you "直merican"

COLD PIPE, CONDUIT and TUBE BENDING MACHINES

Write Air Mail for printed matter
Quick Deliveries

Twelve types to select from. Hand operated capacities $1 / 4$ to 6^{\prime} inclusive. Motor operated $8 / 4$ to 8^{\prime} inclusive.

A few of our More Than 12,000 Customers: Bureau of Ships, Wash., D.C.: Henry J. Kaiser Co., Calif.; Pacific Eridge Co.: Beth-lehem-Hingham Shipyards; Hercules Powder Co.: Stone \& Webster Engineering Corp.; E. i. Du Pont de Nemours \& Co.

EMPLOYEES' BADGES NUMBERED BUTTONS

 FIBRE TIME AND TOOL CHECKS CELLULOIDCASESAIR MAIL-TELEPHONE-TELEGRAPH YOUR ORDERS!
> Three Long Distance lines, CEntral 4916-4917-4918.
After six p.m. PRospect 6778. HUdson 5211. CEntral 0379 LARGE EOUIPAENT. EFFICIENT SUPERVISION. 50 Years' experience in back of usl We are ready to serve 24 hours a day. Send for Catalog.

ST. LOUIS BUTTON COMPANY 415 Lucas Avenue

HOTEL PHILADELPHIAN

FORMERLY HOTEL PENNSYLVANIA Daniel Crawford, Jr., Manager
391h and CHESTNUT STS.
PHILADELPHIA, PENNA
Our courteous and competent staff will give you the utmost in friendliness, comfort and service. Conveniently located to all stations, and only five minutes away from the heart of the business section.

* 600 ROOMS each with bath from $\$ 3.00$ up \star RADIOS IN EVERY ROOM
Lounge and Restaurants. Unrestricted Parking to 3 a.m.

KARDONG CIRCLE BENDER

This is a powerful and fast machine for heavy duty work in both fabricating plants or in the field where large tonnage is required. It will handle as high as 20 tons a day. Circles of any size required in concrete reinforcing
 work from 18 inches in this bars with two. or more radius on the same bar without stopping the machine.

Made in two sizes

Madel "C" Capacity $11 / 1$ inch Model "CA" Capacity 1 inch
Write for catalog of our complete line of reinforcing
bar benders.

KARDONG BROTHERS, INC. MINNEAPOLIS, MINN.

TAYLOR-WILSON

Rotary Type CUTTING-OFF MACHINES
for Rounds
1 " to 24 " Dia.
TAYLOR-WILSON MFG. CO.
15 Thomson Ave. Pittsburgh Dist. McKees Rocks, Pa .
 GIRL SAVES MAN HOURS .

By RELEASING A MAN FOR SERVICE

No delay waiting for dies - parts ready quicker - deliveries speeded up - all to bring the Victory sooner! Women are rapidly taking a major place on the industrial front. DIACRO Precision Machines - Shears, Brakes, Benders - are ideally suited for use by women in making duplicated parts accurate to $.001^{*}$ - DIE-LESS DUPLICATING. Thousands of DI-ACRO Machines are now in use in War plants.

WRITE FOR CATALOG ..." "METAL DUPLICATING WITHOUT DIES."

Plant Expansion, Construction and Enterprise, Government Inquiries, Sub-Contract Opportunities, Contracts Placed and Pending

SUB-CONTRACT OPPORTUNITIES

 atfention and avolat delay.

Philatelohia Offiee Contract Distribution Branch. Production Division, WPB, Broad Street Station buidias, reports the following subcontract opportunities:

Howeher-12-1: A New lonk soncern remire additiomal facilities for mannfacture of radial jewel hearings. Quantity, 1500 re suired at pressut * with contimed require ments of 700 per month. Material: Mount 17 st. alaminum, samphire jewel orerall dimensions on mount, O. D. . 2821 ta 2817 thickness .120 to .005; jewel dimensions. $0.1) .9 / 64 \times .065$ with .0625 to .0627 hole. No material furnished. Prints at Philadelyhia office.
Buescher-12-2: A New York company reruires additional facilities for manufacture of radial thrust jewel bearings. Qumatity, 72.5 reguired at present with continued reguire ments of 375 per month. Material: Momst. 17st. aluminum, sapphire jewel overall dimensimes of mount. O. D. . 1884 to .1880, thick ness .50 to .010 ; jewel dimensions, radial jewels, O. D. 5/8 x. 030, hole . 0312 to .0314: thrust iewel O. D. 1/6 x .030-.002. No material furnished. Prints at Philadelphia offices.

Simneamolis Office Contract Distribution Branch of WPR. :AB4 Midland Bank building. is seeking contractors for the following:
S. O. No. 390: Steel hinge Material, coldrolled stere. Quantity, 330. Priority, A-1. Subeontrictor to do entire job, furnishing materials. Early delivery. Commercial toleramer Priee las megotiation. Drawings available.
S. O. No. 396: Marine anchor chain. Operations are forging, weldine and machining. Quantities are substantial and deliveries start soon. Priority AA-L. Drawings and specifications available. Prie: by megotiation.
S. O. No. 382: Nut. Quantity. 250.000 , deliveries 50.000 per month. Material. whict is furnishod, is free-machining stainless steed. Requires machining, centerless grinder. Tolerance, 002 . Drawings are avalable.
S. O. No. 386: Single-speed fwo-drum uniwinch ease. Two are wanted as soon is possible, more to follow ats each is finished. Opurations include planing, horing, milling. Material will be furmished. Price to be wegotiated with Silwanker prime comtractor. Drawings awailable.
S. O. No. 387: Marine athehor chatin. Each link about $8 \frac{1}{2}$ inches long, stock $11 / 2$ inches. Six lots, each of 210 fathoms (1260 feet . Forged froms wrought iron. Priority AA-I. First lot to be delivered in 60 days, second in 90 days and others at 4.5 -day intervals. Drawings and specifications supplied. Further opportumities to bid on futher requirements may be expected.
S. O. No. 397: Stud. Priority AA-1. Immediate facilities neoded for mannfacture of 150.000 studs, $3 / 8$ to $1 / 4$ inches in eliameter, of various lengths. All threads to have chass 5 fit. Threads may be die-eut, milled, rolled or ground as long as desired fit is oltained.

Repeat orders may be expected. Contractor supplies material.
S. O. No. 273: Local prime contractor has work for a mmber of turret lathes, $1 \frac{1 / 2}{}$ to 2 -inch. or engine lathes with turret heads. Materias is furnisherl, mantities are large and work starts at ouce. Drawings and specifications are supplied.
S. O. 374: Clamp mits, bushings, ete. Twenty seven small items in quantities of 1000 or more of each. Work ideally suited to plants which have made perishable tools for ordnance. Calls for small turret lathes, hand seren machines amd grinders. Material is cold-rolled steel, stainless steel and brass Priority, AA-1. Tolerance. . 001 to . 005 Drawings at Mimmerolis office.
S. O. No. 381: Compling for plastie pipe size $3 \times 3^{\text {bitinch. Reguires turret lathe }}$ and thread cutting. Material, welded or scombess steed tubing or gray or mallealble castings Deliveries, 7500 per month. Priority. AA-1. Drawings asalable.
s. O. No. 383: Cups, machine parts, in two sizes, 500,000 of each. Deliveries, 75,000 per month, stitrting April 1. Contractor will furnish frecemachining stainless steed, ground to size, also all gages Drawings avaitable

Boston office, Contract Distribution Branch of WPB, 17 Court street, is seeking contractors for the following:
SC-85: Multiple or single-spindle automatic serew machine work for machime having 11/16 to 1 1/16-inch diameter bar capacity. Four items ranging in length from $15 / 32$-inch to 21/32-inch. Material, cupro-nickel, supplied by prime contractor. Tolerance, . 002. Ovantity, 37,000 each size. He:erence 1-A649.

Chicamo office, Contract Distribution Branch of WPB, $22 G$ West Jackson Roulevard, is seeking contractors for the following:
AC Spark Plug division, Gencral Motors Corp. Flint, Mich., attention L. R. Steffen. Priority AA-1. Part, rocker arm pin to he finished complete. Contractor to supply material. Qumity, 200,000. Material, mangamese steel. Dimensions, $1 / \times 1$ x-inch. Equipment. * k-inch single-spindle atumatic serew machine, bench lathe 7×15-inch turret, carburizing equipment, No. 2 centerless external srinder.
A. S. Campbell Co., 161 1Preseott street, Eist Boston, Mass. Prjority AA-1. Parts, adapter, filling hole plog and filting hole seat. Material, cold-rolled stecl or malleable iron. Quantity, 2500 of each item weokly contimously. Subeontractor to do entire job, including furnishing material. Equipment, 4 th-inch capacity single-spindle automatic serew machine or 4%-inch bar capacity turret lathe.
Allison division, General Motors Corp., Speed-way-Indianatpolis, Ind., attention C. J. Kelley: Priority AA-1. Rough finishing of aircratt engine luarings. Facilities, 31/2 to 61,-inch antomatic screw machines, internal grinding or honing machines of same capacity, satable
for producing No. 85 miero inch finish, which is equivalent to rough grinding operation for removal tool marks. Contractor supplies materials. Substantial runs.
Hercules Motor Corp., Canton, O., attention A. R. Miller. Priority AA-1. Parts, fourthrow and six-throw cramk shaft. Dies could be furnished by contractor or new ones made hy contractor. lequired in lots of 500 and 1000. Material, steel forgings. Heavy forging equipment required.
Ohmite Mfg. Co., 4835 Floumoy street, Chicago, attention W. Wodika. Priority AA-1. Part, roller pin, if x $1 / 16$-inch. Material, tool steel, supplied by subeontractor. Quantity, 100,000 in lots from 5000 upward. Equipment, $\quad 3 /$-inch enpacity single-spindle automatic screw machine. Tolerance, 0005 .
Remington Rand Inc., Buffalo, N. Y., attention Frank Mcier. Priority AA-1. Part, firing pin $1 / 1 \times 21 / 2$-inch. Material, alloy stecl, supplied hy eontractor. Quantity, 500,000 , to be subcontracted in lots of 100,000 or 250,000 , at 2500 to 3000 per day. Contractor will do heat treating if sulocontractor does not have facilities. Equipment, ${ }^{3}$-inch capacity singlespindle nutomatic screw machine.

STRUCTURAL SHAPES

SHAPE CONTRACTS PLACED

2000 tons, building, Kaiser shipyard, Provi dence, R. I., to Hethlehem Steel Co.. Buth lehem, Pa.
1600 toms, adklition. aremart plant. Loms Islame N. Y.. to Fort Pitt Bridge Works, Pittsburgh. 1254 tons, previously amounced as 800 , monitor framing, Basic Magnesium Co., Las Vegas, Nev., 878 tons to Consolidated Steel Corp. Ltd., Los Angeles, and 376 tons to Allison Steel Mfg. Co., Phoenix, Ariz.

SHAPE CONTRACTS PENDING

375 tons, Pemnsylyania state bridge, Delaware county, National Structures, New York, low on general contract.

REINFORCING BARS

REINFOHCING BARS PLACED

175 tons, alcohol plant. Muscatine. Iowa, for Grain Processing Corp., to Bethlehem Stee Co., Bethlehem, Pi.; Weitz Co., Des Moines, lowa, contractor; hids March 20.
131 tons, express highway, Willow Rum, Mich.. to Bethlehem Steel Co., Bethlehem, l'a. W. J. Storen, contractor.

REINFORCING BARS PENIDING

500 toms, Pamama, sch. G866i; bitls in.
220 toms, additions to arplane engine parts plant Sturderaker Corp., South Bend, Ind.: bids March 26.
215 tons, highway loridge, Cicero avenue over Belt railrond, Chicago, for lllinois state highway depiartment; bids March 19.
137 tons, grade separations, Chiengo: 72 toms at Pulaski and Keller roads, and 65 tons at Cicero and Keller ronds, for Illinois state highway department; bids March 19
150 tons, acldition to airplane engine parts plant, Stadebaker Corp., Ft. Wayne, Ind.
103 tons, highway bridge, Pulaski road over Belt railroad, Chicago, for llinois state highway department; bids March 19.
100 tons, addition to airplane encine parts plant, Studebaker Corp., Chicago.

SAFETY

(Reg. Trade Mork) WEDGE GRIP RADIUS HOLDER

For marking around circumference of Bars, Tubes, Shell Forgings and other Round Pieces.
Adjustable for Stamping on different size radii.
Safety Steel Construction eliminates spalling and mushrooming.

Write for Literature
M. E. CUNNINGHAM CO. 172 E. Carson St. Pittsburgh, Pa.

CONVERSION FACILITIES

AVAILABLE=
for prompt rolling of billets into bars up to $31 / 2^{\prime \prime}$ Rounds, $3^{\prime \prime}$ Squares and $4^{\prime \prime} \times 2^{\prime \prime}$ Flats the milton manufacturing company - milton, pa.

Hort Smulac arc welotes America's successful production shops and million dollar indus. race was largely dependent on tries the country over. They're race was largely dependent on tries the country over. They're the world's greatest carner-cul- speeding work, saving metals, ting tool...are welding. Hobarts making stronger tanks, planes ling tool....are welding. Hobarts have been the pace-selters; for you find them in small machine making stronger tanks, planes. Hobart Bras., Bax ST-
 ?
 f bos., Box

One of the

GRINDING WHEELS and their uses

By Johnson Heywood

Second Edition, completely revised. Sponsored by the Grinding Wheel Manufacturers Association. 436 pages, 29 chapters, 5 appendices, 436 illustrations and figures. Fully indexed. Price $\$ 3.00^{*}$ Poslpaid. ("plus additional 9c for state sales tax on orders for delivery in Ohio)

- The New Book of "KNOW HOW" that "TELLS HOW" -a practical vol ume for every man interested in modern grinding methods and npplications.

Today's production, with a premium on "Know How", depends on men that can do a job, or know where to find out how to da it.
"Grinding Wheels and Their Uses" covers the entire field of grinding a study of the twenty-nine chapter heads will show how broad its scope really is.

Shop executives can turn to this hook fur practical help on everyday grinding problems; grinding machine operators, or apprentice operators, can use it to good advantage. Students in trade and technical schools and collegrs can profit from the operating experience of engineers. designers. foremen and employes as set forth in this
new volume.

This 436 page book, with 29 chapters and 436 illustrations and figures is the only up-to-date book of its kind on the market today. Fifteen tables: of Wheel Recommendations and other appendices provide working data that every operator must have.

ORDER YOUR COPY TODAY:-Orders will be filled the same day received.. Order your copy now and have this valuable handbook ready for immediate reference.
steel - book dept. - penton bldg., cleveland, ohio

AVA!LABLE FROM STOCK

Hecommended for 90% of all Induatrial stamping needs . . . Mathews "SafeHed" ${ }^{\prime \prime}$ Steel Stamps are safe and the most economical for your stamping application. -Reg. U.S. Pat. Off.

White fór catalog 146-A
An invaluable booklel for steel stamp buyers. Write for your copy taday!

JAS. H. TATTHEWSECO.

	3978 Porbes Street Pittsburgh, Pa. Branch Plants New York, Boston, Chicago, Philadolphio, Nowayh, Syracuse Clevelond District Sales Offices Dełroit Hartord	

CONSTRUCTION AND ENTERPRISE

OHIO

AKHON, O.-Bender Machine Co., 150 North Case strect, has acquired building on East Market street and lot adjoining, for manufacturing and expansion purposes.
CANTON, O.-Gusset Boiler \& Welding Co., 1140 Sarion avenue, will remodel its factory.
CLEveland-Hansen Mfg. Co., Fred E. Hansen, vice president, 1786 East Twentysowenth street, will expand production with a $\$ 6000$ machine shop.

CLEVELAND-Euclid Road Machinery Co., 1361 Chardon road, is expanding its facilities with a crane rumway and factory additions. Estimated cost $\$ 15,000$.
CLEYELAND-Parker Applinnce Co., A. L. Parker, president, 17325 Euclid avenue, is adding to warehouse and erecting a power plant at Arabella road. Cost estimated at $\$ 100,000$.
CLEVELAND-Jo-Pierce Co., 1438 East Fortieth strect, is being incorporated under present name. Heretofore operating under a partnership, it is now incorporated by S.
K. Wellman, of S. K. Wellman Co., 1374 East Seventy-first street, E. P. Pierce, and J. R. Numey

ELYRIA, O.-Electrical \& Mechanical Service Co., Earl D. Jolley, proprictor-manager, has been granted permit for industrial building. MIDDLEFIELD, O.-Geauga Dic \& Mold Co. has applied for charter for manufacture of and dealing in molds, jigs, dies and fixtures for the machine tool industry. Hugh G. Johnson, 115 South Main street, Middlefield, is agent, and Frank J. Levy, Frank Irebek and John G. Roberts, Standard building, Cleveland, the incorporators.
PAinesville, O.-Ohio Mfg. Co., Glem McFarland, manager, 467 North State street, will continue manufacturing steel factory equipment after alterations are completed.

RHODE ISLAND

PAWTUCKET, R. I.-Royal Corp., 75 Savin street, Pawtucket, is altering threc-story factory, for which contract has been awarded to Henry M. Soule Co., 110 Armistice boulevard, Pawtucket. Hamilton Standard Propellers Division United Aircraft Corp., 400 Main street, East Hartford, Conn., lessee.

NEW YORK

NEW YORK-New Jersey Powder Co., 15 Broad strect, New York, will construct additional plant facilities in New Jersey. Estimated cost over $\$ 9,000,000$. Project will be financed by Defense Plant Corp.
NETV YORK-National Carbon Co., 60 East Forty-second street, New York, plans erection of plant in Kentucky costing approximately $\$ 280,000$, and additional plant facilities in North Carolina costing $\$ 1,450,000$. Defense Plunt Corp. will finance both projects.

NEW JERSEY

HILLSIDE, N. J.-A \& B Tire Co., 34 Spring street, Newark, has awarded contract for one-story addition to Joseph Krunholz Construction Co., 15 Reynolds place, Newark, N. J.

JERSEX CITY, N. J.-W. Kellogg Co. will huild one-story tool and locker building. Estimated cost $\$ 40,000$.

PENNSYLVANIA

PHILADELPHIA-Defense Plant Corp, has authorized increase in its contract with Rolm \& Haas Co., 222 West Washington square, Philadelphia, to provide additional equipment for plant in Tennessec, at cost of approximately $\$ 50,000$.

MICHIGAN

DETROIT-Truscon Steel Co., 615 Wayne street, has let contract for foundation for mill building to O. W. Burke Co., 1010 Fisher building. Cost exceeds $\$ 50,000$.
DETROIT-Aluminum Co. of America, 3311 Dumn road, has let contract for foundry addition, conveyors, elevators and knockout deck for aluminum plant to Barton-Malow Co., 2631 Woodward avenuc. Cost exceeds $\$ 50,000$. Malcolmson, Calder \& IIammond, 1217 Griswold street, architects.
MUSKEGON, MIICH.-Muskegon Piston Ring Co., 6 and Alpha streets, has let contract for two-story factory addition to Fred Movey, 10.45 West Dale avenue. Estimated cost $\$ 40,000$.

INDIANA

INDIANAPOLIS-Allied Bituminous l'roducts, 2100 South Harding street, is rebuilding plant at cost of $\$ 40,000$, with equipment.
MAMION, IND.-Paranite Wire \& Cable Co., D. Carpenter, general manager, is rebuilding at main plant building at cost of $\$ 200,000$ or more, including equipment.

NORTH CAROLINA

WILMINGTON, N. C.-Lock Joint Pipe Ca.,

Immediate Shipments of BARS-PLATES
SHAPESSHEETS

From Stock
We Also Offer
QUICK SHIPMENTS OF FLAME CUT PLATES IN IRREGULAR SHAPES, CIRCLES, DISGS, ETC.

STANLEY

Steel Makers Since 1871

STRIP STEEL

HOT ROLLED - COLD ROLLED SPECIAL CARBON - ALLOYS
THE STANLEY WORKS NEW BRITAIN, CONN. - BRIDGEPORT, CONN. HAMILTON, ONTARIO

QUALITY STEELS

TOOL STEELS-TOOL STEEL TUBING-DRILL ROD
fine spring steels-band saw steels STEEL SPECIALTIES
$\overline{\text { SEW YORK - CLEVELAND - CHICAGO-LOS ANGELES }}$

Designers and Builders of
HYDRAULIC \& LUBRICATING OIL EQUIPMENT
FOR STEEL MILLS AND HEAVY INDUSTRIES

AMERICAN
NICKITIDIT COMPANY
1310 SECOND ST. PERU. ILLINOIS
HOT-DIP GALVANIZING PRACTICE By W. H. Spowers Jr.
An up-to-date treatise on zinc coatings of steel that will sppeal to those who dally are engaged in surfacing metals with zinc. 200 Pages- 45 Illustrations- 4 Tablea -7 Charts. Price $\$ 4.00$ Postpaid.

THE PENTON PUBLISHING COMPANY
Penton Bullding Book Department
Cleveland, Ohio
550-S

WAR Rall bora latoo WIRE

FROM the fighting front, all the way back fo the production line, wire has innumerable fiar jobs to do-tough tasks that show up just how good modern wire can be made. Cortland Wire is "in service" wherever war goods are made, shipped or used, performing essential tasks that are generally unseen and unsung.

- Whether it is for signal corps wire, wire for airplane air filters, aircrăft eugine castius pins, or wire for the common nail, performnoce is the real measure of wire value. And on the basis of performance, Cortland Wire has been "passing" the strictest specificationsthe result of Cortland's more than 65 -yenr experience in making America's finest wire and wire products.

WICKWIRE BROTHERS, INC.

WIRE * SCREEN WIRE CLOIH * POULIRY NETIING * NAILS

BELMONT \quad RHILADELPHIA \quad NEWYORK \quad ORK

Engineers - Contractors - Exporters
STRUCTURAL STEEL-BUILDINGS \& BRIDGES IRIVETED-ARC WELDEI
Belmont Interlocking Cianifil. Floun Write for Catalogue Muin Office-Philn., Pn. New York Orfien-4 Whitehull st

Litith - Sterfing उसमम CONPAN? TOOL SIEELS - STANLESS STEELS - SINTERED CARBIDES FOR COMPLETE SHOP TOOLING - MCREesport, Pa.

EUREKA FIRE BRICK WORKS

 1100 B. F. Jones Law Hidg. PITTSBURGII, PA. AT 0612-06. 13 Patent Covercd Hot Tops and IBottom Iluis for Ingot Molds for Alloy SteelsHigh Grade Clay and Fire Brick for Furnaces, Boilers, Cupolas Coke Ovens, etc. Edge Pressed Brick for accurate sizing. Difficult Shapes a Specialty
Works: Mt. Mraddock, Fuyette Co.. Pu. Dunlur, P'u.-258!

[^10]Ampere, N. J., will soon start work on temporary plant near here to manufacture pipe for a ninc-mile supply line for which federal funds have been allocated.

MISSOURI

KANSAS CITY, MO.-Defense Plant Corp. has given contract to Sanderson \& Porter, 1111 Hialtos buidding, for aleohol plant, including 12 buildings of various types, to cost about $\$ 2,000,000$. National Distillers Products Corp., New York, will operate the plimt.

WISCONSIN
KENOSHA, WIS.-Defense Plant Corp. has
given contract to Holger Pahl for addition to building No. 19 of Nash-Kelvinator for heat treating pit.
LA CROSSE, WIS.-Trane Co. has given contract to Peter Nelson \& Son for two additions to factory
WEST ALLIS, WIS.--War Department has given contract to Gebhard-Herghammer Inc., 5420 West State street, Milwanke, for twostory plant addition, operated by Wehr Steel Co.

MinNeSOTA

MNNEAPOLIS-Brown Steel Tank Co., 2907 Southeast Fourth street, has given contract to Kraus-Anderson Co. Inc. for two-story

ANY PERFORATION

They are used in the manu facture of airplanes, battleships, explosives, ammunition and in many important and essential industries such as the processing of grain, food products, petroleum, coal, etc We make all sizes and shapes of holes to meet the most exacting conditions.

Write us far furthar i.aformation.

ARE

ESSENTIAL
In Times of WarandPeace

H票rarington \& King

5634 FILLMORE ST., CHICAGO
114 LIBERTY ST., NEW YORK

factory addition and extensive alterations to present plant.
ST. PAUL-Northern States Power Co. has given contract to F. J. Romer Constraction Co. for addition to steam power plant, to house a 50,000 -kilowatt unit. Total cost of High Bridge power plant expansion extimated at $\$ 5,000,000$, including equipment. Basil Nelson is purchasing agent for the company.
WINONA, MINN.-Donovan Contracting Co. 1725 Carroll avenue, St. Paul, plans addition to Dimmond Huller Co. plant which it has leased and will install additional machinery

KANSAS

WICHITA, KANS.-Aircraft Compouents has given contract to A. W. Soderberg Co. for one-story factory addition
WICHITA, KANS.-Beech Aireraft Corp. has given contract to Armagost \& Moreland for addition to factory

NEBRASKA

LINCOLN, NEBR.-Lincoln Pucking Co. has been granted permit for packing plant addition.

IOWA

Vaterlion, IOWa-Hawkeye Steel Products Co. recently sustained severe damage to its foundry by fire.
WEBSTER CITY, IOWA-McCollough's Inc has let contract for rebuilding factory to Zitterell-Mills Co. Cost over $\$ 40,000$, int cluding equipment.

CALIFORNIA

LOS ANGELES-Building permit has heon issued for addition to Peerless l’ump Division plant of Food Machinery Corp. at 301 West Avenue Twenty-Six. Estimated cost $\$ 10,000$.
LOS ANGELES - R.P.M. Flange * Welding Corp. has been organized by H . Watson, C. E. Martin and Enil Persom. Representative, Eugene Harrab, 810 South Spring street, Los Angeles.
LOS ANGELES-Magnesite Co. of America has been incorporated with 20,000 shares of no par value stock, by David Greensburg, Irving Bromberg and M. M. Liebenson. Representative, Samuel Reisman, 530 West Sixth street, Los Angeles.

CANADA

MOUNT DENNIS, (TOHONTO) ONT.-CAmadian Kodak Co. Led., Eglington avemat West, plans to start work soon on plant addition to cost, with equipment, abont $\$ 20$, 000.

VINDSOR, ONT.-Ford Motor Co. of Canada Ltd., Sandwich street East, has given general contract to Anglin Norcross (Ontario) Ltd., 57 Bloor street West, Toronto, for foundry additions, to cost about $\$ 65,000$, equipment extra. Sub-trades are pending.
MONTREAL, QUE.-S. Mongean \& Co. Lid. $8+12$ Boyer street, plans to start work soon on plant addition, to cost $S 6000$, equipment extra.

MONTHEAL, QUE.-Crane Ltd., 3800 St Patrick street, has given seneral contract to Anglin-Norcross (Quebec) Led., 892 Sherbrooke street West, for pipe plant, to cost with erguipment, about $\$ 375,000$. T. Pringle \& Son Lid., 485 McGill avenue, enginerr.
MONTREAL, QUE.-Precision Tool \& Supply Co. Ltd., 1359 Notre Dame street West, has given general contract to A. F. Byers Construction Co. Ltd., 1226 University strect. for machine shop building on St. Patrick street, to cost, with equipment, about $\$ 40$, 000.

THREE RIVERS, QUE.-Camada Iron Fuandries Ltd., 227 St. Manrice street, is considering plans for plant addition and installation of mew equipment, estimated to cost ahout \$175,000.

FORGINGS HAMMERED STEEL FORGINGS up to $6,000 \mathrm{lbs}$. each

ALL TYPES
Smooth Forged Finished Rough Turned Hollow Bored and Heat Treated to Specifications CRANK SHAFTS, CONNECTING RODS, SHAFTING

BAY CITY FORGE CO.

ERIE, PA.
Over "Quarter of a Century of Dependable Service and Quality Ironhenen

SMALL ELECTRIC STEEL CASTINGS
 (Capacity 500 Tons Par Month)

WEST STEEL

 CLEVELAND11. Profit Moat

Who Serves Beat'

CASTING CO.
ohio. U. S. A.
Hacker Sisal
Castings

Stampings and Press Work

10 Gauge and Lighter to $20^{\prime \prime} \times 40^{\prime \prime}$-Hot Pressings Legs and Base Units for Stoves, Refrigerators and Institutional Equipment OIL TEMPERED (Flat) SPRINGS
DAVIS BRAKE BEAM COMPANY
Laurel Ave. \& P.R.R.
Johnstown, Pa.

PREFERRED

AS A SOURCE OF
STAMPINGS
Since 1003
Literature on Request

WHITEHEAD STTAMPINGCO.

EST. 1903

MEET THE DEMANDS AND REQUIREMENTS OF INDUSTRY

Their great load carrying capacity, their very high efficiency and their continued proven performance indicates the engineering soundness of the design and manufacture of D. O. James Generated Continuous-Tooth Herringbone Reducers.

These units are the product of an organization with over a half-century of gear making experience and have a wide use in many different industries.

Catalogs are available containing complete enginearing data, advantages, weights and prices.

USED and REBUILT EQUIPMENT

 MATERIALSSPECIAL ATTENTION！ steel mill．s．
hiast fullnaces and foundmes！
ALLOY（＂CRITICAL＂）SCRAP
TUININGS：$\$ 9.00$ G．T．Houston plus pay＇ able（Dl＇A Nickel or Moly．I＇remiums． 15 C／I，SA1： 3100 ：WPB No． 6 5 C／L，SAF：1800：WPH No． 6 12 （：／I，Moly．－Min．：WPl3 No． 7
TURNINGS：$\$ 12.91$ C．T．Tracks，Chicnmo， plus payablo OPA Nickel Premium． $15 \mathrm{C} / \mathrm{I}, 1.00-3.75 \%$ Nickel；WIP\} No. 6
HLASIINGS \＆CROPS：$\$ 10.50$ G，T．Hous－ ton plus muable OPA Nickel or Moly Promitum

$6 \mathrm{C} / \mathrm{L}$ ．Moly．－AH11：WI＇H No． 7
NOTLE：Relative puantities of＇lurnings must be purchased with lelashings and Crobs．

IRON \＆STEEL PRODUCTS，INC．
13462 S．Bralnard Ave．，Chicago，llilnols

WANTED URGENTLY

COLD ROLLED STEEL
 1htpur stars The＇phate slase ishten an be used
戸rlurlety At litace wio qunmity，deltrerpy nuif pirice．
Box 229．Sulte 617， 1457 Broadway

－WANTED－

6,1000 C．F．M．，16－20 az．centrifugal cupala blower direct commected to motur．Motor specifi．3／60／440． ST．PAUL ENGINEERING \＆MFG．CO． Pormerly St．Pawl Fozndr：？ 500 Como Avenue St．Paul，Minn．

－REBUILT－
 blowers－fans－exhausters

 Connersville－Roots positire blowers Centrifugsig for ans and olt burning Fand bast，rinder and duat exhausters GENERAL BLOWER CO．04 North Peorla St． Chleago．III．

RAILS

AND ACCESSORIES

RELAYING RAILS－Super－quality machine－ recondltioned－not ordinary Relayers．
NEW RAILS，Angle and Splice Bars，Bolts，Nuts， Frogs，Switches．Tie Plates，and all other Track Accessories．
Although our tonnafes are not as large as here－ tofore，mont slaes are usually avallable from ware－ house stocks．
Every effort made to take care of emergency requirements．Phone．Write or Wrire

L．B，FOSTER COMPANY，Inc．
PITTSBURGH NEW YORK
CHICAGO

RAIL－ACCESSORIES RAILWAY EQUIPMENT BOUGHT \quad SOLD

WRITE－WIRE－PHONE
DULIEN STEEL PRODUCTS，INC． 4 First Avo．，So． 2280 Woolworth Bldg Seattle，Wash．New York，N．Y．

RELAYING RAIL

Practically all weights－Any quantity．Im－ mediate shipment，strictly first quality re－ conditioned Helnying Rail and Accessories．

> W'rite, Wire, or Phone

MIDWEST STEEL CORPORATION Charleston，W．Va．

FOR SALE

USED PIPE，FITTINGS，VALVES， STEEL RODS，STEEL BUILDINGS， INDUSTRIAL EQUIPMENT． industrial
SUPPLY \＆EQUIPMENT CO．，INC．
1044 Canal Bidg．，New Orleans，La．

FOR SALE

1－Acme 3 －wheel automatic polishing machine for tubes or pipe up to $3^{\prime \prime}$ O．D．Driven by 15 H．P．A．C．motor with necessary starting equipment wellman bronze \＆aluminum co． 2525 East 93 rd St．

Cleveland，Ohio

OFFER APPROXIMATELY A CARLOAD OF SHERADIZED SEAMLESS TUBING RANG ING IN SIZES FROM $11 / 4$ INCHES TO $31 / 2$ INCHES．WRITE FOR PRICES AND QUANTITY DESIRED

$$
\text { Address Box } 831
$$

STEEL，Penton Bidg．，Ciovoiand

FOR SALE

STEEL BUILDINGS AND TANKS
PIPE AND BOILER TUBES JOS．GREENSPON＇S SON PIPE CORP． National Stock Yds．，Illinois

BUY－SELL－RENT

CARS，locomotives，cranes
STEEL SHEET PILING，PILE HAMMERS HOISTS，DERRICKS，TANKS，COMPRESSORS BOILERS，TURBINES，DIESEL ENGINES，ETC MISSISSIPPI VALLEY EQUIPMENT CO 503 Locust St．

St．Louis，Mo．

WANT TO PURCHASE

4 inch O．D．Boiler tubes；steel pipe of all sizes；Valves；Fittings；Industrial plants；Mills；railroads；trackage，etc． Write．wire or phone
SONKEN－GALAMBA CORP． 108 N．2d St．Kansas City，Kans． FFe buy and sell．Get our quotations．

CONTRACT WORK

Kirk \＆BLum

Welded machiae bases． PEDESTALS and FRAMES Lathe pans
GEAR and BELT GUARDS
Pressed Steel Louver Panels and Cover Plates
THE KIRK \＆BLUM MFG．CO．
2822 Spring Grove Ave．，Cinsinnoti，Ohio

SHEET STEEL FABRICATORS

Welded or Riveted Construction．Can haudle No． 10 gauge and lighter． Send us your inquiries for estimates． the haines company
1931 W．Lake St．
Chicago，It．

Castings

KING FOUNDRIES，INC．，NORTH WALES， Pa．Grey Iron and Semi Steel Castings，also alloyed mith Sickel．Chrome，and Molybdenam． Wood．Iron．Brass．and Alaminum Pattern work．

Send your inquiries for
SPECIAL ENGINEERING WORK to the
A．H．NILSON MACHINE COMPANY， BRIDGEPORT，CONN．
designess and builders of wire and tibbon stock forming machines．
He also solicit your bids for cam milling
SUB－CONTRACT WORK is being given out daily．Put yourself in line to receive your share of this business by list－ ing your services in this sec－ tion．Write STEEL，Penton Bldg．，Cleveland．

Help Wanted

1 MECHANICAL DESIGNER-DRAFTSMAN WANTED

Man having $10-15$ years practical experience drawing, designing, and checking drawings; preferably as done in steel plant or similar engineering departments. Permanent position with excellent future. Give brief history of experience and education. Address

Personnel Director

TUBETURNS
 224 E. Hrondway
 LOUISVIMLLE, KY.

SALES ENGINEER

Large well-known manufacturer of materials handling equipment seeks a home office sales engineer with electrical or mechanical engineer's background:
One capable of handling techuical correspondence now, in preparation for post war expansion program. Give complete qualifientions and draft status.
Reply Box 883, STEEL, Penton Blelg., Cleveland.

SMALL MANUFACTURER OF LIGIIT EQUIPment desires research engineer to develop new products for the post war period. There is a pormanent position in our westem Pennsylvania plant for a man with mechanical and electrical experience. Applicant must be citizen, 35 to 50 years of age, and a graduate mechanical engineer. When replying, give education, experience, references, age and salary desired. Heply Box 857, STEEL. Penton Bldg., Cleveland.

ENGINEER FOR TUBE FABHICATING PLANT. Permanent position. Technical graduate with experience preferred, to take full charge of Engineering. Design and Production. Excellent opportunity with small, expanding organization. State complete personal expanding organization. marital status, salary expected. Ape, experience, confidential. Address fox 890 , STEEL. Penton confidential, Add
Bldg., Cleveland.

[^11]
Opportunities

Opportunities

FOR SALE
 STEEL FOUNDRY
 (WEST COAST)
 > 150 to 200 tons of finished castings monthly, medium size

 150 to 200 tons of finished

 150 to 200 tons of finished castings monthly, medium size castings monthly, medium size

 Wire or Write to

 Wire or Write to
 FRANK B. FOSTER - 829 OLIVER BLDG. - PITTSBURGH, PA.

Help Wanted

FURNACE ENGINEER

Permanent position with long established and progressive Eastern manufacturer of heat treating furnaces. Applicant must have at least ten years of designing experience on medium-sized furnaces, be thoroughly familiar with standard furnace construction and capable of advanced designing for future operations.

Substantial salary to start with unlimited possibilities. For an interview at our expense, kindly furnish detailed experience and qualifications in writing. Reply Box No. 866, STEEL, Penton Bldg., Cleveland.

[^12]IN NEED OF OUALIFIED NIGHT SUPERINtendent in welded sheet and sted plate fabricating shop. Gool salary and future for right
person. Meply Box 886 , STEEL, lenton Bldg., Clevcland.
STEEL FOUNDRY SUPERINTENDENT, AND steel foundry core room superintendent, for fobbing foundry on medinm-large and small work. Address Box 889. STEEL. Penton Bldg.. Cleveland.
SALESMAN-FAMHLIAR WITH ALLOY AND stainless mill products. Heplies confidential. Address Box 884. STEEL. Penton Bldg., Cleveland.

CLASSIFIED IHATES

All classifications other than "Positions Wanted," set solid, minimum 50 words, 5.00 , each additional word. 10; all capitals, minimum 50 words, 6.50, each additional word . ${ }^{13 \text {; all capitals; }}$ leaded, minimum 50 words 7.50, each additional word .15. "Positions Wanted," set rolid, minimum 25 words 1.25 , each additional word . 05 : all capitals, minimum 25 words 1.75 , each additional word .07; all capitals, leaded minimum 2.5 words 2.50, each additional word 10 . Keyed address takes seven words. Cash with order necessary on "Positions Wanted" advertisements. Replies forwarded without charge.
Displayed classified rates on request.
Address your copy and instructions to STEEL, Penton Bldg., Cleveland.

Positions Wanted

SALIESAIAN OR SAIES EXECUTIVIE-CAN and have sold anything from a peanut ronster to big eduipment. And why not? It tukes encrgy. initiative, experience and a capacity to newaire knowledge. I am a miversity praduate. cnloy membership in edfective lechnical and social organizations. Keenly interested in working for a sound progressing commany and would anpreclsound progressing commany and wond inporectsales program. Address Box M83. SIFEML. Penton Bldg.. Clewslaml.

FACTORY MANAGER 24 YEAIS HHOAD practical and administrative machine shop, stumping, tooling, purchasing, production planning, engineering and cost control experience. Efficient agkressive organizer, age 4. American hora, technical education. Communications confldential. Reply box 856, STEPLL, Penton Bldg., Cleveland, Ohio.

EXECUTIVE: WOHKS MANAGER, ASSISTant, or Production Manager. Systems expert. Steel fabrication and heavy machinery. Produc1'enton Bldg., Cleveland.

Representative Wanted

TOOL STEEL REPHESENTATION WANTEIDWest Coast territory. J'romotion of complete line of high grade alloy tool stecls. Must be an aggressive organization. Fiull cooperution of widely recognized Eastern concern offered. Please reply in full detail. Hox 888. STEES., Penton Blag., Cleveland.

Employment Service

Abstract

SALARIED POSITIONS-Thil advertising verv ice of 33 years recognized standing negotlates for high salaried supervisory, technical and executive positions. Procedure will be Individualized to your personal requirements and will not conGict with Manpower Commistion. Retaining fee protected by refund provision. Send for details. R. W. BIXBY, Inc., 110 Delward BIdg., BuIfalo, N. Y.

IF YOU HLVE AN OPIOLTUNITY Use the "Help Wanted" columns of STEEL. Your advertlsement in STEEL will put you in touch with qualliled, hlgh-callbre men who have had wide training in the varlous branches of the Metal Producing and Metalwork Ing Industrles.

ONE TOOL FOR MANY JOBS

A Page

Abrosive Co.
Abrosive Products, Inc.
Accurate Spring Mfg. Ca
Accurate Spring Mfg. Co
Acme Galvanizing, Inc.
Acme Steel \& Malleable Iron Work
Aetna-Standard Engineering Ca., The
Ahlberg Bearin
Ajox Electrothermic Corp.
Aldrich Pump Co., The
Allegheny Ludlum Steel Corp.
Allen-Bradey Co .
Allis-Chalners Mfg. Co.
Alloy Metal Abrasive
Aluminum Company
Aluminum Company of America
American Agile Corp.
American Air Filter Co., Inc.
American Brass Co.
Americon Bridge Co.
American Braach \& Machine Co
Amorican Cable Division of American Chain
\& Cable Co.. Inc.
American Chain \& Cabla Co., Inc., Ameri-
can Cable Division
Ameriean Chain \& Cable Co., Inc., AmeriAman Chain Division
American Chain \& Cable Co., Inc., Page Steel \& Wire Division
American Chain \& Cable Co., Inc., Wrighi Manufacfuring Div.

\& Cable Co., Ine

American Chemical Paint Co
American Faundry Equipment Co
American Hat Dip Galvanizers Association American Metal Hose Branch of the American Brass Co.
American MonoRail Ca. .. 183
American Nickeloid Co. Machine Co., Inc... 179
American Pipe Bending Merican Pulverizer Co American Pipe Bending
American Roller Bearing Co.
American Screw Co.
American Shear Knife Co.
American Steel \& Wire Co
American Tinning \& Galvanizing Co.
American Zinc Sales Co.
Ampca Melal, Inc.
Amsler-Morton Co., The
Anaconda Wire \& Cable Co.
Andrews Sieel Co., The
Anker-Holth Mfg. Co.
Apollo Steel Co.
Armstrong-Blum Mfg. Co.
Atkins. E. C., \& Co.
Allantic Stamping Ca.
Allas Cor \& Mfg. Co.
Allas Drop Forge Co.

Alas Lumnite Cement
Babcock \& Wilcox Co.. Refraclories Diy.
Babcock \& Wilcox Tube Co.
Bailey, Wm. M., Co
Baker Brothers, Inc
Baker, J. E., Co.
Baldwin-Southwark Division, The Baldwin Lacomotive Works
Bantam Bearings Corp. Ctainless Steel Corp.
Barnes, Wallace, Co., Division of Associated Spring Corporation
Basic Refractories, Inc.
Bay City Forge Co Co., Ine.
Bay State Abrasive Producis Co. Beall Toal Co.
Beatty Machine \& Mfg. Co
Belmont Iron Works 183
Berger Manufacturing Div., Republic Steel Bethlehem Steel Co.
Birdsboro Steel Foundry \& Machine Co.
Bissett Steel Co.. The
Bixby, R. W., Inc.
Banchard Machine Co
Blaw-Knox Co.
Blaw-Knox Division, Blaw-Knox Co.
Biss \& Laughlin, Ine.
Blodgett. G. S., Co.. Ine
Bloom Engineering Co.
Bridgeport Brass Ca.
Bristol Brass Corp., The
Bristal Co. The
Brisial Co., The
Brooke, E. \&
Brooke, E. \& G.. Iron Co.
Brosius, Edaar E., Co.
Brown \& Sharpe Mfg. Co.
Brown Instrument Co.. The
Brush Development Co., The
Brush Development Co., The
Bryant Chucking Grinder Co.
Bryant Chucking Grinder Co.
Bryant Machinery $\&$ Engineering $C o$.
Bryant Machinery
Buda Co., The
Buffalo Galvanizing \& Tinning Works, Ine.
Buffala Forge Co
Bullard Co., The

Bundy Tubing Co.
Cadman, A. W., Mfg. Co
Carbolay Co.i Inc.
Cardox
Carey, Philip, Mfg. Co.. The
Carnegie-Illinois Steel Corp.
Corpenter Steel Co., The
Cattie, Joseph P., \& Bros., Ine.
Ceilsoie Co., The
Central Screw Ca.
Century Electric
Chambersburg Engineering Co
Champion Rivet Co., The
hinder Products Corp
Chicago Meit Hose Corp
Chicago Pertorating Co.
Chicago Rawhide Mfg. Co
Chicago Tramrail Co
Chicago Wheel a Mtg. Co
Cincinnati Milling Mach
Cincirnati Milling Machine Co.
Cincinnati Shaper Co., Th
Clark Tructractor Diy. of Clark Equipmen
Ca. Ir................
Cleareman Machine Tool Co.
Cleveland Cap Screw Co.
Cleveland-Cliffs Iron Co.
Cleveland Crane \& Engineering Co.
leveland
Cleveland Preumatic Iool Co., The
leveland Punch \& Shear Works Co
Cleveland Tool Engineering Ca.
Cleveland Tramrail
Crane \& Engineering Co.
Cleveland Twist Drill Co., The Inside Front Cover
Cleveland Worm \& Gear Co., The
Climax-Molybdenum Co
Cold Metal Products Co
Colonial Broach Co.
Columbia Stael Ca.
Calumbus Die. Toal \& Marhine Co
Commercial Metals Treating. Inc.
Cone Automatic Machine Co., Inc
Consolidated Machine Tool Corp.
Continental Machines, Inc. Foundry Co
Continental Screw Co.
Continental Steel Corp.
Cooper-Bessemer Corp.
Copperweld Steel Co
Corbin Screw Corp
Cowles Tool Co.
Crane Co.
Cross Gear \& Machine Co.
Cuban-American Manganese Corp
Cullen-Friestedi Co.
Culvert Division, Republic Steel Corp
Cunningham, M. E Copubic
Curtis Pneumatic Marhinery Division 181
Curtis Manufacturing Co.
Cuiler-Hammer, Inc.
Back Cover

Darwin \& Milner, Inc.
Davenporl Besler Corp
Davis \& Thompson Co
Davis Brake Beam Ca, Engineering Co..
Denison Engineering Co.,
Desanno, A. P., \& S
Despatch Oven Co. Divisian, Kuhlman
Electric Co.
Detroit-Leland Hotel
Detroif Rex Products Co
Detroit Tap \& Toal Co.
DeWitt Operated Hotels Co... In
Diamond Expansio
Diamond Toal Co.
Diebold Safe \& Lock Co
Dietert, Harry W., Co.
Disston, Henry, \& Sons. Inc.
Dadge Monufacturing Corp.
Dow Chemical Co., The
Downs Crane \& Hoist Co
Doyle, J. E., Co., The
Dravo Corp., Engineering Works, Div. 156
Dravo Corp., Machinery Div. 156
Dulien Steel Machinery Div. 186

Easton Car \& Conspruction Co.
Edisan, Thomas A.. Ine. Co., The
Egyptic Stop Nut Corp.
Electric Controller \& Mfg. Co.
Electric Furnace Co., The
Electric Starage Battery Co.
Electro Metallurgical Co.
Electroweld Steel Corp.
Eliolt Manufacturing Co.. The
Enterprise Galvanizing Co.
Equipment Steel Praducts Division of Union Asbestos \& Rubber Co.
Erdle Perforating Co., The
Erie Bolt \& Nut Co
Erie Forge Co.
Erie Foundry Co
Eina Machine Co.
Euclid Crone \& Haist Co.
Eureka Fire Brick Works
Eutectic Welding Alloys Ca.

Ex-Cell-O Carp. Co., The
Fafnir Bearing Co., The
Fairbanks, Morse 8
Fairfield Mfg. Co.
Fairfield Mfg. Co
Fanner Mfg. Co. Co., Lid
Forquhar, A. B., Co.
Farval Corp., The
Ferracule Máhine Co.
Fidelity Machine Co.
Finn, John, Metal Work
Finn, John, Metal Work
Firth-Starling Steel Co.
Firth-Starling Steel Co.
Fitchburg Grinding Machine Corp.
Firsimons Co., The
Fiori Pipe Co., The
Foole Bros. Gear \& Machine Corp
Foster, Frank B.
Foster, L. B., Co., Inc
Foxbora Co., The
Frasse, Peter A., \& Co., Inc.
Fuller Brush Co.
Galvanizers, Inc.
Galland-Henning Mfg. Co
Garrett, Gea. K
General Blower Co
General Eleclric Co.
General Excavator Co
General Steel Warehouse Co., Inc.
Geneser Tool Co.
Gishal! Machine Co
Globe Brick Co., The
Granite City Sieel Co
Grant Gear Works
Graver Tank \& Mfg. Co., Ine.
Graybar Electric Co
Greal Lakes Steel Corp.
Greenfield Jap \& Die Corp.
Greenlee Brothers \& Co.
Greenspon's, Jos., Son Pipe Corp. 186
Gregory, Thomas, Galvanizing Works
Gruendler Crusher \& Pulverizer Có,
Gulf Oil Corp.
Gulf Refining Co.
Hagan, Gearge J. Co
Hallden Machine Co.. The
Hanlon-Gregory Galvanizing C
Hanna Furnace Carp.
Hannifin Mfg. Co.
Harnischfeger Corp.
Harnisch H. M. Co., The
Herper, 11, 57
ng Perforaling Co.
Hays Corp , Ine
Heald Marhine Co
Helmerstaley
Hendrick Manufacturing Co. 177
Heppenstall Co.
Hevi-Duly Electric Co
Hill Acme Co., The
Hill James Mifg Co
Hills McCanna
Hindley Mfg Co
Hobart Bros. Co
Hamestead Valve Mfg. Co
Horsburgh \& Scall Co
Roughton. E. F., \& Co
Hubbard roundry
ubbard \& Co
Hubbard, M. D., Spring Co
Hyati Bearings Division, General Mators
Hyat Bearing
Hyde Park Foundry \& Machine Co
Hydraulic Machinery, Inc.
Hydraulic Press Mfg. Ca., The
Hydro-Arc Furnac
Hydropress, Inc.
Illinois Clay Products Co.
llinois Tool Works
Independent Engineering Co.
Independent Galvanizing Co.
Industrial Brownhoist Corp.
Ingersoll Sleel \& Dise Division, Borg-
Warner Corp.
134
Inland Sieel
International Nickel Co.. Inc.
International Screw Co.
International-Stacey Corp.
Iron \& Steel Producis, Ine.
Jackson Iron \& Steel Co., The
James, D. O.. Mfg. Co. The
Jessop Steel Co. Sons, Inc
Jessop. Wm., \& Sons
Jossop, Wmilile Corp.
Johnson Bronze Co
Johnson Gas Appliance Co.
Johnson Steel \& Wire Co., Ine.
Jones \& Lamson Machine Co.
Jones \& Laughlin Steel Corp.
Joslyn Co. of California
Joslyn Mfg. \& Supply $\mathbb{C o}$
Kaydon Engireering Corp., The
Kaydon Engireering Corp.s The)
(Continued on next page)

,

(Conlinued from preceding page)

Kearney 8 Trecker Corp.
Kemp, C. M., Mfg. Co.
Kester Solder Co.
Keystone Steal \& Wire Co.
Kidde, Walter, \& Co., Ine
King Fifth Wheel Co
86
Kinnear Mfg. Co.
186
Kirk \& Blum Mfg. Co.
Kold-Hold Manufacturing Co
Koppers Co.
Koven, L. O., \& Brother, Inc
Kropp Forge Co.
Ladish Drap Forge Co.
Lakeside Steel Improvement Co., The
Laminated Shim Co.
lamson \& Sessions Co., The15, 57
Lamson Corp.
Landis Machine Co.
Lang Machinery Co.
Laughlin, Thomas, Co., The
layne \& Bowler, Inc.
Lebanon Steal Foundry
leBlond, R. K., Machine Tool Co., The
Leeds \& Northrup Co.
Lea Spring Co., Inc.
Lehigh Structural Steel Co.
Lempco Products, Inc.
Lepel High Frequency Laboratories, Inc
Leschen, A., \& Sons Rope Co.
Levinson Steel Co., The
Levinson Steel Sales Co.
Lewin-Mathes Co.
Lewis Bolt \& Nut Co.
Lewis Foundry \& Machine Division of Blaw-Knox Ca .
Lewis Machine Co., The
Lincoln Elec1ric Co.. The
Linde Air Producls Co., The
Link-Belt Co
Link-Beli Co.
Logemann Bros. Co.
Loveioy Flexible Coupling Co
Luers, J. Milion
Mc
McKay Co., The
McKay Machine
Co.
McKay Machine Co.
McKee, Arihur G., Co.
McKenno Metals Co. M
MacDermid, Inc.
Mackintosh-Hemphill Co.
Mackintosh-Hemphill Co.
Macklin Co.
Macwhyte Co.
Magnaflux Corp.
Magnus Chemical Co,
Mahon, R. C., Co., The
Mahr Manufácturing Co
Mallory, P. R1, \& Co., In
Manheim Manufacturing \& Belting Co.
Manning, Maxwell \& Moore, Inc.
Markal Co.
Master Electric Co.. The
Mathews Conveyer Co.
Mathews, Jas. H., ${ }^{\&} \mathrm{Co}$
Mallison Machine Works
Modart Co., The
Meehanite Research Institute
Mercury Mfg. Co,
Meial \& Thermit Corporation
Michiana Products Corp.
Michigan Tool Co
Micromatic Hane Corp.
Midvale Co., The
Milwaukee Matal Spinning Co.
Minnesota Mining \& Míg. Co.
Mississippi Valley Equipment Co.
Missouri Rolling Mill Corp.
Molirup Steel Products Co.
Molybdenum Corporation of America
Monarch Machine Tool Co., The
Monareh Steel Co.
Morgan Canstruction Co.
Margan Engineering Co
Marrison Engineering Corp
Match \& Merryweather Machinery Co
Molor Products Corp.
N
National Acme Co.
National Bearing Metals Corp.
National Bronze \& Aluminum Foundry Co
National Carbon Co., Inc., Carbon Sales Division
National Fireproofing Corp.
National lead Co.
National Lock Washer Co
National Machinery Co., The
National Rall \& Foundry Co.
National Screw \& Mfg. Co
National Sieel Corp.
National Telephone Supply Co.
Nalional Tube Co
New Departure Division General Motors
New England Screw Co
New Jersey Zinc Co
Newport Rolling Mill Co., The
New York \& New Jersey Lubricant Co
Niagara Machine \& Toal Works

Niles Steel Products Div., Republic Steel ${ }^{\text {Page }}$ Corp.
Nitrallo A. H., Machine Co
186
Nitralloy Corp., The
Norton Co., The
Oakite Products, Inc.
Ohio Crankshaft Co
Ohio Eleetric Mfg. Co.
Ohio Knife Co., The
Ohio Lacamotive Crane Co.i. The 181
Ohio Seamless Tube Co.. The
Ohio Steel Foundry Co., The
Oliver Iron \& Steel Corp
O'Neil-Irwin Mfg. Co.
Osgood Co., The
Oster Mfg. Co., The

Page Steel \& Wira Division American Chain
\& Cable Co., Ine
Pangborn Corp. Chemical Co.
Park Chemical Co.
Parker-Kalon Corp.
Pawlucket Screw Co
Pennsylvania Flexible Metallie Tubing Co
Pennsylvania Flexible Matallie-Tubing
Pennsylvania Industrial Engineers
Pennsylvania Salı Mfg. Co
Penola Lubricanis
Perkins, B. F.: \& Son, Inc
Pheoladelphia Gear Works
Philadelphian Hotel
Phillips Screw Manufaciurers
Phoenix Mfg. Ca.
Pittsburgh Crushed sieel Co.
Pittsburgh Gear \& Machine Co-
Piltsburgh Lectromelt Furnace Corp.
Pittsburgh Ralls Division of Blaw-Knox Co
Plymouth Locomotive Works Division of
The Fate-Rool-Heath Co,
Pollock, William B., Co., The
Poole Foundry \& Machine Co.
Porter, H. K., Co., Inc.
Pressed Steal Car Co., Inc
Pressed Stee Tank Co.
Prestole Division, Detroit Harvester Co.
Progressive Welder Co,
Protected Steel Products Co.
Purdy, A. R., Co., Inc.
Racine Tool \& Machine Co
Ransohoff, N., Ine.
Ransome Machinery Co
Raymand Mfg. Ca., Division of Associaled Spring Corp
Reading Chain \& Block Corp
Reading Screw Co.
Ready-Power Co.
Reeves Steel \& Manufacturing Co.
Reliance Electric \& Engineering Co
Republic Steel Corp.
Revere Copper \& Brass, Ine. . Ine.
Rhoades, R. W. Melaline Co., Inc.
Richards, Arklay S., Co., Inc.
Riversidé Foundry \& Galvanizing Co
Roebling's, John A., Sons Co.
Rollway Bearing Co., Inc.
Roosevelt Hotel
Roper, George D., Corp
Ross Heater \& Mfg. Co., Inc
Ross Operating Valve Co.
R-S Products Corporation
Ruemelin Mfg . Co
Russell, Burdsall \& Ward Boit \& Nut Co. .. 57
Ryerson, Joseph T., \& Son, Inc.
Saginaw Malleable Iron Div. General Mo lors Corp
ulton Co.
Salem Engineering Co.
Samuel, Frank, \& Co., Inc
Sandvik Steel, Inc.
San Francisco Galvanizing Warks
Sanitary Iinning Co., The
Savage Tool Co
Scaife Co
Scherr, George,
Scovill MIg. Co.
Sellers, Wm., \& Ca., Inc.
Seneca Wire \& Mfg. Co., The
Seymour Mfg. Co., The
Shakeproof, In
Sheflield Corp., The
Shell Oil Co., Inc.
Shenango Furnace Co., The
Shenango-Penn Mold Co
Shepard Niles Crane \& Hoist Corp
Shuster, F. B.. Co., The
Silent Hoist Winch \& Crane Co
Simonds Gear \& Mfg. Co.
Simonds Sow \& Steel Co.
Sinclair Refining Co
SKF industries, Inc.
Smith, David, Steel Co., Inc.
Smith Oil \& Refining Co.
Smith Tool \& Engineering Co
Snyder, W. P.: \& Co., Inc.
Sonken-Galamba Corp.

South Bend Lathe Works
Southern Galvanizing Co
Southington Hardware Mfg. Co.
Spriesch Tool \& Manufacturing Co
Standard Galvanizing Co.
Standard Steel Works
Standard Tube Co.. The
Stanley Works, The Republic Sieel Corp
Steel Founder's Society of America
Steelweld Machinery Division, Cleveland
Crane \& Engineering Co. if the Cle.
Sterling Grinding Wh
land Quarries Co
Strong Steel Foundry Co.
Struthers Wells Corp.
Sturfevant, B. F., Co.
Sturtevant, P. A., Co.
Sun Oil Co.
Superior Steel Corp.
Surface Combustion Corp
Swindell-Dressler Corp.
Syntron Co.
Toylor-Wilson Mfg. Co.
Tennessee Coal, Iron \& Railroad Co.
Texas Co., The
Thamas Machine Migg. Co.
Thomas Steel Co., The
Tide Water Associated Oil Co
Timken Roller Bearing Co.
Timken Sleel \& Tube Division, The Timken
Roller Bearing Co.
Tinnerman Products, Inc.
Titanium Alloy Manufacturing Co.
Toledo Scale Co.
Toledo Stamping \& Mfg. Co.
Torringion Co., The
Towmator Co.
Trica Products Corp.
Triplex Screw Co., T
Truscan Steel Co.
Tubular Alloy Steel Corp
Turchan Follower Machine Co.
Turco Products Inc.
Udylite Corp., The
Union Carbide \& Carban Corp.
Union Drawn Steel Div., Republic Steel
United Chromium, Inc.
United Engineering \& Foundry Co.
United States Graphite Co
United States Rubber Co.
United States Sieel Corp., Subsidiaries
United States Steel Export Co.
United States Steel Supply Co.
Valley Mould \& Iron Corp
Vanadium Alloys Steel Co
Vanadium Corparation of America
Van Dorn Iron Works Co., The
Vaughn Machinery Co., The
Veeder-Root, Inc.
Vickers, Inc.
Waldron, John, Corp.
Walker-Turner Co., Inc
Ward Leonard Electric Co
Warner \& Swasey Co
Washburn Wire Co.
Watson-Stillman Co., The
Wean Engineering Co., The
Weatherhead Co., The
Webb Corporation, The
Weinman Pump \& Supply Co., The
Weirton Sieel Corp.
Welding Equipment \& Supply Co.
Wellman Bronze \& Aluminum Co.
Wellman Engineering Ca,
Westinghouse Electric \& Mfg. Co
Wesi Penn Machinery Co.
West Steel Casting Co.
Wheeling Steel Corporation
Whilcomb Lacomotive Co., The
Whitehead Stamping Co
Whitney Screw Corp
Whitney Screw Corp.
Wickwire Spencer Steel Co.
Wilcox, Criftenden \& Co., Inc
Williams, J. H., \& Co.
Wilson, Lee, Enginnering Co. Inside Back Cover
Wilson Welder and Metals Co., Inc.
Wisconsin Motor Corp.
Wolverine Tube Div., Calumet i Hecla
Consolidated Copper Co.
Wood, R. D., Co.
Worthington Pump \& Machinery Corp
Steel Co.
Wright Manufacturing Div., American Chain
Wyckoff Drawn Steel Co.
Yoder Co., The
Youngstown Alloy Casting Corp.
Youngstown Sheet \& Tube Co., The
Zeh \& Hahnemann Co.

[^13]

When alloy steel scrap is not classified, critical alloying metals are lost to the war effort

Where alloys are concerned it isn't enough to sweep up turnings, flashings and other scrap and start it oack to the steel mills.
When different grades of alloy scrap are flung together, or alloy and common scrap thrown on the same pile, the content of alloying metals, so critical n this alloy-steel war, is sunk without trace. The orecious alloys are lost as completely as if they were dumped into the sea.
To help feed hungry furnaces and make more fightng alloy steels, alloy scrap must be classified, right at the spot where it is produced. It is so critical that we cannot afford to waste a pound of it. One-half of this country's alloy-steel output depends on the availability, and therefore the proper classification, of alloy scrap.
When alloy scrap gets "lost" it remains lost, for the man-hours that would be needed to p.ck over and
check every shipment simply cannot be spared. And when hidden alloys contaminate steels made to meet certain physical specifications, entire heats may be ruined.

No one knows better than the steel-maker that painstaking classification of alloy scrap is no simple thing, takes patient organization. But it is a job worth doing, and one that can and must be done. There is no other way to make sure that every pound of critical alloying metals in the nation's scrap supply is tagged and made available to do its part in winning the war.

Our government has issued a classification list showing how alloy steel scrap should be segregated. If you haven't it, and would like to receive a copy, let us send you one. Write to Bethlehem Steel Company, Bethlehem, Pa.

REMEMBER THE

Probably the most disastrous example of obsolescence in history is the Maginot Line. It took 5 years to build, and cost $\$ 500,000,000$. But-Hitler circumvented it in a few weeks with modern equipment and methods . . . panzer divisions, air forces and fifth columnists.
We wonder how many "Maginot Lines" there are in American industry, today. How much machinery, busy now on war production, will become obsolete with the coming of peace? Like Hitler's panzers and air forces, new materials and processes even now in development will drastically reduce the utility value of present machines. Newer and more productive equipment employed by aggressive and ingenious competition will dominate the peacetime markets.
Since postwar planning is now both respectable and popular, we believe it will benefit American industry, individually and collectively, to start studying the future usefulness of present equipment. We say individually, because of competition within our borders. We say collectively, because many of the machines shipped abroad are far ahead of much domestic machinery in newness, usefulness and durability. If we are to match wits and goods with foreign competition after the war, and maintain our superior standards of living, we must have more productive machines to overcome lower labor costs in foreign plants.

WORK AND PROSPERITY for all can come only from productive services. Money transferred from one pocket to another...
such as a government bounty to the unemployed . . . creates nothing. We can look for "business as usual" after the war, only if we replace depreciated and obsolete methods and equipment with the most modern and productive tools which ingenuity can develop.
lets not have a maginot line in AMERICAN INDUSTRY!

Maginot Iine?

THE MONARCH MACHINE TOOL COMPANY. . SIDNEY. OHIO MONARCH LATHES

Cover the Turning Field

Cooking with Gas

A lot of things are happening these days, and as you have undoubtedly noticed the editors of Steel have pulled all stops in supplying you with a complete wartime information service on your desk the first of each week.

The young fry would say we're cooking with gas while the oldsters might lean over backwards a bit further and simply take time to advise us that Steel today is a more essential source of information than it ever has been over the many years they have read it.

Let's take a minute and catch up on some of the more outstanding regular issue performances and extra-curricular services developed in the past few months.

- Certainly one of the top jobs of any inclustrial publication in the country has been the continuous flow of information in Steel since early last year on the development and application of NE Alloy Steels. In addition to digesting and correlating all the available information from the American Iron \& Steel Institute, Streel on its own initiative began early last fall to publish a series of User Reports on these new alternate steels, detailing experience by consumers in the successful application on specific substitutions. This series is still continuing and you will find any changes or new developments in the list of NE Steels reported promptly in these pages.

All of this important information has now been compiled into a 72 -page NE STEEL HANDBOOK and NE STEEL SELECTOR which are now available at $\$ 1.00$ per set. A complete description and order coupon will be found this week on page 133.

- Or take Prioritics and the whole conglomeration of government regulations of which they are a part. Well over a year ago Steel's Washington editors and priorities staff in Cleveland developed the first special guide on Priorities, Allocations and Prices, published as a separate section. At the same time, as an extra service, Steel began furnishing at cost the many PD forms required in a hurry and unavailable from regular government sources. Something over a half million of these forms were furnished to industry last year when the need was greatest.

As a supplement to the Priority Guides, a special page in Steel each week reports all pertinent new orders, changes and revisions in old ones. Wrapped up as a package this complete priority service compares favorably with anything available in the country, and yet it is just a small part of Steel's whole job each week.

As part of the May 3 issue of Steel, a revised and up-to-date issue of the Priorities Guide will be published. Extra copies will be available, as in the past, to regular subscribers free of charge.

- Over a ten-week period this year the editors of Steel published under the feature Windows of Washington one of the most comprehensive and complete reports on postwar planning that has yet appeared in
print. The information was compiled by E. C. Kreutzberg, Editor of Steel, after literally dozens of interviews and contacts with the organizations involved. And in the same way he developed a review of Lend-Lease, a picture of present and postwar opportunities in Latin America, and concluding this week a report on the possibilities involved for materials and equipment manufacturers in food dehydration.

A complete 48-page reprint of Mr. Kreutzberg's report on Postwar Planning will shortly be available to regular subscribers free of charge upon request.
\# Heading southwest now for a complete tour of the aviation and shipbuilding industries is A. H. Allen, Detroit editor of Steel, and justly famous for his Mirrors of Motordom and Wing Tips columns. Last week you read his on-the-scenes report of the amazing new Douglas plant at Oklahoma City, and the previous week his report on Wright Field and the aircraft scheduling unit. Look for more exclusive and original material in future issues.

Beginning this week, under Mirrors of Motordom, don't fail to read the first of a series on the Postwar Automobile to run over the next four weeks.

- This week also, E. L. Shaner expands his interpretive analysis of the week's important news in the two-page feature, As the Editor Views the News. Reprints of these two pages are available at cost each week for further distribution among your employes or customers.
- Steen, is really three magazines in one-a news weekly, an engineering and operating paper-and a weekly market guide. Newswise a nation-wide staff brings you prompt, crisp reports that are channelled down your alley and are an aid in keeping you informed on how to best conduct your business under present conditions of wartime regulations. From a technical standpoint, the engineering articles in Steel probably give you the greatest roster of authoritative contributors of any publication in the country. From them have come the material which has later been compiled into Steel's famous set of Ordnance Production Handbooks, the handbook on How to Improve Your Welding, and Improved Forging Technique, all of which are now in use throughout the industry.
- But already the bottom of the page is crowding us, and we haven't even mentioned such things as the type of convention report published last week by Guy Hubbard on the ASTE at Milwaukee. We weren't able to get there, but certainly after reading Guy's story we had a better "feel" of the meetings and exhibits than if we had been there personally. If you missed it, find your April 5 issue and attend the meetings in print.

E We promise we won't blast you with this enthusiasm every week but it just snuck up on us all of a sudden what a swell job those two-dozen editors of oars are doing and we're sure you'll fully agree.

EXACT CONTROL

FOR SURE PERFORMANCE

THE bomber pilot's course is guided by precision instruments. Refractory manufacture, too, must be guided by precision control.
Years of experience in meeting practical problems in the open hearth and electric furnace have shown that refractories best suited for modern steel making cannot be made by rule of thumb methods. They must be designed to meet specific conditions met in the furnace, and they must be manufactured to design...for balanced chemical composition, positive physical characteristics, and uniformity of product. To insure the desired properties in the manufacture of products where extreme accuracy is essential, Basic Refractories developed and installed a plant built around precision equipment, operating automatically through-
out. Key to this equipment is the electric control board shown here.
It provides exact and automatic control of those final, critical stages of a process-proportioning and mixingwhich began with the manufacture of synthetic mineral compositions designed to perform specific work. Because these controls are mechanical and automatic, there is no possibility of deviation or error.
Ramix...Hearth Patch... 695 Plastic... Gunmix...are typical products of this plant. Their outstanding performance in severe service is familiar to most furnace men. No small part of their continued success is due to the fact that, combining the best of research and practical experience they are made by a process rigidly controlled to insure uniformity and dependable quality.

Meet the Mighty Grand-dad of a thousand Tools of War!

He's big! He's tough! He's a Blooming Roll! He breaks ingots down into slabs or blooms. He, and his companion Ohio Rolls, are withstanding the terrific abuse
of record-smashing steel production, and are rolling out the weapons that are rapidly rolling on to Rome, to Berlin, to Tokyo.
carbon steel rolls - alloy steel rolls - alloy iron rolls flintuff rolls - nickel Chill rolls - plain CHilled rolls MOLYBDENUM CHILL ROLLS - DENSO-IRON ROLLS - HOLL-O-CAST ROLLS

You can cold draw

N-AX
 High Tensile

it's the low alloy steel

with exceptional ductility

Cold forming a product ont of N-A.X HIGH TENSULE is no problem, becatise this low alloy, high ensile sted has the ductility necessaty for successful cold forming and drawing. It is athy a fematkable high ensile sted, in that it combines the cold fomming propertice of mild catbon sted with the valuable qualities of high tensile stecl

Of major importance to users of high tensile stect is the mosually high resistance $\mathrm{N} \cdot \mathrm{A}=\mathrm{X}$ HIGH TENSILE has to import and farighe, at normal as well as at sub-zero temperathers. This means that pats amb products made of N.A.X HIGH TENSILE hitse the stamina to stay on the job, regatlless of totigh usige.

Great Lakes engincers are available to show you how you cam use this really superior high tensile, low alloy sted to advantage. One will be glad co call at your phant, pive you the benclit of wide experience in the use of $N \cdot \Lambda \cdot X$ HIGH TENSILE in hundreds of exacting applications, No obligation. Write, telephone or wire for one todity.

My dear Mr. McNut :
Manpower of February 9 th emphasizes
The President's "Manpower" order not only more goods per worker
the vital necessity of greater more goods produced diction remains largely un-
the vital ne longer hours but also of increased prod en source
 recognized and untapped.

It is not generally known or real time require dials through the
It is at least 30% of the movement of mater er savings, when deed
operations consumicles. This shipping stages. and standing equip material
manufactured
manufacturing, plants proper an amazingly rapid have countless case
idling industry, have countless materials
We, of the materials handling of conveyors and other typical of warWe, of the effectiveness production per man hour. from our files: handling equipment in are the following production speed Shell-fuze production increased $2 / 2$ lion with

1. Shell-fuze production production quadrupled with
2. Aircraft accessories in personnel.
but 25% increase in person hours of messenger service
3. Approximately 300,000 man hours a plant.
saved annually in a large an a
Despite examples like these, which plant in ten employs an engine Despite examples one industrial pr reducing this 30% products of multiply a thousand is to find ways and man hours.
whose sole duty its consequent wasted a general survey by a Furthertime loss with few plants invite a gen te such waste. school in

Strangely enough, engineer to help not one technical sch as a qualified materials have been able to determine, the countryect.

We are bringing this situation to your direct in planning major subject.
recognized as one of the very
it may be recognized use.

Carl F. Diet
President

LAMSON CORPORATION • SYRACUSE, N. Y.

SHows NOW.

TO BREAK UP YOUR ALLOY-STEEL CHIPS AUTOMATICALEY FOR SAFETY AND PROFIT

CHIP CONTROL, The rapid machining of alloy steel requires effective means of controlling chips. Long, hot, tough chips endanger the operator, make chip disposal difficult, reduce the value of scrap (by $\$ 2.00$ a ton), cause cool breakage, and delay work.
The remedy is properly designed chip
breakers. Tools with chip breakers require a little more power but, where long chips are a problem, chip breakers are the answer.

Aside from the safety factor, chips that can be shovelled are readily marketable as scrap, command a higher sale price per ton, andmost important to the war effort-speed the recovery of scarce and critical alloys.

A chethek sighte methoul ut designine and griniling chup trfeakelts ais illustrated is decprthert mi pages 4 it ta
 Handbuek ion a mollwile Earilieer will ghadfy dizcuss chip cumpap so your planit

NO CONTROL without Chip Breaker. OR CHIP CONTROL with Chip Breaker

Fivith - Sterling

STEEL COMPANY

Concentric arrangement for back of board mounting.
 The new W.ard Leonard 4-inch Pressed Steel Rheostat offers the happy combination of a small sturdy power rheostat with a large number of steps and ample current carrying capacity. Like all Ward Leonard Pressed Steel Rheostats this model may be arranged for front of board, rear of board and multiple assembly mounting. Other types and sizes also available. Send for descriptive bulletins.

WARD LIOHARD
 RELAYS • RESISTORS • RHEOSTATS

Electric control (WL) devices since 1892.
WARD LEONARD ELECTRIC CO., 65 SOUTH ST.. MT. VERNON, NEW YORK

Better Steel for War Today... Better Steel for YouTomorrow

Even before war came, hands trained to the making of steel for peace had turned to the making of steel for war. Because war has made new demands of Continental steel . . . new requirements in specifications, new applications Continental is building a reserve of metallurgical information, production experience and technical improvements. These resources will be at your command when the war is over. Continental will be better equipped than ever to meet your needs in wire and steel sheets and to work with you on your plans for new products and new production. We invite your inquiries now.

CONTINENTAL STEEL CORPORATION KOKOMO, INDIANA

Plants af Canton, Kokomo and Indianapolis

When we

WE MEAN

No other device has the power and the long range of live spring action given you by a Kantlink Spring Washer.

There is no substitute as economical. The short-range multitoothed washers that bite in can not possibly equal Kantlink's range of spring power.

And the only claim for a fixed nut is that it can't turn on a bolt. Nuts rarely ever furn backward on bolts - they can't turn while there is any pressure at all on the threads of the nul and its bolt. But the other parts of almost every vibrating bolted construction wear loose inevitably, unless held fast by a strong compensating spring.

The parts wear loose because of bolt stretch and frictional wear of metal on metal, burrs and flares, and because of pulverizing of paint, scale and rust.

Kantlinks are being used with millions of nuts, bolts and screws of all types. They keep expanding to hold all parts fight despite inevitable wear.

In ordering spring washers - specify Kantlink, the big long range live spring washer.

Let us send you samples, - send details of your application. Test and compare them on the same job with any type of nut, or with any other type of washer. Kandlinks can't lose a real test. Try them for efficiency, economy and real safety. Write today for descriptive folder.

THE NATIONAL LOCK WASHER COMPANY NEWARK, N. J., U. S. A.

AMERCRAS WAR PRODCCTION DPPEENS ON TANKS LLIE THESE

Take a good look at these huge spherical tanks. Chances are your hose, your belts, your packings may come from them or from others just like them.

These are used for storing butadiene in the first of the synthetic plants operated by U. S. Rubber Company ... a second will soon be in production.
Having worked in the field of synthetic rubber since 1921 we know what uses each of the five basic types of
synthetic rubber is best suited for ... Neoprene, Buna-S, Buna-N, Butyl and Thiokol . . . U. S. Rubber uses all five types . . . knows which one to select for the performance required . . . and how to compound the specific synthetic rubber for the specific task. This experience is important to you.

Our booklet on synthetic rubber will give you much valuable information. Send for your copy.

Mechanical Goods Division
 UNITED STATES RUBBER COMPANY

rockefeller center - NEW york

LANDIS Chaser flccuracy Is Maintained Throughout Its Life by the Permanent throat

12 Features of the CHASER
 LANDI'S TANGENTIAL CHA

1-Permanent throat permits close ou shoulde
chasers angle range covers all machin-2-Rake materials
able materials condition permits maximum cutting speeds
-Simple grinding operation renews en-
tire cutting edge and leading feature
tire cutling with work lessens fric-
tion and minimizes thread distortion
G-Leading feature insures thread of
accurate lead of cutting strain
7-Lateral absorption of cutting breakage reduces vibration and threading feature 8-Right and lefthand equipment
reduces chaser equipmed all diameters
9-Standard chasers thr holders
with proper chaser
with proper chaser hold chasers lowers operating cost
11-Chaser length provides exceptionally
11-Chaser length low toot coost long life and dis.
12-Permanent cut

PERMANENT THROAT GIVES EQUAL DISTRIBUTIOK OF CUT

The throat is designed so as to enable the chasers to distribułe the cut equally.
The inifial accuracy of the chaser is maintained throughout its life. The cutting edge is renewed each time the chaser is reground, however no grinding is done on the throat or "lead" angle-it remains permanent and is not alfered in any way.

The Ginest Thread Cutting Tool in Industry

$$
\begin{aligned}
& \text { LAMDIS } \\
& \text { MACHIDE COMPARY } \\
& \text { W丹Yn૯SBORO, PA., U.S.A. }
\end{aligned}
$$

WGtaY जhycriodes spat PBODUGHON

War and necessity are one . . . and necessity is the "mother of invention."

When war demanded new conceptions of production, revolutionary applications of welding were "invented" to meet the need.

In no small measure McKAY Shielded-Arc Electrodes contribute to the total accomplishment.

For it is only natural that a manufacturing policy, which merited the title "the researched line," should likewise rise to meet the requirements of this emergency. Thus new analyses, new coatings, new sizes, new ranges of adaptability . . . plus ever growing volume every type of war industry.
THE MCKAY COMPANY - PITTSBURGH, PA. PACIFIC COAST SALES OFFICES: 125 S.SantaFe Ave., Los Angeles 100 Howard St., San Francisco

The McKay line includes regular carbon sfeel, stainless, and alloy steel electrodes for every welding purpose. Liferafure on request.

Among the first honored with the Navy "E", The McKay Company is proud of the broader award of the Army-Navy " E ".

MGTAY WHDDIN MAFGH:ODES AND INDUSTRIAL, MARINE AND AUTOMOTIVE CHAINS

The Trend is Toward SHENANGO-PENN

 Centrifugal CastingMANY manufacturers are finding that centrifugal casting by Shenango-Penn offers an improved, economical process for producing vital war prod ucts. In the marine and aviation fields, parts formerly made by other methods, are now being produced centrifugally, with impressive savings in production time - the conservation of critical materials - and actual improvement in product performance.

Shenango-Penn has pioneered centrifugal cast-ing-can cast tubular bars or cylinders ranging from $2^{\prime \prime}$ to $26^{\prime \prime}$ O.D. and up to 26 ft . in length, that meet all Army, Navy and Air Corps requirements deliver long, uninterrupted service.

If you want more facts on the process and how it may help your production problems, write for new Bulletin No. 143 today.

SHENANGO-PENN MOLD COMPANY

412 West third street, dover, ohio Executive Offices: Pittoburgh, P q.

ALL BRONZES •
 MONEL METAL • ALLOY IRONS .

ORDNANCE DEPT."SPEC" AXS-736 REV 1

These are a few of the more important Government "Spec." finishes which we can furnish. For more complete list with descriptions send for "Spec." book.

3-67E | 3-162B 14080 14105B

14120 E-5e P-27-b-2 3-86A 52-P18 [Int] M-485b HOMB-ES-680a Tentative AXS-736 Rev 1 Tentative AN-TT-P-656 Amend 1 AN-TT-D-514 PXS-783 Rev 3 PXS-979 Rev 1 JQD-144A 196-131-59 3-163 3-165A M-485b Tentaive

AN-TT-E-501

When steel began to replace brass and other non-ferrous metals for ordnance parts, EGYPTIAN technicians were ready with a special finish expressly developed for steel that would give adequate protection with speed and economy.
Fully meets U.S. Gov't Specification AXS-736 Rev. 1.
You'll like this new member of the EGYPTIAN family. Use it on steel percussion primers, and on both exterior and interior of steel cartridge cases to retard corrosion and reaction between casing and propellant material.

A 30 minute bake at $350^{\circ} \mathrm{F}$ after dip or spray application does the trick.

Send for 1943 Edition of our U. S. Gov't
"Spec" Book S
THE EGYPTIAN LACQUER MANUFACTURING CO. Rockefeller Center

Trained and equipped to work and fight, our U. S. Navy Construction Battalion-"Sea Bees"-are crecting needed bases and facilities in the South Pacific today as fast as the terrain can be reasonably cleared of Japs. As often as not, before turning to jobs like the generator installation above, these versatile recruits from America's construction industry lend a hand with the "terrain clearing" themselves.
Wherever these work-wise veterans are working-hacking an airport out of New Guinea jungle, installing a generator to furnish light and power for beach installations in the Solomons, building roads and bartacks and bases the world around-they
use wire rope they know they can depend on to work and fight right along with them. Rope that has the right qualificationstype, size, construction-for the job on hand. That's why you'll find Roebling "Blue Center" Steel Wire Rope on the job today where you find tough going like this. For with the know-how gained in more than 100 years of wire-rope engineering, Roebling men build into "Blue Center" the extra value that helps it meet the most difficult conditions unflinchingly. As batcle-wise and work-wise as the "Sea Bees" themselves, "Blue Center" Rope is giving a fighting account of itself in thousands of installa-tions-on cranes and bull-dozers and shovels, on ships and hoists and drilling lines.

ARE YOUR ROPES WORKING... OR FIGHTING TO WORK?

[^14]constantly posted on the correct way of handling and using wire rope on the job. Copies of this tag are yours for the asking. Our nearest office will furnish you with as many as you need. Ask for Tag " A "
JOHN A. ROEBLING'S SONS COMPANY trenton, new jersey brancher and Worahouser in Principal Cifites

Could a plant with

IT is NO IDLE DREAM that after this war every plant must pay more attention to indoor air. In the miracles that America's industrial production is performing lies a lesson for any farseeing business executive.

Think of the countless new plants that have been completely air conditioned. Whether for 'plane engines or range finders, gas tanks or uniforms, Sturtevant Equipment has gone in, not for employees' comfort alone, but to turn out war goods faster, cheaper, more efficiently.

In aircraft engine factories, for example, plant weather is ideal for production, consistent for machining parts that must be the same as yesterday's and tomorrow's. As a result, absentecism as well as scrapage is held to a minimum. In the manufacture of ultra-precision range finders, air conditioning makes possible assembly and test adjustments within tolerances never realized before-a million $n /$, of an inch.

In weaving wool fibres into uniforms, air con. ditioning eliminates troublesome static sparks... maintains quality and weight that meet strict Government "specs". In making self-sealing gas tanks, air conditioning is on the job to carry off toxic solvents and eliminate the static sparks that might explode them.

And a thousand more products, each with a special reason why Sturtevant Air Conditioning went to work. Remember all of this modern plant space
will still be in the picture after the war. And any manufacturer who is going to compete without controlled indoor air will be at a decided disadvantage.

ENGINEERED AIR will make a difference...

Yes, in our post-war world, air will make the difference between profit and loss in many a plantcontrolled air, engineered to serve efficiently-in all phases of industrial air conditioning, heating, ventilating, drying, dust and fume control, pneumatic conveying, and mechanical draft. And with new war-won knowledge, backed by experience as the pioneer in air-handling, Sturtevant will make available to you engineered systems and equipment that "Put Air to Work" with utmost efficiency and economy.

B. F. STURTEVANT COMPANY

Hyde Park, Bostun, Mass.
Brauches in to Cities
B. F. Sturterant Company of Canada, Letl,, Galt, Toronto, Montreal

STURTEVANT - FOUNDER OF THE AIR HANDLING INDUSTRY

R CONDITIONING

dRYING AND HEATING

IN AMERICA'S

GREAT PRODUCTION PLANTS...

At Thompson Aircraft Products Company, batteries of Acme-Gridley Automatics are attaining a degree of accuracy never before pos-

Two and three times faster than they have ever been produced before, metal parts in great variety, machined with the utmost precision-those are the demands of a war production greater than any nation has ever met!

Acme-Gridley Automatics are turning out these parts, at speeds and feeds limited only by the capacity of tools to stand up under 24 -hour schedules.

These 4, 6 and 8 -spindle machines are quickly adapted to many classes of work, often as many as 20 operations on a single set-up. Large tooling area speeds setting up. Operation is convenient, output is uniform, costs are low.

And when industry goes to work on the growing backlog of peace-time needs, Acme-Gridleys will be ready to carry their full share of the load-at lower costs than ever before.

170 EAST $131^{\text {ST }}$ STREET - CLEVELAND, OHIO

Meet wartime conservation demands with Johns Manville lasulations

INSULATION FOR TEMPERATURES TO $1900^{\circ} \mathrm{F}$. J-M Superex Blocks have long been standard for this service. High heat resistance, low thermal conductivity. Sizes $3^{\prime \prime} \times 18^{\prime \prime}, 6^{\prime \prime} \times 36^{\prime \prime}$ and $12^{\prime \prime} \times 36^{\prime \prime}$; from $1^{\prime \prime}$ to $4^{\prime \prime}$ thick.

POWER PLANT INSULATIONS. J-M 85% Magnesia has been for many years the most widely used block and pipe insulation for temperatures to $600^{\circ} \mathrm{F}$. and, in combination with Superex, for higher temperatures. Maintains high insulating efficiency. Standard block sizes $3^{\prime \prime} \times 18^{\prime \prime}, 6^{\prime \prime} \times 36^{\prime \prime}$ and $12^{\prime \prime} \times 36^{\prime \prime}$; from $1^{\prime \prime}$ to $4^{\prime \prime}$ thick.

FURNACE INSULATION UP TO 2600° F. J-M Insulating Brick and Insulating Fire Brick are available in 7 types, with temperature limits ranging from 1600° F. to $2600^{\circ} \mathrm{F}$. All provide light weight, low conductivity.

FOR STEAM LINES UP TO 700° F. J-M Asbesto-Sponge Felted Pipe Insulation is recommended where maximum efficiency, high salvage and resistance to abuse are essential. For temperatures over 700°, used in combination with Superex. It is available in $3-\mathrm{ft}$. lengths, from 1^{11} to $3^{\prime \prime}$ thick, for standard pipe sizes.

Industrial Insulations

FOR DETAILS on these materials, and on the complete J-M Insulation line, write for Catalog Gl-6A. Johns-Manville, 22 East 40 th Street, New York, N. Y.

Y ES - "sabotage" is ever present even with every machine running smoothly - in step with the swift pace of wartime production - "Sabotage" in the form of excess wear in closely fitted parts - bearings - gear trains. And wear quickly shortens the production life of the machine tool - impairs accuracy - takes it out of action.
Such wear is most likely to occur under the peak loads of high production, unless the machine tool is equipped with self protection - adequate and automatic lubrication of all vital parts.

Automatic lubrication in Milwaukee Milling Machines is assured by pressure pumps in the column and knee of horizontal machines and in the sliding head of vertical machines. Only a minimum of attention is needcd to keep the machine at full lubricating efficiency.

KEARNEY\&TRECKER

C. 0 It IOMIIATHON

MILWAUKEE, WISCONSIN

The "General" says:

"LET'S "STEEL" OURSELVES FOR WINNING A VICTORY ASSURING LIBERTY AND JUSTICE FOR ALL"

and Here's HOW=

and Now for Immediate Warehouse Shipments

COLD FINISHED BARS COLD ROLLED STRIP STEEL COLD ROLLED SHIM STEEL

TEMPERED and ANNEALED
SPRING STEEL
ROUND EDGE FLAT WIRE
ROUND WIRES

DRILL ROD
STEEL BALLS
FEELER GAUGE

Fer GAUGE

SHEET STEEL
 GEIERRL STEEL WRREHOUSE [む.

 CHICAGO-1830 N. KOSTNER AVE.-BELMONT 4266

HEVI DUTY DIDCTBIC CONPANT

heat treating furnaces Henteenty electric exclusively MILWAUKEE, WISCONSIN

High Pressure Pumps

Southwark's line of High Pressure Triplex Pumps have been thoroughly rested in actual service. Sound design and substantial construction have earned for these pumps a reputation for long life, low maintenance and high overall efficiency.

For delivering large volumes of water in conjunction with hydraulic press installations, horizontal pumps are buile in 12 -, 15 -, and 18 -in. stroke lengths. A 3 -plunger arrangement provides a 60 degree overlap in discharge impulses and tends to smooth our pump pulsations.

The 12 -in. stroke pump discharge ranges from 23 gpm at $7,500 \mathrm{lb}$ per sq in. to 170 gpm at $1,000 \mathrm{lb}$ per sq in.; that

of the $18-\mathrm{in}$. stroke unit from 88 gpm at $7,500 \mathrm{lb}$ per sq in. to 685 gpm at $1,000 \mathrm{lb}$ per sq in. Other capacities and corresponding pressures are available.
Where a smaller capacity pump is required, the vertical pump-illustrated-is offered. Their capacities range from 2 to 100 gpm at pressures from 15,000 to $1,000 \mathrm{lb}$ per sq in. respectively.
Write for Bulletin P-106 which contains a complete description of these pumps with tables showing dimen. sions, capacities and power requirements.

Baldwin Southwark Division, The Baldwin Locomotive Works, Philadelphia; Pacific Coast Representative, The Pelton Warer Wheel Co., San Francisco.

Division THE EALDWIN LOCOMOTIVE WORKS, Philadelphia, Pa.

Enlaryed reproduction free on request

Wire that's full of 'Fire'

A while ago billions of feet of W issco wire a year were striving only to make life better. Now, fighting mad, the Wissco wire that streams through our blast furnaces, open hearths and seven mills is contributing its efficiency to

IF'ar planer	Army truckis	Submarines
Insitruments	Jeeps	Torpedoes
Parachuler	Scout caris	Machine guns
Trainers	Deritroyers	Automatics
Tanks	Cruisers	Gun carriages

If YOU have a war need that Wissco guality wire can help to meet, rush your specifications and priority rating to us. Here at wire headguarters you'll find everything in wire: high and low carbon wire, round and flat wire, wire for springs, for wire rope, for use in scores of industries, in a variety of sizes, tempers, grades and finishes. Wickwire Spencer Steel Company, 500 Fifth Avenue, New York; Buffalo, Chicago, Detroit, Philadelphia, San Francisco, Worcester.

CONTINUOUS RESEARCH during 122 years of wire manufacture has enabled W issco to help its customers find answers to all sorts of wire applications.

SEND YOUR WIRE QUESTIONS TO WICKWIRE SPENCER

WISSCO WIRE BY WICKWIRE SPENCER

 wissco
 RRODUCTS

This huge 4,500-ton Birdsboro Hydraulic Press is one of the biggest pieces of equipment at Republic Aviation Corporation. But, despite its gigantic size and power, it responds to feminine hands just as readily as a sewing machine.

Thus, through Birdsboro's skill in press design and press making, another vital war plant is
helped to carry on in spite of current shortage of the manpower so urgently needed to meet the requirements of war-pressed industry.

If you have a press problem, it will pay you to consult Birdsboro. Our engineers will be glad to work with yours, right down the line-from plamning to designing to completion.

BIRDSBORO STEEL FOUNDRY \& MACHINE COMPANY, BIRDSBORO, PENNSYLVANIA

U. S. Army Signal Corps Photo

HERE'S SOMETHING TO HELP YOU

HANDBOOK OF SPECIAL STEELS

Newly revised and reprinted-a comprehensive book on the properties, uses, and best methods of handling, treament, etc. of tool., stainless and other alloy steels. Plenty of tables to facilitate quick reference and selection. 128 pases, pocket-sized, latest data.

ELEMENTARY DISCUSSIONS: TOOL AND STAINLESS STEELS

Informative booklets giving clear. detailed dara on the various types of sool and stainless steels, their propcrices and handling. Excellent for orwining courses in metals and metalworking

THE lack of information can throw a pretty effective smokescreen around jobs on the production lines. After all, it's about the same as on the firing line-you can't hit them if you can't see them.
Your plant is probably no exception to the general run of war producers. All have a steady job on their hands of training a stream of new men and apprentices in specialized machine operations or other fabricating procedures. Where the needed information concerns alloy steels, you'll find invaluable the publications listed in the panel to the left.
They're primarily for production men. For engineers and designers, complete and certified technical
data on the various types of stainless and tool steels is available in Allegheny Ludlum "Blue Sheets." - Write. for the help you need. ADDRESS DEPT. S-3

Allegheny Ludlum
STEEL CORPORATION
BRACKENRIDGE. PENNSYLVANIA

TAKE (1) All your dull or worn taps
(2) "Detroit" Tap reconditioning wall chart, as illustrated
(3) "Detroit" Tap Reconditioner

Then grind taps on the Reconditioner according to instructions on the wall chart and put them back to work - as good as new.
If you don't have a copy of this wall chart, write for one today on your company letterhead. Ask for Chart No. RTC.

DETROIT TAP \& TOOL CO.

8432 BUTLER STREET, DETROIT, MICHIGAN, U.S. A.

New, Quick Change-over

OF TIMING CONTROL

KEEPS RESISTANCE WELDERS IN ACTION!

With the new Westinghouse Electronic Weld Timer you can change complete timing panel for any of 18 different resistance weld operations -in less than three minutes!

The entire timing panel, for example, is released by a single thumb screw. It has an exclusive swing-out design, with special "hingelesslinge" and snap-hook chains for easy removal and replacement. All connections to the main trunsformer panel are made by plug and receptacle. No specinl wiring is needed.

Cabinet for all controls is standard, but timing panels are available in 18 NEMA types as either: Automatic Weld Timers - to control timing weld current and electrode operation where synchronous control is not required.
or Sequenco Timers - to control only sequence of electrode operntion where duration of weld current is adjusted by Synchronous Control.

Today's welding production calls for action. Write for Bulletin 3079. It tells you how to increase the adaptability of your resistance welders. Westinghouse Electric \& Manufacturing Co., East Pittsburgh, Pennsylvania, Department 7-N.

J-21190

PLUG-IN TYPE RELAYSreplaced in 10 seconds!
A typical example of how the new Westinghouse design speeds maintenance is the special type of plug-in relays. All wiring work is eliminated. Just pull out the old relay, insert a new one-and you're ready to go! Color coded relay base and sockets make identification quick and positive.

NO PREVIOUS WAR EVER SAW A ROAD-BUILDING

JOB LIKE THE NEW ALCAN HIGHWAY

 nor the modern Preformed wire ropeTHAT HELPED BREAK ALL RECORDS

Short cut to Japan-this 1,681 -mile, 30 -foot wide military artery for troop transport and supplies - a colossal task, bridging and crossing 200 streams, was completed in advance of schedule.

And every foot of the way, helping to accomplish the impossible, Preformed Wire Rope was on the job-lifting and swinging the giant shovels and grab-buckets biting away the tons of rock and soil, manning the booms that swung bridge-timbers and plates into place, winching trucks out of gullies and gravel pits.

Preformed Wire Rope-with its greater flexibility and stamina, easier handling, longer life, fewer shutdowns for replacements, and cost reducing-proved through years of peacetime performance in industry that it was made to order for the toughest wartime jobs.

Ask your own wire rope manufacturer or supplier

- Especially designed and built with one purpose-to do the difficult task of super accurate grinding, so essential in our mass production program of today which calls for interchangeability of hundreds of vital parts.

The engineers worked for years to refine DoAll performance. Vibration is practically eliminated through rugged construction. Bearings are of larger area and hand scraped. Every part is so perfectly coordinated that you are assured of accuracy not only to size, but to flatness and parallelism.

GRINDING AT ITS BEST

For that final operation-a smooth, mirror-like finish-a finish that will pass every rigid inspection test - that will make a surface accurate to less than a ten thousandth of an inch, investigate the DoAll.

When the finish is so perfect that you can actually "wring" two flat surfaces together well, that's super grinding - and that's what the DoAll has to offer. Adaptable to either wet or dry grinding.

SAVAGE TOOL COMPANY Dept.s
 Savage, Minn.

DoAll Offices in 25 cities, each in charge of it trained sales engineer to qive you quick service on Surface Grinders. Gake Blocks, DoAll Contour Machines, DoAll Band Saws and Files.

DOAII CONTOUR MACHINES

DoAll BAND SAWS
DOAII GAGE BIOCKS

A Ramming Mat ure of Washirggton Magnesite

BASIC OPEN-HEARTH \& ELECTRIC STEEL FURNACE BOTTOMS

The widespread introduction of H-W Magnamix into steel plant practice was of necessity delayed for more than wo years pending the completion of long range phass for increasing the production of domestic magnesite. During the interal the promise shown by chemical and physical tests in the course of haboratory development has been confirmed in actual service, first in basic dectric sted furbace hotoms and, more recently, in the bottoms of basic openhearth steel furmaces. The same degree of confidence may be placed in H.W Magomix as in the many other Harbison-Walker products which are so well established throughour the steel industry.

COMPOSITION

H.W Magmamix comatus apposimately no percent of magnesia, laracly in the stable crystalline form periclans, which accounts for its hish refratotoriness. It is installed as received ane the addition of water. The high manomesia content is not diluted by the addition of harmace stag.

QUALITY

Laborafory coment and comsant supervision of manutacture insure uniform quality and meallent working propertics.

PREPARATION

H.W Maxnamin requirer only the addenn wi tive to sic pints of water per 100 pounds to bring it whe cominteng wh datur foundey mulding sand which is ideal for ramming purposes-

STRENGTH

Furnace thathms of rammod H.W Maxnamix aiter Jriong bave a deasite of 165 so 170 mumbly fre cubic limes, atrushing strengh of wer 1501 mounds per square inch, and a mishluhn onf rupture oi ower 150 mound ger square inch.

ECONOMY

H. IV Maxhamix hrarths are rapidts inatalled with common lebur. Complere oven heerth

 the crimplobion of a furnsce nexi and paterd ximulannculd with the constroction of parax

 intu plair in surventre layer
H.W Masnamix is shipped dry in sacks of 100 pounds each. Shipments are made in full carlosds or in mixed carlonds with H-W Magnesite, H.W Chrome, H-W Improved Meralkase Magnesite, Magnex, Chromex of Forsterite brick.
des mank

HAREISON-WALKER REFRAGTORIES COMPANY enclacketuories

"Now... if I was down there in Washingtom ..."

That's Joe talking. Every night when be stops in for bis coffee and sinkers be bas plenty to tell the boys about how this war should be run. Maybe be's right and maybe be isn't.
The important thing is that be can say what he thinks-out loud. Right in front of Tom Burke, the cop. He couldn't do that in Germany or Japan or Italy . . . or in any of the nations that have been "liberated" by the New Order.
But Joe is an American.

And because Joe is an American, he has more privileges-and more opportunities-than can be found anywhere clse in the world.
If he doesn't want to work for somebody else, he can operate a business of his own-anywhere. Joe is a free agent. His future is under his hat. Like millions of other Americans on the way up,

Joe can cash in on a way of life that has brought America the highest standards of living in the worldby a big margin.
It is a typically American way of life-based on American ingenuity, ambition, desire to get ahead. It gives every person a chance.
That is why today, after a comparatively short time, teamwork and cooperation in American industry and American agriculture are performing miracles of production that would be impossible in a country weakened by years of regimentation and dictatorship.
That is why the steel industry-in which Republic holds a leading position-has been able to "come through" with the steels and steel products for our Nation's gigantic armament and shiphuilding programs. In 1942 Republic operated at 99.5% of capacity for the entire year. And the nearly 70,000 Republic men and women supporting
our fighting forces* beat the 1941 record by 479,000 tons.
That, too, is why Republic chemists, metallurgists and engineers are constantly searching for-and finding-new and improved ways of making finer steels.
And that is why you can look with faith to the future-when victory will insure our free way of lifewhen you and we can return to the job we want to do most-produce peacetime products to make America a better, happier, safer place in which to live.
Until then, we have a big job to do. LET'S DO IT WELL and get it finished in a hurry. And let's guard faithfully our American way of life!
-Over 13,000 Republic men are nou' in seniform.

REPUBLIC STEEL CORPORATION

General Offices: Claveland, Ohio Ferger Manufarturing Division Culvert Division Nileq Stecel Producte Divirion. Stceland Tubea Division Union Drawn Steel Divinion - Truacon Steel Company

SHEETS AND PLATES

Ry for victory Gritip
 SBRIP
 MDRE 5 5idp

Ninety million tons of steel in 1943. That's what the doctor ordered to hasten the Axis demise. But to produce 90 million tons the mills must have 45 million tons of scrap metal. Regular sources of supply account for only half that amount. The remaining tonnage must come from scrap metal now lying around factories, garages, homes, farms.

How quickly we terminate this war depends on our ability to outproduce our enemies. And, according to no less an authority than Donald M. Nelson, "Nothing is more important to war production than scrap." Any relaxation in salvaging scrap would sabotage our entire war effort. Do your part in filling the victory prescription.

There, deep below the surface, immersed in a constant bath of corrosive sea water, lay the steel pipe of a water supply line. That pipe, HOT-DIP GALVANIZED before it was laid in 1902, is still in good condition after 40 years of uninterrupted service! HOT-DIP GALVANIZING gave it the thickest possible coating of prorecrive zinc, and saved the taxpayers
large sums of money in maintenance and replacement expense. There are other methods of galvanizing, but only HOT-DIP GALVANIZING provides a thick zinc coating fused inseparably to the metal beneath-the most economic rust protection known to modern science. American Hot Dip Galvanizers Association, Inc., First National Bank Bldg., Pittsburgh, Pa.
"If it carries this seal it's a job well done."

Buy from the qualified members listed below and KNOW you are getting a genuine HOT-DIP job.

CALIFORNIA
los angeles galvanizing co.. huntington park EMSCO DERRICK E EOUIPMENT CO.. LOS ANGELES JOSLYN CO. OF CALIFORNIA, LOS ANGELES WESTERN GALVANIZING COMPANY, LOS ANGELES HU日BARD a CO., OAKLAND
JOHN FINN METAL WORKS. SAN FRANCISCO san francisco galvanizing works,

SAN FRANCISCO
CONNECTICUT
WILCOX, ERITTENDEN A COMPANY. INC., MIDDLETOWN

GEORGIA
atlantic steel co., atlanta
ILLINOIE
EQUIPMENT STEEL PRODUCTS DIVISION of Union asbestos and rubber co.. bLUE ISLAND
JOSLYN MFG. a SUPPLY CO., CHICAGO STANDARD GALVANIZING CO., CHICAGO
MAINE
the thomas laughlin co., portland

MARYLAND

SOUTHERN GALVANIZING COMPANY, BALTIMORE

MICHIGAN

RIVERSIDE FOUNDRY e GALVANIZING co.
kalamazoo
MINNESOTA
LEWIS BOLT a NUT CO., MINNEAPOLIS

MISSOURI

COLUMBIAN STEEL TANK CO.. KANSAS CITY MISSOURI ROLLING MILL CORP., ST. LOUIS

NEW JERSEY
DIAMOND EXPANSION BOLT CO., INC., GARWOOD L. O. KOVEN E BROTHER, INC., JERSEY CITY INDEPENDENT GALVANIZING COMPANY, NEWARK

NEW YORK

ACME STEEL 8: MALLEABLE IRON WORKS, BUFFALO GAL VANIZINGFALO buffalo
THOMAS GREGORY GALVANIZING WORKS MASPETH, (N. Y. C.) atlantic stamping co., Rochester

OHIO

THE WITT CORNICE COMPANY, CINCINNATI THE FANNER MFG. CO., CLEVELAND THE NATIONAL TELEPHONE SUPPLY CO. Cleveland
THE SANITARY TINNING CO., GLEVELAND INTERNATIONAL-STACEY CORP., COLUMBUS COMMERCIAL METALS TREATING, INC., TOLEDO

OREGON
 galvanizers. fortland

PENNSYLVANIA

LEHIGH STRUCTURAL STEEL CO., ALI.ENTOWN AMERICAN TINNING \& GALVANIZING CO., ERIE

PENN GALVANIZING CO.. PHILADELPHIA hanlon-gregory galvanizing co.. pittsburgh OLIVERIRON E STEEL CORPORATION, PITTSEURGM

RHODE ISLAND

JAMES HILL MFG. CO., PROVIDENCE

WASHINGTON

ISAACSON IRON WORKS, SEATTLE
WISCONSIN
acme galvanizing. inc.. milwaukee

Brazing the LEPEL way is simple and sure even for inexperienced operators because the heating cycle is automatically controlled. Heating coils for various tool sizes and shapes are instantly interchangeable.

ing for brazing tungsten carbide cutting tips. For this simple modern method removes all uncertainty from the brazing operation. With the heating cycle automatically controlled, it assures uniform brazing, and uniformly sure bond between tip and shank, every time. It eliminates losses due to overheating ... cuts brazing time . . . conserves precious machine hours and critical materials ... and permits quick removal of worn tips without injury to tip or shank. And it is equally efficient for any type of brazing alloy.

A simple request will bring you complete information on LEPEL High Frequency Induction brazing ... as well as on the adaptability of compact and economical LEPEL units for Hardening, Annealing, Soldering and Melting. Write or wire today.

LEPEL High Frequency Induction Units are extremely compact, easily movable on casters, and relatively inexpensive. Operated manually, or, fully automatic. All ather operations such as hardening, melting, soldering, etc. are performed by the same unit. Available in models for most industrial applications.

39 West GOth Street, New York. N. Y.

Here's another 10 seconds the Axis won't get!

You don't stop or slow down the machine to change tools with Apex Quick Change Drill Chucks. And a few scconds saved repeatedly, give you extra productive man hours per week per machine.

Green hands catch on quick to these simple, rugged chucks. A flip of the wrist changes drills, taps, reamers, counterbores, etc.-on drill presses, radials, lathes, hand screws, electric and air tools. Plunger design prevents dirt from clogging hole. Ball nose plungers guaranteed not to fall out during life of chuck. Morse taper shanks are standard; others to your specifications. Write for the complete catalog of Apex production tools, No. 14.

[^15]

Photo U. S. Army Signal Cor

 of the Steel Castings Industry to the war effortTHE ARMY'S newest and best tanks are by weight 60% cast steel. Casting the armor for tanks - a new process - substantially reduces the cost compared with former methods.

The properties of Steel Castings that make these better tanks possible, and deliver them
in less time, are the same properties that will permit you to build a better, more efficient and more economical product.

For information, consult your own steel foundry, or write to Steel Founders' Society of America, 920 Midland Bldg., Cleveland, Ohio.
 equipment has been the outstanding quality line, never built down to meet a price but always maintained at a high quality level.

Hansen quality means more than just a talking point, it means advanced engineering, hair line accuracy, skilled craftsmanship and the finest materials obtainable. Hansen superiority is brought out and demonstrated in greater performance, speed, ease of operation. extremely low maintenance cost and longer life. Thousands of large and small industrial plants throughout the world are completely Hansen equipped.
Hansen-a name which means the finest in modern air line equipment that more than meets the demands of today's production and tomorrow's competition. Send for free catalog.

HOSE CLAMPS • AIR HOSE COUPLINGS HOSE CLAMP SOCKETS • HOSE CLAMP PLUGS AIR LIQUID SPRAY GUNS • ENGINE CLEANERS air blow guns - sand blast cleahers

Hansen mfe.co

 industrial Air fine equipmen ITA6 EAST 27TN STREET
"Be sure

twist drill points are

ground accurately!"

says A. J. SNYDER, Works Manager MORSE TWIST DRILL \& MACHINE CO.
New Bedford, Mass.

OBTAINING MAXIMUM EFFICIENCY from twist drills is possible only when points are ground correctly. In modern drilling practice, drilling different grades of materials often requires a modification of the commercial 118° drill point. For example, hard materials require a blunter point than do soft materials. (See chart below.)

사넨

GFOR A DRILL to perform satisfactorily, the cutting edqees should have a proper and uniform angle with the longltudinal axis of the drill. Also, the cutting edges should be of exactly equal lendth, with the proper lipecearance or contour of the surface back of the cutting edscs. This clearance must be the same on each llp. When cutting llps are not uniform, holes will he overalze and the drlll will wear on the margin of one cutting lip.

${ }^{4}$ THE PORM of a drill point exerts a powerful influence upon the rate of production, accuracy of drilled holea and the number of holes which can be drilled between successive grindings. Drill grinding machines, located in tool rooms throughout the plant, are steps toward geteing the correct point on drills, as it is dificuit to prind a polint hy hand that will give the dealred L reaulte without too much loss of time."

The correct cutting oil is as important to proper drilling operations as the correct grinding of the drill points. That's why Shell has developed a control technique that "balances" the oil to the machine, the application and the tool. Call in the Shell man now for details.

WIZARD OF WEIGHING-Dr. Halvor O. Hem, our Chief Connulting Engineer, ia dean of the 65-man Toledo Scale rescarch an enginecring group. Personally reaponnible for many far-renching developmenta in weiphing, teating force-mensuring. Norweglan-born; a forlhright U.S. citizen for $\mathbf{4 0}$ yenra; a Toledo man for 28 ofthen

RESEARCH IS TIPPING THE scales OF WAR and WILL SET THE STYLE OF A PERMANENT PEACE

Buttressing our far-flung fronts stand the services of Supply. Behind Supply roars Production-massproduction. Guiding Production is Enginecring, converter of ideas into things-fighting things.

Fountain-head of Engineering is Research-"the science of making changes in a scientific way."* Research in its silent scientific way seeks ont the solution to the Front Line's constant cry, "Give us more -and better."

To us War Research has meant: Wind-tunnels that dictate the shapes of super fighters and bombers; Engine-testers that telegraph the pulse, respiration and metabolic rate of the plane'sengines; helping the engineer to better their fighting fitness; Propeller-balancers that speak for higher speeds and safer handling in the air;
Electronic explosives-batch controls that robot the compounding of ammunition at war-tempo speed and
to gnat's-eycbrow accuracy.
These, and dozens of other warborn weighing, testing and forcemeasuring devices, are war machines in which Toledo Research plays its part.

Research the Change-maker is tipping the Scales of War; and will set the style of the Peace to follow. For Research the War-winner will also be the Job-maker in the Peace that must, by right and might, be ours tomorrow.

TOLEDO SCALE COMPANY
Toledo, Ohio
Canadian Toledo Scale Co., Limited, Toronto, Ont.

[^16]

TRANSFER BRIDGES SIMPLIFY ENGINE HANDLING

Twelve-cylinder motors for fire engines built by The Seagrave Corporation, Columbus, Ohio, are easily moved from any point in one bay to any point in an adjacent bay in their machine shop, by means of Cleveland Tramrail transfer bridges. Because of a column of posts separating the bays it is impossible to make use of cranes spanning the entire width of the two bays.

The bridges interlock with short stationary rails, permitting the engines to be taken from one to the other without any intermediate handling. The carriers can also be transferred to the overhead Cleveland Tramrail rail system which provides handling coverage for nearly the entire factory. Thus engines can be delivered directly from the transfer bridges to all parts of the large shop.

The transfer bridges shown are of the hand-propelled two-runway type. Other bridges also are built for three, four and more runways either hand-propelled or electrically driven.

Cleveland Tramrail Division
the Cleveland Crane \& Engineeping Co,
1125 EAST $283 \pi 0$ St.
Wiexurte. Ohio.

Transfer bridges are cranes exeept one or both ends are provided with an interlock. Cariers cannol be passed through an interlock until the bridge is aligned with another bridge or overhead rail and locked into posillion by the manually-operated throw-out (A). Thls causes the safely forks (B and C) Io ralse automatically and permil free traval. The mechanism prevents all possibility of a carrier running off an open end. Figure 1 shows a bridge in line with a connecting rall, with safely forks down! before throw-out has been operated. Figure 2 shows forks raised, after throw-oul has been opetated.

CET THIS BOOK!
BOOXLET No. 2008. Packed with valuable information. Profusely illuatrated. Write for free copy.

Chat it Takes for wor-time

heat treating!

Tougher heat-treating standards demanded for war products now call for pyrometer precision higher than many pre-war jobs required. Today, just "good enough" won't do!

That's why you'll find Foxboro Potentiometer Instruments in use throughout many of the leading war plants. Foxboro's complete line of pyrometers has what it takes for close, dependable control of war-production furnaces.

In all Foxboro Potentiometer Instruments... Recorders, Controllers and Indicators alike . . . exclusive Foxboro simplifications and refinements cut lost motion and wear to negligible minimums... furnish guaranteed accuracy of $1 / 4$ of 1% of scale, or better. In addition, these Foxboro features provide simpler, more exact setting by operators, due to use of larger, easy-reading scales.

Only four of Foxboro's Potentiometer Instruments are pictured here. Write for Bulletins covering the complete line. The Foxboro Co., 118 Neponset Ave., Foxboro, Mass., U. S. A. Branches in principal cities of U. S. and Canada.

Foxboro Potentiometer Recorder. Makes records of 1 to 8 temperature points. See Bulletin 190-6.

Potentiometer Indicator by Foxboro. Available with 1 to 18 builtin switch points. See Bulletin A-305.

Foxboro Portable Potentiometer Indicator. Industrial accuracy approaching laboratory standards. See Bulletin A-303.

Reg. U. S. Pat. Off.

packs Wallop into war machinery

PINIONS, PUMP SHAFTS, PIUNGERS ETC., are some of the hundreds of ap plications in which NITRIDED NITRALIOY has added greater life.

More than a mighty surface hardness makes Nitrided Nitralloy a force for victory. It's the power to put more en-durance-more staying power into steel machinery parts-that makes Nitrided Nitralloy such a formidable ally.

Providing the hardest steel surface known, Nitrided Nitralloy enables military equipment to outlast itself by five, ten - even twenty times. Nitrided Nitralloy works enormous wear-resistance into aircraft engine cylinders. What's more, it resists fatigue in crank shafts, withstands wearher and laughs at the toughest lubricating conditions. These vital properties help put off replacements, thus saving manpower, steel, production capacity and transportation. Specify Nitrided Nitralloy for
war machinery parts subject to wear, and help end the war sooner.

Nitralloy steels are available under government regulation where they will aid the war effort. Write us or any of the companies listed below, for detailed technical data.

OTHER EXCLUSIVE PROPERTIES

OF NITRIDED NITRALLOY
1 Extreme surface hardness (Vickers diamond brinell 900.1200)
2 Allains high hordness with a minimum of distortion.
3 Holds hardness and resists abrasion of high lemperafures ($750^{\circ} \mathrm{F}$).
4 Doesn'l soften by healing to $1200^{\circ} \mathrm{F}$.
5 Unequalled abrasive resistance In wear against Itself or other material, Including sand, grit, mud, etc., under cerlain conditions, in the absence of lubrication.

Scoring is tetarded in the case of NITRIDED NITRALLOY piston rings running against nitrided cylinder liners oven under foulty and limited lubrication.

Crank shafts of NITRIDED NITRALIOY, dismantled affer thousands of hours in service, ore within original folerances

THE
 NITRALLOY CORPORATION

230 PARK AVENUE • NEW YORK, N. Y.

Companies Lleensed by The Nitralloy Corporation
Allogheny Ludum Steel Corp
Walarvlist, N, Y Bothlehorn Sieel Co........ Bethlehem, Po Copperweld Slool Ca. Warren, O
Crucible Steel Co. of Ameriea
Firth-Sterling Steal Ca. MeKeasport Pa Republie Stecl Corporation Clevaland, O . The Timken Roller Bearing Co. Canton, O. Rotary Elertric Steel Co. Defroit, Mieh Yanadium-Allays Steal Co. Pilliburgh, Pa Allas Sieal bimited...... Wellend, Ontorio Operating \& Aceredited Nitriding Agents Comden Forge Co. Comden, N. J. Detroil, Mich. Engelhard \& Kenny. Narth Arlinglon, N.J The Lakeside Sleel Improvement Co. Undtera steel Tieating Clevaland, O

IInk-B=11 Co \qquad Philodophio, Pa.
\qquad New England Metallurgical Cors
illsburah Cammercial Heat Aaston, Mass Queen City 5leol Trealing Piltsburgh, Pa. Steal Trealing Co.
ex \& Eib Cincinnati, O. Wevler Steal Jreating Co.

Lansdate, Pa. N. A. Woodwarth Co. Ferndale, Mich Ontario Research Foundation Manufacturers of Mitralloy Steel Castings Lebanon Steal Foundry .- Lebanon, Pa Empie Steel Castings Ca. Reading, Pa Mil Costing Co. Millon, 0 Grede Foundries, Ine. Milwoukee, Wis. Warman Steal Casting Co.

Los Angeles, Cal.

Another Industry

Served by Mahon

Mahon skill in the fabricating of welded bases and frames has long been established throughout the machine tool industry. Recognition of that skill now extends into many other fields of manufacture.
The diesel engine base, pictured above, is but one of several such fittings in production for this important industry. Today the extensive facilities of Mahon also are being drafted for the fabrication of gun mounts, ship assemblies, frames and integral parts of electric motors and generators, supports and fittings for electric and hydraulic pumps, furnace casings - and a
great variety of other weldments for as many addifional industries.
War production has brought home to hundreds of manufacturers the superiority of welded steel plate as the ideal construction for bases, frames, casings and similar fittings. It is stronger, lighter, waterproof, requires less machining and finishing, makes a much better appearance-and, in most cases, can be produced faster and cheaper.
Send us your blueprints. Our engineers will advise you fairly and frankly whether welded steel plate construction is practical for YOUR product.

[^0]: Elmer Davis says one of the things that is wrong with America is that everybody who has done anything at all in his oun field is expected to be an authority on every subject under the sun.

[^1]: *Registered trademark, Westinghouse Electric B6 Mfg. Co., for HIgh PERmeability SILicon ateel.

[^2]: BUNDY "TRIPLE-PURPOSE" tubing-Double-walled, rolled from twa stripa, joints opposite, welded into a solid wall. Available in all Monel; all xteel; Monel in-aide-stect outside; Monel outside-steel inside. Sizes up to and including ${ }^{\text {s/n }}$ " 0 . I).

[^3]: BRITISH Foreign Minister Anthony Eden, right, stops for a chat with Worker J. P. Pond in an East coast Navy yard. Mr. Eden is visiting a number of American military and naval establishments. NEA photo

[^4]: Noto: Weekly and monthly indexes for 1942 and 1943 have been adjusted to offset the forced curtailment in automobile production and to more aecurately reflect expanding steel production

[^5]: trade mark of National Carbon Co. Inc.

[^6]: Froni a paper presented before the artillery committer of the Automotive Council for War Iroduction at the United States Naval Ordnamee plant operuted by Hudson Motor Car

[^7]: By WALTER BRIDGEMAN Industrial Wax Division
 S. C. Johnson \& Son Inc. Racine, Wis.

[^8]: "Add 0.25 for acld open-hearth; 0.50 elcetric. Cold-Finished Carbon Hars: Pitisburgh, Chi-Cold-Finished Carbon Hars: Pitisburgh, Chi-
 cago, Gary, Cleveland, Buffalo, base $20,000-$ cago, Gary, Cleveland, Bulfalo,
 $39.999 \mathrm{lbs} ., 2.65 \mathrm{c}$; Detrolt 2.70 .
 Cold-Findhed Allis Bars: Pittsburgh, Chicago, Gary, Cleveland, Buffalo, base 3.35 c ; Detrolt, del. 3.47c.
 Turned, Ground Shafting: Pittsburgh, Chicago, Gary, Cleveland, Buffalo, base (not including turning, grinding, pollshing extras) 2.65 c ; Detrolt 2.72c.

[^9]: ${ }^{\circ}$ Basing point cities against which warehouses equalized freight as of April 16,1941 , and which must now be used in calculating lowest combination prices.
 NOTE-All prices except cold-rolled strip and AISI hot-rolled hars fixed by Office of Price Aduinistration in amendment No. 10 to Revised Price Schedule No. 49.

 ## BASE QUANTITIES

 '-400 to 1999 pounds; ${ }^{2}-400$ to 14.999 pounds; '-any quantity;

 - 300 to 1999 pounds; ${ }^{3}$; 400 to 3999 pounds; -300 to 1999 pounds;
 - 400 to 39,999 pounds; "-under 2000 pounds: -under 4000 pounds;
 - 500 to 1499 prumds; "-one bundle to 39.999 pounds: ${ }^{12}$ - 150 to

[^10]: ACID AND ALKALI PROOF LININGS AND IMORTARS
 ACID PROOF CONSTRUCTION
 THE CEILCOTE COMPANY
 Consulting and Research Engineers
 750 ROCKEFELLER BLDG.
 CLEVELAND, OHIO

[^11]: SALES ENGINEER, WITH BROAD EXPErience and contacts in the steel industry. Should be familiar with rolling mills and other processing equipment used by steel industry; capable of determining applications for electro-mechanical control devices designed and built by this munufacturer. U. S. Citizen. Salary open. Location: New York. Sew Yitizen. Salary open. LocaSTEEL. 110 East 42 nd Street, New York City.

[^12]: WANTED: DRAFTSMEN aND DESIGNERS on steel mill machinery and also on ordnance. Location Pittsburgh district. Application to state full experience and acceptable salary. Men at present engaged in defense work need not apply. Address Box 873, STlGLL, Penton Bldg., Cleveland.

[^13]:

[^14]: You can help your ropes work better, longer by felieving them of the necessity of fighting against worn sheaves, lack of proper lubrication, incorrect installation procedure

 To help you do just that, Roebling has assembled a store of conservation data-summarized it on a handy 4×5 inch tag that you can put right onto your equipment. It's a simple, direct way of keeping your operating men

[^15]: Manufacturers of Safety Friction Tapping Chucks, Quick Change and Positive Drive Drill Chucks, Vertical Float Tapping Chucks, Parallel Floating Tool Holders, Power Bits for Phillips, Slotted Head and Clutch Head Screws, Hand Drivers for Phillips and Clutch Head Screws. Aircraft Universal Joints, Plain and Universal Joint Sockes Wrenches.

[^16]: - As defined by that great proponent of heseareh, C. F. Kettering.

