
lominy end quench offers quick, simple test for hardenability of sfeel. Page 106

EDITORIAL STAFF
E. L. Shaner

Editor-in-Chief
F. C. Khelitzueice
A. J. JaIx
f. W. Bitensti. Mangging Editor Enginecring Elitor J. D, Ksox Guy Munmatio Serel Plani Editar Mactrine Toal Eilitor
Ahther F. Macconoche
Conurituting Editur
D. S. Cabot

Ard Editor

Associale Editors

C. H. Haxloys, H. G. Gudk, W. J. Cimratile Ner York

Pithourgh, It. L. Hartwome Chierfon, I. F. Hoss Densit, 3. II. Allek Washington, L. M1. I. Amy London, Fincery 1 bluratr

Assistant Edifors

J. Co Sulivax, Jay DeEhelis, II Verne Nomek J. 3. Kıиг:

BUSINESS STAFF
C. O. IITS

Busincss Manager
R. C. Jalinke

Ahterlising Manaber
C. I1. Barsliy

Mons Furrcising Serrica

 Chiergo, I. C. D'ef.otr
Cemblord, 12. C. Jatink E, I). C. Kiverit Les Angeles, $1 \cdot$ J. Fullatis J. W', Zun:

Circulation Mhanager

Main Office

Femess building. Clevelant, ohien

Branch Offices

Chiroun
Ifarrui
$\square_{\text {shentat }}$
inama

110 Eune 12m! Strcet
. 520 Norils Michigan Averate Koppers Building G5tx) Cuss Avanue Linginatori1123 Sianional I'reas Building ro3 Anvelex 1311 Nurth Ne. . 2030 Carew Tlower Londent 2 (artin Nes Ilanushice Avenue

$$
\cdots
$$

 Previdepi and ireasurad, Ohio. E. L. Sít iva: Hentent; F, G, strisurer; 1:, O. Hats. Vice Heculer, Audit $13_{\text {ureat }}$ of Cis Socretary:
Ahnew, Papers, Inc., and Circulationu: Assumiated denaithun. Putlisheat
Gited Stutery bed imday. Suloseritotion in the Wha, Central Ihnimernums. Canadn, Nexiro
 winghe cupres afl curbour countries. une year $\$ 12$. Eaticed as mecond insuea) 25 c .
 Coprioht lyis ing, the fer of starch 3,1879 .

M A Y 17 , 19943

Number
20
NEWS
U. S. Tooled Up; Cuts Back Plant, Machinery Programs 69
Steelmakers "Approve" 48-Hour Week; Hope for Modifications 70
Industrial Developments-Present, Past and Pending 71
Rout in Tunisia Is Blow to Axis Economy 71
No Early Extension of CMP Pends, Mill Supply Dealers Told 72
Steel Expansion Runs Six to Eight Months Behind Schedule 74
Canada's Shipbuilding, Aircraft Programs Enlarged 76
Shift from Wood to Steel for Inland Oil Vessels 77
Put Statistics To Work! 80
Priorities-Allocations-Prices 82
Processing Charges Established on Frozen Steel Inventories 83
Men of Inclustry 84
Obituaries 85
Metalworking Companies Cited by Armed Services 90
Functions, Organization of WPB Operations Office Formalized 91
Will Serap's Burden Be Heavier? 92
Seek To Co-ordinate Mcthods in Renegotiating War Contracts 93
Brazil's Minerals Bridge Gap in United Nations' Supply Line 94
Steelworkers Use Blast Furnace Slag To Fertilize Victory Gardens 95
"No Industrial Pearl Harbor!" in Postwar Era 96
FEATURES
Behind the Scenes with Steel 4
As the Editor Views the New's 65
Windows of Washington 78
Mirrors of Motordom 87
The Business Trend 97
Industrial Equipment 130
New Business 175
Construction and Enterprise 176
TECHNICAL
All-Hydraulic Press Adopted for Forging Operations 100
Building Ships in Indiana 102
How To Use the Jominy End-Quench Test 106
Welded Ladles Help Increase Steel Output 112
How To Organize Your Plant Protection System 116
Ventilation for Steel Mill Buildings 120
Flight Level Assembly Line Speeds Bomber Production 125
Standard Methods for Checking Chemical Analyses of Steel 128
PRODUCTIONSteelworks Operations for Weck75
MARKETS
Steel Supply Situation Static under CMP Control 155
Market Prices and Composites 156
Index to Advertisers 183
Where-to-Buy Products Index carried quarterly

EVERY AIRPLANE PRODUCED IN THIS GOUNTRY has, in ths moter, parts made an EX-GELLO PREEISION MAGHINES

 T'S A FAR CRY from the small $12 \mathrm{~h} . \mathrm{p}$. motor that Wilbur and Orville Wright produced in their bicycle shop forly years ago for the first American Aying machine . . . to the precision-made engine that makes aviation a vital factor in today's warfare. I's a difierence of many hundreds of horsepower, of innumerable mechanical inventions and refinements, of new processes in the applied art of aeronautics -all giving to the modern aircraft power plant a stature undreamed of by the pioneering Wright brothers. As in many other industrial directions, America is now foremost in the production of dircraft engines, both as to quality and quantily. This aftainment has been due primarily to the tremendous strides that have been made in machine fools that could adhere to exfremely close manufacturing tolerances, and could produce repeatedly, for interchangeable use, and at great and sustained speed, the thousands of precision parts that make up the aircraft engines of today. In the construction of every airplane engine produced in this country-parts are used that are machined on one or another of the various precision machine tools made by Ex-Cell-O.
EX-GELL-O CORPORATION • DETROIT, MICH.

To left: Ex-Cell-O Precision Thread Grinder No. 33 (one of nine Ex-Cell-O styles) widely used in aircraft industry for production of accurately threaded parts. .. . EX-CELL-O precisian thread grindars grind fine threads directly from heat-treated blanks and finish grind coarser threads after heat freatment.

[^0]Precisiou THREAD GRINDING, BORING AND LAPPING MACHINES • TOOL GRIND. ERS - HYDRAOLIC POWER UNITS • GRINDING SPINDLES • BROACHES • CONTINENTAL CUTTING TOOLS - DRILL JIG BUSHINGS • DIESEL FUEL INJECTION EQUIPMETS PURE-PAK CONTAINER MACHINES • R. R. PINS AND BUSHINGS • PRECISION PARIS

4 YRS．， 3 MOS．， 14 DAYS：Good news from Africa，the presence of Winston Churchill and other high Allied officials in Washington and signs of increasing unrest in occupied Europe combine to stir hope in many minds that the end of the war is definitely nearer than it seemed to be a few short months ago．
It is unwise to be too optimistic on the basis of recent favorable developments．We cannot afford to lessen our effort．On the contrary，we should buckle down to more and harder work and to greater sacrifices．Every additional punch we can deliver now will tend to shorten the war．
Can we shorten it to the length of World War I？
Serbia declared war on July 28，1914．This act， which touched off the hostilities in the first World war，antedated the armistice of Nov．11， 1918 by four years，three months and 14 days．
The present war broke out on Sept．1， 1939. Four years，three months and 14 days from that date falls on Dec．15， 1943.
Dare we hope that more intensive effort all along the line could bring the European phase of this war to a close by that time？It is a powerful incentive．

TOMORROW＇S BUSINESS：Industrial

 news is heavily tinged with speculation as to the vol－ ume and character of business in the postwar period． No one can visit the West Coast industrial centers without encountering discussions as to how the tre－ mendous plant capacity now engaged in war work will be employed in peacetime．Most obscrvers feel that a greater portion of the nation＇s consumer goods may be manufactured west of the Rockies after the war．Some contend that aulomobiles（ p .87 ）will be among California＇s post－ war products．Others believe the Pacific coast＇s op－ portunities will lie more in the field of light con－ sumers＇goods，such as refrigerators，stoves，radios， washing machines，etc．
Pertinent to the West Coast problem－or，in fact， to the postwar prospect in most American industrial areas－are factors discussed at a meeting of execu－ tives in Neir York（p．96），sponsored by the National Industrial Advertisers Association．According to
speakers at this meeting，this nation after the war will have a vast accumulation of purchasing power in the hands of buyers，great supplies of materials of high quality，and a tremendous force of workers fa－ miliar with the technic of mass production．

With these and many other resources at its dis－ posal，how can industry co－ordinate its policies and activities to meet the challenge of postwar adjust－ ments？
The answer is still in the making．It will take careful planning and the co－ordination of the ef－ forts of many groups and interests to insure success． Consideration of these problems now－before it is too late－may be the means of avoiding an＂indus－ trial Pearl Harbor．＂

ORE，COAL AND SCRAP：Everybody knows how the weather interferes with activities in the war zones．The effects of fog，mud，snow，rain， ice，sand and wind figure in the news of battle fre－ quently．

Not as well known is the extent to which untimely behavior of the elements affects industrial production on the home front．Since Pearl Harbor，American industry has suffered more than its normal share of trouble from floods，excessive snow，ice，tornadoes， etc．

A case in point is the present situation on the Great Lakes．The ice in the upper lake bottlenecks went out much later than usual．As a result，ship－ ments of iron ore to lower lake points will not hit a capacity pace until late in May．Unless the weather permits shipments to a later date than usual in the fall（p．92），there is a possibility that the ore brought down this season will not exceed the 1942 tonnage．

This unfavorable condition tends to jeopardize the delicate balance between fuel，iron ore and scrap． Thanks to fine co－operation by many groups，the sup－ ply of scrap has been built up to a fairly comfort－ able tonnage．But if a shortage of iron ore or a pro－ longed coal strike should cut down the output of pig iron appreciably，steelmakers would be forced to cut into their precious stocks of scrap to make up the deficiency．

We still need all the scrap we can get and we need all of the iron ore that can be transported．We
also need a continuous output of fuel and as much good luck as to weather as Dame Nature will grant us.

RELIEF FOR HEADACHE: With few

exceptions, manufacturers who are working on war contracts for government agencies are deeply concerned over the renegotiation of contracts. A half dozen or more industrialists cannot be together 10 minutes without somebody bringing up the subject of renegotiation.

It is likely that much of the anxiety arises from a lack of understanding of the objectives of renegotiation. Another source of concern is that in some instances the renegotiators have evidenced little knowledge of industrial operations and the contractors have lost confidence in them.

Every industrialist subject to renegotiation will do well to read the report of a meeting of renegotiators (p. 93), held recently in Pittsburgh to promote a more effective co-ordination of renegotiating methods. At this meeting it developed that of $\$ 2,500,000,000$ "recovered for the government by contract renegotiations," only 25 to 30 per cent represents refunds resulting from renegotiation of profits, whereas 70 to 75 per cent represents savings resulting from price reductions.

We believe that manufacturers may derive some encouragement from the fact that the renegotiating agencies avowedly prefer renegotiation of price to renegotiation of profits. If the deed matches the intent, and if the renegotiators can get the prices adjusted properly before a profit is entered in the books, the headaches of contractors will be relieved considerably.

NOT FULTON'S FOLLY: One of the most fascinating developments of this war is the contest in which the shipyards of the United Nations are pitted against the destructive force of the enemies' submarines. Shipbuilders, gradually gaining in a nip-and-tuck race, were heartened considerably by the Allied victory in Tunisia. This opens the Mediterranean and shortens the route to the Near East, which is equivalent to an increase of more than two million tons of merchant ships.

But war on the sea is not confined to cargo carriers and the traditional fighting ships. Recently more emphasis has been shifted to auxiliary vessels -many of them of moderate size. In this latter category is the ocean-going tank carrier. This is a flat-bottomed vessel of shallow draft, designed to
carry a load of tanks right up to a beach, where they can be driven ashore under their own power.

Most of the tank carriers are being built in shipyards on inland waters. A typical yard is at Evansville, Ind., on the Ohin river. The yard, operated by the prime contractor (p. 102), is essentially an assembly plant. About 15 subcontractors, situated within a 200 -mile radius of the yard, prefabricate 81 per cent of the hull. Adaptation of Eli Whitncy's principle of interchangeable manufacture, coupled with modern refinements in design and in welding, makes possible this system of prefabrication and assembly at widely separated points.

An interesting sidelight on how old ideas are put to work in the present war is provided by the discovery that a novel method of launching a vessel sideways, developed and patented by Robert Fulton more than a century ago, solved a difficult launching problem at the Evansville yard.

THE LINE IS WEAK: Every day brings out new evidence that the government is los. ing ground in its battle against inflation. It is managing to slow the pace of rising prices and wages, but it is not "holding the line," nor is it even offering the degree of resistance which the public would welcome.

Much of the trouble goes back to the social experiments of the thirties and the coddling of pressure blocs during the "defense" era. The administration made commitments in those periods which cannot be shaken off easily now. Consequently, the government cannot prosecute the war independently: it is encumbered by embarrassing entanglements of the depression and defense "emergencies." These millstones are apparent in the administration's position on labor relations, wages and hours, prices and taxes.

The present failure to hold the line is bound to cause violent repercussions. Out of the chaos is likely to emerge a reshuffling of agencies, with hope of some belated improvement in the handling of the nation's internal problems. A thorough house cleaning is overdue right now.

FOR QUICK RCTION Oll STEEL

WERE having better luck on steel, now," said a manufacturer the other day. "There were times when we had to 'phone and 'phone, but now We are going to the warehouse with the most complete stocks, with best facilities for handling and delivery. We are saving the time of shopping around-and saving man-hours in our plant-by calling Ryerson first.'

Sound reasoning, isn't it, when you want something, to go where you're most apt to get it. Whecher it's fast service, a steady, reliable source, a cutting or fabricating operation that will facilitate your production, or just information and assistance, you're most apt to get what you want by calling Ryerson first!

Ryerson has maintained its leadership in the steel business by making good every promise, by knowing the kind of service customers want and giving it to them, and above all else, by having in stock most of the time the kinds, shapes and sizes of steel they want, ready for immediate delivery.

Stocks are reasonably complete, considering the war demand placed upon them. But, whatever kind of steel you want, within the WPB plan; whatever service you would like to have, call Ryerson first! You'll get prompt, intelligent cooperationat Ryerson!

JOSEPH T. RYERSON \& SON, Inc., Chicago, Milwaukee, St. Louis, Cincinnati, Detroit, Cleveland, Buffalo, Boston. Philadelphia, Jersey City

Have an Owen

$$
\frac{\text { ave }}{\text { you an Oven }} \text { Problem? }
$$

U. S. Tooled Up; Cuts Back Plant, Machinery Programs

Abstract

Accent to be placed on direct munitions production . . . Some construction to be halted . . . Revamping of program to have farreaching effect reflecting change in equipment situation

IN A MOVE which will have farreaching effects upon war industry, the IVP last week took action designed to throw maximum strength of facilities, phant and equipment into the procluction of war goods.
The move calls for these steps: I-Re-examination of all previously approved projects for construction of new manuficturing plants and machinery to determine whether the need for them camnot he eliminated by greater use of present structures, plant capacitics, machive trols and equipment.
2-No purchase of new machine tools, machinery or equipment or erection of buildings will be nuthorized until it has been conclusively proved the work cannot be done by existing facilities.
As result of this action some new fatcilities now being built will be stopped. Some which are now in place producing direct or hudirect military goods will be curtailed as shifts are made from ane type of production to another.
The action follows months of study of the facilities situation in which a number of cancellations of construction projects have previously been announced and represents a united move by the armed forces and WPB.

Plant Facilities Adequate

For the first time in its history, the nation now has a physical plant adequate to make the maximum use of its refources in men, skill and materials.
Detaik of the action now being taken were examined at a number of meetings of the brard of WPB.
To make the program fully effective, machinery was set up to insure proper screening, scheduling and programming of all new facilities. This will be done through a new facilities review committee in WPB, on which all claimant agencies will be represented, which will limit the facilities pregram to just what is neceded and make certain that it is sthaped so as to keep pace with the ever-changing requirements of modern warfare. This committee will replace the Facility Clearance Board.
All orders for new tools and equipment, including those now approved only by the Army-Navy Munitions Board,

WPB for approval, the only exception being foreign construction and certain "command" projects necessary in theaters of war.

Each procoring service is to prepare, by June 1, a list of the tool orders of its contractors, classified by programs, and indicating whether expansion of capacity is or is not required for each program. Where expansion is not necessary, tool orders will be cancelled.

WPIB Centralizing Inventories

WIPI will move immediately to centtralize inventories and catalogs of idle or available machine tools, against which all proposals for new facilities will be checked to determine whether the new facilities are in fact essential. To keep these catalogs current, all agencies will file with WPB by July 1 a record of available manufacturing capacity not needed for their program requirements, and will report regularly all additions to the list.

The entire program can be summed up l,y saying that it calls for a substantial increase in the proportion of the nation's total production which directly increases the striking power of the allied armed forces. This will come in two ways-
(1) Through use for direct war production of manufacturing capacity ancl materials which thus far have been used to make machinery and equipment. During the first three years of the war program America has devoted almost as much effort to construction and facilities as it did to the production of arms and munitions of war.
(2) Through the reconversion to other types of war production of plant capacity which is being or will be released due to changes in the military situation. As the military situation changes, the services find that they need more of one kind of weapon and less of another kind than had originally been expected. Facilities no longer needed to make weapons which are required in smaller volume are converted to the manufacture of weapons for which the need has increased. Many such conversions have already been made; the number will increase greatly as the new facilities program becomes operative.

In addition, considerable additional
capacity is availathe for conversion to milit:ry production from civilian or indirect military use.
The action reflects a marked change in the nation's machine tool situation.
Since the beginning of 1939 , America laas approximately doubled its stock of machine tools. Machine tools were the big bottle-meck it the start of the program; consecuently, a large part of the war effort to date has consisted of increasing the output of tools-and, along with it, of buikding now factories in which the tools might be used. The size of the uffort is best shown by a few figures-

As of Fell. 28, 1943, the total value of all federally financed new industrial facilities projects stood at $\$ 15,100,000$,000.

Of this, projects costing nearly $\$ 4,000$,000,000 had been completed.

Existing sehedules called for completion of an additional $\$ 7,000,000,000$ by the end of June and for the completion of all active projects (with the exception of projects estimated to cost less than a billion) by the cud of 1043 .

All of this means that the nation has increased its manufacturing capacity enomously. It has inereased it so enormously that maintenance of facility expansion at the 1942 level-which at times took nearly three million men from the country's labor force-is no longer called for. Likewise, when the production of all-important items such as ships and guns is governed by the supply of steel, it is no longer wise to divert from 20 to 24 per cent of the nation's steel output to the construction field.

Undertake New Conversion Job

There is now being modertaken, within the war program, a conversion job not unlike the conversion that accompanied industry's original change-over from civilian to military production.

The first conversion job reflected the shift from a peace economy to a war economy - this one reflects the shifts which incvitably develop in a war economy as the face of the war itself changes. No type of economic planning could have averted the effect of these changes in the war.-But because the fact that there would be changes was foreseen, so that the nation's industry was brought into the war economy with its flexibility mimimpaired, it is now possible to make the shifts which the changes necessitate without delaying or cutting down the total war program.
To attain the goal of limiting all facili-ties projects to those which are vitally needed, the programming of needed facilities will be approached in much the same way as the programming of materials is now handled.

Steelmakers "Approve" 48 Hour Week; Hope for Modifications

MODIFICATIONS to the 48 -hourweek ordered for the steel industry are expected to follow last Thursday's conference between the WPB Stcel Industry Advisory Committee and War Manpower Commission officials.

The industry, through the advisory committee, advised that it "approved" the 48 -hour week "where it is practicable and will serve either to increase the production of steel or to conserve manpower."

Privately, members of the industry oppose the mandatory longer work-week "becanse of many practical operating problems" and because it would increase operating costs from $\$ 100,000,000$ to $\$ 120,000,000$ a year without increasing steel production.

They point out the industry now is operating at practical capacity. Primary mills generally are on a 48 -hour or longer week. Finishing mills often are forced to work fewer hours because of inability to obtain raw steel. Shifting demands for the various types of steel products indicate the advisalility of keeping forces of these mills intact.

Industry spokesmen also wonder how long it will be possible to absorb increased costs without raising steel prices -which now are about the same as in 1939.

High Labor Costs Cut Earnings

Net income of 19 major producers for the first quarters of the years of 1941 (when this country entered the war), 1942 and 1943 decreased from $\$ 83$,$\$ 11,988$ to $\$ 56,466,240$ to $\$ 42,815,711$. On an annual basis, the industry's earnings decreased from $\$ 327,328,000$ in 1941 to $\$ 221,230,000$ in 1942. Imposition of higher overtime costs apparently will further reduce this drastically in 1943.

Viewing this financial experience, producers have only the doubtful solace that they can never be accused of being "war profiteers." On the other hand, they are faced with the very real problem of rehabilitating their plants after the war, and repairing the damage caused by a long period of capacity operations.

Youngstown, O., steel executives expressed the belief that the country is faced with rising steel prices and serions inflation unless the 48 -hour week is modified. They estimate the mandatory longer work week for all departments will cost Youngstown district steel mills from
$\$ 8,000,000$ to $\$ 10,000,000$ annually in increased wages without obtaining any more steel production or easing the labor supply situation.

Many finishing mills in the Youngstown district are working only three or four days a week because of lack of steel.

At Pittsburgh, steel executives said the adoption of the 48 -hour week would result in the down-grading of some workers and the layoff of others. They declared the mandatory longer week could have no effect on steel production inasmuch as facilities now are and have been pushed to capacity. Only result will be to increase costs, raise the workers' weekly wages, and release some employes.

Birmingham, Ala., operators opposed. the 48 -hour week plan on the basis that it could not increase output since the industry already is producing at 100 per cent of capacity and has been for months. The industry has made effective use of all manpower and equipment available.

Alabama executives belived that if the longer week is enforced that workers will use their own discretion in putting in overtime and expect that absenteeism may increase, thus nullifying any benefis that might be expected from the increase in hours of work scheduled.

Increased costs in the southern district will amount to about $\$ 750,000$ monthly, and the "probability is that selling prices must be increased."

On top of the troubles to be caused by the 48 -hour week, if enforced, was the recurrent possibility of a coal strike when the second truce between the United Mine Workers and the goverment expires May 18.

Longer work-week means more money in the weekly pay envelopes of steflworkers and additional costs to an industry already experiencing lean profits. NEA photo

Present, Past and Pending

- MORE TUNGSTEN FOR HIGH-SPEED STEEL

Washnctoon-War Production Board has increased the amount of tumgsten which may be used in production of high-speed steel, effecting substantial savings in use of malybdenum. Amendment to order $\mathrm{M}-21-\mathrm{l}$ a authorizes production and purchase of tungsten-type high-speed steels up to 35 per cent of total high-speed steel output.

- WORK RUSHED ON NEW SOO LOCK

Dulutie-Work on the new deep-water lock at Sault Ste. Marie is expected to be completed by July l, permitting first full loading of five new ore freighters put into service last year by the Pittsburgh Steamship Co.

PACKARD MORE THAN DOUBLES YOLUME

Detrort-First quarter volume of Packard Motor Car Co. was nearly two and one half times that of like 1942 period. Output expansion of Rolls-Royce engines for aircraft and marine engines for PT boats boosted volume to about $\$ 86,000,000$.

- NELSON ASKS SHORT HOLIDAY WEEKENDS

WASmington-IVPB Chairman Nelson has asked that regular fulltime working schedules be maintained in war plants over the Memorial Day and Independence Day weekends. Both days fall on Sunday.

AKRON UNIONISTS THREATEN LABOR HOLIDAY

Absos, O .-Akron Industrial Council-CIO threatens a labor holiday June 2 unless War Lahor Board approves a panel recommendation for wage increases for rubber workers. Unionists say stoppage would not be a strike as a clause in contracts permits them to select one day a year for a holiday.

FIRST IRON EXPECTED FROM STACK IN JUNE

Chicago-First cast from the reassembled blast furnace which wats moved from Joliet, III., to a plant in the Far West is expected about mid-June. One battery of the 225 new bechive coke owens at the plant is being dried and soon will be
charged.

WORK PROGRESSING ON GENEYA STEEL PLANT

Provo, Utah-Expectations are first plates will be rolled at the Geneva steel plant near here in October. Construction is progressing despite difficult supply
situation.

TRANSFERS STEEL INVENTORY CONTROL

WASHANGON-WPB has transferred control over inventories of steel held by manu-
facturers of passenger cars and
Oraturers of passenger cars and parts from order L-2-i to Priorities Regulation No. 13.
Order L-2-i prohibited manufacturers from selling any part of their steel inven-
A-1-k rating.

WAMERICAN PLANE OUTPUT TOPS WORLD TOTAL

Wishagton-President Roosevelt says American aircraft production exceeds com-
bined output of the rest of the world. U. S. production in March totaled 6200 planes, including 500 heavy bombers. Total for 1943 is expected to reach $911,000,000$ pounds and estimates for 194.4 range as high as $1,417,000,000$.

AFRICAN SHIPMENTS AVERT MANGANESE SHORTAGE

NEW York-Serions manganese shortage has been averted by shipments from West
C_{0} Afica, Midland, Mich. Badger, manager, consulting engineer division, Dow Chemical
Con, Midland, Mich.
HAND TOOL PRICE RULING MADE BY OPA
Wasmagrov-Maximum prices of certain hand tools and chain when sold by man-
ufacturers to the United States and Allied governments in orders of $\$ 100$ or more
must not be higher than the ceiling established for sales to distributors, Office of Price
Administration has ruled.
May 17,1943

Rout in Tunisia Severe Blow to Axis Economy

CATASTROPHE for the Axis in Tunisia spells more than the end of a victorious miliary campaign for United Nations.

Collapse of the German and Italian armies in North Africa not only gives the. United Nations a "jumping off" place for an all-out offensive against the European continent, but deals the Axis cconomy a severe blow, cutting off Germany and Italy from critically needed minerals and food products.
The Tunisian victory also opens the vital supply line in the Mediterranean to United Nations' shipping though Axis planes and submarines remain as a threat and military experts declare it will be necessary to maintain an umbrella of planes, based on the Tunisian and Libyan coasts, to protect supply ships as they shuttle through the strategic and dangerous Mediterranean Sea.

Tunisia alone is an economic prize of importance, ranking third in the production of phosphates behind the United States and Russia. French North Africa was Genmany's only remaining source of phosphate rock, principal mines being located near the Algerian border around Gafsa and in the Le Kef district. Tunisia's three other principal minerals are sron ore, lead ore, and zine ore found scattered throughout the country. Chief producing areas are in west central Tunisia across the border from the Tebessa region of Algeria and in the extreme northwest near the port of Tabarca.

Lead ore mined in Tunisia played a small but important role in the German industrial machine since its metallic content ranged between 60 and 70 per cent. A smelter at Megrine, near Tunis, treats both Tunisian and some Algerian ore. Mining of mercury ore, manganese, copper ore and salt were of less significance. There are no coal and petroleum resources in that country. Industries are of minor importance except for the lead smelting and food processing plants.

Germany no longer has access to the iron ore supplies found in Algeria and Morocco.

Copper is found in the Belgian Congo, lead and zinc in Algeria, tin in Nigeria, and manganese in Egypt, which temporarily fell into Axis hands. From French Morocco in 1942, the Axis obtained phosphates and small amounts of molybdenum, cobalt and manganese.
Tunisia not only was a vital source of minerals to the Axis but an important source of agricultural products.

No Immediate Extension of CMP Pends, Conference Told

WaR Production Board has not decided whether the Controlled Materials Plan will be extended to materials other than steel, copper and aluminum but the decision probably will be made in the next six months.

This was revealed last week in Cincinnati at the triple war conference of the American Machinery \& Supply Association, the National Supply \& Machinery Distributors' Association and the Southern Supply \& Machinery Distributors' Association by Henry P. Nelson, assistant director, CMP Division, WPB.

The War Production Board hopes to be able to adjust the war program on the basis of the three materials and this might involve doing away with the allotment plan for materials to simplify procedure, he said. The Board is pleased! so far with the operation of CMP and "it's here to stay," Mr. Nelson declared.

Industry can expect further revisions in the CMP plan as well as the issuance of additional regulations. CMP Regulation No. 6 covering construction and facilities is due in about six weeks. The regulation will combine all present regulations and is designed to simplify procedures.

CMP Regulation No. 7 provides for one type of CMP certification and eliminates the necessity for using several such certifications on one order. It will be extended to all materials under L, M and P orders and, on issuance, will "largely solve the purchasing agent's problem," Mr. Nelson said.

Regulation No. 8, also pending. outlines the method to be followed by controlled material producers in securing the materials they require. Mr. Nelson said Regulation No. 4 covering the warehouse program already is expediting the flow of material to them and a further increase may be expected as time yroes on.

Huge Increase in Cutting Tools

Franz T. Stone. chief, Industrial Specialties Branch, Tools Division, WPB, pointed to the sharp expansion in cutting tool production. Amounting to $\$ 40$,000,000 , in 1940 , production this year is running at the annual rate of $\$ 420,000$,000.

That contract renegotiation is confusing and is being misapplied was evidenced in a forum session on this subject and later in an address by Senator Harry S. Truman.

As an outstanding example of misapplication, a maker of files declared in his
case rencgotiation was applied to his entire production and not simply to direct war business. A manufacturer of bolts and nuts said renegotiation was applied to 40 per cent of his 1942 production. The same hasis for renegotiation is being extended to 1943 production running better than 98 per cent for war purposes which means that his net profit is likely to drop to less than 1.5 per cent on sales.
In his address, Senator Truman promised further investigation of the renegotiation of war contracts. He said the principles and results of renegotiation have been shronded with entirely too much secrecy. Furthermore, the agencies administering the renegotiation law have set up entirely different types of organization, sometimes applying different principles in detemining allowable costs, allocation of business and amounts of profits deemed excessive. In some renegotiations good performance only has been considered while in others straight percentage of profit only was considered.

"Reward for Quality, Economy"

The Senator's investigating committec has recommended immediate adoption and publication of uniform price adjustment policies, most important of which should be to measure the reward by the quality and economy of the production job done and thus offer an additional incentive to high-quality, low-cost production. Further, it was recommended that one governmental determination of allowable and non-allowable costs should be made binding on contractors and on government for both income tax purposes and renegotiation.

He said he thought it will be possible in the future to exempt increasing numbers of products from the renegotiation procedure as more experience is gained with war production contracting. The administrators already have the authority to make such exemptions under the law.
"We have had the co-operation of contractors as well as of the Price Adjustment Board in studying the effects of renegotiation and we expect to continue our investigation so that any future mistakes or abuses may be corrected as soon as possible after they occur," he said.

The manpower problem is constantly growing more acute and industry will find it necessary to revise its thinking about the type of workers it will employ.

A. A. MURFEY

F. J. TONE JR.

ROBERT D. BLACK

in the opinion of Eclward L. Keenan, deputy regional director, War Manpower Commission, Cincinnati.
Unemployment has dropped from about $8,000,000$ to $1,000,000$. Not much manpower is left in this pool. At the same time, he said, $4,000,000$ more men are required for the armed services along with $2,000,000$ for industry.
The 18-38 age group includes about $22,000,000$ men, of which $8,000,000$ do not meet plysical requirements leaving a bilance of $14,000,000$. Of the satter total, $7,000,000$ already are in service and $4,000,000$ are due to go this year. Out of the $3,000,000$ remaining 1,500 ,000 are deferrable in one group as farm workers.
"Industry no longer can expect to hire men from the $18-38$ age group," he said, "and it must call on women and miscellaneous groups. Three out of ten workers in industry are likely to be women by the end of this year. In fact, more than half the additional workers required must be women, he said.
Industry must hire negroes of which 500,000 are available in the South. Also there are probably $1,000,000$ in the handicapped class, plus wounded returning from the battlefronts.
"It will be necessary to constantly hower standards for workers," he said. Industry can use more women for heary work, it has been found by the Worthington Pump \& Machinery Corn., Harrison, N. J. W. W. Kemphert of this company said women worked well in its foundry sorting rods for molders, bending rods, operating cranes and even handling large cores. Women are being used in a number of depastments as stock room attendants, production expeliters, inspectors, driving electric mules, machine tool operators, etc.

Postwar Problems Discussed

Postwar problems occupied an imporlant place in the program, sneakers including Carlton K. Matson, Committee for Economic Development, Washington, and Dr. Ernest L. Stockton, vrincipal research office, Co-ordinator of In-ter-American Affairs.
Mr. Matson pointed out that the CED is entirely independent from the government although it works closely with it. The CED now is in the process of setting un a large national organization Which will penetrate every community. Chairmen have been appointed for 11 of the 12 Fedcral Reserve districts and. in addition, district chairman will be set up for about every $1,000,000$ in population. Snventv chairmen have been named. Within the next three months, 1000 whon will be resnonsible we appointed Wha will be resnonsible to the district
diaimen. Of this total 155 the diaimen. Of this total 1.55 already have
been selected. Each local community will have a CED committee.
All types of information possible will be made available to help inclustry prepare for the postwar period. This will include plans alretdy worked out by some companies, market information and the like.

Small Companies First Concern

The CED is largely concerned with the smaller companies since it figures the larger ones are in a better position to work out their own postwar plans without outside assistance. The sort of work the CED wishes to stimulate finds an excellent example in Toledo where the Toledo Scalc Co. made an investigation and foumd 20 laboratorics. It mav be possible to work out a "lend-lease" arrangement whereby these facilities can be made available to smaller companies in conducting postwar research.

At the closing session, the following officers were elected for the coming year:

Amcrican Association: A. A. Murfey, Cleveland File Co., Cleveland, president; F. J. Tone Jr., The Carborundum Co., Niagara Falls, N. Y., first vice president; Robert D. Black, Black \& Decker Mfg. Co., Towson, Md., second vice president; C. F. Conner, B. F. Gondrich Co., Akron, O., treasurer.

National Association: A. J. Glesener, The A. J. Glesener Co., San Francisco, president; F. Marsena Butts, Butts \& Ordway Co., Cambridge, Mass., vice president, Areas 1 and 2; Charles E. Allinger, The Charles A. Strelinger Co., Detroit, vice president Areas 3 and 4; E. H. McLaughlin, Union Hardware \& Metal Co., Los Angeles, vice president Areas 5 and 6.

Southern Association: Alvin Suith, Smith-Courtney Co., Richmond, Va, president; P. Pidgeon, Pidgeon-Thomas Iron Co., Memphis, Tenn., first vice president; Harry P. Len, Harry P. Leu Inc., Orlando, Fla., second vice president; E. L. Pugh, Athanta, Ga., secre-tary-treasurer.

AUSTRALIAN SAYS U. S. WAR OUTPUT "MAGNIFICENT"

"Magnificent results" was the summation of the war production picture by Air Vice-Marshall A. T. Cole of the R.A.A.F. (right) as he inspected output of Rolls-Royce aircraft engines at the Packard plant in Detroit with Packard Vice President W. M. Packer (left). Cole is a member of an air mission from "Down Under"

Steel Expansion Runs Six To Eight Months Behind Schedule

STEEL expansion program is ruming six to eight months behind schedule. Claimant agencies will be short five million tons in their third-quarter requirements. The alloy situation is so bad if the electric furnace program were on time, there would not be enough alloys to produce steel up to capacity. "Easy" steel this year is a myth.

This, baldly, is the situation in steel today as outlined by Hiland G. Batcheller, head of the Iron and Steel Branch, War Production Board, speaking to the Association of Iron and Steel Engineers in Pittsburgh last week.

Mr. Batcheller showed a timetable of the steel producing and raw materials program, showing how far it has progressed and when it will be finished. According to Mr. Batcheller, on Jan. 31, 16 per cent of the new coke oven capacity had been installed. On Feb, 28, 21 per cent was in; on March 30,26 per cent; and at end of May, 30 per cent.
Program is scheduled for completion at the end of next December. Between now and the end of the year more than five million tons of by-product coke capacity will be installed. On May 1 the by-product coke oven capacity expansion was running more than a million net tons behind schedule.
The sintering plant expansion program was 18 per cent complete on Jam. 31. There was no change in this program until April 30, when the program was 28 per cent completed. On May 30 the figure will be 30 per cent, but the program as now outlined will reach its final stage by the end of November. four months late, with six and a half million tons of sintering capacity remaining to be completed between now and then.
The blast furnace program in January was 31 per cent finished. By the end of February it had reached 37 per cent; by March 31,40 per cent; and on May 30 it will touch 43 per cent, still less than half complete on a schedule which will not see the program completed until the end of November.

The open-hearth expansion program has been drastically slowed down. At the end of January, 1943, it was 23 per cent complete. February figures show 26 per cent completion, while March and April showed 28 per cent. The gain during May will be only 1 per cent additional. Unless something umusual happens, the open-hearth program will be completed in February, 1944, about six months behind schedule.

Electric furnace capacity expansion was

28 per cent complete in January, made no gain in February, March or April, will rise to 44 per cent in May, and will reach full completion in October, about four months late.
The delay in the increase in the openhearth program alone has cost about 1 ,600,000 tons of steel. This tonnage which should have been produced in 1943 will not be available until 1944. The loss in electric furnace production if the schedule is not further delayed will amount to approximately 502,000 net tons of alloy steel.
Under the Controlled Materials Plan requirements scheduled by the claimant agencies for the third quarter total 23 ,000,000 tons. Production during the third quarter will be approximately 18,000 ,000 tons, an apparent shortage of 5 ,000,000 tons of steel. Much concentrated study and rechecking by the staff has boiled out $2,000,000$ tons of duplicate material, so that the actual shortage during the third quarter will be 3,000 ,-

000 tons on only the most vital war contracts.
The picture in alloy steels is not good. March production totaled 1 , 256,000 tons, against a pre-war average of only 300,000 tons per month. Ultimate monthly capacity, which will be reached when the present electric furnace program is completed, will be 1 , 500,000 tons per month.

Steel Ingot Output Sets April Record

Production of $7,374,154$ net tons of steel ingots and castings in April set a new peak for a 30 -day month, the Amicrican Iron and Steel Institute reports.
The April tonnage was short of the March record of $7,670,187$ tons, but substantially exceeded the April, 1942, output of $7,121,291$ tons. The previous peak production in a 30 -day month was made in November, 1942, with 7,179,812 tons.
During April the industry operated at an average of 99.3 per cent of rated capacity, against an average of 100 per cent in March and 97.7 per cent of capacity existing during April, last year.

Hased on Remorts by Companies which In 10.42 made 98.3% of the Open Ifearth, 100% of the

Based on Reports by Companfes which In 19.42 made 98.3% of the Open Hearth, 100 of of the 1942 Beasemer and $8 \% .6 \%$ of the Electrie Ingot and Steal for Castings Production

									4.13
Jan. 6,322,215	95.3	490,874	86.0	299,017	94.2	7,112,106	94.5	1,605,4+2	$\begin{array}{r} 4.78 \\ 4.01 \end{array}$
Feb. 5,785,918	96.6	453,549	88.0	273,068	95.2	6,512,535	95.9		4.43
March 6,572,930	99.0	493,191	86.4	:325,990	102.7	7,392,111	98.2		985
1st qtr 18,681,063	97.0	1,437,614	86.7	898,075	97.4	21,016,752	96.2	1,634,273	12.80
April 6,345,133	98.7	454,834	82.2	321,324	104.5	7,121.291	97.7	1,699,975	4.43
May 6,595,440	99.4	453,938	79.5	333,200	104.9	7,382,578	98.1	$\begin{aligned} & 1,666,496 \\ & 1,635,269 \end{aligned}$	4,29
June $6,239,674$	97.1	452,528	81.8	323,100	105.1	7,015,302	96.3		13.01
2nd otr 19,180,247	98.4	1,361,300	81.2	977,624	104.8	21,519,171	97.4		25.81
1st hlf 37,861,310	07.7	2,798,914	83.9	1,575,699	101.1	42,535,923	96.8		4.2
July 6,345,315	95.7	433,686	79.6	345, 057	96.6	7,144,958	94.5	$\begin{aligned} & 1.616,500 \\ & 1,631.525 \end{aligned}$	4.43
Aug. 6,414,637	96.5	-167,293	S1.8	345,725	96.3	7,227,655	95.4	1,6698,953	4,2
Sept. 6,286,855	97.9	437,961	79.4	332,703	95.9	7,057,519	96.4	150	13.13
3rd atr 19,046,307	96.7	1,358,940	80.3	1,1124,385	96.3	21,430,132	5.4		39.00
9 mos. $56,908,117$	97.3	4,157,854	82.7	2,900,034	99.4	63,966,055	96.3		4.43
Oct. 6,750,829	101.5	461,897	80.9	366,788	102.2	7,579,514	100.0	$\begin{aligned} & 1,710,9516 \\ & 1,673,616 \end{aligned}$	4.20
Nov. 6,371,750	99.0	458,469	82.9	349,593	100.5	7,179,812	97.8	$\begin{aligned} & 1,673,610 \\ & 1,652,611 \end{aligned}$	4. 5^{5}
Dec. 6,471,261	97.6	475.204	83.4	358,075	100.0	7.304,540	96.6 98.2	1,679,137	13.14
4th qtr 19,593,840	99.4	1,395,570	82.4	1,074,456	100.9	22,063,866	98.8	1,655,633	26.27
2nd hlf 38,640,647	98.0	2,754,510	81.3	2,098,841	98.6	43,493,998	96.8	1.649 .979	52.14
Total 76.501,957	97.9	5,553,424.	82.6	3,974,540	99.8	86,029,921	96.8	1,619.	

$\begin{array}{lllllllll}\text { Total } & 76.501,957 & 97.9 & 5,553,424 & 82.6 & 3,974,540 & 99.8 & 86,029,921 & 96.8\end{array}$
The percentages of capacity operated in the frst 6 months of 1912 are calculated on wern capacities of $1,498,029$ net tons open hearth. 128,911 net tons Bessemer and 71, twa net tons of Jan trlc Ingots and steel for castings, total $1,698,622$ net tons; based on annual capacirsic 3 , 75,510 1, 1942, as follows: Open hearth 78,107,260 net tons, Bessemer 6, 621,400 ned calculated on whers. net tons. Beginning July 1, 1942, the percentages of capacity operated are calculated tons cec: capacities of $1,500,714$ net tons open hearth, 128,911 net tons Bessemer ana capacitles 85 follows: tric ingots and steel for castings, total $1,710,674$ net tons; based on annual capacitles ans. Open hearth $78,247,230$ net tons, Bessemer $6,721,400$ net tons, Electric $4,2 z 5,890$ net of 1,518 , 22

The percentages of capacity operated in 1943 are calculated on wenkly copacitles an steel for net tons open hearth, 125,681 net tons Bessemer and 87,360 net tons electric ing , 1943 os collons: castings, total $1,731,662$ net tons; based on annual capacitles as or January 1, net tons. Open hearth $79,180,880$ net tons, Bessemer $6,553,000$ net tons, electric $4,554,980$ net tons

	Jan.	Feb.	March
$1943 \ldots \ldots$	$\mathbf{7 , 4 0 8}$	$\mathbf{6 , 8 1 I}$	$\mathbf{7 , 6 7 0}$
$192 \ldots \ldots$	$\mathbf{7 , 1 2 4}$	6,521	7,392
$1941 \ldots \ldots$	$\mathbf{6 , 9 2 2}$	$\mathbf{0 , 2 3 0}$	$\mathbf{7 , 1 2 4}$
$1943 \ldots \ldots$	$\mathbf{5 , 1 9 4}$	$\mathbf{4 , 7 6 6}$	$\mathbf{5 , 3 1 4}$
$1942 \ldots \ldots$.	$\mathbf{4 , 9 8 3}$	$\mathbf{4 , 5 0 0}$	$\mathbf{5 , 0 5 5}$
$1941 \ldots \ldots$.	4,666	$\mathbf{4 , 2 0 6}$	$\mathbf{4 , 7 0 2}$

Operations Steady At $98 \frac{1}{2}$ Per Cent

Production of open-hearth, bessemer and electric furnace ingots last week remained stationary at $981 / 2$ per cent of capacity. Four districts made small gains, four declined and four were unchanged.
I year ago and two years ago the rate Was 9942 per cent, both based on enpacities as of those dates.
Funnace repairs alone held the rate from rising, Chicago losing 2 points and Pittsburgh 1 point. Gains in other districts served to balance these declines. A new blast furnace and one that has been relined are about to be blown in
at Ruffalo.

Gas House Coke Production Totals 892,552 Tons in 1942

Gas house coke production in the Uniterl States in 1942 totaled 892,552 net trons, 509,782 tons of which was produced in vertical retorts, 363,358 tons in horizontal retorts and 19,412 tons in small horizontal ovens, the Bureau of Mines reports.
Producers sold 449,220 tons for domestic heating, 21,398 tons for water gas manufacture and 63,264 tons for other iodustrial uses. The remaining 399,970 lons was consumod by the producers206,864 tons for bench fuel, 123,851 tons for water gas manufacture, 40,708 tons farcture of producer and 28,547 tons for manuon hand at producer gas. Stocks of coke 1943, amounted to 131,295 ton Jan. 1, H/av. in 1941,295 tons. Other May 11,1943

STEEL INGOT PRODUCTION BY MONTHS

April	May	June	July	Aug.	Sent.	Oct.	Nov,	Dec.
7,374								
7,122	7,386	7,022	7,148	7,233	7,067	7,584		
6,754	7,044	6,792	6,812	6,997	6,811	7,236	6,960	7,150
PIG IRON PRODUCTION								
4,896	5,073	4,935	5,051	5,009	4,937	5,236	5,083	5,201
4,340	4,506	4,551	4,766	4,784	4,721	4,860	4,707	5,014

DISTRICT STEEL RATES
Percentage of Ingot Capacity Engaged in I.eading Districts

	Week ended		Same week	
	Mity 15	Change	19.42	1941
Pittsburgh	99	-1	96	99
Chicago	97	-2	105	102.5
Eastern Pa.	96	$+2$	95	95
Youngstown	95	None	94	95
Wheeling	87.5	-5	81.5	88
Cleveland	94	$+6$	94.5	95
Buffalo	90.5	None	90.5	93
Birningham	100	None	95	95
New England	95	$+5$	100	100
Cincinnati	92	-2	84.5	92.5
St. Louis	90	$+3$	93.5	98
Detroit	96	None	96	88
Average	98.5	None	99.5	99

${ }^{\circ}$ Computed on lases of steclmaking capacity as of those dates.
by-products produced by the industry were tar, ammonia, and crude light oil. Ninety-six gas plants were operated in 27 states. Of the 2569 retorts which produced coke, 1881 were horizontal and 688 cither vertical or inclined. In addition there were 37 small gas ovens in operation at three plants.

Armco Blast Furnaces Set Seventh Pig Iron Record

Setting the seventh pig iron production record in 13 months, blast furnaces of the Hamilton Division of American Rolling Mill Co., Middletown, O., during April exceeded the prior monthly peak by 1078 gross tons. In August, 1942, the sixth consecutive tonnage record was set at a figure regarded as ceiling for the Hamilton equipment, several thousand tons above rated capacity.

Steel Corp.'s April

Shipments Decline

Finished steel shipments by United States Steel Corp. subsidiaries in April totaled $1,630,828$ net tons, a decrease of 141,569 tons from March shipments of $1,772,397$ tons and 128,066 tons under those of April, 1942.

For four months shipments aggregated $6,780,810$ tons, compared with $6,895,-$ 312 tons in the corresponding period last year. During the first four months of 1941 they totaled $6,638,945$ and the like period of 1940 was considerably less with shipments of $3,994,657$ net tons.

January 1943 steel shipments totaled 1,685,992 net tons and February's 1,691,592 , both being greater than those of April, 1943. Two of the corporation"s greatest shipment months of 1942 were May, when $1,834,127$ tons were dispatched to consumers, and December when shipments reached a total of $1,849,-$ 635 net tons.
(Inter-company shipments not included)

Net Tons				
	1943	1942	1941	1940
Jan.	1,685,992	1,738,893	1.682.454	1,145.592
Feb.	1.691,592	1,616,587	1,548,451	1,009,256
Mar.	1,772,397	1,780.938	1,720,366	931,905
Apr,	1,630,828	1,758,894	1,687,674	907,904
May		1,834,127	1,745,295	1,084,057
June		1.774,068	1,668,637	1,209,684
July		1,765,749	1,666,667	1,296,887
Aug.		1,788,650	1,753,665	1,455,604
Sept.		1.703.570	1,664,227	1,392,838
Oct.		1,787,501	1,851,279	1,572,408
Nov.		1,665,545	1.624,186	1.425,352
Dec.		1,849,635	1.846,036	1,544,623
Total		21,064,157	0,458,937	14,976,110
Adjust-				,076,110
ment			-42,323	†37,639
Total			0,416,604	15,013,749

Shipbuilding, Aircraft Programs Enlarged; Manpower Mobilized

TORONTO, ONT.

EXTENSIVE changes in manpower are foreshadowed by a new labor registration order issued by Labor Minister Mitchell, following announcement by C. D. Howe, minister of Munitions and Supply, that a new phase of war production is starting. Shiphuilding and aircraft construction programs are being enlarged and some other munitions programs probably will be reduced.

New order by the labor department
requires all single men from 19 to 40 years and married men from 19 to 25 in some 20 non-essential industrics and occupations to register by May 19 for possible transfer to essential industry. This order is expected to make available for essential work thousands of men not in the armed forces. The order did not specify essential industries other than agricultural but it is believed plants engaged in war production will be largely concemed with the order.

Men employed in the following occupations will be required to register: Tavems; liquor stores; retail sale of candy, tobacco, books, stationery, etc.; barber shops and beauty parlors; florists; gasoline service stations; retail sales of motor vehicles and accessories; retail sales of sporting goods and musical in. struments.

In addition all men designated under mobilization regulations are covered by the order, if in any of the following occupations, regardless or not whether the occupation is one in those industries listed as covered: Waiter, taxi driver, elevator operator, hotel bellboy, or domestic servant; any occupation in or directly associated with entertaiment, including but not restricted to theatres, film agencies, motion picture companies, clubs, bowling allcys or pool rooms; any occupation in or directly associated with dyeing and dry-cleaning, (but not including laundries), baths, guide service and shoe shining.

Must Report to Employment Office

It now becomes obligatory for a man in an age and marital group designated under mobilization regulations and engaged in one of the industries or occupations specified in the minister's order to apply to his nearest employment and selective scrvice office not later than May 19. If there is no higher priority work available for him, he will be given a special permit entitling him to continue temporarily in his old employment. If it appears necossary in the interest of the war effort that he be moved to more essential employment, he will be given a direction to some such employnent.
Prime Minister Ilsley has announced cast iron scrap imported into Canada for use by industry is not subject to the 10 per cent ad valorem war exchange tar previously imposed.

Steel Shipments In

First Quarter Heavy

Production of finished steel for sale during first quarter of 1943 has been reported by the American Iron and Sted Institute as $16,632,962$ net tons, of which $1,179,785$ tons was shipped to other members of the industry for further conversion. Accompanying chart shows production in detail.
Steel plates, sheared and universai. made up the largest tonnage, $3,257,917$ tons, with hars second at $3,215,149$ tons. Sheets were third highest with 2,251 , 313 tons.
Total number of companies included in the compilation was 184 . During 1942 these conpanies represented 96.8 per cent of total finished rulled prodints.

Shift from Wood to Steel for Inland Oil Carrying Vessels

FLEET of 168 all-steel petroleum tank barges, with total carrying capacity of $1,600,000$ barrels, will be constructed for operation on the Mississippi and Ohio rivers, the Office of Defense Transportation stated last week in announcing major revisions in the nation's big harge construction-conversion program.
The all-steel welded barges replace 195 wood units on the program authorized last December. It is expected many of the steel boats will be ready for service by late October, when the 21 riser towboats which will haul them are scheduled for delivery.
The decision to build 168 steel barges, instead of 195 of the 500 wood units called for in the original program, was affected by several factors, ODT said.
A shift in emphasis to light oils-the so-called "clean products"-as barge cargo made completion of the entire 500 wooden barges impractical, since only heavy residual fuel oil can be moved safely in the wood boats. The allpurpose steel barges, however, will be able to move whatever petroleun prod-
ucts are offered, navigate the upper Ohio River, and operate more efficiently.

The barge conversion program was trimmed from the authorized 259 boats to the 116 which already are converted or are in the process of being converted, because withdrawal of more open-top barges for this purpose would hamper the movement of coal by water and throw an additional burden on the rails.

Big Program Projected

As it stands now, the program calls for:

Construction of 305 wood and composite (wood and steel) barges, capacity 6000 barrels each, 168 all-steel barges, capacity 9500 barrels each; 100 diesel tugboats, of 600 horsepower each; 21 river steam towboats, and 2000 horsepower each; and water-rail trans-shipment facilities at Jacksonville and Panama City, Fla.

Conversion of 116 dry-cargo steel barges to petroleum carriers, average capacity 10,650 barrels.

The 305 wond and composite barges
and the 100 tugs will be used as originally plamned in the transportation of residual oils from the Texas field along the Gulf intracoastal waterway up approximately to Wilmington, N. C.
The 21 river towboats, the 168 allsteel tank barges, and about 40 of the 116 converted barges will be operated on the Mississippi and Ohio rivers, noving products from the Texas field and from the pipeline terminal at Helena, Ark., to ports as far up as Cincinnati, Pittsburgh, and St. Paul-Minneapolis area.

ODT said barges and Great Lakes tankers will be capable of handling movements into the 17 eastern states comprising district 1 on the following schedule- 144,000 barrels a day during the current quarter, 201,000 barrels a day during the third quarter, 175,000 barrels a day during the fourth quarter, and 135,000 barrels a day during the first quarter of 1944-the deliveries tapering off next winter as cold weather hampers operations.

As of May 1, the ODT said, the barge conversion program stod as follows62 barges completed, 16 barges 90 to 99 per cent complete, 5 barges 80 to 89 per cent complete, 33 barges 1 to 79 per cent complete, and three barges not yet started.

Steel Seadromes Planned for Atlantic Air Route

> Plans are projected for a number of mammoth, 64,000 -ton seadromes for a proposed Atlantic ocean air route to Great Britain.
> Pennsylvania-Central Airlines announces it will seek authority from the Civil Aeronautics Board to establish a line which will call for the building of
three huge floating ports. C. Bedell

Monro, president of Pennsylyania-Central, states the Sun Shipbuilding \& Drydock Co., the United States Steel Corp., the Worth Steel Co., the Belmont Iron works and the John A. Roebling's Sons Co. are sponsoring the project which is expected to begin in the postwar era.
He said the proposed floating airports will be 800 miles apart, would cost $\$ 10$,-

000,000 , and would require five months to build. They will rest on supports extending 160 feet below the ocean surface and 70 feet above it, and have full airfield facilities including hotels. The dromes will be anchored, he said, but also will have their own propulsion for movement to routes which best suit seasonal conditions in the Atlantic.

Three seadromes-at 800 miles intervals-are envisioned as stepping stones on a trans-Atlantic flight to England by the
Pennsy? Pennsyltania-Central Airlines which filed an application with the Civil Aernautics Board. This is an artist's conception of M2y 17,1943
the island of steel which will have a draft of 160 feet and will rise 70 feet above the surface of the ocean. A mammoth, the seadrome will provide hotel accommodations for travelers. NEA photo

International WPA?

AMONG real fears that motivate some Republicans in Congress in their opposition to another three-year extension of the Reciprocal Trade Agreements Act is that in the event of a vaconey in the chair of the Secretary of State, President Roosevelt might appoint his friend Harry Hopkins to that cabinet post. Secretary Hull is aging. In discussing possible appointment of Hopkins to his post Congressman Harold Kuutson last week asked, "Who would be better equipped to put on an international WPA than he?"

Pointing out that already we have agreed for reversion of our airports, roads and other facilities in Canada to the Camadian govermment after the war, a number of Republican congressmen are anxious to know whether we similarly will donate to Great Britain and other countries the air bases and other establishments we are erecting on their soil or whether we will insist on benefitting from their use to promote our export trade. Most of them would not oppose extension of the act if they could get assurances that the policy of administering the act will be aimed at defense of our own interests rather than at placating the rest of the world by building up the economies of foreign countries at our expense.

Regarding Patents

The National Patent Planning Commission is about to report to President Roosevelt on that portion of his directive of Dec. 12, 1941, calling for a study of the patent system, with recommendations for any changes that would encourage irvention in order that full utilization of the nation's expanded industrial capacity will be made in the peacetime period ahead. Pending release by the White House its details will not be made public. The commission will now proceed with its studies of the second portion of the directive which has to do with the extent to which the government should go, and the ways and means of such procedure, in stimulating inventive effort in normal times with a view of increasing production and employment.

Inventive Progress

Among those at Washington who have had much experience in observing inventive progress, it is generally believed many discoveries that have come about from research aimed at helping the war effort will have a profound bearing on the postwar economy. Many revolutionary discoveries have been made in the field of electronics. There have been numerous important developments in the field of radio. One of the new
developments that will have a far-reaching effect has been that of superior fuel which will mean lighter, smaller autumobile and aircraft engines which will have higher capacity on less fuel.

At the same time, revolutionary changes in the things we have known should not be expected to come about overnight after the emergency is over. For one thing, scientists and engineers now are occupying their minds largely with the war and are unable to devote as careful attention to future peacetime

> AIRCRAFT STEEL
> It is estimated here that more than 50 per cent of the alloy steel used by the aircraft industry could be replaced by NE steels. Of this possible clangeover, the conversion so far effected by the industry is under 8 per cent, whereas, of the estimated possible changeover for all Army and Navy stecl uses, the effected conversion is more than 60 per cent.
> The very nature of the aircraft industry, according to the Navy's Operating Committee on Aircraft Materials Conservation, accounts in part for the slower ehangeover. But with aircraft use now requiring 35 per cent of the chromium and nickel consumed in steel alloying (and at the present rate of changeover this figure shows signs of reaching 45 per cent by the end of the year) the committee is determined that the conversion program must be carried out aggressively and effectively.
designs now as they will have at some later date. For another, manufacturers are always keenly aware of the danger of getting too far past the public in design.

Emphasis on Bombers

While production of military aircraft has not yet reached its peak, to be achieved sometime in 1944, it is believed now this production can be attained with existing facilities and cepansions already authorized for completion. No further expansion is expected. As has been the case with tanks and a number of other types of ordnance, the point has been reached where production schedules for aircraft are due for adjustinents here and there. Principal emphasis right now is on bomber production, particularly twoengine fighter-bombers, weapons which have proved highly effective. In fact, a plant now making a plane recognized
as a highly-efficient dive-bomber within a few weeks will change over to the production of two-engine fighter-bombers.

Postwar Puzzler

Intensive thought is beginning to be devoted in higher administration circles to the problem of what to do with gov-ernment-owned war production plants after the war. While the Secretary of Commerce is the responsible authority over the Defense Plants Corp., Jesse Jones will have to be guided in his decisions by a knowledge as to what plants the Army, the Navy and the Maritime Commission will want held in reserve to meet military needs of the future, Various government departments, particularly the Department of State, will have to be called in for discussion on the extent to which we will continue to manufacture synthetic rubber. Mr. Ickes, as well as the Army and Navy, will have a voice in deciding on future needs of high. octane gasoline. There is a firm disposition not to repeat the mistake, after the first World War, of widespread aban. domment and dismantling of war plants.

Army Hush-Hush

The War Department uses three designations in connection with military documents and information. Highest desig-nation-that of "secret"-is given to material whose disclosure might endanger national security. Under that head come war plans, designs and types of new materiel, codes, cryptographic devices, military maps and so on.

Next, is the designation "confidential" which applies to information whose disclosure, although not endangering the mational security, might be prejudicial to the interest and prestige of the United States.
Last, and lowest, designation is "restricted," applied to information that is for official use only, or when such information should be limited for reasons of administrative privacy.

By way of comparison, it is interesting to note that the three cquivalent British designations, from top to bottom, are: "most secret," "secret" and "confidentin!"

Farm Tool Markets

Manufacturers of agricultural equipment and garden tools are studying their market distribution programs as a result of findings by the Bureau of Census that in important sections of the country where people brought in much food from other areas they now are producing much of what they consume. Oue region where the old type of agriculture is being revolutionized is the South. Indications are the Sonth will produce a greater amount of meat in the future.

STEEL

CHECK THISE ADVANTAGES O. BLANCHARI GRINBING

Production

Adaptability

* Fixture Saving

Operation Saving
Material Saving
Fine Finish

Flatness

Close Limits

. Especially valuable on jobs like the one illustrated.

"PUT IT ON THE BLANCHARD"

Grinding cylinder bushings on Blanchard No. 18 Surface Grinder

THESE cylinder bushings, $31 / 2$ inches high by $31 / 2$ inches in diameter, are of extremely thin section, yet they are held securely on the Blanchard No. 18 magnetic chuck. These bushings are Gunite castings. $006^{\prime \prime}$ of stock is ground off both ends to limits of $\pm .0005^{\prime \prime}$ for size, and $.0005^{\prime \prime}$ for parallelism. 50 pieces (100 surfaces) are ground per hour.

Multiple chucking and grinding on the Blanchard is the sure and economical way to machine parallel surfaces on parts such as these, also on collars, gear blanks, and washers.

The Blanchard Magnetic Chuck is so adaptable to holding a wide variety of work that it takes the place of many expensive fixtures that would be necessary on other types of machines.

The BLANCHARD MACHINE COMPANY

 64 STATE STREET, CAMBRIDGE, MASS.Send for your free copy of "Work Done on the Blanchard." This book shows over 100 actual jobs where the Blanchard Principle is earning profits for Blanchard owners.

Put Statistics To Work!

Census Bureau offers valuable aid to business and industryboth in planning war effort and for peacetime program. Greater use of studies possible

BEFORE the war statistics were just statistics. It was believed in many quarters that a lot of time was wasted in compiling them and that a lot of money could be saved by curtailing such workwithout doing any particular harm.

Those ideas have been shattered by the war. Statistics now have "glamor". They are a major tool in organizing the war effort. They will prove to be a major tool in the direction of our economy after the war.

When in 1940, this country set about organizing seriously for defense production it was quickly found that a great deal of vital information was not available. For example: What are our needs for plant and equipment, labor and materials? What plants have we that can produce this or that war machine? Where can we find equipment to do such and such work? Where can we find the labor to execute the program? What is our potential supply of materials? How large a program can we implement?

Questions Plagued Defense Program

These were only a few of the hundreds of questions that arose to plague the initial defense organization, the Advisory Committee of the Council of National Defense, since succeeded in turn by the Office of Production Management and by the present War Production Board. Soon it was found that a vast amount of information would be needed in order to get production of military equipment going on the desired scale. Then it was that the Bureau of the Census, with its large staff of highly-trained statisticians, and its vast assortment of tabulating and other machinery, was called upon to become an important statistical arm of the war program.

It is fortunate that the 1940 decennial census was taken at a time immediately preceding inauguration of rearmament, and also that the information obtained in the 1940 census was so much more detailed than that obtained in any previous census. As it was, however, it was far deficient in detailed information required to organize fully for war. Therefore, the bureau had to devise many new methods of filling the gaps.

Out of its war-time experience a statistical program is being planned that should prove of vast belp in enabling to keep the economy under control after the war. The bureau's istatistical work has contributed to the conversion of the country's
resources available to the war program. It should prove equally helpful in making for a healthy economy in the peacetime period ahead.

Under the necessity of obtaining statistical information almost overnight, accurate results are being obtained by "sam-

J. C. CAPT

Director, Bureau of Census
pling" methods-similar to those employed in connection with the Gallup poll of public opinion. For example, the bureau conducts a monthly canvass of some 25,000 representative families, thus detecting shifts in our employment trends as they occur. It develops information in other ways, such as by estimating population from results of registrations under the rationing system and by tabulating the records of the Selective Service System.

Businessmen should be very much more interested than they generally have been in the statistical work of the bureau, very few of them ever having made full use of the services of the bureau as permitted under the law. The bureau has a tremendous amount of information of vital industrial and business value, so much in fact that it is utterly impossible to assemble it all in printed form. Any businessman requiring any of it can get it simply by paying only the clerical cost of compilation.

Here is a case in point. Sometime ago the publisher of a farm paper visited the bureau and left a list of its subscribers. He wanted to obtain reliable information about economic and cultural level of his fanner "audience". While it is
impossible under the law to give out any information whatever regarding individuals (a special law had to be enacted to enable the bureau to give such information to war agencies), it is, on the other hand, perfectly legal for the bureau to give out tabulations representing the average for a group.

In this case the bureau assigned to a number of clerks the job of checking the economic and cultural status of the subscribers to this farm paper. They checked such items as value of crops, whether the land was owned or rented, and-if owned-the value, the number of tractors and other farm equipment owned, etc. These and other details were put through tabulating and calculating machines.

The final tabulation revealed the farmers reading this particular publication enjoy a higher economic and cultural level than that of farmers who do not read it. The publisher has been able to put this tabulation, which was obtained at ridiculously low cost, to extremely ef. fective use in promoting the sale of advertising space. It is all the more saluable in that-being the work of the Bureau of the Census-it must be recog. nized not only as official, but also as completely unbiased.

Provides Special Information

Quite a number of other busincsses and industries-either as individual conspanies or through trade associationshave obtained special information which has helped them to improve their marketing policies. Considering business and industry as a whole, however, these requests have been surprisingly ferw. Apparently many businesses have been los ing out on a good thing in this cornection.
Another reason why business men shoutt be very much interested in the Bureav of the Census is that the bureau is woriing up a "blueprint" of new services which it will be in a position to render after the war emergency is over, when we begin to change over to a peace: economy. Having profited by the lessons learned during the war, the bureau is prepared to conduct current or periodic censuses as required. It has become clear, for example, that existing plan call: ing for a general census every ten years and biennial censuses of manufacturets. are not sufficient for many purposes. Serious thought is being given to the possibility of a thorough canvass of the entire national economy at intervals certainly no longer than five vears apart: and to the possibility of maintaining current statistical series, particularly in those phases of our economy which are subject to great changes in between the bench mark censuses.

The bureau, as a result of its wartint
STEEL
service, now has a more thorough understanding as to the many different types of information that will be needed in the future for intelligent direction of the nation's economic affairs, both public and private.
In fact, particular stress is placed on the need for more information which private industry can utilize to advantage in charting courses. Officials of the bureut are prepared to talk the thing over with the businessmen, either singly or by industry groups, and work up patterus as to the types of information each industry should have. They already have begun conversations on this matter with staff members of the Committee for Economic Development and it is hoped that considerable progress can be reported in the near future.

Know Cause of 1938 Recession

What sort of information is needed by industry to help it steer a safe course?
The answer depends largely upon the needs of the industry concerned. Recall, for example, the disastrous falling off in steel business in 1938 immediately after the boom year of 1937 . What happened, as everybody knows in rerraspect, was that consumers throughout the country assumed that demand was going to continue at the 1937 level and loaded up with steel inventories to such large proportions that in many cases they did not consume them until early in 1939.
Many analysts believe that had adequale information such as is now available been available, the impact of this thock would have been greatly minimized. Steel consumers-as well as steel producers-would thereby have been adwised of the advance buying by the public and by industry. Then it would have been realized that consumer purchasing would not be as great in 1938 as in 1937 because of our commitments as a result of installment purchases, and consumers of steel would not have built up the big steel inventories they did.
Information which, it is believed, Mould avert or soften such shocks in the case of steel would be obtained currently with remorts issued monthly or at whatever time changing trends required the issuance of warning signals. Roughly, the plan in regard to steel would be something like this:
The pattern would start with raw ma-terials-iron are, ferrous scrap and coal -then would follow through on succesphases involving pig iron, ingots, finishoring and marketing rolled sections, fabricated ingots, finished tured goods, thence warehousing, whonce right on through It would show shifting trends in accumu. lated inventories at each level, accumulated orders on books, production shipHay 17,1943
ments, capacity, percentage of capacity engaged, prices and other facts of that general type.
Statistics of the Census Bureau together with those of other government agencies - ${ }^{3}$ d show shifts in the public purchasing power, effects of installment buying on future buying power, trends in govermment spending for public works, and types of public works involved, increases or decreases in volume of employment, ups or downs in expenditures for private housing and numerous other factors which all together would give a pretty good idea as to what the demands for steel were going to be and how long they would be sustained.

That, in a general way, would be the pattern of information calculated to hel ${ }_{p}$, the steel producing and consuming industries to control their purchases so that one year would not rob another unduly, which has in the past been one of the contributing causes to the violent dcpressions which have brought hardshins to everybody throughout the country.

The pattern might of course materialize along somewhat different lines than those just suggested. It could be revised or refined quickly so as to include any and all sorts of current information which the steel industry and the steel consuming industries might feel that they should have in order to be able to make most effective use of this "statistical tool". Its exact details of functioning will depend largely on what industry wants at any given time.

Regard "Meter Reading" Highly

Another type of "meter reading" regarded as important would be the determination of which industries are moving up in the national economy and which industries that at any given moment are moving down. That could be of great importance as an indicator of the industrics affording the best opportunities for sale promotion at any given time.
A related type of service would be the preparation of reports showing, for instance, the extent to which plastics, wood or aluminum are displacing steel, for what uses, and why. This sort of thing would aim at giving manufacturers and business men basic facts about their competitive positions.

Plans of the bureau, based on demand from private and public sources call for a vast expansion over its job of reporting various current distribution figures. In the past it has reported each month wholesale and retail statistics covering certain types of goods but not covering certain others. A system now is contemplated whereby goods of practically all types will be covered by statistics showing sales, dollar value, inventories together with any other information.

There are other possibilitics for rendering special statistical services that any particular industry might wish to request. By way of illustration it may be pointed out that for more than a quarter century the Bureau of the Census has been rendering such special services to the cotton and vegetable oils and fats industries. Every two weeks during the ginning season-usually on the 8 th and 17th of the month-it announces statisties for cotton gimings. Once a monlh. -usually the 30 th-it issues statistics covering production and consumption of some 65 vegetable oils and fats.

Statisticians Locked in Chambers

These occasions are quite dramatic. The men who perform the different parts of this compilation are locked in a room up to the moment that the information is to be released. In that way there can be no leaks-there have been no leaks since this work was taken over by the Bureau of the Census. Then, at exactly $10 \mathrm{a} . \mathrm{m}$., the newsmen servicing the cotton and vegetable oil and fat industries and representatives of the telegraph companies, receive the completed reports. Immediately following this official release these reports are transmitted by telegraph or telephone to all important exchanges and newspapers throughout the country.
It is to be hoped that every business executive will take this matter up for personal consideration, either approaching the Burcaul of the Census, or seeing to it that his industry approaches the bureau. Industry has much to gain by finding out just what Census can do, and by letting Census know exactly what it needs and what it wants.

A committee, headed by Paul G. Hoffman, president, Stuclebaker Corp., South Bend, Ind., and composed of well-known business men, has actively underway a program aimed at stimulating a healthv economy after the war. It is a unit of the Department of Commerce. With the aid of an able research staff it is making effective use of the Bureau of Census in setting up an essential statistical system.
If industry embraces this opportunity on a wide scale it thus can from now on help to minimize those severc disturbances to our economy that have caused so much trouble in the past. In this respect the war already has proved the truth of the saying that "a little knowledge may be a dangerous thing". In other words very grave economic danger lies in not having an adequate amount of timely and exact statistical information. Uncuestionably this danger can, to a considerable extent, be avoided if business men and industrialists will take full advantage of the highly organized governmental services outlined.

PRIORITIES-ALLOCATIONS-PRICES

Weekly summary of orders and regulations issued by WPB and OPA, supplementary to
Priorities-Allocations-Prices Guide as published in Section II of STEEL, May 10, 1943

L ORDERS

L-1-g (Amendment): Trucks, Trailers and Passenger Carriers, effective May 10. Excepts "re-assembled trailers" from prohibition of production of automotive truck trailers as of June 30, 1942. l'rohibits use of more than 30% of new iron and steel in produc tion of such re-assembled trailers.
L-30-b (Amendment): Fnameled Ware, effective May 3. Provides for meeting export requirements that do not conform to restrictions on sizes and shapes of articles covered by the order when specifically authorized by WPB. Applications for authorization are filed on form PD-556. Provides for filing of appeal form, PD-500, with WPR field offices.
L-30-c (Amendment): Cast Iron Ware, effective May 3. Exempts manufacturing of cast iron kitchen utensils for export from simplification provisions of the order when specifically suthorized by WPB. Applications for authorizations are to be filed on PD-556. Provides for the filing of appeal form, PD-500, with W1'B field offices.
L. 42 (Amendment): Plumbing Fixture Fittings and Trim, effective July 5. Bans use of copper and copper-base alloy in manufacture of any fittings or trim except for limited amounts in 24 specified items. Reduces copper content of several of these items from that permitted in original schedule. Prohibits use of zinc except for coating and for manufacture of specified items. including clean-out plugs, escutcheon holders, flush tank trip lever assemblies, nuts and spuds or inserts. Forbids use of metal in other specified items. Exempts from restrictions products made for laboratories, food packing establishments. hospitals, aircraft and ships where conditions require the use of restrieted materials.
L-111 (Amendment): Hand Trucks, Handling Eauipment, effective May 8. Pernits use of ball bearings of other than alloy steel in swivel bearings or casters used in equipment and permits use of rerolled rail steel as well as bessemer grades where formerly only bessemer was permitted. Specifies that the terms "hall bearings or roller bearings" do not include certain "pin bearings". Mestricts use of iron and steel in barrel trucks so that these trucks may not be produced entirely of metal.
I.-I 14 (Amendment): Safety Equipment, effective May 5. Permits use of copper or copper-base alloys (other than nickel silver) for eyclets having a diameter of $1 / 16$-inch or less where steel cyclets cannot be used. Fxtends from May 31 to Nov. 30 the period during which nickel plating may be used for spectacle type goggles. Permits use of nickel plating for specified parts of oxygen breathing apparatus, inhalators and hose masks to the extent mecessary for effective functioning. Permits use of aluminum in machine muards where less scarce material is not practicable.

L-193 (Amendment): Conveying Machinery, effective May 10. Restricts purchase orders to those inted AA-5 or higher. Deletes provision requiring submittal of monthly production and delivery schedules for restricted orslers. since scheduling is now covered by general seheduling order M-293. Fxempts portable conveyors and slope conveyors used in underground mining.

L-2 11 (Amendment): Rails and Track Accessories, effective May 6. Permits use of bessemer steel in production of these items. Also permits use of 30 - and 33 -foot rails in the manufacture of frogs and switches. Exempts from specifications rails used for such items as electrical contact.

L-211 (Amendment): Barhed Wire, Wire Fence, Wire Netting and Wire Flooring, ef fective May 10 . Pennits manufacture of additional styles of heavy wire fence. Five additional types of fence which now may he produced are essential to meet demands of the agricultural program. Greater latitude is now permitted also in production of heavy barbed wire.
L-237 (Amendment): Light Power Driven Tools, effective May 3. Prohibits purchase or delivery on ratings assigned by a PRP certificate or applied pursuant to CMP regulations 5 and 5 A , except: items with list price on Oct. 15, 19.42 , of $\$ 175$ or less; deliveries on purchase orders received prior to May 3, 1943, which have been rated pursuant to CMP regulations 5 and $5 A$. lurely woodworking tools are exempted from the order.
L-278: Steel Pipe Fittings, effective May 8. Hestricts production to specificd types and sizes, reducing from 38,784 to 3615 the number of types of fittings which may be produced. Exempts the following types from provisions of the order: those for use on airplanes and ships (other than pleasure craft); conductors or corrosive liquids and gases; those specially designed for combat use; those used to replace special type fittings; and those enumerated in a list of specinl types.

M ORDERS

M-18-a-1: Chromium, effective May 7. Permits deliverics by processors and dealers without specific WPB authorization in quantities of 3000 lh . or less to a single customer in any one month, provided the material is to be used for metallurgieal purposes. Melieves purchasers of quantities within this limit of necessity of filing renort forms usually required lyy order M-18-a. Chromium consumers must continue to file form WPB532 with Bureat of Mines. All deliveries of chromium remain subject to restrictions of order M-18-a with respect to melting.
M-146 (Amendment): Quartz Crystals, effective May 4. Hestores to the order a provision reauiring that the purchaser or transferee deliver to the fabricator a certificate stating that he is familiar with the terms of the order and that the material is to be used only for permitted purposes. Alters definitions of certain tenns used in the order.
M-199 (Amendment): Silver, effective May 10. Changes manufacturers' anota periods for domestic silver purchases for restricted uses from a monthly to a nuarterly basis and excludes, in the calculation of quotas, the amount of silver used by manufacturers in the base period to fill orders rated A-3 or higher. Broadens special exception covering extremely small manufacturers who use domestic silver.

P ORDERS

P-31-a (Hevocation): Foundry Equipment, effective May 7. Hevokes order which originally permitted extension of prinity ratings applied under order P-31 to deliveries of materials for the production of foundry equipment prior to expiration of P-31 on May 30. Material is now obtained under applicable CMP regulations.

PRICE REGULATIONS

General Maximum Prices (Amendment): Mixed Metal Products, effective May 7. Provides formula for determining maximum prices for products that cannot be priced under other
provisions of the order. Following commodities are subject to the new provisions: Any tin-base, lead-hase, or tin-lead base solder babbitt, other than branded babbitts; teme metal; and type metal.
No. 6 (Amendment): Iron and Steel Produrls effective May 13. Simplifies use of "stranded or distressed" steel mill products in the war effort by establishing maximum charges producers may make for converting or proc essing iron or steel products which they did not make and do not own. Five main elements entering into the maximum pricimg are: no maximum charge is applicable when the material is to be resold by the ounes at prices established by schedule 2No. 6 or No. 49; no maximum charge is specified when the aggregate charge for conversion or processing does not exceed $\$ 500$; conversion or processing operations on which there are standard published extras shall be charged for according to the published ertras but an additional charge not to excend $\$ 5$ per net ton is allowed for handing; for operations not covered by the provisions teported above, converter must file his chagges with OPA; and charges set forth in the amendment are exclusive of transporation costs incidental to the conversion or promess. ing operation.
No. 77 (Amendment): Beehive Oven Fumare Coke Produced in Pennsylvanin, effective May 18. Establishes maximum price of coke made in Barbour county, W. Va., in hand drawn ovens to which coal has been trucked from mines at $\$ 7$ per ton. Previously the ceiling was $\$ 6.50$ per ton.
No. 246 (Amendment): Farn Equipment, of fective May 13. Provides wholesale distributors with an additional price adjustment to cover equipment purchased frai new sources at prices higher than the dis. tributor paid for similar equipment befort March 31, 1942. Permits same mark-up to be applied to such equipment as provided for the equipment purchased at lower prist but in no event may the wholesale distributor's price exceed 80 per cent of the manufacturer's suggested retail list price phes 20 tual freicht to him and applicable handing and other charges. The extra charyes may not exceed 2% of the manuficturer's surg gested retail price. Price adjustment must be based on written authorization by UPA.
No. 272 (Amendment): Cast-Iron Boilers and Radiators, effective May 19. Provides that all transmortation charges on less-than-cirload shipments from the manufacturer's warehouse to the purchaser's job site myy be prassed on to the purchaser, if that was the practice of the manufacturer on Oct 1, 1941. Charges must be shown as a separate item on the purchaser's invoice.
No. 377: Die Castings, effective May 1. Freezrs prices of die castings at the lowest lents quoted between April 1, 1742, and Aprid 30. 1943.

Position of Class A Product Orders Under CMP Clarified

Every customer who has recelised his CMP allotment must (except with respect to small orders and purchases from distributors) accompany every delivery or der for a Class A product with an allet. ment "in the amount required" by his supplier to fill the order, unless the supplier has a sufficient inventory of cos. trolled material to fill the order. The applicable allotment number may be applied to the order, however, for the purpose of up-rating. This was made clear in Interpretation No. 6 of CMP Regulation No. 1. It was also emphasized that acpting "an facturer is prohibited from accepting an
allotment for the manufacture of a Class A product, if he does not expect to be able to fullill the related authorized production schedule. In addition, an order for a Class A product cannot be displaced by an order subsequently received with preference rating regardless of whether the second order bears a higher preference rating (unless it is a rating of AAA) or is accompanied with a tender of an allotment.

Employers Urged To File Selective Service Report

Employers engaged in war production or in activities essential to support of the war effort should file with Selective Serice local boards written evidence of their employment of registrants who maintain bona fide homes with children less than 18 years of age, borm on or before Sept. 14, 1942. The Selective Service Bureau of the War Manpower Comnission emphasizes the importance of filing this report on Selective Service form No. 42B to assure the employer Ulat, if the time comes when such registants are needed in the armed forces, he would receive notice of his employes' selective service status.

Materials for Containers Not Considered MRO Supplies

Materials required for the manufacture of containers, in cither knock-down or set-up form, are production materials and camot be obtained under the procedures established by CMP Regulation N_{0}, 5 , WPB has ruled.
Procedures established in that regulation may not be used to obtain materials for the manufacture of containers, regardless of whether the manufacturer makes them for sale to others, or in a captive plant or separate department, for packaging his own products for shipment. However, material other than fabricated containers, needed to package a product for shipment, may be acquired by the mamufacturer of the product under CMP Reg. No. 5 where a captive plant or separate department, whose operations are substantially similar to those of the container manufacturer, is not
naintained.

Value of exports from the United States increased 44 per cent during Januaty and Fehruary, 1943, to $\$ 1,377,000$,O00, while imports totaled $\$ 463,000,000$, ${ }^{2} 9$ per cent decrease during the same period, the National Industrial Conference Board reports. Exports to Latin America declined from $\$ 1,035,000,000$ in 1941 to $\$ 836,000,000$ in 1942 while imports of $\$ 1,022,000,000$ in 1942 were set,000,000 less than in 1941.

Processing Charges Established On Frozen Steel Inventories

CONVERSION of frozen inventories of steel mill products to war purposes has been facilitated by OPA in establishing maximum prices steel producers may charge for converting or processing these products which they did not make or do not own.
In the same amendment No. 8 to RPS-6, effective May 13 last, changes were made in the schedule to conform its export provisions more closely to those in the Revised Maximum Export Price Regulation.
Chielly affected are charges for such processing as re-rolling, cold-rolling and piekling done by the steel mills.

No maximum charge is applicable when material is to be resold by the owner at prices established by RPS-6 or RPS-49; also when the aggregate charge for conversion does not exceed $\$ 500$.

Conversion or processing operations on which there are standard published extras shall be charged for according to those extras, but an additional charge not to exceed $\$ 5$ per ton is allowed for handling.

For operations not covered by the above provisions, the converter must file his charges with OPA. Charges set forth in the amendment are exclusive of transportation costs incidental to the conversion operation.

As to export sales, besides stating that maximum prices for them shall be determined in accordance with the provisions of Maximum Export Price Regulation, the amendment includes a summary of the provisions of the export regulation that are particularly applicable to the products covered by RPS-6.

Revised Farm Machinery Ration Order Is Issued by WFA

Revised farm machinery rationing order, combining the amendments, announcements, supplementary orders and interpretations issucd since the program was initiated Nov. 28 last, has been issued by War Food Administration. The order enables state war boards to cancel county quotas on all types of quota malchinery.

County farm rationing committees are given authority to set the expiration date of purchase certificates between 10 to 60 days after issuance. Certificates may be cancelled at any time after the holder has had a reasonable time to purehase the specified machinery.

A new provision makes it possible for farmers to obtain purchase certificates
for fencing, drawn wire, pipe, bale ties, and mill-fabricated water well casing, in excess of the 4000 -point limitation provided by the WPB's CMP-4 plan.

Aluminum Product Report on Form CMP-24 Due June 10

All producers and distributors of aluminum products (except ingots) have been instructed to use a new form, CMP-24, to report monthly shipments. The first report is due June 10 and is to cover shipments for the month of May and umfilled orders as of May 31.

CMP-24, CMP-12, CMP-19, CMP-21 and CMP-23 completely replace PD-26A and the following WPB forms: Nos. 46 , 47, 48, 59, 60, 61, 62, 63, 65, 66 ancl 687.

The Aluminum and Magnesium Division has informed producers and distributors who make deliveries in May and June on orders which do not have CMP allotment numbers that they should classify them into the appropriate programs on the new CMP-24 form. If a producer or distributor cannot classify a particular group of orders, he is to attach a letter to the CMP-24 form, giving the govenment contract number, consumer code, end use, description, and number of pounds shipped.

WPB Division Speeds Idle Materials Into War Work

Redistribution activities of the War Production Board are speeding idle and excessive inventories into direct war uses. Redistribution representatives in the WPB field offices filled 6821 requests for materials or equipment in the first three weeks of April. The largest number was reported from the Cleveland office, where the total was 2256. In the second week of April alone, almost a thousand such requests for assistance were answered satisfactorily by that office.

For this matching of shortages with surplus materials and equipment, the field offices endeavor to maintain up-todate lists of available supplies. Manufacturers of products for essential war and civilian use who are in need of materials call on the field offices for assistance. Search for the materials is continued for them through the organization up to the Materials Branch of the Redistribution Division in Washington where national inventory records are maintained.

J. 8. TYTUS

F. E. VIGOR

E. H. DORENBUSCH

J. CHARLES GALBREATH
J. B. Tytus has been elected vice president in charge of technical development, American Rolling Mill Co., Middletown, O., and F. E. Vigor has been elected vice president in charge of manufacturing and mining operations. Formerly vice president in charge of operations, Mr. Tytus is internationally known as the developer of the continuous method of rolling sheets. He joined American Kolling Mill in 1904. Mr. Vigor, until recently, served as assistant director, Steel Division, WPB, Washington. He ioined American Rolling Mill in 1910 and was made manager at Ashland in 1929 . In 1941 Mr. Vigor went to Washington as member of Iron and Stecl Section of OPM, eventually becoming assistant director, Steel Division, WPB. E. H. Dorenbusch, who joined the company in 1911 as traffic clerk, has been made general traflic manager.

- 0 -

J. F. Metten was elected chairman of board and chief executive officer of New York Shipbuilding Corp., New York, Formerly vice chairman, Mr. Metten succeeds the late Henry Lockhart Jr.

Adam MacKenzie, vice president in charge of manufacturing, Carboloy Co. Inc., was elected chairman, Detroit section, American Institute of Mining and Metallurgical Engineers recently.

- 0 -

Horace E. Coyl, in clarge of tank car sales; Donald H. Smith, in charge of traffic department; and William J. Stebler, in charge manufacturing plants, Sharon, Pa., have been elected vice presidents, General American Transportation Corp., Chicago. Cyrus L. Philipp, vice president, will direct sales while continuing in charge of operation of refrigerator cars including those of Union Refrigerator Transit Lines division, Milwaukee. O. J. Parks has been appointed mechanical assistant to first vice presi-
dent, and Edward J. Campbell becomes chief maintenance officer. J. C. Acworth, in charge of mechanical and repair parts, now is an assistant vice president.
L. R. Dohm, formerly secretary and treasurer, Warren Foundry \& Pipe Corp., New York, has been elected president to succeed Leonard Peckitt, who has retired.

- 0 -

Arnold Tietig III, formerly vice president and treasurer, Metal Specialties Co., Cincimati, has been elected president to succeed the late Vernon B. Chase. He will retain the title of treasurer also.
-0-

Melbourne H. Steil, formerly assistant general superintendent, has been made general superintendent of shops, Beloit Works, Fairbanks, Morse \& Co., Beloit, Wis., succeeding Ray Saveland, resigned.
L. C. Campbell has been elected vice president, Eastern Gas \& Fuel Associates in charge of Koppers Coal Division, Pittsburgh. General manager of mines for Koppers Coal Division since 1941, Mr. Camplell succeeds the late P. C. Thomas.

$$
-0-
$$

C. J. Maloney, Chicago district manager, Cutler-Hammer Inc., has been elected president, Electric Association of Chicago for the 1943 term.

August E. Klinger has been elected president, Buffalo Steel Co., Tonawanda, N. Y. Vice -president since 1931, Mr. Klinger joined the company in 1907. In 1914 he was made manager of the New York office, and in 1921 he was placed in charge of general sales at the main office.

Paul H. Hill, formerly with Westinghouse Electric \& Mfg. Co., East Pittsburgh, Pa., has been named sales man-
ager of Schwarze Electric Co., and Charles H. Brown, assistant sales manager and advertising manager. M. I. Bradley, formerly plant manager of Lycoming motors division, Aviation Corp. of America, has been made production manager.
J. Charles Galbreath has been made vice president, Plomb Tool Co., Los Angeles. In assuming his new office, Mr. Galbreath will also retain general supervision of the company's contract department. Berado Perez-Fraga, former tralfic representative for Pan-American Air Lines, has been appointed to export department.
C. P. Shropshire, traffic manager at the Stinson Division of Consolidated Vultee Aircraft Corp., Nashville, Tenn. who has been on special assignment with the Army Air Forces, has com. pleted the assignment and will return to his position at the Tennessee plant.

Millar Brainard has been elected treasurer, Cleveland Automatic Machine Con, Cleveland, to relieve Col. James Hant mond, president, of those dutics. James J. Laughlin Jr. of law firm of Miller \& Hornbeck, Cleveland was named a director of the firm.

-0 -

L. A. Shea has been made district manager for the Chicago territory of Henry L. Crowley \& Co. Inc., West Orange, N. J. Mr. Shea comes to his present post from Burgess-Norton CO_{0}, Geneva, Ill: Ralph Hulton, formerly development engineer with Keystone Carbon Co. Inc., St. Marys, Pa, has been appointed field eugineer in the Ohio and Michigan territories.
B. E. Kibbee, vice president, Sharon Steel Corp., Sharon, Pa., has been elected treasurer. Succeeding the late J. Reid

FRED O. BURKHOLDER

C. W. PEARSALL

WAYNE D. DUKETTE

ROLAND W. GURT

Evans in that post, Mr. Kibbee will continue also as vice president. Other officials, including Henry A. Roemer, chairman and president, were re-elected.

Fred 0. Burkholder, vice president, thlberg Bearing Co., Chicago, has been elected president to succeed the late C. J. Bender. He joined the company in 1915. C. W. Pearsall, general sales manager, has been named vice president. Mr. Pearsall and Charles Nelson Jr., chief engineer, have been elected directors.

$$
-0-
$$

Judson C. Travis, formerly assistant to president, Handy \& Harman, New York, and recently elected to the board of directors, has been elected vice president in charge of sales. Other officers
including C. W. Handy, chairman, and G. H. Niemeyer, president, were re-elected.

Carl King has been made general superintendent of Wickwire Spencer Steel Co., Palmer, Mass., plant, and F. G. Lindstrom, superintendent of manufacturing operations.

Roy E. Smith, formerly division manager of Armco Drainage \& Metal Products Inc., Middletown, O., has been appointed sales manager of Kelly O'Leary Steel Works, Chicago.

- 0

Elmer J. Kopf, formerly of Advertising Division, Republic Steel Corp., Cleveland, has joined G. M. Basford Co., New York, where he will handle
advertising of accounts in steel and metalworking industries.

-

Wayne D. Dukette has been appointed manager, railroad sales department, Joseph T. Ryerson \& Som Inc., Chicago, succeeding J. P. Moses, who will continue in an advisory capacity. Assistant sales manager, Chicago plant for the past seven years, Mr. Dukette has been associated with the Ryerson Co. for 29 years. Roland W. Burt will continue as manager, eastern railroad sales, Jersey City plant.

-0-

Leigh Willard has been elected a director of the Allis-Chalmers Mfg. Co., Milwaukee, Wis. Mr. Leigh is also president and a director of the Interlake Iron Corp., Chicago.

OBITUARIES

Clarence L. Jack, vice president and director of purchases, Jack \& Heintz Inc., Bedford, O., died May 9 in Cleveland.
R. W. Kaltenbach, 74, president and treasurer of the R. W. Kaltenbach Corp., Cleveland, died May 8 in that city.

- 0

Edward F. Niedecken, 71, inventor and president of Hoffman \& Billings MF. Co., Milwaukee, Wis., died May S in that city.
$-0-$
Charles R. Youmans, 63, for 25 years president of Youmans Machine Co., Cleveland, and since 1932 chief inspector of the Steel Improvement Forge Co., Cleveland, died recently in that
city.

[^1]Corp., in East Orange, N. J., died recently in Llewelyn Park. West Orange, N. J.

$$
-0-
$$

Neil L. Copeland, 49, purchasing agent, Climax Molybdenum Co., Denver, Colo., died recently in that city.

$$
-\mathrm{O}-
$$

Carl M. Nicholson, president, Master Rule Mfg. Co., Ossining, N. Y., died May 9 in that city.

$$
-0-
$$

Francis L. Ives, engineer, Allis-Chalmers Co., died April 30 at Milwaukee.

Col. Percy E. Barbour, 67, New York consulting mining engineer and international authority on the economics of copper, gold and silver, died May 4 in Lima, Peru.

$$
-0-
$$

Angus MacArthur, 54, vice president and director, Koppers Co., Pittsburgh, died May 9 at Old Greenwich, Conn. Mr. MacArthur was general manager of
the gas and coke division with headquarters in New York.

$$
-0-
$$

John W. Towle, president and one of the founders of the Omaha Steel Works, Omaha, Nebr., died April 30 in that city.

Wellington B. Lee, 76, retired president, Track Specialties, New York, died May 3 in that city.

$-0-$

Alfred J. Schmidt Sr., retired president, Consolidated Stamp Mfg. Co., New York, died May 4, in Suffern, N. Y.

$$
-0
$$

John Gillen, 70, founder and for 33 years owner of John Gillen Co., Chicago, died May 4 in Berwyn, Ill.

$$
-0-
$$

Lee A. Moore, 63, sales manager, Champ Spring Co., St. Louis, died April 26 in that city.

- 0

John P. Meyer, 79, one-time president, Granite Bi-Metallic Co., St. Louis, died April 99 in that city.

soldiers who live in Foxholes

'Blost 'em, baby - and don't be a dud!"
This may well be the silent prayer of the soldier in a foxhole who throws a hand grenade at the tread of an onrushing enemy tank. To be sure it will explode, the solid cake of pure TNT is well protected from rust and water.

This is why bonderized Armco Zincgrip-Paintgrip sheets are used for the base of the new grenade. The extra protection of this bonderized galvanized sheet is needed because ordinary metal might rust when the grenades are shipped or stored in tropical atmospheres.

Armgo Zingcrip-Paintgrip fills the bill perfectly. It provides a paintgripping galvanized surface that takes and preserves paint (the container is painted inside and out). And it assures a zine coating that does not flake or peel when the base of the grenade is drawn in a press.
Our fighters use the deadly missile to blow treads off tanks. It is also employed in "sapper" operations, booby traps and other jobs. Threads at the top hold the fuse that is attached when action looms.
We are producing special-purpose metals for Victory products now. But remember, when the war
is won Armco will have new teclnical knowledge and new kinds of iron and steel sheets that will help you make better products for America's brighter future. Can you use information now in designing your post-war prodacts? The American Rolling Mill Company, 791 Curtis St., Middletown, Ohio.

"Pacific Rim" market offers large possibilities for West Coast aircraft plants in postwar era. . . Emphasis may be placed on lighter consumer goods rather than automobiles

LOS ANGELES

WITH aircraft manufacturing now the nation's top-ranking industry, and with the West Coast occupying the No. I spot for airframe manufacturing, the most pressing question which businessmen ask each other sitting around the luncleon table is: What will these overniglit giants be doing after the war? Whill they be manufacturing automobiles? How can they keep the hundreds of thousands they now are employing still occupied with some useful productive labor?
No one can vouchsafe a certain answer. The solution is wrapped up in a host of "ifs", the principal one being the date of the war's end. This mueh can be said for sure, after a tour of virtually all the airplane plants on the West Coast, and after conversation with some of the leading officials in these plants, with workmen in the plants and with people whose life is wrapped up intimately in the West Coast: Every effort is going to be made to keep the best of the West Coast plants going, no matter whether on airplanes, on refrigerators, on stoves, on automobiles or auything else you can figure out. Hard realism compels the observation that by no stretch of the imagination can airplane production ever be con-
timed on the present basis, roughly 6000 ships a month. Even assuming a world patrolling job to be undertaken by the U. S. no such quantities of combat craft could possibly be absorbed lecause, without active combat, losses

The editor of this page for the past six weeks has been visiting industries of the Pacifie Coast, from Los Angeles to Seattle, in the attempt to obtain first-hand impressions of industrial activity there-as it is now and as it may affect the postwar world. Until his retum to Detroit, regular dispatches from the motor city necessarily are suspended.-The Editors.
from obsolescence and accident could not conceivably reach this total.

Granting this fact, it becomes obvious the vast aircraft plants will have to be converted to some form of consumer
goods manufacture, and the most immediate product is the automobile. There are more words being wasted in print and in conversation about the West Const aircraft companies going into the automobile business after the war than about any other subject that comes to mind. The iden was suggested in this department about a year ago as a result of discussions in Detroit on the matter; but after a first-hand inspection of practically all the aircraft plants on the Coast, the opinion is offered here for what it is worth that the antomobilization of the aircraft plants may not be as easy as it sounds. In the first place, the Coast is practically devoid of enginebuilding facilities, which would imply the necessity of building engines in the Middle West and shipping them to the Coast. In the second place, aircraft plants, outside of their machining departments, which as a rule are beautifully equipped with the latest and best types of machine tools (in some cases apparently far over-equipped for most efficient utilization), are not particularly suited to automobile manufacture as it is now known. They have the plant buildingsin most cases light structural steel framing covered with corrugated galvanized steel sheeting-and a large assortment of fusclage and wing jigs, usually served by light overhead cranes suspended from

Kaiser's magic isn't done with mirrors: Some of the thousands of shipyards workers, many imported from other areas, watch a launching at a Henry J. Kaiser yard in Southern California. NEA photo

May 17, 1943
parallel rows of roof girders, but they do not have the welding equipment or the press equipment or the conveyor equipment which would lend itself to conversion to automobile manufacture.

From casual observation and not from any official source, it is this writer's opinion that the aircraft plants may perhaps be more interested in other types of consumer goods manufacture, despite the fact some of them will admit having design for automobiles in the draftingroon stage. For example, the Los Angeles Chamber of Commerce has been currently making market studies for some 20 companies, most of them in or allied with aircraft manufacture, concentrating on products which have not been produced in any great quantity on the West Coast. This would include such things as refrigerators, radios, stoves, washing machines, vacuum cleaners and related types of household appliances.

Certain officials of the Kaiser interests freely admit their enginecring development section, operating entirely apart from the many and varied Kaiser manufacturing divisions, has an automobile "ready" for production. Just what it is they will not say, but there are grounds for believing that it is a light-weight, low-price, high-economy car. However, even granting such a vehicle could be or would be placed in production, there remain the imposing problems of merchandising and distribution.

Further, it may well develop that when such a car is placed in production, it will be in the Detroit area and not on the West Coast, for it still remains a fact that the Rocky Mountains divide the West Coast and its 10 per cent of the nation's population from the remaining 90 per cent, and as C. E. Wilson, president of General Motors recently told a West Coast group, "we will ship across the Rockies only once-whether it be raw materials, subassemblies or finished products."

Study Markets of "Pacific Rim"

The economy of this slant, distilled from years of peacetime operations, is hard to refute. There is no reason to suspect that newcomers will find the situation materially changed.

Perhaps the larger opportunities for the West Coast manufacturers, present and future, lie in the so-called "Pacific Rim", a phrase used to identify the consuming markets ranging from Alaska on the North down through Japan (yes, Japan), China, India, Australia, South America, Central America and Mexico. The vast potentialities of this consuming area are virtually unknown and untested, but it is a favorite stamping ground for the dreamers and planners for postwar industry. It should not be overlooked.

Emincuce of the state of California, and Los Angeles county in particular, from the standpoint of population, area, number of motor cars, diversity of commercial activity, and pleasant climate has long been the subject of promotional activity by chambers of commerce and other civic groups. War has enhanced even further these myriad advantages, with the exception of climate which perhaps has deteriorated somewhat from normal, by virtue of an abnormal acceleration in industry activity, led by aircraft and shipbuilding.
Forty per cent of the airframes produced in the country come from the handful of producers in southern California. Their employment has risen from 16,000 in 1939 to 26,000 in 1940, 58,000 in 1941, 122,000 in 1942 and now over 200,000 . Manufacturers of aircraft parts and accessories numbered 125 in 1941 and employed about 30,000; 320 in 1942 and employed 50,000 ; and 866 in 1943, employing over 100 ,000 . It is estimated that the aviation business accounts for about one-third of the county's gainfully employed.

Behind Detroit in War Contracts

Thanks to a big backlog of orders for military aircraft, Los Angeles county ranks second only to Detroit in volume of war contracts received, and in this connection local boosters point with pride to the fact that the area ranks only tenth in the amount of government funds allocated for new plants and facilities. This is taken to indicate that West Coast private capital has been more plentiful and more willing to support new industrial activity.

But along with aircraft there has come to California a steady build-up in the heavier types of basic industries, on which the Coast once looked to the East for support. Aluminum and magnesium reduction and fabrication plants; the Kaiser steel plant at Fontana which hopes before long to be rolling at a rate of 820,000 tons of carbon and alloy steel a year; 55 synthetic rubber projects involving production of styrene, butadicne and their copolymerization; 60 aluminum foundries and scores of iron, steel and malleable foundries; 14 major shipbuilding companies with perhaps 50 more smaller ship and boat builders; a rubber tire industry which in peacetime was second only to Akron, O ., in volume of production; automobile assembly plants which in 1941 assembled 80 per cent of the new cars available on the West Coast; 64 suppliers of molded plastics-and so on down the list.

The latest census of manufactures showed 5800 manufacturing plants in Los Angeles county, but this includes many small operators such as power
laundries and the like. A better indication may be the fact that the Los Angeles Chamber of Commerce has 5000 member companies making it the largest chamber in the world, and even twice the size of the large Chicago Association.

The important part the Los Angeles area assumes in the nation's vast wartime shipbuilding program is striking testimony to the boom in industrial activity in the West and is an important explanation thereof. It is estimated that 53 per cent of the United States Maritime Commission's program for cargo carriers is being handled in Southern California. Yards there last year launched some 140 large ocean-going ships, including freighters, transports, naval repair ships and destroyers, plus large numbers of smaller naval craft.

Cargo ships alone numbered about 130 and totaled $1,400,000$ deadweight tons, or a sixth of the United States total. Official goal for the country this year in cargo ships has been announced as $19,000,000$ tons, against $8,000,000$ tons last year, and Los Angeles yards have been keeping up with this accelerated program, launching vessels currently at a rate of about $2,500,000$ tons a year.

California Shipbuilding Corp. at its yard on Terminal Island launched 111 ships in 1942, surpassing any other yard in the country. All vessels were of the Liberty ship type.

Remarkable Shipbuilding Record

The shipbuilding record is all the more remarkable when it is recalled that prior to 1940 no large ship had been built in southern California in orer 20 years.

In 1939, Los Angeles county ranked fifth in industrial production of all counties in the country. Three years have further enhanced the stature, but exact figures are not obtainable.

Los Angeles is definitely a motor city, having the highest concentration of aittomobiles of any metropolitan area in the country. Population is close to $3,000,000$ and registered cars total $1,000,000$, or one car for every three people. Not only are there lots of cars but their owners probably drive greater distances than most places in the comtry. The reason is that the county is spread out over 4115 square miles and it is not uncommon for working people to drive 10-20 miles each way to and from places of business. Further the area is fortunate in having one of the finest networks of broad, well-paved highways of any section of the country. This, together with the thousands of scenic spots in the area and the well-kiow climate, adds up to a high degree of motor car operation in Los Angeles.

STEEL

Our quality sand and permanent mold aluminum castings are helping many producers of finished and semifinished war materials to keep the "Situation Well In Hand" on the production front. Over thirty years of experience, thorough research, careful supervision and unmatched craftsmanship have made us one of the largest producers of sand and permanent mold aluminum castings. TENUAL Aluminum Castings are meeting today's demands-assuring tomorrow's needs.

ALUMINUM CASTINGS

Photograph shows one of our battery of squeezer machines. Man is using hand tampers. With speed all important these days, squeezer machines are playing a vital part in the mass production of castings.

First official Army citation to be conferred itpon a civilian in the present war is presented, above, by Gell Levin H. Campbell, chief, U. S. Army Ordnance, to George E. Whitlock, second from left, president, Mullins Mfg. Corp., Youngstown. Marshall Adams, left, adeertising manager., and Jacques Stanitz, director of engineering development, both of the same firm, look on

Maurice A. White, president, American Gear \& Mfg. Co., Chicago, speaks at the "E" pennant ceremony

Displaying " E " burgee presented to Ladish Drop Forge Co., Cudahy, Wis., are left to right: Licut.-Col. Edward H. Boutman, Army Air Corps; Herman W. Ludish, company chairman; Otto Retzloff, an employe, and Capt. D. D. Dupre, commandant, Naval Officers' Training Corps, Marquette University

Metalworking Companies
 Cited by Armed Services

Joint Ammy-Navy "E" awards for outstanding production of war materials were announced recently for the following metalworking and metalproducing conpanjes:
Ammapolis Yacht Yard Inc,, Annapolis, Md. Arlington Millwork Co., Arliugton, Va.
Blaw-Knox Co., Lewis Foundry and Machine Division, Groveton, Pa.
Elaw-Knox Co.. Martins Ferry Division, Martins Ferry, 0.
Boyertown Auto Body Works Inc., Boyertow, Pa.
Brown \& Root Inc., and W. S. Bellory Construction Co., MeAlester, Okla.
A. M. Byers Co., Byers Plant, Econony, Pa. and Southside PLant, Pittsburgh, $\overline{\mathrm{F}}$ a.
Crucible Steel Co of America, Halcomb Worts rucible Steel Co. of America, Halconise, N. Y. and Emerson Avenuc Works, Syision, Power Faytheon Mfg. Co., Equipment Division, Waltham, Tube Division and Radar Division, Wathara

Mass.; Small Tube Division, Newton, Mass. Dow Chemical Co., Freeport, Texas, and Dow Magnesium Corp., Velasco, Texas.
Geometric Tool Co., New IJaven, Conn.
Gilbane Building Co. Inc., Newport, I. I.
Goodyear Aircraft Corp., Arizona Division, Litchfickl Park, Ariz.
Kidder Press Inc., Dover, N. H.
I. F. Laucks Inc., Ilant No. 1, Seattle, Wash. Lombard Goverior Corp., Ashland, Mass.
IV. F. Mosser \& Son, Allentomi, Pa.

National Battery Co., Depew, N. Y.
Sew England Tape Co. Inc., Hudson, Mass.
Patch-Wegner Corp., Long lisland City, N. Y.
Reliance Mfg. Co., Beacon Plant, Loogootee, Ind.
Bise Barton Corp., Worcester, Mass.
Sullivan Machinery Co., Michigan City, Ind.
Pralt \& Whitney Aircraft Division of United Aircraft Corp., Longmeadow Plant, East Longmendow, Mass.
Trendwell Construction Co., Midland. Pa.
Union Boiler \& Mfg. Co., Lebanon, Pa.
Prat \& Whitney Aircraft Division of United
Aircraft Corp., Willimantic, Conn.
United Welding Co., Middletown, O .
Universal Engineering Co., Frankenmuth, Mich.
Walsh Construction Co., J. Mich Steers Inc.; Cauldwell Wingate Company. Raisler Corp., New York Navy Yard, Brooklyn.
Wise Contracting Co. Inc., and Virginia Engiveening Co. Inc., Yorktown, Va.
American Lncomotive Co., I, atrolse, Pa.
Brass Foundry Co., Peoria, Ill.
Mueller Co., Decatur. Inl.
Xational Enameling \& Stamping Co., Granite City, III.
Protectoseal Co.. Chicago.
John Royle \& Sons, Paterson, N. J.
Thamson Co.. Thomson, Ga.
Vaughan Novelty Mfe. Co. Inc.. Chicago.
Aviation Corp., Republic Aircraft-Products Division, plants No. 1 and 2, Detroit.
J. Bishop \& Co., Malvern, Pa.

Century Metalcraft Corp., Manufacturing Division, Los Angeles.
Chieago Screw Co., Chicago.
Michirana Products Corp., Michican City, Ind.
Sational Supply Co., Torrance, Calif.
Uhio-Apex Inc., Nitro, W. Va.
Uhin Tubular Products Co.. London, O.
Peogers Pattern \& Foundry Co., Los Angeles.
Sears Co., Davenport. In.
Shakespeare Co. and Shakespeare Products Co., Kalamazoo. Mich.
Union Dental Instrument Mfg. Corp., Fhiladel-
phia Univa
Universal Engineering Corp., Cedar Rapids, Ia.
Watling Mfg. Co,
Watling Mfg. Co., Chicago.

Human Hair May
 Damage Roll Surface

Highly finished surface of steel strip made for one custemer of American Steel \& Wire C_{0}, U. S. Steel subsidiary. ${ }^{\text {is so }}$ nearly perfect that material not quite up to the rigid standards-reveal. ${ }^{\mathrm{in}} \mathrm{ing}$ some slight surface hlemish-is still satis cceory for fabrication of small mirrors uesed in toilet cases.
The proflometer test, standard test used to show surface roughness, discovers unPereness of surfice amounting to as The rolls wed two millionths of an inch. 18 inches in in do finisish the surface are wide, tequire dianmeter and 32 inches ising tequire special grinding and pol10 the produdut ethe proper mirror finish rolls finishodudt. So delicately are the zinding for the minuwance is made in Pelops in the the center upon bend whichich dethep in thene center upon application of
hemenand buir pressure required. A human hair can damage the surface of
the roll

Functions, Organization of Operations Office Formalized

FUNCTIONS and organizations of the office of Donald D. Davis, WPB vice chairman for operations, were formally outlined last week in an administrative order issued by Charles E. Wilson, executive vice chairman.

Mr. Davis' office, together with the three Controlled Materials Divisions, is responsible for the execution of estab)lished WPB plans, policies and general methods. To achieve this objective, the office performs the following major functions:
I. Determines the present and anticipated supply of and requirements for critical resources.
2. Eliminates less essential uses of critical resources.
3. Increases supply of critical resources.
4. Directs the flow of critical materials.
5. Schedules the production and de-

DONALD D. DAVIS
livery of critical components and end products.
6. Directs the utilization of facilities to maintain schedules and, in general, assures the best utilization of existing productive facilities and available manpower.
The administrative order makes Mr. Davis a member of the WPB requirements committee in order to act as claimant for maintenance, repair and operating supply requirements of the industry divisions as well as for "B" products other than consumer goods and services.

Utilization of facilities and the scheduling of production of critical compo-
nents will be handled by a new Production Division. The position of scheduling officer has been abolished and its responsibilities transferred to the new division.

Appointments-Resignations

William C. Macdonald has been named deputy director of the Plumbing and Heating Division, WPB. Mr. Macclonald had been associated with the Housing Branch of the Construction Division since October, 1941, and previously held the position of general sales manager of the Maryland Sanitary Mfg. Corp. of 13altimore.
Samuel B. Jones Jr. has resigned as New England manager of the War Production Board's Available Inventory Division to resume his post as regional manager of the American Rolling Mills Co. at Boston. His successor is John W. Perry of Boston, formerly assistant manager of the division and a former Massachusetts and Maine state manager of the Frigidaire division of General Motors Corp.
John G. Strange has resigned as chief of the War Products Development Section, Pulp and Paper Division, War Production Board, and will be succeeded by R. I. Zaumeyer of Kimberly-Clark Corp., Neenah, Wis. Mr. Strange will return to his cluties as secretary of the Institute of Paper Chemistry, Appleton, Wis.
R. C. Spencer of the Lowe Paper Co., Ridgefield, N. J., has been appointed deputy chief of the section, replacing Herman Whitmore who returns to active duty with the Robert Gair Co., New York. W. H. Swanson, another member of the section, resigned to resume his activities with the Kimberlv-Clark Corp.
H. W. Doslge, vice president and general sales manager of the Texas Co. and formerly deputy director general for staff, WPB, has been appointed director in charge of the New York office of Petroleum Administration for War, with jurisdiction over all of the East Coast.

Insersoll Rand Co., New York City, manufacturer of air compressors and compressed air operated tools, is campaigning against the waste of compressed air to help speed production through a scries of five industrial posters graphically illustrating the problems. Copies of the posters, which have a definite educational value, are obtainable through the company's office, 11 Broadway, New York city.

RAW MATERIALS

Will Scrap's Burden Be Heavier?

Drain on stockpiles may be increased by reduction in projected movement of ore during the 1943 shipping season on lakes

ALTHOUGII the War Production Board last week revised downward the 1943 season's iron ore shipments to 91 ,000,000 gross tons, third revision since last fall when the goal was tentatively set at $100,000,000$ tons, the "improved" condition of scrap stocks is expected to offset the reduction in iron ore supply available to the steel industry.

Steel officials are hopeful there will be no scrap or iron ore shortage to hinder steel production during the forthcoming ycar. Ore shippers, however, state it is unlikely the 1942 shipment total will be exceeded unless a late navigation season is made possible by good weather.

Somewhat milder weather over the last few weeks has eased the shipping situation in the upper lake regions. Loaded vessels are moving through the Soo at an increasing rate. A number of ore vessels were tied-up in Buffalo harbor because of ice conditions, but vessels are now moving up the lakes, Coast Guard cutters having cleared the ice jam. Shippers now believe the ore fleet will be operating at capacity within a few weeks. At that time loading

Steel producers are attempting to build up scrap inventories as a hedge against possible lower supplies of iron ore caused by the late opening of the shipping season. At right, a typical scrap stockpile. Below, ore carriers waiting to pass through the Soo. Carferry Sannte Marie aided in clearing a path through the ice. NEA photos
will range around 400,000 tons each day, whereas, recently the average has been only slightly better than 260,000 tons. ODT has restored preferential treatment to ore cargoes.
Some dealers report scrap stocks as "comfortable" stating that enough scrap is on hand to support near-capacity steel operations into late fall. But the general overall picture in scrap is not so encouraging since there is a disproportionate amount of the less desirable grades available.
While the overall scrap situation appears promising, factors in the situation serve to temper optimism. For one thing, it is pointed out, a coal strike would have repercussions in the scrap market since lessened pig iron output would increase the demand burden on scrap to the extent that existing supplies would not be sufficient to support
capacity operations for a long period.
The War Production Board is urging steel producers to increase their scrap inventory to a 60 -day supply. At present the average supply ranges about 45 days and in many instances is lower. St. Louis, Chicago, and Lackawanna, N. Y.. are reported troubled by low scrap inventories.

Scrap dealers say that during 1943 steel producers will have to rely almost entirely on production scrap since auto graveyards, street car tracks, and heary factory scrap virtually has been "cleanedup" throughout the country. Shipments of scrap have been received in steel producing areas from many sections of the country, including the Southwest. Within the last three weeks consumers hase been accepting turnings and borings in order to push blast furnace capacity.

There are several factors which apparently will influence the ability of ore shippers to make the season goal of 91 ,000,000 tons. Most important single factor is weather. Warm weather late in

tie fall and absence of deliaying fog would greatly enhance vessel movements. Concentration of ships in the ore trade, addition of new ore carriers to the fleet, and entry of Canadian vessels are contributing factors. Prospective iron ore requirements have decreased slightly because a number of blast furmaees are expected to shut down for repairs and because the steel expansion progran is behind schecule.
Ore stock on hand at furnaces and docks in the United States and Canada on April 1 was $25,088,209$ tons, according to the Lake Superior Iron Ore Assceiation. Consumption during April is
estimated at approximately $7,000,000$ tons and shipments from upper lake ports $1,954,817$ tons during the same period. Thus, the estimated stock on hand as of May 1 this year is about $20,000,000$ tons, compared with almost a similar amount of $20,064,744$ tons at the same time last year. A decrease of about $12,743,294$ tons has occurred in ore stocks since March 1, 1943, when they were estimated at $32,743,294$ tons. The drop was occasioned by the delay in opening of lake navigation due to had weather. Fleet capacity will be increased by 16 Maritime Commission ships som to be placed into service.

Seek To Co-ordinate Methods In Renegotiating Contracts

MORE THAN $\$ 2,500,000,000$ has been recovered for the government by contract renegotiation. This represents total of work done by the Army, Navy, Mantime Commission, War Shipping Board and the Treasury Department since the beginning of the renegotiation
work.
At Pittsburgh last week an indoctrination meeting was held for all representatives of these agencies in renegotiation Work. Representatives from all parts of the country participated. The meeting was designed to co-ordinate methods and 10 instruct renegotiators so that the job done on every company would be uniforn and in line with standards establinded by the Renegotiation Act.
To date the Army and Navy work has progressed more rapidly than the other
organizations organizations. Maritime Commission is making a fair start, while the War Shipping Board and the Treasury are now establishing organizations.
The primary requirements of the program is manpower. The need is for men equipped with a sound financial background and well acquainted with industry generally so that the industries be-
ing renegoty ing renegotiated can be assured a fair deal from a man who understands their of he various Acoording to representatives of the various agencies and departments
involved, the entire completed the entire 1942 iob will be completed hefore the end of 1943. The 15 per cent of the completed about furisdiction. The rate of increase their ing rapidly The rate of increase is risIng rapiddy and both departments are
confident that all of the thousands of cases which require review of their 1942 earmings wrequire review of their 1942
Year is over.

[^2]of profits. The other 70 to 75 per cent represents savings through price reductions. The emphasis of the entire renegotiation program is on reduction of prices so that the money is not made by the companies in the first place.

There has been no basic change in the methods and procedure used in renegotiation of contracts. The experience the agencies have had with the cases renegotiated so far has brought to light no real need for a change in approach.
One of the most difficult problems nosed for renegotiators has been the desire of companies to build up a reserve fund for postwar use, either for reconversion or a fund to maintain employment in the interim period until normal production can be resumed.

Five Methods of Renegotiating

Renegotiators point to five ways in which this can be done within the limits of normal costs. The first of these is the 10 per cent credit being allowed companies on their excess profits tax payments. The second is the standard method of setting up a reserve from profits on which taxes have been paid, such as addition to surplus, or in some other method. The third is the termination clause inserted in virtually all war contracts, which provides for final purchase of finished gnods, nurchase of semifinished material with a proportionate amount of profit and a provision for the adjustment of inventories. One new angle in this problem is the handling of subcontractors direct by the government rather than prime contractors. which relieves the prime contractor of any contractual obligation for adiustment with his subcontractor at the termination of the war.
The fourth factor is that in many cases the reconversion cost will he consider-
ably lower than the conversion cost in that the equipment being used on war contracts can be used in normal peacetime pursuits after the war. The fifth point is the allowable amount of termination pay.
Renegotiators have ruled that a reasonable amount of termination pay is desirable, and in many cases had been established by companies before war contracts were assumed. This is regarded as a legitimate expense if the period of the termination pay is reasonable. It is also pointed out in this connection that all orders now have provisions for unemployment compensation, which will augment any termination pay and will aid. workers in maintaining their families should they be faced with temporary layoffs during reconversion period.
A study of the first companies on which complete figures are available shows that profits after renegotiation are up 9.4 per cent above the base year. About $\$ 300,000,000$ in profits during the base year for these companies has risen to $\$ 330,000,000$ after renegotiation for 1942. The landling of excess profits in every case is taken on the excess side rather than the normal side. In other words, renegotiators do not attempt to tell the company how much they should make, but how much they should not make.

Considerable Benefit Has Resulted

In many instances the renegotiation procedure has resulted in considerable benefit to the companies involved. This is primarily on a price basis. In one case, for example, the Maritime Commission was able to show a prime contractor where his costs were out of line with other companies manufacturing similar products and to demonstrate to him how he could reduce these costs and thereby be able to get new government contracts which he could not get on the basis of past performance. In another instance, a study of the cost system of a corporation in connection with renegotiation resulted in a complete analysis of that corporation's cost methods and a considerable saving with resulting increased profit.
On the broad overall picture, many corporations are welcoming renegotiation as an important factor in public relations. This is particularly true of companies selling direct to the public, such as General Motors. Management feels that through renegotiation of its contracts, it can go before the public with a clean slate and with no stigma of having made excessive profits out of the war. This is becoming an increasingly important and popular factor among many companies and may turn out to be one of the most important benefits of the entire renegotiation program.

Brazil's Minerals Bridge Gap In United Nations' Supply Line

SINCE the naval war in the Atlantic and Pacific has almost completely cut off the United States from the mineral resources of the Eastern Hemisphere, the rich mineral deposits of Brazil have become vitally important to the United Nations' war effort. Brazil's mineral cxports to the United States doubled in the past few years.

Brazil has become the most important source for such mineral products as iron and manganese ore, mica, quartz crystals, industrial diamonds, and rarer metals, according to Charles Will Wright, chief technical consultant, Metals and Minerals Division, Board of Economic Warfare, Washington, who has made a detailed study of Brazil's potential mineral wealth. ${ }^{1,3}$

Iron ore, urgently needed by Great Britain and the United States, is Brazil's largest mineral reserve, estimated by Brazilian geologists at 15 billion tons. Poor railway facilities limit to about 400,000 tons yearly the export of this high grade orc. Mines at Itabira, 250 miles from Rio de Janeiro, contain an estimated five billion tons of ore and production will be accelerated by the Brazilian government to meet the United Nations' war needs.

To Triple Output

Brazil borrowed $\$ 14,000,000$ from the Export-Import Bank to equip the Vic-toria-Minas Railway and the Itabira mine with rolling stock and machinery for an output of $1,500,000$ tons a year. Mine facilities will be increased and the railway improved. The project will be completed in 1943. Thousands of additional workers are expected to move into the Rio Doce Valley in coming months to work in the mines.

Mr. Wright points out that for many decades Brazil has been a producer of iron and steel products in small charcoal furnaces. Now there are 14 plants in operation with an output of 180,000 tons of pig iron and 120,000 tons of steel. Brazil is constructing a $\$ 45,000$,000 steel plant at Volta Redona, in the state of Rio de Janciro, which will produce 300,000 tons annually. The plant was begun in 1941 and is expected to be in operation in 1944. The ExportImport Bank loaned the Brazilian govenment $\$ 20,000,000$ with which to undertake the project.

Next in importance are Brazil's man-

[^3]ganese deposits. These are found in the states of Minas Gerais, Matto Grosso, and Bahia. In Matto Grosso, near Corumba, is one of the world's largest undeveloped deposits of high-grade manganese ore. This deposit is estimated to contain from $20,000,000$ to $30,000,000$ tons. About 2000 tons a month is being exported. Of the total current output from Brazil, two thirds comes from the Morro da Mina mine of the Cia. Meridional de Mineracao, a subsidiary of the United States Steel Corp. About 20,000 tons are mined each month and reserves at the mine are estimated at a few million tons.

Principal chromite deposits in Brazil are at Campo Formoso and at Santa Luzia, in the State of Bahia. These were worked extensively during World War I, but present output is disappointing, due mainly to lack of good transportation facilities.

Rich Nickel Moard

The nickel deposit in Sao Jose do Tocantin region, in the state of Goiaz, is considered one of the richest in the world. Ore estimates there indicate many millions of tons, principally garnierite, with an average of over 5 per cent nickel. Overlying this nickel deposit are scattered areas of secondary cobalt ore which were being exploited by the Japanese at the rate of 40 tons of 5 per cent cobalt ore a month.

At Livramento, in Minas Gerais, the Cia. Brazileira de Nickel is mining a garnierite deposit and treating the ore in a 20 -ton electric furnace to produce 20 per cent ferronickel at the rate of a ton a day. Another nickel property, Mr. Wright reveals, is at Ipamema, in Espirito Santo, which has been partly drilled, with ore reserves of about $1,600,000$ tons of about 2 par ceat nickel content.

Larger deposits of copper, lead and zine are lacking in Brazil. Lead mines at Apiai and Iporanga supply concentrates for the lead smelter at Palmital, in San Paulo, and supplies Brazil with a considerable portion of her lead requirements.

Total bauxite reserves in Brazil are estimated at $20,000,000$ tons. Extensive areas have been explored in the States of Minas Gerais and Espirito Santo, the most important being those at Pocos de Caldas in Minas Gerais, with ore reservis of $1,500,000$ tons. For some years from 12,000 to 18,000 tons a year of selecled bauxite has been exported to Argentina for making aluminum sulfate.

Brevil is now an important source of

beryllium. Being a pegmatite mineral, beryl may be found in any of the nortl. easterly band of states having pegmatite formation but the important commercial production is limited to the states of Paraiba, Rio Grande do Norte. and Ceara. Output this year will be between 2500 and 3500 tons, depending on availability of mining supplies and shipping.

Important production of columbite and tantalite in Brazil was not begun until 1938. Another mineral product from Brazil is monazite sand which contains 25 to 35 per cent cerium, 6 to 8 per cent thorium and other rare metals used in searchlight carbons, radio tube filaments, incandescent gas mantles, elc. Current procluction is at the rate of about 1400 metric tons ycarly.

Rutile Now in Demand

A mineral of growing importance in the armament program is rutile (natural titanium oxide). Production of this mineral began in 1933 in the state of Goiaz, and jumped from 490 tons in 1939 to 2500 tons in 1941.
The demand for industrial diamonds from Brazil has shown a big increase during the past ycar with exports in 1941 mounting to 235,000 carats.
Nearly $1,000,000$ pounds of block mica was exported in 1941, making Brazil the second largest exporter of muscovite mica in the world. Principal mica producing areas of Brazil are in the state of Minas Gerais, the most inportant districts being Figueira and Espera Feliz. Figueira accounts for about 60 to 70 per cent of the Brazilian output. Brazil's primitive methods for mining mica are being replaced bs mechanical equipment. All exportable mica is purchased by the Metals Reserie Co. as a result of a trade agreement with the United States.
ith the United States.
Brazil is the only important source

Washing a pan containing industrial diamonds, left. Hydraulic washing is method used on bench deposit at the Mina Serrinha Ltd., Diamantina district. Stripping ucerburden with bulldozer from pegmatite (beryl) deposit is shown in photo at right
of piezo-electric quartz crystal for use in radio frequency control. A substantial increase in the demand has resulted in marked expansion of the quartz mining industry.
Zircite, or baddeleyite, found in Pocos de Caldas plateau in Minas Gerais, is the only known occurrence of this deposit. These baddeleyite deposits are of particular importance in the war program since the mineral is used in the production of ferro-zirconium and specialized oxide manufacture.
The Magnesite S. A. is exploring high grade deposits of magnesite some 80 miles from the railway station of Jequie in southem Balia. The reserve is be-
lieved to be around $10,000,000$ tons and eventually may become an important source of refractory material for the steel plants.

Priority difficulties have retarded efforts to improve the railways and acquire additional rolling stock. Cargo planes are being considered to transport the more important minerals as mica, quartz crystals, and tantalite. Brazil's new mining code dealt a severe blow to foreign capital, thus delaying by many years the development of her mines.

Mr. Wright reports that much interest has been aroused in Brazil because of the strategic importance of her minerals.

Through closer co-operation of the Brazilian government and United States officials, engineers and geologists from this country have been sent to develop Brazil's mines. Mr. Wright believes that such developments can be accomplished best by a combination of Brazilian and foreign interests not only in financing but in the technical management.

Due to the fact that Brazil's supply of coal is becoming seriously inadequate, the United States lias answered her appeal and sent a group of mining engineers and geologists to study the situation. Further expansion of Brazil's coal fields was studied by a technical indut'trial commission which has recently returned from Rio.

These projects comprise but a part of the general plan of inter-American economic co-operation.

Steelworkers Use Blast Furnace Slag To Fertilize Victory Gardens

VICTORY gardeners in the Duquesne, Pa., area are not going to be stopped by a shortage of fertilizer. They are using blast furnace slag to
condition their soil condition their soil for planting, the slag being made available by the Duquesne works of the CarnegieIllinois Steel Corp.
Fifty truckloads of granulated slag were hauled to a 13 -acre hillside garden project which is going forWard under the joint sponsorship of the city and the company's War Production Drive Committee.
Calcium oxide in the slag is equiv-
alent to 45 per cent lis alent to 45 per cent lime and serves
the same purpose of neutralizing the acid in the soil.
Under a plan worked out between the committee representing the community and the company's War Production Drive Committee, space is available for planting 200 gardens. City engineers have laid out 50 -foot garden squares. Several smaller plots in and near Duquesne will be plowed and furrowed for victory gardea assignments.
The city and the company are providing the plowing and harrowing, and the company will furnish five tons of fertilizer, to be distributed by
the city in 50 -pound bags to each gardener. Gardeners will provide their own seeds and tools.

The plant's participation in the Duquesne project is an outgrowth of the company's victory garden program encouraging employes to grow gardens this summer, either in large plots like the one at Duquesne or in their own backyards.

Victory gardening programs in Carnegie-Illinois plants are under the leadership of War Production Drive Committees. Through the connmittecs, how-to-grow-garden charts and booklets have been made available to all employes. In many cases the company has furnished its own available land, has plowed and fertilized it and turned it over to the committees to be used as planting sites for steelworkers and their families.

"No Industrial Pearl Harbor!"

Tremendous resources, plus accumulated purchasing power and adequate preparation can avert peacetime letdown. . . Allied advances heighten interest in problem

AN "Industrial Pearl Harbor" can be avoided if postwar plans are made in time. This was the declaration of Lyman Hill, director of sales research, Servel Inc., Evansville, Ind. before a meeting of industrial executives in New York, May 7, sponsored by the National Industrial Advertisers Association.

That recent allied victories have increased the emphasis on postwar planning was apparent at the meeting.

Mr. Hill admitted planning for the next peacetime era is an "enormous" problem compared with that of after the last war-which cost only 45 billions against an estimated 300 billions for the present conflict.

We have the largest amount of labor in history trained to "think in terms of tolerances of 0.001 -inch rather than $1 / 16$ inch," he said. We have tremendous resources. We have a vast accumulation of purchasing power, which will include 23 billions in bonds by year'end.

He said industry should not lean on the Committee for Economic Development in seeking the answers to postwar problems since no single formula can cover every case. Too many companies have the tendency to wander around in circles, he added.
"Thanks to the war, the manufacturer will have available a greater variety of raw and semifinished materials in more abundant quantity than ever before," declared Clyde Williams, director, Battelle Memorial Institute, Columbus, \mathbf{O}.

In addition to a greatly increased capacity for producing steel, we will have $1,200,000$ tons of aluminum and 300,000 tons of magnesium available on an anmual basis, he said. About $1,500,000$ tons of copper are available annually from domestic sources, along with about 1,000 ,000 tons each of lead and zinc. Synthetic rubber, which may be classed as a synthetic resin, will serve as the base for production of a greatly increased amount of structural products. Capacity for the production of basic resins, loosely termed plastics, now is 200,000 tons a year. These resins may be converted into an apparently endless variety of products.

Mr. Williams predicted low-alloy, high strength steels will play an important part in the postwar picture, especially in the transportation field. National Emergency steels, as well as the older automotive steels, also will find increas-
ing applications, he thinks. Lead-coated steel, developed as a result of the scarcity of zinc, should find important uses.

Copper and brass, due to their permanence and workability, will continue to find applications too numerous to list. He pointed out, however, that plastic tubing already is a competitor of copper tubing. The low specific gravity of magnesium will find preferred uses for this metal although it is more difficult to shape and weld than some of the more common metals.

After the war, to achieve a satisfactory level of employment, our economy must provide jobs for $10,000,000$ people more than in 1940, William Benton, vice chairman, Committee for Economic Development and vice president, University of Chicago, told the group. Peactime production must be stepped up 40 per cent. As for the Committee, it believes common good is "best served by an cconomic system which provides opportunity for the individual. Large corporations would benefit," he added.

Executives Believe Inventory Deflation May Be Avoided

Althongh many painful adjustments are considered inevitable, most executives consulted by the Division of Industrial Economics, National Industrial Conference Board, in a survey believe a general and disastrous postwar inventory deflation will be avoided.

Two thirds of the companies reporting to the group experienced serious inventory losses following World War I and do not believe events of the last war are a criterion for the future. They consider conservative pricing as the outstanding factor in the present war and protection clauses in many war contracts as factors militating against severe inventory difficulties. About half of the companies anticipate a decline in inventories during the next six months.

Arc Electrode Production Catches Up with Demand

Production of shielded arc electrodes, which has been far below essential requirements during the past year and a half, is increasing steadily and is now slightly in excess of current consumption needs, according to the WPB, Gen-
eral Industrial Equipment Division. March production totaled $96,000,000$ pounds, valued at approximately $\$ 10$, 000,000 , as compared with $30,000,000$ pounds in January, 1942, and 88,000, 000 pounds in January, 1943.
The industry's backlog at the end of March represented an average of four months' production at the current rate. a notable improvement over the January backlog of from six months' to a year's production at the January rate.

Peak requirements for arc electrodes, essential in the production of ships, combat tanks, munitions and other vital war items, are estimated at $95,000,000$ pounds per month, division officials stated. It is expected that production will continue to increase until June, when a peak production of $110,000,000$ pounds, with a dollar value of $\$ 100$. 000 per million pounds, is scheduled to be reached. Plant expansion will be completed and facilities will be fully utilized by that time.

Weatherhead Proposes Plan To Assure Stable Prosperity
A proposal for an economic committee. made up of government appointees from ranks of business and labor, to assure the American people of a stable pros. perity and a permanently high standard of living, was made recently by A. J. Weatherhead Jr., president, The Weatherhead Co., Cleveland, before the Chamber of Commerce at St. Thomas, Ont.

The plan would create a revolsing fund collected from taxes with the gorernment contributing 60 per cent, indus try 30 per cent and labor 10 per cent. Federal portion would be used for public works, industrial portion for plant rehabilitation, and labor portion spread between the two.

WLB Approves Alcoa's Wage Incentive Plan

War Labor Board unanimously ap. proved an incentive wage plan submitted by the Aluminum Co. of Americe to apply to its Lafayette, Ind., plant. The board made the provision that the plan shall not increase unit labor cost and subjects the plan to periodic revielw by the Wage Stabilization division.
The incentive plan is expected to r^{-}sult in an overall increase of about 20 per cent for about 2800 of the plant's personnel of 5000 , and will accordingly result in a production increase.

Incentive wage plans are periusible in accordance with President Hoosevelt's recent "Hold the Line" order, providing they do not increase the level of pro. duction costs, the board stated.

THE BUSINESS TREND

Strike, Furnace Repairs Reduce Coal, Steel Output

RATE of industrial activity was slightly lower in the latest week even though production of tinished munitions increased. Sporadic strikes and tighter materials supplies in some basic lines tend to level oft the expansion which las continued almost without interruption until recent weeks.
Steel output in the week ended May 8 was at the lowest rate since early February, down one full point to 98.5 per cent of capacity. Currently lower productivity of the industry is a natural concomitant of the severe strain on equipment imposed by war demands. Otficial sources predict that as high as 10 per cent of the blast turnaces in some districts will go down tor major repairs in coming months.
Although the coal strike was a threat to high-level steel
operations, it was not a caluse of the decline. Its effect on the volume of coal mined was readily apparent. In bituminous fields alone, the abortive mine rebellion cost producers a large proportion of the 380,000 -ton decrease reported for the period from April 24 to May 1. Daily average production in that week declined from $1,963,000$ tons to about $1,583,000$ tons, where the decrease in the comparable week a year ago was only 39,000 tons-in itself a greater than usual recession.

Rise in electric power consumption and preliminary freight carloadings reports raised Steel's index of activity 0.2 point in the latest seven days to 178.7 , which compares with 167.4 at this time a year ago. Electrical energy totaling $3,903,723,000$ kilowatt hours was distributed in that week, against $3,866,721,000$ kilowatt hours in the preceding period. Gain in output over the like week of 1942 was 16 per cent. Carloadings dropped 5,411 units trom the closing week of April to May 1, but reports for the ensuing week indicate this loss will be more than oftset by expansion in car use.

STEEL'S index of activity advanced 0.2 point to 178.7 in the week ending May 8:

Steel Ingot (Operntions

(Per Cent)

Wirek ended
May 8.
May 1.
April 24
April 17.
April 10
April 3.
April 37
Mar. 27
Mar. 13.
Mar, 6
Feb. 27.
Fobl 20.
Feb. 6
Jan. 30
Jan. 23

$19.1: 3$	111.12
98.5	99.0
99.5	99.0
99.0	98.5
99.0	98.5
99.5	98.5
99.5	98.0
99.0	97.5
99.5	95.5
99.0	95.5
99.5	96.5
99.5	96.0
9.5	96.0
99.0	97.0
98.5	96.0
98.5	97.0
99.0	97.0

19.11
97.5
95.0
96.0
98.0
98.0
98.0
99.5
99.5
98.5
97.5
96.5
94.5
98.5
97.0
97.0
95.5

Week	curled	1943	1942	1543	1940
May	8	3,904	3,351	2,792	2,387
May	1	3,867	3,305	2,734	2,386
April	24	3,925	3,273	2,750	2,398
April	17	3.917	3,308	2,702	2,422
April	10	3,882	3,321	2,721	2,418
April	3	3,890	3,349	2,779	2,381
Mar.	27	3,928	3,345	2,802	2,422
Mar.	20	3.917	3,357	2,809	2,424
Mar.	13	3,945	3,357	2,818	2,460
Mar.	6	3,946	3,392	2,835	2,464
Feb.	27	3,893	3,410	2,825	2,479
Feb.	20	3,949	3,424	2,820	2,455
Feb.	13	3,939	3,422	2,810	2,476
Fel.	6	3.960	3,475	2,824	2,523
Jan.	30	3.977	3.468	2,830	2,541
Jan.	23	3.974	3.440	2,980	2,661
Jail.	16	3,952	3,450	2,996	2,674

THE BUSINESS TREND

All Commodity

Wholesale Price Index

U. S. Burenu of Labor
$1920=100$)

	1943	1942	1941	1940	1939
Jan.	101.9	96.0	80.8	79.4	76.9
Feb.	102.5	98.7	80.6	78.7	76.9
March	103.4	97.6	81.5	78.4	78.7
April		98.7	83.2	78.6	76.2
May		98.8	84.9	78.4	78.2
June		98.6	87.1	77.5	75.6
July		98.6	88.8	77.7	75.4
Aug.		99.2	90.3	77.4	75.0
Sept.		99.6	91.8	78.0	79.1
Oct.		100.0	92.4	78.7	79.4
Nov.		100.3	92.5	79.6	79.2
Dec.		100.7	93.6	80.0	79.2
Ave.		98,7	87.3	78.5	7.1

Industrial Production Fcderal Reserve Board's Index $(1935-39=100)$

	1943	1942	1941	1940	1935
Jan.	199	171	139	122	10
Feb.	209	172	141	116	10
March	203	172	143	112	10
April		173	140	111	101
May		174	150	115	9
June		178	157	121	102
July		180	160	121	10
Aug.		183	160	121	10
Sept.		185	161	127	11
Oct.		189	183	129	12
Nov.		194	168	133	124
Dec.		197	167	138	128
Year		181	154	122	108

Gear Sales Index

(1928 = 100)

May 17, 1943

By ARTHUR F. MACCONOCHIE

All-Hydroulic Press

 is now adapted successfully to forging operationsAny comparison of cost must include the cost of the iloor space necessary for installation and cost of foundations for the heavy boiler, intensifier and accumulator. With an all-hydraulic self-contained system. the single foundation for the press is sulficient and only that floor space necessary for the press itself is required. The entire power unit is mounted overhead and out of the way as will be seen in the accompanying illustration.

In considering maintenance costs a number of desirable features incorporated in the HPM press are of interest. All the pressure and working parts are lubricated by the operating medium which is a clean, cool, lugh-grade lubricating oil. Since this oil is cooled and filtered continuously, it has no chance to become loaded with dirt and abrasives, or to lose its lubricating qualities.

The HPM unit largely eliminated the network of piping and valves for it is started, stopped, reversed and its speed changed by varying the pump stroke. No control valves are employed.
In the HPM self-contained system there are no packings to require frequent replacement. The pressure cylinder of the press is smooth bored throughout its entire length and the piston type ram is metallic, piston ring packed. There is no high-pressure packing to de-

teriorate. The pump which generates pressure for operating the press has no packings, the pump systems being ground and lapped to fit the cylinder bores.

The almost total elimination of piping affords another important saving in maintenance cost. Pumps are mounted close to the pressure chamber, requiring a minimum length of pipe. All corners are turned by bending and all joints are made by welding the pipe into heavy four-bolt flange unions. Thus there is no chance for loose connections and leakage to develop.
Another feature of the self-contained hydraulic system is the almost complete elimination of pressure losses through the pipeline and valves. Also the pressure generator itself is extremely efficient and compact, making highly effective use of power consumed. Too, there are no auxiliary pullback and cylinder assemblies and consequently the entire system is much less complicated. No time lag exists in press operation since there is no intensifier to require recharging.

The entire press operation is controlled from one hand lever. The action is quite rapid, the pressure being closed at good speed by gravity. The closed cylinder is maintained full of oil during the closing movement by a special surge valve which pernits highspeed closing. The pressure stroke follows automatically with no appreciable time lag because the pressure cylinder is already full of oil. This permits rapid manipulation of the ram by the operator.

In forging, fast action is a special advantage. Designing an all-hydraulic forging press that closely duplicates the speed and performance of the conventional steam-hydraulic press is one of the most important factors expanding the application of the all-hydraulic press in forging work.

With this compact overall view of the advantages of the HPM self-contained all-hydraulic forging press, let's look at the machine from a designer's standpoint and see how it meets its functional requirements.

Most engineers will probably agree that simplicity is the essence of all good engineering design, and that having the ends to be attained clearly in view is the first requirement for its successful accomplishment. In the case of the all-hydraulic forging press, it is clear that the action should be as fast as the nature of the operation will permit; and the time occupied by the return stroke, together with the nonworking portion of the forward stroke, must be as short as possible.
(Please turn to Page 149)

DOWNSTREAM traffic of wooden barges along American inland waterways at one time constituted an important fraction of freight movement.

The barges were dismantled after each trip and the materials sold. Railroads and speed, plus the growing shortage of lumber that necessitated return of the "empties", cut into this traffic.

Gradually, slowly, inland waterways became canalized on the Ohin from Cairo to Pittsburgh, and on the upper Mississippi to Minneapolis. Open-channel improvements were accomplished on the lower Mississippi and Missouri. Protected channeling was effected along the Gulf from New Orleans to Houston. These together have provided a 6000 mile water highway which has somewhat generally escaped attention.

Riveted steel barges were substituted for wood in 1912. Redevelopment of waterways thereafter caused river operators to examine transportation costs more closely. Significant improvements in barge and towboat design, particularly in welded steel construction with improved rake ends, roller hatches and liquid carrier construction introduced by the Dravo Corp., Pittsburgh, occasioned yearly acceleration in tonnage handled on these waterways. At war's beginning an amazing freight movement ex-

Fig. 1-Typical all-welded ship being launched at Evansville, Ind., shipyard. Ships are moved from building ways to launching basin on unique handling system, then transferred to skids shown here by means of which ships are lowered 67 feet into water

Fig. 2-A fow of the several hundred arc welding sets used at the Evansuille yard

Fig. 3-Left to right: Frank Harrison, general manager, Missouri Valley Bridge \& Iron Co., Shipbuilding Division, Evansville, Ind.; H. S. Tullock, president, Missouri Valley Bridge \& Iron Co., Leavenworth, Kan.; Lieutenart Commander
F. G. Healy, United States Navy, assistant supervisor of shipbuilding

Fig. 4-Typical joh of overhead welding at the Evansville shipyard
Fig. 5-Launching hasin under construction. Concrete supports for rails shown in Fig. I are here being placed
Fig. 6-Portion of cofferdam that holds out water while launching basin was being constructed
isted along them; coal, sulphur, pipe, fabricated steel, scrap iron, fluorspar, sand and gravel traveled in open barges; general merchandise, tin plate, matches, nails, cotton moved in covered cargo towboats; and petroleum products, vegetable oils, acids, molasses and tar products were transported in liquid carricrs.

Welded steel hull construction has done more than merely restimulate this
huge waterborne freight tonuage. It has made possible falrication, launching and delivery of ocean-going cargo ships and naval auxiliary craft at points far inland along the Ohio and Misissippi, cnabling these inland production facilities, materials, supplies and lobor to be advantageously utilized in our vital shipbuilding program.

Welding has made possible the de-

sign and construction of specialized combat ships, evolved from all-welded barge construction. It has permitted standard ship designs to be adapted to some of the methods of mass production. It is a vital factor in engineering our shipbuilding effort to the peculiar transport, amphibian and tank-loading tasks of this multi-fronted global war.

The shipyards of our inland waterways, unusually busy with this variety of naval war production, are indeed testimony to the diversity of location, the ingenuity of our manufacturing methods and the certainty of our abilities to hull out to victory.

On the banks of the Illinois river near Seneca, some 90 miles from Chicago, the Chicago Bridge \& Iron Co. recently turned a pasture into a shipyard in eight months. Here a 192 -acre shipyard is turning out . . . "the largest ocean-going tank carriers yet devised. They are flat bottomed so they may run up on the beach to land the tanks. Once aground a few levers are pulled, a ramp in the bow drops to the beach and the tanks roar off directly on the fighting terrain, ready for battle, their crews inside" . . . according to the Chicago Sunday Tribune, Jan. 24, 1943which notes that the first of these ships was launched Dec. 13, 1942, just six days after the Missouri Valley Bridge \& Iron Co., Shipbuilding Division, had launched the fifth of its kind at Evansville, Ind., first keel having been laid but a few months previously.

In January, 1942, H. S. Tullock, president, Missouri Valley Bridge \& Iron Co., and Joseph Shaw, chief engineer of W. A. Bechtel Co., presented various facts to the United States Navy concerning the feasibility of ship construction in the Mississippi Valley area. Action quickly resulted. Evansville was selected as the spot. A group of joint venturers was organized consisting of: the Missouri Valley Bridge \& Iron Co., Leavenworth, Kans.; Winston Bros Co., Minneapolis; C. F. Haglin \& Sons Inc., Minneapolis; Bechtel-McCone-Parsons Corp., Los Angeles; Sollitt Construction Co., South Bend, Ind. The Missouri Valley Bridge \& Iron Co. (Shipbuilding Division) was chosen as sponsor. The venture was launched by a letter of intent dated Feb. 20, 1942.

This group of co-venturers represents organization, facilities and finance to build almost anything, anywhere. In engineering and heavy construction, these separate companies have done many notable jobs including reinforced steel bridges and viaducts, dams, power houses, ocean jetties and harbor works, tunnels, prisons, industrial plants, pumping stations, refineries, irrigation projects, chemical plants. Their contract
with the Niary is virtually as agents, on a cost-plus-fixed-fee basis, propelling machinery being provided by the Navy, and working plans of Gibbs \& Cox design obtained from Dravo Corp. Otherwise the job is entirely theirs, through many sub-contractors with whom they like to work.

Evansville borders the Ohio river, 189 miles above its entrance into the Mississippi, which is 1000 miles from the Gulf of Mexico. Six dams provide a minimum depth for navigation of 9 feet on the Ohio to the Mississippi. Bridge spans along the Ohio have clearance for larger type oceancraft. For steel shipments, Evansville is cqually distant from four main mill points-Pitts-

Description	Size or Total Capacity Units
Model 200 Colly Cranes	45 Tons at 30°
Lincoln Are Welders	400 Ampere
Larain Moto-cranes	15 Ton
Launching Winches	$\begin{aligned} & 38,000 \mathrm{lbs} . \\ & \text { Line Pull } 13 \end{aligned}$
Wilson Are Welders	300 Ampere
Bucyrus-Erie Cranes	45 Ton
Transfer Dollies	100 Ton 30
Mack Truck Tractors	20 Ton 10
Type 80 Osgood Mobilcrane	25 Ton
Gardner-Denver Compressors	250 H.P.
Welding Panel Boards	Sincle Panel
LaCrosse Semi-trailers	19 Ton 10
Steel Scaffolding .	40
WA-26 White Trucks	10 Ton
Single Drum Winches	$15,000 \mathrm{lbs}$. Line Pull
Gardner-Denver Compressor	200 H.P.
Chevrolet Flat Bed Trucks	11/2 Ton
Sterling Truck Tractor	33 Ton
Geared Head Lathe	$27^{\prime \prime} \times 18^{\prime}$
Caterpillar Diesel Grader	12' Blade
Reed Prentice Radial Drill	6^{\prime}
Leblonde Milling Machine	$61^{\prime \prime} \times 16^{\prime \prime}$

burgh, Cleveland, Chicago, St. Louis. In fact there is more potential mill capacity closer to the Evansville shipyard than for any point on the Atlantic seaboard.

The yard has immense Ohio river frontage within Evansville's corporate limits. There are 32 buildings in the layout, three railroad spurs, necessary building ways feeding into a central transfer area that is fronted by the launching ways. Seldom is a shipyard layout seen in which so much construction can be accomplished in so little spacc, with such orderly movement from subassembly and with such little waste motion from transportation to storage to job.

Welding, of course, has had a farreaching influence on shipyard layout. Early shipwelding proved costly because older yards were set up for riveting. I walked all day through the Evansville yard without seeing a rivet. Com-
pletely new, this yard is set up entirely for welded construction. All power, gas, water, oxygen and compressed air for the yard is distributed underground, leaving the working urea completely free from all service lines. The reinforced concrete slab which makes up the building ways is of such structural strength as to be feasible for erecting hulls in steel cradles, though this is not the present procedure.

The cconomics of welding in slipbuilding starts with the yard layout it. self. Man hours per ton of ship plate lends to remain static in former construction methods while it is declining all the while in welded ship construction. Savings in hull weights, reduced maintenance charges, mass production of ship plates by flame-cutting, speedier fabrication are some of the economics involved. But the fact that the entire yard is more efficient and can be maintained with less invested capital is a basic consideration.

Long, open building ways, extensive erection platforms and cribs, gantry cranes serving two ways at each side; prefabricated work from the platforns and the shipways moving directly to tack-welding and into place-all thesc represent economies in materials control, manhours, fabricating convenience, progressive assembly of tremendous merit over old shipbuilding methods.

It is always interesting to see eridences that the very old engineers thought out things that have taken us 100 years to appreciate. For example, Eli Whitney in 1818, at Springfield. Mass.. as director of United States Arsemals, worked out the jigs, gages, methods and standards by which parts of rifles were made exactly alike and could be used interchangeably. Sinrilarly, and at about the same time, Robert Fulton impelled by difficulties in launching ships on the Hudson, worked out and patented the launching principles used at Evansville shipyards. The system works well, for it gentles these ships sidewards into the Ohio river with nary a ripple.
With the layout of the yard hardly on the board in March, by the end of July a huge steel piling cofferdanm had been completed, enabling the construction forces to complete the outboard portion of the launching ways. Because of certain river hazards, this cofferdam has been allowed to remain.

Although details of the launching ways cannot be released, they employ timber skids supported by a series of 26 timber piles. The skids have a slope of 1 foot vertically to 4.75 feet horizontally with a total drop in elevation of about $6 i$
(Please furn to Page 142)

Let Carpenter help you produce MORE STAINLESS PARTS-faster

Helping you speed output of perfect Stainless Steel parts, and cut rejects to a bare minimum, is part of Carpenter's wartime job. The groundwork for this job was laid many years ago when Carpenter invented Free-Machining bars and developed ductile Stainless Strip. Today, Carpenter Stainless Steel is licking more and more tough fabricating problems. And daily we are adding to the wealth of practical experience we have gained in working with Stainless users.
Take advantage of Carpenter's diversified knowledge of Stainless Steels. Your nearby Carpenter representative can help you in the shop-and can provide you with assistance from our Metallurgical Department.

Faster machining

of this gear is made possible with Free-Machining Carpenter Stainless. At the same time, Corpenter Stainless Sleel keeps wear and enrrosion of such parts to a minimum, prolonging service life.

Fewer rejects

in making these all.Stainless steam trap parts result trom the conston! uniformity check of Carpenter Stainless Strip at each step of manufacture. And this Stainless protects products from this Stainless protects products

Easier fabricating
Carpeater Stainless Strip helps speed output of this aircraff carburetor part. Then roo, the ductility of this Stafnless Strip makes possible smooth forming and deop drawing.

Close tolerances
on the two metal screens of this pigeon livers licer are met easily when Carpenter Stainless is used. Andin service, this Stainless comberilizing. from blood and constant sterilizing.

Here's fabricating data

for your production men, They can use this information to help iran oul fobricoting difficulties all along the line. These are some of the subjects covered in the Fabricating Secfion of our 98 -page book, "Working Dala for Carpenter Stoinless Steals" :

- Machining
- Forging
- Forming
- Annealing
- Slampirg
- Welding
- Bending - Grinding

And here's helpful design-engineering data about Carpenter Stainless Steals. "Working Data for Carpenfer Stainless Steals" covers these and other subjects:

- Physical Properties
- Corrosion Resistance
- Electrical and Magnetic Properties
- Workability
- Heal Resistance

A copy of "Working Data for Corpenter Stainless Stoels" is waiting for yau. Drop us a line on your company lefferhead and we will get il off as soon as passible. This Working Daia book is offered fa users of Stoinless Steel in the U. S. A.

The Carpenter Steel Company 139 Bern St., Reading, Pa.

Fig. 1-Making rockwell hardness tests on a Jominy sample. Roller V-block is being used. Flat anvil may be used if sample is ground flat on two sides 180 degrees apart

How to we the JOMINY END-QUENCH TEST

WE ARE passing through a period of alloy steel shortage, during which we are unable in many cases to obtain the steels which we have used in the past. This means that many substitutions must be accepted.

Engineering and heat-treating departments are thus called upon to pass on the suitability of many unfamiliar steels for specific applications. An inexpensive, quick and reliable method of determining the heat-treating characteristics of these substitute steels is therefore needed.

The Jominy end-quench hardenability test has been in the hands of research laboratories for some time but has found very little application in the average heat-treating shop.

The Jominy test has the great advantage of being very noncritical. Any high school graduate can be taught to secure accurate results, consistently, after a few hours instruction. It can-
not be assumed that this test takes the place of regular laboratory equipment, but it does offer a quick, inexpensive and reasonably accurate method of determining the heat-treatment characteristics of steel and thus is valuable where practical results are a prime requisite and time is an important factor.

From a purely practical standpoint this test has many outstanding advantages. The equipment necessary for making the test consists of a hardening fixture which can be constructed at the cost of a few dollars, a heating furnace, and a rockwell hardness tester. Practically every heat-treating shop has this equipment, except the hardening fixture, Fig. 2. This can be constructed by a tinsmith and a pipe fitter at a cost which should not exceed about $\$ 25$.

The sample consists of a machined piece of 4 -inches overall length. It is l-inch round for a distance of $3 \% / 8$ inches and has a flange approximately
$11 / 8$-inch in diameter and $3 / 8$-inch thick on one end.

The operation of the test is very simple. The sample is heated to the proper quenching temperature for the steel tested, it is placed in the fixture, after which the sample may be quenched all over in water. The pert operation is to grind a flat along the entire length of the sample about 0.0115 inch deep to remove decarburized surfacc. Rockwell C hardness readings are taken, starting at the hardened end at $1 / 16$ intervals for a distance of about 2 inches.

The cuenching water jet impinges on the end of the sample and this area is cooled very rapidly. Inasmuch as the heat must travel by conduction from the sample to the quenched end, the top portion of the sample will cool very slowly. Different rates of cooling therefore occur all along the sample. The behavior of the steel at the difo The behavior of the stecl aticated by

Included in the many outstanding features of Porter Diesel-Electric Locomotives is the Porter Safety Step, designed to render yard work safer,
 speedier and easier. Yardmen, switchmen and engineers all appreciate this extra safety and owners profit by the saving in
operating costs and faster switching. In addition to the Safety Step, Porter Diesels are designed with extra clearance under gear unit; large, freesliding steel cab sash and windows of shatter-proof glass; readily accessible air compressors and other operating parts, and separate starting battery for each power unit. Complete specifications of any model on request.

-
 OML PORIAR BUIDS A COMPIZIE LNE OF LocomoIVES FOR MDUSIBY

 PITISBURGA, PANNSXIVANIA
 NBW YORE, GHICAGO. PHIMADNAPHIK

May: 17, 194.3

Fig. 2-Jominy hardenability test fixture. Unit should be mounted close to furnace so sample can be transferred to quench quickly. Fixture bowl should be at least 14 inches in diameter to avoid side splash
the different rockwell hardness readings.
Research laboratory experiment has determined just how rapidly the sample cools at different distances from the quenched end. These rates of cooling are listed in Table II.

Table III indicates the rate of cooling of round bars from 1 to 4 inches in diameter, at the surface, half radius and center, for both oil and water quenching.

Assuming that the hardness developed in any particular steel by quenching is a function of the rate of cooling, then we can predict the hardness of quenched bars of different sizes from the Jominy rockwell reading.

Example: A 3 -inch round bar when quenched in oil will cool at 30 degrees Fahr. per second on the surface. (See Table III) The Jominy sample cools at 30 degrees Fahr. per second at a distance of $1 / 2$ inch from the quenched end. The hardness therefore developed at $1 / 2$ inch from the quenched end of the Jominy sample will be approximately the same as the hardness developed by oil quenching a 3 -inch round bar of the same steel if the reading is taken on the surface.

The same 3 -inch round bar will cool at 12 degrees per second at the half radius point, if quenched in oil. (See Table III.) This rate of cooling corresponds to the rate at a point about 15/16-inch from the quenched end of the Jominy sample. Therefore the hardness of the oil-quenched 3 -inch round bar at half radius will be approximately equivalent to the hardness shown on the Jominy sample at $15 / 16$-inch from the quenched end.

Long time experiments have indicated that the quenched hardness of steel containing in excess of about 0.35 per cent carbon and between 200 and
results of the Jominy tests. Note extremely close comparison resulting, discrepancies being well within the limits of variations expected in ordinary laboratory practice on different samples from the same heat of steel.

	800 F. draw-Actual
	800 F . clraw-Interp.
	1000 F. draw-Actual
	1000 F . draw-Interp.
	1200 F . draw-Actual
	1200 F . draw - Interp.
	STEEL 2-1" Rd.-Center
	800 F. draw-Actual
	800 F. draw - Interp.
	1200 F. draw-Actual
	1200 F . draw-Interp.
	STEEL 3-1" Rd.-Center
	800 F. draw-Actual
	800 F. draw-Interp.
	1000 F. draw-Actual
	1000 F. draw-Interp.
	1200 F. draw-Actual

188
148
12
12
10
10
21
Yield
Point
psi.
122 250

\%	
Elong.	\% Red. of in 2"
Area	

1200 F. draw-Interp. 800 F . draw-Actual
800 F . draw-Interp.
1200 F . draw-Actual 122,250
130,000
101,750
106,000

16.4	53
19.0	54
20.3	56.9
23.0	61.0
23.0	63.6
24.0	62

1200 F. draw-Actual
21

STEEL 5-1" Rd.-Cen
800 F . draw-Actual
800 F draw-Interp.
1000 F. draw-Actual
1000 F. draw-Interp.
1200 F. draw-Actual
1200 F . draw-Interp.
STEEL $6-1$ Rd.-Center
800 F. draw-Actual
800 F. draw-Interp.
1000 F . draw-Actual 1200 F. draw-Actual $\begin{array}{rl} & 188,000 \\ 30 & 148,000 \\ & 122,250 \\ & 23 \\ & 123,000 \\ \cdots & 106,35 \\ \cdots & 109,000 \\ & 212,750\end{array}$
Tensile
Strength
psi. 148,
22,2
23,00
06,
21
20
13
12
20
212,750
204,000
132,750
128,000

168,525	13.3	45.1
180,000	13	45
118,325	22.6	61.2
109,000	22	59

1200 F. draw-Interp.
$\begin{array}{ll}200,570 & 175,475\end{array}$
13.3
14
16.4
17
25
24 42
45
63.1
 1000 F . draw-Actual 1000 F . draw-Interp. 1200 F . draw-Actual
1200 F . draw-Interp. STEEL 8-1" Rd.-Center
800 F . draw-Actual 800 F . draw-Actual 800 F. draw-Interp.
1000 F. draw-Actual 1000 F . draw-Interp. $\begin{array}{ll}169,625 & 142,500 \\ 162,000 & 140,000\end{array}$ $127,325 \quad 109,450$ 217,750 175,400 130,100
124,000

196,075 17

 1200 F . draw-Antual 192,000165,925
170,000
125,175
125,000 20
18
16
162
1
1 STEEL 9- $\mathbf{l}^{\prime \prime}$ Rd.-Cent
800 F. draw-Actual 800 F. draw-Actual
800 F. draw-Interp.
1000 F. draw-Actual
1000 F. draw-Interp. 1000 F. draw-Interp.
1200 F. draw-Actual
1200 F. draw-Interp. 1200 F . draw-Interp.
STEEL $9-31 / 2^{\prime \prime}$ Rd.-1/2 Radiu 800 F draw-Actual 800 F . draw-Interp. 1000 F. draw-Actual
1000 F . draw-Interp. 1200 F. draw-Actual 17
14
15 1200 F . clraw-Interp.
STEEL 10 - $1^{\prime \prime}$ Rd.-Cente
800 F draw-Actual 800 F . draw-Actual
800 F. draw-Interp. 1000 F. draw-Actual 1000 F. draw-Interp.
1200 F. draw-Actual 198,000
176,000
168,000
133,800 17
232

STEEL 11-1" Rd,-Center
 800 F. draw-Actual

 800 F. draw-Interp. 1000 F. draw-Actual1000 F. draw-Interp. 1200 F. draw-Actual
\qquad
. 3
STEEL 12-1" Hd.-Center800 F. draw-Actual
800 F. draw-Interp.1000 F . draw-Actual1000 F. draw-Interp.
…... 1200 F. draw-Actual d. $1 / 2$ Radius ${ }^{26}$ STEEL $12-3 \times y^{\prime \prime \prime}$ Rd.- $1 / 2$ Radiu 800 F. draw-Actual
36 1000 F. draw-Actual 1000 F . draw-Interp. 1200 F. draw-Actual 1200 F. draw-Interp. verage of -Actual \& 11 Physicals - Interp.

complete, economical inspection system

For inspection and measurement in the toolroom or for comparison inspection of production parts with a master chart or template, the economy of inspection by Optical Projection with Jones \& Lamson Comparators is beyond question. of much are immediately detected, thus they can readily be corrected, and the loss There is valuable time eliminated. inspection a Jones \& Lamson Optical Comparator for every need in the field of your inspection Optical Projection, and our inspection engineers are ready to study twenty years exp problems and make recommendations based upon more than

JONES \& LAMSON MAChine company

Manufacturers of: UNIVERSAL TURRET LATHES • FAY AUTOMATIC LATHES • AUTOMATIC THREAD GRINDERS : OPTICAL COMPARATORS - AUTOMAIIC OPENING IHREADINC DIES.
May 17, 1943

PROFIT-PRODUCING MACHINE TOOLS

TABLE II-Cooling Rate of the Jominy Test Specimen

The following figures show the rate at which the Jominy specimen cools at different distances from the quenched end. The rate is shown in degrees Falir. per sccond.

तो-600	\%-26
$1 / 4-190$	5\%-22
กิ-99	$7 / 4-18$
1/4-72	7/4-14
- ${ }^{3}-56$	$1-10$
$3 / 8-44$	118-8.5
7 7 - 37	11/4-7.2
$1 / 2-30$	$11 / 2-5.5$

TABIE III-Cooling Rates
This table shows the rate of cooling in degrees Fahr. per sccond of various diameter bars for both oil and water quenching and at the surface, half radius and center.

Diameter	Surface	1/2 Radius	Center
1-inch Round			
Water Quenched	850	135	100
Oil Quenched	120	53	45
2 -inch Round			
Water Quenched	550		32
Oil Quenched...	58	24	
3-inch Round			
Water Quenched	400	27	15
Oil Quenched	30	12	
4-inch Round			
Water Quenched.	100		512
Oil Quenched	15	6\% 2	51/2

desirable to endeavor to use the Jominy test to determine what physicals may be expected in steel which has been quenched and then drawn.

The suggested method of procedure for this determination is to make three Jominy samples of the steel being tested. The three samples are then heated and quenched by the standard Jominy method. After quenching one sample is drawn at 800 degrees Fahr. another sample at 1000 degrees Fahr. and the third sample at 1200 degrees Fillr.

After cooling the three samples are then ground and rockwell tests run in the usual manner.

The rockwell hardnesses developed on the three samples are then interpreted by the use of Tables I, II, III and IV and the results will form a valuable guide in predicting the subsequent heat treatment behavior of the steel which is being tested.
Table I indicates in detail the results of the quenched and drawn Jominy

TABLE IV-Physical Property Corrclation
Conversion of Jominy rockwell hardness values to other physical properties. Physical properties for hardness values other than those listed between 15 and 42 rockwell C can be approximated by interpolation. Thus tensile for 22 rockwell C would be 112,000 to 125,000 pounds per square

inch.

Rockwell
C
15
20
24
28
31
3
3
37
39
42

	$\begin{array}{c}\text { Tensile } \\ \text { Brinell }\end{array}$
Strength	

Per Cent Per Cent Elong. Red. of in 2 " Area 22-28 60-68 21-26 $\quad 75-65$ 20-25 55-63 18 -23 $52-61$ $17-21 \quad 50-58$ 16-20 47-56 1.1-18 $\quad 45-54$ $\begin{array}{ll}13-16 & 42-51 \\ 11-15 & 40-45\end{array}$ $11-15 \quad 40-45$

TABLE V-Analysis of Steels Used in Tests Results of Which Are Listed in Table I

Steel					Si.	Ni.	Cr.	Mo.
No.	C.	Mn.	P.	${ }_{0} \mathrm{~S}$	21		. 53	. 32
1	0.29	. 63	. 02	. 082	. 28	. 47	. 59	26
2	0.46	. 93	. 029	. 027	. 47	. 31	. 31	. 13
3	0.42	1.05	. 016	. 027	.47	. 63	. 33	. 12
4	0.45	1.24	. 021	-026	. 53	. 40	. 38	11
5	0.44	1.20	. 017	. 028	. 43	42	. 27	13
6	0.42	1.16	. 005	. 032	. 57	. 32	4	14
7	0.44	1.37	. 043	. 030	. 54	. 40	. 32	12
8	0.48	1.22	. 018	. 028	. 47	. 40	. 31	14
9	0.47	1.16	. 017	. 026	. 32	. 30	. 33	10
10	0.46	1.04	. 024	. 03.4	. 50	. 40	. 33	10
11	0.48	1.28	. 022	. 036	. 41	. 29	-3.5	. 12
12	0.46	1.23	. 025	. 026	-48	. 33		

400 brinell bears a definite relationship to its tensile strength and other physical properties. Table III shows rockwell hardness and the approximate corresponding brinell hardness and physical properties expected.
The data in Table IV does not apply to stecls in the anuealed, normalized condition, or "as rolled" condition, but is reasonably reliable when used under the conditions already mentioned.

The physical properties obtained by the above methods of Jominy interpretation are those which can be expected in the as-quenched condition only. Most alloy steels are used in a quencied and
draw'u condition and therefore it seems tests on the 12 different heats of stcel listed in Table V. In order to check the reliability of this method, samples of each heat were put through the quenched and drawn Jominy test and interpretations were made. These results are compared with standard quenched and drawn pull tests on the same stecls and are tabulated side by side in Table I. It is interesting to nole that the average of these 40 tests show a discrepancy of only 3080 pounds pror square inch in tensile strength, 2200 pounds per square inch yield strength, 1 per cent in elongation aud S per cent
in reduction of area.
These discrepancies are no greater than would be expected in ordinary laboratory practice on different samples taken from the same heat of steel. Thus the Jominy test and its interpretation suggested should constitute a veř valuable guide in estimating the heattreating characteristics of any unknown steel which was being used for the first time.

New Battelle Publication List Now Available

One-hundred and forty Battelle-originated books, patents, and journal contributions are listed in a new catalog published by Battelle Memorial Institute, Columbus, O . The catalog, in booklet form, covers publications and patents for the years 1941-1942 and supplements a previous listing of over 500 publications and patents of prior date.

Since its begimning, Battelle has utilized the media of the various teclnical and scientific journals in disseminating the results of its rescarch in chemistry; metallurgy, fuels, and ceramics. The new catalogue lists all the contributions to the technological literature made by Battelle staff members during 1941 and 1942.
Copies of the new catalogue and the prior listing which it supplements are available upon request.

Venting of Mine Gases Lowers Ventilating Costs

Pipe holes from 100 to 1000 feet dee! are being drilled by mining interests near the Bluefield, W. Va. district in order to free dangerous gas from coal mines before the seam is worked the Commessed Air Institute, Clcveland, reports. Not only is the gas released but defrite economy in ventilation costs is realized, it is said.

In venting the gas, pipes are sent a short distance through the collar of the holes and then connected to blowers which provide the exhausting action.

Some of the mines where this is being done, the institute reports, are extremely gassy. One liberates as much as 12,000 000 cubic feet of gas per day-mough to supply a large city.

Although amount of inflammable me thane must be kept io a maximum of 0.5 per cent in the mine attuosphere, it is the aim of this now gas-evacuating process to reduce the amount of methane in the mine atmosphere 50 per cent lefore a coal seam is opencd.
According to the institute, to csllaust $12,000,000$ cubic feet of gas by usial means would require the circulation of $300,000,000$ cubic feet of air per ninute

The Youngstown Sheet and Tube Company was founded in November, 1900 by 47 local investors, with an authorized capitalization of $\$ 600,000$. In December, 1901, this capitalization had been increased to $\$ 4,000,000$ to provide for the expanded program decided upon by the men of vision who planned the future of this company.

In February, 1902, 14 months after the initial meeting of the shareholders of this company, the first product carrying the Youngstown trademark was produced. In this same year, these pioneers took the first step to assure complete integration . . . the first producing blast furnace was purchased... the first ore properties were acquired... and the first coal lands obtained. These early acquisitions all served as a nucleus around which was created the great industrial organization, which in later years served mankind in every corner of the globe where products of civilization were making life more complete.

We are doubly appreciative of the efforts of those who preceded us at Youngstown. These men of faith, courage, foresight and action have bequeathed to us those things with which we can make a definite contribution in helping to win freedom for the world today, and upon which we can help build an assured prosperity for the future.

Pipe and Tubular Products-Sheets Plates - Conduit - Bars - Tin Plate Rods - Wire - Nails - Tie Plates and Spikes - Alloy and Yoloy Steels

The YOUNGSTO WIN

SHEET AND TUBE COMPANY, Youngstown, Ohio
Manufacturers of
CARBON•ALLOY AND YOLOY STEELS

SOME FEW years ago, a representative of an American steel plant approached officials of the William B. Pollock Co., Youngstown, O., a prominent maker of blast furnaces and steel plant equipment, with the appeal:
"Can't you do something about your open-hearth ladles-something about cutting down their weight?"

That simple little appeal was one of the greatest factors in enabling scores of war-rushed American open-hearth shops to boost their steel output sharply at comparatively little cost, and without extensive and expensive rebuilding of their plants and overhead crane systems. It was a really important aid in raising American steel producing capacity.

It seems that this particular steel producer wanted to increase the sizes of his open-hearth heats. It could do it easily enough-but there was one "catch". It was not possible to merely substitute larger ladles to handle these larger heats-for the plant had reached the limits of the capacity of its over-

Putting the finishing touches on one of the world's largest openhearth ladles-a 225-ton unitshown here being prepared for shipment on a special rail car
head crane systen: Ladle loads were already as heavy as the cranes could handle. Heavier ladles with larger loads of steel would seriously overload the cranes. Of course, the plant and cranes could have been rebuilt-at considerable cost-but there was a business depression, and that building would be expensive. So it sought another alternative.
"We'll see what we can do," promised a Pollock executive after hearing the story. So their engineers set to work.

Heretofore, open-hearth ladles had usually been made of riveted steel plates combined with castings. That construction made the ladle hig, clumsy, heavy and expensive.

The crane loading exerted by an openhearth ladle of a molten steel is the sum
of three weights-the deadweight of thi ladle shell itself, the deadweisht of the lining and the live weight of the load of molten stecl. To increase the amount of molten steel carried in the ladle means reducing the weight of the ladle sheil itself, since the lining's weight cannot be reduced safely.
"Why not," suggested one engineer, "make it from welded steel plates-and save all that weight?" Scoffers insisted the idea wouldn't work-but the Pollock company went ahead and tried it anyway. And it did work-reducing the weight of the first ladle by about one. third. That meant that the ladle would hold just that much more steel, withow increasing the total load on the croness. So it solved that particular sted producer's problem.

Other companies, seeking to enlarge their open-hearth capacity with minimum expenditures, tried the welded type ladle cautiously-very cautiously, and they found it solved their problems, too. The result has been that in many open-

WHAT HAPPENED TO THE 4999th?

ATINY FLAV, a jammed gun, a boy's life's blood reddens the earth, out there in thar leaden hail. Had someone blondered when the parts for that gun were made?
Five thousand parts make up that gun of his. Five thousand pieces of metal reondy a single one need fail to cost his life so bravely given. Your neighbor's son or youts. Think now, what tremendousliability to tiny bits of metal! What can we give? Only the patient
work that moulds and toughens fir metal for his fighting. Only the craftsmanship that forms each part with absolute precision. Only our sweat to save his life, our toil to help him toward Victory
This we can do. Metal is sacred save ir! This we can pledge. Each part, however small, shall move in the terrible motion of batcle - true, sound and as nearly perfect as human skill and mechanical ingenuity can make it.

Such resolve controls the quality of
each Enpire bolt and nut-each bit of metal on which a soldier's destiny may ride. To manufacturing processes which insure maximum strength and greatest accuracy, we add the personal energy and care so essential to Victory.
Free posters for your plant's bulletin boards, reproducing this ad with an appropriate slogan in place of our signature, are available upen request. Write Russell, Burdsall \& Ward Bolr and Nut Company, Port Chester, N. Y.

RBEM Making stroug the things theat make America strong

THE Cleveland Tractor Company, manufacturer of well-known "Cletrac" military, industrial and farm tractors, cites these benefits of hardening parts with a 100 KW "TOCCO Jr.":
Greater Output. Average production speed now three times that of former hardening methods. Elimination of carburizing has cut hardening cycles on most parts from 8 hours to a few seconds.
Versatile. 10 widely different "Cletrac" partsfrom $28^{\prime \prime}$ sprockets to $34^{\prime \prime}$ link pins are hardened on one "TOCCO Jr." New applications being developed continually with the aid of TOCCO engineers.

Lower Costs. Cuts man-hours. Eliminates expensive plating, carburizing and straightening operations. Replaces scarce alloys with carbon steels. Simple to operate, doesn't require skilled operators.
"TOCCO Jr." equipment is built for continuous production service. Dependable, rugged motorgenerator supplies power at a safe, low voltage.

Find out how TOCCO can improve your war production and enable you to cut costs and improve your products for pastwar markets.

THE OHIO CRANKSHAFT COMPANY Cleveland, Ohio

Hot metal car being fabricated by welding. Racks and gear permit ladle to be tilted for pouring
hearth plants all the ladles are now of welded steel. New plants are specifying them exclusively.
Currently, the Pollock company is using welded construction in fabrication of 23 of the world's largest open-hearth ladles, monster kettles which hold 225 net tons of steel each. These giants weigh about 40 tons empty, stand $131 / 2$ feet high and $181 / 2$ feet in diameter. Car-negie-Illinois Steel Corp.'s new openhearth plant at Braddock, Pa., will take 12 of them, and 11 others are for the Columbia Iron \& Steel Co.'s new steel plant at Provo, Utah.
And these welded ladles possess other advantages beside lightness, Pollock executives claim. These advantages include a smoother inside surface which makes it easier to lay up the firebrick linings, and the smoother, better appearing outside surfaces that makes it easier to kecp clean. The lining can be laid directly against the sides of the welded ladle without the backing course between the brieks and shell that is required for rivted ladles to cover rivet heads, butt straps and other projections.
The Pollock company has found various steel plants specify different thickresses of lining, depending on their own experiences. Most steel plants prefer from θ to 11 inches on the bottom, 9 inches of lining on the bottom sides of the walls, with about 7 inches at the top.
The Pollock company holds various patents on the welded ladle, some covering general methods of design, others covering certain construction details.
There is no great saving in weight in building smaller ladies by the welding method Those under 50 to 60 -tons Weigh about the same in either type of construction. Many smaller ladles, such as blast-furnace hot-metal ladles, transfer ladles and electric-furnace ladles are still built hy the riveted plate method. However, many plants are specifying relded construetion even for these types. The preferred design for open-hearth ladles is a round shape with the height slightly greater than the diameter of the lessel, up to a height of 11 or 12 fect. In larger vessels, the height is kept at 11 creased teet, and only the diameter increased. This is done to keep down the In snme metal while pouring.
In snme open-hearth plants, problems of overhead clearances because of cranc dimensions make it necessary to design specially shaped ladles. The company Some are same elliptical shaped ladles. calse of the limited engular in shape betengeth possible, the limited height, width and
ind

Methods used in the big Youngstown plant of the William B. Pollock Co. are quite conventional. Ordinary low-carbon steel plate is used in constructing the shells of the welded ladles, since that appears to be the most economical and safest material available, although steel engineers frequently have suggested use of high-strength alloy steel to bring about further reductions in weight. However, the saving in weight in use of these high-strength steels is usually insufficient to justify the additional cost, the special precautions which must be used in fabricating them and other factors such as the sensitiveness of these steels to the sudden changes in temperature that occur when hot metal or hot slag is spilled over the sides.

Fabrication of the welded ladles begins with the steel plates which are laid out and cut to size by conventional methods. Then they are pressed or rolled to the exact shape they will take in the ladle on huge rolling presses.

Next the parts are fitted together and "tacked" in place with a few welds. The electric arc is then used to complete the welds, a number of different makes of welding machines being used in the plant. All welding is done in the "down" position to insure better welds. This positioning is accomplished by moving the ladles constantly so that all welding can be done down hand.

Steel safety flanges are then welded to the outside of the ladles to give added strength. Some of these flanges are stamped and formed out of lighter material for the smaller ladles, but they must be cut from heavy steel plates for

Welders work inside and outside this hot-metal ladle for a ladle car. Note provision for rotating the fabrication for downhand welding
the bigger ladles.
After all the principal welding is done, the huge ladle then is carried on an overhead crane, deposited on a special car and is shoved into a monster annealing furnace, more than 25 feet high. Here it is "soaked" at a temperature of 1200 degrees Fahr. to relicve the stresses from welding.
When the ladle comes from the furnace, the sides of the shell are built up further by riveting on heavy metal plates. Now forged steel trunnions are forced into the holes bored into these metal plates. And the ladle is virtually ready for shipping.

One of the nation's largest builders of blast furnaces, this company has its equipment in virtually every steel plant in the United States and in many in foreign countries. The furnaces it has built are turning out more iron than all the Axis blast furnaces combined.

How to

SYSTEM

PLANT protection not only eludes both internal protection and security which covers fire, accident, espionage and sabotage, but it also includes passive plant protection which covers protaction of production, personnel, property, and materials from the effects of air raids.

Passive plant protection can be divided into two seclions: First, personnel management and organization. This includes organizing and training for the five protecton services (fire, air raid warden, police, medical, operation, and maintenance). Second, physical installation or construction which includes blackout, protective construction, protective concealment.

Joint Committees: Although the primary responsibility for plant protection rests with management, a labor-management committee on plant protection composed of representatives of both management and workers should be formed in every single plant.

In those plants or departments where the workers belong to a labor organizaton, the union representatives should constitute the labor half of the joint committee. Employs should volunteer for defense duty within the plants where they work; in this sense, the plant has prior claim to the worker over the local civilian defense organization. Employs should be informed of the manner in which the Civilian Defense Council is protecting their families. Similarly, employes should know of the measures being taken for their own safety in the plant.

Plant Organization: Plant defense closely resembles the community's pattern of civilian defense, viz: The plant defense co-ordinator corresponds to the commander of the Citizens Defense Corps, being empowered to initiate, direct, and supervise the entire organizatimon. The plant control room is the
central headquarters where all reports of damage are received and from where the various services are dispatched. Larger plants may be divided into devisons, each in command of a division coordinator with a division control room. Basic subdivision of all plants is the Post under the direction of a Post Warden who is often a foreman.

Duties of the Defense Co-ordinator: Before adopting a suitable plan for his plant, he should consult federal authorities, the local Defense Council, local public officials, and civilian defense authorities of neighboring plants. In order that his organization may function deffectively 24 hours a day regardless of shift, part-time operations, or shut-down periods, he should appoint authorized and competent deputy coordinators to assume his responsibilities in his absence.
If necessary, he may also appoint division co-ordinators and a training chief.

Training of the employs should be conducted by the local defense authori-

[^4]the staff and to greatest safety to charts and and to equipment. Control should be on hand and complete in toms ion on the progress of any incident should be maintained at all times.
In larger plants divided into divisions, division control rooms (similar to the plant control room) should be estallished. It should be with local Civilian Defense authorities to receive air-nid warnings at all times, either direct from the local control center or by a chain calling system of communications. So that warnings may be transmitted quickly, alarms must be established within the plant. Although the telephone is the basic medium of communication, foot messengers, radio, police and fire call bores should be ready in case telephone serice breaks down.
The Five Services: Each of the follow: ing services is commanded by chief who is directly responsible for it:
Fire: During wartime the fire menace increases when production is increased and plants operate longer. Fire from sabotage and incendiary bombings are added dangers. In most industrial plants specific responsibility for fire prevention

fivatioble in a cuide range of trpes including explosion proof splash
proof, tan cooled, maler speed, uni-brake motors and Speccrangers.

Save material and save space will. simple, compact, integrally bull waster gearhead mofors.
and extinguishment is rested in a plant fire chief. He should know the construction, occupancy, and hazards of every building and plant under his care, and inspect the entire plant comprehensively at least once a week; in co-operation with the defense co-ordinator, appoint and instruct competent deputies who can be on duty at the plant at all times; in co-operation with the chief air raid warden, organize and drill regularly a plant fire brigade, select fire lookouts; understand that automatic sprinkler equipment, to be effective, must be complete in its coverage and be in service instantly when fire occurs.

Air Raid Warden: This service may be set up under the fire chief, police chief or as an independent group. The chief air raid warden should be assisteu by deputy wardens. Duties of wardens: Be familiar with all local warning and communications systems; know where and how to report damage; understand the complete details of blackout in the areas of the plant to which they are assigned; guard against the starting of fires, damage of machines, or other acts of sabotage during black-outs.

Since people are generally safer in a
plant than if they leave it, general evacuation should be avoided. When employes are transferred to the "safety" area, wardens should see to it that individual machines, processes, etc., have been shut down.

Police: This service is responsible for maintaining discipline, safeguarding personnel property, and operations. A police chief should be appointed to head this service. With his assistants he should: Guard against damage to vital machines, tools, equipment, power stations, raw materials, finished products; safeguard vital records, specifications, explosives, instruments, blueprints, and other confidential data; patrol all inside and outside areas on the plant premises; closely guard gatehouses or plant entrances; see that watchmen are physically and mentally qualified for their work and provided with proper equipment; control all internal and vehicular traftic to allow necessary air raid squads to reach scenes of accidents; during air raids, maintain discipline.

Medical: The emergency medical service is merely an expansion of the plant's usual medical program. To care for the injured, all industrial plants must

"MANPOWER SAVER"

FROM 24 to 32 hours per week are being saved with this indexing trunnion fixture in drilling 1000 to 2000 -pound marine gear castings involving about 110 holes at one of General Electric's plants. It positions casings for drilling at any angle in a full circle and at any plane. Operator here is drilling a casing tilted at a 45-degree angle. Formerly each piece of work was set up at least six times requiring the use of a crane each time
provide medical services and first-aid equipment within the plant. In collavoration with the chief of the emergency medical services of the locality, each plant should plan for: The use of ambulances and emergency medical Geld units when needed; the use of bods at one or more hospitals to which severe casualities may be taken; a casualty station within a short distance of the plant to care for the slightly injured who do not need hospitalization. During an emergency, a first-aid post should be established as near as possible to the casualties. Trained stretcher bearers, composed of four individuals, should be organized (at least 5 per cent of plant personnel should be trained in these duties). Although most plants will depend largely on surrounding communities for ambulance service, improvised ambulances should be ready in case of an emergency.

Operations and Maintenance: The operations and maintenance chief's duties include protecting buildings, equipment, and supplies which maintain production. He should be a competent allaround engineer and have, as assistants, mechanics skilled in plant fields such as electricity, steam, gas and water. He should be thoroughly familiar with the plant's boiler equipment, valves, piping, and electrical circuits; handling, storing, and processing of chemicals as well as special or key materials and processes.

Protective Construction: The seriousness of aerial bombings on the type of the bomb, fuse setting, impact velocity, angle of the bomb's impact, nearness of the hit, etc. The hit may be direct, lateral or vertical. Every building is a problem in itself. Demolition bombs weighing up to 1000 pounds have been known to penetrate from two to six floor slabs before detonating. One of the most commonly used ineendiary hombs today weighs 2.2 pounds. A 4 to 5 -inch reinforced concrete roof can prevent penetration of such an incen. diary. However, newer, heavier, and more dangerous incendiaries are being dropped by the enemy. Although no place is safe from a direct hit of a hear: lomb (demolition or incendiary), precautions can minimize destructive effects.

The following types of plants present separate problems: Steel-frame, single story shed buildings; multi-story steel or reinforced-concrete-frame buildings: multi-story, wall-bearing buildings; other single-story buildings.

British experience has shown how nec. essary it is to protect vital factory points. Trivial damage may suspend production for long periods; care should be taken that one bomb will not bring about (Please turn to Page 146)

means that

$\sqrt{\text { ENTILATION }}$ for Steel Mill Buildings

By G. E. WALLIN
DeBothezat Ventilating Equipment Division American Machine \& Metals, Inc. Chicago

(Continued from Last Week)

OPERATION of a steel mill produces many problems, but among the most vexing are those involving ventilation. Difficulties of actual physical production can be met and conquered-"you can get your teeth into 'em." Application of power ventilation, however, evades the grasp of most operators because they have not been able to devote sufficient time to its study. This article, therefore, offers some suggestions for solving such difficulties by indicating how other mills have been helped.

The plant engineer confronted with steam, chemical fumes, or hot air removal wants to know how much, where, and how can he get rid of them. Everything connected with ventilation appears to him vague and intangible. If he only had a neat little book where he could find the exact volumes, exact size of equipment; exact size of ducts, hoods, and slots! But he would still need the knowledge of how to co-ordinate all of them. Experience and "know how" is 90 per cent and the data with which to work are the balance of the job.

A ventilating engineer should determine first of all the character of the problem. What is the excessive heat in the building-how many B.t.u.s? Are the sources of heat spread around the building, or are they confined to small area? Can individual hoods and duct work capture the heat at its source, or must a general exhaust be used? If live steam enters a tank of pickling acid directly, how many pounds per hour evaporate after allowing for condensation due to heat losses to the room and to material passing through the tank? If an etching tank or pickling tank is producing fumes, how much liq̧uid surface is exposed to the room air? If hot metal enters and leaves a buildingwhat is its volume, its temperature, the length of time and where? All such

data are part of any specific problem, and should determine volumes, method of handling, and size of equipment.

Removal of excessive heat from steel mill buildings is one of the problems frequently encountered. When temperatures just below the roof line are to be maintained below 120 degrees Fahr. with the fans operating, power flow roof ventilators with direct-connected, totally enclosed, ball bearing motors in the air stream, as shown in Fig. 4, are used. For temperatures of 120 to 150 degrees Fahr. the same units are used, but equipped with Class B (glass insulated) motor windings.

If the air in the building is above 150 degrecs, however, or if it is dirty, or filled with fumes injurious to motor windings, the steel mill operator should use a bifurcator type (literally two-forked) power flow roof ventilator with open frame ball bearing motor, and without any bearings in the air stream. A
louvred plate usually covers the tho motor-chamber openings to prevent rain or snow from wetting the motor, 35 shown in Fig. 5. For temperatures ravg ing from 250 to 350 degrees Fahr, , he same type unit should be used, but with asbestos-lined motor chamber to prevent radiation of heat to the motor.

One of the new stcel plants on the West Const has its open-hearth building designed with a low roof. A large pum. ber of 48 -inch bifurcators and about tice same number of power flow roof ventilators were installed on the low-tye roof against the advice that only natural ventilation could be used with any mesure of success. (Fig. 6) The volume of air required to eliminate the heat w13 determined after a maximum outdort temperature and desired indoor temperiture were fixed. The Btu's put into tic room air by the furnaces and hot metial each hour were calculated from data obtained from a mill in the Chicago an ${ }^{2 / 2}$

Knowing the amoment of heat in l3tu's per hour going into the air of the building, its cooling then depends on the temperature and the volume of the outside air which enters the building to replace that which is exhausted by the fans, The cubic feet of air per minute measured at 68 degrees Falır, which is standard for fan manufacturers, may be delernined as follows:
$\frac{\text { Btu's per hour } \times\left(460+t_{4}\right)}{60 \times 0.25 \times 0.075 \times(460+68) \times\left(t_{11}-t_{11}\right)}$ where,
th is desired room temperature, and It average maximum outdoor temperature. Usually ta is fixed at about 10 or 20 degrees above to.
In certain cases, a few high temperature sources heat the air in a building to an uncomfortable degree. Instead of allowing the heat to spread throughout the entire space, it is better if possible May 17, 1943

Fig. 4-Power flow roof ventilators. Top of ventilatur tilts and locks in position for access to motor
Fig. 5-Two-forked type ventilator for removing air above 150 degrees
Fig. 6-Low-roof open-hearth building equipped with two types of ventilators
Fig. 7-Application of individual hoods, ducts and bifurcator for removing high temperature air from heat treating department
Fig. 8-High-temperature bifurcator for handling 800-octane gases
Fig. 9-Application of principle of trapping heat directly at source
to trap it with hoods at the source. A main duct with branches to individual hoods can then be connected to a bifurcator, which, in turn, will discharge through a duct to outdoors.
Sizing of ducts and hoods should be considered in conjunction with the horse power and unit sizes available from the fan manufacturer. The heat treating furnaces, shown in Fig. 7 were fired with gas; and the number of cubic feet of gas burned per hour was known.

Heat content was 800 B.t.u.'s per cubic foot. Ten cubic fect was allowed as the volume of air and products of combustion leaving the furnace for each cubic foot of gas consumed-all figured at 68 degrees Falir. (The volume, of course, expands when heated to furnace temperature.) Sufficient room air was mixed with the flue gases, after leaving the furnace, so that the fan bearings (or motor bearings) would not be overheated.

By using a ligh-temperature bifur-
cator, (Fig. 8) gases up to 800 degrees Fahr., temperature may be handled safely without any special cooling for fan bearings other than a heat dissipating disk on the shaft. The fan shaft runs in ball bearing pillow blocks located in what is normally the motor chamber. The motor itself is mounted below the motor chamber and drives the fan by a V-belt on short centers. The whole unit is self-contained.
An application of the principal of trapping heat directly at the source-in this case, a converter, is shown in Fig. 9. The temperature of the steel melt was 3000 degrees Fahr., and 3600 cubic feet per minute was forced through it by the usual pressure blower. A high-temperature bifurcator, holds the exhaust temperature at 800 degrees or less. The maximum room temperature was assumed to be 100 degrees Fahr.

The heat above 100 degrees Fahr. to be absorbed amounts to 142,000 B.t.u.'s and is determined by multiplying the temperature difference ($3000-800$ degrees) by the air volume (3600 cubic fect per minute) by the air density at 68 degrees Fahr. (0.075) by the specific heat of air (0.24).

The volume of air required to be taken from the room to absorb 142,000 B.t.u's and thas reduce the 3000 -degree air to 800 degrees for the bifurcator to handle is determined as follows:

This weight of air measured at 800 degrees Fahr. amounts to
$850 \times \frac{(460+800)}{(460+68) \times 0.075}=27,000 \mathrm{CFM}$
Air passing through the converter amounts to 3600 cubic feet per minute measured at 68 degrees Fuhr. This volume measured at 800 degrees is:

$$
3600 \times \frac{1280}{528}=8600 \mathrm{CFM}
$$

Room air plas converter air all measured at 800 degrees Fahr. is $27,000+$ 8600 or a total of 35,600 cubic feet per minute- the required capacity of the bifurcator. However, a 48 -inch (size of fan wheel) high-temperature bifurcator driven at 865 revolutions per minute through a V-belt by a 10 -horsepower 1750 revolutions per minute open ball bearing motor, was employed. The fan wheel and shaft were constructed of heat resisting stainless steel.

One of the most interesting and successful applications of the high-temperatture bifurcator was for each of two wire annealing furnaces at a mill in the Chicago area. The capacity was based on the maximum size of wire, namely $3 / 8$ inch diameter. About 72 wires were run through each furnace in continuous strands; and ufter leaving the furmac:
they passed over steel guide wheels, and thence to reels on which the wire was wound automatically. The wires came from the furnace at about 1800 degrees Fahr., and could not be approached without intense discomfort. Besides, the building was low, of small floor area, and both furnaces operated at once.

The space between the furnace and guides was housed within heavy sheet steel, using the floor for the bottom of chamber, as shown in Fig. 10. A horizontal opening was left at the guide end of sufficient size to handle the required volume of cooling air. Baffle plates were designed to guide the air zig-zag oter the wires, but the plant engineer decided not to install them. The system used the principle of counterllow, that is, the coolest air came in contact with the coolest wires first, and became more. heated as it passed over the om-coming material, finally exhausting through the bifurcator.
In orter to determine the volume of air required, the following data were necessary: weight of wire per foot, as. erage specific heat of iron between 1800 and 100 degrees, speed at which wires moved forward, distance in feet across cooling chamber, and initial tempersture of material entering cooling chamber.

The B.t.u.'s per minute above 100 de -
(Please lurn to Page 14i)

Fig. 10-High-temperature bifurcator serving wire annealing furnaces

Front Elevation

Three ton Lectromelt with roof raised and rotated ready for charging

FOR SPEED

- Lectromelt furnaces of the top charge type are producing increased tonnages of steel per man hour through simplified and economical operation. Top charging has the advantage of continuity of operation by lessening the time between heats, thus conserving heat in the furnace from a previous melt. They permit the use of bulky open charge type of low cost scrap, which melts with
good efficiency and low power usage. The size of scrap is limited only by the diameter of the furnace crucible.

Lectromelt furnaces are designed for efficient operation and are ruggedly built to give long service. The top charge type is available in standard sizes ranging from 100 tons to 250 pounds capacity.

Pittsburgh Lectromelt Furnace Corporation Fittsburgh, Pennsylvania

168 Hours per Week!

Modern industrial trucks are working 168 hours a week. This is necessary to keep war production lines adequately supplied with materials. Other trucks, not so modern and, up to this time, never even considered for such continuous service, can he batteried to give the same kind of service. Write our nearest office for suggestions.

Alibis are Seldom Alkaline.
For every production dip there must be a suitable explanation. Few material-handling delays have ever been attributed to failure of an alkaline battery. Its performance is predictable. It does not fall down on the job without warning. On such reliability are production records written.

Skid Racks. Many war plants are producing parts machined to close tolerances which require careful protection against damage in handling through the subsequent processes. By the use of skid racks they have not only avoided spoiled work but have also saved many handling motions. And, they have avoided time losses that could never be retrieved. When a plant is on a war schedule, there's no time left!

Edison Storage Battery Division Thomas A. Edison, Inc.

 West orange, N. J.

Fig. 1-Consolidated PBY bombers-in-the-making move along assembly line at flight level. Hulls are mounted on padded carriages designed to fit hull contour. Platforms connect hulls at upper working level as shown here. Link-Belt Co. photos

"FLIGHT LEVEL"

Assembly Line Conveyor Speeds Bomber Production

"PBY" BOMBER planes, built by Consolidated Aircraft Corp., are the long range patrol bombers to which the British affectionately refer as Catalina bombers. It was one of these, you will reall, that played such an active part in the sinking of the Bismarck in the north Atlantic.
Foreseeing the need for greater efficiency and speedier production, the engineers of the Consolidated Aircraft organization conceived the idea of mounting and connecting more than two score PBY huils on one assembly line and moving them through assembly ous slages of assembly by means of a conveyor, until these hulls were ready for their wings.
This decision was reached in the early part of 1940, at which time the
hulls were gear, consisting of on their beaching wheel assemblies bolted targe dual section of the hull, and one tail wheel, and were not carried at one tail wheel,
At that time carried at flight level.
At that time, when working on the
hutls in the normal flight level position
the (the position that the production man
has found to be best), each ship had to be leveled individually, which was both expensive and very time-consuming.
The problem was how to mount the ship in the proper position initially, in order to avoid these troublesome delays, and to keep the assembly line moving at a steady pace.
We might here explain that when the ship is assembled at normal fight level, the workman requires only an ordinary hand level to properly line up or plumb a bracket, table or fitting. Therefore, and as there are no straight lines from which one can measure on the hull of a ship, the flight level assembly method greatly simplifies the work.
Gun mounts, instruments-all have to be set so that they will be parallel to the axis of a ship in flight.
Modern Assembly Line: To solve this production problem, Consolidated Aircraft engineers and production men collaborated with the engineers of the Link-Belt office in Los Angeles, and
together they evolved the modern mechanized assembly line now being used to produce the planes.
In this connection, it was determined that it would be more advantageous to apply the beaching gear after the hull came off the assembly line.
Briefly, this new mechanical handling system consists of wide gage, accurately leveled, self-cleaning steel tracks of the shape of an inverted Vee, extending throughout the length of the assembly line; a separate hull-supporting cradle for each hull to be assembled; draw bars specially designed by Consolidated engineers to connect these cradle carriages to each other and permit quick detachment; and a short dou-ble-strand chain and pusher conveyor at one end of assembly line, for moving the line of hulls ahead when the signal is given to advance to the next assembly station.

When the assembly line has moved forward the proper distance, a limit switch automatically brings the conveyor to a stop.
An overhead crane thereupon removes

the ship to another bay of the building, where the beaching gear is applied. It is then ready for installation of the wings and motors. An overhead crane also returns the empty carriages to the beginning of the assembly line, to receive another hull.

The hull-supporting carriages are made of structural steel with timber supports which are cut to conform with the contour of the hull when the ship is at flight level, and also are padded with a heavy felt to prevent scratching the anti-corrosive coating. Each carriage is equipped with four grooved track-wheels, fitted with anti-friction roller bearings, turning on fixed steel axles.

The conveyor for moving the entire assembly line ahead is only about 20 feet long, and its drive shaft, 3 -horsepower motor and variable speed transmission, are depressed below the level of the floor.

The conveying medium consists of two strands of "SS" class bushed stcel chain with three sets of heavy-duty pusher lugs equally spaced, for engaging the hull-supporting carriages. Only one set of pushers is in use at a time.

Cast Iron Radiator Practice Before Industry

Standing committee in charge of simplified practice recommendation R174, large tube cast iron radiators, reports the approval of the simplified list of small tube radiators permitted under schedule VI of Limitation Order L-42 for the present list of large tube cast iron racliators included in R174-41, according to the United States Department of Commerce, National Bureau of Standards, Washington.
The proposed recommendation, which was mailed to all interests for consid-

Fig. 2. (Above)-Closeup of padded hull carriage. Note clectric outlets are part of carriage. At right, near floor is one of the drawbars that connects this hull carriage to next

Fig. 3. (Left)-Short length of conveyor (20 -foot section) moves entire line since all carriages are connected by drawbars. Soon as leading carriage reaches end of conveyor, it trips limit suitch, stopping conveyor. Leading carriage has hull lifted off by overhead crane which later moves carriage back to start of line. Pushers on chain conveyor now bring up next carriage
eration and approval, will retain the serial number of RI74 but the title will be changed from "Large Tube Cast Iron Radiators" to "Cast Iron Radiator".
In event the industry again manuactures large tube radiators after the war, the recommendation can be revised to include both large and small tube radintors.

Revised recommendation lists 10 stock sizes of small tube radiators as follows 3 -tube in 25 -incl; 4 -tube in 19, 22 and 25 -inch; 5 -tube in 22 and 25 -inch; 6 tube in 14, 19, 25 and 32 -inch The catalog rating in scuare feet and dimensions are given for each size. Other information for the simplified line includes hydrostatic test pressure, method of assembly, location of tappings and air vents, painting and method of identifcation in trade literature.

Mimeographed copies of this recoinmendation may be obtained without charge from Washington.

Receiving a rush order for 1000 lbs . of finished stock is nothing 0 get excited about, if you have Ajax-Northrup high frejuence furnaces.
In this case, it was melted in one hour - an exact duplicate undysis. The ingot was rushed to the soaking pit, rolled, and he shipment left the plant during the same day. None left over or stock - nor did the customer have to wait for accumuated orders.
In these days of tailor-made analyses, of quantities rangig from 10 lbs , to 10 tons, of necessity for speed and accuacy, high frequency melting equipment is "worth its weight " gold," as one user puts it.

PRODUCE NOW AND PREPARE FOR PEACE

The same equipment that insures volume and speed now, can be converted to produce smaller melts at low cost later on. Or it can be used for heating, brazing and a dozen other applications.

IN STANDARDIZED sampling practice, each melt of steel in a lot or shipment is considered separately, according to information recently released by American Iron and Steel Institute. To indicate adequately the average composition of a melt or lot, it is recommended that samples selected to represent the melt as fairly as possible be taken from a minimum number of pieces as follows:

3 pieces for lots 5 tons or less,
4 pieces for lots over 5 tons to 10 tons,
5 pieces for lots over 10 tons to 15 tons,
6 pieces for lots over 15 tons.
If the number of pieces from a melt is less than the number of samples specified above, one sample shall be taken from each piece.
If chips are taken by drilling, a drill

Standard Sampling Methods

. . . are explained by American Iron \& Steel Institute as they apply to checking the chemical analyses of steel shipments

having a diancter not less than shown in the following table must be used.
Area of cross-Sec- Minimum Drill tion to be Sampled, Diameter, in.

$$
\begin{array}{lc}
\text { sq. in. } & 1 / 2 \\
\text { To } 16 & 1
\end{array}
$$

$$
\text { Over } 16
$$

When chips are taken by methods

Drill locations for sampling various sections

TAble 1-Standard Variations Over or Under Specified Mange or Limit For Sections Not Over 100 square inches Cross-Sectional Area Nor Over 18 inches Wide or Exceeding 7000 pounds per Piece

Limit or Maximum of Specified lange, per ceut		Open-Hearth Steels	Electric Furnace Steels
		0.01	0.01
Carbon	Over 0.30 to 0.75 inclusive	0.01	0.02
	Over 0.75	0.03	
Manganese	To 0.90 inclusive	0.03	0.03
	Over 0.90 to 2.00 inclusive	0.04	
Phosphorus		0.005	0.005
Sulphur	To 0.040	0.005	0.005
	Over 0.040, not subject to cheek		
Silicon	To 0.35 inclusive	0.02	0.02
	Over 0.35 to 2.20 inclusive	0.05	0.05
Copper	To 0.50	0.02	0.02
Copper	Over 0.50 to 1.00 inclusive	0.05	
Nickel	To 1.00 inclusive	0.03	0.03
	From 1.01 to 2.00 inclusive	0.05	0.05
	From 2.01 to 5.25 inclusive	0.07	0.07
Chromiunı	To 0.90 inclusive	0.08	0.03
	From 0.90 to 2.10 inclusive	0.05	0.05
	From 2.10 to 3.99 inclusive	0.10	0.08
Molybdenum	To 0.60 inclusive	0.03	0.03
	From 0.61 to 1.00 inclusive	0.05	0.05
Tungsten	To 1.00 inclusive	0.05	0.05
	From 1.01 to 4.00 inclusive	0.10	0.10
Vanadium	To 0.50	0.03	0.03

other than drilling, they should represent areas equivalent to those of drills having the diameters noted above.

Drillings or chips must be cut without the application of water, oil or other lubricant and must be free from scale, grease, dirt or other foreign substances.

The chips should not be overheated during cutting to the extent of calusing decarburization. Chips nust be uniform and well mixed. Chips too coarse to pass a No. 10 (2000 microns) sieve or too fine to remain on a No. 30 (590 microns) sieve are not recommended. Sieve size numbers are American Society for Testing Materials designations.

Material scibjected to certain heating operations by the user may not give chemical analysis results which properly represent its original composition. Therefore, users analyze chips taken from the material in the condition in which it is received from the steel manufacturer.

When samples are returned to the producer of the steel for check analyses, the samples should consist of pieces of the full-size section, if practicable, rather than chips, unless chips are especially requested.
Location of Samples: Because of segregation, the location at which samples for check analysis are obtained is important. The following methods are recognized as standard for varioius sections:
-Applicable to any small equiaved section such as rounds, squares, hexagons and the like. Chips are takea by milling or machining the full cross-section of the piece.
-Applicable to products where one axis of the cross-section greatly exceeds the other, such as the bar-size shapes and light flat bars. Chips are taken by drilling entirely through the material at a point midway between the outside and the center of the section, or by milling or machining the entire cross-section. See Fig. 1.
-Applicable to bored forgings. Chips are taken midway between the inner and outer surfaces of the wall.
(Please turn to Page 148)
STEEL

Messrs. Continental Machines, Inc.

Gentlemen:
We are sending you by girls. Our experience ove outbreak of the war, the interesting. Prior to thalls representing compet saving effected on the prof when meet press 'Tools. between Loss and Profm Tools and fime is much important.

It is not an uncommonthinours' notice, and thus remove bottleneck take sereral difficulty when using labour to overcomed orthodox machines and methods. Yours sincerely, - hursmorrs,

Radius Dresser

Perfex Gage \& Tool Co., Detroit, is offering a new angle to tangent radius dresser which deviates from the common method of dressing from the side of the wheel by dressing the wheel at the bottom where the grinding operations actually take place. This also allows the

wheel dressings to be thrown away from the dresser into the dust collector.

Diamond point of the unit automatically sets on center. This is accomplised by the diamond mount construction and the way in which the shank of the diamond tool is ground. According to the company, the unit makes it possible to dress a 0.050 radius to a full half circle without the purchase of additional equipment.

By using a gage block set up, a direct reading from the base to the diamond can be obtained, thus insuring a perfect radius. Construction of the dresser also permits the use of a sine bar to insure accuracy of angles.

Truck Towing Conveyor

Alvey-Ferguson Co., 2 Disney strect, Cincinnati, announces a truck towing conveyor installation which eliminates the hard work of pushing and the danger of sparks from electric or gasoline operated towing equipment. It tows loaded trucks through sul) and final assembly. Towing hooks of the equipment are easily detached by hand or auto-

matically at any pre-determined location where parts carried are processed or assembled.

The trolley conveyor shown at lower clevation is equipped with swivel hooks used for conveying parts through auto-
matic spray painting machines and drying ovens. Rotating pulley is constructed so parts are mechanically turned during painting process.

Gasoline Generator

Hunter-Hartman Corp., St. Louis, recently introduced a new portable gasoline driven generator for rapid battery charging. It is said to eliminate problems accompanying the use of storage batteries in operations where electric current and conventional equipment for charging are not available.

The equipment is designed to charge 6 , 12, 24-volt batteries at 10 to 300 am peres, and consists of a specially designed generator driven by a 6 -horsepower single-cylinder air-cooled gasoline engine which is equipped with air cleaner, gasoline filter, magneto, self-starter, rope

starter, gas tank and remote stop control.

For portability, entire unit is mounted on a skid-type base, equipped with 5 inch wheels. When the unit is in use the wheels are raised from the ground, preventing creeping. According to the maker, the equipment is proving unusually valuable in airplane factories, and around airports for starting motors as well as charging batteries.

Air-Operated Controller

Bristol Co., Waterbury, Comn., is now offering on the market a new air-operated antomatic control instrument known as a convertible free-vane controller. It is for automatically controlling temperature (up to 3600 degrees Fahr.) flow, liquid level, pressure, draft humidity, pH value, and time program.

The controller is reported to operate on the same basic free-vane principle as that used in previous models offered by the company. In the new type, a num-
ber of design refinements have been incorporated. These simplify the instrument and make it more convenient to service, the company states.

The new instrument also is designed so the user can convert from one type of control system to another. It is be-

ing offered in the following types: Monoset (on and off), ampliset (throttling), preset, reset, and magniset. Adjustments for fitting controller to requirements of the process are located on dial board albove chart.

Glass Gages

Turuer Gauge Grinding Co., Ferndale, Mich., is now offering a line of glass gages to its line of precision gages. These, the company states, range in size from 3 to $2 \frac{1}{4}$ inches in diameter-and additional sizes are to be available when molds are completed.

Features of the gages are: They are not subject to corrosion; storage greasing eliminated; scratches and slight chipping on glass neither burr glass gages nor change their gaging functions; and the use of glass will teach inspectors to handle gages carefully.

Drill Jig Unit

Earl C. Parkhurst, 751 East Stepnes place, Inglewood, Calif., is offering a new type Parlec drill jig unit said to permit the toolmaker or driller to gel

into operation many hours sooner than otherwise. Its simplicity of design, only three castings and four pins, and a special quick opening and locking device,

CTEEL

Turnaces of Distinction

ANPEALING CONVEYOR		
CONVECTION	FORGING	METAL MELTING
ROTARY HE	CONTInUOUS	CAR HEARTH
SALT bath plate and angle heating		
BTE WAREONDS		

is instrmmental in saving time in production drilling. The locking device also acts as a handle during drilling, adding materially to its ease of operation. The drill jig is being offered in seven standard sizes- $11 / 2 \times 2$ inches, $3 \times 31 / 2$ inches, $31 / 2 \times 53 / 4$ inches, 6×6 inches, 5×10 inches, $11 / 2 \times 6$ inches and 3×11 inches.

Miller and Jig Borer

Industrial Tool \& Die Works Ine., Minneapolis, announces a new $0-9$ combination vertical miller and jig borer which with its range of spindle speeds from 300 to 3800 , handles metals from steel to aluminum at correct speeds.

The machine has a fast hand and worm feed to the spindle. Feed adjustments are made by a hand wheel located

on the left side of the machine. Table of the unit can be fed either manually or by power. It has four feeds- $1 / 4,1 / 2$, $3 / 4$ and $1^{1 / 8}$.

Head of the miller swivels 180 degrees. Vertical spindle is driven by an independent $1 / 2$-horsepower motor. The cutter spindle of the unit is momuted in a movable steel quill fitted in the vertical spindle head. Quick clamping of quill in any position is accomplished by a hand lever. This is fitted with an adjustable limiting stop for repeated accurate positioning of the cutter.

Checking Recorder

Michigan Tool Co., 7171 East McNichols road, Detroit, announces a new model B automatic checking recorder for use with sine-line lead and involute checkers. It is said to make permanent chart records of involute tooth fornh and leads. Once installed, however, it

TAYLOR-WILSON Hydraulic
 Tube Testing Machine

The Taylor-Wilson Hydraulic Tube Testing Machinemade in various sizes and types-is speeding vital war production throughout the steel industry. This machine is of rugged construction, occupies minimum floor space and is capable of continuous high speed production at low cost of operation. Each machine accommodates a large range of different tube diameters.

IMPORTANT FEATURES INCLUDE-

Ease of changing from minimum to maximum pressures. Wide range of sealing pressures, avoiding tendency to buckle tube, thus eliminating excessive pressure on sealing packings.
Minimum time in changing for tubes of different diameters and lengths.
Machine is complete with hydraulic system. User need supply only foundations and connect electric service line.

Further information upon request

We also manufacture Straightening, Burnishing, and Sizing Machines, Tube Cutting-Off Machines, Galvanizing equipment for pipe, Small Seamless Tube Mills, Butt Weld Pipe Mills, and a complete line of equipment for the finishing of pipe.

for Testing Tubes

 at pressures from 500 pounds to 7500 pounds per square inch
can be applied to a variety of miscellaneous checking operations. It can be utilized to record variations in dimensions of thread forms, to surface checking with parallels and to many other checking operations wherein a precise record of dimensions is desired

Operation of the recorder is based upon the use of synchronous devices. One is located in the recorder and another installed on a bracket in the base of the gear checker, or other type of measuring device. Motion imparted to the checker is automatically and accurately multiplied and duplicated in the recorder through electrical connections between the two units. Two methods of attaching the recorder to the meas-

uring device or gear checker are available.

The chart drive may either be coupled in synchronism with the moving spindle or table of the measuring device, or it may be driven independently by means of a separate synchronous motor at predetermined speeds. When the recorder is used in conjunction with sine-line checking equipment, the synchronous device in the checker is connected with the sine-bar table. The motor in the recorder is connected with the chart drive. Travel of the chart in synchronism is then such that 1 inch of chart movement is equivalent to 4 degrees of rotation of the work-carrying spindle. When the independent synchronous motor is used to drive the chart, two speeds are provided- $1 / 4$ and $1 / 2$-inch per second. Change to either speed is made by ${ }^{3}$ speed-control lever. Movement of the electrically operated indicator pen on the chart is magnified in the ratio of one ten inch to one-eighth inch.

INDUSTRIAL EQUIPMENT -

AGTUAL PMOTOGRAPH
Speed Care steel (20 carbon) 1 -inch cold dow. troigd in a knot, cold, without frecture.

STIEN ARGE STLE
 A LOW CARBON OPEN HEARTH PRODUCT

ONE Steel that givee you...

1. High Spaed Machining
2. Greally Increased Tool Life.
3. Smooth Finished Parts
4. High Physical Properties
5. Excellent Impact Besistance
6. Gaod Torsional Values
7. Hish Case Hardness
8. Great Core Toughness
9. Reduced Carburizing Iime
10. Unusual Ducfility
11. Minimum Distortion

Speed case stell carburizes

 in less time with HIGH CASE HARDNESS . . . CORE TOUGHNESS and MINIMUM DISTORTION.WRITE US FOR DETAILS
Our metallurgists are at your service.

THE FITZSIMONS COMPANE
 YOUNGSTOWN, OHIO

MONARCH STEEL COMPANY
HAMMOND - INDIANAPOLIS CHICAGO
PECKOVER'S LTD., Toronto, Conadion Distributor

Overall width of chart paper is such that dimensional variations up to 0.002 inch either side (plus or minus) of a central 0 line can be recorded. Three switches are mounted on the control panel of the recorder. Switch at left selects the driving method. At the top of the machine on the right is the control lever for selecting the drive speeds when the chart is driven by the constant speed motor. The center switch on the control panel controls the movement of the pen. The righthand switch controls the direction of chart travel relative to that of the part being checked. On the top of the machine to the left of the control panel is a master switch, which controls the power supply. Entire unit is mounted on rubber-tired casters for easy portability.

Bench Type Tapper

Bakewell- Mfg. Co., 2427 East Fourteenth street, Los Angeles, is offering a new No. 0 tapper, a bench model built for tapping class 3,4 , and 5 gage ft threads in any material with one stroke of the tap. Its capacity is from $0-80$ to $8 / 32$ in steels and up to $10 / 24$ in alum-

inum and other suft materials.
Equipped with a super-sensitive solenoid actuated clutch which can be ret. ulated by the operator for a torsional resistance of the tap in the material, it is claimed the machine will make possible the securing of at least 300 per cent greater tap wear.

As in other models, this newest addition is constructed with electricallsoperated brass guide fingers which epro gage the lead screw during the complete cycle of the stroke. The lead screw bas a hobbing portion so threads of the STEEL

There's a quartet of gremlins with a particular fondness for cutting tools. Their names are Friction, Heat, Power Thief and Tool Wear. Anyone of them can stall production.

There's an easy way to help kill 'em off . . . and to keep them from coming back again.

Simply specify Chillo Cutting Oils. These famous Cities Service coolants deliver speed, fine finish, and longer tool life. They are particularly appropriate now, for they were especially designed to fit the most exacting requirements of wartime production.

Get in touch with your nearest Cities Service office today. A Cities Service lubrication engineer will confer with you on the needs of your particular machining operations. No obligation, of course.

For a free, informative booklet on Metal Machining Fluids write to Room 1378, Sixty Wall Tower, New York, N. Y.

MAUMELLE ORDNANCE WORKS CITIES SERVICE DEFENSE CORPORATION
 wherever the needs of war direct it-as it should be. . . . But you will find it good business to discuss with PAGE now or any time-your plans for after-war production.

GENERAL WIRE

Spring Wire, Bond Wire, Telephone Wire, etc.

SHAPED WIRE

Stainless Steel. Carbon Steel. Half-round, oval, triangle, hexagon, octagon, flat, keystone, etc. Diameters to $3 / 3^{\prime \prime}$. End secfion areas to .250 sq. inch.

WELDING WIRE

Stainless Steel in analyses and diameters of such broad range that it is easy to choose from
 them the correct electrode for any Stainless Steel welding. A complete line of electrodes for welding all other steels. PAGE welding electrodes are handled by your local PAGE Distributor.

> Wire always has been the business of PAGE. You will find us well equipped to work out your plons with you.

PAGE STEEL AND WIRE DIVISION
Monessen, Pa., Atlanla, Chicago, New Yark, Pittsburgh San Francisea, Portland

screw may be chased into brass guide fingers which engage with the lead screw by means of a solenoid actuated spring tension. The lead screw is changed with each change of tap and new corresponding threads are hobbed ipto the fingers.

Carbide Tool Grinder

Thomas Prosser \& Son, 120 Wall street, New York, amounces a new model AA floor type carbide grinder featuring a new heary base, drum trye on-off-reverse switch, heavier tables, storage compartment for wheels and tools, and other improvements.

The machine provides for rapid removal of metal when roughing, together with accurate finishing of all single-point tools. It allows the use of either silicon carbide or diamond wheels for grinding

carbide, or aluminum oxide whecls for grinding stellite or high speed steel.

Among the features of the grinder is the simple, positive, quick-acting indexing device permitting instant settin! of the table 10 the desired angleeliminating umecessary loss of time and motion. The table stays "put" at the angle to which it is set.
The machine carries oversize 7 -inch wheels, the location of the hubs on the shaft being adjustable to compensate for wheel wear. The face of the wheel can be kept close to the edge of the table. Spindles run in precision ball beariugs provided with adequate dust seals.

Armor Plate Grinder

Vomegut Moulder Corp., 1819 Madison avenue, Indianapolis, reports a ners type GRC armor plate grinder said to offer a quick solution to the problem of grinding straight-line, square and ber-

FOR

 QUICK
ACTION

- Our wartime strategy of making wheels only $3^{\prime \prime}$ in diameter and under is approved and endorsed by WP B. We make a 24 -hour a day job of it. All vitally needed wheels are shipped promptly. There is no let-up. Our central location gives us a head start on deliveries.

Custom Built Wheels, just the right wheels for your particular job, no matter how precise or difficult it is.
The moment we have your grinding problem, it's turned over to abrasive engineers who make up the wheels that do your job better and faster.

Years of research and Specialized* experience are behind each Chicago Grinding Wheel.
You can depend on prompt deliveries. GET IN TOUCH WITH US!
TEST WHEEL - Tell us the kind of job and size wheel you need. We'll be glad to send one without charge.

CHICAGO WHEEL \& MFG. CO.
 1101 W. Monroe St.
 Dept. S
 Chicaço, ill.

Send Catalog. Interested in

\square Grinding Wheels \square Mounted Wheels \square Send Test Wheel. Size
NAME \qquad
ADDRESS

SEMI-FINISHED NUTS AND CAP SCREWS

Because TRIPLEX nuts catch on quickly with their free-running threads. That's why! Less work-easier on feminine fingers. Clean Triplex cap screws also furn smoothly and easily. Heads it well
TRIPLEX SCREW COMPANY - 5341 GRANT AVENUE CLEVELAND, OHIO
-look neat. No wonder thousands of women in war plants recognize TRIPLEX quality.

Mail us your "sixfy four dollar" quesfion on service foday.

The Hoist That Can "Take" Real Punishment

- Out on the battle fronts, as well as along production lines, Reading Chain Hoists are staying on the job 24 hours a day. In many plants where minutes cannot be spared for "down time"-Reading Chain and Electric Hoists are helping to keep production schedules ahead of the clock.
When you have a tough materials handling problem to
 solve, rely on Reading's ability todesign hoists that speed output by reducing maintenance troubles. And for printed help with your specific problems, ask for "Modern Materials Handling Magic". It tells how to specify special electric hoist equipment . . . at standard equipment cost.

Reading Chain \& Block Corp., 21 (2 Adams Street, Reading, Pa.

overhead traveling cranes
eled ends and edges of certain hardened armor plate patterns. Its design also permits handling changes in dimensional specifications without necessity of long delay for new patterns.

The grinder, offered with a 10 -inch diameter segmental abrasive chuck driven by a $71 / 2$-horscpower 1800 -revolutions per minute motor or a 14 -inch cluck driven by a 10 -horsepower motor at 1200 revolutions per minute, features a 90 degree angular adjustment, 45 degrees below and 45 degrees above horizontal, with adequate vertical and horizontal adjustment for angular setting.

Each of the three adjustments is made within its respective hand-operated screw. Angular and vertical positions are secured with positive locking clamps, and end adjustment of the motor unit is held to position through

spring pressure friction to permit continuous feeding of wheel into the work

Frame of the grinding unit is suppored upon four grooved wheels which roll upon a pair of round steel tracks mounted upon a pair of I-beams. The supporting beams are tied to each other and also to the work table by a series of welded braces.

The grinding unit is drawn back and forth along the track by a power feed reversing cable drive. The cable is driven by a $1 / 2$-horsepower 1800 -revolle tions per minute motor. The length of travel is controlled by contact of the grinding unit with adjustable throw collars upon a shifting rod extending the length of the tracks.
The machine's three standard rates of feed are $4,6 \frac{1}{2}$ and 8 feet per minute. The grinding and feed motors are controlled through push buttons and mag. netic contactors with thermal oserload relays and undervoltage release.

Fume Exhauster

Chelsea Fan \& Blower Co. Inc., 1206 Grove street, Irvington, N. J., is offering a new and improved fume exhauster ing a new and improved fume elding
which can be used in shiphold, weld
rooms, tunnels, vaults, basements, etc. Its function is to prevent fumes, gases, dust, filings and grinding compounds from coming in contact with the motor.
The newly developed centrifugal type blower wheel incorporated in the unit is

of $1 / 8$-inch steel. The 3 -horsepower motor is tested to an overload capacity to meet all the rough usages to which a blower of this type is subjected. Frame work is welded into a strong heavy unit with landles for carrying. Adapters are interchangeable and can be used for suction or blowing as desired.

Backstand Idler

Jones Engineering Co., Ellwood City, Pa, is offering a new No. 120 abrasive belt backstand idler-a floor-type model especially designed for crowded grinding and polishing departments. It can be quickly and easily connected to any regular grinding or polishing lathe by even the most inexperienced workman, it is said.
Due to a unique vertical arrangement of pulleys, the new model takes a minimum of floor space. Thus, grinding lathes set too close to the wall for use with other types of backstands can be equipped with these new idlers without

requiring more than a few extra feet of floor space.
Other features of the idler include conveniently located controls at the front of the machime, adjustable spring belt tightening and positive screw belt alignug. The backstand will take any belt size up to 6 inches wide, is designed for belt speeds up to 10,000 surface feet per minute and is built so simple dust
collecting collecting hoods can easily be installed.

Heat-Fag is the all-out, unseen enemy of production. Thousands, yes, millions of precious man-hours can be lost through this insidious force that saps men's strength - lowers their efficiency - wears them down before the shift is over. Salt sweated from the body must be replaced - or Heat-Fag takes its toll.
In all leading industrial plants - wherever men sweat and do hot work - salt tablets are a "must".

MORTON SALT GOMFANY GHIOAGO, ILLINOIS

> $\mathrm{T}_{\text {bis cylinder, a reservoir of bydratlic energy for }}$ aircraft use, is another example of the way in which the Hackney Deep-Drawing Process belps manufacturers strengthen and reduce the weight of parts simultaneously.

Hydraulic energy to feather propellers, operate landing gear, flaps, etc., requires accumulators which are light in weight, yet are strong enough to withstand high internal pressures.
Hackney engineers co-operating with the accumulator manufacturer developed a cylinder to meet the exacting specifications. Unnecessary weight was eliminated and uniform sidewall thickness was assured by cold drawing. Ample strength was assured by electrically controlled heat-treating.

In addition to successfully meeting the weight-strength requirements, the Hackney Deep-Drawing Process makes important savings in time and materials as no machining is required for weight reduction in producing these improved products.

If you have a problem which deep-drawing might solve, let Hackney's engineers help you. Their experience may enable you to overcome manufacturing difficulties, meet war material limitations or effect product improvements. Write for details.

Ships in Indiana

(Continued from Page 104)
feet. The hull is supported horizontally as it moves down the skids on 13 steel cradles, the movement being controlled by a set of winches located in a concrete gallery at the head of the launching ways. The gallery top is at yard elevation and does not obstruct operations.
After launching, these ships proceed to three outfitting piers, equipped with all utilities, where electrical, pipe and other combat fitting work completes the job. These ships are launched from 50 to 80 per cent complete. When delivered to the Navy at Evansville, they are complete.

Frank Harrison, general manager of Missouri Valley Bridge \& Iron Co,n, speaking of construction methods, said: "The yard here is only part of the job. Some 15 subcontractors with a 200 -mile radius prefabricate a large percentage of the hull. Our organization has been able to bring many engineering ideas to this task, old in other practices, nelf in shipbuilding. After all, these ships may have a few more curves, but thes are essentially just like a building. Of course, we can bend or cut steel an! way we wish.
"The flat design of them mikes prefabrication at distant points feasible, limited only by our ability to transport, Aside from the warehouses in the yardh others are scattered over the city. Yet material movement is so smoothly scheduled that little time is wasted between arrival of a subassembly and the moment when it is swung into position for tackwelding."
Templets were made for each piece of steel involved in ship construction. These were chacked back against loft lines in every instance. Mold loft reference is constantly available.
Plate sizes are issued to subcontractors, and much work is received finished to size. The entire structure is divided into assemblies as large as the big cranes can handle. The bottom plating and inner bottom weldments are set on the building ways, forming a foundation for the vessel. Then the varied bulkheads as well as the prefabricated bilge bow, stern elevation, transverse sections are swung into position, providing attaching points for side shell plating and framing.

Light, sectional, movable scalfolding adds to the speed of final assembly. There are more than 100 subassemblies and some 90 odd sequences in the bull erection.

Sume subassemblies cone from fabilcators outside Evanssille by truck and rail, also by river barge. For subas-

STEEL

"IRREPLACEABLE" CRUSHER SHAFT RESTORED by THERMIT WELDING

Repaired crusher shaft, offer machining
Like many other heavy equipment and machine parts today, a broken 12^{\prime} long, 5 -ton gyratory crusher shaft in an Arizona smelting plant was not replaceable within a reasonable length of time. When the shaft broke two feet from the end, only three days were required to weld a new $16^{\prime \prime}$ billet in the place of the broken part. As soon as the excess metal was machined off, the shaft was restored to service . . . possible weeks of inactivity for that particular crusher and a serious curtailment of production were avoided.

Thermit welding can often be employed where no other process or method of repair would be practicable. The welds-sound throughout-are often stronger and tougher than the parts welded.

Because of the ease and speed with which Thermit welds can be made, their dependability and low cost-usually ranging between 20% and 50% of the cost of making or purchasing a new part and installing it-many industries are regulor users of Thermit welding.

Besides being used for repairing heavy parts, Thermit welding is employed for fabrication uniting small castings, forgings, or flame-cut shapes into a single, durable unit. The Thermit process is thus frequently able to relieve overloaded casting or forging facilities.

For further information send today for booklet, "Thermit Welding."

120 BROADWAY, NEW YORLK ALBANY - CHICAGO • PITTSBURGH
semblies too large to transport, the steel comes from three rail spurs to platforms for subassembly construction right at the building. The larger subassemblies are erected in the yard and lifted into position by the huge cranes. Temporary portable shelters form the cribs for construction of these large sections, such as bows and sterns. These subassemblies are mounted on skids. Ingenious jigs and fixtures have been designed to hold them into welding position. They are tipped upside down for downward welding and are positioned at any angle by the crancs.
Part of the yard equipment is listed in Table I.
These specialized fighting craft are erected on buildings ways which parallel the water. They are set on dollies which travel on railroad rails and are moved to the transfer area just as one would move a house. These dollies and their hydraulic decks are special Missouri Valley Bridge \& Iron Co. design.
In the transfer area, the dollies are jacked up hydraulically and their wheels are tumed 90 degrees to provide right angle travel, carrying the ships to the bunching ways. There are 26 dollies to the ship, 13 on each side. At launching time, each ship is pulled on the tracks of the launching cradles, the boat is jacked and wedged on the cradles, the dollies are pulled away leaving the boat finly cradled.

Cables from the machinery gallery pass around 13 sheaves to give a 90 degree pull and are hooked to the 13 cradles. After cables are tightened, nuts are released on the permanent structirre. The winches are then operated and undet "controlled launching", barcly moving, the ship is gentled into the outboard portion of the launching way.
The Missouri Valley Bridge \& Iron Co. training school has 52 instructors in welding, cutting, burning, chipping. It uses additional training instructors in shipbuilding, blueprint reading, shipfitling marine piping, marine wiring, chipping and caulking, survey and measurements, departmental training. They are doing an excellent job of teaching these skills to green workers, most of whom have been recruited from Indiana, Kentucky, Tennessee.

The thousands of workers employed are all new except a few key men and thus have had to be trained. This training is done in the yard and also in a large Evansville factory building reramped for the purpose. Flat, vertical, horizontal, overhead welding of plate as hell as training in arc and acetylene welding and silver soldering of pipe are given. Trainees must pass Navy ship Melding tests.
Large use is made of training films;

VBlv he pace of production
is more efficiently governed when the flow of
supplies to and from storage is
 4

THE 24-HOURONE=MAN=GANG

townotor corporation - 1223 E. 152 ho street, cleveland
particularly of arc welding and in relation to special ship construction, such as preparing and setting keel blocks, bottom and cradle, laying off boundary, stiffeners, water line and buttock line, getting a traverse water-tight bulkhead into the hull. The Evansville shipyard has produced two color films "M.V.B. \& I. Layout" and "Erection and Sequence" on 16 -millimeter film with sound. Altogether six films on welding are used, shown at the school, away from work and on the man's own time. Actual experience in cutting and welding is given in these classes- 26,870 useful shipfit-
ting items having already been made from scrap steel, including such items as wedges, screw dogs, pull downs, shims and C-clamps. They even built the fire truck for the yard.

Most of the welding is straight line. Overhead welding is largely limited by the ability of the jigs, fixtures and cranes to tip cross sections into a favorable welding position. Details of the welded construction are restricted but generally resemble those described in catalogs on "Welded Steel Hulls" by Dravo Corp., Pittsburgh. Such Dravo construction details as rounded welded corners, ser-

FORGING ALUMINUM Calls for our specialized knowledge of furnaces

Because we have designed and built so much of the furnace equipment in use today in p!ants successfully forging, heat-treating and aging aluminum, we can honestly claim the title "Furnace Headquarters" when aluminum is the work and heating is the problem.
Pioneers in convection recirculating heating, we quickly recognized its many advantages for the heating of the light metals and their alloys. On these basic principles, we have designed furnaces that positively can not overheat the work-in sizes ranging from portable rypes to stationary large-production units.
If you are considering the production of light metal forgings-if you are hesitating because correct heating is a problem in your mind-Morrison will gladly help you. For quick action write, 'phone or wire.
rated framings, deck and bilge trans. verses have been adapted.

Many complicated constructions are neatly shown to workers in unique Lucite plastic models, scaled $\%$-inch to the foot, help workers gain three-dimension training. Lucite models were made at the International Steel Co. by high school boys used to making model airplanes.

Protection System

(Continued from Page 118)

complete stoppage. Essential machino ery and utilities-water, gas, and elec. trical equipment, switchboards, and transformers-may be protected by walls. An overhead roof of a $1 / 4 /$ incl steel plate, properly supported, will protect against light incendiary bombs. U'inderground utilties often sucer serious damage from earth shock and ensting movement.

Protective Concealment: This program is under direction of the War Department. Plamning is the most impor tant step here. The following may be considered in protective concealment Planting material (to minimize the straightness of lines and regularity of shadows); overhead screens and appendages (to get rid of shapes, outlines, and shadows); smoke screens.

Blackouts: Next to proper air ride protection organization, unquestionabtr the blackout is the most important pass sive protection measure to be taken at night.

The object of the blachout is to curtrol illumination so as to prevent it, or any reflection, from being seen bs the enemy above. This is done by extinguishing lights or by effective screening plockout must be done speedily and with efficiency
Methods of Blackout: Extingruishivg all exterior lights, reducing outside lighting to acceptable low intensities or slutting down of light-producing exterior and interior operations; blacking out or obscuring of all openings through which light may be reflected or seen from above. This includes reducing the intensity of interior lighting and of the possible use of the low radiation colorswhite and orange.

Screen construction, skylights, fireglass surfaces, light locks, emergency exits, all present grave individual problems.

There are many industrial proceses in steel mills, foundries, sugar refineries, etc., which produce a glow, reflected light or flames which are visible outside the plant even during a blockout. These light menaces should be controlled and the glow prevented. Examples: Blat the glow prevented. Examples: open-
furnaces, bessemer converter,
hearth and reverbatory furnaces, cupolas, ingot-stripping and ingot-soaking pits, rolling mills, bee-hive coke ovens, byproduct coke ovens.
Glass: In preparing for blackout, some glazed openings may be obscured permanently but others must be left undisturbed so that daylight may enter the building. At night it must be possible to obscure these "undisturbed" areas on short notice. During an explosion, glass creates a highly dangerous splinter hazard. The strength of glass, glass installation, glass protection against distant effects, all are individual problems.
One Final Word: Not only do air raids threaten American industry, but fire, sabotage, and industrial accidents do as well. Every week industrial accidents kill an average of 425 American workers, cripple or blind 2200 others, incapacitate more than 45,000 , and lose for industry and the nation $6,000,000$ man-days of essential war and civilian production. Comprehensive safety programs will reduce these losses.

Ventilation

(Continued from Page 122) grees Fahr. which the cooling air had in pick up was equal to the weight of the wire per foot times the number of wires times the speed of the wire per minute times ($1800-800$ degrees) times the specific heat of iron. This is equivalent to the total weight of wire moving per minute times 1700 times the specific heat of iron. The number of cubic feet of air at 100 degrees Fahr. required to enter the cooling chamber was calculated as follows:
B.t.u.'s per minute
$0.075 \times \frac{(460+68)}{(160+100)} \times 0.25 \times\left(\mathrm{t}_{\mathrm{r}}-100\right)$
There l is maximum temperature of air in the fan. In this case 700 degrees Fahr. was decided upon as the upper temperature limit.
The cubic feet of air leaving equals:

$$
\text { CFM entering } \times \frac{\left(460+t_{f}\right)}{(460+100)}
$$

In all the calculations appearing in this article, the number 460 is added to Fabrenheit temperatures to obtain absalute temperatures. A cubic foot of lit changes its volume in direct proportion to its change in absolute tem-
perature.
Another application in a steel mill near
Chicago was made for the purpose of
cooling a tunnel under a furnace where
piping, wiring, and electrical equipment
was located. The tunnel was rather
long, and so much obstructing material was in the air-stream that the static pressure was 2 inches water gage for the specific volume. A 5 -foot giant fan, inlet cone, base, and 40 -horsepower motor and V-belt drive was furnished to handle 50,000 cubic feet per minute at 2 inches static pressure. The fan was axial flow type with nonoverloading power characteristic, and operated at 55 per cent mechanical efficiency. This mill decided on the axial flow type after their engineers learned that the same units, of larger size, were installed to ventilate the Chicago subway systems.
(Concluded in next issue)

Sweet Offers File
 For Producł Designers

Information on materials, finishes, parts, techniques and work equipment is included in the new 1500 -page "File for Product Designers" recently issued by Sweet's Catalog Service, Division of F. W. Dodge Corp., 119 West Forticth street, New York.

The publication is said to have a wealth of information regarding forms, characteristics and performance of materials and equipment which will be incorporated in products of the future.

Offering the space-saving, coiling upward action and other operating advantages of the famous Kinnear Steel Bolling Doors, these rugged WOOD doors have piled up years of satisfactory service on various types of installations.
Now - in wartime - when every possible pound of steel must be saved - these time-tested WOOD doors are the perfect answer to every service door meed, in buildings of every lypel
Look at the advantages Kinnear WOOD Rolling Doors offer Smooth, quick, easy operation . . a rugged interlapping slat curtain that coils out of the way and out of reach of damage. . . maximum savings in floor, wall and ceiling space
full protection against wind and weather... choice of molor or manual control . . . neat. modern appearance . . . and maximum savings in war-vital steel. Kinnear Wood Rolling Doors are available now, in any size, for new construction or replacements. Write for details. The Kinnear Manufacturing Company, 1780-1800 Fields Avenue, Columbus, Ohio.

LFWIN-MATDIS Got the nioht answen at

They had a job of pointing hearywalled copper tubing, and wanted to speed up the operation. Just how to do it didn't appear on the horizon, and so Lewin-Mathes did the safe and logical thing-they put their swaging job up to Etna.

The artswer to that problem is illustrated on this page. It's a modern Etna Swaging Machine that points more copper tubes per hour in less time af less cost. If you have a problem involving tapering or redueing tubing and solid rounds-ask Efna about it.
Etna has the swaging machines from $3 / 8^{\prime \prime}$ to $4^{\prime \prime}$ and the experience to help you get the most out of this type of machine.

\star Air operated equipment works best at the correct pressure for each job, and oftentimes the right working pressure is far less than full line pressure. Hannifin pressure regulating valves give you the most efficient working pressure with a turn of the adjusting screw. The exclusive piston-type design means sensitive, accurate control, and full-scale adjustment over the entire range from 150 lbs . down, to furnish any reduced operating pressure desired. Long valve stem travel gives large volumetric capacity, responding to varying operating needs with minimum restriction to flow. Hannifin pressure regulating valves are built in three standard sizes- 3%,
$1 / 2,3 / 4$ inch for use with initial compressed air pressures up to 150 lbs . Furnished complete with pressure gauge. Write for Bulletin 56-S.
HANNIFIN MANUFACTURING COMPANY 621-631 S. Kolmar Avenue - Chicago, ullinois

HANNIFIN

Pressure Regulating VALVES

Standard Sampling

(Concluded from Page 128)
-Applicable to large, massive sections, such as blooms, billets, slabs, rounds, squares, special shaped bar seetions, etc. Chips are taken at any point midway between the outside and the center of the piece by drilling parallel to the axis. In cases where this method is not practicable, the piece may be drilled on the side, but chips are not taken until they represent the portion midway between the outsidc and the center. See Fig. 1.

Methods of Analysis: The methods of analysis commonly used are in accordance with the latest edition of Methods of Chemical Analysis of Metals, published by the American Society for Testing Materials, or the methods approved by the National Bureau of Standards.

Check analysis as used in the steel industry means an analysis of the metal after it has been rolled into various forms, and is either for the purpose of verifying the average composition of a melt or lot as represented by the ladle analysis, or to determine variations in the composition of a melt. It is not used, as the term might imply, for a duplicate determination made to cons firm a previous result. The results of analyses made of samples taken from different locations in the same piece or taken from different pieces of a lot may differ from each other and from the ladle analysis due to segregation.

When check analyses are made of the material as furnished, the composition based on the average of all the separate determinations made must fall within the limits ordered. The separate determinations may vary from the ranges or limits ordered to the ertent shown in Table I, except that the elements in any one melt may not rars both above and below the range or limp its ordered.

Chipped Bearings Cause Tires to Wear Out

Chipped and worn wheel bearings cause premature failure of many trud and trailer tires and are mainly responsible for flat spots on the tires, according to Goodyear Tire \& Rubber Co., Akron, O. This discovery was made on close inspection and studies of the tires used on more than 100 truck and trailer fleets.
According to Goodyear, in one fret of 497 trailers, two barrels of bad bearings were found in 90 days. These caused 146 tires to wear out before they had yielded their maximum potential service.

All-Hydraulic Press

(Continued from Page 101)
To these we may add the desirability of obtaining a compact and self-contained unit. If possible, it should be free from the complications of steam supply, accumulator service, or any other gear which would increase the initial cost and remain to plague us with maintenance.
Obviously, we must have a base, four resistant columns to carry the thrust, and a head in which we may mount a cylinder of suitable dimensions, fitted with a ram. Provision must now be made for the flow of the selected fluid to the cylinder in the manner prescribed; for the retraction of the ram during the return stroke; and for the storage of the fluid as the ram rises and falls. Let us see how these basic specifications are met.

Oil has many advantages as the working fluid, inasmuch as it obviates any special provisions for lubrication of the main working parts and any anxieties about corrosion or rupture as a result of freezing.

Pressure Unit-Problem

For compactness, the rather obvions situation for the storage tank is immediately above the cylinder. If we culist the force of gravity, the ram may fail sufficiently fast for our purpose if we provide a large enough port through which oil may flow from the storage tank into the cylinder. Thereafter our major remaining problem is the selection of the most desirable form of pressure producing unit, designed to function immediately on contact of the ram with the job. Further, if such a unit is readily adapted to reversal of the direction of the flow of pressure fluid, the retraction of the ram is readily achieved by the prorision of an annular, differential operating space.
Fig. 2 illustrates these arrangements diagrammaticallv. Surge valve 9 allows oil to flow rapidly either into or out of the main cylinder from the storage tank 10. The differential ram 1 with its long bearing guarantees accurate alignment. A radial piston type of eccentric pressire pomp is capable of reversal under the impulse of the pilot piston of the servo-reversing control 4. The nonretum ball valve 8 communicates with the pipe which feeds the annular space between the body of ram and cylinder and so permits the pump to deliver the difference in volume of oil required to fill the space above the ram and the annular space around it.
Note in Fig. 2 the absence of all packings, except the low pressure packing which seals the lower end of the cylinder; the almost entire absence of piping; and the promise which these features sug-
gest of compactness in the complete assembly.
The surge valve 9 (Fig. 2) is the poppet type. On the advance of the ram, oil is sucked rapidly from the differential area of the main ram, thus controlling the rate of its descent under the action of gravity. The partial vacuum thus produced by the receding ram (since the volume of oil delivered by the pump is much less than that required to fill the main eylinder) causes the surge valve 9 to open, allowing oil from the surge tank 10 to prefill the main cylinder. Since the ram in its descent maintains a posi-
tive pressure in the differential space, the makeup ball valve 8 remains closed. This situation persists until the ram encounters the resistance of the work.

At this point the press commences the working portion of the stroke and the following events occur. First, the partial vacuum which kept the surge valve 9 open is destroyed and the surge valve closes, building up pressure instantly in the main cylinder. Thereafter the rate of progress of the ram is determined by the volume of oil delivered by the radial pump 3, supplied by the diminishing volume of the anmular space surround-

FOR INDUSTRY'S Biggest TASKS

\star This gear is going to do a big, tough job on the industrial front . . . just one of many large gears made by Horsburgh \& Scott in sizes up to 144 inches in diameter and 20,000 pounds weight. Their quality speaks louder than words.

Send note on Company Letterhead for 488-Page Catalog 41

GEARS AND SPEED REDUCERS
5112 Hamiltion avinue - CLIVELAND, OHIO, U. S. A.

amb Mers

Solid Steel-all grades
Laid Steel-hi-speed and carbon Rotary Shears and Slitters

The "B" stands for Bissett, of course, for it was Bissett service which made possible the prompt delivery of the bored shafts shown above. These 9 shafts- 14 feet long with $71 / 2^{\prime \prime}$ O.D. and $4^{\prime \prime}$ I.D. -were supplied to a war plant completely machined, heat treated and ready for use.
Would service like this simplify your buying? Get in touch with us.

BUY WAR BONDS:

NORMALLY CARRIED
 IN STOCK

N.E. Steels and Standard S.A.E. Stcels, both Carbon and Alloy, Hot Rolled and Cold Drawn

Cumberland Ground Shafts

Drill Rod
*
High Speed Tool Bits

Tool Steels
Tool Steel Tubing

Boiler Tubing

ing the body of the ram and through the makeup ball valve 8 which lifts undes pump suction.
As the load on the press reaches its peak, and as pressure within the cylinder builds up to a predetermined amount, a pressure switch breaks the electric circuit of a solenoid, permitting a spring inside the servo-reversing control 4 in Fig. 2 to change the control lever 5 to its reverse position. This action reverses the flow of the radial pump, causing oil to flow into the pushback or differential area of the main ram and forcing it upwards. Just prior to the development of pressure in the pushback region, the pressure of the oil in the main cylinder is released through a decompression valve not shown. Oil under pressure is now applied to the piston assembly of the surge valve, forcing it open and so permitting the escape of oil from the main cylinder into the surge tank.

On arrival of the ram at its initial or "top" position, the control lever 5 is forced to the neutral position, an action which is accomplished by the press platen striking a collar on a linkage rod connected to this control lever. Since this linkare rod collar is adjustable, it permits the press onerator to determine the ram travel and thus avoid unnecessary movement.

Save for an electric supply cable, the press stands up independent and self contained, on an area which is about as small as could be imagined. No pipes, no cumbersome arrangements for prefilling the cylinder, no accumulator, no steam lines are employed.

Within recent months these presses have been applied, among other purposes, to the hot trimming of forgings. A spectacular application has been in the drawing of 105 -millimeter brass cartridge cases, see Steel, Nov. 23, 1942, p. 92.

Fig. I shows a 500 -ton press forging part of a stern frame for a ship. Thit piece is approximately 18 inches square and 10 feet long-the maximum work handled by this size unit. Of course the 1000 -ton size has a correspondingly lirg er capacity.

Turco Issues Report On Zinc Plating

A 14-page technical report on bright zine plating as a substitute for cadmium plating, was recently issued by Turco Proclucts Inc., Los Angeles. It covers with complete descriptions, still and barel plating.

According to the report, the nerf zinc cyanide baths have a relatively high throwing power, provide a corrasionresistant plate as effective as cadmium, and produce an attractive bright plate.

> CLAD METAL STRIP

IS MAKING A

SOLID CONTRIBUTION

TO EVENTUAL
Victory".

- AN IMmEDIATE ASSISTANCE TO Conservation

AND OFFERS MANY
NEW AND INTERESTING
PEACE TIME APPLICATIONS
AFTER THE WAR IS WON!

New Standard Protects Hoist, Crane Operators

To protect workers engaged in hazardous hoisting operations, the American Standards Association, 29 West Thirtyninth street, New York, announced recently completion of a new safety code for cranes, derricks and hoists. The standard was developed by a representative committee of governmental, industrial, insurance, and technical experts, under the administrative leadership of the American Society of Mechanical Engineers and the Bureau of Yards and Docks of the United States Navy Department.

As the first comprehensive outline on a mational basis of fundamental safety provisions for hoisting machinery, this work will serve as a guide not only to state and municipal authorities responsible for the guarding and inspection of such apparatus but also to industry.

The code applies to construction, installation, inspection, maintenance and operation of cranes and derricks driven by steam engines, electric motors, or internal-combustion engines; to their runways; to simple drum hoists of whatever motive power; to overhead electric hoists and their runways; to overhead air hoists; and to hand-powered derricks. It does not apply to any hoisting machine having a maximum capacity of less than one ton, nor does it apply to the temporary use of cranes, derricks, and hoists on construction work or to special equipment for mines, etc.

In addition to construction details, definitions and diagrams for each type of crane, the 90 -page booklet provides for the periodic retesting of cranes and derricks and fixes safe working loads and tensile specifications for iron and steel chains with a correction table for the reduction of rated capacity of chains due to wear; it provides for that essential "human element," mentioning the need for competent and careful operators. Copies of the publication are available from association headquarters for $\$ 1.50$ each.

Glass Locker Rooms Keep Workers' Clothes Dry

An air-tight room of glass block, it is reported, is being used by Rust Engineering Co., Pittsburgh, for locker rooms in order to dry workers' clothes. These special rooms, a number of which are under construction for several large manufacturers, are maintained with an air pressure above normal, it is said.

According to Rust Engineering, air is drawn through ceiling grills of the glassenclosed room by the fan in the equip-

FOR MORE ACCURATE PRODUCTION GRINDING (

OAKITE GRINDING COMPOUND

To meet today's wartime requirements for turning out closer, more accurate work with smoother, finer finishes in wet grinding all types of steel, many leading concerns are using Oakite Grinding Compound.
It is their preferred choice...their STANDARD and APPROVED material... for this essential production operation for several important reasons. First, Oakite Grinding Compound provides maximum cooling and proper lubricity. Second, it keeps wheels CLEAN and FREE-CUTTING ... reduces loading and glazing to a minimum so that less dressing is required. In addition, this superior coolant helps prevent rusting, helps keep supply tank and lines clean, has high resistance to rancidity, is odorfree and economical, has long solution life.

20-Page Booklet FREEI

Gives specific directions and formulas for using Oakite Grinding Compound. Also contains formulas for cutting and machining ferrous and non-ferrous metals. Write for your FREE copy TODAY!

OAKITE PRODUCTS, INC. $34 E$ Thames Street, New York, N. Y. Technical Service Representatives Located in All Principal Cilies of the Unitad States and Canada

QHID SHEARS

Solid Steel-all grades
Laid Steel-hi-speed and carbon
Rotary Shears and Slitters

THE OHIO KNIFE CO.

The "B" stands for Bissett, of course, for it was Bissett service which made possible the prompt delivery of the bored shafts shown above. These 9 shafts- 14 feet long with $7^{1 / 2^{\prime \prime}}$ O.D. and $4^{\prime \prime}$ I.D. -were supplied to a war plant completely machined, heat treated and ready for use.

Would service like this simplify your buying? Get in touch with us.

BUY WAR BONDS:

NORMALLY
 Carried
 in STOCK

N.E. Steels and Standard S.A.E. Steels, both Cnrbon and Alloy, Hot Rolled and Cold Drawn
Chisel stects
\star
Cumberlond Groma Shats
ing the body of the ram and through the makeup ball valve 8 which lifts under pump suction.

As the load on the press reaches its peak, and as pressure within the cylinder builds up to a predetermined amount, a pressure switch breaks the electric circuit of a solenoid, permitting a spring inside the servo-reversing control 4 in Fig. 2 to change the control lever 5 to its reverse position. This action reverses the flow of the radial pump, causing oil to flow into the pushback or differential area of the main ram and forcing it up. wards. Just prior to the development of pressure in the pushback region, the pressure of the oil in the main cylinder is released through a decompression valve not shown. Oil under pressure is now applied to the piston assembly of the surge valve, forcing it open and so permitting the escape of oil from the main cylinder into the surge tank.
On arrival of the ram at its initial or "top" position, the control lever 5 is forced to the neutral position, an action which is accomplished by the prees platen striking a collar on a linkage rod connected to this control lever. Since this linkare rod collar is adjustable, it permits the press onerator to determine the ram travel and thus awnid unneessary movement.
Save for an electric supply cable, the press stands up independent and self contained, on an area which is about 2s small as could be imagined. No pipes. no cumbersome arrangements for yrefilling the cylinder, no accumulator, no steam lines are employed.
Within recent months these presses have been applied, among other purposes, to the hot trimming of forgines. A spectacular application has been in the drawing of 105 -millimeter brass cartridge cases, see Steel, Nov. 23, 1942, p. 92
Fig. 1 shows a 500 -ton press forping part of a stern frame for a ship. The piece is approximately 18 inches square and 10 feet long-the maximum work handled by this size unit. Of course the 1000 -ton size has a correspondingly larg. er capacity.

Turco Issues Report

On Zinc Plating

A 14-page technical report on bright zine plating as a substitute for cadmium plating, was recently issued by Tureo Products Inc., Los Angeles. It curers with complete descriptions, still and bant plating.
According to the report, the new zinc cyanide baths have a relatively high throwing power, provide a corrosionresistant plate as effectise as modrium and produce an attractive bright plate.

CLAD METAL STRIP

IS MAKING A

SOLID CONTRIBUTION

TO EVENTUAL

- AN IMMEDIATE

ASSISTANCE TO

Conservarion

AND OFFERS MANY NEW AND INTERESTING PEACE TIME APPLICATIONS AFTER THE WAR IS WON!

New Standard Protects Hoist, Crane Operators

To protect workers engaged in hazardous hoisting operations, the American Standards Association, 29 West Thirtyninth street, New York, announced recently completion of a new safety code for cranes, derricks and hoists. The standard was developed by a representative committee of governmental, industrial, insurance, and technical experts, under the administrative leadership of the American Society of Mechanical Engineers and the Bureau of Yards and Docks of the United States Navy Department.

As the first comprehensive outline on a national basis of fundamental safety provisions for hoisting machinery, this work will serve as a guide not only to state and municipal authorities responsible for the guarding and inspection of such apparatus but also to industry.

The code applies to construction, installation, inspection, maintenance and operation of cranes and derricks driven by steam engines, electric motors, or internal-combustion engines; to their runways; to simple drum hoists of whatever motive power; to overhead electric hoists and their runways; to overhead air hoists; and to hand-powered derricks. It does not apply to any hoisting machine having a maximum capacity of less than one ton, nor does it apply to the temporary use of cranes, derricks, and hoists on construction work or to special equipment for mines, etc.

In addition to construction details, definitions and diagrams for each type of crane, the 90 -page booklet provides for the periodic retesting of cranes and derricks and fixes safe working loads and tensile specifications for iron and steel chains with a correction table for the reduction of rated capacity of chains due to wear; it provides for that essential "human element," mentioning the need for competent and careful operators. Copies of the publication are available from association headquarters for $\$ 1.50$ each.

Glass Locker Rooms Keep Workers' Clothes Dry

An air-tight room of glass block, it is reported, is being used by Rust Engineering Co., Pittsburgh, for locker rooms in order to dry workers' clothes. These special rooms, a number of which are under construction for several large manufacturers, are maintained with an air pressure above normal, it is said.

According to Rust Engineering, air is drawn through ceiling grills of the glassenclosed room by the fan in the equip-

FOR MORE ACCURATE PRODUCTION GRINDING

OAKITE GRINDING COMPOUND

To meet today's wartime requirements for turning out closer, more accurate work with smoother, finer finishes in wet grinding all types of steel, many leading concerns are using Oakite Grinding Compound.

It is their preferred choice. .. their STANDARD and APPROVED material... for this essential production operation for several important reasons. First, Oakite Grinding Compound provides maximum cooling and proper lubricity. Second, it keeps wheels CLEAN and FREE-CUTTING ... reduces loading and glazing to a minimum so that less dressing is required. In addition, this superior coolant helps prevent rusting, helps keep supply tank and lines clean, has high resistance to rancidity, is odorfree and economical, has long solution life.

20-Page Booklet FREE!

Gives specific directions and formulas for using Oakite Grinding Compound. Also contains formulas for cutting and machining ferrous and non-ferrous metals. Write for your FREE copy TODAY!

OAKITE PRODUCTS, INC. $34 E$ Thames Street, New York, N. Y.

Tachnical Service Representatives Lacaled in All
Principal Cities of the United Stales and Canada

FIEAT TREATING.
 MAKES STRONGER THE

 STEEL SINEWS OF WAR!

THE LAKESIDE STEEL IMPROVEMEMT CO
 5418 takeside Avenue
 CLEVELAND, OHIO
 Phone Henderson 9100

ment room of the wash and locker build. ing-it, of course, being heated in the winter.

The only escape for the air is through louvres in the bottoms of the lockers, which are of wood. Fored through these louvres by the pressure, the air is sucked up through the full interior height of the lockers into plenum chambers set on the locker tops. From here, it is vented to the outside.
The device thus provides anstant stream of air through the dampened clothes from the bottom to the top of the lockers, according to the manufacturer.

Standard on Porcelain
 Enameled Tanks Revised

Porcelain enameled tanks for domestic use in sizes 15 to 80 -gallons indlusive for 300 pounds per square inch maximum hydrostatic test pressure are covered in the recommended commerrial standard adopted by the General Conference on April 22, according to the United States Department of Commeres, National Bureau of Standards, Wasth. ington.
Purpose is to establish standard specif. cations and methods of test as a line of demarcation between satisfactory and unsatisfactory tanks for domestic water service, for the guidance of manuflacturers, distributors, retailers and users

Identified as TS-3488, the standard is to be prepared for distribution soon in order to obtain written acceptunce.

Carpenter Publication
 Explains Tool Steels

A book that gives the tool maker sintplified methods for selecting and liat treating stecl is being offered by carpenter Steel Co., Reading, Pa. Nour in its twelfth printing, it is said to proride a plain, common sense explanation of loor to make tools last longer.
Entitled "Tool Steel Simplifed," the 315-page book is by Frank R. Pallert. vice president of the company. It is said to be a valuable text book for ap prentice training and is equally raluable as a handbook to advance the skilled towl maker.
Throughout the publication, cluars, diagrams, photogriphs, and tables are used to illustrate every important priat The four chapters included in the book deal with the following: Getting ac quainted with tool stecl; selecting the right tool steel for each kind of tool: properties, heat treatment and totitins of tool steel, and things worth koor: ing.
Copies of the publication are being of fered by Carpenter for \$1 each.

Steel Manual Discusses Wrought Steel Wheels

Manufacture, wheel specifications and design, selection of wheels for railroad service, wheel trend failures and computation of stresses in wheel treads make up the subject matter of "Wrought Steel Wheels"-one of the latest steel products manuals issued by the American Iron and Stecl Institute, 350 Fifth avenue, New York.

The publication, referred to as section 20 , uses illustrations, graphs, tables and other devices to put the subject across to the reader.

It deals with tolerances, methods of inspection, methods of sampling and chemical analysis and other related information.

Fluid Facilitates Cleaning Of Welding Spatter

A compounded mineral oil product called No-Spat, manufactured by Midland Paint \& Varnish Co., Cleveland, is said to eliminate the adhesion of welding spatter on jigs treated with it during the course of welding.
According to the company, the application of the product on the welding jigs several times a day permits the spatter to be wiped off without any great difficulty.
The low surface tension of the product enables it to soak into the pores of the netal, forming a nonadherent surface, the Cleveland paint manufacturers state.

Offers Calculator To Aid Tank Designers

A new Tank calculator said to aid designers and users of ASME code pressure vessels is being offered gratis by Buffalo Tank Corp., Buffalo. It provides such information as tank diamcters, required shell thickness, weight of cylindrical section, capacity, required thickness of heads, approximate weight of one head, bnuckle or comer radius etc. It also lists the weights of various liquids on one side.

Man-Hours Saved by Bottle Sealing Cap

A cellulose sealing cap similar to that used for sealing medicine bottles, it is revealed, was instrumental in saving many man-hours of labor in one of General Electric's plants producing small insirument motors. It was used to mask off cylindrical surface areas of small as-
semblies during impregnation with insulating varnish.

The sealing material comes in form of a thin-walled tube or cap, either of which may be slipped over the work. In airhardening, the material shrinks evenly to the point where it closes down over the surface to be masked, preventing impregnating fluids from contacting masked surtace area.

Area so masked requires little or no subsequent cleaning, and as a result, a shortened production cycle is possible with a coincidental saving of man-hours, the company reports.

Newer Handbook on

Aluminum Welding Offered

A new edition of the handbook on aluminum welding was recently issued by the Aluminum Co. of America, Pittsburgh.

Entitled "Welding and Brazing of Alcoa Aluminum" the new booklet incorporates in addition to methods of welding aluminum, a section of methods used in brazing the metal. Copies of the booklet are being offered gratis to anyone requesting it from the company on his own company's letterhead.

Thorough familiarity with the contents of the following books will place you in the "know how" class ... prepare yourself now for tomorrow's demands . . . broaden your knowledge of your industry.

ROLL PASS DESIGN

by Trinks (Two volumes and Supple-
ment.) vol.
VOL. I: (New Third Edition), 201 pages, 7 tables, 139 drawings, $\$ 5$. Covers general rules and laws governing roll design in relation to sections, and principles governing entrance and deformation of bars. Elementary and advanced instruction and theory are covered.
SUPPLEMENT, $\$ 1.50$, includes additional of Vol IT of Vol IT. Recomrnended for owners of other volumes only.
VOI, II, 246 pages, 21 tables, 7 charts, 176 llustrations, $\$ 6$. Covers theoretical and practical reasons for the shape and size of rolls, compares different methods of rolling siven sections and jllustrates application of principles.

PICKLING OF IRON \& STEEL

by Wallace G. Imhoff, 195 pages, 46 illus trations, $\$ 5$. Various phases of pirkling room practice as well as details of con struction and maintenance of pickilne equlpment are presented. The author tells the story of surface preparation of steel for coating in a simple but practical manner discussing various steps in the process that will interest many operators in the sheet, tin plpe wire operseamless tube, enameling hollow, strip, galvanizing and lead coating industres,

hot dip galvanizing practice

by W. H. Spowers, Jr., 189 pages, 45 11lustrations, 7 folding charts, 4 tables, $\$ 4$. Discusses theory of zinc coating and covTers Iractical methods of galvanizing. Tells how to reduce dross losses. Kettle design, control of oxidation, fuxing materials, the bobbin wipe in fine wire production, chemical reactions, fluxing, flux washes and pyrometry are covered.'

TOOL ROOM GRINDING

by Fred B. Jacobs 221 pages, illustrated, S3.50. Here is a treatise that tells how grinding operations are performed to advantage in a modern tool room. operatlons involved in grinding arbors, counterbores, reamers, milling arbors, and precision gages as well as cutters ing detalls and the procedure for diemaking small tocls are procedure for salvag cise manner.

THEORY \& PRACTICE OF ROLLING STEEL

 (Second Edition), by Tafel. 304 pages, 165 illustrations, 12 tables, $\$ 4.50$. Covers roll pass design and layout of rolling mills and mill drives. Fully describes proper methods of calculation, design and wear. Pass designs for flats, skelp and squares as well as for roughing mills are considered.
OPEN HEARTH FURNACE

(Three Volumes), by Buell.-Complete set V10.
VOL. I, (New Second Edition), 276 pages, 60 tables, 69 Illustrations, \$4. Covers the design construction and practice of open hearth furnaces.
VOL. II. 260 pages, 42 tables, 68 illustrations, \$4. Glves the metallurgical, chemical and thermal factors of operation affecting design.
VOL, III, 308 pages, 56 tables, 114 illustrations, \$4. A comparison of thilusclllary systems of selected existing openhearth furnaces and the development of basle design principles.

THE MANUFAGTURE OF STEEL SHEETS

by Edward T. Lawrence, 244 pages, 116 illustrations, 9 tables, 6×9 inches, $\$ 4.50$. Describes in detall the sequence of, operations in making steel sheets on operational type mills, from the on convenfurnace to the finished open hearth special reference to high grade sheets nfluence of various methods upade sheets. ity of product and causes and elimination of defects are discussed.

INTRODUCTION TO THE STUDY OF heat TREATMENT OF METALLURGICAL PRODUCTS by Albert Portevin, 246 pages, 69 Illustrations, 4 tables, 6 x 9 inches, $\$ 5$. Presents fundamental knowledge and esseninal principles of heat treatment of steel in a simple and understandable manner, without resorting to formulas.

GRINDING WHEELS \& THEIR USES

by Johnson Heywood, 374 pages, 351 11lustratlons, 6×9 inches, $\$ 3$. A practical book on modern grinding and polishing practice and theory. Convenlent arrangement of subject matter and cross-indexing makes it valuable as a ready-reference guidebook. Includes a glossary of trade names.

ORDER YOUR COPIES TODAY

THE PENTON PUBLISHING COMPANY

PENTON BUILDING

Steel Supply Situation Static Under CMP Control

Cut in ore tonnage may not reduce production. . . Bars, sheets most delayed. . . North African iron ore arriving as ballast. . . freight reduction has small effect

DEMAND
 New buying light.

PRODUCTION
Unchanged at $98^{11 / 2}$ per cent.
PRICES
Steady at ceilings.

LITTLE change is apparent in the general steel and iron situation, production being held at the highest practicable level in view of necessity for furnace repair, which is increasing as equipment is driven at top speed.
Cut in iron ore quota following the late season opening is not expected to hamper output greatly. Although up to this time ore shipments are about $7,000,000$ tons less than at the corresponding date last year, reserves at furnaces and Lake Eric docks are equal to last years. Several factors may cut this tonnage loss as the season advances and hope is held that more ore may be transported than in the 1942 season.
Controlled Materials Plan, now in almost complete control of the situation, is working well and essential needs are being met under its provisions. Requirements for war nurposes have been covered through third quarter in sume products and into fourth quarter in others, leaving little opportunity for current buying to obtain delivery promises until a late date, except when directives are used to supersede allotment numbers.

Principal stringency now is centered in bars and hotrolled sheets. Large rounds and Hats in bars are well cov. tred into September, with that month practicuily sold out by some producers. In smaller sections bars can be obtained for July delivery in some instances. Hot-rolled alloy bars are available to some extent for August delivery, with heat-treated bars difficult to obtain for September shipment. Some makers have nothing to offer before lourth quarter.
Some sheetnakers are out of the market for third quarter on het-rolled sheets. Others are able to take some business for July and August shipment. Galvanized sheets are available for July delivery by some mills. The sheet situation is causing some shifts in supply sources as customers find their usual suppliers in subple to sources as them.
Steelworks operations last week remained unchanged at $981 / 2$ per cent of capacity. Except for declines at Pittsburgh and Chicago the rate would have regained the
level of recent level of recent weeks. Necessity for furnace repairs was
the only factor preventing near-capacity production. Pittsburgh lost 1 point to 99 per cent, Chicago 2 points to 97 , Wheeling 5 points to $87^{1 / 2}$ and Cincinnati 2 points to 92 . St. Louis rose 3 points to 90 per cent, eastern Pennsylvania 2 points to 96, New England 5 points to 95 and Cleveland 6 points to 94 per cent. Rates were held unchanged as follows: Bulfalo, $901 \frac{1}{2}$; Detroit, 96 ; Youngstown, 95 ; Bir mingham, 100.

Proof of the high rate of steel production is found in the American Iron and Steel Institute's report of steel ingot and castings production in April, which set a new high for a 30 -day month with $7,374,154$ net tons. The previous high for a short month was made in November, 1942, with 7,179812 tons. With one less day, April failed to reach the Merch output of $7,670,187$ tons. Facilities were engaged in April at 99.3 per cent of rated capacity.

Wiremakers have practically caught up with demand Ior welding wire and processed electrodes, expanded capacity taking up the slack. A further increase in demand is expected when enlarged shipbuilding and airplane programs get well under way.

Some iron ore is being reccived at Atlantic ports from North Africa, cargoes brought by ships returning from the war area. This is largely "lines," picked up as ballast, requiring sintering betore being charged to blast furnaces. Return cargoes of scrap are expected to be brought in this summer by the same means, which may prove of great assistance in providing material for next winter.

Removal of the 6 per cent freight surcharge May 15 has made slight ehanges in delivered prices of steel and iron products. The surcharge has been suspended until the end of the year and in the meantime the Interstate Commerce Commission is making a study of rates which may result in extension of the date or in dropping the charge altogether it it develops the carriers do not need the added revenue.

Average composite prices of steel and iron products are unchanged from levels of the past several months. Finished steel composite is $\$ 56.73$, semifinished steel $\$ 36$, steelmaking pig iron $\$ 23.05$ and steelmaking scrap $\$ 19.17$.

COMPOSITE MARKET AVERAGES

	May 15	May 8	May 1	One Month Ago Apr., 1943	Three Months Ago Feb., 1943	One Year Ago May, 1942	Five Years Ago May, 1938
Finished Steel	. $\$ 56.73$	\$56.73	\$56.73	\$56.73	\$56.73	\$56.73	\$62.00
Semifinished Steel	36.00	36.00	36.00	36.00	36.00	36.00	40.00
Steelmaking Pig Iron	23.05	23.05	23.05	23.05	23.05	23.05	23.05
Steelmaking Scrap. .	19.17	19.17	19.17	19.17	19.17	19.17	11.60

Finished Stecl Composite:-Average of industry-wide prices on sheets, strip, bars, plates, shapes, wire, nails, tin plate, standard and line pipe. Semifinished Steel Composite:-Average of industry-wide prices on billets, slabs, sheet bars, skelp and wire rods. Steelmaking Pig Iron Composite:Average of basic pig iron ırices at Bethlehem, Birmingham, Buffalo, Chicago, Cleveland, Neville Islond, Granite City and Youngstown. Stelworks Scrap Composite:-Average of No. 1 heavy melting steel prices at Pittsburgh, Chicago and eastem Pennsylvania.

COMPARISON OF PRICES

Representative Market Figures for Current Week; Average for Last Month, Three Months and One Year Ago

Finished Material	May 15, 1943	$\begin{aligned} & \text { April, } \\ & 1943 \end{aligned}$	$\begin{aligned} & \text { Feb., } \\ & 1943 \end{aligned}$	May, 1942	Pig Iron	May 15, 1943	$\begin{gathered} \text { April, } \\ 1943 \end{gathered}$	Feb., 1943	$\begin{aligned} & \text { May, } \\ & 19 \cdot 12 \end{aligned}$
Steel bars, Pittshurgh	2.15 c	2.15 e	2.15 c	2.15 c	Bessemer, del. Pittslurgh	\$25.19	\$25.19	\$25.19	\$25.19
Steel bars, Chicago .	2.15	2.15	2.15	2.15	Basic, Valley	23.50	23.50	23.50	50
Steel bars, Philadelphia	2.47	2.49	2.49	2.49	Basic, enstern, del. Philadelphia	25.34	25.39	-25.39	25.39
Shapes, Pittsburgh .	2.10	2.10	2.10	2.10	No. 2 fdry, del. Pitts., N.\&S. Sides	24.69	24.69	24.69	24.69
Shapes, Philadelphia	2.15	2.22	2.22	2.22	No. 2 foundry, Chicago	24.00	24.00	24.00	24.00
Shapes, Chicago . .	2.10	2.10	2.10	2.10	Southern No. 2, Birmingham	20.38	20.38	20.38	20.38 $2+06$
Plates, Pittsburgh	2.10	2.10	2.10	2.10	Southern No. 2, del. Cincinnati	24.30	24.30	26.265	24.06 26.95
Plates, Philadelphia	2.15	2.15	2.15	2.15	No. 2X, del. Phila. (differ. av.)	26.215	26.265	26.265	26.965 $2+00$
Plates, Chicago	2.10	2.10	2.10	2.10	Malleable, Valley	2.4 .00	24.00	24.00	24.00 24.00
Sheets, hot-rolled, Pittsburgh	2.10	2.10	2.10	2.10	Malleable, Chicago .	24,00	24.00	24.00	31.54
Sheets, cold-rolled, Pittsburgh	3.05	3.05	3.05	3.05	Lake Sup., charconl, del. Chicago	31.34	31.54	31.54	31.54
Sheets, No. 24 galv., Pittsburgh	3.50	3.50	3.50	3.50	Gray forge, del. Pittsburgh	24.19	24.19	24.19 1.40 .65	140,65
Sheets, hot-rolled, Gary .	2.10	2.10	2.10	2.10	Ferromangnnese, del. Pittslurgh	140.33	140.65	1 14.65	140.65
Sheets, cold-rolled, Gary	3.05	3.05	3.05	3.05	Scrap				
Sheets, No. 24 galv., Gary	3.50	3.50	3.50	3.50					
Bright bess., basic wire, Pittshurgh	2.60	2.60	2.60	2.60	Heavy melting steel, Pittsburgh	\$20.00	\$20.00	\$20.00	\$20,00
Tin plate, per bnse box, Pittsburgh	\$5.00	\$5.00	\$5.00	\$5.00	Heavy melt. steel, No. 2, E. Pa.	18.75	18.75	18.75	18.75 18.75
Wire nails, Pittsburgh	2.55	2.55	2.55	2.55		18.75	18.75	18.75	18.75 23.25
					Rails for rolling, Chicago	22.25	22.25	22.25	22.55 20.00
Semifinished Material					No. 1 cast, Chicago	20.00	20.00	20.00	
Sheet bars, Pittsburgh, Chicago	\$34.00	\$34.00	\$34.00	\$34.00	Coke				
Slabs, Pittsburgh, Chicago .	34.00	34.00	34.00	34.00	Conncllsville, fumace, ovens	\$6.50	\$6.50	\$6.40	$\$ 6.00$ 7.5
Rerolling billets, Pittsburgh	34.00	34.00	34.00	34.00	Connellsville, foundry, ovens	7.75	7.75	12.55	12.25
Wire rods, No. 5 to fidelinch, Pitts.	2.00	2.00	2.00	2.00	Chicago, by-product fdry., del.	12.25	12.25	12.25	

STEEL, IRON, RAW MATERIAL, FUEL AND METALS PRICES

Following are maximum prices established by OPA Schedule No. 6 issued April 16. 1941, revised June 20, 1941 and Feb. 4, 1942. The schet ule covers all lron or steel Ingots, all semiffished iron or stecl products, all flnished hot-rolled, cold-rolled iron or steel products and any in ants steel product which is further fnished by galvanizing, plating, coating, drawing, extruding, etc., although only principal established basing panies for selected products are named speclfically. All seconds and off-grade products also are covered. Exceptlons applying to individual companit are noted in the table. Federal tax on freight charges, effective Dec. 1, 1942, not included in following prices.

Semifinished Steel

Gross ton hasis excent wire rods, skelp
Carbon Steel Ingots: F.o.b. mlll base, rerolling qual., stand. analysls, \$31.00.
(Empire Shect \& Tin Plate Co., Mansfleld, 0. may quote carbon steel ingots at $\$ 33$ gross ton, f.o.b. mill.)
Alloy Steel Ingots: Plttsburgh, uncropped, $\$ 45.00$.
Rerolling 13illets, Slabs: Pittsburgh, Chicago, Gary, Cleveland, Buffalo, Sparrows Polnt Birmingham, Youngstown, $\$ 34.00$; Detroit, del \$36.25; Duluth (bil.) \$36.00.
(Andrews Steel Co., carbon slabs $\$ 41$; ConInental Steel Corp., billets $\$ 34$, Kokomo, to Acme Steel Co.: Northwestern Steel \& Wire Co. \$41, Sterling, III.; Laclede Steel Co. \$34 Alton or Madison, Ill. Wheeling Steel Corp $\$ 36$ base, bllets for lend-lease, $\$ 34$, Portsmouth, O., on slabs on WPB directives.)

Forgine Quality Hillets: Pittsburgh, Chicaso Gary, Cleveland, Buffalo, Birmingham, Youngs town, $\$ 40.00$; Detrolt, del. \$42.25; Duluth \$4200.
(Andrews Steel Co. may quote carbon forg (Andrews Steel Co. may quote carbon forg-
ing bllets $\$ 50$ gross ton at established basing ing blllets $\$ 50$ gross ton at established basing points.)
Open IIfarth Shell Steel: Pittsburgh, Chicago base 1000 tons one slze and section: $3-12$ in. \$52.00; 12-18 in., $\$ 54.00$; 18 ln , and over \$53.00.
Alloy Billets, Slabs, Hiooms: Pittsburgh, Chicago, Buffalo, Bethlehem, Canton, Massillon $\$ 54.00$.
Sheet 13ars: Plttsburgh, Chicago, Cleveland, Buffalo, Canton, Sparrows Point, Youngstown, \$34. (Wheellng Steel Corp. \$37 on lend-lease sheet bars, $\$ 38$ Portsmouth, O. on WPB directlves; Empire Sheet o Tin Plate Co., Mans field, O, carbon sheet bars, $\$ 39$, fo.b. mill.) field, O., carbon sheet bars, \$39, f.o.b. mill.)
Skelp: Pittsburgh, Chicago, Sparrows Pt. Skelp: Pittsburgh, Chicago, Spar
Youngstown, Coatesville, lb., 1.90c.
Youngstown, Coatesville, 1b, 1.90c.
Wire Rods: Pittsburgh. Chicago, Cleveland, Birmingham, No, $5-9 / 32$ in., inclusive, per 100 lbs., \$2.00.
Do., over $9 / 32-47 / 64-\mathrm{in}$. . Incl., $\$ 2.15$. Worcester add $\$ 0.10$; Galveston, $\$ 0.27$. Pacifle Coast $\$ 0.50$ on water shipment.

Bars

IIot-Rolled Carbon Bars: Pittsburgh, Chicago, Gary, Cleveland, Buffalo, Birmingham, base 20 tons one size, 2.15 c : Duluth, base 2.25 c ; Detroit, del. 2.27 c ; New York del. 2.49 c ; Phila. del. 2.47 c ; Gulf Ports, dock 2.52 c , all-rail 2.59 c : Pac. ports, dock 2.80 c . (Phoenix Iron Co.. Phoenixville, Pa., may quote 2.35 c at established basing points. Joslyn Mig. Co. may quote 2.35 c , Chicago base. Calumet Steel Division, Borg Warner Corp., may quate 2.35 c , Chicago base, on bars produced in its 8 -Inch mill.)
Rall Steel Bars: Same prices as for hot-rolled carbon bars except base is 5 tons.
(Sweet's Steel Co., Whlliamsport, Pa., may quote rall steel merchant bars 2.33 c f.o.b. mill.)
Mot-Rolled Alloy Hars: Pittsburgh, Chicago, Canton, Massillon, Buffalo, Bethlehem, base 20 tons one size, 2,70c; Detrolt, del., 2.82c.
(Texas steel Co. may use Chicago base price as maximum f.o.b. Fort Worth, Tex., price on sales outside Texas, Oklahoma.)

AISI Serles	$\begin{aligned} & \text { ("Basic } \\ & \mathrm{O}-\mathrm{H}) \end{aligned}$	AISI Series		(-Baslc $\mathrm{O}-\mathrm{H})$
00	s0.10	4100	(.15-.25 Mo)	0.55
			(.20-. 30 Mo)	0.60
2300.	1.70	4340		1.70
2500.	2.55	4600		1.20
3000.	0.50	4800		2.15
3100.	0.70	5100		0.35
3200.	1.35	5130	or 5152.	0.45
3400.	3.20	6120	or 6152	0.95
4000	0.45-0		or 6150	1.20

[^5]Refnforelng 13ars (New Blinet): Pittsburgh Chicago, Gary, Cleveland, Birmingham, rows Point, Buffalo, Youncstown, base 2 , all Detroit del. 2.27 c ; Gulf porls, dook 2.52, all-rail rall 2.61c; Pacific ports, dock 2.80 , 3.25 c .

Relnforcing Bars (Rall Steel): Pittsburgh Chicago, Gary, Cleveland, Birmingham, dock 2.15 c ; Detroit. del. 2.27 c ; Guif punts, 2.80 C 2.52 c , all-rail 2.61 c ; Paclic ports, dock 2.8 all-rail 3.25 c .
(Sweet's Steel Co, Williamsport, Pa., miv quote rail steel relnforcing bars 2.33 C , l.ab mill.)
Iron Bars: Single refined, Pitts. 4.40c, doded Iront Bars: Single refned, Ptaybolt, 5. Toc 7 lim reflned 5.40 c ; Pute, $\mathbf{~ c o m m o n , ~} 2.15 \mathrm{c}$.

Sheets, Strip

Hot-Rolled Sheets: Pittsburgh, Chlcago, Gan Buparo Younsstomi Cleveland, Birmingham, Bu base 2.10 c ; Grant City, base 2.20 c ; Detroit del. 2.22 c ; Phild Clel, base 2.20c; Detroit del., 2.3łc; Pad ports 2.65 c
(Andrews Steel Co. may quote hot-rolled shed Andrews steel Do Detrolt and the Detrolt on the Middletown, O. base.)
on the Milddletown, O. base., Chicago, Cleit Cold-Rolled Sheets: Pittsbursh, Midedetour land, Gary, Buffaio, Youngstown 3.15 c ; Dutro base, 3.05 c Granite City, base 3.39 c ; Phlla da ael. $3.17 \mathrm{c}:$ New York del
$3.37 \mathrm{c}:$ Pacinc ports 2.70 c .
3.37 c ; Pacifc ports 2.70 c 24: Pitsburgh. coll Galvanized Sheets, No. 24: Bultalo, Youngstomn cago, Gary, Birmingham, Bunase 3.50c; Gra Sparrows Polnt, Middletown, base 3 del. 3 itc Ite City, base 3.60 c , Ne ports 4.05 C . Phila. del. 3.67 c ; Pacific ports quote galvanied (Andrews steel Co. may quotes polnts sheets $3,75 \mathrm{c}$ at established basing calcus Corrukated Gulv. Sheets: Pittsburshure 3 .3le Gary, Blrmingham, 29 gage, per square Garl Culvert Sheets: Pittsburgh, Chicase, coppe Culvert Sham, 16 gage, not carrugat ron 398c: Birmingham, copper kron 3.900 c , pure and No. alloy 3.60 c ; copper iron heat-treated, inc-coated, hot-
Pittsburgh 4.25c. Fittsburgh, Chicago, Gun Enamellng Sheets: Fittsburgh, Ching, 10 gh Cleveland, Youngstown, Middletow
base 2.75c; Granlte City, base 2.85c; Paciflc Pittsburgh, Chlcago, Gary, Cleveland, Youngstown, Middletown, 20 gage, base 3.35 c ; Granlte City, base 3.45 c ; Pacille ports 4.00 c
Flectrical Sheets, No. 24 :

	Plttsbursh	Paclfic	Granite
	Base	Ports	City
Field grade	3.20 c	3.95 c	3.30 c
Amature	3.55 c	4.30 c	3.65 c
Electrical	4.05 c	$4.80{ }^{\text {c }}$	4.15 c
Motor	4.95 c	5.70 c	5.05 c
Dynamo	5.65c	6.40c	5.75 c
Transformer			
72	6.15 c	6.90 c	
6	7 15in	7.90 c	
58	7.65 c	8.40 c	
52	8.45c	9.20 c	

Hot-Rnlled Strip; Pittsburgh, Chicago, Gary, Cleveland, Bjrmlngham, Youngstown, Mlddle-
toun, base, 1 ton and over 12 inches wlde and less 2.10 c ; Detroit del. 2.22 c . Pacific ports 2.75 c . (Joslyn Mfg. Co. may quate 2.30 c , Chlcago base.)
Cold Ralled Strlp: Pittsburgh, Cleveland, Youngstown, 0.25 carbon and less 2.80 c ; Chicago, base 2.90 c ; Detrolt, del. 2.92c; Worcester oase 3.00 c .
Commodity C. R, Strip: Flitsburgh, Cleveland Younzstown, base 3 tons and over, $2.9{ }^{\circ} \mathrm{c}$ Horcester base 3.35 c
Cold-Finisied Spring Steel: Pittsburgh, CleveCarh bases, add 20, for Worcester; 26-. 20 Carh, 2.80c; $51-.75$ Carb., $4.30 \mathrm{c} ; .76-1.00$ Carb., 6.15 c ; over 1.00 Carb., 8.35 c ;

Tin, Terne Plate

Wase hox, Pittsburgh, Chlcago, Gary, 100-lb Electrolytic Tin Plate: Plitsburgh, Gary, 100 lb. base box $\$ 4.50$.
Tin Mill Black Plate. Pittsburgh, Chlcago lie cily, 3.15 gage and lighter, 3.05c: Gran Lank Ternes: ; Pacific ports, boxed 4.05 c .
24 unassorted Pittsburgh, Chicago, Gary, No
burgh, Chicas Ternes: (Special Coated) PittgGranite Chicago, Gary, 100-base box $\$ 4.30$ Roofing City $\$ 4.40$
age 112 sheets; 20×28 ingh base per pack \$12.00; 15-1b, $\$ 14.00 ; 20$ in., coating I.C., 8 - 1 b $\$ 16.00 ; 30-\mathrm{lb}$ \$17.25. $40-1 \mathrm{~b}$ - $19.515 .00 ; 25-\mathrm{lb}$

Plates

Cary, Cleveland, Blates: Plttsburgh, Chicago, Sparrows Polnt, Coatesvilie, Boungstown New York, del., 2.29 c ; Phlla Claymont, 2.10 c Paclife ports, 2.65 c ; Boston, del. $2.42-67 \mathrm{c}$; (Granite Clity Steel Culf Ports, 2.47 c .
.
plates 2.35 c , Steel Co. may quote carbon Co .2 .20 c , f.ob , b. mill. Central Iron \& Steel Floor riates. 2. b. basing polnts.)
Gulf ports 3.72 Pittsburgh, Chicago, 3.35 c : Open-Hearth 3.72 c : Pacific ports, 4.00 c .
cago, Coatesville 3 Plates: Pittsburgh, ChlWroush Coatesville, 3.50 c

Shapes

Birminghamapes: Pittsburgh, Chleago, Gary York, del, Buftalo, Bethlehem, 2.10c; New York, del., 2.27 c ; Phlla., del., 2.215 c ; Gulf (Phoenlx Tron Co., Phorts, 2.75 C
carbon steel shapes at 230 , Pa. may quote basing points and 2.50 c 2.30c at established port.)
falo, 240 c . Plling: Plttsburgh, Chicago, Bui-

Wire Products, Nails

mingham (except, Chlcago, Cleveland, Bir turers in cartept spring wire) to manufac Bright basle, bessemer wire Worcester) Gelvanized wire
Apring wire
Wire Products to the Trade:
landard and Cement Trade: 3.20 c
polished and stanles, coated wire nalls,
Annealed fence wire, 100 lb . keg
Galvanlzed
Woven fence fence wire, 100 ib.
base column $121 / 2$ gase and lighter, per Barbed wire and heavier
Twisted barbless wire, 80 spool, col
Fence loop bale ties, col
Cut posts, carloads,
Pipe, Tubes

Helded Tube

$\$ 3.85$
sumers about $\$ 200$ price In carloads to concounls on steel pine per net ton. Base dis. motnt less Ind. 2 nolnts less on and Lorain, on wrought iron weld. Pittsburgh base only

Steel				Lron	
In,	Blk.	Galv.	In.	Blk.	Galv.
2	. 61	491/2	11/4	23	31/2
21/2-3	64	521/2	116	281/2	,
31/4-6	. 66	$541 / 2$	2 '.	301/2	12
$7-8$. 65	521/2	21/2, 31	/2.311/2	2 141/2
9-10	. 6412	52		. $331 / 2$	18^{2}
11-12	631/2	51	41/2-8	321/6	17
Balle	Tubes:	Net bas	se prlces	per 100	0 feet,
1.0.b.	Pittsbu	gh in c	carload	lots, min	nimum
wall,	t length	4 to 2	$4 \text { feet. }$	inclusive. -Lad	
		Se	less-		Char-
O. D.		Hot	Cold		coal
Slzes	B.W.G.	Rolled	Drawn	Steel	Iron
$1{ }^{\prime \prime}$	13	\$ 7.82	\$ 9.01		
$11 / 4$	13	9.26	10.67		
110"	13	10.23	11.72	\$ 9.72	\$23.71
$13 / 4$	13	11.64	13.42	11.06	22.93
2 "'	13	13.04	15.03	12.38	19.35
214"	13	14.54	16.76	13.79	21.63
21/"	12	16.01	18.45	15.16	
21<"	12	17.54	20.21	16.58	26.57
230"	12	18.59	21.42	17.54	29.00
$3^{\prime \prime}$	12	19.50	22.48	18.35	31.38
31/6"	11	24.63	28.37	23.15	39.81
$4{ }^{\prime \prime}$	10	30.54	35.20	28.66	49.90
416"	10	37.35	43.04	35.22	
5"'	9	46.87	54.01	44.25	73.93
$6^{\prime \prime}$	7	71.96	82.93	68.14	

Rails, Supplies

Standard ralls, over 60-lb., .fo.b. mill, gross ton, $\$ 40.00$
Light ralls (bllet), Plttsburgh, Chicago, Birmingham, gross ton, $\$ 40.00$.
o Relaying rails, 35 lbs. and over, $1.0 . b$, rallroad and basing points, $\$ 28-\$ 30$.
Supplies: Angle bars, 2.70 c ; tle plates. 2.150 track splkes, 3.00 c ; track bolts, 4.75 c ; do heat treated, 5.00 c .
${ }^{\circ}$ Fixed by OPA Schedule No. 46, Dec. 15 1941.

Tool Steels

Tool Steels: Pitsburgh, Bethlehem, Syracuse base, cents per lb: Reg. carbon 14.00 c ; extra carbon 18.00 c ; special carbon 22.00 c ; oll-hard ening 24.00c: high car.-chr. 43.00 c .
High Speed Tool Steels:

			Plts. base.	
Tung.	Chr.	Van.	Moly.	per lb. 18.00
1.5	4	1	-	67.00 c
	4	1	8.5	54.00 c
5.50	4	2	8	54.00 c
5.50	4	1.50	4	57.50 c
	4.50	4	4.50	70.00 c

Stainless Steels

Base, Cents per lb.-f.o.b. Pittsburgh
CHROMIUM NICKEL STEEL

				H. R.	C. R.
Type	Bars	Plates	Shects	Strip	Strlp
$302 \ldots$	24.00 c	27.00 c	34.00 c	21.50 c	28.00 c
$303 \ldots$	26.00	29.00	36.00	27.00	33.00
$304 \ldots$	25.00	29.00	36.00	23.50	30.00
$308 \ldots$	29.00	34.00	41.00	28.50	35.00
$309 \ldots$	36.00	40.00	47.00	37.00	47.00
$310 \ldots$	49.00	52.00	53.00	48.75	56.00
$312 \ldots$	36.00	40.00	49.00	\ldots	.0.
$316 \ldots$	40.00	44.00	48.00	40.00	48.00
$1321 \ldots$	29.00	34.00	41.00	29.25	38.00
$1347 \ldots$	33.00	38.00	45.00	33.00	42.00
$431 \ldots$	19.00	22.00	29.00	17.50	22.50

STRAIGHT	CHROMIUM	STEEL			
$403 \ldots$	21.50	24.50	29.50	21.25	27.00
$410 \ldots$	18.50	21.50	26.50	17.00	22.00
$416 \ldots$	19.00	22.00	27.00	38.25	23.50
$+1420 \ldots$	24.00	28.50	33.50	23.75	36.50
430	19.00	22.00	29.00	17.50	22.50
$\ddagger+430 F$	19.50	22.50	29.50	18.75	24.50
$440 A$	24.00	28.50	33.50	23.75	36.50
$442 \ldots$	22.50	25.50	32.50	24.00	32.00
$443 \ldots$	22.50	25.50	32.50	24.00	32.00
446	27.50	30.50	37.59	35.00	52.00
$501 \ldots$	8.00	12.00	15.75	12.00	17.00
$502 .$.	9.00	13.00	16.75	13.00	18.00

STAINLESS CLAD STEEL (20%)
With 2-3\% moly. +With titanfum. \ddagger With columblum. Plus machining agent. t†HIgh carbon. $\pm+$ Free machinlng. §sincludes anneallng and pickling.
Hasing Polnt Prices are (1) those anhounced by U. S. Steel Corp. Subsidjaries for Arst quarter of 1941 or in effect April 16, 1941 at deslanated basing polnts or (2) those prices announced or customarily quoted by other producers at the same designated points. Base prices under (2) cannot exceed those under (1) except to the extent prevailing in third quarter of 1940.
Extras mean additions or deductions irom base prices in effect Aprll 16, 1941.
Delivered prices applying to Detrolt, Eastern Michigan, Gulf and Paclific Coast polnts are deemed basing points except in the case of
the latter two areas when water transporta thon is not avallable, in which case nearest basing point price, plus all-rall frelght may be charged
Domestle Celling prices are the aggregate of (1) governing basing point price, (2) extras and (3) transportation charges to the point of delivery as customarily computed. Governing basing point is basing point nearest the consumer providing the lowest dellvered price. Emergency bising moint is the basing point at or near the place of production or orlgin
Seconds, maxlmum prices: flat-rolled refects 75% of prime prices; wasters 75%, wastewasters 65%, except plates, which take waster prices: tin plate $\$ 2.80$ oer 100 lbs.: terne plate $\$ 2.25$: semifinished 85% of primes; other grades limited to new material cellings.

Export celling prices may be elther the ag gregate of (1) governing baslng point or emerpency basing polnt (2) export extras (3) export transportation charges provided they are the f.a.s. seaboard quotations of the U. S. Steel Export Co. on Aprll 16, 1941.

Bolts, Nuts

F.o.b. Plttsburgh, Cleveland, Birmingham, Chlcago. Discounts for carloads additional 5%, full contalners, add 10%. Carriage and Machine
$1 / 2 \times 6$ and smaller
Do., P^{2} and 56×6-in. and shorter
$651 / 2$ oft
6310 off Do.. $8 / / 4$ to $1 \times 6-1 n$, and shorter 11/3 and larger, all lengths
All dameters, over $6-\mathrm{In}$. long
Tire bolts
Step bolts
Plow bolts
Stovo Bolts
In packages with nuts separate $71-10$ off with nuts attached 71 off: bulk 80 off on 15,000 of 3 -inch and shorter, or 5000 over 3-In.

Rivets, Washers

F.o.b. Pittsburgh, Cleveland, Chlcago,

Metallurgical Coke

Price Per Net Ton

*Operators of hand-drawn ovens using trucked coal may charge $\$ 7.00$, effective Feb. 3, 1943. +\$12.75 from other than Ala., Mo., Tenn.

Coke By-Products

Spot, gal., frelght allowed east of Omaha
Pure and 90% benzol.................... 15.00c
Toluol, two degree
Solvent raphtha
industrial xylol
28.00 c
27.00 c

Per lb. f.o.b. works
lots, returnable drums)
27.00 c

Do., less than car lots
12.50 c

Do. tank cars
Eastern Plants, per ib.
aphthalene Rakes, balls, bbls., to Joh-
Per ton, bulk, f.o.b. port
Sulphate of ammonla

Prices (In gross tons) are maximums nxed by OPA Price Schedule No. 10, effective June 10, 1941. Exceptions Indicated In footnotes. Allocation resulations from WPB Order M-17, expiring Dec. 31 , 1942. Base price Dec. 1, 1942, not included in following prices.

	No. 2 Foundry	Basle	Bessemer	Malleable
Buhlehem, Pa.. base	\$25.00	\$24.50	\$26.00	\$25.50
Newark, N. J., del.	26.53	26.03	27.53	27.03
Lr rooklyn, N. Y., del.	27.50			28.00
mirdsborn, l'a., del. .	25.00	24.50	26.00	25.50
Birmincham, base	120.38	119.00		
Baltimore, del.	25.61			
Boston, del.	25.12			
Chleago, del.	124.22			
Cincinnatl, del.	24.30	22.92	
Cleveland, del.	24.12	23.24		
Newark, N. J., del.	26.15			
Phlladelpha, del.	25.46	24.96		
St. Louls, del.	124.12	23.24		
Msurfalu, base	24.00	23.00	25.00	24.50
Boston, del.	25.50	25.00	26.50	2 G .00
IRachester, del.	25.53		26.53	26.03
Syracuse, del.	26.08		27.08	26.58
Chlcarn, base	24.00	23.50	24.50	24.00
Milwauke, del.	25.10	24.60	$2 \mathrm{2} \mathrm{\%} .60$	25.10
Muskegon, Mich., del.	27.19			27.19
Cleveland, Uase	24.00	23.50	24.50	24.00
Akron, Canton, O., del.	25.47	24.97	25.97	25.47
Wetrolt, base	24.00	23.50	24.50	24.00
Saginaw, Mich., del.	26.45	25.95	26.95	26.45
Duluth, base	24.50	24.00	25.00	24.50
St. Paul, del.	26.75	26.26	27.26	26.76
Erle, Pa., base	24.00	23.50	25.00	24.50
Wverett, Mass., base	25.00	24.50	26.00	25.50
Boston, del.	25.50	25.00	26.50	26.00
Granite Clty, Ill., base	24.00	23.50	24.50	24.00
St. Louls, del.	24.50	24.00		24.50
Hamilion, O., base	24.00	23.50		24.00
Cinclnnati, del. .	24.68	24.68		25.35
Neville Inland, Pa, base	24.00	23.50	24.50	24,00
§Plttsburgh, del. No. \& So. sldes	24.69	24.19	25.19	24.69
Provo, Utall, base	22.00	21.50		
Sharpaville, Pa., base	24.00	23.50	24.50	24.00
Sparrows Polnt, Md., base	25.00	24.50		
Baltimore, del.	25.99			
Steelton, Pa., base		24.50		25.50
Swedeland, Pra., base	25.00	24.50	26.00	25.50
Phlladelphla, del.	25.84	25.34		26.34
Toledo, O., base .	24.00	23.50	24.50	24.00
Mansfleld, O., del.	26.06	25.56	26.56	26.06
Youncstown, O., base	24.00	23.50	24.50	24.00

Baslc slllicon grade ($1.75-2.25 \%$), add 50 c for each 0.25%. \dagger For phosphorus 0.70 and over deduct 38c. $\$$ Over 0.70 phos. 6 For McKees Rocks, Pa., add . 55 to Nevllle Island base; Lawrenceville, Homestead, McKeesport, Ambrldge, Monaca, Allauippa, 84; Monessen, Monongahela clty .97 (water); Oakmont, Verona 1.11; Brackenridge 1.24.

Hifh Sillicon, Silvery

6.00-6.50 per cent (base) $\$ 29.50$ 6.51-7.00. . $\$ 30.50$ 9.01- 9.50. $\$ 35.50$ 7.01-7.50. . 31.50 9.51-10.00. 36.50 $\begin{array}{llll}7.51-8.00 . & 32.50 & 10.01-10.50 . & 37.50 \\ 8.01-8.50 . ~ & 33.50 & 10.51-11.00 . & 38.50\end{array}$ | $8.01-8.50$. | 33.50 | $10.51-11.00$. |
| :--- | :--- | :--- |
| $8.51-9.00$. | 34.50 | $11.01-11.50$ | F.51-9.00, 34.50 11.01-11.50. 39.50 F.o.b. Jackson county, O., per gross ton, Buffalo base prices are $\$ 1.25$ higher. Prices subject to additional charge of 50 cents a ton for each 0.50% manganese in excess of

1.00%.

Prices same as for high sllicon sll
very Iron, plus $\$ 1$ per gross ton
Charcaal Ple Iron
Northern
Lake Superior Furn. $\$ 28.00$
(For higher sillcon Irons a dimer
For higher silicon Irons a differ
ential over and above the price of
ential over and above the price of
base grades is charged as well as
base grades ls charged as well as
for the hard chlling trons, Nos. 5 and 6 .)

Southern
Semi-cold blast, high phos.,
f, o.b. furnace, Lyles, Tenn. . $\$ 28.50$ seml-cold blast, low phos.,
f.o.b. furnace, Lyles, Tenn.

Gray Forge

Neville Island, Pa. $\$ 23.50$
Valley, hase, Lowy lhosphorus
Basing points: Birdsboro and Stecl-
ton, Pa., and Bunalo, N. Y.' $\$ 29.50$
Sultching Charges: Basloge polnt
prices are subject to an additional
swltcling limlts of the respective districts.
Sllicon Dlferentlals: Basing poínt prices are subject to an additiona churge not to exceed 50 cents a ton for each 0.25 sllicon In excess of base grade (1.75 to 2.25%).
Ihosphurum Dliferentlal: Basins point prlces ure subject to a reduc Iton of 38 cents a ton for phosph
ous content of 0.70% and over.
Mranganese Difierentials: Basing point prices subject to an additlonal charge not to exceed 50 cents a ton for each 0.50% manganese content In excess of 1.0%.
Celling Prices are the aggregate of (1) governing basinz point (2 charges from governing basing polnt charges irom governing basing point computed. Governing basing polnt s the one resulting in the lowest
dellvered prlce for the consumer.

Exceptlons to Ccling Prices: Pith burgh Coke \& Iron Co. (Sharpsivile, Pa. furnace only) and Struther cents a ton in excess of charse cents a ton in excess of basing polul prices for No. 2 Foundry, Base, Bessemer and Malleable. Mynu Iron Works, Everetl, hass, may exceed basing poll 10 10 ton, elfective April 20, 1942. Che \& Iron Co may arecd pricon by mans exer ton July 27 1942 per ton, elli

Refractories

 Birmingham. Ala.
(Pa., O.. W. Va., Mo.) $\$ 31.00$
Dry press
Magnealte
Domestlc dead-burned grains,
net ton f.o.b. Chewelan.
Wash., net ton, bulk..... 2200
net ton, bags
Net ton, f.o.b. Baltimare, Plymouth
Net ton Meeting, Chester, Pa. ${ }_{5 H}, 0$
Chrome brick
Chem bonded chrome 540
Magneslte brick
Chem. bonded magnestit 6500
Fluorspar
Washed gravel, t.o.b. Ill.,
Ky.all net ton, carloads, ail $.00-2300$
Do.. barge $225.000^{25.00} 2800$
No. 2 lump (Prices effective Nov. 25,2921

Ferroalloy Prices

Ferrumanganese: 78-82\%, carlots zross ton, duty paid, Atlantle ports $\$ 1 ; 35$; Del. Pittsburgh $\$ 140.33$; f.o.b jouthern furnaces $\$ 135$; Add $\$ 6$ per zross ton for packed carloads $\$ 10$ for ton, $\$ 13.50$ for less-ton and
for less than $200-1 \mathrm{~b}$. lots, packed.
Splegelelsen: 19-21\%, carlots per gross ton, Palmerton, Pa. \$36. Electrolyile manganese: 99.9% plus, less ton lots, per $1 \mathrm{~b} .42,00 \mathrm{c}$. Ton lots 40.00 c . Annual contracts 38.00 c . Chromlum Metal: Per lb. contalned chromlum in gross ton lots, contract basis. frelght allowed, $\mathbf{9 8 \%}$ 80.00 c , 88% 79.00c. Spot prices 5 cents per lb. higher.
Ferrocalumblum: $50-60 \%$, per 1 lb . contalned columblum in gross ton lots, contract basis, N . Y. $\$ 2.25$; less-ton lots $\$ 2.30$. Spot prices 10 cents per 1 lb . higher.
Ferrochrome: 66-70\%: per 1b. contalned chromium in carloads, irelght allowed, $4-6 \%$ carbon 13.00 c ; ton lots 13.75 c ; less-ton lots 14.00 c less than 200 -1b. lots 14.25 c . 66 -
72% low carbon grades:

Car Ton Less Less
2% C... 19.50 c 20.25 c 20.75 c 21.00 c
$1 \% \mathrm{C}$ C. ${ }^{20.50 \mathrm{c}} 21.25 \mathrm{c} 21.75 \mathrm{c} 22.00 \mathrm{c}$
3.20%
C.
21.50 c
22.25 c
22.75 c
23.00 c 2.10\% C 22.50 c 23.25 C 23.75 c 24.00 c Spot Is $1 / 4 \mathrm{ch}$ haher
Chronium briquets: Contract basis in carloads per lb.. frelght allowed 3.25 c : packed 8.50 c ; gross ton lots ib. lots 9.25 c. Spot prices $1 / 4$-cent higher.

Ferromolybdenum: 55-75\%, per lb. contained molybdenum, f.o.b. Langeloth and Washington, Pa., fur-
nace, any quantity 95.00 c .
Calclum Molybdate (Molyte) : 40$45 \%$, per lb . contalned molybdenum contract basis, f.o.b. Langeloth and Washington, Pa., any quantity. 80.00 c .

Molybdle Oxide Briquets: $48-52 \%$, per 1 b . contrined molybdenum, fo.b. Langeloth, Pa., any quantlty 80.00 c .
Molybdenum Oxide: 53-63\%, per 1 lb . contalned molybdenum in 5 and 20 lb. molybdenum contained cans. f.o.b. Langeloth and Washinston. Pa., any quantity 80.00 c .

Molybdenum Iowder: 99% per lb. In $200-1 \mathrm{~b}$. kegs, f.o.b. York, Pa. $\$ 2.60 ; 100-200 \mathrm{lb}$. lots $\$ 2.75$; under $100-\mathrm{lb}$. lots $\$ 3.00$.
Ferrophosphorus: $\mathbf{1 7 - 1 9 \%}$, based on 18% phosphorus content, with unitage of $\$ 3$ for each 1% of phosphoris above or below the base; gross tons per carload f.o.b. sellers' works, with freight equalized wlth Rockdale, Tenn.; contract price \$58.50, spot $\$ 62.25$.
Ferrophosphorus: 23-26\%, based on 24% phosphorus content, with unitage of $\$ 3$ for each 1\% of phosphorus above or below the base; gross tons per carload f.o.b. sellers works, Pleasant, Tenn.; contract price $\$ 75$, spot 380 .

Ferrosilicon: Contract basis in gross tons per carload, bulk, freight allowed; unitage applies to each 1% silucon above or below base.

	Carloads	Ton lots
50\%	\$ 74.50	\$ 87.00
Unitage	1.50	1.75
75\%	135.00	151.00
Unitage	1.80	2.00
85\%	170.00	188.00
Unitage	2.00	2.20
90-95\%	10.25 c	11.25 c

Spot prices $1 / 4$-cent higher.
Sillicon Metal: Contract basis per b., f.o.b. producers plants, frelaht 1howed. 1% ron; cariots 14.50 c , lon lots $200 \mathrm{lbs}, 00 \mathrm{c}$, less-ton lots 15.25 c . ess 200 lbs .15 .50 c .
SHicon Metal: Contract basls per b.; 2% Iron; carlots 13.00 c , ton ots 13.50 c , less-ton lots 13.75 c , les 200 lbs. 14.00 c . Spot prices $1 / 4$-cent higher.
Silleon Briquets: Contract basls: In carloads, bulk freight allowed, per $\$ 8450$. 1 , packed $\$ 80.50$ ton 10 . less 200 -lb. lots per 1 b .4 .25 c .
Spot $14-\mathrm{cent}$ per lb . hlgher on lessSpot 4 -cent per lb. higher on less-
ton lots; $\$ 5$ per ton higher on ton lots and over
Silicomankanere: Contract basis frelght allowed, $11 / 2 \%$ carbon; in carloads per gross ton \$135; ton lots $\$ 147.50$. Spot $\$ 5$ per ton higher
Sillco-manganese Briquets: Contract basis in carloads der pound, bulk freight allowed 5.80 c ; packed 6.05c ton lots 6.30 c ; less-ton lots 6.55 c less $200-1 \mathrm{~b}$. lots 6.80 c . Spot prices $1 / 4$-cent higher.
Ferrotungsten: Carlots, Der lb. contained tungsten, $\$ 1.90$.
Tungsten Metal Powder: 98-99\% per 1 b . any quantity $\$ 2.55-2.65$.
Ferrotitanium: $40-45 \%$, 1.0. . N1tltanium: ton lots $\$ 1.23$. less-ton
lots $\$ 1.25$. Spot up 5 cents per la Ferrottranlumi: $20-25 \%, 0.10$ mad. mum carbon; per lb. contained lot tanium; ton lats $\$ 1.35$; less-lun liber $\$ 1.40$. Spot 5 cents per 10.120 IIsh-Carbun Ferrolitanlum: Jsw Contract basis, per gross ton, Niagara Falls, N. Y., freigilisslslowed to destinations east sippl River and North of Ballid. and St. Louls, $6-8 \%$,
Fer car inm: $35-40 \%$, contrach Ferrovanadium: $35-40$, vanadium hasis, per f.o. r. trade $\$ 2.70$: special grade 52.80 highly-spectal grade $\$ 2.90$.
Vanadlum pentoxide: Technical grade, $88-92$ per cent yis; cho $\begin{array}{lll}\text { grade, } & 88-92 & \text { per } \\ \text { tracts, } & \text { any } \\ \text { quantlts. } & \text { sit. } 10 \text { pet }\end{array}$ pound $\mathrm{V}_{2} \mathrm{O}_{5}$ contalned; spot 5 cenl Zirco
Zirconlum Alloys: 12-15\%, contract basis, carloads bulk, jer gross las 102.50; packed $\$ 107.50$; per ton higher.
Zirconlum allos: $35-40 \%$, contram asis amploads in bulk or packse basis, carloads in 14.00c: gross ton per ib. of alloy $14.00 c: 10.00 c$. Syd lots 15.00 c : les
Alsifer: 20% sluminum Alsleser: (Approx, 20\% Contract bio 40% silicon, 40,0 Falls, N. i., per sis, f.o.b. Niagara F S.ooc. Spot $\frac{1}{2}$. lb. 7.50 c ; ton lots S .00 c . cent higher.
 con, manganese, aluminum per th tract basis, frelght $10,00 \mathrm{c}$; ton lots of alloy; cariolsts, 1100 c . 10.50 c , less ton lots, 410 c . 40 . 59 Borolill: 3 to 4% borom 4 . Pillo, 0 Si.. $\$ 7$ lb. cont Bo.,

WAREHOUSE STEEL PRICES

Sase Prices in Cents Per Pound, Delivered Locally, Subject to Prevailing Differentiais.

			$\frac{5}{a}$										
Hoston	4.044^{1}	3.912^{1}	3.912^{1}	5.727 ${ }^{1}$	3.774^{4}	4.106^{1}	5.108^{1}	5.224^{14}	4.744 ${ }^{14}$	4.144^{11}	4.715	7.762^{23}	6.062^{23}
Sew York	3.88.4 ${ }^{1}$	3.778^{1}	3.788^{1}	5.605^{1}	3.611^{1}	4.005^{1}	4.005^{1}	5.031^{12}	4.644^{14}	4.134^{31}	4.805	7.600^{23}	$5.900^{2.1}$
Sersey City	3.884^{1}	$3.758{ }^{1}$	3.788	5.605:	3.611^{1}	4.005^{1}	4.005^{1}	5.031^{18}	4.644^{14}	4.134^{31}	4.805		
Philadelphia	3.822^{1}	3.686^{1}	$3.60{ }^{1}$	5.272^{1}	3.518^{1}	3.922^{1}	4.272^{1}	5.018^{15}	4.872^{23}	4.072^{21}	4.772	7.566^{27}	5.866^{23}
Baltimore	3.802^{1}	3.759	3.594^{1}	5.252^{1}	3.394^{1}	3.902^{1}	4.252^{1}	1.89.4 ${ }^{1}$	$4.852^{2}=$	4.052^{21}			
Washington	3.941^{1}	$3.930{ }^{1}$	3.769^{1}	5.341^{1}	3.590^{1}	4.041^{3}	4.391^{1}	5.196^{17}	4.84.1120	$4.0 \cdot 1^{12}$			
Sorfolk, Va.	4.065^{1}	4.002^{1}	3.971^{1}	5.465 ${ }^{1}$	3.771^{1}	$4.16{ }^{1}$	4.515^{1}	5.371^{17}	4.965^{4}	4.165^{21}			
8 Ethlehem, $\mathrm{Pa}_{\text {a }}{ }^{\circ}$.		$3.45{ }^{1}$											
Claymont, Del. ${ }^{\circ}$			$3.45{ }^{1}$										
Coatesville, Pa. ${ }^{\text {a }}$			$3.45{ }^{1}$...							
Buffalo (city)	$3.35{ }^{1}$	$3.40{ }^{1}$	$3.62{ }^{1}$	5.25^{1}	$3.25{ }^{1}$	$3.82{ }^{1}$	$3.82{ }^{1}$	$4.75{ }^{18}$	4.30^{10}	$3.75{ }^{21}$	3.52	7.35 ${ }^{\text {m }}$	$5.65{ }^{32}$
Buffalo (country)	$3.25{ }^{1}$	$3.30{ }^{1}$	$3.62{ }^{1}$	$5.25{ }^{1}$	$3.15{ }^{\text { }}$	$3.82{ }^{1}$	$3.82{ }^{1}$	$4.65{ }^{15}$	$4.20{ }^{10}$	$3.65{ }^{21}$			
Pittslurgh (city)	$3.35{ }^{1}$	$3.40{ }^{1}$	3.40^{1}	5.00^{1}	$3.35{ }^{1}$	$3.60{ }^{1}$	$3.60{ }^{1}$	$4.75{ }^{11}$	4.00^{24}	$3.65{ }^{21}$		$7.45{ }^{3 z}$	$5.75{ }^{7}$
Pittsburgh (country)	$3.25{ }^{\text { }}$	$3.30{ }^{1}$	$3.30{ }^{1}$	$4.90{ }^{1}$	$3.25{ }^{1}$	$3.50{ }^{1}$	$3.50{ }^{1}$	$4.65{ }^{13}$	4.00^{21}	$3.65{ }^{23}$			
Cleveland (city)	$3.25{ }^{1}$	$3.58{ }^{1}$	$3.40{ }^{1}$	$5.18{ }^{1}$	$3.35{ }^{\text { }}$	$3.50{ }^{1}$	$3.50{ }^{1}$	4.62^{13}	4.05^{21}	$3.75{ }^{21}$	3.20	7.55^{37}	5.85 ${ }^{\circ}$
Cleveland (country) Detroit	$3.25{ }^{1}$	3.58 ${ }^{1}$	$3.30{ }^{1}$	$5.18{ }^{1}$	3.251	3.501	3.501	4.62^{11}	$3.95{ }^{24}$	$3.65{ }^{21}$	3.40	7.6724	$5.97{ }^{24}$
Omaha (city)	3.43^{1} 4.10^{1}	3.651	B.601	$5.27{ }^{1}$	$3.43{ }^{1}$	$3.43{ }^{1}$	$3.68{ }^{1}$	4.844^{19} 5.520	4.30^{24} 4.77^{24}	3.80 $4.42{ }^{211}$	3.40	7.67	$5.97{ }^{\text {² }}$
Omaha (country)	4.00^{1}	4.951	$4.15{ }^{1}$	$5.75{ }^{1}$	$3.85{ }^{1}$	$4.20{ }^{1}$ 4.10	4.10^{2}	5.52^{10}	4.77^{24}	4.423 ${ }^{\text {² }}$			
Cincinnati	$3.60{ }^{1}$	$3.68{ }^{1}$	3.65	$5.28{ }^{1}$	3.42^{1}	$3.87{ }^{1}$	3.67^{1}	$4.92{ }^{10}$	4.37	4.00^{23}	3.45	7.69^{28}	5.990
Youngstown, 0.0						3.67		4.40^{23}					
Middletown, 0.*					$3.25{ }^{1}$	$3.50{ }^{1}$	$3.50{ }^{1}$	4.40^{13}					
Chicago (city) Chicago (country)	$3.50{ }^{1}$	3.55^{1}	$3.55{ }^{1}$	$5.15{ }^{1}$	$3.25{ }^{\text {s }}$	$3.60{ }^{1}$	$3.60{ }^{1}$	$4.85{ }^{10}$	4.10^{24}	$3.75{ }^{21}$	3.50	7.35 ${ }^{\text {21 }}$	$5.65{ }^{13}$
Chicago (country)	$3.40{ }^{1}$	$3.45{ }^{1}$	$3.45{ }^{1}$	$5.05{ }^{1}$	$3.15{ }^{1}$	$3.50{ }^{1}$	$3.50{ }^{1}$	$4.75{ }^{10}$	4.00^{24}	3.6521			5.88^{31}
St. Paul	$3.63{ }^{1}$	$3.08{ }^{1}$	$3.68{ }^{1}$	$5.28{ }^{1}$	$3.38{ }^{1}$	$3.73{ }^{1}$	$3.73{ }^{1}$	4.988^{19} 5.00^{3}	$4.23{ }^{24}$	$3.88{ }^{21}$ 4.3421	3.54 3.83		6.800
St. Louis	$3.75{ }^{2}$ $3.64{ }^{1}$	$3.80{ }^{1}$ 3.691	$3.80{ }^{2}$ 3.691	$5.40{ }^{1}$	$3.50{ }^{1}$ 3.398	$3.85{ }^{2}$ $3.74{ }^{1}$	3.85 3 ²	5.00^{3} 4.99^{10}	$4.35^{3} 4$	$4.34{ }^{21}$	3.81 3.61	7.72^{23}	6.02^{20}
Indianapolis (city)	$3.64{ }^{1}$ 3.60	$3.69{ }^{1}$ 3.70	$3.89{ }^{1}$ $3.70{ }^{1}$	$5.29{ }^{1}$	$3.39{ }^{1}$ 3.451	$3.74{ }^{1}$ 3.751	$3.75{ }^{1}$	$5.01{ }^{10}$	$4.25{ }^{24}$	$3.97{ }^{11}$			
Indianapolis (country)	$3.35{ }^{1}$	$3.45{ }^{1}$	$3.40{ }^{1}$	5.05^{1}	$3.20{ }^{\text {a }}$	$3.50{ }^{1}$	$3.50{ }^{1}$	5.01^{10}	4.00^{24}	$3.97{ }^{21}$			
Memphis, Tenn.	3.90^{5}	$3.95{ }^{\text {a }}$	$3.95{ }^{\prime}$	$5.71{ }^{\text {b }}$	$3.85{ }^{\text {a }}$	4.10^{5}	$4.10^{\text {s }}$	$5.25{ }^{11}$	4.66^{20}	$4.31{ }^{11}$			
(irsingham (city)	$3.50{ }^{5}$	3.55	$3.55{ }^{\text { }}$	$5.83{ }^{\text {a }}$	$3.45{ }^{\text { }}$	$3.70{ }^{5}$	$3.70{ }^{6}$	$4.75{ }^{10}$	$4.78{ }^{34}$	4.43^{21}			
Sew Orleans (city)	$3.40{ }^{3}$	$3.45{ }^{\prime}$	3.45	$5.83{ }^{\text {a }}$	$3.35{ }^{\text { }}$	$3.60{ }^{8}$	$3.60{ }^{\text {s }}$	$4.75{ }^{10}$	4.788^{24}	4.43^{23} 4.60^{21}	0	.	
New Orleans (country)	$4.00{ }^{4}$	3.80'	$3.80{ }^{4}$	$5.85{ }^{\prime}$	3.95 3.85	$4.20{ }^{4}$	$4.20{ }^{\text {4 }}$	$5.15{ }^{20}$	4.95^{10}	4.60^{21}			
Houston, Tex.	$3.75{ }^{\text {a }}$	4.25	3.85 4.25	$5.75{ }^{\circ}$	3.75 ${ }^{\text {a }}$	4.30^{8}	4.30^{3}	$5.25{ }^{\text {5 }}$	5.43^{14}	$4.50{ }^{23}$			
Los Angeles	4.35	4.60	4.90	7.15	$4.95{ }^{4}$	$4.90{ }^{\text {+ }}$	$8.70{ }^{4}$	5.9510	$7.15{ }^{\circ}$	5.70^{13}		9.55^{24}	8.55
San Francisco (city)	$3.95{ }^{7}$	4.35	$4.65{ }^{7}$	$6.35{ }^{\text { }}$	$4.55{ }^{\text { }}$	$4.50{ }^{7}$	$4.50{ }^{7}$	6.60^{10}	7.55^{10}	$5.55{ }^{30}$		9.80°	8.80
Tacoma Frasisco (country)	$3.85{ }^{1}$	$4.25{ }^{7}$	$4.55{ }^{7}$	$6.25{ }^{7}$	$4.45{ }^{\text { }}$	$4.40{ }^{\text {¹ }}$	$4.40{ }^{7}$	$6.50{ }^{\text {¹ }}$	$7.45{ }^{31}$	5.45^{71}	
Seattle (city)	4.20°	$4.45{ }^{\text {¢ }}$	$4.75{ }^{\text { }}$	$6.50{ }^{4}$	$4.65{ }^{\circ}$	$4.25{ }^{\text {n }}$	$5.45{ }^{\circ}$	$5.70{ }^{\circ}$	$6.63{ }^{14}$	$5.75{ }^{21}$..	
	$4.20{ }^{\text {a }}$	$4.45{ }^{\text {a }}$	$4.75{ }^{4}$	$6.50{ }^{\circ}$	$4.65^{\text { }}$	4.35 ${ }^{\circ}$	$5.45{ }^{\circ}$	$5.70{ }^{\circ}$	$6.63{ }^{24}$	$5.75{ }^{2}$.	8.00

[^6]
BASE QUANTITIES

- -300 to to 1909 pounds; ${ }^{2}-400$ to 14,999 pounds; --any quantity; - 400 to 1909 pounds; ${ }^{6} 400$ to 3999 pounds; 300 to 1999 pounds; " -500 to 1499 pounds; ${ }^{11}$-onder 2000 pounds; inde to 39,999 pounds; 400 pounds; 150 to

Ores			
1ake Superlar Iron Ore		South Airlcan (Transvai)	
Gross ton, $511 \% \%$		44\% no ratlo...	27.40
		45% no ratio	28.30
Oid range bessemer		48\% no ratio	31.00 32.80
Mesabl nonbessemer	\$4.75	50\% no ratio	
Mesh phosphorus .	4.43	Brazillan-nominal	
Mesabl bessemer	4.35 4.60	44% 48% 2.5 $3: 1$ l lump	33.65 43.50
Eastern Lemer	60	Rhodeslan	
ents, unit, local 0		45\% no ratlo	28.30
Foundry and basle 56. Pa.		48\% no ratio	31.00
\%, contract		48\% 3:1 lump	43.50
	13.00	Domestic (f.o.b. C	Iont.)
Foreign Ore		48\% 3:1	43.50

2249 pounds; ${ }^{11}$ - 150 to 1499 pounds; ${ }^{14}$-three to 24 bundles; ${ }^{11}-4.50$ 1499 pounds: ${ }^{10}$ - one bundle to 1499 pounds; ${ }^{17}$-one to nine bundies: n-one to six bundles; ${ }^{18}$ - 100 to 749 pounds; ${ }^{20} 300$ to 1999 pounds; 11-1500 to 39,999 pounds; 22 - 1500 to 1999 pounds; $23-1000$ to 39999 pounds; ${ }_{24} 400$ to 1499 pounds; $23-1000$ to 1999 pounds; 39,

less $\$ 7$ freight allowance	Chilean, 48\% Indian, 50% Indlan, 48\%
Including war risk but not duty,	South African, 48\%
cents per gross-ton unit, dry, f.o.b.	South African, 46\%
cars. New Orleans and Mobile; 5	(Duty Free)
cents higher at Norfolk, Baltimore,	Cuban, 51\% Cuban, 48%
hiladelphia, New York; ad	Cuban, 45\%
for analysis variations. OPA schedules.)	Philippine, 50\%
Brazllian, 48\% 73.	Domestic, 48\%, f.o.b. mines
Brazlian, 46\% 71.8c	Malybuenum
Caucasian, 51\% 75.3c	Sulphide conc., lb., Mo. cont.,
Caucasian, 50\% 74.8c	mines

NATIONAL EMERGENCY STEELS (Hot Rolled)

Manganlterous ore, 45 -
50. Fe., 6 -10\% Mang.
N African

Spanlish No. African brazil, 50 to 60% African
Brazil iron ore, 68%. 69%

1.ab. Rio de Janelro.	$7.50-8.00 \mathrm{c}$
Tungsten Ore	

Indlan a met.
48% 2.8:1 Atrican
48\% 3:1
Nom.
Nom.
Nom.
$7.50-8.00 c$

N

Chrome Ore
(Equivalent OPA schedules)
Philadelphia, cars, New York, ton, S. C., Portland coma, Wash, (S/S poying for discharging; dry antees are not to penalties if guar. 1
Desig.
nation
NE 1330

						Bars per	Billets per G T		Billets per G T
Carbon	Mn.	Si.	Cr.	Ni .	Mo.	100 lb .			
.28-. 33	1.60-1.90	. $20-.35$				\$.10	\$2.00		
. 18 -. 23	1.00-1.30	.20-.35			.10-. 20	. 45	9.00	$\$.95$	\$19.00
.40-. 45	1.30-1.80	. $20-.35$. $30-.40$. 90	18.00	1.40	28.00
.12-.17	.70-. 90	.20-.35	.40-. 80	. $40-.70$.15-. 25	. 75	15.00	1.25	25.00
.13-. 18	.70-. 90	.20-.35	.40-. 60	.40-.70	.20-. 30	. 80	16.00	1.30	28.00
. $50-.60$.75-1.00	1.80-2.20				. 40	8.00	.-.	
. $55-.65$.75-1.00	1.80-2.20	. $20-.40$. 65	13.00		
.18-.18	.80-1.10	.40-. 60	. $20-.40$. $20-.50$.08-. 15	. 80	16.00	1.30	28.00
. $40-.45$	1.00-1.30	.40-.60	. $20-.40$. $20-.50$.08-. 15	. 85	17.00	1.35	27.00
. $35-.40$	1.20-1.50	.40-. 60	.40-.60	.40-.70	. $15-.25$	1.20	24.00	1.70	34.00
.28-.33	1.20-1.50	.40-. 60	.40-.60			. 80	16.00	1.30	26.00
40-.45	1.30-1.60	. $40-.60$.40-.60			. 85	17.00	1.35	27.0

(Extras for alloy content)
(Extras for alloy content) Chemical Composition Limits, I'er Cent-_-

Basic open-hearth Electric furnace Bars

Extras are in addition to a base price of 2.70 c , per pound on finished products and $\$ 54$ per gross ton on
$\$ 41.00$ semifinished steel major basing points and are in cents per pound and dollars per gross ton. No prices quoted 43.50 on vanadium alloy.

 allowed on crades considered superior, unless upproved by OPA. Addition of special preparation charges
orohibited. Purchase of clectrice furnace or found y grade for onen hearth or blast furnace use per-
pitted only at no more than price for corresponding open hearth ernde. Excentions: Low phos. billet. nitted only at no more than price for corresponding open hearth grade. Exceotions: Low phos. billet,
bloom and forge crops and electric furnace bumdles may exceed open hearth price and electric furmace inal industrial producer.
 than the maximum allowed; the broker sells the scrap to the consumer at the same price at whici he or sub-broker, or with the consumer. Commissions must be shown as separate item on invoice.
Maximum Shipping Point Price: Where shipment to consumer is thy rail, vessel or combination of
 price listed in the above table for scrap at the basing point in which the shipping point is located,
minus the lowest established switching charge for scrap within the basing point: and (2) for shipping points located outside a basine point. the price in the above table for scrap at the most favorable basmovement is involved. dock charges shall be 50 cents at Memphis, $\$ 1$ at Great Lakes ports. $\$ \chi .25$ at New England ports,
able basing point prices; maximum transportation charge on scrap from New basing points. maximum is price listed in table minus powest switching charge. When outside basinc um $\$ 1.00$ per ton. Maximum Deivered Prices: Determined by adjing established transportation charges to shinping
int

CES FOR OTHER	
Cast	
Iron	Shoveling
Borings	Turnings
$\$ 16.00$	$\$ 17.00$
14.75	15.75
14.25	15.55
15.25	16.25
15.50	18.50
13.85	14.85
13.85	14.85
14.75	15.75
14.25	15.25
14.00	15.00
13.50	14.50
13.00	14.00
12.50	13.50
10.50	11.50

crap Rails-	
aft and under	I 8 in. and under
und	

 23.25 जे なncio

C
00
00
00
0
0
0

avoutiva NVHL YSHIO dVH: 8 NOGI LSVD

 Group A includes the states of Montana, Idaho, Wyoming, Nevada, Utai, Arizona and New Mexico.

NONFERROUS METAL PRICES

Copper: Electrolytic or Lake from producers in carlots 12.00 C , Del. Conn., less carlots 12.124 reanery; dealers may add 3 zc for 5000 lbs. to carload: 1000-4999 lbs. 1c; 500-999 11/2c; 0-499 2c. Castling, 11.7 sc , reflnery for 20.000 ibs ., or more, 12.00 c less than $20,000 \mathrm{lbs}$.

Brass Ingot: Carlot prices, Including 25 cents per hundred frelght allowance; add $1 / 4 \mathrm{c}$ for less than 20 tons; 85-5-5-5 (No. 115) 12.25 c ; $88-10-2$ (No, 215) 16.50 c ; $80-10-10$ (No. 305) (No, 245) 14.75 c ; No. ${ }^{225}$) 16.15 C ; No 10.00c; manganese bronze (No. 420) 12.75 c .

Zunc: Prime western 8.25 c , select 8.35 c , brass special 8.50 c , intermaedlate 8.75 c , E. St. Louls lor carlats. For $20,000 \mathrm{Ibs}$, to carlots add $0.15 \mathrm{c} ; 10,000-20,000 \quad 0.25 \mathrm{c}$; $2000-10,000 \quad 0.40 \mathrm{c}$ under 2000 0.50c.

Lead: Common 6.35 c , corroding or chemical, 6.40c, E. St. Louls for carlots; add 5 points lor Chicago, Minneapolis-St. Paul, MilwaukeeKenosha districts; add 15 polnts for Cleveland-Akron-Detroit area, New Jersey, New York dtate. Texas, Pacific Coast, Richmond, In-danapolis-Kokomo; add 20 points for Birmingham, Connecticut, Bost on-Worcester. Springfleld, New Hampshire, Rhode Island.

Prmary Aluminum: 99% plus, Ingots 15.00 c del, nigs 14.00 c del.: metallurglcal $94 \% \mathrm{~min}$ 2000.9999 lbs.; 1c less than and over; add 1/2c 000.9999 los.; 1c less than 2000 lbs.

Secondary Aluminum: All Erades 15.00c per b. except as follows: Low-grade plston alloy (No 122 type) 14.50 c ; No. 12 foundry alloy Ne, 2 grade) $14.50 c$; chemlcal warfare serv ce ingot ($991 / 2 \%$ plus) 14.50 c ; steel deoxidizingot norchbars, granulated or shot including got containing over 2% Jron, Grade 1 (95 14.75 c , Grade 2 ($92-95 \%$) 1450 c Grade 3 (90.92%) 14.00 c , Grade 4 ($85-90 \%$) 3.50c, Grade 5 (less than 85%) 12.50 c . Above prices for $30,000 \mathrm{lbs}$. or more; add $1 / 4 \mathrm{c}$. Above ,000 lbs.: $1 / 2 \mathrm{c}$ 1000-10,000 lbs.: 1c less than up to 75 Prices include freight at carload rate up to 75 cents per hundred.

Tarneslum: Commerclally pure (99.8%) stand ard Ingots (4-notch, 17 lbs.) 20.50 c lb.; add If tor special shapes and sizes, Including 3-lb, Ingot and 12-1b round ingot: incendlary bomb 25TME, 50.75 c , No. 13.510 , 1125.00 c , ASTM B94-40T 100 lbs or more. all others 23.00 c . Prices for less than 25 lhe; for 25-100 lbs. add 10 c ; for l.o.b. plant any 20 c ; Incendlary bomb alloy llowed all athers fuantity; carload frelght rate or 500 lbs . or more.

Tha: Prices ex-dock, New York In 5 -ton lots. 2 He cent for 2240-11,199 lbs., 13 1 c 1000-2239. or hlaher (inelw under 500 . Grade A, 99.8% or h/eher (Includes Stralts), 52.00c: Grade B. relined 5169 incl . $51 . \mathrm{E2} 1 / 2 \mathrm{c}$; Grade C. Cornlsh 51.124516215 c : Grade D, $99.0-99.74 \%$ Incl. 51.12 hc , Grade F, below $99 \%, 51.00$ e

Antmenty: American, bulk, carlots, 1.0.b. Lared o, Tex, $99.0-99.8 \%$ grade $14.50 \mathrm{c}, 99.8 \%$ enty to exceed 0.1% max.; no other imarlots to 10 ion 15.00 c . Add $1 / 4 \mathrm{c}$ for less2 c tor 223 lbs , and less. $1 / 2 \mathrm{c}$ for $9999-224 \mathrm{lbs}$;

Tekel: Electrolytic cathodes, 99.5%, f.o.b. elinery 35.00 e lb .; pig and shot 99.5%, f.o.b. of Ingot cathodes $36,00 \mathrm{c}$: "F" nickel from tonel shot 28.00 c .

Hercury: Prices per 76-lb. flask 1.0.b, point of Orement or entry. Domestic produced in Callf of duced In Texas, Idahn, Nev., Arlz. $\$ 191$; prom Mexico, duty pald. $\$ 193$. Aorelign, produced Arsenle: Pime white
Prime, white, 99%, carlots, 4.00 c lb . dalililium-Copper: $3.75-4.25 \%$ Be., $\$ 15 \mathrm{lb}$. con-

Cadmlum: Bars, ingots, penclis, plgs, plates theds, slabs, stlcke and pencils, plgs, plates, halls, or flat forms 90 anc other "regular" shapes 9.00 and all other special or patented hapes 9.00 c lb . del.
Cobalt: 97-90\% 52
On contract, $\$ 1.50 \mathrm{lb}$. lb ; 100 lbs . or more
Indium: $99.5 \%, \$ 10$ per troy ounce.
Gold: U. S. Treasury, $\$ 35$ per ounce.
May 17,1043

Sllver: Open market, N. Y., 44.75c per ounce Platlnum: \$36 per ounce.

Irldium: $\$ 165$ per troy ounce.
Palladium: $\$ 24$ per troy ounce.

Rolled, Drawn, Extruded Products

(Copper and brass product prices based on 12.00 c , Conn., for copper. Frelght prepald on 100 lbs. or more.)

Sheet: Copper 20.87c: yellow brass 19.48c; commerctal bronze, 90% 21.07c, 95% 21.28c red brass, $80 \% 20.15 \mathrm{c}, 85 \% 20.36 \mathrm{c}$; phosphor bronze. Grades A, B 5\% 36.25c; Everdur Herculoy, Duronze or equiv. $26.00 c$; naval brass 24.50 c ; manganese bronze 28.00 c ; Muntz metal 22.75 c ; nlckel silver $5 \% \quad 26.50 \mathrm{c}$.

Rods: Copper, hot-rolled 17.37 c , cold-rolled 18.37 c ; yellow brass 15.01 c ; commerclal bronz $90 \% 21.32 \mathrm{c}, 95 \% 21.53 \mathrm{c}$: red brass 80% $20.40 \mathrm{c}, ~ 85 \%$ 20.61c; phosphor bronze Grade A. B 5\% 36.50c; Everdur, Herculoy, Duronze or equiv. 25.50c; Naval brass 19.12c; manganese bronze 22.50 c ; Muntz metal 18.87c; nlckel sllver $5 \% 28.75 \mathrm{c}$.

Scamless Tublne: Copper 21.37c; yellow brass 22.23c; commenclal bronze 90% 23.47c: red brass $80 \% 22.80 \mathrm{c}, 85 \% 23.01 \mathrm{c}$.

Fxiruded Shapes: Copper 20.87c: architectural bronze 19.12c; manganese bronze 24.00 c , Muntz metal 20.12c; Naval brass 20.37c.

Anglof and Channels: Yellow brass 27.98c; commercia! bronze 90% 29.57c, 95% 29.78c; red brass $80 \% 28.65 \mathrm{c}, 85 \% 28.86 \mathrm{c}$

Copper Wire: Bare, soft, i.o.b. Eastern mills carlots 15.3714 c , less-carlots $15.871 / 2 \mathrm{c}$; weather proof, L.o.b. Eastern mills, carlots 17.00c less-carlots 17.50 c ; magnet, dellvered, carlots $17.50 \mathrm{c}, 15,000 \mathrm{lbs}$. or more 17.75 c , less car lots 18.25 c

Alunilnum Sheetn and Circles: $2 s$ and $3 s$, flat mill finlsh, base 30,000 lbs. or more: del. heet widths as indlcated; circle dlameters $9^{\prime \prime}$ and larger:

Gage	Width	Sheets	Circles
$249^{\prime \prime}-7$	$12^{\prime \prime}-48^{\prime \prime}$	22.70 c	25.20 c
$8-10$	$12^{\prime \prime}-48^{\prime \prime}$	23.20 c	25.70 c
$11-12$	$26^{\prime \prime}-48^{\prime \prime}$	24.20 c	27.00 c
$13-14$	$26^{\prime \prime}-48^{\prime \prime}$	25.20 c	28.50 c
$15-16$	$26^{\prime \prime}-48^{\prime \prime}$	26.40 c	30.40 c
$17-18$	$26^{\prime \prime}-48^{\prime \prime}$	27.90 c	32.90 c
$19-20$	$24^{\prime \prime}-42^{\prime \prime}$	29.80 c	35.30 c
$21-22$	$24^{\prime \prime}-42^{\prime \prime}$	31.70 c	37.20 c
$23-24$	$3^{\prime \prime}-24^{\prime \prime}$	25.60 c	29.20 c

Lead Products: Prices to jobbers; full sheets 9.50c; cut sheets 9.75c: pipe 8.15c, New York; 8.50 c Phlladelphia Baltlmore Rochester and Buffalo; 8.75 c , Chicago, Cleveland, Worcester, Boston.

Zinc Products: Sheet f.o.b. mlll, 13.15c; 36,000 lbs. and over deduct 7%. Ribbon and strip $12.25 \mathrm{c}, 3000$-lb. lots deduct $1 \%, 6000 \mathrm{lbs} .2 \%$, 9000 lbs. $3 \%, 18,000$ lbs. 4%, carloads and over 7%. Boller plate (not over 12") 3 tons and over $11.00 \mathrm{c}: 1-3$ tons 12.00 c ; $500-2000 \mathrm{lbs}$. 12.50 c : $100-500 \mathrm{lbs} .13 .00 \mathrm{c}$; under 100 lbs. 14.00 c . Hull plate (over $12^{\prime \prime}$) add ic to boller plate prlces.

Plating Materials

Chromic Acld: 99.75\%, flake, del., carloads 16.25 c ; 5 tons and over 16.75 c ; $1-5$ tons 17.25 c ; 400 lbs . to 1 ton 17.75 c ; under 400 lbs .18 .25 c .

Copper Anodes: Bage 2000-5000 lbs., del.; oval 17.62c: untrimmed 18.12c; electro-deposited 17.37 c .

Copper Carbonate: 52-54\% metallic cu; 250 lb barrels 20.50 c .

Copper Csanlde: 70-71\% cu, 100-lb. kegs or bbls. 34.00 c 1.0.b. Nlagara Falls.

Sodium Cyanide: 96%, 200-lb. drums 15.00 c ; $10,000-1 \mathrm{~b}$. lots 13.00 c 1.o.b. Niagara Falls.

Nickel Anodes: 500-2999 lb. lots; cast and rolled, carbonlzed 47.00 c ; ralled, depolarized $48.00 c$.

Nickel Chlorlde: 100-lb. kegs or $275-\mathrm{lb}$. bbls. 18.00 c lb., del.

Tin Anndes: 1000 lbs . and over 58.50 c , del. $500-99959.00 \mathrm{c} ; 200-49959.50 \mathrm{c}$; $100-19961.00 \mathrm{c}$

TIn Crystals: 400 -lb. bbls, 39.00c 1.o.b. Grarselli. N. J.: 100-Ib. kegs 39.50c.

Sodlum Stannate: 100 or $300-\mathrm{db}$. drums 36.50 c del.; ton lots 33.50 c .

Zinc Cynnide: $100-1 \mathrm{~b}$. kegs or bbls. 33.00 c f.o.b. Nlagara Falls.

Scrap Metals

Brass Milt Allowances: Prices for less than 15,000 lbs fob shlpplng point Add sic for $15,000-40,000 \mathrm{lbs}$; 1c for $40,000 \mathrm{lbs}$. or more.

	Clean Heavy	Rod Ends	Clean Turnings
Copper	10.250	10.250	9.50
Tinned Copper	9.625	9.625	9.3
Yellow Brasm	8.625	8.375	7.87
Commerclal bronze			
90\%	9.375	9.125	8.6
95\%	9.500	9.250	8.75
Red Brass, 85\%	9.125	8.875	8.37
Red Brass, 80%	9.125	8.875	8.37
Muntz metal	8.000	7.750	7.25
Nickel SII., 5\%	9.250	9.000	4.62
Phos. br., A. B. 5\% .. $11.00 \quad 10.750$ Herculay Everdur or			
Naval brass	8.250	8.000	7.50
Mang, bronze	8.250	3.0	7.5

Other than Brass MIII Scrap: Prices apply on material not meeting brass mill specifications and are f.o.b. shipping point; add act for shipment of $60,000 \mathrm{lbs}$. of one group and $1 / 2 \mathrm{c}$ for 20,000 lbs. of second group shlpped in same car. Typical prices follow:
(Group 1) No. 1 heavy copper and wlre, No. 1 tinned copper, copper borings 9.75 c ; No. 2 copper wire and mixed heavy copper, copper tuyeres 8.75 c
(Group 2) soft red brass and borines, alumlnum bronze 9.00 c ; copper-nlckel and borligs 9.25 : car boxes, cocks and laucets 7.75 c ; bell metal 15.50 c ; babhitt-lined brass bushings 13.00 c
(Group 3) zincy bronze borings, Admiralty condenser tubes, brass pipe 8.00 c ; Muntz metal condenser tubes 7.50 c ; yellow brass 6.25 c : condenser tubes $7.50 \mathrm{c} ;$ yellow brass 6.25 ; manganese $0.41 \%-1.0 \%$) 6.25 c ; manganese bronze hording (lead $0.00-0.40 \%$) 6.50 c , (lead 0.41 1.00%) 5.50 c .

Aluminum Scrap: Prices f.o.b. polnt of shlpment. respectlvely for lots of less than 1000 lbs.; $1000-20,000 \mathrm{lbs}$. and $20,000 \mathrm{lbs}$. or more: plant scrap only. Segregated 28 sollds 10.00 c , $11.00 \mathrm{c}, 11.50 \mathrm{c}$; all other sollds 9.50 c , 10.50 c , 11.00 C ; borings and turnings $7.50 \mathrm{c}, 8.50 \mathrm{c}$. 9.00 c ; mlxed sollds $8.50 \mathrm{c}, 9.50 \mathrm{c}, 10.00 \mathrm{c}$, mixed borings and turnings $6.50 \mathrm{c}, 7.50 \mathrm{c}, 8.00 \mathrm{c}$.

Lead Scrap: Prices f.o.b. polnt of shipment For soft and hard lead, Including cable lead, deduct 0.55 c from basing polnt prices for rededuct metal.

ZInc Scrap: New cllippings, old zlnc 7.25 c f.o, b polnt of shipment: add $1 / 1 /-$-cent for $10,000 \mathrm{lbs}$ or more. New die-cast scrad, radjator grilles 4.95 c ; add $3 / \mathrm{c} 20,000$ or more. Unsweated zlnc dross, dle cast slab 5.80 c any quantity.

Nickel, Monel Scrap: PTIces f.o.b. point of shlpment; add $1 / \mathrm{sc}$ for 2000 lbs . or more of nicke or cupro-nickel shlpped at one time and 20,000 lbs. or more of Monel. Converters (dealers) allowed 2c premlum.

Nickel: 98% or more nickel and not over $1 / \%$ copper 26.00 c ; $90-98 \%$ nickel, 26.00 c per 1 lb nlckel contalned.

Cupro-nickel: 90\% or more comblned nickel and copper 26.00 c per ib . contalned nickel, plus 8.00 c per lb . contalned copper; less than 90% combined nickel and copper 26.00 c for contalned nickel only.

Monel: No. 1 castings, turnings 1500 c ; new clippings 20.00 c ; soldered sheet 18.00 c .

Sheets, Strip

Sheet \& Strin Prices, Page 156
Stringency in hot-rolled sheets continues and in addition to two eastern producers which are out of the market for third quarter on hot-rolled sheets two others are in almost as tight a situation. Most sellers are sold up for July on hotrolled and cold-finished sheets with backlogs for August growing rapidly. A moderate tomnage of galvanized is still available for July.
The soldup condition of some sheet mills is causing a decided shift in buying by their regular customers, who have been forced to turn to other sources in many instances, especially where heavy orders have been booked for landing
mats and drum stock and have absorbed much capacity.

While there is a fair run of sheet orders no outstanding inquiries are noted. The tightening of deliveries at various mills, however, indicates substantial orders are coming from somewhere, including, undoubtedly, tonnage placed with mills direct by Washington.

While schedules are tightening, some producers can still promise shipments of both hot and cold-rolled, galvanized and certain specials in July. Fairly substantial capacity is still available in August and September.

Suspension of the freight surcharges of 6 per cent May 15 sets up delivered prices at New York at 2.34 e for hotrolled, against 2.35 c ; 3.39c for cold-

The Brosius Clay Gun is ruggedly built to do the really tough jobs. A positive gear drive and a directly connected motor on the boom swings the gun into the hole-an advantage that is a distinct improvement over the old type clay gun.
rolled, against 3.41 c ; and 3.74 c on galvanized, against 3.75 c . The surcharges had been in effect since March 18, 1942. and the suspension will apply at least until Jam. 1, 1944.

Meanwhile, the Interstate Commerce Commission is making a study of railroad revenues, plant rehabilitation, etc. If the study is not completed by the end of this year, the suspension will be continued; or, if it appears definite that the railroads can carry on comfortably without renewing the surcharges.
Hatio of low carbon specification is heavier in current strip buying, although the volume of high carbon material requiring annealing leads, still taxing heattreating equipment. Requirements for cartridge and shell cases are maintained. a high carbon strip taking anneals. Cold strip mills are booked up to quotas through third quarter with schedules fixed through July. Orders taken beyond that guarter are not always accompanied by allotment numbers, but are assured in practically all cases. While demand for stainless inclines to lag, other alloys, notably NE steels, are sold through third quarter and into the fourth; allocations are made where one producer is unable in handle tonnage, which is placed with another.
Bars . . .
Bar l'rices, Page 156
While there is a lessening of requirements for combat tanks, gun mounts and certain other types of ordnance, the airplane industry is placing heavy tonnages for cold-drawn bars. Machine tool requirements also have been well sustained recently, although some producers see a decline later on, as machine tool builders are reducing their backlogs.
The principal stringency in bars is still to be found in large rounds and hats and special heat treated bars. No jarge rounds or hats appear available ior delivery before August and some producers have little, if any, for that month In fact, it would appear that most thind quarter capacity on these larger specifications is now absorbed. On snall and medium sizes some shipments are still being offered for July; also on hot allor bars, although the quantity is small.
In large rounds and flats most producers are sold up to September and some have relatively little tomace left for that month. In small and medium sizes little mill capacity is available for July and in some cases only a limited amount for August. In hot-rolled alloy bars August is about the earliest delivery promise onf new business, with September the best on heat-treated bars. Some produces have nothing to offer in this line before fourth quarter.
While minor revisions have loeen made in production programs, demand and overall consumption of hot carbon, allor and cold-drawn bars in New England tends to mount. Requirements of force shops are heavy, bolstered by new contracts for a wide range of forged hand tracts for a wide range of orged sereral tools for the services, placed wirn cer
Connecticut manufacturers. For Connecticut manufacturers. For cind tonle needs restrictions on forged hand large inare largely offset by frequent largien quiries from service procurement chain. Aircraft, shipyards, forged bink chd nuts marine hardware, arsenals, bols ang and are accounting for large tonnages is forward buying into fourth quarter more active. Cold-drawn and hol-jiver: alloys are sold up to August dolive?

> Edgat E. BROSIIUS Company
> MANUFAGTURERS AND DESIGNERS OF SPECLAL EQUIPMENT FOR BLAST FURNACES AND STEEL MILLS PIHESURGH, SHARPSBURG BRANCH, PA.
with numerous producers; some bar mills are below capacity, duc to a lack of semifinished steel, diverted to other products, notably plates One large producer of hot carbon bars frequently lacks steel to maintain full operations and is rolling alloys for other mills, partially filling gaps and tending to relieve the tight alloy position. While subcontracting has subsided in some directions, there is still a good demand for automatic screw machine capacity, notably on work three-inches and under. Machine tool requirements have slackened, but the reverse is true of shops consuming tool and die stock.

Plates

Plate Pricen. Page 157

Plate sellers report little tonnage from consumers for July delivery. Jobber orders came through promptly under the special arrangements which now prevail and some specifications are being received against long-term contracts, especially from shipbuilders. On the whole much business for that delivery remains to be placed. Some observers attribute the present lull largely to force of habit of buyers. Under the allocation system consumers not infrequently waited until the end of the month to place orders, when applications had to be in for tonmage to be rolled in the second following month. This arrangement no longer prevails, with all new business now under CIP and requiring allotment numbers. Yet the mid-month lull persists and July tonnage is coming through slowly.
Plate demand is being well sustained, with shipyards, fabricators, and warehouses, respectively, the leading buyers. However, there has been an increasing drop in the quantity of flanged work, due primarily to decline in the fabrication of fuel oil tanks. The suspension of freight surcharges May 15 has resulted in a decline in the delivered, New Tark, price from 2.30 c to 2.29 c .
While engineers have finished plans in most cases for new work in connection with the synthetic rubber program, there still is uncertainty as to when the latest phase of the program will go ahead and also as to whether it will be carried out to the extent anticipated only a few weeks ago. This uncertainty is attributed to the recent controversy in Washington as to the relative importance of the synHhotic rubber and high-test gasoline profrans. This controversy has also made for uncertainty with respect to further wark in the construction of high octane pasoline units. However, some trade interests look for important work to get under way hy mid-summer.
Wire

$$
\text { Wire Prices, Page } 157
$$

Wire mills are sold through third quarler no some specialties and orders are in for various items for shipment early next year. Considerable forward buying has developed under CMP, although firm details aro lovering sizes and other details are lacking for much of this adrance trnnage. For this reason, prosome of this delay on definitely entering some of this volume. Scattered specialty ing brush wire isuently allocated, includin genern wire wanted for July. While in general deliveries have not improved, on intermed eastern mill is slightly easier with some capacity sizes of plain basic wire ery. Much specialty tonnage June deliv-
to three anneals. Heavy demand holds for music and oil tempered wire for springs, with considerable range in ability of producers to ship. Specialty tonmage tends to be concentrated in fewer but larger individual orders. Capacity engaged in filling rope mill needs is at peak with rope plants covering into fourth quarter.

Expanded capacity for production of welding wire and the processing of electrodes has brought output about equal to current heavy demand but a further increase in requirements of 25 to 30 per cent is expected, to meet growing programs, notably in shipbuilding and aircraft. Fully 90 per cent of the wire is coated, most of it heavily, and the pinch prevailing several months ago, which
forced larger use of bare wire, is largely eliminated for the moment. Expected increase in demand is likely to be met by new equipinent expected to enter production soon. Tightness in coated electrodes, which had existed for a year and a half, has eased, although requirements are heavier. Bessemer stock is being used for more purposes than normally and deliveries are about as extended as on open-hearth basic wire.

Demand for wire nails ebbs and flows, sustained pressure for tonnage having eased somewhat. While the services are allowed most barbed wire output, some limitations have been removed on agrienltural needs, also on five additional tpes of heavy fencing. The extent this extended allowance given the farm trade will be

Official U. S. Nary Photograph

For the Engines of Our Naval Craft

Michiana Trays and Fixtures Used in Heat-Treating Vital Parts

- The speed and power of the U.S. PT Boats give these fighters their advantages on offense and defense . . . Reliability of their engines hinges on the dependable performance of every part, and MICHIANA well recognizes its responsibility in the production of the heat-resistant alloy furnace trays and fixtures used in the heat-treatment of vital parts of the famous Packard motors that power these craft. Michiana Products Corporation, Michigan City, Ind.

> MICHIANA Heat-Resistont and Corrosion-Resistant ALLOY CASTINGS

met depends on the tonnage of semifinished allocated finishing mills and machines.

Structural Shapes

Structural Shape Prices, Page 157
In sharp contrast to the tight situation in bars and sheets deliveries on structural shapes still can be had during the current quarter. Not much capacity is available before July 1 but mills are able to accept a moderate tonnage. In general the shape situation is easier than a month ago, as mill backlogs have shrunk.

In the absence of construction demand, structural fabricating shop operations continue to undergo marked changes in the
nature of work, which is reflected in their steel requirements. Less shape tonnage is needed, numerous fabricators consuming more sheets and plates than usual. Most demand is for bar-size shapes, structural angles, channels and light material; broad Hanged and heavier sections are not moving. Shipyards and warehouses are taking most of the current output of structural mills, with fair tonnage going to miscellaneous manufacturing consumers. A large proportion of shape tonnage is fabricated by welding.
Many fabricators are operating under subcontracts, notably on ship assemblies; ships are constantly requiring new deck equipment, stowage racks, gun mounts, ladders and miscellaneous apparatus.

Chips, borings and turnings can be a terrific nuisance in any shop where automatic screw machines, lathes and planers, etc., pile up daily heaps of metal refuse. This waste byproduct is too valuable to throw away and too bulky to store. The problem is solved by the American Ring Turnings Crusher. This crusher utilizes the famous rolling ring principle of crushing, quickly and economically reducing bulky
turnings of low or high carbon steel, alloy steel or brass into "Chips". principle of crushing, quickly and economically reducing bulky
turnings of low or high carbon steel, alloy steel or brass into "Chips". American Ring Turning Crushers are built in various sizes; we will study your requirements, and recommend the proper size crusher for your particular needs.

ORIGINATORS OF , are buil in various sizes,

AMERICAN PULVERIZER COMPANY
1539 macklind ave.
st. louls. missourt

Some structural shops which got into ship work early are busier than in peacetime while others need volume. There has been no decline in subcontracting by shipyards but most of them are farming out more. An eastern navy procurement office has quotations on a large tornage of steel and aluminum gratings. Scores of hemp mills are being contracted for in various sections, but are designed for a minimum of steel, none in the framework.

Rails, Cars . . .

Track Material Prices, Page 157
While car inquiry is light, a heary list of locomotives for export is pending; also an inquiry for ten 2-6-6-6 Mallet type is pending for the Chesapeake \& Ohio. Meanwhile the War Production Board has approved an order for ten 2-10-4 type steam locomotives placed a few weeks ago by Bessemer \& Lake Erie with Baldwin Locomotive Works. Car inquiry is understood to include fifty 50 -ton hopper cars for the Ann Arbor.

Defense Plant Corp. has awarded 400 kitchen cars to American Car \& Foundry Co., to be used by the War Department in troop trains. Office of Detense Transportation has approved allocations of materials for these and for 1200 troop sleepers recently placed with Pullman Standard Car Mfg. Co.

Reinforcing Bars . . .

Reinforcing Bar Prices, Page 157
Bids were opened at Chicago May 18 on one of the largest tonmages of concrete bars that the trade has seen in many weeks- 625 tons for superstructures for the City of Chicago's South district filtration plant. Otherwise, there is no new inquiry, and little is in sight for the immediate future. Awards, mewise, have been insignificant, and involve small tonnages.

Pig Iron . . .

Pig Iron Prices, Page 158
While applications for June shipments of pig iron show little change in point of tonnage, there is no question that order backlogs at some foundries continue to shrink. Unless new war contracts are booked shortly, these foundries will reach the end of their order book in several instances and this will be reflected in subsequent applications for iron. In certain instances operations are less active than a month ago, due to suspensions from machine tool builders who have accumulated a heavier inver tory of castings than they can immediately work off. This situation was reflected in applications for June pig iron, although it appears that increases in tequests elsewhere sustained total volume fairly well.

Malleable fron requirements are maintained, most shops melting at capacity. The sold-up position of the industry is indicated by attempts of an eastern contractor to sublet several thousand malleable castings, averaging five pounds each, on an cight weeks delivery basis: the best promise was 12 weeks and some shops ranged up to one year.
Allocations of basic are steady, but overall requirements for gray iron found. overall requirements for gray iron of the
ries are slackening. With some latter shops recent requests for iron were considered excessive and have been pared considered excessive and have
down, inventories taken into considera-
lion with slower operations. Some gray iron foundries have around 45 days reserve, most of them nearer 30 . With some exceptions producers of castings for the machine tool industry are less active. Foundries supplying shipbuilders are well supplied with orders, with substantial backlogs while allocations to steel foundries are sufficient to maintain them near capacity.
Two blast furnace stacks are ready to be blown in within a few days in the Buffalo district. Hanna Furnace Corp. has a relined stack ready to resume and the new Defense Plant Corp. furnace at the Lackawana plant of Bethlehem Steel C_{0}. is also ready. The latter stack was to have been blown in a fortnight ago but late opening of navigation caused al delay until the ore situation was cleared.

Scrap . . .

Scrap, Prices, Page 160
While demand for foundry grades of scrap in New England continues light, open-hearth material of better quality is readily sold, although steel works heve as much as two months reserves in some instances. Heavy melting steel, including No. I bundles now delivered to mills, is of better grade than some scrap included in inventory. Not all bundles, notaily No. 2, are being taken by melters in the district, but find a market in other areas, some by allocation. The lons stressed campaign for improved segregation of alloy turnings at points of production is bearing some fruit in that area and movement is slightly heavier, but finding a market for the heavy output of machino shop, bushy and other turnines remains a uroblem, although blast fumaces are taking their share of these and stove plate.
ODen-hearth scrap is moving in fair volume from the New York-New Jersey area to Pennsylyania melters, mainly by purchase, with allocations fewer, especially to points requiring long hauls. Movement of scrap to Buiffalo by barge has started but is limited by shortages of barges. Steel scran is more active than cast grades, foundries having substantial stocks and some eastern shons are melting much less than was the case some months ago.
Late opening of mavigation at Buffalos

[^7]has caused delay in recciving cargoes of scrap from the head of the lakes, which had been allocated to Buffalo consumers. As a result shipments have been allocated from other areas to support Buffalo operation. Considerable scrap accumulated through the winter at Lake Superior ports is relied on to end the shortage as soon as it can be moved.
Melters in the St. Louis district are receiving enough tonnage to support high steel production and quality is better. Yard labor shortage is holding down preparation or supply would be larger. Tin can collection is smaller, attributed to food rationing.
In the eastern Pemmsylvania district yard scrap is moving slowly, with suspen-
sions still in effect at some mills on turnings and bundled scrap and at two on all grades except heavy breakable. The latter is in general demand but various foundries also are still holding up shipments. While some suspensions have been attributed to a desire to await the freight reduction of May 15 the general trade is of the opinion that the saving was not sufficient to have been much of a factor.

Means Sought To Limit

Alloy Losses in Scrap

More attention is being given to the problem of alloy turnings and reports

un conditions in the alloy steel industry, indicate a gradual increasing shortage of these critical steels. An authoritative estimate indicates that of the total production of alloy steel, which is now about $1,200,000$ tons per month, about 18 per cent is converted into turnings. About 39 per cent comes back in the form of solid scrap in one form or another, both as ingot crops and similar heavy scrap within the steel producing units themselves and as heavy scrap from fabricating operations. According to a recent statement by WPB authorities, nearly 50 per cent of the alloy steel scrap is not finding its way back into the electric furnace. A large proportion of this 50 per cent is undoubtedly turnings.

There is increasing pressure within the industry for segregation on the part of consumers, which would result in uniform analysis turnings being available for remelting. This matter has progressed so far that an order requiring this is in preparation and is expected soon. The proposed order would make it mandatory for any alloy steel fabricator to segregate scrap according to its alloy content.
Counter proposals have been made by certain quarters that a premium be paid for scrap which has been properly segregated, but factors within the scrap industry feel that this is not the answer. Scrap dealers are not equipped in most cases to handle a large number of different types of turnings because of the

The difficulties encountered in the use of ordinary solvents under varying operating conditions were overcome when Detroit Rex Engineers originated the stabilization of chlorinated solvents.
High stability is our creed! That's why Perm-A-Clor is the most highly stabilized chlorinated solvent available. It will outperform all others under adverse conditions of light, heat, moisture, and mixtures of different metals, which cause the disintegration of lesser stabilized solvents.

Not only is Perm-A-Clor more stable as a liquid, but it also remains stable as a vapor and condensate.

Another Detrex solvent, Triad, is widely used for less rigorous cleaning operations, especially where only steel parts are to be cleaned. It has the same excellent cleaning qualities of Perm-A-Clor but differs in the kind and amount of stabilizer. You can choose the Detrex solvent suited to your particular cleaning operations.
narrow margin on which most scrap yard operators are now operating and they are in no position to construct fa. cilities for this purpose. For that reason a large percentage of the scrap industry is attempting to stay clear of the tumings picture, which further aggravates the situation.
The fact that there is a fairly good How of carbon steel scrap and a ready market for it makes it unprofitable for a dealer to attempt to market turnings unless he can do so on the basis of alloy content without additional expense for handling.

Warehouse

Warehouse Prices, Pase 1 ²9
Warehouse steel demand is well sustained and in most cases tonnage is in excess of the average for the past rear. Structural tonnage is less but this is more than balanced by demand for bars and sheets, which are difficult to obtain from mills.
Mill cquotas to warehouses are being fulfilled and stocks show improvement. Operations under the Controlled Materials Plan are complicated by heat treated alloys being cut off. Due to broken assortment in many lines consumers in many cases are being supplied from ercess inventory through WPB.

Warchouses find themselves in a more comfortable position than they have been for months, due to better receipts from mills, nevertheless they still are unable to satisfy more than one-fourth of the items listed on customers' inquiries because inventorics are not balanced. New business remains fairly even. Tightest of all products are fars, in carbon, alloy and cold-finished grades. Plates in the lighter thicknesses are available in sufficient amounts, but heavy sizes are difficult to obtain. IE steels also are markedly out of balance and incoming supplies are soon noted out.

Iron Ore . . .

Iron Ore Prices, Puge 159
While not large in the normal sense, 3 fair aggregate tomnage of iron ore is being received at North Atlantic ports from North Africa. Brought in convoy ships in lots said to arerage possibly 1500 tons or so, the ore is mostly "fines", which has to be sintered and which is picked up primarily as ballast, with quality of secondary consideration,

In fact, these shipments, it is pointed out, in no way run counter to the broad agreement of a few months ago between this country and England, whereby the latter was to receive the rich Narth African iron ores and the United States the manganese and cobalt, once North Africa was cleared of Axis domination.

With the Allies' North African cantpaign now drawing to a successful conclusion, it is believed that England will receive substantial quantities of this high grade North African iron ore over coming months. Also England, as pointed out in a recent issue, stands to benefit materially by the movement of high grade phosphate rock from North Africa, which she for some time past has been receiving from the United States.
The iron ore "fines" now arriving are being used principally by seaboard consumers, who are said to be working it sumers, who are said to be and ores
in with the eastern local ores

Good, clean, accurate work, too -the only kind you can afford to do for Uncle Sam or anybody else. Clean cutting without chatter, without burrs, without scrap. Production up to $1-1 / 2$ times previous highs. Two machines (No. 3 and No. 4) handle round stock up to $16^{\prime \prime}$, squares to $14-1 / 2^{\prime \prime}$; single or multiple cutting of practically any metal, ferrous or nonferrous. Only Motch \& Merryweather builds all 3: cold saw, blade, and blade sharpener. Bulletin.

PEE MOTCH \& MEARYWEATHER MACHINERY COMPAMY Parton Hullding

Cleveland, Ohio
MOTHH \& MERRWWEATHER

WIRE forms

made in any material, ans quantity, simple and intricate shapes to suit your specifications; or ask for sugges tions on any design or manufacturing

problemsconcerning your products where parts like these may offer a solution.
M. D, HUBBARD SPRING COMPANY 70S CENTRAL AVE. PONTIAC MICH.

FAMOUS BUM GUESSERS

Benito (IL DROOPY) Mussolini

He guessed he'd hitch his wagon to the Axis star, then just sif back and enjoy the ride...Some ride, eh Benny old kid?

The good way for you to avoid bum guesses is just to stick to Penola lubricants. MORE Penola greases serve the steel industry than any other kind. every Penola lubricant carries an extra margin of safety over actual operating need.

PENOLA LUBRICANTS

from the Lake Superior region.
Recently two cargoes of low grade ore from North Africa, running around 5000 tons each were purchased by an eastern consumer, who will "sweeten" it with ores mined in this country.

So far little scrap has reached this country from North Africa; however, it is believed that the scrap shipments will pick up materially over the next few months.

Nonferrous Metals

 Noaferrous Prices, Page 161New York-Allocations of copper for June delivery, now in process, involve an overall tomage about equal to re-
cent months. Interest now centers in revisions to individual fabricators.
Some fabricators were allowed to increase inventory in May, allocations to brass and wire mills exceeding applications in some instances. This is likely to be extended to others for June.

Distribution of the available supply within the total tonnage allocated varies constantly based on inventories, fabricating schedules and the importance of delivery of products during the month covered by allotments. Fabricators are generally quoting deliveries as specified or within 30 days on open bids. Distribution within the total allotment is largely done by co-operation between producers and consumers, the former
making some notable contributions toward the elimination of cross-hauling.

While the Metals Reserve Co.'s reserve supply is called on to round out requirements each month after domestic refinery copper is exhausted for the period, material taken from the pile is promptly replaced and the resere is maintained.
Among new orders restricting the use of copper is limitation order L-12, sal. ing an estimated 600,000 pounds by elimination of the metal, also copperbase alloy and zine in the manufacture of plumbing fixture fittings as trim.

More copper base alloy scrap, notably brass, is emanating from war operations, and becoming more of a factor in allocations. There is a heavy demand for brass cartridge cups and shell casings. While steel is also fabricated for these in greater volume, the latter augments brass, rather than reducing the total tonnage used.
Both in primary and fabricated form, 98,500 tons of idle and excessive copper have been allocated for war production through the War Production Board's copper recovery program. Approximately 50,000 tons so far reported under the program remain to be distributed, but 18,000 tons are in as. sembled products containing other materials which make it unsuitable for copper scrap; the balance is being moved by the Copper Recovery Corp.

High grade zinc is somewhat easier, due in part to stepped up production by one producer and restrictions on the use of that grade. Requirements of galvanizers are held to available supply of steel for coating. Slab zinc prices. delivered New York, with the cancelled six per cent freight are: prime westem. 8.6517 c per pound; brass special, 8.9017 c ; and intermediate, 9.1517 c .

MRC Raises Prices of Beryl, Tantalite-Columbite Ores

Metals Reserve Co. has arranged to purchase domestic beryl and tautaite columbite ores in both large and small lots. This program is designed to stimulate domestic production of these materials and to afford producers a ready market.
Metals Reserve Co. will purchase domestic beryl ore on the basis of $\$ 120$ per dry net ton for 10 per cent BeO grade ore, adjusted pro rata, which represents a substantial increase over the price of $\$ 83.30$ per dry net ton previously paid The price schedule adopted for domettic The price schedule adopted for doned 50 tantalite ore has also been increased so
that the producer will receive approrithat the producer will receive approrimately 50 cents per pound of contatined tantalic oxide ($\mathrm{Ta}_{2} \mathrm{O}_{3}$) over the former price.

Steel in Europe . . .

London-(By Radio)-Heavy demand is experienced in Great Britain for alloy steel for armaments and planes and de steel for armaments and pladily. Light foundries are more active and heavy engineering works are fully' occupied well into the future.

Canada

Toronto, Ont.-New order placing in the Canadian steel markets has increased in volume during the nast week or ten days. Mill representatives state

MECHANICAL POWER PRESSES

HORN • RECLINABLE . STRAIGHT SIDE ROLL AND DIAL FEEDS - DOUBLE ACTION DOUBLE CRANK • FUNCHING • TOGGLE Our Specialty: Patent Percussion Power Presses ZEH \& HAHNEMANN CO. 56 Avenue A.

Newark, N. J.

Incorporating all recent corrections and additions, this new Frasse Data Chart enables you to identify latest Government "specs" for alloy steels at a glance.

It shows the chemical analysis requirements for each Army, Navy, and Federal specification, together with its nearest commercial equivalent in SAE, AISI, and AMS numbers. Government "specs" for the new NE steels are included.

The chart is handy file size, printed on tough stock, and suitable for wall or desk use. If you're working to Government "specs", you'll find it invaluable. Just send in the coupon-a copy will be sent you by return mail. coLd cinisiid bais - huto stails - staniexs staill and tuine coLD BOLIED STEIP AND SIIMTS - WELDED STIXA TUBNG - DRILL BAD
that second quarter booking is in excess of production and most recent sales have been for delivery in third quarter. Producers' books are filled to the end of September on some products and mills are refusing additional business. Reports from the Department of Munitions and Supply that the Canadian war production program soon is to undergo radical changes and that employes in a number of plants may face temporary holidays pending re-tooling for the swing-over has so far not resulted in curtailment in orders for steel and other metals. Just what line the change-over will take has not been made public, other than that special attention will be given to increased output of ships and aircraft, while some
guns and ammunition will be curtailed. It also is stated that one or two new types of guns are soon to be turned out in Canadian plants, and tooling is now procceding for this purpose.

Heavy demand for plates persists and while most of the new business is through the steel controller's department for quick delivery, a large part of recent urders has been for delivery in three to six months. It is stated that about 75 per cent of plate backlogs are directly associated with the shipbuilding program, the remainder covering such important activities as rolling stock, marine boilers and a few other essentials. However, available tomnages are under strict control and deliveries are being made to meet all requirements of

Friends of Kemp, both old and new, will be interested in this V Mail from the Front Line:

The Army-Navy "E" flag, awarded "for high achievement in the production of materials of war," proudly flies at The C. M. Kemp Mfg. Co.
essential war consumers on schedule Demand for black and galvanized sheets has developed more action with new buying from a diversified group of consumers. Mills, however, are almost fully booked to the end of June and while additional orders are being taken no promise is being made regarding delivery. There has been some slowing in demand for the synthetic rubber plant at Sarnia recently, which is making larger supplics available for other consumers.

Merchant bar sales rose during the past few days and some tightening in supply is reported. Mills are accepting orders for delivery into third quarter and while they have some output available in carbon bars for delivery this quarter most of it is being held in reserve against orders from the steel controller. Demand for alloy bars exceeds output and a large part of current busiuess is for delivery in July and August. However, no actual shortage is reported, either in carbon or alloy bars. as deliveries are being made in such order as to provide all essential consumers with some inventory. Inquiry from civilian users has been more active recently and while mills are booking this type of business they are not promising delivery.

Demand for wire and wire products is slow, chiefly due to limited supply and restrictions placed on use by the steel controller. Slowing in building trades has greatly reduced consumption of nails and there also has been shapp falling off in wire consumption in farm comnmunities. Against reduced demand, mill representatives state that production is at the lowest point in years, owing to shortage of wire rods.

According to recent information makers of wrought pipe are now looking for buyers. Labor shortage and curtailment in new works construction using pipe had reduced demand for wrought iron pipe to a mere trickle and makers are said to have fair stocks on hand, with no customers.
Merchant pig iron sales have showed some improvement, totaling about 8000 tons, about 5000 tons malleable and 3000 tons foundry iron. Basic iron sales were featureless. Some melters are now placing orders to the end of the quarter and others are issuing inquiries extending into the middle of third quarter. However, under steel controller regulations melters are not permitted to place long term forward delivery contracts. Steel Co. of Canada Ltd. again entered the market recently after an absence of several months and has been filling iron requirements of a few customers. Canadian Furnace Co and Algoma Steel Corp. are still providing merchant iron to melters in Ontario and Quebec.
Scrap iron and steel receipts by dealers in Ontario and Quebec are gaining in volume, with corresponding betterment in deliveries to consumers. While most scra3? received by dealers in the Toronto district received by local sources, some dealers state that they are now obtaining fair tonnages from outside points. Dealers are adding to yard accumulations, and state that incoming scrap is in excess of handling capacity. While salvage of handling capacity. drives have started in some rural condrives have started in some munities only minor tonnages yet munities only ming this source.
Despite better offerings of cast scrap and stove plate, there is stili a serious

For Handy, Speedy Welding...

LYON Raymond

 Hydraulic Elevating Welding Table ... with Convenient Foot-Pedal ControlIt's easy to use this efficient Welding Table for all sorts of
Job-shop work. And standardized repeat operations are faster and better the LYON way, too. This unit makes experienced welders more effictent-helps newly trained operators do rellable work. Safe, sure foot-pedal Hydraulic elevatIng and lowering gives you swift, just-right positioning. Pluats on full circle with 15° indexed positions. 2000 liss. capacity ... no ratchets or gears. Write today for prices on this fine LYON unit! Ask for Bulletin No. 131.

LYON HYDRAULIC WELDING POSITIONER Tilts Hydraulically -as well as lifts and revolves! Step up your "production welding" with this LYON Positioner! . . . In many cases as much as 50%. It elevates a full $14^{\prime \prime}$-revolves a full 360°-and tilts a full 90°. Get full information on this advanced-type positloner Bulletin No. 131.

IMON-Raymond Corporation

 MATERIAL HANDLING EQUIPMENT 235 Madison St.Greene, N. Y.

Fluid end located at top of pump frame. Totally enclosed with provision for outside packing and proper lubrication under all operating conditions. Crankshaft extends through crankcase for direct coupling at floor level to gear motor or speed reducer. For pressures to 8350 p. s. i. and capacities to 200 g. p. m. Ask for Data Sheet 66.

THE ALDRICH PUMP COMPANY ${ }^{2}$ GORDON STREET - ALLENTOWN• PENNA.

MOTORIZED WORM Gear reducer
Horizonlal drivemade in 11 sizes in ratios of 6 to $80: 1$ and from $1 / 8$ to 50 horsepower.

SAVE ESSENTIAL AND VALUABLE SPACE

War time requirements make the D.O.James Motorized Reducers a very important Must in solving and meeling the power-saving needs of modern industry. Their accessibility and compactness make them most desirable when floor space is limited. Their soundness of design and manufaclure insures maximum efiiciency with minimum maintenance.

D.O.JAMES MANUFACTURING CO. Established 1888
1140 W. Monroe Street Chiccgo, U. S. A.

shortage of these materials, and it is stated that efforts are pending regarding increased imports from the United States. The 10 per cent war exchange tax on cast iron scrap imported into Canada was suspended May 5, and it is expected that this will enable larger imports from across the line without increasing ceiling prices of finished products.

Equipment

Boston-Revisions in the urgency list pertaining to machine tool deliveries are for the moment diverting more units to aircraft engine plants, notably one in New Jersey. Rated as No. 2 on shipments up to recently, with several other
aircraft branches rating higher, including propellers, machine tool deliveries have been raised in importance for engine construction to bring new plants up to production on schedule. This results in revised schedules for assembly and delivery with numerous shops holding machinery contracts for aircraft plants; orders for the new engine capacity were placed sometime back.

Meanwhile builders of more standard tools are steadily reducing backlogs, with shipments well in excess of new orders. Shops producing specialty units have not improved deliveries to the same extent as those building standard tools; a Worcester, Mass., shop building special lines of grinders is quoting October shipment on some tools. There are other
tight spots, including automatic screw machines in several sizes, but the overall position of the industry is becoming easier.
Lathe manufacturers are promising 90 days; some milling machine builders have about caught up on backlogs and are working on current orders. For the most part this is not entirely true of shops in this district; most have several months backlog which is being reduced at a more rapid rate. This is accompanied by a curtailment in subcontracting. Gradually more machine builders are seeking contracts for production of material outside regular lines and some experimental orders are in the works.
New York-Machine tool shipments tend slightly lower, gradually reflecting the decline in orders which developed months ago and reduced backlogs. The backlog volume maintained shipmenls near the peak until early this quarter. With some builders greatly improved delivery is the result, notably on milling machines, lathes and the more standard tools. On some sizes of milling machines shipment is possible in 30 days.

The supply situation has improved, especially in ordinary steels used by the industry, but limitations on other vital parts continue a production nroblem. No direct-current totally enchosed motors are allowed to be used without special permits; standard open type alternating current units are specified There are also delays in some types and sizes of hearings. With the greatly expanded inclustrial plant for war largely tooled, the matter of contract renegrtiation, pressure discounts are commandinr serious attention. In probahly no industry would unsound and uneconomic renegotiation have a more devastating impact than on machine tonls in view of pxcess nostwar canacity and over-tooling for war production.

NFW FACIITIES

Defense Plant Corn. authorized recently the following plant expansion and equipment purchases:

[^8]Only "Eutectic" Alloys" are the true Low Temperature Welding Alloys that are revolutionizing production welding, maintenance welding and salvaging in war plants throughout the nation. There are 42 specialized rods for every metal and every welding job. Developed and manufactured only by Eutectic Welding Alloys Company.
*Reg. U. S. Pat. Off.
New 36 page Welding Data Book W Write Today

More BEARING MAllagge

with STROM stele balis

> In America's vast war production program Strom steps up its untiring energies to the mastery of one thing. For over a quarter century Strom has concentrated on Metal Bals. Toddy, through a a series of lapping operations, Strom Balls possess a degree of surface smooth. nessand sphericity that is unequalled in any other regular grade of ball. Cortect hardness, physical soundness and size accuracy in all Surom Balls is assurance of More Bearing Mileage For longer trouble-free bearing life specify Strom Metal Balls in ALL ball bearings.

strom
 STEEL BALL CO.
 1850 South 54th Avenue - Cicero, Illinois

SIMONDS! FRONT AND CENTER!

FOR HONEST SERVICE, QUALITY WORK AND DEPEND. ABLE PRODUCTS, EXTENDED TO THE GEAR, CHAIN DRIVE AND COUPLING USERS OVER A PERIOD OF half a Century, accept the appreciation and ESTEEM OF YOUR CUSTOMERS, PAST AND PRESENT. MAY YOUR NEXT 50 YEARS BE AS USEFUL AS THE PAST 501
(SIGNED)
Consumers of Simonds gears, drives a couplings
THE SIMONDS GEAR \& MFG. CO. 25TH STREET, PITTSBURGH, PA.

Indistrial

DHAMOND TOOLS

The STA-KOOL Single-Point Toolis equipped with internal coolant ducts and external cooling fins to quickly dissipate the heat, thus prolonging fool life.

SMITIE Djamond Dressing tools employ a sinfered mefal sefting, which firmly holds the stones itill they are completely consumed. \quad Catologs on iequest

5634 Fillmore St., Chicago, Ill. New York Office-114 Liberty St.

REEVES STEEL \& MANUFACTURING CO.
Dover, Ohio

SHEET STEEL AND SHEET STEEL PRODUCTS FOR WAR NEEDS

Plant Expansion, Construction and Enterprise, Government Inquiries, Sub-Contract Opportunities, Contracts Placed and Pending

SUB-CONTRACT OPPORTUNITIES

Data nn subcontract work are issued by regional offices of the War Froduction Board. Contact elfher the ofice Issuing the data or your nearest field office. Write, dan't telebhone, and mention key letters and numbers appearing before each them to assure prompt mitention and avold delas.

Minneapolis Office, Contract Distribution Branch of WPB, 334 Midland Bank building is secking contractors for the following:

No. S-423: Hodraulic pump parts. A number of parts, 500 to 1000 of each, probably larger quantities later. Early delivery. Bronze and gray iron eastings and forgings furnished by mrime contractor. Tolerance, .0002 . Operations are machining, grinding, milling and lapping.
No. S-443: Vibration damper assembly. Facilities reguired include large engine lathes and internal and external grinders. Quantity, 1200, plus spare parts; 150 monthly minimum. Tolerance .002. Forgings furnished Segments to be flame cut from dises fumished Negotiated, with breakdown to show hourly rates and tooling costs.
No. S-444: Diesel engine parts. A number of parts, 250 to 4000 of each. Require machining, grinding, milling, lapping. Tolerance, .0005 . Materials SAE 3140, 1112 , etc. Requires hand screw machines, turret lathes to $31 / 2$ inches, external and intemal grinders.
No. S-445: Bolts. Quantity, 40,000 , 甭 x 6 inches, forged, hexagon head, plated. Operations are machining, threading, grinding, plating. Delivery early and urgent. Material. AMS 6415 (nickel-chromium-molybdemm steel, approx. SAE 43-10). Priority, AA-1.

New York office, Contract Distribution Branch of WPB, 122 East Forty-Second strect, New York, reports the following subcontract opportunities:

S-18-22336: A New Jersey manufacturer seeks a subcontractor with gear cutting facilities. to make gears. Equipment, spiral and bevel cutting machines, gear grinding and gear lapping machines, engine and turret lathes and horizontal broaching machine. Material, AMS 2640 and SAE 2330. Tolerance, 002. Dimensions, 1 to 4 inches. Quantity, 1000 per month. Prints available.

Philadelphia Office. Contract Distribution Branch. Production Division, WPB. Broad Strect Station building reports the following subcontract opportunities:

Buescher-18-1: A Pennsylvania concern requires facilities for taper boring hub and cutting keyway in eight rudder crossheads for stecring gear. Requirements, first forging available by August 1, then one every two months until completion. Equipment required, 12 -foot horing mill, 2 -foot 9 -inch har travel; hydraulic slotter, 32)/inch stroke. Material, steel forging, navy specification 49S2, furnished by prime contractor. Tolerance, taper bore, .003; keyway, . 001. Overall dimensions, four feet eight inches wide, two feet nine inches deep and ten feet long. Prints at Philadelphia office.
Buescher-18-2: A Pennsylvania concern requires facilities for machining ram assembly for stecring gear. Requirements, first forging available by August 1, then one every
two months until completion. Equipment. planer, 4×18-foot bed, 38 inches under head; engine lathe 18 inches hetween centers, to swing 44 inches; hydraulic slotter, 30 -inch stroke; horizontal boring mill, 3 -inch bar, 30 -inch table travel. Material, steel forgings, navy specifications 46S4 INT, to he furnished by prime contractor. Prints at Philadelphia office.

Buescher-18-3: A Pennsylvania corporation requires facilities for machining stainless taner pins for detachable links, 24 sizes, 1000 of each. Material, type 416 steel, (Carpenter free machining or equivalent.) Dimensions, lengths from $1 / 1$-inch to 13 inches. Small end from . 208 to 1.250 -inch. Taper $1 / 1$-inch per foot or .0208 -inch per incle of length. Prints at Philadelphia office.

Detroit office, Contract Distribution Branch, Production Division, W1'B, Boulevard building, is sceking contractors for the following

Job No. 6156: Coupling nut. Quantity, 25,000 Material, aluminum alloy or nickel steel, which is furnished. Equipment, automatic screw machine, tapper, sensitive drill. Dimensions, $5 / 8$-inch hex x 43/64-inch long. Tolerance, plus . 003.

Job No. 6163: Nut. Quantity, 25,000. Material. aluminum alloy, furnished. Equipment automatic screw machine, lead screw tapper, anodizing. Dimensions, in-inch hex x $37 / 64$ inch lang. Tolerance, plus or minus .0013.
Joh No. 6165: Hose coupling loody. Quantity. 25,000. Materials, aluminum alloy, fumished in June. Equipment. automatic screw machine, anodizing. Dimensions, forsh hex x 13 -inch long. Tolerance, plus or minus .0025.
Job No. 6167: Hose coupling body. Quantity, 25,000 . Material, aluminum alloy, which is furnished. Equipment, automatic screw machine, lead screw tapper, heat treatment. anodizing. Dimensions, $7 / 4$-inch hex $x 1 / 4$-inch long. Tolerance, plus or minus .0025
Job No. 6169: Hose coupling. Quantity, 25,000. Material, aluminum alloy, which is furnished. Equipment, automatic serew machine, II.D. drill, anodizing. Dimensions, 11 -inch O.D. $x 13$-inch long. Tolerance, .0025.
Job No. 6171: Hose coupling Quantity, 25,000. Material, aluminum alloy, furnished. Equipment, automatic and hand screw machine. Dimensions, $43 / 64-$ inch, O.D. x $25 / 32$-inch long. Tolerance, plus or minus .0028 .

Job No. 6245: Ship fender cores. Quantity. 10,000 , at 223 per day. Material stecl, furnished. Equipment, punch press for $3 / 8$ inch stock or cutting lorch, sensitive drill press, blacksmith shop, are welder, punch press, hot galvanizing. Dimensions, 32 inches long.

Boston office, Contract Distribution Branch of WPB, 17 Court street, is secking contractors: for the following:
SC-94: Precision ground taps and small thread
and plug gages. Manufacturer wanted who can take on additional work for quick deliveries. Various sizes. Rating, AA-1. Reference. 1-A-962.

Chicago office, Contract Distribution Branch of WPB, 220 West Jackson Boulevard, is seeking contractors for the following:
Barcalo Mfg. Co., Buffalo, N. Y., attention A. W. Kirton or G. N. Abt. Priority, AA-1. Requires 1600 to 2000 -pound drop hammer forging facilities for manufacture of openend and box-end wrenches. Contractor will fumish materials. Quantity, 500,000 . Material, alloy steel.
Cherry-Burrell Corp., 427 West Randolph strect, attention M. G. Brand. Priority, AA-1. Job covers machining 9000 per month of a relief valve. Subcontractor to make necessary fixtures. Contractor supplies stampings ready for machining. Material, monel melal. Equipment, bench lathe, 7×15-inch tirret.
Farrell Mfg. Co., Joliet, Ill., attention P. II. Hoefer. Priority, AA-1. Fillister head machine screw. Quantity, 25,000 at 2000 per month. Material, cold-rolled steel. Contractor will assist in obtaining materiaj. Equipment, \%/r-inch capacity single-spindie automatic screw machine, plain No. 1 horzontal milling machine, zinc plating and normalizing equipment.
Fruchauf Trailer Co., 10940 Harper avenue. Chicago, attention Edwin D. McGee. Pr nrity, AA-1. Slack adjuster worm. Montily requirements 20.000 . Continuous n quirements during 1943. Material, alloy steel. supplied by contractor. Dimensions, x $3^{1 / 4}$ inches. Equipment, 1 -inch caparity four-spinclle automatic screw machine, plain No. 1 horizontal milling machine, $5 / 16$-inch dr. canacity two-spindle bench drill, 6×12 inch dise cutter thread mill, zinc plating equipment

STRUCTURAL SHAPES

SHAPE CONTRACTS PLACED

3200 tons, airplane plant in eastem Pennyly vania for the Murray Conn., Detroit, phen with Bethlehem Steel Co., Bethlehem, through Esslinger-Misch Co., contractors

SHAPE CONTRACTS PENDLNG

75 tons, continuous I-beam bridge, Delaware county, Pennsylvania; bids to state highwa department, Harrisburg, Pa., May 14.

REINFORCING BARS

REINFORCING STEEL PLACED

150 tons. Associated Refineries, Shawnee, Okla to Sheffield Steel Corp., Kansas City; Mo
On tons, hangars, United States Arny, Oklahoma City Oh, Canitol Steel \& Iron Co., Oklahoma City, Okla.

REINFORCING STEEL PENDING

625 tons, superstructures, low-lift pumpins shtion and chemical building. South district fitration plant, department of public worko
 City of Chicago; S. N. 12.
5 tons, I-beam bridge. Delaware munts,

The VERSATILITY

of Metal Spinning

 will amaze you! D. Fpo show: that Spincroft's Metal Spinning techni. Ia enables you' to get a tiny quarter inch diameter thithle or a huge sixty odd inch diameter aircraft engine cow in a few days time?The quick transition of a blueprinted idea to a finished product is but one phose of metal spinning's amazing versatility.

Spineraft is compiling a bookful of equally important examples. You will need this valuable data-get on the mailing list by writing now for the latest Spincraft bulletin, "Why Metal Spinning is so important to Industry Today."

MILWAUKEE METAL SPINNING COMPANY 3502 West Pierce St. Milwaukee. Wisconsin

Reg. U. S. Patent Office.

EMPLOYEES' BADGES NUMBERED BUTTONS

 FIBRE TIME AND TOOL CHECKS CELLULOIDCASES[^9]Three Long Distance lines, CEntral 4916-4917-4918. After six pom. PRospect 6778. HUdson 5211 . CEntral 0379. LARGE EQUIPMENT. EFFICIENT SUPERVISION. 50 Years' experience in back of us! We are ready to serve 24 hours a day. Send for Catalog.
ST. LOUIS BUTTON COMPANY 415 Lucas Avenue St. Louis, Mo.
No Orders Filled Without Priority Extension, Government Contract Number and final use.

Thernoocury sens sendToday on Your Letterhead

for Your Free Copy of this Valuable

THERMOCOUPLE CATALOG and Engineering Data Book No. 3 on ...

THERMOCOUPLES THERMOCOUPLE WIRES THERMOCOUPLE LEAD WIRES PROTECTION TUBES - INSULATORS TERMINAL HEADS - CONNECTORS

ARKLAY S. RICHARDS CO., INC.

Office and Factory: 58 Winchester St.
NEWTON HIGHLANDS, MASSACHUSETTS

Pemsylvania; bids to state highway department, Harrisburg, Pa., May 14.

RAILS, CARS

LOCOMOTIVES PLACED
Bessemer \& Lake Erie, ten 2-10-4 type loco-

CONSTRUCTION AND ENTERPRISE

OHIO

CLEVELAND-Welhman Bronze \& Aluminum
Co., 6017 Superior avenue, will build stor-
age building, one-story, 30 by 63 feet. H. G. Slatmyer \& Son Co. are contractors

CLEVELAND-Harris-Seybold-Potter Co. will
motives noted recently as being placed with Baldwin Locomotive Works, Eddystone, Pa.; approved by WPB.

LOCOMOTIVES PENDING

Chesapeake \& Ohio ten 2-6-6-6 Mallet type locomotives; bids asked.
\qquad

$\frac{\text { Specisi }}{1 R 10 \cdot:}$

OPEN STEEL FLOORING • SAFETY STEPS CONGRETE ARMORING

Foll descriptive cotolog of Trilok Grating, Solety Treads cad other produtis on request.

DRAVO CORPORATION goo penn avenue, pittsburgh, pa. representatives in principal cibies

THE HANNA FURNACE CORPORATION

merchant pig iron division of national steel corporation Buffalo

Detroit
New York
Philadelphia
Boston
construct boiler house building, 150×100 feet, at 4510 East Seventy-first street. Gill more-Carmichacl-Olsen Co., contractor.
CLEVELAND-Lece Neville Co., B. M Lecee, president, 5363 Hamilton avenue will expand production facilities with a one story factory addition to cost $\$ 10,000$.
CLEVELAND-Cleveland Steel \& Pipe Co. has been newly incorporated by Ezra Shapiro, Samuel K. Walzer and Leo M Ascherman, N. B. C. building, who is also statutory agent.
CLeveland - Marquette Metal Products, Herbert Glaitz, president, will erect stomge building at 1145 Galewood drive, to cost \$8,000.

CLEVELAND-Ace Gauges Inc., Clarence Suyder, agent, 801 N.B.C. building, is being incorporated by David Shapiro and Evelyn L. Zettelmeyer, to manufacture gages and precision instruments of all kinds.
CLEVELAND-Enamel Products Co., George C. Johnson, president, 341 Eddy road, is erecting a one-story storage building.

CONNECTICUT

ANSONLA, CONN.-Hershey Metal Products Co., Hawkins street, Derby, will build twostory, 40×100-foot brick, steel and concrete factory addition, Division strect, to cost $\$ 45,000$. L. P. Caproni, 1221 Chape! street, New Haven, Conn., engineer.
NEW HAVEN, CONN.-New Haven Malleable Iron Co., C. M. Brennan, president, 385 Clinton avenue, will rebuild 70×250-foot foundry addition and 40×70-foot annealing plant, brick, steel, Clinton avenue, to cost over $\$ 40,000$. Leo F. Caproni, 12.21 Chapel strect, engineer.
DANIELSON, CONN.-V. La Rosa \& Sons Inc., Dyer street, will build boiler plant. Leo F. Caproni, 1221 Chapel street, Xew Haven, Conn., engineer.

NEW YORK

FALCONER, N. Y.-Jamestown Sterling Co. Inc. has awarded contract to Scalisi Bros.. 66 Merlin avenue for construction of opestory, brick and concrete plant addition, Allen street Estimated cost is over $\$ 40,000$. (Noted Feb. 15.)

NEW JERSEY

UNION. N. J.-Elastic Stop Niut Corp. has leased the former plant of the Suburban Jit Work Supply Co., Spring and Essex street. Milhurn, N. J., for assembly operations and storage. Building will supply 16,000 square feet of additional space

MICHIGAN

DEARBORN, MICII. - Bennett \& Striagh architects, Schatefer building, are preparing plans for construction of tool and die sbop and addition to office building to be located in Dearbom. Owner and location tenporarily withheld.
DETROIT-Sterling Dockson Co., 3839 Wibash avenue, has been incorporated with $\$ 25,000$ to deat in welding and safety equipment. Correspondent, Chas. H. Didson, 1525 Balmoral.
DETROIT-American Automatic Heating Con 703 Griswold building, has been incorporat d with $\$ 10,000$ to deal in stokers, etc. ed with $\$ 10,000$ to deal in stos Criswold Correspondent, Tillie Posen, io3 Crisw building.
DETROIT-Bromley Research \& Development Corp., Frank T. Bromley, 4612 Woodward venue, has been incorporated to deal in machinery; 1000 shares, no par value.
JACKSON, MICH.-G \& S Iron \& Metal COM 317 Water street, has been incorporated with $\$ 25,000$ to deal in scrap iron. metas, etc. Correspondent, Louis Glick. 612 South Bowen street.
MT. CLEMENS. MICII-Michigan Standand

MAMGAMESE ORES

For Blast Furnace and Open Hearth Use

CUBAN-AMERICAN MANGANESE CORP.

122 EAST 42nd STREET NEW YORK

The Jackson Iron \& Steel Co. "JMSGO" PIG IRON SPECIALTIES Jackson: Ohio

QUALITY STEEMS

TOOL STEELS-TOOL STEEL TUBING-DRILL ROD fine spring steels-band saw steels STEEL SPECIALTIES
SANDVIK STEEL, INC
New york - CLEVELAND -CHICAGO-LOS ANGELES

INDUSTRIAL FURNACES

OVENS and DRYERS BURNER EQUIPMENT Pennsylvania Industrial Engineers 213 W. Mnknolian Sit.. A. S.. Pituburkh. Pa

FLEXIBLE COUPLINGS Every Purpose
JOHN WALDRON CORP., New Brunswick, N. J. SALES REPRESENTATIVES IN PRINCIPAL CITIES

Immediate Shipments of $B A D S=D L A B E S$
$S H A D E S-S H E E S$ From Stock We Also OJfer
QUICK SHIPMENTS OF FLAME CUT PLATES IN IRREGULAR SHAPES, CIRCLES, DISCS, ETC.

CALCOS STEEL \& IROH COMPANY

1332 North 30th Street - Philadelphia, Pa.
From Stock
BARS - STRIP - SHEETS - PLATES

TOOL STEELS - STATHLESS STEELS - SNTITRED GARBIDES FOR COWPLEEE SHOP TOOLLING - MCKKesport, Pa.

SPRING COTTERS RIVETED KEYS SCREW EYES, HOOKS and WIRE SHAPES HINDLEY MFG. CO.

Valley Falls, R. I.

Production Co., James Elder, 4205 North Gratiot avenue, has been incorporated with $\$ 25,000$ to deal in machine parts, tools, etc MUSKEGON, MCH.-Barton Iron Recovery Inc., Harry B. Berman, 1604 Jefferson street, has been incorporated with $\$ 12,500$ to deal in serap iron.

ILLINOIS

GALESBURG, ILL.-Water Works Department, D. Lindberg, mayor, City Hall, plan extensions including well, punp, elevated tank and distribution mains, to cost $\$ 150,000$. Stanley Engineering Co., Musentine, Iowa, engineer

EAST MOLINE, ILL.-City of East Moline has awarded contract for water works pumping station and pipe lines to J. D. Hunzinger Construction Co., Security building, Davenport, Iowa, at $\$ 18,886$.
ROCK ISLAND, ILL.-J. I. Case Co., 700 State street, Racine, Wis., has awarded clectrical contract in connection with alterations $t 0$ its factory to Leithner \& Weishar, 418 Sixteenth street. Addition will cost $\$ 200,000$.

INDIANA

KOKOMO, IND.-Kokomo Sanitary Pottery Co., F. A. Walsh, manager, North Main street, has plans completed by B. A. Conn, 20 West Jackson houlevard, Chicago, to rebuild 90 $\times 300$-foot, 50×651-foot and 30×30-foot brick, concrete and steel factory buildings, :all one story, to cost $\$ 100,000$. J. R. Marsh, 1710 South Macedonia avenue, Muncie, Indiana, engineer.

MARYLAND

BALTIMORE-Maryland Bolt \& Nut Co., Mt. Washington, Ga., plan alteration and plant addition to cost $\$ 14,800$. W. E. Bickerton Construction Co., 101 West Twenty-second strect. Baltimore, contractor.

GEORGIA

ATLANTA, GA-Southern Railway, care of chief engineer, Washington, let contrat to Brice Building Co., 215 South Eighteenth street, Birmingham, Ala., for construction of diesel engine building, to cost $\$ 05,000$.
COBB COUNTY, GA.-U. S. Engineers* of fice, 512 Spring street, N. W., Atlanta, let
contract to Flagler Co., 305 Techwood drive, N. W., Atlanta, for construction of gunnery building for Marietta Aircraft Assembly Plant.

TENNESSEE

MEMPHIS, TENN.-Ford Motor Co. will manufacture lratt \& Whimey airplane engine parts in its Memphis plant; will install new machinery. P. A. Boykin in charge of local plant.

NORTH CAROLINA

HAZELWOOD-Dayton Rubber Co. plans factory addition, stecl, concrete foundation, to cost $\$ 175,000$. Geyer \& Neuffer, 437 Ludlow Arcade, Dayton, O., engineers and architects.

MISSOURI

ST. LOUIS-St. Louis Car Co., 8000 North Broadway, will erect warehouse to cost about $\$ 40,000$. C. W. Clawson Co., architect. Owner builds.

OKLAHOMA

OKLAHOMA CITY, OKLA.—Midwest Steel Co., Norman Bird, president, 12 North Indiana, plan to rebuild warehouse, shop and office.

WISCONSIN

FOND DU LAC, WIS.-Wells Mfg. Curp., 194 West Division street, has awarded contract for construction of three-story, 28×100 foot factory addition to Immel-Malicie Co., 101 South Main strect. F. J. Stepnoski \& Son, 194 South Main street, architects. (Noted March 15.)

TEXAS

EDINBURG, TEX.-McBride Refining Co. will construct gasoline refinery to cost $\$ 125,000$.

IOWA

CEDAR RAPIDS, IOWA-Wilson \& Co. have awarded contract for construction of fivestory, 95×150-foot cooler building to Sumner S. Sollitt Co., 307 North Michigan avenue, Chicago.

The Hallden Synchronized Rotary Shear operates efficiently on tin plate at high speeds.

SHEAR SPECIALISTS

The Hallden Machine Company manufactures shears exclusively for any application in steel and nonferrous metals.

THE HALLDEN MACHINE CO, THomASTon
 Asosacicted Companics: The Wean Engineering Compasy, nac:-Warren. Ohio.

CALIFORNIA

beverly hills, CALIF.-Aircraft Enginect ing Inc. will crect factory addition at 335 North Foothill boulevard, $117 \times 74 \mathrm{feet}$, to cost $\$ 16,000$.
bURBANK, CALIF.-Lockheed Aircraft Corp, will construct modification plant No. 5 at 4201 Empire avenue, 160×320 feet, to cost $\$ 150,000$.
LOS ANGELES, CALIF.-Production Tool Products Co. is firm name under which Poul V. Hildebrand and R. J. Heller have published intention to conduct business at 815 North Cahuenga boulevard.
LOS ANGELES, CALIF-Kaiser-Hughes Co. will construct new factory buildings at 11900 Florence avenue, Baldwin Hills, Los Angeles, Calif., to cost $\$ 1,345,000$.
LOS ANGELES, CALIF.-Timm Aircraft Co. will construct assembly building it 8055 Wondley avenue, 86×40 feet, to cost $\$ 2500$.
LOS ANGELES, CALIF.-Aircraft Tools Inc., 530 Gage avenue, will build machine shop at 6435 McKinley avenue, 53×105 feet, to cost $\$ 7,000$.
SAN FRANCISCO-Navy Department of Yards \& Docks, Eighteenth street and Constitution avenue, N. W., Washington, has awarded contract to Pennsylvania Iron \& Steel Co., 2451 East Twenty-third street, Los Angeles, for 120 -ton floating stiffleg, derrick, NOY. 5949 , to cost $\$ 192,960$.
SANTA MARIA, CALIF,-Union Oil Con, Union Oil building, Los Angeles, has awaded contract to Fluor Corp., P. O. Box 7030 . East Los Angeles, for gasoline absorplion plant, to cost approximately $\$ 500,000$.

CANADA

ESSEX, ONT.-Wasco Valve Seat Co., Gordon street, has had plans prepared and will build plant addition under supersision of own staff, estimated to cost, with equipment, about $\$ 20,000$.
HAMILTON, ONT.-Irvington Varnish \& Insulator Co. of Canada Ltd., Burlington street east, has given general contract to W. H. Cooper Construction Co. Ltd., 306 Medical Arts building, for construction of plant addition to cost about $\$ 20,000$. Prack \& Prak, Pigott building, are architects.
KITCHENER, ONT.-Four Wheel Drive Auto Co. Ltd., 103 York street, has had plans prepared and will let contract soon for construction of plant addition estinated cost, with equipment, about $\$ 15,000$.
OSILAWA, ONT.-General Motors of Cansds Ltd., Division street, W. R. Roberts, general manager, has had plans prepared for addition and repairs to plant to cost about $\$ 12,000$.
TORONTO, ONT.-Jom Inglis Co. Ltd, It Strachan avente, has given general contract to A. W. Robertson Lid., 57 Bloor street west, for further addition to Colt gun plant to cost, with equipment, abour
Allward \& Gouinlock Ltd., 57 Bloor street Allward \& Gouinlock Lid., 57 Bloor stet west, are architects.
TORONTO, ONT.-Dominion Bridge Co. Ltd.. 1139 Shaw street, has given general entract to Anglin-Norcross, Ontario, Ltd., 51 shū" strect west, for addition to electrical shov, etc., to cost, with equipment, about $\$ 20,000$.
WELLAND, ONT.-Page Hersey Tubes Lid., 100 Church street, Toronto, has given general contract to Dickie Construction Ca. Ltd., 17 Yorkville avenue, Toronto, for hour ther addition to its plant here to cost ahour $\$ 17,000$. Margison \& Babcack, 210 Drimite. streer west, Toronto, consulting engineers.
ARVIDA, QUE.-Aluminum Co. of Cannds Ltd., Sun Life building, Montreal, has givan general contract to Foundation Ca . of Cavo . ada Ltd., 1538 Sherbrooke street west, Montreal, for construction of addition to plant here to cost with equipment, about $\$ 55,000$. MONTREAL, QUE.-Canadian Liquid Air Co. Ltd., 1111 Beaver IIall Hill, has wompleted plans and will proceed with construction of plans add witions at Viau and Rouen streets to cost about $\$ 17,000$.

ONE OF THE COUNTRY'S LARGEST. BEST KNOWN GALVANIZING PLANTS-PLANNED AND MANNED to turn out your work within 24 hours!
'To Economize Galvanize of Enterprise!'

ENTERPRISE GALVANIZING COMPANY

2525 E CUMBERLAND STREET
PHILADELPHIA, PA.

WHEN YOII NEED STAMPINGS

Literatura on Request

WHITEHEAD STAMPINGCO.

1667 W. Lafayette Blvd., Detroit, Mich.

SMALL ELECTRIC STEEL CASTINGS

(Capacity 500 Tons Per Month)

WEST STEEL

 cleveland"He Profita Most
Who Serves Beat"

- PICKLING TANES MHy	
LATING	TANKS
- ANODIZE	TANKS
heating units	FOR ACID
HEIL ENGINEE	

HOT-DIP GALVANIZING PRACTICE

45 Illustrations

4 Tables

7 Charts

Especially noteworthy is the 61 -page Bibli. ography of articles on the subject of galvan-
izing. izing.

By W. H. Spowers Jr.

This 200-page book, just published, gives full and carefully reasoned explanations of the why and wherefore of galvanizing. All the latest methods and processes are described and very copiously illustrated by a large number of diagrams and photographs.

The author, W. H. Spowers Jr., a mechanical and metallurgical engineer, long identified with the galvanizing industry as an operator and consultant has sought to gather and make known an array of facts on zinc coatings of steel that will appeal to tnose who daily are engaged in surfacing metals with zinc.

The demand for a work which would give reliable information on modern hot-dip processes for protecting iron and steel from corrosion has finally been met by the publication of HOT-DIP GALVANIZING PRACTICE.

Highly recommended to the man on the kettle, the designer of galvanizing plants, the metallurgists, as well as to those who zinc coat steel commodities and containers, etc.

ORDER YOUR COPY TODAY !...PRICE S4.00. POSTPAID

The penton publishing company

Lonk Department
 1915 W . Third St., Cleveland, Ohio

Enclosed is $\$ 4.00$ for which please send postpald, one copy
of hOT-DIP GALVANIZING PRACTICE. by W. H. Spowers
Jr., just published.

Date
Name
ADRRESS
CITY

USED and REBUILT EQUIPMENT

BOILER TUBE SHORTS

We have available for immediate shipment the following new material:

SEAMLESS STEEL BOILER TUBES

Pieces

$500-1^{\prime \prime}$ O.D. $\times 13$ BWG. $\times 2^{\prime}$ to 3^{\prime} long
1500-1"O.D. x 13 BWG. x 2^{2} to $3^{\prime \prime}$ long 8500-11/"" O.D. $\times 13$ BWG. $\times 19 \%$ long
$11000-1 \frac{1}{2}$ O.D. $\times 13$ BWG. $\times 25 \%$ long

LAPWELDED STEEL BOILER TUBES

$5500-2^{\prime \prime}$ O.D. x 13 BWG. x $213^{3 / \prime \prime}$ long $2500-2^{\prime \prime}$ O.D. $x 13$ BWG. x $233^{\prime \prime}$ long 3500-2" O.D. x 13 BWG. x 311 "" long $1000-2^{\prime \prime}$ O.D. $\times 13$ BWG. x $327 / 8^{\prime \prime}$ long $800-2^{\prime \prime}$ O.D. $x 13$ BWG. $x 42 \% / 8$ long 7500 ft . $3^{\prime \prime}$ O.D. x 12 BWC . x In various lengths, $32^{\prime \prime}$ to $47 \frac{1}{1 \prime \prime}$ long.
We have n large stock of SEAMLESS STEEL TUBING \& PIPE in SHORT lengths from $\%^{\prime \prime}$ O.D. to $14^{\prime \prime}$ O.D.

If interested, 'phone, wire or write
E. D. GIBERSON \& CO., INC.

90 West Street
New York City

RAILS

AND ACCESSORIES

RELAYING RAILS - Super-quality machine-reconditioned-not ordinary Relayers.
NEW RAILS, Angle and Splice Bars, Bolis, Nuts, Frogs, Switches, Tie Plates, and all other Frogs, Switches,
Although our tonnages are not as large ns hereAlthough our tonnages are not as large ns here-
tofore, most sizes are usually avallable from waretofore, most sizes are usually avallable from ware-
house stocka.
Evory effort made to take care of emergency
rvory effort made to take care of
requirements. Phone. Wrue or Wire.
L. B. FOSTEB COMPANY, Inc.

PITTSBURGH NEW YORK CIFICAGO

RELAYING RAIL

Practically all weights-Any quantity. Immediate shipment, strictly frst quality reconditioned Relaying Rail and Accessories. Write, Wire, or Phone
miowest stele corporation Charleston, W. Va.

FOR SALE

GRAY PLANER

One (1) $30^{\prime \prime} \times 30^{\prime \prime} \times 10^{\prime}$ gray planer. Table $25^{\prime \prime}$ wide 10° between oil pockets 4 $42^{\prime \prime}$ thick. Self-contained direct connected motor drive with motor base mounted at top of housing. 7% H.P. motor required. Speed of pulley 350 RPM. Wt. 13000 lbs . Good condition.

NORMALIZING FURNACE

One (1) continuous normalizing furnace 90° long, 5^{\prime} wide, $20^{\prime \prime}$ clearance above rolls. Alloy rolls $3^{\prime \prime}$ diameter on $5^{\prime \prime}$ centers suitable for normalizing castings, sheet or strip steel. Furnace divided into 3 units: One 35^{\prime} heating zone; one 10^{\prime} quench zone and one 45^{\prime} cooling zone. Furnace is oil underfired and the equipment includes burners, pump. oil heating blower, and valves but no furnace control instruments.

McLOUTH STEEL CORPORATION
Detroit, Michigan

FOR SALE NEW "ן" BEAMS:

3 pieces- $36^{\prime \prime}$ high, 15 ft . long, $9 / 16^{\prime \prime}$ web, $12^{\prime \prime}$ flange, 11/16" thick.
14 pieces- $36^{\prime \prime}$ high, 15 ft . long, $11 / 16^{\prime \prime}$ web, $16^{1 / 2} 2^{\prime \prime}$ flange, $1-1 / 16^{\prime \prime}$ thick.
30 pieces- $20^{\prime \prime}$ high, 7 ft . long, $13 / 16^{\prime \prime}$ web, $7^{1 / 4^{\prime \prime}}$ flange, $3 / 4$ to $1 \frac{1}{4^{\prime \prime}}$ thick.
New $31 / 4^{\prime \prime}$ tubes for Babcock \& Wilcox, Sterling, 492 HP water tube boiler. IRONTON PRODUCTS CO. IRONTON, OHIO

FOR SALE

ONE, TWO
OR TIUREE $25-$ TON STEEL MILL LADLES
Address Box 916
STEEL, Penton Bldg., Cleveland

OFFER APPROXIMATELY A CARLOAD OF SHERADIZED SEAMLESS TUBING RANGING IN SIZES FROM $11 / 4$ INCHES TO $31 / 2$ INCHES. WRITE FOR PRICES AND QUANTITY DESIRED.

Address Box 831
STEEL, Penton Bldg., Cleveland

-REBUILT-
 gLowers - fans - EXhausters

Condersville-Roota positive blowers. Censrifugals for gas and oH burnlog. Cend bast, grinder and dust exhausters.
Band
Fentiating fans and roof ventlators.
GENERAL BLOWER CO.
404 North Peoria St.
Chleago, III.

SPECIAL ATTENTIOH!

STEEL MILLS,
blast furnaces and foundries For Sale:
ALLOY ("CRITICAL") SCRAP
TURNINGS: $\$ 9.00$ G.T. Houston plus payable OPA Nickel or Moly. Premiums

15 C/L SAE 3100; WPB No. 6
$5 \mathrm{C} / \mathrm{L}$ SAE 4800; WPB No. 6
20 C/L Moly.-Cr.; WPB No. 7
$15 \mathrm{C} / \mathrm{L}$ Ni.-Mo.-Cr: WPB No. 6
TURNINGS: $\$ 12.91$ G.T. Tracks, Chicaso. plus payable OPA Nickel Premium
$9 \mathrm{C} / \mathrm{L}$ 1.00-3.75\% Nickel: WPB No. 6
FLASHINGS \& CROPS: $\$ 16.50$ G.T. Houston plus payable ORA Nickel or Moly. Premiums.

8 C/L SAE 3100; WPB No. 6
3 C/L SAE 4800; WPB No. 6
9 C/L Mo.-Cr. ...WPB No. 7
$5 \mathrm{C} / \mathrm{L}$ Ni.-Mo.-Cr.; WPB No. 6
NOTE: Relative quantities of Tumings must be purchased with Flashings and Crons.

IRON \& STEEL PRODUCTS, INC.
13462 S. Bralnard Ave., Chicago, Illinois
"ANYIMING contatning JMON or STESL"

FOR SALE

We offer at 75% cost approximately 550 GRAPHITE STOPPER HEADS 4-7/16" diameter. Good condition; obsolete size in our plant. Address Box 914,
STEEL, Penton Bldg., Cleveland.

LOCOMOTIVES FOR SALE

6 American Type $0-6-0,6$ wheel switchers. Weight 80 tons. Cylinder size 21×28. Tractive power 33,140 liss. Superheated, with Walscheart valve gear. Very good condition. Ready to go under ICC. Immediate delivery.
MISSISSIPPI VALLEY EQUIPMENT CO.
503 Locust St.
St. Louls, Mo.

FOR SALE

STEEL BUILDINGS
AND TANKS
PIPE AND BOILER TUBES
JOS. GREENSPON'S SON PIPE CORP. National Stock Yds, Illinois

WHEN THERE IS SOMETHING
 you want to buy or sell, use the classified pages to tell other readers. Rates are moderate. Write STEEL, Penton Bldg., Cleveland.

Help Wanted

HEAT TREATIMG FURNACE DESIGNER

Permanent position for experienced engineer with long-established and progressive Eastern manufacturer of heat treating furnaces. Applicant must have had at least ten years of designing experience on heat treating fumaces, be thoroughly familiar with standard furnace construction and capable of advanced designing for future operations.
Very substantial salary with -unlimited peace-time possibilities.

For an interview at our expense, kindly furnish detailed experience and qualifications in writing.
Address Box 897, STEEL, Penton Bldg., Cleveland.

WANTED

Plant Superintendent
Nationally known Chicago Manufacturer of Sheet Metal Products wants services of highly caprable and qualified Plant Superintendent to take full charge of production. Now enge full charge of producbut pemmanent position wor on War Work ing salary and position with liberal startfuture advancement for possibilities for qualify. Give full for man who can experience, references and salary desired If you are now rences and salary desired. fense plant, now working full time in Detion knows do not apply. Our organizaapplications will be advertisement and all applications will be held confidential.

Apply Box 913, STEEL,
Penton 13ldg., Cleveland, \mathbf{O}.
WANTED: MAN WITHI GENERAL OFFICE or field sales experience by large reputable manufacturer of seamless and electric welded tubing, alloy and carbon steels. Please apply giving full information, experience, ctc., to Box 894, STEEL. Penton Bldg., Cleveland.

IN NEED OF QUALIFIED NIGIIT SUPERIN tendent in welded sheet and steel plate fabricating shop. Good salary and future for right person. Reply Box 886, STEEL, Penton Bldg.,

Opportunities

WANTED-TO-BUY

A going business requiring nation-wide distribution. Will pay up to

$\$ 500,000.00$ CASH

for entire plant and equipment.
We have been established many years as manufacturer and distributor of automotive parts. Write Box 909, c/o STEEL, Penton Bldg., Cleveland, Ohio, giving complete details.

Help Wanted

GENERAL MACHINE SHOP SUPERINTENDENT

Experienced in both large and small machine work, production and jobbing. Permanent position, not affected by war conditions. Plant now 100% on defense work.

Write Box 905,
STEEL, Penton BIdg., Cleveland.

WANTED: ENPERIENCED AND COMPETENT Engineer, Estimator and Snlesman for both welded and riveted plate and structural fahrication. Apply in writing, giving experience and full particulars. Address Box 911, STEEL, Penton Bldg., Cleveland.
SALESMAN-FAMILIAR WITH ALLOY AND stainless mill products. Replics confidential. Address Box 912, STEEL, Penton Bldg., Cleveland.

Employment Service

SALAHIED POSITIONS-This advertising service of 83 years' recognized standing negotiates for high salaried supervisory, technical and ex ecutive positions. Procedure will be individualized to your personal requirements and will not conflict with Manpower Commission. Retaining fee protected by refund provision. Send for details. N. W. BIXBY. Inc., 110 Delward Bldg., Buffalo.

Positions Wanted

CHEF ENGINEER, CIIEF ESTIMATOR OR Plant lingineer with broad diversified experience in structural sted, plate work, plant layout and desirn, refinery ecpuibment, maintenance, cost, purchasing und expediting. Fmployed at present, desire to make change. 17 years actual experience. Are 36 years. good colucation, married, A-1 references. Draft classification 3A. Prefer south location. Reply Box 910, STEEL, Penton Bldsi. Cleveland.

DESIGNING ENGINEER, FAMILIAR WITH all phases of Steel Mill Desiun, both Electrical and Mechanical, desires position in Steel Mill and Mechanical, desires position in Steel Mill
on Improvement and Development Work. Can on Improvement and Development Work, Can
furnish good record of nchievement. Address furnish good record of achievement. Add
Box 915 , STEEL, Penton Bldg., Cleveland.
CHIEF ENGINEER, GRADUATE, LICENSED, 14 years experience with steel fabricating and construction companies: desires position in charge of design work on plate and structural steel work. leply Box 907, STEEL, Penton Bldg.. Cleveland.

Accounts Wanted

MANUFACTURERS IREPRESENTATIVE WELL ACOUAINTED IN PITTSHURGH TERHITORY WOULD TAKE AN ADDITIONAL ACCOUNT ON COMMISSION BASIS IF PRODUCT NOT GHEATLY HESTHICTEIS BY GOVERNMENT PRICIRITIES. ADDHESS BOX 917, STEEL, PENTON BLDG.. CLEVELAND.

IF YOU IIAVE AN OPPOIRTUNLTY
 TO OFFELT

Use the "Help Wanted" columns of STEEL. Your advertisement in STEEL will put you in touch with quallned. high-callbre men who have had wlde high-calibre men who have had wide the Metal Producing and Metalworking Industries.

CONTRACT WORK

KIRK \& BLUM
WELDED MACHINE BASES. PEDESTALS and FRAMES lathe pans
GEAR and BELT GUARDS
Pressed Steel Louver Panels ond Cover Plates
THE KIRK \& BLUM MFG. CO.
2022 Spring Grove Ave, Cincinnati, Ohio

WANTED

TOOL AND DIE JIG AND FIXTURE WORK
STAMPINGS UP TO 125 TON PRESS CAPACITY Plant located in Northeastern Ohio is fully equipped to turn out finished product.

Reply Box 902
STEEL, Penton Bldg., Cleveland.

Castings

KING FOUNDRIES, LKC. NORTH WALES. Pa. Grey Iron and Semi Steel Castings. also alloyed with Nickel. Chrome. and Molybdenum. Wood. Iron. Brass. and Alıminum Pattern work.

SHEET STEEL FABRICATORS

Welded or Riveted Construction. Can handle No. 10 gange and lighter. Send us your inquiries for estimates. THE HAINES COMPANY
1931 W. Lake St.
Chicago, III.

[^10]
LAST YEAR'S BONDS GOT US STARTED

$+$Last year saw nearly 30,000 ,000 workers voluntarily buying War Bonds through some 175,000 Pay-Roll Savings Plans. And buying these War Bonds at an average rate of practically 10% of their gross pay!

This year we've got to top all these figures-and top them handsomely! For the swiftly accelerated purchase of War Bonds is one of the greatest services we can render to our country . . . and to our own sons . . . and our neighbors' sons. Through the mounting purchase of War Bonds we forge a more potent weapon of victory, and build stronger bulwarks for the preservation of the American way of life.
"But there's a Pay-Roll Savings

Plan already running in my plant."
Sure, there is-but how long is it since you've done anything about it? These plans won't run without winding, any more than your watch! Check up on it today. If it doesn't show substantially more than 10% of your plant's pay-roll going into War Bonds, it needs winding!

And you're the man to wind it! Organize a vigorous drive. In just 6 days, a large airplane manufacturer increased his plant's showing from 35% of employees and $21 / 2 \%$ of pay-roll, to 98% of employees and 12% of pay-roll. A large West Coast shipyard keeps participation jacked up to 14% of pay-roll! You can do as well, or better.
By so doing, you help your na-
tion, you help your workers, and you also help yourself. In plant after plant, the successful working out of a Pay-Roll Savings Plan bas given labor and management a common interest and a cormmon goal. Company spirit soars. Minor misunderstandings and disputes head downward, and production swings up.
War Bonds will help us win the war, and help close the inflationary gap. And they won't stop working when victory comes! On the cor-trary-they will furnish a reservoir of purchasing power to help American business re-establish itself in the markets of peace. Remember t_{1} the bond charts of today are the sales curves of tomorrow!

You've done your bit 4 Now do your best!

Bobeock \& Wilcox Co., Refractories Div.
Bobeck \& Wilcox
Bailey, Wm. Mrox Tube Co.
Boker Brothers, Inc.
Boker, J. E., Co.
Boker-Roulang Co.
Loldwin-Southwork Division, The Boldwin
Locomotive Works
Bontam Bearings Corp.
Borium Stainless Sieel Corp.
Spring Corporation Division of Associated
Barnes. W Corporation
Bosic Refractories John, Co.
Bayard, M. L., \& Co
Boy Cily Forge Co.
Beall Tool Co. Cosive Praducts Co.
Beatty Machine \& Mfg. Co
Berger Manut Works
Corp. Manufacturing Div., Republic Steel 177 Bethlehem Sieel CO_{0}.
Birdsboro Steel Foundry \& Machine Co...
Bisselt Steel Co. The
*
Bixby, R. W., Jo., The
Blowhord Máchine Co.
Blaw-Knox Co.
Biss \& Loughlin, Blaw-Knox Co.
Blodgett, G. S., Co..
Bloom Engingering Co.. Inc.
bridgepsit Brass Co.
Brisiol
drisiol Cross Corp., The
brooke, E \& E_{2}, iron Co.
Brows, Edgar E., Co
Brown
Brown \& Sharpe Mfg. Co.
sryant Chucking Co., The
Bryant Mashinery \& Engineer
Buffolo Fo., The \& Engineering Co.
Bullord Corge Co.
Cundy Tubing Co.

Codman, A. W., Mig. Co
Calcos Steel \& 1ron Co.
Carboloy Co., Inc. The
Cardox Carp.
Carey, Philip, Mfg. Co., The
Carnegie-Illinois Steel Carp.
Carpenter Steel Co., The
Cattie, Joseph P., \& Bros., Inc.
Ceilcote Co., The
Central Screw Co.
Century Electric Co. Engineering Co.
Champion Rivet Co., The
Chandler Producis Corp.
Chicago Metal Hose Corp
Chicago Perforating Co.
Chicago Rawhide Mfg. Co.
Chicago Tramrail Co.
Chicago Vitreous Enamel Product Co.
Chicago Wheel \& Mfg. Co.
Cincinnati Grinders, Inc. Co .
Cincinnati Milling Machine Co
Cincinnati Shaper Co., The
Cities Service Oil Co.
Clark Tructractor Div. of Clark Equipmeni Co.
Cleereman Machine Tool Co.
Cleveland Automatic Machine Co
Cleveland Cap Screw Co.
Cleveland-Cliffs Iron Co.
Cleveland Crane \& Engineering Co
Cleveland Hotel
Cleveland Pneumatie Tool Co., The
Cleveland Punch \& Shear Works Co
Cleveland Tool Engineering Co.
eveland Tramrail Division, Cleveland
Crane \& Engineering Co. ..
Cleveland Twist Drill Co., The
Cleveland Worm \& Gear Co., The
Climax Molybdenum Ca.
Cold Metal Products Co
Colonial Broach Co
olumbia
Calumbus Die, Tool \& Machine Co
one Auromaric Machine Co., Ine
Consolidated Machine Tool Corp.
Continental Roll \& Steel Foundry Co
Continental Roll \& Ste
Confinental Screw Co.
Cooper-Bessemer Corp.
Cooper-Bessemer Corp
Coppin Screw Corp.
Cowles Sorp
Cowles Tool Co
Crane Co.
ross Gear \& Machine Co
uban-American Manganese Corp
Cullen-Friestedt Co
Culvert Division, Republic Steel Corp.
Cur. Pneumasic Machinery Division of Curtis Manufacturing Co
Culler-Hammer, Inc.

Darwin \& Milner, Inc.
Davenport Besler Corp
Davis \& Thompson Co
Davis Brake Beam Co.
Denison Engineering Co., The
DeSanno, A. P., \& Son, In
eiroit Electric Furnace Division, Kuhlne Electric Co.
Detroit-Leland Hote
Detroit Rex Praducts Co.
Detroit Tap \& Toal Co.
DeWitr Operated Hotels
Diamond Tool Co
Diebold Safe \& Lock Co.
Dielert, Harry W., Co. . .
Disston, Henry, \& Sons, In
Dodge Manufacturing Corp.
Dow Chemical Co. The
Downs Crane \& Hoist Co
Dayle, J. E., Co., The Do Div
Dulien Steel Products, Inc.

E
Easton Car \& Construction Co
Edison, Thamas A.MInc. Co.. Th
gyptian Lacquer Mfg. Co., The
Electric Controller \& Mfg. Co.
Inside Front Cove
Electric Furnace Co., The
Electric Storage Battery Co
Electro Alloys Co., The
lectroweld Sieel Corp
Eliott Manufacturing Co.. The
Enterprise Galvanizing Co.
Erdle Perforating Co., The
Erie Bolt \& Nut Co.
Erie Foundry Co.
Etna Machine Co.
Eureka Fire Brick Works
Eutectic Welding Alloys Co.
Ex-Cell-O Corp.

Page
Fafnir Bearing Co., Tho
Fairbanks, Morse \& Co
Fairfield Mfg.
Farguhar, A.
Co.
Co.,
Farquhar, A. B.i. Co.,
Farval Corp., The
Ferracute Machine Co
idelity Machine Co.
Firth-Sterling Steel Co. 177
Fitchburg Grinding Machine Corp
Fizsimans Co. The
Foote Bros. Gear \& Machine Corp
Foote Bros. Gear
Foster, Frank B. . B., Co., Inc
Foster,
Foxbora Co., Co.,
Co
Foxbora Co., The
Frasse, Peter A., \& Co.., In
Fuller Brush Co.

Galand-Menning Mfg
Garrett, Geo. K., Ca.
Goneral Blower Co.
General Blower Co.
eneral Electric Co.34, 35, 5
General Steel Warehouse Co., Inc.
Genesee Toal Co.
Gisholt Machine Co
Globe Brick Co., The
Granite City Sieel Co
Graver Tank \& Mfg. Co., Inc
Graybar Electric Co.
Great lakes Steel Corp.
Greenfield Tap \& Die Corp
Greenlee Brothers \& Co.
Greenspon's, Jos., Son Pipe Corp
Grinnell Ca., Inc.
Gruendler Crusher \& Pulverizer Co.
Gulf Oil Corp.
Gulf Refining Co
Hagan, Gearge J., Co.
Hallden Machine Co., Th
Hanlon-Gregory Galvanizing Co
Hanna Furnace Corp
Hannifin Mfg . Co
Hansen Mfg. Co. 17
Harbison-Walker Refractories Co
Harnischfeger Corp.
Harrington \& 'King Perforating Co. 173
tassal, John, Inc.
ays Carp.̈
Heil Engineering Co
Helmer-Staley
elmer-Staley, Inc.
Co.
Hercules Co. The
Hevi-Duty Electric Co
Hill Acme Co. The
Hills-McCanna Co.
Hindley Mfg . Co.
Hobart Bros. Co.
Hamestead Valve
Vfa
Horsburgh \& Scott Co.
Haughion, E. F., \& Co
Howard Foundry Co.
Hubbard, M. D., Spring Ca.
Hughes-Keenon Co.. The Corporation
Hyde Park Foundry \& Machine Co.
Hydraulic Machinery. Inc.
Hydraulic Press Mrg. Co., The
Hydro-Are Furnace Corp.
Hydropress, Inc.
Illinois Clay Products Co.
Ilinois Tool Works
Independent Engineering Co
Industrial Brow Engineering
Industrial Oven Engineering Co.: The 6 Warner corp.
Nickel Co., Inc........
nternational Nickel Co.r Inc.
Iran \& Sieel Products, Inc.
」
Jackson Jron \& Steel Co., The
James, D. O., Mfg. Co.
-B Engineering Sales Co., The
Jeffrey Manufaciuring Co., The
essop Steel Co.
essop, Wm., \& Sons. Ine.
ohns-Manville Carp.
Johnson Bronze Co.
Johnson Gas Appliance Co.
Jahnson Steel \& Wire Ca., Ine
ones \& Lamsan Machine Co.
Jones \& Laughlin Steel Corp.
Jones, W. A., Foundry \& Machine Co K
Kardong Brothers, Inc.
Kaydon Engineering Corp., The
Kemp, C. M. Mfg. Co.
Kester Solder Co
Keystone Steel \& Wire Co.
(Continued from preceding page)
Kidde, Walter, \& Co., Inc.
King fin wies
King Foundries, Inc.
Kinnear Mfg. Co.
Kirk \& Blum Mfg. Co.
Kold-Hold Monufacturing Co
Kold-Hold Mo
Koppers
Kop
Corge Co.
Laclede.Christy Clay Products Co
adis City Malloable Co
lakeside Steel Improvement Co., The
Laminated Shim Co.
Lamsan \& Sessions Co., The
Lamson Corp.
andis Machin.
ang Machinery
lang Machinery Co.
layne \& Bowlep, Inc.
LeBlond, R. K., Machine Tool Co. The
Leeds \& Northrup Co.
Lee Spring Co., Inc.
lepel High Frequency Laboralories, Inc
Leschen, A., \& Sons Rope Co
Levinson Steel Co., The
Levinson Steel Sales Co.
Lewin-Mathes Co.
ewis Foundry \& Machine Division of
Blaw-Knox Co. The
incoln Electric Co., The
Linde Air Products Co., The
Link-Belt Co.
Logemann Bros. Co
Lovejoy Flexible Coupling Co
vers, J. Millon
Lyon-Raymond Corp.
McKay Co., The Mc
McKay Machine Co.
Back Cover
Mckee, Arthur G., Co
MeKinney Manufacturing C
MacDermid, Inc.
Mackintosh-Hemphili Co.
Macklin Co.
Macwhyte Co. Co., The
Magnafux Córp.
Magnus Chemical Co.
Manon, R. C., Co., The
Monon, R. C.. Co., The
Mahr Manufacturing Co.
Manheím Manufacturing \& Betting Co.
Manning, Maxwell \& Maore, Inc.
Markal Co.
Master Electric Co., The
Mathews Conveyer Co.
Mathews, Jas. H., \& Co
Mattison Machine Works
Medart Co., The
Mechanite Research Institute
Mercury Mfg . Co.
Mesta Machine
Mestal \& Thermit Corporation
Michiana Products Corp.
Michigan Seamless Tube Co
Michigan Tool Co
Micromatic Hone Corp.
Midwale Co. The Ster.
Milwaukee Metal Spinning Co
Minnesota Mining \& Mfg. Co.
Mississippi Valley Equipment Co
Moltrup Steel Products Co.
Malybdenum Corporation of Americo
Monarch Steel Co.
Monarch Steel Co.
Morgan Construction
C
Morgan Construction $\mathrm{Co}^{\text {Morgan }}$
Marrisan Engineering Corp.
Morton Salt Co
Motch \& Merryweather Machinery Co
Motor Products Corp
N
National Acme Co.
National Bearing Metals Corp
National Branze \& Aluminum Foundry Co. 89
National Carbon Co., Inc. Carbon Sales Division
National Fireproofing Corp.
National Leed Co.
National Lack Washer Co.
National Machinery Co., The
National Roll \& Foundry Co
National Screw \& Mfg. Co.
National Steel Corp.
National Tube Co
New Departure Division General Motors Corp.
New England Screw Co
New Jersey Zinc Co
Nawport Rolling Mill Co., The
New York \& New Jersey Lubricant Co
Niagara Machine \& Tool Works.
Niles Steel Products Diy., Republic steel Corp.

Sauthington Hardware Mfg. Co.
Spandar Tool a Manuf
Standard Tube Co Th
Stanley Works, The
Steel \& Tubes Division, Republic Sieel Corp.
Steel Founders' Saciety of Ameriso.....
Steelweld Machinery Division, Cleveland
Crane \& Engineering Co.
Sterling Grinding Wheel Diy, of the Cleve
Stand Quarries Co.
Strom Sieel Ball Co.
Strong Steel Foundry Co
Struthers Wells Corp
Sturtevant, B. F., Co.
Sturtevant, P. A., Co
Sun Oil Co.
Superior Steel Corp.
Surface Combustion Corp.
Swindell-Dressler Corp.
Syitron Co.
Iaylar.Wilson Mfg. Co.
Tennessee Coal, Iron \& Railroad Co.
Texas Co., The
Thamas Flexible Coupling Co.
Thomas Machine Mfg. Co.
Thomas Steel Co., The
Tide Wafer Associated Oil Co.
Timken Roller Bearing Co. The Timken
Roller Bearing Co.
Tinnerman Products, Inc.
Titanium Alloy Manufacturing Co
Toledo Scale Co
Toledo Stamping \& Mfg. Co.
Tomkins Johnson Co.
Torrington Co., The
Torrington Co.
Towmator
Co.
Towmator Engineering Corp
Trico Products Corp.
Triplex Screw Co
Tubular Allay Steel Corp.
Tubular Alloy Steel Corp. C Co.
Turchan Follawer Machine
Turchan Products Ine.
Turner Gauge Grinding Co.

Udylite Corp., The
Union Carbide \& Carban Corp. Riv., Republic steel
Corp
United Chromium, Inc
United Engineering \& Foundry Co
United States Graphite Co.
United States Rubber Co.
United States Steel Corp., Subsidiories

United States Steel Supply Co.
Vanadium Alloys Steel Co. Americo
Vanadium Corporation of A
Vaughn Machinery Co., The
Veeder-Root, Inc
Vickers, Inc.
Waldron, John, Corp
Walker-Turner Co., Inc.
Ward Leonard Electric Co
Warner \& Swasey Co
Washburn Wire Co., the Cove
Watson-Stillman Ca.: ${ }^{\text {We, }}$ Ih
Weatherhead Co., The
Webb Corporation, The \&
Weirton Steel Corp.
Welding Equipment \& Supply Co
Wellman Branze \& Aluminum Co
Wellman Engineering Co.
Wells Manufacturing Co.
Wesson Co.
Westinghouse Eleciric \& Mfg. Co.
West Penn Machinery Co.
West Steel Casting Co.
Wheeling Steel Corporation
Whiteomb locomotive Co., The
Whitehead Stamping Co.
Whitney Screw Corp.
Wickes Brothers
Wickwire Brothers, Inc.
Wickwire Spencer Steel Co.
Williams, J. H., \& Co. C
Wilson, Lee, Engineering Co. Inc
Wilson Welder and Me
Wisconsin Moror Div.
Consolidated Copper Co.
Wood, R. D.A Co. \& Machinery Corp.
Worthington Pump
Worth Steel Co. Div. American Chain
Wright Manufacturing
Wyckoff Drawn Steel Co

Co.

$$
\therefore
$$

Don 100 115
 for

Joe Absentee

E "Joc Absentee" has had the heat on him from almost every angle and now he gets it in poetry from $\mathrm{K} . \mathrm{N}$. Upp, Landis Tool Co., to wit:
'Twas the night before tomorrow, and "Joe Absentee" Decided it was a good time to go on a spree.
He lit out about eight, his pocket full of money And headed across town to pick up his honey.

First to a movic, then highballs at "Leon's"Nice leather furniture and soft lights of neons. But soon up and away, the trail led on Joe didn't stop going until the crack of dawn.

He returned to his home and flopped on the bed For the next eight hours he was practically dead. He dieln't show up for work that day
But he didn't care, he had plenty of pay.
Now that kind of fellow you just can't understand It doesn't seem right that he should be in our land For we're in a mighty serious war, we can't deny, And to win it our production must be extremely high.

Joe's not only a drawback, he's a menace as well Hours lost in production-men blown to Hell Just because "Joe Absentee" hasn't a brain or a care And his machine stands idle while he isn't there.

Pretty Soon-No Tony?

- Folks who have paid homage at the famous Rock at Plymouth, Mass., may recall Tony, who for years has kept a fruit and vegetable store on a side street leading to the boulder on the shore. Tony is still there, but that's about all, for he has this bulletin in the window:

No bananas, no cabbage, no potatoes, no candy, no help, no anything.

Powarps

IT The latest victims of the nicknaming vogue are none other than the postwar planners, which were so ably covered in the special report to industry by E. C. Krcutzberg now available free of charge to all subscribers in a 48 -page reprint booklet. Someone has dug down in the barrel and come up with Powarps, which doesn't seem to have quite the right ring. For some reason it reminds us of the peculiar snorts our jalopy generates these days on its weaned quota of gimmy gas.

New Name Needed?

- One of these days we're going to go into a trance and come out with some other way of saying "Postwar Planning"-one that will knock off the academic and theoretical implications that phrase seems to have. Dozens of new products are already way beyond the planning stage and new distribution and merchandising methods are taking shape. New markets are already forming, the purchasing power is backing up.

One outfit we know which caters only to industry is all set to go after the consumer market with a light. weight sewing machine, and another normally a maker of big industrial presses, has designed and already stated making equipment for compressing dehydrated foods.

So don't discount this matter of postwar planning, even though the constant repetition of the term may be getting a little boresome. The manager of an Indiana plant put it this way the other day while we were discussing it: "Of course, the thing to do now is to maintain production of war goods but some advance thinking and action now may well prevent an industrial Pearl Harbor later on."

Advice

- Recommended for your shop men is a neat little "Handbook for the Welding and Cutting Operator" which came along the other day from the Intermational Acctylene Association, 30 East 42nd St., New York. Question and answer section includes this one: "Do You use your blowpipe as a hammer once in a while?" An-swer-"Don't do it. A hammer will do the job better, easier, cheaper and safer!"

Our Friends and Relatives

- Mail that warms the cockles of the editors hearts:

Your May 10 Priorities Section meets our need perfectly. West Springfield, Mass. -Cogsuell Mfg. Co.
Our Materials Handling Department was very interested in the articles on industrial truck care in the March 1 and 8 issues of STEEL. Do you have tear sheets?
-Western Electric Co. Kearny, N. J.
We found a wealth of material in your Priorities, Allocations and Prices Section and would like anothes copy if available.

- Wehr Steel Co.

Miluaukee, Wis.
We hope you still have a supply of NE Stee Handbooks and Selectors as we would like very much to receive an additional set. - Peter A. Frasse \& Co., Inc. New York, N .1 .
So pleased were the Department Heads who reviewed the NE Steel Handbook and Selector that request was made for two additional copies.
-plomb Tool Co.
Los Angeles, Cailj.
You are absolutely correct in your editorial "Resentment Brewing" (May 10 issue). Why don't you send it to some of our senators and congressmen?
-Cleceland Concern
We are anxious to have a complete set of the series of articles on postwar automobiles.
-General Motors Corp.
New York, $\overline{\mathrm{I}} .1$.
This is the most helpful Priorities Guide that has been published : . . would appreciate eight more copies.
-War Production Board
Cincinali, Ohio
\qquad

POLLING MAINTENANCE COSTS DOWN WITH INDUSTRY'S NEW RIGHT AAND

Giving leather packings the third degree is the unusual job of this HydrOILic equipment.

The smaller unit tests assembled packings under controlled Fahrenheit temperatures of from 65 below zero to 200° above!

The larger unit makes continuous operational cycling tests at pressures up to 3000 pounds per square inch, to determine the life expectancy of packing materials. This special equipment illustrates, in just one way, how HylrOILic Enginecring is pulling maintenancecosts down in all branches
of Industry. It is not only testing materials and equipment, hut performing a multitude of production jobs as well.

Through the application of oilhydraulic control of power and motion, Denison designers have made HydrOllics the key to new industrial achievements and improved industrial operations. They will be glad to show you how Hydrollies applies to your products or problems. Write to: The Denison Engineering Co., 1163 Dublin Rd., Columbus, Ohio.

May 24, 1943

Make it in your TOOL ROOM
. . . Here's Another Job Showing How Time and Trouble can be Saved by Doing it in YOUR TOOL ROOM - on a MILWAUKEE UNIVERSAL

Only a half hour to convert an old inserted-blade face milling cutter to a modern tool - fitted with tungsten carbide tips!
The job required remilling for T-C tip slots - 7° negative rake, 7° positive angle. There were four face mills in the lot - 12 -tooth cutter bodies of hardened Meehanite - and only a half hour was needed to remill each cutter on a Model H Milwaukee Universal.
That's just another example of the flexibility and adaptability of Milwaukee Universals in the tool room - doing a greater variety of jobs - faster and without special equipment.
And it's another instance of how troubles caused by tool steel shortages

- long delayed delivery dates - can be avoided by remaking
- reshaping - reconditioning tools on a Milwaukee Universal Milling Machine.

©IBUY VICTORE WITIL
 AT LEAST 10% IN WAR TONDS ${ }^{9}$

KEARNEY \& TREGKER

Conforation

MILFAUKEE, WISCONSIN

Unusually heavy stresses must be borne by a Plate Leveler-or it isn't worth any more than its weight as scrap. Yoder has built this Heavy-Duty Plate Leveler with steel consfruction throughout, adequate lubrication, extra capacity built into its bearings, gears and adjusting screws. It's tough and strong-or it wouldn't bear the Yoder Company nameplate! . . . Write for information!

CAPACITY
$5 / 8^{\prime \prime} \times 72^{\prime \prime}$ PLATE
$12^{\prime \prime}$ DIAMETER ROLLS VARIABLE SPEED FROM 60 TO 120 F.P.M.

METAL - ORMING - PRODUCTION. MACHINERY

At night on a lonely beach

Landing boats and tank ligbters are grounding on the beach and onr army is etrabishing a beach head. This stene bas been enacted at Guadalcanal - in North Africa and at littleknown harbors in New Guinea.

Dim shadows-low on the horizon-waves foaming on a sandy beach - then pushing through the darkness, landing barges bring threat of invasion to Axis-ruled lands!

Built to battle pounding surf-made to stand the jarring impact of landing-tough is the word for these barges. And tough is the word for the giant gears that drop their anchors and raise them. In fact, so tough are the blanks for these gears that cutting them was deemed an impossibility. Foote Bros. engineers and Foote Bros. workmen changed the conception of what was possible. And today, the landing barges which are keeping Hitler's armies pinned to the coast from Narvik to Tripoli
give evidence of how well these special problems were solved.
Here at Foote Bros. new techniques and new manufacturing know-hows are responsible for gears and speed reducers of radically different design and construction-gears light in weight and of extreme precision for aircraft engines-gears of giant size and super toughness designed to stand the grueling punishment that only war can give.
But when the war is won and these same techniques can be applied to peacetime use, American manufacturers may look forward to revolutionary developments in all phases of power transmission.

FOOTE BROS. GEAR AND MACHINE CORPORATION 5225 South Western Boulevard

Chicago, Illinnis.

In the march of production for war, now one material and now another is threatened with exhaustion. Some alternative material must help to keep up the pace.
FERRO-BORON is a timely metallurgical recruit. Scarcer elements, like molybdenum, chromium, and nickel can be employed more sparingly in the manufacture of high-grade irons and steels, if Boron is judiciously added. Very small percentages improve hardenability and strength to a marked degree.
A special ferro-boron with a low melting point, which dissolves readily in cast iron or steel, and the boron recovery from which is very high, has been developed by the Molybdenum Corporation. Leading steel companies are using it with uniform success and at minimum cost for material. Standard procedures are followed.

Ferro-Boron is available for all requirements. Literd ture is offered. Inquiries concerning any use of Boron, Molybdenum, or Tungsten will be welcomed.

AMERICAN Production, American Distribution, American Control-Completely Integrated. Offices: Pittsburgh, New York, Chicago, Detroil Los Angeles, San Francisco, Seattle. Sales Representatives: Edgar L. Fink, Detroit, H. C. Donaldson \& Co., Los Angeles, San Francisco,Soatlle.

Offer many design and operating advantages that only Trabon can give you!

- Easy installation is the first advantage. A Trabon System requires a single line of piping only, minimizing installation time and cost.
Secondly, Trabon feeders are entirely enclosed. They have no moving outside parts to corrode or get bent. Trabon feeders do nor employ any springs, diaphragms, check valves or levers, and consequently are free operating under all service and temperature conditions.
Third, the system is operated entirely by the flow of lubricant through the feeders. Although ample pressure is available to lubricate the tightest bearing, the system requires only enough pressure to overcome line resistance, and the load of the individual bearing being lubricated.
Fourth, Trabon Systems assure the positive luhrication of each connected bearing. The Trabon
design requires that each feeder must discharge to its connected bearing first in order to open a port so the lubricant can flow onto the next feeder in the circuit. In a Trabon System, lubricant positively' cannot pass by any bearing without lubricating it, and go on to the next bearing.
Fifth, because of this design, a single indicator placed at the pump where it can be easily seen, gives positive assurance that the entire system is operating properly, thus permitting the feeders to be located in the most advantageous position available, even though they be bidden from view.
New fully descriptive engineering bulletins give full details. Send for copies today. Install Trabon-Proven-Best-Ir meets every industrial lubricating requirement.

TRABON

1818 East 40 th Street - Cleueland, Ohia

INDUSTRIAL LUBRICATION EXCLUSIVELY SINCE 1922

Silverlink

 ROLIER CHAINS Operate Landing Gears on Cessna "Bob-Cat" Twin-Engined Trainers!

Made in all standard pitches, $3 / 8^{\circ}$ to $21 / 2^{\prime \prime}$, in single and multiple width types, Silverlink roller chain embodies features of construction, design and finish that make it the standard by which all roller chain can be judged. In cooperation with the government's conservation program, Silverlink is now furnished in a durable "blackout" finish.

- Actual handling of multi-engined planes is a vitally important step in the training of bomber-pilots. Cessna Aircraft Co., by adapting a twin-engined commercial plane to military use as a bomber-trainer has taken the lead in the production of planes of this type. Cessna BobCats, for U. S. Army Air Service, and Cessna Cranes, sent to Royal Canadian Air Force, employ Silverlink roller chains and sprockets to operate the retractible landing gear and wing flaps.

Efficient, positive action of Silverlink roller chain contributes to the safe landing that marks the end of a successful flight. This chain is in action on many other types of mobile military equipment, as well as in countless applications on production machinery that is turning out all forms of supplies and materials of war.

LINK-BELT COMPANY

Indianapolis, Chicago, Philadelphia Atlanta, Dallas, San Francisca, Toranto, Pittsburgh, Cleveland, Detrort.

Badvantages, J-M Superex is the most widely used block insulation between $600^{\circ} \mathrm{F}$. and $1900^{\circ} \mathrm{F}$. Made of high quality, calcined diatomaceous silica, bonded with asbestos fibers, it combines the important insulating properties of both these materials. It provides high heat resistance plus exceptional insulating efficiency in service.

And today Superex is being used in soaking pits, billet and slab heating furnaces, hot blast stoves and in many other locations where insulating brick might ordinarily be used.
For your current requirements call our nearest District Office or write JohnsManville, 22 E. 40 th St., New York, N. Y.

Characteristics of J-M Superex
Low Thermal Conductivity . . . Contains billions Low Thermal Conduells-provides an effective barof tiny "dead air" cells-pr
rier to the passage of heat. Safely withstands temHigh Heat Resistanc peratures to $1900^{\circ} \mathrm{F}$. High Physical Strength . . Withstands vlbration High Physical Strength... Approximately 4 tons and other physical abuse. Are required to compress pressure per square foot and $1 / 8$ inch. Superex 18 . Convenient sizes and May Quick Application, economical installation. be cut on the job with an ordinary knife or saw.

... compared to the mechanical brute that proves the surplus tensile strength of Parker-Kulon Socket Screws

This 100,000 pound capacity Olsen Universal Tester in the P-K Laboratory checks every hateh of Parker-Kalon Coldforged Socket Screws to make sure that they meet the high Parker-Kalon standards for Tensile Strength.
The tensile test is only one of 16 check-ups that are made to assure the unfailing performance of P-K Cold-forged Socket Screws. This rigid routine of quality control eliminates the "doubtful screws" - screws that look all right, but may fail to work right. Socket Screw users need this protection today more than ever. Specify Parker-Kalon next time you order . . . it costs no more. Parker-Kalon Corp. 194-200 Varick Street, New York, N. Y.

This 16-point "Quality-Control"

 protects P-K Socket Screw Users1-Chemical Analysis. 2-Tensile Strenglh. 3-Ductility. 4-Torsional Strength. 5-Ability to take Shock Loads under Tension. 6 -Resistance to Shock Loads under Shear. 7-Hard ness. In addition, there is a rigid inspection of these essentials: 8-Ilead Diameter. 9-Head Height. 10 -Concentricity of Head to Body. 11-Socket Shape. 12-Socket Size. 13-Socket Depth. 14-Centricality of Socket. 15-Class 3 Fit Threads. 16-Clean Starting Threads.

PARKER-KALON 2nafü Cuntoled SOCKET SCREWS

MESTA

An adequate accounting system indicates exactly the present condition of your gages, shows when they were last checked, warns when new
gages should be ordered.

TEST THEMFREQUENTLY

Adequate checking and measuring equipment, with provision for needed repairs and adjustments, is indispensable to proper maintenance of your gaging system.

Photos courtesy Repulite fuiation Copp.

Just what gaging system you should have depends upon the set-up of your own plant. But the experience of many plants shows the value of due regard to the threc features illustrated on this page.

Determane the method best adapted to your plant which assures safe storage for gages while not at work. In the tool crib shown here, gages are replaced, and sealed in therr original packages, after each job.

Adequate testing of gages, safe and convenient storage, and accurate records of their use and conditionthese are the three essentials to keep in mind. Planning for these with care will pay you well in better size control of your product.

GREENFIELD TAP AND DIE CORPORATION GREENFIELD, MASSACHUSETTS
Dethoit Plant 5850 Scoond Rexileturd
是会 Waremouses in
New York. Chicano and Lan Angoti In Canade Garenfielo Tap ann Dif Cons. of Canada. I.to., Galit, Ont.

Tool Conserwation Begins in the 7ool Cril

A seven-foot fracture in this 6-ton press column threatened a serious delay in the production of 75 mm shells. Tobin Bronze repair welded, the column was ready for assembly in three days.

Bronze Repair Welding is Helping Industry to Help Itself

Today, more than ever before, every branch of industry must depend on itself to keep equipment working and machines running. High standards of protective maintenance are not always possible; often production equipment is overworked - and frequently by inexperienced hands. Hence, some failures are bound to occur. With replacements taking weeks or months, Bronze repair welding is being used on an ever-increasing scale for reclaiming broken, fractured or worn equipment used for essential production.

Bronze welding is not new. For years this method of low-temperature repair welding has been used by many shops to salvage costly machine tools, production parts and equipment, and for building up worn surfaces. Almost any part made of cast iron, steel, malleable iron or copper alloys can be Bronze welded quickly, dependably, and at a fraction of the cost of new replacement parts. The scope of this easy, economical method of repair is outlined on the following page. Keep it in mind-as future insurance against extended production delays.

This list is typical of the thousands of pieces of damaged or broken equipment returned to service by Bronze repair welding with Anaconda Welding Rods.

SHOP EQUIPMENT
Drop forge presses Press brakes
Punch presses
Stamping presses
Hydraulic presses
Pulp presses
Steam hammers
Roll housings
Plate shears
Alligator shears
Machine tool frames
RAILWAY \& MINE
Air compressors
Mine cars
Locomotive cylinders
Locomotive brasses
Engine parts
Ball mills
Pump housings
Valve bodies
Clam shell buckets
Rock crushers
AUTOMOTIVE \& MARINE
Engine blocks
Engine bases
Cylinder heads
Diesel engine castings
Water jackets
Truck parts
ELECTRICAL
Motor frames
Generators
Base plates
Turbine runners
MISCELLANEOUS
Fly wheels
Pulleys
Sheaves
Gears
Gear housings
Worm feeder screws
Condenser castings
Cast and wrought pipe

For husky gears of 24 -inch diameter and larger, the trend today is to the fabricated construction. The rim is usually made of high-carbon or alloy steel in either one or two sections with the web plates and hub of mild steel. These parts are welded logether to form a one-piece unit which is machined in the usual manner.
Gear rims are easily and accurately formed with Cleveland Steelweld Bulldozers. Because of the tremendous power of these machines very heavy rims, as well as many kinds of other work, can be handled at a high rate of production.
Steelweld Bulldozers have rigid onepiece all-welded frames. The machinery is of liberal design and is easily maintained. Every part is high quality made to withstand enormous loadings. For those jobs requiring brute force it will pay you to consider a Cleveland Steelweld Bulldozer.

The Gieveland Crane \& Engineeringi $C 0$.
STEELLWELD MACHINERY DIVIITION
1125 EASt 233

cleveland
 STEELWELD BULLDOZERS
 general sales agents: the cyril bath co, e. $\mathbf{o}^{\text {tru }}$ \& machinery ave, cleveland

Do you need a

McKINNEY MANUFACTURING COMPANYmanufacturers in steel for 78 years has large capacity available for stamping, fabricating and finishing 3 to 20 gauge metal.

Facilities for sub-contract work include-
500 machines from 10 to 150 ton capacity
with $2^{\prime \prime}$ to $6^{\prime \prime}$ stroke for
blanking and forming,
drilling and countersinking,
wire heading,
milling
Also large capacity for barrel and tank electro-plating, Bonderizing, Japanning, Sherardizing, paint and lacquer finishing.

McKINNEY will not hold up your production line.
Write, wire or phone McKINNEY MANUFACTURING COMPANY, War Contract Division No. 2, 1400 Metropolitan Street, Pittsburgh, Pa.

Mallory Tips and Holders

 Speed Spot WeldingAircraft manufacturers have learned how resistance welding speeds production of fighting aircraft. The resistance welding art has made no small contribution to their incredible production records.

But the most modern welding machincs and the most highly skilled operators could not set production records without the right electrodes and electrode holders.
That is where Mallory comes in . . . Years of resistance welding experience have enabled Mallory to develop special electrode alloys, tip contours, holder designs and cooling methods that meet the most exacting demands of the aviation industry.
Mallory Electrodes for spot, seam and flash or butt welding do the job faster at lower cost. They insure less down time because they need redressing less frequently. They produce more welds per electrode, and assure sound, clean welds.

Mallory welding production and research facilities are at your service. Our engineers will be glad to help you ... Mallory's helpful welding data book is yours for the asking. Consult us about your specific resistance welding problem.
P. R. MALLORY \& CO., Inc., INDIANAPOLIS, INDIANA Cable Address-PELMALLO

Welding Parts for Bell Army P. 39 Airacobra The Airacolira is a stout fighter. It is built that noy) As its makers putt it, "we set a camuon out in frowht then build a fighter plane around it." Mallors tips and holders help mightily in speeding proulution on the Bell Airacolra.

Nand $\mathrm{V}=$
MALLOR Resistance Welding Electrodes
FLASH, BUTT, PROJECTION WELDING DIES

SPEEDIER PRODUCTION • LESS DOWN TIME - BETTER WELDING - LOWER COST

PLAN YOUR DISTRIBUTION SYSTEM

ros Maximum Flexibility

Can jou foretell what production demands will he placed on your plant a year or two from today? Emergency additions may be required. Quick conversion to new war products or to peacetime processes may be necessary.
The speed and economy with which these demands can be met depend to a large extent on your plant distribution system. Choosing a system now that provides maximum flexibility offers two important advantages:

1. Increased protection against sabotage today.
2. Faster and more economical conversion when necessity requires it.
By bringing broad engineering experience to bear on your particular problem, Westinghouse can help you select the "one best" distribution
system for your present plant. It should provide maximum flexibility with the least use of critical materials.

All systems recommended by Westinghouse are designed to use standard distribution equipment. No time is lost in building special apparatus.

For prompt action, call our local office. Or send for the helpful booklet below. Westinghouse Electric \& Manufacturing Co., East Pittsburgh, Pa.

J-94561

UP-TO-DATE FACTS ABOUT DISTRIBUTION SYSTEMS

Keep up to date on latest plant distribution systems. Send for 24 -page Booklet, B-3152, which briefly describes plant distribution sys. tems, and points out the advantages of each.

[^11]

BUT... PART OFA VICTORYSHIP TOMORROW

Yes, Ingots that even yesterday were glowing steel in the open hearths,-are today smooth, flat, uniform Steel Plates,-and tomorrow may be part of a boiler, auxiliary machine, or ship's hull -yes, part of the bridge of Victory Ships to help smash the Axis.

 know how each extinguisher should be used, who know when it should not be used, men who know that a fire in electrical wiring must not be handled with the same firefighter you would use for a rubbish blaze . . . these men can save your plant in a quick-striking emergency.

It's up to you to train these men. You will train them best by letting them see extinguishers in action against real fires. You will stage demonstrations at your plant.

Walter Kidde \& Company will send you a booklet which tells how to make demonstrations dramatic and instructive . . . how to teach men to know their fire-fighters. Write to Walter Kidde \& Company, Inc. 547 Main Street Belleville, N. J.

The downward feed of the culter is synchronized with the inward feed of the work to produce a formed conlaur.

Operating mechanisms are all built info the machine as integral self-contained units-well profected from pilfering and dirt.

Briseave Man Pown:

Special Machinery
Alert manufacturers are using more and more special machinery to maintain or increase production volume with a reduced labor force which often lacks skill or previous mechanical experience. Modern special machinery is accurate and automatic so the operator is only required to clamp the part and press an electric button-the machine does the work and to prescribed tolerances without further attention. Cross analyzes manvfacturing problems, develops and builds special machinery to do better work and to do it faster with less labor.
CROSS GEAR \& MACHINE CO. Established in 1898
DETROIT, MICHIGAN, U.S.A.

And, "by the same token," you can't get as much grease
 into a single-row-width "sealed" ball bearing, as goes into the double-row-width "CARTRIDGE" BALL BEARING of equal bore and outside diameter. Look at the section drawings herewith, and you'll see why.
In the single-row-width shielded or "sealed" bearing, see that very small grease space inside the sealing plates. Note further that there is no space available for a highlyefficient, truly grease-tight seal.

Now, in contrast, see that big grease reservoir between the seals, in the "CARTRIDGE" BEARING section-providing at least DOUBLE THE GREASE CAPACITY of the shielded or "sealed" bearing, and greatly extending the greasing intervals. Note, too, how the wide, inwardly-extending seal flanges, and the oil grooves on the inner ring, provide an ideal seal that prevents the escape OE GREASE AND EXCLUDES DIRT, whatever the shaft angle.
Furthermore, the "CARTRIDGE" SEALS ARE REMOVABLE AND REPLACEABLE, should you wish to inspect the bearing or change the grease. And the refilling plug makes it easy to put in a new charge of grease. You can't do this, with the ordinary shielded or "sealed" bearing, which is permanently sealed.
QUALITY, too, is just as vital as QUANTITY, in the grease in your bearings. So, every "CARTRIDGE" BEARING leaves our factory, packed with NORMA-HOFFMANN "STABILITY-TESTED" GREASE, which has great resistance to oxidation as well as excellent lubricating properties.

NORMA-RDFFMANN
"CARTRID GE" ball bearing Summing up ... all these distinctive features of the NORMA-HOFFMANN "CARTRIDGE" BALL BEARING mean prolonged bearing life, less lubrication attention and lower maintenance cost. Write for the Catalog, enumerating many additional advantages. Let our engineers work with you.

Uniformity of thermal treatment and dependable quality in all finishing operations, are essential in the making of a steel that will flow smoothly and rapidly through your production machinery.

The modern and extensive Aristoloy finishing facilities, are completely integrated and assembled in our Warren plant. This centralized manufacture results in undivided quality responsibility through each steel-making step from melting to finishing.

COMPLETE MODERN FACILITIES FOR annealing and heat treating rough-turning. centerless grinding

CARBON TOOL STEELS ALLOY TOOL STEELS AIRCRAFT QUALITY STEELS bearing quality steels STAINLESS STEELS • NITRALLOY STEELS turning and polishing

COPPERWELD STEEL COMPANY WARREN, OHIO

WHEELS OF WAR INDUSTRIES ROLL ON

IDEAI For stress RELIEVING WELDMENTS

DESPATCH FURNACES

Chosen By Major Plants

To meet the highly specialized heat treating requirements of diversifed war industries, Despotch furnaces today include efficient types and models for virtually all heat treating purposes. Success of these furnaces wherever installed reflects Des. patch engineering experience and sound construction methods, plus thorough familiarity with present highly technical heattreating requirements.
These well-known firms represent a few of the scores of mojor plants which use Despatch furnaces:
Allogheny Ludlum Steel Co. International Business Math Aluminum Co. of Ameriea Mpls.-Honeywell Company. Aluminum Industries Chrysler Corporation Curlis Wrigh1 Corporalion Douglas Aircrafl
Exeollo Chemical Company Exeallo Corporation
Fafnir Bearing Company
General Elechic Co.
General Motors Corp. Ask for delails Corp. Wallace Barnes Co.
in these plails about the performance of Despatch furnaces treating ALUMINUMy models are available. Ideal for heat . BRASS; also for STRESS RELESIUM . . . STEEL PARTS many other uses for STRESS RELIEVING WELDMENTS, and Motor Wheel Corp. Nall. Bronze \& Alum. Co. Packard Motor Co. Remington Arms Co, Revere Copper \& Brass Simonds Saw \& Sleel S.K.F. Industries Standard Steel Spring

B Y- P R OD U C T

OF WAR

Some day, perhaps before very long, we must face the responsibility of putting to good use the most promising hy-product of war-the great development of our industrial capacity.
When peace comes, this capacity to produce will remain. The machines will be there, and the highly skilled men and women who run them.

Acme-Gridley Automatics have been carrying a growing share of this production load. No other machines can produce so much, in so short a time, of such uniformly high quality, at so low a cost.
Under the urgencies of war, costs are less important than speed and volume. But we have learned how to produce more goods faster-with Acme-Gridleys-and we can apply this knowledge to produce and sell at prices that will permit the whole world to buy from us.

That is where we must look for broader markets, increased consumption, steady employment.

In the post-war picture, as in manufacturing today, the place of automatic bar and chucking machines-of Acme-Gridleys-is already firmly established.

The NATIONAL ACME Comp/anny CLEVELAND - OHIO

THE BOFS GET A BREAK...

WHEN VITAL PARTS OF WAR EQUIPMENT ARE BUILT LIGHT and strong with seamless alloy steel tubing

IF designers had the opportunity 1 to follow the moving of their own equipment over steep mountains and across ravines, they would more and more appreciate the advantage of building every part possible of high-
stree strength seamless alloy tubing to speed movement of mechanized
equipment. equipment.
The jeep, for example, that goes
every place, does everything every place, does everything and asks
for more, mates in vital parts. Machines alloy tubing tar mounts of alloy tubing and morto carry - faster to set up are lighter every kind of truck, tank or almost seamless alloy trubing is used or plane save
unnecessary weight and add strength. These are but a few uses for seamless alloy tubing. Engineers who have examined their equipment with an eye to saving weight have discovered numerous others. Recently seamless tubing was substituted for a solid forging with a saving of 42 pounds of steel per part. Seamless axles, frames, housings and torque tubes are also big weight savers.
Tubular Alloy Steel Corporation makes all sizes of tubes from $1 / 4$ inch to $85 / 8$ inches in the current range of alloys. The sole purpose of this organization is to speed the production of vital rubing for war uses. The men

MORE SEAMLESS ALLOY STEEL TUBING to keep war equipmens rolling off the production fine. Construction wish tubing instead of solid metal is one of the best ways to cu! off deau weight and save steel.
in the organization are thoroughly experienced in every type of alloy tube production. They have the benefit of the accumulated knowledge of more than 50 years of research coupled with the most modern manufacturing equipment.

Write for complete information about Tubular Alloy (00
Steel Products.

Tama
 LAR ALLOY STEEL CORPORATION
 UBULAR ALLOY STE

gIANT AMONG MACHINE TOOLS is this 180-ton model built by' The Ingersoll Milling Machine Company and shown here at work milling a $25-$-ton casting. In the four cutting heads of this unit-designed so any two can simultaneously utilize the full $100 \mathrm{~h} . \mathrm{p}$. of the drive motor-power transmission is assured by the use of Bantam Ball Thrust Bearings as shown in the accompanying cross-section. 'This applicationisan interesting example of Bantam's proven ability to supply bearings for unusual and difficult service requirements.

a COMPLETE NEEDLE bEARING SERVICE is offered by the combined facilities of Torrington and Bantam. Here, from a single source, you can get the unbiased counsel of engineers experienced in the selection and design of bearings for every purpose. Bantam also offers aid in designing bearings for special requirements as well as a dependable source for every major type of anti-friction bearing-straight roller, tapered roller, needle and ball.'To meet today's urgent demands or in planning for post-war needs, TLRN TO BANTAM for the prompt solution of your bearing problems.

PROYIDING PRIMARY POWER with absolute de pendability is the job of this Jatrbank, Mone Diesel Engine. 'l'o achieve the high hand capacity and long service life required of tla piston pin bearings in such machines, spenis wrist-pin needle bearings designed and bult by Bantam are employed. Bantam has loog pioneered in the design and mamfacture d special bearings for unusual applications

Needle roller bearings provide the high ur? capacity to insure lasting, maintenancelau operation of the bull pinion and differentisl side gear on the differential shaft it Oliret Farm Equipment Company's Row Crop io Tractors. This is a typical application कber an assembly of Bantam Needle Rollers canbe utilized to advantage to provide anti-fritios utilized to advantage to provide and
operation within minimum space requens

ENDLESS MILES OF WIRE are stranded with this machine built by 'lhe New England Butt Company. And contributing to its efficient design and operation are Bantam Quill Bearings used in the idler gears of the wind-up rcels. Bantam's Quill Bearings combine the important advantage of high load capacity in compact design with ease of installation and unusually efficient lubrication.

STRAIGHT ROLLER • TAPERED ROLLER • NEEDLE • BALL THETORRINGTON COMPANY. BANTAMBEARINGS DIVISION SOUTH BEND, INDIANA

STEEL

London Liner

Dimer in New York. Breakfast in London. Almost as simple as a business trip up state or a week-end pleasure jannt. When? Sooner than you think. For the materials-and the "knote-how" that can turn this dream into reality are ready-will be available when war no longer claims them.

Foremost among these materials are Republic Electric Furnace Steels. They are the fine alloy and stainless steels without which our modern airplanes would be impossible. They are the steels that are tough enough and strong enough to stand the heaviest loads - the most severe strains. And because of their grear strength they permit the use of smaller sections for reduction of
weight or bulk. They resist abrasion, wear, corrosion, oxidation, "fatigue", and extremes of temperature. Their unique qualities make them invaluable in vital applications in many fields where other materials simply will not perform or stand up.
These fine metals are proving their value in spectacular ways in war use. And Republic has increased its electric furnace capacity for pro-
ducing them, by more than 700%. In the world of tomorrow, these steels will bring tremendous improvements to transportation on land, sea and in the air. They will make possible more enduring, more efficient equipment for industry, farm and home-better things to work with and to live with. Republic Steel Corporation, General Offices -Cleveland, O. Export Department: Chrysler Building, NewYork, N.Y.

REPUBLIC ELECTRIC FURNACE STEELS

alloy . . . stainless . . ."dircraff qualify"
- Far hardness, foughness, high strength to weight ratio -for resistance to severa tensional, lorsional and compressional strains, to

shock and impact, falligue, elevaled and sub-zero temperafures, carrosion, oxidation, abrasion and process confamination.

They cut turning time in half!

Monar-h lathe, equipped with automatic sizing, turns these shafts automatically. Similarly, step hority and facing, contour facing, boring and turn-ing- and other combinations of straight and taper turning, can be done fast and accurately. Production is increased, unit costs are cut, and men and machmes released for other work.

Timesaving qualities of Monarch lathes have never been so important as now. Take, for instance, the job of shaft turning, illustrated. By doing this on a Monarch lathe. equipped with automatic sizing, turning time is cut in half. With the countless numbers of such pieces being used in war production, the saving in time, and increase in production, can readily be appreciated.

Automatic sizing converts a standard Monarch lathe into an automatic engine lathe, for mass production of a wide range of turning, boring and facing operations, all within the required limits of accuracy. One operator can easily run two or three machines, thus again helping to increase output, in the present emergency.

If you are interested in saving time, now or in the future, we suggest that you set your production schedules with Monarchs as the standard lathes.

MONARCH LATHES Save Time

THE MONARCH MACHINE TOOL COMPANY

[^0]: EX-CELL-O means PRECISION

[^1]: Frederick Lincoln Fuller, 82, a pioneer it the development of cash registers, Whe was in charge of the laboratories of the International Business Machines

[^2]: In the toral dollar volume of recovers:
 only about 25 to 30 achual refunds paid ther cent represents achual refunds paid through renegotiation

[^3]: ${ }^{\text {'Foreign Minerals Quarterly, July } 1941, ~ U . ~ S . ~}$ Bureau of Mines.
 ${ }^{3}$ Mining Congress Journal, October 1942, pg. 38-43.

[^4]: From information made available by United States Office of Civilian Defense.

[^5]: Add 0.25 for acid open-hearth; 0.50 electric. Cold-FInished Carbon Bars: Pittsburgh, Chicago, Gary, Cleveland, Buffalo, base 20,00030.999 Ihs., 2.65c; Detroit 2.70.

 Cold-Finlshed Alloy Isars: Piltsburgh, Chicago, Gary, Cleveland, Buffalo, base 3.35 c ; Detroit, del. 3.47 c .
 Turned, Ground Sharting: Pittsburgh, Chicago, Gary, Cleveland, Buffalo, base (not including turning, grinding, polishing extras) 2.65 c ; Detrolt 2.72 c .

[^6]: -Basing point cities, with quotations representing mill prices, plus warehouse spread.
 YOTE-All prices except cold-rolled strip and AISI hot-rolled bars fixed bv Office of Price Administration in amendments Nos. 10 and 14 to llevised lrice Schedule No. 49.

[^7]: ## Tool Steel Scrap

 Cents ner pound to constmers f.o.b. shipping point Tungsten Types
 (For each 1% tungsten contained)
 Solid scrap containing over 12%
 Tumings, millines contang 5 to 12%
 Tumings, millings, solids under $5 \% \ldots$ 1.25

 Solid scrap, not less tholidenum Types
 demum, 0 not less than 7% molyb-
 Tumings, millinge same
 Solid scrap, not same basis
 denum, 4% tungess than 3% molyb-
 Turaing, millings, same 1% vanadium $\ldots 13.50$
 Mixed Scrap
 (Molybdenum and Tungsten Types)
 Solid scrap, each 1% contained tungsten
 Millings, each 1% molybdenum
 Millings, turnings each 1% tungsten .80

 | n , tumings, each 1% molybdenum.70 |
 | :--- |

[^8]: Arraret Encinecriner Corp.. Pasadona. Callif. errujument for vlant in Californin costins $\$ 60000$.

 Arnolt Motor Co.. Warsaw. Ind.. enuipment for nlant in Indiann costinus $\$ 8.5000$.

 Commodity Credit Con). Whashington, ia. cilities for two glants in Minnesota costing $\$ 350.000$ each.

 Domestic Manganese \& Development Co. Butte. Mont., facilities in Montana costing $\$ 250000$.
 Aero Spark Plug Co. Inc., New Jorl, pient eauipment in New York, overall commitment of $\$ 85.000$.

 American Exnort Airlines Inc., Neve Yort city, facilities in the state costing $\$ 150.000$. city, facilities in the state costing $\$ 1,000000$.
 overall commitment excerding overall commitment exceeding Inc., Elizabetho N. I., additional plant ficilities in New lesey N. J., $\$ 155,000$ overall commitment of $\$ 6 T 5$. 000.

 Clearing Machine Corp., Chicago, additional plant facilities in Illinois conting $\$ 215,000$, overall commitment of $\$ 575,000$.

 Coast Carbons Inc., Tacoma, Wash, sddelCoast Carbons Inc., In Washingtom, overall tional plant equipment 0
 commitment of $\$ 225,000$. Buffalo, N. Y., addi-
 Curtiss-W'right Corp., Buffalo, N. M., costing tional plant eouipment in Missouri 000,000 . $\$ 250,000$, overall commitment of $\$ 24,0$, Calif, Cutter Laboratories Inc., Berkeley, Calin. Cutter Laboratories indies in Califomis costatditional plant facilities u Cat of $\$ 200,000$. ing $\$ 75.000$, overall commitment of $\$ 2$,
 Wyman-Gordon Co., Worcester, Nass., 1,40. tional plant facilities in Illinois costing 000 , overall commitment of $\$ 12,300,000$.

[^9]: AIR MAIL-TELEPHONE-TELEGRAPH YOUR ORDERS

[^10]: Send your inquiries for
 SPECIAL ENGINEERING WORK to the
 A. H. NILSON MACHINE COMPANY, BRIDGEPORT, CONN.
 designers and builders of wire and ribbon stock lorming machines.
 Fe also solicit your bids for cuin milling

[^11]: May 24, 1943

