

Servel methods hold serap from aluminum cyl－ inder head production to minimum．Page 102

EDITORIAL STAFF

F．I．Sitaneit
Editor－in－Chinf
E．C．Kınutholes：
İditar

1．J．IIAR Managint Eifitor G．W．Bhensan． Engintering Ealitor Sifed llant Editor Machine Tool Editor

Aithun F．Maceonocime： Consributing Edifur 1）．S．Cainot Ari Falitur

Associate Edifors
G．H．Mavlove，W．（G．Gume，W．J．Campriefle Nes l＇urk
B．K．Putce，Jahn 11．Caioweti，I．F．Bhowvif Eiftshargh，16．L．Hartfong Chicakn，L．F．Ross Detrmil，A．Il．Alles W＇ashington，L．M．l،amy London，Viscesx Duliour

Assistant Edifors

J．C．Suldivan，Jay DeEubs，I．a Verne Nock 1）．13．Whaty J．M．К゙いurl

BUSINESS STAFF
（．）O．11AY：
Business Manaker
11．C．Jи：ラKE
Adrertising Manager
C．11．Bs．she：
Adiertising Serrice
Nofr Yirk，Fi，W．Kneutratirg，К．A．Zon，ivish Pitushurgh，S，11，JAsimin，J．C．Snel．

Chirasin，I．C．PI：Iotr
Clequlamd，1R．C．Jabive，1）．C．Kherbit Las Anpeles，F．J．Fillinatin

1．W．Zuni：
Circalation Manager

Main Office

Penton Ikilding，Clevelinnd，Olaien

Branch Offices

Published by Tons：Platon P＇embsum：Co．， Penton lbuilding．Cleseland．Ohao．Fi．1．．Su，vfin， l＇residem and ireatarer；（1．O．Hays，Vice

Member，Audit IBureau of Cireulations；Anenciated
 Ansociation．
P＇uhlished every Momilay，Sulmeription in the Linited States and motrecionons，Camada，Mevico， Culis，Contral and Eonlh America，one year So； two yearo $今 10 ;$ all uther contriew，one sear $\$ 12$. Single copies（current issues） 25 C ．
Entered as second class mazter at the motoffice at Cleveland，umder the Aet of $\mathrm{March} 3,18$ ag． Conyright ly 13 lig ，the lenton Puhlishing Car．

The Magazine of Metalworking and Metalproducing
A P R I L 12， 194Number15
NEWS
German Steel Production Cut by Bombings，Absenteeism 63
Shortage of Workers Threatens＇ 43 Ship Construction Goal 66
48 －Hour－Week Would Cost Steel Industry $\$ 100,000,000$ a Year． 67
Steel Ingot Statistics for March 68
Testimony on Steel Laxity Charges Heard by WPB Group 70
Simplification Eliminates Unnecessary Items 71
Operation Under CMP During Transition from PRP Clarified 77
Up－Rating of Order Relates Back To Original Date of Issuance 78
Priorities－Allocations－Prices 79
New York Iron Ores May Provide Additional Vanadium Supplies 89
Men of Industry 90
Obituaries 92
Canada＇s War Expansion Fourth Largest Among United Nations 93
Metalvorking Companies Honored for Production 94
Record Sales，Production Bring Steel Industry Lover Net 96
Uniform Price Adjustment Policy Adopted by Procurement Agencies 97
Road Builders Propose $\$ 15,000,000,000$ Construction Plan 98
Billions in Government－Owned Manufacturing Plants Pose Problem 98
FEATURES
Behind the Scenes with Steel 4
As the Editor Views the News 59
Windows of Washington 72
Mirrors of Motordom 80
Wing Tips 84
The Business Trend 99
Industrial Equipment 134
Helpful Literature 153
New Business 176
Construction and Enterprise 178
TECHNICAL
Practices at Servel Foundry Keep Aluminum Scrap Low 102
Using Lower Grades of Brass and Bronze Castings 106
Resistance Welders Speed Sheet Metal Fabrication 108
Straightening Heat－Treated Parts by Torch Spotting 112
Increased Payloads－Decreased Shipping Damage 114
Carbon－A Refractory Material 118
How To Arrange Working Shifts for Maximum Production 126
Subeontracting Increases Tule Mill Output 500 Per Cent 129
PRODUCTIONSteelworks Operations for Week69
MARKETS
Little Interruption as Industry Shifts to CMP 159
Market Prices and Composites 160
Index to Advertisers 185

ON THE MARCH to aid users of alloys...

a FIELD offices are maintained by International Nickel's Development and Research Division and by qualified distributors. Nickel field representatives are always on the go. These men offer practical advice about selection, fabrication and uses of metals. Assistance is likewise offered on problems arising from the diver- \qquad sion of Nickel to war industries.
Also available are many useful publications for the information of alloy users to serve as practical guides -for new employees and for men performing new operations.
For a check list of available published information or a quick personal answer to your specific questions about Nickel alloys, please address:

as the editor views the news

NEW VANTAGE POINT: For several years STEEL has been strengthening its Washington service to keep pace with the steadily increasing influence of governmental policies and activities upon industrial affairs. Our editorial representation in Washington has been expanded again and again and our editors from the home office have been visiting the nation's capital more frequently than ever before.

Notwithstanding these measures, STEEL now announces a further step in its program of assuring readers the best possible handling of Washington news and developments.

STEEL's editor, E. C. Kreutzberg, has moved to Washington.

From this vantage point, the editor will be better able to penetrate into the sources of pertinent information affecting American business. He will have more direct access to the underlying facts which are so necessary for the proper interpretation of governmental policies and activities.

These direct contacts with important sources will enhance STEEL's service to readers not only for the duration of the war but also through the difficult transitional period and into the exciting and oppor-tunity-laden postwar era.

STEEL is proud to be the first American industrial paper to accord recognition of the tremendous importance of Washington events by asking its editor to take up permanent residence in the nation's capital.

BOMBS OVER GERMANY: Americans who read of the now frequent day and night bombings of German industrial centers by Allied aircraft sometimes wonder how much these raids have slowed Nazi war production.

An answer is found in the quarterly report of J . A. Horton, STEEL's correspondent in Birmingham, England. According to information reaching Britain (p. 63), bombs have caused a drop in production of 20 per cent in Hamburg and in the Ruhr district and 18 per cent in Cologne. In general, coal output is down 15 per cent, blast furnace operations have been curtailed 15 per cent and steelworks production is off $121 / 2$ per cent:

These inroads upon output must present the German government with serious problems. A cut of 15 per cent in our production of pig iron and $12 \frac{1}{2}$ per cent in that of steel would play havoc with the American war program. In Germany, where the internal economy is strained far beyond anything we are experiencing, the effect must be extremely demoralizing, if not ultimately disastrous.

SUPER SALESMAN: In spite of his high position in steel and foreign trade circles, the late James A. Farrell, whose passing was reported in last week's issue of STEEL, never was pompous or "high-hat." Some readers of this page may recall an incident which occurred at a meeting of the American Institute of Steel Construction in Pinehurst, N. C., about 15 years ago, which revealed Mr. Farrell at his best.

During the meeting an argmment had arisen over the relations between the two large structural steel fabricators and the scores of small independents. The debate had been heated and some of the participants were disgruntled. The meeting adjourned with the issue still unsettled.

The train from Pinchurst was crowded. Mr. Farrell took pot luck with the other convention visitors and obtained an upper berth. Had he permitted it, his friends could have whispered to the president of the Canadian Pacific Railroad that the president of U. S. Steel was in an upper. That official, whose private car was attached to the train, doubtless would have been delighted to have asked Mr. Farrell to be his guest for the trip to New York.

But Mr. Farrell felt he had a job to do. Until 3 a. m . he sat on a steamer trunk in a smoke-filled washroom parrying one after another arguments of the independent fabricators. When it was over, every man in the room was convinced of Mr. Farrell's sincerity and "sold" on the logic of the position of U. S. Steel in the controversy. It was one of the best jobs of selling this writer has ever witnessed.

Mr. Farrell went far from a modest beginning. Would he have gone any farther if he had lived in
a period when security from "cradle to grave" had been assured by government?

TOMORROW'S AUTOS: Every read-

 er of STEEL has an important stake in the role of metals in the world of tomorrow. Nobody can even speculate upon this subject-much less plan to cope with its implications-without taking into account the part the great American automotive industry will play after the war ends.In this connection, some authorities have envisioned a drastic revolution in automotive design. They have predicted a tremendous increase in the use of plastics and light metals at the expense of the more orthodox ferrous and nonferrous materials.

No informed person will dismiss these potential threats lightly. Plastics, aluminum and magnesium are winning new laurels in the fierce competition of war. They will be in line for many new peacetime applications when the fighting is over.

But the postwar rivalry of materials will be decider not so much by the volume of supply as by the ordinary peacetime factors of price and compatibility with the technical requirements of mass production. Like water, competitive materials eventually find their natural level.

This is the underlying theme of a series of four informative articles on the postwar activities of the automotive industry by STEEL's Detroit editor, A. H. Allen, beginning (p. 81) in this issue. This realistic analysis of motordom's postwar policies rates the attention of all past, present and potential suppliers of the automotive industry.

CLASSROOM WAR WORK: Subcon-

tracting can be highly successful, or it can be a constant headache to all concerned. It is an inescapable fact that there is a wide variation in the efficiency and capabilities of companies available for subcontract work. The trick is to choose the competent ones and to co-ordinate their activities with those of the main contractor.

The ingenuity and resourcefulness required to accomplish this trick are illustrated by the experienee of the Summerill Tubing Co., Bridgeport, Pa. Through subcontracting, this company (p. 129) has increased output 500 per cent, put otherwise idle equipment into vital war production work, conserved material, reduced the rate of rejections and instituted a closer tolerance control.

One of the tube mill's subcontractors is Lehigh

University. The 900,000 -pound compression testing machine in the university's Fritz Laboratory is working on a 24 -hour 7 -day schedule on tube forming operations. The utilization of this and other laboratory equipment for war purposes is an excellent example of the ingenuity of American industry.

How pleased would be that pioneer steelmaker, John Fritz, if he could see how the laboratory which bears his name is contributing to the war effort!

FISCAL MISLEADERSHIP: Writing in

 NEWSWEEK, Ralph Robey observed recently that government agencies headed by men who have been successful in private enterprise are functioning fairby well, whereas those directed by political appointees are bogging down.This observation seems to have struck a responsive chord in the minds of many editorial writers. Numerous newspapers have commented upon it. They have weighed the records of men like Nelson, Land and Jeffers against those of McNutt, Morgenthau, Brown and others-always to the advantage of the first-named group.

As the editorial opinion of newspapers usually conforms quite closely to majority public opinion, this demonstration may be construed as an indicaton that the man-in-the-street is becoming aware of the shortcomings of governmental agencies directed by politically-minded men. It is not difficult to believe that the average citizen is on the point of becoming fed-up with attempts to run the war on a political basis.

The recent tax muddle is a case in point. The treasury officials have exercised such inept leadership in tax matters that the pay-as-you-go aspect has become a political football. Worse yet, in their inability to assert constructive fiscal leadership, the administration's treasury officials and congressional whips are obstinately obstructing progress in drafting a tax program.

Taxpayers were patient with the lamentable delay and inexcusable hocus pocus in tax legislation in 1942. They will not be as patient if the recent disgraceful stalemate drags on into mid-1943, or later. The administration must work fast if it is to prevent its fiscal policies from being thoroughly discredited.

EDITOR-1N-CHIEF

American planes today have what it takesl Speed - wider cruising range - greater firepower - maneuverability! All this-due to the ingenuity of aviation engineers and machine tool builders - working with the right kind of tools. That's where Wesson Carbide Cutting Tools are doing their partcutting tougher metals, faster, with greater precision, with minimum rejects." "" Pioneers in "tooling up" for aviation motor production, Wesson Company is constantly setting new standards of precision and speed in Carbide Cutting Tools.
The counsel of Wesson engineers - skilled in engineering and designing of cutting tools - is available to help solve present war production problems, or for post war planning.
WESSON CO., DETROIT, MICH. (Ferndale Station)

WHEN TME WAR IS OVEIE we'll enjoy higher standards of living here in America. Automobiles, airplanes, tractors and trucks - household appliances - every machine and tool that's made of metal - will be better, asfer, stronger.

Wesson Carbide Cutting Tools will help to make this possible by cutting tougher metals, with greater precision. And these things will cost less to buy - they'll operate more efficiently and more economically - they'll be safer and will last longer.

Inland Freighters Battle Ise Again Must Move Record Tonnages of Iron Ore

Since mid-March crews have been aboard ore carriers of the Inland Fleet-preparing for another long season and record tonnages of iron ore from the Upper Great Lakes Region.

Cargo holds have been cleaned, every piece of machinery overhauled, boilers repaired, pumps repacked, and the ships paintedeverything made ready for the first trips into ice-filled lake waters.

Usually the season of navigation opens early in April and closes in late November. Last year the first Inland ships left Indiana Harbor March 25 and the last cargo of ore arrived on Dec. 13. The Fleet made an all-time tonnage
record, and the L. E. Block, Inland flagship, established a new mileage record for such vessels by traveling 61,887 miles in 38 trips.
Iron ore shipments on the Great Lakes last year were twelve million tons higher than in 1941, and the tentative quota for this year is boosted to three million tons more than last. But if readiness of equipment and men is any indication, the Inland Fleet ean be depended upon to carry its share of this huge tonaage in the busy season ahead.

Seamen on the Inland ships, like the Inland steelmakers, are fully aware of their important part in producing the "fighting steel" needed for Victory.

By J. A. HORTON

British Correspondent, STEEL

BIRMINGHAM, ENG.

HAVING seized the initiative the United Nations are forging ahead with preparations for the promised assault on the enemy in occupied Europe this year. Industrial centers in the Ruhr are being pounded consistently night after night by Allied bombers, and while German authorities are loudly proclaiming increases in the Reich's steel production there is little doubt that this is far from the truth.

As far as cam be gathered from reports reaching Britain, there is a definite drop in output as much as 20 per cent in Hamburg and the Ruhr district; in general, coal production is down 15 per cent, irm 15 per ceat and steel 121% per cent. At Cologne production has dropped 18 per cent.

There is also absenteeism, particularly among imported foreign workers, much of the absenteeism being due to malnutrition.

Changes in organization in Germany itself indicate all is not well with the steel industry. The Rohstahigemeinschaft which has existed for many years and was a volutary association comprising various leading sales syndicates in the German steel industry has been dissolved, and has been replaced by an organization known as Eisen and Stahl-werks-Gemeinshaft in der Reichvereinigung Eisen, or ESGE, to which affiliatiom is compulsory.

Distribution Being Tightened

Most of the sales syndicates will remain in being although some of them are to be wound up and others amalgamated. Object is to tighten the distribution side of the industry; the allocation of orders to works for semifinished and finished steel will no longer be

Crane unloads two 1000 -pound acrial bombs from an American ship at Liverpool, Eng. They will be transferred to an American heavy bomber base "Somewhere in England" and from there to industrial targets in occupied Europe. NEA photo

German Steel Production Cut By Bombings, Absenteeism

French industry busy building Nazi armaments, but is handicapped by scarcity of raw materials. . . Britain follows American pattern in pruning back undelivered allocations
dictated by any financial considerations, the dominant factor being the fullest possible utilization of available capacity.
Here is fairly clear evidence that the destruction of steelworks and rolling mills has brought about, in part, this policy. It is understood that the new ESGE and RVE will foster the use of basic bessemer, or Thomas, steel instead of Siemens-Martin. Special price equalization arrangements will free ESCE and its sub-sales syndicates from
placing business exeept where the highest output cam be achieved. ESGE will play a big part in adjusting distribution and prodaction. It will also settle all questions relating to prices, regulation of imports and exports and many other matters.

The prominent steel magnate, Roechling, writiag recently in the magazine Vieriairesplan said war demand for special steels had grown so enormously that it has been necessary to manufacture them by processes previously re-

British aircraft factories have been established underground in abandoned quarries and are considered immane from bombings. Shown abote is a section in a subterranean workshop. Note the excellent lighting arrangements and the ventilation shafts rumning along the ceiling. The tea wagon, left, is kept close to refresh the women workers. NEA photo, passed by censors
garded as only suitable for lower-grade qualities. For the mass production of special steel, he clamed that the Thomas converter could be satisfactorily employed.

In the case of mild steels it was admittedly difficult to obtain the same cold treatment of properties as with Sie-mens-Martin steel, but even this problem had been solved. The possibilities of increasing steel production, using the available plant, therefore, has been increased enormously. Conquest of Lorraine, Luxembourg, Belgium, France, the Bohemia-Moravia Protectorate and Poland besides the other territories in German hands made it possible to produce iron and steel on a huge scale i: a sensible economic policy were adopted.

Capture Russia's Steel Industry

In addition there was the captured Russian steel industry which, where in so far as it had been destroved, was being rebuilt. Finally the reserves of iron and manganese ores which had fallen into German hands in Russia alleviated the problem of Germany's raw materials supplies considerably. Roechling claimed that Germany now not only possesses sufficient steelmaking capacity to conduct the war but also to safeguard the whole of European economy.

A recent report of the Inter-Allied Information Committee mentions the abundant evidence of the drastic and widespread interference by the German in-
vaders with the industries of Belgium German firms have established themselves there since the war on the Western front of Europe began, and many others have acquired a controlling interest in existing Belgian undertakings.

German companies invest a great deal of money in Belgian concerns and are enabled to insinuate their own representatives into the management. Among the industries thus encroached upon by Germany are the electrical, chemical, coal, steel, agricultural and mining machinery industries. The main purpose of this policy is to extend German economic control until Belgium is completely absorbed into the German system. Numerous methods are adopted, some obvious, some less so, but all designed to bring inclustry under the German thumb, and if any undertaking collapses under the strain, it is helped if the Germans think fit, with money contributed by other Belgian concerns. As an example of this encroachment comes news from Belgium that a subsidiary company of Krupps, the German armament concern, has been established in Brussels with a capital of 125 million francs. The board of the new undertaking is responsible to the parent commany at Essen.

In France, the iron and steel industry, engaged exclusively on German account, is busy and employment is higher than in pre-war years. Some difficulty appears to have been encountered in maintaining
adequate supplies of raw materials to the works. The coal situation gave rise to some comeera, but by restricting nonessential consumers greater tonnages have been diverted to the iron and steelworks. Under German orders, works have undergone various fundamental changes to improve the volume of finished products supplied to the Reichswehr and ancillary German industries. Many plant extensions are reported as well as extensive rationalization of operations.

These measures have been made possible by the "close collaboration" between German and French armament industries. Concentration has also formed a part of this adaption of indastry to German needs, and has led, it is clamed, to a marked increase in output.

Some idea of the prices prevailing in Europe today is very difficult to give but the Metal Bulletin, London, has drawn up a list in response to a request from a reader. Foundry No. 3 pig iron in Belgium costs 1000 franes per metric ton, and in Italy 950 to 960 lire. Belgian billets are marked at 1230 franes and Italian at 1590 lire.

According to a writer in a German journal, Italy is aiming at an ultimate output of $8,000,000$ to $9,000,000$ tons of steel per annum to carry out her responsibilities in the postwar years. It is stated that since 1935 her industrial output has increased by 40 to 50 per cent. The period 1929 to 1938 has seen coal output stepped up nearly 250 per cent, while iron and steel industry has been steadily expanded. In 1938, steel output was $2,300,000$ tons.

"Pruning" Undelivered Allocations

A system of "pruning" undelivered allocations has just been announced by the British Ministry of Supply. It follows American proposals on similar lines. In future no orders for the materials set out below may be accepted by makers during the last month of any period for delivery in that period without prior approval of the iron and steel control. This will be given only in exceptional circumstances and normally only after consultation with the goverument department concemed: Heary rolled steel, shell steel, re-rolled steel, bright steel bars, cold-rolled strip, sheets, tubes, forgings, drop forgings, steel castings, iron castings and alloy steel. An exception may be made for under one ton where the material is required for urgent repair work. Any permission previously given for orders to be carried forward by more than one period beyond that for which they were authorized is withdrawn except in the case of bolts, nuts, rivets, washers and screws.

In the case of all undelivered bal-
ances of orders amounting to 10 tons or over in the case of carbon steels, and 5 tons in the case of alloy steels which may still be undelivered at the end of the second quarter, the supplier must advise the contractor of the position at least a month before the end of that quarter. The customer will then request the department to extend the authorization if the order is required.

North African Ore

The promise of iron ore from North Africa has aroused considerable interest and anticipation in the British smelting industry, but it is believed that it may be some time before arrivals can be expected, particularly as North Africa is still the scene of hard fighting. Meanwhile works are being kept supplied with British iron ore, limestone, coal and coke in adequate quantities and output is almost entircly for war purposes.

A restricted export business is being done, although material urgently needed for merchant shipbuilding, warcraft construction, dock installations, essential mining, etc., in the Colonies and back areas of the fighting fronts is shipped.

The new order by the Iron and Steel Control described above has had the
immediate effect of slowing down business, a process to be expected each quarter. Hitherto there has been great congestion of orders which forced producers to turn down business for delivery during the current period. There is nothing to prevent consumers placing their contracts for April, May and June, and this they are already doing.
During the past few weeks it has been noticeable that re-rollers have found it necessary to draw on their reserves of semifinished steel in order to keep up with their demands for finished material, particularly light structural steel, of which a big tonnage is being used for war purposes. In some instances these stocks were fairly extensive but of course they will have to be built up again as a matter of policy. Much has been done to increase output but there is still a gap between supply and demand.

The tin plate industry is still working below capacity and some works have closed. Hopes are that the position may improve as the canning season approaches, but there is no doubt that the loss of British sources of tin supplies ia the East have affected the trade seriously, and the loss of markets abroad indicates another postwar problem.

Rumor Thyssen Will Be

Axis Peace Envoy

Swedish sources last week reported Fritz Thyssen, former German steel magnate who helped finance Adolph Hitler's rise to power and who later repudiated the Nazi leader, is "in custody" in Berlin and will be sent to carry a peace proposal to neutral and allied industrial leaders.

Thyssen, who fled Germany after the war started, cabled to Stesil in November, 1939: "It was my duty in the interest of my country to oppose the present leader. Therefore, I had to leave my country. I camot tell more now, but perhaps later."

Thyssen in recent years has been variously reported to have clied, to have fled to South America, to have been interned in the German Dachau concentration camp, or to have met sundry other fates.

The Swedish sources, ruoting "trustworthy" German spokesmen, said the Nazis were preparing to use Thyssen as contact man with foreign businessmen to pave the way for an understanding based on the Nazi presumption that "England and the United States do not want a Russian hegemony in Europe."

BRITISH MISSION COMPLETES STUDY OF NATION'S STEEL PLANTS

METALLURGICAL mission of the British Iron and Steel Control, which has been visiting steel plants in this country, has completed its survey and submitted its report. As result of the mission's study, it is expected that steelmaking and consuming practices of the United States, Canada and Great Britain will be further harmonized. Members of the group, seated, left to right: H. H. Burton, chief metallurgist, English Steel Corp.; Dr. W. H. Hatfield, of Thomas Firth
\& John Brown; C. R. Wheeler, joint deputy controller of iron and steel, Ministry of Supply; Dr. T. Swinden, of Samuel Fox and director of research for United Steel Co. Ltd.; Maj. E. W. Senior, director, iron and steel division, British Raw Materials Mission. Standing: D. A. Oliver, of William Jessops; William Barr, of Colville's Ltd.; D. L. Burn, deputy director of statistics, British Iron and Steel Control; F. H. Saniter, iron and steel division, British Raw Materials

Shortage of Workers Threatens 1943 Ship Construction Goal

HICH rates of labor thrnover are callising a serions manower sitnation in the shiphoilding program, the Maritime Commission reported last week. The commission moted a "deficit" of 70,000 workers in the industry chaizg the first quarter of 1943.
The turnover rate on a mational basis amomiss to 11.2 per cent a month of the total working force.

During the first quarter this year, Maritime Commission contract shipimilding yards required more than 200,000 workers to replace those who were separated from their payrolls. Replacement weeds were greater on the Pacific coast, the total there being 122,378, according to the commission.

Replacement needs in other areas were: Atlantic seabomard, 41,337: Gulf coist, 36,508; Gruat Lakes, 1715. This replacement total swelled the estimated intake requirements of the shipyards to 333,065 for the first quarter of this year. Actually 2032,617 whorkers were hired leaving a deficit of 71,078 workers from the total desired by the shipbuideders. The deficit was 30,854 on the Pacifie const.

In many shiphaidding commmities, serions housing shomberes have made it impossible for these areas to provide hames for as many workers as the yards could use, the War Mimpower Commission reported.
To reach the increased tonatage constroction goal of $19 \% 3$, it was estimated that 132,799 addlitonal workers would be required in the Martime Commisshon contract yated during the first quarter. This estimate provided for expansion of persomel only and did mot inclade the needs for replacement of those separated from pityrolls. The total of the two-replacements and expansionironght the intike requirements up to 333,005 . The total intake actually was (a) mit 203,000.

Rear Adminal Howard L. Viekery, vice chatman of the commission, in charge of the shiphoilding program. commented on the devedopment as folkows:
"The situation is so eritical as to indicate that it is imperative to reverse the corrent mandower trend if we ate (1) bisure the completion of the schedHed megram on time. Wo nre asking (and reweiving) hearty ers-operation from other gevermment agencies, inclading the Mampower Commission and its United States Employment Service, as well as
shipyard managements and organized labor in the effort to solve the manpower problem in ship construction. Unless the situation changes, the ships to be mast serimsly affected will be tankers, aircraft carriers, troop transports, and escort vessels because the greatest shortages appear is yards on such construction."

Time Clock Dispute Causes Shutdown at Edgar Thomson

Lonss of 2200 tons of steel ingots and 2000 tons of pio irom resulted from a work stoppage at the Edgar Thomson platt of Carnegie-Illinois Steel Corp., Pittshargh, last week. The strike developed from a dispute over installation of time clocks which necessitated the shifting of 16 time takers to new jobs at a lower rate of pay. All but 200 of the plant's labor force stopped work on the morning turn April 7.

The night turn reported for work after ill agreement was reached that the union's grievance committce and management study the fairness of the change.

A statement by the company said: "In a program which had its inception
with certain of the company's plants more than two years ago the conventional time clocks when in need of replacement were eliminated in favor of a new time recorder by which the men record their entrances to the plant by use of a charge-a-plate identification which they carry with them.
"The use of the new equipment eliminated the :ormer occupation of time taker and the employes normally engaged in this work were offered employment elsewhere in the plant and the majority of the 16 workers involved readily accepted. The balance ebjected to taking any other work in the plant at less than the rate of their former occup:ation. The company in its proposal to change the time recording setup discussed the matter with the grievance committee and no exception was taken other tha: a protest concerning the rate of pay which those affected would receive on wther jobs."

The management stressed that a griesance could be processed on this matter through the machinery provided for in the contract now in effect.

More than 15,000 tons of coal, urgently needed by the steel plants of Republic Steel Corp., have been lost due to a strike at the company's Crescent sitip mine near Charleroi, Pa.

Strike is due to a wage demand which officials of the United Mine Workers of America have presented and which the company is willing to meet, provided the

STUNTS EMPHASIZE PRODUCTION LOST BY ABSENTEEISM

TO COMBAT absenteeism, employes of Dravo Corp., Neville Island, Pittsburgh, recently staged some "high jinks" to shame lay-offs. Stunts included the launching of the ship ABSENTEE and the attempted award of the Axis "E" to employes whose absences caused the loss of 100,000 man-hours in 23 days. Photo shows Axis leader imitators, unable to find a worker willing to accept the swastika award, hoisting the flag themselves. Workers in the background immediately tore down and ripped the flag asunder

VAN A. BITTNER
Vice president of the United Steelworkers of America, has been mentioned as logical successor to Thomas J. Kennedy on the War Labor Board. Kennedy, secrelary-freasurer of the United Mine Workers, whase demand for a $\$ 2$-a.day raise probably will come before the WLB soon, has resigned
increases asked are approved by the $\mathrm{Na}_{\text {a- }}$ tional War Labor Board.

Union officials refuse to join in the application for the increase to the board as is required.

Union officials also first demanded that any wage increase be retroactive to the date of Republic's acquisition of the mine, Dec. 11, 1942, and now demand that any increase be made retroactive throughout the operation by the contractor who preceded Republic in working the property.

Production of naval vessels and ore earriers at the Cleveland plant of the American Shipbuilding Co., Cleveland, was halted when nearly 1200 workers struck for reasons which remained obscure at week's end. Apparently the stoppage was caused by a jurisdictional dispute.

UMW Buy Newspaper Space To Plead for Wage Increase

In an attempt to turn the momuting tide of antagomism to their demands for a \$2-a-day wage increase and other coneessions, the United Mine Workers of America last week launched an advertising campaign in leading newspapers purportedly telling the "American Coal Miner's Story."

Raising the question, "Are the United Mine Workers holding a gum at the nation's heart?" the advertisements ask the public to "be fair."

Cited in support of the miners' demand for the wage increase are increases in the cost of food and other arguments which the UMW have been advancing during negotiations with the coal mine operators.

48-Hour Week Would Cost Steel Industry \$100,000,000 Annually

EXTENSION of a mandatory 48 -hour work-week to all plants of the steel industry would ircrease total steel payrolls by $\$ 100,000,000$ a year, the American Irom and Steel Institute estimates. (Stell's estimate of the increased cost was $\$ 100,000,000$ to $\$ 120,000,000$. Steel., March 29, p. 34).

The increase would come from the payment of time-and-a-half for more than 40 hours of work per week.

Such an increase, if made, would be the third to go into effect since 1941, and would result in an aggregate increase in, steel payrolls of approximately $\$ 300,000$,000 ammally through pay raises in the past two years. During that period there has been no increase in the composite price of steel products.

In March, 1941, steel wage rates were raised 10 cents per hour, which liftes the average hourly earnings of wage earners to a new peak of 99 cents pe: hour. That increase added $\$ 120,000,00$, a year to the industry's payrolls.

Late in 1942 the so-called "Little Steel" wage formula promulgated by the War Labor Board raised average hourly wages throughout the industry to about $\$ 1.10$ per hour. The effect of that raise was
to increase the industry's payrolls by amother $\$ 75,000,000$ a year.

The mandatory 48-hour work-week already has been imposed in Detroit, Buffalo and Baltimore, and som will be established in the Chicago suburban area and the Cleveland district.

In Jannary, 1943, the average workweek for all steel employes was just under 40 hours per week. Tomnage of steel produced that month represented virtually the full capacity of the industry.
Extending the work-week to a mandatory 48 hours would mean 8 hours of work per week at time-and-a-half wage rates for in estimated 500,000 employes. At the present base scale of wages this would represent $\$ 2,000,000$ in overtime payments per week.

Patrick T. Fagan, veteran labor leader, was nominated last week by President Roosevelt to be the Pittsburgh area director of the War Manpower Commission. Mr. Fagan had been president of District No. 5 of the United Mine Workers of America but was deposed in a reecnt election by Jolun L. Lewis because Fagan had sided with Philip Murray in the feud between Murray and Lewis.

"VITAMIN VANS" BRING LUNCH TO WORKERS

STAINLESS steel rolling cafeterias are pulled down one of the half-mile long aisles of the Boeing Aircraft Co.'s plant in Kansas. Each mobile section is filled with enough food to feed 250 workers. NEA photo

Industry at 100 Per Cent in March, Makes 7,670,187 Tons of Ingots

ALL monthly records for total steel production were broken in March according to the American Iron and Steel Institute, when the industry operated at full 100 per cent to produce $7,670,187$ net tons.

That total exceeded by nearly 90,000 tous the previous high of $7,579,514$ in October, 1942, when the industry likewise operated at its rated capacity. Details for Mareh and the first quarter follow:

Open-hearth, 6,785,295 and 19,395,558 tons, respectively; 100.9 and 99.3 per cent.

Bessemer 503,673 and $1,429,574$ tons; 90.5 and 88.4 per cent.

Electric 381,219 and $1,095,146$ tons; 98.5 and 97.5 per cent; total $7,67(0,187$ and $21,920,278$ tons; 100 and 98.4 per cent.

Monthly Peaks Set by Several Producers

All-time records in steel ingots and pig iron were achieved in March.

Monthly production of ingots at the Indiama Harbor, Ind., plant of Inland Steel Co. was 7749 net tons greater than in aly prior month. Fourteen plant production and shipment records also were set in March. During 1942 a total of 51 production marks were made by this plant. despite loss of hundreds of workers (o) the armed services and lack of scrap during part of the year.
Bethlehem Steel Co. made 1.113,500 tons of ingots, largest output for any month in the company's history. This was 16.000 tons greater than the total it October, 1942, the prior high mark. Stee making plants operated at 101.1 per cent of camacity. Eugene G. Grace, president. pointed out that about onethird of the tomnage was of allow and other high quality grades of steel, requiring more time in processing than ordinary steel.

Blast furnace department of Colorade Fuel \& Iron Corp., Pucblo, Colo. reached its highest tonuare in March with 66, 88.5 net tons of pig irom, exceeding its prior high of 60,662 toms last December.

Forecasts Output of $92,000,000$ Tons in 1943

Steel output in 1943 is expected to reach an all-time record of $92,000,000$
tons of ingots and castings, a gain of $6,000,000$ tons or 7 per cent over 1942 , according to an estimate last week by the Bureau of Foreign and Domestic Commerce, Department of Commerce.

Original expansion pragram for the industry called for completion of facilities to bring total steel capacity to 97 ,100,000 tons by the middle of 1943 . Expectation now is that new facilities by that time will bring annual capacity to $05,000,000$ tons and estimate of total output of $92,000,000$ tons is based on that figure.

A critical factor is ability of the industry to produce sufficient pig iron. Furnace capacity at the begimning of the year was $61,000,000$ tons. Completion of the present expansion program on schedule would increase this to an estimated $68,600,000$ tons. Unless this expanded capacity is completed carly this year and unless existing furnaces can maintain or improve their already high
rate, pig iron output easily could fall short of the 1943 goal.
part of all such deficiency in pig iron probably could be made good by inereased consumption of serap. Stocks of scrap now are about $7,000,000$ tons, 50 per cent larger than last year. Home scrap, originating in steel mills, will be in larger supply because of greater steel output. If it is possible to collect purchased scrap in volume equal to that of 1942 the industry will have a substantial safety factor to offset any probable pig iron deficiency.

An uncertain element is possibility of a coal strike. It is estimated the iron and steel industry will use roughly onesixth of the bituminous coal produced this year. A prolonged strike would be a scrious threat to the iron and steel industry and the entire war program.

A further factor is capacity of the industry to roll ingots into desired finished products. Finishing capaciev in most plants is about 30 per cent in excess of ingot capacity, permitting flexibility over a wide range of products.

The burean concludes that no matter how large steel output is in 1943, with war needs increasing, war and essential civilian recfuirements will surpass it.

STEEL INGOT STATISTICS

					Calculated
weekly					

Hased on Reports by Companles which In 1941 made 98.3% of the Open Hearth, 100% of the 1943 Ressemir and 87.8\% of the Electric Ingot and Steel for Castings Production

Jan. . 6,563,317	97.5	478,05	85.9	367,369	94.9	7,408,744	96.6	1.672,403	4.43
Feb. 6,020,008	99.1	447.843	89.1	344.031	98.5	6.811 .882	98.3	1.702,970	4.00
Mar 6,785,295	100.9	503,673	90.5	381,219	98.5	7,670,187	100.0	1,731,419	4.43
Ist qir. 19,395,55S	99.3	1,429,574	88.4	1,095,146	97.5	21,920,278	98.4	1,704,532	12.86

Bamed on Reports by Companles which in $19+1$ made 98.50 of the Open Hearth, 100% of the Isessenter and 87.8% of the Elictrle Ingot and Stepl for Castlngs Prodicthon
19.12

$6,328,128$	95.4	490,564	86.0	305,930	96.3	7,124,922	94.7	1,608,335	4.43
Feb. - 5,791,813	96.7	453.543	88.0	275,700	96.2	6,521,056	96.0	1,630,264	4.00
Mar. . 6.574,701	99.1	493,294	86.4	324,916	102.3	7,392,911	98.2	1,668,829	4.43
1st guar 18,694,642	97.0	1,437,701	86.7	906,546	98.3	21,038,889	96.3	1,635,994	12.86
Aprll . 6,346,707	98.8	454,583	82.2	321,023	104.4	7,122,313	97.7	1,660,213	4.29
May . 6,600,376	99.5	454,054	79.5	332,460	104.7	7.386,890	98.2	1,667,470	4.43
June . 6,247,302	97.2	452.518	81.8	322,335	104.8	7,022.155	96.4	1.636,866	4.29
2nd atr 19,194,385	98.5	1.361.155	81.2	975,818	104.6	21,531,358	97.4	1,654,985	13.01
1st half 37,889,027	97.8	2,798.856	83.9	1.882,364	101.5	42,570,247	96.9	1,645.545	25.87
July . . 6, 350,047	95.7	453,684	79.6	345,093	96.3	7,148.824	94.5	1,617,381	4.49
Aug. - 6,420,496	96.6	467.313	81.8	343,642	96.3	7.233,451	95.4	1.632,833	4.43
Sept. . 6,297,201	98.0	437,950	79.4	331,933	95.7	7,067,084	96.5	1,651,188	4.28
3rd qtr. 19,067,744	96.8	1,358,917	80.3	1,022,688	96.1	21,449,359	95.5	1,633,615	13.13
9 mos. 56,956,771	97.4	4,157,803	82.7	2,905,032	99.5	64,019,606	96.4	1,641,528	39.00
Oct. . . 6,757,696	101.6	461.895	80.9	365.273	101.7	7.584 .864	100.1	1,712,159	4.43
Nov. . . 6,378,661	99.1	458,426	82.9	347,473	99.9	7.184.760	97.9	1.674.723	4.29
Dec. . . 6,471,465	97.6	475,124	83.4	356,590	99.5	7,303,179	96.6	1,652,303	4.42
4th atr 19,607,822	99.4	1,395,405	82.4	1,069,336	100.4	22,072,603	98.2	1,679,802	13.14
2nd hlf 38,675,566	98.1	2,754,392	81.3	2,092,004	98.3	43,521,962	96.8	1,656,717	26.27
Total. . 76,564,593	97.9	5.553 .248	82.6	3,974,368	99.8	86,092,209	96.9	1,651,174	52.14

[^0]

	Jan.	Feb.
1943	7,408	6,811
1942	7,124	6,521
1941.	6,922	6,230
1943.	5,194	4,766
1942	4,983	4,500
1941	4,666	4,206

Production of open-hearth, bessemer and electric furnace ingots last week was unchanged at $991 / 2$ per cent of cat pacity. Four districts advanced, three declined and five were at the same rate as the prior week. A year ago the rate was $981 / 2$ per cent; two years ago it was 98 per cent, both based on capacity as of those dates.

Camegic-Illinois Steel Corp. has blown out two blast furnace stacks for repairs, one at Farrel Works, Sharon, Pa., and me at Youngstown, O. Tennessee Coal, Iron \& Railroad Co. has blown out its No. 5 blast furnace at Ensley, Ala., for relining.

Jones \& Laughlin Makes
 World Pig Iron Record

A new world's record for a single blast furnace was established in March by No. 3 stack of Jones \& Laughlin Steel Corp. at Aliquippa, Pa, which produced 48,505 tons, at an average of 1565 tons per day. The prior record was held by a Bethlehem Steel Co. stack at Lackawanna, N. Y., with 46,246 tons, made in October, 1942.

Other new all-time marks were made by Jones \& Laughlin works in March. The 44 -inch blooming mill at Aliquippa rolled 171,440 tons of ingots for a new world record, breaking its own mark of 161,074 tons rolled in October, 1942. Rolled finished steel products shipped

STEEL. INGOT PRODUCTION BY MONTHS

April	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
7,122	7,386	7,022	7,148	7,233	7,067	7,584	7,184	7,303
6,754	7,044	6,792	6.812	6.997	6,811	7,236	6,960	7,150
PIG IRON PRODUCTION								
4,896	5,073	4,935	5.051	5,009	4,937	5,236	5,083	5,201
4,340	4,596	4,551	4,766	4,784	4,721	4,860	4,707	5,014

DISTRICT STEEL RATES

Percentage of Ingot Capacity Engaged in Leading Districts

	Week ended		Same week	
	Apr. 10	Change	1942	1941
Pittsburgh	100	-1	96.5	102
Chicago	100.5	+1	104	101.5
Enstern Pa .	95	None	92	96
Youngstown	98	+1	92	97
Wheeling	89	$+0.5$	82.5	88
Cleveland	96	+3	90.5	98.5
Buffalo	90.5	Nonc	93.5	90.5
Birningham	100	None	95	90
New England	95	-5	90	90
Cincinmati	85	-6	96	94
St. Louis	93	None	93	98
Detroit	94	None	92	61
Average	99.5	None	98.5	98

[^1]in March also established a new recarcl, more than 3300 tons over any prior month.

Interlake Negotiating for

3 Maritime Commission Boats

Negotiations between Interlake Steamship Co., Cleveland, and the Maritime Commission are in progress looking to the transfer to Interlake of three large vessels now under construction for the commission, Elton Hoyt II, president of the company, announced in the annual report to stockholders.

Mr. Hoyt said that as one consideration Interlake would trade in for part payment a number of its smaller vessels, which will be chartered back from the commission for the duration to remain in service moving iron ore on the
lakes. Company's 43 ships operated at capacity the last two years.

Interlake's net income for 1942 was $\$ 1,330,584$, equal to $\$ 2.26$ a share, compared with $\$ 1,853,264$, or $\$ 4.10$ a share in 1941.

March Plate Output Reaches New High

Production of steel plates in March set a new record at $1,167,679$ net tons, compared with the former peak of $1,-$ 135,413 tons in January. In February, 1943, production was $1,072,000$ tons and in March, 1942, it was 878,726 tons.

Shipments to Maritime Commission shipyards approximated 500,000 tons and other wartime agencies took heavy tonnages. Plates in March took approximately one-fifth of ingot output and now constitute the largest tonnage prodnet.

More than 400,000 tons went to the Army and Navy for tanks and other mobile equipment, ordnance, aircraft carriers, destroyers, escori and other war vessels.

Continuous strip mills converted to roll plates shipped 563,302 tons, compared with 529,315 tons in February, 1943, and 306,195 tons in March, 1942. Sheared mills also shipped a new high tomnage, 465,572 tons in March, compared with 424,167 tons in February, 1943, and 449,379 tons in March, 1942. Universal mill shipments were 138,805 tons in March, 118,519 tons in February this year and 132,152 tons in March, 1942.

Testimony on Laxity Charges Heard by Government Group

B. F. FAIRLESS, president. United Stat:s Steel Corp., last Thursday presented a report on the recent evide:ce before the Truman committee of faked steel analysis at a special meeting called at the War Production Board by Hiland G. Batcheller, director, Steel Division.

While no formal amononcement was made by WPB, Mr. Fairless is said to have told the meeting that an investigation has been made by him into the various charges of laxity at CarnegieIllinois Steel Corp., and this investigation is continaing. He stated that a number of personnel changes have been ordered and other steps are being taken to avoid any repetition of lax practices.

He added, however, that his investigation had failed to show that there had
been a:y profit for either the compny or its cmployes involved in the practices complained of, and that the situation had developed solely as a result of war pressure and a desire to make a good showing. He said he could find no other motive in these developments.

His statement was supplementer by a report from Dr. R. E. Zimmerman, who appeared as a witness for the company.

Mr. Fairless made a verbal report at the meeting but has submitted a more detailed written report which will be studied by various WPB officials.

WPB Chairman Donald Nelson and his deputy, C. E. Wilson, were present and Mr. Nelson commented that the steel industry generally had made a excellent record and he hoped this would be maintained. At the same time he

CRUISER CONVERTED TO AIRCRAFT CARRIEK

U. S. S. CABOT, aircraft carrier converted from a cruiser, leaves the way of the New York Shipbuilding Corp., Camden, N. J. Note permanent structural steel framing. NEA photo
cautioned the steel representatives there must be no repetition of the practices which had been disclosed by the Truman committee.

The meeting was called by Mr. Batcheller in order to receive a more detailed report on the charges before the Truman committee and for a general discussion of the whole situation. It was indicated afterwards that no formai statement of conclusions would be made by WPB and it was uncertain just what action this ageney would take.

It is unofficially reported that Admiral Vickery of the Maritime Commission said at the meeting that if he had been inspect:r on the Kaiser job he would have passed the plates which were rejected. Admiral Robinson, procurement officer of the Nasy, represented that department.

At pittsburgh, a federal grand jury convened today to hear the accusations against Carnegic-Illinois.

Restrictions on Manufacture Of Soil Pipe Not Relaxed

No relaxation on restrictions covering the manufacture of cast iron soil pipe will be permitted by WPB, it was annomnced hast week. At a soil pipe industry advisory meeting in Washington last week it was amomeed that efforts are being made to assist producers in disposing of existing stocks of heary pipe and fittings. It was suggested that pipe and fittings and job castings be segregated in reporting inventories.

Hand File Reconditioning Would Save 600 Tons of Steel

Indicating that conservation of 600 tons of high-carbon steel and a substantial saving of man-hours probably can be attained through widespread application of "hand file reconditioning". The WPB Conservation Division is encouraging war plants to investigate the practice.

Leading aviation, ordnance and industrial plants have indicated the use of reconditioning files addls about 60 per cent to the original life of the file and that cost of reprocessing is only from one-half to one-third the cost of a new file. Deliveries of reprocessed files are more prompt than deliveries of new files.

The Petroleum Administration is studying the construction of a new pipeline to supply Midwestern refineries with addlitional West Texas crude oil. A proposal submitted to the Department of Interior provides for a privatelyfinanced line of 383 miles, requiring $42,64.5$ tons of steel.

Eliminates Unnecessary Items; No Real Inreat to Irade Names

WASHINGTON

MEN behind the War Production Board's simplification program declare that recent editorials which criticize the program as constituting a threat to the continuance of trade names, company identities and distribution procedures are without any foundation in fact.

The simplification program is aimed at climinating umecessary items in any type of goods. It also is amed at making the best use of our materiats and labor by protecting consumers against "under-manufacturing," while at the same time climinating "over-manufactur. ing."

For example, a consumer has complete freedom to buy the make of Hashlight that he prefers, but there must be assurance that he can get a battery that will fit his flatshlight. Before the war there were 27,000 varieties of padlocks and calbinet locks; WPB simplification reduced this to 2200 different lueks, ample to meet every requirement, but not cutting out any trade names. Similarly atutomobile batteries were reduced from 100 types and sizes to 16 , sulficient to afford a choice to meet any need. Before the war 54 different rock emshers were made; this has been redueed to nine. Many other simplifications have been effected during the war and many more are under contemplation. Now awaiting formal approval is ath order which would immediately set up new simplifications.
In no case, it is pointed out, is there a threat against trade names or against advertising or against clistribution methods.

Save Man-hours and Materials

Through simplification, as also is the case through standardization, there not only is an important saving in man-hours and in the use of materials, but the probslem of replacement parts is greatly simplified. As an example, a good many rock crushers are being used by our troops in the African campaign; as a result of simplification of rock crushers, it is not necessary to transport and store as many replacement parts as would have been necessary before simplification.

In an article in the February issue of Dun's Review, Howard Coonley, director of the Conservation Division of the War Production Board, declared that the 85 or more completed simplification orders issued by WP13 represent only a small fraction of the possibilities for sim-
plication and that "it would be within reason to expect ten tmes as many simprincation orders and schedules to be issued in 194:3, covering all major lines of industry and certainly the great mass of the laboring population."

Mr. Coonley estimated that such a simplification achievement wond releatse some $5,500,000$ workers for the most essential war production. It would save the equivalent "of building new furnaces to produce some $5,000,000$ tons of steel."
'the first 75 simplification orders in 1942, he said, saved 600,000 toms of steel, 17,000 tons of copper, 227,000 tuns of wood pulp, 35,000 pounds of solder, $180,000,000$ yards of cottom, wool anci rayom cloth, $450,000,000$ board leet of lumber and so on.

Eases Transportation Load

Mr. Coonley also pornted out the tremendous importance of smplification with respect to transportations since it climinates a tremendons load formerly handled by the various tramsportation media.

The important thing for mandacturers to realize in comection with simplification is that there is mothing arbitrary or high-handed about the proceedings. Every catre is made to prevent shocks and dislocations from being any more severe than is necessary. The practice in all cases is to effect simplification in agreement with the members of each industry involved.

It is pointed ont that simplification is nothing new in this comntry. It first came into being during World War I under the aluspices of the War Industries Board. After the war Herbert Hoover, as Secretary of Commerce, was instrumental in bringing about much simplification; one of his accomplishments was to reduce varieties of paving brick from 66 tw 20 . Soon after the Division of Simplifeed Practice was formed in the Niational Burean of Standards and on Jume 4,1942 , there were approximately 150 simplified practice recommendations in effect.

These recommendations had, for example, reduced the number of ice cream cartons and molds by 97 per cent, the number of varieties of blankets by 86 per cent, the varictics of pipe fittings by 65 per cent. In the latter case the actual reduction in numbers of gray irom, malleable iron and brass and bronze fittings was from 8566 to 2969 types.

It is pointed out that the simplifica-
toms proor to the emergency period of tans war never disturbed distribution methods, and never discouraged advertising by individual manufacturers in the industries involved. There is no reason (t) expect that it will have any such disturoing effect during the war even though simplification is being sharply accelerated in the interest of the war effort.
there is only one threat to normal distribution and advertising procedure on the horizon-and it comes from another direction entirely. That is the threat dae to transportation botleneeks. In the interest of utilizing transportation efficiently one group points out that beer should not be shipped from S t. Louis to San Francisco and from Baltimore to Chicago. Soap should not be shipped from Cincimati all over the comentry when it is being made in various other locations that could serve local needs. The same argument is raised in regard to packaged cereals from battle Creek, furniture from Grand Rapids and many other trade-named products that have a national market.

This matter of "cross-hauling" for some time has been under consideration by the various industry committees of WP13. What will be the outcome is not at all clear. The Office of Defense: Tramsportation is leaving the matter to He industries in the belief that the ontire matter is so complicated that it can be decided only in the individual industries and by people familiar with the problems of their industries. It may be stated that the ODT is "not impressed" with the progress so far made in reducing the amount of cross hauling.

Restrictions Eased on Production of Fan Parts

Manufacture of certain repair and replacenent parts for portable electric fans on a limited basis has been provided for in an amendment to order L-176. Amended order permits use of copper and copper-base alloys in production of parts which conduct electric current, as well as in bearings, if no other metal is practicable. Production of fan blades and motors also is permitted. Each manufacturer must restrict production of all parts so that his inventory does not exceed the total number of parts of each type that he had sold the preceding six months.

No manufacturer or distributor may deliver a new part unless a similar used part is given to him in exchange, or unless the used part is being held by the distributor or dealer. Inventories must be reported on PID-665 on or before the tenth of each month.

> Tunnel type driers used most frequently for dehydrating food. . . Spray and drum-type machines reduce products to powdery or flaky form. Meat drying program requires metal machinery

VITAL importance of the food dehydration program to the war effort as a method of conserving precious cargo space was briefly discussed in this department last week. Authorities say that one freighter can carry seven times as much of the dehydrated product as compared with the muprocessed type. All that need be added is water when preparing for consumption and no difference in taste is noticeable.

After the initial process of cleaning and cutting, the food is rushed through a "blanching" operation which inactivates the enzymes. From there it is transferred to a drying unit. Vitamin losses vary with the drying methods used, but data obtained up to this time are not conclusive.
Tumel type driers are most frequently used and they can be parallel, counter, center-exhanst or cross flow. The air in all types is heated to around 145 to 150 degrees Fahr.

Center-Exhaust Drier Appears

In the parallel-flow type the air current moves in the same direction as the material. Hot air enters at the "wet end" and is removed at the "dry end", so that the fresh material is in contact with the hottest, driest air, which is ideal. The dry end, however, is in contact not only with the cooler air current but also with a more or less saturated current, which is not so ideal.
In counter-flow driers these conditions are reversed. The hottest and driest air enters at the dry end while the wet end is in contact with the cooler and partly saturated air.
Both of these types are being superseded by the center-exhaust type, wherein two streams of air are used, each moring from one end toward the center of the dehychater. In this way each half is to some extent independent of the other. Usually a partition of canvas or some other material separates the two ends, this being removed only when the vegetable-laden trucks are moved forward. This type affords opportunity to regulate temperature in each half and comes nearer to giving ideal conditions in each.

In cross-llow types the air blows across the loaded vegetable trays and is recirculated to other trays, that is, each truckload of trays in effect becomes a cab-
inet but with unimpeded movement of trucks.

Cabinet driers comprise either single compartments or a series of compartments. They permit regulation of temperature and humidity during the drying, with case not possible in other types.

Spray and drum-type dehydraters are used to reduce products to a powdery or flaky form. Such powders or flakes are of value in some soup stocks, as condiments or for other uses where size of particles is unimportant.

Vacuum dehyraters are in use to a very limited extent on vegetables. They

> This is the second and concluding article on the potential use of metals in dehydrating foods for shipment abroad and the various processes involved before sanitary packaging meats and vegetables.

may operate either continuously or on the "batch" system. Temperatures employed range from below the freezing range of the material to be clried, up to perhaps as high as 115 to 120 degrees Fahr. Vacum dehydraters require large amounts of metal in proportion to output of product, and they also require considerable auxiliary equipment, particularly in the form of vacum pumps or steam ejectors. Due to the critical supply of metals, therefore, current conditions do not encourage wide adoption of equipment of this type.

It will be understood from the above that motor-driven fans and air ducts are essential parts of vegetable drying systems. Instrumentation also is necessary to insure accurate control of temperature and amount of humidity in the air. The amount of humidity is best observed by means of wet and dry bulb
readings. Where steam is employed for blanching vegetables, one or more boilers are required, together with recuisite piping, valves, etc.

Handling facilities have to be provided to transfer the dried vegetables to the packaging department-which department inust be especially equipped for the reason that insect-proof and mois-ture-proof packaging is essential. Tin cans-hermetically sealed or with friction tops-are widely used and generally preferred. The size most commonly used holds five gallons. However, the Quartermaster General of the Army now is encouraging shipment of certain vegetables in five-gallon cartons. This method eliminates metal consumption.

A feature of packaging is that with many dehydrated products it is customary to exhanst the air in the containers and replace it either with carbon dioxide or nitrogen. Research has shown that dehydrated vegetables packed in either of those gases remain superior in flavor and in vitamin content to those which have been allowed to remain in contact with the oxygen in the air. Naturally, additional equipment is necessary to carry out this opcration.

Sanitation Very Important

Additional equipment also is necessary in many cases in order to dispose of wastes-both liquid and solid-that otherwise would accumulate when preparing vegetables for dehydration. Dehydration plants must be kept absolutely clean and sanitary. Wastes, therefore, must be gotten rid of as fast as they are created. What a problem this can be is illustrated by the fact that the organic material contained in the wastes from a potato dehydration plant of 20 tons (unprepared basis) daily capacity is roughly equivalent to that contained in the sewage flow from a town of 8000 people. As another example, consider that when a cabbage dehydration plant takes in 1000 pounds of fresh cabbage, there immediately develops a loss of 150 to 200 pounds of solid material, discarded in decoring heads and removing tough outer leaves.

Selection of material for construction depends on two main factors: First, facilities already in existence and, second, the critical material shortages involved. Lots of vegetables right now are being dehydrated in phants originally established for drying fruit. Most of these plants employ wooden vats, trays and so on for the reason that it generally has been customary to use such wooden equipment in drying fruits. Technicians specializing in the vegetable
drying program during this war do not like wood. For one thing, it is not as samitary nor as heat resistant as properly selected metals. However, they are forced to urge use of wood or other relatively plentiful materials in order to conserve scarce metals.

One of the most diflicult problems in equipping dehydration plants is to provide heated surfaces. Fine radiation is what is wanted and the few manufacturers of this product are swamped with orders. Furthermore, they are making such radiation out of steel in order to conserve copper-but steel requires 25 per cent more surface to provide equal
radiation. The use of steel also is complicated by the fact it is necessary to coat it suitably in order to prevent cleterioration, as well as food spoilage, from rusting. It appears that porcelain enameled steel will be used to a considerable extent in the program.

Another difficult proslem is to meet the need for steam generating equipment. The typical carrying plant, when swang over to vegetable dehydration, usually does not have enough boiler capacity. Then, too, most of these plants are in the Pacific Coast area, where it is the custom to use vil or gas for heating air -the air being blown around llues.

When oil is used, there always is the chance that the vegetables may be contaminated by it. That situation is being studied and it may be necessary to use direct-fired furnaces. Dehydration plants in the East usually use stean or have direct-fired heatiag surfaces so the contamination problem does not exist to as great an extent as on the West Coast.

All in all, there are a lot of things still to be learned about dehydration, particularly about the design of dehydrating equipment. Some of the equipment that has been built recently has not been properly enginecred. Some manufacturers who have sought to help along the dehydration program have made costly mistakes.

Manufacturers who participate in the dehydration program, of course, can get the priority benefits that apply to essential war work, so that the potentialities should be of special interest to many still engaged in work not classified as essential war work. Such manufacturers

Departmest Engineer W. A. Noel runs a trial lot of ground raw meat through a double-drum drier, at left. Extensive research work is in progress to determine best methods of meat dehydration and best types of driers. The vacuum rotary drier shown below is used at the Meats Laboratory of the Department of Agriculture, Beltsville Research Center. C. F. Dunker feeds 60 pounds of rau pork to the drier. This drier extracts 41 pounds of water. W. E. Gray, department engincer, draus some of the water from the condenser at left

It Cinciourat

ENGiNEERING

THIT COLVTS II THE FLVISH

CINCINNATI Hydraulic Universal Grinding Machines are made in ' $12^{\prime \prime}, 14$ ", $16^{\prime \prime}$ and $18^{\prime \prime}$ swings; between center distances up to $72^{\prime \prime}$.

CINCINN ATI

CENTER TYPE GRINDING MACHINES

If you have a grinding problem, put it up to CINCINNATI Field and Factory Engineers.

In the illustration above, the mirror-like reflections on the cylinder ground on a CINCINNATI Grinding Machine with FILMATIC Spindle Bearings, are evidence of the exceedingly high finish it is possible to secure with these bearings. Finishes like this can also be obtained on CINCINNATI Hydraulic Universals.

FILMATIC Bearings, outstanding as they are, are only one of many important contributions that CINCINNATI Engineers here at Grinding Headquar-
ters have made to precision cylindrical grinding. Others are: Infinitely Variable Work Speeds; Accuracy of Table Reversal Within .004"; Dog-Controlled Table Reciprocation from $3 / 32^{\prime \prime}$ to Full Table Stroke; Independent Right- and Left-Hand Tarry Adjustments; Two-Speed Hand Cross Traverse. You'll be interested in reading about the unusual features of CINCINNATI Hydraulic Universal Grinding Machines and their importance in improving your grinding performance.

Catalogs G-486 and G-474 explain these features and tell why they are beneficial to you. Both books are official communiques from Grinding headquarters and are yours for the asking. Send for your copies today.

GRINDERS INCORPORATED

CINCINNATI, OHIO, U. S. A.

will do well to get in touch with the Bureau of Agricultural and Industrial Chemistry, Department of Agriculture, and receive information, in both oral and mimeographed form, on which they can base their plans. This information may be obtained from the bureau in Washington. Or it may be obtained from the burean's Western Regional Research Laboratory at Albany, Calif. This material is replete with details about the materials to be used and the designs that have been found to work satisfactorily. It is accompanied by blue-prints of designs whose value has been demonstrated.
The foregoing portion of this cliscussion has been concerned mostly with vegetables.
In addition there is a vast meat drying program on which a start barely has been made. This program should be of special interest to readers of Steel. for the reason that in drying meat the apparatus is such that there is no acceptable substitute for metals in much of it. A process has been worked out wherely rotary vacuum driers, such as formerly were used for the dry rendering of lard, are employed.

There are several other processes in use or being tried out, and a mumber of experimental machines and processes are being used by research agencies, so that meat dehydration is not yet done by any standard practice. It may be said that the dried meat now being pro-
duced stands up well in storage. In view of the kinks still to be ironed out, however, prospective manufacturers of meat dehydrating equipment will do well to make no sizable investments until they are sure they are on safe ground.
For example, there is no definite proos. what contact with iron and steel, or galvanized steel, is a factor contributing towards rancidity of fat in dried meat during storage. Naturally, this question must be answered conclusively before preparing to make dehydration equipment out of steel on a large scale.

Large quantities of eggs and milk are bein! dehydrated for shipment abroad for our own forces and as a part of Lend-Lease aid to other countries. Inasmuch as such drying has been carried on successfully on a large scale over a good many years, this part of the program does not involve the unsolved problems that are injecting some confusion into vegetable and meat dehydration. Spray driers are used for milk and eggs. These liguid substances are injected under heary pressure through a minute orifice, this stream being met by a jet of heated air which instantaneously converts the spray into dry powder. Spray driers employ stee! chambers, either glass-lined or coated with a suitable thermoplastic paint capable of standing up under this type of service.

A development now under way also may prove of interest to manufacturers of presses. This is the use of such equip-

[^2]

Ground raw meat as shown in the illustrations on preceding page subsequently is dehydrated in a cabinet drier wherein its moisture content is further reduced 10 per cent or less
ment to compress dehydrated food so that it will occupy even less bulk space. While it looks promising, this development has not yet emerged from the experimental stage.
Readers interested in the business opportunities held forth by the food dehydration program can get still further understanding by studying the accompanying illustrations, as well as those that appeared here in the April 5 issue.

Operation Under CMP During

Transition from PRP Clarified

TRANSITION from the Production Requirements Plan to the Controlled Materials Plan is being expedited in an orderly course, but some confusion has been noted due to conflicting or overlapping orders issued under the two plans.

Orders bearing allotment numbers under CMP now are being given preference over orders under PRP and also over any preference rated orders without allotment numbers. As an aid to steel producers and consumers in operating under CMP regulations, War Production Board has compiled the following questions and answers:

A PRP unit was authorized to receive 1000 tons of carbon steel for first quarler of 1943 for production materials. How much carbon steel may the unit purchase and reccive in the second quarter?

Answer-The PRP unit may place rated purchase orders, using its first quarter production material ratings, for 700 tons of carbon steel or 70% of its first quarter authorization for receipt in the second quarter. If by March 31, 1943 it has not been specifically advised to the contrary by the War Production Board it may then place rated orders for and receive the remaining 30%, or 300 tons.

A PRP wnit was authorized to reccive 1000 tons of carbon stecl for production material in the first quarter of 1943. Of April 1 a CMP allotment of 500 tons of carbon steel is made to this company. How much carbon steel may the unit receive during the second quarter?

Answer-The PRP unit may recoive a total of 1000 tons during the second quarter. It may rate and receive the entire 1000 tons through the use of its PRP ratings, or it may use the CMP allotment for 500 tons and PRP ratings for the remaining 500 tons.

Another Question Clarified

In the above example, assume that the PRP unit receives a CMP allotme:, of 1200 tons of carbon steel on April 1 , How much curbon steel may the unit receive during the second quarter?

Answer-In this case the PTP unit may use the CMP allotment for the purchase and receipt of a total of 1200 tons. It must not duplicate purchases under PRP and CMP.

A PRP unit was authorized to receive 1000 tons of carbon steel on its PD-25A cerificate for the first quarter of 1943.

On Feh. 10 it received a $P D-25 F$ acriificate authorizing an additional 200 tons for receipt in the first quarter. On March 5 a PD-25F certificate authorized an additional 100 tons for receipt in the first quarter. How many tons of carhon steel may the PRP unit purchase for delivery in the second quarter?

Answer-The basis to be used for determining the quantity of steel which may be purchased for receipt in the second quarter is the 1000 tons authorized on the PD-25A certificate plus 200 tons authorized on the first PD-25F certificate received on Feb. 10. The 100 tons authorized on the PD-25F issued on March 5 may not be included since this PD-25F was issued after Feb. 28. Priorities Regulation 11A states that each PRP unit may apply production material ratings authorized for the first quarter of 1943 to 70% of the quantities of listed materials for production to which it was authorized to aply ratings by the first quarter PD-25A plus first quarter PD-25F certificates issued prior to March 1.

Therefore, at any time prior to April 1, the PRP unit may place rated purchase orders for delivery in the second quarter of 840 tons of steel (70% of 1200 tons). Unless it has been specifically advised to the contrary, prior to April 1, 1943, it may then place orders for 360 tons, the remainder of the 1200 tons total.

A PRP unit specifically applied for and was authorized $\$ 2000$ worth of Bearings: ball, roller, and precision (Line 2 of Section F), for production materials for the first quarter of 1943. How many bearings may the unit purchase in the second quarter, assuming that the unit has not heard from its industry division prior to April 1 and that no allotments have been received?

Answer-It may purchase the number of bearings necessary to carry out the production schedule permitted by the amount of listed materials authorized.

A $P R P$ unit was authorized $\$ 10,000$ in the first quarter of 1943 for "maintenance, repair, and operating supplies not elsewhere classified." How much maintenance, repair and operating supplies may the PRP unit. purcluase in the first quarter of 1943, and in the second quarter of 1943?

Answer-Maintenance, repair and operating supplies purchased for delivery in the first quarter are governed by the

MECHANICAL LIFT WITH 2000-POUND "BLOCK BUSTER"

SPECIAL mechanical lift is used to tote 2000 -pound "block buster" around the Seneca Ordnance Depot, Romulus, N. Y. The depot employs a number of women in jobs like these. U. S. Signal Corps photo from NEA
terms of the PRP Regulation, Priorities liegulation No. 11.

CMP Regulation No. 5 governs the procurement of maintenance, repair and operating supplies for delivery after March 31, 1943. Any purchases of maintenance, repair and operating supplies requiring delivery after March 31 are covered by the temos and provisions of that regulation.

In this case the PKP unit may purchase $\$ 10,000$ worth of maintenance, repair and operating supplies for delivery in the first quarter and the quantity it may purchase for delivery in the second quarter is governed by the terms of CMP Regulation No. 5.

A PRP unit, on its first quarter PRP application was authorized to purchase and receive 100 tons of steel during the first quarter and in Section H of its PRP application was authoriand to place pur-
chase orders for 120 tons of steel for reccipt in the second quarter and 80 tons cach for receipt in the third and fourth quarters of 1943. How much steel may it rate and receive during the second quarter, and what should the PRP unit do about the 80 tons authorized to it for receipt in the third and fourth quarters?

Answer-it may rate and receive the full 120 tons during the second quarter. That is, it is not restricted to 70% of its first quarter authorization prior to April 1 or 100% of its first quarter authorization after April 1. As to the quantities authorized for receipt in the third and fourth quarters of 1943, rated purchase orders placed pursuant to such advance quarter authorizations need not be cancelled or re-rated. However, none of the quantities covered by the authorizations for the third and fourth quarters of 1943 may be received without an allotment.

Up-Rating of Order Relates Back To Original Date of Issuance

UP-RATING of an order by the application of an allotment number relating back, for the purpose of determining the sequence of delivery, to the date on which the original rating was applied to the order, has been clarified by the War Production Board in an interpretation of CMP Regulation No. 3.

The interpretation points out that the re-rating accomplished by the application of ath allotment number is governed by the re-rating procedures established in Priorities Regulation No. 12. This means that the sequence of deliveries is to be determined as if a rated order, to which an allotment number is applied, actually bore the allotment number at the time it was first placed.

40 Days' Grace Granted

The interpretation, it was emphasized, covers only the use of allotment numbers as a re-rating device and does not cover the placement of authorized controlled material orders, which is governed by CMP Regulation No. 1.

P'ersons having orders which are uprated by the use of allotment numbers must make any necessary adjustments in production and delivery scherlules promptly upon receipt of the allotment numbers. However, no producer will be required to terminate or interrupt a production schedule within 40 days after receipt of the re-rating in any case where termination or intermption would result in a sulstantial loss of production. Producers are also prohibited from
diverting materials, specifically produced for orders bearing preference: ratings higher than A-2, and delivering then under higher rated orders if such material is completed at the time the
allotment number is received or is scheduled for completion 15 days after the allotment number is reccived, unless specifically directed by WPB to do so or unless the material is to go into production of emergency items.

Release Fabricated Steel for Some Civilian Products

Many civilian products in which the use of steel has for some time been barred will soon be available to consumers in limited quantities as a result of an action announced by the War Production Board which releases certain stocks of partially or wholly fabricated steel part.
13y an extensive revision of Order M126 , iron and steel conservation, these iaventories, which have been frozen for thee to eight months, are permitted to be used in about 20 items for which they were originally intended. The inventories are estimated roughly at about 3000 tons. No new steel may be used in the items involved.

Many of the products of which there will be a limited productio, as a result of the action are not essential. The frozen inventories are being released because they consist of only a small tonnage of light gage steel, not satisfactorily usable in watr production or for scrap purposes.

NAVAL GUN BARRELS NEAR COMPLETION AT WASHINGTON

HEAVY naval gun barrels undergo the finishing stages of boring at the Navy Yard, Washington. U. S. Navy photo from NEA

PRIORITIES-ALLOCATIONS-PRICES

Weekly summary of orders and regulations issued by WPB and OPA, supplementary to Priorities-Allocations-Prices Guide, published in Section II of STEEL, Dec. 14, 1942

CMP REGULATIONS

No. 1 (Direction No. 1), issucd March 26. Specifically provides that orders which were displaced in mill production schechules prior to Mareh 22 need not be reinstated.
No. 2 (Direction No. 1), issued April 1. Exempts telephone companies from the 60-day inventory restrictions of CMP legulation No. 2 since they are now governed by Utilities Order U-3.

PRIORITIES REGULATIONS

No. 11A (Amendment): Production Recuirements Plan for Second Quarter of 1943, issued April 1. Permits PhP units which do not process the materials listed in Regulation No. 11 but who purchase only fabricated items or materials other than those listed to apply during the second quarter the ratings which they were nuthorized to use by their first quarter PD-25A and PD-25F certificates to the same quantities of faloricated items and unlisted materials.

No. 8 (Amendment): Meports, effective April 3. Eliminates requirements for reports on any of the forms listed in Appendix A to the regulation. These PD forms are: $6,6 A, 13$, $14,30,30 \mathrm{~A}, 38,41,41 \mathrm{~A}, 42,42 \mathrm{~A}, 43$, $43 \mathrm{~A}, 44,44 \mathrm{~A}, 45,45 \mathrm{~A}, 46,46 \mathrm{~A}, 47,47 \mathrm{~A}$, $48,48 \mathrm{~A}, 52,52 \mathrm{~A}, 56,56 \mathrm{~A}, 57,57 \mathrm{~A}, 58$, $58 \mathrm{~A}, 63,63 \mathrm{~A}, 64,65,68,68 \mathrm{~A}, 74,74 \mathrm{~A}$, 81. 81A, 93 , and 119 .

1. ORDERS

L-7-e (Amendment): Domestic Ice Refrigerators, effective March 29. Establishes production quotas for 26 manufacturers and provides that orders bearing ratings of AA-5 or higher may be filled in excess of the quotas.
L-59-b (Amendment): Metal Plastering Bases, effective April 2. Permits use in connection with metal reinforced insulation blankets and pipe covering, metal reinforced filters and oil reduction equipment. Permits sales of material in possession of any person prior to April 2.
L-193 (Amendment): Conveying Machinery and Mechanical Power Transmission Equipment, effective April 5. Restricts use of steel in continuous stream conduit elevator-conveyors. Exempts following parts of elevatorconveyors from this prohilition: terminal and curved sections, straight casings for carrying strands, and wearing bars for return strands. Bans use of steel exceeding $\mathrm{r}^{3}-$ inch in thickness for these exempted items.
L-126 (Amendment): Refrigeration and Air Conditioning Equipment, effective March 27. Amends the first three and adds the last three schedules as follows: Schedule I-Restricts production of self-contained drinking coolers to 5,10 and 20 gallon marine types; Schedule II-Permits production of certain types of water-cooled condensing units for specific uses; extends restrictions on use of metal bases and fan shrouds; prohibits use of copper or copper-base alloy tubing or pipe for specific purposes; Schedule III-Changes amounts of nonferrous metals used in making refrigeration condensing units under certain specified conditions; imposes controls on use of steel tubes in water-cooled condensers; Schedule IV-llecluces number of sizes and types of refrigeration valves, fittings and accessories; requires substitution of ferrous metals for nonferrous in constriction of certain essential parts; Schedule V-liestricts output of commercial reach-in refrigerators to four sizes and of walk-in refrigerators to nine sizes; limits use of metals used in component parts; Schedule VI-Prohibits use of copper or copper-base alloy or pipe for refrigerant connections with certain stated exceptions; prohibits use of copper tubing or pipe for service connections.

L-2 II (Amendment): Schedule III, National Emergency Steel Products, effective March 3I. Permits manufacture of 60 -inch poultry netting in addition to the 48 - and 12 -inch widths.
L-2 12: Incandescent Lighting Fixtures, effective March 31. Restricts use of metal used in manufacturing of fixtures; orders certain simplifications and a reduction in number of sizes and shapes permitted to be produced.
L-229 (Revocation) : Railroad Equipment, issued April 5. Revokes order which had limited output by producers of specified replacement parts and purchase by carriers of new parts. Covered by new order P-142.

M ORDERS

M-21 (Amendment): Iron and Steel, effective April 1. Permits deliveries on authorized controlled material orders; by distributors in accordance with CMP Regulation No. 4. Provides for reporting of shipments wherever possible by CMP allotment numbers or symbols.
M-21-b-2: Merchant Trade Products, Warehouses and Dealers, effective April 1, 1943. Supersedes order M-21-l, which is revoked. permits warehouses to place orders (but only with producers with whom they have n base tomnage) for certain merchant trade products up to the percentage of mill production set aside for warehouses under Steel Division Production Directives. These orders are considered authorized controlled material orders. Provides that warehouses can obtain a separate group of products (such as wire fence, bale ties) from their regular supplying producers up to a certain percentage of their base tonnage. These orders are not considered controlled material orters unless copy of CMP-11 is filed with producer, indicating the tonnage delivered during preceding 90 days on AA-5 or higher orders.
Dealers must operate entirely on stock replacement basis but can shift freely among various merchant trade products.
Fite PD-98-e to shift total base tomatge of any one product group from one producer to another. Form PD-83-g may be used up to July 1 instead of CMP-11 to extend allotment numbers of specific claimant agencies or orders rated AA-5 or higher. File PD-83-i fuarterly if base tonnage of specified products exceeds 240 net tons. Producers of products for which warchouse load has been established file PD-83-f.
M-50 (Replacement): Palm Oil, effective March 24. Order re-issued by Department of Agriculture as Food Distribution Order No. 38, transferring control to Food Distribution Administration. Continues same restrictions as M-59 on processing, delivery and use of palm oil but provides exemption for any person using less than 2000 ll . per quarter.
M-68 (Replacement): Materials for Oil Industry, effective March 31. Order replaced by Petroleum Administrative Order No. 11. Changes in the new order include: definition of "maintenance or repair" excludes any restriction because of accounting practices and includes capital additions not exceeding $\$ 500$ in material costs; prohibits installation of purping equipment except where wells are no longer capable of flowing their allowables; permits construction of gathering systems to connect wells to a pipe line provided material costs do not exceed $\$ 2500$ and provided new installation does not duplicate existing facility; substitutes PAW forms 3 and 4 for PD-214A, B and C.
M-193 (Replacement): Glycerine, effective March 24. Order re-issued by Department of Agriculture as Food Distrilbution Order No. 33.
M-293 (Amendment): Critical Components, effective March 31. Sets fonvard to May 1
from April 1 date after which deliveries of items on the Class X list may be made only according to schedules filed with WPB; and Class Y items may be delivered only when authorized.
-303: Calcium Metal, effective April 1. Places under allocation products containing the clement calcium not in chemical combination and in which any metallic constitnents other than calcium do not constitute more than 15 per cent by weight. Application for authorization to use or accept delivery of cal ciun metal must be filed on form PD-600 with WPB and supplier by 15 th of preceding month; as soon as possible for April. Applieation for authorization to make delivery must be filed by producer or distributor with WPl on form PD-601 by 20 th of month preceding delivery month.

P ORDERS

P-88 (Revocation): Railronal Material, issued April 5. Revokes ortler which had assigned preference ratiugs for maintenance, repair, operating supplies required by railway transportation companies. Control transferred to order P-142.
P-100 (Revocation): Repair, Maintenance, Op_{p} crating Supplies, effective April 2. Revokes order since producers who formerly used ratings assigned under P-100 for MHO supplies are permitted to operate within terms of CMP Regulation No. 5. CMP Regulation No. 5 assigns rating of AA-1 to producers covered in Schedule 1, AA-2X to those covered in Schedule 11, and A-10 to business activities not mentioned in either schedule. Provides that any serial-numbered cony of P-100 issued to a producer in Canada shall remain in effect until it is specifically revoked or until the Canadian producer becomes eligible to apply ratings assigned by CMP No. 5.

P-142: Transportation System Material, effective April 5. Supersedes CMP Regulation No. 5 insofar as the larger transportation systems are concerned. Covers steam, electric and terminal railroads, private car line companies, electric street railway and trolley coach systems and common carrier passenger motor bus systems, except those which can obtain all of the controlled material requirements at retail or from warehouses. Each of the above systems must file its requirements on PD-844, quarter by quarter, including controlled materials, with WPB which will assign preference ratings. WPB also will assign upon application specific preference ratings to deliveries of specific materials needed for emergency repairs. Certification MRO-P142 and serial number must be used in applying preference rating and in obtaining controlled materials. Liberalizes former resale provisions. Restricts inventories to 60 -day requirements.

U ORDERS

U-1-c: Electric. Gas, Water, and Steam Utili-ties-Materinls, effective March 31. Authorizes water line extensions of not more than 250 ft . to provide water for gardens but forhids purchase of copper pipe for this purpose.
U-3; Telephone Equipment, effective April 1. Replaces order P-130. Assigns rating of AA-1 for purchase of MRO supplies, other than controlled materials. CMP allotment symbol MHO-U, accompanied by a specified certification, may be used to acquire controlled materials for MRO supplies and for necessary new constraction on war projects, Rating assigned to the project may be extended to communications supplies.
U-4: Telegraph Equipment, effective April 1. leplaces order P-132. Assigns rating of AA-1 for purchase of MRO supplies, other than controlled materials. Prohibits use of CMP allotment symbol for construction on war projects.
U-5: Wire Communications Equipment, effective April 1. Supersedes order L-148. Limits transfer of equipment, either telegraph or (Please turn to Page 156)
 whirlwind.

JOHN F. NOON
Hyaft Roller Bearing Precision Grinding Dept.

Hyatt Bearings Division, General Motors Corporation, Harrison, N. J.

First postwar auto will be similar to 1942 car but with "refinements". . . Keen competition foreseen among materials but ferrous metals expected to continue as basic product for motorcar industry

WHILE it may be argued premature to launch a discussion of the world of tomorrow before today's battles are ended and the shape of such a world can be defined, nevertheless, the role of metalproducing and metalworking industries in years whead is a subject of vital concern. Managements are rerognizing this and, reservedly, are devoting some attention to formulating their concepts of what is to come.

Believing that stimulation of interest in considering possibilities for metals in the future may go hand in hand with the urgency of today's war production, Steel herewith presents an extended analytical search into tomorrow's trends in automobiles, seasoned throughout with at least a reasonable amount of today's knowledge of metals and their uses.

Critical comment on this series is welcomed, in fact invited. Interesting opinions will be published at inter-cals.-The Eimtors.

ANY attempt to draw up outlines of the automobile of tomorrow, must be based first on fairly definite knowledge of when the current global war will terminate. At the moment this is purely guesswork. Naturally plans are being

This is the first in a series analyzing the postwar automobile, with primary emphasis on passenger cars, from the standpoint of possible changes in materials, subassemblies and manufacturing technique.

Here is how George W. Walker, Detroit motor car, stylist, envisioned two of the limousines of tomorrow. Numerous manufacturing limitations appear from these sketches, but they represent a distinct advance from present automobile concepts. Mr. Walker is an ardent proponent of the transparent roof or tonneau
reasoned, and with sound logic, that when assemblies can be resumed the competitive emphasis will be on speedy re-conversion and the quickest way to get cars in the hands of dealers will be to make use of tools and dies for 1942 models, which only saw a few months' run out of a model year, and to make such minor embellishments and style refinements as may appear feasible in a short time.

The great motor car assembly plants have literally been torn apart in the conversion to war production. Machines have been retooled and regrouped where possible, otherwise transferred to plants which had need for them or, in the case of some equipment, rolled out into storage yards and covered with canvas. Conveyor lines have been ripped up and many of them scrapped to make way for new systems to handle war production. It would take probably six months at least to re-convert these plants to any semblance of motor car production; but any immediate resumption of output would have to be 1942 models with minor changes. The economy of the situation would permit nothing else.

We are concerned here not alone with "tomorrow" for automobiles as they might appear at the dawn of production. but more importantly with the impact of tremendous advances in the adaptation and fabrication of metals which the war effort has brought. Admittedly there has been little time in the past year for engineers and designers to spend on evolving new automotive concepts, still the upsurge in new materials and new processes will make its effect felt sometime in the not too distant future.

Prominent Designer Retained

One of the smaller auto companics is known to have retained a prominent designer at a monthly fee running into four fieures for the express joh of designing a postwar car. With this knowledge, the larger companies must be pursuing some active thinking on the subject, even if they deny the fact when questioned directly. However, the translation of a designer's ideas into steel and rubber and glass is much more complex than the mere sketching of some outlines on paper, and this preparatory activity is the one which consumes valuable time but which certainly will have to wait until peace is closer than it is now.

For the sake of discussion, let it be assumed that the first automobiles to appear after the war will be substantially what the public has hecome accustomed to in the past. From this point it may be of interest to proceed into the future and see what may be in store for the models
to follow the postwar "emergency" car. To get a line on prospects, it is necessary to break the automobile down into its components-frame, body, motor, wheels, axles, springing, transmission, controls and accessories. But before doing this it may be well to make certain basic broad observations on the subject of materials in general as they apply to automobile construction.

First, consider the matter of plastics. It is true that great advances have been made in recent years, and are still being made, in molding and fabricating plastics to supplement, complement and replace metals. But plastics in general cannot yet be considered structural materials in the automotive engineer's sense of the word. They are moving in that direction, but they still suffer because of lack of strength, poor weathering qualities, high cost (both material and fabrication) and difficulties in forming, joining and particularly fastening.

Novel Accessories of Plastics

More years of research will be necessary to place plastics on a par with metals in respect to these qualities. Hence they must be kept in the field of ormamental, decorative, colorful and novel accessories. Their use will broaden, it is true, but the basic components of motor cars will continue to be metals-and principally ferrous metals-for years to come.

- Next, take the case of the light metals, for which so many broad and unsubstantiated claims are being made. It must be granted that three years hence, aluminum and magnesium in cast, rolled and forged forms will be available in tremendous quantities, and in a price range which will make them distinctively competitive with iron and steel, if not pound for pound, then at least for volume. By this is meant that it may be possible to produce a part of an automobile in aluminum or magnesium that will have equal strength to one of iron or steel, and the cost will be a toss-up between the two groups of metals. The weight factor naturally will be easily in favor of aluminum or magnesium.
Ample new racinties will be ayailable for forming, forging, casting, extruding, welding and otherwise fabricating the light metals. As such, they will not be of great value to automotive engineers, but at a price they can be adapted to automotive parts. Aluminum production capacity alone by December, 1943, will be over $1,000,000$ tons annually, seven times the level of 1937.

In spite of these apparent advantages, it is this observer's opinion that iron and steel will continue to be the basic materials of motor car construction. The
industry has had 40 years of experience in perfecting the use of iron and steel, and it will not throw aside four decades of "know-how" for the sake of a complete switch in material usage, the primary advantage of which, let us say, is reduction of weight.

Another thing, producers of ferrous metals will not sit idly by and watch competing materials make a play for their markets on a price basis. Before this happens they will sell at a loss.
The importance of weight reduction, and its consequent advantages in fuel economy, are being vastly over-rated in passenger car performance. It is a natural trend today, with all the emphasis on aircraft, where weight is a factor of primary importance. In passenger cars, economy is a strong talking point with sales forces, but it is seldom the clinching factor in a sale. Appearance, performance, comfort and price are what sell motor cars-not low weight and attendant economy. In weight, the trend actually has been toward increases rather than reductions, with addition of extra metal in fenders, hoods, bodies, etc.

The prospective buyer of a 5000 -12ound car, which will average 12 miles to the gallon of gasoline, is seldom moved to buying a 3000 -pound car simply because he will be able to realize 16 miles to the gallon of gasoline. He buys the smart appearance, the solid feel, the luxury, the quick getaway of the big car, which looks swell parked along his neighbor's 5 -year old 3000 -pound jalopy. There is no reason to suppose automobile buying habits will come in for any major changes in the years immediately ahead. Changes, when they do come, are slow and evolutionary, seldom overnight. A memorable example is the old Chrysler Aifflow model, supposedly years ahead of its desigu time, which never took hold with the buying public in any substantial way.

Auto Body Requires Heavy Metal

The argument may be advanced that the buyer of the 1942 model 5000 -pound car will jump to buy a 3000 -pound model if he can get at the same time equivalent appearance, size, comfort and performance. But it remains to be proved whether light metals can duplicate these primary selling points. There is plenty of question on the score of appearance, comfort and performance. No airplane yet produced can match the resplendent finish of the modern automobile body. As weight drops, roadability likewise often decreases and comfort suffers. Weight, too, appears to be a function of smooth, vibrationless performance. More than one motor company engineer
(Please turn to Page 155)

Information supplied by an Industrial Publication

A recent investigation of die spring breakage developed the following prominent causes:

1. Hydrogen embrittlement resulting from plating, pickling or cleaning.
2. Incorrect die design.
3. Incorrect spring size.
4. Speed of compression cycle.
5. Poor quality of wire.

There are, fortunately, remedies for all these conditions. Hydrogen embrittlement can be corrected by heating plated springs to about $450^{\circ} \mathrm{F}$. and air cooling.

Faults in die design usually consist of either insufficient or too great clearance between the
outside diameter of the spring and the guide hole. The clearance should be such that the spring operates freely, but has no chance to buckle.

Care should be taken in selecting springs to see that they are properly designed for both length of compression stroke and speed of compression. If springs are repeatedly compressed too close to their solid height, quick failure will result. The same is true where the rapidity of compression is too great.
It seems obvious that the quality of the spring wire should be commensurate with the job. Cheap wire should be avoided because of defects that are bound to cause trouble, especially when springs are plated.

CIImax Mo-lyb-den-um 500 Fifth Avenue. New

Girls and middle-aged women comprise 47 per cent of Boeing Aircraft's personnel. . . Outnumber men in many departments. . . Child care, safety, and training are troublesome problems

SEATTLE STRIKING illustration of changed social and economic status of civilian working people in this war compared with wars of the past can be seen at the Seattle plants of Boeing Aircraft where in the space of only one year personnel has undergone a complete transformation and feminization. Figures tell the story. In April, 1942, wom(In compresed only 3.7 per cent of the Boeing payroll. Today the percentage

47 and going up. This is satid to represent the highest proportion of any aircraft plant in the comutry.

Young girls out of high school and middle-aged matrons with high school children of their own-all have taken places alongside men in various departments. Many women have friends and relatives in the armed services and so have a personal interest in defeating the enemy. Some were attracted by the wages and pleasant working conditions. Patriotic motives induced others to do

Heir bit in the hour of emergency.
During May, 1942, 1717 women were sent to Bocing plants by the United States Employment Service alone. At the end of that month women made up 7 per cent of the persomnel. The increase has been rapid: June, 22 per cent; July, 25 per cent; August, 29 per cent; September, 26.5 per cent; October, 43 per cent; November, 45 per cent; Fehratary, 1943, 47 per cent plus.

There have always been women in aircraft plants. They were secretaries, typists, and clerks. But now in final assembly, where the chatter of rivet guns sounds like a war of its own, something new has been added. Look inside a fuselage jig where a Flying Fortress is taking shape and chances are that out of three workers two will be girts. You will find them climbing around tail wing jigs, too. It's hard to spot them at a glanee because you won't find any skirts and high-heeled shoes. They wear slacks and shirts and
their permanents are tied up in a handkerchief or a snood.

Women now do practically all types of work in Boeing plants. Chief limitations to employment of the gentler sex are the limitations of the individual. Officials say the most acceptable ages are from 18 to 42. Women in upper age brackets and women overweight are considered less satisfactory as a general rule because they find it hard to remain on their feet for a full shift.

In many departments women outnumber men. Thus, 94.8 per cent of all rivet buckers are women; 79.9 per cent of all beginning and probationary mechanics and 20.6 per cent of all riveters are women. Other shops with the high percentages of women include:

Upholstery shop, 75 per cent, making curtains, upholstery, sound proofing, etc.

Fabric cover shop, 74 per cent, making control surfaces-rudder, elevator, ailerons, all cloth covered.

Body minor shop, 70 per cent, fabricating the radio operator's compartment.

Electric wiring shop, 68 per cent, producing wiring harnesses.

Tubing shop, 66 per cent, where tubing for hydraulic and fuel systems is bent, cut, flanged or beaded.

Tramsportation, 66 per cent, scooters and car toaders. hanling througa plate.

In an awkward position to do effective drilling, the girl at the left wears a corduroy work suit that meets Boeing's safety requirements

Right, Boeing punch press operator helps to speed the supply of parts to assembly lines

"permits up to 83% more tank gears cut per tool change"

Gears to drive America's steel "war horses" at breakneck speeds through sand, mud, and snow. That's the wartime job of a certain large eastern manufacturer producing gears for tanks . . . and he's doing a better job thanks in part to Sun Oil Engineers and Sunicut.
Early in the war effort this manufacturer decided his production rate had to be stepped up. He called a Sun Doctor of Industry-a metal working expert-who studied conditions and recommended a change in cutting lubricant. Sunicut, the transparent sulphurized cutting oil, was tested and adopted. Production soared! With

Sunicut they are now able to cut as many as 83% more gears between tool changes.
Production increases like this are not uncommon when the exceptional metal-wetting and heat-absorbing qualities of Sunicut go to work on tough jobs. Whether you make gears or bullets or bomb fuses, if it's increased machine tool production you want, call in a Sun Doctor of Industry. His services and the products he offers are yours to use to turn out more and better war materials... faster. Write
SUN OIL COMPANY - Philadelphia
Sun Oil Company, Lid, Toranto and Montreal, Canada

Late in 1942, 86 per cent of all applicants for employment at the plants were women, indicating the relatively small number of men available and emphasizing the opportunities still open for large numbers of women. Special rppeals are directed to young marricd women without children. The company stresses the point that working wives do not affect the selective service status of their husbands.

Child Care Is Problem

Various social agencies are endeavoring to solve the problem of caring for children of working mothers. Additional nursery facilities are planned. A representative of the Child Care Information Service found that one out of every sixteen women who applied for work had problems involving the care of children. Of women actually hired, 27 per cent had insecure plans for the care of their youngsters. Many women with children find it better to work the second shift from 3 to 11:30 p.m. or from 4 p.m. to 12:30 a.m. because it is easier to be away from their families at night. The gap between the time the mother leaves for her job and the father returns home often is filled by a neighbor who looks after the children.

Opinion is general on the Coast that the ultimate solution will be to have the older women in the neighborhoods, less able to engage in war work, care for the children, releasing younger women for pressing war jobs.

Replacing half of industry persomel with women presented many grave problems. New workers had to be trained after they had been recruited and had
passed strict requirements of employment. In addition, practically the entire tooling system had to be redesigned along lines of simplified operating technique to meet new conditions.

It was a logieal move to place the women in simpler tasks under directio: of men foremen. As the women proved themselves adept and gained experience, many advanced to more responsible posts. Experience proved women can handle tedious jobs with more interest and less fatigue, in proportion, than men.

While women are not required to wear standard uniforms, officials have definite ideas regarding working apparel. They recommend a two-piece suit, "tuck-in" blouse style, with short sleeves, conservative colors and materials. Low or medium-heeled shoes must be worn with closed toes to prevent injury. Women also are requested to wear a hair net, snood or other means of preventing hair from being caught in tools and machinery. Other rules regarding apparel inclucle one that prohibits the wearing of gloves and all visible jewelry.

While actual figures on safety are not available, since changed personnel took over, it is stated that in general while the accident rate in the aircraft industry is above the national industrial level, the Boeing rate has been reduced in recent months. Every precaution is taken to avoid mishaps and women obey rules designed to promote safety.

Back in the "make" shops where smaller parts of the Flying Fortress are formed and put together, women work at long benches and cut out sheet metal. They run the small, hand-operated drill presses and punch presses. They feed parts into the giant hydropresses. They work, too, on welded assemblies, in the paint shop, in the dope room, the protective finishing shop. Others are employed on spot welding machines, screw machines, saws and lathes.

Nimble Fingers Needed

Women have been found particularly adept in another department-driving lift trucks or "jitneys" through the plant. Mail deliveries are made on motor scooters operated by girl drivers.
One important job women have taken over is laying out on "forming boards" hundreds of wires making up the electrical system of the bomber. Instead of being installed one at a time in the plant, wires are arranged in approximately the shape they will take when they're in the ship. Operations call for a lot of patience and nimble fingers.

Not only in the shops but in several units of the engineering department as well women have taken jobs traditionally belonging to men. In this department are five girls listed as full-fledged engineers, each a college graduate in engineering or mathematics.

In flight and aerodynamics division, a

Few women have ever attempted to operate a Keller profiling machine, but this girl (bottom, left) at Boeing seems at ease before the mechanical giant

Identified as a trainee by her armband, the middle-aged woman, below, is learning the intricacies of a heavy duty grinder

t' Gours

> the new D IA BROTHERS Special Metals Data Service gency Specifications uport structural steel
design: elfect of elements in alloy metal; conditions these are loy steels; welding alloy for high temperalure service. . these are a few of the first subjects covered by this helpiul list you daddional feature is the "Alloy Metals Finding List. With this list you determine the characteristics desired. nole the code number for each and apply the code to the alloys listed. Added to this is a "source index" which relers you to brand name and source of supply. Will save hours of searching out this information by other means.

Get on the mailing list today. Simply send in the coupon below.
THE HOBART BROTHERS CO., Box ST-431, TROY, OHIO (1) (1). W) "One of the World's Largest

Here is valuable information you've wished for many times. Now you can have this Hobart service FREEI It gives you accurate data at your finger-tips on many different metals subjects. Effects of National Emergency Specifications uport structural steel

the Clsking

half dozen girls operate Recordak machines recording on film flight data. College graduates in higher mathematics, they read figures and compute data recorded on test flights. Still another girl is an acrodynamicist with three years of aeronautical engineering at the University of Washington. Her job is analyzing wind tumel data.

Another half dozen girls are expediters. They "chase parts" about the plant, read blueprints and in general help co-ordinate flow of production. Some of them stepped into the expediting department from desk jobs elsewhere in the organization by taking outside classes in blueprint reading and by learning the principles of Boeing's "production density" or multiple-line system of assembly.

Women share men's privileges at Boc-ing-even pay rate. A woman rivet bucker is entitled to the same pay as a man, providing both begin work at the same time. Wage raises and promotions come with experience and ability and their chances of advancement are as good as those of men.

Receive Vocational Training

How does a homeworker become a planemaker? It's simply a matter of training. Vocational schools are co-operating in a comprehensive program of training. Many women moved to Seattle from interior towns to take advantage of war-time opportunities. Most women
received their training in periods from a week to 90 days through the Washington State Vocational Education system of the National Youth Administration. In Seattle there are two vocational schools as well as the NYA center. Training is available around the clock.

Converts Iron Foundry To Cast Steel Treads

Ingenious conversion of a part of General Motors' Saginaw Malleable Iron Division, Saginaw, Mich., to a steel foundry now producing east steel tank treads was revealed last week by Salginaw officials. This broke one of the bottlenecks in the tank production program and still is of great importance in meeting tank schedules.

At the time of the Pearl Harbor attack, work was in progress to increase productive capacity of the plant. Bccause of the demand for materials of greater strength and ductility, it appeared that there would be a surplus capacity at the plant for cast iron products.

At the sume time, a survey by Saginaw officials indicated there would be a tremendous demand for steel castings, particularly for tanks and other combat vehicles, and the decision was made to start producing steel castings. "Our decision to make steel was
hedged by the provision that we would stick to the materials handling methods used successfully in making malleable iron and which we thoroughly understood," says James H. Smith, general manager.

Steel melting department at the Saginaw plant occupies 7800 square feet of floor space, and is equipped with two large and one small, acid cold-melt electric furnaces. Entire foundry layout is keyed to the idea of continuous, synchronized operations and as a basic factor in maintaining this continuity the furnaces are fired and tapped in rotation, thus delivering an uminterrupted supply of molten steel to the pouring section of the mold conveyor. In a 24 -hour operation, approximately 250 tons of cast steel are melted.

Friction of dragging heavy loading trays in and out of heat treating furnaces at Ryan Aeronatical Co., San Diego, Calif., caused excessive deterioration of the trays, to overcome which a special type of loading fork operated by chain and crank was developed and built by Ryan engineers. In addition to reducing the wear on trays appreciably the loading fork cuts in half the time required to load and unload a furnace. Idea has been passed along to other aviation companies in the Aircraft War Production Council for use by them without charge.

Steel at General Motors' Saginaw Malleable Iron Division is poured into quarter-ton covered teapot ladles, left, which are carried by electric hoist on an L-shaped monorail loop. A mocing pouring floor is synchronized with endless type plate

mold conveyor, facilitating continuous and efficient pouring. At right is hydro-arc electric furnace being tapped into 5-ton bull ladle handled by overhead crane which transports molten steel from furnace to holding station

New York Iron Ores May Provide Additional Vanadium Supplies

IRON ore in New York may provide the country with an additional supply of vanadium as result of Bureau of Mines experiments showing that vanadium metal can be recovered from the ore under certain conditions, according to Dr. R. R. Sayers, director of the bureau.

An iron ore deposit on the east side of Lake Sauford in Essex county is being used in the production of ilmenite for the manufacture of paint pigment. Tailings (discarded material) from the ilmenite mill contain vanadium-bearing iron ore with high percentages of titanium oxide, a slag-forming substance which has made the ore difficult to use in blast furnaces, Dr. Sayers explained.

Because of the demand for vanadium for alloy steels, armor plate, and special tool steels, WPB requested the bureau, the University of Minnesota, and the National Lead Co., owner of the property, to investigate co-operatively the smelting methods for recovering vanadium from the tailings.

The vanadium-bearing material, after sintering, was fed to a 6 -ton experimental blast furmace and an average of 87.3 per cent of the vanadium was recovered in the pig iron produced. By controlling the amount of titanium oxide in the slag of the furnace to about 10 per cent, the technicians operated the furnace without difficulty, they said, but when the titanium oxide content increased the furmace did not operate as satisfactorily. Vanadium from the blast furnace is locked in pig iron from which it can be removed by oxidation in a converter. The remaining pig iron can be utilized in making steel.

The Sanford Hill deposit is one of the largest beds of iron-bearing material east of the Lake Superior region and reportedly contains about $15,000,000$ tons of ore. It is mined by open-pit methods.

Production of Magnesium From Dolomite Proposed

Burean of Mines has developed a process wherely a $400,000,000$-ton dolomite deposit near Las Vegas, Nev., in the Boulder Dim area, could be utilized to produce "many millions of tons" of magnesia which is a raw matcrial of magnesium.

Bureau also disclosed that it has developed a new electrolytic process for
turning magnesia into metallic magnesium.

Bureau engineers point out that the dolomite deposit, which is at Sloan, 19 miles southwest of Las Vegas, could be developed to serve the new plant of Basic Magnesium Inc., Royson, Nev., near Las Vegas. This plant, destined to be the largest in the country, now produces metallic magnesium from magnesia extracted from magnesite at its property in the Paradise Mountain range, Nye county, Nev. This magnesite must be treated in a $\$ 5,000,000$ milling and calcining plant at Luning, Nev., and then transported more than 1000 miles by rail to the magnesium plant of Basic Magnesium Inc. at Royson, since there is no direct railroad connections between the main plant and Luning.

In seeking to eliminate the need for such a long haul, the bureau launched its experiments in the Sloan dolomite and also is conducting research on the possible utilization of low-grade magnesite deposits which are closer to the magnesium plant.

Search for New Reserves of Aluminum Ores Expanded

In a move developed jointly by the Bureau of Mines of the Department of the Interior and the War Production Board, the burean today undertook the first steps for greatly expanding the scarch for additional reserves of domestic bauxite, alunite, and aluminous clays. The expanded scarch, to be conducted under a $\$ 500,000$ Congressional appropriation bill recently signed by President Roosevelt, is designed to free the United States in the future from dependence upon imported bauxite for the aluminum for its war planes.

Exploratory crews now in the field already have increased in receat months the known reserves of bauxite by more than $6,000,000$ tons, some of which is of a cuality suitable for aluminum production, and the new appropriation will permit the bureau's drilling program to continue at a greatly expanded rate until June 30 of this year. The burcau has requested additional funds to carry the exploratory program through to June 30 , 1944, explaining that there has been a ten-fold increase in the utilization of domestic bauxite and that the known national reserves of this ore are not suf-
ficient to keep the United States supplied for a long war.

Integrating their work with that of the exploratory crews but operating under another appropriation, the bureau's chemists, metallurgists, and other high-ly-skilled technicians are speeding up their schedule in determining how the various alumina-bearing ores can be utilized most efficiently on a commercial scalc. Seven laboratories and pilot plants have been assigned to this job.

Organize Mine Supply Service In Many Foreign Countries

G. J. Pateneaux, in charge of the Mine and Smelter Supply Service of the Board of Economic Warfare, Washington, has made considerable progress in organizing Mine Supply Control Districts in other countries on which we depend for imports of strategic minerals. Some 200 men already have been located at such key points as Lima, Mexico City, Coçumbo, Antafogasta, Oruro, Santiago, Buenos Aires and Rio de Janciro. It is the responsibility of these men to keep in contact with the mine supply distributors in their districts and make sure that they have ordered and are obtaining deliveries of equipment and parts required to keep the mines in operation. These men also render other services, such as assisting mine operators to fill out requisitions and perform other paper work.

This priorities assistance is not at all restricted to Latin America but extends througout the world. Altogether the Board of Economic Warfare has obtained priorities serial numbers for more than 300 mines, located not only in Latin America but in the Belgian Congo, New Caledonia and Australia. Under existing policy, anywhere in the world, any mine operators, producing or capable of producing strategic minerals, can call upon the Board of Economic Warfare for assistance in obtaining needed equipment or parts.

Program To Stimulate Use of Carbon, NE Steels Extended

Arrangement started by WPB last year to stimulate use of plain carbon stecl and the National Emergency alloy steels has been renewed for the second quarter of 1943.

Under this arrangement, sample quantities of steel for experimental purposes can be delivered to manufacturers or laboratories without regard to preference ratings or authorized controlled material orders. Such samples are shipped direct and may be taken from current mill production or from stock.
half dozen girls operate Recordak machines recording on film flight data. College graduates in higher mathematics, they read figures and compute data recorded on test flights. Still another girl is an aerodynamicist with three years of aeronautical engineering at the University of Washington. Her job is analyzing wind tumel data.

Another half dozen girls are expediters. They "chase parts" about the plant, read blueprints and in general help co-ordinate flow of production. Some of them stepped into the expediting department from desk jobs elsewhere in the organization by taking outside classes in blueprint reading and by learning the principles of Bocing's "production density" or multiple-line system of assembly.

Women share men's privileges at Boe-ing-even pay rate. A woman rivet bucker is entitled to the same pay as a man, providing both begin work at the same time. Wage raises and promotions come with experience and ability and their chances of advancement are as good as those of men.

Receive Vocational Training

How does a homeworker become a planemaker? It's simply a matter of training. Vocational schools are co-operating in a comprehensive program of training. Many women moved to Seattle from interior towns to take advantage of war-time opportunities. Most women
received their training in periods from a week to 90 days through the Washington State Vocational Education system of the National Youth Administration. In Seattle there are two vocational schools as well as the NYA center. Training is available around the clock.

Converts Iron Foundry To Cast Steel Treads

Ingenious conversion of a part of General Motors' Saginaw Malleable Iron Division, Saginaw, Mich., to a steel foundry now producing cast steel tank treads was revealed last week by Sitginaw officials. This broke one of the bottlenecks in the tank production program and still is of great importance in meeting tank schedules.

At the time of the Pearl Harbor attack, work was in progress to increase productive capacity of the plant. Because of the demand for materials of greater strength and ductility, it appeared that there would be a surplus capacity at the plant for cast iron products.

At the same time, a survey by Saginaw officials indicated there would be a tremendous demand for steel castings, particularly for tanks and other combat vehicles, and the decision was made to start producing steel castings. "Our decision to make steel was
hedged by the provision that we would stick to the materials handling methods used successfully in making malleable iron and which we thoroughly understood," says James H. Smith, general manager.

Steel melting department at the Saginaw plant occupies 7800 square feet of floor space, and is equipped with two large and one small, acid cold-melt electric furnaces. Entire foundry layout is keyed to the idea of continuous, synchronized operations and as a basic factor in maintaining this continuity the furnaces are fired and tapped in rotation, thus delivering an uninterrupted supply of molten steel to the pouring section of the mold conveyor. In a 24 -hour operation, approximately 250 tons of cast steel are melted.

Friction of dragging heavy loading trays in and out of heat treating furnaces at Ryan Aeronautical Co., San Diego, Calif., caused excessive deterioration of the trays, to overcome which a special type of loading fork operated by chain and crank was developed and built by Ryan engineers. In addition to reducing the wear on trays appreciably the loading fork cuts in half the time required to load and unload a furnace. Idea has been passed along to other aviation companies in the Aircraft War Production Council for use by them without charge.

Steel at General Motors' Saginaw Malleable Iron Division is poured into quarter-ton covered teapot ladles, left, which are carried by electric hoist on an L-shaped monorail loop. A moving pouring floor is synchronized with endless type plate

mold conveyor, facilitating continuous and efficient pouring. At right is hydro-arc electric furnace being tapped into 5-ton bull ladle handled by overhead crane which transports molten steel from furnace to holding station

New York Iron Ores May Provide Additional Vanadium Supplies

IRON ore in New York may provide the country with an additional supply of vanadium as result of Bureau of Mines experiments showing that vanadium metal can be recovered from the ore under certain conditions, according to Dr. R. R. Sayers, director of the bureau.

An iron ore deposit on the east side of Lake Sanford in Essex county is being used in the production of ilmenite for the manufacture of paint pigment. Tailings (discarded material) from the ilmenite mill contain vanadium-bearing iron ore with high percentages of titanium oxide, a slag-forming substance which has made the ore difficult to use in blast furnaces, Dr. Sayers explained.

Because of the demand for vanadium for alloy steels, armor plate, and special tool steels, WPB requested the bureau, the University of Minnesota, and the National Lead Co., owner of the property, to investigate co-operatively the smelting methods for recovering vanadium from the tailings.

The vanadium-bearing material, after sintering, was fed to a 6 -ton experimental blast furnace and an average of 87.3 per cent of the vanadium was recovered in the pig iron produced. By controlling the amount of titanium oxide in the slag of the furnace to about 10 per cent, the technicians operated the furnace without difficulty, they said, but when the titanium oxide content increased the furnace did not operate as satisfactorily. Vanadium from the blast furnace is locked in pig iron from which it can be removed by oxidation in a converter. The remaining pig iron can be utilized in making steel.
The Sanford Hill deposit is one of the largest beds of iron-bearing material east of the Lake Superior region and reportedly contains about $15,000,000$ tons of ore. It is mined by open-pit methods.

Production of Magnesium From Dolomite Proposed

Bureau of Mines has developed a process whereby a $400,000,000$-ton dolomite deposit near Las Vegas, Nev., in the Boulder Dam area, could be utilized to produce "many millions of tons" of magnesia which is a raw material of magnesium.

Bureau also disclosed that it has developed a new electrolytic process for
turning magnesia into metallic mag. nesium.
Bureau engineers point out that the dolomite deposit, which is at Sloan, 19 miles southwest of Las Vegas, could be developed to serve the new plant of Basic Magnesium Inc., Royson, Nev., near Las Vegas. This plant, destined to be the largest in the country, now produces metallic magnesium from magnesia extracted from magnesite at its property in the Paradise Mountain range, Nye county, Nev. This magnesite must be treated in a $\$ 5,000,000$ milling and calcining plant at Luning, Nev., and then transported more than 1000 miles by rail to the magnesium plant of Basic Magnesium Inc. at Royson, since there is no direct railroad connections between the main plant and Luning.
In seeking to eliminate the need for such a long haul, the bureau launched its experiments in the Sloan dolomite and also is conducting research on the possible utilization of low-grade magnesite deposits which are closer to the magnesium plant.

Search for New Reserves of Aluminum Ores Expanded

In a move developed jointly by the Bureau of Mines of the Department of the Interior and the War Production Board, the bureau today undertook the first steps for greatly expanding the search for additional reserves of domestic bauxite, alunite, and aluminous clays. The expanded search, to be conducted uncler a $\$ 500,000$ Congressional appropriation bill recently signed by President Roosevelt, is designed to free the United States in the future from dependence upon imported bauxite for the aluminum for its war planes.

Exploratory crews now in the field already have increased in recent months the known reserves of bauxite by more than $6,000,000$ tons, some of which is of a quality suitable for aluminum production, and the new appropriation will permit the bureau's drilling program to continue at a greatly expanded rate until June 30 of this year. The bureau has requested additional funds to carry the exploratory program through to June 30 , 1944, explaining that there has been a ten-fold increase in the utilization of domestic bauxite and that the known national reserves of this ore are not suf-
ficient to keep the United States supplied for a long war.

Integrating their work with that of the exploratory crews but operating under another appropriation, the bureau's chemists, metallurgists, and other high-ly-skilled technicians are speeding up their schedule in determining how the various alumina-bearing ores can be utilized most efficiently on a commercial scale. Seven laboratories and pilot plants have been assigned to this job.

Organize Mine Supply Service In Many Foreign Countries

G. J. Pateneaux, in charge of the Mine and Smelter Supply Service of the Board of Economic Warfare, Washington, has made considerable progress in organizing Mine Supply Control Districts in other countries on which we depend for imports of strategic minerals. Some 200 men already have been located at such key points as Lima, Mexico City, Coquimbo, Antafogasta, Oruro, Santiago, Buenos Aires and Rio de Janciro. It is the responsibility of these men to keep in contact with the mine supply distributors in their districts and make sure that they have ordered and are obtaining deliveries of equipment and parts required to keep the mines in operation. These men also render other services, such as assisting mine operators to fill out requisitions and perform other paper work.'

This priorities assistance is not at all restricted to Latin America but extends througout the world. Altogether the Board of Economic Warfare has obtained priorities serial numbers for more than 300 mines, located not only in Latin America but in the Belgian Congo, New Caledonia and Australia. Under existing policy, anywhere in the world, any mine operators, producing or capable of producing strategic mincrals, can call upon the Board of Economic Warfare for assistance in obtaining needed equipment or parts.

Program To Stimulate Use of Carbon, NE Steels Extended

Arrangement started by WPB last year to stimulate use of plain carbon steel and the National Emergency alloy steels has been renewed for the second quarter of 1943.

Under this arrangement, sample quantities of steel for experimental purposes can be delivered to manufacturers or laboratories without regard to preference ratings or authorized controlled material orders. Such samples are shipped direct and may be taken from current mill production or from stock.

DR. EDGAR C. BAIN

FRED H. WEBB

H. G. HOGLUND

EMIL T. JOHNSON

Dr. Edgar C. Bain has been appointed vice president in charge of research and technology, Carnegie-Illinois Steel Corp., Pittsburgh. He joined the research staff of United States Steel Corp. in 1928 and since 1938 has been assistant to the vice president in charge of research and technology for United States Steel Corp. of Delaware. Dr. Bain has been active in technical societies, was president of American Society for Metals in 1937. He is associated with technical groups consulting with the armed services and the War Metallurgy Committee, among them the Ferrous Metallurgical Advisory Board of the Ordnance Department, United States Army.

Fred H. Webb has been appointed district sales manager of Follansbee Steel Corp., with headquarters at 1299 Union Commerce building, Cleveland. Mr. Webb graduated from Yale University in 1921, and the past eight years was associated with the sales department of Youngstown Sheet \& Tube Co., with offices in Cleveland. Mr. Webb succeeds the late Scott Follansbee.

$$
-0-
$$

E. L. Zapp, formerly associated with Hyatt Bearings Division, General Motors Corp., and later with Henry Disston \& Sons Inc., Tacony, Philadelphia, has joined Tube Reducing Corp., Wallington, N. J., in charge of metallurgical problems, with R. Heinzerling assisting.
W. I. Worden has resigned as secre-tary-treasurer and a director, Gary Steel Supply Co., Chicago. Henry B. Herring, formerly head of the accounting department, has been named secretary and assistant treasurer and elected to the board. Ross T. Adams, vice president and a director, has assumed the additional duties of treasurer.

James D. Moffat Jr., assistant to chief engineer, western region, Pennsylvania
railroad, Chicago, has been promoted to chief ene ineer, succeeding I. W. Geer, retired. George W. Patterson, assistant engineer, has been advanced to assistant to chief engincer.

-0-

Helge G. Hoglund, the past ten years sales manager, Machine Tool Division, Van Norman Machine Tool Co., Springfield, Mass., has been promoted to vice president. He will continue to be in charge of sales of the Machine Tool Division, and in addition, will have control of sales of the new Electronics Division which is manufacturing induction heating equipment.

- 0 -

Frank S. O'Neil, general manager of the Link Belt Co.'s Indianapolis operations, has been promoted to position of vice president. He succeeds James S. Watson, vice president, Indianapolis, who plans to retire at the end of the year. Mr. O'Neil joined the company at the Pershing road plant in Chicago. His headquarters will continue to be 220 South Belmont avenue, Indianapolis.

- -

F. J. Urquhart has become regional manager of the South Bend, Ind., branch of Studebaker Corp. Before his transfer to South Bend a year ago he was district sales manager in the Chicago office.

-O -

George R. Atkins has been named manager of the Akron, O., branch sales office and factory of Bristol Co., Waterbury, Conn. He joined the company's Pittsburgh district sales engineering staff in 1935, and a year later became resident sales manager in Greenville, S. C. He returned to Pittsburgh a short time ago.

Joseph C. O'Rourke has been appointed acting district chief, Materials Redistribution Division, WPB, Buffalo. He will supervise in eight western New York counties all frozen and idle inventories of
critical war materials, arranging with industry to sell voluntarily at market prices to other war producers.

Emil T. Johnson, formerly works manager, has been promoted to plant manager, Lycoming Division of Aviation Corp., Williamsport, Pa. He has been associated with Lycoming since October, 1941, as master mechanic, plant superintendent and works manager. He is succeeded in the latter post by Herbert J. Glasby, formerly factory manager of the Oakes Products Division of Houdaille Hershey Corp., North Chicago, Ill.

$$
-0-
$$

Dave L. Riley, the past seven years associated with Greenlee Bros. \& Co., Rockford, 111., has joined Hughes Tool Co., Houston, Tex., as technical adviser. During the past two years Mr. Riley was loaned to the Studebaker Corp. as assistant to vice president in charge of manufacturing, and in turn was loaned to the Tools Branch of WPB as a technical adviser and to the Army Air Forces and Wright Aeronautical Corp. on special assignments.

Nathaniel C. Fick, heretofore metallurgist at the Gary plant of CarnegicIllinois Steel Corp., has joined the research staff of Battelle Memorial Institute, Columbus, O., and has been assigned to its division of metallurgical research.

$$
-0-
$$

Frank J. Hannon, vice president, Murray Ohio Mfg. Co., Cleveland, has been elected a director of the company.

- O -

John L. Brown Jr. has been : ppointed factory manager, Sikorsky Aircraft Division of United Aircraft Corp., Stratford, Conn. Mr. Brown has been associated with the company since 1928 , having started in the Pratt \& Whitney Division at East Hartford. Later he was transferred to the Hamilton Standard

Propellers Division, becoming assistant factary manager of that division in 1939.

Francis J. Trecker has been appointed secretary of the Kearney \& Trecker Corp., Milwaukee, manufacturer of machine tools. He is a graduate of Cornell University with degrees in both administrative and mechanical engineering. He joined the corporation in 1939 as a sales engineer and in 1940 was placed in charge of the subeontracting program.

$$
-0-
$$

Howard Jones, works manager, White Motor Co., Cleveland, has been promoted to vice president in charge of production. Roy Denham, production manager of the engine and axle division, succeeds Mr. Jones as works manager.

$$
-0-
$$

Robert K. Kulp has been appointed director of research, Jessop Steel Co., Washiagton, Pa. He was formerly associated with the Steel and Tube division, Timken Roller Bearing Co. and Lukens Steel Co. He entered the steel industry as a student engineer with the American Steel \& Wire Co. in 1929. His headquarters will be at the main office, Washington, Pa.

$$
-0-
$$

Arnold "Jigger" Statz returned from 24 years of baseball stardom to become persomel counselor of the Plomb Tool Co., Los Angeles.

$$
-\mathrm{O}-
$$

John Rosevear has bee: apprinted manager of the new Fairmont, W. Va., Works of the Westinghouse Larep Division, Bloomfield, N. J. He will co-ordiuate manufacturing activities of the fluorescent plant, an electronic tube plant, and a new glass factory under construction. He joined Westinghouse as an electrical draftsman in 1922.
-0-
C. J. Bickler has been appointed assistant to the vice president, sales, Globe Steel Tubes Co., Milwaukec. He was formerly sales manager of the Cleveland district.

- 0

C. HI. Weaver has been appointed manager of the Mrrine Section, Westinghouse Electric \& Mfg. Co., Pittsburgh. He joined the company in 1936 shortly after graduating from the University of Pennsylvania with a degree in electrical engineering.

- O -

J. Roger White, associated with Formica Insulating Co., Cincinnati, since 1928, the past three years as general sales and advertising manager, has been elected vice president in charge of sales and

F. J. TRECKER

ROBERT K. KULP

JOHN ROSEVEAR
advertising. George H. Clark, with the company 18 years, has become vice president in charge of enginecring; R. W. Lytle has been made vice president in charge of special enginecring in charge of automntive and aircraft engineering; Fllsworth G. Williams, vice president in charge of manufacturing; W. J. Gebhart, with the company 20 years, and treasurer since 1936, has beer elseted vice
president in charge of finances and accominting and a director.

Walter H. Kruse, since 1036 assistant secretary, has become secretary. Harry Grumewald, assistant production manager, has been named factory manager. Other officers and directors have been re-elected.

Charles E. Brinley was elected to the newly created office of chairman of the board, Baldwin Locomotive Works, Philadelphia. He sorved as president of the company since January, 1939. Ralph Kelly sueceeds him as president.

Fred A. MeDonald, commercial agent since 1923, Rock Island and Pacific railroad, Alcxandria, La., has been appointed assistant to the freight traffic manager, Chicago.
-0-

William R. Odell Jr., treasurer, Intermational Harvester Co., Chicago, until August, 1942, when he joined the staff of the Chicago Ordnance District, has been named chief of the price adjustment section of the district. He succeeds Glen A. Lloyd, who has been called to Washington to become assistant director for price, War Department.

- 0

Leston P. Fancuf has been made assistant to Lawrence D. Bell, president and general manager, Bell Aircra!t Corp., Buffalo. Formerly assistant vice president of the Marine Midland Group Inc., Mr. Fancuf will study personnel problems.

——

Leighton W. Rogers, former president. Aeronautical Chamber of Commerce, and former vice president, Bellanca Aircraft Corp., has been appointed special representative of the Bell Aircraft Corp. on its products in service.

- 0 -

Kenneth W. Cole, manager of the Chia ago office, Pressed Steel Tank Co., Milwaukee, has been granted a leave of absence to accept an appointment in the Containers Division, WPB, in Washington.

$$
-\mathrm{O}-
$$

Alfred P. Sloan Jr., chairman of the board of General Motors Corp., has been named chairman of the National Industrial Information Committec. He succeeds J. Howard Pew, president, Sun Oil Co., Philadelphia.

$-0-$

C. R. Ince, chief of the co-ordination section, Conservation Division, WPB, has returned from a six-week trip to England where he set up a conservation section under the Harriman mission. Purpose of the section is to co-ordinate

British and American conservation practices. Mr. Ince is assistant sales manager, St. Joseph Lead Co., New York.

Martin Davis has been appointed assistant advertising manager, Perfect Circle Co., Hagerstown, Ind., replacing John Senn, who has joined the Army. The past 13 years Mr. Davis has been associated with the Blaker Advertising Agency, New York.
G. O. Bucklin and Robert M. Doxey have been made district managers of Perfect Circle. Mr. Bucklin, formerly with Electric Auto-Lite Co., has been assigned to the northern Ohio district, with headquarters in Cleveland. He succeeds Jack Boddic, resigned. Mr. Doxey, heretofore associated with Superior Parts Co., Pittsburgh, will cover upper New York area and will make Buffalo his headquarters. Ken Sloane, who has worked out of Buffalo the past two years, will take over the metropolitan New York district, with headquarters in New York City.

William H. Shipman, of Louisville, Ky., has been appointed factory manager, Bendix-Westinghouse Automotive Airbrake Co., Elyria, O.

$$
-\mathrm{O}-
$$

W. S. Richardson, general manager, Industrial Products Sales Division of B. F. Goodrich Co., Akron, O., announces the following appointments: Chester F. Conner, merchandise man-
ager; Jay E. Miller, sales promotion manager; Harold F. Mosher, manager, special industrial merchandise.

Grover D. Motherwell has been appointed manager of the Minneapolis district of B. F. Goodrich, succeeding the late Arthur J. Martin. Associated with the company since 1928, he has held a number of executive sales posts at Chicago, the last being that of sales supervisor.

- 0 -

H. L. Trembicki has been appointed manager of the newly organized Wire Coating Division of Magnus Chemical Co. Inc., Garwood, N. J. Mr. Trembicki has had a wide range of experience in the metalworking and wire drawing industries.

-0-

John W. Hacker has been appointed general superintendent of the Christy Park Works of National Tube Co., McKeesport, Pa., succeeding the late Walter T. Mahla. Mr. Hacker joined National Tube in April, 1940, as industrial engineer at its National Works, McKeesport, and in March, 1942, became chief industrial engineer of the company with offices in Pittsburgh.

- 0 -

J. S. Clapper, the past 29 years president, Toro Mfg. Corp., Minneapolis, has become chairman of the board. II. Clay McCartney, formerly secretary and treas-
urer, has been elected president. Kenneth E. Goit, sales manager, has been made secretary
-0-
W. W. Coleman, heretofore president, Bucyrus-Erie Co., Milwaukee, has been elected chairman of the board, and G. A. Morison, formerly a vice president, has become vice chairman of the board. N. R. Knox, vice president, succeeds Mr. Coleman as president. W. L. Litle, of Erie, Pa., has been elected a vice president, and W. M. Bager, technical director.

Daniel Lewis has resigned from active direction of the roll department of Continental Roll \& Steel Foundry Co., East Chicago, Ind., but will continue as a consultant. He has been succeeded by William E. Cadman, as manager of roll sales, and Arthur E. Murton, as roll manager. Mr. Lewis has been associated with Continental since 1927 and has been active in the industry since his high school days when he worked in the laboratory of the Lorain Steel Co., Lorain, O .

Keith Powlison, formerly treasurer, Armstrong Cork Co., Lancaster, Pa., has been elected vice president and controller, succeeding George M. Arisman, resigned. M. J. Warnock has become treasurer and will be succeeded as director of advertising and promotion by Cameron Hawley.

OBITUARIES...

Gustave J. Melms, 81 , consulting engineer, Allis-Chalmers Mfg. Co., Milwaukee, at Paris, until retirement in 1932, died April 3 in Switzerland, where he had resided since the war. A pioneering expert in steam turbine and electric locomotive construction, Mr. Melms was once with Thomson-Houston Co., Lynn, Mass., now part of Ceneral Electric Co. In 1905 he perfected a steam turbine system and formed his own company abroad. He built numerous power plants, including the municipal plant at Frankfort, Germany. Mr. Melms was a gradwate of Worcester Polytechnic Institute in 1884.

$$
-0-
$$

William F. Williams, 74, treasurer, Dittmer Gear \& Mfg. Co., Lockport, N. Y., died at his home there March 31.

- 0 -

Harry Herbert De Loss, a director of Handy \& Harman, New York, died March 28, at Clearwater, Fla. Joining the organization in 1900, Mr. De Loss served as vice president in charge of manufac-
turing for many years; was treasurer from 1905 to 1915, vice president from 1915 to 1923, and a director from 1905 until his death.

Percival J. Myall, 63, sales manager, Fisher Furnace Co. Inc., Chicago, died April 4 at his home in Glenview, Ill.

$$
-0-
$$

Joseph F. Cooley, 62, vice president and general manager, Hartford Machine Screw Co., Hartford, Conn., died in that city, recently.

$$
-0-
$$

Francis X. Dalton, 56, purchasing agent, LaPointe Machine Tool Co., Hudson, Mass., died recently.

$-0-$

George Allison, 64, died at his home in Milwaukee, March 30. Mr. Allison was general comptroller of Falk Corp. and vice president and director of Baltimore Dry Dock \& Shipbuilding Co. before he retired in 1928.

- 0 -

William Russell Grace, 64, first vice president and director, Ingersoll-Rand Co., New York, and a director of W. R.

Grace \& Co., that city, died at his home in Aiken, S. C., March 31. Mr. Grace was also a director of various subsidiaries of Ingersoll-Rand. He had been associated with the company and its predecessor many years.

Harry C. Weiskittel, president, Harry C. Weiskittel Co. Inc., Baltimore, died at his home in that city, recently. He had been identified with the foundry industry many years and before establishing his own firm a decade or so ago, was associated with his father and brother in the firm of A. Weiskittel \& Sons Co., Baltimore.

Edward A. Pridmore, 61, president, International Molding Machine Co., Chicago, died March 29, in that city. For 45 years he was internationally known as a designer and builder of foundry molding machinery.

$$
-\mathrm{O}-
$$

William Whitney, 84, purchasing agent, Berwind-White Coal Mining Co., Philadelphia, died recently in that city. He had been in charge of purchases for many years.

War Expansion Program Fourth Largest Among United Nations

TORONTO, ONT'.
SINCE the begimning of 1940 the Canadian govermment, through the Department of Munitions and Supply and its predecessors, has created production facilities for war materials to a total of $\$ 800,000,000$ and has incorporated 23 Crown companies. It has attained fourth place among the United Nations as a producer of war supplies

Fixed capital commitments by the Canadian and British governments are divided as follows: Ammunition, 17.3 per cent; chemicals and explosives, 21.2 per ceatt; guns, mountings and carriages, 22.6 per cent; machine tools, instruments, etc., 2.5 per cent; mechanical transport, 1.1 per cent; raw materials, not end products, and miscellancous stores, 17.1 per cent; tanks and carriers, 3 per cent; aircraft, 11.6 per cent; ship3uilding and ship repairs, 3.6 per cent. In addlition the government has provided large sums for working zapital for these projects. The larger intion has been expended and the plants are in operation.

Since outbreak of the war contracts placed on Canadian, United Kingdom and other accounts, excluding certain contracts yet to be placed under the plant extension program, to the end of 1942 , total $\$ 6,542,902,324$. Of this total $\$ 3,289,305,275$ was on Canadian account, $\$ 2,711,764,280$ for United Kingdom account. Other contracts amounted to $\$ 496,217,278$ and contracts for civilian aviation and the air training plan were valued at $\$ 45,514,837$. In the threeyear period 468,200 individual contracts were placed.
Early this year a new peak was reached in war materials production, about the maximum that can be attained, with annual rated capacity of $\$ 3,700$,000,000 . Little further industrial plant expansion is expected this year although several plants still are under construction. At the end of 1942 more than 4000 Canadian plants were producing war needs, industrial capacity had been increased by $\$ 1,000,000,000$ and workers engaged in war efforts numbered $1,000,000$.
Increased production of steel is irfadequate to meet needs and much is imported from the United States and close co-ordination with that country has been reached through the joint War Production Board.
The National War Labor Board has ruled that a basic rate of pay of 50 cents per hour, with a cost-of-living bonus of

9 cents per hour, has been established for employes of Algoma Steel Corp. Ltd., Sault Ste. Marie, Ont., and Dominion Steel \& Coal Corp. Ltd., Sydney, N. S. This makes minimum earnings of these workers 4 cents per hour higher than the 55 cents established in the terms of settlement of the stecl strike in January.

The board also ruled that regardless of any downward revision in the cost-ofliving bonus the minimum rate plus the bonus is not to fall below 55 cents per hour for the duration of the war. The new rates are effective from the first pay period starting March 23.
G. C. Bateman, metals controller, has issued a new order, No. MC 28a, specifying composition of tin-containing nonferrous ingots made for production of castings for steam fittings, bearings and bushings and plumbing supplies.

Dionnes To Help

The Dionne quintuplets, who will sponsor five new coastal cargo vessels to be faunched early in May at the Walter Butler Shipyard, Superior, Wis., will participate in what will be one of the greatest mass launchings in the history of Great Lakes shiphuilding.
Each of the quintuplets will sponsor a new coastal vessel built under Maritime Commission contract. Water from Niagara Falls, symbolizing the unarmed boundary and the long friendship existing between Canada and the United States, will be used in the ceremony.

Announcement the world-famous children would leave their native Canada was made three weeks ago in the Ontario parliament. The ships later will be turned over to the British under the terms of the lend-lease act.

NEW FACILITIES

Contracts Authorized for War Plants, Equipment

New war plant facilities and equipment purchases were authorized last week for eight contractors by the Defense Plant Corp. DPC will retain title to the facilities which will be operated by the contractors Figures are approximate. Contracts include:

Western Fluorspar Corp., Cheyenne. Wyo., to provide power plant facilities in Colorado, $\$ 90,000$.

Owens-Corning Fiberglas Corp., Toledo, O., to provide plant facilities in

Pennsylvania, \$1,600,000.
American Zinc, Lead \& Smelting Co., St. Louis, to provide plant facilities in Washington, $\$ 80,000$.

Bower Roller Bearing Co., Detroit, to provide additional equipment for a plant in Michigan at a cost of $\$ 460,000$, resulting in an overall commitment of $\$ 1,030,000$.
W. F. \& John Barnes Co., Rockford, Ill., to provide additional plant facilities in Illinois at a cost of $\$ 300,000$, resulting in an overall commitment of $\$ 3,200$,000.

Lombard Iron Works Co., Augusta, Ga., to provide additional equipment for a plant in Georgia at a cost of $\$ 41,000$, resulting in an overall commitment of $\$ 130,000$.

Revere Copper \& Brass Inc., New York, to provide additional plant facilities in New York at a cost of $\$ 125,000$, resulting in an overall commitment of $\$ 835,000$.
Portage Macline Co., Akron, O., to provide addlitional equipment for a plant in Ohio at a cost of $\$ 36,000$ resulting in an overall commitment of $\$ 180,000$.

General Cable Corp., New York, to provide additional facilities, for a plant in Missouri at a cost of $\$ 40,000$, resulting in an overall commitment of $\$ 4,300,000$.

Shofner Irou \& Steel Works, Portland, Oreg., to provide additional plant facilities in Oregon at a cost of $\$ 42,000$ resulting in an overall commitment of $\$ 246,000$.

Army Offers $\$ 200,000,000$
 Orders To Small Plants

Army Quartermaster Corps, Army Service Forces, has offered $\$ 200,000,000$ in immediate orders to the Smaller War Plants Corp., which will recommend industries capable of producing the needed items.
Items included among those listed for immediate procurement are pistol belts, pack carriers, shoes, wool blankets, small trailers and hand trucks, overcoats, water buckets, leather mittens, and $11,000,000$ yards of fabrics, including cotton and wool cloth for uniforms.

Car Ferries To Haul
 Trucks to Cleveland

Car ferries City of Petosky and City of Munising are being fitted for a new service handling auto trucks and trailers between Cleveland and Detroit. The two 356 -foot Michigan-owned vessels have been chartered to Trucker Steamship Co., Detroit.
Water shipment of the vehicles, it is estimated, will save $5,000,000$ tire miles and large quantities of gasoline and oil.

Seven government flags fly from the flagpole at General Electric Co.'s Erie, Pa., works. At left, six Stefanowicz sisters, all employed at the plant, hold the various flags while the Treasury's "Minute Man" pennant hangs on the wall. Left to right, the sisters are, front rou: Sadie, 19, the Navy "E"; Edna, 21, the Army-Nauy "E"; Josep.'ine, 23, the Victory Fleet. Second row: Amma, 27, Bureau of Ordnance flag; Stella, 29, the Navy " E "; and Helen, 25, the Maritime " V "

Robert Colaizzi, employe of the Mathews Conveyer Co., Ellucood City, Pa., acknowledges reccipt of ArmyNauy "E" pin from Commander W. W. Slocum, U.S.N.R. Melda Roof, representing cuomen cm ployes, stands by

Maj. Harold G. Garcis, chief, tank branch, Pittshurgh Ordnance District, presents pernant to Ingram-Richardson Mfg. Co. at Beaver Falls, Pa.

Army-Navy " E " auarded East Pittshurgh division of Westinghouse Electric \& Mfg. Co. is accepted by A. C. Streamer, vice president, on behalf of plant's 27,753 employes. During February, the plant shipped 1437 carloads of finished war material

Metalworking Companies Honored for Production

Metalworking companies designated to receive the joint Army-Navy award last week include:
Allis-Chalmers Mfg. Co., supercharger plant, Milwaukee.
American Gear \& Mfg. Co., Chicago.
American Hydralics Inc., Sheboygan, Wis.
American Screw Machine Products Inc., Chicago.
Bemhardt Mfg. Co., Charlotte, N. C.
Cincimati Planer Co., Cincinnati.
General Ceramics \& Steatite Corp., Keashey, N. J.
B. F. Goodrich Co., Clarksville, Temn.

Henry Heide Inc., New York.
Hughes-Keenan Co., Mansfield, 0 .
Ben Hur Mfg. Co., Milwaukee.
William F. Jobbins Inc., Aurora, Ill.
Lehigh Foundries Inc., Easton, Pa
Louisville Tin \& Stove Co., Louisville, Ky.
Merchant \& Evans Co., Lancaster, Pa.
Monsanto Chemical Co., Longhorn Ordnance Works, Marshall, Tex.
National Union Radio Corp., Newark, N. J.
Heynolds Research Corp., Louisville, Ky.
lust Proofing \& Metal Finishing Co., Cambridge, Mass.
Spencer Thennostat Co., Attleboro, Mass.
Steams Mfg. Co., Adrian, Mich.
Thresher Varnish Co., Pittsburgh llate Glass Co., Dayton, 0.
Trojan Powder Co., Plum Brook Ordnance Works, Sandusky, O.
United Steel \& Wire Co., Hattle Creck, Mich.

Absenteeism Factor in

Army-Navy "E" Awards
To discourage absenteeism among war workers, the Navy Department warns that Army-Navy "E" production awards will be withheld from organizations failing to show a good employe-attendance record.

Excessive absenteeism among organizations producing war materials will disqualify them in securing the " E " award or a renewal of it.

Kaiser Shipyard Receives "Gold Eagle" Citation

Maritime Commission's Golden Eagle Merit Award, emblematic of "unprecedented performance" in the shipbuilding industry, has been presented to Henry J. Kaiser's Oregon Shipbuilding Corp., Portland, Oreg.

The company was the first to receive the " M " pennant a year ago, and since then has received ten stars.

Three ship repair yards and seven industrial plants, manufacturing parts and equipment for the ships of the Victory Fleet, have been designated to reecive the Maritime Commission's "M" pennant for meritorious production.
Of the more than 1500 industrial organizations engaged in furnishing parts and materials for the new ships. only 77 plants have bee designated to receive the " M ". In addition to industrial organizations, the awards are als,

Foote Bros. Gear \& Machine Corp., Chicago, receives "E". At ceremony, are, left i.) righit: Rear Admiral Clark H. Wooduard; Joseph't D. Persily, president, United Electrical Radio and Machine Workers, local 1114; Frances H. Klinck, Rose N. Oaf and Henry E. Soderling, Foote employes; William A. Barr, company president;

Col. William H. McCarty
given to shipyards. A grand total of 95 pennants have been given to yards and plants since the inception of the awards in April one year ago.

Repair yards to receive the award are the Todd-Eric Basin Drydock Co., at Brooklyn, N. Y., Bethlehem Steel Co., Brooklyn and Hoboken, N. J.

Industrial plants cited are: Beaumont

Iron Works, Beaumont, Tex., castings and various fittings; Goldens' Foundry \& Machine Co., Columbus, Ga., power transmission machinery; Nordberg Mfg. Co., Milwankee, engines; William Powell Co., Cincimati, valves; Scott Graff Co., Duluth, Minn., lumber and millwork; Washington Iron Works, Scattle, lathes and cranes.

U. S. Automatic Corp., Amherst, O., manufacturer of screw machine products, receives the pennant for excellence in production. Above are shown company officials and service officers participating in the ceremony

Record Sales, Production Bring Steel Lower Net

Increased wage costs, taxes result in decreased return.

Abstract

Surplus accounts grow as producers make provision for

 postwar adjustment . . . 1942 taxes equivalent to $\$ 22.21$ per common shareRECORD production and peak sales volume in 1942 brought the steel industry a lower net income than was realized in either of the two preceding years.

Greatly increased taxes and wage costs, combined with fixed prices, more than offset the increase in sales. Severe strain on facilities caused by foreed operations also resulted in higher maintemance and replacement costs.
Net sales reported by 20 steel producers in the accompanying table aggregated $\$ 3,644,209,069$ in 1942 , a gain of 24.1 per cent over the $\$ 2,937,306$,593 reported by the same group in 1941. In contrast with the gain in sales, net income for the 20 companies fell 28.4 per cent from $\$ 159,815,994$ in 1941 to $\$ 114,382,593$ last year.

Of those companies reporting net sales Bethlehem Steel Corp. had the largest volume, totaling $\$ 1,511,672,299$ against $\$ 961,240,737$ in the preceding year. Republic Steel Corp.'s sales volume amounted to $\$ 517,892,134$ in contrast with $\$ 480,542,106$ in 1941. Seven of the companies reporting, however, failed to show an increase in net sales volume for the year.

Net profit margin for the 20 companies reporting a net sales figure declined to 3.14 per cent last year from 5.44 for the identical companies in 1941. For substantially the same group the net return on sales in 1940 was 7.48 per cent and 5.69 during 1939.

Net Per Common Share $\$ 4.55$

Net income per common share reported by the companies in the table amounted to $\$ 4.55$ a share on $31,825,684$ shares. This compares with $\$ 7.44$ on $31,533,806$ shares in 1941. Trend in net income per common share for substantially the same group of companies during 1940, 1939, 1938 and 1937 was $\$ 6.11, \$ 2.43$, deficit of $\$ 1.72$ and profit of $\$ 4.92$ respectively.

Nineteen of the companies paid dividends on common stock in 1942. Of these, nine producers' payments were
lower than in 1941, four paid the same amount and six raised the payment. Two producers increased payments on their preferred stock, while one reduced disbursement.

No definite policy has yet been established for the industry under contract renegotiation procedures currently being discussed. While recognizing the principle of eliminating excessive profits from the war, industry officials feel that the amount realized from 1042 operations is not excessive.

Tax provisions fard 1042 made by the 22 companies rose 34.8 aper cent to a total of $\$ 706,731,737$ from $\$ 524,136,611$ in the preceding year. For substantially the same ghoup, tax provisions in 1940 and 1939 amounted to $\$ 208,594,514$ and $\$ 135,267,280$ respectively.

Taxes last year for this group represented $\$ 22.21$ per common share, against \$16.62 in 1941; while in 1940 and 1939 it amounted to $\$ 6$ and $\$ 3.98$ per share respectively.

United States Steel Corp.'s tax bill last year rose $\$ 36,498,484$ to $\$ 228,001$,058; Bethlehem's $\$ 77,293,019$ to $\$ 185,-$ 704,093; while Republic Steel Corp.'s tax provision amounted to $\$ 77,623,997$, an increase of $\$ 20,396,375$.

Recluction of funded debt to $\$ 670$,$907,328,13$ per cent below that of the preceding year, and substantial additions to reserves for contingencies indicate a deepening interest in postwar adjustments. All but two of the producers reported an increase in the surplus account. For the group of 22 companies the aggregate surplus was nearly $\$ 52,000,000$ above the 1941 total.

Total capitalization for the companies declined slightly to $\$ 3,840,152,975$ from $\$ 3,873,572,482$ in the preceding year, due primarily to the reduction in funded debt. Common stock valuation was up $\$ 9,817,720$ for the latest period, while value of preferred shares rose $\$ 141,400$.

Total income before dividends and interest on bonds was $\$ 218,225,400$ last year, against $\$ 304,846,259$ in 1941. Dur-
ing the past year the 22 companies had a return of total income on capitalization of 5.68 per cent, compared with 7.87 per cent in the preceding year. In 1938, 1939 and 1940, total income on capitalization was $0.59,4.27$ and 7.57 per cent respectively.

Current liabilities for the group aggregated $\$ 975,416,353$ at the close of 1942, compared with $\$ 700,226,064$ in the preceding year or a gain of 39.3 per cent. Current assets advanced moderately to $\$ 2,263,902,545$ during the latest period. Net quick assets of $\$ 1,288,486$,192 were 4.2 per cent above the comparable 1941 figure. Total assets in 1942 were placed at $\$ 5,115,415,163$, up moderately from the $\$ 4,819,810,601$ reported by the same companies for 1941.
Steel acknowledges with appreciation the co-operation of all companies which supplied data for the accompanying tabulation. Additional copies may be obtained from Readers' Service Department, Steei..

Cleveland-Cliffs Iron
 Income Slightly Lower

Cleveland-Cliffs Iron Co., Cleveland, reported net profit last year as $\$ 4,057$,235 , compared with $\$ 4,149,512$ in 1941. Net earnings in the latest period are equivalent to $\$ 8.33$ a share on company's $\$ 5$ cumulative preferred stock, on which unpaid dividends at the close of the year amounted to $\$ 27.16$, against $\$ 8.52$ on the preferred stock in prior year.

Acme Steel Earnings
 Equal $\$ 5.43$ per Share

Acme Steel Co., Chicago, in 1942 earned net profit of $\$ 1,782,921$, after provision of $\$ 360,068$ for contingencies, equal to $\$ 5.43$ a share. This contrasts with 1941 net of $\$ 2,994,240$, or $\$ 9.13$ a share. Federal and Canadian income and excess profits taxes amounted to $\$ 4,066$,474, after deducting $\$ 360,068$ postwar refund. In 1941 taxes totaled $\$ 5,296$,291.

Midland Steel Products
 1942 Return Decreases

Net income before taxes of Midland Steel Products Co., Cleveland, last year amounted to $\$ 4,478,347$ as compared with $\$ 3,615,635$ for 1941. Accruals of federal taxes on income increased from $\$ 1,714,471$ to $\$ 3,070,763$ in 1942, reducing net after all charges from $\$ 1,901,-$ 213 reported in prior year to $\$ 1,407,583$. The company's 1942 tix burden equalled $\$ 18.07$ for each outstanding share of common stock.

O

Financial Analysis of the Steel Industry for 1942

Official Returns from Twenty-Two Producers, Representing Over 90 Per Cent of Total Ingot Capacity

			Preverea Slook				${ }_{1942}{ }^{\text {Funded Deetht }} 1041$		Surplus								Nel Ssus		Net forit Anrsin		
United States Steel Corrp Bethlehem Steel Coron Bethenem Steal Corp. Repubicic steel Corp. National Steel Corp. Inland Steel Co.			$\$ 659,743,900$ $083.574,430$$130,309,141$ $55,001,800$ 5nd 60,979,309	$\begin{aligned} & \$ 65,7,7,400 \\ & \hline \end{aligned}$			57,865,564 37,360,000		$\$ 412,30,125$ $107,842,981$ $51,165,68$					\square	$\begin{aligned} & \text { 4.97 } \\ & \hline 6.97 \\ & 6.85 \\ & \hline .814 \\ & \hline 8.18 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.64 \\ & \hline . .67 \\ & 8.07 \\ & 8.17 \\ & 10.97 \\ & 10.36 \\ & \hline \end{aligned}$		 202,755,1		$\begin{aligned} & \text { NA } 5.8 \\ & 5.50 \\ & 8.83 \\ & 7.33 \end{aligned}$	
	$\begin{aligned} & 1,609,467 \\ & 1,675,008 \\ & 590,559 \\ & 509,917 \\ & 44,698 \\ & 4,68 \end{aligned}$						$8,220,864$ $18,892,000$								$\begin{aligned} & 4.79 \\ & \hline \end{aligned}$	$\begin{array}{r} 7.85 \\ \hline 8.06 \\ 8.06 \\ \hline .38 \\ 10.02 \\ \hline \end{array}$			$\begin{aligned} & 4.32 \\ & 4.73 \\ & .370 \\ & 3.50 \\ & 2.50 \end{aligned}$	$\begin{aligned} & 7.18 \\ & \begin{array}{c} 7.18 \\ \hline .18 \\ 5.16 \\ 5.82 \end{array} \end{aligned}$	
Alleglenn Lulltum Steel Corp Wiidkrire spencer steel Co Kinstess ron \& Stel Corp.		$1,256,251$ 39231 49,316 962,312 757,632			$\begin{gathered} 2,838,800 \\ 5,972,000 \\ \text { None } \\ \text { N,85,600 } \\ \text { None } \end{gathered}$	$\begin{gathered} 2,838,800 \\ 5,972,000 \\ \text { None } \\ \text { I, } 189.088 \\ \text { None } \end{gathered}$									$\begin{gathered} 14.9 \\ \hline 7.90 \\ \hline 2.67 \\ \hline 15.81 \\ \hline 1.31 \\ \hline \end{gathered}$	$\begin{gathered} 16.70 \\ 8.40 \\ 8.57 \\ 2 A .01 \\ 17.63 \end{gathered}$		$\begin{aligned} & 91,277,999 \\ & 31,94,516 \\ & 25,516 \\ & 17,645.376 \\ & 17,64,559 \end{aligned}$		$\begin{aligned} & 5.8 \\ & 5.10 \\ & \text { N } 10 \\ & \text { N.10 } \\ & 10.29 \end{aligned}$	
											$\begin{aligned} & 15,52,1,164 \\ & \hline \end{aligned}$	$\begin{aligned} & 11,497,8,87 \\ & 11,850,060 \\ & 14,220,123 \\ & 15,48,640 \\ & 6,721,477 \\ & \hline \end{aligned}$	$\begin{gathered} 73,279 \\ \hline \end{gathered}$		$\begin{aligned} & \substack{4.76 \\ 8.86 \\ \hline \\ \hline 8.81 \\ 5.84 \\ 5 \\ \hline} \\ & \hline \end{aligned}$	$\begin{gathered} 3.99 \\ 14.97 \\ 8.90 \\ 1.80 \\ 11.31 \\ \hline \end{gathered}$	$\begin{aligned} & 17,777567 \\ & \hline \end{aligned}$	Pi	$\begin{aligned} & 3.47 \\ & \frac{3.47}{2.91} \\ & 2.1 .14 \\ & 2.67 \\ & 2.67 \end{aligned}$	2.56 8.58 $\begin{array}{l}2.78 \\ 3.78 \\ 4.92\end{array}$	Graite City Steel C_{0} Continental Steel Corp Laclede Steel C
	${ }_{\text {l }}^{1683,565}$	${ }_{565,620}^{18,565}$	5,677,825	5,676,200	$\xrightarrow[\substack{\text { 75,000 } \\ \text { None }}]{ }$	$\xrightarrow[\substack{75.000 \\ \text { None }}]{\text { cosem }}$	(11,085, 6 ,241	1595, 78,20008	$\begin{gathered} 2,355,599 \\ 18,870,574 \end{gathered}$	$2,4113,395$ $17,180,988$	${ }_{\text {c, }}^{3,999,765}$	${ }_{\substack{4,104,423 \\ 38,35,388}}$			${ }_{9.44}^{3.59}$	${ }_{\substack{12.30 \\ 7.99}}$	$\xrightarrow{12,208,193}$	${ }_{\substack{11,55,8,822 \\ 3,9241,034}}$	${ }_{4}^{1.205}$	3.90 5.83	westem Steel \& Wire orado Fuel \& Iron Cor
Total (or average).	31,825,684	31,53,806	$\frac{1,451,947,201}{}$,42,129,481	665,587,900	\$665,46,500	\$870,907,328	\$771,026,388	55,894,886	\$993,988,559	\$3,440,152,975	\$, 773,572,482	\$218,225,400	\$304,846,259	$\overline{5.68}$	$\overline{7.87}$	$\overline{\$ 3,644,209,069}$	${ }_{\$ 2,937,306,593}$	3.14	5.44Total (or average)

					Dividene. Priai eea				Diniden faper		Operatig Rate		T2 Toul Tanes		${ }_{942}$ Toat Asats						
						$\begin{aligned} & \text { S7.000 } \\ & \text { f.0.0. } \\ & \text { Non } \\ & \text { None } \\ & \text { None } \end{aligned}$		$\begin{gathered} \$ 10.45 \\ \hline 9.85 \\ \hline, 87 \\ \hline 7.75 \\ 9.08 \end{gathered}$	$\begin{aligned} & \$ 4.00 \\ & 6.00 \\ & .0 .50 \\ & 3.00 \\ & 3.50 \\ & \hline 4.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \$ 4.00 \\ & \hline 6.00 \\ & .0 .00 \\ & .2 .20 \\ & \hline .200 \end{aligned}$	$\begin{gathered} \mathrm{NA}, \\ 98 .{ }_{2} \\ 9 \mathrm{NA} \\ 102.3 \end{gathered}$	$\begin{aligned} & \text { NA } 1.5 \\ & \text { on. } \\ & \text { 9NA } \\ & 103.7 \end{aligned}$						$\$ 783,460,857$ $388,819,038$ 156,411,142 $74,449,161$			
					$\begin{gathered} 5.00 \\ \hline 5.50 \\ \text { S.00 } \\ \text { 1.7.75 } \\ 5.00 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 3.50 \\ & 5.50 \\ & 5.00 \\ & 5.75 \dagger \\ & 5.00 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.50 \\ & 5.51 \\ & \hline 5.19 \\ & 7.26 \\ & 7.26 \end{aligned}$	$\begin{aligned} & 9.77 \\ & \hline 1.71 \\ & 1.75 \\ & 1.54 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline .5 .500^{20} \\ & \text { a.5.50 } \\ & \text { No.0ne } \\ & 2.00 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.60 \\ & 3.00 \\ & \text { 2.00 } \\ & \text { No.on } \\ & 1.000 \end{aligned}$	$\begin{gathered} 102.8 \\ \hline 9.8 \\ 977 \\ \mathrm{NA} \\ \mathrm{NA} \\ \hline \end{gathered}$	$\begin{aligned} & 98.7 .3 \\ & 10.3 \\ & 9.9 \\ & \text { NA } \\ & \text { NA } \\ & \hline \end{aligned}$						$21,1,15,100$ $60,257,280$			Jones \& Laughlin Steel Corr. Wheeling Steel Corp Pittshurgl) Stecel Co Steel Co of Co Crucible Stee Co. Amenic
Allegheny Ludlum Steel Corp. Wickwire Spencer Steel C_{0} Rustless Iron $\&$ Steel Corp. Keystone Steel \& Wire C					$\begin{gathered} 7.00 \\ \hline \text { N.00 } \\ \text { None } \\ \text { Nove } \\ \text { None } \\ \hline \end{gathered}$	$\begin{aligned} & 7.00 \\ & 5.00 \\ & \text { Noone } \\ & 2.50 \\ & \text { None } \\ & \hline \end{aligned}$		$\begin{aligned} & 3.86 \\ & \hline 8.40 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.00 \\ & \hline 1.00 \\ & 0.75 \\ & 0.125 \end{aligned}$	$\begin{aligned} & 2.25 \\ & \hline 1.50 \\ & 0.50 \\ & 0.05 \\ & \hline .05 \\ & \hline \end{aligned}$					$48,081,263$ $22,71,723$ $21,20,2,41$ $18,486,994$ $18,486,994$ $12,658,056$	43,688145 29 11,833,30	$28,187,214$ $11,50,521$ 1 1,692021 $11,590,639$ 4,710,50	$9,155,963$ 4,169798			Allegheny Ludlum Steel Corr Wickwire Spencer Steel Co Keystone Steel \& Wire Co
Lacelede Steel Co.		$\begin{aligned} & 1,49,2692,59 \end{aligned}$			$\begin{aligned} & \text { None } \\ & \text { None } \\ & \text { No.on } \\ & \text { fone } \\ & \text { None } \end{aligned}$	$\begin{gathered} \text { None } \\ \text { None } \\ \text { onoo } \\ \text { foon } \\ \text { None } \\ \hline \end{gathered}$	$\begin{aligned} & 1.61 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.1 .51 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.35 \\ & 0.50 \\ & .2 .50 \\ & \text { No.ne } \\ & 2.2 .25 \end{aligned}$	$\begin{aligned} & 100.6 \\ & \hline 9.3 \\ & 9.5 \\ & 9.5 \\ & \mathrm{NA} \\ & \hline \end{aligned}$	$\begin{aligned} & 105.1 .1 \\ & \hline 74.4 \\ & 9.5 .4 \\ & \mathrm{NA} \end{aligned}$									Granite City Steel Co. Cottikens Steel Co. Continonal Steen Alan Wood Steel Co.
Northestern Steel \& Wire Co.	$\begin{array}{r}148,468 \\ \hline 2,580,135 \\ \hline\end{array}$		S,	None	$N00 None$	$\xrightarrow{\substack{7.00 \\ \text { None }}}$	${ }_{0}^{0.85}$	${ }_{4}^{2.70}$	$\stackrel{\text { None }}{1.75}$	$\stackrel{\text { None }}{\substack{1.00}}$	${ }_{98.0}^{52.6}$	$\stackrel{40.1}{79.0}$	${ }_{\substack{\text { 4,626,662 }}}^{661,346}$	$\frac{472,484}{2,331,344}$	$5,686,759$ $52,221,080$	$\begin{array}{r} 5,676,226 \\ 47,075,157 \end{array}$	$1,962,430$ $24,850,564$	1.1.47,729	${ }_{\substack{1,396,842 \\ 13,105,334}}$	$1,097,386$ $5,743,038$	orthwestern Steel \& Wire Co TCulorado Fuel \& Iron Corp
Toti	\$187,800,166	277,	\$43,069,257	542,965,016			\$4.55	\$7.44					\$700,731,73	\$524,136,611	\$5,115,415,163	$\overline{\$ 4,819,810,601}$	$\overline{52,263,902,545}$	$\overline{\$ 1,97,316,988}$	\$975,416,353	\$770,226,064	Total (or averag

Uniform Price Adjustment Policy Adopted by Procurement Agencies

UNIFORM policies of renegotiation of war contracts have been adopted by the Army, Navy, Treasury and Maritime Commission. The move is designed to eliminate the objection of industries that the price adjustment methods and policies of the four procurement agencies varied widely and caused unnecessary loss of time and effort in collecting data to be submitted.
In a joint statement the four agencies said that "in the present emergency the existence of excessive profits does mot necessarily indicate the contractor has taken undue advantage of the government or that the contracting officers have failed to exercise good judgment under all the circumstances
"Industry has been asked to produce war equipment for which accurate cost datia did not or does not exist. Under the circumstances, costs and profits, at the time contracts are made may, at best, represent estimates. As a result, contractors, in many instances are left with profits which they neither anticipated nor wish to retain."

The law provides the procurement agencies and the contractors will determine, by agreement, the amount of these profits which exceed a fair margin.

Broadly speaking the following principles have been agreed upon by the four buards in determining excessive profits:

1-That the stimulation of quantity production is of primary importance.

2-That reasonable profits in every case will be determined with reference to the particular performance factors present without limitation or restriction by any fixed formula with respect to rate of profit or otherwise.

3-That the profits of the contractor ordinarily will be determined on his war business as a whole for a fiscal periol, rather than on specific contracts separately, with the possible exception of certain construction contracts. Fixed price contracts are negotiated separately from fees on cost-plus-fixed-fee contracts.

4-That as volume increases the margin of profit should decrease. This is particularly true in those cases where the amount of business done is abmormally large in relation to the amount of the contractor's own capital and companyowned plant, and where such production is made possible only by capital and plant furnished by the government.

5-That in determining what margin of profit is fair, consideration should be given to the corresponding profits in pre-war base years of the particular con-
tractor and for the industry, especially in cases where the war products are substantially like pre-war products. It should not be assumed, however, that under war conditions, a contractor is entitled to as great a margin of profit as that obtained under competitive conditions in normal times.

6-That the reasonableness of profits shall be determined before provision for federal income and excess profits taxes.

7-That a contractor's right to a reasonable profit and his need for working capital should be differentiated. A contractor can not be expected to carn excessive profits on war contracts merely because he lacks adequate working capital in relation to a greatly increased volume of business.

More Metalworking Advisory Committees Appointed by WPB

New industry advisory committees organized in the metalworking field by the War Production Board include:

Cranes and Iloists

John S. Chafee is government presiding officer, members: S. Buckley, Shepard Nilus Crane \& Hoist Corp., Montour Falls, N. Y.; J. M. Etienne, Cyclops Iron Works, San Francisco; II. T. Florence, The Cleveland Crane \& Enginecring Co., Wickliffe, O.; Gerald Frink, Washington Iron Works, Seatle; W. Marnischfeger, Harnischfeger Corp., Milwaukee; Hoyt E. Hayes, Industrial Brownhoist Corp., Bay City, Mich.; C. B. Veit, Wright Mfg. Division, American Chain \& Cable Co. Inc., York, Pa.; Stanley M. Hunter, Amerienn Hoist \& Derrick Co., St. Paul, Minn; R. B. Louden, The Louden Machinery Co., Fairfield, Iowa; J. R. McGiffert, Clyde Iron Works Inc., Duluth, Minn.; J. E. Minty, Manning, Maxwell \& Moore lnc., Muskegon, Mich.; W. W. Peattie, Northern Engineering Works, Detroit; Edgar C. Rice, Whiting Corp., Harvey, III.

Welded, Weldless Chains

Conrad A. Goldstrohm is government presiding officer, members: Frink A. Bond, The MeKay Co., Pittsburgh; George Camphell, Intormational Chain \& Mfg. Co., York, Pa.; L. D. Cull, The Cleveland Chain $\&$ Mfg. Co., Cleveland; F. G. Hodell, The Hodell Chain Co., Cleveland; Edgar Littman, Nixdorf-Krein Mfg. Co., St. Louis; Theodore Russell, J. M. Kussell Mig. Con, Naugatuck, Comn.; Charles C. Swartz, The II \& O Chain Co. Inc., South Norwalk, Comn-; E. M1. Taylor, S. G. Taslor Chain Co., Hammend, Ind.; J. S. Butler, American Chain Division, American Chain \& Cable Co. Inc., York, Pa.; A. L. MeKinnon, Columbus McKinnon Chatin Corp., Tonawanda, N. Y.

Electric Soldering Iron Industry

Max Coe, general manager, Stanley Tools, New Britain, Conn.; A. L. Johnson, Hexacon Electric Appliance Co., Roselle Park, N. J.; H. W'. Maltz, president, Nu-Tone Laboratories Inc., Chicago; R. C. Persons, sales manager, Vasco Electric Mfg. Co., Los Angeles; E. W. Doherty, vice president, American Electrical Heating Co., Detroit; Walter E. Kuch, president, Drake Electric Works, Chicago; F. E. Merriman, general manager, Vulcan Electric Co., Danvers,

Mass.; L. P. Young, Electric Soldering Iron Co., Deep River, Comn.

Steel Packaging

Govermment presiding officer is E. G. Howman, Members are: C. H. Bull, Jones \& Lalughlin Steel Corp., Pittsburgh; E. 1. Burke, Hepublic Steel Corp., Cleveland; C. A. Burkhalter, Wheeling Sicel Corp Va.; A. W. Delour Great inke Detroit: $\&$ Delour, Great Lakes Steel Comp., Metroit; Co. M. Dorenbusch, American Rolling Aill Co., Anddetown, O.; M. L. Eversole, Steel Co., St. Louis; C F F M. K. Keas, Laclede Steel Co., St. Louis; C. F. McBride, Pittsburgh Steel Co., P'ittsburgh; C. E. Miller, United States Steel Corp., Pittsburgh; F. N. Pattengell, Youngstown Sheet \& Tuhe Co., Youngstown, O.; II, II, Pratt, Crucible Steel Co. of America, New York; F. M. Starr, Bethlehenı Steel Co.,
Bethlehem, Pa. Bethlehem, Pa.

Warns "Black Market" in Tin Must Be Abolished

Unauthorized sales of tin and the continued use of the metal for purposes that are prohibited by the WPB's tin conservation order will not be tolerated, Erwin Vogelsang, director, Tin-Lead Division, declared. Black market operations in tia must and will be stopped.
The newly-formed Tin Products Industry Advisory Committee was summoned to Washington recently to discuss the conservation of tin.

Since all or nearly all nonessential uses of tin have already been entirely stopped, the principal problem now facing the industry and WPB is that of conserving the existing limited socks.

Members of the Tin Products Industry Advisory Committee: H. C. Colket, North American Smelting Co., Philadelphia; Roger H. Cutting, Northwest Lead Co., Seattle; R. A. Gardiner, Gardiner Metal Co., Chicago; George Heaning Jr., Belmont Smelting \& Refining Works Inc., Brooklyn, N. Y.; Ralph Jacobson, Rotometals Inc., San Francisco; Lazarrus Muscat, United American Metals Corp., Brooklyn, N. Y.; E. L. Newhouse Jr., Federated Metals Division, American Smelting \& Refining Co., New York; P. C. Ripley, Kester Solder Co., Chicago; Fletcher W. Kockwell, National Lead Co., New York; J. A. Stone, Division Lead Co., Chicago. Board of Economic Warfare is reguesting that applicants for export licenses utilize existing frozen and distressed tin plate wherever possible to take care of export requirements. In those instances where applicants are willing to comply with this request but cannot locate existing stocks of tin plate of the specifications desired, BEW is asking them to commmicate with its Requisitioning Division of the Olfice of Exports.

William Loren Batt, vice chairman, War Production Board, received the $\$ 10$,000 Philadelphas/Award recently as the citizen who perforined the most distinguished service fote the community in 1942. The award was established in 1921 by the lite Edward W. Bok.

Road Builders Propose Five-Year \$15,000,000,000 Construction Plan

"IF THE WAR should end in the near future, one-half of our working population, plus millions of our military forces, would be looking for jobs."
Upon this premise, the American Road Builders' Association, Washington, advocates a planned postwar highway construction program costing $\$ 3,000,000,000$ a year for at least five years.

Highway construction, the association says, while providing needed facilities, offers an excellent opportunity for the absorption of manpower. "These objectives can be reached only by having available a shelf of projects, complete with plans, specifications and cost estimates, ready for contract at the end of the war. Neglecting to do this would result in the wasteful expenditure of funds for improvised relief work."

Every state, county, city and regional area should have a planned program or highway construction, the association believes. Reserve funds should be accumulated to finance postwar projects or to participate with the federal government on a matching or loan basis. Wasteful spending on improvised work programs will be the result of neglecting to provide plans, specifications and cost estimates for construction projects to be
carried on after the war.
Airport construction, the association continues, must become ata important part of the total construction program in the postwar years. Necessitating, as it does, the use of the same materials and equipment as highway construction, and the same type of engineering and contracting, it actually becomes a part of the highway program. While there is no precedent on which to base a farecast, it is not only possible but probable that there will be an expansion of air service in the 10 -year period following the war, comparable to that of highway transportation following the last war. "The construction of airports will be a necessary part of our construction program."

The association's postwar program envisages the following conclusions:

1. There mast be no unemployment.
2. Construction volume must be maintained at high level.
3. There must be a long-range highway construction program.
4. There must be no improvised relief work.
5. There must be a shelf of highway projects of sufficient size to insure an aunual $\$ 3,000,000,000$ program for at least five years.

Billions in Government-Owned Manufacturing Plants Pose Problem

DISPOSAL of government owned manufacturing facilities is one of the great domestic postwar problems, Secretary of Commerce Jesse H. Jones, declared at the sisteenth annual Army Day dimner in New York recently. He urged govermment and private business to get together on plans to utilize ensugh to assure a high level of employment, without resort to government ownership or operation and without sacrifice of what the government has built up during the war.

The Reconstruction Finance Corp, and other ageneies under his supervision have authorized wartime expenditure of more than $\$ 20$ billion. He sald these activities extended to "every corner of the earth where we might obtain critical materials necessary for fighting a world war, and where we might buy things in competition with the Axis powers, necessary and vital to them
"In addition to plants built directly by the War and Navy departments and the Maritime Commission, Defense Plant Corp., a subsidiary of RFC, has built and equipped 1479 plants and other facilities costing approximately $\$ 7$ billion, all of which are owned by Defense Plant
"Aluminum and magnesium metals, for the manufacture of which we will have a tremendous capacity, are destined to play a very important role in our future economy, as also is synthetic rubber. We have an amual productive capacity of $2,150,000,000$ pounds of aluminum (which will make more than 228,000 transport planes), more than half of which would be owned by the govemment, as against $327,000,000$ pounds of privately combed in 1939.
"We will have an annual productive capacity of $600,000,000$ pounds of magnesium, of which the government will own almost 90 per cent, as against 6,700 ,-

000 pounds privately owned in 1939."
Mr. Jones said the government's investment in facilities for the production and manufacture of aluminum and aluminum prodncts will the in excess of $\$ 725,000,000$; of magnesium, $\$ 410,000$,000 ; synthetic rubber, $\$ 650,000,000$.
"We will have invested in plants and facilities for the production and manufacture of airplanes, airplane engines, parts, instruments and accessories, \$2,$640,000,000$. This is in addition to all such privately owned plants and faciliters; alcohol and chemicals, more than $\$ 100,000,000$; aviation gasoline, $\$ 125,-$ 000,000 ; plants for the manufacture of machine tools, $\$ 80,000,000$; plants for the mining. and processing of copper, lead, zinc and other minerals, $\$ 160,000$,000 ; plants for the manufacture of guns, ammunition, tanks and armor, $\$ 440,000$,000 ; radio equipment and scientific instruments, $\$ 60,000,000,000$; shipbuilding, $\$ 150,000,000,000$; and steel and pig iron, \$710,000,000."

Mr. Jones said that government-owned steel plants will amount to about 10 per cent of the total in the United States.
"By the end of the war our productive capacity properly used can save the world, and improperly applied could become an economic menace," he declared.

Minerals Distribution

To Affect Future Peace

Growth of industrialization has caused the interdependence of nations in mineral supplies to increase sharply and creates a crucial problem of postwar international relations. This is brought out in a study of world minerals and world peace by the Brookings Institution, Washington.

The study, conducted by C. K. Leith, J. W. Furness, and Cleona Lewis, deals with physical, economic, and political trends in the field of minerals throughout the world. It takes up the distribution of each important mineral, discussing the output of the known deposits and relating them to the peace needs and war demands of the varions countries.

No nation is self-sufficient in minerals or is likely to be, but those which most nearly approach this situation are the United States, the British Empire, and Russia. Within their boundaries, the United States and the British Empire accounted for about 57 per cent of the world production in 1939. To this may be added commercial control of production elsewhere, bringing the total to around 75 per cent.

In 1939, the Axis powers produced a little less than 11 per cent of the
(Please turn to Page 155)

Index of Activity Reduced Slightly

Steel's index of activity tumed downward to 177.9 for the week ended April 3. Reports of slightly contracted industrial output combined with decreased carloadings and lower electric power distribution to reduce the index to a level barely above that of the first week of January, notwithstanding the consistently high rate of steel production.

The usual spring decline in output of electrical energy is now apparent and the drop in power consumption during the latest week was marked. Distribution of kilowatt hours was $3,889,858,000$, or $38,312,000$ units less than in the previous week and the lowest total for any full week since Dec. 26. According to the Edison Electric Institute, the latest figure is 16.2 per cent above the to-
tal reported for the corresponding week of $1942,3,348$,608,000 kilowatt hours.

Loading of revenue freight for the period ended March 27 put 787,360 cars in use. This was 20,926 cars, or 2.6 per cent, under the comparable week last year. For the period ended March 20 loadings totaled 763,134 . Pre. liminary reports for the seven days since March 27 indicate another decline in car use.

In January net operating income of major railroads was only 62 per cent of the December amount. The total, $\$ 105,304,000$, compares with $\$ 68,966,000$ in January, 1942 , and with $\$ 62,020,000$ in the same month of 1941 . Aggregate earnings of the 'roads reached a peak of $\$ 184,-$ 680,000 in October last year and, after receding to a little less than $\$ 150,000,000$ in November, established a secondary high point in the final month of the year with $\$ 170,851,000$.

By-product coke output in January gained 881 tons over daily average production in December. One year farlier, daily coke output averaged 168,508 tons.

STEEL'S index of activity declined 1.3 points to 177.9 in the week ending April 3:

 curately refect expanding steel production

Stee! Ingot Operations

(Per Cent)

Week ended	1943	1942	1941	1940
April 3	99.5	98.0	99.5	61.5
Mar. 27	99.0	97.5	99.5	61.0
Mar. 20	99.5	95.5	99.5	62.5
Mar. 13	99.0	95.5	98.5	62.5
Mar. 6	99.5	98.5	97.5	63.5
Feb. 27	99.5	98.0	96.5	65.5
Feb. 20	99.5	96.0	94.5	67.0
Feb. 13	99.0	97.0	96.5	68.0
Feb. 6	98.5	98.0	97.0	71.0
Jan. 30	98.5	97.0	97.0	76.5
Jan. 23	99.0	97.0	95.5	8155
Jan. 16	99.0	96.0	94.5	84.5
Jan. 9	97.5	98.5	93.0	86.0
Jan. 2	97.5	97.5	92.5	86.5
Week ended	1942	1941	1940	1939
Dec. 26	99.0	93.5	80.0	75.5

Electric Power Output

 (Million KWH)| k en | 1943 | 1942 | 1941 | 1940 |
| :---: | :---: | :---: | :---: | :---: |
| April 3 | 3,890 | 3,349 | 2,779 | 2,381 |
| Mar. 27 | 3,928 | 3,345 | 2,802 | 2,422 |
| ar. 20 | 3,947 | 3,357 | 2,809 | 2,424 |
| Mar. 13 | 3,945 | 3,357 | 2,818 | 2,460 |
| Mar. 6 | 3,946 | 3,392 | 2,835 | 2,464 |
| Feb. 27 | 3,893 | 3,410 | 2,825 | 2,479 |
| Fel. 20 | 3,949 | 3,424 | 2,820 | 2,455 |
| Feb. 13 | 3,939 | 3,422 | 2,810 | 2,476 |
| Feh, 6 | 3,960 | 3,475 | 2,824 | 2,523 |
| Jan, 30 | 3,977 | 3,468 | 2,830 | 2,541 |
| Jan. 23 | 3,974 | 3,440 | 2,980 | 2,661 |
| Jan. 16 | 3,952 | 3,450 | 2,996 | 2,674 |
| Jan. 9 | 3,953 | 3.473 | 2,985 | 2,888 |
| Jan. 2 | 3,780 | 3,289 | 2,831 | 2,558 |
| Week ended | 1942 | 1941 | 1940 | 1939 |
| Dec. 26 | 3,656 | 3,234 | 2,757 | 2,465 |
| Dec. 19 | 3,976 | 3,449 | 3,052 | 2,712 |

Freight Car Loadings
(1000 Cars)

Bituminous Coal Production
Daily Average

Week	ended	19.43	1942	1941	1937
Mar.	27	2,100)	1,858	1,950	1,895
Mar.	20	2,060	1.825	1,879	1,871
Mar.	13	2,100	1.8.42	1.8.4-4	1,883
Mar.	6	2.125	1.693	1.791	1,851
Fob.	27	2,113	1,878	1,736	1,897
Feb.	20	2,097	1,833	1.736	1,807
Feb.	13	2.033	1,817	1,736	1,696
Feb.	6	1,980	1,793	1,683	1,634
Jan.	30	1,900	1,866	1,684	1,466
Jan.	23	1.867	1,886	1,656	1,605
Jan.	16	1,929	1,883	1,809	1,781
Jan.	9	1.838	1,842	1,691	1,780
Jan,	2	1.880	1,960	1,782	1,764

[^3]

Gear Sales Index
$(1928=100)$

	1943	1942	1941	1940	1989
Jan.	268	288	259	123	91.0
Feb.	303	353	262	116	86.0
Mar.		455	288	114	104.0
April		378	292	128	88.0
May		421	273	133	93.0
June	.	373	299	129	90.0
July	.	344	298	141	89.0
Aug.		380	276	191	96.0
Sept.		351	243	183	126.0
Oct.		263	261	216	141.0
Nov.		359	241	173	126.0
Dec.		300	243	208	111.0
Ave		355	269.6	155.0	103.0

	By-Product Coke Output (Daily Average)			
	1943	1942	1941	1940
Jan.	174,04.4	168,508	159,129	151,841
Fel.		168,414	160.789	188,508
March		167,733	161,268	133,056
April		168,960	149,144	132,812
May		170,187	156,318	136,897
June		170,593	161,201	145,821
July		170,244	161,731	149,005
Aug.		171,443	161.709	151,035
Sept.		172,110	160,193	154,247
Oct.		172,211	160,344	156,118
Nov.		173,029	161.116	158,331
Je.		173,163	167,30.4	157,743
Total		170,549	160,037	147,157

Industrial Production

Federal Reserve Board's Index
$(1935-39=100)$

SCRAP was rumning at the remarkably low value of only a few per cent the day the writer visited the Servel aluminum foundry at Evansville, Ind. It is not unusual for a foundry pouring this complicated and critical casting to have to scrap as much as 30 per cent. Obviously only the utmost in advanced foundry practice can hold serap to a figure of only a few per cent. (Actual value deleted by censor). But before detailing the know-how, let's examine the howcome of Servel's foundry practice.

As a leading manufacturer of gas appliances, Servel ranked as one of the top American industries in 1939. As is typical of Louis Ruthenburg, president, he discerned the possibility of total conversion to war production back in 1939. While his plant was more or less vulnerable in that Servel production did not require machine tools particularly adaptable to war production, he knew he had a facile and adaptable staff. Ite mustered it promptly to the task of negotiating war contracts of any sensible nature that would maintain and increase Servel productivity.

Going everywhere in its search, this stalf studied blueprints on over 1000 items. Today the plant is jam-packed with a diversity of war production work in which all previous employment records have been broken-wing sections for Army aircraft, breech casings for anti-aircraft guns, burners for quarter-
master ranges, even the wood mill is sawing cargo bodies for army trucks. Not the least of these undertakings is the one to be described. . .the intricate sand casting of aluminum cylinder heads for Jacobs and Pratt \& Whinney aircraft en-gines-one of the most difficult foundry jobs to be found because of the many thin, closely spaced fins employed to dissipate heat from the cylinder heads.
In 1941, W. E. Baker, Servel's able vice president in charge of manufacturing, grabbed Grant Fink away from his job as manager of Rural Sales and, as his assistant, set him to finding and expediting war work. Fink's success is a good answer to those who depreciate the contribution of sales executives to war effort.

Servel had a grey iron and aluminum foundry in which it had at one time made all its evaporators, casting aluminum around a stcel pipe coil-a delicate jol. This foundry was lying practically idle. That promptly bothered Fink. Whenever he wrote a letter to anyone, anywhere, he would mention that Servel also had aluminum foundry facilities. Thus, when corresponding about a pilot seat assembly (which interested Servel in that it appeared to fit into its tube forming facilities, some of the most extensive in the world because of Servel refrigerator construction), Fink claused into his correspondence a plug for the idlle foundry. Unexpectedly the plug

Lobbed under with a Washington call that sent Fink, along with Servel's foundry superintendent and metallurgist, hiking to visit one of the largest and most representative foundries making aireraft castings. With this data rounded into Servel know-how, Fink negotiated a massive contract with Jacobs Aircraft Engine Co., Pottstown, Pa., handled negotiations in Washington for equipment and material necessary for foundry enlargement, and is now expediting all requirements with the foundry in full pour.

That is the how-come.
L. V. Jewell, superintendent of Servel's pattern shop, grey iron and aluminum foundry, now has well over 200 employes under his control. He is the man who me'ted down the know-how of all the plants visited, added much from his own rich experience and came out with the present ability to hit a low scrap percentage. Fig. I shows Mr. Jewell and his staff.

This Jacobs cylinder head is cast in Alcoa aluminum alloy, casting dimensions are plus $1 / 32$-inch, with finish dimensions plus 0.005 -inch. This is a particularly critical sand casting, the barrel being approximately $81 / 2$ inches outside diameter with about three-fourths of its surface finned. These fins are only $1 / 8$ to $3 / 16$ inches apart and vary in depth from $3 / 4$ to over 3 inches. The pouring involves a cope and drag, barrel and barrel core, intake and exhaust

Fig. 1-Supervisory staff at Sercel aluminum foundry: L. to R.-Charles Voyles, pattern shop; Charles Marx, aluminum molding and cleaning; L. V. Jewell, superintendent; L. F. Joest, core room; George Knapp, night supervisor; R. Diefenbach, assistant superintendent

Fig. 2-Setting reinforcing rails in fin body core
Fig. 3-Fin body core after pattern is drawn. Note deep, thin fins in pattern
Fig. 4-Cores for barrel, port and rocker boxes entering core oven

104
rocker and port with a number of related cores. The finished casting weighs 16.6 pounds. An almost identical casting is poured for the Pratt \& Whitney cylinder head, its finished weight being 16 pounds. In finishing the casting about half the original metal weight is cut off and returned as remelt maser .t.
The alloy employed provides superior casting qualities and hizher mechanical properties than are possible with pure aluminum. Through this combination of alloying elements, strength is increased, elongation is reduced, yield strength and hardness is increased. Further increase in physical properties is attained by heat-treating processes. The Servel pouring mixture is approximately 60 per cent remelted gates and sprues and 40 per cent virgin alloy pig.

Aceording to B. A. Daley, Servel's chief metallurgist, copper, nickel and magnesium are the alloying constituents chiefly responsible for the properties of the alloy. The particular combination of copper, nickel and magnesium in this alloy makes it responsive to solution and precipitation or aging heat treatments which materially increase the physical properties wer those obtained in the "as cast" condition. In acdition, this alloy analysis gives castings that retain their strength well at elesated temperatures, besides offering good bearing characteristicsfeatures which make the alloy well suited
for use in aircraft engine cylinder heads. Titanium appears in the analysis as a residue from the use of a titmium-rich aluminum composition which is added to the melt just before pouring in order to control grain size. Servel not only works toward the fine grain so greatly desired in highly stressed aluminum castings by careful control of maximum temperature throughout the melting practice, but insures fine grain by making this small titaniom addition to the melt just before pouring.
An important step in the production of eylinder heads of this amalysis is the Huxing of the melt so that sound castings, free from dross and porosity are shtained. Fluxing is accomplished by bubbling chlorine gas through the melt just prior to the titanium addition before pouring. This chlorinating practice is a particularly effective means of cleaning the melt in that it combines a chemical fluxing action with mechanical agitation and sweeping actions.

Servel foundry practice on this Jacobs cylinder head involves a sequence of eighteen major steps. To give an overall picture, these are: (1) An elevated sand mixer flows down to (2) a core making battery which molls cope, drag and related cores that are racked (3) into baking ovens and, (4) having been cleaned, are conveyed by cars on a monorail system to (5) the assembly

Fig. 5-Fin body cores leaving baking oven. Racks are suspended from overhead monorail system by heavy springs, assuring minimum cibration
Fig. B-Spraying fin body core
Fig. 7-Gaging the barrel core, left and using an acetylene flame to smoke the fin body mold at right
Fig. 8-Workman at left is blowing loose sand from a fin body mold while worker at right is setting a rocker-arm-box core in place in a fin body mold

bench uporn which all related parts are joined together in a (6) clamped cope and drag, the resulting mold being rolled on a gravity conveyor system into (7) the pourint zonc. Resulting celstings (8) are knoeked out and removed (9) to bandsaws where gates and risers are removed, after which (10) initial samd blasting brings the castings to (11) the grinders. Next they are (12) chipped and given a (13) reamed finish, :ifter which they receive (14) : final satin finish by sand Dlasting and proceed to (15) final inspection. From there they are trucked to (18) heat treat and thereafter are (17) crated in cardboard cartons and (18) shipped to the Jacobs plant in Pemssylvania.
Mr. Jewell, Servel superintendent, has on his staff: R. E. Diefenbach, assist:me supperintendent; L. F. Joest, core room foreman; Charles Marx, in charge of processing, pouring, assembly and heat treat; Gearge Knapp, gencral might superintendent; C. Voyles, foreman of the pattern shop. See Fig. 1. The foundry operates its own pattern shop with 11 patternmakers. A large additional installation of equipment has more than doubled its capacity.
Perhaps the main factor contributing to the Servel record of low scrap is its sand-mixing formula and procedure-the result of exhanstive experiments in which sand mixtures of original design have been perfected. Three mixes are involved: (1) Facing sand for fins and cylinder heads; (2) backing sand for cylinder heads; (3) core sand for bairrel, ricker and prorts.

The fins of the mold are fortified with 18 -gage core wire nails, 3 incles long,
pointed at each end, 370 of them to at cope or drag. Sce Fig. 2. These molds are produced on Tabor core machines, 22 and 30 -inch sizes, tightly ranmed to prevent rough castrigs. Fig. 3 shows one of these machines. After the molds are mate, they are sprayed on a revolving fixture with core spray while yet green and before groing to the ovens, Figs. I and 5.
The green molds are passed through a bake oven which is automatically comtrolled with Leeds \& Northrup instruments, are taken out and cleaned. Next they are sprayed, Fig. 6, and then are returned to the oven where they are baked. Loxded onto racks which are transpurted by monorail, the varied molds proceed to the assembly benctl.
The rocker arms, barrel and port cores are given a light spriyy after coming from the ovens and then are baked again. Then they go to the asscmbly line or bench.
Sequence of assembly of cores aucl molds is that the drag and cope cores are lifted from the monorail cars to the bench and then are smoked with in acetylene flame, Fig. 7. The barrel is set in : fixture and the port cores are assembled to the barrel, then placed in the drag half of the mold and anchored by wire. This assembly is gaged with a special fixture, Fig. 7, which trues the barrel :and port cores to the body core.
The rocker arm cores, Fig. 8, are secured to the core half of the mold with hot resin.
(Concluded Next Week)

Fig. 9-Making a mold for a test bar. Two test bars are made in each mold
Fig. 10-Pouring test burs. Two test bars are poured from each heat

Using lower grades of

Brass and Bronze Castings

REAS. conservation can be effected by specification changes based on a critical enginesting exarnination of end use. The primary whicetive of that work is a better utilization of available material for maximum efficiency in the war effort. Nimeroins 1 , and M orders of the WPB have shut off comper, tin and other scarce materials from nonessential civilian purposes. Even with this, taking the pieture as a whole and more specifically referring to the primary metals, we do not have sufficient amount of these ma-
terials for our direct and indirect military needs and for items directly concemed with health and safety.

When copper, tin and other metals were cut off from their civilian uses, some of the normal channels in which these materials regularly flowed were closed. As a result lower grades of secondary material are relatively much more available than primary metals.

[^4]Brass mill scrap on the other hand has been routed back to the brass mills for reprocessing. In normal times, copper clippings and similar high purity scrap were used to sweeten, or upgrade, casting alloys. So the ingot makers and the foundrymen have had to work with materials having higher impurities than those to which they were accustomed.

In this connection specifications have been carefully reviewed by Army, Navy, and federal specification committees, the American Saciety for Testing Materials, and the Society of Automotive Engineers. Others, too, have co-operated, including many of the larger industrial companies that write their own specifications. In liberalizing specifications, requirements for virgin metal have been removed, impurity limits have been raised, and specifications for new alloys written so that material currently available could be used to better advantage. The materials engineer thus has given the designing engineer the tools with which he may work. It is the designing engineer's responsibility from here on to make use of these tools in the most effective manner possible. The accompanying chart can scrve as a guide and the table gives a ready cross-reference to the applicable approximately equivalent specifications.

The chart shows most of the important specifications grouped in columns according to the material required by an ingot maker or foundryman. Four classifications are given. All New Metal includes No. 1 and 2 copper as well as electrolytic. High Purity Secondary is exemplified by such items as fired cartridge cases currently used to make regular manganese bronze. In any specification where the lead is equal to or greater than the tin, the tin content of bronzes generally can be introduced into the alloy from secondary sources such as sweated or unsweated radiator cores. Lead is generally the contamination of our secoudary supply that restricts the use of material in our tighter specifications. Such in general. are the considerations governing
(Please turn Page 148)

Sure foot-steady aim!
When the alarm gong sounds "Battle Stations", the slightest slip may mean failure. That is why gun crews on America's "battle wagons" depend on "A.W." Rolled Steel Floor Plate. In vital war plants, refineries, power plants, railroads, "A.W." Floor Plate stops dangerous slipping and falling accidents. Toughest wear will not damage or impair it. Ends floor troubles for good. Write for folder.

Other products include Plates, Sheets, Billets, Blooms, Slabs-Carbon, Copper or Alloy analyses.
ALAH WOOD 5TEEL COIIPAIY
MAIN OFFICE AND MILLS: CONSHOHOCKEN. PENNSYLVANIA: SINCE 1826. District Offices and Representatives:
Philadelphia, New York, Boston, Atlanta, Buffalo, Chicago, Cincinnati, Cleveland, Denver, Detroir, Houston,
St. Paul, New Orleans, Pittsburgh, Roanoke, Sanford, N. C., St. Louis, Los Angeles, San Francisco, Seattle, Montreal.

NOW THAT war production work has largely shifted from the tooling-up stage to the production stage, it has been possible to redesign many fabrications for assembly by resistance welding, thereby utilizing the high production capacities of resistance welding equipment. A few examples of such operations are shown here.

In Fig. 1 steel pieces made by simple blinking and flanging operations are being assembled to form a special crate. The unusual dual-gun upper arm is used in applying multiple spot welds simultaneously. Each of the two guns is equipled with two spot welding tips which make it possible for four welds to be made at a time, since both guns weld simultaneously. The electrode tips are advanced and held against the work by means of air pressure, a special device in each gun dividing the pressure on the work equally between the two tips.

In operation the parts to be joined are laid in position on the lower electrode which is wedge-shaped to present two flat surfaces 90 degrees apart to the work as cam be seen in the insert in Fig. 1. As som as the parts are in position, the operator trips the foot switch initiating the automatic welding cycle. First the air pressure is applied, advancing the elec-
trode tips to the work. Then the automatic electric controls apply the required welding current for the desired time. Next the electrode tips retract and the work is redrawn for another set of welds.

As can be imagined, this setup has an extremely high production capacity. Output of three of these machines, with one operator for each, is approximately 125 completed assemblies per hour. Quality, too, is high for all conditions in welding such as electrode pressure, current and time are controlled and held automatically at the desired values once the control cycle has been set up.

Fig. 3 shows another high production setup for doing a similar job, utilizing special turntable fixtures and portable scissors type pinch guns, not shown. An assembled crate made in this equipment can be seen in the fixture at the right in the foreground, Fig. 3. Two welding guns are utilized on this job, one for each of the two fixtures at the right. The welding work is split np between two operators, each of whom makes a portion of the welds. The third and fourth fixtures are operated at the loading and unloading stations by two other workmen.

Mode of working this setup is as fol-

. . . . speed sheet metal fab-

 rication work, afford rigid quality controlFig. 1-Spot welding ordnance crates made from sheet metal. Two guns, each with two electrode tips, make four welds simultaneously under automatic control. Inset shows arrangement of electrodes
lows: Starting with one operator unloading a completed assembly and a second operator loading a fixture with parts for a new assembly and the two welding gun operators working, as soon as each welder has completed his job, the entire table tip is turned 90 degrees, advancing each of the fixtures to the next work station. Each of these crates requires 32 separate welds.

As can be seen from Fig. 3 the parts are assembled into the fixture for welding by inserting the corner chamnels into the upright guides, resting the cross members on top of these guides and clamping down the flanged-end plate with the hand screw at top of the pivoted cross bar forming part of the fixture.

It will be noted that each fixture is piroted so that it is free to rotate on the table. This allows each fixture to be rotated independently and allowing each operator to handle his portion of the operation in the positions he finds most suitable without interfering with the work going on at the other three stations.

Rate of production with the setup in Fig. 3 is approximately 100 completed assemblies per hour when employing two welding operators and two other workmen at the loading and unloading stations. Thas, with this equipment and four workmen, the output is some 25 assemblies less per hour than the output of three of the machines shown in Fig. 1 where only three operators do almost exactly the same job. However, the output of the setup in Fig. 3 is much greater than that obtainable without the special fixtures.

On certain types of operations it is possible to equip the welding machine with a special shuttle-type fixture to speed the operation. Fig. 4 shows such a sctup.

The item to be made is shown standing against the welder head at the right.

* The world's largest and fastest job galvanizing plant is located right in the middle of the steel industry - within short-haul distance of the world's largest steel plants... It's the logical place to send your materials for galvanizing or pickling and painting!
and fastest THE WORLD'S LARGESTAJOB GALVANIZING PLANT

riambor-Grescy

Fig. 3. (Above)-Top of this table revolves and each fixture revolves, affording two welding stations as well as an unloading and a loading station for assembly of crates similar to those shown in Fig. 1 but made using portable "pinch" guns

Fig. 2. (Above)-Upper and lower electrodes both move toward work held over mandrel to make two welds simultaneously. Automatic control repeats welding cycle continuonsly as long as foot switch is held down, providing rapid "stitching" action

The operation involves welding two chamel reinforcing sections to a flat plate. In Fig. 4 can clearly be seen the guide track and the shutting mechanism by means of which it is possible to have oue assembly underneath the electrode tips at all times while unloading and reloading the other portion of the fixture which shuttles back and forth under the welding head.

In operation the two channels are laid in position in the fixture and the flat plate is placed on top, being positioned accurately by stops at front, rear and ends. The stops at the end facing the other half of the fixture extend over the top of the shect thus hooking over that end of the sheet and holding it down tightly in position on the fixture. The opposite end of the sheet is held in place by a cross bar on top and a quick acting end clamp.

With the fisture at the right as shown in Fig. 4, the operator drops the channels and box end in place and clamps it in position. The fixture then shuttles to the left bringing the work undemeath

the welding head where 16 welds are made automatically by initiating the welding cycle. Each channel is fastened to the plate by means of 8 of these welds. The 16 welding electrodes are advanced against the work and the required pressure maintained automatically by means of individual air cylinders which operate simultaneously from a master control valve connected to the automatic control mechanism.

While the welding eycle is being completed by applying the current in rapid succession from one electrode tip to the lower frame of the fixture in rapid succession, the completed work in the other half of the fixture is being removed and new parts assembled into position.

Now the fixture is shuttled back to the right and a second finished assembly removed and new parts put in place while the welding cycle is being repeat-

Fig. 4. (Above)-Here 16 welding electrodes make sixteen welds in rapid succession under full automatic control. Fixture is shuttle type, sliding work back and forth under electrodes. Photos furnished by Progressive Welder Co., Detroit
ed. Thus only two stations are necessary in this type of shuttling fixture, although there are two loading positions and one welding position. No time is lost in loading. The operator easily handles the loading and unloading operations at both ends of the work table. This particular production setup has an output of some 300 assemblies per hour. Three stations double shuttling setups are being utilized in a considerable number of resistance welding setups to speed operations.
(Please turn to Page 144)

Sized Angles, Channels, Zees, Tees; Structural Angles, Beams, Channels; Plates and Checker Plates; Reinforcing Bars.

Ditrribulars for $\sqrt{1} \frac{1}{3}$ Protected Steal
ROOFING - SIDING - FLASHINGS
Hot Rolled Sheets, Strip, Flats, Bands, Rounds, Squares, Hexagons; Bar-

รifaightiening

heat-treated parts BY TORCH SPOTTIHG

Abstract

This discussion of forch spotting as a straightening method is Section III in a series of four articles on methods of controlling and correcting the distortion that occurs in heat treating certain types of parts. Section I, STEEL, March 15, p. 114, was devoted to oil-hardening steels; Section II, March 29, p. 74, to carburizing steels

By G. B. BERIIEN Chief Metallurgist Lindberg Steel Treating Co. Chicago

ONE OF the newest straightening methods is the use of the acelylene torch for "spotting". This method originally coume into use because conventional straightening practices were unsuited to certain types of parts. In recent years spotting has progressed to a point where it has replaced press straightening on a number of important applications. It is continuously finding a larger field as we become better acquainted with the technique of handling the torch.

Torch spotting is somewhat limited in the types of steels that can be handled successfully lecanse of the ever-present danger of cracking due to the sudden application of heat on a hardened area.

Straight carbon steels respurnd most readily to torch spotting. Next in order are the deep-case low-carbon core carburized steels such as SAE-1020 and 1020-90. Steds of low total alloy, such as SAE-1315X, 3120 and 6115 , also react well to this method. Thus it may be of value in working the new NE steels.

On carburizing steels, it is importaut that the case depths be 0.032 to $0.035-$ inch minimum on average sections, as parts laving lighter cases will not react as well. Cemerally speaking the steel becomes more responsive to the torch as the case depth increases. Sterels of higher earbon cores, such as SAE-3150 and 6140, require such intense spotting to mow them that the softening effect jempardizes the complete hardening job.

Classes of steds which move to a less degree than those mentioned above are

the straight nickel, chromium-molybdenum and chromium-nickel-molybdenum, and straight chromium series (such as SAE-52100). Extremely difficult to straighten by spotting due to danger of cracking are the high-alloy tool steels such as hightecarlom high-chromium, 18 -4-1 and its relations as well as most of the oil-hardening tool steels. Also included here are the stainless steels.

Half the battle in spotting is to learn the correct technique for handling the torch. It should be understood that the surface of the steel actually struck by the cone of the flame is drawn considcrably and therefore the point of application must be kept as small as possible. When no soft spots, however small, can be tolerated, it is obvious that spotting should not be used.

Spotting is always done on the high side of the warp. The work can be placed in centers or laid on a table. In applying the torch to the work, it is important that the fame be applied at a

The technique of applying the torch to the work is all-important in correcting distortion by "spotting". The torch should be brought to the work with a steady direct motion, and at right angles to the surface; held for about a second; withdrawn straight backward
right angle to the surface. Hitting the part once at the highest point will ordinarily suffice to move an average section not exceeding 4 to 5 inches in length. The torch should be brought to the surface of the work with a steady, direct motion.

The time of application is usually about one second. The torch is then quickly withdrawn in a straight backwatrd motion. A watersoaked rag applied to the spot prevents the area of the softened spot from increasing in size. Plunging the part into water is an alternate method of cooling. Then check to determine the amount of movement. If insufficient, the process is repeated, but at a spot approximately $1 / 2$-inch away from the previous one. As experience witl amount of mosement to be expected for a given steel and section is accumulated, two or three spots can be made at one time.

To repeat: Application of the tord should be firm, well timed and at right angles to the work. The torch is almost never played over the surface. An exception to this is the practice of warm-
(Please turn to Page 140)

ORDNANCE QUALITY STEELS

Standard alloy steel for airplane parts, made to Disston's traditional standards of quality. The use of the purest obtainable materials - the careful segregation of scrap-the most modern practice under expert chemical and metallurgical supervision-these result in extraordinarily sound and clean steels in this classification.

GUN QUALITY....

Standard alloy steel for gun barrels, rifle and torpedo parts and $37 \mathrm{~m} / \mathrm{m}$ shot, produced in electric furnaces under precise controls. Experienced personnel and
 modern facilities achieve highly satisfactory results in the manufacture of this steel.

DISSTON ENGINEERS AND METALLURGISTS are always available for consultation and

 technical assistance on any problem concerned with the application of aircraft and gun quality steels. Address your inquiry to Henry Disston \& Sons, Inc., 426 Tacony, Philadelphia, Pa., U. S. A.
> - The Army-Navy " E " has been awarded to the employees of Henry Disston \& Sons, Inc., for high achievement in the production of war materials.

(Continued from Lust Week)
THE BUREAU of Industrial Conservation is stressing the conservation of critical and important materials. Mucls of this is now being used needlessly and unceonomically for dunnage in loading of freight cars. Some idea of this waste can be obtained from the following figures showing material used in dunnage for box cars in 1941: 325,700 feet of lumber, 27,740 tons band iron, 2,080 tons of nails and 10,570 tons of paper. A substantial increase above these figures took place during 1942 because of the increased use of dunnage due to lieavier general loading and shipments of war materials such as shells, bombs,

By E. S. EVANS
President
Evans Products Co. Detroit
etc., which in an unequipped box car require 800 to 1000 feet of lumber per carload.

Crating and boxing in many instances, such as machinery and furniture, can be eliminated in the Utility loader car becanse: The load is held firmly; all slack is taken out; the load is tightened unit by unit; each unit is locked in place. Fig. 6 shows how lightly crated domestic water heaters and space heaters can be shipped with a minimum of packing ma-

Fig 5. (Above)-Utility loaders are saving $\$ 75$ per carload of bombs and shell as well as onefourth loading time on loads like that shown. Operator is locking up a load of 155 -millimeter shells here

Fig. 6 (Left) - Lightly crated domestic water heaters and similar products can be shipped with a minimum of packing material and with assurance against damage
terial by means of a Utility loader. Table I shows comparative cost data on shipping four ordnance items by common and Utility loader cars. Note that savings in use of loader-equipped cars range from $\$ 53.54$ to $\$ 106.45$ per carload.

Flimsier shipping cartons because of defense restrictions are giving rail and truck lines a great deal of trouble. A doubling or even tripling of damage claims is expected to result. The loader reduces this hazard and permits important reductions in quantities of packing materials necessary.

These loaders used in federal arsenals for the intraplant movement of bombs and shells show savings in dumage and its application ranging from $\$ 56$ per carload for bombs to $\$ 106$ per carload for shells, or an average of $\$ 75$ per carload. Fig. 5 shows the cross members holding the first layer of such a load being tightened with a "persuader." Utility loader cars requiring only partial loading equipment are used to transport 500 to 2000 pound bombs.

Time saved in loading and unloading through elimination of milling, hauling, cutting and fitting of dunnage in box cars also is an important element ill speeding up the flow of war goads. In government arsenals it was found that one-quarter of the loading time was saved on intraplant shipment of shells through dunnage elimination due to the use of the loader. A time study of a

OSTUCO "rides the dusty trails" with our mechanized Army

0UR all out Army is heading Hitler-wards on whecls because this war won't wait for movements afoot. Thousands of rugged American trucks transport men and materials over roads that are more often by. ways than highways.
In many of these military trucks, weight support and resistance to gruclling jolts and jars are supplied by parts made from OSTUCO scamless stcel tubing. Among those parts are axles, propeller shafts and bearings, piston pins, washers and slecves. For each application OSTUCO provides scamless stecl tubing that meets strict military specifications-tubing that's straight, sound, clean, and free from pits, scores, and other surface imperfections.
Thus OSTUCO now draws on its years of experience to provide scamless tubing that fills the need for strength, hardncss, accuracy as to size and gauge, and machinability to help solve vital wartime manufacturing problems. At the same time it is gaining a wealth of new experience to help you meet the new and equally strict demands of competitive, peacetime mass production.

BUY MORE U. S. WAR BONDS P PUT ALL YOUR SCRAP INTO THE FIGHT

THE OHIO SEAMLESS TUBE COMPANY

In the severest on-the-job tests, in mill after mill throughout the nation, Cities Service industrial oils have proved Precision-Perfect in meeting the exacting standards required in steel making.

So take a tip from your competitors . . .
Whatever your requirements-quenching, tempering, machining or rust-prevention -there is a Cities Service product specifically designed to meet it.

Get in touch with your nearest Cities Service office now for ruality petroleum products and expert lubrication counsel.

THE INDUSTRIAL HEAT PROVER

The Cities Service Industrial Heat Prover enables those engaged in the oxygen control of furnace atmospheres to achieve certain physical results desired in the processing of metal, or in
 the control of the amount of combustibles present. Recordings are continuous and almost instantaneous. If you are not already familiar with this instrument and the outstanding service it is now performing for industry, write for a completely informative booklet to Cities Service Oil Company, Room 1345, Sixty Wall Tower, New York, N. Y.

CIIIES SERVICE OLLCOMPANY NEW YORK • CHICAGO

ARKANSAS FUEL OIL COMPANY
SHREYEPORT. LA.

TABLE I-Shipping Cost Data

	Common Car	Utility Londer	Hemarks
Lumber storage (est.)	\$ 1.50	None	
Milling of lumber (est.)	13.70	None	$4 \mathrm{hrs}$. \% $\$ 1.625$ carpenter
Loading labor (est.)	${ }^{-50.75}$	1\$33.75	8 lirs, कp $\$ 0.90$ helper 016 hrs. (a) $\$ 1.625$ carpenter
Loading dunnage: (A) Lumber	31.50	None	1045 hrs. $\$ 0.75$ loader 700 bd . ft. (4) $\$ 45 \mathrm{M}$
(B) Nails.	1.00	None	
Freight on dumage (weight)	18.38	None	1470 lhs. (i) \$1.25 C
Unloading labor	12.00	12.00	16 hrs. (i) $\$ 0.75$
Totals	\$137.83	\$45.75	
	- 45.75		
Saving	\$92.08		
Shells (Without Grommets)			
Lumber storage (est.)	1.75	None	
Milling of lumber (est.)	15.41	None	4.5 hirs. a $\$ 1.625$ carpenter
Louding labor (est.)	${ }^{\bullet} 63.00$	$\dagger 33.75$	- 18 hrs. (a) $\$ 0.90$ helper
Loading dunnage: (A) Lumber	37.13	None	825 bdi. ft. ($\$ 45 \mathrm{M}$
Freight on dunnage (weight)	1.25	None	
	21.66		1733 lhs. (a) $\$ 1.25 \mathrm{C}$ 16 hirs. (i) $\$ 0.75$
Unloading labor	12.00	$\begin{aligned} & \text { None } \\ & 12.00 \end{aligned}$	
Totals	\$152.20	\$4.5.75	
	-45.75		
Saving $\$ 108.45$			
Homhs (With Shipping Pedestal)			
Lumber storage (est.) 1.00 None			
Milling of lumber (est.)	10.28	None	3 hrs. © $\$ 1.625$ carpenter 6 hiss. at $\$ 0.90$ helper
Loading labor (est.)	-20.13	$\dagger 12.00$	
Lnading dumatge: (A) Lumber	23.04	Nome	${ }^{\circ} 5$ hrs. (a) $\$ 1.625$ carpenter 1016 hrs . (in) $\$ 0.75$ loaders $512 \mathrm{hd} . \mathrm{ft}$. a \$ 45 M
	1.00	None	512 hel. ft. at $\$ 45$ M
Freight on dumbage (weight)	13.44	None	1075 lbs. it $\$ 1.25 \mathrm{C}$ 16 hrs 'fi 80.75
Unloating labor	12.00	12.00	
Totals		\$2-4.00	
	-24.00		
Saving	\$56.89		
Fiber Pack Ammunition			
Lumber storage (est.)		None	
Milling of lumber (est.)	11.98	None	3.5 hrs. (1) $\$ 1.625$ carpenter 7 hirs. if $\$ 0.90$ helper ${ }^{\circ} 4$ hrs. n $\$ 1.625$ carpenter 1016 hirs. Th 80.75 londers 450 he ft © $\$ 45$ 31
Loading labor (est.)	${ }^{-18.50}$	$\dagger 12.00$	
Loading dumnage: (A) Lumber	21.25		
Freiche (B) Nails	21.25 1.00	None	450 bd. ft. (at $\$ 45 \mathrm{M}$
Freight on dumnage (weight)Unloading labor	11.81	None12.00	945 Ibs. (f) 81.25 C 16 hrs if $\$ 0.75$
	12.00		
Totals	577.54	\$24.00	
	-24.00		
Saving	859.54		

Fig. 7-Heacy, bulky and irregular shaped objects are easily handled by the loader system as shown here. Often the car requires only partial loading equipment for such items for their weight may make a single layer all that the freight car will carry
farm equipment load showed 63 manhours saved on cutting dumage, nailing and bracing, independent of loading the commodity itself.

In 1941, the hauling of lumber, band iron, nails and paper to shippers for use as dumage in box cars required 16,919 carloads. Car loadings for this purpose are on the increase due to the new volume of traftic and heavier general loading.

An average of 7 man-hours per trip is required to prepare a car for its next load. At the rate of only 20 trips per ammom, this would represent approximately 15 ,$0(0)$ to 20,000 cars out of service all the time because of cleaning. The detention time consumed to clean cars of ordinary dumbage is bulked up 10 or 20 times by spilled liquids, oil and grease which permeate box cars. To remove spots and deodorize the cars for subsequent shipments, particularly of food products, it is often necessary to scrape car floors.

The loader helps do away with spillage and breakage by holding the load firmly, thus preventing shifting in transit due to vertical vibration. The elimination of this loss of time in taking care to and from the rip-track and cleaning them will contribute approximately 9000 box cars to active service.

Flexibility: The Utility loader car is even more flexible than a common box car. It will not only haul fragile or cumbersome loads economically, but it will secure "greased pig" loads such as gas tanks (which have been known to roll from a box car) or other loads hard to fasten and block. Grain, flour, cement and other bagged materials are casily handled in these cars. Because of its flexibility, such a car can be used readily in two-way operation.

(Concluded Next Week)

Oil Absorbing Floor Cleaner Is Fireproof

Fibre-Tex, a new fireproof oil-absorbent sweeping compound said not to burn when the flame of a blowtorch is played directly upon it, is amounced by LaceyWelber Co., Kalamazoo, Mich. Besides being an oil and grease absorbent it provides an active cleaning effect upon floors on which it is consistently applied. Grease and oil-caked dirt are said to be removed; safety stripes and other floor markings made plainer.

(Continued from Last Week)
CARBON BLOCKS for furnace lining purposes are made in practically all the sizes in which square or rectangular electrodes are made, and range from a few inehes wide and a lew feet in length up to $16 \times 16,20 \times 20,24 \times 30$, and 15×30 inches in end seetion, and lengths up to 15 feet. The smaller the cross section the shorter the block in general as small cross section abuormally long blocks are difficult to keep straight through the various manufacturing processes, particularly the baking. The manufacturing process is identical with that used in producing cartoon electrodes except that since blocks do not have to meet as strict specifications as electrodes as to shape and size and since usually electrical resistivity is not important, less expensive materials can be used. Carbon blocks as a result sell at a lower base price than the more carefully fabricated electrodes.
In designing any carbon lining, attention should be given to using blocks of

Fig. 15. (Left)-Rectangular base blocks and first layers of radial blocks for hearth of carbon-lined blast furnace
Fig. 16. (Right)-Sectionalized view of carbon hearth and crucible set in blast furnace using large base blocks and smaller blocks
layer. For example, two layers of 15 inch thick blocks are better than a single 30 -inch layer, largely because it is not generally possible to give to the tamped paste in the joints the miformity and density normally found in the prebaked blocks.

The life of a carbon lining in any type of furnace is indeterminate, since it is affected by many things. The type of product has an effect in more than one way, for some products have to be smelted at higher temperatures than others, one product may be more liquid than another, and therefore harder to hold, while the carbon demand of one product may be more easily satisfied than that of another and so may not attack the lining as quickly. Proper design is an important factor, as is the prevention of air infiltration, and proper operation of the furnace is perhaps the most important of all. Probably a life of between two and five years is average.

Graphite is easily machinable, and

By FRANK J. VOSBURGH Manager, New Products Division National Carbon Co. Inc.

New York

Abstract

standard sizes, that is, sizes for which the manufacturers have the dies and which they can produce readily. Special sizes are costly and take much fonger than normal to produce. Another point to keep in mind is that a double layer of blocks with staggered joints is usually a better proposition than a single \qquad

A SMALL FURNACE WITH BIG OUESTIONS

* What type of refractory should be used? What effect will slag have upon the refractory lining?
* How can the refractory be protected against erosion?
* How can the load-carrying ability of the floor brick be judged?

What will be the heat losses due to periodic operation?
What is the best type of arch or roof support for this furnace?
What precautions should be taken t against the effects of expansion and contraction?

Will heat losses through the struc. \star tural steel be great? How can they be minimized?

* Should the brick be laid with a heatsetting or an air-setting mortar?
* What type of wall anchoring, if any, is most suitable?
* What protection, if any, should be provided against flame impingement?
B\&W Refractories Engineers Answer Questions Like These Every Day.

THE BABCOCK \& WILCOX COMPANY
Refractories Division
85 Liberty Street New York, N. Y.
 BAECDCK \& WILCDX
parts recuiring insolved or complicated machining should be made of that material umless its high heat conductivity and greater electrical conductivity preclude its use. Graphite can be worked easily on any equipment that is used in metal working, and much work can be done ont it in staudad woodworking equipment. Carbon can be machaned on most metalworking tools, but with greater difficulty, and becaluse it is apt to be slightly almasive is practically never worked on milling ecquipment or with hobs, Lathes, planers, grinders, and particularly diamond and abrasive type satws are used in working carbon. Though in general graphite costs twice as much per pound ats carbon, if the part reeflires much machining, it is cheaper to make it of graphite becanse of the higher eost of the carbon mathining. (Fig. 14)

Used in Blast Furnace

An application of carbon as a refractory, which in Europe for years hats found general fator but which in the United States is slowly gaining recognition, is the lining of blast furnaces. Originating in Germany in 1886 but now prevalent in England, Belginm, Swoden, Russia, and Italy, carbom has proved a superior lining material for certain portions of a blast furnace (2) (4) (5) (6)

As previonsly inclicated carlon retains its strength at temperatures far above those found in blast furnace operations, is not attacked by the molten iron since the metal is already carrying a maximum amonnt of carbom, and is not affected by the slags. These facts plus probably two others in the begiming, one, that German refractories are not as high in quality as are nsed here, and two, that German ores are much lower in jron content than American ores, with eonsequent larger slag volumes, encouraged the trial of carbon in spite of its higher cost. Disregarding many failures the use increased until a large part of foreign irom is produced in earbon-lined fumaces. Carbon linings arw used only in the hearth and tuyere sections and up to the mantle. Where nsed, what free oxygen there is, or any carbon dioxide are quickly taken care of by the more casily available incandescent soke carbon.

Thenetically at least, a properly installed earbon lining in a bhast furnace should last indefmitely, and there should be no silamander. The carbon per ton costs several times as much as the co-

Fig. 18-Karbate (impervious graphite) heat achanger bundle fubes, $1^{\frac{1}{4}}$ inches outside by 9 fect long: twhe sheet 24 inches
diameter

Fig. 17-Cottrell precipitator towcrs. Left hand tower of carbon construction; right hand tower of chemical brick construction
ramic brick and blocks generally used, but that differential should be more than offset by:

1. Easier and more rapid installation.
2. Presumably much longer life.
3. No salamander to remove, an expensive, dangerous, tedious affair.
4. No cooling plates to install and maintain.
5. Easier removal when the furnace finally is torn down.
6. Probably considerable salvage value.

No blast furnace in the United States has had a complete carbon lining installed, that is, hearth section and up to the mantle, but many operators are showing considerable interest in the subject, and a Few are trying out carbon in an experimental manner in patches or repairs so that perhaps after the war ends, some concen recognizing the advantages of carbon as a blast furnace refractory, will have the courage to try it out. A lining up to the mantle for a 1000 -ton per day furnace, would require the production of $1,500,000$ pounds of carbon. See Figs. 15, and 16.

Because the temperatures in electric steel furnaces vary in short cycles over an umsually wide range, with a high maximum, some of the characteristics of carbon would seen to make it an ideal lining material. Unfortunately some of carbon's other attributes are not so satisfactory.

The worst characteristic is that both carbon and graphite oxidize at relatively low temperatures, and the atmosphere in an electric stecl furnace is almost always oxidizing. Much experimental work has been done trying to use carbon in electric steel furnaces, and a few operators do use carbon brick at times in certain extremely bad spots.
A German article ${ }^{\top}$ published in 1936 reports that 24 heats were obtained from a carbon roof of an clectric steel furnace, compared with 29 heats for silica brick. The same article mentions 80 to 100 heats from a furnace roof of a small acid lined electric furnace.
Probably the most authoritative evidence on this application of carbon is contained in a Stahl und Eisen report of September 1932 by Dr. Franz Sommer. "The report concludes:
"The results of the tests with carbon roofs may be summarized as follows:

The possibility of insulating an clectric furnace with carbon roof against heat

Ignition Furnace for continuous type Sintpring Machine. One of McKse's specialized features
 cKEE engineering for ore bencficiation is based on sound fundamental knowledge of the problems and requirements of the blast furnace operator as well as the ore producer.

McKee engineering, from mine to finished product, takes into consideration all chemical and physical factors of your raw material in designing ore treating plants to produce results to meet your exact requirements.

Thirty-six years of designing and building for the iron and steel industry have built a valuable fund of McKee experience which is available to you through this organization.

TVO

Irthure f. Ilchee \& Complaily

 * Engineers and bontractans * 2300 CHESTER AVENUE CLEVELAND, OHIOMcKEE offers you all of the highly specialized technical services necessary for the efficient design and construction of plants and equipment for:

CRUSHING SCREENING CONCENTRATING BLENDING SINTERING

The flexibility of our organization enables us to handle any of the various phases of your project or to undertake the entire project regardless of size.

YOU CAN'T DO

Those four words often spell the difierence between success and failure. When experts solemnly declare "You can't do THAT!" many people "fold their tents as the Arabs and silently steal away." But to the Spriesch Tool \& Manufacturing Co., Inc. it's a challenge - a challenge to our ingenuity.

The entire Spriesch organization prides itself on doing the impossible. It matters not whether the problem involves a single mechanical part or a complete assembly. No job is too smallnone too large. We are equipped to do the tooling or go into production on the complete assembly. And the job will be done quickly and at reasonable cost.

That's why Spriesch today is working 24 hours a day, seven days a week producing aircraft armament devices-automatic bomb-release racks and shackles, etc.-and producing them on schedule with a remarkably low percentage of rejections. We're flattered to hear it spoken of as Spriesch miracle war production.

After Victory our extensive facilities will be available to you -no matter what your mechanical production problem may be. If you have need of special tooling, if you'd like to put an inventor's dream into production, if you have precision work you can't get in your own plant -make a note to submit it to us....

Pig. 19 - Karbate (impervious graphite) pump
losses would lead one to expect a notable saving of energy. In continuous operating, however, these savings would be nullified by the high repair costs.
The life of a carbon roof is determined by the wasting away caused by oxidation. A loss of 1 millimeter (0.04 -inch) per operating hour may be assumed, so that a roof 400 millimeters (16 inches) thick, for example, may last 50 to 60 heats. If, at the same time, we consider the cconomies of carbon blocks as against silica bricks, there seems at the present time little promise in further tests of this material."

The tests were made on a $91 / 2$-foot diameter (2910 -millimeter) shell furnace using 15 -inch (380 -millimeter) diameter electrodes. The roof blocks were 6.4 inches square (160 millimeters) by 12 inches long (300 millimeters) and the roof was protected by 1.2 inches (35 millimeters) of fre clay mud and 3.2 inches (80 millimeters) of diatomaceous earth blocks. Oxidation was at the rate of 0.03 -inch ($3 / 4-$ millimeter) per hour of molting. A tamped paste roof was tried with less success, the rate of oxidation being 0.04-inch (1 millimeter) per hour of melting. One of the chief difficulties encountered was with the silica brick used in rings around the electrodes to insulate them from the roof. The silica brick lasted about six heats and are presumed to have failed, "because of the high roof temperature and perhaps also because of the reducing effect at the contact surface between the silica and carbon. The same strong disintegration occurred at the door arches. These too had to be renewed after each 10 to 12 heats."

The steel inclustry too has found in carbon a material that solves many of its problems in spite of the fact that the material does oxidize at relatively low temperature (350 degrees Cent.; 662 degrees Fahr.) for carbon and 450 degrees Cent.; 842 degrees Fahr. for graphite. Regardless of that weakness carbon is a refractory material and when it does fail it is usually consumed and so does not add to the impurities in the metal. Car-

bon mold plags, mheard of but a few years ago, are now being purchased in carload lots, and are gradually replacing both metal and ceramic plugs. The carbon plugs cost more than the ceramic grades, but that is offset by the fact that the carbon plugs generally can be used several times. Carbon bricks are being used in rumout troughs by a number of blast furnace operators, and with success. The carbon is not wetted by the metal or the slatg, so they do not stick to the carbon bricks as they do to clay bricks. As a result a disagreeable job is made a little less unpleasant.

Graphite molds have been used experimentally for many purposes for years, but at present a number of concerns use them as production equipment. Practically all the machine tool and special metal bits for oil well drilling are cast in graphite molds, for this is the only material that will stand the heat shock of the high temperature used, and it can be machined economically. Other concerns are using graphite molds for casting both ferrous and nonferrous ingots. Fig. 20 shows a graphite mold that has been used several thousand times in the nonferrous industry as compared with the less than 200 pours obtained with metal molds. The higher cost of graphite is

offset by the extended service obtained, plas a more satisfactory finish on the product.

From one customer who has used graphite storols over a considerable period in the nonferrous field, has developed a continually growing list of both ferrous and monferrous concerns that have appreciated the characteristios of this material that make it especially adapted to that usage.

Refractary usage of carbon in the metathargical field is centuries old and usage in the chemical field is not new, but the last decade has seen so tremendous an expansion of the latter that it is becoming the more important application. Carbon and graphite are used in the forms in which they are produced, and are merely fabricated to fit the application, or they are specially treated and thus made completely impervious, in which form the fields in which they can be used are enormously enlarged.

The nise of carbon brick for lining tanks, vats, etc., particularly pickling tanks wherein stainless steel is pickled. has been fully described by others but it should be remarked that such usage is increasing as the excellent corrosionresisting qualities of carbon find greater recognition. (") (${ }^{14}$)

A relatively new application for carbon and one that has had a hothouse forced growth as the result of the war. has been the use of carbon blocks and slabs in the construction of Cottrell precipitators. Carbon tubes have been gencrally used in that type of equipment for 15 years, when handling phosphoric: or sulphuric acids, and nearly that long ago carbon blocks were used in the tower construction in comection with
(Plense Ium to Page 146)

TIME CHARTS that place workers by age groups in shifts to use their cycles of body strength to best cffect have been worked out by a noted physiologist and pulbished with the approval of the Division of Labor Standards of the United States Department of Labor. Frecguent shift rotation, it is pointed out, is hard on workers and retards their productiveness.

Facts developed by Dr. Nathaniel Klicturan, associate professor of physiology, University of Chicago, are summarized as follows:

If yous look at a clinical or fever thermometer you will notice an arrow at the 98.6 clegrees Fahr. mark. All the lines above that mark are in ominous red. These markings have created the ntterly False impression that the normal temperature is somuthing very constant. Actually, it is wo more constant than, for instance, the pulse rate; the two, inciclentally, vary in the same mamer.

Instead of a nomal body temperature. we have a temperature range varying For different people and for the same person at different times. It amounts to about 2 or 3 degrees Fibhr. ower a $24-$ hour poriod, and the variation in body temperature from hour to hour is such ats to ercate what we call a 2 -hour body temperature curve.

Under ordinary rontine conditions of existence, the peak or platean of the temperature conve is reached sone time: during the afternom, usually between 1 aud 7 p.ins. At that time our efficiency is greatest. The low level of body temporature is reathed during the carly manning hours, sommere between 2 and is athe. If a persom stays awake wernight, these are the hours of greatest inclifieney and greatest difficulty of remaining awake.

When a person adjusts himself to a

How To Arrange WORKING SHIFTS

For Maximum Production

new routine of existence with other than customary hours of slcep, work, meals and leisure, he gradually acquires a body temperature curve with highest efficiency and less sleepiness during the activity hours and just the opposite during the new sleeping hours.

It takes several weeks for a new 24hour sleep-work-meals leisure cycle to be properly established. Such achievement is wholly impossible under the system which prevails in shift rotation because the individual is not given a chance to adapt himself to a new routine. He essentially remains on the customary acle of day-time work and night-time sleep.

This makes him dislike work at odd hours. It causes him to be sleepy at a time he should be wide awake and wakeful when he should be slecping; it leads to a decrease in production rate and a greater tendency to accidents.

The way to overcome this effect is to keep each worker on at given shift for extended periods of time.

Since rotation of shifts is very often adopted as a measure of fuimess to all workers, the principle can be preserved by having the workers change shifts once in several months instead of weeks or even days.

From Supercision, 95 Madisun avemue, New York.

The change in shifts can be staggered and made to coincide with short periods of vacation, in line with the suggestion that vacations should be distributed aromed the entire calendar year, instead of concentrated during the summer months.

Where the workers themselves prefer it, the maintenance of steady shifts with no rotation whatsoever can be accomplished with due regard to seniority rights.

Whether the shifts are steady or rotated, some effort should be made to modify community life to the extent of making leisure at other than customary hours. For instance, broadcasting companies might be induced to make transeriptions of their popular evening hour programs for rebroadcast during the afternoon and late night hours. Moving picture shows could be extended either way by a few hours, and parties, meetings and lectures organized with an eye to the leisure hours of each third of the working population.

Timing of the Shifts: There's a name for those hours from midnight to 8 a.m.the graveyard or lobster shift. This work period just about matches most people's sleep period. A person could adjust himself to a different timing of shifts if the displacement cycle were smaller. For instance, where the plant runs on three 8 -hour shifts, the timing of shifts shown on the charts is suggested.

This shift timing has a number of adrantages. One of the distinct advantages is the relatively small displacement of the customary sleeping hours, and no one is compelled to sleep in the aftemoon hours, when it is hardest to sleep. Another advantage is that it also makes shift changing fall at hours which are not general community rush hours. If several plants are located in the same vicinity, the transportation problem created may require the shift changes to be staggered.
The special adrantages of these shifts lie in their appeal to certain groups of workers divided according to age, interests, family status and recreation habits.

For Various Family Need:: The Red shift will appeal to young unmarried men and women who like to have their
hed (ar sumset) whift works from noom to S:00 p.m. Evening and early night hours are frie from leisure activitics. Sleep from 1:00 or 2:00 to 9:00 or 10:00 $\mathrm{a} . \mathrm{m}$.
White (or cietory) shift wotk from $8: 00 \mathrm{pm}$. to $1: 00$ a.m. Sleep from ahoun 5:(0) a.m, fo $1: 00$ f.m. Ufermon and carly ceening free for leisure Whe (or dram) shift untis from $1:(0)$ a.m. to nown. Leisure pertiod in the afterneon. Slecp from about 7:00 m.m. so $3: 00$ a.m. This shift system disumbs normal hours as little as possible

DOWNED! BY THE 17,901st?

GUNS blaze in the dark sky. That boy up there trusts his own skill and courage - and the many thousands of meral parts that keep his plane strong and flying against heaviest odds.
What if some tiny part we helped to make turns traitor in mid-battle?
If we could only see those tracer bullers sow red death across the cockpit, feel with him his sharp and lonely peril in the sky
We'd say, "Our pay is still the comfort of our homes; his pay hot lead,
night battles, chance of flaming death.
We'd say, "If we don't give the best we've got, our smallest failure is a crime against the life he scarcely lived and gladly risked for us.'

And so we pledge: to make each metal part that keeps him fighting true to the minutest fraction; to conserve our metal; to work with our best skill; to think with precision; and so keep faith with those who do our fighting.

In this spirit, we at R B \& W pledge ourselves to strength and accuracy in
the millions of Empire bolts and nuts that we are making to hold American war equipment together. To R B\&W's special manufacturing processes, developed through the years, we add the personal energy and care that forms an essential part of R B \& W's contribution to Victory.

Reproductions of this ad re-arranged with a slogan for your War Production Drive, are free, upon request. Write Russell, Burdsall \& Ward Bolt and Nut Company, Port Chester, N. Y.

B BE Making stroug the things that make America strong

RUSSELL, BURDSALL \& WARDBOLT AND NUT COMPANY

bcontracting

-increases output of tube mill 500 per cent

 -enables mill to expand its service to customers -puts otherwise idle facilities into vital war production workBEGINNING in the fall of 1939, the greatly increased demands for tubing, particularly aircraft tubing, necessitated round-the-clock operation at Summerill before mid-October of that year. Until this time output at this plant had been primarily straight tubing. But requests to produce more finished and semifinished parts to aid in the relief of our customers' fabricating and machining facilities began to roll in.

This unexpected change in customers' requirements caused an entirely new production, for no facilities were available for certain operations and present facilities were not sufficient for other operations.

This situation necessitated the im1mediate investigation of possible subcontracting facilities in the Phila-delphia-Norristown-Bridgeport area. The result is that Summerill has developed a roster of subcontractors who are performing varied operations including machining, swaging, heattreating, straightening, cutting, reaming, plating, tumbling, forming, sand blasting and grinding.

Through the judicious use of these many services, Summerill has been successful in greatly expanding its own production as well as performing additional
-on one item alone saves 22 per cent in material, enables closer tolerance control, keeps rejections below 1 per cent, releases critical equipment in the mill for production of special parts

By D. E. LUKENS
Summerill Tubing Co Bridgeport, Pa.

services to customers and relieving facilities in crowded areas.

Of equal importance, it has been possible through taking advantage of the local facilities to develop and produce many special tubular parts for aircraft. giving a better weight-strength ratio. This is especially true for tapered and heavy-end tubes, some of which are illustrated in the following text.

Machining: Although most of Summerill's semifinished parts only require outside machining, the machining and setup technique necessary on tubing is quite different and usually more difficult than solids. Machining hard alloy steel while maintaning uniform walls and concentric diameters requires special care and tools.

It was therefore necessary to develop machining sources of musual dependability. Machine operators and foremen

Fig. 1-Closeup of special setup devised by Davis Machine Co., Phoenixville, Pa., (a Summerill subcontractor) for the final facing operation on part No. 490 (Fig. 6). Object is to obtain accurate length and square ends. Note automobile gear shift
Fig. 2-This compression testing machine at Lehigh University now does production work in forming part No. 467. See Figs. 3 and 4
Fig. 3-Typical tubing sections produced by Summerill and its subcontractors. Starting at top: Machined outside and inside diameters, upset inside diameter on one end; straight mutside diameter and stepped walls; straight outside diameter and tapered inside diameter; part No. 467 after machining with heavy walls left only where needed, shown also in Fig. 4; part No. 467 before machining; note wall thickness in long portion has nut yet been reduced by machining; straight taper in both directions; stepped wall. square section; stepped tall, straight outside diameter icith one end rectangular outside.
diameter; another straight taper; last two show step tapered outside diameters
Fig. t-This shotes application of part No. 467, used as rear retracting strut to extend and retract landing gear of a cargo and transport plane. It must withstand tremendous shuck and thrust forces, yet be no heavier than necessary. Reduced end and first 5 inches of straight section where wheel fork is fitted to strut have a 0.375 -inch thick wall. Remainder of straight section has only 0.1 -inch wall
Fig. 5-Lehigh University found this Baldwin-Southuark tensile testing machine could be used to reduce the diameter of ends of small tubes. Die holders are designed so tuhe can only be reduced the desired distance. Resulting part meets close tolcrances. needs a minimum of trim
must be properly schooled so as to eltsure that the parts are efficiently produced to the close tolerances required. Considerable difficulty was experienced in developing satisfactory sources with the facilities and manpower necessary to meet the required tolerances.

In the early stages instances of poor work and excessive rejections were frequentls encomutered. But with patient weeding out and close contact and control on the part of our inspection dopartment, several dependable and satisfactory shops were developed.

As some instances of performance. many hundreds of parts requiring am intricate tooling techmique have been produced in one shop to such a fine quality that our inspection department has not rejected ome part in more than five months of continuous operation. In asiother instance, a shop has produced 75 to 100 heavy special sections weekly for more than two years without a rejection.

Althongh results, as a whole, are now quite sitisfactory, strict control and constant vigilance must be maintained by our inspectors. But results certainly warrant the effort and have proven well worthwhile.

Reduced Ends of Heavy Walled Sections: Probably the most interesting phase of Summerill's subeontracting efforts has been in the production of this type of part.

A graphic example is the rear strut brace shown int Fig. 4. This part was developed in co-operation with our customer's engineers nearly two years agn, and for many months required production was handled on our own equipment. But surdenly demands for this part were stepped u1) 500 per cent. This presented a tough stuation, for the equipment necessary for this part was also being utilized to produce heavy bomber parts. Delivery of additional equipment could wot be obtained quickly. We were informed that other tube mills had turned it down, "so it was our baby."

One of our men haid been waiting for

Fig. 6-To produce part No. 490 , a tube is hot swaged to required inside and finished outside dimension at both ends as shown here at top. Next part is reamed inside of both ends and outside central portion is machined by chucking on the inside dimension. Bottom view is cross section through finished part. It is not possible to produce such a part without machining off excess metal on outside diameter due to extreme difference in wall thicknesses. A light walled tube cannot be hot upset and swaged back at the ends because mass of metal is too small to retain sufficient heat. Metal would fold
Fig. 7-Advantage of a tapered section in providing strength where needed is well illustrated by this straight tapered drag link. Outside diameter is $2 \frac{1}{4}$ inches, tapered to 13 -inches at both ends, uniform wall thickness of 0.058 inch

Fig. 8-Top, part is hot swaged leg for diver bomber main landing gear before machining. Weight of 100 pounds is reduced to 35 pounds after finish machining. But even this represents much less material loss than if made from a forging. Aircraft axle, center, is nade from straight tubing by machining inside and outside. Stock is removed primarily to reduce weight, retaining wall thickness according to strength needs at two ends. Bottom part for bomb release gear measures $31 / 2$-inches outside diameter with 0.065 -inch wall tapered to 2 -inches diameter with 0.083-inch wall. Originally made by welding two tubes with a long "fish mouth" joint, the $31 / 2-$ inch tube being first swaged down to produce the taper to fit over the 2 -inch tube. Welding costs alone were greater than entire cost of this finished taper, which also offers improved and safer design with less weight
shows one of these being chucked in a lathe prior to machining.

Straightening: The great majority of seamless steel tubing produced in other shapes than round cannot be straightened by high speed roll straighteners because of its shape. It must be straightened by other and slower methods. On heavy sections and sections of high physicals, band arbor presses are utilized. Tubing with thin walls or of low strength material must of necessity be straightened by hand.

Aircraft specifications require all tub-

Matched io Get More Battle Pacuer Out of Horsepower

In thousands of war production power transmission installations, Dodge Matched-Quality D-V Belts and Sheaves are delivering maximum developed horsepower to the point of production, to create more battle power and hasten Victory. Because sound engineering is combined with precision manufacturing. Dodge Matched-Quality D-V Drives have proven efficient, economical and able to stand the punishing 'round-the-clock performance demanded today.
You Get These TAduantaged In Dodge D-V Matched Drives

1-Sheaves (in metal or "Victory" wood) have precision groove diamelers, matched with D-V Helts, for uniform bolt tension; each belt pulls its share. 2 - D-V Belis have concave sidewalls which, when flexed around sheave, form straight surlace for full contact with flat sides of grooves: full transmission of power; longer belt life. 3 Clean, noiseless drives, requiring no lubrication
of any kind . . . no oil leakage or throwing of lubricant to damaqe work or rot belting. 4-D-V Belts, cured under tension, require no adjustment, last longer: won't saq or slip. 5Matched sheaves and D-V Belts form complete modern power transmission unit backed by one responsibility: DODGE!

See Your Local Dodge Distribufor or Write For Data to

ing have a straightness ratio of 1 in 600. Some special shapes are closer yet. Therefore, it cas be well appreciated that the straightening operation can easily: and quickly become a serious bottleneck.

Such production facilities as refuired for this phase were not dasy to locate. First this work requires hydranlic presses of 75 to 100 tons capacity and of special design, adapted to this type of work. Secondly, and fust as important, persomel trained to the special technique necessary is rare.

However, one very satisfactory sub)contractor has been formed and others are expected to be located soon. Through the use of the one subeontractor, it already has been possible to increase the procluction of heasy bomber parts by several hundred per cent.

Swaging: Our own swaging equinment is used to its fullest extent in regular production and any swaging as a finishing operation to produce a semifinished part was out of the question, except as it directly cut production of straight tubing. Swaging equipment of the type required is of such a special nature that delivery of additional equipment in sulficient time to meet reguirements was out of the question.

After weeks of scarch and further
weeks of engineering collaboration, we were successful in developing an extremely satisfactory source for this opcration on our semifinished parts. This sulcontractor has since produced for us more than 20,000 semifinished parts in as many weeks as it would have take:a us monthes to do the same job on our available equipment. This production was all realized without our own output being affected in the slightest.

Tapering: For many years, we have produced large quantities of straight tapers and step-tapered tubular parts for aircraft and other mamfacturers. The use of tubular parts with tapered diameters is extremely advantageous in aircraft design. Tapered tubes give a better weight-strength ratio for a given part. Too, they materially reduce the weight of fittings, due to their smaller diameters.

Many of these special tapers are produced on our own equipment. In some instances, this is necessary regardless of backlog and production difficulties. It is essential that these special parts receive: the attention of expert seamless tubing men, notwithstanding the fact that specialized mpupment is very necessary for successful procluction.

As a result of developing outside tap-

HEAT TREATS 3000 POUNDS PER HOUR

OPERATING twenty-four hours per day in the eastern plant of one of the world's largest propeller manufacturers, this heat treating furnace is reported to be one of the largest chemically-neutral atmosphere furnaces yet built. Built by Lithium Corp., Newark, N. J., it has a capacity of about 3000 pounds per hour. It features a muffle designed to withstand working temperatures ranging from 900 to 2100 degrees Fahr.; sixteen-inch wall insulation and sixty-six specially-designed burners to insure even heat distribution. The furnace measures $8 \times 10 \times 30$ feet
cring sources, further lightening the load on our own equipment and persomed has been possible at the same time increasing production of spectal parts has been obtained.

Heat-Treating: Three well established sources of heat treatment, two of which are commorelal heat treaters and one a paacetime mamufacturer of houschold stoves and ranges, have been a great aid in increasing our output. With considerable work and expense, the vitreous enameling equipment of the stowe manufacturer was changed over to enable them to heat treat our tubing satisfactorily.

These heat-treating somerces have not moly increased our production, but hawe enabled us to shorten our deliveries, as heat treatment is one of the final operations necessary. Often items are finished in the tube mill, hut delivery is delayed awaiting final heat treatment. This is no longer true now that these supplementary heat-treating facilities are available.

Cutting: Every piece of seamless steel tubing produced must receive two cuts when finished, regardless of whether it is 20 feet or 2 inches in length. Mam? thousands of pieces are supplied in short lengths with tolerances of a few thousamdths. Such an operation requires some kind of machine or lathe cut in most instances.

To alleviate any possible bottlenecks from this operation, high speed cutting sources were developed and are now producing thousands of cuts per day for us. This is a tremendous relief on our own equipment and directly reflects in increased production.

Sand Blasting: Some important aircraft tubular sections must be samd blasted to facilitate magnetic inspection and plating. When our own facilities became badly loaded, we found a local mommental marble yard which had suitable equipment.

Grinding: In many instances customers request special tolerances which can only be realized by centerless grinding. All available grioding equipment at Summerill was loaded to capacity long ago. We have now established sources who are very able and who perform a goodly percentage of our centerless grinding.

We early discovered that it was not possible to obtain equipment and facilities ideally suited to our peculiar requirements. Therefore it was necessary for us to make the best out of what was available in our area and put as much equipment as possible to its best usi. In some instances, we believe we are getting more out of certain equipment than was ever intended by its designers.

- This 72-page reprint handbook on NE ALLOY STEELS has been compiled by the magazine STEEL from the outstanding material published since the National Emergency steels were developed early in 1942. It is divided conveniently into three sections and contains a complete cross-index for detailed reference on any particular standard or NE steel.

Section I reviews the history and development of NE steels, with papers by Charles M. Parker, Secretary, General Technical Committee, American Iron \& Steel Institute and R. W. Roush, Chief Metallurgist, Timken-Detroit Axle Co., Detroit. Section II gives the Jominy End-Quench Hardenability test charts on both standard and NE steels, and Section III contains ten User Reports, detailing experience in the successful application of NE stecls.

The handbook should serve as a valuable guide to all metalworking plants faced with the problem of substituting NE steels for standard alloy steels not now available.

AND

- The editors of STEEL have developed an NE STEEL SELECTOR, $9^{\prime \prime}$ by $11^{\prime \prime}$, which by simply pulling out the unique slide-chart gives you at a glance the chemical analyses for the complete list of NE Steels, a listing of the more popular standard steels and the possible alternate NE steel which may be substituted. A cross-index is also given on the Selector with page reference numbers in the NE STEEL HANDBOOK for more detailed information on end-quench test charts and for successful applications of NE steels by various consumers.

Both the Handbook and the Selector are an attempt to bring up-to-date the information so far made available on the National Emergency steels and correlate it in such a way as to be a help in the selection of a suitable alternate.

The Handbook and Selector, together, sell for $\$ 1.00$ and the coupon below may be used for placing your order now.

STEEL, Readers Service Dept.
Penton Building, Cleveland, Ohio
Please send copies of STEFL's new NE STEEL
HANDBOOK AND NE STEEL SELECTOR at $\$ 1.00$ per set.
\square Payment enclosed
\square Bill later

Name
Company
Address
City

Reciprocating Sander

Lintern Corp., Nedco Division, 50 Lincoln avenue, Bcrea, O., announces a model R reciprocating sander for finishing jobs difficult to do by hand. It features a unique principle that eliminates

violent vibration and lost motion ordinarily expected from a speed of 300 oscillations per minute.
The unit is supplied completely ready to plug in the nearest outlet. Hand grips, balanced weight and smooth action emable the sander to apply even pressure on the work. Its motor can be removed for servicing without disturbing main drive assembly. Unit is light enough to be used by women workers throughout a work shift without excessive fatigue.

Electric Platform Truck

Rocky Mountain Steel Products Co., 1346 Wall street, Los Angeles, is offering a new Blue Streak electric platfonh truck for moving raw or finished materials within or around industrial plants. It features an I8-square foot platform of $1 / 2$-ton capacity, four forward and reverse speeds from 1 to 6 miles per hour and small turning radius.

The truck was designed to meet war-

time necessity for women operators and was provided with a seat, a steering wheel and a foot throttle so that it could be operated like a conventional automobile.

According to the company, extremely low tare weight of the unit results in maximum efficiency in effective loads and
permits its use on balconies, freight elevators and other lightly floored areas. Standard equipment includes combined foot and hand controls, Lockheed hydraulic brakes, a parking brake and an electric horn. Batteries may be recharged while the truck is idle through built-in plug at the front.

Emergency Lighting Unit

Electric Storage Battery Co., Nincteenth street and Allegheny avenue, Philadelphia, reports a new Lightguard emergency lighting unit for wartime service which requires no fixtures or wiring other than plug-in connections to the al-ternating-current supply. It is designed to mect the need in war plants, arsenals, ordnance plants, shipyards, factories, and other places where wartime activity increases the potential dangers resulting

from power-line failure, fires and sabotage.
The unit throws a beam of light 50 feet wide a distance of 150 to 200 feet, covering an area of 7500 square feet. It is for use where workers are employed at night on machines, particularly in crowded spaces. Because it is a self-contained unit weighing only 47 pounds, it can easily be moved about.

The unit operates instantly and automatically. The only maintenance roquired is the occasional adding of water. Recharging is done automatically by trickle charge. State of charge is clearly indicated by pilot balls. Illumination is provided by a sealed-glass type, prefocused auxiliary driving lamp similar to those used on modern automobiles. The unit measures overall $161 / 2 \times 61 / 4 \times 18$ inches.

Check Valve

American Screw Products, Los Angeles, is offering a new type universal Asp check valve that allows twelve combinations to be made with one body and any two or three types of adapters.

Designed primarily for installation in
airplane hydraulic lines, it is claimed by the manufacturer to be 16 per cent lighter and to have a two to four times increase in flow eapacity with corre-

sponding reduction in back pressure.
A phenolic poppet seats at either end of the valve body. Adapters are available for flared tubing or external and internal pipe threads. According to the company, the valve is unaffected by vibration, variable pressures, or acceleration, and it provides positive protection in critical lines. They are manufactured to Army Corps, AN and Navy specifications.

Eye-Protection Glass

American Optičal Co., Southbridge, Mass., reports development of a new eye-protection glass - Didymium-Novi-weld-which permits eyes of gas welders to pierce blinding glare and see welding operations from beginning to end, a factor which may help speed up the welding of military planes, ships, tanks and other battle equipment.

Lenses of the new glass possess all the ray-absorptive properties of Noviweld glass, plus special characteristics of Didymium, a combination of elements with high absorption in that particular portion of the visible spectrum whare

"flux-flare" normally obstructs clear vision.
In all types of flame-swelding, it is said, the safety goggle lenses cut down the high intensity sodium rays of the fluxes. Flame workers thus can look right through the yellowish cloud of

STANDS OUT BEGAUSE IT STANDS UP

"RETREADING WAR-NEEDED TIRES" American Seamless Flexible Metal Tubing is ideal for steam lines on the modern tire-retreading machine, as witness this vulcanizer made by Super Mold Carporation. Fully flexible so as to allow free movement of the vulcanizer head, American Seamless is, of course, all metal . . . cannot dry out or crack under the intense heal required for vulcanizing.

-'SAWING WAR-NEEDED METALS." A Simonds Saw and Steel Co. installation showing coolant lines of American Flexible Oil Feed and Coolant Tubing. Made of spring steel wire, this superior tubing readily bends to any position . . . stays put when bent . . . directs a continuous flow exaclly where needed.

Whether you need a flexible connector for conveying air, water, oil, steam or fuel-for isolating vibration or for connecting misaligned or movable parts-the chances are we have a type of flexible metal hose or tubing that will do the job more capably.

Using virtually any workable metal, we can build flexible hose or tubing for applications ranging from a simple spout to a high pressure
seamless hydraulicline that can be flexed millions of times without breaking. American Seamless gives you the flexibility of garden hose . . . the dependability of metal . . . and the strength of rigid pipe.

AMERICAN METAL HOSE BRANCH OF THEAMERICAN BRASS COMPANY

 General Offices: Waterbury, Connecticut Subsidiary of Anaconda Copper Mining Company In Canada: Anaconda American Brass Led., New Toronto, Ontario
AMACOMDA
 - American Metal Hose

"Ilux-flare," see the rod and the molten area more clearly, and therehy step up their efficiency in every phase of the welding operation, particularly the flame welding of aluminum and steel. The lenses also protect eyes by absorbing the harsh, tiring invisible ultra-violet and iufrat-red rays generated during welding.

Printing Machine

Jas. H. Mathews \& Co., 3942 Furbes street, Pittsburgh, amounces a newly developed marking machine for printing color bands, iusignia and other important data on cylindrical bodies of grenades, signal flares, cartridge cases, ete. Essentially, the machine consists of an input gravity feed chate, printing unit,

gravity takeaway chute, and drive.
parts are placed into chute by hand and rolled by gravity to the printing unit. Latter consists of a printing plate cylinder, ink pan, roll and doctor which places ink on the face of the printing plates, cradle rolls which hold piece to be printed during printing operation. Machine is driven by a $1 / 4$-horsepower, geared head motor with a three speed come pulley belt drive. The machine uses lifuid inks, either dye or pigment colors. l'roduction depends entirely on the operator's ability to keep the feed chute relatively full.

Screw Machine

Athis Press Co., Department 7, Kialamazoo, Mich., reports the availability of production attachments which converts its F-series 10 -inch lathe into an efficient land-type serew machine for rapid production of small precision parts. The addition of independent or universal
chucks adapts this equipment to turret lathe work, it is said.

This most recent lathe production setup as pictured includes: Lever-type collet chuck; carriage turret with 4 -way

twol post and back-slide tool post; tailstock turret for six operations; multistop attachment for gaging length of cut; reversing switch; spindle nose cap.

Lathe is equipped with reversible power cross feed and lougitudinal feed, complete V-belt drive, tapered roller spindle bearings. Its collet capacity is $1 / 2$-inch; swing wer bed $10^{1 / 4}$ inches; sixteen spindle speeds between 28 and 2072 revolutions per minute are featured in the setup.

Boring, Facing Machine

Suyder Tool \& Engineering Co., Detroit, recently introduced a machine fur acourately boring and facing parts that have a tendency to vary in length slightly. A single-spindle hydranlic boring and facing unit, the machine is equipped with a unit having a heavy-duty worm wheel driven spinclle which can be operated at any one of cight speeds.

Tooling consists of a breech lock spindle adaptor and various boring, facing and undercutting tools. Distances which various tools feed through the work piece are controlled by a revolving control dog

rail. which is quickly set up for each individual tool. Following each work cycle, the spindle returns to position allowing uperator to exchange tools.

The workholding fixture of the machine is manually operated. Pirt is located and clamped aggiinst two ground diameters on a shaft exactly at right angles
to the boss that is to be bored. Because parts vary slightly in length, it was necessary to provide on the fixture a means of indicating the stock variation and then compensating for it by moving the solid stops on the spindle unit.

The part length indicator, beneath the electric push buttons, detects the amount of variation which is compensated for by setting the second indicator, abowe the chip chate at the front of the fixture, at a reading corresponding to that of the part length indicator. Final clamping of the hub to be bored and faced is done tirough equalizing V jaws.

Tilfing Fork Truck

Yale \& Towne Mfg. Co., Philadelphia Division, Philadelphia, announces a new model KM $30-2$ bantam size teles-copic-lift lilting fork truck which is capable of handling 2000 -pound loads with speed and safety. Measuring only 98 inches from 30 -inch fork tip to stern, it speedily navigates narrow aisles,

around sharp corners, and in close quarters carrying full capacity loads.

With a single fork height lift of $71 \frac{1}{2}$ inches and additional telescopic lift reaching to 129 inches, the truck moves, tiers, stacks and stores materials ceiling high. Unit features four speeds forward and reverse, all controls being in accessible positions. Operator works from the center of the truck chassis frame, in a protected position, with perfect visibility in all directions. The truck is said to be ideal for shipping, receiving, warehouse and general freight handling.

Socket Wrench

F \& H Mfg. Co., 2207 West Jefferson strect, Los Angeles, amounces a new type Wedge-Lock socket wrench said to be ideal for close quarter use. It has no ratchet to limit movement, wear or break. Two hardened steel free-mor-

Compressed air lines are lifelines at Sun's Chester shipyard. To maintain them is a "must" - if ships are to meet and beat schedules, in answer to America's desperate shipping needs.
How to provide an unfailing supply of compressed air for vital operations was an easy question for Sun. They installed compressors which they knew could and would deliver . . . Cooper-Bessemer Type G-MV's . . . diesel-driven. Powerful

4-cylinder diesels, operating compressor cylinders in pairs, run night and day, month in, month out ...efficiently, dependably, economically. Air pressure is always instantaneous, adequate, uniform.
G-MV air compressors are available today, either gas engines or Diesel engine driven. If yours is a vital war industry and you need dependable compressed air, call on Cooper-Bessemer.

The Cooper-Bessemer Corporation

MOUNT VARNON, OFIIO

GROVE CIIY. PFNNA.

ing shoes scrve as an instantaneous acting clutch. At the point the handle comes to a stop on the back swing, the wrench is immovably locked for the tightening pull. The minimum return motion before engaging is: Clockwise,

1.2 degrees; counterclockwise, 1.2 degrees. Thus it may be said that the Wedge-Lock is "the million position wrench". It is being offered in four sizes: $1 / 4,3 / 8,1 / 2$ and $3 / 4$-inch.

Lifting Device

Never-Slip Safety Clamp Co., Mamaroneck, N. Y., amnounces a new lifting device for handling coils of strip. Readily adjustable for a wide range of coil sizes, it is particularly designed for handling coils in a horizontal position without first raising the coil.

According to the company, brass, copper, aluminum or steel may be handled with the lifter which is entirely nonmagnetic and can be used on any crane or hoist without the need of special equip-

ment. A feature of the unit is its low headroom requirement which increases storage capacity and also simplifies conveying of material from storage to presses.

Grinding Wheel

American Emery Wheel Works, Providence, R, I., announces a new precision grinding wheel of open cellular construction for toolrooms. Its open porous construction is said to give plenty of chip-clearance and space for air cooling to cut hardest alloyed steels without loading or "burning." On the job, the
wheel cuts freely and requires a minimum of dressing. In wet grinding, its porosity enables it to carry extra coolant.

Steel Hardening Furnace

Sentry Co., Foxboro, Mass., announces a new edition of its No. 2 model Y electric, high speed steel-hardening fur-nace-one reported to contain many features deemed desirable after several years of user experience.

For the operator's convenience, the funnace now features an asbestos loading shelf at the front. It is of ample width and depth to permit easy arrangement of several furnace loads. New metal guards embodied prevent possi-

bility of accidental contact with live power supply.

Throughout the furnace, many points were redesigned for added strength and durability. Diamond blocks used in connection with this and other model Y furnaces were recently materially reduced in price.

Mechanic's Light

Lumidor Mfg. Co., 3120 East Pico boulevard, Los Angeles, is introducing a new double-circuit mechanic's light with receptacles for plugging in small power tools and additional fixtures. As many as four lights can be connected in line to a maximum of 60 feet from a single outlet, according to the manufacturer.

The light originally was designed to illuminate the fuselage interiors of large aircraft during construction, but the unit is being widely adapted to other industrial uses. A 24 -inch unit containing two

20 -watt lamps and 48 -inch unit containing two 40 -watt lamps are offered. Both are available for either 50 or 60 -cycle

current and are of high power factor type to eliminate flicker. Brackets for hanging and a hinged wire lamp guard represent standard equipment.

Steel Caster

Rapids-Standard Co. Inc., 535 Bond avenue, northwest, Grand Rapids, Mich., announces a new Nicro steel caster for use on portable tanks, pumps, dollies and floor trucks. Its main features are the adaptation of Nicro steel castings to new principles of caster design, embodying two complete large diameter ball raceways and the inclusion of a long lead or "rake"-the basis of easy swiveling due to the strength of the caster.

Casters are being made with either metal or $A B K$ resinoid floor-protective

wheels. Kolling bearings are standard in most models; oilite or porous iron bearings are also available for metal wheels. Wheel sizes range from 3 to 6 inches in diameter.

According to the company, test models under laboratory and actual operating conditions indicate that most satisfactory performance can be anticipated under loads ranging from 400 to 800 pounds per caster in average industrial plants over wood, concrete or end-woodblock floors.

Svil YOU, UP THERE on the PRODUCTION FRONTS

No more holding up the steady flow of vital war needs because you're waiting for grinding wheels.
 WE'RE RIGHT BEHIND YOU

Can make prompt deliveries on all Mounted Points and Grinding Wheels $3^{\prime \prime}$ in diameter and under. We've stopped making the larger sizes for the duration, so we can fill orders quickly for these important smaller sizes.

TRY ONE FREE-Tell us the kind of job, type grinder you use and size wheel you'd like for your test, and we'll send one free postpaid.

CHICAGO WHEEL \& MFG. CO.

America's Headquarters for Mounted Wheels 1101 W. Monroe St. Dept. ST Chicago, III.

IT'S OUR WAR-TIME JOB

With the approval and endorsement of W P B, all our facilities are concentrated on turning out large quantities of wheels $3^{\prime \prime}$ in diameter and under. We're at it 24 hours a day, and keeping up with orders. Our central location is an advantage and means no time is lost between our production line and yours. NEW CATALOG-shows mounted wheels in actual colors and sizes, portable electric tools and timesaving accessories for grinding, burring and polishing.

MAIL THIS COUPON TODAY

\square Send Catalog.
\square Free Wheel. Size.

Name
\qquad

POST-WAR BUILD-UP

 and the Madel 150UNIVERSAL QUICK CHANGETYPE HEAVY DUTY DRILL

- The more versatile a machine tool at birth, the less likely its being tagged "war-baby" at the close of hostilities.
BAKER Drills set a splendid example of flexibility in machine design-thus overcoming the danger of being "typed" or "fixed" in limitations. The illustrated box column, heavy duty tool with its wide speed and feed ranges is representative of a machine that may be set into immediate specialized production without costly re-design. This Model No. 150 Universal Quick Change Type possesses a speed range from 48 to 1120 R.P.M., and is furnished standard with one set of Pick-off gears giving total of 24 Speeds, 82 to 1120 R.P.M. Other features embody a Multi-Vee Belt Drive, Multi-Splined Spindle Drive, Two-Piece Frame Design and a capacity of a $1-1 / 2^{\prime \prime}$ dia. drill in solid steel. For added Flexibility reversing of Motor for tapping furnished as standard electrical equipment. Spindle reversed by operator manually thru means of push button station, conveniently mounted in head of machine. A newly printed, well illustrated bulletin listing complete details and specifications on this particular Drill is now available on request.
When we say-"Machines: Sturdy and Efficient-As Fine As Can Be Built"we impart a principle of design incorporating the full line of BAKER Drilling, Boring and Tapping Machines.

FOR EXCELLENCE

On March 20th the loyalty, skill and diligence of the employes at Baker Brothers were recognized with on Army-Navy Award for ex. cellence in production.

BARER BRQTHERS
T
OLEDO,
OHIO.
U. S.
A

Straightening

(Concluded from Page 112)
ing the steel slightly before spotting, either when the part is chilled, or the section dangerous. In this case the torch should be adjusted to a soft flame which is played over the entire surface until temperature reaches about 250 to 300 degrees Fahr.
Shear blades are well suited to spotting. As shown in the illustration, the torch is applied to the side where hardness is unimportant. Side broaches can often be brought straight if the high side of the warp is opposite the teeth. Cer-

Shear blade is spotted at arrow points at a to straighten it. To correct distortion of shaft of worm at b , it is spotted at points indicated
tain types of mandrels and arbors used at about 48 to 50 rockwell C can be spotted for straightening also. Rings can be spotted flat by hitting them on the high side.

On long work having a considerable sweep, two or three spots at about 1 foot intervals may be necessary to straighten the part.

Much practice is essential to achieve success in spotting. Let one man in the shop be assigned to that work, then he will develop more quickly the deft touch that marks the difference between success and failure. He will also acquire the very necessary knowledge as to the movement to be expected from various steels and sections.

Paint for Plant Floors

New type traffic marking paint, Porcelite, developed recently by ThomsonPorcelite Paint Co., 829 North Third street, Philadelphia, is reported to give street and plant floor markings unnsual permanence and visibility.

Formulated on synthetic principles, it is already in use in industrial plants. momicipalities, arfields, parking lots, etc., being applicable on wood, stone, asphalt, wood-blocks, composition and cement.

Air Conditioning adds a New Dimension

Originally, people thought of air condition-
Originally, people thought of air condited the air on a warm day. Temperature was air conditioning's first dimension.

Then came a second dimension . . . morement. Air had to be moved. . . under control.

Then a third dimension . . . humidity . . . control of the amount of moisture in the air.

Then, air conditioning took on a fourth dimension. . . dust exclusion.

And now, air conditioning is cooperating in an important new fich... controlled air pressure. This is needed for the testing of men and equipment under the conditions of stratosphere flying.

Today, air conditioning faithfully repro-
duces cxact climates . . . from the parched heat of the Sahara to the frigid cold of Northern Russia. The equipment that does this must be more flexible, more compact than ever before... with precise control of temperature and humidity.

This equirment... from General Electric ... speeds up America's war effort. When peace comes, this improved air conditioning will become available for many new uses.

Then, as now, look to General Electric as the outstanding supplier of u_{i})-to-date air conditioning and industrinl refrigeration equipment of all kinds.

Air Conditioning and Commercial Refrig eration Deparfment, Dirision 43.5, Gencra Electric Company, Bloomfield, New Jersey

Air Canditioning by GENERAL 3) ELECTRIC

NHED airloss Cuts Forging Cleaning dob From Strours to 15 Minutes

$\star \star \star \sqrt{\text { HEN the history of World War II is writ- }}$ ten, much will be said of the speed of American production . . . and the decisive part it played in overwhelming a foe that had been arming for at least a decade.

Thousands of advanced engineering ideas are at work right now to make this epic drama possible. Among these is the Wheelabrator airless method of abrasive blasting -the metal cleaning process that "works miracles with minutes." Take this example of cleaning forgings, for instance:

Federal Drop Forge Co. says:

"The time factor has been greatly reduced. For instance, on a certain type of forging that we are making, which represents better than 50% of our work, under our old method we placed these forgings in the tumbling barrel for three hours to remove the excess seale. Then they had to be unloaded and carted over to the pickling house, where they were put in the pickling tank for another two hours. With the handling and all it made about five hours' operation, and we were not always successful in removing the scale. Now we perform this same operation in fifteen minutes and we get a beautiful, clean, polished job."

This is not just an isolated example, by any means. It is typical of what more than 2000 users are doing by Wheelabrating. And your cleaning problem can be handled just as speedily . . . we would be glad to have a chance to show you how.

509 S. BYRKIT ST., MISHAWAKA, IND.

> World's Largest Builders of Airless Blast Equipment

ASTM Approves Seven Standards on Forgings

Seven new emergency specifications covering heavy forgings, primarily for use in turbine and generator parts, were recently approved by the American Society for Testing Materials, 260 South Brond street; Philadelphia, on the recommendation of its committee A-1 on steel.

According to the socicty, many members participated in the work of a committee on heavy forgings headed by C. J. Boyle, General Electric Co., which functions under the auspices of the National Emergency Steel Specifications committee.

The primary objective of this group was to concentrate production on a limited number of steels and to agree on standardized test methods and inspection, so that the rotors, gears and related turbine and generator parts could be expedited. It was essential that new industrial specifications be drafted and when these were agreed on in the technical committee, the ASTM was asked to consider the recommendations and issue them as emergency specifications.

A list of these specifications and the ASTM designation follows:
ES-21 Carbon-Steel and Alloy Steel Magnetic Retaming Rings for Turbine Generators.
ES-22 Alloy-Steel Non-Magnetic Coil Retaining Rings for Turbine Generators.
ES-23 Carbon-Steel Ring Forgings for Main Reduction Gears.
ES-24 Carbon-Steel and Alloy-Steel Pinion Forgings for Main Reduction Gears.
ES-25 Carbon-Steel and Alloy-Steel Turbine Generator Rotors and Shafts.
ES-26 Carbon-Steel and Alloy-Steel Turbine Rotors and Shafts.
ES-27 Carbon-Steel and Alloy-Steel Turbine Bucket Wheels.
In this same work the committee on heavy forgings developed emergency provisions in two ASTM specifications covering carbon-steel forgings for general industrial use (A 235-42) and alloysteel forgings for general industrial use (A 237-42).

In the carbon general forging specification a new grade is being added to cover forgings over 20 inches in solid diameter or thickness with minimum tensile strength of 70,000 pounds per square inch and elongation in 2 inches of 20 per cent minimum. In the alloy specification a new requirement for class B forgings in big sizes will require a tensile strength of 80,000 pounds per square inch and a minimum elongation of 18 per cent in 2 inches.

EVER TAKE A MACHINE GUN APART?

$\mathrm{A}^{\text {s }}$SOIDIER has to be able to do it blind-folded. And because he knows how, parts, accurate to the thousandths of an inch and produced in mass-production quantities, come apart and go together again in a matter of minutes.

Even the layman can understand how vital is precision in every item of fighting equipment like this. Take the bullet belt links for example. They've got to be uniformly perfect or the gun will jam in combat.

That unfailing uniformity starts with the strip steel from which those
bullet links are made.
Every pound of American Quality Cold Rolled Strip we furnish in vast quantities for these high precision parts has to be-and is-"right on the nose" in chemical analysis, structure, dimensions and straightness. Otherwise, subsequent operations would fail to produce perfect links.

And because speed of manufacture is important, we further insure perfect work ability in this material by bright annealing in furnaces of improved design. It enables the fabricator to set his dies and machinery for top-

AMERICAN STEEL \& WIRE COMPANY

Cleveland, Chicago and New York

Columbia Steel Company. San Francisca, Pacific Coasr Dispributars
United States Steel Export Company, New York
speed manufacture with full confidence of getting the precise results desired.

If you are fabricating cold rolled strip steel for war products, our metallurgical engineers will gladly help you use it to the best advantage.
 COLD RHIEHED SHEL PDS mANUFACTUASTS WIRE SAMIESS Stea spilic wize - wadne mire WHEE SPRINES

How a BAKER CRANE TRUCK solved a tough problem for Bailey Meter Co.

Bailey products range from small instruments weighing less than 10 lbs. to complete control panels weighing more than a ton. In their manufacture, a wide variety of castings, bar stock and other

In ereptinn of confral manela, Raker re-

Small partin in standord bnrea ara tiered by Buker 7ruek to couserve space.

cara to storage with buker Crane Trwek. materials require handling-from incoming carriers, in plant and warehouse, and to shipping. Besides substituting for removed overhead cranes, truck is used to relieve congestion on others, to handle material beyond their limits, to assist in the erection of control panels, to tier material for conserving space in storage, and for a wide variety of operations which were not anticipated when truck was purchased. Thus the company was enabled to attain increased production without increasing plant size.

A Baker Material Handling Engineer may solve similar problems for you. Cbeck with him now for current or post-war needs, or write as direct.

BAKER INDUSTRIAL TRUCK DIVISION of the Baker-Raulang Company
 2167 West 25 th Streef
 - Cleveland, Ohio

In Canada: Railway and Power Engineering Corporation, Led.

Resistance Welders

(Concluded from Page 110)
Typical of the direct ordnance applications of special high production resistance welding setups is that shown in Fig. 2. Here housings for the Army's giant parachute flares have their fins "stitched" on by rows of spot svelds. The machine employed is a pedestal type resistance welder equipped with two guns, an upper and a lower, instead of the usual single gum. The center electrode is fixed and serves as a mandrel for guiding the housing. The locating fixture which keeps the fins in correct aligument during welding was removed in taking the photo in order to show the guns.

Both Guns Weld Simultaneously
To make the welded joint, the operator merely pushes the housing from one weld] to another, the machine automatically repeating the welding cycle as long as the foot switch is depressed. Thus both guns weld simultaneously, being controlled from the same single timer. The machine, however, is eduipped with two interlocking pressure switches to make sure that one gun does not weld without the other firing also.

As can be seen from the illustration, each gun is fixed in position with the electrode tip normally about $1 / 2$-inch from the work. When the welding cycle is initiated, air under pressure is fed to the Alectrode cylinder to advance the electrode tip to the work and to exert the desired pressure while the weld is made. About 18 welds are required for each pair of fins welded simultaneously or a totad of 36 welds for each complete housing with its four fins. The end ring is also spot welded to the main housing, using the same machine and the same setup.

Keystone Steps up Powder Metallurgy Operations

To step up production, Keystone Carbon Co., St. Marys; Pa., recently enlarged its operations in powder metallurgy to include production of small parts of special design and shape which eliminates machining operatiors, and conserves man-hours and mataerials.

Parts formerly produced by conventional methods necessitatiag such operations as reaming, turning, double milling, multiple drilling, etc., now are being produced by powder metallurgy in which pure metal powders are molded to exact size and shapes in one operation.

Parts currently being produced are cams, eccentric parts, levers, rotors, slide blocks, and other metal parts.

Skilled manpower is one of the most critical of all our strategic resources. To give our fighters the added striking power of more and better weapons, our skilled workers need the producing power of more efficient tools.

Machine tools that are inefficient because they are hard to operate, inaccurate, or incapable of delivering the required speeds are wasteful of critical manpower. Wasted manpower is lost production-and victory jeopardized!

Give your skilled manpower more producing power with South Bend Lathes. Designed and built to deliver maximum production with minimum effort, they are highly efficient on a wide varicty of precision machine work. Their ease of operation reduces fatigue and seemingly shortens the workday by hours. This is accom-

SOUTH BEND LATHE CATALOG
The entire line of South Bend Lathes is descrihed in Catalog 100 C . Write for your copy of this new 48 page catalog.
plished through conveniently placed, smoothly operating controls-clearcut, easy reading graduations - fully crelosed design with no exposed pulleys, belts, or gears-and dependable precision that permits top speed production, even when tolerances must be held to extremely close limits.

DON'T DO THIS! ... ił isn'ł safe!

When somebody neglects to repair a broken chain and somebody else in a hurry splices the two ends with a bolt . . . TROUBLE'S HEADED YOUR WAY! It's easy to learn the right way to handle chain. We'll gladly send you suggestion on request. Teach your new workers the right ways before they have a chance to learn the wrong ways, of which there's quite an assortment.

The bighest possible preference rating shonld be obtained and shown on orders placed for chain

AMERICAN CHAIN DIVISION

York, Pa., Boston, Chlcago, Danver, Datroit, Los Angeles, Now York, Phllodelphla, Pittsburgh, San Francisco

AMERICAN CHAIN \& CABLE COMPANY, Inc. BRIDGEPORT - CONNECTICUT

Carbon-A Refractory

(Continued from Page 125)
phosphorus and phosphoric acid production.

However, about two years ago the first carbon tower was built for use in connection with sulphuric acid concentration. The fact that the carbon tubes in the precipitator had outlasted two chemical brick towers, and were still in good shape encouraged the plant operator to take a chance on a structure built entirely of carbon; floor, side walls, tube supports, roof beams, roof slabs, vapor outlet, and plenum chamber. Now after more than two years of continuous use there is no evidence of any chemical attack, and it is expected that the towers as well as the tubes will last indefinitely. That is a great relief to the maintenance department since a ceramic tower from the day it starts to operate, deteriorates and is a constant source of expense and worry. An added and originally an unexpected advantage of the carbon construction is the speed with which it can be erected, particularly important when a carbon tower replaces a ceramic one in these days of rushed production. It takes 5 to 7 weeks to put up a ceramic tower and install the tubes, while with carbon construction the job can be done in 8 to 10 days.

Use of Carbon Jumps in 5 Years

The tower shown in Fig. 17 will contain 81 tubes 13 inches O.D., 10 inches I.D., and 12 feet long. The overall dimensions are $14 \times 14 \times 27$ feet high. The carbon vent pipe is 38 inches outside diameter by 33 inches inside diameter by 15 feet high. The wall blocks are $111 / 2$ inches thick by $281 / 2$ inches deep and up to 15 feet long. The tube support beams are 4 inches wide, $281 / 2$ inches deep and 14 feet long. The total amount of carbon in the structure and outlet pipe of an 81 tube tower is 250,000 pounds and that figure runs up to 350,000 pounds for a larger 117 tube tower.

The impervious forms of carbon and graphite sold under the trade mark Karbate f, have filled a long felt want of every chemical engineer because of their resistance to practically all attack, because of the ease with which they can be fabricated and particularly in the case of impervious graphite because of its high overall thermal conductivity which is considerably higher than for most of the generally used metals.

As a result of the development of these new materials carbon and graphite are being used today in hundreds of

[^5]places where they could not have been considered five years ago. Thousands of feet of Karbate tubes have been used in various types of heat exchangers in processes that could not function eennomically but for them. The heat exchanger bundle (Fig. 18) is a typical example of a tube bundle made up of impervious graphite tubes $11 / 4$ inches outside diameter by $7 / 8$-inch inside diameter by 9 feet long, cemented into tube sheets of the same material. Whole exchangers have been made of Karbate material, shells, bundles, domes, outlets, inlets, and baffles, and have given complete satisfaction.
A satisfactory centrifugal pump (Fig. 19) is available in which every part coming in contact with the corrosive chemical is Karbate material and such pumps have been in service long enough to indicate complete satisfaction.

Importance of Carbon Growing

Miscellaneous applications of carbon, graphite, and the Karbate materials in the chenical field are a multitude; injectors, ejectors, float valves, Y-valves, globe valves, condensors, absorbers, towers, Raschig rings, simple and complex piping, in fact about everything the chemical industry needs is now made from carbon in some one of its forms and the industry has found a new tool.

The use of carbon for refractory purposes is small when compared to that of ceramics, whether the comparison be on a tonnage or a value basis, but it is important to industry, and daily growing more important. The slogan of one of the producers of carbon is, "Whatever your problem, think of carbon and graphite", and many of the foremost chemical and metallurgical concerns do just that.

References

1. Carbon and Graphite by F. J. Vosburgh, Chemical and Mctallurgical Enginecring, Nov. 1938, and table same date and Oct. 1940.
2. Temperature Gradients Through Compasite Carbon Columns and Their Application to Blast Furnace Linings, F. J. Vosburgh and M. R. Hatfield, Metals Technology, Sept., 1941.
3. The Thermal Expansion of Refractories by F. H. Norton, Journal of the American Ceramic Society, Dec. 1925.
4. Carbon Linings for Blast Funaces, by Dr. Felix Singer, Mctals and Alloys, April, 1939.
5. Carbon Linings for Blast Furnaces by F. J. Vosburgh, Iron and Steel Engineer, April, 1940.
6. Use of Carbon and Graphite-Stefl, Sept. 15, 1941, by F. J. Vosburgh.
7. Application of Carbon Bricks in Electric Arc Fumace and Blast Furnace, by R. Klesper, Feuenungstechnik, Vol. 24, page 44-46, 1936.
8. Tests with Special Refractory Blocks in Electric Furnace Roofs, by Dr. Franz Sommer, Stahl und Eisen, Sept. 15, 1932, p. 897-901. Repart No. 236 of the Steel Works Committee of Vereins deutscher Eisenhuttenleute.
9. Refinery Uses of Molded Carbon, by Dr. M. J. Darcas, National Petroleum Neus, April 30, 1941.
10. Carbon-Carrosion Proof Tank Lining, by L. C. Werking, Iron and Steel Engineer. Sept. 1937.

Construct your own high. grade cutting edges on ordinary medium and low carbon steel shanks. The finished tool will give excellent performance for high-speed work. AGILE Silver-Red electrodes give longer life to lathe and planer cutting tools, drawing dies, etc.

AGILE SILVER-GREEN WELDING ELECTRODES

This AGILE electrode should be used for tipping chisels or beating tools. The weld metal possesses extreme toughness, excellent shock resistance and insures a long life cutting edge.
Complete information will be sent on request.

TRADE journals have been featuring write-ups on the deep finned aluminum alloy cylinder heads for airplanes. Directives have ordered double the original tremendous production of bombers, pursuit, transport and other airplanes for immediate battle requiroments. The needed number of cylinder heads jumped to astronomical figures.
Pangborn broke the impending bottleneck to this almost impossible production schedule by designing-and delivering-eight ROTOBLAST Airless Tables and twelve special semi-automatic Air Blast Machines for handling this great volume of cleaning. More are now being built.
The ROTOELAST Tables are used for the first two cleaning operations. As they come from the shakeout the inside and outside surfaces of the cylinders are table cleaned to remove all sand. The units are again ROTOBLASTED to remove scale after heat-trecting.
The final blast cleaning is done in special Pangborn Air Blast Machines. This tieatment removes all grinding marks-and prepares a perfect surface for exterior metallizing.
This is a typical example of Pangborn development in Blast Cleaning. Prompt engineering and delivery action like this is helping to create new War Production records. We shall be glad to help you with your problems, too.

PANGBORN CORPORATION

World's Largest Manufacturer of Blast Cleaning and Dust Control Equipment HAGERSTOWN MARYLAND

Brass, Bronze Castings

(Cortinued fom Pase 106)
our source of supply of material to make the various grades of brass and bronze castings.

The designer, in the past, has given little or no thought to conservation but has specified the best material for the purpose intended. Composition G, or gun metal, has many important and traditional uses. In peace times when the supply of raw materials was unrestricted there could be little criticism of a designer who specified that excellent metal for many and varied uses. However, today the 0.2 or 0.3 per cent lead maximum in specifications for that bronze places it in a class requiring primary copper and tin for its manufacture. Now the designer must revise his thinking and specify the least restrictive material that will do the work at hand.

As indicated on the chart, in many instances composition M, or even 85-5-5-5 will give adequate service performances for many items where composition G has been specified. The armed services are recognizing this and have made many specification changes of this nature which conserve primary metal. The Navy, last spring issued a directive permitting t^{2} e use of composition M in place of composition G in pressure castings, The Maritime Commission has changed propeller shaft sleeve from G to M, an alloy on which the Navy had standardized for the purpose.

More recently the Navy has pointed out the possibilities of the use of $85-5-5-5$ for composition M, composition G or silicon bronze for sea water valves and fittings. It might also be noted that where structural strength is the primary consideration leaded manganese bronze is an excellent design choice, in place of composition G, silicon bronze or aluminum bronze.

There are times when a partial or full substitution of ferrous metal may be made for some of the nonferrous alloyseven in some uses directly or indirectly connected with our war effort. For instance, such is the current use of malleable iron tail-pieces for fire hose couplings that formerly were made of the underwriters mixture. Swivels, and couplings used aboard ship, are retained in a nonferrous metal. The alloy used, is a common leaded yellow brass that can be made entirely from secondary material and scrap.

Other possible design changes are shown on the chart and those which are currently most desirable are indicated by the use of heavier connecting lines. Results to date have been encouraging. Much progress has been made. The actual saving in primary copper by specification changes already is measured.

Much more still remains to be done. It is work in which all who are connected with the war effort can co-operate.

Ingot makers, foundrymen and others who have direct knowledge of items where changes can be made to conserve critical materials should bring them to the attention of those responsible for the specifications involved. Specific recommendations should be made. In this the Conservation Division of the War Production Board will gladly be of assistance. But it is primarily a challenge to the design engineer to see that by a closer examination of end use he secures the best possible utilization of our material resources to win the war.

Lintern Unit Air Conditions Crane Cabs

A new smoke and dust climinator for crane cabs, called an Aire-Rectifier for protecting crane operators from harmful, dusts, vapors and gases causing occupational diseases is announced by Lintern Corp., 50 Lincoln avenue, Berea, O. It consists of an arrangement of mechanical, activated carbon and electro static (Westinghouse Precipitron) filters combined in a compact assembly to completely treat all air entering the cab enclosure.
The equipment, it is reported, allows clear fresh air to enter the cab at the rate of one complete change per minute through a diffuser which efficiently prevents drafts. Where excessive heat complicates the health problem, mechanical cooling is provided.

For winter operation, the filtered air is electrically heated.

Brochure Gives Data on Metal Chilling Technique

To answer some of the questions regarding design and application of industrial type low-temperature apparatus for low temperature treatment of metal parts, Decpfreeze Division, Motor Produets Corp., 2301 Davis street, North Chicago, Ill., has published a booklet entitled "Facts and Information About Industrial Chilling Equipment."
The equipment dealt with is capable of chilling metal parts to temperatures as low as 120 degrees below zero Fahr.ather for slarinking to permit easy assembly or as a treating process which will produce combinations of harduess, strength and ductility not obtainable by conventional hardening and tempering methods.

Copies of this brochure are available From Deepfreeze Division to engincers, metallargists, production managers and other industrial executives who make application on their company letterheads.

No. 130 A Johnson Heat-Treating Furnace

Notice the counter-balanced door which opens upward. allowing tools to be put in or removed without fully opening furnace door - thus preventing temperature drops. Carbofrax hearth and $1 / 4 \mathrm{~h}$. p. blower. Lined with hi-temperature insulating refractory. Available in 4 or 6 burner styles. 4-burner job pictured has temperature range from 1400 to 2000 degrees F., and is priced at $\$ 295$. F.O.B. Factory. 6-burner job offers 1800 to 2400 degrees F., priced at $\$ 325$. F.O.B. Factory. Firebox $73 / 4^{\prime \prime}$ high, $13^{\prime \prime}$ wide, $1612^{\prime \prime}$ long.

NHW JOLNSON CATAROC WRHY ADDRESS ABOVE

Arranging Shifts

(Concluded from Page 126) recreation late in the evening as it would enable them to stay up to or beyond midnight and sleep later in the morning.

The White shift will appeal to middleaged individuals whose social life has altered. As their children have all grown up they would not be disturbed while sleeping during the forenoon hours. They would have the aftemoon free as they would not be due to begin work until 8 p.m.

The Blue shift fits in very well with the schedules of families of the inter-
mediate age groups, where there are small children. The father could go to bed early in the evening at the children's retiring time. He would return from work shortly after noon and have the afternoon free.

With five 8 -hour working shifts per week, the problem of the weekly holiday of 2 days may have an upsetting effect on the establishment and maintenance of the displacement cycle. Workers can hardly be expected on their days off to stay up during the odd hours which they devoted to work during the 5 days preceding. One answer to this problem is to decrease the weekend

ACP Products and Processes CONTRIBUTE in Record Steel Production

With steel mills throughout the land straining for peak production, the savings in steel and acid made possible by RODINE are more important than ever before. Also of great importance now is the safety factor provided by RODINE. It prevents overpickling and scrapping of finished steel under the pressure of the rush to produce.

Other ACP Products and
processes are lending a hand, too. CUPRODINE is used to produce a dense, bright copper coating on steel by a simple immersion (non-electrolytic) process in wire mills and on steel shell cases before drawing. RIDOLINE and the ACP Alkali Cleaning System cleans strip and plates in a continuous operation to speed-up production and provide better finishes.

[^6]break to 1 day. The 48 -hour 6 -day work week is coming where it has not yet been aropted.

Plan for 10 -Hour Shifts: Some inclustries may find it impossible to run their machinery continuously and may have to adopt two 10 -hour shifts. These shifts could be distributed as follows:
A. The carly shift from 4 or 5 a.m. to 2 or 3 p.m.
B. The late shift from 2 or $3 \mathrm{p} . \mathrm{m}$. to midnight or 1 a.m.

By this arrangement no one would be expected to work during the early morning hours of greatest inefficiency. The shifts could be steady or of infrequent rotation.

In conclusion, these two important factors must be kept in mind: 1 . Workers should stay on any shift long onough so that they can get used to it and live reasonably adjusted lives while they are on it.
2. The shifts should be timed in such a way as to result in only the minimum displacement of the normal 24 -hour cycle of activity.

Chicago Vitreous Offers Priority-Free Finish

A new priority-free coating for metal products recently developed by the laboratories of the Chicago Vitreous Enamel Product Co., Cicero, Ill., is reported to enable manufacturers to substitute steel or iron in their products for the even more critical materials such as brass, copper, stainless steel and aluminum. Its use is expected to relieve the pressure on vital materials used for protective coatings such as chromium, zinc, tin, cadmium, as well as critical materials in some organic finishes.

The new finish, or coating, called Armor-Vit, is at once a material and a process. While the trade-name suggests a material ceramic in nature, there is no relationship between the development and porcelain enamel, and being inorganic, no comparison with paint, lacquer, or the synthetic finishes, the company explains.

The finish is essentially an alkali alumina silicate, one source of which is a new ingredient, an oil-bearing halloysite from the only known deposit in the world. There are various types of halloysites, but this particular halloysite is black and oil-impregnated, which characteristic lends immeasurable benefit to the finished material. After the application of Armor-Vit, by ordinary spraying equipment or dipping method, the curing treatment, best accomplished in an indirectfired, air oven, combines the ingredients of the coating into a hard, heat-resisting finish, insoluble in boiling water and highly resistant to most acids and alkalies.

For its application the metal is cleaned
by ordinary cleaning methods-alkali cleaner, and pickling and then neutraliz. ing.

Sand-blasting is usually recommended for cast iron. The product is said to make an exceptional rust or corrosion resistant finish for metal It repeatedly proved its ability to withstand the standard 200 hour salt spray test, extended weatherometer tests, and all mamer of acid and alkali tests with excellent results, says the company.

Impact and abrasion also is capably endured by this new finish, conclusive evidence being found in its application to steel skid-boxes used for transporting 37 millimeter shot in a certain annealing plant.

After eight months of handling these rough shot, both cold and piping hot, the coating was still in good condition.

Suggests How To Clean Gas Welding Tips Speedily

A time-saving method for maintaining brass or copper gas welding and flame cutting tips is suggested by Oakite Products Inc., 22 Thames street, New York. Indirectly, the method is reported to speed production while cutting maintenance time in half.

After a period of normal use, tips acquire a deposit of carbon, slag, scale and tarnish. Orifices become congested or clogged, a condition which usually prevents utilization of correct pressures. When operating efficiency is thus affected, often gas is wasted. What then, is the best way to handle this work on a fast production and safe basis?

The experience of one metal-working concern points the way and may serve as a guide to others, particularly to those plants where a large amount of welding and cutting is done and where tips are reconditioned or handled on a daily basis.

Usual method for handling this work is to employ drills to open and clean orifices so that oxygen stream has clean passage, then buff and scrape surfaces of tips to remove traces of carbon, scale and tarnish. In one instance where a large volume of this work is handled, it usually required the time of four workers for 7 hours to clean 200 tips.

With the new method, 500 tips are cleaned in 3 hours which cuts in half the time previously required for this work. The new technique only requires the time of one individual, releasiag others for different work.

Sequence of cleaning steps is as follows:

Tips are placed in basket and immersed in boiling cleaning solution for 45 minutes to one hour, followed by cold
\qquad
\star

America's Light, Medium

 and Heavy Tanks have
FORGINGS BY STANDARD

5War being the supreme test of materials and workmanship, it is again proving that Standard's reputation for dependable steel products, gained in time of peace, and other wars, is well deserved.

With its roots implanted, back in 1795, in the beginning of our Nation's history, Standard is today using the accumulated knowledge and experience of the intervening years to produce highest quality forgings and castings for equipment of our armed forces on land and sea, for war-time industry, and for the railroads.

The metallurgists and other trained personnel of Standard are acquiring added skill in meeting war-time demands that will be applied to industrial and transportation problems in the post-war period wherever quality steel forgings are required.

DIYISIOM OF
TKE BALDWIM LOCOMOTIYE WORES
P H I L A D E L P H I A
rit:se. Next, tips are immersed in solution of Oakite compound No. 32 to remove carbon, slag and scale deposits, followed by cold rinse. Tips then are given a 10 -minute bright dip followed by cold rinse and boiling riuse to dry down with final air blow.

This sequence takes approximately 90 minutes after which tips are free of deposits that upset flame balance. Possibility and mechanical injury to tips such as may oceur by using wire cleaners or drills is avoided and tips come out of solution clean, bright, looking like new i : side and out.

Pratt \& Whitney Replaces Steel Trays for Wood

To conserve steel and to make work lighter for its increasing number of women employes, Pratt \& Whitney Aircraft Division of United Aircraft designed wooden containers as substitutes for steel trays used for parts in process.

Even without a load of knuckle pins, gears, piston pins, articulating rods, bushings or studs, according to the company, the old trays were heary for a woman to handle.

Fucl 0
 NDTHRTGAS

TIME IS SHORT!

Fuel oil and gas must be replaced now with pulverized coal, if operations are to continue at their present record rate. - AMCO is prepared to furnish complete Pulverized Fuel Systems for all types of furnaces in the Steel and Non-Ferrous Industries.

Hopplulditerature

1. Metallurgical Analysis

E. H. Sargent \& Co.-6-page illustrated bulletin, "High Speed Analysis of Metallurgical Products," is descriptive of "Slomin" electrolytic analyzers which are used for accurate, quantitative analysis of ferrous and nonferrous metals and allays, electroplating solutions and electro-deposits, micro and semi-micro specimens, and similar materials. Scientific laboratory supplies are also covered.

2. Specification Finishes

Egyptian Lacquer Manufacturing Co. 44. page illustrated manual, "United States Govemment Specification Finishes," is third edition of this book. Army, Navy and Federal specifications of lacquers, enamels, primers, paints, varnishes and other protective coatings are given. Material, colors, thinning, application and drying time are covered.

3. Munitions Engraver

George Gorton Machine Co.-8-page jllustrated bulletin No. 1635-A presents details regarding design and operation of model ME pantograph type munitions engraving machine and "Spit-fire" electric arc etching unit which can be used in conjunction with engraving machine. Typical applications of this equipment for etching or engraving all types of materials are shown.

4. Fastening Devices

John Hassall, Inc.-48-page illustrated catalog No. 40 presents complete specifications on line of cold forged specialties, special nails, copper nails, escutcheon pins, special rivets, Annular thread screws, drive screws, fluted and knurled products, machine screws, and related products of ferrous and nonferrous alloys and metals. Also available is 16×18-inch wall chart containing decimal equivalents of fractions up to 1 inch.

5. Roll Grinder

Farrel-Birmingham Co.-32-page illustrated bulletin No. 113 describes design, construction and operating advantages of type $T T$ roll grinder with moving work table, which is used for producing accurate finish on rolls, cylinder and shafts. Machines are built in three sizes to take maximum diameters of 24,28 and 32 inches and in any length required.

6. Tool Shanks

Cooper-Bessemer Corp.-12-page illustrated bulletin No. 53T-2 contains description and specifications on "Victory" tool shanks which are cast to shape. These shanks are designed for tipping with carbide by users who manufacture their own cutting tools. In addition to complete line of shanks, forming tools are also available cast to shape with Meehanite.

7. Carburizing Furnaces

Surface Combuation-4-page illustrated bulletin No. SC-108 is descriptive of continuou type gas carburizing furnaces. Design features of this equipment include radiant tube firing, simplified materials handling, and automatic, semi-automatic or manual control.

8. Shift Calculator

George S. May Co.-Dial type calculator is dosigned to aid in selection of employe work program to obtain as near continuous operation of equipment as possible. This device is perpotual work shift schedule and single setting permits determination of starting and stopping time of three or four crews on rotating or swing shift schedules. Four separate plans aro offered.

9. Welding Equipment

Liquid Carbonic Corp.-32-page illustrated bulletin, "Gasweld Welding and Cutting Equipment," presents complete details and specifcations on welding torches, gas pressure regulators, standard and special welding tips, cutting tips, complete outfits, special equipment and accessories. Also described are motor
 cluded.

10. Metal 5tamping

Dayton Rogers Manufacturing Co.-20-page illustrated bulletin, "Metal Stamping in Small Lots," is compilation of data and description of production methods used in making limited stampings in small lots where cost of conventional dies would be almost prohibitive. In addition to showing facilities of this company, typical examples of parts produced are described.

11 Heat Insulation

Philip Carey Manufacturing Co.-24-page illustrated bulletin, "Heat Insulation For Industry," is descriptive of asbestos, diatomite, magnesia and rockwool insulations which are available in many forms for application to industrial equipment. Complete data are given regarding applicntion and heat insulating qualdties of various materials. Also covered are bonding, waterproofing and refractory cements, as well as pipe coverings and sheet insulating materinls.

12. Pipe Threading

A. M. Byers Co.-20-page illustrated servica bulletin, "The Threading of Wrought Iron Pipe," is instruction manual on wrought iron pipe threading. In addition to covering fundamentals of threading practice, exact instructions are given regarding chaser sharpeuing and correct threading procedure. Defects in threads and their causes are also covered.

13. Machine Tools

Cincinnati Milling Machine Co., Cincinnat Grinders Inc.-48-page illustrated catslog No. M-995-1 is descriptive of machines for milling, broaching, die sinking, grinding and lapping. Complete specifications are given on various models of machines within these categories. Design features of available units are also covered.

14. Roofing Material

Coated Products Corp.-6-page illustrated folder, "Introducing Plastipitch," is descriptive of process of weather proofing many types of metals and shapes. This method is claimed to replace galvanixing and rolled methods of bituminous application. Coating protects corrugated metal sheeting and roofing against action of water, sualight, smoke or acid.

15. Adhesive Cements

Cataract Chemical Co.-2-page illustrated data shect No. G1142 discusses various types of cellulose solutions which are available as adhesive cements for permanent or temporary honding of wood, leather, fiber, eloth, glass, plastics, metals and other materials. These cements are available in waterproof, oil proof, heat proof and non-conductive types. Also covered are thinners and activators.

16. Parts Refrigerating

Deepireozo division, Motor Products Corp. 12-page illustrated manual, "Facts and Information About Deepfrecze," gives pertinent data regarding low temperature industrial chilling equipment. Uses and general application in all types of industry are covered. Supplementary booklets describe equipment and present technical article on effect of subatmospheric temperatures on high speed steel.

17. Drilling Machine

Bryant Machinery \& Engineering Co.-16page illustrated citalog No. 400 is descriptive of "Cleereman" drilling machines which are designed and constructed for high speed, accurate work. Line includes drilling, boring and tapping machines with capacities ranging from $3 / 16$ to 6 -inch diameter holes. In addition to giving specifications on variaus models, features of construction are shown.

18. Steel Castings

Eimco Corp.-36-page illustrated bulletin No. 801 describes facilities of alfiliated companies which offer complete repair and replacement service in production of electric fumace steel castings. Characteristics and details of carbon-steel, alloy steel, iron and nonferrou castings, as well as machining, heat treating, forging and fabrication services are described.

TEEL Readers' Service Dept.

1213 West Third St., Clevelard, Ohio

Please have literature circled below sent to me.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
17	18	19	20	21	22	23	24	25	26	27	28	29			
30	31	32	33	34	35	36	37	38	39						

Name \qquad Tille

Company
Products Manufactured \qquad
Address

19. Drilling Machine

Davis \& Thompson Co.-2-page illustrated data sheet on "Roto-Matic" driller shows design and operation of this type 8 SV multiple spindle vertical drilling machine which has capacity of up to eight $\%$ inch drills in steel. Use of pick-off gears permit spindles to be run at any speed ranging from 300 to 2400 revolutions per minute. Machine is also available in larger sizes.

20. Snagging Wheels

Bay State Abrasive Products Co.-4-page illustrated folder, "Portable Snagging Wheels," is descriptive of various types and sizes of these abrasive wheels which are designed for use on all types of portable grinding equipment. Table lists recommended wheels for saagging operations on aluminum castings, brass and bronze, gray iron, forgings, malleable castings and manganese steel castings.

21. Testing Equipment

Baldwin Southwark division, Baldwin Locomotive Works- 16 -page illustrated bulletin No. 153 contains descriptions of strain gages and extensometers. Typical records obtained with "De Forest" scratch recording strain gage are shown. Various types of extensometers aro described in detail. Other types of testing equipment are covered briefly.

22. Hydraulic Equipment

Blackhawk Manufacturing Co.-12-page illustrated catalog No. V- 43 lists only those ttems of hydraullc equipment scheduled for production during war. Covers hydraulic hand jacks, 3 to 50 tons capacity; wheeled service Jacks; gage equipped jacks; "Porto-Power" hydraulic units; maintenance kits; motor vehicle assortments and pipe benders. Catalog replaces eight pencetime bulletins.

23. Speed Reduction Units

American Pulley Co.-10-page illustrated catalog No. R-42 describes line of reduction drives made in six sizes from 3 to 25 horsepower. With speed zatio of 13 to 1 , they deliver any desired driven speed from 11 to 154 revolutions per minute. Line drawings show typical applications of these drives. Directions for selecting proper drive for specific use are outlined.

24. Bronze Alloys

Ampeo Metal, Inc. - 8 -page illustrated booklet, "Supplementary Alloys for Uncle Sam", describes three bronzo alloys having physical properties that meet certain definite requirements in war production. Booklet shows specifications met, physical properties and chemical compositions of these alloys. Bronzes are Jaboratory controlled.

25. Piping Construction

Crane Co.-6-page illustrated folder No. B is one of a series of bulletins on "Piping Pointers." It is entitled, "Short-Cuts to Faster Piping Jobs," and points out examples of how material shortages can be overcome through ingenuity on part of designer or erector. Various suggestions are illustrated and explained in text.

26. Bronze Bushings

Atlas Brass Foundry Inc.-84-page illustrated catalog No. 35 gives complete speciflcations on standard and special bronze bushings, bearings, phosphor bronze cast bars, babbitts, "Compo" oil-retaining bearings, "Powdiron" sintered iron parts and bearings, pillow blocks, and special castings and bushings of nonferrous alloys.

27. Refractories

Babcock \& Wilcox Co.-Illustrated data sheet, "Guide for Mortars and Plastics," is designed to simplify problem of selecting correct refractory materials for wide range of applications. Various types of work are listed along with suggested materials and their maximum tempernture range.

28. Platform Trailers

Easton Car \& Construction Co. - 1-page illustrated bulletin No. 191 describes and gives brief specifications on standard warehouse, pneamatic and solid tired, and cradle type platform trailers in capacities ranging from 1000 to 4000 pounds. Details of nutomatic coupler and its operation are discussed.

29. Coolant Filtration

S. G. Frantz Co.-4-page illustrated bulletin, "Magnetic Filtration of Coolants," discusses use of "Ferrofilters" in manufacture of small arms. Application of units to various types of machine tools employed in arms production are described. Specifications are given on available sizes of these magnetic filtering units.

30. Bearings

Bantam Bearings Corp.-24-page illustrated bulletin No. 104 presents full specifications on "Bantam" needle, ball thrust and roller thrust bearings; quill rollers and cam followers. Completo information is given regarding application, design, capacity and speed of various types of bearings.

31. Crane Operation

Electric Controller \& Manufacturing Co.44 -page illustrated instruction manual No. 920 is entitled, "How to Operate a Crane." It is intended for use in training new operators for crane service, supplementing standard training program which may be given at plant. Illustrations and text provide thorough understanding of crane operation procedure.

32. Inveņory Control System

Diebold Safe \& Lock Co.-8-page illustrated bulletin No. 601-204 presents detailed information regarding "Cardineer" system for record keeping in conjunction with inventory control. All card records are instantly accessible on large wheel type file. Various forms which are available are described.

33. Deaerating Equipment

Cochrane Corp. 36 -page jllustrated booklet No. 3005 covers tray type deaerators, atomizing deaerators, deacrating hot water generators and cold water deacrators. Bulletin contains flow diagrams and photographs of installations described. Corrosion control and pH control aro discussed. Accessory equipment is included.

34. Welding Electrodes

American Agile Corp.-two illustrated bulletins are descriptive of "Agile" welding clectrodes. "Silver-Green" electrodes are designed especially for tipping of shock resisting tools. "Silver-Red" electrodes are produced for construction of high-grade cutting edges on medium and low carbon steels. Instructions for welding with both types of electrodes are outlined. Prices per pound are shown.

35. Adjustable Stud Setters

Apex Machine \& Tool Co.-4-page illustrated bulletin No. 101 describes "Apex" adjustable stud setters. Four sizes cover range of studs up to $11 / 4$ inches. Setters are avnilable in taper shanks, hexagon, T-handle, square female or T-handle combination with square female drive for use with torque wrench. Specifications for stud setters and their repair parts are listed.

36. Colloidal Graphite

Acheson Colloids Corp.-12-page illustrated bulletin No. 480-AZ discusses importance of "dag" colloidal graphite to modern industry. It describes physical and chemical properties of this product and shows how it differs from other forms of graphite, especially in regard to particle size. Control of dispersions and reasons for liquid carriers are explained. Bulletin summarizes all standard colloidal and semicolloidal dispersions and illustrates several typical applications.

37. Plastic Parts

Creative Plastics Corp.-4-page illustrated broadside advocates production of critical parts in plastics sithout molds. Plastic parts illustrated include generator cover plate, transparent locking device, plug for valve, gear knob, indicator handle, intemal-external threaded coupling, threaded tube section, heater bushing, commutator brush holder and telephone coupling.

38. Electric Furnaces

Cooley Electric Manufacturing Corp.-4page illustrated bulletin No. 50 is descriptive of electric furnaces for industrinl and laboralory uses. Furnaces are recommended for fast heat treating of small parts, drawing or tempering small lot small parts, normalizing or annealing small parts, pre-heating for subsequent high speed hardening and emergency repair orders where one or two parts must be heat treated in short time. Specifications and prices are listed.

39. Care of Centrifugal Pumps

Allis-Chalmers Manufacturing Co- 28 -page illustrated manual, "Handbook for Wartime Care of Centrifugal Pumps", is part of series which already includes books on wartime care of motors and V-belts. It applies to all makes of pumps and contains no advertising. Guide makes specific recommendations for putting pump care on wartime basis. Tips included in book describe ensy ways to find leaks, common mistakes in packing stuffing boxes, role of water as lubricant in pumps and many others.

	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	18	19	20	21	22	23	24	25	26	27	28	29		
10	31	32	33	34	35	36	37	38	39					
Name														

Company
roducts Manufactured

FIRST CLASS

PERMTT No. 36
(Sec. 510 P.L. \&R
Cleveland, Ohio

Address

Mirrors of Motordom

(Concluded from Page 82)
has made the statement that iron and steel will continue to be the basic materials for automobile construction because they alone provide the necessary stiffness or rigidity of the assembly.

It must not be denied that there are literally hundreds of applications for both plastics and the light metals in motor cars-uses which complement the basic structural materials, iron and steel. There will be a speedy and fairly complete acceptance of newer materials in such parts, but the pressure on cost will unavoidably be tremendous. Those who have worked with the motor plants in the supply field over the past 20 years will attest the importance of a few cents in the unit cost of a car. Many otherwise worthwhile improvements proposed for motor car use have been rejected because they involved what appeared an insignificant increase in cost per car; a premium which would grow to a major item when multiplied by a million or two, which is after all the final testthe net effect on annual production costs, not "per car" cost.

But enough of the generalities; next week we will turn to a detailed analysis of the component parts of an automobile and attempt to see what may be in store for the future.

Minerals Distribution

To Affect Future Peace

(Concluded from Page 98)
world's minerals. By the close of 1942, they had acquired control of additional areas that in 1939 had produced 14 per cent. While serious inroads have been made into the United Nations' supplies, especially steel and oil, by Germany and Japan, the output available to the United Nations is still enormously greater than that to adversaries.

Great inequality in the distribution of minerals, which for many years has given rise to international rivalry and controversy, is not likely to be changed materially by new discoveries or technological developments. As the growth of industry calls for larger and more varied supplies, there will be a greater concentration of demand on large reserves now in production or known to cxist.

Since World War I, many nations have adopted closed door measures designed to restrict exploitation of natural resources by outsiders, but they have not denied the "have-not" nations' access to minerals. On the contrary, in peacetime producers made great efforts to sell to countries that now are enemies.

Real difficulty facing the Axis powers
with respect to minerals before the war was their inability to pay for imports. Costs of long distance transportation were a primary factor in raising the price of their mineral imports. Their payment problem was complicated by exchange depreciation resulting either from general economic, financial, and trade dislocations or from internal policies of the importing nations. In late years payment became especially difficult because they were importing minerals in large quantities while reducing exports-both in anticipation of war.

The study explores the possibility of using mineral controls as part of a pro-
gram to maintain peace by collective action on the part of the chief mineral producing nations and points out the difficulties involved. Conflicting claims of self-interest would arise within such a controlling group. It would be difficult to obtain close co-operation of all the mineral producing countries.
It would be necessary to supervise not only the total imports of the various countries but also the uses to which the minerals are put. Since practically all branches of industry are potentially useful for war purposes, far-reaching extension of such controls might be required.

MICHIANA PRODUCTS CORPORATION

 MICHIGAN CITY, INDIANA
MICHIANA

- Muffles - Retorts
- Boxes
- Pots
- Rails - Grids
- Rolls -Tubes

> Heat-Resistant and
> Corrosion-Resistant
> ALIOY CASTINGS

\author{

- Sprockets - Chains
 - Heat-Resistant and Comosion-Resistant Castings of All Kinds
}

C-F POSITIONERS

Speed Production

 and Job WeldingWrite for Bullotin
WP 22.

POSITIONER
C.F Positioners make welding a faster and more economical operation-save time, save man-hours. The welder himself lurns and tilts and positions even the clumsiest and heaviest weldments with a push button control-without cranes, crane crews, hoist, jacks or "flopping" space. All sides con be welded down-hand-all welds can be made faster with heavier rods; made stronger, smoother and flawless.

C-F Positioners come in sizes and types for every welding need-range from small hand operated units for light job work to giant positioners that swing great weldments weighing $30,000 \mathrm{lbs}$. All have plafforms that rotate the full 360° and tilt to 135° beyond horizontal. All are adjustable for height and are pedestol mounted to give greatest floor clearance.

WPB-OPA Rulings

(Concluded from Page 79)

telephone, to ratings of AA-4 or higher, except for previously accepted orders.

PRICE REGULATIONS

No. 77 (Amendment): Beehive Furnace Coke, effective April 6. Provides that bechive oven furnace coke produced in Monongalia, Preston and Upshur counties, W. Va. be priced under same price regulation as that for coke produced in Pennsylvania. Ceiling price for hand-drawn coke whose coal nust be trucked from mine is $\$ 7$ per net ton f.o.b. Connellsville, Pa. Transportation charges from Connellsville to place of deliver; may be added. Machine-drawn coke is priced at $\$ 6.50$ a ton on same basis.
No. 121 (Amendment): Miscellaneous Solid Fuels, effective April 6. Exempts beehive oven furnace coke produced in Monongalia, Preston, and Upshur counties of W. Va. Coke produced in these counties is subject to price schedule No. 77.
No. 136 (Amendments): Machines, Parts and Machinery Services, effective April 8, specifically includes non-electrical welding equipment including welding rods, welding wire, electrodes and supplies in list of items covered by regulation.
Effective April 8, changes status of items under the regulation: Covers only poweroperated marine and industrial soot hlowers and tube cleaners (hand-operated devices covered by regulation No. 188); excludes ladles over 40 tons" capacity from definition of "foundry equipment" (these ladles covered by General Miximum Price Hegulation); excludes space henting furnaces and stoves, (covered by Schedule No. 188) blast furnaces, open hearth furnaces, Bessemer converters, soaking pits, coke ovens, and industrial furnaces used solely for manufacture of pig iron (subject to General Maximum Price Regulation).
Elfective April 10, provides alternative ceiling for used machinery and second-hand machine parts. Ceilings can be determined either (1) by using 85 per cent of the maximum price for nearest new equivalent machine f.o.b. factory, for a reconditioned and guaranteed machine or part; or 55 per cent of maximum price for nearest new machine, for an "as is" or other machine not guaranteed nor rebuilt; or (2) by using maximum price for nerrest equivalent new machine and reducing it by depreciation rate listed in a table now contained in the regulation from the date of acguisition when new to date of sale. Provisions are also made for sale of machinery leased by Defense Plant Corp.; for sales between corporations entitled to file affiliated returns under Intemal Revenue Code; and for sales of machines sold only on a delivered or installed price. Effective April 12, provides manufacturers of steam eleaning equipment, degreasing machines, metal washer parts, manufacturers optical processing machinery with a pricing formula.
No. 202 (Amendment): Brass and Bronze Alloy Ingot and Shot, effective April 12. Establishes maximum price for shot, including shot in granulated form, of any alloy that contains 50 per cent or more by weight of copper that is in line with maximum price established by the regulation for the comparable ingot, adjusted for difference in manufacturing costs. When a price for shot is filed with OPA for approval, it may be effective at once in transactions of the seller; but if the price is disapproved, settlements must be ndjusted to an amount no greater than the price that is extablished by OPA.
No. 356: Royalties on Copper, Lead and Zinc Ores, effective April 1. Freezes royalties paid by domestic mine operators at rates in effect Dee. 31, 1942. Does not affect royalties based on original premiums of the Premium Price Plan, amounting to 5 cents per pound for copper and 2.75 cents each for lead and zinc, unless these premiums were mot included in ruyalty ealculations last year.

MEETINGS

Forum Hears Machine Tool Market Is Declining Rapidly

PITTSBURGH Indications of changing conditions in machine tool markets were noticcable at the eighth amnual machine tool electrification forum here last Tuesday and Wednesday under sponsorship of Westinghouse Electric \& Mfg. Co. Nearly 300 representatives of companies with more than 90 per cent of the industry's capacity were represented at the twoday session, this attendance being more than double the previous high record.

Informal and behind-the-scenes discussions were indicative of the growing concern manifested by the industry over the rapid drying up of markets. Gencral consensus was that future business from the war effort will be only a small trickle in comparison to the industry's capacity to produce. Unless there is an early end to the war, with consequent conversion to peacetime products, little new business can be expected. One large machine tool buyer said that current business being placed with machine tool builders had dropped to about 40 per cent of last year's figure and was declining even more rapidly.
A more extensive report of the mecting will be published in Steel's issue of April 19.

Blast Furnace, Open Hearth Sessions To Be in Cleveland

Annual conference of the National Open Hearth Committee and the Blast Furnace and Raw Materials Committee of the American Institute of Mining and Metallurgical Engineers will be held in Hotel Statler, Cleveland, April 29-30.

Basic open-hearth technical session will begin April 29 with a discussion of personnel from $10 \mathrm{a} . \mathrm{m}$. to noon. From 1:30 to $3 \mathrm{p} . \mathrm{m}$. talks on refractories and furnace maintenance and openhearth furnace operation will be given. On Friday the session will continue with discussion of raw materials, quality of steels, and maintenance of acid openhearth furnaces.

Blast furnace and raw materials technical sessions will open Thursday with a discussion of raw materials. Blast furnace construction session will be Friday morning. Blast furnace operation will be the subject of discussion from 2 to 5 p. m.
L. F. Reinartz is chairman and A. P. Miller vice chairman of the open hearth committee. The blast furnace and raw materials committee is directed by Peter F. Dolan, chairman, and B. M. Stubblefield, vice chairman.

The MUNNING SALT SPRAY TEST EQUIPMENT for determining Resistance to Corrosion

Abstract

The salt spray method is the most practical far ascertaining the value of electro depasited articles by testing for carrosive resistance of the base metal and permeability of the plated coating.

This Munning Improved Model shown above conforms to army, navy and aeronautical specifications, and is recommended for praducing accelerated corrosion tests to simulate service behavior.

Let us give you further details. Write or 'phone.
MUNNING \& MUNNING Inc. ENGINEERS • DESIGNERS • MANUFACTURERS Main Office and Factory: 202-208 Emmett St., Newark, N. J. NEW YORK - PHILADELPHIA - WOONSOCKET, R. I.

PRECISION HYDRAULIC CYLINDERS SOLVED THIS PROBLEM

This 11 in. bore $x 66 \mathrm{in}$. stroke Hannifin hydraulic cylinder was built for tilting an electric furnace. The strong, simple, no-tie-rod design and Hannifin precision construction insure simple application, and high efficiency operation with maximum usable power. Even in this large size the cylinder bore is honed to produce a mirror finish, straight, round and concentric. Efficient piston seal assures minimum fluid slip.
Hannifin Cylinders are built in a full range of sizes and types, for working pressures up to 1000 and 1500 psi. Write for Bulletin 35-S giving complete specifications.
Hannifin Manufacturing Company - 621-631 S. Kolmar Ave., Chicago, III.

One of a series of $21 / 3$ by $31 / 2 \mathrm{ft}$. 3 -color bi-monthly posters, designed to help reduce tool breakage through worker education, made available to users of "TOMAHAWK" tools, without charge.

For complete information wire or write

GENESEE TOOL COMPANY
FENTON.

Little Interruption as Industry Shifts to CMP

Allotment numbers cover most orders now. . . Deliveries to show little change. . . Scrap supply meets steel needs. . . Larger freight car releases planned for last half

PRODUCTION Unchanged at $991 / 2$ per cent.

PRICES
Steady of ceilings.

\author{

DEMAND

 Heary in all lines.}

RELATIVELY little confusion is expected in passing from Production Requrrements Plan to Controlled Materials Plan.

Indications are that practically all consumers who had rated orders definitely promised for second quarter delivery, as of March 22, will have them certified under CMP before April 15, when allotment numbers under the latter take precedence. Some sellers report that more than 90 per cent of their customers have supplied allotment numbers and the percentage for June rolling is expected to be even larger.

At the moment many large producers are making no delivery promises on new business, waiting until they can appraise the situation, but survey indicates they will have little capacity left, even in plain carbon products.

Current new orders for hot-rolled carbon steel bars stand little chance of being scheduled for rolling before June and, with average volume of allocations, probably little June capacity will be available. In larger rounds and flats second quarter rolling on new business is impossible except on directives. Cold-drawn bars are even tighter and August is about the best that can be offered on current contracts.

Fabricators able to obtain ship subassembly and other government work to replace their normal lines note considerable reduction in this demand as military bases, cantomments and similar projects are completed. Those situated near shipyards have plenty of prefabricating work. Tankmakers find their field yields little business but additional high-test gasoline and synthetic rubber plants may bring additional work of this character. Transition of plates entirely to CMP may be slower than in other products and may not be completed until June rollings or later. Plate distribution by allocations has been efficient and under smooth control for several months.

Wire specialties validated for delivery as early as possible this quarter, a large part of which require much processing, are sufficient to crowd considerable current CMP orders into late May or June schedules. By the end of second quarter wire orders probably will be entirely under the new plan. Considerable open-hearth steel is being used in place of electric-furnace material as the latter is not in sufficient supply. Demand for flat wire is less than for round. Rope mills are booked for maximum
output for three months or more, ships accounting for a large part.

Steelworks operations last week maintained the rate of $991 / 2$ per cent set the preceding week. Changes were slight and resulted entirely from necessity of open-hearth repair. Chicago advanced 1 point to $101 \frac{1 / 2}{}$ per cent, Youngstown 1 point to 98 , Clozeland 3 points to 96 and Wheeling $1 / 2$-point to 89 per cent. Pittsluargh declined I point to 100 per cent, Cincinnati 6 points to 85 and New England 5 points to 95 . Rates were unchanged at Buffalo, $901 / 2$; St. Louis 93 ; Birmingham, 100 ; eastem Pennsylvania, 95; Detroit, 94.

Scrap supply continues to support the high rate of steel production, though in some areas melters find too large a proportion is light and inferior material. Use of tonnage from reserves continues in some cases but not to a serious extent. Many yards are working at a low rate because of labor shortages and effects of this condition may be more apparent in supply later. Turnings continue a problem and considerable accumulations are building up in spite of efforts to move them. Consumption of scrap is heavy, the average daily rate in February being greater than in January, and February melt was the largest in history for that month.

Advices from Washington indicate means are being sought to provide for about 44,000 domestic freight cars for construction in last half to relieve urgent need of the carriers. This total is far short of the number estimated earlier in the year as necessary. With the 20,000 released for first half construction the aggregate of 64,000 cars compares with about 26,000 built in 1942 .

No shortage of manganese ore is likely as reserves have been built up until an estimated $2,000,000$ tons is available, nearly two years' supply. Recent shipments from West Africa have been above normal, attributed to vessel space made available by munitions movement to that continent. Both private buyers and the Metals Reserve Corp. are involved in building up stocks.

Composite average prices of steel and iron products have undergone no change under Office of Price Administration ceilings, finished steel composite being $\$ 56.73$, semifinished steel $\$ 36$, steelmaking pig iron $\$ 23.05$ and steelmaking scrap $\$ 19.17$.

COMPOSITE MARKET AVERAGES

	Apr. 10	Apr. 3	Mar. 27	One Month Ago Mar., 1943	Three Months Ago Jan., 1943	One Year Ago Apr., 1942	Five Years Ago Apr. 1938
Finished Steel	\$56.73	\$56.73	\$56.73	Mar, ${ }^{56.73}$		Apr., 1942	Apr., 1938
Semifinished Steel	36.00	36.00	36.00	36.00	36.00	36.00	40.00
Steelmaking Pig Iron	23.05	23.05	23.05	23.05	23.05	23.05	23.02
Steelmaking Scrap	19.17	19.17	19.17	19.17	19.17	19.17	12.60

Finished Steel Composite:-Average of industry-wide prices on sheets, strip, bars, plates, shapes, wire, nails, tin plate, standard and line pipe. Avmifinished Stee Composite:-Average of industry-wide prices on billets, slabs, shect bars, skelp and wire rods. Steelmaking Pig Iran Composite:Aserage of bnsic pig iron prices at Bethlehem, Bimingham, Buffalo, Chicago, Cleveland, Neville Island, Granite City and Youngstown. Steclvorks
Scrap Composite:-Average of No, 1 heavy melting steel prices at Pittsburgh, Chicago and eastern Pennsylvania.

COMPARISON OF PRICES

Representative Market Figures for Current Week; Average for Last Month, Three Months and One Year Ago

Finished Material
Steel hars, Pittshurgh
Steel bars, Chicago
Steel bars, Phindelphia
Shapes, Pittshurgh
Shapes, Philitdelphia
Shapes, Chicagn
Plates, Pittsburgh
Plates, Philaclelphia
Plates, Chicago
Sheets, hot-rolled, Pittsburgh
Sheets, cold-rolled. Pittsburgh
Sheets, No. 24 gals., Pittshurgh
Sheets, hot-rolled, Gary
Sheets, cold-rolled, Gary

April 10, March	Jan.	April,	
19.43	1943	1943	1942
2.15 c	2.15 c	2.15 c	2.15 c
2.15	2.15	2.15	2.15
2.49	2.49	2.49	2.49
2.10	2.10	2.10	2.10
2.22	2.22	2.22	2.22
2.10	2.10	2.10	2.10
2.10	2.10	2.10	2.10
2.15	2.15	2.15	2.15
2.10	2.10	2.10	2.10
2.10	2.10	2.10	2.10
3.05	3.05	3.05	3.05
3.50	3.50	3.50	3.50
2.10	2.10	2.10	2.10
3.05	3.05	3.05	3.05
3.50	3.50	3.50	3.50
2.60	2.60	2.60	2.60
$\$ 5.00$	$\$ 5.00$	$\$ 5.00$	$\$ 5.00$
2.55	2.55	2.55	2.53

Bright hess., basic wire, Pittsburgh
Tin plate, per base box, Pittshurgh
Wire nails. Pittsburgh

Semifinished Material

Sheet hars, Pittsburgh, Chicago Slabs, Pittsburgh, Chicago
Rerolling billets, Pittsburgh
Wire rods No. 5 to ${ }^{n}$-inch, Pitts

Pis Iron

Scrap

Heavy melting steel, Pitsburgh.	\$20.00	\$20.00	\$20.00	\$20.00
Heavy melt. steel, No. 2, E. Pa.	18.75	18.75	18.75	18.75
Heavy melting steel, Chicago	18.75	18.75	18.75	18.75
Ihails for rolling, Chicago	22.25	22.25	22.25	22.25
No. 1 cast, Chicago	20.00	20.00	20.00	20.00
Coke				
Connellsville, furnace, ovens	\$6.50	\$6.00	\$6.00	\$6.00
Connellsville, foundry, ovens	7.25	7.25	7.25	7.25
Chicago, by-product fdry., del.	12.25	12.25	12.25	12.25

April 10, March Jan.	April.		
1943	1943	1943	1942

$\$ 25.19$	$\$ 25.19$	$\$ 25.19$	$\$ 25.19$
23.50	23.50	23.50	23.50
25.39	25.39	25.39	25.39
24.69	24.69	24.69	24.69
24.00	24.00	24.00	24.00
20.38	20.38	20.38	20.38
24.30	24.30	24.30	24.06
26.265	26.265	26.265	26.265
24.00	24.00	24.00	24.00
24.00	24.00	24.00	24.00
31.54	31.54	31.54	31.54
24.19	24.19	24.19	24.19
140.65	140.65	140.65	125.63

Heavy melt. steel, No. 2, E. Pa
Heavy melting steel, Chicago
Mails for rolling, Chicago No. 1 cast, Chicago

Coke

STEEL, IRON, RAW MATERIAL, FUEL AND METALS PRICES

Following are maximum prices establlshed by OPA Schedule No. 6 issued Aprll 16, 1941, revised June 20, 1941 and Feb. 4, 1942 , The schedule covers all lron or steel Insots, all semifinished iron or steel products, all finished hot-rolled. cold-rolled lron or steel products and any iron or steel product which is further finished by galvanizing, plating, coating, drawing, extruding, etc., although onls princlpal established basing voints are noted in the table. Federal tax on frelaht charges, effective Dec. 1, 1942, not included in following prices, applying to individual companles are noted in the table. Federal tax on freleht charges, effective Dec. 1, 1942, not included in collowing prices.

Semifinished Steel

Gross ton badis excepi wire roiln, akelp.
Carlon Steel Ingots: F.o.b. mill base, rerolling qual., stand. analysis, \$31.00.
(Emplre Sheet \& Tin Plate Co., Mansfleld, O. may quote carbon steel ingots at $\$ 33$ gross ton, f.o.b. mill.)
Allay Steel Inqots: Pittsburgh, uncropped $\$ 45.00$.
Rerolling Bllets, Slabs: Pittsburgh, Chicago, Gary, Cleveland, Buffalo. Sparraws Point Birmingham, Youngstown, $\$ 34.00$; Detrolt del $\$ 36.25$; Duluth (bil.) $\$ 36.00$.
(Andrews Steel Co.. carbon slabs S41: Contlnental Steel Corp., billets $\$ 34$, Kokomo, to Acme Steel Co.: Northwestern Steel \& Co. $\$ 41$, Sterlins, III.; Laclede Steel Co Wire Alton or Madison, Ill.: Wheellig Steel Corp, 36 base, billets for lend-lease $\$ 34$ Pere Corp O., on slabs on WPB directlves.)

Forging Qually Hilletw: Pittsburgh, Chlcago,
Gary, Cleveland, Buffalo, Blrmingham, Youngstown, \$40.00; Detrolt, del. \$42.25; Duluth. $\$ 42.00$.
Andrews Steel Co. may quote carbon forging bllets $\$ 50$ gross ton at established basing points.)
Open Hearth Shell Steel: Pittsburgh. Chlcago, base 1000 tons one size and section: $3-12 \mathrm{ln}$. $\$ 52.00$; $12-18 \mathrm{in}$. . $\$ 54.00$: 18 In . and over. 56.00

Alloy Bllets, Slabs, Blooms: Pittsburgh, Chicago, Buffalo, Bethlehem, Canton, Massillon, $\$ 54.40$.
Sheet Bars: Pittsburgh, Chicago, Cleveland, Buftalo, Canton, Sparrows Polnt, Youngstown. $\$ 34$. (Wheellng Steel Corp. $\$ 37$ on lend-lease sheet bars, \$38 Portsmouth, O., on WPB di rectives: Empire Sheet \& Tin Plate Co. Mans fleld, O., carbon sheet bars. $\$ 39$. [.o.b. mill.) Skelp: Pittsburgh, Chlcago, Sparrows Pt., Youngstown, Coatesville, lb., $\$ 1.90$.
Wire Rods: Pittsburgh, Chleago, Cleveland, Birmingham, No. 5-9/32 In., Inclusive, per $100 \mathrm{lbs}, \quad \$ 2.00$.
Do., over 9/32-47/64-1n., Incl. \$2,15. Worcester add $\$ 0,10$; Galveston, $\$ 0.27$. Paclic Coast $\$ 0.50$ on water shjpment.

Bars

Hot-Rolled Carbon Bars: Pittsburgh, Chicago, Gary, Cleveland, Buffalo, Birmingham, base 20 tons one slae, 2.15 c : Duluth, base 2.25 c : Detrolt, del. 2.27c; New York del, 2.51c; Phila. del, 2.49c: Gulf Ports, dock 2.52c, all-rail $2.59 \mathrm{c}:$ Pac, ports, dock 2.80 c . (Phoenlx Iron Co., Phoenlxville, Pa., may quote 2.35 c at estabIlshed basing polnts. Joslyn Mifg. Co. may quote 2.35 c , Chicago base, Calumet Steel Dlvision, Borg Warner Corp., may quote 2.35c, Chicago base, on bars produced in lts 8 -inch mlll.) Rall Stpel Bara: Same prices as for hot-rolled carbon bars except base is 5 tons.
(Swcel's Steel Co., Wllliamsport, Pa., may qunte rall steel merchant bars 2.33 c 1.0.b. muntl.)
Hot-Rulled Allay Ifars: Pittsburgh, Chicago. Canton, Massillon, Buffalo, Bethlehem, base 20 tons one size, 2.70 c ; Detroit, del., 2.82 c .
(Texas Steel Co. may use Chlcago base price as maximum f.o.b. Fort Worth, Tex, price on sales outside Texas. Oklahoma.)

AISI	(*Basic	AISI ((${ }^{\text {Baslc }}$
Series	O-H)	Series	-H)
1300	\$0.10	4100 (.15-.25 Mo)	0.55
		(.20-.30 Mo)	0.60
2300	1.70	4.340	1.70
2500	2.55	4600	1.20
3000	0.50	4800	2.15
3100	0.70	5100	0.35
3200	1.35	5130 or 5152	0.45
3400	3.20	6120 or 6152	0.95
4000.	0.45-0.55	6145 or 6150	1.20

[^7]Relnforclug Bars (New Ritet): Pittsburgh, Chicago, Gary, Cleveland, Blrmingham, Spar-
rows Point, Buffalo, Youngstown, base 2.15 c . rows Point, Buffalo, Youngstown, base 2.15c; Detrnit del. 2.27c: Gulf ports, dock 2.52 c , allrall 2.61c: Pacific ports, dock 2.80 c , all-rall $3.25 c$
Kelnforelng Bars (Rall Steel): Pittsburgh, Chicago, Gary, Cleveland, Birmingham, base 2.15 c ; Detrolt, del. 2.27c; Gulf ports, dock 2.52 c , all-rail 2.61c; Pacific ports, dock 2.80 c , all-rall 3.25 c .
(Sweet's Steel Co. Williamsport, Pa., may quote rall steel reinforcing bars 2.33c, f.o.b. mill.)
Iron Bare: Single reflned, Pitts. 4.40 c , double reflned 5.40 c ; Pittsburgh, staybolt, 5.75 c ; Terre Haute, common, 2.15 c .

Sheets, Strip

Hot-Rolled Sheets: Pittsburgh, Chicago, Gary, Cleveland, Birmingham, Buffalo, Youngstown, Sparrows Pt., Middletown, base 2.10 c ; Granite Clty, base 2.20c; Detrolt del. 2.22c: Phlla. del. 2.28e: New York del., 2.35c: Paciflc ports 2.65 c .
(Andrews Steel Co. may quote hot-rolled sheets for shlpment to Detrolt and the Detrolt ares on the Middletown, O. base.)
Cold-Rolled Sheets: Pjttsburgh, Chicago, Cleveland, Gary, Buffalo, Youngstown, Middletown, base, 3.05 c ; Granite Clty, base 3.15 c : Detrolt del. 3.17c; New York del. 3.41c; Phila. del. 3.39 c : Paclifle ports 3.70 c .

Galvanized Sheets, No. 24: Plttsburgh, Chicago, Gary, Birmingham, Buffalo, Youngstown, Sparrows Point, Middletown, base 3.50c; GranIte CIty, base 3.60c; New York del. 3.74c: Phila. del. 3.68c; Paclic ports 4.05c.
(Andrews Steel Co. may quote galvanized sheets 3.75 c at established basing points.) Corrugated Galv. Sheets: Pittsburgh, Chicago. Gary, Birmingham, 29 gage, per square 3.31c. Culvert Sheet. : Pltisburgh, Chicago, Gary, Birmingham, 16 gage, not corrugated, copper alloy 3.60 c ; copper iron 3.90 c , pure iron 395 c . zinc-coated, hot-dlpped, heat-treated, No. 24, Pittsburgh 4.25 c
Enameling Sheets: Pittsburgh, Chicago, Gary, Cleveland, Youngstown, Middletown, 10 gage.
base 2.75c: Granlte Clty, base 2.85c: Paclfic Pittsbursh, Chicago, Gary, Cleveland, Youngstown, Middletown, 20 gage, base 3.35c; Granite Clty, base 3.45 c ; Pacific ports 4.00 c
Electrical Sheets, No. 24

Armature
Motor
Motor
Dynamo
Transforme
Transformer
58
52
Hot-Ralled Strip: Pittsburgh, Chicago, Gary Cleveland, Birmingham, Youngstown, Middlelown, base, 1 ton and over, 12 Inches wide 2750 Joslyn Der 0 . 2.22 Puote 230 ch 2.75 c . (Joslyn Mig. Co, may quote 2.30 c , Chl caro base.)
Cold Rolled Strip: Pittsburgh, Cleveland Youngstown, 0.25 carbon and less 2.80 c ; Chl cago, base 2.90 c ; Detroit, del. 2.92c; Worcester base 3.00 c .
Commodity C. R. Strlp: Pltisburgh, Clevelnnd, Youngstown, base 3 tons and over, 2.95 c Worcester base $3.35 c$.
Cold-Finished Spring Sterl: Pltsburgh, Cleveland bases. add 20 l enr worcester; .26-.50 Carb., $2.80 \mathrm{c}: \quad .51-75$ Carb. $4.30 \mathrm{c} ; \quad .76-1.00$ Carb., 6.15c; over 1.00 Carb., 8.35 c .

Tin, Terne Plate

Tin Plate: Pitisburgh, Chicago, Gary, 100-lb, hase hox. $\$ 5.00$; Granite CIty $\$ 5.10$.
Fifetrolytic Tin Piate: Pittsburgh, Gary, 100 1b. base box $\$ 4.50$.
Tin Mill Black Xlate. Pittsburgh. Chicago, Gary base 29 gqge and llghter, 3.05c: Gran Ite City, 3.15 c : Paciflc ports, boxed 4.05 c . L.ong Ternes: Pittsburgh, Chicago, Gary, No 24 unassorted 3.80 c .
Manufacturing Ternes: (Special Conted) Pittsburgh, Chlcago, Gary, 100 -base box $\$ 4.30$ Granite City $\$ 4.40$.
Ruoflrax Tarnes: Pltishurgh base ner package 112 sheets; 20×28 in., coaling I.C. $8-1 \mathrm{~b}$. \$12.00; 15-lb. \$14.00: 20-1b. \$15.00; $25-1 \mathrm{~b}$ $\$ 16.00 ; 30-1 \mathrm{~b}$. $\$ 17.25$; 40-1b. $\$ 19.50$.

Plates

Carbon Steel Hates: Pittsburgh, Chicago, Gary, Cleveland, Birmingham. Youngstown, Sparrows Polnt, Coatesville, Claymont, 2.10 c ; New York, del., $2.30-2.55 \mathrm{c}$; Phila., del., 2.15 c : Paclfic ports, 2.65 c : Gulf Ports, 2.47 c .
(Granite City Steel Co. may quote carbon plates 2.35 c . f.o.b. mill. Central Iron \& Steel Co. 2.20 c , f.o.b. basing polnts.)
Floor Plates: Plttsburgh, Chleago, 3.35 c Gule ports, 3.72e; Pacinc ports, 4.00 c .
Open-Mearth Alloy Plates: Pittsburgh, Chl cargo, Coatesville, 3.50 c .
Wrought Iron Plates: Pittsburgh, 3.80 c .

Shapes

Structiral shapes: Pittsburgh, Chicago, Gary, Birmingham, Buffalo, Bethlehem, 2.10c: New Yorkn del., 2.28 c : Phlla., del., 2.22c; Gulf York, del., $2.28 \mathrm{c}:$ Phlla, del.,
ports, $2.47 \mathrm{c} ;$ Pacific ports, 2.75 c .
(Phoenix Iron Co., Phoenixville, Pa. may quote carbon steel shapes at 2.30 c at established carbon steel shapes at 2.30 c at established
basing points and 2.50 c , Phoenlxville, for export.)
Steel Sheet Pling: Pittsburgh, Chicago, BulSier Sheet
falo, 2.40 c .

Wire Products, Nails

Wre: Plttsburgh, Chleago, Cleveland, Birmingham (except spring wire) to manufac turers in carloads (add $\$ 2$ for Worcester) Bright basic, bessemer wire Galvanized wire
Spring wire
Wire Irouducts to the Trade
Standard and Cement-coated wire nalls pollshed and staples, $100-1 \mathrm{~b}$. keg Annealed fence wire, 100 ib .
Woven fence, 121/2 gage and llghter, per base column
Do., 11 gage and heavier
Barbed wire, 80 -rod spoal, col.
Barbed wire, $80-\mathrm{rod}$ spool,
Twisted barbless wire. col.
Single loop bale tles, col.
Fence posts, carloads, col
Cut nalls. Pitisburgh, carloads

Pipe, Tubes

Welded Pipe: Base price In carloads to consumers about $\$ 200$ per net ton. Base dlscounts on steel pipe Plttsburgh and Lorain, O.: Gary, Ind, 2 points less on lap weld, 1 point less on butt weld. Plttsburgh base only on wrought iren plpe.
Butt Weld

Steel Weld Iron					
In.	Blk.	Galv.	In .	Blk.	Galv.
2	61	491/2	114	23	31/2
$21 / 4-3$	64	$521 / 2$	11/2	281/1	10^{-}
31/2-6	66	541/2	2	3034	12
7-8	. 65	521/2	21/4, 31/	. $311 / 2$	141/2
9-10	641/6	52		331/2	18
11-12	. 631%	51	$416-8$ $9-12$	321/2	17
Iboller Tubes: Net base prices per 100 feet,					
f.o.b. Plttsburgh in carload lots, minimum					
wall, cut lengths 4 to 24 feet. inclusive.					
Seamless- Char-					
O. D.		Hot	Cold		coal
Sizes	B. W.G.	Rolled	Drawn	Steel	Iron
1 "	13	\$ 7.82	\$ 9.01		
11/"	13	9.26	10.67		
11/2"	13	10.23	11.72	\$ 9.72	\$23.71
130"	13	11.64	13.42	11.06	22.93
$2^{\prime \prime}$	13	13.04	15.03	12.38	19.35
214"	13	14.54	16.76	13.79	21.6.3
21/4"	12	16.01	18.45	15.16	
21<0"	12	17.54	20.21	16.58	26.57
2\%"	12	18.59	21.42	17.54	29.00
$3^{\prime \prime}$	12	19.50	22.48	18.35	31.38
$312^{\prime \prime}$	11	24.63	28.37	23.15	39.81
$4^{\prime \prime}$	10	30.54	35.20	28.66	49.90
412"	10	37.35	43.04	35.22	
$5{ }^{\prime \prime \prime}$	9	46.87	54.01	44.25	73.93
$6^{\prime \prime}$	7	71.96	82.93	68.14	

Rails, Supplies

Standard ralls, over 60-1b., ilo.b. mill, gross ton, $\$ 40.00$.
Light rails (bllet), Pittsburgh, Chlcago, Blr mingham, gross ton, $\$ 40.00$.
${ }^{\circ}$ Relaying ralls, 35 lbs. and over, i.o.b, rallroad and basing polnts, $\$ 28-\$ 30$.
Supplles: Angle hars, 2.70 e ; lie plates. 2.152: track splkes. 3.00 c ; track bolts, 4.75 c ; do heat treated, 5.00 c .
${ }^{\circ}$ Fixed by OPA Schedule No. 46, Dec. 15. 1941.

Tool Steels

Tool Steels: Pittsburgh, Bethlehem, Syracuse, base, cents per lb.: Reg. carbon 14.00c: extra carbon 18.00 c ; special carbon 22.00 c ; oll-hardening 24.00c; high car.-chr. 43.00c.
High Speed Tool Steels

		Plts. base.		
Tung.	Chr.	Van.	Moly.	per lb.
18.00	4	1	-	67.00 c
1.5	4	1	8.5	54.00 c
	4	2	8	54.00 c
5.50	4	1.50	4	57.50 c
5.50	4.50	4	4.50	70.00 c

Stainless Steels

Base, Cents per lb.-f.o.b. Plttsburgh CIROMIUM NICKEL STEEL

STAINLESS CIAD STEEL $304 \ldots$ (20%)

With 2-3\% moly. + With titanium. \ddagger With columblum. *Plus machinine agent. †tFigh carbon. $\ddagger \ddagger$ Free machining. syincludes anneal ing and pickling.

Basing Polnt l'rices are (1) those announced by U. S. Steel Corp. subsidiaries for first quarter of 1941 or in effect April 16. 1941 at designated basing polnts or (2) those prices arnounced or customarlly quoted by other producers at the same deslenated points. Base prices under (2) cannot exceed those under (1) except to the extent prevailing in third quarter of 1940 .

Extras mean additions or deductions from base prices In effect April 16, 1941.
Dellvered prices applying to Detrolt, Eastern Michigan, Gulf and Paclic Coast points are deemed basing polnts except in the case of
the latter two areas when water transportation is not avallable, in which ase nearest basing point price, plus all-rall frelght may be charged.
Domestic Celling prices are the aggregate of (1) governing basing point price, (2) extras and (3) transportation charges to the point of delivery as customarily computed. Governing basing point is basing point nearest the consumer providing the lowest delivered price. Emergency busing point is the basing point at or near the place of production or origin.
Seconds, maximum prices: fat-rolled rejects 75% of prime prices; wasters 75%, wastevasters 65 io, except plates, which take waster prices: tin plate $\$ 2.80$ per 100 lbs; terne olate $\$ 2.25$: seminnished 85% of primes; other grades limited to new material celllngs
Fxport celling brices may be elther the aggregate of (1) Loverning basing point or emergency basing polnt (2) export extrus (3) export transportation charges provlded they are the f.a.s. seaboard quotations of the U. S. Steel Export Co. on Aprll 16, 1941.

Bolts, Nuts

F.o.b. Plttsburgh, Cleveland, BIrmingham, Chlcagn. Discounts for carinads additional 5%, full containers, add 10% Carriage and Machine
$x .6$ and smaller
Do.
Do., in and 54 $\times 6-1 n$. and shorter. $631 / 2$ off Do.. $2 / 4$ to $1 \times 6-1 \mathrm{n}$. and shorter
14 and larger, all lengths
All diameters, over $6-\mathrm{jn}$. long
Tire bolts
Step balts
Plow bolts
Stove 13olts
In mackages with nuts separate $71-10$ off: with nuts attached 71 off: bulk 80 off on 15,000 of 3 -Inch and shorter, or 5000 over 3 -ín.

Semifinlshed hex.	U.S.S.	S.A.E
7 - - nch and less	62	64
1, 1 -1-inch	59	60
1 14, $11 / \mathrm{y}$-Inch	57	58

$$
1 \text { 14-11/2-Inch }
$$

64
60
58
tis and Inrger Hexagnin Cajs screws

Upset, 1-in., smaller
64 off
71 oft
Headless, $1 /$-in.,
No. $10, ~ s m a l l e r ~$
70 oft

Piling

Pittsburgh, Chicago, Buffalo
2.40 c

Rivets, Washers

F.ab. Pittsburgh, Cleveland, Chicaga, Structural Birmingham
Fiructura and under
Wrought washers,
65-5 ofil
,
rousht washers, Plttsburgh, Chicago,
Philadelnhia, to jobbers and larke nanufacturers l.c.l. $\$ 2.75-3.00$ off
Metallurgical Coke
Price Per Net Ton
Beeblve Ovens

*Operators of hand-drawn ovens using trucked coal may charge 57.00 , effectlve Feb. 3, 1943 $\$ 12.75$ from ather than Ala., Mo., Tenn

Coke By-Products

Spot, mal., irelght allowed east of Omaha Pure and 90% benzol
Toluol, two degree
Solvent naphtha
Industrial xyjol
Per 1b. 1.o.b. works
Phenal (car lots, returnable drums)
28.00 c

Do., less than
Do. tank cars
Naphthalenc llakes, balls, bbls., to job-
bers
Sulphate of ammonia
27.00 c
27.00 c
12.50 c
13.25 c
11.50 c
8.00 c

Prices (in gross tons) are maximums flxed by OPA Prlce Schedule No 10, effective June 10, 1941. Exceptions Indicated In footnotes. Allocation regulations from WPB Order M-17, expiring Dec. 31, 1942. Base price bold face, delivered light face. Federal tax on freight charges, effective Dec. 1, 1942, not included in following prices.

Hixh Sillicon, Silvery 6.00-6.50 per cent (base). $\$ 29.50$ Furch Coke \& Iron Co. (Sharpsuille, 6.51-7.00. $\$ 30.50$ 9.01-9.50. $\$ 35.50$ Pa. furnace only) and Struthers 7.01-7.50. 31.50 9.51-10.00 36.50 7.51-8.00. . 32.50 10.0110.50. 37.50 | $8.01-8.50 \ldots$ | 33.50 | $10.51-11.00$ |
| :--- | :--- | :--- |
| $8.51-9.00$ | 34.50 | | F.o.b. Jackson county, O., per gross F.o.b. Jackson county, O., per gross

ton, Bulfalo base prices are $\$ 1.25$ higher. Prices subject to additional higher. Prices subject to additional
charge of 50 cents a ton for each 0.50% manganese in excess of

Ressemer Ferrosllicon
Prices same es for high silicon sll-
very tron. plus $\$ 1$ per gross ton. Charcoal Pla Iron Northern
Lake Superior Furn. $\$ 28.00$
Chicago, del. Filicon irons 31.54 entlal over and above the price of base grades is charged as well as and waid chuling frons, Nos. 5

Semi-cold Southern

Semi-cold blast, high phos.
f.o.b. iurnace, Lyles, Tenn. . $\$ 28,50$
sem-cold blast, fowne, Lyles, phos.
f.o.b.
Gras Forge
Neville Islands, Pa.
Neville lslands, Pa. \$23.50
Nevile Island, Pa.823.50
Basing polnts: Blrdsboro and Stcel-
ton, Pa., and Buffalo, N. Y.' $\$ 29.50$
hase: $\$ 30.81$, dellvered, Phladelphia
Switching Charges: Basing polni
prices are subject to an additional
charge for delivery within the districts.

Silion Differentlals: Basinp point prices are subject to an additional
charge not to exceed 50 cents a ton
for each 0.25 silicon in excess of for each 0.25 silicon in exce
base grade (1.75 to 2.25%).

Ihowwhorus Differential: Basing polnt prices are subject to a reduction of 38 cents a ton for phosphor
Mangancene Differentials: Basing polnt prices subject to an additional charge not to exceed 50 cents a ton In excess of 1.0%

Celling I'rices are the agsregate of (1) governing basing point (2) charges from governing basing point to polnt of dellvery as customarily computed. Governing basIng point
is the one resulting in the lowe

Pa. furnace only) and Struthers Iron \& Steel Co. may charge 50 cents a ton in excess of basing point prices for No. 2 Foundry, Basic, Bessemer and Malleable. Mystic Iron Works, Everett, Mass. 1 may exceed basing point prices by $\$ 1$ per
ton, effective April 20, 1992. Chester, Pa., furnace of Pittsburgh Coke \& Iron Co. may exceed basing point prices by $\$ 2.25$ per ton, effectlve July 27, 1942.

Refractories

Per 1000 f.o.b. Works, Net Prices Pa., Mo., Kyper Quality \quad.............. \$64.60

Second Quallty		
Pa., Ill., Md., Mo., Ky.	46.55	
Alabama, Georgla	$\ldots . . .$.	38,00

| Joliet, E. Chicago | 58.90 |
| :--- | :--- | :--- |
| BIrmingham, Ala. | 51.30 |

(Pa., O., W. Va., Mo.)
Dry press $\$ 31.00$
Wre cut Marnssite
Domestic dead-burned grains,
net ton f.o.b. Chewelah,
wash., ret ton, bulk.
2200
26.00
Net ton, f.o.b. Baltimore, Plymouth Meeting, Chester, Pa.
Chrome brick chrome 854.00
Chem. bonded chrome …. $\quad \mathbf{7 6 . 0 0}$ $\begin{array}{ll}\text { Magnesite brick } & 65.00 \\ \text { Chem, bonded masnesite. . . } & 65\end{array}$

Fluorspar

Washed gravel, f.o.b. Ill.,
Ky.. net ton, carloads, all Do.. barge ${ }^{\text {Th }} 25.00-28.00-28.00$
(Prices cffective Nov.' 23,1942)

Ferroalloy Prices

Ferrommenanese; $78-82$ rí, carlols.
eross ton, duty pald. Atlante ports, zross ton, duty paid. Atlanile ports 3outhern rurnnces $\$ 1.35$: Add $\$ 6$ per aross ton for packed carloads $\$ 10$ for ion, s13.50 for less-ton and $\$ 18$ for less than $200-1 \mathrm{~b}$. Ints, packed.
Nubegeleisun: $19-21 \%$ carlots ner pross ton, Famerton, Pa. $\$ 36$.
Wlectrolyilie manganese: 99.9% plus, less ton lots, per lb. 42.00 c . Ton lots 40.00 c . Annual contracts 38.00 c . Chrominm Metul: Per lb. contained chromlum in gross ton lots, contraet busis, erejght allowed, 985 80.n0c, $88 c^{c} 79.00 \mathrm{c}$. Spot prices $\overline{5}$ cents jer lb, higher.
lidrradahinblime: 50-60\%, per lb contained columblum in eross ton lots, contraty basis, f.o.b. Ningara Fills, N, Y, $\$ 2,25:$ less-ton lits
$\$ 2,30$. Spot prices in cents per in. $\$ 2,30$.
hisler.
 twincd chromium in carloads, ireigh allowed, $4-6 \%$ carbon 13.00 c ; ton lots 13.75e: less-ton lots 14.0 Ok less than $200-1 \mathrm{~b}$. lots 14.25 c . 66 72%. low enrbon grades
$\begin{array}{ccc}\text { Car Ton Less } & \text { Less } \\ \text { londs } & \text { Tots } \\ \text { lon } & \text { lons. }\end{array}$
2 én C.. 19.50 c 20.25c 20.75c 21.00c

 Spot is lic higher
Chromitum brlauats: Contract basis In carlonds per ib., freight allowed $3.25 \mathrm{c}:$ packed 8.50 c ; gross ion lots Tox less-ton lots 9.00 : less 200 higher.

Ferrumulybdemum: 55-75\%, ner 1b. contained molybdenum, f.o.b. Lannace, any washington, Pa., fur-

Calelum Molybilate (Molyte): 40$45 c_{c}$, per lb. contalned molybdenum, contract basis. f.o.b. Langeloth and 80.00 c .

Molyludic Oxide Briquets: 48-52en. per lb. contalned molybdenum, f.o.b. Langeloth, Pa. any quantity 80.00 c .

Molybdenum Oxidr: 53-63\%. per lb. containet molybdenum in 5 and 20 lb. molybdenum contalned cans. f.o.h, Langeloth and Washington, Pa., any quantly $80,00 \mathrm{c}$.
Malybdenum Powder: 99% per 16. in $200-1 \mathrm{~b}$, kers, f,n b. Fork, Pa . $\$ 2.60 ; 100-201 \mathrm{lh}$ lots $\$ 2.75$; under $100-\mathrm{lb}$. Jots $\$ 3.00$
Ferruphosphorus: 17-195\%, based on 18 \% phosphorus content, with unitage of $\$ 3$ for cach 1% of phosphorIs above or below the base: gross works, with frelsht equalized with Rockdale, renn.: contract price

Ferrophosphorus: 23-26\%, based on
 are of $\$ 3$ for ench 1% of phosphorase of su for ench 1 is of phosphortons par purioud 0 b sollers' works with freight coualized with Pleasant, Tenn. : contract prlce $\$ 75$. spot $\$ 80$,

Ferrosillcon: Contract basis in gross tons per carload, bulk, treight alIHed: unitage applles to ench 1 एo silleon above or below base.

	Curloads	Ton lots
50%	\$ 74.50	\$ 87.00
Unitare	1.50	1.75
75\%	135.00	151.00
Unitage	1.80	2.00
85 \%	170,00	188.00
Unitage	2.00	2.20
90-95\%	10.25c	11.25

00-95\%

10.25
2.20
11.25

Spot prices 1 -cent higher

Allicon Metal: Contract basis per b., f.o.b. producers plants, frelght allowed: 1 c in iron: carlots 14.50 c , less 200 lbs . 15.50 c .
Silicon Metal: Contract basis per b. : 2% Iron; carlots 13.00 c , ton lots 13.50 c , Iess-ton lots 13.75 c , less 200 lbs. 14.00c. Spot prices $1 / 4$-cent hlaher.
Silicon Briauets: Contract basis: in carloads, bulk freight allowed, per on $\$ 74.50$; packed $\$ 80.50$; ton lots 84.50 : less-ton lote aer ib 400 c less $200-1 \mathrm{~b}$. lots per 1b. 4.25 c .
Spot $1 / 4$-cent per 1 b . higher on lesston lots: $\$ 5$ per ton higher on ton ots and over.
Silleomanganese: Contract bas is frelght allowed. $11 / 2 \%$ carbon; in carlozds per rross ton \$135: ton dis \$147.50. Spot wo per ion higher. Silleo-mbnganese Briquets: Contract basis in carloads per pound, butk reight allown 5.80c, packed 6,05c on lots 6.30c; less-ton lots fiE5c; less 200-1h, lots 6.80c. Spot prices /4-cent hisher.
Ferrotingsten: Carlots, per lb. conalned tungsten, \$1.90.
Tunesten Metul Powder: 98-99\% per 16 . any quantity $\$ 2.55-2.65$.
ferrotitaniam: $40-45 \%$ 1.0.b. Ni agara Falls, N. Y., per lb. contained
lots $\$ 1.25$. Spot up 5 cents per 16 . Ferrotltunium: 20-25\%, 0.10 maximum carbon per 1 b . contained $t \mathrm{~L}-$ tanlum; ton lots $\$ 1.35$; less-ton lots \$1.40. Spot 5 cents per lb. higher. Hoh-Carbon Ferrotltanlum: 15-20\%, Contract basis, per gross ton, f.o.b Nlagara Falls, N. Y., freight allowed to destlnations east of Mississippl River and North of Baltimore and St. Louis, 6-8\% carbon $\$ 142.50$. $3-5 \%$ carbon $\$ 157.50$.
Ferrovunadium: $\quad 35-40 \%$, contract basls, per lb. contalned vanadium, f.o.b. producers plant with usual freight allowances; open-hearth highly-special grade $\$ 2.90$.
Vanadlum Pentoxide: Technica srade, 88-92 per cent $\mathrm{V}_{8} \mathrm{O}_{8}$: contracts, any quantity, $\$ 1.10$ per pound $\mathrm{V}_{2} \mathrm{O}_{5}$ contalned; spot 5 cents Zirco
Zirconium Alloys: $\mathbf{1 2 - 1 5 \%}$, contract basis, carloads bulk. per gross ton $\$ 102.50$; packed $\$ 107.50$; ion lots $\$ 108$; less-ton lots $\$ 112.50$. Spot $\$ 5$ per ton higher.
Zirconlum alloy: $35-40 \%$, contract basis. carloads in bulk or package, ber lb, of alloy 14.00 c : pross ton lots 15.00c ; less-ton lots 16.00 c . Spot s-cent higher.
Alsifer: (Approx. 20\% aluminum, 40% sillcon, 40% iron) Contract basis, f.o.b. Nlagara Falls, N. Y., per lb. 7.50 c ; ton lots 8.00 c . Spot i/. cent higher
simanal: (Approx. 20\% each sillcon, manganese, aluminum) Contract basis, frelght allowed, per lb. of alloy. carlots 1000 c . ton lots 10.50 c , less ton lots, 11.00 c .

Borosil: 3 to 4% boron, 40 to 45% SI. ST ib cont Bo. foob. Phllo 0

WAREHOUSE STEEL PRICES

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& \& \& \& \& \& \& \& \& \& \& \begin{tabular}{l}
름 \\
霖 \\
\hline \\
\(\frac{4}{0}\) \\
8
\end{tabular} \& \& \\
\hline Boston \& \(3.98{ }^{1}\) \& 3.851 \& 3.851 \& \(5.68{ }^{1}\) \& \(3.71{ }^{1}\) \& \(4.08^{1}\) \& \(5.06{ }^{1}\) \& \(5.11^{14}\) \& \(4.88{ }^{14}\) \& \(4.13^{31}\) \& 3.46 \& \(7.75{ }^{21}\) \& 6.05 \({ }^{11}\) \\
\hline New York \& \(3.84{ }^{1}\) \& \(3.75{ }^{1}\) \& \(3.76{ }^{1}\) \& \(5.56{ }^{1}\) \& \(3.58{ }^{\text {² }}\) \& \(3.96{ }^{1}\) \& \(3.96{ }^{1}\) \& \(5.00^{11}\) \& \(4.60{ }^{1}\) \& 4.0931 \& 3.51 \& \(7.60{ }^{23}\) \& \(5.90{ }^{31}\) \\
\hline Philadelphia \& \(3.85{ }^{1}\) \& \(3.55{ }^{\text { }}\) \& \(3.55{ }^{1}\) \& \(5.25{ }^{1}\) \& \(3.55{ }^{1}\) \& 3.95 \& \(4.45{ }^{1}\) \& \(4.90^{16}\) \& \(4.63^{15}\) \& \(4.06{ }^{21}\) \& 3.31 \& \(7.56{ }^{21}\) \& \(5.88^{28}\) \\
\hline Bnltimore (city) \& \(3.85{ }^{1}\) \& \(3.70{ }^{1}\) \& \(3.70{ }^{1}\) \& 5.25 \& \(3.50{ }^{1}\) \& \(4.00^{1}\) \& \(4.35{ }^{1}\) \& 5.0517 \& \(5.00^{20}\) \& \(4.04{ }^{12}\) \& \& \& \\
\hline Baltimore (country) \& \(3.85{ }^{1}\) \& \(3.70{ }^{1}\) \& \(3.45{ }^{1}\) \& \(5.25{ }^{\text {8 }}\) \& \(3.25{ }^{1}\) \& \(4.00^{1}\) \& 4.351 \& \(4.75{ }^{17}\) \& \(5.00^{20}\) \& \(4.04{ }^{21}\) \& \& \& \\
\hline Wnshington, D. C. \& \(3.95{ }^{1}\) \& \(3.80{ }^{1}\) \& \(3.80{ }^{1}\) \& \(5.35{ }^{1}\) \& \(3.60{ }^{\text {²}}\) \& \(4.10^{1}\) \& \(4.45{ }^{1}\) \& \(5.15{ }^{17}\) \& \(5.10{ }^{30}\) \& \(4.03^{21}\) \& \& \& \\
\hline Norfolk, Vn. \({ }^{\text {a }}\) \& \(4.0{ }^{1}\) \& \(4.05{ }^{1}\) \& \(4.05^{1}\) \& \(5.45{ }^{1}\) \& \(3.85{ }^{1}\) \& \(4.10^{1}\) \& \(4.10^{1}\) \& \(5.40^{17}\) \& \(4.50{ }^{34}\) \& \(4.15{ }^{21}\) \& \& \& \\
\hline Bethlehem, Pa. \({ }^{\circ}\) \& \& \(3.45{ }^{1}\) \& \& \& \& \& \& \& \& \& \& \& \\
\hline Claymont, Del. \({ }^{\circ}\) \& \& \& \(3.45{ }^{1}\) \& \& \& \& \& \& \& \& \& \& \\
\hline Coatesville, Pa. \({ }^{\text {a }}\) \& \& \& \(3.45{ }^{1}\) \& \& \& \& \& \& \& \& \& \& \\
\hline Buffnlo (city) \& \(3.35{ }^{1}\) \& \(3.40{ }^{1}\) \& \(3.62{ }^{1}\) \& \(5.25{ }^{1}\) \& \(3.25{ }^{1}\) \& \(3.82{ }^{1}\) \& \(3.82{ }^{1}\) \& \(4.75{ }^{18}\) \& \(4.30^{10}\) \& \(3.75{ }^{31}\) \& 3.52 \& \(7.35{ }^{21}\) \& 5.65 \({ }^{11}\) \\
\hline Buffala (country) \& 3.25 \& \(3.30{ }^{1}\) \& \(3.62{ }^{1}\) \& \(5.25{ }^{1}\) \& \(3.15{ }^{1}\) \& \(3.82{ }^{1}\) \& \(3.82{ }^{1}\) \& \(4.65{ }^{18}\) \& \(4.20{ }^{18}\) \& \(3.65{ }^{11}\) \& \& \& \\
\hline Pittsburgh (city) \& \(3.35{ }^{\text {a }}\) \& \(3.40{ }^{1}\) \& \(3.40{ }^{\text {s }}\) \& \(5.00^{1}\) \& \(3.35{ }^{\text {² }}\) \& \(3.60{ }^{1}\)
3 \& \(3.60^{1}\) \& \(4.75{ }^{11}\) \& \(4.00{ }^{24}\) \& \(3.65{ }^{21}\) \& \& \(7.45{ }^{21}\) \& 5.75 \({ }^{\text {\% }}\) \\
\hline Pittsburgh (country) \& \(3.25{ }^{1}\) \& \(3.30{ }^{1}\) \& \(3.30{ }^{\text {a }}\) \& \(4.90{ }^{1}\) \& \(3.25{ }^{1}\) \& \(3.50{ }^{1}\) \& \(3.50{ }^{1}\) \& \(4.65^{13}\) \& \(4.00^{21}\) \& \(3.65{ }^{21}\) \& \& \& \\
\hline Cleveland (city) .. \& \(3.25{ }^{1}\) \& \(3.58{ }^{1}\) \& \(3.40{ }^{1}\) \& \(5.18{ }^{1}\) \& \(3.35{ }^{1}\) \& \(3.50{ }^{1}\) \& \(3.50{ }^{1}\) \& \(4.62^{13}\) \& 4.05 \& 3.7531 \& 3.20 \& \(7.55{ }^{72}\) \& 5.854 \\
\hline Cleveland (country) \& \(3.25{ }^{1}\) \& \(3.58{ }^{1}\) \& \(3.30{ }^{1}\) \& \(5.18{ }^{1}\) \& \(3.25{ }^{\text {1 }}\) \& \(3.50{ }^{1}\) \& \(3.50{ }^{1}\) \& \(4.62^{17}\) \& \(3.95{ }^{2}\) \& \(3.65{ }^{21}\) \& \& \& \\
\hline Detroit \& \(3.43{ }^{1}\) \& \(3.65{ }^{1}\) \& \(3.60{ }^{1}\) \& \(5.27{ }^{1}\) \& \(3.43^{2}\) \& \(3.43^{1}\) \& 3.681 \& \(4.84^{17}\) \& \(4.30{ }^{24}\) \& \(3.80{ }^{31}\) \& 3.40 \& \(7.67{ }^{21}\) \& \(5.97^{21}\) \\
\hline Omahn (city) \& \(4.10^{1}\) \& \(4.15{ }^{\text {² }}\) \& 4.15 \& \(5.75{ }^{1}\) \& \(3.85{ }^{1}\) \& \(4.20{ }^{1}\) \& \(4.20{ }^{1}\) \& \(5.52^{10}\) \& \(4.77^{24}\) \& \(4.42^{21}\) \& \& \& \\
\hline Omaha (country) \& \(4.00{ }^{1}\) \& \(4.05^{1}\) \& \(4.05{ }^{1}\) \& \(5.65{ }^{1}\) \& \(3.75{ }^{1}\) \& \(4.10^{1}\) \& \(4.10{ }^{3}\) \& \(5.52^{10}\) \& \(4.77^{34}\) \& \(4.42^{21}\) \& \& \& \\
\hline Cincinnati \& \(3.60{ }^{\text { }}\) \& \(3.68{ }^{\text {8 }}\) \& \(3.65{ }^{1}\) \& \(5.28{ }^{1}\) \& \(3.42{ }^{1}\) \& \(3.67{ }^{1}\) \& \(3.67{ }^{1}\) \& \(4.92{ }^{10}\) \& \(4.37^{24}\) \& \(4.00{ }^{71}\) \& 3.45 \& \(7.69^{18}\) \& \(5.99^{37}\) \\
\hline Youngstown, O.* \& \& \& \& \& \& \& \& \(4.40{ }^{18}\) \& \& \& \& \& \\
\hline Middletown, 0. \({ }^{\circ}\) \& \& \& \& \& \(3.25{ }^{1}\) \& \(3.50{ }^{1}\) \& \(3.50{ }^{1}\) \& \(4.40{ }^{13}\) \& \& \& \& \& \\
\hline Chicago (city) \& \(3.50{ }^{1}\) \& \(3.55{ }^{1}\) \& \(3.55{ }^{1}\) \& \(5.15{ }^{1}\) \& \(3.25{ }^{1}\) \& \(3.60{ }^{1}\) \& \(3.60{ }^{1}\) \& 1.85 \({ }^{18}\) \& \(4.10^{*}\) \& \(3.75{ }^{21}\) \& 3.50 \& \(7.85{ }^{\text {28 }}\) \& \(5.65{ }^{24}\) \\
\hline Chicago (country) \& \(3.40{ }^{1}\) \& \(3.45{ }^{1}\) \& \(3.45{ }^{1}\) \& \(5.05^{1}\) \& \(3.15{ }^{1}\) \& \(3.50{ }^{1}\) \& \(3.50{ }^{1}\) \& \(4.751{ }^{10}\) \& \(4.00^{4}\) \& \(3.65{ }^{21}\) \& \& \& \\
\hline Milwaukee \& \(3.63{ }^{1}\) \& 3.681 \& \(3.68{ }^{1}\) \& \(5.28{ }^{1}\) \& \(3.38{ }^{1}\) \& \(3.73{ }^{3}\)
\(3.85{ }^{3}\) \& \(3.73{ }^{\text {a }}\)
3.85 \& 4.9810
\(5.00^{3}\) \& \(4.23{ }^{4.3}\) \& \(3.888^{11}\) \& 3.54
3.83 \& \(7.33^{28}\)
\(7.70^{18}\) \& \\
\hline St. Paul \& \(3.75{ }^{3}\) \& \(3.80{ }^{2}\) \& \(3.80{ }^{3}\) \& \(5.40{ }^{1}\) \& \(3.50{ }^{3}\) \& \(3.85{ }^{3}\) \& \(3.85{ }^{3}\)
\(3.74{ }^{1}\) \& \(5.00^{3}\)
4.9910 \& \(4.35^{3}\)
\(4.244^{\text {a }}\) \& \(4.344^{11}\)
\(4.02^{27}\) \& 3.83
3.61 \& 7.7028
\(7.72^{28}\) \& \[
\begin{aligned}
\& 8.00^{29} \\
\& 6.02^{29}
\end{aligned}
\] \\
\hline St. Louis \& \(3.64{ }^{1}\) \& \(3.69{ }^{1}\) \& \(3.69{ }^{1}\) \& \(5.29{ }^{1}\) \& \(3.39^{1}\) \& \(3.74{ }^{1}\) \& \(3.74{ }^{1}\) \& \(4.99^{10}\) \& \(4.24{ }^{\text {24 }}\) \& \(4.02^{27}\) \& 3.61 \& \(7.72{ }^{28}\) \& \(6.02^{27}\) \\
\hline Indianapolis (city) \& \(3.60{ }^{1}\) \& \(3.70{ }^{1}\) \& \(3.70{ }^{1}\) \& \(5.30{ }^{1}\) \& 3.451 \& 3.751 \& \(3.75{ }^{1}\) \& \(5.01{ }^{10}\) \& \(4.25^{24}\) \& 3.9731
3.973 \& ... \& \& \\
\hline Indianapolis (country) \& \(3.35{ }^{1}\) \& \(3.45{ }^{1}\) \& \(3.40{ }^{1}\) \& \(5.05{ }^{1}\) \& 3.201 \& \(3.50{ }^{1}\) \& \(3.50{ }^{\text {² }}\) \& \(5.01{ }^{10}\) \& \(4.00^{34}\) \& \(3.97{ }^{37}\) \& \& \& \\
\hline Memphis, Tenn. \& \(3.90{ }^{\text {² }}\) \& \(3.95{ }^{\text {a }}\) \& \(3.95{ }^{\text {8 }}\) \& \(5.71{ }^{5}\) \& \(3.85{ }^{8}\) \& \(4.10^{3}\) \& \(4.10^{81}\) \& \(5.25^{21}\) \& \(4.66^{34}\) \& 4.31317 \& \& . \& , \\
\hline Birmingham (city) \& \(3.50{ }^{3}\) \& \(3.55{ }^{\text {² }}\) \& \(3.55{ }^{\text {5 }}\) \& \(5.83{ }^{\text {b }}\) \& \(3.45{ }^{\text {b }}\) \& \(3.70^{8}\) \& \(3.70{ }^{8}\) \& \(4.75{ }^{10}\) \& \(4.788^{24}\) \& \(4.43^{29}\) \& \(\ldots\) \& ... \& - \\
\hline Birmingham (country) \& \(3.40{ }^{\text {8 }}\) \& \(3.45{ }^{\text { }}\) \& \(3.45{ }^{5}\) \& \(5.83{ }^{\text {b }}\) \& \(3.35{ }^{\text {8 }}\) \& \(3.60^{3}\) \& \(3.60^{\circ}\) \& \(4.755^{10}\) \& \(4.78{ }^{34}\) \& \(4.43^{21}\)
\(4.600^{21}\) \& \& \& \\
\hline New Orleans (city) \& \(4.10^{\prime}\) \& 3.904
3804 \& 3.904
3.804 \& \(5.85{ }^{4}\)
5.754 \& 3.95
3.85 \& \(4.20{ }^{4}\)
\(4.10^{+5}\) \& \(4.20{ }^{\text {a }}\)
\(4.10^{4}\) \& \(5.25^{20}\)
5.15 \& \(4.95{ }^{10}\)
\(4.955^{10}\) \& \(4.60^{21}\)
\(4.60{ }^{21}\) \& 5.00 \& \& \\
\hline New Orleans (country) \& \(4.00^{4}\) \& \(3.80{ }^{4}\) \& \(3.80{ }^{\text {a }}\) \& \(5.75{ }^{4}\)
5.50 \& 3.85
3.75 \& \(4.10^{4}\)
\(4.30^{3}\) \& \(4.10^{1}\)
\(4.30^{3}\) \& \(5.15^{\text {²0 }}\) \& \(4.95^{10}\)
\(5.43^{10}\) \& \(4.600^{21}\)
4.50

a \& \& \&

\hline Houston, Tex. \& $3.75{ }^{\mathbf{3}}$
4.35 \& 4.258
$4.60{ }^{\text {a }}$ \& 4.25
4.90^{4} \& 5.50
7.15

7 \& 3.75
4.95 \& 4.30^{3}
4.90 \& 4.30^{3}
6.70 \& 5.25^{20}
$5.95{ }^{18}$ \& $5.43{ }^{10}$
7.15 \& 4.500^{12}
5.70^{22} \& \& \&

\hline Los Angeles (city) \& $4.35{ }^{4}$
3.95 \& $4.60{ }^{4}$
4.35 \& 4.90^{1}
4.65 \& 7.15
6.35 \& $4.95{ }^{\text {4 }}$ \& 4.90^{+}
4.50 \& 6.70^{1}
4.50 \& $5.95{ }^{18}$ \& $7.155^{\prime \prime}$ \& 5.70^{22}
5.55^{22} \& \& $9.80{ }^{\prime \prime}$ \& 8.80°

\hline San Francisco (country) \& $3.85{ }^{\prime}$ \& $4.25{ }^{7}$ \& $4.55{ }^{\text {² }}$ \& $6.25{ }^{7}$ \& $4.45{ }^{\text { }}$ \& $4.40{ }^{\circ}$ \& $4.40{ }^{7}$ \& $6.50{ }^{13}$ \& $7.45{ }^{18}$ \& 5.45 ${ }^{38}$ \& ... \& \&

\hline Tacoma \& $4.20{ }^{\text {n }}$ \& $4.45{ }^{\text {a }}$ \& $4.75{ }^{\circ}$ \& $6.50{ }^{\circ}$ \& $4.65{ }^{\text {® }}$ \& $4.25{ }^{\text {n }}$ \& $5.45{ }^{\circ}$ \& $5.70^{\text {8 }}$ \& 6.63^{24} \& 5.755^{33} \& . \& \&

\hline Seattle (city) \& $4.20{ }^{\text { }}$ \& $4.45{ }^{\circ}$ \& 4.75 ${ }^{\text { }}$ \& $6.50{ }^{\circ}$ \& $4.65{ }^{\circ}$ \& $4.35{ }^{\text {n }}$ \& $5.45{ }^{\circ}$ \& $5.70{ }^{\text {d }}$ \& 6.63^{34} \& $5.75{ }^{23}$ \& \& \& $8.00{ }^{4}$

\hline
\end{tabular}

${ }^{\circ}$ Basing point cities against which warehouses equalized freight as of April 16, 1941, and which must now be used in calculating lowest combinntion prices.
 Schedile No. 49.

BASE QUANTITIES
1-400 to 1999 pounds; ${ }^{2}-400$ to 14,999 pounds; "-any quantity - 300 to 1999 pounds: 400 to 3999 pounds; 300 to 1999 pounds; 10-400 to 39,999 pounds; ${ }^{3}$-under 2000 pounds; under 4000 pounds;

Ores ${ }_{\text {Inke Supirlor Iron Ore }}$	48% no ratio 31.00South African (Transval)		
		44\% no ratio...	27.40
Cross ton, 511/2\%		45\% no ratjo	28.30
Lower Lake Ports		48\% no ratio	31.00
Old range bessemer	\$4.75	50% no ratlo.	32.80
Mesabl nonbessemer	4.43	Brazlllan-nominal	
Filgh phosphorus	4.35	44\% 2.5:1 3ump	33.65
Mesabl bessemer	4.60	$48 \% 3: 1$ lump	43.50
Old range nonbessemer	4.60	Rhodeslan	
Eastern Lacal Ore		45\% no ratio	28.30
Cents, unit, del. E. Pa.		48% no ratjo	31.00 43.50
Foundry and baslc 56-		48\% 3:1 lump	43.50 Iont.)
63\%. contract	13.00	$48 \% \quad 3: 1$	43.50

\qquad

2249 pounds; ${ }^{12}$ - 150 to 1499 pounds; ${ }^{14}$-three to 24 bundles; ${ }^{98} 450$ to 1499 pounde; ${ }^{16}$ one bundle to 1499 pounds; ${ }^{17}$-one to nine bundles at-one to six bundles; $20-100$ to 749 pounds; $20-300$ to 1999 pounds 11-1500 to 39,999 pounds; $22-1500$ to 1999 pounds; 22 _-1000 to 39,999 pounds; $21-400$ to 1499 pounds; 24000 to 1999 paunds; -i-under 25 liundles. Cold-rilled strip, any quantity is base.

Forelgn Ore
Cents per thit, ci.f. Atlantic ports Manganiferous ore, $45-$
55% Fe. $6-10 \%$ Mang. Manganimer, 6 -10\% Mang.
N. African low phos... N. African low phos,...
Spanish, No. African basic, 50 to 60%
less $\$ 7$ frelght allowance
Manganesc Ore
Including was risk but not duty, conts per gross-ton unit, dry, f.a.b. cars, New Orleans and Mobile; 5 cents higher at Norfolk, Baltimore, Philadelphifa, New York; adiustments for analysis variations. (Based on OPA schedules.) Brazillan, 48\% Brazllian, 46%
Caucaslan, 51%
Caucaslan, 51%
Caucaslan, 50%

73.8 c Brazil Iron ore, 68-69\% $\begin{array}{ll}\text { f.o.b. Rlo de Janelro. } & 7.50-8.00\end{array}$
Tungsten Ore
Chinese wolframite, per
Chinese wolframite, per
short ton unit, duty short ton unit, duty pald $\$ 24.00$ Chrome Ore (Equivalent OPA schedules):
Grass ton f.a.b. cars, New York, Philadelphia, Baltimore, Charleston, S. C., Portland, Ote., or Tacoma, Wash.
(S/S paying for discharging; dry basis; subject to penalties if guarantees are not met.)
Indian and African 48\% 2.8:1
48\% 3:1
41.00 semifinished steel major basing points and are in cents per pound and dollars per gross ton. No prices quoted 43.50 on vanadium alloy.

$\begin{gathered} \text { Stucturur } \\ \text { and } \\ \text { ned } \\ \hline \end{gathered}$	$\begin{aligned} & \text { late } \\ & \substack{\text { ant } \\ \text { and } \\ \text { tess }} \end{aligned}$
$\begin{aligned} & 20.00 \\ & 19.00 \end{aligned}$	20.00
$\begin{aligned} & 19.00 \\ & 18.50 \\ & 18.50 \end{aligned}$	19.00 17.00

 Commissions: No commiscion is paya athe exsecpt ty a consumer to a broker for serevices rendered.

 Maximum Shipping Point Price: Where shipment to consumer is by rail vessel or combination of
 minus the lowest establishsd switching charge for scrap within the lasing point: and (2) for soipping
woints located outside a basing boint, the price in the above table for scrap at the most favorable bas0

 hy conmon carricr. When hauled by seller charges are baised on carload rate for rail hipment. mindMaximum Delivered Prices: Detenwined by adding estallished transportation charyes to shipping

 ments of electric and foundry frades from Michican; to shipnents of turnings th ferroalloy producers
nat of botings to chemical users. Delivered prices of scrap shiped under WPB allocations may ex-

under 0
0
0
0 ¢ธ8\%

 $\frac{10}{290}$

8ifin

$00 \cdot 61$	
0 Cl	¢616

оมeगчр oparoi.	

 ${ }^{520.00}$

为

NONFERROUS METAL PRICES

Copper: Electrolytic or Lake from producers in carlots 12.00 c , Del. Conn. less cariots $12.121 / 2$, reflncry: dealers may add ye for 5000 lbs , to carlinad: $1000-4999 \mathrm{lbs}$. 1c: 500-999 113 zc ; $0-499$ 2c. Casting, 11.75c. reflnery for 20,

Brans Inkot: Carlot prices, Including 25 cents per hundred frelght allowance; add $1 / 4 \mathrm{c}$ for less than 20 tans; $85-5-5-5$ (No. 115) 12.25c $88-10-2$ (No. 215) $16.50 \mathrm{c}, 80-10-10$ (No. 305)

Zinc: Prime western 8.25 c , select 8.35 c , brass specinl 8.50 c , Intermediate 8.75 c , F. St. Louls, ror carlots. For 20,000 lbs. to carlots add $0.15 \mathrm{c} ; 10,000-20,000 \quad 0.25 \mathrm{c} ; 2000-10,0000.40 \mathrm{c}$ under 20000.50 c .

Lead: Common 6.35c, corroding or chemical 6.40c, E. St. Louls for carlots: add 5 points for Chicago. Minneapolly-St. Paul, MillwaukeeKenosha districts; add 15 points for Cleveland-Akron-Detrolt area, New Jersey, New York State, Texas. Pacifle Const, Richmond, InState, Texas, Pacifc Const, Richmond, Inminaharn. Connecticut, Boston-Worcester Springleld, New Hampshire, Rhode Island.

Primary Aluminum: 99\% plus, Ingots 15.00 c del., pigs 14.00 c del. metnllurgleal $94 \% \mathrm{mln}$ 13.50 c del. Basc $10,000 \mathrm{lbs}$. and over; add $1 / 2 \mathrm{C}$ 2000-9999 lbs.: 1c less than 2000 lbs.

Secondury Aluminum: All grades 15.00c per tb. except as follows: Low-grade plston alloy (No. 122 lype) 14.50 c : No. 12 foundry alloy (No. 2 grade) 14.50 c ; chemlcal warfare servIce ingot (991/2\% plus) 14.50 e ; steel deoxidizers In notchbars, granulated or shot, including Ingot contalning over 2% Iron, Grade 1 (95$974 \%$) 14.75 c, Grade 2 ($92-95 \%$) 14.50c Grade 3 ($90-92 \%$) 14.00 c , Grade 4 ($85-90 \%$) 13.50 c , Grade 5 (less than 85%) 12.50 c . Above prices for $30,000 \mathrm{lbs}$ or more; add $1 / 4 \mathrm{c} 10,000$ $30,000 \mathrm{lbs}$. $1 / 2 \mathrm{c} 1000-10,000 \mathrm{lbs}$: 1 c less than 1000 lbs. Prices Include frelght at carlond rate up to 75 cents per hundred.

Mayneslum: Commerclally pure (99.8\%) standard ingots (4-motch. 17 lbs.) 20.50c lb.: add Ic for special shapes and slzes, including $3-16$ ingot and 12-1b, round ingot: incendlary bomb alloy $23.40 \mathrm{c}, 50-50$ magneslum-aluminum 23.75 c . ASTM B80-41T No. 1125.00 c , ASTM B94-40T No. $13 \quad 25.00 \mathrm{c}$, oll others 23.00 c . Prlces for 100 lbs. or more; for $25-100 \mathrm{llis}$. add 10 c ; for less than 25 lbs. 20c: Incendlary bomt allay less than 25 plant any quantity; carload frelght rate allowed all others for 500 lbs . or more.

TIn: Prices ex-dock, New York In 5-ton lots Add 1 cent for 2240-11,199 lbs., $11 / \mathrm{sc}$ 1000-2239 24 c 500-999. 3c under 500 . Grade $A, 99.8 \%$ or hicher (Includes Stralts), 52,00c: Grade B 99.75-99.79\% inci, 51.62 14 c : Grade C, Cornish reflned $51.621 / 4 c$: Grade $D, 99.0-99.74 \%$ incl. 51.124 c , Grade E , below 99%, 51.00 c .

Antimony: American, bulk, carlots, f.o.b. Laredo, Tex., $99.0-99.8 \%$ grade $14.50 \mathrm{c}, 99.8 \%$ and over (arsenle 0.05% max. no other impurity to exceed $0.1 \% 15.00 \mathrm{c}$. Add $1 / 4 \mathrm{c}$ for lesspurity to exceed 0.1 io 15.00 c . Add 9 Ac for $10,000 \mathrm{lbs}$: 1 c for 9999224 lbs ; carlots to 10,000 lbs. :
2 c for 223 lbs. and less.

Nekel: Electrolytic cathodes, 99.5%, f.o.b. reffnery 35.00 c 1 b .: pis and shot produced from electrolytic cathodes 36.00c; "F" nlekel shot or ingot for additions to cast Iron, 34.00 c ; Monel shat 28.00 c .

Mercury: Prlces per 76-1b. flask f.o.b. point of shlpment or entry. Domestic produced in Callf.. Oreg. Wash.. Idaho, Nev., Ariz. \$191; produced In Texas, Ark. s193. Foreign, produced In Mexico, duty pald, \$193.

Araenle: Prime, whtte, 99%, carlots, 4.00 c lb .
Beryllum-Copuer: 3.75-4.25\% Be., \$15 1b. contained Be.

Cadmium: Bars, ingots, penclls, plgs, plates, rods. slabs, sticks and all other "regular" stralght or nat forms 90.00 c lb ., del.; anodes, balls, dlses and all other special or patented shapes 55.00 c 1 b . del.

Cobalt: $97.99 \%, \$ 2.11 \mathrm{lb}$; 100 lbs or more on contract, $\$ 1.50 \mathrm{lb}$.

Indlum: 99.5\%, $\$ 10$ per troy ounce.
Gold: U. S. Treasury. \$35 per ounce.

Silver: Open market, N. Y., 44.75c per ounce.
Plathum: $\$ 36$ per ounce.
Iridium: $\$ 165$ per troy ounce.
Palhadum: $\$ 24$ per troy ounce.

Rolled, Drawn, Extruded Products

(Copper and brass product prices based on 12.00 c , Conn., for copper. Freight prepald on 100 Ibs. or more.)

Sheet: Copper 20.87c; yellow brass 19.48 c commercial bronze, $90 \% 21.07 \mathrm{c}, \quad 35 \% 21.28 \mathrm{c}$; red brass. $80 \% 20,15 \mathrm{c}, 85 \% 20.36 \mathrm{c}$; phosphor bronze, Grades A, B 5% 36.25c; Everdur. Herculoy, Duronze or equiv. 26.00 c ; naval brass 24.50 c ; manganese bronze 28.00 c ; Muntz metal 22.75 c ; mickel sllver $5 \% 26.50 \mathrm{c}$.

Rods: Copper, hot-rolled 17.37c, cold-rolled 18.37c: yellow brass 15.01 c ; commerclal bronze $90 \% 21.32 \mathrm{c}, ~ 95 \% 21.53 \mathrm{c}$; red brass 80% $20.40 \mathrm{c}, 85 \% 20.61 \mathrm{c}$; phosphor bronze Grade A. B $5 \% 36.50 \mathrm{c}$; Everdur, Herculoy, Duronze or equiv. 25.50 c ; Naval brass 19.12c; manganese bronze 22.50 c ; Muntz metal 18.87 c ; nickel sllver $5 \% 28.75 \mathrm{c}$.

Sednilesg Tublng: Copper 21.37 c ; yellow brass 22.23 c ; commerclal bronze 905023.47 c ; red brass $80 \% 22.80 \mathrm{c}, 85 \% 23.01 \mathrm{c}$.

Extruded Shapes: Copper 20.87c; architectural bronze 19.12 c ; manganese bronze 24.00 c , Muntz metal 20.12 c : Naval brass 20.37 c .

Anglos and Chnmels: Yellow brass 27.98c; commercial bronze $90 \% 29.57 \mathrm{c}, 95 \% 29.78 \mathrm{c}$; red brass $80 \% 28.65 \mathrm{c}$. $85 \% 28.86 \mathrm{c}$.

Copper Wire; Bare, soft, f.o.b. Eastern mills, carlots $15.371 / 2 \mathrm{c}$, less-carlots $15.871 / 4 \mathrm{c}$; weather-
proof, $1.0 . \mathrm{b}$. Eastern mlls, carlots 17.00 c . proof, f.0.b. Eastern mills, carlots 17.00 c , $17.50 \mathrm{c}, 15,000 \mathrm{Jbs}$, or more $17,75 \mathrm{c}$, less car$17.50 \mathrm{c}, 15,0$
lots 18.25 c .

Alumanum Sheets and Clrcles: 2s and 3s, flat mil! flnlsh, base 30,000 lbs. or more; del. sheet widths as indlcated; circle diameters $9^{\prime \prime}$ and larger:

Gage	WIdth	Sheets	Clrcles
$.249^{\prime \prime}-7$	$12^{\prime \prime}-48^{\prime \prime}$	22.70 c	25.20 c
$8-10$	$12^{\prime \prime}-48^{\prime \prime}$	23.20 c	25.70 c
$11-12$	$26^{\prime \prime}-48^{\prime \prime}$	24.20 c	27.00 c
$13-14$	$26^{\prime \prime}-48^{\prime \prime}$	25.20 c	28.50 c
$15-16$	$26^{\prime \prime}-48^{\prime \prime}$	26.40 c	30.40 c
$17-18$	$26^{\prime \prime}-48^{\prime \prime}$	27.90 c	32.90 c
$19-20$	$24^{\prime \prime}-42^{\prime \prime}$	29.80 c	35.30 c
$21-22$	$24^{\prime \prime}-42^{\prime \prime}$	31.70 c	37.20 c
$23-24$	$3^{\prime \prime}-24^{\prime \prime}$	25.60 c	29.20 c

Inend Products: Prlces to Jobbers; full sheets 9.50 c ; cut sheets 9.75 c ; plpe 8.15 c , New York 8.50 c Phlladelphla, Baltimore, Fochester and Buffalo: 8.75 c , Chicago, Cleveland, Worcester, Boston.

Zine Products: Sheet I.o.b. Mill, 13.15c; 36,000 lbs. and over deduct 7%. Ribbon and strlp $12,25 \mathrm{c}, 3000-\mathrm{lb}$. lots deduct $1 \%, 6000 \mathrm{lbs} .2 \%$ 9000 lbs. $3 \%, 18,000$ lbs. 4%, carloads and over 7%. Boller plate (not over 12") 3 tons and over 11.00 c ; 1-3 tons 12.00c: $500-2000 \mathrm{lbs}$ 12.50c: 100-500 lbs. 13.00c: under 100 lbs. 14.00 c. Hull plate (over $12^{\prime r}$) add ic to boller plate prices.

Plating Materials

Chromic Acld: 99.75\%, flake, del., carloads $16.25 \mathrm{c} ; 5$ tons and over $16.75 \mathrm{c}: 1-5$ tons 17.25 c ; 400 lbs , to 1 ton 17.75 c ; under 400 lbs .18 .25 c .

Copper Anodes: Base 2000-5000 lbs., del.; oval 17.62e; untrimmed 18.12e; electro-deposited 17.37 c .

Copper Carbonate: 52-54\% metallic cu; 250 lb barrels 20.50 c

Copper Cyanide: 70-71\% cu. 100-1b. kegs or bbls. 34.00 c f.o.b. Nlagara Falls
Sodium Cyanide: $96 \%, 200$-1b. drums 15.00 c ; 10,000-lb. lots $13,00 \mathrm{c}$ F.o.b. NIagara Falls

Nickel Anoden: 500-2999 lh. lats; cast and rolled, carbonized $47.00 c$; rolled, depolarized 48.00 c .

Nlekel Chloride: $100-\mathrm{lb}$. kegs or $275-1 \mathrm{~b}$. bbls. 18.00 c lb., del.

Tin Anodes: 1000 lbs, and over 58.50 c , del. $500-99959.00 c ; 200-49959.50 c ; 100-19961.00 \mathrm{c}$.

Tin Crymtuls: $400-\mathrm{lb}$. bbls. 39.00c f.o.b. Grafselli, N. J.; $100-1 \mathrm{~b}$. kegs 39.50 c .

Sodlum Stannate: 100 or $300-\mathrm{fb}$. drums 36.50 c , del.; ton lots 33.50 c .

Zine Cyantde: $100-\mathrm{lb}$. kegs or bbls. 33.00 c . 1.o.b. Nlagara Falls.

Scrap Metals

Brass Mill Allowninces: Prices for less than 15,000 lbs. f.o.b. shipplng point. Add Gise for $15,000-40,000 \mathrm{lbs}$; 1 c for 40,000 lbs. or more.

	Clean Heavy	Rod Ends	Clean Turnings
Copper	10.250	10.250	9.500
Tinned Copper	9.625	9.625	9.375
Yellow Brass	8.625	8.375	7.875
Commercial bronze			
90\%	9.375	9.125	8.625
95\%	9.500	9.250	8.750
Red Brass, 85\%	9.125	8.875	8.375
Ied Brass, 80%	9.125	8.875	8.375
Muntz metal	8.000	7.750	7.250
Nickel Sil., 5\%	9.250	9.000	4.625
Phos. br., A. B. S\% i		10.750	9.750
Herculoy. Everdur or equivalent	10.250	10.000	9.250
Naval brass	8.250	8.000	7.500
Mang. bronze	8.250	3.000	7.500

Other than Brasm Mill Scrap: Prices apply on material not meeting brass mill speclfleations and are f.o.b. shipping point; add ac for shlpment of 60,000 lbs. of one kroup and Hac for 20,000 lbs. of second group shlpped in same car. Typical prices follow:
(Group 1) No. 1 heavy copper and wire, No. 1 tinned copper, copper borings 9.75 c: No. 2 copper swire and mixed heavy copper, copper tuyeres 8.75 c .
(Group 2) soft red brass and borings, aluminum bronze 9.00 c ; copper-nlekel and borings 9.25 c : car boxes, cocks and faucets 7.75 c ; bell metal 15.50 c : babbltt-llned brass bushings 13.00 c .
(Group 3) zincy bronze borings, Admiralty (Group Muntz metal condenser tubes 7.50 c . yellow brass 6.25 c : condenser tubes $7.50 c$; yelow 0.40%) 7.25 c, (lend $0.41 \%-1.0 \%$) 6.25 c : manganese bronze (lead 0.41ead $0.00-0.40 \%$) 6.50 c , (lead 0.41$1.00 \%$) 5.50 c .

Aluminum Scrap: Prices 1.0 b. paint of shipment, respectlvely for lots of less than 1000 lbs ; $1000-20,000 \mathrm{lbs}$, and $20,000 \mathrm{lbs}$. or more; plant scrap only. Segregated 2 s sollds 10.00 c , $11.00 \mathrm{c}, 11.50 \mathrm{c}$; all other gollds $9.50 \mathrm{c}, 10.50 \mathrm{c}$. 11.00 c : borings and turnings $7.50 \mathrm{c}, 8.50 \mathrm{c}$, 9.00 c ; mixed sollds $8.50 \mathrm{c}, 9.50 \mathrm{c}, 10.00 \mathrm{c}$, mlxed borings and turnings $6.50 \mathrm{c}, 7.50 \mathrm{c}, 8.00 \mathrm{c}$.
1.mad Scrop: Prices f.o.b. point of shipment. For soft and hard lead, including cable lead, deduct 0.55 c from basing point prices for refined metal.

Zine Scrap: New clipplngs, old zinc 7.25 c f.o.b. point of shlpment: add $1 / 2$-cent for $10,000 \mathrm{lbs}$. or more. New dlecast scrap, radiator grilles 4.95 c : add $1 / 2 \mathrm{c} 20.000$ or more. Unsweated zlnc dross, die cast slab 5.80 c any quantly.

Nickel, Monel Scrav: Prices f.o.b. Doint of shlpment; add $1 / 4 \mathrm{c}$ for 2000 lhs. or more of nicke or cupro-nickel shipped at one tlme and 20.000 lbs. or more of Monel. Converters (dealers) allowed 2c premium.

Nickel: 98% or more nickel and not over $1 / 2 \%$ copper 26.00c: $90-98 \%$ nlckel, 26.00 c per lb nickel contained.

Cumro-nickel: 90% or more comblned nickel and copper 26.00 c per lb. contained nlckel, plus 8.00 c per lb . contalned copper; less than 90% combined nlekel and copper 26.00 c for contalned nickel only.

Monel: No. 1 castings, turnings 15.00c: new cllppings 20.00 c ; soldered sheet 18.00 c .

Sheets, Strip

Shect \& Strip Prices, Page 160
Demand for chrome-motyouenum sheets by the aircraft industry is heavy and a mild spurt in stainless for food dehydrating and handling units, which is begimning to recede, features activity in alloys; buying in small lots is more frequent. In general, however, sheet orders are sensitive to the flow of war contracts, special engineering fabrication, notably cold-finished; in many details effect of war volume is stressed in sheet consumption. Some fabricators, ordinarily leading consumers, are buying little, while new users are appearing. Heavier gages of hot and cold-finished carbon sheets are more in demand than lighter stock. Tomage going to warchouses is
slightly heavier and shipyards tend to take larger volume.

Producers are booked up to second quarter quotas on some finishes of narrow cold strip, with limited openings for June schedules in others. Bookings are off slightly, a natural result of earlier PRP orders which are being processed to CMP, the latter now covering an increasing ratio of new purchases. Production is up to directives in most cases with mills striving to maintain a balance in acceptance to avoid overloads on some lines, notably high carbon stock requiring long annealing. Although demand is less even and subject to changes in connection with ordnance demands, small amms ammunition and gun links are leading tonnage consumers.

Alloy capacity for second quarter is

there's a KENNAMETAL*Tool

 for your jobMetallurgists and tool engineers at McKenna Metals Company are producing carbide tools for greatest steelcutting efficiency on your specific machining operation.

The steel-cutting industry is being supplied with more than 30 standard and typical styles of KENNAMETAL tools, in several sizes and in four standard grades of hardness. Sizes and grades are available in standard styles for most applications of turning, boring, facing, milling, shaping, planing, cutting-off, or grooving.

If one of the many standard tools is not applicable to your job, KENNAMETAL tools can be ordered with modifications which adapt them to unique applications, or KENNAMETAL blanks can be ordered for your own tool making.

Write for your copy of catalog $43 B$ for KENNAMETAL complete selection material on KENNAMETAL carbide tools.

well filled and tentative commitments are in for August and September; the alloy melt is held to 105 days ahead of rerolling and shipments.

At least one large sheet producer in the East :s turning away new orders on hot and cold-rolled sheets for delivery this quarter and another mill has little left of either of these grades. The latter zell offer a moderate tomage of galvanized and sheet specialties.

Bars

Bar Prices, Page 160

Most sellers of hot-rolled carbon steel bars now have little to offer before June and considering such allocations as must be anticipated for that month they have not much to offer against general demand in second quarter. In large rounds and flats most producers have nothing to offer.

Cold drawers are in a generally tighter position and while they may be able to process a little of their June hot bar tonnage before the end of that month it will be a negligible quantity at best. Cold drawers will submit specifications for hot-rolled bar supply for June about April 25. Deliveries on colddrawn alloy bars are said to be out of the question before August.

Volume already booked and being certified to CMP allotments leaves little room for new commitments. Prospects for slightly more tonnage to warehouses under load directives, allocations to cold finishers and maintained duration war contracts, against which specifications are heavy, account for production during remainder of the quarter and beyond. While jobbers are apparently to receive slightly more tomnage, prospects in other directions as to new orders are hardly improved. Only in hot-rolled carbon material are deliveries freer in spots.

In New England old contracts requiring forging stock are maintained, supplemented by several substantial new orders for small tools, notably wrenches. A contract for wrenches went to Rhode Island Tool Co., Providence, in excess of $\$ 155,000$, one of several distributed. Marine hardware and forged link chain bar requirements are also large.

In the New York metropolitan area the aircraft industry continues to consume the heaviest quantity of cold-drawn bars, with ammunition next, ships third and machine tools fourth. While there is still an active demand from machine tool builders, inquiry has sagged noticeably since the first of the year.

Plates

Plate Prices, Page 161
While some tank fabricators, especially those located inland, report a falling off in special government work outside their normal field, eastern tank makers and fabricators declare their government business so far has been well sustained. Certain fabricators admit that they have received no new work recently, but point out that their backlogs are still fairly substantial. Next to shipyards, fabricators are the largest buyers of plates in the East.

That govermment work for these fabricators is holding up as well as it is may be attributed in part to their close proximity to shipyards. This places them
in position to get much of the overflow of fabricated work.

However, tank makers and structural fabricators in various sections are still having difficulty keeping their forces active. There is little straight storage tank work currently. Work for military bases, government cantonments and the like is largely completed. Some fabricated work is being shipped overseas for special military projects, but even this is far from large, and in general ordinary water and gasoline timk bookings are negligible. Tank work for hightest gasoline and synthetic rubber programs also is ebbing rapidly, although here there may be a spurt within the next couple of months when new projects get beyond the paper stage.

Special government jobs, such as wind tumnels, dry docks and ship sub-assemblies have reached the point where some inland shops will have to close down some departments, unless new contracts soon develop. Tank makers have approached Washington for an easing in limitations on civilian tanks. They point out that a number of municipalities urgently need new tank equipment. However, these fabricators have not received encouragement, even though the feeling in trade circles is that plate supply is definitely casier.

Allocations for May in New England are heavier, due to increased schedules for at least two shipyards and substantial subcontracting of assemblies, as well as requirements for escort and special craft. The volume of plates partially fabricated and in shops for fitting, which does not appear in inventories each month, is heavy.

Transition of plates entirely to CMP may be somewhat slower than some other products and will not be complete, according to current outlook, until June rollings, at least. Under allocations many wrinkles have been ironed out of distribution in recent months with progressive efficiency and better control of inventories.

Some castern plate sellers assert about 30 per cent of recent buyer applications for May roiling carried CMP allotment numbers and the percentage for June is expected to be still higher, with the result the re should be little difficulty in making the final conversion step to C.MP for July.

Pipe . . .

Pipe Prices, Page 161
Deliveries on lap weld pipe now average 10 to 12 weeks and butt weld six to eight weeks. Extended shipments on lap weld pipe are ascribed in part to substantial tomages going abroad. Merchant pipe in general is less active than normal at this season, due to restrictions on building construction. Mechanical and boiler tubing, however, are in heavy demand with deliveries running many weeks ahead.

In attempts to ease pressure for seamless tubing, use of welded material is encouraged where possible; in the case of chromium-molyldenum, warehouses are to accept 20 per cent of the total in welded tubing. Substantial part of the latter is distributed through earmarked stocks to the aircraft industry, with demand heary. Extended deliveries on boiler tubes are largely due to
heavy backlogs carried by mills for seamless tubing; inquiries frequently bring only one or no quotations for tubes. Distributor inventories of steel pipe are coming into better balance, both butt and lap welded. Slack building has hit pipe buying, but in the aggregate a fair miscellaneous demand prevails. For ships inquiry is heavy, largely for tubing.

Steel pipe contracts for mavy ships include awards to Noland Co., Washington, $\$ 242,586.65$, and Wheatland Tube Co., Wheatland, Pa., $\$ 100,587.73$. For Panama, quotations are in on 79,200 feet of carbon steel pipe, and 32,400 feet of welded, small diameters; shipment is promised in 30 days by several mills and on a few items even carlier.

Wire . . .

Wire Prices, Page 161

Volume of wire specialties, high ratio of which requires much processing, promised and validated for delivery as early as possible this quarter, precludes scheduling considerable CMP orders before late May or June. Production will gradually come under the new plan with completion of deliveries against promised tomage and by the end of the quarter is likely to be centered nearly 100 per cent around CMP.

In the aggregate, new orders are somewhat more spotty, with shipments heavy. Large demand holds for valve spring wire with producers having difficulty in maintaining uniform heats to meet

BLOOM
 LONG-FLAMEBURNERS
 w"

YOUCAN

FROM OIL TO GAS ...FROM GAS TO OIL

NO DELAY
 NO SHUTDOWNS

SAME HEATING RESULTS

Fuel shortages emphasize the service-proved advantages of BLOOM LONG-FLAME BURNERSgreater efficiency, uniform heating results, instant fuel change over.

Hundreds of installations in all types of furnacesbillet heating, annealing, forging, heat treating, normalizing, ingot heating-have shown that Bloom engineering plus Bloom equipment increases furnace output, reduces fuel consumption, improves heating results.

Let Bloom help you modernize your furnaces for greater efliciency-better results.

ENGINEERING COMPANY
857 WEST NORTH AVENUE • PITTSBURGH, PA.
chromium-vanadium specifications. Considerable musie wire is required for springs and in numerous instances openhearth steel is replacing electric furnace material for more specialties, razor-blade stecl in one case. Round wire departments are mostly engaged at capacity, with flat wire lagging; annealing is still the choke-point on many products.
Cross-hauling is being reduced where possible in supplying rope mills with wire for stranding, the latter coming from mills in the same district, or as nearby as possible. This has upset trade relationships of long standing in some instances.
Rope mills are booked solid for three months and beyond in some cases, but large new contracts supplement already lieavy backlogs. Ships and heavy ma-
terials handling equipment account for much tonnage. Bulk of a navy contract went to Wire Rope Corp. of America, New Haven, Conn., $\$ 1,078,386.20$. Small fastenings, notably screws, also require large tonnages for war needs. For wood screws, navy, National Lock Co., Rockford, Ill., has a contract at $\$ 336,994.14$. Welding wire, however, has been given the greatest lift by war influence and production currently is on a basis of better than 500,000 tons annually, mostly coated. Straight chromium and nick-el-chromium rods are being processed at four times above the 1941 rate.

Rails, Cars

Track Material Prices, Page 161
Late advices indicate that Washing-

ton will approve construction of 44,000 domestic freight cars in last half in addition to whatever carryover there may be from the 20,000 scheduled for first half. Should this program go through 64,000 cars will be built for American roads in 1943.

Some cars for second hale are already on schedule as only a portion of the 7765 placed early in the year, mainly in January, were included in the 20.000 approved for first half. Meanwhile Chesapeake \& Ohio is said to be planning a request for 2380 additional hoppers and Norfolk \& Western 1000 composite hoppers, with bids on the latter to be opened soon.

Due to government restrictions, orders placed during first quarter involved 7765 cars, compared with 20,058 in the same period in 1942 Comparisons are shown in the table below:

	1943	1942	1941	1940
Jan.	7,415	4,253	15,169	360
Feb.	350	11,725	5,508	1,147
March	0	4,080	8,074	3,104
3 mos.	7,765	20,058	28,751	4,611
April		2,125	14,645	2,077
May		822	18,630	2,010
June		0	32,749	7,475
July		1,025	6,459	5,846
Aug.		0	2,668	7,525
Sept.		1,863	4,470	9,735
Oct.		0	2,499	12,195
Nov.		0	2,222	8,234
Dec.		135	8,406	7,181
Total		26,028	121,499	66,889

It is reliably reported that Washington has approved construction of 65 trolley cars for Boston and 35 for Baltimore. Orders for a somewhat larger number were placed several months ago, subject to grovermment approval. Authority has also been given one builder for 25 trolley coaches for severa] destinations.

It is understood Washington has approved for construction this year 3000 transit buses, 7500 bus bodies, 270 street cars and 75 trolley coaches. This is a somewhat more liberal program than was set up at the beginning of the year. While the Army plans purchase of 1200 hospital and supply coaches specifications have not been completed.

Reinforcing Bars

Reinforcing Bar Prices, Page 161

Demand for concrete bars is the best in a number of weeks, the result of seveal building construction and highway jons reaching the bidding stage more or less simultaneously. Two war plant expansions in the Chicago district, totaling 800 tons, already have been awarded and general contracts on two bridge projects have been placed, indicating that steel requirements will be booked shortly.

Structural Shapes

Structural Shape Prices, Page 161
With building backlogs gone or rapidly disappearing, structural fabricating shops are closer affiliated with the shipbuilding and miscellaneous war program. Many foresaw the need of radical changes weeks ago and by acting promptly and aggressively are managing to maintain fair schedules; others, late in recognizing the trend, are still secking contracts. Shop operations have undergone much revision with welding ca-
pacity engaged heaviest. Ships are taking most structural mill output, with deliveries well geared to needs. Most warehouses were able to build up balanced and comfortable inventories on structurals for the April 1 deadline and with replacements to be based on sales, material which may be bought from the WPB Steel Recovery Section exçepted, current intake by jobbers is slack.

Pig Iron

Pig Iron Prices, Page 162

Notwithstanding reports of a lighter melt, some pig iron sellers declare that applications for May pig iron are fairly well sustained in volume. In fact, one eastern seller reports applications involving a heavier tonnage than for April.

Sellers point out that while the melt has been off at some foundries recently, such declines are often temporary and that while they are not in a position to analyze May applications fully it could easily be that some foundries have received additional orders or that their customers no longer need to hold up shipments, as has been the case with machine tool builders. Not infrequently foundries have delivered machinery castings faster than they could be absorbed and consequently temporary suspensions have been requested by machinery builders.

Several hundred tons of malleable are reported placed for export, the first foreign allocation noted in some time.

Bolts, Nuts, Rivets

Bolt, Nut, Rivet Prices, Page 161
Eastern bolt and nut producers appear to be averaging around 50 to 55 hours per week and could operate at a much higher rate if sulficient manpower and steel were available. Demand, they say, is heavy, with especially large tonnages being figured for export. Deliveries in some lines run 12 to 14 weeks with larger makers, althrough some smaller manufacturers cim do better.

Scrap

Scrap Prices, Page 164

While scrap is being received in sufficient supply to keep steel production at top rate, signs indicate there may be a tight situation by the middle of the year and warnings have been given by dealers that they nay not be able to meet demands later. Collections of last summer have been gradually worked over and shipped and repetition of the outpouring during the nationwide campaign scarcely can be expected this year. Industrial scrap is coming out in heavy volume as steel conversion increases and supplies of home scrap is larger, in proportion to increased steel output. Turnings continue to be a drug on the market.

Current scrap shipments to the St. Louis district are fairly large but quality is said to be poor, containing much light material and turnings. No. 2 heavy melting steel is difficult to obtain and other steel grades fail to meet demand. Railroad offerings are reduced from the rate of last month.

Buffalo dealers find a sharp shrinkage in scrap movement in recent weeks but mill backlogs continue at a gratifyinh level. One reason for this is reported larger use of direct iron in open hearths.

Some yards are almost at a standstill because of labor shortage.

Dealers and brokers in the Cincimnati area have given warning that yards do not hold large reserves of unprepared serap and that a pinch in supplies might be expected by midsummer as sources tapped by strenuous efforts last year probably would not yield as well now. One steelmaker has halted deliveries of all grades except No. 1 steel and No. 1 bundles, thus diverting other grades elsewhere. Foundries in that district are buying some material but are usually well supplied.

Chicago melters find current shipments about equal to consumption after several weeks of dipping into reserves and further improvement in receipts would en-
able stocks to be replenished. Railroad scrap offerings are heavier. Recent increase in wages for yard workers has not resulted in attracting sufficient labor to handle incoming tonnage and the scrap situation linges mainly on the factor of vard preparation. The same situation applies to collection of rural scrap, fewer persons being engaged in this activity than in mormal times.

Fairly deluged with turnings, consumers in castern Pennsylvania in several instinces have requested temporary suspensions. Heary melting steel grades are coming ont more freely; mainly a result of cessation of allocations from northern New Jersey and New England to Pittsburgh and Youngstown districts. Although consumption of steel and

BETMPR STPEL CASTINGS DEMAND BETTER STEEL MAKING

The high regard Strong Steel castings have won in so many industries reflects Strong's skill as steel makers as well as steel casters. The melt being poured above comes from a 25 ton, acid bottom, oil fired, open hearth furnace of special Strong design. It will pay you to know Strong steels well-write or wire for the facts.
STRONG STEEL FOUNDRY COMPANY, BUFFALO, N. Y_

iron scrap in February, at 4,361,000 gross tons, was less than the $4,753,000$ tons melted in January, as estimated by the Institute of Scrap Iron and Steel Inc., on a daily average basis it showed an increase. The February consumption was largest in history for that month and compares with $4,276,000$ tons in February, 1942.

Warchouse . . .

Warehonse Prices, Page 163
To meet heavier and broadening demand, steel warehouses in most areas have better inventories on most products, although frequently out of balance as to sizes. Replacements generally have been better, although seattered exceptions
are apparent. This is expected to continue through second quarter under special directive. On some lines jobbers improved inventories by April 1, and, with future replacements based on sales, fair reserves are likely. April sales will be replaced in August, stocks to be filled in the interim by directive warehouse load.
Improved receipts include several items which have been the tightest, seamless tubing and larger cold-finished and alloy rounds and flats. There are exceptions but in goneral this holds true. Several distributors are well balanced to meet demand for high-speed and tool steel. While there are wrinkles to be ironed out, most jobbers are of the opinion the new setup as to replacements

חO8 MEXICRIGRAPHITE

for Last Minute Ladle Recarburization

- Tapping time in the open-hearth bay of the foundry or steel plant means concerted action by every hand on the floor. At no time in any industry is there less time for last minute preparations or adjustments-when the huge ladle fills with the liquid steel, any ladle additions made must employ highly dependable materials which work rapidly and efficiently.

If it is desired to add a few additional points of carbon, No. 8 Mexican Graphite tossed into the flowing metal will quickly give a full 80% carbon recovery without the violent reaction obtained from other recarburizers.

No. 8 Mexican Graphite contains no phosphorous, sulphur or harmful impurities and will not dust or produce a flaming action. . . . We should like to assist with the promptness of a trial shipment.

The United States Graphite Co. Saginaw. Michigan
U. S. A.

will eventually be an improvement.
A meeting of members of the warehouse trade to explain specific maximum prices in the four zones will be held by Office of Price Administration in Philadelphia Tuesday, April 13, at the Chamher of Commerce, Twelfth and Walnut streets. Everett L. Wyman, head of the Warchouse and Jobbers' Section of the Iron and Steel Price Branch, OPA, will preside.

Iron Ore . . .

```
Iron Ore Prices, Page 163
```

Following efforts of icebreakers it has been hoped first upbound ore carriers might pass the Soo about April 15, though heavy ice in Whitefish Bay might delay them in reaching the open lake. This would compare with Marcli 23 last year.
First cargoes of ore left Escanaba, Mich., April 5, two ships of Inland Stee Co. clearing for Indiana Harbor, Ind., with ore from the Menominee and Marquette ranges. Two Inland ships left Chicago March 30 for Port Inland, Mich., to load limestone.

Manganese Ore . . .

```
Manganese Ore Prices, Page 163
```

Manganese ore consumers are in increasingly comfortable position with respect to supply. In some trade quarters it is estimated that the country has a reserve of at least $2,000,000$ tons. Some estimate that it is not far from 2,400 , 000 tons, or virtually two years' supply. This backlog is believed to include 150, 000 to 200,000 tons of ore in stock in Cuba. There is also a fairly substantial reserve above ground for American account in Brazil. However, this is not included in the above estimates.

Reserves have been augmented by a freer movement from abroad so far this year, compared with final quarter of last year. Some trade estimates range around 130,000 tons in the aggregate for the first two months. This, however, is not large compared with the movement earlier in the emergency.
Relatively, shipments from the Gold Coast, West Africa, have been heavier recently than from other foreign sources. This is attributed in part to the greater number of ships which are available as a result of heavy movement of munitions to North Africa.

Meanwhile domestic production is expected to be stepped up shortly by output at the Hanna property in Nevada.
While a portion of the shipments are for the account of individual buyers, much of it is for the Metals Reserve Corp., which, in turn, supplies a number of consumers. It is pointed out that all of the ore coming into this country, whether for the direct account of consumers or for Metals Reserve or for the Bureau of Economic Warfare, is under government control. inasmuch as shipping space has to be approved by the grvernment.

Metallurgical Coke . . .

Coke Prices, Page 161
Despite increasing demand for bechive coke only a minor increase has been made in the number of beehive ovens actually in operation, during the first quarter amounting to about 3 per

gPRII

 (20in)When a Spring or Spring Part is needed in your design development or in your finished produce, rell us what you want to accomplish and let us help in solving your problems. Hubbard produces Springs in almost every conceivable type, form and shape: in all kinds of material and in any quantity.
M. D. HUBBARD SPRING COMPANY 705 Central Ave. • Pontiac, Mich.

IUBBARD

SPRINGS - STAMPINGS - WLRE FORMS • WASHERS - COTTERS

What is a MICRO-GHEK?

- The Trico Micro-Chek is a new type of comparator gage, used on inspection lines, or at machines, which speeds up the gaging of precision parts. It visually multiplies dimensions by 200 . Its big, highly visible indicator greatly reduces cyestrain and fatigue. Its simplicity enables inexperienced workers quickly to become accurate inspectors. Our booklet tells more about its many applications.

MIIO USES IT?

More than 1500 war plants and governmentar-senals-many of which time and again have reordered additional scores of Micro-Cheks.

arllo

afine degree of accuracy"
is absolutely neccessary"

That is the kind of finish grinding specified by The National Acme Co. on tool slides for their Acme-Gridley multiple spindle automatics and that is the kind of ground finish achieved with their HILL "Open Side" Horizontal Spindle Hydraulic Surface Grinder. Notice that the tool slides are finish ground in "gangs", for speed and uniformity. The extremely close tolerances held by the HILL Hydraulic Grinder insures precision operation of the finished part in the complex mechanism of these automatics. An inquiry from you on your rough or finish grinding problems will receive prompt attention. No obligation, of course!

rea Hime Acvico.

6400 breakwater ave: - cleveland, ohio
HILL "Open Stie" Surface Arinders are buils in both Horizontal Spindle and Vertical Spinde types in a full ranze of sizes with table dimensions $18^{*}, 24^{*}$ or $30^{\prime \prime}$ wide and 5 to 20 tat lons
cent of the total. There was a slightly larger increase, about 6 per cent, in the total number of ovens available, which is an indication that maintenance problems are playing an increasing part in tomare of coke produced in the beehive field.
No further developments have been reported in the coke price situation and virtually all operators are apparently maintaining an economic balance at ceiling prices.

Pacific Coast

Seattle - The recently organized Pa cifie American Steel \& Iron Corp., with offices in Seattle and Vancouver, B. C., is planning to make application to the

RFC for a loan of $\$ 25,000,000$ to finance construction of plants on the North Pacific Coast. Former Congressman Knute Hill, of Washington, has become associated with the company as the Seattle manager.

Ammouncement is made that Kaiser's Swam Island shipyards will construct 47 additional 16,500 -ton tankers. The original contract was for 56 vessels. It is stated that the entire 103 units will be operating by the end of 1944 . The first aircraft escort vessel of a number awarded to Kaiser's Vancouver yard was launched April 5.
J. A. Terteling \& Sons, Boise, Idaho, have a major contract to relocate three miles of main track for the Northern Pacific railroad near Cle Elum, Wash.,

and a $1 / 2 / 2$-mile stretch near Bristol, Wash. Western Gear Works, Seattle, has a $\$ 435,000$ RFC allocation for construction of increased facilities in Washington state The same government agency has authorized a $\$ 200,000$ contract with the Pacific Chain \& Mfg. Co., Portland, Oreg., for increased plant facilities, and $\$ 42,000$ to the Shofner Iron \& Steel Works, for expansion.
Reporsts from Edmonton, Canada,
Rexpen state that American Bridge Co. and Peterson Bros. have been awarded at major contract for construction of steel hridges over the Liard, Muskwa and Sikanni rivers, Canadian-Alaskan highway project.
U. S. Pipe \& Foundry Co., through H. G. Purcell, Seattle, will furnish 100 tons 12 -inch cast iron water pipe for the Eighth avenue South improvement in Seattle. Orton, Wash., has received bids for 19,500 feet of 6 and 8 -inch cast iron water pipe, Parker \& Hill, Seattle, engineers. Clenwood water district, Eugene, Oreg., has called bids April 15 for a $\$ 47,000$ water system project. Bids are called at Salem, Oreg., April 19, for 3400 feet of 8 and 12 -inch pipe for Oregon State College; concrete mains probably will be purchased. Vancouver, Wash., housing authority has awarded a $\$ 811,274$ contract to A. J. Goerig Construction Co., Seattle, for instalation of water and sewer system, including 8 million gallon reservoir, sewage pumps and other facilities.
Rolling mills report they have a sustained demand for merchant bars but practically no reinforcing bars are being rolled at present. Merchant backlogs are large.

Canada

Toronto, Ont. - Under maximum war production, steel requirements in Canada have moved ahead at a much more rapid rate than has production, and as a consequence this country continues to draw hearily lupon the United States to augment its stecl supply. In addition to heavy demand for steel and other metals on direct war account, it is now indicated that large tonnages of steel will be made available for other essential industries, closely allied with the war program. In this connection it is stated that the Canadian Pacific Railway Co. is considering placing new rolling stock orders to include both cars and locomotives, and that National Steel Car Corp., Hamilfon, and Canadian Car \& Foundry Cin., Montreal, will obtain a large share of the business. Rolling stock deliveries by Canadian producers last year showed some improvement over the previous year, but old contracts have not yet been all cleaned up. Steel allocations to rolling stock builders will be increased at an early date, it is stated.

Little change was reported in plate and sheet sales for the week. Fresh buying continued in heavy volume. with mast new business from the shipbuilding industr:'. Specifications are being prepared and orders are expected soon in connection with construction of new types of fighting ships. However, most current plate deliveries are going to builders of cargo ships.
Denaud for merchant bars. especially carbon and alloy bars, is well sustained. Mill representatives report a continuous flow of new orders from diversified groups of buyers. Agricultural imple-

Representativas in Principal Cities

TB. CRANES MEAN SREED!

el mills, shipyards, dry docks, and on the mins, shanes are working hard and and trea Industrial Brownhoist Crat production. 1. B. Cranes are to speed the und continuous hard service areater comiort bucke work City, Michic

Big Guns Must Be Kept Clean

To supply the Armed Forces with their requirements of gun cleaning brushes is at present our first duly. Fuller Gun Cleaning Brushes are on the balle fronls, on battleships, and on the planes. These brushes are made to Army and Nary specifications using the famous Fullergript method of construe. tion.

Inquiries from manufacturers who need brushes that are used in machines for producing war goods will have our prompl attention

The FULLER BRUSH Company Industrial Division, Dept. 8 c 3582 MAIN STREET - HARTHORD, GONN=

Why is METAL SPINNING

so important to Industry Today?

-it saves the cost of expensive tools-aliminates time-consumins tooling operationsgets your produel into production much faster.

Spincraft is compiling valuable date which will show you how to apply the adrantages of Spineraft's precise metal spinning. You need this information for your war and peasefime product design-it tears oway the veil of mystery with which the ancient metal spinning craft has always suriounded itself.

Get on the mailing list of writing immediately for Bulletin A.

MILLWAUKEE METAL SPINNING GO.

3502 West Pierce Stree:
MILWAUKEE, WISCONSIN
0

 Hese lrave dusen imerciach, Whilre de-

 anid while mo large jovaratorice are preDiarlat, there is mo shorlage. Deliserice

 d flofes is prombinal isi this resperect.

Alcreinant plys iron dedferies have fouen in fectior vollome dorforg the jast
 the - eled semitrolleor is making lareger fownateses at murdiant from isailable to foumelofos ragatged fin war work. Demanod alsu is Balulus in volinate, averaming almant I! (100) tans per werek far fomadry atul mislleable prader, Bavie: irom sales, loweever, are slow. Asricallural imple:-
 revily

 While than lats beorn now slowing down fla ated [Hodmetion through serap shourt-
 Ilu'Ir atenk plew and fresh deliverises, while inmproving, ate latoly sulftelent fors (1) fir worl at rapurwoments. In sterel-
 ar. chrisumblat: upproximately 85,000 tons ol motip a fomoll wheld has to be proshlad Pronn auludle sources, la adedition las it sfoll lit forsitige al their own baske.

Steel in Europe

1.undon- $\left(H_{1 /}\right.$ Merillo)-Storlworks in Cimal Britalas are well hasked to the coul af Jume Demand is increasing for spucdal alloy stevts. Einginecring
fonsudries are fully occopied with war work and demand and production in light castiugs is improving.

Nonferrous Metals

Sanferrous Pricen, Paze 16.5

New York - Fabricators consumption of erpper first quarter was at the rate off clise to 1,600),(0)0 tons annually. War requirements continue treme:dous, , Werdadowing civilian use which is dechinimg; additional restrictions on copper in litus, air-conditioning, refrigeration equipuient and copper chemicals in plating are effective. May allocations will bee certified late this week. With domestie copper covered first for distribution each month, the balance is filled with MRC material. To meet required shapes for specific needs, matching allocations with the latter are more difficult than with domestic supply.

While MRC releases are heavier in spots, stocks are replaced promptly and the reserve inventory of copper is rigidly maintained. Allocations th at least one ordnance plant have been resumed following operations on scrap for some wecks. Smoother operation of monthly distributions is apparent with additional improvement expected for May. No. 1 and 2 copper scrap) is tight and refiners get little red brass scrap; most of the latter is going Into mavy specification ingots.

Refining operations on general copperbearing scrap range from 85 to 90 per eent of eapacity, hut where the 625.000 tons of refinery brass and copper-bearing material in excess of the $1,000.000$ tens taken last year is problenatical. Pro-

THE CLEVELAND CAP SCREW COMPANY
2QH7 EASY 7OTH STREY - CLEVELAND, OHIO

- Besides your advantage of being ablo to securo a wide range of styles and sizes in square head or hoadless Clevoland Set Screws, the assurance of quality is important. Made to close toler-ances-Class 3 fit-carefully case hardened-high tonsilo strength-they moet the most nigid roquiromonts. Write for samplos and prices.

Clevelland Cap Screws

Set Screws and Special Upset Parts

Fredolsis ior 2 y year in headed oud Theated Produts
duction of industrial scrap is maintiaised. but supplies in other directions have duindled. To bring produck of brass and bronze alloy inget makers under one regulation brass and bronze allos shot has been added to the maximum ceiling order. The emergency pain in zinco for llay has been moved up to 65 per cent of January production for high grade and 50 per cent in other grades. While zinc allucations for two minths have been nearly uniform as to total tonnage, some scattered increases are expected rext month, certificates to be in around April 25 .
Supplementing domestic deliveries os lead this month, MRC released some tonnage on foreign, indicating some consumers underestimated and the likelihood of some increase in consumption. About 2500 tons of tin per month, grade A, ecual to Straits, is now being produced by the Texas smelter. Tin plate production will be heavier this quarter, but lighter coatings with the electrolytic process will not lift tin consumption for tin mill products.

Equipment

Boston - Contract for two 10 -ton bridge cranes for the navy yard at South Boston, went to Shaw-Box Crane $\mathbb{~}$ Hoist division, Maming, Maxwell \& Moore, Muskegon, Mich., : 1 l \$27,008. While there has been a decline in contracts for electric overhead bridge and other types of crines in recent weeks, backlog of the industry covers seven to eight months. At one time last year the backloge extended more than a year with some builders. Cranc handling capacity has been more than tripled in the last lwo years. Current contracts in the backlog are highly rated for steel and materials; roller bearings have been among the most dificult to ohtain.

New York-While delivery on a comsiderable number of machine tools is affected by revised urgency lists, pressure is easing on some mits and in more directions. Included in the urgency list are miny tools destined for aircraft and allied industries but the range is being broadenced to other war contractors.

By July or August, at the current rate, immediate delivery will be possible on some tools and some manufacturers are begimning to place service men and salesmen back in the field. Already several hundred machines purchased in pool buyiner during second half last vear are available for immediate shipment. Most of these were bought for special production contracts and built by border-line shops, some of which apparcently booked heavily. Changes in production programs make a substantial number of these metalworking and cutting tools available.

Orders are now largely for one to three machines at at time with few orders containing varied lists for complete new plant tooling. There is also a slight casing in demand for antomatic sorew machines, thousumds hating gone into production during the last 18 months. The tightest situation now prevails in cutting tools and attachments. although on many mits the latter have 'eren stripperd to absolute needs and stremmlined in the interest of conservation. There is also some slowing down in subeontracting anong machine tond builders. Measuring tools are notably tisht.

ADJUSTABLE SNAP GAGES ler pro-

Convenient, Fast, Accurafe, Versatile
All uncertainties due to the human factor are eliminated in measuring and in checking with the SCHERR COMPARITOL. Any inspector will get the same reading on a given piece of work. Skilled operators are not required.

The COMPARITOL is ideal for precision inspection of plug gages, cylindrical ground work, serew machine parts and other work. The instrument provides visual readings on a scale graduated to $0001^{\prime \prime}$. Ranqe is . $004^{\prime \prime}$ with $.002^{\prime \prime}$ plus and $.002^{\prime \prime}$ minus. Two sizes available-Standard-Range 0 to $6^{\prime \prime}$ Price $\$ 195.00$ Heavy Duty 0 to $8^{\prime \prime}$ Price $\$ 250.00$

Investigale the COMPARITOL. Write for folder today.

GEORGE SCHYRR CO., Inc.
 124-A safayEIIE stalit
 NEW YORK, N. Y.

GRINDING WHEELS AND THEIR USES

By Johnson Heywood

Second Edition, completely revised. Spansored by the Grinding Wheel Manufacturers Assaciation. 436 pages, 29 chapters, 5 appendices, 436 illustrations and figures. Fully indexed. Price $\$ 3.00$ Postpaid. ("plus additional $9 e$ for state ales tax on orders for delivery in Ohiol

ULTRA CHEX - Jis sago bloclo pro-
 MAGNI-RAY illumineted megnifier
Silse inverstion

Spencer mictoscopes lot nu.

ORDER YOUR COPY TODAY!-Orders will be filled the same day received. Order your copy now and have this valuable handlook ready for immediate reference.
steel - bOok dept. - PENTON bldg., cleveland, ohio

- The New Book of "KNOW HOW" that "TELLS HOW"- practical volume for every man interested in modern grinding methods and applications.

> Today's production, with a premium on "Know How"' depends on men that can do a job, or knoso where to find out how to do it.
"Grinding Wheels and Their Uses" covers the entire field of grinding. a study of the twenty-nine chapter heads will show how broad its scope really is.

Shop executives can tum to this book for practical help on everyday grinding problems; grinding machine operators, or apprentice operators, can use it to cood advantage. Students in trade and technical schools and colleges can profit from the operating experience of encineers, designers, foremen and employes as set forth in this new volume.

This 436 page book, with 29 chapters and 436 illustrations and figures is the only up-to-date book of its kind on the market today. Fifteen tahles of Wheel Recommendations and 4 other nependices provide working data that every operator must have

Plant Expansion, Construction and Enterprise, Government Inquiries, Sub-Contract Opportunities, Contracts Placed and Pending

SUB-CONTRACT OPPORTUNITIES

1)ata on subcontract work are Issued by regional offices of the War Production Board. Contact elther the office Issuing the data or your nearest fleld office. Write, don't teleattention and avold delaz.

Boston office, Contract Distribution Branch of WPB, 17 Court strect, is seeking contractors for the following:
SC-80: Jig-horing work for machines having micrometer adjustment. Also facilities for complete jig manufncturing. Various items required. Heference, 1-A-77.4.
SC-87: Gencral machine shop fucilities, including planers, boring mills, cylindrical grinders, for handling overhanting and .rebuilding of machines to bluepriats. Continuous work. Skilled mechanics necessary. Reference, 1-F-604.
SC-88: Malleable iron castings facilities suituble for producing castings for standarel etnions $1 / 2$-inch to 3 inches in size. Gal vanizing facilities also wanted. Patterns and core boxes to be supplied by prime contractor. Quantity, 500,000. Hating AA-1. Jefvence, 1-F-594

New York ofice, Contract Distribution Branch of WPH, 122 Enst Forty-Second street, New York, reports the following subcontract opportunities:

5-12-: A Connecticut prime contractor segks subeontracting facilities for an assembly job of turret tops. Material is 4140 steel on all of 625 assemblies with the exception of one, which is enst armor plate. Machine tools required, not necessarily in one shop, are four or five vertical boring mills capable of boring holes from $291 / 2$ to $347 / 4$ inches. Also medium sized milling machines and drill presses.
S-12-21031: A procurement agency is seeking sulbcontracting facilities specifically on a $180-$ ton 791/: Toledo gap frame press.
S-12-15115: A Brooklyn manufacturer is seek ings subcontracting facilities for manufacturer of gear blanks and other parts. Work consists of tuming, boring and milling. Material is brass, bronze and steel. Machinery required, turret Inthes, engine lathes with turret attachments, horizontal millers and Bridgeport vertical millers for fly cutting purposes. Tolerances are close.
S-13-21624: A Brooklyn prime contractor seeks subcontracting facilities on furret lathes up to 4 焳-inch diameter bar stock. Also jig borers, for production purposes. Tolcrances, close. Material, steel, bronze and brass, furnished by prime.
S-13-21553: A Long Island City manufacturer seeks subcontracting facilities on four-spinde automatic screw machines, 2 -inch enpacity. Material, cold-rolled stecl. Quantity, 1,000.000 of each.

Philadelphia Office, Contraet Distribution Branch. Production Division, WPB, Broad Street Station building, reports the following subcontract opportunitics:

Bucscher-11-1: A Delaware concern requires 26 sets of cylindrical forging die inserts, five dies to a set. Requirements, six sets, one every ten days after receipt of order until day 1; 20 sets, one every six days for four
months. Dimensions, 7 -inch diameter x 173 -inch long. Die holes, 3.757 to 5.429 inch. Materinl will he furnished, 17% x 7%-inch half-round Hardtem steel blocks. Brinell 3.40 to 3.55 . Prints at Philadelphia office.
Buescher-10-1: A Pennsylvania manufacturer requires additional facilities for production of chain fittings. Various sizes from $\frac{x}{4}$ to $2 \pi / 4$ inches. Material will be furnished by prime contractor for at least part of requirements. Dies to be supplied by subcontractor. However, die blocks will be availalble for die sinker. Equipment, 1000 to 8000 -pound drop forge hammers. Prints, specifications and samples at Philadelphia office.
Cruse-13-1: A govenmment agency requires facilities for forging shafts, 37 inches long and 12 inches in diameter. Sulicontractor should specify number of shafts he can handle and approximate carliest delivery. Necessary priurity will be made nvailable.

Mimneapolis Office, Contract Distribution Branch of WP1, 334 Midland Bank hailding, is sceking contractors for the following:
S.O. No. 401: An Ohio contractor seeks facilities in Minmenpolis area for mroluction of several million scraws, 51 different types and sizers, in quantities of 50,000 to 100,000 of each. Automatic serew machines are required. Material, stainless steel. Mriority, AA-1. Talerance, 002. Price to be negotiated. Drawings available.
S.O. No. 382: Nut. Quantity, 250,000 , with deliveries of 50,000 per month. Material furnished, is free-machining stainless steel Recguires machining, centerless grinding. Tolerance, .002. Drawings available.
S.O. No. 398: Screw nut. Quantity, 200,000, with delivery of 20,000 per week. Equipment, nutomatic screw machine, heat treat ing. Tolerance, 005 . Material, cold-drawn steel, SAE 1112. Drawings and specifications available.
S.O. No. 399: Deßntor. Quantity, 100,000 with deliveries of 10,000 per week. Equipment, automatic screw machines, leeat treatment. Tolerance, . 002. Materinl, cold-drawn steel SAE 1112. Sand blast finish. Drawings and specifications available.
O. No. 400: Anchor chain. Chain is 15 inch stock, wrought iron stud link. Forging and welding equipment is required. Quantities are harge, two 120 -fathom lengths wanted for each of 100 vessels. Deliveries for 10 vessels hy May 1 and for 15 vessels nonthly thereafter. Prime will consider bids on part of this total. U. S. Maritime specificntions. Iriority, AA-1.

Chicago office, Contract Distribution Branch of WPB, 226 West Jackson Boulevard, is seeking contractors for the following:
Automatic Electric Co., 1033 West Van Buren street, Chicago, attention E. C. Thompson. Priority, AA-1. Cord holder assembly which can be made by hand on a bench providing simple bending fixtures are set up. Sub-
contractor to do entire job, including furnishing minterinl. Quantity, 950. Size $2 \times$ $41 / 2$ inches. Material, celd-rolled steel Equipment, $10-\mathrm{KVA}$ butt welder and work bench.
Antomatic Transportation Co., 101 West Eightyseventh street, Chiengo, attention J. J. Elliott. Priority, AA-1. Job comprises rolling, welding and shrinking of field rings for electric motors in five sizes, as follows: Hough inside diameter $57 / 8$ to 10 N inches; lengths of $5 \frac{1}{2}$ to $8 \frac{1}{4}$ inches; metal thickness /h to $14 / 4$ inches. Quantity, 500 . Materinl, stecl. Equipment needed for rolling, butt welding and shrinking.
Hell \& Howell Co., 7100 McCormick boulevard, Lincolnwood, III., attention Clinton S. Davis, Priority, AA-1. Job consists of machine work on target gear, retainer and flange. Contractor will supply material, brass, aluminum and stainless steel. Quanlity, 2000, 7800 and 2500 , respectively. Equipment required, 2 -inch capneity singlespindle automatic serew machine, 1 -inch, $11 / 2$-ineh and $21 / 2$-inch capacity turret lathes, No. 1 vertical milling machine, No. 1 plain horizontal milling machine.
Benjamin Electric Mfg. Co., Des Plaines, Ill., attention L. W. Kester. Priority, AA-I. Job covers forging of a cam, of tool steel. Contractor does entire job, including fumishing of materinl. Quantity, 5000. Size $1 / 4 \times 1$ inch. Equipment, 400 -pound drop lamnacr.
Electric Wheel Co., Quincy, Ill,, attention W. H. Bryant. Priority, AA-1. Shackle bolts, in quantities of 500 to 5000 and in lengths of $31 / 2,4,41 / 2,5,5 \%$ and 6 inches. Material, SAE 1020 or X-1020 steel, suitable for case hardening. Subcontractor to do entire job, including furnishing material. Equipment, $1 / 2$-inch bar capacity turret lathe, plain No. 3 horizontal milling machine, 5/16inch drilling capacity two-spindle bench drill, surface hardening equipment, No. 2 centerless external grinder.

STRUCTURAL SHAPES

SHAPE CONTRACTS PENDING

375 tons, Pennsylvania state bridge, Delnware county; F. A. Canuso \& Son, Philadelphiu, nwarded general contract.

REINFORCING BARS

REINFORCING BARS PLACED

100 tons, addition to airplane engine parts plant, Studebaker Corp., South Bend, Ind. to Joseph T. Ryerson \& Son Inc., Chicago: Consolidated Construction Co., Chicago, contractor; hids Mnreh 26.
400 tons. addition to airplane engine parts plant, Studebaker Corp., Ft. Wayne, Ind., to Joseph T, Ryerson \& Son Inc., Chicago; Consolidated Construction Co., Chicago, contractor; bids March 28.

REINFOHCING BARS PENDING

900 tons, completion Spokane street viaduct, Seattle; (renegotiation) bids to state highway dpeartment, Olympia, April 20.
300 tons, addition to U. S. Veterans hospital, St. Cloud, Minn.; bids postponed to April 20.

PIPE

CAST PIPE PLACED

100 tons, 12 inch, Eighth Avenue South project, Seattle; to Hugh G. Purcell, Seattle, for U, S. Pipe \& Foundry Co., Burlington, N. J.

EXTRA Service Years

are BUILT INTO

Betfer-Built DAVENPORTS are AVAILABLE in STEAM GASOLINE DIESEL
with

ELECTRIC

MECHANICAL DRIVE

We Invite Your Inquiries \star

Make Every day Scrap Salvage Day

DAVENPORT
 Better-Built LOCOMOTIVES

We have been combining STAMINA with flexible, easy to-control POWER for more than forty years. That's why you'll find Dovenport Locomolives in high favor all over the world-and, right now, delivering distinguished service for the United Nations on many fronts.

As you plan for the future you will do well to enlist the services of Better-Built Davenparts to assure a longer life of dependable, low-cost, trouble-free performance. Sizes and types for all industries.

EXPORT OFFICE

BROWN \& SITES

50 Church St., New York Cable Address "Brosiles"

INDUSTRIAL TRUCKS AND TRAILERS

Cater and Fifth Wheal Types
THE OHIO GALVANIZING \& MFG. CO. Penm St., Niles, Ohio

MANNING, MAXWELL \& MOORE, INC: Cuxwer
 'load hiftar' hoist division - 'sudait' holit division
 Be sure to send us your inquiries!

THE SIMONDS GEAR \& MFG. CO.

25TH STREET, PITTSBURGH, PA.
To all gear users:
1942 marthos our sott year in the gear
busimest; this merans that our quality
gears are now backed ty haffacentivy
of experienc in the manuf acture of
all types of dependable gears-spoun
tevel, mitre, worm, racte intermaleta
If we havent just the type you need.
we can make it and in a hurnytre!

CUT GEARS

All Types and Sizes
Baldwin Roller Chain and Sprockets
Heat Treated Alloy Steel Gears to Customer's Specifications
Special Gears and Special Gear Units

PITTSBURGH GEAR \& MACHINECO.

2680-2700 Smallman Sts., Pittsburgh, Pa.

CONSTRUCTION AND ENTERPRISE

OHIO

AKRON, O.-Mohawk lhbleer Co. will huikl additional warehouse 33×38 feet at 1235 Second street, at cost of $\$ 2500$.
AKRON, O.-Akrom Standard Mold Co., 1624 Englewood avenue, will take bids soon for a ome-story brick fuctory addition 45×112 feet and plant alterations, to cost about $\$ 40$,000. Janes F. Mumper, 6.47 Main street, is engineer. (Noted March 29).
CLEVELAND-Weatherhead Co., Allert J. Weatherhead Jr., president, 3000 East 131 st street, will erect an incincrator costing $\$ 10,000$.
CLEVELAND-Altyne lyan Foundry Co, W. J. Sweeney, vice president and treasurer, 8916 Aetna avenuc, is expanding furmace rum facilities,
CLEVELAND-Ohio Cramkshaft Co, Wm. Dum, president, 3800 Harard avenue, has let contract for 50×375-foot engineering and research laboratory to Sum W. Emerson Co. 1836 Enclid avemue. Estimated cost $\$ 250$, 000.

CLEVELAND-Acme Electric \& Mfg. Co. D. J. Smith, manager, 1400 West Twentyfifth street, has applied to zoning board of appeals to make alterations to machine shop at 1444 Hamilton nvenue, which is leased by Rod Cutting Co., Frank Bawcinn, president. 9305 Detreit aveme.
Cleveland - Stamdard Oil Co., C. H. Mot\%. superintendent, 2635 Broadway, will install two steel nil tanks 48 feet high and 100 feet in cliameter, with capacities of $2,81-1,000$ and $1,680,000$ gallons, at cost of alwout $\$ 55$,000. Chicago Bridge \& I Iom Co., Chicago, will fubricate tanks.
DAYTON, O.-Suburban Conservation district. care W. W. Morehouse, city water department, City Hall, Dayton, has preliminary plans completed for a sewage disposal plant. Rial T. Parrish, U. B. Moilding, Dayton, is arehitect. Engineer is Alfred Lefeber, Temple Mar luaiding, Cincimuati.
MANSFIELD, O.-Hartman Electric Alfg. Co., 87 East Fifth street, is erweting factory lunidding.

MASSACHUSETTS

NEW BEDFORD, MASS.-Acushnet Process

Co., Slocum street, has let contract for a twostory 45×120-foot plant addtition on Belleville avenuc, to Central Enginecring \& Construction Co., Bath strect, Provitence, R. I. Estinnted cost $\$ 40,000$.

CONNECTICUT

ANSONIA, CONN,-Ansonit Electric Co., 63 Main street, will let contract soon through Fletcher-Thompson luc., 211 State street, Bridgeport, Conn., for a onc-story 65×100 foot brick and steel utility building, in cost nbout $\$ 40.000$.
BRIDGEPORT, CONN,-Brilgepont Brass Co., 20 Grand strect, has plans nearing completion for a factory building. Fleteher-Thompson Ine., 211 State street, is engineer.
BHIDGEPOHT, CONN,-Remington Ams Co. lac., Bammm avemue, has let gemeral contract for one-story and three smaller buthlings to Harry Maring Jr. Inc., 536 Lindley street. Cost $\$ 65,000$.
DANBURY, CONN.-H. Wibbing Tool \& Mfg. Co., 110 Walker street, New York, is taking bids on a plant addition and alterations to existing plant on Taylor street, to eost about $\$ 40,000$.

NEW YORK

NEW YORK-Heat * Power Co. lnc. 670 Sixth avenue, has bought the plant and machinery of the Vuleanite Portland Cement Co., Borough of Alpha, Warren combty, New Jersey, with assessed value of $\$ 350,000$.
NEW YORK-Stamdard Aircraft Products he., Daytom, O., has leased approximately 50 . 000 square feet of mamufacturing space at 345 Hudson street for branch plamt ouraitions. The company mamuatures airplant lining equipment, control instruments, its.

NEW JERSEY

HARLRSON, N. J.-Otis Ehevator Co., 1000 First street, will build plant adklitions to cost about $\$ 750,000$. Defense Plant Corp. will finance.
HOBOKEN, N. J.-Todd Drydocks Inc., Rives strect, has let contract for extension of build-
the best known name in iron HANNA PIG IRON BRANDS:

THE HANNA FURNACE CORPORATION
MERCHANT PIG IRON DIVISION OF NATIONAL STEEL CORPORATION

New York

Philadelghia
Boston
ing to enlarge machine shop to Caye Con struction Co. Inc., 356 Fulton street, Brook lyn, N. Y., to cost about $\$ 150,000$, federally fininced
JERSEy CITY, N. J.-Standard Heater \& O Equipment Co., 245 Corneilson avemue, having plans prepared by M. Tepman, 28-60 Hudson houlevard, for a one-story assembly buikding and a two-story manufacturing building, to cost aloont $\$ 40,000$. A. Frank, $28-10$ Hudson boulevard, is engineer.
PATEASON, N. J.-Wright Aeronantical Corp. 132 Beckwith street, is having plans pre pared by Albert Kahn Associates, engincers, 345 New Center building. Detroit, for a onestory briek and steel boiler and powerhouse to cost abont $\$ 50,000$. Federally financed

PENNSYLVANIA

Fille, PA.-Clifton Automatic Screw Machine Co.. 217 West Twelfth strect, is erectin machine shop addition.
CALLERY, PA.-Mine Safety Appliance Co. 201 North Braddock avenue, is taking bids on general contract for a sewage disposal plant, estimated to cost about $\$ 30,000$. Prach \& Prack, 517 Martin building, NS Pittslourgh, are architects.

ILLINOIS

CHICAGO-Solar Mifg. Corp., 4501 South Western avenue, has let contract for fourstory 149×458-foot factory to Krahl Construction Co., 350 North Clark strect. Estimated enst is $\$ 42,000$. Carl I. Goldberg, 898 Bergen avenue, Jersey City, N. J., is architect.
EAST ST. LOUIS, ILL.-Construction will start at once on foundry building for Key Co., 2700 MeCasland avenue. General contract has been awarded to Frain-Colnom Construction Co., 520 Merchants-Laclede building, St. Louis. (Noted March 29).
ROCKFORD, ILL.-Sundstrand Machine Tool Co. plans addition to plant to cost $\$ 200,000$. Defense Phant Corp. will finance.

MARYLAND

BALTIMORE-Hatmar Corp., C. D. Heubeck, in charge. Clipper road, Woodberry, Md., will build one-story machine shop costing $\$ 50,000$.

ALABAMA

SHEFFIELD, ALA.-Reynolds Alloys Corp. has awarded contract for plant to Andrew Weston Co., 7 East Forty-second street, New York. Estimated cost $\$ 3,500,000$.

TENNESSEE

KINGSPOHR, TENN.-City receives bids April 15 for addlition to filter plant, estimated to cost $\$ 225.000$. Wiedeman \& Singleton, engineers, Citizens \& Southern building, Atlanta, Gia.

LOUISLANA

BATON ROUGE, LA.-Defense Plant Corp. has increased its contract with Standard Oil Co. of Louisiama, Baton Rouge, by $\$ 500,000$. to provide additional facilities.

FLORIDA

JACKSONVILLE, FLA.-S. J. Stubbs Lumber Co., P.O. Box 2008 , is rebuilding burned sawmill. Cost of plant $\$ 25,000$; equipment, $\$ 15.000$.
MIAMI, FLA.-Defense Plant Corp. has authorized increase in its contract with Tyconn Tackle Inc., Miami, to provide additional equimment and machinery at plant in Florida-

WEST VIRGINIA

BERKELEE COUNTY, W. YA.-Explosive Products Cori., Fifteenth and G streets,

COWLES

ROTARY SLITTING KNIVES for Modern Requirements Highest Quality Long Service The Product of Marty Years Specialization maoe ay toolmakers
Also Manufacturers of milling Cutters and special metal cutting tools

COWLES TOOL COMPANY CLEVELAND, OHIO

JIGS - FIXTURES - SPECIAL MACHINES -PUNCHES-DIES—"to your measure"!

Let our trained engineers apply our 37 years experience to your
equipment problem. Our succesies in other plants of all types, and proved methods assure 2 solution of any question involving production machinery. Write us in detail without obligation.
THE COLUMBUS DIE, TOOL AND MACHINE CO. COLUMBUS, OHIO

MFGRS OF high grade FOUNDRY basic GREY FORGE MALLEA日LE BESSEMER LOW PHOS

Write for Prices and Delivery on Natco LONGER LENGTH SLEEVES and RUNNER BRICK also on other types of

NATCO POURING PIT REFRACTORIES

Hore than 50 years experience in the manufacture of quality clay products
NATIONGL FIREPROOFING CORPORATIOM GENERAL OFFICES - PITTSENREN, PA.
Manufacturers ol Natco insulating Relfactory Brick

CONVERSION FACILITIES

AVAILABLE
for prompt rolling of billets into bars up to $3^{1 / 2^{\prime \prime}}$ Rounds, $3^{\prime \prime}$ Squares and $4^{\prime \prime} \times 2^{\prime \prime}$ Flats the milton manufacturing company - milton, pa.

ONE OF THE COUNTRY'S LARGEST, BEST KNOWN GALVANIZING PLANTS-PLANNED AND MANNED
to turn out your work

ENTERPRISE GALVANIZING COMPANY 2525 E CUMBERLAND STREET.

Washington, is taking bids for manufncturing plant at Light Farm on Williamsport Pike, here. Approximate cost $\$ 150,000$

VIRGINIA

SOUTH BOSTON, VA.-South Boston Lumber A Builder's Corp., South Boston, is rebuilding planing mill.

MISSOURI

S'T. LOUIS-Defense Plant Corp. has increased its contract with MeDonnell Aircraft Corp. by $\$ 150,000$, to provide additional equipment.
ST. LOUIS-Defense Plant Corp. has increased its contract with Southem Acid \& Sulphur Co., Rialto building, by $\$ 700,000$, to provide additional facilities in Texas.
ST. LOUIS-Iside Alherici, 1546 Irving street, has given contract to J. S. Alherici Construc-
tion Co., Boatmen's Bank building, for twostory parts and service luilding.
ST. LOUIS-II. \& II. Machine \& Motor Parts Co., 4216 West Easton avenue, has let contract to Saum Architects, $7131 / 2$ Chestnut street, for design and erection of one-story machine shop.
ST. LOUIS-American Smelting \& Refining Co., 4041 Park avenue, has awarded contract to J. S. Alherici Construction Co., 1824 Boatmen's Bank building, for onestory factory building.
S'F. LOUIS-General Cable Corp., 420 Lexington avenue, New York, plans construction and completion of additional facilities at its Missouri plant. Cost $\$ 40,000$ with equipment. Defense Plant Corp. will finance. ST, LOUIS-Hammer Dry Plate \& Film Co., 3533 Ohio avenue, has awarded contract to A. H. Haeseler Building \& Contracting Co., 2346 Palm street, for rebuilding portions of plant destroyed or dammed by fire, (Noted March 15).
SPRINGFIELD, MO.-Acme Foundry \& Machine Co. has been incorporated with $\$ 20,000$ eapital to operate a foundry and machine shon, by S. H. Vienhage, Rose Vienhage and S. H. Vienhage Jr., all of Suringfield. Farrington \& Curtis are attorneys for the company.

ARKANSAS

EL DOHADO, AHK--Defense Plant Corp. has authorized an increase in its contract with Lion Oil Mefining Co., El Dorado, for additional plant facilities costing $\$ 325,000$. Plant is under constmetion.

WISCONSIN

APPLETON, WIS,-Kurz \& Root Co. plaus addition to factory. Plans are being prepared by Robert M. Connelly, engineer.
BROOKFIELD, WIS.-Greenfield Heights Sanitary District, R. D. 5, Waukesha, Wis., is preparing a report and estimate for a sewage disposal plant and sanitary sewers. Herlert Moore, 904 South Layton boulevard, Milwaukee, is engineer.
EAU CLAIRE, WIS.-Drummond Packing Co. plans addition to meat packing plant. Smith, Brulaker \& Egan, 30 North LaSalle street, Chicago, architects and engineers.
FOND DU LAC, WIS.-Wells Mfg. Corp. plans to rebuild three-story factory recently destroyed by fire. Ben Sadoff is president.
GREEN BAY, WIS.-Hudson-Sharp Machine Co. plans one-story factory addition.
KENOSHA, WIS.-Dynamatic Corp. has given contract to Anton J. Larsen for one-story plant addition.
MANITOWOC, WIS.-lleresite \& Chemical Co. plans one-story factory addition. F. W. Rreuber is architect.
MILWAUKEE-Nordberg Mfg. Co. has given contract to Mereclith Bros. Inc., 121 East Washington, for one-story factory.
WaUKeSha, WIS.-Michael Yundt Mfg. Co., 225 North Grand avenue, has let contract for a one-story 50×195-foot manufacturing plant addition to Stiegervald \& Sons Inc., 5310 West State street, Milwaukee. F. F. Drolshagen, 647 West Virginia street, Milwaukee, is engineer.
WEST ALLIS, WIS.-Allis-Chalmers Mfg. Co., 1126 South Seventieth street, will build a two-story 32×70-foot painting and ammealing building addition and two-story 20×50 foot plate and tank shop addition. Contract to Meredith Bros. Inc., 121 East Washington street. Also one-story 20×48-foot addition to shops 6 and 7 , to Madson-Christenson Co., 3613 West National avenue, Milwaukee. C. Meyer, care owner, is architect.

minnesota

MINNEAPOLIS-Gray Co. Inc. has begun construction of an addition and is making alterations to present plant. B. A. Beaver is engineer in charge of construction.
MINEAPOLIS-Union Tool \& Enginecring Co., 501 Transportation building, has been incorporated with capital stock of $\$ 25,000$
by Chris S. Gianos, James A. Karusis and S. W. Maroosis.

ST. PAUL-Progress Patten Co., 1457 Marshall avenue, Joseph Garske, proprictor, plans large addition to plant to be used for coremaking and casting of magnesium.
SOUTH ST. PAUL, MINN.-Swift \& Co. plans erection of cooler building at meat packing plant.

TEXAS

DALLAS, TEX.-United States engineers, Denison, Tex., have let contract to Oil Well Supply Co., 2001 North Lamar, Dallas, for a steam plant to he erected in Smith county, to cost $\$ 499,000$.

IOWA

CEDAR RAPIDS, IOWA-Wilson © Co. Inc. will soon award contracts for six-story cooler building at meat packing plant. Walter H. Wheeler, Metropolitan Life building, Minneapolis, structural engineer.
WATERLOO, IOWA-Associated Ordnance Co. of Waterloo Inc. has been incorpornted with capital stock of $\$ 50,000$ to manufacture machinery, implements and ordnance material, by Miles Potter, president; H. B. Plumb, vice president, and B. F. Wipplinger, secretary.

MONTANA

BU'TTE, MONT. - War Production Board has approved construction of a mill to treat manginese ores produced by mines in the ButtePhillipsburg area. The mill, to be owned by Defense Plant Corp., will have capacity of 400 tons a day.

IDAHO

BOISE, IDAHO-Idaho Power Co. will build a 110 -mile, high voltage power line from the Snake river to mining areas in west central Idaho.

WASHINGTON

SEATTLE-North Pacific Shiphuilding Co. has been incorporated by F. H. Hawthome and Associates, 1510 Hoge building.
SEATTLE-Wrshington Iron Works, 1500 Sixth avenue South, has awarded contract to C. L. Fey to build an addition to machine shop.
SEATTLE-Chain Gear Inc. has been organized by J. J. Koenig and Associates, 1319 Northern Life Tower, to manufacture and denl in iron and steel products.

CANADA

GUELPH, ONT.-Northern Rubber Co. Ltd., Metcalfe street, has let contracts and will start work soon on construction of plant addition here to cost $\$ 55,000$ with equipment. PORT ARTHUR, ONT.-Canadian National Railways, J. W. Porter, chief engineer, western region, will engage consulting engineers, and have plans prepared for construction of an ore dock here to be used by Steep Rock Iron Mines Ltd. A spur line also will be built into the property from the railrond, at estimated total cost of approximately $\$ 2$,000,000 . Plans call for completion of the undertaking in time to handle ore from the mine next year.
SAULT STE. MARIE, ONT.-Chromium Mining \& Smelting Corp. Led., 395 Qucen street West, will start work immediately on repairs and addition to plant to cost nbout \$20,000.
IONTREAL, QUE.-Deparment of Munitions and Supply, Ottawa, R. T. Donald, secretari, has given general contract to J. S. Hewson, 660 St. Catharine street West, for alterations and addition to aircraft plant in this aren to cost $\$ 75,000$.
IOUNT ROYAL, QUE.-Canadian Marconi Co., 2440 Trenton avenue, is calling revised bids for plant additions estimated to cost ahout $\$ 80,000$ with equipment. James C. Meadowcroft, 1154 Beaver Hall Square, is architect.

WIRE

Iron-Stcel-Alloy
Round - Flat - Shapes All Sizes and Finishes Also Wire Screen Cloth The Seneca Wire \& Mfg. Co. Fontorin, Ohio

WHEELING STEEL CORPORATION whetilig. w. VA.

EMPLOYEES' BADGES NUMBERED BUTTONS

 FIBRE TIME AND TOOL CHECKS CELLULOIDCASES```
AIR MAIL-TELEPHONE-TELEGRAPH YOUR ORDERSI
 Three Long Distance lines, CEntral 4916-4917-4918.
 After six p.m. PRospect 6778. HUdson 5211. CEntral 0379.
 LARGE EOUIPMENT. EFFICIENT SUPERVISION.
 50 Years' experience in back of ust
 We are ready to serve 24 hours a day.
 Send for Catalag.
 ST. LOUIS BUTTON COMPANY
```

415 Lucas Avenue
St. Louis, Mo.

No Orders Filled Without Priority Extension,
Government Contract Number and final use.

```
3 ELHILADELPHIA
\(\frac{R \quad 0 \quad N}{\text { REW YORK }}\)
M ORKKS Engineers - Contractors - Exporters
STRUCTURAL STEEL-BUILDINGS \& BRIDGES Riveted-Arc Welded
Belmont Interlocking Chinnel Floor
Main Offic-Phila., Pra. Now York Oft Catague
Main Office-Phila., Pa. New York Office- \(\boldsymbol{H}\) Whitehall st.
```



RYERSON CERTIFIED STEELS

Ovar 10,000 hinds, ihopas, sizes .... Uniform high quality ...prompt, parional sorvice. Write fer Stock kist. Jaseph T. Ryarion a Son, Ine. Siee S'Servle plonit ats Chitaoo. Milwauka, 5t. Lauls, Dalreil, Cincinneth, Cloveland, aufiolo, Philudaphio, Juray City, Bonton.

## Producers of

## STAINLESS AND ALLOY STEELS

EXTENSIVE FACILITIES FOR LARGE FORGINGS

## BARIUM STAINLESS STEEL CORPORATION

 Canton, Ohio

Immediate Shipments of BARS-PLATES
SHAPESSHEETS

From Stock
W'a Also Oger
QUICK SHIPMENTS OF FLAME CUT PLATES
IN IRREGULAR SHAPES, CIRCLES, DISCS, ETC.


## TOLEDO STAMPINGS

Our Engineering Department has had long experience in working out difficult stamping problems. We want to work with you on your development work as we have had great success in changing our expensive parts and units into steel stampings. Our production facilities can amply take care of almost all stamping requirements. Give us the opportunity of working with you.


He Solicit Your Prints and Inquiries
Toledo Stamping and Manufacturing Co.
Detroif ofice: Stormfeltz-Lovely Bidg. Dret Detrair Office: Stormfeltz-Lovely Blidg.. Itetrolt, Mich. Chicago Office: 333 North Michigan Ave., Chicago. Ill.

# USED and REBUILT EQUIPMENT 

 [制 - MATERIALS
## SPECIAL ATTENTION!

STEEL Mills,

blast furnaces and foundries! For Sale:
ALLOY ("CRITICAL") SCRAP
TURNINGS: $\$ 9.00$ G.T. Houston plus dayable OPA Nickel or Moly. Premiums. 15 C/L SAE 3100: WPB No. 6 5 C/L. SAE 4800; WPB No, 6 $12 \mathrm{C} / \mathrm{L}$ Moly.-Min.: WPB No.
TUANINGS: S12.91 G.T. Tracks, Chicado. plus maynble OPA Nickel Premium.
$15 \mathrm{C} / \mathrm{L} 1.00-3.75 \%$ Nickel; WPB No. 6
FLASHINGS \& CROPS: S 18.50 G.T. Hous${ }^{t}$ ton plus payable OPA Nickel or Moly. Premiums.

6 C/L SAE 3100: WPB No. 6 $3 \mathrm{C} / \mathrm{L}$ SAE 4800: WPB No. 6 $6 \mathrm{C} / \mathrm{L}$ Moly.-Mn.: WPB No. 7
NOTE: Relative quantities of Turnings must be purchased with Flashings and Crops.
IRON \& STEEL PRODUCTS, INC.
13462 S. Bralnard Ave., Chicago, Illinoir "ANYTHING contatning IRON or STEELS"

## RAILS

## AND ACCESSORIES

RELAYING RAILS - Super-quality machine-reconditioned-not ordinary Relayers.
NEW RAILS, Angle and Splice Bars, Bolts, Nuts, Eross, Switches, Tie Plates, and sll other Track Aecessories.
Although our tonnages are not as large as heretoiore, most slzes are usually avallable from wareEviery erfort mede to take care of emergency Evary effort made to tnke care of emergency
requirements, Phane, wrue or W'ire. ..
L. B, FOSTER COMPANY, InC.

PITTSBURGH NEW YORK CHICAGO
RAIL-ACCESSORIES
RAILWAY EQUIPMENT
войнт - Sold
WRITE-WIRE-PHONE
DULIEN STEEL PRODUCTS, INC.
414 First Ave., So. 2280 Woolwerth Bldg
Seattle, Wash. New York, N. Y.

SELLERS-BUYERS-TRADERS

| More IRON \& STEEL | 38 |  |
| :---: | :---: | :---: |
| for Your PRODUCTS | Years' |  |
| Dollorl | INC. | Experience |
| 13462 S. Bralnard Ave. | Chicago. llinols | $\bullet$ |
| "Anything contalalag IRON or STEEL" |  |  |

## FOR SALE

8"- $9^{\prime \prime}-10^{\prime \prime}-16^{\prime \prime}$ ROLLLING MILLS with Steam Boilers. Steam Engine, Holl Turnine Lathes, D.C. Constant Speed Motors, Electric Hoists and Monorail Crames. Mill Cooling Beds. Alligator Shears, Scales, Steam Pumbs, Water Heaters, Hot Saw. Mill Trucks \& Tools. Cast Iron Floor Plates and Ingot Molds, Steel Buildings. ete.
Will sell as one lot or sumarate items. Appls for detailed list.

LEBANON STEEL \& IRON COMPANY LEBANON, PA. Phone 660

## FOR SALE

1-Acme 3 -wheel automatic polishing machine for tubes or pipe up to $3^{\prime \prime}$ O.D. Driven by 15 H.P. A.C. motor with necessary starting equipment. WELLMAN BRONZE \& ALUMINUM CO. 2525 East 93rd St. Cleveland, Ohlo

```
 FOR SALE
 35,000 Pounds
 7/8" x 7/8" x %/" TEES
 HOT-ROLLED,NOT PICKLED
 LENGTHS 41 FT. AND 46 FT.
 Excellent Condition
 GABRIEL STEEL CO.
13700 Sherwood St. Detroit, Mich.
```

```
Grlnder. Roll 30"x76" Farrel, M.D,
keysentera, No.2 11. , M1. N No.2 Baker
Shear, Rotary 3/40
Shear, Allmator 1, Ncwbold, 50' eap.
Shears, Alligator, 1*-4**
Sloter, 12* Putnam, 33* table, B D
Stralkhtener, 48* -17 rolls-4, dia.
Stralghtener, 64"-17 rolls-4-1/4, dia.
*)
 WEST PENN MACHINERY COMPANY
1208 House Bldg. Pittsburgh, Pa
```


## BUY - SELL - RENT

CARS, LOCOMOTIVES, CRANES
STEEL SHEET PILING, PILE HAMMERS HOISTS, DERRICKS, TANKS, COMPRESSORS BOILERS, TUREINES, DIESEL ENGINES, ETC. MISSISSIPPI VALLEY EQUIPMENT CO. 503 Locust St. St. Louls, Mo.

> ROLLING MILLS and EQUIPMENT FRANK B. FOSTER
> 829 OLIVEREUILDING PITTSBURGHPA. rable Aadress "FOSTER" Pitejourgh

## -WANTED-

1-Crane $3-5$ ton, $28^{\prime}$ span 110 Volt D.C.

1-50-Ton Crane-Hook or Block
Extra Motors and Controls for 3
ton crane 110 Volt D.C.
HETZ CONSTRUCTION COMPANY Warren, Ohio

Phone 4474

## - WANTED -

6,000 C.F.M., $16-20$ oz. centrifuga cupola blower direct connected to motor. Motor specifi. $3 / 60 / 440$.
ST. PAUL ENGINEERING \& MFG. co. Formerly St. Paul Foundry 500 Como Avenue St. Paul, Minn

## FOR SALE

Used guaranteed truck scales and warehouse scales, no priority needed. Vibrating Screens and Coal Crushers.

## BONDED SCALE CO.

Dept. ST-Columbus, Ohio

## FOR SALE <br> STEEL BUILDINGS <br> AND TANKS

PIPE AND BOILER TUBES
JOS. GREENSPON'S SON PIPE CORP,
National Stock Yde., Illinoia

HORING MILL, $0^{\circ}$ N-H-P, R.P.T., M.D.
HORING MILL, $A^{\prime}$ N-B-P, R.P.T., M.D.
GORING MILL, \&A N-B-P, R.P.T.M.D. HAMMER:Steam Forging 1100 lb . N-B-P.
LATME, $3 f^{\prime} \times 29^{\circ}$ Geared Hend American. M.
 STRAGGHENER, WIre Ghuster, cap; 5/8"

LANG M, 2 -roll H. © J., $84^{*} \times 1 / 2^{*}, ~ M . \mathrm{D}$
28th Streat \& A. V.R.R.
Pittsburgh, Pa .

## -REBUILT- <br> BLOWERS - FANS - EXHAUSTERS

 Conneravile-Roota Dositive blowert. Ceotrifugala for gas and of burning. Band buast, grinder and dust exhaustera. Ventiating lans and roof ventilatora.GENERAL BLOWER CO.
404 North Peoria St.
Chleage, III.


Opportunities
Opportunities

## -FOR SALE- <br> STEEL BUILDINGS \& CRANES

1-Building main aisle $60^{\prime} \times 270^{\prime}$ with 10 -ton $\mathrm{P} \& H$ crane 230 Volt DC. Also $20^{\prime}$ lean-to either side.
$1-75^{\prime} \times 150^{\prime}$ with 5 -ton Sheppard erane, $35^{\prime}$ lift.
$1-105^{\prime} \times 350^{\prime}$ with $63^{\prime}$ main aisle. $16^{\prime}$ under trusses, steel sash and protected metal roof that can be salvaged $100 \%$.
$1-65^{\prime} \times 144^{\prime}$ with flat roof trusses, Monitor.
$1-53^{\prime} \times 132^{\prime}$ with flat type trusses. Will divide.
$1-48^{\prime} \times 125^{\prime}$ with flat type trusses. Will divide.
1-10-ton Shaw Crane $41^{\prime}$ span.
HETZ CONSTRUCTION COMPANY - Phone 4474 - WARREN, OHIO

## Accounts Wanted

## CAN HANDLE ADDITIONAL LINES

Representative in Detroit and Michigan of Machine and Cutting Tool Manufncturers ean handle kindred lines. Ten-year, threeman organization, Established office.

TOOL SUPPLY COMPANY
1212 Lafayette Bldg. Detroit, Mich.

## Employment Service

SALARIED POSITIONS-This advertising service of 33 years recosnized standing negotiates tor high salaried supervisory, technical and executive positions. procedure will be individualized to your personal regurements and will not conHict with Manpower Commissien. Retaining fee protected by retund provision, send for details. R. W. BIXBY, Inc., 110 Delward Bldg., Buffalo, N. $\mathbf{Y}$.

## Help Wanted

IN NEED OF QUALIFIED NIGITT SUPERINtendent in welded sheet and steel plate fabricating shop. Good salary and future for right person. Reply Box 886 , STEEL, Penton Bldg., Clevcland.

STEEL FOUNDRY SUPERINTENDENT, AND steel foundry core room superintendent, for jobbing foundry on medium-large and small work, Address Box 889. STEEL. Penton Bldz., Cleveland.

## Positions Wanted

FACTORY MANAGER 24 YEARS BROAD practical and administrative machine shop, stamping, tooling, purchnsing, production planning, enginecring and cost control experieuce. Efficient dgyressive organizer, nge 44. Annerican born, tial. Heply education. Com . Cleveland, Ohio.

Help Wanted

## WANTED

## MECHANICAL ENGINEER

for Forge Plant and Machine Shop

ASSISTANT WORKS MANAGER
for Forge Plant

FOREMEN
for Forge Plant

Must have thorough experience in forge plant operations. These are permanent positions with good salaries and excellent futures for eapable men. Give full details of experience, education and personal data. Address:

Persommel Director
TUBETURNS incohparated
224 E. Hroadway L.OUISVILLE, KY.


Send your Inauiries for
SPECIALENGINEERINGWORK to the
A. H. NILSON MACHINE COMPANY, BRIDGEPORT, CONN.
designers and builders of wire and ribban stock forming machines.
He also solicit your bids for cam milling
SUB-CONTRACT WORK is being given out daily. Put yourself in line to receive your share of this business by listing your services in this section. Write STEEL, Penton Bldg., Cleveland.

## SHEET STEEL FABRICATORS

Welded or Riveted Construction. Can handle No. 10 gauge and lighter. Send us your inguiries for estimates.
the haines company
1931 W. Lake St.
Chicago, III.

## Castings

KING FOUNDRIES, INC., NORTH WALES, Pa. Grey Iron and Semi Steel Castings, also allayed with Fickel. Chrome, and Molybdenum. Wood. Iron. Brass, and Aluminum Pattern wark.KIRK \& BLUMWELDED MACHIME BASES.PEDESTALS and FRAMESLathe pans
GEAR and BELT GUARDSand Cover Plates
THE KIRK \& BLUM MFG. CO.



Accurate Spring Mfg. Co
Acheson Colloids Corp.
Acme Galvanizing, Inc. IV....... Warks

Aetno-Standard Engineering Co., The
Ahlberg Bearing Co.
Air Reduction
Aiax Electrothermic Corp.
Alan Wood Sieel Co.
Aldrich Pump Co., The
Allen-Bradley Co.
Alliance Machine Co.
Allis-Chalmers Mfg. Co......Inside Froni Cover
Allay Matal Abrasive Co.
Alrase Chemical Co.
Aluminum Campany of America
American Agile Corp.
American Air Filter Co., Inc.
American Brass Co.
American Bridge Co
American Broach \& Machine Co
American Cable Division of American Chain
\& Cable Co., Inc.
American Chain \& Cable Co., Inc., American Cable Divisian
American Chain \& Cable Co., Inc., Ameri-
can Chain Division
Steel \& Wire Division
American Chain \& Cable Ca., Inc., Wright
American Chain Division of American Chain \& Cable Co., Inc


American Foundry Equipment Co............ 142
American Metal Rose Branch of the Ameri-
can Brass Co.
American Nickeloid Co.
American Pipe Bending Machine Co
American Pulverizer Co.
American Roller Bearing Co.
American Rolling Mill Co.,
American Shear Knife Co.
American Tinning \& Galvanizing Co........ 143
American Tinning \& Galvanizing Co. ..... 46
Ampio Metal, Inc.
Ampco Metal, Inc.
Amsler-Marton Co., The
Anaconda Wire \& Cable Co
Andrews Steel Co., The
Apex Machine \& Tool Co., The
Arkansas Fuel Oil Co.
Armstrong-Blum Mfg. Co
Atlantic Stamping Co.
Atantic Stamping
Allantic Steal Co.
Allas Car \& Mfg. Co.
Allos Drop Forge Co.

Babcock \& Wilcox Co., Refractories Div. . . 119
Babcock \& Wilcox Tube Co.
Bailey, Wm. M., Co.
Baker Brothers, Inc.
Baker, J. E., Co.
Baker-Raulang
Co
Baldwin-5outhwark Division 144
Lacomotive Works
Bantam Bearings Corp.
Barium Stainless Steel Corp.
Barnes, Wallace, Co., Division of Associated Spring Corporation
Basic Refractories, ${ }^{\text {Ray }}$ In
Bity Forge Co.
Bay Slate Abrasive Producis Co
Beall Tool Co.
Beatly Machine \& Mfg. Co.
Belmont Iron Works
Berger Manufacturing Div., Republic Steel Corp.

## Sethlehem Steel Co.

Birdsboro Steel Foundry \& Machine Co. 35
Bisselt Steel Co., The
Bixby, R. W.: Inc.
Blanchard Machine Co
Blaw-Knox Co
Blaw-Knox Division, Blaw-Knox Co.
Bliss \& Laughlin. Inc.
Blodgett, G. S., Co., Inc.
Bloom Enginearing Co.
Bridgeport Brass Co.
Bristol Bross Corp., The
Bristol Co., The
Broake, E. \& G., Iron Ca.
Brosius, Edgar E., Co.
Brown \& Sharpe Mfg. Co
Brown Instrument Co., The
Brush Development Co., The
Bryant Machinery \& Engineering Co
Buda Co., The
Buffalo Galvanizing \& Tinning Works, Inc. 46 Buffalo Forge Co
Bullard Co., The
Bundy Tubing Co.


Darwin \& Milner, Inc.
Davenport Besler Corp
Davis \& Thompson Co
Davis Brake Beam Co
Denison Engineering Co.. The
Desanno, A. P., \& Son, Inc.
Detroit Electric Furnace Division. Kuhlman Electric Co.
Delroit-Leland Hotel
Detroit Rex Producls Co
Defrait Tap \& Toal Co.
DeWist Operated Motels
Diamond Expansion Bolt Co., Inc
Diomond Tool Co
Diebold Safe \& Lock Co.
Dietert, Harry W., Co.
Disston, Henry, \& Sons. Inc.
Dodge Manufacfuring Corp.
Dow Chemical Co.. The
Downs Crane \& Hoist Co.
Doyle, J. E., Co., The
Dravo Corp., Engineering Works Div.
Dravo Corp., Machinery Div.
Dulien 5 teel Products, Inc.

Easton Car \& Construction Co.
Edison. Thomas A. Inc. Co., The
Egypian lacquer A. M. Co.: The
lastic Siop Nut Corp
Electric Controller \& Mfg. Co.
Electric Furnace Co., The
Electric Storage Baftery Co.
Eleciro Meiallurgical Co.
Electrowald Steel Corp
Eliatt Manufacturing Co., The
Emsca Derrick \& Equipment Co
Enterprise Galvanizing Co.
Asbestos \& Rubber Co.
Erdle Perforating Co., The
Erie Bolt \& Nut Co
Erie Foundry Co.
Eureka Fire Brick Works
Eutectic Welding Alloys Co.
Ex-Cell-O Corp.

Fafnir Bearing Co.. The
Fairbanks, Morse \& Co
Firfield Mfg. Co.
Farner Mfg. Co. .... Lid.
arquhar, A. B., Co.,
erracute Machine Co.
Fidelity Machine Co,
inn, John, Metal Works
Firth-Sterling Steel Co
Fitchburg Grinding Machine Corp.
Filzsimans Co., The
Cori Pipe Co., The
Foole Bros. Gear \& Machine Corp.
oster, Frank B.
Foster, L. B., Co., Inc
rasse, Peter A., \& Co., Inc.
Fullar Brush Co.

Galvanizers, Inc. Gfg .
Galland-Henning Mig
General Blower Co.
General Eleciric Co.
General Excavator Co. ........................ 141
General Steel Warehouse Co.. Inc. ...... 28
Gisholt Machine Co.
Globe Brick Co., The
Granite Cily Steel Co
Grans Gear Works
Graver Tank \& Mfg. Co., Inc.
Graybar Electric Co.
Great Lakes Sieel Corp.
greenfield Tap \& Die Corp
Greenles Brothers \& Co.
Greenspons, Jos., Son Pipe Corp. ......... 182
Gregory, Thomas, Galvanizing Works
Grinnell Co., inc.
Gruender Crusher \& Pulverizer Co
Gulf Refining
H
Hagan, Gearge J., Co.
Hallden Machine Co., Th
Honlon-Gregory Galvanixing Co. .......A6, 109
Hanna Furnace Corp.
Hannifin Mfg. Co.
Hansen Mfg. Co
Harbison-Walker Refractories Co.
Harnischfeger Corp.
Harper, H. M., Co., The
Harrington \& King Perforating Co
Hassal, John, Ine
Hays Corp. The Co.
Helmer-Staley, Inc.
Mendrick Manufacturing Co
Heppenstall Co.
Hercules Co.̈ The
Hevi-Duty Electric
Hill, James, Mfg. Co
Hills-McCanna Co.
Hindley Mfg. Co.
Homestead Valve Mfg. Co
Horsburgh \& Scolt Co
Houghton, E. F., \& Co
Howard Faundry Co.
ubbard $\&$ Co.
Hubbard, M. D., Spring Co.
Hyalt Bearings Division, General Motors Corporation
Hyde Park Foundry \& Machine Co
Hydraulic Machinery, Ine.
Hydraulic Press Mfg. Co., The
Hydro-Arc Furnace Corp.
Hydropress, Inc
llinois Clay Producls Co
llinais Tool Works
ndependent Engineering Co
Independent Galvanizing $\mathbf{C o}$
ndustrial Brownhois! Corp
Ingersoll Steal \& Disc Division, Borg Warner Corp.
nlernational Nickel Co., Inc.
nternational Screw Co.
International-Siacey Corp.
ran \& Steel Products, Inc.
sancson Iron Works
Jackson Iron \& Steel Co., The
ames, D. O., Mfg. Co. The
Jeffrey Manufacturing Co.. The
Jessop Steel Co.
Jessop, Wm.: \& Sons, Ine
Johns-Manville Corp.
Johnson Bronze Co.
Johnson Bronze Co.
Johnson Gos Appliance Co
Johnson Gas Appliance Co.
Johnson Steel $\&$ Wire Co.. Inc.
Jones \& Lams on Machine Co.
Jones \& Laughlin Steel Corp.
Jones, W. A., Foundry \& Machine Co
Joslyn Co. of California
Joslyn Mfg. \& Supply Co.
(Continued on next pagre)
(Continued from preceding page)
Kardong Brothers, Inc. $K$
Kaydon Engineering Corp., The
Kearney \& Trecker Corp.
Kemp, C. M., Mfg. Co.
Kester Solder Co
Kidde, Walser, \& Wire Co.
King fifih Wheal Co.
King foundries
Kinnear Mfg. Co.
Kirk \& Blum Mfg. Co
Kold-Hold Manufacturing $C o$
Koppers Co.
Koven, $L . O .,{ }^{\&}$ Brother, Inc.
Kropp Forge $C o$.
Ladish Drop Forge Co. ${ }^{\text {L }}$

aminated Shim Co.
amson \& Sessions Co., The
amson Corp.
andis Machine Co
Lang Marhinery Co
latrobe Electric
Steel Co.
laughlin, Thomas, Co., The
lebanon Steel Foundry
leBlond, R. K., Machine Tool Co., The
eeds $\&$ Northrup Co.
ee Spring Co., Ine. Structural Steel Co
lepel High Frequency Labio
lepe High Frequency Laboratories, Ine
Leschen, A., \& Sons Rape Ca.
Levinson Steel Co., The
levinson Steel Sales Co
Levinsan Stael Sales Co
Lewis Bolt \& Nut Co.
ewis Foundry \& Machine D 111 Blaw-Knox Co.
Lewis Machine Co., The
Lincoln Electric Co, The
linde Air Products Co., The
ink-Belt Co.
logemann Bras. Co.
Los Angeles Galvanizing Co.
Loveioy Flexible Coupling Co
McKay Co., The Mc
MeKay Machine Co.
McKee, Arthur G., Co.
McKee, Arthur G., Co.
MacDermid, Inc. M
Mackintosh-Hemphill Co.
Marklin Co.
Macwhyte Co
Macwhyle Co.
Magnaflux Corp
Magnaflux Corp.
Magnus Chemical Co.
Mahon, R. C., Co., The
Mahr Manufacturing Co.
Mallory, P. Re, \& Co., Ine.
Manheim Manufacturing \& Belting Co. ..... 177
Manning. Maxwell \& Moore, Inc.
Markal ${ }^{C O}$.
Masier Electric Co., The
Mathews Conveyer Co
Malthews, Jas. H., \& Co.
Mattison Machine Works
Medart Co., The
Meehanile Research Institute
Mercury Mfg . Co.
Mesta Machine Co.
Michiana Products Corp.
Michigar Tool Co.
Micromatic Hone Corp.
Midvale Co., The
Milion Mfg. Co., The
Milwaukee Metal Spinning Co
Minnesola Mining \& Mfg. Co.
Mississippi Valley Equipment Co
Missouri Rolling Mill Corp.
Molybdenum Corporation of America
Manarch Machine Tool Co., The
Monarch Steel Co.
Morgan Construction Co
Margan Construction Co
Marrison Engineering Corp
Match \& Merryweather Machinery Co
Motor Producls Corp.
Munning \& Munning, Inc
National Aeme Co. ..... 25

National Bearing Metals Corp. Foundry Co.
National Bronze \& Aluminum Fol
National Bronze \& Aluminum Foundry Co.
National Carbon Co., Inc., Carbon Sales Division
National Fireproofing Carp.
National Lock Washer Co.
National Lock Washer Co.
National
National Roll \& foundry Co
National Screw \& Mfg. Co.
National Steel Corp.
National Telephone Supply Co
National Tube Co
New Departure Division General MalarsNew England Screw Co.
New Jersey Zinc Co
Newport Rolling Mill Co., The

New York \& New Jersey Lubricant Co.
Page
Niagara Machine \& Tool Works
Niles Steel Products Div., Republic Stael Corp.
Nilson, A. H. Machine Co
Nitralloy Corp., The
Norma-Hoffmann Bearings Corp
Northwest Engineering C
Norion Co., The
Oakite Praducts Ine
Ohio Crankshaft Ca.
Ohio Electric Mfg. Co
Ohio Galvanizing \& Mfg. Co
Ohio Kaife Co., The Mfg. Co.
Ohio Loromotive Crane Co.. The
Ohio Seamless Tube Co.. The
Ohio Seamless Tube Co.., Th
Oliver Iron \& Sieel Corp.
O'Neil-Irwin Mfg . Co.
Osqood Co., The
Oster Mig. Co., The
Page Steel \& Wire Division American Chain \& Cable Co., Ine.
Pangborn Corp.
Park Chemical Co.
Parker, Kalon Corp.
Powtucket Screw Co
Pawtucket Screw Co.
Penn Galyanizing Co. Metaltic Tubing Co
Pennsylvania Flexible Metallic Tubing Co.
Pennsylvania Industrial Engineer
Penasylvania Salt Mfg. C
Perkins, B. F., \& Son, Ine.
heall Mfg. Co.
Philadelphia Gear Works
Philadelphian Hotel
Phillips Screw Manufacturers
Phoenix Mfg. Co
Piltsburgh Crushed Sieel Co.
Pitisburgh Gear \& Machine Co
Pitsburgh Lectromelt Furnace Corp
Pittsburgh Rolls Division of Blow-Knox Co. 33
Plymouth Locomotive Works Division of
The Fate-Root-Heath Co.
Poole Foundry \& Machine Co.
Porter, H. K., Co., Inc.
Pressed Steel Car Co., Inc.
Pressed Sieel Tank Co.
Progressive Welder Co.
Protected Sieel Products Co.
Purdy, A. R., Co., Ine.
Racine Tool \& Machine Co
Ransohoff, N.. Inc.
Ransome Machinery Co
Raymond Mfg. Co., Division of Associated Spring Corp
Reading Chain \& Block Corp.
Reading Screw Co.
Ready-Power Co.
Reeves Steel \& Manufacturing Co.
Reliance Electric \& Engineering Co
Republie Steel Corp.
Revere Copper \& Brass, Ine.
Rhoades, R. W., Metaline Co., Ine.
Richards, Arklay S., Co., Inc.
Riverside Foundry \& Galvanizing Co.
Roebling's. John A., Sons Co.
Rollway Bearing Co., Inc.
Roosevelt Hotel
Roper. George D.. Corp.
Ross Heater \& Mfg. Co., Inc
Ross Operating Valve Co.
R-S Praducts Corparation
Ruemelin Mfg. Co.
Russell, Burdsall \& Ward Bolt \& Nut Co. . 127
Ryerson, Joseph T.. \& Son, Inc.
Saginaw Malleable Iron Div. General Mo tors Corp.
St. Louis Button Co.
Salem Engineering Co
Samuel, Frank, \& Co., Inc.
Sandvik Steel, Inc
San Francisco Galvanizing Warks
Sanitary Tinning Co. The
Savage Tool Co
Scaife Co.
Scherr, George, Co
Scovill Mfg. Co.
Sellers, Wm., \& Co.. Inc.
Seneca Wire \& Mfg. Co.. The
Seymour Mig. Co., The
Shakeproof. Inc.
Sheffield Corp. The
Shell Oil Co., Inc.
Shell Oil Co., Inc.
Shenango Furnace Co., The
Shenanapo-Penn Mold Co.
Shepard Niles Crane \& Hoist Corp.
Shuster. F. B. Co.. The
Silent Hoist Winch \& Crane Co
Simonds Gear \& Mfg. Co.
Simonds Saw \& Steel Co.
Sinclair Refining Co.
SKF Indusiries, Ire.
Smith, David, Steel Co., Ine
Smith Oil \& Refining Co.
Smith Tool \& Engineering Co
Snyder, W. P.. \& Co., Inc.
Sacony Vacuum Oil Co., Inc.

Sonken-Galamba Corp.
South Bend Lathe Work
Southern Galvanizing Co
Southingion Hardware Mfg. Co
Spriesch Tool \& Manufacturing Co.
Standard Galvanizing Co
Standard Steel Works
Standard Tube Co.. The
Stanley Works, The
Steel \& Tubes Division, Republic Steal Corp
Steel Founder's Society of America
Steelweld Machinery Division, Clevelan
Crane \& Engineering Co
Sterling Grinding Wheel Div. of the Cleve
Iand Quarries Co.
Sirom Sieel Ball Co.
Strong Steel Foundry Co.
Struthers Wells Corp.
Sturtevant, B. F., Co
Sturievant, P. A., Co.
Sun Oil Co
Superior Steel Corp
Surface Combustion Corp
Swindall-Dressler Corp.
Syntron Co.
Taylor-Wilson Mfg. Co. ${ }^{\text {T }}$
Tennessee Coal, Iron \& Railroad Co
Texas Co., The
Thomas Machine Mfg. Co.
Thomos Steel Co., The
Tide Water Assaciated Oil Co
Timken Roller Bearing Co
Timken Steel \& Tube Division, ..... Front Roller Bearing Co.
Iinnermann Products, Ine
Titanium Alloy Manufacturing Co .
Toledo Scale Co.
Toledo Stamping \& MIg. Co.
Torringlon Co.. The
Towinotor Co.
Trico Products Corp.
Triplex Screw Co., The
Truscon Sieal Co.,
Tubular Alloy Steel Corp.
Turco Produets Inc.

Udylite Corp., The
Union Carbide \& Carban Corp
Union Drawn Steel Div., Republic Stee
Corp.
Uniled Chromium, Inc.
United Engineering \& Foundry Co.
United Siates Graphite Co.
United States Rubber Co.
United States Steel Corp., Subsidiaries
United States Steel Export Co.
United States Steel Supply Co
Vanadium Alloys Steel Co.
Vanadium Corporation of America
Vaughn Machinery Co., The
Veeder-Rool, Inc.
Vickers, Inc.
Wa!dron, John, Corp. W
Walker-Turner Co., Inc.
Ward Leonard Electric Co
Warner \& Swasey Co.
Washburn Wire Co.
Watson-Stillman Co., The
Wean Engineering Co., The
Weatherhead Co., The
Webb Corporation, The
Weinman Pump \& Supply Co., The
Weirton Steel Corp.
Welding Equipment \& Supply Co.
Wellman Bronze \& Aluminum Co.
Wellman Engineering Co.
Wells Manufacturing Corp.
Wesson Co.
Western Galvanizing Co
Westinghouse Electric \& Mfg. Co.
West Penn Machinery Co.
Wheeling Steel Corporation
Whiteomb Locomotive Co., The
Whitehead Stamping Co.
Whiney Screw Corp.
Wickwire Spencer Steel Co
Wilcox, Crittenden \& Co
Williams, J. H., \& Co.
Wilson, Lee, Engineering Co
Wilson Welder and Metals Co., Inc.
Wisconsin Motor Corp.
Wolverine Tube Div.. Calumal \& Hecl Consolidated Copper Co.
Wood, R. D., Co.
Worthington Pump \& Machinery Corp.
Worth Sieel Co
Wright Manufacturing Div.. American Chain
Wyckoff Drawn Stee.

Yoder Co., The
Youngstown Alloy Casting Corp
Youngslown Sheel \& Tube Co., The
Zeh \& Hahnemann Co.


# CLASSIFY ALLOV SCRAP to make more fighting steels 

Factories that are pouring out torrents of fighting equipment are also producing quantities of a highlyvalued by-product: steel scrap.

Only 20 per cent of the ingot weight of steel produced for an airplane survives machining and other operations and takes off in the finished plane. The other 80 per cent is scrap; chiefly alloy scrap. Comparable yields result from the manufacture of other kinds of fighting equipment.

Large tonnages of scrap are continuously circulating from airplane factories and tank arsenals to steel mills, then back again as new steels. This revolving scrap pile contains the nation's major reserve of already-mined alloying metals, above the ground and ready for use.

But unless they are classified so as to keep their identity, these
critical alloys help to win no battles. When different alloy scrap grades are thrown together, when alloy and common scrap are tossed on the same pile, the content of alloys is wasted. Scarce metals, among today's top "criticals," desperately needed to make more fighting alloy steels, are lost to the war effort.

With our country fighting an alloy-steel war, it cannot be repeated too often that our alloy-steel production would drop a calamitous 50 per cent if you and we and everyone else stopped classifying alloy scrap.

No one knows better than a steelmaker that classification of alloy scrap may involve a headache or two. But it's a job that must be done, and done by everyone, if war needs for these most critical of steels are to be fully met.

These three suggestions are commended to anyone who wants to do his part to ease the present difficult alloy situation:

## Classify alloy steel scrap

Keep alloy and common scrap separated
Keep ferrous and non-ferrous scrap separated


Our government has issued a classification list showing how alloy steel scrap should be segregated. In case you haven't a copy, we shall be glad to send you one. Write to Bethlehem Steel Company. Bethlehem, Pa.


OFFICIAL PHOTO, U. S. ARMY AIR CORPS


A complete picture of the many uses of Cincinnati Press Brakes is covered in Catalog B-1. Write for your copy


Runways for the "War Birds" are laid like a carpet-landing fields are built like magicCincinnati Press Brakes are at work on both planes and landing mats.

Their adaptabitity and accuracy may solve a production problem for you.


## BEHIND THE SCENES

## Flying Furnaces

田 Typical of the kind of action that is getting things done these days all over the Allied world is this little tale picked up last week in Washington. One of the country's leading electric furnace builders got a rush phone call from WPB explaining a furnace was needed immediately for a war job in South America. The builder had no new furnace of the type required but decided on the spot to rip out one in use in its own shop. It is being flown to South America by plane and spare parts will be sent along later.

## RQD Reprints

回 So many people seemed to get a kick out of "RQD-A new plan to end plans" which appeared here three weeks ago, we have reprinted it into a little four-page folder. If you enjoyed it and would like a few copies, or if you missed it when it rem, just drop a note to Readers Service Department, Penton Building, Cleveland. They're on the house.

## Saving Steel

(1) L. E. Browne, associate editor in the N. Y. office passes on pretty definite evidence that meat rationing contributes to the conservation of steel. Apparently his source is one Jolnny Jumpers who resides in Astoria and who made the following statement for direct quotat:on:
"Since eating less meat my beard grows slower and lighter; shaving is easier, with less wear on the blade. Thus do our great planners manage to achieve conservation in steel."
In our case it seems to have a reverse action. The last hatch of blades we got practically put us in the butcher business.

## Want Ad of the Year

I In case you missed what may well be the want ad of the year, we reproduce it here just as it appeared in the Chicago Tribune week before last:

> Fixpeutiven und Managern.
> LOAFER
> Experlenced, successiul loafer, 30 yearm old, with law degrec, destres porit lon paying hast Galary pending passage of "Cradte to the thra following positions: public relations and publicity, purchasing agent and expediting. Knowledge of prlorities and mosit povernment rulas and regulatons but little underatanding.
> Address it 36 s . Tribune.

## Trick Formula

E. A good friend out in the Chicago area sends in a foolproof method for de-coding the month indicated on the rolling schedules under the new CMP allotment plan. As we understand it the month in which the steel is rolled is indicated by a number which represents the: number of months starting with January 1942 as No. 1. As you can see this gets a bit confusing if you get a schedule marked No. 18, as you are obliged to com-
pute what month that represents.
The simple formula which this structural steel fabricator figured out is this:

30 days hath $21,16,18$ and 23 , all the rest have 31, excepting 14 alone which has 28 in fine, 'til Leap Year gives it 29.
He states that while they are prond of their formula, please keep their name out of it since they do not want to take on any responsibilities-and after reading it again we can understand why.

## Any Takers?

E You'll recall we mentioned here several weeks agu that over 6000 workers at the fabulous Jack \& Heintz Co. went through Felruary without a single unauthorized absence from the job. Now they've tossed out a challenge to all war plants in the country employing 6000 or more workers to match this record. Employes of the first firm that does will get $\$ 6250$ in War Bonds.

## More On Absenteeism

- Speaking of absenteeism, apparently the mock trial of Adolph Hinder, conducted a month ago by Manufacturers Screw Products, Chicago, has been so successful that absences are now confined almost entirely to personal illness, according to B. J. Sackheim, president. He says, and very correctly we believe, "Legislation is not necessary to cure absenteeism and tardiness. Intensive unrelaxing effort and co-operation between labor and management will overcome the present difficulty:" Above all else it is an individual selling job and certainly the advertising manager of your company should not be overlooked in helping to do the kind of promotion needed to lick it.


## Now Ready

© Copies of the new NE Steel Handbook and NE Steel Selector are now in the mails to all those who had advance reservations. Orders are piling in from last week's coupon advertisement and we suggest again that you check your requirements and get yours while th' gettin's good. Together they are $\$ 1.00$ per set and if we do say so ourselves they live up to every expectation we had.

## Keep 'Em Moving

E From time to time we make a pretty complete checkup on just how copies of Steel are being used in the more than 9000 plants where it does its weekly duty. Did you know for example, that 84.6 per cent of all the copies of Steel, ate used by more than two men, or that 55 per cent of all the copies are used by more than five men?

That means copies have to move around sour plant without delay. Steel is news, and important news that may well help lick a problem someone else is facing right in your own shop.

So, make it a point not to hold up your copy of Steel. Get at it as quickly as possible when it hits your desk and then keep it moving. The information in Steel inday is ammunition on the home front.

# To Help You Mainfain Fast, Accurate Production In Yoúr Turref Lathe Department 

## This New Manual Tells How to Recondition Old Turret Lathes

ARE your older turret lathes producing to the limit of their original capacity? Most shortcomings of old, worn turret lathes can be learned by these six questions:

1. Does the machine duplicate sizes?
2. Does the machine produce chatter?
3. Do finished surfaces show gear tooth marks?
4. Does the cross-slide face and cut off square?
5. Do reamers and counterbores cut properly?
6. Does the machine cut taper with tools held in the hexagon or square turrets?

A hasty fix-up is no solution to these difficulties; nor can a completely rebuilt old turret lathe compare with a modern model, but a careful reconditioning of a turret lathe which has seen years of service can restore its original speed, power, and accuracy. This new booklet shows you how this may be done.

illustrated with actual rebuilding photographs and diagrams, explains reconditioning procedure in detail. It is presented in such a way that when only a partial reconditioning is necessary, the instructions are easily followed.


Warner \& Swasey Operator's Servike Bureau, Cleveland, 0 Please send booklet "How to Rebuild Old Turret Lathes'

Company
Address


Whar juha have posed infinite prodaction problems. We know a lot of them that were wolved with at aimplo a thing as a llut.

Heqatan tho solhtion was an Elastio Stop Nut.
Fore "xamplo, aimaft. Their very worth depends "pon fantoming that grip sutte and won't shake lowasumber tho chatler of madine guns, the impact of cannon five and the vibation of air combat.

Fery phate atraming of Ameriea's perfaction lines lus Alastin Stop Nuts fistoning important atrintural pats. Sereat millions of them go into aircoaft wery day
And to one knowlengs, thot che has crow failed to do tis jok.

day, we can't satisfy all the needs of today's one hig eustomer.

But in the days ahead, with Elastic Stop Nuts generally available, peacetime products and their production are going to be better.
And our engineers schooled in solving the rigorous problems of war production will be at the service of mamufacturers with fastening requirements.
Whenever you wish, they will be ready to share their knowledge with you and recommend the desirable Elastie Stop Nut.

## RLASTIC STOP NUR




## "ARMOR PLATE IS APPLE PIE FOR THE POR-OS-WAY wheEL"

Dear charlie: Here am at the plant. Youtold por-os-way. Here grinding the story on Por-os-way. Grinding the edges of armor plate any whel. And assignment for any whe
these
ase
nardened

 way out in front of the provious
porsy whel.
writes POR-OS-WAY'S
War Plant reporter

THE JOB:
Removing average of $1 / 4^{11}$ stock from all four edges of $1 / 2^{11}$ and $3 / 4^{\prime \prime}$ armor plates, consisting of mild steel one side, hardened steel (600 Brinnell, 35-37 Rockwell) on the other. 'Torch cutting case hardens the edges. Three Rogers grinders used.

## the wheel:

Por-os-way segments - $11 / 8^{11} \mathrm{x}$ $11 / 4^{\prime \prime} \times 4$ " 244 KV 2.

All facts and figures given are taken from an actual field survey made by a Por-os-may correspondent.

## WRITE for complete booklet

 "Facts About Por-os-way". The address is 436 Wheatland St., Phoenixville. Penna.-Por-as-way actually ramaved thock 10 timer faster than previout whool but incluyion of soiting up time, being a proportionatoly largo faclor, roducas ratlo to 5 to 2 .

## POR-OS.WAY* a RADIAC* PRODUCT

A. P. de Sanno \& Son, Inc. NEW YORK, CHICAGO, PITTSEURGH, CLEVELAND, DETROIT, $1 O S$ ANGELES

## PHOENIXVILLE, PENNA.

Woutern Goleway to VALLEY FORGE
-T. M. Fong U. S. Pal OH


## TODAY <br> \section*{TANK PARTS}

## TOMORROW

 ?
## PLAN YOUR DISTRIBUTION SYSTEM

## FOR Quick Conversion

Future demands on your plant depend on crents no man can accurately foretell. Sound practice today calls for farsighted planning-to insure the ability to make quick production shifts comomically.
Such sliftes depend to a large extent on your phant distribution system. For on it hinges the ability to meet quickly changes in the nature, location and density of loads.

That's why we say plan now for maximum flexibility in your plant distribution system-to give increased efficieney and sabotage protection today, to facilitate speedy and ceonomical conversion tomorrow.

Westinghouse has designed and built hundreds of distribution systems for all types of plants.

Thus our engineers are in a position to recommend the "one best" distribution system for your plant -the system that provides maximum flexibility with the least use of critical materials.
To bring this broad engineering experience to bear on your particular problem, call our local office. Or send for the helpful booklet below. Westinghouse Electric \& Mfg. Co., East Pittsburgh, Pennsylvania.

## UP-TO-DATE FACTS ABOUT DISTRIBUTION SYSTEMS

Keep up-to-date on latest plani distribution systems. send for 24 -mage Booklet, B-315\%. which briefly describes different plant distrihution systems, and points out the advantages of each.
pLANT DISTRIBUTION SYStems


## teel Melters! WRITE FOR THIS Book

. . . "Important Developments in Electric Melting Furnaces." It discusses several far reaching improvements and simplifications . . . explains how metal making may be done more accurately at the lowest costs. Written by men who have been associated with steel making throughout their entire business lives. A copy will be sent free when requested on a company letter head.


Hydro-Arc engineers will cheerfully study your Electric Melting Fiurmace Problems and make complimentary suggestions.


## Two Outstanding Features

Two outstanding features of Hydro-Arc Electric Melting Furnaces are: (1) Hydraulically positioned electrodes and (2) Power operated electrode clamps.

The Hydro-Arc Furnace uses low inertia air for counter-balancing to cooperate with a simple, accurate, hydraulic control to operate each electrode. Low upkeep-less surging-less electrode wash and more accurate meral making at lowest costs are being accomplished.

## Here's What Melters Say:

1. "No climbing on the furnace among the flames to strain on burnt bolts and no swinging the sledge hammer to clamp electrodes!"
2. "Electrodes slipped from the floor!" 3. "Look at the hydraulic contro!!" 4. "Eastest electrodes I ever saw, but good controll"' 5. "Simple isn't it? Can change any part in a few minutes!"

# HyDRO-ARC <br> FURNACE CORPORATION 

561 HILLGROVE AVENUE, LAGRANGE, ILLINOIS (A Suburb of Chicago, Illinois, U. S. A.) TELEPHONES: LA GRANGE 4545 AND 4546

IN MEETING the Government's goal of 10,000 planes a month, improved machining practice has been continuous.
A recent example is the machining of aluminum and magnesium alloys in engine plants, where an entirely new cutting coolant is permitting faster cutting speeds Texaco ALMAG Cutting Oil.
Equally suitable for both aluminum and magnesium, Texaco ALMAG Cutting Oil adequately cools and lubricates the cutting tools, prolongs their life, increases cutting speeds, steps up output. $A L M A G$ is transparent, permitting the operator to see ... and is non-irritating to the skin.

So effective have Texaco Lubricants proved that they are definitely preferred in many other important fields, a few of which are listed below.

A Texaco Lubrication Engineer specializing in cutting coolants will gladly cooperate in the selection of the most suitable lubricants for your equipment. Just phone the nearest of more than 2300 Texaco distributing points in the 48 States, or write:

The Texas Company, 135 E. 42nd St., New York, N. Y.

## THEY PREFER TEXACO

* More locomolives and railroad cars in the U. S. are lubricated with Texaco than with any other brand.
丈 More revenue airline miles in the U. S. are flown with Texaco than with any other brand.
$\star$ More buses, more bus lines
and mare bus-miles are lubricated and fueled with Texaco than with any other brand.
* Mare stationary Diesel horsepower in the U. S. is lubricaled with Texaco than with any other brand.
* Mare Diesel horsepower on streamlined trains in the U. S. is lubricaled with Texaco than with all other brands combined.

TUNE IN FRED ALLEN EYERY SUNDAY NIGHT-CBS * HELP WIN THE WAR BY RETURNING EMPTY DRUMS PROMPTLY

It happened barely two years ago - on January 21 1941 - and already it is changing ${ }^{\circ}$ the shape of the world. On that night, men held in their hands a bar of the world's lightest metal - the first ingot of pure magnesium to be taken from the sea. The men were chemists and engineers of Dow Chemical Company, and the metal mermaid which they held that night was the creature of many years of experiment in the field of ocean mining. As a result of those years of search and rescarch. most of our production of over 200 million pounds of magnesium this year will come from the limitlesa sea, and plants are building for the production of many times that amount,... Also as a result of those years, a whole new age of light metal parts products - and problems - has begun.

Today, 99 per cent of all magnesium production is going into aircraft. But after this war., with a wealth of experience, new techniques and a yawning capacity magnesium will be ready to bid for other markets, streamliners, busses, trucks, trailers, engine forgings, household appliances, building materials, and the whole broadening field where weight and load factors are of increasing importance. And with this new production will come the problems. As specialists in intemal grinding with engineers and machines on nearly every aireraft production line in America - we at Bryant have had a great deal to do with parts made from lightweight metals We believe that this knowledge can be of greate value to you than ever before in meeting today's efficiency requirements and in planning ahead for tomorrow's. Bryant's Consulting Service is available to you at all times. Call ypon us now!


Certainly you can't turn new operators loose on complicated machines. But you CAN relieve the pressure on their highly trained operators by diverting a wide variety of small diameter bar and chucking jobs to Oster No. 601 "RAPIDUCTION" Lathes.
This SIMPLIFIED machine is easy for the beginner to understand and operate efficiently after a short training period.
Ample proof of thatstatement is available. For example, one manufacturer has 139 Oster No. 601 Lathes operated mostly by people without prior machine shop experience. For quick response to your request for complete details on the Oster No. 601 "RAPIDUCTION" Lathe, use convenient form below*.


THE OSTER MFG. CO., 2037 E GISt ST., CLEVELAND, OHIO, U. S. A.
*O. K. Oster. We're interested in the No. 601 machine. $\square$ Send Catalog No. 601. $\square$ Ask your nearest distributor to see usat once. (Check either or both of above requests.)

NAME $\qquad$

ADDRESS
CITY $\qquad$ STATE



## AIRCRAFT:

Generator housings
Collector rings Cylinder liners Landing gear parts Jacks
Torpedo shafts
Bearing races (ball and roller)
Electric motor and generator housings.


ORDNANCE:
Mortar barrels
Shells
Gun mounts
Recoil cylinders
Equilibrator cylinders
Recuperator cylinders and bushings
Bearing races (ball and roller)


## AT B\&W,TUBES ARE MORE THAN TONNAGE

If you are now turning to tubing as machining stock, you can doubly insure the firing-line performance of your products' parts by making them from B\&W Seamless Steel Mechanical Tubing.

The Babcock \& Wilcox Tube Co. has long concentrated on the production of specialty-tubes for boilers operating at 2500 lbs . per sq. in. and $1100^{\circ} \mathrm{F}$. - for oil refineries where temperatures run far higher and corrosion is vicious - for chemi-
cal process plants where specifications and steel analyses are far more rigid than usually required for mechanical tubing.

The same men who regularly produce such B\&W tubes work in the same mill and with the same care produce B\&W Seamless Steel Mechanical Tubing for use as stock in the machining of war-product parts. That is why, when you specify B\&W, quality is assured.

BEW Seamless Steel Mechanical Tubing is available on suitable priority in a wide range of sizes, in carbon steel, National Emergency steels and S.A.E. alloy steels, hot finished or cold drawn, in a variety of tempers. Details in Bulletin T-319, yours free on request.

# This Merry-go-round has gone to war! 

1. It takes a lot of parts to raike a Jeep. find this "merry-goround" has the job of grinding some of those parts (those with flat surfaces)... in a hurry! By rotating a large number or pleces beneath a Carborundum made disc wheel, it surface grinds them in a fraction of the time required by older methods. This process is one which Carborundum helped develop.


2. Surface ground parts for jeeps, tanks and other weapons just couldn't be finished one at a time; production would be hopelessly low. The introduction oi disc wheels and the "merry-go-round" surface grinder put surface grinding on a real mass production basis. The method can be used to generate flat surfaces to precision tolerances, on smallest pieces or on massive forgings and castings. It speeds production of many vital war items from valve springs to connecting rods, from piston rings to clutch plates
3. Careful supervision of grinding operations is vital today to conserve materials and time. The abrasive disc wheel is a "Weapon of Production" and should be properly used for maximum effectiveness. The Carborundum Company. Niagara Falls, N. Y.

## CARBORUNDUM ABRASIVE FMER PROUCTS



HE latest type electric weld tube mills are found at Electroweld Steel Corporation. The accuracy and dependability of this equipment coupled with the most modern testing facilities permit production of a product with three distinct benefits-safety, savings in weight, and savings in cost.
This equipment forms lubing from strip steel which is rolled accurately to gauge. Thus the wall thickness is uniform, and lighter gauge material may be used without sacrificing strength. As a result, there are no thin spots in the wall of Electroweld Tubing, and you save weight. The strip steel meets your specifications accurately, and after it is formed into tubing the strength at the weld and adjacent areas will equal that of the strip steel. Every foot of Electroweld Tubing is hydrostatically tested for safety. Therefore, it not only meets your specifications but also Government requirement:
Electroweld Tubing may be adapted economizally to boiler, heat exchanger, and condenser installations as well as to mechanical applications since it may be cut, formed, and welded more easily. During the postwar period, you will find it worth-while to consider Electroweld Steel Corporation YOUR source of supply.


\author{

- when made of welded wrought Monel
}

Monel pickling baskets now in use by a Canarlian car manu/acturer. Used so carry steel parts through an automatic stcam rontrollot pirkling solution of $8.10 \%$ sulfuric acid held at $170^{\circ}$ to $180^{\circ} \mathrm{F}$.

Under the stress of wartime needs, uninterrupted production is the order of the day.

In continuous piekling operations the call is for welded wrought Monel baskets lecause they save weight, require fewer repairs, last longer.
Moncl's corrosion resistance and strength makes this possible ly permitting the use of lighter sections, decreasing dead load, increasing pay load. The long, trouble-free life of Monel assures more continuous operation, with fewer shut-downs for repairs. After years of uninterrupted service, many Monel installations are still on the job 24 hours a day.

In most types of pickling service, standard mill forms of Monel are used in constructing equip-
 ment to meet specific needs. Monel is easy to fabricate. When joined by welding, it retains its full strength and resistance to corrosion in the welds.

Welded Monel pickling baskets and crates designed for your war work, together with Monel hooks, hangers, yokes, and chains can help you maintain peak production as they are doing in hundreds of other busy pickling rooms.

For full information on the use of Monel in pickling, please write.
THE INTERNATIONAL NICKEL COMPANY, INC., 67 WALL STREET, NEW YORK, N. Y

HONEL • "K" MONEL • "S" MONEL • "R" MONEL • "KR" HONEL• INCONEL * "Z" NICKEL • NICKEL

The uelded urought Monel pickling basket at the riflit has replaced the cautnlloy basket formerly used. One of the old type is shourn after excessive corrosion had ended its useful life.

Sheet... Strip...Rod....Tubing...Wire... Castings



## TOCCO SAVES STRATEGIC ALLOYS

In the booklet "Metalurgency", Army Ordnance says: "The art of developing desired physical characteristics in metals by heat treating has become highly developed, and in Army Ordnance it is probably responsible for more conservation of scarce ferro-alloys than any one other thing.
"Induction heat treatment has been used with major success by the Automotive Industry and therefore it is logical to see this process credited with a substantial share of the conservation record in the manufacture of the automobile's gruesome cousin, the tank. Our Chromium and Molybdenum supplies are the chief beneficiaries of Induction Heat Treatment in a multitude of tank parts."

TOCCO-TREATED PARTS OF TANKS AND TRACTORS (1) Sprocket teelh. (2) Track pins. (3) Bogey wheel rims. (4) Grousers (treads). (5) Crankshafis and other engine parts. (6) Gun parts. (7) Transmission parts. (8) Bevel gear shafts. (9) Gun barrels (heated for forging). (10) Armor-piercing shot.

The tank parts pointed out in the accompanying photo are TOCCO-treated-given superior hard wearing surfaces and toughness, with a minimum expenditure of scarce alloys.

Investigate the standard TOCCO Junior for your heat-treating problems. The same unit saves strategic man-hours and materials now for Victory and will save strategic dollars in post-war production.

## THE OHIO CRANKSHAFT COMPANY Cleveland, Ohio



HARDENING ANNEALING BRAZING HEATING for forming and forging

## mullipliad demand conortage of skilled toal makers <br> high precision

Top speed war production demands TOOLS - more tools than dreamed of in peace time - new kinds of tools for new war time jobs. The tool industry is tackling this tremendous task short of skilled tool makers and restricted by shortages in their choice of steels.

Solutions to these new problems are being worked out every day by the tool industry. Frankly, we don't have all the answers but our contacts with American tool makers determined to win this war puts us in a position to assist you in finding solutions to some of the particular problems that may be facing you.

On your problems of steel selection and treatment of tool steels, we would be very glad to have you get in touch with us. For your convenience, we are listing below the addresses of our district offices.




## THEFLORIPIPECOMPANYOST.LOUIS, MO.



## TO MEET THE CRIIM NECESSITIES OF WAR

Iis to help you speed the war effort that the lights are burning late in our steel production and research laboratories. More than 1200 metallurgists and trained technicians are working here. Their most important job today is to adapt steels to the rigorous demands of war economy and war-time manufacture. They are on our payroll but they are working for you.
Largely from their knowledge and experience were born the National Emergency Steels that have made it possible to meet the critical conditions imposed by the shortages of nickel, chromium, molybdenum, vanadium and other strategic alloys. They have written new recipes for lean-alloy steels that provide the required qualities without excessive use of alloying elements. They've proved that you can substitute one alloy for another to achieve satisfactory results. They've made thousands of experiments that show not merely what these steels will do, but how you, who must use these steels, can fabricate and heat treat them to give the best results in service.

The mass of new technical knowledge these men have turned up is vitally important to you. We gladly place it at your disposal. Properly used it can be of real help in applying the steels now available, with greatest efficiency and least waste of time and labor. Only by taking advantage of America's war-stimulated research can this nation's overwhelming superiority in productive capacity be fully utilized.



## Weirton's

## "DOUBLE CONTROL" of quality is pledged for VIGTORY

We at Weirton appreciate that steel-making in many of its phases is, and always will be an art-one that requires not only equipment of the most modern design, but also men who are masters in their craft.

Ac every step in the Weirton manufacturing processfrom iron ore to the finished product-men and machines form a carefully coordinated team to give "double control" to the quality of Weirton steel.

Weirton Steel, therefore, is uniform in high quality, mecting and satisfying the most exacting requirements of our Army, Navy, Maritime Commission and our
regular customers. Until the day of peace, the men and women of Weirton have pledged "double control" of quality to VICTORY.

# WEIRTON STEEL COMPANY <br> Weirton, West Virginia 

Sales Offices in Principal Cities

Division of
NATIONAL STEEL CORPORATION
Executive Offices • Pittshurgh, Pa.

## Independent Engineering Co. CYLINDERS and Cylinder Transports For the Armed Service Until ICTORY Is Won



Mummoth Cylnder-Transports, Built by Independent Engineerbus Con' (as illustrated below) make possible the efficient, economical detivery of large quantities of inclustrina gases in a single unit to uny glven point with a minimum of delay ... a valuable contribution to the Service of Supply.


All shipments of Independent Engineering Co. Cylinders are under complete control of the armed forces except where adoquate priority, otherwise, is available. We are proud of the outstanding record we have achigved in meeting their requirements. When peace comes, these achievements in pioneer engineering design, construction and production will be at the disposal of all-a record that will make Independent Engineering Co. products a first thought when industrial gas producing, packaging and tronsporting equipment are under consideration.


Thousands of Independent Engineering Co. Rechargers now serve the war cause and those who serve the war effort. The final step in the Service of Supply-thes-Hexible, easy-to-handle units are used to distribute cylinders to the point of usage.

Indepwhent Wheinexing Con- Pioneer desismers and producers of mobile Oxygen and Hydresen gencuthe panta for the armed foress...builders of Oxygen, Hydrogen and Acety-


# Independent Engineering Co 



America's steel industry is making history by its capacity output of war materials. Steel for ships, planes, tanks and guns is made available by the efficiency of men who know steel plant operations.
Plymouth Locomotives, too, are playing a great part in the handling of Victory loads in many of the country's biggest plants. Plymouth Performance is ideal for steel mill haulage. . .economical oper-
ation . . . dependability . . . availabilityample power with finger - tip control, moves capacity loads one inch or one mile efficiently and with safety. Built in sizes from $21 / 2$ to 80 tons.

Today, every Plymouth Locomotive built is going to war. If your plant is on the front line and needs track haulage-write. Perhaps we can help you to move your loads faster at a lower cost.

## PLYMOUTF LOCOMOTIVE WORKS



## AUTOMATIC STAPLE FORMING MACHINE

This plunger type. No. 2 model, insures greater speed without impairment of accuracy. Nilson has been designing and building special machines for half a century, and current improvements



Control... (大) INPT BOAT ORS STEEL CASTING

## Cuswes pulled into.Metal!



## Accurate speed control required by new metal forming

 speed instantly and maintain it accurately with this Positive Infinitely Variable speed control unit. Cutaway view shows unique chain transmission-tooth to-tooth contact no belts -no slip! Get Book 1874.

## process achieved with Link-Belt P.I.V. Gear!

- Producing shaped aircraft skin panels faster, in larger pieces, at reduced cost, is the accomplishment that is attracting intense interest to the radically new process known as "Forming-by-Drawing." Frohman Anderson of Anderson Aircraft, Inc., New York is the inventor. A motor-driven carriage draws the sheet through adjustable forming elements, at constant or variable speed. The final shape of the panel results from the set-
ting of the forming elements and the speed of drawing the sheet through it-thus accurate, variable speed control is a prime factor in the process. This important function is performed by a Link-Belt P.I.V. Gear variable speed transmission. Positive, tooth-to-tooth contacts permit infinite variations in speed, within the limits of the unit. Changes can be made instantly; settings maintained indefinitely without possibility of slip.

LINK-BELT COMPANY Indianapolis Chicago Philadelphia Atlanta Dallas San Francisco Toronto Cleveland Pittsburgh Detroit Offices, Warehouses and Distributors in Priacipal Cities


## IDPTOV <br> MOUNITIT P PONTIS <br> Little Things that can be a Big Help

THERE are literally hundreds upon hundreds of war 1 jobs on which these Norton spindle mounted grinding wheels can be a big help. Not only in the tool room for making molds and dies but on countless production jobs they provide the quickest and easiest way to remove metal. You will find Norton points of Crystolon abrasive especially handy for the hard-to-get-at places on small nonferrous castings-and Alundum points equally good on steel castings. There's a Norton catalog that shows the complete lines of sizes and shapes. Write today-asking for Form 43-S.

## NORTON COMPANY, WORCESTER, MASS.

Nearly 200 Standard Sizes and Shapes

## NORTON ABRASIVES

Stifles the wear of ordinary yo in 4 great steel plants with Nironite C-B Work Roll

In hot strip mills, Mackintosh-Hemphill Nironite C-B Work Rolls have proved to have three times the wear of ordinary rolls. This greater wearing quality means lower costs and increased tonnage from the same sec of rolls.

M-H Nironite Rolls are high nickel chromium alloy iron, of the grain or indefinite chill type. The body surface structure very closely approaches that of true chill and the body centers and necks are tough and strong. They are ideal for flat work. These rolls are rapidly supplanting the true nickel chill types for Strip Mill Intermediates. They will not spall; give better finish and greater tonnage per grind. Because of their surface likeness to chill and freedom from spalling, the Hard Grade "D" has in a number of cases succeeded Forged and Hardened Steel Rolls for Cold Work.

Other . Itactiminash-ilemplidill furoduch
Rolling Machinery . . . Shape Straighteners
Strip Coiners . . . Shears . . . Levellers $\qquad$
. . . Special Equipment . . . Iron-Sted Cal
. . The NEW Abramsen Straightener proved Johnston Patented Corrugated C

Pots and Supports . . Hearty Duty Engine La

MACKINTOSH-HEMPHILL COMPANY, Pittsburgh and Midland, Pen
-if you want to

The rolls with the red wabblers they roll more tons per grind

## Shirtsleeves without Stuffing

GIVE PROMPT ACTION ON BRASS PROBLEMS


FIKST THING a newewner fimds out abmat Bristol frass is that there are no stutfed shirts behind the deoks Iu the athires as in the mills it's a hand-workinge cuthit all the way throusth, with no fuss or feathers on the sithe. So whan anywhe whates in with a problera in brasis wo ligure his tizae is just as valuable ss ours He is wrivencerl ite to sere the men whe cen help him




. . . becanse for ninety-two years it has been a Bristo philosephy that business is better off if it $t^{\circ} \equiv$ kept fre from the grim and tiresome mase of formalities tha breed confusion, cut down efficiency, and impair fina reanlti. What's more, in ninety-two years we base beet lucky eaungh so find a lot of brass niers who see it th same wey. If you are like-miaded, well certainly lowl formand to metinu you and talking ore: future plat for your brese paximite

Hebers of Brass Suzar 1850 , of Bristell Corzecticu

## JFSSOP'S

 Controlled Quality Plan MensMETTER STPEEL
Means

JJESSOP'S Controlled Quality Plan covers every consideration of tool steel manufacture from selection of the proper grade to actual performance.

Using the latest steel making methods and equipment, Jessop steels are laboratory tested and controlled. Over forty years experience in fine steel making insures the presence of the most important ingredient - QUALITY.
$\star \quad \star \quad \star$
HIGH SPEED - SPECIAL ALLOY - GARBON COMPOSITE TOOL STEEL - STAINLESS STAINLESS.CLAD



## THAT EXTRA "SOMETHING"

|If lakon unare thim manufacturing atatlity to make the highty specialized preducts used Nadoy No poress metals

If feapisem male than a kitwiedige of ails themselves to make materm lubri=
 poterne to mbuld iather porkimes for


What is that exfro sprmeathimet

- Eौ' hord spubet?maty but the prix terim prapi cuecoh in is sanpe min exploin

 bapk . . the endess surs ef experim Fitationg the sa betrer thor hou bext Whits as the long pent imestiputions


A packed zeicecomer in the homos ef - Fipughint resevish Fichinmur cuilew


have been during Word Wer I, when We tearned lessens still cpplicable today, Recent develcen:ents which roke possible the speedy moss pro duation of ecmoment and munitions chaw gon be traced bcck to resecnt waí sf e decede or more cgo.

From the begiming made in our "lass," five toughton pients Fellow threugh or a procuction sesis. In the nation's key cilies cre heughtom gecinicol spequalists in metch working, hect It zolity, lubricalich, textie precessing. fromsmissiont bettims ont mectunical puckings it is heme ice te seck ub the atores of mere then ent hunerec -cughicht men the ceuntry ever.

For excmple, shell mamurccurers suluth a quam⿻inite si ither wcuic preperiey heremer sheils गtecie fom
 in toutionerur cos.

## 

 Heqgutizm ot aluminum? - Simeling aiuminum? *hacigating 24-hour guans? - Processimy fexities?



Ficne builders want lecther pock ings with will withstend cli presures end temperctures, even dcw- to -irus $00^{*}$ F. We supply them . . . . ard iest.

Gun mokers demond a cuting oil thet will encile tem to drill berrels ecurctely and fest . . . e tough icb, for which houghton supelies rough eils.

Terik mernfecturars ceill for cep Eurizers ther will cesz-harzen pllte.. egcin Houghton coricees.

And so it enminues es wer joracucfion consicrily brings rew griblens E. Acugrion os $C=$ is iustly prouer of its Resecret Snctit vix went you to use its focilities, its kncwledge. Therafore we recect the cifer mece oc incusty sefore wor came to imerico

Ther at any lime in any wey, you peti aur avperienco witl help yenwhether ar mat = ltcughton grocuce is invcivect the tull cecilifies of our Resecrch Sicfi are ar ycur servicz.

We have the tectmical spercilistsyou have the ecemical grevients. Iat's continue o fring then recetter. and in that way teip orimg licer\% deser.
E. F. HOUGHTOM \& CO. CHICAGQ

एमIGASELOHR<br>DETTCII

SIN: ERANCTSCO
78 years at Premeerwing Restearch

# PRODUGTION 

## VEELOS . . . . the Practical Link V-Belt

## HOW TO COUPLE VEELOS



1. Bring and rival up through anlargod holo in segment.

2. Aend belf backward holding segment ends logether under thumb.

3. Pasi rival down slot to propar posillon.
4. Bend bolt further back ward fore. ing enlarged opening down over rivet head until head is through.

5. Straighten belt bringing rivet head up through enlorged hole.
6. Bend bell forward to pass rives down the slot to proper position. Repeal for the other rivets.

Vpebios - Tho practient link V.lbelt han lucen proved on war prodicetion drives that railly pott $n$ belt "throngh the mill." Veelos is casy to install... cany to adjust ...rimanmooth ... runs steady. A Veclos engineer ... especially trained in power Iransmiasion problems . . . can show you how and why in leas llun 15 minutes!

## FREE! VEELOS PRODUCTION MANUAL!



Frcomannal_jual off tho press - - givess cotrlplete inatruchionm on Hae.... lestgib tuble... chtincering datit... analyain or Vorlog link connatricilion. 'l'ella loww to mathare. . . 4оиple. . . umeouple... uny sizs of Vextos. Write torday for your aopy of this valiable refermacs.

Made In All Standard Sizes ( $3 / \mathrm{m}^{\prime \prime}, \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$ ) ... Fits All Standard V-belt Grooves.


THE LINK
V-BELT

## ADJUSTABLE TO ANY LENGTH ADAPTABLE TO ANY DRIVE

MANHEIM MANUFACTURING \& BELTING CO.


SPECIALISTS IN SHEET, TIN AND STRIP MILL
EQUIPMENT

HEAVY PLATE LEVELLERS

HI-SPEED SHEET AND TIN MILL SHEAR LINES

Assecioled Componias
IE WILSON ENGINERING CO. FINN \& DREFEAN CO. CIEVILAND, OHIO chicnco, ith.
the mekay machine co. Youncsrown, ohio
The whuman smith owen ENGR. CORP., ITD. IONDON, ENCLAND

The haudin machive co. THOMASTON, CONN.

## the wean engintaring co.

 OF CANADA, ITD. HAMILTON, ONT.
## Subsidisiy Conpeny THE MODEN conshuction co.

 cidviand, ohtoELECTROLYTIC \& BONDERIZING TIN PLATE EQUIPMENT

WILSON TUBE ANNEALING FURNACES

WEAN VACUUM CUP SHEET AND PLATE LIFTERS


. . . how to machine, solder, roll, shear, blank, draw, spin, press or brake form, forge, silver braze, anneal, pickle, rivet, grind, polish, buff and efch stainless steel-and how to protect it during and clean it after fabrication.

Are you working stainless steel? Are you looking for short-cuts or improved methods of fabrication? Are you, perchance, experiencing difficulty due to changes in analysis or in specifications? Then you need this book: "The Fabrication of Republic ENDURO Stainless Steel."

It will bring you detailed information on how to work stainless steel by various methods. And the suggestions are simple and sound-based on the "know-how" of Republic metallurgists and engineers acquired during more than two decades of research and practical experience.

In this book, too, are tables giving properties of the leading types of ENDURO, recommended machining speeds, annealing temperatures and pickling treatment, approximate blank diameters for cylindrical shells, comparative physical and mechanical properties of ferrous and non-ferrous metals, hardness conversion figures and sheet metal gauges.

A copy of this handy book is ready to be mailed to you just as soon as we receive your request. Just ask for "The Fabrication of Republic ENDURO Stainless Steel."

## REPUBLIC STEEL CORPORATION

 Alloy Steel Division, Dept. ST Sales Offices - Massillon, Ohio
## GENERAL OFFICES - CLEVELAND, OHIO

Berger Manufacturine Division Culvert Division Niles Steel Products Division Union Drawn Steel Division Stecland Tubes Division : Truscon Steel Company Export Deparmenr: Chrysier Building, New York, New York


## 



## Poison . . . and antidote

Each weapon in war has its match or foil.

Sub and blimp. Tank and tank buster. Minelayer and minesweeper dircraft and A. A. gun.

Yat they all have one thing in common. Being mubile mech:misms, they operate with revolving shafts and gears that curn on antifriftion bearings. Without such beanings there
could be no ease of movement, no "Huid" flow of power, no sustained performance. Friction would freeze motion.
And since "nothing rolls like a ball," engineers use New Departure ball bearings for thousands of installations ranging from tiny precision instruments to the transmissions of mighty tanks-as well as for the machines that make them.

New Departure is making bearings by the millions. In fact New Departure has a major responsibility in the whole ball bearing war production prugram.

And zee are looking forward to the day when these ball bearings will again be arailable for peacetime purposes in even higher quatity becialuse of the lessons of wartime production.


They Relieve "Oilers" and "Greasers" for other work ... provide better, more dependable, less costly lubrication

- Avoid the costly down-time while an oiler crawls over a machine lubricating each bearing individually,-the breakdown if he misses one, -the costs and lost time of accidents. You can assign these men to other, more important, and safer work by equipping your machines with Trabon Lubricating Systems!

On overhead traveling cranes, costly steel mill equipment, forging presses, brakes, shears, crushers, and boring mills, screw machines, punch presses, and other lighter duty machinery, Trabon lubrication-for years-has been proving its
dependability in meeting every industrial lubricating requirement.

Trabon lubrication makes absolutely certain that every connected bearing whether large or small, easy or difficult to reach, receives the exactly desired amount of lubricant. It minimizes downtime and machine tie-ups-prolongs bearing life -reduces accidents and compensation costs. Install Trabon on your machines and get the many design and operating advantages only Trabon can give you. Manual or automatic operation. Send today for new fully descriptive Engineering Bulletins!

# TRABON ENGINEERING CORPORATION 

 1818 East 40th Street - Cleweland. Ohia

# "Buddy, meet an old friend" 

You who use this friendly, long-life wire rope here at home can imagine what it would mean to you. Old side kicks who used to work with you are now in distant parts. If ever dependability counted in wire rope, it's doubly vital there. So when a Wick-wire-rigged Liberty Ship gets through to them, and from its cargo unloads this reel with the friendly, trusted name, you can be sure it brings cheers.

The boys out there came from every American industry. They know that you need Wickwire Rope, too. So they're mighty thankful when you make what you have last longer,
so that more can be spared for new shipping and for their heavy work along the fronts.
But when you do need more wire rope, please order it without reels, if lengths will permit, so our boys can have this greater convenience. Will you? Wickwire Spencer Steel Company, 500 Fifth Ave., New York, N.Y.


First Maritime $M$ and Victory Fleet Flas in all New England was awarded to Wickwire for outstanding production achievements.


DO YOUR MEN UNDERSTAND) STRETCH?
The free book, "Know Your Ropes," tells them just what to expect, and what to look out for. In nddition it pictures splicing methods, life-extension rules, ete. This brok can save you money-and save wire rope fire the war fronts. Send for your free cong.

SEND YOUR WIRE ROPE QUESTIONS TO WICKWIRE SPENCER


WICKWIRE ROPE
Sales Offices and Warehouses: Woreaster, Naw York, Chieago, Buffalo, 5an Franciseo, Los Angeles, Tulsa, Chattanooga, Houston, Abliono, Taxas, Seafle. Export Sales Department: New York City

## Koppers "C \& C" Projects

## *Current and Contemplated

## From the "smoke of battle" to smokeless cities



The new Koppers Oven plants which will produce in excess of $5,000,000$ additional cons of coke per year (rogecher with all the by-products) have been an invaluable addition to America's wartime steel industry.


Tar that once roofed American factories now helps "unroof" German factories. Coal derivatives which used to go into coal tar roofing pitch are now one of the sources of war-vital materials for electrodes (used in electric furnaces for the production of airplane materials).

## Tar and Chemical Division



Wartime roofing proves anew- that coal tar is best. In one war factory alone, more than 200 railroad carloads of Koppers roofing was used. On vast roofing projects like this, valuable iessons have been learned in roofing . . $\therefore$ and the best advice still is: "Stick to coal tar.

Koppers Company and Affiliates, Pittsburgh, Pa.


CHICAGO RAWHIDE MANUFACTURING COMPANY
1308 ELSTON AVENUE CHICAGO, ILLINOIS
$\$ 4$ YeorI Monvfocturing Quality Mechonieal Leather Gaod Exchuivaly and now Sirvene 5ynthelic Products
PHILADELPHIA - CLEVELAND - NEW YORK DETROIT - BOSTON PITTSBURGH CINCINNATI

# Stainless Steels for the Tough Jobs in Industry 

Typical applications of Stainless Steels selected for specified jobs



Autoclave used in the plastics and rayon industry is made of chro-mium-nickel-molybdenum stainless steel to combal the pitting corrosion of organic acids.


Wringer baskets are made of chromium-nickel steel to resist the corrosive action of mixed sulphuric and nitric acids in the manufacture of explosives.


Absorption lower, of high-chromium corrosion-resistant steel, reclaims nitric asid from waste $\mathrm{NO}_{2}$ gases in the chemical industry.


Oil refinery expansion joints are built of 18-8 chromium-nickel steel to withstand corrosion under high pressures and temperatures.


Aircraft nose ribs of stainless steel will be covered with a skin of stainless steel for a light structure with high strength.


Centrifugal extractor in the pharmaceutical industry is made of 18-8 stainless steel for product purity and equipment durability.
"Electromet" is a registered trade-mark of Electro Motallurgical Compony

STAINLESS steels do the tough jobs in industry. Their superior resistance to corrosion and oxidation, and their remarkable strengthweight ratio, make them valuable in many warproduction applications.
A steel is classed as stainless when it contains at least 12 per cent chromium. Other alloying elements . . . such as nickel, manganese, columbium, silicon, molybdenum, titanium, and vanadium . . . may be added to vary the properties of the steel. This variation in properties makes it important that you select a steel for the job it has to do. By careful selection of the proper stainless steel for your job you can help conserve stainless steals and the metals used in making them.


Although we do not make steel, we have for 35 years produced Electromet ferro-alloys and metals used in steel-making. Our metallurgists have made an extensive study of alloy steels, both in the laboratory and in the field. If you have a problem in the selection, fabrication, or use of alloy steels, consult us.

## Electro Metallurgical. COMPANY

Unil of Union Carbide and Carbon Corporation 30 East 42nd Streat IIIC[ Now York, N. Y. In Canada: Electro Melallurgical Company of Canada, Limited, Welland, Ontario.

## olmouncing <br> A NEW GEARMOTOR

## to figher

## TODAY'S PRODUCTION BATTLES

Westinghouse offers you a complete new line of searmotors designed for present and anticipated postwar needs. Fifty years of Westinghouse gearing experience have gone into this redesign . . . resulting in improved sedrmotors that can be produced faster.

For War Production, these new gearmotors are standardized for ensy, correct mpplication: improved for more efficient service; simplified for faster delivery. For postwar conversion, the Westinghouse line offers units that can be moved easily to new locations; interchangeability of parts for long service; streamhining that blends with modern machinery.

Ask your Westinghouse representative shout this efticient, new gearmotor. He will be glad to consult on your present speedrefinction problems, of designs for the future.

Meets A. G. M. A. Recommendationsmakes it easy to select gearmotors for any job. Eliminates confusion in drawing up specifications.

Unit Responsibility of design, manufacture and service. Westinghouse builds both motor and gears.

Easy Accessibility - both gearing parts and motor are easy to inspect and maintain. No need to disturb foundation of gearmotor or driven machine.
"Tough-Hard" Gears and Pinions-because heat treating by the exclusive Westinghouse BPT process hardens gear teeth for longer life; toughens them for greater strength.

Simplified Design requires a minimum number of moving parts, thus involves fewer parts to wear.

Positive Lubrication of both gears and bearings minimizes maintenance...assures long, trouble-free service.

Inferchangeable Parts between unit types speed our manufacture of gearmotors . . . reduce your part replacement stock by $40 \%$.

Uses all Westinghouse Motor Typesopen, splash-proof, totally-enclosed, or explosion-proof.

Streamlined Compactness saves production space because new gearmotors can be fitted tightly against the machine they are driving.

Improved Foundation Stability assures longer life for both gearmotor and driven machine . . . better holding of alignment, reduced noise and vibration.

J-0720y



## GISIIOTT $3-R$ ANT $4-R$

## SEDDIE-TYPE TURRET LATHES

The immediate acceptance of these new Gisholt lathes by leading manufacturers, indicates the sound engineering principles they embody and the important contribution they are making to the war effort.

The Gisholt 3-R and 4-R models are large, saddle-type turret lathes, built in two sizes: $21^{\prime \prime}$ and $24^{\prime \prime}$ chucks; $5^{11 / 4}$ and $91 / 4^{\prime \prime}$ spindle bores. Literature on request.

GISHOLT MACHINE COMPANY East Washington Avenue - Madison, Wisconsin

Look Ahead-Keep Ahead With Gisholt Improvements in Metal Turning

# COOD? <br> They have to be to get where they are! 

In good light or bad . . . operated by experienced weighmen or novices . . weighing all kinds of commodities ... Fairbanks Printomatic Scales have proved to the world that they have what it takes! They eliminate human errors, speed up weighing operations, and provide a PRINTED record showing what was weighed, who weighed it, and when.

Fairbanks Scales have proved their reliability through their 113 years of service. Each part, carefully designed for its specific function and built with precision, guarantees your incoming, outgoing, and processing weight operations.

The Printomatic records the correct weight automatically, prints it

on a roll tape, weigh ticker, or combination of both, or on gummed tickets. Adaptation of Fairbanks Printomatic Scales to weighing problems, simple or complicated, is practically unlimited. Why not investigate what these scales can do for you? Fairbanks, Morse \& Co., 600 S. Michigan Ave., Chicago, Ill.
$\qquad$

Fairbanks Printomatic Conveyor Scale $\rightarrow$ keeps printed record of piecework in foundry.


Fairbanks Printomutics recording meat shipments to retailers. Each of 221 different kinds of meas is \&iven a desisnatind number.


Fairbanks Coal Mine Car Scate with Printomofic weiths mine cars in motion, protecting employer and miner.


# FARBANKS-MORSE 


[^0]:    The percentages of capacity operated in the first six months of 1942 are calculated on weekly capacities of 1.49 S .029 net tons open hearth, 128.911 net tons bessemer and 71,682 net tons electric ingots and steel for castlugs, lotal 1,698,622 net tons; based on annual capacitles as of Jan. 1,1942 as follows: Open hearth $78.107,260$ net tons, bessemer 6,721,400 net tons, electric $3,737,510$ net tons. Beginning July 1 , 1942, the percentages of capacity operated are calculated on weekiy capacities of 1,500,714 net tons open hearth, 128,911 net tons bessemer and 81,049 net tons electric hearth $78,247,230$ net tons. tessemer $6,721,400$ net tons, electric $4,225,890$ net tons.

    Percentages of capacity for 1943 are calculated on weekly capacities of $1,518,621$ net tons open-hearth. 125,681 tons besscmer and 87,360 tons electric ingots and steel for castings, total $1,731,662$ net tons; based on armual capaclties as of Jan, 1 . 1943 , as follows: Open-hearth 79.180, 880
    net tons, bessemer $6,553,000$ net tons. Electrje $4,55-4.980$ net tons.

[^1]:    ${ }^{\circ}$ Computed on bases of steclmaking capacity as of those dates.

[^2]:    A stack of trays holding pretreated cabbage is rum into a cabinet. Photos by United States Department of Agriculture

[^3]:    \$Preliminary.

[^4]:    From The Foundry.

[^5]:    Trude name of National Carbon Co. Inc.

[^6]:    These Products and Processes are, however, only typical of the many contributions ACP can make to your production goal.
    Others include: DEOXIDINE to prepare stecl, aluminum and dural properly for painting; FLOSOL the exceptional soldering flux; KEMICK for painting metals subject to high temperatures; LITHOFORM to coat galyanized iron to hold paint.
    Let the quarter-century of experience that has made ACP Products and Processes known the world over help you solve the problems of today's production . . . no matter what your metal fecating and finishing needs.

[^7]:    Add 0.25 for acid open-hearth; 0.50 electric. Cold-Fyniahed Carbon Bars: Pittsburgh. Chicago, Gary, Cleveland, Buflalo, base $20,000-$ $39.999 \mathrm{lbs} ., 2.65 \mathrm{c}$ : Detroit 2.70 .
    Cold-Finished Alloy Bars: Pittsburgh, Chicago, Gary, Cleveland, Buffalo, base 3.35 c ; Detrolt, del. 3.47 c .
    Turned. Ground Sharijiz: Pittsburgh, Chicago, Gary, Cleveland, Buffala, base (not including turning, grinding, pollshing extras) 2.65 c : Detroit 2.72c.

